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Résumé

Du fait des activité humaines, en particulier agricoles, les systèmes lacustres sont soumis à d'importants entrant de nutriments. Ce phénomène, appelé eutrophisation, conduit à une prolifération de cyanobactéries. Cette prolifération est un enjeu écologique, puisque l'écosystème se voit alors déséquilibré, mais également sanitaire, puisque certaines espèces de cyanobactéries parmi les plus répandues sont capables de produire des toxines. Enfin, l'eutrophisation est également un enjeux économique, puisque l'exploitation des lacs concernés est alors impossible. Comprendre les phénomènes régissant les mécanismes liés à l'eutrophisation est alors indispensable, d'une part pour en anticiper les conséquences, et d'autre part pour mettre en place des politiques de gestion des systèmes lacustres eutrophes. Dans cette thèse, nous analysons ces phénomènes via les modèles dynamiques. L'étude de l'eutrophisation passe alors par l'étude mathématique de ces modèles. En introduction, nous présentons les différents critères étudiés permettant d'évaluer l'état générale d'un milieu lacustre. Nous présentons également les différents modèles existants. Cette analyse nous conduit à sélectionner une approche de modélisation qui consiste à agréger les variables et phénomènes existants à travers des lois mathématiques abstraites. L'intérêt de tel modèles est qu'ils réduisent considérablement la dimension du système étudié et nécessitent donc d'un nombre réduit de données pour être calibrés. De plus, de tels modèles sont abordables à une étude analytique de leurs propriétés mathématiques.

Notre étude se compose en trois principaux axes. Le premier présente l'analyse des populations toxiques et non toxiques cyanobactériennes. En effet, la toxicité des proliférations cyanmobactériennes est le principale enjeux sanitaire de l'eutrophisation des lacs. Or il n'existe pas actuellement d'outils permettant d'anticiper cette toxicité. En effet, si certaines espèces parmi les plus répandues sont bien capables de produire de telles toxines, tous les individus au sien d'une même espèce n'en sont pas capables : cela dépend du patrimoine génétique de chaque individu. Ainsi, deux sous-populations au sein d'une même espèce doivent être considérées : l'une toxique, capable de produire ces toxines, et l'une non toxique. L'étude de la dynamique des populations toxiques est donc indispensable pour anticiper la toxicité des proliférations cyanobactériennes. Or l'analyse de cas réels montre que les épisodes de prolifération des populations toxiques et non toxiques ne se produisent pas aux mêmes moments, ce qui implique que leurs dynamiques sont régies par des lois différentes. Afin de décrire la dynamique de ces sous populations toxiques et non toxiques, nous nous concentrons sur l'impact de la température sur leur dynamique, dont il est admis qu'il s'agit de l'un des paramètres régissant la toxicité des proliférations cyanobactériennes. A travers un modèles mettant en oeuvre les phénomènes de compétition entre les populations toxiques et non toxiques, et liant leurs dynamiques à la température, nous montrons que les variations saisonnières de températures fournissent une explication à la répartition temporelle constatée des populations toxiques et non toxiques. Nous validons ces résultats théoriques via la mise en place d'une expérience en milieu contrôlé, et via l'analyse de cas réels.

Cette première analyse nous fournit donc des éléments de compréhension des phénomènes régissant la toxicité des proliférations cynanobactériennes. La seconde partie de cette thèse s'intéresse aux stratégies d'endiguement de l'eutrophisation des lacs. Il ne s'agit plus de se focaliser sur la seule toxicité des proliférations cyanobactériennes, mais de s'intéresser à la dynamique des nutriments, en particulier du phosphore. La première façon de réduire cette concentration de phosphore est la mise en place d'autres politiques d'agriculture en amont des lacs. Conjointement à ces réductions d'émission de phosphore, certains sites sont pourvus de structures de rétention. Ces structures sont placées entre le lac et son bassin versant, et ont pour rôle de retenir une partie des nutriments entrant. Seulement, à l'heure actuelle, ces structures sont évaluées sur leurs seule capacité de rétention, et leurs effets sur la dynamique du lac en aval n'est pas analysé. C'est l'objet de ce second chapitre de thèse. Il permet de mettre en exergue certains effets dynamiques insoupçonnés, et présente des stratégies de gestion de ces structures permettant, lorsque c'est possible, de restaurer l'état du lac et de le maintenir dans un état acceptable. Cette analyse met en évidence l'intérêt d'une approche dynamique des phénomène en jeu, puisque ces résultats ne sont pas accessible à l'approche classique statique qui consiste à évaluer l'effet de ces structures et leurs efficacité sur leurs seules capacité de rétention.

Enfin, le dernier chapitre de cette thèse s'intéresse à un aspect plus méthodologique. L'un des objectifs de gestion des systèmes lacustres, et plus généralement des systèmes environnementaux, est de maintenir ce système dans un état acceptable -faible niveau de toxicité, faible concentration de phosphore etc. . Le domaine mathématique qui s'intéresse à développer de tels outils de gestion est la théorie de la viabilité. Dans cette thèse, nous nous intéressons à la mise en relation de la théorie de la viabilité et d'une autre branche mathématique qu'est le contrôle optimal. Le contrôle optimal s'intéresse aux calculs de trajectoires non pas selon un critère d'acceptabilité , mais selon un objectif d'optimisation. Ce domaine est plus ancien, et comporte de nombreux outils encore peu ou pas exploités dans le cadre de la viabilité. Nous montrons le lien qui existe entre ces deux domaines, en cherchant à comprendre à quelle condition un problème de contrôle optimal permet de résoudre un problème de viabilité. Notre étude permet également de proposer une définition générale de l'opérateur de Bellman, nécessaire à l'utilisation de la programmation dynamique qui permet la résolution numérique de problèmes de contrôle optimale.
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As a consequence of human activities, particularly agricultural activities, lake systems are subject to significant nutrient inputs. This phenomenon, called eutrophication, leads to a proliferation of cyanobacteria. This proliferation is an ecological issue, since it causes an imbalance in the lake ecosystem, but also a health issue, since some of the most common species of cyanobacteria can produce toxins. Finally, eutrophication is also an economic issue, since the lakes concerned cannot be exploited. Understanding the phenomena governing the mechanisms linked to eutrophication is therefore essential, on the one hand to anticipate the consequences, and on the other hand to set up policies for the management of eutrophic lake systems. In this thesis, we analyse these phenomena via dynamic models. The study of eutrophication then requires the mathematical study of these models. As an introduction, we present the different criteria studied to evaluate the general state of a lake environment. We also present the various existing models. This analysis allows us to select a modeling approach which consists in aggregating the existing variables and phenomena through abstract mathematical laws. The interest of such models is that they considerably reduce the dimension of the studied system and thus require a reduced number of data to be calibrated. Moreover, such models can be analysed with an analytical study of their mathematical properties.

Our study consists of three main axes. The first presents the analysis of toxic and non-toxic cyanobacterial populations. Indeed, the toxicity of cyanobacterial blooms is the main health issue of lake eutrophication. However, there are currently no tools to anticipate this toxicity. Although some of the most common species may produce such toxins, not all individuals of the same species are capable of doing so : it depends on the genetic properties of each individual. Thus, two sub-populations within a species must be considered : one toxic, able to produce such toxins, and one non-toxic. The study of the dynamics of toxic populations is therefore essential to anticipate the toxicity of cyanobacterial proliferation. However, analysis of real cases shows that the proliferations of toxic and non-toxic populations do not occur at the same time, which implies that their dynamics are governed by different laws. In order to describe the dynamics of these toxic and non-toxic subpopulations, we focus on the impact of temperature on their dynamics, which is assumed as one of the parameters governing the toxicity of cyanobacterial blooms. Analysing a model that uses competition between toxic and non-toxic populations and links their dynamics to temperature, we show that seasonal variations in temperature provide an explanation for the observed temporal distribution of toxic and non-toxic populations. We validate these theoretical results through the implementation of an experiment in a controlled environment, and through the analysis of real cases. This first analysis thus provides us with elements of understanding of the phenomena governing the toxicity of cynanobacterial proliferation. The second part of this thesis focuses on strategies for the mitigation of eutrophication in lakes. We no longer focuse on the toxicity of cyanobacterial blooms, but on the dynamics of nutrients, parti-cularly phosphorus. The first way to reduce this phosphorus concentration is to change agricultural policies upstream of the lakes. In addition to these phosphorus emission reductions, some lakes have retention structures. These structures are between the lake and its watershed, and their role is to retain some of the incoming nutrients. Currently, these structures are evaluated on their retention capacity alone, and their effects on downstream lake dynamics are not analyzed. This is the subject of this second chapter of the thesis. It highlights certain unsuspected dynamic effects and presents management strategies for these structures that will, when possible, restore the state of the lake and maintain it in an acceptable condition. This analysis highlights the interest of a dynamic approach to these phenomena, since these results are not accessible to the classical static approach which consists in evaluating the effect of these structures and their efficiency on their retention capacity alone.

Finally, the last chapter of this thesis focuses on a more methodological aspect. One of the management objectives of lake systems, and more generally of environmental systems, is to maintain this system in an acceptable state -low toxicity, low phosphorus concentration, etc. . The mathematical field that is interested in developing such management tools is viability theory. In this thesis, we are interested in linking viability theory to another branch of mathematics that is optimal control. Optimal control is interested in the calculation of trajectories not according to an acceptability criterion, but according to an optimization objective. This field is older, and includes many tools that are still little or not exploited in the framework of viability. We show the link between these two domains by trying to understand under which condition an optimal control problem can characterize a viability problem. Our study also makes it possible to propose a general definition of the Bellman operator, which is necessary for the use of dynamic programming that allows the numerical resolution of optimal control problems. 
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2.1 For a given temperature -in (b) -either the non-toxic sub-population dominates -right-hand side of (a) -or the toxic sub-population dominates -left-hand side of (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 (a) : Consumption growth rates of two cyanobacterial sub-populations with two different half-saturation coefficients. The first sub-population (in blue) has a higher value of half-saturation coefficient K nut 1 than the second sub-population (in red). (b) : Thermal growth rates of two cyanobacterial sub-populations with two different optimal temperature coefficients. The first sub-population (in blue) has a higher value of optimal temperature coefficient T opt with respect to temperature. The grey curve corresponds to the theoretical values of these differences using Equation (2.11) with T opt tox = 27.6°C, T opt noT ox = 29.6°C, µ nut tox = 0.38 and µ nut noT ox = 0.36. (b) : Thermal growth rates for the toxic and non-toxic sub-populations using T opt tox = 27.6°C and T opt noT ox = 29.6°C. . . . . . . . . . . . . . . . . . . 47

2.9 This figure highlights the correct approximation of the asymptotic solution of sub-population i : when X i (0) > 0, X j =i (0) = 0 and t → +∞, X i (t) ≈ S in -S * i (t). . 3.2 (a) : Equilibrium curve and velocity vectors of the Carpenter model, for fixed L values. Note the "S-shape" of the equilibrium curve in the Carpenter model in the hysteretic case. On this equilibrium curve, the solid part corresponds to stable equilibrium, and the dashed part corresponds to unstable equilibrium. From each initial point in the "O-zone", the final point will be on the lower part of the equilibrium curve, which corresponds to an oligotrophic state, and from each initial point in the "E-zone", the final point will be on the upper part of the equilibrium curve, which corresponds to an eutrophic state. The middle part of the equilibrium curve corresponds to unstable equilibrium, and so does not correspond to possible final states. (b) : Three possible states of a lake : mesotrophic, oligotrophic and eutrophic. On the equilibrium curve, the thick part corresponds to stable equilibrium, and the thin part corresponds to unstable equilibrium. In our case, a mesotrophic state thus corresponds to an unstable state. . . . . . .
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3 "structure + lake" scheme. We study the dynamics of phosphorus in lake water based on the effects of the structure on the phosphorus passing through it : the delayed effect and the trapping effect -fixed or varying. . 

3.7

Qualitative distribution of the retention effects, based on the parameter values s R and h R . The trapping capacity is defined by 1 -h R s R +h R , and the delayed effect is assumed to be nil if s R + h R >> 0.

-The coordinates of point A correspond to parameter values where s R = 0 and 0 < h R << 1, representing a retention structure with a delayed effect and no trapping effect.

-The coordinates of the point B correspond to parameter values where s R >> 0 and h R >> 0, representing a retention structure with a trapping effect and no delayed effect. -The coordinates of the points C and D correspond to the initial and final parameter values of a structure with a varying trapping effect and without delayed effect : at t = 0, the parameters of this structure are such that s R (t = 0) >> 0 and h R (t = 0) >> 0 (point C), so the structure has a positive trapping effect. After a long enough time, the parameter values converge to s R (t >> 0) = 0 and h R (t >> 0) > 0 (point D), so the trapping effect becomes nil -sediment filling. It is possible to restore this trapping capacity structure, which would result in instantly resetting its parameter values -reset. 
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3.9 (a & c) : Trajectories from the same fixed initial points of a lake with a upstream structure with a delayed effect (solid curve) and a lake with no upstream structure (dashed curve). Figure (a) shows the evolution of the system "structure+lake", and figure (c) shows the evolution of the phosphorus output rate from the structure and the evolution of the phosphorus input rate in the studied system. For the two scenarios, the phosphorus input rate is such that : if t < 1 year, L(t) ≈ 0.3 tons.year -1 , if 1 year < t < 6 years, L(t) = 0.05 tons.year -1 and if 6 years < t, L(t) ≈ 0.3 tons.year -1 . The lake with no upstream structure becomes oligotrophic, and the lake with an upstream structure remains eutrophic.

The initial and final states are steady states.

(b & d) : Trajectories from the same fixed initial points of a lake with a upstream structure (solid curve) and a lake with no upstream structure (dashed curve). Figure (b) shows the evolution of the system "struc-ture+lake", and figure (d) shows the evolution of the phosphorus output rate from the structure and the evolution of the phosphorus input rate in the studied system. For the two scenarios, the phosphorus input rate is such that : if t < 1 year, L(t) ≈ 0.3 tons.year -1 , if 1 year < t < 6 years, L(t) = 0.6 tons.year -1 and if 6 years < t, L(t) ≈ 0.3 tons.year -1 . The lake with no upstream structure becomes eutrophic, and the lake with an upstream structure with a delayed effect remains oligotrophic. 3.12 (a) : The three initial sets : "O-set", "E-set" and "I-set". The studied example corresponds to the initial situation in Figure 3.12(b) and Figure 3.13. (b) : Final quantity of phosphorus in the lake water body as a function of the cleaning date. We note two critical times, the interval between which is 3 years. The total time period for these simulations is 25 years. . . . . . 78

3.13 For this example, the initial position of the system is (P (0), L) = (1.3, 0.22).

We study the trajectory of (P (t), h R (t)P R (t)) based on the cleaning date.

In the first figure (a), the trajectory of the system without cleaning converges towards a eutrophic final state. 

3

.17 Phosphorus output rates from three structures with delayed effect against time, and with the same phosphorus input rate -L = 50 tons.year -1and the same initial quantity of phosphorus -0 ton : the higher the h R of such a structure, the faster the convergence of its quantity of phosphorus, and thus of its phosphorus output rate. . . . . . . . . . . . . . . . . . . .
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Evolution of the "E-zone" -all initial points from the "E-zone" correspond to a final eutrophic state -and the "O-zone" -all initial points from the "O-zone" correspond to a the final oligotrophic state -, for (a

) h R s+h = 100, (b) h R s+h = 1, (c) h R s+h = 0.1 and (d) h R s+h = 0.01.
In each case we see the trajectory from the same initial point, with L = 0.3 tons.year -1 , h R P R (0) = 0.05 tons.years -1 and P (0) = 1.25 tons. For (a) and (b), the initial and final states are eutrophic. Hence in these cases the final lake state is not significantly influenced by the upstream structure. In contrast, for (c) and (d) the initial lake state is eutrophic, and its final state is oligotrophic, so in these cases the final lake state is strongly influenced by the retention structure. The trajectories are calculated for a total time of 100 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Equilibrium states for a lake with and without an upstream structure with a fixed trapping effect. The trapping effect -here fixed -is for (s R , h R ) = (30, 100 

N ,2 . For a functional N , if N verifies H N ,1 , then N (y 1 (.)) ∈ R -. If N verifies H N ,2 ,
K (y(.)) = inf{t ∈ R + |y(t) / ∈ K} (= +∞ if y(.) ∈ K R + ) and Γ T K (y(.)) = inf{t ∈ [0, T [|y(t) / ∈ K} (= +∞ if y(.) ∈ K [0,T [ ).
The tow first examples corresponds to [START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF], the third one to [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF], the fourth one to [START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF] [START_REF] Withers | Agriculture, phosphorus and eutrophication : a european perspective[END_REF]. Ce phénomène est aujourd'hui largement répandu, et concerne un grand nombre de cours et plans d'eau [START_REF] Yang | Mechanisms and assessment of water eutrophication[END_REF][START_REF] Dokulil | Eutrophication and Climate Change : Present Situation and Future Scenarios[END_REF]. L'un des symptômes principaux de l'eutrophisation sont les proliférations cyanobactériennes estivales survenant dans les lacs eutrophes. Les cyanobactéries sont des micro-organismes qui prolifèrent abondamment dans les milieux aquatiques, lorsque les conditions leur sont favorables. Ces conditions favorables à leur prolifération sont un bon ensoleillement [START_REF] Varis | Cyanobacteria dynamics in a restored finnish lake : a long term simulation study[END_REF], une température élevée [START_REF] Rhee | The effect of environmental factors on phytoplankton growth : Temperature and the interactions of temperature with nutrient limitation1[END_REF], un faible brassage [START_REF] Mitrovic | Critical flow velocities for the growth and dominance of anabaena circinalis in some turbid freshwater rivers[END_REF][START_REF] Mitrovic | Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia[END_REF],conditions généralement réunies en été -, et une abondance de nutriments [START_REF] Morris | Nutrient limitation of bacterioplankton growth in lake dillon, colorado[END_REF]. Dans le cas des lacs, le phosphore est un élément limitant naturellement la croissance des cyanobactéries [START_REF] Schindler | Eutrophication of lakes cannot be controlled by reducing nitrogen input : Results of a 37-year whole-ecosystem experiment[END_REF]. Lorsque ces nutriments sont abondants, les cyanobactéries prolifèrent alors très rapidement, et envahissent la niche écologique d'autres espèces [START_REF] Berry | Cyanobacterial harmful algal blooms are a biological disturbance to western lake erie bacterial communities[END_REF][START_REF] Krztoń | The effect of cyanobacterial blooms on bio-and functional diversity of zooplankton communities[END_REF]. Leur prolifération massive induit notamment une diminution de la diversité algale en période estivale [START_REF] Legrand | Caractérisation des proliférations nostocaléennes anciennes et futures via les akinètes présents dans les sédiments[END_REF]. De plus les cyanobactéries ont de mauvaises qualités nutritionnelles [START_REF] Martin-Creuzburg | Nutritional constraints at the cyanobacteria-daphnia magna interface : The role of sterols[END_REF], qui ne compensent pas la disparition des espèces algales initiales et leur rôle dans la chaîne trophique. Leur prolifération massive peut donc conduire à une détérioration profonde, voire permanente du système écologique lacustre. D'autre part, la forte biomasse produite associée à la décomposition des cellules cyanobactériennes mortes est consommatrice d'oxygène et peut engendrer des périodes d'anoxie en fin de nuit et donc des mortalités de poissons [START_REF] Chislock | Eutrophication : causes, consequences, and controls in aquatic ecosystems[END_REF][START_REF] Babica | Exploring the natural role of microcystins-a review of effects on photoautotrophic organisms1[END_REF]. Enfin, la majorité des espèces sont capables de produire des toxines, dangereuses aussi bien pour les populations animales qu'humaines [START_REF] Bláha | Toxins produced in cyanobacterial water blooms-toxicity and risks[END_REF]. Cependant, au sein d'une même espèce, tous les individus ne possèdent pas les gènes de
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synthèse des toxines (cyanotoxines) et la proportion de cellules potentiellement toxiques varie dans le temps et l'espace [START_REF] Davis | The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms[END_REF]. Des cas d'intoxications et de mortalités animales [START_REF] Faassen | First report of (homo)anatoxin-a and dog neurotoxicosis after ingestion of benthic cyanobacteria in the netherlands[END_REF][START_REF] Zimba | Confirmation of catfish, ictalurus punctatus (rafinesque), mortality from microcystis toxins[END_REF] et humaines [START_REF] Jochimsen | Liver failure and death after exposure to microcystins at a hemodialysis center in brazil[END_REF] ayant été avérés, l'Organisation Mondiale de la Santé considère désormais la contamination des écosystèmes aquatiques par les cyanobactéries et leurs toxines comme un risque sanitaire émergent. Une réglementation a donc été mise en place en France, aussi bien pour l'eau potable (décret d'application n o 2001-1220 du 20 décembre 2001) que pour les eaux de baignade (DGS/SD7a de juin 2003 modifiant la Circulaire DGS/SD7A/2002-335 du 7 juin 2002), limitant ainsi l'exploitation d'un lac eutrophe. L'arrêt de l'exploitation des lacs eutrophes, et les dépenses liées à la gestion des proliférations cyanobactériennes [START_REF] Dodds | Eutrophication of u.s. freshwaters : Analysis of potential economic damages[END_REF] font de l'eutrophisation un enjeu non seulement écologique et sanitaire, mais aussi économique. Les facteurs favorisant les proliférations cyanobactériennes sont aujourd'hui bien cernés, mais les facteurs régulant ce potentiel toxique sont actuellement mal connus. Il est impossible actuellement de prédire la toxicité d'une prolifération de cyanobactéries, rendant très complexe la gestion des plans d'eau concernés. Les gestionnaires du lac ne sont donc pas en mesure de prévoir l'intensité et la durée d'une prolifération, et il est impossible de prédire l'espèce dominante et la proportion d'individus capables de produire des toxines. Ainsi, la gestion sanitaire de ces épisodes de prolifération reste problématique et un des enjeux actuels est de pouvoir anticiper le développement des cyanobactéries toxiques afin de réduire les impacts négatifs associés.

La réduction des concentrations en nutriments dans l'eau d'un lac

L'eutrophisation d'un lac est principalement due à l'excès de nutriments provenant du bassin versant -en particulier des activités agricoles. Le premier moyen de lutte contre l'eutrophisation est donc de diminuer ces émissions [START_REF] Withers | Agriculture, phosphorus and eutrophication : a european perspective[END_REF], via par exemple des réglementations limitant l'utilisation de fertilisants -comme la directive européenne 91/676/CEE -, ou des incitations financières à adopter des modes d'agriculture moins polluants -par exemple le programme de Mesures Agro-Environnementales et Climatiques (Décret n o 2015-445 du 16 avril 2015). D'autres moyens permettant de limiter les concentrations en nutriments dans l'eau des lacs peuvent être mis en place pour accompagner ces réductions d'émission de nutriments. Ils consistent à intervenir directement sur le lac concerné, ou juste en amont. Citons par exemple la neutralisation les orthophosphates -assimilables par les cyanobactéries -via des additifs chimiques au lac [START_REF] Smolders | Controlling phosphate release from phosphate-enriched sediments by adding various iron compounds[END_REF], ou le curage des sédiments du lac [START_REF] Hoyer | Lake management (muck removal) and hurricane impacts to the trophic state of lake tohopekaliga, florida[END_REF] -source de phosphore pouvant être recyclé dans l'eau du lac. Toutefois ces méthodes sont temporaires et leur mise en place n'est pas toujours possible. L'une des méthodes permettant de diminuer l'apport en nutriments dans l'eau du lac consiste à installer des structures de rétention, comme des bassins de sédimentation [START_REF] Yousef | Sediment accumulation in detention or retention ponds[END_REF], ou des zones humides [START_REF] Barten | Stormwater runoff treatment in a wetland filter : Effects on the water quality of clear lake[END_REF]. Le but de ces structures est de retenir une partie des nutriments passant par elles. Les bassins de sédimentation possèdent un débit lent permettant aux nutriments de sédimenter, et donc de ne pas atteindre le lac [START_REF] Bjorneberg | Sediment pond effectiveness for removing phosphorus from pam-treated irrigation furrows[END_REF]. A terme, les bassins sont gorgés de sédiment, et perdent leur capacité de rétention. Il faut alors curer les bassins de leurs sédiments pour la rétablir. Les zones humides captent une partie de ces nutriments via la végétation qui les constituent. Suivant le type de végétaux, des nutriments spécifiques peuvent être ciblés [START_REF] Kao | Differential nitrogen and phosphorus retention by five wetland plant species[END_REF]. Par exemple, certaines zones humides n'ont qu'un effet négligeable sur le phosphore [START_REF] Kadlec | Performance of the columbia, missouri, treatment wetland[END_REF], privilégiant la rétention de nitrates. A terme, un fauchage de la végétation peut être nécessaire pour rétablir la capacité de rétention d'une zone humide.

Les structures de rétention sont régulièrement employées afin de réduire la quantité de nutriments provenant d'un bassin versant [START_REF] Jackson | Managing the development of sustainable shrimp farming in australia : the role of sedimentation ponds in treatment of farm discharge water[END_REF]Palmer-Felgate et al., 2011a;[START_REF] Kadlec | Large constructed wetlands for phosphorus control : A review[END_REF]. L'efficacité de ces structures est alors évaluée selon la proportion captée du ou des nutriments ciblés [START_REF] Kadlec | Large constructed wetlands for phosphorus control : A review[END_REF]. En particulier, l'entretien de ces structures -curage ou fauchage -est souvent réalisé de façon régulière, afin d'assurer une bonne capacité de rétention moyenne [START_REF] Yousef | Sediment accumulation in detention or retention ponds[END_REF]. Pourtant, si la quantité de nutriments dans l'eau d'un lac est liée au flux entrant de nutriments, elle est également régie par une dynamique interne au lac. En particulier, lorsque le flux de phosphore entrant est constant durant une période suffisamment longue, la quantité de phosphore dans l'eau du lac se stabilise à une valeur d'équilibre. Cependant, le caractère hystérétique de la dynamique du phosphore total du lac (dû aux processus de recyclage du phosphore total des sédiments du lac [START_REF] Carpenter | Management of eutrophication for lakes subject to potentially irreversible change[END_REF])) a pour conséquence qu'à un même flux de phosphore entrant peuvent correspondre deux états d'équilibre du phosphore dans l'eau du lac. Le premier correspond à une quantité raisonnable, le second à une quantité excessive. La valeur d'équilibre vers laquelle tend le lac dépend en effet non seulement du flux entrant de phosphore, mais aussi des conditions initiales du système. Ainsi les structures de rétention peuvent impacter la dynamique du lac, indépendamment des nutriments qu'elles retiennent. Cependant la gestion des structures consistant à rétablir régulièrement leur capacité de rétention ne tient pas compte du caractère hystérétique du lac. Une gestion adaptée à ces propriétés dynamiques du lac serait donc plus efficace pour en diminuer les concentrations en nutriments, et donc les proliférations cyanobactériennes.

1.2 Description de l'eutrophisation par la modélisation 1.2.1 L'étude du système lacustre : quels modèles choisir ?

Définir des politiques de gestion des lacs eutrophes et anticiper les phénomènes liés à l'eutrophisation nécessitent l'emploi de modèles des différents processus étudiés. Ces modèles permettent la simulation et la prédiction des systèmes lacustres ou de leurs composantes physico-chimiques et biologiques. En particulier, les modèles de type "simulateurs de vol" prennent en compte un grand nombre de variables d'état et de paramètres (populations de poissons, d'algues, paramètres physico-chimiques etc.) (Cetin INTRODUCTION et al., 2005;[START_REF] Hipsey | Computational aquatic ecosystem dynamics model : Caedym v2[END_REF]. Ils ont pour but d'être les plus explicites possibles, tant au niveau des variables prises en compte qu'au niveau des lois physiques régissant leurs interactions. Cependant, ils nécessitent un grand nombre de données précises du lac pour permettre leur calibration [START_REF] Mooij | Challenges and opportunities for integrating lake ecosystem modelling approaches[END_REF]. Or le coût des mesures rend rares les cas d'études bien renseignés. D'autre part les phénomènes en jeu dans l'eutrophisation des lacs peuvent durer plusieurs années -comme la dynamique du phosphore [START_REF] Brias | Inter-annual rainfall variability may foster lake regime shifts : An example from Lake Bourget in France[END_REF][START_REF] Barten | Stormwater runoff treatment in a wetland filter : Effects on the water quality of clear lake[END_REF] -, et la donnée disponible l'est souvent sur une fenêtre de temps courte -de l'ordre d'une ou deux années (Davis et al., 2010b;[START_REF] Dillon | A test of a simple nutrient budget model predicting the phosphorus concentration in lake water[END_REF]. L'emploi des modèles "simulateurs de vol" n'est donc applicable qu'aux cas d'étude suffisamment bien renseignés. De plus la complexité de ces modèles permet difficilement d'isoler et d'analyser des phénomènes précis, autrement que par une étude numérique et statistique (Makler-Pick et al., 2011a). Ainsi, de nombreuses études privilégient l'emploi d'un autre type de modèles, dits agrégés. Ces études se concentrent alors sur un nombre réduit de variables du système lacustre. Suivant les besoins de l'étude, le choix de ces variables présente un compromis entre leur représentativité du système et l'accès à leur donnée. Leur analyse nécessite l'emploi de modèles agrégeant les lois physiques mises en cause dans leur dynamique [START_REF] Vollenweider | Input-output models[END_REF][START_REF] Carpenter | Eutrophication of aquatic ecosystems : Bistability and soil phosphorus[END_REF][START_REF] Wang | Flickering gives early warning signals of a critical transition to a eutrophic lake state[END_REF][START_REF] Fadel | On the successful use of a simplified model to simulate the succession of toxic cyanobacte-ria in a hypereutrophic reservoir with a highly fluctuating water level[END_REF]. Ces modèles perdent donc en exhaustivité et en précision, puisque l'agrégation des lois suppose des approximations. Cependant, ils réduisent considérablement le nombre de variables d'état et de paramètres étudiés par rapport aux modèles "simulateurs de vol". Ainsi, les lois mathématiques les régissant sont à portée d'une analyse analytique. Dans cette thèse nous privilégions l'emploi de modèles agrégés pour les raisons évoquées précédemment -contrainte de la donnée accessible, et étude analytique des phénomènes.

La dynamique des populations toxiques et non toxiques des cyanobactéries dans l'eau d'un lac

La toxicité des proliférations cyanobactériennes est le principal enjeu sanitaire de l'eutrophisation des lacs. Les populations toxiques des cyanobactéries sont responsables de la synthèse des cyanotoxines. La compréhension de leur dynamique est donc essentielle pour prévoir la toxicité d'une prolifération cyanobactérienne, qui constitue l'un des enjeux actuels. Le modèle du chemostat est l'un des modèles de populations cyanobactériennes les plus répandus [START_REF] Smeti | Species extinctions strengthen the relationship between biodiversity and resource use efficiency[END_REF][START_REF] Rapaport | Global dynamics of the buffered chemostat for a general class of response functions[END_REF][START_REF] Rapaport | Some non-intuitive properties of simple extensions of the chemostat model[END_REF], du fait de la pertinence de ses résultats, particulièrement en milieu contrôlé. Il s'agit d'un modèle de population agrégeant les principales composantes de la dynamique d'une population de cyanobactéries. Le modèle du chemostat est un outil très générique, sur lequel il est possible de construire de nombreuses variantes : par l'introduction de plusieurs nutriments [START_REF] Roelke | Phytoplankton succession in recurrently fluctuating environments[END_REF], de plusieurs populations qui se retrouvent alors en compétition sur le ou les nutriments [START_REF] Sakavara | Lumpy species coexistence arises robustly in fluctuating resource environments[END_REF], d'une dépendance de la croissance des populations à d'autres facteurs, comme la température [START_REF] Grimaud | Modelling thermal adaptation in microalgae : an adaptive dynamics point of view[END_REF], la luminosité [START_REF] Varis | Cyanobacteria dynamics in a restored finnish lake : a long term simulation study[END_REF], la prédation [START_REF] Vayenas | Chaotic dynamics of a food web in a chemostat[END_REF] etc. L'une des propriétés du modèle du chemostat est qu'en cas de compétition de plusieurs populations, il conclut au principe d'exclusion compétitive [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF][START_REF] Rapaport | Some non-intuitive properties of simple extensions of the chemostat model[END_REF]. C'est-à-dire qu'à terme, une seule population survit au détriment des autres. Pour permettre la coexistence de plusieurs populations, il faut un environnement variable et l'introduction d'une dépendance de la croissance des populations à cet environnement -apports en nutriments par impulsion [START_REF] Roelke | Phytoplankton succession in recurrently fluctuating environments[END_REF][START_REF] Suominen | Competition between a toxic and a non-toxic microcystis strain under constant and pulsed nitrogen and phosphorus supply[END_REF], débit variable [START_REF] Smith | Competitive coexistence in an oscillating chemostat[END_REF][START_REF] Lobry | Stability loss delay in the chemostat with a slowly varying washout rate[END_REF], etc. La température est l'un des facteurs recensés comme impactant la croissance des populations de cyanobactéries [START_REF] Goldman | A kinetic approach to the effect of temperature on algal growth 1[END_REF][START_REF] Rose | Does low temperature constrain the growth rates of heterotrophic protists ? evidence and implications for algal blooms in cold waters[END_REF]. Plus spécifiquement, la température semble impacter la répartition temporelle des populations toxiques et non toxiques [START_REF] Davis | The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms[END_REF][START_REF] Lehman | Impacts of the 2014 severe drought on the microcystis bloom in san francisco estuary[END_REF]. De plus sa variation saisonnière rend possible la coexistence de plusieurs populations. Lier la dynamique des populations toxiques et non toxiques aux variations de température dans modèle du chemostat pourrait ainsi permettre d'expliquer les phénomènes observés, en particulier, la présence des populations toxiques en début et en fin d'épisodes de prolifération.

La dynamique du phosphore total dans l'eau d'un lac

Le phosphore est le principal nutriment limitant naturellement la prolifération des cyanobactéries dans les lacs [START_REF] Correll | Phosphorus : a rate limiting nutrient in surface waters[END_REF][START_REF] Carpenter | Probabilistic estimate of a threshold for eutrophication[END_REF]. Le phosphore total désigne l'ensemble des formes du phosphore présent dans l'eau d'un lac, et comprend les orthophosphates -assimilables par les organismes -, le phosphore non assimilable, et le phosphore déjà assimilé par des micro-organismes. Le phosphore total est donc souvent utilisé comme proxy de la biomasse phytoplanctonique et plus globalement du niveau trophique d'un lac. Ainsi, l'état eutrophe désigne une forte concentration en phosphore total, l'état oligotrophe un niveau acceptable, et l'état mésotrophe un état intermédiaire entre les deux précédents [START_REF] Uye | Geographical variations in the trophic structure of the plankton community along a eutrophic-mesotrophic-oligotrophic transect[END_REF]. Afin de modéliser le phosphore total dans l'eau d'un lac, l'approche classique consiste à considérer son bilan de masse [START_REF] Vollenweider | Input-output models[END_REF][START_REF] Carpenter | Management of eutrophication for lakes subject to potentially irreversible change[END_REF] : la variation de la quantité de phosphore est égale à la différence entre les flux entrants et les flux sortants de l'eau d'un lac. Les flux entrants comprennent la quantité de phosphore drainée par les affluents du lac, et un flux de phosphore sortant des sédiments du lac, appelé recyclage. Les flux sortants comprennent la quantité de phosphore drainé vers l'aval du lac, et le flux de phosphore se déposant dans les sédiments du lac. Jusque dans les années 80-90, les modèles considèraient le système à l'équilibre, c'est-à-dire un bilan de masse supposé nul [START_REF] Ostrofsky | Modification of phosphorus retention models for use with lakes with low areal water loading[END_REF][START_REF] Kirchner | An empirical method of estimating the retention of phosphorus in lakes[END_REF][START_REF] Larsen | Phosphorus retention capacity of lakes[END_REF][START_REF] Reckhow | Empirical Models for Trophic State in Southeastern U.S. Lakes and Reservoirs[END_REF][START_REF] Håkanson | Models to predict organic content of lake sediments[END_REF]. La quantité de phosphore dans l'eau du lac est alors interprétée comme une proportion constante de la quantité entrante provenant des affluents. Ce terme de proportion est appelé rétention du lac. De nombreux modèles ont été proposés pour exprimer ce terme de rétention, sans pour autant que se dégage un consensus clair. De plus, l'approche statique ne permet pas de modéliser certains phénomènes dynamiques propres aux lacs. En particulier, le renouvellement de l'eau du lac n'est pas immédiat, donc une augmentation brusque de la concentration de phosphore provenant du bassin versant conduit à une augmentation progressive de la concentration de phosphore dans l'eau du lac, jusqu'à ce que cette eau soit totale-INTRODUCTION ment renouvelée. L'approche statique qui considère le système à l'équilibre ne permet pas de modéliser cette phase de transition. De plus, certaines études mettent en lumière le caractère hystérétique de la dynamique du phosphore dans l'eau d'un lac par rapport au phosphore entrant dans le lac [START_REF] Carpenter | Management of eutrophication for lakes subject to potentially irreversible change[END_REF]. En effet, une même quantité de phosphore entrant dans le lac peut correspondre à plusieurs équilibres du niveau de phosphore dans l'eau du lac -eutrophe et oligotrophe dans certains cas [START_REF] Brias | Inter-annual rainfall variability may foster lake regime shifts : An example from Lake Bourget in France[END_REF]. Or ce caractère hystérétique ne peut pas être modélisé par une approche statique.

Depuis les années 90, plusieurs études proposent une modélisation dynamique des lacs, et en particulier du phosphore total. En particulier, le modèle de Carpenter et al. (1999) se concentre sur les quatre flux composant la dynamique du phosphore totale dans l'eau d'un lac. Ces flux sont alors régis par des lois mathématiques dont l'expression et les paramètres n'ont pas nécessairement d'interprétation physique directe, mais résument les différents phénomènes mis en jeu. Les lois mathématiques régissant ce modèle permettent une étude analytique de la dynamique du phosphore dans l'eau du lac. De plus, la simplicité du modèle permet de coupler la dynamique du phosphore à celle d'autres variables [START_REF] Cottingham | Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling[END_REF][START_REF] Carpenter | Eutrophication of aquatic ecosystems : Bistability and soil phosphorus[END_REF][START_REF] Wang | Flickering gives early warning signals of a critical transition to a eutrophic lake state[END_REF]. Ce modèle permet donc de coupler la dynamique du phosphore total dans l'eau d'un lac à celle d'une structure de rétention. Il serait alors possible de définir une stratégie de gestion des structures de rétention, adaptée aux propriétés dynamiques du lac.

La gestion des systèmes lacustres

L'objectif d'un gestionnaire de lac est de ramener et/ou de maintenir le lac dans un état oligotrophe. Dans cette optique, la valeur d'un caractère particulier de l'état du lac -comme le phosphore total -doit être maintenue en deçà d'un certain seuil. Ainsi, la gestion du lac induit une considération ensembliste de son état. En effet, il s'agit de définir un ensemble d'états acceptables, et de ramener ou maintenir l'état du système dans cet ensemble. A titre d'exemple, il ne s'agit pas de faire disparaître le phosphore de l'eau d'un lac, mais d'en avoir un niveau suffisamment faible. La gestion de structures de rétention peut alors être vue comme un contrôle du phosphore total dans l'eau du lac. Formellement, le système étudié correspond à un système différentiel contrôlé, et l'objectif est d'amener et de maintenir le système dans un ensemble de contraintes donné. Plusieurs branches mathématiques permettent d'aborder un tel problème. En particulier, la théorie de la viabilité [START_REF] Aubin | Viability Theory[END_REF] a pour objet la description du noyau de viabilité. Le noyau de viabilité correspond à l'ensemble des états initiaux desquels il existe une trajectoire qui maintient le système dans l'ensemble de contraintes. La connaissance de ce noyau de viabilité fournit des informations essentielles à la prévision et à la gestion du système : si l'état courant se trouve dans le noyau de viabilité, alors il existe une façon de l'y maintenir sur le long terme. Si en revanche l'état du système n'est pas dans le noyau de viabilité, alors qu'il sortira de cet espace de contraintes, quand bien même serait-il acceptable initialement. La gestion du système consistera donc à le maintenir dans le noyau de viabilité. La viabilité a été étudiée pour de nombreux cas d'application, comme la gestion des écosystèmes lacustres [START_REF] Anaya | Viability kernel for ecosystem management models[END_REF][START_REF] Bonneuil | Viable populations in a prey-predator system[END_REF][START_REF] Bonneuil | Population viability in three trophic-level food chains[END_REF], la gestion des ressources renouvelables [START_REF] Béné | A viability analysis for a bio-economic model[END_REF][START_REF] Oubraham | A survey of applications of viability theory to the sustainable exploitation of renewable resources[END_REF], l'eutrophisation du lac [START_REF] Martin | The cost of restoration as a way of defining resilience : a viability approach applied to a model of lake eutrophication[END_REF] etc. Au cours des trente dernières années, plusieurs outils et études ont été conçus pour caractériser le noyau de viabilité, à la fois théoriquement [START_REF] Aubin | Viability theory : new directions[END_REF][START_REF] Quincampoix | Frontieres de domaines d'invariance et de viabilité pour des inclusions différentielles avec contraintes[END_REF][START_REF] Kittel | Operationalization of topology of sustainable management to estimate qualitatively different regions in state space[END_REF] et numériquement [START_REF] Frankowska | Viability kernels of differential inclusions with constraints : Algorithms and applications[END_REF][START_REF] Saint-Pierre | Approximation of the viability kernel[END_REF][START_REF] Kaynama | Computing the viability kernel using maximal reachable sets[END_REF][START_REF] Deffuant | Approximating viability kernels with support vector machines[END_REF][START_REF] Bonneuil | Computing the viability kernel in large state dimension[END_REF].

Une autre approche possible de la gestion de tels systèmes dynamiques contrôlés est le contrôle optimal. Le problème de contrôle optimal est basé sur une fonction coût qui est une fonction associant une valeur de coût à une trajectoire. La résolution d'un problème de contrôle optimal consiste donc à déterminer le coût minimal sur l'ensemble des trajectoires à partir d'un état initial. La fonction qui associe ce coût minimal d'un état initial est appelée fonction valeur. Ainsi, si le coût associé à la gestion du phosphore total est le maximum de la quantité de phosphore dans le temps, la gestion optimale visera alors à minimiser cette quantité de phosphore. L'optimalité de la gestion d'un système environnemental est ainsi régulièrement étudiée [START_REF] Carpenter | Management of eutrophication for lakes subject to potentially irreversible change[END_REF][START_REF] Iho | The role of fisheries in optimal eutrophication management[END_REF][START_REF] Crépin | Multiple species boreal forests -what faustmann missed[END_REF]. Plusieurs approches permettent la résolution d'un problème de contrôle optimal, principalement les approches basées sur le principe du maximum de Pontryagin [START_REF] Cots | Time-optimal aircraft trajectories in climbing phase and singular perturbations[END_REF] et celles basées sur la programmation dynamique [START_REF] Barron | The bellman equation for minimizing the maximum cost[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] INTRODUCTION optimal particuliers [START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF][START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF]Doyen and Lara, 2010).

1.4 Objectifs et organisation de la thèse L'objectif de cette thèse est d'apporter des éléments d'analyse et de gestion de ces systèmes lacustres eutrophes. En particulier, la toxicité est l'une des conséquences les plus importante des proliférations cyanobactériennes sur le plan de la santé publique. Nous cherchons donc à décrire les mécanismes responsables de la dynamique des populations toxiques et non toxiques des cyanobactéries, en particulier via l'étude de l'impact de la température. Indépendamment de sa toxicité, les proliférations cyanobactériennes représentent un problème majeur sur les plans écologique et économique. Ces proliférations sont dues à des excès de phosphore dans l'eau du lac. C'est pourquoi nous nous concentrons sur la dynamique du phosphore totale, puisqu'elle représente un bon indicateur de l'état trophique du lac, et qu'elle permet d'analyser l'impact dynamique des structures de rétention sur un lac en aval. Nous nous intéressons en particulier à la gestion permettant la restauration d'un lac vers un état oligotrophe. Une fois cet état atteint, la gestion du système lacustre vise à l'y maintenir. La théorie de la viabilité et le contrôle optimal sont des outils adaptés au maintient du système lacustre dans cet état oligotrophe. Résoudre dans un même temps un problème de viabilité et de contrôle optimal permet d'avoir accès à des stratégies complémentaires. Puisque ces deux approches visent ce même objectif, nous explorons le lien entre ces deux problèmes mathématiques. Ces aspects sont présentés à travers trois articles, dont les textes constituent les corps des chapitres de la thèse :

-le chapitre 2 analyse un modèle dynamique mettant en jeu deux populations cyanobactériennes. En liant la dynamique de ces populations à la température, nous déduisons les conditions nécessaires aux comportements observés des populations toxiques et non toxiques. Ces conditions sont ensuite vérifiées dans un cadre expérimental, et à travers l'analyse de cas réels ; -le chapitre 3 aborde la dynamique du phosphore total dans l'eau d'un lac, et évalue les effets dynamiques des structures de rétention sur un lac en aval. Cette étude permet notamment d'établir une stratégie de gestion de ces structures permettant la restauration d'un lac eutrophe ; -le chapitre 4 propose un cadre théorique généralisant l'approche qui consiste à caractériser un noyau de viabilité par un problème de contrôle optimal, lui même éligible à la méthode de résolution numérique de la programmation dynamique.

Chapitre 2

Influence of seasonal temperature variations on toxic and non-toxic cyanobacterial blooms : evidence from modeling and experimental data.

Présentation de l'article

Article en cours de soumission

Les proliférations estivales de cyanobactéries sont l'un des principaux symptômes de l'eutrophisation d'un lac. En particulier, la toxicité de ces proliférations est l'un des enjeux sanitaires majeur de l'eutrophisation. Une prolifération est généralement dominée par une seule espèce [START_REF] Davis | The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms[END_REF], au sein de laquelle nous distinguons donc deux sous-populations : l'une dite toxique, dont les individus peuvent synthétiser des toxines, l'autre dite non toxique, c'est-à-dire que ses individus n'ont pas cette capacité de synthèse. Prédire la toxicité du lac nécessite donc de comprendre les mécanismes régissant la répartition temporelle de ces populations. Si certaines propriétés sont connues -par exemple les concentrations en populations toxiques sont généralement plus fortes au début et à la fin de l'épisode de prolifération [START_REF] Turner | Analysis of microcystins in cyanobacterial blooms from freshwater bodies in england[END_REF][START_REF] Briand | Spatiotemporal changes in the genetic diversity of a bloom-forming microcystis aeruginosa (cyanobacteria) population[END_REF] -, les mécanismes régissant la dynamique de ces deux sous-populations ne sont actuellement pas compris. D'un point de vue mathématique, la coexistence de populations cyanobactériennes en compétition sur une ressource commune -par exemple le phosphore -n'est permise que sous environnement variable. Or la température est l'un des principaux facteurs régissant la croissance des populations cyanobactériennes [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF][START_REF] Li | Temperature characteristics of photosynthetic and heterotrophic activities : seasonal variations in temperate microbial plankton[END_REF]. De plus, les variations saisonnières de la température rendent possible la coexistence des populations toxiques et non toxiques. Nous étudions donc ici un modèle mettant en jeu deux populations dont les dynamiques sont régies par leur consommation en nutriment et par une température périodique. L'étude de ce modèle a pour objectif de nous fournir les conditions théoriques nécessaires à la coexistence des sous populations toxiques et non toxiques. D'autre part, nous nous intéressons aux hypothèses nécessaires aux propriétés dynamiques constatées de ces populations. En particulier, nous cherchons à fournir des éléments de réponse à la question suivante : quelles sont les raisons pour lesquelles les proliférations toxiques sont observées généralement au début et/ou à la fin de la prolifération cyanobactérienne estivale ? Afin de confirmer nos conclusions théoriques, nous menons une série d'expériences, et analysons des données issues d'études de cas réels.

Abstract

Summer blooms of cyanobacteria are composed of toxic and non-toxic genotypes, the proportion of which partly determines the concentration of cyanotoxins in a lake. The current difficulty in predicting cyanotoxin concentrations is the strong temporal variability of the toxic and non-toxic genotype ratios in a lake. In general, depending on their specific growth rates, the toxic genotypes are more abundant in early and late summer whereas the non-toxic ones appear in mid-summer. To analyze this phenomenon, we first propose a model in which toxic and non-toxic genotypes compete, taking seasonal variations of temperature into account. Numerical simulations suggest that the optimal temperature of the toxic genotypes is less than of the optimal temperatures of the nontoxic ones. Experimental data from the laboratory and lake survey data qualitatively fit our simulation results.

Introduction

Lake eutrophication is a global issue, affecting more than 40 % of European lakes in 2013 (European Commission, IP/13/947). Excess nutrients in lake water lead to summer blooms of cyanobacterial populations [START_REF] Smith | Eutrophication : impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems[END_REF]Davis et al., 2010a) with ecological impacts [START_REF] Chislock | Eutrophication : causes, consequences, and controls in aquatic ecosystems[END_REF][START_REF] Weinke | From bacteria to fish : Ecological consequences of seasonal hypoxia in a great lakes estuary[END_REF]. In addition, some cyanobacterial genotypes may produce cyanotoxins that can threaten the health of animal and human populations [START_REF] Celeste | Mathematical modeling of microcystis aeruginosa growth and [dleu1] microcystin-lr production in culture media at different temperatures[END_REF][START_REF] Van Der Westhuizen | Effect of temperature and light on the toxicity and growth of the blue-green alga microcystis aeruginosa (uv-006)[END_REF][START_REF] Vasconcelos | Cyanobacteria toxins : diversity and ecological effects[END_REF][START_REF] Svirčev | Cyanobacteria in aquatic ecosystems in serbia : effects on water quality, human health and biodiversity[END_REF]. However, eutrophication represents not only an ecological and health risk, but also an economic one [START_REF] Lee | Effects of eutrophication on fisheries[END_REF][START_REF] Dodds | Eutrophication of u.s. freshwaters : Analysis of potential economic damages[END_REF] : for instance, nautical and fishing activities may be interrupted during large cyanobacterial blooms. Being able to understand the factors involved in the occurrence and toxicity of blooms is therefore an important challenge.

Although the factors leading to blooms are now well identified -e.g. high nutrient concentration (mainly phosphorus and nitrates) [START_REF] Morris | Nutrient limitation of bacterioplankton growth in lake dillon, colorado[END_REF], high temperature [START_REF] Rhee | The effect of environmental factors on phytoplankton growth : Temperature and the interactions of temperature with nutrient limitation1[END_REF][START_REF] Beaulieu | Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set[END_REF], high level of sunshine [START_REF] Varis | Cyanobacteria dynamics in a restored finnish lake : a long term simulation study[END_REF][START_REF] Zhang | Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production[END_REF] -, it remains difficult to anticipate the occurrence and toxicity of cyanobacterial blooms. It is now well established that within the same species, some genotypes may produce cyanotoxins depending on the presence of genes involved in the synthesis of such molecules, while others will remain non-toxic [START_REF] Suominen | Competition between a toxic and a non-toxic microcystis strain under constant and pulsed nitrogen and phosphorus supply[END_REF][START_REF] Rinta-Kanto | Lake erie microcystis : Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake[END_REF][START_REF] Conradie | The dynamics of toxic microcystis strains and microcystin production in two hypertrofic south african reservoirs[END_REF]. Therefore we distinguish two types of sub-population within a single species : a toxic sub-population -able to produce cyanotoxins -and a non-toxic one. The temporal dynamics of the sub-populations is currently poorly understood, which makes it difficult to predict the toxicity risk. However, some global trends can be observed, in particular higher concentrations of toxic sub-populations and/or toxins in early or late summer, while major bloom episodes generally occur in mid-summer [START_REF] Briand | Spatiotemporal changes in the genetic diversity of a bloom-forming microcystis aeruginosa (cyanobacteria) population[END_REF]. Most studies focus on cyanotoxins and the total population of a species. However there is no explicit model to infer the concentration of toxic sub-populations based on toxin concentration [START_REF] Pacheco | Is qpcr a reliable indicator of cyanotoxin risk in freshwater ?[END_REF][START_REF] Rinta-Kanto | Lake erie microcystis : Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake[END_REF] : in addition to inter-species and genetic factors, the physiologic state of cells and physico-chemical parameters -temperature, light intensity, nutrient concentrations etc. -can affect cyanotoxin synthesis. Nevertheless, only a few studies have directly measured the toxic sub-population concentrations [START_REF] Davis | The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms[END_REF](Davis et al., , 2010a)).

The chemostat model is the most popular model used for analyzing bacteria dynamics. One well-known result of the chemostat model is that under constant conditions, only one population survives [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF][START_REF] Rapaport | A new proof of the competitive exclusion principle in the chemostat[END_REF]. So only a variable environment can lead to the coexistence of populations. For instance, [START_REF] Smith | Competitive coexistence in an oscillating chemostat[END_REF]; [START_REF] Lobry | Stability loss delay in the chemostat with a slowly varying washout rate[END_REF] studied different varying versions of the chemostat model and highlighted the possible coexistence of populations, while [START_REF] Suominen | Competition between a toxic and a non-toxic microcystis strain under constant and pulsed nitrogen and phosphorus supply[END_REF] highlighted the competition between the toxic and non-toxic sub-populations of Microcystis under constant and pulsed nutrient supply : only the pulsed nutrient supply led to the coexistence of these two sub-populations. [START_REF] Grimaud | Modelling thermal adaptation in microalgae : an adaptive dynamics point of view[END_REF] studied the emergence of mutant strains induced by fluctuating temperatures, although without looking into the possible coexistence of the new strain with the old one. In addition, toxic and non-toxic sub-population dynamics are different depending on the environmental context. In particular, toxic sub-populations are proportionally larger under unfavourable growth conditions -cold water temperature, low nutrients abundance - [START_REF] Briand | Spatiotemporal changes in the genetic diversity of a bloom-forming microcystis aeruginosa (cyanobacteria) population[END_REF], and temperature appears to be the main factor regulating both duration and magnitude of toxic sub-population blooms [START_REF] Lehman | Impacts of the 2014 severe drought on the microcystis bloom in san francisco estuary[END_REF]. This suggests that temperature variation is one of the main factors allowing toxic and non-toxic subpopulations to coexist.

So, in our study, we focus on the model drawn up by [START_REF] Grimaud | Modelling thermal adaptation in microalgae : an adaptive dynamics point of view[END_REF] in order to study the growth dynamics of two populations under seasonal temperature variations Section 2.2. We then determine which mathematical assumptions correspond to the coexisting toxic and non-toxic sub-populations observed in lake case studies, and how these parameters may increase or decrease this coexistence Section 2.3. Finally, we check if these mathematical assumptions fit experimental data obtained from laboratory experiments and from the analysis of lake data Section 2.4.

Modeling coexistence of toxic and non-toxic cyanobac-

terial sub-populations

Introduction

As explained above, toxic and non-toxic cyanobacterial sub-populations coexist in nature, especially in lakes. However, previous studies have shown that, when environmental conditions remain constant, this coexistence is not possible from a mathematical point of view [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF]. A key issue for toxic and non-toxic cyanobacteria is on annual temperature variations. This is one of the drivers of this coexistence, as shown by the hypertrofic South African reservoirs [START_REF] Conradie | The dynamics of toxic microcystis strains and microcystin production in two hypertrofic south african reservoirs[END_REF]. For instance, let's consider Figure 2.1. On the right part, we consider the case of constant temperature. In this case, there is a dominance of the non toxic sub-population for a given temperature whereas a dominance of the toxic sub-population is observed for another temperature. We define the dominance of a sub-population as the survival of this sub-population at the expense of another, i.e. it will cause the collapse of the other subpopulation in the long term. The collapse of the non-dominant sub-population is not necessarily immediate and may take some time because of nutrient competition. The key question here is to analyze if annual variations in temperature can cause alternating dominance of sub-populations without the complete collapse of one sub-population, as illustrated in Figure 2.1. To analyze this dynamic effect, we use the chemostat model in the case of periodic variations in temperature.

The Chemostat model in the case of thermal variations

We consider two cyanobacterial sub-populations -here a toxic and non toxic subpopulation. The growth of such sub-populations is well known to be influenced by the temperature [START_REF] Rose | Does low temperature constrain the growth rates of heterotrophic protists ? evidence and implications for algal blooms in cold waters[END_REF][START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF]. According to [START_REF] Grimaud | Modelling thermal adaptation in microalgae : an adaptive dynamics point of view[END_REF][START_REF] Grimaud | Modelling the effect of temperature on phytoplankton growth across the global ocean[END_REF], we therefore consider the growth rate as the product of a thermal growth rate µ temp i (T (t)) -where T (t) is the temperature that evolves over time t -with the consumption growth rate µ nut i (S(t)). In the case of a chemostat model composed of two subpopulations of cyanobacteria, the governing equations are, for i ∈ {1, 2} :

dX i (t) dt = µ temp i (T (t))µ nut i (S(t))X i (t) -DX i (t) (2.1) dS(t) dt = D(S in -S(t)) - i=1,2 µ temp i (T (t))µ nut i (S(t))X i (t)
S(t) is the nutrient concentration in the chemostat, S in is the inflow substrate concentration, X 1 (t) and X 2 (t) are the biomass concentrations of the two cyanobacterial subpopulations, and D is the dilution rate that is considered to be constant over time. The Figure 2.1 -For a given temperature -in (b) -either the non-toxic sub-population dominates -right-hand side of (a) -or the toxic sub-population dominates -left-hand side of (a). consumption growth rates µ nut i (S(t)), i ∈ {1, 2} correspond to the Monod model that depends only on the half-saturation coefficient K nut i > 0, i ∈ {1, 2} :

µ nut i (S(t)) = S(t) S(t) + K nut i (2.2)
The nutrient consumption of a sub-population depends on this parameter : the lower the value of K nut i , the higher the nutrient consumption, and thus the sub-population growth, as shown in Figure 2.2(a). Whereas the Monod model is frequently used for modeling the consumption growth rate, many models have been proposed for the thermal growth rate µ temp i (T (t)). than the second sub-population (in red). (b) : Thermal growth rates of two cyanobacterial sub-populations with two different optimal temperature coefficients. The first sub-population (in blue) has a higher value of optimal temperature coefficient T opt 1 than the second sub-population (in red).

Growth of a cyanobacterial sub-population has been shown by many studies to be closely linked to temperature [START_REF] Goldman | A kinetic approach to the effect of temperature on algal growth 1[END_REF][START_REF] Rose | Does low temperature constrain the growth rates of heterotrophic protists ? evidence and implications for algal blooms in cold waters[END_REF]. This thermal effect is taken into account in many growth models [START_REF] Li | Temperature characteristics of photosynthetic and heterotrophic activities : seasonal variations in temperate microbial plankton[END_REF][START_REF] Grimaud | Modelling the effect of temperature on phytoplankton growth across the global ocean[END_REF] that are mainly based on a function that has four parameters for a given sub-population i : 1) the minimal temperature for growth T min i ; 2) the optimal temperatures for growth T opt i ; 3) the maximal temperature for growth T max i and 4) the maximal growth rate µ opt i defined as the thermal growth rate at T (t) = T opt i . This model results in no growth of the sub-population when the temperature is lower than T min i or higher than T max i . Between T min i and T opt i , the growth rate increases whereas it decreases between T opt i and T max i . In this paper, we use the function developed by [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF] to model the growth rate between T min i and T max i as follows :

µ temp i (T (t)) =    0, if T (t) ≤ T min i µ opt i φ(T (t)) if T min i < T (t) < T max i 0, if T max i ≤ T (t) (2.3) with φ(T ) = (T (t) -T max i ) T (t) -T min i 2 T opt i -T min i T opt i -T min i T (t) -T opt i -T opt i -T max i T opt i + T min i -2T (t) (2.4)
and

T opt i > T min i + T max i 2 (2.5)
These functions have four independent parameters : µ opt i , T opt i , T min i and T max i . However, many studies [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF][START_REF] Goldman | A kinetic approach to the effect of temperature on algal growth 1[END_REF][START_REF] Grimaud | Modelling the effect of temperature on phytoplankton growth across the global ocean[END_REF] have shown dependencies between these parameters that enable us to express parameters µ opt i , T max i andT min i according to T opt i -see Section 2.6 for further details.

Case of constant temperature

The function described above has been widely studied for a constant temperature, i.e. T (t) = T cst . The main results for this case of constant temperature are summarized here. According to [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF], at fixed T cst temperature, generally only one sub-population survives while the other one vanishes. If sub-population i survives, the nutrient concentration converges to a value denoted S * i (T cst ) -at the time t → +∞ -which depends on the growth properties of sub-population i [START_REF] Grimaud | Modelling thermal adaptation in microalgae : an adaptive dynamics point of view[END_REF] :

S * i (T cst ) = S in , if µ temp i (T cst )µ nut i (S in ) -D ≤ 0 K nut i D µ temp i (Tcst)-D ∈]0, S in [ , otherwise (2.6)
The surviving sub-population corresponds to the smallest S * i (T cst ) value, and its concentration converges to S in -S * i (T cst ). Where the two compete, sub-population 1 exclusively survives below T IN T whereas subpopulation 1 exclusively survives above T IN T . (a) : The limit nutrient concentration S * (T ) according to the T temperature that is the minimum value between S * 1 (T ) and S * 2 (T ). (b) : Asymptotic values of the (S(t), X 1 (t), X 2 (t)) system based on temperature T . The exclusive sub-population of each cyanobacterial sub-population is delimited by temperature T IN T .

Periodic temperature changes

We now consider the case of a periodic seasonal temperature with a period of one year :

T (t) = T mean + T σ sin( t × 2π 1 year ) (2.7)
T mean corresponds to the mean annual temperature and T σ corresponds to the difference between the minimum and maximum temperatures over a year. If the threshold temperature T IN T is within the range [T mean -T σ ; T mean + T σ ], we may have alternating dominance of the two cyanobacterial sub-populations (Figure 2.4). In Figure 2.4(a) the maximum temperature reached during the summer is not higher than the maximum growth temperatures of the sub-populations. Thus the sub-populations continue to grow during the summer. However, the minimum temperature reached during winter is so low that the sub-populations stop growing since the winter temperature is lower than the minimal growth temperature. Finally, there are two times in the year -in the spring and automn -when the temperature permits growth of sub-population 2 while still being too low for sub-population 1. It therefore yields blooms of sub-population 2 (in red) during these two periods, as shown in Figure 2.4(b). On the other hand, the high temperature in summer favors sub-population 1 (in blue) which yields a bloom of this sub-population.

To analyze the dominance of each cyanobacterial sub-population over one year, we define the H i quantity that corresponds to the annual growth rate of population i :

H i = 1 year 0 µ temp 1 (T (t))µ nut 1 (S(t)) -Ddt (2.8)
This H i quantity provides us with some information about the evolution of the sub-population i. For instance, if the annual growth rate is nil -i.e. H i = 0 -, then X i (0) = X i (1 year). If the annual growth is positive -i.e. H i > 0 -, then after one year the concentration of the sub-population has increased -X i (1 year) > X i (0). Finally, if the annual growth is negative -id est H i < 0 -then the sub-population has decreased -X i (1 year) < X i (0).

The annual growth rate H i is also able to provide insights in terms of competition between the sub-populations :

-if the annual growth rate H i is negative in the case of maximum nutrient concentration (i.e., S(t)=S in ), then sub-population i vanishes. In other words, the maximum nutrient concentration the system can provide is not sufficient for the survival of sub-population i ; -if the annual growth rate H 1 is positive when sub-population 2 is dominant, then sub-population 1 survives. Indeed, if only sub-population 2 exists, the unconsumed nutrient concentration is sufficient to ensure the survival of the subpopulation. If H 2 is positive when sub-population 1 is dominant, both subpopulations coexist -see Section 2.7.1 for more details. In Section 2.7.2 we show how we approximate the H i values. 

T IN T ∈ [T mean -T σ ; T mean + T σ ] : when S * 1 (T (t)) > S * 2 (T (t)
), the second sub-population is favoured, and when S * 1 (T (t)) < S * 2 (T (t)), the first subpopulation is favoured.

Conclusion

The model can be adapted to include mathematical indicators whose values determine the evolution of the system : coexistence or dominance of one of the two subpopulations. Because these indicator values depend on the model parameter values, we can study the impact of these parameters on the system's evolution. In the next section, we investigate which assumptions impact the toxic and non toxic sub-populations coexistence observed in lakes, and how these parameters increase or decrease the coexistence potential. In Section 2.4, we test if these mathematical assumptions fit experimental data.

What are the conditions for coexistence of toxic and

non-toxic cyanobacterial sub-populations ?

Introduction

In the event of competition, either one sub-population collapses to the benefit of the other -dominance -, or both sub-populations coexist -coexistence. With the dynamic model developed above, we can predict the final state of the system based on the model parameter values. As a first step, we determine the set of optimal temperatures (T opt 1 , T opt 2 ) for both sub-populations leading to either coexistence, or dominance of subpopulation 1 2 depending on the other parameters. This initial analysis allows us to determine which assumptions about the parameters lead to coexistence and to study the influence of each parameter on this coexistence, especially the temperature. Once these parameters have been studied and characterized, we go on to focus on the properties of both sub-populations's trajectories, in particular the bloom occurrences.

Coexistence or dominance of sub-populations

In order to study the impact of individual parameters on the system's evolution, we define three sets of optimal temperature values for both sub-populations (T opt 1 , T opt 2 )see Section 2.8 for more details.

We first define Compet as the set of temperatures for which each sub-population will survive without the other sub-population : it therefore corresponds to the thermal conditions for the growth of one sub-populations alone. Therefore when two sub-populations are growing in this set, they compete for available nutrient. This Compet set corresponds to ]T opt,min

1 , T opt,max 1 [×]T opt,min 2 , T opt,max 2 
[. In the event of competition, the system can only evolve towards two possible states : the coexistence of both sub-populations, or the dominance of one. Note that Compet may be an empty set, i.e. sub-populations grow in two different temperature ranges and thus do not compete.

We then define the coexistence set Coex which corresponds to the coexistence of subpopulations during one season. For given optimal temperatures (T opt 1 , T opt 2 ), if X i (0) > 0 and X j =i (0) > 0, neither sub-population disappears.

We define the dominance set Dom i which corresponds to the dominance of subpopulation i. For given optimal temperatures (T opt 1 , T opt 2 ), only the i sub-population survives in the event of competition. We note that Coex, Dom 1 and Dom 2 are subsets of Compet.

Note that these sets are fully determined by the values S * i and H i values -see Section 2.7.3. These sets are plotted on Figure 2.5 according to T opt i optimal temperatures. We note the Coex set is composed of two disjoint sets that are in

{(T opt 1 , T opt 2 )|T opt 1 > T opt 2 } and in {(T opt 1 , T opt 2 )|T opt 1 < T opt 2 } respectively -note that there is also an uns- table coexistence when T opt 1 = T opt 2 only if K nut 1 = K nut 2 . If (T opt 1 , T opt 2
) is in either of these disjoint sets, there is coexistence, but the corresponding trajectories of both sub-populations are different depending on whether T opt

1 > T opt 2 or T opt 1 < T opt 2 . For instance, if T opt 1 > T opt
2 , sub-population 1 is favoured by warmer temperatures, and subpopulation 2 by cooler temperatures. Therefore, because the temperature T (t) reaches its maximum value in the middle of summer, growth of sub-population 1 is maximal in the middle of summer, and growth of sub-population 2 is maximal in early and late summer. Thus, the blooms of sub-population 1, corresponding to the coolest optimal temperature, appear in early and late summer, and the blooms of sub-population 2, corresponding to the warmest optimal temperature, appear in the middle of summer, as illustrated in Figure 2.3(b). Therefore in the case of cyanobacteria, this theoretical result suggests that the optimal temperature for the toxic sub-population is lower than for the non-toxic sub-population. In Section 2.4.2, we analyse data from experiments carried out in controlled conditions in order to test this theoretical hypothesis.

In order to analyze the impact of the parameters on coexistence, we studied the size evolution of these sets using to the parameter values in Figure 2.5 (more details on this sensitivity analysis are available in Section 2.8) :

-Impact of half-saturation coefficients K nut i : the smaller the half-saturation coefficients K nut i , the greater the coexistence. However, in the case of competition, the sub-population with the smallest K nut i value is the one corresponding to the highest dominance of one of the sub-populations : a large difference between halfsaturation coefficients K nut i and K nut j =i leads to a dominance of the sub-population corresponding to the smallest K nut value, whereas if K nut i and K nut j =i are closer in value, the optimal temperature is the more determining factor in dominance (Figure 2.6(a)).

-Impact of dilution rate D and nutrient input S in : both these parameters are linked to the nutrient dynamics. They impact the sub-population dynamics in inverse ways. Hence an increase in the dilution rate D leads a decrease in coexistence. On the contrary an increase in nutrient input S in leads to an increase in coexistence ( T σ : an increase in the mean temperature T mean leads to an increase in the coexistence. Therefore the higher the mean temperature T mean is, the higher the coexistence between sub-population. Note that there is also a value for the temperature variance T σ , which can influences coexistence since it affects the minimal and maximal growth temperature of the sub-populations -(Figure 2.6(c)). 

Conclusion and link with toxic and non-toxic cyanobacterial subpopulations

This mathematical approach highlights the link between the parameters and the evolution of the system : in the event of competition, the coexistence or dominance of one sub-population can be determined. In particular, an increase in the mean or the temperature variation increases the occurrence of coexistence. In addition, this analysis allows us to link theoretical hypotheses with the observed behaviour of sub-populations. The formulae show that for toxic and non-toxic sub-populations, the toxic genotypes tend to be dominant in early and late summer, and therefore the optimal temperature of this toxic sub-population should be cooler than that of the non-toxic sub-population. This would explain the coexistence of these sub-populations in actual lakes, and why we often notice the toxic genotypes in the early and late summer. To validate this hypothesis, we analyzed data from experimental results obtained for two different cyanobacterial species, and from lake monitoring, presented in the following section.

Application

Introduction

According to our results, only a toxic optimal temperature cooler than the non-toxic optimal temperature can lead to the coexistence of toxic and non-toxic genotypes which is observed in many lakes. To the best of our knowledge, the optimal temperature is systematically determined for species without taking into account of the toxicity of the sub-population species [START_REF] Konopka | Effect of temperature on blue-green algae (cyanobacteria) in lake mendota[END_REF][START_REF] Rose | Does low temperature constrain the growth rates of heterotrophic protists ? evidence and implications for algal blooms in cold waters[END_REF]. Therefore, we propose here to experimentally assess the optimal temperatures of toxic and non-toxic sub-populations in order to explore if different optimal temperatures can explain the dynamics of toxic and non-toxic genotypes during cyanobacterial blooms. We firstly present two sets of lab experiments that compare toxic and non-toxic optimal temperatures for two different species. Then, we analyzed time series of toxic and non-toxic cyanobacterial sub-populations in several lakes in order to assess their optimal temperatures in order to compare them with our results.

Experimental results

Experimental set-up

We focus on two species of cyanobacteria found in many lakes : Microcystis [START_REF] Davis | The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms[END_REF][START_REF] Rinta-Kanto | Lake erie microcystis : Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake[END_REF][START_REF] Verspagen | Water management strategies against toxic microcystis blooms in the dutch delta[END_REF] and Dolichospermum [START_REF] Descy | Identifying the factors determining blooms of cyanobacteria in a set of shallow lakes[END_REF][START_REF] Konopka | Effect of temperature on blue-green algae (cyanobacteria) in lake mendota[END_REF] -formerly called Anabaena. For each species, we determined the growth of a toxic and non-toxic sub-population under different constant temperatures. The measured growth provided qualitative validation that, for each species, the toxic optimal temperature is lower than the non-toxic optimal temperature. The experimental conditions were as follows :

-Microcystis : we used two strains of PCC7806 : a wild one which produces microcystin, and a mutant one, which has been mutated for one gene involved in the microcystin synthesis and does not produce microcystin.

-Dolichospermum : we used the HAMBI130 toxic sub-population, which is able to produce anatoxin-a, and the non-toxic sub-population PCC92.08, as no mutant exist for this genus.

We cultured these four strains in a BG11 medium which contained a sufficient concentration of nutrients (phosphorus concentration of 3.1 g/L) in order to focus solely on the impact of the temperature on the sub-population growth. Thermal growth was studied using three ovens set at three different temperatures : 15°C, 25°C and 30°C. Each experiment was replicated three times.

Results

We could not directly compute the optimal temperatures, because these experiments do not correspond exactly to a chemostat system. Although thermal growth is directly linked to the growth of these sub-populations, the nutrient concentrations were not monitored during the experiments. However, we assumed that the nutrient content was not a limiting factor on the growth of the sub-populations (because of the sufficiently high concentration). We computed the total growth rates for each sub-population and each initial condition :

H pop = log X pop (t f ) X pop (t 0 )
Where t 0 and t f are respectively the initial and the end times of an experiment, and X pop an indicator of the sub-population -Cell/ml for Microcystis, and optical density for Dolichospermum. In our model, this total growth rate is directly linked to the thermal growth. Figure 2.7 shows the total growth rates for both species. For each species, the toxic growth rate is higher than the non-toxic one when the temperature is equal to 15°C and 25°C, while the toxic growth rate is lower than the nontoxic one when the temperature is equal to 25°C. These results highlight the fact that the toxic optimal temperature is lower than the non-toxic optimal temperature ; Given the limited number of data (three per sub-population), we cannot determine the optimal temperatures with any great precision, but a rough calibration indicates an optimal temperature of 28.2°C for the non-toxic Microcystis sub-population, 25.5°C for the toxic Microcycstis sub-population, 25.7°C for the non-toxic Dolichospermum sub-population, and 23.2°C for the toxic Dolichospermum sub-population. Thus, these results confirm our hypothesis.

Real lakes

Case studies

In order to test these results in the context of lakes, we analyzed data from real lakes. More specifically, we focused on data from two studies [START_REF] Davis | The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms[END_REF](Davis et al., , 2010a) ) in order to determine if the optimal temperature of the toxic sub-population was lower than that of the non-toxic one. The data come from Lake Agawam (the summers of 2005 and 2008), Lake Ronkonkoma (summer 2005), Lake Champlain (summer 2006) and the Transquaking river (summer 2008). For each case study, we know the toxic and non-toxic Microcystis sub-population concentrations over time, in cells equivalents.L -1 , and the temperature. The goal of our study was not to finely calibrate our dynamic model, first because not all the necessary data was available, second because this model assumes several approximations, like the constant dilution term or the constant inflow substrate concentration, which are not realistic. Our purpose was simply to qualitatively test whether the optimal temperature of the toxic sub-population was lower than that of the non-toxic sub-population in actual lakes.

Results and interpretation

Considering the nutrient concentration S(t) as a feature of the system, the realistic model is, for each case study :

dX tox (t) dt = µ temp tox (T (t))µ nut tox (S(t))X tox (t) -D tox (t)X tox (t) (2.9) dX noT ox (t) dt = µ temp noT ox (T (t))µ nut noT ox (S(t))X noT ox (t) -D noT ox (t)X noT ox (t)
Where X tox (t) is the concentration of the toxic sub-population, µ temp tox (T (t)) its thermal growth rate, µ nut tox (S(t)) its consumption growth rate, and D tox (t) its dilution rate. X noT ox (t) is the concentration of the non-toxic sub-population, µ temp noT ox (T (t)) its thermal growth rate, µ nut noT ox (S(t)) its consumption growth rate, and D noT ox (t) its dilution rate. Because S(t) and D tox,nonT ox (t) are not known, it is impossible to calibrate this model with the given data. Instead we used the mean of the nutrient concentration for each case study, and we assumed, as an approximation, that the consumption growth rates were constant : µ nut noT ox (S(t)) ≈ µ nut noT ox and µ nut tox (S(t)) ≈ µ nut tox . In addition, we assumed the dilution rates of the toxic and non-toxic sub-populations were approximately equal for each case study : [START_REF] Grimaud | Modelling the effect of temperature on phytoplankton growth across the global ocean[END_REF]. The dynamic model thus becomes :

D tox (t) ≈ D noT ox (t) = D(t)
dX tox (t) dt = µ temp tox (T (t))µ nut tox X tox (t) -D(t)X tox (t) (2.10) dX noT ox (t) dt = µ temp noT ox (T (t))µ nut noT ox X noT ox (t) -D(t)X noT ox (t)
We formulated the difference between the toxic and non-toxic growth rates with respect to temperature as follows :

1 X tox (t) dX tox (t) dt - 1 X noT ox (t) dX noT ox (t) dt = µ temp tox (T (t))µ nut tox -µ temp noT ox (T (t))µ nut noT ox (2.11)
Therefore, for each time increment, if we know the toxic and non-toxic concentrations and the temperature, we can calibrate the previous model, whose parameters were : T opt tox , T opt noT ox , µ nut tox and µ nut noT ox -we only considered the data such that X tox (t) > and X noT ox (t) > , where = 10000 cell equivalent L -1 , in order to avoid a numerical error caused by measurement uncertainty. In addition, we know the optimal temperature of Microcystis lies within the broad range of 15°C to 40°C [START_REF] Konopka | Effect of temperature on blue-green algae (cyanobacteria) in lake mendota[END_REF][START_REF] Van Der Westhuizen | Effect of temperature and light on the toxicity and growth of the blue-green alga microcystis aeruginosa (uv-006)[END_REF], and we know these consumption rate values are between 0 and 1 based on the mathematical definition of consumption rate.

Finally, using a nonlinear curve-fitting problem solver in least-squares sens, we found T opt tox = 27.6°C, T opt noT ox = 29.6°C, µ nut tox = 0.38 and µ nut noT ox = 0.36, with an error of 0.48 (Figure 2.8). Therefore this numerical analysis agrees with our theoretical result : the toxic optimal temperature is lower than the non-toxic optimal temperature. 

1 Xtox(t) dXtox(t) dt - 1 X noT ox (t) dX noT ox (t) dt
with respect to temperature. The grey curve corresponds to the theoretical values of these differences using Equation (2.11) with T opt tox = 27.6°C, T opt noT ox = 29.6°C, µ nut tox = 0.38 and µ nut noT ox = 0.36. (b) : Thermal growth rates for the toxic and non-toxic sub-populations using T opt tox = 27.6°C and T opt noT ox = 29.6°C.

Conclusion

Laboratory experiments as well as data from real test cases meet the model results : the toxic optimal temperature is lower than the non-toxic optimal temperature. Therefore, the dynamics of toxic and non-toxic genotypes can be viewed as resulting from differences in optimal sub-group temperature.

Discussion and conclusion

In our study, we derived a chemostat model with varying temperature. It enabled us to study the impact of temperature on cyanobacterial sub-population coexistence, and to understand how seasonal temperature fluctuations could lead to the observed dynamics of the toxic and non-toxic genotypes in lakes : the toxic optimal temperature appears to be lower than the non-toxic optimal temperature which gives rise to toxic blooms in early and late summer. These theoretical results were confirmed by experimental results and analysis of real case studies : we show that the toxic optimal temperatures of Microcystis and Dolichospermum are lower than the non-toxic optimal temperatures. Nevertheless, it would be interesting to compare this hypothesis with other case studies using different cyanobacterial species. In order to resolve the lack of data and imprecision of measurements, it would also be interesting to study this model in a stochastic context : a stochastic version would allow extreme temperature events to be taken into account, and to evaluate the robustness of the results in terms of sub-population coexistence.

In addition, we focused on temperature variations, but other seasonally varying factors which might impact growth rates should be taken into account, such as light intensity [START_REF] Brauer | Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium cyanothece[END_REF], nutrient input rate [START_REF] Smith | Competitive coexistence in an oscillating chemostat[END_REF] and washout rate [START_REF] Lobry | Stability loss delay in the chemostat with a slowly varying washout rate[END_REF].

This study may also provide insights into the effects of climate change on cyanobacterial sub-populations. In particular, an increase in the mean and variation of temperature leads to an increase in coexistence. The study of temperature indicates that a climatic change, characterized by an increase in the mean and variation of temperature, leads to an increase in the number of coexisting sub-population cases. However, we focused on only two sub-populations, and a possible next step could be to investigate the impact of climate change on the number of coexisting sub-populations -for example as Roelke and Spatharis (2015) -: a priori, the number of coexisting sub-populations should be grater because of the coexistence conditions that are fostered by climate change. Therefore, climate change would increase the blooms of different cyanobacterial species. For this purpose, we need to study the correlation between the introduction of new cyanobacterial species in lakes and the evolution of lake temperatures. Finally, [START_REF] Brias | Inter-annual rainfall variability may foster lake regime shifts : An example from Lake Bourget in France[END_REF] showed the link between lake eutrophication and weather events, in particular related to rainfall : climate change will change not only the temperatures (the mean and variation) but also the input nutrient through rainfall. Both these cumulative effects must be taken into account in order to determine the how we modify our interaction with the environment, such as by limiting nutrient input [START_REF] Martin | The cost of restoration as a way of defining resilience : a viability approach applied to a model of lake eutrophication[END_REF]) and orienting research in terms of mitigation technologies, such as retention structures [START_REF] Caen | Dynamical effects of retention structures on the mitigation of lake eutrophication[END_REF], to reduce cyanobacterial proliferation.

Appendices 2.6 The thermal growth rate

To model the growth rate between T min i and T max i , we use the function developed by [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF]. For a given temperature T cst , the thermal growth rate µ temp i (T cst ) is :

µ temp i (T cst ) =      0, if T cst ≤ T min i µ opt i φ(Tcst) ψ(Tcst) , if T min i < T cst < T max i 0, if T max i ≤ T cst (2.12) with φ(T cst ) = (T cst -T max i ) T cst -T min i 2 (2.13) ψ(T cst ) = T opt i -T min i T opt i -T min i T cst -T opt i -T opt i -T max i T opt i + T min i -2T cst with T opt i > T min i + T max i 2 (2.14)
This function has four independent parameters : µ opt i , T opt i , T min i and T max i . However, many studies have shown degree of dependency between the parameters. For instance, [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF] assumes a dependence between the optimal growth rate µ opt i and the optimal temperature T opt i :

µ opt i = ae bT opt i (2.15)
with a = 0.851 day -1 and b = log(1.066)°C -1 [START_REF] Goldman | A kinetic approach to the effect of temperature on algal growth 1[END_REF]. In addition, [START_REF] Grimaud | Modelling the effect of temperature on phytoplankton growth across the global ocean[END_REF] assumes the following dependence between the minimal (T min i ), maximal (T max i ) and optimal (T opt i ) temperatures :

T max i = mT opt i + p
(2.16)

T min i = rT opt i -n
With m = 0.93, p = 9.83°C, r = 0.97 and n = 21.85°C.

Mathematical results

Asymptotic trajectories

A well known result is the 1 year-periodicity of the asymptotic trajectories of S(t), X 1 (t) and X 2 (t) [START_REF] Smith | The Theory of the Chemostat : Dynamics of Microbial Competition[END_REF]. In addition, there are the S * 1 (t), S * 2 (t), X * 1 (t), X * 2 (t) asymptotic 1 year-periodic trajectories such that, according to the initial conditions, we have the following asympotic convergence -see Table 2.1.

Initial conditions

S(t) X 1 (t) X 2 (t) X 1 (0) = 0 X 2 (0) = 0 lim t→+∞ |S(t) -S in | = 0 X 1 (t) = 0 X 2 (t) = 0 X 1 (0) > 0 X 2 (0) = 0 lim t→+∞ |S(t) -S * 1 (t)| = 0 lim t→+∞ |X 1 (t) -X * 1 (t)| = 0 X 2 (t) = 0 X 1 (0) = 0 X 2 (0) > 0 lim t→+∞ |S(t) -S * 2 (t)| = 0 X 1 (t) = 0 lim t→+∞ |X 2 (t) -X * 2 (t)| = 0
Table 2.1 -Asymptotic trajectories according to the initial conditions.

These asymptotic periodic trajectories are such that :

S * 1 (t) + X * 1 (t) = S in S * 2 (t) + X * 2 (t) = S in and noting f i (s, t) = µ temp i (T (t))µ nut i (s) -D : H 1 ( S * 1 (.)) = 1 year 0 f 1 ( S * 1 (t), t)dt = 0 H 2 ( S * 2 (.)) = 1 year 0 f 2 ( S * 2 (t), t)dt = 0
The three cases correspond to non-competitive cases, and have been well studied in several articles [START_REF] Smith | The Theory of the Chemostat : Dynamics of Microbial Competition[END_REF][START_REF] Grimaud | Modelling thermal adaptation in microalgae : an adaptive dynamics point of view[END_REF] ; in particular the quantity

H i (S in ) = 1 year 0 f i (S in , t)dt is positive if and only if X * i (t) > 0.
In Section 2.7.2 we show how we numerically approximate the corresponding asymptotic trajectoriesi.e. S * i (t) and X * i (t).

In the case of competition -X 1 (0) > 0 and X 2 (0) > 0 -a well known result provides us with a sufficient condition that leads to the coexistence of populations [START_REF] Smith | The Theory of the Chemostat : Dynamics of Microbial Competition[END_REF][START_REF] Lobry | Stability loss delay in the chemostat with a slowly varying washout rate[END_REF] :

H 1 ( S * 2 (.)) = 1 year 0 f 1 ( S * 2 (t), t)dt > 0 ⇒ the population 1 survives H 2 ( S * 1 (.)) = 1 year 0 f 2 ( S * 1 (t), t)dt > 0 ⇒ the population 2 survives
We assume that this condition is necessarily, even though we do not yet have formal mathematical proof. However, we can prove that, if 1 year 0 f 1 ( S * 2 (t), t)dt < 0, there are some initial conditions X 1 (0) > 0 and X 2 (0) > 0 such that X 1 (t) → 0. In addition, we prove that for all initial conditions such that x 1 < x 1 and x 2 > x 2 , X 1 (t) → 0 :

We assume

1 year 0 f 1 ( S * 2 (t), t)dt = h < 0.
By simplification, we also assume that S(0) + X 1 (0) + X 2 (0) = S in : in this case, S(t) = S in -X 1 (t) -X 2 (t). So :

1 year 0 f 1 (S in -X * 2 (t), t)dt = h < 0
We are looking for initial conditions X 1 (0) and X 2 (0) such that X 2 (0) is close to X * 2 (0) and X 1 (0) is close to 0 : in this case,

1 year 0 f 1 (S in -X 1 (t) -X 2 (t), t)dt is close to h < 0, that means X 1 (1 year) < X 1 (0), and so X 2 (1 year) is close X * 2 (0)
. Finally, be recurrence on X 1 (n * 1 year) and X 2 (n * 1 year), we conclude that X 1 (n * 1 year) is decreasing and converges to 0.

By continuity of the trajectories according to the initial conditions, let > 0 be such that, for all X 2 (0) ∈ [ X * 2 (0) -, X * 2 (0)], for all X 1 (0) < :

1 year 0 f 1 (S in -X 1 (t) -X 2 (t), t)dt < h 2 < 0 X * 2 (t) continuously depends on the S in value ; we thus note x * 2 (s in , t) the asymptotic trajectory of X 2 (t) corresponding to s in : if s in < S in , then x * 2 (s in , t) < x * 2 (S in , t), so δ > 0 exists such that x * 2 (S in -δ, 0) ∈] x * 2 (S in , 0) -/2, x * 2 (S in , 0)[. So if the initial conditions are : X 1 (0) ≤ min(δe -M * 1 year , /2) X 2 (0) ≥ x *
2 (S in -δ, 0) with M = sup |f 1 (., .)|. then :

1 year 0 f 1 (S in -X 1 (t) -X 2 (t), t)dt < h 2 < 0 So X 1 (1 year) < X 1 (0)e h 2
, and for all t ∈ [0, 1 year], X 1 (t) < δ, so for all t ∈ [0, 1 year], x 2 (t) ≥ x * 2 (S in -δ, t) -as a consequence of the Grönwall lemma. So by recurrence, we can show that X 1 (n * 1 year) converges to 0. We thus note x 1 and x 2 , in these initial conditions, such that X 1 (t) converges to 0.

In addition, thanks to the Grönwall lemma, and because s → f i (s, t) is increasing, we can show that, for a given

X 2 (0) = c, noting (X a 1 (t), X a 2 (t)) and (X b 1 (t), X b 2 (t)) the trajectories corresponding to (X 1 (0) = a, X 2 (0) = c) and (X 1 (0) = b, X 2 (0) = c) respectively with a < b, then X a 1 (t) < X b 1 (t) and X a 2 (t) ≥ X b 2 (t). So for X 1 (0) < x 1 or X 2 (0) > x 2
, the corresponding trajectory of X 1 (t) also converges to 0.

That means if sub-population 1 is low enough, it vanishes asymptotically, while the other sub-population survives.

Numerical approximation

In the case of a constant temperature T (t) = T cst and for a sub-population i ∈ {1, 2}, we define the S * i (T cst ) quantity that corresponds to the asymptotic nutrient concentration S * (T cst ) -when t → +∞ -when X j =i (0) = 0 and X i (0) > 0.

S * i (T cst ) = S in , if µ temp i (T cst )µ nut i (S in ) -D ≤ 0 K nut i D µ temp i (Tcst)-D ∈]0, S in [ , otherwise
(2.17)

In the case of a periodic temperature T (t) = T mean +T σ sin t.2π 1 year such that T σ 2π 1 year is small, we approximate the asymptotic trajectory of one sub-population X i (t) using the S * i (T (t)) function -we assume X j =i (0) = 0 and X i (0) > 0 :

-If at each time S * i (T (t)) < S in , a classic result is when t → +∞ [START_REF] Lobry | Stability loss delay in the chemostat with a slowly varying washout rate[END_REF][START_REF] Grimaud | Modelling the effect of temperature on phytoplankton growth across the global ocean[END_REF] :

X i (t) ≈ S in -S * i (T (t)) -If there are t such that S * i (T (t)) = S in , the previous approximation of X i (t) is no longer valid. Indeed, for such t, µ temp i (T (t))µ nut i (S in ) -D < 0. So the value of 1 year 0 µ temp i (T (t))µ nut i (S * i (T (t)
)) -D is negative, and thus (S * i (T (t)), S in -S * i (T (t)), 0) does not correspond to a periodic solution of Equation (2.1) with X j =i (0) = 0 and X i (0) > 0. Indeed, we assume for example S * i (T (t)) = S in during one period of each year, for example the winter, and we note [t 1 , t 2 ] for this period. The valid asymptotic approximation of X i (t) is given by S * i (t) such that t2 > t 2 and :

S * i (T ( t)) = S in , if t ∈ [t 1 , t2 ] S * i (T (t)) ∈]0, S in [ , otherwise
(2.18)

A way to determine this t2 is : because we want to approximate the asymptotic trajectory of X i (t) by S in -S * i (t) which is a periodic function, t2 must be such that :

h( t2 ) = 1 year 0 µ temp i (T (t))µ nut i ( S * i (t)) -D = 0 and t2 → h( t2 ) is strictly increasing on [t 2 , t 1 + 1 year].
So there is only one t2 such that h( t2 ) = 0 -see Figure 2.9. Figure 2.9 -This figure highlights the correct approximation of the asymptotic solution of sub-population i : when

X i (0) > 0, X j =i (0) = 0 and t → +∞, X i (t) ≈ S in -S * i (t).

Sets of coexistence

With a given periodic T (t) temperature, we assume the existence of T opt,min i and T opt,max i such that :

∀T opt i ∈]T opt,min i , T opt,max i [ , H i (S in ) > 0 ∀T opt i / ∈]T opt,min i , T opt,max i [ , H i (S in ) ≤ 0
The existence of these optimal temperature limits are checked numerically -see Figure 2.5. So when X j =i (0) = 0 and X i (0) > 0, the sub-population i survives if and only if T opt i ∈]T opt,min i , T opt,max i [. Therefore the competition between both sub-populations occurs when

T opt 1 ∈]T opt,min 1 , T opt,max 1 [ and T opt 2 ∈]T opt,min 2 , T opt,max

2

[. We thus mathematicaly define the Compet, Coex and Dom i sets :

Compet =]T opt,min 1 , T opt,max 1 [×]T opt,min 2 , T opt,max 2 [ (2.19) Coex = {(T opt 1 , T opt 2 )|H 1 ( S * 2 (.)) > 0 and H 2 ( S * 1 (.)) > 0}
(2.20)

Dom i = {(T opt 1 , T opt 2 ) ∈ Compet\Coex|H i ( S * j =i (.)) > 0 and H j =i ( S * i (.)) ≤ 0} (2.21)
In Section 2.7.2 we provide a numerical approximation of S * i (.) that allows us to compute Dom i and Coex.

Impact of the parameters on the sub-populations coexistence

Figure 2.10 shows the evolution of the sets Compet, Coex, Dom 1 and Dom 2 as defined in the previous section for the model parameters. La température et les concentrations en nutriments sont parmi les principaux facteurs régissant les proliférations estivales des cyanobactéries. Puisque la concentration en nutriment dépend du flux de nutriment provenant du bassin versant, l'un des moyens d'entraver ces proliférations cyanobactériennes est la réduction de ce flux entrant [START_REF] Conley | Controlling eutrophication : Nitrogen and phosphorus[END_REF]. En particulier, le phosphore est un facteur naturellement limitant des proliférations cyanobactériennes [START_REF] Correll | Phosphorus : a rate limiting nutrient in surface waters[END_REF]. La réduction des émissions de phosphore par changement des pratiques agricoles constitue le moyen le plus efficace de limiter les concentrations en phosphore entrants. Pour accompagner cette réduction, des structures de rétention peuvent être mise en place directement en amont du lac [START_REF] Jackson | Managing the development of sustainable shrimp farming in australia : the role of sedimentation ponds in treatment of farm discharge water[END_REF]. Ces structures constituent un filtre dont le rôle est de retenir une partie des nutriments entrant. Elles contribuent donc à la diminution de l'apport en nutriments du lac. Elles aident ainsi à la protection et au rétablissement du lac [START_REF] Barten | Stormwater runoff treatment in a wetland filter : Effects on the water quality of clear lake[END_REF]. Généralement, ces structures sont conçues et gérées pour retenir un maximum de nutriments -phosphore et/ou nitrate. Leur efficacité est donc évaluée sur leur capacité à retenir des nutriments [START_REF] Kadlec | Large constructed wetlands for phosphorus control : A review[END_REF]. Pourtant, la dynamique du phosphore dans l'eau d'un lac n'est pas uniquement déterminée par le flux de nutriment entrant. En particulier, à une valeur de flux entrant peuvent correspondre deux valeurs d'équilibre de la quantité de phosphore dans l'eau du lac, l'une correspondant à un état oligotrophe, l'autre à un état eutrophe [START_REF] Brias | Inter-annual rainfall variability may foster lake regime shifts : An example from Lake Bourget in France[END_REF]. Cette propriété est une conséquence du 57 caractère hystérétique de la dynamique du phosphore dans un lac. Or la trajectoire du phosphore sortant d'une structure de rétention peut elle même être sujette à des effets dynamiques qui peuvent influer sur l'état final du lac. Comprendre l'impact de ces effets dynamiques d'une structure de rétention sur la dynamique du phosphore dans l'eau d'un lac en aval permettrait donc d'établir une stratégie de conception et de gestion de ces structures spécifiquement adaptée à la réstauration du lac vers un état oligotrophe.
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abstract

The most common approach to mitigation of lake eutrophication is reduction of phosphorus emissions, in particular by changing farm management. This reduction can be combined with landscaping retention structures upstream of the lake, the analyses of which the paper is based on. The management of these structures currently focuses on maximising the quantity of phosphorus trapped, regardless of lake dynamics. This paper adapts a dynamical model of lake phosphorus to examine the effects of these phosphorus retention structures. We highlight two effects : first, a structure that traps some of the phosphorus load before it reaches the lake reduces the amount of phosphorus in lake water. Second, some retention structures slow down lake phosphorus dynamics in a way that may perversely slow lake restoration. We propose a cleaning strategy that maximises the chances of restoring a lake to an oligotrophic condition. We demonstrate our model with a real-world case study.

Introduction

Since industrialisation in the early 20th century, a deterioration of the water quality in lakes has been observed, mainly caused by human activities such as agriculture, urbanisation, and tourism. [START_REF] Ec | Main sources of eutrophication in europe[END_REF][START_REF] Bouwman | Human alteration of the global nitrogen and phosphorus soil balances for the period 1970-2050[END_REF][START_REF] Bennett | A phosphorus budget for the lake mendota watershed[END_REF][START_REF] Dokulil | Environmental Impacts of Tourism on Lakes[END_REF]. These activities are associated with chemical compounds such as phosphorus [START_REF] Smith | Eutrophication : impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems[END_REF] being released into the natural environment, which disturbs the balance in lake ecosystems, and increases phytoplankton biomass. This process is called eutrophication, and it is now a global issue ; for example, some 40% of European lakes were eutrophic in 2013 (European Commission, IP/13/947). Cyanobacteria and algal proliferation is a common consequence of eutrophication, and this has negative effects on the aquatic ecosystem. The three main issues arising from eutrophication involve ecology, health, and the economy. Firstly, cyanobacteria proliferation affects biodiversity, because this proliferation occurs at the cost of other summer algae species. Secondly, the decomposition of algae and cyanobacteria through the water column leads to anoxia or hypoxia in eutrophic lakes [START_REF] Chislock | Eutrophication : causes, consequences, and controls in aquatic ecosystems[END_REF], both of which can have major adverse effects on lake biodiversity [START_REF] Weinke | From bacteria to fish : Ecological consequences of seasonal hypoxia in a great lakes estuary[END_REF]. And thirdly, some cyanobacterial species also produce toxins, which threaten human and animal health [START_REF] Vasconcelos | Cyanobacteria toxins : diversity and ecological effects[END_REF][START_REF] Svirčev | Cyanobacteria in aquatic ecosystems in serbia : effects on water quality, human health and biodiversity[END_REF]. Therefore their proliferation presents a risk both for ecosystem, and for the local population. Deterioration of a lake ecosystem can also have major economic impacts, because it can reduce activities around the lake, such as fisheries [START_REF] Lee | Effects of eutrophication on fisheries[END_REF] and water sports. For instance, the estimated economic damage caused by the eutrophication in the USA is around 2.2 billion dollars annually [START_REF] Dodds | Eutrophication of u.s. freshwaters : Analysis of potential economic damages[END_REF]. Here we focus exclusively on lake eutrophication, and in particular on the concentration of phosphorus in the lake water body, since this which is the main limiting nutrient for lakes [START_REF] Correll | Phosphorus : a rate limiting nutrient in surface waters[END_REF][START_REF] Carpenter | Phosphorus control is critical to mitigating eutrophication[END_REF][START_REF] Schindler | Eutrophication of lakes cannot be controlled by reducing nitrogen input : Results of a 37-year whole-ecosystem experiment[END_REF].

There are two main approaches to mitigation of lake eutrophication : the first one consists of limiting the phosphorus sources in the watershed, and the second one of directly removing phosphorus from the lake or its closed environment. The greater the input phosphorus rate, the greater the phosphorus quantity in the lake water. In addition, the variation of the input phosphorus rate corresponds to the watershed phosphorus mass balance. Thus control of the watershed phosphorus mass balance -in other words of the phosphorus sources -is the main way to mitigate downstream lake eutrophication [START_REF] Conley | Controlling eutrophication : Nitrogen and phosphorus[END_REF][START_REF] Martin | The cost of restoration as a way of defining resilience : a viability approach applied to a model of lake eutrophication[END_REF][START_REF] Schindler | Eutrophication of lakes cannot be controlled by reducing nitrogen input : Results of a 37-year whole-ecosystem experiment[END_REF]. However, the economic interests linked to the phosphorus emissions -such as agriculture and urbanisation -may limit the reduction in phosphorus input. Eutrophication has also been related to meteorological events, which are not controllable, and to climate [START_REF] Brias | Inter-annual rainfall variability may foster lake regime shifts : An example from Lake Bourget in France[END_REF][START_REF] Trolle | Predicting the effects of climate change on trophic status of three morphologically varying lakes : Implications for lake restoration and management[END_REF]. In this context, the other means to mitigate lake eutrophication -phosphorus removal in the lake or its immediate neighbourhood -may be used, as a complement to the reduction in the phosphorus sources. However, the effectiveness of phosphorus removal is conditioned by the input phosphorus rate coming from the watershed. Removal consists of a one-off removals and limited reduction to the amount of phosphorus in the lake water. Therefore, if the input phosphorus rate is not reduced, the lake may well return to its initial eutrophic state after each reduction. Thus phosphorus removal alone is not sufficient to accomplish long-term goals of water quality improvement.

To remove phosphorus in the lake it is possible, for instance, to neutralise the available phosphorus in eutrophic lakes by adding chemicals [START_REF] Smolders | Controlling phosphate release from phosphate-enriched sediments by adding various iron compounds[END_REF], or to reduce the amount of phosphorus in the lake water body by dredging -some of the phosphorus contained in sediments can be released from them into the lake water [START_REF] Hoyer | Lake management (muck removal) and hurricane impacts to the trophic state of lake tohopekaliga, florida[END_REF]. However, we have chosen not to analyse these approaches here, because they raise certain problems : it is difficult, sometimes impossible, to implement them, and they are not permanent solutions, because they need to be regularly repeated. Here we focus on natural or artificial retention structures located between the watershed and lake such that the input flow into the lake passes through these structures. Some of them are designed to retain specific nutrients like phosphorus or nitrogen : wetlands and semi-natural areas use plants to trap these nutrients -the nutrients trapped therefore depend on the plant species present [START_REF] Kao | Differential nitrogen and phosphorus retention by five wetland plant species[END_REF]. Other structures trap a certain quantity of nutrients such as sedimentation ponds where the water flow is low. In this way some of the input nutrients are trapped in the pond sediments [START_REF] Bjorneberg | Sediment pond effectiveness for removing phosphorus from pam-treated irrigation furrows[END_REF], up to a maximum saturation. These sedimentation ponds need to be cleaned regularly, otherwise the pond's capacity for trapped input nutrients declines and ultimately vanishes. Retention structures are permanent but need appropriate management to maintain the desired trapping effect on phosphorus.

Most of these retention structures are currently designed and managed in order to trap a maximum quantity of input phosphorus. Design and management are based on a static approach : the smaller the incoming phosphorus quantity into the lake, the smaller the final phosphorus quantity in the lake water. But this static approach is not sufficient, and the aim of this paper is to study the dynamical effects of retention structures on a downstream lake. For example, the static approach does not take two common dynamical effects into account : the hysteretic behaviour of quantity of phosphorus and the time that this quantity of phosphorus converges to its equilibrium state. The hysteretic behaviour of phosphorus means that two equilibrium lake states can correspond to the same input phosphorus rate : one may be eutrophic and the other not. The equilibrium lake state depends on the input phosphorus trajectory into the lake in other words the output phosphorus trajectory from the retention structure. Therefore, appropriate retention structure management must focus on this trajectory -which is the dynamical approach -instead of the amount of trapped phosphorus -which is the static approach. In addition the convergence time for the amount of phosphorus in the water of a retention structure and lake adjacent can be length -several decades for some lakes and structures. The dynamical approach allows to model these convergence times and to study their impact on the lake's evolution.

In Section 3.2 we present the dynamical Carpenter model [START_REF] Carpenter | Management of eutrophication for lakes subject to potentially irreversible change[END_REF] for amount of phosphorus in a lake water body, which is applied in Section 3.3 to the three kinds of retention effects. In Section 3.4 we study the dynamical effects of each type of retention on a downstream lake. In Section 3.5 we apply our model on a real-life case study. Finally we discuss our results, and look at potential directions for research.

Dynamical model of the quantity of phosphorus in a lake

To study the dynamical effects of a retention structure on the quantity of phosphorus in the water of a downstream lake, it is necessary to model dynamically the link between phosphorus input rate into a lake and the phosphorus quantity in this lake water body. Many models of phosphorus in a lake water body are based on [START_REF] Vollenweider | Input-output models[END_REF] at the steady state [START_REF] Ostrofsky | Modification of phosphorus retention models for use with lakes with low areal water loading[END_REF][START_REF] Larsen | Phosphorus retention capacity of lakes[END_REF][START_REF] Nürnberg | The prediction of internal phosphorus load in lakes with anoxic hypolimnia[END_REF]. They are not usable here because of their static aspect. Another approach seeks to model the lake as a whole. These models often have many strongly inter-connected state variables [START_REF] Mooij | Challenges and opportunities for integrating lake ecosystem modelling approaches[END_REF][START_REF] Makler-Pick | Sensitivity analysis for complex ecological models -a new approach[END_REF][START_REF] Robson | State of the art in modelling of phosphorus in aquatic systems : Review, criticisms and commentary[END_REF], of which the quantity of phosphorus is one. However, calibrating them with many variables and parameters needs large amounts of data, which are not always readily available. [START_REF] Carpenter | Management of eutrophication for lakes subject to potentially irreversible change[END_REF] provides a dynamical model of the quantity of phosphorus in a lake water body. This model implicitly incorporates all the phenomena involved in the phosphorus cycle, including seasonal variations. It is used in several cases [START_REF] Ludwig | Optimal phosphorus loading for a potentially eutrophic lake[END_REF][START_REF] Cottingham | Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling[END_REF][START_REF] Carpenter | Eutrophication of aquatic ecosystems : Bistability and soil phosphorus[END_REF][START_REF] Wang | Flickering gives early warning signals of a critical transition to a eutrophic lake state[END_REF].

According to [START_REF] Carpenter | Management of eutrophication for lakes subject to potentially irreversible change[END_REF], for a phosphorus input rate L(t), the quantity of phosphorus in a lake water body P (t) is described by the following differential equation :

dP (t) dt = L(t) -(s + h)P (t) + r P (t) q m q + P (t) q (3.1)
The phosphorus input is composed of the input flow from upstream L(t), and the proportion of phosphorus that comes from the lake sediments r P (t) q m q +P (t) q , called the "recycling rate". The phosphorus output is composed of the outflow hP (t), and the proportion of phosphorus that enters the lake sediments sP (t), called the "sedimentation rate". This model is summarised in Figure 3.1. In this study we use the parameters in based on a hysteretic lake for our numerical simulations in Sections 3.3 and 3.4. These parameters do not correspond to a specific existing lake whose dimensions and hydraulic characteristics are known. Instead they are values classically used in the numerical study of hysteretic lakes [START_REF] Wang | Flickering gives early warning signals of a critical transition to a eutrophic lake state[END_REF][START_REF] Janssen | Managing the resilience of lakes : a multiagent modeling approach[END_REF][START_REF] Martin | The cost of restoration as a way of defining resilience : a viability approach applied to a model of lake eutrophication[END_REF]. The parameters are given Table 3.1. There are three zones of equilibrium for a fixed phosphorus input rate. The upper part of the curve corresponds to stable equilibrium points, the middle part of the curve corresponds to unstable equilibrium points, often called tipping points, and the lower part of the curve corresponds to stable equilibrium points. Figure 3.2(a) shows the evolution of the quantity of phosphorus according to some initial conditions. An oligotrophic state corresponds to a low level of phosphorus in a lake water body, limiting the primary production ; a eutrophic state to an excess of phosphorus quantity, inducing massive phytoplankton biomass ; and a mesotrophic state at an intermediate state between the two. These states are marked on the equilibrium curve of the model : the lower part of the equilibrium curve corresponds to an oligotrophic state, the upper part to a eutrophic state, and the middle part to a mesotrophic state. This distribution

Symbol Definition Units Values used h

Outflow rate of phosphorus yr -1 s + h = 0.8 Hydraulic parameter : depends on the outflow debit s sedimentation rate of phosphorus yr -1 s + h = 0.8 r Maximum recycling rate of phosphorus ton.yr -1 1 m Quantity of phosphorus in the lake corresponding to the recycling rate is half of its maximum value ton 1 q Parameter for recycling rate Unitless 8 Hydraulic parameter : depends on the lake depth Table 3.1 -Parameters in the Carpenter model. We model the dynamics of phosphorus quantity. Thus, the model parameters are calibrated with the measured concentrations and the volume of the lake. is a valid working hypothesis, firstly because it is compatible with the qualitative definitions of the state of lake, and secondly because some lakes correspond to this working hypothesis -e.g. the Bourget lake [START_REF] Brias | Conjurer la malédiction de la dimension dans le calcul du noyau de viabilité à l'aide de parallélisation sur carte graphique et de la théorie de la fiabilité : application à des dynamiques environnementales[END_REF]. The points corresponding to eutrophic, mesotrophic and oligotrophic states are shown on Figure 3.2(b). Figure 3.2(a) shows the starting points whose final corresponding lake states will be eutrophic or oligotrophic.

In this study, we focus on hysteretic lakes [START_REF] Carpenter | Management of eutrophication for lakes subject to potentially irreversible change[END_REF][START_REF] Janse | Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model pclake[END_REF], rather than reversible, for example Lake Washington [START_REF] Edmondson | Sedimentary record of changes in the condition of lake washington[END_REF], or irreversible lakes, for example the Shagawa Lake [START_REF] Larsen | The effect of wastewater phosphorus removal on shagawa lake, minnesota : phosphorus supplies, lake phosphorus and chlorophyll a[END_REF][START_REF] Larsen | Summer internal phosphorus supplies in shagawa lake, minnesota[END_REF]. This is because the dynamical effects of retention structures on other types of lakes are easily describable, whereas an irreversible lake cannot be restored by reducing incoming phosphorus [START_REF] Carpenter | Management of eutrophication for lakes subject to potentially irreversible change[END_REF]. Thus, no structure can restore an irreversible eutrophic lake. In the case of a reversible lake, one input phosphorus quantity corresponds to only one equilibrium phosphorus quantity in the lake water body. Therefore a static approach is sufficient to study a reversible lake : the final lake state depends only on the input phosphorus quantity value.

Retention structures

Introduction

A number of models and studies of wetlands [START_REF] Kadlec | Large constructed wetlands for phosphorus control : A review[END_REF][START_REF] Rahman | An enhanced swat wetland module to quantify hydraulic interactions between riparian depressional wetlands, rivers and aquifers[END_REF][START_REF] Lee | Improving the catchment scale wetland modeling using remotely sensed data[END_REF][START_REF] Giraldi | Fitovert : A dynamic numerical model of subsurface vertical flow constructed wetlands[END_REF] and sedimentation ponds [START_REF] Waajen | Geo-engineering experiments in two urban ponds to control eutrophication[END_REF][START_REF] Palmer-Felgate | Internal loading of phosphorus in a sedimentation pond of a treatment wetland : Effect of a phytoplankton crash[END_REF][START_REF] Pulatsü | Sediment and water phosphorus characteristics in a pond of spring origin, sakaryabaşi springs basin, turkey[END_REF] Note the "S-shape" of the equilibrium curve in the Carpenter model in the hysteretic case. On this equilibrium curve, the solid part corresponds to stable equilibrium, and the dashed part corresponds to unstable equilibrium. From each initial point in the "O-zone", the final point will be on the lower part of the equilibrium curve, which corresponds to an oligotrophic state, and from each initial point in the "E-zone", the final point will be on the upper part of the equilibrium curve, which corresponds to an eutrophic state.

The middle part of the equilibrium curve corresponds to unstable equilibrium, and so does not correspond to possible final states. (b) : Three possible states of a lake : mesotrophic, oligotrophic and eutrophic. On the equilibrium curve, the thick part corresponds to stable equilibrium, and the thin part corresponds to unstable equilibrium. In our case, a mesotrophic state thus corresponds to an unstable state.

between internal processes based on the physical variables of these structures -such as depth, turbidity, etc. In addition, some of them offer a static link between these physical variables and the rate at which phosphorus is trapped. In these studies the efficiency of these structures is estimated according to the quantity of trapped phosphorus, which corresponds to a static approach. To study the dynamical effects of a retention structure on a downstream lake, we need to dynamically model the phosphorus rate coming out of this structure.

Here we study the effects of a generic structure on a downstream lake -the device is shown in Figure 3.3. This structure is only characterised by its effect on the phosphorus passing through it. We focus on three types of effects, which are summarised Table 3.2 :

-The delayed effect : this is a delayed effect between the changes in the flow of phosphorus entering the structure and its flow at the outlet. This effect corresponds to that observed by [START_REF] Kadlec | Treatment wetlands[END_REF]; [START_REF] Walker | Modelling residence time in stormwater ponds[END_REF].

-The fixed trapping effect : in the short to medium term, some structures have a trapping effect that can be considered as being fixed over time. For example the Houghton Lake, USA, wetland trapping effect was stable over a 30-year measurement period [START_REF] Kadlec | Wastewater treatment at the houghton lake wetland : Hydrology and water quality[END_REF]. The fixed trapping effect thus corresponds to a sufficiently short term for saturation effects not to be taken into account. Furthermore, an adapted management of the retention structure may maintain its trapping capacity over a long term period, for example sediment curing of a sedimentation pond or the mowing of a wetland. If this maintenance if frequent enough, the trapping capacity can be modelled as fixed -for example [START_REF] Yousef | Sediment accumulation in detention or retention ponds[END_REF] recommends a sediment cleaning frequency of 25 years to guarantee a variation in the trapping capacity of around 10% to 15%, for detention ponds in central to southern Florida. Otherwise it has to be modelled as a varying trapping effect. -The varying trapping effect : the third kind of effect corresponds to sediment filling, such as sedimentation ponds and some wetlands with a gradually declining trapping effect. These structures require maintenance to remove phosphorus-rich sediments [START_REF] Brown | Ponding surface drainage water for sediment and phosphorus removal[END_REF].

Retention effects Time scales Context Examples

Delayed effect short to long-term non-negligible retention time [START_REF] Walker | Modelling residence time in stormwater ponds[END_REF] Fixed trapping effect short-term trapping capacity of sediment or vegetation [START_REF] Barten | Stormwater runoff treatment in a wetland filter : Effects on the water quality of clear lake[END_REF] medium to longterm trapping capacity of sediment or vegetation with high enough frequency management [START_REF] Yousef | Sediment accumulation in detention or retention ponds[END_REF] Varying trapping effect medium to longterm trapping capacity of sediment or vegetation without management [START_REF] Brown | Ponding surface drainage water for sediment and phosphorus removal[END_REF] Table 3.2 -The three studied retention effects.

In addition to the retention effect, a structure may also have a recycling rate, that corresponds to a phosphorus rate from the structure sediment. The recycling event is of two types : a punctual recycling and a structural recycling. The punctual recycling depends on the properties of the soil [START_REF] Gu | Release of dissolved phosphorus from riparian wetlands : Evidence for complex interactions among hydroclimate variability, topography and soil properties[END_REF][START_REF] Kadlec | Large constructed wetlands for phosphorus control : A review[END_REF], and on specific events such as periods of hydration or drought [START_REF] Dierberg | Temporal and spatial patterns of internal phosphorus recycling in a south florida (usa) stormwater treatment area[END_REF]. The structural recycling is linked to the structure properties and only depends on its current state, like in the case of lakes. In Section 3.10, we show how the recycling may have a negative impact of the downstream lake, but we also show how a regular maintenance of the structure can prevent these negative effects.

Figure 3.3 -"structure + lake" scheme. We study the dynamics of phosphorus in lake water based on the effects of the structure on the phosphorus passing through it : the delayed effect and the trapping effect -fixed or varying.

The trapping effect of each structure is modelled by part of the Carpenter model. The quantity of phosphorus in the water of a retention structure -P R -therefore follows this model in the general case :

dP R (t) dt =L(t) -(s R + h R )P R (t) + r R (t) (3.2)
The main terms of this general model are given in Table 3.3. Because of the characteristics of a structure, its model terms must be adapted : the s R and h R parameters may or may not be dependent on the time according to the type of retention effect. In addition, the recycling term -r R (t) -has been separately addressed in Section 3.10, therefore in the next sections we consider a retention structure without recycling effectid est r R (t) = 0 -, in order to study only the retention effect on a downstream lake, and because the recycling effect may be negligible with an appropriate structure management.

In order to study each retention effect, we first consider a simple generic structure using only one of the retention effects : with a delayed effect in Section 3.3.2, with a fixed trapping effect in Section 3.3.3, and with a variable trapping effect in Section 3.3.4. This allows us to distinguish the main effects of a structure : each successive model introduces a new effect. Real structures may combine several retention effects, in particular delayed and trapping (fixed or not) effects, with recycling effect. 

The delayed effect

Here we assume that the trapping effect is nil -s R P R (t) = 0 -, which allows us to focus solely on the delayed effect. This hypothesis corresponds to certain real structures : some wetlands are specifically designed to retain nutrients other than phosphorus, and thus have a negligible trapping effect on this nutrient -for example the Columbia system [START_REF] Kadlec | Performance of the columbia, missouri, treatment wetland[END_REF] and the Apopka C2 system [START_REF] Dunne | Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water[END_REF]. Thus the dynamical model of the quantity of phosphorus in the water of the retention structure becomes :

dP R (t) dt = L(t) -h R P R (t)
At steady state, and with a constant phosphorus input rate L, the phosphorus quantity in the structure is P eq R = L h R . Thus the phosphorus output rate from the structure with only a delayed effect is h R P eq R = L. With a constant phosphorus input rate L, the dynamical solution of the model is :

P R (t) = L h R (1 -e -h R t ) + e -h R t P R (0)
Thus the phosphorus quantity in the structure's water body converges to the value P eq R at the speed e -h R t : the greater the value of h R , the faster the convergence -Figure 3.17 shows the time evolution of the phosphorus output rate for certain structures based on their h R values.

The fixed trapping effect

With only a fixed trapping effect on the phosphorus, the dynamical model of the phosphorus quantity in a retention structure is the same as Equation (3.2) :

dP R (t) dt = L(t) -(s R + h R )P R (t)
Where s R and h R are constant. The corresponding diagram is shown in Figure 3.5. This model is very close to the preceding one : if we associate s R + h R to the h R parameter above, these models are mathematically the same. The difference between the two models is the phosphorus output rate : at steady state and with a fixed phosphorus input rate L(t) = L, the quantity of phosphorus in the water body of the retention structure is P eq R = L s R +h R . The phosphorus output rate from this structure is therefore h R P eq R = h R L s R +h R < L, which is lower than the phosphorus input rate. This is consistent with the trapping effect of such a structure on the phosphorus rate. The trapping capacity does not depend on the value of s R , but on the ratio

h R s R +h R : if h R s R +h R = 1 -
which means s R = 0 -then the trapping effect is nil, and if h R s R +h R ≈ 0which means s R >> h R -then the trapping effect is maximal. Once again, the speed of convergence towards steady state depends on the value of s R + h R : the greater this value, the faster the convergence, also the smaller its delayed effect.

The varying trapping effect

The dynamical model of the quantity of phosphorus in the water of a retention structure with a varying trapping effect is :

dP R (t) dt = L(t) -(s R (t) + h R (t))P R (t)
The corresponding diagram is shown in Figure 3.6. After a long enough time, the trapping capacity becomes nil. The h R and s R values therefore converge to h max and 0. To make the dynamical evolution of h R and s R more explicit, the evolution of the trapping effect is considered as a sedimentary filling. In the case of a sedimentation pond, the trapped nutrients are stored in its sediments. Thus after a long enough time, these sediments fill the structure, and the structure cannot trap any more nutrients. Lake managers therefore have to clean sedimentation ponds regularly to reset their trapping power. This filling means a decreasing filter power, and so the convergence of the h R and the s R values towards h max and 0 : the higher the sedimentation rate, the faster the structure fill, and the fuller the structure, the lower the sedimentation rate. Mathematically, it corresponds to the following differential system :

ds R (t) dt = -α R s R (t).
The filling of the structure depends on the input nutrient rate. Thus, in a more realistic model, α R depends on L(t). But L(t) is considered as being constant here, so α R too. In addition, when the sedimentation rate is nil, the structure has the same behaviour as a structure with not trapping effect. Therefore, when the sedimentation rate is nil, h R (t) is constant. After each reset operation -corresponding to a cleaning operation for the sedimentation pond -, s R and h R are reset to their initial values s i and h i . Table 3.4 gives the parameters of this model.

Finally, the dynamical models of s R (t) and h R (t) are :

ds R (t) dt = -α R s R (t) dh R (t) dt = h max * α R -α R h R (t)
Therefore, s R (t) and h R (t) are such that :

s R (t) = e -α R t s i h R (t) = h max (1 -e -α R t ) + e -α R t h i
In fact, the exact evolution of s R (t) and h R (t) does not matter here : the simulations and the studied qualitative behaviours are based on the monotone convergence of s R (t) and h R (t).

The speed of convergence of P R depends on the value of s R (t) + h R (t). To isolate solely the varying trapping effect, the s R (t) + h R (t) values are assumed to be high. This means that the delayed effect is negligible. The convergence of the quantity of phosphorus in the water of a structure with a varying trapping effect is much faster than the decline in the trapping effect. Therefore, the convergence of s R and h R takes longer than the convergence of the quantity of phosphorus in the water body of the structure. Mathematically, that means s R + h R >> α R : the dynamics of the quantity of phosphorus in the water body of the structure is fast, and the dynamics of its trapping effect is slow. According to the timescale considered, the dynamical model can thus be approximated as follows :

-For a short timescale, the phosphorus quantity in the structure is such that :

dP R (t) dt = L(t) -(s R + h R )P R (t)
where s R and h R are considered to be constant. Thus for a short timescale the varying trapping effect can be assumed to be the same as the fixed trapping effect. -For a long timescale, the quantity of phosphorus in the structure is such that :

P R (t) = L(t) s R (t) + h R (t)
where s R and h R respectively converge to 0 and h max . The trapping effect of the structure depends on the s R and h R values : if s R > 0, the phosphorus output rate from the structure is lower than the phosphorus input rate.

Symbol Definition Units

h i Initial outflow rate of phosphorus yr -1 h max Final outflow rate of phosphorus yr -1 s i Initial sedimentation rate of phosphorus yr -1 α V T Filling parameter yr Table 3.4 -Parameters in the model of the varying trapping effect.

Conclusion

The qualitative behaviour of the three types of retention effect can be translated into three dynamical models :

-A retention structure has a delayed effect between its phosphorus input and output rates. -A structure with a fixed trapping effect has a phosphorus output rate lower than its phosphorus input rate, and the difference is proportional to this input rate. -A structure with a varying filter effect has the same properties as the second scenario initially, and its trapping capacity becomes nil after a long enough time has elapsec.

The effects of a structure depend on the value of its parameters -s R and h R . Figure 3.7 shows a qualitative distribution of these effects according to the values of s R and h R . It shows that there is no effect failure depending on the values of the structure parameters. Thus, a small variation in the parameters leads to only a small variation in the effects.

Based on this, we can consider these effects to be robust based on these parameter values. -The coordinates of the points C and D correspond to the initial and final parameter values of a structure with a varying trapping effect and without delayed effect : at t = 0, the parameters of this structure are such that s R (t = 0) >> 0 and h R (t = 0) >> 0 (point C), so the structure has a positive trapping effect. After a long enough time, the parameter values converge to s R (t >> 0) = 0 and h R (t >> 0) > 0 (point D), so the trapping effect becomes nil -sediment filling. It is possible to restore this trapping capacity structure, which would result in instantly resetting its parameter values -reset.

3.4 Influence of a retention structure on a downstream lake

Introduction

In this section, we consider "one structure + one lake" systems. The lake state depends on the phosphorus input rate, as shown in Section 3.2. A reduction in this input rate should thus have an influence on its state. But the final lake state does not depend only on the trapping capacity of the upstream structure, but also on the trajectory of the "quantity of phosphorus from the water body of the structure + quantity of phosphorus in the water body of the lake" system.

The order of the studied systems in this section is the same as that of the effects studied in Section 3.3, that is the delayed effect, the fixed trapping effect then the varying trapping effect.

The delayed effect

Introduction

Let us consider the "one structure with only a delayed effect + one lake" systemits diagram is shown in Figure 3.8. The corresponding dynamical model is :

dP R (t) dt = L(t) -h R P R (t) dP (t) dt = h R P R (t) -(s + h)P (t) + r P (t) q m q + P (t) q ✲ L Retention structure water P R (t) ✲ h R P R (t) ✲ hP (t)
Lake water

P (t) ✻ r P (t) q m q +P (t) q ❄ sP (t)
Figure 3.8 -Diagram of the system "one structure with only a delayed effect + one lake"

The delayed effect with a fixed phosphorus input rate

We consider a fixed phosphorus input rate L(t) = L. To understand the effect of the structure on a downstream lake, two cases are considered :

-The convergence time of the quantity of phosphorus in the water body of the structure is very short compared to the convergence time of the quantity of phosphorus in a downstream lake water body, therefore h R s+h >> 1. During this short convergence time, the phosphorus output rate from the structure becomes equal to h R P eq R = L. In this case, the lake's trajectory is thus unaffected by the upstream structure.

-The convergence time of the phosphorus quantity in the structure water body is very long compared to the convergence time of the phosphorus quantity in a downstream lake water body, therefore h R s+h << 1. For a short time, the phosphorus output rate from the structure can be considered as being constant, and the phosphorus quantity in the lake water body converges to the corresponding equilibrium value. In this case, the lake's trajectory is thus strongly influenced by the structure.

In summary, the impact of the delayed effect on a downstream lake depends on the ratio h R s+h and on the initial phosphorus quantity in the water body of the structurefor different h R s+h values, Figure 3.18 shows the initial (P D (0), P (0)) values from which the final downstream lake state is either eutrophic or oligotrophic, with some associated trajectories of (h R P R (t), P (t)). The initial quantity of phosphorus in the water body of the structure is a given of the system. Thus a delayed effect cannot restore a downstream lake : it can only protect an oligotrophic lake from an increase in phosphorus inflow, as we see in the following section.

The delayed effect with a varying phosphorus input rate

Without an upstream structure, the lake is directly impacted by changes in L(t). With an upstream structure, these changes are delayed. Therefore, a change in L(t) that modifies the state of a lake without upstream structure does not necessarily modify the state of a lake with an upstream structure. The delayed effect thus increases the lake's inertia : for a lake with an upstream structure, the change needed in the input phosphorus rate to change the final lake state is greater than the change needed for a lake with no upstream structure. Figure 3.9 illustrates this phenomena. Figure 3.9 -(a & c) : Trajectories from the same fixed initial points of a lake with a upstream structure with a delayed effect (solid curve) and a lake with no upstream structure (dashed curve). Figure (a) shows the evolution of the system "structure+lake", and figure (c) shows the evolution of the phosphorus output rate from the structure and the evolution of the phosphorus input rate in the studied system. For the two scenarios, the phosphorus input rate is such that : if t < 1 year, L(t) ≈ 0.3 tons.year -1 , if 1 year < t < 6 years, L(t) = 0.05 tons.year -1 and if 6 years < t, L(t) ≈ 0.3 tons.year -1 . The lake with no upstream structure becomes oligotrophic, and the lake with an upstream structure remains eutrophic. The initial and final states are steady states.

(b & d) : Trajectories from the same fixed initial points of a lake with a upstream structure (solid curve) and a lake with no upstream structure (dashed curve). Figure (b) shows the evolution of the system "structure+lake", and figure (d) shows the evolution of the phosphorus output rate from the structure and the evolution of the phosphorus input rate in the studied system. For the two scenarios, the phosphorus input rate is such that : if t < 1 year, L(t) ≈ 0.3 tons.year -1 , if 1 year < t < 6 years, L(t) = 0.6 tons.year -1 and if 6 years < t, L(t) ≈ 0.3 tons.year -1 . The lake with no upstream structure becomes eutrophic, and the lake with an upstream structure with a delayed effect remains oligotrophic. The initial and final states are steady states.The trajectories are calculated for a total time of 100 years.

Conclusion

Despite the non-trapping effect, the delayed effect affects the evolution of the quantity of phosphorus in a downstream lake water body, and thus the state of this lake : the stronger the structure's delayed effect, the greater the lake's inertia. This delayed effect can be used to protect an oligotrophic lake : with an increase of the phosphorus input rate, it maintains the lake in this acceptable state. However, the delayed effect also maintains a eutrophic lake in its initial state.

The fixed trapping effect

Let us consider the "one structure with only a fixed trapping effect + one lake" system -shown in Figure 3.10. The corresponding dynamical model is :

dP R (t) dt = L(t) -(s R + h R )P R (t) dP (t) dt = h R P R (t) -(s + h)P (t) + r P (t) q m q + P (t) q
The ratio h R +s R s+h >> 1 is very high, yielding no delayed effect.

✲ L Retention structure water P R (t) ❄ s R P R (t) ✲ h R P R (t) ✲ hP (t)
Lake water

P (t) ✻ r P (t) q m q +P (t) q ❄ sP (t)
Figure 3.10 -Diagram of the system "one structure with a fixed trapping effect + one lake".

Part of the phosphorus input is trapped by the structure. Therefore if L(t) is constant, the phosphorus input rate into the lake is h R L s R +h R instead of L in the absence of a structure. The set of equilibrium states of the lake with one structure is merely "right-shifted" relative to the situation of the same lake with no structure. This "right-shift" is proportional to L : the greater the value of L, the greater the shift. Therefore, the input value set for which the corresponding equilibrium state of the lake is oligotrophic, is increased. Hence given a fixed quantity of phosphorus in the lake water body, the corresponding equilibrium phosphorus input rate is greater with a trapping effect than without. Figure 3.19 shows this "right-shift" effect.

The trapping effect contributes to mitigate eutrophication : for a lake with an upstream structure, the phosphorus input rate needed to reach a eutrophic state is higher than with no structure, and even if a lake with a structure is eutrophic, the quantity of phosphorus in its water body is less than with no upstream structure for the same phosphorus input rate.

The varying trapping effect

Introduction

Let us consider the "one structure with a varying trapping effect + one lake" system -which is shown in Figure 3.11. The corresponding dynamical model is :

dP R (t) dt = L(t) -(s R (t) + h R (t))P R (t) dP (t) dt = h R (t)P R (t) -(s + h)P (t) + r P (t) q m q + P (t) q with s R (0) = s i and s R (t) → 0 when t → +∞ and h R (0) = h i and h R (t) → h max when t → +∞
The s R (t) + h R (t) values are assumed to be high, yielding no delayed effect. In addition, the phosphorus input rate L is assumed to be constant. Therefore the quantity of phosphorus in the water body of the structure is immediately equal to the

L s R (t)+h R (t)
value : an "initial situation" of the system "structure + lake" with no delayed effect is a pair of values (P (0), L) which are respectively the initial quantity of phosphorus in the lake water body and the phosphorus input rate in the "structure + lake" system.

Critical times

There are three sets of (P (0), L), the initial quantity of phosphorus in the lake water body and the input quantity of phosphorus into the system, respectively :

-"O-set" : the set of initial conditions for which no reset is required to obtain a final oligotrophic state. This set includes a set of points from which the final corresponding lake state is oligotrophic with (s R , h R ) = (0, h max ). -"E-set" : the set of initial conditions for which the final state is eutrophic, independent of the reset date. This set includes a set of points from which the final corresponding lake state is eutrophic with (s R , h R ) = (s i , h i ). -"I-set" : the set of initial conditions for which without reset, the final lake state is eutrophic, but for which, if a reset dates were introduced, could result in the final lake state being oligotrophic.

✲ L Retention structure water P R (t) ❄ s R (t)P R (t) ❄ ------ reset of the trapping effect ✛ ✲ h R (t)P R (t) ✲ hP (t)
Lake water

P (t) ✻ r P (t) q m q +P (t) q ❄ sP (t)
Figure 3.11 -Diagram of the system "one structure with a varying trapping effect + one lake" These sets of initial situations are shown in Figure 3.12(a).

Let us consider an initial situation in the I-set. Without reset -Figure 3.13(a) -, the final lake state is eutrophic. With an appropriate reset date -Figure 3.13(b) -, the final lake state is oligotrophic. However, not all of the reset dates result in a final oligotrophic state : where there is too long delay before reset, the final lake state remains eutrophic -Figure 3.13(c). For each reset date, the final quantity of phosphorus in the lake water body is computed, and thus the corresponding final lake state is known, as shown in Figure 3.12(b). There is a time interval between two critical times within which a reset date is efficient, and beyond which the reset date is ineffective. Figure 3.13 -For this example, the initial position of the system is (P (0), L) = (1.3, 0.22). We study the trajectory of (P (t), h R (t)P R (t)) based on the cleaning date. In the first figure (a), the trajectory of the system without cleaning converges towards a eutrophic final state. With an appropriate cleaning date at t = 2 years (b), the final state is oligotrophic, but with an inappropriate cleaning at t = 12 years (c) the final state is eutrophic. The total time of these simulations is 25 years.

The structure management

To select the best reset date, a criterion is needed. We compare here two strategies to select this reset date.

-Classic management : many studies on structures focus on the parameters or management for which the total trapped phosphorus is maximal. The first possible strategy is thus the one such that ∞ 0 trapped phosphorus is maximal, which means that ∞ 0 h R (t)P R (t) is minimal.

-Optimal management : here the goal is to mitigate eutrophication, therefore the longer a lake is oligotrophic, the longer it is not eutrophic. Thus another possible strategy is one in which the time during which the lake is oligotrophic is maximised. With a finite time, the reset date that maximises the quality criterion corresponds to the cleaning date for which the lake is mostly oligotrophic. In other words, the reset date that maximises the quality criterion is the reset date for which the lake is most quickly returned to an oligotrophic state.

Let us consider the initial situation corresponding to the example in Figure 3.13.

Figure 3.14(b) shows the total input quantity of phosphorus that enters into the lake depending on the reset date, during the simulation time (25years) : the minimal total phosphorus input quantity 4.3 tons corresponds to a reset between t = 12.15 years and t = 12.85 years (because of the limiting time of the simulation, the total input quantity of phosphorus increases after this date : with an infinite run time, this quantity remains constant after t = 12.15 years). t = 12.15 years is not in the critical interval, so the corresponding final lake state is eutrophic. Figure 3.14(a) shows the time during which the lake is oligotrophic for each reset date between t = 0 and t = 10 years ; the maximum corresponds to a reset date equal to 2.05 years. This time it is within the critical interval, so the corresponding final lake state is oligotrophic. However, the corresponding total input quantity of phosphorus 4.6 tons is higher than the minimal total input quantity of phosphorus. It should be noted that these strategies are uncorrelated : maximising the total trapped phosphorus does not correspond to an oligotrophic final lake state. The structure management must be based only on the lake. In addition, it is possible to determine the optimal reset date without knowing the lake parameters or the structure parameters. Indeed, the reset date for which the lake is most quickly returned to an oligotrophic state is such that the quantity of phosphorus in the lake water body is at its lowest level -in our example, this date corresponds to the time the trajectory of the quantity of phosphorus in the lake crosses the lake equilibrium curve.

We now present some important points for managing structures. The next guideline corresponds to "optimal management". It does not require knowledge of the retention structure or lake parameters, just the amount of phosphorus in the lake water. It ensures the lake will be restord as soon as possible. The input phosphorus rate is assumed to be constant.

1. If after a reset, the quantity of phosphorus in the lake water increases, it means that the phosphorus input rate is too high to mitigate lake eutrophication : the system is currently in the E-set.

Otherwise :

(a) As long as the phosphorus quantity in the lake water decreases, do nothing.

(b) If the quantity of phosphorus increases, reset the structure.

Finally, a structure with a varying effect lets us mitigate downstream lake eutrophication with appropriate management. In addition, only the knowledge of the quantity of phosphorus in the lake water is needed to efficiently manage the structure.

A case study

Here we apply our approach to Clear Lake, Minesota. Its characteristics are given in [START_REF] Barten | Stormwater runoff treatment in a wetland filter : Effects on the water quality of clear lake[END_REF]. Since 1981, a wetland has been installed upstream of the lake in order to retain some of the incoming phosphorus. We deduce the annual amount of phosphorus at different points in the system through the article [START_REF] Barten | Stormwater runoff treatment in a wetland filter : Effects on the water quality of clear lake[END_REF]. The locations of the reading points are shown in Figures 3.15(a) and 3.15(b), which schematise this system.

The dynamical model corresponding to the system following the establishment of the wetland is :

dP lake (t) dt = L 1 (t) + W (t) -(s + h)P lake (t) + r P lake (t) q m q + P lake (t) q dh w W (t) dt = h w L 2 (t) -(s w + h w )h w W (t)
P lake is the quantity of phosphorus in the lake water body, and W (t) is the quantity of phosphorus in the wetland water body. L 1 (t) is the input flow of phosphorus into the lake, and L 2 (t) the input flow of phosphorus into the wetland. s, h, r, q and m are the Carpenter parameters, and s w and h w are the parameters of the fixed trapping wetland.

Because only the amount of phosphorus at the output of the structure is measured, we cannot directly calibrate the model of the structure, but only the model corresponding to its output W out = h w W (t) :

dW out (t) dt = dh w W (t) dt = h w L 2 (t) -(s w + h w )hwW (t)
The Carpenter model is calibrated over the period 1977-1985. The corresponding parameters are available in Table 3.5. Although the measurement period is a little short to efficiently calibrate a structure model, we nevertheless calibrated a model for a structure with fixed trapping effect over the period 1982 -1985, whose parameters are given Table 3.5. The calibration consisted of finding the model parameters that minimised the gap between the annual averages of the continuous models and the data. The estimated trajectory of P lake and W out are shown Figures 3.16 This case study confirms and quantifies the fixed trapping effect of the wetland on the downstream lake, which results in a decrease in the amount of phosphorus entering the lake : the trapping capacity is 1 -hw sw+hw = 0.8 -see Figure 3.7. Thus, we can see the trajectory that the lake would have taken without the installation of the wetland. Comparison of these two trajectories indicates that the wetland brings about a reduction of about 55% in the quantity of phosphorus in the lake water. In addition, the order of magnitude of the wetland's parameters indicates that its delayed effect is fairly significant : hw+sw s+h = 0.38 -see Figure 3.7. Thus this system corresponds to (c) of Figure 3.18. That means that this wetland protects the lake from a possible increase in incoming phosphorus -see Section 3.4.2.3.

Symbol Units Values

h + s yr -1 1.75 r ton.yr -1 1.3 m ton 1.54 q Unitless 13.1 s w yr -1 0.53 h w yr -1 0.13
Table 3.5 -Parameters of the Clear lake system. 

Discussion

In our study, we developed a dynamical model of the quantity of phosphorus in a retention structure water. It enables us to focus on the dynamical effects of the structure, and to understand how such a structure may mitigate the eutrophication of a downstream lake. The trapping capacity allows the quantity of phosphorus in a downstream lake water body to be reduced, and the delayed effect increases the downstream lake inertia. In addition, this study provides information about structures with the varying trapping effect, like sedimentation ponds. In particular, the study of the model makes it possible to identify a clean-up strategy to restore a lake downstream. Our study is theoretical, since it focuses on the mathematical analysis of the models introduced. However, the models studied seem to be confirmed by the literature : the identified effects correspond at least qualitatively to several wetlands and basins -the delayed effect is similar to the one identified by [START_REF] Walker | Modelling residence time in stormwater ponds[END_REF] ; the fixed trapping effect corresponds to the studied wetlands of [START_REF] Barten | Stormwater runoff treatment in a wetland filter : Effects on the water quality of clear lake[END_REF]; [START_REF] Kadlec | Wastewater treatment at the houghton lake wetland : Hydrology and water quality[END_REF] ; and the varying trapping effect corresponds to the case study of [START_REF] Brown | Ponding surface drainage water for sediment and phosphorus removal[END_REF]. The impact of a fixed effect on a downstream lake is confirmed by the example of the Clear Lake system. Nevertheless, other case studies with longer data coverage would be useful to confirm the impact of structures on a downstream lake at the experimental level. In order to overcome the lack of data and imprecision of measurements, it would also be interesting to study this model in a stochastic context, and then to evaluate the robustness of the results. In addition, a stochastic version of the model would allow for extreme external eventsweather, pollution peaks etc. -to be taken into account.

A next steep should be to study more complex structures, with several effects -like delayed, trapping, recycling etc. An alternative future study could be the analysis of the structure networks : the watersheds often have several interconnected structuresfor example the Great Lakes network [START_REF] Chapra | Great lakes total phosphorus budget for the mid 1970s[END_REF] or the cellular flow through certain marsh networks [START_REF] Dunne | Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water[END_REF]. A watershed can therefore have other unexpected dynamical properties, depending on the network of the structure -as for example, the dynamical effect of a network of chemostats reported by [START_REF] Rapaport | Global dynamics of the buffered chemostat for a general class of response functions[END_REF]; [START_REF] Rapaport | Some non-intuitive properties of simple extensions of the chemostat model[END_REF]. If the network of structures were to be studied, all the links between the structures would also have to be studied. For example, a channel might retain some of the phosphorus passing through it, depending on its flow rate and crosssection. In addition, according to its length, a channel can also have a delayed effect. In this sense, a channel is also a separate structure.

We focused in this study on quantity of phosphorus in a lake water body. Our models can also be coupled to other state variables, such as indicators of economic activity, bacterial populations, other nutrients etc. In this way, we could define other strategies for structure management and incorporate other policy priorities. Phosphorus is particularly studied because of its role in phytoplankton proliferation, notably in toxic cyanobacterial development [START_REF] Conley | Controlling eutrophication : Nitrogen and phosphorus[END_REF][START_REF] Norton | Using models to bridge the gap between land use and algal blooms : An example from the loweswater catchment, uk[END_REF]. We showed that resetting a structure with a varying trapping effect -like the cleaning of a sedimentation pond -can act as a control on the phosphorus input rate into a lake water body. Therefore, appropriate structure management could indirectly control cyanobacterial populations in a lake.

Conclusion

In summary, the design and management of a structure, which must be tailored to the desired goal -here the goal was to mitigate downstream lake eutrophication -, and not just to the quantity of trapped nutrient. A fixed trapping effect reduces the quantity of phosphorus in any downstream lake : in this respect, the bigger the trapping effect, the more efficient the structure. However, a retention structure can also have a delayed effect, which increases the lake's inertia : such a structure is beneficial in the protection of an oligotrophic lake, but cannot be used to restore a eutrophic lake. Therefore the trapping capacity of a structure should not be the only design criteria : an efficient design must also take into account the dynamical effects induced on a lake by the planned structures. If this design is coupled with a reduction in nutrient emissions -which is a common way to mitigate eutrophication [START_REF] Schindler | Reducing phosphorus to curb lake eutrophication is a success[END_REF] -, with a significant delayed effect, the required reduction is longer or more substantial with the upstream structure than without it, but with a low delayed effect, the required reduction is lower with the upstream structure than without it. This reduction is often a consequence of a change in human activities upstream of the lake. With a structure in place, the effect of this reduction can thus be increased by a trapping effect and appropriate management. Thus, in terms of environmental impacts, structures can improve the effect of a decrease in the phosphorus input rate, while the economic cost involved in the eutrophication mitigation [START_REF] Ludwig | Optimal phosphorus loading for a potentially eutrophic lake[END_REF][START_REF] Cools | Cou-pling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen[END_REF] revolves around changes to human activity and the building and management of structures.

In addition, management of a structure must be adapted to the goal managers. In particular, the strategy to mitigate a lake eutrophication is uncorrelated to, that which retains the biggest quantity of input phosphorus : an efficient strategy focuses only on the lake state. This correlation between the management of the structure and the policy priority has been established by [START_REF] Janssen | Decision support for integrated wetland management[END_REF] for wetland management.

Appendices 3.8 The delayed effect

The delayed effect of a structure depends on the value of its h R parameter -see Section 3.3.2. Figure 3.17 shows the time evolution of the output rate from different structures according to their h R values. The impact of such an effect on a downstream lake is presented in Figure 3.18. The "E-zone" ans the "O-zone" correspond to the initial states of a "structure + lake" system for which the final state of the lake is oligotrophic and eutrophic respectively. 

fixed input rate L=50 tons/yr h R =10 yr -1 h R =1 yr -1 h R =0.5 yr -1
Figure 3.17 -Phosphorus output rates from three structures with delayed effect against time, and with the same phosphorus input rate -L = 50 tons.year -1 -and the same initial quantity of phosphorus -0 ton : the higher the h R of such a structure, the faster the convergence of its quantity of phosphorus, and thus of its phosphorus output rate. Figure 3.18 -Evolution of the "E-zone" -all initial points from the "E-zone" correspond to a final eutrophic state -and the "O-zone" -all initial points from the "O-zone" correspond to a the final oligotrophic state -, for (a

) h R s+h = 100, (b) h R s+h = 1, (c) h R s+h = 0.1 and (d) h R s+h = 0.01.
In each case we see the trajectory from the same initial point, with L = 0.3 tons.year -1 , h R P R (0) = 0.05 tons.years -1 and P (0) = 1.25 tons. For (a) and (b), the initial and final states are eutrophic. Hence in these cases the final lake state is not significantly influenced by the upstream structure. In contrast, for (c) and (d) the initial lake state is eutrophic, and its final state is oligotrophic, so in these cases the final lake state is strongly influenced by the retention structure. The trajectories are calculated for a total time of 100 years. phosphorus quantity in the lake water body (tons)

The fixed trapping effect

equilibrium states for a lake without structure equilibrium states for a lake with a structure Figure 3.19 -Equilibrium states for a lake with and without an upstream structure with a fixed trapping effect. The trapping effect -here fixed -is for (s R , h R ) = (30, 100).

3.10

The recycling effect

Introduction

We focus here on the recycling effect of a structure upstream from a lake. This recycling is characterized by an phosphorus output rate from the structure sediment. There are two kinds of recycling : 1) a punctual recycling, caused by some events that does not depend on the studied system -for example a dry period [START_REF] Dierberg | Temporal and spatial patterns of internal phosphorus recycling in a south florida (usa) stormwater treatment area[END_REF] -, and 2) a structural recycling, that depends on the inherent properties of the structure, like the recycling rate of a lake which depends on the phosphorus quantity in its water. Here we focus on the impact of the structure recycling on the state change in a downstream lake. In what follows, we show that the recycling effect may change the lake state, but an appropriate maintenance of the structure may avoid this possible change in both cases -id est punctual and structural recycling. For this purpose we consider a system composed by a structure with only a recycling effect upstream from a lake -its diagram is shown Figure 3.20.

✲ L Retention structure water ✻ r R (t) ✲ L + r R (t) ✲ hP (t)
Lake water

P (t) ✻ r P (t) q m q +P (t) q ❄ sP (t)
Figure 3.20 -Diagram of the system "one structure with a recycling effect + one lake"

Influence of the recycling structure on a downstream lake

In this short study, we focus on both kinds of recycling with the same model. Indeed, without delayed effects, which corresponds to a limit case -see Section 3.3.2 -, the output phosphorus rate P out (t) from the structure is :

P out (t) = L(t) + r R (t)
where L(t) is the input phosphorus rate into the structure and r R (t) the recycling phosphorus rate from the structure sediment. r R (t) is either a ponctual event caracterized by an intensity I R and a time interval

T R =]t 0 , t f ] : r R (t) = I R (t) if t ∈ T R (3.3) = 0 if not
or linked to the properties of the structure -like the Carpenter model. In this case, the recycling rate depends on the phosphorus quantity in the structure water, thus directly on the input phosphorus rate L(t) in our case :

r R (t) = I R if L(t) > L R = 0 if not
where L R is a cut-off phosphorus input rate. This convenient is a limit case of recycling dynamics : the recycling term well depends only on the current structure state, and this model is not hysteretic, which simplifies our study -one phosphorus input rate corresponds to only one phosphorus output rate from the structure. Therefore in this case, the recycling model can be rewritten as Equation (3.3) :

r R (t) = ∼ I R (t) = L(t) -L R + I R if t ∈ T R = {t|L(t) > L R } = 0 if not
Therefore we address both kinds of recycling through the same model. By simplification, we consider a recycling rate characterized only by a constant intensity I R (t) = cst during a given duration and with a constant input phosphorus rate L(t) = cst.

We consider an initial lake state caracterized by (P (t 0 ), P out (t 0 ) = L) at the oligotrophic equilibrium state, therefore this initial state is only characterized by the input phosphorus rate L. We note there exists an interval of input phosphorus rate values [L min , L max ] such that, if L < L min , the final equilibrium lake state will be oligotrophic independently of the recycling, and if L > L max , the initial and final equilibrium lake states are necessarly eutrophic. The recycling rate of the structure depends only on its intensity I R and its duration D R = t f -t 0 . So, considering the initial lake state, characterized by the input phosphorus rate L, and the recycling intensity, we can compute the corresponding minimal duration D R such that if the recycling duration is longer than D R , the final lake state is eutrophic, and if the recycling duration is shorter than D R , the final lake state is oligotrophic -see Figure 3.21(a) and and the recycling intensity I R = 1 tons.year -1 , the corresponding minimal recycling duration is equal to 5 months. Therefore if the recycling duration is equal to 4 months, the final lake state is oligotrophic, and if the recycling duration is equal to 6 months, the final lake state is eutrophic.

According to the recycling duration, we can compute the total quantity of phosphorus that is recycled from the structure sediment and that is required to change the lake state. It assumes that, before the recycling event, the structure has a trapping effect. Therefore each recycling duration and recycling intensity corresponds to a minimal trapping duration of the structure. As an example, if the phosphorus input rate L is equal to L ex ≈ 0.4 tons.year -1 , and if before the recycling event, the trapping capacity of the structure was modeled by s R = 30 and h R = 100 -see Section 3.3.3 -Figure 3.22 shows the required trapping duration according to each recycling duration. In particular, this result shows that the trapping duration must be longer than 4.4 years independently of the recycling duration. So finally, a cleaning of the structure during this period of 4.4 years prevents any change in the lake state by a structure recycling event.

In addition, in our example we observe that for a short recycling event, the needed recycling intensity to change the lake state is huge in comparison with the other value scales of the model. Hence, if the initial phosphorus input rate L is not very close to L max , only extreme recycling events can change the lake state, which corresponds to exceptional events. On the other hand, if L is very close to L max , the recycling effect has the same impact one the downstream lake as a non-extreme variation in the input phosphorus rate. Therefore in this case, to prevent the lake state change, it is better to focus on its initial condition than on possible recycling event. 

Conclusion

According to the structure recycling properties, the downstream lake can become eutrophic. However, it is possible to prevent this effect with a regular cleaning of the structure sediment. In addition, we have shown that a minimal recycling duration is required to change the lake state according to the recycling intensity and the initial lake state. Thus another way to prevent the recycling effect is cleaning the structure as soon as the structure recycling starts.

Chapitre 4

Generalizing Bellman principle for characterizing viability kernel Présentation de l'article

Recherche encore en cours, en collaboration avec le Laboratoire de Mathématiques de Bretagne Atlantique La gestion des structures de rétention peut permettre de rétablir l'état du lac eutrophe à un état oligotrophe. Maintenir le système dans cet état constitue un autre enjeu des gestionnaires d'un lac. Plus généralement, maintenir l'état d'un système dans un ensemble d'états acceptables est un objectif récurent de la gestion de systèmes environnementaux [START_REF] Martin | The cost of restoration as a way of defining resilience : a viability approach applied to a model of lake eutrophication[END_REF]. La théorie de la viabilité correspond au champ mathématique visant à résoudre un tel problème. L'objet de la théorie de la viabilité est de déterminer le noyau de viabilité, c'est-à-dire l'ensemble des conditions initiales d'un système dynamique desquelles il existe une trajectoire maintenant le système dans un ensemble de contrainte donné. Ce problème diffère d'un autre problème de la théorie du contrôle qu'est le contrôle optimal : il s'agit d'optimiser la trajectoire provenant d'une condition initiale, c'est-à-dire de minimiser un coût associé à cette trajectoire. Le contrôle optimal est une branche plus ancienne des mathématiques, sur laquelle de nombreux outils existent, en particulier la programmation dynamique [START_REF] Bellman | On adaptive control processes[END_REF]. Parmi 95 les approches existantes pour déterminer le noyau de viabilité, certaines s'intéressent à définir une fonction coût caractérisant le fait qu'une trajectoire reste ou non dans l'espace de contraintes -négative si la trajectoire est viable, strictement positive sinon [START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF]. Ainsi, résoudre le problème de contrôle optimal pour l'ensemble des conditions initiales revient à résoudre le problème de viabilité : les conditions initiales associées à un résultat négatif de la fonction valeur sont les points viables. Cette approche permet donc d'exprimer un problème de viabilité comme un problème de contrôle optimal, et d'apporter les outils du contrôle optimal à la théorie de la viabilité. A l'heure actuelle, cette approche ne concerne qu'un nombre réduit de problèmes de contrôle optimal [START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF][START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF]. Afin d'évaluer sa portée, nous la généralisons à un problème de contrôle optimal quelconque. Pour ce faire, nous fournissons deux conditions : la première est une condition suffisante pour qu'un problème de contrôle optimal caractérise un problème de viabilité. La seconde nous permet de savoir si un problème de contrôle optimal admet un principe de Bellman, rendant ainsi sa résolution éligible à la programmation dynamique.

Introduction

Maintaining a controlled dynamical system in an acceptable state is a major issue in environmental sciences -see for example [START_REF] Caen | Dynamical effects of retention structures on the mitigation of lake eutrophication[END_REF]; [START_REF] Martin | The cost of restoration as a way of defining resilience : a viability approach applied to a model of lake eutrophication[END_REF]. Indeed, a current problematic of ecosystem management is to maintain the ecosystem within a constraint subset that bounds the acceptable states in order to ensure the protection of a species threatened by its exploitation, or to keep the concentration of an invasive species below a given threshold. For achieving this issue, several mathematical tools are available such as optimization under constraints [START_REF] Mehta | Constrained optimization as ecological dynamics with applications to random quadratic programming in high dimensions[END_REF] or the tolerable window approach [START_REF] Bruckner | Climate change decision-support and the tolerable windows approach[END_REF]. Among these methods, viability theory is used for assessing the controls that enable manager to keep the ecosystem within given constraint set. Viability theory has been applied for instance in the case of lake ecosystem management [START_REF] Anaya | Viability kernel for ecosystem management models[END_REF][START_REF] Bonneuil | Viable populations in a prey-predator system[END_REF][START_REF] Bonneuil | Population viability in three trophic-level food chains[END_REF], management of renewable resources [START_REF] Béné | A viability analysis for a bio-economic model[END_REF][START_REF] Oubraham | A survey of applications of viability theory to the sustainable exploitation of renewable resources[END_REF], lake eutrophication [START_REF] Martin | The cost of restoration as a way of defining resilience : a viability approach applied to a model of lake eutrophication[END_REF]. A central concept of viability theory is viability kernel, defined as the set of initial states from which it exits at least one trajectory that maintains the system in the constraint subset : rather than defining a long-term management policy to ensure the acceptable conditions of the system, the manager has just ensure that the system remains in the viability kernel on a day-to-day basis, knowing that if not, the system will necessarily end up outside the constraint space.

Over the last thirty years, several tools and studies have been designed in order to characterize the viability kernel, both theoretically [START_REF] Aubin | Viability theory : new directions[END_REF][START_REF] Quincampoix | Frontieres de domaines d'invariance et de viabilité pour des inclusions différentielles avec contraintes[END_REF][START_REF] Kittel | Operationalization of topology of sustainable management to estimate qualitatively different regions in state space[END_REF] and numerically [START_REF] Frankowska | Viability kernels of differential inclusions with constraints : Algorithms and applications[END_REF][START_REF] Saint-Pierre | Approximation of the viability kernel[END_REF][START_REF] Kaynama | Computing the viability kernel using maximal reachable sets[END_REF][START_REF] Deffuant | Approximating viability kernels with support vector machines[END_REF][START_REF] Bonneuil | Computing the viability kernel in large state dimension[END_REF]. In particular, some works address the issue of efficiently computing the viability kernel using dynamic programming method [START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF][START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF] that is a method from the field of optimal control. Optimal control problem is based on a cost function that is a The resolution of this PDE depends on the properties of the value function, especially its regularity. Hence, in [START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF]; [START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF], authors define optimal control problem with a cost function that penalizes the exit from the constraint space of a trajectory : this cost function associates a strictly positive cost to such a trajectory, whereas a trajectory remaining in the constraint space has a negative cost. Therefore the numerical solution of such an optimal control problem provides a numerical estimation of the viability kernel . For instance, in Figure 4.1, a value function characterizing this viability kernel must be strictly positive at x 1 , and negative at x 2 .

Therefore the efficiency of an optimal control problem to characterize a viability kernel depends on :

-its ability to characterize the viability kernel : the corresponding value function must be negative within the viability kernel -as shown Section 4.2 by Lemma 1 ;

-its capacity to be nuemrically solved, i.e. we can apply dynamic programming method for solving the problem -as shown Section 4.3 by Theorem 6 ;

We propose here to evaluate the characterization of the viability kernel by dynamic programming by studying this approach in a very general case. More specifically, we study different type of functional in order to know : 1) if the induced value function characterizes the viability kernel ;2) if this functional allows a Bellman principle, which makes the problem solvable by dynamic programming. From these two criteria, we define a functional class that allows dynamic programming to be applied to the determination of viability kernel.

The paper is organized as follows. In section 2, we present a formal definition of the viability kernel, and provide a sufficient condition for an optimal control problem to allow its characterization. In section 3, we characterize the optimal control problems that are eligible for dynamic programming. In section 4, we analyze the properties of the value functions corresponding to these optimal control problems. Finally, in section 5, we apply these results to a population model in order to give an example of the potential implications of this work.

Describing viability kernel through functionals 4.2.1 Theoretical framework

We introduce here the framework used in the rest of this article, i.e. the studied differential system, and the related assumptions and hypotheses. First, we consider an autonomous and continuous time control system :

ẏ = f (y, u) (4.1) with y ∈ R n , u ∈ U ⊂ R m , with U compact, f (., .) : R n × U → R n , a function. Let U
denote the set of Lebesgue measurable functions from R + to U.

According to the context -viability or optimal control -, authors usually consider at least one of the two following assumptions on the Equation (4.1) system [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF][START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF][START_REF] Aubin | Viability Theory[END_REF] :

-Hypothesis H f,1 : f is bounded, and global Lipschitz continuous in the state variable, uniformly in the control variable :

∃k f > 0, ∀x 1 , x 2 ∈ R n2 , ∀ν ∈ U : |f (x 1 , ν) -f (x 2 , ν)| ≤ k f |x 1 -x 2 |
This hypothesis is classically used in an optimal control context -see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]. It ensures that for every x ∈ R n , t ∈ R + and u(.) ∈ U , the system Equation (4.1) admits a unique solution, absolutely continuous, denoted by φ(x, u(.), .) : R + → R n , with φ(x, u(.), 0) = x. In addition, it allows a regularity property between the trajectories [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] :

∀u(.) ∈ U , ∀x, y ∈ R n2 : |φ(x, u(.), t) -φ(y, u(.), t)| ≤ e k f t |x -y|, ∀t ≥ 0 (4.2)
-Hypothesis H f,2 : The following set-valued map is Marchaud

F : R n → P(R n ) x → {f (x, ν)|ν ∈ U}
This hypothesis is classically used in a viability context -see [START_REF] Aubin | Viability Theory[END_REF]. It ensures the existence and unicity of solution of Equation (4.1). In addition, it is useful to prove the viability of a set -see [START_REF] Aubin | The viability kernel algorithm for computing value functions of infinite horizon optimal control problems[END_REF] -and provides useful properties on viability kernel.

In what follows, we consider the one or other of these hypotheses according to the given context -optimal control or viability. When we consider both contexts, we consider both hypotheses, without dealing with their redundancy.

Given a compact constraint set K ⊂ R n , the corresponding viability kernel V iab f (K) at infinite horizon is the set of initial conditions from which it exists a trajectory of Equation (4.1) that remains in the constraint set K -such a set is called viable :

V iab f (K) = x ∈ R n |∃u(.) ∈ U , ∀t ∈ R + , φ(x, u(.), t) ∈ K (4.3)

Characterizing viability kernel using optimal control problems : a brief review

To assess the viability kernel, several approaches consist in characterizing first the viability kernel using an optimal control problem approach : for a given functional N , which is at least defined on the set of absolutely continuous functions of R + → R nsuch that the solutions of Equation (4.1) -, we define the cost of a trajectory y(.) as N (y(.)) ∈ R. The optimal control problem consists in determining the value function V : R n → R, defined as the minimal cost of the set of trajectories from an initial condition x :

V (x) = inf u(.)∈U N (φ(x, u(.), .
))

The approaches of [START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF]; [START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF]; [START_REF] Doyen | Scale of viability and minimal time of crisis[END_REF] consist in using a cost function such that the value function is exactly upper than zero when the points are non-viable :

V iab f (K) = {x ∈ R n |V (x) ≤ 0}
If a functional verifies this equality for each differential system as Equation (4.1) under the H f,1,2 hypothesis, we say that this functional characterizes the viability kernel of K. We present Table 4.1 different functionals allowing to characterize viability kernels.

We note that some of these characterizations are not necessarily presented as such in literature. They are often a consequence of an opposite approach, which consists in characterizing an optimal control problem as a viability problem -focusing on the epigraph of the value function for example [START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF].

Functional Sources

y(.) → sup t∈R + l(y(t)) with l(x) > 0 ⇐⇒ x / ∈ K (Lygeros, 2003) y(.) → +∞ 0 l(y(t))e -λt dt with l(x) > 0 ⇐⇒ x / ∈ K l(x) = 0 ⇐⇒ x ∈ K
(Doyen and Saint-Pierre, 1997) [START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF] Table 4.1 -Examples of functionals whose the corresponding optimal control problem characterizes the viability kernel, under the H 1,2 hypothesis. l is here a bounded lipshitzian function of R n → R, which is strictly positive on R n \K.

y(.) → γ Γ K (y(.)) with γ ∈]0, 1[ Γ K (y(.)) = inf{T ≥ 0|y(T ) / ∈ K} (
All these approaches allow to characterize the viability kernel. However, they have different interests, both in terms of numerical resolution and the information they provide. Thus, the y(.) → +∞ 0 l(y(t))e -λt dt functional corresponds to a continuous value function -if l is lipshitzian and bounded -which helps with its numerical resolution.

Nevertheless the corresponding value function is exactly zero within the viability kernel, which makes it difficult to numerically detect this exact zero value. On the other hand it means that no additional information is provided for any point within the viability kernel. The functionals defined in [START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF] and [START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF] (see Table 1) do not correspond to a continuous value function in the general case. However they provide relevant information on all initial conditions, viable or not. Indeed, the value function used by [START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF] enables us to determine the maximum distance from the boundary of the constraint space a trajectory can be maintained. On the other hand, the functional used by [START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF] introduces the notion of crisis time, which is used in many works such as [START_REF] Doyen | Scale of viability and minimal time of crisis[END_REF].

The characterization of the viability kernel by these optimal control problem is not evident, and it has to be proved for each functional. But, what are the problems of optimal control that characterize viability kernel ? In the next part, we first present a sufficient condition on the functional that enable us to characterize viability kernel, and which is checked by these existing approaches.

A sufficient condition that a functional characterizes the viability kernel

A counter-example

The fact that a functional indicates by its sign whether or not a trajectory belongs to the constraint space is not sufficient for the induced value function to characterize the viability kernel. Indeed, the existence of optimal control is not guaranteed. Consider the following example :

ẏ = u (4.4) with y ∈ R, u ∈ [-1, 1].
We consider the constraint subset K = [0, 1], and the following functional :

N : (R + → R) → [0, 1] defined as follows N (y(.)) = 0 if y(.) ∈ K R + = min 1, sup t∈R + |y(t) -2| if sup t∈R + |y(t) -2| > 0 and y(.) / ∈ K R + = 1 if sup t∈R + |y(t) -2| = 0 and y(.) / ∈ K R + (4.5)
We note that the considered dynamical system verifies the hypotheses H f,1,2 , and for all y(.) ∈ K R + , N (y(.)) = 0, and for all y(.) / ∈ K R + , N (y(.)) > 0. Nevertheless, for x = 2, inf u(.)∈U N (φ(x, u(.), .)) = 0, and x / ∈ K -see Figure 4.2. So this optimal control problem does not characterize the viability kernel.

In this counter-example, the misidentifying of the viability kernel comes from the fact that the lower cost for x = 2 is zero. If we ensure that any trajectory located at a non-zero distance from the constraint space corresponds to a cost minored by a strictly positive value, then we avoid this misidentifying of the viability kernel. It is on this principle that the following lemma is based, which presents a sufficient condition on the functional so that the corresponding optimal control problem correctly characterizes the viability kernel.

0 1 2 x 0 1 V(x) Figure 4.2 -The value function V : x → inf u(.)∈U N (φ(x, u(.), .
)) with N defined as Equation (4.5). 2 is not in the constraint set, but its image by the value function is zero.

Which functionals allow to characterize a viability kernel ?

We propose here a sufficient condition on N to characterize the viability kernel : Lemma 1. Let N : A → B be a functional such that :

-Hypothesis H N ,1 : ∀z(.

) ∈ K R + ∩ A, N (z(.)) ≤ 0 -Hypothesis H N ,2 : ∀t 1 < t 2 , ∀x / ∈ K, ∀δ ∈]0, d(x, K)[, ∃ > 0 such that ∀z(.) ∈ A : z(t) ∈ B(x, δ), ∀t ∈ [t 1 , t 2 ] ⇒ N (z(.)) ≥
with d(x, K) the distance between x and K.

If we assume the H f,2 hypotheses, then :

V iab f (K) = x ∈ R n | inf u(.)∈U N (φ(x, u(.), .)) ≤ 0
This lemma provides a sufficient condition for the functional to characterize the viability kernel. More precisely, the first hypothesis H N ,1 means a viable trajectory must have a non-positive image by the functional. Its implies this inclusion -see Figure 4.3 :

V iab f (K) ⊂ x ∈ R n | inf u(.)∈U N (φ(x, u(.), .)) ≤ 0 (4.6)
The second hypothesis H N ,2 corresponds to a notion of upper semi-continuity of the functional on N -1 ({0}). Its implies this inclusion -see Figure 4.3.

V iab f (K) ⊃ x ∈ R n | inf u(.)∈U N (φ(x, u(.), .)) ≤ 0 (4.7) Figure 4.3 -Illustration of hypotheses H N ,1 and H N ,2 . For a functional N , if N verifies H N ,1 , then N (y 1 (.)) ∈ R -. If N verifies H N ,2 , then > 0 exists such that N (y 2 (.)) > .
Proof of the first inclusion (Equation (4.6)).

We assume H N ,1 . So for x ∈ V iab f (K), let v(.) ∈ U be such that, ∀t ≥ 0, φ(x, v(.), t) ∈ K. So thanks to H N ,1 : inf u(.)∈U N (φ(x, u(.), .)) ≤N (φ(x, v(.), .))

≤0

So finally :

V iab f (K) ⊂ x ∈ R n | inf u(.)∈U N (φ(x, u(.), .)) ≤ 0
Proof of the second inclusion Equation (4.7).

We assume

H N ,2 . Let x ∈ R n be such that V (x) ≤ 0. Let (u n ) n∈N ∈ U N be a control sequence such that : lim n→+∞ N (φ(x, u n (.), .)) = V (x)
So as a consequence of H f,2 , ∀T ≥ 0, b > 0 exists such that for all t ∈ [0, T ], for all u(.) ∈ U :

||φ(x, u(.), t)|| < b
So applying applying (Trélat, 2008, Theorem 5.2.1), we note u T (.) ∈ U a control such that φ(x, u n (.), .) pointwise converges -or one of its subsequences -to φ(x, u T (.), .) on

[0, T ].
We assume by absurdity that t ∈]0, T [ exists such that φ(x, u T (.), t) / ∈ K. We thus note d the distance between φ(x, u T (.), t) and K -d > 0 because of the compacity of K.

Let be N > 0 such that, ∀n > N :

φ(x, u n (.), t) ∈ B(φ(x, u T (.), t), d 3 )
As a consequence of H f,2 , ∃t > 0 such that, ∀u(.) ∈ U , ∀z ∈ B(φ(x, u T (.), t), d 3 ) :

|φ(z, u(.), t + τ ) -z| ≤ d 3 , ∀τ ∈ [0, t ] So, ∀τ ∈ [t, t + t ], ∀n > N : |φ(x, u n (.), τ ) -φ(x, u T (.), t)| ≤ 2d 3
So we note t 1 = t, and t 2 ∈ t + t , that means, for all n > N , for all τ ∈ [t 1 , t 2 ] :

φ(x, u n (.), τ ) ∈ B(φ(x, u T (.), t), 2d 3 ) 
So by H N ,2 , let > 0 be such that, ∀z(.) ∈ A :

z(τ ) ∈ B(φ(x, u T (.), t), 2d 3 ) ∀τ ∈ [t 1 , t 2 ] ⇒ N (z(.)) ≥ δ
In particular, ∀n > N :

N (φ(x, u n (.), .)) ≥ > 0 So V (x) ≥
, that is absurd. We thus have proof that :

∀T > 0, V (x) ≤ 0 ⇒ x ∈ V iab T f (K)
that means :

V (x) ≤ 0 ⇒ x ∈ ∩ T ≥0 V iab T f (K)
In addition, a consequence of the hypotheses H f,2 is -see (Aubin, 1991, Proposition 4.2.6) :

∩ T ≥0 V iab T f (K) = V iab f (K)
So we proved that :

V iab f (K) ⊃ x ∈ R n | inf u(.)∈U N (φ(x, u(.), .)) ≤ 0
This lemma is valid for the existing approaches, and does not depends on a specific differential system -it is sufficient for the dynamical system to check the hypotheses H f,1,2 -, but only on the constraint set. It offers a first information on the regularity of the value function : because the viability kernel is necessary compact, a consequence of this lemma is that the value function must be lower semi-continuous on V -1 ({0}). Nevertheless, this lemma does not give information about the possibility to numerically solve the optimal control problem. The next step consists in searching functionals whose corresponding value function admits a Bellman principle, which is the necessary condition to be characterized by a PDE.

4.3

The optimal control problems 4.

Introduction and definitions

Regardless of the viability kernel characterization, we study here the capacity to use a given value function for solving an optimal control problem via the dynamical programming approach. Indeed this method numerically computes the value function of all initial states simultaneously, by the resolution of a PDE, and therefore numerically computes the viability kernel described by the reverse image of R n by the the value function. The dynamic programming corresponds to a method defined individually for each studied optimal control problem :

-first, we determine a Bellman principle which depends on a given functional, and allows to express the value function as minimization of a part of the trajectory ;

-from this Bellman principle, we may deduce a PDE whose the value function is "solution" -in particular viscosity solution. The final step consists in numericaly solving this PDE.

The numerical description of the value function as a solution of an PDE thus depends on whether this problem admits a Bellman principle. However, to the best of our knowledge, it does not exist a general definition of the Bellman principle for a given functional in the general case : in each individual case, a new Bellman principle is defined. For example, for l : R n → R a lipschitzian bounded function, and N the functional defined as follows :

N (y(.)) = +∞ 0 l(y(t))e -λt dt, ∀y(.) a measurable function under the Equation (4.1) dynamics -assuming the hypothesis H f,1 -, ∀x ∈ R n , ∀T ≥ 0, the Bellman principle corresponds to :

V (x) = inf u(.)∈U N (φ(x, u(.), .)) = inf u(.)∈U T 0 l(φ(x, u(.), t))e -λt dt + e -λT V (φ(x, u(.), T ))
This Bellman principle is designed on a property of the studied functional, that is, ∀y(.)

a measurable function and T ≥ 0 -see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] :

N (y(.)) = T 0 l(y(t))e -λt dt + e -λT N (t → y(t + T ))
which means the functional N only depends on a part of the trajectory y(.) -on [0, T ]and on the value of the functional at the rest of the trajectory N (t → y(t + T )). Nevertheless, there are no guarantees that this expression exists in the general case. The issue of this section is therefore to characterize the functionals admitting a Bellman principle, since this is the sine qua non condition to be eligible for the dynamic programming method. In the first instance, for any functional, we provide such a candidate expression for a Bellman principle, and then we provide a necessary and sufficient condition on the functional for this expression to characterize the functional.

Lower and upper bounds of the value function

We focus on a functional defined on A a subset of R + → R n . We note B its image in R, that is assumed bounded. In addition, we note m = inf B and M = sup B, and we assume m, M ∈ B.

We assume the following properties on the definition set of the studied functional

A ⊂ (R + → R n ) :
-A contains the absolute continuous functions of

R + → R n -A is such that : 1) ∀z(.) ∈ A, ∀T ≥ 0 : t → z(t + T ) ∈ A 2) ∀z 1 (.), z 2 (.) ∈ A, ∀T ≥ 0 : g : t →      z 1 (t) if t < T z 2 (t -T ) if t ≥ T ∈ A
We note that these hypotheses are not restrictive for the studied functionals. They allow us to introduce two bounding functions for a given functional N :

Definition 2. For a functional N , let be F N ,+ (., ., .) :

R + × A × [m, M ] → R and F N ,-(., ., .) : R + × A × [m, M ] → R such that : ∀T ≥ 0, ∀z(.) ∈ A, ∀η ∈ [m, M ] F N ,+ (T, z(.), η) = sup w(.)∈A      N (w(.)) | w(t) = z(t), ∀t ∈ [0, T [ N (t → w(t + T )) ≤ η      F N ,-(T, z(.), η) = inf w(.)∈A      N (w(.)) | w(t) = z(t), ∀t ∈ [0, T [ N (t → w(t + T )) ≥ η     
We note that F N ,+ (T, z(.), η) does not depend on z(.), but only on its restriction on [0, T [ : if T = 0, then [0, 0[ is empty, and F N ,+ (T = 0, z(.), η) becomes equal to sup w(.)∈A {N (w(.))|N (w(.)) ≤ η} that depends no longer on z(.).We highlight two points :

-for any functional N , ∀T ≥ 0, ∀z(.) ∈ A, we have the following inequality :

F N ,-(T, z(.), N (t → z(t + T ))) ≤ N (z(.)) ≤ F N ,+ (T, z(.), N (t → z(t + T ))) (4.8)
Indeed, for all η ∈ [m, M ] and z(.) ∈ A, noting :

E 1 =      w(.) ∈ A | w(t) = z(t), ∀t ∈ [0, T [ N (t → w(t + T )) ≤ N (t → z(t + T ))      and E 2 =      w(.) ∈ A | w(t) = z(t), ∀t ∈ [0, T [ N (t → w(t + T )) ≥ N (t → z(t + T ))      then : z(.) ∈ E 1 ∩ E 2 so : inf{N (E 2 )} ≤ N (z(.)) ≤ sup{N (E 1 )}
-for all T ≥ 0 and y(.) ∈ A, the functions η → F N ,-(T, z(.), η) and η → F N ,+ (T, z(.), η) are increasing.

We can now introduce the first result on the value function

V (x) = inf u(.)∈U N (φ(x, u(.), .)),
where φ(x, u(.), .) is solution of Equation (4.1) under the hypothesis H f,1 :

Lemma 3. For all T ≥ 0, for all x ∈ R n :

-A first inequality :

V (x) ≥ inf u(.)∈U
F N ,-(T, φ(x, u(.), .), V (φ(x, u(.), T ))) (4.9)

-If for all y(.) ∈ A, the function η → F N ,+ (T, y(.), η) is upper semi-continuous, then we obtain the second inequality :

V (x) ≤ inf u(.)∈U F N ,+ (T, φ(x, u(.), .), V (φ(x, u(.), T ))) (4.10)
Proof of the first inequality (Equation (4.9)).

V (x) = inf u(.)∈U N (φ(x, u(.), .)) ≥ inf u(.)∈U F N ,-(T, φ(x, u(.), .), N (t → φ(x, u(.), t + T ))) = inf u(.)∈U
F N ,-(T, φ(x, u(.), .), N (φ(φ(x, u(.), T ), t → u(t + T ), .)))

So because η → F N ,-(T, φ(x, u(.), .), η) is increasing, we obtain :

V (x) ≥ inf u(.)∈U F N ,-(T, φ(x, u(.), .), V (φ(x, u(.), T )))
Proof of the second inequality (Equation (4.10)).

We assume that for all y(.) ∈ A, the function η → F N ,+ (T, y(.), η) is upper semicontinuous.

For all u 1 (.) ∈ U and u 2 (.) ∈ U , noting u(.) that is equal to u 1 (.) on [0, T [ and equal to

In particular :

V (x) ≤ inf u(.)∈U
F N ,+ (T, φ(x, u(.), .), V (φ(x, u(.), T )))

These bounds of the value function provide two equations whose the value function is respectively sub and super solution. The functions presented above are therefore good candidates to build a Bellman principle. However, they do not allow to characterize in the general case the value function of an optimal control problem. In the next section, we present a class of functionals both of whose bounds are equal, and so constitute a general Bellman principle.

The Bellman principle

Let's consider monotone functionals. We show that this property of monotony is essential to build Bellman principle. This Bellman principle is then based on the previously defined functions F N ,+ and F N ,-.

Definition 4. The functional N is said monotone if :

∀z 1 (.), z 2 (.) ∈ A, ∀T ≥ 0 : 1) z 1 (t) = z 2 (t), ∀t ∈ [0, T [ 2) N (t → z 1 (t + T )) ≤ N (t → z 2 (t + T ))      ⇒ N (z 1 (.)) ≤ N (z 2 (.))
Note that all functionals of Table 4.2 verify this property. We show that monotone functionals are characterized by the following lemma :

Lemma 5. Let N : A → R. The three following asertions are equivalent :

-N is monotone -∀T ≤ 0, ∀z(.) ∈ A :

N (z(.)) = F N ,-(T, z(.), N (t → z(t + T ))) = F N ,+ (T, z(.), N (t → z(t + T ))) -∀T ≥ 0, ∃F T (., .) : A [0,T [ × B such that ∀z(.) ∈ A : N (z(.)) = F T (z |[0,T [ (.), N (t → z(t + T ))) η → F T (z |[0,T [ (.), η) is increasing where z |[0,T [ (.) is the restriction of z(.) to [0, T [.
We note that monotony is not valid for all functionals : for example, the functional N defined on (R + → R) such that N (y(.)) = max(|y(1)|, 1) is not monotone. In addition, in the general case, the sum, the product etc. of two monotone functionals is not monotone.

If η → F N ,+ (T, y(.), η) is upper semi-continuous, because of the equality of F N ,-and F N ,+ , the inequalities presented in Lemma 3 become an equality, which corresponds to a general Bellman principle. However, this upper semi-continuity is not guaranteed, and in this case the Bellman principle is not available -see Section 4.9 for a counter example.

We such define the hypothesis H N ,3 on a monotone functional N :

A monotone functional satisfies H N ,3 if ∀T ≥ 0 and ∀y(.) ∈ A, the restriction of η → F N ,+ (T, y(.), η) to B is upper semi-continuous :

∀ > 0, ∀η ∈ B, ∃δ > 0 such that : ∀n ∈ B(η, δ) ∩ B F N ,+ (T, y(.), n) ≤ F N ,+ (T, y(.), η) +
Under this condition, we present the general Bellman principle, which summarizes the previous results of this section :

Theorem 6. the Bellman principle

For N a functional, N is a monotone functional satisfying H N ,3 if and only if ∀T ≥ 0, In this case, if Equation (4.1) satisfies H f,1 , for all x ∈ R n , the value function admits a

∃F T (., .) : A [0,T [ × [m, M ] such that, ∀z(.) ∈ A : N (z(.)) = F T (z |[0,T [ (.), N (t → z(t + T ))) η → F T (z |[0,T [ (.),
Bellman principle :

V (x) = inf u(.)∈U N (φ(x, u(.), .)) = inf u(.)∈U F T (φ |[0,T [ (x, u(.), .), V (φ(x, u(.), T )))
Proof of the characterisation of a monotone functional satisfying H N ,3 . We first show that if N is monotone functional satisfying H N ,3 , ∀T ≥ 0, F T (., .) : 

A [0,T [ × [m, M ] exists such that : N (z(.)) = F T (z |[0,T [ (.), N (t → z(t + T ))) η → F T (z |[0,T [ (.),
F (T, y(.), η) = F N ,-(T, y(.), η 2 ) If η 1 < η 2 : F (T, y(.), η) = η 2 -η η 2 -η 1 F N ,+ (T, y(.), η 1 ) + η -η 1 η 2 -η 1 F N ,-(T, y(.), η 2 )
We note that F (T, y(.), .) is increasing, and is equal to F N ,-(T, y(.), .) on B (and so We will show that :

1) F (T, y(.), .) is upper semi-continuous at η 2 2) F (T, y(.), .) is upper semi-continuous at [η 1 , η 2 [ 1) Indeed, because F (T, y(.), .) is increasing and equal to F N ,-(T, y(.), .) on B ∪ {η 2 } :

lim n→η 2 ,n∈B,n>η 2 F N ,-(T, y(.), n) ≥ lim n→η 2 ,n>η 2 F (T, y(.), n) ≥ F N ,-(T, y(.), η 2 )
In addition :

lim n→η 2 ,n∈B,n>η 2 F N ,-(T, y(.), n) = lim n→η 2 ,n∈B,n>η 2 inf{N (ω(.))|ω(.) ∈ E n }
with :

E n = {ω(.) ∈ A|ω(t) = y(t), ∀t < T and N (t → ω(t + T )) ≥ n}
We note that, for all n 1 ≤ n 2 , E n 1 ⊃ E n 2 . So :

lim n→η 2 ,n∈B,n>η 2 F N ,-(T, y(.), n) = lim n→η 2 ,n∈B,n>η 2 inf{N (ω(.))|ω(.) ∈ E n } = lim n→η 2 ,n>η 2 inf{N (ω(.))|ω(.) ∈ E n } = inf n>η 2 inf{N (ω(.))|ω(.) ∈ E n } = inf{N (ω(.))|ω(.) ∈ E η 2 } = F N ,-(T, y(.), η 2 ) So : lim n→η 2 ,n>η 2 F (T, y(.), n) = F N ,-(T, y(.), η 2 ) = F (T, y(.), η 2 )
So F (T, y(.), .) is upper semi-continuous at η 2 .

2) If η 1 < η 2 , the proof that F (T, y(.), .) is upper semi-continuous at η 1 is similar to the previous one. In addition, F (T, y(.), .) is upper semi-continuous on n ∈]η 1 , η 2 [ by definition. So :

N (z(.)) = F (T, y(.), N (t → z(t + T )))
and η → F (T, y(.), η) is increasing and upper semi-continuous on [m, M ]

If we now assume the existence of such a F T , by Lemma 5, we know that N is monotone, and so because F T is upper semi-continuous on its second variable and equal to

F N ,+ on R + × A × B, N verifies H N ,3 .
In this case, the proof of the Bellman principle :

V (x) = inf u(.)∈U F T (φ |[0,T [ (x, u(.), .), V (φ(x, u(.), T )))
is similar to the one of Lemma 3. 

Conclusion

A functional admits a Bellman principle if it is a monotone functional and verifies We now know which functionals correspond to optimal control problems that may be numerically solved dynamic programming and we have a sufficient condition on functionals that characterizes the viability kernel. We now focus on the properties of the value functions :

-Convergence of finite horizon value functions to infinite horizon value functions : the Bellman principle allows the value function to be expressed as a solution of the viscosity of a PDE, called Hamilton Jacobi Bellman's equation (HJB) -see Section 4.10. However, over an infinite horizon, this HJB does not admit terminal conditions, since it does not depend on time (it is nevertheless possible to introduce boundary conditions as part of viability as shown Section 4.5). Thus, one of the issues in numerically determining the value function is the construction of an optimal control problem at the finite horizon T f : -Regularity of the value function : the regularity of the value function is an important property, which conditions the usable algorithms to the numerical resolution of the corresponding HJB [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. One of the issues here is therefore to determine the regularity properties of the value function.

V (x, T f , η) = inf
Here we define several functional classes. In the following, we analyze the properties listed above of the value function according to the class of its corresponding functional :

Definition 7. Let N a monotone functional satisfying H N ,3 and F its Bellman form.

-For all η ∈ [m, M ], N is said η-convergent if, for all y(.) ∈ A : -N is said discounted if it exists ω(., .) : R + ×R + → R + , decreasing over its second variable, and such that :

∀η ∈ R + : lim T →+∞ ω(T, η) = 0 ∀y(.) ∈ A, ∀(η 1 , η 2 ) ∈ [m, M ] 2 : |F (T, y(.), η 1 ) -F (T, y(.), η 2 )| < ω(T, |η 1 -η 2 |)
We note that if a functional is η-convergent, it assumes that lim We focus especially on three classes of functionals : the m-convergent, the M-convergent and the discounted ones because they correspond to ones of the most studied. However, this list is not exhaustive ; for example, the last example presented Table 4.2 is not η- 

convergent
of R n → R, λ > 0, γ ∈]0, 1[, Γ K and Γ T K are defined as follows :Γ K (y(.)) = inf{t ∈ R + |y(t) / ∈ K} (= +∞ if y(.) ∈ K R + ) and Γ T K (y(.)) = inf{t ∈ [0, T [|y(t) / ∈ K} (= +∞ if y(.) ∈ K [0,T [ ).
The tow first examples corresponds to [START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF], the third one to [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF], the fourth one to [START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF] 4.4.2 The M -convergent functionals for all y(.) ∈ A, then, for all x ∈ R n :

lim T →+∞ inf u(.)∈U F (T, φ(x, u(.), .), M ) = V (x)
Proof of the first inequality : lim

T →+∞ inf u(.)∈U F (T, φ(x, u(.), .), M ) ≥ V (x).
Indeed, for all u(.) ∈ U , for all T > 0 :

F (T, φ(x, u(.), .), M ) ≥ N (φ(x, u(.), .))

Thus inf u(.)∈U F (T, φ(x, u(.), .), M ) ≥ V (x)
Proof of the second inequality : lim

T →+∞ inf u(.)∈U F (T, φ(x, u(.), .), M ) ≤ V (x).
For all T > 0, let u T (.) ∈ U be such that : inf u(.)

N (φ(x, u(.), .)) + 1 T > N (φ(x, u T (.), .))

and if N is M -convergent, for T > 0, let τ T be such that :

N (φ(x, u T (.), .)) + 1 T ≥ F (τ T , φ(x, u T (.), .), M ) that means : inf u(.) N (φ(x, u(.), .)) + 2 T > F (τ T , φ(x, u T (.), .), M ) ≥ inf u(.)
F (τ T , φ(x, u(.), .), M ) Therefore, because of the decreasing of t → F (t, φ(x, u T (.), .), M ) : Lemma 9. For a monotone N satisfying H N ,3 , noting F its Bellman form, and for a differential system as define in Equation (4.1) under the hypothesis

H f,1 , if ∀x ∈ R n : lim T →+∞ inf u(.)∈U F (T, φ(x, u(.), .), M ) = V (x)
Then ∀W : R n → [m, M ], ∀x ∈ R n :

∀T ≥ 0 : , φ(x, u(.), .), W (φ(x, u(.), T )))

W (x) -inf u(.)∈U F (T, φ(x, u(.), .), W (φ(x, u(.), T ))) ≤ 0      ⇒ W (x) ≤ V (x) (4.12) proof. Indeed, if W : R n → [m, M ] is such that ∀T ≥ 0 : W (x) ≤ inf u(.)∈U F (T
then :

W (x) ≤ inf u(.)∈U
F (T, φ(x, u(.), .), M ))

So when T → +∞ : -∀T ≥ 0, ∀x ∈ R n , ∀ > 0, ∃µ > 0, ∀z ∈ B(x, µ), ∀u(.) ∈ U :

W (x) ≤ V (x) 4 
F (T, φ(x, u(.), .), M ) -F (T, φ(z, u(.), .), M ) ≥ -Then V (.) is upper semi-continuous proof.

We assume that :

-∀x ∈ R n : lim Indeed, for all T 1 ≤ T 2 , ∀y(.) ∈ A, thanks to Lemma 18 : F (T 2 , y(.), M ) = F (T 1 , y(.), F (T 2 -T 1 , t → y(t + T 1 ), M ))

T →+∞ inf u(.)∈U F (T, φ(x, u(.), .), M ) = V (x) -∀T ≥ 0, ∀x ∈ R n , ∀ > 0, ∃µ > 0, ∀z ∈ B(x,
≤ F (T 1 , y(.), M ) So :

V (x) = lim T →+∞ V (T, x, M ) = inf T ∈R + V (T, x, M )
That means V is the lower bound of a family of a family of upper semi-continuous functions {V (T, x, M )|T ∈ R + }, thus V is upper semi-continuous.

This lemma shows how the convergence of V (T, M, x) to V (x) when T → +∞ transfers the upper semi-continuity property of the finite horizon functional to the infinite horizon value function. For example, under the hypotheses H f,1 , for l : R n → R a bounded function upper semi-continuous, the value functions corresponding to :

V (x) = inf u(.)∈U inf t∈R + l(φ(x, u(.), t))
is upper semi-continuous. Nevertheless, in the general case we do not have a same transmission of the continuity property, even if V (T, x, M ) is continuous at all x ∈ R n . We only known that the value function is continuous on a dense set of R n , as a consequence of the Baire's theorem. proof.

We assume that :

-For all x ∈ R n : the set {φ(x, u(.), .)|u(.) ∈ U } is compact for the pointwise convergence -∀y(.) ∈ A : So for all n ∈ N, it exists N > n such that :

F (T n , φ(x, u N (.), .), m) ≥ F (T n , φ(x, u ∞ (.), .), m) - 1 n
We thus define by recurrence ψ(.) : N → N that is strictly increasing such that, for all n ≥ 0 :

F (T ψ(n) , φ(x, u ψ(n+1) (.), .), m) ≥ F (T ψ(n) , φ(x, u ∞ (.), .), m) - 1 ψ(n)
But we defined u n (.) such that for all n ∈ N :

F (T n , φ(x, u n (.), .), m) ≤ inf u(.) F (T n , φ(x, u(.), .), m) + 1 n ≤ F (T n , φ(x, u ∞ (.), .), m) + 1 n
So finally, for all n ∈ N :

F (T ψ(n) , φ(x, u ψ(n+1) (.), .), m) ≥ F (T ψ(n) , φ(x, u ∞ (.), .), m) - 1 ψ(n) and F (T ψ(n) , φ(x, u ∞ (.), .), m) - 1 ψ(n) ≥ F (T ψ(n) , φ(x, u ψ(n) (.), .), m) - 2 ψ(n)
In addition, for all y(.) ∈ A, the function T → F (T, y(.), m) is increasing. So :

F (T ψ(n+1) , φ(x, u ψ(n+1) (.), .), m) ≥ F (T ψ(n) , φ(x, u ∞ (.), .), m) - 1 ψ(n) and F (T ψ(n) , φ(x, u ∞ (.), .), m) - 1 ψ(n) ≥ F (T ψ(n) , φ(x, u ψ(n) (.), .), m) - 2 ψ(n)
and so, because of the monotony of T → F (T, φ(x, u ∞ (.), .), m) :

lim n→+∞ F (T n , φ(x, u ∞ (.), .), m) = lim n→+∞ F (T ψ(n) , φ(x, u ψ(n) (.), .), m)
And because N is m-convergent, that means :

lim n→+∞ F (T n , φ(x, u ∞ (.), .), m) = N (φ(x, u ∞ (.), .))
In addition, for all n ∈ N :

V (x) ≥ inf u(.)∈U F (T n , φ(x, u(.), .), m) ≥ F (T n , φ(x, u n (.), .), m) - 1 n So V (x) ≥ lim n→+∞ inf u(.)∈U F (T n , φ(x, u(.), .), m) = N (φ(x, u ∞ (.), .)) ≥ V (x)
In the case of m-convergent functional, the convergence of finite horizon value functions V (T, x, m) to infinite horizon value functions V (x) when T → +∞ is not as direct as in the case of M -convergent functional. Indeed, in the general case, this convergence does not occur -see Di [START_REF] Marco | A minimax optimal control problem with infinite horizon[END_REF] for an example -, and it allowed by the compacity for the pointwise convergence of {φ(x, u(.), .)|u(.) ∈ U }. This compacity is a classical consequence of the hypothesis H f,2 (see [START_REF] Trélat | Contrôle optimal : théorie & applications[END_REF] for the case at finite horizon), that occurs when φ(x, u(.), .) is assumed bounded for any u(.). Therefore this lemma can be used in the viability context -see Section 4.5. This lemma thus establishes a link between the existence of optimal control and the convergence of the finite horizon value function x → inf Lemma 12. For a monotone N satisfying H N ,3 , noting F its Bellman form, and for a differential system as define in Equation (4.1) under the hypothesis

H f,1 , if ∀x ∈ R n : lim T →+∞ inf u(.)∈U F (T, φ(x, u(.), .), m) = V (x) Then ∀W : R n → [m, M ], ∀x ∈ R n :
∀T ≥ 0 :

W (x) -inf u(.)∈U F (T, φ(x, u(.), .), W (φ(x, u(.), T ))) ≥ 0      ⇒ W (x) ≥ V (x) (4.13) proof.
Indeed, if W : R n → [m, M ] is such that ∀T ≥ 0 :

W (x) ≥ inf u(.)∈U
F (T, φ(x, u(.), .), W (φ(x, u(.), T )))

then :

W (x) ≥ inf u(.)∈U F (T, φ(x, u(.), .), m))
So when T → +∞ :

W (x) ≥ V (x)
4.4.3.4 Regularity of the value function Lemma 13. For a monotone N satisfying H N ,3 , noting F its Bellman form, and for a differential system as define in Equation (4.1) under the hypothesis H f,1 , if :

-∀x ∈ R n : lim T →+∞ inf u(.)∈U F (T, φ(x, u(.), .), m) = V (x) -∀T ≥ 0, ∀x ∈ R n , ∀ > 0, ∃µ > 0, ∀z ∈ B(x, µ), ∀u(.) ∈ U :
F (T, φ(x, u(.), .), m) -F (T, φ(z, u(.), .), m) ≤ Then V (.) is lower semi-continuous proof.

We assume that :

-∀x ∈ R n : lim ≥ F (T 1 , y(.), m) So :

T →+∞ inf u(.)∈U F (T, φ(x, u(.), .), m) = V (x) -∀T ≥ 0, ∀x ∈ R n , ∀ > 0, ∃µ > 0, ∀z ∈ B(x,
V (x) = lim T →+∞ V (T, x, m) = sup T ∈R + V (T, x, m)
That means V is the upper bound of a family of a family of lower semi-continuous functions {V (T, x, m)|T ∈ R + }, thus V is lower semi-continuous.

This lemma is very similar to Lemma 10, and shows how the convergence of V (T, m, x)

to V (x) when T → +∞ transfers the lower semi-continuity property of the finite horizon functional to the infinite horizon value function. For example, for l : R n → R a bounded function lower semi-continuous, if the hypotheses of Lemma 11 are verified, the value functions corresponding to :

V (x) = inf u(.)∈U sup t∈R + l(φ(x, u(.), t))
is lower semi-continuous. Nevertheless, in the general case we do not have a same transmission of the continuity property, as in the M -convergent functional case.

The discounted functionals

Introduction

These functionals are characterized by the fact that it exists ω(., .) : R + × R + → R + decreasing on its second variable, and such that :

∀η ∈ R + : lim T →+∞ ω(T, η) = 0 ∀y(.) ∈ A, ∀(η 1 , η 2 ) ∈ [m, M ] 2 : |F (T, y(.), η 1 ) -F (T, y(.), η 2 )| < ω(T, |η 1 -η 2 |)
where F is the Bellman form of the functional N . In addition, we note that if the functional N is discounted, then for all η ∈ [m, M ],

N is η-convergent :

Lemma 14. If the monotone functional N is discounted, then ∀η ∈ B, N is η- convergent.
proof. We assume N is a monotone discounted functional.

Let ω(., .) : R + × R + → R + decreasing on its second variable, and such that :

∀η ∈ R + : lim T →+∞ ω(T, η) = 0 ∀y(.) ∈ A, ∀(η 1 , η 2 ) ∈ [m, M ] 2 : |F (T, y(.), η 1 ) -F (T, y(.), η 2 )| < ω(T, |η 1 -η 2 |)
By monotony of N , for all y(.) ∈ A and T ∈ R + :

N (y(.)) = F (T, y(.), N (t → y(t + T )))

So : Lemma 15. For a monotone N satisfying H N ,3 , noting F its Bellman form, and for a differential system as define in Equation (4.1) under the hypothesis

F (T, y ( 
H f,1 , if N is discounted, then, for all η ∈ [m, M ], x ∈ R n : lim T →+∞ inf u(.)∈U F (T, φ(x, u(.), .), η) = V (x)
proof.

We assume N is discounted. Let ω(., .) : R + × [0, M ] → R + be decreasing on its second variable, and such that :

∀η ∈ R + : lim T →+∞ ω(T, η) = 0 ∀y(.) ∈ A, ∀(η 1 , η 2 ) ∈ [m, M ] 2 : |F (T, y(.), η 1 ) -F (T, y(.), η 2 )| < ω(T, |η 1 -η 2 |)
Because N is M -convergent -thanks to Lemma 14 -, then : Lemma 16. For a monotone N satisfying H N ,3 , noting F its Bellman form, and for a differential system as define in Equation (4.1) under the hypothesis

H f,1 , if N is discounted, then ∀W : R n → [m, M ], ∀x ∈ R n : ∀T ≥ 0 : W (x) -inf u(.)∈U F (T, φ(x, u(.), .), W (φ(x, u(.), T ))) ≤ 0      ⇒ W (x) ≤ V (x)
and ∀T ≥ 0 :

W (x) -inf u(.)∈U F (T, φ(x, u(.), .), W (φ(x, u(.), T ))) ≥ 0      ⇒ W (x) ≥ V (x)

Regularity of the value function

Because a discounted functional is m and M -convergent, the Lemma 13 and Lemma 10 are verified. Moreover, a consequence of these lemma is the following one :

Lemma 17. For a monotone discounted N , noting F its Bellman form, and for a differential system as define in Equation (4.1) under the hypothesis H f,1 , if :

-∀T ≥ 0, ∀x ∈ R n , ∀ > 0, ∃µ > 0, ∀z ∈ B(x, µ), ∀u(.) ∈ U :

F (T, φ(x, u(.), .), m) -F (T, φ(z, u(.), .), m) ≤ and F (T, φ(x, u(.), .), M ) -F (T, φ(z, u(.), .), M ) ≥ -Then V (.) is continuous

Conclusion

By using the Bellman principle, we study m-convergent, M -convergent and discounted functionals. We show that these properties allow a characterization of the associated value function among all the solutions of the equation induced by the Bellman principle.

These classes also allow to study the regularity of the associated value functions. In particular, we show that the continuity of the value function is easily accessible only for discounted functional. Finally, we study the convergence of finite horizon value functions -whose equations admit terminal conditions -to infinite horizon value functions. This convergence therefore allows a numerical description of the value functions with an infinite horizon. However, this convergence is pointwise, and in the general case we do not know estimate the speed of this convergence. We will see latern the next section how these properties are used in the numerical characterization of viability kernels.

4.5 Application of the dynamic programming to the characterization of viability kernels

The general method

We present the general approach of the numerical characterization of a viability kernel with an optimal control problem. In the following sections, we illustrate this approach on a population model. We consider a dynamical, autonomous and controlled model ẏ = f (y, u)

with f : R n × U → R n verifying H f,1,2 and U ∈ R m a compact. The constraint space K is a compact subset of R n .
The goal is numerically determining the viability kernel :

V iab f (K) = x ∈ R n |∃u(.) ∈ U , φ(x, u(.), .) ∈ R + → K
To characterize this viability kernel, we use a functional N : A → R verifying H N ,1,2 , that guarantees by Lemma 1 :

V iab f (K) = {x ∈ R n |V (x) ≤ 0}
Where V is the value function corresponding to this functional : We show here that the approach of characterizing the viability kernel with an optimal control problem involves numerical problems. Indeed, let us distinguish two cases :

V (x) = inf
-if the functional is only m-convergent : the value function is not continuous -see Section 4.4.3.

-if the functional is M -convergent (such as a discounted functional) : in this case, m = 0 and the value function is exactly equal to zero in the viability kernel. Indeed, if N is M -convergent, and so if we assume by the absurdity that y(.) ∈ K R + exists such that N (y(.)) < -< 0, then T > 0 exists such that :

F 1 (T, y(.), M ) -N (y(.)) < /2 so :

F 1 (T, y(.), M ) < -/2
So for z(.) ∈ A such that N (z(.)) = M > 0, because N characterize the viability kernel, z(.) / ∈ K R + . In addition, we define the function y(.) by, ∀t ∈ R + :

y(t) = y(t) if t < T = z(t -T ) if t ≥ T So y(.) / ∈ K R + , and : N ( y(.)) = F (T, y(.), N (t → y(t + T ))) = F (T, y(.), N 1 (z(.))) = F (T, y(.), M 1 ) < -/2
which is absurd.

The discontinuity of the value function complicates the numerical resolution of the value function on the one hand. On the other hand, if the value function is exactly equal to zero in the viability kernel, then the viability kernel will be complicated to detect, given the numerical approximations. In addition, we suspect that a functional allows to characterize the viability kernel only if it is at least m-convergent. This means that the value function is either discontinuous, or exactly equal to zero in the viability kernel. These numerical properties therefore constitute a limitation to the approach of characterizing a viability kernel with an optimal control problem. In the following, we

The fact that c > 2d log(b/a) allows this characterization. We thus can compare the analytic result to the numerical results obtained by the dynamic programming. In the next section, we use two functionals to describe the viability kernel : a discounted one, and a m-convergent.

Characterization of the viability kernel by dynamic programming

We focus on the characterization of the viability kernel by the dynamic programming.

Let (m1, m 2 , M 1 , M 2 ) ∈ R + such that m 1 ≤ 0 < M 1 and m 2 ≤ 0 < M 2 , and l 1 : R 2 → [m 1 , M 1 ] and l 2 : R 2 → [m 2 , M 2 
] two lipschitzian functions. We now consider two functionals N 1 : A → R and N 2 : A → R with A the set of measurable functions, defined by, ∀y(.) ∈ A :

N 1 (y(.)) = +∞ 0 l 1 (y(t))e -λt dt N 2 (y(.)) = sup t∈R + l 2 (y(t)) With λ > 0. So N 1 is discounted and N 2 is m-convergent. We note V 1 : R 2 → [m 1 , M 1 ] and V 2 : R 2 → [m 2 , M 2 ] defined as follows : V 1 (x) = inf u(.)∈U N 1 (φ(x, u(.), .)) V 2 (x) = inf u(.)∈U N 2 (φ(x, u(.), .))
To obtain the characterization of V iab f (K) by N 1 and N 2 , we have to choose l 1 and l 2 such that the hypotheses of Lemma 1 are verified. For example, let us consider the following definitions : for δ > 0, ∀x ∈ R 2 :

l 1 (x) = min{2δ, d(x, K)} l 2 (x) =l 1 (x) if x / ∈ K -d(x, R 2 \K) if x ∈ K In this case, m 1 = 0, M 1 = 2δ, m 2 = -min(c, b-a 2 ), M 2 = 2δ
. With these functions, the hypotheses of Lemma 1 are verified, and N 1 and N 2 characterize the viability kernel :

V iab f (K) = x ∈ R 2 |V 1 (x) ≤ 0 = x ∈ R 2 |V 2 (x) ≤ 0 We note that in the case of N 1 , l 1 is necessary equal to zero on K, because N 1 is M 1 -convergent.

Numerical estimation of the viability kernel

N 1 and N 2 are two monotone functionals verifying H N ,3 : they thus admit a Bellman principle. We consider their Bellman forms

F 1 : R + × A × [m 1 , M 1 ] and F 2 : R + × A × [m 1 , M 1 ] defined by, ∀T ≥ 0, ∀y(.) ∈ A, ∀η 1 ∈ [m 1 , M 1 ] and η 2 ∈ [m 2 , M 2 ] : F 1 (T, y(.), η 1 ) = T 0 l 1 (y(t))e -λt dt + e -λT η 1 F 2 (T, y(.), η 2 ) = max sup t<T l 2 (y(t)), η 2 Thus : N 1 (y(.)) = F 1 (T, y(.), N 1 (t → y(t + T ))) N 2 (y(.)) = F 2 (T, y(.), N 2 (t → y(t + T )))
In addition, we note V 1 (T, x) and V 2 (T, x), ∀T ≥ 0 and x ∈ R 2 , defined by :

V 1 (T, x) = inf u(.)∈U F 1 (T, φ(x, u(.), .), 0) = inf u(.)∈U T 0 l 1 (y(t))e -λt dt V 2 (T, x) = inf u(.)∈U F 2 (T, y(.), m 2 ) = inf u(.)∈U max sup t<T l 2 (φ(x, u(.), t)), m 2 = inf u(.)∈U sup t<T l 2 (φ(x, u(.), t))
N 1 is discounted, and N 2 is m 2 -convergent, so applying Lemma 14 and Lemma 11 :

lim T →+∞ V 1 (T, x) = V 1 (x) lim T →+∞ V 2 (T, x) = V 2 (x)
In order to construct boundary conditions, we consider the system given by f :

R 2 × U → R 2 such that, noting δ > 0, ∀x = (x 1 , x 2 ), ν ∈ R 2 × U : f (x, ν) = α δ (d(x, K))f (x, ν)
N 1 functional is M 1 -convergent, and thus its corresponding value function is exactly equal to zero on the viability kernel : this exact value is difficult to detect due to numerical errors. Conversely, the functional N 2 corresponds to a potentially strictly negative value function in the viability kernel, which is easier to detect. However, at infinite horizon, this value function is discontinuous in the general case. Thus, for a large time horizon, the finite horizon value functions V 2 , although continuous, include large variation gaps, which can induce large numerical errors with a finite difference integration sheme. 

Conclusion

In this article we have presented a generalization of the characterization of the viability kernel by dynamic programming. We highlight two main results : 1) a sufficient condition for the value function induced by a functional to characterize the viability kernel ; 2) a general definition of the Bellman principle, and the characterization of the functional by admitting one. This Bellman principle is an equation whose value function is solution, and its resolution therefore makes it possible to numerically obtain this value function. Functionals admitting such a principle have a rewrite that we have called the

Bellman form. This formula allows to deduce regularity and characterization properties of the value function for a large class of functional. Thus, these properties provide us with interesting information for the choice of the appropriate functional for the characterization of a Bellman principle.

Our work includes all possible approaches, which allows us to evaluate this approach to the characterization of the viability kernel in general : although several functional allowing to characterize the viability kernel provide a numerical description, the resolution of the corresponding value functions can be complicated, or for reasons of regularity of the value function -which may be discontinuous -, or for questions of kernel detectionif for example the value function is exactly zero in the viability kernel. These problems seem to be inherent in this approach in general : a priori, there is no such a functional whose value function overcomes all these difficulties. To cope with this, the use of dynamic programming must therefore use advanced optimal control tools, such as multi-grid methods [START_REF] Brandt | Multigrid techniques : 1984 guide with applications to fluid dynamics[END_REF], which would overcome the difficulties of precision in detecting the viability kernel boundary, or PDE resolution tools for discontinuous viscosity solutions [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF].

From a more theoretical point of view, this work presents viability as a sub-problem of optimal control, which can be extended to other sets of invariance of a controlled system : for example, following the Lygeros ( 2004) approach, we can show that if we can characterize the viability kernel by the following optimal control problem -with N an appropriate functional :

V iab f (K) = {x ∈ R n | inf u(.)∈U N (φ(x, u(.), .)) ≤ 0}
then we can also characterize the invariance kernel by another optimal control problem :

Inv f (K) = {x ∈ R n |∀u(.) ∈ U , φ(x, u(.), .) ∈ R + → K} = {x ∈ R n | sup u(.)∈U N (φ(x, u(.), .)) ≤ 0}
Following the opposite approach, several studies have shown that some problems of optimal control are themselves expressible as sub-problems of viability, notably through the epigraph of value functions [START_REF] Doyen | Scale of viability and minimal time of crisis[END_REF]. We therefore believe that our work presents tools that could make it possible to generalize these results to any functional that admits a Bellman principle, which would therefore show the equivalence between the study of invariance sets and optimal control.

From the point of view of optimal control, the main interest of our work is to provide a characterization of the functionals admitting a Bellman principle. However, we do not directly provide a PDE derived from this principle. Indeed, if it is direct to show that the value function associated with a functional admitting such a principle is a super solution of a PDE -see Section 4.10 -, but there is no information to show that it is a viscosity subsolution. A continuation of our work is therefore to fully establish this result. Thus, this would provide us with an abstract Hamilton Jacobi Bellman equation, possibly allowing us to generalize some existing results. The missing information is in the description of the Bellman form : our article shows the existence of a Bellman form F for monotonous functionals, which allows to describe the value of the functional in a trajectory as a function of a portion of this trajectory, and the value of the functional applied to the rest of the trajectory :

N (y(.)) = F (T, y(.), N (t → y(t + T )))
Nevertheless, this formula does not make explicit F . However, when we are interested in particular functionalities, this form of Bellman makes the law governing this functional correspond to a law of internal composition of R. For example, the functional y(...) → +∞ 0 y(t)e -λt dt is associated with the law (x, y) → x + e -λT y ; the functional y(.) → sup t∈R + y(t) is associated with the law (x, y) → max(x, y). This internal law can be interpreted as a discrete form of the functional studied. In the case of the integral, this results directly from the way in which this integral is defined as the limit of a sum :

the associated internal law is therefore the + law. Our question is therefore is there always such a discrete law associated with a monotonous functional ? In this case, the functional would therefore be constructed as an infinite "sum" whose operator would be this law. Thus, our question is whether any monotonous functional can be considered as such a limit. Explicit such a law would provide a more explicit version of the Bellman form F , and would allow a much more detailed analysis of Hamilton's Jacobi Bellman equation derived from the associated Bellman principle.

Finally, we study the viability and optimal control in the deterministic case. However, these two problems are also addressed in stochastic cases (Doyen and Lara, 2010). In particular, finite horizon functional families correspond in the stochastic case to nonanticipative functional families [START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF]. A follow-up to this work is therefore to adapt them to the stochastic case of non-anticipative functionals.

Formalism

For a finite horizon T f ∈ R + , we consider note A [0,T f ] the set of the restrictions on [0, T f ] of functions of A such as defined in Section 4.3.2. We also note U T f the set of the restriction on [0, T f ] of controls of U . We consider here a familly of func- By simplification, for all function y(.) ∈ A, we note N T (y(.)) rather than N T ( y| [0,T ] (.))

tionals {N T |T ∈ [0, T f ]} such that, for all t ∈ [0, T f ], N T : A [0,T ] → [m, M ]. We note B ⊂ [m, M ] the
-where y| [0,T ] (.) is the restriction of y(.) on [0, T ].

Lower and upper bounds of the value function

In the line of Section 4.3, we define the following bounding functionals :

Definition 19. For a family of functionals

{N T |T ∈ [0, T f ]}, let F +,{N T |T ∈[0,T f ]} : [0, T f ] × A [0,T f ] × [m, M ] → R and F -,{N T |T ∈[0,T f ]} : [0, T f ] × A [0,T f ] × [m, M ] → R be defined as follows : ∀T ∈ [0, T f ], ∀z(.) ∈ A [0,T f ] , ∀η ∈ [m, M ] F +,{N T |T ∈[0,T f ]} (T, z(.), η) = sup w(.)∈A [0,T f ]      N T f (w(.)) | w(t) = z(t), ∀t ∈ [0, T [ N T f -T (t → w(t + T )) ≤ η      F -,{N T |T ∈[0,T f ]} (T, z(.), η) = inf w(.)∈A [0,T f ]      N T f (w(.)) | w(t) = z(t), ∀t ∈ [0, T [ N T f -T (t → w(t + T )) ≥ η     
We note that for all T ∈ [0, T f ] and y(.) ∈ A [0,T ] , the functions

η → F -,{N T |T ∈[0,T f ]} (T, z(.), η) and η → F +,{N T |T ∈[0,T f ]} (T, z(.), η)
are increasing. In addition, we give the following inequalities : for all T ∈ [0, T f ] and

z(.) ∈ A [0,T f ] : F -,{N T |T ∈[0,T f ]} (T, z(.), N T f -T (t → z(t + T ))) ≤ N (z(.)) (4.14) and (4.15) N (z(.)) ≤ F +,{N T |T ∈[0,T f ]} (T, z(.), N T f -T (t → z(t + T ))) (4.16)
In the optimal control context -under the hypothesis H f,1 -, the corresponding value function at finite horizon T f is :

V T f (x) = inf u(.)∈U [0,T f ] N T f (φ(x, u(.), .
)) (4.17)

A result similar to Lemma 3 is given by the following lemma :

Lemma 22. Let the family of functional N T |T ∈ [0, T f ] . The three following assertions are equivalent :

-

N T |T ∈ [0, T f ] is monotone -∀T ∈ [0, T f ], ∀z(.) ∈ A [0,T f ] : N T f (z(.)) = F -,{N T |T ∈[0,T f ]} (T, z(.), N T f -T (t → z(t + T ))) = F +,{N T |T ∈[0,T f ]} (T, z(.), N T f -T (t → z(t + T ))) -∀T [0, T f ], ∃F T (., .) : A [0,T [ × B such that ∀z(.) ∈ A [0,T f ] : N T f (z(.)) = F T (z |[0,T [ (.), N T f -T (t → z(t + T ))) η → F T (z |[0,T [ (.), η) is increasing where z |[0,T [ (.) is the restriction of z(.) to [0, T [. A monotone family of functional satisfies H T f N ,3 if ∀T ∈ [0, T f ] and ∀y(.) ∈ A [0,T f ] , the restriction of η → F +,{N T |T ∈[0,T f ]} (T, y(.), η) to B is upper semi-continuous : ∀ > 0, ∀η ∈ B, ∃δ > 0 such that : ∀n ∈ B(η, δ) ∩ B F +,{N T |T ∈[0,T f ]} (T, y(.), n) ≤ F +,{N T |T ∈[0,T f ]} (T, y(.), η) + In this case, it exists F : [0, T f ] × A [0,T f ] × [m, M ] such that for all T ∈ [0, T f ], for all y(.) ∈ A [0,T f ] , the function η → F (T, y(.), η) is upper semi-continuous on [m, M ]
and increasing, and :

N T f (z(.)) = F (T, z(.), N T f -T (t → z(t + T )))
F (T, z(.), η) is the finite horizon Bellman form of {N T |T ∈ [0, T f ]}. We note that F (T, z(.), η) only depends on the restriction of z(.) on [0, T [. Therefore, if Equation (4.1) satisfies H f,1 , for all x ∈ R n , the value function admits a Bellman principle :

V T f (x) = inf u(.)∈U N T f (φ(x, u(.), .)) = inf u(.)∈U F (T, φ(x, u(.), .), V T f -T (φ(x, u(.), T )))
In particular, if N : A → B is an infinite horizon monotone functional satisfying H N ,3 and F its Bellman form, then for all η ∈ B, for all T f > 0, the family of functional N T defined as follows is monotone and satisfies H T f N ,3 :

N T : y(.) → F (T, y(.), η), ∀T ≤ T f
The corresponding finite horizon Bellman form is :

N T f (y(.)) = F (T, y(.), N T f -T (y(.))) = F (T, y(.), F (T f -T, t → y(t + T ), η)

Regularity of value functions at finite horizon

We present here properties of regularity of the finite horizon value function, which does not depend on the monotony of the functionals family. u(.) ∈ U :

V (x) ≤ + N T f (φ(z, u(.), .)) thus : V (x) ≤ + V (z) So V is lower semi-continuous.
The proof of the upper semi-continuity of V is similar to this one.

So ∀x ∈ R n , ∀ > 0, ∃µ > 0, ∀z ∈ B(x, µ), ∀u(.) ∈ U N T f (φ(x, u(.), .)) -N T f (φ(z, u(.), .)) ≤ then V is lower and upper semi-continuous, thus is continuous.

A counter example

We present here a monotone functional N : A → [-10, 10] such that there exist some T, y(.), n ∈ R + × A × B such that the restriction at B of η → F N ,+ (T, y(.), η) and η → F N ,-(T, y(.), η) are not upper semi-continuous at n. In this case, we cannot apply the Bellman principle at n. Let l ∈ R → [-10, 10] be defined as follows : Here

∀x = (x 1 , x 2 ) ∈ R 2 : l(x) = min{10, max{-10, x 2 }} We define R : R × R → R such that, ∀x, y ∈ R × R : R(a, b) = a if |a| > |b| = b if |b| > |a| = min(a, b) if |b| = |a|
A = R + → R 2 .
We study the functional N : A → [-10, 10] defined by, ∀y(.) ∈ A :

N (y(.)) = R sup t∈R + l(y(t)), inf t∈R + l(y(t))
We first show that N is monotone. Indeed, we note F : R + × A × [-10, 10] defined by, for all T ≥ 0, y(.) ∈ A, ∀η ∈ [-10, 10] :

F (T, y(.), η) = R R sup t<T l(y(t)), inf t<T l(y(t)) , η
We note that ∀y(.) ∈ A, ∀T ≥ 0, the function η → F (T, y(.), η) is increasing. In addition, let y(.) ∈ A and T ≥ 0. Thanks to Equation (4.18) and Equation (4.19), we show that N (y(.)) = F (T, y(.), N (t → y(t + T ))) Indeed, if for example N (y(.)) = sup So N is monotone by Lemma 5 and its image corresponds to [-10, 10]. In addition, because ∀y(.) ∈ A, N (y(.)) = F (T, y(.), N (t → y(t + T ))), F corresponds to F N ,+ and F N ,-.

We show that there exist some T, y(.), n ∈ R + × A × B such that η → F (T, y(.), η)

is not upper semi-continuous at n :

We note T = 1, and y(.) : t → 1. Then : R sup So, for all η ∈ [-10, 10] :

F (T, y(.), η) = R (1, η) = η if η ≤ -1 = 1 if η ∈] -1, 1] = η if η > 1
So η → F (T, y(.), η) is non upper semi-continuous at η = -1, and the Bellman principle is not applicable here. For example, let us consider the following controlled differential system : ẏ1 = f 1 (y) ẏ2 = f 2 (y) + h(u, y)

With y = (y 1 , y 2 ) ∈ R 2 and u ∈ U =]0, 1]. f and h are defined as follows :

∀x = (x 1 , x 2 ) ∈ R 2 , ∀ν ∈ U : h(ν, x) = ν × max {x 2 , 0} × max {1 -x 1 , 0} and if x 1 ≥ 0 f 1 (x) = x 2 f 2 (x) = 0 if x 1 ≤ 0 f 1 (x) = x 2 f 2 (x) = -x 1
The trajectory of the solution φ(u(.), .) to this differential system with different values of u(.) and for the initial condition (1, -1) is shown Figure 4.5 : between t = 0 and t = 1, the trajectory moves along the axis x 2 = -1 towards the point (0, -1) that it reached at t = 1. After t = 1, the trajectory describes a quadrant around the point (0.0) until reaching the point (-1.0). Until now, the trajectory did not depend on the control value.

From this point, the trajectory moves to the right, and the larger the control value, the higher the trajectory moves. Whatever the control value, the trajectory remains above the quadrant around (0.0), and connecting the point (-1.0) to the point (1.1) : it moves to the right until it crosses the axis x 1 = 0. Then the trajectory moves to the right and up : the closer the control value is to zero, the more horizontal the trajectory remains.

When the trajectory reaches the x 1 = 1 axis, then it no longer depends on the control value, and moves horizontally to the right indefinitely.

Therefore for all u(.) ∈ U , N (φ(u(.), .)) > 1, so :

V ((1, -1)) ≥ 1

In addition, for T = 1.1, for all ν > 0 : We also note that : the closer to 0 the value of ν is, the closer to 1 the value of max(φ(ν, .))

is. So ∀u(.) ∈ U :

V (t → φ(u(.), t + T )) = 1

So for all u(.) ∈ U :

F (T = 1.1, φ(u(.), .), V (t → φ(u(.), t + T ))) = R(-1, 1)

= -1 < 1 ≤ V (x)
So finally : .5 -Different trajectories (red) of φ((1, -1), u(.), .) according to the constant value of u(.). When u(.) is close to 0, the trajectory of φ((1, -1), u(.), .) is close to the black curve.

So this optimal control problem does not admits a Bellman principle, although N is monotone.

Hamilton Jacobi Bellman equation

We present here an Hamilton Jacobi Bellman equation whose V is subsolution of viscosity, with V the value function corresponding to a monotone functional N : A → B verifying H N ,3 . In this section, we note F a Bellman form of N . This result is based on the following lemma :

Lemma 24. if ∀y(.) ∈ A an absolutely continuous function, (t, n) → F (t, y(.), n) is derivable at (0, η), ∀η ∈ [m, M ], then for all u(.) ∈ U , for all x 0 ∈ R n , for all W ∈ maximum at x 0 and V (x 0 ) = W (x 0 ). So as a consequence of H f,1 , it exists T > 0 such that, for all u(.) ∈ U , for all t ∈ [0, T ] :

V (φ(x, u(.), t)) ≤ W (φ(x, u(.), t))

So for all ν ∈ U, for all t ∈ [0, T ] :

W (x 0 ) = V (x 0 )
≤ F (t, φ(x 0 , ν, .), V (φ(x 0 , ν, t)))

≤ F (t, φ(x 0 , ν, .), W (φ(x 0 , ν, t))) So :

W (x 0 ) -W (φ(x 0 , ν, t)) ≤ F (t, φ(x 0 , ν, .), W (φ(x 0 , ν, t))) -W (φ(x 0 , ν, t)) Thanks to Lemma 24, for all ν ∈ U :

-D x W (x 0 ).f (x 0 , ν) ≤ dF (t = 0, φ(x 0 , ν, .), W (x 0 )) dt that means : sup ν∈U -D x W (x 0 ).f (x 0 , ν) -dF (t = 0, φ(x 0 , ν, .), W (x 0 )) dt ≤ 0 that proves the inequality. La toxicité du lac est l'enjeu sanitaire majeur du phénomène d'eutrophisation. Elle dépend de la présence de cyanobactéries capables de synthétiser les cyanotoxines [START_REF] Davis | The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms[END_REF]. Le deuxième chapitre de cette thèse aborde la prévision de la toxicité de ces proliférations, via l'étude de la répartition temporelle des populations toxiques et non toxiques des cyanobactéries. Le rôle de la température a déjà été mis en avant comme facteur déterminant dans cette répartition [START_REF] Lehman | Impacts of the 2014 severe drought on the microcystis bloom in san francisco estuary[END_REF][START_REF] Briand | Competition between microcystin-and non-microcystin-producing planktothrix agardhii (cyanobacteria) strains under different environmental conditions[END_REF]. Cependant, les mécanismes exacts régulant l'impact de la température sur la dynamique des populations toxiques et non toxiques sont encore mal connus. Afin d'expliciter ces mécanismes, nous avons utilisé le modèle de population du chemostat. Ce modèle est régulièrement employé pour modéliser les populations cyanobactériennes en compétition sur des ressources communes [START_REF] Roelke | Phytoplankton succession in recurrently fluctuating environments[END_REF][START_REF] Sakavara | Lumpy species coexistence arises robustly in fluctuating resource environments[END_REF][START_REF] Varis | Cyanobacteria dynamics in a restored finnish lake : a long term simulation study[END_REF]. Ses conclusions se vérifient particulièrement en milieu contrôlé. A environnement constant, le modèle conclut au principe d'exclusion compétitive : une seule des populations survit [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF][START_REF] Rapaport | A new proof of the competitive exclusion principle in the chemostat[END_REF]. En revanche, la coexistence des populations est possible à environnement variable. Plusieurs versions de ce modèle ont ainsi été étudiées, montrant qu'un débit variable [START_REF] Smith | Competitive coexistence in an oscillating chemostat[END_REF] ou un flux entrant de nutriment variable [START_REF] Roelke | Phytoplankton succession in recurrently fluctuating environments[END_REF] peuvent conduire à cette coexistence. Or la température est l'un des facteurs recensés comme impactant la répartition temporelle des populations toxiques et non toxiques [START_REF] Lehman | Impacts of the 2014 severe drought on the microcystis bloom in san francisco estuary[END_REF]. Nous avons donc étudié le rôle des variations saisonnières de la température dans la coexistence des populations toxiques et non toxiques, à travers une version du modèle du chemostat introduisant une dépendance de la croissance des populations à la température. Cette version du modèle du chemostat avait déjà été employée afin de modéliser l'apparition de populations mutantes dans un milieu aquatique [START_REF] Grimaud | Modelling thermal adaptation in microalgae : an adaptive dynamics point of view[END_REF], ou pour déterminer les températures optimales des populations phytoplanctoniques à l'échelle des océans [START_REF] Grimaud | Modelling the effect of temperature on phytoplankton growth across the global ocean[END_REF]. Dans le cadre de cette thèse, ce modèle nous a permis d'étudier les conditions propices à la coexistence de deux populations cyanobactériennes toxiques et non-toxiques. A travers l'analyse de ce modèle théorique, notre étude montre que la condition nécessaire à la coexistence des populations toxiques et non toxiques est que leurs températures optimales soient distinctes.

De plus, ce modèle théorique montre que les concentrations plus importantes des populations toxiques en début et en fin d'épisodes de prolifération -comme régulièrement constaté [START_REF] Turner | Analysis of microcystins in cyanobacterial blooms from freshwater bodies in england[END_REF][START_REF] Briand | Spatiotemporal changes in the genetic diversity of a bloom-forming microcystis aeruginosa (cyanobacteria) population[END_REF] -nécessitent que la température optimale de la population toxique soit inférieure à la température optimale de la population non toxique. Ainsi, nos conclusions confirment et précisent le rôle clef de la température dans les proliférations toxiques et non toxiques des cyanobactéries, du moins au niveau théorique. Afin de vérifier ces conclusions théoriques sur les espèces cyanobactériennes Microcystis et Dolichospermum, nous avons mis en place une série d'expériences et analysé des études de suivi de lacs [START_REF] Davis | The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms[END_REF](Davis et al., , 2010a)). Nous avons ainsi confirmé cette différence de températures optimales entre les populations toxiques et non toxiques.

Cette analyse fournit donc des éléments de prédiction de la toxicité des proliférations cyanobactériennes, en étudiant l'impact de la température sur la compétition entre les du système lacustre via l'utilisation de structures de rétention -bassins de sédimentation [START_REF] Yousef | Sediment accumulation in detention or retention ponds[END_REF], zones humides [START_REF] Barten | Stormwater runoff treatment in a wetland filter : Effects on the water quality of clear lake[END_REF] etc.. Ces structures sont généralement évaluées sur leur seule capacité à retenir les nutriments [START_REF] Kadlec | Large constructed wetlands for phosphorus control : A review[END_REF]. Ainsi, la plupart des études analysant ces structures se focalisent sur leurs processus internes [START_REF] Bjorneberg | Sediment pond effectiveness for removing phosphorus from pam-treated irrigation furrows[END_REF][START_REF] Kadlec | Large constructed wetlands for phosphorus control : A review[END_REF][START_REF] Kao | Differential nitrogen and phosphorus retention by five wetland plant species[END_REF]. Or dans notre étude, nous nous spécifiquement focalisé sur leur capacité à restaurer un lac en aval, et non sur ces processus internes. Nous avons donc abordé la gestion du lac par les structures de rétention non pas en étudiant directement ces structures, mais leurs effets de rétention. Ainsi notre étude est valable pour des structures de natures différentes -bassins de sédimentation, zones humides, lacs etc. -, et permet d'isoler l'impact des différents effets de rétention qu'une même structure peut cumuler. Notre étude a permis de mettre en exergue qu'une conception et une gestion optimale de ces structures doit également tenir compte des propriétés dynamiques du lac, en particulier du caractère hystérétique de la dynamique des nutriments dans l'eau d'un lac [START_REF] Martin | The cost of restoration as a way of defining resilience : a viability approach applied to a model of lake eutrophication[END_REF]. Ce point de vue nous a permis de mettre en avant des impacts inattendus de ces structures sur la dynamique du lac en aval. Le chapitre 3 aborde donc la gestion visant à restaurer le lac vers un état oligotrophe.

Cette gestion diffère de celle visant à maintenir le lac dans cet état. Plus généralement, maintenir un système dans un espace de contraintes est une problématique courante dans la gestion de systèmes environnementaux et écologiques [START_REF] Anaya | Viability kernel for ecosystem management models[END_REF][START_REF] Béné | A viability analysis for a bio-economic model[END_REF][START_REF] Martin | The cost of restoration as a way of defining resilience : a viability approach applied to a model of lake eutrophication[END_REF]. La théorie de la viabilité est le domaine mathématique correspondant à cette problématique. La théorie de la viabilité a pour objet de recherche le noyau de viabilité, dont la connaissance permet d'établir une gestion consistant à maintenir un système dans un état acceptable [START_REF] Aubin | Viability Theory[END_REF]. L'une des méthodes employées consiste à exprimer le problème de viabilité comme un problème de contrôle optimal [START_REF] Doyen | Stochastic viability and dynamic programming[END_REF][START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF][START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF]. Cette approche permet l'emploi d'outils provenant du contrôle optimal. Elle n'a été utilisée que pour quelques problèmes particuliers de contrôle optimal. Nous généralisons donc cette approche dans le chapitre 4, ce qui permet d'en évaluer la portée : quels problèmes de contrôle optimal permettent la caractérisation des noyaux de viabilité ? Quels outils apportent-ils, et quelles sont les limites de cette approche ? Afin de répondre à ces questions, nous avons identifié une classe de problèmes de contrôle optimal permettant de caractériser le noyau de viabilité recherché d'une part, et d'autre part admettant un principe de Bellman. Ce principe de

Bellman est un objet permettant l'emploi d'outils du contrôle optimal, comme la programmation dynamique [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Barron | The bellman equation for minimizing the maximum cost[END_REF].

Admettre un principe de Bellman permet donc la résolution numérique du problème de contrôle optimal, et donc du noyau de viabilité. Or ce principe de Bellman n'est défini que pour certains problèmes particuliers [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF]. Nous avons donc proposé une généralisation de ce principe. Cette étude permet donc d'établir un lien théorique entre la théorie de la viabilité et le contrôle optimal. Cependant, la seule dépendance à la température n'est pas suffisante pour prédire la dynamique des populations toxiques et non toxiques. En effet, il faut tenir compte d'autres facteurs dont les rôles sont déterminants dans la croissance des populations cyanobactériennes -en particulier les nutriments, la luminosité [START_REF] Varis | Cyanobacteria dynamics in a restored finnish lake : a long term simulation study[END_REF], le débit [START_REF] Mitrovic | Critical flow velocities for the growth and dominance of anabaena circinalis in some turbid freshwater rivers[END_REF][START_REF] Mitrovic | Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia[END_REF] Or il existe bien des outils analytiques permettant de prédire la coexistence de deux populations en compétition sur une même ressource à environnement variable [START_REF] Lobry | Stability loss delay in the chemostat with a slowly varying washout rate[END_REF][START_REF] Smith | Competitive coexistence in an oscillating chemostat[END_REF], mais les modèles mettant en jeu un grand nombre de populations sont davantage étudiés numériquement qu'analytiquement [START_REF] Roelke | Phytoplankton succession in recurrently fluctuating environments[END_REF][START_REF] Sakavara | Lumpy species coexistence arises robustly in fluctuating resource environments[END_REF][START_REF] Smeti | Species extinctions strengthen the relationship between biodiversity and resource use efficiency[END_REF]. L'une des perspectives de la prévision de la toxicité des proliférations cyanobactériennes est donc la généralisations d'outils analytiques d'étude du chemostat à un grand nombre de populations.

La gestion du système lacustre eutrophe

Nous avons étudié la restauration du système lacustre via l'utilisation de structures de rétention. Notre étude identifie différents effets de rétention, et analyse leurs impacts sur la dynamique d'un lac en aval. Ces effets de rétentions doivent être perçus comme des briques élémentaires d'effets. Une structure peut cumuler plusieurs de ces effets, et donc l'étude de la combinaison de différents effets de rétention est une perspective importante de ces travaux. Cela permettrait de modéliser des structures cumulant plusieurs effets, ou même un réseau de structures, comme souvent mis en place [START_REF] Dunne | Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water[END_REF]. En effet, la dynamique d'un tel réseau est alors conditionnée par son organisation [START_REF] Harmand | Optimal design of interconnected bioreactors : New results[END_REF][START_REF] Rapaport | Some non-intuitive properties of simple extensions of the chemostat model[END_REF]. Deux structures placées en série ou en Cette approche permet d'avoir des conclusions valides pour l'ensemble de ces modèles particuliers. Par exemple, de nombreux modèles cherchent à décrire la croissance d'une population cyanobactérienne par rapport à la température [START_REF] Huang | Evaluation of a modified monod model for predicting algal dynamics in lake tai[END_REF][START_REF] Varis | Cyanobacteria dynamics in a restored finnish lake : a long term simulation study[END_REF][START_REF] Goldman | A kinetic approach to the effect of temperature on algal growth 1[END_REF][START_REF] Li | Temperature characteristics of photosynthetic and heterotrophic activities : seasonal variations in temperate microbial plankton[END_REF]. Ces modèles sont décrits par 
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Figure 2

 2 Figure 2.2 -(a) : Consumption growth rates of two cyanobacterial sub-populations with two different half-saturation coefficients. The first sub-population (in blue) has a higher value of half-saturation coefficient K nut 1

Figure 2 ,

 2 Figure 2.3 -Existence of two cyanobacterial sub-populations in the case of constant temperature T = T cst . If there is only one sub-population, sub-population 1 survives when T cst ∈ [T M IN 1

Figure 2

 2 Figure 2.4 -Example of coexistence of both cyanobacterial sub-populations. The temperature is such thatT IN T ∈ [T mean -T σ ; T mean + T σ ] : when S * 1 (T (t)) > S * 2 (T (t)), the second sub-population is favoured, and when S * 1 (T (t)) < S * 2 (T (t)), the first subpopulation is favoured.

=

  Figure 2.5 -The competition space Compet (black frame), the coexistence space Coex (white areas), and the dominance spaces Dom 1 and Dom 2 sets (light blue and yellow areas, respectively) for different T opt i optimal temperatures. The dark blue areas correspond to the sets of T opt i values at which both sub-populations disappear. The numerical parameter values are D = 0.5, T mean = 16, T σ = 13, S in = 2, K nut 2 = 1.3 and K nut 1 = 1.45.

  Figure 2.6 -(a) : relative size of coexistence space Coex with respect to the half-saturation coefficients K nut 1 and K nut 2 values. (b) : relative size of coexistence space Coex with respect to dilution rate D and the input nutrient concentration S in values. (c) : relative size of coexistence space Coex with respect to temperature variance T σ and mean temperature T mean values.

Figure 2

 2 Figure 2.7 -(a) : Total growth rate for toxic and non-toxic Microcystis sub-populations (b) : Total growth rate for toxic and non-toxic Dolichospermum sub-populations

Figure 2

 2 Figure 2.8 -(a) : Differences of the toxic and non toxic growth rates

Figure 2 =

 2 Figure 2.10 -Evolution of the size of the sets Compet, Coex, Dom 1 and Dom 2 for the model parameters : -In the first and the second columns, the red + correspond to the T opt,max 1

Figure 3

 3 Figure 3.1 -Diagram of the Carpenter model. The model parameters are given in Table3.1.

Figure 3

 3 Figure 3.2 -(a) : Equilibrium curve and velocity vectors of the Carpenter model, for fixed L values.Note the "S-shape" of the equilibrium curve in the Carpenter model in the hysteretic case. On this equilibrium curve, the solid part corresponds to stable equilibrium, and the dashed part corresponds to unstable equilibrium. From each initial point in the "O-zone", the final point will be on the lower part of the equilibrium curve, which corresponds to an oligotrophic state, and from each initial point in the "E-zone", the final point will be on the upper part of the equilibrium curve, which corresponds to an eutrophic state. The middle part of the equilibrium curve corresponds to unstable equilibrium, and so does not correspond to possible final states. (b) : Three possible states of a lake : mesotrophic, oligotrophic and eutrophic. On the equilibrium curve, the thick part corresponds to stable equilibrium, and the thin part corresponds to unstable equilibrium. In our case, a mesotrophic state thus corresponds to an unstable state.
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 34 Figure 3.4 -Diagram of a structure with a delayed effect.

Figure 3

 3 Figure 3.5 -Diagram of a structure with a fixed trapping effect.

Figure 3

 3 Figure 3.6 -Diagram of a structure with a varying trapping effect.

Figure 3

 3 Figure 3.7 -Qualitative distribution of the retention effects, based on the parameter values s R and h R . The trapping capacity is defined by 1 -h R s R +h R , and the delayed effect is assumed to be nil if s R + h R >> 0. -The coordinates of point A correspond to parameter values where s R = 0 and 0 < h R << 1, representing a retention structure with a delayed effect and no trapping effect. -The coordinates of the point B correspond to parameter values where s R >> 0 and h R >> 0, representing a retention structure with a trapping effect and no delayed effect.-The coordinates of the points C and D correspond to the initial and final parameter values of a structure with a varying trapping effect and without delayed effect : at t = 0, the parameters of this structure are such that s R (t = 0) >> 0 and h R (t = 0) >> 0 (point C), so the structure has a positive trapping effect. After a long enough time, the parameter values converge to s R (t >> 0) = 0 and h R (t >> 0) > 0 (point D), so the trapping effect becomes nil -sediment filling. It is possible to restore this trapping capacity structure, which would result in instantly resetting its parameter values -reset.

  Figure3.12 -(a) : The three initial sets : "O-set", "E-set" and "I-set". The studied example corresponds to the initial situation in Figure3.12(b) and Figure3.13. (b) : Final quantity of phosphorus in the lake water body as a function of the cleaning date. We note two critical times, the interval between which is 3 years. The total time period for these simulations is 25 years.

  Figure 3.14 -(a) : (solid curve) total time in an oligotrophic state. We note a maximum between the two critical times. (dashed curve) total time in a eutrophic state. (b) : Total input quantity of phosphorus into the lake. The minimum quantity is reached at t = 12.15 years. The total time of these simulations is 25 years.

  (a) and 3.16(b) 

  Figure 3.15 -Diagrams of the Clear system before and after 1981. The measured data are L 1 , L 2 , W out and P lake .

  Figure 3.16 -(a) : Measured and estimated trajectories of the quantity of phosphorus in the lake water body. (b) : Measured and estimated trajectories of the output quantity of phosphorus from the wetland.

Figure 3 .

 3 Figure3.19 shows the "right-shift" induced by a fixed trapping effect on a lake downstream.

  Figure 3.21(b).

Figure 3

 3 Figure3.21 -(a) : Minimal recycling duration according to the phosphorus input rate and the recycling intensity. We note that the value of L + I R must be grater than L max to change the lake state. (b) : As an example, considering the phosphorus input rate L ex ≈ 0.4 tons.year -1 and the recycling intensity I R = 1 tons.year -1 , the corresponding minimal recycling duration is equal to 5 months. Therefore if the recycling duration is equal to 4 months, the final lake state is oligotrophic, and if the recycling duration is equal to 6 months, the final lake state is eutrophic.

Figure 3

 3 Figure 3.22 -According the recycling duration, this figure shows the trapping duration required to accumulate enough phosphorus in order to change the lake state during the recycling event.

Figure 4

 4 Figure 4.1 -The viability kernel V iab(K), corresponding to the constraint subset K, is the set of initial states from which a trajectory exists that remains in the constraint subset K.

  η) is increasing and upper semi-continuous on [m, M ] where z |[0,T [ (.) is the restriction of z(.) to [0, T [.

  η) is increasing and upper semi-continuous where z |[0,T [ (.) is the restriction of z(.) to [0, T [ : F N ,+ (T, y(.), η) is a good candidate to define F T (z |[0,T [ (.), η), but by definition of H N ,3 , it is only upper semi-continuous on B and not on [m, M ]. Nevertheless, we note F : R + × A × [m, M ] defined by, ∀T ≥ 0, ∀y(.) ∈ A, ∀η ∈ [m, M ] : If η ∈ B : F (T, y(.), η) = F N ,+ (T, y(.), η) If η / ∈ B, let η 1 = sup{n ∈ B∩] -∞, η]} and η 2 = inf{n ∈ B ∩ [η, +∞]}. If η 1 = η 2 :

F

  N ,+ (T, y(.), .) too). So the restriction of F (T, y(.), .) on B is upper semi-continuous. Let η ∈ [m, M ]\B and let η 1 = sup{n ∈ B∩] -∞, η]} and η 2 = inf{n ∈ B ∩ [η, +∞]}.

For

  such a F T , we call Bellman form the function F : R + × A × [m, M ] defined by, ∀T ≥ 0, ∀y(.) ∈ A, ∀η ∈ [m, M ] :F (T, y(.), η) = F T (y |[0,T [ (.), η)We note that in general, the Bellman form is not uniqueif B = [m, M ].In Section 4.8, we present an equivalent Bellman principle at finite horizon. In particular, for a monotone functional N whose the Bellman form is noted F , for all η ∈ B and a finite horizon T ∈ R + , the family of finite horizon functionals :{y(.) → F (t, y(.), η)|t ≤ T } (4.11)is monotone too (Definition 21).

H

  N ,3 . The Bellman principle corresponds to an equation whose value function is solution. Dynamic programming then makes it possible to reduce the resolution of this equation to that of a PDE, thus making it possible to determine the value function numerically -see Section 4.10. Thus, the functionals characterizing the viability kernel must verify this Bellman principle, since they induce a possible numerical resolution of the value function. However, in the general form of the Bellman principle, we do not have any other information on this value function -such as uniqueness of the solutions of the equation defined by the Bellman principle, regularity of the value function etc.. However, this information is essential to determine the value function numerically. In the following, we analyze these properties.

F

  (T f , φ(x, u(.), ..), η) with η ∈ [m, M ] whose finite horizon value function V (x, T f , η) converges to the infinite horizon value function V (x). The finite horizon optimal control problem then admits terminal conditions -at T f = 0 -, and the corresponding HJB is then numerically resolvable.-Characterization of the value function as the solution of the equation corresponding to the Bellman principle : if a V value function admits a Bellman principle, i. e. it is a solution ofV (x) = inf u(.)∈U F (T, φ(x, u(.), .), V (φ(x, u(.), T )))this is not necessarily sufficient to characterize this value function. Indeed, this equation corresponding to the Bellman principle does not necessarily admit a unique solution. One of the issues here is therefore to characterize the value function sought among the solutions of the equation corresponding to the Bellman principle.

F

  (T, y(.), η) = N (y(.))

F

  (T, y(.), η) exists, which is not always possible if η ∈]m, M [. However, if η = m (respectively η = M ), the function T → F (T, y(.), m) (respectively the function T → F (T, y(.), M )) is increasing (respectively decreasing) and bounded by m and M , and thus converges. These definitions embrace the most usual studied functional in optimal control -see Table4.2 for some example.

  for any η ∈ [m, M ]. y(t))e -λt dt + e -λT η discounted y(.) → γ Γ K (y(.)) (T, y(.), η) → max γ Γ K T (y(.)) , γ T η discounted y(.) → lim y(t))dt (T, y(.), η) → η undefinedTable 4.2 -Example of monotone functionals ; l is a bounded function regular enough

  These functionals are characterized by the fact that, for all y(.) ∈ A : limT →+∞ F (T, y(.), M ) = N (y(.))where F is the Bellman form of the functional N . For example, for l : R n → [m, M ] any function, the functional defined byy(.) → inf t∈R + l(y(t))is M -convergent, because for all y(.) ∈ A, for all T ≥ 0 of finite horizon value functions to infinite horizon value functions Lemma 8. For a monotone N satisfying H N ,3 , noting F its Bellman form, and for a differential system as define in Equation (4.1) under the hypothesis H f,1 , if N is Mconvergent, that means : lim T →+∞ F (T, y(.), M ) = N (y(.))

F

  (T, φ(x, u(.), .), M ) = V (x) This result does not require supplementary hypothesis on N . For example, let us consider the case of the M -convergent functional defined by :y(.) → inf t∈R + l(y(t))with l : R n → [m, M ]. That means that the corresponding infinite horizon value function can be approached by the value function corresponding to the finite horizon optimal control problem defined by the functional y(.) of the value function A consequence of the previous result is the characterization of the value function corresponding to a M -convergent functional :

F

  .4.2.4 Regularity of the value function Lemma 10. For a monotone N satisfying H N ,3 , noting F its Bellman form, and for a differential system as define in Equation (4.1) under the hypothesis H f,1 , if :-∀x ∈ R n : (T, φ(x, u(.), .), M ) = V (x)

  µ), ∀u(.) ∈ U : F (T, φ(z, u(.), .), M ) -F (T, φ(x, u(.), .), M ) ≤ For all T > 0, let us consider the finite horizon family of functional :{y(.) → F (t, y(.), M )|t ≤ T }Thanks to Lemma 23, we know that V (T, x, M ) = inf u(.)∈U F (T, φ(x, u(.), .), M ) is upper semi-continuous at all x ∈ R n . In addition, the function T → V (T, x, M ) is decreasing.

  These functional features are characterized by the fact that, for all y(.) ∈ A : limT →+∞ F (T, y(.), m) = N (y(.))where F is the Bellman form of the functional N . For example, for l : R n → [m, M ] any function, the functional defined byy(.) → sup t∈R + l(y(t))is m-convergent, because for all y(.) ∈ A, for all T ≥ 0 of finite horizon value functions to infinite horizon value functions Lemma 11. For a monotone N satisfying H N ,3 , noting F its Bellman form, and for a differential system as define in Equation (4.1) under the hypothesisH f,1 , if N is mconvergent, that means : lim T →+∞ F (T, y(.), m) = N (y(.)) if :-For all x ∈ R n : the set {φ(x, u(.), .)|u(.) ∈ U } is compact for the pointwise convergence -∀T ≥ 0, ∀y n (.) a sequence of functions in A pointwise converging to y(.) on[0, T [ : lim inf n→+∞ F (T, y n (.), m) ≥ F (T, y(.), m)Then ∀x ∈ R n , it exists a control v(.) ∈ U such that : x, u(.), .)) = N (φ(x, v(.), .))

F

  (T, y(.), m) = N (y(.)) -∀T ≥ 0, ∀y n (.) a sequence of functions in A pointwise converging to y(.) on [0, T ] :lim inf n→+∞ F (T, y n (.), m) ≥ F (T, y(.), m) Let (T n ) n∈N ∈ R + N astrictly increasing sequence diverging to +∞. For all n ∈ N, let u n (.) ∈ U be a control such that :F (T n , φ(x, u n (.), .), m) ≤ inf u(.)∈U F (T n , φ(x, u(.), .), m) + 1 nAnd because of the compacity of {φ(x, u(.), .)|u(.) ∈ U }, we assume it exists u ∞ (.) ∈ U a control such that, ∀t ∈ R + :lim n→+∞ φ(x, v n (.), t) = φ(x, u ∞ (.), t)Using the third hypothesis, ∀T > 0 : lim n→+∞ F (T, φ(x, u n (.), .), m) ≥ F (T, φ(x, u ∞ (.), .), m)

F

  (T, φ(x, u(.), .), m) to the infinite value function V when T → +∞. For example, for l : R n → [m, M ] a lower semi-continuous function, let us consider the m-convergent functional defined by y(.) → sup t∈R + l(y(t)) If the differential system defined by Equation (4.1) satisfies H f,1,2 , and b > 0 exists such that for each solution φ(x, u(.), .) : φ(x, u(.), t) ≤ b, ∀t ∈ R + of the value function A consequence of the previous result is the characterization of the value function corresponding to a m-convergent functional :

  µ), ∀u(.) ∈ U : F (T, φ(x, u(.), .), m) -F (T, φ(z, u(.), .), m) ≤ For all T > 0, let us consider the finite horizon family of functional :{y(.) → F (t, y(.), m)|t ≤ T } Thanks to Lemma 23, we know that V (T, x, m) = inf u(.)∈U F (T, φ(x, u(.), .), m) is lower semi-continuous. In addition, the function T → V (T, x, m) is increasing. Indeed, for all T 1 ≤ T 2 , ∀y(.) ∈ A -see Lemma 18 : F (T 2 , y(.), m) = F (T 1 , y(.), F (T 2 -T 1 , t → y(t + T 1 ), m))

  For example, for l : R n → [m, t))e -λt dt is discounted, because for all y(.) ∈ A, for all T ≥ 0 : t))e -λt dt + e -λT +∞ 0 l(y(t + T ))e -λt dt and for all η 1 , η 2 ∈ [m, M ] : T 0 l(y(t))e -λt dt + e -λT η 1 -T 0 l(y(t))e -λt dte -λT η 2 = e -λT |η 1 -η 2 |

  .), m) ≤ N (y(.)) ≤ F (T, y(.), M ) And because : limT →+∞ |F (T, y(.), m) -F (T, y(.), M )| ≤ lim T →+∞ ω(T, |M -m|) = 0we finally obtain :N (y(.)) = lim T →+∞ F (T, y(.), m) = lim T →+∞ F (T, y(.), M )To conclude, we just have to note that for all η ∈ B :F (T, y(.), m) ≤ F (T, y(.), η) ≤ F (T, y(.), M )So a monotone discounted functional inherits the properties of m and M -convergent functionals.4.4.4.2 Convergence of finite horizon value functions to infinite horizon value functionsFor all η ∈ [m, M ], the convergence of finite horizon value functions V (T, x, η) to the infinite value function V (x) when T → +∞ is ensured in the case of discounted functionals :

FF

  (T, φ(x, u(.), .), M ) = inf u(.)∈UN (φ(x, u(.), .)) Let > 0. For all T > 0 and u(.) ∈ U :F (T, φ(x, u(.), .), M ) -F (T, φ(x, u(.), .), m) ≤ ω(T, Mm) (T, φ(x, u(.), .), m) = V (x)Finally, we conclude showing that, for all η ∈ [m, M ], for all T > 0 :inf u(.)∈U F (T, φ(x, u(.), .), m) ≤ inf u(.)∈U F (T, φ(x, u(.), .), η) ≤ inf u(.)∈U F (T, φ(x, u(.), .), M )For example, for l : R n → [m, M ] a bounded measurable function, let us consider the case of the functional defined by : x, u(.), t))e -λt dt + e -λT η = inf u(.)∈U +∞ 0 l(φ(x, u(.), t))e -λt dt 4.4.4.3 Characterization of the value function A direct consequence of the previous result and Lemma 9 and Lemma 12 is the characterization of the value function corresponding to a discounted functional :

N

  (φ(x, u(.), .))In this section, we noteF : R + × A × [m, M ] theBellman from of N . According to the class of N -M -convergent, m-convergent, discounted -, we can characterize the value function : the Lemma 9, Lemma 12 and Lemma 16 allow us to characterize the value function among the solutions of the equation corresponding to the Bellman principle.

  Figure 4.4 -(a) : The value function corresponding to N 1 . the red curves correspond to the boundary of the viability kernel. (b) : The value function corresponding to N 2 , which is negative in the viability kernel

  image of the elements of {N T |T ∈ [0, T f ]}, and we assume that m, M ∈ B.

  Then, for a, b ∈ R 2 : R(a, b) = a (4.18) ⇐⇒ ∀c ∈ [min(b, a), max(b, a)] : R(a, b) = R(a, c) and for a, b ∈ R 2 : R(a, b) ∈ [min(b, a), max(b, a)] (4.19)

F

  (T, y(.),N (t → y(t + T ))) = R R sup t<T similar if N (y(.)) is equal to sup t∈R + l(y(t + T )), inft<T l(y(t)) or inf t∈R + l(y(t + T )).

  4.5. And for all t ≥ T :inf t∈R + l(φ(ν, t + T )) > -1

F

  Figure4.5 -Different trajectories (red) of φ((1, -1), u(.), .) according to the constant value of u(.). When u(.) is close to 0, the trajectory of φ((1, -1), u(.), .) is close to the black curve.

  Cette thèse étudie l'eutrophisation, phénomène symptomatique des systèmes lacustres anthropisés. A travers les trois articles présentés, nous avons abordé la prévision de la toxicité des proliférations cyanobactériennes, la gestion visant à rétablir l'état d'un lac et les gestions visant à maintenir l'état oligotrophe d'un lac. Nous dressons ici le bilan de ces travaux.

  sous-populations toxiques et non toxiques d'une même espèce. De plus, puisque nous avons lié la dynamique des populations cyanobactériennes à la température, nous avons pu mettre en exergue l'impact d'un réchauffement climatique sur la coexistence de ces populations. Nous avons ainsi montré que ce réchauffement augmente le nombre de couples de populations pouvant coexister. Notre étude induit donc qu'un réchauffement climatique augmente l'imprévisibilité des espèces présentes dans les proliférations estivales. La toxicité des proliférations est donc d'autant plus difficile à prévoir. Ce deuxième chapitre permet donc d'aborder la prévision de l'état du système lacustre, en se focalisant sur la toxicité des proliférations cyanobactériennes. Les chapitres 3 et 4 se concentrent davantage sur la gestion des systèmes lacustres. Cette thèse aborde deux types de gestion. Le premier consiste à restaurer l'état du lac vers un état oligotrophe, c'est-à-dire à ramener le système dans un état acceptable. Le second consiste à maintenir le système lacustre dans cet état acceptable. Nous avons étudié la restauration

  Notamment, indépendamment de sa capacité à capturer des nutriments, une structure ralentit la dynamique du taux de nutriments entrant dans le lac. Cet effet protège le lac oligotrophe d'une augmentation temporaire de la concentration en nutriments entrants, mais entrave la restauration d'un lac eutrophe qu'implique une diminution de ces nutriments entrants. De plus, la gestion consistant à retenir le plus de nutriments possible n'est pas nécessairement la plus adaptée à la restauration de lacs eutrophes. En effet, notre étude a mis en exergue que ce n'est pas tant la quantité de nutriments retenue qui prime, mais la date à laquelle cette quantité de phosphore retenue doit être la plus importante -date de curage des bassins de sédimentation par exemple. Ce résultat permet ainsi de définir une gestion des structures de rétention plus efficace de celle actuellement employée, et nécessitant potentiellement moins d'interventions de curage ou de fauchage, et donc moins coûteuse.

D

  'un point de vue numérique, nos travaux montrent que le fait d'admettre ce principe de Bellman et de caractériser un noyau de viabilité induit des propriétés sur la fonction valeur, qui compliquent la résolution numérique des problèmes de contrôle optimal associés. Cette thèse aborde donc plusieurs aspects du phénomène d'eutrophisation des lacs. Les phénomènes propres à l'eutrophisation sont nombreux, et la complexité des systèmes lacustres nécessite l'emploi d'outils et d'approches variés. Dans cette thèse, nous avons pris le parti de nous concentrer sur la prévision de la toxicité du lac et sur la gestion de sa quantité de nutriments. Nos travaux apportent des éléments d'analyse de ces aspects, et ouvrent de nombreuses pistes d'études. Nous présentons dans la partie suivante quelquesunes de ces perspectives. de la toxicité du lac Notre étude montre que la condition nécessaire à la coexistence des populations toxiques et non toxiques est que leurs températures optimales soient distinctes. De plus, les concentrations plus importantes des populations toxiques en début et en fin d'épisodes de prolifération nécessitent que la température optimale de la population toxique soit inférieure à la température optimale de la population non toxique. Cette analyse fournit donc des éléments de prédiction de la toxicité des proliférations cyanobactériennes.

  , et plus généralement la stabilité de la colonne d'eau. Comme pour la température, les paramètres régissant la croissance d'une population toxique par rapport à ces facteurs diffèrent a priori des paramètres correspondant à une population non toxique. Ainsi, prédire la toxicité des proliférations cyanobactériennes nécessiterait de modéliser les cyanobactéries non pas en fonction de leur appartenance à une espèce, comme fait généralement, mais par sous-populations, caractérisées par les valeurs de ces paramètres. De plus, prédire la dynamique d'une population toxique nécessite un cadre dans lequel cette population n'est pas seulement en compétition avec la population non toxique de son espèce, mais aussi avec d'autres espèces cyanobactériennes et phytoplanctoniques.

  parallèle ne correspondent pas à la même combinaison de leur dynamique : les effets de rétention peuvent se cumuler avec plus ou moins d'efficacité, voir s'annuler. Cette étude permettrait d'évaluer et de concevoir des ensembles de structures de rétention, dont les combinaisons optimiseraient la restauration d'un lac en aval.Dans cette thèse, nous avons distingué l'étude de la toxicité des proliférations cyanobactériennes de celle de la gestion du système lacustre. Une des perspectives de ces travaux est donc de coupler ces deux aspects : quelle gestion des structures de rétention permet une toxicité minimale/acceptable du système lacustre ? Une réponse intuitive serait la minimisation des nutriments entrant, mais nous avons montré dans cette thèse que l'effet des structures de rétention est conditionné par les taux de nutriments en-trants. Une autre possibilité pourrait être d'utiliser la compétition entre les populations toxiques et non toxiques. En effet,[START_REF] Roelke | Phytoplankton succession in recurrently fluctuating environments[END_REF] et[START_REF] Suominen | Competition between a toxic and a non-toxic microcystis strain under constant and pulsed nitrogen and phosphorus supply[END_REF] montrent qu'un débit variable de nutriments entrants influe sur la coexistence des populations cyanobactériennes. Nous pouvons donc envisager une gestion qui favorise les populations non toxiques, afin que les populations toxiques perdent cette compétition et disparaissent à terme.5.2.3 La modélisation des systèmes lacustres : quel formalisme choisir ?Cette thèse a été l'occasion d'évoquer plusieurs niveaux de formalisme employés pour l'étude des systèmes lacustres. Nous souhaitons conclure sur cet aspect, qui constitue le coeur de notre application des mathématiques à l'étude des systèmes lacustres. Nous avons ainsi mentionné les modèles "simulateurs de vols", dont l'exhaustivité permet une modélisation numérique précise. Les modèles agrégés permettent de réduire la dimension du système. Ils supposent des approximations les rendant moins précis que les simulateurs de vol, mais leur calibration nécessite moins de donnée. Dans le cadre de cette thèse, nous nous sommes concentrés sur ces modèles agrégés, qui nous permettent d'isoler les phénomènes étudiés. En particulier, nous avons eu recours à une méthodologie consistant à abstractiser les objets et processus étudiés. En effet, dans plusieurs cas, plusieurs modèles dynamiques agrégés permettent de décrire un même phénomène, sans qu'un consensus n'en privilégie un en particulier. Ainsi, plutôt que de sélectionner un modèle spécifique, nous avons préféré nous concentrer sur les propriétés qualitatives communes à ces multiples modèles, et baser nos études uniquement sur ces propriétés.

  des lois mathématiques différentes, mais partagent néanmoins plusieurs propriétés qua-litatives -existence d'une température optimale, d'une température minimale en deçà de laquelle le taux de croissance est nul, etc.. Nous nous sommes donc efforcés d'étudier la dynamique des populations cyanobactériennes toxiques et non toxiques par rapport à la température non pas à travers un modèle particulier, mais en nous basant sur ces propriétés communes. Nous ne souhaitions avoir recours à un modèle précis qu'à des fins d'illustrations numériques. Cette approche abstraite de l'étude des phénomènes est déjà employée dans d'autres études. Ainsi, Sari and Mazenc (2011) et Rapaport (2017) étudient le principe d'exclusivité compétitive du chemostat à environnement constant, en considérant des lois abstraites de croissance en fonction de la consommation des nutriments. Et c'est selon cette même logique que nous avons traité l'analyse des structures de rétention, en ne nous concentrant non pas sur le détail de ces structures en elles-mêmes, mais sur les effets de rétention, bien plus génériques et applicables à un grand nombre d'objets -lacs, bassins de sédimentation, zones humides etc. . Ainsi, la complexité des phénomènes étudiés induit un grand nombre de modèles agrégés pour les décrire. Et la multiplicité de ces modèles agrégés plaide alors pour un autre niveau de modélisation, dont l'objectif est de donner une description qualitative du système. Une perspective de cette thèse est donc la mise en place d'un formalisme abstrait, modélisant les propriétés qualitatives d'un grand nombre de modèles agrégés. L'une des difficultés d'un tel formalisme réside dans le fait qu'en l'absence d'information quantitative, il n'est pas possible de savoir si deux phénomènes opposés s'annulent mutuellement ou si l'un domine l'autre. Néanmoins, les conclusions déduites d'un tel modèle abstrait seraient alors communes aux modèles agrégés, et donc au phénomène étudié, indépendamment d'un modèle numérique particulier.
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	Introduction
	1.1 L'eutrophisation des lacs : définition et enjeux
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  Table 3.3 -Main terms of the general structure model. Parameters s R and h R are not further discussed here : they depend on the structure effects.

	Term	Definition
	P R (t)	Quantity of phosphorus in the structure water
	L(t)	Phosphorus input rate into the structure water
	s R P R (t) Phosphorus trapping rate in the structure water
	h R P R (t) Phosphorus output rate from the structure water
	r R (t)	Recycling rate from the structure sediment

Décrire la gestion d'un système lacustre via la théorie de la viabilité ou le contrôle optimal apporte des informations complémentaires, et ne correspond pas à la même stratégie de gestion. Par exemple, l'approche viabiliste recherche une gestion visant à maintenir le lac dans un état oligotrophe, alors que l'approche optimale recherche une gestion minimisant la quantité de phosphore dans l'eau du lac. Cependant plusieurs liens existent entre ces deux approches. Considérons par exemple la fonction valeur associée à la minimisation de la quantité maximale de phosphore total dans l'eau d'un lac. Si cette fonction valeur correspond à une quantité oligotrophe, alors la gestion optimale correspondra à une gestion viable du système. Sinon, cela signifie que l'état initial du système n'est pas dans le noyau de viabilité. En ce sens, le contrôle optimal permet de déduire le noyau de viabilité[START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF][START_REF] Coquelin | A dynamic programming approach to viability problems[END_REF] Doyen and Lara, 2010). Réciproquement, le noyau de viabilité associé à une valeur maximale de la quantité de phosphore acceptable correspond à l'ensemble de sous-niveau de la fonction valeur pour cette valeur maximale acceptable. De ce point de vue, la théorie de la viabilité permet de décrire la fonction valeur[START_REF] Lygeros | Infinite horizon minmax optimal control : A viability approach[END_REF][START_REF] Aubin | The viability kernel algorithm for computing value functions of infinite horizon optimal control problems[END_REF]. Ce lien réciproque entre la théorie de la viabilité et le contrôle optimal permet l'emploi d'outils du contrôle optimal dans le cadre de la viabilité et réciproquement. D'autre part, résoudre dans un même temps un problème de viabilité et un problème de contrôle optimal équivalents permet d'avoir accès aux deux stratégies de gestion correspondantes. Malgré le lien apparent entre la théorie du contrôle optimal et la théorie de la viabilité, l'équivalence de ces deux approches n'a été montrée que pour des problèmes de contrôle
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t → u 2 (t -T ) on [T, +∞[ : V (x) ≤ N (φ(x, u(.), .)) ≤ F N ,+ (T, φ(x, u 1 (.), .), N (t → φ(x, u(.), t + T ))) = F N ,+ (T, φ(x, u 1 (.), .), N (φ(φ(x, u 1 (.), T ), u 2 (.), .)))

So noting x T = φ(x, u 1 (.), T ), for all u 2 (.) ∈ U :

For all > 0, let δ > 0 be such that, by upper semi-continuity of η → F N ,+ (T, φ(x, u 1 (.), .), η) :

In addition, u 2 (.) exists such that :

So by increasing of η → F N ,+ (T, φ(x, u 1 (.), .), η) :

So for all > 0, u 2 (.) ∈ U exists such that :

That means, for all u 1 (.) :

V (x) ≤ F N ,+ (T, φ(x, u 1 (.), .), V (φ(x, u 1 (.), T )))

illustrate this phenomenon through the study of a population model.

Population model

Introduction

In this model, the dynamics of a population size x 1 depends on a growth factors x 2 whose the dynamics is controllable : ẏ1 = y 1 .y 2 ẏ2 = u with u ∈ U = [-d, d]. We note f the function describing the dynamical system : ∀x

(a, b, c) ∈ R + * 3 and c > 2d log(b/a). We note φ(x, u(.), .) the trajectory corresponding to the initial condition x ∈ R 2 and to the control u(.) ∈ U whose dynamics is given by f . The studied viability kernel corresponds to : [START_REF] Aubin | Viability Theory[END_REF], we know the analytic description of the viability kernel :

The analytical description of the viability kernel corresponds to :

with d(x, K) the distance from x to K, and α δ : R + → [0, 1] defined as follows : ∀s ∈ R + :

this modification of the dynamics allows to build boundary conditions, but does not modify the desired viability kernel :

In addition, we know that V 1 (., .) and V 2 (., .) are viscosity solutions of the two following equations respectively [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF] :

Applying a finite difference numerical integration sheme, both these value functions allow to numerically approximate the viability kernel -see Figure 4.4. Nevertheless, the

Appendices 4.7 Monotone functionals

The following lemma provides some tools on the Bellman form of a functional :

Lemma 18. Let N : A → B a monotone functional satisfying H N ,3 , and F its Bellman form. Then :

The finite horizon functionals

Here we focus on the functionals defined at finite horizon.

Lemma 20. For all T ∈ [0, T f ], for all x ∈ R n :

-A first inequality :

-If for all y(.)

semi-continuous, then we obtain the second inequality :

The proof of this lemma is similar to the one of Lemma 3.

Monotone family of functionals

We give here the equivalent definition of monotony of a family of functionals :

Definition 21. The family of functional

We show that the monotone functionals are characterized by the following lemma :

Lemma 23. Let N T |T ∈ [0, T f ] a family of functionals. We assume the considered dynamical system verifies H f,1 :

)) ≤ 0, for all z ∈ B(x, µ) and for all

F (T, φ(x 0 , u(.), .), W (φ(x 0 , u(.), T ))) -W (φ(x 0 , u(.), T )) T = dF (t = 0, φ(x 0 , u(.), .), W (x 0 )) dt proof. We assume ∀y(.) ∈ A an absolutely continuous function, (t,

By derivability of (t, n) → F (t, φ(x 0 , u(.), .), n) at (0, W (x 0 )), for all t > 0 :

F (t, φ(x 0 , u(.), .), W (φ(x 0 , u(.), t))) -W (φ(x 0 , u(.), t))

= F (0, φ(x 0 , u(.), .), W (φ(x 0 , u(.), 0))) + dF (t = 0, φ(x 0 , u(.), .), W (x 0 )) dt t + dF (0, φ(x 0 , u(.), .), W (φ(x 0 , u(.), t = 0))) dt t -W (φ(x 0 , u(.), t)) + o(t)

= W (x 0 ) -W (φ(x 0 , u(.), t)) + dF (t = 0, φ(x 0 , u(.), .), W (x 0 )) dt t

So :

So when t → 0 : lim t→0,t>0

F (t, φ(x 0 , u(.), .), W (φ(x 0 , u(.), t))) -W (φ(x 0 , u(.), t)) t = -dW (φ(x 0 , u(.), t = 0)) dt + dF (t = 0, φ(x 0 , u(.), .), W (x 0 )) dt (t, n) → F (t, y(.), n) is derivable at (0, η)

Let x 0 ∈ R n . Let W : R n → R C 1 be such that x → V (x) -W (x) reaches a local