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Abstract

The expeditious development of wireless communications and ubiquitous deployment of

Wi-Fi systems indoors have nurtured considerable commercial and industrial indoor Loca-

tion based Services (LBSs) in the field of Internet of Things (IoT). The most fundamental

functionality is to pinpoint the location of the target via wireless devices. To this end, the

pattern-matching based Location Fingerprinting (LF) stands out as a promising technique

which can return the best-fitted location estimation among a set of geo-tagged Reference

Points (RPs), enabling accurate position determination even in the complex multipath-rich

environments. For the existing indoor LF solutions, most previous works appeal to the

simple and easily-accessible Received Signal Strength (RSS) fingerprint as the indicator of

Medium Access Control (MAC) layer’s link quality. However, RSS suffers from dramatic

performance degradation due to sophisticated environmental dynamics. In contrast, the

fine-grained Physical (PHY) layer Channel State Information (CSI) characterizes the chan-

nel qualities on the level of multiple orthogonal subcarriers, thus capable of bringing richer

location-specific information for indoor fingerprinting. Meanwhile, this intricate structure

of CSI inevitably leads to an increased computational complexity for the practical local-

ization implementation. In addition, the harsh indoor environment can also breed similar

radio signatures among certain predefined reference points, which may be randomly dis-

tributed in the area of interest, thus mightily tampering the location mapping accuracy.

To work out these dilemmas, in this thesis, we design and implement two CSI-based

indoor location fingerprinting systems, namely EntLoc and AngLoc. For EntLoc, a power-

based tap filtering scheme is first proposed to remove the noisy component in raw CSI

measurements. To capture the most informative statistical channel information while
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Abstract iv

maintaining the structural simplicity, we adopt the Autoregressive (AR) modeling based

entropy of CSI amplitude as the location fingerprint to construct a robust offline radio

map. In the online phase, we employ the succinct Manhattan distance as similarity metric

and resort to the flexible kernel regression approach to accurately figure out the target’s

position. As an upgraded version of EntLoc, AngLoc system leverages the well-known An-

gle of Arrival (AoA) as an additional fingerprint, which can be accurately retrieved from

CSI phase through an enhanced subspace based algorithm. This dedicated mechanism

serves to further eliminate the error-prone RP candidates, thus fertilizing the opportu-

nity to achieve the decimeter-level positioning accuracy. Specifically, apart from the AR

entropy-based fingerprint generating for CSI amplitude in the offline phase, we also study

some deep-rooted phase errors in the raw CSIs and utilize several phase calibration algo-

rithms to mitigate them, which guarantees a reliable angular fingerprint estimation. In the

online phase, by exploiting both CSI amplitude and phase information, a novel bivariate

kernel regression scheme is proposed to precisely infer the target’s location. Furthermore,

the entire indoor experiments are conducted on the lightweight HummingBoard platform,

which tremendously facilitates the time-consuming and labor-intensive fingerprinting im-

plementation. Besides, the results from extensive indoor experiments validate the superior

localization performance of our proposed systems over previous approaches.

Keywords: Indoor localization, channel state information, entropy, array signal pro-

cessing, kernel regression.



Résumé

Le développement rapide des communications sans fil et le déploiement omniprésent des

systèmes Wi-Fi ont nourri des services commerciaux et industriels de géolocalisation (LBS)

dans le domaine de l’Internet des objets (IoT). La fonctionnalité la plus fondamentale

consiste à localiser l’emplacement de la cible via des appareils sans fil. À cette fin, la

localisation par empreinte radio (LF) basée sur la correspondance de motifs se distingue

comme une technique prometteuse qui peut renvoyer l’estimation de l’emplacement la

plus fine à partir d’un ensemble de points de référence (RP) géolocalisés, permettant une

détermination précise de la position, même dans les environnement complexes riches en

trajets multiples. Pour les solutions LF d’intérieur existantes, la plupart des travaux

précédents font appel à l’empreinte RSS (Received Signal Strength) simple et facilement

accessible comme indicateur de la qualité de liaison de la couche MAC (Medium Access

Control). Cependant, RSS souffre d’une dégradation spectaculaire des performances due

à une dynamique environnementale importante. L’information sur l’état du canal (CSI)

de la couche physique indique la qualité du canal au niveau de plusieurs sous-porteuses

orthogonales, donc capable d’apporter des informations spécifiques à l’emplacement plus

riches pour les empreintes digitales en intérieur. Cette structure complexe de CSI conduit

inévitablement à une complexité de calcul accrue pour la mise en œuvre pratique de

la localisation. En outre, l’environnement intérieur hostile peut également générer des

signatures radio similaires parmi certains points de référence prédéfinis, qui peuvent être

distribués de manière aléatoire dans la zone d’intérêt, altérant ainsi la précision de la

cartographie de localisation.

Pour résoudre ces dilemmes, dans cette thèse, nous concevons et mettons en œuvre
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Résumé vi

deux systèmes d’empreintes de localisation en intérieur basés sur CSI, à savoir EntLoc

et AngLoc. Pour EntLoc, un schéma de filtrage des mesures basé sur la puissance est

d’abord proposé pour supprimer la composante bruyante dans les mesures CSI brutes.

Pour capturer les informations de canal statistique les plus informatives tout en partageant

la simplicité structurelle du RSS, nous adoptons l’entropie basée sur la modélisation au-

torégressive (AR) de l’amplitude CSI comme empreinte de l’emplacement pour construire

une carte radio hors ligne robuste. Dans la phase en ligne, nous utilisons la distance

de Manhattan comme métrique de similarité et avons recouru au schéma de régression

par noyaux pour déterminer avec précision la position de la cible. En tant que version

améliorée d’EntLoc, le système AngLoc exploite l’angle d’arrivée bien connu (AoA) comme

empreinte supplémentaire, qui peut être récupérée avec précision à partir de la phase CSI

grâce à un algorithme par sous-espace. Ce mécanisme dédié sert à éliminer davantage

les candidats RP sujets aux erreurs, permettant ainsi d’atteindre la précision au niveau

du décimètre. Plus précisément, en plus de la génération d’empreintes digitales basée

sur l’entropie AR pour l’amplitude CSI dans la phase hors ligne, nous étudions égale-

ment certaines erreurs de phase profondément enracinées dans les CSI bruts et utilisons

plusieurs algorithmes d’étalonnage de phase pour les atténuer et garantir une estimation

d’empreinte angulaire fiable. Dans la phase en ligne, en exploitant à la fois les informa-

tions d’amplitude et de phase CSI, un nouveau schéma de régression par noyaux bivarié

est proposé pour déduire précisément l’emplacement de la cible. En outre, toutes les ex-

périences en intérieur sont menées sur la plate-forme légère HummingBoard, ce qui facilite

considérablement la mise en œuvre des empreintes digitales chronophages et laborieuses.

En outre, les résultats d’expériences montrent les meilleures performances de localisation

de nos systèmes proposés par rapport aux approches précédentes.

Mots clés: Localisation indoor, informations des canaux, entropie, traitement du

signal du réseau, régression par noyaux.
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Chapitre 1: Introduction

Avec la prolifération à grande échelle des communications sans fil et de l’informatique om-

niprésente, le service basé sur la localisation (LBS) est devenu un catalyseur clé pour une

myriade d’applications de pointe dans le domaine de l’Internet des objets (IoT). Malgré

cela, le système mondial de navigation par satellite (GNSS) peut déjà offrir une localisa-

tion extérieure réussie et précise. Cependant, il souffre d’une dégradation spectaculaire

des performances dans l’environnement intérieur complexe en raison du blocage des sig-

naux satellites. Grâce à la disponibilité omniprésente et au déploiement à faible coût,

la connaissance de la localisation intérieure basée sur le Wi-Fi se distingue comme l’une

des solutions les plus attrayantes vis à vis des autres techniques de communication sans

fil. Parmi les solutions émergentes pour le positionnement intérieur basé sur le Wi-Fi,

l’empreinte digitale de localisation (LF) bénéficie d’un mécanisme de correspondance de

modèle, qui comprend une phase de formation hors ligne et une phase d’estimation de lo-

calisation en ligne. Plus précisément, dans la phase hors ligne, les signatures sans fil sont

collectées sur un ensemble de points de référence (RP) géolocalisés dans la zone d’intérêt

pour construire la base de données d’empreintes digitales (carte radio par exemple). Pen-

dant la phase en ligne, la signature mesurée à une position inconnue est associée à la carte

radio hors ligne pour renvoyer l’estimation de l’emplacement la mieux adaptée.

Comparé à la puissance du signal reçu (RSS) qui souffre d’une dégradation spectacu-

laire des performances due à la décoloration par trajets multiples à petite échelle et à la
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dynamique temporelle à l’intérieur, les informations d’état de canal (CSI) de couche PHY

sont capables de caractériser le canal pour chaque paire d’antennes d’émission-réception

au niveau de plusieurs sous-porteuses orthogonales. Ainsi, il peut servir de géo-signature

préférable pour apporter des informations spécifiques à l’emplacement plus riche.

Dans cette thèse, nous proposons d’abord EntLoc, un système d’empreinte digitale

de localisation probabiliste basé sur le Wi-Fi utilisant des informations d’amplitude CSI.

Il recourt à la métrique entropique basée sur la modélisation autorégressive (AR), qui

équivaut à une transformation directe à partir de la PDF d’origine des amplitudes CSI

sous forme de densité spectrale de puissance (PSD). Grâce à des expériences approfondies

menées dans des bancs d’essai réalistes, nous démontrons que notre métrique entropique

AR proposée surpasse son empreinte digitale CSI ou RSS d’origine. Comment exploiter

correctement les informations de phase CSI dans notre système d’empreintes digitales de

localisation basé sur l’entropie reste ouvert.

Inspiré par les récents progrès du traitement du signal en réseau phasé, l’exploitation

de l’AoA comme empreinte digitale supplémentaire nous permet de revisiter l’exploitation

de la phase CSI avec un nouvel horizon. Étant donné qu’il peut exister des candidats RP

distants dont les lectures AoA diffèrent beaucoup de celles de la cible en ligne, ces faux RP

hors ligne peuvent être exclus pour affiner davantage la précision de la prise d’empreintes

digitales de l’emplacement. Sur cette base, nous concevons plus avant AngLoc, un sys-

tème de localisation intérieure probabiliste compatible AoA utilisant un appareil Wi-Fi

standard. Toutes les expériences sont menées sur la plate-forme légère HummingBoard,

ce qui facilite considérablement la mise en œuvre des empreintes digitales chronophages et

laborieuses. Les résultats expérimentaux valident les performances supérieures de notre

système proposé par rapport aux approches d’empreintes digitales de localisation précé-

dentes.
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Chapitre 2: Préliminaires

Dans ce chapitre, nous examinerons l’empreinte digitale du signal sans fil de base de cette

thèse, c’est-à-dire les informations sur l’état des canaux.

Dans les systèmes de communication sans fil, le récepteur de signaux opère une estima-

tion de canal grâce au mécanisme de sondage de canal. Plus précisément, pour le système

IEEE 802.11n basé sur les paquets, l’émetteur envoie des séquences d’information, y com-

pris la trame à haut débit (HT-LTF) dans le préambule. Une fois que le récepteur détecte

la position de départ du premier HT-LTF, il commence à dériver immédiatement les in-

formations sur l’état du canal. Plus précisément, CSI décrit les propriétés des canaux de

la couche PHY dans le domaine fréquentiel et révèle les effets combinés de la propagation

par trajets multiples du signal qui inclut l’atténuation d’amplitude et le décalage de phase.

La réponse en fréquence du canal (CFR) est représentée par chaque entrée CSI. Il peut

être exprimé par

H(f) = |H(f)|ej∠H(f) (1)

ici H(f) est la valeur complexe de CFR à la sous-porteuse avec une fréquence centrale de f .

|H(f)| et ∠H(f) désignent respectivement son amplitude et sa phase. De plus, le domaine

fréquentiel CFR se compose d’une réponse amplitude-fréquence et d’une réponse phase-

fréquence, caractérisant l’évanouissement sélectif en fréquence provoqué par les phases

constructives et destructrices dans l’environnement riche en trajets multiples. Il contient

ainsi plus d’informations sur les canaux que la mesure RSS basée sur la puissance.
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Chapitre 3: Empreinte radio de localisation basée sur l’entropie
AR en utilisant l’amplitude CSI

Dans ce chapitre, nous proposons EntLoc, un système d’empreinte digitale de localisation

intérieure basé sur CSI utilisant l’empreinte entropique AR structurellement simple et

spatialement informative. La conception détaillée de la majeure partie d’EntLoc sera

présentée. De plus, nous mettons en œuvre des expériences en intérieur approfondies et

dédiées pour évaluer les performances du système proposé.

War-Driving Offline 
Training Data

Online 
Testing Data

Pre-processingRaw Database Statistical Fingerprint

Dimension 
Reduction

Offline 
Radio Map

Online 
Fingerprint Mapping

Estimated 
Location

CFR Matrix AR Entropy VectorCIR Tap Filtering

Ⅳ:

Ⅰ: Ⅱ: Ⅲ:

Figure 1: L’architecture du système EntLoc.

L’architecture du Système EntLoc

L’architecture globale du système proposé est illustrée sur la Figure 1. En général,

il se compose de deux composants principaux: la construction de la carte radio des em-

preintes digitales hors ligne et l’estimation de la position de la cible en ligne. Pour la

construction de la base de données d’empreintes digitales CSI, une fois que les paquets

CFR bruts reçus ont été transmis on utilise d’abord un schéma de prétraitement basé

sur le filtrage des données pour extraire les composants les plus informatifs et les plus

dépendants de l’emplacement dans le scénario d’intérieur riche en trajets multiples. Par

la suite, nous modélisons les caractéristiques statistiques de l’amplitude CFR filtrée en

calculant une métrique entropique basée sur la modélisation AR, puis construisons une
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carte radio d’empreintes digitales représentative après avoir supprimé les sous-porteuses

ambiguës. Ensuite, pour le processus d’estimation d’emplacement en ligne, lorsqu’une

cible mobile arrive dans la zone d’intérêt, elle exécute les mêmes procédures pour acquérir

le vecteur d’entropie et les compare aux attributs hors ligne appris. Enfin, l’approche de

régression du noyau basée sur la distance de Manhattan peut être pleinement exploitée

pour accomplir l’estimation de la position physique de la cible mobile.

Dans ce qui suit, nous décrirons les empreintes digitales plus basées sur l’entropie

générées dans le système EntLoc.

Estimation des empreintes digitales d’entropie AR

Rappelons que la métrique d’entropie est considérée comme une empreinte digitale

de localisation souhaitée en raison de sa simplicité structurelle ainsi que de son mode

de réalisation statistique d’informations riches spécifiques à la localisation. En réalité, il

est impossible de dériver directement l’entropie de Shannon à partir de données réelles.

La raison de ce dilemme est double: (i) Étant donné que le vrai PDF est normalement

inconnu, l’approximation d’entropie n’est accessible qu’à partir des simples échantillons de

données. (ii) Le calcul conventionnel de l’entropie de Shannon nécessite une intégration

numérique lourde car il n’existe pas de substitut de forme fermée.

Pour relever les défis ci-dessus, dans cette thèse, nous proposons d’estimer avec pré-

cision l’entropie en s’appuyant sur l’approche de modélisation AR, dont le principe de

base est d’estimer la PSD équivalente au PDF d’un processus AR de variance unitaire.

Cette contrainte de variance unitaire est importée pour répondre aux exigences de base

du PDF (c’est-à-dire une fonction positive unitaire). Plus précisément, nous définissons

une notation générale de l’amplitude CSI β d’une sous-porteuse et l’ensemble des relations

PDF-PSD est présenté par

p(β) = SW (β) = σ2
ϵ

|1 +
∑p

i=1 aie−j2πiβ|2
, β ∈ [−0.5, 0.5] (2)

ici p(β) et SW (β) sont respectivement le PDF et le PSD d’amplitude β. L’ensemble

de {ai}1≤i≤p sont les coefficients AR d’un processus AR d’ordre p et σ2
ϵ est l’erreur de
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prédiction du modèle qui est choisi de telle sorte que
∫ 0.5

−0.5 SW (β)dβ = 1. Il est à noter que

puisque la loi est modélisée comme la restriction du spectre sur l’intervalle de [−0.5, +0.5],

les données d’amplitude doivent d’abord être redimensionnées sur cet intervalle.

Pour résoudre l’équation (2), un ordre de modèle approprié p doit d’abord être choisi

car un ordre faible conduit à une résolution inadéquate et un ordre élevé entraîne des pics

parasites (variance excessive). Nous adoptons ainsi la technique de la famille exponentielle-

ment intégrée (EEF) pour déterminer l’ordre du modèle AR en raison de ses performances

supérieures grâce à nos expériences approfondies. Par la suite, les coefficients AR et son

erreur de prédiction de modèle correspondante peuvent être estimés en résolvant les équa-

tions de Yule-Walker bien connues en utilisant la récursion de Levinson-Durbin. Une fois

que l’AR PDF est déterminé à partir de (2), le calcul d’entropie peut alors être exprimé

par la forme suivante:

ϕ̂β = −
∫ 0.5

−0.5
p̂(β) log p̂(β)dβ

= −
∫ 0.5

−0.5
ŜW (β) log ŜW (β)dβ

(3)

En outre, en appliquant la formule de Plancherel-Parseval sur le côté droit de (3), une

alternative de forme fermée réalisable sans aucune intégration numérique peut être obtenue

comme

ϕ̂β = −
∞∑

i=−∞
RW (i)Z∗

W (i) (4)

ici (·)∗ est l’opérateur conjugué et ZW (i) désigne la composante ith du cepstrum du pro-

cessus AR, qui peut être obtenue en appliquant l’IFFT à log ŜW (β). RW (i) représente la

fonction d’autocorrélation des données d’amplitude.

Résultats Expérimentaux

La figure 2 montre le plan d’étage du laboratoire de 15m × 15m avec un couloir prin-

cipal le long de plusieurs bureaux et salles de réunion. L’ordinateur portable HP servant

d’émetteur de signal est fixé sur la table du bureau central. En mode injection, il est

conçu pour transmettre par intermittence à raison de 100 paquets par seconde en utilisant

une seule antenne d’émission. Il convient de mentionner qu’un réglage de l’émetteur est
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hautement suffisant et bien exécuté dans ce scénario de laboratoire. Si nécessaire, nous

pouvons recourir à plusieurs émetteurs pour le futur banc d’essai plus grand. Les points

bleus représentés sur la Figure 2 désignent les 70 points de référence d’entraînement avec

un espacement d’un mètre et les 30 emplacements de test sont marqués comme des étoiles

rouges. Dans la phase de formation hors ligne, les mesures CSI sont collectées par le HMB

léger à ces points de référence pour construire la carte radio brute. À chaque point, environ

5000 paquets CSI sont stockés sous forme de signatures RF dans le micrologiciel. Dans la

phase en ligne, nous déplaçons ensuite le récepteur HMB parmi 30 emplacements de test

pour obtenir la même taille de paquets CSI. De plus, toutes les extrémités du récepteur

sont placées à la même hauteur, construisant une plate-forme 2-D simple pour l’estimation

précise de la position intérieure.

15m3m

7m
15

m
3m

5m

TX
Table

RX

Figure 2: Le plan d’étage de notre laboratoire.

En termes de précision de localisation, notre système EntLoc est alors prêt à défier

d’autres systèmes d’empreintes digitales de localisation existants. Plus spécifiquement,

comme mentionné dans la section précédente, nous concevons un cadre équitable pour

comparer notre approche de localisation basée sur l’entropie AR proposée avec les sys-

tèmes de type PinLoc, FIFS et Horus, respectivement. Comme on peut le voir dans la
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Figure 3, notre système proposé atteint l’erreur au 90e centile de 2.69m, ce qui surpasse

l’approche de type PinLoc, FIFS et Horus avec le même niveau d’erreur de 63%, 57% et

28%, respectivement.

0 2 4 6 8 10
Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F
 

EntLoc
PinLoc-like
FIFS
Horus

Figure 3: Précision de la localisation de l’EntLoc proposé par rapport à l’état de l’art.
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Chapitre 4: Amélioration de la localisation d’empreintes ra-
dio assistée par AoA impliquant la phase CSI

Dans ce chapitre, nous présentons AngLoc, un système amélioré d’empreinte digitale de lo-

calisation intérieure basé sur l’entropie AR impliquant une empreinte AoA supplémentaire.

La précision de localisation résultante a été améliorée par rapport à EntLoc.

 

Figure 4: Un exemple illustratif du mécanisme du système AngLoc.

Avant d’énumérer les contributions de ce chapitre, en comparaison avec le système

EntLoc susmentionné, nous élaborons d’abord le concept de base et la mise à niveau

majeure de notre système de positionnement AngLoc proposé. Comme illustré dans la

Figure 4, notre solution intégrée AoA adopte le concept méthodologique de la technique

bien connue des k-voisins les plus proches (kNN) et dévoile deux informations heuristiques:

(i) Pour certains récepteurs de surveillance hors ligne aux positions RP correspondantes,

qu’ils soient à proximité (en bleu) du récepteur en ligne (en rouge) ou à distance (en

vert), leurs mesures CSI peuvent partager les mêmes valeurs d’entropie.

(ii) Ces récepteurs voisins enregistrent également les AoA similaires des chemins inci-

dents parallèles avec ce récepteur en ligne, que ce soit pour les chemins directs dans

le scénario LoS ou les chemins réfléchis dans la condition NLoS. Par conséquent, le

récepteur distant peut être exclu de manière sélective conformément à la différence

AoA distincte, ce qui améliore encore la précision d’estimation de l’emplacement.
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En conséquence, en adoptant l’approche de raffinage RP assistée par AoA ci-dessus,

notre système de positionnement AngLoc hérité est capable d’atteindre des performances

de localisation supérieures à son système EntLoc prédécesseur.
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Tap Filtering

Phase 
Calibration

Radio Map

RP Candidates 
Refining 

Bivariate Kernel 
Regression

Estimated 
LocationCSI Matrix
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Preprocessing
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Subcarriers

Figure 5: L’architecture globale du système AngLoc.

L’architecture du Système AngLoc

Comme illustré dans la Figure 5, l’architecture globale de notre système AngLoc pro-

posé a une conception par blocs. Pour être précis, dans le bloc de construction de carte

radio hors ligne, une fois que les mesures CSI brutes ont été enregistrées, nous introduisons

d’abord un schéma de filtrage des données pour extraire le composant le plus informatif

spécifique à l’emplacement des CSI bruyants. Dans le but d’une estimation précise de

l’AoA, plusieurs techniques d’étalonnage de phase sont ensuite exploitées pour compenser

les décalages de phase correspondants, qui existent dans les appareils WiFi courants. Par

la suite, pour les amplitudes CSI, nous les modélisons statistiquement comme la métrique

d’entropie AR simplement structurelle. L’algorithme JADE-MUSIC est ensuite adopté

pour les phases CSI pour déduire les estimations angulaires. Par conséquent, l’intégralité

de la base de données hors ligne peut être pleinement réalisée par l’intégration des em-

preintes entropiques et AoA, en utilisant pleinement les informations d’amplitude et de

phase CSI. Pour le bloc d’estimation d’emplacement en ligne, lorsqu’une cible mobile entre

dans la zone d’intérêt, elle exécute les mêmes protocoles de prétraitement pour obtenir les

estimations d’entropie et d’AoA. La tâche d’estimation d’emplacement suivante comprend
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alors deux étapes principales:

(i) Le vecteur d’entropie en ligne est d’abord associé à une base de données hors ligne

pour trouver les candidats les plus probables parmi les postes RP les plus proches.

(ii) Parmi ces emplacements candidats, un nouveau schéma de régression par noyau

bivarié est proposé pour réduire davantage le nombre de RP sujets aux erreurs,

abordant ainsi la détermination de l’emplacement de la cible avec une précision

améliorée.

Résultats Expérimentaux

La Figure 6 affiche le plan détaillé de la salle de classe utilisée pour les tests. Tout

d’abord, l’ordinateur portable sert d’émetteur de signal dont le placement est fixé sur la

table et connu a priori. En mode d’injection de paquets, il est conçu pour envoyer par

intermittence à raison de 100 paquets par seconde en utilisant une seule antenne d’émission.

Il est à noter qu’un tel réglage d’antenne répond à l’exigence d’une cartographie spatiale

directe, qui peut produire des données CSI sans CSD. Pendant ce temps, la précision

de localisation peut également être garantie avec le coût de calcul le plus bas. Pour

la disposition expérimentale, les points bleus montrés sur la figure 6 indiquent les 40

emplacements RP d’entraînement avec un espacement d’un mètre et les 28 positions de

test sont marquées comme des étoiles rouges. Pendant la phase de formation hors ligne,

environ 5000 paquets CSI sont collectés et stockés par le HMB léger à chaque point de

référence pour créer la carte radio CSI brute. Dans la phase en ligne, nous déplaçons

ce récepteur HMB parmi tous les emplacements de test pour acquérir la même taille de

paquets CSI à des fins de localisation. De plus, chaque extrémité du récepteur fonctionne

à la même hauteur, construisant une plate-forme 2-D simple pour l’estimation précise de

la position intérieure.

En vertu de la fonction de distribution cumulative (CDF), nous évaluons d’abord la

précision de localisation de notre système AngLoc proposé par rapport à l’état de l’art.

Comme on peut l’observer dans la Figure 7, pour l’environnement de laboratoire, notre
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Figure 6: Le plan d’étage de notre salle de classe.

système proposé est capable d’atteindre l’erreur du 90e centile de 2.27 m, ce qui surpasse

les systèmes EntLoc, PinLoc-like, FIFS et Horus avec la même erreur niveau de 2.69 m,

4.15 m, 5.56 m et 5.64 m, respectivement. De même, dans le scénario de la salle de

classe, nous pouvons remarquer dans la Figure 8 que AngLoc précède toujours les autres

rivaux en termes d’erreur du 90e centile. Concrètement, il peut garantir que 90% des

emplacements de test ont une erreur de positionnement inférieure à 1.99 m, dépassant

les systèmes EntLoc, PinLoc-like, FIFS et Horus avec le même pourcentage d’erreur de

82.1%, 64.3%, 57.1% et 28.6%, respectivement.



Résumé de la Thèse en Français xix

0 2 4 6 8 10
Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F
 

AngLoc
EntLoc
PinLoc-like
FIFS
Horus

Figure 7: Précision de localisation pour le laboratoire.
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Chapitre 5: Conclusion

Sur la base de la conception de systèmes d’empreintes digitales de localisation efficaces,

nous résumons cette thèse dans ce qui suit.

Premièrement, en raison de la présence d’une limitation de la bande passante du canal

et du bruit non intentionnel des appareils, nous concevons un schéma de filtrage des

données basé sur la puissance pour atténuer largement le bruit de mesure CSI. De plus,

nous nous penchons également sur certains problèmes d’erreur de phase CSI profondément

enracinés et réussissons à tirer parti de plusieurs techniques d’étalonnage de phase pour

acquérir des mesures CSI adéquates et fiables.

Deuxièmement, afin d’exploiter l’inférence probabiliste des propriétés complexes des

canaux sans fil intérieurs, nous avons recours à la métrique d’entropie basée sur la mod-

élisation AR, qui partage la simplicité structurelle avec RSS tout en exploitant les riches

informations statistiques sur les canaux. Sur cette base, nous avons proposé EntLoc,

un système de localisation d’empreintes digitales basé sur l’amplitude CSI utilisant un

appareil Wi-Fi commercial.

Troisièmement, au-dessus du système de positionnement EntLoc, qui exploite unique-

ment les informations d’amplitude CSI, nous développons un prototype d’AngLoc, un sys-

tème amélioré d’empreinte digitale de localisation impliquant des informations de phase

CSI. Il est capable de libérer tous les potentiels liés à la localisation en utilisant des em-

preintes digitales supplémentaires basées sur l’AoA.

Enfin et surtout, tout au long de l’étude pratique du positionnement intérieur basé sur

CSI, nous parvenons progressivement à développer la plate-forme d’acquisition de données

CSI plus légère et réalisable basée sur le système embarqué HummingBoard Pro. Il facilite

considérablement notre processus d’enquête sur les sites de localisation.
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m The N × R dimensional CSI matrix which are acquired at the mth RP

from the sth AP

Hm The N × SR dimensional CSI signature set which are acquired at the
mth RP

Gs
o The N × R dimensional CSI matrix which are acquired at the target’s

unknown location from the sth AP

Go The N × SR dimensional CSI signature set which are acquired at the
target’s unknown location

Φ̂Hs
m

The AR entropy vector of CSI amplitudes at the mth RP from the sth

AP

Φ̂Gs
o

The AR entropy vector of CSI amplitudes at the target’s unknown lo-
cation from the sth AP

θ̂s
m The AoA estimate at the mth RP location from the sth AP

τ̂s
m The ToF estimate at the mth RP location from the sth AP

θ̂s
o The AoA estimate at the target’s unknown location from the sth AP

τ̂s
o The ToF estimate at the target’s unknown location from the sth AP

K The probability kernel function

Dm The Manhattan distance of AR entropy between the online fingerprints
at target’s unknown location and the offline fingerprints at the mth RP

Dm The Edclidean distance of AoA-ToF between the online fingerprints at
target’s unknown location and the offline fingerprints at the mth RP

we The weighting factor for AR entropy based kernel function

wa The weighting factor for AoA based kernel function

ρe The AR entropy based kernel coefficient

ρa The AoA based kernel coefficient
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2 Chapter 1. Introduction

1.1 Motivation

With the wide-scale proliferation of wireless communication and ubiquitous computing,

Location-Based Service (LBS) has emerged as a key enabler for myriad cutting-edge ap-

plications in the domain of Internet of Things (IoT) [1, 2, 3]. Examples of such widespread

LBSs can be categorized into a number of groups. To name a few, for visually-impaired

individuals, it is imperative for them to receive autonomous and accurate navigation ser-

vices in the complicated surroundings. In the modern mega warehouse, by leveraging

the logistic tracing and monitoring, staff can detect the goods and inventory in real time,

which enormously facilitates the operation efficiency. The consumers in the fancy commer-

cial mall usually desire the dedicated product information through the proximity-based

marketing advertisements. For some sensitive facilities like banking systems, the topic

of intruder tracking is also of great significance in order to guarantee a round-the-clock

security level and so forth. Accordingly, in order to meet the pressing need of human social

activities, the most fundamental common ground for these LBS applications is to precisely

and effectively pinpoint the location of the target in a wireless manner.

To this end, the well-known Global Navigation Satellite System (GNSS) such as Global

Positioning System (GPS) from the U.S. can already offer successful and accurate local-

ization in the outdoor space. However, it suffers dramatic performance degradation in

the complex indoor environment due to the blockage of satellite signals. Moreover, the

location resolution demand for indoor positioning schemes is generally higher than that in

the outdoor scenarios. Consequently, in addition to providing the seamless and ubiquitous

location-aware services indoors, it brings us new challenges for designing indoor localiza-

tion systems which are capable of covering the requirements of high accuracy, time-critical

constraints and energy efficiency. As illustrated in Figure 1.1, we further present a wide

variety of LBS applications from outdoor to indoor situations.

In light of the continuous mobile technique innovation and its hardware upgrading,

accurate, reliable and ubiquitous indoor localization solutions have been extensively stud-

ied in recent years [4, 5, 6]. Such examples comprise not only well-known Wireless Local

Area Network (WLAN) based technologies like Wi-Fi [7, 8, 9], Bluetooth [10], Radio Fre-
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Figure 1.1: Different applications of location based services.

quency Identification (RFID) [11], Ultra Wideband (UWB) [12], but also some emerging

areas such as infrared [13], visible light [14, 15], ultrasound [16], geomagnetic field [17]

and so forth. Among these techniques, the Wi-Fi based positioning is probably of the

greatest popularity, mainly owing to the pervasive availability of the high-throughput and

low-cost Wi-Fi technology. Thereupon, indoor position determination can be then op-

erated in Wi-Fi based communication systems through firmware upgrades and software

implementations.

In general, conventional Wi-Fi based Indoor Positioning Systems (IPSs) either adopt

geometric mapping approach or resort to the Location Fingerprinting (LF) [18]. For geo-

metric mapping, intermediate spatial parameters like distance or direction are first derived

from certain physical measurements. Typical parameters include Time of Flight (ToF) [19]

and Angle of Arrival (AoA) [20]. Then, target’s physical location can be further inferred by

using geometric algorithms (e.g., trilateration or triangulation). Nevertheless, the perfor-

mance of geometric mapping approach heavily relies on the Line-of-Sight (LoS) condition.

In wireless communications, when a signal emitted from a transmitter is reflected or scat-

tered by a scatterer, an attenuated copy of the original signal is generated and reaches

the receiver through a different path. The phenomenon that a signal is received by two
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or more paths is known as multipath propagation [21]. Figure 1.2 displays a typical in-

door multipath propagation scenario. The rich indoor multipath and shadowing effects,

to a great extent, blur the monotonous relation between physical measurements and dis-

tances, complicate RF propagation modeling, and thus degenerate positioning accuracy.

This makes geometric mapping less eligible for the sophisticated indoor environment with

rich hindrances and room partitions. As an emerging alternative for indoor positioning,

TX RX

D Pathirect 

Figure 1.2: Diagram for typical indoor multipath propagation.

location fingerprinting benefits from a pattern-matching mechanism, which comprises of-

fline training phase and online location estimation phase. Specifically, in the offline phase,

wireless signatures are collected at a set of geo-tagged Reference Points (RPs) in the area

of interest to construct the fingerprint database (a.k.a. radio map). During the online

phase, the measured signature at an unknown position is matched with the offline radio

map to return the best-fitted location estimation.

Although the mainstream Wi-Fi fingerprinting systems take the simple Received Signal

Strength (RSS) as the indicator of Medium Access Control (MAC) layer’s link quality, it

suffers dramatic performance degradation due to small-scale multipath fading and tempo-

ral dynamics indoors. In Institute of Electrical and Electronics Engineers (IEEE) 802.11

n/ac standard, Wi-Fi networks use Multiple-Input Mulitiple-Output (MIMO) [22, 23] and

Orthogonal Frequency Division Multiplexing (OFDM) [24] techniques to modulate data

on different orthogonal sub-channels and transmit them over multiple transmit-receive
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(TX-RX) antenna pairs simultaneously. Therefore, it can reflect the fine-grained channel

feature known as channel response, which can be partially extracted from many commer-

cial off-the-shelf Wi-Fi Network Interface Cards (NICs) [25, 26] in the format of Channel

State Information (CSI). Specifically, CSI is aggregated by a set of channel estimations

depicting the amplitude and phase information of each OFDM subcarrier. Different from

coarse-grained RSS, the Physical (PHY) layer CSI measurement can serve as a preferable

location signature characterized by the small-scale multipath fading, which significantly de-

teriorates the quality of its RSS counterpart. Furthermore, CSI indicates channel qualities

in the level of multiple subcarriers and thus provides richer location-specific information

than RSS-based localization schemes.

In principle, Wi-Fi fingerprinting algorithms can be categorized into deterministic and

probabilistic ones [8]. Deterministic approaches enjoy the easy implementation but fail

to fully exploit environmental fluctuations, which consequently renders the location esti-

mation error-prone. In contrast, probabilistic methods embrace the channel variation by

inferring a signal distribution based statistical model, thus obtaining more robust and ac-

curate positioning performance than its deterministic adversary. Nevertheless, there still

exists three underlying challenges for probabilistic Wi-Fi fingerprinting systems:

(i) The accurate approximation of Probability Distribution Function (PDF) is largely

driven by massive storage of signal measurements [27], which in turn brings huge

system burden and computational requirement.

(ii) Most probabilistic location-aware solutions are well established on the assumption

of Gaussian-distributed measurements [28, 29]. However, due to the complex na-

ture of indoor environment and the imperfection of wireless devices, some practical

measurements appear to be non-Gaussian distributed or even do not fit any known

distribution [30, 31, 32]. This then complicates the fingerprinting process and incurs

severe ambiguity for location estimation.

(iii) When it comes to multivariate fingerprint structure (e.g. multi-subcarrier CSI),

traditional probabilistic methods turn powerless since existing statistical tools only

work for measurements with identifiable distributions [33].
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Therefore, it would be highly desirable for a fingerprint which shares the simplicity of RSS

(scalar) and meanwhile conserves rich statistical location-specific information.

To address the aforementioned substantial challenges, in this thesis, we first propose

EntLoc [34], a Wi-Fi based probabilistic indoor location fingerprinting system using CSI

amplitude information. It resorts to the Autoregressive (AR) modeling based Shannon

entropy metric [35, 36], which equals a direct transformation from the original PDF of

CSI amplitudes. Unlike traditional data-adaptive histogram estimator which entails a

slow convergence rate, AR modeling approach provides a feasible parametric workaround

to accurately infer the PDF in the form of Power Spectral Density (PSD) [37, 38]. De-

spite its structural simplicity, this novel entropy fingerprint embodies the whole statistical

information of CSI amplitudes. Through extensive experiments conducted in realistic

testbeds, we demonstrate that our proposed AR entropy metric outperforms its original

CSI or RSS fingerprint [34]. However, since CSI phases of one subcarrier are generally

uniformly distributed [39], this quantifies each RP location with an equally maximized

entropy value (a.k.a. Gibbs’ inequality [40]), thereby hampering the location distinction

to a great extend. How to properly exploit CSI phase information in our entropy-based

location fingerprinting system still remains open.

Inspired by the recent advancement of phased array signal processing [20], leveraging

AoA as supplementary fingerprint enables us to revisit CSI phase exploitation with a fresh

horizon. Given the fact that there may exist some remote RP candidates whose AoA read-

ings differ a lot with those around the online target, these false offline RPs can be ruled

out to further refine the location fingerprinting accuracy. On this basis, we design AngLoc

[41], an AoA-aware probabilistic indoor localization system using commercial off-the-shelf

Wi-Fi device. To remove the noisy component from the raw CSI measurements, we first

introduce a power-based tap filtering scheme to preserve the most informative CSI signa-

tures. For the purpose of precise AoA estimation, a set of phase calibration techniques

are then employed to mitigate dramatic phase drifts. Subsequently, for the offline radio

map construction, the pre-processed CSIs are simultaneously fed to two independent fin-

gerprint generators, namely AR modeling based entropy estimator for CSI amplitude and

the enhanced AoA-ToF estimator driven by Joint Angle and Delay Estimation (JADE)
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Multiple Signal Classification (MUSIC) algorithm [42, 43, 44]. It is worth noting that ToF

is utilized here to create measurable phase shift across subcarriers, by which realizes vir-

tual antenna extension to overcome the antenna number restriction for classical MUSIC

algorithm [20]. The other trick of ToF here is to identify the first incoming path (not

necessarily the direct path) as the angular fingerprint benchmark, which serves to guar-

antee similar AoA recordings around closely-spaced RPs. Moreover, in the online phase,

due to the simple structure of the radio map, the succinct Manhattan distance and Eu-

clidean distance can be fully competent as the similarity metrics for AR entropy and AoA

fingerprints, respectively. Afterwards, we propose an optimal bivariate kernel regression

scheme to accurately infer the target’s physical location. The entire experiments are con-

ducted on the lightweight HummingBoard platform [45], which tremendously facilitates

the time-consuming and labor-intensive fingerprinting implementation. Experimental re-

sults validate the superior performance of our proposed system over previous location

fingerprinting approaches.

1.2 Contributions

In a nutshell, the major contributions of this thesis can be summarized and laid out below:

• The first contribution of this dissertation is that we design an AR entropy based

indoor location fingerprinting system using fine-grained channel state information,

namely EntLoc. As far as we are aware of, this is the first work to statistically study

the AR modeling based entropy signature in CSI fingerprint localization system.

This simple fingerprint structure helps decrease the pattern-matching complexity

and its informative statistical embodiment also facilitates the location estimation

accuracy.

• As an upgraded version of EntLoc, the pioneering AngLoc system is further pro-

posed as the second main contribution of this thesis. Specifically, in AngLoc, we

constructively incorporate the angular signature (AoA information) in CSI entropy

based indoor location fingerprinting system, which manages to narrow down the
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error-prone RP candidates and further improves the positioning accuracy. It even

fertilizes the opportunity to achieve a decimeter-level localization precision in our

indoor experimental testbed.

• Since the raw CSI measurements retrieved from commercial Wi-Fi NICs contain var-

ious noises, which may severely jeopardize the localization performance, such noises

have to be first removed before proceeding to conduct the location fingerprinting

process. Accordingly, we propose a power-based tap-filtering program alongwith

several CSI phase calibration pre-processing techniques to effectively mitigate CSI

noisy component and sanitize CSI phase errors, respectively.

• Recall that for the part of the aforementioned AngLoc system, we fully exploit both

CSI amplitude and phase information to pinpoint the online target’s physical po-

sition. The respective AR entropy and AoA information are designated as dual

location fingerprints in AngLoc. On this basis, we design a feasible bivariate kernel

regression scheme for the online location estimation stage, which organically com-

bines the weighting factors for both amplitude based entropy and phase-based AoA

fingerprints.

• Last but not least, in view of the cumbersome laboring process for the traditional

offline fingerprint database construction, based on the Linux CSI tool with a mod-

ified firmware, we build and implement extensive experiments on the lightweight

HummingBoard Pro device for different indoor testbeds. In addition to the superior

localization performance, our mobile CSI receiver prototype remarkably enhances

the location fingerprinting efficiency.

1.3 Structure of the Thesis

This thesis focuses on the problem of Wi-Fi based indoor fingerprint localization using

channel state information. We successfully and effectively design the whole framework

of two location fingerprinting systems which leverage the AR entropy and enhanced AoA

estimates as their location signatures, achieving a superior localization performance over
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the previous approaches. The remainder of this dissertation is organized as follows:

Chapter 2 reviews the overall technical background which is closely related to the

domain of Wi-Fi based indoor localization. To be specific, we first introduce some Wi-Fi

based physical measurements, which are extremely crucial to the localization performance,

and discuss their respective strength and weakness in a comparative manner. Next, we

dive into the two basic categories of the localization algorithms and present the relevant

examples for both indoor location-aware techniques.

Chapter 3 lays out the in-depth structural presentation of our proposed EntLoc system.

First of all, we investigate several representative literature reviews to reach an overview un-

derstanding for the state-of-the-art. The overall EntLoc system architecture is then given

in the sequel. In the offline phase, we introduce the tap filtering pre-processing scheme

and the detailed fingerprint generation process of the CSI amplitude based AR entropy.

As for the online stage, the distance-based proximity comparison is carried out and then

fed to the kernel regression algorithm to estimate the target’s position. Subsequently, we

evaluate the EntLoc’s localization performance in comparison with the state-of-the-art.

In addition, the impacts of some defining experimental factors are also discussed in this

chapter.

Chapter 4 further proceeds to illustrate the updated design of the AngLoc system.

Specifically, compared with aforementioned EntLoc system, there are three significant up-

grades in the AngLoc system. Firstly, since the raw CSI measurements are full of phase

errors and ineligible for the accurate AoA estimation, we employ a set of phase calibration

techniques for the CSI pre-processing to effectively mitigate these phase offsets. Secondly,

after acquiring the AR entropy fingerprint, we leverage an enhanced subspace based al-

gorithm to estimate the AoA information, which serves as an additional fingerprint to

further improve the location fingerprinting accuracy. Thirdly, in view of the AngLoc’s

dual-fingerprint structure, we propose a novel bivariate kernel regression scheme to pre-

cisely infer the final location. In addition to providing the experimental evaluations for

AngLoc, we also discuss some unsolved issues which may further increase the efficiency

and accuracy of our AngLoc system.
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Chapter 5 draws the conclusions of this thesis by briefly reviewing our main contri-

butions. Moreover, we highlight some potential research directions that can be further

explored in our future works.

1.4 Related Publications

The content of this dissertation is mainly based on the following publications:

• Luan Chen, Iness Ahriz and Didier Le Ruyet. “AoA-aware Probabilistic Indoor

Location Fingerprinting using Channel State Information”, IEEE Internet of Things

Journal, 2020. (IF: 9.515)

• Luan Chen, Iness Ahriz and Didier Le Ruyet. “CSI-based Probabilistic Indoor

Position Determination: An Entropy Solution”, IEEE Access, 2019. (IF: 4.098)

• Luan Chen, Iness Ahriz, Didier Le Ruyet and Hong Sun. “Probabilistic Indoor

Position Determination via Channel Impulse Response”, in Proceedings of the 29th

Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Com-

munications (PIMRC), 2018.

• Luan Chen, Iness Ahriz, Hong Sun and Didier Le Ruyet. “Source Position Estima-

tion via Subspace based Joint Sparse Recovery”, in Proceedings of the 13th IEEE

International Conference on Signal Processing (ICSP), 2016.
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2.1 Introduction

In this chapter, we will review some technical backgrounds of Wi-Fi based indoor localiza-

tion, whose methodological concepts are widely covered throughout this dissertation. Since

the radio measurement lays the firm foundation for a decent wireless positioning system,

we first study some typical WLAN measurements according to the wireless signal char-

acteristics, such as signal transmission power decay, transmission time delay, transceiver

spatial relations and the channel properties, etc.. Both the advantages and weaknesses for

each signal measurement will be also discussed in particular.

In addition, by focusing on the Wi-Fi based indoor position determination, we will elu-

cidate the principle of two conventional wireless localization algorithms, i.e., the geometric

mapping approach and the location fingerprinting method. Some well-known localization

methodologies for both algorithms will be also introduced, respectively.

2.2 Wi-Fi based Physical Measurements

For Wi-Fi based indoor location-aware solutions, acquiring an appropriate kind of physical

measurement is of great importance for the accurate indoor position determination. There

are many factors or properties which need to be considered when it comes to determine a

good candidate. Such properties include the signal accessibility, the structure complexity,

location dependency, power consumption and the robustness against environmental dy-

namics, etc.. In this section, we will present some popular physical measurements in the

domain of indoor localization and compare them on the basis of these signal properties.

2.2.1 Power based Measurement

Signal power is widely used in both geometric mapping (especially in ranging) and

location fingerprinting due to its handy accessibility from myriad commercial off-the-shelf

wireless devices. Particularly, the MAC layer power signature, namely RSS, is one of

the most prevalent power features, which attracts extensive popularities in the wireless
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techniques ranging from UWB, ZigBee [46], Wi-Fi to cellular networks [47].

In order to conduct indoor location determination, the intermediate power measure-

ment is closely related to signal transmission distance due to the wireless signal’s natural

attenuation over physical distance. Therefore, a proper pass loss model should be first

determined for the purpose of accurate indoor positioning. Consider a signal transmitted

through free space to a receiver located at distance d from the transmitter. Assume there

are no obstructions between the transmitter and receiver and the signal propagates along

a straight line between the two. The simplest free-space power-distance relationship can

be characterized as [48]

Pr = PtGtGrλ2

(4πd)n
(2.1)

where Pr and Pt are the received and transmitted signal power, respectively. Gr and Gt

denote the antenna gains at the receiver and transmitter, respectively. λ is the wavelength

of the transmitted signal and n is the environmental attenuation factor.

0

Pr

P
(dB)

t

log (d)

Path Loss Alone
Shadowing and Path Loss

Multipath, Shadowing, and Path Loss

Figure 2.1: Path Loss, Shadowing and Multipath versus Distance.

2.1 Radio Wave Propagation

The initial understanding of radio wave propagation goes back to the pioneering work of James Clerk Maxwell,
who in 1864 formulated the theory of electromagnetic propagation which predicted the existence of radio waves. In
1887, the physical existence of these waves was demonstrated by Heinrich Hertz. However, Hertz saw no practical
use for radio waves, reasoning that since audio frequencies were low, where propagation was poor, radio waves
could never carry voice. The work of Maxwell and Hertz initiated the field of radio communications: in 1894 Oliver
Lodge used these principles to build the first wireless communication system, however its transmission distance
was limited to 150 meters. By 1897 the entrepreneur Guglielmo Marconi had managed to send a radio signal from
the Isle of Wight to a tugboat 18 miles away, and in 1901 Marconi’s wireless system could traverse the Atlantic
ocean. These early systems used telegraph signals for communicating information. The first transmission of voice
and music was done by Reginald Fessenden in 1906 using a form of amplitude modulation, which got around the
propagation limitations at low frequencies observed by Hertz by translating signals to a higher frequency, as is
done in all wireless systems today.

Electromagnetic waves propagate through environments where they are reflected, scattered, and diffracted
by walls, terrain, buildings, and other objects. The ultimate details of this propagation can be obtained by solving
Maxwell’s equations with boundary conditions that express the physical characteristics of these obstructing objects.
This requires the calculation of the Radar Cross Section (RCS) of large and complex structures. Since these
calculations are difficult, and many times the necessary parameters are not available, approximations have been
developed to characterize signal propagation without resorting to Maxwell’s equations.

The most common approximations use ray-tracing techniques. These techniques approximate the propaga-
tion of electromagnetic waves by representing the wavefronts as simple particles: the model determines the re-
flection and refraction effects on the wavefront but ignores the more complex scattering phenomenon predicted by
Maxwell’s coupled differential equations. The simplest ray-tracing model is the two-ray model, which accurately
describes signal propagation when there is one direct path between the transmitter and receiver and one reflected
path. The reflected path typically bounces off the ground, and the two-ray model is a good approximation for
propagation along highways, rural roads, and over water. We next consider more complex models with additional
reflected, scattered, or diffracted components. Many propagation environments are not accurately reflected with

25

Figure 2.1: Path loss, shadowing and multipath versus distance [49].

Nevertheless, the practical wireless radio channel poses a severe challenge as a medium

for reliable high-speed communication. It is not only susceptible to noise, interference, and

other channel impediments, but these impediments change over time in an unpredictable
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manner due to user movement. As shown in Figure 2.1, the combined effects of path

loss, shadowing and multipath contribute to significant variations of the ratio between

the received power Pr and the transmitted power Pt in dB with regard to distance d in

logarithm. Hence, when coping with power-based ranging, RSS can be mapped into the

distance from the transmitter by a more realistic and prevalent path loss model, which is

known as the Log-normal Distance Path Loss (LDPL) model [50]

PL(d)[dB] = PL (d0) + 10n lg
(

d

d0

)
+ Xσ (2.2)

where PL(d) denotes the measured path loss at distance d. PL(d0) is the average path

loss at reference point d0 and n is the path loss exponent. Xσ is a zero-mean normal

random variable reflecting the attenuation in decibel caused by shadowing.

In conclusion, RSS benefits well from its easy accessibility and low-cost deployment.

However, the main drawback of RSS lies in its temporal fluctuations in complex indoor

environments, making it a volatile and coarse-grained feature. The multipath-rich indoor

environment complicates the wireless propagation and derails RSS-based ranging tech-

nique. Thus, more accurate power-based ranging then requires better characterizing and

modeling of the small-scale multipath effects [51].

2.2.2 Temporal Measurement

The typical time features extracted from wireless signals include Time Of Arrival

(TOA) and Time Difference Of Arrival (TDOA). Similar with RSS, they are commonly

employed in the distance based ranging. In general, time-based ranging is impressively

accurate under LoS condition. Unlike power-based schemes, the accuracy of time-based

ranging improves with signal bandwidth. The UWB radio therefore enjoys sheer prevalence

due to its high time resolution and extremely large bandwidth [52].

Specifically, for the TOA ranging technique, also known as Time of Flight (ToF) esti-

mation method, the distance between two nodes is obtained by measuring the propagation

time of the RF signal and then multiplying it with the speed of the electromagnetic waves,

i.e., the speed of light c = 3 × 108m/s. The TOA technique measures the transmitting
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Figure 2.2: The diagram of the TOA technique.

time from transmitter to the receiver by following the procedure depicted in Figure 2.2.

Terminal A sends to terminal B a ranging message at time T0 and it includes the time

stamp T0 in this message. Terminal B then receives the message at time T1 and estimates

the propagation time as TOF = T1 − T0.

For the TDOA based method, it is typically employed when some anchor nodes are

synchronized among them to a common clock while the mobile node, whose position is

unknown, is not synchronized with the anchors. In particular, this scheme consists of

measuring the difference of ToF between the mobile node with respect to two anchors.

Figure 2.3 shows the procedure related to the TDOA method. At time T0, the mobile
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Figure 2.3: The diagram of the TDOA technique.
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node broadcasts a ranging message. Since the mobile node is not synchronized with the

anchors’ clock, the anchors do not know the exact sending time. However, the anchor

nodes are able to use the corresponding arrival times (T1, T2 and T3) and calculate the

TOA (t1, t2, t3) with respect to an initial time that is different from T0. Next, the TDOA

can be calculated as t12 = t1 − t2 and t23 = t2 − t3. Finally, given the two independent

TDOA estimations, the location of the mobile node is calculated as the intersection of two

hyperbolas with foci at the three anchor nodes.

To summarize, a striking advantage of time based wireless technique lies in its superior

ranging accuracy. But the greatest weakness of this method is that it requires an accurate

time synchronization, either between the transmitter and receiver for TOA or among the

anchor nodes for TDOA. For example, just a synchronization error of 10 ns will lead to a

ranging error of around 3 meters.

2.2.3 Angular Measurement

Angular information provides an orthogonal dimension with regard to the distance

for geometric mapping. Angle can be combined with distance estimates to enable single-

anchored localization. In comparison with distance based estimation, the cost of angle

measurements is generally higher. Technically, angle-based techniques estimate the posi-

tion of a mobile node by measuring the Angle of Arrival (AoA) of signals arriving at the

measuring node. With perfect physical measurements, the positioning problem can be ge-

ometrically solved by finding the intersection of a number of straight lines representing the

signal AoAs (e.g. triangulation). In 2-D scenarios, two AoA recordings are just sufficient.

To this end, directional antennas are often capable of obtaining both angle and distance

estimates while avoiding interferences from other directions, yet at the cost of dedicated

infrastructure. Recently, antenna arrays have also attracted increasing interests with the

rapid development of MIMO technology [22], which sets a handy path to achieve a desired

AoA estimation performance. However, the environmental noise, the limited number of

array antennas and the small-scale multipath propagation might drastically impact the

accuracy of the final position estimation. In the later part of this thesis, we will explore the
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problem of accurate AoA estimation in Chapter 4 and provide some insightful discussions

for our future work.

2.2.4 Channel Response based Measurement

Recall that RSS is merely an indicator of the MAC layer’ link quality, it suffers from

severe variation due to the constructive and destructive superposition of multipath sig-

nal components. On the contrary, the finer-grained PHY layer channel response based

measurements characterize the channel properties and embrace the channel diversity, thus

providing richer location-dependent information and achieving superior localization per-

formance over its RSS counterpart. In this section, we begin with the introduction of

MIMO-OFDM mechanism and then elaborate the technical background of the PHY layer

channel state information.

2.2.4.1 MIMO-OFDM Mechanism

In general, without properly compensating for the wireless signal propagation and the

asynchronization effects, the receiver has no way of detecting what has been transmitted

[19]. To this end, through a mechanism named channel sounding, the receiver obtains an

estimate of wireless channel. This is accomplished by sending a training sequence which

is known to both transmitter and receiver. For a wideband MIMO-OFDM system, the

estimate of the channel is a collection of complex matrices for each OFDM subcarrier. In

this part, we present the detailed mechanism of this MIMO-OFDM technology under the

framework of IEEE 802.11 n/ac standard [53, 54].

Figure 2.4 depicts the holistic structure of the end-to-end MIMO-OFDM wireless

transceiver. It consists of two major functionality blocks: signal transmitter block and

RF receiver block. In the transmitter block, the scrambler and Forward Error Correc-

tion (FEC) encoder first convert the input data into high-rate bit stream(s). The stream

parser is then applied on bit stream(s) to generate Nss spatial streams, whose number is

determined by the parameter of Modulation and Coding Scheme (MCS). After interleaving

and constellation mapping (e.g. Quadrature Amplitude Modulation (QAM)), Nss spatial
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Figure 2.4: MIMO-OFDM transceiver architecture.

streams are modulated as stream of symbols, which may be spread into Nsts space-time

streams in the sequel when Space-Time Block Coding (STBC) is used. Next, a mecha-

nism named Cyclic Shift Diversity (CSD) is applied to insert cyclic shifts into space-time

streams, thus creating extra frequency diversity to avoid unintentional beamforming. Spa-

tial mapping then proceeds to map fewer number of Nsts space-time streams into larger

number of Nt transmit chains through Spatial Mapping Matrix (SMM). Afterwards, the

frequency domain samples are converted into time domain ones by the Inverse Fast Fourier

Transform (IFFT). The RF signals are then simultaneously sent from all transmit anten-

nas after the insertion of guard interval (GI), windowing operation and Digital-to-Analog

Converting (DAC).

In reverse, upon receiving the signals, the receiver block first samples them and dig-

itizes them through analog-to-digital converters (ADCs). Subsequently, a forward FFT

procedure is conducted to convert the data samples back to the frequency domain. The

desired channel estimation then becomes achievable after the signal demodulation process.
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2.2.4.2 Channel State Information

In wireless communication systems, the signal receiver operates channel estimation by

virtue of channel sounding mechanism. Specifically, for the packet-based IEEE 802.11n

system, the transmitter sends training sequences, including High Throughput-Long Train-

ing Fields (HT-LTF) in the preamble. Once receiver detects the starting position of the

first HT-LTF, it commences to derive channel state information immediately. As afore-

mentioned in Chapter 1, CSI portrays the PHY layer channel properties in the frequency

domain and reveals the combined effects of signal multipath propagation which includes

the amplitude attenuation and phase shift. The Channel Frequency Response (CFR) is

represented by each CSI entry. It can be expressed by

H(f) = |H(f)|ej∠H(f) (2.3)

where H(f) is the complex value of CFR at the subcarrier with central frequency of f .

|H(f)| and ∠H(f) denote its amplitude and phase, respectively. Moreover, the frequency

domain CFR consists of amplitude-frequency response and phase-frequency response, char-

acterizing the frequency-selective fading caused by the constructive and destructive phases

in the multipath-rich environment [18]. It thus contains more channel information than

the power based RSS measurement.

Additionally, in order to fully characterize the indoor multipaths, the time domain

counterpart of CFR, also termed as Channel Impulse Response (CIR), is able to model

the wireless propagation channel as a temporal linear filter. Mathematically, it can be

denoted as

h(τ) =
L∑

i=1
αie

−jφiδ(τ − τi) (2.4)

where αi, φi and τi are the amplitude, phase and time delay spread of the ith path,

respectively. L is the total number of multipaths and δ(·) is the Dirac delta function.

Each impulse represents a delayed multipath component, multiplied by the corresponding

amplitude and phase. As depicted in Figure 2.5, by focusing on the amplitude response of

CIR, the first appearing path normally represents the LoS direct path, which is followed

by several resolvable time delayed NLoS paths.
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Figure 2.5: A simple diagram of the channel impulse response.

Figure 2.6: An example of CIR time samples with 20 MHz bandwidth
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Given infinite bandwidth, CIR is equivalent to CFR. And CFR is the Fourier transform

of CIR. Both CIR and CFR depict the small-scale multipath effect and are also widely used

for channel measurement. In practice, it is worth mentioning that, all of our experiments

are implemented on the basis of Linux CSI tool [25], whose off-the-shelf Intel 5300 network

interface card reports 30 out of 56 OFDM subcarriers for the 20 MHz bandwidth CFR.

After applying IFFT on the recorded CFR, we can acquire the time domain CIR with an

equivalent number of 30 channel filter taps. As further observed in Figure 2.6, we display

an example of 100 CIR time samples with 20 MHz bandwidth in the LoS dominant indoor

scenario. Similar with Figure 2.5, the front CIR time taps appear with stronger amplitudes

than their tail taps, revealing the distinct indoor multipath propagation of wireless signals.

2.3 Wi-Fi based Localization Algorithms

The previous section discussed some commonly adopted Wi-Fi signal patterns, which

settle the precondition for accurate Wi-Fi based indoor position determination. In this

section, we proceed to lay out the concepts of some popular Wi-Fi based localization

algorithms. Since the traditional Wi-Fi based positioning approaches can be classified

into two categories: geometric mapping and location fingerprinting. We then roll out this

section by presenting these two parts respectively.

2.3.1 Geometric Mapping

In geometric mapping, intermediate geometric parameters such as distance or direction

with regard to the reference points are first derived from certain physical measurements.

These relative parameters are then converted into locations by applying geometric algo-

rithms. There are generally two sorts of geometric mapping methods, namely trilateration

and triangulation. The former one corresponding to the distance-based mapping, in par-

ticular, is often termed as ranging, which involves power or time based physical measure-

ments. The latter one is related to direction-based mapping, whose angular measurement

is less popular than the ranging technique due to its cumbersome acquisition from perva-

sive devices. However, direction information is directly measurable at the receiver, while
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the derivation of distance involves the complex wireless propagation rules.

In this part, we will briefly introduce the typical trilateration and triangulation algo-

rithms as follows.

2.3.1.1 Trilateration

Trilateration is the process of determining absolute or relative locations of points by

measurement of distances, using the geometry of the environment. In addition to its

interest as a geometric problem, trilateration has practical applications in surveying and

navigation, including global positioning systems [55]. For the conciseness of presentation,

we model the trilateration process as finding the position of an unknown node based on

its distances to three anchors. As shown in Figure. 2.7, assume that the coordinate of an

unknown node D is (x, y). The coordinates of three anchor nodes A, B, C are (xa, ya),

(xb, yb) and (xc, yc), respectively. The distances between D and A, B, C are da, db and dc.

HAN et al.: SURVEY ON MOBILE ANCHOR NODE ASSISTED LOCALIZATION IN WSNs 2221

Fig. 1. Mobile anchor node assisted localization.

A fundamental research issue of MANAL algorithms is to
design movement trajectories that mobile anchor nodes should
move along in a given monitoring area (region) in order to
improve localization performances of WSNs.

Another research issue of MANAL algorithms is the local-
ization methods by which unknown nodes calculate their
positions based on the beacon packets received from location-
aware mobile anchor nodes, as they move through the monitor-
ing area (region). These algorithms employ either only mobile
anchor nodes (a single mobile anchor node or a group of mobile
anchor nodes) or mobile anchor nodes together with reference
nodes to help unknown nodes with localization.

Generally, MANAL algorithms involve three stages:
(i) mobile anchor nodes traverse the monitoring area
(region) while periodically broadcasting beacon packets
which include their current positions; (ii) unknown nodes
within the communication ranges of the anchors receive the
beacon packets and estimate distances to the anchors by using
the physical properties of communication signals when needed;
and (iii) unknown nodes calculate their positions if they fall
inside the overlapping communication ranges of at least three
(four) non-collinear (non-coplanar) anchor nodes by the use of
appropriate localization algorithms in 2D (3D) WSNs.

There is plenty of literature discussing the MANAL prob-
lem. However, there is no recent review discussing MANAL
algorithms in the past few years. This paper’s objective is to
fill this gap and provide a comprehensive review of the recent
breakthroughs in the field, focusing on the achievements made
in the past decade, and aims to become a starting point for
researchers who are initiating their endeavors in the MANAL
research field. In addition, we seek to present a comprehensive
review of the recent breakthroughs in the field, providing links
to the most interesting and successful advances in this research
field. We survey the current works on the above two issues,
namely, movement trajectories and localization methods.

Resulting from these considerations, the remainder of this
article is organized as follows. Section II introduces back-
grounds and basic localization methods for WSNs. Section III
presents related work about existing survey papers for localiza-
tion algorithms in WSNs. Section IV introduces the classifica-
tion of MANAL algorithms. Section V and VI review two cat-
egories of MANAL algorithms in detail. Section VII illustrates
existing problems and future research issues in the MANAL
research field. Finally, conclusion including a summary table is
given in Section VIII.

Fig. 2. An example of trilateration.

II. BACKGROUND KNOWLEDGE AND BASIC

LOCALIZATION METHODS

A. Basic Terminologies

Anchor (Beacon) Node: To localize a WSN in the global coor-
dinate system, some special sensor nodes should be aware of
their positions in advance either from GPS or by virtue of being
manually placed, which are called anchor nodes or beacon
nodes.
Unknown (Ordinary) Node: Sensor nodes that do not know
their positions and need to calculate them with the help of
anchor nodes.
Static Anchor (Beacon) Node: The anchor (beacon) node
which cannot move automatically after initial deployment.
Mobile Anchor (Beacon) Node: The anchor (beacon) node
which can move automatically after initial deployment.
Reference Node: The sensor node which already knows its
coordinates and works as anchor node to help other unknown
nodes with localization.
Anchor (Beacon) Packet: The data packet broadcasted by
mobile anchor nodes periodically.
Anchor (Beacon) Point: Virtual coordinates broadcasted by
mobile anchor nodes periodically, which is part of the anchor
packet.
Broadcast Interval: The time period a mobile anchor node
takes to broadcast beacon packets.
Node’s Speed: The mobility features that capture node move-
ment speed in mobility models.
Node’s Direction: The mobility features that capture node
movement direction in mobility models.
Pause Time: The time period that a node is steady in a specific
position, i.e., the interval of time when the node’s speed is zero
or close to zero.
Inter-contact Time: The time interval between two consecutive
contacts of the same two nodes.
Contact Duration: The time period two nodes attain while
within the same radio range.

B. Basic Methods of Calculating Sensor Nodes’ Location

1) Trilateration: Trilateration is the process of finding the
position of an unknown node based on its distances to three
anchors, as shown in Fig. 2. Assume that the coordinate of an
unknown node D is (x, y). The coordinates of three anchor
nodes A, B, C are (xa, ya), (xb, yb), and (xc, yc). The distances

Figure 2.7: An example of the trilateration algorithm [56].

These geometric constraints can be expressed by the following equations.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
(x − xa)2 + (y − ya)2 = da√
(x − xb)2 + (y − yb)2 = db√
(x − xc)2 + (y − yc)2 = dc

(2.5)
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By solving Equation 2.5, we can get the matrix AX = B [57], where

X =
[

x y
]T

A = 2
[

(xa − xc) (ya − yc)
(xb − xc) (yb − yc)

]

B =
[

x2
a − x2

c + y2
a − y2

c + d2
c − d2

a

x2
b − x2

c + y2
b − y2

c + d2
c − d2

b

] (2.6)

Thus, the trilateration approach can be accomplished by solving the above liner equa-

tion to estimate the coordinate of the unknown node D.

Even though the basic trilateration can be easily implemented and is able to acquire

accurate estimations under most conditions, in practice, due to the complex indoor en-

vironmental dynamics and the asynchrony of commercial wireless devices, it inevitably

suffers a lot from aforementioned power and time based distance miscalculations.

2.3.1.2 Triangulation

Triangulation, unlike trilateration, computes the position of an unknown node based on

the angular distance between three different pairs of anchor nodes. Consider the example

depicted in Figure 2.8, suppose that the coordinate of an unknown node D is (x, y). The

coordinates of three anchor nodes A, B, C are (xa, ya), (xb, yb) and (xc, yc), respectively.

If we know the angles between the line segments connecting D and the anchors, then the

unknown node’s coordinates must be calculated using triangulation instead of trilateration.

Let ∠ADB, ∠ADC, ∠BDC denote the angles between the line segments connecting

D to the anchors, respectively. D is the intersection point of the three circles. If the

angular distance between the anchor nodes is known, the centers of the circles can be

obtained. For anchor nodes A, C and the angle ∠ADC, if the arc AC is within the scope

of the △ABC, the circle can be uniquely identified. Assume that the center of the circle is

O1(xO1 , yO1), the radius is r1, thus, ∠AO1C = 2(π −∠ADC). O1 and r1 can be computed
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Fig. 3. An example of triangulation.

between D and A, B, C are da , db and dc, respectively. These
geometric constraints can be expressed by the following system
of equations [17],⎧⎪⎨

⎪⎩
√

(x − xa)2 + (y − ya)2 = da√
(x − xb)2 + (y − yb)2 = db√
(x − xc)2 + (y − yc)2 = dc

. (1)

By solving Eq. (1), we can get the matrix AX = B, where

X = [
x y

]T
,

A = 2

[
(xa − xc) (ya − yc)

(xb − xc) (yb − yc)

]
,

b =
[

x2
a − x2

c + y2
a − y2

c + d2
c − d2

a

x2
b − x2

c + y2
b − y2

c + d2
c − d2

b

]
,

2) Triangulation: Triangulation, unlike trilateration, com-
putes the position of an unknown node based on the angular dis-
tance between three different pairs of anchor nodes. Consider
the example depicted in Fig. 3, suppose that the coordinate of
an unknown node D is (x, y). The coordinates of three anchor
nodes A, B, C are (xa, ya), (xb, yb) and (xc, yc), respectively.
If we know the angles between the line segments connecting D
and the anchors, then the unknown node’s coordinates must be
calculated using triangulation instead of trilateration.

Let � ADB, � ADC , � B DC denote the angles between the
line segments connecting D to the anchors, respectively. D is
the intersection point of the three circles. If the angular dis-
tance between the anchor nodes is known, the centers of the
circles can be obtained. For anchor nodes A, C and the angle
� ADC , if the arc AC is within the scope of the �ABC , the
circle can be uniquely identified. Assume that the center of the
circle is O1(xO1 , yO1), the radius is r1, thus, α = � AO1C =
2(π − � ADC). O1 and r1 can be calculated using Eq. (2) [18],⎧⎨

⎩
√

(xO1 − xa)2 + (yO1 − ya)2 = r1√
(xO1 − xb)2 + (yO1 − yb)2 = r1

(xa − xc)
2 + (ya − yc)

2 = 2r2
1 − 2r2

1 cos α

. (2)

Similarly, anchor nodes A, B, the angle � ADB and anchor
nodes B, C , the angle � ADB can determine O2(xO2 , yO2), r2
and O3(xO3 , yO3), r3, respectively. Thus, knowing the coor-
dinates of O1(xO1 , yO1), O2(xO2 , yO2) and O3(xO3 , yO3), the
coordinate of D(x, y) can be calculated by using of Eq. (1).

Fig. 4. An example of the maximum likelihood estimation.

3) Maximum Likelihood Estimation: When the number of
anchor nodes n > 3, we use the maximum likelihood estima-
tion to calculate the coordinate of the unknown node D(x, y).
Assume that the coordinates of anchor nodes are respectively
(x1, y1) , (x2, y2) , (x3, y3) ,. . ., (xn, yn), and the distances
between D and the anchor nodes are d1, d2, d3,. . ., dn , respec-
tively, as shown in Fig. 4. Then the equations can be obtained
as follows [17], [18]:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x − x1)
2 + (y − y1)

2 = d2
1

(x − x2)
2 + (y − y2)

2 = d2
2

(x − x2)
2 + (y − y2)

2 = d2
2

...

(x − xn)2 + (y − yn)2 = d2
n

. (3)

By subtracting the last equation from the first n − 1 equa-
tions, we can obtain⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2(x1 − xn)x + 2(y1 − yn)y =
d2

n − d2
1 + x2

1 − x2
n + y2

1 − y2
n

...

2(xn−1 − xn)x + 2(yn−1 − yn)y =
d2

n − d2
n−1 + x2

n−1 − x2
n + y2

n−1 − y2
n

. (4)

With some proper transformations, the above equation can be
rewritten as AX = b, where

X = [
x y

]T
,

A = 2

⎡
⎢⎣

(x1 − xn) (y1 − yn)
...

...

(xn−1 − xn) (yn−1 − yn)

⎤
⎥⎦ ,

b =
⎡
⎢⎣

d2
n − d2

1 + x2
1 − x2

n + y2
1 − y2

n
...

d2
n − d2

n−1 + x2
n−1 − x2

n + y2
n−1 − y2

n

⎤
⎥⎦ .

Then, we can obtain X = (AT A)−1 AT b.
Actually, the maximum likelihood estimation is the extension

of the trilateration method.

III. RELATED WORK

Recently, a large number of localization techniques and algo-
rithms have been proposed for WSNs, and simultaneously
many studies have been done to survey and analyze existing
localization techniques and algorithms. For example, in [17],
Mao et al. first provide an overview of measurement techniques
that can be used for WSN localization, e.g., distance related

Figure 2.8: An example of the triangulation algorithm [56].

by the following equation as [58]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
(xO1 − xa)2 + (yO1 − ya)2 = r1√
(xO1 − xb)2 + (yO1 − yb)2 = r1

(xa − xc)2 + (ya − yc)2 = 2r2
1 − 2r2

1 cos∠AO1C

(2.7)

Similarly, anchor nodes A, B, the angle ∠ADB and anchor nodes B, C, the angle

∠BDC can determine O2(xO2 , yO2), r2 and O3(xO3 , yO3), r3, respectively. Thus, knowing

the coordinates of O1(xO1 , yO1), O2(xO2 , yO2) and O3(xO3 , yO3), the coordinate of D(x, y)

can be calculated by applying Equation (2.5).

To conclude, in triangulation, distances are computed from angle observations. This

inherently makes the triangulation scheme more expensive than trilateration in terms of

deployment and computational cost. Especially for the indoor scenario implementation,

the pressing demand of the accurate angular metric estimation renders the triangulation

approach even more challenging.
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2.3.2 Location Fingerprinting

In addition to geometric mapping, as a promising alternative to analyzing the sophis-

ticated signal propagation, location fingerprinting technique adopts a pattern-matching

approach. It roughly consists of two main phases: the offline fingerprint database generat-

ing (training) phase and the online location estimation (testing) phase. Figure 2.9 depicts

the basic system flow diagram for Wi-Fi based fingerprint localization.

Site	Survey

Fingerprint	
Database

Similarity	
Calculation

Off-line On-line

Location	
Estimation

（Location, Fingerprint） Measurement

Figure 2.9: The basic system flow diagram for Wi-Fi fingerprint localization.

• Offline Training Phase: To be specific, in the offline phase, the area of interest

is first divided into a reasonable number of spatial grids, where the reference points

are situated at the vertexes and their coordinates are known a priori. Then, a

mobile receiver moves around among these predefined reference points to conduct a

comprehensive site survey, whose main idea is to collect wireless signal signatures at

all reference points to finally construct a fingerprint database.

Particularly, Sometimes before the process of fingerprint generating, the recorded

measurements should be pre-processed in order to refine the measurement quality for

further improving the localization performance. Typical Wi-Fi based pre-processing

techniques consist of measurement noise reduction, signal transformation and signal
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extraction [9, 59]. For noise reduction, the phase offsets removal and outliers re-

moval are the most appealing approaches. In Chapter 4, we will provide an in-depth

overview on the CSI phase compensation issue. For signal transformation, tech-

niques like FFT [60], short time Fourier transform [61], discrete Hilbert transform

[62] and discrete wavelet transform [63] are widely employed in CSI pre-processing

related works. As for the signal extraction, it is for extracting target signals from

raw CSI measurements. Sometimes it needs thresholding [64], filtering [65] or signal

compression [66] (e.g. Principal Component Analysis (PCA)) to remove unrelated or

redundant signals. In some cases, it requires the composition [67] of multiple signal

sources and data interpolation to get more location-specific information.

• Online Testing Phase: Subsequently, in the online phase, localization is then

simply the process of matching the measured fingerprints at an unknown location

with those in the database by calculating the similarity and returning the location

corresponding to the best-fitted fingerprint by the location estimation algorithms.

Based on the statistical property, conventional indoor localization algorithms comprise

deterministic and probabilistic methods. Accordingly, we will present each kind of location-

aware methods in the coming part.

2.3.2.1 Deterministic Methods

Deterministic algorithms use a similarity metric to differentiate online signal measure-

ment and the offline fingerprint data. Target is then estimated at the closest fingerprint

RP location in signal space [68]. Assume that there are M RPs in the area of interest,

whose coordinates are denoted by {ℓm}1≤m≤M . The basic deterministic target position

determination of ℓ̂o can be expressed by the following equation.

ℓ̂o = arg min
ℓm

D[Hm, Go], m = 1, · · · , M (2.8)

where Hm represents the offline fingerprints at the mth RP location and Go denotes the

online signal measurements. D[Hm, Go] is the specific similarity metric between Hm and

Go. For instance, the Euclidean distance [69], cosine similarity [70], cross correlation [30],
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Time Reversal Resonating Strength (TRRS) [71] and fuzzy logic similarity [72] have been

prevalently implemented for the signal comparison [73].

The major advantage of the deterministic methods is their ease of implementation. Tra-

ditional deterministic methods can be easily implemented based on k-Nearest Neighbors

(kNN) and the computational complexity is often low. Some other more advanced deter-

ministic algorithms such as Support Vector Machine (SVM) [74, 66] and Linear Discrim-

inant Analysis (LDA) [75] show better localization accuracy with higher computational

cost.

2.3.2.2 Probabilistic Methods

Unlike deterministic approaches, probabilistic algorithms are based on statistical in-

ference between the target signal measurement and stored fingerprint database. Using a

training set, these algorithms can be applied to find the target’s location with the maximum

likelihood, which is inferred by a probabilistic model reflecting the signal distributions. It

can represented by

ℓ̂o = arg max
ℓm

P (ℓm|Go), m = 1, · · · , M (2.9)

where P (ℓm|Go) indicates the probability of the target at location ℓm given the online

measurements Go.

Other probabilistic algorithms such as Bayesian network [76, 77], expectation maxi-

mization [78], Kullback-Leibler Divergence (KLD) [79, 33], Gaussian process [80] and con-

ditional random field [81] can also achieve high localization accuracy through probabilistic

inference.

Moreover, for probabilistic algorithms, since each location estimation can be indicated

by a confidence interval [82], it is also amendable to fuse different sensors such as motion

[83] and sound [77]. For example, the location can be estimated by maximizing the joint

probability or likelihood with the sensor measurements. However, these algorithms usually

require some probabilistic assumptions (such as Gaussian noise or probabilistic indepen-

dence [33]). Furthermore, training probabilistic models may be complicated, and require

more datasets than traditional deterministic algorithms.
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For our Wi-Fi based indoor positioning problem, since probabilistic algorithm embraces

the wireless channel variation by inferring a probabilistic model reflected by the signal

distribution, it can fully depict the location-specific information, thus capable of achieving

better localization performance than its deterministic counterpart. Therefore, we only

consider probabilistic based location fingerprinting schemes in this thesis.
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3.1 Introduction

Location fingerprinting technique has drawn tremendous attractions in recent years due

to its huge potential values for industrial and commercial applications. The design of an

effective and successful indoor location fingerprinting system, which properly addresses

the balancing between positioning accuracy and complexity, still remains challenging.

In this chapter, we propose EntLoc, a CSI based indoor location fingerprinting system

using the structurally simple and spatially informative AR entropy fingerprint. We first

revisit some related works and form a set of comparative candidates. The detailed design

for each part of EntLoc will be displayed in the sequel. Moreover, we implement extensive

and dedicated indoor experiments to evaluate the performance of the proposed system.

Throughout this chapter, some interesting experimental observations will also be identified

and discussed.

3.1.1 Literature Review

Prevalent Wi-Fi fingerprint localization approaches mainly exploit two types of wireless

signal properties: the received signal strength and the channel response. We present related

works in accordance with these two categories.

Fingerprinting via RSS : Due to the easy acquisition of wireless signal power measure-

ments, RSS-based fingerprinting plans have been widely adopted in various mainstream

indoor positioning systems. Pioneering works such as RADAR [84] carried out compre-

hensive site surveys for the first time and generated the RSS based fingerprint radio map.

Subsequently, the deterministic kNN algorithm was utilized to determine the target’s lo-

cation with an average precision of 3 meters. Contrastively, in Horus system [28], Youssef

et al. resorted to the Bayes based probabilistic method and a joint clustering algorithm

to achieve an accuracy improvement of 2.1 m, which outperformed RADAR even with

less computational complexity. However, the instability of RSS still remains challenging.

More recently, researchers of LiFS [85] brought up a novel fingerprint space by utilizing the

spatial relations of RSS measurements, yielding low human cost for site survey and com-
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petitive accuracy over RADAR. Khatab et al. [86] used auto-encoder based deep extreme

learning machine to extract high level data features from RSS fingerprint, which further

improved the localization performance. Moreover, Wu et al. designed DorFin [87], a RSS-

based location fingerprinting system which successfully tackled error mitigation problem

by quantifying APs’ distinction, alleviating RSS outliers and amending transitional RSS

recordings. It reduced the mean and 95th percentile errors to respective 2.5m and 6.2m,

outperforming both RADAR and Horus by nearly 50% accuracy improvement.

Fingerprinting via Channel Response: In recent years, channel response based finger-

printing approaches have attracted massive attention due to their capability of harnessing

the rich multipath information indoors. The authors of FIFS [29] explored the spatial and

frequency diversity of CSI for Wi-Fi fingerprinting localization. Additionally, FIFS took

the power summation for all independent subcarriers as location fingerprint and adopted

Maximum A Posteriori (MAP) approach to yield an improved performance compared with

RSS based Horus system. Meanwhile, for PinLoc [30], the whole location-aware platform

was established on a set of 1m × 1m spots. The underlying observation of PinLoc was

that the CSIs on a single subcarrier were illustrated to be clustered distributed on the

complex plane. The Gaussian mixture distribution was then introduced to properly model

the channel measurements for the purpose of accurate localization. Experimental result

validated PinLoc’s impressive performance with an 89% mean accuracy for 100 spots.

Furthermore, when it comes to the time domain CIR, authors in [88] proposed to exploit

the amplitude of CIR (ACIR) vector to accomplish location estimation through nonpara-

metric kernel regression scheme. Simulation results showed a distinguished performance

superiority over the traditional RSS based fingerprinting methods.

3.1.2 Contributions

In summary, our main contributions of this chapter are set out below:

• As far as we are aware of, this is the first work to statistically study AR modeling

based entropy signature in CSI fingerprint localization system. This simple finger-

print structure helps decrease the pattern-matching complexity and its informative
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statistical embodiment also facilitates the location estimation accuracy.

• We propose a power based pre-processing filtering scheme to mitigate the irrelevant

noisy component in CSI measurements, thus further improving the location finger-

printing performance.

• We implement extensive positioning experiments on the lightweight HummingBoard

Pro device, which remarkably enhances the experimental efficiency.

3.1.3 Chapter Organization

The rest of this chapter is organized as follows. In Section 3.2, we elaborate the

overall architecture design of our proposed EntLoc localization system along with detailed

methodology. We present the realistic experimental setup and provide the experimental

results in Section 3.3. Conclusions are drawn in Section 3.4.

3.2 Localization Methodology

In this section, we focus on the overall introduction of our proposed EntLoc positioning

system, whose theoretical methodology will be revealed in a divide-and-conquer manner.

3.2.1 EntLoc System Architecture

The overall architecture of the proposed system is illustrated in Figure 3.1. In gen-

eral, it consists of two major functionality components: the offline fingerprint radio map

construction and the online target’s position estimation. For CSI fingerprint database

construction, once getting the received raw CFR packets through signal war-driving, we

first employ a tap filtering based pre-processing scheme to extract the most informative

and location-dependent components in the multipath-rich indoor scenario. Subsequently,

we model the statistical features of filtered CFR amplitude by calculating an AR modeling

based entropy metric and then build a representative fingerprint radio map after removing

the ambiguous endpoint subcarriers. Afterwards, for online location estimation process,

when a mobile target arrives into the area of interest, it executes the same procedures
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to acquire the entropy vector and matches against the learned offline attributes. Finally,

the simple Manhattan distance based kernel regression approach can be fully leveraged to

accomplish the physical position estimation of the mobile target.

War-Driving Offline 
Training Data

Online 
Testing Data

Pre-processingRaw Database Statistical Fingerprint

Dimension 
Reduction

Offline 
Radio Map

Online 
Fingerprint Mapping

Estimated 
Location

CFR Matrix AR Entropy VectorCIR Tap Filtering

Ⅳ:

Ⅰ: Ⅱ: Ⅲ:

Figure 3.1: The EntLoc system architecture.

In what follows, we will dissect each component of the proposed system in a divide-

and-conquer manner.

3.2.2 Offline Radio Map Construction

First of all, we start to elaborate our location fingerprinting methodology with the

presentation of the problem formulation. In the offline phase, M reference points are

predefined and properly marked in the area of interest. The coordinate of each RP location

can be denoted as ℓm = (xm, ym), where xm and ym are the respective X- and Y-coordinate

of the mth RP, m ∈ [1, M ]. Considering that we have S Access Points (APs) as signal

transmitters, each of which has Nt TX antennas. One mobile user equipped with Nr RX

antennas is regarded as the RF receiver. Thus each TX-RX antenna pair is capable of

generating up to Nt ·Nr radio links. As for the channel state information, each CSI packet

shares the same number of K OFDM subcarriers. So the dimensionality of one CSI packet
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measured at one RP location from a single AP can be expressed by R = Nt · Nr · K.

Moreover, at each RP position, we propose to concatenate CSI packets from S available

APs to form the raw CSI signature, whose total dimensionality then extends to be S · R.

Mathematically, this offline radio signature measured at the mth RP location from all S

APs is given by the set Hm = {H1
m, . . . , Hs

m, . . . , HS
m}, s ∈ [1, S]. Specifically, Hs

m ∈ CN×R

contains N consecutive 1 × R dimensional CSI samples which are adequately acquired at

the RP location ℓm from the sth AP. This CSI matrix can be presented by the following

equation.

Hs
m =

⎡⎢⎢⎢⎢⎢⎢⎣

Hs
m(1, 1) · · · Hs

m(1, r) · · · Hs
m(1, R)

...
. . .

...
. . .

...
Hs

m(n, 1) · · · Hs
m(n, r) · · · Hs

m(n, R)
...

. . .
...

. . .
...

Hs
m(N, 1) · · · Hs

m(N, r) · · · Hs
m(N, R)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.1)

where n ∈ [1, N ] and r ∈ [1, R].

During the online stage, the mobile user at an unknown position ℓo = (xo, yo) records

the same structural CSI matrix from the sth AP. We denote this matrix as Gs
o, which

also shares the same dimension with Hs
m. Likewise, the online measured CSI signature at

the location ℓo can be expressed by the set Go = {G1
o, . . . , Gs

o, . . . , GS
o }. Accordingly, the

mobile user’s location can be then estimated as ℓ̂o = (x̂o, ŷo) by exploiting these online

CSIs and the stored offline database.

3.2.2.1 Tap Filtering Preprocessing Technique

Recall that channel state information completely characterizes the multipath channel

and preserves the fine location dependency, which makes it a good choice for location

fingerprint. However, it would be fair to state that for the existing Wi-Fi networks, band-

width limitation introduces severe location ambiguity which leads to limited localization

accuracy [89]. By using the commodity Wi-Fi with center frequency of 2.4 GHz, the

bandwidth of the system is therefore 20 MHz in this case. Since CFR can be converted

into CIR via inverse fast Fourier transform, an estimation of CIR with time resolution of

1/20MHz =50 ns is exposed. Since typical indoor maximum excess delay τmax is smaller

than 500 ns [90], given a time resolution of 50 ns, approximately only the first 10 out of
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the 30 accessible CIR time taps are relevant to multipath propagation. In other words,

the remaining 20 taps are irrelevant for localization purpose. Moreover, when the Signal-

to-Noise Ratio (SNR) is not high enough, the receiver’s Additive White Gaussian Noise

(AWGN) at these time taps will only make the accuracy worse.

Hence, based on the system bandwidth, a reasonable number of relevant time samples

should be chosen for the sake of computation efficiency and accuracy. In this research,

we design a power-based tap filtering method to preserve the most informative channel

features for fingerprinting. Specifically, for the conciseness of expression, we define the

individual raw CFR signature as H ∈ C1×K . Through IFFT, we first convert H into the

same dimensional CIR vector h. For each 1 × K CIR packet, we calculate the average

channel power for each time tap, denoted by U = (u1, . . . , uk, . . . , uK), k ∈ [1, K], where

uk = |hk|2 and hk denotes the kth complex tap value of one CIR packet. Then, we define

a cumulative contribution rate of the first k taps as

Ck =
k∑

i=1
ui

/ K∑
i=1

ui. (3.2)

If the cumulative contribution rate of the first T taps, i.e., CT , is greater than the pre-

defined threshold C, we then apply a simple rectangular window with length T to truncate

the rest (K − T ) taps. Next, FFT is further utilized on filtered CIR to yield the smoothed

version of CFR. As displayed in Figure 3.2 and Figure 3.3, we define the threshold of the

cumulative contribution rate as 99%, the first 10 taps are thereby selected to preserve the

most relevant multipath information for localization. Moreover, the differences between

the raw CFR measurements and their smoothed versions after filtering processing can be

also observed in Figure 3.4 and Figure 3.5.
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Figure 3.4: The raw CFR.
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3.2.2.2 AR Entropy Estimation

As aforementioned in Chapter 2, probabilistic positioning algorithms analytically out-

perform their deterministic counterparts. Additionally, numerous literature [28, 29, 91]

further reveal such superior localization performance of the probabilistic algorithms over

their deterministic rivals in the complex indoor environment. Generic probabilistic meth-

ods include the Bayesian network [77], KLD [79, 33], Gaussian process [92], etc.. The essen-

tial cause resides in the fact that PDF contains the complete statistical characterizations

of the complex random variables, which are capable of providing better location-specific

RF signatures.

The simplest probabilistic model for CFR is based on the assumption that there are

a large number of statistically independent reflected and scattered paths with random

amplitudes corresponding to a single subcarrier. By the central limit theorem, it can be

reasonably modeled as circularly-symmetric Gaussian (complex Gaussian) random vari-

ables [49]. Thus, the amplitudes of the complex Gaussian process are essentially Rayleigh

distributed. If the channel has a fixed LoS component, the received signal then equals the

superposition of a complex Gaussian component and this LoS component. In this case, the

CFR amplitude follows the Rician distribution. However, due to the sophisticated indoor

environment and the imperfection of wireless devices, most measured CFR values are non-

Gaussian distributed or even do not fit any known distribution [30, 27, 93]. Meanwhile,

for multivariate fingerprint structure (e.g., multi-subcarrier CFR in our case), existing sta-

tistical tools only work under the condition of identifiably distributed measurements [33].

Besides, most probabilistic approaches require sufficient number of measurements stored

in the fingerprint database, which guarantees an accurate PDF estimation but suffers huge

system burden.

Therefore, in this thesis, we resort to the well-known Shannon entropy [94] as the

fingerprint alternative in our localization system. Given the offline and online CFR am-

plitude PDF estimates p̂Hs
m

(β; r) and p̂Gs
o
(β; r), both of which are from the rth subcarrier

and the sth AP. For the simplicity of presentation, here we define β as a general expression

of CFR amplitude from the same subcarrier. Thus, the offline entropy definition can be
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expressed by

ϕ̂r
Hs

m
= −

∫ ∞

−∞
p̂Hs

m
(β; r) log p̂Hs

m
(β; r)dβ (3.3)

Similarly, the online CFR entropy ϕ̂r
Gs

o
can also be calculated as the fingerprint for the

subsequent stage of target’s location determination.

In practice, it is a challenging task to implement direct evaluation of the Shannon

entropy from real data [95, 36]. The reason behind this dilemma is twofold:

(i) Entropy has to be approximated from the mere sample data due to the fact that

probability density function is generally unknown.

(ii) Equation (3.3) requires numerical integration since a closed-form solution of the

entropy does not exist.

Typical data-adaptive PDF estimation methods comprise histogram estimator [96], order

statistics [97] or kernel method (a.k.a. Parzen method) [98]. However, all of them share

the major drawback of slow convergence rate.

In this thesis, we address the entropy estimation problem by leveraging the more

accurate and consistent Autoregressive (AR) modeling approach [99]. The basic principle

of this approach is to estimate the unknown PDF in the form of Power Spectral Density

(PSD) of an unit variance AR process. This unit variance condition ensures that PSD

shares the basic requirements of PDF (i.e., positive function that integrates to one).

Given the general expression of amplitude β, we define the input CFR amplitudes

from one certain subcarrier as βI = [β(1), · · · , β(n), · · · , β(N)]⊤, where N is the number

of CFR packets and (·)⊤ is the transpose operator. Since the law is modeled as the

spectrum restriction on the interval of [−0.5, +0.5], the amplitude data have to be first

rescaled on this interval. Meanwhile, an order p AR process W (n) is defined as the output

of an all-poles filter driven by a white noise ϵ(n) with variance δ2
ϵ . It can be mathematically

denoted as [99]

W (n) =
p∑

i=1
aiW (n − i) + ϵ(n). (3.4)
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where a = {ai}1≤i≤p are the AR model parameters.

Since the CFR amplitude PDF p(β) can be equivalently depicted by the PSD SW (β)

of this AR process which is parameterized by a set of AR parameters, the entire relations

can be then presented as [38]

p(β) = SW (β) = σ2
ϵ

|1 +
∑p

i=1 aie−j2πiβ|2
, β ∈ [−0.5, 0.5] (3.5)

where σ2
ϵ is the model prediction error which is chosen so that

∫ 0.5
−0.5 SW (β)dβ = 1. It is

notable that AR model order needs to be chosen appropriately at first since a low order

leads to inadequate resolution (estimator bias) while a high order incurs spurious peaks

(excessive variance). Through extensive experiments, a well-run model order selection

technique known as the Exponentially Embedded Family (EEF) [100] is adopted to select

a proper p which maximizes the following criterion.

F(p) =
{

ξp − p(log( ξp

p ) + 1), if ξp ≥ p

0, otherwise
(3.6)

Here ξp is the Generalized Likelihood Ratio Test (GLRT) statistic which can be asymp-

totically computed as

ξp = (N − p) log

⎛⎜⎝ λ⊤
p λp

λ⊤
p (I − Λp

(
Λ⊤

p Λp

)−1
Λ⊤

p )λp

⎞⎟⎠ (3.7)

where λp = [β(p + 1), β(p + 2), · · · , β(N)]⊤ and Λp = [λp−1, λp−2, · · · , λ0]. The detailed

procedures are explicitly described in Algorithm 1.

Thereby, the succeeding task of estimating the AR parameters consists of two major

steps [38]:

(i) We first estimate the autocorrelation function of the CFR amplitude data sequence

βI by applying the sample moment estimator, which is the statistical average corre-

lation estimate:

RW (i) = 1
N

N∑
n=1

ej2πiβ(n), i ∈ [0, p] (3.8)
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Algorithm 1 Model Order Selection using EEF
Input:

N -dimensional CFR amplitude sample vector βI of one certain subcarrier;
Predefined maximum AR model order pmax

Output:
Selected AR model order p

1: Rescale the input vector βI into [−0.5, +0.5];
2: for each i ∈ [1, pmax] do
3: Calculate the GLRT statistic ξi by (3.7);
4: if ξi ≥ i then
5: Obtain F(i) = ξi − i(log( ξi

i ) + 1) by using EEF criterion in (3.6);
6: else
7: Make F(i) be zero;
8: end if
9: end for

10: Execute p = arg max
i∈[1,pmax]

F(i);

11: Return p;

(ii) AR coefficient estimation is then achieved by solving the Yule-Walker equations using

the Levinson-Durbin recursion [101, 102]:

RW a = −rW (0) (3.9)

where RW = [rW (1), rW (2), · · · , rW (p)] and rW (i) = [RW (1−i), RW (2−i), · · · , RW (p−

i)]⊤. Once the AR parameters have been estimated, say â = [â1, â2, · · · , âp]⊤, the

AR model prediction error can be then computed by

σ̂2
ϵ = RW (0) +

p∑
i=1

âiRW (−i) (3.10)

When AR PSD is determined, according to (3.5), the entropy estimation can be then

converted to the following form:

ϕ̂β = −
∫ 0.5

−0.5
p̂(β) log p̂(β)dβ

= −
∫ 0.5

−0.5
ŜW (β) log ŜW (β)dβ

(3.11)

Additionally, a more feasible closed-form expression without any numerical integration

can be obtained by applying Plancherel-Parseval formula to the right hand side of Equation
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(3.11) [36] and yielding

ϕ̂β = −
∞∑

i=−∞
RW (i)Z∗

W (i) (3.12)

where (·)∗ is the conjugate operator and ZW (i) denotes the ith component of the AR

process’s cepstrum, which can be calculated by proceeding the inverse Fourier transform

of log ŜW (β). The whole entropy estimation process can be presented in Algorithm 2.

Algorithm 2 AR Modeling based Entropy Estimation
Input:

N -dimensional CFR amplitude sample vector βI of one certain subcarrier;
Selected AR model order p from Algorithm 1

Output:
Estimated CFR amplitude entropy ϕ̂β

1: Rescale the input vector βI into [−0.5, +0.5];
2: Compute the autocorrelation function {RW (i)}0≤i≤p of the rescaled data via (3.8);
3: Calculate AR model parameters â and prediction error σ̂2

ϵ by solving Yule-Walker
equations in (3.9) and (3.10);

4: Estimate AR model PSD ŜW (β) by applying (3.5);
5: Calculate AR entropy ϕ̂β using (3.12);
6: Return ϕ̂β;

In addition, Figure 3.6 and Figure 3.7 illustrates the AR modeling based PDF esti-

mates of CFR amplitude samples at two sample locations. Both of the estimated PDFs

(Gaussian-like and non-Gaussian distributions) show good fit to the histograms which fur-

ther justifies the AR-modeling scheme in practical work. Moreover, some shining points of

AR modeling based entropy as location fingerprint will also be experimentally discussed

in the performance evaluation section of this chapter.
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Figure 3.6: AR modeling based PDF estimation at location #1.
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Figure 3.7: AR modeling based PDF estimation at location #2.
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Endpoint Subcarrier Removal In this part, we continue to exploit the AR modeling

based entropy and shed light on some interesting observations in the sequel.

For location fingerprinting, the spatial resolvability is a key performance indicator for

the proposed location fingerprint. In order to validate such property of our AR entropy-

based fingerprint, a simple test was taken in our lab corridor. Concretely, we linearly

selected 15 sample locations with 1m spacing. A RF transmitter was placed at one end of

the corridor, sending wireless packets continuously. In the meantime, we moved a mobile

receiver in sequence at these sample locations. Around 500 CFR measurements were

collected at each location. After calculating the AR entropies of all subcarriers at each

position, we applied confusion matrix to portray the entropy differences among these 15

locations for each CFR subcarrier. In Figure 3.8, for the visual clarity, we only exhibit

subcarrier index 1, 10, 20, 30 and experimentally observe that the endpoint subcarriers

#1 and #30 show a clear ambiguity in terms of location differentiation.
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Figure 3.8: Ambiguity test for 4 subcarriers, namely #1, #10, #20 and #30.
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Given that this is only a visual indication, we then utilize the statistical Cumulative

Distribution Function (CDF) to carefully study the behavior of these entropy differences.

As depicted in Figure 3.9, most subcarriers display an obvious entropy differences for

different locations while the endpoint subcarrier #1 and #30 still show the opposite,

inducing potential location differentiation errors in the next online pattern-matching stage.
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Figure 3.9: Ambiguity test for all 30 available subcarriers.

Therefore, we propose in this work to remove the two null endpoint subcarriers from

the estimated AR entropies, which also serves as a dimension reduction strategy to further

improve the execution efficiency of our AR entropy approach. Recall that we combine the

CFR measurements of the total R subcarriers from all Nr receiving antennas, the estimated

AR entropy fingerprint in the offline stage can be hereby represented as

Φ̂Hs
m

= [ϕ̂1
Hs

m
, . . . , ϕ̂r′

Hs
m

, . . . , ϕ̂R′
Hs

m
], r′ ∈ [1, R′] (3.13)

where R′ = R − 2 · Nr is the reduced number of subcarriers in this case. Likewise, the

online estimated AR entropy is denoted by Φ̂Gs
o

= [ϕ̂1
Gs

o
, . . . , ϕ̂r′

Gs
o
, . . . , ϕ̂R′

Gs
o
], r′ ∈ [1, R′].
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3.2.3 Online Location Estimation

As the final task of EntLoc, the online location estimation consists of two functional

part: the distance based proximity comparison and the kernel regression based location

inference. We lay out the details of both parts in the following.

3.2.3.1 Distance-based Proximity Comparison

For the online location determination, the mobile target is required to be accurately

mapped to the pre-designed radio map. To quantitatively measure the similarity between

the stored entropy fingerprints and the estimated online CFR entropies, we employ Man-

hattan distance [103] which is also known as taxicab metric, capable of measuring the gap

between two points through the summation of the absolute differences of their correspond-

ing components.

Given the offline and online entropy fingerprints Φ̂Hs
m

and Φ̂Gs
o
, we define the Man-

hattan distance between them as

Ds
m = ∥Φ̂Hs

m
− Φ̂Gs

o
∥1 =

R′∑
i=1

⏐⏐⏐ϕ̂i
Hs

m
− ϕ̂i

Gs
o

⏐⏐⏐ (3.14)

where ∥ · ∥1 denotes the ℓ1 norm. It concisely reveals the physical similarity between

the online fingerprints at an unknown position and the offline dataset at the mth RP

location, both of which are measured from the sth AP. Moreover, by using the chain rule

for Shannon entropy [94], it can be proved that the Manhattan distance of a joint entropy

of independent variables is equal to the sum of the distance for each variable’s entropy.

Under S independent AP assumption, we therefore have the Manhattan distance for all

available APs as follows.

Dm =
S∑

s=1
Ds

m (3.15)
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3.2.3.2 Kernel Regression

In order to properly obtain the location estimation of the target, the weighted kernel

regression is further adopted by employing the distance based kernel function K and the

whole set of known reference points [33]. The estimated location can be derived from the

following equation.

ℓ̂o =
∑M

m=1 Kmℓm∑M
m=1 Km

(3.16)

Here Km is defined as the probability kernel of the mth RP position by exponentiating its

corresponding Manhattan distance, which is presented as follows:

Km = exp(−ρDm) (3.17)

where ρ is the kernel coefficient which is determined to optimally minimize the fingerprint-

ing error by leave-one-out cross-validation in the offline phase [79].

0

1

Dm

Km

Figure 3.10: A simple example of the kernel function with ρ = 2.

Figure 3.10 displays a simple kernel function which changes with distance. It is notable

that the kernel Km is equal to one if the distributions of the given two fingerprints are

identical (i.e., Dm = 0) and decays to zero as the dissimilarity of the two fingerprints

increases. In other words, this probability kernel provides a flexible way to naturally
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handle the CFR data and hence takes full advantage of our probabilistic AR entropy

model, thus leading to an improved localization performance.

The performance of aforementioned fingerprinting approaches will be evaluated in the

follow-up section.

3.3 Performance Evaluation

In this section, we present the experimental evaluation of our proposed localization system.

First of all, we start by introducing the experimental setup and the detailed implementa-

tion methodology. Then, the results of localization performance will be discussed in the

sequel.

3.3.1 Experimental Setup

3.3.1.1 Experimental Presentation

(a) Environment: The entire experiments are conducted in the CEDRIC laboratory

of CNAM (a typical office environment in a multistorey building as shown in Figure

3.11). This lab office is a large room with an area of over 200m2. The indoor space is

partitioned into several office and meeting rooms with many desks, chairs, computers,

shelves furnished inside, which forms a complex radio propagation environment. The

whole CSI database was collected during the working time in February, 2019.

(b) Configuration: We conduct our real experiments on commodity-ready off-the-shelf

Wi-Fi devices [25]. Specifically, by working in the 5GHz band of IEEE 802.11n

monitor mode, we use an HP Elitebook 8530w laptop as the signal transmitter (TX)

and an HummingBoard Pro (HMB) as the mobile receiver (RX), which are exhibited

in Figure 3.12 and Figure 3.13. Both devices are equipped with Intel Wi-Fi Link

(IWL) 5300 NIC and run 64-bit Ubuntu 14.04 OS and Debian 8.0 OS, respectively.

Additionally, for our antenna settings, each Wi-Fi device is equipped with three

omni-directional antennas to support 3 × 3 MIMO configuration.
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Figure 3.11: CNAM laboratory scenario.

(c) Implementation: As mentioned above, we implement the CSI data collection in

our lab scenario. Figure 3.14 shows the floor plan of this 15m×15m laboratory with

a main corridor alongside several office and meeting rooms. The HP laptop serving

as signal transmitter is fixed on the table of the central office room. Under injection

mode, it is designed to intermittently transmit at the rate of 100 packets per second

using only one transmitting antenna. It is worth mentioning that one transmitter

setting is highly sufficient and well-performed in this lab scenario. If necessary, we

may resort to multiple transmitters for the future larger testbed. The blue dots

shown in Figure 3.14 denote the 70 training reference points with one meter spacing

and the 30 testing locations are marked as red stars. In the offline training phase, the

CSI measurements are collected by the lightweight HMB at these reference points to

build up the raw radio map. At each point, around 5000 CSI packets are stored as



50 Chapter 3. AR Entropy based Location Fingerprinting using CSI Amplitude

Figure 3.12: The laptop with Intel 5300 NIC as signal transmitter.

Intel 5300 NIC

Figure 3.13: The HummingBoard Pro as mobile receiver.

RF signatures in the firmware. In the online phase, we then move the HMB receiver

among 30 testing locations to obtain the same size of CSI packets. In addition, all

receiver ends are placed at the same height, constructing a simple 2-D platform for

the precise indoor position estimation.
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Figure 3.14: The floor plan of our laboratory.

3.3.1.2 Benchmarks and Performance Metrics

In this part, we evaluate three existing probabilistic fingerprint positioning systems for

the comparison purpose. As discussed in the literature review section, these include Horus

[28], FIFS [29] and PinLoc [30]. Considering that the original PinLoc system conducted

war-driving procedure in a set of predefined 1m × 1m grids, known as spots, in order to

provide a fair comparison, we modify PinLoc to use the same training set that we use in

the proposed EntLoc system.

As for performance metrics, we define the localization error as Euclidean distance

between the estimated location and the mobile user’s actual position, which is presented

as ∥ℓ̂o −ℓo∥ =
√

(x̂o − xo)2 + (ŷo − yo)2. When there are Na testing locations, we evaluate

the localization performance by using Mean Error (ME) metric which can be calculated
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as

ME = 1
Na

Na∑
i=1

√
(x̂i − xi)2 + (ŷi − yi)2 (3.18)

where (xi, yi) and (x̂i, ŷi) are the actual and estimated coordinates at the ith testing

location, respectively.

3.3.2 Numerical Results

In this section, we evaluate the experimental performance and provide numerical results

with relevant discussions.

3.3.2.1 AR Entropy Property Study

Since AR modeling based CFR amplitude entropy is the cornerstone of our fingerprint

localization system, prior to accuracy analysis, we first evaluate the following two key

characteristics of our proposed AR entropy fingerprint in location fingerprinting.

Temporal Stability Practically, the channel response fluctuate frequently as the in-

door environment varies over time. To investigate the robustness of our AR entropy based

fingerprinting system, we design and implement a daytime measurement test in our lab.

Specifically, the HummingBoard Pro was configured to periodically record CFR measure-

ments at a fixed position from a transmitter placed in the next-door room from 9 a.m.

to 5 p.m. during a busy working day. About 500 CFR packets were collected every 10

minutes. Indoor furniture remained static with several personnel in the vicinity moving

around. Next, we divide the whole measurements into 100 groups and compute the AR

entropy, averaged CFR amplitude and the corresponding RSS mean value, respectively.

For the purpose of fair comparison, we normalize the three metrics in the same range. As

shown in Figure 3.15, our AR entropy based fingerprint displays the lowest variance while

the coarse-grained MAC layer RSS suffers the most severe fluctuations. It is reasonable

that the environment changes do impact the time-varying channel response but cause less

influence over its statistical entropy derivate.
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Figure 3.15: Temporal stability for three fingerprint signatures during the entire working
times of one day (8 hours).

Spatial Proximity For indoor fingerprinting localization system, a good online signa-

ture is deemed to be qualified when it is capable of presenting similar trait with the offline

signatures from the neighboring reference points. Based on the realistic testbed shown in

Figure 3.14, we experimentally chose two testing locations which are under LoS and NLoS

condition, respectively. At each location, the multi-dimensional estimated AR entropy

from all three RX antennas is compared with the entropy vectors of the corresponding

four neighboring RP positions. Results illustrated in Figure 3.16 demonstrate that for

LoS test location #1, our AR modeling based entropy shows good spatial proximity with

the fingerprints in the vicinity. For most subcarrier indices, the entropy value fits well

in the center of its four neighbors. Especially for NLoS test location #2 in Figure 3.17,

even though the neighboring entropies are relatively inconsistent (differ from different RX

antennas), the overall multi-dimensional entropies at the center location can still capture

the local minimal differences (Manhattan distance in our case) from its neighbors. This

robust spatial property enables our AR modeling based entropy to be a strong candidate

as fingerprint for most existing indoor positioning systems.

3.3.2.2 Localization Accuracy

This section provides a variety of numerical results in respect of localization accuracy,

which firmly validates the superiority of our proposed localization system over other indoor

geolocation schemes.
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Figure 3.16: Proximity test under LoS condition.
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Figure 3.17: Proximity test under NLoS condition.

Comparison with CFR We begin the localization accuracy evaluation by compar-

ing our proposed AR entropy fingerprint with its original CFR amplitude. It is worth

mentioning that these two fingerprint schemes follow the same online protocol (i.e., using

Manhattan distance as similarity metric and kernel regression to figure out user location).

Figure 3.18 shows the CDF of localization errors for AR based entropy fingerprint and

its original CFR amplitude. Specifically, our AR entropy approach shows a better perfor-

mance with 90% positioning errors less than 2.69m while CFR amplitude signature can

only reach the level of 50th percentile. The 1.84m ME of our proposed entropy scheme

also precedes CFR amplitude based method whose mean sum error rises to 2.92m. Since

AR modeling based entropy accurately reflects the statistical distribution of the given

CFR amplitudes, which unfortunately endure much more channel fluctuations, it can thus

achieve better localization performance.
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Figure 3.18: Localization accuracy of AR entropy against its original CFR amplitude.

Comparison with CIR Given that CIR is the inverse Fourier version of CFR, both of

them should convey equivalent physical information. One may anticipate similar localiza-

tion performance for these two channel response signatures. However, as shown in Figure

3.19, our AR entropy based scheme maintains less than 2.69 meters localization error with

the probability of 0.9, which outperforms CIR amplitude based entropy with only 63%

percentage of the same positioning error. Meanwhile, the mean error of the proposed CFR

amplitude entropy scheme is 1.84m, which is also superior over CIR entropy approach with

the mean error of 2.64m. A possible explanation would be that most variations of CIR

distribute within only a few time indices (i.e., first 10 taps), while the frequency diversity

spans the entire range of CFR subcarrier indices, making the structures of CFR more dis-

tinguishable with each other [18]. Moreover, as expected, CIR entropy based fingerprint

has better location estimation precision than its original CIR amplitude signature. The

former precedes around 1.2m localization error of the 90th percentile accuracy.



56 Chapter 3. AR Entropy based Location Fingerprinting using CSI Amplitude

0 2 4 6 8 10
Localization Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F
 

CFR Amplitude Entropy
CIR Amplitude Entropy
Averaged CIR Amplitude

Figure 3.19: Localization accuracy of AR entropy against its time domain CIR.

Comparison with State-of-the-Art After comparing with the two most potential

competitors, namely CFR and CIR amplitude schemes, our EntLoc system is then readily

set to challenge other existing location fingerprinting systems. More specifically, as men-

tioned in previous section, we design a fair framework to compare our proposed AR entropy

based localization approach with PinLoc-like, FIFS and Horus systems, respectively. As

can be observed in Figure 3.20, our proposed system achieves the 90th percentile error

of 2.69m, which outperforms PinLoc-like approach, FIFS and Horus with the same error

level of 63%, 57% and 28%, respectively.

Additionally, in order to provide an in-depth and comprehensive comparison for these

localization systems, we enumerate the respective maximum error (Max. err.), minimum

error (Min. err.), mean error (Mean err.) and the 90th percentile accuracy (Acc. at

90%) in Table 3.1. Apart from the 90th percentile accuracy, our EntLoc system is able

to achieve the lowest mean error of 1.84m compared with PinLoc-like, FIFS and Horus

systems, improving the localization precision by 27.3%, 34.9% and 47.4%, respectively.

As for maximum and minimum errors, EntLoc can still dominate the general accuracy
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evaluation. It only falls behind FIFS with 0.08m in terms of minimum error, which can

be neglected in realistic indoor environment.
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Figure 3.20: Localization accuracy of proposed EntLoc against state-of-the-art.

Table 3.1: Detailed localization accuracy of all different methods

Methods Max. err. Min. err. Mean err. Acc. at 90%

EntLoc 3.20m 0.23m 1.84m 2.69m

PinLoc-like 5.85m 0.46m 2.53m 4.15m

FIFS 7.70m 0.15m 2.83m 5.56m

Horus 9.77m 0.55m 3.50m 5.64m



58 Chapter 3. AR Entropy based Location Fingerprinting using CSI Amplitude

3.3.2.3 Impact of Preprocessing Technique

Recall that we present a tap filtering based pre-processing technique before conducting

location fingerprinting. Firstly the raw CFR measurements are converted into its time

domain CIR by IFFT. Once removing irrelevant noise component in CIR, we can subse-

quently obtain a smoothed and finer version of CFR by applying FFT. It is interesting to

study the impact of this approach to see how it can improve our localization performance.
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Figure 3.21: AR entropy box plot for raw CFR.
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Figure 3.22: AR entropy box plot for filtered CFR.
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To this end, we design a fingerprint robustness based evaluation scheme. In particular,

we manually record 10000 raw CFR measurements at one predefined location. By taking

into account three RX antennas, we divide these CFRs into 100 subgroups and calculate

the AR entropy of their amplitudes for each subgroup. Afterwards, we conduct the same

procedures on the filtered CFR measurements and lay out the differences. As displayed

in Figure 3.21 and Figure 3.22, we show the AR entropy box plot of selected subcarriers

from one RX antenna out of visual clarity. Specifically, the filtered CFR entropy achieves

less variation and reduces the statistical outliers to a great extent.
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Figure 3.23: AR entropy variances for raw CFR and filtered CFR.

Furthermore, we can also observe from Figure 3.23 that for considering all three RX

antennas, the filtered CFR entropy has an overall lower variance than its original raw

CFRs. The above observations reveal that our pre-processing technique makes AR entropy

based fingerprint more robust and can thus guarantee a preferable localization performance

in the online location estimation phase.

3.3.2.4 Impact of Packet Number for Entropy Estimation

Since AR entropy estimation process requires sufficient CFR samples, larger number

of samples can provide more accurate entropy estimation while increasing computational
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complexity. How to determinate the CFR packet number for entropy calculation becomes

a trade-off problem which needs to be balanced in our localization system. Here we devise

an AR entropy variance based scheme to select the optimal number of CFR packets. The

motive lies in the fact that if the entropy variance is small enough, which can already

guarantee a good accuracy, there is no need to import more CFR samples to increase

computational burden. To be more specific, by testing the packet number ranging from

10 to 5000, we observe in Figure 3.24 that 50 CFR packets can provide stable enough

AR entropy estimates, which can further promote robust fingerprinting performance. So

we choose and fix this packet number for all entropy estimation processes in our indoor

positioning implementations.
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Figure 3.24: AR entropy variance changes with different CFR packet number selections.

3.3.2.5 Impact of RX Antenna Numbers

In this part, we study the impact of RX antenna number on the localization perfor-

mance. Intuitively, using more antennas at receiver end brings about more diverse channel

response measurements, thus containing more location-specific information. We then study
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the localization accuracy differences for three RX antennas to deepen the understanding

of our proposed localization system. As exhibited in Figure 3.25, our AR entropy based

localization system with three RX antennas is able to obtain superior estimation error

precision over the same platforms with less antennas. Numerically, the three-antenna

configuration can achieve less than 2.69m localization error within the probability of 0.9,

while the two and single antenna structures can only reach the same percentage level with

the larger error of 4.1m and 5.2m, respectively. It validates the aforementioned assump-

tion and encourages us to make full use of all three RX antennas in our indoor location

fingerprinting system.
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Figure 3.25: Localization accuracy under three different RX antenna configurations.
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3.4 Summary

In this chapter, we presented EntLoc, an AR entropy based indoor location fingerprint-

ing system using CSI amplitude information. In EntLoc, a tap filtering scheme was first

utilized to remove the noisy component in raw CFR measurements. To capture the most in-

formative statistical information of CFR while maintaining a simple structure, we adopted

AR modeling based entropy as the fingerprint to construct a robust offline radio map. In

the online phase, we proposed to use Manhattan distance as similarity metric and resorted

to kernel regression scheme to infer the target’s location. Experimental results from the

lightweight HummingBoard device showed a superior localization performance of our pro-

posed EntLoc system with an average accuracy improvement of 27.3%, 34.9% and 47.4%,

in comparison with prominent PinLoc, FIFS and Horus system, respectively. In addition,

we also examined the impacts of several different parameters on EntLoc’s performance,

which enables us with deepening insights to efficiently and productively implement our

proposed localization system.
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4.1 Introduction

As an updated version of the previous EntLoc system, in this chapter, we bring out

AngLoc, an enhanced AR entropy based indoor location fingerprinting system involving

an additional AoA fingerprint. The resulting localization accuracy has been elevated in

comparison with EntLoc.

Likewise, after reviewing the state-of-the-art, we put forward the in-depth localization

methodology of proposed AngLoc. We also add more experimental testbeds for the per-

formance evaluation and provide some visionary perspectives in order to further improve

AngLoc’s localization performance in the future works.

4.1.1 State-of-the-Art

Since the biggest design highlight of the AngLoc localization system is that the ge-

ometric concept of AoA-aware directional RP refining further enhances the positioning

accuracy. We ought to involve some geometric mapping based techniques in the state-of-

the-art presentation. Additionally, given that we have conducted comprehensive literature

review of the current location fingerprinting schemes in Chapter 3, in this chapter, we will

further supplement some recent advancements to the current literature framework.

Geometric Mapping based Techniques: The geometric modeling of the RF propagation

is fundamental to the ranging or direction based positioning systems. Wu et al. explored

the frequency diversity of PHY layer CSI information to refine distance estimation and

pinpoint the target’s location through trilateration in FILA system [104], which achieved

median accuracy of 1.2 m in the multi-room environment. Alternatively, ArrayTrack [105]

embraced the trend of MIMO technology and exploited increased number of antennas

at commodity access points (APs) to obtain high-resolution AoAs, which were further

aggregated to infer the client location within 23 centimeters median accuracy. Unlike Ar-

rayTrack which requires dedicated hardware modifications, Kotaru et al. designed SpotFi

[20], an accurate indoor localization system capable of identifying direct path AoAs with

only three physical RX antennas. Moreover, after incorporating the observed RSS infor-



Chapter 4. Enhanced AoA-aware Fingerprint Localization involving CSI Phase 65

mation for an optimization processing, SpotFi was able to achieve the median accuracy of

40 cm. More recently, the researchers of Chronos [106] leveraged a novel Chinese remain-

der theorem based algorithm to compute sub-nanosecond ToF with a single Wi-Fi access

point. This distance-related metric was then formulated into a quadratic optimization

problem for accurately locating clients within tens of centimeters.

Recent Fingerprinting based Techniques: Regardless of measurements’ geometric rela-

tion, the pattern-matching based fingerprinting techniques have attracted a large body of

research interests for the last decades. Wang et al. designed DeepFi [107], a deep learning

based indoor location fingerprinting system using CSI amplitude information. In the offline

phase, DeepFi enabled a deep network to train all the weights as location fingerprints, and

harnessed the Radial Basis Function (RBF) based probabilistic scheme to accomplish the

position estimation in the online phase. It outperformed FIFS system with 20% accuracy

improvement.

4.1.2 Contributions

Prior to listing the relevant contributions of this chapter, in comparison with the

aforementioned EntLoc system, we first elaborate the core concept and the major upgrade

of our proposed AngLoc positioning system.

 

Figure 4.1: An illustrative example of the AngLoc system mechanism.
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As illustrated in Figure 4.1, our AoA embedded solution adopts the methodological

concept of the well-known k-Nearest Neighbors (kNN) technique and unveils two heuristic

insights:

(i) For some offline surveying receivers at the corresponding RP positions, whether they

are in the vicinity (blue ones) of the online receiver (red one) or in the distance (green

one), their CSI measurements may share the similar entropy values.

(ii) These neighboring receivers also record the similar AoAs from parallel incident paths

with this online receiver, whether it is for direct paths in LoS scenario or reflected

paths in NLoS condition. Hence, the remote receiver can be selectively ruled out

in accordance with the distinct AoA difference, which further improves the location

estimation accuracy.

Accordingly, by adopting the above AoA aided RP refining approach, our inherited

AngLoc positioning system is capable of achieving superior localization performance over

its predecessor EntLoc system.

In a nutshell, the main contributions of this chapter can be laid out as follows:

• To the best of our knowledge, this is the first work to constructively incorporate an-

gular signature in CSI entropy based indoor location fingerprinting system, fertilizing

the opportunity to achieve a decimeter-level accuracy.

• We propose a power-based tap-filtering program alongside several phase calibration

pre-processing techniques to effectively mitigate CSI noisy component and sanitize

CSI phase errors, respectively.

• We design a feasible bivariate kernel regression scheme for the online location esti-

mation stage, which organically combines the weighting factors for both amplitude

based entropy and phase-based AoA fingerprints.

• Compared with EntLoc’s performance evaluation, we further build and implement

extensive experiments on the lightweight Hummingboard device for different testbeds.
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In addition to the superior performance, our mobile prototype remarkably enhances

the fingerprinting efficiency.

4.1.3 Chapter Organization

The remainder of this chapter is organized as follows. The overall architecture design

of our proposed system is elaborated in Section 4.2. We provide experimental results and

the corresponding analyses in Section 4.3 and dive into some insightful perspectives in

Section 4.4. Conclusions are drawn in Section 4.5.

4.2 Localization Methodology

In this section, we proceed to lay out the detailed design of our proposed AngLoc fingerprint

localization system.

4.2.1 AngLoc System Architecture

As illustrated in Figure 4.2, the overall architecture of our proposed AngLoc system

has a block-wise design. To be specific, in the offline radio map construction block, once

recording the raw CSI measurements through war-driving, we first introduce a tap filter-

ing scheme to extract the most informative location-specific component from noisy CSIs.

For the purpose of accurate AoA estimation, several phase calibration techniques are then

leveraged to compensate the corresponding phase offsets, which exist in prevalent com-

modity WiFi devices. Subsequently, for CSI amplitudes, we statistically model them as

the simply structural AR entropy metric. The JADE-MUSIC algorithm is then adopted

for CSI phases to infer the angular estimates. Hence, the entire offline database can be

fully embodied by the integration of entropy and AoA fingerprints, making full use of both

CSI amplitude and phase information. For the online location estimation block, when a

mobile target enters the area of interest, it executes the same pre-processing protocols

to obtain the entropy and AoA estimates. The following location estimation task then

consists of two major steps:
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Figure 4.2: The overall AngLoc system architecture.

(i) The online entropy vector is first matched with offline database to find the most

likely candidates from nearest RP positions.

(ii) Among these candidate locations, a novel bivariate kernel regression scheme is pro-

posed to further narrow down the number of error-prone RPs, thus tackling the

target’s location determination with an improved accuracy.

In the sequel, we will take an in-depth structural dissection for each block of our

proposed AngLoc system.

4.2.2 Offline Fingerprint Database Generation

For the offline training phase, we adopt the same problem formulation as presented in

Chapter 3. Specifically, after acquiring the respective offline and online fingerprint data

sets {Hm}1≤m≤M and Go, the mobile target’s position can be then determined as ℓ̂o by

exploiting these online CSIs and the stored offline database.

4.2.2.1 CSI Phase Calibration

In this part, we focus on some technical details of CSI pre-processing techniques which

serve as the precondition to attain superior localization performance.
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Due to the inherent OFDM baseband operations and the hardware’s imperfect signal

processing, the CSI obtained from the commodity Wi-Fi devices is distorted with various

errors [19, 9, 108], rendering the accurate AoA and ToF estimation much more challeng-

ing. For a transmission chain, the phase measurement ∠Ĥfk
for subcarrier k with carrier

frequency fk can be presented as

∠Ĥfk
= ∠Hfk

+ 2πfδk(ζcsd + ξsfo) + φsto + φcfo + φcpo + Z (4.1)

where ∠Hfk
denotes the true phase from wireless propagation. fδ is the OFDM subcarrier

spacing. ζcsd, ξsfo, φsto, φcfo and φcpo are the phase errors caused by Cyclic Shift Di-

versity (CSD), Sampling Frequency Offset (SFO), Symbol Timing Offset (STO), Carrier

Frequency Offset (CFO) and Carrier Phase Offset (CPO), respectively. Z signifies the ad-

ditive measurement noise. In the following, we will address these deep-rooted CSI phase

issues in a divide-and-conquer manner.

• CSD: As described in Chapter 2, CSD is operated by sending cyclically shifted OFDM

symbols over different TX antennas so that unintended beamforming is avoided.

But this incurs an additive phase shift for each TX antenna in CSI matrix which

potentially degrades the localization performance. SignFi [109] compensated the

CSD errors by applying a multiple linear regression scheme. However, as a easier

alternative suggested in [19], CSD can always be removed by the receiver when direct

mapping takes place, under which the SMM equals an unitary matrix. Hence, in our

data acquisition process, we can configure the Intel 5300 shipset to make Nss = Nt,

thus yielding the CSD-free CSIs.

• SFO: In OFDM transceiver system, SFO occurs when the receiver’s ADC sampling

rate differs from the transmitter’s synthesization rate. Consequently, SFO manifests

itself as an additive phase shift proportional to the subcarrier index, which gives rise

to the first-order channel linearity (e.g. Figure 4.3). We then resort to a simple linear

regression method to remove the residual SFO. It can be mathematically expressed

as follows.

ξ̂sfo = arg min
ρ

∑
k,nt,nr

(φk
nt,nr

+ 2πfδkρ + ω)2 (4.2)
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Figure 4.3: CFR phase changes after SFO, STO and CFO removal.

where ρ and ω are curve fitting variables and φk
nt,nr

denotes the unwrapped CSI

phase for one packet at the kth subcarrier from nth
t TX antenna to nth

r RX antenna,

nt ∈ [1, Nt] and nr ∈ [1, Nr].

• STO: In general, the receiver utilizes the auto/cross-correlator to capture and detect

the presence of the OFDM symbol header, which starts with short training fields.

However, the length limitation of these STFs brings great uncertainty to determine

the symbol boundary. This results in the irreversible STO. Fortunately, given that

any frequency domain phase shift due to STO leads to the same amount of circular

rotation in time domain, STO can be embodied as peaks at the far end of Power

Delay Profile (PDP) owing to the CIR’s cyclic-shifting property (e.g. Figure 4.4).

On this basis, in order to estimate STO, we first derive the PDP from the CIR

vector, i.e. {hk(n)}1≤k≤K of the nth packet. The corresponding tap index Nsto(n)
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Figure 4.4: CIR amplitude changes after SFO, STO and CFO removal.

of the shifted PDP peak due to STO can be identified as

Nsto(n) = arg max
k

|hk(n)|2, 1 < k ≤ K (4.3)

After applying (4.3) for multiple packets, the most frequent value of Nsto is then

determined to finally shape the estimated STO as φ̂sto = −2πkNsto/K.

• CFO/CPO: Due to the residual errors in receiver’s Phase Locked Loop (PLL), CFO

emerges when the receiver’s carrier frequency for down-conversion mismatches with

the transmitted carrier frequency. Meanwhile, since each time when the synthesizer

restarts, a random initial phase will be generated by the receiver’s voltage controlled

oscillator and PLL cannot fully compensate for this phase difference, CPO is then

experienced. According to [19], after the PDP-based STO removal, the ToF esti-

mation becomes naturally immune to CPO. Additionally, during our site survey, we



72 Chapter 4. Enhanced AoA-aware Fingerprint Localization involving CSI Phase

only initiate the transceiver devices for once, which makes CPO negligible in our

fingerprinting system. As CFO is also an accumulative error that has to be compen-

sated by the receiver, we then employ a non-overlapping moving window with length

Np for geometric averaging to further smooth out CFO. Specifically, we first obtain

K-dimensional H̄ by conducting element-wise multiplication for Np packets.

H̄ = H(1) ◦ · · · H(np) · · · H(Np), np ∈ [1, Np] (4.4)

where ◦ denotes the Hadamard product operator and H(np) is the nth
p CFR packet.

The sanitized CFR can be then acquired by Ĥ = {(H̄k)
1

Np }1≤k≤K .

As illustrated in Figure 4.3 and Figure 4.4, the above adopted phase calibration tech-

niques have effectively compensated CSI phase errors after the respective SFO, STO and

CFO removal.

4.2.2.2 Enhanced AoA Fingerprint Estimation

After the noise removal and phase sanitization, the pre-processed CSIs then proceed

readily to establish a self-contained fingerprint database which involves both amplitude

and phase information.

For considerable wireless location-aware applications, accurate AoA measurement is

non-trivial on commodity devices. In view of the super-resolution advantage, the classical

subspace-based MUSIC algorithm is of the greatest appeal. The basic idea of standard

MUSIC algorithm is that incident signals from different bearings give rise to different

phase changes on each antenna at the receiver [42].

Assume that there are L incoming signals γ1, . . . , γL arriving from directions θ1, . . . , θL

at Nr RX antennas of a linear array. The RX antennas are evenly-spaced with a distance

d, which is about half of the signal’s wavelength. As shown in Figure 4.5, for the lth signal

(l ∈ [1, L]), a phase difference of −2πfdsin(θl)/c is introduced at two adjacent antennas,

where f is the signal frequency and c denotes the speed of light. For the whole antenna

array, we can thereby define these phase shifts relative to the first antenna as the following
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Figure 4.5: An incident signal arrives at an antenna array with an angle θ.

steering vector.

Ψ(θl) = [1, e−j2πfd sin(θl)/c, . . . , e−j2π(Nr−1)fd sin(θl)/c]⊤ (4.5)

where (·)⊤ is the transpose operator. Given all L incident signal paths, the Nr ×L steering

matrix is then constructed by Q = [Ψ(θ1), Ψ(θ2), . . . , Ψ(θL)]. Thus, the received signal x

at each RX antenna can be expressed as the superposition of all L signal paths.

[x1, x2, . . . , xNr ]⊤ = Q[γ1, γ2, . . . , γL]⊤ + W

or

X = QΓ + W (4.6)

where W is the noise vector.

Note that there is an inherent constraint when applying the conventional MUSIC algo-

rithm to Equation (4.6), which requires array antennas should outnumber the resolvable

incident multipaths (i.e. Nr > L). However, in typical indoor environments, there are

about 5-10 dominant multipath clusters [110] while our commodity Intel 5300 NIC only

supports up to Nr = 3 antennas. This means it can merely capture 2 incident paths

through MUSIC, thus largely limiting the AoA resolution and severely deteriorating the

fidelity of the MUSIC outcome. To overcome this bottleneck, we leverage the fact that

alongside AoA-related phase shifts across physical antennas, the incoming signals also in-

vite phase differences across equispaced OFDM subcarriers due to ToF [20, 43]. Therefore,
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we further extend the Nr-antenna physical array to a virtual sensor array with the size of

K · Nr, by which JADE-MUSIC algorithm can be readily employed to exploit CSI phase

information in two dimensions. Specifically, the second steering vector which contains

phase shifts relative to the first subcarrier can be defined as follows.

Ω(τl) = [1, e−j2πfδτl , . . . , e−j2π(K−1)fδτl ]⊤ (4.7)

where τl is the time delay of the lth path and fδ is the two adjacent subcarrier spacing.

Accordingly, the combined AoA-ToF steering vector can be updated by

a(θl, τl) = Ψ(θl) ⊗ Ω(τl) (4.8)

where ⊗ denotes the Kronecker product. After aggregating all L signal multipaths, the

corresponding KNr × L steering matrix is thereby presented as

A = [a(θ1, τ1), . . . , a(θl, τl), . . . , a(θL, τL)] (4.9)

Hence, the received signals at RX antennas in Equation (4.6) can be rewritten by

X̄ = AΓ + W̄ (4.10)

Next, we then move to apply JADE-MUSIC by first deriving the covariance matrix

RX of the received signal, which is calculated as

RX = E{X̄X̄H} = ARSAH + σ2
W I (4.11)

where (·)H and E{·} demotes the Hermitian transpose and expectation operator, respec-

tively. RS is the noise-free covariance matrix of the complex signal vector and σ2
W indicates

the noise variance. Among K · Nr eigenvalues of RX , the smallest (KNr − L) eigenvalues

represent the noise and the remaining L eigenvalues correspond to L incident signals. The

eigenvectors corresponding to these smallest eigenvalues then form the noise subspace EN .

Since the signal subspace and noise subspace are orthogonal, the spatial pseudo-spectrum

function can be expressed as follows.

P (θ, τ) = aH(θ, τ)a(θ, τ)
aH(θ, τ)EN EH

N a(θ, τ)
(4.12)

By searching on the 2-D angle and delay continua, the sharp peaks in P (θ, τ) will occur

at the bearings of incident signals with their corresponding time delays.
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Forward-Backward Spatial Smoothing In practice, subspace techniques like MUSIC

also require the signal covariance matrix RS has full rank. However, our stacked CSI

measurements X̄ from all the subcarriers at all RX antennas is just a single column unit

rank matrix. Due to the coherence of multiple signals, all subspace based methods suffer

complete failure from the rank deficiency of RS . To address this issue, we propose to apply

forward-backward spatial smoothing to mitigate the random noise and further improve the

joint AoA-ToF estimation performance [111].

CFR(1,1)     CFR(1,2)     CFR(1,3)     CFR(1,4)    … CFR(1,27)     CFR(1,28)     CFR(1,29)     CFR(1,30) 
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CFR(3,1)     CFR(3,2)     CFR(3,3)     CFR(3,4)    … CFR(3,27)     CFR(3,28)     CFR(3,29)     CFR(3,30)

Forward Smoothing

Backward Smoothing

Figure 4.6: The mechanism of forward-backward spatial smoothing.

As shown in Figure 4.6, after reshaping the single measurement vector to the Nr × K

CSI matrix, we first partition the CSI matrix into uniformly overlapping subarrays with

the size of K ′N ′
r, where K ′ and N ′

r are the number of subcarriers and antennas in the

subarray, respectively. To ensure measurable phase shifts across RX antennas, here N ′
r is

fixed as 2 in our case. The total number of overlapping subarrays is then TKTN , where

TK = K − K ′ + 1 and TN = Nr − N ′
r + 1. In the sequel, a hardened spatially smoothed

covariance matrix can be derived by averaging across those subarrays’ covariance matrices

with a forward direction (blue arrow). It is defined as follows.

Rf = 1
TKTN

TKTN∑
i=1

Ri
s (4.13)

where Ri
s is the covariance matrix of the ith subarray. This covariance hardening processing

achieves an improved rank, thus closer to the true source covariance matrix. Moreover,

the invariant structure of CSI also enables a backward directional smoothing (red arrow)

to further enhance the accuracy of MUSIC estimator. This averaged forward-backward
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covariance matrix can be expressed as

Rfb = 1
2(Rf + JR∗

f J) = 1
2(Rf + Rb) (4.14)

where J is the K ′ ×K ′ exchange matrix with only ones on its anti-diagonal and Rb denotes

the backward covariance matrix.

Optimal Smoothing Length Selection Note that SpotFi only treats smoothed CSI

matrix with a fixed smoothing length of K ′N ′
r = 30, which fails to dive deeper into the

optimal selection of the smoothing length. As the smoothing length decreases, the noise

level in estimated AoA spectrum gets lower, which helps to narrow the peak and improve

the accuracy. But in the meantime, this also reduces the effective antenna sensors, which

increases the risk of eliminating the peak from the direct path.
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Figure 4.7: Optimal smoothing length selection through AoA spectrum.

To carefully cope with this trade-off problem, we perform a micro-benchmark which

computes AoA spectra in a near LoS scenario (so the direct path bearing dominates)
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with different smoothing lengths. As observed in Figure 4.7, the smoothing length of

16 (K ′ = 8) shows a good compromise during our experiments and thus is chosen for

the performance evaluation section. It is also worth noting that since subcarrier index

k = 0 is null due to the large direct current (DC), in addition to making smoothing length

larger than the number of multipaths indoors (say 10 [110]), we also need to ensure that no

partitioned subarray contains k = 0 subcarrier, which avoids 2fδ error for AoA estimation.

Augmented Multi-Packet Smoothing Considering that we only perform the forward-

backward smoothing in the frequency domain, to fully acquire the empirical covariance

matrix, different packet snapshots are also needed to implement the time-domain averag-

ing, which can be denoted by

Rmp = 1
Nmp

Nmp∑
i=1

Ri
fb (4.15)

where Nmp is the number of multiple CSI packets for sample smoothing. We can observe

in Figure 4.8 that the joint AoA and ToF estimation is further refined (the red dots are

more centralized than the blue stars) after the process of multi-packet sample smoothing,

which is conductive to provide better performance for location fingerprinting.
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Figure 4.8: The comparison of AoA estimation with and without multi-packet smoothing.
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As a result, along with AR entropy fingerprints which are introduced in Section 3.2,

the final estimated AoA with the smallest ToF at the mth RP location from the sth AP

can be also determined and stored as (θ̂s
m, τ̂ s

m) for the following online position estimation.

Likewise, the online acquired AoA-ToF fingerprint can be expressed by (θ̂s
o, τ̂ s

o ).

4.2.3 Online Position Determination

Unlike the previous EntLoc positioning system, the online location determination phase

for AngLoc involves additional AoA element. The corresponding similarity metric cal-

culation and final location estimation have been enriched and enhanced, which will be

systematically discussed in the sequel.

4.2.3.1 Similarity Metric Calculation

In the online location estimation phase, the mobile target is required to be accurately

mapped with the pre-defined fingerprint database. In order to quantify the similarity

between the offline stored fingerprints and the online measured CSIs, we manage to in-

dependently adopt two simple distance metrics for the respective AR entropy and AoA

fingerprints. For amplitude based AR entropy, the Manhattan distance is employed to

measure the gap between two vectors through the summation of the absolute differences

of their corresponding components. Given the offline and online entropy fingerprints Φ̂Hs
m

and Φ̂Gs
o
, the Manhattan distance between them is represented as

Ds
m = ∥Φ̂Hs

m
− Φ̂Gs

o
∥1 =

R′∑
i=1

⏐⏐⏐ϕ̂i
Hs

m
− ϕ̂i

Gs
o

⏐⏐⏐ (4.16)

where ∥·∥1 denotes the ℓ1 norm. Moreover, by following the chain rule for Shannon entropy

[94], it can be proved that a joint entropy difference for multiple independent variables is

equal to the sum of all these variable’s entropy differences. Under the S independent AP

assumption, we therefore have the Manhattan distance for all available APs as follows.

Dm =
S∑

s=1
Ds

m (4.17)

For the estimated 2-D AoA and ToF fingerprints, we naturally resort to the simple
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Euclidean distance to capture the discrepancy between the offline (θ̂s
m, τ̂ s

m) and online

(θ̂s
o, τ̂ s

o ) from all S APs. It can be then defined as

Dm =
√∑S

s=1
((θ̂s

m − θ̂s
o)2 + (τ̂ s

m − τ̂ s
o )2) (4.18)

Thus, the dissimilarities of both AR entropy fingerprint Dm and AoA fingerprint Dm for

the mth RP location are further obtained for the following target’s position determination.

4.2.3.2 Bivariate Kernel Regression

In general, both of the two metrics are fully capable of concisely reflecting the spatial

proximity between the offline learned traits at the mth RP and the online measurements

from an uncharted position. For the design of AngLoc, the remaining location estimation

process consists of two main steps. First, by adopting the classical kNN theory, we can

claim Mc out of M RP locations which signify Mc smallest AR entropy differences among

{Dm}1≤m≤M . Then, a novel bivariate kernel regression scheme is further proposed to infer

the final target’s location by exploiting the distance based kernel function and the selected

set of Mc reference points. The estimated location ℓ̂o is expressed by

ℓ̂o =
∑Mc

mc=1 Kmcℓmc∑Mc
mc=1 Kmc

(4.19)

where mc ∈ [1, Mc] and Kmc denotes the probability kernel of the mth
c RP location which

is obtained by exponentiating and weighting its corresponding entropy and AoA based

distances. It can be mathematically presented as follows:

Kmc = we exp(−ρeDmc) + wa exp(−ρaDmc) (4.20)

Here we and wa are the weighting factors for the respective AR entropy and AoA based

kernel function and we + wa = 1. ρe and ρa are their corresponding kernel coefficients

which are chosen to optimally minimize the fingerprinting error by leave-one-out cross-

validation in the offline phase. It is noteworthy that this bivariate kernel Kmc equals to

one if the given two fingerprints are identical and decays to zero as the dissimilarity of two

fingerprints increases. Simply put, this bivariate kernel provides a flexible way to naturally
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harness the CSI data and therefore makes full use of our probabilistic AR entropy and

AoA information, thus leading to an improved localization performance.

The overall performance of our AngLoc fingerprinting system will be evaluated in the

following section.

4.3 Performance Evaluation

In this section, we carry out the experimental evaluation of our proposed localization

system. We will begin with the experimental setup introduction and the detailed results

of localization performance will be discussed in the sequel.

4.3.1 Experimental Setup

1) Additional Test Environment: To evaluate the performance of our AngLoc system,

the entire experiments are implemented at two different indoor testbeds in CNAM.

As exhibited in Figure 3.11, the first testbed is a 15m × 15m laboratory office in a

multistorey building, which is comprised of a main corridor alongside several office

and meeting rooms. Many desks, chairs, computers and shelves are furnished inside

to form a complex indoor radio propagation environment. The second testbed in

Figure 4.9 is an ample classroom scenario with an area of around 100 m2. It lays out

less obstacles within the fingerprinting area which presents a relative LoS scenario.

It can then serve as a supplementary contrast with testbed #1. As for the imple-

mentation time, the CSI databases for these two testbeds were collected and stored

in February and July of 2019, respectively.

2) Hardware Descriptions: For both testbeds, all the real experiments are conducted on

the same commodity-ready off-the-shelf Wi-Fi devices with that used in the previous

EntLoc system. To be specific, recall that in Figure 3.12 and Figure 3.13, by tuning

into the IEEE 802.11n monitor mode with 5 GHz band, we deploy an HP Elitebook

8530w laptop as the signal transmitter and an Hummingboard Pro (HMB) device as

the mobile receiver, both of which are equipped with Intel Wi-Fi Link (IWL) 5300
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Antenna Stand with 
HummingBoard Pro

Figure 4.9: CNAM classroom scenario.

NIC and run 64-bit Ubuntu 14.04 OS and Debian 8.0 OS, respectively. In addition,

as for the antenna settings, each wireless NIC-compatible device is also capable of

installing up to three omni-directional antennas so that the 3×3 MIMO configuration

can be supported.

3) Data Acquisition: As aforementioned in the beginning, we implement the CSI data

collections in both laboratory and classroom environments. Figure 3.14 and Fig.

4.10 display the detailed floor plans and experimental layouts for our laboratory and

classroom testbeds, respectively. First of all, for both testbeds, the laptop serves

as signal transmitter whose placement is fixed on the table and known a priori.

Under packet injection mode, it is designated to intermittently send at the rate of

100 packets per second using only one transmitting antenna. It is notable that such
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Figure 4.10: The floor plan of our classroom.

antenna setting means to meet the requirement of direct spatial mapping, which

can yield CSD-free CSI data. Meanwhile, the localization accuracy can be also

guaranteed with the lowest computational cost. For the two experimental layouts,

the blue dots shown in Figure 3.14 and Figure 4.10 denote the 70(40) training RP

locations with one meter spacing and the 30(28) testing positions are marked as red

stars. During the offline training phase, roughly 5000 CSI packets are collected and

stored by the lightweight HMB at each reference point to build up the raw CSI radio

map. In the online phase, we proceed to move this HMB receiver among all the

testing locations to acquire the same size of CSI packets for the localization purpose.

Moreover, every receiver end is operated at the same height, constructing a simple

2-D platform for the precise indoor position estimation.

4) Benchmarks and Performance Metrics: In this section, we establish the whole bench-

mark program for the performance evaluation of our AngLoc system, which is com-
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pared with aforementioned systems like Horus [28], FIFS [29] and PinLoc [30]. We

also compare it with our previously proposed EntLoc system [34], which only exploits

the CSI amplitude based entropy metric for indoor fingerprint localization. Besides,

considering that the original PinLoc system conduct the war-driving procedure in

a set of predefined 1m × 1m grids, known as spots, in order to provide a fair com-

parison, we modify PinLoc to use the same training set that we use in the proposed

AngLoc system. Particularly, for AoA accuracy evaluation, we take SpotFi [20] as

the comparative rival due to its representativeness among recent AoA based indoor

positioning systems.

As for the performance metrics, we define the localization error as Euclidean

distance between the estimated location and the mobile user’s actual position, which

is presented as ∥ℓ̂o − ℓo∥ =
√

(x̂o − xo)2 + (ŷo − yo)2. When there are Na testing

locations, we evaluate the localization performance by using the Mean Error (ME)

metric which can be calculated as

ME = 1
Na

Na∑
i=1

√
(x̂i − xi)2 + (ŷi − yi)2 (4.21)

where (xi, yi) and (x̂i, ŷi) are the actual and estimated coordinates at the ith testing

location, respectively.

4.3.2 Numerical Results

Prior to exhibiting the localization results of our proposed system, we first reveal

the effects of different system parameters which play a defining role for our AngLoc’s

performance. In addition, some other experimental factors will also be evaluated at the

end of this section.

4.3.2.1 Impact of Packet Number Selection for Entropy Estimate

For the sake of efficiently implementing our AngLoc positioning system in the practical

testbeds, a reasonable number of CSI packets should be first determined to ensure a de-

sired localization performance while maintaining a low computational cost. Since AngLoc
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inherits the AR entropy fingerprint from the previous EntLoc system, we then adopt the

same scheme of the packet number selection for AR entropy estimation, which is also cho-

sen in the EntLoc system. As shown in Figure 3.24, we hereby choose 50 and fix this packet

number for all entropy estimation processes in our AngLoc positioning implementations.

4.3.2.2 Impact of Packet Number Selection for AoA Estimate

Due to the spatial-temporal diversity of CSI measurements, one CSI packet is able to

derive the AoA estimate at one time. Likewise, the excess usage of CSI packets increases

the unnecessary computational complexity while fewer number of CSIs risks generating

more error-prone AoA estimations.
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Figure 4.11: AoA estimation errors by using different number of CSI packets.

To address this issue, we devise an accuracy based packet number selection scheme

to efficiently conduct AoA calculation. Considering that the multi-packet smoothing is

required in our AngLoc system, we begin the testing packet number from 5 packets and

extend it to 10, 15 and 40 packets, respectively. In addition, since the LoS-friendly class-
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room is more convenient and can provide a clear ground truth (direct path) to compare

the AoA estimation errors. It is thus chosen as the experimental environment in this part.

As shown in Figure 4.11, we can observe that even with 15 packets, our AngLoc system

works well and accurately identifies the true AoA with a mean error of 5 degrees, which

shares the similar performance with 40 packets. The underlying explanation lies in the

fact that once we determine the first arrival path through the smallest ToF, more CSI

packets will not bring further improvement with regard to the AoA estimation accuracy.

4.3.2.3 Impact of Kernel Regression Parameters

Recall that in the online location estimation phase, we first find Mc closest RP loca-

tions in accordance with the amplitude’s AR entropy. Then, a weighted bivariate kernel

regression scheme is proposed to accurately calculate the target’s location by exploiting

both entropy and AoA informations. As a result, a proper selection of the relevant kernel

regression parameters in the offline phase is of great importance in the final localization

outcome. As listed in Table 4.1, by leveraging leave-one-out cross-validation, we optimally

choose the Mc, weighting factors we, wa and kernel coefficients ρe, ρa for both testbeds.

It is interesting to observe that in the larger and more NLoS laboratory scenario, the

AoA-driven RP refining scheme outweighs the AR entropy factor (i.e. wa > we), which

indicates the fact that the entropy metric tends to bring more ambiguities in more complex

environment. On the contrary, the more LoS classroom testbed renders the AR entropy

competent enough to differentiate locations since the channel property in such case appears

to be more stable.

Table 4.1: Summary of parameters for both testbeds

Parameters Mc wa we ρa ρe

Testbed #1 12 0.57 0.43 0.14 0.23

Testbed #2 8 0.38 0.62 0.33 0.17

Furthermore, we also lay out the training results for choosing parameter Mc in Figure

4.12 and Figure 4.13 from both laboratory and classroom environments. Given a respective
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Figure 4.12: Optimal neighbor number selection for laboratory testbed.
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Figure 4.13: Optimal neighbor number selection for classroom testbeds.

range of [1, 20] and [1, 10], we can identify the optimal selection of Mc for both testbeds

as 12 and 8, under which the localization mean errors reach minimum. It is fair to state

that for the larger and multipath-richer room, a greater number of RP candidates should

be required in order to well perform the position determination.

4.3.2.4 Localization Accuracy

In this part, by using the same parameters for all competing IPSs, we then move for-

ward to evaluate the localization performance and present numerical results with relevant

discussions.
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Figure 4.14: Localization accuracy for the laboratory.
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Figure 4.15: Localization accuracy for the classroom.
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By virtue of Cumulative Distribution Function (CDF), we first evaluate the localization

accuracy of our proposed AngLoc system in comparison with the state-of-the-art. As can

be observed in Figure 4.14, for the laboratory environment, our proposed system is able

to achieve the 90th percentile error of 2.27m, which outperforms EntLoc, PinLoc-like,

FIFS and Horus systems with the same error level of 2.69m, 4.15m, 5.56m and 5.64m,

respectively. Similarly, in the classroom scenario, we can notice in Figure 4.15 that AngLoc

still precedes other rivals in terms of 90th percentile error. Concretely, it can ensure 90% of

test locations have a positioning error under 1.99m, surpassing EntLoc, PinLoc-like, FIFS

and Horus systems with the same error percentage of 82.1%, 64.3%, 57.1% and 28.6%,

respectively.

Moreover, since the classroom environment is relatively smaller and exposes more LoS

radio propagation than the laboratory testbed, a superior localization performance is ex-

pected under the same conditions. We further display the mean error bar plot in Figure

4.16 to provide an intuitive comparison within the five candidate systems. As expected,
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Figure 4.16: Bar plot of localization mean error comparison for both testbeds.
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our proposed AngLoc system shows a mean error of 1.18m in the lab and 0.95m in the

classroom, which even achieves the decimeter-level localization accuracy, outperforming

other counterparts in both testbeds. Meanwhile, for all the competing IPSs, we can also

observe that the mean error performance in the classroom is generally better than that in

the laboratory scenario, which further validates our previous assumption.

Table 4.2: Localization accuracy for the laboratory scenario

Methods Max. err. Min. err. Mean err. Acc. at 90%

AngLoc 2.67m 0.16m 1.18m 2.27m

EntLoc 3.20m 0.23m 1.84m 2.69m

PinLoc-like 5.85m 0.46m 2.53m 4.15m

FIFS 7.70m 0.15m 2.83m 5.56m

Horus 9.77m 0.55m 3.50m 5.64m

Table 4.3: Localization accuracy for the classroom scenario

Methods Max. err. Min. err. Mean err. Acc. at 90%

AngLoc 2.14m 0.07m 0.95m 1.99m

EntLoc 2.62m 0.04m 1.33m 2.20m

PinLoc-like 2.99m 0.27m 1.72m 2.56m

FIFS 3.38m 0.51m 1.98m 2.94m

Horus 4.67m 0.24m 2.44m 3.54m

In order to provide an in-depth and comprehensive comparison for these localization

systems, we also enumerate the respective maximum error (Max. err.), minimum error

(Min. err.), mean error (Mean err.) and the 90th percentile accuracy (Acc. at 90%) in

Table 4.2 and Table 4.3 for the laboratory and classroom, respectively. As can be observed,

apart from the minimum error, our AngLoc system broadly dominates the general accuracy

evaluation for the maximum error, mean error and 90th percentile accuracy. When it comes

to the particular minimum error, AngLoc only falls behind FIFS and EntLoc with 0.01m

and 0.03m in the respective testbed #1 and #2, which can be reasonably neglected in
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both realistic indoor environments.

4.3.2.5 AoA Estimation Accuracy in LoS Condition

In comparison with our previous EntLoc system, the most productive advancement for

AngLoc is that CSI phase based AoA information is organically combined to facilitate the

improvement of localization performance. Since one of SpotFi’s key insights is to identify

the direct path AoA for geometric mapping, even in strong NLoS case, it still needs multiple

APs to achieve this through a likelihood scheme. In contrast, the inherent difference of

our AngLoc is that the physical direct path AoA is not necessary for fingerprinting as long

as the test target’s AoA reading (i.e. the first arrival path) is similar with those of its

neighboring RP locations. In order to create a fair competition, we only compare the AoA

estimation errors with SpotFi under the LoS condition. For the NLoS scenario, we design

a different evaluation mechanism for the comparison purpose, which will be discussed in

the next part.
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Figure 4.17: AoA estimation errors in LoS condition.
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In practice, for the LoS classroom illustrated in Figure 4.10, by applying our AngLoc’s

enhanced AoA estimation approach as well as the SpotFi’s method, we record the AoA

readings at all 40 RP locations and compare them with their corresponding ground truth.

Here it is worth mentioning that after obtaining several AoA-ToF estimates (clusters)

from multiple CSI packets, SpotFi declares the direct path AoA from the cluster with

the highest likelihood value. For a fair comparison, we modify the last part of SpotFi

to determine the AoA from the first arrival path, which is exactly what we adopt in the

AngLoc system. As shown in Figure 4.17, our AngLoc’s AoA estimation method can yield

the 90th percentile error of 17 degrees, outperforming SpotFi’s 26 degrees error in the LoS

condition. The total gain of nearly 10 degrees validates the superior performance of our

super-resolution JADE-MUSIC algorithm.

4.3.2.6 Impact of AoA Proximity in NLoS Condition

For NLoS environment such as the laboratory shown in Figure 3.14, we design and

implement a dedicated experiment to manifest the AoA based fingerprinting feasibility of

our AngLoc system. Specifically, we first choose 20 test locations which are in the obvious

NLoS conditions from the transmitter. Each of them is surrounded by four predefined RPs.

After acquiring the AoA estimates from all these test positions and their neighboring RP

locations, we then calculate the AoA differences between each test location and its corre-

sponding four RPs in the vicinity. As displayed in Figure 4.18, compared with SpotFi’s

method, the box plot shows that our AngLoc’s AoA estimation method is capable of de-

riving the overall lower level of AoA differences with the four RP neighbors, which nicely

indicates the similar AoA estimations around the neighboring locations. This advantage

further promotes our AngLoc-derived AoA to be a well-qualified position fingerprint for

the accurate indoor location determination.



92 Chapter 4. Enhanced AoA-aware Fingerprint Localization involving CSI Phase

1 2 3 4 1 2 3 4
Neighbor Index (AngLoc)      Neighbor Index (SpotFi)

0

10

20

30

40

50

60

70

A
oA

 D
iff

er
en

ce
 (

de
gr

ee
)

Figure 4.18: The box plot for AoA differences between 20 test locations and their corre-
sponding 4 neighboring RP locations.

4.4 Discussions

In this section, we discuss several unsolved issues in this chapter and propose some pos-

sible solutions, which could further enhance the performance of our proposed AngLoc

localization system.

4.4.1 Device Orientation Calibration

During the fingerprint site survey, we frequently move the HummingBoard embedded

antenna stand among all the RP locations to collect CSI data. In principle, to achieve

preferable AoA estimations, one should always maintain the same device orientation when

moving the antenna stand from place to place. Otherwise, it may incur additional manual

operational error for AoA estimates. To address this potential problem, the commodity

smart robot can be leveraged in our future work, by which we can plan the moving path in
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advance and fix the device orientation automatically, thus further improving AoA based

location fingerprinting accuracy.

4.4.2 Alternative Hardware Implementation

As aforementioned in last Section, our entire experimental framework is established

on the basis of commodity wireless IWL 5300 NIC chipset, which provides IEEE 802.11n

CSI in a format of 30 subcarrier groups for both 20 MHz and 40 MHz bandwidth. In

practice, this sets the limitation for some CSI based applications which demand higher

resolution of CSI subcarriers. Such examples include human activity recognition [112],

indoor distance ranging [113] and so forth. Recently, some other CSI tools like Atheros

CSI tool [26] is getting prevalent in the academic domain due to its non-grouping and non-

compressed CSI reporting. Unlike Intel’s 5300 NIC, the Qualcomm Atheros NIC chipset

is able to report CSI value for each subcarrier, i.e., 56 subcarriers for 20MHz channel and

114 subcarriers for a 40MHz channel. Furthermore, it can also display detailed payload

records and retrieve rich status information about the received packet. These additional

CSI information can be of great value to help further enhance the localization performance

of our AngLoc fingerprinting system.

4.5 Summary

In this chapter, we presented AngLoc, an AoA-aware probabilistic indoor location fin-

gerprinting system using CSI information. In AngLoc, a tap filtering scheme was first

proposed to remove the noisy component in raw CSI measurements. Meanwhile, for achiev-

ing accurate AoA estimation, we employed several phase calibration techniques to further

compensate CSI phase errors. In the offline phase, we adopted AR modeling entropy as

the amplitude based fingerprint since it captures the most informative statistical infor-

mation of CSI amplitude while maintaining a simple structure. In addition, an enhanced

JADE-MUSIC algorithm was leveraged to derive AoA estimates as the CSI phase based

fingerprint. A robust radio map containing both CSI amplitude and phase information

is then readily constructed. In the online phase, for a mobile target, we first narrowed
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down the candidate RP locations by finding RPs with the smallest AR entropy differences.

A novel bivariate kernel regression method was then adopted to precisely infer the tar-

get’s location. In comparison with our previous EntLoc system, experimental results from

the lightweight HummingBoard device showed a superior localization performance of our

proposed AngLoc system with an average accuracy improvement of 35.9% and 28.6% in

both laboratory and classroom testbeds. Additionally, we also examined the impacts of

several parameters on AngLoc’s performance in different indoor scenarios, which empow-

ers us with deepening insights to efficiently and productively conduct our indoor location

fingerprinting.
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5.1 Dissertation Conclusions

Due to the economical deployment beyond existing networks and superior adaptivity to

the sophisticated indoor environment, fingerprint based localization, represented by Wi-

Fi fingerprinting, has attracted much attention in recent academic and industrial trials.

In this dissertation, we demonstrate the feasibility of exploiting the PHY layer channel

state information available on commodity Wi-Fi infrastructure to boost the capabilities

of accurate indoor position determination. On the ground of designing effective location

fingerprinting systems, we summarize this thesis in the following.

First, due to the presence of channel bandwidth limitation and unintentional device

noise, we design a power based tap filtering scheme to largely mitigate the CSI mea-

surement noise. Specifically, we seek the solution in the more intuitive time domain

channel impulse response by converting CFR via IFFT and analyze the resolvable time

taps. Through a power based thresholding scheme, we experimentally unveil the most

multipath-informative, or location-dependent CIR taps. By removing the irrelevant noisy

components, we are able to achieve a more robust probabilistic fingerprint performance

while retaining the desired accuracy. Additionally, we also dive into some deep-rooted

CSI phase error issues. As the sanitized or compensated CSI phase information is of crit-

ical importance for the accurate ranging and direction estimation, we manage to leverage

several phase calibration techniques to acquire adequate and reliable CSI measurements,

which lays a solid foundation for the upcoming location fingerprinting implementation.

Second, in order to exploit the probabilistic inference of the complex indoor wire-

less channel properties, we experimentally validate the infeasibility of traditional channel

statistic based on the Gaussian assumption and resort to the AR modeling based en-

tropy metric, which shares the structural simplicity with RSS while embodying the rich

statistical channel information. On this basis, we proposed EntLoc, an AR entropy of

CSI amplitude based fingerprint localization system using commercial off-the-shelf Wi-Fi

device. Through extensive experiments conducted in a typical laboratory office scenario,

EntLoc demonstrated a superior localization performance with an average accuracy im-

provement of 27.3%, 34.9% and 47.4%, when compared with the state-of-the-art PinLoc,
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FIFS and Horus system, respectively. We envision this work as an early step towards a

generic, pervasive and finer-grained CSI location fingerprinting framework in the complex

indoor environments.

Third, on top of the amenable EntLoc positioning system, which only harnesses the CSI

amplitude information, we further prototype AngLoc, an upgraded location fingerprinting

system involving CSI phase information. It is capable of unleashing the complete location-

aware potentials by employing additional AoA based fingerprint. To be specific, since

the intricate indoor environments can breed similar AR entropy based signatures among

certain predefined reference points, which may be randomly distributed in the area of

interest. It may mightily tamper the location estimation accuracy when some of the remote

RP candidates are falsely involved. The geometric nature of AoA based fingerprint, from

another perspective, complementarily helps to rule out these error-prone RPs and further

improve the location fingerprinting accuracy. In comparison with EntLoc, the experimental

results of our proposed AngLoc from both laboratory and classroom testbeds validate its

improved positioning performance with the mean error reduction of 35.9% and 28.6%,

respectively.

Last but not least, the pursuit towards the easy fingerprinting implementation never

gets tired. Throughout the entire practical study of the CSI based indoor positioning,

we gradually manage to develop the more lightweight and feasible CSI data acquisition

platform based on the HummingBoard Pro embedded system. It tremendously facilitates

our location site survey process and enables us with insightful and bold visions to shed

light on some more complex indoor wireless sensing applications in the future research.

5.2 Perspectives for Future Works

Despite the increasing research interest in recent years, wireless indoor location finger-

printing is still in its infancy. This thesis mainly focuses on leveraging channels state

information on the commodity Wi-Fi infrastructure to improve the accuracy of the prob-

abilistic localization systems. Herein we also point out some possible future research

directions.
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• Machine Learning based Feature Extraction: Depending on the indoor area of inter-

est, the amount and size of measurements recorded at all the reference points could

be incredibly huge. Traditional signal processing approaches turn to be highly ineli-

gible. Under such circumstance, we may resort to the prevalent data-driven machine

learning techniques such as Convolutional Neural Network (CNN) [114, 107]. Some

representative features hidden in the acquired CSI measurements can be extracted

and exploited to match against the stored fingerprint database and finally infer the

target’s physical position.

• Crowdsourcing based Radio Map Updating: In fingerprint based localization systems,

the offline database is often obtained through site survey, where a professional sur-

veyor walks around the site to measure signal signatures at all RP positions. Since

signals may evolve over time, this survey has to be conducted frequently to maintain

a desired performance. This is laborious, time-consuming and costly [115]. There-

fore, we can also consider CSI based fingerprinting crowdsourcing scheme by using

Bayesian Compressive Sensing (BCS) [116] or sparse Bayesian learning [117, 118] to

efficiently update the database and further reduce the labor work for the process of

the fingerprint database construction.

• CSI Temporal Variation Exploitation: Different from the last perspective which ad-

dresses the signal temporal dynamics by crowdsourcing based updating, a promising

alternative for the location fingerprinting can treat this issue from two aspects. For

small-scale time variations (normally in one day), a threshold based decision-making

scheme [119] can be leveraged to decide whether the dissimilarity of two signatures

are due to the location difference or just the normal temporal dynamics at the same

site. For the large-scale temporal dynamics (e.g. days or weeks), channel response-

based signatures tend to be in distinct states. Therefore, these large-scale temporal

dynamics can be modeled as a Markov chain in practice [120], which can be properly

exploited to pinpoint the target’s location.

• Multi-target Simultaneous Localization: One major limitation of fingerprint-based

techniques is that the training phase consumes a significant amount of time and



Chapter 5. Conclusions and Future Works 99

effort. This situation is particularly true when we scale our system to simultaneously

identifying multiple targets, since the training overhead increases exponentially with

the combination of all subjects. In the context of device-based localization system,

RF propagation tool [121] and the approach in [122] can be applied to ease the

effort of radio map construction, thus promoting the commercial practicability of

the promising indoor location-aware industry.
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Luan CHEN
Enhancing Indoor Location Fingerprinting using

Channel State Information

Résumé: Grâce au développement rapide des communications sans fil, la localisation
par empreinte digitale (LF) a favorisé des services géodépendants considérables
dans le domaine de l’Internet des objets. Dans cette thèse, nous avons d’abord
proposé le système EntLoc, qui adopte l’entropie de modélisation autorégressive
(AR) de l’amplitude des informations d’état de canal (CSI) comme empreinte
digitale de localisation. Il partage la simplicité structurelle de la force du signal
reçu (RSS) tout en réservant les informations de canal statistique les plus spé-
cifiques à l’emplacement. De plus, un système AngLoc amélioré est également
conçu, dont l’empreinte digitale d’angle d’arrivée (AoA) supplémentaire peut être
récupérée avec précision de la phase CSI grâce à un algorithme amélioré basé sur
le sous-espace, qui sert à éliminer davantage les candidats au point de référence
(RP) sujets aux erreurs. Dans la phase LF en ligne, en exploitant à la fois les
informations d’amplitude et de phase CSI, un nouveau schéma de régression par
noyau bivarié est proposé pour déduire précisément l’emplacement de la cible. Les
résultats d’expériences approfondies en intérieur valident la performance de local-
isation supérieure de notre système proposé par rapport aux approches précédentes.

Mots clés: Localisation indoor, informations des canaux, entropie, traitement
du signal du réseau, régression par noyaux.

Abstract: With expeditious development of wireless communications, Location
Fingerprinting (LF) has nurtured considerable indoor location based services in the
field of Internet of Things. In this thesis, we first proposed EntLoc system, which
adopts Autoregressive (AR) modeling entropy of the Channel State Information
(CSI) amplitude as location fingerprint. It shares the structural simplicity of the
Received Signal Strength (RSS) while reserving the most location-specific statistical
channel information. Moreover, an upgraded AngLoc system is further designed,
whose additional angle of arrival (AoA) fingerprint can be accurately retrieved from
CSI phase through an enhanced subspace based algorithm, which serves to further
eliminate the error-prone Reference Point (RP) candidates. In the LF online phase,
by exploiting both CSI amplitude and phase information, a novel bivariate kernel
regression scheme is proposed to precisely infer the target’s location. Results from
extensive indoor experiments validate the superior localization performance of our
proposed system over previous approaches.

Keywords: Indoor localization, channel state information, entropy, array signal
processing, kernel regression.
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