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Common Abbreviations

BN Bayesian network.
CCL Coordination & Control Layer (SCISSOR project).
CLG Conditional linear Gaussians.
CPT Conditional probability table.
CdBN Conditional densities BN.
CtdBN Conditional truncated densities BN.
DAG Directed acyclic graph.
DAL Decision & Analysis Layer (SCISSOR project).
DBN, ns-DBN Dynamic BN, non-stationnary DBN.
HMI Human-Machine Interface (SCISSOR project).
JT Junction tree.
ML Monitoring Layer.
MTBF Mixture of truncated basis functions.
MTE Mixture of truncated exponentials.
MOP Mixture of truncated polynomials.
SCADA Supervisory control and data acquisition system.
SCISSOR Security in trusted SCADA and smart-grids.
SIEM Security Informayion & Event Management (SCISSOR project).
SS Shafer-Shenoy.
TDM Threat detection module (SCISSOR project).
VE Variable elimination.
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Notations

P (·), f(·) A probability distribution (resp. density function).
P ( · | · ), f( · | · ) A conditional probability (resp. density).
φ,Φ A factor (resp. factor set).
X, Y, Z Discrete random variables.
X̊, Y̊ , Z̊ Continuous random variables.
X,Y,Z Random variables sets.
x, y, z; x,y, z Instantiations of X, Y, Z; X,Y,Z, respectively.
ΩX , ΩX Domains of X (resp. X).
(X ⊥⊥ Y ) X is independent of Y .
(X ⊥⊥ Y |Z) X is conditionally independent of Y given Z.
P |= (X ⊥⊥ Y |Z) P models the independence (X ⊥⊥ Y |Z).
K = (V, E) A graph over nodes V and edges E .
H,G An undirected (resp. directed) graph.
PaG(X), ChG(X) Set of Parents (resp. Children) of X in a graph G.
MBG(X) Markov Blanket of X in a graph G.
NgbH(X) Neighbors of X in a graphH.
X − Y An undirected edge (in a graph).
X → Y , X ← Y , X ↔ Y A directed edge (in a graph).
X 
 Y A graph edge (directed or undirected).
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Introduction

Critical Infrastructures are essential systems of assets, considered of vital im-
portance for the correct functioning of society and economy: e.g. water supply,
transportation, agriculture, telecommunications, electricity generation, etc. This
definition may sound imprecise, and it actually varies from country to country.
Nevertheless, there is a (common sense) consensus about the importance of pro-
tecting critical infrastructures against disruption or destruction, which globally
increased after the terrorist attacks of September 11, 20011. Critical infrastruc-
tures are often industrial facilities, and as such, they centralize their current state
measurements in a single system which allows human users to perform remote
actions (and sometimes it is programmed to perform pertinent actions by itself).
A system with this qualities is called Supervisory Control and Data Acquisition
System (SCADA, for short).

SCADA systems consist of hardware, software and communications channels
linking their components. Figure 1 shows the general layout of the components
of a SCADA system, which for simplicity displays only its basic components:
There is a control center which performs centralized monitoring and control tasks,
including monitoring alarms and processing/logging current status data, allow-
ing human users to interact with the system through Human-Machine Interfaces
(HMIs) and sometimes having enough autonomy to generate action upon certain
events. The control center acquires data and controls the whole system through
network connections coming from field devices such as Remote Telemetry Units
(RTUs), Programmable Logic Controllers (PLCs) and Intelligent Electronic De-
vices (IEDs, e.g. as smart-cameras), which are the ones that directly acquire data
from sensors and control actuators.

In the past, SCADA systems were typically isolated into industrial facilities,
buy nowadays they have many of their components connected to the external
world with Internet-base protocols such as TCP/IP, Modbus and other proprietary

1Refer to [Galland, 2010] for a discussion about different definitions of critical infrastructures
across the countries)
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14 INTRODUCTION

Figure 1: Simplified layout of a SCADA system. Image taken from [Tsang, 2010]

ones. The multiplicity and discrepancy of these highly interconnected components
opens many opportunities to cyber-attack such systems. This even gives rise to the
development cyber-weapons. For instance, STUXNET is a computer worm al-
legedly conceived to compromise Iranian SCADA nuclear systems [Karnouskos,
2011]. Discovered in 2010, it succeeded to sabotage Iran’s nuclear program by
interfering with the correct functioning of computers and PLCs. The final pur-
pose of Stuxnet was to accelerate uranium enrichment centrifuges to the point of
tearing them down. More recently, in 2015, there was a major cyberattack to a
power grid in Ukraine [Lee et al., 2016] causing a blackout which affected about
230 000 people for periods between one and six hours.

Attacks like the aforementioned showed the limitations of the state-of-the-art
SCADA security measures, which typically relied on proprietary technologies, of-
ten under the paradigm of “security by obscurity”. This might give good results in
most of the cases when the technology providers are trustworthy. However it dis-
allows each societies’ right to have full sovereignty over the systems governing its
critical infrastructures. Having that in mind, through its H20202 program, the Eu-
ropean community considered important to fund research on alternative SCADA
protection frameworks, based on open protocols and open source tools. This gave

2https://ec.europa.eu/programmes/horizon2020/

14



INTRODUCTION 15

rise to the SCISSOR project3, of which this thesis is part.
The SCISSOR framework is structured into four layers, and its simplified view

is presented in Figure 5.2, where we see its layers from bottom to top:

1. A monitoring layer (ML), where there are sensors and actuators components
of the system,

2. A control and coordination layer (CCL), for grouping element of the ML in
a pertinent way into edge agents, in order to collect all monitoring data in a
uniform representation.

3. A decision & analysis layer (DAL), which receives the processed CCL data,
and performs statistical/rule-based analysis.

4. A human-machine interface layer (HMI) presenting the system’s behavior
in real time in a human-readable manner, and displaying all the alerts that
might come from the DAL or the CCL.
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Figure 2: Overall architecture of SCISSOR system

The SCISSOR framework focuses on many different security aspects: pre-
venting unauthorized physical access to industrial facilities, protecting its com-
munication channels through firewalls and cryptography, verifying its log files

3https://scissor-project.com/
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16 INTRODUCTION

integrity (avoiding modifications/injections/deletions), testing extreme or unusual
conditions in its field components, and statistically analyzing the whole state of
the system. This last aspect is developed in Workpackage 5 of the SCISSOR
project, in which this thesis is circumscribed.

The contribution of the present work is the use of Probabilistic Graphical Mod-
els (PGMs) to detect possible threats to SCADA systems. There exist several
PGMs frameworks to deal with this kind of problem. We chose to base our work
on Bayesian Networks (BNs), which have been successfully exploited in decision
aid problems and diagnosis in many fields (medicine, robotics, computer trou-
bleshooting, etc). BNs are well suited for SCISSOR purposes because they can
model uncertainty in complex systems such as the SCADA ones, where there
could be the necessity to perform inference under missing data conditions. In
addition, unlike black-box models such as neural networks or SVMs, they have
a semantically clear representation, which can be interpreted, corrected or even
completely specified by experts.

The most widely used BN model is the one that deals with discrete/categorical
random variables (the reader can refer to Chapter 1 for discrete BN foundations,
definition, learning/inference algorithms as well as temporal extensions). How-
ever SCADA systems (as many others) contain also continuous variables. The
simplest solution to deal with continuous variables consists in discretizing these
variables, but this represents a great loss of information in the model w.r.t. to the
real system, especially if we consider that the domain size of those discretized
variables must remain relatively small (about five or six discretization intervals
at most, with today’s technology computers) in order to keep learning and infer-
ence tasks efficient and effective. In the literature there are some BN models that
can deal with continuous variables like Conditional Linear Gaussians (CLGs) and
Mixtures of Truncated Basis Functions (MTBFs); the former are easy to learn
but are not always expressive enough (they always represent a joint multivariate
normal distribution, and they struggle representing a discrete random variable de-
pending of a continuous one), and the latter are very expressive thanks to the use of
a large family of probability distributions, but their inference times are prohibitive
because they involve computing a number of algebraic expressions that grows ex-
ponentially with the number of “factors” involved in the MTBF. For more details
about BN discretization, CLG, MTBFs, the reader might refer to Chapter 2.

In the present work we address the continuous random variables issues in the
BN context by introducing two new BN-based models (which are presented in
Chapters 3 and 4). They are more expressive than CLGs and scale up much better
in terms of inference times than MTBFs. In the last thirty years, there was a lot

16



INTRODUCTION 17

of research efforts in the learning and inference of discrete BNs (which are NP-
complete problems); we propose adaptations of some of those algorithms for our
proposed models.

Keeping in mind that the main purpose of the SCISSOR framework is cyber-
security, we could imagine various possible cyber-attacks scenarios of a SCADA
system (some are actually documented in the literature). However, it is impossible
to devise all the possible scenarios. In addition, cyberattacks are rare events that
do not necessarily follow a unique pattern. So, it is difficult to define a statistical
model of SCADA cyber-atacks. Rather, one can address the problem as as an
anomaly detection problem, where a potential attack is defined as a very unlikely
state in the system. This is the approach taken in this thesis. In Chapter 5, this
approach is presented through testbeds on a real SCADA system found in the SEA
FAVIGNANA4, accompanied by a non-exhaustive description of the SCISSOR
project itself.

Finally, the manuscript ends with a chapter presenting some conclusions and
future research directions.

4An electric central in Favignana’s island (Sicily, Italy). https://www.seafavignana.
com/
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Chapter 1

Bayesian Networks

After decades of research, multivariate uncertainty modeling is still being a chal-
lenge for the AI and Machine Learning communities. The first successful attempt
to tackle this problem came with the introduction of Probabilistic Graphical Mod-
els (PGMs), which are declarative representations, i.e. they separate the knowl-
edge they encode and the methods we use to reason through them; this allows
using different algorithms for the same reasoning task, and using the same rea-
soning algorithms for different models. For instance, we are able to use the same
inference algorithms for Bayesian Networks and Markov Networks (two different
PGMs).

One of the first appearances of a PGM as such came with the introduction of
the Bayesian Network model (BN, aka. Belief networks) [Pearl, 1988]. This the-
sis focuses on BN based models, for which we borrow and adapt BN learning and
inference methods.

BNs are graphs whose nodes represent random variables and whose edges rep-
resent conditional dependencies. Although we will give a more rigorous statement
of what a BN is, it is already worthy to mention that BNs have some advantages
w.r.t. other state-of-the-art multivariate reasoning models (such as Neural Net-
works [McCulloch and Pitts, 1943], Fuzzy Logic models [Zadeh, 1965], Support
Vector Machines [Cortes and Vapnik, 1995], and any blackbox model in general),
which can be summarized in three points:

1. The BN reasoning is deeply founded in statistics and probabilities.

2. The BN representation has a clear interpretation so that an expert of a given
domain can suggest corrections for a BN or even propose a completely new
one, so that we can have a BN model even if we cannot find enough data to
learn its parameters.

21



22 1. Bayesian Networks

3. The BN representation does not discriminate between input and output vari-
ables. BNs allows us to query about any subset of its variables w.r.t. any
information available.

BNs were successfully used in medical expert systems [Heckerman et al.,
1992, Andreassen et al., 1992], classification problems [Friedman, 1997, Cheng
and Greiner, 2013], spam filtering [Sahami et al., 1998, Pantel and Lin, 1998],
risk management [Fenton and Neil, 2012, Kindermann et al., 1980], automatic
diagnosis [Bottone et al., 2008, Cheng et al., 2013], troubleshooting [Skaanning
et al., 2000, Huang et al., 2014], bioinformatics [Friedman et al., 2000, Murphy
and Mian, 1999], robotics [Lebeltel et al., 2004, Schumann et al., 2012], and many
others.

In this chapter, in a first section we give a brief introduction to the foundations
of BNs: probability and graphs; then in the next section we define formally BNs.
In the last two sections we discuss inference and learning in the context of BNs.
Most of the concepts in this chapter came from [Koller and Friedman, 2009], to
which the reader should refer for further concepts.

1.1 Statistics Foundations
In this section we make a brief introduction of how to express uncertainty through
statistical concepts, notably through probabilities. Uncertainty is an inherent part
of our lives: we cannot know exactly our weight, the current temperature, how
much time will it take us to arrive to work in the morning, when are we getting
sick, etc. We are used to not have perfect information about our environment, to
have only clues or even beliefs about the state of the real world around us, and
we are even used to make relevant decisions in such conditions. That is why it is
important to define a formal way to express, measure and reason about all these
uncertainties.

A very common way to express uncertainty is through probabilities. Proba-
bilities are a numerical measures of how likely an event is to happen, in a given
context; we state it formally through Definitions 1.1.1 and 1.1.2.

Definition 1.1.1 (Event) An Event is any possible (or impossible) outcome of a
given experiment. If an event is sure to happen, we call it a certain event; in the
same logic, if an event will never happen, we say it is an impossible event (denoted
as ∅). We say an event is an elementary event whenever it represents the outcome
of exactly one experiment. We call universe of events (denoted as Ω) the set of all
possible elementary events that can occur for a given experiment.

22



1. Bayesian Networks 23

Definition 1.1.2 (Probability Distribution) Let Ω be a universe of events and let
F be a σ-algebra on Ω (when Ω is discrete, F is equal to 2Ω). A probability
distribution P : F 7→ R is a mapping from set of events F to the Real Numbers R,
such that:

1. P (A) ≥ 0,∀A ∈ F ,

2. P (Ω) = 1,

3. If A,B ∈ F and A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

A probability distribution is said to be positive iff ∀A ∈ F , such that A 6= ∅, we
have that P (A) > 0. From this definition, we can easily prove that P (∅) = 0, and
that in general P (A ∪B) = P (A) + P (B)− P (A ∩B).

We have defined probability in terms of (sets of) events. In order to simplify
its representation, we often express those events through values (numerical or
categorical). To do so, we introduce the concept of random variables (see Defini-
tion 1.1.3).

Definition 1.1.3 (Random Variable) Let Ω be a universe of events, let F be a σ-
algebra on Ω and (Ω,F , P ) be a probabilistic space. In addition, let ΩX be a set
and let FX be σ-algebra on ΩX . A random variable X : Ω 7→ ΩX is a measurable
function such that ∀x ∈ FX : X−1(x) = {y ∈ Ω : X(y) ∈ x} ∈ F . Then, we
define the probability over FX as PX(x) = P (X−1(x)). We call ΩX the domain
of Variable X . A random variable is said to be categorical if its domain does not
represent a quantity, and is said to be discrete whenever its domain has a finite or
a countably infinite amount of elements [Starnes et al., 2010]. In the same way, a
random variable X̊ is said to be continuous if it is not a discrete one. When it is
clear from the context, we write simply P (·) instead of PX(·).

For simplicity, hereafter, we will denote the joint probability P (X1∪· · ·∪Xn)
as P (X1, . . . , Xn). Also, we will frequently encounter probabilities of the form
P (X1 = x1, . . . , Xn = xn), we will often denote those as P (x1, . . . , xn). At
this point, we state that, unless otherwise specified, in the rest of this thesis cap-
ital letters (X, Y, Z, . . .) will always represent random variables, capital bold let-
ters (X,Y,Z, . . .) will represent sets of random variable. Lowercase letters will
always represent instances (values) of random variables (or of sets of random
variables when in boldface) represented by their corresponding capital letters
(x, y, z,x,y, z, . . .). We state as well that we will use a circle above letters to
express that a variable is continuous (X̊, Y̊ , Z̊, . . .), or to mention that a set of
random variables contains some continuous variables (X̊, Y̊, Z̊, . . .).
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24 1. Bayesian Networks

In Definition 1.1.3 we introduced definitions of discrete and continuous vari-
ables which might be too strict to our purposes for the following reasons:

• In a computer context numbers are represented by a fixed number of bits,
so any random variable would be inherently discrete.

• Later in this thesis we will use the notion of discrete random variable in
a BN context, where having huge domain sizes is prohibitive in terms of
inference and learning.

In the context of this thesis, we will consider random variable X̊ to be contin-
uous as long as we can establish an strict order between all its possible outputs,
and whenever its domain size is too big to be dealt with a BN. For instance, we
will take the liberty to consider X̊ ∈ {0, 1, . . . , 1000} to be a continuous variable
(in other words, we extend X̊ to be defined in interval [0, 1000]).

Having introduced the concept of continuous random variables, it is worth
noting that the probability of any continuous variable X̊ at any single value x̊ is
equal to zero: P (X̊ = x̊) = 0, which can hide the fact that some values of X̊
are more likely to appear than others. To overcome this issue, we measure the
probability of a continuous variable belonging to a measurable set of values (e.g.
an interval) instead of a single value. We do this by means of probability density
functions and cumulative density functions (see Definitions 1.1.4 and 1.1.5).

Definition 1.1.4 (Probability Density Function) Let X̊ be a random variable of
domain ΩX̊ and let FX̊ be a σ-algebra on ΩX̊ . A probability density function
(pdf.) is a non-negative integrable function fX̊ : FX̊ 7→ R, such that for any set of
events I ∈ FX̊:

PX̊ (̊x ∈ I) =

∫
ẙ∈I

fX̊(ẙ)dẙ

Definition 1.1.5 (Cumulative Density Function) A cumulative density function
(cdf.) FX̊ is the function that represents the probability of a random variable to
be greater than or equal to a given value, and can be defined in terms of a pdf.:

FX̊ (̊x) = PX̊(X̊ ≤ x̊) =

∫ x̊

−∞
fX̊(ẙ)dẙ

Definition 1.1.6 (Expected Value) Being X a non-categorical random variable,
and P a probability distribution we define its expected value (or mean) as follows:

EP [X] = Mean(X) =
∑
x∈ΩX

xP (x)

We replace the sum with an integral whenever we deal with continuous variables
and pdfs. The subscript P often omitted, when it is clear from the context.
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1. Bayesian Networks 25

Definition 1.1.7 (Variance, Standard deviation) BeingX a non-categorical ran-
dom variable (discrete or continuous), we define its variance as:

V ar(X) = E[(X − X̄)2] = E[X2]− X̄2

Where X̄ = E[X]. We define the standard deviation of X as the square root of its
variance:

Std(X) =
√
V ar(X)

They both measure the spread of numerical values.

When dealing with probabilities in a multivariate context, we are often inter-
ested in knowing the probability of a certain configuration of all variables (called
joint distribution), or also we might be interested in the distribution of a single
variable, when all the other variables are unobserved (called a marginal distri-
bution). In Definition 1.1.8 we can see those two formally stated, and there is
a summation we can perform to find marginal distribution; as we will see in the
inference section of this chapter, this method should not be directly applied be-
cause that summation might have prohibitive computing time and might even be
prohibitive in terms of computer memory when not performed in a smart order.

Definition 1.1.8 (Marginal and Joint Distributions) For a random variable set
X = {X1, . . . , Xn}, we name P (X1, . . . , Xn) a Joint Distribution (or Probabil-
ity) of X, and we name P (Xi),∀i ∈ {1, . . . , n} a Marginal Distribution (or prob-
ability) of Xi. These two definitions are related since a Marginal Distribution can
be obtained from a Joint Distribution via a marginalization process:∑

X\{Xi}

P (X1, . . . , Xn) = P (Xi)

In the previous equation, whenever we find a continuous variable we replace its
corresponding sum by an integral.

We are also interested in measuring how the probability of a variable X can
be influenced if another variable Y takes a certain value, which leads to the notion
of conditional probability:

Definition 1.1.9 (Conditional Probability) The conditional probability ofX given
Y is defined as:

P (X|Y ) =
P (X, Y )

P (Y )
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26 1. Bayesian Networks

Bayes Theorem is a direct consequence of Definition 1.1.9. In Theorem 1.1.1
P (X) is often called an a priori and represents a knowledge or belief about X
that we would like to take into account for computing the conditional probability
P (X|Y ). Another consequence of the definition of conditional probabilities is
that we can express any joint distribution as a product of conditional probabilities,
this is called the Chain Rule (see Theorem 1.1.2).

Theorem 1.1.1 (Bayes Theorem) Given two random variables X and Y :

P (X | Y ) =
P (X)P (Y | X)

P (Y )

Theorem 1.1.2 (Chain Rule)

P (X1, . . . , Xn) = P (X1)P (X2 | X1) . . . P (Xn | X1, . . . , Xn−1)

Later in this chapter, we will see that BNs (and PGMs in general) do not
encode directly conditional dependences, but instead they encore conditional in-
dependences (see Definition 1.1.10); moreover, the more independences we find
in a phenomenon, the fewer parameters we will need to represent it through a BN.

Definition 1.1.10 (Conditional Independence) Being X, Y and Z random vari-
able sets, and P a probability distribution, we say that X is conditionally indepen-
dent of Y given Z, denoted P |= (X ⊥⊥ Y | Z), iff: P (X | Y,Z) = P (X | Z).
Also, using the definition of conditional probability we can give an equivalent
definition of conditional independence: P |= (X ⊥⊥ Y | Z), iff P (X,Y | Z) =
P (X | Z)P (Y | Z) In the particular case of Z = ∅, we say X and Y are
marginally independent and we denote this as P |= (X ⊥⊥ Y).

Sets of conditional independences can be represented by a graphoid. In [Pearl
and Paz, 1986] there is an analysis of how independence assertions can be rep-
resented by graph paths (this is why they are called graphoids), filling the gap
between statistics and graph theory is certainly the origin of PGMs as such. In the
graphoid theory the following five conditional independence properties became
axioms:

Definition 1.1.11 (Graphoid axioms)

1. Symmetry: (X ⊥⊥ Y | Z) =⇒ (Y ⊥⊥ X | Z)

2. Decomposition: (X ⊥⊥ Y,W | Z) =⇒ (X ⊥⊥ Y | Z)

3. Weak Union: (X ⊥⊥ Y,W | Z) =⇒ (X ⊥⊥ Y | Z,W)
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1. Bayesian Networks 27

4. Contraction: (X ⊥⊥W | Z,Y) ∧ (X ⊥⊥ Y | Z) =⇒ (X ⊥⊥ Y,W | Z)

5. Intersection (Only for P positive):
(X ⊥⊥ Y | Z,W) ∧ (X ⊥⊥W | Z,Y) =⇒ (X ⊥⊥ Y,W | Z)

If only Axioms 1 to 4 hold, the independence structure is called a semi-graphoid.

1.2 Graphs
In this section we give a brief introduction to graph theory, which will help us
to understand the concept of BN in the next sections. We start by reviewing the
definition of graph, explaining the notation we use to represent it and mentioning
some of its particular cases:

Definition 1.2.1 (Directed/Undirected Graph) A graph K = (X, E) is a data
structure formed by a set of nodes1 X = {X1, . . . , Xn} and a set of edges E2,
which can be undirected edges: (Xi −Xj), with i 6= j; or directed edges: (Xi →
Xj), with i 6= j. We consider (Xi − Xj) to be the same undirected edge that
(Xj −Xi), in the same way we let (Xj ← Xi) to denote the directed edge (Xi →
Xj). Finally, among the edges (Xi → Xj), (Xj → Xi) and (Xi −Xj), we forbid
the existence of more than one in the same graph. A graph H = (X′, E ′) whose
set of edges E ′ admits only undirected edges is said to be an undirected graph. In
the same logic, a graph G = (X′′, E ′′) graph whose set of edges E ′′ admits only
directed edges is said to be a directed graph.

We denote (Xi ↔ Xj) to represent the directed edge (Xi → Xj) or (Xj →
Xi). Then, we let (Xi 
 Xj) represent undirected and directed edges of the
forms (Xi −Xj) and (Xi ↔ Xj), respectively.

In certain situations, we will be interested in analyzing only a portion of a
graph, that is why we define also the concepts of subgraph (see Definition 1.2.2).
There is a particular case of subgraph that will be especially useful when per-
forming BNs inferences: the cliques (see Definition 1.2.3), we will have a further
discussion about cliques in the following sections.

Definition 1.2.2 (Subgraph, Induced Subgraph) Being K = (X, E) a graph,
the graph K′ = (X′, E ′) is said to be a subgraph of K iff. X′ ⊂ X and E ′ ⊂ E .
If E ′ is the set all all edges (X 
 Y ) ∈ E s.t. X, Y ∈ X′, K′ is said to be an
induced subgraph of K and can be denoted as K′ = K [X′]

1Nodes can be also called vertices.
2Edges can also be called arcs.
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28 1. Bayesian Networks

Definition 1.2.3 (Clique) Being K = (X, E) a graph, we define a clique as a
subset of nodes C ⊆ X, such that the induced subgraphK [C] is complete, i.e. for
every couple of nodes Xi 6= Xj in C there exist an edge of the form Xi 
 Xj . We
say a clique is a maximal clique of a graph if it is not a subset of another larger
clique in the same graph.

We will be particularly interested in analyzing paths and trails in graphs (see
Definition 1.2.4), since their presence (or absence) will determinate probabilis-
tic independences in a graph whenever we let the nodes act as random variables
(see Definition 1.1.11, also more on this in the following sections). In PGMs in
general, graph’s edges represent interaction between random variables, this im-
plies that if all variables are interacting, the graph that represents them will be
connected (see Definition 1.2.5).

Definition 1.2.4 (Trail, Path) Being a graph K = (X, E), the sequence
(X1, . . . , Xk) is a trail whenever ∀i = {1, . . . , k − 1} : (Xi 
 Xi+1) ∈ E , and
all its elements {X1, . . . , Xk} are distinct (except possibly the first and the last
ones). The trail (X1, . . . , Xk) is a path in K if (Xi ← Xi+1) does not belongs to
E ,∀i = {1, . . . k − 1}. If there is at least one directed edge forming the path, we
say it is a directed path.

Definition 1.2.5 (Connected Graph, Tree) A graph K = (X, E) is a connected
graph whenever for any two different nodes Xi, Xj ∈ X there exists a trail
(Xi, . . . , Xj). An undirected graph H = (X, E) is a Tree whenever for any two
different nodes Xi, Xj ∈ X a path (Xi, . . . , Xj) exists and is unique.

For explaining PGMs properties we need to be capable to describe the basic
relations between nodes within a graph. In a directed graph we will talk about
ancestors, descendants, parents, children and Markov blanket of a node (see Def-
initions 1.2.6, 1.2.7 and 1.2.9) whereas for an undirected graph we will talk about
neighbors (see Definition 1.2.8).

Definition 1.2.6 (Ancestors, Descendants) Being G = (X, E) a directed graph,
for two different nodes Xi, Xj ∈ X, Xi is an ancestor of Xj if there exists a
directed path (Xi, . . . , Xj). Xj is a descendant de Xj whenever Xi is an ancestor
of Xj .

Definition 1.2.7 (Parents, Children) Being G = (X, E) a directed graph, we de-
fine the parents of Xi in G, PaG(Xi), as the set of nodes such that Xj ∈ PaG(Xi)
iff (Xj → Xi) ∈ E . In the same way, we define the children of Xi, ChG(Xi) as
the set of nodes such that Xj ∈ ChG(Xi) iff (Xi → Xj) ∈ E .
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Definition 1.2.8 (Neighbors) Being K = (X, E) a graph, having X ∈ X, we
denote the neighbors of X in K as NgbK(X) and define it as Y ∈ NgbK(X) iff
there exists an edge (X − Y ) ∈ E .

Definition 1.2.9 (Markov Blanket) [Pearl, 1988] Being G a directed graph over
the node set X, having X ∈ X, we denote by MBG(X) the Markov blanket of X
and we define it as the union of the parents, the children and other children’s
parents of X:

MBG(X) = PaG(X) ∪ ChG(X) ∪

 ⋃
Y ∈ChG(Y )

PaG(ch)


Some PGMs, in particular BNs, require directed graphs having no cycles (see

Definition 1.2.10). Those graphs are called directed acyclic graphs (DAGs, see
Definition 1.2.11). Within DAGs, we can always define a topological order of
the nodes (see Definition 1.2.12). This is important in our context because it will
be the order in which we can perform exact random sampling in a BN, and also
because it is an order we can impose to certain BN learning methods (this will be
discussed in the following sections).

Definition 1.2.10 (Cycle) A cycle in a graph K is defined as the sequence
(X1, . . . , Xn) if:

1. (X1, . . . Xn, X1) is directed path in K, whenever the graph is directed.

2. (X1, . . . Xn, X1) is a trail in K, whenever the graph is undirected.

Definition 1.2.11 (Directed Acyclic Graph) A directed graph graph (DAG) is a
directed graph which has no cycles.

Definition 1.2.12 (Tolological Order) Being G = (X, E) a directed graph, the
sequence (X1, . . . , Xn) is a topological order of G whenever ∀(Xi → Xj) ∈
E , i < j. It can be easily shown that a topological order exists iff G is a DAG.

1.3 Bayesian Networks Definition
Having discussed about the statistics foundations and about graph theory, in this
section we introduce the remaining concepts to give a formal definition of a BN.
PGMs encode sets of independences (see Definition 1.3.1), which follow the semi-
graphoid or the graphoid axioms (see 1.1.11). In this context a BN structure is a
DAG which respects the local Markov property: each variable is independent of
any of its non-descendants when their parents’ values are observed (see Defini-
tion 1.3.2).
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30 1. Bayesian Networks

Definition 1.3.1 (Set of Independences) The independence set I(P ) is the set of
assertions (X ⊥⊥ Y | Z) that hold in the probabilistic distribution P .

Definition 1.3.2 (Bayesian Network Structure) A BN Structure G = (X, E) is a
DAG whose nodes X = {X1, . . . , Xn} represent random variables and in which
the following set of conditional local independences are encoded:

∀Xi ∈ X : (Xi ⊥⊥ NonDesc(Xi) | Pa(Xi))

Where NonDesc(Xi) and Pa(Xi) are the sets of non-descendants and parents of
Xi in G, respectively.

In BN structures, the probabilistic dependency between random variables (their
nodes) is determined by active trails, which are defined in the context of a subset
of observed variables (see Definition 1.3.3). If there is no active trail between two
variables, we consider them as d-separated (see Definition 1.3.4).

Definition 1.3.3 (Active Trail) [Geiger and Pearl, 1990] Being G a BN struc-
ture, and (X1, . . . , Xk) a trail in G, we consider it to be an active trail given a set
of observed variables Z if, for all v-structures3 Xi−1 → Xi ← Xi+1 (1 < i < k)
in G, Xi or one of its descendants is in Z , and in no other case there is a Xi in
that trail belonging to Z.

Definition 1.3.4 (d-separation) [Pearl, 1988]. Being X, Y and Z three node
sets belonging to the BN structure G, we define X and Y to be d-separated by Z,
if there does not exist any active trail between any node X ∈ X to a node X ∈ Y
given Z over G. This is denoted d-sepG(X; Y | Z). Also, we denote I(G) the set
of independences corresponding to d-separations in the following way:

I(G) = {(X ⊥⊥ Y | Z) : d-sepG(X; Y | Z)}

Theorem 1.3.1 [Pearl, 1988] In a BN structure G any variableXi is d-separated
by its Markov blanket, i.e.:

(Xi ⊥⊥ Xj|MBG(Xi)) ∈ I(G)

Where j 6= i and Xj 6∈MBG(Xi).

There are two key concepts defined over BN structures: first, I-map (see Defi-
nition 1.3.5), which expresses whether the independences encoded in a BN struc-
ture are a subset of another set of independences (for instance, the ones encoded

3The form Xi−1 → Xi ← Xi+1 is said to be a v-structure.
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in a probabilistic distribution); second, factorization (see Definition 1.3.6), which
defines an algebraic way to express a probabilistic distribution related to a BN
structure. It is showed in Theorems 1.3.2 and 1.3.3 that both concepts are equiva-
lent, and moreover in Theorem 1.1.2 it is shown that for any possible DAG, there
is always a probabilistic distribution that factorizes over it.

Definition 1.3.5 (I-map, Minimal I-map) Being G a BN structure, which holds
the set of independences I(G), we call G an independence map (I-Map) of a set
of independences I whether I(G) ⊆ I. In the same way we can say that G is an
I-map of a probability distribution P whether I(G) ⊆ I(P ). G is said to be a
minimal I-map of I whenever removing any edge from G would result in it being
no longer an I-map.

Definition 1.3.6 (Factorization) Being G a BN structure over the random vari-
able set X, we consider G to factorize a probability distribution P whenever P
can be expressed as:

P (X) =
∏
Xi∈X

P (Xi | PaG(Xi))

Theorem 1.3.2 [Geiger and Pearl, 1990] Being G a BN structure over random
variables set X, and P a probability distribution over X, if G is an I-map of P ,
then G factorizes P .

Theorem 1.3.3 (d-separation Soundness) [Geiger and Pearl, 1990] Being G a
BN structure and P a probabilistic distribution. If G factorizes P , then G is an
I-map of P .

Theorem 1.3.4 (d-separation Completeness) [Geiger and Pearl, 1990] Being
G = (X, E) a BN structure and P a probabilistic distribution: for everyX, Y ∈ X
and Z ⊆ X.

(X ⊥⊥ Y | Z) /∈ I(G) =⇒ ∃P : (X ⊥⊥ Y | Z) /∈ I(P ) s.t. G factorizes P

Since for any possible DAG there will be a distribution that factorizes into
it, we can define specific parameters for each factor of that distribution. Here
we present one way to assign those parameters: the case of discrete BNs (see
Definition 1.3.7), where we deal with discrete finite-domain variables, and we
store all probabilistic distribution into conditional probabilities tables (CPTs).

Definition 1.3.7 (Bayesian Network) [Pearl, 1988] A (discrete) BN B is a pair
(G,θ) where:
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32 1. Bayesian Networks

• G = (X, E) is a BN structure

• X = {X1, . . . , Xn} represents a set of discrete random variables (by abuse
of notation, it is usual to use interchangeably Xi ∈ X to denote a node in
the BN and its corresponding random variable),

• E is a set of edges (arcs),

• θ = {P (Xi|PaG(Xi))}ni=1 is the set of the conditional probability tables
(CPTs) of the variables Xi in G given their parents PaG(Xi).

The BN factorizes the joint probability P over X as follows:

P (X) =
n∏
i=1

P (Xi|PaG(Xi)). (1.1)

As an example, Figure 1.1 displays a BN over random variables
X = {A,B,C,D,E}. Here, the joint probability over X is:

P (A,B,C,D,E, F ) = P (A)P (B|A)P (C)P (D|C)P (E|B,D)P (F |E)

E

F

DB

CAP (A)

P (B|A)

P (C)

P (D|C)

P (E|B,D)

P (F |E)

Figure 1.1: A Bayesian network.

In order to factorize P it is convenient to use a graph G which is a minimal
I-map of P , because it results in fewer parameters when constructing a BN (which
is one of the main goals of BNs and of PGMs in general: exploit independences
to construct compact multivariate representations). We can add to the problem
of representing P a D-map perspective (see Definition 1.3.8): if G is both, a D-
map and a I-map of P , it would represent exactly the same independences of
P , i.e. it would be a P-map of P , which is the best possible representation of
P . Unfortunately, P-maps do not always exist for two reasons: first, P might
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encode deterministic relations between variables and second, BN independence
assumptions are not appropriate for every case. However, the conditions of a
distribution P to have a P-map are presented in Theorem 1.3.5, which does not
allow zero-measurements on the CPDs representations of P , implying that P must
be a strictly positive distribution, hence a fortiori, that it encodes no deterministic
relation between its variables.

Definition 1.3.8 (D-map, Maximal D-map) We say a BN structure G is an D-
map of a distribution P if I(G) ⊇ I(P ). We say G is a maximal D-map of P if
adding any edge into it results in it being no longer a D-map.

Definition 1.3.9 (P-map, faithfulness) We say a BN structure G is a perfect map
(P-map) of a distribution P whenever G is, at the same time, an I-map and a
D-map of P . In that case we also say that G is faithful to P , i.e. I(P ) ≡ I(G).

Theorem 1.3.5 [Meek, 1995b] For almost all distributions P 4 that factorize
over G, we have that G is a P-map of P .

If a P-map exists for a distribution P , it is not unique because different graphs
can encode exactly the same set of independences. We call this case Markov
equivalence (see Definition 1.3.10). The Markov equivalence between two DAGs
is ruled by Theorem 1.3.6.

Definition 1.3.10 (Markov equivalence class) We call a Markov equivalence
class the set of graphs {G1, . . . ,Gp} such that all their elements encode the same
independences set: I(G1) = . . . = I(Gp). Any pair of graphs in that set are said
to be Markov equivalent.

Definition 1.3.11 (Immorality) The v-structure Xi−1 → Xi ← Xi+1 in a graph
G is called immorality whenever the is no edge between Xi−1 and Xi+1.

Theorem 1.3.6 (Markov Equivalence) [Verma and Pearl, 1991] Two DAGs are
Markov equivalent iff they have the same skeleton 5, and the same immoralities.

We can express Markov equivalence classes in a graphical way using partially
oriented DAGs, which we call CPDAGs (see Definition 1.3.12). In order to build
a CPDAG, we must take the skeleton of a DAG and orient the immorality edges
in their original direction; some undirected edges might have only one possible
direction in order to avoid creating new immoralities, we finally replace those
with directed edges in their original directions. This concept is applied in Exam-
ple 1.3.1.

4In this context, almost all refers to all distributions except those with a zero-measure set in
the conditional probability distribution space.

5Skeleton is the undirected graph that results from replacing every directed edge with an undi-
rected one.
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34 1. Bayesian Networks

Definition 1.3.12 (CPDAG) (Completed partially-oriented DAG) A CPDAG of a
DAG G is the (unique) graph which is the result of replacing all directed edges of
G with undirected whenever they do not make part of any immorality and only if
reverting their direction would not generate a new immorality.

Example 1.3.1 (Building a CPDAG) In Figure 1.2a, we have a DAG G whose
(unique) CPDAG we intend to find. The first step to do so is to capture its skeleton
and orient its immorality edges (in this case, onlyB → E ← D), which is done in
Figure 1.2b (see red edges), giving a partially oriented DAG (PDAG). We notice
that in a Markov equivalence class the edge between E and F must be oriented
as E → F , because otherwise it would generate new immoralities around E; the
rest of undirected arcs are not compelled into any direction. Then the resulting
CPDAG of G is presented in Figure 1.2c. The CPDAG can be used to easily
instantiate new graphs belonging to the same Markov equivalence class of G, in
order to do so, we must orient the undirected edges in any possible way such that
it does not generate any new immoralities, e.g the graph presented in Figure 1.2d.

E

F

DB

CA

(a) A graph G.

E

F

DB

CA

(b) PDAG of G.

E

F

DB

CA

(c) CPDAG of G.

E

F

DB

CA

(d) Equivalent of G.

Figure 1.2: Creating a CPDAG from G.

1.4 Inference
In this section we discuss about inference methods in a BN context. We call in-
ference any process of solving a probability query. There are three main types
of probability query in the BN context: First, the conditional probability query,
which consists in the computation of the probability of a set of variables, possibly
having evidence (see Definition 1.4.1); second, the Maximum a Posteriori (MAP)
inference, in which we look for the instances of a set of variables that maximize a
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given conditional probability query [Pearl, 1988]. As a special case, when the set
of variables contains all the variables in the BN, we get a Most Probable Expla-
nation (MPE) query. Third, the Most Relevant Explanation (MRE) inference, in
which we look for a relevant subset of variables to explain a given evidence [Yuan
and Lu, 2008].

Definition 1.4.1 (Conditional Probability Query) Being P (X) a probability dis-
tribution defined over the random variable set X, having a query variable set
Q ⊂ X, and an evidence variable set E ⊂ X, a conditional probability query is
defined as the following computation:

P (Q|E = e) =

∑
Y P (Y,Q,E = e)

P (E = e)
,

where Y = X\(Q ∪ E).

Inference over conditional probabilities queries is not a trivial task, it is proven
in [Cooper, 1990] that it happens to be a NP-Hard problem; actually even approx-
imate inference is proven to be a NP-Hard problem [Dagum and Luby, 1993].
Unsurprisingly, MPE inference turns out also to be a NP-hard problem, which
is proven in [Shimony, 1994]. However, MAP inference is in general a harder
problem (NPpp-complete) but it reduces to a NP-complete problem if the BN is
a polytree [Park and Darwiche, 2004]. MRE inference is also a complex: it is
known to be in NPpp and it is conjectured to be NPpp-complete [Yuan et al., 2011].

There are four main kinds of methods for inference of type conditional prob-
ability inference. First, classic exact inference methods such as the Variable
elimination (VE) algorithm [Dechter, 1999], and Clique-Tree message passing
algorithms such as Shafer-Shenoy [Shenoy and Shafer, 1990] and Lazy Propaga-
tion [Madsen and Jensen, 1999]. Second, there are methods that treat inference as
an optimization problem, the most notable among them being the “Loopy” Belief
Propagation (which is an approximate method) and its improved version: the Gen-
eralized Belief Propagation [Yedidia et al., 2001]. Third, sampling-based meth-
ods, like logic sampling [Henrion, 1988] or Gibbs Sampling [Geman and Geman,
1984], which provide approximate solutions but are very useful whenever ex-
act inference methods are infeasible. Fourth, methods based in weighted-model-
counting in which BNs are encoded into Conjunctive Normal Form models, each
of which has an assigned weight, allowing the representation of a probability
query exactly as the sum of weights of the models that are consistent given some
evidence [Chavira and Darwiche, 2006, Chavira and Darwiche, 2008]. MPE in-
ferences can be solved using techniques similar to those of conditional probability
queries, substituting summations by maximizations. MAP inferences can also be
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solved using some Clique-Tree message passing algorithms but using constrained
trees (resulting from constrained elimination orders) [Mateescu et al., 2010], or
by branch and bound-like techniques [Park and Darwiche, 2003]. Finally, MRE
can be solved using MCMC-based algorithms [Yuan and Lu, 2008]. In this thesis,
we focus on solving conditional probability queries on BNs.

In the rest of this section we discuss about the VE and the Shafer-Shenoy al-
gorithms, which are both exact methods and which are both equivalent in terms of
computation times, as we will see later. Those will be the only inference methods
addressed in the present thesis.

1.4.1 Variable Elimination

We will introduce the VE algorithm by means of an example:

Example 1.4.1 (Variable elimination by hand) We want to compute the proba-
bility of P (F ) in the BN represented in Figure 1.1, having no evidence variables
for this particular query.
Since P (F ) =

∑
X\{F} P (X) =

∑
A . . .

∑
E P (A, . . . , F ), we can perform these

summations (variable eliminations) in many different orders, obtaining always the
same result. However, we will see later in this section that elimination orders can
have a big impact on the time required to perform this computation as well as
in the memory required to store all its intermediate results. For this example we
choose to perform the computations in the order shown in Equation 1.2.

P (F ) =
∑
E

(∑
B

(∑
D

(∑
C

(∑
A

P (A,B,C,D,E, F )

))))

(1.2)

P (B,C,D,E, F ) =

(∑
A

P (A)P (B|A)

)
︸ ︷︷ ︸

P (B)

P (C)P (D|C)P (E|B,D)P (F |E)

(1.3)

P (B,D,E, F ) = P (B)

(∑
C

P (C)P (D|C)

)
︸ ︷︷ ︸

P (D)

P (E|B,D)P (F |E) (1.4)
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P (B,E, F ) = P (B)

(∑
D

P (D)P (E|B,D)

)
︸ ︷︷ ︸

P (E|B)

P (F |E) (1.5)

P (E,F ) =

(∑
B

P (B)P (E|B)

)
︸ ︷︷ ︸

P (E)

P (F |E) (1.6)

P (F ) =
∑
E

P (E)P (F |E) (1.7)

The elimination of A and C (see Equations 1.3 and 1.4) generated two CPTs
to be stored as intermediate computations: P (B) and P (D). The elimination
of D (see Equation 1.4) brings us an intermediate calculation of P (E|B) which
is also a CPT: in the original BN, there is no active trail from B to D when
no variable is observed, so that (B ⊥⊥ D), allowing us to assert that P (D) =
P (D|B) which leads to the conclusion that: P (D) × P (E|B,D) = P (D|B) ×
P (E|B,D) = P (E,D|B), hence, after summing overD, we get P (E|B). In fact,
it is proven in [Butz et al., 2010] that the results of all intermediate computations,
even when there are evidence, are always conditional probability distributions.
But this information turns out to be irrelevant for our final results, i.e. we do not
need to realize to which CPTs correspond the intermediate computations. Hence,
in the computations, P (E|B) can simply be interpreted as a function (we call it a
potential or a factor) φ(B,E). It is actually convenient for us to have a structure
more flexible than CPTs to store those computations. Moreover, we might want to
do inference computations in an unnormalized manner, which could help to gain
numerical accuracy in certain cases, and which could also allow us to introduce
beliefs as computation nodes, which are not probabilities.
We finish the example eliminating B and E (see Equations 1.6 and 1.7), denoting
all the probabilities we had been computing as factors without actually worrying
about CPTs generated during the process.

To cope with the need of the computations of Equations 1.5, 1.6 and 1.7 we
need to introduce the concept of Factors (see Definitions 1.4.2 and 1.4.3), which
are a generalization of CPTs, over which we formally define the operations of
Product and Marginalization and Normalization (see Definitions 1.4.4 and 1.4.5).
In order to eventually use factors as joint distribution, normalization is defined
over factors (see Definition 1.4.6).

Definition 1.4.2 (Factor) Being X a random variable set, we define a factor φ 6

as a function φ : ΩX 7→ R≥0, from the domain of X to the non-negative real
6Factors are also called Potentials.
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numbers. In this context, we also define X to be the scope of the factor and we
denote it X = Scope(φ).

Definition 1.4.3 (Factor Scope and Size) Being φ(X) a factor over the random
variable set X, we define:

1. The scope of the factor φ as X = Scope(φ).

2. The size of the factor φ as
∏

X∈X |ΩX |.

In addition, if Φ is a set of factors, we define Scope(Φ) =
⋃
φ∈Φ Scope(φ).

Definition 1.4.4 (Factor Product) Being X,Y and Z three disjoint random vari-
ables sets, we let φ1(X,Y) and φ2(Y,Z) be two factors. We define the factor
product φ1 × φ2 as:

φprod(X = x,Y = y,Z = z) = φ1(X = x,Y = y)× φ2(Y = y,Z = z)

Definition 1.4.5 (Factor Marginalization) Being X a random variable set, and
letting φ(X) be a factor, the marginalization of φ w.r.t. X ∈ X is another factor
φmarg : Xmarg 7→ R≥0, where Scope(φmarg) = Xmarg = (X \ {X}), such that:

φmarg(Xmarg) =
∑
x∈ΩX

φ(Xmarg, X = x)

Definition 1.4.6 (Factor Normalization) Being φ(X) a factor defined over the
random variable set X, we define its normalization as a probability distribution
Pφ(X) such that:

Pφ(X) =
φ(X)∑

x∈ΩX
φ(X = x)

X0

X2X1 . . . Xn

Figure 1.3: A Naive-Bayes Bayesian network with n+ 1 nodes.
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Example 1.4.2 (A Bad Elimination Order) In Figure 1.3 we present the Naive
Bayes network, a particular case of BN which is typically used for classification
(having X0 as class variable). For the purposes of this example, we decide to
perform a VE over the naive BN in order to compute P (Xn). To do so, we (badly)
choose to use the elimination order (X0, X1, . . . , Xn−1):

P (X) = P (X0)P (X1|X0) . . . P (Xn|X0) (1.8)

P (Xn) =
∑
Xn−1


∑
Xn−2

. . .

(∑
X0

P (X0)P (X1|X0) . . . P (Xn|X0)

)
︸ ︷︷ ︸

φ(X1,...,Xn)

. . .

 (1.9)

We appreciate that something horrible happens in Equation 1.9: the factor
φ(X1, . . . , Xn). To understand why is this so bad, let’s imagine each of the ran-
dom variables is binary and let’s consider that each element of its CPTs is en-
coded with double precision, we can assume each number can occupy 8 bytes
in memory. For n = 100, the CPTs need 2 + 4n × 8bytes ≈ 3.2KB in mem-
ory to be correctly allocated, whereas the factor φ(X1, . . . , Xn) would require
2n × 8bytes ≈ 1019TB, which is completely prohibitive in terms of memory, and
in terms of computation time for marginalizing over that factor. This observation
is generalized in [Cooper, 1990], where it is shown that the inference time (and
its memory requirement) grows exponentially with the size of the largest factor
scope generated during the inference process. In consequence, we must look for
the elimination order that minimizes that scope size. Unluckily, finding the opti-
mal VE turns out to be a NP-complete problem [Arnborg et al., 1987] (apart from
the exact inference problem to solve, which is already NP-hard itself). In practice
the elimination order is chosen using heuristic criteria, which will be discussed in
the following section.

When we are dealing with inferences of the form P (Q|E = e), having the
evidence variable set E, it is often convenient to express the information of each
random variable as a separate random variable itself: it allows us to treat that
information as an additional node in the BN and it allows us to express uncer-
tain information about those evidence variables. Therefore, evidence is defined
as a random variable conditioned by its respective evidence variable (see Defini-
tion 1.4.7).

Definition 1.4.7 (Evidence) Being X a random variable, we define an evidence
eX as any information we have on the values that occur for X . Such information
is entered into the BN as a likelihood measure P (eX |X).
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40 1. Bayesian Networks

Example 1.4.3 (Variable Elimination with Evidence) We want to compute
P (F |eB) from the BN shown in Figure 1.4, which is the same as the one used
for Example 1.4.1, but adding evidence for Variable B. We could compute this
as P (F |eB) =

∑
X\{F} P (X|eB) =

∑
A . . .

∑
E P (A, . . . , F |eB), but in order to

take advantage of the evidence representation we prefer to compute it as follows:

φ(F, eB) =
∑
A

. . .
∑
E

φ(A,B,C,D,E, F, eB) (1.10)

φ(F, eB) =
∑
A

. . .
∑
E

P (A)P (B|A)P (eB|B)︸ ︷︷ ︸
φ(A,B,eB)

P (C)P (D|C)P (E|B,D)P (F |E)

(1.11)

P (F |eB) ∝ φ(F, eB) (1.12)

In Equation 1.10, φ(A, . . . , F, eB) does not necessarily represent a joint prob-
ability, since P (eB|B) can represent beliefs w.r.t. the random variable B which
are not necessarily a conditional probability. As a consequence, φ(F, eB) is pro-
portional (and not necessarily equal) to the marginal distribution P (F |eB). In
Equation 1.11 we let φ(A,B, eB) be the product between the CPT P (B|A) and
the evidence factor P (eB|B), which allows us to perform the computations in the
same way as in Example 1.4.1. In order to obtain the desired distribution, we
apply a normalization procedure according to Definition 1.4.6 in Equation 1.12.

The procedure of the preceding example is generalized in the Variable Elimi-
nation Algorithm [Dechter, 1999], which takes as input a subset of query variables
Q (those whose probability will be computed), all the factors of the BNs (CPTs),
and all the evidence nodes’ factors; giving as output the probability P (Q) (see
Algorithm 1.1).
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E

F

DB

CA

eB

P (A)

P (B|A)

P (C)

P (D|C)

P (E|B,D)

P (F |E)

P (eB|B)

Figure 1.4: A Bayesian network representation with an evidence node for Variable
B.

Algorithm 1.1: Variable elimination algorithm.
Input: Φ: a factor set, Q: a query variables set, e: an evidence set, t: a

VE order
Output: φQ: a factor over Q encoding P (Q|e)

1 for i← 1, . . . , size(t) do
2 X ← i-th element of t;
3 if X 6∈ Q then
4 ΦX ← set of factors of all φX ∈ Φ such that X ∈ Scope(φX);
5 φ ← product of all factors φX ∈ ΦX ;
6 foreach e ∈ e s.t. e is an evidence on X do
7 φ← φ× P (e|X);

8 marginalize X from φ;
9 remove ΦX’s elements from Φ;

10 insert φ into Φ;

// Notice that Φ became the set of factors
// generated during the VE procedure

11 φQ ← product of all factors of Φ;
12 normalize φQ;
13 return φQ;

It often happens that not all variables in a BN have influence in the result of
an inference. If a variable is unobserved and it has no children in a BN and is
not part of our query variables, we can remove it without changing the result of
the inference. The systematic process of removing such nodes and their adjacent
edges was proposed in [Shachter, 1986], which consists in the elimination of the
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42 1. Bayesian Networks

so-called Barren nodes (see Definition 1.4.8).

Definition 1.4.8 (Barren nodes) [Shachter, 1986] In the context of an inference
process, a node of a BN is considered to be a Barren node whenever it does not
belong to the query node set, it has no evidence and if it has children, they are all
Barren nodes as well.

Example 1.4.4 (Barren Nodes Elimination) In the naive BN from Example 1.4.2,
since no variable is observed, the variables X1, . . . , Xn−1 would be barren nodes
(as they have no children). So we could have performed VE over a BN with a
single edge: X0 → Xn, giving as result: P (Xn) =

∑
X0
P (X0)P (Xn|X0).

1.4.2 Junction Tree Inference
In the preceding section we dealt with the process of inference using the VE algo-
rithm, expressing CPTs of a BN and their evidence node into factors φ(·), which
do not contain information about the direction of the edges in the BN structure.
Therefore, we can represent the factors generated during VE in an undirected
graph. We call it an Induced graph (see Definition 1.4.9); we explain how it is
created in the following example:

Definition 1.4.9 (Induced graph) Being Φ a set of factors generated during a
VE procedure, its induced graph is the undirected graph K = (X, E), where
X = Scope(Φ) and (X − Y ) ∈ E iff ∃φ ∈ Φ such that {X, Y } ⊆ Scope(φ).

Example 1.4.5 (Creation of an induced graph) We perform a VE process to com-
pute P (F ) in the BN shown in Figure 1.5a. The first step is to create an undirected
graph having the same nodes of the BN, with the directed edges of the BN con-
verted into undirected ones (i.e., this is the skeleton of the BN). The next step is
to add to this graph an undirected edge between every pair of nodes sharing a
common child in the original BN (if such an edge does not already exists): since
all the CPTs are of the form P (X|Y0, . . . , Yj), they have associated factors of
the form φ(X, Y0, . . . , Yj) and the newly added edges account for these factors.
The result of this step is called the moral graph (see Definition 1.4.10), in our
example the result is shown in Figure 1.5b. Then we proceed the elimination
using Order A,C,B,D,E. In the elimination of Variable A, we compute the
following marginalization

∑
A P (A)P (B|A)P (C|A), for which we have to gen-

erate φ(A,B,C), which we call simply factor ABC; this implies adding the edge
B − C for building the desired induced graph (see Figure 1.5c). In the same
logic, we eliminate A,C,B,D and E, generating the factors BCD, BDE, DE and
EF respectively. (see Figures 1.5c,1.5d,1.5e, and 1.5f). In general when we elim-
inate a variable, we remove its adjacent edges and we add edges between all its
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neighbors, creating a clique; it is proved in [Rose, 1970] that this process always
produces a chordal graph (see Definition 1.4.11). Finally by adding all edges
during the process, we obtain the induced graph (see Figure 1.5h.) We notice
three important things from this example: First, the induced graph depends on
the elimination order (e.g. if we decided to eliminate C before A, we would have
created the edge A − D instead of the edge B − C), and for that matter, choos-
ing an elimination order becomes equivalent to choosing a triangulation for the
moral graph. Second, for the inference process, we would store in memory all the
generated factors, but there are factors that are included in others (e.g. the scope
of the factor DE is included in the scope of BDE), it would be convenient in terms
of memory and computation time to consider only factors that are not included in
other factors i.e. consider only maximal cliques of the induced graph.

E

F

DB

CA

(a) A BN.

E

F

DB

CA

(b) Moral graph.

E

F

DB

CA

(c)
∑

A→ ABC

E

F

DB

CA

(d)
∑

C → BCD

E

F

DB

CA

(e)
∑

B → BDE

E

F

DB

CA

(f)
∑

D → DE

E

F

DB

CA

(g)
∑

E → EF

E

F

DB

CA

(h) Induced graph.

Figure 1.5: Creating an induced graph from a BN following a VE order.

Definition 1.4.10 (Moral graph) Being G = (X, E) a directed graph, the undi-
rected graph M(G) = (X, E ′) is said to be the moral graph of G iff an edge
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44 1. Bayesian Networks

(X − Y ) ∈ E ′ exists whenever there exists either (X → Y ) or (Y → X) or a
v-structure (X → Z ← Y ) in E . It can be also defined simply as a graph with no
immoralities (see Definition 1.3.11).

Definition 1.4.11 (Chordal graph) Being H = (X, E) an undirected graph, it
is said to be a chordal graph if all its cycles (X1, . . . , Xn), n > 3 have a chord,
i.e. there exists an edge (Xi − Xj) ∈ E such that 1 < |i − j| < n − 1. The
process of inserting edges in a graph so that it becomes a chordal graph is called
triangulation.

In Example 1.4.2 we saw the importance of generating the small factors dur-
ing a VE process. Since minimizing the size of the largest factor is a NP-hard
problem [Arnborg et al., 1987], we need at least an algorithm for trying to find
approximately the smallest possible factors. The simplest way to achieve this is
to choose the variable to eliminate when we are building the induced graph as
follows: the variable to eliminate is chosen so that it minimizes a given score
function, in a greedy way (see Algorithm 1.2). In [Kjærulff, 1990] there is a dis-
cussion of the most common scores used in order to minimize: Min-neighbors
(the number of Neighbors), Min-weight (the product of the domain sizes of the
variables in the scope of the factors), and Min-fill (number of fill-ins 7 induced by
the Elimination).

Algorithm 1.2: Ordering variable elimination by Greedy Search.
Input: H = (X, E): an undirected graph, s: a score function.
Output: t: a sequence to perform VE.

1 t← empty sequence of nodes;
2 while X is not empty do
3 X′ ← the set of nodes in X minimizing s;
4 X ← a random node in X′;
5 add X to Sequence t;
6 foreach (Y, Z) ∈ NgbH(X)× NgbH(X), s.t. Y 6= Z do
7 insert edge (Y − Z) into E .

8 Remove all edges (X −X ′) ∈ E whenever X ′ ∈ X;
9 Remove X from X;

10 return t;
In Example 1.4.5 we see how the factors of a variable elimination process

are generated for computing P (F ). Let’s imagine that after that we would like
to compute another probability (e.g P (E,D)); we could reinitialize the whole
process, nonetheless there are some computations that we could re-use; moreover,

7The number of fill-ins is the number of edges added to the induced graph whenever a given
variable is eliminated.

44



1. Bayesian Networks 45

there are some computations that are independent and can therefore be performed
in parallel. For those two reasons, we define graphical structures in the form of
clique trees (see Definition 1.4.12), which help us to introduce message-passing
algorithms, which perform marginalizations over node’s factors and send them as
“messages” to other nodes in order to multiply them. This is discussed in details
later in this section.

Definition 1.4.12 (Clique graph) Being H an undirected graph, U = {C, E} is
a clique graph ofH if it is an undirected graph whose nodes are cliques Ci ofH,
every node of H is contained in at least one clique of C. Each edge within U is
associated to a separator (see Definition 1.4.13). Whenever that undirected graph
is a tree, we call it clique tree.

Definition 1.4.13 (Separator) Being U = (C, E) a Clique graph, we define Sij =
Ci ∩Cj to be a separator of U iif (Ci−Cj) ∈ E . We consider Sij and Sji as two
distinct entities even tough they have the same elements.

We define elimination trees (see Definition 1.4.14), whose nodes correspond
to factors cliques generated during the VE process, and whose edges are set s.t.
(1) an Elimination tree is always a tree, (2) it verifies the running intersection
property (see Definition 1.4.15), which guarantees the consistency between the
VE algorithm and the aforementioned message-passing algorithms. In addition, it
has the following property: ∀(Ci − Cj) ∈ E : Cj ⊂ Ci ⇐⇒ |Scope(Cj)| =
|Scope(Ci)| − 1. This simplifies the task of finding redundant factors [Gonzales,
2008].

Elimination trees give us an easy way to connect cliques, but they are not
meant to be used directly to perform “message-passing” algorithms, since they
have redundant factors (their cliques are not necessarily maximal cliques of a
induced graph). Since elimination trees respect the running intersection prop-
erty (which ensures that all cliques containing a given variable X are always
in a connected sub-graph). Then we use them to build junction trees (JTs, see
Definition 1.4.16), which have no redundant cliques 8; this is done by applying
Algorithm 1.3. Once having a JT, we have to assign every factor of the inference
problem (CPTs and evidence) to exactly one clique; this is done by assigning each
factor to any clique being a superset of that factor (see Definition 1.4.17). The JT
created from a given BN is not unique, it depends of the VE order (or equivalently

8In the literature, it is often proposed to build JTs as the result of applying a maximum spanning
tree algorithm over a clique graph composed of induced graph’s maximal cliques, weighting each
edge as W(Ci−Cj) = |Ci ∩Cj |. Finding the maximal cliques is often feasible, but we must recall
it is a NP-hard problem [Karp, 1972].
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to the triangulation of the induced graph), and it happens that there are JTs that
are more convenient that others. The measure of how convenient a JT is is its
width, i.e. the size of the largest factor (the smallest, the better); we call the width
of the best possible JT of a BN the treewidth of a BN (or a graph in general, see
Definition 1.4.18); finding it is equivalent to finding the optimal VE order, which
is NP-hard. It is proved in [Arnborg et al., 1987] that the inference complexity is
exponential in the treewidth of a BN.

Definition 1.4.14 (Elimination Tree) Being (X1, . . . , Xn) a VE order and
(C1, . . . ,Cn) the factors (induced graph’s cliques) generated during a VE process
respecting that order, an elimination tree is defined as the clique tree T = {C, E}
where:

• C = {Ci : i ∈ {1, . . . , n}}

• E = {(Ci −Cj) : 1 ≤ i < n, j = min{k 6= i : Xk ∈ Ci}}

Definition 1.4.15 (Running Intersection Property) Being H = (C, E) a clique
graph, we say thatH respects the running intersection property iff for any variable
X contained in two cliques Ci and Cj inH, X belongs also in every clique of any
path (Ci, . . . ,Cj) inH, and there exists at least one path between Ci and Cj .

Definition 1.4.16 (Junction Tree) A Junction Tree (JT) is a clique tree verify-
ing the running intersection property, having no clique being a subset of another
clique in it.

Algorithm 1.3: Creating a junction tree from an elimination tree.
Input: T = (C, E): an elimination tree.
Output: A junction tree.

1 mark all edges of E as false;
2 for i = (n, . . . , 1) do
3 foreach Cj st. j > i, and Cj ⊂ Ci, and (Cj −Ci) ∈ E , and

(Cj −Ci) is marked as false, do
4 foreach Ck ∈ NgbT (Ci) st. Ck 6= Cj do
5 insert edge E = (Ck −Cj) into E ;
6 mark E as true if k > i. Otherwise, mark it as false;

7 remove Ci from C, and all its adjacent edges in E ;

8 return t;

Definition 1.4.17 (Valid Clique Assigment) Given a JT T = (C, E), we say a
factor φ is a valid assignment for a clique C ∈ C iff Scope(φ) ⊆ C.

46



1. Bayesian Networks 47

ABC BC BCD

BD

BDE

DE

DEEEF

C1 C2

C3

C4C5

(a) An elimination tree
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(b) A junction tree

Figure 1.6: How to build a JT from a elimination tree.

Definition 1.4.18 (Width and Tree Width of a JT) We define the width of a JT
as size of its largest clique minus 1, whereas we define the tree width of a graph
K as the minimum width of all its possible JTs.

Example 1.4.6 We take the BN from Example 1.4.5, whose inducted graph was
created. From that, we construct a Elimination Tree using directly Definition 1.4.14,
which is shown in Figure 1.6a. Then, from that elimination tree, we construct a
JT applying the Algorithm 1.3, which is shown in Figure 1.6b.

Once we have constructed a JT, we can describe the Shafer-Shenoy algo-
rithm [Shenoy and Shafer, 1990], which has three steps: (a) Valid assignment
of all cliques, (b) Collect step, and (c) diffuse step. We give the algorithm as input
a JT, a set of factors (CPTs and evidences in the BN case). At the end of the algo-
rithm, for each clique Ci, the product of the factors stored in Ci by the messages
sent toward Ci is the joint posterior distribution of the variables of Ci. This algo-
rithm does not have a particular target, so if we need the marginal distribution of
any variable it is needed to additionally to marginalize the joint posterior of any
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clique that contains it. This process is described in detail in Algorithm 1.4.
Algorithm 1.4: Shafer-Shenoy Algorithm.

Input: T : a JT, Φ: a set of factors, e: a set of evidence
1 foreach Clique C in T do
2 factor [C]← 1;

3 foreach Separator Sij ∈ T do
4 factor [Sij]← 1;
5 factor [Sji]← 1;

6 foreach Factor φ ∈ Φ ∪ e do
// Valid clique assignment

7 C← a clique in T s.t. Scope(φ) ⊆ C;
8 factor [C]← factor [C]× φ;

9 Cr ← a clique in T ; // root clique
10 foreach Ci ∈ NgbT (Cr) do
11 Collect(Ci,Cr);

12 foreach Ci ∈ NgbT (Cr) do
13 φ← factor [Cr];
14 foreach Cj ∈ NgbT (Cr) \ {Ci} do
15 φ← φ× factor [Sjr];

16 factor[Sri]←
∑

Cr\Sri φ;
17 Diffuse(Ci,Cr) ;

Subroutine 1.5: Shafer-Shenoy collect step.
1 Collect (Cr,Cs)
2 φ← factor [Cr] ;
3 if Cr is not a leaf in T then
4 foreach Ci ∈ NgbT (Cr) \ {Cs} do
5 Collect(Ci,Cr);
6 φ← φ× factor [Sir] ;

7 X← Scope(φ) \ Srs ;
8 factor [Srs]←

∑
X∈X φ ;

Example 1.4.7 (Shafer-Shenoy) In this example we use the Shafer-Shenoy algo-
rithm for the JT from Figure 1.6b, which is made from the BN from Figure 1.5a.
In this context, we denote φi to be the factor associated with the clique Ci, such
that Scope(φi) = Ci. We also denote φij to be associated to the separator Sij ,
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Subroutine 1.6: Shafer-Shenoy diffuse step.
1 Diffuse (Cr,Cs)
2 foreach Ci ∈ NgbT (Cr) \ {Cs} do
3 φ← factor [Cr] ;
4 foreach Cj ∈ NgbT (Cr) \ {Ci} do
5 φ← φ× factor [Sjr];

6 X← Scope(φ) \ Sri ;
7 factor [Sri]←

∑
X∈X φ ;

8 Diffuse(Ci,Cr);

such that Scope(φij) = Sij . It is worth noticing that we distinguish φij and φji.
First, we make a valid clique assignment for all nodes (see Figure 1.7):

φ1 = P (A)P (B|A)P (C|A) = P (A)P (B,C|A) = P (A,B,C)

φ2 = P (D|C)

φ3 = P (E|B,D)

φ4 = P (F |E)

In the valid assignment of φ1, the result is obtained by using the conditional
independence P (B|A)P (C|A) = P (B,C|A), which is encoded in the origi-
nal BN. There are two simple rules for the message-passing: (1) before send-
ing a message to a neighbor, a clique must wait until receiving messages from
all its other neighbors; and (2) the message from a clique Ci to a Clique Cj

is the product of the potential associated to the clique Ci and all the messages
it received from other cliques, marginalized over the variables of Ci\Cj , i.e.
φij =

∑
Ci\Cj

φi ×
∏

k 6=j φki. We choose the clique EF as root clique, and we
proceed with the collection step for the message-passing:

φ12 =
∑
A

φ1 =
∑
A

P (A,B,C) = P (B,C)

φ23 =
∑
C

φ2 × φ12 =
∑
C

P (D,C)P (B|C,D) = P (B,D)

φ34 =
∑
B,D

φ3 × φ23 =
∑
B,D

P (E|B,D)P (B,D) = P (E)

For finding the result of φ23 result we observe that P (D|C)P (B,C) =
P (D,C)P (B|C), and thatB andC are independent in the original BN, P (B|C) =
P (B|C,D). We proceed with the diffuse step:

φ43 =
∑
F

φ4 =
∑
F

P (F |E) = 1E
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φ32 =
∑
E

φ3 × φ43 =
∑
E

P (E|B,D) = 1BD

φ21 =
∑
D

φ2 × φ32 =
∑
D

P (D|C) = 1BC

Finally we verify that the posterior distribution of all cliques’ variables is the
product of the potential of those cliques and all the messages they received:

P (A,B,C) = φ1 × φ21 = P (A,B,C)× 1BC
P (B,C,D) = φ2 × φ12 × φ32 = P (D|C)× P (B,C)× 1BD
P (B,D,E) = φ3 × φ23 × φ43 = P (E|B,D)× P (B,D)× 1E
P (E,F ) = φ4 × φ34 = P (F |E)× P (E)

ABC BC BCD

BD

BDE

E

EF

C1 C2

C3

C4

S12

S23

S34

(a) Collect step.

ABC BC BCD

BD

BDE

E

EF

C1 C2

C3

C4

S21

S32

S43

(b) Diffuse step

Figure 1.7: Message-passing for the Shafer-Shenoy algorithm.

1.5 Learning
BNs can be constructed “by hand” by means of experts’ knowledge; nonetheless,
this approach has several caveats, such as its limitation to problems where the
number of random variables is small, and the fact that it requires a large amount
of time from an expert, which sometimes is expensive. In addition, there exist
systems that are not fully understood by experts; moreover, even if an expert has
a good understanding of a system, he would inevitably encode his own personal
biases into a BN. On the other hand, in many domains we have lots of information
in the form of data records, often representing information that is not part of any
domain’s expert knowledge. Consequently, it is in our best interest to construct
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BNs from existing databases rather than from experts’ knowledge; this approach
is called learning.

Learning BNs consists in estimating their structure (DAGs) and their parame-
ters (CPTs). As we will see, estimating the CPTs is in general an easy task when-
ever a BN structure is given: it is computed directly from a close form formula
(under certain assumptions that will be discussed later). On the other hand, finding
the BN structure from data is a NP-hard task [Chickering, 1996]. Many approx-
imate algorithms exist. They can be roughly divided into three broad categories:
Constraint-based approaches, Score-based approaches and hybrid approaches.

1.5.1 Constraint-based approaches
Constraint-based approaches exploit the meaning of the edges in a BN structure
(or more precisely the lack of edges) in the BN: the joint probability of the ran-
dom variables being equal to the product of the conditional probabilities of each
random variable given its parents in the graphical structure, the lack of an edge be-
tween two nodes represents a conditional independence between the correspond-
ing random variables. Therefore, using statistical conditional independence tests
(typically χ2 or G2), it is possible to determine those edges that shall not belong
to the BN. The orientation of those edges is assigned in a way such that it is
consitent with the set of independences found out from the independence tests,
by means of a set of deterministic rules [Meek, 1995a]. Graphs obtained by the
constraint-based approaches rely heavily on the test significance parameter α: the
smaller the significance, the fewer the edges in the BN structure learnt.

The two most important algorithms in this approach are the IC algorithm [Pearl
and Verma, 1991, Pearl, 2000] and the PC algorithm [Spirtes et al., 2001]. The IC
algorithm uses the independence tests to add edges into a graph which is initially
empty, which actually models a minimal D-map (see Definition 1.3.8); whereas
the PC algorithm uses those tests to remove edges from an initially complete
graph, which tries to model a minimal I-map. Under ideal faithfulness condi-
tions (see Definition 1.3.9), both D-maps and I-maps are equivalent. In prac-
tice we prefer I-maps, which can lead us to more compact representations, so the
PC algorithm and its variants [Abellán et al., 2006] are the most widely used.
The PC algorithm has a caveat: it is very sensitive to the order in which condi-
tional independence tests are performed [Fast et al., 2008], this problem is solved
in [Colombo and Maathuis, 2014] which proposes the PC-stable algorithm, which
in addition allows better parallelization of independence tests.

Conditional independence tests of (X ⊥⊥ Y | Z) are known to be inaccurate
whenever the size of the dataset is not big enough, and this is especially true when
the conditioning set Z has many elements [Tsamardinos et al., 2003, Spirtes et al.,
2001, Dash and Druzdzel, 2012], which is particularly inconvenient since wrongly
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removed edges can cause compensatory errors in later iterations. In order to alle-
viate this problem, there are many algorithms that perform the tests with smaller
conditional sets, just like [Steck and Tresp, 1999] which restricts the variables of
Z to only those variables having paths linking X and Y in the current iteration’s
graph G. In [Abellán et al., 2006] it is proposed that if the size of Z is bigger than
the minimum cutset of X and Y 9 we should use that minimum cutset as condi-
tioning set instead of Z. Also, there are the MMPC [Tsamardinos et al., 2003] and
the fast-IAMB [Yaramakala and Margaritis, 2005] algorithms, which seek the set
of parents-and-children and the Markov blanket (respectively) of each variable in
a depth-first manner.

In [Cheng et al., 2002], there is a three phase algorithm for learning BNs. Its
three phases are drafting, thickening and thinning. The drafting phase quickly ob-
tains an initial graph representation as a tree by means of the algorithm proposed
in [Chow and Liu, 1968]. The thickening phase adds edges to the graph obtained
in the preceding phase whenever their two extremal nodes cannot be declared as
independent using conditional independence tests. The thinning phase does the
opposite of the preceding phase, it removes any edge whenever its nodes are de-
termined to be independent by independence tests. Although this method has been
criticized for its monotone DAG assumption [Chickering and Meek, 2006], it is
widely used in practice.

1.5.2 Search-based approaches

Search-based approaches [Cooper and Herskovits, 1992a, Heckerman, 1995] con-
sider that the best structure for the BN is the one that has the highest likelihood
given the data (that we shall denote byD), i.e., they look for G∗ = ArgmaxG P (G |
D). Since there is a super-exponential number of DAGs G with n nodes, a neigh-
borhood search method is usually defined. Any neighborhood method has to take
four things into account: the search space, the neighborhood operators used to
explore it, the search strategy and a score to compare the likelihood of each can-
didate solution. The neighborhood search methods typically start from a given
graph G0 (often an empty graph) and try to find in its neighborhood another graph
G with a higher likelihood. They iterate the process, starting from the new graph
until a local maximum is reached.

The natural and most used search space is that of DAGs G, whose neighbor-
hood is often defined as the set of graphs resulting from one of the following three
neighbor operators: the addition of a new arc to G, the removal of an arc from G or

9The minimum cutset of X and Y in G, is the minimal set of nodes whose removal in G would
cause that there exists no path between X and Y . They can be computed with the algorithm
proposed in [Acid and De Campos, 1996].
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the reversal of an arc in G. However, there are other DAGs neighborhood operators
that have been successfully used to avoid certain local maxima when searching the
DAG space, like [Moore and Wong, 2003] which defines an additional operations
which reorientates all adjacent edges of a given node in a optimal manner. There
is also [De Campos et al., 2002] which redefines the reversal operator, removing
all common parents of its two concerned nodes and adding as new parents a sub-
set of the removed ones after reverting the edge. [Vandel et al., 2012] introduces
a swapping operator which, in a single operation, removes an edge connecting a
couple of nodes and adds an edge into a different couple. Since different DAGs
can encode the same independences, there are also methods that define the Markov
Equivalence Classes (in the form of CPDAGs) as search spaces, which can be con-
siderably smaller than DAGs search spaces, in fact [Gillispie and Perlman, 2001]
shows empirically that a CPDAG space is asymptotically 3.75 times smaller than
a DAG space for the same number of nodes; the most notable example of this is
in [Chickering, 1995, Chickering, 2002a] where he defines six neighborhood op-
erations to explore the CPDAG space: insert/remove of directed/undirected edges,
revert directed edges, and add V-structure. There is another common less obvious
search space, which is the topological order (see Definition 1.2.12). This idea was
developed in [Teyssier and Koller, 2012] where the fact that learning a BN know-
ing its topological order has the polynomial complexityO(nk)10 (instead of being
NP-Hard) is exploited to swap random variables positions in the topological order
to execute many learning procedures.

The most common search strategy in the DAG space is the greedy search,
which is often improved by using tabu-lists [Glover, 1990], which after any neigh-
bor operation for a couple of nodes, forbids any other operation related to those
nodes during a given number of iterations. The greedy search is also often com-
plemented with random restarts and noise introduction in order to escape local
maxima [Elidan et al., 2002]. During the iterations of those algorithms, after ap-
plying any neighbor operator, we must verify that the resulting graph G is still
a DAG (if not it is not a valid operator), this operation can be expensive, that is
why in [Cooper and Herskovits, 1992b] there is a particular case of greedy search:
the K2 algorithm, which uses a fixed topological order, having the advantages of
not requiring any reverting-edge operator nor any DAGs verification during its
iterations, and thus having a much faster execution than other mentioned greedy
search algorithms. There is also a greedy search algorithm called Greedy Equiv-
alent Search [Chickering, 2002a, Chickering, 2002b] which explores the CPDAG
space with its six neighborhood operators mentioned in the preceding paragraph,
and an alternative approach that explores the CPDAG space using only addition
and removal operators.

10being k the maximum number of parents in the learned G for each of its n nodes
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The likelihoods of each DAG G through the search are computed through dif-
ferent scores. There are two main types of score: Bayesian score functions and
information-theoretic functions. The Bayesian score functions evaluate the poste-
rior probability of data for a given candidate model, using a defined prior proba-
bility distribution: the main examples of this type of score are the BD [Heckerman
et al., 1995], BDe [Heckerman et al., 1995], BDeu [Buntine, 1991]; K2 [Cooper
and Herskovits, 1992a], etc. Most of them differ essentially from the a priori
hypotheses they assume. In the other hand, information-theoretic scores evaluate
models according to entropy-based criteria measuring how well a current model
can be used to encode compactly its learning dataset. The most used information-
theoretic scores are the log-likelihood (which is by itself a direct measure of
the number of bits needed to represent the learning data), AIC [Akaike, 1970],
BIC/MDL [Schwarz, 1978, Lam and Bacchus, 1994], MIT [Campos, 2006],
NML [Silander et al., 2008, Silander et al., 2018]. In the present work we will
focus on search-based approaches so that whenever we talk about learning BNs,
unless otherwise specified, we will refer to this approach.

1.5.3 Hybrid approaches

As mentioned before, constraint-based approaches can be inaccurate because of
compensatory errors due to independence tests, while search-based approaches
tend to find suboptimal solutions due to the huge search spaces they explore (typ-
ically DAGs). We call hybrid approaches the ones that combine the best part
of both previously mentioned approaches, usually exploiting constraint-based ap-
proaches to quickly determine an initial graph to be improved by a search-based
approach or to reduce considerably the search space.

The first important hybrid method to learn BNs was proposed in [Friedman
et al., 1999], which has two phases: Restrict and Maximize. In the restrict phase,
for every couple of variables (X, Y ) they measure the Kullback-Leibler diver-
gence (DKL) between PG(X, Y ) and PG(X)PG(Y ) w.r.t. a current candidate graph
G. For each variable, the other k variables corresponding to the biggest DKLs are
marked as potential parents of X 11. In the maximize phase, a Hill Climbing
search algorithm is executed to improve the current candidate graph G, allowing
only arcs respecting the potential parents lists created in the restrict phase, which
gives as a result sparse graphs. These two phases are repeated iteratively until
convergence. To this day, this algorithm is one of the very few that can be used to
learn BNs with thousands of random variables.

There are many other state-of-the-art hybrid approaches, like [Tsamardinos

11The DKL between P (X,Y ) and P (X)P (Y ) measures how divergent those two distributions
are, and in this particular case it is a measure of the independence between X and Y .
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et al., 2006] which proposes the Min-Max Hill Climbing algorithm, which pre-
computes a parents candidate set for each random variable via independence tests
(using the MMPC algorithm [Tsamardinos et al., 2003]), in order to perform a
greedy hill climbing search with tabu-lists, using the BDeu score. Another popu-
lar hybrid approach is proposed in [van Dijk et al., 2003], which starts performing
the PC algorithm (limited to independence tests of zero and first order 12), in order
to find a good initial DAG, to be improved through a hill climbing search, forbid-
ding arcs whenever independences are found, thus reducing the search space.

In [Schulte et al., 2009], they propose a search algorithm that reduces the DAG
space by testing the conditional independences of the form (X ⊥⊥ Y |MBG(X)),
only allowing to add edges whenever their involved variables do not verify that in-
dependence assertion. In every iteration, a neighbor operation must be performed
in order to maximize the global score, continuing even if the best neighbor opera-
tion decreases it, and not stopping its iterations until the independence tests do not
propose any new potential edges to add. Later, [Gámez et al., 2011] proposed the
Constraint Hill Climbing algorithm, which performs computations of DAG space
reduction and hill climbing search iterations at the same time. This is done by
adding any variable Y to a forbidden-parents list for every variable X whenever
adding the edge (Y → X) decreases the search score, or whenever removing it
increases the score, and taking arc reversals as a removal followed by an addition.
Once the search algorithm finds a locally-optimal DAG, the forbidden-parents
lists are emptied and the Constrained Hill Climbing process is restarted, using the
obtained graph as the initial one 13, in order to avoid sub-optimal solutions.

More recently, [Liu et al., 2017] made a great theoretical contribution with
the following theoretical result: being a random variable set X the union of three
disjoint sets X ∪ Y ∪ Z, letting G = (X ,E), G1 = (X ∪ Z,E1) and G2 =
(Y ∪ Z,E2) be DAGs faithful to the distributions P (X ), P (X,Z) and P (Y,Z).
If the d-separation (X ⊥⊥ Y | Z) holds in G, then graph G ′ = (X ,E′) is proved
to be equivalent to G if E′ = (E1 ∪ E2) \ {(Xi, Xj) | Xi, Xj ∈ Z ∧ (Xi, Xj) 6∈
E1 ∩ E2} 14. This result is used to propose a hybrid approach in two phases:
separation and reunion. The separation phase uses conditional independence tests
to find successive partitions of a random variable sets, noting them in a binary
tree. Then any learning algorithm can be used to quickly learn many small DAGs.
In the reunion phase, the learned DAGs are merged using the theorem discussed
in the beginning of this paragraph.

12e.g., testing (X ⊥⊥ Y | Z), only for Z s.t. |Z| ∈ {0, 1}
13They actually propose the possibility to restart the process many times, but already show good

experimental results with only one single restart.
14If E′ presents v-structures not present in G1 or G2, edge reversals must be performed s.t. G′

contains exactly the same v-structures as G1 and G2, which is proved to be always attainable.
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1.5.4 Exact approaches

Exact approaches seek to find optimal BN structures: the ones globally maxi-
mizing a score function (and not only locally as in search-based approximations).
Learning BN structures is a NP-hard problem [Chickering, 1996], but not in the
particular case when we limit number of parents for each node to one. The solu-
tion for this particular case is proposed in [Chow and Liu, 1968], by computing a
maximum-spanning tree over a complete graph, having as edge weights the mu-
tual information between its adjacent nodes (computed from a learning dataset).
The obtained undirected maximum-spanning tree is transformed into a DAG by
choosing a root node, and setting all edges’ directions outward from it. This pro-
cess is guaranteed obtain the structure that maximizes the likelihood w.r.t. the
learning data, while having polynomial complexity: O(n2N), for n variables and
N records in the learning dataset.

For general cases, when nodes are allowed to have two or more parents, exact
learning BN structures is proved to be NP-hard [Dasgupta, 1999]. There are two
approaches that can obtain solutions to this problem in exponential time (which
is not as bad as it could be, since DAG searching spaces have super-exponential
sizes). Those two approaches are dynamic programming and branch-and-bound.

The use of dynamic programming to find the optimal BN structure was (to
the best of our knowledge) first proposed by [Ott et al., 2003] and [Koivisto and
Sood, 2004]: both proposed independently similar procedures where the optimal
solution can be found with O(n2n) dynamic programming iterations. In [Singh
and Moore, 2005] and [Silander and Myllymaki, 2012] improvements to those
algorithms are proposed, so that their complexity is reduced to O(n2n−1) and
O(n22n−2), respectively. The main caveat of dynamic programming approaches
is the amount of memory required to execute them (and not their execution times),
for instance, the algorithm proposed in [Silander and Myllymaki, 2012] requires
2n+2 bytes of RAM and 12n2n−1 bytes of hard disk space, which can be pro-
hibitive (e.g., whenever n = 40, it would require 4.39 and 264 terabytes, respec-
tively).

Branch-and-bound (B&B) approaches seek to find exact solutions while try-
ing to explore as little as possible the search space, by discarding important parts
of it thanks to easy-to-compute upper bounds they might have. While B&B
was already used for learning BN structures in early works [Dasgupta, 1999],
the first method to successfully use it to find globally optimal solutions is pro-
posed in [De Campos et al., 2009, Campos and Ji, 2011], when they analyze
mathematical properties of scores AIC, BIC and BD, in order to provide upper
bounds to discard parents sets without directly inspecting them; and they also
propose a search framework that supports the addition of structural constrains in
the form of forced edges, maximum number of parents, and or/not logical op-

56



1. Bayesian Networks 57

erations with the two preceding types of constraint. In [Jaakkola et al., 2010],
they represent the valid acyclic structures space through a polytope, so the BN
structure can be found using integer programming methods with linear program-
ming relaxations, iteratively tightening bounds by searching new constraints. In
a similar manner, [Cussens, 2012, Cussens et al., 2017] propose another integer-
programming-based method, which finds upper bounds in the search space by
using linear programming relaxation and by not imposing acyclicity constraints.
The effectiveness of this method relies heavily in finding good cutting planes, for
which the authors provide some criteria.

1.5.5 Problem statement
In this part we introduce the notations required to address the problem of BN
learning, the assumptions we make to approach it and its formal statement. We
limit ourselves to learn discrete variables with a (small) finite domain. In a nut-
shell, the problem of learning consists in finding the Bayesian network B =
(G,Θ) that best fits a dataset D. B is defined over a BN structure G (a DAG) and
a set of parameters Θ, with G = (X, E). We define n as the number of random
variables in G, i.e. n = |X|, so that X = {Xi}ni=1. The parameters Θ = {θi}ni=1

are defined s.t. θi corresponds to the CPT associated with PB(Xi|Pa(Xi)). For
each Xi, we name ri and qi to the domain sizes of itself and its parents, respec-
tively, i.e. ri = |ΩXi | and qi = |ΩPa(Xi)

| 15. We refer to the domain values
ΩXi = {xik}rik=1 and ΩPa(Xi)

= {pa(Xi)
(j)}qij=1. Then, the CPT for the node Xi

is represented as θi = {θij}qij=1, where θij = {θijk}rik=1 represents the probability
distribution PB(Xi|Pa(Xi) = pa(Xi)

(j)), and θijk represents the probability value
PB(Xi = xik|Pa(Xi) = pa(Xi)

(j)). Letting N be the number of records of the
dataset, then D = {x(m)}Nm=1, where x(m) is an instantiation of X, which for the
purposes of this chapter we will assume to be complete (with no missing values).

We make the following assumptions when learning a BN B = (G,Θ) from a
dataset D:

1. Faithfulness. The Underlying distribution P that generates D can be rep-
resented as a P-map of a graph G (see Definition 1.3.9).

2. Completeness (or causal sufficiency). For any couple of random variables
in G, there is no hidden (latent, or unobserved) variable being a common
parent of those in G.

3. Independent and identically distributed records. (iid.) All records are
generated by the same distribution, and all record’s values are influenced

15By abuse of notation, if Pa(Xi) = ∅, then qi = 1.
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only by the generating distribution and not by other records: for any model
B, P (D|B) =

∏N
m=1 P (x(m)|B).

4. Globally independent parameters. The values of Θ have no influence one
to another: π(Θ) =

∏n
i=1 π(θi), where π(·) represents an a priori distribu-

tion.

5. Locally independent parameters. The parameters for Node Xi are inde-
pendent for different instantiations of its parents: π(θi) =

∏qi
i=1 π(θij).

6. Parameters modularity. For two BNs defined over two different graphs G1

and G2, if PaG1(Xi) = PaG2(Xi), then both BNs shall have the same value
for θi.

7. Dirichlet prior The prior distribution π(θij) follows a Dirichlet distribution,
defined over the hyper-parameters A = {αk}rik=1:

Dirichlet(θij|α1, . . . , αri) =
Γ(
∑ri

k=1 αk)∏ri
k=1 Γ(αk)

ri∏
k=1

θαk−1
ijk

being Γ(·) the gamma function. This assumption is particularly convenient
because, as we will see latter in this chapter, the likelihood function P (θij)
follows a multinomial distribution, for which the Dirichlet distribution turns
out to be the conjugate prior, which simplifies the task of performing a
Bayesian parameter estimation.

With those assumptions, we can now define the BN learning problem as find-
ing the BN B = (G,Θ) that maximizes a likelihood measure of L(B : D). A
natural way to define that likelihood is to evaluate the probability of the learning
dataset D wrt. B:

B∗ = (G∗,Θ∗) = Argmax
B

L(B : D) = Argmax
(G,Θ)

P (D|G,Θ)

The preceding equation suggests that we could search for the optimal BN B∗ in
the space of G,Θ. Nevertheless, the parameters modularity assumption tells us
that for a given G there is only one possible value of Θ, so that we can express the
above mentioned likelihood as P (D|G,Θ) = P (D|G). This leads to the conclu-
sion that the BN learning can be done in two separate steps: learning the structure
G and estimating the parameters Θ (once for a given structure).
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1.5.6 Maximum likelihood estimation of parameters
The most direct way to estimate the parameters Θ for a given DAG G, is to choose
them s.t. they maximize the likelihood of D:

ΘMLE = Argmax
Θ

P (D|G,Θ)

Where MLE stands for maximum likelihood estimation. Thanks to the iid. as-
sumption we can decompose the likelihood as follows:

P (D|G,Θ) =
N∏
m=1

P (x(m)|G,Θ)

=
N∏
m=1

n∏
i=1

P (Xi = xikm |Pa(Xi) = pa(Xi)
(jm),Θ)

=
N∏
m=1

n∏
i=1

θijmkm

Where xikm and pa(Xi)
(jm) represent the value taken by Xi and Pa(Xi) in the

m-th record of D respectively. We can express that product in a more convenient
way, letting Nijk be the number of times the parameter θijk is multiplied in the
precedent equation:

P (D|G,Θ) =
n∏
i=1

qi∏
j=1

ri∏
k=1

(θijk)
Nijk (1.13)

In order to maximize Equation 1.13 we present the following theorem:

Theorem 1.5.1 Being A = {Ai}Ni=1 a set of real valued variables with positive
domain, s.t.

∑
iAi = k, being k a real valued positive constant, and letting b =

{bi}Ni=1 be a set real valued positive constants, then the product
∏N

i=1A
bi
i takes its

maximum value whenever Ai = kbi/
∑

i bi.

Proof. Expressing any value Aj ∈ A as Aj = k −
∑

i 6=j Ai and replacing it into
the product, so that it becomes a function of n − 1 variables: f(A \ {Aj}) =

(
∏N

i=1
i 6=j

Abii )(k −
∑

i 6=j Ai)
bj , then all values Ai 6= Aj are obtained by solving the

equation ∂f
∂Ai

= 0, while Aj can be obtained by difference. Solving those equa-
tions, we obtain the presented result. �

For the maximization of Equation 1.13, we take into account two things: First,
since θij = {θijk}rik=1 is a probabilistic distribution, then

∑ri
k=1 θijk = 1. Second,
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the parameters independence assumptions allows us to compute separately each
parameter θij , which leads us to:

max
Θ

P (D|G,Θ) =
n∏
i=1

qi∏
j=1

[
max
θij

ri∏
k=1

(θijk)
Nijk

]
︸ ︷︷ ︸∑

k θijk=1

(1.14)

Letting Nij =
∑ri

k=1 Nijk, be the number of times that the parents of Xi take
the values pa(Xi)

(j) in D. In Equation 1.14 we see that the expression inside
brackets satisfies the conditions of Theorem 1.5.1, assuming Nij is positive. So
the value Θ that maximizes the likelihood can be described simply as:

θMLE
ijk =

Nijk

Nij

(1.15)

1.5.7 Bayesian estimation of parameters
MLE has two caveats. First and more obvious, the requirement that Nij to be
always positive. This is often not the case, especially in small datasets D or when
the number of variables n is big. Second, it does not allow us to use the a priori
information of Θ we might have. These two caveats can be solved treating D and
Θ both as random variables, and assuming that there exists a prior distribution
π(Θ|G) =

∑
D P (Θ,D|G), over all possible values of D. That prior represents

more an initial (often subjective) belief than a probability, and that belief is meant
to be updated with the arrival of an actual value of D by applying Bayes theorem
to the likelihood function:

P (Θ|G,D) =
P (D|G,Θ)π(Θ|G)

P (D|G)
∝ P (D|G,Θ)π(Θ|G) (1.16)

In this equation P (D|G) can be omitted since it does not affect the value of
Θ when maximizing the posterior distribution P (Θ|G,D) (recall that, when we
estimate the parameters, G is known). As in Equation 1.16, Bayesian estimation
has typically the form posterior ∝ likelihood × prior, where the posterior rep-
resents the prior (old belief) confronted with evidence. Since that belief update is
susceptible to be made more than once, it is very convenient that the prior and the
posterior are both of the same family of probability distributions, which gives rise
to the following concept:

Definition 1.5.1 (Conjugate distribution, Conjugate prior)
[Schlaifer and Raiffa, 1961] If the posterior and prior distributions are in the
same probability distribution family, they are said to be conjugate distributions,
and the prior is called a conjugate prior for the likelihood function.
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From Equation 1.13 we realize that the probability of θij follows a multinomial
distribution:

P (θij|G,D) =

ri∏
k=1

(θijk)
Nijk

Being the Dirichlet distribution the conjugate prior of the multinomial distribution
(see Definition 1.5.1), we choose it to model the prior and the posterior distribu-
tions:

π(Θ|G) ∝
n∏
i=1

qi∏
j=1

ri∏
k=1

(θijk)
αijk

P (Θ|G,D) ∝
n∏
i=1

qi∏
j=1

ri∏
k=1

(θijk)
Nijk+αijk (1.17)

Where the parameters αijk > −1. Equation 1.17 can be optimized using Theo-
rem 1.5.1, as we did for Equation 1.15:

θMAP
ijk =

Nijk + αijk
Nij + αij

(1.18)

Where MAP stands for maximum a posteriori, and αij =
∑ri

k=1 αijk.

1.5.8 Structure Learning
We mentioned that BN structure learning (BNSL) can be done by using constraint-
based approaches, score-based approaches and hybrid approaches; in this thesis
we will focus on score-based approaches, which typically make use of a scoring
function to guide a local search until a local maximum is achieved. In that context,
we mentioned as well that there are different possible search spaces: the DAG
search space, the Markov equivalence class search space and the variable ordering
search space, in this work we will discuss only about the first one.

Log-likelihood score: From the score-based approach, BNSL is a model se-
lection, where each candidate graph G we evaluate generates a (unique) set of
parameters ΘG for a given learning datasetD. A natural way to evaluate how well
the model B = (G,Θ) fits the data D is to evaluate the logarithm (in base 2) of its
likelihood log(PB(D)) (aka. log-likelihood); this is equivalent to taking the loga-
rithm of Equation 1.13, which is presented as a score function in 1.5.2. This has
many interesting properties: First, from an information-theoretic point of view,
− logPB(D) represents the expected number of bits required to optimally encode
D [Cover and Thomas, 2006], so that the log-likelihood expresses how well B
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compresses the learning data D. Second, the log-likelihood score is decompos-
able (see Definition 1.5.3), i.e. modifications into G require recomputing the score
only in the concerned nodes, which is very handy to perform quick computations
when performing a BNSL. Third, the log-likelihood is score-equivalent (see Def-
inition 1.5.4), which is a desirable property since Markov-equivalent models en-
code exactly the same independences. In addition, the log-likelihood does not add
any set of hyper-parameters to calibrate, which makes it easy to apply.

Definition 1.5.2 (Log-likelihood score)

ScoreLL(G,D) = log
(
P (D|G,ΘG)

)
=

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log θGijk (1.19)

Definition 1.5.3 (Score decomposition) A scoring function is called decompos-
able iff it can be expressed as the sum of local scores for every node conditioned
on its parents:

Score(G,D) =
n∑
i=1

Score(Xi|Pa(Xi),D)

Definition 1.5.4 (Score equivalence) A scoring function is called equivalent if it
assigns the same score to any member of a given Markov equivalence class.

However, in practice we do not use the log-likelihood score because it tends
to over-fit: there is no score penalization choosing a candidate graph G with many
edges (or even complete), so that a more complex model tends to give a higher
score w.r.t. D. To solve that particular problem, the AIC and BIC scores are
introduced.

AIC score: [Akaike, 1970] Having a candidate model B = (G,ΘG) to ap-
proximate the (unknown) probability distribution P (·) that generated the learning
datasetD, the approximation quality ofB can be measured by its Kullback-Leibler
divergence w.r.t. the true distribution P (see definition 1.5.5)

Definition 1.5.5 (Kullback-Leibler Divergence) [Kullback and Leibler, 1951] The
Kullback-Leibler divergence (aka. relative entropy) is a measure of how close two
probabilistic distributions (or densities) P and Q are.

DKL(P‖Q) = EP

[
log

P

Q

]
Its value is zero iff P and Q are identical. In the typical case, it measures how
well an estimated distribution Q approximates a true underlying distribution P ,
being meant to be minimized.
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DKL(P (X)‖PB(X)) =
∑

x∈ΩX

P (x) log
P (x)

PB(x)

=
∑

x∈ΩX

P (x) logP (x)−
∑

x∈ΩX

P (x) logPB(x)

In the preceding equation, since the first term does not depend of B, the mini-
mization of the Kullback-Leibler divergence is equivalent to the maximizing the
following expression:

K =
∑

x∈ΩX

P (x) logPB(x)

Needing to compute K, knowing D = {xm}Nm=1 we might intuitively think that a
good estimate to compute it would be:

K =
1

N

N∑
m=1

logPB(xm) =
1

N
ScoreLL(G,D)

However, K is a biased estimation of K because the dataset D was used twice:
firstly to compute the parameters Θ and then to compute the above estimation. In
[Akaike, 1970], it was showed that this bias can be approximated as:

K −K ≈
dim

(
ΘG
)

N

Where dim
(
ΘG
)

represents the number of independent parameters in ΘG . Since
ΘG = {θi}ni=1, we can decompose its dimension as dim(ΘG) =

∑n
i=1 dim(θi).

For any of the qi values of j, θij can take exactly ri different values; but consid-
ering that

∑ri
k=1 P (Xi) = 1, it is enough to take into account only ri − 1 values

for describing Θij (i.e. there are only ri − 1 independent values). Then, we can
conclude that:

dim ΘG =
n∑
i=0

(ri − 1)qi (1.20)

Now we have everything set up to define the score AIC:

Definition 1.5.6 (Score AIC) [Akaike, 1970] The Akaike Information Criterion
(AIC) score is defined as follows:

ScoreAIC(G,D) = ScoreLL(G,D)− dim
(
ΘG
)
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MDL/BIC score: The MDL (minimum description length) principle [Lam and
Bacchus, 1994] is a model selection criterion following the Occam’s razor prin-
ciple (the simpler model tends to be the right one). In the context of selecting
probabilistic models, the MDL principle formalizes simpler model as the one that
can describe the observed data D and itself with the minimum possible amount of
bits (being that amount of bits the so-called description length). We decompose
the description length as the sum:

DL = DLD +DLB (1.21)

Where DL is the total description length (to minimize), which is the sum of the
number of bits needed to encode the data DLD, plus the number of bits needed to
encode the model DLB. Evidently, in our case the model is a BN, B = (G,Θ).

The number of bits to encode DLD is equal to − log(PB(D)) [Cover and
Thomas, 2006], which corresponds to −ScoreLL(G,D). The computation of
DLB is decomposed as DLG +DLΘ. We need − log d bits to encode any integer
number d (we treat indices i as integer numbers when encoding). As a conse-
quence, to compute DLG we specify the number of random variables: − log(n);
their domain sizes: −

∑n
i=1 log ri; the number of parents and their identity for

each node: log(n)
∑n

i=1 (1 + qi). Values θijk, being real numbers, can have dif-
ferent numbers of bits in their representations (depending on the precision used
to represent them), we assume they can be encoded in logN/2 bits each, because
it is the usual value in the literature [Heckerman, 1995], then the computation of
DLΘ becomes simply logN dim Θ/2. Putting all together:

DL =−
N∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log θijk +
logN

2
dim Θ

− log(n)
n∑
i=1

(1 + qi)− log(n)−
n∑
i=1

log ri

We notice that the last two terms of the preceding expression are constants
w.r.t any possible candidate model B we could propose (neither the number of
variables nor their domain sizes would change); then, we do not take them into
account. Assuming that N � n and looking at Equation 1.20 we realize that
the third term of the preceding expression is negligible w.r.t the second one, in
consequence we do not take it into account either. We reflect this considerations
in the following equation:

DL′ = −
N∑
i=1

qi∑
j=0

ri∑
k=0

Nijk log θijk +
logN

2
dim Θ
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In order to describe a score function from that minimization problem, we take
the negative value of DL′:

Definition 1.5.7 (MDL Score) [Lam and Bacchus, 1994] The minimum descrip-
tion length (MDL) score is defined as follows:

ScoreMDL(G,D) =
N∑
i=1

qi∑
j=0

ri∑
k=0

Nijk log θijk −
logN

2
dim Θ

= ScoreLL(G,D)− logN

2
dim Θ

The MDL score can also be derived using a Stirling approximation of the
Bayesian measure P (G|D), this was done in [Schwarz, 1978]:

Definition 1.5.8 (BIC Score) [Schwarz, 1978] The Bayesian information crite-
rion (BIC) score is defined as follows:

ScoreBIC(G,D) = ScoreMDL(G,D)

Good properties of AIC and BIC: The AIC and BIC scores are essentially
the log-likelihood score minus a penalization term for the complexity of G. The
penalization is bigger for the BIC score, so that it leads to learning structures with
fewer edges than AIC. Since dim Θ is decomposable, and is the same for all
members of a Markov equivalence class, then AIC and BIC have the properties
of decomposition and equivalence (see Definitions 1.5.3 and 1.5.4). Assuming a
big dataset D (N → ∞), and that D was generated by a BN B∗ = (G∗,Θ∗), the
log-likelihood score tends learn a model B = (G,Θ) that over-fits D, because
there is no penalization term, so adding any edge to G that is not in G∗ will not
decrease the score; moreover, due to statistical fluctuations in D, it can actually
(slightly) increase it. In the same scenario, if B = (G,Θ) is the graph learned
using the BIC or AIC scores, adding an edge to G not present in G∗, the term
dim(Θ) is increased, then the penalization term grows and the score decreases.
This desirable behavior of the BIC and AIC scores is formalized in the following
concept:

Definition 1.5.9 (Score asymptotic consistency) A score function is said to be
asymptotically consistent if for any big dataset D (N → ∞) generated following
a model B∗ = (G∗,Θ), it takes its maximal value in G∗ (or one member of its
Markov equivalence class):

G∗ = Argmax
G

[Score(G,D)]
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BD Score: [Heckerman et al., 1995] The Bayesian Dirichlet (BD) score is a
score function that tries to approximate the so-called Bayesian score, using a
Dirichlet prior distribution:

Definition 1.5.10 (Bayesian Score) [Cooper and Herskovits, 1992b] In the con-
text of BNLS, the Bayesian score is represented as posterior probability P (G|D):

P (G|D) =
P (D|G)π(G)

P (D)

Where P (D|G) is a likelihood measure, π(G) is the prior distribution over the
structure (we assume it to be constant for most of the cases, so we do not take it
into account for the score), and P (D) =

∑
G′ P (D|G ′)P (G ′) is a normalization

constant that allows the posterior distribution to actually represent a probability
distribution (being a constant, it is not a function of G, so it is not taken into
account either). Then we can define the Bayesian score as:

Score(G,D) ∝ P (D|G) =

∫
Θ

P (D|G,Θ)π(Θ|G)dΘ (1.22)

The Bayesian score can be interpreted as the average likelihood for all possi-
ble values Θ, not being biased towards a single value like ΘG (e.g. the MLE esti-
mation, see Equation 1.15), this intuitively tells us that this score is not prone to
benefit over-fitting instances of G. Although it can be very challenging to compute
the value of the integral in Equation 1.22, it has a close form formula whenever its
prior parameters follow a Dirichlet distribution π(θij) ∼ Dirichlet(αij1, . . . , αijri).
To remain consistent with the definitions of the previous scores, and to avoid nu-
merical issues when computing, we set the Bayesian scores not to express Equa-
tion 1.22, but its logarithm instead.

Definition 1.5.11 (BD Score) [Heckerman et al., 1995] Being αijk Dirichlet prior
hyper-parameters of π(Θ|G), and αij =

∑ri
k=1 αijk, then the BD score is defined

as:

ScoreBD(G,D) = log

(
n∏
i=1

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

)
(1.23)

Where Γ(·) is the gamma function, which is defined as Γ(z) =
∫∞

0
xz−1e−xdx,

and log(·) is the logarithm function in base 2.
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K2 score: The BD requires to manually specify parameters αijk, having the
caveat that they can be very numerous (one for every value θijk). A practical
solution to this problem is to use a non-informative prior distribution, like the
Jeffreys’ prior [Jeffreys, 1946] (which for the Dirichlet distribution proposes to set
all the hyper-parameters to 1/2). Following this logic, [Cooper and Herskovits,
1992b] proposed the K2 score, where all the hyper-parameters are set to one.

Definition 1.5.12 (K2 score) [Cooper and Herskovits, 1992b] The K2 score is
the particular case of the BD score where all parameters αijk = 1. Knowing that
Γ(n + 1) = n! for any non-negative integer n, and replacing the values αijk in
Equation 1.23, we define:

ScoreK2(G,D) = log

(
n∏
i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk!

)
(1.24)

BDe score: Another option for specifying the prior parameters for the BD score
is to assume they follow the distribution of a prior model B0 and that this model
has been learnt by a dataset with N ′ (imaginary) records (which we call pseudo-
counts). We use that idea to define the Bayesian Dirichlet equivalent (BDe) score:

Definition 1.5.13 (BDe score) [Heckerman et al., 1995] The BDe score is de-
fined as the BD score (see Equation 1.23) where the prior parameters are specified
as follows:

αijk = N
′
P (Xi = xk,Pa(Xi) = pa(Xi)

(j)|B0) = N
′

ijk

Where B0 is a BN defined over the same variables as G, and N
′

is a positive
number that represents the pseudo-counts (which can be interpreted as a weight
of the prior factor).

ScoreBDe(G,D) = log

(
n∏
i=1

qi∏
j=1

Γ(N
′
ij)

Γ(Nij +N
′
ij)

ri∏
k=1

Γ(Nijk +N
′

ijk)

Γ(N
′
ijk)

)
(1.25)

Where N
′
ij =

∑ri
k=1 N

′

ijk.

Notice that Pa(Xi) do not represent the parents in B0 but the ones in G instead.
The BD score, at least in the general case, has not the score equivalence property.
In fact, [Heckerman et al., 1995] showed that the BDe score is the unique particu-
lar case of BD where it is score equivalent (clearly not being the score K2 in this
case).
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BDeu score: The main caveat of using directly the BD score is to find a suitable
B0 (which often requires expert knowledge). For this reason [Buntine, 1991] pro-
posed to set the parameters of the BDe score imposing a uniform prior (equivalent
to having a empty graph for B0) where P (Xi = xk) = 1/qi, and having as only
free parameter the number of pseudo-counts N ′ , so that N ′ijk = N

′
/(riqi), which

leads us to N ′ij =
∑qi

k=1N
′

ijk = N
′
/qi.

Definition 1.5.14 (BDeu Score) [Buntine, 1991] The Bayesian Dirichlet equiv-
alent uniform (BDeu) score is defined as follows:

ScoreBDeu(G,D) = log

 n∏
i=1

qi∏
j=1

Γ(N
′

qi
)

Γ(Nij + N ′

qi
)

ri∏
k=1

Γ(Nijk + N
′

riqi
)

Γ( N
′

riqi
)

 (1.26)

Where N
′

is a positive number, and is the only free parameter to compute the
score BDeu.

BDs score: The BDeu score is well-known to be very sensitive to the choice of
its only parameter, [Silander et al., 2007] made an empiric study of the influence of
the pseudo-counts, which delivers a counter-intuitive conclusion: bigger values of
N
′ lead to models with more edges (this is unexpected because the B0 used for the

BDeu prior is one with no edges). [Suzuki, 2017] states that for finite (although
big) values of N , the BDeu score might violate what he calls the regularity16

property; [Scutari, 2017] explained in more details the same phenomenon, stating
a theorem saying that it will happen whenever there are some instantiations of
Pa(Xi) missing in D17. To overcome this issue, [Scutari, 2016] presents the BDs
score, which is based on the BDeu score replacing values qi with the number of
different instantiations of the parents of Xi present in D:

Definition 1.5.15 (BDs Score) [Scutari, 2016] The Bayesian Dirichlet sparse
(BDs) score is defined as:

ScoreBDs(G,D) = log

 n∏
i=1

q̃i∏
j=1

Γ(N
′

q̃i
)

Γ(Nij + N ′

q̃i
)

ri∏
k=1

Γ(Nijk + N
′

riq̃i
)

Γ( N
′

riq̃i
)

 (1.27)

Where q̃i is the number of different instantiations of Pa(Xi) present in D.

16We (informally) define the regularity property of a score function: having models G and G′
,

if G is less complex than G′
and at the same time it has a better likelihood w.r.t. D, implies that

Score(G,D) > Score(G′
,D); then the score function is said to be regular.

17[Scutari, 2017] actually expresses it in terms of the maximum entropy principle [Shore and
Johnson, 1980] rather than regularity.
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The BDs score is not as sensitive to the choice of the parameter N ′ as BDeu,
in addition it respects the regularity property proposed in [Suzuki, 2017], and
the maximum entropy principle [Shore and Johnson, 1980]; however, to do so,
it sacrifices the score equivalence property, being only asymptotically equivalent
(when N → ∞). The score equivalence property, while desirable, in practice is
not a crucial property except when we want G to express causal relations [Pearl,
2009].

NML-based scores: All previously seen scores turn out to be very biased when
the dataset size N is small. To overcome this issue, a regret term is defined:

R(P̄ ) = − log P̄ (D)− inf
P∈M

[− logP (D)] (1.28)

From a MDL perspective, the regret R(P̄ ) represents the number of bits used
to encode a datasetD using a hypothesis model P̄ , minus the minimum number of
bits that is actually needed to describe that data (for a single element P of a given
model class M). We realize that different values of D result in different regret
values; in order to learn a robust model, we consider the maximum (worst) regret
value within the space DN of all possible datasets with N records:

Rmax(P̄ ) = sup
D∈DN

[
− log P̄ (D)− inf

P∈M
[− logP (D)]

]
(1.29)

Then, it is shown in [Shtar’kov, 1987] that the unique distribution solving the
problem P = ArgminP̄ Rmax(P̄ ) is the NML (normalized maximum likelihood)
distribution:

PNML(D|M) =
P̂ (D|M)∑

D′∈DN P̂ (D′ |M)
(1.30)

Where P̂ (D|M) is a MLE of P . We use NML as a score function in a BN
context.

Definition 1.5.16 The NML score is defined as follows:

ScoreNML(G,D) = log(PNML(D|G)) = log

(
P (D|ΘG(D))∑

D′∈DN P (D′|ΘG(D′))

)
(1.31)

Where ΘG(·) are MLE parameters of a BN whose graph is G.

The NML score is clearly score-equivalent, since every term of the form
P (D′ |ΘG) is the likelihood of G wrt. D′ , and the (log-)likelihood is a score equiv-
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alent function. The logarithm of the denominator in Equation 1.31 is called para-
metric complexity18. Unfortunately, its computation is often unfeasible (notice
that D′ sums over all possible datasets with N records), and moreover its pres-
ence makes NML a non-decomposable score. However, [Silander et al., 2008]
points out that for a single multinomial variable taking r different possible values,
the parametric complexity can be computed as follows:

crN =
∑

k1+···+kr=N

n!∏r
j=1 kj

r∏
j=1

(
kj
n

)
(1.32)

Which is shown in [Grünwald, 2007] to be computable in linear time in a
recursive fashion. Moreover, [Silander et al., 2018] computes it using an approxi-
mation proposed by [Szpankowski and Weinberger, 2012]:

crN ≈ N

(
logα + (α + 2) logCα −

1

Cα

)
− 1

2
log

(
Cα +

2

α

)
(1.33)

Where α = r
N

and Cα = 1
2

+ 1
2

√
1 + 4

α
. Noticing that P (Xi|PaG(Xi) =

paG(Xi)
(j)) follows a multinomial distribution, its NML can be computed as fol-

lows:

P 1
NML(Dij|G) =

P (D|θ̂(Dij,G))∑
D′ P (D′ |θ̂(D′ij,G))

(1.34)

Where Dij is the column of D corresponding to the random variables Xi,
considering only the records where PaG(Xi) = paG(Xi)

(j). D′ iterates over
all possible (one-dimensional) datasets with the form {x(m)

i }
|Dij |
m=1 where x(m)

i ∈
{x1, . . . , xri}. Θ̂(·) are MLE local parameters wrt. a given dataset.

Definition 1.5.17 (fNML score) [Silander et al., 2008] proposes to sacrifice the
score-equivalence property of the NML score function in order to gain decom-
posability by using Equation 1.34 as a local score, computing its denominator
in linear time using Equation 1.32 or approximating it with Equation 1.33, then
defining the fNML (factorized NML) score:

ScorefNML(G,D) =
n∑
i=1

qi∑
j=1

logP 1
NML(Dij|G) (1.35)

18In the literature it is also called regret, but it does not refer to the regret term presented in
Equation 1.28.
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Even if the fNML score is not score equivalent, it is proven in [Silander et al.,
2008] that it behaves like the BIC score for big datasets, so it is asymptotically
score equivalent; it has also the clear advantage of being non-parametric, while
being almost as fast (or slow) to compute as the BDeu or BIC scores. Empirical
analysis has shown, nonetheless, that the fNML score tends to prefer graphs with
too many arcs even when it penalizes high complexity models [Silander et al.,
2018].

In order to overcome the parsimony issues of the fNML and bring back the
desirable score equivalence property, [Silander et al., 2018] derives a new score
function:

Definition 1.5.18 (qNML Score) [Silander et al., 2018] proposes to treat {Xi}∪
PaG(Xi) and PaG(Xi) as single multinomial variables (taking riqi and qi different
categorical values respectively), and computing the local score as the following
quotient:

P (Xi|PaG(Xi)) =
P (Xi,PaG(Xi))

P (PaG(Xi))

Then the quotient NML (qNML) score is defined as follows:

ScoreqNML(G,D) =
n∑
i=1

logP 1
NML(D{Xi}∪Pai|G)

P 1
NML(DPai |G)

(1.36)

Where D{Xi}∪Pai and DPai are one-dimensional arrays that come from D con-
sidering only the columns corresponding to the sets of variables {Xi} ∪ PaG(Xi)
and PaG(Xi), respectively.

It is proved in [Silander et al., 2018] that the fNML and qNML respect the
regularity condition present in [Suzuki, 2017]. The properties of all discussed
scores are summarized in Table 1.1.

1.6 Dynamic Bayesian Networks
By definition, BNs represent static systems: they do not capture any temporal no-
tion. Hence they are inadequate to cope with dynamic systems running over time.
Dynamic Bayesian networks (DBN) [Dean and Kanazawa, 1989] have been pre-
cisely designed to take into account this temporal dimension. There are different
flavors to DBNs, but the simplest one is certainly the 2-slice Temporal Bayesian
Network (2TBN):

Definition 1.6.1 (Dynamic Bayesian network) A 2TBN is a pair (B0,B→), where:
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Score Decompose. Consistent S. Equiv. Regular No Params.

LL 3 7 3 7 3

AIC 3 3 3 3 3

BIC 3 3 3 3 3

BD 3 3 7 7 7

K2 3 3 7 7 3

BDe 3 3 3 7 7

BDeu 3 3 3 7 7

BDs 3 3 3 3 7

NML 7 3 3 3 3

fNML 3 3 7 3 3

qNML 3 3 3 3 3

Table 1.1: We describe the desired properties of all scores we have seen so far:
Their decomposability (whether they can be expressed as the sum of local scores),
their asymptotic consistency (whether they favor the true underlying distribution
over other non-equivalents for large datasets), their score equivalence (whether
they do no distinction between elements of the same Markov-equivalence class),
their regularity (according to the definition of [Suzuki, 2017], and their absence
of parameters (thus their easiness to be applied).

• B0 = (G0,θ0) is a BN representing the uncertainty over the state of the
system at time t = 0. Its set of random variables is X0 = {X1

0 , . . . , X
n
0 }

and, as a usual BN, B0 represents the joint probability distribution over X0.

• B→ = (G→,θ→) is a fragment of BN representing the transition of the state
of the system from time t to time t + 1. Its graphical structure G→ is such
that:

– its set of nodes is X→ = {X1
t , . . . , X

n
t , X

1
t+1, . . . , X

n
t+1}. Nodes sub-

scripted by t (resp. t + 1) correspond to random variables at time t
(resp. t+ 1).

– there exists no arc between any pair of nodes (X i
t , X

j
t ), i, j = 1, . . . , n,

i.e., between any nodes at time t (but arcs between nodes at time t+ 1
can exist).

– there exists no arc from any nodeX i
t+1 to any nodeXj

t , i, j = 1, . . . , n,
i.e., from a node at time t+ 1 to a node at time t (backward-time arc).

Parameters θ→ are equal to {P (X i
t+1|Pa(X i

t+1))}n
i=1

.
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A grounded DBN from time t = 0 up to time t = T is a BN resulting from
copy/pasting B0 and appending to it (T − 1) times fragment B→.

Figure 1.8 illustrates Definition 1.6.1: on the left side is displayed the 2TBN
and, on the right part, a grounded DBN. As can be observed, the latter is obtained
by copy/pasting once B0 and three times B→. In Artificial Intelligence, DBNs de-
fined by 2TBNs are a usual representation of uncertainty for dynamically evolving
systems.
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Figure 1.8: A DBN defined by its 2TBN (left) and one of its grounded DBN.

1.7 Non-Stationary DBNs
DBNs model dynamic systems, but those are supposed to have a certain stability,
i.e., the transitions from time t to t + 1 are supposed to remain the same over
all time slices. In such cases, the transition probability distributions are said to
be stationary. However, there are many situations in which such an assumption
does not hold. Non-stationary DBNs (nsDBN) have been introduced precisely
to cope with this kind of situations [Robinson and Hartemink, 2008, Robinson
and Hartemink, 2010]. Essentially, they consist in modeling the dynamic system
as a piecewise stationary model. In terms of DBNs, this amounts to model the
system as a set of pairs (BN,time interval). Hence, similarly to classical DBNs,
appending all these BNs on the time intervals on which they are defined results in
a “grounded” BN defined over the union of all these intervals. More precisely:

Definition 1.7.1 [Gonzales et al., 2015] A nsDBN is a sequence of pairs 〈(Bh, Th)〉mh=0,
where T0 = 0 represents the first time slice, B0 is the BN representing the distri-
bution over the random variables at time 0, and each Bh, h = 1, . . . ,m, is a BN
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representing the conditional probability of the random variables at time t given
those at time t−1, for all t in time intervals Eh = {Th−1 + 1, . . . , Th}. Th and Eh

are called a transition time and an epoch respectively. By convention, E0 = {0}.

A DBN is a nsDBN in which the sequence contains only two pairs. Hence,
The DBN of Figure 1.8 represents a nsDBN. Figure 1.9 shows another nsDBN
which cannot be represented by a DBN because it involves more than two epochs
[Gonzales et al., 2015]. Note that, by Definition 1.7.1, nsDBNs are defined over
discrete time horizons.
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Figure 1.9: A nsDBN 〈(B0, 0), (B1, t1), (B2, t2)〉 (top of the figure) and its
grounded BN (bottom), resulting from copying fragment B0 in the first time slice,
copying fragment B1 in time slices 1 to t1 and copying fragment B2 in time slices
t1 + 1 to t2.

1.7.1 nsDBN learning issues
By definition, learning the structure and parameters of a 2TBN consists of ap-
plying separately classical learning algorithms on its two BNs: first, extract from
DatasetD the subdatabaseD0 whose columns correspond to the random variables
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of time t = 0 and learn from D0 Bayesian network B0 using any algorithm pre-
sented in the above sections. For learning the parameters and structure of B→,
it is sufficient to reshape Dataset D into a new dataset D→ in such a way that
each row of D→ corresponds to the random variables at times t and t + 1, for
some t. For instance, if the columns of D correspond to variables {{X t

i}ni=1}Tt=0,
then each row of D is converted into T rows in D→, the first one corresponding
to Variables {X0

i , X
1
i }ni=1, the second one to Variables {X1

i , X
2
i }ni=1, and so on.

Then, applying the learning algorithms of the preceding sections and enforcing
that there exists no arc X t+1

i → X t
j nor any arc X t

i → X t
j , it is possible to learn

the structure and parameters of Bayesian network fragment B→.
As a result, it is not more difficult to learn DBNs than to learn BNs. Learn-

ing general nsDBNs is more challenging because, in addition to learning the
Bayesian network fragments Bh as described in the preceding paragraph, the algo-
rithm also needs to determine the set of transition times Th at which the network
evolves. This explains why there exist very few algorithms in the literature to
learn nsDBNs, see, e.g., [Nielsen and Nielsen, 2008, Grzegorczyk and Husmeier,
2009, Robinson and Hartemink, 2010]. The basic idea followed by [Robinson and
Hartemink, 2010] is simply to adapt the above equations of the Bayesian Dirich-
let learning framework to the case where there are several BN fragments in the
model. For nsDBNs, the BD score can thus be adapted as:

P (G0, . . . ,Gm)
m∏
h=0

n∏
i=1

qi∏
j=1

Γ(αij(Eh))

Γ(Nij(Eh) + αij(Eh))
×

ri∏
k=1

Γ(Nijk(Eh) + αijk(Eh))

Γ(αijk(Eh))
,

where the Gh’s are the structures at each epoch, and the quantities in the Gamma
functions are similar to those in the BD score except that they are computed on
subdatabases of D corresponding to epochs Eh. Whenever the epochs are known,
the learning amounts to perform the same operations as those done for 2TBNs, but
if we do not know the epochs nor their number, the learning algorithm has to per-
form a search in the epochs space in addition to a search in the DAGs space, which
is very time consuming and can lead to overfitting. [Robinson and Hartemink,
2010] provides such an algorithm but this one relies on optimization techniques
that require the database to be defined over all the time slices over which the ns-
DBN will be exploited. This is not an issue in Robinson and Hartemink’s paper
because, in their target applications, the learning database is supposed to be a good
representative of the subsequent situations in which the nsDBN will be exploited.
However, their framework cannot be applied in situations where the model itself
needs be updated over time when the nsDBN is exploited, e.g., when the nsDBN
models uncertainties w.r.t. zero-day cyberattacks as fully new unexpected attacks
may be created.

Learning the DBN structure in non-stationary contexts is therefore much more
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challenging than learning in stationary contexts and people often have to make
very strong assumptions to keep the search on the structures tractable. As an ex-
ample, it is assumed in [Robinson and Hartemink, 2010] that the evolution of
the structure over time follows a unique truncated exponential probability distri-
bution. This assumption is questionable because it implies that removing an arc
representing a strong dependence between two random variables is considered as
equivalent to removing an arc that represents a very weak dependence. Other al-
gorithms have been designed to learn nsDBNs, but they also make very strong
assumptions. For instance, it is assumed in [Grzegorczyk and Husmeier, 2009]
that only parameters can change. In [Nielsen and Nielsen, 2008], data are sup-
posed to be constituted by only one observation per time slice, which requires that
the generating process remains stationary for long periods. In [Dondelinger et al.,
2010], random variables need be continuous, hence ruling out applications where
data are discrete.

1.8 Conclusion
In this chapter, we reviewed the definition of BNs. We discussed about the infer-
ence procedures that can be performed through them as well as about the methods
that can be used to learn their parameters from datasets. We also discussed about
their use to describe processes over time.

We started by reviewing ground concepts of statistics such as probability dis-
tributions, random variables, conditional independence, Bayes theorem, etc.; we
recalled some graph theory concepts as well. Then, we established the connection
between graph theory and statistics in order to express joint multivariate distri-
butions as products of terms associated to the nodes of a graph (which is called
factorization). Based on that, we presented the concept of (discrete) BN, which
is composed of a graph and a set of conditional probability tables (one for each
node).

Then we studied the concept of inference over BNs, focusing our attention on
the exact resolution of conditional probability queries: we studied in details the
Variable Elimination and Shafer-Shenoy’s algorithms. Also, we studied the prob-
lem of learning BNs from datasets. We pointed out the possible approaches to
tackle this problem: Constraint-based, search-based, hybrid and exact approaches.
We briefly discussed about the state-of-the-art literature of each one of those.

After that, we discussed about each of the most common assumptions made
to learn BNs, which are: faithfulness, completeness, independence and identical
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distribution, global/local independence, modularity and Dirichlet prior. Then we
focused our attention on the search-based approaches, and in particular on the
most widely used score functions to guide the search in the BN structure space.
We discussed many score functions (K2, BIC, BDeu, fNML, etc.) and compared
them based on their properties.

Finally, we discussed the introduction of the temporal dimension in BNs with
the definition of DBNs, which describe stationary temporal processes. Also we
discussed about ns-DBNs models, where we introduce the temporal notion of an
epoch, so that the ns-DBNs are piecewise stationary processes within those, and
we mentioned why the epoch notion makes the ns-DBNs particularly hard to learn.
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Chapter 2

Bayesian Networks With
Continuous Variables

In this chapter we discuss the usual ways to deal with the presence of continuous
random variables in a BN context: First (and most obvious), it is possible to de-
fine appropriate discretization intervals [Friedman and Goldszmidt, 1996, Monti
and Cooper, 1998, Mabrouk et al., 2015]. This has the advantage of producing
discrete BNs (whose inference/learning methods are largely discussed in the lit-
erature). Second (and most widely used), we can exploit the Conditional Linear
Gaussian models [Lauritzen and Wermuth, 1989], which deal directly with con-
tinuous variables and are well suited to perform fast computations. However, they
lack expressive power, notably because they do not allow continuous nodes to
be the parents of discrete nodes and because they are primarily defined to en-
code linear relationships. Third, it is possible to use mixtures of truncated basis
function-based models [Moral et al., 2001, Shenoy, 2012, Langseth et al., 2012b],
which are very expressive representations of mixed joint distribution. Unfortu-
nately, their learning/inference are in practice too computationally expensive to
scale up. We will briefly review these models in the rest of this chapter.

2.1 Discretization using BNs

From here on, to distinguish continuous random variables from discrete ones,
we denote by X̊i a continuous variable and by Xi a discrete one. Without loss
of generality, for any X̊i, variable Xi with the same name but without the cir-
cle represents its discretized counterpart. Throughout the rest of this thesis, let
XD = {X1, . . . , Xd} and X̊C = {X̊d+1, . . . , X̊n} denote the set of discrete and
continuous random variables respectively. We denote by X = XD ∪ X̊C the set
of all random variables. Finally, for any variable X or set of random variables Y
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or Y̊, let ΩX (resp. ΩY or ΩY̊) denote the domain of X (resp. Y or Y̊). Following
that notation, we define a variable discretization as follows:

Definition 2.1.1 (Discretization) A discretization of a variable X̊i is a function
dX̊i : ΩX̊i

→ {0, . . . , gi} defined by an increasing sequence of gi cutpoints
{t1, t2, . . . , tgi} ⊂ ΩX̊i

such that:

dX̊i (̊xi) =


0 if x̊i < t1,
k if tk ≤ x̊i < tk+1, for all k ∈ {1, . . . , gi − 1}
gi if x̊i ≥ tgi

By abuse of notation we consider the discretization function of a discrete variable
to be the identity function, i.e. dX(x) = x.

Thus the discretized variable Xi corresponding to X̊i has a finite domain of
{0, . . . , gi} and, after discretizing all the continuous variables, the uncertainty over
all the discrete and discretized variables X = {X1, . . . , Xn} can be represented
by a classical BN. This is achieved using a discretization policy:

Definition 2.1.2 (Discretization Policy) A discretization policy is a set of dis-
cretization functionsFX, containing a discretization function dX̊ for each X̊ ∈ X.
When it is clear from the context, we call it simply F .

2.1.1 BN Learning and discretization
The formulation presented in this subsection comes from [Mabrouk et al., 2015].
Learning a discretized BN consists in finding the best pair (G,F) wrt. to a dataset
D̊ containing continuous variables:

(G∗,F∗) = Argmax
(G,F)

P (G,F|D̊) (2.1)

By using the chain rule, we decompose the previous equation as the following
product:

P (G,F|D̊) = P (G|F , D̊)P (F|D̊) (2.2)

Let D be the unique discretized database resulting from the discretization of
D̊ by discretization policy F . Then P (D|D̊,G,F) = 1 and, by Bayes Theorem,
the first product term P (G|F , D̊) in Equation 2.2 is proportional to:

P (G|D̊,F) ∝ P (D̊|G,F) = P (D|D̊,G,F)︸ ︷︷ ︸
equal to 1

P (D̊|G,F)

= P (D̊|D,G,F)P (D|G,F) (2.3)
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Without additional information, it is not very restrictive to assume that all
the databases D̊ compatible with D given discretization policy F are equiproba-
ble. In this case, P (D̊|D,G,F) is a constant and P (G|D̊,F) ∝ P (D|G,F). As
a result, determining the most likely structure given some continuous database
is equivalent to maximizing the likelihood of its discretized counterpart, that is,
maximizing:

P (G|D̊,F) ∝ P (D|G,F) =

∫
Θ

P (D|G,F ,Θ)π(Θ|F ,G) dΘ. (2.4)

Making the same assumptions done for learning BNs (completeness, faithful-
ness, iid. data, parameter independence, modularity and Dirichlet prior), Equa-
tion 2.4 can be solved using any approximation to the Bayesian score (see Defini-
tion 1.5.10) like the BD score (see Definition 1.5.11) or one of its particular cases.
Note that, if the discretization policy F needs be determined, we also need a way
to compute P (F|D̊) in Equation 2.2 in order to have a score function which can
be used to explore the joint space of discretization policies and DAGs.

2.1.2 Monti & Cooper Discretization

[Monti and Cooper, 1998] proposes that P (F|D̊) ∝ P (D̊|F) by assuming a
priori that all the possible policies F are equiprobable, and assuming also that all
discretization functions dX̊ ∈ F define the following uniform distributions:

P (X̊ = x̊|x = k, dX̊) =
1[tk≤x̊<tk+1]

tk+1 − tk
= ρk (2.5)

Then, because of the iid. assumption in D̊, we have that:

P (D̊X̊ |dX̊) =
r∏

k=1

ρNkk (2.6)

where D̊X̊ is the column of Dataset D̊ corresponding to Variable X̊ . [Monti and
Cooper, 1998] makes an additional independence assumption: the (uniform) den-
sity associated to each continuous variable depends only on its corresponding dis-
cretization (and not on the discretization of the other ones), which translates into:

P (D̊|F) =
∏
X̊∈X̊

P (D̊X̊ |dX̊) (2.7)

Then we have all the elements required to define a score function:
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Definition 2.1.3 (Monti & Cooper score) The Monti & Cooper discretization score
is defined as follows:

ScoreMC(F ,G; D̊) =
n∑

i=d+1

Sc(X̊i, dX̊i ; D̊) +
n∑
i=1

Sd(Xi,PaG(Xi),Fi; D̊) (2.8)

Where Sc(·) is the score wrt. to the continuous variables, and is computed as the
logarithm of Equation 2.6, Sd(·) corresponds to a discrete BN score, and can be
computed as a local BD score (see Definition 1.5.11) and, Fi = dX̊i ∪ {dX̊ :

X̊ ∈ PaG(Xi)}. Thanks to Theorem 1.3.1 we know that changing the discretiza-
tion dX̊i would only influence the discretizations in the markov blanket of Xi;
therefore, we can find a good discretization function by optimizing the following
local score:

ScoreMC(X̊i,F ,G; D̊) = Sc(X̊i, dX̊i ; D̊) + Sd(Xi,PaG(Xi),Fi; D̊)

+
∑

Xj∈ChG(Xi)

Sd(Xj,PaG(Xj),Fj; D̊) (2.9)

Unfortunately, [Monti and Cooper, 1998] does not provide a search algorithm
over the space of discretizations.

2.1.3 Friedman’s Discretization
Another attempt to learn BNs and their discretizations is proposed in [Fried-
man and Goldszmidt, 1996], where a MDL score approach is used (see Defini-
tion 1.5.7). In order to understand this approach, we introduce the following two
information theory concepts: (conditional) entropy and mutual information (see
Definitions 2.1.4 and 2.1.5).

Definition 2.1.4 (Entropy and Conditional Entropy) BeingD a dataset, and let-
ting P̂D be a (frequence) probability measurement, the conditional entropy of X
wrt. Y is defined as follows:

H(X|Y) = −
∑
x,y

P̂D(x,y) log P̂D(x|y)

Whenever Y = ∅, we can denote it as H(X) and call it simply entropy of X.

Definition 2.1.5 (Mutual Information) The mutual information of two random
variable sets X and Y is defined as follows:

I(X,Y) =
∑
x,y

P̂D(x,y) log
P̂D(x,y)

P̂D(x)P̂D(y)
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Since it can be easily shown that: H(X|Y) = H(X) − I(X,Y), we can
rewrite the term DLD presented in Equation 1.21 as follows:

DLD = N

n∑
i=1

H(Xi|PaG(Xi)) (2.10)

DLD = N

n∑
i=1

H(Xi)−N
n∑
i=1

I(Xi,PaG(Xi)) (2.11)

DLD ← −N
n∑
i=1

I(Xi,PaG(Xi)) (2.12)

In Equation 2.12 we give an alternative definition of DLD that ignores the
terms H(X), since they depend only of D and not on any parameters we intend
to learn. The description length DL of Bayesian network B learnt from a dataset
D̊ (containing continuous variables), where a discretization policy F is applied, is
defined as follows:

DL = DLB +DLD +DLF +DLX→X̊ (2.13)

Where DLB is the number of bits required to store B, DLD is the number of bits
required to store the discretized dataset D, DLF is the number of bits required
to store all discretization policy parameters and DLX→X̊ represents the required
information to encode the continuous values of D̊ based on their discretized coun-
terparts in D.

We have that DLB and DLD are computed just like in the MDL score. On
the other hand, for computing DLF we consider that all potential cutpoints are
midpoints in D̊ (just like in Monti & Cooper discretization), and then we can
assign an integer number for every possible combination of cutpoints, computing
DLF as:

DLF =
∑

X̊i∈X̊C

log

(
Ni − 1

ki − 1

)
≈
∑

X̊i∈X̊C

(Ni − 1)H

(
ki − 1

Ni − 1

)
(2.14)

where ki = |ΩXi | andH(t) = −t log (t)−(1−t) log (1− t). The last formula
results from the use of a Stirling’s approximation in order to avoid computing the
combinatorial terms. For computingDLX→X̊ , we know that the description length
of a single variable X̊i can be approximated as − log (X̊i|Xi), thus:

DLX→X̊ = −
∑
X̊∈X̊C

N∑
j=1

log P̂D̊ (̊x
(j)
i |x

j
i ) = N

∑
X̊∈X̊C

H(X̊|X) (2.15)
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The preceding expression can be expressed in a more convenient way by
means of the following proposition:

Proposition 2.1.1 ([Friedman and Goldszmidt, 1996]) If G is a BN structure
containing a variable Xi, which was discretized from a continuous variable X̊i,
using entropy and mutual information properties it can be shown that:

H(Xi|PaG(Xi)) +H(X̊i|Xi) = H(X̊i)− I(Xi,PaG(Xi))

In Equation 2.13, we computeDLD̊ as in Equation 2.10, applying Proposition 2.1.1.
Noticing once again that H(X̊i) depends neither on G nor on F (thus, it can be
safely ignored for computing DL), we obtain that:

DL = DLB +DLF −N
n∑
i=1

I(Xi,PaG(Xi)) (2.16)

Definition 2.1.6 (Friedman & Goldsmith Score) Seeing Equation 2.12, we can
conclude that:

DL = DLB +DLF +DLD (2.17)

Then we have all the required elements for defining a score function:

ScoreFG(F ,G; D̊) = −DLB −DLD −DLF

= ScoreMDL(G,D) +
∑

i:X̊i∈X̊C

(Ni − 1)H

(
ki − 1

Ni − 1

)
(2.18)

Knowing that the MDL score is decomposable, and that the discretization of a
single variable will affect all its Markov blanket, a local score is also defined:

ScoreFG(X̊i,F ,G; D̊) =− 1

2
logN

qi(ri − 1) +
∑

Xi′∈ChG(Xi)

qi′(ri′ − 1)


− log(ki) + (Ni − 1)H

(
ki − 1

Ni − 1

)

+N

I(Xi,PaG(Xi)) +
∑

Xi′∈ChG(Xi)

I(Xi′ ,PaG(Xi′))


(2.19)

In [Friedman and Goldszmidt, 1996] there is also a proposed algorithm for
learning discretization policies and BNs at the same time in an iterative process:
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From a given discretization F , a discretized dataset D is obtained, from which
a BN structure G is learned. From G, an improved discretization policy F is
computed, and this process is repeated in an iterative fashion (see details in Al-
gorithm 2.1). The discretization of the variables is made one by one, knowing
that if we re-discretize a continuous random variable, we must recompute the dis-
cretization of all its Markov Blanket (see Subroutine 2.2). When discretizing a
single variable, we make the assumption that all the other variables are discrete
(or already discretized), in order to add cutpoints in a greedy way until the local
score is not improved anymore (see Subroutine 2.3).

Algorithm 2.1: BN multivariate discretization.

Input: D̊: A dataset, F0: an initial discretization of X̊C

Output: F : a locally optimal discretization of X̊C , G: a BN structure.
1 G0 ← empty graph; G ← empty graph; F ← F0;
2 repeat
3 G0 ← G;
4 D ← discretization of D̊ using F ;
5 G ← greedySearch(D);// Using MDL Score

6 F = discretize(G, D̊,F0);
7 until G = G0;

Subroutine 2.2: Multivariate Discretization.
1 discretize (G, D̊,F0)

2 Q← queue with all X̊ ∈ X̊C ; F ← F0;
3 while Q is not empty do
4 Remove first element X̊ from Q;
5 d′

X̊
= discretizeOneV ariable(X̊,G);

6 F ′ ← F replacing dX̊ by d′
X̊

;
7 if ScoreFG(X̊,F ′,G; D̊) > ScoreFG(X̊,F ,G; D̊) then
8 F ← F ′;
9 for Y ∈MBG(X) do

10 if Y̊ ∈ X̊C then
11 Push Y̊ into Q;

12 return F;
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Subroutine 2.3: Discretization of a single variable.

1 discretizeOneVariable (X̊,G, D̊,F)
2 d′

X̊
← an empty discretization (no cutpoints);

3 T ← list of midpoints of D̊X̊ ;
4 scoreprec ← −∞; addCutpoints = True;
5 while addCutpoints do
6 scoremax ← −∞; tbest ← null;
7 for t ∈ T do
8 d′ ← d′

X̊
adding t to its cutpoints;

9 F ′ ← F replacing its dX̊ element by d′;
10 score← ScoreFG(X̊,F ′,G; D̊);
11 if score− scoremax > 0 then
12 scoremax ← score; tbest ← t;

13 if scoremax > scoreprec then
14 Remove tbest from T , and add it as cutpoint of d′

X̊
;

15 Scoreprec ← Scoremax;
16 else
17 addCutpoints = False;

18 return d′
X̊

;

2.2 Conditional Linear Gaussian BNs
In this section we describe the Conditional Linear Gaussian (CLG) distribution,
and its use in hybrid BNs, i.e. BNs defined over discrete and continuous random
variables. When dealing with BNs, we typically express CPDs in tables (CPTs),
but nothing in the definition of BNs forbids us to use any other type of CPD. The
model studied in this section makes use of Gaussian distributions for expressing
CPDs involving continuous variables (see Definition 2.2.1), which is a very com-
mon continuous probability distribution.

Definition 2.2.1 (Multivariate/Univariable Gaussian distribution) Being X̊ a
vector of continuous random variables, a multivariate Gaussian (or normal) dis-
tribution is defined as follows:

p(X̊ = x̊) =
1

(2π)n/2|ΣX̊|1/2
exp

[
−1

2
(̊x− µX̊)TΣ−1

X̊
(̊x− µX̊)

]
Where µX̊ is a mean vector, computed as the expectation E[X̊]; and ΣX̊ is

a covariance matrix, computed as E[(X̊ − µX̊)T (X̊ − µX̊)]. In the case of a
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single variable X̊ , the mean vector becomes the mean of a single variable µX̊ ,
the covariance matrix becomes a variance σ2

X̊
. Then, a single-variable Gaussian

(normal) distribution is defined as follows:

p(X̊ = x̊) =
1√

2πσX̊
exp

[
−1

2

(̊x− µX̊)2

σ2
X̊

]

The Gaussian distribution is often denoted as N (X̊|µX̊,ΣX̊).

A continuous variable can often be expressed (or approximated) as a linear
function of other continuous variables, the CPD of such a variable can be modeled
as a Conditional Linear Gaussian (see Definition 2.2.2), which has very appealing
properties: Any CLG can be represented as a multivariate Gaussian distribution
(see Theorem 2.2.1) et vice versa (see Theorem 2.2.2). A direct consequence of
those properties is that we can take any BN structure G defined over discrete and
continuous variables (as long as no continuous variable has a discrete child in G)
and define a BN model (see Definition 2.2.3).

Definition 2.2.2 (Conditional Linear Gaussian CPD) Let Y̊ be a continuous ran-
dom variable and X̊ = [X̊1, . . . , X̊k] a vector of continuous random variables,
we say that Y̊ is a linear Gaussian model of X̊ if there exist parameters α,
β = [β1, . . . , βk] and σ2 such that:

P (Y̊ |X̊) = N (α + βT X̊, σ2)

This definition means that Y̊ is expressed as a linear function of the variables
X̊:

Y̊ = α + βT X̊ + ε

Where ε is a random variable with mean 0 and variance σ2.

Theorem 2.2.1 (GLG to Gaussian) [Wermuth, 1980] Any CLG P (Y̊ |X̊) has the
following two properties, assuming that X̊ ∼ N (X̊|µX̊,ΣX̊):

1. P (Y̊ ) is a Gaussian distribution N (Y̊ |µY̊ , σ2
Y̊

) with µY̊ = α + βTµX̊ and
σ2
Y̊

= σ2 + βTΣX̊β.

2. The joint distribution P (Y̊ , X̊) is a multivariate Gaussian distribution where
the element of the covariance matrix corresponding to the variables Y̊ and
X̊i is computed as

∑k
j=1 βjΣX̊[i, j].
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Theorem 2.2.2 (Gaussian to CLG) [Wermuth, 1980] Having the following mul-
tivariate Gaussian distribution:

P (X̊, Y̊ ) = N
((

µX̊

µY̊

)
,

[
ΣX̊X̊ ΣX̊Y̊

ΣY̊ X̊ ΣY̊ Y̊

])
It can be expressed as a CLG P (Y̊ |X̊) = N (Y̊ |α + βT X̊, σ2), where:

1. α = µY̊ − ΣY̊ Y̊Σ−1

X̊X̊
µX̊

2. β = Σ−1

X̊X̊
ΣY̊ X̊

3. σ2 = ΣY̊ Y̊ − ΣY̊ X̊Σ−1

X̊X̊
ΣX̊Y̊

Definition 2.2.3 (Conditional Linear Gaussian BN) [Lauritzen and Wermuth, 1989]
The CLG-BN model B = (G,Θ) represents a mixed probability distribution, i.e.
a distribution with discrete and continuous variables. It is composed by a BN
structure G defined over a (mixed) set of variables X = XD ∪ X̊C and a set of
parameters Θ = {θi}ni=1. It has the following properties:

1. No continuous variable is allowed be the parent of a discrete variable in G.

2. Like in a BN, in the CLG model, to each discrete variable Xi in XD is
assigned its conditional probability table (CPT) θi = P (Xi|PaG(Xi))

3. For any continuous variable X̊i ∈ X̊C, θi contain the parameters that rep-
resent the following conditional linear Gaussian distribution:

P (X̊i|Y = y, Z̊ = z̊) = N (X̊i|α(y) + β(y)T z̊, σ2(y))

where Y and Z̊ are the set of discrete and continuous parents of X̊i respec-
tively. α(y) and β(y) are the coefficients of a linear regression model of X̊i

given its continuous parents. These coefficients depend on the values y of
the discrete parents.

The product of all the CPTs and the conditional distributions represent the joint
mixed distribution over X.

In [Lauritzen, 1992, Lauritzen and Jensen, 2001] an algorithm is proposed
in order to perform clique tree inference in CLG-BNs. The potentials associ-
ated to those cliques are functions expressed into their proposed canonical form,
in which the marginalization and product operations are well defined. On the
other hand, [Heckerman and Geiger, 1995] proposes a score for learning the BN
structure of a CLG BN, which is called the Be (Bayesian equivalent) score. This
score has the BDe score as a discrete component (using Dirichlet priors) and their
proposed BGe (Bayesian likelihood equivalent) score as a continuous component
(using normal-Wishart distribution as prior).
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2.3 MTBF Models
As we have seen in the preceding section, Conditional Linear Gaussian models
lack expressiveness, essentially because they represent a “large” multivariate Nor-
mal distribution. One simple way to extend this expressiveness is to not use a
single Normal distribution but rather a mixture of distributions. This is the very
key idea of MTBF-based models. In this section, we will review a few such pop-
ular models: first, we will describe Mixture of Truncated Exponentials, then we
will present Mixture of Truncated Polynomials and, finally, the general model of
Mixture of Truncated Basis Functions.

2.3.1 Mixture of Truncated Exponentials (MTE)
In the MTE model [Moral et al., 2001], the distribution over the set of all random
variables X = XD ∪ X̊C is specified by a mixed probability distribution f such
that:

•
∑

xD∈ΩXD

∫
ΩX̊C

f(xD, x̊C) dx̊C = 1,

• f is an MTE potential over X, i.e.:

Definition 2.3.1 (MTE potential)
Let Y = {Xr1 , . . . , Xrp} and Z̊ = {X̊s1 , . . . , X̊sq} be sets of discrete and contin-
uous variables respectively. A function φ : ΩY∪Z̊ 7→ R+

0 is a MTE potential if one
of the two following conditions holds:

1. φ can be written as:

φ(y, z̊) = a0 +
m∑
i=1

ai exp

{
p∑
j=1

b
(j)
i xrj+

q∑
k=1

b
(p+k)
i x̊sk

}
(2.20)

for all (xr1 , . . . , xrp) ∈ Y, (̊xs1 , . . . , x̊sq) ∈ Z̊, where ai, i = 0, . . . ,m and
b

(j)
i , i = 1, . . . ,m, j = 1, . . . , p+ q, are real numbers.

2. There exists a partition Ω1, . . . ,Ωk of ΩY∪Z̊ such that the domain of the
continuous variables, ΩZ̊, is divided into hypercubes, the domain ΩY of the
discrete variables is divided into arbitrary sets, and such that φ is defined
as:

φ(y, z̊) = φi(y, z̊) if (y, z̊) ∈ Ωi,

where each φi, i = 1, . . . , k, can be written in the form of Equation (2.20),
i.e., it is a MTE potential on Ωi.
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MTEs present attractive features. First, they are expressive in the sense that
they can approximate (w.r.t. the Kullback-Leibler distance) any continuous den-
sity function [Cobb et al., 2006, Cobb and Shenoy, 2006]. Second, they are easy
to learn from datasets [Moral et al., 2002, Romero et al., 2004]. Finally, they
satisfy Shafer-Shenoy’s propagation axioms [Shenoy and Shafer, 1990] and infer-
ence can thus be performed using a junction tree-based algorithm [Moral et al.,
2001, Cobb and Shenoy, 2006].

This algorithm can be described as follows. An undirected graph called a
Markov network is first created: its nodes correspond to the variables of X and its
edges are such that, for every MTE potential φi, all the nodes involved in φi are
linked together. This graph is then triangulated by eliminating sequentially all the
nodes. A node elimination consists

1. in adding edges to the Markov network in order to create a clique (a com-
plete subgraph) containing the eliminated node and all its neighbors; and

2. in removing the eliminated node and its adjacent edges from the Markov
network.

The cliques created during this process constitute the nodes of the junction tree.
They are linked in order to satisfy a “running intersection” property [Madsen and
Jensen, 1999]. Finally, each MTE potential φi is inserted into a clique containing
all its variables.

A collect-distribute message-passing algorithm can then be performed in this
junction tree, hence enabling to compute a posteriori marginal distributions of
all the random variables. As usual, the message passed from one clique Ci to
a neighbor Cj is the projection onto the variables in Ci ∩ Cj of the combination
of the MTE potentials stored in Ci with the messages received by Ci from all its
neighbors except Cj . By Equation (2.20), combinations and projections are Alge-
braic operations over sums of exponentials. Unfortunately, these operations have
a serious shortcoming: when propagating messages from one clique to another,
the number of ai/exp terms in Equation (2.20) tends to grow exponentially, hence
limiting the use of this exact inference mechanism to problems with only a small
number of cliques.

To overcome this issue, approximate algorithms based on MCMC [Moral
et al., 2001] or on the Penniless algorithm [Rumíand Salmerón, 2007] are pro-
vided in the literature.

2.3.2 Mixture of Truncated Polynomials
Mixtures of polynomials (MOP) are similar to MTE except that functions φ :
ΩY∪Z̊ 7→ R+

0 of Equation (2.20) are substituted by polynomials over the variables
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in Y ∪ Z̊ [Shenoy, 2011, Shenoy and West, 2011]. MOPs have several advan-
tages over MTEs: their parameters for approximating density functions are easier
to determine than those of MTEs. They are also applicable to a larger class of
deterministic functions in hybrid BNs. As MTE, the MOP model satisfies Shafer-
Shenoy’s propagation axioms and inference can thus be performed by message-
passing in a junction tree. But, similarly to Equation (2.20), the number of terms
these messages involve tends to grow exponentially with the number of cliques
in the junction tree, thereby limiting the use the message-passing algorithm to
junction trees with a small number of cliques/random variables.

2.3.3 Mixture of Truncated Basis Functions

Mixtures of truncated basis functions (MTBF) generalize both MTEs and MOPs
[Langseth et al., 2012b]. The definition of an MTBF is the same as Defini-
tion 2.3.1 except that Equation (2.20) is substituted by:

φ(y, z̊) =
m∑
i=0

q∏
k=1

a
(k)
i,yψi(̊xsk), (2.21)

where potentials ψi : R 7→ R are basis functions. MTBFs are defined so that the
potentials are closed under combination and projection which, again, ensures that
inference can be performed by message-passing in a junction tree. By exploit-
ing cleverly factorizations of terms in Equation (2.21), inference in MTBFs can
be more efficient than in MTEs [Langseth et al., 2012a]. But, like all the other
aforementioned models, the sizes of the messages tend to grow with the number
of cliques in the junction tree.

2.4 Conclusion
In this chapter, we have recalled the usual models used to deal with both discrete
and continuous random variables. First, we have presented models that discretize
the continuous variables in order to fall back to only sets of discrete variables that
can be dealt with using classical Bayesian networks. Then we focused on mod-
els that specify the density functions of the continuous variables. The first ones
are Conditional Linear Gaussian (CLG) models, that exploit a multivariate Nor-
mal distribution. Then, we described mixture models, the most popular of which
being MTEs, MOPs and MTBFs. It is worth noting that CLGs lack some expres-
siveness, i.e., there are many mixed probability distributions that cannot be very
well approximated using CLGs (at least, without adding many latent variables).
In addition, CLGs are provided with very efficient inference mechanisms. On the
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other hand, MTEs, MOPs and MTBFs are very expressive but at the expense of
inference tractability. Indeed, the number of algebraic operations they need to
perform during inference tends to grow exponentially with the number of cliques
in their junction trees.
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Chapter 3

Conditional Truncated Densities
Bayesian Networks

The majority of Bayesian networks learning and inference algorithms rely on the
assumption that all random variables are discrete, which is not necessarily the
case in real-world problems. In situations where some variables are continuous, a
trade-off between the expressive power of the model and the computational com-
plexity of inference has to be done: on one hand, conditional Gaussian models are
computationally efficient but they lack expressive power; on the other hand, mix-
tures of exponentials (MTE), bases or polynomials are expressive but this comes
at the expense of tractability. In this chapter, we propose an alternative model
that lies in between. It is composed of a “discrete” Bayesian network (BN) com-
bined with a set of monodimensional conditional truncated densities modeling
the uncertainty over the continuous random variables given their discrete counter-
part resulting from a discretization process. We show that inference computation
times in this new model are close to those in discrete BNs. Experiments confirm
the tractability of the model and highlight its expressive power by comparing it
with MTE.

3.1 Definition and properties
Discretizing continuous random variables raises two issues:

1. Which discretization function shall be used to minimize the loss of infor-
mation? and

2. Will the loss of information affect significantly the results of inference?

A possible answer to the first question is to exploit “conditional truncated densi-
ties” [Cortijo and Gonzales, 2016]. The answer to the second question of course
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96 3. Conditional Truncated Densities Bayesian Networks

strongly depends on the discretization performed but, as we shall see, condi-
tional truncated densities can limit the discrepancy between the exact a posteriori
marginal density functions of the continuous random variables and the approxi-
mation they provide.

Definition 3.1.1 (Conditional Truncated Density) Let X̊ be a continuous ran-
dom variable. Let dX̊ be a discretization of X̊ with set of cutpoints {t1, t2, . . . , tg}.
Finally, let X be a discrete random variable with domain ΩX = {0, . . . , g}. A
conditional truncated density is a function f(X̊|X) : ΩX̊ × ΩX 7→ R+

0 satisfying
the following properties:

1. f (̊x|x) = 0 for all x ∈ ΩX and x̊ 6∈ [tx, tx+1] with, by abuse of notation
t0 = inf ΩX̊ and tg+1 = sup ΩX̊;

2. the following equation holds:∫ tx+1

tx

f (̊x|x) dx̊ = 1, for all x ∈ ΩX . (3.1)

In other words, f (̊x|x) represents the truncated density function of random
variable X̊ over the interval of discretization [tx, tx+1].

Lemma 3.1.1 Let P (X) be any probability distribution over the discrete random
variable X of Definition 3.1.1. Then f(X̊|X)P (X) is a mixed probability distri-
bution over ΩX̊ × ΩX .

Proof. By definition, f(X̊|X) and P (X) are non-negative real-valued functions,
hence f(X̊|X)P (X) is also a non-negative real-valued function. So, to prove that
it is a mixed probability distribution, it is sufficient to show that:∑

x∈ΩX

∫
ΩX̊

f (̊x|x)P (x) dx̊ = 1.

By Property 1., f(X̊ = x̊|X = x)P (X = x) = 0 for all x ∈ ΩX and x̊ 6∈
[tx, tx+1]. So, the above equation is equivalent to:∑

x∈ΩX

∫ tx+1

tx

f (̊x|x)P (x) dx̊ = 1,

which, by the fact that x is a constant inside the integral and by Eq. (3.1), is also
equivalent to: ∑

x∈ΩX

P (x)

∫ tx+1

tx

f (̊x|x) dx̊ =
∑
x∈ΩX

P (x) = 1.

As a consequence, f(X̊|X)P (X) is a mixed probability distribution. �
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Let us now introduce “Conditionnal truncated densities Bayesian networks”
(ctdBN):

Definition 3.1.2 (Conditional truncated densities Bayesian networks) Let XD =
{X1, . . . , Xd} and X̊C = {X̊d+1, . . . , X̊n} be sets of discrete and continuous ran-
dom variables respectively. Let XC = {Xd+1, . . . , Xn} be a set of discretized
variables resulting from the discretization of the variables in X̊C. Then, a BN
with conditional truncated densities is a pair (G,θ) where:

1. G = (X,A) is a directed acyclic graph,

2. X = XD ∪XC ∪ X̊C and A is a set of arcs such that nodes X̊i ∈ X̊C have
no children and exactly one parent equal to Xi (this condition is the key to
guarantee that inference in a ctdBN is as fast as in a classical BN),

3. θ = θD ∪ θC,

4. θD = {P (Xi|Pa(Xi))}ni=1 is the set of the conditional probability tables of
the discrete and discretized variables Xi in G given their parents Pa(Xi) in
G,

5. θC = {f(X̊i|Xi)}
n

i=d+1 is the set of the conditional truncated densities of
the continuous random variables of X̊C.

Note that θC needs a very limited amount of memory compared to θD since
truncated densities are monodimensional (e.g., a truncated normal distribution
f(X̊i|Xi) is specified by only 2|ΩXi | parameters).

An example of ctdBN is given in Figure 3.1. The model contains 3 contin-
uous variables, X̊C = {X̊1, X̊3, X̊5} represented by dotted circles, which are
discretized into XC = {X1, X3, X5}. Nodes in solid circles XC and XD form
a classical BN. Finally, all the continuous nodes X̊i ∈ X̊C are children of their
discretized counterpart Xi and none has any child. The key idea of ctdBNs is thus
to extend BNs by specifying the uncertainties over continuous random variables
X̊i as 2-level functions: a “rough” probability distribution for discrete variable Xi

and a finer-grain conditional density f(X̊i|Xi) for X̊i. This idea can be somewhat
related to second order probabilities [Baron, 1987].

Proposition 3.1.1 In a BN with conditional truncated densities defined over X =
XD ∪XC ∪ X̊C, where XD = {X1, . . . , Xd}, XC = {X̊d+1, . . . , X̊n} and X̊C =
{X̊d+1, . . . , X̊n}, function h : X 7→ R+

0 defined as:

h(X) =
n∏
i=1

P (Xi|Pa(Xi))
n∏

i=d+1

f(X̊i|Xi) (3.2)

is a mixed probability distribution over X.
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X5

X6X̊5

X4X3

X2X1

X̊3

X̊1

P (X1)

P (X3|X1)

P (X2)

P (X4|X1, X2)

P (X5|X3, X4)

P (X6|X5)

f(X̊1|X1)

f(X̊3|X3)

f(X̊5|X5)

Figure 3.1: A BN with conditional truncated densities.

Proof. First, note that all the terms in the product are non-negative real-valued
functions, hence h is also a non-negative real-valued function. Let

α =
∑
x1∈X1

· · ·
∑
xn∈Xn

∫
X̊d+1

· · ·
∫
X̊n

n∏
i=1

P (xi|Pa(xi))
n∏

i=d+1

f (̊xi|xi)dx̊n · · · dx̊d+1

=
∑
x1∈X1

· · ·
∑
xn∈Xn

n∏
i=1

P (xi|Pa(xi))×(∫
X̊d+1

f (̊xd+1|xd+1)dx̊d+1

)
· · ·
(∫

X̊n

f (̊xn|xn)dx̊n

)
.

By Property 2 of Definition 3.1.1, each integral of a conditional truncated density
is equal to 1, hence:

α =
∑
x1∈X1

· · ·
∑
xn∈Xn

n∏
i=1

P (xi|Pa(xi)).

This formula is also equal to 1 since its terms constitute a discrete BN. Therefore,
h(X) is a mixed probability distribution. �

3.2 Representation properties
It was shown in [Cobb et al., 2006, Cobb and Shenoy, 2006] that MTEs can ap-
proximate standard probability density functions (w.r.t. the Kullback-Leibler dis-
tance). One may wonder whether ctdBNs are also faithful, i.e., whether they can
provide good approximations of densities or mixed probability distributions. The
propositions provided in this subsection show that the answer to this question is
positive and that ctdBNs can actually approximate very general functions.

98



3. Conditional Truncated Densities Bayesian Networks 99

Proposition 3.2.1 Let X̊C = {X̊1, ..., X̊n} be a set of continuous real-valued
random variables of respective domains Ω̊1, ..., Ω̊n such that none of the Ω̊i is a
singleton. Let Ω̊C =

∏n
i=1 Ω̊i be the domain of X̊C. Let f : Ω̊C 7→ R be a

probability density function. Assume that f is Lipschitz, i.e., there exists a constant
M > 0 such that, for every pair (̊x, ẙ) of elements of Ω̊C, |f (̊x) − f(ẙ)| ≤
M ||̊x− ẙ||, where ||̊x− ẙ|| represents the L2-norm of vector (̊x− ẙ).

Then, for every strictly positive real number ε < 1, there exists a ctdBN B =
(G,θ) that approximates f up to ε, i.e.:

• the nodes of Graph G are X = XD ∪ X̊C, where XD = {X1, . . . , Xn} is a
set of the discretized variables corresponding to X̊C; in addition, let ΩD =∏n

i=1 Ωi and Ω = ΩD × Ω̊C be the domains of XD and X respectively;

• B represents a mixed probability distribution g : Ω 7→ R such that, for
every x̊ ∈ Ω̊C, |g(x, x̊)− f (̊x)| ≤ ε, where x corresponds to the discretized
counterpart of x̊.

Proof. [Proposition 3.2.1] Without loss of generality, we will assume in the se-
quel that ε ≤ min{|Ωi| : i ∈ {1, . . . , n}}, where |Ωi| denotes the size of domain
Ωi. In addition, let us denote by B(̊x, r) the intersection of the hyperball of radius
r centered on x̊ with Ω̊C. First, let us show that there exists å ∈ Ω̊C such that, for
every x̊ ∈ Ω̊C, we have f (̊x) ≤ ε whenever ||̊x|| ≥ ||̊a||. Proof by contradiction:
assume that, for every å ∈ Ω̊C, there exists x̊ ∈ Ω̊C such that ||̊x|| ≥ ||̊a|| and
f (̊x) > ε. Then:∫

Ω̊C

f (̊x)dx̊ =

∫
B(0,||̊a||)

f (̊x)dx̊+

∫
{x̊∈Ω̊C:||̊x||≥||̊a||}

f (̊x)dx̊.

By hypothesis, there exists b̊ ∈ Ω̊C such that ||̊b|| ≥ ||̊a||+ ε
4M

and f (̊b) > ε. So,
since f is a probability density function, i.e., it is a positive function, the last term
of the above equation is such that:∫
{x̊∈Ω̊C:||̊x||≥||̊a||}

f (̊x)dx̊ ≥
∫
x̊∈B(̊b, ε

4M )
f (̊x)dx̊+

∫
{x̊∈Ω̊C:||̊x||≥||̊b||+ ε

4M
}
f (̊x)dx̊

and since f is Lipschitz, for every x̊ inside Ball B
(̊
b, ε

4M

)
, we have that |f (̊x)−

f (̊b)| ≤ M ||̊x − ẙ|| ≤ 2M ε
4M

= ε
2
. As f (̊b) > ε, we can deduce that f (̊x) >

ε/2 for every x̊ ∈ B
(̊
b, ε

4M

)
and, therefore, that the middle term in the above

equation is greater than ε
2

∫
x̊∈B(̊b, ε

4M ) 1dx̊. This last integral corresponds to the
volume of the intersection of the n-dimensional hyperball of radius ε

4M
centered

on b̊ = (̊b1, . . . , b̊n) with Ω̊C. As ε ≤ min{|Ωi|}, for each random variable X̊i,
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at least one interval among (̊bi − ε
4M
, b̊i) and (̊bi, b̊i + ε

4M
) belongs to Ωi. So

the integral is greater than or equal to 1/2n of the volume of an n-dimensional
hyperball of radius r, which is equal to α = πn/2rn/Γ(n

2
+ 1). Consequently,∫

Ω̊C

f (̊x)dx̊ >

∫
B(0,||̊a||)

f (̊x)dx̊+
αε

2n+1
+

∫
{x̊∈Ω̊C:||̊x||≥||̊b||+ ε

4M
}
f (̊x)dx̊.

By our contradiction hypothesis, the same process can be applied to the last term
and, by induction, it is possible to construct an infinite sequence {̊b(i)}i≥0 such
that b̊(0) = b̊ and, for all i ≥ 1, ||̊b(i)|| ≥ ||̊b(i− 1)||+ ε

4M
and f (̊b(i)) > ε. Thus,

for all k > 0,∫
Ω̊C

f (̊x)dx̊ >

∫
x̊:||̊x||<||̊a||

f (̊x)dx̊+ k
αε

2n+1
+

∫
{x̊∈Ω̊C:||̊x||≥||̊b(k−1)||+ ε

4M
}
f (̊x)dx̊.

So
∫

Ω̊C
f (̊x)dx̊ tends toward +∞, which is impossible since f is a probability

density function (hence its integral over Ω̊C is equal to 1). Therefore, there nec-
essarily exists å ∈ Ω̊C such that, for every x̊ ∈ Ω̊C, we have f (̊x) ≤ ε whenever
||̊x|| ≥ ||̊a||.

Now, for any continuous variable X̊i of X̊C, let t−i = max{inf X̊i,−||̊a||} and
t+i = min{sup X̊i, ||̊a||}. Define a discretization function di of X̊i by its set of
cutpoints {tki }:{
tki = t−i + k

ε√
nM

: k ∈ {0, . . . , gi}
}

with gi = 1 +

⌊√
nM(t+i − t−i )

ε

⌋
.

Applying discretization function di to X̊i, we obtain a discretized random variable
Xi of domain Ωi. Let XD be the set of all these discretized variables and let
ΩD =

∏n
i=1 Ωi. Finally, for any value xi of discretized variable Xi, denote by

Ω̊i|xi the subdomain of variable X̊i compatible with xi, i.e., Ω̊i|xi = [txii , t
xi+1
i ) if

xi 6∈ {0, gi}, Ω̊i|xi = {x̊i < t0i } if xi = 0 and Ω̊i|xi = {x̊i ≥ tgii } if xi = gi. Let
Ω̊|x =

∏n
i=1 Ω̊i|xi .

We can now construct a joint probability distribution over ΩD and conditional
truncated densities as follows: for every x = (x1, . . . , xn) ∈ ΩD, partition the set
of indices {1, . . . , n} into L = {i : Ω̊i|xi is bounded}, L−∞ = {i : inf Ω̊i|xi =

−∞} and L+∞ = {i : sup Ω̊i|xi = +∞}. Fix the joint probability value of
x = (x1, . . . , xn) to P (x) =

∫
Ω̊|x

f (̊x)dx̊ and define for all x̊i ∈ Ω̊|xi the truncated
conditional density function h(̊xi|xi) as:

h(̊xi|xi) =


(
ε
β

)n
e
−
{
π
4 ( εβ )

2n
(̊xi−t0i )2

}
if i ∈ L−∞

√
nM/ε if i ∈ L(
ε
β

)n
e
−
{
π
4 ( εβ )

2n
(̊xi−t

gi
i )2

}
if i ∈ L+∞
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3. Conditional Truncated Densities Bayesian Networks 101

where β = max{1,
√
nM}. Then, it is easy to see that P (·) is non-negative and

that
∑

x∈ΩD
P (x) =

∫
Ω̊C

f (̊x)dx̊ = 1. In addition,
∫

Ω̊|xi
h(̊xi|xi)dx̊i = 1 for

all xi since the formulas for i ∈ L−∞ ∪ L+∞ are nothing else than twice the

density function of a Normal distribution of variance
√

2
π

(
β
ε

)n
. So for all xi,

since h(̊xi|xi) ≥ 0, h is a truncated conditional density function. Consequently
P (x)

∏n
i=1 h(̊xi|xi) defines a mixed probability distribution.

Now, let us show that, for all x̊ ∈ Ω̊C, |f (̊x) − P (x)
∏n

i=1 h(̊xi|xi)| ≤ ε,
where x is the discretized value of x̊. Consider any element x̊ ∈ Ω̊C. First,
assume that L+∞ ∪ L−∞ 6= ∅, then ||̊x|| ≥ ||̊a|| and, consequently, f (̊x) ≤ ε. By

definition, P (x) ≤ 1. In addition, for all i ∈ L+∞ ∪ L−∞, h(̊xi|xi) ≤
(
ε
β

)n
. So,

if N∞ = |L−∞|+ |L+∞|, then:

P (x)
n∏
i=1

h(̊xi|xi)| ≤
(
ε

β

)nN∞
×
(√

nM

ε

)n−N∞
.

As N∞ ≥ 1, nN∞ ≥ n ≥ n − N∞ + 1. Hence, as β = max{1,
√
nM} and

ε/β ≤ ε < 1,

P (x)
n∏
i=1

h(̊xi|xi)| ≤ ε×
(
ε

β

)n−N∞
×
(√

nM

ε

)n−N∞
≤ ε.

If, on the contrary, L+∞ ∪ L−∞ = ∅, then all the Ωi|xi are bounded and their
sizes are all equal to ε/(

√
nM), so Ω̊|x is also bounded. Let f− = minx̊∈Ω̊|x

f (̊x)

and f+ = maxx̊∈Ω̊|x
f (̊x). Then:∫

Ωi|xi

f−dx =

(
ε√
nM

)n
f− ≤ P (x) ≤

(
ε√
nM

)n
f+ =

∫
Ωi|xi

f+dx.

As all the h(̊xi|xi)’s are equal to
√
nM/ε, we have f− ≤ P (x)

∏n
i=1 h(̊xi|xi) ≤

f+. Now, for any pair of elements (ẙ, z̊) of Ω̊|x, ||̊y− z̊|| <
√
n(ε/
√
nM)2 = ε

M
.

So, as f is Lipschitz, |f(ẙ)−f(z̊)| ≤M ε
M

= ε. As a consequence, f+−f (̊x) ≤ ε
and f (̊x)− f− ≤ ε. Hence, |f (̊x)− P (x)

∏n
i=1 h(̊xi|xi)| ≤ ε.

To complete the proof, note that any joint distribution P (X1, . . . , Xn) can be
rewritten as P (X1, . . . , Xn) = P (X1)

∏n
i=2 P (Xi|X1, . . . , Xi−1). Using this de-

composition, we obtain a ctdBN whose discrete and continuous nodes are {X1, . . . , Xn}
and {X̊1, . . . , X̊n} respectively, and in which the parents of discretized node Xi

are the set {X1, . . . , Xi−1}, the conditional probability P (Xi|X1, . . . , Xi−1) re-
sulting from the joint probability P (X1, . . . , Xn) are defined in the above para-
graphs. Finally, to each Xi is assigned as a child a continuous node X̊i whose
conditional truncated density is h(X̊i|Xi) as defined in the above paragraph. As
shown above, this ctdBN approximates f up to ε. �
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102 3. Conditional Truncated Densities Bayesian Networks

The above proposition shows that any Lipschitz multivariate probability den-
sity function can be (arbitrarily well) approximated by a ctdBN. Note that, to do
so, the conditional truncated densities used by such ctdBN need not be “com-
plex”: in the proof of this proposition, only uniform and conditional truncated
normal distributions were used. An obvious corollary of this proposition is that
standard density functions can be approximated by ctdBNs:

Corollary 3.2.1 Standard distributions like, e.g., univariate and multivariate Nor-
mal distributions, Beta distributions B(̊x, α, β), with α, β ≥ 2, Gamma distribu-
tion Γ(̊x, α, β) with α > 2, as well as their combinations by mutually independent
random variables, can be approximated up to ε < 1 by ctdBNs.

Proof. [Corollary 3.2.1] The absolute value of the derivative of the density func-
tion of a univariate normal distribution is highest at its inflection point, which cor-
responds to x = µ±σ. At that point, the derivative is equal toM = exp(−0.5)/(

√
2πσ2).

So the univariate normal distribution is Lipschitz. By Proposition 3.2.1, it can be
approximated up to ε by a ctdBN.

The density function of a multivariate normal distribution is equal to:

f (̊x) =
1√

(2π)n|Σ|
exp

[
−1

2
(̊x− µ)TΣ−1(̊x− µ)

]
.

Σ−1 being invertible, it is diagonalizable and its eigenvalues are all different from
0. By expressing x̊ in the basis of the eigenvectors, f (̊x) becomes a product
of univariate normal distributions and the preceding paragraph implies that f is
Lipschitz and can be approximated up to ε by a ctdBN.

The density of the Beta distribution is f (̊x) = x̊α−1(1− x̊)β−1/B(α, β), with
B(α, β) = Γ(α)Γ(β)/Γ(α + β). The derivative is therefore equal to f ′(̊x) =
[(α− 1)(1− x)− (β − 1)x](α− 1)xα−2(1− x)β−2/B(α, β) If 2 = α < β, then
|f ′(̊x)| is maximal when x̊ = 0 and it is equal to (α− 1)/B(α, β). If 2 = β < α,
then |f ′(̊x)| is maximal when x̊ = 1 and it is equal to (β − 1)/B(α, β). Finally,
if 2 < α and 2 < β, it is known that the Beta distribution is bell-shaped with two

inflection points at x̊ = (α− 1±
√

(α−1)(β−1)
α+β−3

)/(α + β − 1). So the derivative is
bounded and f is Lipschitz.

When α > 2, the Gamma distribution is bell-shaped and its inflection points
are β(α− 1±

√
α− 1). Hence, the distribution is Lipschitz.

To complete the proof, consider a set X̊C of sets of random variables X̊C =
{X̊1, . . . , X̊n} such that all the X̊i’s are mutually independent. Let fi, i = 1, . . . , n,
be the respective density functions of the X̊i’s and assume that all the fi’s belong
to the probability density functions defined in the above paragraphs. Then, every
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3. Conditional Truncated Densities Bayesian Networks 103

fi can be approximated up to ε0 = ε/2n by some ctdBN Bi defining a mixed prob-
ability distribution gi, i.e., for any x̊i ∈ X̊i, |fi(x̊i)−gi(xi, x̊i)| ≤ ε0, where xi cor-
respond to the discretized value of x̊i. Now, the joint density function f : X̊C 7→ R
is defined as f (̊x) =

∏n
i=1 fi(xi), for all x = (x1, . . . , xn) since the X̊i’s are mu-

tually independent. Let B be the ctdBN resulting from the union of all the Bi’s,
i.e., its graphical structure is the union of all the graphical structures of the Bi’s
and B represents mixed probability g(x, x̊) =

∏n
i=1 gi(xi, x̊i). So, we have that

g(x, x̊) ≤
∏n

i=1(fi(̊xi) + ε0). Let Sk be the set of k-subsets of {1, . . . , n}. Then:

n∏
i=1

(fi(̊xi) + ε0) =
n∏
i=1

fi(̊xi) +
n−1∑
k=0

∑
S∈Sk

(
εn−k0

∏
j∈S

fj (̊xj)

)
. (3.3)

As the fj’s are probability density functions,
∏

j∈S fj (̊xj) ≤ 1. In addition, for ev-
ery n, k, we have that εn−k0 ≤ ε0 since ε0 < 1. Finally,

∑n−1
k=0

∑
S∈Sk 1 < 2n since

this corresponds to the size minus 1 of the power set of {1, . . . , n}. So, the right
hand side of Equation (3.3) is less than or equal to

∏n
i=1 fi(̊xi) + 2nε0 = f (̊x) + ε.

We can show similarly, that g(x, x̊) ≥ f (̊x)− ε. So ctdBN B approximates up to
ε probability density function f . �

But ctdBNs represent compactly the uncertainties over both discrete and con-
tinuous random variables. So, they may also provide good approximations of
mixed probability distributions and the following proposition justifies this intu-
ition:

Proposition 3.2.2 Let XD = {X1, . . . , Xd} be a set of discrete random variables
of respective domains {Ω1, . . . ,Ωd} and let ΩD =

∏d
i=1 Ωi be the domain of XD.

Let X̊C = {X̊d+1, ..., X̊n} be a set of continuous random variables of respective
domains Ω̊d+1, ..., Ω̊n such that none of the Ω̊i is a singleton. Let Ω̊C =

∏n
i=d+1 Ω̊i

be the domain of X̊C. Finally, let X = XD ∪ X̊C and Ω = ΩD × Ω̊C.
Let f : ΩD × Ω̊C 7→ R be a mixed probability distribution. Assume that

f is Lipschitz w.r.t. the continuous variables of X̊C, i.e., there exists a constant
M > 0 such that, for every pair (̊x, ẙ) of elements of Ω̊ such that xi = yi for
all i ∈ {1, . . . , d}, |f (̊x) − f(ẙ)| ≤ M ||̊x − ẙ||, where ||̊x − ẙ|| represents the
L2-norm of vector (̊x− ẙ).

Then, for every strictly positive real number ε < 1, there exists a ctdBN B =
(G,θ) that approximates f up to ε, i.e.:

• the nodes of G are X = XD ∪XC ∪ X̊C, where XC = {Xd+1, . . . , Xn} is
a set of discretized variables corresponding to X̊C; in addition, let ΩC =∏n

i=d+1 Ωi and Ω = ΩD ×ΩC × Ω̊C be the domains of XC and X respec-
tively;

103



104 3. Conditional Truncated Densities Bayesian Networks

• B represents a mixed probability density function g : Ω 7→ R such that, for
every (y, x̊) ∈ ΩD × Ω̊C, |g(y, x, x̊) − f(y, x̊)| ≤ ε, where x corresponds
to the discretized counterpart of x̊.

Proof. [Proposition 3.2.2] If XD = ∅, then Proposition 3.2.2 exactly corresponds
to Proposition 3.2.1. So, assume that XD 6= ∅.

For every y = (y1, . . . , yd) ∈ ΩD, let π(y) =
∫
x̊∈X̊C

f(y, x̊)dx̊. As y corre-
sponds to the discrete part of f , π(y) corresponds to the probability of y w.r.t. f .
So ky : Ω̊C 7→ R defined as ky (̊x) = f(y, x̊)/π(y) for all x̊ ∈ Ω̊C is a proba-
bility density function. In addition, by the hypotheses of Proposition 3.2.2, it is
Lipschitz. Hence the proof of Proposition 3.2.1 can be applied on it. Let us call
åy the vector å of this proof applied on ky(·). In addition, let å denote a vector
of {̊ay : y ∈ ΩD} with the highest L2-norm. Then, for every y ∈ ΩD and any
x̊ ∈ Ω̊C, we have ky (̊x) ≤ ε whenever ||̊x|| ≥ ||̊a||. Applying the proof of Propo-
sition 3.2.1, with this value of å, we can therefore perform the same discretization
of x̊ into x and construct the same conditional truncated density functions h(̊x|x)
for all the values of y. The proof of Proposition 3.2.1 also shows that, by setting
Py(x) =

∫
Ω̊|x

ky (̊x)dx̊, then we have that:

∣∣∣∣∣ky (̊x)− Py(x)
n∏

i=d+1

h(̊xi|xi)

∣∣∣∣∣ ≤ ε, for all x̊ ∈ Ω̊C and all y ∈ ΩD, (3.4)

and
∑

x Py(x) = 1 for every y. In other words, Py(x) corresponds to a condi-
tional distribution of x given y. Define P (y, x) = Py(x) × π(y). Then, P (y, x)
corresponds to the joint distribution of x and y (i.e.,

∑
x,y P (y, x) = 1). So, as

ky (̊x) = f(y, x̊)/π(y) and π(y) ≤ 1 (since it is a probability), Equation (3.4)
implies that:∣∣∣∣∣f(y, x̊)− P (y, x)

n∏
i=d+1

h(̊xi|xi)

∣∣∣∣∣ ≤ επ(y) ≤ ε, for all (y, x̊) ∈ ΩD × Ω̊C.

The completion of the proof is now the same as that of Proposition 3.2.1: joint
distribution P (y, x) can be decomposed as P (y1) ×

∏d
i=2 P (yi|y1, . . . , yi−1) ×

P (xd+1|y1, . . . , yd)
∏n

j=d+2×P (xj|y1, . . . , yd, xd+1, . . . , xj−1) and the resulting ct-
dBN follows. �

CtdBNs also have some decomposability properties. For instance, the follow-
ing proposition shows that, if the mixed probability distribution to be approxi-
mated is decomposable, then so is also the approximating ctdBN:
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Proposition 3.2.3 Let XD = {X1, . . . , Xd} and X̊C = {X̊d+1, ..., X̊n} be sets of
discrete and continuous random variables respectively. Let f : ΩD × Ω̊C 7→ R
be a mixed probability distribution. Assume that sets of variables XD and X̊C

can be partitioned into sets {XD1 , . . . ,XDk} and X̊C1 , . . . , X̊Ck respectively, and
that there exist some non-negative functions fi : ΩDi × Ω̊Ci 7→ R, i = 1, . . . , k,
such that f(x, x̊) =

∏k
i=1 fi(xDi , x̊Ci) for all (x, x̊) ∈ ΩD × Ω̊C. Then if f is

Lipschitz w.r.t. the continuous variables of X̊C, it can be approximated up to ε by
a ctdBN which has the same decomposition, i.e., sets (XDi ∪ XCi ∪ X̊Ci), i =
1, . . . , k, where XCi are the discretized counterparts of X̊Ci , form the connected
components of the ctdBN’s graphical structure.

Proof. [Proposition 3.2.3] According to the proof of Proposition 3.2.2, since f
is Lipschitz, the continuous variables X̊i of X̊C can be discretized into discrete
variables Xi of XC = {Xd+1, . . . , Xn} and, for all (y, x̊) ∈ ΩD × Ω̊C, f(y, x̊)
can be approximated up to ε by P (y, x)

∏n
i=d+1 h(̊xi|xi), where x is the discretized

counterpart of x̊ and P (y, x) is the joint probability distribution defined as:

P (y, x) =

∫
Ω̊|x

f(y, x̊)dx̊. (3.5)

Let us show that this joint distribution can be decomposed w.r.t. sets Ci =
XDi ∪ XCi ∪ X̊Ci , i = 1, . . . , k. Proof by induction on i: let i = 1 and let
XE1 = XD \ XC1 and X̊E1 = X̊C \ X̊C1 . Function f can be decomposed as
f(y, x̊) = f1(yC1 , x̊C1) × h1(yE1 , x̊E1), with h1(yE1 , x̊E1) =

∏k
j=2 fj(yCj , x̊Cj).

Note that f1 and h1 share no variable in common. Then Equation (3.5) is equal to:

P (y, x) =

∫
Ω̊|xC1

∫
Ω̊|xE1

f1(yC1 , x̊C1)× h1(yE1 , x̊E1)dx̊E1dx̊C1

=

∫
Ω̊|xC1

f1(yC1 , x̊C1)dx̊C1

∫
Ω̊|xE1

h1(yE1 , x̊E1)dx̊E1

Now, we also have that:

P (yC1 , xC1) =
∑
yE1

∑
xE1

P (y, x)

=

∫
Ω̊|xC1

f1(yC1 , x̊C1)dx̊C1

∑
yE1

∑
xE1

∫
Ω̊|xE1

h1(yE1 , x̊E1)dx̊E1

=

∫
Ω̊|xC1

f1(yC1 , x̊C1)dx̊C1

∑
yE1

∫
Ω̊E1

h1(yE1 , x̊E1)dx̊E1

Note that, by definition, h1(yE1 , x̊E1) =
∏k

j=2 fj(yCj , x̊Cj) is a mixed probability
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distribution over ΩE1 × Ω̊E1 . Consequently, we have that:∑
yE1

∫
Ω̊E1

h1(yE1 , x̊E1)dx̊E1 = 1,

and, therefore, that P (yC1 , xC1) =
∫

Ω̊|xC1

f1(yC1 , x̊C1)dx̊C1 . We can prove in a

similar way that P (yE1 , xE1) =
∫

Ω̊|xE1

h1(yE1 , x̊E1)dx̊E1 . Consequently, P (y, x) =

P (yC1 , xC1)P (yE1 , xE1). So, P can be decomposed similarly to f as concerns
clique C1. By induction, we can repeat the same process with mixed probability
h1 rather than f and the result follows. �

3.3 Inference in CtdBNs
The terms in Equation (3.2) satisfy Shafer-Shenoy’s propagation axioms [Shenoy
and Shafer, 1990], so we can rely on a message-passing algorithm in a junc-
tion tree to perform inference. The latter is constructed by node eliminations
from the moral/induced graph (see Section 1.4.2). It was proved that first elim-
inating all simplicial nodes, i.e., nodes that, together with their neighbors in the
moral/induced graph, constitute a clique (a complete maximal subgraph), cannot
prevent obtaining a junction tree that is optimal w.r.t. inference [van den Eijkhof
and Bodlaender, 2002]. By the definition of ctdBNs, all the continuous nodes
X̊i ∈ X̊C constitute a clique with their parent Xi (for instance, in Figure 3.1,
{X3, X̊3} is a complete maximal subgraph and is thus a clique). As a conse-
quence, the junction tree of a ctdBN is simply the junction tree of its discrete BN
part defined over XC ∪XD to which cliques {Xi, X̊i}, for X̊i ∈ X̊C, have been
added (linked to a clique containing Xi in order to satisfy the running intersection
property). Figure 3.2 shows a junction tree related to the ctdBN of Figure 3.1.
All the CPTs P (Xi|Pa(Xi)), i = 1, . . . , n, are inserted into cliques not contain-
ing any continuous node of X̊C. Of course, conditional truncated densities are
inserted into cliques {Xi, X̊i}, X̊i ∈ X̊C.

The inference process can now be performed by message passing within the
junction tree, for instance using a usual collect-distribute algorithm in a Shafer-
Shenoy-like architecture [Shafer, 1996], sending messages in both directions on
all the edges of the junction tree.

There remains to show how to compute the messages sent on the separators
in the Shafer-Shenoy collect-distribute algorithm and how to encode and insert
evidence into junction tree T . First, let us address the second problem. Of course
evidence on discrete random variables Xi are handled in a usual manner by multi-
plying the joint mixed probability distribution g(X, X̊) represented by the ctdBN

106



3. Conditional Truncated Densities Bayesian Networks 107

X1X2X4X1X1X̊1

X1X4

X1X3X4X3X3X̊3

X3X4

X3X4X5X5X5X̊5 X5 X5X6

Figure 3.2: A junction tree for the ctdBN of Figure 3.1.

with discrete beliefs of the type P (eXi |Xi). This corresponds to adding proba-
bility table P (eXi |Xi) into a clique of T containing Xi. For continuous random
variables, two cases can occur: first, it may be the case that the available evi-
dence on continuous random variable X̊i can be encoded as an evidence on its
discretized random variable, then we do so. For instance, if {t1, . . . , tgi} are the
cutpoints of the discretization function applied to X̊i, then evidence “X̊i is known
to belong [tj, tk]” can be encoded as a vector P (eXi |Xi) whose values are 1 for the
indices in {j, . . . , k − 1}, else 0. Second, it may be impossible to enter evidence
eX̊i on X̊i intoXi. In this case, eX̊i can be of the type “X̊i belongs to some interval
[a, b]”, with a, b 6∈ {t1, . . . , tgi}. Such an evidence can be represented by function
fi(eX̊i|X̊i) : ΩX̊i

7→ [0, 1] equal to 1 when X̊i ∈ [a, b] and 0 otherwise. As func-
tion fi is defined only over X̊i, it can be entered into the clique Ci = {Xi, X̊i}
of junction tree T . More generally, beliefs about X̊i can be entered as any [0, 1]-
valued function fi(eX̊i |X̊i) into clique Ci. It is easy to see that the product of
the evidence functions fi(eX̊i|X̊i) and P (eXi |Xi) with g(X, X̊) defines, up to a
proportional constant equal to the probability of all the evidence, a new mixed
probability distribution.

Now, there remains to show how to compute the messages sent from one
clique, say Ci, to one of its neighbor Cj . Two cases can occur. First, assume
that Ci contains a continuous random variable X̊i. Then, by construction of ct-
dBNs, Ci = {Xi, X̊i}, with Xi the discretized variable corresponding to X̊i. By
construction, clique Ci has only one neighbor clique, say Cj , and the separator
between Ci and Cj is necessarily Sij = {Xi}. Clique Ci contains only conditional
truncated density gi(X̊i|Xi) and, potentially, some evidence belief fi(eX̊i |X̊i). So,
in order to remove variable X̊i from the equations, it must be marginalized out as:

MCi→Cj(xi) =

∫
ΩX̊i

gi(̊xi|xi)fi(eX̊i |̊xi) dx̊i, for all xi ∈ ΩXi . (3.6)
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Assume that {t1, . . . , tgi} are the cutpoints of the discretization function applied
to X̊i. Then messageMCi→Cj is a real-valued vector of size gi + 1. So, messages
sent from cliques containing continuous random variables to their neighbor are
necessarily vectors of finite size. In addition, whether X̊i received evidence or
not, note that messageMCi→Cj is computed by integrating a univariate function,
which, in practice, is not time consuming (it can be done either exactly in closed-
form formula or approximately using a MCMC algorithm or well-known tables
like for normal distributions).

The second case for computing messages concerns situations in which clique
Ci contains only discrete random variables. Then, by construction, the separator
Sij = Ci ∩ Cj contains only discrete random variables. Message MCi→Cj can
therefore be computed as usual by first multiplying all the messages sent to Ci by
all Ci’s neighbors except Cj with the product of the CPTs stored into Ci, and then
by marginalizing out all the variables in Ci \ Cj .

Proposition 3.3.1 Let e represent all the evidence entered into junction tree T .
Assume that Shafer-Shenoy’s message-passing algorithm has been performed,
with messages computed as described above.

Let Ck be any clique containing only discrete variables and let Ci1 , . . . , Cir be
the neighbors of Ck. Then the CPT resulting from the normalization of the product
of all the messagesMCij→Ck , j = 1, . . . , r, with the CPTs stored into Ck is equal
to the joint posterior distribution of the variables of Ck given evidence e. The
posterior of any variable in Ck can be obtained by marginalizing out the other
variables from this CPT.

Let Ck be any clique containing a continuous random variable, say X̊k. Let
gk + 1 be the domain size of the corresponding discretized random variable Xk.
Finally, let Cj be the neighbor clique of Ck. Then:

gk (̊xk|e) ∝
g∑

xk=0

MCj→Ck(xk)gk (̊xk|xk)fk(eX̊k |̊xk) (3.7)

is the posterior density of variable X̊k.

Proof. [Proposition 3.3.1] By definition, the product of all the functions stored
into junction tree T is a mixed probability distribution P (x, x̊, e). So it satisfies
the Shafer-Shenoy axioms [Shenoy and Shafer, 1990, Shafer, 1996]. As a conse-
quence, the message-passing algorithm is sound and, for each clique, the function
resulting from the multiplication of the functions stored in any clique by the mes-
sages sent to this clique is the joint (mixed) probability of the variables of the
clique and evidence e. So, if the clique contains only discrete variables, after nor-
malizing this resulting function, we necessarily get a joint posterior distribution of
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the variables of the clique. On the other hand, if the clique contains a continuous
variable X̊k, then the resulting function is necessarily the posterior mixed distri-
bution of Xk and X̊k given evidence e and, by marginalizing out Xk, we get the
posterior density function of X̊k. �

As shown above, ctdBNs allow for the computation of the marginal a posteri-
ori distributions of the continuous and discrete random variables. In addition, as
shown in the next proposition, the algorithm proposed in this paper is very efficient
for performing these computations. Notably, when the integrals of Equation (3.6)
can be computed in O(1), the complexity of inference in ctdBN is exactly the
same as that in classical discrete BNs. As a consequence, when tables for these
integrals are available, like, e.g., when the ctdBN’s conditional truncated densities
are truncated normal distributions, inference in ctdBNs is as fast as that in discrete
BNs.

Proposition 3.3.2 Let w be the treewidth of T and let k denote the maximum
domain size of the discrete and discretized random variables. Finally, let n be
the number of random variables in the ctdBN and let I be the average complexity
of computing one integral of Equation (3.6) (i.e., an integral for a given value
of xi) and J the average complexity of computing the product in Equation (3.7).
Then the complexity of computing all the marginal posterior distributions of all
the random variables is in O(nk(kw + I + J)).

Proof. [Proposition 3.3.2] There are at most n continuous random variables. Com-
puting each message they send to their neighbor corresponds to perform |ΩXi | ≤ k
integrals. Hence the overall complexity of computing all these messages is in
O(nkI). As there are n random variables, there are at most n cliques containing
only discrete variables. The complexity of computing their messages in both di-
rections is therefore inO(nkw+1). For the same reason, the complexity of sending
messages from the cliques with only discrete variables to the cliques containing
continuous variables is also O(nkw+1). To compute the posterior of any discrete
or discretized variable, it is sufficient to select one clique that contains it, to multi-
ply the tables stored into this clique by all the messages sent to the clique and, then
to marginalize out all the other variables. When performing the distribution phase,
the tables stored into the clique are already multiplied by all the messages sent to
the clique except one. So, to compute the posterior of the discrete variable, we
just need to perform the last product required, with a complexity in O(kw+1) and
the summation (marginalizing-out) has the same complexity. Finally, there are n
continuous variables. To compute the posterior density of a continuous variable,
we must perform the operations of Equation (3.7). There are at most k products
to perform and each product has an average complexity of J , hence the overall
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complexity of computing all the posterior densities is in O(nkJ). Overall, we get
the complexity stated in the proposition. �

Overall, inference in ctdBNs is fast because i) by construction, most of the
inference’s complexity lies in computations performed on discrete variables; and
ii) whenever computations concern densities, either they correspond to compute a
mixture of univariate conditional truncated densities (like in Equation (3.7)) or to
compute the integral of a univariate function (like in Equation (3.6)).

3.4 Expressive power of ctdBNs: some experiments
In this section, we provide three sets of experiments. The first one is intended
to assess the faithfulness and the inference speed of ctdBNs by comparing them
to randomly generated hybrid Bayesian networks. The aim of the second set of
experiments is to show the gain brought by ctdBNs over classical BNs. For this
purpose, we illustrate the discrepancies between both models on classification
problems derived from UCI datasets [Lichman, 2013]. Finally, the third set of
experiments is devoted to the comparison between ctdBNs and MTBFs in order
to highlight the inference scalability of ctdBNs compared to that of MTBFs.

3.4.1 Experiments on randomly-generated hybrid networks
For evaluating the expressive power of our model as well as the efficiency of the
above inference algorithm, a set of hybrid Bayesian Networks (HBN) of differ-
ent sizes are randomly generated [Moral et al., 2002]. In every HBN, half of the
random variables are discrete; densities of the continuous variables are MTE po-
tentials. The domain size of each discrete variable is randomly chosen between 2
and 4. The domain size ΩX̊i

of each continuous random variable X̊i is randomly
partitioned into 1, 2, or 3 subdomains Ωk with probabilities of occurrence of 20%,
40% and 40% respectively. In each subdomain Ωk, the number of exponential
function terms in the density functions is chosen randomly among 0 (uniform dis-
tribution), 1 and 2, with respective probabilities 5%, 75% and 20%. In addition,
the number of parents of all the nodes follow a Poisson distribution with a mean
varying w.r.t. the number of nodes in the HBN as described in Table 3.1. For each
number of nodes, 500 different HBNs are generated. Finally, the DAG structures
are constrained to contain only one connected component. To construct these
HBNs, we use the ELVIRA library (http://leo.ugr.es/elvira). Then,
from each HBN, a dataset is generated, from which a ctdBN is learnt using the
learning algorithm described in [Mabrouk et al., 2015], constraining it to use the
same set of arcs as the HBN. As a consequence, the ctdBN can be considered as
an approximation of an exact multivariate density function specified by the HBN.

110



3. Conditional Truncated Densities Bayesian Networks 111

#nodes Mean(#parents)

4 2
8 1.83
16 1.66
32 1.5
64 1.33

128 1.16
256 1.1

Table 3.1: Average number of parents per node.

In each HBN, we perform an exact inference using the ELVIRA library in
order to compute the marginal probabilities of all the random variables in the
HBN. Similarly, for the ctdBN, we execute the inference algorithm of the preced-
ing section, using a non-parallel implementation in C++ and the aGrUM library
(http://agrum.lip6.fr). All the experiments are performed on a Linux
box with an Intel Xeon at 2.40GHz and 128GB of RAM. For comparing MTEs
and ctdBNs, we use two criteria:

1. The Jensen-Shannon Divergence (JSD) between the marginal distributions
in the ctdBNs and those in the corresponding HBN; and

2. The times for computing these marginal distributions.

The first criterion allows to assess the expressive power of ctdBNs whereas the
second one allows to assess the efficiency of our inference algorithm.

Tables 3.2 and 3.3 report for each network size, specified by its number of
nodes, the average over the 500 networks generated for this size of the JSD be-
tween the marginal distributions of the nodes obtained in the ctdBN model and
those obtained in the MTE model. The tables display the average of these JSDs
over the nodes of the networks (µJSD) but also their standard deviations σJSD and
their min (minJSD) and max (maxJSD) values. As can be observed from these
tables, the JSDs always remain small (remind that, for any distributions P,Q,
JSD(P‖Q) ∈ [0, 1]). This shows that our model is expressive and faithful since
its approximation of the true (MTE) densities is accurate. As shown in Table 3.4,
which reports the inference execution times, this accuracy is not at the cost of
inference performance: our algorithm significantly outperforms MTE inference
and, the larger the network, the higher the discrepancy between the computation
times of the two inference algorithms.
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#nodes µJSD σJSD minJSD maxJSD

4 0.0065 0.0040 0.0024 0.0105
8 0.0076 0.0078 0.0007 0.0201

16 0.0078 0.0099 0.0003 0.0303
32 0.0122 0.0137 0.0004 0.0510
64 0.0354 0.0269 0.0016 0.1111

128 0.0831 0.0527 0.0028 0.2326
256 0.1329 0.0805 0.0033 0.3752

Table 3.2: JSD for discrete variables.

#nodes µJSD σJSD minJSD maxJSD

4 0.0059 0.0017 0.0042 0.0077
8 0.0064 0.0024 0.0036 0.0099

16 0.0064 0.0026 0.0030 0.0114
32 0.0071 0.0032 0.0028 0.0146
64 0.0101 0.0044 0.0033 0.0215

128 0.0161 0.0072 0.0045 0.0349
256 0.0222 0.0098 0.0054 0.0476

Table 3.3: JSD for continuous variables.

3.4.2 Comparisons with discrete BNs
In order to compare BNs and ctdBNs on real-world problems, we base our next
experiments on the real-world datasets of the UCI repository [Lichman, 2013]
reported in Table 3.5. In these datasets, all records with missing values are dis-
carded. In each resulting dataset, there exists a discrete random variable, call itX0,
representing a classification variable. The other random variables can be either
discrete (variables XD = {X1, . . . , Xd}) or continuous (X̊C = {X̊d+1, . . . , X̊n}).
Our classification problem consists in estimating the most probable value of X0

given some observation on the values of variables in XD ∪ X̊C.
To address such a problem with Bayesian networks, we must first discretize all

the continuous random variables. To do so, we exploit Friedman’s discretization
algorithm [Friedman and Goldszmidt, 1996]. After performing these discretiza-
tions, variables in X̊C = {X̊d+1, . . . , X̊n} are mapped into discretized variables in
XC = {Xd+1, . . . , Xn} and the mixed discrete/continuous dataset D̊ of the UCI
dataset is mapped into a fully discrete dataset D. A BN B over (X0, X1, . . . , Xn)
is then learnt from D using a hill climbing algorithm with an MDL score. To do
so, we use the aGrUM library (http://www.agrum.org). This BN is then
exploited for a classification task as follows: given some observation eX̊i (resp.
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#nodes TMTE TctdBN TMTE/TctdBN
4 40.92 0.27 151.56
8 279.16 0.84 332.33

16 7416.75 1.96 3784.06
32 42304.21 4.51 9380.09
64 88738.92 10.26 8649.02

128 94307.49 28.48 3311.36
256 122185.62 71.52 1708.41

Table 3.4: Inference computation times (in milliseconds).

dataset #attributes #classes #instances #continuous attr.
australian 14 2 690 6
cleve 14 2 296 13
crx 16 2 653 6
glass2 10 2 163 9
iris 5 3 150 4
pima 9 2 768 8
shuttle small 10 7 3866 9
vehicle 19 4 846 18

Table 3.5: UCI datasets used for BN/ctdBN comparisons in classification tasks.

eXi) on each continuous random variable X̊i (resp. discrete variable Xi), we enter
belief P (eX̊i |Xi) (resp. P (eXi |Xi)) into B, so that the latter represents:

P (X0, . . . , Xn, eX1 , . . . , eXd , eX̊d+1
, . . . , eX̊n) =

P (X0|Pa(X0))
n∏
i=1

P (Xi|Pa(Xi))
d∏
i=1

P (eXi |Xi)
n∏

i=d+1

P (eX̊i |Xi).

From this distribution, by means of a Shafer-Shenoy (exact) inference, we com-
pute the posterior distribution P (X0|eX1 , . . . , eXd , eX̊d+1

, . . . , eX̊n) so that the most
probable value for class variable X0 is determined as:

x∗0 = Argmax
X0

P (X0|eX1 , . . . , eXd , eX̊d+1
, . . . , eX̊n).

To highlight the gain brought by ctdBNs over simple BNs, for each dataset,
we construct our ctdBN as follows: we start from BN B computed in the pre-
ceding paragraphs and we add to it its respective conditional truncated densities
gi(X̊i|Xi), i = d + 1, . . . , n, defined as follows: let Ω̊obs

i = {x̊i,1, x̊i,2, . . . , x̊i,N ′}
be the set of distinct observed values of X̊i in the dataset, sorted by increasing
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order. The midpoints of Ω̊obs
i are defined as:

mi,j =


x̊i,1 − x̊i,2−x̊i,1

2
if j = 0,

x̊i,j+x̊i,j+1

2
if 1 ≤ j < N ′,

x̊i,N ′ +
x̊i,N′−x̊i,N′−1

2
if j = N ′.

Let hi : ΩX̊i
7→ R be the histogram of X̊i whose bins correspond to inter-

vals [mi,j,mi,j+1). Assume that X̊i has been discretized into Xi using cutpoints
{t1i , . . . , t

gi
i }. Then we define conditional truncated densities gi(X̊i|Xi = j),

j = 0, . . . , gi, as the normalized histogram of hi over [tji , t
j+1
i ), i.e.,

gi(̊xi|Xi = j) =


hi(̊xi)∫ tj+1

i

tji
hi(̊x)dx̊

if x̊i ∈ [tji , t
j+1
i ),

0 otherwise.

The ctdBN therefore represents the following mixed probability distribution:

g(X0, . . . , Xn, X̊d+1, . . . , X̊n) =

P (X0|Pa(X0))
n∏
i=1

P (Xi|Pa(Xi))
n∏

i=d+1

gi(X̊i|Xi).

The same evidence eXi and eX̊i as those of the BN are entered into the ctdBN.
However, the latter are included into the ctdBN as beliefs fi(eX̊i |X̊i) as ctdBNs
can cope with more precise evidence than mere beliefs P (eX̊i |Xi) about dis-
cretized random variables Xi. Therefore, after entering evidence, the ctdBN rep-
resents:

g(X0, . . . , Xn, X̊d+1, . . . , X̊n, eX1 , . . . , eXd , eX̊d+1
, . . . , eX̊n) =

P (X0|Pa(X0))
n∏
i=1

P (Xi|Pa(Xi))
d∏
i=1

P (eXi |Xi)
n∏

i=d+1

gi(X̊i|Xi)fi(eX̊i |X̊i).

From this distribution, using the algorithm provided in Section 3.3, we compute
g(X0|eX1 , . . . , eXd , eX̊d+1

, . . . , eX̊n) and the most probable value for class variable
X0 is x∗0 = ArgmaxX0

g(X0|eX1 , . . . , eXd , eX̊d+1
, . . . , eX̊n).

Finally, to perform our experiments, each dataset of Table 3.5 is randomly
shuffled 100 times. Each resulting dataset is splitted into a learning set (70%)
and a test set (30%). So, overall, for each UCI dataset, 100 different learning
sets and their respective 100 test sets are created. From each learning set, we
learn a BN and a ctdBN and, then, for each record of the corresponding test set,
we estimate the most probable values of class variable X0 given observations on
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X1, . . . , Xd, X̊d+1, . . . , X̊n according to these two models. These estimations are
then compared with the true values of X0 observed in the test set and the accuracy
of the model (BN,ctdBN) is defined as the proportion of correct estimations per-
formed. The latter depend on the kind of observations available, so we shall now
describe those used in the experiments.

First, all observations over discrete variables are supposed to be precise. Now,
assume that observation eX̊i over continuous variable X̊i is also precise, i.e., it is
equal to the observed value of X̊i in the record. Then, for the ctdBN, fi(eX̊i |X̊i)
is a Dirac function, which means that messageMCi→Cj , as defined in Eq. (3.6),
is a zero filled vector, bringing no information. In addition, the BN is unable
to handle such precise information. What can be handled by the BN is the (less
precise) observation that “the discretized value of the observed value of X̊i is equal
to j”. Such information is exactly equivalent to “X̊i belongs to interval [tji , t

j+1
i )”,

where [tji , t
j+1
i ) is the discretization interval containing the observed value of X̊i.

In this case, P (eX̊i |Xi), is a vector filled with zeros except for a 1 in the cell
corresponding to the discretized value of X̊i. If we enter the same information into
the ctdBN, MessageMCi→Cj is exactly proportional to P (eX̊i |Xi) and, therefore,
the BN and the ctdBN provide the same estimation for X0.

The advantage of ctdBNs over standard BNs becomes visible when observa-
tions are imprecise. So, in our experiments, all the continuous variables X̊i are
imprecisely observed and the belief fi(eX̊i |X̊i) is always expressed as a normal
distribution centered on the observed value of X̊i. For the BN, vector P (eX̊i |Xi)
can then simply be computed as:

P (eX̊i |Xi = j) =

∫ tj+1
i

tji

fi(eX̊i |̊xi) dx̊i for all j. (3.8)

When the standard deviations of the normal distributions are sufficiently small,
in the BN, P (eX̊i |Xi) is approximately equal to a vector filled with zeros except
for one cell equal to 1 and, in the ctdBN, Message MCi→Cj of Eq. (3.6) is ap-
proximately proportional to P (eX̊i |Xi). So, both models are equivalent. How-
ever, when standard deviations are higher, i.e., when observations are less precise,
P (eX̊i |Xi) can contain several non-zero cells and, from Eq. (3.6), it is clear that
MessageMCi→Cj can differ from P (eX̊i |Xi) and bring more refined information
than P (eX̊i |Xi). In our experiments, all the standard deviations of the continuous
variables are kept sufficiently small thatMCi→Cj ∝ P (eX̊i |Xi), except for the few
variables mentioned in Table 3.6 in which the standard deviations displayed in-
troduce discrepancies betweenMCi→Cj and P (eX̊i|Xi). Note that these standard
deviations are often much smaller than the range of the random variable.

With the observations as described above, the average accuracies for the dif-
ferent UCI datasets over the 100 corresponding test sets, as well as their standard
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Dataset standard deviations and variables’ domain sizes
australian X̊7 : 19 (28.5), X̊10 : 27 (68), X̊13 : 98 (2000), X̊14 : 83.5 (100000)
cleve X̊8 : 21 (133)
crx X̊11 : 37 (68), X̊15 : 235 (100000)
glass X̊3 : 0.55 (4.5), X̊4 : 0.1 (3.8), X̊5 : 0.6 (5.6), X̊6 : 0.55 (6.2)

X̊8 : 0.35 (3.15)
iris X̊3 : 0.03 (6), X̊4 : 0.085 (2)
pima X̊1 : 6.6 (18), X̊2 : 15.4 (200), X̊4 : 0.85 (100), X̊6 : 1.3 (67)
shuttle_small X̊1 : 3.5 (74)
vehicle X̊6 : 3 (54), X̊11 : 34 (191)

Table 3.6: The standard deviations for the beliefs on the observations of the X̊i’s.
The domain sizes of the X̊i’s are given inside parentheses. In each dataset, the first
variable/column is called X1 or X̊1, the second one X2 or X̊2, etc. Class variable
X0 is always located in the last column of the dataset.

deviations, are reported in Table 3.7. From this table, it is clear that ctdBNs out-
perform BNs for classification tasks. The way we constructed the ctdBNs from
the BNs, this improvement is necessarily due to the conditional truncated densities
contained in the ctdBNs.

Dataset % BN Acc. % ctdBN Acc. Gain Acc. p-value
australian 84.36± 3.08 85.72± 2.12 1.34± 2.45 0.2912

cleve 82.89± 3.67 83.22± 3.50 0.34± 0.96 0.3632
crx 85.36± 2.48 86.38± 2.08 1.02± 2.12 0.3156

glass 89.94± 3.56 91.88± 2.98 1.94± 2.61 0.2236
iris 94.73± 2.62 95.49± 2.82 0.76± 1.45 0.3015

pima 73.64± 2.67 74.37± 2.69 0.74± 1.18 0.2676
shuttle small 84.92± 5.93 92.66± 3.41 7.74± 4.21 0.0336

vehicle 35.63± 6.02 52.21± 7.58 16.57± 7.97 0.0000

Table 3.7: Comparisons between BNs and ctdBNs for classification tasks. The
first two columns present the average accuracies and the accuracies’ standard
deviations over the 100 datasets constructed from each UCI dataset. The third
column displays the gain in accuracy of using ctdBNs instead of BNs (the sub-
traction of the first column from the second one). Assuming that accuracies are
distributed w.r.t. normal distributions of parameters the average BN accuracy and
the variance of the BN accuracy, the last column shows the p-value obtained by
the ctdBN accuracy.
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3.4.3 Comparisons with MTBFs

In this subsection, we highlight the faithfulness of ctdBNs by comparing them
with MTBFs, more precisely with MOPs [Shenoy, 2011] and MTEs [Moral et al.,
2001]. We show that ctdBNs can approximate effectively these MTBFs while
being more efficient in terms of inference. For this purpose, we generate MTBFs
Φ(X̊1, . . . , X̊n) as products of bivariate MTBF potentials:

Φ(X̊1, . . . , X̊n) = Φ1(X̊1, X̊2)× Φ2(X̊2, X̊3)× · · · × Φn−1(X̊n−1, X̊n).

This decomposition has been chosen in order to make inference in MTBFs as
fast as possible. Indeed, the corresponding junction tree contains only cliques of
size two, having at most two neighbors, which limits the combinatorics of the
algebraic operations performed during inference. All these MTBF potentials are
defined over some continuous variables X̊i whose domain is ΩX̊i

= [0, 10]. To
make MTEs as efficient as possible for inference, we express MTE potentials
ΦMTE
i (X̊i, X̊i+1) by only one exponential term:

ΦMTE
i (X̊i, X̊i+1) = ai,0 + ai,1 exp (bi,0X̊i + bi,1X̊i+1),

with ai,0, ai,1 ∈ [0, 1] and bi,0, bi,1 ∈ [0.5, 1] chosen randomly.
In order to make the shape of MOP potentials not easily captured by affine

distributions1 (which we use in our ctdBNs) while guaranteeing that inferences in
MOPs are as fast as possible, we define MOP potentials as polynomials of degree
6, more precisely as polynomials of degree 3 in each of their variables, i.e.,:

ΦMOP
i (X̊i, X̊i+1) =

3∑
j=0

3∑
k=0

ci,j,kX̊
j
i X̊

k
i+1,

with ci,j,k chosen randomly in interval [0, 1].
Our goal is to approximate these MTBFs by ctdBNs B encoding a mixed

probability distribution g(X1, . . . , Xn, X̊1, . . . , X̊n). To construct B, we first dis-
cretize every continuous variable X̊i in 50 equally-sized intervals, hence resulting
in discretized random variables Xi. Then, we construct a discrete BN Bd over
X1, . . . , Xn whose independence structure corresponds to that of the MTBF, i.e.,
to the structure shown in Figure 3.3. Finally, ctdBN B is defined as Bd to which
are added conditional truncated densities gi(X̊i|Xi). Therefore, the ctdBN en-
codes the following mixed distribution:

g(X1, . . . , Xn, X̊1, . . . , X̊n) = PBd(X1)
n∏
i=2

PBd(Xi|Xi−1)
n∏
i=1

gi(X̊i|Xi).
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X1 X2 . . . Xn−1 Xn

Figure 3.3: The BN structure used for approximating MTBFs.

As a result, the junction tree used for inferences with ctdBN B always contains
only cliques of size two, exactly like that of the MTBF. Since inference complex-
ity with junction trees is exponential in the treewidth, imposing the structure of
Figure 3.3 allows to perform a fair comparison of how well ctdBNs’ and MTBFs’
inferences scale with increasing numbers of random variables.

As the structure of B is imposed, only B’s parameters (CPTs PBd(Xi|Xi−1)

and functions gi(X̊i|Xi)) need be learnt. This learning is performed iteratively,
i.e., in a first step, functions PBd(X1), PBd(X2|X1), gi(X̊1|X1) and gi(X̊2|X2)
are determined. Then, assuming that ctdBN B has been constructed for variables
X1, X̊1 up to Xi−1, X̊i−1, we learn PBd(Xi|Xi−1) and gi(X̊i|Xi). More precisely,
to learn the parameters related to Xi, X̊i, we first perform an inference in the
MTBF in order to compute:

Φ(X̊i−1, X̊i) =
∑

{X̊1,...,X̊n}\{X̊i−1,X̊i}

Φ(X̊1, . . . , X̊n).

We also compute Φ(X̊i) =
∑

X̊i−1
Φ(X̊i−1, X̊i). Then we sample 500000 times

the potentials Φ(X̊i−1, X̊i) and Φ(X̊i) using the Metropolis-Hastings algorithm
[Hastings, 1970] and the Inverse Transform Sampling’s method, respectively. Dis-
cretizing these samples using the discretizations of X̊i−1 and X̊i defined above
results in new discrete samples from which we determine by maximum likeli-
hood some probability distributions P (Xi−1|Xi) and P (Xi) respectively. Note
that, due to the finite size of the samples, the estimated distributions P (Xi−1|Xi)
and P (Xi) are not necessarily equal to PBd(Xi−1|Xi) and PBd(Xi). From these
two distributions, we compute P (Xi−1, Xi) = P (Xi−1|Xi)×P (Xi). The goal of
constructing joint distribution P (Xi−1, Xi) in this two-step process rather than di-
rectly from the sample of Φ(X̊i−1, X̊i) is to ensure that, in this joint, the marginal
distribution P (Xi) is as close as possible to distribution Φ(X̊i), which may not be
the case when sampling with Metropolis-Hastings uniquely on pairs (X̊i−1, X̊i),
due to the finite size of the samples. Finally, we define PBd(X1) = P (X1) and,
for every i > 1, PBd(Xi|Xi−1) = P (Xi−1, Xi)/PBd(Xi−1), where PBd(Xi−1) is
computed by inference in the ctdBN constructed so far.

1The conditional truncated densities we use in our ctdBNs are in fact Beta rectangular distri-
butions with parameters α = 2 and β = 1.
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In our experiments, for every j, conditional density gi(X̊i|Xi = j) is an affine
function on discretization interval [tji , t

j+1
i ) and is equal to 0 everywhere else.

Therefore, it is of the form gi(̊xi|Xi = j) = αi,jx̊i+βi,j on this interval and, since
this is a probability density function, we have that:∫ tj+1

i

tji

gi(̊xi|Xi = j)dx̊i = 1.

As a consequence, the following equation holds for all x̊i ∈ ΩX̊i
:

gi(̊xi|Xi = j) = αi,j

(
x̊i −

tji + tj+1
i

2

)
+

1

tj+1
i − tji

.

Using the projection over X̊i of the 500000-record sample of Φ(X̊i−1, X̊i) previ-
ously used for estimating PBd(Xi|Xi−1), we can now estimate αi,j by maximum
likelihood under the constraint that gi(·) is non-negative on [tji , t

j+1
i ). As there is

no closed-form formula for the optimal value of αi,j , we solve this constrained
optimization problem by the Newton-Raphson method.

The experiments are conducted as follows: we generate MTBFs (both MTEs
and MOPs) with n = 4, 8, 16, 32, 64, 128 and 256 variables. For each number
of variables, 25 MTEs and 25 MOPs are generated. Exact inferences are per-
formed in all these models using Variable Elimination [Dechter, 1999] in order to
determine the distribution Φ(X̊n) of the last random variable. For each MOP and
each MTE, we also learn a ctdBN as described above and execute the inference
algorithm described in Section 3.3 to determine the distribution g(X̊n) of X̊n.

The inference times are reported in Tables 3.8 and 3.9. They highlight the
scalability of ctdBNs. The ratios of the average inference time by the number
of variables, i.e., the last two columns of the tables, are displayed in Figures 3.4

n Tmte(ms) TctdBN (ms) Tmte/n TctdBN/n

4 0.30± 0.03 1.59± 0.16 0.07 0.40
8 0.57± 0.08 3.53± 0.31 0.07 0.44
16 1.67± 1.10 7.14± 0.41 0.10 0.45
32 5.79± 0.87 13.99± 1.35 0.18 0.44
64 23.68± 2.01 29.22± 1.92 0.37 0.46
128 122.37± 10.99 50.87± 6.88 0.96 0.40
256 708.11± 37.12 96.02± 13.79 2.77 0.38

Table 3.8: Average inference times (plus standard deviations) for MTEs and ct-
dBNs. These averages are computed over the 25 different networks defined for
each number n of variables.
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n Tmop(ms) TctdBN (ms) Tmop/n TctdBN/n

4 0.79± 0.16 1.59± 0.19 0.20 0.40
8 1.76± 0.29 3.40± 0.26 0.22 0.42
16 5.04± 0.81 6.94± 0.78 0.32 0.43
32 16.41± 1.42 14.40± 0.89 0.51 0.45
64 50.96± 6.89 29.21± 1.55 0.80 0.46
128 217.07± 22.04 60.19± 4.87 1.70 0.47
256 1063.48± 51.82 111.34± 16.88 4.15 0.43

Table 3.9: Average inference times (plus standard deviations) for MOPs and ct-
dBNs. These averages are computed over the 25 different networks defined for
each number n of variables.

Figure 3.4: The ratio of inference times in MTEs and ctdBNs by the number of
variables.

and 3.5. It is clear that the MTBFs’ inference times increase exponentially with
the number of variables, even though the largest clique always remains of size 2.
This results from the multiplications of the algebraic functions performed during
the inferences that tend to produce new functions with an ever increasing number
of parameters. Even marginalizations cannot restrain this increase. Unlike in
MTBFs, in ctdBNs, the number of operations performed on each clique remains
always the same during inference. This explains the linear increase in computation
times when the number of variables increase. This also corroborates the inference
complexity provided in Proposition 3.3.2.

Of course, better inference times are attractive only if the estimations by ct-
dBNs approximate pretty well those of MTBFs. As a first hint that this is the case,
Table 3.10 displays the average Jensen-Shannon Divergence (JSD) between the
distributions Φ(X̊n) and g(X̊n) computed previously. The low JSD values show
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Figure 3.5: The ratio of inference times in MOPs and ctdBNs by the number of
variables.

that ctdBNs approximate effectively MTBFs. To precise these results, we add
some small noise to distributions Φ(X̊n) computed previously, hence resulting in
new distributions Ψ(X̊n). Comparing the JSDs between Φ(X̊n) and Ψ(X̊n) on one
hand and between Φ(X̊n) and g(X̊n) on the other, we show that ctdBNs provide
better approximations than the slightly perturbed distributions, hence highlighting
the ctdBN’s faithfulness, while enabling much faster inferences than MTBFs, as
shown above.

For the MTEs, the marginal distribution inferred for X̊n is of the form
ΦMTE(X̊n) = a0 + b0 exp(b1X̊n). We perturb its parameters by ε, for different
values of ε, as follows:

ΨMTE
ε (X̊n) ∝ (1 + ε)a0 + (1− ε)b0 exp

(
(1 + ε)b1X̊n

)
.

Note that ΨMTE
ε (X̊n) is not strictly equal to the right hand side of the above equa-

tion, but only proportional to it, so that the integral of ΨMTE
ε over ΩX̊n

is equal to
one, hence ensuring that ΨMTE

ε is a probability density function. For MOPs, the
marginal distribution of X̊n is of the form ΦMOP (X̊n) = c0+c1X̊n+c2X̊

2
n+c3X̊

3
n.

We perturb it up to ε as follows:

ΨMOP
ε (X̊n) ∝ (1 + ε)c0 + (1− ε)c1X̊

1+ε
n + (1 + ε)c2X̊

2(1−ε)
n + (1− ε)c3X̊

3(1+ε)
n .

As for ΨMTE
ε , function ΨMOP

ε is normalized so that its integral over ΩX̊n
is equal

to one. The average JSDs between distributions Φ(X̊n) and Ψε(X̊n) for ε = 0.1,
0.05 and 0.01 are provided in Tables 3.11 and 3.12 for MTEs and MOPs respec-
tively. As can be observed, for ε = 0.05, both for MTEs and MOPs, and whatever
the number of random variables, the JSDs between the true distribution Φ(X̊n) and
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n JSD[ΦMTE(X̊n); g(X̊n)] JSD[ΦMOP (X̊n); g(X̊n)]
4 2.47× 10−4 ± 7.19× 10−5 8.07× 10−5 ± 7.40× 10−6

8 2.33× 10−4 ± 8.28× 10−5 8.33× 10−5 ± 4.24× 10−6

16 2.32× 10−4 ± 7.56× 10−5 8.24× 10−5 ± 6.13× 10−6

32 2.56× 10−4 ± 8.15× 10−5 8.30× 10−5 ± 5.48× 10−6

64 2.58× 10−4 ± 9.05× 10−5 8.10× 10−5 ± 7.11× 10−6

128 2.07× 10−4 ± 6.72× 10−5 7.85× 10−5 ± 7.83× 10−6

256 2.39× 10−4 ± 7.87× 10−5 8.18× 10−5 ± 5.11× 10−6

Table 3.10: Average Jensen-Shannon Divergences between Φ(X̊n) and g(X̊n) for
different numbers of variables.

JSD[ΦMTE(X̊n); ΨMTE(X̊n)]
n ε = 0.1 ε = 0.05 ε = 0.01
4 1.09× 10−3 ± 4.02× 10−5 2.84× 10−4 ± 1.14× 10−5 1.18× 10−5 ± 5.06× 10−7

8 1.08× 10−3 ± 5.39× 10−5 2.81× 10−4 ± 1.51× 10−5 1.16× 10−5 ± 6.64× 10−7

16 1.11× 10−3 ± 1.80× 10−4 2.90× 10−4 ± 5.12× 10−5 1.20× 10−5 ± 2.27× 10−6

32 1.08× 10−3 ± 5.32× 10−5 2.83× 10−4 ± 1.50× 10−5 1.17× 10−5 ± 6.58× 10−7

64 1.08× 10−3 ± 4.58× 10−5 2.83× 10−4 ± 1.30× 10−5 1.17× 10−5 ± 5.77× 10−7

128 1.06× 10−3 ± 4.89× 10−5 2.77× 10−4 ± 1.37× 10−5 1.15× 10−5 ± 6.04× 10−7

256 1.12× 10−3 ± 1.40× 10−4 2.93× 10−4 ± 3.87× 10−5 1.21× 10−5 ± 1.67× 10−6

Table 3.11: Average Jensen-Shannon Divergences between ΦMTE(X̊n) inferred
by MTE and its perturbed distributions.

the distribution g(X̊n) inferred by ctdBN are smaller than those between Φ(X̊n)
and ε-perturbed distributions Ψε(X̊n). This supports the fact that ctdBNs approx-
imate very well MTBFs. Indeed, in real-world applications, the parameters of
MTEs and MOPs are learnt from datasets and perturbed probability density func-
tions Ψε(X̊n) can be seen as the result of the imprecision on the values of these
parameters due to this learning.

JSD[ΦMOP (X̊n); ΨMOP (X̊n)]
n ε = 0.1 ε = 0.05 ε = 0.01
4 8.86× 10−4 ± 1.37× 10−4 2.31× 10−4 ± 3.58× 10−5 9.54× 10−6 ± 1.48× 10−6

8 8.17× 10−4 ± 7.32× 10−5 2.13× 10−4 ± 1.92× 10−5 8.80× 10−6 ± 7.93× 10−7

16 8.43× 10−4 ± 8.58× 10−5 2.19× 10−4 ± 2.16× 10−5 9.04× 10−6 ± 8.65× 10−7

32 8.33× 10−4 ± 7.70× 10−5 2.17× 10−4 ± 1.98× 10−5 8.96× 10−6 ± 8.10× 10−7

64 8.94× 10−4 ± 1.17× 10−4 2.33× 10−4 ± 3.04× 10−5 9.61× 10−6 ± 1.25× 10−6

128 9.24× 10−4 ± 1.54× 10−4 2.40× 10−4 ± 3.91× 10−5 9.88× 10−6 ± 1.57× 10−6

256 8.59× 10−4 ± 1.06× 10−4 2.24× 10−4 ± 2.76× 10−5 9.25× 10−6 ± 1.14× 10−6

Table 3.12: Jensen-Shannon Divergences for marginalized distributions of X̊n in
MOPs w.r.t. the marginals obtained using perturbed MOPs.

We can therefore conclude that ctdBNs outperform MTBFs in terms of scal-
ability of inference. As shown above, the cost of this speed increase is a slight
imprecision in the results of the inferences. All experiments have been performed
using the C++ aGrUM library (http://www.agrum.org) on a Linux box
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with an Intel Xeon at 2.40GHz and 128GB of RAM.

3.5 Conclusion
In this chapter, ctdBNs, a new graphical model for handling uncertainty over sets
of continuous and discrete variables, have been introduced. We have proved that
ctdBNs can approximate (arbitrarily well) any Lipschitz mixed probability dis-
tribution. So, theoretically, most of the mixed probability distributions used in
real-world situations can be approximated by ctdBNs. Experiments highlight that
this result is not only theoretic: in practice, ctdBNs are very expressive and can be
exploited efficiently for diagnosis and classification tasks. A junction tree-based
inference algorithm has also been provided. Its theoretical computational com-
plexity has been given and it shows that inference in ctdBNs is essentially similar
to that in classical discrete BNs. Here again, the experiments provided at the end
of the chapter highlight the tractability of inference in practical situations.
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Chapter 4

Conditional Densities Bayesian
Networks

In the preceding chapter, we proposed a new model called Conditional Truncated
Bayesian networks. This one is attractive because it is almost as expressive as
MTE and its inference engine is as fast as that of CLG models. However, it has
some drawbacks, notably in terms of structure learning because the combination
of the discretizations and the conditional truncated densities it relies on may in-
duce some side effects that prevent using classical scoring functions. This issue
is not only related to ctdBNs but also to any algorithm in which both the dis-
cretization of the continuous random variables and the structure are learnt at the
same time. The problem is the following: scoring functions represent probabil-
ity p(G|D̊), where D̊ denotes the database from which the model is learnt and
G is the structure of the model. In this context, learning the best structure con-
sists of determining G∗ = ArgmaxG p(G|D̊) and, using Bayes rule, we have that
G∗ = ArgmaxG p(D̊|G)p(G). Term p(G) is a prior over the possible structures and
does not raise any issue. The problem comes from likelihood p(D̊|G). Assuming
that all the records in Database D̊ are i.i.d., we have that:

p(D̊|G) =

∫
θ

N∏
j=1

p(̊x(j)|G,θ)π(θ|G)dθ,

where N denotes the number of records in the database and x̊(j) corresponds to
the jth record and π(θ|G) is the prior over parameters θ. Now, exploiting the
decomposition of p w.r.t. G, the score corresponding structure G of a ctdBN would
be:

p(D̊|G) =

∫
θ

N∏
j=1

n∏
i=1

P (x
(j)
i |Pa(x

(j)
i ),θ)

n∏
i=d+1

f (̊x
(j)
i |x

(j)
i ,θ)π(θ|G) dθ, (4.1)
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where xi, i = d+1, . . . , n, is the discretized counterpart of variable x̊i. Now, when
the discretizations of the continuous variables and the structure of the model are
learnt at the same time, in order to maximize Eq. (4.1), it is sufficient to choose
any continuous variable, say X̊i0 , to discretize it arbitrarily, except for one interval
of discretization [tk, tk+1) made arbitrarily small but still containing some x̊(j)

i0
of

the database. By definition, f is a truncated density, so
∫ tk+1

tk
f (̊x|x(j)

i0
,θ)dx̊ = 1.

As interval [tk, tk+1) is arbitrarily small, the integral can only be equal to one
if density f (̊x|x(j)

i0
,θ) is arbitrarily high. As a consequence, whatever Structure

G, the above discretization of X̊i0 implies that p(D̊|G) tends toward +∞. This
feature prevents any scoring function representing p(G|D̊) to be used for learning.
This explains why scoring functions like the one provided in [Monti and Cooper,
1998] face serious issues in practice. In [Friedman and Goldszmidt, 1996], the
authors avoid this issue by adding to their MDL score the entropy-based term
named DLF (see Eq.(2.14) which, when examined closely, does not fit very well
with the MDL criterion: indeed, the information it encodes can be significantly
compressed using other encoding schemes. But this term counteracts the impact of
f (̊x

(j)
i0
|x(j)
i0
,θ) and makes the discretizations tend toward equal-frequencies ones.

In this chapter, we introduce a variant of the ctdBNs that does not suffer from
this feature. Similarly to ctdBNs, it is composed of a classical BN and a graph-
ical part specific to cope with the continuous variables. But, unlike the ctdBNs,
this part is not composed of truncated probability density functions but rather
of untruncated probability density functions. It is therefore called a “conditional
densities Bayesian network” or cdBN for short. In addition to modifying the types
of conditional density functions allowed, it also enables to provide several parents
to each continuous variable. As we will see, this model is attractive not only for
its learning potential but also for its fast inference engine as well as its robustness
w.r.t. discretizations.

4.1 Definition and properties

As mentioned in the introduction, the definition of cdBNs is quite similar to that of
ctdBNs, except that : i) the conditional densities may not be necessarily truncated;
and ii) continuous nodes may have several parents:

Definition 4.1.1 (Bayesian networks with conditional densities (ctdBN))
Let XD = {X1, . . . , Xd} and X̊C = {X̊d+1, . . . , X̊n} be sets of discrete and
continuous random variables respectively. Let XC = {Xd+1, . . . , Xn} be a set of
discrete variables such that to each continuous variable X̊i ∈ X̊C corresponds a
variable Xi ∈ XC. Then, a BN with conditional densities is a pair (G,θ) where:
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1. G = (X,A) is a directed acyclic graph,

2. X = XD ∪ XC ∪ X̊C and A is a set of arcs such that nodes X̊i ∈ X̊C

satisfy the following two properties:

• they have no children,

• {Xi} ⊆ Pa(X̊i) ⊆ {Xi} ∪ Pa(Xi), i.e., their parents set contains
necessarily Xi, their discrete counterpart, and it can only contain Xi

and its parents (this condition is the key to guarantee that inference in
a cdBN is about as fast as that in a classical BN),

3. θ = θD ∪ θC,

4. θD = {P (Xi|Pa(Xi))}ni=1 is the set of the conditional probability tables of
all the discrete variables Xi in G given their parents Pa(Xi) in G,

5. θC = {f(X̊i|Pa(X̊i))}
n

i=d+1 is the set of the conditional densities of the
continuous random variables of X̊C given their parents in the graph.

The cdBN encodes the mixed probability distribution over X as the product of all
the functions in θ, i.e.,

p(X) =
n∏
i=1

P (Xi|Pa(Xi))
n∏

i=d+1

f(X̊i|Pa(X̊i)).

Figure 4.1 shows an example of a cdBN: nodes in dotted circles represent
continuous nodes. Note that they are only linked to their “discrete” counterpart but
also to some of their parents (see Node X̊5). The key point in cdBNs is that, unlike
ctdBNs, the density functions are defined over the whole domain of definition of
X̊i. As such, they are learnt from the whole database and not just over a subset
of records like the densities of ctdBNs. This is this very feature that ensures that
scoring functions can be defined appropriately for cdBNs.

Proposition 4.1.1 A cdBN is a compact representation of a mixed probability dis-
tribution.

Proof. By definition, the cdBN encodes:

p(X) =
n∏
i=1

P (Xi|Pa(Xi))
n∏

i=d+1

f(X̊i|Pa(X̊i)). (4.2)
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X5

X6X̊5

X4X3

X2X1

X̊3

X̊1

P (X1)

P (X3|X1)

P (X2)

P (X4|X1, X2)

P (X5|X3, X4)

P (X6|X5)

f(X̊1|X1)

f(X̊3|X3)

f(X̊5|X3, X5)

Figure 4.1: A cdBN.

As every function is non-negative, their product is also non-negative. To show
that p is a mixed probability distribution, there just remains to show that:∑

X1

· · ·
∑
Xn

∫
ΩX̊d+1

· · ·
∫

ΩX̊n

p(X)dX̊n · · · dX̊d+1 = 1.

By Eq. (4.2), this is equivalent to:

∑
X1

· · ·
∑
Xn

(
n∏
i=1

P (Xi|Pa(Xi))

)
×∫

ΩX̊d+1

f(X̊d+1|Pa(X̊d+1))dX̊d+1 × · · · ×
∫

ΩX̊n

f(X̊n|Pa(X̊n))dX̊n.

(4.3)

By definition, for every i ∈ {d+1, . . . , n} and every value of Pa(X̊i), we have that
f(X̊d+1|Pa(X̊d+1)) is a probability density function, hence

∫
ΩX̊i

f(X̊i|Pa(X̊i))dX̊i =

1. Therefore, for every i ∈ {d + 1, . . . , n},
∫

ΩX̊i
f(X̊i|Pa(X̊i))dX̊i is a function

of Pa(X̊i) whose value is always 1. Let us denote it as 1Pa(X̊i)
. Then, Eq. (4.3) is

equal to:

∑
X1

· · ·
∑
Xn

(
n∏
i=1

P (Xi|Pa(Xi))

)
×

(
n∏

i=d+1

1Pa(X̊i)

)
.

By definition, the product inside the left parentheses is the joint probability over
XD ∪XC = {X1, . . . , Xn}, i.e., P (XD ∪XC), and the product inside the right
parentheses is a function defined over a subset XE of XD ∪ XC whose value
is always equal to 1. As a result P (XD ∪ XC) × 1XE

is equal to probability
distribution P (XD ∪XC). Hence, the summation over all the variables in XD ∪
XC is equal to 1, and the cdBN represents a mixed probability distribution. �
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4.1.1 Difference between ctdBNs and cdBNs
Fig. 4.2 illustrates the difference between the density functions used in ctdBNs
and those used in cdBNs: in a ctdBN, the density function assigned to discretiza-
tion interval [tk, tk+1) only takes into account the distribution of the values of the
continuous variable defined over this interval; it never takes into account the val-
ues that are outside [tk, tk+1) but are still close to the interval. In a cdBN, the
density function takes into account the values in interval [tk, tk+1) but also those
lying outside (the purple parts in the figure). The latter being on the tails of the
distribution, their values by the density function are lower than those in interval
[tk, tk+1). Thus, the cdBN model can be interpreted as a robust version of ct-
dBNs w.r.t. discretizations. Indeed, when ctdBNs and cdBNs are exploited for
decision making, the distribution of interest is never p(X) as given in Eq. (4.1.1)
but rather p(XD, X̊C) =

∑
Xd+1,...,Xn

p(X), i.e., the discrete variables Xi corre-

sponding to the continuous variables X̊i are unobserved (latent) variables and, as
such, are marginalized out. But, after these summations, density functions be-
come mixtures of densities. For instance, assume that p(X) = P (X1)f(X̊1|X1)
and that ΩX1 = {0, . . . , g1}, then, by setting πi = P (X1 = i), we have that
p(X̊1) =

∑g1

i=0 πif(X̊1|X1 = i). As shown in Fig. 4.2.(b), these mixtures are
usually quite smooth, so that small variations on the discretization cutpoints tk
have a low impact on cdBN distributions p(XD, X̊C). Quite the opposite, in ct-
dBNs, small variations on the discretization cutpoints may have a much higher
impact on p(XD, X̊C) because, as shown in Fig. 4.2.(a), at the cutpoints, there
exist discontinuities in the mixtures of densities.

t1 t2 t3 t1 t2 t3

(a) ctdBN (b) cdBN

Figure 4.2: Densities in ctdBNs v.s. densities in cdBNs.

4.1.2 Representation properties
In this section, we will show that cdBNs have at least the same expressive power
as ctdBNs. Let C be the set of all cdBNs. First, note that, in Definition 4.1.1,
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the set of parents Pa(X̊i) is such that {Xi} ⊆ Pa(X̊i) ⊆ {Xi} ∪ Pa(Xi). Hence
it is possible that Pa(X̊i) = {Xi}. Now, let us only consider cdBNs in which
Pa(X̊i) = {Xi}. Let C1 be the set of such cdBNs. Clearly, C1 ⊂ C. In the cdBNs
belonging to C1, to each continuous random variable X̊i is assigned conditional
probability density function f(X̊i|Xi). Let ri = |ΩXi | and let us consider any
discretization dX̊i : ΩX̊i

→ {0, . . . , ri−1}. Then, by Definition 2.1.1, there exists
an increasing sequence of cutpoints {t1i , t2i , . . . , t

ri−1
i } ⊂ ΩX̊i

such that:

dX̊i (̊xi) =


0 if x̊i < t1i ,
k if tki ≤ x̊i < tk+1

i , for all k ∈ {1, . . . , ri − 1}
ri − 1 if x̊i ≥ tri−1

i

Among all the conditional density functions f(X̊i|Xi), let us only consider those
for which there exists a discretization function dX̊i : ΩX̊i

→ {0, . . . , ri − 1}
such that f(X̊i|Xi = k) = 0 whenever X̊i 6∈ [tki , t

k+1
i ). Then, let C1d be the

set of cdBNs of C1 whose conditional density functions satisfy this property for
all their continuous variables. Clearly, C1d ⊂ C1 ⊂ C. Now, by construction,
C1d corresponds precisely to the set of ctdBNs. As a result, whenever a mixed
probability can be approximated by a ctdBN, it can also be approximated by a
cdBN. Hence, propositions 3.2.2 and 3.2.3 and Corollary 3.2.1 trivially induce
the following corollaries:

Corollary 4.1.1 Let XD = {X1, . . . , Xd} be a set of discrete random variables
of respective domains {Ω1, . . . ,Ωd} and let ΩD =

∏d
i=1 Ωi be the domain of XD.

Let X̊C = {X̊d+1, ..., X̊n} be a set of continuous random variables of respective
domains Ω̊d+1, ..., Ω̊n such that none of the Ω̊i is a singleton. Let Ω̊C =

∏n
i=d+1 Ω̊i

be the domain of X̊C. Finally, let X = XD ∪ X̊C and Ω = ΩD × Ω̊C.
Let f : ΩD × Ω̊C 7→ R be a mixed probability distribution. Assume that

f is Lipschitz w.r.t. the continuous variables of X̊C, i.e., there exists a constant
M > 0 such that, for every pair (̊x, ẙ) of elements of Ω̊ such that xi = yi for
all i ∈ {1, . . . , d}, |f (̊x) − f(ẙ)| ≤ M ||̊x − ẙ||, where ||̊x − ẙ|| represents the
L2-norm of vector (̊x− ẙ).

Then, for every strictly positive real number ε < 1, there exists a cdBN B =
(G,θ) that approximates f up to ε, i.e.:

• the nodes of G are X = XD ∪ XC ∪ X̊C, where XC = {Xd+1, . . . , Xn}
is a set of discrete variables corresponding to X̊C; in addition, let ΩC =∏n

i=d+1 Ωi and Ω = ΩD ×ΩC × Ω̊C be the domains of XC and X respec-
tively;

• B represents a mixed probability density function g : Ω 7→ R such that, for
every (y, x̊) ∈ ΩD × Ω̊C, |

∑
x g(y, x, x̊) − f(y, x̊)| ≤ ε, where x are the

values of X , the discrete counterpart of X̊ .
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Corollary 4.1.2 Standard distributions like, e.g., univariate and multivariate Nor-
mal distributions, Beta distributions B(̊x, α, β), with α, β ≥ 2, Gamma distribu-
tion Γ(̊x, α, β) with α > 2, as well as their combinations by mutually independent
random variables, can be approximated up to ε < 1 by cdBNs.

Corollary 4.1.3 Let XD = {X1, . . . , Xd} and X̊C = {X̊d+1, ..., X̊n} be sets of
discrete and continuous random variables respectively. Let f : ΩD × Ω̊C 7→ R
be a mixed probability distribution. Assume that sets of variables XD and X̊C

can be partitioned into sets {XD1 , . . . ,XDk} and X̊C1 , . . . , X̊Ck respectively, and
that there exist some non-negative functions fi : ΩDi × Ω̊Ci 7→ R, i = 1, . . . , k,
such that f(xD, x̊C) =

∏k
i=1 fi(xDi , x̊Ci) for all (xD, x̊C) ∈ ΩD × Ω̊C. Then if

f is Lipschitz w.r.t. the continuous variables of X̊C, it can be approximated up
to ε by a cdBN which has the same decomposition, i.e., sets (XDi ∪XCi ∪ X̊Ci),
i = 1, . . . , k, where XCi are the discrete counterparts of X̊Ci , form the connected
components of the cdBN’s graphical structure.

4.1.3 Inference
In Chapter 3, we have shown how to construct a junction tree for ctdBNs by
appending to the junction tree of the discrete part the cliques related to the con-
tinuous nodes. In cdBNs, the principle is exactly the same. Let T be the junction
tree of the discrete part, i.e., the one constructed from the subgraph of the cdBN
defined over only the discrete nodes (including those Xi related to the contin-
uous variables X̊i). By definition of cdBNs, for any continuous node X̊i, the
unique clique containing X̊i is Clique Ci = {X̊i} ∪ Pa(X̊i). But as Pa(X̊i) ⊆
{Xi} ∪ Pa(Xi), in order to add clique Ci to T while still ensuring that the run-
ning intersection property holds, it is sufficient to link Ci to a clique Cj containing
{Xi} ∪ Pa(Xi). Such a clique is guaranteed to exist because it is necessary to
hold P (Xi|Pa(Xi)). As a result, to construct the junction tree of the cdBN, it
is sufficient to first create that of the discrete part and, then, to append to it the
cliques of the continuous nodes, one by one, as described above. As an example,
consider the cdBN of Figure 4.3a. The discrete part of the cdBN is displayed
in Figure 4.3b. Therefore, the junction tree T of the discrete part is shown in
Figure 4.4a. As mentioned above, the cliques related to the continuous nodes
are cliques {X̊1X1}, {X̊3X3} and {X̊5X3X4X5}, and they can be added to T as
shown in Figure 4.4b. Here, note that the result is not precisely a junction tree but
a join tree because, although the running intersection property holds, it is not the
case that no clique is included into another one. Actually, clique {X3X4X5} is in-
cluded into {X̊5X3X4X5}. When such a situation appears, it is easy to show that
substituting the contained clique by the containing one, as shown in Figure 4.5,
is sufficient to get a junction tree. However, from the inference point of view,
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it is simpler to exploit the join tree of Figure 4.4b rather than the junction tree
of Figure 4.5 because, in the former, the same algorithm as the one provided for
ctdBNs can be used. When using the junction tree instead, during the computa-
tions of every message, it becomes necessary to distinguish the functions defined
over continuous variables from those defined only over discrete variables (because
the processes to eliminate variables differ). This is therefore somewhat more com-
plicated to define the inference algorithm in the junction tree rather than to use just
the algorithm defined over ctdBNs.

X5

X6X̊5

X4X3

X2X1

X̊3

X̊1

(a) A simple cdBN.

X5

X6

X4X3

X2X1

(b) The discrete part of the cdBN.

X1X2X4

X1X4

X1X3X4

X3X4

X3X4X5 X5 X5X6

(a) Junction tree T .

X1X2X4X1X1X̊1

X1X4

X1X3X4X3X3X̊3

X3X4

X3X4X5X5X̊5X3X4X5 X5 X5X6

(b) The join tree of the whole cdBN.

As mentioned above, in the join tree, the inference algorithm is precisely the
same as the one provided for ctdBNs. The complexity of inference can be derived
in a similar way as in ctdBNs. However, in the worst case, to each continuous vari-
able X̊i is assigned a set of parents Pa(X̊i) = {Xi} ∪ Pa(Xi), which may induce
that all the cliques assigned to the continuous variables include their neighboring
cliques in the join tree. This, in turn, directly implies that the inference complexity
w.r.t. the whole cdBN is defined as follows:
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X1X2X4X1X1X̊1

X1X4

X1X3X4X3X3X̊3

X3X4

X̊5X3X4X5 X5 X5X6

Figure 4.5: The junction tree of the whole cdBN.

Proposition 4.1.2 Let w be the treewidth of the junction tree T defined over the
discrete part of the cdBN. Let k denote the maximum domain size of the dis-
crete random variables. Finally, let n be the number of random variables in the
cdBN and let I be the average complexity of computing one integral, as in Equa-
tion (3.6), and J the average complexity of computing the product as in Equa-
tion (3.7). Then the complexity of computing all the marginal posterior distribu-
tions of all the random variables is in O(nkw+1(1 + I + J)).

4.2 Learning CdBNs
The main advantage of cdBNs over ctdBNs lies in their structure learning from
data. As we have seen in a preceding subsection, the truncated densities used
by ctdBNs do not allow for an easy adaptation of the classical scores used in BN
structure learning like K2, BDeu, BIC, etc. [Cooper and Herskovits, 1992a, Geiger
and Heckerman, 1995, Heckerman et al., 1995, Heckerman, 1995, Schwarz, 1978].
Fortunately, with cdBNs, these scores can be adapted as well as the learning algo-
rithm. To understand it, consider the cdBN of Figure 4.3a learnt from a database
D̊. In this database, only variables X̊1, X2, X̊3, X4, X̊5, X6 are observed, vari-
ables X1, X3, X5 are latent, hidden. So, learning cdBNs boils down to learning
a model with hidden variables, which is precisely what Structural EM (SEM)
is made for [Friedman, 1998, Peña et al., 2000]. This is summarized in Algo-
rithm 4.1.

Some details must be given about this algorithm. For this purpose, assume
that Database D̊ contains N records, each one being defined over discrete random
variables XD = {X1, . . . , Xd} and continuous variables X̊C = {X̊d+1, . . . , X̊n}.
We assume that the database is complete, i.e., for each record, the values of all
the random variables are observed. Finally, we let XC = {Xd+1, . . . , Xn} and
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Algorithm 4.1: Structural EM for learning cdBNs.

Input: Database D̊
Output: a ctdBN B = (G,Θ)

1 t← 0
2 G0 ← an initial cdBN graphical structure
3 Θ0 ←MAP parameters of G0 given D̊
4 repeat

// E step
5 foreach G in the neighborhood N(Gt) of Gt do
6 Assign score Sc(G) = log p(G|D̊) to G

// M step
7 Gt+1 ← ArgmaxG∈N(Gt) Sc(G)

8 Θt+1 ←MAP parameters of Gt+1 given D̊
9 t← t+ 1

10 until Gt+1 = Gt;
11 return cdBN B = (Gt,Θt)

X = XD ∪XC ∪ X̊C be the set of latent variables and the set of all the variables
of our model respectively. On Line 2, an initial graph is provided. Usually, in
BNs, this is an empty graph, i.e., a graph without any arc. Here, the equivalent for
cdBNs is a graph G0 = (X,A0), where A0 = {(Xi, X̊i) : i = d + 1, . . . , n}, i.e.,
the graph contains only arcs from the latent variables to their continuous coun-
terparts. On Line 3, the optimal parameters of the conditional densities as well
as the marginal probabilities of the the Xi’s need be determined. All the Xi’s,
i ≤ d are independent from the other variables, so the determination of their
distribution P (Xi) by MAP is a classic, notably if the a priori over the parame-
ters of their CPT is a Dirichlet distribution [Heckerman et al., 1995, Heckerman,
1995]. All the pairs (Xi, X̊i), i = d + 1, . . . , n are mutually independent, so the
parameters of their distributions can be determined independently. For variables
X̊i, we first need to assume that the conditional densities belong to a given fam-
ily of distributions. In the following, we assume that this family is that of the
Normal distributions N (µ, τ−1), where τ = 1/σ2 is called the precision. It is
well-known that the conjugate prior of such distributions is the Normal-Gamma
function NΓ(µ0, λ0, α0, β0), which can be used as the prior over the parameters
of the conditional densities. Now, note that the distribution of every continuous
variable X̊i is equal to

∑
Xi
P (Xi)f(X̊i|Xi), which is a mixture of Normal distri-

butions. So the optimal parameters for f are determined by Maximum Likelihood
Estimation (MLE) as those of a mixture of Gaussians and, by MAP, as a mixture
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of Normal-Gamma functions. This can be performed efficiently by a classical EM
algorithm.

In Line 6, Sc(G) = log p(G|D̊) should be computed. By Bayes rule, we have
that Sc(G) = log p(D̊|G) + log(p(G)/p(D)). Assuming a uniform prior over all
the graphical structures, the second term is a constant and needs not be taken into
account. Unfortunately, log p(D̊|G) cannot be computed in closed form because
some variables are not observed, so, in the SEM algorithm, it is approximated as
follows: let X

(m)
D , X̊

(m)
C (resp. x

(m)
C ) be the observed (resp. unobserved) variables

in themth record of the database, and let X
(D)
C = {X(m)

C }Nm=1, X(D)
D = {X(m)

D }Nm=1

and X̊(D)
C = {X̊(m)

C }Nm=1, be the sets over all the records. Then, assuming the
cdBN determined at step t of the learning algorithm is Bt = (Gt,Θt), which
represents distribution pBt(·), the Structural EM score assigned to G is equal to:

Sc(G) ≈
∑
x

(D)
C

pBt(x
(D)
C |x

(D)
D , x̊

(D)
C ,Gt,Θt)× log p(x

(D)
D ,x

(D)
C , x̊

(D)
C |G).

≈
∑
x

(D)
C

pBt(x
(D)
C |x

(D)
D , x̊

(D)
C ,Gt,Θt)×[

n∑
i=1

Sc(Xi|Pa(Xi)) +
n∑

i=d+1

Sc(X̊i|Pa(X̊i))

]
(4.4)

where the last terms correspond to the scores of every node of the cdBN given
their parents. The part corresponding to Sc(Xi|Pa(Xi)), i = 1, . . . , n, concerns
only discrete variables and can therefore be computed exactly as in the classical
SEM algorithm [Friedman, 1998]. We will describe how to compute the score
Sc(X̊i|Pa(X̊i)) related to the continuous part in the next subsection.

On Lines 5 and 7, we need to define the neighborhood of a graph G. If we just
consider the discrete part GD of G, the neighborhood can be classically defined as
all the graphs that can result from the addition of an arc to GD, from the removal of
an arc from GD or from an arc reversal in GD. In a similar fashion, for the contin-
uous part, i.e., the set of parents of the X̊i’s, the neighborhood consists of adding
a new parent, while satisfying constraint {Xi} ⊆ Pa(X̊i) ⊆ {Xi} ∪ Pa(Xi), or
removing an already existing parent (except Xi). Overall, the neighborhood of
graph G is the union of the discrete and continuous neighborhoods. To speed-
up searching, one may restrict this neighborhood, considering that constraining
Pa(X̊i) to be equal to precisely to {Xi} ∪ Pa(Xi) results in the cdBN best-fitting
to data D̊.
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4.2.1 A new score for cdBNs

Clearly, for using search-based structure learning approaches, we need to define
a score well-suited for cdBNs, i.e., this score needs to take into account both the
discrete and the continuous parts of the cdBN. The goal of this subsection is to
propose such a score. For this purpose, we need to introduce a few additional no-
tations. In the sequel, let X̊O = XD∪X̊C denote the set of observed random vari-
ables in datasetD and let X̊ = XD∪XC∪X̊C be the set of all the variables in the
cdBN. Next, we will consider that each record of database D is an instantiation of
some random variables whose distribution is the same as that of X̊. Thus, we de-
note by superscript (m) (resp. (D)) the variables that refer to themth record of the

database (resp. all the records of the database). For instance, X
(D)
C = {X(m)

C }
N

m=1

and X
(m)
C correspond to the set of unobserved variables in all the records of D

and in the mth record of D respectively. Let XFCi
= ({Xi} ∪ PaG(Xi)) ∩ XC,

i = 1, . . . , n, and X̊PCi
= {X̊i}∪(PaG(X̊i)∩XC), i = d+1, . . . , n, represent the

set of unobserved variables among Xi or X̊i and its parents in graph G. Finally,
for any i ∈ {1, . . . , n}, let XPCi

= XFCi
\{Xi} be the set of the unobserved

parents of Xi, let XPCi
= PaG(Xi) \XPCi

be the set of observed parents and let
XOCi

= X̊O\({Xi} ∪XPCi
) be all the observed variables but Xi and its parents.

We can now provide our new score:

Proposition 4.2.1 Assume that the cdBN determined at step t of the learning al-
gorithm is Bt = (Gt,Θt) and that it represents distribution PBt(·). Let G be the
structure of a cdBN. Let us assume parameter independence. In addition, let the
prior over the parameters of the CPTs assigned to the discrete and latent variables
be a Dirichlet distribution of hyperparameters (αij1j21, . . . , αij1j2ri). Finally, as-
sume that the conditional densities of the continuous variables of the cdBN are
Normal distributions and that the prior over their parameters is a Normal-Gamma
distribution NΓ(ρij1j2 , λij1j2 , αij1j2 , βij1j2).
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Then the score assigned to G is equal to S(G) = S1(G) + S2(G), where:

S1(G) =
n∑
i=1

qi1∑
j1=1

qi2∑
j2=1

[
log

(
Γ(αij1j2)

Γ(Nij1j2 + αij1j2)

)
+

ri∑
k=1

log

(
Γ(Nij1j2k + αij1j2k)

Γ(αij1j2k)

)]

S2(G) =
n∑
i=1

qi1∑
j1=1

qi2∑
j2=1

log

 1
√

2π
N̊ij1j2

β
αij1j2
ij1j2

γ
αij1j2+

N̊ij1j2
2

ij1j2

Γ(αij1j2 +
N̊ij1j2

2
)

Γ(αij1j2)

√
λij1j2√

λij1j2 + N̊ij1j2

.



Nij1j2k =



∑
m:x

(m)

PCi
=j2,x

(m)
i =k

PBt(XPCi
= j1|̊x(m)

OCi
,x

(m)

PCi
, x

(m)
i ) if i ≤ d

∑
m:x

(m)

PCi
=j2

PBt(XPCi
= j1, x

(m)
i |̊x

(m)

OCi
,x

(m)

PCi
) if i > d

N̊ij1j2k =
∑

m:̊x
(m)

PCi
=j2 ,̊x

(m)
i =k

PBt (̊xPCi
= j1 |̊x(m)

OCi
, x̊

(m)

PCi
, x̊

(m)
i )

Proof. The score of structure G is equal to logP (D̊|G). Assuming the cdBN
determined at step t of the learning algorithm is Bt = (Gt,Θt), which represents
distribution PBt(·), SEM approximates this score as:

S(G) =
∑
x

(D)
C

PBt(x
(D)
C |̊x

(D)
O ) logP (̊x(D)|G),

where X̊O = XD∪ X̊C is the set of observed random variables in datasetD. This
can be rewritten as:

S(G) = log
∏
x

(D)
C

[∫
Θ

P (̊x(D)|G,Θ)π(Θ|G)dΘ

]PBt (x(D)
C |̊x(D)

O )

where Θ corresponds to the potential parameters of a cdBN of structure G and
π(·|G) is their prior. Let θi, i = 1, . . . , n, denote the set of parameters assigned
to CPT P (Xi|PaG(Xi)) and let νi, i = d+ 1, . . . , n, denote the set of parameters
assigned to f(X̊i|PaG(X̊i)). Assuming parameter independence, the score can be
rewritten as:

log
∏
x

(D)
C

[
n∏
i=1

∫
θi

P (x
(D)
i |PaG(xi)(D),θi)π(θi|G)dθi ×

n∏
i=d+1

∫
νi

f (̊x
(D)
i |PaG (̊xi)(D),νi)π(νi|G)dνi

]PBt (x(D)
C |̊x(D)

O )
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By marginalizing out, for each integral, all the variables that do not belong to
it, the score is equal to:

n∑
i=1

log
∏
x

(D)
FCi

∫
θi

P (x
(D)
i |PaG(xi)(D),θi)

π(θi|G)dθi

PBt (x
(D)
FCi
|̊x(D)

O )

+

n∑
i=d+1

log
∏
x̊

(D)
PCi

∫
νi

f (̊x
(D)
i |PaG (̊xi)(D),νi)

π(νi|G)dνi

PBt (̊x
(D)
PCi
|̊x(D)

O )

where XFCi
= ({Xi} ∪ PaG(Xi)) ∩ XC, i = 1, . . . , n, and X̊PCi

= {X̊i} ∪
(PaG(X̊i) ∩ XC), i = d + 1, . . . , n, represent the set of unobserved variables
among Xi or X̊i and its parents in graph G. Eq. (8) of [Friedman, 1998] suggests
to approximate the product over x

(D)
FCi

and x̊
(D)
PCi

of the integrals by the integrals of
these products, which leads to:

n∑
i=1

log

∫
θi

N∏
m=1

∏
x

(m)
FCi

P (x
(m)
i |PaG(xi)(m),θi)

PBt (x
(m)
FCi
|̊x(m)

O )
× π(θi|G)dθi +

n∑
i=d+1

log

∫
νi

N∏
m=1

∏
x̊

(m)
PCi

f (̊x
(m)
i |PaG (̊xi)(m),νi)

PBt (̊x
(m)
PCi
|̊x(m)

O )
× π(νi|G)dνi

Hence, S(G) = S1 + S2, where S1 corresponds to the first sum of logs above and
S2 to the second one. For any i ∈ {1, . . . , n}, let XPCi

= XFCi
\{Xi} be the set of

the unobserved parents of Xi, let XPCi
= PaG(Xi) \XPCi

be the set of observed
parents and let XOCi

= X̊O\({Xi} ∪XPCi
) be all the observed variables but Xi

and its parents. Denote by ri, qi1 and qi2 the respective domain sizes of Xi, XPCi

and XPCi
, and by θij1j2k the value of Parameter P (Xi = k|XPCi

= j1,XPCi
=

j2) and let:

Nij1j2k =



∑
m:x

(m)

PCi
=j2,x

(m)
i =k

PBt(XPCi
= j1|̊x(m)

OCi
,x

(m)

PCi
, x

(m)
i ) if i ≤ d

∑
m:x

(m)

PCi
=j2

PBt(XPCi
= j1, x

(m)
i |̊x

(m)

OCi
,x

(m)

PCi
) if i > d

with, by abuse, Nij1j2k is equal to the number of records in the database in which
xPCi

= j2 and xi = k when XPCi
= ∅ and i ≤ d. Finally, for every i, j1, j2,
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assume that the prior over (θij1j21, . . . , θij1j2ri) is a Dirichlet distribution of hyper-
parameters (αij1j21, . . . , αij1j2ri). Then, by local parameter independence, Score
S1 above is equal to:

S1 =
n∑
i=1

qi1∑
j1=1

qi2∑
j2=1

log

∫
θij1j2

ri∏
k=1

θ
Nij1j2k+αij1j2k
ij1j2k

dθij1j2 + c

=
n∑
i=1

qi1∑
j1=1

qi2∑
j2=1

[
log

(
Γ(αij1j2)

Γ(Nij1j2 + αij1j2)

)
+

ri∑
k=1

log

(
Γ(Nij1j2k + αij1j2k)

Γ(αij1j2k)

)]
,

where c is the normalization constant of the Dirichlet distribution, θij = {θij1j2}
ri
k=1,

Nij1j2 =
∑ri

k=1 Nij1j2k and αij1j2 =
∑ri

k=1 αij1j2k. Let us now rewrite Score
S2. As above, for every i = d + 1, . . . , n, let X̊PCi

= PaG(X̊i) ∩ XC, let
X̊PCi

= PaG(X̊i) \ X̊PCi
and X̊OCi

= X̊O\({X̊i} ∪ X̊PCi
). Here, note that

X̊PCi
, X̊PCi

and X̊OCi
are sets of discrete variables. In addition, let ri be the

number of different values observed for X̊i, and let qi1 and qi2 be defined as above.
Then S2 is equal to:

S2 =
n∑
i=1

qi1∑
j1=1

qi2∑
j2=1

log

∫
νij1j2

ri∏
k=1

π(νij1j2|G)× (4.5)

f (̊xi = k|X̊PCi
= j1, X̊PCi

= j2,νij1j2)
N̊ij1j2kdνij1j2

where νij1j2 = {νij1j2k}
ri
k=1 and

N̊ij1j2k =
∑

m:̊x
(m)

PCi
=j2 ,̊x

(m)
i =k

PBt (̊xPCi
= j1|̊x(m)

OCi
, x̊

(m)

PCi
, x̊

(m)
i ).

Now, for every j1, j2, assume that f (̊xi|X̊PCi
= j1, X̊PCi

= j2) is the den-
sity of Normal distribution N (µij1j2 , τ

−1
ij1j2

), where τij1j2 is the precision. So
νij1j2 = (µij1j2 , τij1j2). In addition, assume that the prior over νij1j2 is a Normal-
Gamma function NΓ(ρij1j2 , λij1j2 , αij1j2 , βij1j2). Let us rewrite the log expression
in Eq. (4.5) for a given value of i, j1, j2. For clarity reasons, we will subsequently
drop subscript “ij1j2” in all parameters. Hence, the log is equal to:

log

∫
ν

ri∏
k=1

[ √
τ√
2π

exp
(
− τ

2
(xki − µ)

2
)]N̊k βα

√
λ

Γ(α)
√

2π

τα−1/2 exp(−βτ) exp
(
−1

2
λτ(µ− ρ)2) dν, (4.6)

where xki stands for the kth value observed for Variable Xi in the database and
N̊k is a shortcut for N̊ij1j2k. Let N̊ =

∑ri
k=1 N̊k and let xi = 1

N̊

∑ri
k=1 N̊kx

k
i and
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s = 1

N̊

∑ri
k=1 N̊k(x

k
i − xi)

2. Then Eq. (4.6) is equal to:

log

∫
τ

∫
µ

[ √
τ√

2π

]N̊
exp

(
− τ

2
(N̊s+ N̊(xi − µ)2)

) βα
√
λ

Γ(α)
√

2π
τα−1/2 exp(−βτ) exp

(
−1

2
λτ(µ− ρ)2) dµ dτ.

which is equal to:

log

[
βα
√
λ

Γ(α)(
√

2π)
N̊+1

]
+ log

∫
τ

exp
(
−τ N̊s

2
+ β

)
τα+ N̊−1

2∫
µ

exp
(
−τ

2
[N̊(xi − µ)2 + λ(µ− ρ)2]

)
dµ dτ.

The µ-integral can be rewritten as:∫
µ

exp

[
− τ

2

(
(λ+ N̊)

(
µ− λρ+N̊xi

λ+N̊

)2

+ λN̊(xi−ρ)2

λ+N̊

)]
dµ

= exp
[
− τ

2
λN̊(xi−ρ)2

λ+N̊

]√
2πσ

∫
µ

1√
2πσ

exp
[
−1

2

(
µ−µ
σ

)2
]
dµ

with µ = λρ+N̊xi
λ+N̊

and σ = 1/

√
τ(λ+ N̊). The last integral is that of a normal

distribution, hence it is equal to 1. Hence Eq. (4.6) is equal to:

log

[
βα
√
λ

Γ(α)(
√

2π)
N̊+1

]
+ log

√
2π√
λ+N̊

∫
τ

τα+ N̊
2
−1 exp(−γτ)dτ

with γ = (N̊s + 2β + λN̊(xi−ρ)2

λ+N̊
)/2. The term inside the last integral is propor-

tional to the density function of a Gamma distribution of parameters (α + N̊
2
, γ).

Therefore, Score S2 is equal to:

S2 = log

[
βα
√
λ

Γ(α)(
√

2π)
N̊+1

]
+ log

[ √
2π√

λ+ N̊

Γ(α + N̊
2

)

γα+ N̊
2

]

= log

[
1

√
2π

N̊

βα

γα+ N̊
2

Γ(α + N̊
2

)

Γ(α)

√
λ√

λ+ N̊
.

]
Hence the score displayed in the proposition. �

4.3 Experiments
In this section, we provide some experiments to highlight the advantages of cdBNs
over other models. For this purpose, we compare BNs, ctdBNs and cdBNs on
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real-world problems on real-world datasets from the UCI repository [Lichman,
2013] reported in Table 4.1. In these datasets, all rows with missing values were
removed. In each dataset, there exists a discrete random variable, call itX0, repre-
senting a classification variable. The other random variables can be either discrete
(variables XD = {X1, . . . , Xd}) or continuous (X̊C = {X̊d+1, . . . , X̊n}). Our
classification problem is to infer the value of X0 given complete observations for
values of variables in XD ∪ X̊C.

Dataset #Attr. #Classes #Rows #Cont. attr.
breast 10 2 667 9
cleve 14 2 296 13
crx 16 2 653 6
iris 10 3 150 4

pima 9 2 768 8

Table 4.1: UCI datasets used for BN, ctdBN and cdBN comparisons experiments.

In order to address such a problem with all those three models, we must first
discretize all the continuous random variables. We use two different approaches
for that:

1. The domain sizes of all the random variables were fixed to the same value
and, in different experiments this value was set to 2, 3, 4 and 5. Finally, the
discretization intervals were determined in order to maximize the entropy
of each continuous random variable (this corresponds to intervals defining
uniform distributions).

2. Friedman’s discretization algorithm [Friedman and Goldszmidt, 1996].

From that discretization, the original dataset D̊ is mapped into the fully discrete
one D. A BN B over (X0, X1 . . . , Xn) is then learnt from D using a hill climbing
algorithm with an MDL score 1. This BN is then exploited for a classification
task as follows: given some observation eX̊i (resp. eXi) on each continuous ran-
dom variable X̊i (resp. discrete variable Xi), we enter belief P (eX̊i |Xi) (resp.
P (eXi|Xi)) into Bayes net B, and then we compute the posterior distribution
P (X0|eX1 , . . . , eXd , eX̊d+1

, . . . , eX̊n) by means of a Lazy-Propagation inference.
The most probable value for class variable X0 becomes simply:

x∗0 = Argmax
X0

P (X0|eX1 , . . . , eXd , eX̊d+1
, . . . , eX̊n).

1 For all Bayesian Network’s related learning and inference processes, we used the aGrUM
library (http://agrum.lip6.fr)

141



142 4. Conditional Densities Bayesian Networks

For a fair comparison, we construct cdBN (resp. ctdBN) models as follows:
we start from BN B computed in the preceding paragraphs and we add to it
some conditional densities (resp. conditional truncated densities) hi(X̊i|Xi), i =
d + 1, . . . , n. The latter are determined using a weighted kernel density estima-
tion2(resp. kernel Density Estimation) with a Gaussian kernel and Scott’s rule for
estimating the bandwidth [Scott, 1992]. Then the hi’s are i renormalized so that
their integrals over the whole domain of each continuous variable (resp. over each
interval of discretization) are equal to 1.

The same evidence eXi and eX̊i as those of the BN are entered into the cdBN
(resp. ctdBN). However, the latter are included into the cdBN (resp. ctdBN) as
beliefs fi(eX̊i |X̊i) as cdBNs (resp. ctdBNs) can cope with more precise evidence
than mere beliefs P (eX̊i |Xi) about discretized random variables Xi. Therefore,
after entering evidence, the cdBN (resp. ctdBN) represents:

g(X0, . . . , Xn, X̊d+1, . . . , X̊n, eX1 , . . . , eXd , eX̊d+1
, . . . , eX̊n) =

P (X0|Pa(X0))
n∏
i=1

P (Xi|Pa(Xi))×

d∏
i=1

P (eXi |Xi)
n∏

i=d+1

hi(X̊i|Xi)fi(eX̊i |X̊i).

From this distribution, we perform an inference process to compute the poste-
rior distribution g(X0|eX1 , . . . , eXd , eX̊d+1

, . . . , eX̊n) so the most probable value
for class variable X0 is x∗0 = ArgmaxX0

g(X0|eX1 , . . . , eXd , eX̊d+1
, . . . , eX̊n).

Finally, to perform our experiments, each dataset of Table 4.1 is split into 5-
folds, in order to perform cross-validation. All continuous variables are normal-
ized into a [0, 1] interval. After learning, for each row of each test set, we estimate
the most probable value of class variableX0 given the observation of the values of
X1, . . . , Xd, X̊d+1, . . . , X̊n on that row: for the BN, the value of X̊i is translated
into the corresponding value of its discretized counterpart Xi and P (eX̊i |Xi) is
precisely the evidence that Xi has taken this value; for the cdBN (resp. ctdBN),
belief fi(eX̊i |X̊i) is expressed as a normal distribution whose mean is the observed
value X̊i in the row of the test set and whose variance is arbitrarily set to 0.01. The
evidence on discrete variables Xi are entered as classical beliefs P (eXi |Xi). Once

2 The weight for each sample is determined by the following equation:

w(̊xi|Xi) =

{
ek(x̊i−t), if x̊i is not in the interval of Xi

1, otherwise

where t represents one of the cutpoints that defines the discretization interval Xi and which is the
closest to xi, and k = 1 for all the presented experiments.
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the most probable values for X0 have been inferred from each model, we compare
them to the actual value of X0 observed in the test set. Each model’s classification
accuracy is computed as the proportion of correct estimations performed.

These accuracies are displayed in Tables 4.2, 4.3, 4.4, 4.5 and 4.6, con-
structed from the 25 classification experiments executed for each model (5 datasets,
using 5 different discretizations for each).

Dataset %Acc BN %Acc ctdBN %Acc cdBN
breast 96.92+-0.55 97.22+-0.56 97.22+-0.56
cleve 80.53+-5.33 81.16+-3.51 81.16+-3.51
crx 84.56+-4.90 86.39+-3.16 86.39+-3.16
iris 94.67+-2.67 95.33+-1.63 95.33+-1.63

pima 73.83+-3.12 73.95+-2.34 74.08+-2.92

Table 4.2: Classification results for discretizations with Domain Size = 2.

Dataset %Acc BN %Acc ctdBN %Acc cdBN
breast 96.85+-0.73 97.14+-0.52 97.14+-0.52
cleve 80.34+-4.13 80.31+-3.04 80.31+-3.04
crx 84.78+-4.15 86.39+-3.16 86.17+-3.53
iris 91.00+-6.16 93.67+-3.14 94.00+-3.27

pima 74.15+-3.45 74.02+-2.38 74.15+-2.61

Table 4.3: Classification results for discretizations with Domain Size = 3.

Dataset %Acc BN %Acc ctdBN %Acc cdBN
breast 96.88+-0.77 97.17+-0.66 97.17+-0.66
cleve 79.71+-3.95 80.60+-3.14 80.60+-3.14

crx 85.06+-3.71 86.39+-3.16 86.24+-3.41
iris 90.44+-5.56 94.22+-3.33 94.44+-3.37

pima 74.26+-3.03 74.08+-2.35 74.08+-2.47

Table 4.4: Classification results for discretizations with Domain Size = 4.

From these tables, we can observe:

• ctdBN performs better or equal than BN 21/25 of times.

• cdBN performs better or equal than BN 22/25 of times.

• ctdBN performs strictly better than BN 15/25 of times.
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Dataset %Acc BN %Acc ctdBN %Acc cdBN
breast 97.00+-0.80 97.18+-0.63 97.18+-0.63
cleve 80.16+-3.85 81.17+-3.42 81.17+-3.42

crx 85.13+-3.64 86.39+-3.16 86.28+-3.35
iris 91.17+-5.30 94.50+-3.03 94.67+-3.06

pima 74.38+-3.01 74.38+-2.54 74.41+-2.62

Table 4.5: Classification results for discretizations with Domain Size = 5.

Dataset %Acc BN %Acc ctdBN %Acc cdBN
breast 97.51+-1.20 97.22+-0.86 97.22+-0.86
cleve 79.83+-3.65 82.52+-4.74 82.52+-4.74

crx 85.94+-3.96 86.39+-3.16 86.39+-3.16
iris 92.67+-3.27 96.00+-1.33 96.00+-1.33

pima 72.40+-2.40 73.56+-2.20 73.56+-2.39

Table 4.6: Classification results using Friedman’s discretization.

• cdBN performs striclty better than BN 16/25 of times.

• cdBN and ctdBN perform similarly 15/25 of times.

• ctdBN performed strictly better than cdBN only 3 times.

• cdBN performed strictly better than ctdBN only 7 times.

We can therefore conclude that, as expected, that the presented cdBN model is
better suited than BNs for performing classification tasks, and even slightly better
ctdBNs for that task.

4.4 Conclusion
In this chapter, we have introduced a new graphical model called Conditional Den-
sities Bayesian Networks. This one is a generalization of the ctdBNs presented in
the preceding chapter. It can be considered as a robust version of ctdBNs w.r.t. dis-
cretizations. We have shown that this new model has attractive properties, notably
in terms of expressiveness, i.e., it can approximate most of the usual mixed prob-
ability distributions. We have also detailed how inference can be performed in
cdBNs and provided some complexity results. We have also described how struc-
ture learning can be performed using an SEM-like algorithm and, for this purpose,
we have introduced a new scoring function well-suited to cdBNs. Finally, some
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experiments have been performed to compare the effectiveness of cdBNs against
ctdBNs and classical BNs on classification tasks.
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Chapter 5

SCISSOR project

This thesis was funded as part of the H20201 European project SCISSOR2, which
proposes a new SCADA3 security monitoring framework. This one aims to meet
the requirements for dealing with critical infrastructures4, while relying on open-
source technology and open standards; this chapter is dedicated to the real-world
application of the previously presented models, in particular cdBNs. In Figure 5.1,
we present an overly simplified schema of how our cdBN module interacts with
a SCADA System: The cdBN module gets real-time (sensors) measurements and
uses them in batch to learn at regular intervals a new cdBN model. At the same
time, exploiting the last cdBN model learnt, each time it receives some new mea-
surements (data), it performs a likelihood-based anomaly detection. Whenever
the current system state appears to be unlikely, i.e., it has a too low likelihood,
our anomaly detection module sends an alert to the system because this situation
might represent a cyber-attack attempt or a misuse of the system. The SCISSOR
framework (its technologies and tools) has been successfully validated both on an
off-line realistic SCADA platform and in the real-world testbed trials in SEA FAV-
IGNANA5. These validations include applications of the cdBN model presented
in this thesis.

The rest if this chapter is organized as follows: Sections 5.1 and 5.2 are de-
voted to give an overview of the SCISSOR project and to the cdBN Threat de-
tection module, i.e how our work coexist with the rest of the project. Section 5.3

1https://ec.europa.eu/programmes/horizon2020/en/
2European project H2020-ICT-2014-1 #644425. For further information, refer to https:

//scissor-project.com/
3SCADA is a large-scale remote management computer system for real-time processing of

telemetry and remote control of technical installations.
4Critical infrastructures are essential assets for a society and economy, e.g. water supply, trans-

portation, electricity generation, etc.
5Favignana Island’s Electric Central (Sicily region, Italy), ran by SEA (Società Elettrica di

Favignana). We will refer to it simply as Favignana.
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SCADA
System

cdBN
Module

Variables values

Alerts

Figure 5.1: Simplified schema

gives a comparison between a cdBN temporal model and the Kalman filter in the
context of anomaly detections, which were made offline (i.e. with recorded data,
not in real time). this comparison was made at request of H2020 reviewers domain
experts. Finally, Section 5.4 presents the two sets of experiments included in the
SCISSOR testbed.

5.1 Project description and scope
The SCISSOR project proposes a holistic, end-to-end, multi-layered security mon-
itoring framework, which includes encryption of the communications and access
control support. This framework focuses on the SCADA system security but it
is extensible to include many supplementary sensing, monitoring, and security
assessment modules i.e. the SCISSOR architecture is meant to be incrementally
deployable, and to provide a unified way to handle, control, and correlate widely
heterogeneous remote monitoring sources and relevant data.

The SCISSOR framework is structured into four layers, and its simplified view
is depicted in Figure 5.2. From bottom to top, it is composed of a Monitoring
Layer (ML), a Control & Coordination Layer (CCL), a Decision & Analysis Layer
(DAL) and a Human Machine Interface (HMI).

The Monitoring Layer (ML) integrates multi-source, multi-technology, and
multi-purpose (environmental, traffic, system, surveillance) monitoring and sens-
ing technologies and devices. The analysis of the information produced by the
ML elements allows the SCISSOR system to identify security issues. The ML
sends its information to the Control & Coordination Layer (CCL). The CCL can
issue commands to the ML elements to configure their monitoring operations and
in some cases to react to detected events.

The SCISSOR architecture is open to integrate any type of monitoring ele-
ments, but the design and implementation of the ML in the project has focused on
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Figure 5.2: Overall architecture of SCISSOR system

the following components, that are included in the SCISSOR testbeds:

• Network monitoring

• Environment sensing

• Smart cameras

• ICS/SCADA6 monitoring

• Various logs from applications, firewalls, intrusion detection systems, etc.

The Control & Coordination Layer (CCL) processes and enriches the infor-
mation coming from the monitoring components. It cryptographically protects
and delivers the gathered signals and events to the Decision and Analysis Layer
(DAL). The CCL allows the DAL to operate on normalized information, by deal-
ing with the different formats and interaction modes of the monitoring compo-
nents. It also supervises the operations of the monitoring elements by sending
configuration commands (e.g. activation, de-activation). It can autonomously re-
act to some detected events by sending proper commands. The CCL provides the

6ICS = Industrial Control Systems.
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DAL with an abstracted view of the monitoring components. A set of semantic
models supports the operation of the CCL and it is used in particular to enrich the
information sent towards the DAL. The CCL is composed of:

• Multiple Edge Agents (specialized per monitoring element type).

• A logically central Coordination and Control Agent.

The Decision & Analysis Layer (DAL) processes all the information coming
from the CCL. It is in charge of correlating events, detecting behavioral changes
in the system as a whole, and committing mitigation decisions. The DAL extends
the existing SIEM (Security Information and Event Management) approach and
implementations with advanced algorithms operating on the information gathered
by heterogeneous set of monitoring components, enriched and normalized by the
CCL. The DAL integrates advanced analysis approaches, including robust sta-
tistical methods and inference of BN-based models (notably the cdBN model,
presented in this thesis).

The human-machine interface (HMI) layer is devised to present “behavioral
phenomena” (rather than raw data) to the human end user in a simple and usable
manner.

A realistic deployment of the SCISSOR system potentially needs to process
in real-time or near-real time a large amount and variety of data, whose sources
can be highly distributed. The monitoring and logging processes are naturally
distributed, so the need for rapid analysis suggests that the computing resources
must be distributed as well. The load on the system, especially in response to at-
tacks or unseen system behaviors, will vary greatly over time. In short, SCISSOR
requires a distributed, agile computing platform to provide the computing power
necessary to counter potentials attacks on a SCADA system. These requirements
are fulfilled with the integration of cloud computing technologies, in particular
hybrid cloud computing technologies.

5.2 CdBN threat detection module
The DAL is composed of a classical SIEM7 gathering, processing and storing
events from the lower layers, enhanced with new analysis modules using dynamic
cdBN inferences and robust statistical methods. The overall interactions among
these components are illustrated in Figure 5.3. The SCISSOR Extended SIEM
(SES, on the left side of the figure) will be responsible for the interactions between
the Decision and Analysis (DAL) layer and both the Control and Coordination
(CCL) and the Human Machine Interface (HMI) layers.

7SIEM = Security information and event management.
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The DAL can hold several Threat Detection Modules (TDM) whose purpose is
to add thorough analysis of messages transiting through the SCISSOR Messaging
Infrastructure (SMI). Such messages are composed of logs (from sensors, servers,
etc.) and message using the Intrusion Detection Message Exchange Format (ID-
MEF) [Debar et al., 2007].

SCISSOR
Extended

SIEM (SES)

HMI

Threat
Detection

Modules (TDM)

SCISSOR Messaging Infrastructure (SMI)

DAL

Figure 5.3: Interactions among the Decision and Analysis Layer components

The SES sends to the HMI the data needed by the human operator to visualize
the current state of the system. As we can see in Figure 5.3, neither the HMI nor
the SES directly interact with the TDM, relying instead on the IDMEF messages
emitted by them. Using a standard such as IDMEF also helps interaction among
the TDM as they will be able to consume others modules messages.

CdBN TDM architecture

The cdBN TDM (BN-TDM) is organized as a set of services implemented in
python, C++14 and/or shell. These services are described in Figure 5.4.

As shown in Figure 5.4, the messages sent through the SMI are first consumed
by a Kafka consumer written in Python3. This consumer then sends the message
to a parser/discretizer, also written in Python3. The latter analyzes the message in
order to extract the features of interest but also to discretize the continuous features
that need be discretized in the Bayesian network-based model. As an example,
in the ASSYSTEM testbed, many information sent by the SCADA system are in
practice real numbers due, for instance, to noise measurements, but they should be
interpreted as discrete, if not binary, values. The discretizer transforms such real
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SCISSOR Messaging Infrastructure (SMI)

Kafka consumer (py)

parser/discretizer (py)

CSV file

SQL database

BN learner (C++)

BIF-formated cdBN net file

Inference (C++)

IDMEF message sender (py)

SCISSOR Messaging Infrastructure (SMI)

Figure 5.4: The architecture of the cdBN TDM.

values into their appropriate discrete counterpart. Such a mapping is necessary
to reduce the learning phase (discrete variables and their relationships are indeed
much simpler to learn than continuous variables and their relationships). The data
resulting from the parser/discretizer can be stored into a database, either a SQL
one or a CSV file. Currently, we exploit a CSV file. The purpose is twofold:
first, the robust statistics TDM takes a CSV file as input, so the file created by
the cdBN TDM can be reused by the other modules or, at least, if both TDMs
are run on different virtual machines, the same program can be used to generate
the databases used by both TDMs8. Second, the virtual machines executing the
Bayesian network TDM are not very powerful (their amount of memory and their
CPU are limited). So, using a CSV file reduces the overhead induced by a SQL
database server. However, when using more powerful computers, the Bayesian

8In fact there is also a Robust Statistics TDM model running with the cdBN TDM, sharing the
exact same data.
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network TDM can substitute the CSV file by a SQL database in a transparent way
for the user. The “old” data stored in the database are exploited twice a day by a
BN learner to build/update the mathematical model. The “new” data received are
processed immediately by a BN inference mechanism to detect unusual situations.
In this case, an IDMEF message is constructed by a Python3 script and it is sent
to the SMI, so that both the SIEM and the other TDMs can be aware of it.

The cdBN TDM implementation is split into different directories as follows:

• shared: this directory contains the parameters used by the SMI data con-
sumer, the learning and the inference engines. Notably, the parameter file
contains keywords included in the SMI messages that determine to which
model they apply: actually, it is inefficient to construct a single proba-
bilistic model to deal with the whole SCADA system. For instance, Fav-
igana’s data have nothing to do with those of the ASSYSTEM testbed,
so why should we construct a single model for both testbeds? In addi-
tion, even in Favignana, all the electric lines should be dealt independently
because their data arrive at different times. As a consequence, keywords
FAVIGNANA_Q_L3_1_MIN, FAVIGNANA_Q_L2_1_MIN,
FAVIGNANA_Q_L1_1_MIN, FAVIGNANA_P_L3_1_MIN,
FAVIGNANA_P_L2_1_MIN and FAVIGNANA_P_L1_1_MIN that indi-
cate to which electric line the SMI message is related, are exploited by
the data consumer to produce different CSV files and, therefore, different
probabilistic models. All the keywords that determine the different mod-
els to use are specified in the parameter files of the shared directory. The
CSV files as well as the probabilistic models are named according to these
keywords and are all stored in the shared directory.

• data_consumer: this directory contains the Python3 script that subscribes
to kafka and consumes the data. The same script parses the data collected
and transforms them in order to simplify the tasks of the mathematical mod-
ules. Finally, the script organizes these data so that they can be stored into
CSV files and launches periodically (every 12 hours) a learning process.
The data consumer is exclusively written in Python3. It is intended to be
executed at the startup of the virtual machine and its execution lasts until its
shutdown.

• learning_engine: this directory contains the C++14 implementations of the
learning algorithms to learn cdBN models. They rely on the C++14 open
source aGrUM library. These algorithms construct from the data stored in
the CSV files located in the shared folder the cdBN mathematical models
used for threat detection. They store their resulting models in extended
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BIF-like format. The C++14 learning program is executed from a Python3
wrapper which is called every 12 hours by the data consumer script.

• inference_engine: this directory contains the C++14 implementations of
the inference algorithms used to detect threats as well as their Python3 wrap-
pers. Using the models learnt by the learning engine scripts, the inference
engine consumes data from the SMI and computes the posterior probabil-
ities given the evidence provided by the consumed data. Then, based on
these probabilities, they determine whether to send an alarm or not. To
easily interface the inference engine with the consumed data and with the
process to send alarms, the C++14 program is accessed through a Python3
wrapper. The latter encodes the messages in IDMEF format. As for the
learning engine and the data consumer, the Python3 script of the inference
engine reads its configuration from the parameters file located in the shared
folder and executes the models to which the new data received from the SMI
apply. The inference engine script is executed at the startup of the virtual
machine and its execution lasts until its shutdown.

5.3 Comparison between the Kalman filter and non-
stationary cdBNs in anomaly detection.

In this section, we present some experiments performed on some Favignana’s
testbed data sent through the SCISSOR architecture and captured by the DAL.
Here, the goal is to assess whether our models are able to detect anomalies or not.
For this purpose, we store Favignana’s data into the CSV database designed for the
DAL models and extract from it some parts to learn the models, the rest being used
for tests. In the latter, we generate manually some anomalies, as shown below.
The models tested are a Kalman filter, which was a requirement of the H2020
project reviewers, and non-stationary cdBNs: in Section 1.7, we presented non-
stationary DBNs as piecewise stationary DBNs, i.e., as sets of pairs 〈(Bh, Th)〉mh=0

of BN fragments and transition times. CdBNs are defined in a similar fashion,
substituting BN fragments by cdBN fragments.

5.3.1 Data source and preprocessing treatments
The data on which experiments are performed were sent over the SCISSOR’s VPN
and transmitted through the SCISSOR’s messaging infrastructure (SMI) over a pe-
riod of seven days in March 2017. Data were collected from the Favignana’s
substations on a rate of approximately one message every two seconds.

For learning, these data require preprocessing for five reasons:
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1. first, some columns of the database correspond to “raw” json metatadata
or correspond to folder names, integer IDs, etc. and have to be excluded
from the experiments because they are irrelevant. This is not an issue be-
cause such information can be defined when designing the messages to be
sent over the SMI. Note that IDs may be of interest when raising IDMEF
alarms to inform the end users of which part of the system or which record
is involved in the alarm. But the precise ID itself is useless to determine
whether an alarm should be raised or not. This explains why it should not
be included into the probabilistic distribution (it should just be included in
the alarm message).

2. second, sometimes, the data retrieved contain spurious values. These can
be “huge” and meaningless values, often caused by network communica-
tion issues resulting from substations being temporarily unable to send the
information of their sensors. In turn, the result is that the SCADA system is
unable to receive data from PQA9 and, as a consequence, the load flow al-
gorithm is unable to perform correct evaluations and it produces unusually
high numbers.

Per se, such spurious values do not represent a major problem for learning
cdBNs. One only needs to take care to initialize the SEM-based learning
algorithm with a value of the latent variables representing these spurious
values. This is easily guaranteed by sorting the values of each database’s
variable in increasing order, by splitting the domain size of these variables
into equal frequency intervals and by assigning the records’ values to the
corresponding intervals.

On the contrary, for the Kalman filter, these spurious values need absolutely
be removed. Actually, Kalman filters represent unimodal probabilistic mod-
els; and as such, they are unable to cope with multiple local maxima. But,
in the Favignana’s dataset, “correct” variables’ values form one distribution
with its own mode and the spurious values form another distribution with
another very distinct mode, the overall distribution being a mixture of these
two. As shown in the experiments below, when data have several local max-
ima, Kalman is often unable to detect anomalies. By not removing spurious
values, the resulting Kalman filter is unable to detect any anomaly.

So, in order to compare cdBNs and Kalman filters, we need to remove the
spurious values. To do so, we substitute them by the last “correct” values
observed for the variables.

3. The third issue we encounter to model the probabilistic models results from

9PQA = Power Quality Analyzer
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the existence of linear dependences between some random variables. Again,
this is not really an issue for learning cdBNs, although learning is somewhat
more difficult in this case (see [Mabrouk et al., 2015] for rules to learn cdBN
models in the presence of deterministic relationships between some random
variables). The issue essentially concerns the Kalman filter. Broadly speak-
ing, some steps in the learning of this filter require some matrix inversion
that cannot be done when there exist linear dependences. In addition, the
values of some variables are constant in the whole database and this also
raises some learning issues. So we remove them as well. The list of re-
moved variables is the following one:

• Q_INTERMEDIA2

• Q_L252

• FP_L1333

• FP_L1211

• P_L1_OR333

• P_L1_OR324

• P_L1_OR322

• FQ_L1211

• Q_L1_OR322

• Q_L1_OR325

• Q_L1_OR333

• P_L252

• P_INTERMEDIA2

As a result, the final number of variables (columns in the database) is equal
to 69.

4. In the database, some values are missing. This is due to the data being sent
in an asynchronous manner (recall that each record corresponds to a tuple
of the values of all the variables). Asynchronicity makes the variables unob-
served for very small amounts of time (usually about 2 seconds). Therefore,
it is meaningful to substitute them by the last observed values.

5. For the purposes of this comparison (due to Kalman’s filter limitation) all
discrete variables are systematically ignored.
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Finally, all the records are sorted by increasing time of day (hh:mm:ss). This
enables to compute the temporal evolution of the data, which is the core of the
Kalman filter but also of the non-stationary cdBNs. The data are also normalized
in such a way that, for every column, the average value is set to 0 and its variance
set to 1. This final transformation is not necessary for learning but makes it easier
to display the results of the experiments, and enhances numerical precision in the
computations.

5.3.2 The Kalman Filter’s parameter learning

Here, in order to be self-content, we briefly recall the basics of Kalman filtering.
The Kalman filter is an algorithm designed to estimate a joint probability distri-
bution over time of a (possibly multidimensional) process whose state variable
X is hidden to the user but is observable through a (possibly multidimensional)
variable Y . The state space representation of the process is the following:

X[t+ 1] = AX[t] + BU [t] + Qω

Y [t] = CX[t] + DU [t] + Rν

where:

• t represents the current time step.

• X represents the current (hidden) multidimensional state of the process.

• Y represents the observations we have on the state of the process (the sensor
lectures).

• U represents the control inputs of the process (equal to zero, in our particular
case).

• A, B, C, D are matrices defining the parameters describing the relation-
ships between the random variables and the dynamics of the process.

• Q and R are covariance matrices representing the uncertainties of the cur-
rent state and the current observations respectively.

Let x̂ and ŷ denote the expected values of X and Y respectively. The Kalman
filter estimates the values x̂ and ŷ at each time step using the following equations:

x̂[t+ 1] = (A−KC)x̂[t] + (B−KD)u[t] +Ky[t]

ŷ[t] = Cx̂[t] + Du[t]
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where K is also a matrix, known as a Kalman gain. For learning the Kalman
filter’s parameters (A, B, C, D, K, Q and R), we use the n4sid function from
GNU-Octave’s control package 10.

5.3.3 Anomaly detection using the Kalman filter

The Kalman filter assumes that each observation variable Y [t] follows a multidi-
mensional normal distribution with mean y[t] (the value actually observed) and
covariance R, which allows to define the log-likelihood of the observation as:

LL(y[t]) = −p
2

log 2π − |R|
2
− 1

2
y[t]TR−1y[t]

where p is the dimension of each observation vector y[t]. For detecting anomalies,
it could be sufficient to exploit the value LL(y[t]) in a rule such as “if LL(y[t]) is
below a given threshold, then this corresponds to an anomaly, so raise an alarm”.
But, as suggested in “Adaptive Kalman Filtering for Anomaly Detection in Soft-
ware Appliances” by Knorn and Leith, it would be better to avoid log-likelihood
instability, i.e., to prevent its value ever shifting between high and low values. For
this purpose, we use a lowpass filter on that value defined as follows:

z[t] = αz[t− 1] + (1− α)LL(y[t]),

with α ∈ [0, 1]. In our experiments, we use α = 0.5, which conveniently avoids
many false positive anomaly detections. We define a threshold value such that
for every time t when there is an anomaly, the following inequality should be
satisfied:

z[t] < threshold.

5.3.4 Anomaly detection using non-stationary cdBNs

To properly learn the non-stationary cdBN model, we automatically add new fea-
tures to the already preprocessed data: for each continuous variable X̊ , we add a
new variable X̊diff that represents its evolution over time. It is computed as:

X̊diff [t] = X̊[t]− X̊[t− 1]

The learning dataset is also split into epochs in order to cope with the non-
stationarity of the process. In each epoch h, a cdBN Bh is learnt. We exploit such

10https://octave.sourceforge.io/control/function/n4sid.html
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cdBN on the test dataset, considering that there exists an anomaly whenever the
log-likelihood w.r.t. the cdBN of the observation is below a given threshold, i.e.:

LLBh(observation) < threshold,

where LLBh(·) represents the log-likelihood of a given observation in epoch h.
The threshold is set to µ − 6σ, where µ and σ are the mean and the standard
deviation respectively of the set of posterior log-likelihoods of all the samples
used to learnt the cdBN.

5.3.5 Protocol of the experiments
We perform the anomaly detection tests in a two-step process: first, we learn
both models (the Kalman filter and the non-stationary cdBN), and, then, those are
exploited for anomaly detection on the same test datasets.

Following Favignana’s domain experts, we define the following 7 transition
times:

1h30, 3h30, 6h30, 8h30, 9h30, 18h30, 23h30. (5.1)

Once the transition times are known, we split the whole Favignana’s dataset D̊ into
datasets D̊h corresponding to the 8 epochs h resulting from these transition times
(see Eq. (5.1)). Finally, each dataset D̊h is further split into a learning dataset D̊Lh
and a test dataset D̊Th (70% of D̊h being devoted to D̊Lh and the 30% remaining to
D̊Th ). In each epoch h, the final cdBN Bh used in the anomaly detection tests are
learnt from D̊Lh .

The Kalman filter corresponds to a stationary model, hence epochs are irrel-
evant for it. Therefore, we learn it from the whole Favignana’s dataset D̊. Note
that, to be more fair with cdBNs, for testing the Kalman filter on the test dataset
D̊Th , we should remove from learning dataset D̊ all the records of D̊Th because this
advantages the Kalman filter over the non-stationary cdBN model since part of its
parameters are tailored using the test dataset. However, for simplicity, we chose
not to remove D̊Th from D̊ when learning the Kalman filter’s parameters.

After the completion of the above processes, 8 cdBNs Bh, h = 0, . . . , 7, are
available, as well as one Kalman filter and 8 datasets D̊Th . The latter are called
“datasets without perturbations”. In addition to these datasets, for each epoch h,
we have constructed 6 “perturbed” datasets denoted D̊T (i)

h , i = 0, . . . , 5, defined
as follows: we first select a time interval [t0, tf ] (see below). Then, for each record
of the unperturbed dataset D̊Th observed in this time interval, we add to the values
of the record a value ε(t) defined as:

∀t ∈ [t0, tf ], ε(t) = K sin
(t− t0)π

(tf − t0)
.
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Therefore, the magnitude of the perturbation changes over time. Time intervals
[t0, tf ] are defined as follows:

• Dataset D̊T (0)
h : Interval [t0, tf ] corresponds to the whole dataset D̊Th .

• Dataset D̊T (1)
h : Interval [t0, tf ] corresponds to the first third of Dataset D̊Th .

Recall that the observations are sorted by increasing time order. Hence,
only the observations that occurred first in the time series are affected by
perturbations, those occurring after tf remain unaffected.

• Dataset D̊T (2)
h : Interval [t0, tf ] corresponds to the second third of Dataset

D̊Th .

• Dataset D̊T (3)
h : Interval [t0, tf ] corresponds to the last third of Dataset D̊Th .

• Dataset D̊T (4)
h : Interval [t0, tf ] corresponds to the first two thirds of Dataset

D̊Th .

• Dataset D̊T (5)
h : Interval [t0, tf ] corresponds to the last two thirds of Dataset

D̊Th .

Finally, for each epoch, and each record of each dataset D̊Th and D̊T (i)
h , i =

0, . . . , 5, we compute the log-likelihood estimated by both models (Kalman and
cdBNs) and determine whether they can detect anomalies or not.

5.3.6 Results of the experiments
The results obtained on the Favignana’s data are summarized in Tables 5.1 and 5.2.

From Table 5.1, we can observe that cdBNs are slightly more prone to produce
false positives than Kalman filters. But remember that the latter is advantaged
compared to cdBNs since the test database is used when learning the parameters
of the Kalman filter: the test and learning databases represent 30% and 70% of
the whole database D̊ respectively. Therefore, about one third of the data used to
learn the parameters of the Kalman filter are also used during anomaly detection
tests. For cdBNs, the detected anomalies occur in the sixth and seventh epochs
(see Figures A.6 and A.7 on Pages 202 and 203 respectively). Note that in both
figures, the detection of anomalies is “weak” in the sense that the likelihoods that
triggered the anomaly detection are only slightly below the detection threshold.
This is also the case for the Kalman filter.

From Table 5.2, it can be observed that non-stationary cdBNs significantly
outperform Kalman filters when data contain anomalies. Indeed, they are capa-
ble to detect all the anomalies generated, whereas the Kalman filter cannot detect
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Table 5.1: Anomaly detection results over unperturbed data

Unperturbed Data cdBN model Kalman Filter
No anomaly detected 6 / 8 7 / 8
Anomalies detected 2 / 8 1 / 8

even half of them. The reasons are twofold, as will be detailed in Subsection 5.3.8:
i) the distribution of the data over time is non-stationary, which makes the Kalman
filter imprecise since it only models an “average” behavior over time; and ii) all
the variables are not unimodal, but the Kalman filter models only unimodal (Gaus-
sian) distributions. This makes it in general not suitable to detect anomalies. Un-
like Kalman, non-stationary cdBNs are able to cope with both features and are
therefore better suited for anomaly detection.

Table 5.2: Anomaly detection results over perturbed data

Perturbed Data cdBN model Kalman Filter
No anomaly detected 0 / 48 23 / 48
Anomalies detected 48 / 48 25 / 48

5.3.7 Detailed results

The detailed results of this experiments can be found in the Appendix A.

5.3.8 Analysis of the results

As can be observed in the detailed plots in the appendix, in many situations, the
Kalman filter is unable to detect anomalies while the non-stationary cdBN can
detect them. The analysis of the Favignana’s input dataset provides some hints to
support this observation. First, the temporal data follow a non-stationary distri-
bution. As there are numerous variables in the dataset, it is not easy to show the
shape of the high-dimensional distribution (there are 69 dimensions). Fortunately,
we can observe this non-stationarity even on single variables. For instance, the
values of Variable “FP_L1322” observed in the dataset are shown in Figure 5.5.
It can be seen that the values are essentially constant (up to some noise) up to
record 3000 but they vary differently after this record (from 3000 to 3800, the
values tend to decrease and, after this, they tend to increase up to record 4800
and, then, they decrease again). As a result, for such data, the Kalman filter tends
to be imprecise because, by modeling a stationary process, its learnt parameters
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correspond to the best “average” stationary model. So, it is unable to discrimi-
nate the constant part (before record 3000) from the decreasing and the increasing
parts. Therefore, it is unable to detect anomalies resulting from a sequential in-
crease in the values of FP_L1322 in the period corresponding to the first 3000
records. Similarly, during the period corresponding to records 3800-4800, the val-
ues should increase but the Kalman filter will not raise any alarm if the values are
constant because, in its “average” model, this does not seem unlikely.

Figure 5.5: The values of Variable “FP_L1322”.

When the variations due to the non-stationarity are not too high, the Kalman
filter provides good results. However, in the dataset, there are not many variables
for which this feature holds. Worse, most of the variables are not distributed w.r.t.
unimodal distributions. For instance, the values of Variable “VMT_L21” as dis-
played in Figure 5.6 clearly show a bimodal distribution in the period of time be-
tween records 700 and 1700. Unlike cdBNs, Kalman filters model only unimodal
distributions. Therefore, to best fit the data, the Kalman’s parameters correspond
to an average between these two modes. To say it differently, the distribution of
the data in interval 700-1700 should be represented by a mixture of two unimodal
(maybe Gaussian) distributions. This is precisely what the cdBN does in such a
case. But the Kalman filter just models a unique Gaussian distribution that tries
to best fit this mixture. For this purpose, it is obliged to consider as its mean pa-
rameter the average of the means of the two distributions of the mixture and its
covariance matrix should contain large numbers so that the observed values do not
seem unlikely. As a consequence, observing a sequence of constant values in be-
tween the two means of the mixture is never unlikely for a Kalman filter, although
this is far from what is observed in the data. This makes the Kalman filter unable
to observe many anomalies. On the other hand, cdBNs can detect such anomalies
because, as we have seen, they represent mixtures of distributions.

The variables mentioned above are not isolated cases. Figure 5.7 shows other
examples of variables for which stationarity and/or unimodality do not hold.
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Figure 5.6: The values of Variable “VMT_L21”.

The values of Variable “FQ_L2211”

The values of Variable “Q_L2_STIMATA1”

The values of Variable “FQ_L2213”

Figure 5.7: Non-stationarity and non-unimodality in Favignana’s data.

5.4 SCISSOR Testbed: cdBN TDM tests.

5.4.1 Monitoring setup
In order to demonstrate the effectiveness of the cdBN threat detection module
(TDM), we have performed two sets of experiments on Lines
FAVIGNANA_P_L2_1_MIN and FAVIGNANA_P_L3_1_MIN of the Favignana
SCADA testbed. For simplicity, hereafter, we call them PL2 and PL3 respec-
tively. As we will notice, the experiments of this section contain much fewer
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variables than the ones in the preceding section. This is because the Favignana’s
expert advised us to create separate cdBN models for each power line (which helps
us to overcome the virtual-machine’s memory and CPU limitations, and to be able
to send alerts in real time). For both experiments, we use observations (messages)
transmitted over the SCISSOR messaging infrastructure (SMI) from March 1st,
2018, to March 4th, 2018. In the sequel, we refer to March 1st as “Day 1”, to
March 2nd as “Day 2”, and so on, and we refer to the four days spanning from
March 1st to March 4th as “all days”.

Each message emitted over the SMI contains many fields, some of which being
useless for probabilistic models (e.g., the “event.severity” field, but more gener-
ally any field which does not correspond to a variable of the SCADA system).
Therefore, within the cdBN TDM, there exists a configuration file that specifies
which messages the TDM copes with (the different lines of Favignana are for in-
stance supervised by the cdBN TDM whereas the outputs of the cameras are not),
and which fields are of interest. For PL2 and PL3, these fields, which we interpret
as random variables, are specified in Tables 5.3 and 5.4 respectively. Note that we
also excluded some fields that could have been relevant to the cdBN TDM, when
their values were not constant. Indeed, in our test protocol, either such constant
values would never be involved in any alarm raising (2nd set of experiments) or
they would always raise alarms (1st set of experiments). Therefore, they are not
useful to assess the effectiveness of the cdBN TDM.

Variable name
DATE (dd/mm/yyyy)
TIME (HH:MM:SS)

P_L2_OR213
P_L2_OR212
P_L2_OR211
P_L2_OR111

P_L252
VMT_L21
FP_L2213
FP_L2212
FP_L2211
FP_L2111

P_FINALE_W2

Table 5.3: The fields of PL2 used by the cdBN TDM.

The test protocol used in both experiments is the following: for each day, we
learn a dynamic conditional densities Bayesian network (cdBN) from the data
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Variable name
DATE (dd/mm/yyyy)
TIME (HH:MM:SS)

P_L3_OR423
P_L3_OR422
P_L3_OR421
P_L3_OR411
P_L3_OR311
P_L3_OR111

P_L353
VMT_L31
FP_L3423
FP_L3422
FP_L3421
FP_L3411
FP_L3311
FP_L3211
FP_L3111

P_FINALE_W3

Table 5.4: The fields of PL3 used by the cdBN TDM.

received on that day. Let us call these models cdBN1 to cdBN4. In addition, we
compute a threshold used to raise alarms: basically, when new data are received by
the cdBN TDM, using the cdBN learnt, we compute their posterior log-likelihoods
given the last observed data and, when these posteriors are below the threshold,
and alarm is raised. As in the preceding set of experiments, the threshold is set
to µ − 6σ, where µ and σ are the mean and the standard deviation respectively
of the set of posterior log-likelihoods of all the samples used to learnt the cdBN.
Finally, each cdBN thus constructed is exploited to detect anomalies over a 24
hour set of test observations. The two sets of experiments just differ in the way
these observations are defined.

5.4.2 First set of experiments

In the first set of experiments, the observations analyzed by the cdBN learnt on
a given day precisely correspond to those received on the next day except that,
for some of them, we add a small Gaussian noise (symbolizing that someone is
tampering with the SCADA data). So cdBN1 is used to analyze the observations
of Day 2, cdBN2 is exploited for those of Day 3, etc. For a given message,
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the Gaussian noise is generated the following way: for each variable Xi in the
message (except “date” and “time”), we determine the standard deviation std(Xi)
and the noise is equal to 0.6× std(Xi)× y, where y is a value randomly sampled
from a Normal distribution N (0, 1). In PL2 and PL3, only 57 messages and 84
messages are affected by the Gaussian noise, all the other messages of the day
are kept untouched (there are about 38000 such messages per day). The modified
messages are distributed evenly between Day 2 and Day 4. As an illustration,
Figure 5.8 displays the values of Variable FP_L2213 of Line PL2: the green
dots correspond to the original values and the red ones to the perturbed values.
Similarly, Figure 5.9 displays the values of Variable P_L3_OR422 of Line PL3.

Figure 5.8: The values on Days 2 to 4 of Variable FP_L2213 of Line PL2. The
red dots highlight the perturbed values.

To get a clue of the overall perturbations induced by the Gaussian noise, for
each message affected M , we compute two quantities µM and σM as follows: for
each variable Xi (field in the message), let δi(M) be equal to the absolute value of
the noise added to Xi divided by the absolute value of the original value of Xi. In
other words, δi(M) represents the positive relative difference between the original
value of Xi and the perturbed value. Let µM be the mean of the δi(M)’s and σM
be their standard deviation. Quantities µM and σM therefore provide information
about the relative difference between the original message and the perturbed one.
Figures 5.10 and 5.11 display graphically the values of µM and σM . As can be
seen, the perturbations are not too high. To summarize these figures, the positive
relative perturbations are equal to 0.094 ± 0.023 and 0.121 ± 0.039 for PL2 and
PL3 respectively.
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Figure 5.9: The values on Days 2 to 4 of Variable P_L3_OR422 of Line PL3.
The red dots highlight the perturbed values.

Figure 5.10: Means and standard deviations for the positive relative perturbations
added to the messages in PL2.

Using these newly generated data, the cdBNs learnt are exploited in order to
detect anomalies. Figures 5.12 and 5.13 show the results of the inferences for days
2 to 4. The blue dots represent the posteriors of the original messages whereas
the red ones represent the posterior likelihoods of the perturbed messages. The
horizontal red line displays the threshold and we can see that most of the red dots
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Figure 5.11: Means and standard deviations for the positive relative perturbations
added to the messages in PL3.

are located under this line, which means that the cdBN Threat Detection Module
identifies correctly the tamperings performed with the original data.

Figure 5.12: The posterior log-likelihoods of the observations from Day2 to 4 on
Line PL2. The blue dots represent the posteriors of the original messages, the
red ones represent the posterior log-likelihoods of the perturbed messages. The
horizontal red line displays the log-likelihood threshold.

To capture a more high level picture of the analysis performed by the cdBN
TDM, let us call false positives (hereafter denoted FP) the percentage of alarms
raised by the TDM on data that were not perturbed, and true positives (hereafter
denoted TP) the percentage of alarms raised on data that were perturbed. Ta-
bles 5.5 and 5.6 display for each day the FPs and TPs resulting from the TDM.
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Figure 5.13: The posterior log-likelihoods of the observations from Day2 to 4 on
Line PL3. The blue dots represent the posteriors of the original messages, the
red ones represent the posterior log-likelihoods of the perturbed messages. The
horizontal red line displays the log-likelihood threshold.

Day 2 Day 3 Day 4 Total
FP 3/37988 = 0.01% 25/38418 = 0.07% 3/38246 = 0.01% 31/114652 = 0.03%
TP 17/19 = 89.47% 19/19 = 100.0% 18/19 = 94.74% 54/57 = 94.74%

Table 5.5: The TPs and FPs per day on Line PL2.

Day 2 Day 3 Day 4 Total
FP 15/37982 = 0.04% 23/38425 = 0.06% 10/38246 = 0.03% 48/114653 = 0.04%
TP 28/29 = 96.55% 27/28 = 96.43% 26/27 = 96.3% 81/84 = 96.43%

Table 5.6: The TPs and FPs per day on Line PL3.

5.4.3 Second set of experiments
In the second set of experiments, we also exploit the observations of the next day
but, for some of them, we substitute the values of all the variables except “date”
and “time” by the values of the same variable 12 hours earlier. Here, the key idea
is that the probability distributions of the data are non stationary. In particular, the
distribution at time t differs from that at time t − 12 hours. So, by shifting the
observed data by 12 hours, without shifting their time-stamp, the cdBN should
identify some anomalies and those are not randomized: they are real data observed
in Favignana. As for the first set of experiments, 57 messages and 84 messages
randomly selected in days 2 to 4 are affected by the shifting, the other 38000
messages per day are kept untouched. As an illustration, Figure 5.14 displays the
values of Variable FP_L2213 of Line PL2 (as for the preceding subsection, the
green dots correspond to the original values and the red ones to the time-shifted
values). Similarly, Figure 5.15 displays the values of Variable P_L3_OR422 of
Line PL3.

As for the first set of experiments, in order to see the overall perturbations in-
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Figure 5.14: The values on Days 2 to 4 of Variable FP_L2213 of Line PL2. The
red dots highlight the time-shifted values.

Figure 5.15: The values on Days 2 to 4 of Variable P_L3_OR422 of Line PL3.
The red dots highlight the time-shifted values.

duced by the time shift, for each message affected M , we compute two quantities
µM and σM as follows: for each variable Xi (field in the message), let δi(M) be
equal to the absolute value of the noise added to Xi divided by the absolute value
of the original value of Xi. Let µM be the mean of the δi(M)’s and σM be their
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standard deviation. Quantities µM and σM provide information about the relative
difference between the original message and the time-shifted one. Figures 5.16
and 5.17 display graphically the values of µM and σM . As can be seen, the per-
turbations are not too high, although they are higher than those resulting from the
Gaussian noise. To summarize these figures, the positive relative perturbations are
equal to 0.247± 0.107 and 0.287± 0.244 for PL2 and PL3 respectively.

Figure 5.16: Means and standard deviations for the positive relative perturbations
added to the messages in PL2.

Figures 5.18 and 5.19 show the results of the inferences by cdBNs of the re-
sulting data on days 2 to 4. The blue dots represent the log-posteriors of the
original messages whereas the red ones represent the posterior log-likelihoods of
the perturbed messages. The horizontal red line displays the threshold and we
can see that most of the red dots are located under this line, which means that
the cdBN Threat Detection Module identifies correctly the tamperings performed
with the original data.

To capture a more high level picture of the analysis performed by the cdBN
TDM, Tables 5.7 and 5.8 display for each day the FPs and TPs resulting from the
TDM.

Day 2 Day 3 Day 4 Total
FP 3/37988 = 0.01% 25/38418 = 0.07% 3/38246 = 0.01% 31/114652 = 0.03%
TP 19/19 = 100.0% 19/19 = 100.0% 19/19 = 100.0% 57/57 = 100.0%

Table 5.7: The TPs and FPs per day on Line PL2.
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Figure 5.17: Means and standard deviations for the positive relative perturbations
added to the messages in PL3.

Figure 5.18: The posterior log-likelihoods of the observations from Day2 to 4 on
Line PL2.

Figure 5.19: The posterior log-likelihoods of the observations from Day2 to 4 on
Line PL3.

Overall, the above experiments show that original data tampered with either
temporal noise or a small Gaussian noise are most often detected by the SCISSOR
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Day 2 Day 3 Day 4 Total
FP 15/37982 = 0.04% 23/38425 = 0.06% 10/38246 = 0.03% 48/114653 = 0.04%
TP 29/29 = 100.0% 27/28 = 96.43% 27/27 = 100.0% 83/84 = 98.81%

Table 5.8: The TPs and FPs per day on Line PL3.

cdBN Threat Detection Module. This highlights the effectiveness of the TDM,
especially when observing that the tampered data are not so different from the
real ones. So, semantically, for a cdBN-model, an anomaly is an observation that
does not follow a given system’s dynamic, which does not necessarily mean that
the observation has very unlikely or aberrant values. Thanks to that, anomalies
whose values are within their expected range (thus undetectable to the human
eye) can be reported by the TDM module.

5.5 Conclusion
In this chapter, we have presented the general framework of the SCISSOR project
and we focused on how our work has been integrated into the SCISSOR platform.
This resulted in the so-called “cdBN threat detection module”. In addition, we
performed some experiments on real data transmitted by SEA, the Sicilian partner
of the SCISSOR consortium. The domain experts suggested to exploit Kalman
filters to detect which data corresponded to threats. We therefore compared the
cdBNs presented in the preceding chapter with Kalman filters. This enabled to
highlight the superiority of cdBNs over Kalman filters. In our point of view, this
results from two features that our models possess, unlike Kalman filters: first, they
are well suited to model very complex, nonlinear, non-Gaussian situations; and
ii) the ns-cdBN are capable of taking into account non-stationarity. These features
are important for the model to predict accurately what happens in the SCADA
system. In a second set of experiments, we tampered with real data in order to
simulate attackers that gradually change the system, with the ultimate purpose to
make it fail. We showed that cdBNs are capable of identifying such tamperings
way before those can be detected by the human operator, i.e., when looking at the
tampered data, they do not seem to be erroneous, yet our probabilistic model can
detect that they deviate already too much w.r.t. what was expected.
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Conclusions

Detecting cyber-security threats in SCADA systems is a challenging task. Its main
difficulty is that such events are rare and are not expected to be similar one to an-
other. To cope with this problem, in the SCISSOR project, many testbeds have
been implemented in order to test different systems and different situations. In
the context of this work, corresponding to the Decision & Analysis Layer of the
mentioned project, the main challenge has been to learn BN-based models from
the dynamics of a system as complex as SCADA.

Since most of the BN works in the literature are about discrete BNs, in Chap-
ter 1, we gave a non-exhaustive introduction to the foundations of BNs, their
concepts, and some of their properties. We studied two of their main inference
algorithms: Variable Elimination and Shafer-Shenoy (the computations they per-
form being equivalent in terms of time complexity). We presented as well some
techniques to learn BNs from datasets, with a special focus on score based meth-
ods. Then, in this chapter we described the concept of dynamic BNs (DBNs),
which are BNs representing stationary temporal processes, i.e., the dynamics of
such processes remains the same over time. Finally, we defined non-stationary
DBNs, which are an extension of DBNs enabling to bypass this restriction.

Unfortunately, SCADA’s random variables are most of the time of a contin-
uous nature. This is the reason why, in Chapter 2, we mentioned the state-of-
the-art alternatives to deal with this type of variables. The simplest one consists
of simply discretizing all the continuous variables. Finding the right discretiza-
tion in a BN context is not an easy task since we are generally not allowed to
use many discretization intervals: this is essentially due to the fact that both BN
inference and structure learning are NP-Hard problems, which makes all the al-
gorithms intractable when the domain sizes of the variables are too high. As a
consequence, most typical discretization methods would loose a large amount of
useful information, thereby reducing the prediction/diagnosis power of the BNs.

175



176 CONCLUSIONS AND FUTURE RESEARCH

This is especially true when discretizing independently each variable with equidis-
tant/equiprobable intervals. In Chapter 2, we focused on discretization methods
well adapted to BN’s features (i.e. discretizations that take into account the BN
structure) like [Monti and Cooper, 1998] and [Friedman and Goldszmidt, 1996].
An alternative to discretization consists in directly handling continuous variables.
We detailed in Chapter 2 two of the main state-of-the-art BN-based models of this
family: CLGs and MTBFs. The former make the assumption that every continu-
ous variable is a linear combination of its continuous parents in the BN structure
(for a fixed value of its discrete parents) and that it follows a conditional Gaussian
distribution. In addition, no discrete random variable is allowed to have a con-
tinuous variable as parent. This leads us to the interesting property that, for any
valid instantiation of its discrete variables, the resulting distribution of a CLG is a
multivariate normal distribution. As a consequence, after any variable’s marginal-
ization, the resulting distribution remains a multivariate normal distribution. This
allows for very fast inference algorithms. We also briefly studied MTBFs models.
They rely on basis functions like exponentials, polynomials, beta functions, etc.,
to represent different-shaped multivariate density functions as mixtures of sim-
pler distributions. Although they might struggle representing conditional density
functions, they give a very accurate joint distribution representation, but this come
with a cost: their inference times are in general prohibitive because the products
of their basis functions are prone to generate large algebraic expressions.

In chapter 3, we presented our first contribution: a BN-based model which
makes a trade-off between the efficiency of inference in CLGs and the expres-
sive power of MTBFs. We called this model the Conditional Truncated Densities
Bayesian Network (ctdBN). A ctdBN is an hybrid BN model11. In this model,
each continuous variable X̊i has a discretized counterpart Xi. The BN structure
is such that Xi is the only parent of X̊i. We use CPTs for the discrete variable
relationships (just like in a discrete BN), and we define a conditional truncated
density function to describe the density f(X̊i = x̊i|Xi = xi). This function is
meant to be truncated within the discretization interval of X̊i corresponding to
Value xi of Xi. In Chapter 3, we showed that ctdBNs are capable to approach any
Lipschitz multivariate mixed probability distribution (which includes almost all
the most commonly used probability density functions). We also showed that the
inference complexity in ctdBNs remains of the same order as one in a discrete BN.

In chapter 4, we described a critical issue that the ctdBN model might have
when being learnt from a dataset using a score-based approach: it might produce
undesirable (too compact) discretization intervals which, in practice, would not re-

11Hybrid = it can handle both discrete and continuous random variables at the same time
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flect the dataset’s variables distribution. To overcome this problem, we proposed
a (more general) model of hybrid BNs, which we called conditional densities
Bayesian networks (cdBN). This model keeps the key ideas of the ctdBNs: for
each continuous variable X̊i, there must be a corresponding discrete variable Xi.
But this discrete variable is not a discretization of its counterpart anymore because
we model the function f(X̊i = x̊i|Xi = xi) as an untruncated density function
rather than as a truncated one. In this context, Variable Xi should be interpreted
as a hidden variable (when learning) more than as a discretized one. The cdBN
model also compels the existence of the edge Xi → X̊i in the BN structure, but it
allows for the existence of the arcs of the form Xj → X̊i whenever Xj ∈ Pa(Xi),
making it an even more expressive model. We showed that, although the contin-
uous variables can have these extra parents, the inference complexity remains of
the same order as inference in the BN discrete part of the cdBN. Moreover, we
showed that the cdBN model is at least as expressive as the ctdBN one (which
makes sense, because we can consider ctdBNs as a particular case of cdBNs).
We derived a score function in order to learn the cdBN model from a database
as well as a learning algorithm based on Structural EM [Friedman, 1998], consid-
ering (as previously mentioned) the “discretized” variables in the cdBN as hidden.

Finally, in Chapter 5 we briefly described the general architecture of the SCIS-
SOR framework, as well as our contributions in this project. We used the cdBN
model as an anomaly detection tool, applying it to the values sent by the sen-
sors of the power lines of the Favignana’s electric power plant. The approach we
used for detecting anomalies is simple: we have a virtual machine containing the
current cdBN model of each power line (those are all independent according to
Favignana’s experts), and this virtual machine receives values of the current state
of the system in real time. Having defined a likelihood threshold, we raise an
alert to the central SCADA system whenever the current state of any power line
is unlikely, i.e., below the threshold. The current cdBN model is learnt in batch
mode from data sent in the preceding hours. For each continuous variable X̊ , we
also considered a differential variable X̊ ′ (which in fact makes the cdBN model a
non-stationary and temporal model). The cdBN model and all the routines it uses
were programmed using the aGrUM library12. The goal of the SCISSOR project
is to detect anomalies that could be caused by cyber-attacks. Since those are very
seldom encountered, it was not possible to get real Favignana data in which such
attacks occurred. As a consequence, for experiements, we simulated such attacks
by tampering progressively with the “true” data sent by sensors through the Fav-
ignana network. This was to be interpreted as an attacker modifying slightly the
system in order to produce electricity failures, notably by inverting the power

12agrum.gitlab.io/
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flux within the electrical network. Therefore, we limited our experiments to data
perturbations generated by ourselves following guidelines given by Favignana’s
experts. We performed comparisons between our model and the Kalman filter
(which is a commonly used model for this task). And we integrated our model
into the testbed protocol, successfully validating its good properties for detecting
anomalies.

Future Research
The BN-based models designed in this thesis are well suited for detecting anoma-
lies. Yet, much efforts need to be done in order to make them as accessible as
discrete BNs. In the following paragraphs we mention some perspectives to this
thesis.

CdBNs (as well as ctdBNs) are agnostic of the shape of the conditional density
functions f(X̊|Y). However, for the moment, we have explored exclusively the
use of mixtures of normal distributions (sometimes truncated) to describe them.
An interesting perspective to this research (inspired by the basis functions of
MTBFs) would be to explore the behavior of such models when other types of
density functions are used, and derive the cdBN learning score for each one of
those different types of conditional densities f(·).

The current cdBN learning score makes the assumption that the domain sizes
of the hidden (“discretized”) variables are already given. In the experiments of
the present work, we obtained these values by performing a discretization algo-
rithm like [Friedman and Goldszmidt, 1996], or fixing them manually. In this
context, finding the “correct” domain size of the hidden counterpart of a contin-
uous variable is equivalent to the unsupervised learning problem of deciding the
right amount of clusters it might have in a given dataset. This suggests to bor-
row some criteria from the Machine learning community like the elbow criterion,
or performing a k-means clusterization with an arbitrarily big number of clusters
and reducing that dimension whenever we found empty clusters. We could also
directly use a BIC or AIC criterion to penalize the number of clusters, or to adapt
the method presented in [Elidan and Friedman, 2001] to the models presented in
this thesis.

The cdBN and ctdBN models have exact-inference times of the same com-
plexity as those of discrete BNs. However, the current cdBN learning algorithm is
based on the Structural EM algorithm (SEM), which considers the discrete coun-
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terparts of the continuous variables as hidden. This makes the learning process
considerably slow: all the possible hidden variables’ instantiations must be con-
sidered when evaluating the score value for each iteration (which increases expo-
nentially in the number of hidden variables). There is work to be done on how
to optimize the SEM convergence time. One clue into this direction is to use a
discretization algorithm to find an initial BN structure and to start the SEM search
from this structure. Another clue is to use a k-means approach rather than SEM in
a first step: using k-means, we can substitute the unobserved values in the dataset
by only one value (the one with the highest probability). Once this is done, the
search in the DAG space can be performed as usual on a complete dataset (without
needing performing many cdBN inferences as SEM would require). Upon conver-
gence, we can then switch to an SEM-based searching using the resulting structure
as a starting point. Since the SEM algorithm contains whole EM processes at each
iteration, another interesting clue to accelerate it is by applying any of the many
state-of-the-art methods to accelerate EM [Shioya and Miura, 2011, Varadhan and
Roland, 2008, Guo et al., 2017, Ortiz and Kaelbling, 1999].

When using Gaussian conditional densities, there is a serious problem when
performing EM iterations: this is caused by potential singularities because the
likelihood of a Gaussian mixtures is not necessarily bounded: there could be
Gaussian functions with close-to-zero-value variance (which might look like a
Dirac delta function). Fortunately, in [Redner and Walker, 1984] it is proved that,
although we could fall into singularities, there will always exist consistent EM
solutions, so it would be enough to relaunch the algorithm an indefinite number
of times (with different initial values) to achieve one of those. However, reinitial-
izing the EM algorithm might be tedious because the learning algorithm is very
time consuming. There is research work to be done about better ways to handle
this type of situations. One possible solution (vaguely explored in this thesis) is
to assume a priori that each continuous variable of the learning dataset follows
a Gaussian distribution with a given variance. There remains work to be done to
justify this assumption and, moreover, to develop a method to assign a pertinent
value to that variance.

Although for the SCISSOR project we used (in practice) non-stationary dy-
namic cdBN models, those were not learnt as such: The learning process was per-
formed in batches just as if they were regular cdBNs; the epoch changing times
were chosen by hand (helped by knowledge of experts); there was no notion of
transition from one model to another across epochs. There is much research to be
done on how to perform these tasks more properly. Moreover, our study case was
a SCADA system in which new variables could be added while others could be
temporary/permanently removed from the system. There is a lot of research work
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to be done on how to deal with such cases.

In applications like SCADA, variables are not always labeled as discrete or
continuous ones. And even when they are labeled, there are cases when we do
not know a priori all their possible values. Some continuous variables have a
“discrete” or “semi-discrete” behavior. For instance, in the SCISSOR project, we
dealt with many variables such as the one plotted in Figure 5.7 (Page 163): Vari-
able Q_L2_STIMATA1 (the third one), is identified as a continuous variable, but
it actually behaves mostly like a discrete one; in the same figure, the values of
Variable FQ_L2211 (the second one) remain almost fixed for a long period of
time, and in other periods they are clearly of a continuous nature. These types of
situation were really problematic in the present work approach: note that when
approximating those variables by a mixture of normal distributions, we are nec-
essarily going to fall into a singularity. How to automatically identify those types
of variables and how to model them in the ctdBN/cdBN context remains an open
question.

There are ways to learn missing or hidden discrete variables in the BN con-
text [Elidan, 2004], that can be adapted into our models. However, the impact of
hidden continuous variables in cdBNs remains an open research subject. More-
over, there is work to be done looking for introducing other learning approaches
for the models presented in this thesis, like adapting constraint based methods into
it (note that independences between a continuous and a discrete variable could be
asserted using ANOVA tests [Gelman, 2010]).
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Appendix A

CdBN vs. Kalman Experiments:
Detailed Results

In this appendix, we display the plots of the log-likelihoods for every test dataset,
from the experiments performed in Section 5.3. This provides more insight on the
behaviors of the cdBN and the Kalman Filter anomaly detections. In these plots,
the horizontal red lines represent the log-likelihood threshold. So, when the blue
curves are below red lines, the algorithms consider such situations as anomalies.
Each plot ranges over a whole epoch.
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Detailed results on unperturbed dataset D̊Th

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.1: Anomaly detection over test dataset without perturbations D̊Th in the
first epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.2: Anomaly detection over test dataset without perturbations D̊Th in the
second epoch.

Here, note that the curves of the likelihoods are much smoother in the Kalman
filter. This results from the lowpass filter we used (see Subsection 5.3.3).
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.3: Anomaly detection over test dataset without perturbations D̊Th in the
third epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.4: Anomaly detection over test dataset without perturbations D̊Th in the
fourth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.5: Anomaly detection over test dataset without perturbations D̊Th in the
fifth epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.6: Anomaly detection over test dataset without perturbations D̊Th in the
sixth epoch.

In the sixth epoch, the cdBN is misled several times by likelihoods below
the threshold. Therefore, it raises some false alarms. Note however that these
likelihoods are not very far from the “red” threshold, which means that the alarm
raised by the cdBN is somewhat “weak”.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.7: Anomaly detection over test dataset without perturbations D̊Th in the
seventh epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.8: Anomaly detection over test dataset without perturbations D̊Th in the
eighth epoch.
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Detailed results on perturbed dataset D̊T (0)
h

In Dataset D̊T (0)
h , Interval [t0, tf ] over which perturbations are inserted corre-

sponds to the whole dataset D̊Th .

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.9: Anomaly detection over perturbed dataset D̊T (0)
h in the first epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.10: Anomaly detection over perturbed dataset D̊T (0)
h in the second epoch.

In these figures, both models detect anomalies all over the epochs. However,
the cdBN tends to produce likelihoods more often below the threshold than the
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Kalman filter. This results in the cdBN being more prone than Kalman to raise
alarms.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.11: Anomaly detection over perturbed dataset D̊T (0)
h in the third epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.12: Anomaly detection over perturbed dataset D̊T (0)
h in the fourth epoch.

In the third and fourth epochs, the Kalman filter is unable to detect any anomaly
whereas the cdBN frequently detects them.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.13: Anomaly detection over perturbed dataset D̊T (0)
h in the fifth epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.14: Anomaly detection over perturbed dataset D̊T (0)
h in the sixth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.15: Anomaly detection over perturbed dataset D̊T (0)
h in the seventh

epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.16: Anomaly detection over perturbed dataset D̊T (0)
h in the eighth epoch.

207



208 A. CdBN vs. Kalman Experiments: Detailed Results

Detailed results on perturbed dataset D̊T (1)
h

In Dataset D̊T (1)
h , Interval [t0, tf ] over which perturbations are inserted corre-

sponds to the first third of Dataset D̊Th .

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.17: Anomaly detection over perturbed dataset D̊T (1)
h in the first epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.18: Anomaly detection over perturbed dataset D̊T (1)
h in the second epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.19: Anomaly detection over perturbed dataset D̊T (1)
h in the third epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.20: Anomaly detection over perturbed dataset D̊T (1)
h in the fourth epoch.

Here, note the ability of the non-stationary cdBN to detect anomalies in the
left one third part of the figures (in which there are truly anomalies) and to not
detect any anomaly in the two third parts on the right (which actually contain no
anomaly).
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.21: Anomaly detection over perturbed dataset D̊T (1)
h in the fifth epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.22: Anomaly detection over perturbed dataset D̊T (1)
h in the sixth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.23: Anomaly detection over perturbed dataset D̊T (1)
h in the seventh

epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.24: Anomaly detection over perturbed dataset D̊T (1)
h in the eighth epoch.
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Detailed results on perturbed dataset D̊T (2)
h

In Dataset D̊T (2)
h , Interval [t0, tf ] over which perturbations are inserted corre-

sponds to the second third of dataset D̊Th .

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.25: Anomaly detection over perturbed dataset D̊T (2)
h in the first epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.26: Anomaly detection over perturbed dataset D̊T (2)
h in the second epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.27: Anomaly detection over perturbed dataset D̊T (2)
h in the third epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.28: Anomaly detection over perturbed dataset D̊T (2)
h in the fourth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.29: Anomaly detection over perturbed dataset D̊T (2)
h in the fifth epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.30: Anomaly detection over perturbed dataset D̊T (2)
h in the sixth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.31: Anomaly detection over perturbed dataset D̊T (2)
h in the seventh

epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.32: Anomaly detection over perturbed dataset D̊T (2)
h in the eighth epoch.
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Detailed results on perturbed dataset D̊T (3)
h

In Dataset D̊T (3)
h , Interval [t0, tf ] over which perturbations are inserted corre-

sponds to the last third of dataset D̊Th .

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.33: Anomaly detection over perturbed dataset D̊T (3)
h in the first epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.34: Anomaly detection over perturbed dataset D̊T (3)
h in the second epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.35: Anomaly detection over perturbed dataset D̊T (3)
h in the third epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.36: Anomaly detection over perturbed dataset D̊T (3)
h in the fourth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.37: Anomaly detection over perturbed dataset D̊T (3)
h in the fifth epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.38: Anomaly detection over perturbed dataset D̊T (3)
h in the sixth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.39: Anomaly detection over perturbed dataset D̊T (3)
h in the seventh

epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.40: Anomaly detection over perturbed dataset D̊T (3)
h in the eighth epoch.
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Detailed results on perturbed dataset D̊T (4)
h

In Dataset D̊T (4)
h , Interval [t0, tf ] over which perturbations are inserted corre-

sponds to the first two thirds of dataset D̊Th .

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.41: Anomaly detection over perturbed dataset D̊T (4)
h in the first epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.42: Anomaly detection over perturbed dataset D̊T (4)
h in the second epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.43: Anomaly detection over perturbed dataset D̊T (4)
h in the third epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.44: Anomaly detection over perturbed dataset D̊T (4)
h in the fourth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.45: Anomaly detection over perturbed dataset D̊T (4)
h in the fifth epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.46: Anomaly detection over perturbed dataset D̊T (4)
h in the sixth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.47: Anomaly detection over perturbed dataset D̊T (4)
h in the seventh

epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.48: Anomaly detection over perturbed dataset D̊T (4)
h in the eighth epoch.
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Detailed results on perturbed dataset D̊T (5)
h

In Dataset D̊T (5)
h , Interval [t0, tf ] over which perturbations are inserted corre-

sponds to the last two thirds of dataset D̊Th .

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.49: Anomaly detection over perturbed dataset D̊T (5)
h in the first epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.50: Anomaly detection over perturbed dataset D̊T (5)
h in the second epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.51: Anomaly detection over perturbed dataset D̊T (5)
h in the third epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.52: Anomaly detection over perturbed dataset D̊T (5)
h in the fourth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.53: Anomaly detection over perturbed dataset D̊T (5)
h in the fifth epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.54: Anomaly detection over perturbed dataset D̊T (5)
h in the sixth epoch.
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(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.55: Anomaly detection over perturbed dataset D̊T (5)
h in the seventh

epoch.

(a) cdBN anomaly detection

(b) Kalman filter anomaly detection

Figure A.56: Anomaly detection over perturbed dataset D̊T (5)
h in the eighth epoch.
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