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Abstract

This thesis presents several unsupervised algorithms used in a collaborative
context. Its main axis is the improvement of communications between several
distributed datasets and the developments of these communications, either
in terms of quality or in terms of use case. This axis is then divided into two
sub problems, each one defined by the goal of the algorithm.

The first one is Collaborative Clustering, which aims at refining local
results through a consensus between several distributed datasets called views.
Given a local view, this consensus is achieved through the prioritization of
the information got from all the external views. The method presented in this
thesis is generic and can be applied without consideration of the clustering
algorithms used on each view.

The second use case is the reconstruction of missing data. Given several
views, and considering a set of individuals described in more than one view,
the goal of this use case is to transfer information from a view to another
in order to infer an approximation of the missing description of an individ-
ual. While Collaborative Clustering has already been extensively studied
in the literature, Collaborative Reconstruction is introduced in this thesis.
This new use case is applied on several datasets containing either images or
numerical vectors, the majority of which being commonly found in Collab-
orative Clustering literature. However, our method differs from what has
previously been presented in the literature because the inter-views commu-
nication is performed both by a scalar based prioritization of the information
and by a neural network based inference system. Moreover, while Collab-
orative Clustering ensures a minimum security by transfering informations
different from the original data, our Collaborative Reconstruction method
uses autoencoders, a specific kind of neural networks, to encode informations
before sending them to ensure a minimum security regarding data transfer.
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1.1 Thesis Scope

Each day, data grows in terms of quantity and complexity. This has the
advantage of making possible a wide range of applications on different data
of all natures, but it also has the disadvantage of making each application
more specific, and their possible solutions more difficult to design. Moreover,
because of this huge volumetry, one is likely to face a problem for which
data are distributed among several datasets (also called views). It is in
this context that Multi-View Learning has been created. This latter can be
divided into several paradigms focused on the collaboration between different
actors to fulfill different goals. Among them, two paradigms are specificaly
focused on clustering: Collaborative and Cooperative Clustering.
Clustering is the process of organizing individuals in groups such as the
similarity between the individuals of a same group is maximum while the
similarity between individuals from two different groups is minimum. How-
ever, it is an ill-posed problem because there is no universal definition of what
a similarity measure is and the determination of the right number of clus-
ters might be difficult. Multi-view Clustering aims at mitigating the problem
inherent to each local clustering by establishing inter-views communications.
Cooperative Clustering aims at finding a global consensus knowing groups
identified locally obtained by each view, while Collaborative Clustering aims
at updating local results to take into account locally groups that have been
identified in the other views. As part of this thesis, a consensus is defined as
the modification of each local solution to maximize the inter-views agreement
while not hindering local results. Collaborative Clustering is sometimes con-
sidered as a specific phase of Cooperative Clustering, just before merging the
results of each view to get the global consensus. These two paradigms being
vast research fields in themselves, in this thesis we focus on horizontal Col-
laborative Clustering, the subfield considering several views describing the
same set of individuals using different feature sets. In this context, the goal of
Collaborative Clustering is to consider groups identified from different point
of views (hence the designation of view) to update each local clustering. In
that sense, one could consider Collaborative Clustering to look for a con-
sensus. However, it is important to note that, while Cooperative Clustering
aims at finding a unique global consensus, Collaborative Clustering rather
aims at improving each local clustering to ensure that local results take into
consideration the information extracted by all the other clusterings.
Considering the fundamental idea of Collaborative Clustering, namely
the collaboration of several independent views to get local results, we have
explored the application of inter-views communications to Collaborative Re-
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construction. Having several datasets describing the same set of individuals
but using different sets of features might sometimes implies that some indi-
viduals may be missing in some datasets while being present in some other.
It might be because data have been gathered using various methods during
different sessions maybe separated in time, or because individuals did not
provide all the required data during a survey for example.

In this context, the information regarding a specific individual and spread
among several external views could be used to infer a local approximation of
this individual. This thesis present a system able to perform such inferences.
An interest in this use case is to consider inter-views communications from an
other point of view than the clustering one. To do so, the initial hypothesis of
the shared set of individuals is used to infer links between the representations
of an individual in two different feature spaces. In other words, we want
to make a system learn the correspondences between two different features
spaces using the individuals that these features spaces have in common.

To sum up, the improvement of inter-views communications in a collab-
orative context is developped either based on existing methods in the case of
Collaborative Clustering, or on the definition of a new paradigm in the case
of Collaborative Reconstruction.

1.2 Thesis Overview

This thesis is structured into four chapters (Introduction, Conclusion and
Appendices excluded) and is organized as follows:

Chapter 2, State of the Art: This chapter introduces a state of the
art divided in four main parts. First, a definition of clustering and its current
research challenges are provided. Then the most commonly found methods
are presented, to finally introduce Collaborative Clustering as topic in itself.
The aim of this chapter is to bring the reader from a high level definition of
what the clustering is, to a more specific collaborative context.

Chapter 3, Incremental Self Organizing Maps based Collabora-
tive Clustering: This chapter present our early work on multi-view com-
munications. The objective was to define a method train Self Organizing
Maps in both a collaborative and incremental context. It is related to the
problem of communications in a collaborative context because it focuses on
how these communications could be performed all along the training pro-
cess, and not just during a fixed segment in time. Thus the chapter first

17
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introduces the problem of online training in a collaborative context. Based
on the limitations identified, we present an online version of Self Organiz-
ing Maps. This later method is then adapted to be used in a Collaborative
Context. FExperiments are presented to determine the efficiency of our new
Collaborative Clustering method. A discussion regarding the limitations of
this method as well as a conclusion ends the chapter.

Chapter 4, Optimized weights for the horizontal collaborative
SOM algorithm: Based on the challenges and on the state of the art pre-
sented previously, this chapter presents a new weighting method used to
define the relative confidence a view has in the information coming from all
its external peers. We first define our problem as an optimization problem,
leading to the creation of a constrained system of equation defining the values
of the best collaboration coefficients. This system is then solved mathemat-
ically using the Karush-Kuhn-Tucker method, followed by an interpretation
of the results. The method is finally numerically against existing approaches
in the literature.

Chapter 5, Collaborative Reconstruction System: This chapter
presents our method to achieve Collaborative Reconstruction. To the best
of our knowledge, there is no existing work on Collaborative Reconstruction
in the literature, thus we first give some definitions. Then, we introduce
the reader to the main components used by the system, a quick overview
of Neural Networks is then given with a focus on two of the many kinds
of existing Neural Networks: Multi-Layer Perceptrons (MLP) and Autoen-
coders. After this introduction, a global definition of the architecture of
what we call the Collaborative Reconstruction System is given. The main
components are the Autoencoders that encode the information, the MLP
which transfer the information from a view to an other, and the Masked
Weighting Method which combines all the external informations. This later
component being a contribution in itself, its definition and its training are
detailed using a mathematical analysis of the learning process using either a
Gradient Descent or an iterative process. Because of the complexity of the
system, several sets of experiments have been conducted to test both the
efficiency of the global system and the impact of this method on the results
of the system. A graphical representation of what can be achieved in terms
of reconstruction is presented using a dataset of handwritten digits. Finally,
a discussion of the advantages and on the limits of the system is presented
at the end of the chapter.

18
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1.3 Main Contributions

International Journal

e (currently submited) Denis Maurel, Sylvain Lefebvre and Jérémie Sub-
lime, Deep Cooperative Reconstruction with Security Constraints, Knowl-
edge And Information System (KAIS), 2019.

International Conferences

e Denis Maurel, Jérémie Sublime and Sylvain Lefebvre, Incremental Self-
Organizing Maps for Collaborative Clustering, International Confer-
ence on Neural Information Processing, 2017.

e Jérémie Sublime, Denis Maurel, Nistor Grozavu, Basarab Matei and
Younés Bennani, Optimizing exchange confidence during collaborative
clustering, International Joint Conference on Neural Networks (LJCNN),
2018.

National Conference
e Denis Maurel, Jérémie Sublime and Sylvain Lefebvre, Cartes Auto-
Organisatrices Incrémentales appliquées au Clustering Collaboratif, Con-

ference internationale sur 'extraction et la gestion des connaissances,

2017.
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Chapter 2

State of the Art

This section first gives the definition of clustering along with its use cases and
its main difficulties. Then several commonly found methods are presented
along with the category of algorithms they belong to. Eventually we focus
on the specific subfield of multi-view clustering, giving a definition and a
state of the art of the research works which are conducted on it.

2.1 Definition of clustering

Every day, exabytes of data of various format are generated: videos, texts,
audio, activities on social networks. .. Since its creation, clustering has be-
come an active field of research because of the possibilities it offers when
applied to such a variety of data. Using clustering, it becomes possible to
better understand the underlying structures of a dataset. These structures
can then be used for further real-world applications such as market study,
advertisement targeting, product improvement and recommendation.

In [33], the clustering is defined as “[...]| the unsupervised classification
of patterns (observations, data items, or feature vectors) into groups (clus-
ters)”. The term unsupervised refers to one of the two subfield of Machine
Learning: supervised and unsupervised learning. A problem is said to be
supervised if the learning algorithm is trained knowing both the input and
the corresponding labels (classification for example). On the opposite, a
problem is said to be unsupervised if one has only access to its input, which
is the case of the clustering for which one has to define clusters only knowing
input data.

The first two clustering algorithms found in the literature are Hierarchi-
cal Clustering [81] and K-means [42] respectively defined in 1963 and 1967.
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Those algorithms define two of the main clustering subfields: the methods
based on a hierarchical classification of the input, and the methods based on
its partition. The different clustering subfields will be described later in this
section.

2.2 Results analysis

Clustering in itself is a very broad field, and it might be difficult to analyze
the results of a training process depending on its context. Criterions usually
found to analyze a clustering are detailed in this section: the similarity
measures along with how they are related to data typology, then quality
measures.

2.2.1 Similarity measures

The second problem related to clustering lies in the similarity measures used
for each algorithm. Clustering relies on the idea that similar individuals
must belong to the same cluster while dissimilar ones should not. Therefore,
one of clustering challenges is to define the criterion that allows to compare
two individuals. Problems such as point clustering in “physical” space can
be adressed using distance measures among which the most well-known is
the euclidean distance, a.k.a. the [2-norm and defined as follow:

D
d(a,y) =3 (xr — ) (2.1)
k=1

Where D is the dimension of x and y, and xj, the k-th coordinate of = in
its feature space. This measure is intuitive because it refers to the concept
of distance which we use everyday. However, even if it is intuitive and can
give good results in lower dimensional spaces, it has its limitation when the
number of dimensions increases. The choice of the inter-individuals distance
must consider points such as the space dimensionality, the type of features
used in the dataset, and even the goal of the clustering. A guide on this
problem can be found in [17].

Also, the choice of a measure defines data topology in the sense that it de-
fines the shape of the clusters that may be found. The topology of data is also
a criterion to consider when choosing a clustering method because some may
(or not) be used for certain kind of topologies. The diagrams displayed in
documentation of the Python package scikit-learn' present how some meth-

"http://scikit-learn.org/stable/modules/clustering.html
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ods may or may not adapt to some topologies. For example, methods such
as K-means based on [2-norm defines ball-shaped clusters. This may not
give the expected result when considering data forming concentric circles for
example.

From now, every time the term “neighbor” will be used in this thesis, it
will implicitly entail that a distance between individuals has been defined.
The definition of this distance can be viewed as an additional parameter for
every method using it.

2.2.2 Quality measures

Another problem appears when one has applied the selected clustering method
on its dataset: how can one measures the quality of a clustering? With a
supervised problem such as classification, it is easy to determine the quality
of the result by simply considering criterion such as the percentage of object
well classified. You can even use this criterion during the learning phase to
deduce update rules as in [79]. However, the problem is different for cluster-
ing: most of the time you do not have access to a criterion which you can
optimize during the learning process. If the problem only involves data in a
visualizable space (between 1 and 3 dimensions), it is easy to visualize the
data and to see if the created clusters are intuitively good. However, most of
the time the problem involved have a dimensionality that is far higher than
3, making it hard to visualize graphically the content of each cluster. Some
methods such as Principal Component Analysis [84] and Locally Linear Em-
bedding [60] allow to give an estimated projection of the data (and of their
corresponding clusters) in a visualizable space. Some work in the literature
are solely dedicated to the definition of a clustering quality, like in [3].
However, even if it is hard to give an intuitive measure of the quality of a
clustering, two criteria are intuitively studied to get an idea of the clustering
quality: its compactness, namely how close are the individuals from a same
cluster, and its separability, namely how far are the individuals from different
clusters. Some meagsures allow to compare two clustering one to each other.
Among these measures, the most commonly found are the Dunn index [18],
the Davies-Bouldin index [11], the Silhouette index [59] and the Wemmert-
Gancarski Index [82]. Some measures even allow to compare two clusterings,
namely the Rand index [54] and its Adjusted version [31]. The four first
measures are based on the idea that clustering should minimize the distance
between members of a same cluster (compactness) while maximizing distance
between members of different clusters (separability), which corresponds to
the intuitive goal that one may want to achieve when performing clustering.
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While the four first make it possible to say that one clustering is “better”
than the other, the two last only define the similarity between two clustering,
without telling which one is the best.

There also exists two quality measures used especially for prototype based
methods such as SOM and K-Means, namely the purity index and the Quan-
tization Error. These measures take advantage on the defined prototypes to
define measures based on these prototypes.

Each quality measure is detailed in the following paragraphs.

Dunn index

The Dunn index is defined as the ratio between an inter-cluster measure D
and a measure of scatter A;. It is defined as follow:

min D(c;, ¢;)

pU="*___ 2.2

max A; (2:2)
1€[1..C]

With C the number of cluster. D and A; can be defined in different ways,
creating each time a new version of the Dunn index. Here are presented the
most used versions:

D(Ci7 Cj) Ai
i d d
pemin d(@.9) max d(z,y)
e MY B A
d(lu'z - :U'j) ﬁ Z:péci ($ - NZ)

|01h02\ > 2 d(z,y) m >, d(z,y)

zECL TEC2 T,YEC; ,TFY

Table 2.1: Different set of distance inter-clusters and measure of scatter for
the Dunn index
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With p; the center of the i-th cluster defined as follow:

Hi =] (2.3)

Ci‘ xrece;

Davies-Bouldin index

Based on the same idea than the Dunn index, the Davies-Bouldin index is
defined as follows:

Ai+Aj
2.4
|C‘ Z ]7’51 CZaCJ ( )

With C' the clustering and |C| the corresponding number of clusters, A;
a measure of scatter for the i-th cluster and D(¢;, ¢;) a distance measure as
defined for the Dunn index. The most commonly found version of the Davies
Bouldin index in the one based on the third line of Table 2.1.

Silhouette index

The Silhouette index (SI) can also be used to assess the compactness of the
clusters as well as their separation. However, the main difference between
this index and the Dunn or Dabies-Bouldin ones is that it can be computed
either for a given individual z, or for a cluster ¢;, or for the whole clustering.
For an individual z, a, is defined as the mean distance between x and the
elements membership to its cluster, and b, is defined as the mean distance
between x and the elements which do not belong to its cluster. Then, the
Silhouette index in defined as follow:

by — ag

I(x) = ——— 2.
S1(z) max(ay, by ) (2:5)
From which it follows that
b1, ifay > by
SI(x) =10, if az = by (2.6)

1_%7 if ay < b,

This implies that SI(x) takes values between -1 and 1. A value near -1
means that the distance between = and the element from its cluster is bigger
than the one between x and all the other elements, meaning that x does not
belong to the good cluster. On the opposite, if = is near 1, it means that it
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is closer to the elements from its cluster, which may indicate that x is in the
right cluster. When this value is computed for every x in a cluster, the SI of
the cluster can be computed as follow:

Sie) = — 3 S1(x) (2.7)
il

And eventually, when SI(¢;) is computed for all the clusters, the SI of
the whole clustering can be computed:

o
SI(C) = |é| S Si(e) (2.8)
=1

If one would like to use this index, it has to be noticed that it is com-
putationaly expensive to compute it. Even if an intermediary structure is
used to store the distances already computed, the index will have to compute

%n(n — 1) distances, with n the number of elements in the dataset.

Wemmert-Gancarski index

The Wemmert-Gancarski (WG) index is another index based on the pair
compactness-separability. It is defined as follow

o L d(muu'i)
0 2 Loee: apsy) > 1 (2.9)
1 _

1 (i) ;
o] > wee don) otherwise

This index takes its values between 0 (bad score) to 1 (good score). To
get the result on a complete clustering, the following formula is applied:

e WG (es)

C
el

WeG(C) = 2=

(2.10)

Rand index

To compare two clustering, the Rand index considers the peers of elements
which are clustered together (or not) in each clustering. Four sets are defined
(a, b, ¢, and d), the union of which contain all the peers of elements of the
dataset studied. The membership of a pair to a set follows Table 2.2.
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Same cluster in C; Same cluster in C5

a yes yes
b no no
c yes no
d no yes

Table 2.2: Sets of peers of elements used for the definition of the Rand index

Using these sets, the Rand index can be defined as follow:

RI(Cy, Cy) = a+b _atb 2(a+0b) (2.11)

atbt+ct+d () nn-1)

The Rand index takes its values between 0 (totally different) and 1 (iden-
tical). A corrected version of the Rand index has been proposed in order to

correct the possibility that two clusterings are equal because of randomness.
This Adjusted Rand Index is defined as follow:

> () = 120 (5) 3, (9)]/(5)
1D (al)+z -1 (>zj(”2f)}/(’;)

With n;; the number of elements in common between the i-th cluster of
Cl and the j—th cluster of 02, a; = Zj Nij and bj = Zz Nij.

ARI(Cy,Cs) = (2.12)

This multiplicity of criteria brings to light that there are several chal-
lenges to address while performing clustering, and there is to date no method
which can tackle all of them at once. Thus, the methods which have emerged
have their own strengths and weaknesses. The next section presents an
overview of the most well-known clustering algorithms used today with their
specificities.

Purity index

The purity of prototype based model is the average purity of its prototypes,
with the purity of a prototype being the proportion of the most represented
class among the individuals belonging to this prototype. It has to be noted
that, unlike the previously presented index, the purity requires the original
labels of the considered individuals to be computed.

It can therefore be defined using the following formula:
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N,

1 P
ity = — P.(i 92.13
purity Np;ién[%]( (1)) (2.13)

With NV, the number of prototypes, C' the number of classes and Py () the
proportion of the class ¢ among the individuals belonging to the prototype
k.

Quantization Error

The Quantization Error (QE) is defined as the Mean Squared Error between
the prototypes of the models and their respectives individuals. It can be
defined using the following formula:

N
1
qe = N Z ||.QZ'Z — wx(xb) H2 (214)
i=1

With N the number of individuals, x; the i-th individual, wy the k-th
prototype of the model, and x(z;) the function returning the index of the
prototype to which x; belongs.

2.3 Popular clustering methods

This section presents a non-exhaustive selection of clustering algorithms
which are the most commonly found in practice. Since the creation of the
field, many methods have been proposed, and some of them share basic ideas
which are then developed in different ways. Thus this section will be divided
following the main categories of existing algorithms with at least one example
for each kind. These categories are the following:

e Hierarchical methods

e Vector quantization methods
e Density based methods

e Stochastic methods

e Other methods

The categorization presented here only pretends to give to the reader an
overview of the most commonly found clustering algorithms. Some other
categorization may be found in the literature, as the one presented in [33],
in [85] and most recently in [21].
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2.3.1 Hierarchical methods

This kind of algorithm is the first to appear in 1963 with the method pre-
sented in [81]. Its core idea is to build a hierarchy of clusters by joining
existing clusters (agglomerative methods, each individual starts in its own
cluster) or by separating them (divise methods, all the dataset belongs to
the same initial cluster). The principle of the method is to iteratively build
a dendrogram by looking at a specific criterion. A method is defined both by
the way the dendrogram is built and by the criterion used to pair or divise
the clusters. One can either applies the method until all points belong to
the same cluster and graphically determining the best number of clusters, or
applies the method until a specific criterion is reached (number of clusters
or inter-cluster distance for example).

The first most commonly found hierarchical clustering method is the Ag-
glomerative method presented in [81] which pairs clusters by considering a
criterion to optimize. The variations of the algorithm depends on the cri-
terion which is used to pair the clusters. The most used criterions are the
Ward’s function (defined in [81]) which aims at minimizing the intra-cluster
variance at each step, and the linkage functions which consider a specific
distance inter-cluster to minimize. These latter can be either the maximum
or the minimum or the mean distance between points of two clusters (respec-
tively called the complete-linkage, the single-linkage and the average linkage
clusterings). There exists some other criterion which are not detailed here,
however the interested reader can refer to [46] which establishes a detailed
survey on the criterion used for Agglomerative clustering. A general frame-
work for an agglomerative hierarchical clustering algorithm is presented in
Algorithm 1.

Algorithm 1: General framework of a hierarchical agglomerative clus-
tering algorithm

Initialization: Create a cluster for each element

Each cluster becomes a leaf for the dendrogram

while there is more than one cluster left do
Compute pairwise inter-clusters similarities

Merge the two most similar clusters
Update the dendrogram
end
Cut the dendrogram to get the desired number of cluster
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The second most commonly found Hierarchical method is the Balanced
Iterative Reducing and Clustering using Hierarchies (BIRCH) one [86]. This
method has been defined in a context of growing interest for data min-
ing of large dataset, and its main claim is to reduce the consumption of
ressources used during the clustering, as it presents a compact representa-
tion of a dataset and only requires a single pass through the dataset to create
the tree.

2.3.2 Vector quantization methods

Vector quantization methods are based on the idea that a clustering can
be summarized by a set of prototype vectors, thus the membership of an
individual to one cluster is determined by comparing it to the set of existing
prototypes. There are two main kinds of Vector Quantization methods: these
based on deterministic memberships for which an individual belong to one
and only one cluster, and these based on stochastic memberships for which
memberships are expressed as a set of probabilities, one per prototype.

The Deterministic Vector Quantization methods are historically the first
ones that have been created. The very first method, still used today, is
the K-means algorithm [42]. This method is based on a pair of steps done
iteratively until convergence of the prototypes. First a set of K prototypes is
randomly generated in the feature space, then each individual is associated
with its closest prototype (in terms of a distance criterion). When all the
dataset has been processed, the prototypes are updated as the means of their
associated individuals: they become the “center”; also called “centroid”, of the
cluster they represent. The last two steps are repeated until the prototypes
updates norms are sufficiently small to be considered as negligeable. The
k-means algorithm is illustrated in Algorithm 2.

The initial method has allowed the emergence of many variations such as
k-medians clustering [32], k-medoids clustering [34] depending on the proto-
type update rule. An extension to this algorithm has been proposed in [37]
in which the authors define the Self-Organizing Maps (SOM). This methods
is based on the same idea than K-means, except that the prototypes are or-
ganized as a map in which each node update will also impact its neighbors,
depending on a neighboring function based on the Manhattan distance be-
tween two nodes in the map. The Manhattan distance between two neurons
in a SOM is defined as the minimum number of hops separating the two
nodes in the map. This allows to not only capture prototypes, but also to
organize them following a possible underlying structure in the dataset. This
method also makes possible to get a two or three dimensional representation
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Algorithm 2: K-Means algorithm
Initialization: Choose a value for K
Randomly initialize the K centroids p;

while a stopping criterion is not met do

forall z,, € X do
Assign x,, to the cluster ¢; with the closest centroid

1 if i = argming||z, — pil|?
Sn,i = .
0 otherwise

end
forall u; do
— Zn x"'snai
lLLi - Zn Sn,i
end
end

of a possibly high feature space. Indeed in a supervised case, by assigning to
each node the class of the majority of its associated individuals, it it possible
to graphically see the underlying proximity structure in the dataset.

A SOM is defined by a temperature function A which itself defines a
neighborhood function K. The temperature function is usually defined as
follow:

1
)\m X t
At) = )\min<)\ . ) (2.15)
With Apin and Apax two parameters of the SOM algorithm defining the
minimum and maximum temperature used during the training. One can
notice that the function goes from Apax for t = 1 to Ay for t — oco. This
function is then used to define the following neighborhood function:

2
Kjy = exp ( - dA((kt’)l)) (2.16)

The idea behind this function is to determine the width of the neigh-
borhood affected by the modification of a single neuron. The higher A(%),
the hotter is said the map, and the wider is the neighborhood impacted
by the modification of a neuron. However, this wider area comes with a
limitation in the modification that can be performed on each neuron. This
phenomenon is related to the exponential function used for K, if the map is
hot, the map performs global modifications of its structure in order to adapt
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to the data typology. On the opposite, when the map is cold, the map only
performs local modifications in order to adapt its neuron to its immediate
neighborhood.

A description of the SOM algorithm is presented in Algorithm 3.

Algorithm 3: SOM algorithm
Initialization: Choose the dimensions n x m of the map
Randomly initialize the n x m neurons w;

while a stopping criterion is not met do

forall x € X do
Assign x to its closest neuron w;

X; £ set of all z assigned to w;
end
Compute A using Equation 2.15
forall w; do
forall w; do
Compute K; ; using Equation 2.16

Wi = w;?ld +eKij Y pex, (T —wi)

end
end

end

Deterministic Vector Quantization ideas have been adapted in a stochas-
tic context: now, an individual does not belong to a single cluster, but rather
is defined by a set of K membership probabilities, with K the total number
of clusters. The memberships are told to be “fuzzy”. A comparision can be
made between the two learning steps used by K-means and the Expectation-
Maximization (EM) algorithm defined in [14] for which the update of pa-
rameters are performed using the likelihood of data being generated by the
model using these parameters. In the first case, the method optimizes the
variance of the distance between the prototypes and its associated points,
in the second case the method optimizes the likelihood of the dataset being
generated by the clustering model. The EM method thus makes it possible to
define a stochastic counterpart to K-means called Gaussian Mixture Model.
In this method, data have been generated by a set of Gaussian functions.
The EM method here make it possible to learn the mean, the variance and,
in the multidimensional case, the covariance matrix of the functions.

Considering fuzzy memberships, it is also possible to draw some links be-
tween deterministic clustering methods and their stochastic variants. Thus,
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Fuzzy C-Means [5] can be viewed as the stochastic variant of K-means for
which the optimized criterion uses weighting coefficients equals to the fuzzy
memberships defined by the method. Beside, the Generative Topographic
Maps (GTM) [6] can be viewed as the SOM stochastic variant. However,
while Fuzzy C-Means (FCM) only added the stochastic memberships to the
initial model, GTM uses the concept of latent space to define the prototype
map, map which is then mapped into the feature space using a transforma-
tion which parameters are trained using the EM method (cf. Figure 2.1). A
detailed description of the FCM algorithm can be found in Algorithm 4

Figure 2.1: Generative Topographic Maps: projection of a map from the
latent space to the feature space

These methods are further developed in Section 2.4 when Collaborative
Clustering is presented.

2.3.3 Density based methods

Even though hierarchical and vector quantization methods have been inves-
tigated since the emergence of clustering, the problem of the initialy defined
number of cluster remains because it has to be defined manually by the user.
The density-based methods presented in this section present alternative so-
lutions to this problem by using the density of individuals in the feature
space to automatically determine the optimal number of clusters during the
learning process (w.r.t. the optimized criterion). This kind of method can
also be seen as an intuitive answer to the clustering problem given the defi-
nition of a cluster: these methods are based on the finding of dense zones in
the middle of less dense zones.

The most commonly found density based method is called Density-based
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Algorithm 4: Fuzzy C-Means algorithm

Initialization: Choose a value for C and m
Randomly initialize 391,1‘ such that

C
Vi, $pi€[0,1], Vn > spi=1
i—1

)

r=0do
forall p; do
Zn Ln (S:‘L;.l)m
/"LZ - En ‘T"’L(S:L;ll>m/
end

for n € [1..N] do
for i € [1..C] do
2

o C d(xnallz‘)2 T om—1
Sn,i - Zj:l (d(mn,,uj)Q

end
r=r+1
while a stopping criterion is not met;

spatial clustering of applications with noise (DBSCAN) [20]. Its core idea
is to consider the density around each individual, namely their numbers of
neighbors, because a cluster can also be seen as a densely populated point in
the feature space. To do so, the method requires two parameters: a distance
varepsilon which determines if two points are neighbors, and minPts which
determines if an individual should be considered as a core sample (intuitively,
a sample near the cluster center) or a non-core sample (at the fringe of the
cluster, where the space is less densely populated). Starting from a random
point, then iteratively: if it has at least minPts neighbors, it is considered as
a core point and all individuals such as their distances to the original point
is less than wvarepsilon are analyzed. If it has less than minPts neighbors:
either it has a core sample in its neighborhood, in which case it is considered
a non-core sample belonging to the same cluster as its core neighbor, or in the
opposite case, it is considered as an outlier belonging to no cluster. By doing
s0, the method defines its own number of clusters depending on wvarepsilon
and minPts. A description of the DBSCAN algorithm can be found in
Algorithm 5. The OPTICS algorithm [1] can be seen as an improvement of
the DBSCAN algorithm. This algorithm is based on both the ordering of the
individuals in such a way that spatially close points become neighbors in the
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ordering and on the storage in each point of a distance used to define same
cluster memberships. These points are used to address one of DBSCAN’s
weaknesses: the problem of detecting meaningful clusters in data of varying
density.

The second most commonly found density based algorithm is the Mean-
shift method defined in [8]. The core idea of the method is to consider
individuals as mobile points which will then be attracted iteratively by high-
density zones in the feature space. It is based on a kernel function K which
will define the attraction of a point on its neighborhood. At each iteration,
each individual will be updated as the mean of its neighbors weighted by
their respective attractions (defined by K). The method is entirely defined
by the kernel function and by its parameters.

2.3.4 Special case: Spectral clustering

In this subsection we present the method called Spectral clustering and de-
fined in [47]. It is not presented in one of the previous sections because its
core idea does not fit with these already defined, but also because it is made
of two steps, one to reduce the problem dimensionality, and the second one
to effectively cluster the dataset. The second step can be done using by any
algorithm defined previously. The core idea of this method is to use the
eigenvalues of a similarity matrix computed on the dataset to reduce the
dimensionality of the future space using the associated eigen-vectors.

2.4 Collaborative Clustering

2.4.1 Multi-view learning

Methods presented so far rely on the learning of a whole dataset. However,
it is possible to find cases in real life for which one does not have access
to the totality of the dataset, because of privacy constraint for example
(see Section 5.1 for further explanation). It is also possible that data may
come from different heterogeneous sources. Both cases make the training
of a single algorithm on the whole dataset difficult. This acknowledgment
had led to the definition of a new clustering context, called the Multi-View
Learning. In this context, many methods have to be trained together before
being combined in order to achieve the goal initially set.

As presented in [75], Multi-View Learning is a vast domain with many
related subfields such as dimensionality reduction, semi-supervised, super-
vised learning and active learning. However, the following section is only
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Algorithm 5: DBSCAN algorithm

Function DBSCAN (X ,e,minPts):
C=0
forall z,, € X do

if x,, has not been visited yet then
| mark xz, as visited

end
Vi, = regionQuery (x,,¢)
if sizeOf (V) > minPts then

C=C+1
expandCluster (z,, V,,, C, €, minPts)
end
else
| mark z,, as noise
end

end

Function expandCluster(x,, V,, C, &, minPts):
Add z, to cluster C
forall z; € V,, do
if x; has not been visited then
Vi = regionQuery (x;, €)
if sizeOf (V; > minPts) then
end
end

if x; does not belong to any cluster yet then
| Add z; to cluster C

end

end
Function regionQuery(x,, €):
list = 0 forall z; € X do
if i #n and d(zp,x;) < e then
| list = list U {z;}
end
end
return list
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focused on the application of Multi-View Learning in a clustering context,
namely the collaborative clustering paradigm.

2.4.2 Cooperative versus Collaborative Learning

In the context of multi-view clustering, the methods proposed in the litera-
ture present solutions to two main problems:

1. Improve a global clustering knowing the clusterings performed on each
view.

2. Making the views collaborate to achieve a global inter-views consensus.

As defined in [9], the first subfield corresponds to Cooperative Clustering
while the second one is called Collaborative Clustering. While these fields
may seem closely related, their fundamentals differ in some points.

Cooperative Clustering aims at making several clusterings of the same
dataset by several different clustering methods. When each training is fin-
ished, the results are sent to a supervisor which task is to find a consensus be-
tween all the possible clusterings. Each training is done without inter-views
communication, and the results are shared only during the final consensus
phase performed by the supervisor. This consensus is found using differ-
ent combination methods, as presented in [35, 16]. Several methods have
been presented in the literature, the most known and used being Bayesian
averaging 35|, Bagging [7] and Boosting [22].

Knowing this, Collaborative Clustering differs in many points from its
Cooperative counterpart, the most important one being its final goal: while
Cooperative Clustering aims at finding the best consensus among a set of
clustering, Collaborative clustering aims at improving each local clustering
knowing the results currently achieved by each other view. Moreover, the
datasets used in each views do not have to be the same, this way Collabo-
rative Clustering can work on heterogeneous data. Another difference lies
in the inter-views communication: while each training was conducted inde-
pendently with Cooperative Clustering, here each view has to communicate
its intermediate results to its peers in order to improve each local result all
along the training.

From now, the remainder of this manuscript is focused only on the Col-
laborative Clustering.
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2.4.3 Horizontal and Vertical

As previously presented, the goal of Collaborative Clustering is to make
several views collaborate using their local results in order to achieve a better
consensus. This general idea has two different declinations, depending on
the similarities that the datasets have to share. These paradigms have been
defined in [52] and in [25].

If all the datasets contain different individuals represented by the same
set, of features, the collaborative clustering is called vertical. On the opposite,
if all the datasets contain the same set of individuals described by different
sets of features, the clustering is called horizontal (cf Figure 2.2).

A third paradigm, called hybrid, is a combination of the two previously
mentioned. In the work presented here, we have been interested in the
horizontal version of Collaborative Clustering because it makes possible to
tackle the problem of heterogeneous data coming from different sources, a
problem that more and more applications are trying to deal with. The related
works presented in the next Section are all related to horizontal clustering,
unless the opposite is explicitly mentionned.

Clustering

3 @ 3 -

Figure 2.2: Horizontal Collaborative Clustering

/

2.4.4 Theory and Gradient Descent

Collaborative Clustering methods are based on two distinct phases intro-
duced in [50]: a first phase of local clustering, during which each view pro-
duces a model of its data independently of the other views, and a second
called collaborative during which the views exchange the information they
have acquired during the first phase in order to continue to learn from what
their peers have found. These two steps are the first theoretical parts defining
a Collaborative Clustering method.
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Moreover, in Machine Learning, a method is usually designed around a
function to optimize, called either cost function or criterion or even score.
Collaborative Clustering consists in several algorithms collaborating, so each
one has its own score to optimize. To formalize this idea mathematically and
conjointly with the definition of the two steps mentioned above, two cost
functions are computed per view.

The first one is the usual cost function of the local methods used in each
view. During the first local phase, each method produces a model according
to this function. The second one takes into consideration the information
learned by each view to formalize the idea of consensus between the views.
Formally, the criterion of the i-th view can be written as follow:

Q' = iQlocar(Vi) + Qonian(Vi, Vizi) (2.17)
= i Qlpeat(Vi) + D BICHV:L V) (2.18)
J#i

With Q?Oml being the local criterion used to trained the local model of
the i-th view, and Q.uqp being a term appended to the local criterion to
formalize the collaborative part of the training. This latter term is made of
the N — 1 terms C]Z: corresponding to a dissimilarity measure between the
local views and its peers. V; stands for i-th view, and from now, we define
N as the total number of views. The coefficients a and S are used to weight
the relative importance of each term. Their definition is discussed later in
this thesis.

A summary on collaborative methods is given in the next Section. When
the cost function is defined, its differentiate is computed and then used to
generate rules to update the parameters of the system using gradient descent
which generic formula can be written:

W = w” — e — (2.19)

where € > 0 is the parameter defining the learning rate of the process,
w the parameter to update, and E the criterion to optimize. This update
process is performed on every parameter w until convergence. In practice,
the learning is stopped when the norm of the update goes under a threshold
fixed by the user.
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2.4.5 Existing approaches
Fuzzy C-Means

Historically, the first version of Collaborative Clustering has been presented
in [25] and in [51] and is based on Fuzzy C-Means [5]. During the local
training phase, the method is using the following cost function:

Vil ¢

vje [1 N Qlocal ZZ nk |1’n :U’k’2 (220)

n=1k=1

With sﬁl,k being the probability the sample n belongs to the k-th cluster,
also called responsibility, u the center of the k-th cluster, and |- | being the
distance between two individuals. After the local training, the collaborative
phase is performed: each view exchanges its responsibility matrix S = (s, 1)
with its peers. During this phase, each view has to minimize the following
function:

Vj € [1N]a QZ = Q?ocal + Qiollab (221)
N Vil ©

Qlocal + Zﬁz Z Z n k S |l’n “}c|2 (222)

J#i n=1k=1

with 5;- being a weight defining the importance that view ¢ gives to the
information coming from the external view j. The objective of the collabora-
tive term of this function is to formalize the distance between the allocation
vector of each sample. To better understand the use of this term, it is
necessary to observe its behaviour in two extreme cases: when the respon-
sibilities are roughly equal and when they are not. If all the responsibilities
are approximately equal for two views, their respective clusterings are ap-
proximately equivalent, meaning that a consensus has been found, thus the
collaborative term and the cost function are low. On the opposite, if the re-
sponsibilities are totally different, the sum of each absolute difference makes
the term important, and so improvable. By considering these two cases, one
can understand that the final goal of the horizontal collaborative clustering
is to find the best consensus as possible between all the views.

Self Organizing Maps

A second version of collaborative clustering has been proposed using self
organizing maps [37]. It is based on the same idea as previously defined
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(FCM case), and has been presented in [25]. Both collaborative and local
terms are defined using Ky, ;:

Vil ¢
Q;ocal =y Z Z Kllf,x(:z:n) Hx:z - wkHz (223)
n=1k=1
il ¢
Quottar = DB D D (K xan) = Kigon) e —w P = 34107 (2:24)
j#i  n=1k=1 j#i

With d(k, 1) being the Manhattan distance (number of hops) between the
neurons k and [ in the SOM, «; being the weighting coefficient for the local
view i, x(z) being the function returning the closest neuron of z, and w® is
the k-th neuron of the SOM.

The learning process is the same as the one of the FCM version: first,
each local view learns a model of its data using the standard SOM algorithm,
then the neurons are updated during the collaborative phase following the
cost function defined by 2.23 and 2.24.

The collaborative clustering has also been applied using the Generative
Topographic Mapping [6] presented is Section 2.3.2.

Generative Topographic Mapping

The GTM being considered as the stochastic evolution of the SOM, the
use of the former as the local clustering method for Collaborative cluster-
ing instead of the latter has naturaly been studied and has been presented
in 23], [66], |67] and [68]. The learning algorithm relies on the same principle
as the SOM-based one, but this time using the Expectation-Maximization
algorithm [14]. During the Expectation phase each individual is assigned to
a neuron. Then during the Maximization phase, the neurons are updated
using a penalized likelihood as described in [24].

2.4.6 Genericity of Collaborative Clustering

The methods presented so far all share several limitations. First of all, the
same algorithms have to be used in each view to make the collaboration pos-
sible. Moreover, because these algorithms are prototype based and because
the collaboration phase relies on a comparison between the prototypes, the
number of these prototypes has to be the same among all the views. An
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even more important restriction is that the maps defined by the SOM and
the GTM algorithms have to be close to each other in order to be compared.
Additionally, these methods rely on the weighting coefficients « and S in or-
der to select what collaborator should be favored or not during the learning
process. These parameters have to be chosen carefully, and this may become
a tricky task if many views have to be considered.

Hopefully, several works have been conducted in order to remedy this
situation. In [26] and in [55], the impact of the diversity of the solution
found by each local view on the collaboration is studied. Even if these work
do not provide a way to automatically update a and (3, it gives an intuition of
what is important for a specific view when considering its external peers. An
automatic update of the collaborative weights is presented in [25] and in [28§],
also based on the gradient descent. However, this method still presents a
significant constraint (8 = o2), which considerably simplifies the update of
the weight to the detriment of the genericity of the method. In a recent
article, a new entropy-based method is presented [74] having the double
advantage to present a generic method to update the weighting coefficients
B (a not being used in this method) while being usable for any combination of
local clustering method. This has been made possible because of the sharing
of the results of each clustering (either deterministic or stochastic) instead
of an intermediary information such as the neighborhood functions for the
SOM. This work is based on the researches previously presented in [64].

2.5 Conclusion

Through this state of the art, several improvable points have been identified.
These points establish the guiding lines of the work presented in this thesis.

First, one can notice the absence of incremental collaborative clustering
methods among these previously presented. Now that Collaborative Clus-
tering has a solid basis considering its definition and the methods it presents,
it might be interesting to consider the case of ever coming information. In
such a case, a continuous update of the clusters may avoid the previously
obtained result to get obsolete.

A second point lies in the collaboration coefficients (o and /) used to
weight the importance of the local and collaborative part in the collaborative
clustering criterion. While some methods to automatically update these
coefficients exist, they either rely on a simplification of the problem through
the constraint 3 = o2 as seen in Section 2.4.6, or they imply the use of an
additionnal parameter to fine tune the coefficient values.
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Moreover, so far we have presented only clustering algorithms. While
multi-view collaboration intuitively seem to be a generic concept, its appli-
cation in the unsupervised Machine Learning literature seem to be mostly
centered around clustering. It might be interesting to apply the fundamental
idea of Collaborative Clustering, namely the collaboration of several views
to improve local results, to a different application. Collaborative Clustering
being sensible to missing data (if the views do not share the same set of
individuals), missing data reconstruction could be a useful extension of the
collaborative paradigm.

Fach of the three points previously mentioned have been developed in
this thesis. In the next chapter, a solution to the limitation regarding in-
cremental learning is presented through the incremental adaptation of the
Self-Organizing Maps as well as their adaptation to Collaborative Cluster-

ing.
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3.1 Introduction

Collaborative Clustering makes it possible for several independent views to
collaborate. An incremental method for this problem, in which data are
continuously added to each view through time, would make possible for a
set of views to collaborate all along their existence, and not only at a fixed
point in time. Indeed, so far, Collaborative Clustering methods perform their
training on several fived datasets. While the results obtained are usable as
soon as they are obtained, they do not take into account the potential arrival
of new data. In some cases, these arrivals may bring useful informations
regarding the evolution of data distribution. For example, when looking at
cyclical phenomena, if training data do not cover a whole cycle, the resulting
clusters may not represent all the possible cases, leading to biased results.
This latter point is one of the motivations that led us to study the specific
case of online Collaborative Clustering. Moreover, to clarify a detail which
differentiate online and incremental methods, unlike the former, incremental
methods are allowed to store a batch of data when they arrive, making it
possible to work with batches instead of just singletons.

The elaboration of such a method presents a challenge linked to the adap-
tation of the update rules of the method. As presented in 2.4, Collaborative
Clustering relies the adaptation of the collaborative update rules depend-
ing on the chosen clustering method. This adaptation has now to take into
account the incremental property of the method. In this chapter we try to
address this challenge by focusing on the case of SOM.

The work presented in this chapter consists in an incremental SOM-
based Collaborative Clustering method without topological modification of
the SOM and which is robust to data distribution evolution. The key com-
ponent of this approach lies in the modification of the temperature function
of the SOM to make it time independent.

The rest of this chapter is organized as follows: our approach on incre-
mental SOM and its application to Collaborative Clustering is presented in
Section 3, followed by the experimental results presented in Section 3.5. Fi-
nally, a further analysis of our method is presented (easymotion-prefix) in
Section 3.6.

3.2 Incremental Collaborative Clustering

Incremental SOM have already been studied in the litterature. However,
all the presented solutions are based on topological modifications of the
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map [15, 49], and this kind of modifications are not compatible with the
Collaborative Clustering update rules. Indeed, the Collaborative Clustering
paradigm supposes that each dataset describes its data by the same num-
ber of prototypes to allow comparisons between several views and to keep
topological mapping between each pair of views. In our case, the prototypes
correspond to the neurons of the SOM, and as such without modification
of the algorithm, the topology of each SOM has to be fixed during the ini-
tialization of the algorithm. Another problem encountered in general with
incremental clustering is the possibility for the algorithms to answer changes
in the data distribution through time. If the data distribution evolves, one
has to be sure that the prototypes will follow the distribution of the most
recent batches.

3.3 Incremental SOM

In our incremental version of SOM, we consider that the data are arriving all
along the experiment. Therefore we assume that at each moment the model
only knows the batch B of the Npqcn last samples that have appeared during
the learning. Our method here presents a variation of the original temper-
ature function described in 2.4.5 which aims at avoiding the dependence
between the temperature and the time. This is motivated by the incremen-
tal aspect of the subject, for which it is not possible to define a time limit
tmax at which the algorithm will end. In order to make the SOM responsive
to the arrival of new data, a new temperature function \ is defined by:

Nyateh

Z [z — x(z:)|2 (3.1)

With B C X the batch currently used and with |B| = Npgen. This hy
function is then capped between A, and Apax in order to avoid extreme
modifications of the SOM. This definition of the temperature function allows
the SOM to be more responsive to novelty encountered in the batch. If the
elements of a batch are far from the current neurons, the whole map would
need to be adjusted to the new distribution of the sample, and this case is
empirically achieved for high values of A. On the opposite, if the samples are
near the current centroids, the map only needs some adjustments in order to
better match the sample distribution. This case is achieved for low values of
A. To clarify notations, the neighboring function which is defined by A will
be named K.

A B,W)
( Nbatch
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3.4 Adaptation to Collaborative Clustering

In this chapter, we only consider the case of horizontal Collaborative Clus-
tering as defined in [23]. Thereafter, we consider datasets {X[i]| i € 1..P}
containing the same set of objects described in different spaces, with P mod-
els (in our case SOM) being trained to represent each view separately. To
clarify notation, W€} names the m-th model created using the m-th
dataset. The point of Collaborative Clustering is to make those models
collaborate in order to reveal common structures among them. The main
hypothesis that is made here is if an observation from the i-th dataset be-
longs to the j-th neuron of the i-th model, then the same observation in the
7-th model will also belong to its j-th neuron or to its neighborhood. In
other words, equivalent neurons from different maps should capture the same
observations |23].

In order to adapt the original criterion to the incremental version of
Collaborative Clustering, we use an approximation of this criterion using the
kernel function K defined in Section 2.4.5 and where distances are summed
over the current batch instead of over the whole dataset:

ém(X’ w) = Cjernocal(VV) + Qvgollab(w) (32)
Nbatch |W|
QLocal = Qam Z Z Js X(M) HZL‘ o wkH2 (33)
i=1 j=1
- Nbatch ‘W‘ , 9
an?ollab = Z Bm Z Z ] x(zi) ;nx(:l,‘7 ) szn - w;n||2 (34)
m/=1,m'#m =1 j=1
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Algorithm 6: Incremental horizontal Collaborative Clustering

Set the collaboration matrix {oy; ;}
while Ezperiment going on do

if new sample appears then
Update batch as a FIFO stack of samples
1. Local Step
forallm € 1..P do
Update prototypes of W™ with one pass of incremental
SOM
end
2. Collaboration Step
for me 1..P do
for w e W™ do
Am Zé\f:bfmh [?ﬁx(z;”)A;n—"_Z’r]:L,:l,m/;ﬁm Zil 57”7?/ Lij A
v v Qm sz‘\gftm R;?X(;c;(n)+27ljz’:1,m’¢m Zf\;l fBQILij

with L;; = (f{TXIZ — f(;’”;xz)Z and A" = (2" — w)

end

end

end
end

With a,,, and 7 being defined as the collaboration coefficients. More
precisely, a,, is defined as the relative weight of the local view in the training
process compared to the relative weights of all the other views m’ weighted
by Bn”}/. In the next chapter, we get interested in the automatic definition
of these weights to optimize the training process, but in this example they
are fixed by the user at the beginning of the training process with the usual
simplification 3 = a? [23, 55].

A summary of the incremental horizontal Collaborative Clustering can
be found in Alg. 6.

It is interesting to note that a lot of computation time may be avoided
by performing the local step only during the first few steps of the algorithm.
The first local steps help to improve the final quality of the clustering in
terms of mean neurons to samples distance, whereas additional steps do not
change much the final results.
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3.5 Experimental Results

3.5.1 Datasets and quality measures

To evaluate the method presented in this chapter, we have tested them on
four different datasets found on the UCI website [2]: Spam Base, Waveform,
Wisconsin Diagnostic Breast Cancer (WDBC) and Isolet. Their respective
descriptions can be found in Appendix B.

During our experiments, each of those datasets has been normalized and
divided in 3 views each containing a third of the original variables. We
suppose here that one has enough information on each variable to allow its
normalization at the time it appears, for example by knowing its bounds.
Each view will stand for an individual “site” which will collaborate with its
peers.

The quality measures used during those experiments are the quantization
error 2.2.2 and the purity index 2.4.5 commonly used to analyze SOM.

3.5.2 Experiments

In this section we present the results obtained on the four datasets. For
these experiments, a 10x10 SOM has been used, with Ay, = 0.3, Apax = 3,
e = 0.5 (while it is usually time-dependent for classical SOM), Npgen, = 10
and the local step of Collaborative Clustering has been performed for the
first 10 batches. The models have been trained using only the 30 first batches
in order to test the early convergence of the model and because it appears
that the results do not change a lot on the long term. The methods have
been coded in R v3.2.3.

The purities of the maps can be seen on Fig. 3.1a, Fig. 3.1b and Fig. 3.1c.
For the sake of clarity, only the results for the Isolet dataset are presented
here. It appears that Collaborative Clustering improves the purity of the
maps even if it makes it less stable than the incremental SOM. The terms
stable and unstable refers here to the standard deviation of the purities
through time, which is higher in the case of Collaborative Clustering. This
instability could be caused by the batch learning. The results of the learning
phase depends on the incoming data: if one specific class is more represented
than the others in a batch (which is more prone to happen if the batch is
small), the neurons updates for this step will focus on this class specifically,
and in the end it might hurt the next phases because of the bias acquired by
the model for this specific class. An increase of the instability of the purities
proportionally to the decrease of the batch size can be seen by comparing
Fig. 3.1a, 3.1b and 3.1c to Fig. 3.1d, 3.1e and 3.1f, where we have set Npgten, =
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Table 3.1: Mean quantization errors on each database. Bold numbers are
the lowest ones for each line.

. Incremental
View  Incremental SOM Collaborative Clustering

1 0.31 0.26
Spam Base 2 0.18 0.19
3 0.18 0.16
1 0.18 0.23
Waveform 2 0.17 0.19
3 0.24 0.30
1 0.19 0.19
WDBC 2 0.16 0.19
3 0.20 0.16
1 2.15 1.27
Isolet 2 2.84 1.38
3 2.85 1.37

3. It is possible that the collaborative part of Eq. 3.2 makes the centroids
move from the local solution minimizing Eq. 3.3: the collaborative SOM
makes the centroid move toward a global solution rather than toward a local
one. Concerning the quantization errors presented in Table 3.1, they all
stay in an acceptable range considering that the data are scaled before the
training. The case of the Isolet dataset is special because there are many
more features than in the other datasets, and the database is sparser, point
which may lower the performances of each local model depending on the
distribution of features. Otherwise, it appears that the errors are always
close to each other with a small advantage for the incremental SOM.

3.6 Conclusion

In this chapter, we have presented a method to perform incremental SOM
without topological modifications of the map as well as the application of
this method to adapt horizontal Collaborative Clustering according to the
incremental constraint. Its application to vertical Collaborative Clustering is
possible but has not been described in this thesis. With these methods, the
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Figure 3.1: Evolution of the purities for the Isolet database with 2 different
Npaieh- The red lines represent the incremental SOM whereas the black lines
represent the collaborative SOM. Each iteration corresponds to the arrival
of a new sample

temperature function X, and so the neighboring function K of the generated
maps are no longer time-dependent, and now only depend on incoming data.
Knowing that, the map can be adapted to continuously incoming data. The
presented methods have been tested on 4 different datasets, and the results
show that our version of incremental SOM can be adapted to perform in-
cremental Collaborative Clustering. The influence of the parameter Npgicn,
namely its impact on the stability of the learning, has also been investigated.
To pursue this work, we plan to consider methods which would make it
possible to adapt topological modifications on SOM in the context of Collab-
orative Clustering. Furthermore, we plan to adapt what has been presented
in this research work to the GTM, which are by nature similar to SOM.
The next chapter presents a contribution to multi-views communications
based on the automatic training of the collaboration coefficients o and 3, a
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limitation identified in 2.4.6. So far, they have been fixed by the user using
the simplification o = (32, however, our solution makes it possible to get
rid of this hypothesis by automaticaly update theses coefficients in order to
find the best possible concensus, avoiding the handmade definition of these
parameters.
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4.1 Introduction

In this chapter, we present an optimization method for the case of horizon-
tal collaborative clustering between SOM algorithms. Our method aims at
answering several questions regarding the tuning of the collaborative param-
eters between local and collaborative terms when using topological based
collaborative clustering methods.

The contributions presented in this chapter are 3-folds:

e We propose an entirely automated and unsupervised optimization method
to adjust the strength of the collaboration between algorithms collab-
orating together via the SOM algorithm.

e We experimentally demonstrate that our optimization method can ef-
ficiently be used to detect noisy views that would otherwise deteriorate
the quality of a collaboration between algorithms.

o We give the theoretical properties of our proposed model. In particular,
we show that our optimization method results in applying a meta-
clustering on the different views, thus grouping them according to their
similarities.

To do so, we propose an optimization method of the collaborative process
likelihood function using Karush-Kuhn-Tucker optimization [40], and we in-
terpret the results found for the algorithms weights in term of how they
evolve based on criterion such as the stability and diversity of the partitions.
This work can be compared with earlier studies on the influence of quality
and diversity in collaborative clustering [28, 56, 27, 70]. It is an improve-
ment upon these works in the sense that we give a mathematical justification
and the theoretical properties of our weighting method, and we remove an
user input parameter from the optimization constraints [70] which makes
this chapter’s results more generic. Furthermore, our experimental section
goes deeper into the analysis of the effects of weighting views, and shows the
ability of our method to detect noisy views.

The remainder of this chapter is organized as follows: Section 4.1 is de-
voted to the description of our proposed optimization method, as well as the
interpretation of the proposed weights formulas, in Section 4.4, some numer-
ical experiments are proposed and analyzed. Finally, Section 4.5 presents a
conclusion on the work presented in this chapter.
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4.2 Optimization problem

In this chapter we propose a different collaborative approach in which we
modify the objective function (2.17) using a weighting strategy to reduce the
risk of negative collaboration: we study how the optimization of the weights
of the combination function in Equation (2.17) can lead to an optimal value
of the global function and reduce the rigk of negative collaboration by further
optimizing weight factors between the algorithms.

We begin by changing the values of the a by a; = 1. We believe that it
makes a lot more sense than the proposed square root which is never justified
in the related works [25, 28]. This helps us to properly evaluate the balance
between the local and the collaborative term, for which 1 variable is enough.
We are therefore mainly interested in finding the positive weights 3! that will
determine the strength of the collaborative term. Moreover, as we restrict
our study to the case of horizontal clustering, we would like to mention that
in our theoretical model all data sets describe the same observations and all
these collaborative data sets have the same number of observations but a
different number of variables.

For fixed local maps w, our strategy to minimize Equation (2.17) is to
minimize the second term. Indeed, since the collaboration weights are only
in the collaborative term and because the local likelihoods are fixed, we can
ignore the local term in Equation (2.17).

The minimization of the collaborative term is based on the dual form of
the problem. We do so under the Karush-Kuhn-Tucker conditions (KKT)
[40] assuming that the weights 3/ respect the following conditions:

N
vi [[8 =1
J#
Y(i,j) B >0
Note that we use a product constraint instead of a sum. While it may
seem unusual, it has already been used in related works on multi-view cluster-
ing [12]. Furthermore, in [70] it has been demonstrated that the constraint
z;\;l (Bg)p = 1 would lead to an unsatisfying result and that an extra
parameter p (that needs to be learned) is needed to make it work with col-
laborative clustering. To simplify the presentation, in what follows we omit
the dependency of Cij to w in our notations.

We use the Karush-Kuhn-Tucker method to solve the created optimiza-
tion problem. In this demonstration, we will only consider one local view
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i because the weights ﬁf are computed and used locally. Given the Cl-j , wWe

optimize the matrix g = (ﬁg)NXN as shown in the system below:

B*N: argming > ; By,
[ 8 = 1. (4.1)
Vi, B8] >0

This is optimization under constraints problem. To solve this problem we use
KKT multipliers. From Vi, [[}; 8/ = 1, we obtain Vi, Y%, Inp! =0.
The Lagrangian then writes:

N
L(B,v, ) = Y (BIC] —vin gl — \;5]). (4.2)
J#i

From the definition of the Lagrangian, we get the following KKT conditions:

(1) B/ >0,
Vi, g #i< (3) Aj =0, (4.3)
(4) BIN =0,
(5) O] =& —x=0.

Let’s begin by considering the case where A; > 0 in (4.3)-4. Then, we would
have 8] = 0 this case is not possible due to (4.3)-1, therefore we will only
consider the case 8] # 0 and A\; = 0. Then, with (4.3)-5, we have:

1 v

From Equation (4.3)-2 and (4.4), we have:
N N N-1
J_ ryl-_r _ __
H@-—H(CJ— 5 = L. (4.5)
iz gAY
It follows that:

N .
N1 = HC’Z
J#i
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Then by re-injecting the expression of v into Equation (4.4), we get for all
J# 1
i (I Tk ChyvT
Bl = (4.6)
&
The interpretation of these results is the following: in the context of hor-
izontal collaborative clustering, the global results should be better if each
individual algorithm gives higher weights to algorithms that have the most
similar solutions compared with the local one.

In other words: from Equation (4.6), each algorithm would mostly col-
laborate with the algorithms that have the most similar solutions (small
CY). If several algorithms have the same most similar solution, they would
be given the same weight. The algorithms with the most similar solutions
would still be favored to optimize the cost function of the global collaborative
framework. But algorithms whose solutions have a lesser degree of similarity
would still be taken into consideration locally.

Our modified version of the SOM algorithm for horizontal collaboration
with the optimized weights is shown in Algorithm 7 below. The computa-
tional complexity for M data in N views is in O(M N) since it uses N times
the SOM algorithm which is in O(M).

Algorithm 7: Topological horizontal collaboration Algorithm

Initialization: Initialize all the map prototypes W randomly.
Local step: Initilization of the maps

forall View i do
| Minimize the objective function of the classical SOM

end
Collaborative step:

forall View i do
For fixed w, compute: § using Equation (4.6)

Update the prototypes of all maps by: w* = argmin,, C(w, a, 3)
end

4.3 Interpretation

From Equation (4.6), we can infer the following property: For two SOM
algorithms in the views ¢ and j, when the pairwise collaborative term C7 is
small (i.e. the maps are similar) comparatively with the other collaborative
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terms Cij , then the associated collaborative weight Bg is large compared
with the other ,Bi. The interpretation for this is that any SOM algorithm
should give a stronger collaborative weight to other self-organizing maps
with a similar topology, and a weaker weight to the local term. As such,
the Equation for the weights 3/ is an inverse geometric mean based on the
similarity between two maps. Furthermore, with Equation (4.6), we can
further interpret, that algorithms with relatively weak collaboration links 37
—with maps very different from all others— whould give a stronger weight to
their local term Q. ; from Equation (2.17) and would not collaborate much
with the other algorithms.

These properties are an improvement from an earlier result [70] in a
sense that our current model better balances between local and collaborative
terms, and requires no extra parameter.

The first conclusion of these results is that in the context of horizontal
collaboration between several SOM algorithms, the most efficient way for a
SOM to collaborate is to favor exchanges with other SOM that have similar
topologies and are stable. These results are echoing recent works on clus-
tering stability [4, 80| stating that a clustering is stable if the partitioning
remains similar when the data set or the clustering process is perturbed. In
our case and within the context of collaborative clustering, if several self-
organizing maps have a similar topology despite being drawn from different
views, it is a proof of stability. As such, our weighting method favors collab-
oration between stable maps and marginalizes maps that are too different
and may disturb the collaborative process.

The second conclusion of these results is that our proposed optimization
method results in a meta-clustering of the views, in which SOM with similar
topological maps are grouped into clusters of views with a strong intra-
collaboration and a weak inter-collaboration, and in which noisy views are
mostly discarded. This last property is the most interesting one because
of noisy views being a recurring problem in multi-view and collaborative
clustering [10].

4.4 Numerical Results

To evaluate our proposed optimization approach we used several datasets of
different size and complexity in a collaborative clustering setting: Waveform,
Wisconsin Diagnostic Breast Cancer (wdbc), Isolet, Spambase and VHR
Strasbourg.
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4.4.1 Datasets

The datasets used in our experiments are from the UCI website: Wave-
form data set (5000 x 40), Wisconsin Diagnostic Breast Cancer (WDBC)
(569 x 30), Isolet (1559 x 617), Spam Base (4601 x 57) and VHR Strasbourg
(187,057 x 27). Their respective descriptions can be found in Appendix B.

4.4.2 Validation criteria

The two main criteria used here were the quantization error (or distorsion,
one of the most used criteria to evaluate the quality of a Kohonen’s topolog-
ical map) and the purity (accuracy index).

The quantization error is computed using the following expression pre-
sented in the previous chapter in Equation 2.14. where Npgien is replaced
by the dataset size. The values of the quantization error depend on the size
of the dataset and the size of built maps. Strong differences may therefore
arise when dealing with different datasets or Kohonen map sizes.

The purity (accuracy) of the map is equal to the average purity of all
the neurons. A good SOM should have a high degree of the purity index.
The purity of a neuron is the percentage of data belonging to its majority
class. Knowing the data labels set L = {l1,l,...,{z|} and the prototypes

set C' = {c1,¢2,...,¢0|}, the formula for the purity of a map is the following:
IC| maX[L\l el
purity = — Y Cp X ————— (4.7)
V&

where |c| is the total number of data associated with the neuron ¢, |ci| is
the number of observations of class I; which are associated to the neuron ¢y
and N - the total number of observations (data).

4.4.3 Experimental protocol

To test the validity of our method and to compare it with other state of the
art methods, several points have been analyzed.

In a first experiment, we will investigate the evolution of the fitness func-
tion (Eq. 2.17) with and without our proposed beta-optimization method.
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For comparison purposes, both criteria have been normalized as follows:

Clw.B) = Liw) + Y (<2 - Clw) (48)

j?él Z]#Z B’L‘7

The point of this criterion is to make the Bf act as weighting coefficients
summing to 1, allowing to compare both versions of CC with and without g
optimization.

In the second experiment, the values of betas depending on the quality
of the view is investigated: in order to analyze the capacity of the method
to define which collaborations are useful, a view only made of uniform noise
was added to each dataset (except for waveform which already has several
features only made of noise). This noisy view was added only for this exper-
iment. For each dataset, we split the data into three (WDBC, Spambase,
VHR Strasbourg) or four (Isolet, Waveform) views of equal size, and we
added a view of uniform noise. We then learn a SOM for each database.
The goal was to analyze if the method was able to limit the impact of the
noisy view on the learning process of the other views. Because we put the
constraint Hé\;l B8] =1 for every view j, the previous assertion would lead
0 B,pisy < 1 for every other view 4. In this first experiment, we show that
our optimization method is able to detect the noisy view and to mitigate its
impact during the learning process by properly weakening the values of the
weights linked to it, i.e ﬁﬂwisy low compared to the others.

Finally, in the last experiment, we analyze the impact of the method
on the learning itself, several criteria introduced earlier are presented in
Table 4.2. The point of this analysis was to check that the collaborative
constraint added during the collaborative phase did not impact the results
of the model itself.

All the experiments were conducted with a 5 x 5 map. The choice of
this size was made heuristically, based on the most appropriate number of
neurons which optimize the quantization and topological errors during the
local step [25].

4.4.4 Results

Relative Difference of the criterion: The first experiment is about the
evolution of the modified criterion presented in Eq. 4.8. Figure 4.1 shows
the relative difference (RD) of this criterion between the original version of
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Figure 4.1: Relative differences of the weighted criterion with and without
B optimization all along the learning process

the collaborative SOM algorithm and our proposed version with the smart
weights 8. It appears that the relative difference between the criterion is
always positive, meaning that the version with the S-weighting always im-
proves the learning compared to the standard version. This can be under-
stood knowing the interpretation in Sec. 4.3: the algorithm tends to make
views that agree with each others collaborate, so the S-weighting favors lower
values of CY (better collaboration), improving the global criterion.
However, it also appears that all datasets are not treated equally by this
method: the best mean RD goes from 0.4% (Spambase) to 12% (WDBC
and VHR). Moreover, the gap size does not evolve the same way for all
data bases: for WDBC, Waveform, Isolet and VHR Strasbourg, the gap is
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growing during several steps, while for Spambase, the evolution seems to stop
quickly. We think that this phenomenon is partly caused by the information
contained in each view: in some cases, a S-weighting will be useful because it
will favor a collaboration that will greatly improve the global results, while
in some other cases the results will approximately be the same than with the
standard method, and therefore the RD is caped more quickly.

B analysis: Now considering 3 coefficients themselves, Figure 4.2 presents
the different 3 values obtained at the end of the collaboration process for each
dataset. Table 4.1 gives their corresponding minimum and maximum values.
To recall, the value 3] can be read as “how much does view j exchanges
with view ¢ compared to the others”. The values on the diagonal -which are
of no importance- are fixed to 1 to make the comparison easier. The last
row of each matrix corresponds to the collaboration between each view and
the artificially added noisy view of each data set (except for Waveform, for
which the two last views were already noisy).

Several points can be mentioned concerning these images. First, as one
can see collaborations with noisy views are mostly weak: the method pre-
sented here tends to minimize the impact of the collaboration between a
useful view and a noisy one. This is particularly clear for the WDBC and
VHR datasets where all 8 on the last row are below 1, while all other factors
are at least around 1. Secondly, one can see that the strong collaborations
are mostly symmetrical. To continue with the WDBC example, we got
ﬁf R ﬂé > 1. However this phenomenon is not true for less strong collabo-
rations: for WDBC and VHR, we got 87 # 33 and 33 # B2. It appears that
the algorithm leads to the creation of subgroups of views: when two views
tend to collaborate, their other 8 are approximately identical. This prop-
erty can be seen as the continuation of the interpretation given in Sec. 4.3:
our method will favor the collaboration between agreeing views, leading to
the creation of subgroups of views which have the same common behavior
towards views outside of their group.

Purity and QE analysis: The last experiment consisted in the analysis
of two criterion commonly found in the Kohonen’s map literature, namely
the purity and the quantization error. This analysis has been conducted in
order to make sure that the collaborative phase and the 8 weighting did not
damage the final result of the learning. Table 4.2 displays the mean values
of each criterion for all the views, except the added noisy one. The results
shows that our proposed weighting method, while succesful with unsuper-
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Figure 4.2: Heatmap of the 5 matrices for each dataset. Colors go from
white (strong collaboration) to black (weak collaboration). The gray color
on the diagonal stands for 5 = 1.

vised indexes has little to no impact on supervised criterions such as purity
or quantization error. This result was to be expected since our proposed
optimization does not bring any extra supervision compared to the origi-
nal one, and it is therefore good already that it does not negatively impact
supervised results.

4.5 Conclusion

In this chapter, we have presented an optimization method for the case of
horizontal collaborative clustering between SOM algorithms. Our method
answers several questions regarding the tuning of the collaborative param-
eters between local and collaborative terms when using topological based
collaborative clustering methods. Furthermore, we have also demonstrated
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Table 4.1: Minimum and Maximum values of 5 got for each dataset.

Dataset Minimum Maximum Difference
WDBC 0.51 2.04 1.53
Waveform 0.75 1.79 1.04
Spambase 0.77 1.37 0.60
Isolet 0.67 1.48 0.81
VHR Strasbourg 0.48 1.63 1.15

Table 4.2: Experimental results on different datasets

Dataset Method Mean Purity qe
Wdbc standard 86.86 4.01
B-weighting 88.09 3.97
Isolet standard 95.37 125.32
B-weighting 54.98 125.2
Waveform standard 64.27 6.15
B-weighting 65.40 6.16
SpamBase standard 80.34 14.56
B-weighting 80.24 14.54
VHR Strasbourg  standard 48.94 3.37
B-weighting 48.93 3.38

how it can be used to make groups of similar maps, and to detect and discard
noisy views.

Using our optimization model we have also found interesting properties,
and in particular we have shown how diversity can be used to avoid bad in-
fluences from noisy or low quality view, and ultimately to improve the results
of unsupervised collaborative learning. The conclusion from the theoretical
part of this chapter is that a lower diversity is a good criterion to choose col-
laborators because it tends to favor stable solutions, which is a good thing
since stability is a well known good quality criterion to find the intrinsic
structures of the data set in unsupervised learning. However, one should
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keep in mind that the low diversity criterion has its limits and may hinder
improvements in the collaborative process due to the lack of risk taking, or
lead to no improvement at all if the diversity is too low. These later 2 issues
are tackled in a paper where an alternative bandit optimization scheme is
proposed for a similar collaborative clustering problem [69].

Other possible extensions for this work could include similar studies on
the case of vertical collaboration where the collaborating SOM algorithms
handles different data sharing the same features, as well as the application of
the same optimization technique for collaborative Generative Topographic
Maps in a first time, and a further extension to non-topological collaborative
methods in a second time.

The method presented in this chapter can be considered as an improve-
ment of the inter-views collaboration using a traditional scalar weighting
method.

In the next chapter, we explore a collaboration method based on neural
network and vectors rather than on scalar only. The complexity of this new
method makes it possible to introduce a new use case to explore how an inter-
view collaboration can be used to perform tasks different from clustering.
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The work presented in this chapter has been submitted to the Knowledge
and Information Systems journal.

As presented in Section 2.4, all the collaborative clustering methods
presented in the litterature base their collaboration on scalar values which
weight the importance that is given by a local view to the information pro-
vided by its peers. The intuition behind the work presented in this chapter is
that a collaboration can be more complex than just the weighting of all the
information coming from an external view. Instead, local information could
be inferred based on an external information, and the combination of two
views could be done on partial set of features from each view, which is not
permited by the standard weighting method. These two ideas have been the
starting point of what is presented in this chapter. In order to exploit these
ideas, a new use case different from the clustering one has been created.

The Collaborative Clustering paradigm is based on the prerequisite that
each view has to contain a set of common individuals (described by different
sets of features for the horizontal case) as big as possible to allow information
exchange. However, this paradigm does not consider the case for which the
views do not share the exact same set of individuals. Intuitively, if a view
misses an individual in its database, it might be possible to use the infor-
mation contained in all the other views to get a first approximation of the
missing individual. This idea is developped in this chapter with the descrip-
tion of a system able to recontruct an approximation of a missing individual
in a multi-view context.

5.1 Context

5.1.1 Multi-view reconstruction

The current proliferation of multi-view data in various domains such as mar-
keting, bank administration or even survey analysis, has recently been ac-
companied by a global security awareness that questions which data should
—or more often shouldn’t— be made available and shared. This awareness is
based on the question of the link between one’s intimacy and the processing
that is made of one’s data. This topic being beyond the scope of this thesis,
it will not be further detailed, however it will be used as the fundation of
the security constraint which is detailed hereafter. This security problem is
particularly relevant in the case of multi-view learning, a speciality of Ma-
chine Learning in which algorithms are trained using databases distributed
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among several independent (but communicating) views. Some multi-view
paradigms such as Collaborative Clustering are based on the hypothesis that
different views share the same set of individuals, point which makes possible
the inter-view results comparison, and so the training and the improvement
of each local model. However, this hypothesis does not have to be verified
in practice: the presence of an individual in a database does not guarantee
its presence in all the other views. In real life cases, it is even more likely
that an individual is present in a limited number of views, considering all
these available. The question of the use of the available information to infer
missing data on an individual may be asked.

Because of the security concern mentioned above, a solution to the miss-
ing data problem should at least be able to reconstruct missing data in the
concerned views without sharing of the original data available in each local
view. Within this context, this chapter presents a solution to fill in missing
pieces of information in a given view by using the data contained in the
other views but without any data transfer that may breach security issues.
While data reconstruction has already been studied using method such as
Collaborative Filtering |38], the work presented here provides the extension
of this problem to the multi-view context while also considering the problem
of data security.

5.1.2 Data imputation and data reconstruction

Missing data is a problem which has already been extensively studied in the
literature, and the field related to completing a partially sparse dataset is
called data imputation. In this paradigm, several individuals are missing part
of their features (not necessarily the same), and the presented methods aim
at filling these missing features to be able to use the individuals a posteriori.

The main methods used to perform data imputation are the mean sub-
stitution (define the missing value of a feature as the mean of its values),
the linear regression (with an optimized version presented in [57]), k Nearest
Neighbors imputation [76], fuzzy k-Means imputation [41], Singular Values
Decomposition imputation [76], bayesian Principal Components Analysis [48]
and Multiple Imputation by Chained Equations [48]. Several surveys and
comparisons can be found in the literature, as presented in [63], [61] and
[77].

It has to be noted that the goal of data imputation is to mitigate the
impact of missing data on the results obtained using the sparse database.
This differs from what we try to achieve here in that we present a method to
get the best reconstructed individuals possible, the reconstruction being an
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end in itself. Moreover, the imputation field does not consider the multi-view
constraint: at every step of each method, the algorithm has access to the
whole database to impute missing values.

5.1.3 Data security and data privacy

At this point, it is useful to note that the work presented in this chapter takes
into account the difference between data privacy and data security. Data
privacy is a whole research field which considers the problem of data sharing
as well as the use which is done of this data. Currently, the specific field of
differential privacy is the subfield of algorithmics which defines a theoretical
context to estimate the privacy level of a semi-randomized mechanism [19].
On the other side, data security in the context of this thesis is defined as the
constraint of not being able to access original data if it is not from its original
view. The point of this constraint is to make sure that the reconstruction
algorithm which is presented here does not rely either on the transfer of
original information, or on the possibility for an external view to have access
to the original data from another view. To sum up the difference between
these two fields, data privacy ensures that no information on the original
data can be retrieved, would it be the original data or labels that may be
attached to it, while data security in the context of this thesis just ensures
that the original data is available only in its local view.

This point being clarified, the main difficulties of the solution lie in two
points: how to transfer usable information in the local view without transfer-
ring the original external data, and how to reconstruct more or less reliable
information from different sources to get the final result.

To solve these problems, we present a system called the Cooperative
Reconstruction System. After encoding the original data using Autoen-
coders [30] to respect the security issues, the combination of external in-
formation is performed using Multi-Layer Perceptrons [62] (called Links in
this article) and a smart weighting method presented in this chapter and
called Masked Weighting Method. This weighting method tackles two issues
related to collaborative reconstruction: (1) combine the information from
different views, (2) reduce the weight of views with information which could
hinder the cooperative reconstruction process [72], and (3) reduce the impact
of missing data during the unsupervised learning process [13].
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5.2 Neural Networks

5.2.1 Introduction

Neural Networks are a specific kind of Machine Learning algorithm based
on an analogy of the interaction of the neurons in a human brain. Their
history has known many steps the most known being the presentation of the
perceptron (a.k.a. a neuron) by Rosenblatt in 1958 [58], the use of the back-
propagation algorithm by Werbos in 1975 [83] and the presentation of the
deep beliefs networks by Hinton in 2006 [29]. The original version has been
modified to produce several types of neural networks, depending on the aim
to achieve. The two most famous being Convolutional Neural Network [39]
to perform image analysis and the Recurrent Neural Network [44] which are
used to analyze temporal data. In this thesis, we are only interested in the
Multi Layer Perceptron, a specific kind of supervised neural networks. The
following sections briefly sum up the principal components of a Multi Layer
Perceptron (MLP).

5.2.2 A neuron

A MLP is made of several layers of several neurons (see Figure 5.1 and 5.2),
each having a set a parameters which are trained during the MLP learning.
To get the ouput of a neuron, each feature of the input vector is weighted
by a set of parameters of the neuron, before being summed and put in an
activation function to get the final output. Regarding the activation function,
the first one which has been used is the sigmoid function, which definition
can be found at Equation 5.1. There are many different activation functions
which can be used, however the one which tends to be the most commonly
found in recent research work is the Rectified Linear Unit (ReLU), which
definition is simply ReLU(z) = max(0,z). The activation function being
known. The backpropagation algorithm is applied to train the weighting
coefficients of the neuron.

, , B 1 ~exp(x)
sigmoid(z) = T Foxp(—z) ~ 1+ exp(@) (5.1)

5.2.3 The backpropagation method

The backpropagation method consists in the propagation of the gradient of
the error between the ouput of the MLP and the expected output to the
input of the system, hence the term backpropagation. The main equation
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Figure 5.1: A single neuron. Each input z; is weighted by a parameter w;
before being summed and put in an activation function. The output from
this funtion corresponds to the output of the neuron.

of the gradient descent is the one presented in Equation 5.2, with w being
the parameter to optimize, and F the error function depending on w. The
minus symbol represents the idea that, when using this method, one tries to
achieve the lowest point of the error function, as graphically represented on
Figure 5.3.

ok
Wnew = Wold — € X —— 5.2
new old ow ( )
The main difficulty of the update of the parameter using Equation 5.2 is
to compute the value of the partial derivative of the error function E. This is
achieved using the partial derivative composition property considering that

the E function can be written as follows:

I
E (xtargety Loutput, W) =1 <$targeta f (Z wle)) (53)
=1

With [ a loss function such as the la-norm, f the activation function of
the neuron, x; the i-th value of the input (with a total of I input) and w;
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Figure 5.2: An example of Multi Layer Perceptron. In this case, the network
has two hidden layers, the first one is made of 3 neurons, while the second
one is made of 2 neurons. The smaller circles stand for the input (4 feature)
and the output (2 features).

the corresponding weight of the neuron. For clarity of the equation, the
following notation will be used:

I
a; = Z Wix; (5.4)
i=1

This allows to express the partial derivative of F in the following way:

OE  O0F 0f(a;) 0a;  OE Of(a;) (5.5
8wi - 6f (az) 8ai awi N af (Cbz) aai i ' )

Equation 5.5 being generic, it can be used with any combination of loss
and activation functions. The same composition rule is also used when deal-
ing with several layers of neurons, but in this case the partial derivate of a;
by w; has to be composed again in order to “reach” the parameter w; in the
following layer.

Knowing this method, the learning of a MLP is performed by iteratively
applying Equation 5.2 to all the parameters of the network until the norm of
the gradient is small enough to be considered negligeable. In the following
Section are presented the two kinds of Neural Networks which are trained
by this method and which are used in the CRS.
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Figure 5.3: One step of gradient descent. The red cross is the current point,
while the red arrow represents the direction in which the parameter has to
be updated to lower the error.

5.2.4 MLP and Autoencoder

The term MLP designates the supervised Neural Network algorithm which
makes possible to learn a regression between a given input and output. This
definition implies that the input and the output have to be different. A
special kind of Neural Networks, presented in [30] and developped in [78],
uses the input of the system as its output. They are called Autoencoders,
because the intermediate layers of the networks, and more specifically their
activations, can be used as codes to represent the input individuals. They
are used for generating a new representation of input data. They can also be
used as a compression method if the encoding layer length is set to be smaller
than the number of features describing the original data [30]. Formally, an
Autoencoder is trained by minimizing a loss function, in our case, the Mean
Square Error (MSE). With our notations, the MSE for a dataset V; would
be defined as follows:

1 2
With & being the output of the Autoencoder for the input vector z and
|Vi| being the number of elements of V;. The MSE is simply the quantization
error as presented in Equation 2.14, but using the target individual rather
than the nearest prototype in a SOM.
A graphical representation of both the MLP and the Autoencoder are

77



CHAPTER 5

presented on Figure 5.4, and their uses in the Collaborative Reconstruction
system are detailed in Section 5.3.

Output = Input ---------- Output
s

Decoder -+

-
Code --
© r Layer

Encoder -

Figure 5.4: An Autoencoder (left) and a Multi-Layer Perceptron (right).
The intensity of the grey in each neuron symbolizes its activation.

5.3 Cooperative Reconstruction System

In this section, we describe the architecture of our proposed Cooperative
Reconstruction System. A representation of this system can be found on
Figure 5.5. Our system is based on several modules: first, to solve the
problem of security-friendly information transfer, the system uses a set of N
Autoencoders [30] ~with N being the number of views—, to locally encode
data to make them impossible to read from outside of their views.

Then, when an individual is missing in a view, each external view sends
its locally encoded version of the individual to the incomplete view, resulting
in the transfer of NV —1 encoded vectors. Then for each external view, a first
approximation of the local values of the individual is inferred using a Neural
Network (one per external view), in this case a Multi-Layer Perceptron. The
role of this Neural Network is to make the link between the values of the
external codes, and the features of the local view. After this step, the local
view has access to N — 1 versions of the missing individuals.

The combination of the inferred individuals can then be used to recon-
struct an accurate representation of the missing individual. However, since
disagreement may occur between the different sources of information, the
inferred data from each view need to be weighted to ensure an optimal re-
construction. On Section 5.3.5 we introduce a weighting method called the
Masked Weighting Method to tackle this issue. The basic idea of this method
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Figure 5.5: Cooperative Reconstruction System. In this example, Views 1
and 3 are sending their coded version of the individual to View 2.

fEc]

is to learn a set of IV — 1 scalar vectors, called masks, to weight each approx-
imation generated locally (cf. Fig. 5.7). These masks can be trained using
either Gradient Descent or using an iterative update rule.

The global system is designed to be modular: when a new view is avail-
able, the system just has to learn its auto-encoder and the neural networks
responsible for the links between this new view and the existing ones. How-
ever, due to the nature of the weighting methods between the views, all
masks have to be learned again. This modularity is important because of
the usually long learning time of a Deep Neural Network: learning the masks
again does not take long, while having to re-train all neural networks would
take a lot of time. It is therefore a huge gain of time that the already trained
auto-encoders and links can be kept when a new view is added. This point
has to be considered together with the fact that for a system made of N
views, approximately N? networks have to be trained.

5.3.1 Notations

Formally, V; and V; are the datasets of the i-th and j-th views respectively.
We note Vjj; the subset of V; (in the feature space of V;) which individuals
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are also present in Vj. The size of this set is important because it will
define the quantity of information available to train the inter-views Links (cf
Section 5.3.3)

5.3.2 Autoencoders

We have selected Autoencoders to transfer information from a view to an-
other because they offer the advantages of encoding data as scalar values,
which can be used as input for further analysis, and they make it difficult
to retrieve the original data without their decoding part, thus limiting pos-
sibilities of security breach. Moreover, the Autoencoders used in each view
do not need to have the same architecture nor code lengths. This flexibility
allows each view to use the best autoencoding architecture to describe their
data.

When all the Autoencoders are trained, each view j is able to encode the
subset Vj); of its dataset Vj, before sending the result to every other view ¢
it has to collaborate with.

5.3.3 Links

A Link is a Neural Network in charge of infering the values of missing indi-
viduals based on the encoded data it received from an external view. In our
case, a Link is more specifically a Multi Layer Perceptron: to reconstruct
data in a local view ¢ given information from view j, the Link will be trained
using the version of Vj; encoded by the j-th Autoencoder as its input, and
V;j; the original data as its output. The training process of a link is summed
up on Fig. 5.6. We remind that V;; and V}; are the sets of shared individ-
uals described in V; and V; feature spaces respectively, so they necessarily
represent the exact same set of individuals.

It has to be noted that the receiving view j never tries to decode the
encoded version of Vjj;, it only tries to infer the individuals features used
in its local view. This latter point is important because it is the one that
ensure the security provided by the system.

5.3.4 Missing Information

In some cases, it may happen that V;; = {0}, or is not big enough to learn
the link between views ¢ and j. The modularity of the method presented
here implies that in this case, the information coming from the external view
J is not taken into account, and the local view ¢ will reconstruct its missing
individuals based on the information from the other external views.
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Figure 5.6: A Link training. The dataset Vj); is encoded, then sent to the
local view. Tt it used as input for the link, while V;); is used as output.

gl

As this case does not change the global method, for the rest of the chapter
we will only consider the case in which the individuals used in the training
sets are present in all views. This simplification only aims at clarifying future
algebra presented in Section 5.3.5. When all the Links have been trained,
each view has access to (at most) N — 1 Links allowing it to infer (at most)
N — 1 version of the missing individual values.

5.3.5 Masked Weighting Method

When a local view ¢ has access to the N — 1 infered versions of its missing
data, it is necessary to find an efficient way to combine them to get the final
version of the individual. We present a method based on a set of scalar
vectors Wy = {w;;, j € [1..N]\ i} such that w;; is of same dimension as V.
To get the final output z; of the system, we use the following formula:

FE[L.N)\i

where ® is the pointwise vector product.

The coefficients can be learned using two methods: Gradient Descent on
the reconstruction error, or iterative update using the zero of the derivate of
this latter error. The analytical description and the characteristics of each
method are described in the following section.

Gradient Descent:

When the reconstruction is done, it becomes possible to perform a Gradient
Descent on the parameter contained in W;. The error considered here is the
MSE between target data and reconstructed ones. The computation of the
error F; for the view i can be written as follows:
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Figure 5.7: The Masked Weighting Method. View 2 has got the recon-
structed individuals from Views 1 and 3, and it uses the masks previously
trained to get the final weighted result.
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where :cf is the k-th coordinate of the individual x;. The differentiation

of E w.r.t. the parameters wflj of W; can then be written:

oF 2
k. V| Z xflj ( Z wzkljxflj — )
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2 k ~k k
v x; €V;

This latter formula makes possible to update the weight wﬁj using the
usual gradient formula as described in Section 2.4.4.
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Iterative update :

It is also possible to update weights based on the minimum of E; found using
Eq.5.8.

Vil .
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b Dmev, T (@ = e v gy Wil i)
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Eq.5.9 shows that the update of w¥ il requires the values of {w ‘],,j €
[1..N]\{q, j}} Thus it is possible to define an iterative update for which the
values of {w ],,j € [1..N]\{¢,7}} at time ¢ are used to obtained wk‘ L ag
time t + 1. %‘hls problem being convex, the iterative process is performed

until convergence of the weights.

This weighting method is used because it offers several advantages:

1. In the case where an external view is too noisy, or if the Link between
this external view and the local one is not good enough to infer local
individuals, the weighting coefficients for this view will converge to a
value under - (default value when individuals are just averaged),
lowering the impact of bad reconstruction on the result.

2. On the opposite, if a small subgroup of views is highly linked to the
local one, this weighting method will favor these views to maximize
the quality of the reconstructed individuals [71, 73].

3. Contrary to a weighted mean which would assign a single scalar to each
view, this method allows to favor only a subpart of the reconstructed
vector. Indeed, one can easily imagine that sometimes, the information
contained in a view would only allow to recover part of the information

83



CHAPTER 5

contained in the local view, which entails a better reconstruction score
on specific features of the local individual. Our weighting method
makes possible to automatically identify these parts during parameters
training.

When W; has been trained for all the views, the system is ready to be
used on missing data. An abstraction of the reconstruction process can be
found on Figure 5.8, and a summary of the system architecture can be found
on Figure 5.5. These two diagrams can be used to see that there is no original
data crossing the line between the local view and the external ones.

Each External
View

Local View

Missing Get the ID of the

data missing individual

A 4

Get the individual
values in the view

Transfer the ID of the
individual to the other views

)

Use Links to decode

Reconstructed Add the weighted
data recontructions
~—

Figure 5.8: Reconstruction process going from the identification of a missing
data to the getting of its reconstructed version.

5.4 Experimental setting

This Section presents the experiments that have been conducted to test our
proposed method. First are presented in Section 5.4.1 the datasets which
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have been used during the experiments, then the global methodology used
to analyze the system behavior is described in Section 5.4.2. The measures
used to quantify the results are presented in Section 5.4.3, and finally numeric
results are presented in Section 5.5.

5.4.1 Datasets

To get empirical results of the Collaborative Reconstruction System, we use
it on three different datasets usable in a multi-view context, namely Wis-
consin Diagnostic Breast Cancer (WDBC), Multi-Features Digital Dataset
(MFDD), Madelon and Cube. While the description of the first three datasets
can be found in Appendix B, Cube is presented here because it is related to
this chapter only. Cube is a toy example which we mainly use to test the
effectiveness of the Masked Weighting Method. This dataset is made of 1000
3-dimensional points divided in 4 classes of 250 members each. The points
of each class are generated using a normal law with a standard deviation of
0.1 and centered either on the center of the feature space (0,0,0), or at the
extremity of one on the three unit vectors (1,0,0), (0,1,0) and (0,0,1). A
graphical representation of the Cube dataset can be seen on Figure 5.9. The
3 views are obtained by projecting the whole dataset according to one of the
three previous unit vectors. The point of this segmentation is explained in
Section 5.5.

5.4.2 Methodology

Our system has been tested on two points: how good are the individuals
reconstructed compared to their original versions, and what are the classifi-
cation scores of these latter compared to the original ones. Thus, we tested
both its efficiency at reconstruction and whether or not reconstructed data
could be used for further Machine Learning.

In order to analyze each aspect of the system, several sets of experiments
have been conducted. The first set consists in training a system with and
without the Masked Weighting Method and to analyze the results in terms of
reconstruction quality (Section 5.5.1). When it comes to combining the re-
sults from each external views, the system without our combination method
simply uses a normalized equi-weighted sum of the reconstructed external
vectors. This first experiment has been conducted in order to both test the
viability of the method and determine the impact of our new combination
method.

An intermediary result is presented in Section 5.5.2: the reconstruction
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Figure 5.9: The Cube dataset

of images from the MFDD dataset is graphically presented. The second set
of experiments consists in the analysis of the results obtained during the first
set, but this time considering the impact of the Masked Weighting Method
on a classification task performed on the reconstructed data (Section 5.5.3).
Finally, the third and last set of experiments consists in the analysis of the
masks values for the toy example (Section 5.5.4). This is done to ensure the
method is able to determine which reconstructor is better for which part of
the reconstructed individuals.

For all sets of experiments, the global methodology remains the same:
each view is split in a training set (90%) and a test set (10%), then all
neural networks (Autoencoders and Links) are trained using the required
training set. To test the system, the process described in Figure 5.8 has
been conducted on the test dataset of each view, with the results being
compared to the original data.

As there might be some variabilities in the results depending on the
initialization of each neural network, the experiments have been conducted
several times and the results have been averaged. Experiments on the WDBC
dataset were repeated 50 times, while these performed on MFDD 20 times,
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these on Madelon 10 times and these on Cube 50 times. This difference is
due to the various datasets sizes, which increases the training time necessary
for each neural network.

5.4.3 Measures

To determine the performance of our system, we used three measures. The
first one is the Mean Squared Error (MSE) between the reconstructed vector
and its target. Given two K-dimensional vectors x and y with respective
coordinates sets {mi}ie[l..K] and {yi}ie[l..K]y their MSE can be computed as
follow:

K
MSB(r,y) = 3 (i — )’ (5.10)
=1

The global error is then the average of the MSE of all the reconstructed
vectors compared with their target values. The point of this measure is to
get a global idea of the distance between the reconstructed vectors and the
target ones.

The second error we use is the Mean Relative Difference (MRD) between
the feature values of the reconstructed vector and these of the target vector.
Given the same x and y than above, their MRD is computed as follow:

Tq — Yi

K
1
MRD(X,Y)= —>_ m

K

=1

(5.11)

Here again, the global error is the average of the MRD of all the re-
constructed vectors compared to their target values. This measure is used
pairwise with the MSE in order to get more precise information about the
difference between the reconstructed vector and the target one. Because of
the security constraint and because of the difficulties the system may have
to link the views, we do not expect these errors to be as good as these ob-
tained by reconstruction and inference systems with less constraints such as
standard Multi-Layer Peceptron [79].

To test the usability of the reconstructed vectors, they have been tested
in a classification task: Random Forest classifiers were trained on the origi-
nal data (one for each view), then we tested whether or not the data recon-
structed using our proposed method were classified correctly by these trained
Random Forest classifiers. The results were compared with performances on
a test set with complete non reconstructed data.
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The error considered here is the mean difference between the classifica-
tion scores obtained in each view on their test datasets with the original
data and the ones obtained with the reconstructed individuals. For the re-
mainder of the thesis, we will name this error the Classification Difference.
Contrary to the two previous ones, this error is not intended to determine
the difference between a vector and its reconstruction, but rather to look at
the impact of the reconstruction process on later data processing (such as
a classification task). Even with mitigated reconstruction scores (MSE and
MRD), a low Classification Difference would mean that the reconstructed in-
dividuals can be used in further applications. This score is presented along
with the classification scores of each view. The Random Forest classifiers
have been trained using the entropy cost function, with 50 estimators and
with a max depth of 5.

Finally, to ensure the efficiency of the Masked Weighting Method when
it comes to favor subparts of reconstructed vectors depending on the source
external view, we simply have analyzed the vectors values of these masks
for the Cube dataset. This dataset is particular because the projection per-
formed to obtain a view entails the overlap of 2 clusters around the point
(0,0). Moreover, projecting according to a specific axis, which is equivalent
to supress a column in the original 3-dimensional dataset, prevents the lo-
cal view to have any information on this axis, while its pairs will need this
information to reconstruct their local individuals. If the Masked Weighting
Method works as intended, a huge difference between the values of the mask
should be observed. This process is illustrated in Figure 5.10.

5.5 Results

This Section is divided following the different kind of experiments that have
been conducted. In Section 5.5.1 are presented the numeric results of the re-
construction process, then in Section 5.5.2 are presented some visual results
on the quality of the reconstructed individuals using the MFDD database.
Section 5.5.3 presents the results obtained on the classification process per-
formed on the reconstructed individuals, and finally Section 5.5.4 presents
the analyzis conducted on the evolution of the masks coefficients depending
on the information shared by views.
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Figure 5.10: The combination of two partially good reconstructions into a
good one. In this example, each view has enough information to reconstruct
only one feature out of the two in the local view (doted lines). The Masked
Weighted Method is designed to favor the best reconstructed part of each
partial reconstruction, hence the x0 and x1 in the masks.

5.5.1 Basic reconstruction with and without the Masked Weight-
ing Method

During this experiment, we were interested in the impact of our combi-
nation method on the results of the system. A summary of the results on
WDBC, MFDD, Madelon and Cube can be found in Figure 5.5.1, Figure 5.12
and 5.5.1.

For WDBC, MFDD and Cube, the Masked Weighting Method signifi-
cantly reduces the MSE for almost every view (Figures 5.11a,5.11b and 5.11d).
This was expected because the use of this method implies the optimization of
parameters w.r.t. this error. Moreover, the MRD is reduced for all the views
in WDBC, MFDD and Cube (Figures 5.12a, 5.12b and 5.12d): the recon-
structed individuals are closest to their original versions. The exceptionnal
results obtained for the MSE on the Cube dataset (Figure 5.11d) can be ex-
plained by the fact that this dataset has been created as a perfect example
for our weighting method. Further results can be found in Section 5.5.4.

Considering the reconstruction results on the Madelon dataset (Fig-
ure 5.11c and Figure 5.12¢), the high MSE and MRD values were expected
because of the numerous noisy features present in every view (480 out of

500): the Links could not reconstruct noise based on some more noise. The
values around 1 for the MSE and MRD (Figure 5.11c and 5.12¢) can be
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Figure 5.11: Mean Squared Error for all the datasets. A lower value corre-
sponds to a better result.

explained by the fact that during the training, the trained Links were only
returning values around 1072 (the noise could not be reconstructed as ex-
pected), while the scaled dataset mostly consists of values around 1. This
case presents an extreme situation for which our system does not work as
intended: the fact that it tries to reconstruct every feature of the local view
implies that these features are not too noisy and can also be explained using
the information available in the external views, which is not the case for the
Madelon dataset.

5.5.2 Graphical Reconstruction of Handwritten Digits

To better analyze the quality of the reconstructed individuals, we have used
a specific view of the MFDD dataset, namely the one with the 240 pixel
averages in 2 X 3 windows. The individuals of the tests datasets have been
reconstructed and plotted. A sample of the individuals in the original dataset
is presented on Figure 5.14. The contrast difference is explained by the
normalization of the descriptive vectors before plotting.

A sample of the individuals reconstructed is presented on Figure 5.15.
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Figure 5.12: Mean Relative Difference for all the datasets. A lower value
corresponds to a better result.

While the MSE and the MRD are high for this view (Figure 5.11b and
Figure 5.12b), it appears visually that the reconstructed individuals can be
easily recognized.

However, while it is true for most of the reconstructed images, some
examples do not work as well, as presented in Figure 5.16. Moreover, even
if the numbers can be recognized, a blurring effect can be observed even
on the best reconstructed examples. This puts forward the fact that the
system approximation can be improved, because while it does not damages
the recognition in the case of the MFDD dataset, we can imagine that it can
damage it for some other use cases.

5.5.3 Impact on the Classification Score:

For the second experiment, when looking at Table 5.1 and Appendix 5.5.1,
we notice that the Collaborative Reconstruction System gives classification
scores comparable to these obtained on the original data: for WDBC, MFDD
and Cube, the maximum absolute value of the Classification Difference is
7.5% (for the version using the Masked Weighting Method) when the mean
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Figure 5.13: Classification Scores and Difference for WDBC, MFDD and
Madelon: original scores from the original data, classification score from the
reconstructed data without and with the Masked Weighting Method and
their difference. Values above 0 indicates that our classifications are better
on reconstructed individuals than on original ones.

original scores are respectively 90.9%, 88.4% and 75,35%. Secondly, our new
combination method damages the Classification Score for WDBC and MFDD
while improving it for Madelon and Cube. This point has to be considered
conjointly with the fact that for almost every views, our combination method
tends to lower the absolute Classification Difference of each dataset.

Table 5.1: Mean classification rate per database on the original data.
Dataset WDBC MFDD Madelon Cube
Mean rate 0.909 0.884 0.606 0.733

Even if we do not have clearly identified the source of this phenomenon,
we suggest the following explanation: the quality of the output of a re-
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Figure 5.14: Sample of the original images available in the MFDD dataset

construction system which does not use our combination method is highly
dependent on the quality of the Links which make the inter-view reconstruc-
tion possible. Even if many tests have been performed for each database, the
results depends on both manageable (hyperparameters of all the neural net-
works) and unmanageable (local minimum, initialization) points, both being
very sensitive for the system training. That being said, it is very likely that
the system results are very sensitive, which would explain the higher vari-
ability of the results obtained without the combination method compared
to these obtained with it. This method probably tends to mitigate the vari-
ability of the results because it depends far less on sensitive points: it only
requires a learning step if the gradient descent method is used to update the
weights.

5.5.4 Adaptation of the masks coefficients:

The point of this last set of experiments was to analyze the evolution of the
masks coefficients to ensure that the method was able to determine which
part of each reconstructed vector was the most useful to reconstruct the final
individual. To make that possible, the Cube dataset has been generated as
explained in Section 5.4.1, leading to the creation of 3 views each defined
by 2 features. For each view, one of its feature is shared by one of the
external views and the other feature is shared by the other external view.
The point of this structure is to limit the mutual informations that two views
can share. If the mutual information is limited to a specific set of features
(the set being composed of only one feature in this example), the quality
of the partial reconstructions should vary depending on the reconstructed
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Figure 5.15: Sample of the reconstructed images available in the MFDD
dataset. Some good examples.

(f)

feature, as presented in Figure 5.10.

In the Cube example, the information is either totally shared (same val-
ues if the feature is present in both views) or not at all (the feature not
being present in the external view). Thus, we expect to obtain mask values
around respectively 1 and 0. The results obtained empirically are described
in Table 5.2. It clearly appears that the masks values adapt depending on
the feature they are weighting: while these linked to the shared features
are above 0.9, the ones linked to the other features never exceed 0.15. This
validates the efficiency of the masks adaptation depending on the mutual
information.

Table 5.2: Mean and standard deviation of the values of the masks coeffi-
cients depending on the feature they are weighting

Standard
Mean ..

deviation
Shared feature 0.920 0.026
Non shared feature 0.143 0.034

5.6 Conclusion

In this chapter, in a global context of multiplication of multi-view data, we
have presented a new Cooperative Reconstruction System. The purpose of

94



CHAPTER 5

(a) (b) (c) (d) ()
(f) (8) (h) (1) @

Figure 5.16: Sample of the reconstructed images available in the MFDD
dataset. Some bad examples.

this system is to reconstruct missing data using information contained in each
view, without sharing the original data, thus avoiding security issues. To do
this, the system relies on three modules: Autoencoders to cipher data under
a scalar vector form, Multi-Layer Perceptrons -called Links- to decipher an
external code in a local view, and the Masked Weighting Method, a new
weighting method to combine all external reconstructions, thus obtaining
the final reconstruction.

The Masked Weighting Method has three functions: combining external
informations, reducing the influence of views with information which could
hinder the reconstruction process, and reducing the impact of missing data
during the system training process.

The efficiency of both our reconstruction system and our combination
method has been tested on four different datasets: WDBC, MFDD, Madelon
and Cube. To this end, two criterion have been considered: the adequation
of the reconstructed individuals to their original versions considering using
the Mean Squared Error and the Mean Relative Difference, and the impact
of the use of reconstructed individuals instead of the original ones for clas-
sification purposes (tested with Random Forests). These experiments have
demonstrated the main strengths and weaknesses of the system. Its main
strengths are its ability to reconstruct an individual usable in a classification
task without sharing data between views as well as its ability to weight views
in such a way that it improves the final result compared to a standard mean-
ing of the external reconstructions. On the opposite, its main weaknesses are
its relatively weak reconstruction scores because of the training of the Links
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which may be difficult depending on the original datasets, and the number
of hyperparameters to set, considering that a system composed of N views
requires N2 different neural networks to be trained.

To further develop the work presented in this chapter, it could be useful
to study the link between the autoencoders and the MLP in charge of trans-
fering this information. During the above experiments, the hyperparameters
of each neural networks hadto be set manually. The automatic definition
of such parameters, or at least the identification of a relation between a
code and its use to infer information, may improve the quality of the results
obtained with the Collaborative Reconstruction System.
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6.1 Summary of the contributions

The aim of this thesis is to explore the possible improvements that could be
done regarding communications in a collaborative multi-view context using
unsupervised methods.

6.1.1 Contributions applied to incremental training of Col-
laborating Clutering

In most of literature about clustering, the problem is defined for a specific
moment in time, without any possibility to modify the results in case of a
change in data distribution through time. While incremental training is a
specific field in Machine Learning, it has never been studied in the particular
case of Collaborative Clustering. The adaption of the inter-views commu-
nications in order to perform incremental training of a set of collaborative
views has been studied in this thesis.

Because Collaborative Clustering is based on the results achieved locally
by each clustering method, the definition of an incremental Collaborative
Clustering method implies the use of an incremental clustering method lo-
cally. Self Organizing Maps have been choosen for this purpose because they
have already been extensively used for Collaborative Clustering. However,
the work already available in the literature on incremental Self Organizing
Maps was incompatible with the requirement of Collaborative Clustering:
while the incremental adaptation of maps always required modification of
its topology, the paradigm of Collaborative Clustering requires that topolo-
gies remain constant all along the training in order to be compared. Thus, we
present an incremental version of Self Organizing Maps based on the adap-
tation of the temperature function of this later. By doing so, the training
of a map only depends on the distribution of last arriving data, making the
adaptation to Collaborative Clustering possible.

Experimental results are provided on four different datasets to attest to
the efficiency of our method.

Our contributions regarding the incremental training of Collaborative
Clustering are:

e The definition of an incremental version of Self Organizing Maps not
based on topological modification of the maps.

e The adaptation of Collaborative Clustering score function to enable
incremental training.

e The experimental tests attesting of the efficiency of our method.
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6.1.2 Contributions applied to inter-view communications
for Collaborative Clustering

In the context of Collaborative Clustering, a local view receives information
from all the other external ones. These informations are used to modify the
results obtained locally in order to find the best possible concensus among
all the existing views. To find the best concensus implies to find the best
way for views to exchange information, but also to know how to combine
these informations in order to achieve the desired concensus.

This information combination has already been studied in the literature
about Collaborative Clustering and is based on a set of collaboration weights
defining the importance a view gives to the information provided by another
view. To define this importance is equivalent to modify the relative value
of the collaborative weight corresponding to this view. In this thesis, we
present a method to automaticaly update these values through a training
process. This method is based on a problem under constraint defined both
by a cost function representing the current concensus score of the system
(knowing each local result and the pairwise importance weights) and by a
constraint on the values of the collaboration weights.

The analytical results show that the algorithm tends to create clusters
of views mutually agreeing on the results they got on their local individuals.
This interpretation is coherent with the original goal of the method: by
combining similar views and by lowering the impact of the dissimilar views
on the score, the achieved concensus is more likely to be better than if all the
importance weights were equal. These theoretical results have been tested
on five different datasets which were voluntary choosen to be dissimilar in
order to test the generecity of our method.

Thus, our contributions regarding the improvement of communications
in Collaborative Clustering are:

e The definition of a new weighting method defining the importance a
view has to give to the information provided by of one of its peers.
This method has the advatange to get rid of the parameter p used
coinjointly with a sum rather than a product in [71] and also to not
require the use of the simplification 8 = o?.

e The presentation of the analytical fundation of this method as well as
its interpretation.

e The experimental tests presenting the results our method can achieve
on datasets varying in terms of nature, size and complexity.
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6.1.3 Contributions applied to Collaborative Reconstruction

After developing the two axis presented above, it appeared that when gath-
ering data in a multi-view context, it is very likely that data are not gathered
neither through the same process nor at the same moment, and this even if it
is performed on the same set of individuals. Thus, data about an individual
may be missing in a specific view while its other descriptions may be avail-
able in all the other views. The intuition behind the idea developed here is
that it is possible to use all the available remote informations about an indi-
vidual in order to get a first approximation of its missing local description.
We refer to this new paradigm as Collaborative Reconstruction.

This time, information transfer from a view to another one is performed
by two different components instead of the usual importance weights. First,
a set of neural networks (one per external view) is used to infer a first ap-
proximation of the individual knowing the information coming from a single
view. Then, a weighting method based on vectors rather than scalar is used
to combine all the external inferences. We call this method Masked Weight-
ing Method. To ensure a minimum security on data transfer, an autoencoder
is first used locally before transfering any information to prevent the receiv-
ing view from accessing original data which are not its.

For this contribution again, experimental results are provided to attest of
the efficiency of our method. The experimental set up is more important than
for the other contributions because the efficiency of the method could not be
defined as easily as for the other methods. Because there is no comparable
work in the literature as far as we know, we have suggested to analyze the
following points in order to attest to the quality of a reconstruction:

e The reconstructed individual should be as near as possible from the
original sample (considering the RMSE as the reference distance in
our experiments)

e Even if the reconstructed individual is relatively far from its original
version, it may be considered as good if a classification method can still
predict its correct label only based on the reconstructed features (the
Random Forests algorithm has been used during these experiments).

Thus, our method has been tested following these two points, and the
results are presented and analyzed in this thesis. A set of graphical re-
constructions of handwritten digits is also displayed to enable the visual
validation of the reconstruction efficiency.

To sum up our contributions regarding Collaborative Reconstruction, we
present:
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e The definition of the new paradigm of Collaborative Reconstruction.

e The definition of a system enabling to reconstruct missing data in a
collaborative context.

e The definition of a new combination method which weights are auto-
matically trained in a collaborative context.

e The experimental results of our method on various datasets.

6.1.4 Implementation

The different algorithms presented in this thesis have been implemented
using either R or Python language. Here is a list of the main components
developed all along the previously mentioned experiments:

e The original Self Organizing Maps as well as our incremental version
in R.

e Collaborative Clustering methods, the original one based on Self Or-
ganzing Maps and the incremental version have also been developed
in R. This has been done conjointly with the Self Organizing Maps
development.

e Autoencoders, Multi-Layer Perceptron and our Masked Weighting Method

have been coded in Python using the Pytorch library. They correspond
to standard components of our Collaborative Reconstruction System.

e A reusable version of our Collaborative Reconstruction System has
been developed in Python.

6.2 Short term perspectives

Perspectives of the work presented in this thesis depend on the use case con-
sidered.

Perspectives regarding Collaborative Clustering: Regarding au-
tomatic training of collaborative weights in a collaborative context, possible
extensions could include similar studies on the case of vertical collaboration
where the collaborating SOM algorithms handles different data sharing the
same features, as well as the application of the same optimization technique
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for collaborative Generative Topographic Maps in a first time, and a fur-
ther extension to non-topological collaborative methods in a second time.
Furthermore, the application of our weighting method could be applied to
incremental Collaborative Clustering.

Perspectives regarding Collaborative Reconstruction: As future
works, we plan on improving the reconstructions acquired from the external
views through the modification of the inter-view MLP. Furthermore, because
of a potentially high data dimensionality, the use of another error than the
MSE should be considered to compare. A feature selection process may
be added to the system, thus limiting the impact of the noise features in
the original dataset as observed for the Madelon dataset. Another possible
future extension of this work could be a lighter architecture that would scale
better with large datasets.

6.3 Long term limitations and perspectives

The most interesting perspectives for this thesis would be to continue the
research initiated on Collaborative Reconstruction of missing individuals.
Asg presented previously, there are points which can still be technically im-
proved regarding each component of the system. Moreover, while the tests
performed on the system have presented consistent results regarding its effi-
ciency, a theoretical analysis of the whole system might be useful. Similarly,
research on the interaction between MLP trainings and the Masked Weight-
ing Method training may improve reconstruction results.

It may also be interesting to consider the information given by a view
to another one and the use that can be made of it. Nowadays, data privacy
and security are hot topics which have to be adressed regarding the evolu-
tion of technology and the use that is made of it. To put constraints on
the information transfered while allowing to still improve local result in any
way may globally benefit fields such as Collaborative Clustering or Collab-
orative Learning. So far in our method, the security put on data tranfer is
done using an Autoencoder, preventing the external view to have access to
original data while still allowing it to infer something linked to its local data
representation. While it is a first step toward data security, we are still far
from satisfying to rules such as these defined by Differential Privacy [19].

More generally, even if it intuitivelly appears to be a vast domain, build-
ing a theoretical framework describing collaborative processes in Machine
Learning may make possible the extension of the paradigm to a wider range

102



CHAPTER 6

of applications than just clustering and reconstruction. The exchange of
information between two views linked both by interests (to get new informa-
tion to improve local results) and by constraints (original data should not
be shared) is a concept which could be used as a basis for further researches.
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Appendix A

Résumé en francais

A.1 Contexte

Cette these portant sur I'étude des communications au sein de modéles
d’apprentisage automatique collaboratif a été dirigée par Raja Chiky (ISEP)
et co-encadrée par Jérémie Sublime (ISEP) et Sylvain Lefebvre (ISEP).

L’objectif principal de cette thése était d’étudier les communications
inter-vues au sein de modéles d’apprentissage collaboratifs afin d’améliorer
la transmission d’'informations entre les vues. Cette idée a été déclinée suiv-
ant deux axes en fonction du type d’application concerné:

e Le clustering collaboratif pour lequel chaque vue disposera initialement
d’un clustering local qui sera ensuite modifié afin d’arriver a une série
de concensus entre les vues. La modification de chaque clustering local
se base sur I’échange d’informations entre les vues, afin que les resultats
obtenus localement puissent étre utilisés par les vues externes. Le
clustering collaboratif s’attache & trouver un concensus aussi global que
possible plutét qu’a améliorer chaque clustering local. Le clustering
collaboratif est & distinguer de I’Ensemble Learning qui lui cherche
& trouver un concensus unique entre toutes les vues & 'aide d’une
fusion au sein d’un modéle global de ’ensemble des clusterings locaux.
Au sein de cette thése, nous parlerons majoritairement de la version
horizontale du clustering collaboratif, pour laquelle chaque vue dispose
du méme ensemble d’individus décrits au sein de chaque vue par un
ensemble différent de caractéristiques. Deux sous-axes ont été explorés
concernant les communications inter-vues:
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1. L’optimisation des coefficients définissant I'importance que chaque
vue accorde & l'information recue de ses paires. Pour cela nous
proposons une nouvelle méthode d’apprentissage permettant d’adapter
dynamiquement ces poids & 'aide d’un apprentissage.

2. La proposition d’une méthode d’apprentissage au cours du temps
(que nous qualifierons d’en ligne) permettant & des vues de com-
muniquer au fil du temps afin de faire évoluer les résultats obtenus
localement a d’éventuels changements de distribution.

e La reconstruction collaborative dont le but est de reconstruire locale-
ment des données manquantes a 'aide d’informations présentes dans
les vues externes. Cette application est développée dans cette thése
avec la proposition d’un systéme permettant d’inférer I’approximation
d’un individu & l'aide entre autre de réseaux de neurones. Ces réseaux
seront utilisés soit pour coder l'information a transférer afin d’assurer
une sécurité minimum, soit pour inférer les valeurs locales d’un indi-
vidu en se basant sur 'information recue de la vue externe.

A.2 Clustering collaboratif

Le clustering collaboratif est défini par un ensemble de base de données (ap-
pelées vues) ayant chacune opéré un clustering sur leurs données locales.
Le but du clustering collaboratif va étre de faire s’échanger de l'information
entre les vues afin de modifier chaque clustering local pour finalement se
rapprocher d’un concensus entre les vues.

Se pose alors le probléme du recoupement d’information lorsqu’une vue
locale recoit des informations provenant de plus d’une source externe. Les
méthodes existantes dans I’état de ’art se basent sur une pondération de ces
informations a ’aide de coefficients scalaires [9, 50, 43, 23, 68, 55|. Cepen-
dant, la méthode de définition de ces coefficients est & chaque fois empirique,
et c’est sur ce constat que se basent les travaux présentés dans la premiére
partie de cette thése. Un second constat aprés étude de l’état de l'art a
été qu’il n’existait actuellement pas de méthode permettant d’effectuer un
apprentissage en ligne (au cours du temps) de modéles collaboratifs. Un sec-
ond sous axe d’exploration a ainsi consisté en la modification d’'une méthode
existante de clustering collaboratif [23] basée sur des cartes auto adaptatri-
ces [36] afin de 'adapter a I’apprentissage en ligne. Ces travaux étaient de
plus motivés par la volonté de rendre les modeéles collaboratifs réactifs aux
éventuels changement au cours du temps dans la distribution des données.
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L’ensemble des travaux présentés dans cette section se base sur la fonction
de colit définissant le score du modéle & chaque instant:

Q' = iQlocar(Vi) + Qlonian(Vi, Vjsti)

= iQloeat (Vi) + Y _ BICHVL V) (
J#i

- e
\[:D/H

Ces formules contiennent ’ensemble des éléments nécessaires pour définir
un probléme de clustering collaboratif. ) représente & chaque fois un critére
d’évaluation, Q' représente la valeur de ce critére pour la i-éme vue Vj, avec
une distinction entre Qliocal et Qioll o Qui définissent les critéres sur respec-
tivement les résultats locaux du clustering ainsi que sur l’état du concensus
entre les vues. C’; définit la dissimilarité entre les vues V; et V;. La pondéra-
tion entre le critere local et les différentes mesures de similiraités est assurée
par ensemble de coefficients «; et 3! donc la fonction et la définition sont
donnés dans la section suivante.

A noter que les définitions des critéres Qpocar €t Qeollap SOLt Propres soit
a lalgorithme de clustering local utilisé dans chaque vue [23], soit a la déf-
inition méme du probléme de clustering [45]. Dans les deux cas, le critére
doit étre redéfini pour chaque probléme.

A.2.1 Optimisation des poids pour du clustering collaboratif
basé sur des cartes auto adaptatrices

Nos contributions presentées dans cette section sont les suivantes:

e Nous proposons une méthode d’optimisation automatisée et non-supervisée
afin d’ajuster la valeur des coefficients définissant 'importance que les
vues doivent mutuellement s’accorder lors de leur apprentissage collab-
oratif.

e Nous démontrons expérimentalement que notre méthode d’optimisation
est capable de détecter les vues bruitées qui auraient pu détériorer les
apprentissages finaux.

e Nous fournissons les propriétés théoriques de notre méthode. En par-
ticulier, nous montrons que notre méthode d’optimisation définit un
méta-clustering sur les vues, en les regroupant suivant leurs similar-
ités.
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La définition de notre méthode d’optimisation s’est faite grace a 'ajout de
deux contraintes au probléme initial. La premiére a été que, quelque soit la
vue V;, la valeur associée a Qjocal devrait étre égale & a; = 1. Cette contrainte
traduit le fait qu’en divisant I’ensemble des ﬁf par a; dans ’équation A.1, on
obtient un ensemble de coefficients se trouvant uniquement sur les collabo-
rations. Le but des a et des 3 est d’établir une pondération relative des uns
par rapport aux autres. L’aspect relatif de cette pondération nous permet
de fixer artificiellement la valeur de 'un des coefficient («;) a 1.

La second contrainte a été posée sur I’ensemble des 5:

N
vi [Isl=1 vGi5) 8 >0 (A3)
J#i
Ce type de contrainte a déja pu étre rencontrée dans des travaux relatifs
au clustering multi-vues [12]. De plus, il a été montré dans [70] que la
contrainte de prime abord plus intuitive Zé\;l B! =1 meéne a des résultat
non satisfaisants et qu’un paramétre supplémentaire p devait étre défini et
appris afin de parvenir & un résultat exploitable.
Le probléme d’optimisation obtenu étant maintenant sous contrainte,
nous avons utilisé la méthode de Karush-Kuhn-Tucker afin de déterminer les
valeurs optimales des coefficients 5. Pour tout j # i, nous obtenons:

o1
;[ O

5 G (A4)

Si ’on essaie d’interpréter ce résultat, on constate que pour une vue don-
née, notre méthode octroie plus d’importance aux vues qui ont des coeffi-
cients de dissimilarités Cj— faibles, avec des valeurs de 5 > 0 si la dissimilarité
est inférieure & la moyenne géométrique des similarités avec les autre vues,
et des valeurs de 8 < 0 dans le cas contraire. Notre méthode définit donc
I'importance d’une collaboration suivant la similarité des résultats obtenus
pour chaque vue. Ce point peut se comprendre intuitivement: si ’on cherche
a obtenir le meilleur score de concensus possible, il faut privilégier les collab-
orations de vues similaires et limiter les collaborations de vue en désaccord.

Notre méthode d’optimisation s’incrit dans le cadre d’'un apprentissage
collaboratif standard. L’algorithme détaillé peut étre trouvé dans 1’Algorithme 8.

La méthode précédente a été testée sur plusieurs jeux de données de
tailles et de complexités variées: WDBC, Waveform, Spambase, Isolet et
VHR Strasbourg. La comparaison avec une méthode sans adaptation de
poids a été effectuée afin d’attester de l'efficacité de notre méthode. Cette
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Algorithm 8: Algorithme topologique de collaboration horizontale

Initialisation: Initialiser toutes les cartes de prototypes W
aléatoirement.
Etape locale: Initialisation des cartes

forall Vue ¢ do
Minimize the objective function of the classical SOM Minimiser la

fonction objectif des cartes auto-adaptatrices standards.

end

Etape collaborative:

forall Vue ¢ do

For w fixé, calculer: 8 en & I’aide de ’'Equation A.4 Mettre & jour
les prototypes de toutes les cartes: w* = argmin,, C(w, «, [3)

end

comparaison s’est faite en étudiant la différence relative entre les critéres A.1
respectifs des deux méthodes.

Les résultats (Figure A.1) mettent en avant que la différences est toujours
positive, démontrant que le critére pour la méthode avec optimisation des 3
ameéliore le score du modeéle (pour rappel, plus un score est faible, plus les
dissimilarités sont faibles, et plus on est proche du concensus). Les valeurs
des B sont présentées graphiquement sur la figure 4.2.
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Figure A.1: Différences relatives des critéres pondérés avec et sans optimi-
sation des B tout au long du processus d’apprentissage

Ces cartes font clairement apparaitre l’identification des vues bruitées
par notre méthode. Tandis que toutes les vues arrivent & identifier les vues
bruitées afin de ne pas prendre en compte leurs résultats, les vues bruitées
considérent les vues non bruitées indépendamment de leurs résultats. On
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a) WDBC (b) Waveform  (c) Spambase ) Isolet  (e) VHR Stras-
bourg

Figure A.2: Heatmap of the 8 matrices for each dataset. Colors go from
white (strong collaboration) to black (weak collaboration). The gray color
on the diagonal stands for g = 1.

peut aussi noter que les vues non bruitées ne coopérent pas toujours entre
elles. Ainsi pour WDBC, les vues 1 et 3 collaborent exclusivement entre
elles, tandis que la vue 2 tire son information des deux vues précédentes.

De plus, comme on peut le voir pour Waveform, les vues similaires ont
tendance & se regrouper entre elles. Les deux vues bruitées collaborent ex-
clusivement entre elles, de méme que les deux vues non bruitées.

En conclusion, notre méthode permet d’adapter dynamiquement les com-
munications inter-vues pour du clustering collaboratif & 1’aide de coefficients
scalaires représentant 'importance qu’une vue accorde & 'information d’une
de ses paires. L’efficacité de la méthode ainsi que sa capacité a regrouper les
vues similaires sont démontrées par les expériences. Dans la section suivante,
nous présentons les résultats obtenus sur ’adaptation du clustering collab-
oratif afin de permettre son apprentissage en ligne. Cet axe a été étudié
afin d’explorer 'impact qu’aurait un tel contexte sur les communications
inter-vues.

A.2.2 Cartes auto adaptatrices incrémentales appliquées au
clustering collaboratif

Dans cette section, nous présentons les contributions suivantes:

e La définition d’'une méthode permettant d’apprendre des Cartes Auto
Adaptatrices (CAA) en ligne (au cours du temps).

e [’adaptation d’une méthode de clustering collaboratif permettant de
tenir compte des modifications apportées aux Cartes Auto Adaptatri-
ces.
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e Le développement et la présentations de résultats empiriques montrant
Iefficacité de notre méthode.

L’adaptation du clustering collaboratif & ’apprentissage en ligne a né-
cessité 'adaptation du modéle utilisé localement pour obtenir une premiére
version des clusterings locaux. Nous avons choisi les Cartes Auto Adaptatri-
ces car elles constituent un modéle couramment rencontré dans la littérature
sur le clustering collaboratif [25, 23, 55].

Bien que plusieurs versions en ligne des Cartes Auto Adaptatrices ont
été proposées dans la littérature [15, 49|, toutes se basent sur des modifi-
cations topologiques des cartes originales afin de les adapter & I’évolution
des données. Ce type de changement n’est pas permi initialement par le
clustering collaboratif, du fait des comparaisons qui sont susceptibles d’étre
faites neurones & neurones entre les cartes. Plutot que d’adapter les régles
du clustering collaboratif afin de permettre ce genre de modifications, nous
avons choisi de définir une nouvelle version en ligne de ces cartes pour ensuite
I’adapter au clustering collaboratif.

La modification de ces cartes se base sur la modification de la fonction de
température permettant de définir le voisinage influencé par la modification
de chaque neurone. Cette fonction est normalement dépendante du temps,
comme présenté dans la formule suivante:

A(t) = Amax(Ami“)1 (A.5)

)\max

avec Amax €t Amin deux constantes définissant respectivement les tem-
pératures initiale et finale du modéle. Lorsque la carte est dite “chaude”,
la modification d’un neurone va impacter un large voisinage, c’est I'étape
initiale durant laquelle la carte s’adapte grossiérement aux données. Plus
I’apprentissage va avancé, plus la carte va se “refroidir”, pour arriver & de
petites valeurs de A. Durant cette phase, la carte adaptera plus locale-
ment 'emplacement de ces neurones. L’avantage de cette méthode par rap-
port & une méthode telle que K-means est que ’on conserve une dimension
topologique entre les clusters, alors que les centroids de K-means sont in-
dépendants les uns par rapport aux autres.

Afin de s’affranchir de la dépendance temporelle de la fonction de tem-
pérature et afin de la rendre réactive aux éventuels changement dans la
distribution des données, nous avons défini la fonction de température A
suivante:
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- 1 Nbat(:h
MB,W) = Nooo 7z — wyay ll2 (A.6)
aren =1

avec B le batch des Nygien, derniéres données arrivées, W 1’ensemble des
neurones de la carte et x la fonction qui a un point associe I'indice du neurone
w le plus proche de la carte. Cette fonction présente le double avantage de ne
pas étre dépendante du temps tout en s’adaptant a ’état actuel des données:
si en moyenne les données sont loins de la carte, la température sera élevée
car l’ensemble de la carte aura besoin d’étre adaptée. A linverse, si les
données sont proches de leurs neurones respectifs, la température sera faible
car seules des modifications locales des neurones seront nécessaires.

Cette modification a été inclue dans les équations régissant le comporte-
ment du clustering collaboratif afin de le rendre utilisable en ligne. Dans un
soucis de concision, le détail des formules n’est pas précisé ici.

Afin d’attester de l'efficacité de notre méthode, nous avons effectuer des
apprentissages sur plusieurs jeux de données: Spam base, Waveform, WDBC
et Isolet. Pour chaque jeu de donnée, nous avons regardé quelle était I’erreur
de quantification moyenne par vue avec et sans utilisation du clustering col-
laboratif online. L’erreur de quantification est définie par 'erreur quadra-
tique moyenne entre les individus du batch et leurs neurones les plus proches.

Les résultats obtenus sont présentés dans le tableau A.1.

Ces résultats indiquent que pour toutes les bases de données sauf Isolet,
la carte auto adaptatrice en ligne que nous avons proposée obtient des scores
avoisinnant ceux de la version avec clustering collaboratif. C’est un point
utile car Iutilisation du clustering collaboratif peut éventuellement réduirel
a qualité des résultats obtenus localement du fait de la recherche d’un con-
census global. Pour la cas particulier d’Isolet, les meilleurs résultats pour la
méthode collaborative peuvent étre expliqués par la limitiation de 'impact
des données bruitées (96% des données) grace au clustering collaboratif.

Nous avons de méme étudié l'impact de notre méthode sur I’apprentissage
au cours du temps d’un modéle collaboratif. Pour se faire, nous avons com-
paré les valeurs des puretés obtenus d’une part par notre méthode de clus-
tering collaboratif online, et d’autre part par une méthode de clustering
classique pour laquelle nous prenions chaque itération comme une unité de
temps. Les résultats obtenus sont présentés sur la Figure A.3. La pureté
d’un neurone est égale a la fraction d’individus qui lui sont rattachés et qui
appartiennent & la classe la plus représentée sur ce noeud. Par extension, la
pureté d’une carte est égale a la pureté moyenne de ses noeuds.

Ces figures font apparaitre une meilleure pureté pour notre méthode par
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Table A.1: Erreur de quantification moyenne pour chaque base de donnée.
Les nombres en gras sont les plus petits pour chaque ligne

Vie CAA Tncrémentales Clustering Collaboratif

Incrementale

1 0.31 0.26

Spam Base 2 0.18 0.19
3 0.18 0.16

1 0.18 0.23

Waveform 2 0.17 0.19
3 0.24 0.30

1 0.19 0.19

WDBC 2 0.16 0.19
3 0.20 0.16

1 2.15 1.27

Isolet 2 2.84 1.38

3 2.85 1.37

rapport a la méthode classique dans la premiére phase de 'apprentissage. A
I’adaptation en temps réel qui est faite sur la fonction de température, per-
mettant d’obtenir de meilleurs résultats plus rapidement qu’avec une méth-
ode classique. On peut de plus remarquer 'influence du parameére Npgzep SUr
I’apprentissage: une valeur plus faible implique une variance plus importante
de la pureté au cours du temps. Ce point se comprend intuitivement par le
fait que lorsque Npgien est faible, le systéme dispose de peu d’informations
pour adapter ses neurones, ce qui implique nécessairement une grande vari-
abilité suivant 1’échantillon de données en cours de traitement.

En conclusion, nous avons présenté dans cette section une méthode per-
mettant d’effectuer un apprentissage en ligne des cartes auto adaptatrices
sans utiliser de modification topologique. Cette méthode a ensuite été adap-
tée au clustering collaboratif, puis son efficacité a été présenté sur différents
jeux de données. L’influence du nombre de données par échantillon a été
étudiée et reliée & la variance des scores obtenus lors de ’apprentissage.

La section suivante présente un use case différent de celui du clustering
traité jusqu’a présent. L’objectif principal de cette thése étant d’explorer les
possibilités offertes par les communications inter-vues dans un contexte col-

123



CHAPTER A

(=)
Ln‘ —
| o
= wy
= <
S 7 g 3
o
r 4 g ° .
0:: g | /’\//\\”f \ﬁl f/ Q:: = Q:- g
e ~a f i <
A /N TV - o
(3]
S S e
< T L — T T s T L T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
lteration Iteration
(a) Nbatch = 10, View 1 (b) Nbatch = 10, View 2 (C)
o
e o | =
[=]
o]
o wn | uy
o (=]
2 = | = =
5 © 5 < S5
a a o i o
@
o 2 - ‘O"’
o
. o
R e e e e e b I T S U —
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration
(d) Nbatch = 3, View 1 (e) Nbatch = 3, View 2
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lignes rouges représentes les CAA incrémentales tandis que les lignes noires
représentent les CAA collaboratives. Chaque itération correspond & l'arrivée

d’une nouvelle donnée

laboratif, nous nous sommes intéressé au probléme des données manquantes

et aux maniéres d’y pallier.

A.3 Systéme de reconstruction collaborative

Les contributions présentées dans cette section sont les suivantes:

e Définition d’un nouveau cas d’utilisation dans un contexte d’apprentissage
collaboratif: la reconstruction collaborative.

e Définition d’un modéle pouvant répondre au probléme posé.

e Définition d’une nouvelle méthode de pondération permettant de com-

biner des vecteurs point

a point.
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o Attestation de lefficacité du modéle au travers d’expériences menées
sur divers jeux de données avec identification des limites du modéle et
de pistes d’améliorations.

Le clustering collaboratif se base sur I’hypothése que les vues commu-
nicantes disposent de suffisamment d’individus en commun pour échanger
leurs résultats et les comparer. Cependant en pratique, la récupération
de plusieurs bases de données sur un méme ensemble d’individus est une
chose difficile & mettre en place, et la récupération des données peut en-
trainer 'apparition de données manquantes. L’idée initiale développée dans
cette section a été qu’il était possible d’utiliser I’ensemble des informations
disponibles sur le sous ensemble d'individus en commun entre les vues pour
inférer les valeurs des individus manquants.

Une représentation de ’architecture de notre méthode est présentée sur
la Figure A.4. Alors que le clustering collaboratif se base sur une corre-
spondance cluster a cluster, la reconstruction collaborative s’appuie elle sur
I'inférence de données cibles & partir de données initiales. La difficulté de la
mise en pratique de cette idée a motivé l'utilisation de réseaux de neurones,
et plus particuliéerement de Perceptrons Multi-Couches (aussi appelés Liens,
ou Link en anglais), comme liens entre les vues afin de donner une premiére
approximation de l'individu manquant. L’apprentissage de tels réseaux est
possible du fait de la présence d’un ensemble d’individus en commun & une
paire de vue. En utilisant les descriptions de la vue externe comme en-
trée et celles de la vue locale comme sortie, il était possible d’effectuer un
apprentissage supervisé du réseau.
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Figure A.4: Systéme de recontruction coopérative. Dans cet example, les
vues 1 et 3 envoient leur versions codées de I'individu a la vue 2.
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Un autre aspect propre au clustering collaboratif constitue la sécurité
qu’il met en place concernant les données en transit: les données originales
ne sont jamais transférées d’une vue & une autre. A la place sont transférées
soit les identifiants des clusters auxquels appartiennent les individus [68, 65],
soit des informations utilisées au cours de 'apprentissage comme c’est le
cas pour l'apprentissage a l'aide de cartes SOM [23, 43]. Dans le cas de
la reconstruction collaborative, 'utilisation d’un réseau de neurone comme
systéme d’inférence implique nécessairement un codage des données initiales
sous la forme d’un vecteur scalaire qui sera utilisé a la place des données
originales comme données d’entrée du réseau en charge de l'inférence. Ce
codage sous forme de vecteur est assuré dans notre modéle par un auto-
encodeur, une catégorie de réseaux de neurones ayant la particularité de
reconstruire en sortie les données fournies en entrée |78].

Enfin, le dernier composant de notre méthode consiste en une méthode de
pondération, que nous avons appelé méthode de pondération par masques,
qui permet de combiner ’ensemble des approximations créées a partir des
données regues des vues externes (/N —1 dans un systéme a N vues ou chaque
vue externe aurait une information sur l'individu manquant). L’idée fonda-
mentale de cette méthode consiste en 'utilisation de vecteurs permettant de
pondérer des individus point a point (descripteur par descripteur) plutét que
d’utiliser un unique coefficient pondérant ’ensemble de l'individu. En effet,
il est facile d’imaginer que pour un individu manquant donné, chaque vue
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externe permette d’en reconstruire seulement une partie. L’utilisation d’un
coeffcient de pondération unique ne permet pas de prendre en compte cette
différenciation. Un schéma décrivant le processus de pondération par un
ensemble de vecteurs, que nous appelerons désormais masques, est présenté
sur la Figure A.5. Les valeurs des masques sont entrainées au préalable afin
de mieux correspondre a chaque vue, et chaque vue posséde N — 1 masques,
un par vue externe.

Reconstructed
Vectors

mﬁ@@@@
mﬂ@@@@

s %% ol }@a[@ D @) v

m%@@@@
mw@@@w

Masks

Weighted
Vectors Final
Reconstruction

Figure A.5: La méthode de pondération par masques. La vue 2 posséde les
individus inférés & ’aide des informations des vues 1 et 3, et elle utilise ses
masques entrainés au préalable afin d’obtenir le résultat pondéré final.

L’idée générale de la méthode d’apprentissage consiste simplement en une
descente de gradient sur un critére défini comme la distance entre I'individu
cible et sa version reconstruite & l'aide des réseaux de neurones et de notre
méthode de pondération. Une seconde méthode itérative a été proposée et
démontrée analytiquement en annulant le gradient précedemment obtenu et
en mettant & jour les poids des masques de maniéres itérative.

Concernant ’apprentissage du systéme dans sa globalité, il peut étre
effectué séquentiellement:

1. Chaque vue entraine de maniére indépendante un auto-encodeur en
charge de chiffrer les données originales.

2. Chaque vue encode ’ensemble de sa base de donnée d’apprentissage et
envoie le résultat & ses paires
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3. Chaque vue entraine N — 1 perceptrons multi-couches, 1 par vue ex-
terne, en mettant en correspondance les individus chiffrés et les indi-
vidus cibles.

4. Les vues utilisent leurs perceptrons pour inférer les valeurs des indi-
vidus présents dans la base d’apprentissage, chaque vue posséde alors
N — 1 base de données d’individus inférés.

5. Les poids des masques sont entrainés & ’aide des N —1 bases d’individus
inférés et des données originales.

Une fois I’ensemble de ces étapes effecutées pour toutes les vues du prob-
leme, la reconstruction d’un individu manquant devient possible.

Plusieurs tests ont été effectués a ’aide de notre systéme de reconstruc-
tion collaborative:

e Afin de tester lefficacité du systéme global, des reconstructions ont été
faites et comparées aux versions originales en utilisant ’erreur quadra-
tique moyenne.

e Le test suivant a consisté en une classification des individus reconstruits
al’aide de I’algorithme de Random Forest pour tester si la classe prédite
correspondait a la classe réelle.

e Enfin, la qualité des reconstructions a été testée en remplacant la méth-
ode de pondération par masque par une simple moyenne. Le but de ce
test a été de vérifier 'efficacité de notre nouvelle méthode de pondéra-
tion.

Ces tests ont été effectués sur 4 jeux de données différents: WDBC,
Multi-Features Digital Dataset (MFDD), Madelon et Cube. Ce dernier est
un jeu de donnée artificiel crée spécialement pour tester 'efficacité de notre
méthode de pondération. Il est constitué d’un ensemble de 4 groupes de
points répartis dans un espace en 3 dimensions. Trois clusters se trouvent
a chacune des extrémités des vecteurs de base, le quatriéme se trouvant &
Iorigine de ’espace. Trois vues sont ensuite créées en projetant l’ensemble
du jeu de données suivant chacun des trois vecteurs de base. L’intérét d’une
vue ainsi créée est que 'information permettant de reconstruire ses individus
est par définition répartie dans les deux vues restantes. Si notre méthode de
pondération fonctionne, on peut s’attendre & ce que les masques privilégient
une caractéristique spécifique tout en rejetant totalement ['autre.
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Un schéma décrivant la pondération par masque et comment elle permet
de s’affranchir de caractéristiques mal reconstruites et/ou bruitées peut étre
trouvé sur la Figure A.6.

Reconstruction 1 Mask 1
X y X z X z
External Autoencoder ]_> (SO —
View 1 % __+MLP_ | |good|noisy| < | x1 | x0
x Final
M Reconstruction
X | Z X | Z
Local Masks Z
View ?1? good | good
Y
y Y4 ) . X Y4 X Y4
External Autoencoder }_, A\, |
View 2 | +MLP | |noisy|good %/ x0 | x1

Reconstruction 2 Mask 2

Figure A.6: Combinaison de deux reconstructions partiellement bonnes.
Dans cet exemple, chaque vue dispose d’assez d’information pour reconstru-
ire seulement une caractéristique sur les deux dans la vue locale (pointillés).
La méthode de pondération par masques favorise les parties les mieux recon-
struites de chaque résultat, d’ott le X0 et x1 dans les masques.

L’utilisation du jeu de données MEFDD permet d’obtenir des reconstruc-
tions visuelles, permettant d’appréhender plus facilement leurs qualités. La
figure A.7 montre un échantillon de 10 images avant apprentissage. La fig-
ure 5.15 présente 10 reconstructions considérées comme de bonnes qualités.
Bien qu’il ne s’agisse que d’un résultat purement visuel, la majorité des in-
dividus présente une reconstruction de qualité avoisinante a celle des images
présentées ci-dessous. Cependant dans certains cas, le systéme n’a pas été
capable d’inférer efficacement les chiffres & reconstruire, ce qui a mené a des
reconstructions comme celles présentées en figure 5.16.
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Figure A.7: Echantillon des images disponibles dans le jeu de données
MFDD.

Expérimentalement, le systéme obtient des résultats en terme d’erreur
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Figure A.8: Echantillon d’images bien reconstruites pour le jeu de données
MFDD.
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Figure A.9: Echantillon d’images mal reconstruites pour le jeu de données
MFDD.

quadratique (relativement & chaque caractéristique) plutéot moyens (Fig-
ure A.3). Cependant on constate sur un échantillon graphique que la re-
construction globale des individus présente une qualité qui permet de re-
connaitre 'individu initial. C’est aussi ce que montre les résultats en terme
de classification présentés sur la Figure 5.5.1. Bien que les reconstructions
ne soient pas exactement fidéles aux originales, elles sont suffisamment pré-
cises pour obtenir des scores en classification proches de ceux obtenus sur
les données originales. En résumé, le systéme arrive a récupérer certaines
informations caractéristiques des individus et & les retranscrire, bien que la
qualité de la reconstruction en elle méme soit améliorable.

Comme présenté sur la Figure A.3 et 5.5.1, le test indiquant efficacité
de la méthode de pondération par masque par rapport & une moyenne in-
dique que notre méthode améliore sensiblement la qualité de reconstruction
des individus. De plus, les tests conduits sur Cube montrent clairement que
notre méthode arrive & détecter automatiquement quels caractéristiques sont
& privilégier suivant la vue externe considérée. En effet, les valeurs des co-
efficient portant sur la caractéristique que les vues ont en commun avoisine
toujours 0.92, tandis que les autres sont proches de 0.14, indiquant un fa-
voritisme fort pour les caractéristiques en commun. Les résultats concernant
la classification semblent cependant indiquer que notre méthode n’apporte
pas d’amélioration significative de ce point de vue la.

Pour conclure cette section, nous avons défini un nouveau contexte d’apprentissage
collaboratif permettant de reconstruire des individus manquant & partir
d’informations présentes dans d’autres vues. Une nouvelle méthode de pondéra-
tion collaborative a été définie et testée. Le systéme, bien que présentant
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Figure A.10: Erreur quadratique moyenne pour tous les jeux de données.
Une valeur plus faible correspond & un meilleur résultat.

des résultats améliorables en terme de reconstruction, permet de capturer
des informations intrinséques aux individus telles que leur classe, et la méth-
ode de pondération arrive & identifier clairement quels caractéristiques sont &
privilégier lorsque plusieurs sources sont disponibles pour la reconstruction.

A.4 Reésumé des contributions scientifiques et per-
spectives

A.4.1 Contributions au clustering collaboratif

Durant cette thése, nous avons pu définir une nouvelle méthode permettant
d’apprendre automatiquement les coefficient définissant I’importance qu’une
vue doit accorder & I'information fournie par une de ses paires. Le fonde-
ment théorique de cette méthode se base sur la définition d’'un probléme
d’optimisation sous contrainte que nous avons résolu & l’aide de la méth-
ode de Karush-Kuhn-Tucker. Notre seconde contribution a consisté en la
définition d’une nouvelle méthode permettant d’apprendre des cartes auto
adaptatrices au cours du temps. Cette méthode présente I'avantage de ne
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Figure A.11: Scores et Différences de Classification pour WDBC, MFDD et
Madelon. Une valeur au dessus de 0 indique que les classifications effectués
4 l'aide des données reconstruites sont meilleures que celles basées sur les
données originales.

pas dépendre de modifications topologiques, ce qui a permis son adapta-
tion au clustering collaboratif. Cette méthode se base essentiellement sur la
redéfinition de la fonction de chaleur & la base des cartes auto adaptatrices
pour faire en sorte qu’elle dépende de ’arrivée des nouvelles données plutot
que du temps.

A.4.2 Contribution a la reconstruction collaborative

L’étude des communications au sein des modéles collaboratifs nous a permis
de définir un nouveau contexte d’apprentissage permettant de reconstruire
des données manquantes localement & I’aide des informations contenues dans
les vues externes. Afin de proposer une premiére approche, nous avons défini
un systéme basé sur les réseaux de neurones et sur une nouvelle méthode de
pondération. Nous avons pu tester son efficacité ainsi que l'efficacité de notre
méthode de pondération sur des cas variés montrant que le systéme était ca-
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pable de capturer et de reconstruire suffisamment d’informations pour per-
mettre 'indentification graphique et le classement des individus reconstruits.

A.4.3 Perspectives

Plusieurs axes de recherches peuvent étre développés a court et long terme
en se basant sur les travaux eeffectués lors de cette thése.

Perspectives a court termes

Concernant 'optimisation des pondérations dans un contexte multi-vues,
des extensions possibles peuvent s’appliquer au clustering collaboratif verti-
cal pour lequel les cartes auto adaptatrices doivent gérer des informations
décrites par un méme ensemble de caractéristiques appliquées & un ensemble
d’individus différents. De plus, application des méthodes décrites dans cette
thése a des algorithmes de clustering tels que les Generative Topographic
Maps peut étre envisagée dans un premier temps, puis & des méthodes de
clustering non topologiques dans un second temps.

Comme présenté dans la section ci-dessus, les résultats obtenus a ’aide du
systéme de reconstruction collaborative sont encore perfectibles du point de
vue du détail de reconstruction. Bien que les résultats préliminaires soient
encourageant, des recherches approfondies seraient menées a court termes
sur le lien entre la taille du code utilisé pour le transfert de données et les
difficultées rencontrés par les perceptrons multi-couches lors de leur entraine-
ment. De méme, 'application de la méthode de pondération par masques
sera étudiée dans des contextes collaboratifs autres que celui de la recon-
struction.

Perspectives a long termes

A plus long terme, I’étude de I'information transférée d’une vue a une autre et
I'utilisation qu’il est possible d’en faire permettra de faire avancer le domaine
de 'apprentissage collaboratif. De nos jours, la sécurité des données sont des
sujets vivement étudiés qui doivent prendre en considération les différentes
utilisations qui sont faites des données, et le contexte collaboratif se préte
particuliérement bien & ce genre de réflexions et de recherches. Nos travaux
dans le domaine de la reconstruction se basent sur des Auto-encodeurs pour
fournir un minimum de sécurité, mais cette solution n’est pas satisfaisante
sur le long terme.

Enfin, I’étude théorique d’un framework collaboratif permettant son ap-
plication & des cas d’utilisations autre que la reconstruction et le clustering
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pourrait s’avérer utile. L’échange d’informations entre deux vues liées a la
fois par des intéréts (obtenir de nouvelles informations pour améliorer les
résultats locaux) et par des contraintes (partage de données sensibles) est un
concept qui sera utilisé comme base pour de futures recherches.
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Datasets

1. Wisconsin Diagnostic Breast Cancer (WDBC) — This dataset has 569
instances with 32 variables (ID, diagnosis, 30 real-valued input vari-
ables). Each data observation is labeled as benign (357) or malignant
(212). Variables are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. They describe characteristics of the
cell nuclei present in the image. Since each data contains the charac-
teristics of 3 nuclei, we have 3 natural views here.

2. Multi-Features Digital Dataset (MFDD) — This dataset consists of
features of handwritten numerals (from 0 to 9) extracted from a col-
lection of Dutch utility maps. 200 patterns per class (for a total of
2,000 patterns) have been digitized in binary images. These digits are
represented in terms of the following six feature sets, each set being
here used as a view: 76 Fourier coefficients of the character shapes, 216
profile correlations, 64 Karhunen-Love coefficients, 240 pixel averages
in 2 x 3 windows and 47 Zernike moments morphological features.
Each set of coefficient stands for a view.

3. Madelon — This dataset is an artificial dataset containing data points
grouped in 32 clusters placed on the vertices of a five dimensional hy-
percube and randomly labeled +1 or -1. The five dimensions constitute
5 informative features. 15 linear combinations of those features were
added to form a set of 20 (redundant) informative features. Based on
those 20 features one must separate the examples into the two classes
(corresponding to the +-1 labels). Finally 480 features called ‘probes’

135



CHAPTER 6

having no predictive power were added by the authors. The order of
the features and patterns is random. This dataset is the most challeng-
ing among these used here. It is used to test the ability of the tested
methods to tackle noise. Because no further information in available
on this dataset, the views are randomly generated by picking a random
set of 125 features for each.

4. Isolet — This data set was generated as follows: 150 subjects spoke the
name of each letter of the alphabet twice. Hence, we have 52 training
examples from each speaker. The speakers are grouped into sets of 30
speakers each. The data consists of 1559 instances and 617 variables.
All variables are continuous, real-valued scaled variables.

5. Spam Base — The SpamBase data set is composed from 4601 obser-
vations described by 57 variables. Every variable describes an e-mail
and its category: spam or not-spam. Most of the attributes indicate
whether a particular word or character is frequently occurring in the
e-mail. The run-length attributes (55-57) measure the length of se-
quences of consecutive capital letters. Views can be created using
types of attributes.

6. VHR Strasbourg — This dataset [53] is based on a very high spatial
resolution image (Pleiades) of the city of Strasbourg. The image was
processed using the Multi-Resolution image segmentation (MRIS) al-
gorithm implemented in the eCognition software (c) Definens (2014).
A wide range of features available in eCognition are then computed
for each segment, including spectral, textural and shape features that
were exported in the CSV file. Views can be created according to the
type of feature: spectral, texture, and shapes.
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