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Résumé
La dynamique des plasmas de fusion par confinement magnétique dans la configuration Re-
versed Field Pinch (RFP) est étudiée en utilisant la description magnétohydrodynamique
(MHD) incompressible. Une méthode pseudo-spectrale et une technique de pénalisation
en volume sont utilisées pour résoudre le système d’équations dans un cylindre. Les sim-
ulations numériques montrent que la pression joue un rôle important dans la dynamique
des RFP et ne peut pas être négligée. Ainsi, β n’est plus le paramètre principal pour
décrire la dynamique des RFPs mais plutôt β′∇, un nouveau paramètre qui équivaut le
rapport du module de gradient de pression et le module de la force de Lorentz. A un autre
niveau, l’effet du changement de la section polöıdale du RFP sur la dynamique est étudié.
Les simulations des écoulements RFP ayant le même nombre de Lundquist et des sections
différentes (circulaire et elliptique), montrent une grande différence dans les spectres et la
diffusion turbulente radiale. Finalement, les écoulements RFP sont utilisés pour étudier
l’effet dynamo. Les résultats obtenus montrent que les écoulements RFP sont capables
d’amplifier un champ magnétique passif qui aura une tendance à être plus non-linéaire que
le champ magnétique du RFP dans les régimes turbulents.

Mots clés: magnétohydrodynamique, reversed field pinch, gradient de pression, effet de
la géométrie, modes toró’idaux, diffusion turbulente, dynamo cinématique.

Abstract
The dynamics of magnetic fusion plasmas in the Reversed Field Pinch (RFP) configuration
are studied using an incompressible magnetohydrodynamics (MHD) description. A pseudo-
spectral method combined with a volume penalization method are used to resolve the
governing equations in a straight cylinder. Numerical simulations show that the pressure
effects on the RFP dynamics cannot be neglected, and thus the β parameter is not adequate
to characterize the importance of pressure in the dynamics. A new parameter, β′∇, which is
the ratio of the pressure gradient’s magnitude to the Lorentz force’s magnitude, is proposed
to be the proper parameter to describe the RFP dynamics. Another investigated influence
on the RFP dynamics is the shaping of the poloidal cross-section. Simulations of flows
with the same Lundquist number and different cross-sections (circular and elliptic) show a
clear change in the spectral behaviour, as well as in the radial turbulent diffusion. Finally,
the RFP flows are used to study the dynamo effect. Numerical results show that RFP
flows are capable of amplifying a seed magnetic field, which will have tendency to be more
nonlinear than the RFP magnetic field in the turbulent regime.

Keywords: magnetohydrodynamics, reversed field pinch, pressure gradient, shaping ef-
fect, toroidal modes, turbulent diffusion, kinematic dynamo.
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Chapter 1

A short introduction to
magnetically confined fusion

1.1 Introduction

After the second world war, the industrial sector witnessed a fast global development that
led to a large increase in the world’s energy consumption. In 2010, the world energy
consumption is estimated at 550 × 1018 Joules per year, where the main energy resource,
as shown in Figure 1.1(a), was and still is fossil fuel (natural gas, oil and coal). This
primary energy resource is vital for factories’ operation, transportations and electric power
generation. However, its reserves are expected to seriously diminish starting year 2051 (see
Figure 1.1(b)).

Alternative sources of energy are thus proposed to gradually replace fossil fuel, like solar
energy, wind energy and nuclear fission power. Solar and wind energies are relatively easy to
collect, but are for the near future not expected to generate sufficient amounts of energy to
replace fossil fuels. Nuclear fission yields large amounts of radioactive waste and its safety
risks are well-known. Nuclear fusion, if achieved, could possibily generate larger amounts
of energy by using two isotopes of hydrogen that can be obtained by processing water, a
resource considered as almost unlimited. Furthermore, nuclear fusion is not limited by any
weather constraints and generates a small amount of nuclear waste compared to nuclear
fission. In the latter, heavy uranium atoms are split into other heavy atoms and release
thermal energy, while the fusion of hydrogen’s isotopes (deuterium and tritium) generates
light particles like helium and releases a colossal amount of thermal energy. Therefore,
fusion seems a promising alternative to fossil fuels.

A controlled thermonuclear fusion reaction can be achieved using two methods: inertial

1



2CHAPTER 1. A SHORT INTRODUCTION TO MAGNETICALLY CONFINED FUSION

(a) (b)

Figure 1.1: (a) Time evolution of the world consumption of different energy resources [1],
(b) expected time evolution of fossil energy reserves [2].

confinement fusion and magnetic confinement fusion. In the first, a high-energy laser beam
hits a pellet that consists of a deuterium-tritium mixture, heats it and compresses it, thus
initiating the fusion reaction. In the second, a deuterium-tritium (several other compnents
can also be used, but deuterium-tritium is considered the most promising mixture) plasma
is heated up to temperatures of the order of 150× 106 K [3] to initiate the fusion reaction.
This can be done by several methods, like ohmic heating which consists in inducing a
current in the conductor plasma, neutral beam injection which consists in introducing high-
energy particles that interact with the plasma, and radio-frequency heating which is done
by sending high-frequency electromagnetic waves with suitable wavelength and polarization
so its energy can be transferred to charged particles in the plasma. At high temperatures,
the plasma is ionized and hence becomes controllable by magnetic fields. This is the concept
of a Magnetic Confinement Fusion (MCF) reactor, where strong magnetic fields are used
to hold the hot ionized plasma isolated from the reactor’s wall, since no material on planet
earth can support such high temperatures.

In the past decades, several magnetic configurations were proposed to achieve controlled
thermonuclear fusion reactions. Between these configurations, three configurations re-
mained most promising: the tokamak, the Reversed Field Pinch (RFP) and the stellarator.
In the remainder of this chapter, we will briefly introduce each of these configurations.
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(a) (b)

Figure 1.2: (a) Tokamak magnetic components, (b) poloidal cross-section of a tokamak
showing the Last Closed Flux Surface (LCFS).

1.2 Tokamak

Historically, the construction of the first experimental tokamak, named T-3, started in
1956 at the Kurchatov Institute Moscow. It was not until 1968 that this Soviet institute
made a breakthrough on their upgraded tokamak, the T-4, in Novosibirsk, where the
first ever quasistationary thermonuclear fusion reaction was obtained. Indeed, a fusion
reaction was observed, but the energy to obtain the required conditions was orders of
magnitude larger than the energy released from the reaction. Nevertheless this result
motivated earlier fusion-energy researchers, and made the tokamak a candidate to achieve
sustainable nuclear fusion. In consequence, the construction and operation of experimental
tokamaks started in different parts of the world, like the Joint European Torus (JET) in
the UK in 1973, the Japan Tokamak 60 (JT-60) in Japan in 1985, Tore Supra in France in
1988, etc. Later on, nuclear fusion research became of major interest for the international
political powers, and this led to the collaboration of seven international parties (China,
the European Union, India, Japan, Korea, Russia and the United States) to construct the
International Thermonuclear Experimental Reactor (ITER) in Cadarache, France. ITER
is a D-shaped tokamak, designed to produce 500 MW of fusion power from 50 MW of input
power. It is expected to start operating in 2032. The geometrical and electrical parameters
of different tokamak devices are shown in table 1.3.

The tokamak is a toroidal magnetic confinement fusion (MCF) reactor, characterized by its
coils enveloping a plasma-containing vessel, and a vertical solenoid installed at the center
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(Figure 1.2a). The coils generate the toroidal magnetic field Bt, while the central solenoid
generates a toroidal electric current It in the plasma, which induces a poloidal magnetic
field Bp. The resulting helical magnetic field, with a toroidal component several times
larger than the poloidal one, is supposed to hold the plasma isolated from the vessel’s
walls. Metallic plates, called “limiters”, are installed close to the wall to set the plasma
confinement boundary, thereby protecting the vessel walls from the hot plasma. Nowa-
days, limiters are replaced in some tokamaks by ’divertors’ (see Figure 1.2b) which set the
confined plasma boundary, called the Last Closed Flux Surface (LCFS), using magnetic
fields instead of solid surfaces.

The design and operation of large scale tokamaks is a challenge for plasma-physics, material-
engineering and a number of other disciplines. Some major problems are due to the inter-
action of the hot plasma with the limiters and divertors, which are subjected to high heat
loads and high fluxes of deuterium. Metallic impurities are formed through the interac-
tion of the plasma with the walls and transported by the plasma. High concentrations of
impurities can dilute the plasma and interrupt the fusion reaction. Avoiding this is one of
the current challenges in tokamak design. Actual research on divertors aims to decrease
its rate of impurity injection and control its heat absorption.

Another challenge for tokamak confinement is disruptive processes. A disruption, gen-
erated by a nonlinear MHD instability, leads to the loss of magnetic confinement, hence
magnetic and thermal energy are rapidly lost, and the fusion reaction is abruptly termi-
nated. Disruptions represent a great risk to the vessel as the highly accelerated electrons
can damage the wall once the confinement is lost. Control of MHD instabilities is therefore
a major issue in tokamak research.

A breakthrough in tokamak physics was the observation of the L-H transition. When the
input power exceeds a certain threshold, the plasma reorganizes into a self-sustained regime
where the radial transport from the hot central core to the edge region diminishes due to
the formation of a shear flow near the boundary, called a transport barrier. This regime,
characterized by the suppression of turbulence, is called high confinement or H-mode, while
the regime before the formation of the transport barrier is called low confinement or L-mode
[4]. When the L-H transition occurs, the plasma accumulates near the transport barrier.
Therefore, during this high confinement regime strong pressure and density gradients are
observed near this barrier, that increase the risk of a disruptive instability where the barrier
relaxes and ejects the plasma to the edge region. This instability is called an Edge Localized
Mode (ELM). Current studies on reducing ELMs and disruptions include the injection of
different impurities in order to distribute uniformly the power density over the vessel walls
and minimize possible excessive localized heat load.

MHD instabilities and the associated violent disruptions are the price one pays in tokamaks
in order to have a well-controlled magnetic field. Indeed, an alternative is to allow the
MHD instabilities to take place and to try to control the dynamics resulting from these
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instabilities. This is the strategy followed in Reversed Field Pinches that we will discuss
now.

Figure 1.3: (Left) geometrical and electrical parameters of different tokamak devices, where
R0 is the major radius of the torus and r = a the minor radius of the poloidal cross-section,
(right) schematic figure of the toroidal geometry.

1.3 Reversed Field Pinch

Figure 1.4: Schematic fig-
ure of the helical magnetic
field in RFP.

The Reversed Field Pinch (RFP) is a toroidal MCF reactors
with a magnetic geometry similar to the one of the tokamak:
an imposed toroidal magnetic field combined with a poloidal
magnetic field, associated with an induced toroidal current.
Meanwhile, RFP differs from a tokamak by the magnitude of
the toroidal magnetic field, which is of the same order as the
one of the poloidal magnetic field.

When the toroidal current exceeds a certain threshold
(Kruskal-Shafranov threshold), a helical MHD instability is
triggered. This instability gives in general rise to a complex
chaotic interplay of helical structures of different spatial fre-
quency, reorganizing the plasma into a quasi-stationary state
where the toroidal component reverses close to the boundary, whence the name of this reac-
tor. The self-organization of this toroidal magnetic field, which has the originally imposed
sign in the center and reversed close to the boundary, makes the RFP a disruption-free
reactor since it corresponds to a full MHD relaxation of the magnetic field [5]. Hence, no
limiters or divertors are needed in RFPs to protect the vessel from disruptive events. How-
ever, this self-organization leads to a magnetic turbulence and chaos that might deteriorate
the confinement.

The first reversal states were observed in the ZETA machine at Culham (UK) in 1958,
when the RFP dynamics were still unknown. ZETA was a toroidal pinch (z-pinch) created
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by a toroidal magnetic field Bt using external coils, and a toroidal current It in the plasma.
Experiments done on ZETA showed the remarkable feature of plasma relaxation: the
plasma goes from an initial highly unstable state to a largely stable one, where the sign
of the toroidal field at the edge is reversed relatively to the central one when the toroidal
current is large enough. In 1974, J.B Taylor proposed a remarkable relaxation theory [6]
which illustrates the reversal phenomenon observed in ZETA experiment and predicts the
plasma to become multi-helical and chaotic at high energy regimes. This theory will be
outlined in Chapter 2.

After the interesting results obtained from the ZETA experiments, construction and oper-
ation of multiple RFP devices helped better understanding of RFP dynamics, like MST in
the USA, RFX-mod in Italy, EXTRAP T2R in Sweden, RELAX in Japan, and recently
the KTX machine in China. The geometrical and electrical parameters of different RFP
devices are shown in table 1.1. In the 2000s quasi-single-helicity (QSH) states were de-
tected within turbulent flows in the RFX experiment [7–9]. These states are characterized
by the appearance of a quiescent helical structure in the plasma core, which improves the
plasma confinement [10–12]. These results motivated a small part of the fusion community
to reconsider the RFP as a suitable candidate for nuclear fusion [13]. Recent studies show
that high current regimes [14] and helical magnetic perturbations [15, 16] are the key to
reduce magnetic turbulence in RFPs. Furthermore, increasing toroidal current is bene-
ficial for RFPs since it increases the ohmic heating of the plasma, allowing to approach
temperatures at which fusion can take place.

Machine R0 a It Bt

MST 1.5 m 0.5 m 0.6 MA -
RFX-mod 2 m 0.459 m 2 MA -
EXTRAP T2R 1.24 m 0.18 m 300 kA -
RELAX 0.51 m 0.25 m 80 kA -
KTX 1.4 m 0.4 m 1 MA 0.7 T

Table 1.1: Geometrical and electrical parameters of different RFP devices.

1.4 Stellarator

Both the tokamak and the RFP have a helical magnetic field, which is essential to obtain
a correct confinement. The poloidal magnetic field is obtained by an imposed toroidal
current. An alternative way to obtain a helical magnetic field is to change the position of
the poloidal coils, as illustrated in Figure 1.5. This is the idea behind the stellarator.

The stellarator was invented by Lyman Spitzer in 1951 at the Princeton Plasma Physics
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Figure 1.5: Design of a stellarator where the coils are in blue, the plasma in yellow and
magnetic field line in green.

Laboratory (PPPL). It was in 1953 that the first model A’s operation started and it
demonstrated improved confinement. Later on, the reccurence of the “pump-out” technical
issue that led to the loss of plasma in larger devices, demonstrated poor performance of the
stellarator model. With the breakthrough made in the tokamak at the Kurchatov Institute,
the fusion community lost its interest in constructing a commercial fusion reactor based on
the stellarator model, and focused its interest on the tokamak model. The later problems
and difficulties encountered in tokamaks were similar to the previous ones observed in the
stellarator. This, with the development of new methods to manufacture improved magnetic
coils, pushed a part of the fusion community to reconsider the stellarator as a promising
reactor. Hence, multiple large devices have been built worldwide, namely the Wendelstein
7-X (W7-X) in Germany, Helically Symmetric eXperiment (HSX) in the USA and the
Large Helical Device (LHD) in Japan. A remarkable breakthrough was made in February
2016 when the first hydrogen plasma was produced in W7-X, where the plasma electron
temperature reached 108 K and the ion temperatures reached 107 K. The next goal for
W7-X planned to be achieved in 2021 is to operate for a 30 minutes duration. Reaching
such a phase will be a great demonstration of continuous operation which is an essential
feature of a future nuclear fusion reactor.

The stellarator has a toroidal geometry like the two previous reactors, however its magnetic
configuration is different. In this reactor, the central solenoid is absent, hence no toroidal
current is driven in the plasma, and the imposed magnetic field is generated by complex
poloidal coils that are not toroidally symmetric. These coils are shaped in a sophisticated
way to assure the twist of the magnetic field, shown in Figure 1.5(a), in order to avoid
the instabilities seen in purely toroidal reactors. The divertor geometry in a stellarator is
significantly different from the one in tokamaks. Unlike the poloidal divertor in tokamak
that imposes a separatrix by introducing additional poloidal fields, the stellarator’s diver-
tor configuration is based on the interaction with exhibited edge magnetic structures. It
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consists in installing several plates along different regions of the vessel’s wall which collect
undesirable particles and impurities, and neutralize them so they can be removed subse-
quently by a pumping system. Since the toroidal symmetry is absent in stellerators, the
divertor is three-dimensional and the magnetic field at the edge presents a stochastic lay-
er. Numerical study of the edge stochastic behavior becomes difficult since it requires 3D
transport models where no flux surfaces exist. In addition, the precision of the fabrication
and assembly of coils and coil support structures raises the complexity of the design of
stellarator reactors with respect to tokamaks and RFPs. However, the main advantage of
stellarators is their ability to operate continuously due to their steady state magnetic field,
unlike tokamaks which operate in pulsed mode, since the central solenoid that induces
plasma current is a transformer coil which can only operate in pulsed mode. Further-
more, stellarator’s dynamics are disruption free and do not suffer from any current-driven
instabilities.

1.5 Overview of the rest of this manuscript

We have briefly described the three principle MCF-geometries. Technologically, the toka-
mak is the most advanced one, and a large part of the global fusion-research budget is spent
on the enormous technical difficulties which are encountered in its design and operation.
The stellarator seems a promising reactor but its geometry is fairly complicated.

The technically easiest configuration is the RFP, but its development is much more im-
mature than that of tokamaks. However, if the flow within an RFP can be understood
and controlled, RFPs might become the fusion reactor of the future, especially since their
magnetic field is easier to create than in tokamaks, their geometry simpler compared to
stellarators, and the plasma heating needed to attain fusion conditions is obtained by the
Joule dissipation in the plasma itself, unlike in tokamaks, where additional heating is re-
quired to obtain fusion conditions. In the remainder of this manuscript we will focus on
the RFP geometry and try to further contribute to the understanding of the RFP within
the MHD description.

In the next chapter, we will first briefly discuss the different plasma descriptions and
some key-features of RFP dynamics, followed by the discussion of the numerical methods
employed in this thesis in chapter 3. In chapter 4 we will focus on the influence and the
role of the pressure in RFPs. Then in chapter 5 we will see how the shape of the plasma
containing vessel modifies the dynamics. Finally in chapter 6 we will further study the
magnetic field modification and dynamo observed in cylindrical MHD simulations.



Chapter 2

Plasma description and the
Reversed Field Pinch

As soon as the international community started to consider nuclear fusion as a promising
source of energy, building a test reactor became a priority. In order to design a successful
reactor, two issues have to be studied among other things: the fusion plasma dynamics,
and the geometrical configuration of the reactor. As will be shown in chapter 5, these two
features are strongly related, since the geometry will influence the dynamics. Changing
the geometry of a reactor after construction is obviously complicated, given the nature
of the reactors. Indeed after construction only minor modifications are possible so that
numerical tests in the conception phase are primordial. For this to be successful, a precise
enough description of the plasma is needed. The choice of the description is not straight-
forward.

In hydrodynamics, the collective behavior of fluid particles in most applications can be
described by a continuum description, and the macroscopic velocity can be captured by
the Navier-Stokes equations. The individual Boltzmann particle dynamics can thereby
be simplified dramatically. For plasmas such a simplification is not straightforward, and
a whole hierarchy of models exists, ranging from detailed particle dynamics (the Vlasov-
equation) towards a continuum description (Magnetohydrodynamics (MHD)). Depending
on the precise application, a more or less precise description of the plasma dynamics is
needed.

In early fusion research, ideal MHD was used to derive analytical models for magnetostatic
equilibria. An example is the famous Grad-Shafranov equation [17, 18]. Ideal MHD was
used as well in variational approaches [6] to study RFP dynamics in an attempt to describe
the reversal phenomenon observed in the ZETA machine. Such models provided reasonable
insights on the plasma dynamics and instabilities in RFPs when Direct Numerical Simula-

9
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tions (DNS) were not yet capable to compute global plasma dynamics at the reactor scale.
Later on, with the growth of computational power, highly resolved MHD simulations and
experiments proved that the behavior of the RFP plasma is not ideal. Resistive edges play
a major role in the field reversal phenomenon, and the plasma gets self-organized in the
range of some parameters leading to a better confinement. We will now briefly discuss
some plasma descriptions. Note that in order to be concise, we give a very much simplified
outline of the different descriptions. For further details we refer to the reference papers
and textbooks on the different subjects.

2.1 The Vlasov equation and the gyrokinetic model

Figure 2.1: (Left) The helical trajectory of the charged particle around a field line, (middle,
right) the gyrokinetic coordinates.

In hydrodynamics, the Boltzmann description considers the statistical behavior of a fluid
by calculating the probability distribution of the position and the velocity of each particle
at instant t. Analytically, the Boltzmann equation is derived by considering first the
probablility density function f(x,v, t) in a unit phase-space unit volume d3xd3v. If an
external force Fe is exerted on each particle, and in the absence of particle collisions, the
new position at t + ∆t is x + v∆t and velocity v + (Fe∆t)/m, where m is the particle’s
mass. Furthermore, the probability density function must satisfy,

f(x+ v∆t,v + (Fe∆t)/m, t+ ∆t)d3xd3v = f(x,v, t)d3xd3v, (2.1)

and thereby its total derivative is,

df

dt
= ∂f

∂t

dt

dt
+ ∂f

∂x

dx

dt
+ ∂f

∂v

dv

dt

= ∂f

∂t
+ v · ∂f

∂x
+ Fe
m
· ∂f
∂v

= 0
(2.2)

This is called the collisionless Boltzmann equation. When the fluid is a collisionless plasma,
strongly magnetized, the external force is the Coulomb force and equation (2.2) becomes
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the Vlasov equation,

∂f

∂t
+ v · ∂f

∂x
+ q

m

(
E + 1

c
v ×B

)
· ∂f
∂v

= 0, (2.3)

where c is the speed of light, E the electric field and B the magnetic field. These quantities
are described by the Maxwell equations,

∇ ·E = ρe
ε0
, (2.4)

∇ ·B = 0, (2.5)

∇×E = −∂B
∂t

, (2.6)

∇×B = 1
ε0c2

(
J + ε0

∂E

∂t

)
, (2.7)

where ρe and ε0 are the total electric charge density and the permittivity of vacuum,
respectively.

The trajectory of a charged particle in a magnetic field is a combination of a fast rotation
around the field line, also called guiding center, and a slow translation along this line. The
resulting movement is a helix winding around the magnetic line as shown in Figure 2.1.
In the gyrokinetic model, the gyromotion is considered irrelevant, thus only the guiding
center’s motion is described. This is done first by combining the Vlasov equations and the
following gyrokinetic variables change,

x = R+ ρ, (2.8)

where ρ is the gyroradius. Then the resulting equations are gyrophase-averaged 〈· · · 〉 =
(2π)−1 ∮ · · · dθ, leading to the final equation,

∂〈f〉
∂t

+ ∂R

∂t
· ∂〈f〉
∂R

+
∂v‖
∂t

∂〈f〉
∂v‖

= 0, (2.9)

where v‖ = v ·B/B2, 〈f〉 = 〈f〉(R, µ, v‖, t), µ ≈ v2
⊥/(2B), v⊥ = sin θe1 + cos θe2, and the

subscripts ‖ and ⊥ means respectively parallel and orthogonal to the magnetic field B(for
detailed demonstration see [19,20]).

The gyrokinetic approximation is a highly detailed description of a plasma, for instance,
used to study microturbulence and particle transport in tokamaks driven by ion tempera-
ture gradient (ITG) and electron temperature gradient (ETG) modes.
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The gyrokinetic model is effectively 5D instead of 6D since the gyro-averaging reduces
the system by one dimension. This reduces the complexity, but it is in particular the
timescales which are changed. The gyro-averaging removes the fast gyrofrequency which
allows to win orders of magnitude of computational time. However, even so the gyrokinetic
system remains a very expensive system compared to continuum approaches and only long
simulations on the world’s largest supercomputers allow to compute parts of a reactor on
fusion relevant timescales [21].

The simplest continuum approach, MHD, will be discussed in the following.

2.2 The MHD description

The Magnetohydrodynamic (MHD) approximation is commonly used to study the global
dynamics of fusion plasmas over time scales relevant to the bulk dynamics. MHD equations
were first derived from kinetic equations by Braginskii [22]. The main assumptions are that
one can neglect the electron inertia relative to the ion inertia and that the plasma can be
considered charge-neutral. In the following, we derive the MHD equations using the force
balance applied on a conducting fluid element containing charged particles.

Let’s consider a particle carrying a charge q moving with velocity u in a medium exposed
to a time-varying magnetic field B. This particle is subject to three electromagnetic forces:
the electrostatic or Coulomb force fc = qEc, the force exerted by the time-varying magnetic
field fi = qEi, and the Lorentz force fl = q(u×B). Ec and Ei are respectively the electric
field resulting from the interaction of the charge with other charges, and the electric field
induced by B. Furthermore, B and Ei are related by Faraday’s law,

∇×Ei = −∂B
∂t

, (2.10)

and Ec is curl-free (Coulomb’s law),

∇×Ec = 0. (2.11)

The sum of the three forces, fr, can be written in terms of a resulting electric field Er,

fr = q(Ec +Ei + u×B) = qEr. (2.12)

Now if we consider a unit volume of a conducting fluid element dV , the resulting electro-
magnetic force Fr is obtained by summing equation (2.12) over dV . The sum of q gives the
charge density ρe, and the sum of qu gives the current density J . The volumetric version
of (2.12) is therefore

Fr = ρe(Ec +Ei) + J ×B, (2.13)
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where Fr is the electromagnetic force per unit volume. The first term on the r.h.s of
equation (2.13) is negligible for fluids moving with a velocity much smaller than the one of
light, and the current density J is given by Ampere’s law,

∇×B = µJ (2.14)

where µ is the magnetic permeability. The force on a fluid element due to the conducting
character of the fluid is therefore Fl = J × B. This force should be added to the other
forces, due to the pressure gradient and viscous friction.

The velocity field’s evolution of a conducting fluid with density ρ and kinematic viscosity
ν, is then described by the Navier-Stokes equation combined with the Lorentz force,

ρ(∂u
∂t

+ u · ∇u) = −∇P + ρν∆u+ J ×B. (2.15)

In order to obtain the induction equation describing the evolution of the magnetic field,
we need to apply Ohm’s law first. It yields,

J = σEr = σ(Ec +Ei + u×B), (2.16)

where σ is the conductivity of the fluid. Taking the curl of (2.16) and combining it with
(2.10) and (2.11) gives the induction equation,

∂B

∂t
= ∇× (u×B)−∇× J

σ
. (2.17)

Considering that B is solenoidal (∇·B = 0), and noting that ∇×∇×B = −∆B, equation
(2.17) simplifies to

∂B

∂t
= ∇× (u×B) + λ∆B, (2.18)

with λ = (µσ)−1 the magnetic diffusivity.

In the following we will consider the MHD description stated in Alfveńic variables. This
means that all velocities are normalized using the Alfveń velocity, CA = B0/

√
ρµ, where

B0 is a reference magnetic field (typically the imposed toroidal or poloidal magnetic field).
The current density is normalized such that J = ∇ × B. Using this normalization, the
Navier-Stokes equation becomes

∂u

∂t
+ u · ∇u = −∇P + J ×B + S−1∆u, (2.19)

where S = CAL/ν is the viscous Lundquist number and L is a characteristic length-
scale.
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2.3 Ideal MHD

Equations (2.15) and (2.18) constitute without their dissipative terms on the r.h.s, the ideal
MHD equations. This is the most basic single-fluid model, commonly used for determining
the macroscopic equilibrium and stability properties of fusion plasmas. These equations
give rise to a number of conservation laws. The conserved quantities are:

• mass,
dM

dt
= 0, (2.20)

we will consider in the following incompressible flow, so that mass conservation can be
expressed locally by the constraint ∇ · u = 0.

• total energy,

d(Ekinetic + Emagnetic + Ethermal)
dt

= d

dt

∫
V

(ρv
2

2 + B2

2 + p

γ − 1) dV = 0, (2.21)

in our study, where the flow is incompressible and the density constant, the temperature
does not influence the flow so that the conservation of energy of the flow is given by
Ekinetic + Emagnetic = cst.

(a) (b)

Figure 2.2: (a) Region of validity of the ideal MHD model in terms of the normalized
variables x and y, (b) n and T for fixed β = 0.05 and a = 1m. (Taken from [23])
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These two conservation laws concern the most intuitive quantities. Two other quantities
are conserved by the flow in the absence of dissipation and are specific to the MHD system.
The first of these is the cross-helicity,

dK

dt
= d

dt

∫
V
u ·B dV = 0, (2.22)

This quantity measures the alignment of the velocity and the magnetic field. This alignment
is intimately related to the nonlinear coupling of the MHD equations as we will see in section
6.4.2. The other quantity is the magnetic helicity,

dH

dt
= d

dt

∫
V
A ·B dV = 0, with B = ∇×A, (2.23)

where A is the magnetic potential. Magnetic helicity is the magnetic equivalent of the
helicity Hu =

∫
V u · (∇×u)dV , an invariant of the Navier-Stokes equations in the absence

of the Lorentz-force. The conservation of magnetic helicity is the key ingredient in Taylor’s
theory [6] of plasma relaxation in RFPs. This theory will be discussed in detail in section
2.5.

In [23], it is shown that ideal MHD requires electrons and ions to be collision dominated,
hence the viscosity becomes negligible. In consequence, three independent conditions must
be satisfied: small gyroradius, large collisionality and small resistivity. These conditions
can be respectively written as follows,

y = ri
a
<< 1, (2.24)

x = viτc
a

√
mi

me
<< 1 (2.25)

y2

x
= r2

i

a

1
viτc

√
me

mi
<< 1. (2.26)

where x and y are two dimensionless variables introduced to simplify the discussion, ri the
ion gyroradius, a an MHD lengthscale, mi the ion’s mass, me the electron’s mass, vi the ion
thermal transit velocity across a, and τc the collision time. The ideal MHD limit is shown
in figure 2.2. It corresponds to the common region inside the dashed lines, that represent
the previous mentioned conditions. In order to know wether the fusion plasma belongs to
the ideal MHD region or not, conditions (2.24), (2.25) and (2.26) need to be written in
terms of the plasma’s measurable properties: the density n (in cm−3) and the temperature
T (in keV ). This is done by assuming the parameter β = 2µ0nT/B

2 constant, τc = 18,
and considering mi as the mass of deuterium ion. The new conditions are:

y = 2.28× 105

√
β

a2n
<< 1, (2.27)
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x = 9.88× 1017T
2

na
<< 1, (2.28)

y2

x
= 5.26× 10−8 β

aT 2 << 1. (2.29)

Previous experiments and studies show that fusion plasma density and temperature lie in
the range

1012 cm−3 < n < 1016 cm−3,

0.1 keV < T < 10 keV.
(2.30)

The plot of fusion plasma range (2.30) and conditions (2.27), (2.28) and (2.29) for a =
1 m and β = 0.05 is shown in figure 2.2. It is clear that the small gyroradius (2.27)
and negligible resistivity (2.29) conditions are satisfied, however the large collisionality
condition is not. Now if one considers a less restrictive collisionality by neglecting the
ion-electron equilibration in condition (2.25) or (2.28), the new condition

√
me/mi x << 1

is satisfied by a part of the fusion plasma, and hence it can be modelled using MHD.
However, this empirical model based on multiple restrictive hypotheses cannot take into
account all MHD instabilities, but can provide an approximative description of different
fusion reactors dynamics.

Our view on this is that, even though the MHD description might not be strictly valid in
fusion plasmas, it will allow to capture some key-features. In particular in RFPs, where a
large-scale bulk dynamics of the plasma is observed, MHD might be the only description
which is at the same time precise enough to capture some of the physics and simple enough
to disentangle the physical processes.

2.4 Magnetostatic equilibrium

Most of early plasma equilibrium studies were based on the ideal MHD model where the
force balance is between the pressure gradient and the Lorentz force,

∇P = J ×B. (2.31)

Multiple classes of equilibria derive from this equation, and correspond to different degrees
of freedom. This is mainly a result of different geometrical configurations and symme-
tries.

The equilibrium described in equation (2.31) can be easily achieved in straight cylindrical
geometries, like the z-pinch, rather than toroidal geometries where it requires the addition
of new terms into the momentum equation [24, 25]. Indeed, in toroidal geometry, under
some weak constraints on the shape of the magnetic field, it can be shown that the curl
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of the Lorentz-force is non-zero [24]. Taking the curl of equation (2.31), and realizing
that ∇ × (∇P ) = 0, this implies that the other terms of the evolution-equation for u,
equation (2.19) cannot be zero and a static equilibrium becomes impossible within the
MHD description.

In the investigations carried out in this manuscript, this is no important issue since all our
simulations take into account the full dynamics of the system. However, since a large body
of fusion research is based on static equilibria, we will discuss them in the following para-
graphs, ignoring thereby the theoretical problem that concerns their existence in toroidal
geometry.

2.4.1 One-dimensional equilibrium

One-dimensional configurations are used to disentangle different force balances, like axial
and poloidal forces balance and radial pressure balance, which is the main interest of this
configuration. In the following, we show an example of a one-dimensional equilibrium in a
circular cylinder.

Let’s consider a cylindrical pinch with imposed axisymmetric axial and poloidal magnetic
fields. The equilibrium quantities depend only on the radial coordinate r,

P (r), B = (0, Bθ(r), Bz(r)). (2.32)

Applying the force balance equation (2.31) in this case leads to

dP

dr
= JθBz − JzBθ = −1

2
d(B2

z )
dr

− Bθ
r

d(rBθ)
dr

. (2.33)

Multiplying both sides of (2.33) by r2 then integrating by parts between r = 0 and r = a,
∫ a

0
r2dP

dr
dr = −1

2

∫ a

0
r2d(B2

z )
dr

dr −
∫ a

0
rBθ

d(rBθ)
dr

dr,

⇒ −
∫ a

0
2Prdr = −1

2a
2B2

z (a) + 1
2

∫ a

0
2rB2

zdr −
1
2a

2B2
θ (a), (2.34)

and finally by denoting the integral over the plasma cross-section by 〈...〉 = 2
a2
∫ a

0 ...rdr,
(2.34) yields,

〈P 〉 = 1
2[B2

θ (a) +B2
z (a)− 〈B2

z 〉]. (2.35)

This result shows that the simplest possible equilibrium relates the pressure to the axial
magnetic field and the value of the poloidal field at the wall.
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A significant parameter in nuclear fusion is the plasma beta, which measures the ratio of
the plasma pressure to magnetic pressure and is defined by,

β = 2 〈P 〉
〈B2〉

. (2.36)

This parameter is of major importance to measure the confinement quality (roughly giv-
en by P ) as a function of the magnetic field. Our chapter 4 will be dedicated to the
investigation of the role of β in RFP dynamics.

Another important parameter is the safety factor q, which quantifies the magnetic field
line twist. It is defined in the one-dimensional case as,

q(r) = rBz(r)
RBθ(r)

, (2.37)

where R = Lz/2π is the equivalent of a torus major radius for a cylindrical pinch, and
Lz the cylinder length. It is found that instabilities are more likely to develop when q
is low. Therefore, in tokamaks where MHD instabilities are avoided, the value of q is in
general high. In RFPs this value is lower, since they operate beyond the MHD instability
threshold.

Magnetic field line twist is also quantified by the ratio of the averaged poloidal magnetic
field at the wall Bp over the volume-averaged axial magnetic field 〈Bz〉, called pinch ratio
Θ,

Θ = Bp
〈Bz〉

. (2.38)

This parameter takes values smaller than unity in the case of tokamak regimes, and larger
than unity in the RFP regimes’ case. In the latter case, an additional parameter F is used
to study the reversal near the wall. F is called the field reversal parameter and is defined
as the ratio of the averaged axial magnetic field at the wall Bz over its volume-average
value 〈Bz〉,

F = Bz
〈Bz〉

. (2.39)

Clearly, F takes negative values when reversal is observed in the RFP dynamics.

One-dimensional equilibrium equations have been used previously [26] to study the stability
of tearing modes in cylindrical RFP configuration at zero β regime.

2.4.2 Two-dimensional equilibrium
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Figure 2.3: Sketch of the toroidal co-
ordinates.

The two-dimensional equilibrium is obtained by
breaking a symmetry in the one-dimensional config-
uration. This can be done by shaping the poloidal
cross-section, binding a cylinder into a torus, impos-
ing non-uniform current density, etc. We will lim-
it this paragraph to the case of toroidal axisymme-
try and derive the equilibrium equations. We con-
sider the geometry illustrated in figure 2.3 , where
R, φ and z are the cylindrical coordinates. S-
ince B is solenoidal and toroidally axisymmetric
(∂/∂φ = 0) is assumed, its poloidal component,
Bp = BReR+Bzez, derives from a toroidal potential
Aφ and can be written as,

BR = −∂Aφ
∂z

= − 1
R

∂(RAφ)
∂z

= − 1
R

∂ψ

∂z
, (2.40)

Bz = 1
R

∂(RAφ)
∂R

= 1
R

∂ψ

∂R
, (2.41)

where ψ = RAφ is called the flux function which is introduced for analytical convenience.
The current density is calculated by applying Ampere’s law (2.14),

JR = −∂Bφ
∂z

, (2.42)

Jφ = − ∂

∂R

(
1
R

∂ψ

∂R

)
− 1
R

∂2ψ

∂z2 ≡ −
1
R

∆∗ψ, (2.43)

Jz = 1
R

∂(RBφ)
∂R

. (2.44)

Replacing these expressions in the equilibrium equation (2.31) yields,

∂P

∂R
= − 1

R2
∂ψ

∂R
∆∗ψ − Bφ

R

∂(RBφ)
∂R

, (2.45)

0 = 1
R

∂Bφ
∂z

∂ψ

∂R
− 1
R2

∂(RBφ)
∂R

∂ψ

∂z
, (2.46)

∂P

∂z
= − 1

R2
∂ψ

∂z
∆∗ψ −Bφ

∂Bφ
∂z

. (2.47)
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Equation (2.46) can be rewritten as ∇ψ × ∇(RBφ) = 0, which means that F = RBφ
is constant over a constant flux surface ψ, and hence F = F (ψ). Similarly, multiplying
equation (2.45) by ∂ψ/∂z and (2.47) by ∂ψ/∂R and combining them, leads to

∂P

∂R

∂ψ

∂z
− ∂P

∂z

∂ψ

∂R
= 0. (2.48)

This also can be rewritten as ∇P × ∇ψ = 0, and thus P = P (ψ). Finally, substituting
F (ψ) and P (ψ) in (2.45) or (2.47) leads to the Grad-Shafranov equation,

R2∂P

∂ψ
+ F

∂F

∂ψ
+ ∆∗ψ = 0. (2.49)

This nonlinear equation describes toroidal equilibria. The choice of the two free functions
P (ψ) and F (ψ), as well as the boundary conditions, determines the nature of the equi-
libria whether it is a tokamak configuration, RFP, etc. The Grad-Shafranov equation is
usually solved numerically because of its nonlinear nature. Nevertheless, some analytical
solutions are proposed under the constraint of simplifying assumptions and symmetries,
like Solov’ev’s solution [27] based on the assumption of the independence of the first two
terms of equation (2.49) of ψ.

2.5 The classical RFP paradigm: Taylor’s relaxation theo-
ry

An important theory deriving from ideal MHD is Taylor’s relaxation theory of RFPs, which
was developed to understand the reversal phenomenon observed in the ZETA experimen-
t.

In this theory, the RFP plasma is considered as an ideal conductor surrounded by a perfectly
conducting shell. Let a be the vessel’s minor radius and R the major radius. Once the
discharge is generated by inducing a strong toroidal current, the plasma is driven into a
turbulent state. Due to dissipative interaction with the vessel wall, the plasma reaches a
stable minimum energy state. The induction equation of this ideal case,

∂B

∂t
= ∇× (u×B), (2.50)

shows that the magnetic field lines are “frozen” into the plasma, so no breaking and re-
connection of the field lines is allowed, hence the field line topology is conserved. In [28]
it was proven that this field line topology conservation is equivalent to the conservation
of magnetic helicity H. Indeed, in hydrodynamics, the “knottedness” of the vorticity field
is also conserved in the absence of viscosity, which is represented by the conservation of
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hydrodynamic helicity [29]. In practice, since the plasma is considered weakly dissipative,
magnetic reconnection destroys most of the flux surfaces, and thus the field line topology is
not conserved on every flux surface. The only flux surface where the identity is conserved
is the one at the wall which is considered perfectly conducting. Therefore, the helicity over
the total volume is conserved and not on individual flux surfaces. Applying the variational
principle to calculate the minimum energy state subject to H = constant yields,

∇×B = µB, (2.51)

so that,
B · ∇µ = 0, (2.52)

where µ is a Lagrange multiplier. The solution of equation (2.51) corresponding to a
minimum energy state in cylindrical coordinates, is either an m = 0 symmetric solutions,

Br = 0,
Bθ = B0J1(µr),
Bz = B0J0(µr),

(2.53)

or a superposition of m = 0 and m = 1 helical solution,

Br = −B1

[
k

α
J ′1(αr) + µ

rα2J1(αr)
]

sin(θ + kz) with α =
√
µ2 − k2,

Bθ = B0J1(µr)−B1

[
µ

α
J ′1(αr) + k

rα2J1(αr)
]

cos(θ + kz),

Bz = B0J0(µr) +B1J1(αr) cos(θ + kz),

(2.54)

where m is the poloidal mode number, J0 and J1 the zeroth and first order Bessel functions,
B0 the initial imposed toroidal magnetic field in the RFP, and B1 the helical amplitude
determined by the boundary condition Br(a) = 0, given values of H and the toroidal
magnetic flux ψt.

In order to verify this theory, two measurable parameters are calculated, the pinch ratio Θ
and the field reversal F . These parameters are calculated in the symmetric case as follows,

Θ = Bp(a)
〈Bz〉

= Bθ(a)
V −1 ∫ a

0 BzdV
= B0J1(µr)

(2π2a2R)−1 ∫ a
0 2πRB0J0(µr)rdr = µa

2 , (2.55)

F = Bz(a)
〈Bz〉

= Bz(a)
V −1 ∫ a

0 BzdV
= B0J1(µr)

(2π2a2R)−1 ∫ a
0 2πRB0J0(µr)rdr = µaJ0(µa)

2J1(µa) , (2.56)

where V is the plasma volume. It was found that for Θ < 1.56 the minimum energy corre-
sponds to the axisymmetric solution and for Θ > 1.56 to the helical solution. Furthermore,
reversal is estimated to take place for Θ > 1.24.
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Taylor’s relaxation theory was generalized later by Reiman [30] to take into consideration
toroidal geometries and different cross-sections, and it was found that the F -Θ curve stays
unchanged for elliptical cross-section. Experimentally, Taylor’s theory presents qualita-
tively good agreement with results obtained by DiMarco in 1983 and shown in Figure 2.4,
however the experimental field reversal occurs for values of Θ greater than the predicted
ones.

Θ

0 0.5 1 1.5

F

-0.5

0

0.5

1

Taylor(1974)

DiMarco(1983)

Figure 2.4: Experimental (red dots) and theoretical [6] (blue dashed) F -Θ curves.

Due to limited computational power back then, Taylor’s relaxation theory couldn’t be
verified via direct numerical simulations, and therefore the RFP conserved its classical
image as a bad candidate to succeed nuclear fusion due to magnetic chaos and strong wall
interaction. In 2000, a quiescent helical structure present in the plasma core which was
previously unnoticed in experimental results, came to light and changed the whole RFP
picture. The new paradigm is presented in the following section.
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2.6 “RFP gets self-organized”: the new paradigm

2.6.1 Quasi-Single-Helicity states

With the growth of computational power in the 1990s, multiple MHD simulations have
been carried out to study the RFP dynamics. It was found in references [31–33] that
without any forced helicity in the flow, a bifurcation leads to an almost regular helical
deformation of the plasma and a decrease in the magnetic chaos. This pure helix has one
single toroidal mode n = n0, whence the name Single Helicity (SH) state. This helical
structure is observed in the laminar regime, when the viscosity and resistivity are large
enough. More precisely a small value of the Hartmann number Ha ∼ (νη)−1/2 is needed to
observe a SH state [34]. When dissipation decreases (Ha increases), the pure helix becomes
more free to bend axially, and smaller helical structures detach from it. This corresponds to
a Quasi-Single-Helicity (QSH) state, where secondary helicities appear with lower energy
than the orginal one, but most of the energy is still contained in the principal helical
structure. If the dissipation continues to decrease, the large helical structure will end up
forming several helices with different modes n, which correspond to a Multiple Helicity
(MH) state.

These numerical results motivated the RFX team to revisit their experimental database.
In 2000, the team discovered shots with long lasting QSH states [7], where they lasted for
several ms in the transient phase and for the whole pulse length in the stationary phase.
Furthermore, a “bean” shaped magnetic island with dominant helicity was detected in
the core of the plasma, and a strong temperature gradient was found at its edge. This
island presented an electron internal transport barrier (eITB), i.e. a region where due to
strong velocity gradients the radial electron flux was reduced. QSH states were detected
as well later in other RFPs, like MST in 2002 [35], TPE-RX in 2004 [36] and in EXTRAP
T2R in 2007 [37]. Thereby the hope revived that, if an RFP can be kept into this QSH
state by control strategies or other means, fusion can be achieved in RFPs. In particular
its relatively cheap magnetic design would make the RFP then a very competitive MCF
reactor.

2.6.2 Single Helical axis topology

Another bifurcation found in MHD simulations [38] when the amplitude of the SH mode
is low enough, is the existence of two magnetic axes, hence the topology is named Double
Axis (DAx) state. One axis corresponds to the unperturbed axisymmetric magnetic field
(point O in Figure 2.5 (a)), and the other to the magnetic island (point O’ in Figure 2.5
(a)). When the amplitude of the SH mode increases, the magnetic island is suppressed due
to collision of the island X-point with the unperturbed axis, thus leading to a topology
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with a single helical axis (SHAx) corresponding to the former island O’-point as shown in
Figure 2.5 (b). Moreover, the new topology, QSH states of the SHAx types, is much more
resilient to magnetic chaos than the former topology where an island appeared in the QSH
states. With magnetic chaos we indicate that the magnetic field lines move in time in an
unpredictable manner.

The DAx topology was first observed experimentally [39] in QSH states where the secondary
modes had non-negligible amplitude. In later experiments [14], an increase of toroidal
current to an order of 1.4 MA in the upgraded RFX-mod vessel led to the observation of
the SHAx topology predicted by the previous MHD simulations [38]. It was found that
the confinement time had increased by a factor of four due to the formation of a transport
barrier related to the flux surfaces of the dominant helical mode, and the electrons inside
reached a temperature greater than 1 keV.

2.7 Classical vs. new paradigm

The results above show the great progress made in understanding the dynamics of RFP
and its evolution since Taylor’s relaxation theory. The discovery of QSH states was the
first step towards a new paradigm where the RFP shows organized dynamics under one

(a) (b)

Figure 2.5: Magnetic flux surfaces of: (a) DAx topology , (b) SHAx topology. (Taken
from [38])
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dominant helicity regime, leading to large reduction of magnetic chaos and improvement
of confinement. One step further in understanding the self-organization of RFP was the
prediction of suppression of the magnetic island detected in the QSH states where the
magnetic topology changes from DAx to SHAx. This step was achieved experimentally in
high current regimes (greater than 1 MA), during which the confinement time and quality
increased by a factor of four. This new RFP paradigm based on the two main components,
QSH states and SHAx topology, proves that RFP physics moved away from the Taylor
picture, which essentially consisted of a chaotic RFP description.

This new picture of a well organized RFP plasma with reduced magnetic chaos is in con-
trast with the classical Taylor theory for several reasons. First, the walls are considered
ideal conductor in the classical theory based on the assumption that edge resistivity pre-
vents magnetic field reversal. This is inconsistent with later studies [33] where it is shown
that field reversal is more efficient in a resistive edge configuration. Furthermore, consid-
ering the parallel Ohm’s law at the edge shows that larger edge resistivity implies a larger
electrostatic field, and therefore larger electrostatic drift that enhances the dynamo action
to conserve the reversed configuration [40]. Another issue in the classical theory is the
reversed axisymmetric magnetic profile corresponding to the range 1.2 < Θ < 1.56. This
result is inconsistent with Cowling’s theorem which mentions that no axisymmetric dy-
namo can conserve a symmetric magnetic field. Furthermore, adopting Taylor’s reasoning
by considering zero pressure gradient, yields the result that the current density and the
magnetic field are parallel, reverse signs together, and thus become null together. Analyt-
ically, this means that the minimum value the magnetic field can reach, when its curl, the
current density, equals zero, is zero. Therefore, no reversal can be reached in this config-
uration. Finally, the fluctuations acting in Taylor’s relaxation are predicted to be small
scale corresponding to line reconnection brought by a small scale Alfven wave motion [41].
Experiments and MHD simulations show that they are large scale corresponding to tearing
modes. Further arguments showing the inconsistency of Taylor’s theory are given in [42],
where the consideration of relaxation toward a minimum energy state is criticized by in-
voking the tendency of an open Ohmic system with fixed currents to maximize its magnetic
energy.

Even though, clearly, progress has been made in understanding RFPs, its understanding
in terms of how the plasma reacts on a change of the control parameters remains quite
incomplete. Therefore further research based on simple plasma descriptions such as MHD
seem primordial if the RFP is to be taken to the level of confinement of tokamaks. The
rest of this manuscript aims at enhancing this understanding.



26 CHAPTER 2. PLASMA DESCRIPTION AND THE REVERSED FIELD PINCH



Chapter 3

Numerical methods

Numerical simulations are a powerful tool to understand and predict the dynamics of com-
plex flows. In the case of hydrodynamics, direct numerical simulations of the Navier-Stokes
equations are nowadays even considered numerical experiments, almost on equal footing
with actual experiments. This is not completely so for plasmas, where the complexity of
the description impedes a complete and precise simulation of all the details of the flow on
the scale of an actual fusion reactor. Nevertheless even at the coarse level of the MHD
description numerical simulations can explain some of the important physical mechanisms
which determine the confinement of a plasma. For instance, such simulations were used
by Escande et al. [38] to predict the suppression of magnetic islands in DAx states leading
to a SHAx state. This result was proved experimentally nine years later in the RFX-mod
high current regime experiments [14]. Numerical simulations are thus a key element of the
conception of experimental reactors.

We present in this chapter the numerical methods used to discretize in space and time
the MHD equations introduced previously in Chapter 2, and we show how we impose a
cylindrical geometry.

3.1 MHD equations

In the present work, we consider a plasma characterized by constant and uniform per-
meability µ, permittivity ε, conductivity σ and density ρ = 1. The more complicated
case of non-uniform conductivity using the same numerical methods was considered in
reference [43]. In the magnetohydrodynamic (MHD) description that we consider, the gov-
erning equations are the incompressible Navier-Stokes equations including the Lorentz force
(2.15), and the induction equation (2.18). Normalizing these quantities by the Alfvén ve-

27
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locity CA = B0/
√
ρµ, a reference magnetic field B0 and a conveniently chosen length scale

L, and expanding the nonlinear term in equation (2.15) leads to the following expressions,

∂u

∂t
= −∇Π + u× ω + J ×B + ν∇2u, (3.1)

and
∂B

∂t
= ∇× (u×B) + λ∇2B, (3.2)

where Π = P + u2/2 is the modified pressure. The current density is given by

J = ∇×B. (3.3)

The velocity field u and the magnetic field B are both divergence free,

∇ · u = 0, (3.4)

∇ ·B = 0. (3.5)

In Chapter 5, in order to measure the influence of the geometry on the confinement, we
will consider the advection of a passive scalar T . We thereto solve the following equation
simultanuously with equations (3.1) and (3.2),

∂T

∂t
+ u · ∇T = α∇2T, (3.6)

where α is the scalar diffusivity, chosen equal α = 10λ.

3.2 Pseudo-spectral discretization and determination of the
pressure

Equations (3.1) and (3.2) are solved using a pseudo-spectral method in a periodic domain
of size Nx × Ny × Nz grid points. Spatial derivatives are evaluated in Fourier space and
multiplications are computed in physical space. In the following, all Fourier transforms of
different fields are denoted by the symbol ̂or F{}. These transforms consist in representing
the fields as truncated Fourier series like in the following example of the velocity field,

u(x, t) =
Nx/2−1∑

kx=−Nx/2

Ny/2−1∑
ky=−Ny/2

Nz/2−1∑
kz=−Nz/2

û(k, t)eik·x, (3.7)

û(k, t) = (8π3)−1

NxNyNz

Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

u(x, t)e−ik·x, (3.8)
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where k = (kx, ky, kz) is the wave vector and x = (nxLx/Nx, nyLy/Ny, nzLz/Nz) the
position vector. To avoid aliasing errors which consist of the production of small scales
due to nonlinear terms which are not resolved on the grid, the velocity and magnetic
fields are dealiased at each time step by truncating its Fourier coefficients using the 2/3
rule [44].

Using the incompressibility condition of the fluid, the pressure term can be eliminated by
solving a Poisson equation obtained from taking divergence of the momentum equation.
This can be written as follows,

∇2
(
P + u2

2
)

= ∇ ·
(
u× ω + J ×B + ν∇2u

)
. (3.9)

The viscous term can be eliminated by using the following vector identity,

∇ · (∇2u) = ∇2(∇ · u) = 0. (3.10)

Equation (3.9) can be written in spectral space as,

−k2F{P + u2

2 } = ik ·
{
û× ω + Ĵ ×B

}
(3.11)

where the no-slip condition is considered (uwall = 0). The pressure can therefore be
obtained by dividing by k2 and applying an inverse Fourier transform,

P = F−1

− ik

k2 ·
{
û× ω + Ĵ ×B

}− u2

2 . (3.12)

However, this does not yield the exact pressure field since the numerical integration constant
is included in the resulting field. Thus, one last step needed is to substract the pressure
value in the solid region from the resulting field.

The resolution of the previous Poisson equation introduces the Riesz projector Pij = δij −
kikj/k

2 in front of the nonlinear term and therefore yields equations (3.1),(3.2) and (3.6)
in spectral space,

∂ûi
∂t

= Pij

{
(Ĵ ×B + û× ω)j

}
− νk2ûi, (3.13)

∂B̂i
∂t

=
[
ik × (û×B)

]
i
− λk2B̂i, (3.14)

and
∂T̂

∂t
+ û · ∇T = −αk2T̂ . (3.15)
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The Fourier transform is implemented in the code using the JMFFT library which has
an order of complexity of N log2N with N = NxNyNz. The pseudo-spectral method is
a very efficient and precise method, as soon as the number of grid points becomes large.
Indeed spectral methods of nonlinear equation need the resolution of convolution products
of complexity N3, which are far more expensive than the Fast Fourier Transfroms (FFT)
for large value of N . The FFTs allow these convolution products to be reduced in physical
space where their evaluations consist in a simple product.

3.3 Penalization method

The cylindrical geometry is built using the volume penalization method which consists in
considering the solid boundary as a porous medium with a negligible permeability. The
flow is considered in a domain composed of two subdomains with different permeabilities:
fluid domain Ωf and solid domain Ωs. Numerically, this method introduces new term in
the MHD and advection-diffusion equations as follows,

∂u

∂t
= −∇Π + u× ω + j ×B + ν∇2u− χ

η
(u− uwall)︸ ︷︷ ︸

penalization term

, (3.16)

∂B

∂t
= ∇× (u×B) + λ∇2B − χ

η
(B −Bwall)︸ ︷︷ ︸

penalization term

, (3.17)

and
∂T

∂t
+ u · ∇T = α∇2T − χ

η
(T − Twall)︸ ︷︷ ︸

penalization term

, (3.18)

with uwall, Bwall and Twall the imposed values of the velocity, the magnetic, and the scalar
field in the solid domain, η the solid domain permeability and χ the mask function that
can take arbitrary shape: χ = 0 in the fluid domain Ωf

χ = 1 in the solid domain Ωs.

In order to implement this method in the pseudo-spectral solver, a Fourier transform is
applied to equations (3.16) and (3.17). The velocity equation in spectral space becomes,

∂ûi
∂t

= Pij


[
Ĵ ×B + û× ω −F

{χ
η

(u− uwall)
}]

j

− νk2ûi, (3.19)
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where the Riesz projector Pij is also applied to the penalization term to ensure incom-
pressibility, since this term is not necessarily divergence free. Similarly, the magnetic field
is no longer solenoidal, only due to the penalization term. This is solved by adding a new
term to equation (3.16) that restores solenoidality. In analogy with the penalized velocity
equation, this term can be simply an auxiliary pressure gradient, and therefore leads to
the following induction equation in spectral space,

∂B̂i
∂t

= Pij


[
ik × (û×B)−F

{χ
η

(B −Bwall)
}]

j

− λk2B̂i. (3.20)

The main advantage of the penalization method is its simplicity which allows the imple-
mentation of complex geometries by just modifying the mask function χ. However, this
method comes with several limitations. First, the penalized MHD equations are solved
in the fluid and solid domains, therefore computational resources are partially wasted on
computing the flow inside the walls. Such losses become important when the solid domain
is large like in the case of Taylor-Couette flow. Another limitation of the penalization
method is the high resolution needed to study the boundary small scale dynamics since
no mesh refinement is available near the wall. Finally, the discontinuities in the different
fields and their gradients generate Gibbs oscillations. These oscillations do not constitute
a serious problem in most cases unless the discontinuity becomes large, thus increasing
the oscillations size. To solve this problem, Hermite’s polynomial interpolation is comput-
ed at the boundary to impose in a smooth way the continuity of the field profile and its
derivative between the boundary value and zero. A last disadvantage is the loss of spectral
precision. In the directions perpendicular to the wall, the method becomes second-order
precise in space-discretization. Detailed description and validation of the volume penaliza-
tion method can be found in [45], and an application of the method to investigate RFPs
in toroidal domains is reported in previous work [43,46]

Figure 3.1: Fluid domain Ωf in white and solid domain Ωs in grey.
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The penalization method has thus several drawbacks. Nevertheless, the flexibility of the
mask-function allowing a rapid change of geometry and the existence of the highly efficient
machinery for pseudo-spectral simulations make the penalization method combined with a
pseudo-spectral solver an attractive alternative to geometry-adapted meshing, in particular
when the goal of an investigation is to measure the influence of the shape of a domain on
the flow-dynamics.

3.4 Time discretization

A semi-implicit third order time-advancing scheme of Adams-Bashforth type is used to solve
the MHD equations. It consists in an exact integration of the dissipative and magnetic
diffusion terms and explicit discretization of the remaining terms except the penalization
term which is evaluated implicitly at instant tn+1, whence the name semi-implicit [45,47].
Indeed, the time step size ∆t is determined by the common CFL condition,

∆tn+1 = C∆x/Umax, (3.21)

where C < 1 is the CFL constant, ∆x is the smallest spatial grid size and Umax the largest
velocity values among the three components. It has been proven that for sufficiently small
value of the penalization parameter η, the time step ∆t replaces η [45,48]. In the following,
we will present the time scheme only for the velocity field u, since it is similar for the
magnetic field B.

First, equation (3.1) is rewritten in the form of a nonlinear evolution equation and then
transformed into spectral space,

∂tu− ν∇2u = N(u), (3.22)

∂tû+ νk2û = N̂(û). (3.23)

Applying the following variable change û(k, tn)→ û(k, t)e−νk2t and considering an initial
condition û(k, tn) yield the following solution for the equation above,

û(k, tn+1) = e−νk
2∆tn+1û(k, t) +

∫ tn+1

tn
e−k

2ν(tn+1−s)N̂(û(k, s))ds. (3.24)

This solution can be discretized using Adams-Bashforth second order (AB2) as,

û(k, tn+1) = e−νk
2∆tn+1

(
û(k, tn) + β10N̂

n + β11e
−νk2∆tnN̂n−1

)
, (3.25)
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and Adams-Bashforth third order (AB3) as,

û(k, tn+1) = e−νk
2∆tn+1

(
û(k, tn) + β20N̂

n + e−νk
2∆tn

(
β21N̂

n−1 + β22e
−νk2∆tn−1N̂n−2

))
,

(3.26)
where N̂n is the nonlinear term of equation (3.23) at instant tn, ∆tn = tn − tn−1 and βij
the Adams-Bashforth’s coefficients which are defined as follows,

β10 = ∆tn+1
2∆tn

(∆tn+1 + 2∆tn),

β11 = −
∆t2n+1
2∆tn

,

β20 =
∆tn+1(2∆t2n+1 + 6∆tn∆tn+1 + 3∆tn−1∆tn+1 + 6∆t2n + 6∆tn−1∆tn)

6∆tn(∆tn + ∆tn−1) ,

β21 =
−∆t2n+1(2∆tn+1 + 3∆tn + 3∆tn−1)

6∆tn−1∆tn
,

β22 =
∆t2n+1(2∆tn+1 + 3∆tn)
6∆tn−1(∆tn + ∆tn−1) .

(3.27)

Finally, the penalization term is evaluated at instant tn+1 as the following,

ûi(k, tn+1) = Pij

F
F−1{Qni }+ ∆t

η χuwalli(x, tn+1)
1 + ∆t

η χ


j

, (3.28)

where Qni is equivalent to equation (3.26), the last step of Adams-Bashforth third order
scheme,

Qni = e−νk
2∆tn+1

(
û(k, tn) +β20N̂

n + e−νk
2∆tn

(
β21N̂

n−1 +β22e
−νk2∆tn−1N̂n−2

))
. (3.29)

The advection-diffusion equation of the scalar is resolved using the explicit form of this
time-scheme, where the penalization term is explicitly added to the nonlinear term instead
of being evaluated at instant tn+1 as in (3.28).

3.5 Boundary conditions

Initially, in the plasma a uniform current density J0 in the z-direction and an axial magnetic
field Bz0 are imposed, resulting in a helically shaped magnetic field. The current density
J0 will induce an elliptical magnetic field Bp0 parallel to the elliptic boundaries. At later
times the magnetic field will reorganize through an interplay with the velocity field, and
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the total magnetic field will then consist of Bz0 and Bp0 plus the self-induced contributions.
At the boundaries the velocity is imposed to be zero and the magnetic field is parallel to
the boundaries. The value of the poloidal parallel magnetic field at the boundary is fixed
and its value is determined by J0. The expression of Bp0 in cylindrical coordinates reads,

Br = −1
2J0rc sin(2θ) (3.30)

Bθ = 1
2J0r(1− c cos(2θ)) (3.31)

with c the ellipticity which can be expressed as a function of the ellipse’s major semi-axis
a and minor semi-axis b, i.e,

c = a2 − b2

a2 + b2
. (3.32)

Note that the coordinates we use are cylindrical and not elliptical coordinates so that only
in the case of the circle the radial vector er is everywhere perpendicular to the boundary. A
study of the influence of the chosen boundary conditions is reported in section 6.3.4.

Equations (3.1) and (3.2) are solved in a periodic domain of size π×π×8π with 64×64×512
grid points. The aspect ratio of the physical domain containing the plasma is Lz/2πb =
4.

Figure 3.2: Sketch of the cylindrical geometry and imposed magnetic field and current
density.



Chapter 4

On the role and value of β in
MHD simulations

The parameter β, defined as the ratio of the pressure to the square of the magnetic field, is
widely used to characterize astrophysical and fusion plasmas. The same quantity further
plays a key-role in determining the magnetostatic equilibria of toroidally confined plasmas.
However, in the dynamics it is the pressure gradient which is important rather than the
value of the pressure itself. It is shown here that the value of β is not an adequate parame-
ter to measure the importance of the pressure in the dynamics. An alternative quantity is
proposed and its scaling is investigated using incompressible magnetohydrodynamic simu-
lations in a periodic cylinder in the Reversed Field Pinch flow regime.

4.1 Introduction

In conducting fluids and plasmas, the force-balance on a fluid element contains, in addition
to the pressure-gradient, also a magnetic pressure gradient. The ratio of the hydrodynamic
to magnetic pressure is in general quantified by the parameter β,

β = 2 P
B2 , (4.1)

where we have used Alfvénic units to normalize the plasma pressure and magnetic field.
The precise role of β and its definition depend on the field of application. For instance
in astrophysical applications, the value of β is used to characterize the plasma which is
considered. Typically, low values of β are observed in the solar wind, e.g. β � 1 in the
mid-corona [49]. In the remainder of this investigation we will focus on the use of β in
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the magnetically confined fusion community, but the results and ideas are, we think, of
broader relevance.

In magnetic fusion devices such as tokamaks or Reversed Field Pinches (RFPs), obtaining
a high pressure in the center of the plasma is one of the indicators of good confinement.
Indeed, the challenge is to confine a plasma as well as possible for a given magnetic field.
A very rough measure of the reactor’s efficiency can then be defined by the pressure in the
plasma (which indicates how high the temperature is), compared to the imposed magnetic
field, in other words, by the value of β. One particular definition of β, β, is defined here
as

β = 2 〈P 〉
〈B2〉

, (4.2)

where the brackets indicate a volume average over the plasma volume of interest. Other
definitions are also used [50] based on the value of B at the wall of the plasma for instance.
The quantity β is thus a key parameter in fusion design and operation, and further plays an
important role in investigations of the stability of confined plasmas [51] and the dynamics
of magnetic islands in tokamaks [52].

In many fusion related flows the value of β is low, of the order of a few percent or even less,
and as such, the effects of pressure are therefore sometimes neglected. This approximation
was for instance used in investigations of the single-helicity states in the RFX reactor
[34, 38], and in studies on helical modulation of the magnetic field at the boundary of
the plasma [53, 54] and on sawtooth mitigation [55]. Also in the prediction of the relaxed
Taylor-state [41], the influence of β was considered negligible. These are only few of the
numerous studies where the low-β approximation is invoked to neglect the influence of
pressure.

The validity of this approximation is however not self-evident and its assessment constitutes
the objective of this investigation. It will be shown that, even though many qualitative
features might remain unchanged, the zero-β approximation is not strictly valid in incom-
pressible MHD simulations.

4.2 Is β a relevant quantity in MHD simulations?

In the MHD description, the Navier-Stokes equations are modified by the presence of the
Lorentz force FL. In Alfvénic units, this gives

dtu = ν∆u−∇P + FL. (4.3)

where u(x, t) is the velocity, P (x, t) the pressure and ν the viscosity. We consider for
simplicity the incompressible isothermal formulation, where ∇ ·u = 0 and the density ρ is
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uniform. The left hand side of this equation represents the acceleration of a plasma-fluid
element. Through Newton’s second law the right-hand-side gives the force-balance per unit
mass. We see the contributions of three forces: viscous friction, the pressure gradient and
the Lorentz-force. The Lorentz-force is given by

FL = J ×B, (4.4)

where the current density is given by the curl of the magnetic field J(x, t) = ∇×B(x, t).
Using vector identities, part of the Lorentz force can be written as the gradient of a scalar
quantity, so that it can be regrouped with the pressure term. Doing so, equation (4.3)
becomes

dtu− ν∆u = −1
2∇(B2(1 + β)) +B · ∇B. (4.5)

where β is given by expression (4.1). It seems from this expression that if p � B2, the
hydrodynamic pressure drops out of the equation. This leads to the intuitive result that
if in a plasma we measure a low value of β, the hydrodynamic pressure can be neglected.
In this limit, (4.5) does not need the restriction ∇ · u = 0 anymore and the description
thereby simplifies.

We will here illustrate that this approximation is not straightforward. The important point
is that in equation (4.5), it is the gradient of the pressure and of the magnetic pressure
which play a role, and not the values of the pressures themselves. If one would like to
measure the influence of the hydrodynamic pressure gradient compared to the gradient of
the magnetic pressure, one needs to compare the norms of these vectors. Introducing the
unit vectors

eP = ∇P
‖∇P‖

and eB = ∇B2

‖∇B2‖
(4.6)

one can write equation (4.5) as

dtu− ν∆u = −1
2‖∇B

2‖ (eB + ePβ∇) +B · ∇B. (4.7)

In this expression β∇ is defined by

β∇ ≡ 2 ‖∇P‖
‖∇B2‖

. (4.8)

The difference between expressions (4.8) and (4.2) is obviously the presence of the gradients
in the latter, which is essential in measuring the effects of pressure on the dynamics.
Evidently a large uniform pressure will not induce any acceleration of the plasma and one
can thus always change the value of the pressure without changing its gradient by adding
a uniform pressure field.

Furthermore, the separation of the Lorentz-force into a gradient∇(B2/2) andB ·∇B seems
natural when we want to consider the influence of the pressure, and it is so in the absence
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of motion, when the left-hand-side of equation (4.3) is zero. Computing subsequently an
equilibrium field by considering a force-free magnetic state is a classical way to determine
tokamak equilibria, already widely used in the early days of fusion research [17, 18], and
plasma physics in general [56]. For this static case we have thus

1
2∇(B2(1 + β)) = B · ∇B, (4.9)

and for small values of β, only the magnetic pressure can balance B · ∇B. However, if
one focuses on the importance of the pressure on the nonlinear dynamics in equation (4.7),
i.e. when u 6= 0, there is no reason, other than esthetics, to separate the Lorentz-force in
two parts. Indeed, as soon as the plasma will start to move, the acceleration du/dt of the
plasma will be governed by the pressure gradient, the Lorentz-force and the viscous stress,
and the pressure gradient is no longer a priori negligible.

Note that we can ignore the contribution of the viscous diffusion of momentum on the
acceleration when the dynamics become turbulent [57,58]. This is plausible to hold in the
present case for large values of the Lundquist number. Indeed, viscous dissipation is an
essential feature in the eventual dissipation of kinetic energy of turbulent flows, but its
influence on the acceleration is small, when eddy diffusion becomes more important than
molecular viscous diffusion. We will not further consider it here.

What we will consider therefore is the comparison of the forces due to pressure, and the
Lorentz-force. What we will therefore look at is the equation,

dtu− ν∆u =
(
−ePβ′∇ + eF

)
‖J ×B‖, (4.10)

where eF = FL/‖FL‖, and

β′∇ ≡
‖∇P‖
‖J ×B‖

. (4.11)

In order to have global measures of the importance of the different terms, we introduce, as
in expression (4.2), the volume averaged quantities,

β∇ ≡ 2 〈‖∇P‖〉
〈‖∇B2‖〉

and β′∇ ≡
〈‖∇P‖〉
〈‖J ×B‖〉

. (4.12)

It is only when β′∇ is small that the pressure term might be negligible in the dynamic-
s. However, if this quantity is of order unity, there is no reasonable indication that the
pressure gradient can be safely ignored. We will now assess this in the context of RFP
simulations.
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4.3 Validation of the Poisson-solver

The simulations we carry out consider incompressible visco-resistive magnetohydrodynam-
ics in a periodic cylinder. The numerical method is described in Chapter 3. What we will
validate here in addition to the code is the post-processing routines which resolve a Poisson
equation to get the pressure field and compute the different quantities which appear in β,
β∇ and β′∇.

This pseudo-spectral Poisson solver is benchmarked in a cylindrical geometry of a unit
radius, at instant t = 0 where the momentum equation can be solved analytically. The
initial velocity field is a random noise with a kinetic energy of the order of Ek ≈ 10−7,
the initial current density has only an axial component Jz0 = 2.8, and the magnetic field
consists of an axial component Bz0 = 0.2 and a poloidal component Bp0 induced by Jz0.
By considering the velocity terms negligible relative to the magnetic terms, the momentum
equation can be written at t = 0 as,

∇P = J ×B. (4.13)

Using the radial component of equation (4.13) and zero pressure boundary condition yields
the following analytical solution,

P (r) = J2
z0
4 (1− r2). (4.14)

The benchmark of the pressure, the magnetic energy and the Lorentz force profiles is
presented in Figure 4.1. The numerical quantities obtained by the solver collapse well with
the theoretical curves, validating its accuracy. Subsequently, the ratios β, β∇ and β′∇ are
calculated analytically and compare to the numerical values with an error of order of 2%
or less.

4.4 Results for β and β∇ in straight-cylinder RFP simula-
tions

4.4.1 Numerical set-up

In this section we will evaluate how β, β∇ and β′∇ scale in incompressible MHD simulations
in a periodic cylinder with aspect ratio Γ = Lz/2πr = 4, where Lz and r = 1 are the cylin-
der length and radius, respectively. Equation (4.7) is solved together with the induction
equation,

∂B

∂t
= ∇× (u×B) + λ∇2B, (4.15)
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Figure 4.1: Comparison of the numerical and the analytical solution for the pressure P ,
the magnetic energy B2 and the Lorentz force J ×B.

(a) (b)

Figure 4.2: Visualization of (a) z = 0 (b) z = L/2 cross-sections of the pressure field in
the RFP in the turbulent state S = 33600 and Θ = 7, in the statistically steady state.
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and the condition ∇ ·B = 0. Computations are performed using a pseudo-spectral solver
on a Cartesian mesh of 128 × 128 × 512 gridpoints, combined with a volume-penalization
technique to enforce the boundary conditions. The boundary conditions are no-slip on
the cylinder wall for the velocity. The magnetic field is enforced by imposing the poloidal
component of the magnetic field Bp at the wall, which thereby determines the global axial
current. The radial magnetic field vanishes at the wall and the axial component Bz consists
of a uniform, fixed contribution plus a variable part which is left free to evolve, so that the
magnetic field can self-organize towards a typical RFP dynamic equilibrium. Details on
the numerical method can be found in chapter 3 and reference [45].

The pressure field is calculated using the incompressibility condition by solving the Poisson
equation obtained from taking divergence of the momentum equation, expression (4.3),

∇2P = ∇ · (−u · ∇u+ J ×B) , (4.16)

where the time-derivative and viscous term vanish due to incompressibility. In a pseudo-
spectral code, this Poisson equation can be easily solved using Fourier transforms. The
boundary condition for this resolution is zero pressure on the plasma boundaries. In all
simulations, we will consider the RFP regime where the magnetic geometry is self-organized
into a helical structure. Typical similations using the same code and set-up are reported
in [46]. In Figure 4.2 we show visualizations of the pressure field in cross-sections of the
cylinder for a typical flow.

4.4.2 Influence of the pinch-ratio

We consider first the case of a fixed Lundquist number, S ≡ Bpr/λ = 2.8×104, Pm ≡ ν/λ =
1 for different values of the pinch Θ = Bp/〈Bz〉, where the overline indicates the surface
average on the edge of the plasma and the brackets indicate a volume average. Error-bars
here and in the following measure the temporal fluctuations of the evaluated quantities
during the statistically stationary state, during which the quantities are evaluated.

In figure 4.3 the evolution of the different definitions of β is shown to stay constant with
respect to the pinch ratio. Furthermore, β takes a value less than 20% while the quantity
β′∇ is greater than 80%. Hence, even if the pressure is considered small compared to
the magnetic field, its gradient plays a major role in the RFP dynamics regardless of the
magnetic pinch ratio.

4.4.3 Influence of the Lundquist number

We now turn to the dependence of the different βs on the Lundquist number. In Figure 4.4
it is observed that increasing S, β drops, approximately following a powerlaw proportional
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Figure 4.3: Importance of the pressure force on the dynamics as measured by β, β∇ and
β′∇ for different values of the pinch ratio with S = 2.8× 104.
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Figure 4.4: Importance of the pressure force on the dynamics as measured by β, β∇ and
β′∇ for different values of the Lundquist number.
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to S−1/2. Judging from this dependence only, one would be tempted to say that in realistic
regimes, where S is at least an order of magnitude higher, the pressure is negligible. How-
ever, considering the influence of the pressure gradient on the force balance by comparing
the pressure-gradient to the Lorentz-force, it is observed that the influence of the pressure
force remains comparable to the Lorentz-force for all values of S. Indeed β′∇ remains order
unity when S is increased.

4.4.4 Influence of the poloidal shape

Now we study the influence of the poloidal shape of the cross-section on the different β
ratios. The context and interest of this study will be illustrated in details in Chapter
5.

We consider 3 different geometries: a circle with a radius r=1, an ellipse with a major
semi-axis a = 1.2 and minor semi-axis b = 0.833 and an ellipse with a = 1.4 and b = 0.714.
Simulations in these 3 geometries are carried out for the same Lundquist number S = 2×104

and pinch ratio Θ = 7. The cross-sections of the pressure field of these three geometries
are shown in Figure 4.5. First observation is that the pressure field changes drastically
with the change of poloidal shape of the RFP. In the ellipses’ case, the pressure reaches a
maximum value of P ≈ 0.45 in the central region while it reaches a value P ≈ 0.3 in the
circular case. Furthermore, the region in which the pressure exceeds 0.35 in the ellipses
constitutes more than 50% of the surface of the cross-section, which is significantly more
than the high pressure region observed in the circular cylinder. Subsequently, the mean of
the pressure increases with cross-section elongation, and the values of β for the geometries
with a = 1; 1.2; 1.4, are β = 0.19; 0.35; 0.41, respectively.

Now we consider the case of the ellipse with a = 1.4 and we check the influence of the
Lundquist number on the different β ratios. The results plotted in Figure 4.6 show that
β decreases with the increase of S, while β∇ and β′∇ tend to stay constant. The variation
of β∇ is different from the one observed in the circular case in Figure 4.4. This differ-
ence is possibly related to a more perturbed magnetic structure in the ellipses, which is
further away from a force-free equilibrium than the circular case, but this needs further
analysis.

The pressure gradient is thus not negligible in the dynamics. A question is now how
the results change if the we neglect the pressure anyway. This will be illustrated in the
following.
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(a) (b) (c)

Figure 4.5: Visualization of the cross-section z = L/2 of the pressure field in the RFP in
the turbulent state S = 2× 104 and Θ = 7, for (a) a circle with r = 1, (b) an ellipse with
a = 1.2 b = 0.833 and (c) an ellipse with a = 1.4 b = 0.714, in the statistically steady state.
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Figure 4.6: Importance of the pressure force on the dynamics of elliptical RFP with a = 1.2
b = 0.833, as measured by β, β∇ and β′∇ for different values of the Lundquist number.
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Figure 4.7: Time evolution of the kinetic energy for simulations with S = 22400 Θ = 7, in
the presence (blue) and absence (red) of the pressure gradient.

4.5 On the difference between incompressible and zero-β
simulations

To illustrate the importance of the foregoing we will show here the influence of the pressure
gradient term by removing it from the equations. The system we consider is thus

dtu− ν∆u = J ×B, (4.17)

combined with equation (4.15). A similar comparison was reported in [59]. A theoretical
study [33] explained some of the differences between the results.

In Figure 4.7 we show the evolution of the kinetic energy (Ekin = (|u|2)/2) for two simula-
tions at S = 22400, Θ = 7. It is observed that the dynamics are more violently fluctuating
in the pressureless simulations. In Figure 4.8 we show the average axial magnetic field
as a function of the radial coordinate. We compare the results from incompressible and
zero-β simulations for Lundquist numbers ranging from S = 11200 upto S = 33600. The
main observation is that we have a dichotomy where the profiles of the simulations without
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Figure 4.8: Importance of the pressure force to determine the magnetic field for different
values of the Lundquist number.

pressure are qualitatively different from the full incompressible dynamics. For both cases
the profiles become roughly independent of S for S > 104, but the asymptotic profiles are
different with a deeper reversal for the pressureless dynamics.

For the incompressible runs we have a β which decreases as a function of S, as shown in
4.4. We observe that between the lowest and the highest values of the Lundquist number,
β has decreased significantly. However, even at the highest value of S, the radial profile of
the axial magnetic field has not approached the incompressible solution towards the zero-β
solution. This clearly illustrates that the pressure plays an important role and that it is
not β which can measure the importance of the pressure force on the dynamics. Indeed
the value of β′∇ is of order unity for all the incompressible simulations.

4.6 Conclusion

We have argued that the quantity which measures the importance of the pressure on the
dynamics in incompressible MHD simulations is β′∇ = 〈‖∇P‖〉/〈‖J ×B‖〉. Indeed, it
is shown that even when β might vary considerably, in particular when increasing the
Lundquist number, the value of β′∇ remains of order unity and the influence of the pressure
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gradient cannot be neglected. Our results considered the simplest case of incompressible
isothermal flow. We have not carried out simulations of compressible MHD, but the results
will probably be intermediate between those of the pressureless and the incompressible cases
considered in the previous section. Complexifying the description is however an interesting
issue to be further explored.

These results in no sense invalidate the insights obtained in the zero-β simulations. Indeed,
a lot of qualitative features observed without pressure can carry over to the actual incom-
pressible MHD dynamics. Some of this coincidence is fortunate and it would be wise to
validate these results using more a more complete MHD description involving the pressure
term. However, MHD is already a very simplified description of the actual plasma and
ignoring the pressure gradient is only one approximation among many others. It is our
viewpoint that MHD simulations should be considered as tools to discover possible phys-
ical mechanisms, which can be assessed in realistic experiments. Furthermore, neglecting
the pressure in MHD is less dramatic than in hydrodynamics. Indeed, the presence of the
magnetic pressure will take over part of the role normally played by the hydrodynamic
pressure. This is not so in the absence of a magnetic field, where the pressureless equations
(Burger’s equation) will lead to a far more extreme dynamics with large gradients and
shocks which change completely the flow-dynamics. However even in the present case the
pressureless dynamics are more violent than the full incompressible system, as illustrated
in Figure 4.7.

What should be retained from this study is that the pressure forces play an important role
on the dynamics. It might be due to the dominance of tokamaks in fusion research that
a low-β is associated with negligible pressure effects. Indeed in tokamaks often the MHD-
induced flows are considered small. In such a case the left-hand-side of equation (4.3) can
be neglected. When this is the case, one can have the approximate equality

∇P ≈ J ×B. (4.18)

It is in this case possible that both sides are close to zero, and ∇P ≈ 0. In this situation a
force-free magnetic field can be constructed from the equality (1/2)∇B2 ≈ B ·∇B, leading
to classical equilibrium configurations. However, as soon as the velocity is unequal to 0,
nonlinear-dynamics drastically change the picture and the pressure gradient is no longer
purely decorative.
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Chapter 5

The effect of shaping on RFP
dynamics

The influence of the shape of the plasma on the dynamics of RFPs is investigated in
numerical simulations of fully nonlinear visco-resistive magnetohydrodynamics. The axial
mode-spectrum is qualitatively changed in cylinders with elliptic cross-section, and the
radial turbulent diffusion is affected. Even though from the present study it cannot be
concluded what the optimal shape of an RFP should be, it is clear that the shape of the
cross-section is an important parameter that should be taken into account when optimizing
the confinement quality of an RFP.

5.1 Introduction

Tokamaks are supposed to work in a stable regime where the magnetic field roughly cor-
responds to the imposed magnetic field. It is therefore a quite obvious thing to change
the shape of the magnetic geometry of the tokamak and to measure the influence of this
change on the stability properties. Therefore the optimization of the confinement quality
for tokamak plasmas by changing the plasma shape has been the subject of many studies.
For instance, it has been shown that shaping has a beneficial effect on the β limits of toka-
maks [60], and increases the total plasma current I in the case of elliptic cross-sections,
yielding thereby a better confinement.

Since RFPs work in the unstable, self-organized regime, where the magnetic field is very
different from the imposed one, the question how to control and optimize the confinement
is quite different. Indeed, instability studies starting from a magnetostatic equilibrium, do
not make sense in the nonlinear regime. However, other control strategies can be used.

49
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Indeed, applying helical magnetic perturbations seems a promising way to affect the self-
organized state in an RFP [53]. Another obvious way would be to change directly the
shape of the plasma. Since RFPs operate beyond the MHD instability threshold, one
should not measure the effect of the change in the geometry on the stability, but directly
on the confinement quality of the nonlinear saturated state.

Investigations on the influence of shaping on the confinement properties of RFPs are,
however, relatively scarce. Some rare examples of experimental observations were pre-
sented in [61, 62], and numerical investigations are reported in references [51, 63] where
two-dimensional equilibrium studies were carried out in order to investigate the shaping
effect on RFP plasmas. Their work led to the conclusion that shaping does not bring an
advantage to the plasma dynamics in RFPs and is even destabilizing in the case in which
the poloidal cross-section is elongated. These studies focused on the stability properties of
RFPs, but did not consider the fully developed nonlinear dynamics. Here we proceed one
step further in the investigation of the effect of changing the shape of the cross-section of
RFPs by considering the fully nonlinear dynamics within a resistive fluid description. More
precisely, we investigate the effect of elongation of the poloidal cross-section on plasmas in
RFPs by means of direct numerical simulations using a three-dimensional MHD pseudo-
spectral solver [47]. We consider the simplified case where the torus is modeled by a straight
periodic cylinder. We justify the choice of this simplification as follows. In reference [46],
we compared the straight-cylinder approach to fully toroidal simulations. We showed that
most of the qualitative features remained unchanged. The most significant change was the
appearance of a toroidally invariant mode, the influence of which we do therefore neces-
sarily neglect in the present work. It is true that considering the effect of curvature on
the dynamics of RFP could be interesting, but we aim at the understanding of the two
effects (curvature and shape of the cross-section) independently in order to pinpoint the
most important physical effects, before considering their possible interplay. Furthermore,
in Paccagnella et al. [51] the influence of curvature was considered with respect to the
stability properties of RFPs and its effect was shown to be minor.

In the present work is shown that elongation of the cross-section has a significant effect
on the dynamics of the plasma. To probe the confinement, we consider the advection of a
passive scalar, injected in the core of the plasma. The mean scalar profile that establishes
allows us to directly determine the turbulent diffusivity associated with the RFP dynamics.
The results of our simulations show that in some cases the confinement compared to circular
RFPs is improved by shaping.



5.2. EQUATIONS, NUMERICAL METHODS AND PARAMETERS 51

5.2 Equations, numerical methods and parameters

5.2.1 Visco-resistive MHD equations

We repeat here the governing equations,

∂u

∂t
= −∇Π + u× ω + J ×B + Pm

S
∇2u, (5.1)

and
∂B

∂t
= ∇× (u×B) + S∇2B, (5.2)

where the magnetic Prandtl number Pm = ν/λ is the ratio of kinematic viscosity over
magnetic diffusivity and S = B0L/λ the Lundquist number. The velocity field u and the
magnetic field B are both divergence free,

∇ · u = 0, (5.3)

∇ ·B = 0. (5.4)

We stress that the pressure is not neglected and is obtained from the incompressibility con-
dition by taking the divergence of the momentum equation (5.1) and solving the resulting
Poisson-equation. We illustrated in the previous chapter that it is important to retain this
feature in the dynamics unlike in previous investigations of RFPs (e.g. [34,64]), where the
pressure was entirely neglected invoking low-β dynamics. We thus take into account the
influence of pressure on the dynamics, but we neglect all compressibility effects and consid-
er the dynamics of an isothermal plasma. Note that imposing incompressibility was shown
to diminish the reversal of the magnetic field [65] (see also section 4.5), and this will thus
necessarily be the case in the present investigation. We note here that the resistivity profile
can also influence the reversal [66]. The combined influence of shaping, compressibility and
non-uniform resistivity constitutes an interesting perspective for future work.

5.2.2 Shaping parameters

In the present investigation we focus on the influence of the shape of the cross-section on
the confinement properties of the plasma. The parameters should be carefully chosen to
disentangle the effect of changing the geometry from the effect of changing other control
parameters. Considering a periodic cylinder instead of a torus is motivated by this attempt
to reduce the number of control parameters to a strict minimum. Even in this simplified
geometry, the way in which the parameters are varied is not unique. For instance, if the
same toroidal current-density Jz is chosen for two geometries, the mean current Iz will be
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the same, only if the surface A of the cross-section is kept constant, a condition which we
will impose. This will also lead to equal values of the toroidal magnetic flux ψ = BzA, for
a given imposed toroidal magnetic field Bz.

The poloidal magnetic Bp field is computed from the current density. Its reference value
is evaluated as an average over the circular, or elliptic boundary. Necessarily, keeping the
surface A, Jz and Bz fixed, the average value Bp varies when changing the shape of the
cross-section (the bar indicates a boundary average). The pinch-ratio, defined as

Θ = Bp
〈Bz〉

, (5.5)

where the brackets denote a volume average, therefore depends on the value of the ellipticity
c. An important parameter in non-ideal MHD is the Lundquist number, which we define
as

S = 2B̄pb
λ

, (5.6)

where we used the poloidal magnetic field strength and minor radius as reference quantities.
We have chosen b, rather than a, since it is this smallest minor radius which will probably
determine the confinement quality. This choice is further discussed in section 4. Imposing
the same value of S for different values of the ellipticity allows to determine the value of λ.
In all our simulations the value of the magnetic Prandtl number, Pm is chosen unity.

The influence of β and β∇ was considered in the previous chapter, where it was shown that
β is not the important parameter to measure the influence of the pressure on the dynamics.
Indeed in our incompressible simulations β is not a control parameter. We have therefore
not tried here to keep β equal in the different simulations, however it is shown that the
dynamically important parameter β′∇ is of the same order of magnitude in the different
simulations.

5.3 Results

5.3.1 F-Θ stability

The imposed magnetic field in RFPs is unstable for large values of Θ and S, and it will
form a dynamic helical structure with a certain amount of chaotic or turbulent motion
superimposed.

The modification of the magnetic field can be quantified by the field reversal parameter F ,
representing the normalized toroidal field at the boundary,

F = Bz
〈Bz〉

. (5.7)
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Figure 5.1: Field reversal parameter F as a function of the pinch parameter Θ for cylinders
with circular and elliptic cross-section. Also shown is Taylor’s prediction [6] for reference.

As the current increases, the kink instability increases, leading to the decrease of the
toroidal magnetic field at the boundary, so that F decreases as a function of Θ.

This behavior is qualitatively predicted by Taylor’s theory [6] and more sophisticated theo-
ries allow to improve this agreement [30,41,67]. In studies [51,63] based on two-dimensional
equilibrium equations, it was shown that shaping does not alter the F -Θ curve. Prelimi-
nary simulations for cylinders of small aspect ratio Lz/2πb ∼ 2 and S ∼ 4200 are carried
out and compared with Taylor’s prediction [6] for an ellipticity a = 1.6. Figure 5.1 shows
the results of the field reversal parameter F versus Θ. In previous studies [51, 63] it was
shown that shaping had a small destabilizing effect for large curvature, but the F−Θ curve
was unaffected. Indeed, the two geometries yield roughly the same behavior. We confirm
this observation, even though our numerical values of F are substantially higher than in
these references. The effect of compressibility might explain this discrepancy [33].

The reversal parameter is a global parameter and does not give insight into the fine struc-
ture of the dynamics. It is this fine structure, constituted by the nonlinear interplay of
a large number of modes which will determine the confinement quality of a reactor. The
modification of the fine structure is now assessed by evaluating the modal behavior of the
flow.
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5.3.2 Helical modes and safety factor

We study now the effect of shaping on the helical modes. We have hereto performed
simulations for a higher value of S and a larger aspect ratio Lz/2πb = 4 to approach more
realistic conditions. We consider three shapes: a circle with radius r = 1, an ellipse with
a = 1.2 b = 0.83 and an ellipse with a = 1.4 and b = 0.714. The Lundquist number for
the three cases is S ≈ 2.104 and the magnetic Prandtl number is Pm = 1. To give an
idea of the intricate structure of the velocity field, we show in figure 5.2 an illustration
of an instantaneous velocity field. The complex helical structure is clearly visible in this
visualisation.

Figure 5.2: Isosurface of axial velocity uz = 8.10−2CA colored by the scalar field for an
ellipse with a = 1.2.

Figure 5.3 shows the predominance of a magnetic mode with toroidal modenumber n = 7 in
the circular case, which is consistent with what has been observed in the RFX-mod device.
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In the elliptical case (a = 1.2) a tendency for mode n = 14 to dominate is observed, while
the magnetic modes n = 3 and n = 4 contain most of the magnetic energy for a = 1.4. This
last case seems to be closer to a multiple-helicity state, where not a single mode contains
most of the energy. Similar spectral differences are observed in the kinetic spectra, where
n = 0 and n = 1 are the dominating kinetic modes in the circular case, n = 14 in the
a = 1.2 elliptical case, and n = 8 in the a = 1.4 elliptical case.

Further information of the magnetic structure of the plasma is given in Figure 5.4(a-c),
where we display contours of the magnetic flux surfaces in a given cross-section. A clear
difference is observed. In the circular case, concentric circular contours are observed,
whereas in the a = 1.2 case magnetic islands appear at the edges of the ellipse. Similar
behavior to the latter case is observed in the most elongated case, but additional magnetic
islands appear in the central region of the ellipse.

The safety factor is defined as

q(ψ) =
∮
Bz
Bp

dl

2πr , (5.8)

where ψ is the magnetic flux. Figure 5.4 shows the profile of the safety factor q for the
three geometries as a function of the normalized flux, defined as (ψ − ψ0)/(ψsep − ψ0),
where ψ0 is the minimum magnetic flux in the core plasma and ψsep is the magnetic flux
at the separatrix.

The value of q at the center increases considerably with the increase of the ellipticity.
In Fig 5.5 axial magnetic fluctuations are shown in various poloidal cross-sections. The
fluctuations of the axial magnetic field are obtained by showing the magnetic field without
the axially invariant (kz = 0) magnetic contribution. Only in a few sections a clear poloidal
mode structure is observed. These graphs, combined with the spectra shown in Figure 5.3
give a hint about the possible instabilities underlying the dynamics. Tearing modes are
known to appear on places in the plasma where the ratio m/n = q is close to a rational
number. For the circular geometry, where an n = 7 magnetic toroidal mode is dominant,
in one of the cross-sections a clear m = 1 poloidal structure can be identified. The value
q = m/n = 1/7 is not attained in the plasma, but this value is approached in the center of
the domain (see Figure 5.4(d)). The triggered instability could possibly be associated with
an ideal kink mode. For the elliptical cylinder with a = 1.2, a hint of m = 1 and m = 2
structures is visible in the cross-sections taken at instant t = 9.8×103τA, where the n = 14
magnetic mode is dominant. The same analysis at different instants where no magnetic
mode n dominates, shows the persistance of the poloidal mode m = 2. Thus, both rational
surfaces q = 1/14 and q = 2/14 are within the plasma, so that in this case external tearing
modes are a candidate to explain the underlying dynamics, even though modes near the
axis are generally observed to be more unstable. The conclusion from these observations
is that shaping significantly influences the velocity and magnetic fields, both qualitatively
and quantitatively.



56 CHAPTER 5. THE EFFECT OF SHAPING ON RFP DYNAMICS

t/ τ
A ×10

4

0.9 0.95 1 1.05 1.1

E
m

a
g

n
/Σ

E
m

a
g

n

×10
-4

0

2

4

t/ τ
A ×10

4

0.9 0.95 1 1.05 1.1

E
m

a
g

n
/Σ

E
m

a
g

n

×10
-3

0

0.5

1

t/ τ
A ×10

4

0.9 0.95 1 1.05 1.1

E
m

a
g

n
/Σ

E
m

a
g

n
×10

-3

0

0.5

1

(a)

t/ τ
A ×10

4

0.9 0.95 1 1.05 1.1

E
k
in

n
/
Σ

E
k
in

n

0

0.1

0.2

t/ τ
A ×10

4

0.9 0.95 1 1.05 1.1

E
k
in

n
/
Σ

E
k
in

n

0

0.1

0.2

t/ τ
A ×10

4

0.9 0.95 1 1.05 1.1

E
k
in

n
/
Σ

E
k
in

n

0

0.1

0.2

(b)

Figure 5.3: Axial spectra of magnetic (a) and kinetic (b) energy, normalized respectively
by the total magnetic and kinetic energy, considering three shapes, respectively from top
to bottom, a circle with radius r=1, an ellipse with major semi-axis a=1.2 and one with
a=1.4.
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Figure 5.4: Profile of the safety factor q function of the normalized flux, for the three
geometries at t = 9.8× 103τA. Flux surfaces for the three geometries.
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Figure 5.5: Poloidal cross-sections of the cylinder for circular (top) and the two elliptical
(center, bottom) geometries, illustrating the axial magnetic fluctuations at t = 9.8.103τA.
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Figure 5.6: Cross-section of the scalar field for different shapes, for S ∼ 2.104 and Lz/2πb =
4.

5.3.3 Turbulent diffusion

In order to assess the influence of the velocity field on the confinement, we have compared
the radial diffusion of a passive scalar in the different geometries. By fixing the rate of
injection at the same value for all three geometries, the confinement can be evaluated by
the mean scalar profile which establishes in the statistically stationary state. The injection
corresponds to a constant force term fT at the RHS of the temperature evolution equation,

∂T

∂t
+ u · ∇T = α∇2T − χ

η
(T − Twall) + ft, (5.9)

which is non-zero only in a central region with r < 0.1. The value of T at the wall is kept
constant and is fixed at zero value using the penalization technique. The value of T at the
center of the plasma is thereby a direct measure of the confinement quality. In the present
work, T is therefore an auxiliary quantity, which in the case of small temperature fluctua-
tions, assuming isotropic transport coefficients, could be associated with the temperature.
However, in the present case we do not model the interaction of the plasma in the presence
of temperature differences, but we consider the case of an isothermal plasma, where T is
a passive scalar, advected by the RFP velocity field. An investigation of the fully coupled
problem between velocity and temperature will be done in a future work.

One particularly important feature of magnetized plasmas is ignored here. This feature is
the anisotropy of the transport coefficients. Since the mean free path along the magnetic
field lines is orders of magntitude larger than the Larmor-radius, which determines the mean
free path perpendicular to the magnetic field, the homogeneization of a scalar quantity such
as the temperature is very fast along the magnetic field. This can be taken into account
by anisotropic diffusion coefficients. This is beyond the scope of the present analysis.
Nevertheless, the advection of a passive scalar will allow to measure the turbulent diffusivity
due to the velocity fluctuations. Our result can thus only be interpreted to probe the
turbulent diffusion, which is, as we verified, larger than the molecular diffusion due to α,
in our simulations.
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A difficulty in the comparison of the diffusion is the fact that for the elliptical cross section,
the scalar profile depends on the angle, and that in any case the maximum scalar does not
need to be exactly in the center. What is important for confinement, is the maximum
temperature, not necessarily its spatial location. In order to overcome all these difficulties,
we define a sorted scalar profile, by sorting all scalar values in the plasma from high to low.
By properly normalizing the x-axis, we convert this sorted dataset into an effective scalar
profile, corresponding to a circular, perfectly centered, axisymmetric scalar distribution.
This procedure is somewhat similar to the introduction of a magnetic flux function in
tokamak studies. However, here the ordering of the spatial points is carried out as a
function of isothermal contours. This type of sorting of temperature profiles is common in
studies of stratified turbulence [68].

In practice, these profiles are obtained by sorting the different points in the fluid domain of
each plane orthogonal to the z-axis, in decreasing order of scalar value, then averaging over
the volume. All geometries have the same number of points in the fluid domain because
of the equal cross-sections. The sorted profiles are shown in Figure 5.7 left. The x-axis is
now a function of the generalized radius r̃. This generalized radius is defined by

r̃ =
√
n

N
r0 (5.10)

where N is the total number of measurement points, n the n-th point of the sorted values
and r0 the reference radius, which equals 1 in our case. For non-axisymmetric profiles
and cross-sections this representation will allow a direct comparison between the different
scalar distributions.

Figure 5.6 and 5.7 show that the elliptical cases have the highest scalar value in the center
of the plasma. The turbulent diffusion associated with the chaotic-turbulent motion can
be directly evaluated from the average scalar profile by introducing an effective diffusivity
DT defined by,

DT = G

r̃ ∂〈T 〉∂r̃

∀ r̃ > r∗ (5.11)

where G is the total injected heat computed from the scalar source term,

G = −
∫∫ r∗

0
fT rdθdr, with r∗ = 0.1. (5.12)

A peak in the diffusivity profile in the near-wall region 0.8 < r̃ < 1 is observed, which could
possibly be associated with an enhanced level of turbulence, generated in the shear-layer
between the helical structure and the wall.

A further, more detailed characterization of the transport, probing the stochasticity of
the flow, using for instance Poincaré maps, would be an interesting perspective. Also,
considering directly the Ohmic heating as a source term, would be an elegant way to
investigate the temperature diffusion in a self-consistent manner.



5.4. ON THE CHOICE OF DIFFERENT CHARACTERISTIC SCALES 61

r̃

0 0.2 0.4 0.6 0.8 1

〈 
T

 
〉

0

2

4

6

8

10

12

r=1

a=1.2

a=1.4

r̃

0 0.2 0.4 0.6 0.8 1
〈 

D
T

 
〉

×10
-3

1

1.5

2

2.5

Figure 5.7: Mean scalar profiles as a function of the generalized radial coordinate r̃ (left).
Effective diffusivity profile normalized by the cross-sectional surface. Both profiles are
time-averaged over 3× 103τA (right).

5.4 On the choice of different characteristic scales

Different physical systems can only be meaningfully compared if the dimensionless param-
eters of the system are evaluated. These dimensionless numbers appear in general when
the evolution equations of the system are non-dimensionalized by appropriate length, time,
magnetic and other relevant scales. Hereby appear, for the case of MHD, dimensionless
quantities like the Hartmann and Lundquist number. For example, the Hartmann number
defined as,

Ha = CAL√
ην
, (5.13)

where η is the magnetic resistivity, L is a characteristic length scale and CA the Alfvén
velocity, plays a major role in describing laminar MHD dynamics [69–71] and the transition
from multi-helical states to single-helical states [34]. On the other hand, the Lundquist
number S is generally used in the fusion community to describe the plasma dynamics in
the turbulent regime. For our case, where η = ν, those two numbers have equal values,
Ha = S. An important question is now how to define the length scale L.

In the case of a circular cross-section, the most logical choice of the reference length scale
is the radius of the cylinder. Deforming the cross-section breaks the symmetry of the
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r a b CA L λ

1 - - Bp = 1.4 r 1.4× 10−4

Case 1 - 1.2 0.83 Bp = 1.36 b 1.1× 10−4

- 1.4 0.71 Bp = 1.26 b 9× 10−5

1 - - Bp = 1.4 r 1.4× 10−4

Case 2 - 1.2 0.83 Bp = 1.36
√
ab 1.35× 10−4

- 1.4 0.71 Bp = 1.26
√
ab 1.25× 10−4

Table 5.1: Parameters for case 1 where L = b and case 2 where L =
√
ab, for the three

geometries.

problem, and the radius is not longer uniquely defined by a simple number. A rather
logical choice of the reference length is now L =

√
ab, but this choice is not free from some

arbitrariness. Another relevant length scale could be b, the minor axis, since this length
scale is the smallest distance from the center to the wall, and as such it could pilot the
confinement quality of the plasma. The choice of these two different typical length scales
leads, for a given toroidal magnetic field and Lundquist number, to distinct values of the
magnetic diffusivity. We have therefore considered two different choices for L and evaluated
their impact onto the dynamics. The parameters of different cases are summarized in table
5.1.
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Figure 5.8: Evolution in time of the kinetic energy Ek (left), and the mean of the scalar
value 〈T 〉 (right), respectively from top to bottom for cases 1 and 2.
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First, the evolution of the kinetic energy and average scalar value for cases 1 and 2, hav-
ing the same characteristic magnetic scale and different lengthscales, are considered and
presented in Figure 5.8. For L = b, the kinetic energy fluctuates around the same value
for the three geometries. For this case, which we considered in the previous sections, the
value of the scalar in the elliptical geometries is larger than that observed in the circular
one. On the other hand, for L =

√
ab, the kinetic energy fluctuates around the same value

in the elliptical cases, and it is slightly larger than the one of the circular case. While the
evolution of kinetic energy is close in cases 1 and 2, the evolution of the scalar shows a dras-
tic change. Furthermore, the mean of the scalar value for the elliptical cases decreases, to
reach the same value of the circular case for a = 1.2, and a smaller value for a = 1.4.

5.5 On the influence of the pinch on the dynamics

It seems from our results that changing the geometry, for given current and toroidal mag-
netic field, will lead to a self-organized state with a different level of magnetic fluctuations.
We have carried out supplementary computations in which we increased the axial magnet-
ic field for the circular geometry, thereby lowering the initial pinch by a factor 1.75. The
increased stability in this case led to a lower level of magnetic fluctuations. However, even
in this case in which the turbulent magnetic activity was of the level of the elliptic case
(with a = 1.2) the safety factor remained roughly unchanged, and so did the diffusion. It
seems thus that a change in the geometry affects the self-organized state with respect to
the safety factor and diffusion, and that this result persists even when the initial pinch
ratio is significantly changed. The details are given in the following.

The new case corresponds to a circular RFP with Bz = 0.35 instead of Bz = 0.2, as
in previous simulations. The results are represented in magenta in the following figures.
Figure 5.9 shows that the magnetic energy of the new case relaxes towards a state close
to the elliptical case. On the other hand, as shown in figure 5.9, and calculated at instant
t ≈ 3000τA, the q-profile of the new case is closer to the previous circular case, and the
value of < T > also remains close to its old value.

5.6 Conclusion

Direct numerical simulations of viscoresistive MHD show that in periodic cylindrical geom-
etry in the RFP regime, the shape of the cross-section significantly changes the nonlinear
dynamics. Moreover, different helical states can be observed and different energetic modes
are excited in different geometries. Modifying the elliptical elongation leads to different
modal behaviors. We quantified the impact on the confinement properties by considering
the radial advection of a passive scalar, injected in the center of the domain. Indeed, the
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Figure 5.9: a) Evolution of the magnetic energy for the 3 cases. (b) Evolution of the mean
of temperature for the 3 cases. (c) q-profile function of the flux, for the three cases, at
t = 3000τA.

evaluation of the eddy-diffusivity shows a clear enhancement of the confinement quality for
elliptic cross-sections.

The physical reason why elongation could enhance confinement deserves certainly further
investigation.

One possibility is that changing the geometry, for given current and toroidal magnetic field,
will lead to a self-organized state with a different level of magnetic fluctuations. We have
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carried out supplementary computations in which we increased the axial magnetic field for
the circular geometry, thereby lowering the initial pinch by a factor 1.75. The increased
stability in this case led to a lower level of magnetic fluctuations. However, even in this case
in which the turbulent magnetic activity was of the level of the elliptic case (with a = 1.2)
the safety factor remained roughly unchanged, and so did the diffusion. It seems thus that
a change in the geometry affects the self-organized state with respect to the safety factor
and diffusion, and that this result persists even when the initial pinch ratio is significantly
changed.

Another possibility is that elongation leads to symmetry breaking of the poloidal flow.
Indeed in 2D turbulence, changing the flow-geometry from circular to elliptical, leads to
the generation of angular momentum [72]. This effect was shown to persist in 2D MHD
turbulence [73] and its investigation is considered an interesting perspective, since large
scale poloidal motion could enhance radial transport barriers. A preliminary investigation
of this effect is shown in Fig 5.10 where for a given time-instant the angular momentum
associated with the poloidal flow is computed for each cross-section. Even though the total
volume averaged angular momentum might be small, it is shown that for the case of the
circular geometry, locally large values of the poloidal angular momentum exist.
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Figure 5.10: z-dependence of the instantaneous poloidal angular momentum for the three
geometries at t = 11× 103τA.
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The most important message of this work is perhaps not the knowledge of a certain value
of the elongation, most efficient to obtain an optimal confinement, but the mere fact that
elongation can change the confinement of RFPs. We would therefore encourage experi-
mentalists to consider the poloidal shape of the confining magnetic field as an important
control parameter for RFP design and operation. If an experiment allows for a simple mod-
ification of the plasma shape, it might give more freedom to obtain a competitive fusion
plasma.



Chapter 6

Observation of the dynamo effect
in an RFP

6.1 Introduction

The dynamo effect is the generation and sustainment of a magnetic field resulting from the
motion of an electrically conducting fluid. It plays a major role in the description of the
generation of celestial and planetary magnetic fields, such as the terrestrial one, generated
by the movement of the liquid metal core.

Analytically, the amplification of the magnetic field takes place when the inductive term
dominates over the resistive term of the induction equation,

∂B

∂t
= ∇× (u×B)︸ ︷︷ ︸

inductive term

+ λ∇2B︸ ︷︷ ︸
resistive term

. (6.1)

The imbalance between these terms is quantified by the magnetic Reynolds number Rm,
which gives an order of magnitude estimate of the ratio of the inductive term over the
resistive term,

Rm = O
(∣∣∇× (u×B)

∣∣∣∣λ∇2B
∣∣ )

= UL
λ
, (6.2)

where U and L are reference velocity and length scales, respectively. A simple way to
detect dynamo action corresponds to the observation of a positive time derivative of the
magnetic energy Em over a considerable time-interval. The equation of evolution of Em is

67
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obtained by multiplying equation (6.1) by B and integrating over the volume,

∂Em
∂t

=
∫

(∇×B) · (u×B)dv︸ ︷︷ ︸
production term

− λ

∫
|∇ ×B|2 dv︸ ︷︷ ︸

Joule dissipation

. (6.3)

So the dynamo effect is observed when the production term in equation (6.3) is greater
than the Joule dissipative term.

A critical magnetic Reynolds numberRmc, below which no dynamo exists, can be calculated
analytically in the case of prescribed flows [74–77]. This is called the kinematic dynamo,
and it is used to study flows where the magnetic fluctuations are small so that the Lorentz
force retroaction can be neglected. The governing equations in the kinematic dynamo
regime are,

∂u

∂t
+ u · ∇u = −∇P + ν∇2u, (6.4)

and
∂B

∂t
= ∇× (u×B) + λ∇2B. (6.5)

When the Lorentz force rectroaction is important and cannot be neglected anymore, the
dynamics are governed by the saturated dynamo which can be described by the following
equations,

∂u

∂t
+ u · ∇u = −∇P + ν∇2u+ J ×B, (6.6)

and
∂B

∂t
= ∇× (u×B) + λ∇2B. (6.7)

The only difference is thus the presence of the Lorentz force, which allows the magnetic
field to react back on the velocity field by which it is stretched and advected.

It has been shown using kinematic dynamo theory that geometrical constraints apply on
the flow and therefore not any flow can trigger dynamo action no matter the value of Rm.
For example, 2D flows and planar flows are unable to generate a dynamo field. Another
example is Cowling’s theorem [78] which mentions that axisymmetric magnetic fields cannot
be maintained by the dynamo action, i.e. a dynamo with axisymmetric magnetic field is
impossible. It was shown by Moffatt [79] that helicity is beneficial for the amplification of
a seed magnetic field. Indeed helicity allows the simultaneous stretching and twisting of
magnetic field lines. The helical character of an RFP flow field should therefore be a good
candidate to amplify a magnetic field. Indeed, previous investigations of screw-flow in a
toroidal domain, quite similar in shape to the RFP flow demonstrated the possibility of
dynamo activity [80,81].

In turbulent flows, classically the mean field theory is proposed to study the dynamo
effect. It consists in applying Reynolds’ decomposition to write the total velocity and
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magnetic fields as the sum of the ensemble average (overlined quantities) of the field and
its fluctuation (primed quantities),

u = u+ u′, B = B +B′, (6.8)

and then deriving their evolution equations. The mean field induction equation can then
be written as:

∂B

∂t
= ∇× (u×B) +∇× (u′ ×B′)︸ ︷︷ ︸

e.m.f

+λ∇2B. (6.9)

The mean field theory focuses on modelling the electromotive force (e.m.f) arising from the
turbulence which is commonly written as,

u′ ×B′ = αB − βJ . (6.10)

where α corresponds to the e.m.f generated by the turbulence in the direction along the
mean field and β to the one along the mean current field. While this model yields simple
dynamo solutions and links the dynamo effect to the magnetic helicity Hm [82], its validity
is however limited [83].

The more classical approach, where the amplification of a magnetic field is studied in well
defined analytical flows containing helicity is now more and more replaced by the study of
fully turbulent flows. This is already illustrated by the most famous dynamo experiments
where the first dynamos were observed in a well-controlled laminar flow, and where later
experiments aimed at observing a dynamo in a turbulent setting. These experiments are
discussed now.

The first dynamo action in a fluid was observed in 2000 at the Riga [84, 85] and Karl-
sruhe [86] facilities. In the Riga experiment, a propeller is driven to produce a single-
vortex-like helical flow in a bath of liquid sodium initially at rest. The self-excitation of a
slowly growing magnetic field eigenmode with a growth rate p ≈ 0.0315 s−1 was detected
at propeller’s rotation rate 2150 rpm. The Karlsruhe experiment consisted of 52 tubes
assembled in series which generated alternated helical flow, i.e, the rotation and transla-
tion’s sign changes between a tube and another. A smooth increase of two components of
the magnetic field was observed, thereby demonstrating the presence of dynamo-activity
producing a mean magnetic field of the order of 40 − 60 Ga. This experiment is based
on the G.O Roberts kinematic dynamo [77] while the Riga’s experiment is based on the
Ponomarenko kinematic dynamo [76].

The results of these two experiments motivated the dynamo community to design an experi-
ment with less geometrical flow constraints, more complex dynamics and strong turbulence.
This might result in the generation of a more complicated magnetic field than the station-
ary magnetic field in Karlsruhe and the periodic one in Riga. This was achieved by the von
Kármán Sodium (VKS) experiment [87–89] where two counter-rotating impellers generated
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the sodium flow in a cylinder. Such flow, characterized by intense turbulence and non-zero
helicity, is believed to favor the dynamo action [79]. The dynamo effect observed in this
experiment exhibited interesting dynamics where the magnetic field polarity changed sign
quasi-periodically. This result was previously observed in the numerical simulations of
the terrestrial magnetic field reversal carried out by Glatzmaier and Roberts [90]. Fur-
ther numerical observations of dynamo action were reported in a number of papers, for
instance [91] where the limit of small magnetic Prandtl number was considered in Large
Eddy Simulations (LES) of the MHD equations.

In RFP fusion reactors, it is known that increasing the toroidal current Iz above a certain
threshold for a given toroidal magnetic field Bz gives in general rise to a complex chaotic
interplay of helical structures of different spatial frequency, reorganizing the plasma into a
stable state where the toroidal component reverses close to the boundary. The generation of
this toroidal magnetic field, which has the originally imposed sign in the center and reversed
close to the boundary, is referred to as the dynamo effect in the fusion community. It was
pointed out by Caramana [92] that this term is “borrowed” from astrophysics, and later by
Escande [5] that it should be called “half a dynamo” since an externally imposed e.m.f drives
the toroidal current. Indeed, an obvious difference of the RFP phenomenology compared
to the astrophysical definition of a dynamo, is that in the latter case one considers the
amplification of an infinitesimally small seed-magnetic field, whereas in the RFP context
one considers the modification of an initially strong imposed magnetic field.

The reversal phenomenon in RFPs, which is believed to be linked to the dynamo effect,
was observed first in early RFP experiments [92–94] and extensively studied using different
approaches. In [95] the parallel Ohm’s law was used to point out the diamagnetic effect,
while in [96] mean field theory was used and the α-model was invoked to explain the RFP
reversal. It was also pointed out in [97] that cross-helicity plays a major role in the RFP
dynamo. After the observation of quasi-single-helicity states in [7] in 2000, the dominant
electrostatic nature of the RFP dynamo was illustrated in [98,99].

In this chapter we carry out a thought experiment where we extract the self-consistent
velocity field computed from the coupled set of equations presented in Chapter 3, and
analyse its dynamo capability. We hereby reconcile the astrophysics and fusion community
with respect to the presence, or not, of a dynamo in RFPs. We consider the interaction
of three vector-fields (as in [100]): the velocity field u, generated by an MHD instability
resulting from its interaction with the magnetic field B, and an initially weak magnetic
field D, passively advected by the velocity field u. Results will show that the RFP velocity
field acts as a dynamo, for sufficiently large magnetic Reynolds numbers.
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6.2 Governing MHD equations

The RFP velocity field u is generated by the MHD instability resulting from its interaction
with the RFP magnetic field B. This is done similarly in Chapter 4 by resolving the visco-
resistive MHD equations (3.1) and (3.2),

∂u

∂t
= −∇Π + u× ω + j ×B + ν∇2u, (6.11)

and
∂B

∂t
= ∇× (u×B) + λ∇2B. (6.12)

The passive magnetic field’s evolution is described by the following induction equation,

∂D

∂t
= ∇× (u×D) + λ′∇2D, (6.13)

where λ′ is the magnetic diffusivity corresponding to D. The velocity field u, the magnetic
field B and the passive magnetic field D are all divergence free,

∇ · u = 0, ∇ ·B = 0 and ∇ ·D = 0. (6.14)

Figure 6.1:
Sketch of the
cylindrical
geometry.

In the remainder of the Chapter, all quantities related to the passive mag-
netic field D are primed in order to avoid any confusion with quantities
related to B, e.g, Rm = UL/λ while R′m = UL/λ′. Here and in the fol-
lowing U is the RMS value of the velocity field averaged over the volume
of the cylinder, and L is the diameter of the cylinder. Furthermore, unless
stated otherwise, the Prandtl number Pm = ν/λ is considered unity, and
hence Re = Rm in this case.

The difference between B and D is that the former interacts with the ve-
locity field, whereas the latter is passively advected and stretched. Another
difference is that the initial passive magnetic field D is a random noise sim-
ilar to the velocity field, but with initial energy ED ≈ 10−10. The initial
magnetic field is, as in the foregoing chapters the combination of an axial
field Bz0 = 0.2 and a poloidal field Bp0 induced by an imposed axial cur-
rent density jz0 = 1.4. At the boundary, no slip condition is imposed for
the velocity field, while for B and D only the poloidal component is set to
zero.

Two numerical simulation set-ups are considered: the first one corresponds
to a “frozen” velocity field and the second one to a “dynamic” velocity field.
The first case consists in using in equation (6.13) a time-invariant velocity field obtained
by resolving first, equations (6.11) and (6.12) until reaching a statistically stationary state.
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Such a method is suitable for laminar flows with small Lundquist number S = CAL/λ,
where few kinetic modes dominate, and dynamo action is more probable due to lack of
kinetic fluctuations. In the second case, equations (6.11), (6.12) and (6.13) are resolved
simultaneously. This method is suitable for flows with high Lundquist number exhibiting
turbulent dynamics.

In the previous chapters we characterized the influence of the viscosity and magnetic diffu-
sivity by a control parameter, the Lundquist number S, but in the dynamo-community one
considers the Reynolds number Re instead. Since Re is an output parameter that cannot
be directly imposed, we first quantify in Figure 6.2 the Reynolds number as a function the
Lundquist number in our simulations. In order to vary the Lundquist number, and thereby
the Reynolds number, only the kinematic viscosity ν is varied while the imposed magnetic
and current fields are kept the same as previously mentionned in this section. Similarly,
the passive magnetic Reynolds number R′m is varied for each flow by only changing the
value of λ′.
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Figure 6.2: Reynolds number Re as a function of the Lundquist number S.

6.3 Dynamo generated by a laminar RFP velocity field

In this section, dynamo action in laminar RFP flows are studied using kinematic dynamo
theory. This choice is justified by the fact that laminar flows can be considered as prescribed
and quasi-time invariant. Furthermore, the passive magnetic field has no retroaction on
the velocity field.
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Figure 6.3: Time evolution of: (a) the kinetic and magnetic energies, (b) the passive
magnetic energy for different values of P ′m of a flow with Re = 10.

6.3.1 Is the RFP velocity field a dynamo?

The ability of an RFP velocity field to amplify an initially weak magnetic field by dynamo
action is checked in this section. It consists in using the first simulation setup where the
velocity field is frozen. Thereto, equations (6.11) and (6.12) are solved until the kinetic
energy Ek = 1

2〈u
2〉 and magnetic energy EB = 1

2〈B
2〉 reach a statistically stationary state

as shown in Figure 6.3(a). Then the frozen velocity field is taken at t = 1500τA where
the flow’s Reynolds number is Re = 10, and simulations of equation (6.13) for different
values of λ′ are carried out in order to check the critical Reynolds number R′mc or the
critical Prandtl number P ′mc = R′mc/Re. In Figure 6.3(b), the passive magnetic energy
ED = 1

2〈D
2〉 is amplified for P ′m > 3 and therefore proves the existence of dynamo action

in RFP at least in the laminar, kinematic case.

6.3.2 Dynamo growth rate

In kinematic dynamo theory, the passive magnetic field has no retroaction on the velocity
field which makes the induction equation linear in D. In consequence, its solution can be
written as,

D(x, t) = D0(x)ep′t, (6.15)
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Figure 6.4: (a) Growth rate of 〈D2〉 for different values of Re and P ′m, (b) critical magnetic
Reynolds number R′mc function of Reynolds number Re.

where p′ is the growth rate. Hence, passive magnetic energy is expected to have exponential
growth, which can be seen clearly in Figure 6.3(b). Simulations with different values
of Re and P ′m are carried out, and the corresponding growth rate values are plotted in
Figure 6.4(a). The critical Reynolds number R′mc which corresponds to zero growth rate is
calculated by interpolating the different growth rate values of each flow, and are represented
in Figure 6.4(b). It is observed that the value of the critical Reynolds number is of the
order 18 for Re ≤ 10, then it fastly increases for the range of 10 < Re < 16. We also show
in this range the simulation results carried out in reference [101], where the dynamo action
is studied in a periodic flow with non-helical forcing.

A first observation is that these results match well with our RFP simulations, which shows
that RFP flows are suitable for dynamo studies. Indeed, the critical value of the magnetic
Reynolds number is of the same order of magnitude as those observed in flows which were
specifically designed to generate a dynamo [102,103]. This illustrates that the RFP flow has
very favorable properties for dynamo generation. This can be qualitatively understood since
RFP flows are characterized by high helicity and high shear, two properties which enhance
dynamo activity. We can anticipate that once the flow becomes turbulent, dynamo activity
will be harder to obtain. This was illustrated, for example, in [91] where low magnetic
Prandtl number regimes have been studied using Taylor-Green forcing. Furthermore, their
results show that the critical magnetic Reynolds number increases sharply with the decrease
of the magnetic Prandtl number.
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6.3.3 Interaction between u and D

The passive magnetic field is amplified by the motion of the conducting fluid. It is not
clear to what extent it can be expected that D presents a similar structure as the velocity
field. The comparison of the modal and geometrical structure of u and D is investigated
in this section.

We consider first the induction equation ofD, written using indices to simplify the analysis,

∂D(x, t)
∂t

= ∇× (u×D) + λ∇2D. (6.16)

Taking the Fourier transform of equation (6.16) and using Levi-Civita notation leads to
the following equation,

∂D̂j(k, t)
∂t

= εjabika(εbcdûcDd)− λk2D̂j . (6.17)

The Fourier transform of the product ucDd is a convolution that can be written as,

ûcDd(k) =
∫ ∞
−∞

uc(p)Dd(k − p)dp =
∫ ∞
−∞

uc(p)
∫ ∞
−∞

Dd(q)δ(k − p− q)dqdp

=
∫∫ ∞
−∞

δ(k − p− q)uc(p)Dd(q)dqdp.
(6.18)

In consequence, the induction term exists under the condition

k − p− q = 0, (6.19)

which can be written similarly for the axial components,

kz − pz − qz = 0. (6.20)

Hence the generation of a passive magnetic field resulting from the interaction of the
velocity field and the initial passive magnetic field is expected to have axial modes n = kz
equal to the sum of the dominant kinetic axial mode pz and the initial dominant passive
magnetic axial mode qz. In order to check this, numerical simulations of flows with P ′m = 4
and Re = 6.37, 10.2, 15.3 are carried out and the plot of different normalized axial energy
spectra is shown in Figure 6.5 for toroidal modes n ≤ 40. This choice is justified in Figure
6.6 where these axial spectra are plotted for all toroidal modes in log-scale. The spiky
pattern of the spectra is generated by the harmonics of the dominating mode, a common
modal behaviour for laminar flows, and the dominating modes are in the range of n < 40.
In the case of Re = 10, the dominant kinetic axial mode is |pz| = 9 and the passive
magnetic one is |qz| = 2. If one assumes that the previous reasoning is correct, then the
interaction of |pz| = 9 and |qz| = 2 would generate |kz| = 11 (pz and qz have the same
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Figure 6.5: Axial spectra of u2 (red), B2 (green) and D2 (blue) for different values of Re
and for P ′m = 4.
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Figure 6.6: Normalized axial spectra of (a) u2, (b) D2 in log-scale for Re = 6.37 and
P ′m = 4.

sign) and |kz| = 7 (pz and qz have opposite signs). This expected result is consistent with
the axial spectra of D2 shown in Figure 6.5, and is also observed for the flows with Re = 16
and Re = 24.

Furthermore, this interaction is expected to stay unchanged for flows with the same Re
(i.e, same ν) and different P ′m, as long as the resistive term, which can be written as
(ν/P ′m)(∇2D), is negligible compared to the induction term. This is shown in Figures 6.7
and 6.8 where the modal structure of D2 stays unchanged for the case of Re = 10 and
Re = 16 with different values of P ′m. The same behaviour is observed in the case of Re = 24
but is not reported here.

Now we will explore the u −D interaction by analyzing the 3D visualization of different
fields. Isosurfaces of the kinetic and passive magnetic energies normalized by their volume
averages, u2/〈u2〉 and D2/〈D2〉 respectively, are shown in Figure 6.9. A first observation
is that the velocity field and the passive magnetic field have a different spatial structure.
Moreover, the kinetic structures occupy most of the central region of the cylinder, while
most of the passive magnetic structures exist outside the central part. Another observation
is that the different magnetic structures connect at the high shear region where the velocity
gradient is large, i.e region between the red (uz > 0) and violet (uz < 0) kinetic structures.
Furthermore, the axial component of these magnetic structures reverses sign after each
connection.
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Figure 6.7: Axial spectra of D2 for Re = 6.37 and different values of P ′m.
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Figure 6.9: 3D visualization of the normalized kinetic energy isosurface u2/〈u2〉 = 6.6
and the normalized passive magnetic energy isosurface D2/〈D2〉 = 9, colored by the axial
velocity field uz and axial passive magnetic fieldDz, respectively, for Re = 6.37 and P ′m = 4.

6.3.4 Influence of the boundary conditions

An important issue in dynamo computations is the precise nature of the boundary condi-
tions, which can importantly influence the growth rate of the magnetic energy (even though
the dynamo properties of some flows are surprisingly robust with respect to the choice of
the boundary conditions [104]).

Influence of the radial periodicity As in the foregoing chapter, we have chosen the
boundary conditions such that the axial component of the passive magnetic field Dz at the
boundary can evolve freely without any constraint. If the cylinder’s boundaries are close
to the computational domain boundaries, the periodicity of the spectral methods might
affect the evolution of Dz in the wall, which subsequently would change the evolution of
D in the fluid domain. To check this, we compare two dynamo simulations where the
cylinder’s radius is kept r = 1 and the domains are modified for Re = 8.27, P ′m = 4.
The first one is carried out in a box of size π × π × 8π while the second in a box of
size 2π × 2π × 8π. Thus, the domain in the second case where D evolves freely is larger
than the one in the first case. It is shown in Figure 6.10 that the growth rate of the
passive magnetic energy has slightly increased from 0.0297 in the first domain to 0.0353 in
the larger domain. However, qualitatively no important modification are observed in the
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Figure 6.10: Time evolution of (a) kinetic energy, (b) passive magnetic energy, for a flow
with Re = 8.27 and P ′m = 4 and different domains.

spatial structure of passive magnetic field as shown in Figure 6.11. Furthermore, this can
be confirmed in Figure 6.12 where the axial spectra of the kinetic and passive magnetic
energies in different computational domains remain almost unchanged.

Influence of the axial periodicity Due to the need of a high numerical resolution to
solve the turbulent dynamo regime, large computational resources are required. Hence, in
the following the cylindrical domain is reduced to half its length in the z-direction in an
attempt to reduce the computational requirements. This would correspond, if the cylinder
would be bent into a torus, to a toroidal domain with a diameter divided by two.

To check this geometrical effect on the dynamo properties, simulation of flows with Re =
8.27 and P ′m = 4; 5.3; 8 are carried out in a domain of size π × π × 4π. It is shown in
Figure 6.13 that the critical Prandtl number in the case of Re = 8.27 and a domain of size
π×π× 4π is P ′mc > 4, while in Figure 6.4(a) 1.8 < P ′mc < 3 in the case of Re = 8.27 and a
domain of size π×π×8π. Hence, reducing the domain size in the z-direction might not be
always beneficial because it increases the critical magnetic Prandtl in some ranges of Re.
Apparently, the additional space in a longer domain promotes the dynamo effect.

Free magnetic boundary conditions As a last verification we consider the case where
all the magnetic components are left free to evolve at the boundary of the cylinder. The
only constraint on the magnetic field outside the cylinder is the periodicity on the boundary
of the numerical domain. This domain is a rectangular box of size 2π × 2π × 8π, whereas
the diameter of the cylinder is 2. It is shown in Figure 6.14 that the dominating modes
of the passive magnetic energy’s axial spectra remain unchanged in both cases while the
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Figure 6.11: 3D visualization of the normalized kinetic energy isosurface u2/〈u2〉 = 6.6
and the normalized passive magnetic energy isosurface D2/〈D2〉 = 9, colored by the axial
velocity field uz and axial passive magnetic field Dz, respectively, with a domain of size
(left) π × π × 8π, (right) 2π × 2π × 8π, for Re = 8.27 and P ′m = 4.
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Figure 6.12: Normalized axial spectra of (a) the kinetic and (b) the passive magnetic
energies, for Re = 8.27 in different computational domains.
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π × π × 4π, for Re = 8.27 and different values of P ′m.

non-dominating ones in the case of free boundary conditions has grown larger than in the
other case. However, the dominating modes are orders of magnitude larger (1010) than the
non-dominating modes, thus no clear changes in the dynamics are observed.

6.4 Turbulent dynamo

6.4.1 Numerical simulation of the turbulent dynamo

Simulations are now carried out for a flow in which all three fields u and B and D are
evolving in time. Since in the previous chapter RFP simulations for S ≈ 25 × 104 (which
corresponds to Re = Rm ≈ 434) were well-resolved using 64 × 64 × 512 grid points, the
same numerical resolution is used (64 × 64 × 512) for D. We carry out first simulations
for a flow with Re = Rm = 148 and R′m = 295. It is found that the resulting velocity
field u and magnetic field B are well resolved, which is not the case for D. To make
sure that this difference is not due to the fact Re < R′m, we carry out another simulation
of a flow with Re = Rm = 434 using the same resolution (64 × 64 × 512) and compare
the axial spectra of kinetic and magnetic energies of this flow with the one of the passive
magnetic energy of the flow with R′m = 295. This is shown in Figure 6.15(a). In the first
flow, low wavenumbers contain most of the energy, which is not the case in the second flow
where the energy is equi-distributed over all the wavenumbers. Such spectral behavior is
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observed when the grid size of the simulation is not small enough to resolve the scales where
the passive magnetic energy is diffused. To illustrate the change of modal behavior when
the equations are well resolved, smaller R′m and larger numerical resolution resolution are
considered to make sure that D is well resolved. We show in Figure 6.15(b) the energy
spectra of the velocity field u and magnetic field B of a flow with Re = Rm = 51 and
of the passive magnetic field D of a second flow with R′m = 153 using 128 × 128 × 512
numerical resolution. Clearly, the energy in the three spectra is sufficiently dissipated at
large wavenumbers, represented by a steeper dissipation range.

In conclusion, it seems that for a given resolution, when the field B is rather well re-
solved, the field D needs a finer resolution. At first sight this is rather surprising since the
evolution-equation of B is identical to the evolution equation of D. There must therefore
be something going on in the coupling between the velocity-field and the magnetic field B
through the Lorentz force, which prevents the magnetic field to generate the small scales
observed in the passive D field. We will now attempt to give an explanation for that.

6.4.2 Saturation of the nonlinear dynamo

In the kinematic dynamo description, the passive magnetic field does not exhibit any
Lorentz force (∇ ×D) ×D on the plasma. This case was investigated in reference [100]
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Figure 6.15: Examples of a poorly resolved (a) and well resolved (b) simulation with respect
to the passive field D. (a) Normalized spectra of u2 and B2 for Rm = 434, and D2 for
R′m = 295. (b) Normalized spectra of u2 and B2 for Rm = 51, and D2 for R′m = 153.

for the case of periodic box turbulence. Indeed, using the same 3 equations as in the
present study they investigated how and whether a kinematic dynamo saturates when the
amplified magnetic field, and thereby its retro-action on the velocity field becomes large
enough to influence the dynamics. It was observed that even when the real magnetic field
B saturates, the passive field D continues to grow.

One of the key insights obtained hereby is that the saturation is not due to the fact that the
Lorentz-force changes the flow-structure such that it is not possible to amplify a magnetic
field anymore. Indeed, if this was the case, D would saturate simultaneously with B.
Rather is it due to some intricate interplay between the velocity field and the magnetic
field. It is therefore not visible from the velocity field alone in that case that the magnetic
field saturates, and at which level. One should thus consider the simultaneous dynamics
of u and B.

One way to consider the simultaneous dynamics of the velocity and the magnetic field is
to introduce the Elsasser variables, defined as,

ζ+ = u+D (6.21)

and
ζ− = u−D. (6.22)

In the case of full MHD, D is replaced by B in expressions (6.21) and (6.22). To simplify
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the equations’ derivation, we write the MHD equations as follows,

∂u

∂t
+ u ·∇u− γB · ∇B = ν∆u−∇(P + γ

B2

2 ), (6.23)

∂B

∂t
+ u · ∇B −B · ∇u = λ∆B, (6.24)

∂D

∂t
+ u · ∇D −D · ∇u = λ∆D, (6.25)

where γ = 0 in the case of the passive magnetic field and γ = 1 in the case of the full MHD
system. Note that u and D can be written as,

u = 1
2(ζ+ + ζ−), (6.26)

D = 1
2(ζ+ − ζ−). (6.27)

We find therefore for Pm = 1,

∂tζ
++3 + γ

4 ζ−j ∂jζ
+
i +1− γ

4 [ ∂
∂xj

(ζ+
j ζ

+
i +ζ−j ζ

−
i −ζ

+
j ζ
−
i )] = − ∂

∂xi
(P+γB

2

2 )+ν∆ζ+, (6.28)

and

∂tζ
−+3 + γ

4 ζ+
j ∂jζ

−
i +1− γ

4 [ ∂
∂xj

(ζ+
j ζ

+
i +ζ−j ζ

−
i −ζ

−
j ζ

+
i )] = − ∂

∂xi
(P+γB

2

2 )+ν∆ζ−, (6.29)

or in compact notation,

∂tζ
±+3 + γ

4 ζ∓j ∂jζ
±
i +1− γ

4 [ ∂
∂xj

(ζ+
j ζ

+
i +ζ−j ζ

−
i −ζ

±
j ζ
∓
i )] = − ∂

∂xi
(P+γB

2

2 )+ν∆ζ±. (6.30)

One clear way to see the interaction between u and B or u and D is to consider the case
in which the velocity and magnetic field align. Indeed rapid local alignment of the velocity
and the magnetic field was observed in several studies of incompressible MHD [105–107].
For γ = 1, the whole term proportional to (1−γ) vanishes. Furthermore, the cross products
ζ±j ζ

∓
i vanish when u = ±B or u = ±D. For γ = 0, the terms proportional to (1− γ) do

not vanish. We see thus that for γ = 0 (a passively advected vector field), the depletion of
nonlinearity is much weaker than for the full MHD system, γ = 1, where the whole term
in square brackets is identical zero.

The alignment of u and D is shown in Figure 6.16 where the PDF of the (u,D) angle’s
cosine, denoted cos(∠(u,D)), is plotted at instants t = 0 and t = 1200τA. At instant
t = 0, the PDF is almost constant, hence no (u,D) alignment is observed. At instant
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Figure 6.16: PDF of ∠(u,D) at instants t = 0 (blue) and t = 1200τA (red).

t = 1200τA, the PDF reaches two peaks at cos(∠(u,D)) = ±1, thus showing (u,D)
alignment. However, the nonlinear term shown in equation (6.30) does not vanish in the
case of alignment and equipartition. Therefore, it can be understood intuitively that the
coupled u,D dynamics do not have the same nonlinear behaviour as the u,B dynamics.
In particular the small scales of the magnetic field align rapidly with the magnetic field
which leads to a depletion of the nonlinear term in the full MHD dynamics. The absence
of this effect in the passively advected magnetic field dynamics, due to the presence of the
nonlinear term in equation (6.30), is responsible for the rapid generation of small scale
D modes even in the case of alignement, which therefore need a higher resolution to be
resolved than the smallest B scales.

6.4.3 Dynamo growth rate and threshold

Simulations of a flow with Re = 50 and P ′m = 1.43; 2 are carried out, and the time evolution
of the mean passive magnetic energy is plotted in Figure 6.17(a). It is observed that for
P ′m = 2 the RFP field in the turbulent regime is capable of amplifying a seed magnetic
field , and the RFP velocity field can therefore be called, as for the laminar case, a dynamo
velocity field. In the case of P ′m = 1.43, the passive magnetic energy fluctuates around
a constant value over a long-time interval. The threshold for dynamo action at Re = 50
is therefore close to P ′m = 1.43, and the critical magnetic Reynolds number in this case
is thus R′mc = 71.5. The new result is added to the data previously obtained in laminar
regime (Figure 6.4(b)) and represented in green in Figure 6.17(b). The critical magnetic
Reynolds number shows a tendency to become a constant at high Re regimes. Due to the
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Figure 6.17: (a) Time evolution of mean passive magnetic energy for a flow with Re =
50 and different values of P ′m. (b) Critical magnetic Reynolds number R′mc function of
Reynolds number Re.

high computational resources requirement for turbulent dynamo simulations, higher Re
regimes are not explored in this manuscript.

Now we consider the time evolution of different axial modes of the kinetic, magnetic and
passive magnetic energies. This is shown in Figure 6.18. In the case of passive magnetic
energy, mode n = 0 is dominant for t < 600τA, while different kinetic modes dominate
during this period. Similarly for t > 600τA, mode n = 12 is dominant in the kinetic energy
spectra, while different modes dominate in the case of the passive magnetic energy. No
clear correlation is observed between u and D in turbulent regime. An analysis of the
average periodic interactions in this case could be carried out as reviewed in [108], but we
have not attempted this.

6.5 Conclusion

To conclude this chapter, we can say that the RFP velocity field is capable of amplifying
a seed magnetic field. In the laminar case it is even very efficient, considering the fact
that the critical magnetic Reynolds number R′mc is of the same order as that observed in
flows specifically designed to generate a dynamo [81, 91, 101]. Also in the turbulent case
dynamo action is observed. The numerical requirements are larger for such a simulation
than for a standard RFP simulation, since the passive magnetic field can be considered
“more nonlinear” than the actual magnetic field.



88 CHAPTER 6. OBSERVATION OF THE DYNAMO EFFECT IN AN RFP

Figure 6.18: Time evolution of (a) kinetic, (b) magnetic and (c) passive magnetic axial
modes for a flow with Re = 50 and P ′m = 2.
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We hereby reconcile to some extent the RFP and the astrophysics community with respect
to the question whether the RFP can be considered a dynamo or not.
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Conclusion

The objective of this PhD thesis was to study several aspects of the RFP dynamics. This
was done by considering the incompressible visco-resistive MHD description of a plasma in
a straight cylinder. Furthermore, the plasma is assumed isothermal, and its conductivity
and the transport coefficients are considered constant. Indeed this description is a very
much simplified description of actual fusion plasmas. However it allows studying basic
phenomena in the plasma. Indeed, our approach, as in previous investigations [25, 46, 47]
is not to design a fusion reactor, or to model an existing one in as much detail as possible,
but to highlight and understand some key physical mechanisms, which can allow to inspire
the scientists and engineers which work on actual reactors. Whereas in hydrodynamics
laboratory scale experiments can now be faithfully reproduced by numerical simulations,
this is not yet the case for fusion plasmas, where either a precise description of the plasma
is numerically too expensive in global simulations, or where global continuum descriptions
miss some of the detailed plasma features. We have chosen this second approach and
our simulations describe some global features, which, we hope, allow to obtain a better
understanding of the RFP dynamics.

Numerically, a pseudo-spectral method was used to solve the governing equations combined
with a penalization method, which consists in adding an additional term to the MHD
equations that takes into account the corresponding Dirichlet conditions, used to impose
the cylindrical geometry. These two methods were described in details in chapter 3. The
advantage of the penalization method is the simplicity of geometry modification, which
can be done just by changing a mask function.

This pseudo-spectral solver allowed us first to investigate the role of β in MHD simulations.
This parameter has been long used to characterize magnetostatic equilibria of toroidally
confined plasmas. In RFP regimes where the turbulent velocity field plays a major role in
the dynamics, it is shown that this parameter is not adequate to characterize the importance
of the pressure in the dynamics and the pressure effects on the RFP dynamics cannot be
neglected. An elementary argument to explain this is that, if one considers two flows with
different constant pressure, the β value will change but the dynamics will remain the same
since the pressure gradient is null in both cases. Hence, the pressure gradient is what should

91
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be considered rather than the pressure itself. We have shown that, when the momentum
equation is expressed in terms of a parameter β′∇ = ‖∇P‖/‖J ×B‖, the simulations for
high Lundquist numbers S shows that β′∇ remains constant with respect to S, while β
drops approximately following a powerlaw proportional to S−1/2. Furthermore, β′∇ takes
values close to unity, thus showing that the pressure gradients are of the same order of
magnitude as the Lorentz-force, and therefore play a major role in the dynamics. Last, the
radial profile of the axial magnetic field of simulations with large S, which corresponding
to low β, does not approach the profiles corresponding to fully compressible simulations.
This is another result which illustrates that β is not the proper parameter to describe the
dynamics.

In chapter 5, we investigated the influence of shaping of the poloidal cross-section on the
RFP dynamics. Simulations of flows with the same Lundquist number and different cross-
sections, a circle and two different ellipses, were carried out. Results showed that the
F − Θ curve remained relatively unchanged, while the spectral behaviour was drastically
modified. In order to understand the effect of this change on the confinement, we studied
the advection of a passive scalar in the three geometries. The radial profile of this scalar
indicated a reduced radial turbulent diffusion in the ellipses’ case and a remarkable change
in the q-profile of the different geometries. However, it was shown subsequently that even
when the magnetic field in the circular case relaxes toward a state similar to the one of
elliptical geometry, the q-profiles remain different. All these results show that the shaping
of the poloidal cross-section has a significant effect on the dynamics.

In the last chapter of this manuscript, we studied the dynamo effect using RFP flows. It
is shown that the RFP velocity field is capable of amplifying a seed magnetic field. Fur-
thermore, critical magnetic Reynolds numbers R′mc extracted from the laminar dynamo
simulations had the same order as those observed in flows designed to generate a dynamo.
In the turbulent regime, the seed magnetic field showed a tendency to be more nonlinear,
and thus requires higher numerical resolution. This was explained using the Elsasser vari-
ables to show that there is an additional nonlinear term added to the coupled dynamics,
which is not zero in the case of alignment between the velocity and the seed magnetic
field.

Perspectives

In the present work, the RFP fusion plasma is modeled using incompressible MHD simu-
lations. Indeed this simplified model is far from reality, however it simplifies the study of
basic phenomena. Since axial magnetic field reversal has a stronger tendency to occur in
compressible MHD flows than in incompressible flows, it would be interesting to develop a
compressible version of the present code.
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In chapter 5, we saw that the q-profiles of the different geometries were different. Changing
the initial conditions so that all the three geometries relax towards the same initial q-profile
would constitute an interesting perspective. Also, the contrary, starting from the same
initial q-profile and evaluate the differences in the eventual, relaxed states could further
inform us on the influence of shaping.

The result in chapter 5 that shaping does have an effect on RFP dynamics could be extended
to different geometries, for instance the D-shape cross-section which is chosen for ITER,
in an attempt to optimize the confinement.

To have a more realistic measure of the change in confinement in different cases, the
study measuring the radial diffusion in chapter 5 can be improved at several points. One
improvement of the advection-diffusion equation can be done by replacing the forcing term
by the ohmic heating ηJ2 which would be the most natural way to study the advection in
the case the considered scalar is the temperature.

Another possible refinement concerns the transport coefficients. One could consider in a
follow-up study to replace the isotropic thermal diffusion by an anisotropic one, allowing
thus faster diffusion along the magnetic field lines. Furthermore, since the QSH states were
obtained for high currents [14] in circular RFPs, it would be interesting to see if we can
generate these states in shaped RFPs.

Finally, for the dynamo study, high Reynolds simulations are needed to explore more the
turbulent dynamo regime. These simulations will allow to explore the variation of the
critical magnetic Reynolds number with respect to the Reynolds number.

Epilogue

It seems from these conclusions that the current understanding of the RFP, in particular
due to its nonlinear character is still not complete. Given the complexity of the plasma
description a further understanding necessarily needs an interaction between simulations,
analytical studies, integrated modeling and experimental observations. The current limit-
ed understanding leaves for the moment still a large room for improvement of the RFP,
hopefully enough to reach sustainable fusion.
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Additional investigations

This chapter reports on two investigations which are not directly connected to the main
subject of the rest of the manuscript. The first appendix reports on the development and
validation of a novel numerical method for MHD computations. Appendix B reports the
investigation on the mixing efficiency of a periodically modulated turbulent flow.
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ABSTRACT11

Is the lattice Boltzmann method suitable to investigate numerically12

high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown13

that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision14

operator rapidly yields unstable simulations as the Reynolds number increases. In15

order to circumvent this limitation, it is here suggested to address the collision16

procedure in the space of central moments for the fluid dynamics. Therefore, an17

hybrid LB scheme is introduced, which couples a central-moment scheme for the18

velocity with a BGK scheme for the space-and-time evolution of the magnetic field.19

This method outperforms the standard approach in terms of stability, allowing us20

to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number21

while maintaining high accuracy.22

KEYWORDS23

Lattice Boltzmann method, magnetohydrodynamics, turbulence24

The use of the lattice Boltzmann (LB) method has become ubiquitous in many25

areas of computational fluid dynamics, and now represents a consolidate alternative26

to classical approaches based on the discretization of the incompressible Navier-Stokes27

equations [1–8]. In short, the flow is inferred from the motion of distributions28

of fictitious particles streaming and colliding along the links of a regular lattice.29

The LB method has practical advantages with respect to a continuum-based30

formulation. In particular, LB dynamics is governed by a first-order partial differential31

equation in which non-localities and non-linearities are well separated [5]. Conversely,32

the integration of the Navier-Stokes equations requires the evaluation of first33

and second-order derivatives, and possibly the application of a non-local Poisson34

solver to obtain the pressure field. Moreover, the computational complexity of the35

continuum-based approach becomes rapidly prominent and evident when the fluid36

dynamics encompasses additional physical features such as magnetic effects. In that37

case, the particulate nature of the LB approach offers some tangible advantages, as38

will be demonstrated in this article.39

The incompressible Navier-Stokes equations for magnetohydrodynamics (MHD)40

drive the evolution of an electrically conductive fluid of kinematic viscosity ν and41
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magnetic diffusivity η in the form42

∂tu + (u · ∇)u = −∇p
ρ

+ ν∆u +
j × b

ρ
43

∂tb = ∇× (u× b) + η∆b44

∇ · u = 045

∇ · b = 046

where ρ and u are the mass density and velocity of the fluid, respectively. The vector47

field b denotes the magnetic field and j = ∇ × b is the electric current. The fluid48

pressure p stems from the incompressibility constraint ∇ · u = 0. In comparison with49

the non-magnetic case, here it is mandatory to integrate a coupled set of non-linear50

partial differential equations for the velocity and magnetic fields, thus leading to heavy51

computations.52

Our motivation is to explore the possibility to use the LB method to investigate53

numerically high-Reynolds-number MHD flows with non-unitary Prandtl number. The54

earliest attempt to build a lattice gas automaton for MHD refers to [9] by Montgomery55

and Doolen. It is based on a magnetic vector potential formulation. The inclusion of the56

Lorentz force relies on the computation of a Laplacian operator with the consequent57

implementation of an additional non-local finite-difference procedure. Later, a purely58

local lattice gas model has been introduced by Chen et al. [10]. However, this modeling59

requires to solve a 36-state MHD Cellular Automaton system at each node of a60

two-dimensional hexagonal lattice, hence leading to a dramatic computational cost.61

Martinez et al. [11] have managed to reduce the number of states to twelve. In addition,62

an hybrid scheme coupling the LB approach with finite-difference discretization has63

been proposed by Succi et al. [12] for two-dimensional MHD, allowing for simulations64

with a magnetic Prandtl number, defined as the ratio between the kinematic viscosity65

and the magnetic diffusivity, fixed at unity.66

More recently, Dellar has demonstrated that the solution of the aforementioned set67

of MHD equations may be recovered by solving two coupled LB schemes based on68

the BGK collision operator [13]. The former involves densities of fictitious particles69

carrying amount of mass, namely fi in each direction, and accounting for the evolution70

of the mass density ρ and momentum ρu of the fluid. The latter involves particles71

carrying amount of magnetic field, namely gi in each direction, and addressing the72

dynamics of the magnetic field b. This algorithm overcomes the major limitations of73

the previous efforts. It is purely local, the magnetic Prandtl number Prm is not limited74

at unity and the computational cost is very affordable. This scheme will be considered75

below and used as a baseline for the development of an improved scheme dedicated to76

high-Reynolds-number MHD flows.77

Following [13], the D2Q9 and D2Q5 lattices are adopted for fi and gi, respectively.78

Here, two-dimensional modeling is considered for the sake of clarity, the extension to79

three dimensions being straightforward and outlined at the end of the article. The80

lattice directions are denoted by ci = [|cix〉, |ciy〉] with81

|cix〉 = [0, 1, 0, −1, 0, 1, −1, −1, 1]> ,82

|ciy〉 = [0, 0, 1, 0, −1, 1, 1, −1, −1]> ,83

where |•〉 denotes a column vector and the superscript > indicates the transpose of a84

vector. At position x and time t, the LB scheme advances the set of distributions in85
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a two-step procedure. Namely, a streaming step for fluid particles86

fi(x + ci∆t, t+ ∆t) = f coll
i (x, t)

is consecutive to a collision step

f coll
i (x, t) = fi(x, t)− ων [fi(x, t)− feqi (x, t)] .

The so-called BGK approximation refers to this simple form of the collision operator,
which expresses as the relaxation with the same rate of all distributions towards
absolute equilibrium. Similarly, for the magnetic-field particles

gi(x + ci∆t, t+ ∆t) = gcoll
i (x, t)

with

gcoll
i (x, t) = gi(x, t) + ωη [geqi (x, t)− gi(x, t)] .

Here and henceforth, the index i spans the directions i = 0 · · · 8 (D2Q9 lattice) and
i = 0 · · · 4 (D2Q5 lattice) for the distributions fi and gi, respectively. The relaxation
frequencies ων and ωη are related to the kinematic viscosity and magnetic diffusivity
of the fluid by

ν =

(
1

ων
− 1

2

)
c2
s

and

η =

(
1

ωη
− 1

2

)
θ2

with c2
s = θ2 = 1

3 in lattice units. In this framework, the variable cs (and θ) refers to87

the characteristic speed of the particles and may be associated to some extent with a88

lattice sound speed. Since, nearly-incompressible flows are concerned, the related Mach89

number Ma = |u|/cs � 1. Let us recall that in the lattice Boltzmann method, the90

incompressible limit ρ = ρ0 is approached with δρ/ρ0 = O(Ma2) [14]. The equilibrium91

distributions are given by92

feqi = wiρ

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u · u
2c2
s

]
93

+
wi
2c4
s

[
1

2
|ci|2|b|2−(ci · b)2

]
(1)94

geqiβ = Wi

[
bβ +

cαi
θ2

(uαbβ − uβbα)
]

(2)95

where α and β span the Cartesian coordinates. The weighting factors are w0 = 4/9,
w1...4 = 1/9, w5...8 = 1/36 for the fluid dynamics, whereas W0 = 1/3 and W1...4 = 1/6

3
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for the magnetic field. Finally, the macroscopic fields are inferred locally by

ρ =

8∑

i=0

fi, ρu =

8∑

i=0

fici, b =

4∑

i=0

gi. (3)

Paul Dellar has demonstrated that this LB scheme was compliant with the MHD96

equations in the continuous limit through a Chapman-Enskog expansion [13].97

This original scheme is now tested against the Orszag-Tang vortex problem [13,15].98

This test case has become a popular benchmark representative of many features of99

turbulent MHD flows, such as magnetic reconnection, formation of jets and dynamic100

alignment. The deterministic initial conditions allows for a direct comparison between101

several numerical modeling. Precisely, the flow of an electrically conductive fluid102

develops in a square periodic box of size L = 2π m with the initial velocity fields103

u(x, 0) = 2× [− sin y, sinx] (4)104

b(x, 0) = 2× [− sin y, sin 2x] (5)105

in m/s (physical units). The initial density is uniform with ρ(x, 0) = 1 kg/m3. In106

our simulations, each dimension is discretized into N = 1024 grid points. The grid107

resolution is therefore ∆x = L/N ≈ 6 × 10−3 m and the time step is fixed at ∆t =108

5×10−5 s. In lattice units, this yields the reference velocity u0 = 2×∆t/∆x ≈ 1.6×10−2
109

and the Mach number Ma ≡ u0/cs ≈ 3 × 10−2. The Reynolds number is defined as110

Re = u0N/ν. Moreover, the magnetic Prandtl number is set to Prm ≡ ν/η = 1. Five111

runs have been performed by varying Re between 500 and 5000. In Fig. 1, the time112

evolution of the maxima of the electric current jmax(t) = maxx|j(x, t)| is displayed.113

Notice that the current has only one non-zero component j. Furthermore, the LB114

method allows us to compute the current locally and directly from the distributions,115

thus avoiding the use of additional time-consuming finite-difference operators [16].

10

100

0.1 1

j m
a
x

time

Figure 1. Orszag-Tang vortex problem. LB simulations based on the BGK collision operator [13]. Time

evolution of the current maxima at Re = 500 (continuous line), 1000 (dashed), 2500 (dotted) and 5000
(dashed-dotted). At the highest Re, an instability occurs at t ≈ 0.52 s. For the same Re, a finer grid consisting
of 15362 grid points (red dashed-dotted) allows us to extend the range of simulation. However, a blow-up

eventually occurs at t ≈ 0.99 s.

116

The three lowest values of Re lead to stable simulations (see Fig. 1). As expected, the117

maxima grow exponentially in the earliest stage [17,18]. However, a sudden blow-up118

4
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is experienced at t ≈ 0.52 s at Re = 5000. This observation is consistent with previous119

results in [19], where marked difficulties were found to carry numerical experiments120

beyond t = 0.6 s. A refinement of the grid with 1536 grid points per direction partially121

alleviates the onset of instability, which is now delayed at time t ≈ 0.99 s. Let us122

mention that the time step has also been reduced in order to keep the Mach number123

constant. In conclusion, it is found that within the BGK approximation large-time124

behavior can be investigated only by adopting very fine grid resolutions, thus leading125

to very expensive computations. This constraint becomes prohibitive when simulating126

high-Reynolds-number MHD flows.127

The poor performance of the LB scheme under the BGK approximation appears128

more evident in Fig. 2. The maximal attainable Reynolds number for the Orszag-Tang129

problem is reported as a function of the magnetic Prandtl number Prm. It is found130

that this approach is unsuitable to simulate high-Reynolds and low-Prandtl numbers131

phenomena, in particular for liquid metals with Prm ∼ 10−5.

0

1

2

3

10−6 10−4 10−2 1

R
e

(×
10
−

3
)

Prm

Figure 2. Orszag-Tang vortex problem. LB simulations based on the BGK collision operator [13]. Maximal

attainable Reynolds number as a function of the magnetic Prandtl number.

132

The previous observed limitations are related to the very nature of the scheme.
Despite its simplicity, effectiveness and large popularity, the BGK collision operator
is known to suffer from numerical instabilities when large velocity gradients arise in
the flow. Two main factors contribute to this deficiency: The uncontrolled growth
of ghost (beyond hydrodynamics) modes [20,21] and the lack of sufficient Galilean
invariance [22–28]. By decomposing the collision kernel in a space of raw moments,
the multiple-relaxation-time model has proved to increase the stability by properly
relaxing high-order moments [29]. However, the lack of Galilean invariance still persists
[30]. A possible alleviation of this latter may be addressed by the entropic LBM [31],
which was also adopted to investigate MHD turbulence [32]. More recently, a different
idea has been proposed by Geier et al. [33] suggesting to relax the moments in a
reference frame that moves with the fluid. This can be simply achieved by shifting the
lattice velocities by the local fluid velocity, that is

|c̄ix〉 = |cix − ux〉 and |c̄iy〉 = |ciy − uy〉. (6)

In this case, the involved quantities are called central moments (CMs). This method133

is also referred to as “cascaded” LB scheme, since the post-collision state of any134

central moment depends only on moments of lower order thus generating a pyramidal135
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hierarchical structure [34–38]. The numerical implementation of the cascaded LB136

scheme is known to be cumbersome. Nevertheless, some recent attempts have137

demonstrated that a simplified version of the CMs-based scheme (in a non-orthogonal138

basis) may be derived, entailing easier implementations [39–41]. This approach is here139

applied in the context of high-Reynolds-number MHD flows for the fluid particles.140

By introducing the basis

T̄ = [t̄0, . . . , t̄i, . . . , t̄8] , (7)

with141

t̄0 = [1, 1, 1, 1, 1, 1, 1, 1, 1]>,142

t̄1 = |c̄ix〉, t̄2 = |c̄iy〉,143

t̄3 = |c̄2
ix + c̄2

iy〉, t̄4 = |c̄2
ix − c̄2

iy〉,144

t̄5 = |c̄ixc̄iy〉, t̄6 = |c̄2
ixc̄iy〉,145

t̄7 = |c̄ixc̄2
iy〉, t̄8 = |c̄2

ixc̄
2
iy〉, (8)146

a suitable set of central moments is represented by

|ki〉 = [k0, . . . , ki, . . . , k8]> , (9)

with

|ki〉 = T̄>|fi〉 (10)

and |fi〉 = [f0, f1, f2, f3, f4, f5, f6, f7, f8]>. Each moment relaxes to an equilibrium147

state, keqi , defined by replacing fi with feqi in Eq. (10). The resulting expressions of148

the equilibrium CMs are149

keq0 = ρ,150

keq1 = 0,151

keq2 = 0,152

keq3 =
2

3
ρ,153

keq4 = b2y − b2x,154

keq5 = −bxby,155

keq6 = −ρu2
xuy +

uy
2

(
b2x − b2y

)
+ 2uxbxby,156

keq7 = −ρuxu2
y +

ux
2

(
b2y − b2x

)
+ 2uybxby,157

keq8 =
ρ

9

(
27u2

xu
2
y + 1

)
+
u2
x − u2

y

2

(
b2x − b2y

)
158

− 4uxuybxby. (11)159

One can immediately notice the presence of some terms accounting for the magnetic
field, stemming from the second term at the right-hand side of Eq. (1). The collision
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operator reads

k?i = ki + ωi (keqi − ki) with i = 3 . . . 8, (12)

where ωi is the relaxation frequency associated with the moment ki. The superscript160

? refers to post-collision values. To be compliant with the MHD equations in the161

continuous limit, only the frequencies related to k4 and k5 need to be specified as162

a function of the fluid kinematic viscosity. Specifically, ν = (
1

ων
− 1

2
)c2
s with ω4 =163

ω5 = ων . The frequency ω3 is related to the bulk viscosity, whereas ω6, ω7 and ω8164

are associated to higher-order ghost moments and can be set equal to unity, i.e. these165

moments are fixed at their equilibrium value after the collision step. Let us note that166

k0, k1 and k2 are invariant with respect to the collision and are not involved in the167

collision step.168

The post-collision central moments eventually yield the post-collision populations
by inverting the mapping Eq. (10):

|f?i 〉 =
(
T̄>
)−1
|k?i 〉, (13)

with |k?i 〉 = [ρ, 0, 0, k?3, . . . , k
?
8]> and |f?i 〉 = [f?0 , . . . , f

?
8 ]>. The collision step is169

followed up with a streaming of the populations towards their neighboring nodes on170

the lattice1. Note that this scheme only involves the evolution of the fi’s for the171

fluid particles. The evolution of the magnetic distributions gi relies on the standard172

BGK collision operator, hence resulting in an hybrid scheme that combines CMs and173

multi-time relaxation for the fluid density and momentum, and single-time relaxation174

for the magnetic field.175

To validate our hybrid scheme, the results are compared in Table 1 to those obtained176

in a high-resolution spectral simulation of the Orszag-Tang vortex at Re ≈ 628 at177

Prm = 1 [13]. At time instants t = 0.5 s and t = 1 s, the current and vorticity maxima178

are registered. The latter is evaluated as ζmax = maxx|ζ(x)| with ζ = ∇×u being the179

vorticity. The relative discrepancy (in percents) between present and reference values180

is denoted by err.

t (s) [13] Present err(%)

jmax
0.5 18.24 18.24 0
1 46.59 46.65 0.13

ζmax
0.5 6.758 6.756 0.03
1 14.20 14.18 0.14

Table 1. Orszag-Tang vortex problem at Re ≈ 628 (Prm = 1). Reference spectral values from [13] and our
results for the peak values of the electric current, jmax, and vorticity, ζmax, at two representative time instants.

181

Our scheme shows excellent properties in terms of accuracy. The relative error182

appears to slightly increase in time, which may be related to the rise of very large183

gradients both in the magnetic and velocity fields, as time advances. The capability184

to handle non-unitary magnetic Prandtl numbers is now examined. Therefore, the185

previous simulation is repeated with Prm = 0.5, 1, 2. This is achieved by varying186

the magnetic diffusivity. In Fig. 3, the space-averaged magnetic energy Em =187

1In the Supplementary Material, a script CentralMoments_MHD.m is attached allowing the reader to derive the
entire formulation.
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1
N2

∑
x|b(x)|2, kinetic energy Ek = 1

N2

∑
x|u(x)|2 and total energy E = Em + Ek are188

plotted as a function of time. The adoption of a constant ν explains the substantial

0

1

2

3

4

0 0.5 1 1.5 2

E
n

er
gy

time

Figure 3. Orszag-Tang vortex problem at Re ≈ 628. Time evolution of the space-average kinetic (continuous

lines), magnetic (dotted lines) and total (dashed-dotted lines) energies with Prm = 0.5 (black), 1 (red) and
2 (blue). The kinetic energy does not experience a large influence. Conversely, the magnetic energy increases
with Prm due to the reduction of the magnetic diffusivity η.

189

insensitivity of the kinetic energy to the variation of Prm. Conversely, the magnetic190

energy, and the total energy as a consequence, undergoes large variations. In particular,191

Em increases with Prm as the magnetic diffusivity reduces. Independently from the192

magnetic Prandtl number, a significant transfer of energy operates between the193

magnetic field and the flow, which is fully consistent with the original observations194

reported by Orszag and Tang in [15].195

The tests at variable Re and fixed Prm = 1 previously performed with the BGK196

collision operator (see Fig. 1) are now reproduced by implementing our hybrid LB197

scheme. In Fig. 4, the current maxima are displayed. It can be immediately appreciated

10

100

0.1 1 10

j m
a
x

time

Figure 4. Orszag-Tang vortex problem. Hybrid LB simulation: Time evolution of the current maxima at
Re = 500 (continuous line), 1000 (dashed), 2500 (dotted) and 5000 (dashed-dotted).

198

that the stability is drastically enhanced. In practice, a grid consisting of 10242 points199

now allows us to overcome the limit t ≈ 0.99 s, for which a finer space-and-time200

resolution had led to a blow-up with the BGK scheme. After an exponential growth, a201
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faster self-similar increase is experienced with jmax ∼ t3. It should be noted that this202

drastic change is slightly anticipated for larger Re. After reaching the peak value, the203

curves decrease with large oscillations. The decay is less prominent at high Re. These204

LB results are fully consistent with the previous reports in [42,43].205

Further insights are available in Fig. 5(a), where the space-averaged magnetic206

enstrophy is reported as a function of time. This quantity is computed as Em =207

1
N2

∑
x j(x)2. After reaching a maximum at t ≈ 1.2 s, the curves corresponding to208

Re = 500 and Re = 1000 rapidly decay as ∼ t−2 with oscillations reflecting those209

experienced for the current maxima. As the Reynolds number increases, a plateau210

is observed after the initial growth. The local maximum at t ≈ 3.5 s for the flow211

at Re = 5000 justifies the peak of jmax at that time instant. Eventually, all the212

enstrophies decay with a comparable rate under the effect of the overall dissipation.213

Fig. 5(b) shows the overall dissipation rate ε = νEk+ηEm, where the kinetic enstrophy

(a)

1

10

100

0.1 1 10

E m

time (s) (b)

0

0.4

0.8

1.2

0 2 4 6 8 10

ε

time (s)

Figure 5. Orszag-Tang vortex problem. (a) Time evolution of the magnetic enstrophy at Re = 500 (continuous
line), 1000 (dashed), 2500 (dotted) and 5000 (dashed-dotted). (b) Time evolution of the overall dissipation rate.

214

is Ek = 1
N2

∑
x ζ(x)2, ζ = ∇ × u being the vorticity. In the earliest stage, the215

dissipation increases as Re decreases, highlighting a strong incidence of fluid and216

magnetic diffusivities. The dissipation rate exhibits a peak at the beginning of the217

flow. This initial increase is related to the development of small-scale structures in218

the velocity and magnetic fields. After this transient stage, ε reaches a plateau with219

a common value for the highest Reynolds numbers. This feature supports Pouquet’s220
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hypothesis that the dissipation rate should converge towards a finite non-zero limit as221

ν = η → 0 in the developed regime [44]. This plateau is very apparent for the flow at222

Re = 5000. In agreement with [15], this suggests that a flow singularity with ζ →∞,223

i.e. flow structures of arbitrarily small size may occur at a finite time when Re→∞.224

In Fig. 6, the contour plot of the electric current at salient time instants give a225

better insight of the dynamics of the magnetic field. At t = 1 s, the field exhibits few226

folds. A straight current sheet passes through the center of the domain, where the227

maximum is located. This central current sheet goes unstable and very thin structures228

develop in the flow. At t = 5 s, folds seem to surround two big oculi separated by the229

central sheet, which it is now stabilized. As the time advances, these two big zones are

Figure 6. Evolution of the electric current at Re = 5000 at salient time instants, i.e. t = 1 s (top left),
3.5 s (top right), 5 s (bottom left) and 9 s (bottom right). The maximal current is initially located in the
central current sheet. The current field undergoes instabilities and many folds arise. Eventually, the central
sheet becomes stable again and small-scale structures disappear progressively.

230

progressively damped by the diffusivities. An Alfenization of the flow, i.e. u = ±b, is231

expected in the region of high concentration of folds [42]. A quantitative assessment of232

this effect can be obtained by evaluating the correlation coefficient between the velocity233

and magnetic fields as r =
2u · b
u2 + b2

. The map of its absolute value is plotted at t = 3.5 s234

in Fig. 7. We observe that the correlation is more marked in the vicinity of the current235

sheets, whereas u and b remain mostly uncorrelated in the rest of the domain. This236

effect is very well captured by our LB simulation. Finally, our proposed scheme shows237

an impressive stability even for low values of the magnetic Prandtl number. In fact,238
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Figure 7. Absolute value of the correlation coefficient r at time instant t = 3.5 s. The flow shows strong
correlation in the proximity of current sheets.

we are able to simulate scenarios with vanishing Prm (as ν → 0) without experiencing239

the limitations stemming from the adoption of the BGK model.240

The possibility to extend the formulation of our hybrid LB scheme to three241

dimensions is now outlined. In that case, the D3Q27 and D3Q7 lattices should be242

used for the distributions fi and gi, respectively. For the magnetic field, the LB scheme243

shall still rely on the BGK collision operator with θ2 = 1/4 and the weights Wi related244

to the D3Q7 lattice. For the velocity field, the scheme should be handled according245

to the CMs-based scheme recently introduced in [40]. In short, it consists of building246

the matrix T̄ in the D3Q27 velocity space and to compute pre-collision, equilibrium247

and post-collision CMs accordingly. The overall construction of the algorithm remains248

unaltered.249

In conclusion, we have demonstrated the feasibility of the LB method to investigate250

high-Reynolds MHD flows at non-unitary Prandtl number with an hybrid scheme.251

Specifically, it is fruitful to decompose the collision stage entering in the dynamics252

of the fluid velocity in the space of central moments in order to overcome the253

stability limitations affecting the BGK scheme. In two-dimensions, we have shown254

that this hybrid scheme enables to reproduce very accurately the key features255

of the Orszag-Tang vortex problem. Its implementation is not awkward and the256

generalization to three dimensions is rather straightforward.257

Supplementary material258

A script is provided in the Supplementary Material (D2Q9_CentralMoments_MHD.m)259

allowing the reader to perform all the symbolic manipulations to obtain the proposed260

scheme.261
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Mixing in modulated turbulence. Numerical results
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We investigate the mixing of a passive scalar in an isotropic turbulent flow in the presence of a time-periodic
forcing. The results corroborate recent analytical predictions on the frequency dependence of the scalar
variance and dissipation. In particular, when the modulation amplitude is large, it is shown that a low
frequency modulation diminishes the mixing efficiency, whereas it enhances the transfer rate of kinetic energy.

I. INTRODUCTION

Is it possible to enhance the mixing efficiency of a
turbulent flow by adding a periodic modulation to the
mixing protocol? That is the main question we address
in this investigation by considering the academic case of
isotropic turbulence mixing a passive scalar.

The mixing rate of a scalar quantity advected by a fluid
is a key quantity in a wide range of applications. Increas-
ing the mixing rate by changing the flow properties can
have far reaching consequences in process-optimization.
Whereas the mixing in laminar flows can often be stud-
ied analytically, and the mixing rate can be greatly en-
hanced by changing the boundary conditions1 or the
time-dependence of the flow2, the turbulent case is in
general far more complicated. It is not even known if it
is possible to affect, in a controlled way, the mixing of a
turbulent flow by changing the large-scale forcing.

If any understanding of the modification of turbulent
mixing through time-dependent forcing is to be obtained,
we think it is compulsory to look at the most simplified
case. We consider therefore the academic case of peri-
odically forced isotropic turbulence, advecting a passive
scalar.

The influence of a time-periodic forcing on the tur-
bulence itself is a relatively young problem, despite its
obvious academic interest. Indeed, first results on the
response of a turbulent velocity field on a time-periodic
isotropic forcing were obtained in the beginning of the
2000s. The initial studies aimed at identifying a possi-
ble resonance in the energy transfer process3–5. Direct
numerical simulations6,7 and experiments8,9 were carried
out to systematically investigate the response of the ki-
netic energy and dissipation rate to the forcing frequency.
Analytical studies, using two-point closure techniques,
allowed to explain the different scaling regimes of the
time-dependent quantities10 and assess he ability of en-
gineering models to reproduce the different features11.

Obviously it is extremely interesting to transpose these
ideas to turbulent mixing. Inspired by the results in6,
the application of particular forcing schemes to influence
turbulent mixing was considered in12. In that study the
forcing was introduced in different wavenumber bands
in Fourier space to mimic the complex nature of turbu-
lent flows generated by realistic objects. The influence of
the so-generated flow on turbulent mixing was assessed
by monitoring the wrinkling of level-sets of an advected

scalar. Those results inspired several experimental inves-
tigations with application to turbulent combustion (see
for instance13,14). In12 the spatial character of the forcing
was modified, but no temporal modulation was applied.
In the experiments the modulation was both spatial and
temporal, and it is not straightforward to disentangle the
different effects, so that it is not clear whether the ob-
served effects were caused by the time-periodic nature
of the experimental inlet conditions or the spatial com-
plexity of the latter. The influence of the geometry of
a large-scale forcing on mixing has thus already received
some attention, but the temporal modulation of the flow
was not considered in these studies.

In a recent paper15, we carried out an analytical study
of such a case: mixing in periodically forced turbulence.
We showed that the second-order contributions of a per-
turbation analysis of the nonlinear transfer with respect
to a modulation of the velocity forcing will lead to (1) an
enhanced energy transfer (2) a reduced scalar transfer.
Since the study was based on a simple turbulence closure
and the perturbation analysis assumed small modulation
amplitude, it is important to check the results in a more
realistic setting, where the Navier-Stokes and advection-
diffusion equations are not modeled, but directly evalu-
ated. That is what will be done in the present investiga-
tion.

In the next section (section II) we will outline the strat-
egy to assess the influence of a periodic forcing on the
mixing of a passive scalar, we will recall the analytical
results and discuss the numerical tools. Then, in section
III we will show and discuss the results, before concluding
in section IV.

II. DEFINITIONS, PREDICTIONS AND NUMERICAL
SET-UP

A. Description of the problem

We consider the Navier-Stokes equations for incom-
pressible flow u, mixing a passive scalar θ:

∂

∂t
u+ u · ∇u = −∇P + ν∇2u+ f (1)

∇ · u = 0 (2)

∂

∂t
θ + u · ∇θ = D∇2θ + g, (3)
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where P is the pressure (normalized by a uniform den-
sity), ν and D are kinematic viscosity and diffusivity, re-
spectively. The flow and the scalar field are kept in a sta-
tistically stationary state through an energy and scalar
variance input f , g, chosen such that ensemble averaging
(or phase-averaging) yields,

〈fiui〉 = p+ p̃ cos(ωt), (4)

〈gθ〉 = pθ + p̃θ cos(ωt), (5)

where the quantities p and pθ denote the average kinetic
energy and scalar variance injection rates. Overlined
quantities denote time-averages and tilded quantities de-
note a periodic (non-zero frequency phase-averaged) con-
tribution. The precise form of the forcing is given in the
appendix. In our study the flow domain is a spatially pe-
riodic box. In the present setting the evolution equations
for the kinetic energy k = 1

2

〈
|u|2

〉
and the variance of

the scalar kθ = 1
2

〈
θ2
〉

reduce to

dk

dt
= p− ε (6)

dkθ
dt

= pθ − εθ. (7)

In these equations ε and εθ are the phase averaged dissi-
pation of kinetic energy and scalar variance, respectively.
All the different statistical quantities of interest will in
the following be decomposed into a time-averaged and
a periodic component. The time-averaged balance equa-
tions for the kinetic energy and scalar variance are given
by

0 = p− ε (8)

0 = pθ − εθ, (9)

and the periodic quantities evolve according to

−ωk̃ sin(ωt+ φk) = p̃ cos(ωt)− ε̃ cos(ωt+ φε),(10)

−ωk̃θ sin(ωt+ φkθ ) = p̃θ cos(ωt)− ε̃θ cos(ωt+ φεθ ).(11)

In these expressions, we have assumed that all quanti-
ties will periodically oscillate around a mean value with
a period ω. In previous works,4–7,10, the frequency de-
pendence of k̃ and ε̃ was investigated. The influence of
the modulation on the time-averaged quantities k and ε
has not received any attention yet, in particular since a
linear perturbation analysis does not show any influence
of the modulation on the averages. It is however these
average quanties that quantify the transfer efficiency. In-
deed one can introduce the transfer efficiency of kinetic
energy χ as the inverse of the integral timescale

χ =
ε

k
. (12)

The value of χmeasures the efficiency of the energy trans-
fer through the energy cascade.

In order to measure the transfer efficiency of the pas-
sive scalar, one can define the mixing rate χθ,

χθ =
εθ

kθ
, (13)

measuring the efficiency of a flow to transfer scalar vari-
ance to diffusivity-dominated scales, or in other words,
the mixing efficiency.

B. Summary of analytical results

We will recall the predictions, obtained by a linear per-
turbation analysis of the spectral transfer [10] and [15].
First, in [10] we derived, using spectral closure, the fre-
quency dependence of the modulated part of the kinetic
energy k̃ and viscous dissipation ε̃. In the low frequency,
or quasistatic limit, both quantities were predicted to
tend to constant values, independent of the frequency,

ε̃ = p̃ (14)

k̃ =
2

3
αpk̄, (15)

where the relative forcing amplitude is defined by

αp =
p̃

p̄
. (16)

For large frequencies an asymptotic power-law depen-
dence was derived of the form

k̃ ∼ αpk̄(ωT )−1 for ωT � 1 (17)

ε̃ ∼ αpε̄(ωT )−3 for 1� ωT � Rλ (18)

ε̃ ∼ αpε̄R−2
λ (ωT )−1 for ωT � Rλ (19)

We will start by re-assessing these results in section III A.
In15 we have addressed the case of a passive scalar

mixed by a modulated turbulence analytically. The sim-
plest spectral closure for nonlinear transfer of energy and
scalar variance was used to obtain predictions on the
different quantities, for the case in which the modula-
tion was only applied to the forcing of the velocity field.
Since the scalar forcing does in this case not contain a
time-periodic component, the equation for the modulated
scalar variance is,

−ωk̃θ sin(ωt+ φkθ ) = −ε̃θ cos(ωt+ φεθ ). (20)

From this equation it is not obvious that the scalar should
contain a periodic component. Indeed from (20), taking
the modulus, we find that

ω|k̃θ| = |ε̃θ|. (21)

No further information can be obtained from these equa-
tions about the frequency dependence of k̃θ. Obviously,
k̃θ = 0 is a possible solution of these equations. But since
the velocity field advecting the scalar contains a periodic
contribution, it is not excluded that a periodic contribu-
tion is observed in the scalar dynamics. It is shown in15

that the scalar statistics are indeed affected by the veloc-
ity modulation in a non-trivial way. The resulting linear
response to the modulation is

k̃θ ∼ αpk̄θ(ωT )−2 for ωT � 1 (22)

ε̃θ ∼ αpε̄θ(ωT )−3 for ωT � 1, (23)
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and this will here be verified numerically.

More importantly, retaining second-order contribu-
tions in the perturbation analysis, we obtained in
reference15 estimates of the influence of the modulation
on the time-averaged quantities, χ and χθ. The derived
expressions in the low ω limit are

χ

χ(p̃ = 0)
=

(
1 +

1

12
α2
p

)2/3

. (24)

and

χθ
χθ(p̃ = 0)

=

(
1− 1

12α
2
p

)
(
1 + 1

12α
2
p

)1/3 , (25)

where χ(p̃ = 0) and χθ(p̃ = 0) are the transfer efficiencies
in the absence of modulation. These expressions show
that a modulation of the forcing can influence the aver-
age value of the transfer efficiency. For the kinetic energy
transfer χ, this effect is positive, whereas for the scalar
mixing rate this effect is negative. These expressions also
show that the relative strength of the forcing, αp = p̃/p
must be large for the modulation to affect the transfer
rates significantly. To illustrate: for αp = 0.2, it is found
that χ/χ(p̃ = 0) = 1.002 and χθ/χθ(p̃ = 0) = 0.996,
whereas these values change to 1.05 and 0.89 respectively
for αp = 1.

This is a major result, since the analytical predictions
suggest that we can affect the mixing efficiency of a tur-
bulent flow by modulating the energy input. However,
the way in which a modulation affects the average trans-
fer rates is not what is desirable in most applications. In
general one would prefer the opposite situation where a
modification of the mixing protocol would lead to a con-
sumption of less kinetic energy to mix better. The an-
alytical results suggest that a slow modulation will lead
to more kinetic energy transfer, for a less efficient scalar
transfer.

Since these predictions were obtained using a second-
order perturbation of a simplified transfer model, it is
important to check them numerically. Indeed, within the
framework of a perturbation analysis, we consider that
we measure the response of a system to an infinitesimal
perturbation. In the case of a periodic perturbation the
response is assumed to be at the same frequency as the
perturbation, around the unaltered system. When the
perturbation is large, the system itself can be affected im-
portantly, and linear-response theory is no longer valid.
In our case, a perturbation of the injection with an am-
plitude equal to the average injection cannot possibly be
considered infinitesimal. It is therefore interesting to see
if such a perturbation modifies the time-averaged proper-
ties of the flow, as suggested by expressions (24) and (25),
obtained, as we said, from a second-order perturbation
analysis.

C. Numerical set-up

A standard pseudospectral method is used to compute
the velocity and scalar field in a space-periodic cubic do-
main of size 2π. A conventional 2/3 wavenumber trun-
cation is used to eliminate the aliasing error and a third
order Runge-Kutta, Total Variation Diminishing scheme
is used as time discretisation. The same code was used
in ref.16 to study the mixing of temperature fluctuations
in isotropic turbulence.

A total number of 46 simulations is carried out at
two different values of the Taylor-scale Reynolds num-
ber, Rλ = 32 and 105. A challenge in the study of the
frequency response of turbulent flows is the convergence
of the statistics. At low forcing frequencies the simula-
tions become very long if a sufficient number of periods
is to be resolved. At high frequencies the response to a
periodic forcing will be shown to be small, so that also in
this case long simulations are needed, not to resolve suffi-
cient periods, but to be able to distinguish the frequency
response from the turbulent fluctuations. Obtaining con-
verged statistics is therefore challenging in both the small
and large frequency limits.

Details on the numerical parameters and on the post-
processing procedure are given in the Appendix.

III. RESULTS

Two different cases will be considered: the case of mix-
ing in a modulated turbulent velocity field (p̃ 6= 0 and
p̃θ = 0) and the case where only the scalar injection is
modulated (p̃ = 0 and p̃θ 6= 0).

A. Response of turbulence and mixing on a periodic
kinetic energy input

In this section we consider the case where we only mod-
ulate the kinetic energy,

p = p+ p̃ cos(ωt), (26)

pθ = pθ. (27)

It will be shown that the modulation p̃ of the velocity
field does also affect the mixing of the passive scalar.

1. Frequency response of the modulated kinetic energy
and dissipation

The frequency response of k̃ and ε̃ is shown in Fig. 1
for Rλ = 32. We compare in this figure the frequency
responses for two different relative forcing amplitudes,
αp = p̃/p̄ = 0.2 and αp = 1. In order to compare the
frequency response for the different forcing amplitudes,
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FIG. 1: The frequency dependence of (a) k∗ = k̃
k
α−1
p and (b) ε∗ = ε̃

εα
−1
p as a function of ωT for Rλ = 32 and

Rλ = 105, αp = 0.2 and αp = 1.

we plot in these figures the quantities

k∗ = α−1
p

k̃

k
and ε∗ = α−1

p

ε̃

ε
(28)

as a function of frequency. Several observations can be
made. Firstly, the 20% and 100% relative forcing ampli-
tudes give results that superpose at almost all frequen-
cies for both quantities. These observations seem to in-
dicate that the results of the linear-perturbation analysis
are robust enough to be transposable to the case where
αp = 1, i.e., the case where the modulation amplitude
has the same value as the mean value. Numerically, this
is convenient, since the αp = 1 results allow to obtain
results at a lower computational cost, and therefore, at
higher Reynolds number, because the signal-to-noise ra-
tio is larger.

Secondly, the powerlaw dependence proportional to
ω−1 observed in6 and10 is clearly reproduced both for
k̃ and ε̃. At small frequencies both k̃ and ε̃ tend to
constant values, as predicted in10, but unlike the DNS
results in6 at these frequencies, perhaps due to uncon-
verged statistics in their simulations. Indeed, in6, a local
maximum was observed at low frequencies, suggestive of
a resonance. This effect is not observed in our results,
neither was it in the closure studies10.

Furthermore, Figure 1 also illustrates the influence of
the Reynolds number on the modulated kinetic energy
and dissipation. It is observed that this influence is small
for the modulated kinetic energy. However, for the dis-
sipation this influence is larger, as was explained in10 by
the fact that the ω−1 asymptote is inversely proportional
to the Reynolds number, since it corresponds to the di-
rect influence of the viscous damping on the forced scales
(see expression (19)). The intermediate zone between the
low frequency plateau and the high frequency asymptote

was theoretically predicted to be proportional to ω−3 for
large Reynolds numbers. This frequency range is too
small here to be conclusive on the presence, or not, of
such a power law.

2. Frequency response of the modulated scalar variance
and its dissipation

The results on k̃ and ε̃ in the foregoing section are in
agreement with previous work (except for the small local
maximum observed in6). In Figure 2 we evaluate quanti-
ties which have not received any attention yet in experi-
ments and simulations: k̃θ and ε̃θ. It is observed that the
large-frequency asymptotes (22) and (23) predicted in15

are well reproduced. More precisely it is observed that
the scalar variance contains a periodic component which
is constant at low frequencies, and rapidly drops off at
high frequencies, following a powerlaw proportional to
ω−3. The periodic part of the scalar dissipation is then
determined by relation (21), as seems to be confirmed in
figure 2, where for ω tending to zero ε̃θ is proportional
to ω, and for large values of ω the asymptotic slope is
proportional to ω−2. It seems that the analytical predic-
tions based on the linear perturbation of a simple flux
closure for the nonlinear transfer is sufficient to predict
the small and large frequency asymptotes of both k̃θ and
ε̃θ.

3. Influence of the modulation on the mixing and transfer
efficiencies

In Figure 3, the influence of the modulation is shown
on the quantities χ and χθ. Our forcing scheme is de-
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FIG. 2: Frequency response of (a) the modulated scalar variance k∗θ = k̃θ
kθ
α−1
p and (b) modulated scalar dissipation

ε∗θ = ε̃θ
εθ
α−1
p for Rλ = 32 and Rλ = 105. The relative forcing amplitude is αp = 1.

signed to keep the average rate of ε and εθ constant.
Thereby, in none of our simulations, the values of ε(ω)
and ε(p̃ = 0) differ more than 2%. The transfer and
mixing efficiency are then determined by the variations
in k̄(ω) and k̄θ(ω) (see equations (12) and (13)). It is
shown that for αp = 0.2, no clear modification of the
mixing efficiency and transfer rate is observed. Indeed,
the analytical study predicted the effect for this value of
αp to be less than 0.5%, well below the statistical errors
induced by the time-averaging. However, for αp = 1, a
clear effect is observed, of the order of +7% for χ and
−20% for χθ. These are of the same order of magnitude,
but slightly larger than the analytically predicted values
(+5%,−11%). Clearly the analytical study predicted the
correct tendencies and order of magnitude of the influ-
ence of the modulation of the mixing and transfer rate.
The fact that the numerical values are not exactly pre-
dicted cannot be considered very surprising given the na-
ture of the simplifications in the analytical study. These
results confirm thus that the modulation of the veloc-
ity field can affect the average transfer and mixing effi-
ciencies. The Reynolds number does not seem to be an
important parameter for the values we considered.

B. Modulation of the scalar injection

For completeness, we now consider the case where we
only modulate the scalar input,

p = p, (29)

pθ = pθ + p̃θ cos(ωt). (30)

Naturally the modulation p̃θ should not influence the ve-
locity field and we therefore only evaluate the influence

of the modulation on the scalar quantities.
In Figure 4 we show the results for k∗θ = α−1

p k̃θ/k̄θ and

dissipation ε∗θ = α−1
p ε̃θ/ε̄θ as a function of the modulation

frequency for αp = 1, Rλ = 32 and Rλ = 105. A very
close similarity with the results for k∗ and ε∗ in Figure 1
is observed. In particular the small and large frequency
asymptotes are identical. Indeed, the reasonings leading
to the prediction of the frequency behaviour of the kinetic
energy and dissipation10 can be extended to the case of
the passive scalar, in particular in the limit of the linear
response approximation.

IV. CONCLUSION

In this manuscript, we have answered to the ques-
tion whether a periodic modulation of a turbulent flow
changes its mixing properties. It was clearly shown that
for large modulation amplitudes, the modulation affects
the energy transfer positively, whereas it diminishes the
mixing efficiency, as was predicted in a recent analyti-
cal study15. The average mixing rate was shown to de-
crease by approximately 20%, for two distinct Reynolds
numbers, whereas the energy transfer rate increases by
approximately 7%. This result shows that in most appli-
cations where an efficient mixing is required for a min-
imum amount of energy, the modulation of the velocity
field is not a good idea. We should however mention that
these results concern the case of isotropic turbulence and
that a possible mixing enhancement by the modulation
of spatially inhomogeneous mixing devices cannot be ex-
cluded. However, we show here that it is not the heart of
the turbulent mechanism, the energy and scalar cascade,
which is affected in the desired way by the modulation
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FIG. 3: Influence of the large-scale modulation on the transfer-rate χ and mixing-efficiency χθ, for Rλ = 32 and
Rλ = 105, αp = 0.2 and αp = 1.
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FIG. 4: Amplitudes of the modulated scalar variance k∗θ = k̃θ
kθ
α−1
p and (b) modulated scalar dissipation ε∗θ = ε̃θ

εθ
α−1
p

as a function of ωT for the case of a modulated scalar injection. Results for Rλ = 32 and Rλ = 105, both at αp = 1.

of an isotropic forcing.

We further showed that in this large amplitude mod-
ulation regime the frequency response of the amplitudes
of the periodical components of the kinetic energy, scalar
variance and their dissipations are still in agreement with
the outcome from linear perturbation analysis.

APPENDIX: FURTHER DETAILS ON THE NUMERICAL
SIMULATIONS AND POSTPROCESSING PROCEDURE

The numerical simulations are carried out at two dif-
ferent resolutions, corresponding to different values of the
Reynolds number. First, low resolution simulations at a
spatial resolution of 643 are performed with kinematic
viscosity ν = 0.009, corresponding to a Taylor Reynolds
number Reλ = 32, with eddy turn-over time T = 1.949.
The resolution allows to resolve the smallest scales upto
kmaxη = 0.93. Another set of simulations is carried out
at a resolution of N3 = 2563 gridpoints, kinematic vis-
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cosity ν = 0.0009; Taylor Reynolds number Reλ = 105;
eddy turn-over time T = 2.317 and kmaxη = 0.97. In
all simulations the Schmidt number Sc ≡ ν/D = 1. We
think that the consideration of other values of Sc will not
qualitatively alter the results, as long as Pe = UL/D is
sufficiently large for the advection to be dominant over
diffusion.

The Fourier-transformed velocity and scalar field are

denoted by ûi and θ̂, respectively. The forced Fourier-
modes are the modes in the range 0.5 < |κ| ≤ 2.5. Only
for these modes the forcing terms are non-zero and have
the form

f̂i(κ, t) =
1

NF

ûi(κ, t)

|û(κ, t)|2
(p+ p̃ cos(ωt)) (31)

ĝ(κ, t) =
1

NF

θ̂(κ, t)∣∣∣θ̂(κ, t)
∣∣∣
2 (pθ + p̃θ cos(ωt)), (32)

with NF the total number of forced modes. These forcing
schemes will result in a statistically isotropic velocity and
scalar field.

Previous investigations6,10 focused in particular on the
linear response of turbulence on a periodic modulation.
In this limit linearized equations around a given equi-
librium allow to analytically derive certain results. The
verification of such results is not straightforward in the
nonlinear regime, where the perturbation is large. Ide-
ally, to investigate the linear response of a turbulent flow,
the amplitude of the forcing should be chosen small com-
pared to the amplitude of the steady part of the forcing
(αp ≡ p̃/p̄ � 1). However, since the turbulent fluc-
tuations are in this case much larger than the periodic
response, very long simulations should be carried out to
obtain an estimate of the frequency response. In particu-
lar at large frequencies, where the frequency response will
be shown to drop rapidly as a function of frequency this
would impose prohibitively long computations. A com-
promise is to consider a larger modulation amplitude. In
this study, as in6, we use αp ≡ p̃/p̄ = 0.2. This allows to
obtain converged statistics for a large range of frequen-
cies at a reasonable computational cost for low Reynolds
number (Rλ = 32). For higher Reynolds number this al-
ready leads to prohibitively long simulations. Therefore
we have carried out another set of simulations with a rel-
ative modulation amplitude αp = 1. Even though this
certainly violates the linear perturbation assumption, we
will show that the frequency-response of the modulated
quantities is not quantitatively altered. We will further
show that this has an interesting direct influence on the
time-averaged quantities.

Before extracting the frequency response of the simula-
tions, the flow was simulated for approximately 10 eddy
turn-over times to obtain a statistically steady state. It
proved convenient to determine the amplitude of the pe-
riodic response by using a Fourier-transform of the signal.
Before Fourier-transforming the time-series of a given
quantity, a hanning window function is applied to the
signal to eliminate the aliasing error at high frequencies

due to the finite length of the signal. In the frequency
spectra, if the simulations are carried out for a sufficiently
long time-interval, the amplitude of the periodic response
is easily identified by a sharp peak. Comparing the value
of this peak to the neighbouring values in the spectrum
gives a direct estimate of the signal-to-(turbulent)-noise
ratio. In all simulations the value of the peak at the con-
sidered frequency was at least ten times the value of the
neighbouring values in the spectra. For the phase aver-
aged amplitudes, error-bars are added to the datapoints
in the figures, computed from the signal to noise ratio.
In most cases, this error-bar is smaller than the size of
the symbols used in the figures. The time-averaged value
is conveniently estimated from the ω = 0 component of
the spectrum.

The different simulations we have carried out are doc-
umented in table I.

ωT N t αp Rλ
0 0 800 0.2 32

0.037 4 1316 0.2 32
0.064 8 1519 0.2 32
0.11 8 877 0.2 32
0.19 8 506 0.2 32
0.33 8 292 0.2 32
0.57 8 169 0.2 32
1 15 183 0.2 32
1.7 90 633 0.2 32
3 180 731 0.2 32
5 540 1266 0.2 32
9 360 487 0.2 32
16 810 633 0.2 32
27 1080 487 0.2 32
47 110 29 0.2 32
81 200 30 0.2 32
0 0 800 1 32

0.037 4 1316 1 32
0.064 8 1519 1 32
0.11 8 877 1 32
0.19 8 506 1 32
0.33 8 292 1 32
0.57 8 169 1 32
1 15 183 1 32
1.7 35 246 1 32
3 60 243 1 32
5 105 246 1 32
9 180 243 1 32
16 315 246 1 32
27 540 243 1 32
47 945 246 1 32
81 1800 271 1 32
0 0 40 1 105

0.11 2 262 1 105
0.19 3 227 1 105
0.33 3 131 1 105
0.57 3 76 1 105
1 2 29 1 105
1.7 6 50 1 105
3 12 58 1 105
5 54 151 1 105
9 108 175 1 105
16 54 50 1 105
27 108 58 1 105
47 162 50 1 105
81 324 58 1 105

TABLE I: Simulation parameters: normalized frequency
ωT , number of simulated periods N , simulated

time-interval t, relative forcing amplitude αp and
Reynolds number Rλ.
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