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Abstract 

The Gulf of Lions has faced a sharp drop in the catches of its two main small pelagic exploited species, the 

sardine Sardina pilchardus and the anchovy Engraulis encrasicolus since the mid-2000s, despite both 

population abundances remaining high. This situation has been due to a severe decrease in individual body 

condition and size as a result of both lower growth and the disappearance of the oldest and largest 

individuals. While overfishing, predation or disease outbreaks have been refuted to explain this situation, one 

major hypothesis remained to be investigated. A potential shift in sardine and anchovy diet towards smaller 

planktonic prey indeed suggested bottom-up control as the main driver of these populations in the Gulf of 

Lions. The first aim of this thesis was to investigate whether bottom-up processes could explain the changes in 

sardine growth and condition through changes in both food size and/or quantity and to understand the 

behavioral and physiological mechanisms involved in this control. The second objective of this PhD thesis was 

to identify the potential underlying drivers leading to adult overmortality. To do so, we combined an 

experimental approach on wild sardines maintained in captivity with a modeling approach. Experimentations 

showed that body condition, growth and storage lipids were significantly impacted by both food size and 

quantity. Thus, sardines fed on small particles needed to consume twice as much as those feeding on large 

particles to achieve the same condition and growth. Such results seemed to be linked to higher energy 

expenditures of sardines while filtering small prey compared to particulate feeding on large prey (sardines 

being able to shift between two feeding modes according to the prey size). Moreover, our results suggested 

several adaptations to cope with small food and caloric restriction. The study of the gill raker apparatus 

involved in the filtration of small prey suggested an increase of the filtration capacity for a given length 

between 2007-2009 and 2016. Then, sardines fed on small particles exhibited higher mitochondria efficiency 

and abundance suggesting energy-saving adaptation. Finally, sardines accustomed to feed on small pellets 

showed lower activity to limit energy expenditure. Nevertheless, all these strategies might incur other costs or 

may not be enough to compensate the high energy demands of filtration on small prey, as growth and 

condition remained lower for sardines filtering small prey in all our experiments. Further, sardines fed on 

large pellets exhibited higher spawning frequency than sardines fed with the same quantity of small ones. The 

low egg production of these sardines might be explained by a too high body condition of these individuals to 

observe a change in energy trade-off towards reproduction. For the same reasons, small particle meals did 

not seem to impact their immunity and stress, leucocyte and cortisol concentrations being similar whatever 

the feeding treatment. Furthermore, to investigate the hypothesis of adult overmortality, we first studied 

whether individual could die from starvation and low body reserves. The survival probability sharply 

decreased when the body condition index became lower than 0.75 and the threshold of 0.72 was identified as 

the entry in phase III of fasting. While the proportion of sardines reaching such thresholds in the wild remains 

low, it still increased two-fold in the recent period, reaching about 10% in winter months. A DEB model 

parameterized using a combination of in-situ and experimental data suggested a lower survival probability for 

larger fish. Individuals larger than 14 cm, i.e. older than 2-3 years, had a lower than 50 % probability to survive 

1 month after the reproduction period. In conclusion, these previous results comforted the two hypotheses of 

a bottom-up control and an overmortality of adult sardines after reproduction to explain the dynamic and 

demographic truncation of the sardine population. 
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Résumé 

Le golfe du Lion a été confronté à une forte baisse des captures de ses deux principales espèces exploitées, la 

sardine Sardina pilchardus et l’anchois Engraulis encrasicolus depuis le milieu des années 2000, malgré des 

populations abondantes. Cette situation est due à une forte diminution de la condition corporelle et de la 

taille des individus causée par une croissance plus faible et la disparition des individus les plus âgés. La 

surpêche, la prédation ou les épidémies ayant été rejetées pour expliquer cette situation, une hypothèse 

majeure reste à étudier. Un changement du régime alimentaire de ces espèces pour des proies plus petites 

suggère un contrôle bottom-up comme principal facteur régissant la dynamique de ces populations. Le 

premier objectif de la thèse était d'étudier si un contrôle bottom-up pouvait expliquer les diminutions de 

croissance et de condition chez la sardine suite à des modifications de taille et/ou de quantité de nourriture et 

de comprendre les mécanismes sous-jacents. Le deuxième objectif de cette thèse était d’étudier les facteurs 

potentiels conduisant à la surmortalité des adultes. Pour cela, nous avons combiné approches expérimentales 

et modélisation. Les expériences ont montré que la taille et la quantité de nourriture avaient un impact 

significatif sur la condition, la croissance et le stockage des lipides. Ainsi, les sardines nourries sur de petites 

proies devaient en consommer deux fois plus que celles nourries sur de grandes proies pour atteindre la 

même condition et la même croissance. Ces résultats semblent être liés à une dépense énergétique plus 

élevée des sardines filtrant les petites proies par rapport à une chasse à vue sur de grandes proies. Nos 

résultats suggèrent plusieurs adaptations pour faire face à des petites proies et à une restriction calorique. 

L'étude des branchies suggère une augmentation entre 2007-2009 et 2016 de la capacité de filtration des 

sardines. Ensuite, les sardines nourries avec des petites proies ont montré plus grande efficacité et abondance 

en mitochondrie, suggérant une adaptation permettant des économies d'énergie. Enfin, les sardines 

habituées à se nourrir sur de petites proies ont réduit leur activité pour limiter les dépenses énergétiques. 

Néanmoins, toutes ces stratégies peuvent engendrer des surcoûts ou ne pas suffire à compenser les besoins 

énergétiques élevés imposée par la filtration, la croissance et la condition des sardines filtrant les petites 

proies étant restées plus faibles au cours de toutes nos expériences. En outre, les sardines nourries avec de 

grosses proies présentaient une fréquence de ponte plus élevée que les sardines nourries en même quantité 

mais sur des petites proies. La faible production d'œufs de ces sardines pourrait s'expliquer par une condition 

trop élevée pour engendrer un changement de compromis énergétique. Pour les mêmes raisons, les petites 

proies ne semblent pas avoir d’impact sur leur immunité et leur stress, les concentrations en leucocytes et en 

cortisol étant similaires quel que soit le traitement utilisé. L’étude de l’hypothèse de surmortalité adulte a 

permis de montrer que la probabilité de survie chute fortement quand la condition devient inférieure à 0,75 

et que le seuil de 0,72 correspond à l'entrée en phase III du jeûne. Alors que la proportion de sardines 

atteignant de tels seuils dans la nature reste faible, elle a récemment doublé, pour atteindre environ 10% en 

hiver. Un modèle DEB paramétré à l’aide de données in situ et expérimentales a mis en évidence une plus 

faible probabilité de survie des individus les plus grands. Ainsi, ceux de plus de 14 cm, c-à-d âgés de plus de 2-

3 ans, ont une probabilité inférieure à 50% de survivre un mois après la période de reproduction. En 

conclusion, ces résultats confortent les hypothèses d'un contrôle bottom-up et d'une surmortalité des 

sardines adultes après la reproduction pour expliquer la dynamique et la troncature démographique de la 

population de sardines. 
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Synthèse en français 

1. Introduction 

Les poissons petits pélagiques sont des éléments clés des écosystèmes marins, régulant la 

dynamique des populations de niveaux trophiques inférieurs et supérieurs, en particulier 

dans les systèmes d'upwelling marins hautement productifs (Brochier et al., 2011; Cury et 

al., 2000; Frederiksen et al., 2006; Taylor et al., 2008). Les petits pélagiques représentent 

également 25% des débarquements dans le monde (en tonnes), principalement par le biais 

de l'anchois, la sardinelle, la sardine, le maquereau et le hareng (FAO, 2018). Les fluctuations 

des populations de petits pélagiques peuvent donc avoir des conséquences écologiques, 

économiques et sociales importantes, et de ce fait la compréhension des mécanismes sous-

jacents est extrêmement importante. La dynamique des populations de ces espèces peut 

être fortement impactée par les fluctuations naturelles de l'environnement (contrôle 

bottom-up) et de mortalité (contrôle top-down)(Checkley et al., 2017). Tout d’abord, 

l'importance cruciale de la production et de la disponibilité planctonique sur la dynamique 

de recrutement des petits pélagiques est connue depuis le travail précurseur de Hjort 

(1914), et est au cœur des hypothèses de « match-mismatch » et d’ « ocean triad » (Bakun, 

1996; Cushing, 1990). D'autre part, la (sur)pêche a également été identifiée comme un 

facteur clé dans l'effondrement de plusieurs stocks, souvent en conjonction avec les 

fluctuations environnementales (Toresen and Ostvedt, 2000), qui peuvent être exacerbés 

par l’actuel changement climatique (Brochier et al., 2013; Shannon et al., 2009). Néanmoins, 

l'importance relative du contrôle bottom-up par rapport au contrôle top-down reste 

compliquée à évaluer car ils sont souvent entremêlés (Hunt and McKinnell, 2006; Rouyer et 

al., 2014).  

Le golfe du Lion est l'une des zones les plus productives de la mer Méditerranée en raison 

des upwellings côtiers induits par le vent, la circulation méso-échelle et les apports d'eau 

douce du Rhône (Millot, 1990; Petrenko et al., 2005). Jusqu’au milieu des années 2000, la 

sardine (Sardina pilchardus) et l'anchois (Engraulis encrasicolus) pouvaient représenter 

jusqu'à 50% du total des débarquements annuels (environ 15000 tonnes) dans le golfe du 

Lion (Bǎnaru et al., 2013). Les débarquements de sardines et d'anchois ont cependant 

fortement diminué depuis 2008, atteignant les niveaux les plus bas enregistrés depuis 150 
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ans (environ 3000 tonnes), bien que l'abondance de la population soit restée élevée (GFCM, 

2017; Saraux et al., 2019; Van Beveren et al., 2016a). La baisse des débarquements de 

poissons petits pélagiques est généralement due à l'échec du recrutement et/ou de la 

surpêche (Schwartzlose et al., 1999). Dans le golfe du Lion, cependant, la chute spectaculaire 

des débarquements a été causée par une diminution importante de la taille et de la 

condition des individus (poids moyen ± SE: 24,3 ± 0,3 g entre 1993 et 2007 et 11,4 ± 0,2 g 

entre 2008 et 2018), ce qui a rendu les sardines et les anchois moins attractif pour la pêche 

(Saraux et al., 2019; Van Beveren et al., 2016a, 2014). La diminution de la taille des sardines 

est le résultat combiné d’une croissance plus faible et de la disparition, de la population, des 

individus les plus anciens et donc les plus grands (Brosset et al., 2015; Saraux et al., 2019; 

Van Beveren et al., 2014). Cette situation est inhabituelle car elle ne découle pas d’un échec 

du recrutement et/ou de la surpêche. En effet, la pression de pêche et la sélectivité ont été 

(et sont encore) très faibles et ne peuvent donc pas expliquer la disparition des plus grands 

individus (GFCM, 2017). Le recrutement est quant à lui resté stable et a même augmenté au 

cours de la dernière décennie (Saraux et al., 2019). Des études récentes ont également 

montré que ni l'émigration, ni des contrôles top-down (prédateurs naturels) ou des maladies 

pouvaient expliquer cette situation (Queiros et al., 2018; Saraux et al., 2019; Van Beveren et 

al., 2017, 2016b). La principale hypothèse restante est donc le contrôle bottom-up, 

possiblement lié à la quantité et la qualité de la production de plancton dans le golfe du Lion 

(Brosset et al., 2015; Saraux et al., 2019; Van Beveren et al., 2014).  

 

2. Objectifs 

Le premier objectif de cette thèse était d'examiner l'hypothèse d'un contrôle bottom-up sur 

les populations de sardines causé à la fois par la taille et la quantité de proies planctoniques 

mais aussi de mieux comprendre ses mécanismes. Pour ce faire, nous avons développé une 

approche expérimentale innovante sur les sardines, en étudiant les effets possibles de la 

nourriture à travers des niveaux d'intégration successifs: au niveau de l’organisme (par ex. la 

croissance, la condition corporelle, la consommation d'oxygène), de l’organe (par ex. 

l’appareil branchial, l’intestin), cellulaire (par ex. l'efficacité mitochondriale) et moléculaire 

(par ex. le cortisol, la balance oxydative). Le deuxième objectif était d'examiner les processus 

pouvant expliquer une surmortalité des adultes. Tout d’abord, nous avons utilisé une 
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approche expérimentale pour essayer de relier la condition corporelle d’un individu avec son 

état physiologique et sa probabilité de survie. Ensuite, nous avons utilisé une approche par 

modélisation en utilisant le modèle DEB (Dynamic Energy Budget) pour étudier la survie des 

individus après la reproduction. 

Dans un premier temps, pour déterminer si les changements observés dans la nature 

pouvaient découler d'un changement de la taille et de la quantité de proies, nous avons 

d'abord étudié les conséquences de différentes tailles et quantités d'aliments sur des 

paramètres morphologiques (condition corporelle, croissance) et physiologiques (lipides et 

protéines musculaires, balance oxydative dans le sang). Ensuite, nous avons étudié les 

mécanismes qui pourraient expliquer les effets de la taille et de la quantité de nourriture sur 

la croissance et la condition corporelle observées dans la nature en mettant l’accent sur le 

bilan énergétique associé à l’alimentation. Pour ce faire, nous avons étudié d'une part 

comment la sardine pouvait maximiser l'extraction d'énergie de son environnement en 

analysant son appareil branchial et de l'autre côté, les coûts énergétiques associés aux deux 

comportements alimentaires au moyen d'analyses de respirométrie. Dans la troisième 

partie, nous avons examiné d’autres traits de vie qui pourraient être influencés par la taille 

et la quantité de nourriture, ce qui pourrait en partie compenser ou aggraver la situation. 

Pour cela, nous avons d’abord étudié l’impact de la taille et de la quantité de nourriture sur 

la capacité de transformation du substrat en énergie au travers de l’étude de l’efficacité de 

conversion des mitochondries, le moteur énergétique du corps. Nous avons ensuite étudié 

les effets de la taille des proies sur la reproduction des sardines en s’intéressant à la 

production d'œufs. Enfin, nous avons étudié l'effet de l'alimentation sur deux paramètres 

exprimant l'état de santé d’un individu: l'immunité et le niveau de stress. Dans la quatrième 

partie, nous avons examiné ce qui pourrait conduire à la surmortalité des sardines. Ainsi, 

nous avons utilisé une approche expérimentale de jeûne pour identifier les seuils de 

condition corporelle susceptibles de conduire des individus à la mort dans le milieu naturel. 

Pour ce faire, nous avons suivi l'évolution de la masse corporelle au cours du temps afin 

d'identifier l'entrée en phase 3 du jeûne (phase critique), ce qui correspond à la mobilisation 

des protéines pour assurer la survie de l’individu. Dans la dernière partie, nous avons étudié 

l'hypothèse d'une surmortalité adulte se produisant après la reproduction comme suggérée 

par Brosset et al. (2016b). Pour cela, nous avons utilisé le modèle DEB qui décrit les flux 

d’énergie au sein des individus (depuis les apports jusqu’aux utilisations telles que la 
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croissance ou la reproduction) au cours de son cycle de vie, en prenant en compte des 

variables forçantes telles que la température et l’alimentation. Nous avons paramétré ce 

modèle en utilisant à la fois des données expérimentales et provenant du milieu. Nous avons 

également simulé l'évolution d'une population de sardines au fil du temps en fonction de 

scénarios environnementaux et en s’intéressant à leur survie. 

 

3. Résultats 

3.1. L'hypothèse de bottom-up reste-t-elle encore valable? 

En utilisant une approche expérimentale, nous avons d’abord montré que la taille et la 

quantité de nourriture n’avaient aucun effet sur les lipides structuraux ni sur les protéines, 

mais avaient un impact significatif sur la croissance, la condition corporelle et les lipides de 

stockage des sardines. En effet, les sardines nourries avec de petites particules devaient en 

consommer deux fois plus (en biomasse) que celles qui se nourrissaient sur de grosses 

particules afin d’obtenir la même condition corporelle et la même croissance. Les taux de 

croissance mensuels obtenu en captivité sur les sardines nourries avec des traitements 

intermédiaires (traitement 2 : petite taille en grande quantité; traitement 3: grande taille en 

petite quantité) étaient proches des taux de croissance observés dans le milieu après 2008 

(1,2, 1,0 et 1,5 mm/mois pour les traitements 2 et 3 et dans la nature - voir Matériel 

supplémentaire de Queiros et al, 2019). Ces résultats ont renforcé le fait qu'une diminution 

de la taille et/ou de la quantité de proies dans le golfe du Lion restait une hypothèse fiable 

pour expliquer la dynamique des populations de sardines. 

3.2. Effets de taille de nourriture comme conséquence des coûts 

énergétiques de la filtration 

Une plus grande capacité de recherche et de collecte de nourriture dans leur environnement 

pourrait avantager ces individus, en particulier s'ils vivent en banc comme c’est le cas des 

petits pélagiques. Pour obtenir la même condition corporelle et la même croissance, les 

sardines nourries avec de petits granulés devaient en consommer deux fois plus que les 

sardines nourries avec des plus gros. Sachant que la qualité des aliments et les conditions 

d'élevage étaient similaires, comment peut-on expliquer le désavantage apparent de se 

nourrir de petites proies ? Les deux hypothèses possibles et non exclusives reposent sur le 
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fait que la nourriture était acquise différemment en raison de différences au niveau de 

l’appareil branchial ou bien que l'énergie dépensée pour la recherche de nourriture 

dépendait de la taille de la proie. Pour attraper une proie, les sardines peuvent adopter deux 

stratégies d'alimentation différentes, principalement en fonction de la taille de la proie 

(Garrido et al., 2007). Dans nos résultats, les besoins en énergie de la nage aérobie utilisée 

lors de la filtration semblaient plus importants que la chasse à vue anaérobie utilisée pour se 

nourrir sur des grosses proies.  

3.3. Comment expliquer la surmortalité de la sardine? 

Bien que nous ayons montré qu’une diminution de la taille ou de la quantité de nourriture 

était suffisante pour induire une croissance et une condition corporelle plus faibles que 

celles observées dans le milieu, nous devions néanmoins expliquer l’augmentation de la 

mortalité adulte provoquant un déséquilibre de la structure en âge de la population en 

faveur des plus jeunes (Van Beveren et al., 2014). Premièrement, nous avons examiné si les 

poissons pouvaient mourir de faim et à cause de faibles réserves énergétiques. En utilisant 

une approche expérimentale, nous avons montré que la survie commençait à diminuer 

fortement lorsque l’indice de la condition corporelle devenait inférieur à 0,75, la survie 

atteignant 50% pour une condition corporelle de 0,65. En outre, la perte spécifique de masse 

corporelle a augmenté environ une semaine avant la mort des individus, au même moment 

que la condition corporelle tombait en dessous de 0,72 et cela était lié à l'entrée dans la 

phase III du jeûne. De tels résultats peuvent représenter le potentiel maximum des sardines 

pour faire face au manque de nourriture car elles étaient moins stressées au cours de 

l'expérience (pas de prédation, pas de pathogènes) et les seuils trouvés ici pourraient donc 

être plus élevés dans la nature. Néanmoins, nos résultats ont indiqué que la proportion de 

sardines dans la nature tombant en dessous de cette condition seuil (0,72) avait doublé au 

cours de la période récente par rapport aux années précédentes et avait atteint ses niveaux 

les plus élevés au cours des mois de janvier et février. Cela semble confirmer une probabilité 

plus élevée de surmortalité chez l'adulte à la fin de la reproduction. En combinant des 

données expérimentales et in situ, nous avons d’abord paramétré le modèle DEB pour la 

sardine de Méditerranée. Les simulations basées sur la population in situ ont montré que les 

individus de 14 cm avaient une probabilité de 20% de survivre un mois après la période de 

reproduction, mais que cette probabilité chutait jusqu'à 8% après un an. Cette étude a mis 
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en évidence une mortalité significative des individus les plus importants après la 

reproduction, correspondant aux individus âgés de plus de 3 ans. Ce travail semble renforcer 

l'hypothèse de la surmortalité des adultes, même si plusieurs améliorations doivent encore 

être apportées. 

3.4. Effets de la taille des aliments sur d'autres traits 

Les traitements alimentaires composés de petites particules semblent n’avoir qu’un faible 

impact sur l'immunité et le stress des sardines. En effet, les concentrations en leucocytes et 

en cortisol étaient similaires entre les traitements alimentaires (à la fois grandes et petites 

tailles). Sachant que les sardines n’avaient pas à faire face à des challenges (pas de prédation 

et environnement aseptique) et que l’indice de condition corporelle des sardines nourries 

avec des petites particules tout au long de l’expérience est proche de 1 (état général moyen 

chez les populations sauvages), les niveaux de leucocytes et de cortisol trouvés au cours de 

cette étude pourraient correspondre à des concentrations de standard, alors que les 

variances de ces niveaux traduiraient la variabilité interindividuelle. 

Par ailleurs, nous avons aussi étudié l’effet de la taille des aliments sur la reproduction et 

nous avons découvert que la taille des aliments a un effet significatif sur le nombre 

d’événements de ponte, ce qui pourrait s’expliquer par une fréquence de ponte plus élevée 

liée à des individus plus grands. De plus, la relation entre l'indice de condition corporelle et 

l'investissement dans la reproduction pourrait ne pas être linéaire, mais plutôt supposée 

être en U. Ainsi, l'investissement dans la reproduction pourrait augmenter lorsque la 

condition corporelle diminuerait en dessous d'un seuil. Ici, les sardines nourries avec des 

petites particules avaient une condition corporelle autour de 1, ce qui était peut-être trop 

élevé pour provoquer un changement de compromis énergétique entre reproduction et 

survie.  

3.5. Les sardines peuvent-elles s'adapter à la restriction calorique ou à 

des proies plus petites? 

Les sardines de la mer Méditerranée sont connues pour être moins bonnes filtreuses que les 

sardines de zones plus productives (par exemple en Atlantique, voir Costalago et al., 2015). 

Ici, nous avons étudié si les sardines pouvaient s’adapter à des proies plus petites en 

augmentant la capacité de filtration de leur appareil branchial. En utilisant des sardines 
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capturées dans la nature, puis maintenues en captivité pendant 7 mois avec différents 

traitements alimentaires, nous avons constaté que la longueur de l'arc branchial et la densité 

de branchiospines étaient significativement corrélées à la longueur du poisson, mais non 

corrélés à l'abondance et à la longueur des branchiospines. La taille et la quantité de 

nourriture n'ont pas induit de plasticité dans la structure des branchies (longueur, densité ou 

abondance) des sardines adultes après 7 mois. Cependant, nous avons constaté une 

augmentation de la densité des branchiospines pour une longueur de poisson donnée entre 

2007-2009 et 2016. Ces modifications peuvent être dues à de la plasticité, à de la sélection 

naturelle ou à de l'épigénétique, mais cela nécessite des analyses plus approfondies. Une 

autre façon de faire face à la restriction calorique serait d’adapter ses dépenses 

énergétiques, soit en modifiant l’efficacité des mitochondries, soit en diminuant son activité. 

Nos résultats indiquent que la petite taille des aliments semble entraîner une augmentation 

de l'abondance et de l'efficacité des mitochondries, ce qui suggère que les sardines faisant 

face à une restriction calorique ont adopté une stratégie d'économie d'énergie pour 

produire de l'ATP. En outre, la diminution du taux de consommation d'oxygène de base pour 

les sardines dont l'état corporel est faible soutient la stratégie d'économie d'énergie pour les 

sardines faisant face à une restriction alimentaire. De même, les sardines nourries avec de 

petites proies en petite quantité pendant 7 mois affichaient une consommation en oxygène 

plus faible au niveau du groupe pendant le jeûne, probablement en raison d'une activité plus 

faible. Une telle diminution semble permettre aux sardines de maintenir une période de 

jeûne plus longue et d’observer une diminution plus faible de leur condition corporelle. Ces 

résultats ont montré une réponse plastique des sardines à la privation de nourriture, 

réduisant leur mortalité. Néanmoins, ces stratégies pourraient entraîner d'autres coûts ou 

ne suffiraient peut-être pas à compenser les fortes demandes en énergie liées filtration sur 

des petites proies. 

 

4. Discussion 

4.1. Expérimentation sur les sardines 

Parmi toutes les expérimentations s’intéressant aux poissons, le poisson zèbre (Dario rerio) 

est sans aucun doute l'espèce la plus utilisée, notamment en raison de similitudes partagées 

avec l'homme (Kalueff et al., 2014). Les expériences sur les espèces de poissons marins sont 
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généralement utilisées pour améliorer l'aquaculture ou des études de génétiques, mais 

rarement pour des problèmes d'écologie appliquée, bien que les expérimentations 

constituent l'une des approches les plus utiles pour étudier les mécanismes de contrôle des 

populations (Hunt and McKinnell, 2006). Les études in situ restent complexes et coûteuses 

sur les poissons marins et celles consacrées aux petits poissons pélagiques ont 

principalement porté sur des questions spécifiques, telles que les estimations de la taille des 

stocks. Au cours de ma thèse, nous avons développé une approche expérimentale originale 

pour examiner les impacts de la taille et de la quantité de nourriture sur la situation des 

sardines et pour vérifier l’hypothèse de la surmortalité des adultes. Une telle approche 

expérimentale reste rare en raison de la difficulté de manipuler ces espèces. Bien que des 

expériences sur les larves de sardines soient fréquemment effectuées, les études 

expérimentales portant sur des adultes sont peu utilisées. Elles ont principalement servi à 

étudier les aspects de la captivité ou de la manipulation au cours de l'expérimentation 

(Bandarra et al., 2018; Marçalo et al., 2008; Peleteiro et al., 2004), des effets des procédures 

ou des dispositifs de pêche (Goetz et al., 2015; Marçalo et al., 2013, 2010) et le 

comportement alimentaire (Garrido et al., 2007). De plus, une première expérience de 1 an a 

été menée sur des sardines adultes mais qui étaient nettement plus grandes et plus lourdes 

(20,2 cm et 72,2 g, Bandarra et al., 2018), tandis qu’une plus longue étude (1,5 ans) a débuté 

avec des œufs collectés dans la nature et n’a abouti qu’à une seule sardine vivante après 18 

mois (Iglesias and Fuentes, 2014). Enfin, nous avons prouvé que des manipulations et des 

expériences de longue durée sur les sardines, en particulier sur de petits individus, 

pourraient être menées à l'avenir. 

De plus, l'expérimentation animale doit être conforme aux exigences réglementaires 

nationales en matière de bien-être animal. À cette fin, la règle des Trois R (Reduce, Refine, 

Replace  - soit Réduire, Améliorer, Remplacer) vise à réduire le nombre d’animaux utilisés, à 

affiner les procédures expérimentales afin de limiter les souffrances des animaux et à 

remplacer les animaux par des alternatives non animales lorsque cela est possible (Ibrahim, 

2006). En plus d'être particulièrement attentifs aux conditions d'élevage, nous avons 

également porté une attention particulière au cours de cette thèse au devenir des sardines à 

la fin des expériences. En tant que telles, les sardines étaient soit données à des aquariums 

locaux lorsque des sacrifices n'étaient pas nécessaires, soit optimisées afin de recueillir le 

maximum d’échantillons (muscles pour les protéines et les lipides, sang pour la balance 
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oxydative, écailles pour le cortisol, les gonades et le cœur pour les télomères, mais aussi à 

certaines occasions, les branchies, le rein pour l’immunité et l’intestin pour de l’histologie et 

pour le microbiome). Néanmoins, une telle approche n'aurait pas été possible sans la 

collaboration de plusieurs experts de différents domaines (mitochondries, immunité, par 

exemple), ce qui m'a permis d'étudier les effets de l'alimentation sur plusieurs traits 

d’histoire de vie de la sardine (reproduction, croissance et maintenance) et à plusieurs 

échelles (organisme, organe, cellule et composant), certaines étant encore à l'étude.  

Enfin, le paramétrage de modèles tels que le modèle DEB nécessite généralement beaucoup 

de données pour trouver le meilleur jeu de paramètres. Les données d’expérimentation 

représentent les deux tiers des données utilisées lors du processus de paramétrage du 

modèle DEB, ce qui nous permet de tester (numériquement) certaines hypothèses qui ne 

pourraient pas être testées autrement (comme par exemple les effets combinés de la 

nourriture et de la température). Bien que les expériences prennent beaucoup de temps et 

nécessitent beaucoup de personnel/équipement (par exemple, une étude sur plusieurs 

années successives, plusieurs températures), elles sont complémentaires de l’approche de 

modélisation et sont au cœur de toutes les études menées au cours de cette thèse. 

 

5. Limites 

Comme pour toutes les expériences, nous avons essayé d’être aussi proches que possible de 

l’environnement naturel (par ex. pour l’eau et la nourriture) afin d’obtenir le comportement 

le plus naturel possible des sardines. Par conséquent, les bassins expérimentaux étaient 

alimentés en eau pompée directement en mer et suivaient des régimes naturels de photo et 

thermo-période. Le nombre et la densité de poissons par bassin ont également permis la 

formation de banc. Ensuite, aucune des deux possibilités de fournir des proies vivantes aux 

sardines (capture dans la nature ou production) ne semblait adéquate pour nos expériences. 

Outre les difficultés logistiques inhérentes, il aurait été impossible de normaliser les repas en 

termes de taille et de quantité d'aliments plusieurs fois par jour, tous les jours pendant 

plusieurs mois. A l’inverse, les granulés d’aquaculture offraient la possibilité de contrôler 

avec précision les intrants alimentaires. Ne disposant d'aucune information sur la 

composition des proies à l'état sauvage avant et après la crise, nous avons décidé d'étudier 

uniquement les effets de la taille et de la quantité de nourriture sur les traits de vie de la 
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sardine et ainsi sélectionner des granulés d'aquaculture de deux tailles différentes (0,1 et 1,2 

mm) et de même qualité en termes de teneur lipidiques et protéiques. Bien que nous soyons 

conscients de la limitation des aliments inertes par rapport aux proies vivantes, nous nous 

sommes assurés d’un comportement alimentaire normal après chaque période 

d’acclimatation. Malgré toutes les dispositions mises en place, les expériences menées au 

cours de cette thèse ont pu parfois échouer pour plusieurs raisons. Deux exemples sont 

présentés ci-après. Tout d’abord, malgré nos efforts pour imiter l'environnement naturel, 

nos connaissances sur la reproduction des sardines sont limitées. Nous avons décidé 

d'étudier l'effet de la taille de la nourriture sur la reproduction des sardines et donc les 

pontes n'ont pas été induites artificiellement. Les premières pontes issues des sardines de 

l'expérience n°2 se sont produites lorsque la température de l'eau est descendue en dessous 

de 14°C et se sont terminées lorsque la température a dépassé 15-16°C. Cependant, les 

sardines de l'expérience n°1 (Chapitre 1) n'ont pas pondu en hiver, même les individus 

nourris avec de grosses particules alors qu’ils avaient une condition corporelle élevée 

(environ 1,2) et soumis aux mêmes conditions environnementales (les bassins étant 

alimentés avec la même eau et suivant la même photopériode). Même si les stratégies 

« income breeding » et « capital breeding » peuvent refléter des points extrêmes dans un 

continuum de stratégies (Stearns, 1989), les sardines sont connus pour être des « capital 

breeders » dans le Golfe du Lion. Ainsi, l’absence de ponte chez de tels individus peut être 

due à de faibles niveaux de stockage d’énergie avant l’expérience (l’expérience a commencé 

à la mi-novembre, c’est-à-dire environ 3 semaines avant que la température ne descende en 

dessous de 14°C). Pour y remédier, l’expérience n°3 visait à déterminer si la taille des 

aliments avant ou pendant la période de reproduction avait une influence sur la 

reproduction des sardines, c’est-à-dire pour étudier ce gradient capital/income. Cependant, 

un seul événement de reproduction avec une très faible quantité d'œufs a été observé au 

cours de l'expérience n°3, tandis que les sardines de l'expérience n°2 se sont reproduites 39 

fois au même moment avec la même qualité d'eau. L'absence de reproduction pourrait être 

due à des conditions d'élevage, les sardines de l'expérience n°2 étaient dans des cuves plus 

grandes que les sardines des expériences n°1 et n°3 (3 m3 et 300 L pour les expériences n°1 

et n°3, respectivement). Il est intéressant de noter que les sardines de l’expérience n°3 

avaient des gonades matures (observées lorsqu’elles ont été sacrifiées en mars). L’absence 

de ponte dans de petits bassins peut également mettre en avant l’importance de la hauteur 
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de la colonne d’eau pour la reproduction des petits pélagiques. En effet, le comportement 

de reproduction des petits pélagiques pourrait être similaire à celui d'autres espèces de 

poissons libérant leurs œufs dans la colonne d'eau, tels que les mérous (Rowell et al. 2019, 

Mourier et al. 2019) ou les poissons perroquets (Luckhurst 2011). Pour élucider les 

comportements de reproduction des sardines, un sonar à courte portée pourrait être utilisé 

pour identifier le comportement des poissons pendant la reproduction qui se déroule la nuit. 

Enfin, le fait que les sardines ne se soient pas reproduites peut également résulter d'une 

incompréhension éthologique de la reproduction des petits pélagiques, telle que le 

comportement, la taille du banc, etc. Malgré l'absence de reproduction au cours de 

l'expérience n°3, les échantillons prélevés en mars seront utilisés pour évaluer le coût 

physiologique de la croissance ou de la reproduction à l'aide de télomères et de la balance 

oxydative (Bauch et al., 2013; Geiger et al., 2012). Les paramètres morphologiques fournis 

au cours de cette expérience seront également utilisés pour étudier une compétition 

potentielle entre individus.  

Outre l'étude de reproduction, l'étape finale de l'expérience n ° 3 aurait dû être utilisée pour 

étudier les différences de consommation d'oxygène des sardines se nourrissant sur des 

petits granulés par rapport à de gros granulés avec plus de réplicats et un système « start 

and stop » comparée à l'étude de respirométrie présentée précédemment. Au cours de 

cette expérience, les sardines ont été réparties dans 8 bassins en fonction de leur indice de 

condition corporelle (HC et LC, respectivement conditions élevées et faibles), soit 4 bassins 

pour HC et 4 bassins pour LC. Les sardines ont été nourries avec du gros granulés pendant les 

2 premières semaines et avec du petits granulés pendant les 3 semaines suivantes (y 

compris une semaine pour l’acclimatation à ce traitement alimentaire). Les sardines étaient 

nourries deux fois par jour et l'alimentation de chaque rangée, constituée d'un bassin de 

chaque condition, était espacée toutes les 20 minutes afin d'être synchronisée avec le 

système de respirométrie à flux « start and stop ». Cependant, l'alimentation de la première 

rangée a entraîné l'agitation des sardines dans tous les autres réservoirs, même si elles 

n'étaient pas alimentées. Ainsi, la consommation d'oxygène a augmenté avant le début du 

repas dans 6 des 8 bassins, rendant ces données inutilisables. De plus, les sardines en bon 

état (c’est-à-dire nourries avec de gros granulés pendant 9 mois) ne semblaient pas 

s'intéresser aux petits granulés, probablement parce que leur bon état leur permettait 

d’attendre une meilleure nourriture; de sorte que la consommation d'oxygène n'a pas 
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augmenté pendant leurs repas. Bien que cette expérience devait être indispensable pour 

mieux comprendre les mécanismes impliqués dans la croissance et la condition plus faible 

des sardines nourries avec des petits granulés, il n’a pas été possible de la refaire pendant la 

période de ma thèse, en raison de plusieurs problèmes logistiques. Néanmoins, un nouveau 

protocole a été conçu pour cette expérience et pourrait être réalisée dans un proche avenir 

(voir perspectives). 

Outre les limites susmentionnées de l'approche expérimentale, cette étude soulève 

également certaines limites dans l'exercice de modélisation. L'approche DEB traite de la 

répartition des flux d'énergie depuis la nourriture jusqu’à son utilisation pour la 

maintenance, la croissance et la reproduction. Pour paramétrer le modèle DEB, les 

«meilleures» données correspondent aux bilans énergétiques sur plusieurs tailles de poisson 

et à plusieurs niveaux de nourriture (Lika et al., 2011). Cependant, ces données n'étant pas 

disponibles pour notre espèce, nous avons donc utilisé des observations indirectes liées aux 

flux d'énergie pour estimer les paramètres tels que la croissance. Bien que le paramétrage 

soit satisfaisant, les erreurs relatives entre certaines observations et prévisions sont 

relativement élevées et le temps de survie des individus à jeun estimé pendant les 

simulations était inférieur à l'estimation trouvée lors de l'expérience de jeun. En outre, la 

prédiction de l'indice gonadosomatique était plutôt basse et pourrait être due à la faible 

quantité de données disponibles sur la reproduction de la sardine dans la littérature. Ces 

résultats pourraient également être expliqués par la longue et difficile étape du paramétrage 

du modèle DEB. Dans notre étude, nous avons en outre ajouté un compartiment au modèle 

DEB pour prendre en compte la reproduction de la sardine en multiple lots successifs, mais 

plusieurs hypothèses de modélisation ont dû être formulées en raison du peu d'informations 

disponibles sur la reproduction comme par exemple le facteur environnemental qui 

déclenche la reproduction. Enfin, l’exploration de l’espace des paramètres est contrainte par 

des ensembles de paramètres «réalistes» en fonction d’autres espèces similaires et certains 

paramètres doivent être corrigés. Néanmoins, deux ensembles de paramètres réalistes 

pourraient bien corréler aux données mais conduire à une incompréhension du processus 

physiologique sous-jacent. Ainsi, un faible niveau de nourriture contrebalancé par un κ élevé 

(allocation au soma) pourrait conduire à la même croissance que la combinaison d'un niveau 

de nourriture élevé et d'un faible κ. Pour limiter le nombre de paramètres réalistes 

potentiels, des données supplémentaires (par exemple sur la reproduction ou le contenu 
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énergétique) seraient nécessaires. Dans cette étude, nous avons considéré que tous les 

individus partageaient les mêmes paramètres et nous n’avons pas intégré de variabilité 

interindividuelle, en particulier pendant le processus de simulation. De même, les 

paramètres environnementaux (température et aliments) dérivés des résultats des modèles 

3D hydrodynamiques et biogéochimiques ayant une résolution journalière, mais seules les 

moyennes mensuelles pour l’ensemble du golfe du Lion et pour toute la hauteur de la 

colonne d’eau ont été utilisées. De plus, aucune distribution verticale ou spatiale de la 

sardine (distribution principalement côtière, Saraux et al. 2014) n’a été prise en compte alors 

que cette dernière pourrait avoir des effets physiologiques notamment dus à la température 

(par ex. la stratification en hiver) ou à des ressources alimentaires différentes. Néanmoins, 

les perspectives développées dans la discussion devraient réduire ou permettre d’explorer 

certaines des limites potentielles susmentionnées. 

 

6. Conclusion 

En conclusion, les différentes expériences ont permis de mettre en évidence à la fois 

l’importance de la taille et de la quantité de nourriture sur la condition corporelle et la 

croissance des individus. Ces résultats semblent être liés à des dépenses énergétiques plus 

importantes lorsque les sardines filtrent pour s’alimenter sur des proies de petites tailles que 

lorsqu’elles chassent les plus grosses. Malgré des adaptations pour faire face à des petites 

proies ou à une restriction alimentaire (amélioration de la capacité de filtration, meilleur 

couplage énergétique des mitochondries, réduction de l’activité), ces mesures ne semblent 

pas contrebalancer les dépenses nécessaires à la filtration. De plus, la reproduction semble 

être impactée négativement par la taille de nourriture à l’inverse de l’immunité et du stress. 

Néanmoins l’absence d’effet pourrait être expliquée par une condition corporelle des 

sardines nourries sur des petites proies trop élevée pour indure une modification de 

l’allocation énergétique. L’étude de la surmortalité adulte a permis de définir des seuils à 

partir desquels la probabilité de survie des sardines diminuait drastiquement. Les 

simulations qui ont suivi ont permis de montrer une plus faible probabilité de survie des 

individus les plus grands (ceux de plus de 3 ans) qui pourrait ainsi renforcer l’idée d’une 

surmortalité post-reproduction 

 



 
 

14 
 

Introduction 

1. The small pelagics  

‘The term 'small pelagic fishes' refers to a diverse group of mainly planktivorous fishes that 

share the same habitat, the surface layers of the water column, usually above the continental 

shelf and in waters not exceeding 200 m in depth’ (Dalzell, 1993). They constitute schools 

made by individuals sharing the same size and body form and consist of one or more species 

depending on their relative abundance (Bakun and Cury, 1999). Small pelagics are also 

opportunistic strategists, i.e. with a small size, early maturation and short life (King and 

McFarlane, 2003). They are at the heart of energetic transfers from lower trophic levels 

(plankton) to upper ones such as marine mammals, birds and large pelagic fishes (Cury et al., 

2000; Pikitch et al., 2014). Thus, they exert major controls on the entire marine food web 

through either top-down control on the plankton communities or bottom-up control on their 

predators or wasp-waist control when both top-down and bottom-up controls occur 

simultaneously (Cury et al., 2000). Simultaneously, these fishes have huge commercial 

significance as they represent one quarter of worldwide landings (in tons), predominantly 

through anchovy, sardinella, sardine, mackerel and herring (FAO, 2018). They support 

important fisheries all over the world and the economy of many countries depend on the 

small pelagic fisheries (Alheit et al., 2009; Fréon et al., 2005). Therefore, fluctuations in 

populations of small pelagics can have critical ecological, economic and social consequences 

as observed in Peru in the early 1970s with the famous collapse of the Peruvian anchovy 

(Alheit et al., 2009; Allison et al., 2009; Schwartzlose et al., 1999).  

Small pelagics are known to widely fluctuate over time complicating the management of 

their populations (Bakun, 1996). Such strong fluctuations have been recorded over using 

scale deposition rates, showing that they are not the sole result of exploitation (Guiñez et al., 

2014; Valdés et al., 2008). Indeed, their population dynamics are strongly impacted by 

natural environmental fluctuations (Alheit et al., 2009; Checkley et al., 2017). The crucial 

significance of plankton production and availability for recruitment dynamics of small 

pelagics has been known since seminal work by Hjort (1914), and is central to the ‘match-

mismatch’ and ‘ocean triad’ hypotheses (Bakun, 1996; Cushing, 1990). The ‘match-

mismatch’ hypothesis refers to the need to have a synchrony between plankton availability 
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and larvae production (Cushing, 1990), while the ‘ocean triad’ theory is based on 3 processes 

(enrichment, concentration and retention) to explain how physical environment could 

influence the survival of early life stages of pelagic populations (Bakun, 1996). As a 

consequence, any variable that impacts plankton production may be a potential driver of the 

small pelagic population dynamic either small-scale (e.g. temperature, wind) or large-scale 

fluctuations. Large scale fluctuations induced by the North Atlantic Oscillations have involved 

in several ecological modifications such as dynamic, abundance or spatial distribution of 

populations (Ottersen et al., 2001; Stenseth et al., 2002). To the same extent, large scale 

fluctuations of El Niño-Southern Oscillation in the Pacific Ocean are known to negatively 

impact small pelagic populations such as Peruvian anchovy populations (Barber and Chavez, 

1983). However, small pelagics could enable to cope with bad environmental conditions 

using small scale structure (e.g. anchovy population during El Niño 1997–98 in Bertrand et 

al., 2004).   

Furthermore, worldwide landings (excluding aquaculture) rose from 20 million tons in 1950 

to almost 80 million tons in the 80s (Sinclair et al., 2002). Nowadays, most of worldwide 

marine fish stocks are fully exploited (60%) or overexploited (35%) with large geographic 

disparities (FAO, 2018). (Over)fishing has also been identified as a key factor in the collapse 

of several stocks in the world, often synergistically with environmental fluctuations 

(Essington et al., 2015; Toresen and Ostvedt, 2000).The famous collapse of the Peruvian 

anchovy in the 1970s could have resulted from both El Niño event and overfishing (Pauly et 

al., 2002; Stenseth et al., 2002). Similarly, the collapse of the Norwegian herring to the state 

of commercial extinction in the late 1960s seemed to be due to a combination of 

unfavorable climatic conditions and overexploitation of adult and juvenile herrings 

(Engelhard and Heino, 2004). In addition to the direct impact on targeted species, 

overfishing may also alter pelagic communities and may induce drastic changes in trophic 

webs through the modification of matter and energy fluxes (e.g. in Bearzi et al., 2006; Cury 

et al., 2000; Gómez-Campos et al., 2011; Jackson et al., 2001). 

Small pelagic fish have a worldwide distribution and are especially well studied in the large 

EBUS (Eastern Boundary Upwelling Systems) owing to their higher productivity. Even if 

landings are lower compared to EBUS, small pelagics are also very important for fisheries in 

other non-upwelling system such as in the Mediterranean basin where small pelagics 

represent 38% of the total catch (Lacoue-Labarthe et al., 2016). The Mediterranean Sea is 
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considered as the largest and deepest enclosed sea on Earth and connected to both the 

Atlantic and Indian Oceans (Coll et al., 2010). The basin is known to be mainly oligotrophic 

but some coastal enriched spots are induced by environmental conditions and human 

sewage (see Figure 1c in Coll et al., 2010). Furthermore, the Mediterranean Sea is a marine 

biodiversity hot spot with a mean of 6.3% of worldwide species inhabiting only 0.82% (in 

surface area) and 0.32% (in volume) of the world ocean (Bianchi and Morri, 2000; Coll et al., 

2010). However, climate change and human impact such as pollution, invasive species and 

overfishing are important threats for biodiversity especially in the highly populated 

Mediterranean region (Bianchi and Morri, 2000; Costello et al., 2010). As a result, the 

Mediterranean Sea has showed an alarming decrease of their main exploited fish stocks 

since 1990 (Vasilakopoulos et al., 2014). 

 

2. An unusual situation in the Gulf of Lions 

The Gulf of Lions is located in the northwestern Mediterranean Sea (Figure 1) with a 

bathymetry between 0 and 2,500 m  and covering about 15,000 km2 (Mellon-Duval et al., 

2017). The Gulf of Lions is one of the most productive areas in the Mediterranean Sea mainly 

due to the dominant forcing drivers such as the strong northwestern (tramontane) and 

northern (mistral) winds, the western Mediterranean mesoscale circulation and the 

freshwater input from the Rhone River (Millot, 1990; Petrenko et al., 2005). It represents an 

important feeding area for fish, birds and mammals, for both resident and migratory 

populations (Bǎnaru et al., 2013).  

 
Figure 1: Map of the Gulf of Lions, showing 200 and 2000 m bathymetry 
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Among the most targeted species, small pelagics as sardines (Sardina pilchardus) and 

anchovies (Engraulis encrasicolus) represented about 50% of the total annual landings in the 

Gulf of Lions until the 2000s (Figures 2A et 2B). In most upwelling systems, when sardines 

and anchovies occur sympatrically, they fluctuate asynchronously, i.e. alternation between 

sardine-based ecosystem and anchovy-based ecosystem (Alheit et al., 2009; Schwartzlose et 

al., 1999). However, landings of small pelagics in the Gulf of Lions have reached their lowest 

levels recorded in 150 years for both anchovies and sardines at the same time (Van Beveren 

et al., 2016a) (Figure 2C). More surprisingly, this important decrease in landings occurred 

despite abundance levels being high (GFCM, 2017b; Van Beveren et al., 2014). Rather, this 

situation has been explained by a decrease in individual size and weight since 2008 of both 

sardine and anchovy (sardine being more impacted than anchovy, Figure 2D and 2E), making 

them economically unfavorable owing to the absence of a market for small individuals 

(Saraux et al., 2019). The decrease in size resulted from the combination of a lower growth 

and the disappearance of the oldest and largest individuals (Saraux et al., 2019; Van Beveren 

et al., 2014). Further, the mean weight has also decreased owing to a weaker body condition 

of fish observed since 2008 (Figure 2E and 2F)(Van Beveren et al., 2014). In summary, fish 

are smaller as they grow less and are younger and for a given length, they also appear to be 

leaner. 

Surprisingly, the changes observed in the Gulf of Lions were not due to a lower recruitment 

(it has remained high since 2008) (Saraux et al., 2019) which is usually highlighted to be 

responsible of the decline in landings of small pelagics (Schwartzlose et al., 1999). Thus, this 

unusual situation was primarily investigated by the EcoPelGol project (Ecosystèmes 

Pélagiques du Golfe du Lion) whose aim was to study the main causes of the changes in 

small pelagic fish populations in the Gulf of Lions (Saraux et al., 2019). To do so, they 

investigated several potential sources of this issue (Figure 3): (1) emigration of oldest 

individuals, (2) top-down controls (i.e. by fisheries or natural predators such as tunas and 

dolphins), (3) bottom-up controls (i.e. by environmentally-driven food modification), (4) 

epizootic events and (5) energy allocation trade-offs (Saraux et al., 2019). 
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Figure 2: Pictures of the sardine Sardina pilchardus (A) and the anchovy Engraulis encrasicolus (B). Landings (C), mean weight (D), size 

distribution (E) and body condition index (F) of sardine (blue full circles) and anchovies (green open squares) [black full triangles 

correspond to sprat Sprattus sprattus in plots (C) and (D)]. Adapted from Saraux et al. 2019 
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Two hypotheses may explain the disappearance of the oldest individuals from the Gulf of 

Lions: emigration and/or overmortality of those individuals. Owing to the direction of the 

powerful North Current (i.e. to the west) and the presence of a continental shelf, if small 

pelagics had emigrated they should have done so towards Spanish Waters. However, size 

distributions of both French and Spanish sardines and anchovies were similar between 2002 

and 2013 and the disappearance of the largest individuals happened simultaneously in both 

areas (Saraux et al., 2019). Thus, the hypothesis of an emigration to Spain was not retained 

to explain the disappearance and adult overmortality appeared the most probable 

hypothesis. Nonetheless, this result showed that the unusual situation observed in the Gulf 

of Lions seemed to act at a larger scale in the NW Mediterranean Sea.  

The first investigation was led on top-down controls: fishing and (natural) predation 

pressure. On the one hand, overfishing is known to significantly impact populations and 

Figure 3: Schematics of the main drivers of small pelagic population dynamics from Saraux et al. (2019). Significant 

drivers appear in bold, while less important ones appear in grey and in italics. Green items were perspectives for future 

work 
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could modify their structure in favor of small individuals and earlier maturation (Daan et al., 

2005; Law, 2000). The mean fishing harvest rates was lower than 15% for both sardine and 

anchovy, so much lower than the reference level of 40% (Figure 4)(Saraux et al., 2019). 

Interestingly, this threshold was crossed only once in 1997 and was followed by peak in 

sardine biomass, suggesting little effect of fishing on these populations (Saraux et al., 2019). 

Further, the fishing pressure in the Gulf of Lions has remained very low in the last 10 years (< 

1 %) and has reached the lowest levels in 150 years, but no sign of recovery has been 

observed in small pelagic populations (GFCM, 2017b; Saraux et al., 2019; Van Beveren et al., 

2016a). Due to low harvest rates and the absence of time concordance between small 

pelagic decrease in biomass and fishing pressure, overfishing was not considered as a 

primary source of the observed changes in the Gulf of Lions. 

 

 

 

 

 

On the other hand, the predation pressure (ratio consumed/available) exerted by top 

predators could be higher than fishing mortality in several areas, increasing population 

fluctuations (Cury et al., 2000; Jacobsen and Essington, 2018) and so might remove an 

important part of adults from the population. Due to its recovery in the Gulf of Lions and its 

diet mainly based on sardines and anchovies (which accounted for more than 80% of its diet 

in mass and abundance), the Atlantic bluefin tuna (Thunnus thynnus) constitutes one of the 

main predators of these species (Bauer et al., 2015; Van Beveren et al., 2017). To study the 

predation pressure of the bluefin tuna, Van Beveren et al. (2017) developed an innovative 

Figure 4: Harvest rates of sardine (in blue) and anchovy (in green) as estimated by the total landings divided by the 

biomass of the stock assessed by acoustics. Dashed lines indicates the safe level of harvest rates. Plot from Saraux et al. 

2019. 
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approach combining several estimations: (1) population abundance derived from aerial 

survey (Bauer et al., 2015), (2) population structure estimated from landings, (3) energetic 

requirements from DEB model (Dynamic Energy Budget), (4) stomach content analysis and 

(5) prey abundance in the Gulf of Lions from PELMED survey (described in Saraux et al., 

2014). Then, they performed 10,000 iterations to take into account uncertainties due to 

previous estimations and using appropriate distribution for each parameters (Van Beveren 

et al., 2017). Finally, the top-down control exerted by tunas was extremely limited as it 

reached less than 2% of the available stock for both sardine and anchovy, and no prey-size 

selectivity was found (Van Beveren et al., 2017). Furthermore, marine mammals seem to be 

important consumers of prey in various ecosystems, especially cetaceans because of their 

large body sizes and relatively high metabolic rates (Bowen, 1997; Laran et al., 2010). The 

predation pressure of the two main dolphin species (the bottlenose dolphin Tursiops 

truncatus and the striped dolphin Stenella coeruleoalba) was estimated based on the same 

approach. To do so, we combined several estimations: (1) population abundances from 

Bauer et al. (2015) and the demographic compositions based on literature, (2) energetic 

requirements from empirical relationships, (3) stomach content analysis from stranded 

individuals, (4) prey energetic values from literature and (5) small pelagic abundances from 

PELMED survey. The dolphin predation pressure was also estimated through 10,000 Monte 

Carlo simulations in which each input parameter was drawn from a given distribution (e.g. 

normal, uniform and gamma distributions) independently of each other. Finally, the top-

down control exerted by dolphins was extremely limited as it reached less than 0.1% of the 

available stock for both sardine and anchovy (Queiros et al., 2018 ; Annex 1). Thus, top-down 

controls by tuna or dolphin could not explain the unusual situation observed in the Gulf of 

Lions. 

Then, epizootic events are known to have caused massive mortalities in small pelagic 

populations in the past (e.g. Australian pilchard contaminated by herpesvirus, described in 

Whittington et al. (1997)). To investigate whether mortality could be induced by diseases, a 

wide range of potential pathogens (parasites, virus and bacteria) were investigated on both 

fat and lean sardines sampled throughout an entire year. The investigations revealed the 

presence of microscopic parasites (e.g. trematodes and coccidia) and some occurrences of 

bacteria (Tenacibaculum and Vibrio) but no virus (neither herpesvirus nor nodavirus) or 

macroparasite was detected. Then, no clear damage to tissues or indication of disease was 
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observed during necropsy and histological examinations (Van Beveren et al., 2016b). 

Further, no correlation was found between pathogens and the size or condition of the host 

(Van Beveren et al., 2016b). It is thus unlikely that an epizootic event may explain the adult 

overmortality.  

Conversely, the decrease of both growth and condition may suggest a bottom-up control 

mediated by changes in planktonic composition and/or abundance. Indeed, a previous study 

revealed that the body condition of sardine had a positive correlation with WeMO (Western 

Mediterranean Oscillation) and both mesozooplankton and diatom concentrations (Brosset 

et al., 2015b). Interestingly, the diet of sardines seemed to have shifted from large size prey 

(with a high contribution of cladocerans > 1 mm) before 2008 to smaller prey (copepods < 1 

mm) in the most recent years (Brosset et al., 2016a). Similarly, large copepods were replaced 

by smaller ones (< 1 mm) in the anchovy diet after 2008 (Brosset et al., 2016a). Thus, less 

energetic content of smaller plankton could explain the decrease in the body condition of 

small pelagics observed in the Gulf of Lions (Barroeta et al., 2017; Evjemo et al., 2003; 

Zarubin et al., 2014).  

Sardine and anchovy are both able to use two strategies for feeding: particulate feeding and 

filtration. Nevertheless, sardines have a more efficient filtration apparatus than anchovies, 

owing to higher filtration area and less spaced gill rakers (Collard et al., 2017). A regime shift 

toward small prey should thus favor or at least be less detrimental for sardines as they are 

better adapted to filter-feeding on small plankton. Indeed, sardines are known to dominate 

upwelling systems when prey size falls (Chavez et al., 2003; Schwartzlose et al., 1999; van 

der Lingen, 1994). However, in the Gulf of Lions, sardines appeared to be more affected by 

the regime shift than anchovies (Van Beveren et al., 2014). This result might highlight 

differences between the feeding strategy of sardines in EBUS vs. other areas (Saraux et al., 

2019). For instance, the Mediterranean sardines appeared to have lower numbers and 

densities of gill rakers (for a given body length) than their Atlantic relatives (Costalago et al., 

2015). This observation may reflect a response of the feeding strategy of sardine to the high 

plankton densities in Atlantic (compared to the Mediterranean). Additionally, interspecific 

competition was suspected to explain the alternation between sardine and anchovies in the 

western North Pacific (Nakayama et al., 2018). Here, the increase of the trophic niche 

overlap between sardine, anchovy and sprat Sprattus sprattus (a small pelagic fish with an 
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increasing population) may act synergistically with the reduction of prey size in particular if 

resource partitioning becomes lower (Brosset et al., 2016a). 

 

3. Underlying mechanisms 

The decrease of the small pelagic body condition observed in the Gulf of Lions seemed to be 

generalized to the whole Mediterranean Sea, except in the Aegean Sea (Brosset et al., 2017). 

The sardine population is actually considered as ‘ecologically unbalanced’ in the Gulf of 

Lions, but the underlying mechanisms remained unknown (GFCM, 2017). The aim of this 

thesis was to clear up the mechanisms governing the bottom-up control of sardines and the 

processes implemented by individuals to cope with this energy limitation. As all mechanisms 

require energy, energy plays a key role through the entire life of individuals. Energy flow is 

usually studied because it allows to make links between small scale processes (individuals) to 

large scale patterns (population) (Ghedini et al., 2017). The available energy for an individual 

corresponds to the assimilated part of the ingested food (through the digestive apparatus) 

minus the energy used for prospection and predation. According to life-history theory, this 

energy is then allocated between the different life-history traits such as survival, 

reproduction and growth (Stearns, 1989, 1992). As soon as resources become no longer 

sufficient to pay all costs, trade-offs become unavoidable and thus several internal processes 

might be affected by these choices (Zera and Harshman, 2001). To extract as much energy as 

possible from their environment, sardines are able, as mentioned before, to adopt two 

feeding behaviors, i.e. filter- or particulate-feeding. They are able to switch easily between 

these two strategies and the switch seems to be prey size-dependent (Garrido et al., 2007, 

2008). The study of the feeding apparatus and the feeding behaviors of sardines should be 

essential to understand the energy expenditure and assimilation of the two feeding modes 

as well as whether sardines might have adapted to a potential reduction in size of their prey.  

Further, the reproduction represents the main life-history trade-off, opposed to growth or 

maintenance (Williams, 1966b). When food resources shrink, individuals might consider 

making extreme choices such as either skipping spawning to maximize their survival or 

investing all energy in reproduction at the expense of survival to pass on their genes to the 

next generation (Jørgensen et al., 2006). The overmortality of the oldest sardines in the Gulf 

of Lions might thus be linked to a high reproductive investment despite their low body 
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condition (condition is a proxy of the energy reserves, see Lloret et al. (2014) and Brosset et 

al. (2015b)). Indeed, the increase in gonadosomatic index between 2009 and 2016 and the 

decrease of the length at first maturity from 12.1 cm to 9.6 cm in the recent years seem to 

suggest that the energy allocation to reproduction may have been kept constant if not 

increased (Brosset et al., 2016b; Saraux et al., 2019). Thus, this biased energy allocation 

might have knock-on effects on survival rates of adults after reproduction due to a lack of 

energy for their own survival, but it required to be validated (Brosset et al., 2016b; Saraux et 

al., 2019). Sardines are usually considered as capital breeders, i.e. they store energy in spring 

and summer that can be mobilized later for the reproduction in autumn and winter (Ganias, 

2009). Their energy reserve strongly decreased during winter as reproduction and low food 

resources occur synergistically (Brosset et al., 2015b). This situation may affect sardine 

survival if they need to cope with low feeding conditions during and/or after reproduction. 

Further, the swimming capacity of sardines depends on their ability to mobilize energy to 

this activity. Small pelagics are able to modulate their swimming behavior between aerobic 

endurance (e.g. filtration on small prey) and anaerobic sprint (e.g. to avoid predators or 

feeding on large prey).  

On the first hand, coping with low feeding conditions may influence aerobic swimming 

capacity of sardines. Indeed, the life in school exhibited by small pelagics supposes higher 

benefits than disadvantages for individuals (e.g. foraging capacity, predator avoidance, 

swimming activity) (e.g. in Marras et al., 2015) but also requires enough energy to follow the 

group over long distance. Also, individuals coping with poor energy reserves might have less 

energy to explore their environment to find prey, leading to a vicious circle for these 

individuals. On the other hand, coping with low feeding conditions may reduce the 

anaerobic swimming capacity of sardines. Thus, their escape capacity may be impacted 

resulting in a potential increase of predation as well as a decrease of their feeding capacity 

on large prey in movement. 

Furthermore, the lack of energy induced by low feeding conditions might also impact the 

survival of sardines through other processes such as stress or immunity. The ratio between 

the reactive oxygen species (ROS) production and the antioxidant defenses controls the 

oxidative stress balance (Finkel and Holbrook, 2000). This balance is known to play a central 

role as a mediator in trade-offs between growth, maintenance and reproduction (Kirkwood 

and Rose, 1991; Metcalfe and Alonso-Alvarez, 2010). Imbalance toward ROS could imply 
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impairment of physiological function leading to macromolecules damages, precocious 

ageing, age-related disease or cell death, while imbalance toward antioxidants could 

interrupt physiological process and decrease immunity defenses (Finkel and Holbrook, 2000; 

Monaghan et al., 2009). Additionally, the oxidative stress balance could be also impacted by 

glucocorticoid stress hormones like cortisol but their influence seemed to be dependent on 

the exposure period (Roussel et al., 2004; Tort, 2011; Wingfield et al., 1998). Coping with 

cortisol may derive energy resources from other activities leading to trade-offs with foraging 

(Wingfield et al., 1998), growth (Midwood et al., 2014), survival (e.g. predator avoidance, 

immune response) (Harris and Bird, 2000; Midwood et al., 2014; Tort, 2011; Wendelaar 

Bonga, 1997; Wingfield et al., 1998) or reproduction (Tort, 2011). Thus, the increase of stress 

hormones is known to be implicated in the senescence and the post-reproduction death of 

salmonids (Dickhoff, 1989; Ziuganov, 2005). A prolonged exposition to very low food level 

could be assimilated to starvation. Similarly to birds and mammals, starvation in fish was 

divided into 3 phases: (I) a short period with the glycogen consumption, (II) a long period 

with the mobilization of lipids and (III) a protein degradation period (Bar, 2014; Lignot and 

LeMaho, 2012). The beginning of the phase III seems to be correlated with the increase of 

cortisol levels in most fish species even if several exception are recorded (Bar and Volkoff, 

2012). Similarly, starvation may have negative consequences on immune functions, although 

such effects seem to differ between species; starvation has no or positive effect on immune 

responses in pacu (Gimbo et al., 2015), European eel (Caruso et al., 2010) and Chinese 

Sturgeon (Feng et al., 2011) but decreases the ability to cope with infection in Atlantic 

salmon (Martin et al., 2010) and Jade perch (Luo et al., 2013). Thus, stress and immunity 

might act synergistically with the lack of energy to explain the adult overmortality and both 

require investigations.  

The critical situation of the sardine was made at a population scale and it remained almost 

impossible to investigate on small pelagics in the wild (see e.g. in Peleteiro et al. (2004)).  

Experimentation turns out to be one of the most useful approach for studying population 

dynamics (Hunt and McKinnell, 2006). Even so, experimentation on marine fish species are 

often performed in a context of aquaculture and fundamental biology, more rarely in 

applied and fisheries ecology whereas physiological and behavioral information could be 

complementary to these purposes (Horodysky et al., 2015; Jorgensen et al., 2012; Mckenzie 

et al., 2016; Ward et al., 2016). Thus, to understand the underlying behavioral and 
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ecophysiological mechanisms which lead sardine populations to crisis, we used an 

experimental approach which was completed by modeling.  

 

4. Thesis outlines 

For this project, we decided to work on sardine owing to their stronger response to the 

regime shift. This thesis was developed into 5 parts to answer to 5 questions (Figure 5) 

 

· Chapter 1: Does food size matter?  

To investigate whether the changes that we observed in the wild might derive from a 

change in prey size and quantity, we first studied the consequences of feeding on 

different food sizes and quantities on morphological (body condition, growth) and 

physiological parameters (muscle constituents and blood oxidative balance). 

 

· Chapter 2: Which mechanisms could explain food effects on growth and body 

condition?  

Secondly, we studied the mechanisms which could explain the food size and quantity 

effects on the growth and the body condition observed in the wild by focusing on the 

energy balance associated with feeding. To do so, we investigated on one side how 

sardine could maximize the extraction of energy from their environment through an 

analysis of their gill raker apparatus and, on the other side, the energetic costs 

associated with the two feeding behaviors using respirometry analyses. 

 

· Chapter 3: Which other life history traits could be impacted by food? Could they act 

as amplifying factors?  

In the third part, we examined other life history traits that could be impacted by food 

size and quantity, which could either partly compensate or worsen the situation. 

First, we studied the impact of food size and quantity on the capacity to transform 

substrate into energy through the study of the conversion efficiency of the 

mitochondria, the energetic engine of the body. Then, we investigated effects of prey 

size on the reproduction of sardines using egg production. Finally, we studied the 
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effect of food looking at two parameters expressing the individual health state: 

immunity and stress level. 

 

· Chapter 4: Can sardine starve to death? 

Further, we investigated what could drive the overmortality of sardines. First, we 

used a fasting experimental approach to identify body condition thresholds which 

would lead individuals to death in the wild (Chapter 4). To do so, we followed body 

mass changes over time to identify the critical entry in phase 3 of fasting, which 

corresponds to the mobilization of proteins to survival. 

 

· Chapter 5: Can adult overmortality follow reproduction?   

In the last part, we studied the hypothesis of an adult overmortality after 

reproduction as suggested by Brosset et al. (2016b). To that end, we used the 

Dynamic Energy Budget (DEB) which described the individual energy flows (from 

intakes to uses as growth or reproduction) during its life cycle accounting for external 

variables such as temperature and food. We parameterized this model using both 

experimental and in-situ data. And, we simulated the evolution of a sardine cohort 

over time depending on environmental scenarios monitoring its survival. 
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Figure 5: Conceptual framework of this PhD. 
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Chapter 1: Does food size matter? 
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1. Abstract 

Small pelagic fish are key components of marine ecosystems and fisheries worldwide. Despite 

the absence of recruitment failure and overfishing, pelagic fisheries have been in crisis for a 

decade in the Western Mediterranean Sea because of a marked decline in sardine size and 

condition. This situation most probably results from bottom-up control and changes in the 

plankton community toward smaller plankton. To understand such an unusual phenomenon, 

we developed an original and innovative experimental approach investigating the mechanisms 

induced by a reduction in the quantity and size of sardine prey. While experimentations offer 

the unique opportunity to integrate behavior and ecophysiology in understanding key 

demographic processes, they remain rarely used in fisheries science, even more so on small 

pelagics due to the notorious difficulty to handle them. The results revealed that food size 

(without any modification of its energy content) is as important as food quantity for body 

condition, growth and reserve lipids: sardines that fed on small particles had to consume twice 

as much as those feeding on large particles to achieve the same condition and growth. Such a 

strong impact of food size (based on 100 vs. 1200 mm pellets) was unexpected and may reflect 

a different energy cost or gain of two feeding behaviors, filter-feeding vs. particulate-feeding, 

which would have to be tested in further study. As increasing temperature favors planktonic 

chains of smaller size, climate change might actually accelerate and amplify such phenomenon 

and thus strongly affect fisheries. 
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2. Introduction 

Small pelagic fish are a key component of marine ecosystems, modulating population dynamics 

of both lower and upper trophic levels, especially in highly productive marine upwelling 

systems (Brochier et al., 2011; Cury et al., 2000; Frederiksen et al., 2006; Taylor et al., 2008). 

Small pelagics also represent 25% of worldwide landings (in tons), predominantly through 

anchovy, sardinella, sardine, mackerel and herring (FAO, 2018). Fluctuations in populations of 

small pelagics can, therefore, have critical ecological, economic and social consequences, such 

that understanding their underlying mechanisms is extremely important. The population 

dynamics of these species could be strongly impacted by natural environmental fluctuations 

(bottom-up control) and mortality (top-down control) (Checkley et al., 2017). On the one hand, 

the crucial significance of plankton production and availability for recruitment dynamics of 

small pelagics has been known since seminal work by Hjort (1914), and is central to the “match-

mismatch” and “ocean triad” hypotheses (Bakun, 1996; Cushing, 1990). On the other hand, 

(over)fishing has also been identified as a key factor in the collapse of several stocks, often in 

conjunction with environmental fluctuations (Toresen and Ostvedt, 2000), which may be 

exacerbated by ongoing global change (Brochier et al., 2013; Shannon et al., 2009). 

Nevertheless, the relative importance of bottom-up versus top-down controls remains 

complicated to assess since they are often entangled (Hunt and McKinnell, 2006; Rouyer et al., 

2014).  

The Gulf of Lions is one of the most productive areas of the Mediterranean Sea due to wind-

driven coastal upwelling, the western Mediterranean mesoscale circulation and fresh water 

inputs from the Rhone River (Millot, 1990; Petrenko et al., 2005). Until the mid-2000s, sardine 

(Sardina pilchardus) and anchovy (Engraulis encrasicolus) represented up to 50% of the total 

annual landings (around 15,000 tons) in the Gulf of Lions (Bǎnaru et al., 2013). Landings of 

sardines and anchovies have, however, decreased sharply since 2008, reaching the lowest 

levels recorded in 150 years (around 3,000 tons), although population abundance remains high 

(GFCM, 2017b; Saraux et al., 2019; Van Beveren et al., 2016a). Declines in landings of small 

pelagic fishes are typically a result of recruitment failure and/or overfishing (Schwartzlose et al., 

1999). In the Gulf of Lions, however, the dramatic drop in catches has been due to a severe 

decrease in individual body size and condition (mean weight ± SE: 24.3 ± 0.3 g between 1993 

and 2007 and 11.4 ± 0.2 g between 2008 and 2018), which has rendered the sardines and 
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anchovies unattractive for fisheries (Saraux et al., 2019; Van Beveren et al., 2014, 2016a). The 

decrease in size of sardines is the combined outcome of lower growth and the disappearance, 

from the population, of the oldest and largest individuals (Saraux et al., 2019; Van Beveren et 

al., 2014). This situation was not due to recruitment failure and/or overfishing, which is, as 

mentioned above, unusual. The fishing pressure and selectivity were (and still are) very low and 

could not explain the disappearance of the large individuals (GFCM, 2017b). Sardine 

recruitment remained stable and even increased during the last decade in this area (Saraux et 

al., 2019). Recent studies further showed that this was neither due to emigration, top-down 

controls (natural predators) or diseases (Queiros et al., 2018; Saraux et al., 2019; Van Beveren 

et al., 2016b, 2017). The major remaining hypothesis is therefore bottom-up control, linked in 

some way to the quantity and quality of plankton production in the Gulf of Lions (Brosset et al., 

2015b; Saraux et al., 2019; Van Beveren et al., 2014).  

Sardines are both filter and particulate feeders, depending on the size of their prey and switch 

easily between these feeding modes (Garrido et al., 2007, 2008). In the Gulf of Lions, sardines 

feed on a size range of plankton ranging from 0.1 mm to 1.4 mm in length (Le Bourg et al., 

2015). Interestingly, the diet of sardines has shifted from large size prey (with a high 

contribution of cladocerans > 1 mm) before 2008 to smaller prey (copepods < 1 mm suspected 

to be less nutritious) in the most recent years (Barroeta et al., 2017; Brosset et al., 2016a; 

Evjemo et al., 2003; Zarubin et al., 2014). Thus, bottom-up control might explain the poor 

condition of sardines, with knock-on effects on survival rates of adults after reproduction 

(Brosset et al., 2016a). This remains, however, to be validated (Saraux et al., 2019). 

In this study, we developed an experimental approach to investigate the potential mechanisms 

for this bottom-up control on sardines. To investigate whether the changes we observed in the 

wild might derive from a change in prey, we studied the long-term consequences of feeding on 

different food sizes and quantities on individual body condition and growth through a 7-month 

experiment on captive adult sardines. While long-term experiments in captivity are rarely 

performed to inform on fisheries science, especially with difficult-to-maintain small pelagics, we 

believe that this is an important step to test for hypotheses and better understand the 

behavioural or ecophysiological mechanisms involved in natural processes. We coupled our 

experiment with laboratory analyses of physiological parameters, such as muscle constituents 

(lipids and proteins) and blood oxidative balance. This latter provides insight into levels of 

metabolism and plays a central role in ageing processes by acting as a mediator in trade-offs 
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between growth, maintenance and reproduction (Finkel and Holbrook, 2000; Kirkwood and 

Rose, 1991; Metcalfe and Alonso-Alvarez, 2010). 

 

3. Material and methods 

3.1. From capture to maintenance in experimental tanks  

Sardines were captured in October 2016 (2 trips on the 10th and 18th of October) by a 

commercial purse-seiner operating from Sète (South of France). Fishing and acclimation 

procedures are detailed in Supporting Information. 

3.2. Experimental design 

449 sardines were distributed homogeneously into 8 experimental tanks of 300 L each (56-57 

sardines per tank), so that both the mean and the range in length and weight were comparable 

among tanks and treatments (Figure 6; Table 1). Prior to transfer, sardines were anesthetized 

(benzocaine at 140 ppm), total body length and total wet weight recorded to the nearest 0.1 

mm and the nearest 0.01 g respectively. A tiny RFID tag (Biolog-id, Bernay, France, 0.03g i.e. 

<0.2% of sardine lowest body mass) was implanted in the dorsal muscle using a specific injector 

and allowed individual identification. This procedure caused less than 1% mortality and did not 

affect their behavior. Tanks were supplied with water pumped directly from the sea and filtered 

through sand filter (30-40 µm). The photoperiod was adjusted each week to follow the natural 

cycle and sea water temperature was not controlled except to maintain a minimum of 10°C or a 

maximum of 25°C (Figure S1). After 10 days of acclimation to these new tanks (sardines fed 

with the same pellet mix as the one used during acclimation but at 0.3% of the biomass), the 

experiment started on November 14, 2016 (t0) and continued until June 15, 2017 (reproduction 

period between November and March) (Figure 7, Experiment n°1). Biometries were performed 

every four weeks, with all sardines measured individually (tag read, total body length and body 

weight recorded). There was very rarely any mortality following the biometries. Relative body 

condition of each sardine was calculated with the Le Cren index Kn as estimated by Brosset et al. 

(2015b): 

K! = ""
#.##$#%&×'().*+,  [1] 

 

where WW the wet weight in g and TL is the total length in cm.  
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  Figure 6: Experimental design to study the impact of food treatment, comprising the 8 tanks and their feeding treatment (red: 

pellet size of 0.1mm and pellet quantity of 0.3%; yellow: 0.1mm and 0.6%; green: 1.2mm and 0.3% and blue: 1.2mm and 0.6%). 

Blue arrows represented input and output sea water. 
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Treatments Tank Individuals 
Length 
(mm) 

Weight 
(mm) 

Sex (n=231) 
Age (n=227) 

Mature Immature 
M F Un. <1 1 2 3 4 

 
  1 

1 56 
119 ± 9      

[98 ; 151] 
14.0 ± 3.5     
[7.2 ; 27.9] 

32% 57% 11% 15% 31% 46% 4% 4% 

2 56 
120 ± 8      

[98 ; 142] 
13.9 ± 2.9      
[7.2 ; 21.0] 

33% 58% 8% 7% 7% 87% 0% 0% 

 
  2 

1 56 
119 ± 9       

[96 ; 135] 
14.0 ± 3.4      
[6.7 ; 24.5] 

29% 68% 4% 0% 36% 56% 8% 0% 

2 56 
120 ± 9      

[97 ; 143] 
14.3 ± 3.3      
[7.7 ; 20.5] 

38% 56% 6% 4% 8% 79% 8% 0% 

 
  3 

1 56 
118 ± 9       

[95 ; 143] 
14.0 ± 3.3      
[6.7 ; 20.1] 

36% 52% 12% 4% 21% 71% 4% 0% 

2 56 
120 ± 8     

[104 ; 144] 
14.2 ± 2.9      
[7.6 ; 20.5] 

41% 53% 6% 3% 3% 84% 6% 3% 

 
  4 

1 57 
119 ± 9       

[97 ; 138] 
14.4 ± 3.4      
[7.0 ; 23.1] 

37% 60% 3% 13% 13% 74% 0% 0% 

2 56 
120 ± 8     

[101 ; 138] 
14.2 ± 3.1        
[8.1 ; 22.8] 

47% 44% 9% 3% 9% 84% 3% 0% 

Table 1: Number of individuals, mean length (± SD) and length range (95% CI), mean weight (± SD) and weight range (95% CI), sex 

ratio (in %) of males (M), females (F) or unidentified (Un.), age class ratio (in %) for each tank and each treatment. Sex ratios and 

age class ratios are based on samples of March and June (sample size is given by n). 
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Figure 7: Conceptual framework of the 3 experiments developed during the thesis. The fishing and the beginning of the rearing (acclimatization) are symbolized by grey circles. 

Each experiment part is represented by blue segments. The sampling events occurring during experiments are depicted by red triangles. Each parameter studied was derived 

from either a continuous monitoring (represented by blue lines) or from samples (represented by red lines). 
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3.3. Feeding conditions 

For feeding conditions to be as realistic as possible, pellet quantities were selected to mimic 

weight gains measured in the wild under contrasting conditions (see Supporting Information, 

Figure S2 and Movie S1). That is, we estimated daily weight gain in the two different periods 

of good (2005-2006) and bad conditions (after 2010) defined by Van Beveren et al. (2014), 

using data on weight and age of ~24,000 individuals compiled by Brosset et al. (2015b). 

Assuming constant growth throughout the year, daily weight gain was estimated between 

two consecutive ages by:  

 

daily&weight&gain = -/01234
/012

)5+ && [2] 

 

where µage is the mean weight of sardines at a specific age. We found daily weight gain in the 

wild corresponded to 0.2% and 0.1% of their weight under good and bad conditions, 

respectively. Using preliminary tests in tanks, these daily weight gains corresponded to daily 

feeding rates of 0.6% and 0.3% of the total biomass of fish, respectively.  

Stomach content analyses indicated that Gulf of Lions sardines were feeding on larger prey 

during the period of good conditions and smaller ones during poor conditions (Brosset et al., 

2016a; Le Bourg et al., 2015), so we also tested for the impact of food size. Ideally, 

experiments should have been conducted on a continuous range of pellets size, e.g. 100, 

300, 600, 900 and 1200 µm, which was, unfortunately, infeasible for several logistic and cost 

reasons, so that a choice had to be made. Our goal was then to compare two contrasting 

food sizes within the natural range of sardine diet, which elicited two different feeding 

modes (i.e. filtering versus catching). In the Gulf of Lions, prey sizes exhibited a bimodal 

distribution: between 100 and 600 µm and around 1200 µm (Le Bourg et al., 2015). Further, 

prey smaller than 200 µm could represent until 88% of the numerical contribution of prey to 

their diet (Nikolioudakis et al., 2012). Finally, sardines are known to switch feeding behaviors 

depending on prey size; filter-feeding for small prey but particulate-feeding for larger prey 

(Garrido et al., 2007). The change in their feeding behavior was observed under 300 µm in 

the Mediterranean Sea (pers. comm.). According to the range of prey size in their diet (Le 

Bourg et al., 2015), the effects of food size were tested using two contrasting pellet sizes: 0.1 
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mm (actually ranging between 80 and 250 µm) and 1.2 mm (ranging between 900 and 1500 

µm) to avoid any overlap in prey size distributions while ensuring a shift in feeding modes 

(i.e. filtering versus catching).  

The combination of two food sizes (0.1 mm and 1.2 mm) and two quantities (0.3% and 0.6% 

of the total fish mass in tanks) resulted in four treatments with two replicas each (Figure 6): 

(i) small size and small quantity (0.1 mm and 0.3%, represented in red in the following – 

treatment 1), (ii) small size and large quantity (0.1 mm and 0.6%, in yellow – treatment 2), 

(iii) large size and small quantity (1.2 mm and 0.3%, in green – treatment 3), (iv) large size 

and large quantity (1.2 mm and 0.6%, in blue – treatment 4). Both sizes of pellet had similar 

proximate compositions, being 62% and 57% of proteins and 14% and 12% of lipids, for 0.1 

mm and 1.2 mm pellets, respectively (lipid class contents are also given in the Supporting 

Information, Table S1). Sardines were fed four times a day, at the same time, to limit non-

ingested food. The total biomass of each tank was estimated weekly (based on linear mass 

gain between monthly biometries) to re-adjust food intake to account for mass gain. 

3.4. Estimation of food loss 

To quantify loss of non-ingested food, we performed an additional 2-week experiment 

described in the Supporting Information (Figure S3). 

3.5. Biochemical analyses 

The physiological consequences of the diets were further investigated by measuring both 

lipid and protein content of dorsal epaxial muscle and blood oxidative stress status (d-ROMs 

and OXY).  

Samplings were done at two different times: (i) on the 15th of March 2017 at the mid-

experiment (15 sardines per tank) and (ii) on the 15th of June 2017 at the end of the 

experiment (depending on survival rate, but at least 20 sardines per treatment). Sampled 

sardines were selected by random draws according to normal distributions fitted on body 

mass within each tank and anesthetized by benzocaine at 140 ppm. Blood was collected 

from the caudal vein with a 26G needle into a heparinized syringe and transferred to 1.5 mL 

Eppendorf tubes. Blood samples were centrifuged at 3000 g for 10 min at 4°C to separate 

plasma, which was collected and stored at -80°C until further analyses. Sardines were then 

sacrificed by a lethal dose of benzocaine at 1000 ppm. Sex and maturity were determined by 
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gonad observation and sagittal otolith pairs were removed from their otic cavity and read to 

estimate age (ICES, 2011). This showed that sex, maturity and ages were comparable among 

tanks and treatments (Table 1). Portions of dorsal epaxial muscle were removed, frozen in 

liquid nitrogen and stored at -80°C for later lipid and protein content analyses.  

3.5.1. Muscle energy resources 

The energy status was first examined by analyzing lipid and protein content of dorsal muscle. 

The content of each lipid class was measured in muscle as described by Brosset et al. 

(2015a). Structural lipids were assumed to comprise phospholipids (PL), sterols (ST), 

acetone-mobile polar lipids (AMPL), and alcohols (ALC) whereas reserve lipids comprised 

triacylglycerols (TAG), diacylglycerols (DAG as precursors of TAG) and free fatty acids (FFA) 

(Lloret et al., 2014; Moltschaniwskyj and Johnston, 2006; Tocher, 2003; Zhol et al., 1995). 

Proportions of free fatty acids (FFA) were checked to ensure that lipids had not been 

degraded during sample conservation.  

Portions of the same samples were lyophilized and grinded using a ball mill (MM400, Retsch 

GmbH, Germany). 10 mg of dry muscle powder was then immersed in 1.5 mL of a 10% SDS 

(Sigma Aldrich, France), 1.5% Protease inhibitor Cocktail (cOmplete, Sigma Aldrich, France), 

miliQ water solution (lysis solution adapted from Campus et al. (2010)) and subjected to four 

cycles of 15 min in a ultrasonic bath (300 Ultrasonik, Ney Company, USA) alternatively with 3 

minutes vortex. Extracts were then clarified for 10 min at 3000 g at 4°C, and protein content 

of 25 µL of the upper liquid fraction was quantified by the BCA method (Pierce, Thermo 

Fisher Scientific, France). Intra- and inter-plate protein variations (based on the same sample 

repeated over plates) were 6.4% and 16.7% respectively. 

Sample sizes associated with these tests varied depending on the amount of muscle in each 

tissue sample and are indicated in each figure. 

3.5.2. Oxidative stress balance 

Reactive oxygen metabolites (d-ROMs) and plasma antioxidant defense (OXY) were 

estimated in plasma using the d-ROMs test and the OXY Adsorbent test, respectively 

(Diacron International©, Grosseto, Italy) in accordance with Costantini and Dell’Omo (2006). 

Experimental protocols were modified such as (i) each well of 96-wells microplate was filled 

with 8 µL of serum for the d-ROMs estimation; (ii) 4 µL of serum was diluted 1:100 for OXY 
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estimation and (iii) samples were duplicated when possible (depending on available plasma). 

After incubation, absorbance was measured at 555 nm by microplate automatic reader. The 

oxidant ability (d-ROMs) was expressed in mg of H2O2 equivalent L-1 and the antioxidant 

defense capacity (OXY) in µmol HClO mL-1. Intra- and inter-plate variations were 4.5 % and 

3.1 % respectively for d-ROMs estimations, and 9.4% and 7.7% respectively for OXY 

estimations. Sample sizes associated with these tests varied due to plasma quantity and 

some sample loss due to hemolysis and are indicated in all figures. 

3.6. Data analyses 

Mixed-effect models were applied to test for the impact of the different treatments on body 

condition and length. As body condition index and length distributions on November 2016 

were approximated by normal distributions, we built a series of linear mixed-effect models 

where body condition or length were dependent on two fixed effects: time (months) and 

food treatment, as well as their interaction. Because of variability among individuals and/or 

tanks within each treatment, we also introduced a random individual intercept effect (to 

take into account variations in individual condition/length), a random individual slope effect 

(to take into account variations among individual slopes in condition/length through time) 

and a random tank intercept effect (to take into account variations between tanks). We 

applied the model procedure recommended by Zuur et al. (2009) and the selection of the 

final model was done using the AIC criterion (Burnham and Anderson, 2002). Body 

composition and oxidative stress differences between treatments (for the same month) 

were investigated using parametric (one-way ANOVA) or non-parametric (Kruskal-Wallis) 

tests and associated post-hoc (Tukey or Dunn test), depending on residual normality and 

homoscedasticity. Finally, a Principal Component Analysis (PCA) was performed using the 

individual sardines as objects and terminal body condition index, total length, lipid and 

protein contents, d-ROMs and OXY as descriptors to summarize all the information and 

describe the relationships between descriptors.  

All statistical analyses were performed in R (R Core Team, 2018) using the FactoMineR (Lê et 

al., 2008), the FSA (Ogle, 2018), the nlme (Pinheiro et al., 2018), the lsmeans (Lenth, 2016) 

and the factoextra (Kassambara and Mundt, 2017) packages. 
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4. Results 

Among the 449 individuals distributed within the 8 tanks, length and weight initially varied 

between 95 and 151 mm and between 6.7 and 27.9 g, respectively (Figure 6; Table 1). 

Females were in general more abundant (56% F, 37% M and 7% unknown), while age 2 was 

the dominant age (Table 1).   

Estimation of the non-ingested food was low to very low in all experiments; the mean (± SD) 

food loss was 0.3% (± 0.6%) and 1.2% (±1.1%) for the 1.2mm and 0.1mm pellets, 

respectively.  

4.1. Body condition and total length 

Treatment 4 led to the highest body condition and total length at the end of experimental 

design, whereas treatment 1 led to the lowest ones (Figure 8). Body condition and total 

length exhibited similar dynamics through time in treatments 2 and 3, and were 

intermediate compared to treatments 1 and 4 (Figure 8).  

The best linear mixed-effect model (Figure S4) explaining both body condition and total 

length, as selected based on the AIC criterion, both included fixed effects (dates, treatments 

and their interaction) as well as the random slope and intercept effects for individuals. The 

random tank effect was never retained in any selection, suggesting no difference between 

the 2 tanks of the same treatment for body condition and length over time. The diagnostic 

plots of the final models were satisfactory and residuals were mostly normally distributed 

(see Supporting Information, Figures S5 and S6). Treatment effects were significant in the 

body condition model (p≤0.05) but not in the total length model (p-value > 0.05, see 

Supporting Information, Tables S2 and S3). Slope of body condition and total length over 

time exhibited significant differences between all treatments except for intermediate 

treatments 2 and 3. Body condition of all treatments decreased over time, except treatment 

4 (large quantity of large pellets) at +0.01 month-1. The steepest decrease occurred in 

treatment 1, at -0.04 month-1 (Table S2). Sardines from treatment 4 grew at a rate of 2.5 mm 

month-1, twice as fast as treatments 2 and 3 (1.2 and 1.0 mm month-1, respectively) and 5 

times faster than treatment 1 (0.5 mm month-1) (Table S3). 

For the same food quantity (in terms of mass), sardines that fed on large pellet size showed 

higher body condition and grew twice as much as those feeding on small pellets (Figure 8; 
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Tables S2 and S3). Similarly, for the same pellet size, sardines that fed on large quantity 

exhibited higher body condition and grew 2.5 times higher than those feeding on low 

quantity (Figure 8; Tables S2 and S3). Furthermore, body condition and growth of sardines 

that fed on large quantity of small pellets were similar to those that fed on low quantity of 

large pellets. 

 

 

 

4.2. Muscle constituents 

Reserve lipids for treatment 4 were 2 to 5 times higher than those of the three other 

treatments, which did not differ significantly (p-value > 0.05) in both March and June (Figure 

9A; see Supporting Information, Table S4). By contrast, structural lipids were similar among 

treatments in March and June (p-value > 0.05, Figure 9B; see Supporting Information, Table 

Figure 8: Time series of the mean (± se) body condition (A) and total length (B) of all sardines in each feeding treatment: red: 

pellet size of 0.1mm and pellet quantity of 0.3%; yellow: 0.1mm and 0.6%; green: 1.2mm and 0.3% and blue: 1.2mm and 0.6%. 

Black lines represent the mean body condition and total length at the beginning of the experiments. 



 
 

43 
 

S4), Note, however, that the medians exhibited a positive trend in March according to size 

and quantity of food (Figure 9B). Protein content exhibited no significant difference between 

treatments in either March or June (p-value > 0.05), but showed the same pattern as 

structural lipids in March (Figure 9C; see Supporting Information, Table S4).  
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Figure 9: Reserve lipids (A), structural lipids (B), and proteins (C) of sardine muscle from the four feeding treatments (red: 

pellet size of 0.1mm and pellet quantity 0.3%; yellow: 0.1mm and 0.6%; green: 1.2mm and 0.3% and blue: 1.2mm and 0.6%) 

in March and June 2017. Concentrations are given relative to muscle wet weight. Sample size for each treatment is given by 

n below the boxes. Boxplots are presented without outliers for clarity purposes. 
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4.3. Oxidative stress balance 

In March, there were no significant differences in d-ROMs and OXY among treatments (p-

value > 0.05, Figure 10; see Supporting Information, Table S4). In June, there were increasing 

levels of d-ROMs and OXY with food size and quantity: treatment 1 exhibited the lowest 

values, treatments 2 and 3 intermediate ones and treatment 4 the highest (Figure 10). Only 

d-ROMs concentrations were significantly different between treatments 1 and 4 (medians: 

20.5 and 61.5 mg of H2O2 equivalent L-1 for treatments 1 and 4, respectively) (Figure 10; see 

Supporting Information, Table S4).  

 

 

 

 

 

 

 

Figure 10: d-ROMs (A) and OXY (B) of the four feeding treatments (red: pellet size of 0.1mm and pellet quantity 0.3%; 

yellow: 0.1mm and 0.6%; green: 1.2mm and 0.3% and blue: 1.2mm and 0.6%) in March and June 2017. Sample size for each 

treatment is given by n below the boxes. Boxplots are presented without outliers for clarity purposes. 
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4.4. Variable covariation 

The first 2 components of the PCA explained 48.5% of the total variance observed. The main 

contributing variables to the first axis were body condition, reserve lipids and total length, 

whereas d-ROMs and OXY were the two main contributors to the second axis. We super-

imposed the treatment for each individual and the projection of the barycenters showed a 

clear separation between treatment 4 and the three other treatments, especially on the first 

axis (Figure 11). While the PCA therefore confirms all the above results, it also revealed 

rather marked individual variation within each treatment, especially treatment 1. 

 

 

 

 

 

 

5. Discussion  

Experimentation on marine fish species are often performed in a context of aquaculture and 

fundamental biology, but more rarely in applied and fisheries ecology. Nonetheless, 

controlled experimentation is one of the most useful approach for studying population 

dynamics (Hunt and McKinnell, 2006). Here, we developed a novel experimental approach 

on sardines, a species that is notoriously difficult to maintain and handle. We performed a 

long-lasting experiment (7 months) on a large number of adult sardines (449 individuals) to 

Figure 11: Biplot of the PCA built using body condition, total length, reserve and structural lipids and proteins contents, d-

ROMs and OXY as explanatory variables. Ellipses correspond to 95% confidence level for each treatment. The large circles 

represent the barycenter of the individuals for a given treatment. 
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validate a specific bottom-up control hypothesis: does food size significantly affect the 

growth, condition and physiological status of sardines?  

5.1. Size and quantity effects 

Sardines use particulate feeding on large prey but rely on filter-feeding to capture small prey 

(Garrido et al., 2008). Both sardine and anchovy are able to switch between the two feeding 

modes, but the well-developed gill raker apparatus of sardines (larger and less spaced gill 

rakers than anchovies (Engraulis encrasicolus) and denticles on their gill rakers) provides for 

higher filtration capacity than anchovies (Collard et al., 2017; Rykaczewski, 2009). As a result, 

in upwelling systems the communities of small pelagics are often dominated by sardines 

when prey size falls (Chavez et al., 2003; Schwartzlose et al., 1999; van der Lingen, 1994). In 

light of this, the reduction of planktonic prey sizes in the Gulf of Lions (Brosset et al., 2016a) 

was expected to be less detrimental for sardines than anchovies. Surprisingly, sardine 

populations are in a more alarming situation than anchovies, with more striking declines in 

body condition, growth and adult survival (see Van Beveren et al. (2014)). Our experimental 

results confirmed the detrimental effect of small prey for sardines of the Mediterranean Sea. 

To achieve the same growth and body condition, sardines fed on small pellets had to eat 

twice as much as those feeding on large pellets. Additionally, sardines had to eat large 

quantity of large pellets in order to store reserve lipids. Knowing that the amount of food 

ingested was similar (i.e. there was no loss of food in the experiments), how could size have 

such a marked effect on growth, condition and reserve lipids? It is possible that food is 

assimilated differently and sardines gain less energy from the smaller particles. Retention 

efficiency of Atlantic sardines would be estimated at around 70% for 0.1 mm pellets in the 

filtration mode (using equation in Garrido et al. (2007)) against 100% for large pellets in 

particulate mode. This could be even worse in Mediterranean sardines, which appear to 

have lower numbers and densities of gill rakers (for a given body length) than their Atlantic 

relatives (Costalago et al., 2015) suggesting they might be less adapted to catch small prey. 

However, an ongoing study of the density of the gill rakers indicated that the filtering 

efficiency of sardines in the Gulf of Lions may actually be higher than those of the Atlantic 

sardines nowadays owing to higher gill raker density (unpublished data). Thus, current 

Mediterranean sardines are likely to catch small prey such as 100 µm prey, even if they 

correspond to the lower range of sardine prey sizes. It is also possible that they derive the 
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same energy but spend more, because the filter-feeding mode has high energetic costs. This 

would have to be investigated directly but information from the literature and our own 

observations provide support for some speculation. In this study, the two food sizes elicited 

a marked and visible change in sardine feeding behavior, from particulate feeding (1.2mm) 

to filter feeding (0.1 mm). Feeding duration seemed to be about 10 times longer for filtration 

than particulate feeding (up to 20 min for filtration against 2 min for particulate). The energy 

requirements of sustained aerobic swimming during filter-feeding might be significantly 

greater than those of rapid bouts of swimming to capture particles (Costalago and Palomera, 

2014). Metabolic costs of the filter-feeding mode were higher than those of particulate 

feeding for the Cape anchovy Engraulis capensis (James and Probyn, 1989), but the reverse 

was observed for the pilchard Sardinops sagax (van der Lingen, 1995). In the absence of 

coherent conclusions on other small pelagic species, we can only hypothesize for 

Mediterranean sardines that filter feeding may provide lower net gain (so constraining 

energy allocation to growth and reserves, as was observed in the present study). 

Nonetheless, this hypothesis remains to be validated by oxygen consumption experiments.  

An alternative hypothesis to explain changes in body condition and growth is associated to 

different energetic and nutritional needs depending on maturity processes and/or 

engagement in gametogenesis. However, 93% of the fish in our experiment were mature 

discarding maturity processes as an explanation. Further, our experiment lasted 7 months 

encompassing both the reproduction period and the period following reproduction and the 

differences in growth and condition between treatments were observed and of similar 

importance in both periods, indicating that our results were not biased by potential 

differences in nutritional needs due to maturity or reproduction.  

Structural lipids, proteins and the blood oxidative balance (d-ROMs and OXY) were less or 

not affected by the feeding treatments compared to body condition, growth and reserve 

lipids. The fact that structural lipid and protein contents remained steady across treatments 

suggests that diet provided enough energy for individuals to maintain the basal energetic 

costs of their structure. The increase in d-ROM levels for treatments 2, 3 and 4 between 

March and June suggests that individuals might pay short-term costs when displaying higher 

growth rates (Monaghan et al., 2009). Similar patterns have been shown in species facing 

dietary restriction during early development and displaying important compensatory growth 

later in life when food abundance was retrieved (Metcalfe and Monaghan, 2001). OXY levels 
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followed similar trends to a lesser extent suggesting sardines from treatment 4 were not 

completely able to buffer d-ROM increase leading to oxidative stress (imbalance towards d-

ROMs). On the other hand, treatment 1 displayed lower level of both d-ROMs and OXY, 

suggesting that sardines might cope with ‘poor feeding conditions’ by lowering their 

metabolic rates to limit their living costs (O’Connor et al., 2000). Furthermore, starvation is 

suggested to have negative consequences on immune functions, although, such effects seem 

to differ between species; starvation has no or positive effect on immune responses in pacu 

(Gimbo et al., 2015), European eel (Caruso et al., 2010) and Chinese Sturgeon (Feng et al., 

2011) but decreases the ability to cope with infection in Atlantic salmon (Martin et al., 2010) 

and Jade perch (Luo et al., 2013). Whether such relationship is found in sardines facing ‘poor 

feeding condition’ remains to be explored, but it raises concern on the possible additive 

effect of long-term fasting on individual survival through immune functions impairment. 

Sardines are known to be primarily capital breeders (Ganias, 2009; McBride et al., 2015); 

they store energy during summer and use reserves to invest in breeding during winter. The 

fact that energetic reserves were so impacted by both food size and quantity may be a cause 

of significant mortality of the oldest individuals after reproduction: a low reserve storage at 

the beginning of the reproductive period would impose a trade-off between survival and 

reproduction, in favor for the latter in oldest sardines (Brosset et al., 2015b; Saraux et al., 

2019). Furthermore, seasonal fluctuations of plankton (Costalago et al., 2012; Nikolioudakis 

et al., 2012) could act synergistically to these declines and punctually reduce even more 

sardine condition as observed during the winter reproduction period in the Gulf of Lions 

(Brosset et al., 2015b). Such a difference in reproductive seasonality with income breeder 

anchovies might help explaining why sardine condition and size have decreased even more 

than anchovy’s. 

Finally, the PCA while confirming previous results with treatment 4 easily distinguishable 

from all others also showed a high variability within each treatment. Such interindividual 

variability might result from differences in coping abilities under adverse conditions or from 

competition. For a given quantity of food, the number of pellets was much lower when using 

large pellets than small ones, thus generating a potential source of competition. As such, it is 

interesting to note that particulate-feeding on 1.2 mm pellets did not trigger higher 

competition as the CV was minimal for fish fed of large pellets in large quantities (treatment 

4 – blue) both in terms of body condition and length and fish fed with large pellets in small 
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quantities (treatment 3 – green) displayed a lower CV than fish fed on small particles for 

length and a similar one for body condition (see Figure S7). Rather, the increase in length or 

condition variability seemed linked to an increase in interindividual differences when facing 

adverse conditions. The PCA first two components were less affected by sex or age (Figures 

S8 and S9). Furthermore, the inter-individual variability observed in March in all 

physiological variables was similar to the one observed in June, when fish were out of the 

reproduction season and their maturity levels all equal to 1 (e.g. in Figures 9 and 10), 

suggesting that their reproductive status was not the source of interindividual variability. 

Interindividual variability might thus translate differences in other endogenous variables, 

often viewed as “individual quality” despite the ambiguity of this term (Wilson and Nussey, 

2010). 

5.2. Amplifying factors and their consequences 

Although we have demonstrated that smaller prey size (as of 0.1mm) can act as a key factor 

in limiting sardine growth, this raises the question of why planktonic prey sizes are falling in 

the Gulf of Lions. The reduction in prey size might result from a change in community, with 

implications that extend beyond size to include nutritional quality (Barroeta et al., 2017; 

Zarubin et al., 2014). In the present study, the composition of both sizes of aquaculture 

pellets was similar but a reduction in energetic value of smaller prey would presumably 

exacerbate the effects we have revealed. Oceanographic modifications, induced by global 

warming, coupled with pollution, are two potential candidates that may explain reduced 

prey sizes for sardines. Up to 77% of total marine pollution is from terrestrial sources 

(Williams, 1996) and contaminants such as pesticides, fertilizers, heavy metals and synthetic 

organic chemicals are all known to affect plankton communities, reducing their diversity and 

causing irreversible changes in marine ecosystems (Pérez et al., 2011; Shahidul Islam and 

Tanaka, 2004; Smith et al., 2018). For example, the insecticide Malathion and the herbicide 

Roundup® significantly decreased copepod abundance, but favored smaller and lower 

energetic zooplankton (Geyer et al., 2016; Smith et al., 2018). Even in low concentrations, 

mixture of pesticides had similar effects (Relyea, 2009). Global warming enhances 

stratification of the water column in the Mediterranean (Coma et al., 2009), which seems to 

favor population dynamics of small phytoplankton and zooplankton (van der Lingen et al., 

2006). The combination of pollution and global change might, therefore, result in a long-
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lasting domination of small plankton in the Mediterranean Sea, which could be extremely 

detrimental to sardine populations in the Gulf of Lions, in terms of fish growth and 

population demography. More research and more high-resolution observations on the 

plankton compartment of the Gulf of Lions are needed to assess potential changes in species 

composition that have affected energy flows through the pelagic community. If this is 

confirmed, then oceanographic, atmospheric, hydrological parameters and pollutant 

concentration should be further analyzed to identify the origins of this potential ecosystem 

regime shift. 

Finally, the consequences of such a change in small pelagic populations might have further 

important repercussions for fisheries and entire ecosystem function. As stated earlier, there 

has been a major decline in sardine landings in the French Mediterranean fisheries. Fisheries 

have therefore turned towards other stocks, such as the European hake (Merluccius 

merluccius), which has been overexploited for decades (GFCM, 2017a). Top predators such 

as large tunas, sharks, marine mammals and birds could suffer from a potential long-term 

collapse of small pelagic populations (Shannon et al., 2009). In summary, long-term changes 

in the marine pelagic ecosystem of the Gulf of Lions may lead to critical economic, societal 

and ecological situations. Sardines may display plasticity or adaptation to cope with smaller 

prey but this remains to be investigated. 

Experimentation on small pelagics is rarely exploited to study ecosystem dynamics, but 

essential information on trophic controls can be derived from such studies. Our study 

provides evidence that food size matters as much as food quantity for sardines, which might 

have repercussions on the entire ecosystem. As increasing temperature favors planktonic 

chains of smaller size (van der Lingen et al., 2006), climate change might actually accelerate 

and amplify such phenomenon and thus strongly affect fisheries worldwide. 

 

To sum up the Chapter 1, the take-home messages are:  

· Experimentations on sardines remain rarely used whereas they offer the unique 

opportunity to integrate behavior and ecophysiology in understanding key 

demographic processes such as trophic controls.  
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· Food size is as important as food quantity for body condition, growth and reserve 

lipids whereas structural lipids, proteins and the blood oxidative balance were less or 

not impacted by the feeding treatments. 

· Such results may reflect a different energy cost of two feeding behaviors, i.e. filter-

feeding vs. particulate-feeding. 

  



 
 

52 
 

Chapter 2: Which mechanisms could explain the effects 

of food size on sardine growth and body condition? 

1. Introduction 

In large upwelling ecosystems, sardines and anchovies usually fluctuate asynchronously 

(Alheit et al., 2009; Schwartzlose et al., 1999). These out-of-phase fluctuations seem to be 

linked with a shift in the plankton size, sardines dominating when plankton becomes smaller 

(van der Lingen et al., 2006). Indeed, sardines have a well-developed gill raker apparatus and 

they are more efficient to catch smaller prey than anchovy (Collard et al., 2017). Surprisingly, 

we observed a reversed situation in the Gulf of Lions, where sardines seemed to be more 

affected than anchovies by a potential reduction of prey size (Van Beveren et al., 2014). 

Moreover, in the previous experiment (Chapter 1), we showed that with a similar amount of 

ingested food (i.e. no food loss), sardines fed on small pellets exhibited significant lower 

growth and body condition index than sardines fed on larger ones. Two possible non-

exclusive explanations come to mind, (1) either food is collected differently leading to a 

lesser energy gain from the smallest particles and/or (2) sardines derive the same energy but 

spend more to acquire it (i.e. filter-feeding leads to extra energy expenditures compared to 

particulate-feeding).  

To investigate the first hypothesis, we decided to focus our study on the structure of the 

feeding apparatus of sardines. Mediterranean sardines are known to feed on a large range of 

prey sizes from small phytoplanktonic prey (~1-100 µm) up to large copepods (> 2 mm) (Le 

Bourg et al., 2015; Nikolioudakis et al., 2012). Sardines are able to easily switch between 

filter- and particulate-feeding strategies according to prey size: they filter-feed on small prey 

and adopt particulate feeding on the larger ones (Garrido et al., 2007). Nonetheless, the 

sardine efficiency to retain small prey seems to be lower for the Mediterranean sardines as 

their gill raker density was lower than their Atlantic relatives and these dissimilarities might 

be explained by differences in plankton productivity between the two areas (Costalago et al., 

2015). Thus, this result might explain why sardines may suffer from small prey condition in 

the Gulf of Lions. During preliminary trials (prior to this thesis), several pellet sizes (0.1, 0.3, 

0.8 mm) have been tested to find the size threshold of the switch between the two feeding 
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modes. This threshold seemed to be around 300 µm for the Mediterranean sardines 

compared to 700 µm for their Atlantic relatives (Garrido et al., 2007). The feeding apparatus 

of filter-feeders is divided in two parts: (i) the respiratory system composed by the gill 

filaments located at the posterior part of the gill arch and (2) the feeding structure including 

a series of gill rakers, each one covered by a succession of small denticles (or 

branchiospinules) which improve the retention capacity of sardines (Rykaczewski, 2009).  

The second hypothesis was based on the energy spent by the fish while feeding. First of all, 

sardines seemed to take more time when they filter-fed small particles than when they 

particulate-fed larger ones (pers. comm.). Also, energy requirements of aerobic swimming 

during the filtration may be higher than those required for series of bursts of acceleration 

(Costalago and Palomera, 2014), although this prediction remains debatable as  metabolic 

costs of both feeding strategies seemed to vary according to small pelagic species.: Filter-

feeding mode exhibited higher energy requirements than those of particulate feeding for the 

Cape anchovy Engraulis capensis (James and Probyn, 1989), but the reverse was observed 

for the pilchard Sardinops sagax (van der Lingen, 1995). The main explanation of these 

differences could be the smaller size of Cape anchovy compared to pilchards (van der Lingen, 

1995).The hypothesis of higher energy costs of filter feeding for Mediterranean sardines 

thus remained to be tested for. Metabolic costs are usually measured by respirometry, as 

rates of oxygen uptake (Killen et al., 2011; Steffensen, 1989).  

To test for the two previous hypotheses, we used an experimental approach on wild sardines 

maintained in captivity. To investigate how sardines could cope with small prey size, we 

studied the effects of different food sizes and quantities on several parameters involved in 

the particle catch such as the gill raker density or the denticles. Finally, we studied the 

oxygen consumption of sardines fed with different food sizes recorded all day long to 

estimate the energy requirements of both feeding behaviors. 
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2. Material and Methods 

2.1. Gill apparatus 

2.1.1. Gill sampling 

On the 15th of June 2017, at the end of the previous experiment (Chapter 1), 10 sardines 

were randomly sampled and sacrificed within each of the four treatments (Figure 7, 

Experiment n°1). Their gills were removed and stored in the Bouin’s solution (cell fixative). 

After fixation, samples were washed and stored in 70% alcohol. The most external branchial 

arc was removed from each sardine (on the left or right side depending on its state). Each 

branchial arc was photographed using binocular microscope (STEMI 305, Zeiss). The length 

of the gill arch and the length of the gill rakers (located on the ceratobranchial part, Figure 

12) were estimated using the software ImageJ (Schneider et al., 2012). Also, the density of 

the gill rakers was estimated on the ceratobranchial part of the branchial arc and their 

abundance equaled the gill raker density multiplied by the branchial arc length. Further, 

preliminary investigations of the series of denticles found along the gill rakers were 

performed on 6 and 8 individuals from the two extreme treatments (treatments 1 (small 

quantity of small particles) and 4 (large quantity of large particles), respectively (Figure 13). 

To do so, the branchial arcs were dehydrated using successive bath at 70%, 90%, 95% and 

100% alcohol. Then, samples were dried by a solution of hexamethyldisilazane and were 

metalized with platinum. The density of the denticles was estimated on the photographs 

taken by a Scanning Electron Microscopy (SEM) under conventional mode and also using 

ImageJ software (Schneider et al., 2012). 

2.1.2. Data analysis 

To study feeding treatment and potential allometric effects on the gill parameters (i.e. 

branchial arc length, gill raker density), we performed a covariance analysis (ANCOVA) - with 

a preliminary check on the homogeneity of variances with the Levene’s test -  where each gill 

parameter was dependent on treatment and fish length, as well as their interaction. Then, 

we investigated feeding treatment and allometric effects on the gill raker abundance thanks 

to a generalized linear model, using Poisson distribution. Further, we built a series of linear 

mixed effect models for the gill raker length with two fixed effects (fish length and feeding 
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treatments), as well as their interaction. We added the individual id as a random intercept to 

take into account the variability of the gill raker lengths among individuals. Finally, we also 

built a mixed-effect model to study the treatment effect on the denticles, with the 

treatment as a fixed variable and the individual as random intercept. The selection of the 

mixed-effect models was done using the AIC criterion (Burnham and Anderson, 2002). The 

normality of the residuals of each model was then analyzed through a Shapiro-Wilk’s test. All 

data analyses were performed in R (R Core Team, 2018), using the car (Fox and Weisberg, 

2018) and the nlme (Pinheiro et al., 2018) packages. 

 

 

 

 

 

 

Figure 12: Picture of the first branchial arch of an adult sardine with the branchial arch (orange line) and one gill raker 

(blue line). 
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Figure 13: Pictures of the gill raker structure (A) and two series of denticles on the same gill raker (B). 
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2.2. Energetic costs 

The preliminary investigations of sardine energetic costs of feeding were made on a captive 

sardine population fished on March 2016 (Figure 7, Experiment n°2). Sardines were fished 

and acclimated following the same procedure described in Queiros et al. (2019). Sardines 

were then held in a 3 m3 tank supplied with a flow of aerated seawater, following natural 

temperature and photoperiod. Before the experiment, sardines were fed with a mix of pellet 

sizes (0.1, 0.3 and 0.8 mm) at a rate equaled to 2% of the total fish biomass each day, so they 

were acclimated to both small and large pellets (i.e. filtration vs. particulate feeding).  

To estimate the effects of food size on sardine oxygen consumption while feeding, sardines 

were fed twice a day (at 2% of the total fish biomass) with 0.1 mm pellets during the first 

week (between September 11 and September 16) and with 1.2 mm pellets during the 

second week (between September 17 and September 23). Note that the adaptation from 0.1 

to 1.2 mm pellets was almost immediate. The oxygen consumption was monitored from 7:30 

to 17:30 during 2 consecutive days for each pellet size: on September 13 and 14 and on 

September 20 and 21 for 0.1 and 1.2 mm pellets, respectively. Results were compared to the 

basal oxygen consumption of unfed sardines measured on September 26. Every 30 minutes, 

oxygen concentration, oxygen saturation, temperature and salinity of outflows of two tanks 

were recorded (i.e. the experiment tank with sardines and the control ones without sardine). 

The oxygen consumption (in mg/h/kg) was estimated by comparison with a tank without 

sardines: 

 

6789:;<>?78&@A = [BC]DEFGHEIJ[BC]LMHNOFPL
QRSTUVV × W [3] 

 

with [O2] in mg/L, the water flow rate Q in m3/h, and the total fish biomass in kg.  

Temperature is known to regulate (positively or negatively) the metabolism of fish and thus 

their oxygen consumption. To take into account temperature differences between the 

experiments (mean ± SD: 19.1 ± 0.4, 22.0 ± 0.2 and 18.9 ± 0.3 for not fed fish, fish fed on 0.1 

mm and fish fed on 1.2 mm, respectively), we corrected oxygen consumption (cO2) to obtain 

the same mean oxygen consumption during the night for the 3 feeding conditions (i.e. large 

pellets, small pellets and unfed). 
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The corrected oxygen consumption of each feeding condition was compared by the area 

under the curve using the DescTools package in R (Andri Signorell and mult. al., 2019). This 

study was a preliminary investigation and another experiment was later designed to 

strengthen this experiment. However, some problems were encountered in this second 

experiment (more details in the General Discussion) and we present here only results of the 

preliminary investigation. 

 

3. Results and Discussion 

3.1. Is food collected differently while filter-feeding, leading to a 

lesser energy gain from the smallest particles? 

The total length of fish varied from 113 to 154 mm and individuals from treatment (4) were 

longer than all other treatments as previously described in Chapter 1. Among the 40 

samples, 1 outlier from treatment (1) was removed from all the following analyses (Figure 

14).  

 

 

 

 

Figure 14: Boxplot of the sardine total length used in the morphological analysis of the gill apparatus for the four feeding 

treatments (red: pellet size of 0.1 mm and pellet quantity 0.3%; yellow: 0.1 mm and 0.6%; green: 1.2 mm and 0.3% and 

blue: 1.2 mm and 0.6%). Sample size for each treatment is given by n below the boxes. Outlier was represented by a circle. 
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The length of branchial arc ranged from 18.2 mm for the smallest individual analysed to 23.2 

mm for the largest one (Figure 15A). A linear model analysis testing for the effect of fish 

length, feeding treatment and their interaction on the branchial arc length revealed no 

significant effect of food or the interaction between food and fish length (p-value = 0.16 and 

p-value = 0.08, respectively), but a positive effect of fish length (p-value < 0.001). The 

equation of the fitted curve was given by: 

 

 XYZ\!^_`\b&\Z^& &= &c.f&j±&k.fm o &p.pc&j±&p.pfm × &qX     [4] 

 

with the branchial arc (Lbranchial arc) and fish total length (TL) in mm. The standard error of the 

parameter estimations were given in brackets. 
 

Further, the gill raker density varied between 3.6 and 5.0 gill rakers per mm (Figure 15B). 

The gill raker density was negatively correlated with fish total length (p-value < 0.001) but no 

correlation was obtained for the two other variables (p-value = 0.12 and p-value = 0.45 for 

the treatment and the interaction treatment-fish length, respectively). The equation of the 

fitted model was given by: 

 

rsRuu&vUxzv& &= &{.|&j±&p.}m ~ p.pf&j±&p.ppm &× &qX     [5]  

       

with the gill raker density (dgill raker) in abundance per mm, the fish total length (TL) in mm 

and the standard error of the parameter estimations were given in brackets. 
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Further, similar ranges of the branchial arc length were found between this study and the 

results obtained on the Atlantic and the Mediterranean sardines (Costalago et al., 2015). The 

length of the branchial arch and the gill raker density increased and decreased respectively, 

according to the fish length similarly to their Atlantic and Pacific relatives and to a study 

made in 2007-2009 in the Gulf of Lions (Costalago et al., 2015; van der Lingen et al., 2009). 

The gill raker density of sardines from the Gulf of Lions seemed to have changed in almost 10 

years. To compare the gill raker density from the study made in 2007-2009 in the Gulf of 

Lions and our study, we built two linear models with the gill raker density as explicated 

variable and both fish length, the study period (before vs. now) and their interaction as 

explicative variables. The comparison of these models made by a covariation analysis 

revealed that there was no significant difference between the slopes (p-value = 0.89) but a 

significant difference of their intercepts (p-value < 0.001). This result suggested that for a 

Figure 15: Relationships between the total length of sardine and the branchial arc length (A), the gill raker density (B), 

abundance (C) and length (D). Colors corresponded to each feeding treatment (red: pellet size of 0.1 mm and pellet quantity 

of 0.3%; yellow: 0.1 mm and 0.6%; green: 1.2 mm and 0.3% and blue: 1.2 mm and 0.6%). Black lines represented significant 

relationship (p-value < 0.05) between the morphological structure and the total length of sardine. 
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given length, the density was higher, and thus the capacity of sardines to retain small prey 

may have improved during this period (Figure 16).  

 

 

 

 

How could morphometric modification of the gill raker density between the two periods be 

explained? Three distinct but not mutually exclusive hypotheses come to mind, either (1) 

phenotypic plasticity in response to their environment and/or (2) microevolution due to 

selection by their environment and/or (3) epigenetic mechanisms. Phenotypic plasticity 

could be defined as the ability of an individual to exhibit different phenotypes from the same 

genotype in response to different environmental conditions (DeWitt et al., 1998; Gienapp et 

al., 2007; Nussey et al., 2007). Microevolution refers to processes implied in the phenotypic 

diversification within populations for a given species (e.g. mutations, natural selection and 

genetic drift) (Arnold et al., 2001; Gienapp et al., 2008; Visser, 2008). Epigenetic events could 

be defined as heritable changes in gene expression that result from a reversible modification 

of the DNA (e.g. methilation or remodelling chromatin structure) without modification in the 

DNA sequence which could be induced by environmental factors (Bird, 2007; Bossdorf et al., 

2007; Jaenisch and Bird, 2003; Jirtle and Skinner, 2007). In this study, the exposition of adult 

sardines to 4 feeding treatments (2 sizes and 2 quantities) during 7-months did not influence 

Figure 16: Comparison of the relationship between the gill raker density and the total length for sardines in the Gulf of Lions 

between 2007-2009 (Costalago et al. (2015): grey solid line) and now (orange solid line). The relationship between the gill 

raker density and the total length for sardines in the Atlantic Ocean is represented by a black dashed line (Costalago et al., 
2015). The r-squared ajusted and the p-value of the linear models are given. 
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the gill raker density of adult sardines. Indeed, the treatment variable was not retained in 

the linear model built on the gill raker density (note that the treatment was never retained 

in any of the models), suggesting that this phenomenon could not result from phenotypic 

plasticity of adult sardines to their environment over a few months. Instead, it could be due 

to either longer-term plasticity (maybe several months/years) or be induced earlier in life, 

when gill rakers are in development and become functional after metamorphosis 

(Rykaczewski, 2009). Moreover, natural selection might also be an explanation of the higher 

gill raker density of sardine in this study. Indeed, individuals with a higher gill raker density 

may have a better energy net gain compared to indivudals exhibiting lower density, 

especially in a context of a decrease in food size in the wild (as suggested to occur in the Gulf 

of Lions).  

Additionally, the gill raker abundance ranged between 73 and 100 gill rakers (Figure 15C). 

Although comparison with the gill raker abundance found in previous study led on the 

Atlantic and Mediterranean sardines was not possible because they estimated the gill raker 

abundances only on the ceratohypobranchial arch, our results seemed to be consistent 

(ranged between 50 to 70 gill rakers in Costalago et al. (2015)). The analysis of the 

generalized linear model (Poisson distribution) on this abundance exhibited no significant 

effect of feeding treatments (p-value = 0.73), fish length (p-value = 0.97) and their 

interaction (p-value = 0.42). Thus, fish length did not affect the gill raker abundance. These 

results were consistent with results found on three anchovy species from the southeastern 

and northeastern Atlantic and from Pacific for the same range of fish length (Rykaczewski, 

2009; van der Lingen et al., 2009). However, they went against significant positive 

relationships found between the gill raker abundance and the fish length for sardines from 

large upwelling ecosystems (Rykaczewski, 2009; van der Lingen et al., 2009) and from a 

previous period in the Mediterannean Sea (Costalago et al., 2015). The lack of significant 

relationship might be explained by the reduced range of fish length used in our study 

(between 110 and 150 mm) compared to the 50-200 mm range used in other studies. 

Additionally, the gill raker length was comprised between 4.0 and 6.8 mm. The best linear 

mixed-effect model explaining the gill raker length was the null model (based on the AIC 

criterion), suggesting that neither feeding treatment nor fish length nor their interaction 

have significant effect on the gill raker length (Figure 15D). Conversely to both South West 

African sardine and anchovy for which the fish length act significantly on the gill raker 
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abundance, no fish length effect has been found in our study (van der Lingen et al., 2006). 

Finally, the denticle density on the gill raker varied from 10.9 to 16.7 denticles per mm of gill 

raker (Figure 17). The best mixed-effect model selected by AIC criterion was the null model, 

meaning that no treatment effect on the denticles density was observed. The diagnostic 

plots of the linear models (branchial arc length and gill raker density), general linear models 

with Poisson distribution (gill raker abundance) and mixed-effect models (gill raker length 

and denticle density) were mostly satisfactory and residuals were normally distributed 

(Figures S11). 

 

 

 

3.2. Is energy expenditure higher when filter-feeding than particulate 

feeding? 

Thanks to an increase of their gill raker density, sardines may be able to extract more energy 

from their environment at the moment than they used to 10 years ago. However, the 

situation of sardines in the wild did not change with time suggesting that this modification 

might not be enough to cope with the decrease in food size. Thus, could filtration be an 

energy-consuming feeding mode compared to particulate feeding? To test for this 

hypothesis, metabolic costs were measured by respirometry using the oxygen consumption 

on the same fish with only 1 week between the two measurements (length and condition 

were thus similar between experiments). First, the oxygen consumption exhibited similar 

fluctuations along the day within each treatment (Figure 18). The two feeding periods were 

3.2. Is energy expenditure higher when filter-feeding than particulate

Figure 17: Boxplot of the denticle density (median of each individual) for the treatments (1) (in red: pellet size of 0.1 mm 

and pellet quantity 0.3%) and (4) (blue: 1.2 mm and 0.6%). Sample size for each treatment is given by n below the boxes. 



 
 

64 
 

followed by a significant increase of the oxygen consumption in tanks. This upsurge looked 

higher for sardines fed with 0.1 mm pellets than for sardines fed with 1.2 mm pellets (Figure 

18). Also, with the same amount of food (i.e. 2% of the total fish biomass), the daily oxygen 

consumption – presented as the ratio of the areas under curve of fed fish and not fed fish – 

exhibited a mean (± SD) increase of 67.4 (± 0.1) and 89.8 (± 8.4) % for the 1.2 mm (in blue) 

and 0.1 mm pellets (in red) respectively, compared to sardines not fed (in grey) (Figure 18). 

Although the food quantity was the same, sardines spent more energy to feed on small 

particles, resulting in a lower energy net gain. As suggested by Costalago and Palomera 

(2014), the energy requirements of sustained aerobic swimming during filter-feeding 

seemed to be significantly greater than particulate-feeding. This phenomenon might act 

synergistically with the potential longer duration of the filtration compared to particulate 

feeding but this hypothesis remained to be investigated (see Chapter Discussion). Conversely 

to the pilchard Sardinops sagax for which the filtration required less energy (van der Lingen, 

1995), the hypothesis for Mediterranean sardines that filter feeding may provide lower 

energy net gain seems to be validated by the oxygen consumption experiments. However, 

oxygen concentration was estimated here in outflowing water which allowed only average 

estimation of the oxygen consumption owing to delay between the consumption and its 

estimation and supposing that water was well homogenized. Further, we could not rule out 

that the difference obtained between treatments was related to the difference in 

temperature.  Another experiment was proposed in the General Discussion to strengthen 

this preliminary result. 
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To sum up the Chapter 2, the take-home messages are:  

· The morphological structure of the gill apparatus appeared to have changed in 10 

years, in particular through the increase of the gill raker density. 

· The daily energetic requirements of filtration seemed be higher than those of 

particulate feeding but this result remains to be confirmed by a more robust 

estimation. 

· Although sardines may have a better retention capacity, it may not be enough to 

counterbalance the energy expenditures of the filtration on small prey. 

 

  

Figure 18: Evolution of the oxygen consumption over time for each feeding treatment (grey: fasting; red: pellet size of 0.1 

mm and pellet quantity of 2% and blue: 1.2 mm and 2%). Colored lines represented smooth curve of the oxygen 

consumption for each treatment. Vertical black solid line represents when lights were turned on. Vertical dotted black lines 

correspond to the two meal times. 
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Chapter 3: Which other life history traits could be 

impacted by food? Could they act as amplifying factors? 

1. Introduction 

Our experimental study presented in Chapter 1 supported the bottom-up control hypothesis 

showing that both food size and quantity had significant effects on body condition and 

growth, as well as on lipid storage and oxidative stress balance (Queiros et al., 2019). Such 

results highlighted energy trade-offs between growth and maintenance as individuals coping 

with food restrictions managed to pay some maintenance costs (e.g. no effect on protein 

content and structural lipids) at the expense of lower body condition, growth or lipid 

storage. In this context, other life history traits could be impacted by food size and quantity 

either directly or indirectly through a modification of the energy available (i.e. change in 

body condition). Such effects might worsen or partly compensate the situation described in 

Chapter 1 and observed in the Gulf of Lions. In this chapter, we investigated the effect of 

food size and quantity on other life-history traits, from the transformation of resources into 

usable energy to the utilisation of this energy and the resulting life-history trade-offs. 

Further, we investigated whether sardines could partly mitigate these effects by potential 

adaptations induced by phenotypic plasticity, microselection or epigenetic mechanisms, 

similarly to the modification observed for the gill raker apparatus (Chapter 2). 

First, the oxidative stress balance (ratio between the reactive oxygen species (ROS) 

production and the antioxidant defenses controls) is known to play a central role in energy 

trade-offs between growth, maintenance and reproduction (Finkel and Holbrook, 2000; 

Kirkwood and Rose, 1991; Metcalfe and Alonso-Alvarez, 2010; Monaghan et al., 2009). A 

previous study suggested that sardine fed on small pellets may have reduced their metabolic 

rates to cope with poor feeding conditions (Chapter 1). Simultaneously, filtration on small 

prey seemed to be more energy demanding than the particulate feeding (Chapter 2). Both 

results suggested than sardines fed on small pellets may have better mitochondrial 

conversion efficiency as they required more energy but exhibited lower ROS concentration 

(Chapter 1) but this remained to be investigated. Thus, to better understand the 
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physiological implication of food restrictions on the metabolism, we studied the effect of 

both food size and quantity through an integrative study of the mitochondria. 

Further, reproduction represents the main life-history trade-off, opposed to growth or 

maintenance (Williams, 1966b). Thus, reproduction success could be modulated by 

individual body condition. Indeed, low energy reserves create energy trade-offs that could 

lead to extreme choices such as skipping reproduction to ensure survival (Jørgensen et al., 

2006; Rideout and Tomkiewicz, 2011). Sardines are multiple spawners and are usually 

considered as capital breeders, i.e. they store energy in spring and summer that can be 

mobilized later for the reproduction in winter, between December and March in the Gulf of 

Lions (Brosset et al., 2016b), when food availability is limiting (Ganias, 2009; Ganias et al., 

2007). After 2008, sardine condition was lower, but energy allocated to the reproduction has 

increased and sardines have maintained high reproductive investments (Brosset et al., 

2016b). Such a high investment in reproduction could impact the survival and we therefore 

investigated the effect of food size on the reproduction of sardines.  

Additionally, during their entire life individuals may cope with several pathogens from virus 

to macro parasites and thus require defenses. These defenses could represent a high energy 

demand for individuals, leading to again energy trade-offs between reproduction and 

survival (Alonso-Alvarez et al., 2004; Deerenberg et al., 1997). These trade-offs may explain 

extreme situations such as suppression of immunity under stress or malnutrition (Alonso-

Alvarez et al., 2004; Hanssen et al., 2004). A reduction of energy allocated to immunity may 

endanger survival of sardines if they have to cope with pathogens. Therefore, we 

investigated the food size and quantity effects on the immune defenses of sardines. 

Finally, stress could be defined as a situation in which individuals have to cope with a 

challenge (with real or symbolic danger for its integrity) which they need to overcome or 

compensate (e.g. physiological responses)(Tort, 2011). Cortisol is a glucocorticoid hormone 

released into blood after activation of the hypothalamic-pituitary-interrenal (HPI-) axis in 

response of a stressor, which is widely used to assess stress condition and health of 

individuals and populations (Aerts et al., 2015; Costantini et al., 2011; Sadoul and Geffroy, 

2019). Energy required to cope with stress induced by cortisol could be derived from other 

essential functions such as reproduction or growth. As a consequence, cortisol and more 

generally glucocorticoids, have a large range of effects on individuals such as foraging 

capacity (Wingfield et al., 1998), growth (Midwood et al., 2014; Mommsen et al., 1999; 
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Sadoul and Vijayan, 2016), immune response (Harris and Bird, 2000; Tort, 2011; Wendelaar 

Bonga, 1997), reproduction (Mommsen et al., 1999; Tort, 2011) or oxidative stress (Tort, 

2011). As cortisol may act as an amplifying factor due to the high implication on several 

mechanisms (both positive and negative effects, see Schreck & Tort (2016)), we studied the 

effects of food size and quantity on its concentration and whether its concentration might 

be used as an integrative response to energy trade-offs. 

 

2. Material and Methods 

2.1. Bioenergetics 

To investigate the hypothesis that filtration strategy may induce an unbalanced energetic 

budget, we decided to study the mitochondrial activity. To do so, 46 sardines (i.e. 11 or 12 

sardines per treatment) from the experiment described in Chapter 1 were sampled (Figure 7, 

Experiment n°1 – 4 feeding treatments: 2 sizes (0.1 and 1.2 mm) and 2 quantities (0.3 and 

0.6%)). 

2.2. Mitochondrial isolation and respiration 

Mitochondrial populations were isolated from the red muscle using an ice-cold isolation 

buffer and concentrated by successive centrifugations. The oxygen consumption and ATP 

synthesis rates were examined at 20°C in a respiratory buffer. The oxygen consumption was 

measured with a Clark oxygen electrode and the ATP production was indirectly assayed by 

spectrophotometry monitoring the production of NADH. The basal oxygen consumption was 

recorded without the addition of ADP. The maximal oxygen consumption was evaluated with 

an addition of ADP (500 µM). Also, the non-mitochondrial ATP synthesis activity was taken 

into account even if it remained low (from 5 to 9% of total ATP production) (Material and 

Methods are detailed in Thoral et al. in prep Annex 2).   

2.3. Data analysis 

The effects of the food size and quantity on the basal and maximal oxygen consumption 

were compared using a parametric two-way ANOVA or the non-parametric Scheirer Ray 

Hare test when normality or homoscedasticity were not validated (tested with Shapiro and 

Levene tests, respectively). Pairwise comparisons were then made with Tukey comparison (if 
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ANOVA) or the Dunn’s test (if Scheirer Ray Hare test). Further, the relation between the 

rates of ATP synthesis and oxygen consumption was assessed by a linear model. And the 

relationship between the basal oxygen consumption and the individual body condition index 

as well as potential threshold were investigated by a piece-wise linear regression with the 

‘segmented’ package (Muggeo, 2019).  

2.4. Reproduction 

2.4.1. Sardine population 

The effects of food size on the reproduction were investigated on a captive population of 

sardines during two consecutive years (Figure 7, Experiment n°2). Sardines were fished and 

acclimated on March 2016 following the approach described in Queiros et al. (2019). Fish 

were split in two groups: the first group was fed with 0.1 mm pellets whereas the second 

one was fed with 1.2 mm pellets. The experiment was held in 4 tanks of 3 m3, two for each 

group/treatment, during the first year. In the second year, fish of a given group were 

gathered in a single tank due to a lower total number of fish. The feeding rate equaled 0.6% 

of the fish biomass in tank during all the experiment but for the summer 2018, when it was 

increased to 1% to account for high temperatures at this period. Tanks were supplied with 

seawater pumped directly from the sea and temperature was not controlled and followed 

natural variations except to remain between a minimum of 10°C and a maximum of 25°C. 

The photoperiod was weekly adjusted to follow natural cycle. Biometries were performed 

every month (spaced out during summer months) with the recording of individual (RFID tag) 

length and weight. Body condition was then estimated according to Le Cren’s index (Brosset 

et al, 2015). To identify sex ratio in the sardine population, we used two identification 

methods, (1) either through abdominal compression (stripping) or using cannula during 

biometry (inactive males could not be identified with this method) or (2) direct gonad 

observation on dead fish. 

2.4.2. Spawning and egg parameters  

The egg collection system was composed of an egg collector made with a 70-μm mesh inside 

a larger container full of water to make sure that eggs were maintained in water all the time. 

After spawning, the sardine eggs are floating and therefore were collected through surface 
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overflows during the night (Miranda et al., 1990). Each morning, egg collectors were 

inspected and when present, eggs were collected and put in a 4 L beaker. Given that some 

floating eggs collected during the night became not viable and sank (probably unfertilized 

egg), floating and sinking eggs were split. The volume of both categories of eggs was 

recorded and summed to obtain the total egg volume. The concentration (egg 

abundance/mL) was estimated by counting under the binocular two replicas of 0.5 mL of 

floating eggs and converted into viable egg abundance. 

Further, quality of the spawn was assessed by egg size, although this approach is still 

debated (Kjørsvik et al., 1990; Riveiro et al., 2004) while yolk was used as a proxy of maternal 

investment (Lubzens et al., 2017). To investigate food size effect on the egg and yolk sizes, a 

subsample of floating eggs was photographed by a camera attached to a binocular 

microscope  and both egg and yolk diameters were estimated on photographs with ImageJ 

software (Schneider et al., 2012). Note that the spawning of sardine was not artificially 

induced. 

2.4.3. Data analyses 

Because the amount of spawning events (and thus eggs) was strongly unbalanced between 

treatments (see Results), we used a jackknife approach to compare egg quality (egg 

diameter and yolk diameter) between treatments. This also helped to limit a potential bias 

due to the non-independence between eggs (we do not know which female spawned for a 

given spawning event). For each of the 10,000 jackknife resamplings, we randomly draw 

eggs to have the same sample size between each sample. Egg and vitellus diameters 

differences between treatments (for the same year) and between years (for the same 

treatment) were then investigated using the non-parametric Wilcoxon test and results are 

presented as the proportion of the 10,000 resamplings which were significantly different. 

The effects of treatments and years on the proportion of both floating eggs and vitellus were 

assessed using generalized linear model with a binomial link. Statistical analyses were 

performed in R (R Core Team, 2018). 

2.5. Immunity 

2.5.1. Sardine population and feeding treatments 
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Sardines were captured on May 9, 2017 and acclimated following the procedures detailed in 

Queiros et al. (2019) (Figure 7, Experiment n°3). Sardines were then held in outdoor 4.5 m3 

tanks and they were fed with aquaculture pellets (mix of pellet sizes: 0.1 mm, 0.3 mm and 

0.8 mm at food rates between 1 and 2%) during 3 months. The experimentation started on 

August 29, 2017 and ended on April 26, 2018. First, around 1,000 sardines were divided into 

2 groups and moved into 2 indoor tanks of 3 m3 each (Figure 19, part A). Prior to transfer, 

sardines were anesthetized with benzocaïne (140 ppm), their total body length and total wet 

weight were recorded (to the nearest 0.1 mm and the nearest 0.01 g). A tiny RFID tag 

(Biolog-id, Bernay, France, 0.03 g i.e., <0.2% of sardine lowest body mass) was implanted in 

the dorsal muscle to allow individual identification. On October 25, sardines were 

transferred into 300 L tanks (4 tanks per treatment; Figure 19, part A). Tanks were supplied 

with water pumped directly from the sea and filtered through sand filter. Also, the 

photoperiod was adjusted each week to follow the natural cycle and sea water temperature 

was not controlled except to maintain a minimum of 10°C and a maximum of 25°C. 

Biometries were made every 4 weeks (tag read, total length and body weight recorded 

individually) and the body condition index of each sardine was estimated using the Le Cren’s 

index (Brosset et al., 2015a). During the first phase of the experiment, the first group was fed 

in large quantity of small pellets, while the second one was fed in large quantity of large 

pellets (similar sizes and quantity as in Chapter 1;  Queiros et al. 2019).  On November 28, 

the feeding treatments were inversed for half of the  tanks during the winter period (Figure 

19), leading to four feeding treatments: small pellets all along – treatment (1), small pellets 

then large pellets – treatment (2), large pellets then small pellets – treatment (3)  and large 

pellets all along – treatment (4), each composed of two tanks.  
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Figure 19: Experimental design used in the experiment n°3, comprising of 2 tanks of 3m
3
 and then 8 tanks of 300L.  Feeding 

treatments (red: pellet size of 0.1mm and blue: 1.2mm) are indicated for each of the tank.  
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2.5.2. Cell collection and preparation 

Between 12 and 15 individuals were sampled 4 times during April (3th, 10th, 24th and 26th). At 

each sampling date, fish were first anaesthetized by benzocaine at 140 ppm and their 

individual total body length and total wet weight were recorded before blood and head 

kidney collection. Blood was obtained by caudal vein puncture with heparinized syringe and 

immediately transferred in L15 medium enriched with 2% fetal bovine serum. Sardines were 

then sacrificed by a lethal dose of benzocaine at 1000 ppm. After a ventral incision, the head 

kidney was collected. Single-cell suspension was generated by HK aspiration using a 1-mL 

syringe filled with heparin and enriched L15 medium followed by forcing the tissues through 

a 40-µm cell strainer (Falcon) with a plunger from a 1-mL syringe. Sex and maturity were 

determined by gonad observation. 

Leucocytes were isolated using a Ficoll-Paque PLUS gradient media (d=1.077 g/mL, GE 

Healthcare). Cell suspensions were spun 25 min at 400g to remove erythrocytes and debris 

and the leucocyte rich interphase was collected, washed in PBS and resuspended in L15 

medium. Single-cell suspensions was conserved at 17°C into L15 medium enriched with 0.4% 

fetal bovine serum overnight until flow cytometry analysis. 

2.5.3. Flow cytometry analysis 

Leucocytes cells were washed and resuspended in PBS, and were passed through a filter 

with a 40-µm pore size. Quantification of dead cells was determined by adding propidium 

iodide (Sigma) at a final concentration of 1 µg/ml. Leucocyte suspensions (1.5 x 106  cells/mL) 

were resuspended in 1-ml L15 and incubated for 30 min at 17°C with 2’7’-dichlorofluorescin 

diacetate (DCFH-DA), which is a stable non-fluorescent molecule which is hydrolyzed to 

DCFH by cytosolic enzymes, then by the action of H2O2 (produced in leucocytes), DCFH is 

oxidised to the fluorescent dichlorofluorescein (DCF). This procedure was helpful to 

discriminate the different cellular populations. Leucocytes that exhibited positive 

fluorescence to DCF are noted DCF+ in the following, otherwise DCF-. Flow cytometry 

analysis and sorting were based on forward scatter, side scatter and DCF fluorescence with a 

FACSCalibur flow cytometer (BD Biosciences). For each sample, between 10,000 and 20,000 

individual cells were recorded. Data were analyzed using FlowJo software Version 8.7. To 

further describe the gated population, blood and head kidney leucocytes isolated from 4 
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individuals were sorted using a FACSAria I (BD Biosciences). Four populations per sample 

were sorted using forward scatter, side scatter and DCF fluorescence. 

2.5.4. Cytology analysis 

Cytospin preparations were made with ficoll-isolated blood and head kidney cells (4 

individuals) and sorted cells. Cells were cytocentrifuged at 300 rpm for 3 min onto glass 

slides in a Cytospin3 cytocentrifuge (Shandon). Blood smears and cytospin preparations 

were processed through May-Grünwald and Giemsa stains (Sigma) for cell identification and 

morphological analyses. Cytospins were imaged using a microscope (LEICA). Images were 

obtained using a Megaview-III camera (Olympus America) and processed using LAS X. 

2.5.5. Data analyses 

The differences of body condition, total length and leucocytes (granulocytes, lymphocytes, 

monocytes and precursors) densities between treatments were investigated using 

parametric (one-way ANOVA) or non-parametric (Kruskal-Wallis) tests and associated post-

hoc (Tukey or Dunn test), depending on residual normality and homoscedasticity. Further, a 

Principal Component Analysis (PCA) was performed using the individual sardines as objects 

and body condition index, white corpuscle rates (granulocytes, lymphocytes, monocytes and 

precursors) and the interval time (duration between the first sampling date and other 

sampling date of the individual) as descriptors to summarize all the information and 

investigate the relationships between descriptors. The effect of sex was also investigated 

using a PCA. All statistical analyses were performed in R (R Core Team, 2018) using the 

FactoMineR (Lê et al., 2008), the FSA (Ogle, 2018) and the factoextra (Kassambara and 

Mundt, 2017) packages. 

2.6. Stress 

2.6.1. Sampling preparation 

To investigate the potential stress induced by the food size and quantity, we studied the 

cortisol deposited in scales, a more integrative tissue than blood (Aert et al 2015). Sampling 

was made on 120 sardines from the third experiment (Figure 7, Experiment n°3), which were 

sacrificed on the 3rd March 2018 (i.e. 30 per treatment) by lethal dose of benzocaïne (1,000 
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ppm). Length and weight were recorded and the body condition was calculated using Le 

Cren equation (Brosset et al. 2015). Scales of each sardine were collected on the full body 

and stored in Eppendorf tubes at – 80°C until further analyses. The chronic stress was 

assessed measuring the cortisol levels in scales using adapted methodological approach from 

Carbajal et al. (2018). To remove mucus from the scales, 150 to 200 mg of scales were 

transferred into glass vial of 12 mL with an addition of 3 mL of isopropanol. Vials were 

vorteed during 2.5 min and the supernatant was removed. This step was repeated 3 times. 

Residual solvent traces were evaporated under nitrogen flux and samples were frozen at       

-80°C before to be placed into a lyophilisator during at least 48h. Lyophilized scales were 

transferred into 2 mL safe lock Eppendorf with a ceramic milling ball. Samples were grinded 

using a ball mill (MM400, Retsch GmbH, Germany) and 30 mg of dried scales were 

transferred to 2 mL glass vial. After, 1.5 mL of methanol was added and vials were vortexed 

for 30 sec. Vials were incubated during 18h at 30°C with slight agitation. After centrifugation 

at 9500g during 10 min, 1 mL of the supernatant was pipetted and transferred into a new 2 

mL glass vial. The supernatant was evaporated under nitrogen flux and reconstituted with 

0.2 mL of EIA buffer provided by the Cortisol assay kit (Neogen Corporation Europe, Ayr, UK). 

Cortisol concentrations were determined in 50 µL of extracted cortisol by using a 

competitive EIA kits (Neogen® Corporation Europe, Ayr, UK). Samples were run in duplicates 

and averaged. Only samples with a coefficient of variations (CV) lower than 20% were kept 

for statistical analyses. Intra-plate cortisol variation was equal to 7.5%. 

2.6.2. Data analyses 

The cortisol concentration in scales was compared between treatments, using ANOVA or 

Kruskal-Wallis test (and post-hoc test: Tukey or Dunn test, respectively) depending on the 

normality and homoscedasticity. Hypothesis of normality and equality of variances were 

checked with a Shapiro test on the residuals and a Levene test, respectively. The relationship 

between growth rate and cortisol was assessed using generalized linear model, using gamma 

distribution owing to overdispersed positive data.  
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3. Results and Discussion 

3.1. Does the filtration strategy induce an unbalanced energetic 

budget? 

To study the effect of food size and quantity on the mitochondrial activity, we studied the 

relationship between the oxygen consumption and the ATP synthesis rates. Food size had a 

significant effect on the basal oxygen consumption (both p-value < 0.01) (Figure 20). The 

mean ± SD basal oxygen consumption rate was lower for fish that fed on small pellets (9.0 ± 

3.7 and 13.3 ± 4.3 nmol O/min/mg protein for the small and large food size, respectively). 

Similarly, only food size had a significant effect on the maximal oxygen consumption rate (p-

value < 0.001) with higher values for sardines that fed on large food size (mean ± SD of 44.8 

± 27.2 and 70.3 ± 25.3 nmol O/min/mg protein for the small and large food size, 

respectively). Then, the slopes of the fitted relationships between the ATP synthesis rate and 

the oxygen consumption did not differ significantly from each other (p-value > 0.05, Figure 

20).  

 

 

 

 

Figure 20: Effects of food size and quantity on mitochondrial oxidative phosphorylation efficiency at the mitochondria. The 

two trends drawn are those of the "large size" (ATP = 2.96 * Oxygen – 39.21) and "small size" (ATP = 2.95 * Oxygen – 26.70) 

groups. The values shown are means ± SE (the error bars of the basal oxygen consumption are small enough that they are 

hidden by the points). ** represents the significant difference between large and small food size treatments (p-value < 

0.01). Figure adapted from Thoral et al. in prep – Annex 2. 
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The oxygen consumed in the basal non-phosphorylating state is used to counteract proton 

leakage across the mitochondrial inner membrane (Roussel et al., 2004). This basal oxygen 

consumption is thus an index of maximal energy wastage of mitochondrial metabolism. 

Thus, these results indicated that the mitochondrial activity of fish that fed on small food 

size were more efficient than fish fed on larger ones, so consuming less oxygen to produce a 

given amount of ATP, whereas sardines that fed on large pellets exhibited a more powerful 

mitochondria. This process was already observed in animals coping with caloric restriction 

(Bourguignon et al., 2017; Roussel et al., 2018). Thus, when fish are fed with small food size, 

individuals seem to develop an energy-saving metabolism that could be related to an 

increase of their mitochondria efficiency and abundance (see Table 2 in Thoral et al. in prep - 

Annex 2). This assumption was also supported by the relationship between the body 

condition index and the basal mitochondrial respiration. Indeed, the piecewise analysis 

showed a significant correlation between basal oxygen consumption rate and the body 

condition index below a condition threshold of 1.07 found for this experiment (p-value < 

0.001 and R2 = 0.45) but no relation after it (p-value > 0.05, Figure 21). Such a decrease in 

the basal oxygen consumption rate would reflect lower energy dissipation and so a higher 

coupling mitochondria (i.e. more efficient) occurring in sardines who exhibit a lower 

condition than the average population over time. Such results were known to occur in 

muscle of animals suffering caloric restriction (Bourguignon et al., 2017; Roussel et al., 

2018). The increase of the efficiency of the mitochondria had been previously also 

associated to an increase of the food intake in Salmo trutta (Salin et al., 2016). However, 

despite the development of bioenergetics compensation mechanisms to counteract food 

restriction, such as higher mitochondrial coupling efficiency or the increase of the 

mitochondrial content in muscle, it may not be sufficient to compensate high energy 

requirements of the filtration as suggested by the lower body condition and growth 

exhibited by sardines fed with small pellets. 
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3.2. Is reproduction affected by food size?  

Body condition at the start of the experiment was very high (around 1.5) due to the period 

of acclimation where they were fed ad-libitum to ensure the highest survival possible. As a 

consequence, body condition decreased in both treatments at the start of the experiment. 

Nevertheless, body condition of sardines fed on large pellets stabilized after two or three 

months and then oscillated around 1.4 all along the experiment, while it decreased for 

almost a year in sardines fed on small pellets before leveling of around a plateau of 1.0. 

Further, the total length of sardines increased in both feeding treatments but at a much 

faster pace for sardine fed on large pellets. Thus, sardines fed with large pellets exhibited 

the highest condition and total length all along the experiment compared to sardines fed on 

small pellets (Figure 22). 

Figure 21: Basal oxygen consumption at the mitochondrial level as a function of the body condition of sardines. A linear 

model shows that there is a correlation between basal mitochondrial respiration and body condition until the body 

condition threshold of 1.07. Above this threshold, there is no longer a correlation between these two parameters. 
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Reproduction events mainly occurred between December and March when water 

temperature was between 12 and 15°C Figure 23A. The number of reproductive events was 

much higher in sardines that fed on large pellets than for sardines fed with small ones (35 vs. 

4 events for the first year and 39 vs. 0 for the second). Because the number of females 

varied between years due to mortality or sacrifice (Figure 23B), we examined the number of 

reproduction events per female to compare between years and treatments. The number of 

reproduction events per female was much higher for sardines that fed on large pellets than 

sardines that fed on smaller ones for both periods: 0.40 and 0.04 events per female in 2016-

2017, respectively and 0.63 and 0 events per female in 2017-2018, respectively. While the 

number of females decreased between the two periods (Figure 23B), the number of 

Figure 22: Time series of the mean (± se) body condition (A) and total length (B) of all sardines in each feeding treatment: 

yellow: pellet size of 0.1mm and pellet quantity of 0.6% and blue: 1.2mm and 0.6%. Black lines represent the mean body 

condition and total length at the beginning of the experiments. 
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reproduction events per female increased by 50% in 2017-2018 compared to 2016-2017 for 

sardines feeding on large pellet treatment. 

 

 

 

 

Further, the total egg volume per spawning event did not differ significantly between the 

two treatments for the period 2016-2017 (p-value = 0.13, medians: 0.24 and 0.30 mL for 

small and large pellet treatments, respectively Figure 24A). However, this volume was 

significantly higher for sardines fed on large pellets in 2016-2017 than sardines in 2017-2018 

(p-value < 0.001, medians: 0.30 and 0.18 mL for 2016-2017 and 2017-2018, respectively, 

Figure 24A). Similarly, the floating egg volume did not differ significantly between feeding 

treatments in 2016-2017 (p-value = 0.07) but floating egg volume was significantly higher in 

2016-2017 than in 2017-2018 for large pellet treatment (p-value < 0.05, medians: 0.23 and 

0.13 for 2016-2017 and 2017-2018, respectively, Figure 24B). Also, the floating egg ratio did 

not differ significantly between treatments in 2016-2017 or between years for sardines fed 

on large pellets (p-value > 0.05, Figure 24C). Note that the variability in the ratio of floating 

Figure 23: Time series of the sea water temperature (°C), reproduction events (A) and number of female (solid line), male 

(dashed line) and undetermined individual (dotted line) (B) for each feeding treatments (yellow: pellet size of 0.1 mm and 

pellet quantity of 0.6%; blue: 1.2 mm and 0.6%). Large circle (A) represents two reproduction events in the same day, i.e. 

one in each tank during the first year. 
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eggs was very large in sardines that fed on small particles (0% to 100% of floating eggs) 

compared to the ratio in sardines of the other treatment (50% to 100% of floating eggs).  

 

 

 

 

Additionally, using the Jacknife resampling procedure, we found that the egg diameter was 

significantly higher for sardines that fed on small pellets compared to sardines that fed on 

larger ones (97.5% of resamplings with p-value < 0.05, medians: 1.82 and 1.77 mm for small 

and large pellet treatments in 2016-2017, respectively, Figure 25A). However, no significant 

difference was found between years for the large pellet treatment (44.1% of resamplings 

Figure 24: Boxplot of the total (A), floating (B) egg volumes per egg-laying and floating egg rate (C) for each feeding 

treatment (yellow: pellet size of 0.1mm and pellet quantity of 0.6% and blue: 1.2mm and 0.6%) in 2016-2017 and in 2017-

2018. $ indicates a significant difference between groups (p-value < 0.05). The number of observations was indicated by n. 

Boxplots are presented without outliers for clarity purposes. 
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with p-value < 0.05, medians: 1.74 and 1.76 mm in 2016-2017 and 2017-2018, respectively, 

Figure 25A). Similarly, the vitellus diameter was significantly larger for sardines fed with 

small pellets compare to sardines fed with large pellets in 2016-2017 (99.9% of resamplings 

with p-value < 0.05, medians: 1.06 and 1.03 mm for small and large pellet treatments, 

respectively) while no difference was observed between the two periods for the large pellet 

treatment (4.2% of resamplings with p-value < 0.05, medians: 1.03 mm for both periods, 

Figure 25B). Vitellus ratio did not differ significantly between the two treatments in 2016-

2017 or between years for the large pellet treatment (11.7 and 34.6% of resamplings with p-

value < 0.05, Figure 25C).  
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Figure 25: Boxplot of the egg (A), vitellus (B) diameters and the vitellus ratio (C) for each feeding treatment (yellow: pellet 

size of 0.1mm and pellet quantity of 0.6% and blue: 1.2mm and 0.6%) in 2016-2017 and in 2017-2018. * indicates a 

significant difference between groups (p-value < 0.05). The total number of observations was indicated by n. Boxplots are 

presented without outliers for clarity purposes. 
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These results may suggest that food size impact the reproduction of sardines, first through 

the number of reproduction events with low or no reproduction event for sardines fed on 

small pellets. The lack of reproduction events for the small pellet treatment during the 

second period might be due to either not enough energy to allocate to reproduction 

(sardines exhibiting lower body condition in 2017-2018 than in 2016-2017) or a low male 

ratio (< 15%, less than 10 males) leading to an impairment of the reproduction success. 

However, the number of reproduction events per female was higher in the second year 

probably due to decrease of the time between two spawning events as expected for larger 

individuals (Ganias et al., 2007). On top of this higher spawning frequency, larger individuals 

were expected to have higher batch fecundity (Brosset et al., 2016b). Surprisingly, the total 

egg volume was significantly higher for sardine fed on large pellets in 2016-2017 compared 

to 2017-2018. Because we are unable to observe which females actively spawn, we cannot 

rule out the possibility of a higher egg volume to be linked to more than one female 

spawning. Further, despite larger total length, the total egg volume produced by sardines fed 

on large pellets did not differ significantly with that of sardines fed on small pellets in 2016-

2017 despite a higher median (Figure 24). Similarly, despite the median volume of floating 

eggs per batch being twice higher in sardines fed on large pellets compared to sardines fed 

on small ones in 2016-2017, no statistical difference was highlighted. The fact that both 

treatments did not differ statistically might probably be due to a too small number of 

spawning events (n=4 for sardines fed on small pellets). Moreover, the large variability in the 

ratio of floating eggs for sardines fed on small pellets might have made the situation even 

worse, as only floating eggs can engender larvae. To counterbalance the low production of 

floating eggs, sardines might maximize the potential survival of the larvae thanks to higher 

energy reserves in produced eggs despite their lower body condition (proxy of energy 

storage). Indeed, larger eggs and yolks might imply precocious hatching and larger larvae at 

hatching and might increase the survival time if larvae have to cope with food restriction 

(Pepin et al., 1997; Reznick et al., 1996; Riveiro et al., 2004). Here, despite a decrease in their 

body condition, sardines fed with small pellets produced larger eggs with a larger vitellus. 

Surprisingly, this result went against a previous negative relationship found between egg size 

and body condition index (Brosset et al., 2016b). Nonetheless, this result and all previous 

interpretations needed to be taken with caution, especially owing to the low number of 

spawning events and low egg production by sardines fed on small pellets.  



 
 

84 
 

In summary, food size had an important effect on the number of spawning events and the 

volume of eggs produced. While we could expect sardines to maintain their reproduction 

investment regardless of their body condition (Brosset et al., 2016b), we found different 

results. However, it has to be pointed that body condition levels were quite different from 

those observed in (Brosset et al., 2016b). According to reproduction/maintenance trade-offs, 

one could expect non-linear relationships between body condition and reproductive output 

(see Figure 26 for a conceptual framework). In particular, when body condition decreases, 

fish face energetic constraints and might neglect reproduction (even stop it in some cases) in 

order to allocate more to soma and favor survival and future breeding prospects. 

Nevertheless, when body condition becomes too small and survival might get impaired, a 

shift of allocation towards reproduction might arise in the form of terminal investment. 

Although this is purely conceptual, the fact that adult survival in the wild has been very low 

since 2008, while it is maintained at high levels in our tanks even in the small pellet 

treatment might support this hypothesis. 

 

 

 

The difference in results between previous in situ research (Brosset et al., 2016b) and this 

experiment might thus derive from the difference in body condition range. By comparing 

only two points here, it is not possible to examine such potential non-linear relationship and 

we would need to study the reproduction of sardines under a wider range of body condition 

Figure 26: Conceptual framework of the reproductive investment of sardines as a function of their body condition index 
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(especially investigate reproduction in captivity of really low condition sardine) to investigate 

this conceptual framework. Finally, our knowledge on the reproduction of sardines and 

especially the triggers of spawning events remained limited (see Discussion). 

3.3. Does immunity suffer from food restriction? 

Immunity was investigated in sardines of four different treatments, one where sardines 

were fed on small pellets all along, one where sardines were fed on large pellets all along 

and two cross-treatments where they were fed small then large or large then small pellets. 

These four treatments resulted in differences in terms of morphometric characteristics of 

sardines (Figure 27). First, body condition exhibited significant differences between all 

treatments except for the cross-treatments (2) and (3) (Figure 27). Total length differed 

significantly between treatments except for sardines fed on large pellets all along and fed on 

large pellets then small pellets (treatments (3) and (4)), and small pellets all along led to the 

lowest total length at the end of the experiment (treatment (1), Figure 27). 

Further, cell characteristics of leucocytes (e.g. cell and nucleus size, vesicles, granularity) 

were close to their mammalian counterparts and similar to other teleost species  (Stachura 

and Traver, 2016). Cell identification was thus performed according to a proposed model of 

adult sardine hematopoietic differentiation, that we developed based on these other species 

(Figure 28). The major cells isolated by size and granularity and their response to DCF were 

summarized in Figure 29. Only results on the head kidney are presented here, as blood 

analyses are still under way.  
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Figure 27: Boxplot of body condition (A) and total length of sampled individuals for each feeding treatment (red: small 

pellets all along, yellow: small pellets then large pellets; green: large pellets then small pellets and blue: large pellets all 

along). Boxplot with different superscript letters are significantly different (p-value < 0.05). The total number of 

observations was indicated by n. Boxplots are presented without outliers for clarity purposes. 
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Figure 28: Ficoll-isolated, cytospun, and May-Grümwald/Giemsa stained immune cells from the sardine head kidney and 

blood and their proposed upstream progenitors. Proposed lineage relationships are based on those demonstrated in zebra 

fish (Stachura and Traver, 2016). Multipotent and lineage restricted progenitors likely reside in the kidney marrow, but 

their existence has never been experimentally proved due to a paucity of in vitro assays. 
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Leucocytes are mainly represented by lymphocytes (both DCF+ and DCF-), then by 

granulocytes, monocytes and precursors (mean ± SD frequency equaled to 44.1 ± 12.8, 28.9 

± 12.5, 11.9 ± 4.6 and 11.0 ± 4.8 %, respectively). The granulocytes (both DCF+ and DCF-) and 

the precursors did not differ significantly between treatments (Figures 30A, B and F). 

Conversely, some inter-treatment differences were highlighted in both lymphocytes DCF+ 

and DCF- and monocytes, mostly through a higher proportion of lymphocytes DCF- and a 

lower one of lymphocytes DCF + and monocytes in sardines fed with large pellets all along 

(i.e. treatment 4) compared to the others (see stats on Figures 30 C,D and E).  

Figure 29: Example of dot plots obtained for head kidney sample using FACS Calibur and cell sorter FACS Aria 
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To synthetize all this information, we then investigated all frequencies at the same time as 

well as morphological parameters and sampling time, using a Principal Component Analysis 

(PCA). The first 2 components of the PCA explained 52.4% of the total variance observed 

Figure 30: Boxplot of the frequency of granulocytes DCF+ (A) and DCF- (B), lymphocytes DCF+ (C) and DCF- (D), monocytes 

(E) and precursors (F) for each feeding treatment (red: pellet size of 0.1 mm throughout the experiment; yellow: 0.1 mm 

then 1.2 mm; green: 1.2 mm then 0.1 mm and blue: only 1.2 mm). Boxplot with different superscript letters are significantly 

different (p-value < 0.05). The number of observations was indicated by n. 
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(Figure 31). The main contributing variables to the first axis were body condition, monocytes 

and precursors, whereas the second axis tended to oppose lymphocytes to granulocytes. 

Note that the DCF + versus DCF- were also distinguished along the first axis for both 

lymphocytes and granulocytes, indicating that an increase in DCF+ cells might be correlated 

with a decrease in DCF-. The PCA also indicated a negative correlation between body 

condition and the frequencies of monocytes and precursors, although no significant linear 

relationship was found between these variables (p-values > 0.05). Finally, superimposing the 

treatment for each individual and the projection of the barycenters, only a slight trend along 

the first axis was observed, indicating a lower body condition but higher frequencies of 

monocytes and precursors in fish fed with small pellets (Figure 31). Note that the sex had no 

effect on the leucocytes frequencies as the projection of the barycenters coincided with the 

origin of the PCA and individual points were distributed over the entire projection space for 

both sexes (Figure 32).  

 

 

 

 Figure 31: Biplot of the PCA built using body condition, leucocytes (lymphocytes, granulocytes, monocytes and precursors) 

and the delay between sampling dates as explanatory variables. Ellipses correspond to 95% confidence level for each 

treatment. The large circles represent the barycenter of the individuals for a given treatment. 
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All these results suggested a slight (but relatively low) impact of the feeding treatment on 

leucocytes proportions. Inter-treatment differences between lymphocytes frequencies might 

result from either different cell maturity levels or different populations of lymphocytes (e.g. 

lymphocytes T or B). The identification of the lymphocyte populations was not possible 

because the specific antibodies of sardine lymphocytes are unknown. These populations are 

involved in the specific immunity while monocytes and neutrophils (i.e. granulocytes DCF+) 

are non-specific phagocytic cells implied in defense against infections and bacteria similarly 

to eosinophils (granulocytes DCF-), which are also implied in the inflammation process (Davis 

et al., 2008; Nakanishi et al., 2018). Finally, the relatively low impact of the feeding 

treatment might result from the fact that leucocyte frequencies found here reflect the basal 

level of the immune defense of sardines. Indeed, the fact that sardines were reared in 

controlled environment with tanks supplied with water pumped from the sea but treated 

using UV-filters ensured the absence of pathogens. The absence of a relationship between 

the body condition and a potential immunosuppression may result from the fact that the 

lowest body condition found here remained relatively too high to impact the immune 

defense (mean ± SD: 0.98 ± 0.10 for sardines fed on small pellets all along). To go one step 

further, it could be interesting to investigate how these feeding treatments may impact the 

immune defense of sardines coping with pathogen challenge.  

Figure 32: Biplot of the PCA built using body condition, leucocytes (lymphocytes, granulocytes, monocytes and precursors) 

and the delay as explanatory variables. Ellipses correspond to 95% confidence level for sex (femelle in red and male in 

blue). The large circles represent the barycenter of the individuals for a given sex. 
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3.4. Does stress vary according to feeding condition? 

Cortisol concentration was twice higher for sardines fed on large pellets all along (median: 

47.7 pg/mg) than sardines fed on small pellets all along (median: 19.4 pg/mg), although the 

cortisol concentration in scale did not differ significantly between treatments (p-value > 

0.07, Figure 33). Surprisingly, the cortisol concentration in sardines fed on small pellets was 

lower whereas their body condition reached the lowest values (mean body condition ± SD: 

0.93 ± 0.17). Similarly to results found on immunity, the absence of significant effect on the 

cortisol concentration by feeding treatments (especially treatment (1)) may be explained by 

a relatively too high body condition index to induce a chronic stress associated with caloric 

restriction.  

 

 

 

 

 

When fish cope with acute stress, cortisol is known to be negatively correlated with growth 

rates (McCormick et al. 1998, see review of Mommsen et al. 1999). However, low or 

intermediate cortisol levels have positive effects on the metabolic rate of individuals 

(Costantini et al., 2011) and may favor growth. Here, the generalized linear model analysis 

revealed a significant positive relationship between growth and cortisol levels (p-value < 

0.05, Figure 34), supporting the fact that these cortisol concentrations may be too low to 

generate significant stress conditions for sardines and conversely, that they favor the growth 

Figure 33: Boxplot of the cortisol concentration in scale for each feeding treatment (red: pellet size of 0.1 mm all along; 

yellow: 0.1 mm then 1.2 mm; green: 1.2 mm then 0.1 mm and blue: only 1.2 mm). The number of observations was 

indicated by n. 
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of individuals fed on large pellets. Yet, the model explained only 7.4% of the variance and 

those conclusions should be taken with much care (Figure 34).  

 

 

 

 

To sum up the Chapter 3, the take-home messages are: 

· Sardines displayed plasticity in their mitochondrial activity after a few months of 

different food treatments. Nevertheless, despite the development of bioenergetics 

compensatory mechanisms to counteract food restriction (higher mitochondrial 

efficiency and higher mitochondrial content), these adaptations may not be sufficient 

to compensate high energy requirements of filtration. 

· Reproduction was strongly impacted by the food size with a significant higher 

number of reproduction events for sardines fed on large pellets in both years of the 

experiment. While this seems in contradiction with previous results in the wild, it as 

to be noted that the range of sardine body condition was different in the experiment. 

Although this would need further investigation, this might result from non-linear 

relationships between reproduction and individual reserves. Conversely, sardines fed 

on small pellets produced larger eggs with higher energy reserves, which might 

increase the potential survival of the larvae. Nevertheless, these results need to be 

Figure 34: Plot of the cortisol concentration according to individual growth for each feeding treatment (red: pellet size of 

0.1 mm throughout the experiment; yellow: 0.1 mm then 1.2 mm; green: 1.2 mm then 0.1 mm and blue: only 1.2 mm). The 

fit and standard errors of the gamma generalized linear model fitted on data are presented by solid black and dotted grey 

lines, respectively. 
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taken with caution due to the low amount of data (especially for sardine fed on small 

pellets) and also due to the scarce knowledge on the sardine reproduction. 

· Both immunity and cortisol seemed to be not impacted by the feeding treatments 

and the levels found in this chapter could reflect basal levels in sardines. The absence 

of significant effect may be explained by a relatively high body condition and thus the 

absence of significant challenge to cope with.  
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Chapter 4: Can sardine starve to death? 
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1. Introduction 

Survival is one of the main vital rates driving population dynamics, but it is difficult to assess. 

That is, this either requires longitudinal monitoring of individuals by capture, mark and 

recapture, or the ability to find dead individuals if there are extreme events such as massive 

die-offs (Begon et al., 1996). In the particular case of aquatic ecosystems, dead fishes are 

very rarely found, either sinking to the bottom or being consumed by other animals (but see 

Griffiths & Kirkwood, 1995). As a consequence, estimation of natural mortality in fishes is 

often limited to predation mortality and modelled either as a constant or as a function of 

size (to account both for predation pressure and ageing; Gislason, Daan, Rice, & Pope, 2010). 

Yet, as in any other species mortality must have multiple sources, such as epidemics or 

starvation. Understanding fluctuations in natural mortality is of course essential when trying 

to model population dynamics but is also extremely important for management of exploited 

species, which is based on stock assessment models that compare fishing mortality (F) to 

natural mortality (M) (Haddon, 2010; Hilborn and Walters, 1992). A recent study on cod 

found, for instance, that up to 40% differences in spawning stock biomass (SSB), F and 

recruitment (R) emerged when comparing stock assessments with a constant M versus a 

variable M linked to body condition (Casini et al., 2016). This question is crucial in fisheries 

science, as past studies have showed that natural mortality can significantly vary according 

to size and growth (Gislason et al., 2010), density dependent processes (Fromentin et al., 

2001) or changes in environmental factors (Pershing et al., 2015). Furthermore, the difficulty 

of observing the vast and remote underwater realm often precludes assessment of whether 

massive die-offs occur and, if so, what their main drivers might be. There are a few 

exceptions, such as when dead fishes wash up along shorelines, enabling researchers to 

investigate the cause of deaths (e.g. discover the occurrence of pathogens; Whittington, 

Crockford, Jordan, & Jones, 2008).   

According to life-history strategy, life-history traits (such as survival) result from the trade-

off in energy allocation between growth, maintenance and reproduction (Stearns, 1976; 

Williams, 1966a). Species have evolved life-history strategies to maximise their population 

growth and stability across time (Stearns, 1992), but these may not always be optimal, 

especially if there are sudden unexpected environmental changes. While massive die-offs 

often occur in response to an abrupt change and extreme conditions (see for instance the 
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recent effect of the so-called ‘blob’ heat waves on seabird mortality in the Pacific; Jones et 

al., 2018), less extreme conditions may modify the energy balance of individuals, due to an 

increase in energy demands and expenditure (e.g. an increase in temperature and 

metabolism, maturation of gonads, etc.) or to a decrease in energy resources (e.g. change in 

prey availability). In both cases energy allocation could be modified, affecting the main vital 

rates and potentially threatening survival. In marine fishes, we are aware of only one study 

that has attempted to relate mortality events to starvation (Dutil and Lambert, 2011). Death 

from starvation might, however, remain largely unnoticed and overlooked in the marine 

environment. In the present context of accelerating global change, marine systems are 

under profound pressure from multiple stressors (temperature, ocean chemistry, 

connectivity, etc.; Harley et al., 2006), leading to changes in population abundance, 

distribution and phenology, and ultimately to alterations in community structure and 

diversity (Doney et al., 2012; Pershing et al., 2015). Ocean productivity has been shown to be 

reduced by climate change (Hoegh-Guldberg and Bruno, 2010). This can affect primary 

productivity with effects on plankton (Hays et al., 2005) that might propagate through the 

ecosystem, generating food-limited resources at various trophic levels. It is, therefore, 

important to investigate the impact of reduced food resources on fishes. 

When facing a new selection pressure, such as a change in their environment, animals can 

either move towards a more favourable area, adapt to the new conditions through micro-

evolution mediated by genetic changes and natural selection, or adapt their phenotypic 

reaction norm to their new environment (Davis et al., 2005). Phenotypic plasticity is where a 

single genotype expresses different phenotypes depending upon the environment (Gienapp 

et al., 2008; Nussey et al., 2007; Visser, 2008). Such plasticity can either be fixed by exposure 

to particular environmental conditions during development or can be reset cyclically, for 

example labile traits linked to spawning periods (Nussey et al., 2007). Phenotypic plasticity in 

maturation or growth has also been documented as a response of marine fish to exploitation 

(Jørgensen et al., 2007). While it is unlikely that adaptive phenotypic plasticity could 

compensate for extreme climatic events and prevent massive die-offs (see Pershing et al., 

2015), it may play an important role in compensating slower or more predictable changes 

(Levins, 1968).  This latter would include regime shifts in food resources, where plasticity in 

the short term would provide the potential for species to adapt in the medium to long term.  
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Here, taking sardines as a case study, we use a combination of lab experiments and in situ 

data to investigate the significance of death by starvation, and whether fish species can 

adapt to low food resources in order to decrease the risk of mortality. Sardines are small 

pelagic fish with a worldwide distribution that are known for the profound fluctuations in 

their populations and their importance as fishery resources (Pikitch et al., 2012). Alternation 

of boom and bust periods, with major changes in abundance, has been observed in various 

different upwelling ecosystems (in particular the Eastern-Boundary Upwelling Systems). This 

is thought to be firstly the result of high and low recruitment rates due to variation in 

environmental conditions (Checkley et al., 2009; Field et al., 2009; Gushing and Dickson, 

1977; Schwartzlose et al., 1999), but overfishing can modify the dynamics and accelerate the 

decline of those populations and generate their collapse (Essington et al., 2015; Lindegren et 

al., 2013; Toresen and Ostvedt, 2000). Sardines are interesting because they exhibit a 

marked flexibility in feeding behaviour, which is often a prerequisite for phenotypic 

plasticity, by being able to filter-feed when prey are small but abundant and particulate-feed 

when prey are larger (Garrido et al., 2007, 2008).  

In the North-Western Mediterranean Sea, sardines have historically been a very important 

fishery.  Over the last decade, however, sardine biomass has decreased due to a sharp 

decline in individual size and weight, while abundance has increased and recruitment is high 

(see Saraux et al., 2019; Van Beveren et al., 2014 for more details). The decrease in size is 

mainly related to higher natural mortality of older individuals, but this cannot be accounted 

for by overfishing, predation pressure or pathogens (Queiros et al., 2018; Van Beveren et al., 

2016b, 2016a, 2017). Therefore, a bottom-up control of the sardine population, linked to a 

shift in diet, has been proposed as a mechanism underlying lower growth and body 

condition (Brosset et al., 2016a; Saraux et al., 2019), possibly coupled with a change in 

energy allocation towards reproduction (Brosset et al., 2016b). Nevertheless, whether 

sardines might die from low body condition and starvation remains an open question.  

To better understand the link between sardine energy reserves and mortality, we performed 

a fasting experiment on wild sardines maintained in captivity. This enabled us to estimate 

mortality probabilities and sardine physiological states at different body conditions. As for 

birds and mammals, fish usually undergo 3 different phases of fasting (Bar, 2014) where: 

phase I is usually characterized by a rapid decrease in body mass, the use of glycogen 

reserves and the progressive use of lipids; phase II involves a relatively extended period 
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where body mass loss is relatively low and constant, and lipid reserves are the main energy 

source, and phase III is when reserves are exhausted so the main energy substrate is 

proteins and rates of body mass loss increase again (Bar, 2014; Cherel et al., 1987, 1991; 

Cherel and Le Maho, 1985; Le Maho et al., 1981). Using specific body mass loss, namely the 

rate at which body mass decreases � �T �T
�� �, as well as respiratory metabolism as indices, we 

investigated when sardines entered the critical phase III of fasting, to relate this to their 

body condition. Further, in order to estimate whether phenotypic plasticity played a role in 

affecting the relationship of body condition to mortality, we used sardines that had been 

maintained on four different feeding treatments for seven months, one mimicking 

conditions in the wild before 2008, one mimicking the current period after 2008, and two 

intermediate conditions (see below for more details). 

 

2. Methods 

All procedures were in accordance with the French and the EU legislation regarding animal 

experimentation (APAFIS, Permissions No 7097-2016093008412692 and N° 10622-

2017071711101242). 

2.1. Sardine capture and acclimation 

Sardines were captured in October 2016 by a dedicated commercial purse seiner off 

Frontignan (Hérault, South of France) and transported to the IFREMER research station at 

Palavas-les-Flots. They were held in quarantine tanks until confirmation of an absence of 

pathogens, notably nodavirus. During quarantine the sardines were weaned from live food 

(Artemia nauplii) onto commercial aquaculture pellets, as described by Queiros et al. (2019).  

2.2. Experimental design 

449 sardines were distributed into 8 experimental 300L tanks, so that both the mean and 

coefficient of variance in length and weight were similar between tanks. Upon transfer, 

sardines were individually marked, under anaesthesia (benzocaine at 140 ppm), using a tiny 

RFID (Radio Frequency Identification) tag (Biolog-id, Bernay, France, 0.03g, i.e. <0.2% of 

sardine lowest body mass) implanted in the dorsal muscle with a specific injector. This 

procedure caused less than 1% mortality and did not affect their swimming behaviour. After 
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10 days of acclimation to the new tanks, a 7-month experiment started, with details 

reported in (Queiros et al., 2019). Briefly, four feeding treatments were applied, comprising 

two different sizes of pellets (0.1mm and 1.2mm) at to two different quantities (0.3% and 

0.6% of the biomass), with 2 tanks per treatment.  That is, i) treatment LP-LQ: large particles 

in large quantities, ii) LP-SQ: large particles in small quantities, iii) SP-LQ: small particles in 

large quantities and iv) SP-SQ: small particles in small quantities. All other variables (e.g. 

water quality, temperature, photoperiod) were the same among tanks. Sardines were 

individually measured (length and weight) once a month and their tissues sampled on two 

occasions (at mid-experiment and at the end). This enabled us to assess the effect of food 

size and quantity on sardine growth, condition and physiological state (see Queiros et al., 

2019 and Chapter 3). For these variables, we found that sardines from the LP-SQ and SP-LQ 

treatments exhibited very similar results (Queiros et al., 2019).  

At the end of this experiment (June 15th, 2017), sardines were sampled randomly from the 

four feeding treatments and assigned to 8 smaller tanks (50L), to start the fasting 

respirometry experiment. About 150g of sardines were placed per tank but, because of 

differences in mean body mass of sardines from the four treatments, the number of 

individuals varied from 8 to 16 among tanks. Sardines were left to acclimate for 12 days in 

these new tanks before the experiment started.  

One day prior to the experiment, sardines were measured again (length and weight) and 

body condition estimated as the Le Cren index (see Brosset et al., 2015). Body condition of 

sardines varied depending on their initial feeding treatment (Figure S10). Sardines fed LP-LQ 

had higher initial body condition than those fed LP-SQ or SP-LQ (Bonferroni-adjusted 

Wilcoxon tests, P< 0.001), these latter two did not differ (P=0.87). These three treatments all 

exhibited significantly higher body condition than sardines fed SP-SQ (P< 0.001). Therefore, 

we only consider three initial treatments in this experiment: (i) good initial feeding condition 

(sardines fed on LP-LQ), (ii) intermediate initial feeding condition (sardines fed on SP-LQ and 

LP-SQ) and (iii) poor initial feeding condition (sardines fed on SP-SQ). Unfortunately, due to a 

problem in the air system in two tanks, sardines died during one night (1 tank from the LP-

LQ and 1 tank from the LP-SQ), the experiment was finally run in 6 tanks (see  table 1).  

Tanks were supplied with water pumped directly from the sea and filtered through sand 

(30–40 µm). The photoperiod was adjusted each week to follow the prevailing natural cycle 

and sea water temperature was not controlled, except to not exceed 25°C. 
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Biometries were performed once a week with all sardines measured individually (tag read, 

length and body mass recorded) under anaesthesia (benzocaine at 140 ppm). Body mass and 

total length were assumed to change linearly in between two biometries such that, when 

needed, daily values were estimated through interpolation. Tanks were checked at least 

three times a day for mortality and dead or moribund fish (on the flank, no attempt to 

escape) were removed on these occasions and immediately measured and weighed. At each 

biometry, the number and biomass of fish per tank were checked. Whenever the number of 

fish decreased below 5 in one of the tanks, fish of this tank were transferred to the other 

tank of the same treatment. 

2.3. Respirometry 

The rearing tanks were custom-designed to measure metabolic rate as O2 uptake by 

automated stop-flow respirometry (Steffensen, 1989), as previously described in (McKenzie 

et al., 2007, 2012). Briefly, each tank was fitted with a central vertical PVC pipe that was 

perforated around the base.  It housed a submersible pump that drew in water from the 

perforations and delivered it out through a flexible tube fixed to the outer wall of the tank, 

so constantly mixing the tank water. For 45 min of every hour, fresh aerated water was 

pumped from a large biofiltered reservoir (Vol. approx. 100 l) into the central PVC pipe of 

each tank, to maintain dissolved O2 levels close to air saturation in the water holding the 

sardines; the water returned to the reservoir through a standpipe overflow.  The pump in 

the reservoir was controlled by an electrical timer, and was turned off for 15 min of each 

hour, at which point the water level settled at the overflow to provide a constant volume, 

but the water continued to be mixed by the pump in the central pipe.  Each tank was fitted 

with an O2 optode (Pre-Sens sturdy dipping probe, www.presen.de) attached to an O2 meter 

(Pre-Sens OXY-10 mini), which used the manufacturers software to record the linear declines 

in O2 saturation in each tank, due to consumption by the sardines. Water O2 saturation 

never fell below 70% during the 15 min of closed cycle respirometry and was rapidly 

restored when the tanks received a flow of aerated water from the reservoir. The fact that 

this flow entered the central pipe meant that the sardines were not aware of the hourly 

cyclical changes in flow regime.   

Oxygen uptake by the fish (MO2) was then calculated on the stored files using R software 

and a custom script. The O2 saturation (in %) was transformed into O2 concentration based 
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upon established values of O2 solubility as a function of temperature and salinity. 

Temperature was monitored continuously by a probe linked to the O2 meter, salinity was 

measured once a day every morning. The slopes of decreasing oxygen concentration over 

time were estimated through a linear model using an automated R script (see Figure S11); 

the first and last minute of the measurements were removed before estimating the slopes. 

Only slopes with an R2 > 0.8 were retained, and measurements collected during fish handling 

or any intervention on the tanks were removed. The MO2 was calculated in mg kg−1 h−1, from 

the decline in water O2 concentration and considering the total volume of water and the 

total biomass of the fish (McKenzie et al., 2007; Steffensen, 1989). The hourly measures of 

MO2 were averaged to provide a measure of metabolic rate for the entire day. Standard 

metabolic rates represent metabolic costs of maintenance and were estimated as the 10%-

quantile of daily measurements per tank for days in which more than 10 measurements 

were available. The surface of the tank was open to the atmosphere but surface exchange 

was so limited between air and water that no corrections were applied (McKenzie et al., 

2007). A tank respirometer was run in parallel in the system, but without any sardines, to 

measure background oxygen consumption by the biofiltered water. This did not represent 

more than 5 % of fish MO2, therefore no corrections were applied. 

2.4. Sardines in the wild 

Body conditions of reared sardines (i.e. from the above starvation experiment) were then 

compared to body condition of wild sardines before and after the sharp decline in their body 

condition (see below). Wild sardines were sampled from scientific surveys and commercial 

fisheries in the Gulf of Lions (NW Mediterranean Sea). PELMED (PELagiques en 

MEDiterranée, doi: 10.18142/19) surveys have been conducted each July since 1993 by the R/V 

“L’Europe”, to assess small pelagic biomass in the Gulf with a combination of acoustics and 

trawls. A random sample of sardines in each trawl was collected and the morphometric 

variables of size (to the nearest mm) and body mass (to the nearest 0.1g), as well as maturity 

stage (by visual assessment according to ICES, 2008), were determined for each fish. 

Maturity stages were described on a scale from 1 to 6, with increasing development of 

gonads in stages 2 to 4, spawning period during stage 5 and post-spawning period during 

stage 6 and a resting period during stage 1. During other months, samples were collected 

from commercial fisheries and brought back to the lab for analyses. Samples consisted of 
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one crate of fish taken randomly from a pelagic trawl or a purse seine net before any sorting 

had occurred. Once in the lab, the same variables were measured as described for the 

scientific survey. Data for sardines therefore spans from 1971 to 1978 and 1993 to 2018.  

Body condition was estimated for all sardines with the Le Cren index (see above). According 

to previous studies, sardine body condition decreased profoundly in 2008, to remain low 

since then (Brosset et al., 2015b; Saraux et al., 2019; Van Beveren et al., 2014). As a 

consequence, data were categorised into two periods: i) the past, being all data collected 

before 2008, i.e. 6764 sardines, and ii) the present, being all data collected since 2008, i.e. 

14,668 sardines.  

2.5. Statistical analyses 

All statistical analyses were performed with R v.3.5.0 (R Core Team, 2018). Values are given 

in the text as mean ± SD, and statistical tests were considered significant at p < 0.05. When 

data were not independent from each other due to repetitions within individuals (e.g. body 

condition over time), a mixed model was used (either linear mixed model or generalized 

linear mixed model depending on the distribution of the data) with the individual effect set 

as a random intercept. Number of observations (n) and number of individuals (N) are then 

reported. Model selection was done according to Akaike’s information Criterion (AIC), and 

when a difference in AIC was smaller than 2, the most parsimonious model was retained 

(Burnham and Anderson, 1998). When investigating binary variables, such as survival, a 

binomial distribution was used. Treatments or maturity stages were compared using 

Wilcoxon tests, as normality was violated. When multiple testing was performed 

(comparison between treatments, etc.), a Bonferroni correction was used (Legendre and 

Legendre, 2012). Finally, whenever appropriate, breakpoints in the data were identified 

using the “segmented” package in R (Muggeo, 2019). 

 

3. Results 

3.1. Body condition 

The number of fasting days, the treatment and their interaction were all retained in the best 

model (as selected by AIC, LMM, n = 2090, N = 78) to explain body condition, suggesting that 

the decrease in body condition throughout the fasting period varied between treatment 
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(Figure 35). The rate of decrease in body condition was higher in sardines in good initial 

feeding condition (-0.008 ± 0.000 per day) than in sardines in intermediate or poor condition 

(-0.006 ± 0.000 per day for both cases).  

 

 

3.2. Survival to fasting 

During the experiment, sardines died between day 1 and day 57 (Figure S12). The cumulative 

death rate shows that a quarter of the sardines died after 2 weeks and half after 3 weeks, 

but it finally reached 90% after 50 days of fasting. The first mortality event occurred at a 

body condition of 0.84 for sardines in good initial feeding condition and slightly later for 

sardines in intermediate or poor initial condition (0.77; Figure S13). 

The probability to survive 1-week of fasting was affected by body condition and the 

treatment the sardine originated from (GLMM binomial, n=313, N=78, Figure 36A). That is, it 

increased with body condition, but was lower in sardines in good initial feeding condition 

than in sardines in intermediate or poor initial condition (Figure 36A). Looking at all 

individuals together, the probability to survive 1-week of fasting decreased slightly from a 

body condition of 0.9 and then very rapidly between 0.75 and 0.6 (reaching 50% at 0.65; 

Figure 36B). 

Figure 35: Mean ± SE body condition along the fasting experiment for each of the three initial feeding condition treatments. 
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The mean duration for which sardines were able to sustain fasting was higher for animals in 

good or intermediate initial condition (31.5 ± 4.3 d and 32.8 ± 2.5 d) compared to those in 

poor initial condition (16.3 ± 1.8 d). The number of days sardines survived fasting was best 

explained by their initial body condition and treatment group, but the interaction was not 

retained in the best model. The higher the initial body condition, the higher the number of 

days sardines survived (LM, effect = 142.6 ± 25.4 d, p-value < 0.001, n = 78; Figure 37). When 

the initial body condition was accounted for in the model, sardines in intermediate or poor 

initial feeding condition were able to sustain fasting for longer than sardines in good initial 

condition (LM, Intermediate – Good effect = 26.0 ± 6.2 d, p-value < 0.001, Poor – Good effect 

= 30.6 ± 9.3 d, p-value < 0.001). 

Figure 36: Probability to survive to 1-week fasting according to body condition. A) Empirical data are shown as 0 and 1 

survival points, while lines represent the probability to survive predicted by the model according to their initial feeding 

conditions. B) Mean empirical probability to survive to 1-week fasting according to bins of body condition. The lines 

represent the 95% confidence interval associated with this empirical probability (according to a Bernouilli distribution). 
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3.3. Specific body mass loss 

Specific body mass loss increased sharply between 8 and 9 days before sardines died in all 

three treatments (Figure S14). During their first period of fasting, body mass loss was fairly 

constant around 0.79 ± 0.00 % of body mass per day (Figure 38). Eight days before death, 

this rate started increasing to reach a mean body mass loss of 3.59% ± 0.36% the day before 

death (Figure 38). 

Similarly, a segmented regression model showed that specific body mass loss was relatively 

low and stable in sardines of body condition higher than 0.72 (0.84 ± 0.02 %), but increased 

sharply when body condition fell below 0.72 (Figure 39). This was similar among treatments 

(Figure S15)  

Figure 37: Number of days sardines survived fasting according to their initial body condition at the start of the fasting 

experiment. Colour indicates the feeding treatment sardines originated from and lines show the prediction from the LM for 

each of the treatment. 
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Figure 38: Mean ± SE specific body mass loss (dm/mdt) per day along time. As individuals died at different time in the 

experiment, the number of days has been estimated relative to death. The specific body mass loss is expressed as %. The 

vertical dashed line shows a rupture in the slope. 

Figure 39: Mean ± SE specific body mass loss (dm/mdt) according to bins of body condition. The specific body mass loss is 

expressed as %. 
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3.4. Respiration rates  

Focusing on the first 10 days of experiment, metabolic rates varied depending upon the 

initial feeding condition of the sardines (Figure S16). Notably, sardines in poor condition had 

a lower metabolic rate than sardines in good or intermediate condition (p-value = 0.019 for 

both, Bonferroni-corrected Wilcoxon tests). Standard metabolic rates (estimated as the daily 

10% quantile and representing mostly maintenance metabolism) did not differ among 

treatments (p-value > 0.131, Bonferroni-corrected Wilcoxon tests; Figure S16). However, the 

difference between mean daily respiration rate and daily standard respiration rate was 

significantly lower in sardines in intermediate or poor initial feeding condition than in those 

in good initial condition (p-value = 0.003 and p-value < 0.001 respectively, Bonferroni-

corrected Wilcoxon tests; Figure S16). 

Metabolic rate increased strongly when sardine mean body condition decreased below 0.64 

± 0.01 in a tank (according to segmented linear regressions), while it was constant above this 

body condition (259.8 ± 41.6 mg O2.h-1.kg-1; Figure 40). Interestingly, the breakpoint was 

similar in sardines in intermediate or poor initial condition (0.63 ± 0.02 and 0.65 ± 0.01 

respectively) but was much higher in sardines in good initial condition (0.79 ± 0.04).  
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Figure 40: Mean daily metabolic rate (expressed in mg O2.h
-1

.kg
-1

) of sardines in a given tank as a function of mean body 

condition of sardines in that tank that day. Colour indicates the treatment sardines originated from. The segmented 

regressions are indicated by the black line and the 95% confidence intervals with dashed lines. The breakpoint along with 

its 95% CI is also indicated at the bottom of the figure in black. Breakpoints and their 95% CI estimated for each treatment 

are indicated at the bottom of the figure in colour. 
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3.5. Body condition in the wild 

Sardine body condition in the wild was significantly higher in the past (i.e. before 2008) than 

in the present (1.12 ± 0.00 vs. 0.98 ± 0.00, Wilcoxon test, p-value < 0.001, n = 6764/14668 

respectively, Figure S17). Further, body condition varied among months, peaking in 

spring/summer (as well as in early autumn for the past period only) and reaching its lowest 

level in December, January and February for both periods (Figure S17). Finally, body 

condition decreased with maturity stages in both periods (Figure S18, Bonferroni-corrected 

Wilcoxon tests). While it decreased almost linearly with maturity stages in the present, the 

contrast appears mainly to be between maturity stages 5 and 6 (i.e. during or post-

spawning) and among the first four maturity stages in the past (despite no significant 

differences in some cases due to very low sample size in some maturity stages). 

When comparing against the critical body condition defined in our experiments, only 0.1% of 

the sardines sampled before 2008 were below the 0.65 threshold that appeared critical for 

1-week survival, and only 0.2% of the sardines sampled since 2008. The occurrence of 

sardines below the second body condition threshold (i.e. 0.72 which corresponds to the 

entry into phase 3 fasting according to body mass loss, Figure 39) also appeared rather low, 

although it almost doubled when comparing the present to the past (2.3% vs. 1.2%; Figure 

41). The occurrences were not, however, evenly distributed among months, being  more 

probable during winter, especially in the present period, where they reached 6 and 9 % of 

the population in January and February, respectively (Figure 41).  
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4. Discussion 

Although there has been quite significant research focus on starvation as a cause of 

mortality in larval and juvenile fishes (Hurst 2007), studies on adult fishes are much rarer 

(Dutil and Lambert, 2011; Lambert and Dutil, 1997). As mortality is complicated to observe in 

marine fish populations, we used experiments in tanks to investigate the extent to which 

wild adult sardines might be at risk of death from starvation. The results revealed that 

sardines were able to survive fasting for extended periods (up to 56 days under our 

conditions) and to reach very low body condition before they risked mortality from 

starvation. It is well known that fishes can survive extended periods of food deprivation 

although the actual duration varies among species, life stage and water temperature 

Figure 41: Distribution of body condition of sardines sampled in the wild before (in blue, upper panel) or after 2008 (in red, 

lower panel) for each month of the year. Horizontal dashed lines indicate the threshold of body condition corresponding to 

an entry in phase 3 of fasting. The percentage of the population below this critical threshold of body condition each month 

is indicated at the bottom of each panel. 



 
 

111 
 

(McCue, 2010; Navarro and Gutiérrez, 1995; Wang et al., 2006). According to our study, 

survival in sardines remained high until a Le Cren’s body condition of 0.75 (i.e. 25% lower 

than the global average from measurements on wild populations). When fish condition 

decreased below this, survival dropped rapidly, to only 50% at a body condition of 0.65.  

The experimental approach was able to reveal when the sardines started relying on protein 

as the main fuel for metabolism. That is, specific body mass loss and mass-specific metabolic 

rates increased markedly below a certain body condition, enabling us to define a critical 

body condition that indicated when sardines entered into phase III of fasting. Despite clear 

thresholds for mean population responses (see for instance Figure 39), there was significant 

variation among individuals, especially when they were at very low condition. Such inter-

individual differences might reveal the importance of individual quality in sardine 

physiological responses to starvation and survival, despite individual quality being still a 

debated concept and terminology (Bergeron et al., 2011; Wilson and Nussey, 2010). 

Individuals within fish species are known to exhibit wide variation in their tolerance of feed 

deprivation, and this can have both a physiological and behavioural basis (Auer et al., 2016; 

McKenzie et al., 2014; Norin and Metcalfe, 2019; O’Connor et al., 2000). Thus, further 

studies are required to elucidate the physiological or behavioural correlates of the individual 

responses to a fasting challenge in sardines. In the current study, the critical threshold for 

entry into phase III of fasting was much more accurately defined by the individual indicator 

of specific body mass loss than by the tank level indicator of group metabolic rate. That is, 

although individual fish in a given tank derived from the same initial feeding condition, their 

body condition varied at the beginning of the experiment (Table 1). Further, rates of mass 

loss and metabolism both sped up during phase III of fasting, leading to death in about 8 

days. Fish transitioned from phase II to phase III over a short period, such that a mixture of 

fish in the different fasting phases were present in a given tank at a given time, contributing 

to the group’s overall metabolic rate. Nonetheless, the tank respirometry clearly indicates 

that entry into phase III of starvation was associated with a marked increase in metabolic 

rate by the sardines.  It is not known why this occurred; it may have reflected the lower 

energetic efficiency of using proteins as a main fuel compared to lipids or a desperate 

increase in activity in search of food (the so-called refeeding signal described in birds and 

mammals; Groscolas et al., 2000; Koubi et al., 1991; Robin, Boucontet, Chillet, & Groscolas, 

1998; Spée et al., 2010), which would obviously have exacerbated the rate of mass loss. 
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When compared to in situ values observed over the years, the proportion of the population 

sampled in nature that was below the critical condition of entry in phase-3 fasting was 

minimal (≤ 2%). Moreover, almost none of the fish sampled in-situ exhibited the low body 

condition with a 50% probability of surviving a week (i.e. 0.65). Such a result is very similar to 

that obtained in Atlantic cod (Dutil and Lambert, 2011), but needs to be taken cautiously, as 

sardines of low body condition might be excluded from schools or might already have died 

for other reasons linked to a weakened physiological state. Indeed, low body condition can 

seriously impair fish swimming activity (Faria et al., 2011; Martinez, 2003). As a 

consequence, starving sardines might not be able to sustain the continuous aerobic 

swimming required to follow the school and might get isolated. Poor swimming 

performance, especially burst swimming capacity (Martinez, 2004) would render them prone 

to predation, also due to the absence of the dilution effect that is gained by being in a school 

(Lehtonen and Jaatinen, 2016; Rieucau et al., 2014). This raises the important point that our 

estimates of mortality in tanks represent a maximum potential of sardines to resist fasting 

and that it is highly likely that mortality would occur much earlier in the wild. Indeed, the 

fasted sardines were very weak during the experiment, as attested by the increase in death 

rate during and after biometries (Figure S12). Apart from handling once a week, our fish 

were subjected to less stress than in nature, with no predation, pathogens, etc.  

Nevertheless, the proportion of Gulf of Lions sardines that were below the critical condition 

of entry in phase III of fasting (i.e. 0.72) was about twice as high in the present period (2.3%), 

after the changes in population condition and age structure were observed (Saraux et al., 

2019; Van Beveren et al., 2014), than in the past (1.2%). Interestingly, when looking at the 

monthly values, the critical condition of entry in phase III occurred mostly in 

January/February (reaching 9%), which corresponds to the end of the spawning season for 

sardines and also to the coldest period. The fact that, among maturity stages, the proportion 

of body condition below the critical threshold was highest in stage 6, post-spawning, 

suggests that a depletion of reserves partly due to reproduction remains a valid hypothesis 

(Brosset et al., 2016b). While we cannot derive mortality estimates directly from this study, 

the results confirm that mortality might have increased after 2008 and be primarily in winter 

at the end of reproduction. 

Another interesting finding corresponds to the differences observed among our three 

treatments. Sardines that were in intermediate or poor feeding condition at the outset 
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displayed a much stronger resistance to fasting than fish that were in good feeding 

condition. This not only shows that extended caloric restriction promotes subsequent 

tolerance of fasting (McCue et al., 2017) but, most of all, it clearly demonstrates a plastic 

response by the fish to their environmental conditions. All the sardines were caught in the 

wild and our assignment to the different treatments ensured that they were in similar body 

condition before starting the feeding trials described in experiment (Queiros et al., 2019). 

Thus, it seems extremely unlikely that the differences in fasting tolerance among the 

treatments in the current study could derive from genetic selection or early environment 

exposure. They were more likely a plastic response at the adult stage (McCue et al., 2017). 

The fact that body condition did not drop as fast in sardines that had been maintained for an 

extended period in a state of caloric restriction presumably reflects differences in energy 

expenditure. This is borne out by the tank respirometry, at the start of the experiment (1st 

10 days), daily metabolic rates were lower in sardines in poor initial feeding condition than in 

the other two treatments (Figure S16). It is well established that fishes reduce their 

metabolic expenditure when exposed to caloric restriction or extended fasting and that the 

two main strategies are a reduction in spontaneous activity and a reduction in basal 

metabolism (Auer et al., 2016; McKenzie et al., 2014; Norin and Metcalfe, 2019).  These two 

processes are not mutually exclusive (Auer et al., 2016). While further work is required to 

establish the relative contributions of behaviour and physiology, in particular video tracking 

to quantify activity and studies of metabolism from the whole animal down to the cell and 

mitochondrion (Auer et al., 2016), the tank respirometry provides some preliminary insights. 

If we assume that the 10%-quantile rate of O2 uptake each day was an estimate of standard 

metabolic rate, this indicates that costs of maintenance were similar among treatments. 

When these daily values were, however, subtracted from daily mean metabolic rate, the 

difference was significantly higher in the fish in good initial condition, compared to the other 

two treatments.  This difference in metabolic rate, of the fasting fish, might represent in 

large part costs of spontaneous swimming activity, perhaps exploratory foraging (Auer et al., 

2016). This indicates that the fish that had been exposed to caloric restriction had developed 

an adaptive behavioural plasticity to reduce their energy expenditure. The fact that fish in 

good initial feeding condition, with no history of caloric restriction, were not able to engage 

this adaptive response indicates that such behavioural plasticity is not instantaneous. One 

potential explanation for this is that the responses to caloric conditions are under neuro-
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hormonal or endocrine control, and require some weeks or months to be expressed (Secor 

and Carey, 2016). 

 

 

To sum up the Chapter 4, the take-home messages are: 

· Sardines were highly resistant to fasting when maintained in tanks free of stressors 

such as predation or pathogens.  

· Experimental measurements of specific body mass loss and metabolic rates enabled 

us to define a critical threshold of body condition, which we could then relate to in 

situ measurements. 

· Despite probably being an underestimation, we showed that the proportion of the 

wild sardine population that was below such a critical threshold increased in the 

present and was highest in the winter post-spawning period. 

· We showed that, when previously maintained under caloric restriction, sardines 

display important behavioural plasticity that improved their ability to tolerate fasting, 

by reducing rates of body mass loss and so increasing their survival. 
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Chapter 5: Can adult overmortality follow reproduction? 

1. Introduction 

Small pelagics play a key role in marine ecosystems especially in upwelling ecosystems, 

transferring energy from lower to upper trophic levels (Cury et al., 2000; Essington et al., 

2006). Thus, they operate major controls on the entire marine food web through top-down 

control on the plankton communities, bottom-up control on their predators or wasp-waist 

control when both top-down and bottom-up controls occur simultaneously (Cury et al., 

2000). Fluctuations in populations of small pelagics can have critical ecological, economic 

and social consequences due to their huge commercial significance for fisheries (Alheit et al., 

2009; FAO, 2018; Fréon et al., 2005).  

Small pelagic fish have a worldwide distribution and are especially well studied in the large 

EBUS (Eastern Boundary Upwelling Systems) owing to their higher productivity (e.g. Barange 

et al. 2009, Bertrand et al. 2011, van der Sleen et al. 2018). Even if landings are lower 

compared to EBUS, small pelagics are also very important for fisheries in other non-

upwelling systems, such as the Mediterranean basin where small pelagics represent 38% of 

the total catch (Lacoue-Labarthe et al., 2016). The Gulf of Lions is located in the 

northwestern Mediterranean Sea and is one of the most productive areas in the 

Mediterranean Sea. Sardines (Sardina pilchardus) and anchovies (Engraulis encrasicolus) 

could represent 50% of the total annual landings in the Gulf of Lions until the 2000s 

(Demaneche et al., 2009). However, landings of small pelagics have sharply decreased since 

2008 in this area reaching their lowest values in 150 years and remaining low thereafter 

(GFCM, 2017b; Van Beveren et al., 2016a). Simultaneously, the mean weight and length as 

well as the body condition of small pelagics have dropped in the Gulf of Lions (Van Beveren 

et al., 2014). The drop in catches was thus not explained by a decrease in abundance, but by 

the absence of market for smaller and skinnier sardines (Saraux et al., 2019). The decrease in 

size resulted from the combination of a lower growth and the disappearance of the oldest 

and the largest individuals from the population, leading to a demographic truncation of the 

population which is now highly dominated by 0 to 2 years old fish (Brosset et al., 2015b; 

Saraux et al., 2019; Van Beveren et al., 2014). Surprisingly, these changes in population 

dynamics were not explained by overfishing or changes in recruitment because the 
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exploitation rate was rather low and recruitment remained high (Saraux et al., 2019). This 

unusual situation was neither explained by emigration nor top-down controls (fishing or 

natural predators) nor diseases (Queiros et al., 2018; Saraux et al., 2019; Van Beveren et al., 

2016b, 2017). The most likely hypothesis remains an environmentally-driven change of the 

plankton production (in terms of quantity and/or quality) to explain the current situation of 

sardine and (to a lesser extent) anchovy in the Gulf of Lions (Brosset et al., 2015b; Saraux et 

al., 2019; Van Beveren et al., 2014). A recent experimental study further supported this 

hypothesis showing that both food size and quantity are crucial for sardine growth and body 

condition (Queiros et al., 2019). Indeed, individuals that fed on small prey needed to eat 

twice as much to reach the same length and body condition as sardines that fed on larger 

ones (Queiros et al., 2019). Furthermore, sardines are known to be mainly capital breeders 

in the Gulf of Lions (Ganias, 2009; McBride et al., 2015), i.e. they store energy when food 

resources are high (in spring) and later use these reserves during the reproduction period 

when food resources are more limited (in winter). Brosset et al. (2016) suggested that 

sardines maintained high reproductive investments in the recent period (i.e. after 2008) 

despite their decrease in body condition and reserves. When facing low feeding conditions, 

individuals need to trade-off their energy allocation between different life-history traits. If 

investment in reproduction did not change, this implies less energy for other functions, such 

as maintenance. Because reproduction occurs in winter when food abundance is lower, it 

could be detrimental for fish if feeding conditions dropped a lot during or after the 

reproduction period as they may not have enough energy for themselves. 

In the present work, we thus aimed to examine if the persistence of reproduction at low 

body condition would lead to adult overmortality in the sardine population of the Gulf of 

Lions; a process that would explain the current demographic truncation observed in this 

population since 2008. To do so, we applied Dynamic Energy Budget (DEB) theory (Kooijman, 

2010; Nisbet et al., 2000) to model individual life-history traits and the allocation trade-offs 

between them. In particular, we examined growth and reproduction, with a focus on the 

reserves available during and after reproduction to pay maintenance costs. DEB models have 

been widely used to study small pelagics fish ecological traits (Gatti et al., 2017; Pethybridge 

et al., 2013), including reproduction (Einarsson et al., 2011; Pecquerie et al., 2009). Yet, 

reproduction data for multiple-batch spawners are scarce and require dedicated modeling 

assumptions. Here, we developed an “abj” DEB model (i.e. with acceleration during the 
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larval stage, (Kooijman, 2014; Kooijman et al., 2011) extended with a gonad compartment to 

account for the batch reproduction of small pelagics fish and including the use of GSI 

(gonadosomatic index) data in the estimation procedure. Then, we modeled a sardine 

population based on in-situ data and we followed individuals over time to investigate their 

survival according to temperature and food scenarios. Finally, we discuss the use of these 

models to investigate future environment-driven changes on growth, reproduction and 

survival of sardines.  

 

2. Material and methods 

2.1. Standard DEB model and reproduction module 

The standard Dynamic Energy Budget (DEB) model (Kooijman, 2010; Nisbet et al., 2000) aims 

to describe the individual energy flows from the intakes to the uses as growth or 

reproduction during its life cycle as a function of temperature and food. The standard DEB 

model deals with one type of food, one type of reserve and one type of structure and also 

assumes that shape of structure does not change during growth (isomorphy). Each individual 

is described by four state variables, i.e. the structural volume V (in cm3), the reserve energy E 

(in J), the cumulative energy invested into development EH (in J) and the reproduction buffer 

ER (in J). Energy assimilated from food is stored in reserve energy before being used by the 

following processes: growth and somatic maintenance of structure, allocation of energy to 

development (in embryos, larvae and juveniles) or to the reproduction buffer (in adults) and 

maturity maintenance (Figure 42). Individual starts feeding at birth (mouth opening), 

allocates energy to maturation until it reaches puberty and then this energy is allocated to 

the reproduction. The DEB model used in this study was the ‘abj’ model with type M 

acceleration (Kooijman, 2014), i.e. we assumed growth acceleration between birth and 

metamorphosis. In the present work, we added a new compartment to take into account 

that sardines are multiple-batch spawners and that most of the reproduction data available 

are gonadosomatic index data. Thus, we added a gonad compartment (EGo in J) as a new 

state variable (Figure 42) and the energy flux from the reproduction buffer to the gonad is 

function of the season and the size of the individual, as larger females release larger batches 

of oocytes (see Supplementary Information – Appendix A). Equations of the DEB model used 

in this study are given in Table 2. 
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Fluxes / State variables Formula 

Assimilation ��� = ��������A�� 

Mobilization �� � = � [��]���
A�� o ���

�� o [��]�  

Somatic maintenance ��� = [���]� 

Growth ��� = ��� � ~ ��� 

Maturity maintenance �� � = �� ��� 

Maturity/Reproduction ��� = j| ~ �m�� � ~ �� � 
Allocation to gonads ���� = [����]� 

Reserve energy 
d�
dt = ��� ~ ���  

Structural volume 
d�
dt =

���
[��] 

Maturity energy 
d��
dt = ��� j�� � ���m 

Reproduction buffer energy 
d��
dt = ��� j�� = ���m 

Gonad compartment energy 
d���
dt = ������ 

Figure 42: Conceptual framework of the energy flows in the standard DEB model and the specific reproduction module for 

the Mediterranean sardine. 

Table 2: Equations of the DEB model used in this study (see Table 3 for DEB parameter values) 
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2.2. Links between state variables and observations 

Because state variables are not directly measurable in the field, the calibration and 

validation of the model requires transformation which link these state variables to 

observations.  

The physical length L (total length that we measured, in cm) was calculated using the 

structural volume V (cm3
) and the shape coefficient δ such as: 

� = &�4�)�   [6] 

Here, we assumed that shape was different before and after metamorphosis, i.e. larvae 

(δlarvae) vs. juvenile and adult stages (δ). Further, the wet weight W (g) is the sum of the 

weight of the structure (WV), the energy reserve (WE), the reproduction buffer (WR) and the 

gonads (WGo). Assuming that reserve, reproduction buffer and gonads have the same 

composition (so the same energy content), the total wet weight W (in g) and the 

gonadosomatic index GSI (in %) are calculated as follows: 

 

� =&d�� o � �¡ �¢£
¤¥   [7] 

 

GSI = 
�¢£ ¤¥¦
" &× |pp  [8] 

 

with dV the density of the structural volume (assumed to be equal to 1 g cm-3
) and ρE the 

energy content of 1 g of reserve (J g−1).  

The body condition of individuals was also calculated using the Le Cren index as estimated by 

Brosset et al. (2015): 

 

K! = "
#.##$#%&×().*+,     [9] 

 

with W the wet weight in g and L the total length in cm.  

 

All physiological rates are dependent on body temperature. For a species-specific optimal 

range of temperatures, we used the following temperature correction function (Kooijman, 

2010): 
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�jqm = �jqZ§¨m &× &©ª«'& [10] 

©ª«' = e¬� � '­'®2¯ ~
'­
' �        [11] 

 

with the absolute temperature T (in K), the chosen reference temperature Tref (here set at 

293 K, i.e. 20°C), the Arrhenius temperature parameter TA (in K), and k a given physiological 

rate at T and Tref, respectively. In the present work, we did not consider the effect of 

temperature outside of the optimal range for the Mediterranean sardine population for 

simplicity’s sake. However, these effects are fully documented in (Kooijman, 2010) and at 

the cost of four extra parameters, would be easily implementable in the model.   

2.3. Parameter estimations 

To estimate model parameters (Table 3), we used a minimization algorithm with a defined 

simulation setting. We used the AmP procedure implemented in the Matlab routines of the 

DEBtool software (Marques et al., 2018). This method aims to minimize the weighted sum of 

squares deviation between model predictions and observations (Marques et al., 2019). We 

thus compared model predictions to the following observations from both experiment and 

in-situ data: ages, length at age, weight at age, gonadosomatic index across time, length 

across time, weight across time and weight-length relationships (Table 4).  

2.4. Specific handling rules to pay maintenance costs 

To cover maintenance costs during food limitations (e.g. during winter), we used handling 

rules for which the modification of energy flows were detailed in Figure 43. First, if somatic 

maintenance costs could not be paid by energy flow from reserve, they were paid from the 

reproduction buffer and as soon as this buffer was empty, structure was used to pay 

maintenance costs (similarly to phase III presented in Chapter 4). The re-assimilation of the 

vitellogenic oocytes in the gonads (i.e. atresia) is an usual phenomenon observed in sardine. 

The occurrence and intensity of atresia mostly occur during the regression phase of gonads 

(Brosset et al., 2016b), so that, we hypothesized that only energy from the reproduction 

buffer could be used to cope with extra maintenance costs. The maturity maintenance costs 

being small relatively to the somatic maintenance costs, we also assumed that they were 
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always covered. More complex assumptions could be implemented in the model, but this 

would require a dedicated study to explore the different physiological mechanisms that 

sardine may implement to cope with food limitations (e.g. in Chapter 4) and an extensive 

sensitivity analysis which was outside the scope of the present work.  

 

 

 

 

Symbol Value Units Definition Reference 

Tref 293 K Reference temperature  

TA 8000 K Arrhenius temperature 

Lika et al., 2011 

κX 0.8 - Digestion efficiency of food to reserve 

κP 0.1 - Faecation efficiency of food to faeces 

κR 0.95 - Reproduction efficiency 

°� J 0.002 d-1 Maturity maintenance rate coefficient 

sG 0.0001 - Gompertz stress coefficient 

{<� Am} 53.8 J cm-2 d-1 Maximum assimilation rate 

Calibration 

²�  0.068 cm d-1 Energy conductance 

κ 0.88 - Allocation fraction to soma 

[<�M] 58.61 J d-1 cm-3 Volume-specific somatic maintenance 

[EG] 5035 J cm-3 specific cost for structure 

ha 6.17x10-9 d-2 Weibull aging acceleration 

δ 0.196 - Shape coefficient after metamorphosis 

δlarvae 0.104 - Shape coefficient for larvae 

EH
H 0.033 J Maturity at hatch 

EH
Q 0.12 J Maturity at birth 

EH
J  12.86 J Maturity at metamorphosis 

EH
P  8611 J Maturity at puberty 

f_estim 0.80 - In-situ scale functional response 

[<� Go] 2.69 J d-1 cm-3 Volume-specific allocation rate to gonads 

 

 

!

!

 

 

Table 3: Parameter values of the sardine DEB model. Rates are given at the reference temperature T1 = 286 K (= 13◦C). 
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Data Value Units Reference Relative error 

Age at hatch at 13.5°C 3 d pers. comm. 0.028 

Age at hatch at 12.6°C  3.4 d pers. comm. 0.005 

Age at birth at 13.5°C 9.5 d pers. comm. 0.218 

Age at metamorphosis at 16.5°C 45 d (Iglesias and Fuentes, 2014) 0.044 

Age at puberty at 17°C 365 d (Brosset et al., 2016b) 0.067 

Life span at 17°C 2920 d Ifremer database 0.023 

Yolk diameter 0.10 cm pers. comm. 0.015 

Length at hatch 0.36 cm pers. comm. 0.038 

Length at birth 0.54 cm pers. comm. 0.253 

Length at metamorphosis 1.7 cm (Garrido et al., 2016) 0.105 

Length at puberty 9.6 cm (Brosset et al., 2016b) 0.226 

Ultimate total length 20 cm Ifremer database 0.158 

Egg dry weight 0.039 mg pers. comm. 0.126 

Weight at birth 0.25 mg (Ré and Meneses, 2008) 0.347 

Weight at puberty 6.1 g Ifremer database 0.083 

Ultimate wet weight 57.6 g Ifremer database 0.244 

GSI at several food levels [1.4 ; 4.9] % pers. comm. [0.086 ; 0.293] 

In-situ total length over time Figure 3A Ifremer database 0.073 

In-situ wet weight over time Figure 3B Ifremer database 0.259 

Weight-length relationship fraction to soma Figure 3C Ifremer database 0.239 

GSI over time for two fish lengths Figure 3D Ifremer database [0.432 ; 0.454] 

Total length over time at several food levels Figure 4A pers. comm. [0.020 ; 0.435] 

Wet weight over time at several food levels Figure 4B pers. comm. [0.005 ; 0.175] 

Weight-length relationship at several food level Figure 4C pers. comm. [0.124 ; 0.164] 

Total length of larvae over time Figure 4E pers. comm. 0.494 

 

 

 

 

Table 4: Observations and relative errors between model predictions and observations. The reference pers. comm. refers to 

experimental data obtained during my thesis. 
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Figure 43: Framework of the specific handling rules to pay maintenance costs 
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2.5. Simulation 

The objective of this simulation was to investigate the hypothesis of the adult sardine 

overmortality after reproduction. To this end, we used our sardine DEB model with the 

specific handling rules to pay maintenance costs applied on a simulated sardine population, 

each individual facing temperature and scaled functional response derived from the wild. To 

do so, we had to define the environmental conditions (here food and temperature) that 

would be used for the simulations as well as to specify the initial conditions for the DEB 

model. 

2.5.1. Forcing variables: temperature and food density 

The monthly temperature cycle was obtained from the outputs of the 3D hydrodynamical 

model SYMPHONIE applied to the French continental shelf of the Gulf of Lions (0–200 m 

isobaths) between 2008 and 2017 (see Marsaleix et al. 2008). The position of sardine in the 

water column can be managed at a hourly scale with this model but opposing results have 

been found according to the study area (Giannoulaki et al., 1999; Zwolinski et al., 2007). 

Thus, for simplicity’s sake, we assumed that sardines experienced the monthly median 

temperature of the Gulf of Lions and temperature was integrated on the full height of the 

water column.  

The plankton cycle was derived from the outputs of the coupled 3D hydrodynamical model 

SYMPHONIE and the biogeochemical Eco3M-S model (Kessouri et al., 2017) applied to the 

Gulf of Lions (0-200 isobaths) between 2008 and 2013. We used monthly mean plankton 

concentrations to build plankton time series. Sardine prey size had a bimodal distribution, 

between 100 and 600 μm and between 700 and 1400 μm (Le Bourg et al., 2015). But prey 

smaller than 200 μm may also represent a significant part of their diet (Nikolioudakis et al., 

2012). Thus, we summed micro and mesoplantkon (both phyto and zoo) concentrations to 

build food density time series. Then, to obtain a scaled functional response (= ingested food 

as a function of food density) of type II (with saturation), we used the equation f = X/(X + XK) 

with X the plankton concentration (in mg of C) and XK the half-saturation coefficient (in mg 

of C). The half-saturation coefficient was estimated using the constraint that the in-situ 

scaled functional response found during parameter estimation (f_estim) was equal to the 

mean of the time series of f_insitu (=X / (X + XK)).  
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For both temperature and food density, we fitted Fourier series on the mean values of each 

month to obtain continuous function for the integration of the differential equations and we 

converted food density in scale functional response time series (Figure S19). 

2.5.2. Initial conditions for the sardine population 

The starting point of the simulations was defined on March 1st, which corresponds to the 

end of the spawning season. The simulated sardine population was composed of 10,000 

individuals and for each individual, we defined values for each of the five state variables: V, 

E, EH, ER, EGo.  

First, we derived length and body condition of the 10,000 individuals from data provided by 

commercial pelagic trawlers on March between 2008 and 2019 (this preliminary population 

did not take into account the demographic truncation of the population observed in the wild 

– lots of large individual –  and needed to be refined in further study). After 2008, the length 

at first maturity was 9.6 cm (Brosset et al., 2016b). As we focused on an adult population 

and individuals smaller than 9.6 cm represented only 2.3 % of our samples, these individuals 

were removed from the data. Thus, we assumed that all individuals reached maturity on 

March 1st and EH was set to EH
³ . On March 1st, we assumed that the reproduction buffer ER 

and the gonads EGo were empty (=0) (see Supplementary Information – Appendix A).  

The length and body condition index of in-situ sardines were approximated as normal 

distributions (Figure S20). The length and body condition index of each simulated individual 

were then drawn using the multivariate normal distribution approach, which takes into 

account the variability of each distribution and their correlations (mvnorm function 

(Venables and Ripley, 2002)).  

Structural volume was estimated using equation [6] and the individual weight was also 

estimated using equation [9]. Then, a quantile regression analysis of weight-length 

relationship of in-situ sardine parameters led to two fitted equations on the 2.5 (Wmin) and 

97.5 quantiles (Wmax, Figure S21). Finally, for a given length, energy reserve (in J) of each 

individual could be estimated using the two previous equations as follows: 

 

� = j"J"´µ¶m
j"´0·J"´µ¶m × [��] × &�  [12] 
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with [Em] the maximal reserve density (in J. cm-3) and equaled to {<� Am}/²�  

2.5.3. Could we explain overmortality of adult sardines after 

reproduction period? 

In Chapter 4, we found that the survival probability sharply decreased when body condition 

index became lower than 0.75. Here, we stopped the runs of the simulation for each 

individual when its body condition index decreased below this threshold. Thus, probabilities 

to survive after 1 month and 1 year after the reproduction period were assessed for each 

length class (i.e. 0.5-cm classes).  

 

3. Results 

3.1. Goodness-of-fit between data and model predictions  

The level of completeness of data was equal to 5 on a maximum of 10 (estimation detailed in 

Lika et al. 2011), which was a relatively good completeness level. The mean relative error 

(MRE) between model predictions and observations was equal to 17.5% and ranged 

between 0.5% and 49.4% (Table 4). Relative errors for predicted ages were lower than 5% 

for all ages (except for age at birth) whereas larval growth and seasonal GSI presented the 

highest relative errors with values higher than 40% (Figures 44 and 45, Table 4). Growth in 

length and weight and length-weight relationships showed similar intermediate relative 

errors, mostly comprised between 10 and 25% (Figures 44 and 45, Table 4). 
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Figure 44: Comparisons of model predictions (continuous lines) to observations (dots) for in-situ total length (A) and wet 

weight (B) over time, length-weight relationship (C) and gonadosomatic index over time for 13 cm and 16 cm-fish lengths 

(D) (red and yellow, respectively). 

127

Figure 45: Comparisons of model predictions (continuous lines) to observations (dots) for experimental total length (A) and 

wet weight (B) over time, length-weight relationship (C) and total length over time since hatch (D)(colors in A, B, C and D 

corresponded to scale functional  level f, red: 0.43; yellow: 0.67; green: 0.64 and blue: 0.90). 
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3.2. Simulations 

Temperature fluctuated between 12 and 23°C with values around 13°C in March, at the end 

of the spawning season, while the scaled food functional response reached its highest value 

in March at 0.85 and decreased until values around 0.74 in November (Figure S19). The 

mean ± SD total length and body condition of simulated sardine population at the beginning 

of the simulation was equal to 14.0 ± 1.9 cm and 0.88 ± 0.09, respectively and captured well 

the in-situ population pattern in March (Figure S22).  

The survival probabilities decreased significantly with fish length whatever the duration of 

the post-reproduction period, exhibiting an obvious shift of survival probability between 

small and large individuals (Figure 46). The probability of survival was higher than 80% for 

individuals smaller than 12.5 cm and 11.5 cm for 1 month and 1 year after the reproduction 

period, respectively. Individuals of the 14-14.5 cm size class had a probability of 50% to 

survive after 1 month but only of 8% after 1 year months. Thus, the survival probability of a 

given length class decreased significantly with time after the reproduction period, which is 

particularly obvious when looking at length at which 20% of survival is reached (i.e. > 19 cm 

after one month against 13.5 cm after a year). Finally, all length classes exhibited mean 

survival probability higher than 20% after 1 month post-reproduction whereas the survival 

probability after 1 year fell below this threshold of 20% for fish larger than 13.5 cm. 

 

 

  Figure 46: Violin plots of the probability to survive after (A) 1 month and (B) 1 year after the reproduction period for each 

length class. Red dots represent mean of each length class and fitted survival curves are represented by blue lines. Dashed 

lines represent 80% (in green), 50% (in yellow) and 20% (in red) of survival probability. 
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4. Discussion 

4.1. Model fit 

Here, we investigated the hypothesis of an adult overmortality following the reproduction 

period using a DEB modeling approach combining both in-situ and experiment data. The DEB 

model allowed us to model the entire life-cycle of individuals, using data mainly based on 

lengths and weights. The overall model goodness of fit was relatively good, as the fit mark 

was close to 10 and similar to results found for other fish species (Lika et al., 2011). 

Nevertheless, relative high errors were found for the prediction of the total length and wet 

weight over time. These errors might result either from the parameterization or from the 

estimation of the individual age. Indeed, age was assessed using otoliths, which are calcium 

carbonate structures whose annual growth rings give age of fish in year. In other words, the 

information on age remains very coarse (i.e. annual) and this is likely to affect the goodness 

of fit our model. More detailed procedures on age reading from otoliths could help us 

estimate this age in days, but they are very time-consuming and have not been performed 

here. Otherwise, data on the monitoring of sardines from egg to adult stages would improve 

the fit of the length and weight over time, similarly to other species for which these variables 

are well predicted (e.g. European sea bass in Stavrakidis-Zachou et al. 2019). Yet, sardine 

individuals cannot be monitored repeatedly in the wild preventing us to access such kind of 

data in situ. As we studied adult sardines during the simulation, thus data from the adult 

stage could be weighted during the parameterization to improve these fits (being aware that 

fit on larvae would decrease). Moreover, the length-weight relationships were rather well 

predicted with relative error below 25%, considering the substantial amount of data. 

Similarly, the food intakes were found to be ranged between 0.28 % and 0.44 % of the fish 

biomass during the parameter estimation and these results were consistent with the 

estimation of the food intakes by sardine in the wild, i.e. 0.3% of the fish biomass actually 

(Queiros et al., 2019). Among the Clupeidae family, the DEB parameters were estimated for 

23 species (including Sardina pilchardus) gathered in the AddmyPet collection1. Our study 

allowed a new estimation of the DEB parameters of the Mediterranean sardine, using a large 

range of data, combining both experimental and in-situ observations. Regarding parameters, 

                                                      
1
 https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/species_list.html 
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the specific cost for structure [EG] was consistent with values found for other clupeids (5222 

± 16 (mean ± SD) and 5035 J cm-3 in the AmP collection and this study, respectively). 

Similarly, the parameter κ (allocation fraction to soma) found during the parameterization 

(0.88) was rather close to values found for other clupeids (0.81 ± 0.19, AddmyPet collection), 

but higher than 0.67 found in sardines of the Atlantic Ocean by Gatti et al. (2017). This 

difference between the Mediterranean Sea and the Atlantic Ocean may be relied on either 

on the estimation process - Gatti et al. (2017) using anchovy model to build sardine model 

whereas we built directly the sardine model - leading to two distinct parameters sets and/or 

on ecological differences between sardines from the two areas. If differences resulted from 

ecological purposes, thus this result might suggest lower investment in reproduction by the 

Mediterranean sardines than their Atlantic relatives. However, even if Altantic sardines 

exhibited higher gonadosomatic index compared to their Mediterranean relative (around 

15% and 5% in The Atlantic and in the Mediterranean Sea, respectively), such results could 

derive either from lower investment in reproduction and/or lower food density in the wild. 

Indeed, the Mediterranean Sea is known to be an oligotrophic sea compared to the coastal 

northeast Atlantic Ocean. Thus, the comparison between the Mediterranean and Atlantic 

sardines require further analyses (e.g. parameterization made simultaneously) and also the 

identification of which parameters could explain the differences between these populations 

(e.g. food or physiological parameters).  

4.2. The reproduction compartment 

We added a new compartment to the DEB model to consider multiple-batch spawning 

strategy of sardines. The continuous monitoring of the sardine reproduction remained 

almost impossible due to the fragility of small individuals (e.g. for stripping). Therefore, 

reproduction data are scarce and modeling assumptions had to be made. For instance, the 

beginning and end of the reproduction period were fixed during the parameterization, but 

temperature could also be used as an external trigger to start batch preparation. Indeed, the 

first spawning events observed during the experiments occurred after the decrease of the 

temperature below 14°C and the reproduction ended after its increase until around 15°C 

(Chapter 3). Also, the reproduction period and the batch fecundity might depend on the fish 

length, with e.g. larger the fish, longer the period. Moreover, the parameterization modeled 

only 3 reproduction events (Figure 44D) whereas between 5 to 11 events could be expected 
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in theory if we would use the-batch periods reported by Ganias et al. (2003). However, the 

total energy transferred to the reproduction buffer could support around 15 reproduction 

events (based on the batch fecundity and the energy content of eggs), but without taking 

into account the energy required for the development of the reproduction material. The lack 

of reproduction event might be explained by the allocation to the gonads ���� from 

September to March, as we assumed that this energy allocation flow was constant over 

time. Thus, we could also assume to have allocation flow depending on the moment of the 

year, e.g. low value between September and November following by high value during the 

reproduction period (December to March). Finally, this study provides a first attempt to 

estimate the DEB parameters for the Mediterranean sardine. Although this work has been 

rather time-consuming, it remains preliminary and it requires a new estimation of the 

parameters before publication. 

4.3. Which individuals better cope with the post-reproduction period?  

The simulations seemed to suggest that the probability to survive decrease conversely with 

the individual total length. Individuals of 14.5 cm had a probability of 50% to survive 1 

month after reproduction, but this probability dropped down to  8% after 1 year. Based on 

in-situ length at age estimations, these individuals were between 2 and 3 years old. Thus, 

these results tend to support the hypothesis of an adult overmortality after reproduction, as 

suggested by Brosset et al. (2016), which would thus explain the adult disappearance 

observed in the wild since 2008.  

Surprisingly, simulation predicted high mortality levels after the reproduction whereas food 

condition corresponded to the highest values of the time-series (Figure S19). To investigate 

the capacity of the model to generate mortality, we performed similar simulation including 

the same sardine population (10,000 individuals) coping with the same temperature, but 

with scale functional response equal to zero (i.e. fasting). Coping with these conditions, the 

median survival time varied between 9 and 17 days for all length classes (Figure 47), whereas 

the survival time during fasting for sardines of similar condition mainly varied between 10 

and 50 days in our experiment (Chapter 4). Thus, energy requirements of the somatic 

maintenance could be too high and may explain the high mortality observed despite high 

food levels. Finally, the scale functional response fitted for the simulation required the 

estimation of the half-saturation coefficient, itself depending on the estimation of the scale 
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functional response found during the parameterization. Thus, higher half-saturation 

coefficient might lead to limiting food condition for fish, but this requires further sensitivity 

analyses.  

 

 

 

 

4.4. Further investigations 

On top of the methodological improvements already discussed above on the 

parameterization or the gonad compartment and reproductive assumptions, further work 

should focus on the simulations to explore more scenarios and offer more insights on the 

sardine issues in the Gulf of Lions.  

First, it could be relevant to run similar simulation to investigate whether the survival 

probability was higher before 2008, according to temperature and food conditions occurring 

at that time. Indeed, differences between the two periods  that may affect growth or body 

condition of sardines, could result either from changes in the forcing variables (e.g. food, 

supported by the diet changes observed by stomach content analysis (Brosset et al., 

2016a)and/or adaptation in reaction to changes in their environment. A major reduction in 

length at first maturity was observed between the two periods, i.e. before and during crisis 

Figure 47: Boxplot of the survival time during fasting (f=0) for each length class. Boxplots are presented without outliers for 

clarity purposes. 
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(12.1 and 9.6 cm during 2002-2008 and after 2009, respectively, Brosset et al., 2016b). Such 

a shift was usually documented in populations supporting intensive fishing (e.g. cod in 

Trippel 1995, Olsen et al. 2005 or hake in Mendo & Carrasco 2000) and we put forward that, 

in the case of the Gulf of Lions sardine, this could also result from changes in environmental 

modifications. In other words, the decrease of the feeding conditions due to a shift toward 

smaller and lower energetic plankton communities in the Gulf of Lions would partially be 

counterbalanced by an earlier the reproduction investment. Similarly, despite the GSI 

reached their lowest values in 2009, the GSI increased straight after to reach higher values 

nowadays than before the crisis (Brosset et al., 2016b). Also, the lower weight loss of 

individuals that have coped with bad feeding conditions during fasting experiment could also 

be explained by phenotypic plasticity. Finally, it could be relevant to further analyze the DEB 

parameters of sardines between the two periods and identify which parameters could 

explain the differences of such food and/or physiological parameters. 

It would be also of interest to study the sensitivity of the survival probability according to the 

food concentrations. In this study, we used the monthly mean values of plankton 

concentration to build the scale functional response. We could therefore integrate variability 

in the food time series. In particular we could study changes in the phenology of the 

planktonic production. Additionally, the time-series of micro and mesoplankton were 

summed to establish the plankton time-series used during the simulation. Despite both 

micro and mesoplankton occur in sardine diet, mesozooplankton represents the major part 

(Brosset et al., 2016a; Le Bourg et al., 2015). Thus it could be relevant for further simulation 

to investigate the effect of the mesozooplankton time-series on the survival probability of 

sardines as its concentration in March was among the lowest values of the year (Figure S23). 

Further, we only investigated the future of sardines after the reproduction periods in this 

study. Nonetheless, the survival probability could be significantly lower during the 

reproduction period, especially when food availability (especially mesozooplankton) reached 

its lowest values (Figure S23). Thus, it would be relevant to investigate the mortality over 

time and identify the periods for which the mortality is maximal.   

Finally, the above limitations also show that if these simulations are of great interest to 

investigate some specific questions, such as the causes of adult overmortality, this work 

remains also preliminary and need further exploration before publication.  
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To sum up the Chapter 5, the take-home messages are: 

· The DEB model parameterization for the Mediterranean sardine was relatively good.  

· First outcomes of the simulations tend to support the hypothesis of an adult 

overmortality after the reproduction period. 

· Nevertheless, several methodological improvements in the parameterization and 

further work in the simulations should be made before publication. 
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Discussion, limits and perspectives 

The first objective of this PhD was to examine the hypothesis of a bottom-up control on 

sardine populations driven by both food size and quantity of their planktonic prey and to 

better understand the underlying mechanisms. To do so, we developed an innovative 

experimental approach on sardines, investigating effects of prey through successive 

integrative levels: organism (e.g. growth, body condition and oxygen consumption), organ 

(e.g. gill apparatus, intestine), cell (e.g. mitochondria efficiency) and compound (e.g. cortisol, 

oxidative balance) levels. The second objective was to examine the potential drivers for 

adult overmortality. First, we used an experimental approach to try and link an individual 

body condition (as assessed in the wild) with its physiological state and survival probability. 

Second, we used a modeling approach through the DEB model to study individual survival 

according to given environmental conditions. Information of all chapters is combined below 

to summarize the potential effects of the bottom-up control induced by prey size and 

quantity on sardines. 

 

1. Result summary 

1.1. Is bottom-up control hypothesis still valid? 

The unusual situation observed in the Gulf of Lions (i.e. decrease in stock biomass despite 

good recruitments) was due to a decrease in the growth and body condition of both sardine 

and anchovy populations, leading to a drop of these fisheries (Van Beveren et al., 2014). 

Among the main hypotheses tested for to explain this situation, the bottom-up control 

driven by the potential reduction of the prey size appeared as the most probable one at the 

start of my PhD. Others potential mechanisms, such as overfishing, top-down control or 

epidemic were refuted in a previous project (Saraux et al., 2019). Using an experimental 

approach, we first showed that both food size and quantity have no effect on structural 

lipids and proteins, but has a significant impact on the growth, body condition and storage 

lipids of sardines (Chapter 1). Thus, sardines fed on small particles needed to consume twice 

as much as those feeding on large particles to achieve the same condition and growth. 

Monthly growth rates in captivity exhibited by sardines fed on intermediate treatments (i.e. 
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treatment 2: small pellets in large quantity; treatment 3: large pellets and small quantity) 

were close to the rate found in the wild after 2008 (1.2, 1.0 and 1.5 mm month-1 for 

treatments 2 and 3 and in the wild – see Supplementary material from Queiros et al. 2019). 

These results stressed the key role of prey size, almost as important as prey quantity and 

strengthened the fact that a decrease of the food size and/or quantity in the Gulf of Lions 

remained a reliable hypothesis to explain the dynamic of the sardine populations.  

1.2. Food size effects as consequences of filtration energy costs 

Higher foraging capacity and ability to collect food from their environment might give 

advantages to individuals, especially if they live in school, such as small pelagic fish. To 

achieve the same body condition and growth, sardines that fed on small pellets needed to 

consume twice as much as sardines that fed on larger ones. Knowing that the food quality 

and rearing conditions were similar, how could we explain the apparent disadvantage to 

feed on small items? The two possible non-exclusive hypotheses were based on the fact that 

either food was acquired differently due to gill apparatus differences or the energy spent 

while foraging depended on prey size. To catch prey, sardines are able to perform two 

different feeding strategies, mainly depending on prey size (Garrido et al., 2007). In our 

results, the energy requirements of aerobic swimming during the filtration seemed higher 

than anaerobic burst during particulate feeding. However, oxygen was continuously 

estimated in outflowing water which did not allow instantaneous estimation of energy costs 

of feeding strategy. This is due to the delay between oxygen consumption and its measure 

(due to transit time in large tank) and the short feeding duration for particulate feeding 

(around 2 min). This preliminary estimation required to be further investigated by cyclical 

intermittent stopped-flow respirometry to estimate the energy requirements of both 

feeding modes (Steffensen, 1989). 

1.3.  How to explain sardine overmortality? 

While we showed that a decrease in food size or quantity was enough to induce lower 

growth and body condition as observed in the wild, we still had to explain the increase in 

adult mortality resulting in an unbalanced wild population composed mainly by ages 0 and 1 

(Van Beveren et al., 2014). First, we investigated whether fish could die from starvation and 

low body reserves. Using an experimental approach, we showed that 1-week survival started 
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to sharply decrease when the body condition index became below 0.75, reaching 50% for a 

body condition of 0.65. Further, the specific body mass loss increased around one week 

before sardines died at the same time as body condition dropped below 0.72 and linked to 

the entry in phase III of fasting. Such results may represent maximum potential of sardines 

to cope with starvation as they were less stressed during experiment (no predation, no 

pathogens) than they would be in the wild. Nevertheless, our results indicated that the 

proportion of sardines in the wild falling below this threshold condition (0.72) doubled in the 

recent period compared to before and reached their highest levels during the months of 

January and February. This seems to confirm a higher probability of adult overmortality 

occurring at the end of reproduction and this was further investigated, using a DEB 

modelling approach. Using a combination of experimental and in-situ data, we first 

parameterized the Mediterranean sardines DEB model. Then, simulated populations based 

on this model showed a decrease of the survival probability after the reproduction period. 

Individuals of 14 cm had a probability of 20% to survive 1 month after the reproduction 

period, but this probability dropped to 8% after 1 year and if the length at which 20% of 

survival is reached is still > 19 cm after one month, it is only at around 13.5 cm after a year. 

This study highlighted a significant mortality of the largest individuals after the reproduction, 

corresponding to individuals older than 3 years old, which tends to support the hypothesis of 

the adult overmortality. However, several improvements in the model are still need to fully 

endorse the above results. 

1.4. Effects of food size on other traits 

Small food size treatments seemed to have low impact on the immunity and stress of 

sardines. Indeed, leucocyte and cortisol concentrations were similar between the 4 feeding 

treatments. According to the fact that sardines were not challenged (no predation and 

aseptic environment) and the body condition index of sardines fed with small pellets all 

along the experiment was close to 1 (i.e. global average body condition from wild 

populations), leucocyte and cortisol levels found during this study might correspond to their 

basal concentrations, while the variances in these levels would be due to inter-individual 

variability. 

Second, we studied the effect of food size on reproduction and found an important effect of 

food size on the amount of reproduction events, which could be explain by a higher 
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spawning frequency linked with longer individuals in better condition. The relationship 

between the body condition index and the reproductive investment might be nonlinear (e.g. 

U-curve), increasing when body condition decreases up to a given threshold (and probably 

decreasing beyond that level). Here, sardines fed on small pellets (Chapter 3) still had a body 

condition around 1, which might be too high to observe a change of energy trade-off 

between reproduction and survival.  

1.5. Can sardines adapt to caloric restriction or smaller prey?  

Sardines in the Mediterranean Sea were known to be less good at filtration compared to 

sardines from more productive areas (e.g. Atlantic, see Costalago et al. 2015). Here, we 

examined whether sardines could adapt to smaller prey by increasing the filtration capacity 

of their gill apparatus. Using sardines caught in the wild and then maintained in captivity for 

7 months with different food treatments, we found that branchial arc length and gill raker 

density were significantly correlated to the fish length, but not with the gill raker abundance 

and length. Both food size and quantity did not induce plasticity in the gill raker structure 

(length, density or abundance) of adult sardines after 7 months. However, we found an 

increase of the gill raker density for a given fish length from 2007-2009 to 2016. These 

modifications may be due to either plasticity (over a longer time period), natural selection or 

epigenetic, but this requires further analyses. 

Another way to cope with caloric restriction might be to adapt energy expenditure either 

through a change in mitochondrial efficiency or through a decreased activity. Our results 

indicate that small food size seemed to lead to an increase of the mitochondria abundance 

and efficiency, suggesting that sardines coping with caloric restriction have adopted energy-

saving strategy to produce ATP. Nonetheless, sardines that fed on large pellets had more 

powerful mitochondria. Also, the decrease in the basal oxygen consumption rate for sardines 

with low body condition supports the energy-saving strategy when food is limited. Similarly, 

sardines that were fed with small pellets in small quantity for 7 months exhibited lower 

oxygen consumption while fasting, probably due to a lower activity. Such a decrease seemed 

to enable sardines used to caloric restriction to sustain longer period of fasting. These results 

would show a plastic response of sardines to food deprivation.  

Nevertheless, these strategies might incur other costs (e.g. more energy efficient 

mitochondria through a better coupling also suggest higher oxidative stress, lower activity 
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levels might result in lower chances of finding food in the wild) or may not be enough to 

compensate high energy demanding of the filtration on small prey size.  

 

2. Experimentation on sardines 

2.1. Original approach 

Among all experimentations based on fish, the zebrafish (Dario rerio) is undoubtedly the 

most used species especially owing to similarities shared with humans (see Kalueff et al. 

2014). Experimentation on marine fish species are usually performed for aquaculture 

improvements or genetics, but rarely for applied ecology issues, although controlled 

experimentation is one of the most useful approach for studying population control 

mechanisms (Hunt and McKinnell, 2006). Studies in the wild remain complicated and costly 

for marine fish and the ones dedicated to small pelagic fish mostly addressed specific issues, 

such as stock size estimations. In my PhD, we developed an experimental approach to 

examine the impacts of food size and quantity on sardine condition and test further the 

hypothesis of adult overmortality. Such an experimental approach remains scarce due to the 

difficulty of handling these species. While experimentations on sardine larvae are frequently 

conducted, adults in experimental studies remained barely used. Mostly, they were used to 

investigate aspects of captivity or handling during experimentation (Bandarra et al., 2018; 

Marçalo et al., 2008; Peleteiro et al., 2004), effects of fishing procedures or devices (Goetz et 

al., 2015; Marçalo et al., 2010, 2013) and feeding behavior (Garrido et al., 2007). 

Furthermore, the only long-lasting experiments (1 year) on adult sardines was conducted on 

much larger and heavier sardines (20.2 cm and 72.2 g, Bandarra et al. 2018), while the other 

long-lasting one (1.5 years) started from eggs collected in the wild and left only one sardine 

alive after 18 months (Iglesias and Fuentes, 2014). Finally, we proved that handling and long-

lasting experiments on sardines, in particular on small individuals, could be conducted in the 

future. 

2.2. Experimentation as the pivotal point of this work 

Animal experimentation needs to comply with the national regulatory requirements on 

animal welfare. For this purpose, the Three R’s (Reduce, Refine, Replace) aim to reduce the 

number of animals used, refine experimental procedures to limit animal suffering and 
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replace animals with non-animal alternatives when possible (Ibrahim, 2006). On top of being 

especially careful with rearing conditions, we also gave particular attention during this thesis 

to the use of sardines at the end of the experiment. As such, sardines were either given to 

local aquariums when sacrifices were not required or their sacrifice was optimized in order 

to collect the maximum from the samples (e.g. muscles for protein and lipid, blood for 

oxidative stress balance, scales for cortisol, gonads and heart for telomeres, but also on 

some occasions, gills, kidney for immunity and intestine for histology and microbiome). 

Nonetheless, such an extensive and exhaustive approach would not have possible without 

the collaborations of several experts from different areas (e.g. mitochondria, immunity), 

which allowed me to investigate the food effects on several life history traits of sardines 

(reproduction, growth and maintenance) and at several scales (organism, organ, cell and 

component), some being still under investigation (Table 5).  

Additionally, the parameterization of models such as the DEB model requires in general lots 

of data to find the best parameter simplex. Data from experimentation represented two 

thirds of data (both 0-variate and 1-variate data) used during the parameterization process 

of the DEB model, which allows us to (numerically) test some hypotheses that could not be 

tested otherwise (e.g. combining food and temperature effects). Although experiments were 

time-consuming and required a lot of people/equipment (e.g. study on several successive 

years, several temperatures), they were complementary to the modeling approach and 

central to all studies performed during this PhD. 
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Table 5: Summary of the collaborations developed during my PhD thesis and my inputs. The MONALISA Team refers to Claire Saraux, Jean-Marc Fromentin, Eric Gasset, Gilbert Dutto, Luisa 

Metral, Camille Huiban, Lina Leclerc and Lolita Tibeuf. 

 

 
Chapter Study Leader Collaborators My inputs 

Chapter 1 

Experimentation MONALISA Team 
 

Development      
Data acquisition 

Data analysis 

Lipid and protein 
content  

MONALISA Team 
 

Data analysis 

Oxidative stress balance MONALISA Team 
Dr. Q. Schull 

MARBEC 
Data acquisition 

Data analysis 

Chapter 2 

Gill raker structure 
Dr. JH Lignot 

MARBEC 
MONALISA Team Data analysis 

Oxygen consumption MONALISA Team 
Dr. D. McKenzie 

MARBEC 
Data acquisition  

Data analysis 

Chapter 3 

Bioenergetics 
Dr. L. Teulier 

LEHNA 
MONALISA Team Data analysis 

Reproduction MONALISA Team 
 

Development      
Data acquisition  

Data analysis 

Immunity 
Dr. E. Farcy 

MARBEC 
MONALISA Team 

Data acquisition  
Data analysis 

Stress MONALISA Team 
Dr. Q. Schull 

MARBEC 
Data analysis 

Chapter 4 Starvation MONALISA Team 
Dr. D. McKenzie 

MARBEC 
Data analysis 

Chapter 5 Modeling MONALISA Team 
Dr. L. Pecquerie 

LEMAR 

Development    
Simulation 
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3. Limits 

As all experimental trials, we tried to be as close as possible to the natural environment (i.e. 

water parameters and food) and natural behavior of sardines. Therefore, experimental tanks 

were supplied with water pumped directly at sea and followed natural photo- and thermo-

period regimes. The number and density of fish per tank also allowed for the formation of 

schools. Then, none of the two possible ways to provide live prey to sardines (i.e. capture in 

the wild or production) appeared adequate for our experiments. On top of the inherent 

logistic difficulties, it would have been impossible to standardize meals in terms of food size 

and quantity several times a day, every day during several months. On the contrary, 

aquaculture pellets provided such a chance to precisely control food input. With no 

information on the composition of prey in the wild before and after the crisis, we decided to 

study only the effects of food size and quantity on sardine life-history traits and thus 

selected aquaculture pellets of two different sizes (0.1 and 1.2 mm) of same quality in terms 

of lipid and protein contents. Although we are aware of the limitation of inert food 

compared to live prey, normal feeding behavior on aquaculture was ensured after each 

acclimation periods. Despite the above caution, experiments performed during this PhD 

could sometimes fail for several reasons and two examples are presented below. 

3.1. Reproduction of sardines 

Despite our efforts to mimic natural environment, our knowledge on the reproduction of 

sardines remained limited. We decided to study the effect of the food size on the 

reproduction of sardines and thus the spawning was not artificially induced. The first 

reproduction events of sardine from the experiment n°2 (Chapter3) occurred when water 

temperature decreased below 14°C and ended when temperature increased until 15-16°C. 

However, sardines from the experiment n°1 (Chapter 1), even those feeding on large pellets 

in large quantity and exhibiting high body condition (around 1.2), did not spawn during 

winter, despite similar environmental conditions (tank being provided with the same water). 

Even though income and capital breeding may reflect extreme points on a breeding strategy 

continuum (Stearns, 1989), sardines are known to be capital breeders in the Gulf of Lions. 

Thus, the absence of reproduction event for such individuals may be due to low energy 

storage levels prior to the experiment (the experiment having started in mid-November, i.e. 
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about 3 weeks before the temperature dropped below 14°C). To counteract this, the 

experiment n°3 (Chapter 3) was designed to study whether food size before or during the 

reproduction period influenced the reproduction of sardines, i.e. to investigate this capital 

versus income gradient. However, only one reproduction event with a very low egg amount 

was observed during the experiment n°3, while sardines from the experiment n°2 spawned 

39 times at the same time with the same water quality and photoperiod. The absence of 

spawning might be due to rearing conditions as sardines from the experiment n°2 were in 

larger tanks than sardines from the experiments n°1 and n°3 (3 m3 and 300 L for experiments 

n°1 and n°3, respectively). Interestingly, sardines in experiment n°3 had matured gonads (as 

observed when sacrificed in March). The absence of spawning in small tanks may also raise 

the importance of the height of the water column for the reproduction of small pelagic fish. 

Indeed, the reproductive behavior of small pelagic fish might be similar to the spawning rush 

exhibited by other fish species releasing eggs in the water column, such as groupers 

(Mourier et al., 2019; Rowell et al., 2019) or parrotfish (Luckhurst, 2011). To elucidate the 

reproductive behaviors of sardines, close range sonar could be used to identify movement of 

fish during nocturnal reproduction. Finally, the fact that sardines did not reproduce may also 

result from ethologic misunderstanding of the small pelagic reproduction, such as behavior, 

school size, etc. 

Despite the absence of reproduction during the experiment n°3, samples collected in March 

will be used in near future to assess the physiological cost of growth or reproduction, using 

telomeres and oxidative stress balance (Bauch et al., 2013; Geiger et al., 2012). Biometric 

parameters provided during this experiment will also be used to investigate potential inter-

individual competition. 

3.2. Respirometry 

Apart from the reproduction study, the final step of the experiment n°3 should have been 

used to investigate the oxygen consumption differences of sardines that fed on small vs. 

large pellets with more replicates and a stopped-flow system compared to the respirometry 

study presented in Chapter 2. During this experiment, sardines were distributed into 8 tanks 

according to their body condition index (high vs. low condition, HC and LC respectively), i.e. 4 

tanks for HC and 4 tanks for LC. Sardines were fed with large pellets during the first 2 weeks 

and fed with small pellets during the next 3 weeks (including 1 week for acclimation to this 
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feeding treatment). Sardines were fed twice a day and the feeding of each row constituted 

by 1 tank of each condition, was spaced every 20 min to be synchronous with the stopped-

flow respirometry system. However, the feeding of the first row led to the agitation of 

sardines in all other tanks despite them not being fed. As such, oxygen consumption 

increased before the meal started in 6 of the 8 tanks, preventing us from using these data. 

Further, sardines in good condition (i.e. fed with large pellets for 9 months) did not appear 

interested by small pellets, probably as their good condition enabled them to wait for better 

food; so that oxygen consumption did not increase during their meals. While this experiment 

was critical to better understand the mechanisms involved in the lower growth and 

condition of sardines fed with small pellets, it has not been possible to redo it during the 

timeframe of my PhD, due to several logistic problems. Nevertheless, a new protocol has 

been designed for this experiment and it might be conducted in near future (see 

Perspectives).  

3.3. Modeling approach 

Beside the above limitations in the experimental approach, this study also raises some 

limitations in the modeling exercise. The DEB approach deals with the allocation of the 

energy flows due to food into three key compartments: maintenance, growth and 

reproduction. To parameterize the DEB model, the ‘best’ data are energy balance at several 

body sizes and at several food levels (Lika et al., 2011). However, such data was not available 

for our species, therefore we used indirect observations linked to the energy flows to 

estimate the parameters, such as growth. Although the parameterization was satisfactory, 

the relative errors between some observations and predictions remained relatively high and 

the survival time of individual coping with starvation found during simulation was lower than 

estimation found during the starvation experiment. Also, the prediction of the 

gonadosomatic index was rather low and might be due to low amount of available data on 

the reproduction of sardine in the literature. Such results could also be explained by the long 

and difficult stage of the parameterization of the DEB model. In our study, we further added 

a compartment to the DEB model to take into account the multiple-batch reproduction of 

sardines, but several modeling assumptions had to be made due to little information on the 

reproduction such environmental factor which triggers spawning. Finally, the exploration of 

the parameters space is constrained by ‘realistic’ parameter sets according to other similar 
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species and some parameters have to be fixed. Nonetheless, two realistic parameters sets 

could well fit the data but lead to the misunderstanding of underlying physiological process. 

Thus, a low food level being counterbalanced by a high κ (allocation to soma) could lead to 

the same growth that the combination of high food level and low κ. To limit the number of 

potential realistic parameters, additional data (e.g. on reproduction or energy content) 

would be necessary.  

In this study, we considered that all individuals shared the same parameters and therefore 

we did not integrate inter-individual variability, especially during the simulation process. 

Similarly, the environmental parameters (i.e. temperature and food) derived from the 

outputs of coupled 3D hydrodynamical and biogeochemical models at daily resolution, but 

we only used monthly averages across the whole Gulf of Lions and the full height of the 

water column. Additionally, we could neither consider vertical nor spatial distribution of 

sardine (mainly coastal distribution, Saraux et al. 2014) which might have physiological 

effects due to temperature (e.g. stratification in winter) of food resources. Nonetheless, the 

perspectives developed below should reduce or investigate some of the above potential 

limits. 

 

4. Perspectives 

Despite the fact that previous results supported used the hypothesis of the bottom-up 

control induced by the reduction of food size, some questions still remain.  

4.1. Could filtration be detrimental for Mediterranean sardines? 

Among the perspectives, the hypothesis of higher energy consumption resulting from 

filtration seemed to be supported by the respirometry study presented in chapter 2, but this 

remains to be further validated by additional experiments including more replicates. To do 

so, I just submitted a short-term project for funding in collaboration with Dr. S. Killen, Dr. Q. 

Schull and Dr D. McKenzie. Sardines would be fished and acclimated to inert food using the 

same approach as the one detailed in chapter 1. After 2-3 weeks acclimation and upon 

confirmation of the absence of NODA virus, sardines would be moved into indoor tanks for 

the respirometry experiments. Around 2000 sardines should be distributed into 8 

experimental tanks of 1,000 L each that will be modified to function as automated 
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respirometers (McKenzie et al., 2007, 2012). During the first week acclimation to the tank-

respirometers, fish will be fed with both 0.1 and 1.2 mm aquaculture pellets two times a 

day. Further, metabolic rate (i.e. energy use) will be measured indirectly as instantaneous 

oxygen uptake of fish in the tanks, by cyclical intermittent stopped-flow respirometry 

(Steffensen, 1989), as described in McKenzie et al. (2007, 2012). Contrary to estimation 

method used in Chapter 2 (i.e. non-automatic diurnal estimation every 30 min and delay 

between oxygen consumption and its estimation), this method will allow continuous 

estimation of the oxygen consumption of sardines during the feeding and digestion as well 

as identification of potential modification of oxygen consumption during the night. During 

the first 2 weeks of the experiment, oxygen consumption will be measured on 4 tanks fed 

with only 0.1 mm pellets and the other 4 tanks fed with only 1.2 mm pellets. During the 

second period of the experiment feeding treatments will be inverted, after a week 

acclimation to the new feed size. By using freshly fished sardines instead of sardines at the 

end of a long-term experiment, we will ensure sardines feeding on every meal and oxygen 

consumption to be measured each time. Further, sardines will all be fed at the same time, to 

avoid excitation to occur before feeding events. This new study should allow us to 

complement our understanding about the food size effects on the Mediterranean sardines. 

4.2. Does condition have significant impact on sardine swimming 

activity? 

Such results on the effects of the food size on several life history traits may be exacerbated 

in the wild. Contrary to the wild, sardines were fed every day with aquaculture pellets and 

they did not face predation and pathogens lowering the energy required for these 

expenditures. Also, sardines with low body condition index in the wild (i.e. assimilated to a 

low energy reserve) may exhibit lower swimming performance, especially swimming 

endurance (Martinez, 2003, 2004). Thus, poor swimming endurance might render these 

individuals unable to sustain the continuous aerobic swimming and they might get isolated 

from the school and its positive effects such as avoiding predation and improving foraging. 

Thus, the decrease of the body condition might lead to a vicious circle, inducing lower food 

intake and thus reinforcing lower energy reserve. To study the swimming activity of sardines, 

we used video recorded at the end of the experiment n°3. Movies have been made with 

GoPro Hero 5 cameras located above the tanks and set at the linear field of view (no fish eye 
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view) at 1080p and 30 frames per second. Movies were recorded throughout the day and 

also during the feeding period from the 28th May to the 2nd July 2018. Individual trajectory 

(speed, velocity) are currently under analyses with a specific tracker program. Also, the link 

with global school activity could be investigated using custom designed software (Sadoul et 

al., 2014). This will enable us to first assess the exact duration of meals depending on food 

size according to changes in fish speed, but also to estimate the level of activity and speed of 

fish of different conditions outside of the feeding period.  

To go even further, the use of stereoscopic video cameras filming during the respirometry 

study described above might help estimate the distances swum by fish and their 

accelerations while feeding in order to link them with the oxygen consumption and the 

energy expenditure of fish. Finally, the use of external individual marks (e.g. with elastomers 

in McLean et al. 2018) would help investigating inter-individual competition while feeding. 

4.3. Is digestion impacted by food size and quantity? 

The energy intake of an individual depends on its capacity to catch prey as well as on its 

capacity to extract nutrients from its food. Intestine is one of the most important organs in 

the absorption of nutrients (Rašković et al., 2011; Zaldúa and Naya, 2014). The intestinal 

epithelium of bony fish is composed by a series of villus, themselves constituted by digestive 

cells, i.e. enterocytes (including its brush border), which play a key role in the digestion and 

absorption of nutrient owing to the production of digestive enzymes involved in the breaking 

down of food (Harpaz and Uni, 1999; Silva et al., 2010). Absorption of nutrients depends on 

both the enzyme activity and the contact area between the brush border and the nutrients. 

Owing to the increase of their surface-to-volume ratio, small particles promote digestive 

processing by enzymes and may lead to the decrease of the energy expenditures due to 

digestive activity. This observation was supported by the oxygen consumption presented in 

Chapter 2, where it was shown that oxygen consumption of sardines that fed on small 

pellets decreased more strongly than that of sardines that fed on large pellets after the last 

meal. 

Further, the digestive tract is an example of phenotypic plasticity (see review of Zaldúa & 

Naya 2014). An increase of the functional capacity of the digestive tract could occur when 

internal energy requirements increase or if the food quality decreases (Liu and Wang, 2007; 

Naya et al., 2007). To counteract food restriction in the wild, individuals might thus improve 
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their digestive efficiency to maximize the nutrient extraction from their meals. However, if 

food quality reaches a minimal threshold or if fish have to cope with starvation, the 

functional capacity could significantly be reduced (German et al., 2010). Thus, the digestive 

efficiency of sardine might be impacted by the decrease in food quality and/or size (Zarubin 

et al., 2014). Such phenomenon might be amplified by the predation pressure which induced 

relatively shorter gut (Relyea and Auld, 2004). Other studies showed that food restriction 

could impact intestinal structure (Hossain and Dutta, 1991) and also generate stressful 

situation for fish in the wild. Such a stress and the associated increase in corticosteroids (e.g. 

cortisol) could lead to alterations of the intestinal structure (Olsen et al., 2002; Söderholm 

and Perdue, 2001; Sundh and Sundell, 2015). In particular, it may result in the alteration of 

the ultrastructure of the enterocyte via the increase of junctional gap between cells (until 

complete detachment of cell-to-cell contacts in extreme cases) and a decrease of the 

microflora (in the first part of the intestine), owing to the leaching induced by the activation 

of the mucus production (Meddings & Swain 2000, Olsen et al. 2002, 2005, but see Olsen et 

al. 2008 and Rosengren et al. 2018). To better understand the relationships between food 

and microbiome, some intestines of fish from the experiment n°1 were sampled in March 

and are currently under analyses. These alterations may expose individuals to infection if 

pathogens reach to translocate across the damaged intestinal wall and result in additional 

energy costs to get by. Fed individuals (feeding with aquaculture pellets) exhibited higher 

resistance to stress (i.e. lower intestine damages) than food deprived ones (stop feeding few 

days prior experiment), but the damage and its persistence seemed to be also species 

specific (see Olsen et al. 2005, 2008).  

During this PhD, we started to investigate the effects of food size and quantity on the 

digestion, through a morphological analysis of the intestinal tract (intestine circumference 

and both villus and enterocyte heights). Our results indicated that food quantity might have 

only effects on fish that fed on small pellets, but not on fish that fed on large pellets. For fish 

feeding on small pellets in low quantity, the intestine perimeter was indeed lower. However, 

there was some sampling bias (e.g. bias cut of the intestine) inducing some observation 

errors and the sample size was too low to get robust statistical comparisons (n = 4 and 6 for 

some samples). Therefore we did not present those results in Chapter 3 and this analysis 

should be completed to investigate whether food size and quantity impact the digestive 

tract.  
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Finally, to go one step further in the investigation of the digestion, we could also study the 

enzymatic activity and the pyloric caeca structure. For the latest, their development begins 

after metamorphosis, when their number increases until a plateau (around standard length 

of 12 cm, Costalago & Palomera 2014). They have a similar structure as intestine with a 

single epithelium in column and secretory cells (Harpaz and Uni, 1999) and seems to be 

involved in both storage, digestion and absorption of food and water (Buddington and 

Diamond, 1986, 1987). Pyloric caeca may play a key role during food deprivation as the food 

retention and digestion was reduced compared to the gastrointestinal tract (Hossain and 

Dutta, 1991) and might increase the ability of individuals to cope with food deprivation.  

4.4. Could we model dynamic of sardine population in the Gulf o 

Lions?  

Among the first perspective, the first one was a new estimation of the DEB parameters for 

years before 2008. I do think that the prediction of the reproduction and biometric 

parameters (e.g. length and weight) could be improved giving more weight to data referred 

to adult stage. Also, we could add gonadosomatic index provided by in-situ observation for 

other fish length. The new estimation of the DEB parameters will be cross-validated by 

survival time of starved individual found during the simulation to be as close as possible of 

values found during the experiment. After the parameterization of the DEB model for the 

actual period, the next step will be the parameterization of the DEB model for the years 

before 2008 (i.e. before the small pelagic fish crisis in the Gulf of Lions). As presented in the 

discussion of the Chapter 5, this step will allowed us to investigate whether the differences 

between both periods are the result of either environmental modification (e.g. lower food 

size and/or quantity) and/or adaptation of sardines to new environmental conditions. We 

could further compare the survival of individuals after the reproduction between both 

periods. 

RFID tag allowed us individual identification and therefore individual data acquisition on 

several parameter, such as growth (length and weight over time) or reproduction 

investment (gonadosomatic index). This large amount of data could allow us to parameterize 

individual DEB model and thus to study the potential impacts of inter-individual competition 

for food or physiological differences among individuals (Sadoul et al. in prep). To do so, we to 

fit the individual data with a new parameter set based on the average one but allowing the 
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re-estimation of only one (or more) parameter at a time (e.g. κ and [EG]). Nonetheless, this 

study required a ‘good’ DEB parameters set as starting point and also high computing 

capacity to found best parameters for each individual (e.g. 449 individuals only for the first 

experiment).    

After parameterization, the next challenge would be to integrate this DEB model into 

population model to understand population responses to environmental changes. To do so, 

the DEB model could be coupled to an individual based model (IBM model) leading to an 

IBM model based on DEB theory (DEB-IBM, Martin et al. 2012). The transition to DEB-IBM 

population model would allow us to take into account parameter variability estimated in the 

previous part using individual parameter estimation. A population model would allow taking 

into account past and present modifications of the plankton abundance and quality (i.e. size) 

and spatial effects (e.g. plankton patches, food density according to the distance to the 

coast). The use of software platform like NetLogo could be a suitable way to build population 

model (Martin et al., 2012). We could further investigate the sardine population dynamics 

integrating other factors, such as the combination of fishing pressure with environmental 

changes (e.g. in temperature and food). 

4.5. Are Mediterranean sardine close to their Atlantic relatives?  

An interesting perspective could the comparison between the Mediterranean and the 

Atlantic sardines. Indeed, both populations are geographically separated facing different 

environments and we could suppose that the genetic flow is rather low if not null between 

these individuals. Differences found on the gill raker structure between both areas seems to 

be in favor of this hypothesis (Costalago et al., 2015). Also, the fact that Atlantic individuals 

are larger and invest more energy in the reproduction (around 15% and 5% in The Atlantic 

and in the Mediterranean Sea, respectively) may be the result of either higher food levels 

and/or physiological processes.  

Similarly to my PhD, two complementary approaches could be developed to investigate the 

differences between the two populations: experimentation and modeling. First, a ‘common 

garden’ experiment could be developed allowing us to study the phenotype variation 

individuals according to the environment. Then, interbreeding between both populations 

and the study of the phenotype variation to the same varying environment would allow the 

identification of the genetic contribution to a given phenotype. These studies could be 
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completed with the comparison between the DEB model of Mediterranean and Atlantic 

sardines, which is already in development. Such comparison could complete the 

investigation of potential variations exhibited by both populations.  
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Chapter 1 

 

From capture to maintenance in experimental tanks 

Fishing procedures were optimized following Peleteiro et al. (2004) and preliminary tests. 

Briefly, sardines were concentrated by tightening the net, coaxed gently into buckets so that 

they were always immersed in water then transferred immediately into 1 m3 tanks of 

oxygenated seawater on board. After boat and lorry transport to the IFREMER experimental 

station at Palavas-les-Flots (Hérault, France), fish were held in outdoor tanks (4.5m3) supplied 

with a flow of aerated local seawater at prevailing temperature and photoperiod. The whole 

operation, from capture to outdoor tanks, took less than 4 hours. The first 2-3 days following 

capture constituted the most critical period of acclimation, but this varied quite a lot from one 

fishing event to another, probably due to the sea temperature when the fishing was carried out 

(the higher the sea temperature, the higher the mortality in the few days after fishing). During 

the first 5 days, daily prophylactic baths of oxytetracycline (100 ppm) were administered to 

prevent bacterial infections from fishing injury and scale loss. Over the first week, sardines 

were fed both Artemia nauplii and aquaculture pellets (mix of pellet sizes: 0.1mm, 0.3mm and 

0.8mm), with increasing proportions of pellets and decreasing proportions of Artemia 

throughout the week, concluding with meals exclusively of pellets. Pellets were distributed by 

automatic feeders throughout the day whereas Artemia meals were provided once, in the 

morning. To maximize survival, food rates were high (between 2% and 6% of biomass), such 

that body condition increased from a mean (± SD) of 1.0 (± 0.1) at fishing to 1.2 (± 0.1) at the 

start of experiments. Natural swimming and schooling behavior occurred within a few days of 

capture. After 2 to 3 weeks acclimation (depending on fishing dates) and upon confirmation 

of the absence of NODA virus, sardines were moved into indoor tanks for experiments. 

 

 

Feeding conditions 

As in most experimental studies, we tried to be as close as possible to the natural environment 

(i.e. tanks were supplied with water pumped from the sea, followed natural photo- and 

thermo-period) to have natural behavior of sardines. The number and density of fish per tank 

allowed for the formation of schools (Figure S2 and Movie S1). To control accurately the 

quality, quantity and size of the food along the 7-month of the experiment, the use of living 

prey would not have been appropriate and we therefore chose to feed sardines with 
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standardized aquaculture pellets having the same quality in terms of lipid and protein 

contents. Both pellet sizes shared similar lipid class contents except for the phospholipid class 

(see Table S1). Moreover, the two pellet sizes corresponded to main prey sizes found in the 

wild during those two periods (Le Bourg et al., 2015). Although we are aware of the 

limitation of inert food versus live prey, normal feeding behavior on aquaculture pellets was 

ensured before the start of the study (Movie S1). Finally, based on the mean age at the 

beginning of the experimentation (i.e. 1.2 years) and on the von Bertalanffy curves adjusted 

by Van Beveren et al. (2014), monthly growth rates in captivity were similar to the ones in the 

wild (around 1.5 mm month-1 and between 0.5 and 2.5 mm month-1, in Van Beveren et al. 

(2014) and this study, respectively). 

 

 

Estimation of food loss 

To quantify loss of non-ingested food, we performed an additional 2-week experiment in a 

single tank, with a similar density of sardines to the previous experiment, where we estimated 

the quantity of food that (i) deposited on the bottom of the tank and (ii) left the tank through a 

bottom grid. To do so, 5 glass Petri dishes were placed on the bottom of the tank before each 

meal (total tank area = 76.6 x 10-2 m2, bottom grid area = 15.6 x 10-2 m2, dish area = 1.45 x 

10-2 m2) and a 70-µm-mesh sieve used to filter outflowing water (Figure S3). The experiment 

comprised 16 meals (4 meals per day) distributed over 10 days. Fish were fed 1.2mm pellet in 

large quantity on days 1 and 3, fasted on days 2 and 4. Fish were acclimated to 0.1mm pellet 

on days 5 and 6, then days 7 and 8 repeated days 1 and 2 but using the smaller pellet in large 

quantity, with days 9 and 10 repeating days 7 and 8. Petri dishes and sieve were removed for 

analysis 90 minutes after each meal.  

Samples from Petri dishes and the sieve were then filtered through a 0.7-µm dry filter (dried 

beforehand at 60°C in the autoclave for 24 hours and weighed to the nearest 0.0001g), then 

filters were rinsed with distilled water to remove salt. After manually removing faeces and 

scales, filters were dried at 60°C in the autoclave for 24 hours and then weighed, so that mass 

of matter could be estimated as the difference in filter dry weights. The total mass of collected 

matter was the sum of matter collected by the sieve and matter collected by the 5 dishes 

weighted by the ratio of tank surface to dish surface (without the bottom grid area): 

 

©ªlle©ted&;¸>>¹º = »©ªlle©ted&¼atte«½`¾_ &× & ¿À0¶ÁJ¿Â£ÀÀ£´&1®µÃ
»¿ÃµÄÅ &o &©ªlle©ted&¼atte«¾`§Æ§& [1] 
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Finally, the non-ingested food was estimated as the quantity of collected matter during a meal 

corrected by the mean quantity of collected matter while fish were fasting and expressed as a 

fraction of the meal size: 

 

nªnÇ?8È¹9>¹r&�ªªd = ^�bb§^É§½&�\ÉÉ§Z´20ÊJ^�bb§^É§½&�\ÉÉ§Z¯0ÄÀµ¶1
�§\b&¾`Ë§ × |pp&&&&& [2] 

 

 

 

 

 

 

 

Results 

Body condition and total length over time: mixed-effect models 

The impact of the different treatments on body condition and total length were tested using 

linear mixed-effect models with both random slopes and intercepts for both individuals and 

tanks (to study tank effect among treatments). The  model selection process was following 

recommendations provided by Burnham and Anderson (2002) and Zuur et al. (2009). The 

selected model is presented here using REML estimation. Selected models and violin plots of 

body condition and total length distributions are presented in Figure S4. For the body 

condition index, the validation graphs are presented in Figure S5. Homogeneity, normality 

and independence were checked through plots of Figure S5 and only 3 individuals are 

considered as outliers (i.e. <1% of all individuals) (Figure S5B). The results of the selected 

model are presented in Table S2. Simultaneously, the same process was used for the total 

length parameter. The validation graphs are presented in Figure S6. Homogeneity, normality 

and independence were checked through plots of Figure S6. The results of this selected model 

are presented in Table S3. 
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Figure S1: Evolution of the water temperature in tanks throughout the 7-month 

experiment 

 

 

 

 

 

 

 

 
 

 

Figure S2: Picture of the swimming and schooling behavior of sardines in the 300 L 

experimental tank  
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Figure S3: Experimental design to estimate the non-ingested food   
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Figure S4: Violin plots of body condition index (A) and total length (B) distributions over 

time. Selected linear mixed-effect models were added (lines). 
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Figure S5: Validation graphs of the selected body condition model. A: Fitted values versus 

residuals. B: Q-Q plot of the residuals. C: Residuals versus sardine ID. D: Residuals versus 

time (month). E: Residuals versus treatments 

 



 
 

160 
 

 
Figure S6: Validation graphs of the selected total length model. A: Fitted values versus 

residuals. B: Q-Q plot of the residuals. C: Residuals versus sardine ID. D: Residuals versus 

time (month). E: Residuals versus treatments 
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Figure S7: Time series of the CV of the body condition (A) and total length (B) of all 

sardines in each feeding treatment: red: pellet size of 0.1mm and pellet quantity of 0.3%; 

green: 0.1mm and 0.6%; yellow: 1.2mm and 0.1% and blue: 1.2mm and 0.6%. Dark line is 

the mean body condition and total length at the beginning of the experiments. 
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Figure S8: Biplot of the PCA built using body condition, total length, reserve and structural 

lipids and proteins contents, d-ROMS and OXY as explanatory variables, with grouping by 

sex. The large circles represent the barycenter of the individuals for a given sex. 

 

 

 

Figure S9: Biplot of the PCA built using body condition, total length, reserve and structural 

lipids and proteins contents, d-ROMS and OXY as explanatory variables, with grouping by 

age. The large circles represent the barycenter of the individuals for a given age. 
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Table S1. Mean ± sd of lipid class contents (µg/mg) of 0.1 and 1.2 mm pellets used in this 

study: triacylglycerols TAG), free fatty acids (FFA), alcohols (ALC), sterols (ST), acetone-

mobile polar lipids (AMPL), diacylglycerols (DAG) and phospholipids (PL). 

 

Pellet size 
(mm) 

TAG FFA ALC ST AMPL DAG PL 

0.1 
67.1 ± 

13.5 
4.6 ± 4.3 3.5 ± 2.7 7.0 ± 5.0 12.0 ± 6.6 2.7 ± 2.5 

55.7 ± 

13.7 

1.2 
69.0 ± 

24.6 
3.6 ± 4.1 2.9 ± 2.6 5.7 ± 4.9 

10.4 ± 

11.3 
2.1 ± 2.4 

24.6 ± 

14.3 

 

 

 

 

Table S2. Results of the selected mixed effect model of body condition over time. 

Estimations of the predictors of all other fixed effects were based on the estimations of 

treatment 1. For instance, the intercept of treatment 4 (BLUE) was +1.18 (i.e. 1.14+0.04) 

and the slope was +0.01 (i.e. -0.04+0.05). 

 

Random effects:     

 Standard deviation Correlation   

(Intercept) 0.06 (Intercept)   

Date 0.01 -0.17   

     

Fixed effects:     

Predictors Estimates 95% CI df p-value 

(Intercept) 1.14 1.12 – 1.15 2565 <0.001 

Date -0.04 -0.05 – -0.04 2565 <0.001 

Treatment 2 (YELLOW) 0.02 -0.00 – 0.04 445 0.050 

Treatment 3 (GREEN) 0.02 0.01 – 0.04 445 0.012 
Treatment 4 (BLUE) 0.04 0.02 – 0.05 445 <0.001 

Date:Treatment 2 
(YELLOW) 0.02 0.01 – 0.02 

2565 
<0.001 

Date:Treatment 3 (GREEN) 0.01 0.01 – 0.02 2565 <0.001 

Date:Treatment 4 (BLUE) 0.05 0.05 – 0.06 2565 <0.001 

  
  

 Observations 3018    
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Table S3. Results of the selected mixed effect model of total length over time. Estimations 

of the predictors of all other fixed effects were based on the estimations of treatment 1. 

For instance, the intercept of treatment 4 (BLUE) was 119.87 mm (i.e. 120.59-0.72) and the 

slope was +2.48 (i.e. 0.52+1.96). 

 

Random effects:     

 Standard deviation Correlation   

(Intercept) 8.84 (Intercept)   

Date 0.61 -0.35   

     

Fixed effects:     

Predictors Estimates 95% CI df p-value 

(Intercept) 120.59 118.95 – 122.24 2565 <0.001 

Date 0.52 0.39 – 0.65 2565 <0.001 

Treatment 2 (YELLOW) -0.06 -2.39 – 2.27 445 0.959 

Treatment 3 (GREEN) -0.44 -2.77 – 1.90 445 0.713 
Treatment 4 (BLUE) -0.72 -3.05 – 1.61 445 0.543 

Date:Treatment 2 
(YELLOW) 0.67 0.49 – 0.85 

2565 
<0.001 

Date:Treatment 3 (GREEN) 0.53 0.35 – 0.71 2565 <0.001 

Date:Treatment 4 (BLUE) 1.96 1.78 – 2.14 2565 <0.001 

  
  

 Observations 3018    
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Table S4. p-values of multiple pairwise comparisons between the four treatments for 

reserve and structural lipids, proteins, d-ROMS and OXY in March and June.  

 

Treatments 
Reserve lipids 

Structural 
lipids 

Proteins d-ROMS OXY

March June March June March June March June March June 

 

1 – 2  0.462 0.741 0.702 0.979 0.684 0.481 1.000 0.150 1.000 0.219 

 

1 – 3  0.471 0.545 0.068 0.374 0.782 0.768 1.000 0.137 1.000 0.550 

 

2 – 3  0.808 0.964 0.513 0.710 0.945 0.545 1.000 0.773 1.000 0.837 

 

1 – 4  <0.001 <0.001 0.051 0.642 0.129 0.053 1.000 0.001 1.000 0.061 

 

2 – 4  <0.001 <0.001 0.567 0.825 0.290 0.513 1.000 0.093 0.867 0.546 

 

3 – 4  <0.001 <0.001 0.850 0.085 0.946 0.067 0.868 0.180 1.000 0.596 

 
 
 

 

 

 

 

 

Movies S1: Feeding behavior of sardines fed with aquaculture pellets after acclimation 
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Chapter 4 

 

 

Figure S10: Body condition at the start of the fasting experiment according to the feeding 

treatment they experienced before. LP and SP stand for large and small particles 

respectively, while LQ and SQ stand for large and small quantities respectively.  
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Figure S11: Dissolved oxygen in tank 2 during two days (2017-07-07 and 2017-07-08) as an 

example of respiration rate estimation. Cycles, during which oxygen consumption are 

calculated, are indicated in colour depending on the r-square of the linear regression. On 

the first day, a period was removed as fish were handled during that time for biometry, 

tanks cleaned, etc. 
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Figure S12: Number of daily sardine deaths along the fasting experiment. Days where 

sardines were handled are shown in black bars, while days with no handling appear as 

white bars. 
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Figure S13: Cumulative mortality of sardines (in %) originating from each of the three 

initial feeding conditions (as indicated by colours) according to body condition. 
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Figure S14: Mean ± SE specific body mass loss (dm/mdt) per day along time according to 

each initial feeding treatment. Colours indicate the initial feeding treatment sardines 

originated from. As individuals died at different time in the experiment, the number of 

days has been estimated relative to death. The specific body mass loss is expressed as %. 

The vertical dashed line shows a rupture in the slope of all three treatments. 
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Figure S15: Specific body mass loss (dm/mdt) expressed as % according to body condition. 

Colour indicates the treatment sardines originated from. The segmented regressions are 

indicated by the black line and the 95% confidence intervals with dashed lines. The 

breakpoint along with its 95% CI is also indicated at the bottom of the figure. 
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Figure S16: Respiration rates (in mg O2.h-1.kg-1) during the first 10 days of the experiment 

according to the feeding conditions sardines encountered before the start of the 

experiment. A) mean daily respiration rate, B) standard respiration rate (as estimated by 

the 10% quantile and representing mostly maintenance metabolism), C) ‘Activity’ related 

respiration rate (as estimated by the difference between the daily mean and minimum 
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values). Boxes sharing common letters are not significantly different from each other 

according to Bonferroni-corrected Wilcoxon tests. 

 

Figure S17: Mean ± SE body condition of sardines sampled in the wild before (in blue) or 

after (in red) 2008 for each month of the year. 
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Figure S18: Body condition of sardines sampled in the wild before or after 2008 depending 

on maturity stages. n indicates the sample size in each category. Boxes sharing common 

letters are not significantly different from each other according to Bonferroni-corrected 

Wilcoxon tests. Maturity stage 1 corresponds to sexual rest, stages 2 to 4 to increasing 

development of the gonads, 5 to active spawning and 6 to post spawning. 

 

 

  



175 

 

Chapter 5 

Appendix A: Gonad compartment 

Most of spawning events occurred between December and February (Chapter 3) and the in-

situ gonadosomatic index also decreased at this period (Brosset et al., 2016b). Without solid 

information on the reproduction period of sardines, we assumed that the reproduction 

buffer ER and the gonads EGo were equal to zero on March 1
st

. For the same reasons, the 

energy allocation p!"# from the reproduction buffer to gonads was assumed to start on 

September and ended on March and was defined such as:  

 

p!"# = $%%[p!"#]V%%%%%if%%allocation%period%%0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%otherwise  [A.1] 

 

with the volume-specific allocation rate to gonads [p! Go] (in J d
-1 

cm
-3

), the temperature 

correction factor cor& and the structural length L (in cm). Note that the allocation to gonads 

also depends on the available energy in the reproduction buffer ER: 

 

p!"# = $%%%p!"#%%%%%%if%%E' >%p!"#dt%%%%%%%%%%%%%0%%%%%%%%%%otherwise%%%%%%%%%%%%%%%%%%%%% [A.2] 

 

with dt the time step. 

Then, we supposed that the energy allocation from the reserve E to the reproduction buffer 

ER does not require any chemical transformation. However, the transformation of the 

reproduction buffer into gonads has an efficiency of κR: 

 

()*
(+ = ,1 - ./p2! - k3E45% -%p!"# [A.3] 

()67
(+ = .'p!"# [A.4] 

 

Further, the reproduction period was fixed from December 1
st

 to March 1
st

 (based on 

reproduction event observed during experimentations and in-situ GSI (see Brosset et al. 

2016). If the energy content in the gonads is higher than the energy requirements for one 
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batch, we have a spawning event. Energy requirements of one batch Ebatch (in J) depended 

on  the total fish length and was estimated using equation found by Brosset et al. (2016): 

 

�Y\É^_ = �#jÌ}|.} × X ~ ÌÍÌÌm  [A.5] 

 

with the physical total length L (in cm) and E0 the energy content of 1 egg (in J) . 

 

This equation was available for fish between 11 and 15 cm. We assumed the same relation 

for larger fish but Ebatch = max(Ebatch, 0) for smaller ones. Further, the between-batches 

period was also size dependent: 17 days for individuals smaller than 13cm, 12.25 days for 

those between 13 and 16 cm and 7.81 days for individuals larger than 16 cm (Ganias et al., 

2003). The reproduction period ended on March 1st and spawning ceased until the next 

reproduction period.  
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Figure S19: Observation data (black dots) and fitted Fourier series on the median values 

(red lines) of temperature (A), plankton concentration (B) and scale functional response f 

(C) in the Gulf of Lions. 
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Figure S20: Distribution of total length and body condition index of in-situ sardine 

population. Red lines represent the normal distribution fit on observations. 
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Figure S21: Weight (without gonad) and total length relationship of sardines fished on 

March between 2008 and 2019. The two quantile regression curves drawn were fitted on 

the 97.5 (in blue: W = (0.21 x L)3) and 2.5 quantiles (in red: W = (0.17 x L)3).   
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Figure S22: Length and body condition index of in-situ population samples in March (in 

red) and the 10,000 modeled sardines using in the simulation (in black) 
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Figure S23: Fitted Fourier series on the median values (red lines) of mesozooplankton 

concentration in the Gulf of Lions. 
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INTRODUCTION

Although scientists have often assumed that mar-
ine ecosystems are mostly controlled by bottom-up
processes (Aebischer et al. 1990, Frederiksen et al.
2006), the reverse effect, i.e. top-down control, or
even trophic cascades may nonetheless exist (Ainley
et al. 2006, Österblom et al. 2006). Other studies have
proposed that control in marine food chains is dyna -
mic and that it can alternate between bottom-up and
top-down controls (Litzow & Ciannelli 2007, Cury et
al. 2008). In particular, marine mammals play a con-
siderable role within marine ecosystems as their
abundances and distributions could impact the struc-

ture and functioning of those ecosystems (Roman et
al. 2014, Kiszka et al. 2015). Although they might for-
age on a large variety of prey, from phytoplankton to
fish or other marine mammals (Bowen 1997, Astruc
2005), they are usually considered as top predators
and often feed on prey that are also exploited by fish-
eries (Kaschner et al. 2004, Lockyer 2007). Even
where marine mammals are thought to mostly con-
sume non-exploited prey species, local competitions
with fisheries could appear as a result of ‘regional
and temporal aggregations of marine mammals in
highly productive areas which are likely to coincide
with high density fishing areas’ (Kaschner et al. 2004,
p. 57). Consequently, interactions between fisheries

© Inter-Research 2018 · www.int-res.com*Corresponding author: quentin.queiros@ifremer.fr 

Dolphin predation pressure on pelagic and demersal 
fish in the northwestern Mediterranean Sea

Quentin Queiros1,*, Jean-Marc Fromentin1, Guillelme Astruc2, Robert Klaus Bauer1, 

Claire Saraux1

1MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34200 Sète, France
2CEFE, CNRS, Univ Montpellier, Univ Paul Valery Montpellier 3, EPHE, IRD, 34293 Montpellier, France

ABSTRACT: Sardine Sardina pilchardus, anchovy Engraulis encrasicolus and European hake
Merluccius merluccius represent a significant part of the commercial landings in the Gulf of Lions
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estimate the current predation pressure of bottlenose dolphins Tursiops truncatus and striped dol-
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results showed that dolphin predation pressure on sardine and anchovy was extremely low in the
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and marine mammals and even trophic competition
in some cases might occur (Bearzi 2002, Pusineri
2005). These frequent interactions between marine
mammals and different types of fisheries have dou-
ble stakes, as they may induce mortality and serious
injury for marine mammals but also serious conse-
quences for fishermen due to depredation within the
catch (Bearzi 2002, Werner et al. 2015). In particular,
incidental mortality of marine mammals due to by -
catch represents an issue for dolphin conservation
(Brotons et al. 2008, Read 2008, Reeves et al. 2013).
On the other hand, depredation (when dolphins take
bait or hooked target fish) is an economic concern
both worldwide (Read 2005, Snape et al. 2018) and in
the Mediterranean Sea, where it affects mostly
immobile fishing gear such as trammel nets and gill-
nets (Bearzi 2002, Gnone et al. 2011, Pardalou &
Tsikliras 2018) but also longlines (Bearzi 2002), purse
seines (Reeves et al. 2001), trawl nets (Reeves et al.
2001) and fish farms (López 2006). Finally, overfish-
ing of dolphin prey species is also known to impact
dolphin populations, along with other human activi-
ties such as pollution, habitat degradation or loss,
tourism and climate change (Coll et al. 2010, Gonza-
lvo et al. 2014, Pennino et al. 2017).

Most of the fish stocks in the world are either fully
exploited (61%) or overexploited (28%) (Sinclair et
al. 2002, FAO 2014). This worrying situation is even
more acute in the Mediterranean Sea, where an
alarming decrease of the main exploited populations
has been observed since 1990 (Vasilakopoulos et al.
2014). In those detrimental conditions, the energetic
needs for top predators might not always be fulfilled
(Bearzi et al. 2006, Österblom et al. 2006, Cury et al.
2011) but also, any additional pressure might affect
the stock even more. In particular, natural predation
of marine mammals could have additional or syner-
getic effects on fish stocks. Although the striped dol-
phin Stenella coeruleoalba — the most abundant dol-
phin in the Mediterranean Sea — feeds mostly on
non-commercial prey, it can sometimes also exploit
highly valuable commercial resources, such as Euro-
pean hake Merluccius merluccius and small pelagics
in the western Mediterranean Sea (Bearzi 2002,
Gómez-Campos et al. 2011, Aznar et al. 2017). Addi-
tionally, the bottlenose dolphin Tursiops truncatus

mostly resides on the continental shelf during sum-
mer (Laran et al. 2017), where most of the Mediter-
ranean fisheries operate, and feeds preferentially on
demersal prey such as the European hake, resulting
in potentially high interactions with several local
fisheries (Bearzi 2002, Kaschner et al. 2004, Gonzalvo
et al. 2014).

In the Gulf of Lions, sardines Sardina pilchardus

and anchovies Engraulis encrasicolus have high eco-
nomic interest, and, until the mid-2000s, their land-
ings represented up to 50% of total annual landings
(Bănaru et al. 2013). European hake is also a signifi-
cant part of the commercial landings in this area and
has a high economic value (Mellon-Duval et al.
2017). However, stocks of European hake and small
pelagics (both sardines and ancho vies) have shown
important declines during the last decades (GFCM
2017a,b). The decline in European hake stock is a
clear and well-documented case of overfishing due
to overcapacity (GFCM 2017a), while environmental
changes appear as the main drivers in the decline in
condition and size of small pelagic fish in the Gulf of
Lions (Van Beveren et al. 2014, Saraux et al. 2018). In
those already poor conditions for small pelagics and
hake, natural predation of top predators could have
more of an impact. The predation pressure of
Atlantic bluefin tuna Thunnus thynnus on both sar-
dines and anchovies in the Gulf of Lions has recently
been studied and shown to be low (<2%; Van Bev-
eren et al. 2017) but no study has focused on marine
mammals in this area. Yet marine mammals seem to
be important consumers of prey in various ecosys-
tems, especially cetaceans because of their large
body sizes and relatively high metabolic rates
(Bowen 1997, Laran et al. 2010). While 3 studies
reported prey consumption by dolphins in French
marine areas (the Bay of Biscay; Pusineri 2005, Spitz
et al. 2018 and the Ligurian Sea; Laran et al. 2010), no
study has estimated the predation pressure this could
exert on the prey (i.e. prey consumption related to
the actual amount of prey biomass). The estimation of
predation pressure indeed requires a large and
diversified amount of information both on prey and
predators (Essington et al. 2001), which is difficult to
obtain for marine species because of practical con-
straints in observing animals (Van Beveren et al.
2017). Bottlenose and striped dolphins are the 2 main
dolphin species in the Gulf of Lions (Laran et al.
2017). Their diets are principally composed of fish
and cephalopods. European hake is the main prey of
bottlenose dolphins and also appears in the striped
dolphin diet, while small pelagics, especially sar-
dines, are present in the diet of both dolphin species
(Astruc 2005, Gómez-Campos et al. 2011).

In this study, we aimed to assess, for the first time,
the predation pressure exerted by the 2 dolphin spe-
cies (bottlenose and striped dolphins) on the main
exploited fish (European hake, sardine and anchovy)
in the Gulf of Lions. To do so, we used and adapted
an original approach previously developed by Van
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Beveren et al. (2017), which combines several data
sources on prey and predators (aerial surveys, stom-
ach contents or individual energetic values) and
modeling approaches (energetic, stock assessment
and statistical models). To take into account the
numerous data limitations and estimate the uncer-
tainty associated with our estimations, we further
developed a simulation framework, similar to the
approach recently used by Spitz et al. (2018).

MATERIALS AND METHODS

Gulf of Lions

The Gulf of Lions is located in the northwestern
Mediterranean Sea (Fig. 1) with a bathymetry
between 0 and 2500 m and covering about
15 000 km2 (Mellon-Duval et al. 2017). The dominant
forcing drivers in the area are the strong northwest-
ern (tramontane) and northern (mistral) winds, the
western Mediterranean mesoscale circulation and
the freshwater input from the Rhone River (Millot
1990, Petrenko et al. 2005). The Gulf of Lions repre-
sents an important feeding area for fish, birds and
mammals, for both resident and migratory popula-
tions (Bǎnaru et al. 2013).

Dolphin predation pressure

To estimate dolphin predation pressure, 5 different
processes must be taken into account: 3 regarding
the predators (their abundance, diet and energetic

demands) and 2 regarding their prey (their energetic
values and stock biomass; Fig. 2). Dolphin predation
pressure on a given prey was calculated as follows:

(1)

where nb is the number of dolphins or prey, i repre-
sents a given dolphin in the population, DEEi is its
daily energy expenditure depending on its mass and
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Fig. 1. Gulf of Lions, showing 200 and 2000 m bathymetry

Fig. 2. Schematic representation of the data used to
 estimate predation pressure. See Table S1 in the 

Supplement for details on sources of data
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reproductive status, %Wi,j is the percentage of bio-
mass of prey j in its diet, Ej is the energy content of
prey j, αi is the assimilation efficiency and stockk is
the stock biomass of prey k.

The estimation of predation pressure thus implies
several steps, especially to estimate the dolphin
popu lation and demography or their daily consump-
tion. As the estimations of the parameters re lated to
these processes of interest exhibit substantial uncer-
tainty (e.g. unknown energetic values for some prey
species in the Gulf of Lions) and variability (e.g.
interseasonal and interannual variabil-
ity in dolphin abundances), a simula-
tion framework was developed, similar
to the method employed by Spitz et al.
(2018), in which prey consumption and
energy re quirements were estimated
using Monte Carlo simulations. In our
simulation framework, each simulation
was divided into 3 main parts (‘Dolphin
population and demography’, ‘Daily
consumption’ and ‘Predation pres-
sure’), corresponding to 12 successive
steps presented in details in the next
sections (see Fig. 3 and Table S1 in
the Supplement at www.int-res.com/
articles/suppl/m603p013_supp.pdf).
Predation pressure was estimated
through 10 000 Monte Carlo simula-
tions (Man ly 2006), in which each input
parameter was drawn from a given dis-
tribution (e.g. normal, uniform and
gamma distributions) independently of
each other. The predation pressure
results are presented as 95% confi-
dence in tervals (CI) to remove outliers.

Dolphin population and demography

(Part 1)

Annual dolphin abundances in the
Gulf of Lions (95% CI) were estimated
from Ifremer aerial surveys from 2000–
2003 and 2009–2012 using the line
transect approach (Bauer et al. 2015).
Following Bauer et al. (2015), and tak-
ing into account uncertainties and
year-to-year variations, dolphin abun-
dances were estimated first using uni-
form distribution from aerial survey
years (for the choice of the year) and
then a draw following a log-normal

distribution fitted on density and 95% CI of the cho-
sen year (Fig. 3, Part 1, Step 1). As the aerial surveys
did not enable us to discriminate between bottlenose
and striped dolphins; see Bauer et al. 2015), we
assumed that the dolphin abundance estimated in
this study represented the sum of both bottlenose
and striped dolphin populations. The striped dolphin
is the most abundant species in the northwestern
Mediterranean Sea (around 90% of dolphins), with
larger group sizes than bottlenose dolphins (Gannier
2005, Gómez De Segura et al. 2008, Laran et al.

Fig. 3. Schematic representation of the 12 steps (3 parts) of the simulation 
framework used to estimate predation pressure
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2017). However, bottlenose dolphin groups have also
been observed in the Gulf of Lions and they could
represent a substantial proportion of the dolphin
population during summer (Laran et al. 2017, C.
Saraux unpubl. data from PELMED surveys). To take
this variability into account, a uniform draw was
done be tween 10 and 90% to estimate striped dol-
phin percentage into the dolphin population for each
simulation (Fig. 3, Part 1, Step 2).

Because energy expenditure varies with develop-
mental and reproductive stage as well as body mass
(Lockyer 2007), the abundance of dolphins was sep-
arated into 3 demographic groups: calves (age 0 to
2; Calzada et al. 1996, Reeves & Read 2003), juve-
niles (age 2 to 9; Mattson et al. 2006) and adults
(age 9 to 35; maximal value observed in Stolen et al.
2002). According to previous studies, dolphin popu-
lations are generally composed of 6 to 27% calves,
15 to 30% juveniles and from 43 to 79% mature
adults (Wells & Scott 1990, Calzada et al. 1994,
Mattson et al. 2006). Sex ratio does not vary much
between the 2 species, with 47 to 62% and 43 to
64% of males for bottlenose and striped dolphins,
respectively (McFee & Hopkins-Murphy 2002,
Stolen et al. 2002, Centro Studi Cetacei 2012). Uni-
form draws were performed on the above stage-
class proportions and sex-ratio values, so that each
individual was attributed a sex and stage class (Fig.
3, Part 1, Step 3). Finally, the age of each individual
was estimated drawing from a uniform distribution
on the age range of its stage class, while a Bernoulli
distribution, B(p) (with p equal to the ratio of the
number of calves over the number of ma ture fe -
males) was used to assess whether a mature female
was nursing. At the end of this first part, each indi-
vidual of the simulated population was described in
terms of species, sex, age and reproductive status
(i.e. for mature females whether they were nursing
or not) (Fig. 3, Part 1, Step 4).

Daily consumption (Part 2)

Daily energy requirement

Empirical relationships have been commonly em -
ployed to quantify requirements of dolphins, baleens
or seals, with all of them based on allometry and rela-
tionships with body mass (e.g. Sigurjónsson & Vík-
ingsson 1997, Barlow et al. 2008, Laran et al. 2010).
Therefore, dolphin age had to be converted into
body mass using a combination of age−length and
length−mass empirical relationships (summarized in

Tables S2 & S3). Due to a lack of information for
striped dolphins, but assuming good correlation
between the 2 species, length−mass equations of bot-
tlenose dolphins were used here to estimate mass of
striped dolphins (Fig. 3, Part 2, Step 5). The existing
length−mass relationships were derived using data
from stranding and capture−release projects carried
out in the Atlantic Ocean (Table S3); however, data
on stranded dolphins in this area are consistent with
those relationships (see Fig. S1), although striped
dolphins in the Atlantic Ocean appear to be bigger
and heavier than those in the Mediterranean Sea (Di-
Méglio et al. 1996).

The 3 empirical relationships most frequently used
to estimate energy requirements of marine mammals
(e.g. Barlow et al. 2008, Laran et al. 2010) were
applied to estimate dolphin energy requirements:

(2) 

(Kleiber 1975),

(3) 

(Sigurjónsson & Víkingsson 1997),

(4) 

(Boyd 2002),

where R is daily energy requirement, α is assimila-
tion efficiency [0.6;0.9], β is the active metabolism
factor and Mdolphin is dolphin body mass.

Eq. (2) results from an adaptation of Kleiber’s
equation for basal metabolic rate which has been
developed for homeotherms and used on terrestrial
mammals (Kleiber 1975, Leaper & Lavigne 2007).
This equation assumes that the metabolism of ceta -
ceans is 2 to 3 times (sometimes even 5 times)
higher than the basal metabolic rate (Lavigne et al.
1986, Kenney et al. 1997, Pusineri 2005, Rechsteiner
et al. 2013). We therefore assumed to draw β from a
Gamma distribution, with mean equal to 2.5 and
the 99% CI upper value equal to 5 (i.e. shape
parameter of 8.33 and scale parameter of 0.30). The
assimilation factor, which is usually assumed to
vary between 0.7 and 0.8 (Lockyer 1981), could
vary with prey condition, size and species (Leaper
& Lavigne 2007). To take into account this variabil-
ity, α was randomly drawn following a uniform dis-
tribution between 0.6 and 0.9.

In our simulations, R was estimated using first a
uniform draw on the 3 empirical relationships (for the
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model choice) and then a uniform and gamma draw
on its coefficients (α and β) (Fig. 3, Part 2, Step 6). A
sensitivity analysis of energy requirement models
was performed reproducing the same framework 3
times, once per equation. Finally, nursing females
have additional requirements due to suckling. For
that reason, their energetic demand requires an
increase estimated to be between 48 and 97% (see
Kastelein et al. 2002, 2003). This was taken into
account in the simulation using a uniform draw on
those additional requirements for nursing females
(Fig. 3, Part 2, Step 6a).

Dolphin diet

Dolphin diet was estimated using previously pub-
lished stomach content data. These data were aggre-
gated, summing abundance, weight and occurrence
by prey species (see Tables S4 & S5). Briefly, these
data had been acquired from by-catch or stranded
dolphins along the Mediterranean coasts. Prey was
identified using tough pieces (otoliths and cephalo-
pod beaks) and body length and mass were esti-
mated either directly or indirectly through empirical
relationships or by using the mean body mass of the
species (see Würtz & Marrale 1993, Astruc 2005).
From this data, we calculated %Wi,j, the percentage
of biomass of prey j (family or species) in the diet of
dolphin i.

Aside from the 3 species of interest (i.e. hake, sar-
dine and anchovy), all species contributing to at least
1% of biomass were kept for further analyses.

Prey consumption

Daily prey consumption was estimated using
energy requirements and diet (in terms of biomass
and energetic values of prey; Fig. 3, from Part 2, Step
7 to 9). To convert prey biomass into energy, ener-
getic values of each prey item had to be known.
Instead of assuming a generic energetic value for
each prey class (e.g. demersal fish), we used specific
values for each of the 27 prey species (see Table S6).
When energetic values were not available at the spe-
cies level (in about half of the cases), we used ener-
getic values available at the lowest phylogenetic
level. Further, energetic values can vary between
years, seasons and geographic zones (Spitz et al.
2010). To take into account both sources of uncertain-
ties, the energetic value of each prey species was
estimated using a normal distribution N(µ,σ) of the

mean (µ), in which the variance (σ) depended on the
taxonomic level at which information was available
(Fig. 3, Part 2, Step 8, Table S6). Then the total daily
consumption as well as the daily biomass of each
prey species consumed per day were estimated for
each dolphin as follows:

(5)

where Ci (kg d−1) is the total amount of prey ingested
daily by dolphin i and Ri is the daily energy require-
ment of dolphin i. This gives the biomass of prey j

consumed per day by dolphin i (Ci,j) as:

(6)

The biomasses of European hakes, sardines and
anchovies consumed per day were calculated using
Eq. (6) (Fig. 3, Part 2, Step 9). As the diet composi-
tion and energy content of the prey were assumed
to be constant throughout the year, in the absence
of more detailed information on seasonal variations,
daily consumptions were summed over all dolphins
during 1 yr to estimate annual consumptions (Eq. 1
and Fig. 3, Part 3, Step 10). However, our study inte-
grates temporal changes in these 2 parameters, as
the diet and energy content data result from sam-
ples collected during all seasons.

Predation pressure (Part 3)

Annual stock biomass of small pelagics was
 calculated using data collected from scientific
acoustic surveys carried out by Ifremer every sum-
mer from 1993 to 2016 (PELagiques MEDiterranée
[PELMED]; described in Sa raux et al. 2014). Euro-
pean hake biomass in the Gulf of Lions was
derived from data collected during annual stan-
dardized bottom trawl scientific surveys (MEDITS
Working Group 2013) and stock assessment mod-
elling (GFCM 2017a). Here, for each Monte Carlo
simulation, stock biomasses of hake, sardine and
anchovy were estimated by uniform draw between
minimal and maximal values of stock biomasses to
take into account year-to-year variations and
inherent uncertainties in stock assessment proce-
dures (i.e. sardine: 26 054 to 264 024 t, an chovy:
13 654 to 112 018 t, hake: 2755 to 5348 t; GFCM
2017a,b) (Fig. 3, Part 3, Step 11). The predation
pressure on each species was finally estimated as
the ratio between its biomass consumed by dol-
phins and its stock biomass in the Gulf of Lions
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(Fig. 3, Part 3, Step 12). All simulations were per-
formed using R (R Core Team 2018).

RESULTS

Dolphin population

According to Bauer et al. (2015), and taking into
account year-to-year variations, dolphin densities
were estimated to be between 0.031 and 0.345 dol-
phins km−2 (medians of minimal and maximal bound-
aries of 95% CI). Multiplying these densities by the
surface of the study area, populations of dolphins
were estimated at between 460 and 5160 individuals
in the Gulf of Lions.

Daily consumption

Dolphin daily energy requirements

Mean mass was higher for bottlenose than striped
dolphins regardless of the developmental stage (e.g.
adult mean ± SD mass was estimated at 187 ± 17 and
86 ± 4 kg for bottlenose and striped dolphins, respec-
tively; Table 1). Using allometric relationships, the
mass of each dolphin was converted into energy
requirements. Mean (±SD) energetic demands of
bottlenose dolphins were about 1.6 times higher than
those of striped dolphins for a given stage (e.g.
61 700 ± 19 800 and 38 200 ± 13 600 kJ d−1 ind.−1 for
adult bottlenose and striped dolphins, re spectively;
Table 1). Conversely, mass-specific re quire ments of
bottlenose dolphins were lower than those of striped
dolphins, but the difference in energy requirements
between stages within the same species was small
(between 325 and 335 kJ kg−1 and between 422 and
439 kJ kg−1 for bottlenose and striped dolphins,
respectively; Table 1).

Dolphin diet and energetic values of prey

Diets of both dolphin species were dominated by
teleosts in terms of prey abundance (about 89 and
63% for bottlenose and striped dolphin, respec-
tively; Tables S4 & S5). How ever, the picture is dif-
ferent in terms of biomass. Bottlenose diet was
dominated by teleosts (86%; Table S4), while
that of the striped  dolphin was dominated by
cephalopods (66%; Table S5). Be sides these 2
dominant groups of prey, crustaceans were also
present in dolphin diets but represented less than
5% of the prey in terms of abundance and biomass
(Tables S4 & S5).

European hake was the dominant prey for bottle-
nose dolphins in terms of abundance (32%), bio-
mass (30%),  frequency and index of relative impor-
tance (IRI) (Fig. 4a, Table S4). Although blue
whiting was the most abundant prey in terms of
abundance (17%) for the striped dolphin (Fig. 4b,
Table S5), squids played a key role in its diet in
terms of abundance (32%), biomass (65%) and IRI
(56%). The main squid species in terms of biomass
were the European flying squid, European squid
and reverse jewel squid (Fig. 4b, Table S5). Sardine
and anchovy consumptions were low for both dol-
phin species but sardine could represent up to 5%
of the striped dolphin diet in terms of biomass
(Fig. 4b, Table S5).

Finally, 27 prey species were kept for the study
(%W > 1% together with sardine, anchovy and
European hake), representing about 94 and 89% of
biomass consumed by bottlenose and striped dol-
phins, respectively (Fig. 4). Energetic values of
 sardine and anchovy were higher than that of
European hake (10.2 ± 2.9, 7.0 ± 3.0 and 3.9 ±
0.2 kJ g−1 respectively; Table S6). In general, fish
prey had greater energetic values than cephalo -
pods. All energetic values of prey are summarized
in Table S6.
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Species Stage Length Mass Individual daily Energetic Daily Mass-specific
(cm) (kg) energetic requirements requirements consumption consumption

(kJ d−1 ind.−1) per kg (kJ kg−1) (kg d−1 ind.−1) (%)

Bottlenose Adults 252 ± 7 187 ± 17 61700 ± 19800 335 ± 121 11.3 ± 3.7 6.1 ± 2.3
dolphin Juveniles 224 ± 15 133 ± 27 42300 ± 10400 325 ± 72 7.7 ± 2.0 5.9 ± 1.4

Calves 167 ± 23 57 ± 21 − − − −

Striped Adults 196 ± 3 86 ± 4 38200 ± 13600 439 ± 152 9.0 ± 3.3 10.3 ± 3.7
dolphin Juveniles 176 ± 13 64 ± 13 26700 ± 7100 422 ± 106 6.3 ± 1.7 9.9 ± 2.6

Calves 130 ± 13 26 ± 7 − − − −

Table 1. Mean (±SD) length, mass, individual energetic requirements per day and per kg mass, daily consumption and mass-
specific consumption (daily consumption/mass) for all 3 developmental stages of both dolphin species
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Dolphin prey consumption

Dolphins consumed 9 ± 4 kg d–1 ind.–1 of prey, i.e.
8 ± 3% of their own mass per day. This consumption
was higher for bottlenose dolphins in terms of kg d−1

ind.–1 (with 11.3 ± 3.7 kg d–1 ind.–1) (mean ± SD, for all
subsequent values), but higher in terms of mass-
 specific consumption for striped dolphins (10.3 ±
3.7%, Table 1). Assuming constant daily alimenta-
tion throughout the year, the total amount of prey
ingested by dolphins in the Gulf of Lions was 6400 ±

6700 t yr−1, which corresponds to 424 ±
444 kg km−2 yr−1.

Among the 3 species of interest, dol-
phins consumed mostly European hake
(about 1250 ± 1461 t yr−1), and this con-
sumption was mainly due to the bottle-
nose dolphin (1065 ± 1353 t yr−1, i.e. 3.1 ±
1.1 kg d−1 ind.−1; Table 2). Annual con-
sumption of both sardine and an chovy
was much lower than hake (203 ± 222 t
yr−1) and mostly by striped dolphins (166 ±
198 t yr−1), which mostly consumed sar-
dine (142 ± 169 t yr−1; Table 2). Median
values and 95% CI of annual consumption
of main prey by bottlenose and striped
dolphins are summarized in Table 3.

Dolphin predation pressure

To estimate predation pressure of dol-
phins in the Gulf of Lions and to take into
account the variability of intermediate pro-
cesses, 10 000 dolphin populations were
simulated, corresponding to about 16 mil-
lion individuals. The median predation
pressure of both dolphin species on hake
was estimated at around 23% (95% CI:
5–110%; Fig. 5a), while predation pressure
estimates on sardine and anchovy were al-
ways lower than 0.5% (note that the pre-

dation pressure on sardines was twice as high as on
anchovies: median of 0.09% [95% CI: <0.1 to 0.5%]
and 0.05% [95% CI: <0.1 to 0.2%] for sardine and an-
chovy, respectively; Fig. 5b,c). Testing the sensitivity
of these results to the equations used to estimate daily
energetic re quirements, we found similar results with
all 3 equations: predation pressure estimation on hake
(considering each energy relationships separately)
led to 21, 24 and 24% for Eqs. (2), (3) & (4) respectively
while predation pressure differences were <0.1% for
small pelagics (Fig. S2).
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Species Annual hake Individual Annual Individual Annual Individual 
consumption daily hake sardine daily sardine anchovy daily anchovy

(t yr−1) consumption consumption consumption consumption consumption
(kg d−1 ind.−1) (t yr−1) (kg d−1 ind.−1) (t yr−1) (kg d−1 ind.−1)

Bottlenose dolphin 1065 ± 1353 3.1 ± 1.1 26 ± 33 0.1 (<0.1) 11 ± 13 <0.1
Striped dolphin 185 ± 220 0.5 ± 0.2 142 ± 169 0.4 ± 0.2 24 ± 29 0.1 (< 0.1)

Table 2. Mean (±SD) annual and individual daily consumption of European hake, sardine and anchovy by bottlenose and 
striped dolphins

Fig. 4. Percent individual and cumulative biomass of principal prey
species consumed by (a) bottlenose and (b) striped dolphins in the
northwestern Mediterranean Sea between 1985 and 2012 (see Table 3 

for species names)
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DISCUSSION

Potential sources of variability

This study aimed to estimate the predation pressure
of the 2 main dolphin species on commercial fish in-
habiting the Gulf of Lions, especially hake, sardine
and anchovy. Predation pressure was estimated by
combining 5 different processes requiring a large
quantity and variety of data on both prey and preda-
tors, which probably explains why this work repre-
sents, to our knowledge, the first estimation of dolphin
predation pressure in the Mediterranean Sea. None-
theless, some data sources, such as dolphin censuses,
displayed high variability, while other data was miss-
ing (e.g. prey energetic value at the species level for
all species), leading to uncertainties in the predation
pressure estimates. To account for such data limita-
tions and quantify the uncertainty around our result,
we developed a method based on Monte Carlo simu-
lations in which each parameter was drawn from a
given distribution rather than using a mean value.

Sensitivity analyses of similar models have demon-
strated that abundance estimates and residency

ratios are the most influential parameters in con-
sumption estimations (Smith et al. 2015, Spitz et al.
2018). In our study, dolphin abundance estimation
was a process with relatively high variability and
uncertainty. Indeed, dolphin abundance varied be -
tween 460 and 5160 individuals according to year-to-
year variations estimated by Bauer et al. (2015).
However, this did not take into account possible sea-
sonal va riations, which are suspected to be important
but remain difficult to estimate because of a lack of
data. Nonetheless, the range of our estimations is
close to past estimates of dolphins in the Gulf of
Lions. Based on 2 seasons and 1 given year, Laran et
al. (2017) estimated striped dolphin abundance to be
between 424 and 8300 individuals in winter (95% CI)
and bottlenose dolphin abundance from 466 to 3805
individuals in summer (95% CI), while Di-Méglio et
al. (2015) estimated bottlenose dolphin abundance
over 2 yr as 385 to 1095 individuals (95% CI). Here,
the primary source of uncertainty probably arises
from the proportion of bottlenose versus striped dol-
phins that inhabit the Gulf of Lions, which was there-
fore drawn uniformly using a large range of values,
i.e. from 10 to 90% according to different sources
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Species Common name Bottlenose dolphin Striped dolphin
Median 95% CI Median 95% CI

Merluccius merluccius European hake 749 112−3693 131 19−649
Conger conger European conger 607 91−2993 − −
Pagellus erythrinus Common pandora 179 27−881 − −
Loligo vulgaris European squid 139 21−683 145 21−718
Octopus vulgaris Common octopus 88 13−436 − −
Todarodes sagittatus European flying squid 72 11−357 376 53−1864
Lepidopus caudatus Silver scabbardfish 87 13−427 − −
Pagellus sp. Seabream unknown 85 13−421 − −
Pagellus acarne Axillary seabream 80 12−396 − −
Dentex dentex Common dentex 65 10−320 − −
Boops boops Bogue 42 6−207 183 26−907
Micromesistius poutassou Blue whiting 34 5−170 110 16−545
Molva sp. Ling unknown 30 5−149 − −
Gadidae sp. Cod unknown 29 4−143 − −
Eledone cirrhosa Horned octopus 25 4−123 − −
Sardina pilchardus Sardine 18 3−90 100 14−499
Engraulis encrasicholus Anchovy 7 1−37 17 2−84
Histioteuthis reversa Reverse jewel squid − − 206 29−1021
Illex coindetii Broadtail shortfin squid − − 122 17−606
Onychoteuthis banksii Common clubhook squid − − 88 12−434
Ancistroteuthis lichtensteini Angel squid − − 83 12−413
Histioteuthis bonnellii Umbrella squid − − 69 10−341
Todaropsis eblanae Lesser flying squid − − 50 7−250
Chiroteuthis veranyi Long-armed squid − − 29 4−144
Chauliodus sloanei Manylight viperfish − − 22 3−108
Ancistrocheirus lesueurii Sharpear enope squid − − 21 3−104
Sepia officinalis Common cuttlefish − − 20 3−99

Table 3. Median and 95% CI of annual consumption of main prey (in tons) by bottlenose and striped dolphins
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(Gannier 2005, Laran et al. 2017, PELMED obs.,
unpubl. data). As diet differs substantially between
the 2 species, this uncertainty propagates into the
estimation of hake consumption, which explains the
large CI.

After population census, energetic requirements
should have the second strongest influence on con-
sumption estimations (Spitz et al. 2018). In our study,
we used 3 different energetic models based on the
dolphins’ body mass, in which a range of values were
applied to each model parameter (i.e. assimilation
efficiency and active metabolism). Yet the sensitivity
analysis on these 3 equations showed that the conse-
quence on the final predation pressure estimate was
small for hake (about 1 to 2%) and negligible for both
sardine and anchovy (<0.1%), which indicated that
the sensitivity of our results did not primarily come
from the equations used for dolphin energy require-

ments, but more clearly from dolphin abundance
estimations. Additional energetic requirements of
nursing females were not negligible (up to 97%; see
Kastelein et al. 2002) and were taken into account in
our study.

Finally, the seasonal or interannual variability
could not always be explicitly estimated in some
parameter values or relationships (e.g. in diet or
prey energy content). Still, this variability was inte-
grated by using data and results collected from all
seasons.

Consumption estimates and 

energetic requirements

Our median results are of the same order of magni-
tude as in other studies. Indeed, our estimates of
daily consumption of dolphins are close to estima-
tions found for the Ligurian Sea and the eastern Ion-
ian Sea: between 6.3 and 9.0 kg d−1 for the Gulf of
Lions (this study), between 2.9 and 6.0 kg d−1 in the
Ligurian Sea (Laran et al. 2010) and around 5.4 kg d−1

for the Ionian Sea (Bearzi et al. 2010). Furthermore,
annual consumption removal by dolphins estimated
here for the Gulf of Lions stands in between esti-
mates of the other 2 Mediterranean areas: 424 ± 444,
999 and 96 kg km−2 yr−1 for the Gulf of Lions (this
study), the Ligurian Sea (Laran et al. 2010) and the
Ionian Sea (Bearzi et al. 2010) respectively. Finally,
captive adult bottlenose dolphins exhibit similar
daily energetic requirements to those found in this
study (up to 330 kJ kg−1 of their own mass in captive
dolphins at Marineland® of Antibes [M. Oesterwind
unpubl. data] compared to 335 ± 121 kJ kg−1 calcu-
lated in the present study).

Predation pressure on small pelagics

In the Gulf of Lions, bottlenose and striped dol-
phins mostly showed little interest in sardine and
anchovy, which contributed to <1% biomass of their
diet, except for sardines in the striped dolphin diet
(5% in terms of biomass). Dolphins are known to
display a generalist and opportunistic feeding be -
havior, as with most top predators, and their feeding
regime is also area-dependent. While our results are
consistent with previous results from the Bay of Bis-
cay (0 and 3% for striped and bottlenose dolphins
respectively; Spitz et al. 2006a,b), sardines have
appeared as the key prey for striped dolphins (up to
60%) in some neighboring areas (along the eastern
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Fig. 5. Dolphin predation pressure (estimated through
10 000 simulations) on (a) sardine, (b) anchovy and (c) Euro-
pean hake. To avoid outliers, 95% CI were plotted. Dashed 

line = median
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coast of Spain; Gómez-Campos et al. 2011). The rel-
atively low proportion of sardine (and anchovy) in
the dolphin diets from the Gulf of Lions might thus
be related to the decrease in biomass, mean length
and body condition of those prey in this area (Van
Beveren et al. 2014). This has already been ob -
served along the Spanish Mediterranean coasts, for
in stance, where sardines constituted dolphins’ main
prey in the 1990s before the proportion of sardines
in their diet sharply declined in 2007− 2008 as a
result of sardine overfishing (Gómez-Campos et al.
2011). These low proportions led to low daily con-
sumption of anchovy (0.1 kg d−1 ind.−1 for both dol-
phin species) and sardine (about 0.3 kg d−1 ind.−1 for
striped dolphins, and lower for bottlenose). Again,
these results are similar to those found in the Bay of
Biscay, where the consumption of sardine and
anchovy was negligible for both dolphin species (up
to 0.2 kg of sardines d−1 ind.−1 for bottlenose dol-
phins; Pusineri 2005). Consequently, predation pres-
sure on sardine and anchovy was always very low,
i.e. below 0.5% in all simulations (median: 0.09%
for sardine and 0.05% for anchovy). Predation pres-
sure of dolphins on both small pelagic species is
even lower than that of Atlantic bluefin tuna (0.6 ±
0.2 and 1.9 ± 0.5% for sardines and anchovies
respectively; Van Beveren et al. 2017). This preda-
tion pressure by dolphins remains significantly
lower than the fishing pressure that is estimated (in
terms of harvest rate) to be at around 1 and 5% for
sardine and anchovy over the last 3 yr respectively
(GFCM 2017b). In conclusion, the poor stock status
of both sardines and anchovy in the Gulf of Lions
(mostly reflected by poor condition and lower
growth; see Van Beveren et al. 2014) is un likely to
be due to top-down control by either of the 2 dol-
phin species. Such a conclusion might also result
from the recent absence of common dolphin Delphi-

nus delphis in the Gulf of Lions, especially because
sardine and anchovy are indeed the main prey of
this species regardless of the area considered
(Young & Cockcroft 1994, Meynier et al. 2008,
Begoña Santos et al. 2014). While the common dol-
phin might have been expected in the Gulf of Lions
due to its preferred habitat (ranging between that of
striped dolphin [oceanic habitat] and bottlenose dol-
phin [coas tal habitat]), recent observations are very
scarce in the Gulf of Lions, although it seems to
have been more common until the middle of the
20th century (Bearzi et al. 2003, Gannier 2017). Rea-
sons for the disappearance of large common dolphin
populations in the northwestern Mediterranean
basin are still unclear, but may include decrease of

prey availability (e.g. due to competition with local
fisheries and/or overfishing), bycatch or hunting
before their protection by law, environmental
changes (e.g. increase of sea water temperature) or
contamination by xenobiotics (Bearzi et al. 2003,
Gannier 2017).

Predation pressure on hake

In contrast to small pelagics, consumption of hake
by dolphins was significant in the Gulf of Lions,
mostly due to bottlenose dolphins. This has been doc-
umented in other areas, such as the North Atlantic
where it was even higher (3 kg d−1 dolphin−1 in the
Gulf of Lions vs. 6 and 8 kg d−1 dolphin−1 off the Iber-
ian Atlantic coasts and in the Bay of Biscay, respec-
tively; Pusineri 2005, Begoña Santos et al. 2014).
Nonetheless, the predation pressure of the bottle-
nose dolphin on European hake was substantial in
the Gulf of Lions, but highly variable among the
 simulations, ranging from 5 to 110% (95% CI), with a
median value at around 23%. This large variability
probably originates from uncertainties in dolphin
abundance census and proportion of the 2 dolphin
species (see above). Predation pressure by dolphins
on hake remained, however, lower than fishing pres-
sure, which ranged between 38 and 73% over the
last 20 yr (from 1998 to 2017; GFCM 2017a). Similar
to the fisheries, bottlenose dolphins mainly target
ages 0, 1 and 2 of hakes (93% in abundance; see
Astruc 2005), so that fishing pressure and dolphin
predation act synergistically on juvenile hakes in the
Gulf of Lions, potentially amplifying growth overfish-
ing. Our study brings new, objective (quantified from
scientific data) information about marine mammal
and fisheries interactions in the Northwestern Medi-
terranean Sea. These interactions usually occur be -
cause of competition for a similar resource, and has
become a worldwide concern (Morissette et al. 2012,
Snape et al. 2018) — both in terms of conservation, as
they result in dolphin mortality due to by-catch (Hall
et al. 2000, Bearzi 2002) and in terms of economic
losses due to depredation or damage to fishing gear
(Bearzi 2002, Hamer et al. 2012), even if they could
be overvalued in some cases (Trites et al. 1997, Coll
et al. 2007, Gazo et al. 2008). This is true in several
parts of the Mediterranean Sea (e.g. Lauriano et al.
2009, Gonzalvo et al. 2014) where interactions with
fisheries are increasing (Brotons et al. 2008, Pardalou
& Tsikliras 2018). Furthermore, overfishing of hake in
the Gulf of Lions has generated a strong decline of
this population (see GFCM 2017a), which in turn has
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reinforced the natural mortality of hake due to dol-
phin predation. Indeed, predation pressure of dol-
phins depends on prey population size. Therefore, it
is expected to have been lower in the past, as the
hake population was significantly larger. The first
hake stock assessments in the Gulf of Lions between
1988 and 1991 (stock already overexploited) esti-
mated hake stock biomass to be between 6041 and
9017 t (Aldebert & Recasens 1996). Based on the
same simulation framework and assuming the same
dolphin population size and demography, the me -
dian predation pressure would indeed decrease to
about 12% (95% CI: 3 to 57%). This study shows that
the predation pressure of dolphins on hake is sub-
stantial in the Gulf of Lions and has been further
reinforced by current overexploitation of hake. This
might have an important impact, especially on bottle-
nose dolphin populations in coastal waters (Bearzi
et al. 2009, Gonzalvo et al. 2014). Therefore, these
 interactions should be more carefully considered in
the future management plans of the European hake
stock in the Gulf of Lions for both the conservation of
dolphins and the sustainability of the fisheries.

In conclusion, we used an original approach devel-
oped by Van Beveren et al. (2017), but went one step
further to account for multiple sources of uncertain-
ties in the estimation of predation pressure. We
showed that predation pressure of dolphins on sar-
dine and anchovy in the Gulf of Lions was extremely
low, indicating that dolphins probably have had little
impact on the population dynamics of those exploited
fish. In contrast, the predation pressure of dolphins
on hake is substantial in the Gulf of Lions and has
been further reinforced by current overexploitation
of this population. This situation is even more prob-
lematic as both the fishing industry and the dolphins
prey on the same resource: hake juveniles; a result
that should be considered in future management
plans of hake populations.
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ABSTRACT (250 words) 13 

A significant reduction in the size of ectotherms is being recorded globally and is believed to be a 14 

response to global warming. A notable example is the European sardine Sardina pilchardus in the 15 

Mediterranean Sea, where a decline in the size of individuals has caused a profound drop in total 16 

biomass of this important small pelagic species.  This is currently hypothesized to be a bottom-up 17 

effect, linked to changes in the planktonic communities that the species feeds upon.  In particular, 18 

sardines change their feeding mode as a function of the size of their prey, using a filtering mode for 19 

small items but a direct chase and capture mode for large items. In the current study sardines were 20 

reared on artificial feeds, of either small or large size, and in either small or large quantities.  After 7 21 

months feeding, the group that received large pellets in large quantities was the only one exhibited a 22 

positive specific growth rate and an above-average body condition index. Despite the installation of 23 

cellular compensations in sardines that received small pellets with a reduced metabolism and an 24 
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increased mitochondrial efficiency, this does not seem sufficient to counteract the reduction in these 25 

biometric parameters.  26 

SIGNIFICANCE (120 words) 27 

Global warming could lead to a reduction in the size of plankton in the Mediterranean Sea, which is 28 

the main source of sardine food. Interestingly, a reduction in the size of sardines in the Mediterranean 29 

Sea has been observed over the past ten years. To evaluate whether a reduction in the size of food 30 

could be a trigger of the reduction in the size of sardines, we fed sardines for 7 months on four 31 

different diets consisting in small or large pellets in large or small quantities. Results clearly show that 32 

the size of food, as well as its quantity, may cause a shrinking of sardines, despite the development of 33 

bioenergetics compensations at the cellular level.  34 

INTRODUCTION 35 

Over the last decade, there is growing evidence that aquatic ectotherms are shrinking (Daufresne et al., 36 

2009; Forster et al., 2012), potentially as a consequence of global warming and the temperature-size 37 

rule (Atkinson, 1994), This size reduction occurs within and amongst species, throughout the different 38 

levels of the fed web, from top predators (Sibert et al., 2006) to primary producers (Sommer et al., 39 

2015).  Small pelagic fishes are intermediate but crucial actors in marine food webs (Cury et al., 40 

2000), centrally positioned to link primary producers to top predators (Brosset et al., 2015a ; Checkley 41 

et al., 2017; Curry et al., 2000). Throughout the Mediterranean Sea, a small pelagic species that is a 42 

major fishery resource, the European sardine Sardina pilchardus, has exhibited a drastic reduction in 43 

body size and condition index over the last decade, due the disappearance from the population of 44 

larger and older individuals (Brosset et al., 2017 Progress in Oceanography. In the Gulf of Lions, for 45 

example, the result has been that the species is no longer targeted by fishermen (GFCM 2018)(Van 46 

Beveren et al., 2014).  Extensive research effort has established that the decline in size and body 47 

condition is not due to top down effects such as predation or fishing pressure, nor to pathogens 48 

(reviewed in Saraux et al., 2018). Rather, it is now believed that a bottom-up process is at play, linked 49 

to a regime shift in the plankton communities that the species feeds upon, towards smaller and less 50 
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energy-rich zooplankton (Zarubin et al., 2014; Brosset et al., 2016a). Sardines are opportunistic 51 

planktivores (Palomera et al., 2007; Rumolo et al., 2016) that adjust their feeding behaviour to prey 52 

size (Costalago et al., 2015), switching from filter feeding on small prey to direct capture for large 53 

prey (Garrido et al., 2007). The relative costs of these two feeding modes can differ in small pelagic 54 

planktivorous fishes (van der Lingen, 1995) and there is some evidence that filter feeding on small 55 

food items may be more energetically expensive than direct capture of large items in Sardinus 56 

pilchardus (Queiros et al., 2019).   57 

The swimming activity that underlies sardine foraging, whether filtering or particle capture, relies on 58 

muscle activity (McKenzie, 2011). In fishes, the swimming muscles represent up to 70% of the body 59 

mass and are structurally separated into discrete slow-twitch oxidative ‘red’ muscle and fast-twitch 60 

glycolytic ‘white’ muscle (Bone 1978; Webb 1998).  , represents the major energy consumer in fish. 61 

At the cellular level, energy is mainly produced by mitochondria, through the oxidative 62 

phosphorylation mechanisms. Mitochondrial oxidative phosphorylation can be more or less efficient, 63 

depending on the capacity of oxidizing energy substrates, such as carbohydrates, lipids or proteins, to 64 

finally produce ATP. Mitochondrial efficiency is plastic and is known to vary in response to sustained 65 

food scarcity or high metabolic energy demand (Salin et al., 2015; Roussel et al., 2018). As the main 66 

aerobic tissue used for swimming, fish red muscle represents a prime target to investigate how 67 

mitochondrial metabolism can be adjusted in response to the long term energetic status of an animal 68 

(Teulier et al., 2019).  69 

Here we aim to assess the proximal consequences, for sardine body composition and red muscle 70 

mitochondrial function, of variation in food size and quantity. We sampled animals from four 71 

experimental populations, that had been maintained for 7 months on four different diets (Queiros et al. 72 

2019).  These diets comprised blab al.  They caused significant differences in growth rate, condition, 73 

etc…It is known that the amount of food impacts the physiological parameters of fish. Indeed, the 74 

growth rate of juvenile cobia Rachycentron canadum increases with the daily food intake (Sun et al., 75 

2009) and the body condition of the juvenile olive flounder Paralichthys olivaceus changes according 76 

to the food ration (Lee et al., 2018). However, the effect of food sizes on fish energy metabolism and 77 
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body condition has been less investigated, when such question seem even more important in a context 78 

of global warming, which induces a size reduction of the plankton (Garzke et al., 2014).  In order to 79 

measure the impact of food size and quantity on the energy metabolism of sardines, two pellets sizes 80 

(0.1mm and 1.2mm) and two quantities (0.3% and 0.6% of the total fish mass in tanks) were combined 81 

in resulting 4 different diets: (1) small size and quantity of pellets (SP-SQ), (2) small size and quantity 82 

of pellets (LP-LQ). Through a wide integrative point of view linking population dynamics index to 83 

mitochondrial bioenergetics, the present integrative study suggests our protocols let us following the 84 

hypothesis that filter-feeding mode induces an unbalanced energetic budget, first leading to limit 85 

mitochondrial activity and eventually to a shrinking of sardine. 86 

RESULTS 87 

Evolution of body condition and growth 88 

Diet had a significant effect on sardine body condition (AU, Linear mixed model, Satterthwaite's 89 

method, trend of SP-SQ: -0.037 ± 0.003 AU.month-1 ; SP-LQ: -0.033 ± 0.003 AU.month-1 ; LP-SQ: -90 

0.024 ± 0.003 AU.month-1 ; LP-LQ: 0.003 ± 0.003 AU.month-1 ) but also on their growth (Linear 91 

mixed model, Satterthwaite's method, trend of SP-SQ: 0.5 ± 0.2 mm.month-1; SP-LQ: 1.0 ± 0.2 92 

mm.month-1; LP-SQ: 1.0 ± 0.2 mm.month-1; LP-LQ: 2.3 ± 0.2 mm.month-1) (Fig. 2). There was a 93 

significant difference between LP-LQ sardines and the three other groups regarding body condition 94 

(P<0.05). Indeed, there was a reduction in body condition of LP-LQ, SP-LQ and SP-SQ sardines while 95 

this body condition was maintained in LP-LQ sardines all along the 7 months of experiment (Fig. 2A). 96 

Furthermore, there was also an impact of pellet size on body condition for sardines that received small 97 

quantities of pellets, with a significantly higher body condition for LP-SQ sardines compared to SP-98 

SQ sardines (P<0.05). Finally, the growth of LP-LQ sardines (Fig. 2B) was significantly higher during 99 

the experiment compared to the three other groups of sardines (P<0.05).  100 

Biometric characteristics 101 

The pellets size and quantity had a significant effect on red muscle mass and fat content (Table 1). 102 

Sardines which received large pellets in a large quantity (LP-LQ) had higher body condition, body 103 
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mass and fat content than sardines from other treatments (P<0.05), and a higher red muscle mass than 104 

sardines that received small pellets (P<0.05). 105 

The pellets size also had a significant effect on the relative red muscle mass (proportion of the red 106 

muscle mass over the entire body mass, “RM/BM” ratio) because sardines that received large pellets 107 

had a higher ratio than those that received small pellets (P<0.05). 108 

Oxidative metabolism of red muscle 109 

The impact of food was not the same depending on the level of integration (Table 2). Indeed, at the 110 

mitochondrial level, the FCCP-induced maximal activity of electron transport system (ETS) was 111 

significantly lower in sardines fed on small pellets compared to those fed on large pellets (P<0.01), but 112 

there was no difference in COX activity, a measure of muscle oxidative capacity. At the red muscle 113 

fibre level, there was no difference between the four groups (P>0.05) but there was an interaction 114 

between size and quantity of pellets among the four groups (P<0.01) for the maximal ETS activity, 115 

and the COX activity of LP-SQ sardines was significantly higher than that of SP-LQ sardines 116 

(P<0.05). Maximal activities of ETS (P<0.05) and COX (P<0.05) in LP-LQ sardines were 117 

significantly higher than those of SP-LQ sardines. At the fish level, body mass-specific maximal 118 

activities of ETS and COX in LP-LQ sardines were significantly higher than in SP-LQ sardines 119 

(P<0.05). Finally, the mitochondrial content of red muscle of SP-SQ sardines was higher than that of 120 

LP-SQ sardines (P<0.05). 121 

Mitochondrial oxidative phosphorylation efficiency 122 

Fig. 3 shows the effect of diet on the maximal rates of ATP synthesis and corresponding oxygen 123 

consumption in mitochondria respiring on pyruvate/malate/succinate. Since the relations between ATP 124 

synthesis and oxygen consumption has been proven to be linear in isolated mitochondria from 125 

different tissues and organisms (Beavis and Lehninger, 1986; Fontaine et al., 1996; Nogueira et al., 126 

2002; Teulier et al., 2010; Roussel et al., 2015), we also reported the basal non-phosphorylating 127 

oxygen consumption on the graph and draw lines between the basal non-phosphorylating rate and 128 

corresponding maximal phosphorylating rate within experimental groups. In accordance with the 129 

respiratory parameters reported above, there was a significant effect of the pellets size on maximal 130 
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rates of oxygen consumption and ATP synthesis, the highest points to the right in Fig. 3 (P<0.001). 131 

Similarly, the basal non-phosphorylating respiration rates measured in the presence of oligomycin (the 132 

values on the x-axis) were significantly lower in fish fed on small pellets compared to large pellets 133 

groups (P<0.001). 134 

The slopes of relationships were the same (small pellets: ATP/O = 3.2 ± 0.2; large pellets: ATP/O = 135 

3.0 ± 0.1 ; P>0.05), indicating that the relations between the rates of ATP synthesis and oxygen 136 

consumption were parallel between the four experimental groups. Yet, the significant changes in the 137 

intercepts with the x-axis indicate that the relations concerning fish fed on small pellets were 138 

significantly shifted to the left compared with fishes fed on large pellets. This indicates that muscle 139 

mitochondria from fish fed on small particles were more efficient, consuming less oxygen to produce a 140 

given amount of ATP compared with fish fed on large particles (Fig. 3). Finally, the quantity of pellets 141 

had no significant effect on any of these different parameters.   142 

When total oxidative phosphorylation activity per muscle is calculated by taking into account red 143 

muscle mass (Table 1) and muscle mitochondrial protein content (Table 2), the linear relation 144 

between the rates of ATP synthesis and oxygen consumption in LP-SQ fish became superimposed to 145 

that in small particles fed fishes (Fig. 3B). Hence, the maximal rates of ATP synthesis and oxygen 146 

consumption per muscle remained significantly higher and the relation significantly shifted to the right 147 

in LP-LQ fish compared with each other groups (Fig. 3B). 148 

Evolution of the leak respiration in function of body condition 149 

Body condition, which depended on the diet received by sardines (Table 1), had a significant effect on 150 

basal non-phosphorylating mitochondrial respiration (Fig. 4). Indeed, a segmented regression analysis 151 

showed a significant correlation between basal respiration and body condition below a condition of 152 

1.07 (R²=0.45, P<0.001), which concerned SP-SQ, SP-LQ and LP-SQ groups, but none above 1.07 153 

(LP-LQ sardines, P>0.05). The oxygen consumed in the basal non-phosphorylating state is devoted to 154 

counteract proton leakage across the mitochondrial inner membrane. Thus, its activity is an index of 155 

maximal energy wastage of mitochondrial metabolism. As such, a decrease in basal respiration rate 156 
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would reflect lower dissipation of energy and thus a higher coupling mitochondria, which was 157 

occurring in sardines below a body condition of 1.07 (Fig. 4). 158 

DISCUSSION 159 

This study showed an effect of food size and quantity on body condition index, growth performance 160 

and muscle bioenergetics in sardines. The fundamental finding of the present study was the strong 161 

effects of food size on all of the parameters measured. Since small size pellets trigger a filtration mode 162 

of feeding in sardines, our results indicate that foraging resources by filtration unable sardines to 163 

maintain their body condition and growth performance, despite the development of bioenergetics 164 

compensation in muscle. 165 

Sardines fed on small pellets, with low condition and poor growth, had reduced mitochondrial 166 

oxidative phosphorylation activity compared with fish fed on large pellets, but they had higher 167 

coupling efficiency. Hence filtration behaviour induced by small pellets feeding led to a development 168 

of an energy-saving metabolism. More generally, our results indicate that mitochondrial energy-saving 169 

metabolism develops in sardines when they go below a body condition threshold of 1.07 (Fig. 4). Such 170 

energy saving mechanisms, involving less powerful but more efficient mitochondria, are known to 171 

develop in muscle of animals suffering caloric restriction (Zangarelli et al., FASEB J 20, 2006; 172 

Bourguignon et al., 2017; Roussel et al., 2018).  173 

However, sardines fed on small pellets exhibited a similar red muscle fibres oxidative capacity to the 174 

other groups of sardines. Hence, additional compensatory mechanisms have settled down at the level 175 

of muscle, which is partly explained by a higher mitochondrial density in red muscle of sardines 176 

receiving small pellets (Table 2).  Increased mitochondrial content have also been previously reported 177 

in organisms undergoing caloric restriction, which could be ascribed for a reduction of mitochondrial 178 

autophagy after a caloric restriction (Boengler, 2007).  Nevertheless, these compensatory mechanisms 179 

(i.e. higher coupling efficiency, increased mitochondrial content in muscle) were not sufficient to 180 

restore whole muscle ATP production in sardines fed on small pellets (Fig. 2B). Interestingly, it has 181 

been reported that depressed mitochondrial oxidative phosphorylation capacity may underlay 182 

inadequate food intake in Salmo trutta (Salin et al., 2016a). All these observations thus suggest that 183 
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sardines suffering caloric restriction were unable to increase their energy intake, impairing their ATP 184 

homeostasis and so their body condition and growth over time. The present study therefore reinforces 185 

the importance of mitochondria in the allocation of resources into performances (Salin et al., 2012, 186 

2015, 2016b; Bourguignon et al., 2017) and supports the hypothesis of filtration mode leading to a 187 

mismatch in the energy balance in sardines (Queiros et al., 2019). Filtration behaviour is characterised 188 

by a continuous energy consumption over time (van der Lingen, 1995). The present study gives a 189 

mechanistic explanation (mitochondrial metabolism failure) supporting the hypothesis that the energy 190 

supplied by the filtration did not compensate for this high energy demanding behaviour, resulting in a 191 

negative energy balance in fish, at least in sardines.  192 

In contrast, sardines fed with large pellets had a higher mitochondrial capacity, growth performance 193 

and body condition than sardines filtering small pellets. Particulate feeding involves a very high but 194 

transient energy demand (Garrido et al., 2007), so that the mitochondrial capacity observed could 195 

allow sardines to support their peak activity during chasing. However, the growth advantage of having 196 

a more powerful mitochondria was blunted in sardines receiving small quantity of food (group LP-197 

SQ). Indeed, this group of sardines exhibited a lower body condition and growth than sardines fed on 198 

large pellets in large quantity. Despite powerful mitochondria, a large decrease in whole muscle ATP 199 

production due to a lower mitochondrial content may partly explain the poor body condition and 200 

impaired growth in this group of fishes (Fig. 2B). In turn, it appears that this caloric-restricted group 201 

(LP-SQ) has not implemented cellular compensation to counterbalance the low energy intake, since 202 

their mitochondria exhibited as high oxidative phosphorylation capacity as fished fed on large pellets 203 

in large quantity. All results taking together, the present study therefore suggests that mitochondrial 204 

bioenergetics was rather primarily constrained by the mode of foraging (induced by pellet size) than 205 

by the quantity of energy received. It remains that sardines fed on large pellets in small quantity had a 206 

better body condition and growth performance than fish filtering the same quantity of energy (group 207 

SP-SQ). This reinforced the above hypothesis that chasing mode of foraging would provide a better 208 

energy balance than filtering mode in sardines. 209 

In conclusion, food size matter. On the whole, the present results show that the size of particles 210 

strongly constrains mitochondrial bioenergetics and the capacity of muscle to maintain ATP 211 
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homeostasis, and in fine the body condition and growth performance of sardines. The present study 212 

also suggests that sardines filtering small particules were unable to maintain their body condition and 213 

growth despite the development of energy compensatory mechanisms. In a context of global warming 214 

and size reduction of the plankton, our data might therefore provide a mechanistic explanation of a 215 

shrinking of sardine.  216 

METHODS 217 

All experimental procedures were in accordance with France legislation regarding the protection of 218 

animals used for experimentations (APAFIS, permission n°7097-2016093008412692). 219 

Fishing and sardines stabling 220 

Sardines were captured in October 2016 off Sète (South of France). After fishing, sardines were 221 

transported to the Ifremer experimental station of Palavas-Les-Flots (Hérault, France). They were first 222 

put into 4.5 m3 outside tanks for acclimatization and quarantine purposes. During that time, sardines 223 

were fed ad-libitum, first with a mixture of aquaculture pellets (mix of pellet sizes: 0.1mm, 0.3 mm 224 

and 0.8mm) and Artemia nauplii for a week and then only with pellets. After having undergone 225 

bacteriological and viral analyses, sardines were transferred to indoor tanks in November 2016. More 226 

details are given in Queiros et al., in 2019. 227 

On transfer, body mass and total size of sardines were recorded, and a RFID tag implanted for 228 

individual identification (Biolog-id, Bernay, France). Of note, RFID tag mass was 0.030g, 229 

representing 0.3% of the smallest sardine body mass]) implanted for individual identification. Sardines 230 

were then distributed into 8 experimental tanks of 300L each, so as to ensure similar mean and 231 

standard deviation of the mass distribution in each tank (14.1 ± 3.2g), 56 to 57 sardines were allocated 232 

per tank. After 2 weeks of acclimation to these new tank, the experiment started for 7 months. 233 

Subsequently, mass and size of sardines were recorded every 4 weeks from November 2016 to June 234 

2017 to monitor individual growth and body condition. Body condition of each fish was calculated 235 

following the Le Cren index Kn as estimated by Brosset et al., 2015b: 236 

!" =
##

0.00607$ × %&'.()*
 

where TL is the total length (cm) and WW is the wet weight (g). 237 
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Feeding conditions 238 

Two pellet sizes (0.1mm and 1.2mm) and two quantities (0.3% and 0.6% of the total fish mass in 239 

tanks) were combined resulting in 4 different diets: (1) small size and quantity of pellets (SP-SQ), (2) 240 

small size and large quantity of pellets (SP-LQ), (3) large size and small quantity of pellets (LP-SQ), 241 

(4) large size and quantity of pellets (LP-LQ). The two quantities were estimated by preliminary 242 

analyses so as to reproduce growth patterns observed in the wild before and after 2007-2008 (REF). 243 

The two pellets sizes were selected to elicit two different feeding behaviours (filtration feeding vs. 244 

particulate feeding) while being both in the natural range of sardine food size (Le Bourg et al., 2015).    245 

Both types of pellets had a similar composition with 62% and 57% of proteins and 14% and 15% of 246 

lipids for the pellets of 0.1mm and 1.2mm, respectively. Thus, groups that received the same quantity 247 

of pellets received approximately a similar amount of energy (cumulative energy during one month for 248 

one sardine per group: LP-LQ = 60.1 ± 0.2 KJ; SP-LQ = 50.4 ± 1.3 KJ; LP-SQ = 24.5 ± 0.7 KJ; SP-249 

SQ = 22.7 KJ ). Further, food loss was estimated as a function of the size of pellets received and 250 

assumed as insignificant (0.3 ± 0.6% for large pellets and 1.2 ± 1.1% for small pellets, Queiros et al., 251 

2019). Sardines were fed 4 times a day, and the biomass of each tank was estimated weekly (based on 252 

linear mass gain relationships established through monthly biometrics) to adjust food intakes. More 253 

details can be found in Queiros et al., 2019.  254 

Red muscle fibre preparation and oxidative activity 255 

At the end of the experimentation, 6 or 5 sardines were randomly removed from each tank every day 256 

over a period of 1 week, i.e. 11 to 12 fishes per treatment, and were sacrificed by a lethal dose of 257 

benzocaine (1000ppm). Mass and size of sardines were recorded. The intramuscular fat was measured 258 

(MFM-992 fatmeter, more details in Brosset et al., 2015b) and the sex was determined. As the 259 

measurements were done in June, the sardines were out of breeding season and therefore at sexual rest 260 

(Brosset et al., 2016b). 261 

A piece of red muscle was sampled and weighed (5.0 ± 1.5mg) (Fig. 1), and its respiration was 262 

measured at 20°C using Oxygraph-2K high resolution respirometers (Oroboros® Instruments – WGT 263 

Austria) with a suit protocol adapted from Teulier et al., 2019.  The total mass of red muscle was 264 
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measured. Only red muscle oxygen consumption was measured, as it was shown that white muscle 265 

respiration is low in sardines (Teulier et al., 2019). Before each session, oxygen electrodes were 266 

calibrated with air-saturated respiration buffer Mir05 (110mM sucrose, 0.5mM EGTA, 3mM MgCl2, 267 

60mM K-lactobionate, 20mM taurine, 10mM KH2PO4, 1g/L fatty acid-free bovine serum albumin 268 

and 20mM Hepes, pH 7.1) and zero oxygen after a sodium dithionite addition. Muscle fibres 269 

respiration was measured in MiR05 using a mixture of respiratory substrates (5mM pyruvate/ 2.5 mM 270 

malate/ 5 mM succinate). Then the phosphorylating respiration was measured by adding 1mM ADP. 271 

The integrity of mitochondria within muscle fibres was systematically tested by adding 10µM 272 

cytochrome c. Thereafter, a sequential addition of 1µM p-trifluoromethoxy-carbonyl-cyanide-phenyl 273 

hydrazine (FCCP) was performed in order to measure the maximal activity of the electron transport 274 

system (ETS). Antimycin A (12.5µM), an inhibitor of complex III, was injected to fully inhibit 275 

pyruvate/malate/succinate-supported respiration.  Then, 5mM ascorbate and 500mM N,N,N’,N’-276 

tetramethyl-p-phenylene-diamine were added and the maximal respiration rate associated with isolated 277 

cytochrome c oxidase activity (complex IV of the ETS) was recorded.  278 

 279 

Mitochondrial isolation, respiration and content 280 

Mixed mitochondrial populations were isolated from red skeletal muscle in an ice-cold isolation buffer 281 

containing 100mM sucrose, 50mM KCl, 5mM EDTA, 50mM Tris-base, pH 7.4 at 4°C. Briefly, 282 

skeletal muscles were homogenized with a Potter-Elvehiem homogenizer and treated with subtilisin (1 283 

mg/g muscle wet mass) for 5 min in an ice bath. The mixture was diluted 1:2, homogenized and then 284 

centrifuged at 1000g for 10 min. The supernatant was centrifuged at 9000g for 10 min, and the pellet 285 

was re-suspended in 10mL of isolation buffer and centrifuged at 1000g for 10 min to pellet any 286 

remaining cell debris contamination. The resulting supernatant was filtered through cheesecloth and 287 

centrifuged at 9000g for 10 min. The pellet containing mitochondria was washed once by suspension 288 

in the isolation buffer and recentrifugation at 9000g for 10 min. All steps were carried out at 4°C. 289 

Protein content of the mitochondrial preparation was assayed in duplicate at 540nm using the biuret 290 

method, with bovine serum albumin as a standard. The absorbance of the same volume of 291 
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mitochondria was also assayed at 540nm in a solution containing 0.6% Na-K-tartrate and 3% NaOH 292 

and subtracted in order to take into account any contamination with pigments absorbing at 540nm. 293 

Mitochondrial oxygen consumption was measured at 20°C in respiratory buffer (120mM KCl, 5mM 294 

KH2PO4, 1mM EGTA, 2mM MgCl2, 0.3%fatty acid-free bovine serum albumin (w/v), and 3mM 295 

HEPES, pH 7.4) using a Clark electrode (Rank Brother Ltd, Cambridge, UK). Mitochondria (0.4-296 

1mg/mL) were energized with a mixture of respiratory substrates containing 5mM pyruvate, 2.5mM 297 

malate and 5mM succinate. Phosphorylating respiration activity was initiated by the addition of 1mM 298 

ADP. The basal non-phosphorylating rate was obtained by the addition of oligomycin (1µg/mL). The 299 

maximal activity of the electron transport system was initiated by the addition of 2µM FCCP. 300 

Thereafter, antimycin (10µM) was added to fully inhibit pyruvate/malate/succinate-supported 301 

respiration, then ascorbate and TMPD (5mM/0.5mM) were added and the maximal respiration rate 302 

associated with isolated cytochrome-c oxidase activity was recorded. 303 

The mitochondrial content of skeletal muscle was estimated from the ratio between the oxygen 304 

consumption rates of muscle fibres (expressed per gram of muscle) and mitochondria (expressed per 305 

milligram of protein). For each individual, the mitochondrial content was the mean of the two values 306 

obtained by using ADP- and FCCP-induced oxygen consumption activities. 307 

Mitochondrial oxidative phosphorylation efficiency  308 

Oxygen consumption and ATP synthesis rates were measured at 20°C in respiratory buffer 309 

supplemented with 20mM glucose and 1.5U/mL hexokinase (Teulier et al., 2010; Colinet et al., 2017). 310 

Muscle mitochondria were energized with a mixture of substrates (5mM pyruvate, 2.5mM malate, 311 

5mM succinate). ADP (500µM) was added to initiate the mitochondrial ATP synthesis. After 312 

recording the phosphorylating respiration rate, four 100 µL samples of mitochondrial suspension were 313 

withdrawn from the respiratory chamber every 2 min and immediately quenched in 100µL of ice-cold 314 

perchloric acid solution containing 10% HCLO4 and 25mM EDTA. After centrifugation of the 315 

denatured protein (15000g for 5 min), supernatants were neutralized with a KOH solution containing 316 

0.2M KOH and 0.3M MOPS. The ATP production was determined from the slope of the linear 317 

accumulation of glucose-6-phosphate content over the sampling time interval (6 min). Glucose-6-318 
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phosphate content was assayed spectrophotometrically at 340nm by monitoring the production of 319 

NADH in an assay medium (50mM triethanolamine-HCl, 7.5mM MgCl2, 3.75mM EDTA, pH 7.4), 320 

supplemented with NAD (0.5mM) and glucose-6-phosphate dehydrogenase from Leuconostoc 321 

mesenteroides (0.5U). The same procedure was performed in the presence of oligomycin (1µg/mL) to 322 

measure the level of oligomycin-insensitive ATP synthesis production in our mitochondrial 323 

suspension. This value was taken into account to calculate the rate of mitochondrial ATP synthesis 324 

that is specific to the mitochondrial ATP synthase activity and associated with mitochondrial oxygen 325 

consumption (Teulier et al., 2010; Colinet et al., 2017). In the present study, the non-mitochondrial 326 

ATP synthesis activity represented between 5 and 9% of total ATP production, depending on the 327 

experimental group (data not shown). 328 

Statistical analysis 329 

Using the software R3.5.1, the statistical significance of observed differences was assessed using Two-330 

way ANOVA or Scheirer Ray Hare test, when normality or homoscedasticity were not validated, to 331 

estimate the effects of size and quantity of pellets on sardines for biometric characteristics, muscular 332 

respiration and mitochondrial parameters. The effect of diet on these different parameters was also 333 

measured in function of sardine’s sex using a Two-way ANOVA or Scheirer Ray Hare test. The 334 

difference of evolution of body condition and growth between the different groups was analysed by a 335 

linear mixed model with the individual as a random effect on the intercept, to account for repeated 336 

measurements over the seven months (Queiros et al., 2019). The correlation between body condition 337 

and basal respiration was analysed by a segmented regressions model. It is worth nothing that within 338 

each experimental group, the gender of sardines had no significant effect on any studied parameters 339 

(see Supplemental data). 340 
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 459 

FIGURES 460 

Figure 1. Illustrative pictures of skeletal muscle distribution in sardines. 461 

 462 

 463 

Figure 2. Evolution of body condition (A) and growth (B) of sardines depending on their diet. The data 464 
shown are means ± s.e (n=11-12 per group). The blue, green, yellow and red curves correspond to the LP-LQ, 465 
LP-SQ, SP-LQ and SP-SQ groups, respectively. “LP-LQ” corresponds to “large pellets – large quantity”, “LP-466 
SQ” to “large pellets – small quantity”, “SP-LQ” to “small pellets – large quantity” and “SP-SQ” to “small 467 
pellets – small quantity”. These data were analysed with a linear mixed model.  468 

 469 
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Table 1. Characteristics of sardines used to measure the respiration of red muscle fibres. These data 509 
correspond to the measurements made on the day of the sacrifice of sardines. Values are mean ± s.e.m. These 510 
data were analysed using Two-ways ANOVA (multiple comparisons test: Tukey test) or using Scheirer Ray 511 
Hare test (multiple comparisons test: Dunn test) when normality was not validated. Data with different 512 
superscript letters are significantly different at P<0.05. 513 
 514 



19 
 

 LP-LQ LP-SQ SP-LQ SP-SQ 

n  

(male/female/indeterminate) 

11  

(6/3/2) 

12  

(5/6/1) 

11  

(3/6/2) 

12  

(3/8/1) 

Body condition 1.17 ± 0.04a
 0.98 ± 0.02b

 0.93 ± 0.05b
 0.87 ± 0.02b

 

Body mass BM (g) 19.23 ± 1.38a
 13.98 ± 0.62b

 14.22 ± 1.19b
 12.81 ± 0.73b

 

Red muscle mass RM (g) 1.59 ± 0.17a
 1.18 ± 0.06ab

 0.98 ± 0.13b
 0.91 ± 0.07b

 

RM/BM (%) 8.11 ± 0.39ab
 8.46 ± 0.20b

 6.70 ± 0.45c
 7.09 ± 0.30ac

 

Fat content (%) 13.46 ± 1.40a
 8.86 ± 0.76b

 8.12 ± 0.81b
 6.93 ± 0.37b
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Table 2. Effect of diet on uncoupled respiration rate, cytochrome c oxidase (COX) activity and mitochondrial content of red muscle. The uncoupled respiration rate 546 
and the cytochrome c oxidase activity are represented at four different level of integration: per gram of fish, on the red muscle level (nmol O2/s), on the red muscle fibres level 547 
(pmol O2/s

-1.mg muscle-1) and on the red muscle mitochondria level (nmol O/min-1.mg proteins-1)). The mitochondrial content of red muscle is expressed in milligram of 548 
proteins per gram of red muscle. These data were analysed using Two-ways ANOVA (multiple comparisons test: Tukey test) or using Scheirer Ray Hare test (multiple 549 
comparisons test: Dunn test) when normality was not validated. Letters indicate a significant difference between groups (P<0.050). 550 

Mitochondrial level (nmol O.min-1.mg protein-1) / FCCP-induced maximal respiration ETS activity : LP-SQ-SP-LQ  p= 0.0541719 551 
Red muscle fibre level (pmol O2.s

-1.mg muscle-1) / FCCP-induced maximal respiration : Size*Quantity p=0.00931, pas de différence entre les groupes 552 
 553 

Oxidative activities LP-LQ LP-SQ SP-LQ SP-SQ 

Mitochondrial level (nmol O.min-1.mg protein-1)     

FCCP-induced maximal respiration ETS activity  90 ± 9 96 ± 7 59 ± 12 65 ± 12 

Cytochrome-c oxidase activity  225 ± 20 237 ± 22 178 ± 23 204± 23 

Red muscle fibre level (pmol O2.s
-1.mg muscle-1)     

FCCP-induced maximal respiration ETS activity 40 ± 6 27 ± 3 24  ± 3 38 ± 6 

Cytochrome-c oxidase activity 157 ± 20ab 180 ± 30a 78± 8b 141 ± 38ab 

Fish level (nmol O2.s
-1 or nmol O2.s

-1.g-1 fish)     

FCCP-induced maximal respiration ETS activity         Total 

Specific 

73 ± 15a 

3.7 ± 0.6a 

35 ± 7a,b 

3.9 ± 1.4ab 

29 ± 7b 

1.6 ± 0.2b 

34 ± 7a,b 

2.5 ± 0.5ab 

Cytochrome-c oxidase activity        Total 

Specific 

262 ± 48a 

13.2 ± 2.0a 

216 ± 51ab 

15.2 ± 2.6a 

85 ± 15b 

5.1 ± 0.7b 

138 ± 34ab 

10.4 ± 3.0ab 

Mitochondrial content (mg protein.g muscle-1) 54.2 ± 6.6ab 34.8 ± 5.4a 56.8 ± 8.5ab 71.1 ± 11.2b 
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Figure 3. Effects of size and quantity of pellets on mitochondrial oxidative phosphorylation efficiency at 554 
the mitochondria level (A) and red muscle level (B). The two trend curves (A) drawn are those of the "large 555 
pellets" (LP: y = 2.96x – 39.21) and "small pellets" (SP: y = 2.95x – 26.70) groups. These data were analysed 556 
using Two-ways ANOVA (multiple comparisons test: Tukey test) or using Scheirer Ray Hare test (multiple 557 
comparisons test: Dunn test) when normality was not validated. The values shown are means ± s.e.m. (the error 558 
bars of the basal oxygen consumption are small enough that they are hidden by the points). An asterisk 559 
represents a significantly difference between diets composed of different size pellets (difference between large 560 
and small pellets) (*P<0.050; **P<0.010). 561 
 562 
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Figure 4. Basal oxygen consumption at the mitochondrial level as a function of the body condition of 588 
sardines. A linear model shows that there is a correlation between basal mitochondrial respiration in nmol 589 
O.min-1.mg proteins-1 and body condition when the body condition is less than 1.07 (P<0.001). Above this 590 
threshold, there is no longer a correlation between these two parameters. 591 
 592 
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SUPPLEMENTAL DATA 612 

Table S1. Parameters of Two-ways ANOVA (A) or Scheirer Ray Hare test (SRH) used in the study. Different effects were tested: sex effect inside the different sardine’s 613 
groups (interaction between sex effect and treatment effect), the effects of size and quantity of pellets, and the interaction between these two effects.  614 
 615 
 616 

Tested variable Effect Df F-value / H-value Test P-value 

Sardine characteristics      

Body condition Sex:Treatment 3 0.958 A 0.425 

 Size 1 27.283 A 5.450e-06 

 Quantity 1 12.723 A 9.360e-04 

 Size:Quantity 1 3.717 A 0.061 

      

Body mass (BM)  Sex:Treatment 3 2.772 A 0.058 

 Size 1 8.094 SRH 0.004 

 Quantity 1 5.851 SRH 0.016 

 Size:Quantity 1 1.167 SRH 0.280 

      

Red muscle mass (RM) Sex:Treatment 3 1.982 A 0.137 

 Size 1 15.152 A 3.490e-04 

 Quantity 1 4.551 A 0.039 

 Size:Quantity 1 2.359 A 0.132 

      

RM/BM Sex:Treatment 3 0.282 A 0.838 
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 Size 1 16.515 A 2.070e-04 

 Quantity 1 1.190 A 0.281 

 Size:Quantity 1 0.002 A 0.962 

      

Fat content Sex:Treatment 3 0.878 A 0.466 

 Size 1 16.099 A 3.250e-04 

 Quantity 1 11.111 A 0.002 

 Size:Quantity 1 3.993 A 0.054 

      

Mitochondrial content of red 
muscle 

Sex:Treatment 3 1.696 A 0.191 

 Size 1 4.691 SRH 0.030 

 Quantity 1 0.479 SRH 0.489 

 Size:Quantity 1 3.125 SRH 0.077 

      

Mitochondrial respiration      

Maximal respiration rate Sex:Treatment 3 1.042 A 0.388 

 Size 1 9.334 A 0.004 

 Quantity 1 0.365 A 0.549 

 Size:Quantity 1 1.000e-04 A 0.993 

      

Cytochrome c oxidase activity Sex:Treatment 3 0.465 A 0.709 

 Size 1 3.589 A 0.066 
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 Quantity 1 0.729 A 0.399 

 Size:Quantity 1 0.122 A 0.729 

      

Fibres respiration      

Maximal respiration rate Sex:Treatment 3 0.481 SRH 0.923 

 Size 1 2.822 SRH 0.093 

 Quantity 1 7.000e-04 SRH 0.980 

 Size:Quantity 1 3.736 SRH 0.053 

      

Cytochrome c oxidase activity Sex:Treatment 3 0.811 A 0.498 

 Size 1 5.934 A 0.020 

 Quantity 1 2.541 A 0.119 

 Size:Quantity 1 0.585 A 0.449 

      

Muscle respiration      

Maximal respiration rate Sex:Treatment 3 0.583 SRH 0.900 

 Size 1 4.293 SRH 0.038 

 Quantity 1 1.098 SRH 0.295 

 Size:Quantity 1 4.450 SRH 0.034 

      

Cytochrome c oxidase activity Sex:Treatment 3 0.076 A 0.972 

 Size 1 10.316 A 0.003 
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 Quantity 1 0.001 A 0.976 

 Size:Quantity 1 1.488 A 0.230 

      

Individual respiration      

Maximal respiration rate  Sex:Treatment 3 0.942 SRH 0.815 

 Size 1 5.947 SRH 0.015 

 Quantity 1 0.062 SRH 0.804 

 Size:Quantity 1 3.092 SRH 0.079 

      

Cytochrome c oxidase activity  Sex:Treatment 3 0.121 A 0.947 

 Size 1 12.440 A 0.001 

 Quantity 1 0.023 A 0.880 

 Size:Quantity 1 0.160 A 0.160 

      

Mitochondrial efficiency      

Oxygen consumption rate Sex:Treatment 3 2.463 A 0.081 

 Size 1 9.807 A 0.003 

 Quantity 1 0.277 A 0.601 

 Size:Quantity 1 0.145 A 0.705 

      

ATP synthesis rate Sex:Treatment 3 3.414 SRH 0.332 

 Size 1 9.866 SRH 0.002 
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 Quantity 1 0.508 SRH 0.476 

 Size:Quantity 1 0.509 SRH 0.476 

      

Basal oxygen consumption rate Sex:Treatment 3 1.876 A 0.155 

 Size 1 11.746 A 0.001 

 Quantity 1 2.374 A 0.131 

 Size:Quantity 1 0.761 A 0.388 

      

Trend Sex:Treatment 3 9.447 SRH 0.024 

 Size 1 0.902 SRH 0.342 

 Quantity 1 0.959 SRH 0.327 

 Size:Quantity 1 0.155 SRH 0.693 
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