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Chapter 1

Introduction

Contents

1.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 First axis: Motif-based MIL approach for sequence data

with across-bag dependencies . . . . . . . . . . . . . . . . 4

1.2.2 Second axis: Similarity-based MIL approach for sequence

data with across-bag dependencies . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Goals

This chapter summarizes the contents and describes the plan of the thesis.

First, we highlight the motivations of this work. Then, we state the addressed

issues in this thesis.
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1.1 Context and motivations

In a traditional setting of supervised learning task, the training set is composed of

feature vectors (instances), where each feature vector has a label. In MIL task, we

learn a classifier based on a training set of bags, where each bag contains multiple

feature vectors and it is the bag that carries a label. We do not know the labels

of the instances inside the bags.

This work was originally proposed to solve the problem of ionizing radiation

resistance (IRR) prediction in bacteria [Zoghlami et al., 2019a,b, 2018a,b] [Aridhi

et al., 2016]. Ionizing-radiation-resistant bacteria (IRRB) are important in biotech-

nology. In fact, they could be used for the treatment of radioactive wastes as well

as the therapeutic industry [Brim et al., 2003] [Gabani and Singh, 2013]. Several

in vitro works studied the causes of the high resistance of IRRB to ionizing radi-

ation to determine peculiar features in their genomes and improve the treatment

of radioactive wastes. Predicting if a bacterium belongs to IRRB using in vitro

experiments is not an easy task, it requires a big effort and a time consuming

lab work. In this thesis, we aim to use machine learning in order to perform the

bacterial IRR prediction task . As far as we know, there is no bioinformatics tool

that performs a such task in the literature. We propose an MIL formalization of

the problem since each bacterium is represented by a set of protein sequences.

Bacteria represent the bags and protein sequences represent the instances. In par-

ticular, each protein sequence may differ from a bacterium to another, e.g., each

bag contains the protein named Endonuclease III, but it is expressed differently

from one bag to another: these are called orthologous proteins [Fang et al., 2010].

To learn the label of an unknown bacterium, comparing a random couple of

sequences makes no sense, it is rather better to compare the protein sequences

that have a functional relationship/dependency: the orthologous proteins. Hence,

this work deals with the MIL problem that has the following three criteria:

• The instances inside the bags are sequences: to deal with sequences,

we have to deal with data representation. A widely used technique to rep-

resent MIL sequence data is to apply a preprocessing step which extracts

features/motifs to represent the sequences [Sutskever et al., 2014] [Lesh
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et al., 1999] [She et al., 2003]. Other works keep data in their original

format and use sequence comparison techniques such as defining a distance

function to measure the similarity between pairs of sequences [Aridhi et al.,

2016] [Saigo et al., 2004] [Xing et al., 2010].

• All the instances inside a bag contribute to define the bag’s label:

the standard MIL assumption states that every positive bag contains at least

one positive instance while in every negative bag all of the instances are

negative. Some methods following this assumption try to identify positive

instances which are relevant to learn the label of a bag [Faria et al., 2017] [Li

et al., 2014]. However, the collective assumption [Amores, 2013] considers

that all the instances contribute to the bag’ s label. This suits the problem

of bacterial IRR prediction since all the protein sequences have to contribute

to the final decision.

• The instances may have dependencies across the bags: one ma-

jor assumption of most existing MIL methods is that each bag contains a

set of instances that are independently distributed. Nevertheless, in many

applications, the dependencies between instances naturally exist and if in-

corporated in the classification process, they can potentially improve the

prediction performance significantly [Zhang et al., 2011]. Many real world

applications such as bioinformatics, web mining, and text mining have to

deal with sequence data. When the tackled problem can be formulated as

an MIL problem, each instance of each bag may have structural and/or

temporal relation with other instances in other bags. This is the case of

the IRR prediction problem in which the bags contain orthologous protein

sequences.

Considering this issue, the problem we want to solve in this work is the MIL

problem in sequence data that have dependencies between instances of different

bags.
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1.2 Contributions

In this work, we present two novel MIL approaches for sequence data classifica-

tion named ABClass ( which stands for Across Bag sequences Classification)

and ABSim ( which stands for Across Bag sequences Similarity). ABClass is

a motif-based approach while ABSim uses a similarity measure between related

sequences. We applied both approaches to solve the problem of IRR prediction.

The experimental results were satisfactory.

1.2.1 First axis: Motif-based MIL approach for sequence

data with across-bag dependencies

As a first contribution, we propose a motif-based approach, named ABClass, which

takes into account the across-bag relations between the sequences of different bags

in the classification process. In a motif-based classification for sequential data, a

sequence is transformed into a feature/motif vector. The feature extraction step

is very important in the classification process. Many parameters have an impact in

the classification results such as the motifs frequency and length, and the matching

type between motifs. Feature-based approaches are widely adopted for genomic

sequence classification. In ABClass, a preprocessing step is performed in order to

extract motifs from each set of related sequences. These motifs are then used

as attributes to construct a vector representation for each set of sequences. In

order to compute partial prediction results, a discriminative classifier is applied to

each sequence of the unknown bag and its correspondent related sequences in the

learning dataset. Finally, an aggregation method is applied to generate the final

result.

We created a multiple instance dataset composed of real sequence data used

to test the approach. It consists of a set of bacteria where each bacterium is

represented using a set of primary structures of proteins implicated in basal DNA

repair in IRRB. Bacteria represent the bags and protein sequences represent the

instances. The used across-bag relation is the orthology. Orthologous proteins are

assumed to have the same biological functions in different species. The dataset is
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publicly available at http://homepages.loria.fr/SAridhi/software/MIL/ .

1.2.2 Second axis: Similarity-based MIL approach for se-

quence data with across-bag dependencies

As a second contribution, we propose the ABSim algorithm. It does not use motifs

to represent data and no encoding step is needed. We use a similarity measure

between each sequence of the unknown bag and the corresponding sequences in the

learning bags in order to create a similarity score matrix. An aggregation method

is applied and the unknown bag is labeled according to the bag that presents more

similar sequences. We define two aggregation methods: Sum of Maximum Scores

(SMS) and Weighted Average of Maximum Scores (WAMS). In the experimental

study, we used the local alignment score to measure the similarity between two

protein sequences.

1.3 Outline

The remainder of this document is organized as follows. Chapter 2 presents the

bioinformatics field and gives a background about the processed data and the

alignment of biological sequences. It also provides a description of the bacterial

IRR prediction problem. Chapter 3 provides a background about MIL fundamen-

tal notions and gives an overview of some related works in MIL. It also gives a

formalization of the problem of MIL in sequence data. In Chapter 4, we present

an MIL naive approach for sequence data followed by a description of the AB-

Class algorithm. We provide a simple use case that serves as a running example

throughout the chapters 4 and 5. Then we describe our experimental environment

and we discuss the obtained results. Chapter 5 describes the ABSim approach and

the two proposed aggregation methods. Concluding points and a presentation of

future work make the body of Chapter 6.
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2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Goals In this chapter, we will present basic notions of a main search field in

this thesis: bioinformatics. We present mainly the specificity of the biological data

and we introduce the investigated IRR prediction problem. We present also the

particularity of sequence classification in the data mining field and we focused on

the alignment of biological sequences.

2.1 Bioinformatics background

2.1.1 Bioinformatics

Bioinformatics in an interdisciplinary field which can be simply defined by the use

of computer science to deal with biological data. Developing software programs to

produce meaningful biological information involves the use of algorithms from dif-

ferent disciplines such as data mining, graph theory, statistics, artificial intelligence

and image processing.

The aims of bioinformatics involve mainely the collection and storage of data

in a way that allows to access them efficiently and the development of algorithms

and tools that deal with the analysis, prediction and interpretation of the data.

To date, the genomic databases indicate the presence of thousands of genome

projects. It is not feasible to analyze the amount of collected data manually

without using tools that make the task easier. It is impossible to experimentally

annotate every biological molecule identified by sequencing projects. Bioinformat-

ics has then evolved in the past few years in order to provide software applications

that need minutes or even seconds to accomplish tasks that used to require a big

effort and weeks of lab work. Computational approaches could be used to provide

initial prediction results related to the function of a biological molecule and help

to predict the usefullness of an experimental study scenario. Examples of bioinfor-

matics research fields include the sequencing of genomes, the 3-D visualisation of

molecules, the construction of evolutionary trees, the analyses of protein functions

and the ionizing radiation resistance prediction (See Section 2.2).
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Table 2.1: The 20 amino acids in a protein sequence.

Letter Amino acid Letter Amino acid

A Alanine L Leucine
R Arginine K Lysine
N Asparagine M Methionine
D Aspartic acid F Phenylalanine
C Cysteine P Proline
Q Glutamine S Serine
E Glutamic acid T Threonine
G Glycine W Tryptophan
H Histidine Y Tyrosine
I Isoleucine V Valine

2.1.2 Biological data

Mainly, bioinformatics deals with three biological macromolecules named protein,

DNA and RNA. The last two macromolecules are called nucleic acids.

• Proteins They are macromolecules responsible of a variety of functions

within organisms such as DNA replication, and transporting molecules from

one location to another. They are complex chains of molecules known as

amino acids so they can be viewed as strings of an alphabet of the 20 amino

acids provided in Table 2.1.

• Nucleic acids. Nucleic acids include DNA and RNA macromolecules.

– DNA Deoxyribonucleic acid (shortly DNA) is known to be the molecule

that carries the genetic instructions of organisms. It has a double

helical twisted structure. Each side is made of four bases which are

represented by the four letters A (adenine), C (cytosine), G (guanine)

and T (thymine). A DNA could then be represented by a sequence of

the alphabet {A,C,G,T}.

– RNA Ribonucleic acid (shortly RNA) is a molecule very similar to DNA

but has some chemical differences. It play various roles in coding,

decoding, and expression of genes. The four bases are the same as in
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DNA with thymine (T) replaced by uracyl (U). Then, an RNA molecule

could be represented by a sequence of the alphabet {A,C,G,U}.

2.1.3 Proteins

2.1.3.1 Protein structures

There are four levels of protein structures as described in Figure 2.1.

• Primary structure: A primary structure represents a protein as a sequence of

amino acids which attach to each other in long chains. The terms protein or

polypeptide refers to sequences longer than 50 amino acids while sequences

with fewer amino acids are called peptides.

• Secondary structure: The chain of amino acids can fold to form a three-

dimensional structure. Two main types of secondary structure are the α-

helixes and β -sheets.

• Tertiary structure: The secondary structures are folded to form the over-all

shape of a protein, also known as the protein 3-D structure or the tertiary

structure.

• Quaternary structure: Several proteins are composed of more than one se-

quence of amino acids. The combination of these sequences conform the

quaternary structure.

2.1.3.2 Protein sequence data databases

With the evolution of sequencing technologies, the amount of biological sequence

data has exponentially increased. Some publicly available databases offer to users

the possibility to search and download protein sequence data.

• GOLD database The Genomes OnLine Database (GOLD) [Mukherjee

et al., 2016] provides a comprehensive information regarding genome and

metagenome sequencing projects with their associated metadata. Data are
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Figure 2.1: The four levels of the protein structure 1.

imported from three main sources: (1) projects deposited by users which

are regularly monitored for data accuracy and consistency, (2) projects

imported from public resources like BioProject database [Federhen et al.,

1https://en.wikipedia.org/wiki/File:Protein_structure_(full).png, Novem-
ber 2019.
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2014] and (3) projects sequenced at the Joint Genome Institute (JGI) 2.

The latest publication reported 97 212 Sequencing Projects. GOLD is

available at https://gold.jgi.doe.gov/.

• UniProt The Universal Protein resource (UniProt) is a biological reposi-

tory of protein sequences and their functional information [Apweiler et al.,

2004]. It contains four databases: Swiss-Prot and TrEMBL which are sub-

parts of UniProtKB, UniParc and UniRef.

SwissProt contains non-redundant, manually annotated protein sequences

[Boutet et al., 2016]. In order to perform the annotations, information ex-

tracted from biological literature are combined with computational analysis

evaluated by biocurator. The goal is to provide relevant known informa-

tion related to proteins available in the database. Figure 2.2 shows the

increasing size of SwissProt database over thirty years. The amount of

available protein sequences was doubled during three years from 2007 to

2010. TrEMBL is a database that contains automatically annotated pro-

tein sequences [Gane et al., 2014]. In fact, the large amount of data gen-

erated by genome projects could not be manually analysed and annotated

according to the process of UniProtKB/SwissProt. Thus, data are auto-

matically processed and added to the TrEMBL database. UniParc (for

UniProt Archive) [Leinonen et al., 2004] contains non-redundant protein se-

quences from the main publicly available databases. UniRef (for UniProt

Reference Clusters) [Suzek et al., 2007] contains clustered protein sequences

from SwissProt, TrEMBL and selected UniParc entries.

• GenBank and RefSeq The National Centre for Biotechnology Infor-

mation (NCBI) 3 hosts two sequence databases named GenBank [Ben-

son et al., 2012] and RefSeq [Pruitt et al., 2011]. GenBank and RefSeq

provide an annotated collection of publicly available nucleotide and pro-

tein sequences, while UniProt contains only protein sequence data, Un-

2https://jgi.doe.gov
3https://www.ncbi.nlm.nih.gov
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like GenBank sequences, RefSeq ones are non-redundant, curated and lim-

ited to some organisms for which sufficient data are available. GenBank

contains sequences for any submitted organism. Refseq is available at

https://www.ncbi.nlm.nih.gov/refseq/ and GenBank is available at

https://www.ncbi.nlm.nih.gov/genbank/.

Figure 2.2: Number of entries of SwissProt database over time 4.

2.1.3.3 Protein signatures

Protein signatures consist of models which describe protein families, domains or

sites. A protein family is a group of proteins that share the same evolutionary

origin. Proteins in a same family have similar sequences/structures and biological

functions. Families are usually hierarchically organized. A domain is a part of

a protein which is able to evolve, function, and exist independently of the rest

of the protein sequence/structure. From sequence perspective, a protein domain

is a subsequence of amino acids. Domains vary in length from about 25 amino

acids to 500 amino acids. They also vary in biological functions. The average

size of protein domains is 150 amino acids. The concept of protein domains

4https://www.uniprot.org/statistics/Swiss-Prot, November 2019
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and families are applicable to both sequences and structural proteins. Several

proteins are multi-domain. Figure 2.3 shows a visualization of the three domains

of the protein Pyruvate kinase, each domain has a different color. The ordered

arrangement of domains in a protein, called the protein domain organization or

the protein domain architecture, is important to maintain the function and the

structure of the protein.

Figure 2.3: A visualization of the three domains of the protein Pyruvate kinase 6.

Signature could be simple such as patterns or more complex such as Hidden

Markov Models (HMMs). Signature methods are divided into patterns, profiles,

fingerprints and HMMs. Conserved subsequences, also known as motifs, are

6https://commons.wikimedia.org/wiki/File:Pyruvate_kinase_protein_domains.

png, November 2019



2.1. Bioinformatics background 17

extracted and then used to build regular expressions that serve as patterns. Profiles

are computed by converting multiple sequence alignments into position-specific

scoring systems (PSSMs), i.e., assigning a score to amino acids at each position

according to the frequency with which they occur in the alignment. Fingerprints

are created using multiple profiles generated using multiple alignment techniques.

The main advantage of fingerprints is in identifying the differences in protein

sequences at four levels of clan, superfamily, family and subfamily which helps

to make a more accurate functional predictions for unknown sequences. HMMs

are statistical models that, like profiles, convert multiple sequence alignments into

PSSMs and represent amino acid insertions and deletions. Its can model the entire

alignment, including divergent regions.

Figure 2.4 shows a list of well known protein domain databases grouped based

on the used protein signatures. Domain databases are described below.

• Prosite provides entries that describe protein domains and families, and

related patterns and profiles used to identify them. It contains documen-

tation about signatures and the structure and function of proteins. Fig-

ure 2.4 differentiates between Prosite entries based on patterns (in or-

ange) and those based on profiles (in green). The database is available

at http://prosite.expasy.org/.

• Prints is a database of fingerprints [Attwood et al., 2003] which contains an

annotation list for protein families and a diagnostic tool for newly discovered

protein sequences. The database is accessible at http://www.bioinf.

man.ac.uk/dbbrowser/PRINTS/.

• CDD [Marchler-Bauer et al., 2005] [Marchler-Bauer et al., 2014] is the

Conserved Domain Database for the functional annotation of proteins.

It includes manually curated domain models from NCBI (National Cen-

ter for Biotechnology Information in ) and other domain models im-

ported from a set of external databases such as Pfam, and TIGR-

FAMs. In order to generate NCBI-curated domains, 3D-structure in-

formation is used to characterize domains and relationship between into
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sequences and related structure and function. CDD is accessible at

http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

• Pfam is a database of protein domains and families represented by multiple

sequence alignments and hidden Markov models (HMMs) [Bateman et al.,

2004] [Finn et al., 2015]. It has a large coverage of proteins and a real-

istic way of naming domains. It provides two subsets data depending on

the quality of the families: Pfam-A and Pfam-B. Pfam-A provides man-

ually curated families with high quality alignments and well-characterized

protein domains. Pfam-B contains a lower quality data where families are

automatically generated.

• TIGRFAMs [Haft et al., 2003] [Haft et al., 2012] is a database of pro-

tein families that supports manual and automated curated genome an-

notation. It includes multiple sequence alignments and a corresponding

HMM generated from the alignment. If the score of a sequence ex-

ceeds a defined threshold of a given TIGRFAMs HMM, the protein se-

quence is assigned to the related protein family. TIGRFAMs is available

at http://www.jcvi.org/cgi-bin/tigrfams/index.cgi.

• Panther ( for Protein ANalysis THrough Evolutionary Relationships)

[Thomas et al., 2003] [Mi et al., 2016] is a large collection of protein fami-

lies manually subdivided into functionally related subfamilies. A phylogenetic

tree is built for each family and could be used in order to classify an un-

characterized protein sequence. Each node in the tree is annotated with

heritable attributes that are propagated to a decedent node. A protein is

then annotated according to its ancestor in the phylogenetic tree. Panther

database is available via http://pantherdb.org/.

• SMART (Simple Modular Architecture Research Tool) [Schultz et al., 1998]

[Letunic et al., 2011] is a database that provides the identification of domains

and the analysis of their architectures. It uses HMMs built from multiple

sequence alignments in order to identify protein domains. SMART data was

used to create the CDD database.
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Figure 2.4: An overview of protein domains databases [Alborzi, 2018].

• CATH [Orengo et al., 1997] [Pearl et al., 2003] is a database of curated

classification of protein domain structures [Orengo et al., 1997, Pearl et

al., 2003]. In order to perform this classification, a combination of multiple

procedures is used including literature review, expert analysis, computational

algorithms and statistical analysis. It shares many features with the SCOP

resource, however they may differ greatly in detailed classification. CATH

database is available at http://www.cathdb.info/.

• SCOP (Structural Classification of Proteins) database [Murzin et al., 1995]

is a classification of structural domains of the proteins based on their

evolutionary and structural relationships. The goal is to provide a com-

prehensive and detailed description of the relationships between all pro-

teins having known 3D structures. SCOP database is available at http:

//scop.mrc-lmb.cam.ac.uk/scop/. It stopped updating in 2010 and a

successor named SCOP2 [Andreeva et al., 2013] has been proposed. SCOP2

is available at http://scop2.mrc-lmb.cam.ac.uk/.

InterPro All domains classifications in Figure 2.4 are integrated into the In-
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terPro database [Apweiler et al., 2001] [Finn et al., 2016]. In fact, InterPro is

a composite database combining the information of many databases of protein

domains. The goal is to rationalise protein sequence analysis by combining infor-

mation from different resources in a consistent manner, removing redundancy, and

adding rich annotation about the proteins and their signatures. Features found in

known proteins are applied to unknown ones (such as new sequenced proteins) in

order to characterise their functions. It contains signatures and the proteins that

they significantly match. InterproScan is a tool used to search a query against

the diverse databases of protein domains, motifs, signatures and families. The

disadvantage is the runtime since the Interproscan webservice can be very slow if

we need to analyse thousands of proteins. A solution is to download and install

the whole suite locally.

2.2 The bacterial ionizing radiation resistance

problem

Bacteria are small single-cell organisms. Most bacteria are helpful for mankind,

but some are harmful. Few species cause disease. In particular, ionizing-radiation-

resistant bacteria (IRRB) are important in biotechnology. They could be used

for the treatment of mixed radioactive wastes by developing a strain to detoxify

both mercury and toluene [Brim et al., 2000]. These organisms are also being

engineered for in situ bioremediation of radioactive wastes[Brim et al., 2003].

In [Gabani and Singh, 2013], the authors discuss the potential uses of radiation-

resistant extremophiles (e.g. micro-organisms with the ability to survive in extreme

environmental conditions) in biotechnology and the therapeutic industry.

Several in vitro and in silico works studied the causes of the high resistance

of IRRB to ionizing radiation to determine peculiar features in their genomes and

improve the treatment of radioactive wastes. However, limited computational

works are provided for the prediction of bacterial IRR [Aridhi et al., 2016] [Sghaier

et al., 2008][Makarova et al., 2007]. In this thesis, we aim to develop a machine

learning algorithm which predicts whether an unlabelled bacterium belongs to
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IRRB or IRSB. Each bacterium is represented using a set of protein sequences

implicated in basal DNA repair (see Figure 2.5).

Figure 2.5: An illustration off the IRR prediction problem.

2.3 Sequence Classification

2.3.1 Definition of a sequence

A sequence is an ordered list of events. An event can be represented as a

symbolic value, a numerical value, a vector of values or a complex data type [Xing

et al., 2010]. There are many types of sequences including symbolic sequences,

simple time series and multivariate time series [Xing et al., 2010]. In our work,

we are interested in symbolic sequences since the protein sequences are described
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using symbols (amino acids). We denote Σ an alphabet defined as a finite set of

characters or symbols. A simple symbolic sequence is defined as an ordered list of

symbols from Σ.

2.3.2 Sequence classification approaches in machine

learning

Existing sequence classification approaches can be divided into three large cate-

gories [Xing et al., 2010]: feature-based classification, distance-based classification

and model-based classification.

In feature-based classification, a sequence is transformed into a feature vector.

This representation scheme could lead to very high-dimensional feature spaces.

The feature extraction step is very important since it would impact the classifi-

cation results. This step should deal with many parameters such as the criteria

used for selecting features (e.g. frequency and length) and the matching type

(i.e. exact or inexact with gaps). After adapting the input data format, a con-

ventional classification method is applied. Feature-based approaches are widely

adopted for genomic sequence classification [Blekas et al., 2005] [She et al., 2003]

[Chuzhanova et al., 1998].

In distance-based classification, a similarity function should be defined to mea-

sure the similarity between a pair of sequences. Then an existing classification

method could be used such as the Support Vector Machine (SVM) or the K-

Nearest Neighbors (KNN) algorithm. The similarity function determines the qual-

ity of the classification significantly. In bioinformatics, alignment based distances

are popularly adopted to deal with sequences such as protein sequences and DNA

sequences. Section 2.4 provides an overview on biological sequences alignment.

Model-based classification methods define a classification model based on the

probability distribution of the sequences over the different classes. This model

is then used to classify unknown sequences. Naive Bayes is a simple model-

based classifier that makes the assumption that the features of the sequences

are independent. In [Cheng et al., 2005], the authors apply Decision Tree and

Naïve Bayes classifiers on a protein classification problem. Markov Model and
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Hidden Markov Model (HMM) could be used in order to model the dependencies

among sequences. In [Yakhnenko et al., 2005], a k-order Markov model is used to

classify protein sequences and text data. HMM and alignment scores are used in

[Srivastava et al., 2007] in order to make a genomic sequences classification. A

protocol named HMM-ModE is defined in order to generate family specific HMMs.

Hierarchical clustering is also commonly used in genomic sequences/organisms

classification [Ni et al., 2018] [Pagnuco et al., 2017] [Lukjancenko et al., 2010].

It groups the samples into groups called clusters. In the clustering process, inter-

cluster distances should be maximized and intra-cluster distances should be min-

imized. Hierarchical clustering produces a nested series of clusters which may

be represented in a tree structure, called a dendrogram, which may facilitate the

interpretation of the classification results. In order to create the clusters, the

genomic sequences are compared. Although the sequence alignment score is com-

monly used to make the comparison, some hierarchical clustering algorithms use

alignment-free comparison methods [Ni et al., 2018] [Wei et al., 2012].

2.4 Aligning biological sequences: basic no-

tions

2.4.1 What is the alignment of biological sequences

The sequence alignment problem is one of the cornerstones of computational bi-

ology. Sequence alignment is a way of arranging sequences in order to identify

regions of similarity. This similarity could provide a structural, functional or evo-

lutionary significance. The majority of biological sequence comparison methods

rely on first aligning sequences and computing a score for the alignment [Vinga

and Almeida, 2003].

As stated, the goal is to line up two (or more) sequences in order to maximise

their degree of similarity. Identical bases are matched In the case of DNA and

RNA. For proteins, amino acids are matched if they are identical. An amino acid

could be replaced by another one on the basis of a substitution matrix.
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Some genomic sequences comparison problems are not simply resolved using

one or two alignment tool. In [Gracy and Argos, 1998], local similarity search

is coupled to multiple sequence alignment in order to classify an entire protein

sequence database. Additional contextual information could be integrated in or-

der to improve the genomic sequences comparison. Domain co-occurrence is a

powerful feature of proteins which can be used in this context [Menichelli et al.,

2018].

2.4.1.1 Gaps

When the sequences do not align well with each other, a gap could be inserted

into any of the sequences by pushing a letter one index. The goal is to obtain a

better alignment. A gap is marked by the symbol -́ .́ The biological interpretation

of using a gap is that a mutation (a deletion or an insertion) occurred during the

evolution of a sequence.

Example of an alignment using the two sequences TACCAGT and CCCG-

TAA

No gaps Gaps

T A C C A G T T A C C A G T − −

C C C G T A A C − C C − G T A A

We note that other alignments are possible, an option is listed below.

T A C C A G T − −

− C C C G T A A −

2.4.1.2 Alignment scoring

As different alignments are possible, we can use a scoring function in order to

select the best alignment. Gap penalty functions are used in order to compute an

alignment score based on the number and length of gaps. The idea is that inserting

too many gaps can lead to a meaningless alignment, so we need to minimize the
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number of gaps. Some gap penalty functions are listed below.

• Constant gap penalty It is a simple scoring function. A fixed negative

cost is assigned to every gap, regardless of its length.

• Linear gap penalty A fixed negative score is assigned to every inserted

or deleted symbol. The penalty is then directly proportional to the length

of the gap.

• Affine gap penalty. It is a widely used scoring function. Different scores

are assigned to the extension of a current gap and the starting of a new one.

If we perform an alignment of protein sequences, substitution matrices could

be used in the scoring alignment instead of using fixed scores. In fact, some amino

acids have similar structures and can be substituted in nature. Mutations of amino

acids are quantified in the substitution matrices Two well-known matrices are PAM

[Dayhoff et al., 1978] and BLOSUM [Henikoff and Henikoff, 1992].

2.4.2 Global alignment and local alignment

In pairwise alignment, only two sequences are involved in the alignment process,

otherwise, it is a multiple sequence alignment. Alignment technics could be divided

into two types based on the completeness:

• global alignment which attempts to match the sequences to each other

from end to end. It is suitable for similar and equal length sequences.

• local alignment which searches for highly similar regions of the two se-

quences. It is more suitable for sequences which are partially similar and/or

have different length. It is then useful for comparing sequences that share

a common conserved pattern (motif) but differ elsewhere.

Several sequence alignment approaches have been proposed. Some algorithms use

dynamic programming and provide optimal alignments such as the Needleman-

Wunsch algorithm [Needleman and Wunsch, 1970] and The Smith-Waterman

[Waterman, 1981] algorithm. Other alignment methods are based on heuristics

such as BLAST, the widely used alignment tool in bioinformatics.
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2.4.2.1 Dynamic programming based alignment

Dynamic programming is originally used in the field of mathematical optimization

[Sniedovich, 2010]. In computer science, dynamic programming is the approach

based on dividing a problem into smaller subproblems. Each of the subproblems

is divided further into subproblems until some basic case is reached. Needleman-

Wunsch algorithm [Needleman and Wunsch, 1970] and Smith-Waterman algo-

rithm are based on Dynamic Programming. The first one is a classical global

alignment algorithm while the second one performs a local alignment. Both ap-

proaches produce an optimal alignment based on a scoring matrix. A gap penalty

could be used during the alignment process.

2.4.2.2 Heuristic based alignment

Heuristic approaches are much faster than dynamic programming ones, but they

may overlook optimal alignments. They are widely used in large-scale database

searches. BLAST [Altschul et al., 1990] (stands for Basic Local Alignment Search

Tool) is a well-known alignment tool. It performs local alignment, i.e., it does

not enforce the alignments on full length to measure the similarity between two

sequences. BLAST requires a query sequence to search for, and a target sequence

to search against or a sequence database containing multiple target sequences.

The algorithm splits the query sequence into small subsequences and scans the

database for word matches. All matches are then extended in both directions

as far as possible in order to seek high-scoring alignments. Many extensions of

BLAST have been proposed such as PSI-BLAST [Altschul et al., 1997] and BLAT

[Kent, 2002] [Bhagwat et al., 2012]. The main idea of BLAST-like methods is to

identify short common subsequences between the sequences, and then expand the

matching regions.

2.5 Conclusion

In this chapter, we introduced basic notions the bioinformatics research field.

We presented the biologial data sequences and we introduced the bacterial IRR
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prediction problem that we aim to investigate in this work. We focused on the

alignment of biological sequences.
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Goals This chapter introduces the MIL and its paradigms. It is mainly dedi-

cated to present, in a simplified way, the basic notions related to MIL. We mainly

focus on presenting MIL paradigms and describing some approaches.
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3.1 Multiple instance learning

3.1.1 Multiple instance learning VS standard supervised

learning

The standard supervised learning task deals with data that consist of a set of

objects/examples, where each object is associated with a label. The learning

dataset contains n labeled object DB = {(xi,yi), i = 1, . . . ,n} where xi is a seen

example and yi is the label that indicates the category that the object xi belongs

to (see Figure 3.1) . An MIL task deals with data that consist of a set of n

bags where each bag is an unordered set of examples (see Figure 3.1). In an MIL

context, each example is called an instance. MIL can be seen as a variant of

supervised learning. However, labels are assigned to bags rather than individual

instances. This category of learning is considered as weakly supervised since we

do not know the label of each instance inside the bag, and only bags carry the

labels. In this thesis, we only consider two-class classification problems, so the

label of each bag is either 1 for a positive bag or -1 for a negative one.

3.1.2 Problem formulation

Let DB be a learning database that contains a set of n labeled bags DB =

{(Bi,Yi), i = 1,2 . . . ,n} where Yi = {−1,1} is the label of the bag Bi. Instances

in Bi are denoted by Bi j. Formally Bi = {Bi j, j = 1,2 . . . ,mBi}, where mBi is the

total number of instances in the bag Bi. We note that the bags do not contain

the same number of instances. The goal is to learn a multiple instance classifier

from DB. Given a query bag Q = {Qk,k = 1,2 . . . ,q}, where q is the total number

of instances in Q, the classifier should use data in this bag and in each bag of DB

in order to predict the label of Q.

3.1.3 Applications

MIL has many real word applications including the drug activity problem, the

image categorization and the text categorization.
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Figure 3.1: Standard supervised classification (a) vs multiple instance classification
(b).

• Drug activity The original application for MIL is the drug activity predic-

tion problem described in [Dietterich et al., 1997]. It deals with the first MI
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dataset known as the musk dataset which contains molecules occurring in

different conformations. One of the conformations determines if a molecule

belongs to either "musk" class or "non-musk" one. In fact, if a molecule is

able to bind strongly to a binding site on the target molecule, it is classi-

fied as a good drug. The molecule is a bag and its conformations are the

instances inside this bag. The musky smell is the positive label. We do not

know which conformations bind well on a target molecule so we have no

idea which instances are positive.

• Image categorization When applying MIL to the image categorization

problem, an image is considered as a bag and its subimages are considered

as instances that conform the bag. A processed image is then affiliated into

one class or another. Several works use MIL in image categorization. In

[Maron and Ratan, 1998], authors treat the natural scene images as bags.

A bag is classified as a scene of waterfall if at least one of its subimages is

a waterfall. In [Andrews et al., 2003] , the positive images show an animal

(a fox, a tiger or an elephant), the negative images are selected randomly

from other classes (the classes represent more than these three animals). An

other image categorization problem defines a bag as an eye fundus image

and an instance as a patch [Kandemir and Hamprecht, 2015]. The goal is

to predict whether an image is of a subject with diabetes (positive) or a

healthy subject (negative).

• Text categorization When dealing with a document categorization prob-

lem using an MIL setting, a document is considered as a bag, and its para-

graphes are considered as instances. In [Ray and Craven, 2005], authors

study a problem of biomedical text categorization. The goal was to predict

whether a text should be annotated as relevant for a particular protein. A

bag is a biomedical text and instances are paragraphs in the document. The

newsgroup dataset [Zhou et al., 2009] is a popular text categorization MI

dataset. The goal is to categorize collections of posts from different news-

groups corpus. A bag is a collection of posts (instances). A positive bag for

a category contains 3% of posts about a topic while negative bags contain
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only posts about other topics.

3.2 Background

3.2.1 MIL assumptions

The standard MIL assumption states that a bag is positive if and only if one or

more of its instances are positive while in every negative bag all of the instances

are negative. This assumption is used in many MIL problems such as traditional

problem of musk drug activity described in Section 3.1.3. A molecule is classified

according to its conformations. If one on more conformations bind well to the

target site, then the molecule belongs to the positive class.

Figure 3.2: A classification problem of images into "beach" (bottom) and "non-
beach" (top).

The standard assumption is not suitable for some MI problems. For example,
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have the standard MI assumption witch is a special case of the presence-

based MI assumption.

• The threshold-based MI Assumption requires that, in order to consider a

bag as positive, a certain number of instances in the bag have to belong to

each of the required concepts.

• The count-based MI Assumption is close to the previous assumption but

it requires that a maximum and a minimum number of instances have to

belong to each of the required concepts.

• The collective assumption supposes that all instances in a bag contribute

equally to the bag’s label [Foulds and Frank, 2010]. All instances are con-

sidered in the learning process.

• The weighted collective MI assumption is an extension of the previous as-

sumption that uses different weights for each instance.

We note that many MI approaches do not use the standard assumption but it

is not always stated which new assumption is adopted instead.

3.2.2 Instance-level and bag-level learning

MIL methods could be categorized according to how the information contained in

the MIL data is exploited. In [Amores, 2013], the author proposed to differentiate

between the Instance-Space (IS) paradigm and the Bag-Space (BS) paradigm. A

third category of MIL approaches based on the Embedded-Space (ES) paradigm

was proposed. In this section, a lower-case notation will be adopted to refer

instances (x) and instance-level classifiers (f), an upper-case notation is used to

denote bags (X) and bag-level classifiers (F).

• Instance level The IS paradigm is based on local instance-level infor-

mation since we consider the characteristics of individual instances in the

learning process without looking at more global characteristics of the whole

bag. Figure 3.4 illustrates the IS paradigm. A discriminative instance level
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classifier f (x) is trained on the instances in order to separate instances of

positive bags ( f (x) = 1) from instances in negative bags ( f (x) = 0). A bag

level classifier F(X) is then obtained by applying an aggregation on instance

level results. Diverse Density and MISVM are two examples of algorithms

which use the IS paradigm (see Section 3.3).

Figure 3.4: Illustrative example using the IS paradigm [Amores, 2013].

• Bag level In the BS paradigm each bag is treated as a whole entity. Instead

of aggregating instance-level decisions, a global bag-level information is used

to make the discriminative decision. Figure 3.5 provides an illustrative ex-

ample using the BS paradigm. In the training step, a distance function is

defined to compare two bags. Then, a learning algorithm is applied to create

a model. In order to predict its label, a new bag is compared to other bags

of the training set using the bag level distance function. A classifier F uses

the computed distances, the model and the learned parameters Θ to make

the prediction. Citation-Knn is an example of algorithms which use the BS

paradigm.

• Embedded level In the ES paradigm, the relevant information about each

bag is summarized in a single feature vector. The difference between BS

and ES paradigms lies in the way this bag-level information is extracted: it

is done implicitly in the BS paradigm and explicitly in the ES one through

the definition of a mapping function. An illustration of using ES learning is



3.2. Background 37

Figure 3.5: Illustrative example using the BS paradigm [Amores, 2013]: training
(a) and test (b)

provided by the Figure 3.6. In the training step, the original training space

is mapped to a vectorial embedded space by defining a mapping function

M which associates a feature vector to each bag. A standard discriminant

classifier G is then learned. In order to predict the class of a new bag X ,

the mapping M is used to generate the correspondent feature vector ~v. The
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bag classifier F(x) is the obtained using the discriminant classifier G and

the new vector v. It can be expressed as F(X) = G(~v). A simple algorithm

that uses the ES paradigm is SimpleMI described is Section 3.3.

Figure 3.6: Illustrative example using the ES paradigm [Amores, 2013]: training
(a) and test (b)
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3.3 An overview of MIL methods

The original work that introduces the MIL problem proposes the axis-parallel hyper-

rectangle (APR) approach [Dietterich et al., 1997]. It tries to identify an hyper-

rectangle that includes at least one instance of every positive bag and does not in-

clude any instances from negative bags. Many MIL approaches are then proposed.

Diverse Density (DD) [Maron and Lozano-Pérez, 1998] is one of the popular MIL

algorithms. It was proposed as a general framework for solving MIL problems.

Several MIL approaches have been proposed. Some algorithms deal with the MIL

problem directly in either instance level such as mi-SVM [Andrews et al., 2003]

and MILKDE [Faria et al., 2017] or in bag level such as MI-SVM mi-SVM [An-

drews et al., 2003] and MIGraph [Zhou et al., 2009]. Other algorithms try to shift

the MIL problems into instance space via embedding such as MILDE [Amores,

2015], Submil [Yuan et al., 2016] and miVLAD [Wei et al., 2016]. Several regular

supervised classifiers are extended to work in the MIL setting such as MI-SVM

and Citation-kNN which extend respectively the SVM and the k-nearest neigh-

bours approaches. Methods which are based on instance selection try to identify

representative instances of the bags [Faria et al., 2017] [Chen et al., 2006]. In

[Zhou et al., 2009] and [Zhang et al., 2011], authors try to identify the relations

which exists between bags/instances and use them to improve the classification

results. Some algorithms focus on defining dissimilarities between bags/instances,

one example is MInD [Cheplygina et al., 2015] that uses a bag dissimilarity ap-

proach. A review of MIL approaches and a comparative study can be found in

[Amores, 2013], [Alpaydın et al., 2015] and [Herrera et al., 2016]. A description

of some algorithms is provided below.

DD [Maron and Lozano-Pérez, 1998] attempts to find the concept points in

the feature space that are close to at least one instance from every positive bag

and far from instances in negative bags. The optimum concept point is determined

by maximizing the diversity density score, which is a measure of how positive a

point is (i.e. positive bags have instances near the point and how far the negative

instances are away from it.) An unknown bag is classified as positive if at least one

of its instances is sufficiently close to the concept point, otherwise it is classified
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as negative. Some MIL methods proposed later are based on the DD algorithm

such as EM-DD [Zhang and Goldman, 2002] which uses a set of hidden variables

in order to identify which instance determines the label of a bag. These hidden

variables are estimated using an expectation maximization approach.

MI-SVM and mi-SVM are two algorithms which extend a regular supervised

learning approach. They are two extensions of support vector machines (SVM)

where margin maximization is redefined in order to consider the MIL settings. MI-

SVM deals with the problem at bag level, whereas mi-SVM deals with instance

level. In regular SVMs for supervised learning, the labels of each instance in the

training set are known. However, this is not the case in MIL where only the labels

of the bags are known. Considering the standard MIL assumption, the labels of

the negative bags instances are known to be negative. The margin could be then

defined as in a regular SVM. However, the problem with the labels of positive

bags instances is that they are unknown and therefore defining the margin is a

complicated task. Then, mi-SVM propose to treat the instance labels as unknown

integer variables. It uses a maximum instance margin formulation which tries

to recover the instance labels of the positive bags. The goal is to find both

the optimal labeling and the optimal hyperplane. On the other hand, MI-SVM

algorithm generalizes the notion of a margin to bags. The goal is to recover the key

positive instances which are instances used to represent positive bags. In fact, the

margin of a positive bag is defined by the margin of the most positive instance,

while the margin of a negative bag is defined by the least negative instance.

The negative instances in the positive bags are ignored. The algorithm introduces

witness variables which represent the selected instances to represent positive bags.

A main difference between the mi-SVM and MI-SVM margin formulation is that

in mi-SVM the margin of every instance in a positive bag matters and we can

define their labels in order to maximize the margin, however, in MI-SVM only one

instance in the positive bag matters to define the margin of the bag.

MIRSVM [Melki et al., 2018] is a an algorithm which uses a bag-representative

selector and trains an SVM based on a bag-level information. The idea is to se-

lect representative instances from both positive and negative bags and use them

in order to find an optimal unbiased separating hyperplane. Iteratively, the algo-
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rithm chooses an instance used to represent each bag, then a new hyperplane is

defined according to the selected representatives until they converge. During the

training process, MIRSVM gives preference to negative bags because all instances

inside these bags are guaranteed to be negative according to the standard MI

assumption, whereas the distribution of the instance labels in positive bags is un-

known. A main difference between MIRSVM and MI-SVM algorithms is that the

first one uses representatives from positive and negative bags, while the second

one only optimizes over representatives from positive bags. Another difference is

that MIRSVM allows for balanced selection of bag representatives, i.e. one rep-

resentative is allowed for each bag regardless of its label, while MI-SVM uses one

representative for positive bags and multiple representatives for negative ones.

In [Wang and Zucker, 2000], the authors present two extensions of the kNN

algorithm called Bayesian-KNN and Citation-KNN. In order to transform the mea-

sure between instances (such as in standard kNN) in a measure between bags,

authors propose to use the Hausdorff distance: two sets A and B are within Haus-

dorff distance d of each other if every point of A is within distance d of at least

one point of B, and every point of B is within distance d of at least one point

of A. In order to classify an unknown bag, the Bayesian method computes the

posterior probabilities of its label based on the labels of its neighbors. Citation-

kNN suggests the notion of citation. The idea is to take into account not only

the neighbors of a bag B (according to the Hausdorff distance) but also its citers

which are the bags that count B as their neighbor.

Some MIL approaches focus on selecting positive instances. One example is

MILKDE which tries to find the most representative instances in each positive

bag based on a likelihood computation. The idea is to select positive instances

having the common characteristics considering all positive bags. The Kernel Den-

sity Estimation (KDE) [Parzen, 1962] is used in order to compute the maximum

likelihood between those instances. The algorithm starts by looking for the most

positive instance considering all instances in all positive bags, i.e. the one pre-

senting the higher likelihood value. Given a positive bag, the algorithm computes

the Euclidean distance of all instances to the previously defined MP instance. The

instance which presents the shortest distance is defined as a representative of the
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processed bag. The resulting set of the selected positive instances as well as all

negative ones represent the data used to construct the classifier. MILES [Chen

et al., 2006] is another algorithm based on positive instance selection, but it does

not make the instance selection in the beginning. It uses all instances in the bags

as a vocabulary and defines a similarity between bags and instances in embedding

space. SVM is applied to the new space and an instance selection is then done.

MIGraph and miGraph [Zhou et al., 2009] are two algorithms that use a graph

representation of the processed data. The key idea is to treat the instances as non

independently and identically distributed samples. Figure 3.7 gives an illustrative

example which shows how taking into account the relation among instances could

impact the classification decision of three sample bags. In Figure 3.7 (a), if we

do not take into account the relations between the instances inside the same bag,

the three bags could be considered as similar since they have identical number of

similar instances. Whereas in Figure 3.7 (b), the first two bags are more similar

than the third one if we take into account the relations between the instances.

MI-Graph works at a bag level. It maps every bag to an undirected graph and

designs a graph kernel for distinguishing the positive and negative bags. miGraph

constructs graphs implicitly. Similar instances in a bag are then grouped in cliques

and a graph kernel is computed based on the clique information.

In [Zhang et al., 2011], an optimization algorithm that deals with multiple

instance learning on structured data (MILSD) is proposed. The idea is to use

the rich dependency/structure information between instances/bags in order to

improve the performance of existing MIL algorithms. This additional information

is represented using a graph that depicts the structure between either bags or

instances. The proposed formulation deals with two sets of constraints caused by

learning on instances within individual bags and learning on structured data and

has a non-convex optimization problem. To solve this problem, authors present

an iterative method based on constrained concave-convex procedure (CCCP). It

is an optimization method that deals with the concave convex objective function

with concave convex constraints [Smola et al., 2005]. However, in many real

world applications, the number of the labeled bags as well as the number of links

between bags are huge. To solve the problem efficiently, an adaptation of the
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Figure 3.7: Illustrative example showing the impact of treating the instances as
non independently and identically distributed samples [Zhou et al., 2009]. See
text.

cutting plane method [Kelley, 1960] is proposed. The goal is to find two small

subsets of constraints from a larger constraint set.

MInD (Multiple Instance Dissimilarity) algorithm [Cheplygina et al., 2015] fo-

cuses in defining dissimilarities between bags. The MIL problem is converted to a

standard supervised learning problem by representing each bag by its dissimilarities

to other bags. Authors discuss different ways to define a dissimilarity between two

bags: viewing a bag as a set of points, as a distribution instance space and as an

attributed graph. Many other algorithms convert the MIL problem to a supervised

learning one such as SimpleMI [Dong, 2006] which maps each bag to the average

of the instances inside. It simply aggregates statistics about the instances without

making a difference between them. It is efficient when the average of positive and

negative bags is different.

3.4 MIL for sequence data

3.4.1 Related works using sequence data

When the processed instances inside bags are sequences, we have an MIL problem

for sequence data. Using the attribute-value format in order to encode the input
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data is widely used when applying MIL algorithms on sequence data.

When MIL is applied in order to deal with the document categorization prob-

lem, documents are considered as bags and some sentences represent the instances

[Wang et al., 2016] [Liu et al., 2012] [Andrews et al., 2003]. An extremely sparse

and high dimensional attribute-value representation of the data is generated when

terms are simply used to present the text. In [Wang et al., 2016], authors we use

a convolution neural network model to learn sentence representations by combin-

ing both local (at sentence/instance level) and global (at document/bag level)

information.

Some works use MIL when dealing with the problem of transcription factor

binding sites (TFBS) identification [Zhang et al., 2019] [Hu et al., 2019] [Gao and

Ruan, 2013]. Transcription factors (TF) play important roles in the regulation of

gene expression. They can modulate gene expression by binding to specific DNA

regions, which are known as TFBS. It is commonly assumed that a DNA sequence

that can be bound by a TF should contain one or more TFBS ( a positive bag),

while a DNA sequence that cannot be bound by the TF should have no TFBS

(a negative bag). A sliding window is applied to check the substrings of each

sequence and use them as instances mapped to feature vectors. Structural DNA

properties [Bauer et al., 2010] are commonly used to generate a feature vector

representation of the instances.

The identification of thioredoxin-fold (Trx-fold) proteins is another challeng-

ing problem in bioinformatics where an MIL-based problem formulation could be

applied on sequence data. The Trx-fold is a characteristic protein structural motif

that has been found in five distinct classes of proteins. In [Tao et al., 2004] and

[Zhang et al., 2011], a dataset of protein sequences is used in the empirical evalu-

ation: each protein sequence is considered as a bag and some of its subsequences

are considered as instances. These subsequences are aligned and mapped to an

8-dimensional feature space: 7 numeric properties [Kim et al., 2000] and an 8th

feature that represents the residue’s position. So we obtain an attribute-value

format description of the dataset. In [Zhang et al., 2011], the alignment score

is used in order to identify the bag-level relations between proteins. If the score

between a pair of proteins exceed 25, then authors consider that there exists a
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link between them. We note that these works do not deal with the across-bag

relations that may exist between the instances.

3.4.2 Problem Formulation

We extend the problem formulation detailed in Section 3.1.2 to deal with sequence

data instances. Instances Bi j of a bag Bi are sequences . We note that there is

an equivalence relation ℜ between instances of different bags denoted the across-

bag relation which is defined according to the application domain. An equivalence

relation is a binary relation that is reflexive, symmetric and transitive. To represent

ℜ, we opt for an index representation. We note that this notation does not mean

that instances are ordered. In fact, a preprocessing step assigns an index number

to the instances inside each bag according to the following notation: each instance

Bi j of a bag Bi is related by ℜ to the instance Bh j of another bag Bh in DB. An

instance may not have any corresponding related instance in some bags, i.e., a

sequence is related to zero or one sequence per bag. We do not have necessarily

the same number of instances in each bag.

ℜ : DB→ DB

ℜ(Bi j) = Bh j

where i and h ∈ {1, . . . ,n} and j ∈ {1, . . . ,m}

ℜ is defined according to the application domain. The relation ℜ could

be generalised to deal with problems where each instance has more than one

target related instance in each bag. The index notation as described previously

will not be suitable in this case.

3.4.3 Delimitation of the problem

The goal of this thesis is to deal with the MIL problem that has the following

three criteria:
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• The instances inside the bags are sequences: To deal with sequences,

we have to deal with data representation.

• All the instances inside a bag contribute to define the bag’s label:

In the problem of bacterial IRR prediction, all the protein sequences con-

tribute to the final decision. The standard MIL assumption is not suitable

to our investigated problem, we adopt instead the collective assumption.

• The instances may have dependencies across the bags: The bags

contain orthologous protein sequences. The across bag relation between

instances could be used in the learning process.

Considering this issue, the problem we want to solve in this work is the

MIL problem in sequence data that have dependencies between instances of

different bags.

3.5 Conclusion

In this chapter, we presented the MIL and some of its applications. We presented

the MIL assumptions and the different levels of learning (i.e. bag level and in-

stance level). Then we provided an overview of some MIL algorithms. Finally, we

explained the particularity of the investigated problem of MIL for sequence data

with across-bag dependencies and provide a formalization of the problem.
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Goals In this chapter we introduce the naive MIL approach for sequence data.

Then, we present our proposed approach named ABClass. We describe the algo-

rithm and we present the experimental study.
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4.1 Naive approach

4.1.1 The algorithm

The simplest way to solve the problem of MIL for sequence data is to use standard

MIL classifiers. The naive approach contains two steps (see Fig. 4.1). We first

make a preprocessing step that transforms the set of sequences to an attribute-

value matrix where each row corresponds to a bag of sequences and attributes

conform the columns. The second step consists in applying an existing MIL clas-

sifier. In the case of sequence data, the most used technique to transform data

to an attribute-value format is to extract motifs that serve as attributes/features.

We note that finding a uniform description of all instances using a set of motifs is

not always an easy task. Since our naive approach takes into account the across

bag relations between instances, the preprocessing step extracts motifs from each

set of related instances. The union of these extracted motifs is then used as fea-

tures to construct an attribute-value matrix where each row corresponds to a bag.

The presence or the absence of an attribute in a sequence is respectively denoted

by 1 or 0. Using this approach, we obtain an attribute-value matrix that contains

a large number of motifs. It is worthwhile to mention that only a subset of the

used attributes is representative for each processed sequence. Therefore, we may

have a big sparse matrix when trying to present the whole sequence data using an

attribute value format.

4.1.2 Running example

In order to illustrate our proposed approach, we rely on the following running

example. Let Σ = {A,B, . . . ,Z} be an alphabet. Let DB = {(B1,+1),(B2,+1),

(B3,−1),(B4,−1),(B5,−1)} a learning database that contains 5 bags (B1 and B2

are positive bags, B3, B4 and B5 are negative bags). Initially, the bags contain the

following sequences:

B1 = {ABMSCD, EFNOGH, RUVR}

B2 ={CCGHDDEF, EABZQCD}

B3 = {GHWMY, ACDXYZ}
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Figure 4.1: System overview of the naive approach for MIL in sequence data

B4 ={ABIJYZ, KLSSO, EFYRTAB}

B5 ={EFFVGH, KLSNAB}

We first use the across bag relation ℜ to represent the related instances using the

index notation as described previously.

B1 =



















B11 = ABMSCD

B12 = EFNOGH

B13 = RUV R

B2 =







B21 = EABZQCD

B22 =CCGHDDEF
B3 =







B31 = ACDXYZ

B32 = GHWMY

B4 =



















B41 = ABIJYZ

B42 = EFY RTAB

B43 = KLSSO

B5 =







B52 = EFFVGH

B53 = KLSNAB
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The goal here is to predict the class label of an unknown bag Q = {Q1,Q2,Q3}

where:

Q =



















Q1 = ABWXCD

Q2 = EFXYGHN

Q3 = KLOF

We apply the naive approach to our running example. We suppose that at-

tributes are subsequences (minimum length = 2) that occur at least in 2 in-

stances. Let AttributeList1 = {AB,CD,Y Z} be the list of features extracted from

the instances {Bi1, i = 1, . . . ,4}. AttributeList2 = {EF,GH} is the list of features

extracted from the instances {Bi2, i = 1, . . . ,5} and AttributeList3 = {KL} is the

list of features extracted from the instances {Bi3, i ∈ {1,4,5}}. The union of

AttributeList1, AttributeList2 and AttributeList3 produces the list AttributeList =

{AB,CD,Y Z,EF,GH,KL}. In order to encode the learning sequence data, we

generate the following attribute-value matrix denoted M. A missing value is de-

noted by "-".

M =

instance 1 instance 2 instance 3
































1 1 0 0 0 0 | 0 0 0 1 1 0 | 0 0 0 0 0 0 B1

1 1 0 0 0 0 | 0 0 0 1 1 0 | − − − − − − B2

0 1 1 0 0 0 | 0 0 0 0 1 0 | − − − − − − B3

1 0 1 0 0 0 | 1 0 0 1 0 0 | 0 0 0 0 0 1 B4

− − − − − − | 0 0 0 1 1 0 | 1 0 0 0 0 1 B5

The sparsity percentage of M is 77.2%. If we have a big learning database, M

could result to a huge and sparse matrix since only a subset of the used subse-

quences is representative for each processed sequence.
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Figure 4.2: System overview of the ABClass approach

4.2 ABClass: Across-Bag sequences Classifica-

tion approach

4.2.1 The approach

ABClass takes advantage of the across-bag relationship between sequences in order

to reduce the number of attributes that are not representative for each processed

sequence during the encoding step. Fig. 4.2 represents the system overview of

ABClass. Each set of related instances will be presented by its own motifs vector.

This relationship is also used during the learning step when generating partial

models. Every vector of motifs will be used to produce a partial prediction result.

These results will be then aggregated to compute the final result. Based on the

formalization, the algorithm discriminates bags by applying a classification model

to each instance of the query bag.

ABClass is described in Algorithm 1. The acrossBagSeq function groups the

related instances among bags into a list. During the execution of the algorithm,
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we will use the following variables:

• A matrix M to store the encoded data of the learning database.

• A vector QV to store the encoded data of the query bag.

• A vector PV to store the partial prediction results.

Informally, the main steps of the ABClass algorithm are:

1. For each instance sequence Qk in the query bag Q, the related instances

among bags of the learning database are grouped into a list (lines 1 and 2).

2. The algorithm extracts motifs from the list of grouped instances. These

motifs are used to encode instances in order to create a discriminative model

(lines 3 to 5).

3. ABClass uses the extracted motifs to represent the instance Qk of the un-

known bag into a vector QVk, then it compares it with the corresponding

model. The comparison result is stored in the kth element of a vector PV

(lines 6 and 7).

4. An aggregation method is applied to PV in order to compute the final

prediction result P (line 9), which consists in a positive or a negative class

label.

4.2.2 Running example

We apply the ABClass approach to our running example. Since the query bag

contains 3 instances Q1, Q2 and Q3, we need 3 iterations followed by an aggre-

gation step.

Iteration 1: The algorithm groups the set of instances that are related across

bags and extracts the corresponding motifs.

AcrossBagsList1 = {B11,B21,B31,B41}

Moti f List1 = {AB,CD,Y Z}
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Algorithm 1 ABClass algorithm

Input: Learning database DB = {(Bi,Yi)|i = 1,2, . . . ,n} , Query bag Q = {Qk|k =
1,2, . . . ,q}

Output: Prediction result P

1: for all Qk ∈ Q do
2: AcrossBagSeqListk← AcrossBagSeq(k,DB)
3: Moti f Listk←Moti f Extractor(AcrossBagsListk)
4: Mk← EncodeData(Moti f Listk,AcrossBagsListk)
5: Modelk← GenerateModel(Mk)
6: QVk← EncodeData(Moti f Listk,Qk)
7: PVk← ApplyModel(QVk,Modelk)
8: end for
9: P← Aggregate(PV )

10: return P

Then, it generates the attribute-value matrix M1 describing the sequences related

to Q1.

M1 =

AB CD Y Z




















1 1 0 B11

1 1 0 B21

0 1 1 B31

1 0 1 B41

The sparsity percentage of the produced matrix M1 is reduced to 33% because

there is no need to use the motifs extracted from instances {Bi2, i = 1, ..,5} and

{Bi3, i ∈ 1,4,5} to describe instances {Bi1, i = 1, ..,4}. A model is then created

using the encoded data and a vector QV1 is generated to describe Q1.

QV1 =







1

1

0







By applying the model to the vector QV1, we obtain the first partial prediction

result and we store it into the vector PV .
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PV1← ApplyModel(QV1,Model1)

Iteration 2: The second iteration concerns the second instance Q2 of the

query bag. We do the same instructions described in the first iteration.

AcrossBagsList2 = {B21,B22,B32,B42,B52}

Moti f List2 = {EF,GH}

M2 =

EF GH
































1 1 B12

1 1 B22

0 1 B32

1 0 B42

1 1 B52

QV2 =

(

1

1

)

PV2← ApplyModel(QV2,Model2)

Iteration 3: Only B1, B4 and B5 have related instances to Q3.

AcrossBagsList3 = {B13,B43,B53}

Moti f List3 = {KL}

M3 =

KL












0 B13

1 B43

1 B53

QV3 =
(

1

)

PV3← ApplyModel(QV3,Model3)

The aggregation step is finally used to generate the final prediction decision

using the partial prediction results. We opt for the majority vote.
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4.3 Creating the bacterial IRR database

We created a dataset composed of bags of real sequence data. Table 4.1 shows

the 28 bacteria (the bags): 14 IRRB (B1 to B14) and 14 IRSB (B15 to B28).

Each bacterium contains 25 to 31 primary structures of proteins implicated in basal

DNA repair in IRRB. Table 4.2 contains the used proteins. More details about

the number of proteins in each bacterium and the number of protein sequences in

each positive bag (IRRB) and negative one (IRSB) are provided in Appendix A.

Bacteria represent the bags and protein sequences represent the instances. The

used across-bag relation is the orthology. Orthologous genes are assumed to have

the same biological functions in different species.

Information on complete and ongoing IRRB genome sequencing projects was

obtained from the GOLD database [Liolios et al., 2008]. We initiated our analyses

by retrieving orthologous proteins implicated in basal DNA repair in IRRB and IRSB

with sequenced genomes. Proteins of the bacterium Deinococcus radiodurans

(B7) were downloaded from the UniProt website. In the preprocessing step, we

used the perfectBLAST [Santiago-Sotelo and Ramirez-Prado, 2012] tool in order

to identify orthologous proteins. Proteomes of other bacteria were downloaded

from the NCBI FTP website. We note that some proteins do not have any ortholog

in some bags. We do not have the same number of instances in each bag. The

dataset is publicly available in the following link: https://homepages.loria.

fr/SAridhi/software/MIL/#downloads .

4.4 Experimental study

We applied the naive approach and ABClass to solve the problem of IRR predic-

tion in bacteria. The proposed MIL-based prediction systems aim to affiliate an

unknown bacterium to either IRRB or IRSB.
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4.4.1 Experimental environment

For our tests, we used the dataset described in Section 4.3. We used WEKA

[Hall et al., 2009] data mining tool in order to apply existing well known classifiers

to test the proposed approaches. When running ABClass experiments, we used

the following classifiers: SVM, SMO, IBk (a K-nearest neighbor implementation),

J48 (an implementation of C4.5 decision tree algorithm) and Logistic (a logistic

regression based classifier). In order to test the naive approach, the following

classifiers of WEKA were used: MISVM (implementation of the instance based mi-

SVM algorithm), MISMO (uses the SMO algorithm [Platt, 1998] for SVM learning

in conjunction with a multiple instance kernel), citationKNN (multiple instance

extension of K-nearest neighbor algorithm), MILR (multiple instance adaptation

of the logistic regression classification), MITI (a decision tree algorithm adapted

to multiple instance settings) and QuickDDIterative (an iterative faster version of

the basic DD algorithm).

4.4.2 Experimental protocol

In order to evaluate the naive approach and the ABClass approach, we first encode

the protein sequences of each bag using a set of features/motifs generated by an

existing motif extraction method. Then, we apply an existing classifier to the

encoded data. We used the Leave-One-Out (LOO) evaluation technique. In our

tests, we used DMS [Maddouri and Elloumi, 2004] as a motif extraction method.

DMS allows building motifs that can discriminate a family of proteins from other

ones. It first identifies motifs in the protein sequences. Then, the extracted motifs

are filtered in order to keep only the discriminative and minimal ones. A substring

is considered to be discriminative between the family F and the other families

if it appears in F significantly more than in the other families. DMS extracts

discriminative motifs according to α and β thresholds where α is the minimum

rate of motif occurrences in the sequences of a family F and β is the maximum

rate of motif occurrences in all sequences except those of the family F . In the

following, we present the used motif extraction settings according to the values of

α and β :
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Table 4.1: IRRB and IRSB learning set.

ID Bacterium Phylogenetic group D10 (kGy)a

B1 Chroococcidiopsis thermalis PCC 7203 Cyanobacteria 4b [Billi et al., 2002]
B2 Deinococcus deserti VCD115 Deinococcus-Thermus >7.5 [Slade and Radman, 2011]
B3 Deinococcus geothermalis DSM 11300 Deinococcus-Thermus 10-16 [Slade and Radman, 2011]
B4 Deinococcus gobiensis I 0 Deinococcus-Thermus 12.7 [Slade and Radman, 2011]
B5 Deinococcus maricopensis DSM 21211 Deinococcus-Thermus ∼11 [Rainey et al., 2005]
B6 Deinococcus proteolyticus MRP Deinococcus-Thermus >15 [Brooks and Murray, 1981]
B7 Deinococcus radiodurans R1 Deinococcus-Thermus 10 [Ito et al., 1983]
B8 Geodermatophilus obscurus DSM 43160 Actinobacteria 9 [Gtari et al., 2012]
B9 Kineococcus radiotolerans SRS30216 Actinobacteria 2 [Phillips et al., 2002]
B10 Kocuria rhizophila DC2201 Actinobacteria 2c [Rainey et al., 1997] [Brooks and Murray, 1981]
B11 Methylobacterium radiotolerans JCM 2831 Proteobacteria 1 [Green and Bousfield, 1983] [Ito and Iizuka, 1971]
B12 Modestobacter marinus Actinobacteria 6 [Gtari et al., 2012]
B13 Rubrobacter xylanophilus DSM 9941 Actinobacteria 5.5 [Ferreira et al., 1999]
B14 Truepera radiovictrix DSM 17093 Deinococcus-Thermus >5 [Albuquerque et al., 2005]
B15 Brucella abortus S19 Proteobacteria 0.34 [Federighi and Tholozan, 2001]
B16 Escherichia coli B REL606 Proteobacteria 0.7 [Daly et al., 2004]
B17 Escherichia coli str. K-12 substr. DH10B Proteobacteria 0.7 [Daly et al., 2004]
B18 Neisseria gonorrhoeae FA 1090 Proteobacteria 0.07-0.125 [Daly et al., 2004]
B19 Neisseria gonorrhoeae TCDC NG08107 Proteobacteria 0.07-0.125 [Daly et al., 2004]
B20 Pseudomonas putida S16 Proteobacteria 0.25 [Daly et al., 2004]
B21 Shewanella oneidensis MR-1 Proteobacteria 0.07 [Daly et al., 2004]
B22 Shigella dysenteriae1617 Proteobacteria 0.22 [Federighi and Tholozan, 2001]
B23 Thermus thermophilus HB27 Deinococcus-Thermus 0.8 [Federighi and Tholozan, 2001]
B24 Thermus thermophilus HB8 Deinococcus-Thermus 0.8d [Federighi and Tholozan, 2001]
B25 Thermus thermophilus JL-18 Deinococcus-Thermus 0.8d [Federighi and Tholozan, 2001]
B26 Thermus thermophilus SG0.5JP17-16 Deinococcus-Thermus 0.8d [Federighi and Tholozan, 2001]
B27 Vibrio parahaemolyticus RIMD 2210633 Proteobacteria 0.03-0.06 [Federighi and Tholozan, 2001]
B28 Yersinia enterocolitica 8081 Proteobacteria 0.1-0.21 [Federighi and Tholozan, 2001]

a. D10: Dose for 90% reduction in Colony Forming Units (CFUs); for IRRB, it is greater than 1 kGy.
b. for Chroococcidiopsis spp.
c. for Kocuria rosea.
d. for T. thermophilus HB27.
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Table 4.2: Replication, repair and recombination proteins.

ID Protein Function

P1 Hypothetical DNA polymerase

DNA polymerase
P2 DNA polymerase III, α subunit
P3 DNA-directed DNA polymerase
P4 DNA polymerase III, τ/γ subunit

P5 Single-stranded DNA-binding protein

Replication
complex

P6 Replicative DNA helicase
P7 DNA primase
P8 DNA gyrase, subunit B
P9 DNA topoisomerase I
P10 DNA gyrase, subunit A

P11 Smf proteins

Other DNA-
associated
proteins

P12 Endonuclease III
P13 Holliday junction resolvase
P14 Formamidopyrimidine-DNA glycosylase
P15 Holliday junction DNA helicase
P16 RecF protein
P17 DNA repair protein radA
P18 Holliday junction binding protein
P19 Excinuclease ABC, subunit C
P20 DNA repair protein RecN
P21 Transcription-repair coupling factor
P22 Excinuclease ABC, subunit A
P23 DNA helicase II
P24 DNA helicase RecG
P25 Exonuclease SbcD, putative
P26 Exonuclease SbcC
P27 Ribonuclease HII
P28 Excinuclease ABC, subunit B
P29 A/G-specific adenine glycosylase
P30 RecA protein
P31 DNA-3-methyladenine glycosidase II, putative

• S1 (α = 1 and β = 0.5): used to extract frequent motifs with medium

discrimination.

• S2 (α = 1 and β = 1): used to extract frequent motifs without discrimina-
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tion.

• S3 (α = 0.5 and β = 1): used to extract motifs having medium frequencies

without discrimination.

• S4: (α = 0 and β = 1): used to extract infrequent and non discriminative

motifs.

• S5: (α = 1 and β = 0): used to extract frequent and strictly discriminative

motifs.

We calculated the accuracy, specificity and sensitivity results of the used ap-

proaches. It is helpful at this point to introduce the confusion matrix which could

be presented as:

Real class

Positive (IRRB) Negative (IRSB)

P
re

d
ic

te
d

cl
as

s Positive True prositive False prositive

(IRRB) (TP) (FP)

Negative False negative True Negative

(IRSB) (FN) (TN)

The accuracy measures the proportion of true results (both true positives and

true negatives) among the total number of classified bags. The specificity rate

measures the proportion of actual negatives which are correctly identified as such.

The sensitivity rate measures the proportion of actual positives which are correctly

identified as such. In terms of the above confusion matrix, the accuracy, specificity

and sensitivity are defined as:

accuracy = (TP +TN)/(TP +FP +FN +TN).

sensitivity = TP /(TP + FN )

specificity = TN/(FP +TN).
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Table 4.3: Sparsity of the attribute-value matrix used in the naive approach.

Motif extraction Total number Sparsity
setting of motifs (%)

S1 519 84.3
S2 1141 84
S3 4167 89.6
S4 7670 93.5

4.4.3 Experimental results

In order to use standard multiple instance classifiers, we apply a preprocessing

technique that consists in extracting motifs from each set of protein sequences

using the DMS method. Table 4.4 presents for each extraction setting the number

of extracted motifs from each set of orthologous protein sequences. For the set-

ting S5 (α = 1 and β = 0), there is no frequent and strictly discriminative motifs

for most proteins. This is why we will not use these values of α and β for our

next experiments. We note that the number of extracted motifs increases for high

values of β and low values of α . As presented in Table 4.3, the number of infre-

quent and non discriminative motifs is very high. In order to encode data in the

naive approach, the union of the extracted motifs from each protein is used as at-

tributes. Consequently, the attribute-value matrix representing the data becomes

large and sparse since only a small subset of the used motifs is representative for

each protein. We show in Table 4.3 the sparsity of the matrix which measures

the fraction of zero elements over the total number of elements. The sparsity is

generally proportional to the number of used motifs. For example, it goes from

84% with 1141 motifs to 93.5% with 7670 motifs.

ABClass provides good overall accuracy, specificity and sensitivity results (see

Figures 4.3, 4.4 and 4.5) compared to those obtained using the naive approach.

This shows that the proposed approach is efficient. The best result is reached

using ABClass approach and the motif extraction settings S1, S2 and S3. Using

these three settings, a minimum threshold of frequency and/or discrimination

should be reached when extrcating motifs. The figures 4.3 (a) and (b) show the
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Table 4.4: Number of extracted motifs for each set of orthologous protein se-
quences using a minimum motif length = 3.

Protein ID
Motif extraction setting

S1 S2 S3 S4 S5

P1 348 352 612 2226 229
P2 15 76 1139 5152 0
P3 6 41 681 4361 0
P4 2 21 446 3751 0
P5 1 1 119 1698 0
P6 11 29 349 3379 0
P7 5 18 371 3907 1
P8 3 62 484 3910 0
P9 7 42 780 4211 0
P10 25 90 719 3830 0
P11 3 7 200 2769 0
P12 4 17 144 1871 0
P13 0 1 111 1544 0
P14 2 12 133 2444 0
P15 3 50 303 2071 0
P16 0 1 187 2659 0
P17 3 27 349 2712 0
P18 0 1 81 1752 0
P19 7 14 427 3800 0
P20 2 20 343 3218 0
P21 21 79 882 4581 1
P22 18 173 785 3910 1
P23 5 43 524 4152 0
P24 5 48 520 3861 0
P25 1 5 264 2563 0
P26 22 72 778 3355 2
P27 5 9 162 1667 0
P28 16 111 572 3308 1
P29 2 11 189 2729 0
P30 9 66 281 1852 0
P31 0 0 92 2061 0

Total 551 1499 13072 95304 235
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(a) Naive approach (b) ABClass approach

Figure 4.3: Accuracy results of the naive approach and ABClass

(a) Naive approach (b) ABClass approach

Figure 4.4: Sensitivity results of the naive approach and ABClass
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Table 4.5: Rate of successful classification models for each bacterium using AB-
Class approach and LOO evaluation method

Bacterium ID
S1 motif extraction setting S4 motif extraction setting

SVM SMO Logistic IBk J48 SVM SMO Logistic IBk J48

B1 86.3 86.3 90.9 90.9 81.8 24 68 80 44 60
B2 96.2 96.2 96.2 96.2 96.2 61.2 100 100 100 96.7
B3 92.5 92.5 92.5 92.5 92.5 61.2 100 100 100 90.3
B4 96.1 96.1 96.1 96.1 92.3 66.6 100 100 100 93.3
B5 100 100 100 100 92.3 53.3 100 100 100 86.6
B6 100 100 100 100 92.3 46.6 100 100 100 86.6
B7 88.8 88.8 92.5 92.5 88.8 58 100 100 100 93.5
B8 92 92 92 92 92 41.3 100 100 96.5 93.1
B9 95.6 92 91.3 91.3 86.9 36 100 100 96 84
B10 88 100 88 88 84 32.1 100 100 92.8 82.1
B11 54.1 62.5 45.8 45.8 41.6 14.2 17.8 46.4 10.7 46.4
B12 91.6 91.6 91.6 91.6 91.6 42.8 100 100 100 92.8
B13 95.6 95.6 95.6 95.6 82.6 25.9 92.5 96.2 18.5 66.6
B14 84 80.7 84.6 84.6 61.5 33.3 96.6 96.2 43.3 70
B15 83.3 83.3 87.5 87.5 79.1 17.8 10.7 3.5 10.7 28.5
B16 100 100 100 100 100 80 100 100 100 100
B17 95.8 95.8 95.8 95.8 95.8 81.4 96.2 96.2 100 96.2
B18 100 100 100 100 100 68 100 100 100 100
B19 100 100 100 100 100 65.3 100 100 100 100
B20 88 96 92 92 88 51.7 86.2 89.6 93.1 58.6
B21 100 100 100 100 100 55.1 93.1 93.1 93.1 82.7
B22 96.1 96.1 96.1 96.1 96.1 80 100 100 100 100
B23 88.8 92.5 96.2 96.2 92.5 48.3 100 100 100 96.7
B24 88.8 92.5 96.2 96.2 92.5 48.3 100 100 100 100
B25 88.8 92.5 96.2 96.2 92.5 48.3 100 100 100 96.7
B26 88.8 92.5 96.2 96.2 92.5 48.3 100 100 100 100
B27 100 100 100 100 100 62.9 100 100 100 96.2
B28 96.1 96.1 96.1 96.1 96.2 66.6 96.6 100 96.6 96.6
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(a) Naive approach (b) ABClass approach

Figure 4.5: Specificity results of the naive approach and ABClass

impact of the motif extraction settings on the prediction results using the naive

approach and ABClass. For example, using MISVM classifier, the accuracy varies

from 53.5% using S1 to 82.1% using S3. Although the motifs extracted using S1

are discriminative, the naive approach does not provide good accuracy results for

most multiple instance classifiers. For some classifiers, the results using S1 are the

lowest comparing with the other motif extraction settings. However, using this

setting, ABClass provides good results since it reaches 100% of accuracy using

SVM, SMO and IBk classifiers, 96.4% using Logistic and 93.3% using J48. This

could be explained by the fact that the naive approach looses the advantage of

representing the instances using discriminative motifs when it uses the union of

all motifs in the data encoding step. Using S4, ABClass does not reach 100%

of accuracy although it succeeds to reach it with some classifiers using the other

three settings S1, S2 and S3. No constraints related to frequency (α = 0) or

discrimination (β = 1) were required when extracting motifs using S4.

We compute the rate of classification models that contribute to predict the

true class of each bacterium using ABClass approach (see Table 4.5). In each

LOO iteration, this rate is calculated for each bag as the quotient of the number

of models (already generated for each set of related sequences) which successfully
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predict the class of that bag by the total number of sequences which belong to that

bag. We present this rate for the motif extraction setting that provides the best

accuracy rates i.e., S1 and the setting that provides low accuracy pourcentages,

i.e., S4. The rate of successful classification models that does not exceed 60% are

marked with bold text. The two bacteria B11 and B15 often generate low rates.

Biological explanation

The results illustrated in Table 4.5 may help to understand some characteristics

of the studied bacteria. In particular, the IRRB M. radiotolerans (B11) and the

IRSB B. abortus (B15) present a high rate of failed predictions. Although B11 is

sometimes successfully classified, its higher successful classification rate does not

exceed 62.5%. The rate of B15 does not reach 30% using S4. M. radiotolerans

is often predicted as IRSB and B. abortus is predicted as IRRB; the former is an

intracellular parasite [Halling et al., 2005] and the latter is an endosymbiont of most

plant species [Fedorov et al., 2013]. We provided a possible biological explanation

in [Aridhi et al., 2016] and [Zoghlami et al., 2018b]. The explanation could

be the increased rate of sequence evolution in endosymbiotic bacteria [Woolfit

and Bromham, 2003]. As our training set is composed mainly of members of

the phylum Deinococcus-Thermus; expectedly, the Deinococcus bacteria (B2-B7)

present a very low rate of failed predictions.

4.5 Conclusion

In this chapter, we presented the naive MIL approach for sequence data. We de-

scribed our novel approach for MIL in sequence data with across-bag relations. We

applied it to the problem of prediction of IRR in bacteria. By running experiments,

we have shown that the proposed approach is efficient.
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Goals This chapter introduces the ABSim approach for MIL in sequence data

with across-bag dependencies. we provide a description of the algorithm and

the two used aggregation methods. We apply ABSim to the illustrative running

example used in the previous chapter. Finally, we present an experimental study

by applying ABSim to solve the bacterial IRR prediction problem.
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5.1 ABSim: Across-Bag sequences Similarity

approach

We propose an algorithm, named ABSim, that focuses on discriminating bags

based on a similarity measure which could be defined according to the specificity of

the processed instances. ABSim was originally presented in [Aridhi et al., 2016] as

an algorithm used for IRR prediction. When applied on genomic sequences, ABSim

uses the alignment score as similarity measure to compare protein sequences.

5.1.1 The approach

According to the specificity of the processed data, a similarity measure can be

defined and used to discriminate instances. In order to discriminate the bags,

ABSim measures the similarity between each sequence in the query bag and its

corresponding related sequences in the different bags of the learning database.

Let M be a matrix used to store similarity measurement score vectors during the

execution of the algorithm. The ABSim algorithm works as follows (see Algorithm

2).

Algorithm 2 set AcrossBagSequencesSimilarity(DB, Q)

Input: Learning database DB = {(Bi,Yi)|i = 1,2 . . . ,n} , Query bag Q = {Qk|k =
1,2, . . . , p}

Output: Prediction result P

1: for all Qk ∈ Q do
2: for all Bi ∈ DB do
3: Mik ← similarityMeasure(Qk,Bik) {Bik is the instance number k in the

bag Bi}
4: end for
5: end for
6: P← Aggregate(M)
7: return P

Informally, the algorithm is described as follows:

1. For each instance sequence Qk in the query bag Q, it computes the corre-

sponding similarity scores (line 1 to 4). The similarity scores of all instances
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of the query bag are grouped into a matrix M (line 3). The element Mik

corresponds to the similarity score between the instance Qk of Q and the

instance Bik of the bag Bi.

2. An aggregation method is applied to M in order to compute the final pre-

diction result P (line 6). According to the aggregation result, a class label

is associated to the query Bag.

5.1.2 Aggregation methods: SMS and WAMS

In our work, we define two aggregation methods: Sum of Maximum Scores (SMS)

and Weighted Average of Maximum Scores (WAMS). Algorithms 3 and 4 illustrate

the SMS and WAMS aggregation methods.

For each sequence in the query bacterium, we scan the corresponding line of

M, which contains the obtained scores against all the other bags of the training

database. The SMS method selects the maximum score among the similarity

scores against bags that belong to the positive class label (which we call maxP)

and the maximum score among the similarity scores against bags that belong to

the negative class label (which we call maxN). These scores are then compared.

If maxP is greater than maxN , it adds maxP to the total score of the positive class

label (which we denote totalP(M)). Otherwise, it adds maxN to the total score of

the negative class label (which we denote totalN(M)). When all selected sequences

were processed, the SMS method compares total scores of positive class label and

negative class label. If totalP(M) is greater than totalN(M), the prediction output

is the positive class label. Otherwise, the prediction output is the negative class

label.

Using the WAMS method, each sequence Qi has a given weight wi. For each

sequence in the query bag, we scan the corresponding line of M, which contains

the obtained scores against all other bags of the training database. The WAMS

method selects the maximum score among the similarity scores against bags that

belong to positive class label (which we denote maxP(M)) and the maximum score

among the similarity scores against bags that belong to the negative class label

(which we denote maxN(M)). It then compares these scores. If the maxP(M) is



72
Chapter 5. Similarity-based MIL approach for sequence data with across-bag

dependencies

Algorithm 3 SMS(M)

Input: Similarity matrix M = {Mi j|i = 1,2 . . . ,n and j = 1,2 . . . , p}
Output: A prediction result P

1: totalP← 0

2: totalN ← 0

3: for i ∈ [1;n] do
4: maxP← 0

5: maxN ← 0

6: for j ∈ [1; p] do
7: if Y j =+1 and Mi j ≥ maxP then
8: maxP←Mi j

9: else if Yj =−1 and Mi j ≥ maxN then
10: maxN ←Mi j

11: end if
12: end for
13: if maxP ≥ maxN then
14: totalP← totalP +maxP

15: else
16: totalN ← totalN +maxN

17: end if
18: end for
19: if totalP ≥ totalN then
20: P←+1

21: else
22: P←−1

23: end if
24: return P

greater than maxN(M), it adds maxP(M) multiplied by the weight of the sequence

to the total score of the positive class label and it increments the number of

positive bags having a max score. Otherwise, it adds maxN(M) multiplied by

the weight of the sequence to the total score of the negative class label and it

increments the number of negative bags having a max score. When all the selected

sequences were processed, we compare the average of total scores of positive class

labels (which we denote avgP(M)) and the average of total scores of negative

class labels (which we denote avgN(M)). If avgP(M) is greater than avgN(M),

the prediction output is the positive class label. Otherwise, the prediction output
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Algorithm 4 WAMS(M, W )

Input: Similarity matrix M = {Mi j|i= 1,2 . . . ,n and j = 1,2 . . . , p}, Weight vector
W = {wi|i = 1,2 . . . , p}

Output: A prediction result P

1: totalP← 0

2: totalN ← 0

3: nbP← 0

4: nbN ← 0

5: for i ∈ [1; p] do
6: maxP← 0

7: maxN ← 0

8: for j ∈ [1;n] do
9: if Y j =+1 and Mi j ≥ maxP then

10: maxP←Mi j

11: else if Yj =−1 and Mi j ≥ maxN then
12: maxN ←Mi j

13: end if
14: end for
15: if maxP ≥ maxN then
16: totalP← totalP +(maxP ·wi)
17: nbP← nbP +1

18: else
19: totalN ← totalN +(maxN ·wi)
20: nbN ← nbN +1

21: end if
22: end for
23: avgP(M)← totalP/nbP

24: avgN(M)← totalN/nbN

25: if avgP(M)≥ avgN(M) then
26: P←+1

27: else
28: P←−1

29: end if
30: return P
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is the negative class label.

5.1.3 Running example

In order to apply the ABSim approach to our running example, we use a simple

similarity measure that consists in the number of common symbols between the

sequences. The first iteration computes the common symbols between the instance

Q1 of the query bag and the four related instances B11, B21, B31 and B41 (there

is no related instance in the bag B5). The results are stored in the first column of

the matrix M.

M =

































4 − − B1

4 − − B2

4 − − B3

2 − − B4

− − − B5

(5.1)

The second iteration computes the similarity score between the instance Q2 and

its five related sequences. The results are stored in the second column of M.

M =

































4 5 − B1

4 4 − B2

3 3 − B3

2 3 − B4

− 5 − B5

(5.2)

The last iteration computes the third column of the matrix M.

M =

































4 5 0 B1

4 4 − B2

3 3 − B3

2 3 3 B4

− 5 2 B5

(5.3)
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Using the SMS aggregation method, we have the following results:

totalP(M) = 9

totalN(M) = 0

The query bag Q is finally classified as positive. In order to use the WAMS

aggregation method, we need to specify a weight value for each instance. We

suppose that all sequences are equally weighted, then we have the following results:

avgP(M) = 4.5

avgV (M) = 0

The query bag Q is finally classified as positive.

5.2 Experimental study

5.2.1 Experimental environment

We used the dataset described in the previous chapter in Section 4.3. The sim-

ilarity measure used when applying the ABSim approach is the local alignment

bit-score computed using the BLAST alignment tool. We downloaded the stan-

dalone executable of BLAST+ 1 and integrated it into our pipeline using the

command-line. In each run, the alignment used two related sequences (a query

and a subject). Appendix B shows two examples of two sequence alignment results

(an alignment using two IRRB and another one using one bacterium IRRB and

one bacterium IRSB).

5.2.2 Results

In order to study the importance of considering the problem of predicting bacterial

IRR as a multiple instance learning problem, we present in Table 5.1 the experi-

mental results using a set of proteins to represent the studied bacteria. For each

1https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&

DOC_TYPE=Download
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set of proteins and for each aggregation method, we present the accuracy, the

sensitivity and the specificity percentages. The WAMS aggregation method was

used with equally weighted proteins. We notice that the use of the whole set of

proteins to represent the studied bacteria allows good accuracy accompanied by

high values of sensitivity and specificity. This can be explained by the pertinent

choice of basal DNA repair proteins to predict the phenotype of IRR. The high

values of specificity presented by ABSim indicate the ability of this algorithm to

identify negative bags (IRSB). Using all proteins, we have 92.8% of accuracy and

specificity. As shown in Table 5.1, the SMS aggregation method allows better

results than the WAMS aggregation method using the whole set of proteins to

represent the studied bacteria. Using the other subsets of proteins (DNA poly-

merase, replication complex and other DNA-associated proteins) to represent the

bacteria, SMS and WAMS present the same results.

Table 5.2 presents for each bacterium in the learning database the number of

runs that succeed to classify the bacterium. More than 89% of tested bacteria

show successful predictions of 100%. This means that we succeed to correctly

predict the IRR phenotype of those bacteria. On the other hand, the results

illustrated in Table 5.2 may help to understand some characteristics of the studied

bacteria. In particular, the IRRB M. radiotolerans (B11) and the IRSB B. abortus

(B15) present a high rate of failed predictions. We note that results are similar to

those found using ABClass. A possible biological explanation is provided at the

end of the Section 4.4.3.

Figures 4.3, 5.2 and 5.3 show that both ABClass and ABSim approaches

provide good overall results compared to those obtained using the naive approach.

A better result could be provided either by ABClass or by ABSim according to

the used settings. The highest accuracy pourcentage was reached using ABClass

and the motif extraction settings S1, S2 and S3 (see Section 4.4.3 ). The results

provided by ABSim using the SMS aggregation method are slightly better than

those obtained using WAMS. ABSim does not use motifs to represent data since

no encoding step is needed. The local alignment score is used to perform the

prediction. This makes ABSim faster and easier to use than ABClass unless we

already have the representative motifs for each set of orthologous proteins or if
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Table 5.1: Experimental results of ABSim with LOO-based evaluation technique.

Used proteins Aggregation Accuracy Sensitivity Specificity
method (%) (%) (%)

All proteins SMS 92.8 92.8 92.8
WAMS 89.2 92.3 86.6

DNA polymerase SMS 89.2 92.3 86.6
proteins WAMS 89.2 92.3 86.6

Replication complex SMS 92.8 92.8 92.8
proteins WAMS 92.8 92.8 92.8

Other DNA-associated SMS 92.8 92.8 92.8
proteins WAMS 92.8 92.8 92.8

(a) Naive approach (b) ABClass (c) ABSim

Figure 5.1: Accuracy results of the naive approach, ABClass and ABSim.

we think that the extraction of motifs will not be an expensive task (according to

the data size, the used motifs extractor and the extraction settings e.g. required

motifs length).
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Table 5.2: Number of successful predictions (for 8 runs): The following 4 settings

were used with SMS and WAMS aggregation methods: (1) all proteins (2) DNA poly-

merase proteins (3) replication complex proteins and (4) other DNA-associated proteins.

Phenotype Bacterium ID Successful predictions

IRRB

B1 8
B2 8
B3 8
B4 8
B5 8
B6 8
B7 8
B8 8
B9 8
B10 8
B11 0
B12 8
B13 8
B14 5a

IRSB

B15 0
B16 8
B17 8
B18 8
B19 8
B20 8
B21 8
B22 8
B23 8
B24 8
B25 8
B26 8
B27 8
B28 8

a. Successfully classified bacterium using 5 settings: (1) all proteins with SMS

aggregation method (2) replication complex proteins with SMS and WAMS

aggregation methods and (3) other DNA-associated proteins with SMS and WAMS

aggregation methods.
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(a) Naive approach (b) ABClass (c) ABSim

Figure 5.2: Sensitivity results of the naive approach, ABClass and ABSim.

(a) Naive approach (b) ABClass (c) ABSim

Figure 5.3: Specificity results of the naive approach, ABClass and ABSim.
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5.3 Conclusion

In this chapter, we described a novel approach called ABSim for MIL in sequence

data with across-bag dependencies. It uses a matrix to store similarity measure-

ment score vectors to discriminate the related instances. Then it applies an aggre-

gation step in order to generate the final classification result. We applied ABSim

and ABClass presented in Chapter 4 to solve the problem of IRR prediction in

bacteria. By running experiments, we have shown that the proposed approaches

are efficient. A better accuracy result could be provided by ABClass according to

the used settings.
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6.1 Summary of the contributions

6.1.1 ABClass: a motif-based MIL approach for se-

quence data with across-bag dependencies

We addressed the issue of MIL in the case of sequence data. We focused on data

that present relationships between instances of different bags. The first contribu-

tion of this thesis consists of an MIL approach that provides a prediction about the

bacterial IRR. We developed a motif-based MIL tool for bacterial IRR prediction.

We proposed an MIL formalization of the problem: each bacterium represent a

bag and protein sequences represent the instances inside this bag. Some instances

are related across the bags: the orthologous proteins. ABClass takes into account

this relations in the learning process. Each sequence is represented by one vector

of attributes extracted from the set of related instances. For each sequence of the

unknown bag, a discriminative classifier is applied in order to compute a partial

classification result. Then, an aggregation method is applied in order to generate

the final result. We applied ABClass to solve the problem of bacterial Ionizing

Radiation Resistance (IRR) prediction. We manually construct the dataset. The

experimental results were satisfactory.

6.1.2 ABSim: a similarity-based MIL approach for se-

quence data with across-bag dependencies

The second contribution of this thesis consists of an MIL approach that uses a

similarity measure to compare sequences instead of extracting motifs from related

instances and use them to represent the sequences of the bags and then apply a

classical classifier to make the prediction. ABSim discriminates bags by measuring

the similarity between each sequence in the query bag and its corresponding related

sequences in the different bags of the learning database. When applied on protein

sequences, ABSim uses the alignment score as similarity measure. ABSim and

ABClass were used to solve the problem of IRR prediction in bacteria. By running

experiments, we have shown that the proposed approaches are efficient. A better
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Table 6.1: Tools related to protein signatures identification.

Tool Description

InterProScan 5 [Jones et al., 2014] scans sequences against InterPro
signatures.

PfamScan [Mistry et al., 2007] searches sequences against a collection of
[Li et al., 2015] Pfam HMMs.
HMMER-hmmbuilda constructs profiles from multiple

sequence alignments
HMMER-hmmscana searches sequence(s) against a profile

database
Pratt [Jonassen, 1997] Searches for patterns conserved in sets of
[Li et al., 2015] unaligned protein sequences.

a http://www.hmmer.org/

accuracy result could be provided by ABClass according to the used settings.

6.2 Future work and prospects

In this section, we present the main axes of our future works.

6.2.1 Short-term perspective

ABClass is based on motifs extracted from across-bag related instances. We aim

to extend our work by including different protein signatures including patterns

and domains in the learning process. We started by exploring the usefulness of

using protein domains to solve the bacterial IRR prediction problem. Table 6.1

presents a short description of the tools which could be used to determine protein

signatures.

Motifs vs domains

Both motifs and domains are parts of the protein chain. But there are differences

between them.

A protein domain could be seen as an independent unit which has a function.

A motif is a particular arrangement of amino acids that can be found in other

proteins, it does not necessary depict a functional role. A domain is always a
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functional unit of the protein. An other main difference is that domains are in-

dependent units. If they are cleaved off the protein chain, motifs will loose their

functions while domains will be still able to perform their functions.

Using domains in our approach

Using protein domain annotation could be an alternative to sequence similarity

searches [Bouchot et al., 2014]. We are exploring the possibility of using protein

domains in the classification step. Domain databases were presented in the section

2.1.3.3. We propose to start by using Interproscan tool in order to identify protein

domains of each instance of each bag and use them to encode the sequences. In-

terproscan is a software that allows sequences to be scanned against InterPro’s sig-

natures. It is available at https://www.ebi.ac.uk/interpro/interproscan.

html/. The diagnostic uses protein signatures from multiple databases includ-

ing Pfam, PROSITE, PRINTS, SMART, SUPERFAMILY, TIGRFAMs and PAN-

THER. Figure 6.1 shows the InterProScan analysis of the protein DNA polymerase

III subunit alpha of the bacterium Deinococcus radiodurans R1. The provided

annotations concern families and domains from different source databases.

6.2.2 Long-term perspectives

6.2.2.1 Multi-criteria learning

We aim to introduce other criteria in the step of the data representation: using

some bio-chemical criteria to represent the sequences instead of using motifs to

represent the data. Some criteria could be the protein domain and some numeric

properties such as hydrophobicity, aromaticity, isoelectric point(pI), instability In-

dex (II), alpha-helix, coil and beta sheet.

6.2.2.2 Defining weights of the protein sequences

We will study how to use the a priori knowledge in order to improve the efficiency

of our algorithm. In fact, some proteins may have more impact in making a

bacterium resistant to ionising radiation than other proteins. We specifically want

to define weights for sequences using a priori knowledge in the learning phase.
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Figure 6.1: Graphical representation of the InterProScan analysis of the protein
P2 of the bacterium B7

6.2.2.3 Extend the dataset

We encountered difficulty in defining the baterial IRR dataset used in this thesis:

bags that contain sequences with across-bag dependencies. In the future work, we

aim to define a larger dataset in order to study the computational complexity. One

possible solution could be to construct a dataset containing genomic sequences of

other extremophiles.
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Appendix A

Further details about the

dataset

This appendix gives further details about the bags and instances of the used

dataset. Table A.1 contains the number of proteins for each bacterium and Table

A.2 contains the number of occurrences of each type of protein sequence in the

positive bags (IRRB) and in the negative bags (IRSB).

Table A.1: Number of protein sequences for each bacterium.

IRRB ID Number of IRSB ID Number of
proteins proteins

B1 25 B15 28
B2 31 B16 30
B3 31 B17 27
B4 30 B18 25
B5 30 B19 26
B6 30 B20 29
B7 31 B21 29
B8 29 B22 30
B9 25 B23 31
B10 28 B24 31
B11 28 B25 31
B12 28 B26 31
B13 27 B27 27
B14 30 B28 30

Total for IRRB 403 Total for IRSB 405
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Table A.2: Number of occurrences of each type of protein sequence in the positive
and negative bags.

Protein ID Positive bags Negative bags

P1 11 4
P2 14 14
P3 14 13
P4 13 14
P5 13 14
P6 13 14
P7 14 14
P8 11 14
P9 14 14
P10 13 14
P11 14 14
P12 13 14
P13 12 14
P14 14 14
P15 14 14
P16 13 12
P17 14 14
P18 14 14
P19 13 14
P20 14 14
P21 14 13
P22 14 13
P23 13 14
P24 13 14
P25 11 10
P26 10 10
P27 11 14
P28 13 14
P29 12 14
P30 14 13
P31 13 9

Total 403 405



Appendix B

Examples of sequence alignment

In this appendix, we provide two sequence alignment results provided by BLAST.

- Alignment of the two protein sequences P4 of the two bacteria B6

and B7 (Two IRRB).

BLASTP 2.2.26+

Query= tr|Q9RRS5|Q9RRS5_DEIRA DNA polymerase III, tau/gamma subunit

OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM

16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422)

GN=DR_2410 PE=4 SV=1

Length=615

Subject= gi|325283277|ref|YP_004255818.1| DNA polymerase III, subunits gamma

and tau [Deinococcus proteolyticus MRP]

Length=810

Score = 655 bits (1691), Expect = 0.0, Method: Compositional matrix adjust.

Identities = 368/523 (70%), Positives = 417/523 (80%), Gaps = 25/523 (5%)

Query 1 MSAIYQRARPIRWEDVVGQEHVKDVLRTALEQGRIGHAYLFSGPRGVGKTTTARLIAMTA 60

MSAIYQRARPI W++VVGQEH+K VL+TALEQGR+GHAYLFSGPRGVGKTTTARLIAMTA

Sbjct 1 MSAIYQRARPIHWDEVVGQEHIKGVLKTALEQGRVGHAYLFSGPRGVGKTTTARLIAMTA 60

Query 61 NCTGPAPKPCGECESCLAVRAGSHPDVMEIDAASNNSVDDVRDLREKVGLAAMRGGKKIY 120

NCTGP PKPCGECE+C AVRAGSHPDV+EIDAASNNSV+DVR+LREKVGLA MRGGKKIY

Sbjct 61 NCTGPQPKPCGECENCRAVRAGSHPDVLEIDAASNNSVEDVRELREKVGLAPMRGGKKIY 120

Query 121 ILDEAHMMSRAAFNALLKTLEEPPEHVIFILATTEPEKIIPTILSRCQHYRFRRLTSEEI 180

ILDEAHMMSRAAFNALLKTLEEPPEHVIFILATTEPEKIIPTILSRCQHYRFRRLT+EEI

Sbjct 121 ILDEAHMMSRAAFNALLKTLEEPPEHVIFILATTEPEKIIPTILSRCQHYRFRRLTAEEI 180

Query 181 AGKLAGLVTLEGASADPDALNLIGRLADGAMRDGESLLERMLAAGTAVTRPAVEEALGLP 240

AGKLAGL EG SA+P+AL LIGRLADGAMRDGESLLERMLAAGTAVTR +VEEALGLP

Sbjct 181 AGKLAGLAEGEGVSAEPEALGLIGRLADGAMRDGESLLERMLAAGTAVTRRSVEEALGLP 240

Query 241 PGERVRGVASALLVGDAGEAISGAAQLYRDGFAARTVVEGLVAAFGAALHAELGL----- 295

PGE++R +A AL GDAG A+S A +LYR GFAARTVVEGLV A A+HAELG+

Sbjct 241 PGEQMRALAGALAQGDAGPALSSAGELYRAGFAARTVVEGLVEALSQAIHAELGVLEGAE 300

Query 296 GEEGRLEGAEVPRLLKLQAALDEQEARFARSADQQS----LELALTHALLAADGGTGGGA 351

+ RL+GA+VPRLL+LQAALDEQEARF+R+AD S L AL A ADG GGGA

Sbjct 301 AQAARLDGADVPRLLRLQAALDEQEARFSRAADLLSLELALTHALLAADGGADGSAGGGA 360

Query 352 PSLGSAATSAPAQVPGDLLQRLNRLEKELSTLRSAPRAAAPASAVPAAPA--------EK 403

+ +AA +A V DL RL+RLE+EL+ LR+ A APA+A PA PA +

Sbjct 361 AAARAAAPAASPAVSSDLAARLSRLERELAALRAGESAVAPAAAAPAGPAVDDFDPGQRR 420

Query 404 RGPAPAREAVREAAASIAP-AAAPTQGSWADVMAQTTMQMRAFLKPARMHAQDGYVSLTY 462
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R PAP A AP AAP G+WADV+ +MQ RAFLKPARMHA+ GYVSL+Y

Sbjct 421 RTPAP-------VGARPAPQVAAPANGTWADVLGMVSMQTRAFLKPARMHAEAGYVSLSY 473

Query 463 EDRSSFHAKQVAGKFDELAALVERVFGPITFELIAPEGLGRKR 505

+ + SFHA+Q+ K DEL L+ERVFGP+T ELI +G G ++

Sbjct 474 DAKGSFHARQIMTKLDELTPLLERVFGPVTLELITADGSGGRK 516

Lambda K H

0.315 0.130 0.375

Gapped

Lambda K H

0.267 0.0410 0.140

Effective search space used: 444096

Matrix: BLOSUM62

Gap Penalties: Existence: 11, Extension: 1

Neighboring words threshold: 11

Window for multiple hits: 40

- Alignment of the two protein sequences P4 of the two bacteria

B7 (IRRB) and B16 (IRSB)

BLASTP 2.2.26+

Query= tr|Q9RRS5|Q9RRS5_DEIRA DNA polymerase III, tau/gamma subunit

OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM

16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422)

GN=DR_2410 PE=4 SV=1

Length=615

Subject= gi|254160539|ref|YP_003043647.1| DNA polymerase III subunits gamma

and tau [Escherichia coli B str. REL606]

Length=643

Score = 230 bits (586), Expect = 3e-070, Method: Compositional matrix adjust.

Identities = 118/250 (47%), Positives = 161/250 (64%), Gaps = 2/250 (1%)

Query 6 QRARPIRWEDVVGQEHVKDVLRTALEQGRIGHAYLFSGPRGVGKTTTARLIAMTANC-TG 64

++ RP + DVVGQEHV L L GRI HAYLFSG RGVGKT+ ARL+A NC TG

Sbjct 8 RKWRPQTFADVVGQEHVLTALANGLSLGRIHHAYLFSGTRGVGKTSIARLLAKGLNCETG 67

Query 65 PAPKPCGECESCLAVRAGSHPDVMEIDAASNNSVDDVRDLREKVGLAAMRGGKKIYILDE 124

PCG C++C + G D++EIDAAS V+D RDL + V A RG K+Y++DE

Sbjct 68 ITATPCGVCDNCREIEQGRFVDLIEIDAASRTKVEDTRDLLDNVQYAPARGRFKVYLIDE 127

Query 125 AHMMSRAAFNALLKTLEEPPEHVIFILATTEPEKIIPTILSRCQHYRFRRLTSEEIAGKL 184

HM+SR +FNALLKTLEEPPEHV F+LATT+P+K+ TILSRC + + L E+I +L

Sbjct 128 VHMLSRHSFNALLKTLEEPPEHVKFLLATTDPQKLPVTILSRCLQFHLKALDVEQIRHQL 187

Query 185 AGLVTLEGASADPDALNLIGRLADGAMRDGESLLERMLAAGT-AVTRPAVEEALGLPPGE 243

++ E + +P AL L+ R A+G++RD SL ++ +A+G V+ AV LG +

Sbjct 188 EHILNEEHIAHEPRALQLLARAAEGSLRDALSLTDQAIASGDGQVSTQAVSAMLGTLDDD 247

Query 244 RVRGVASALL 253

+ + A++

Sbjct 248 QALSLVEAMV 257

Score = 18.5 bits (36), Expect = 0.84, Method: Compositional matrix adjust.

Identities = 10/24 (42%), Positives = 13/24 (54%), Gaps = 0/24 (0%)

Query 404 RGPAPAREAVREAAASIAPAAAPT 427



V

R P P E R++ A +AP A T

Sbjct 362 RMPLPEPEVPRQSFAPVAPTAVMT 385

Lambda K H

0.315 0.130 0.375

Gapped

Lambda K H

0.267 0.0410 0.140

Effective search space used: 349085

Matrix: BLOSUM62

Gap Penalties: Existence: 11, Extension: 1

Neighboring words threshold: 11

Window for multiple hits: 40



Multiple instance learning for sequence data: Application on bacterial ionizing

radiation resistance prediction

Abstract:

In Multiple Instance Learning (MIL) problem for sequence data, the instances inside the
bags are sequences. In some real world applications such as bioinformatics, comparing a ran-
dom couple of sequences makes no sense. In fact, each instance may have structural and/or
functional relationship with instances of other bags. Thus, the classification task should take
into account this across-bag relationship. In this thesis, we present two novel MIL approaches
for sequence data classification named ABClass and ABSim. ABClass extracts motifs from
related instances and use them to encode sequences. A discriminative classifier is then applied
to compute a partial classification result for each set of related sequences. ABSim uses a simi-
larity measure to discriminate the related instances and to compute a scores matrix. For both
approaches, an aggregation method is applied in order to generate the final classification result.
We applied both approaches to the problem of bacterial ionizing radiation resistance prediction.
The experimental results were satisfactory.
Keywords: multiple instance learning, sequence data classification, prediction of bacterial ion-
izing radiation resistance.

Apprentissage multi-instance des données de séquences: Application à la prédiction de

la radio-résistance chez les bactéries.

Resumé:

Dans l’apprentissage multi-instances (MI) pour les séquences, les données d’apprentissage
consistent en un ensemble de sacs où chaque sac contient un ensemble d’instances/séquences.
Dans certaines applications du monde réel, comme la bioinformatique, comparer un couple aléa-
toire de séquences n’a aucun sens. En fait, chaque instance de chaque sac peut avoir une
relation structurelle et/ou fonctionnelle avec d’autres instances dans d’autres sacs. Ainsi, la
tâche de classification doit prendre en compte la relation entre les instances sémantiquement
liées à travers les sacs. Dans cette thèse, nous présentons deux approches de classification MI
des séquences nommées ABClass et ABSim. ABClass extrait les motifs à partir des instances
reliées et les utilise pour encoder les séquences. Un classifieur discriminant est ensuite appliqué
pour calculer un résultat de classification partiel pour chaque ensemble de séquences liées. AB-
Sim utilise une mesure de similarité pour discriminer les instances reliées et calcule une matrice
de scores. Pour les deux approches, une méthode d’agrégation est appliquée afin de générer le
résultat final de la classification. Nous appliquons les deux approches au problème de prédiction
de la résistance aux rayonnements ionisants chez les bactéries. Les résultats expérimentaux sont
satisfaisants.
Mots-clés: apprentissage multi-instances, classification des séquences , prédiction de la résis-
tance aux rayonnements ionisants chez les bactéries.
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