Pierre Daniel

Charles Findling
email: charles.findling@ens.fr

Vasilisa Skvortsova

Rémi Dromnelle

Nicolas Chopin

Stefano Palminteri

Valentin Wyart
email: valentin.wyart@ens.fr

Etienne Koechlin
email: etienne.koechlin@ens.fr

Computational variability in reinforcement learning drives exploratory decisions in volatile environments

In uncertain and changing environments, making sequential decisions requires analysing and weighting the past and present information. To model human behavior in such environments, computational approaches to learning have been developed based on reinforcement learning or Bayesian inference. To further account for behavioral variability, these computational approaches assume action selection noise, usually modeled with a softmax function. In the first part of my work, I argue that action selection noise is insufficient to explain behavioral variability and show the presence of learning noise reflecting computational imprecisions. To this end, I introduced computational noise in the standard reinforcement learning algorithm through random deviations in the noise-free update rule. Adding this noise led to a better account of human behavioral performances in reward-guided tasks, provided that this noise scaled with the quantity of update predicted by the noise-free rule referred to as Weber noise. Further characterizing the noise, I demonstrated that it did not reflect systematic biases from the standard reinforcement learning model. Additionally, in contrast to action selection noise, learning noise was independent of the amount of outcome information available to the subject to make decisions. This corroborated that learning noise is present as a constraint in the decision-making process (Findling C., Skvortsova V., et al., 2018a, in prep). The presence of learning noise with a Weber structure led me to investigate whether this noise could have a functional role. In the second part of my work, I argue that this Weber noise actually has virtuous adaptive properties in learning processes elicited in changing (volatile) environments. Using the Bayesian modeling framework, I demonstrate that a simple learning model assuming stable external contingencies with Weber noise performs virtually as well as the optimal Bayesian adaptive process based on inferring the volatility of the environment. Furthermore, I establish that this Weber noise model better explains human behavioral performances in changing environments. These results suggest that the adaptive properties of human sequential decision-making processes stem from Weber-structured learning noise rather then from complex inference of external volatility (Findling C. at al., 2018b, in prep). I conclude that computational learning noise with a Weber structure has a critical adaptive role in changing environments. This noise may reflect imprecisions in neural computations, which could explain why they have been conserved through evolution. v Ces trois années passées sur cette thèse ont été superbes et, elles ont été ainsi grâce à toutes les personnes qui m'ont aidé et accompagné. Je dois beaucoup à de nombreuses personnes et je souhaite remercier chacune d'elles pour tout ce qu'elles m'ont apporté! Je souhaite d'abord remercier mes deux directeurs de thèse Etienne Koechlin et Nicolas Chopin. Vous m'avez donné l'opportunité de construire un projet de recherche entre les domaines des neurosciences et des statistiques, et c'était vraiment un plaisir de travailler avec vous pendant ces trois années sur un sujet qui m'a vraiment animé. Etienne, nos discussions particulièrement intéressantes m'ont toujours permis de mettre les choses en perspectives et ont développé mon envie de poursuivre les Neurosciences. Nicolas Chopin, je te remercie de m'avoir donné l'opportunité de me former aux méthodes statistiques et, honnêtement, sans la connaissance de celles-ci, je n'aurais rien pu accomplir de ce que j'ai fait. Je me rends compte aujourd'hui que nos réunions bi-mensuelles le vendredi à 11h m'ont été bien nécessaires, même si je ne comprenais pas toujours tout à ce que je racontais! Valentin Wyart, un grand merci aussi, tu m'as permis de creuser et comprendre un sujet compliqué! Ma thèse n'aurait pas pu se faire sans toi et j'espère qu'on pourra continuer à travailler ensemble. Je remercie les membres de mon jury d'avoir accepté d'évaluer ce travail car j'imagine qu'il existe des lectures plus agréables en plein été : Jean Daunizeau, Máté Lengyel, Alexandre Pouget, Adam Sanborn et Christopher Summerfield. Vasilisa, je te remercie de m'avoir appris tellement de choses surtout dans les domaines de l'IRM -j'ai fait des 'neurosciences' grâce à toi :). Quand je venais travailler les weekends et que j'ouvrais la porte du laboratoire, si je voyais ta petite tête, ça me faisait toujours un petit chaud au coeur. Héloise, une partenaire géniale et irremplaçable! Quelle voisine de bureau sensationnelle, toujours pleine de bonne humeur et accompagnée de chocolat! J'espère qu'on se trouvera une version online de blobby volley. Bibou m'accompagnera dans tous mes prochains boulots, c'est promis. Sophie, fidèle à son poste dans son chateaufort à regarder mon écran au-dessus de mon épaule, merci pour toute ton aide! Edouard, mon petit frère, à travers toutes nos assiettes de frites -j'espère qu'il y en aura encore beaucoup. Ton intérêt honnête ou toujours bien simulé m'a toujours encouragé à poursuivre mes idées. Margaux, toujours un plaisir de t'avoir comme voisine de bureau, j'espère qu'on pourra continuer pour quelques temps :). Laura et Marine pour leur gentillesse et leur efficacité! David pour un VP geek en or. Anis, Clemence, Gabriel, Julie parce qu'ils ont tous contribué à faire de cette 'équipe' une petite famille. Thomas, Lénaïc, Léa, Marc,

Chapter 1

Introduction

In this PhD, I focused on reinforcement learning and Bayesian statistics to study human behavior. This led me to investigate, in this introductory chapter, the three main modeling frameworks which are used today to describe mental processes. These three main modeling frameworks are:

• Reinforcement learning that essentially describe how agents ought to take actions in an environment so as to maximize some notion of cumulative reward.

• Bayesian statistics that assumes probabilistic reasoning based on Bayes' rule.

• Artificial neural network that typically learn tasks by considering examples, generally without task-specific programming.

For each of these frameworks, I will distinguish three levels of description using David Marr's levels of analysis [START_REF] Marr | Vision: A Computational Investigation Into[END_REF]. He distinguished three levels of description for the study of information-processing systems :

• The computational level : What is the goal of the computation, why is it appropriate, and what is the logic of the strategy by which it can be carried out?

• The algorithmic level : How can this computational theory be implemented?

In particular, what is the representation for the input and output, and what is the algorithm for the transformation?

• The implementation level : How can the representation and algorithm be realized physically?

To illustrate the three levels, Marr applies them to a cash register. The computational level defines the goal: the goal of a cash register is to master addition. Regarding the algorithmic level characterizing how the computational theory can be implemented, we could follow the usual rules about adding the least significant digits first and 'carrying' if the sum exceeds 9. Lastly, at the implementation level, we face the question of how those symbols and processes are actually physically implemented.

For instance, are the digits implemented as positions on a ten-notch metal wheel, or as binary coded decimal numbers implemented in digital circuitry? For the three formalisms, reinforcement learning, Bayesian statistics and artificial neural networks, I will carry out the three levels of description. I chose this plan to Chapter 1. Introduction enable a clear within-formalism comparison. I consider here a formalism (or framework) as an ensemble of tools which gives the possibility to build a model. In 1987, Box, George E. P said in Empirical Model-Building and Response Surfaces, p. 424, "all models are wrong, but some are useful." . In this line, we will develop each formalism individually and conclude in the last section to which extent each is useful and to which extent each is wrong.

Reinforcement learning description of mental processes 1.Definition

Introduction : Reinforcement learning is an area of machine learning inspired by behaviorist psychology. Concisely, reinforcement denotes any form of conditioning, either positive (pleasant events -rewards) or negative (unpleasant events -punishments). Reinforcement learning describes the learning dynamics of the reinforcements. There are two main types of conditioning : classical and instrumental.

It is in the beginning of the 20th century in Russia that Pavlov conducted the first reinforcement learning experiments. He was looking at salivation in dogs in response to being fed when he noticed that his dogs would begin to salivate whenever he entered the room, even when he was not bringing them food. This led him to investigate formally this seemingly odd behavior. To do so, following a tone presentation (the conditioned stimulus, CS), he gave hungry dogs food (the unconditioned stimulus, US). At the beginning of the experiment, he observed that only the food presentation elicited salivation (the unconditioned response, UR). However, after repeating the tone-food (CS-US) pairings a number of times, he observed that the dogs began to salivate before the food was delivered (the conditioned response, CR). This led Pavlov to define classical conditioning [START_REF] Pavlov | Lectures on Conditioned Reflexes, vols. 1 and 2[END_REF]. As for instrumental conditioning, it appeared in the beginning of the 20th century with Edward L. Thorndike in the United States. His experimental work on cats brought him to elaborate the "Law of Effect", "Of several responses made to the same situation, those which are accompanied or closely followed by satisfaction to the animal. . . will, other things being equal, be more firmly connected with the situation...; those which are accompanied or closely followed by discomfort...will have their connections with the situation weakened...The greater the satisfaction or discomfort, the greater the strengthening or weakening of the bond." (Thorndike, 1911, p. 244) Following studies from Clark Hull and Kenneth Spence led to some first mathematical formalization of instrumental learning [START_REF] Hull | Correction" vs." non-correction" method of trial-and-error learning in rats[END_REF]. Regarding experimental approaches, Skinner made fundamental contributions to the way learning in animals is studied by carefully controlling the experimental setting while letting the animal move freely [START_REF] Skinner | The behavior of organisms: An experimental analysis[END_REF].

1.1. Reinforcement learning description of mental processes 3 Formalization : Formally, the goal of reinforcement learning is to learn a behavior strategy (a policy) which maximizes the long term sum of rewards (delayed reward) by a direct interaction (trial-and-error) with an unknown and uncertain environment. We illustrate the agents behavior and interaction with the environment in figure 1.1.

The Reinforcement Learning Model

The Agent-Environment Interaction Protocol The agent receives reward r t end for FIGURE 1.1: The Agent-Environment Interaction Protocol At, every time step, the agent perceives a state s t , he then performs an action a t leading him to evolve in a state s t+1 and receive a reward r t (given by the criticthe environment's entity which delivers the reward). The goal of the reinforcement learner is to maximize the cumulative sum of obtained rewards in an environment defined by:

• Controllability : fully (e.g., chess) or partial (e.g., portfolio optimization) • Uncertainty : deterministic (e.g., chess assuming a perfect play) or stochastic (e.g., backgammon because of the dice)

• Reactive : adversarial (e.g., chess) or fixed (e.g., tetris)

• Observability : full (e.g., chess) or partial (e.g., robotics)

As for the critic, it can be sparse simply indicating whether you won or lost or be very informative by describing, for instance, how close you were from the target. It can further be frequent or irregular, biased or unbiased ... Reinforcement learning theory models the environment and critic by a Markov decision process defined by:

• A state space S • An action space A • A transition probability P s,a : S → [0, 1]. For all a ∈ A and s, s ∈ S 2 , P s,a (s)

gives the probability to evolve in state s' given the agent performed action a in states s

• A reward function R : S × A × S → R. For all a ∈ A and s, s ∈ S 2 , R(s, a, s) indicates the observed reward after transition from s to s' with action a. We will consider here the reward function does not depend on the new state s' and we write R(s, a) = R(s, a, .)

The agent's goal is to build a policy π t : S × A → R giving the probability to perform action a ∈ A if the agent is in state s ∈ S that maximizes cumulative reward.

Chapter 1. Introduction

From now one, we will consider stationary policies meaning time-independent policies π t = π.

Computational Level

The goal of the agent is to find the optimal policy π * that maximizes the state-value function (V-function) defined as the sum of discounted rewards:

π * ∈ argmax π V π with V π (s) = E T ∑ t=0 γ t R (s t , a t) | s 0 = s, a t = π(s t), ∀t ≥ 0
with γ the discount factor and T the number of trials. We have γ ∈ [0, 1] with the constraint γ < 1 if T = ∞ (else the value function does not always converge). In infinite time horizon settings, one can assume no reward discount by considering the average of the rewards. For any stationary policy π, the state value function V π (s) at a state s ∈ S satisfies the Bellman equation:

V π (s) = R(s, π(s)) + γ • ∑ s ∈S P s,π(s) s • V π (s) (1.1)
This leads to Bellman's Principle of Optimality :

"An optimal policy has the property that, whatever the initial state and the initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision." [START_REF] Bellman | Dynamic programming[END_REF] The optimal value function V * = max π V π is the solution to the optimal Bellman equation:

V * (s) = max a R(s, a) + γ • ∑ s ∈S P s,a s V * (s) (1.2)
Another useful function to define is the state-action value function (or Q-function). This latter function makes actions explicit which is relevant when the transition function P s,a is not available (see section 1.1.3.2).

Q π : S × A -→ R (s, a) -→ E T ∑ t=0 γ t R (s t , a t) | s 0 = s, a 0 = a, a t = π(x t), ∀t ≥ 1
For any policy π, the Q-function and V-function are such that

Q π (s, a) = R(s, a) + γ • ∑ s ∈S P s,a s • V π (s) V π = Q π (s, π(s))
1.1. Reinforcement learning description of mental processes

Algorithmic Level

There are three fundamental classes of methods for solving finite Markov decision problems: dynamic programming, Monte Carlo methods, and temporal-difference learning. Dynamic programming methods are well developed mathematically, but require a full and accurate model of the environment. Monte Carlo methods do not require a model and are conceptually simple, but are not adapted for online incremental computation. Finally, temporal-difference methods require no model and are fully incremental, but are more complex to analyze mathematically. These three classes of methods can be divided in two categories : model-based reinforcement learning and model-free reinforcement learning.

Model-based reinforcement learning

Model-based reinforcement learning algorithms are essentially comprised of the dynamic programming approaches which refer to a collection of algorithms that compute optimal policies given an accurate model of the environment. This model involves a transition function P s,a (s) and a reward function R(s, a) defining a Markov decision process (see section 1.1.1).

DP algorithms : Dynamic Programming (DP) converges to the optimal policy by iteratively maximizing the Value function and thus the left term of the Bellman equation 1.3. There are two standard dynamic programming algorithms: policy iteration and value iteration. Policy iteration maximizes the left term of the Bellman equation [equation 1.3] by improving the policy iteratively.

Algorithm 1: Policy Iteration Initialization : Let π 0 be any stationary policy for k = 0 : K do Policy Evaluation : given π k , evaluation V π by iteratively applying the Bellman equation (iterative policy evaluation)

Policy Improvement : compute the policy

π k+1 (s) ∈ argmax a R(s, a) + γ • ∑ s ∈S P s,a s • V π (s)
Return policy π K Policy iteration often converges in few iterations (Sutton and Barto, 1998, page 88). However, a computational drawback to policy iteration is that every iteration requires a policy evaluation which involves applying iteratively the Bellman equation until convergence. Another algorithm which overcomes this difficulty is Value iteration. It essentially maximizes the left term of the Bellman equation [equation 1 .3] Chapter 1. Introduction by improving the value function iteratively.

Algorithm 2: Value Iteration

Initialization : Let V 0 be any vector in R N with N the number of states. for k = 0 : K do Value Improvement : Compute V k+1 (s) = max a R(s, a) + γ • ∑ s ∈S P s,a (s)

• V k (s)
Return the policy π K (s) = argmax a R(s, a) + γ • ∑ s ∈S p s,a (s) • V K (s)

Less computationally costly, this second algorithm is slower to converge.

Model-Based Reinforcement Learning :

As seen in the two previous presented algorithms -policy iteration [algorithm 1] and value iteration [algorithm 2] -dynamic programming approaches require the knowledge of the reward and transition functions. These methods which rely on explicit functions define model-based reinforcement learning (MBRL). However, it is rarely the case that these two functions (reward and transition) are known and thus numerous approaches propose to learn them gradually through interactions with the environment [START_REF] Engel | Reinforcement learning with Gaussian processes[END_REF]Meir, 2005, Doya et al., 2002). The gradual learning of these latter functions leads to the possibility of online MBRL.

In contrast, model-free reinforcement learning, which will be described more extensively in the next paragraph, is based on learning "cached values" of the environment by trial and error, without any prior assumption about the environment's structure.

In cognitive neuroscience, MBRL has been used to describe mental processes and to show that subjects build complex representations of their environments and take decisions accordingly [START_REF] Daw | Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control[END_REF]Dayan, 2005, Daw et al., 2011). More precisely, these papers show that subjects' behavior appear to be in-between a model-based and a model-free reinforcement learning. Having both RL systems could be advantageous as it could enable a trade-off between the model-free system, simple and independent of any assumptions regarding the environment, and the model-based one, more flexible and richer but associated with higher computational cost. Each system could be used in circumstances where it is deemed the most relevant [START_REF] Daw | Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control[END_REF]. However, this arbitration between model-based and modelfree reinforcement learning systems in humans remains controversial. Indeed, it has been shown signatures of model-based computations are reflected in the same regions previously thought to support model-free learning (Daw et al., 2011, Doll, Simon, andDaw, 2012). This inconsistency might, however, stem from the difficulty to characterize a strategy as model-based or model-free. Actually, it has been shown that, under certain conditions, model-free strategies can appear as being model-based [START_REF] Akam | Simple plans or sophisticated habits? State, transition and learning interactions in the two-step task[END_REF]. The inconsistent signature of model-based computations could thus originate from model-free strategies that appear model-based. However, if the brain is an efficient structure, why would two RL systems be put into competition when making them work together would probably lead to better results. In this line, some recent studies argue that the human decision-making process is solely based on a unique system, which performs reinforcement learning comparable to a model-based approach. The second RL system, model-free, would not be put in competition but would enable the learning of the model in the modelbased approach [START_REF] Wang | Prefrontal cortex as a meta-reinforcement learning system[END_REF].

Model-free reinforcement learning

Generally speaking, the use of DP approaches is limited in real world applications as the exact computations can rapidly become intractable because of the huge number of possible states. An alternative to MBRL is model-free reinforcement learning (MFRL) which essentially involve two broad classes of methods : Monte Carlo methods and temporal-difference methods. Both these classes do not require any knowledge or assumption about the environment -thus the term model-free. However, in contrast to Monte Carlo which are essentially offline methods, temporal-difference are fully incremental which makes these latter methods much more relevant when studying behavior : learning in humans and other animals is an online process.

Monte Carlo (MC) Methods :

To apply Monte Carlo methods, one only requires "experience", meaning sequences of (state, action, reward) triplets obtained through interacting with the environment. Following previously established policies, one can obtain this experience through online interaction or simulation. For the latter one (simulation), although a model is required, one needs only to know how to sample from it. This is in contrast to MBRL approaches which require a complete knowledge of the model as they involve an explicit summation over the whole state space (see section 1.1.3.1). Monte Carlo methods are ways of solving the reinforcement learning problem based on building Monte Carlo estimates of the value function. Let π be a policy and

s i 0 = s, a i 0 = π(s i 0), r i 0 , s i 1 , a i 1 = π(s i 1), ..., s i t , a i t = π(s i t), r i t , ..., s i T i = 0, a i T i = π(s i T i), r i T i i∈1:N
be N independent trajectories under the policy π terminating after T i steps (all sequences must have terminated to be used in MC methods). For any i ∈ {1, 2, ..., N}, we denote by: R i (s) =

T i ∑ k=0 γ k • r i k Chapter 1. Introduction
the return of the i-th trajectory starting at state s i t . γ ∈ [0, 1] is the discount factor. The Monte-Carlo estimator of V π (s) is

V π (s) = 1 N N ∑ i=1 γ 0 • r i 0 + ... + γ T i • r i T i = 1 N N ∑ i=1 R i (s)
This estimator is called the first-visit MC estimator. A second estimator called the every-visit MC estimator sums over sub-trajectories that start from s up to s i T i and averages them all to obtain an estimate. This latter estimator becomes biased but exhibits smaller variance than the first-visit MC estimator. These MC estimators enable policy evaluation. However, the goal of reinforcement learning is to find an optimal policy. To do so, one makes the actions explicit and use MC estimators to approximate the state-action value function. Recalling the above notations, let π be a policy and s i 0 = s, a i 0 = a, r i 0 , s i 1 , a i 1 = π(s i 1), ..., s i t , a i t = π(s i t), r i t , ..., s i T i = 0, a i T i = π(s i T i), r i T i i∈1:N be N independent trajectories starting with action a and then following the policy π for subsequent decisions. MC methods leads to an estimator of Q π (s, a):

Q π (s, a) = 1 N N ∑ i=1 γ 0 • r i 0 + ... + γ T i • r i T i = 1 N N ∑ i=1 R i (s)
In order to find the optimal policy, the algorithm alternates a policy evaluation step (obtained by applying MC to the state-action values Q π) with a policy improvement [algorithm 3].

Algorithm 3: Monte Carlo Exploring Starts (MC-ES)

Initialization : For all s ∈ S and a ∈ A, initialize Q(s, a) and π(s) arbitrarily. Let L(s, a) = {} be empty lists. while repeat do Policy Evaluation :

• Select (s 0 , a 0) ∈ S × A such that the pair is possible. Generate an episode starting from (s 0 , a 0) and following π. Let us call T the terminal step.

• For each (s t , a t) pair in the episodes, add the following cumulative reward to the corresponding list L(s t , a t) ←-L(s t , a t) + ∑ T t γ k-t • r k • Average over list to update the Q-values estimates: for all (s, a) encountered in the episode : Q(s, a) = average (L(s, a))

Policy Improvements : For each s in episode, update policy :

π(s) = argmax a Q(s, a)
As illustrated in the MC-ES algorithm [3], Monte-Carlo based methods require sampling the whole trajectory (up to the terminal state) before updating the Q-values.

1.1. Reinforcement learning description of mental processes 9

Assuming that a mental process would be well described by M-C methods would thus lead to two assumptions:

• the subject would not update his belief until he has reached a terminal state (no learning would occur until a terminal state is reached).

• to perform learning once the terminal state is reached, he would have to keep in memory the whole trajectory from the initial state to the terminal one.

These elicited assumptions show the unrealistic nature of M-C based methods to explain mental processes [START_REF] Todd | Learning to use working memory in partially observable environments through dopaminergic reinforcement[END_REF].

One-step temporal difference : We have seen two classes of algorithms that solve the optimal Bellman equation [equation 1 .2]. Dynamic programming methods, which can learn online but require the learning of an environment's model, and Monte Carlo methods, which only rely on samples but need complete trajectories. A third class of algorithms called temporal difference algorithms combines the strengths of both classes. Temporal difference learning is online -like DP -and sample-based -like MC. Let V π be an estimators of V π and (s, a = π(s), r, s) be a newly encountered quadruplet. Recalling Bellman's equation [equation 1.3]

V π (s) = R(s, π(s)) + γ • ∑ s ∈S P s,π(s) s • V π (s) (1.3)
one can update the value function's V π (s) estimator according to this equation:

V π (s) ←-r + γ • V π (s)
with γ the discount factor. This is essentially very close to the MC update as V π (s) is an estimator of the following cumulative rewards, which would have occurred if a whole trajectory was sampled.

V π (s) ≈ E T ∑ t=0 γ t R (s t , a t) | s 0 = s , a t = π(s t), ∀t ≥ 0
This leads to the simplest temporal-difference algorithm, the TD(0) algorithm, which iteratively updates the V-function estimators according to the following rule

V π k+1 (s) = V π k (s) + α k r + γ • V π k (s) -V π k (s)
with k the iteration step, (s, a = π(s), r, s) an encountered quadruplet and V π k the current estimators of V π . α k , the learning rate, weights the update of the value function's estimator: a larger α k will lead to larger updates of V π which might be desirable in certain settings (e.g., changing environments). This TD(0) algorithm allows for policy evaluation (for a given policy π, one can estimate V π). However, as in the Chapter 1. Introduction MC methods, to perform policy improvement, one applies this estimation procedure to the state-action values Q π which leads to the SARSA algorithm -State Action Reward State Action algorithm. The SARSA algorithm alternates between a decision step (based on the current Q-values and a softmax or -greedy procedure) and an update step,

Q π k+1 (s, a) = Q π k (s, a) + α k r + γ • Q π k (s , a) -Q π k (s, a) (1.4)
with (s, a, r, s , a) an observed quintuplet at iteration k.

Algorithm 4: SARSA Initialization : For all s ∈ S and a ∈ A, initialize Q(s, a) arbitrarily. k ← 0. while repeat do Initialize s Decision step : Choose a using policy derived from Q(s, :) (e.g., softmax, or -greedy). while until s is terminal do Take action a, observed reward r and next state s Decision step : For each a using policy derived from Q(s , :) (e.g., softmax, or -greedy) Update step : Update Q-values estimates

Q(s, a) ←-Q(s, a) + α k r + γ • Q(s , a) -Q(s, a) s ← s , a ← a k ← k + 1
Another name for the TD(0) is the one-step temporal difference algorithm, this name refers to the V-function (or Q-function) estimator update which is based on only one subsequent step. Assuming we have a estimator V π of the value function. Considering one TD(0) update gives us:

G (1) = r + γ • V π (s)
with G (1) the new estimator given by TD(0). The index "1" in G (1) indicates the update is solely based on one subsequent step. Indeed, if a larger portion of the trajectory is observed s t = s, a t = π(s t), r t = r, s t+1 = s , a t+1 = π(s t+1), r t+1 , ... one can construct more robust estimators not solely based on one step but on several ones:

G (n) = r t + γ • r t+1 + ... + γ n-1 • r t+n-1 + γ n • V π (s t+n)
1.1. Reinforcement learning description of mental processes G (n) is a new value function estimator based on n subsequent steps. Defining these more complex n-step estimators leads to temporal difference methods with eligibility traces.

Temporal difference with eligibility trace : The main temporal difference algorithm with eligibility trace is the TD(λ) algorithm which can be understood as one particular way of averaging n-step estimators, n describing all values from 1 up to the terminal step of the trajectory. Given a trajectory {s 0 , a 0 = π(s 0), r 0 , ..., s t , a t = π(s t), r t , s t+1 , ..., a T = π(s T), r T } with T the terminal step of the trajectory and V π our current estimator of V π . Let λ ∈ [0, 1], TD(λ) defines the following state values V π (s t) estimators:

G λ t = (1 -λ) T-t-1 ∑ n=1 λ n-1 G (n) t + λ T-t-1 G t with t ∈ [0, T -1], G (n) t
the n-step estimator starting at time t

G (n) t = r t + γ • r t+1 + ... + γ n-1 • r t+n-1 + γ n • V π (s t+n)
and G t the discounted cumulative sum of rewards 0 after t.

G t = T-t-1 ∑ n=0 γ n r t+n
As G λ t is a weighted average of V π (s t) estimators (with weights summing to one), G λ t is thus, itself, an estimator of V π but with smaller variance. We obtain the policy evaluation update rule:

V π i+1 (s t) = V π i (s t) + α i G λ t -V π i (s t)
with i the iteration step, α i the learning rate and t ∈ [0, T -1]. Setting λ to 0 leads to the one-step TD(0) algorithm (previous paragraph). Assuming λ = 1 gives an algorithm whose updates solely depend on the trajectory of rewards and not on the previous value function estimator V π . TD (1) gives rise to computations close to the Monte Carlo methods. Actually, TD methods with eligibility traces produce a family of methods spanning from Monte Carlo methods (λ = 1) at one end and one-step TD methods at the other (λ = 0). Similarly to the one-step temporal difference procedure where one applied the estimator to the Q-values to perform policy improvement (SARSA algorithm [algorithm 4]), one can apply this λ-estimator to the Q-values. This leads to the SARSA(λ) algorithm which is very similar to the SARSA but having replaced the one-step estimator with its λ version.

Chapter 1. Introduction

Convergence properties of temporal difference : Since the beginning of this section on algorithmic approaches, we have described algorithms that solve the optimal Bellman equation [equation 1 .2]. Regarding the temporal difference, there are two conditions to guarantee almost surely convergence of the estimators:

• all states must be visited an infinite number of times • for all s ∈ S, we must have

∑ k α k (s) = ∞ , ∑ k α k (s) 2 < ∞ NB :
We dropped the state dependency of the learning rate in the previous paragraph to not overload the equations.

In the second condition, the first equality is required to guarantee that the steps are large enough to eventually overcome any initial conditions or random fluctuations. The second inequality guarantees that eventually the steps become small enough to assure convergence. Let us note here that the second condition is met for α k (s) = 1/k, meaning for such a learning rate, the TD (and SARSA) algorithms defined in the previous paragraph converge to the optimal value function (and to the optimal policies). However, assuming α k (s) constant, α k (s) = α does not lead to converging procedures. The estimates never completely converge and continue to vary in response to the most recent rewards. This essentially might be desirable in changing environments where it makes sense to weight recent rewards more heavily than long-past ones.

Temporal difference for describing mental processes : Reinforcement learning models are extensively used to model Pavlovian and instrumental conditioning in humans and other animals (Sutton andBarto, 1990, O'Doherty et al., 2003). Most of these RL formalizations assume SARSA models with a single state (leading to γ = 0). This gives the Rescorla-Wagner (RW) rule [START_REF] Rescorla | A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement[END_REF] which assumes the action value V t (Q-value in the reinforcement learning formalism) followed by the outcome r t is updated according to:

V t+1 = V t + α • (r t -V t)
with α ∈ [0, 1] the learning rate. The Rescorla-Wagner algorithm is a one-step temporal difference algorithm that approximately maximizes the Bellman equation (approximately in the sense the algorithm never converges). Thus, the agent learns the value V t by experience, sampling from the environment through trial and error and updating V t through the prediction error (r t -V t). The RW model is a very influential model to explain behavior in humans and other animals in conditioning tasks [START_REF] Bouton | Learning and behavior: A contemporary synthesis[END_REF][START_REF] Miller | Assessment of the Rescorla-Wagner model[END_REF][START_REF] Siegel | The widespread influence of the Rescorla-Wagner model[END_REF]. The widespread influence of this model stems from its capacity to explain behavioral features in a simple manner. Among the successfully explained behavioral features, we can mention, for instance, the blocking effect [START_REF] Kamin | Predictability, surprise, attention and conditioning[END_REF] and the difference between reward and punishment learning (Palminteri et al., 2015). Reinforcement learning as formulated above consists of a trial by trial continuous update, not sensitive to temporal blocks within learning. It is thus agnostic to possible higher-order structures of the environment in which learning occurs, which can be a limitation of this model. Within the neuroscience literature, RW is often referred to as model-free reinforcement learning.

Another limitation of RW lies in its inability to handle within-trial temporal effects such as Inter Stimulus Interval effects (Davis, 1970, Buonomano, Bramen, and[START_REF] Buonomano | Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model[END_REF] or primacy effects (the first items of a sequence are better remembered - [START_REF] Healy | Comparing serial position effects in semantic and episodic memory using reconstruction of order tasks[END_REF]. This limitation can be solved, at least partly, by adding explicit dependencies across multiple subsequent trials. This is done by augmenting the SARSA-based model with eligibility traces (Sutton andBarto, 1987, Balkenius, Morén, et al., 1998).

Q-learning :

Before studying the implementation level, we can briefly describe one of the most important algorithms in reinforcement learning derived from temporal difference, the Q-learning algorithm. In its simplest form, one-step Q-learning is very similar to the SARSA algorithm [algorithm 4], with the difference the evaluation step [equation 1.4] is now:

Q(s, a) ←-Q(s, a) + α k r + γ • max a Q(s , a) -Q(s, a)
The estimator used here r + γ • max a Q(s , a) approximates the optimal value function V * (s) and not the current values function V π (s) as in SARSA. This allows early convergence and simplifies the analysis of the algorithm. Similarly to temporal difference methods, Q-learning can be augmented with eligibility traces defining the Q(λ)-learning methods.

Implementation Level

For this section, we will focus on the main RL algorithm used to explain behavior on an algorithmic level, the Rescorla-Wagner model (section 1. 1.3.2). The implementation level describes how the RW algorithm is implemented on a neural level, and, interestingly, there is a lot of neural evidence for this model, especially regarding one of its main markers, the reward prediction error (r t -V t).

Reward prediction error representations were first identified in neurons with dopamine receptors using electrophysiological recordings in primates [START_REF] Schultz | A neural substrate of prediction and reward[END_REF]Montague, 1997, Schultz, 1998). Dopamine is a neuromodulator produced in the midbrain area (substantia nigra and ventral tegmental area -VTA) which has been linked to motivation and reward. More precisely, Schultz, Dayan, and Montague, Chapter 1. Introduction 1997 showed that, during a Pavlovian conditioning task, the activity of dopaminergic neurons encodes the discrepancy between the reward and its prediction (figure 1.2):

• an unpredicted reward elicits an activation of dopaminergic neurons (positive prediction error).

• a fully predicted reward induces dopamine neurons to change the time of their phasic activation from just after the time of reward delivery to the time of stimulus onset.

• the omission of a predicted reward induces a depression of dopaminergic neurons (negative prediction error).

pathways can lead to movement control disruption, for example in Tourette syndrome,

Parkinson and Huntington diseases.

Electrophysiology and pharmacology studies show reward prediction error in dopamine neurons

Reward prediction errors representations were identified in dopamine neurons in the basal ganglia, using electrophysiological recordings in primates (Schultz et al., 1997 [112], 1998 [113]). Schultz and colleagues described a population of neurons that fire more with reward unexpected occurrence, less with reward unexpected non-occurrence, as compared to a baseline firing rate corresponding to reward expected occurrence (Figure 2.5). Such a pattern is interpreted as coding the reward prediction error r t V t as described in the previous section with reinforcement learning algorithms. Parametric activity of these dopamine neurons modulates cortical regions, which in turn integrate prediction errors to form future predictions. In addition to prediction error signal, Fiorillo and FIGURE 1.2: Dopamine neurons encode reward prediction errors (reproduced from [START_REF] Schultz | A neural substrate of prediction and reward[END_REF]. R is the reward and CS the conditioned stimulus Such an observation suggests that the reward prediction error (r t -V t) closely linked with the RW algorithm could be encoded at a neural level by the activations of dopaminergic neurons. Evidence of the prediction error representation from nonhuman primate electrophysiology was strengthened by fMRI -functional magnetic resonance imaging -neuroimaging data in humans. For example, O'Doherty and colleagues scanned human subjects while performing Pavlovian and instrumental tasks to obtain juice reward and found neural correlates of the reward prediction errors in the ventral striatum, a subcortical region that receives a lot of projections of dopaminergic neurons [START_REF] O'doherty | Dissociable roles of ventral and dorsal striatum in instrumental conditioning[END_REF]. Accessing directly the VTA midbrain area where dopamine is produced with fMRI is non-trivial as it is a very small 1.2. Bayesian description of mental processes and deep brain region; however, using high-resolution fMRI, D 'ardenne et al., 2008, were able to retrieve the blood oxygen level-dependent (BOLD) signal and showed VTA reflected the positive reward prediction error. Further studies have investigated the link between dopaminergic neurons and the reward prediction error, Pessiglione and colleagues investigated the behavioral effects of two drugs modulating dopamine, one dopamine enhancer and one dopamine blocker [START_REF] Pessiglione | Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans[END_REF]. The results showed again that reward prediction errors were represented in the striatum; furthermore they showed that dopamine treatments modified the amplitude of these signals. The dopamine enhancer amplified prediction error correlates whereas the dopamine blocker blunted them, thus establishing a direct link between dopaminergic transmission and striatal prediction error fMRI signals. Moreover, these drugs affected learning performances accordingly to their neural effects : subjects treated with the dopamine enhancer better learned compared to subjects treated with the dopamine blocker. This last result suggests a causal role of dopamine in reward-guided learning.

Additionally to the crucial role of dopamine in encoding the prediction error, representations of other variables present in the Rescorla-Wagner algorithm (section 1.1.3.2) have been identified. Notably, it has been reliably shown the subjective value V t is reflected in the ventral medial prefrontal cortex (vmPFC), located in the frontal lobe at the bottom of the cerebral hemispheres [START_REF] Bartra | The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value[END_REF]. However, this remains correlations and thus no causal link can be made between the vmPFC and the subjective value.

Conclusion

We described the reinforcement learning formalism at the computational, algorithmic and implementation levels. On a computational level, one aims to optimize the cumulative sum of discounted rewards. On a algorithmic level, we distinguished three classes of methods, dynamic programming (DP), Monte Carlo (MC) methods and temporal difference (TD). Monte Carlo methods seem of poor relevance to describe mental process. On the other hand, DP and TD have been extensively used to explain human behavior. On an implementation level, numerous neural correlates with reinforcement learning markers (e.g., the prediction error) have been found thus strengthening the relevance of these algorithms to explain mental processes.

Bayesian description of mental processes 1.2.1 Definition

Introduction : Bayesian inference is a method of statistical inference that provides a normative way to update a prior belief with incoming evidence. It essentially derives a posterior probability as the product of a prior probability with a likelihood function defined with a statistical model for the observed data. This rule leading Chapter 1. Introduction to the computation of a posterior probability is called Bayes' theorem, named after Reverend Thomas Bayes (1701-1761) who was the first to provide an equation that allows new evidence to update beliefs [START_REF] Bayes | An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs[END_REF]. It was then further developed by Pierre-Simon Laplace who published the modern formulation in 1820 [START_REF] Laplace | Théorie analytique des probabilités[END_REF]. Assume some observations y, applying Bayes' rule leads to the posterior probabilities of θ given these observations:

p(θ|y) ∼ p α (θ)p(y|θ)
Bayesian approaches have become very popular to explain behavioral and neural data in humans and other animals (e.g., Griffiths and Tenenbaum, 2009, Doya, 2007[START_REF] Fletcher | Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia[END_REF]. There are a several reasons for that:

• Given the task's generative structure, Bayes formalism defines the optimal strategy. From then onward, one can compare human performance to Bayes optimality.

• The inference techniques are identical regardless of the generative model considered. This has important implications as it implies the possibility of general theories across domains whether it is sensory processing, motor control or cognitive reasoning [START_REF] Pouget | Probabilistic brains: knowns and unknowns[END_REF].

• Lastly and most importantly, humans and animals have a notion of uncertainty [START_REF] Kepecs | A computational framework for the study of confidence in humans and animals[END_REF]. For instance, if I am asked to count the number of dots on a piece of paper, the greater the number, the less I will be certain of my estimation. This notion of uncertainty is crucial when modeling mental processes and Bayesian approaches allow a representation of this uncertainty through the variance of the posterior distribution.

However, in practice, computing this posterior reveals itself often difficult as the normalizing constant p(y) = θ p α (θ)p(y|θ) is rarely tractable. Furthermore, it also happens that the likelihood function is only known up to a multiplicative constant leading to another problem of doubly-intractable distributions [START_REF] Murray | MCMC for doublyintractable distributions[END_REF]. The intractability problem can be solved by efficient but computationally costly algorithms [START_REF] Beal | Variational algorithms for approximate Bayesian inference[END_REF], Robert, 2004). The cost of these procedures leads to question their biological plausibility. Consequently, similarly to reinforcement learning, to describe mental processes, multiple levels of Bayesian description coexist: computational, algorithmic and implementation. The computational level aims to describe the cognitive process with a generative model regardless of the underlying operations performing inference. In contrast, the algorithmic level assumes the underlying operations are actually performed by the neural process. This latter type of description often reduces the optimal Bayesian inference to some more plausible computations. Lastly, the implementation level aims to model with a neural description the operations performed on the algorithmic one.

Computational level

Bayesian statistics on a computational level require defining a generative model of how observables y are generated. This generative model consists of a prior distribution p(θ) and a likelihood function p(y|θ) with θ the parameters. Describing a mental process with a generative model implies that the mental process follows this generative model and performs inference on it. On this level, there is no regard as to how inference is performed.

A simple example : one presents 10 cards to a subject, each of them can be red or green. Given he has seen these ten cards sequentially, he is asked to predict the color of an 11th card. Assuming a computational depiction of the mental process will lead to assume he performs inference in the following graphical model [1.4] θ Y FIGURE 1.4: Generative model of the red/green card task with Y ∈ {0, 1} indicating the color of the card (0=red and 1=green). The likelihood function could be given by a Bernoulli distribution y|θ ∼ Ber(θ) and the prior by a beta distribution θ ∼ Beta (1,1). Given the 10 first cards y 1:10 , performing inference implies that the computation of the posterior p(θ|y 1:10) ∝ p(θ)p (y 1:10 |θ). Based on the posterior, we assume the subject would compute the likelihood of the 11th card p(y 11 | θ, y 1:10) and act accordingly. Furthermore, if the likelihood is very peaked, the subject should exhibit small variability in this answer, otherwise, the subject's responses should be more diverse.

In perception

Perception is the organization, identification, and interpretation of sensory information in order to represent and understand the presented environment. Helmholtz, 1856, proposed that the perceptual system executes an "unconscious inference" from Chapter 1. Introduction sensory stimulations to hypothesize about the environment. Under this view, sensory data are considered ambiguous and prior knowledge about the world is required to make accurate perceptual inferences [START_REF] Pizlo | Perception viewed as an inverse problem[END_REF]. With this in mind, Bayesian probability theory is a compelling framework as it allows a combination of external sensory features -likelihood function p(y|θ) -and real-world statisticsthe prior distribution p(θ) -in an normative way. Assuming I am in a city on a very foggy day and lights are coming towards me. The real world statistics p(θ) will tell me it is probably a car where, given the lights, the likelihood function alone p(y|θ) would also predict a boat.

Considering the compelling features of the Bayesian formalism in this setting, Bayesian algorithms have been developed in the 1980s to design artificial visual systems [START_REF] Bolle | Bayesian recognition of local 3-D shape by approximating image intensity functions with quadric polynomials[END_REF]. These approaches were later demonstrated appropriate and successful at modeling the human visual system [START_REF] Bennett | Observer mechanics: A formal theory of perception[END_REF][START_REF] Knill | Perception as Bayesian inference[END_REF][START_REF] Berkes | Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment[END_REF]. In other words, under a Bayesian formalism, the perceptual visual system computes a trade-off between what it expects to see (the real-world statistics) and what is actually encoded in the early visual cortex.

Further to explaining visual perception, and perception more broadly, Bayesian formalism has been evidenced to describe well the combination of different perceptual sources. For instance, if one desires to estimate the position of an object X from visual and auditory cues V and A, the Bayes' formulation

p (X|V, A) ∝ p (X|A) • p (X|V)
actually provides a powerful predictive model of human sensory cue integration [START_REF] Ernst | Humans integrate visual and haptic information in a statistically optimal fashion[END_REF]Banks, 2002, Knill and[START_REF] Knill | The Bayesian brain: the role of uncertainty in neural coding and computation[END_REF].

In cognition

When a human interacts with his environment, he receives information. For this information to be most valuable and to allow fast learning, the agent should make links between all received information. To make these links, he has to assume some structure in the environment. Whether it is in probabilistic instrumental tasks or in inductive learning (generalizing from sparse data), subjects exhibit behavior which reveal that they encode some kind of underlying structure. This is particularly striking in inductive learning where it has been shown that children can infer the approximate extensions of words given only a few relevant examples of how the words can be used and no systematic evidence as to how they cannot [START_REF] Bloom | How children learn the meanings of words[END_REF][START_REF] Carey | The child as word learner[END_REF]. Such rapid learning is impossible without constraints of some sort and constraints have effectively been highlighted in inductive learning (Keil, 1979, Heibeck and[START_REF] Heibeck | Word learning in children: An examination of fast mapping[END_REF]. These constraints suggest the presence of an underlying structure enabling efficient learning.

The key feature of Bayesian formalism that makes it a relevant framework to model cognitive processes lies in its possibility to describe underlying structures with generative models. A generative model is defined by a directed probabilistic graph which expresses conditional dependence structures between variables. Briefly, a directed probabilistic graph consists of nodes and edges (arrows between nodes), with each edge directed from one node to another (see [figure 1. 5] for examples of directed graphs). I will focus on a particular type of directed graphical models called directed acyclic graphs (also called Bayesian networks or DAGs) as this type of graph is mostly used to model mental processes. DAGs are finite directed graph with no cycles meaning there is no way to start from any node v and follow a sequence of directed edges that loops back to v again [figure 1. 5]. Extensive descriptions of these graphs can be found in Nasrabadi, 2007, chapter A question in cognitive science arises: how to model the human's mental process in such settings? Assuming there are K restaurants (with K < ∞), one way to model this task is with a multi-armed bandit. To solve the problem, the subject will assume a certain environment structure; for instance, he will assume some regularity stating that if a restaurant was bad one day, it is likely to remain bad. One of the ways to solve the problem uses Bayesian networks which allows for an explicit and graphical representation of the assumed structure. The single-step generative Bayesian network represented below [figure 1.6] defines a possible structure.

α θ K Y K θ i θ 1 Y i Y 1 FIGURE 1.6: Single-step Bayesian network
In this formalization, Y i and θ i are the reward and mean reward of restaurant i. We assume here the mean rewards of each restaurant are independent but sampled from the same distribution [START_REF] Steyvers | A Bayesian analysis of human decision-making on bandit problems[END_REF]. Evidently, other Bayesian networks with other underlying structures could solve this task differently. The alluring feature of Bayesian networks lies in its ability to represent a large range of underlying structures, thus allowing to compare within structures (Yu and Cohen, 2009). Moreover, an interesting extension of Bayesian networks increases the relationships indicated by edges and assumes that they represent direct causal relationships (Pearl, 2003, Spirtes, Glymour, and[START_REF] Spirtes | Causation, prediction, and search[END_REF]. This assumption allows causal graphical models to represent not just the events that one might observe, but also the events that one can produce by adding causal attributes to the system. Investigating causality involves comparing the structure of the graph [figure 1.7] with or without the edge between C and Y. In practice, this means computing the probability of the data given we assume an edge in the graphical model (or not).

C Y FIGURE 1.7: Causal Graphical model

Recalling our tourist, one can wonder whether the time of day (lunch -C = 0 -or dinner -C = 1) causes the meal to be good or bad (because there is a change of cook for instance). The lunch would then systematically be bad because of this one cook, however the dinner would be better thanks to another cook. Many psychological research on causal induction focus on this simple causal learning problem: given a candidate cause, C, and a candidate effect, E, people are asked to give a numerical rating assessing the degree to which C causes E [START_REF] Jenkins | Judgment of contingency between responses and outcomes[END_REF]Ward, 1965, Buehner and[START_REF] Buehner | Causal induction: The power PC theory versus the Rescorla-Wagner model[END_REF]. However, causal learning can be extended to, for instance, dynamic causal learning [START_REF] Danks | Dynamical causal learning[END_REF] or distinguishing hidden common causes from mere coincidences [START_REF] Griffiths | From mere coincidences to meaningful discoveries[END_REF].

Learning the priors : Let us follow our visitor who has ended his stay in this one city and is now going to visit another city for (again) a few weeks. He has performed the restaurant experiment once already and he might want to use the knowledge he has acquired in the former city to optimize his learning in this new one. For instance, assuming he learned that very few restaurant suited him, he will probably stop trying new restaurants faster in this new city as soon as he finds one that suits him. This feature can not be explained by the one-step graphical model. However, adding another stage enabling the learning of the prior α makes possible to describe this higher-level learning [figure 1. 8].

α 0 α θ K Y K θ i θ 1 Y i Y 1 FIGURE 1.8: Hierarchical Bayesian network
We essentially introduce a second type of Bayesian networks called hierarchical Bayesian networks (HBNs). The learning of this prior with HBNs is crucial as the prior distribution from the single-step Bayesian model captures the background knowledge that humans bring to the problem. More generally, HBNs allow transfer learning, they give the possibility to leverage what was learned on some data to accelerate learning on other data. This transfer feature is crucial as most human behaviors are guided by background knowledge, and cognitive models should formalize this knowledge and show how it can be used for learning. In this perspective, HBNs have been extensively used in the cognitive literature to model, for instance, categorization [START_REF] Sanborn | Hierarchical learning of dimensional biases in human categorization[END_REF], word learning [START_REF] Tenenbaum | Word learning as Bayesian inference[END_REF], feature variability [START_REF] Kemp | Learning overhypotheses with hierarchical Bayesian models[END_REF] and concept learning [START_REF] Lake | Humanlevel concept learning through probabilistic program induction[END_REF].

Chapter 1. Introduction

Markovian Models : All the previous Bayesian networks presented make the hypothesis of a static environment (the environment does not change). Given our visitor only stayed a few weeks in a city, this hypothesis is reasonable. However, if the visitor now decides to stay permanently in the last city, the static hypothesis might be unreasonable if he stays there for several years. Cognitive models should thus permit the release of the static constraint through the assumption of a changing environment. This is possible with Bayesian networks by adding, for instance, some Markovian structure. Let (X n) n be a random process and F n = σ (X 1:n) be the σ -algebra induced by X 1:n .

(X n) n is a Markov chain if is satisfies the Markov property (Ethier and Kurtz, 2009):

P (X n+1 |F n) = P (X n+1 |X n)
The Markov variable X n is never (or rarely) observed; in the case of our visitor, X n is the mean reward θ n . This leads to defining state space models (SSM) where the Markov chain is hidden but where we observe some variables which are conditioned on the chain [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]. Assuming a single restaurant with reward rate θ n , the corresponding graphical model is represented below [figure 1.9].

θ n θ n+1 Y n Y n+1 τ α FIGURE 1.9: Markovian Bayesian network
n is the iteration step, Y n ∈ {0, 1} are the observed rewards indicating whether the meal was 'good' or 'bad' and θ n is the mean reward -Y n ∼ Ber(θ n) for instance. τ is the volatility modeling the possibility of change. One can generalize this model to the K restaurants or add some more temporal constraints with Markov chains of higher orders [START_REF] Raftery | A model for high-order Markov chains[END_REF] or with semi-Markov chains [START_REF] Johnson | Bayesian nonparametric hidden semi-Markov models[END_REF]. Markovian models are particularly relevant when considering that sequential effects have an impact on human behavior. Humans tend to detect sequential regularities like repetitive or alternative patterns in sequences (Yu andCohen, 2009, Meyniel, Maheu, and[START_REF] Meyniel | Human inferences about sequences: A minimal transition probability model[END_REF] and their judgment confidence in learning is modulated by the pattern of the presented sequences [START_REF] Meyniel | Confidence as Bayesian probability: from neural origins to behavior[END_REF]Mainen, 2015, Meyniel, Schlunegger, and[START_REF] Meyniel | The sense of confidence during probabilistic learning: A normative account[END_REF]. Furthermore, there is also a large body of research that show humans adapt their behavior to changing environments, suggesting an encoding of the probability that the environment changes (Yu and Dayan, 2005, Behrens et al., 2007, Payzan-LeNestour and Bossaerts, 2011, Glaze, Kable, and Gold, 2015, Browning et al., 2015). These sequential effects can be described, at least in principle, by Markovian-based generative models.

Algorithmic level

I will now describe four ways to perform inference in Bayesian DAGs: belief propagation, Kalman filtering, variational methods and sampling methods. The first two ways perform inference in particular cases, belief propagation when the latent state space is discrete and Kalman filtering in linear Gaussian models. For variational methods, the main idea is to pick a family of distributions with its own variational parameters and approximate the target posterior with a distribution from that family. In contrast, sampling algorithms randomly draw samples to represent probability distributions as a collection of points. Usually, sampling methods are slower than variational procedures; however, they are asymptotically exact (in the number of samples), even though there are generally no guarantees for smaller numbers of samples. For the two latter methods, a good review of the algorithmic and implementation levels was carried out by Sanborn A. (Sanborn, 2017).

Belief Propagation

Belief propagation (BP) is a message-passing algorithm for performing inference on graphical models and DAGs in particular. It essentially uses the graphs factorization to distribute the computations on each node and propagate the information throughout the whole graph [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF]. In the case of state space models, this leads to the likelihood and forward/backward recursions [START_REF] Scott | Bayesian methods for hidden Markov models: Recursive computing in the 21st century[END_REF]. These methods are exact in DAGs and tree-structured graphical models more generally. In cyclic graphs, however, they are not necessarily exact [START_REF] Murphy | Loopy belief propagation for approximate inference: An empirical study[END_REF] but often perform surprisingly well [START_REF] Yedidia | Constructing freeenergy approximations and generalized belief propagation algorithms[END_REF]. Applying BP to cyclic graphical models is sometimes called loopy belief propagation. [START_REF] Jardri | Experimental evidence for circular inference in schizophrenia[END_REF]Deneve, 2013, Jardri et al., 2017).

Chapter 1. Introduction

Kalman filters

Kalman filters (KF) perform exact inference in linear Gaussian state space models [figure 1.9] [START_REF] Evensen | The ensemble Kalman filter: Theoretical formulation and practical implementation[END_REF]. These methods are particularly alluring because they are simple, efficient, and can be extended to perform approximate inference in non linear models [START_REF] Julier | New extension of the Kalman filter to nonlinear systems[END_REF]. At every time step, KF dynamics essentially perform a forward prediction based on the past experience updated with a corrective term based on the current one. This 'forward model' combined with a 'sensory corrective term' led to successfully model internal representations in spatial cognition [START_REF] Penny | Forward and backward inference in spatial cognition[END_REF] and sensorimotor integration [START_REF] Wolpert | An internal model for sensorimotor integration[END_REF]Jordan, 1995, Saunders and[START_REF] Saunders | Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements[END_REF].

Variational methods

Kalman filters can be extended to non-linear setting. However, in that case, to make the problem tractable, the extended Kalman filter (EKF) makes an assumption on the dynamics defining the model by linearizing them [START_REF] Ljung | Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems[END_REF]. The assumptions on the model's dynamics to perform inference make it a variational method.

Variational methods aim to approximate the posterior with a distribution from a selected family of distributions (e.g., Gaussians). To do so, the algorithm minimizes a distance between the actual posterior and the variational one. A common distance used is the Kullback-Leibler divergence defined as

D KL (p||q) = p(x) • log p(x) q(x) dx
with p and q two probability density functions. In this case, the distance between the variational and actual posteriors is also called the free energy.

The free energy description of mental inference was essentially introduced by Friston and colleagues [START_REF] Friston | A free energy principle for the brain[END_REF]. To assume that the brain explicitly tracks any posterior (intractable or not) is an unrealistic hypothesis. The free energy principle solves this issue by assuming that the brain can encode a fixed set of distributions. The underlying hypothesis is that the neural system has access to a family of distributions (defined by the possible neural configurations) and that, given these distributions, the system will converge to the one which minimizes the Kullback-Leibler divergence with the exact posterior. Doing so, this theory is relevant as it provides a unified account of how the brain works : the brain has access to certain distributions and, driven by the free energy minimization principle, it will converge to the one which minimizes it (Friston, 2010).

The free energy unifying theory stems more from biological considerations than from behavioral arguments. Variational descriptions of behavioral biases mostly comes from studies implicating particular parametric approximations. Biases induced from trial order in associative learning (highlighting, forward and backward blocking) have thus been described by various parametric approximations [START_REF] Kruschke | Locally Bayesian learning with applications to retrospective revaluation and highlighting[END_REF][START_REF] Sanborn | Constraining bridges between levels of analysis: A computational justification for locally Bayesian learning[END_REF], Daw, Courville, and Dayan, 2008).

Sampling methods

Broadly, as the name indicates, sampling methods allow sampling from distributions. Numerous procedures enable sampling from a target distribution even though it might not possible to sample directly from it. Three common and very popular methods are Monte Carlo Markov Chain (MCMC), Importance Sampling (IS) and Sequential Monte Carlo (SMC).

Monte Carlo Markov Chain MCMC methods construct a Markov chain which keeps the target distribution invariant. Running the MCMC for a long time will lead to a chain whose samples are approximately distributed under the posterior (see next chapter for more details, see section 2.2.1). Among others, MCMC methods have two properties, which have been used to explain features of mental processes. Firstly, MCMC algorithms are accompanied with a burn-in period : even though MCMC procedures lead to a chain which keeps the target distribution invariant, one must initialize the chain in some way. This initialization will lead the first samples to be poor approximations of the target distribution. Usually, when applied in practice, one discards the first N samples as they are considered inaccurate. In cognitive neuroscience however, this property can be used to highlight a time-accuracy trade-off and explain cognitive biases such as the anchoring bias : when asked for estimates -e.g., the duration of Mars's orbit around the sun -, subjects tend to be biased to known values -e.g., the duration of Earth's orbit around the sun [START_REF] Lieder | Burn-in, bias, and the rationality of anchoring[END_REF]. Secondly, MCMC algorithms generate a sequence of random variables which follow the target distribution. If this target distribution is multimodal, the chain will iterate in one mode but will jump, at some point, to another. The chain's dynamic will iterate between exploring the current node and jumping to other ones. This feature is interesting when considering perceptual multistability evoked by ambiguous sensory input (e.g., Necker cube). It has been shown that the perceptual system of humans and nonhuman primates does not produce a superposition of different possible percepts of an ambiguous stimulus, but rather switches between different selfconsistent global percepts in a spontaneous manner. If we consider the posterior of the ambiguous stimulus and each percept as a mode, one can explain perceptual multistabilibity with MCMC methods (Buesing et al., 2011, Gershman, Vul, and[START_REF] Gershman | Multistability and perceptual inference[END_REF].

Importance Sampling Importance sampling (IS) samples from an auxiliary distribution and assigns a weight to each sample to obtain weighted samples approximately distributed under the target distribution (see next chapter for more details, see section 2.2.1). IS works well when the auxiliary distribution is close to the target distribution, but tends to perform poorly if these two distributions are very different. Importance sampling is an alluring procedure because, when well used, it is simple and efficient. IS has been used in the cognitive literature to explain and generalize Chapter 1. Introduction exemplar models (models which rely on learning from examples) to a serie of tasks in perception, generalization, prediction and concept learning [START_REF] Shi | Exemplar models as a mechanism for performing Bayesian inference[END_REF].

Sequential Monte Carlo Sequential Monte Carlo (SMC) are efficient methods designed to deal with sequential data. The simplest form of SMC incrementally updates the posterior distribution by applying importance sampling iteratively every time a new piece of information is available [START_REF] Doucet | An introduction to sequential Monte Carlo methods[END_REF]. These methods are particularly well suited to explain mental processes in sequential settings as they provide a natural solution to the general problem of updating a probability distribution over time. SMC algorithms have a crucial parameter to set, the number of particles N. It has been shown that SMC algorithms are asymptotically exact (in the number of particles N) meaning that when the number of particle tends to infinity, the approximate posterior (obtained through SMC) converges, in some sense, to the exact posterior.

In contrast, when this number of particles N is little, the algorithm becomes suboptimal, variability of the approximate posterior is increased and the procedure exhibits interesting biases. These three properties induced by a small N are essentially due to the degeneracy problem (see section 2.2.5); however, for now, let us just consider a small N induces a limited exploration of the latent space.

In similar settings, one can thus explain behavioral performances whether they are near-optimal or sub-optimal by increasing or decreasing the number of particles N [START_REF] Brown | Detecting and predicting changes[END_REF]. Furthermore, when N drops, one can even explain individual behavior with the increase of variability in SMC posteriors (Courville andDaw, 2008, Daw and[START_REF] Daw | Semi-rational models of conditioning: The case of trial order[END_REF].

When N decreases, an interesting feature highlighted in SMC algorithms is the order effect. As the space is not well explored, the order in which the observations (or events) are presented influences the latent posterior. More precisely, early observations tend to have greater influence (on the posterior) then later ones. This is very interesting as the same kind of order effect has been highlighted in human behavioral data [START_REF] Anderson | The adaptive nature of human categorization[END_REF]. This order effect bias of SMC procedures induces similar bias in sentence processing [START_REF] Levy | Modeling the effects of memory on human online sentence processing with particle filters[END_REF], causal learning (Abbott and Griffiths, 2011) and category learning (Sanborn, Griffiths, and Navarro, 2010).

Implementation level

We have studied the computational level of Bayesian statistics with generative modeling and the algorithmic approaches that perform exact or approximate inference on these Bayesian networks. We have further investigated the behavioral features which can be explained by these algorithmic methods. We will now study the implementation level of the algorithms presented previously. There are mainly two classes of implementation methods. Assuming a probability distribution, the first class assumes an explicit mapping of probability on neurons meaning the probability distribution is encoded explicitly by neural activity. The second class, called neural sampling, assumes cortical activity are samples from the probability distribution.

Explicit mapping of probability on neurons

A first common implementation level model of Bayesian inference assumes that probabilities are encoded by neural activity. Let us assume a stimulus s (e.g., an image) and a neuron i with firing rate λ which detects the presence or not of a visual feature v (e.g., a vertical line in a particular region of the image). Assuming neural activity explicitly encodes probabilities means λ ∝ p (v is present) (Anastasio, Pat- ton, and Belkacem-Boussaid, 2000). Other similar approaches involve not the probability itself but its logarithm λ ∝ log p (v is present) (Barlow, 1969) or the log ratio of the probabilities that the feature is present and absent, λ ∝ log(p(v is present)/p(v is absent)) [START_REF] Gold | Neural computations that underlie decisions about sensory stimuli[END_REF]. These neural models of Bayesian inference have often been highlighted in simple settings, where inference is performed on DAGs with only few nodes (see section 1.2.2.2). But they can be extended to model, on a neural level, more complicated inference algorithms such as Belief Propagation (BP) -see section 1.2.3.1. In this latter case, populations of neurons are assumed to explicitly encode the BP messages.

Combining the populations' activities -meaning the BP messages -through the network's dynamics enables message passing, which leads, at convergence, to a stabilization of the populations' activities [START_REF] Steimer | Belief propagation in networks of spiking neurons[END_REF]. Once convergence is reached, an estimation of relevant likelihoods (e.g., the marginal likelihood of each node) is obtained by combining the messages (e.g., by multiplying the messages of neighboring nodes). Another interesting approach uses a Hopfield network to derive the BP message-passing algorithm [START_REF] Ott | The neurodynamics of belief propagation on binary markov random fields[END_REF]. This second solution is alluring as Hopfield networks utilizes Hebb's learning rule for training which has been highlighted as a learning procedure in biological networks (Hebb, 1988).

In the case of distributions with complex forms (e.g., non-Gaussian and multimodal distributions), mapping the probability distributions to the neural activity becomes non-trivial operations, as receptive fields have mostly been highlighted as unimodal Gaussian-like distributions [START_REF] Jones | An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex[END_REF]. A common solution is to express the probability distributions as the sum of other functions, called basis functions (Ma et al., 2006[START_REF] Beck | Probabilistic population codes for Bayesian decision making[END_REF]. Let f = { f i } i=1:N be the basis functions representing the tuning curves of N neurons (f i can be, for instance, Gaussian). Let s be a stimulus and r = {r i } i=1:N the neural response of each neuron. The log posterior p(s|r) is then expressed as:

log p (s|r) = ∑ i r i • f i (s) + Z
with Z the normalizing constant. Performing neural inference with basis functions Chapter 1. Introduction is a powerful tool and provides neural implementations of the Kalman filter (Deneve, Duhamel, and [START_REF] Deneve | Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filters[END_REF] and Importance sampling (Shi and Griffiths, 2009). Given this last implementation, Sequential Monte Carlo methods can be derived as they involve iterating importance sampling steps (at least their particle filtering derivations in the case of state space models, see section 2.2.2.2).

In hierarchical Bayesian graphs where random variables are continuous, the free energy principle by Friston K. and colleagues leads to an implementation level model of variational inference [START_REF] Friston | Hierarchical models in the brain[END_REF]. This neural model combines the mean field and the Laplace approximations. The mean field approximation leads to a form of message passing algorithm and the Laplace one reduces the messages to the sufficient statistics of Gaussian distributions. The sufficient statistics of the messages are assumed to be encoded through neural activity on different levels of the cortical hierarchy and the messages are passed up and down the different levels until convergence. A limitation of this model lies in the necessity of the Gaussian representation. However, one can relax this hypothesis by using basis functions to represent the variational posterior [START_REF] Beck | Complex inference in neural circuits with probabilistic population codes and topic models[END_REF].

Neural Sampling

Another influential implementation level model of Bayesian inference assumes that probabilities are represented by the variability of cortical responses. In contrast to the previous explicit theory where probabilities are assumed to be represented in cortical activities, we assume here cortical activity are samples distributed under the probability distribution. This second implementation level model called neural sampling treats spikes (or membrane potentials) as samples from a probability distribution.

Neural sampling is a compelling framework to model sampling methods. Neural activity would correspond to samples obtained through the sampling procedures (IS, MCMC, SMC,...) and neural variability would account for sampling variability [START_REF] Fiser | Statistically optimal perception and learning: from behavior to neural representations[END_REF]. Following this logic, Monte Carlo Markov Chain, Importance Sampling and Sequential Monte Carlo procedures have been described as recurrent spiking networks where each spike in a population of neurons is viewed as a Monte Carlo sample of the target probability (Buesing et al., 2011, Legenstein andMaass, 2014). Interestingly, neural sampling based models present features which have been observed in cortical activity. [START_REF] Aitchison | The Hamiltonian brain: efficient probabilistic inference with excitatory-inhibitory neural circuit dynamics[END_REF], developed a simple excitatoryinhibitory network which performs stochastic gradient Hamiltonian Monte Carlo [START_REF] Chen | Stochastic gradient hamiltonian monte carlo[END_REF]Guestrin, 2014, Neal et al., 2011). This network that performs inference in a Gaussian-based model simulates the dynamics of V1 responses and actually exhibits specific properties observed in the neural dynamics, such as the excitatory/inhibitory balance and the modulations of oscillations and transients with stimulus contrast. In the same line of work, [START_REF] Orbán | Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex[END_REF], developed a sampling-based generative model of V1 spiking activity and explained numerous neural features highlighted experimentally. Among other, this model explains the reduction of the membrane potential noise with the contrast of the stimuli, the independence between the membrane potential and the orientation of the stimuli, and, most interestingly, the match between spontaneous correlations, signal correlations and noise correlations.

Conclusion

We have described Bayesian approaches on a computational, algorithmic and implementation level. On a computational level, Bayesian approaches have successfully described numerous features in perception and cognition through its generative structures. On an algorithmic level, every algorithm presented successfully explains some behavioral features suggesting these algorithms are complementary in some sense. As for the implementation level, we have presented two approaches, one which explicitly represents probability and second which relies on probability samples. Whether these approaches are exclusive or congruent is still an open question; however, these show, at least to some extent, the relevance of using Bayesian approaches to model mental processes.

Deep learning description of mental processes

Given the emergence of the deep learning modeling framework to model mental processes, I thought interesting to compare this framework with the two previous presented. As I did not use this modeling framework, I will not describe it as extensively as the two previous ones.

Definition

Introduction : In 1957, Frank Rosenblatt, an American psychologist, invents the perceptron [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF]). Rosenblatt's perceptron is a simple network obtained through a linear combination of the inputs followed by a non-linearity (figure 1.10).

Σ W 1 W 2 W 3 W n x 1 x 2 x 3
x n y FIGURE 1.10: Perceptron. x i are the inputs, w i the weights and y the output. n is the number of neurons.

Chapter 1. Introduction

This first network essentially paved the way to numerous fields of research focused on neural networks, among which biological neural networks and deep learning.

In contrast to biological neural networks which aim to model the functioning of biological circuits, deep learning was developed for solving real-world problems (independently of any biological considerations). This latter field has dramatically evolved these last twenty years with the growth of computational power and has now improved state-of-the-art results in numerous domains : speech recognition, visual object recognition, object detection, drug discovery and genomics... [START_REF] Lecun | Deep learning[END_REF].

Deep networks involve an elementary neuron comparable to the perceptron and essentially consist of a succession of linear and non-linear operations. Typical networks will superimpose a big number of neuron layers (tens or hundreds) leading to architectures that discover complex structures in large data sets. Architecture-wise, the success of deep learning is largely due to the introduction of two structures : convolutional neural networks [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] and recurrent neural networks [START_REF] Hochreiter | Long short-term memory[END_REF]. Among some of the well known networks in vision are VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], AlexNet [START_REF] Han | Learning both weights and connections for efficient neural network[END_REF], and ResNet [START_REF] He | Deep residual learning for image recognition[END_REF].

Given the impressive performances of deep learning networks which achieve humanlevel control [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF], one can hypothesize common features between the brain and these networks. This consideration has led researches to investigate links between neuroscience and deep learning.

Formalization : A deep neural network maps inputs x of dimension d to outputs y of dimension d through a function f defined by a series of linear and non-linear operations. Let us write f the function defined by the deep network.

y = f θ (x)
with θ the network's parameters. Usual settings assume some data D = {x, y} (with the possibility of y = ∅) and a loss function L(x, y) = ∑ N i=1 d (f (x i) -y i) with d a metric and N the number of training samples.

Computational level

Given a specified task (e.g., visual object recognition), using computational level deep models to explain mental processes involves choosing a network f and a loss function L. Given some data D = {x, y} obtained from the task (e.g images and labels), one trains the network so as to minimize the loss L. This is called the training phase. Once the network is trained, one can predict some outputs given some new inputs. The second phase is the prediction phase. On a computational level, we do not regard as to how the underlying operations are carried out. These operations are of two types:

• The training operations which include all operations necessary to minimize the loss function L on the training data. • The prediction operations which include all operations necessary to carry out predictions with the trained neural network.

Deep network architectures are very efficient models. This efficiency stems from interesting features which make them relevant models to describe mental processes. I will now describe some of these features.

A first type of influential deep learning architecture is convolutional neural networks which involve learning convolution tensors [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. These networks have achieved state-of-the-art performances in numerous domains, in particular visual-related ones such as visual classification [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and have thus proved themselves to be very powerful to encode visual features. Regarding the biological visual system, it has also been shown to be efficient and reliable. A question arises here: are these networks comparable? Yamins et al., 2014, studied this question and actually show they are comparable by demonstrating that about 50% of the variance of V4 and MT neuron activity can be explained with the neural activity of a deep convolutional neural network.

Other interesting architectures are based on recurrent networks [START_REF] Hochreiter | Long short-term memory[END_REF]. These networks allow for aggregating information in time. 11]) and a second one because the network is accumulating information sequentially. The distinction between these learning procedures has been used to explain how humans perform so efficiently in tasks within only a few trials [START_REF] Wang | Learning to reinforcement learn[END_REF]. In this theory, the network's weights account for the prior knowledge that humans acquire throughout their lives. The latter form of learning, called meta-learning in [START_REF] Wang | Learning to reinforcement learn[END_REF], performs evidence accumulation and would account for the humans efficient learning in a particular task. These two learning procedures have been further given biological possibilities thereby providing another interpretation of the presence of both model-based and model-free RL in the brain Chapter 1. Introduction : learning the weights would be done with model-free RL and the accumulation process would represent what was interpreted as model-based RL [START_REF] Daw | Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control[END_REF]Dayan, 2005, Wang et al., 2018). This last paper [START_REF] Wang | Prefrontal cortex as a meta-reinforcement learning system[END_REF] essentially provides an alternative theory to how model-based and model-free RL systems could work together.

One interesting type of recurrent network is called long short-term memory networks -LSTMs [START_REF] Hochreiter | Long short-term memory[END_REF]. LSTMs involve two gates, one reset gate which allow for information maintaining and one other update gate which enables information manipulation. These two network features make LSTMs relevant candidates to model human working memory [START_REF] Heeger | ORGaNICs: A Theory of Working Memory in Brains and Machines[END_REF].

There is another very popular network architecture in deep learning called generative adversarial networks -GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF]. Given data D (e.g., images of faces), these last types of networks learn a generative model of D. [START_REF] Wang | Learning to reinforcement learn[END_REF] to theory of mind [START_REF] Rabinowitz | Machine Theory of Mind[END_REF], and, essentially, the relevance of using the deep learning framework to build computational models stems from their remarkable performances.

Algorithmic level

Given a network f θ with θ the network's parameters, a loss function L and some data D = {x, y}. Regarding the training phase, one wants to find θ = θ * which minimizes the loss given the data. Then, given θ = θ * , one can predict new outputs y pred given some new inputs x pred (prediction phase).

For the training operations firstly, to train deep networks, the most commonly used approach splits the data in a training set D train = {x train , y train } and a validation set D validation = {x validation , y validation }. One then applies stochastic gradient descent ap- proaches (Bottou, 2010) to minimize the train loss (meaning the loss on the training set) while monitoring the validation loss (loss on the validation set). Convergence to a local minima θ * is considered achieved when the validation loss stops decreasing (and thus starts increasing again). This procedure ensures the optimization procedure does not overfit the training data.

There are more sophisticated descent approaches based, for instance, on the natural gradient [START_REF] Amari | Natural gradient works efficiently in learning[END_REF] or hessian approximations [START_REF] Martens | Learning recurrent neural networks with hessian-free optimization[END_REF]. However, these methods tend to suffer from computational limitations (time, memory,...) when dealing with big networks and large amounts of data. Though the sub-optimality of gradient descent procedures could be used to explain human sub-optimality or variability, there has been little evidence in neuroscience of gradient descent methods to explain behavioral features or biases. Maybe this is due to the biological implausibility of gradient descent making it an irrelevant algorithm for describing mental processes (see next section 1.3.4).

Once the network is trained, to predict new outputs, one performs a forward pass with the inputs clamped. This now involves the prediction operations. This second algorithm is very simple as it consists of deterministic elementary operations and non-linearities. Again, there is little evidence which highlights the relevance of prediction operations to explain behavioral features. As previously, this might be due to their biological limitations (see next section 1.3.4).

Implementation Level

Training phase : Applying gradient descent procedures requires computing the gradient. This is done in deep networks thanks to an algorithm called backpropagation which essentially propagates the gradients through the networks from the output layers to the input ones [START_REF] Hecht-Nielsen | Theory of the backpropagation neural network[END_REF]. As stated by Crick in 1989, backpropagation seems like an implausible biological algorithm.

"It is [. . .] extremely difficult to see how neurons would implement the back-prop algorithm. Taken at its face value this seems to require the rapid transmission of information backwards along the axon, that is, antidromically from each of its synapses.

It seems highly unlikely that this actually happens in the brain." [START_REF] Crick | The recent excitement about neural networks[END_REF] Among others, the reasons why backpropagation is unrealistic stems from the fact:

• Backprop is linear, neural responses are usually not.

• Backprop requires the knowledge of the derivatives of the non-linearities. If the brain's feedback paths (with their own synapses and maybe their own neurons) were to implement backprop, they would require the complete knowledge of these derivatives.

• Backprop requires symmetric feedforward and feedback connections -the same weights must be used for forward and backward passes • No online learning within this training phase would be implemented • The computation would have to be time-wise precise to alternate between feedforward and backward phases (since the latter needs the former's results).

• It is not clear as to where the output targets would come from in the brain.

There has been considerable work on relaxing backpropagation's biological limitations. For instance, Liao et al. showed that backprop remains efficient when relaxing the symmetry constraint -3rd constraint in the list [START_REF] Liao | How important is weight symmetry in backpropagation?[END_REF]. Also, a study from Fitzsimonds et al. show that a simple neural network (comprised Chapter 1. Introduction on three neurons) exhibits a backward flow of information leading to question the 4th constraint [START_REF] Fitzsimonds | Propagation of activity-dependent synaptic depression in simple neural networks[END_REF].

To further relax the constraints of backprop, Bengio and colleagues have developed a more biological plausible derivation of backpropagation called target propagation (targetprop). Whereas backpropagation propagates the gradients through the network, targetprop propagates targets. Thanks to this target propagation, every layer is now assigned with a loss and a target and optimization is completed locally which solves the three first constraints elicited in the list.

Prediction phase :

The prediction phase consists of having new inputs x pred and applying the network to these inputs to obtain y pred . This prediction phase is also limited biologically as, in these networks, artificial neurons are simultaneously excitatory and inhibitory. Furthermore, and as previously, neurons in deep networks communicate with continuous values.

Conclusion

We have presented the deep learning framework on a computational, algorithmic and implementation level. On a computational level, the state-of-art performances achieved by deep networks have led to study links between deep learning architectures and mental processes. On an algorithmic level, little evidence exists today that argue the relevance of gradient descent approaches. Lastly, on an implementation level, deep networks remain limited biologically. However, on this last level, deep learning still stays relevant as it is, at least among the three presented formalisms, the one which is closest to elementary operations.

Comparing the different approaches

On a computational level

I compare the three approaches on four criteria.

• Transfer learning -Does the framework allow for transferring the knowledge learned by the subject on one task to another?

• Generative modelisation -Does the framework enable modeling the fact that subjects assume underlying structures in the environment (generative formalism) and does the framework enable the learning of this structure (generative learning) ?

• End-to-end -Does the training require preprocessing of the inputs (e.g, in a two-armed bandit task, does the algorithm see the visual scene -like the subject does -or is he given a preprocessed version with the to 2 possibilities mapped on numbers -0 and 1 for instance) ?

• Represents uncertainty -Does the network represent uncertainty on the hidden variables? Similarly to Pouget, Drugowitsch, and Kepecs, 2016, we will distinguish here the notion of uncertainty (which will refer to all other variables) from confidence (which will refer to the uncertainty on the decision variable only).

On an algorithmic level

Before comparing the formalisms on an algorithmic level, let us recall that the algorithmic level is not independent of the computational one. Indeed, if a formalism is relevant to model mental processes on a computational level, one might want to explore the algorithmic level to build a more biological algorithm. Additionally to this first observation advocating the relevance of algorithmic levels" one can perform a within formalism comparison to study their respective advantages and drawbacks. I distinguish five criteria :

• Explains behavioral features or biases -Do these methods provide explanations for behavioral features or biases ?

• Data necessity -How much data is necessary for the procedures to perform well ?

• Data scaling -Does the algorithm scale to large amounts of data ?

• Computational power -Are the algorithms computationally costly ? Each approach has its advantages and its drawbacks. However, a major drawback of Bayesian learning lies in the computational cost of the algorithms. For deep learning algorithms, two majors limitations: firstly, there is little evidence of these methods to explain behavioral features or biases and, secondly, they are largely offline methods when human learning is, for its most part, online.

On an implementation level

On this level, I will only compare the biological plausibility of each of the frameworks.

Reinforcement Learning

Bayesian Learning

Deep Learning

Biological plausibility

Neural evidence Numerous plausible neural models of Bayesian inference

Limited plausibility

In a non-trivial way, on the implementation level, the deep learning formalism which is the closest one to the elementary operations is the one with the most biological limitations. One must be cautious regarding this last formalism as it could seem, at first sight, like the formalism which is the closest to biological level among the three.

Combining frameworks

We have presented three frameworks reinforcement learning, Bayesian learning and deep learning and have studied them independently to allow a clear comparison of the frameworks. However, these frameworks are obviously not independent in the sense that numerous studies assume models that combine them.

Combining reinforcement learning and Bayesian approaches

We presented in the first framework model-based reinforcement learning -MBRL (see section 1.1.3.1). MBRL methods require an accurate model of the environment.

To build this accurate model, one can use Bayesian approaches. Using Bayesian approaches to obtain the transition and reward function in MBRL has been used to distinguish model-based and model-free reinforcement learning in humans (Daw et al., 2011, Daw, Niv, andDayan, 2005). I already talked about this in section 1.1.3.1 without mentioning the underlying model was Bayesian.

Another example of combining RL and Bayesian approaches shows how humans behave in open-ended situations (Donoso, Collins, andKoechlin, 2014, Collins andKoechlin, 2012). Such a model is essentially based on an approximation of the Dirichlet process defining the number of strategies stored in working memory. Every strategy is linked to particular contingencies and a reinforcement learning procedure enables the learning of these strategies.

Combining RL with Bayesian approaches enables a notion of uncertainty, structure and transfer learning in reinforcement learning methods which have been established to explain well neural activations (see section 1.1.4).

Chapter 1. Introduction

Combining reinforcement learning and deep learning approaches

In reinforcement learning, the goal of the agent is to interact with the environment by selecting actions in a way that maximizes future rewards (see section 1.1.1). Let S be the state space and A the action space. Reinforcement learning algorithms estimate the optimal action-value function by using the Bellman equation as an iterative update (see e.g., Q-learning 1.1.3.2).

Q(s, a) ←-R(s, a) + E s [γ • max a Q s , a | s, a]
with R(s, a) the reward obtained when performing action a in state s and γ the discount factor. Such value iteration algorithms converge to the optimal action-value functions Q * (s, a). However, in this approach, the action-value function is estimated separately for each state-action (s, a) pair; they thus lack to model the environment's structure. To introduce a structure, it is common to use a function approximator to estimate the action-value function Q θ (s, a) ≈ Q * (s, a). In the reinforcement learning community this is typically a linear function approximator, however, nonlinear function approximators such as a neural network can also be used. Using a neural network function approximator Q θ (s, a) leads to a deep reinforcement learning.

Comparably to the dynamic programming procedures presented in section 1.1.3.1, deep reinforcement learning networks can be trained with value-based [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] or policy-based algorithms [START_REF] Mnih | Asynchronous methods for deep reinforcement learning[END_REF].

Deep reinforcement learning networks have recently been shown to perform as well as humans in situations approaching real-world complexity [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF]. Furthermore, they have also been used to highlight the presence of meta-learning in recurrent neural networks to model how humans perform so efficiently [START_REF] Wang | Learning to reinforcement learn[END_REF][START_REF] Wang | Prefrontal cortex as a meta-reinforcement learning system[END_REF] -which I have already presented section 1.3.2.

Combining RL with deep learning approaches enables end-to-end training, structure and transfer learning in reinforcement learning methods which have been established to explain well neural activations (see section 1.1.4).

Combining deep learning and Bayesian approaches

While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent uncertainty. This missing feature can be obtained by combining deep learning with Bayesian methods. This has been done in the machine learning community to obtain for instance the posteriors of a deep network's parameters (Welling andTeh, 2011, Chen, Fox, and[START_REF] Chen | Stochastic gradient hamiltonian monte carlo[END_REF]. Interestingly, other deep learning approaches actually rely on Bayesian's possibility to represent posteriors to encode rich latent distributions where the parameters of the distribution are given by neural networks [START_REF] Kingma | Auto-encoding variational bayes[END_REF]. Even though deep learning and Bayesian approaches have been combined in machine learning, I am not aware of any study that combine them to explain mental processes.

Combining the three approaches

In principle, one could also combine the three approaches by applying, for instance, Bayesian gradient descent approaches to deep reinforcement learning networks. One could also assume a model of the environment based on a combination of deep learning and Bayesian methods to then apply model-based reinforcement learning.

Conclusion

In conclusion to this analysis, no formalism clearly stands out compared to the others. Each formalism has their advantages and drawbacks and, given the goal of the study, one should ponder which formalism to adopt. This is especially true on a computational level. On algorithmic and implementation levels, one could argue the deep learning methodology to be presently less rich then Bayesian or reinforcement learning ones. However, it still remains relevant as it is the formalism which is the closest to elementary operations. Interestingly, the combination of the different frameworks enables using the advantages of the different approaches to build richer representations.

During this analysis, I have compared reinforcement learning, Bayesian approaches and deep learning. Force of a clear comparison, these methods were outlined and probably oversimplified to a certain extent; within 40 pages, it is difficult to pin down these three huge formalisms. I have also not studied other formalisms such as biological and spiking neural networks. However, throughout this depiction on these methodologies, we have seen to which extent each of these three frameworks is useful and to which extent each is wrong.

Chapter 2

Particle methods

After broadly presenting three extensively used frameworks -reinforcement learning, Bayesian approaches and deep learning -, I will now focus on a segment of Bayesian approaches called particle methods. Within the Bayesian formalism, these particle methods were crucial to build and analyze the cognitive models developed throughout this PhD. Also, this description will relate to the broader one previously given as it will highlight the extensive computations behind Bayesian inference (section 1.4.1.2).

Overview of Bayesian methods

Statistical analysis starts with a collection of probability distributions p θ indexed by a parameter θ ∈ Θ with Θ an arbitrary set and Y a random variable generated from p θ . The main idea of the Bayesian paradigm is to endow Θ with a structure probability space (Θ, S(Θ), π) where S(Θ) is a σ-algebra induced by Θ and π a probability measure on S(Θ). π is called the prior distribution and can furthermore be augmented with some parameters α called the hyperparameters. We will assume π has a density p α with respect to the Lebesgue measure (see figure 2.1 for the generative model of Y).

Bayesian inference is a method of statistical inference that provides a normative way to update the prior belief with incoming evidence. It essentially derives a posterior probability as the product of the prior p α and the likelihood function p θ -also defined as the conditional probability p(.|θ). This rule leading to the computation of a posterior probability is called Bayes' theorem, named after Reverend Thomas Bayes (1701-1761) [START_REF] Bayes | An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs[END_REF]. The Bayesian paradigm was further developed by Pierre-Simon Laplace, who first published the modern formulation in 1820 [START_REF] Laplace | Théorie analytique des probabilités[END_REF].

α θ Y FIGURE 2.1: Generative model of Y

Overview of Bayesian methods

Assume some observations y, applying Bayes' rule leads to the posterior probabilities of θ given these observations:

p(θ|y) ∝ p α (θ)p(y|θ)

There are two major advantages of using Bayesian over frequentist inference methods:

• Bayesian methods work with probability distributions allowing to monitor the variance of the inferred parameters. In contrast, frequentist methods only track point estimates and thus provide less information.

• Bayesian methods allow for marginalization over the parameters leading to the marginal likelihood p(y) which is very useful when wanting to compare different models. Assume we have two nested models m 1 and m 2 defined by the likelihood functions p(.| α, β) and p β=1 (.| α). Comparing the likelihoods will always lead to the more complex model (m 1 here) to win. However, this might only be because m 1 is overfitting the data where m 2 might be generalizing better. To solve this issue, marginalization over the parameters enables penalizing parameters which induce overfitting. In frequentist statistics, there are ways to penalize for the number of parameters by using, for instance, crossvalidation techniques. Nevertheless, in sequential task where observations can not be considered independent and identically distributed, defining an adequate cross-validation procedure is not trivial.

Bayesian methods offer substantial advantages over frequentist ones to perform model analysis and comparison. Nonetheless, they are considerably more computationally costly: the time of computation and required memory are orders of magnitude greater. If one desires to perform model fits or when setting a prior is non-trivial, a study within the frequentist domain would be privileged, especially when considering large amount of data.

Within the interest of this work, our aim is twofold: study the model's parameters and perform model comparisons. With these interests in mind, the Bayesian framework is well adapted. Unfortunately, applying Bayes' theorem is not always straightforward as computing the posterior p(θ|y) reveals itself often difficult because the normalizing constant p(y) = θ p α (θ)p(y|θ) is rarely tractable. Furthermore, it also happens the likelihood function p(y|θ) is only known up to a multiplicative constant leading to another problem of doubly-intractable distributions [START_REF] Murray | MCMC for doublyintractable distributions[END_REF]. To solve these issues, a series of Bayesian solutions have been developed. In nonlinear and nonfinite models, these solutions can mainly be divided in two categories : Variational methods and Sampling methods.

For the remaining part of this PhD, I will mainly focus on sampling methods. However, before describing the sampling methods, I will very briefly discuss variational methods. As for belief propagation methods and Kalman filtering, I will not describe Chapter 2. Particle methods them. Also, throughout this whole work, we assume all probability measures have densities with respect to the Lebesgue measure.

Variational Methods for Bayesian Learning

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference. Let us consider a given model m parameterized by some parameters θ, some latent states x and some observed states y. For all free distributions, q(x, θ), we can compute a lower bound of the marginal loglikelihood with Jensen's Inequality:

log p(y) = log x,θ p (y, x, θ) dxdθ = log x,θ p (y, x, θ) q(x, θ) q(x, θ) dxdθ ≥ log p(x, y, θ) q(θ, x) q(θ, x) dxdθ = E q log p(x, y, θ) q(θ, x)
The lower bound obtained F m (q(θ, x)) = E q log p(x,y,θ) q(θ,x)

is called the negative free energy and the distance of this bound to the actual marginal loglikelihood is equal to the Kullback-Leibler divergence between the free distribution and the actual posterior: log p(y) -F m (q(θ, x)) = log p(y) -log p(x, y, θ) q(x, θ) q(x, θ)dxdθ = log p(y) -log p(y)p(x, θ|y) q(x, θ) q(x, θ)dxdθ = log p(y) -logp(y) • q(x, θ)dxdθ -log p(x, θ|y) q(x, θ) q(x, θ)dxdθ = log q(x, θ) p(x, θ|y) q(x, θ)dxdθ = KL (q(θ, x), p(x, θ|y))

Variational methods define a restricted set of probability distributions Q in which q is assumed to be in to make the problem tractable. The goal is then to maximize the lower bound F m (q(θ, x)) which is equivalent to minimizing the Kullback-Leibler divergence KL (q(θ, x), p(x, θ|y)) : max q∈Q F m (q(θ, x)) ≡ min q∈Q KL (q(θ, x), p(x, θ|y))

Common variational approximations include:

• The mean field approximation which assumes independencies and decomposes probability distributions into several products. A first extensively used mean field approximation, the variational Bayes approximation, decomposes the posterior in a separable distribution over the parameters and the latent states : q(θ, x) = q θ (θ) • q x (x). A second very common mean field approximation factorizes the latent distributions q x (x) over the hidden variables : q x (x) = ∏ i q x i (x i). In the particular case of independent and identically dis- tributed observations, this last factorization arises from the model's structure without the need of any approximations.

• Using a parametric family of distributions. For instance, one could assume the latent distributions are Gaussians leading to the Laplace approximation.

Among the common variational algorithms, one can mention the variational Bayes (VB) algorithm. As stated in the common variational approximations, variational Bayes assumes the separability of the joint posterior distribution. This leads to the Variational Bayes Expectation Maximization inference procedure which essentially performs a coordinate ascent in the function space of the variational distributions q x and q θ . Algorithm 5: Variational Bayes Expectation Maximization while Convergence not reached do q t+1

x ←-argmax

q x F m q x (x) • q θ (θ) t q t+1 θ ←-argmax q θ F m q x (x) t+1 • q θ (θ) return q * x , q * θ , F m (q x (x) * • q θ (θ) *)
This Variational Bayes E-M algorithm leads to an approximation of the posterior p(x, θ|y) ≈ q θ (θ) * • q x (x) * and to a lower-bound of the marginal likelihood F m (q x (x) * • q θ (θ) *).

Extensive details of variational methods can be found in [START_REF] Beal | Variational algorithms for approximate Bayesian inference[END_REF]. Numerous other variational methods exists such as Expectation Propagation [START_REF] Minka | Expectation propagation for approximate Bayesian inference[END_REF] and the Extended Kalman Filter [START_REF] Julier | New extension of the Kalman filter to nonlinear systems[END_REF].

Particle Methods

Sampling Methods

Broadly, as the name indicates, sampling methods allow sampling from distributions. In our case, we will want to obtain samples from the posterior, and, to do so, numerous sampling methods have been developed:

• One can sample directly from p by inverting the cumulative distribution function (c.d.f.) or using rejection sampling

• One can sample from an auxiliary distribution and weight obtained samples accordingly (Importance Sampling)

• One can use a Markov chain which will converge to samples approximately distributed under p (Monte Carlo Markov Chain)

Once these samples obtained, estimating the normalizing becomes possible. Indeed, formalizing more broadly the intractability problem introduced earlier requires estimating E p [φ(X)] with X ∼ p and φ any test function. A way to obtain such an estimate lies in the Monte Carlo approximation:

E p [φ(X)] = x φ(x) • p(x)dx ≈ 1 N N ∑ n=1 φ(X n) , with X n ∼ p
The law of large numbers and the central limit theorem give the type and rate of convergence for this Monte Carlo estimate (under the hypothesis of finite second order moment for the latter).

Inverting the c.d.f and rejection sampling For sampling from a distribution with c.d.f F, one can sample a uniform U ∼ U [0,1] and compute Y = F -1 (U). This requires the knowledge of the inverse c.d.f which is often not the case in practice.

Regarding the rejection sampling method, let f be a target density, M a positive number and g a proposal distribution such that f ≤ M • g. Rejection sampling consists in sampling from the proposal distribution Y ∼ g and accept the sample with probability

f (Y) M•g(Y)
. Following this procedure leads to samples distributed under f . See Chapter 3 of Robert, 2004 for more details.

Importance Sampling (IS) Importance Sampling is based on the identity:

E p [φ(X)] = x φ(x)p(x)dx = x φ(x) p(x) q(x) q(x)dx = E q φ(X) p(X) q(X)
with q a proposal distribution such that supp(p) ⊂ supp(q) (q dominates p). We then obtain the IS estimator of the integral with N samples X n ∼ q:

E p [φ(X)] ≈ I IS = 1 N N ∑ n=1 w(X n)φ(X n) , with X n ∼ q , and w(X n) = p(X n) q(X n)
Often, either f or g are known only up to a constant leading to unnormalized densities : p = p u /Z p and q = q u /Z q with Z p and F q are intractable. In that case, one can use the auto-normalized IS estimator:

I AIS = ∑ N n=1 w(X n)φ(X n) ∑ N n=1 w(X n) , with X n ∼ q , and w(X n) = p u (X n) q u (X n)
The second estimator remains consistent, however, we loose the unbiasedness property. From this importance sampling procedure, one obtains samples approximately distribution under p (I will use this property extensively when studying sequential Monte Carlo algorithms):

P (X ∈ [x, x + dx]) = E p [1 {X ∈ [x, x + dx]}] = 1 N N ∑ n=1 w(X n)1 {X n ∈ [x, x + dx]} , with X n ∼ q , and w(X n) = p(X n) q(X n)
Or, when one does not have access to the normalized densities:

P (X ∈ [x, x + dx]) = E p [1 {X ∈ [x, x + dx]}] = ∑ N n=1 w(X n)1 {X n ∈ [x, x + dx]}] ∑ N n=1 w(X n) , with X n ∼ q , and w(X n) = p u (X n) q u (X n)
with p u and q u the unnormalized densities. Thus, selecting samples according to the multinomial M w(X 1:N)/ ∑ N k=1 w(X k) leads to samples approximately distributed under p. I illustrate importance sampling figure 2.2 with p a bimodal distribution and q a uniform distribution.

Bayesian Approches 7

Step 1 : Sample from proposal (for instance, a uniform distribution)

Step 2 : Compute importance weights w(x) = f(x)/g(x)

Step 3 : Resample according to the normalized weights Target distribution

FIGURE 1.2:
The target distribution is in blue. The importance sampling is divided in three steps. Firstly, one sample from the proposal distribution (here a uniform distribution), then we compute the importance weights. Lastly, one resamples to obtain samples approximately distributed under the target.

Monte Carlo Markov Chain methods

In some settings, simulating independently X ⇠ p is difficult, but it is possible to simulate a Markov chain (X n) that leaves p invariant. These samples lead an the MCMC estimator:

b I MCMC = 1 N Â n f(X n) ⇡ E p [f(X)]
With f a test function.

Monte Carlo Markov Chain methods are defined by a markov kernel K(x, .) :

P (X) ! FIGURE 2.2:
The bimodal target distribution p is in blue. The importance sampling is divided in three steps. Firstly, one samples from the proposal distribution X n ∼ q (here a uniform distribution), then we compute the importance weights w(X

1:N) = p(X n)/q(X n).
Lastly, one resamples according to M w(X 1:N)/ ∑ N k=1 w(X k) to obtain samples approximately distributed under the target.

Monte Carlo Markov Chain methods

In some settings, simulating independently X ∼ p is difficult, but it is possible to simulate a Markov chain (X n) that leaves p invariant. Let X be an arbitrary set and S(X) a σ-algebra on this set. Monte Carlo Markov Chain (MCMC) methods are defined by a Markov kernel K(., .) :

(X , S(X)) -→ [0, 1] which determines the probability of reaching any set of S(X) from any state x ∈ X . Assuming K(x, .) has a Lebesgue density leads to defining a Markov kernel density k(x, .) such that, for all A ∈ S(X),

K(x, A) = y∈A k(x, y)dy
Note that for any x ∈ X , k(x, .) is a probability density function. Recalling the initial problem, one wants to simulate a Markov chain (X n) such that, for n large enough, X n follow approximately p. To obtain this, two conditions on the Markov kernel are required:

• the kernel has to leave the distribution p invariant :

X k(x, y)p(x)dx = p(y)
This can be proven, in some cases, by showing the reversibility of the kernel with respect to p.

• the Markov chain should be ergodic, which essentially states the independence to the initial distribution. ∀µ ∈ M + (1), such that X 0 ∼ µ, there exist a n large enough, such that L(X m) ≈ p for all m ≥ n.

Refer to Robert, 2004 for more details. These samples lead to an MCMC estimator:

I MCMC = 1 N ∑ n φ(X n) ≈ E p [φ(X)]
With φ a test function.

Metropolis-Hasting Algorithm : One of the most popular MCMC techniques used to sample from complicated distributions is the Metropolis-Hastings algorithm. The setup is as earlier: we are interested in generating samples of a random variable X distributed according to the density p. Let q(x, .) be a proposal distribution Algorithm 6: Metropolis-Hasting Algorithm Input : X 0 , n = 1 while repeat do Generate Y ∼ q(X n-1 , .) Take

X n = Y with prob. ρ(X n , Y) X n-1 with prob. 1 -ρ(X n , Y) where ρ(x, y) = min p(y)q(y, x) p(x)q(x, y) , 1 n ←-n + 1
The Metropolis-Hasting algorithm defines a kernel,

k(x, y) = ρ(x, y)q(x, y) + δ y (x) (1 -ρ(x, y)) q(x, y)
This defined kernel leaves p invariant (induced from the reversibility property Robert, 2004). Note here that Metropolis-Hasting may be implemented even if p is known only up to a constant: p = p u /Z p where Z p is intractable. Then, ρ(x, y) = min p u (y)q(y, x) p u (x)q(x, y) , 1

Particular cases of M-H samplers :

• If q(x, y) = q(y, x) (for instance q(x, y) = N(y; x, Σ)), this leads to the symmetric random walk M-H and ρ(x, y) = p(y)/p(x)

• If q(x, y) = q(y), we obtain the independent M-H and ρ(x, y) = [p(y)q(x)] / [p(x)q(y)]

To illustrate the M-H procedure, we assume a bi-modal target distribution and implement a M-H to sample from the distribution. We plot the trace of the 500 last obtained sampled as well as the histogram of these samples [figure 2 NB : Choosing a relevant proposal distribution q is key for the Metropolis-Hasting to perform efficiently. For instance, if the target has heavy tails (e.g., a Cauchy distribution), choosing an independent M-H with a Gaussian proposal will fail to explore the targets tails as the Gaussian distribution have exponentially bounded tails.

Gibbs Sampler : A commonly encountered MCMC algorithm is the Gibbs sampler which is essentially a variation of the Metropolis-Hasting. Let us consider X consists of m components, X = X 1 , ...X m and let us assume we have access to all conditionals

P X k |X -k X k |X 1 , ...X k-1 , X k+1 , .
.., X m . Gibbs sampling samples successively each conditional distribution conditioned to the values of all other components.

Algorithm 7: Gibbs Sampling

Initialize randomly

X 0 = X 1 0 , ..., X m 0 and set n = 0 while repeat do X 1 n ∼ p X 1 |X -1 X 1 |X 2 n-1 , ..., X m n-1 X 2 n ∼ p X 2 |X -2 X k |X 1 n , X 3 n-1 , ..., X m n-1 . . . X k n ∼ p X k |X -k X k |X 1 n , ...X k-1 n , X k+1 n-1 , ..., X m n-1 . . . X m n ∼ p X m |X -m X m |X 1 n , ..., X m-1 n n ←-n + 1
The obtained kernel is defined by the density:

k(x, y) = m ∏ i=1 p X i |X -i y i |y 1 , ...y i-1 , x i+1 , ..., x m
This kernel leaves again p invariant. Gibbs sampling is very useful as, in contrast to M-H, all samples are accepted. However, the additional constraint lies in this necessity of tractable conditional densities. To obtain models where this condition is verified, it is useful to work with conjugate distributions where prior and posterior are in the same family of probability distributions. If one of the conditional is not in closed-form, one can combine both M-H and Gibbs algorithms and replace a step of the Gibbs algorithm with a M-H procedure (M-H within Gibbs). We give here the example of a bivariate normal distribution. Let

(X 1 , X 2) ∼ N (µ, Σ)
Applying Gibbs sampling to X = (X 1 , X 2) leads to Algorithm 8: Gibbs Sampling : Case of a bivariate Gaussian distribution

Initialize randomly X 0 2 . Let n = 1 while repeat do X n 1 | X n-1 2 ∼ N µ 1 + Σ 12 Σ -1 22 X n-1 2 -µ 2 , Σ 11 -Σ 12 Σ -1 22 Σ 21 X n 2 | X n 1 ∼ N µ 2 + Σ 21 Σ -1 11 (X n 1 -µ 1) , Σ 22 -Σ 21 Σ -1 11 Σ 12 n ←-n + 1
The figure representing the Gibbs samples can be found below [figure 2.4].

Step 1

Step 2

Step 3

Step 9

Step 11

Step 100

Sequential Monte Carlo

Similarly to MCMC algorithms, sequential Monte Carlo (SMC) algorithms enable sampling from complex distributions. Let θ be some parameters and y 1:T some data assumed to be drawn from a parametric family {P θ , θ ∈ Θ}. When the data y 1:T are independent and identically distributed, the previous presented sampling procedures perform well. However, when y 1:T are sequential (e.g., sequential actions performed by a subject), SMC procedures are relevant as they use this sequential structure to perform inference efficiently. Broadly, in sequential settings, sequential Monte Carlo methods are inference procedures which combine importance sampling and Monte Carlo Markov Chain schemes to provide approximations of the posteriors p(θ|y 1:t), t ∈ [1, T] and unbiased estimators of the marginal likelihoods p(y

1:t) , t ∈ [1, T].

Iterated Batch Importance Sampling

We consider here a first SMC filter called Iterated Batch Importance Sampling (IBIS) (Chopin, 2002). Let us assume in this case that we can compute the likelihoods p y t |y

u t (θ m) = p y t |y 1:(t-1) , θ m , L t = 1 ∑ N θ m=1 ω m N θ ∑ m=1 ω m • u t (θ m)
with the convention p(y 1 |y 1:0 , θ) = p(y 1 |θ) for t=1.

2. Update the importance weights,

ω m ←-ω m • u t (θ m) 3. Resample when the particle system degenerates if ESS ω 1:N θ < γ • N θ then Sample θ m independently from the mixture distribution 1 ∑ N θ m=1 ω m N θ ∑ m=1 ω m • K t (θ m , .)
Replace the current weighted particle system: [START_REF] Chopin | Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference[END_REF] shows that, for any test function φ,

θ 1:N θ , ω 1:N θ ←-θ 1:N θ , 1
1 ∑ N θ m=1 ω m N θ ∑ m=1 ω m • φ(θ)
is a consistent and asymptotically (as

N θ → ∞) normal estimator of the expectation E [φ(θ)|y 1:t]. Thus, for φ(θ) = p y t |y 1:(t-1) , θ , L t is an estimator of: E p y t |y 1:(t-1) , θ |y 1:t = p y t |y 1:(t-1) , θ p(θ)dθ = p y t |y 1:(t-1)
Thus one obtains an estimator of the marginal likelihood p (y 1:T) by multiplying all the L t :

p (y 1:T) = T ∏ t=1 p y t |y 1:(t-1) ≈ T ∏ t=1 L t
with the convention p(y 1 |y 1:0) = p(y 1) for t=1. Actually, this marginal likelihood Chapter 2. Particle methods estimator is even unbiased (Chopin, 2002). The posterior distributions are approximated by:

p θ (dθ|y 1:t) = 1 ∑ N θ m=1 ω m N θ ∑ m=1 ω m • 1 [θ m ∈ dθ]
Recalling the IBIS algorithm [algorithm 9], the procedure iterates importance sampling steps to build at every time step an approximation of the posterior p (θ|y 1:t); to illustrate this, we simulated a simple coin toss example. We consider the following coin toss generative structure:

θ ∼ U ([0, 1]) Y ∼ B(θ)
with Y the outcome of the coin toss and θ the probability the outcome is 1 (e.g, head).

We simulate N = 1000 coin tosses for θ = θ * = 0.2. Given these simulated data, we apply IBIS to infer the most probable value of θ. However, to illustrate only the importance sampling steps, we ignore the MCMC rejuvenation step. This inference process leads to figure 2.5. For illustration purposes, we used a small number of particles, N θ = 50.

Iteration step = 0 Iteration step = 10

Iteration step = 100 Iteration step = 500 FIGURE 2.5: At iteration 0, one samples from the uniform prior. Then, every sample is weighted according to the observed variables y 1:10 , y 1:100 and y 1:500 . Even though the empirical distribution seems to converge to the correct value θ * = 0.2, a degeneracy issue becomes obvious as the number of iteration steps grows : only few particles have a large weight leading to a poor posterior approximation

The IBIS procedure solely based on iterating importance sampling [figure 2.5] seems to converge to θ * = 0.2. However, an obvious degeneracy issue appears : as more data y becomes available, the variance of the particles' weights becomes larger. This converges to a particle system where only a small number of particles have a large weights leading to a poor approximation of the posterior. To solve this issue, the algorithm performs a move step to rejuvenate all particles when it considers the particle system has degenerated. For the degeneracy criterion, a standard choice is the effective sample size criterion (ESS) which essentially tracks the variance of the normalized weights:

ESS ω 1:N θ = ∑ N θ m=1 ω m 2 ∑ N θ m=1 (ω m) 2 54
Chapter 2. Particle methods When the particle system is considered degenerated, one rejuvenates the particles by sampling from the mixture distribution 1 .) where the kernel K t leaves the posterior p (θ|y 1:t) invariant. Within this move step function, one selects ancestors according to the current importance weights ω 1:N θ . This leads to samples approximately distributed under p (θ|y 1:t), then, one applies the M-H step which keeps p (θ|y 1:t) invariant. This aims to rejuvenate the particles while keeping samples approximately distributed under p (θ|y 1:t).

∑ N θ m=1 ω m N θ ∑ m=1 ω m • K t (θ m ,
To select the ancestors according to the importance weights ω 1:N θ , one can use a simple multinomial resampling scheme [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF]. Although simple, this sampling scheme performs poorly as it tends to favor larger weights (Douc andCappé, 2005, Hol, Schon, andGustafsson, 2006). To solve this issue, other resampling scheme exist such as residual resampling and systematic resampling [START_REF] Liu | Sequential Monte Carlo methods for dynamic systems[END_REF]Chen, 1998, Kitagawa, 1998). With no particular reason among these alternatives, I chose the systematic resampling scheme [algorithm 10] for all algorithms developed in this thesis.

Algorithm 10: SystematicResampling

Input : Normalized weights W 1:N Let U ∼ U ([0, 1]) (a)
Compute cumulative weights as:

v n = n ∑ m=1 N • W m f or n ∈ 1 : N (b) Set s ←-U, m ←-1 (c) for n = 1 : N do while v m < s do m ←-m + 1 A n ←-m, and s ←-s + 1 return A 1:N
Applying rejuvenation step when the particle system is considered degenerated allows for a more precise approximation of the posterior. Regarding our coin toss example, we developed a M-H step with as proposal distribution, the empirical Gaussian based on the current weighted particles

µ = 1 ∑ N θ m=1 w m N θ ∑ m=1 w m • θ m , Σ = 1 ∑ N θ m=1 w m N θ ∑ m=1 w m (θ m -µ)(θ m -µ) T
Figure [2.6] illustrates the rejuvenation step in this coin toss example.

Particle Methods

55

Before MCMC step After MCMC step FIGURE 2.6: Upper figure displays a degenerated particle system. The MCMC step allows to move the particles and build a more precise approximation of the posterior (lower figure).

Particle filters

Particle filters (PF) are SMC algorithms applied to state space models. When the latent variables are not discrete, one can not apply direct belief-propagation based approaches such as the forward-backward algorithm [START_REF] Scott | Bayesian methods for hidden Markov models: Recursive computing in the 21st century[END_REF]. Furthermore, when the transition and emission distributions are not Gaussian, Kalman filter does not perform exact inference [START_REF] Evensen | The ensemble Kalman filter: Theoretical formulation and practical implementation[END_REF]. Particle filters perform asymptotically exact inference (as the number of particles N x → +∞) in non-discrete, non-Gaussian settings. Let us assume we have a state-space model [model 2.7] defined by the dynamics:

p θ (x 1) = p θ 1 (x 1) p θ (x t |x 0:(t-1)) = p θ t (x t |x t-1), t ≥ 2 p θ (y t |x 0:t , y 0:(t-1)) = f θ t (y t |x t) FIGURE 2.7: State Space Model
The full likelihood of the model is:

p θ (x 1:T , y 1:T) = p θ 1 (x 1) • T ∏ t=2 p θ t (x t |x t-1) • T ∏ t=1 f θ t (y t |x t)
PF uses the sequential structure of the model to apply importance sampling recursively [algorithm 11].

Algorithm 11: Sequential Monte Carlo Let N x ∈ N be the number of particles Step 1 : At iteration t = 1, (a) Sample from importance proposal x n 1 ∼ q 1,θ (.), ∀n ∈ [1, N x] (b) For all n ∈ [1, N x],
compute and normalize importance weights

w n 1,θ = p θ 1 (x n 1) • f θ 1 (y 1 |x n 1) q 1,θ (x n 1) , W n 1,θ = w n 1,θ ∑ N x m=1 w m 1,θ for t = 2 : T do (a) Sample the index a n t-1 ∼ M W 1:N x t-1
of the ancestor for all particles n (b) Sample from importance proposal x n t ∼ q t,θ (.|x

a n t-1 t-1
) for all n (c) Compute and normalize importance weights:

w n t,θ = p θ t (x n t |x a n t-1 t-1) • f θ t (y t |x n t) q t,θ (x n t) , W n t,θ = w n t,θ ∑ N x m=1 w m t,θ , ∀n ∈ [1, N x]
The ancestor sampling step can be implemented with the previously seen systematic resampling scheme [algorithm 10]. For choosing the proposal distribution q t,θ , the bootstrap particle filter assumes the proposal distribution is equal to the transition distribution q t,θ = p θ t [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF]. This leads the importance weights to be equal to the emission probability. For all n ∈ [1, N x]

w n t,θ = f θ t (y t |x n t)
In scenarios where the observations are not too informative and the dimension of

Particle Methods

57

the latent variable not too large, this default strategy can lead to satisfactory performance. It is in fact the only possible practical choice for models where p θ t is intractable or too expensive to evaluate pointwise, but easy to sample from. Whenever possible, it is usually recommended to select q t,θ as close as possible to p(x t |y t , x t-1 , θ) [START_REF] Fearnhead | An improved particle filter for nonlinear problems[END_REF] to guide particles to regions of high likelihoods. This latter form of PF methods are called guided particle filters algorithms. At iteration t, the following quantity

1 N x N x ∑ n=1 w t,θ (x n t)
provides an estimator of p(y t |y 1:(t-1) , θ). More generally, PF leads to an unbiased estimator of the marginal likelihood p(y 1:t |θ):

1 N x t • N x ∑ m=1 w m 1,θ • t ∏ k=2 N x ∑ m=1 w m k,θ
The unbiasedness of this last result is non trivial (see Del Moral, 2004 proposition 7.4.1). This unbiased estimator is a very important result and key feature of PF as it allows inference on the parameters with Particle MCMC methods (see next section 2.2.3). The filtering distribution p (x t |y 1:t , θ) are approximated by:

p (x t ∈ dx|y 1:t , θ) ≈ 1 ∑ N x m=1 w m t,θ N x ∑ m=1 w m t,θ • 1 [x m t ∈ dx]
As for the smoothing distributions p (x t |y 1:T , θ), one must reconstruct the particles genealogy. To do so, one makes use of the ancestor variables a n t-1 indicating the ancestor of particle n at time t. Let t be a time step, for each particle x n t , let us define b n k the index of the ancestor of x n t at time k.

Algorithm 12: Reconstructing the trajectories Let b n t = n for k = (t -1) : 1 do b n k = a b n k+1 k Algorithm 12 leads to the reconstructed ancestors b n k , k ∈ [1, t] and thus the re- constructed trajectories x b n k k , k ∈ [1, t] for all n ∈ [1, N x]. The smoothing distri- bution is approximated by: p (x 1:t ∈ dx 1:t |y 1:t , θ) = 1 ∑ N x m=1 w m t,θ N x ∑ m=1 w m t,θ • t ∏ k=1 1 x b m k k ∈ dx k
To illustrate a PF procedure, we consider a K = 24 armed bandit with binary and stochastic feedback (with a false positive probability of 0.1). In this K = 24 armed bandit, one arm was higher-rewarding and the goal of the agent was to identify this arm given it could change at every time step (with probability 0.03). To solve this task, we consider a SSM model agent whose latent process is defined by the arm and takes actions based on the posterior belief. x t represents the arm, y t is the binary feedback and the parameters are θ = {τ, η} with τ = p(x t+1 = x t) the probability that the arm changes and η the probability of false positives. To apply the PF procedure, we set the parameters to their correct values defined by our setting τ = 0.03 and η = 0.1.

The first steps of the bootstrap PF procedure applied to this generative model are plotted figure 2.8. Iterating importance sampling steps (by alternating reweighting and resampling procedures) leads to PF. An overall summary of the PF inference process is represented figure 2.9.

Particle Monte Carlo Markov Chain

Particle Monte Carlo Markov Chain (P-MCMC) are very powerful and interesting methods. They combine particle filtering with MCMC to obtain a particle-based version of MCMC which, non-trivially, remains exact in the sense they keep the target distribution invariant.

They are part of a larger group of algorithms called pseudo-marginal which are exact MCMC procedures where a term of the target distribution is replaced by an unbiased estimator. The first pseudo-marginal algorithm, called grouped independence Metropolis-Hastings (GIMH), was developed by [START_REF] Beaumont | Estimation of population growth or decline in genetically monitored populations[END_REF], and uses an unbiased estimator based on Importance Sampling. Pseudo-marginal algorithms were then more broadly defined by [START_REF] Andrieu | The pseudo-marginal approach for efficient Monte Carlo computations[END_REF], where they establish theoretical results such as convergence properties. Andrieu, Doucet, and Holenstein, 2010, develop a pseudo-marginal algorithm which uses the unbiased estimator given by a particle filter to derive an exact MCMC procedure on intractable statespace models : this sub-category of pseudo-marginal methods define P-MCMC. I will study here the case of the GIMH algorithm and accept its generalization to all pseudo-marginal algorithms, of which P-MCMC. We aim to show here that pseudomarginal MCMC procedures can be derived from standard MCMC by considering extended target distributions.

Recalling our coin toss problem, let us now assume there are ten coins differently biased and we do not know which coin we are tossing with [model 2.10].

Chapter 2. Particle methods θ W X Y FIGURE 2.10: Generalized coin toss problem θ k ∼ U ([0, 1]) , k ∈ [1, 10] W ∼ P X ∼ M (W) Y|X, γ 1:10 ∼ B(γ X) θ = γ 1:10 Y = {0, 1}
represents the coin toss result, θ = γ 1:10 are the probabilities of obtaining 1 (e.g., head) for each of the ten coins. X ∈ {1, 2, 3, ..., 10} is the index of the coin tossed and W i ∈ [0, 1] represents the probability that coin i is tossed.

Given some data y, we aim to recover the biases of the tens coins, θ = γ 1:10 , through the computation of the posterior p(θ|y). Recalling the MCMC procedures, one would implement, for instance, a M-H algorithm to obtain samples θ i which follow asymptotically the posterior p(θ|y). In practice, one would iteratively propose a new sample θ p ∼ q (θ|θ a) with θ a the current state of the chain. Then, one would accept this new sample with probability

ρ(θ a , θ p) = 1 ∧ [p (θ p |y) • q (θ a |θ p)] [p (θ a |y) • q (θ p |θ a)]
In some cases, one can not apply these MCMC methods as p (θ p |y) is intractable or computationally too costly to evaluate. GIMH, introduced in genetics by [START_REF] Beaumont | Estimation of population growth or decline in genetically monitored populations[END_REF], solves this computational limitation by allowing an MCMC procedure where p (θ p |y 1:M) is replaced by an unbiased estimator. This relaxes the constraint of having to compute exactly the posterior probability. Let us assume an importance sampling estimator of p (θ p |y 1:M) (section 2.2.1):

p θ (y) = 1 N N ∑ n=1 p (y, x n |θ) q θ (x n)
With q θ a proposal distribution. What we show for the importance sampling estimator is actually true for any unbiased estimator. The key to understand why pseudomarginal MCMC remains exact is to consider an extended target distribution:

π (θ, x 1:N) ∝ p(θ) • N ∏ n=1 q θ (x n) • p θ (y)
Standard MCMC algorithm applied to this target distribution leads to the GIMH procedure. We can verify that this target distribution has the correct marginal

π (θ) = x 1:N π (θ, x 1:N) dx 1:N ∝ x 1:N p(θ) • N ∏ n=1 q θ (x n) • N ∑ n=1 p (y, x n |θ) q θ (x n) dx 1:N ∝ p(θ) 1 N N ∑ n=1 x 1:N •    N ∏ i=1 i =n q θ (x i)    • p (y, x n |θ) dx 1:N ∝ p(θ) x p (y, x|θ) dx ∝ p(θ)p(y|θ) ∝ p(θ|y)
Applying MCMC to the defined target distribution thus leads to samples θ i distributed, asymptotically, under the target posterior distribution. Let q θ, x 1:

N |θ t , x t 1:N = f (θ|θ t) • ∏ N i=1 q θ (x i) be the proposal distribution of the MCMC procedure. Let θ t , x t 1:N
be the state of the chain at iteration t and θ p , x p 1:N be a proposed sample. The acceptance ratio of the MCMC algorithm is:

ρ θ t , x t 1:N , θ p , x p 1:N = 1 ∧ π (θ, x 1:N) • q θ t , x t 1:N |θ p , x p 1:N π θ p , x p 1:N • q θ p , x p 1:N |θ t , x t 1:N = 1 ∧ p(θ p) p θ p (y) f θ t |θ p p(θ t) p θ t (y) f (θ p |θ t)
One can furthermore obtain samples from the latent distribution p(x|θ, y). To understand how, one considers the extended target distribution:

π (θ, x 1:N , K) ∝ 1 N • p(θ) • N ∏ n=1 q θ (x n) • p (y, x K |θ) q θ (x K) ∝ 1 N • p(θ) • p (y, x K |θ) •    N ∏ i=n n =K q θ (x n)    with K ∼ U({1, 2, 3, 4, ..., N -1, N}).
With this target distribution, we indeed have:

π(x K |θ) ∝ p (x K |θ, y)
which leads to samples from the latent posterior.

The simple case with the importance sampling estimator was essentially derived

Chapter 2. Particle methods to show that the pseudo-marginal algorithms are derived by applying the standard MCMC to sample-based target distributions. However, there is a strong constraint to use pseudo-marginal procedures : the estimator p θ (y) has to be unbiased. Recalling the PF procedures presented in the previous paragraph, we understand that inference in non-Gaussian, non-linear SSMs can be derived by combining PF that provides unbiased estimators of the incomplete marginal likelihood p θ (y) with MCMC procedures : this leads to P-MCMC. Assuming we have a state space model defined by the dynamics:

p θ (x 1) = p θ 1 (x 1) p θ (x t |x 0:(t-1)) = p θ t (x t |x t-1), t ≥ 2 p θ (y t |x 0:t , y 0:(t-1)) = f θ t (y t |x t) θ ∼ P (θ)
In a Bayesian context, we aim to obtain the posterior p (θ, x 1:T |y 1:T). This can be obtained by applying the Particle marginal Metropolis-Hasting Sampler to the state space model [13].

Algorithm 13: Particle marginal Metropolis-Hasting Sampler

Step 1 : At iteration i = 1 (a) Set θ 1 arbitrarily (b) Run a PF algorithm targeting p θ 1 (x 1:T |y 1:T), sample X 1 1:T ∼ p θ 1 (.|y 1:T) and let p θ 1 (y 1:T) denote the unbiased estimator of the marginal likelihood. for i = 2 : N do (a) Sample θ p ∼ q . |θ i-1 (b) Run a PF algorithm targeting p θ p (x 1:T |y 1:T), sample from the smoothing distribution X p 1:T ∼ p θ p (.|y 1:T) and let p θ p (y 1:T) denote the unbiased estimator of the marginal likelihood. (c) With probability

ρ θ i-1 , X i-1 1:T , θ p , X p 1:T = 1 ∧ p(θ p) p θ p (y)q θ i-1 |θ p p(θ t) p θ i-1 (y)q (θ p |θ i-1) Set θ i = θ p , X i-1 1:T = X p 1:T , and p θ i (y 1:T) = p θ p (y 1:T). Else, set θ i = θ i-1 , X i 1:T = X i-1 1:T and p θ i (y 1:T) = p θ i-1 (y 1:T).
This leads to samples (θ 1:N , X 1:N 1:T) ∼ p (θ, x 1:T |y 1:T). Other derivation of P-MCMC exist such as the Particle Independent Metropolis-Hasting Sampler or the Particle Gibbs (Andrieu, Doucet, and Holenstein, 2010). Extensive and accessible details on pseudo-marginal methods and P-MCMC procedures can be found on Darren Wilkinson's blog (Wilkinson's, 2011).

SMC 2

SMC 2 is an efficient algorithm for sequential analysis of state-space models. As previously, let us assume we have a state space model defined by the dynamics:

p θ (x 1) = p θ 1 (x 1) p θ (x t |x 0:(t-1)) = p θ t (x t |x t-1), t ≥ 2 p θ (y t |x 0:t , y 0:(t-1)) = f θ t (y t |x t) θ ∼ P (θ)
Let us consider a two armed restless bandit with binary and stochastic feedback. We assume an agent with, as internal model, a generative model defined by a SSM with, as latent state x t , the higher-rewarding arm, and, as observable y t , the binary and stochastic feedback. At every time step t, based on the filtering probability p(x t |y 1:(t-1)), the agent will take an action which leads to the reward y t . In these sequential settings where a decision is taken at every time step, one alternates between an estimation step -to obtain an estimator of p(x t |y 1:(t-1)) -and a decision one. This alternation makes P-MCMC methods inefficient as they require that, every time a new observation y t is made available, to revisit all past beliefs p(x k |y 1:t), ∀k ∈ [1, t]. In contrast, SMC 2 , by combining IBIS and PF procedures, allows for updating sequentially the filtering probabilities without recalling all past observations. This makes SMC 2 an efficient algorithm for sequential analysis of state-space models. IBIS is a sequential Monte Carlo filter applied in the parameter dimension that samples θ values, reweights them iteratively through importance sampling using the likelihood increments p y t |y 1:(t-1) , θ and rejuvenates the particles when the system degenerates (subsection 2.2.2.1). The limitation of this algorithm stems from the necessity to calculate p y t |y 1:(t-1) , θ . However, one can obtain unbiased estimators of these quantities with particle filters (section 2.2.2.2). A simple way to consider SMC 2 is as an IBIS where all the intractable likelihoods are replaced by unbiased estimators obtained running PF algorithms. The MCMC rejuvenation step of IBIS becomes a PMCMC step (section 2.2.3). SMC 2 algorithm can be found here [algorithm 14]. As in IBIS, at every time step, for any test function φ,

1 ∑ N θ m=1 ω m N θ ∑ m=1 ω m • φ(θ)
is a consistent and asymptotically (as N θ → ∞) normal estimator of the expectation E [φ(θ)|y 1:t]. Thus, for φ(θ) = p y t |y 1:(t-1) , θ , L t is an estimator of:

E p y t |y 1:(t-1) , θ |y 1:t = p y t |y 1:(t-1) , θ • p(θ)dθ = p y t |y 1:(t-1)
Chapter 2. Particle methods Thus, ∏ T t=1 L t is an estimator of the marginal likelihood p (y 1:T) (and is again unbi- ased).

Algorithm 14: SMC 2

Initialization : Let N x and N θ be the number of particles in the latent and parameter dimensions.

(a) Sample θ m ∼ p(θ), and set

w m ← 1 for all m ∈ [1, N θ] (b) For all m ∈ [1, N θ], sample from importance proposal x m,1:N x 1 i.i.d ∼ q 1,θ m (.) (c) For all m ∈ [1, N θ], for all n ∈ [1, N x],
compute and normalize latent importance weights:

w m,n 1,θ m = p θ m 1 (x m,n 1) • f θ m 1 (y 1 |x m,n 1) q 1,θ m (x m,n 1) , W m,n 1,θ m = w m,n 1,θ m ∑ N x k=1 w m,k 1,θ m (d) Reweighting the θ-particles p (y 1 |θ m) = 1 N x N x ∑ n=1 w m,n 1,θ m , ω m ←-ω m • p (y 1 |θ m) for t = 2 : T do (a) For all m ∈ [1, N θ], select ancestor index a m,1:N x t-1 i.i.d ∼ M W m,1:N x t-1 (b) For all m ∈ [1, N θ], n ∈ [1, N x] sample descendant x m,n t ∼ q t,θ m (.|x m,a m,n t-1 t-1) (c) For all m ∈ [1, N θ], for all n ∈ [1, N x]
, compute and normalize latent importance weights:

w m,n t,θ m = p θ m t (x m,n t) • f θ m t (y t |x m,n t) q t,θ m (x m,n t) , W m,n t,θ m = w m,n t,θ m ∑ N x k=1 w m,k t,θ m (d) Reweighting the θ-particles p y t |y 1:(t-1) , θ m = 1 N x N x ∑ n=1 w m,n t,θ m , ω m ←-ω m • p y t |y 1:(t-1) , θ m if ESS(w 1:N θ) < γ • N θ then (a) Sample (θ m , x m,1:N x) independently from the mixture distribution 1 ∑ N θ k=1 ω k N θ ∑ m=1 ω m • K t θ m , x m,1:N x 1:t , W m,1:N x 1:t , .
(b) Replace the particle system:

θ 1:N θ , x 1:N θ ,1:N x 1:t , W 1:N θ ,1:N x 1:t , ω 1:N θ ←-θ 1:N θ , x 1:N θ ,1:N x 1:t , W 1:N θ ,1:N x 1:t , 1
2.2. Particle Methods

65

The parameter posterior distributions are approximated at every time step by:

p θ (θ ∈ dθ|y 1:t) = 1 ∑ N θ m=1 ω m N θ ∑ m=1 ω m • 1 [θ m ∈ dθ]
and the latent distribution p(x 1:t |θ m , y 1:t) are approximated by:

p(x t ∈ dx|θ m , y 1:t) = 1 ∑ N x n=1 w m,n t,θ m N x ∑ n=1 w m,n t,θ m • 1[x n,m t ∈ dx]
The kernel

K t θ m , x m,1:N x 1:t , W 1:N θ ,1:N x 1:t
, . is a particle Metropolis-Hastings algorithm which keeps p(θ|y 1:t) invariant (for more details see Chopin, Jacob, and Papaspiliopoulos, 2013).

Smoothing Procedures

We have seen Sequential Monte Carlo allow to approximately sample from the smoothing distributions (2.2.2.2). However, this sampling procedure has some well-known drawbacks. Indeed, when T is too large, the PF approximation of the density p(x 1:T |θ, y 1:T) deteriorates as components sampled at any time n < T are not rejuvenated at subsequent time steps. As a result, when Tn is too large, the approximation is likely to be poor as all smoothing trajectories are likely to share common ancestors [START_REF] Andrieu | Sequential MCMC for Bayesian model selection[END_REF]Doucet, 1999, Fearnhead, 2002). One way to obtain more reliable smoothing samples is to use PMCMC sampling as they are less likely to suffer from this degeneracy problem. This stems from the fact that PMCMC methods do not require PF algorithms to provide a reliable approximation of p (x 1:T |y 1:T , θ), but only to return a single smoothing sample approximately distributed. The PMCMC method that samples only from the posterior p (x 1:T |y 1:T , θ) is called the Particle independent Metropolis-Hastings sampler (PIHM) (Andrieu, Doucet, and Holenstein, 2010). This is in contrast to the Particle marginal Metropolis-Hastings sampler presented in section 2.2.3 which sample from the joint distribution p (x 1:T , θ|y 1:T). However, with the PIHM, to obtain M samples dis- tributed under the smoothing distribution p (x 1:T |y 1:T , θ), one needs to launch M Sequential Monte Carlo algorithms which can be computationally costly. Let us assume, as previously, a SSM whose dynamics are defined as

p θ (x 1) = p θ 1 (x 1) p θ (x t |x 0:(t-1)) = p θ t (x t |x t-1), t ≥ 2 p θ (y t |x 0:t , y 0:(t-1)) = f θ t (y t |x t)
A convenient solution to obtain M trajectories approximately distributed under p (x 1:T |y 1:T , θ) without applying PMCMC based methods is to apply backward simulation methods [START_REF] Lindsten | Backward simulation methods for Monte Carlo statistical inference[END_REF], like, for instance, the Forward Filter Backward Simulator (FFBSi) [algorithm 15]. The FFBSi requires only launching one Sequential Monte Carlo algorithms with a number of particle N ≥ M and obtains, from the particle system obtained with this one PF, M trajectories approximately distributed under p (x 1:T |y 1:T , θ).

Algorithm 15: Forward Filter Backward Simulator Input : A parameter value θ (1) Launch an PF procedure [algorithm 11] and obtain the particle system

x i t , W i t,θ t∈[1,T], i∈[1,N]
(2) Initialize the smoothing trajectories for j = 1 : M do Obviously, the greater N is, the better the approximation of the smoothing distribution is (figure 3.3, page 42, Lindsten, Schön, et al., 2013). FFBSi leads to M smoothing samples x j 1:T j∈ [1,M] . This stems from

(a) Sample independently b j ∼ M W 1:N T,θ (
w i,j t,θ = W i t,θ • f θ t x j t+1 |x i t , ∀i ∈ [1, N] (b) Normalize the backward weights : w i,j t,θ = w i,j t,θ / ∑ N n=1 w n,j t,θ (
p(x t | x t+1 , y 1:T , θ) = p(x t | x t+1 , y 1:t , θ) = f θ t (x t+1 | x t) • p(x t | y 1:t) x t+1 f θ t (x t+1 | x t) • p(x t | y 1:t) With t ∈ [0, T -1]
. And, interestingly, the filtering distributions p(x t | y 1:t) are well approximated by the PF procedure as they do not suffer the degeneracy issue. Thus, with the PF particle system at time t,

x i t , W i t,θ i∈[1,N]
, we have:

p(dx t | y 1:t , θ) ≈ N ∑ i=1 W i t • 1[x i t ∈ dx t]
And thus

p(dx t | x t+1 , y 1:T , θ) ≈ 1 ∑ N n=1 f θ t (x t+1 | x n t) • W n t,θ N ∑ i=1 f θ t (x t+1 | x i t) • W i t,θ • 1[x i t ∈ dx t]
The whole trajectory is obtained through the equality

p(x 1:T | y 1:T , θ) = p(x T | y 1:T , θ) • T-1 ∏ t=1 p(x t | x t+1 , y 1:T , θ)
These backward simulations methods are efficient ways to obtain samples approximately well distributed under the smoothing distribution.

Conclusion

We very briefly presented in this second chapter the main particle methods used throughout this PhD. Particle methods are efficient as they converge asymptotically (in the number of particles) and do not require the exact computation of the density functions from which one aims to sample. Among the particle methods presented, we firstly focused on importance sampling and MCMC procedures to ultimately derive particle filtering, Particle-MCMC and particle smoothing procedures.

Chapter 3

Research questions

I studied in the first chapter three different frameworks typically used to construct mathematical models of cognitive processes. In the second chapter, I focused on a technical description of particle methods, an influential segment of Bayesian approaches. Throughout the work carried out during this PhD, I used these particle methods extensively and thus found relevant to present them. I will now introduce my question of research embedded in the reinforcement learning and Bayesian formalisms. This question of research focuses on the presence of noise in learning processes and how it influences behavior and splits into two subquestions : Is there learning noise in sequential reward-guided tasks ? and Has this learning noise a functional role ?.

First Question

Neural sources of behavioral variability

Behavior varies from trial to trial in an often unpredictable way even when the stimulus is maintained as constant as possible. We discuss here the three main causes of this behavioral variability on a neural level and distinguish external variability, internal variability and suboptimal variability.

External variability

The first source is noise associated with variability of the outside world. This noise is called external variability and arises from a lack of knowledge or control over environmental variables that affect neural activity. When animals are trained to discriminate sensory stimuli across particular dimensions, the 'stimulus' is usually identified with those dimensions. However, neurons might be sensitive to other, behaviorally irrelevant dimensions. If the stimulus changes along these dimensions from trial to trial, and these changes are ignored by the observer, then neural activity will appear variable.

In principle, external variability can be reduced by observing more variables or controlling the animal's behavior better.

Internal variability

Internal variability is generated by noise within the nervous system. At a cellular level, this includes noise in sensors and individual neurons [START_REF] Faisal | Noise in the nervous system[END_REF]. At the neural network level, additional internal variability is generated by changes in attention and arousal levels [START_REF] Cohen | Attention improves performance primarily by reducing interneuronal correlations[END_REF], motor noise [START_REF] Marcos | Neural variability in premotor cortex is modulated by trial history and predicts behavioral performance[END_REF], and by chaotic regimes which can operate in network models ([START_REF] Vreeswijk | Chaos in neuronal networks with balanced excitatory and inhibitory activity[END_REF]. Even though they are fundamentally different, distinguishing internal and external variability is hard in practice as little changes in the environment (e.g. thermodynamic) induce external variability which can be interpreted as internal variability when observing trial-to-trial neural activity.

The relation between neural and behavioral variability was first quantitatively characterized in the context of the classical random dot motion discrimination task [START_REF] Britten | A relationship between behavioral choice and the visual responses of neurons in macaque MT[END_REF]. [START_REF] Britten | A relationship between behavioral choice and the visual responses of neurons in macaque MT[END_REF] observed that trial-to-trial activity fluctuations of middle temporal (MT) neurons evoked by stimuli of same coherence were correlated with behavioral choice. Assuming this link between internal and behavioral variability, one can further ask whether the internal variability throughout the whole cortex actually generates behavioral variability or whether it is only the internal variability of certain regions that generates it. Recalling the study of [START_REF] Britten | A relationship between behavioral choice and the visual responses of neurons in macaque MT[END_REF], they suggest a sensory origin of behavioral variability. This sensory origin is in agreement with the observations of Osborne and colleagues, who studied eye movement errors during a pursuit task and similarly explained most of the behavioral variability through sensory origins (Osborne, Lisberger, and Bialek, 2005). However, these results rely on a correlation between sensory activity and behavioral variability and, nothing prevents this correlation to be a side-effect of correlations between neurons. In this line, Nienborg and Cumming suggested that a large fraction of the correlation between behavioral and sensory neurons have a top-down origin suggesting complex interactions between cognitive processes and sensory neurons [START_REF] Nienborg | Decision-related activity in sensory neurons reflects more than a neuron's causal effect[END_REF]. This latter observation is relevant as internal noise in the sensory system will induce noise within the whole process leading to the decision (perceptual or cognitive). Given this, why would the brain's system remove all internal noise in the calculation processes posterior to the sensory ones given the calculations are already corrupted with noise.

For most models in the literature, the sole cause of behavioral variability is internal noise [START_REF] Deneve | Efficient computation and cue integration with noisy population codes[END_REF]Pouget, 2001, Fitzpatrick et al., 1997), and, although it is clear that internal variability is not negligible, a critical question remains as to the extent to which this internal variability actually induces the behavioral one.

Suboptimal variability

A third probable source of behavioral variability stems from deterministic suboptimal inference (Beck et al., 2012). This is a very interesting claim as suboptimal inference is necessary to carry out complex tasks. In their study, Beck and colleagues show suboptimal inference increases substantially the effects of internal or external noise thus generating considerable behavioral variability even though the amount of initial noise is little. They show this well in a sensory cue integration task where the agent aggregates visual and auditory information to estimate an object's position (figure 3.1, panel A). Their integration model assumes two inputs populations -encoding the visual and auditory locations -that converge onto a single output population which encodes the location of the object (Ma et al., 2006). To quantify the effects of a suboptimal inference on behavioral variability, they degrade the integration model by over-weighting the less reliable of the two populations. The results obtained show that the behavioral variance largely stems from suboptimal learning and less from internal noise (figure 3.1, panel B).

the activity in the output population, and the ''behavioral variance'' to be the variance of this estimate. Our goal is to determine what contributes more to the behavioral variance: internal noise or approximate inference.

Figure 4B shows the behavioral variance of the network as a function of the number of neurons in the output population. The red line indicates the lower bound on this variance given the external noise (known as the ''Cramer-Rao bound''; Papoulis, 1991); the variance of any network is guaranteed to be at or above this line. The blue line indicates the variance of a network that performs exact inference; that is, a network that optimally infers the object position from the input populations (see Ma et al., 2006). The reason this variance is above the minimum given by the red line is that there is internal noise, which, as mentioned above, arises from the stochastic spike generating mechanism. As is clear from Figure 4B, for large numbers of neurons, this increase is minimal. This is because for a given stimulus, each neuron generates its spikes independently of the other neurons, and, as long as there are a large number of neurons representing the quantity of interest (which is typically the case with population codes), this variability can be averaged out across neurons. This demonstrates that, for large networks, internal noise due to independent near-Poisson spike trains has only a minor impact on behavioral variability. Of course, this is unsurprising: independent variability can always be averaged out. Nonetheless, many models focus on independent Poisson noise [START_REF] Deneve | Efficient computation and cue integration with noisy population codes[END_REF][START_REF] Fitzpatrick | A neuronal population code for sound localization[END_REF]Kasamatsu et al., 2001;Pouget and Thorpe, 1991;Reynolds and Heeger, 2009;Reynolds et al., 2000; Rolls and Deco, 2010; Schoups the behavioral variance is well above the minim by the red line. Importantly, the gap between lines cannot be closed by increasing the n neurons. Therefore, for large numbers of neu tion of the extra behavioral variability is due inference, with very little contribution from the This example illustrates that internal nois independent Poisson spike trains has little imp variability. This is counter to what appears to approach to modeling behavioral variability 2001; [START_REF] Fitzpatrick | A neuronal population code for sound localization[END_REF]Kasamatsu et and Thorpe, 1991;Reynolds and Heeger, et al., 2000;Rolls and Deco, 2010;Schoups et and Newsome, 1998;Stocker and Simoncell Qian, 2003;Wang, 2002). In addition, it should more severe the approximation, the larger behavior variability. For example, the more t weights the less reliable cue, the higher the g in Figure 4. This latter point is critically impo we argue next, severe approximations are inev tasks.

Why Suboptimal Inference Is Inevitable

Why can't we be optimal for complex problem requires a closer look at what it means to be op with noisy sensory evidence, the ideal observ Bayesian inference to optimize performance the observer must compute the probability latent variables based on the sensory data The blue curve eventu red curve, indicating that the impact of internal noise is negligible for large networks (the noise is simply averaged out). Green curve: net connectivity. In a suboptimal network, the information loss can be very large. Importantly, this loss cannot be reduced by adding more neu how large the network, performance will still be well above the minimum variance set by the Cramer-Rao bound (red line). As a result, f information loss is due primarily to suboptimal inference and not to internal noise. In their models and simulations, Beck et al., 2012 dissociate external noise, internal noise and variability induced by deterministic heuristics. However, whether heuristics can actually be considered as deterministic or whether they are inseparable of some form of internal noise remains unclear. In other words, the heuristics could be, by nature, imprecise or non-deterministic and some internal noise would then appear as a by-product of the heuristics' computations.

Neuron

Perspective

Behavioral variability on a computational level

Computational noise

Within reward guided-tasks, one can distinguish three computational steps throughout the mental process :

• the sensory step which includes processing the sensory information

• the learning step which involves extracting or aggregating the relevant sensory information

• the action selection step which, based on the extracted or aggregated information, leads to a decision.

Each of these three steps could be corrupted with different sources of internal noise leading to behavioral variability (figure 3.2).

Sensory

Learning Action Selection Decision Incoming information FIGURE 3.2: Incoming information is processed by the sensory cortex. This information is then used for learning (e.g evidence accumulation). Based on learning, a decision is made. Three types of noise intervene during the three phases: sensory, learning and decision.

In the literature, noise during sensory processing (Osborne, Lisberger, andBialek, 2005, Brunton, Botvinick, andBrody, 2013) and during action selection (Daw et al., 2006) have often been highlighted. However, it has recently been shown in a perceptual task that mental inference suffers from a substantial amount of learning noise (Drugowitsch et al., 2016). More precisely, this last study demonstrates 89% of the choice variability is due to computational learning noise (figure 3.3). A main difficulty with the notion of computational noise is that it is defined conditioned to a model : given a selected model (Bayes optimality in [START_REF] Drugowitsch | Computational precision of mental inference as critical source of human choice suboptimality[END_REF], one can estimate the computational noise exhibited by a subject through his deviations from the predictions of this selected model. These deviations will be quantified based on, e.g., the subject's behavior. Therefore, the notion of computational noise is ambiguous as it comprises both random but also deterministic deviations as the selected model is obviously wrong (in the sense that it does not implement the exact same heuristics as the subject). To dissociate random deviations from deterministic heuristics, Drugowitsch et al., 2016 make the subjects play the same perceptual trials several times. In these identical trials, the subject's variability only stems from random deviations enabling them to dissociate these deviations from the deterministic ones. With this procedure, they show two-thirds of the computational learning noise could not be explained by deterministic heuristics.

Is there learning noise in sequential reward-guided tasks ?

In sequential reward-guided tasks, temporal difference algorithms have been proposed to track the changing values of available options (see section 1.1.3.2). This class of models computes a value associated with every option and updates them iteratively based on the prediction errors. At a given time point, the decision-maker chooses based on these values. Given this model, a trial is labeled 'exploitatory' if the option associated with the largest value is selected, else it is labeled as 'exploratory' (Daw et al., 2006, Wilson et al., 2014, Gershman, 2018).

Given the quantity of computational learning noise highlighted in a perceptual task (Drugowitsch et al., 2016), an intriguing possibility lies in the presence of such noise in sequential reward-guided ones. This is the question we asked in the first study : is there learning noise in sequential reward-guided tasks ? Empirically, this would imply the temporal difference update rule be corrupted at every time step by random noise. If such learning noise actually exists, then it would trigger apparent exploration due to deviations to the learning rule. Trial interpreted as exploratory could thus actually be exploitatory trials when considering the presence of computational learning noise. This learning noise hypothesis has profound implications for thinking about exploration, not only in terms of its origin -set in the learning process rather than in the choice process -but also regarding its nature -by putting forward a 'passive' form of exploration, unbeknownst to the decision-maker. This is in contrast to other 'intentional' forms of exploration that aim to reduce the uncertainty about recently unchosen options [START_REF] Frank | Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation[END_REF], Kolling et al., 2012[START_REF] Badre | Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration[END_REF] . To determine whether, and to what extent, computational learning noise accounts for exploration during reward-guided learning, we derived a theoretical formulation of reinforcement learning which accounts for random noise in its core computations. We then quantified the extent to which exploration is triggered incidentally by a noisy learning process rather than intentionally by modulations of the choice process. Extensive details can be found in the first article [chapter 4]. This article primarily shows a non-negligible amount of computational learning noise provided the noise scales at every time step with the quantity of update predicted by the standard temporal difference rule. Such a noise scaling follows Weber's law of intensity perception in psychophysics : the variability of the learning step is proportional to its intensity, i.e. the quantity of update (Fechner, 1948, Krueger, 1984, Helm, 2010). I will thus refer to this noise structure as Weber. Crucially, and as suggested by the Weber structure, we argue this learning noise is inseparable from the learning rule. In other words, the learning noise would stem from imprecisions in the temporal difference update computation. The internal (section 3.1.1.2) and suboptimal (section 3.1.1.3) variabilities are thus assumed indistinguishable.

The non-negligible amount of learning noise and its particular structure which suggests it stems from the learning process led us to investigate the possibility of this learning noise having a functional role. In the second part of my PhD, we argue this learning noise provides adaptive features in changing environments. In other words, where a computational approach would require defining a volatility to adapt efficiently in changing environments, we aim to show a model deprived of any volatility but exhibiting learning noise performs virtually as well.

Second question

Testimonies of volatility in cognitive processes

In sequential decision-making tasks where feedback is stochastic and changes in the environment occur, estimating different levels of uncertainty is crucial. In these settings, three kinds of uncertainty have been distinguished (Payzan-LeNestour and Bossaerts, 2011):

• Risk, due to the stochasticity of the feedback. This uncertainty remains even after the learning is completed or when the crucial parameters of the task are explicitly given to the subjects.

• Estimation uncertainty, which arises from the fact that the subject ignores the critical parameters of the task and must learn them (Ellsberg, 1961, Yoshida andIshii, 2006) • Unexpected uncertainty, or volatility, which occurs when the environment can suddenly change and the critical parameters of the task vary abruptly (Behrens et al., 2007) In the present work, we will focus on the third source of uncertainty -volatility.

There are several behavioral and neural findings demonstrating that some processes in the subject's internal model reflect volatility. For instance, it has been shown the dorsal Anterior Cingulate Cortex (dACC) and the pupil dilatory response correlate with the estimated volatility of an optimal Bayesian learner (Behrens et al., 2007, Browning et al., 2015). Moreover, on a cellular level, the neuromodulator norepinephrine has been shown to signal volatility, meaning a depletion of norepinephrine leads to ignoring contextual changes (Yu andDayan, 2005, Dayan and[START_REF] Dayan | Expected and unexpected uncertainty: ACh and NE in the neocortex[END_REF]. On a behavioral level, several studies have investigated the presence of volatility inference based on exact and approximate procedures (Yu and Cohen, 2009, Adams and MacKay, 2007, Payzan-LeNestour, 2010, Payzan-LeNestour and Bossaerts, 2011, Wilson, Nassar, and Gold, 2010[START_REF] Wilson | A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems[END_REF], Nassar et al., 2010). However, despite this large quantity of computational and algorithmic models that assume volatility, none of them seem to capture behavioral data as well as a simple temporal difference (TD) rule (Lehmann et al., 2015). In this COSYNE poster, Lehmann et al., 2015 compare five models that infer volatility with a simple TD rule on a sequential estimation task. In this estimation task, the agent's goal was to sequentially estimate an underlying mean from noisy observations given this mean could abruptly change with time. The six models -the TD model + the five volatility ones -included The figure represents the three winning models for the 28 subjects and shows the TD model best explains the behavioral data. This last behavioral finding is contradictory with the theory of an explicit tracking of volatility. Indeed, if the subject actually encoded the volatility, given the large panel of volatility models tested, one would expect these to better explain the behavioral data. To summarize, behavioral and neural findings show subject's adapt to changing environments; however, they probably do not adapt through an inference of a volatility. We will hypothesize here the adaptive properties in changing environments stem from the learning noise highlighted in the previous section.

•

Has this learning noise a functional role ?

As we've seen in the previous chapter (see chapter 2), performing inference in directed graphical models, and state space models in particular, is computationally expensive. Giving this computational cost, one can ask whether the internal process has converged, in changing environments, to a system where inference is performed to obtain the volatility, or whether it has converged to some suboptimal heuristics providing some approximate but efficient adaptive properties. Our first article [chapter 4] shows a substantial amount of computational learning noise in sequential reward-guided tasks provided it has a Weber structure. One can ask here two questions, why has the cognitive process converged to a system with a non-negligible quantity of learning noise? And secondly, why is this noise Weberstructured ? Both these questions suggest the possibility of a functional role. Our second study thus focuses on the question : Has this learning noise a functional role ?

We argue this Weber noise reflecting computational imprecisions actually has virtuous adaptive properties in changing environments. More precisely, we argue that volatility inference is not necessary in changing environments provided the fact that the learning procedure exhibits Weber noise. I will now give an intuition as to how Chapter 3. Research questions this computational learning noise can provide these adaptive virtues. Essentially, noise, in its simple form of adding stochasticity to a system, enables random behavior. This can be seen by taking the reasoning to its limit and assuming a very large quantity of noise. This quantity of noise will lead to uniform beliefs inducing random behavior. Inversely, if there is no noise, the learning will not be stochastic and the policy will coincide with the noise-free policy.

The Weber structure of computational learning noise now becomes crucial for providing adaptive properties in changing environments. Indeed, let us first consider the case of frequently changing environments, the quantity of updates of the internal model (e.g. TD-based models) will be frequently high inducing a large quantity of Weber noise thus enabling random behavior. This random behavior in frequently changing environments is beneficial as the agent will get information on other options. Notably, inferring volatility would lead to similar behavior : in frequently changing environments, the inferred volatility would be high leading the agent to discover his environment by choosing randomly among other options.

In the case of static environments and rarely changing ones, the quantity of updates would remain small, and thus little noise would be added to the learning procedure.

The process would remain close to noise-less which is favorable as the environment is certain.

The second study conducted in this PhD shows that computational learning noise exhibits virtuous adaptive properties in changing environments. To demonstrate this, we use the Bayesian formalism to show that, in changing environments, a model that assumes a static environment and that does not infer volatility performs as well as the optimal Bayesian model provided it exhibits learning noise. Furthermore, we establish that this Weber noise model better explains human behavioral performances in changing environments. These results suggest that the adaptive properties in sequential decision-making processes stem from Weber-structured learning noise rather than from complex inference of external volatility [Chapter 5].

Chapter 4

Computational learning noise in sequential reward-guided tasks

Introduction

In this first article, we answer our first question of research: Is there learning noise in sequential reward-guided tasks ? To answer this question, we derived a computational model accounting for the possibility of such learning noise. Through this model, we established the presence of this noise and characterized its implications in learning.

Article

Introduction

In uncertain environments, decision-makers learn rewarding actions by trial-and-error to maximize their expected payoff (Fig. 1a). An important challenge is that reward contingencies typically change over time, and thus a less-rewarded action at a given point in time can become more rewarding later (Fig. 1b). Versatile machine learning algorithms, known collectively as 'reinforcement learning' (RL), describe the changing values of possible actions and the policy used to choose among them 1 . One biologically plausible class of RL models updates the expected values associated with possible actions sequentially based on the 'prediction error' (PE) between obtained and expected reward -a learning scheme known as the Rescorla-Wagner rule 2 .

At any given time point, the decision-maker chooses based on the difference in expected value between possible actions, by selecting the action associated with the largest expected reward. However, in volatile environments in which reward contingencies change rapidly over time, human decision-makers make a substantial number of seemingly irrational decisions which do not maximize the expected value predicted by reinforcement learning 3,4 . These decisions are often coined as 'exploratory' in contrast to value-maximizing, 'exploitative' decisions.

A prominent hypothesis regarding the source of these exploratory decisions is that they are the result of a compromise during choice between exploiting a currently well-valued action vs. exploring other, possibly better-valued actions -known as the 'exploration-exploitation' trade-off. In this view, exploratory decisions are motivated by information seeking. Indeed, for a value-maximizing agent, lower-valued actions are selected less often and thus their expected values are more uncertain than those of higher-valued actions. Exploratory decisions thus effectively reduce uncertainty about the current value of recently unchosen actions and increase long-term payoff 4-7 . Different regions of the human frontal cortex have been shown to activate during exploratory behavior in volatile environments, including the dorsal anterior cingulate cortex (dACC)

and the frontopolar cortex (FPC) 3,8 . In agreement with an 'information seeking' account of exploration, these two regions have been linked with uncertainty monitoring. Specifically, dACC activity correlates with the volatility of reward contingencies and increases during uncertain decisions between similarly-valued actions 9-11 , whereas FPC activity reflects the expected value of unchosen actions 12-14 . An important consequence of this exploration-exploitation trade-off is that exploratory decisions are driven solely by the choice process. In other words, the learning process which tracks action values over time is implicitly assumed to follow exactly the hypothesized Rescorla-Wagner learning rule following each obtained reward.

However, it has recently been shown that human probabilistic reasoning is principally limited by internal noise arising during neural computations, which is responsible for a dominant fraction of decision errors during perceptual decision-making 15,16 . An intriguing possibility is that the learning process at the heart of reward-guided decision-making might be subject to the same kind of internal noise -i.e., random variability in the update of action values predicted by the Rescorla-Wagner rule (Fig. 1c). Critically, the existence of intrinsic variability in reinforcement learning would trigger apparent exploration due to random deviations between exact applications of the learning rule and its noisy realizations following each obtained reward.

This noise-driven source of exploration is not mutually exclusive with information seeking: exploratory decisions can be driven simultaneously by random variability in learning and by information seeking during choice. In other words, under this hypothesis, an unknown fraction of decisions previously labeled as exploratory using an exact RL model would correspond to value-maximizing decisions for a decision-maker plagued with learning variability (Fig. 1d).

To determine whether, and to what extent, learning variability drives exploration during reward-guided decision-making, we first derived a theoretical formulation of RL which allows for random variability in its core computations. In a series of behavioral and neuroimaging experiments, tested over a total of 90 human participants, we then quantified the fraction of exploratory decisions which could be attributed to learning variability, and identified its neurophysiological sources using functional magnetic resonance imaging (fMRI) and pupillometric recordings.

Results

Experimental protocol and computational model

We designed a canonical restless, two-armed bandit game divided into short blocks. Over three experiments, a total of 90 human participants were asked to maximize their monetary payoff by sampling repeatedly from one among two reward sources depicted by colored shapes (see Methods). On each trial, the participant was asked to choose one of the two shapes, and then observed its associated outcome (Fig. 1a). The payoffs that could be obtained from either shape (from 1 to 99 points, converted into real financial incentives at the end of the experiment) were sampled from probability distributions whose means drifted independently across trials -thereby encouraging participants to track these mean values over the course of each block (Fig. 1b).

To characterize the origin of exploratory decisions made in this task, we derived a RL model in which the Rescorla-Wagner rule applied to update action values Q ! is corrupted by additive random noise ! ! (Fig. 1c):

Q ! = Q !!! + !! ! !!! -Q !!! + ! !
where ! is the learning rate used to update action values based on the prediction error (PE) between obtained reward ! !!! and expected reward Q !!! on the previous trial, and ! ! is drawn from a normal distribution with zero mean and standard deviation ! ! equal to a fixed fraction ! of the magnitude of the PE:

! ! = !! ! !!! - Q !!! .
This 'multiplicative' structure of the noise ties the resulting variability to the learning process, by assuming larger deviations during larger updates of action values. It also follows the ubiquitous Weber's law of intensity sensation prevalent in numerous perceptual domains (including vision, numerosity and time), and in the magnitude of associated neural responses 17-19 .

As in existing theories, choice variability is modeled with a stochastic 'softmax' action selection policy, and controlled by an 'inverse temperature' !. Importantly, although learning noise and choice stochasticity both generate exploratory decisions as defined by exact (noise-free) RL (Fig. 1d), the two sources of exploration make different predictions regarding the temporal structure of decisions across successive trials. Indeed, learning variability corrupts the action values which are gradually updated across trials, and used to drive successive decisions. By contrast, choice stochasticity reads out action values without altering them and is independently distributed across trials. Therefore, for the same fraction of exploratory decisions simulated either using learning variability or choice stochasticity, learning variability engenders larger behavioral correlations across successive decisions (Fig. 1e).

Dominant contribution of learning variability to exploratory decisions

Looking at the first, neuroimaging experiment (experiment 1, N = 29), all participants selected the currently most rewarding shape on a majority of trials (64.9 ± 0.9%, mean ± s.e.m., t-test against chance: t 28 = 17.2, p < 0.001). As anticipated, participants also made a substantial fraction of exploratory decisions -which do not maximize expected value with respect to an exact (noise-free) RL model (15.7 ± 0.7%).

We next performed Bayesian Model Selection (BMS) to quantify the contributions of learning-and choice-driven sources of variability to exploratory decisions. Using particle filtering procedures to obtain estimates of model evidence conditioned on human decisions (see Methods), we found that a RL model corrupted by learning noise explained human behavior significantly better than an exact (noise-free) RL model (! fitted vs. ! = 0, fixed-effects: BF ≈ 10 12.9 , random-effects: exceedance p = 0.941). This first finding indicates that the sequential updating of action values is subject to a significant amount of variability. A softmax action selection policy also outperformed a purely value-maximizing, 'argmax' policy (! fitted vs. ! → ∞, fixed-effects: BF ≈ 10 44.5 , random-effects: exceedance p > 0.999) -thereby indicating that exploratory decisions are driven both by learning variability and choice stochasticity (Supplementary Fig. 1a). This pattern was fully replicated in the second, behavioral experiment (experiment 2, N = 30): like participants tested in the first experiment, participants featured both learning variability (fixed-effects: BF ≈ 10 37.3 , randomeffects: exceedance p > 0.999) and a softmax action selection policy (fixed-effects: BF ≈ 10 37.9 , randomeffects: exceedance p > 0.999; Supplementary Fig. 1b).

Importantly, the exact RL model could be falsified by comparing the sequential dependency of its simulated decisions to the sequential dependency of human decisions (see Methods). While the overall fraction of exploratory decisions was well captured by both noisy and exact RL models (human: 15.7 ± 0.7%; noisy RL:

15.0 ± 0.8%; exact RL: 16.0 ± 0.7%), the sequential dependency of human decisions was better predicted by simulations of noisy RL than exact RL (human: 0.126 ± 0.016 bit; noisy RL: 0.111 ± 0.011 bit; exact RL: 0.073 ± 0.008 bit; paired t-test, t 28 = 5.8, p < 0.001; Fig. 1f). This behavioral signature allows us to falsify choice stochasticity as the sole source of exploratory decisions in this canonical reward-guided decisionmaking task 20 . As a sanity check, we implemented a model recovery procedure, which confirmed that our model fitting procedure was capable of correctly distinguishing learning-driven from choice-driven exploration in our task (Supplementary Fig. 1c).

Given the presence of both sources of exploration, we went further and quantified the respective contributions of learning variability and choice stochasticity to exploratory decisions. For this purpose, we first estimated the trial-to-trial trajectories of latent action values corrupted by learning noise conditioned on observed human decisions in every block (see Methods). We then assessed the fraction of exploratory decisions that could be uniquely attributed to learning variability -i.e., trials in which noisy realizations of the learning rule resulted in an opposite ranking of action values to exact applications of the same rule. This quantitative analysis revealed that learning variability alone explained as much as 60.6 ± 6.6% of exploratory decisions (Fig. 2a, top panel). Again, we replicated this pattern in the second experiment (65.6 ± 6.0%). We further ruled out the possibility that alternative, 'directed' accounts of exploration in the choice process could explain the observed learning variability (see Supplementary Information). In contrast to existing accounts, this pattern of findings indicates that human exploration is driven to a large part by random variability in the update of action values, rather than by variability in the choice process.

Dissociating learning variability from information seeking

We then sought to dissociate the observed learning variability from information seeking. One obvious way consists in showing that exploration stemming from learning variability is not aimed explicitly at reducing uncertainty about recently unchosen actions -whose associated rewards have not been observed and are thus uncertain. To test this important prediction, we contrasted in both experiments the classical 'partial outcome' condition in which participants observe only the reward yielded by the selected shape (Fig. 2a, top panel), with another 'complete outcome' condition in which participants additionally observe the forgone reward which would have been obtained if the other, unchosen shape had been selected 12,21 (Fig. 2a, bottom panel).

In this additional condition, performed by the same participants, there is by definition no incentive to explore -i.e., to make decisions which do not maximize expected value -given that there is equal uncertainty about the values of chosen and unchosen actions. Therefore, the residual exploration observed in the complete outcome condition, if any, should be entirely driven implicitly by learning variability and not explicitly by a softmax action selection policy.

Before testing this prediction, we first verified that participants used the information about foregone actions to select the most rewarding shape more often than in the partial outcome condition (experiment 1, partial: 64.9 ± 0.9%, complete: 70.3 ± 0.7%, paired t-test, t 28 = 4.9, p < 0.001; experiment 2, partial: 64.9 ± 0.8%, complete: 69.5 ± 1.1%, paired t-test, t 29 = 3.5, p = 0.002). Model fitting confirmed that participants used the reward from the unchosen action to update its associated value (fixed-effects: BF ≈ 10 11.7 , randomeffects: exceedance p > 0.999). Interestingly, the learning rate ! associated with the unchosen action was not different from the one associated with the chosen action (chosen: 0.596 ± 0.043, unchosen: 0.621 ± 0.042, paired t-test, t 28 = 1.5, p = 0.156), consistent with the idea that participants learnt equally from obtained and foregone rewards 21-23 .

Regarding exploration, participants made a lower but still substantial amount of exploratory decisions in the complete outcome condition (experiment 1, partial: 15.7 ± 0.7%, complete: 11.9 ± 0.7%, paired t-test, t 28 = -4.2, p < 0.001; experiment 2, partial: 16.5 ± 1.0%, complete: 12.9 ± 0.9%, paired t-test, t 29 = -3.1, p = 0.004) -consistent with the presence of learning variability in this condition. BMS confirmed this prediction by showing that a noisy RL model explained human behavior decisively better than an exact RL model in the complete outcome condition (fixed-effects: BF ≈ 10 40.2 , random-effects: exceedance p > 0.999). Furthermore, in contrast to what was observed in the partial outcome condition, BMS indicated that a value-maximizing argmax action selection policy fitted the choice process decisively better than an exploratory softmax policy (fixed-effects: BF ≈ 10 10.6 , random-effects: exceedance p > 0.999, Supplementary Fig. 2a). Consequently, the split of exploratory decisions in this condition showed that learning variability explained almost all of exploratory decisions (86.1 ± 5.2%, complete vs. partial: paired t-test, t 28 = 3.6, p = 0.001, Fig. 2a, bottom panel), a pattern fully replicated in the second experiment (89.1 ± 3.9%, complete vs. partial: paired t-test, t 29 = 3.3, p = 0.003).

We further confirmed that this increased fraction of exploratory decisions explained by learning variability was due to a change in action selection policy rather than an increased learning variability. Instead of computing the relative fraction of exploration driven by learning variability, we estimated the raw amount of learning noise behavioral variability due separately to learning variability and to choice stochasticity (Fig. 2b, see Methods). This analysis confirmed both our predictions: choice-driven variability was reduced substantially in the complete outcome condition (partial: 0.078 ± 0.010, complete: 0.025 ± 0.007, paired t-test, t 28 = -4.6, p < 0.001), whereas learning-driven variability was not different across the two conditions (partial: 0.110 ± 0.010, complete: 0.093 ± 0.007, paired t-test, t 28 = -1.2, p = 0.240). Together, these findings indicate that learning variability does not aim explicitly at seeking information about recently unchosen actions, but rather reflects computational constraints on the underlying learning process.

We corroborated this finding through a subtler comparison between two partial outcome conditions, performed by the same participants in experiment 2, in which the degree of uncertainty about the unchosen action was manipulated using the degree of correlation between action values (which was null in the original condition). In an additional condition, participants were informed of a negative correlation between action values -meaning that when either shape yielded a large reward on a given trial, it was likely that the other shape would have yielded a small reward on the same trial (Fig. 2c,d, top panel). In other words, in this 'correlated outcome' condition, participants could predict what the unchosen action would have yielded -something they could not do in the original, uncorrelated condition. We first validated that participants used the correlation between action values by comparing the simplest RL scheme in which the unchosen action value is not updated and slowly forgotten, with another scheme in which the unchosen action value is updated using a 'fictive' reward opposite to the obtained reward across the value range (i.e., 100 minus the obtained reward). Participants did indeed rely on such a 'fictive' learning scheme in the correlated condition (fixedeffects: BF ≈ 10 4.5 , random-effects: exceedance p > 0.999).

We then tested whether participants featured less learning variability in the correlated condition where there is less uncertainty about the value of the unchosen action than in the original, uncorrelated condition.

Results were unequivocal: learning variability explained not less but more of exploratory decisions in the correlated condition (correlated: 82.6 ± 4.8%, uncorrelated: 65.6 ± 6.0%, paired t-test, t 29 = 2.8, p = 0.009, Fig. 2c,d, bottom panel) -strongly suggesting that learning variability does not aim explicitly at seeking information about unchosen actions.

Dissociating learning variability from learning idiosyncrasies

One important possible confound is that part of the observed learning variability would be caused not by random deviations around the hypothesized Rescorla-Wagner learning rule, but by systematic deviations (idiosyncrasies) from this canonical rule. In particular, different participants might be using different learning rules, which would then be captured as learning variability by our noisy RL model that assumes that the Rescorla-Wagner rule is being used. To decompose learning variability into systematic and random deviations from the Rescorla-Wagner rule, we ran a third, behavioral experiment (experiment 3, N = 30) where we estimated the consistency of human decisions across repetitions of the same sequence of rewards. Unbeknownst to participants, we made each of them play the exact same blocks of trials twice (Fig. 3a, see Methods), presented in the complete outcome condition where exploration has been established above to be driven solely by learning variability and not a softmax action selection policy (noisy vs. exact RL, fixed-effects: BF ≈ 10 411.8 , random-effects: exceedance p > 0.999; argmax vs. softmax policy, fixed-effects: BF ≈ 10 6.3 , random-effects: exceedance p = 0.997). We first verified that, as in previous experiments, participants learnt equally from obtained (chosen) and foregone (unchosen) rewards in this additional dataset (learning rate !, chosen: 0.57 ± 0.05, unchosen: 0.60 ± 0.05, paired t-test, t 29 = 1.6, p = 0.123) -indicating that action values at a given trial do not depend on rewards obtained at earlier trials (which are likely to differ to some extent across repeated blocks).

We then applied a recently developed information theoretic approach to split the overall learning variability into a predictable 'bias' term -reflecting systematic deviations from the Rescorla-Wagner rule, and an unpredictable 'variance' term -reflecting random deviations around this canonical rule 16,20 (see Methods). In practice, we used the consistency of decisions across repeated blocks -which ranged from 64.8% to 95.2%

across participants (82.3 ± 1.5%, mean ± s.e.m.), to decompose learning variability into bias and variance terms. Indeed, systematic deviations tend to increase the consistency of decisions across repeated blocks, whereas random deviations tend to decrease the same metric. We first observed that participants with larger learning variability (i.e., a steeper scaling ! of noise with prediction errors) showed lower decision consistency across repeated blocks (Fig. 3c, linear correlation, r squared = 0.829, d.f. = 28, p < 0.001). This is consistent with the hypothesis that most of the learning variability captured by the model is due to random noise rather than to deterministic learning idiosyncrasies. Importantly, variations of learning rate across participants did not show any relationship with decision consistency (linear correlation, r squared = 0.008, d.f. = 28, p = 0.645).

We next fitted the noisy RL model to each participant, and then simulated versions of the model in which learning variability was split in two additive terms: a bias term whose realizations were duplicated in the two repetitions of each block, and a variance term whose realizations were sampled independently across repeated blocks. We varied this bias-variance trade-off from zero (pure variance) to one (pure bias) for the simulations of each participant, and found that the split that best accounted for the observed consistency of human decisions across repeated blocks was of 31.8 ± 3.2% for the bias term, and 68.2 ± 3.2% for the variance term (Fig. 3d). This result indicates that more than two thirds of learning variability are not attributable to any learning idiosyncrasy. Thus, it supports our hypothesis that most of learning variability reflects the limited computational precision of reinforcement learning, rather than learning idiosyncrasies across participants which are not captured by the canonical Rescorla-Wagner rule.

Explaining away choice effects as consequences of learning variability

During sequential learning in volatile environments, humans often exhibit 'choice hysteresis' -i.e., a tendency to repeat their previous choice over and above the available evidence. This choice effect has been described in computational terms by an explicit bias in the choice process, which could have beneficial (choice-stabilizing) properties for the decision-maker 24-29 . We realized that this effect falls naturally out of the statistical properties of learning variability, without further assumptions, when fitted using an exact RL Using an exact RL model to fit human decisions, we observed a positive choice hysteresis in both partial and complete outcome conditions (experiment 1, t-test against zero, partial: t 28 = 2.6, p = 0.013; complete: t 28 = 5.0, p < 0.001). We then verified that, as predicted, simulations of the noisy RL model fitted using an exact RL model exhibited an apparent choice hysteresis, in both conditions (t-test against zero, partial: t 28 = 4.2, p < 0.001; complete: t 28 = 5.6, p < 0.001). Critically, the choice hysteresis measured in participants correlated with the apparent choice hysteresis predicted by the noisy RL model (Fig. 3e, linear correlation, partial: r squared = 0.553, d.f. = 27, p < 0.001; complete: r squared = 0.425, d.f. = 27, p < 0.001). This finding, fully replicated in experiment 2, supports our hypothesis that human choice hysteresis is not caused by an explicit bias in the choice process, but rather by learning variability which propagates through noise-corrupted action values across successive decisions.

If choice hysteresis truly arises from the propagation of learning variability through action values, then it should naturally correlate with the degree to which learning variability propagates from one trial to the next, and thus decrease with learning rate. In other words, participants who learn more slowly should exhibit stronger choice hysteresis than participants who learn more rapidly. We tested this selective hypothesis in participants and obtained the predicted negative correlation between learning rate and choice hysteresis, in both conditions (Fig. 3e, linear correlation, partial: r squared = 0.691, d.f. = 27, p < 0.001; complete: r squared = 0.786, d.f. = 27, p < 0.001). Together, these findings indicate that the choice hysteresis exhibited by participants can be parsimoniously explained as the consequence of variability in the underlying learning process.

A second choice effect often reported in the literature consists in an adjustment of the softmax action selection policy to the surprise triggered by the preceding outcome -i.e., the magnitude of the prediction error (obtained minus expected reward) in reinforcement learning 30-32 . This Like choice hysteresis, this adjustment of exploration to surprise falls naturally out of learning variability, more specifically through its scaling with the magnitude of the prediction error. Using an exact RL model to fit human decisions, we observed a decrease of the softmax inverse temperature ! in trials following larger-than-average prediction errors, in both partial and complete outcome conditions (Fig. 3f, experiment 1, paired t-test, partial: t 28 = -2.9, p = 0.007; complete: t 28 = -3.7, p < 0.001). As for choice hysteresis, we then verified that simulations of the noisy RL model fitted using an exact RL model featured the same apparent negative adjustment to surprise (paired t-test, partial: t 28 = -5.5, p = 0.001; complete: t 28 = -8.9, p < 0.001). Importantly, the adjustment predicted by simulations of the noisy RL model matched not only the direction, but also the size of the adjustment observed in participants (paired t-test, partial: t 28 = 0.2, p = 0.847; complete: t 28 = 0.3, p = 0.778).

These results suggest that the adjustment of human exploration to surprise is caused by the multiplicative structure of variability in the underlying learning process, rather than overt information seeking following surprising outcomes. Neural correlates of learning variability in the frontal cortex Together, our quantitative dissection of exploration points toward an important, yet previously unreported source of variability in reward-guided learning. To identify the neural mechanisms underlying this undocumented learning variability, we analyzed BOLD fMRI data (experiment 1, N = 29) recorded while participants performed the task (see Methods). We decided to focus our model-based analyses on a subset of frontal regions of interest (ROIs) previously implicated in exploratory behavior 3,8,9,11,33,34 . The ROIs (Fig. 4a) were defined using an independent contrast for switch from minus repeat the previous action, set at conservative whole-brain statistical thresholds (FWE-corrected p < 0.05, see Methods). Based on the existing literature, we identified two frontal clusters in the dorsal anterior cingulate cortex (dACC) and the frontopolar cortex (FPC).

To assess whether BOLD activity in either of these ROIs co-varied with learning variability at each update step, we regressed deconvolved outcome-and choice-locked responses in the dACC and the FPC against four trial-wise quantities derived from the best-fitting noisy RL model: 1. the similarity between action values at choice onset, 2. the difference between chosen and unchosen action values, 3. the prediction error associated with the obtained reward, and 4. the magnitude of learning variability corrupting each update of action values (see Methods). This final quantity, specific to our hypothesis, was computed as the deviation ! ! of noisy action values following each update step from the exact application of the Rescorla-Wagner rule to the same update step. Importantly, the corresponding general linear model (GLM) was constructed using sequential orthogonalization to ensure that the last (variability) regressor captured residual BOLD variance unaccounted for by the first (standard) regressors. Only dACC activity reflected the magnitude of learning variability during the preceding outcome period when action values are updated (Fig. 4b, ttest against zero, dACC: t 28 = 5.4, p < 0.001; FPC: t 28 = 1.9, p = 0.063). By contrast, during the following choice period when learning variability results in exploratory behavior, dACC and FPC activations both correlated positively with the magnitude of learning variability (dACC: t 28 = 5.6, p < 0.001; FPC: t 28 = 5.7, p < 0.001). Interestingly, dACC activity reflected learning variability equally strongly in the outcome and choice periods (t 28 = 0.8, p = 0.390), whereas FPC activity reflected it significantly more in the choice period (t 28 = 3.1, p = 0.005).

To characterize the temporal dynamics of learning variability in dACC and FPC activity, we constructed a finite impulse response (FIR) model aligned to the presentation of each outcome (Fig. 4c, see Methods).

The positive correlation with learning variability peaked earlier in the dACC than in the FPC (dACC: 6.1 s, FPC: 9.9 s, jackknifed t 28 = -3.0, p = 0.006), and around the same time as the negative correlation with the prediction error in the dACC (7.7 s, jackknifed t 28 = -1.7, p = 0.108). Furthermore, learning variability correlated more strongly with dACC activity than FPC activity from 2.8 to 9.4 s following outcome presentation (cluster-corrected p < 0.001). These results indicate that dACC responses to obtained rewards reflect the variability of individual learning steps during reinforcement learning.

Dissociating neural correlates of learning variability from associated computations

Our noisy RL model hypothesizes that learning variability scales with the magnitude of the prediction errori.e., the surprise associated with each outcome, and dACC activity has previously been reported to monitor surprise during reward-guided learning 35,36 . An important question is thus whether dACC activity reflects learning variability over and beyond its intrinsic correlation with surprise. Indeed, the two quantities shared about a third of variance with each other (linear correlation, r squared = 0.373 ± 0.086, mean ± s.e.m., ranging from 0.223 to 0.512 across participants). To address this question, we first constructed two additional GLMs with sequential orthogonalization where we included surprise (i.e., the magnitude of the prediction error associated with each learning step) as an additional parametric regressor either before or after the learning variability regressor, locked to outcome presentation (see Supplementary Methods). Importantly, dACC activity was found to reflect learning variability over and beyond its intrinsic correlation with surprise (variability as last regressor, t 28 = 2.5, p = 0.019), whereas the converse was not true (surprise as last regressor, t 28 = -1.3, p = 0.195). We then compared using neural BMS two additional GLMs where dACC activity was regressed against either the variability of learning steps (model 1) or the magnitude of learning steps (model 2, see Supplementary Methods). Neural BMS revealed that model 1 provided a significantly better account of dACC activity than model 2 (exceedance p > 0.999). These findings indicate that, beyond their intrinsic correlation, dACC activity reflects the variability of learning steps rather than surprise: larger dACC responses to obtained rewards are associated with more variable updates, rather than larger updates of action values.

The formulation of our noisy RL model is compatible with two mechanisms: 1. variability in the result of each learning step, or 2. variability in the learning rate used to update action values. These two mechanisms (learning step variability vs. learning rate variability) are formally equivalent in terms of predicted behavior, but they correspond to different trial-wise quantities that can be regressed against BOLD activity in the dACC and the FPC. To compare these two formulations at the neural level, we constructed an additional GLM (see Supplementary Methods) where BOLD responses to obtained rewards were predicted simultaneously by these two mechanistic accounts of learning variability. The quantity associated with learning step variability was computed as the deviation ! of noisy action values following each update step from the exact application of the Rescorla-Wagner rule (which corresponds to the regressor used in previous GLMs).

The quantity associated with learning rate variability was computed as the effective learning rate ! ! for which noisy actions values following each update step corresponded to the exact application of the Rescorla-Wagner rule given this effective learning rate. Neither dACC nor FPC activity co-varied with learning rate variability (dACC: t 28 = 1.9, p = 0.072; FPC: t 28 = 1.8, p = 0.086). Furthermore, dACC activity reflected learning step variability even after accounting for learning rate variability (t 28 = 5.5, p < 0.001). We ran a confirmatory neural BMS analysis between two models where dACC responses to obtained rewards were predicted either by learning step variability (model 1) or by learning rate variability (model 2). Neural BMS favored a correlation of dACC activity with learning step variability (exceedance p = 0.900). These results suggest that dACC fluctuations do not reflect trial-to-trial adjustments in the learning rate used to update action values, but rather the limited computational precision of individual learning steps.

Dissociating neural correlates of learning variability from choice

We observed earlier that learning variability is reflected in BOLD responses to obtained rewards when action values are updated, but also during the following choice period when learning variability produces exploratory behavior (Fig. 4b). This observation suggests that learning variability reflects not only neural variability in the update of action values, but also in their maintenance until choice. However, this pattern may alternatively indicate that part of what is captured as learning variability by our noisy RL model truly arises from the choice process. To address this important possible confound, experiment 1 included not only 'choice' trials where subjects could select the option they wanted to sample, but also 'cued' trials (Fig. 4d, 25% of all trials) where subjects were required to select one of the two shapes (pre-selected randomly by the computer, see Methods). In these cued trials, there is by definition no choice to be made, and indeed participants selected invariably the cued shape, in both partial and complete outcome conditions (partial: 98.3 ± 1.7%, complete: 97.2 ± 2.3%). We first verified that participants learnt equally from obtained rewards in choice and cued trials (learning rate !, choice: 0.603 ± 0.043, cued: 0.592 ± 0.039, t 28 = 0.6, p = 0.581). We then applied BMS to test whether learning in cued trials is corrupted by the same noise as in choice trials. As predicted by the noisy RL model, cued trials triggered significant learning variability (! cued = ! choice vs. cued = 0, partial: BF ≈ 10 8.3 , exceedance p > 0.999; complete: BF ≈ 10 10.5 , exceedance p > 0.999).

We could then make use of cued trials to test whether the neural correlates of learning variability found during the choice period were present even in cued trials. For this purpose, we constructed an additional GLM where choice and cued trials were modeled as separate events and modulated parametrically with: 1. the value difference between selected and unselected actions, and 2. the magnitude of learning variability corrupting each update of action values (see Supplementary Methods). In line with the existing literature, BOLD responses to choice trials in the dACC and the FPC correlated negatively with the value difference between selected (chosen) and unselected (unchosen) actions (Fig. 4e, left panel; dACC: t 28 = -10.3, p < 0.001; FPC: t 28 = -6.3, p < 0.001). By contrast, this correlation was absent in cued trials where participants were required to select the cued shape (dACC: t 28 = -1.3, p = 0.189; cued vs. choice: t 28 = 5.2, p < 0.001; FPC: t 28 = -1.6, p = 0.125; cued vs. choice: t 28 = 3.4, p = 0.002). This observation confirms that participants effectively did not choose the selected shape in cued trials. However, and in agreement with our hypothesis, the positive correlation of BOLD activity with learning variability remained highly significant and unchanged in cued trials in the dACC (Fig. 4e, right panel; choice: t 28 = 5.0, p < 0.001; cued: t 28 = 3.6, p = 0.001; cued vs. choice: t 28 = -0.3, p = 0.760) and in the FPC (choice: t 28 = 5.2, p < 0.001; cued: t 28 = 4.0, p < 0.001; cued vs. choice: t 28 = -0.4, p = 0.677). This finding further strengthens our hypothesis that the learning variability fitted by our noisy RL model reflects variability in the update of action values, rather than a property of the choice process 3,7 .

Relating neural correlates of learning variability to behavioral variability

Neuroimaging results so far indicate that BOLD activity in the dACC and the FPC reflects learning variability during the following choice period when it produces exploratory behavior. An important question arises here as to whether the two brain regions differ in their relationship with behavioral variability. To address this important question, we formulated a 'brain-behavior' analysis to predict variability in participants' decisions to switch from or repeat the previous action using trial-to-trial BOLD fluctuations in the two ROIs (see Methods). We reasoned that a neural signal reflecting random variability in the learning process should decrease participants' sensitivity to the value difference between switching and repeating the previous action (Fig. 5a, left panel), whereas a neural signal reflecting directed variability in the learning process should increase the relative value of switching in the same decision (Fig. 5a, right panel).

Trial-to-trial fluctuations in the dACC predicted negatively participants' sensitivity to the value difference between repeating and switching, in both partial and complete outcome conditions (Fig. 5b, left panel; partial: ! = -0.98 ± 0.25, t 28 = -4.0, p < 0.001; complete: ! = -1.03 ± 0.27, t 28 = -3.8, p < 0.001). By contrast, BOLD fluctuations in the FPC entered as predictors in the same brain-behavior analysis did not decrease participants' sensitivity -if anything, they slightly increased sensitivity in the partial outcome condition (partial: ! = 0.63 ± 0.24, t 28 = 2.6, p = 0.014; complete: ! = 0.33 ± 0.28, t 28 = 1.2, p = 0.243). The relationship between BOLD fluctuations and directed variability showed a very different pattern: trial-to-trial fluctuations in the FPC increased the relative value of switching, and did so only in the partial outcome condition when no information about the forgone action was available (Fig. 5b, right panel; partial: ! = 0.43 ± 0.14, t 28 = 3.1, p = 0.005; complete: ! = 0.06 ± 0.16, t 28 = -0.4, p = 0.700). By contrast, BOLD fluctuations in the dACC did not predict the relative value of switching, in either outcome condition (partial: ! = -0.15 ± 0.12, t 28 = -1.3, p = 0.220, complete: ! = -0.01 ± 0.15, t 28 = 0.0, p = 0.974). This pattern of brain-behavior effects indicates that dACC and FPC activations have dissociable relations to exploratory behavior. Trial-to-trial fluctuations of dACC activity predict exploration by decreasing the computational precision of update steps, whereas fluctuations of FPC activity predict exploration by increasing the relative value of switching toward a more uncertain action.

Pupil-linked neuromodulatory correlates of learning variability

Beside frontal cortical contributions to exploratory behavior, past research has identified the state of the locus coeruleus-norepinephrine (LC-NE) system as a reliable neurophysiological correlate of exploration 37- 40 . Large phasic responses of LC neurons are associated with increased behavioral variability and exploration in particular 39,41 . While existing theories describe these effects as modulations of the exploration-exploitation trade off 32,38 , we hypothesized that trial-to-trial fluctuations of the computational precision of update steps, reflected in dACC activity, could be mediated by neuromodulatory fluctuations driven by the LC-NE system.

Because LC activity is notoriously difficult to measure in fMRI, we took advantage of the strong, known correlation between LC activity and phasic pupil dilation 42-44 . We thus analyzed pupillary responses which were recorded in experiment 2 (N = 24 participants with clean data), by performing similar analyses to the ones conducted on BOLD signals in experiment 1 (see Methods).

As expected from the existing literature, we observed that, like BOLD activity in the dACC and the FPC, a switch away from the previous action was associated with larger pupillary dilation in the preceding choice period (Supplementary Fig. 3; from -2.0 to 2.9 s following choice presentation, cluster-corrected p < 0.001). Pupillary dilation in the same time window correlated positively with the learning variability ! ! corrupting the preceding update step (Fig. 5c; from -2.0 to 2.2 s following choice presentation, clustercorrected p < 0.001), and negatively with the value difference between chosen and unchosen actions (from 1.3 to 3.3 s following choice presentation, cluster-corrected p < 0.001). Interestingly, pupillary dilation started reflecting learning variability well before choice presentation (t-test against zero, jackknifed t 23 = -11.1, p < 0.001) -like dACC activity and in contrast to FPC activity. This pattern of effects indicates that, like BOLD activity in the dACC, pupillary dilation predicts exploratory behavior by decreasing the computational precision of update steps rather than by modulating the exploration-exploitation trade-off.

To confirm this hypothesis, we tested the relationship between trial-to-trial pupillary fluctuations and behavioral variability using the same brain-behavior analysis previously applied to BOLD fluctuations in the dACC and the FPC. Like dACC activity, pupillary fluctuations predicted negatively participants' sensitivity to the value difference between switching and repeating, in both partial and complete outcome conditions (Fig. 5d, left panel; partial: ! = -0.55 ± 0.13, t 23 = -4.4, p < 0.001; complete: ! = -0.71 ± 0.19, t 23 = -3.8, p < 0.001). However, unlike dACC activity, pupillary fluctuations also had a smaller but significant positive effect on the relative value of switching in the partial outcome condition (Fig. 5d, right panel; partial: ! = 0.21 ± 0.09, t 23 = 2.4, p = 0.023; complete: ! = 0.10 ± 0.08, t 23 = 1.3, p = 0.205). These results indicate that pupil-linked fluctuations of the LC-NE system drive exploratory behavior through random variability in the learning process rather than through adjustments of the exploration-exploitation trade-off 45,46 .

Discussion

Maximizing rewards in volatile environments requires an agent to trade the exploitation of currently best valued actions against the exploration of recently unchosen ones. Dominant theories describe exploratory decisions in terms of this trade-off, more specifically in terms of a drive to seek information about uncertain actions during choice 5,7,30,47-49 . Here we sought to contrast these information-seeking accounts with another possible source of exploration: the limited computational precision of the learning process, which updates the expected values of possible actions following each reward. By decomposing exploration into these two components, we show that more than half of exploratory decisions are triggered by random variability in the learning process -rather than by an overt drive to seek information during choice.

This finding does not only shift the main mechanism for exploration: it also requires to reconsider its very nature. Indeed, exploration during choice has often been regarded as intentional and should thus happen only when there is uncertainty regarding the current value of recently unchosen actions. In accordance with this view, we found that choice-driven exploration depends critically on the absence of knowledge about the outcome of the foregone action on each trial. Our participants chose almost invariably the currently best valued shape when the outcome of the foregone action was observed or could be easily inferred from the outcome of the chosen action. By contrast, noise-driven exploration did not depend on knowledge about the foregone action, suggesting that computational variability reflects a core characteristic of human learning rather than an active feature that can be suppressed when the resulting exploration is not needed 15 . In this sense, learning variability resembles the internal corruptive noise found in canonical decision-theoretic models, ranging from signal detection theory to sampling-based theories of inference 50-52 . The moderate consistency of human decisions across repeated blocks excluded the alternative possibility that the observed learning variability could be due to idiosyncrasies -deterministic deviations from the canonical Rescorla-Wagner rule applied in the model to update action values following each reward 16,53 .

The analysis of frontal BOLD signals provided further information about the neural mechanisms underlying the observed learning variability. BOLD activity in the dACC and the FPC correlates positively with trial-to-trial deviations from the exact application of the canonical Rescorla-Wagner rule, even when participants were cued to select a randomly pre-determined action -and thus did not have to make a choice. These neural correlates of learning variability are fundamentally different from neural correlates of computational quantities associated with reinforcement learning (e.g., prediction errors, expected values), in the sense that learning variability is neither computed explicitly by our noisy RL model nor hypothesized to be represented in any brain region. Our noisy RL model updates action values with a limited precision, and thus trial-to-trial deviations of each update step from the average reflect the effective variance (inverse precision) of the learning rule. This means that 'functional' accounts of surprise monitoring in the dACC might stem from the structure of learning noise 42,54-59 . In other words, dACC activity may correlate only indirectly with surprise through the multiplicative scaling of learning noise with the size of update steps -following the ubiquitous Weber's law of intensity sensation.

Numerous previous studies have tied both the dACC and the FPC to exploration and foraging across species 3,12,14,21,60-67 , but the specific contributions of these two frontal regions remained unclear. Our brainbehavior analysis revealed a double dissociation in the relationships between the dACC and the FPC and exploratory behavior. Trial-to-trial BOLD fluctuations in the dACC were associated with random variability in the decision to switch from or repeat the previous action, producing exploration even when there was no incentive to seek information about recently unchosen actions (i.e., in the complete outcome condition). By contrast, BOLD fluctuations recorded simultaneously in the FPC were associated with increases in the relative value of switching toward a more uncertain action (i.e., in the partial outcome condition). In other words, dACC activity reflects the computational variability of reinforcement learning, whereas FPC activity reflects adjustments in the exploration-exploitation trade-off.

The observed relationship between FPC activity and the exploration-exploitation trade-off is in line with non-invasive and inactivation studies in humans 3,14,34 , and also with inactivation and lesion studies of the closest analogue of the FPC in non-human primates (area 10m), which are associated with decreased exploration 68-70 . The relationship between dACC activity and learning variability has not been considered by previous studies and thus deserves further consideration. The dACC has been assigned a causal role in learning based notably on lesion studies in non-human primates disrupting reinforcement learning 71 , and on inactivation studies in rodents leading to purely random behavior divorced from learning 72 . The learning variability correlating positively with dACC activity is consistent with an active role of this frontal region in learning since the variability in question scales with the size of each learning step. Besides, several recent findings support the idea of learning variability triggered by the dACC 73 . At the theoretical level, the 'metaplastic' synapses hypothesized in the dACC to account for adaptive learning in volatile environments go through stochastic transitions between states of faster and slower learning 74 . Neural circuits endowed with such synaptic properties would produce behavioral variability with the same statistical signatures as our learning noise. At the neural level, dACC activity has recently been shown to reflect prediction errors based on multiple, graded learning rates 73 . Neural variability in the pooling of such graded prediction errors (of which sampling would be an extreme case) would also produce behavioral variability of the same nature.

Our findings reveal that the learning variability resulting from these different accounts is responsible for a dominant fraction of exploratory decisions.

An intriguing possibility is that learning variability may confer beneficial properties to the resulting behavior in volatile environments 15 . In particular, although the behavioral variability driven by learning variability does not have any active role in solving the exploration-exploitation trade-off, it provides a computationally inexpensive source of exploration by decreasing the precision of update steps 75 . Furthermore, as we have shown, the structure of learning variability has choice-stabilizing properties and produces an adjustment of exploration to surprise without requiring its explicit monitoring. Beyond these intrinsic benefits, computational variability in reinforcement learning may also optimize a second trade-off between the marginal payoff of a computation (i.e., the expected increase in payoff provided by this computation) and the cost associated with performing the computation at a given precision. The dACC has precisely been proposed to reflect such trade-off, by monitoring an 'expected value of control' (EVC) -defined as the difference between expected payoff and associated cost (conflict, in particular) 76 . Instead of assuming that the cost is coded explicitly by the dACC, we propose that the cost associated with a computation is reflected implicitly by its precision (Fig. 6a). This hypothesis provides a natural explanation as to why learning is subject to a limited computational precision, but also makes important predictions. In particular, increasing the level of volatility (i.e., the rate of change in action values) reduces the marginal payoff of learning (which in the limit case tends toward zero), and thus decreases the precision which optimizes the underlying payoff-cost trade-off (Fig. 6b). We thus predict that participants should feature not only larger learning rates, but also larger learning variability and thus larger dACC activity, in more volatile environments.

Based on previous findings, we reasoned that the observed learning variability, reflected in dACC activity, may be linked to the state of the locus coeruleus-norepinephrine (LC-NE) neuromodulatory systemwhich has been involved in both the regulation of the neural gain of cognitive operations and the adjustment of the exploration-exploitation trade-off 31,32,37-39,41 . Indeed, LC neurons receive strong projections from the dACC, which in turn produce gain control in several frontal regions implicated in reinforcement learning 77- 79 . Pupil-linked fluctuations of the LC-NE state are associated with both exploration and with task disengagement 40,80,81 . Existing theories have interpreted this finding as evidence in favor of the implication of the LC-NE system in controlling the exploration-exploitation trade-off, something for which there is only partially conclusive evidence to date 38,40,80 . We hypothesized that the LC-NE system may instead mediate the relationship between dACC activity and learning variability. In line with this hypothesis, we observed that pupillary fluctuations predict random variability in the decision to switch from or repeat the previous action.

This was the case even when participants observed the outcome of the foregone action on every trial, just like BOLD fluctuations in the dACC. This relationship between pupil dilation and behavioral variability supports the idea that the LC-NE system drives exploration by modulating the precision of learning rather than by adjusting the exploration-exploitation trade-off.

Together, our findings emphasize a large, yet previously neglected source of exploration in rewardguided decision-making, driven by computational variability in the underlying learning process. This noisedriven source of behavioral variability, likely occurring unbeknownst to the decision-maker, is independent of the overt arbitration between the exploitation of currently best-valued actions against the exploration of more uncertain ones -a trade-off previously considered as the only source of exploration. As we have shown, the decomposition of exploration into noise-driven and choice-driven components bears important consequences for understanding both the mechanisms underlying exploratory behavior and its neurophysiological substrates. Exact models of learning should be revised to allow for random variability in their core computations, and for an implicit payoff-cost trade-off regulating their precision.

A.Top: illustration of the dependencies between marginal payoff (grey) and computational cost (red) with the computational precision (x-axis). Increased precision is associated with a rapidly growing computational cost (red arrow) while the increase in marginal payoff is much smaller (grey arrow). Bottom: optimal precision corresponds to the maximum of the difference between marginal payoff and computational cost. B. Top: marginal payoffs for different volatilities (light grey -small volatility and large differences between option values, to dark grey -high volatility and small differences between option values) as a function of computational precision. Bottom: optimal precisions computed for the three different volatility levels (light blue -small volatility, to dark blue -high volatility). Dashed vertical lines correspond to the optimal precision estimates. The greater the volatility, the lower the optimal precision is.

a b set one of the values to be 100 minus the other. The dynamics of the actions are :

a t+1 |Q t+1 , β, a t ∼ Ber (η (Q t+1 , β, a t)) with, η (Q t+1 , β, a t) = 1/ 1 + exp -β Q 1 t+1 -Q 0 t+1 -sign (a t -.5) • ξ
With β the softmax coefficient and ξ the repetition bias. Let us add a parameter c indicating whether the two options have a shared (c=1) or different (c=0) learning rate. Working in a Bayesian framework, we ascribe a prior distribution to each parameter:

p (α 0 , α 1) = 1 [0,1] 2 (α 0 , α 1) • 1[c = 0] + 1 [0,1] (α 0) • 1[α 0 = α 1] • 1[c = 1] 1 β ∼ U ([0, 1]) ξ ∼ N (0, 1)
All the models can be derived from these equations by setting parameters to 0. For instance ζ and ξ to 0 leads to the standard reinforcement learning model.

The standard deviation of the learning noise is proportional to the prediction error Q k tr k t which implies it scales positively with the quantity of update

Q k t -Q k t+1 , with Q k t+1 obtained by applying the exact temporal difference update to Q k t . Q k t -Q k t+1 = Q k t -1 -α 1[at=k] Q k t -α 1[at=k] • r k t = α 1[at=k] • Q k t -r k t
Fitting procedure : Fits in all models are based on Monte Carlo methods (Robert (2004)). More precisely, for the standard reinforcement learning models without learning noise, we used an iterated batch importance sampler (IBIS) (Chopin (2002)). IBIS is a sequential monte carlo (SMC) algorithm for exploring a sequence of parameter posterior distributions when the likelihoods p(a t |a 1:(t-1) , r 1:(t-1) , β, α 0 , α 1 , ξ) are tractable. This algorithm could not be used for the models with learning noise as these likelihoods are, in this latter case, intractable. Thus, we used the SMC 2 algorithm (Chopin et al. (2013)) to perform inference in the models with learning noise. Both the IBIS and SMC 2 algorithms lead to estimates of the marginal likelihood and of the posterior at every time step. The SMC 2 algorithm essentially combines two SMC algorithms, an iterated batch importance sampler (IBIS) with a particle filter (PF) (Andrieu et al. (2010)). Let θ = β, α 0 , α 1 , ξ be the parameters of the considered model, t a time point, a 1:t the actions performed by the agent and r 1:t the observed rewards. The IBIS algorithm is a SMC procedure applied in the dimension of the parameters, it combines importance sampling and monte carlo markov chain (MCMC) methods to obtain approximations of the posterior p(θ|a 1:t , r 1:t) and of the marginal likelihood p(a 1:t |r 1:t). PF algorithms are also a SMC filters but applied on state space models and leads to estimates of the filtering distributions and of the incomplete marginal likelihoods through iterated importance sampling. With θ fixed, the PF leads to, at every time step, an estimate of p(Q t |a 1:t , r 1:t , θ) and of p(a 1:t |r 1:t , θ). These fitting procedures can be found in more extensive details in the Supplementary Informations.

Obtaining the smoothing distributions : Two studies involving the learning noise model required the smoothing distributions p Q 1:T |a 1:T , r 1:T , θ M AP , with θ M AP the maximum a posterior. The first was when we investigated whether a labeled 'exploratory' trial effectively stemmed from the softmax contribution or whether it was a greedy choice that originated from learning noise. The second study involving the smoothing distributions is the modelbased fMRI study : we correlated the BOLD signal with the most likely deviations predicted by the learning noise model. To obtain samples approximately distributed under the smoothing distributions, we used the Forward Filter/Backward Simulator (FFBSi) [START_REF] Doucet | On sequential Monte Carlo sampling methods for Bayesian filtering[END_REF], [START_REF] Lindsten | Backward simulation methods for Monte Carlo statistical inference[END_REF]) to obtain N samples Q 1:T,i i∈ [1,N] from p Q 1:T |a 1:T , r 1:T , θ M AP with T the total number of trials.

Distinguishing softmax exploration from learning noise: In the main experiment and its purely behavioral extension, we reported the proportion of labeled 'exploratory' trials which originated from learning noise. To label a trial as 'exploratory', we applied the standard exact reinforcement learning algorithm and labeled as 'exploratory' every trial which was not predicted by this exact model (Daw et al. (2006)). Assuming there are a total of T trials and among these T trials, n were labeled as 'exploratory'. Let us write {t 1 , ..., t n } the indexes of these n trials. For each t i , given the smoothing average Q ti = N k=1 Q ti,k /N , the 'exploratory' trial t i is actually greedy for the learning noise model if it is well predicted by the sign of Q 1 ti -Q 0 ti . We conclude the proportion of 'exploratory' trials to be greedy for the learning noise model to be:

N (greedy trials| t 1 , ..., t n) N ('exploratory' trials) = 1 n n i=1 1 1 Q 1 ti > Q 0 ti == a ti
Obtaining the bias/variance tradeoff : The last experiment (exp.3) composed of repeated blocks was used to obtain a bias/variance tradeoff describing to which extent the learning noise can be explained by deterministic deviations from the learning rule. This experiment led to a consistency ratio of 82% indicating that, on 82% of the trials, the subjects were consistent in their choices within repeated blocks (fig. 3b). For each set of fitted parameters (one per subject with N=30 subjects), we simulated the model with learning noise and no choice stochasticity a 100 times.

This led to 30 × 100 agents playing the task. Furthermore, in these simulations, we assumed a shared contribution throughout the repeated blocks and a unique contribution to each of them. The shared contribution represented the deterministic deviation to the learning rule, the "bias", whereas the unique contributions represented unpredictable deviations, the "variance". We modulated the bias/variance contributions so as to match the consistency ratio of the subjects and obtained contributions of 68% of variance and 32% of bias. This means the learning noise obtained is only explained up to one third by deterministic biases (fig 3c).

Obtaining the noise regressors for model-based fMRI : For the model-based fMRI, we investigated the fMRI BOLD activity correlates with regressors issued from the model with learning noise. With T the total number of samples and N the number of particle, let Q t∈ [1,T],i∈ [1,N] be the smoothing samples of the learning noise model and Q t∈ [1,T],i∈ [1,N] the Q-values obtained when applying the exact update rule to Q t-1,i . The fMRI regressors include the prediction error of the chosen option

P E = r chosen t-1 -Q chosen t-1 , with Q chosen t-1 = (1/N) i Q chosen t-1,i , the difficulty Q chosen t -Q unchosen t , with Q chosen t = (1/N) i Q chosen t,i and Q unchosen t = (1/N) i Q unchosen t,i
, and the deviations from the exact Rescorla-Wagner learning rule at every time step. This last 'learning noise' regressor is obtained by computing the deviation for each sampled trajectory,

δ t,i = Q t,i -Q t,i 1
and averaging over these trajectories

δ t = (1/N) i δ t,i . {δ t } t∈[1,T] .
Imaging data acquisitions and preprocessing : A Siemens Prisma fit 3T scanner (CENIR, ICM, Paris, France)

and an 64-channel head coil were used to acquire both high resolution T1-weighted anatomical MRI using a 3D

MPRAGE with a resolution of 1mm 3 voxel and T 2 * -weighted multiband-echo planar imaging (mb-EPI) with multiband factor of 3 and acceleration factor of 2 (GRAPPA). The parameters of the fMRI time series acquisition were the following: 54 slices acquired in ascending order, the voxel size was 2.5mm isometric (in each direction), the repetition time of 1.1s, and the echo time of 25 ms. A tilted plane acquisition sequence was used to optimize sensitivity to BOLD signal in the orbitofrontal cortex [START_REF] Deichmann | Optimized epi for fmri studies of the orbitofrontal cortex[END_REF], Weiskopf et al. (2006)). Preprocessing included co-registration of the anatomical T1 images with the mean EPI, segmentation and normalization to a standard T1 template, and average across all subjects to allow group-level anatomical localisation.

Preprocessing of the mb-EPI consisted of spatial realignment, movement correction, reconstruction and distortion correction, and normalization using the same transformation as applied for the structural images. Normalized images were spatially smoothed using a Gaussian kernel with a full width at a half-maximum of 8mm. All the preprocessing except for the distortion correction was done using the SPM12 (Wellcome Trust Center for NeuroImaging, London, UK; ww.fil.ion.ucl.ac.uk). Distortion correction consisted of image unwarping and reconstruction done using FSL software (Jenkinson et al. (2012)).

FIR time courses analysis:

To reconstruct the time courses of BOLD signal showed in fig. 4c, we created a time epoch starting 2 seconds before up to 12 seconds after the onset of outcome and then applied a GLM to each timepoint separately. The GLM included the following parametric modulators time locked at the moment of outcome: reward prediction error for the chosen option, relative value for the upcoming choice and the learning noise regressor, all sequentially orthogonalized as in the other GLMs. Obtained time courses were first smoothed using Savitzky-Golay filtering (order 2, length 7 timepoints) and then averaged across subjects. We next computed the time to peak for each parametric modulator using leave-one-out procedure and then averaged the estimates across subjects. Individual time-to-peak estimates were brought to a paired two-tailed t-test with the p-value adjusted for the resampling (Jacknife resampling method, McIntosh (2016)).

Predicting the switch behavior using the fMRI time-series data : We ran logistic regression to characterize the role of dACC and FPC regions in subjects' decisions (fig. 5b). Regression consisted of the following z-scored predictors: relative value (Qchosen -Qunchosen), the trial-by-trial BOLD residual signal in the dACC and FPC after regressing out the relative value and their two-way interactions (decision value times each of the residual fMRI time series). The model also included the constant term resulting in 6 regressors in total. Model was fitted using the Markov Chain Monte Carlo (MCMC) Metropolis-Hasting method to obtain the posterior estimates for each of the regressors (see Supplementary Informations). Sequence of samples (N = 5000) was generated and the first half of the samples was excluded to allow for stabilization of the posterior distribution. Individual posterior means of the regressors were next brought to a second-level between-subject analysis using paired t-tests.

Predicting decisions using the trial-to-trial pupil dilation: Pupil data were acquired in a separate dataset (N = 30 with pupil data successfully recorded for 24 subjects) who performed the same task outside the scanner.

The diameter of the dominant eye was recorded at 500 Hz using an EyeLink-1000 System (EYELINK II CL v4.594).

Subjects performed the experiment in a dark sound-proof room with their head positioned on a chin rest positioned at approximately 50 cm from the computer screen.

Data were first corrected for the eye-blinked artifacts using manufacturer default algorithm. The preprocessing was then performed using custom-based MatLab functions: data were smoothed using the moving average of of 100 ms; blink periods were linearly interpolated (from -100 ms before until 500 ms after the blink). Trials where blinking or fixation errors occurred within the analysis window (from -1000 ms till 5000 ms after the stimulus onset) were removed. Data were next subsampled at 50 Hz and low-pass filtered at 4Hz (third order Butterworth filter) and then z-scored per session.

We next analyzed these time series using FIR approach. First, we check that pupillary response increases after the switch vs. repeat decisions: the FIR model across both partial and complete feedback conditions included stick function put at every time point within interval 1000 ms before and 5000 ms after the stimuli onset and then parametrically modulated with the switch (1) vs. repeat (-1) regressor. We next constructed another FIR model within the same time window where each stick function was parametrically modulated with the two computational variables:

the relative value (Qchosen -Qunchosen) at the time of choice t obtained by applying the exact update to the noisy Q-value and the learning noise. Recalling the notations of the 'obtaining the noise regressors for model-based fMRI' paragraph, these two regressors correspond to Q chosen t -Q unchosen t and δ t . All behavioral variables were sequentially orthogonalized as for the fMRI analysis, z-scored per session; additional session regressors were added to the model. The model was next inverted using the Ridge regression. For both FIR models, we performed nonparametric cluster correction on the obtained regression coefficients as described in Maris and Oostenveld (Maris and Oostenveld (2007)). Clusters were first defined for 8 minimum contiguous time points where the beta estimates were different from 0 at p < 0.01 for two-tailed paired t-test and the summed t-statistic was computed for each cluster. Next permutation analysis was run (N = 10.000) where each time half of the subjects betas were flipped in sign and the sum of the t-statistic values was recomputed. Significant cluster was defined at p < 0.01 (1% chance that the shuffled t-value exceeded the true summed t-value for a given cluster).

We defined a significant time interval where the pupil dilation negatively correlated with the relative value in the partial and complete feedback conditions (fig. 5c). We next averaged trial-by-trial pupil response within this time interval and use these averaged response in the logistic regression model to predict subjects' switch-stay decisions.

The logistic regression was similar to the one used to investigate the effect of BOLD fluctuations with the frontal regions on subjects' behavior and consisted of the following z-scored regressors: decision value (Qchosen -Qunchosen) at the time of choice t without the added noise on this trial from the NOISY computational model, the trial-by-trial residual pupil fluctuations after regressing out the decision value and their two-way interaction. The model also included the constant term resulting in 4 regressors in total. Model was fitted using Markov Chain Monte Carlo (MCMC) methods (Robert (2004)). Individual posterior means of the regressors were next brought to a second-level between-subject analysis using paired t-tests. Supplementary figure 3 pupillary response switch > stay

Temporal dynamics of pupillary correlates for switch minus stay decisions locked to the moment of choice averaged across feedback conditions. Shaded areas are SEM. Horizontal grey bar corresponds to the time window where time curve for parameter estimates was significantly different from zero, cluster-corrected using permutation tests at p < 0.01.

Experimental Tasks

Three tasks were developed for this study. In all three experiments, we used a two-armed restless bandit but task versions di ered from one experiment to the other. The first task is the main one on which fMRI data was recorded (exp.1). This task is a two-armed restless bandit of 448 trials divided into 8 blocks of 56 trials. N=29 subjects played this task where feedback was an integer value between 1 and 99. The value associated to each symbol followed uncorrelated random walks such that the higher-rewarding option could change with time but information on one option did not give any on the other. The rewards observed by the subjects were sampled from Gaussian distribution with mean predicted by the random walks. Among the 8 blocks, half were partial blocks where subjects only observed the reward associated to the chosen symbol and the other half were complete blocks where subjects observed both rewards even though he only received the reward of the chosen option. Furthermore, 25% of the trials were cued trials where subjects were constraint to choosing one of the two symbols. These cued trials allowed a distinction between learning noise and choice stochasticity: in contrast to learning noise, choice stochasticity is absent in these cued trials.

The second task was an extension of the first. N=59 subjects played this second purely behavioral tasks of 768 trials divided into 8 blocks of 96 trials. Again, feedback was an integer value between 1 and 99. The blocks were of 4 types: uncorrelated partial, uncorrelated complete, correlated partial and correlated complete. The first two types of blocks allowed for a replication of the first main experiment, the last two introduced a structure on the rewards associated to each symbol : when the reward of one symbol was high, the reward associated to the other was low and reciprocally. The subjects were informed of this structure enabling them to develop a structural learning rule. On this second experiment, there were no cued trials.

One last task was implemented to obtain the bias/variance tradeo . N=30 subjects played a two-armed restless bandit where half of the blocks were repeated across the experiment. Again, feedback was an integer value between 1 and 99 and the task did not present any cued trials. It was composed of sixteen blocks of 56 trials, each block had uncorrelated rewards and the counterfactual outcomes were given. Among the sixteen blocks, 8 were distinct and each distinct block was repeated once throughout the experiment.

Comparing assumptions in the exact reinforcement learning

To validate the assumptions of the exact models, we performed a series of comparison with other models elicited in the literature. A first where no update was assumed on the unchosen option, a second where the unchosen option was regressed to the mean and a third where a fictive reward for the counterfactual option was assumed R fictive = 100 ≠ R, with R the actual observed reward.

Scaled softmax : For the softmax, we tested two hypothesis. Firstly, we tested a constant inverse temperature -. And, secondly, we tested the possibility that the softmax scaled with the prediction error.

-t = -0 / (1 + " • |RP E t≠1 |),
with RP E t≠1 the reward prediction error at time t-1. " and -0 are fitted parameters

Pearce-Hall models : The Pearce-Hall derivations assume the learning rate or the beta follow themselves a temporal di erence rule [13] [15]. If applied to the learning rate, then the learning rate at time tt is assumed to be

-t = " • |RP E t≠1 | + (1 ≠ ") • -t≠1
with RP E t≠1 the reward prediction error at time t-1. When applied to the inverse temperature of the softmax, it is assumed

-t = " • |RP E t≠1 | + (1 ≠ ") • -t≠1 .
In both cases, " is a fitted parameter.

Curiosity model : The curiosity model assumes a bonus for the unchosen option proportionally to the number of times it was not seen. If a t oe {0, 1} is the action performed at time t, the softmax becomes:

1

-• Q t + " • (2a t≠1 ≠ 1) • q t≠1 k=0 r k i=0 1 {a t≠1≠i = a t≠1 } with Q t the
relative value, andand " two fitted parameters.

Inference in the exact models 4.1 Iterated Batch Importance Sampling

Performing inference in the standard reinforcement learning models was done with an Iterated Batch Importance Sampler (IBIS). Let ◊ be the parameters of the considered exact model, t a time point, a 1:t the actions performed by the agent and r 1:t the observed rewards. Throughout the whole document, (a : b), with a and b integers, comprises all integer values between a and b. The IBIS algorithm of Chopin (2002) is a sequential Monte Carlo for exploring a sequence of parameter posterior distributions p(◊|a 1:t , r 1:t). A constraint of this algorithm relies in the need of the computation of the conditional likelihood p(a t |a 1:(t≠1) , r 1:(t≠1) , ◊) -which is possible when considering exact reinforcement learning models. We write the IBIS algorithm in the case of the exact reinforcement learning model without repetition bias and in the complete condition [algorithm 1]. This IBIS algorithm leads to samples that are approximately distributed under the posterior p(◊|a 1:T , r 1:(T ≠1)). Recalling the notations of algorithm 1:

p(◊ oe d◊|a 1:T , r 1:(T ≠1)) ¥ 1 q k w k ÿ m w m 1[◊ m oe d◊]
From the conditional likelihoods estimates Recalling the graphical model, we have a t ‹ ‹ r i , 'i Ø t (V-structure [11]). Thus:

p(a 1:T |r 1:(t≠T)) = T Ÿ t=1 p ! a t |a 1:(t≠1) , r 1:(t≠1) " ¥ T Ÿ t=1 ' p(a t | a 1:(t≠1) , r 1:(t≠1))
And we obtain an estimator of the marginal likelihood -this estimator is even unbiased (Chopin 2002).

Move Step

Within the IBIS [algorithm 1], when the particle system degenerates, meaning when there are few particles ◊ m with large weights, the posterior's approximation becomes poor. To solve the issue, the algorithm performs a move step to rejuvenate all particles. Essentially, one samples from the mixture distribution

1 q N ◊ m=1 w m N ◊ ÿ m=1 w m K t (◊ m , .)
where the kernel K t leaves the posterior p(◊|a

Resampling Schemes

To sample the ancestors, one can use multiple resampling schemes. The simplest one just sample N ◊ times independently from the multinomial M (W m) with W m = w m / q k w k . Although simple, this sampling scheme performs poorly as it tends to favor larger weights [7] [4]. To solve this issue, other resampling scheme exist such as residual resampling and systematic resampling. With no particular reason among these alternatives, we developed the systematic resampling scheme [algorithm 3].

Inference in the models with learning noise

Let ◊ be the parameters of the considered model, t a time point, a 1:t the actions performed by the agent and r 1:t the observed rewards. Inference in the learning noise models is not straightforward as one does not have access to the conditional likelihoods p(a t |a 1:t , r 1:(t≠1) , ◊). Fortunately [3] has shown that the IBIS algorithm remains valid when one replaces p(a t |a 1:t , r 1:(t≠1) , ◊) by an unbiased estimator. To obtain this unbiased estimator, we will use bootstrap particle filtering algorithms. Again, we only consider here the model in the complete setting without repetition bias.

Particle filter algorithms

Let N x be the number of particles. Particle filters (PF) are sequential Monte Carlo (SMC) procedures applied in state space models [algorithm 4].

With the notation of algorithm 4, h ◊ represents the transition probability:

h ◊ (Q n k |Q o n k≠1 k≠1 , Ir k≠1) = f 1 Q n,0 k ; (1 ≠ -) • Q o n k≠1 ,0 k≠1 + -• r 0 k≠1 , ' • . . .Q o n k≠1 ,0 k≠1 ≠ r 0 k≠1 . . . 2 ◊ f 1 Q n,1 k ; (1 ≠ -) • Q o n k≠1 ,1 k≠1 + -• r 1 k≠1 , ' • . . .Q o n k≠1 ,1 k≠1 ≠ r 1 k≠1 . . . 2
with f (.; µ, ‡) the pdf of a Gaussian distribution with mean µ and standard deviation ‡. g ◊ is the emission probability:

g ◊ (a t |Q n k) = Q a 1 1 + exp Ë 1/T -• 1 Q n,0 k ≠ Q n,1 k 2È R b at=1 Q a 1 ≠ 1 1 + exp Ë 1/T -• 1 Q n,0 k ≠ Q n,1 k 2È R b at=0

Bootstrap particle filter

Bootstrap particle filter assumes the proposal distribution is equal to the transition distribution q k,◊ = h ◊ . This leads the importance weights to be equal to the emission probability. For all n oe [1, N x]

w n k,◊ = g ◊ (a t |Q n k)

SMC 2

The algorithm that combines IBIS with PF to perform inference in models where the conditional likelihoods p(a t |a 1:t , r 1:(t≠1) , ◊) are intractable is called the SMC 2 algorithm [algorithm 5]. As in IBIS, we obtain the estimator of the marginal likelihood by multiplying the conditional likelihoods estimates; and, again, this estimator is unbiased.

p ! a 1:T |r 1:(T ≠1) , ◊ " = T Ÿ t=1 p ! a t |a 1:(t≠1) , r 1:(t≠1) " ¥ T Ÿ t=1 ' p ! a t |a 1:(t≠1) , r 1:(t≠1) "
As for the posterior p ! ◊| a 1:T , r 1:(t≠1) " ,

p ! ◊ oe d◊| a 1:T , r 1:(t≠1) " ¥ 1 q k w k N ◊ ÿ m=1 w m • 1[◊ m oe d◊]

P-MCMC

The move step in the SMC 2 algorithm is similar as in this IBIS provided that the MCMC step is replaced with a Particle-MCMC algorithm [algorithm 6]. Essentially, we apply a Metropolis Hasting algorithm where the intractable probabilities are replaced with unbiased estimators. Non-trivially, the procedure remains exact [1].

Obtaining the smoothing trajectories

Throughout our study, we used the smoothing distributions to quantify the random deviations from the exact update rule at every time step. To obtain these smoothing trajectories meaning samples following p(Q t |a 1:T , r 1:(T ≠1) , ◊) for all t oe [1, T] with T the total number of trials, we applied the Forward Filter/Backward Simulator (FFBSi) [5] [9] and constructed a guided version of the particle filter algorithm so as to obtain trajectories as precise as possible. Briefly, in scenarios where the observations are not too informative and the dimension of the latent variable not too large, the bootstrap PF can lead to satisfactory performance. However, to obtain more reliable approximations, one can select q k,◊ close to p(Q t |Q t≠1 , a t , r t≠1 , a t≠1 , ◊) to guide particles to regions of high likelihoods [6].

We will first construct the guided particle filter, and ultimately described how to obtain the smoothing trajectories with FFBSi.

Approximating the logistic function with a Gaussian cumulative function

Let us recall our emission probability is given by a logistic function. To obtain the guided procedure, we used a Gaussian cumulative distribution function (cdf) approximation of the logistic function. Let us review quickly how we obtain the Gaussian cdf approximation of the logistic function. The logistic function can be obtained by integrating Gumbel random variables:

I(x) = p (⁄ 1 + x < ⁄ 0) = ⁄ +OE ≠OE d⁄ 1 p (⁄ 1) ⁄ x+⁄1 ≠OE d⁄ 0 p (⁄ 0)
With ⁄ k ≥ Gumbel(µ = 0, 1/-). The Gumbel random variable has for density function:

p (⁄ k) = -e ≠-⁄ k ≠e ≠-⁄ k , p(⁄ k < c) = e ≠e ≠-c
We have:

I(x) = ⁄ +OE ≠OE d⁄ 1 p (⁄ 1) ◊ p (⁄ 0 < x + ⁄ 1) = ⁄ +OE ≠OE d⁄ 1 -e ≠-⁄1≠e ≠-⁄ 1 e ≠e ≠-(x+⁄ 1) = ⁄ +OE ≠OE d⁄ 1 -e ≠-⁄1 e ≠e ≠-⁄ 1 [e ≠-x +1]
Let y = e ≠-⁄1 . We have d⁄ 1 = ≠dy/(-y).

I(x) = ≠ ⁄ 0 +OE dy e ≠y[e ≠-x +1] = ⁄ +OE 0 dy e ≠y[e ≠-x +1]
Furthermore, s +OE 0 e ≠cy dy = c ≠1 with c > 0. Thus, with c = # e ≠-x + 1 $, we obtain:

I(x) = 1 1 + e ≠-x = sig(-x)
The logistic function is thus obtained by assuming an initial Gumbel noise and integrating over it. To obtain the Gaussian cdf approximation, we replace the Gumbel random variables with Gaussian ones with same first moments. Gumbel random variables have for mean and standard deviation:

E [⁄ k] = " - std [⁄ k] = fi - Ô 6
With " the Euler-Mascheroni constant, " = .5772. We thus assume ÷ k ≥ N (m, s) with:

m = " - , s = fi Ô 6-
An illustration of the Gaussian approximation to a Gumbel (µ = 0, 1/-) density is represented figure 4.

Figure 4: Gaussian approximation of the Gumbel distribution

Rewriting the corresponding I(x) integral leads to the Gaussian cdf approximation of the logistic function. Let us write " the probability density function and the cumulative distribution function of the standard Gaussian distribution. Calculation are performed thanks to variable substitutions and Gaussian integrals (Patel & Read, 1996; all integrals used are summarized in section 7)

J -(x) = ⁄ +OE ≠OE d÷ 1 p (÷ 1) ⁄ x+÷1 ≠OE d÷ 0 p (÷ 0) = ⁄ +OE ≠OE d÷ 1 p (÷ 1) ◊ p (÷ 0 < x + ÷ 1) = ⁄ +OE ≠OE d÷ 1 1 s " 3 ÷ 1 ≠ m s 4 ◊ 3 x + ÷ 1 ≠ m s 4
Let u = ÷1≠m s , ÷ 1 = us + m, and d÷ 1 = sdu, we obtain:

J -(x) = ⁄ +OE ≠OE du " (u) ◊ 1 x s + u 2
With b = 1, a = x s , and s = fi Ô 6-, we obtain (see section 7):

J -(x) = 3 x s Ô 2 4 = 3 - Ô 6x fi Ô 2 4 = 3 - Ô 3x fi 4 11
We thus obtain the Gaussian cdf approximation of the sigmoid function :

sig(-x) ¥ J -(x) = (⁄-x) with, ⁄ = Ô 3 fi
An illustration of this built approximation of the logistic function is plotted figure 5. We see that both curves superimpose very well validating the Gaussian interpretation of the Gumbel distribution.

Figure 5: Gaussian cdf approximation of the sigmoid function

Approximating the posterior

We aim to design a guided PF algorithm [6]. To do so, we will build a proposal distribution q k,◊ as close as possible to the posterior p(Q t |Q t≠1 , a t , r t≠1 , a t≠1 , ◊). We define the problem more broadly and look for a Gaussian approximation of the following probability distribution:

p (X| Y, µ, ‡, -) Ã f (X; µ, ‡) p (Y | X, -) Ã f (X; µ, ‡) sig (-X) Y (1 ≠ sig(-X)) 1≠Y
With f (.|µ, ‡) the Gaussian pdf with mean µ and standard deviation ‡. Assuming the Gaussian cdf approximation of the sigmoid distribution, we obtain:

q (X| Y, µ, ‡, -) Ã f (X; µ, ‡) q (Y | X, -) Ã f (X; µ, ‡) J -(X) Y (1 ≠ J -(X)) 1≠Y
In our case, Y represents the actions and X is the di erence between the Q-values, X = Q 1 ≠ Q 0 . We can now look for the normalizing constant and first two moments of this distribution: Z, E [X] and E # X 2 $. From this, we will obtain a Gaussian approximation of the posterior which we will use as proposal. Let us first assume Y=1 and let us write " the probability density function and the cumulative distribution function of the standard Gaussian distribution.

Case

Y = 1 q (X| Y = 1, µ, ‡, -) Ã f (X; µ, ‡) q (Y | X, -) Ã f (X; µ, ‡) J -(X) Normalizing constant Z (Y = 1) = ⁄ x 1 ‡ " 3 x ≠ µ ‡ 4 (⁄x) dx Let u = (x ≠ µ) / ‡. We have dx = ‡du and x = ‡u + µ Z (Y = 1) = ⁄ u "(u) (⁄ (‡u + µ)) du = ⁄ u "(u) (⁄ ‡u + ⁄µ) du
Let a = ⁄µ and b = ⁄ ‡, we have:

Z (Y = 1) = 3 a Ô 1 + b 2 4 = A ⁄µ  1 + (⁄ ‡) 2 B Z (Y = 1) = 3 a Ô 1 + b 2 4 = A ⁄µ  1 + (⁄ ‡) 2 B First order moment E [X|Y = 1] = 1 Z ⁄ x x 1 ‡ " 3 x ≠ µ ‡ 4 (⁄x) dx Let u = (x ≠ µ) / ‡.
We have dx = ‡du and x = ‡u + µ. Let a = ⁄µ and b = ⁄ ‡, we have:

E [X|Y = 1] = 1 Z(Y = 1) ⁄ u (‡u + µ) " (u) (⁄ (‡u + µ)) du = 1 Z(Y = 1) ⁄ u (‡u + µ) " (u) (a + bu) du = ‡ Z(Y = 1) ⁄ u u" (u) (a + bu) du + µ Z(Y = 1) ⁄ u " (u) (a + bu) du = ‡ Z(Y = 1) b Ô 1 + b 2 " 3 a Ô 1 + b 2 4 + µ = 1 Z(Y = 1) ‡ 2 ⁄  1 + (⁄ ‡) 2 " A ⁄µ  1 + (⁄ ‡) 2 B + µ E [X|Y = 1] = 1 Z(Y = 1) ‡ 2 ⁄  1 + (⁄ ‡) 2 " A ⁄µ  1 + (⁄ ‡) 2 B + µ Second order moment E # X 2 |Y = 1 $ = 1 Z(Y = 1) ⁄ x x 2 1 ‡ " 3 x ≠ µ ‡ 4 (⁄x) dx Let u = (x ≠ µ) / ‡.
We have dx = ‡du and x = ‡u + µ. Let a = ⁄µ and b = ⁄ ‡, and t = Ô 1 + b 2 we have:

E # X 2 |Y = 1 $ = 1 Z(Y = 1) ⁄ u (‡u + µ) 2 " (u) (⁄ (‡u + µ)) du = 1 Z(Y = 1) ⁄ u ! ‡ 2 u 2 + 2 ‡µu + µ 2 " " (u) (⁄ (‡u + µ)) du = ‡ 2 Z(Y = 1) ⁄ u u 2 " (u) (⁄ (‡u + µ)) du + 2 ‡µ Z(Y = 1) ⁄ u u" (u) (⁄ (‡u + µ)) du + µ 2 = ‡ 2 Z(Y = 1) I 1 ≠ A ≠a/b  1 + (1/b) 2 B ≠ b 2 a 1 + b 2 1 t " 1 a t 2 J + 2 ‡µ Z(Y = 1) b Ô 1 + b 2 " 3 a Ô 1 + b 2 4 + µ 2 E # X 2 |Y = 1 $ = ‡ 2 Z(Y = 1) ; 1 ≠ 3 ≠a Ô 1 + b 2 4 ≠ b 2 a 1 + b 2 1 t " 1 a t 2 < + 2 ‡µ Z(Y = 1) b Ô 1 + b 2 " 3 a Ô 1 + b 2 4 + µ 2 6.2.2 Case Y = 0 When Y = 0 q (X| Y = 1, µ, ‡, -) à f (X; µ, ‡) q (Y | X, -) à f (X; µ, ‡) J -(≠X) Let a = ⁄µ, b = ⁄ ‡, and t = Ô 1 + b 2 .
The normalizing constant is:

Z (Y = 0) = ⁄ x 1 ‡ " 3 x ≠ µ ‡ 4 (≠⁄x) dx = ⁄ x 1 ‡ " 3 ≠x ≠ µ ‡ 4 (⁄x) dx = ⁄ x 1 ‡ " 3 x + µ ‡ 4 (⁄x) dx Thus Z (Y = 0) = 3 ≠a Ô 1 + b 2 4 = A ≠⁄µ  1 + (⁄ ‡) 2

B

First order moment:

E [X|Y = 0] = 1 Z(Y = 0) ⁄ x x 1 ‡ " 3 x ≠ µ ‡ 4 (≠⁄x) dx = ≠ 1 Z(Y = 0) ⁄ x x 1 ‡ " 3 x + µ ‡ 4 (⁄x) dx Thus E [X|Y = 0] = ≠ 1 Z(Y = 0) ‡ 2 ⁄  1 + (⁄ ‡) 2 " A ≠⁄µ  1 + (⁄ ‡) 2 B + µ
Second order moment:

E # X 2 |Y = 0 $ = 1 Z(Y = 0) ⁄ x x 2 1 ‡ " 3 x ≠ µ ‡ 4 (≠⁄x) dx = 1 Z(Y = 0) ⁄ x x 2 1 ‡ " 3 x + µ ‡ 4 (⁄x) dx Thus E # X 2 |Y = 0 $ = ‡ 2 Z(Y = 0) ; 1 ≠ 3 a Ô 1 + b 2 4 + b 2 a 1 + b 2 1 t " 3 ≠a t 4< ≠ 2 ‡µ Z(Y = 0) b Ô 1 + b 2 " 3 ≠a Ô 1 + b 2 4 + µ 2

Summary

The goal was to approximate the Gaussian-logistic:

p (X| Y, µ, ‡, -) Ã f (X; µ, ‡) p (Y | X, -) Ã f (X; µ, ‡) sig (-X) Y (1 ≠ sig(-X)) 1≠Y
To do so, we use the Gaussian approximation.

X| Y, µ, ‡, -≥ N (g µ (Y, µ, ‡, -) , g ‡ (Y, µ, ‡, -))
g µ and g ‡ the mean and standard deviation of the Gaussian entirely determined by the first two moments. If Y = 1,

Z (Y = 1) = 3 a Ô 1 + b 2 4 = A ⁄µ  1 + (⁄ ‡) 2 B E [X|Y = 1] = 1
Z(Y = 1) ‡ 2 ⁄  1 + (⁄ ‡) 2 " A ⁄µ  1 + (⁄ ‡) 2 B + µ E # X 2 |Y = 1 $ = ‡ 2 Z(Y = 1) ; 1 ≠ 3 ≠a Ô 1 + b 2 4 ≠ b 2 a 1 + b 2 1 t " 1 a t 2 < + 2 ‡µ Z(Y = 1) b Ô 1 + b 2 " 3 a Ô 1 + b 2 4 + µ 2
Z (Y = 0) = 3 ≠a Ô 1 + b 2 4 = A ≠⁄µ  1 + (⁄ ‡) 2 B E [X|Y = 0] = ≠ 1 Z(Y = 0) ‡ 2 ⁄  1 + (⁄ ‡) 2 " A ≠⁄µ  1 + (⁄ ‡) 2 B + µ E # X 2 |Y = 0 $ = ‡ 2 Z(Y = 0) ; 1 ≠ 3 a Ô 1 + b 2 4 + b 2 a 1 + b 2 1 t " 3 ≠a t 4< ≠ 2 ‡µ Z(Y = 0) b Ô 1 + b 2 " 3 ≠a Ô 1 + b 2 4 + µ 2
Again, with a = ⁄µ and b = ⁄ ‡, t = Ô 1 + b 2 , " the probability density function and the cumulative distribution function of the standard Gaussian distribution.

Assuming Y = 1 and ‡ = 1, we plot, for di erent values of µ, We see here that the guided proposal is much closer to the actual posterior than the bootstrap.

• the bootstrap proposal -f (X; µ, ‡) • the guided proposal -N (g µ (Y, µ, ‡, -) , g ‡ (Y, µ, ‡, -)) • the actual posterior (obtained through sampling) -p (X| Y, µ, ‡, -) μ = -2 μ = 0 μ = 2

Application to noisy Rescorla-Wagner

Let us assume the dynamics:

Q 0 t |Q 0 t≠1 , r 0 t≠1 , a t≠1 , ◊ ≥ N ! rw ◊ ! Q 0 t≠1 , r 0 t≠1 , a t≠1 " , ' " Q 1 t |Q 1 t≠1 , r 1 t≠1 , a t≠1 , ◊ ≥ N ! rw ◊ ! Q 1 t≠1 , r 1 t≠1 , a t≠1 " , ' "
With ◊ the parameters comprised on the learning rates, the noise scaling and the softmax temperature and rw ◊ is the standard temporal di erence (Rescorla-Wagner) update. The emission probability is :

a t |Q 1 t , Q 0 t , -≥ Ber ! sig ! -(Q 1 t ≠ Q 0 t) ""
With x ae sig(x) = 1 1+e ≠x the sigmoid distribution.

Proposal distribution Using Bayes' rule, we can rewrite the latent distribution at time t:

p ! Q 0 t , Q 1 t | Q t≠1 , Ir t≠1 , a t≠1 , a t , ◊ " Ã p ! Q 0 t | Q 0 t≠1 , r 0 t≠1 , a t≠1 , ◊ " • p ! Q 1 t | Q 1 t≠1 , r 1 t≠1 , a t≠1 , ◊, Q 0 t " • p ! a t | ! Q 1 t ≠ Q 0 t " , - " Let X = ! Q 1 t ≠ Q 0 t " , µ = rw ◊ ! Q 1 t≠1 , r 1 t≠1 , a t≠1 " ≠ Q 0 t , ‡ = ' and Y = a t , we have: p ! Q 0 t , Q 1 t | Q t≠1 , Ir t≠1 , a t≠1 , a t , ◊ " Ã p ! Q 0 t | Q 0 t≠1 , r 0 t≠1 , a t≠1 , ◊ " • f (X; µ, ‡) • p (Y |X, -)
Given Q t 0 sampled, we obtain the Gaussian-logistic case described above. From the calculations of the last paragraph, we derive our proposal,

q ! Q 0 t , Q 1 t | Q t≠1 , Ir t≠1 , a t≠1 , a t , ◊ " Ã p ! Q 0 t | Q 0 t≠1 , r 0 t≠1 , a t≠1 , ◊ " • q (X| µ, ‡, -, Y)
With q (X| µ, ‡, -, Y) a Gaussian distribution with mean and standard deviation given in the previous section.

q (X| µ, ‡, -, Y) = N (g µ (Y, µ, ‡, -) , g ‡ (Y, µ, ‡, -))
Proposal weights Recalling the particle filter [algorithm 4], the importance weights are

w n t,◊ = h ◊ (Q n t | Q o n t≠1 t≠1 , Ir t≠1)g ◊ (a t | Q n t) q t,◊ (Q n t | Q o n t≠1
t≠1 , Ir t≠1 , a t) with q t,◊ the proposal distribution,

q t,◊ (Q n t | Q o n t≠1 t≠1 , Ir t≠1 , a t≠1 , a t) = p 1 Q n,0 t | Q o n t≠1 ,0 t≠1 , r 0 t≠1 , a t≠1 , ◊ 2 f 3 Q n,1 t ≠ Q 0,n t ; g µ 1 a t , rw ◊ 1 Q o n t≠1 ,1 t≠1 , r 1 t≠1 , a t≠1 2 ≠ Q n,0 t , ', - 2 , g ‡ 1 a t , rw ◊ 1 Q o n t≠1 ,1 t≠1 , r 1 t≠1 , a t≠1 2 ≠ Q n,0 t , ', - 2 4
With f (.; m, s) the Gaussian density with mean m and standard deviation s.

Obtaining the smoothing trajectories

To obtain the smoothing trajectories of the learning noise, we sample from the smoothing distributions p(Q t |a 1:T , r 1:(T ≠1) , ◊) for all t oe [1, T] with T the total number of trials. We set ◊ = ◊ MAP obtained with the inference process described in section 2. To obtain samples following the smoothing distributions, we used the Forward Filter/Backward Simulator (FFBSi) [5] [9] based on the guided PF procedure [algorithm 7]. This leads to

N b trajectories Ó Â Q j 1:T Ô joe[1,N b]
approximately distributed under p(Q 1:T |a 1:T , r 1:(T ≠1) , ◊).

From these trajectories, we extract the quantity of learning noise (the random deviation) added at every time step:

" j t = . . . Â Q j t ≠ rw ◊ MAP 1 Â Q j t≠1 , a t≠1 , r t≠1 2.
. .

with rw ◊ MAP (.) the exact temporal di erence (Rescorla-Wagner) update. This leads to a particle system Ó " j

1:T Ô joe[1,N b]
. We then average over the trajectories to obtain the mean noise trajectory {" 1:T }

" t = 1 N b N b ÿ j=1 " j t , ' t oe [1, T]

Gaussian integrals

We will list here the Gaussian integrals (Owen 1980) used for the calculations. Let us write " the probability density function and the cumulative distribution function of the standard Gaussian distribution.

⁄ x ≠OE " (a + bt) dt = 1 b (a + bx) ⁄ +OE ≠OE " (x) (a + bx) = 3 a Ô 1 + b 2 4 ⁄ +OE ≠OE x" (x) (a + bx) = b Ô 1 + b 2 " 3 a Ô 1 + b 2 4 ⁄ x 2 " (x) = (x) ≠ x"(x) + C ⁄ x" (x) = ≠"(x) + C ⁄ " (x) " (a + bx) dx = 1 t " 1 a t 2 3 tx + ab t 4 + C ⁄ +OE ≠OE x 2 " (x) (a + bx) = 1 ≠ A ≠a/b  1 + (1/b) 2 B ≠ b 2 a 1 + b 2 1 t " 1 a t 2 With t = Ô 1 + b 2

Obtaining the brain/behavior analysis

The brain/behavior analysis is obtained by predicting the stay (or switch) trials with the BOLD signals of two main ROIs (dACC and FPC). Let a t be the action at trial t. We assume:

1 [a t = a t≠1] | a 1:(t≠1) , r 1:(t≠1) , ◊ ≥ Ber(sig(Ÿ 0 +Ÿ 1 • Q t + Ÿ 2 • dACC \ Qt t + Ÿ 3 • Q t • dACC \ Qt t + Ÿ 4 • F P C \ Qt t + Ÿ 5 • Q t • F P C \ Qt t
))

with sig the sigmoid function and dACC

\ Qt t and F P C \ Qt t
the mean activity of the dACC and FPC clusters at moment of choice.

Q t = Q at≠1 t ≠ Q 1≠at≠1 t
is obtained with the exact predictions. The \ Q t signifies Q t has be linearly regressed out from the dACC and FPC signals. The likelihood function is:

l (a 1:T | ◊) = T Ÿ t=2 1 # a t = a t≠1 | a 1:t≠1 , r 1:(t≠1) , ◊ $ = T Ÿ t=2 { 1 sig 1 Ÿ 0 + Ÿ 1 • Q t + Ÿ 2 • dACC \ Qt t + Ÿ 3 • Q t • dACC \ Qt t + Ÿ 4 • F P C \ Qt t + Ÿ 5 • Q t • F P C \ Qt t 22 at ◊ 1 1 ≠ sig 1 Ÿ 0 + Ÿ 1 • Q t + Ÿ 2 • dACC \ Qt t + Ÿ 3 • Q t • dACC \ Qt t + Ÿ 4 • F P C \ Qt t + Ÿ 5 • Q t • F P C \ Qt t 22 1≠at }
We assume uniform priors on all parameters which leads to define a posterior:

p(Ÿ 0:5 |a 1:T , r 1:(T ≠1)) Ã l ! a 1:T | Ÿ 0:5 , r 1:(T ≠1) " • p(Ÿ 0:5)
To sample from this posterior, we developed a random walk Metropolis-Hastings algorithm with proposal a normal distribution centered on the previous sample and with covariance matrix c • Id 6 . We scaled c so as to obtain an acceptance ratio of 20% [14]. We performed 5000 iterations of the Metropolis-Hastings algorithm and only considered the last 2500 samples; results of this analysis can be found in the main text. Additionally, we ran an extended logistic regression model where ventromedial prefrontal cortex (vmPFC) trial-by-trial variability was also included with its interaction with the relative value.

FMRI supplementary analysis 9.1 FMRI data analysis

All the GLM whole-brain and ROI-based analysis were conducted using the SPM12 software. To correct for motion artifact, all GLMs also included subject/session realignment movement parameters as covariates and were estimated using classical approach implemented in SPM12.

GLM1.

To identify regions primarily involved in choice behavior we constructed the event-based general linear model (GLM) to explain BOLD signal variability in the EPI images: trials were first split between free and cued ones and across partial and complete feedback conditions. Each trial was modeled at two time points (choice and outcome onsets) by two separate regressors (stick functions). Choice and outcome onsets of the free trials only were then modulated with di erent parametric regressors. Choice onset was modulated with three sequentially orthogonalized parametric regressors: (1) the response (coded as 1 and -1, for the right or left response, respectively), (2) choice reaction time, and (3) the trial-by-trial decision (coded as 1 if subject switched away from the previous choice or -1 if she stayed with the same option).

The first two regressors were included to control for the BOLD fluctuations independent of decision. The outcome onsets were modulated by the magnitude of the obtained reward (1 for high rewards greater than 50 and -1 otherwise). We next estimated linear contrasts of parametric modulators for the switch vs. stay at the moment of choice and reward magnitude at outcome at the individual level and then brought them to the group-level random e ect analysis (one sample t-test). For further analyses, we identified two positive (switch-activated) clusters in the dorsal anterior cingulate cortex (dACC [4 24 47] and frontopolar cortex (FPC) [34 50 -4] (fig. 4a). We also identified a negative cluster (repetition activated) for the switch vs. stay contrast in the ventromedial prefrontal cortex (vmPFC) -a region well-known to be implicated in the valuation process [8] [2] [12]. The list of regions identified for this switch/stay contrast is reported in Table 1.

GLM2. The purpose of this GLM was to identify the brain network that correlates with the learning noise latent variable. Each trial was modeled at choice, button press and outcome onsets together for 'choice' and 'cued' trials and across two feedback conditions. Choice onsets were parametrically modulated by three sequentially orthogonalized regressors: the relative value not corrupted by the noise added after the last learning step ("exact" Q chosen ≠ Q unchosen), decision di culty (the proximity of option values) and the magnitude of learning variability corrupting each update of action values (see Methods). Learning variability was computed as the deviation of noisy action values following each update step from the exact application of the Rescorla-Wagner rule to the same update step. The outcome onsets were first modulated by the "exact" reward prediction error for the chosen option (RPE), the proximity of the updated options values and the learning noise around the updated relative value. Thus, the learning variability and the decision di culty value entered the model twice at two di erent time points: at the moment of choice and at the outcome of the preceding trial. For the learning variability, we were particularly interested in the temporal dynamic of the signal. The button press onsets were modulated by the response side (coded as 1 and -1, for the right or left response, respectively). Computational regressors were generated for each subject using individual best fitting parameters from the best computational model in each feedback condition. In all models, regressors were z-scored before entering the model to ensure between-subject and between-regressors comparability.

For further analysis we extracted individual beta-estimates from the first-level linear contrasts of parametric modulators for the relative value, decision di culty, learning noise and reward prediction error within the two main frontal ROIs (dACC and FPC) and from the vmPFC region (see Supplementary Figure 2). These averaged within each ROIs beta-estimates were then compared using paired two-tailed t-tests. The complete list of all activations found for these contrasts is presented in Table 2.

GLM3. The aim of this GLM was to investigate whether the learning noise correlates present in the frontal network at the moment of choice were still preserved when no choice was required. To achieve this, we split the onsets based on whether it was a 'choice' or a 'cued' trial (e.g. where subjects were instructed which option to choose, fig. 4d) and separately modulated them with the relative value and the learning noise estimates. The button press onsets and outcome onsets were modeled across all trials with the same parametric modulators as in the GLM2. The individual beta-estimates for the relative value and the noise linear first-level contrasts were then extracted within the frontal ROIs (dACC, FPC and vmPFC) and compared across subjects using the two-tailed paired t-tests. 'Cued' trials where the subjects failed to follow instructions and eventually made their own choice were modeled as separate regressors of no interest. Overall, the average percent of errors did not exceed 5% and was compatible between partial and complete feedback conditions (partial 1.72 + ≠ 1.66%, complete and 2.8 + ≠ 2.32%)

GLM4.

In these follow-up GLMs, we checked that learning noise still explained some variance in the dACC after taking into account its correlation with the 'surprise' (absolute reward prediction error) at the moment of outcome. We constructed two GLMs with sequential orthogonalization where we included the 'surprise' regressor (the unsigned reward prediction error for chosen option) either before (GLM 4a) or after the learning variability (GLM 4b). In other accounts, these two GLMs were identical to the GLM 2. We next extracted the beta-estimates for the last regressors (learning noise in GLM 4a and surprise in GLM 4b) within the dACC region and compared them against zero using a paired two-tailed t-tests. To further compare which of the two variables better explained the BOLD signal in the dACC at the moment of outcome we estimated two additional GLMs using Bayesian statistics implemented in SPM12 which gave access to log evidence for the model. The activity in the dACC was either explained by the 'surprise' (model 1) or learning noise (model 2) alone. Obtained log evidence from these two GLMs averaged within the dACC ROI was then subjected to Bayesian Model Selection (BMS) random e ect analysis to obtain model frequency and exceedance probabilities for the compared models.

GLM 5.

Explaining the BOLD signal in the dACC with the changing learning rate. This GLM was designed to dissociate the activations within the prefrontal network associated with the learning noise from the fluctuations of the learning rate at the moment of outcome. BOLD response at the moment of outcome was sequentially modulated by the prediction error for the chosen option, proximity of two option values (inverse for the di culty), trial-by-trial changing learning rate for the chosen option and the learning noise.

The choice onset was parametrically modulated by the relative value, proximity of two options and the learning noise and was identical to the GLM 2. Estimates of the learning rate and learning noise at the moment of outcome were extracted within the dACC and compared using paired t-tests. To verify that the contribution of the learning noise in explaining the variability of the of the signal within the dACC is greater in comparison to the changing learning rate we constructed two reduced GLMs and compared them using the Bayesian model selection procedure. Each reduced model di ered from the GLM5 as it only contained either changing learning rate (M1) or learning noise (M2) all other regressors being identical. Obtained log evidence from these GLMs averaged within the dACC ROI was then subjected to Bayesian Model selection (BMS) random e ect analysis to obtain model frequency and exceedance probabilities for the compared models.

Trial-by-trial estimates of BOLD signal. To estimate trial-by-trial evoked BOLD signal at the moment of choice we constructed multiple GLMs following approach described in [10], to maximize the signal-to-noise ratio and the identification of signal unique to specific trials. Each GLM included the regressors for one trial at the choice onset in each session. The trials modeled as separate regressors were shifted for the next GLM (e.g. the first GLM modeled the first free-choice trial in each session, the second GLM modeled the second free choice trial etc.) which resulted in total of 42 GLMs estimated separately for partial and complete feedback conditions. The regressors of non-interest for each GLM consisted of three events: the onsets at the moment of choice for the all but one trial, button press and outcome onsets of all trials. Parametric modulators for each of these three events were identical to those of the GLM 2. We next extracted the trial-by-trial BOLD signal estimates from our two main ROIs (dACC and FPC). These estimates were then used in the logistic regression analysis to predict individual decisions to switch away from the previously chosen option (Online Methods).

FMRI analysis of the vmPFC

Learning variability in the vmPFC. Additionally to our main ROIs (dACC and FPC) implicated in exploratory decisions, we also looked at the ventromedial prefrontal cortex (vmPFC) (Supplementary Fig. 2a). As in the main analysis for the dACC and FPC ROIs we extracted the parameter estimates for the magnitude of learning variability in the vmPFC (Online Methods, Supplementary Information, GLM 2).

As for the FPC, the vmPFC reflected the learning variability only at the moment of choice but not at the moment of outcome: outcome t(28) = ≠1.460, p = 0.155; choice vmPFC: t(28) = ≠5.310, p = 0.0000119; di erence, t(28) = ≠3.292, p = 0.0027, Supplementary Fig. 2b).

Learning variability and choice in the vmPFC. As for the dACC and FPC we looked at the neural correlates for the 'cued' and 'choice' trials in the vmPFC (see Results and Online Methods). In agreement with the previous findings vmPFC positively correlated with the relative choice value in 'choice' trials but not in the 'cued' trials which did not reflect subjects' own decisions: choice trials t(28) = 7.639, p = 0.000000254; 'cued' trials t(28) = 0.424, p = 0.675; di erence t(28) = 5.0997, p = 0.0000211 (Supplementary figure 2c, left panel). However, in contrast to the dACC and FPC that reflected the learning variability independently from the choice (see Results, Figure 4e, right panel), vmPFC only negatively correlated with the magnitude of the learning variability in the choice but not 'cued' trials: choice t(28) = ≠5.844, p = 0.00000279, 'cued' t(28) = ≠1.341, p = 0.191, di erence t(28) = 2.785, p = 0.0095 (Supplementary figure 2c, right panel). These results suggest that vmPFC reflects the decision precision but only during the choice.

Role of the vmPFC in exploration and learning variability. In addition to our main brain-behavior analysis aimed to dissociate the role of the dACC and FPC in behavior variability, we also ran an extended logistic regression model (see Supplementary Methods) where we included the trial-by-trial fluctuations of the BOLD signal in the vmPFC as well as its interaction with the relative value in addition to the relative value, BOLD signals in the dACC and FPC and their interactions with the relative value. First, inclusion of the vmPFC regressors into the model did not change the main results concerning the role of the dACC and FPC. BOLD fluctuations in the dACC negatively a ected the sensitivity to subjective values regardless of the feedback condition: partial -= ≠1.121+ ≠ 0.267, t(28) = 4.196, p = 0.00025, complete -= ≠1.383+ ≠ 0.257, t(28) = 5.382, p = 0.0000097, di erence t(28) = ≠0.720, p = 0.478. By contrast, BOLD fluctuations in the FPC did not decrease participants' sensitivity -if anything, they slightly increased sensitivity in the partial outcome condition (partial: -= 0.566 + ≠ 0.270, t(28) = 2.102, p = 0.048; complete: -= 0.320 + ≠ 0.226, t(28) = 1.418, p = 0.167). FPC mostly a ected the directed bias towards an alternative action in the partial but not complete feedback conditions: partial -= ≠0.469 + ≠ 0.174, t(28 The vmPFC showed a pattern opposite to the dACC: its trial-by-trial fluctuations increased the sensitivity to subjective values in both partial and complete feedback conditions: partial (-= 0.554 + ≠ 0.206, t(28) = ≠2.692, p = 0.012, complete -= 0.7238 + ≠ 0.250, t(28) = 2.895, p = 0.007, di erence t(28) = 0.503, p = 0.619), but did not predict the relative value of switching (partial -= ≠0.009 + ≠ 0.125, t(28) = ≠0.0681, p = 0.946, complete -= ≠0.227 + ≠ 0.144, t(28) = ≠1.575, p = 0.127) (Supplementary Figure 2d).

Algorithm 1: Iterated Batch Importance Sampling

Data : Let T be the total number of trials, a 1:T the actions performed by the subject and

Ir 1:T =) r 0 1:T , r 1 1:T
* the observed rewards translated on the [0, 1] segment.

Initialization : Sample -m ≥ U ([0, 1]) and T m -≥ U ([0, 1]) for all m oe [1, N ◊]. Let ◊ m = Ó -m , T m - Ô . Set initial weights and initial likelihoods w m , l m Ω 1 , 1, 'm oe [1, N ◊] Initialize Q-values : 'm oe [1, N ◊], Q m =) Q m,0 , Q m,1 * = {0.5, 0.5}.
for t = 1 : T do (a) Compute the incremental weights and their weighted average. For all m oe [1, N ◊]

p t = 1 1 + exp Ë 1/T m -• (Q m,0 ≠ Q m,1) È u t (◊ m) = p t • 1[a t = 1] + (1 ≠ p t) • 1[a t = 0] (b) Compute an estimator of the conditional likelihood p(a t | a 1:(t≠1) , r 1:(t≠1)), ' p(a t | a 1:(t≠1) , r 1:(t≠1)) = q N ◊ m=1 w m •ut(◊ m) q N ◊ m=1 w m
(c) Update the importance weights and likelihoods,

w m Ω≠ w m • u t (◊ m), 'm oe [1, N ◊] l m Ω≠ l m • u t (◊ m), 'm oe [1, N ◊] (d) if degeneracy criterion is fulfilled !q N ◊ m=1 w m " 2 q N ◊ m=1 (w m) 2 < " • N ◊ then
Perform move step and sample ◊ m independently from the mixture distribution

1 q N ◊ m=1 w m q N ◊ m=1 w m K t (◊ m , .) [algorithm 2] Ó Â ◊ m , Â l m , Â Q m , m oe [1, N ◊] Ô Ω≠ moveStep ({w m , ◊ m , l m , Q m , m oe [1, N ◊]})
Replace the current weighted particle system by the new set of unweighted particles:

{◊ m , l m , Q m , w m , m oe [1, N ◊]} Ω≠ Ó Â ◊ m , Â l m , Â Q m , 1, m oe [1, N ◊] Ô (d) Update the Q-values for all m oe [1, N ◊]: Q m,0 Ω≠ (1 ≠ -m) • Q m,0 + -m r 0 t Q m,1 Ω≠ (1 ≠ -m) • Q m,1 + -m r 1 t
Algorithm 2: Move Step Input : A time step t, the corresponding actions a 1:t and rewards r 1:(t≠1) and the degenerated

weighted particle system {w m , ◊ m , l m , Q m , m oe [1, N ◊]}. We note Q m =) Q m,0 , Q m,1 *
Compute empirical normal distribution:

' µ = 1 q N ◊ m=1 w m N ◊ ÿ m=1 w m ◊ m ' = 1 q N ◊ m=1 w m N ◊ ÿ m=1 w m (◊ m ≠ ' µ) (◊ m ≠ ' µ) T Select ancestors {o m , m oe [1, N ◊]} Ω≠ ResamplingScheme (w m , m oe [1, N ◊]) -see next paragraph [section 4.3] for m = 1 : N ◊ do (a) Sample new proposal ' ◊ ≥ N 1 ' µ, ' 2 • 1 [0 AE ' -AE 1] • 1 Ë 0 AE " T -AE 1 È (b) Compute the likelihood p(a 1:t | ' ◊, r 1:(t≠1)). Let ' Q 0 , ' Q 1 Ω≠ 0.5, 0.5 and initialize likelihood ' l Ω 1 for k = 1 : t do p k = 1 1+exp # 1/ ' T -• ! ' Q 0 ≠ ' Q 1 "$ ' l Ω≠ ' l • (p k • 1[a k = 1] + (1 ≠ p k) • 1[a k = 0]) if k < t then ' Q 0 Ω≠ (1 ≠ ' -) • ' Q 0 + ' -• r 0 k ' Q 1 Ω≠ (1 ≠ ' -) • ' Q 1 + ' -• r 1 k (c) Accept or reject particle ◊ m = I ' ◊ with prob. fl(◊ o m , ' ◊) ◊ o m with prob. 1 ≠ fl(◊ o m , ' ◊)
where

fl(◊ o m , ' ◊) = ' l • f 1 ◊ o m ; ' µ, ' 2
l o m • f 1 ' ◊; ' µ, ' 2
With f (. ; µ,) the Gaussian density with mean µ and covariance matrix . Set the likelihood

 l m and Q-values Q m : l m = I ' l if ◊ m = ' ◊ l o m if ◊ m = ◊ o m Q m = I ' Q if ◊ m = ' ◊ Q o m if ◊ m = ◊ o m return Ó Â ◊ m , l m , Q m , m oe [1, N ◊] Ô Algorithm 3: SystematicResampling Input : Normalized weights W 1:N Let U ≥ U([0, 1]) (a)
Compute cumulative weights as:

v n = n ÿ m=1 N • W m for n oe 1 : N (b) Set s Ω≠ U , m Ω≠ 1 (c) for n = 1 : N do while v m < s do m Ω≠ m + 1 A n Ω≠ m,
k,◊ , Q n k ≥ q k,◊ (. |Q o n k≠1 k≠1 , Ir k≠1 , a k) with Q n k = Ó Q n,0 k , Q n,1 k Ô (c) Compute importance weights : w n k,◊ = h ◊ (Q n k |Q o n k≠1 k≠1 , Ir k≠1)g ◊ (at|Q n k) q k,◊ (Q n k |Q o n k≠1 k≠1 , Ir k≠1 , a k)
with h ◊ and g ◊ the transition and emission functions.

Normalize importance weights for all n oe [1,

N x] W n k,◊ = w n k,◊ q Nx i=1 w i k,◊ Update incomplete marginal likelihood estimate l Ω≠ l • 1 Nx q Nx n=1 w n k,◊ return Ó l, w 1:Nx t,◊ , W 1:Nx t,◊ , Q 1:Nx t Ô Algorithm 5: SMC 2
Input : the number of trials T , the performed actions a 1:T and the observed rewards Ir 1:T

Initialization : Sample ◊ m ≥ p(◊) for all m oe [1, N ◊].
Set initial weights and likelihoods l 1:N ◊ , w 1:

N ◊ Ω≠ 1, 1 At iteration t = 1 for m = 1 : N ◊ do (a) Set initial latent values Q m,1:Nx,0 t , Q m,1:Nx,1 t Ω≠ 0.5, 0.5 (b) Set weights w m,1:Nx x = 1/2 and normalized weights W m,1:Nx x = 1/N x Compute incomplete marginal likelihood estimate: ' p(a 1 |◊ m) = 1 N x Nx ÿ n=1 w m,n x ' m oe [1, N ◊]
Update weights and likelihoods

l 1:N ◊ Ω≠ l 1:N ◊ • ' p(a 1 |◊ 1:N ◊) w 1:N ◊ Ω≠ w 1:N ◊ • ' p(a 1 |◊ 1:N ◊) for t=2 : T do for m = 1 : N ◊ do (a) Sample index o m,1:Nx t≠1 ≥ M(w m,1:Nx x
) according the systematic resampling scheme (see previously).

(b) Sample descendant according to proposal distribution q t,◊ m ,

Q m,n t ≥ q t,◊ m (. |Q m,o n,m t≠1 t≠1 , Ir t≠1 , a t), for all n oe [1, N x], with Q m,n t = Ó Q m,n,0 t , Q m,n,1 t Ô (c) Compute weights and normalize for all n oe [1, N x] w m,n x = h ◊ m (Q m,n t |Q m,o n,m t≠1 t≠1 , Ir t≠1)g ◊ m (a t |Q m,n t) q t,◊ m (Q m,n t |Q m,o n,m t≠1 t≠1 , Ir t≠1 , a t) and W m,n x = w m,n x / Nx ÿ i=1 w m,i
x with h ◊ m and g ◊ m the transition and emission functions. Compute incomplete marginal likelihood estimate:

' p(a t |a 1:(t≠1) , r 1:(t≠1) , ◊ m) = 1 N x Nx ÿ n=1 w m,n x 'm oe [1, N ◊]
Compute the estimator of the marginal likelihood p ! a t |a 1:(t≠1) , r 1:(t≠1) " and update weights and likelihoods

' p ! a t |a 1:(t≠1) , r 1:(t≠1) " = 1 q k w k N ◊ ÿ m=1 w m • ' p(a t |a 1:(t≠1) , r 1:(t≠1) , ◊ m) l 1:N ◊ Ω≠ l 1:N ◊ • ' p(a t |a 1:(t≠1) , r 1:(t≠1) , ◊ 1:N ◊) w 1:N ◊ Ω≠ w 1:N ◊ • ' p(a t |a 1:(t≠1) , r 1:(t≠1) , ◊ 1:N ◊) if degeneracy criterion is fulfilled !q N ◊ m=1 w m " 2 q N ◊ m=1 (w m) 2 < " • N ◊ then Perform P-MCMC step [algorithm 6
] and obtain a new particle system. Replace the current weighted particle system with the new set of unweighted particles:

Ó ◊ 1:N ◊ , l 1:N ◊ , Q 1:N ◊ ,1:Nx k , W 1:N ◊ ,1:Nx x , w 1:N ◊ Ô Ω≠ Ó Â ◊ 1:N ◊ , Â l 1:N ◊ , Â Q 1:N ◊ ,1:Nx k , Ê W 1:N ◊ ,1:Nx x , 1
Ô Algorithm 6: Particle-MCMC Input : a time step t, the performed actions a 1:t , the observed rewards Ir 1:(t≠1) and the weighted

particle system Ó w 1:N ◊ , ◊ 1:N ◊ , l 1:N ◊ , Q 1:N ◊ ,1:Nx k , W 1:N ◊ ,1:Nx x , Ô .
Compute empirical normal distribution:

' µ = 1 q N ◊ m=1 w m N ◊ ÿ m=1 w m ◊ m ' = 1 q N ◊ m=1 w m N ◊ ÿ m=1 w m (◊ m ≠ ' µ) (◊ m ≠ ' µ) T Select ancestors {o m , m oe [1, N ◊]} Ω≠ SystematicResampling (w m , m oe [1, N ◊]) for m = 1 : N ◊ do (a) Sample new proposal ' ◊ ≥ N 1 ' µ, ' 2 • 1 [0 AE ' -AE 1] • 1 Ë 0 AE " T -AE 1 È • 1 Ë 0 AE ' ' AE 1 È (b) Compute likelihood estimate ' p(a 1:t | ' ◊, r 1:(t≠1)). Ó ' l, ' w 1:Nx ' ◊ , " W 1:Nx x , ' Q 1:Nx t Ô Ω≠ P F 1 t, ' ◊, a 1:t , Ir 1:(t≠1) 2 (c) Accept or reject particle ◊ m = I ' ◊ with prob. fl(◊ o m , ' ◊) ◊ o m with prob. 1 ≠ fl(◊ o m , ' ◊)
where

fl(◊ o m , ' ◊) = ' l • f 1 ◊ o m ; ' µ, ' 2
l o m • f 1 ' ◊; ' µ, ' 2 With f the Gaussian density. Set the likelihood l m , Q-values Q m,1:Nx t = Ó Â Q m,1:Nx,0 t , Q m,1:Nx,1 t Ô and the corresponding weights Ê W m,1:Nx x : l m = I ' l m if ◊ m = ' ◊ l o m if ◊ m = ◊ o m Q m,1:Nx t = I ' Q 1:Nx t if ◊ m = ' ◊ Q o m ,1:Nx t if ◊ m = ◊ o m Ê W m,1:Nx x = I " W 1:Nx x if ◊ m = ' ◊ W o m ,1:Nx x if ◊ m = ◊ o m return Ó Â ◊ 1:N ◊ , l 1:N ◊ , Q 1:N ◊ ,1:Nx k , Ê W 1:N ◊ ,1:Nx x Ô Algorithm 7: Forward Filter Backward Simulator Input : A forward filter particle system Ó Q i 1:T , w i 1:T,◊ Ô ioe[1:Nx]
obtained with the guided version of the PF [algorithm 4] at ◊ = ◊ MAP . Let N b be the number of trajectories.

Sample independently b

j T ≥ M 1 w 1:Nx T,◊ / q k w k T,◊ 2 , for all j oe [1, N b] Set last ancestors : Â Q j T = Q b j T T , for all j oe [1, N b].
for t=(T ≠ 1) :

1 do for j=1 : N b do (a) Compute backward weights w i,j t|T,x = w i t,◊ • h ◊ MAP 1 Q j t+1 | Q i t , Ir t 2 for all i oe [1, N x]. h ◊ MAP represents the transition function (b) Normalize backward weights Ê W i,j t|T,x = w i,j t|T,x / q Nx k=1 w k,j t|T,x for all i oe [1, N x] (c) Draw ancestor b j t ≥ M(Ê W 1:Nx,j t|T,x) (d) Set values Q j t = Q b j t t Return smoothing trajectories Ó Â Q j 1:T Ô joe[1,N b] Contrast Label [x y z] BA AAL T S GLM

Switch -Stay

Right-AI 30 24 -4 45, 47, 48 Frontal inferior operculum R, insula R 8.

Conclusion

This article establishes the presence of a large and yet unstudied source of variability in the learning process, unbeknownst to the decision-maker. Interestingly, this variability induces some form of 'underwent' exploration in the sense it generates exploration, which does not originate from an active process arbitrating between the exploitation of currently best-valued actions and the exploration of recently unchosen ones. Through this cheap computational mechanism allowing to reduce uncertainty on the unchosen options, this article highlights some virtues in learning variability.

The distinction of exploration into learning-driven and choice-driven components bears important consequences for understanding both the computations underlying exploratory behavior and the neural correlates of exploration. These results supports computational models of learning should include this learning variability as a important contributor to exploration.

Introduction

Daily life requires the need of making decisions and, consequently, these decisions assume the necessity of an underlying analysis of incoming sensory data. For instance, when a human decides to cross a road, and a car is coming his way, he will analyze whether he has the time to get to the other side of the road or not. Engaging in these situations requires an aggregation of external evidence to make correct decisions 1,2 . A recent study has shown that, in perceptual accumulation tasks, the large amount of the human's behavioral variability observed 3 can be explained by noise in the accumulation process 4 -and not by noise in the action selection 5-7 or sensory 8-10 stages. They introduce this third type of noise, which arises during learning computations and show it accounts for more than two-thirds of human's sub-optimality 4 .

Given this substantial amount of variability in the learning process, one can ask whether this computational learning noise can be assigned a functional role. We argue here learning variability provides adaptive features elicited in sequential and changing environments. In such environments where feedback is stochastic, estimating different levels of uncertainty is crucial and three kinds of uncertainty have thereby been distinguished: risk, due to the stochasticity of the feedback, estimation uncertainty, which arises from the fact the subject ignores the critical parameters of the task and must learn them 11,12 and unexpected uncertainty, or volatility, which occurs when the environment can suddenly change and the critical parameters of the task vary abruptly 13 .

There are several behavioral and neural findings that shows unexpected uncertainty is reflected in the subjects' internal process 13-17 . However, despite the large quantity of computational models that infer volatility 18-23 , some studies show they fail to capture behavioral data as well as a simple temporal difference rule 24 .

This present article aims to reconcile this apparent contradiction by highlighting virtuous adaptive features in computational learning noise. We argue that the cognitive process does not actually infer volatility, however, the human's behavior exhibits adaptive characteristics through the learning noise introduced early. We will show that, given some minimal and well-known structure on the noise, one obtains an adaptation to changing environments without the necessity an explicit encoding of unexpected uncertainty.

Results

Computational models. To carry out formally this study, we developed a series of models, some which assume volatility in a varying or constant way, one that does not assume any volatility but with computational learning noise and one reinforcement learning based model 25 . The graphical representation figure1A illustrates the loss of complexity exhibited by our different Bayesian models from the most complex model that assumes volatility follows a random walk to a simpler model that assumes a constant volatility to the simplest one which assumes no volatilitymeaning an environment without changes, but with learning noise in the inference procedure.

The first model developed is the state-space model (SSM) that assumes volatility follows a random walk 13 . This SSM has for latent process the environment's state 𝑧 ! defining the current contingencies -e.g., in a two-armed bandit, the environment's state 𝑧 ! describes which arm is the lowest rewarding and which is the highest rewarding one -and the volatility 𝜏 ! which defines the probability that the state changes 𝑝 (𝑧 𝑡 ≠ 𝑧 𝑡-1). The volatility 𝜏 ! follows a constrained Gaussian random walk with mean 𝜏 !!! and standard deviation 𝜈. We additionally assumed two other parameters: 𝜂, the false positive rate (or false feedback probability), and 𝛾 the probabilities of the environment's states -when a change in the environment is detected, the new state 𝑧 ! is sampled from 𝛾. We call this model, the exact varying volatility model. The second model developed, which we call the exact constant volatility model, is a degenerate version of the former in the sense it assumes a constant volatility 𝜏 21,26 . These two first models can be described formally on a computational level with a generative description (see Supplementary Informations for the graphical representations of the generative models). The computational level aims to describe the cognitive process with a generative structure without regards to the underlying operations performing inference 27,28 . However, our aim is to add computational learning noise and noise is neither assumed nor inferred, it is underwent and thus can't be described with a generative description. We thus developed algorithmic versions of the two previous models. To do so, we will describe the inference procedure as a succession of elementary operations, thus passing from a computational description to an algorithmic one.

We considered the 𝑆𝑀𝐶 ! algorithm to perform inference in the generative models 29 . Briefly, 𝑆𝑀𝐶 ! is a sampling method obtained by combining two Sequential Monte Carlo algorithms: the Iterated Batch Importance Sampling in the parameter space 30 and the particle filter in the latent space 31,32 . This inference procedure can also be summarized as a forward-backward algorithm, the forward pass being realized with importance sampling and the backward with Monte Carlo Markov Chain methods. Sampling procedures have already been used as algorithmic models of cognitive processes 33,34 . Despite this, the 𝑆𝑀𝐶 ! algorithm presents biologically un-plausible properties. These properties essentially stem from the backward procedure that induces, with time, an augmentation of the reaction times, of the computations and of the required memory to perform these computations. To make the procedure more biologically plausible, we thus took out the backward pass to obtain a forward only version of 𝑆𝑀𝐶 ! . The algorithmic description obtained is essentially an approximation of 𝑆𝑀𝐶 ! , now solely based on a forward pass performed with iterated importance sampling (Details can be found in the Methods). Algorithmic procedures based on iterated importance sampling have been extensively used to model cognitive and perceptual features in humans and other animals 14,35-38 . As for the neural implementation, 39-41 have developed different network architectures based on spiking neurons that perform such sampling operations.

We have now defined four models, the first two on a computational level that assumes varying and constant volatilities and the last two that are the forward algorithmic versions of the former ones. The two latter ones, assumed to be more biologically plausible, will be referred to as the forward varying volatility model and the forward constant volatility model. Additionally, we developed one last forward algorithmic model, called the forward Weber noise model (or, for short, the noise model), deprived of any volatility, meaning it assumes the external environment is stable. However, we assume this noise model undergoes errors and exhibits computational learning noise. A series of papers 42-44 show that perceptual imprecision, when modeled, follows a

Weber law. This means that, at every time step, the imprecision of a random variable scales with the value of that same random variable. We applied this result to the quantity of update by assuming noise corrupts its inference proportionally to its value. To do so, we added, at every time step, noise to the latent distribution proportionally to its quantity of update. Let 𝑜 ! = {𝑟 ! , 𝑎 ! , 𝑠 ! } be the observed variables at time 𝑡 after the action is performed -the reward 𝑟 ! , the action 𝑎 ! , and the stimulus 𝑠 ! . Let us note 1,2, … , 𝑡 = 1: 𝑡 , we define the update quantity at time 𝑡, 𝑑 ! , as the averaged 𝐿 ! distance between the prior at time 𝑡 -1, 𝑝 𝑧 !!! = 𝑧 𝑜 !:(!!!)) and the corresponding posterior 𝑝 𝑧 !!! = 𝑧 𝑜 !:(!!!)):

𝑑 ! = 1 𝐾 𝑝 𝑧 !!! = 𝑧 𝑜 !:(!!!)) -𝑝 𝑧 !!! = 𝑧 𝑜 !:(!!!)) ! !!!
With K the cardinal of the latent space. To implement the calculation error, we sample, at every time step, a random variable 𝜖 ! from 𝑈 ([0, 𝜎 !]) -with 𝜎 ! = 𝜇 + 𝜆 ⋅ 𝑑 ! and 𝜇, 𝜆 two real constants -and assume that, with probability 𝜖 ! , an error is made in the forward algorithm leading to a distortion of the latent distribution inferred. More precisely, working with particle methods, our posterior at time 𝑡 -1, 𝑝 𝑧 !!! = 𝑧 𝑜 !:(!!!)), will be represented by a set of particles {𝑧 !!! !:! } with N the number of samples. 𝜖 ! , the calculation error, models the probability the particle {𝑧 !!! !:! } are wrongly updated in the inference process,

𝜖 ! = 𝑝 𝑧 ! ! ≠ 𝑧 !!! ! with 𝑖, 𝑗 ∈ [1: 𝑁]
. Some unexplained stochasticity is thus added, at every time step, through this distortion. On figure 1B is a schematic representation describing how this distortion is generated in the case, for simplicity purposes, of Gaussian latent distributions. On the left panel, we represent standard Bayes rule: the prior 𝑝 𝑧 !!! 𝑜 !:(!!!)) is multiplied by the likelihood

𝑝 𝑟 !!! 𝑧 !!! , 𝑎 !!! , 𝑠 !!! , 𝑜 !:(!!!)
) to give the posterior 𝑝 𝑧 !!! 𝑜 !:(!!!)). On the right panel, we represent the noisy version of Bayes rule, assumed in our noise model. In the noisy Bayes computation, the prior is multiplied by the likelihood but we assume this computation is corrupted with noise. The random variable 𝜖 ! sampled from 𝑈 ([0, 𝜎 ! = 𝜇 + 𝜆 ⋅ 𝑑 !]) quantifies this error and adds entropy to the posterior accordingly, which results, in the Gaussian case, in the flattening of the distribution (see Methods for more details). , o 1:(t-1)

1:t o 1:t , o 1:(t-1) o 1:(t-1)
theoretical volatility varied in time. Both constant and multiplicative terms led to entropies which correlated with the entropy of the varying volatility model; however, increasing 𝜆 led to an obvious increase in the correlation.

Importantly, we do not assume the quantity of update 𝑑 ! or the noise 𝜖 ! are calculated in the subject's brain. However, the noisy inference structure of the biological process being unknown, we introduce it artificially with the procedure described up above. To study the impact of 𝜖 ! on the latent distributions and distinguish the contributions of it's two terms 𝜇 and 𝜆, we compared the entropy of the latent process in the noise model with the one in the exact varying volatility model. In the case of the two-armed restless bandit (𝐾 = 2) where the setting's volatility alternated between a low and a high value, we simulated the exact varying volatility model and the forward Weber noise one. On figure 1C is plotted the average entropy of the latent distributions over 100 simulations for the exact and noise models, with, for the latter, two pairs of parameters (𝜇 = .2, 𝜆 = 0) and (𝜇 = .02, 𝜆 = 1.5). The first pair isolates the constant term's contribution whereas the second illustrates the multiplicative component. Figure 1C highlights that both components 𝜇 and 𝜆 induce a correlation between the exact latent entropies and the noise model ones. The result obtained for the constant component might seem at first surprising: intuitively, this correlation stems from the fact the constant component will add entropy to the latent distributions at every time step; if the environment is uncertain, meaning when one can not infer precisely the environment's state, the reweighting step in the particle filter algorithm 31,32 will keep this generated entropy and posteriors will remain close to uniform distributions; if, however, the environment is certain, the generated entropy will be discarded at every time step and the latent posteriors will tend to sparser probability distributions. With both components individually, we obtain algorithms with noise that display adaptive attributes and we will thus not make any important claims on the values and contributions of these respective parameters. However, it remains clear that the second component enables a greater correlation with the varying volatility model and hence allows a finer description of this Weber property.

Lastly, for the reinforcement learning (RL) procedure, we considered a standard Rescorla-Wagner rule where, at every time step, only the chosen option value was updated and all unchosen values remained unchanged.

Experimental Setting. All model comparisons will take place within the Wisconsin Card Sorting Task 45,46 . The task is composed of series of dependent trials and the goal is to find, at each time step, the higher-rewarding action 𝑎 ! ∈ 1, 𝑀 associated with a particular stimulus 𝑠 ! ∈ 1, 𝑁 .

Following the agent's action, a binary stochastic feedback is given. The actions associated to each stimulus are exclusive, such that, an action that is correct for one stimulus can't be correct for another. We define the task sets as the couples {(𝑎 !, 𝑠 !)} !∈ !,! ,!∈ !! defining for each stimulus the correct action. Thus, at every time step, the correct action for each stimulus is entirely determined by the current task set and the total number of unique task sets is 𝐾 = 𝑀 × 𝑀 -1 × …× 𝑀 -𝑁 + 1 = 𝑀! / 𝑀 -𝑁 ! such that they can be enumerated from 𝑧 = 1 to z = 𝐾. Furthermore, at each time step, with probability 𝜏(𝑡) -the external volatility at time t, the highrewarding task set changed inducing a reversal. If a reversal occurred at time t+1, the new highrewarding task set was sampled from a multinomial over the task-sets that differ from those that have the stimulus-action pair 𝑎 ! , 𝑠 ! observed a time t. Furthermore, this multinomial was sampled from a Dirichlet distribution leading to sampled task-sets being more probable thereafter (see Methods for the generative process of the simulations). We considered two environments, one first with 𝐾 = 2 leading to a two armed restless bandit and a second with 𝐾 = 24. The 𝐾 = 2 setting represented a closed environment where all task sets could be monitored by the subject. In contrast, the 𝐾 = 24 case represented an open environment where the subject couldn't monitor them all. Both cases were dealt to obtain results robust to the environment's state space.

A quasi-optimal noise model. We show in this part that, in changing environments, a model with computational learning noise that makes the assumption of a static environment behaves quasi-optimally. In other words, given the presence of noise in the inference process, the generative model does not need to assume a changing environment to behave in a quasi-optimal manner. To implement the comparison, we generated 50 tasks in the closed (𝐾 = 2) and open (𝐾 = 24) settings and simulated our six models on these tasks to compare their relative performances. Each task generated is composed of 1000 trials and the setting's volatility jumped between a low and a high value. In the closed setting (𝐾 = 2), the low volatility was of ~0.03 and the high was of ~0.13 whereas the open setting 𝐾 = 24 , the low volatility was of ~0.03 and the high was of ~0.10. The difference between high volatilities in the two settings was set considering that, once a reversal is detected, it is harder in the open case to converge to the higher-rewarding task-set than in the closed case (see Methods). The decision-making policy was the same for all of six models (the four volatility models + the noise model + the RL model): actions were selected to maximize the instantaneous expected reward. Figure 3A summarizes the results of the simulations and establishes that the loss of complexity in the models (figure 1A) does not impair significantly model performance (compared, for instance, to the RL model). Firstly, considering the forward models, regarded as more biologically plausible, the loss of performance compared to exact models is marginal (<1%) leading to question the necessity of costly and expensive backward procedures: the computation time of the exact models are of the order of thousands of seconds compared to seconds for the forward versions (Supplementary Informations). Secondly, in this changing setting, where the volatility varies, assuming a constant volatility does not impair drastically the performances.

Going even further, assuming no volatility at all actually does not induce any performance loss compared to the other forward algorithms. In conclusion, we find the forward Weber noise model performs virtually as optimally as all volatility models challenging the need of an exact or approximate encoding of volatility in changing environments. A table with the mean

K = 2 K = 24 2 1
performances and their standard deviations can be found in the Supplementary Informations.

For simulations, the volatility models do not have any parameters to set. The forward noise model has however two parameters 𝜇 and 𝜆 and the RL model has the learning rate 𝛼. For the RL parameter, we selected the learning rates that maximized performance in the closed 𝛼 * = . imprecise. Thus, if the algorithm only worked for a small range of parameter values, it would be inaccurate to conclude that noise drives the adaptive properties of the learning process.

We show here that, in the case of a step volatility function, the noise model performs quasioptimally and this results stands independently of the number of task sets. One could further ask whether our results depend on the volatility structure and whether the difference in performance would be augmented if we considered environments where our models were normative. To answer this question and verify our results were robust to the volatility structure, we performed this same comparison in another environment, notably where our full generative model is optimal: the environment assumed volatility followed a constrained Gaussian random walk identically to the generative process of our exact varying volatility model. The results were virtually identical to the one we presented previously: computational learning noise enabled performances comparable to the exact and optimal Bayesian model (~1% of performance loss)see Supplementary Informations for figures, mean performances and standard errors.

Furthermore, the performances of the noise model were again robust over a large range of 𝜇 and 𝜆 parameter values. Interestingly, the plateaus overlapped well across the two volatility settings (piece-wise constant and random walk ones). Let us define the plateau as every point, which induce a loss inferior to 2% compared to the maximum performance. The obtained plateaus showed a common surface of 97% in the closed case and 49% in the open one. In conclusion to this section, one does not require complex inference to perform quasi-optimally in changing settings whether they are opened and closed.

A behavioral study in the closed case. Based on the conclusion of the last section, we asked whether this simpler and quasi-optimal noise model explained better behavioral performances.

We focused on the closed case as it enabled to isolate the uncertainty due to the changes in the environment from the uncertainty on the task sets. Indeed, in the closed case, if one task set is incorrect, then the other one is the correct one. In the open setting, however, if one task set is incorrect, the correct one has yet to be identified adding another kind of uncertainty to the task. 𝑁 = 21 subjects played a binary restless bandit of 720 trials. The subject had to find the higherrewarding option given that this option could change with time. The feedback was binary and stochastic: with probability .8, the feedback was a trap, misguiding the subject to believe he had chosen the wrong option when he actually had chosen the correct one or reciprocally. Figure 4A displays the screens seen by a subject and summarizes the duration of the trials. The probability the higher-rewarding option changed, the volatility, varied in time and described a step function with values [.01, .02, .03, .05, .08, .15] with a constraint of 4 trials between two successive reversals. The order of the steps was pseudo-randomized across subjects. Figure 4B gives an example setting given to one of the subjects. We chose six levels of volatility because we did not want the subject to realize there were blocks of high and low unexpected uncertainty and apply simple heuristics depending on these levels.

The subjects performed the task rather well with an average performance of 80% of correct responses, meaning the subject chose 80% of the time the higher-rewarding option (chance here is at 50%). To characterize the change in behavior between low and high volatility blocks, we fitted different volatility and exploration -the inverse temperature of the softmax -parameters for the three lowest and the three highest volatility blocks (figure 4C,D) -see methods. This led to conclude subjects did not explore more in higher volatility blocks (with the hypothesis of higher exploration in higher volatility blocks, a one tailed t-test gave: 𝑡 !"# (20) = 0.35; 𝑝 !"# = 0.37); however, they seemed to adapt their behavior through a greater volatility (with the hypothesis of higher volatility in higher volatility blocks, a one tailed t-test gave: 𝑡 !"# (20) = 3.26; 𝑝 !"# = 0.00198). These results are consistent with the results of Behrens and colleagues 13 and show that subjects exhibit adaptive features in changing environments.

Using the same models as in the simulation setting, we firstly performed a model selection procedure to quantify the explanatory power of the different models. We added to each of our models a softmax decision rule and computed the marginal likelihood for each subject for each model. This was done combining particle filtering algorithms with Importance Sampling and Quasi-Monte Carlo methods (Methods). The volatility models had one parameter (the temperature of the softmax decision rule) whereas the noise model had three (the softmax temperature and the two noise parameters 𝜇 and 𝜆). However, working with the marginal likelihood integrated out these parameters. Applying Bayesian model selection methods led to the posterior probability of each model and their respective exceedance probabilities 47 . Figure 5A summarizes the model selection results. Interestingly, we have here a perfect match between simplicity and explanatory power: the more computationally costly is the model, the worse his explanation of the behavioral data. Among others, two major observations, firstly the forward models performed better than the exact models, which is reassuring as we postulated this algorithmic version to be more biologically plausible. This first result argues against the presence of a full and complete backward sampling in cognitive processes. Secondly, the noise model explained the behavioral data better than all other models (𝑝 !"#!! = 0.973). Further to this, the forward noise model differs from the exact ones on two dimensions: it performs forward inference and it assumes Weber noise but no volatility. The gradation of the models from exact to forward and from forward to noisy forward enables attributing the growth of explanatory power to model features and shows that the noise feature alone actually enhances the explanation of the behavioral performances.

A question remains if our experimental protocol and our fitting procedure enable distinguishing our models. To answer this question, we implemented a model recovery analysis (figure 5B). To do so, we simulated each model 𝑁 = 21 times using, for each of the simulations, the parameters fitted on the subjects. We then applied our fitting procedure and estimated the marginal likelihood with the same estimation procedure as applied on the subjects to test whether we could recover the model simulated. Evidently, the results show a clear diagonal matrix asserting the models were well recovered and no biases where added in our fitting procedure.

In the previous section, we studied the performances of the Weber noise model and plotted the average performance for that model over a range of 𝜇 and 𝜆 values (figure 3B). Figure 5C shows how the subjects fitted parameters distribute themselves on this curve. The subjects exhibited rather high values of 𝜆 justifying the presence of the scaling term, but, more interestingly, all the subjects' parameters placed themselves on the high-performing plateau suggesting the subject's cognitive model in this binary decision-making task displayed similar features as volatility-based models.

A question arose here, if the noise model displayed similar features as the volatility-based ones, what are the features distinguishing these models that account for the better explanation of the behavioral performances. To answer this, we simulated the models with the subjects' parameters and compared the average reversal curves obtained with the subjects' ones. More precisely, for each model, we simulated every subject 20 times and averaged over the 20 simulations to remove the variance induced by the stochasticity of the models. We obtained 𝑁 = 21 reversal curves for each model and compared these with the subjects' ones. The difference between the reversal curves were most visible when only considering the two highest levels of volatility assembling 70% of all reversals and we thus plotted the reversal curves on these trials (figure 6). The blue curves are the subjects' reversal curves and the green ones are the model's ones.

These reversal curves reveal subjects took, in average, five trials to adapt their behavior after a reversal occurred in the external environment. We find two clear differences between the varying volatility models, the constant volatility ones and the forward noise model. The varying volatility models reversed as fast as the subjects but, at the level of volatility inferred, they tended to be less sticky then the subjects when the plateau was reached. We define here the plateau as the ten points subsequent to the subject's correct adaptation to the reversal -as the subject took, in average, five trials to adapt after a reversal, the plateau was defined as the ten trials following these five trials. When comparing the value at the models' plateau with the subjects' one, two tailed t-tests led to 𝑡 !"# (20) = 3.9, 𝑝 !"# < 0.001 for the exact varying volatility model and While the constant volatility model's plateaus do not significantly vary from the subjects' ones, they had the tendency to reverse slower than the subjects. We used the average of the three points following a reversal as a proxy of reversal speed. Standard two-tailed t-tests revealed the constant models to be statistically slower in reversal learning : (𝑡 !"# (20) = 2.39, 𝑝 !"# = 0.027) for the exact constant volatility model and (𝑡 !"# (20) = 2.65, 𝑝 !"# = 0.015) for the forward version.

The statistics were not as strong as for the asymptote analysis, however, they remained robust whether we considered the exact or the forward version of the model. Pooling both constant volatililty models together led to (𝑡 !"# (41) = 3.6, 𝑝 !"# < 0.001). For the varying volatility models, the reversals learning was not statistically slower : 𝑡 !"# (20) = -0.39, 𝑝 !"# = 0.70 for the exact and 𝑡 !"! (20) = -0.46, 𝑝 !"# = 0.65 for the forward version. Neither was it slower for the weber noise model 𝑡 !"# (20) = 1.6, 𝑝 !"# = 0.12 .

Based on these reversal curves, we understand why the Weber noise model better explained behavioral performances: it is the model that accounted best for both the adaptation speed after a reversal and the plateau reached once the subject had actually reversed. In a closed setting, we thus conclude that the noise model is a better representation of the underlying internal process.

Comparison to the RL model. RL learning models are standard algorithms to describe behavior in reversal learning and bandit tasks 48,49 . And, interestingly, Lehmann and colleagues 24 showed that, in a sequential estimation task, a simple RL model explains better the behavioral data compared to a wide list of models that infer volatility 18,19,21,22 . We investigated whether we could reproduce these results and whether our noise model outperformed the RL one.

Within the two armed restless bandit task introduced up above, we fitted the RL model on the 𝑁 = 21 subjects. Putting all six models in competition led to an exceedance probability for the noise model of 0.938. However, to further study how the RL model performed comparatively to each of the other five models individually, we applied a Bayesian model selection procedure for each model independently with as sole competitor the RL one. Figure 7 represents the posterior probability of each model compared to RL. For these five comparisons, as only two models are compared, the posterior probability of the RL model is one minus the indicated probability. In parenthesis is given the exceedance probabilities. The results obtained reproduced well the work of Lehmann et al. 24 . Indeed, none of the volatility models outperformed the RL one: all Averaging over trials 5 to 15 gave the value of this plateau and two--tailed t--tests revealed statistical differences between the subjects and the varying volatility models. Secondly, the constant volatility models reversed slower than the subject's: averaging over the 3 points following a reversal gave a measure of this reversal speed and revealed difference between the constant volatility models and the subjects. The noise was the one that captures best these two behavioral features. (* < 0.05, *** < 0.001)

exceedance probabilities were inferior to 0.6. However, the noise model remained more probable with an exceedance probability, 𝑝 !"# > 0.999 . A behavioral study in the open case. 𝑁 = 62 subjects played a task derived from the Wisconsin card-sorting framework. At every time step, a stimulus appeared 𝑠 ! ∈ {1,2,3} and the subject had to choose among 4 actions. To each stimulus corresponded a higher-rewarding action and the goal of the subject was to find this higher-rewarding combination of action/stimulus so as to maximize his rewards over time. Following the decision, a binary stochastic feedback was given to the subject (with false positive probability p = 0.1). Also, the higher-rewarding action/stimulus combination changed over time such that the subject had to adapt to this changing environment. However, here, the theoretical volatility was kept constant 𝜏 =. 03. We did not engage in a task where the volatility varied, as this present one was difficult enough for the subjects. Indeed, in this open environment, the subject took about 20 trials to converge to the higher-rewarding task-set after a reversal leading to a strong upper bound on the range of possible volatilities of . 05. Furthermore, we expected noise to explain unexpected uncertainty whether this latter one was changing or constant. We indeed argue that, prior to allow an adaptation in environments where the volatility varies, computational learning noise enables reversal learning.

The subject were tested in two environments, one recurrent where the number of task-sets during the experiment was limited to three and one non-recurrent where all task-sets where possible, see 50,51 for more information on the task. Collins and colleagues 51 showed that, in this task, complex computations are realized to tackle the additional uncertainty added due to the number of task sets: if the subject knows a task-set is wrong, he still doesn't know which is the correct one. Qualitatively, it is thus harder in this case to distinguish the unexpected uncertainty from the task-set uncertainty. Thus, without going as much in details as in the closed case, using the same models as the simulations and the 𝐾 = 2 case, we tested whether we could reproduce the results

obtained.

In this open setting, estimating the marginal likelihood was too computational costly and we thus work the Bayesian Importance Criterion (BIC). However, again, a model recovery procedure validated our selection criterion as well as our fitting procedure (figure 7B). The results reproduced well those obtained in the closed case. The Weber noise model remained the most probable one: 𝑝 !"# = 1 (figure 7A). Furthermore, the noise parameters 𝜆 and 𝜂 fitted were again well distributed on the plateau exhibited in the simulation section. In terms of noise parameters, the subjects thus performed in a way that is comparable to an inference procedure where volatility would actually be inferred.

Lastly, to predict behavioral performances and fMRI activations in this task, 50,51 developed a model -called the PROBE model, which essentially implements an approximation of a Dirichlet process. In this PROBE model, volatility was considered as a parameter fitted one each subject.

One question arises: if we consider this more plausible PROBE model but now with computational learning noise and no volatility parameter, do we improve the behavioral fit. We

Discussion

This study highlights the adaptive virtues of computational learning noise in changing environments. In a first part, we show a model deprived of any volatility assumptions but with computational learning noise performs virtually as well as volatility models. We further show this result is robust to the environment's state space and to the volatility's structure. Then, in a second part, we show the model with learning noise explains better human behavioral performances in environments where unexpected changes occur. This reconciles an apparent contradiction between the biological testimony of unexpected uncertainty 13-16 and the ineffectiveness of computational models that assume volatility at explaining behavioral performance 24 .

We examined in this article the possibility to give learning noise 4 a functional and active role in cognitive processes while solving reward-guided tasks in changing environments. A question arises then, if there is no volatility encoded and adaptation rises from learning noise, then how could one explain the results of Behrens and colleagues 13 which show the dorsal anterior cingulate cortex (dACC) 13 reflects the inferred volatility. Recent studies have linked the dACC to a need for behavioral change with the highlight, for instance, in the dACC of a search signal 52 , a model update 53-55 or an expected value of control 56 . In any case, the fact the dACC correlates with the entropy of the posterior distribution or to the quantity of update of the hidden states is to be expected. To account for potential confounds, Behrens and colleagues 13 considered ten regressors, and, among them, the quantity of update predicted by a reinforcement learning model.

However, as this reinforcement learning model is not the correct one -in the sense it does not exactly reflect what is happening in the subject's internal process, this regressor will not capture the entirety of the quantity of update realized in this internal process. Thus, these quantity of updates, assumed noisy in our study, could exhibit correlations with volatility which are not captured by the RL update quantities. This could explain why volatility would correlate with the dACC without there being an explicit encoding of that variable.

In contrast to neurons that present inherent variability in their firing responses 57,58 , we had to introduce the variability in our model in an explicit and artificial way. Our forward noise model is thus not exactly an algorithmic model because we do not assume that a quantity of update is calculated and that noise is added by sampling from a uniform distribution; we assume the underlying computations, orthogonal to the noise-related ones, to be realized but with a certain imprecision which we approach with our noise representation. To recall our noise model, we calculate, at each time step, a quantity of update 𝑑 ! , sample 𝜖 ! from 𝑈 ([0, 𝜇 + 𝜆 ⋅ 𝑑 !]) and distort the posterior accordingly. The notion of noise appears mathematically through the uniform sampling. One could argue rightfully that the model feature that allows the adaptive property is not the uniform sample but the quantity of update 𝑑 ! and that the posterior's distortion could be implemented not as an unpredictable noise but as a systemic bias added at every time step. To given that the adaptive virtues stem from a Weber property and that Weber noise has been observed in neural variability 59 , it is natural to assume that the adaptive features come from this variability.

Interestingly, the fact that this noise is present in the latent process now becomes a key feature.

Indeed, sensory or decision noise would not be able to account for such adaptive behavior:

sensory because the notion of quantity of update is not defined and decision because there would be no distortion in the internal representation which would prevent changes in the internal beliefs and adaptation to reversals.

Orbán and colleagues 60 showed that, in the visual cortex, the variance of probability distributions can be directly represented by the variability of cortical responses. This theory is in line with the neural sampling hypothesis which assumes neural activity represents samples of the encoded distribution 39,61,62 rather than the probability distribution itself 63-65 . The distinction we propose here is similar: we assume unexpected uncertainty is not represented in cortical activities directly but is represented by the variability of the activities -probably in frontal regions. Simply stated, let us consider an 'update' population of neurons coding for the quantity of update that modifies, at every time step, another 'state' population which tracts the current state. The cortical response variability within the first population and its impact on the second population would explain the adaptive properties exhibited in this paper. In other words, when the quantity of update is little, then the 'update' population activity will be small leading to little noise in the 'state' population.

In contrast, if the quantity of update is large, then the 'update' population activity will be high leading to high noise in the 'state' population urging behavioral change. We do not argue that this is the underlying neural process behind the adaptive and virtuous noise presented in this paper, it is merely a simple way to understand how our learning noise could be implemented in the neural process.

If the subject's internal process is deprived of volatility, why do studies show, in some settings, volatility-based models outperforming reinforcement learning ones 66,67 . In our theoretical study, we show that some seemingly suboptimal Weber noise can be virtuous by allowing adaptive properties. These adaptive properties have been argued by exploiting similarities with Bayesian models that assumes volatility. Furthermore, in the experimental study, we show the subject's noise parameters 𝜇 and 𝜆 placed themselves on the high-performing plateaus defined in the theoretical study, suggesting the subject's internal model displays similar features as volatilitybased ones. In this view, a generative model that assumes volatility will make similar predictions as noise models and will thus capture, to some extent, behavioral performances. If no learning noise model is put into competition, it is not surprising there are settings where volatility-based models will outperform reinforcement learning ones 66,67 .

To conclude, previous studies have shown that, in cognitive science, introducing noise captures better human behavior 68,69 . And, in other domains -e.g., in optimization, it has been shown noise exhibits virtuous properties by allowing, for instance, the escape of poor local minima or saddle points 70,71 . We show here that, considering behavioral settings, noise in the learning process also has virtuous properties by providing adaptive features in volatile environments. These virtues highlighted in computational imprecisions could explain why evolution has kept such high amount of noise in neural computations.

If the variance of the weights W k becomes to big, then the system is considered as degenerated and we resample, naively, the particles from the empirical Gaussian with mean m

= k W k θ k and variance v = k W k θ 2 k -m 2 .
In our setting, however, our parameters follow Dirichlet, inverse-gamma and beta distributions such that we put the corresponding derivations in the Supplementary Informations. This forward approximation of the SMC 2 inference method leads to two volatility-based algorithmic models. A graphical representation of the forward models can be found in the Supplementary Informations.

Particle methods are sampled based, the algorithms track a certain number of particles and obtain approximations of the posteriors based on these particles; the SMC 2 algorithm has thus two sampling parameters: N θ , the number of particles in the parameter's dimension, and N z , the number of particles in the latent space. It also has one additional parameter C θ defining when the system is considered as degenerated. We fixed the C θ at the value indicated in the original paper [3], C θ = 0.5. For N θ and N z , these values can be fixed to arbitrarily large numbers. To choose reasonable values, we assumed N θ = N z = N and simulated the forward varying volatility model for different values of N. We then selected the smallest number of particles where the performance asymptote was reached and obtained N = 200 particles. We thus fixed these two sampling parameters to N = 200 for all simulations and fits. This value obtained was actually surprisingly small, especially in the open case where the latent space comprises the volatility, a continuous variable, and the task set, a variable in [1,24]. The figures can be found in the Supplementary Informations.

Noise Algorithmic Model : The forward noise model is obtained by assuming a static environment and thus no volatility. It is actually obtained by performing forward and noisy inference in the generative process defined by:

γ ∼ Dir(α, .., α) η/2 ∼ Beta(a η , b η) z 1 | γ ∼ M ultinomial(γ) z t+1 | z t , γ ∼ δ zt (z t+1) r t | s t , a t , z t , η ∼ Bernoulli(η 1(f (z,s)=a) (1 -η) 1(f (z,s) =a)) Again α = 1, a η = 1 and b η = 1.
As mentioned, we introduced some Weber noise proportionally to the quantity of update at every time step. To do so, we defined an update quantity

d t = µ + λ K K zt-1=1 ||p z t-1 |r 1:(t-2) , s 1:(t-2) , a 1:(t-2) -p z t-1 |r 1:(t-1) , s 1:(t-1) , a 1:(t-1) ||
with µ, λ ∈ R 2 , z t the latent random variable (the task set) and K the cardinal of the latent space (the number of task sets). To estimate the filtering probabilities, we used standard particle filtering estimators [5] (Supplementary Informations). It is to be noted here that there is a bias introduced in these estimators as we do not apply the formal particle filter. To then introduce the calculation error, we sampled a random variable t from U ([0, d t]) and assumed that, with probability t , there is an error in the forward inference process and the particle z i t+1 with ancestor z k t will actually differ from it. z i t+1 will thus be sampled from the multinomial distribution γ with probability t , leading to a distortion of the posterior's estimate.

Decision-Making rule in simulation setting : The aim of the bayesian decision-maker is to always perform the most probable action conditioned to the model. Let us consider we are at time t+1. The past stimuli s 1:t , actions a 1:t and feedbacks r 1:t are observed variables. The stimulus s t+1 is also known. When simulating, action is chosen at time t+1 to maximize p a t+1 |a 1:t , r 1:t , s 1:(t+1) with

p a t+1 = a|a 1:t , r 1:t , s 1:(t+1) = K k=1 p z t+1 = k|a 1:t , r 1:t , s 1:(t+1) • 1 [f (z t+1 = k, s t+1) = a]
With f the stimulus-action mapping.

Task Simulation Process : The tasks' simulation process is defined by: γ ∼ Dir (1, ..., 1)

z 1 | γ ∼ M ultinomial(γ) z t+1 | z t , τ t , γ ∼ (1 -τ t)δ zt (z t+1) + τ t    γ zt+1 1 - K k=1 f (k,st)=f (zt,st) γ k    1 [f (k, s t) = f (z t , s t)] s t ∼ U ([1, K])
with K the number of task-sets. γ is the probability distribution over the task sets, τ t is the volatility, z t is the task set and s t the stimulus. τ t is set differently whether we consider the K=2 or the K=24 case (see main text).

Furthermore, the stochastic feedback followed the generative process:

r t | a t , a * t , η ∼ Bernoulli η 1(at=a * t) (1 -η) 1(at =a * t)
With η = .9 the probability of false positives, r t the reward, a * t the correct action and a t the chosen action.

Inter-reversal constraint in simulations : To make sure the algorithms would have the time to find, in average, the correct task-set after a reversal, we added a constraint of a minimum number of trials between two reversals. To find this constraint, we simulated an agent who waits two negative feedbacks (which is the optimal waiting time) after a reversal and then looks for the most rewarding task-set assuming a uniform distribution on them. To converge to the higher-rewarding task set, the agents takes in average 3.19 trials for the K = 2 case and 5.03 trials for the K = 24 case. We thus set the inter-reversal constraints to 4 and 6 trials respectively.

Behavioral task in the closed setting : 21 subjects participated in the experimental study providing informed consent (11 males, 10 females, ages between 18 and 35).

Each participant completed a two armed restless bandit task with stochastic and binary feedback. At each time step, the subject had to chose between two symbols. Among the two symbols, there was one higher-rewarding and one lower-rewarding one. The subject's goal was to identify and track the higher-rewarding symbol. Furthermore, the contingencies during the experiment could change such that, with a certain probability, the higher-rewarding symbol became the lower-rewarding one and reciprocally. The subject had to adapt to these reversals and change his belief accordingly. Each participant completed a total of 720 trials split up in 6 sessions. The breaks were spread out such that they would not correspond to changes of volatilities. Between the sessions, the participants took a break but, beforehand, they were informed the sessions were dependent such that they would keep in mind their state belief of the environment before the break.

Decision-Making rule with behavioral data : To predict the action at time t + 1, we clamped on the graphical models s 1:t , a 1:t and r 1:t with the ones seen by the subject up to time t and we clamped the stimulus observed at time t + 1. We then obtained the predictive probabilities of the subject's actions based on the model's predictions and a softmax function. Let β be the softmax parameter, and a c t+1 be the action chosen by the subject. We implemented the rule such that the probability the subject performed action a c t+1 at time t+1 was given by:

p a c t+1 |a 1:t , r 1:t , s 1:(t+1) ∝ exp β • ln p a t+1 = a c t+1 |a 1:t , r 1:t , s 1:(t+1)
With p a t+1 |a 1:t , r 1:t , s 1:(t+1) defined as in the simulation setting. In an obvious way, as the observables were clamped up to time t, we have a 1:t = a c 1:t .

Fitting the volatility and exploration parameters : We assumed a variant of the constant volatility model with a softmax as a decision rule. In this variant, instead of inferring the volatility, we fitted it in the same way that we fitted the softmax parameter. Additionally, we assumed these parameters could vary between the low and high volatility blocks to characterize the change in behavior.

PROBE Model :

The PROBE model was introduced to describe behavior in Wisconsin-Card sorting tasks [4]. We modified the model by adding noise to study whether it would improve the behavioral fit. Briefly, the model tracks two probabilities, one ex-ante reliability corresponding to the prior at time t, λ i (t) = p z t = i|r 1:(t-1) , s 1:(t-1) , a 1:(t-1)

and one ex-post reliability corresponding to the posterior at time t, µ i (t) = p (z t = i|r 1:t , s 1:t , a 1:t). i ∈ [1, K] describes the task-sets. We assume again that the posterior is actually distorted because of an imprecise calculation.

Let us write µ i (t) the posterior predicted by the former noiseless PROBE model [4]. We now assume for the noisy version that:

µ 1:K (t) ∼ Dir µ 1:K (t), κ + λ K 1 d t With κ, λ ∈ R 2 and d t = k ||λ k (t) -µ k (t)|| 1 the quantity of update.
Fitting procedures : The fitting procedures differed for the computational and algorithmic models. Let us call ζ the fitted parameters, to be distinguished with θ, the parameters inferred by the subject. For both procedures, an estimate of the incomplete marginal likelihood p (a 1:T , s 1:T , r 1:T |ζ) was necessary to carry out the fit. For the computational models firstly, obtaining this estimate was rather straightforward. With the observables seen by the subject clamped, we applied the SMC 2 algorithm to obtain the model's predictions. Given these predictions, we derived the probability of the subject's actions and thus the incomplete marginal likelihood. When considering the algorithmic models, the procedure was more complicated as now the sequential model and the decision one could not be distinguished, meaning the values of ζ were not independent of the hidden states and reciprocally. To solve this problem, we defined the state space model of the overall behavior comprising both the sequential and decision models (Supplementary Informations). This state space has for observables the actions of the subject and for latent space the forward algorithmic procedure described up above. Applying particle filtering methods on this state space model led to estimates of the incomplete marginal likelihood. With these p (a 1:T , s 1:T , r 1:T |ζ) estimates, our goal was to obtain an approximation of the marginal likelihood p (a 1:T , s 1:T , r 1:T). To recall ζ = β for the volatility models and ζ = {β, µ, λ} for the forward noise model. To obtain the estimator of the marginal likelihood, we used Quasi Monte Carlo methods [7] to obtain an estimate of the posterior. Then, with that estimate as proposal distribution, we derived a Monte Carlo estimator of the marginal likelihood with an importance sampling step. The importance sampling step allowed a reduction of the Monte Carlo variance. For the open setting, this procedure was to computationally costly and we thus decided to derive the Bayesian Information Criterion (BIC) to perform model comparisons. These were obtained with Bayesian optimization procedures [8]; standard gradient descent optimizers failed because the incomplete marginal likelihood estimators were stochastic.

1 Results of the simulations

v ∼ Inv -Gamma (a v , b v) η/2 ∼ Beta(a η , b η) z 1 | γ ∼ M ultinomial(γ) z t+1 | z t , τ t+1 , γ ∼ (1 -τ t+1)δ zt (z t+1) + τ t+1    γ zt+1 1 - K k=1 f (k,st)=f (zt,st) γ k    1 [f (k, s t) = f (z t , s t)] r t | s t , a t , z t , η ∼ Bernoulli(η 1(f (z,s)=a) (1 -η) 1(f (z,s) =a)) τ t+1 |τ t , v ∼ 1 -F (1/2; τ t , σ 2 = v) 1{τt+1=1/2} × F (0; τ t , σ 2 = v) 1{τt+1=0} × N (τ t , σ 2 = v) 1{0<τt+1<1/2}
γ represents the distribution over the possible task sets, τ t is the volatility, ν the standard deviation of the volatility random walk and η is the probability of false positives. z t is the task set, r t the received reward, s t the observed stimulus and a t the chosen action.

Constant Volatility Computational Model

z t z t+1 r t r t+1 s t s t+1 a t a t+1 γ τ η Figure 4: Generative model of the computational constant volatility model γ ∼ Dir(α, .., α) 2τ ∼ Beta(a τ , b τ) η/2 ∼ Beta(a η , b η) z 1 | γ ∼ M ultinomial(γ) z t+1 | z t , τ, γ ∼ (1 -τ)δ zt (z t+1) + τ    γ zt+1 1 - K k=1 f (k,st)=f (zt,st) γ k    1 [f (k, s t) = f (z t , s t)] r t | s t , a t , z t , η ∼ Bernoulli(η 1(f (z,s)=a) (1 -η) 1(f (z,s) =a))
with γ the probability distribution over the task sets, τ the volatility and η the probability of false positives. z t is the task set, r t the recieved reward, s t the observed stimulus and a t the chosen action.

Simulation and fitting

Simulation

Assume we are at time t + 1 and a 1:t , s 1:(t+1) , and r 1:t have been observed. Applying the SMC 2 leads to estimates of p z t+1 = k|a 1:t , r 1:t , s 1:(t+1) for all k ∈ [1, K]. By marginalizing out the task sets, one can find the distributions over the "correct" actions:

p action j correct|a 1:t , r 1:t , s 1:(t+1) = K k=1 p z t+1 = k|a 1:t , r 1:t , s 1:(t+1) • 1 [f (z t+1 = k, s t+1) = j]
With p z t+1 = k|a 1:t , r 1:t , s 1:(t+1) the estimates obtained with the SMC 2 and f the stimulus-action mapping. The most likely action is then performed:

a t+1 = argmax j p action j correct|a 1:t , r 1:t , s 1:(t+1)
Once that action a t+1 is taken, the agent observes r t+1 and the SMC 2 algorithm updates the posterior beliefs. This procedure is summarized algorithm [1]. Note that we do not develop any exploration in the decision rule here: performing the most likely option locally does not automatically induce that it is the best option considering there are subsequent trials.

Fitting

For the fits, we added a softmax function (see Methods). Assume we are at time t + 1 and a 1:t , s 1:(t+1) , and r 1:t have been observed. Let β be a softmax parameter, we assume:

a t+1 = j|β, r 1:t , a 1:t , s 1:(t+1) ∝ exp β • log p action j correct|a 1:t , r 1:t , s 1:(t+1) β ∼ exp F -1 (U) U ∼ U([0, 1])
with p action j correct|a 1:t , r 1:t , s 1:(t+1) defined as in the previous paragraph and F the cumulative distribution function of the standard Gaussian distribution N (0, 1). Fitting procedure is summarized algorithm [2].

Algorithm 2: Fitting procedure -Computational Case Inputs : The actions, stimulus and rewards seen by the subject: a 1:T , r 1:T and s 1:T with T the number of trials 1.

Estimating the filtering probabilities. Clamp a 1:T , r 1:T and s 1:T on the generative model and obtain the filtering estimators:

p action j correct|a 1:t , r with p action a t+1 correct|β i , r 1:t , a 1:t , s 1:(t+1) defined previously 3. Return the posterior and the marginal likelihood estimator:

p (β ∈ dβ|a 1:T , r 1:T , s 1:T) ∝ N i=1 p a 1:T |r 1:T , s 1:T , β i • 1[β i ∈ dβ] p (a 1:T |r 1:T , s 1:T) = 1 N N k=1
p a 1:T |r 1:T , s 1:T , β k

SMC 2

To perform inference in the computational models, we consider a particle filter called the SMC 2 [1]. The SMC 2 is an efficient inference algorithm in the case of state space models. Let us define a general state-space model; let y t be the observed variables, x t the latent variables and θ the parameters of the state-space model. The SMC 2 algorithm is a particle filter for exploring a sequence of parameter posterior distributions when the latent posterior probabilities are intractable [algorithm 3]. Extensive details can be found in the article from Chopin et al. [1].

Algorithm 3: SMC 2 Initialization : Let N x and N θ be the number of particles in the latent and parameter dimensions.

(a) Sample θ m 1 ∼ p(θ), and set

w m 1 ← 1 for all m ∈ [1, N θ] (b) For all m ∈ [1, N θ], sample from importance proposal x m,1:Nx 1 i.i.d ∼ q 1,θ m 1 (.) (c) For all m ∈ [1, N θ], for all n ∈ [1, N x],
compute and normalize latent importance weights:

ω m,n 1 = p θ m 1 1 (x m,n 1) • f θ m 1 1 (y 1 |x m,n 1) q 1,θ m 1 (x m,n 1) , W m,n 1 = ω m,n 1 Nx k=1 ω m,k 1 (d) Reweighting the θ-particles p (y 1 |θ m 1) = 1 N x Nx n=1 w m,n 1 , w m 1 ←-p (y 1 |θ m 1) for t = 2 : T do (a) For all m ∈ [1, N θ], select ancestor index a m,1:Nx t-1 i.i.d ∼ M W m,1:Nx t-1 (b) For all m ∈ [1, N θ], n ∈ [1, N x] sample descendant x m,n t ∼ q t,θ m t-1 (.|x m,a m,n t-1 t-1) (c) For all m ∈ [1, N θ], for all n ∈ [1, N x],
compute and normalize latent importance weights:

ω m,n t = p θ m t-1 t (x m,n t) • f θ m t-1 t (y t |x m,n t) q t,θ m t-1 (x m,n t) , W m,n t = ω m,n t Nx k=1 ω m,k t (d) Reweighting the θ-particles p y t |y 1:(t-1) , θ m t-1 = 1 N x Nx n=1 ω m,n t , w m t ←-w m t-1 • p y t |y 1:(t-1) , θ m t-1 (e) Set new particles θ 1:N θ t = θ 1:N θ t-1 if ESS(w 1:N θ t) < γ • N θ then Perform P-MCMC rejuvenation step: (a) For all m ∈ [1, N θ], sample (θ m t , x m,1:Nx t , W m,1:Nx t) independently from the mixture distribution 1 N θ k=1 w k t N θ m=1 w m t • K t θ m t , x m,1:Nx t , W m,1:Nx t , .
With K t a MCMC kernel leaving the posterior p θ t , x (b) Replace the particle system:

θ 1:N θ t , x 1:N θ ,1:Nx t , W 1:N θ ,1:Nx t , w 1:N θ t ←-θ 1:N θ t , x 1:N θ ,1:Nx t , W 1:N θ ,1:Nx t , 1 4

Algorithmic models

For these second kind of models, there is no generative description of the subject's internal model. Both internal model and decision process can be described on the same graphical representation. These are generative models of the subject's actions. [1,Nθ],j∈ [1,Nx] a t a t+1 r t s t r t-1 s t-1 β The dynamics are defined by the SMC 2 algorithm applied to the computational varying volatility model when taking out the P-MCMC rejuvenation step and replacing it with a naive resampling procedure (see Methods). [1,Nθ],j∈ [1,Nx] [1,Nθ],j∈ [1,Nx] a t a t+1 r t s t r t-1 s t-1 β The dynamics are defined by the SMC 2 algorithm applied to the computational constant volatility model when taking out the P-MCMC rejuvenation step and replacing it with a naive resampling procedure (see Methods).

Volatility models

Varying volatility model

η i t , γ i t , ν i t , w i t , z ij t , τ ij t , W ij t i∈[1,Nθ],j∈[1,Nx] η i t+1 , γ i t+1 , ν i t+1 , w i t+1 , z ij t+1 , τ ij t+1 , W ij t+1 i∈

Constant volatility model

η i t , γ i t , τ i t , w i t , z ij t , W ij t i∈
η i t+1 , γ i t+1 , τ i t+1 , w i t+1 , z ij t+1 , W ij t+1 i∈

Simulation and fitting

Simulation : For the simulations, we simulated these models by assuming an argmaxβ = ∞. This led to a sequence of simulated actions a 1:T with T the total number of trials (T=1000). The summary of the simulation procedure for the constant volatility case can be found algorithm [4] -the varying volatility case is very similar.

Algorithm 4: Simulation procedure -Forward Volatility Case 0. Initialization: Initialize randomly the initial state, [1,Nx] and set the initial weights

η i 1 , γ i 1 , τ i 1 , z ij 1 i∈[1,N θ],j∈
w i 1 = 1/N θ and W ij 1 = 1/N z 1. Given s 1 , select a 1 randomly, observe r 1 .
for t = 1 : T do a. Observe s t+1 .

b. Apply one step of the described forward dynamics and obtain

p(a t+1 |w 1:N θ t+1 , z 1:N θ ,1:Nz t+1 , β = ∞) = 1 l(a t+1) = max k l(k)
c. Select the action a t+1 and observe reward r t+1 .

Fitting : For the fits, we aim to estimate p (a 1:T |s 1:T , r 1:T). The procedure involves two steps. First, with the observables clamped (the observed stimuli s 1:T and rewards r 1:T and the chosen actions a 1:T), we run a sequential Monte Carlo (SMC) procedure to marginalize over the latent process. For a given β, this leads to an estimate of the incomplete marginal likelihood p (a 1:T |s 1:T , r 1:T , β). Second, obtaining the marginal likelihood requires marginalizing over β which is done by integrating over a one dimensional grid.

We used a grid of N = 101 points describing [0, 1] with a step size of 0.01. For each ρ i ∈ [0 : 0.01 : 1], we

obtain β i = exp F -1 (ρ i)
(β ∈ dβ|a 1:T , r 1:T , s 1:T) ∝ N i=1 p a 1:T |r 1:T , s 1:T , β i • 1[β i ∈ dβ] p (a 1:T |r 1:T , s 1:T) = 1 N N k=1
p a 1:T |r 1:T , s 1:T , β k

Forward Noise Model

The dynamics of the forward noise model are obtained by applying forward and noisy inference in the no-volatility computational model.

No-Volatility computational model

z t z t+1 r t r t+1 s t s t+1 a t a t+1 γ η Figure 7: Generative model of the no-volatility model γ ∼ Dir(α, .., α) η/2 ∼ Beta(a η , b η) z 1 | γ ∼ M ultinomial(γ) z t+1 | z t , τ, γ ∼ δ zt (z t+1) r t | s t , a t , z t , η ∼ Bernoulli(η 1(f (z,s)=a) (1 -η) 1(f (z,s) =a))
with γ the probability distribution over the task sets, η the probability of false positives. z t is the task set, r t the recieved reward, s t the observed stimulus and a t the chosen action. approximates the corresponding latent posterior. All particles θ i t and z ij t are assigned a weight describing how well it describes their corresponding posteriors.

p z t = z|a 1:(t-1) , r 1:(t-1) , s 1:(t-1) ≈ 1 N θ i=1 w i t-1 N θ i=1 w i t-1 • p z t = z|θ i t-1 , a 1:(t-1) , r 1:(t-1) , s 1:(t-1) ≈ 1 N θ i=1 w i t-1 N θ i=1 w i t-1 •   1 N z Nz j=1 1 z ij t = z   p (z t = z|a 1:t , r 1:t , s 1:t) ≈ 1 N θ i=1 w i t N θ i=1 w i t • p z t = z|θ i t , a 1:t , r 1:t , s 1:t ≈ 1 N θ i=1 w i t N θ i=1 w i t •   1 Nz j=1 W ij t Nz j=1 W ij t 1 z ij t = z  
This lead to d t+1 :

d t+1 = µ + λ K z p z t = z|a 1:(t-1) , r 1:(t-1) , s 1:(t-1) -p (z t = z|a 1:t , r 1:t , s 1:t) = µ + λ K z 1 N θ i=1 w i t-1 N θ i=1 w i t-1 •   1 N z Nz j=1 1 z ij t = z   - 1 N θ i=1 w i t N θ i=1 w i t •   1 Nz j=1 W ij t Nz j=1 W ij t 1 z ij t = z  

Forward Noise Model

Performing approximate and noisy inference on the no-volatility computational model leads to the forward noise model.

Approximate and noisy inference is performed with the SMC 2 deprived from the P-MCMC resampling step (replaced with a naive resampling procedure, see Methods) and corrupted with learning noise at every time step. [1,Nθ],j∈ [1,Nx] [1,Nθ],j∈ [1,Nx]

η i t , γ i t , w i t , z ij t , W ij t i∈
η i t+1 , γ i t+1 , w i t+1 , z ij t+1 , W ij t+1 i∈
a t a t+1 r t s t r t-1 s t-1 β µ, λ

Simulation and fitting

Simulation : For the simulations, we simulated these models by assuming an argmaxβ = ∞ -and by setting the µ and λ values to the indicated ones (see Main Text). This led to a sequence of simulated actions a 1:T with T the total number of trials (T=1000). The summary of the simulation procedure can be found algorithm [6]. [1,Nx] and set the initial weights w i 1 = 1/N θ and W ij 1 = 1/N z 1. Given s 1 , select a 1 randomly, observe r 1 .

η i 1 , γ i 1 , z ij 1 i∈[1,N θ],j∈
for t = 1 : T do a. Observe s t+1 .

b. Apply one step of the described forward dynamics for µ = µ * and λ = λ * and obtain

p(a t+1 |w 1:N θ t+1 , z 1:N θ ,1:Nz t+1 , β = ∞) = 1 l(a t+1) = max k l(k)
c. Select the action a t+1 and observe reward r t+1 .

Fitting : For the fits, we again aim to estimate p (a 1:T |s 1:T , r 1:T) and the procedure again involves two steps. Firstly, for certain parameters β = β * , µ = µ * and λ = λ * , with the observables clamped (the observed stimuli s 1:T and rewards r 1:T and the chosen actions a 1:T), we run a sequential Monte Carlo procedure to marginalize over the latent process. This leads to an estimate of the incomplete marginal likelihood p (a 1:T |s 1:T , r 1:T , β, µ, λ).

The second step allows for a marginalization over the parameters β, λ and µ. To do so, we combined Quasi Monte Carlo [2] and Importance Sampling to obtain a marginal likelihood estimator with smaller variance. A summary of the fitting algorithm is given algorithm [7].

Algorithm 7: Fitting procedure -Forward Noise Model Inputs : The actions, stimulus and rewards seen by the subject: a 1:T , r 1:T and s 1:T with T the number of trials

Let N = 1000 and l sobol ∈ R N ×3 be the sobol sequence of N terms in dimension 3

Obtain an approximation of the posterior:

for i = 1 : N do Let ρ i = l sobol [i, 0] and β i = exp F -1 (ρ i) with F the cumulative distribution of the standard Gaussian distribution. Let µ i = l sobol [i, 1] and λ i = l sobol [i, 2].
With a 1:T , r 1:T and s 1:T clamped, run a SM C algorithm on the generative model of the subject's actions [model 8] with β = β i , µ = µ i and λ = λ i to marginalize out the hidden states and obtain an estimator p(a 1:T |r 1:T , s 1:T , β i , µ i , λ i) of the incomplete marginal likelihood.

From the N samples ρ i , µ i , λ i , p(a 1:T |r 1:T , s 1:T , β i , µ i , λ i) , obtain a Gaussian approximation of the posterior p (ρ, λ, µ|a 1:T , r 1:T , s 1:T). Let us write f ρ,µ,λ the obtained posterior approximation. Let us also define f ρ , f µ| ρ and f λ| µ, ρ the marginal normal density distribution of ρ and the normal conditional density distributions of µ| ρ and λ| µ, ρ. Let F ρ , F µ| ρ and F λ| µ, ρ be the corresponding's cumulative distribution functions.]). For β = β i IS , µ = µ i IS , and λ = λ i IS , with a 1:T , r 1:T and s 1:T clamped, run a SM C algorithm on the generative model of the subject's actions [model 8] to marginalize out the hidden states and obtain an estimator p(a 1:T |r 1:T , s 1:T , β i IS , µ i IS , λ i IS) of the incomplete marginal likelihood.

for i = 1 : N do Let ρ i IS = F -1 ρ (l sobol [i, 0]) and β i IS = exp F -1 (ρ i) with F the cumulative distribution of the standard Gaussian distribution. Let µ i IS = F -1 µ|ρ=ρ i (l sobol [i, 1]) and λ i IS = F -1 λ|µ=µ i , ρ=ρ i (l sobol [i, 2
Return the posterior approximation f ρ,µ,λ and the marginal likelihood importance sampling estimator:

p(a 1:T |r 1:T , s 1:T) = 1 N N i=1 p(a 1:T |r 1:T , s 1:T , β i IS , µ i IS , λ i IS) f ρ,µ,λ ρ i IS , µ i IS , λ i IS

Choosing the sampling parameters

We indicated in the methods the SMC 2 algorithm had three parameters, N θ , the number of particles for the particle filter in the parameter space, N z , the number of particles in the latent space and C θ controlling the degeneracy criterion.

C θ was fixed to 0.5 (see Methods) but we conducted a study to set N θ and N z .

For N θ and N z , these values can be fixed to arbitrarily large numbers. To choose reasonable values, we assumed N θ = N z = N and simulated the forward varying volatility model for different values of N. We then selected

Dirichlet distribution

Dirichlet distribution with parameters α. Let X ∼ Dirichlet(α) From:

E[X i] = α i α 0 V[X i] = α i (α 0 -α i) α 2 0 (α 0 + 1) With α 0 = α i , we obtain α 0 = 1 -E[X i] 2 V[X i] -1 α i = E[X i] α 0
Again, replacing by the first and second moment estimates leads to our Dirichlet proposal.

Inverse-Gamma

Inverse-Gamma. Let X ∼ Inv -Gamma(α, β). The two first moments are :

E[X] = β α -1 V[X] = β 2 (α -1) 2 (α -2)
We invert these equations and obtain:

α = E[X] 2 V[X] + 2 β = E[X](α -1)
And we obtain the proposal distribution for the inverse gamma.

194Chapter 5. The virtues of computational learning noise in volatile environments

Conclusion

This second article establishes a model assuming stable contingencies but corrupted with learning noise performs virtually as well as a normative Bayesian model which infers volatility. Furthermore, based on behavioral performances, we demonstrate learning noise is a more probable mechanism to explain how subjects reverse than an explicit encoding of volatility. Through the highlight of the virtues of learning noise, this work advocates why the brain has converged to a system where the learning variability has remained substantial. gowitsch et al., 2016 who showed the presence of computational errors in the learning process during a perceptual task, we investigated whether the learning process in reward-guided tasks is subject to the same kind of noise -i.e., random deviations from the update computations predicted by a noise-free reinforcement learning (RL) model. Interestingly, the study shows adding computational learning noise to the standard RL led to a better account of human behavioral performances, provided that this noise scaled with the quantity of update predicted by the noise-free RL rule. Furthermore, these random deviations in the learning process captured a fraction of behavioral choices which do not maximize expected payoff. In models with no learning noise, these occasional choices are often attributed to an 'exploration' process driven by the need to reduce uncertainty about recently unchosen options and are typically assumed to stem from noise in the decision process. Crucially, this study shows at least half of these 'exploratory' trials actually originate from computational imprecisions unbeknownst to the decision-maker. By varying the quantity of outcome information available to the subject, we show computational learning noise is independent of the information provided suggesting it represents computational imprecisions. In contrast, decision noise varied with the quantity of information provided : in settings where the subject had access to all information (when he saw both the outcome of the chosen and unchosen options), in agreement with theoretical considerations that assert the pointlessness to explore in these settings, a model that assumed only learning noise and no decision noise performed better at explaining behavioral performances. However, when the subject did not have access to all information, decision noise became non-negligible.

The ambiguity of learning and decision noise When fitting noise (as deviations from a noise-free policy) to data (e.g., behavioral performances), one can dissociate two sources of deviations. These deviations can represent stochastic fluctuations Chapter 6. Discussion around the noise-free update, but they can also represent deterministic ones. This latter case occurs when the data's unknown generative structure does not correspond to the one hypothesized by the model. In other words, if the model makes the hypothesis of a deterministic update rule (e.g., a temporal difference updates) but the data (e.g., the subject's behavior) assumes other deterministic heuristics, the deviations between these two rules would be captured by the random noise term. Distinguishing deterministic from stochastic deviations is non-trivial in practice, especially in cases where there are multiple sources of noise (e.g., computational learning noise and decision noise). We thus developed a control experiment where we could distinguish these sources of noise and showed that the learning noise term reflects, for the most part, stochastic deviations. This control experiment was developed in the complete setting where we had previously demonstrated all decision noise vanished. Isolating computational learning noise enabled distinguishing these two types of deviations and showed that more than two thirds of the fitted learning noise represents stochastic and unpredictable deviations.

Regarding the decision noise, we did not develop any similar control experiment. Thus, in cases where decision noise persists, we can not quantify to what extent this noise is due to deterministic deviations. The main difficulty raised by such a control experiment emerges from the fact it is non-trivial to distinguish decision noise from learning noise. Recalling the complete feedback setting where the subject had access to all information, the decision noise vanishes which demonstrates there is no active process -in this case -of exploration stemming from the decision step. In the partial setting, where the subject only had access to the outcome of the chosen option, the fact decision noise persists is not rigorously a proof of random exploration. It does however suggest it, notably because the results are consistent with predictions based on theoretical considerations for the need to explore in these partially-observed environments.

The ambiguity of exploratory trials Conditioned to a model, exploration is defined as choices which don't follow the predicted policy (in contrast to exploitatory trials). Characterizing exploration thus requires that the model defining the policy be noise-free. Indeed, a model with computational noise will predict different policies if simulated twice on the same task. Given these models with noise no longer define one particular policy, defining exploratory trials becomes non-trivial. Linking our study with the literature, we defined choices as 'exploratory' when they did not follow the noise-free temporal difference rule (Daw et al., 2006); however, in light of this study demonstrating the presence of computational learning noise, naming these choices as 'exploratory' becomes inaccurate. One can nonetheless define the probability that a choice is exploratory or exploitatory. To obtain these probabilities, one simulates the model with learning noise N times, with N large; and, given each of these simulations, one computes whether the choice is exploratory or exploitatory. The respective proportion of times it is labeled as exploratory (and, conversely, exploitatory) will lead to the corresponding probability.

Neural markers of computational imprecisions

In this first study, we identified the neural regions which co-varied with the computational imprecision extracted from the RL model with learning noise. Focusing here primarily on the dorsal anterior cingulate cortex (dACC), we found this region correlated with the amount of computational learning noise both at the moment of outcome but also at the moment of choice. The presence of these noise correlations might seem somewhat surprising at first as noise reflects computational imprecisions which are neither computed by the model nor hypothesized to be represented in any brain region. These correlations can be interpreted as the fact the regions of interest (here, the dACC) co-varies with the variance of the learning step. In other words, during the learning step, the subject's internal process performs an update step corrupted with noise; based on the behavior, we fitted the learning noise at each time step. The larger this fitted learning noise, the greater variance the learning step exhibits. A correlation with learning noise would thus mean, generally speaking, a correlation with the precision of the learning computations. The fact the dACC correlates with the learning noise thus signifies it reflects the precision in learning. Two questions arise here : how does the dACC reflect the learning precision ? and why ? These remain open questions to be investigated. For the first question, one could postulate, for instance, that an increase in fMRI BOLD signal corresponds to more excitatory and inhibitory activations which could coincide with greater variability in the cortical activity. In other words, the dACC would reflect the learning precision through the variability of its cortical activity. This proposed theory is in line with the theory of (perceptual) uncertainty being encoded through neural variability [START_REF] Orbán | Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex[END_REF]. As for the second question -why would this variability be present in the dACC -, one could argue the dACC encodes crucial learning variables and thus exhibit neural variability through the encoding of these variables. However, through the deconstruction of the exploration and volatility mechanisms, this work has shown interpreting functional features from experimental observations is perilous. In this line, an alternative view would suggest this learning noise correlation does not advocate functional features but could, for instance, reflect the fact the dACC is part of a larger network which exhibits computational imprecisions. The learning precision in the dACC would thus arise from the inter-connections in this larger network. Numerous previous studies have linked the dACC to exploration and foraging across species [START_REF] Amiez | Reward encoding in the monkey anterior cingulate cortex[END_REF][START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF], Boorman, Rushworth, and Behrens, 2013, Kolling et al., 2012, Kolling et al., 2016), but the specific contribution of this frontal region remains unclear. To characterize its role, we conducted a brain-behavior analysis which shows the dACC activity reflects random variability in the subject's decisions : indeed, the greater the activity of the dACC was, the more random were the subject's choices. This suggests the dACC activity does not participate in an active process involved the exploration/exploitation dilemma as, if it would, this would imply directed variability on the decisions : the greater the region's activity, the more the subject would switch (or stay). In summary, this fMRI analysis advocates learning noise is reflected in the dACC and that the dACC does not participate actively in solving the exploration/exploitation tradeoff. Furthermore, a temporal analysis of the positive correlations of dACC activity with learning noise and reward prediction error revealed these two correlates appeared at the same time. This suggests that the learning noise is inseparable from the update step, which is in agreement with the structure of learning noise which also conjectures an inseparability between noise and learning.

Computational learning noise to explain volatility

A non-negligible quantity of learning noise In the study of Drugowitsch et al., 2016, as well as in the first article of my PhD, the possibility of noise in the learning step is added. Crucially, this computational learning noise turns out to be nonnegligible. In the first study, it explains about 90% of human sub-optimality and, in our study, it explains more than half of the exploratory trials. A question arises, why has some much computational imprecision been conserved through evolution ?

A learning noise which scales with the quantity of update In our first study, we find the computational imprecision scales with the quantity of update -following Weber's law of intensity perception in psychophysics. This property of the learning noise is crucial as if we remove it and assume, for instance, a constant computational imprecision, the model fails to explain behavioral performances. The fact this computational learning noise has a particular structure leads to question the properties of such a structure. Interestingly, this Weber-structured noise is well suited to provide adaptive features in changing environments as the amount of noise will correlate with the external volatility. The intuition behind this correlation is the following : when the volatility is low and the environment stable, the contingencies vary little leading to small quantity of updates of the internal model. This will induce small amount of noises leading to choices close to the noise-free policy; in contrast, high volatility will induce high quantity of updates thus generating a lot of random deviations which leads to exploratory choices beneficial to the decision-maker as they reduce the uncertainty regarding the recently unchosen option(s).

Adaptive virtues of computational learning noise in changing environments

In the second study, we demonstrate that learning noise turns out to be beneficial. We show that a simple model assuming stable external contingencies but exhibiting learning noise performs virtually as well as a normative Bayesian adaptive process inferring the volatility of the environment. This leads to question the necessity of complex volatility inference when a simpler heuristic adding random deviations proportionally to the quantity of update leads to virtually the same performances.

Further to this theoretical study, we also establish that a model assuming stable contingencies and corrupted with computational learning noise better accounts for human behavioral performances in changing environments compared to models which infer volatility.

An implicit encoding of volatility

We introduce here an implicit way to encode volatility. Such an approach has already been studied in the literature. We can, for instance, cite papers from Wang and colleagues [START_REF] Wang | Learning to reinforcement learn[END_REF][START_REF] Wang | Prefrontal cortex as a meta-reinforcement learning system[END_REF] who developed an artificial neural network that learns to behave in various environments : bandits with dependent and independent arms, restless bandits [START_REF] Behrens | Learning the value of information in an uncertain world[END_REF], two-step task (Daw et al., 2011), complex visual environments [START_REF] Mirowski | Learning to navigate in complex environments[END_REF], etc . In the case of restless bandits where the volatility varied, they show this network exhibits adaptation to different levels of volatilities. The paper mentions 37 ± 1% of the network's units correlates with the changing volatility. Interpreting this last result is however non-trivial as artificial neural network's are limited to represent mental processes on algorithmic and implementation levels (see deep learning section 1.3 and comparisons with other frameworks, section 1.4). Nonetheless, this result corroborates the presence of a volatility variable on a computational level (Behrens et al., 2007). Another paper from Ryali and Yu, 2016, shows change detection can be implemented near-optimally without an explicit computation of the probability of a change taking place. This study is close to ours in the sense they develop an approximate algorithm without an explicit volatility -based, in their case, on linear exponential filter -which performs quasi-optimally. An interesting contribution of this paper also lies in the development of an implementation level model : they indeed show the computations performed by their approximate algorithm is equivalent to the ones performed by appropriately-tuned leaky integrating neurons. Farashahi et al., 2017, also develop an implementation level model that propose a neural mechanisms based on reward-dependent metaplasticity (RDMP) that provides efficient adaptive properties in changing environments. The reward value of each option is represented by a pool of neurons whose synapses undergo stochastic changes depending on the choice and reward outcome at the end of each trial. Interestingly, these results suggest that meta-plasticity can provide a neural substrate for adaptive learning in uncertain environments.

In contrast to these two latter papers, in our study, we develop an algorithmic level model -using the sampling approximation of probabilistic cognition (Sanborn, 2017) -without regards to how our algorithm could be implemented on a neural level. This is a limitation of our study as we can not explain how this computational learning noise emerges implementation-wise speaking. Nonetheless, in a next section, we provide intuitions for an implementation level model of our work (section 6.2.1).

Exploration and volatility as by-product of learning noise

In the first paper, we show learning noise explains a large amount of exploration and, in the second one, we argue this noise can also explain adaptive behaviors in changing environments. I argue here the reason why learning noise explains both exploration and volatility is because these notions share a common feature. Exploration occurs in environments to reduce uncertainty regarding the recently unchosen option(s) and volatility occurs in environments to adapt to contextual changes (reversals). Interestingly, these two notions can be distinguished qualitatively by their contributions : on the one hand, exploration will allow you to gain information but will not directly allow a change in the internal model to adapt to the new contingencies; on the other hand, volatility will not allow you to randomly test new options but will allow an update of the internal model when a reversal in the external environment has occurred. This distinction stems from the fact exploration is often tied to the decision process whereas volatility is link to the learning one. However, in the first study, we showed previously labeled exploration actually majoritarily stems from the learning process. This questions the distinction highlighted early as now, exploration originating from the learning process is inseparable from an update of the internal model. I argue here both exploration and volatility can explained -at least to a certain extent -by learning noise as it provides random but efficient updates in the internal model. These random updates will engender seemingly exploratory trials and will also enable an adaption of the internal model to changing contingencies.

Limited precision in mental processes : some perspectives

Volatility or a testominy of noise It is established the dorsal anterior cingulate cortex (dACC) is important in regulating cognitive control and behavioral flexibility. Among the most influential theories, the dACC would track an expected value of control (Shenhav, Botvinick, and Cohen, 2013), a search value (Kolling et al., 2016, Kolling et al., 2012) , the difficulty [START_REF] Shenhav | Anterior cingulate engagement in a foraging context reflects choice difficulty, not foraging value[END_REF][START_REF] Sheth | Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation[END_REF], the surprise [START_REF] Egner | Surprise! A unifying model of dorsal anterior cingulate function?[END_REF], or the volatility (Behrens et al., 2007).

Regarding this last hypothesis of volatility encoding, we find a contradiction with our second study. Why would the volatility be encoded if a Weber-structured noise provides adaptive features in changing environments and explains better behavioral data in such settings. We argue here the volatility correlation elicited in Behrens et al., 2007, might be a testimony of noise in the dACC. This working hypothesis is corroborated by a result presented in the first paper : correlates of computational learning noise are found in the dACC validating the possibility of the volatility being confounded with computational learning noise.

To investigate this hypothesis, we are currently launching an fMRI study on N=24 subjects with Margaux Romand-Monnier. Subjects will undertake 2 sessions of functional MRI scans. While being in the MRI scanner, participants will complete a probabilistic reversal learning task where they are faced with different levels of volatility alternating every 60 trials (5%, 6.67% and 10%). Reward properties of stimuli will thus undergo sudden changes, and the detection of these 'reversals' will be made difficult by the probabilistic nature of rewards (85%). Putting in competition the noise and volatility regressors to explain the dACC activity will lead to conclude whether the dACC BOLD signal is more likely to reflect the volatility or the computational learning noise. More generally, as we've seen previously, the dACC has been proposed to track some complex signals -the volatility being one of them. With this in mind, and given the fMRI results of the first study, we aim to show that the dACC probably does not track sophisticated signals, it could track some simpler lower-level ones and its correlates with computational learning noise would give the impression it has some higher-level functions. In other words, the modulation of the learning's precision, reflected in the dACC, could give rise to seemingly sophisticated features.

In some way, this observation is close to the behavioral analysis of the work where we explain away, with computational learning noise, the volatility, a large fraction of exploration and two prominent biases often reported in the literature -the tendency to repeat the same choice on successive trials (Lau and Glimcher, 2005), and the adaptation of the exploration-exploitation trade-off to local reward statistics (Doya, 2002).

The origin of learning imprecisions A limitation of these studies remains in the origin of this computational learning noise. More precisely, where does the modulation of the learning precision come from? The fact computational learning noise is independent of the information provided suggests the variability in the learning process is a core characteristic of human learning rather than an active feature that can be suppressed intentionally. In this sense, learning noise is likely to come from internal variability generated within the nervous system. We reasoned that trial-to-trial fluctuations of learning precision, reflected in dACC activity, may be linked to the state of the neuromodulatory locus-coeruleus norepinephrine (LC-NE) system. The LC-NE system has been involved in the regulation of the precision of cognitive operations -through a modulation of the neural gain (Servan-Schreiber, Printz, and [START_REF] Servan-Schreiber | A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior[END_REF], Berridge and Waterhouse, 2003, Aston-Jones and Cohen, 2005a, Kane et al., 2017, Eldar, Cohen, and Niv, 2013[START_REF] Luksys | Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning[END_REF]. Indeed, as represented in figure [figure 6.1], an increase in gain increases the activity of units receiving excitatory input and decreases the activity of units receiving inhibitory input, thus augmenting the contrast between excitatory and inhibited inputs and driving activity toward more binary and deterministic functions. behavior associated with manipulations of NE [START_REF] Servan-Schreiber | A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior[END_REF]). This computational model of NE's modulatory effects set the stage for further studies using more elaborate models involving LC neurons and their targets, as described in more detail below. The above properties-widespread slowly conducting projections and neuromodulatory action-suggested that LC may play a general role in regulating neural processing and behavior. Commensurate with this view, tonic impulse activity of LC-NE neurons strongly covaries with stages of the sleep-waking cycle. These neurons fire most rapidly during waking, slowly during drowsiness and slow-wave/non-REM sleep, and become virtually silent during REM/paradoxical sleep (Aston- Jones & Bloom 1981a, Hobson et al. 1975, Rajkowski et al. 1998, Rasmussen et al. 1986). LC activity may in fact be a primary factor that differentiates REM sleep (when other systems, including the neocortex, exhibit signs of heightened arousal) from wakefulness (Steriade et al. 1993). These and related findings support the view that low levels of LC activity facilitate sleep and disengagement from the environment.

Further supporting the view that the LC-NE system plays a role in general arousal and environmental responsiveness, LC neurons in rats and monkeys activate robustly following salient stimuli in many modalities that elicit behavioral responses (Aston- Jones & Bloom 1981b, Foote et al. 1980, Grant et al. 1988). For example, tapping the cage door around feeding time elicits LC activation accompanied by a behavioral orienting response and increased physiological signs of arousal. Conversely, stimuli that elicit no behavioral response typically do not evoke an LC response.

The classical observations described above suggest that the LC-NE system has a relatively broad, nonspecific effect on cortical information processing. However, other findings indicate that substantial specificity exists in the LC-NE system in several domains. For example, although they are widespread, LC projections exhibit substantial regional and laminar specificity (Morrison et al. 1982). Notably, brain areas thought to be involved in attentional processing (e.g., parietal cortex, pulvinar nucleus, superior colliculus) as well as motor responding (e.g., primary motor cortex) receive a particularly dense LC-NE innervation (Foote & Morrison 1987). Also, LC terminals make conventional synapse-like appositions with postsynaptic specializations on target neurons (Olschowka et al. 1981;Papadopoulos et al. 1987, Papadopoulos et al. 1989), in addition to having possible nonsynaptic release sites.

Recent neurophysiological findings also indicate that LC may play a specific role in Existing theories have interpreted this finding as evidence in favor of the implication of the LC-NE system in controlling the exploration-exploitation trade-off (Jepma and Nieuwenhuis, 2011). However, these theories are still unclear as the evidence remains partial [START_REF] Jepma | The role of the noradrenergic system in the exploration-exploitation trade-off: a psychopharmacological study[END_REF], Warren et al., 2017).

We contrast this view with the possibility that the LC-NE system drives the precision of learning. Because LC-NE activity is notably difficult to measure in fMRI, we took advantage of the strong correlation between LC-NE activity and endogenous fluctuations in pupil dilation. It has indeed been shown increased baseline pupil dilation (decrease of phasic dilation) is associated with higher LC-NE activity, lower gain and lower precision [START_REF] Joshi | Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex[END_REF][START_REF] Murphy | Pupil diameter covaries with BOLD activity in human locus coeruleus[END_REF][START_REF] Leuchs | Neural correlates of pupil dilation during human fear learning[END_REF].

In the first article, we observed that pupillometric fluctuations are associated with random, not directed, variability in subject's decisions -and this remains true in the complete condition where all decision noise vanishes. This advocates the pupillometric fluctuations reflects random behavioral variability associated with computational learning noise. The relationship between pupil dilation and LC-NE suggests this latter also reflects random variability in subject's behavior associated with computational learning noise. This leads us to argue the LC-NE system might drive the precision of learning. This hypothesis is actually particularly relevant given the study of Yu and Dayan, 2005, which shows norepinephrine signals volatility. In this study, subject's performed an extension of the Posner task where they had to predict the position of a target given a visual cue. This visual cue could change with time with a certain probability τ introducing unexpected uncertainty. When depleting NE levels, they showed subjects tended to ignore and did not adapt to contextual change (see figure 6.1. Computational learning noise in human decision-making 203 6.2). This interesting result could also be explained by LC-NE driving the precision of learning given that we show, in our second article, that the learning precision provides adaptive features that can be confounded with volatility. LC-NE driving the precision of learning would provide a unified account as to how NE signals both exploration and volatility. As for volatility correlates in the dACC, they could stem from interconnections with the LC-NE [START_REF] Rajkowski | Prominent projections from the anterior cingulate cortex to the locus coeruleus in Rhesus monkey[END_REF][START_REF] Joshi | Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex[END_REF]. Thus, an interesting perspective is to investigate whether the LC-NE system is involved in the modulation of the learning precision with the prediction that increasing NE levels would reduce the precision of the learning computations leading to more random behavior.

Other sources of computational noise

We focused in this PhD on the notion of learning noise, meaning noise related to learning processes. However, this type of noise is probably not the only one present that influences subjects' behavior. In other words, computational learning noise is probably part of a larger family of computational noises which might have an impact on behavior. For instance, when having to maintain a large amount of information -e.g., when one has to complete multiple tasks simultaneously -, one observes a reduction of behavioral performance [START_REF] Collins | How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis[END_REF]. This reduction in performance can be explained by an augmentation of the amount of noise in the accumulation process. However, this noise would evidently not stem from a learning variability 204 Chapter 6. Discussion as when performing the one task, one does not get any information on the other. This noise could originate from the fact that a large amount of information has to be maintained when performing both tasks simultaneously. The possibility of computational maintaining noise thus emerges in accumulation processes where the cognitive load is high. Another example of possible source of noise in accumulation processes would come from using memories. Indeed, if asked to recall a memory, the older or the less meaningful it is, the less precise I will be when recalling it. This has often been associated to a notion of interference between memories, which could possibly be formalized by assuming the process of memory extraction is corrupted with noise. Another view is that everytime one recalls a memory, he actually reconstructs it. In this perspective, memory recall becomes an active process and its computations could be subject to imprecisions. These two additional types of computational noises might be relevant (or irrelevant), but they shed light on broader definition of computational noise influencing the internal processes, unbeknownst to the decision-maker.

Computational noise, a well-known virtuous heuristic 6.2.1 The virtues of computational noise highlighted in neuroscience and other domains

We show in this study that adding learning noise in changing environments can be advantageous. However, more broadly, the fact noise can be virtuous is a wellestablished and long-standing theory across domains.

A simple example is in the reinforcement learning domain where the decision step systematically adds noise with, for instance, a softmax or an -greedy procedure (see section 1.1.3.2). In optimization, adding noise has also shown itself effective to escape poor local minima and saddle points with, e.g., stochastic gradient descent (Bottou, 2010), dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] or by adding noise explicitly to the gradient [START_REF] Neelakantan | Adding gradient noise improves learning for very deep networks[END_REF], Jin et al., 2017).

In neuroscience, neural variability has been proposed to be inseparable from beneficial properties [START_REF] Dinstein | Neural variability: friend or foe?[END_REF]. One interesting possibility brought by neural variability relies in the fact that it could encode uncertainty [START_REF] Hoyer | Interpreting neural response variability as Monte Carlo sampling of the posterior[END_REF][START_REF] Lee | Hierarchical Bayesian inference in the visual cortex[END_REF], Fiser et al., 2010[START_REF] Moreno-Bote | Bayesian sampling in visual perception[END_REF], Orbán et al., 2016). In other words, given a variable X, e.g., the orientation of a stimuli, the uncertainty over X could be encoded, not by the average over cortical responses but by the variability exhibited by the cortical response. When representing X, if the cortical response is highly variable, it would mean the uncertainty over X is high and inversely. The work we conducted relates well to this theory : if X is now the value of an option, in certain environments, X would be precisely encoded leading to near-deterministic decisions. In uncertain environments, the cortical variability would be high leading to random variability in behavior inducing exploration (first article) and adaptive features (second article).

6.2. Computational noise, a well-known virtuous heuristic 205 An implementation level model of my work could thus be inspired by those developed to explain how perceptual uncertainty is encoded within neural variability [START_REF] Orbán | Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex[END_REF].

A divergence from optimal models

In canonical tasks, subject's are sometimes compared to an optimal policy, defined, for instance, in the Bayesian framework. This is a risky approach as, in an obvious way, subject's can not behave optimally in every canonical task. However, it is likely the subject will feature resemblances with the optimal procedure possibly misleading the experimenter to believe subjects' internal process is close to the one defined by the optimal policy. A limit to considering normative procedures is that it prevents the possibility of a unifying model throughout different cognitive tasks. Indeed, defining a model that performs normatively throughout canonical tasks is non-trivial and is even rarely possible when considering complex real-world problems. In this latter case, the generative model is indeed often too complicated to be exactly specified (Beck et al., 2012). Furthermore, even if the generative model was specifiable, inference would take too much time to be biologically plausible.

In complex and real-world tasks, subject's have no other choices than to resort to sub-optimal heuristics and uncovering these heuristics might lead to a unifying view across tasks. What we argue here is that, in changing environments, a sub-optimal heuristic might stem from introducing noise in the learning process.

A digression to the real world

During this PhD, I have studied the notion of computational learning noise within the framework of canonical tasks isolating its relationship to exploration and volatility. For this last paragraph, I would like to take a step back and try to characterize how this learning noise, highlighted in this PhD, could impact humans in their everyday life. The learning noise that we introduced is, as the name suggests, indissociable from a learning process. In other words, even though we show random variability exists in human behavior, this random variability occurs in very particular settings : in situations where I previously learn how to behave, this variability will thus typically not occur. Also, even in new environments -e.g., you are sent to a foreign city -, this learning noise might remain negligible considering you might transfer the knowledge you had established in one city to this new one. In other words, this learning noise might have limited impact given the amount of knowledge established through one's everyday living. When completing the tasks in laboratory, subject's exhibit a lot of learning noise : when quantifying it, we obtain learning noise is of the order of 0.1 for values encoding options of the order of 1 leading to roughly 10% of the choices being influenced by this noise. This high value is surprising as it does not seem humans exhibit that much random behavior in their every-day life; however, this could be explained by the fact it is difficult for subjects to transfer their everyday learn knowledge to these canonical settings. We show in this PhD computational learning noise exists and probably plays a crucial role. However, to what extent this learning noise actually impacts behavior in one's every day life remains unclear.

Chapter 7

General Conclusion

This work investigated the presence of variability in learning processes and studied its impact on behavior. More precisely, we established in a first part the presence of this learning noise reflecting computational imprecisions and studied its link to the exploration/exploitation trade-off : learning noise induces a cheap but relevant mean of exploration. In a second part, we highlighted some virtues in the same noise enabling adaptive behavior in changing environments. Further to allow cheap exploration, learning noise, indissociable from the learning process, adds entropy to the internal beliefs. This added entropy will allow the decision-maker to update his internal representation when the environment's contingencies change.

Interestingly, considering learning noise leads to reconsider some proposed theories in the literature. Indeed, this work advocates most of what was previously interpreted as exploration and some cognitive bias -such as the tendency to repeat one's choices -originate from learning noise. Similarly, the adaptive features subject's exhibit in changing environments are probably also induced by learning variability rather then the result of a complex volatility inference. These mechanisms, which have been previously interpreted functionally -meaning one thought an active process drove these features, are put into question regarding their origins as we argue here these are by-products of a limited precision in the computations. More broadly, the deconstruction of 'active' exploration and volatility mechanisms suggest functional interpretations of experimental observations are risky as these latter ones could also arise as by-products of mechanistic processes -computational imprecisions in our case. This work indicates a crucial role of learning noise in sequential reward-guided tasks. This crucial role could explain why the brain has evolved to a system with substantial learning variability in its core computations. Generally speaking, variability is sometimes highlighted as detrimental, however, we show here its effects in learning are beneficial. Indeed, this core variability gives rise to cheap heuristics allowing adaptation and uncertainty reduction.

Figure 2 . 5 :

 25 Figure 2.5: Midbrain dopamine neurons encode reward prediction errors (reproduced from Schultz et al., 1997).

 Figure 1.11 illustrates a simple recurrent neural network (RNN).

FIGURE 1 . 11 :

 111 FIGURE 1.11: Recurrent Neural Network. x t is the input a time t, o t the output and h t the hidden state. U, V, and W are the network's parameters

FIGURE 2 . 3 :

 23 FIGURE 2.3: The upper figure illustrates the random walk described by the M-H Markov chain on 500 iterations. The lower figure plots the empirical distribution obtained through the 500 samples (histogram) and the target distribution (in blue).

FIGURE 2 . 4 : 50 Chapter 2 .

 24502 FIGURE 2.4: Displays the obtained samples from the Gibbs sampler at different time steps. At each time step, only one component is modified such that the walk performs only horizontal and vertical steps.

FIGURE 2 . 8 :

 28 FIGURE 2.8: At time t=1, one samples latent particles from the prior. Given the observation y 1 , weight the sampled particles. Given the weights, sample ancestors and new states from the transition function. Again, given observation y 2 , weight these new samples and then select ancestors for sampling new t = 3 latent particles. This process is iterated over every time step.

FIGURE 2 . 9 :

 29 FIGURE 2.9: Displays the empirical latent distributions at every time steps based on the weighted particles. Note the process infers correctly the change of the higher-rewarding arm near t = 50.

(3)

 3 Obtain smoothing trajectories for t = (T -1) : 1 do for j = 1 : M do (a) Compute backward weights:

 c) Draw new smoothing index b j ∼ M w

Figure 4 .

 4 Figure 4. Suboptimal Inference Internal Noise in Large Networ (A) Network architecture. Two inpu position of an object based on visu mation, using population codes. activity on a given trial are shown ab input neurons project onto an outp the position of the object based o auditory information.(B) Behavioral variance of the netw variance of the maximum likelihood based on the output layer activity number of neurons in the output bound on the variance given the in the input layer (based on the Cram curve: network with optimal connec variance (compared to the red cu noise in the form of stochastic sp output layer. The blue curve eventu red curve, indicating that the impact of internal noise is negligible for large networks (the noise is simply averaged out). Green curve: net connectivity. In a suboptimal network, the information loss can be very large. Importantly, this loss cannot be reduced by adding more neu how large the network, performance will still be well above the minimum variance set by the Cramer-Rao bound (red line). As a result, f information loss is due primarily to suboptimal inference and not to internal noise.

FIGURE 3 .

 3 FIGURE 3.1: (A) In a cue integration task, the model had access to a visual and auditory information and aggregated these informations to encode the position of an object. (B) show the behavioral variability induced by the external, internal noise and suboptimal inference. In a striking manner, suboptimal inference is the dominant source of behavioral variability

FIGURE 3 . 3 :

 33 FIGURE 3.3: This figure (Figure 5 from Drugowitsch et al., 2016) displays the amount of variability due to the sensory, learning or action selection noises.

 A simple temporal difference (TD) model, implemented as a Rescorla-Wagner algorithm -see section1.1.3.2 (Sutton and Barto, 1998) • A mixture of delta-rules approximation to Bayesian inference[START_REF] Wilson | A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems[END_REF] • A change point detection model(Adams and MacKay, 2007) • An approximation of the change point detection model (Nassar et al., 2010) • A full Bayesian model where infers volatility (Payzan-LeNestour and Bossaerts, 2011) • A combined model of the two previous ones (Payzan-LeNestour and Bossaerts, 2011 and Nassar et al., 2010) In their comparison, they included a seventh model based on a weighted sum of the TD learning rule and of the change point detection model approximation (3 rd model in the list -Nassar et al., 2010) : λ • Nassar + (1λ) • TD Based on 28 subjects, model comparison with BIC criterion is performed (figure 3.4). + TD model, the value of the fitted λ is shown. 0 means «pure» TD, 1 means «pure» Nassar

FIGURE 3 . 4 :

 34 FIGURE 3.4: This figure (Figure from Lehmann et al., 2015) displays the three first winning models for the 28 subjects. The model which seems to outperform the others is the TD + Nassar model with small λ values leading to computations close to the simple TD model

Figure 1 A.

 1 Figure 1

 Figure 2!

Figure 3 A

 3 Figure 3 A-D!

E.

 Figure3 E-F!

 Figure 4!

 Figure 5!

Figure 1 :

 1 Figure 1: Model comparisons and model recovery. A-B. shows the model comparison results in the partial feedback setting for the main experiment (exp.1) A. and for the second experiment B. The comparison reveals a model with learning noise and choice stochasticity better explains the behavioral data. C. displays the model recovery procedure -applied in the partial case of the main experiment, which shows our models are identifiable given our experimental setting and our fitting procedure. D. shows the model comparison in the complete feedback setting for the main experiment. A model with only learning noise explains best the behavioral performances.3

Figure 2 :

 2 Figure 2: A. Frontal ROI obtained for the repeat previous choice > switch contrast at the moment of choice corrected at whole-brain familywise error rate (FWE) of 0.05, MNI -Montreal Neurological Institute coordinate space, vmPFC -ventromedial prefrontal cortex. B. Average estimates of noise variance correlates in the vmPFC at the moment of outcome presentation and choice period. Error bars are SEM. C. Average estimates of choice value (Q chosen ≠ Q unchosen) (left pink bars) and noise variance (right blue bars) for free choice and cued trials in the vmPFC at the moment of choice. In cued trials, subjects were forced to choose one specific option. Bars are SEM, paired two-tailed t-test. D. Contribution of the vmPFC to decision to switch: parameter estimates for sensitivity (left panel) and the relative value of switching (right panel) for partial and complete feedback conditions. vmPFC increases sensitivity in partial and complete conditions, *** -p < 0.001, ** -p < 0.01, * -p < 0.05, n.s -non-significant. 4

Figure 3 :

 3 Figure3: Temporal dynamics of pupillary correlates for switch minus stay decisions locked to the moment of choice averaged across feedback conditions. Shaded areas are SEM. Horizontal grey bar corresponds to the time window where time curve for parameter estimates was significantly di erent from zero, cluster-corrected using permutation tests at p < 0.01.

 t |a 1:(t≠1) , r 1:(t≠1)), t oe [1, T] * , we derive an estimator of the marginal likelihood p(a 1:T |r 1:(T ≠1)). p(a 1:T |r 1:(T ≠1)) = T Ÿ t=1 p ! a t |a 1:(t≠1) , r 1:(T ≠1) "

 With a = ⁄µ and b = ⁄ ‡, t = Ô 1 + b 2 , " the probability density function and the cumulative distribution function of the standard Gaussian distribution. If Y = 0, the normalizing constant and the first two moments are:

Figure 6 :

 6 Figure 6: Actual posterior, guided and bootstrap proposal for di erent value of µ

) = ≠2.697, p = 0.012; complete -= ≠0.064 + ≠ 0.142, t(28) = ≠0.453, p = 0.654), whereas dACC fluctuations did not bias subjective values in either outcome condition (partial -= 0.153 + ≠ 0.139, t(28) = 1.102, p = 0.280, complete -= 0.029 + ≠ 0.152, t(28) = 0.192, p = 0.849).

Algorithm 4 : 1

 41 and s Ω≠ s + 1 return A 1:N Particle filter (PF) Input : a time step t, parameters ◊ = {-, ', T -}, the performed actions a 1:t and the observed rewards Ir x and initialize incomplete marginal likelihood l Ω 0.5 for k=2 : t do for n=1 : N x do (a) Sample index o n k≠1 ≥ M(W 1:Nx k≠1,◊) according to the systematic resampling scheme (see previously). (b) Sample descendant according to proposal distribution q

Figure 1 :

 1 Figure1: Presentation of the models. (A) shows the three types of models developed and highlights the loss of complexity from the varying volatility model with 3 stages of inference to the constant volatility model with 2 stages to the Weber noise model with one unique stage. 𝑎 ! is the action, 𝑟 ! is the reward and 𝑠 ! is the stimulus. Let 𝑜 ! = {𝑎 ! , 𝑠 ! , 𝑟 ! }. 𝑧 ! is the task-set, and 𝜏 ! (and 𝜏) are the volatility. 𝜈 is the standard deviation of the volatility random walk. (B) displays how noise is added to standard Bayes rule. The left panel represents standard Bayes : the prior is multiplied by the likelihood to obtain the posterior. The right panel illustrates how noise corrupts standard Bayes : the prior is multiplied by the likelihood but the computation is done with a limited precision characterized by 𝜖 ! sampled from a uniform distribution 𝑈([0, 𝜎 !]) with 𝜎 ! = 𝜇 + 𝜆 ⋅ |𝑝𝑟𝑖𝑜𝑟 -𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟|. The 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 used in the calculation of 𝜎 ! is the result of standard Bayes. In the Gaussian case, it results in the flattening of the posterior proportionally to 𝜖 ! . (C) corresponds to simulations of our Weber noise model featuring the contributions of the constant 𝜇 and multiplicative 𝜆 terms defining the noise structure. We plot here the average entropy of the inferred latent states for the varying volatility model and for the noise model. Models were simulated 100 times on a two-armed bandit where the

Figure 2 :

 2 Figure 2: Example of simulated tasks. (A) shows a simulated task for the closed case -K = 2 task sets. Volatility alternated between a high value (~0.13) and a low one (~0.03). (B) shows a simulated task for the open case -K = 24task sets. When a reversal is detected, the new high-rewarding task set was sampled according to a multinomial distribution among the task sets, which do not have the stimulus-action pair encountered before the reversal detection. Volatility alternated between a high value (~0.1) and a low one (~0.03).

Figure 3 :

 3 Figure 3 : Results of the simulations. (A) shows the performance of the different models. The upper graph describes the K = 2 case and the lower one the K = 24 case. There is very little loss of performance between the exact volatility and the forward volatility models and virtually none between the forward volatility and the forward noise models. Chance is at 0.5 for the closed case and 0.25 for the open case. (B) displays the performance of the noise model with respect to its parameters 𝜆 and 𝜇. We see a large plateau for both the closed and open cases demonstrating the noise parameters must not be precise to exhibit near--optimal behavior. The white cross indicates the value of the parameters taken for figure (A).

Figure 4 :

 4 Figure 4 : Task played by the N = 21 subjects in the closed setting. (A) displays the screen presented to the subject with the task's time characteristics. The subject would choose among two options, a blue star or an orange plus. At outcome, the high-rewarding symbol at that trial would appear in the middle with a happy face if it was chosen and an unhappy face otherwise. (B) displays a task played by one of the subjects. The external volatility described a step function with six distinct values. The false positives of rate .2 are not represented on this figure. (C) shows volatility parameters fitted on the three lowest and three highest volatility blocks for the N = 21 subjects. With the hypothesis of a bigger parameter in the higher volatility blocks, a one-paired t-test gave 𝑡 !"# (20) = 3.26; 𝑝 !"# = 0.00198. (D) shows the exploration parameters fitted on the three lowest and three highest volatility blocks for the N=21 subjects. Again, the hypothesis of a bigger parameter in the higher volatility blocks, no effects were found on the exploration 𝑡 !"# (20) = 0.35; 𝑝 !"# = 0.37. * * < 0.01, 𝑛. 𝑠. - 𝑛𝑜𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 .

Figure 5 .

 5 Figure 5. Results of the behavioral study in the closed setting. (A) displays the model selection results when putting all five models in competition. In a clear way, the Weber noise model explained better the behavioral data than all other models -𝑝 !"# = .973 (B) features the model recovery procedure to validate our experimental setting and fitting procedure. We simulated each model N = 21 times with the subjects' parameters. We then fitted these simulations with the different models and applied the model selection procedure. The diagonals indicate the most probable model recovered was the one simulated which validates the fitting procedure. (C) represents the subject's Weber noise parameters 𝜇 and 𝜆 on the surface plot described figure 3B. Each white cross represents one subject. The fact the subjects are on the surface explains why they exhibit adaptive properties: the subjects parameters are in the region of space were the simulated noise model exhibit adaptive properties.

 𝑡 !"# (20) = 4.7, 𝑝 !"# < 0.001 for the forward varying volatility model. For all other models, the difference in plateaus was not statistically significant : (𝑡 !"# (20) = -0.04, 𝑝 !"# = 0.96) for the exact constant volatility model, (𝑡 !"# (20) = -0.27, 𝑝 !"# = 0.79) for the forward constant volatility model and (𝑡 !"# (20) = 0.97, 𝑝 !"# = 0.35) for the noise model.

Figure 6 :

 6 Figure 6 : Reversal curves in the closed setting -K = 2.The plots represent the reversal curves of the subjects (in blue) and of the five models (in green) simulated with the subjects' parameters. Two clear results: firstly, the varying volatility models were less sticky when the plateau was reached. Averaging over trials 5 to 15 gave the value of this plateau and two--tailed t--tests revealed statistical differences between the subjects and the varying volatility models. Secondly, the constant volatility models reversed slower than the subject's: averaging over the 3 points following a reversal gave a measure of this reversal speed and revealed difference between the constant volatility models and the subjects. The noise was the one that captures best these two behavioral features. (* < 0.05, *** < 0.001)

Figure 7 :

 7 Figure 7 : Comparison with the reinforcement learning (RL) model. This model comparison aims to reproduce the results of Lehmann and colleagues, 2015, which show that no volatility models outperform a simple RL one when describing behavioral data. Each column implements a model selection procedure of the model of interest against the RL one. Exceedance probabilities are in parenthesis, an exceedance probability of 0.5 means both models are equiprobable. This figure shows no volatility model outperforms the RL one but the Weber noise model (which is not a volatility model) actually does.

 thus modified this model by adding the possibility of a distortion of the posterior belief on the task sets proportionally to the quantity of update (see details in Methods). The results lead to an obvious improvement in the explanation of the behavior: we obtained 𝑝 !"# = 1 in favour of the noisy version with model comparison based on the BIC.

Figure 8 :

 8 Figure 8: Results of the behavioral study in the open setting -K = 24. (A) displays the model selection results when putting all five models in competition. In a clear way, the Weber noise model explained better the behavioral data than all other models --𝑝 !"# = 1. (B) features the model recovery procedure to verify our fitting procedure is valid. We simulated each model N = 62 times with the subjects' parameters. We then fitted these simulations with the different models and applied the model selection procedure. The diagonals indicate the most probable model recovered was the one simulated which validates the fitting procedure. (C) represents the subject's Weber noise parameters 𝜇 and 𝜆 on the surface plot obtained from 3B. Each white cross represents one subject. The fact the subjects are on the surface explains why they exhibit adaptive properties : the subjects' parameters are in the region of space were the simulated noise model exhibit adaptive properties.

 counter this hypothesis, we altered the noise model by setting, at every time step, 𝜖 ! = (𝜇 + 𝜆 ⋅ 𝑑 !) and fitted this new model to the behavioral performances in the closed and open settings. This new model, which we will call the bias model, actually displayed the same performance and reversal properties as the noise model. However, putting both noise and bias models in competition led the bias model to fail (𝑝 !"# > .999 (𝐾 = 2) and 𝑝 !"# = 1 (𝐾 = 24)) hence corroborating the noise interpretation. Furthermore, given the amount of learning noise4 and

Figure 1 :

 1 Figure 1: Examples of five random walk volatilities

Figure 2 :

 2 Figure2: Results of the simulations in the random walk volatility case. (A) shows the performance of the different models. The upper graph describes the K = 2 case and the lower one the K = 24 case. There is very little loss of performance between the exact volatility and the forward volatility models and virtually none between the forward volatility and the forward noise models. (B) displays the performance of the noise model with respect to its parameters λ and µ. We see a large plateau for both the closed and open cases demonstrating the noise parameters must not be precise to exhibit near-optimal behavior. The white cross indicates the value of the parameters taken for figure (A).

Figure 5 :

 5 Figure 5: Graphical Representation of the forward varying volatility model

Figure 6 :

 6 Figure 6: Graphical Representation of the forward constant volatility model

1 :Algorithm 5 :

 15 with F the cumulative distribution of the standard Gaussian distribution. Running the SMC algorithm leads to p a 1:T |s 1:T , r 1:T , β i , an estimate of p a 1:T |s 1:T , r 1:T , β i . The estimate of the marginal likelihood is then: p (a 1:T |s 1:T , r 1T |s 1:T , r 1:T , β i A summary of the fitting algorithm for the constant volatility case is given [algorithm 5]. Fitting procedure -Forward Volatility Case Inputs : The actions, stimulus and rewards seen by the subject: a 1:T , r 1:T and s 1:T with T the number of trials Let list = [0 : 0.01 : 1] and N = 101 for i = 1 : N do Let ρ i = list[i] and β i = exp F -1 (ρ i) with F the cumulative distribution of the standard Gaussian distribution. With a 1:T , r 1:T and s 1:T clamped, run a SM C algorithm on the generative model of the subject's actions [model 6] with β = β i to marginalize out the hidden states and obtain an estimator p(a 1:T |r 1:T , s 1:T , β i) of the incomplete marginal likelihood. Return an estimator of the posterior and of the marginal likelihood p

Figure 8 :

 8 Figure 8: Graphical Representation of the forward noise model

Algorithm 6 :

 6 Simulation procedure -Forward Noise Model Inputs : Noise parameter values µ = µ * and λ = λ * . 0. Initialization: Initialize randomly the initial state,

1

 1 Computational learning noise explains a large fraction of explorationAn explanation of exploration with learning noise Following the work of Dru-

Figure 3 1 1

 31 Figure 3Effect of gain modulation on nonlinear activation function. The activation (or transfer) function relates the net input of a unit to its activity state (e.g., the firing rate of a single neuron or the mean firing rate of a population). The function illustrated here is given by activation = 11 + e -(gain * net input) .An increase in gain (dotted line) increases the activity of units receiving excitatory input (upward arrow on right) and decreases the activity of units receiving inhibitory input (downward arrow on left), thus increasing the contrast between activated and inhibited units and driving them toward more binary function. Adapted from Servan-Schreiber et al. 1990.

 www.annualreviews.org• LC and Optimization 409 Annu. Rev. Neurosci. 2005.28:403-450. Downloaded from arjournals.annualreviews.org by Princeton University Library on 07/25/05. For personal use only.

FIGURE 6 . 1 :

 61 FIGURE 6.1: Effect of gain modulation on activation function. The activation function gives the activity state -e.g., the firing rate of a single neuron or the mean firing rate of a population -given the net input. An increase in gain (dotted line) increases the activity of units receiving excitatory input and decreases the activity of units receiving inhibitory input. This leads to more deterministic computations (figure taken from Aston-Jones and Cohen, 2005b).

FIGURE 6 . 2 :

 62 FIGURE 6.2: Behavioral results with NE depletion. The black dots are the actually correct visual cues, the purple dots are the visual cues which the subject's decided on. The blue points are of no interest to us here but corresponds to model predictions. Panel (A) shows subject performance without NE depletion : they adapt well to the changing environment. Panel (B) features subject performance with NE depletion. This highlights NE depletion leads to excessive confidence in the previously chosen policy and results in a perseverative tendency to ignore contextual changes (figure taken from Yu and Dayan, 2005).

 Statistical analysis starts with a collection of probability distributions p(.|θ) indexed by a parameter θ ∈ Θ with Θ an arbitrary set. Let us now assume a random variable Y generated from p(.|θ) and θ follows a prior distribution p α where α are the parameters of the prior distribution called the hyperparameters (figure 1.3). Together the likelihood function p(.|θ) and the prior distribution p α form a generative model.

	α	θ	Y

Formalization :

FIGURE 1.3: Generative model of Y

 8. The first night, you will try one restaurant randomly, if the meal is bad, you will test another one the next day. If, however, it was good, you might want to repeat the experience or maybe still try a new one to probe if you can not find an even better meal.

	X		X	
	Y	Z	Y	Z

FIGURE 1.5: Directed acyclic graph (left) and directed cyclic graph (right)

NB : Bayesian network does not mean that we work within the Bayesian formalism. Bayesian networks (or DAGs) also exist within frequentist statistics. However, for the reasons stated in the previous subsection [subsection

1.2.1]

, we use Bayesian statistics and, within Bayesian statistics, we have access to this generative model formalism making it relevant to model cognition on a computational level.

Single-step Bayesian network : Assume you are visiting an unknown city for a few weeks and you are consigned to eat alone every evening outside of your hotel. There are a certain number of restaurants within walking distance from your hotel and each menu is cheap enough that whether the meal is 'good' or 'bad' acts as the sole criterion for choosing one restaurant over the other. Over the course of your stay, your aim is to maximize the number of 'good' meals you've had.

 To model mental processes, BP based algorithms have been used to explain, for instance, circular inference in schizophrenia. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading to an overweighted likelihood -'see what we expect' -or an overweighted prior -'expect what we see'. To explain circular inference, Jardri and colleagues altered BP by uncontrollably propagating messages multiple times in different directions. This resulted in an over-

counting of the same redundant sensory or prior information obtaining the 'see what we expect' and 'expect what we see' behaviors

•

 Information should propagate backward • Real neurons communicate with discrete spikes not with continuous values • The brain would need to store all of the training data {x train , y train } in memory during training

1.4.1 Comparing the framework

	I will now compare the three frameworks (reinforcement learning, Bayesian approaches
	and deep learning) bearing in mind their respective applications in neuroscience. For
	reinforcement learning, to allow a clear distinction, I only refer to model-free rein-
	forcement learning (see section 1.1.3.2) or model-based reinforcement learning meth-
	ods where Bayesian or deep learning approaches are not used to obtain a transition
	and reward functions (see section 1.1.3.1). We thus locally strip from reinforcement
	learning any model-based approaches where a model is learned with deep learning
	or Bayesian methods.

Table 1 :

 1 Validation of the learning and softmax rules in the exact modelsCounterfactual learning rule : To validate the counterfactual learning rule, we tested three possibilities.

Table 1 . Summary of the activations for the general linear model (GLM) 1 at P < 0.05 FWE whole

 1

	58	407

Table 2 . Summary of the main activations for the general linear model (GLM) 2 at P < 0.05 FWE whole brain- level

 2

. AAL, automatic anatomic labeling; BA, Broadman area; AI, anterior insula; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; PFC, prefrontal cortex; FPC, frontopolar cortex; IPC, inferior parietal cortex, ITC, inferior temporal cortex; MFC, medial prefrontal cortex; OC, occipital cortex; vmPFC, ventromedial prefrontal cortex; VS, ventral striatum; PCC, posterior cingulate cortex; L, left, R, right. * -cluster corrected level at p < 0.05

1.1 In the case of a changing and piece-wise constant volatility (main Text)

		VarVol Backward Backward Forward Forward Forward CstVol VarVol CstVol Noise	RL	Chance
	K = 2 K = 24	85.7 (0.17) 73.2 (0.37)	84.5 (0.15) 73.0 (0.33)	85.6 (0.16) 72.1 (0.40)	84.4 (0.15) 71.6 (0.39)	84.6 (0.16) 72.6 (0.36)	64.8 (0.61) 51.6 (0.63)	50.0 -25.0 -

Table 1 :

 1 Mean (M) and standard error (SE) of the models performance : percentage of trials where the model chose the higher-rewarding option. The standard error is in parenthesis.

		VarVol Backward Backward Forward Forward Forward CstVol VarVol CstVol Noise
	K = 2 K = 24	2160.4 (112.4) 64882.5 (1713.2)	3221.3 (223.9) 59475.2 (2367.0)	4.38 (0.056) 21.6 (0.34)	2.77 (0.04) 15.2 (0.32)	5.32 (0.1) 11.9 (0.44)

Table 2 :

 2 Mean (M) and standard error (SE) of the computation time in seconds. The standard error is in parenthesis.

Table 3 :

 3 Mean (M) and standard error (SE) of the models performance : percentage of trials where the model chose the higher-rewarding option. The standard error is in parenthesis.The learning rate parameter of the RL model was set to maximize performances : α * = 0.19 in the closed case and α * = 0.15 in the open case. For the parameters of the noise model, they were also set to maximize performance. We obtain λ

		VarVol Backward Backward Forward Forward Forward CstVol VarVol CstVol Noise	RL	Chance
	K = 2 K = 24	85.0 (0.31) 72.4 (0.73)	84.5 (0.28) 72.3 (0.75)	85.0 (0.3) 71.6 (0.79)	84.3 (0.28) 70.8 (0.87)	84.3 (0.22) 71.9 (0.70)	63.2 (0.72) 49.4 (0.97)	50.0 -25.0 -

* = 0.21 and η * = 0.39 for the closed case and λ * = 3.45 and η * = 0.1 for the open case.

2 Computational models 2.1 Varying Volatility Computational Model

	ν			
	γ			
	τ t		τ t+1	
	z t		z t+1	
	r t	a t	r t+1	a t+1
	s t		s t+1	
	η			
	Figure 3: Generative model of the computational varying volatility model
	γ ∼ Dir(α, .., α)			

Algorithm 1 :

 1 Simulation procedure -Computational Case 1. Given s 1 , select a 1 randomly, observe r 1 .

for t = 2 : T do a. Observe s t+1 . b. Update filtering probability with SMC 2 and obtain p action j correct|a 1:t , r 1:t , s 1:(t+1) c. Select most probable action a t+1 = argmax j p action j correct|a 1:t , r 1:t , s 1:(t+1) d. Observe r t+1

 Let ρ i = list[i] and β i = exp F -1 (ρ i) with F the c.d.f of the standard normal distribution.

	1:t , s 1:(t+1)
	for all t ∈ [1, T -1]. 2. Obtain the incomplete marginal likelihoods. Let list = [0 : 0.01 : 1]. Let N = 101
	for i = 1 : N do a.

b. Estimate the incomplete marginal likelihood:

p a 1:T |r 1:T , s 1:T , β i = T t=1

p action a t+1 correct|β i , r 1:t , a 1:t , s 1:(t+1)

4.2.2 Deriving the update quantity from filtering estimates

	Let us consider η i t , γ i t , w i t , z ij t , w i t , W ij t	i∈N θ ,j∈Nx	is the particle system at time t. It is composed of N θ particles
	θ i t = η i t , γ i t representing the inferred posterior in the parameter space. And, for each θ i t , N z particles z ij t	j∈[1,N θ]

Acknowledgements

Foundations and Trends R in Machine Learning, 6(1):1-143, 2013. Eric Maris and Robert Oostenveld. Nonparametric statistical testing of eeg-and meg-data. Journal of neuroscience methods, 164(1):177-190, 2007. Avery McIntosh. The jackknife estimation method. arXiv preprint arXiv:1606.00497, 2016. Stefano Palminteri, Mehdi Khamassi, Mateus Joffily, and Giorgio Coricelli. Contextual modulation of value signals in reward and punishment learning. Nature communications, 6:8096, 2015. Christian P Robert. Monte carlo methods. Wiley Online Library, 2004. Nikolaus Weiskopf, Chloe Hutton, Oliver Josephs, and Ralf Deichmann. Optimal epi parameters for reduction of susceptibility-induced bold sensitivity losses: a whole-brain analysis at 3 t and 1.5 t. Neuroimage, 33(2):493-504, 2006.

Code availability : Python and C++ code for all models of the studies are available at https://github.com/csmfindling/learning_variability and the principal algorithms can be found in the Supplementary Informations.

Data availability : The data that support these findings are available from authors upon request.

Code availability : Python and C++ code for all models of the study are available at https://github.com/csmfindling/learning_variability_and_volatility Data availability : The data that support these findings are available from authors upon request.

Methods

Participants : fMRI experiment 1: 30 subjects (16F, mean age 26.0 + -5.5, all right handed). One subject was excluded from the analysis because he failed to understand the task instructions and performed at a chance level.

Subjects were screened for the absence of any history of neurological and psychiatric disease or any current psychiatric medication and had normal or corrected to normal vision.

Behavioral experiment 2: 30 subjects (17F, 23.6 + -4.6) took part in the experiment and all the data were included in the analysis. Additionally to the behavioral data, we also recorded the pupillary responses in this study. However, N = 6 subjects were excluded from pupillatory analyses because of bad quality pupil data.

Behavioral experiment 3 (with the repeated blocks): 30 subjects (19F, mean age 24.2 + -3.7) took part in the experiment and all the data were included in the analysis.

All participants in all three experiments gave a written informed consent and the local Ethical Committee (IN-SERM?) approved the study. All subjects received a fixed payment and were additionally remunerated based on their performance in the task between 5 and 10 euros.

Experimental task : In the three experiments, we asked subjects to play a two-armed bandit task where the reward magnitudes of the two bandits followed a random walk process (fig. 1a). The rewards observed by the subjects (between 1 and 99 points) were sampled from Gaussian distributions with mean predicted by the random walks (fig. 1b). In experiment 1 (fMRI study) and 2 in half of the experimental blocks (4 out of 8), the reward obtained on each trial from the chosen lever was presented simultaneously with the 'counterfactual' feedback that could have been obtained from the unchosen lever -referred to as the complete setting (Palminteri et al. (2015)), while, in the other half, only the chosen outcome was shown -referred to as the partial setting. In experiment 3 subjects were always presented with the full information about both obtained and forgone outcomes but in half of the blocks unbeknownst to the participants the reward sequences were repeated (Supplementary Informations). In addition to study exploratory behavior in partial and complete settings, experiment 2 included blocks where the reward magnitudes of one bandit were fully predicted by the (100 -the outcomes) of the other bandit in both partial and complete feedback conditions (Supplementary Informations).

Analytical Model : The full analytical model of behavior is: The virtues of computational learning noise in volatile environments

Introduction

This second article answers our second question of research : Has this learning noise a functional role ? This latter question arises from the first study, which highlights two results : the amount of learning variability is substantial in sequential decisionmaking and the learning noise has a particular structure -the variance of the learning step is proportional to the quantity of update predicted by the model. Both the nonnegligible amount and the particular structure leads us to investigate whether we can find in this learning variability a functional role.

Article

Methods

Computational Models : The first model corresponds to the optimal bayesian learner. The generative model assumes a volatility τ t that follows a projected Gaussian random walk with variance v, meaning the variable will, at every time step, follow a normal distribution centered on the value of the previous step; if that variable is outside of the allowed range, we set it to the value of the bound, thus the name of projected. The analytical model is the following:

γ represents the distribution over the possible task sets, τ t is the volatility, ν the standard deviation of the volatility random walk and η is the probability of false positives. z t is the task set, r t the received reward, s t the observed stimulus and a t the chosen action. The hyper-parameters' values led to uninformative priors : α = 1, F (x; m, s) is the Gaussian cumulative distribution function with mean m and standard deviation s. The transition probability for z t appears, at first, complicated but only states that, with a probability τ t+1 , the task set z t+1 will differ from task sets that have the stimulus-action pair {s t , a t } observed at time t. The second generative model 1 assumes a constant volatility. The analytical model is the following:

with γ the probability distribution over the task sets, τ the volatility and η the probability of false positives. z t is the task set, r t the received reward, s t the observed stimulus and a t the chosen action. We set the hyperparameters to : α = 1, a τ = 1, b τ = 1, a η = 1 and b η = 1. Again, the false positive feedback probability, η, followed a uniform distribution U ([.5, 1]) and τ , the volatility, a uniform distribution U ([0, .5]). Formal graphical representations of the generative processes for these two models can be found in the Supplementary Informations.

Inference Procedure : Inference on both of the upper generative models is done thanks to the SMC 2 [3], an efficient algorithm for sequential data based on sampling methods. It combines two sequential Monte Carlo (SMC) algorithms, an iterated batch importance sampler, a SMC procedure in the parameter space [2], with a particle filter, a SMC procedure applied to the latent space [1]. We developed both bootstrap and guided versions of the particle filter [6], however we focused on the bootstrap version for the algorithmic derivation as the guided version requires knowing the future observations in the importance sampling steps. We will not give more details on theses methods as everything can be found in the given references.

Volatility Algorithmic Models : The inference procedure applied can be summarized in a forward pass implemented with importance sampling and a backward pass implemented with Monte Carlo Markov Chain (MCMC) methods. To obtain the algorithmic versions of the computational models described up above, we took out the backward pass from the SMC 2 inference method. Let θ be the parameters. In the SMC 2 algorithm, the backward pass is carried out every time the samples representing the posterior p (θ|a 1:t , s 1:t , r 1:t) degenerate, meaning when the algorithm considers there are too few samples representing well this posterior. In that case, the MCMC step moves the particles to regions of high posterior while keeping p (θ|a 1:t , s 1:t , r 1:t) invariant. In the algorithmic volatility models, we replace this step by a naive version of it. Instead of performing a MCMC step to move the particles, we sample from the empirical distribution based on the current samples. For instance, let us assume θ follows a Gaussian and let {θ k , W k } be the particle system representing the posterior at time t. The particle system is composed of N samples θ k each assigned with a weight (normalized) W k indicating how well the sample θ k represents the posterior.

Supplementary Informations : The virtues of computational learning noise in volatile environments

Deriving the approximate resampling step

Instead of performing a formal MCMC step, the forward models sample naively from the empirical distribution. Let us write these empirical distributions in the case of our parameters.

Beta distribution

Let X follow a beta distribution with parameters α and β. We have:

Inverting these equations leads to:

Replacing E[X] and V[X] by their empirical estimates leads to the beta proposal.