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Abstract

The oceanic motions are composed of eddies with a very large horizontal scale and 3D prop-
agating internal gravity waves. Its kinetic energy spectra follow the well-known Garrett
and Munk spectrum, which is usually interpreted as the signature of interacting internal
gravity waves. Our main motivation is to reproduce the turbulence regime observed in
nature by forcing waves.

Two-dimensional (2D) stratified flows on a vertical cross-section differ from its anal-
ogous three-dimensional flows in its lack of vertical vorticity, supporting only waves and
shear modes. In this PhD work, we perform a numerical study of 2D stratified turbulence
forced with internal gravity waves. We get rid of the shear modes, sustaining a system
only with wave modes. Unlike precedent studies, the forcing is applied to a localized region
of the spectral space, in which forced internal waves have a similar time scale. We force
intermediate-scale waves to allow the dynamics to develop both upscale and downscale
energy cascade.

We first present the different regimes of 2D stratified turbulence with a particular
interest in the ocean-like regime, i.e. strong stratification and large Reynolds number.
The dynamics of the energy cascade is analysed by means of the spectral energy budget.
Furthermore, we check if it is possible to obtain turbulence driven by weakly non-linear
ineracting waves by performing a spatio-temporal analysis. To conclude, we report results
of numerical simulations forced either on the vorticity or on the eigenmode of the Navier-
Stokes equations in order to study the degree of universality of 2D stratified turbulence
with respect to the forcing.

Résumé

Les écoulements océaniques sont composés des tourbillons ayant une grande échelle hor-
izontale et des ondes internes de gravité. Le spectre d’énergie cinétique suit le fameux
spectre de Garrett et Munk qui est habituellement interprété comme la signature des on-
des internes de gravité. Notre motivation principale est donc de reproduire le régime de
turbulence observé dans la nature avec un système forcé seulement avec des ondes.

Les écoulements stratifiés bidimensionnels (2D) sur une section transversale verticale
diffèrent des écoulements stratifiés tridimensionnels par l’absence de vorticité verticale
et par la présence d’ondes et de modes de cisaillement. Dans ce travail de thèse, nous
effectuons une étude numérique de la turbulence stratifiée 2D forcée par des ondes internes
de gravité. Nous éliminons les modes de cisaillement pour avoir un système uniquement
constitué d’ondes. Contrairement aux études précédentes, le forçage est appliqué à une
région localisée de l’espace spectral. Nous forçons aussi les ondes avec une échelle spatiale
intermédiaire pour permettre le développement d’une cascade d’énergie directe et aussi
inverse.

Nous présentons d’abord les différents régimes de turbulence stratifiée 2D avec un
intérêt particulier au régime typique de l’océan avec une forte stratification et un grand
nombre de Reynolds. La dynamique de la cascade d’énergie est analysée par un bilan
énergétique spectral. Ensuite, nous vérifions s’il est possible d’obtenir un régime de tur-
bulence d’onde faible en réalisant un analyse spatio-temporelle. Nous étudions enfin le
degré d’universalité de la turbulence stratifiée 2D par rapport au forçage.
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Chapter 1

Introduction to the dynamics of
geophysical flows

Geophysical flows such as the atmosphere and oceans play a critical role in the Earth’s
climate system. They are the major contributors to the transport of heat from the sub-
tropical latitudes to the polar regions. In particular, almost all the transport of heat from
the equator to the poles, is achieved by currents, turbulent eddies and waves. Understand-
ing the character of these eddy transports is crucial if we want to understand the response
of the planets climate to changes in the external forcing. Moreover, the dynamics of geo-
physical flows is stronly affected by density stratification. The atmosphere is stratified
in temperature, and the ocean is stratified in both temperature and salinity. Our main
motivation is to better understand the dynamics of turbulent flows strongly affected by the
density stratification by means of Direct Numerical Simulations (DNS). In this chapter, I
introduce the role of oceans and the atmosphere on the global climate system. I review
the notion of the density stratification and its consequences on geophysical flows. Finally,
I present the stratified turbulence approach which describes accurately some ocean and
atmospheric turbulence measurements.

1.1 Atmosphere and ocean’s role in the Earth’s climate sys-
tem

The atmosphere and oceans are crucial elements of the Earth’s climate system (Pedlosky,
1987; Vallis, 2006). The ocean, together with the atmosphere, transports heat away from
the equator toward higher latitudes thereby keeping the equator to pole temperature dif-
ference to less than 40◦C. In the absence of the ocean and atmosphere, the temperature
difference would exceed 100◦C. In the atmosphere, the mechanisms responsible of the heat
transport are large-scale eddies. The largest and most energetic eddies in the atmosphere
have scales in excess of 1000 km, while large eddies in the ocean are typically on the order
of 100 km in size. In the ocean, mesoscale eddies (10-100 km) and internal waves play an
important role in the transport of heat, carbon and other climatically important tracers
across the oceans (Wunsch, Ferrari, 2004). Figure 1.1 displays the Gulf stream. It is a
warm and swift Atlantic ocean current that originates in the Gulf of Mexico, and follows
the eastern coastlines of the United States before crossing the Atlantic Ocean. It is re-
sponsible of the heat transport from the Equator to middle and high lattitudes. One can
observe the formation of mesoscale eddies right next to the coastlines of the United States.
These mesoscale eddies emerge mainly due to the strong horizontally sheared motions. At
slightly smaller scales, sub-mesoscale eddies, order of tens of kilometers, are generated by
the misalignment of the pressure gradient with the density gradient in a process known as
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8 CHAPTER 1. DYNAMICS OF GEOPHYSICAL FLOWS

baroclinic instability. Both mechanisms lead to hot spots of eddy energy in the vicinity of
the Gulf stream and the Antartic Circumpolar Current.

Figure 1.1: The Gulf stream is an Atlantic ocean current which transports heat from
the the subtropical regions to the high latitudes. The interaction of the current with the
continental coastlines generates the mesoscale eddies. The image was generated by NASA
using a simulation run with the MIT general circulation model as part of the ECCO
project.

Furthermore, the ocean participates in storing carbon dioxide from the atmosphere
(Rahmstorf, 2002; Schuster, Watson, 2007). The ocean stores 60 times more carbon than
the atmosphere thereby keeping the greenhouse effect at bay. The ocean is also a key
regulator of life on our planet: ocean phytoplankton generates half of the oxygen we
breath. It is absolutely necessary to understand how the ocean achieves these global
effects. This requires understanding the physics that drives large scale currents on scales
of thousand of kilometers down to the swirls that mix waters on scales of millimeters.

1.1.1 Large-scale circulation of the Earth’s ocean

The ocean circulation is the result of a balance between wind forcing and air-sea heat and
freshwater fluxes at planetary scales and dissipation at centimeter scales (Wunsch, Ferrari,
2004; Vallis, 2006; Ferrari et al., 2014). The ocean circulation can be therefore divided
into two main components: a fast and energetic wind-driven surface circulation, and a
slow and large density-driven circulation which dominates the deep sea. Wind-driven
circulation is by far the most dynamic. Blowing wind produces currents at the surface
of the ocean which are oriented at 90 degrees to its direction due to the Earth rotation
(Ekman transport). As a consequence, it creates zones of convergence or divergence of
ocean currents at the point where they meet. Divergence of currents creates an upwelling
phase (interior waters reach the surface) and convergence a downwelling phase (surface
waters sink in the interior ocean). The Gulf stream, discussed in figure 1.1, is wind-driven
ocean current.

The slow and deep circulation, also called thermohaline circulation, is largely driven
by water density, and thus its temperature and salinity. It acts on the ocean as a whole
and has a major influence on the abyssal properties where wind-driven circulation has no
effect. Figure 1.2 is a schematic representation of the thermohaline circulation. In the
Artic and Antartic regions, the cold dense water sinks and spreads over the entire ocean
basins. The replacement of these dense sinking waters generates a continuous surface flow
coming from low latitudes.
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Figure 1.2: Schematic representation of the thermohaline circulation. Deep ocean water
masses are formed in the Arctic and Antarctic regions (high latitudes) by sinking of dense
water (downwards arrows). The replacement of these deep water masses generates a
continuous surface flow coming from low latitudes (horizontal arrows). In the equator deep
waters close the loop by going up to the surface (upwards arrows in the equator). Image
extracted from the website MIT Earth, Atmospheric and Planetary Science Department.

1.1.2 Deep ocean circulation and climate change

The deep ocean is a huge storehouse of heat, carbon, oxygen and nutrients. Deep ocean
circulation regulates uptake, distribution and release of these elements. The low over-
turning rate stabilizes our global climate. By carrying oxygen into the deeper layers it
supports the largest habitat on earth. Recent theories predict that global warming will
have a negative impact on the deep ocean circulation. Most studies have focused on the
northern Atlantic (Broecker, 2003). The formation of dense sinking surface water in the
Arctic region will be counteracted by a higher atmospheric temperature and by release of
fresh water by ice melting. The feeding of the Atlantic Meridional Overturning Circula-
tion, which drives warm Gulf Stream waters to the north, will thus be reduced. Besides,
the density of the North Atlantic Deep Water will be lower. The cold return current will
flow closer to the ocean surface. It is expected that these factors will cause significant
cooling of the West European climate. Ice melting and resulting fresh water releases in
the Antarctic region will hamper the formation of Antarctic Bottom Water (AABW).
Model simulations indicate that this may entail considerable warming of deep waters in
the entire Pacific. The impact of fresh water releases in the Antarctic region on the global
climate and sea-level rise could even be greater than the impact of freshening of the Arctic
waters.

1.1.3 Energy for maintaining the large-scale ocean’s circulation

To maintain the large-scale thermohaline circulation of the ocean, it has been estimated
that about 2.1 TW (1012 Watts) of mixing energy is required (Munk, Wunsch, 1998).
Figure 1.3 quantifies the energy exchanged in all ocean processes. It has long been rec-
ognized that winds and tides are two important sources of mechanical energy to drive
the ocean interior mixing. Although most of the tidal energy from Moon and Sun on the
global ocean is dissipated in the shallow seas, perhaps 1.0 TW or more of the tidal energy
dissipation occurs in the deep ocean through the scattering by ocean-bottom topography
of surface tides into internal tidal waves (Egbert, Ray, 2000). The breaking of internal
waves is believed to be a principal contributor to pelagic turbulence.
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The winds can also generate internal gravity waves in the surface layer of Earth’s
oceans, which are called near-inertial oscillations due to the peak wave energy near the
inertial frequency. They are thought to play an important role in diapycnal mixing to
sustain the global system of thermohaline circulation. But the exact contribution of wind
power to these near-inertial motions and wind’s relative importance compared to tidal
forces remain topics of debate (Liu et al., 2019).

Figure 1.3: Global energy budget of the Earth’s oceans. The arrows represent the energy
fluxes in terawatts (1 TW = 1012 Watts). Image extracted from Ferrari, Wunsch (2010).
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1.1.4 The effect of rotation on the atmosphere and ocean dynamics

The dynamics of the atmosphere and the ocean are affected by the Earth’s rotation, and
the importance of this effect varies with scale. The influence of rotation and density strat-
ification weakens as one moves downscale. The rotation is present through the horizontal
component of the Coriolis force, f = 2Ω0 sinλ (Coriolis parameter), where Ω0 ' 7.3×10−5

rad/s is the angular speed of the Earth and λ is the latitude. The non-dimensional quan-
tity which quantifies the rotation effects is the Rossby number Ro = U/fL, where U
and L are the characteristic velocity and length scales, and f is the Coriolis parameter.
According to the classical view, rotation weakens more rapidly than stratification over
most of the atmosphere and ocean (Waite, Bartello, 2006a). The typical time scale of the
stratification is indeed smaller than the rotation time scale. The atmospheric mesoscale
(10-100 km) and oceanic submesoscale (1-10km) are characterized by strong stratification,
but only moderate rotation Ro & 1 (Emanuel, 1986). Stratified turbulence without the
rotation effects (with Ro =∞) is often studied as a first approximation to this regime. In
this PhD work, I do not consider the rotation effects.

1.2 Density stratification of the ocean and the atmosphere

A density stratified environment is a medium that changes its density with its vertical
location. When difference of density exists within a fluid, it tends to redistribute so that
the lighter fluid remains above the heavier forming a stable stratification profile. This
particular configuration is stable in time and if not perturbed, static. When the fluid
is slightly vertically displaced from its equilibrium position, it feels a buoyancy restoring
force opposite to the direction of the displacement. Furthermore, it is responsible of the
generation of the oscillatory motions in the atmosphere and the oceans.

Atmosphere. The atmosphere is divided in four main layers as displayed in figure 1.4
(left). The bottom layer is called the troposphere at a height 10 km from the Earth’s
surface. At this layer, turbulence is generated as wind blows over the Earth’s surface and
thermals rising from the land. The stratosphere extends upwards from the troposphere to
about 50 km. These two layers contain most of the energy of the atmosphere. The region
above the stratosphere is called mesosphere. Finally, the thermosphere extends to about
600 km altitude.

We now focus on the temperature profile of the atmosphere. A different quantity than
the in situ temperature is usually used to get rid of the increasing/decreasing of tempera-
ture due to compression/expansion of a fluid parcel. This quantity is called the potential
temperature. Figure 1.4 (right) displays both in situ and potential temperature profiles in
the troposphere and stratosphere. One can observe that the decrease of temperature in the
troposphere (blue line) is associated mainly with the decrease of pressure with height since
the potential temperature (red line) slightly increases with height. In the stratosphere,
the potential temperature still increases while the in situ temperature remains constant.
We can conclude that the potential temperature increases with height indicating that the
atmosphere is stable overall.
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Figure 1.4: Schematic representation of the four main layers of the atmosphere extracted
from Sutherland (2010) (left). Temperature and potential temperature profiles of the
troposphere and stratosphere on 24th February 1999 at a middle latitude (right).

Oceans. The internal structure of the ocean has taken longer to be measured because
it is much more inaccessible than the atmosphere. The ocean is composed of three main
layers displayed in figure 1.5. The surface zone (about 100 m deep) is homogeneous in
both temperature and salinity. This layer undergoes strong mixing generated by contact
with the atmosphere through wind and temperature changes. The Pycnocline is the layer
with the largest density gradient and is located 200-600 m below the ocean surface. This
layer inhibits the vertical motion and acts as a barrier between the surface layer and the
abysmal layer. The abysmal layer is the deepest layer, about 4 km thick, with a weak
density gradient.

Figure 1.5: Schematic density profile for the open ocean at middle latitudes. Image
extracted and modified from Webb (2019).
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1.2.1 Stable density stratification: the buoyancy frequency

In section 1.2, we have underlined that the atmosphere and oceans are stratified in density
due to the differences in temperature and salinity. All motions parallel to the direction of
gravity are affected by a restoring force proportional to the density stratification. Vertical
motions are therefore considerable smaller than the horizontal motions. Furthermore,
stratified fluids support the generation of oscillatory motions. The computationof the
characteristic time scale of these oscillatory motions is reviewed in this section.

We consider a stable density stratification, where light fluid is above a dense fluid.
When a fluid particle is slightly vertically displaced, it feels a buoyancy restoring force
acting in the opposite direction of the motion. The force acts as a spring, and therefore the
fluid oscillates around the equilibrium position. These oscillations are known as internal
gravity waves (hereafter, IGW). We consider a stably stratified fluid at rest with respect to
a Galilean reference frame (0, x, z), with z oriented upward. The density ρ0(z) decreases
along the vertical axis, ∂zρ0(z) < 0. Considering an incompressible fluid, a fluid particle
vertically displaced δz from its initial position is subjected to two forces: the buoyancy
force ρ0(z + δz)g and its weight −ρ0(z)g. The Newton’s equation of motion is expressed
as

ρ0(z)
d2δz

dt2
= [ρ0(z + δz)− ρ0(z)]g. (1.1)

Assuming small displacements δz of the fluid particle

d2δz

dt2
=
ρ0(z + δz)− ρ0(z)

ρ0(z)
g =

g

ρ0(z)

dρ0(z)

dz
δz, (1.2)

which can also be written as
d2δz

dt2
+N2δz = 0. (1.3)

Equation 1.3 corresponds to equation of an harmonic oscillator with a natural frequency
N , also called buoyancy frequency or Brunt-Väisälä frequency, which is expressed as

N2 = − g

ρ0(z)

dρ0(z)

dz
. (1.4)

The value of N characterizes the stratification within a fluid. A perturbation in a
stratified fluid within produces an oscillation with a characteristic frequency N . In the
stratosphere, the N reaches values of order N = 10−2 rad/s. In the ocean, the buoyancy
frequency in the pycnocline is of order N = 10−2 rad/s. In the abyssal region of the ocean,
N decreases to values of order N = 10−3, 10−4 rad/s. Since the atmospheric and oceanic
density profile is not constant, the value of N can vary notably with the vertical direction.
In this PhD work and for simplicity reasons, I consider a linear density stratification, i.e.
N is constant.

1.2.2 Linear internal gravity waves

The oscillatory perturbations that propagate in a stable stratified fluid are called internal
gravity waves. They are observed in the atmosphere, at scales ranging from meters to
kilometers (Staquet, Sommeria, 2002). The most common sources of internal waves are
the wind blowing over topography, also called Lee waves (Wurtele et al., 1996), cumulus
convective clouds and the sudden formation of turbulent patches by a dynamical instability.
Internal gravity waves can be observed by cloud patterns (see figure 1.6). As the waves
generate vertical motion of the air, the moisture in the air condenses into water.

Internal gravity waves in the ocean’s interior have been reported since the beginning
of the twentieth century as fluctuations of velocity and temperature, forming background
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atmospheric IGW

Australia

Indian Ocean

Figure 1.6: Atmospheric gravity waves ripple the surface of the Indian Ocean in front of
the Australian coast. The internal waves are mirrored by wave clouds in the atmosphere.
The image was taken by the Terra satellite on November 11, 2003. Image from NASA.

“noise,” which often dominates the mean currents. In some cases, the SAR (synthetic
aperture radar), in being sensitive to the roughness of the sea surface, is able to provide
“footprints” of oceanic internal waves (whose associated flow perturbs the sea surface).
The main sources of internal wave generation in the ocean are the interaction of tides
with topography and wind stress fluctuations (MacKinnon, 2013). As in the atmosphere,
the displacement of a stratified fluid over topography generates waves at different fre-
quencies depending on the size and shape of the topographies and on the velocity of the
flow. The different types of internal gravity wave generation are summarized in Garrett
(2003). The generation of internal waves due to tides passing through a topography has
been widely studied experimentally (Gostiaux, Dauxois, 2007) and numerically (Nycan-
der, 2005). These studies aim to estimate the energy transfer between tides and internal
gravity waves, which is thought to be not negligible in the oceanic energy budget (Wunsch,
Ferrari, 2004).

Figure 1.7: Schematic representation of the generation sources of internal gravity waves.
There are three main mechanisms: tidal flow over steep or rough topography (lower right);
fluctuating wind stress on the ocean surface (upper left); and quasi-steady flow over rough
topography (lower left). Extracted from MacKinnon (2013)
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Linear operator supports wave solutions

In this section, I describe under which conditions the internal gravity waves arise from
the equation of motion. We consider the Navier-Stokes equations for a stratified fluid.
The density of a fluid particle ρ = ρ0 + ρ̄+ ρ′ can be expressed as the sum of a reference
density ρ0, a density profile ρ̄, and a density fluctuation ρ′. At this point, it is convenient to
assume the Boussinesq approximation. It states that, under the condition that the density
profile and density fluctuation are small in comparison to the reference density, ρ̄ � ρ0
and ρ′ � ρ0 respectively, we can neglect the density fluctuation term in the equation of
motion except where it appears with the gravity. The dynamics of an incompressible and
stratified fluid is therefore described by the Navier-Stokes equations with the Boussinesq
approximation as

∂tu+ u ·∇u = −∇p+ bez + ν∇2u, (1.5)

∂tb+ u ·∇b = −N2uz + κ∇2b, (1.6)

∇ · u = 0. (1.7)

The velocity field is u = [ux, uy, uz]. The scalar pressure field is expressed as p. The
buoyancy term is b = (ρ′/ρ0)g, where ρ′ is the density fluctuation. Molecular coefficients
are ν and κ, respectively. N is the Brunt-Väisälä frequency. Here, we only consider the
linear and non-viscous terms of the above equations. By doing so, we avoid the interaction
among the scales of the flow. The linear system of equations (1.5) to (1.7) is

∂tu = −∇p+ bez, (1.8)

∂tb = −N2uz, (1.9)

∇ · u = 0. (1.10)

Applying the divergence operator in equation (1.8), we obtain

∂t(∇ · u) = −∇2p+ ∂zb⇒ ∂zb = ∇2p. (1.11)

We apply the Laplacian operator to the z component of equation (1.8)

∂t(∇2uz) = −∂z∇2p+∇2b = −∂zzb+∇2b = ∂hb, (1.12)

where the linear operator is ∂h = ∂xx + ∂yy. We compute the time derivative, it gives

∂tt(∇2uz) = −N2∂huz ⇒ ∂t(∂hb) = −N2∂huz. (1.13)

The linear system of equations can be written as

∂t(∇2uz) = ∂hb, (1.14)

∂t(∂hb) = −N2∂huz. (1.15)

Applying the time derivative to equation (1.14), we obtain

∂tt(∇2uz) = −N2∂huz (1.16)

The expression (1.16) is the wave equation of the linear internal gravity waves.
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Anisotropic linear dispersion relation

The system of equations (1.8) to (1.10) accepts plane wave solutions such as

uz = Uze
i(k·x−ωt), (1.17)

b = Bei(k·x−ωt), (1.18)

where k is the wavevector and ω is the frequency. Applying the above wave plane solutions
to the equation (1.16), we obtain the linear dispersion relation of the internal gravity waves

ω2 = N2 k2h
k2h + k2z

= N sin θ, (1.19)

where θ is the angle formed by the wavevector k and the vertical axis (see figure 1.8).
The frequency of internal gravity waves depends only on the direction of propagation and
not on the wavelength and it ranges within [0, N ]. The wavelength of the internal waves
is imposed by the size of the forcing oscillation. The dispersion relation equation (1.19)
contains the anisotropic character of the internal gravity waves. The phase and group
velocities are, respectively,

cψ = (ω/k)ek, (1.20)

cg = (N/k) cos θ(cos θeh − sin θez). (1.21)

The phase velocity (parallel to the wavevector k) is perpendicular to the group velocity
cψ ⊥ cg. Furthermore, the vertical component of the phase velocity is always opposite to
the vertical component of the group velocity, as shown in figure 1.8. Waves that appear
to propagate their phase upwards will be propagating their energy downwards and vice
versa.

kz

kh

k

θ

cψ

cg

Figure 1.8: Schematic representation of the propagation of internal gravity waves. The
phase and group velocities are perpendicular. The group velocity is parallel to the direction
of propagation of the energy. Background field courtesy of Lérisson, Chomaz and Ortiz
(LadHyX, France)

Two different situations arise depending on the value of the angle θ (see figure 1.9).
For low values of θ, internal waves have a low aspect ratio (small vertical scale and large
horizontal scale). The phase propagates quasi-vertically with a low frequency ω � N .
The energy propagates quasi-horizontally, cg ' (N/k)ex. For large values of θ, we have
internal waves with a large frequency ω ∼ N and with large vertical scales and small
horizontal scales. The energy propagates quasi-vertically cg ∼ (N/k)(π/2 − θ)ez. The
internal gravity waves in the ocean and in the atmosphere correspond to the first type
with a low aspect ratio (Garrett, Munk, 1979; Dewan et al., 1998; Lindborg, Brethouwer,
2007).
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Figure 1.9: Schematic representation of two internal gravity waves: (a) wave with small
frequency ω � N . (b) wave with frequency ω ' N . Schema extracted from (Augier,
2011).

Several non-dimensional quantities will be used in this PhD thesis in order to char-
acterize the outcome dynamics. The first non-dimensional quantity is F = ω/N = sin θ,
which indicates the direction of propagation of internal gravity waves. The variation of
the non-dimensional quantity F has been discussed in figure 1.9. Furthermore, shear
instabilities and overturning might be developed in the flow. We use also a second non-
dimensional parameter, the Richardson number, which compares locally the vertical shear
of the velocity with the stratification and is expressed as

Ri = −(g/ρ0)∂zρ/|∂zuh|2. (1.22)

For Ri < 0, the flow is locally unstable by the gravitational instability since ∂zρ0 > 0.
For 0 < Ri < 1/4, the flow might develop shear instabilities, also called Kelvin-Helmholtz
(Miles, 1961). For Ri > 1/4, the flow is locally stable.

1.3 Ocean and atmosphere are turbulent flows

Atmosphere and oceans are turbulent in the sense that motions on wide range of scales,
from few centimeters to thousand of kilometers, continuously cohabit and interact. They
transfer energy from one scale to another scale until the energy is dissipated at small
scales by the viscosity. For example, in the atmosphere, the flow is forced at scales of
hundreds of kilometers (mesoscale eddies) and the dissipation acts on a scale of the order of
centimeters. The mesoscales eddies are too large and fast to be affected by the dissipation.
The non-dimensional number that quantifies the effect of the dissipation on the dynamics
is the Reynolds number Re. It is defined as Re = ULh/ν, where U and Lh are the
characteristic velocity and horizontal scale, respectively. ν is the kinematic viscosity. For
large Re, the large-scale dynamics are weakly affected by the viscous dissipation. The
forced hydrodynamic structures develop and transfer energy, by non-linear mechanisms
(instablities), among the scales. For instance, in homogeneous isotropic turbulence (HIT
or classical turbulence), the energy is transferred from large to small scales. This transfer
of energy, also called energy cascade, was first introduced by Richardson (1922). In the
early forties, Kolmogorov predicted power laws for the energy cascade in homogeneous
isotropic turbulence (HIT), k−5/3 where k is the wavenumber, In this section I briefly
introduce the notions of turbulence in the atmosphere and oceans. I discuss the energy
repartition among the scales by means of the measured energy spectra (energy as function
of a wavenumber k).
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1.3.1 Atmospheric turbulence

Atmospheric turbulence is characterized by small scale and irregular air motions produced
by winds that vary in speed and direction. Turbulence is important because it mixes and
churns the atmosphere and causes water vapour, smoke, and other substances, as well as
energy, to become distributed both vertically and horizontally. The atmospheric large-
scales are weakly affected by the viscous dissipation, i.e. large Reynolds number Re.
Large Re flows display a wide inertial range (scales weakly affected by the dissipation) in
the energy spectra. If we consider a characteristic velocity and length scale U ∼ 10 m/s
and Lh ∼ 1000 km, and a kinematic viscosity of the air ν ' 10−5 m2/s, a characteristic
Reynolds number for the atmosphere is Re ' 1012, meaning that a wide range on scales
are weakly affected by the viscous dissipation.

Figure 1.10 represents the horizontal spectra (function of the horizontal wavenumber)
of the zonal and meridional winds, and potential temperature near the tropopause from
the Global Atmospheric Sampling Program aircraft data (Nastrom, Gage, 1985). At large
scales (Lh ≥ 500 km) the spectra follows the power law k−3 (see red line in figure 1.10). The
dynamics is dominated by the geostrophic turbulence (pressure gradient of the equation
(1.5) balanced by the Coriolis terms fv) and is strongly affected by the stratification and
Earth’s rotation. One can observe a transition on the spectra from a power law k−3 to
k−5/3 at scales Lh ' 500 km. The k−5/3 power-law is usually interpreted as classical 3D
homogeneous and isotropic turbulence. However, the classical turbulence approach can
not be used because large scales are still strongly affected by the stratification.

Figure 1.10: From left to right, horizontal spectra of zonal wind, meridional wind, and
potential temperature near the tropopause. The spectra for meridional wind and temper-
ature are shifted 1 and 2 decades to the rigth, respectively. The red vertical line displays
the scale for which the transition appears. Reproduced from Nastrom, Gage (1985)
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1.3.2 Ocean turbulence

Oceanic motions are forced by large-scale atmospheric winds and heat/freshwater fluxes.
The first major transfer is from the large-scale currents to the mesoscale eddies (Thorpe,
2005; Zhang et al., 2014). The large-scale ocean currents are unstable and generate ed-
dies with scales of 10 to 100 kilometers, also called mesoscales eddies. They interact and
generate submesoscale turbulent filaments on scales from 10 kilometers to 100 meters.
These motions are primarily horizontal constrained by the ocean stratification and ro-
tation. Only at scales below approximately 100 meters, the turbulence is described as
stratified microscale turbulence. In the ocean interior, microscale stratified turbulence
develops when internal waves develop strong shears and overturn and break, much like
surface gravity waves (Wunsch, Ferrari, 2004). These breaking events play a fundamental
role in the ocean circulation because they carry energy and momentum to other regions
of the ocean, enhancing mixing.

Two main motions cohabit together in the ocean: mesoscale eddies, and internal grav-
ity waves. Mesoscale eddies are strongly affected by the rotation with a characteristic
horizontal scale much larger than the vertical scale Lx � Lz. They have been observed by
ocean buoys (Zhang et al., 2013) and satellites (Gaube et al., 2015). Furthermore, oceans
support also the propagation of internal gravity waves. We have underlined that the main
sources of internal wave generation are tides passing over the seafloor (Wunsch, Ferrari,
2004) and strong winds blowing over the sea surface (Dewan et al., 1998).

1.3.3 Ocean observations interpreted as a pure wave mechanism: the
Garrett - Munk spectra

Despite the two main motions in the deep ocean (eddies and internal waves), the turbulent
measurements are usually interpreted as the signature of a pure internal wave mechanism.
Garrett, Munk (1975) presented an empirical model based on the superposition of internal
gravity waves in order to explain a set of oceanic observations carried out in the 70’s. The
measurements used for the elaboration of the model were

• Moored spectra of the vertical displacement Fξ(ω) based on Fofonoff (1969); Webster
(1972).

• Towed spectra of the vertical displacement Fξ(kx) based on Katz (1973).

• Dropped spectra of the vertical displacement Fξ(kz) and of the current components
Fu,v(kz) based on Sanford (1975).

The empirical model proposed by Garrett, Munk (1979) (Garrett and Munk spectrum)
summarizes into one single energy spectrum E(kz, ω) which scales as E(kz, ω) ' Nk−2z ω−2,
for frequencies f < ω < N , where f is the Coriolis parameter, and large vertical wavenum-
bers kz. Figure 1.11 displays the frequency and the vertical wavenumber spectra of the
vertical displacement of the isotherms extracted from Cairns (1975) and Millard (1972),
respectively. In figure 1.11 (a), we observe that the frequency spectrum displays a ω−2

power-law for frequencies lower than the buoyancy frequency. In figure 1.11 (b), the verti-
cal wavenumber spectrum follows a k−2z power-law at large vertical scales. Both observa-
tions were used by Garrett, Munk (1975, 1979) to build the Garrett and Munk spectrum.
More recent works have used the approach of wave turbulence to characterize the oceanic
wavefield (Lvov et al., 2004; Polzin, Lvov, 2011). They proposed a spectral curve, which
includes the Garrett and Munk spectrum, as a solution of the kinetic equation of a wave-
field. These recent approaches will be discussed later in section 1.4.5. However ocean
turbulent measurements are interpreted as a signature of only internal gravity waves, we
have underlined the presence of vortical motions (eddies) interacting with the waves. In
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this PhD work, we challenge the hypothesis that the ocean dynamics can be described as a
pure wave mechanism. We attempt to answer the following question: are we able thereby
to reproduce the wave energy spectrum model proposed by Garrett, Munk (1979) with a
system only with oscillatory modes?

(a) Cairns (1975) (b) Millard (1972)

Figure 1.11: (a) Frequency spectra of the vertical displacement of the isotherms measured
at 30◦20’N, 121◦20’W on June 1973. The image has been extracted from Cairns (1975).
(b) The dropped spectrum of the vertical displacement according to Millard (1972).

Stratified turbulence as an interpretation of oceanic observations

The energy spectra of the ocean is strongly anisotropic (Callies, Ferrari, 2013; Kunze,
2019), meaning that the horizontal and vertical energy spectra are different. This is due
to the strongly anisotropy of their dynamics due to stratification and rotation effects.
The anisotropy takes place mainly at large scales, whereas the small scales are mostly
isotropic. This anisotropy on the large-scale dynamics, for different stratification strengths
and different Reynolds numbers, will be discussed in chapter 4. Figure 1.12 displays
schematically the anisotropic energy spectra observed in the ocean. The red and blue lines
represent the horizontal and vertical energy spectra respectively. Both energy spectra are
compensated by the power law k−5/3. The horizontal wavenumbers are normalized by the
Ozmidov wavenumber ko = (N3/ε)1/2, where N is the buoyancy frequency and ε is the
mean energy dissipation rate. The vertical wavenumbers are normalized by the buoyancy
wavenumber kb = N/U . At large scales, the horizontal energy spectrum follows steepens
as k−3x associated with a downscale enstrophy cascade of 2D turbulence. The large-scale
structures contain a huge amount of energy. The dynamics are indeed quasi-geostropic
(QG turbulence) strongly influenced by the rotation. At smaller horizontal scales there is

a transition of the energy spectrum, shallowing towards a k
−5/3
x power-law as in classical

turbulence (Cho, Lindborg, 2001). Nevertheless, it can not be considered as classical
turbulence because, as it has been mentioned before, the large scales are still strongly
affected by the stratification. We now focus on the vertical energy spectra (blue line). At
large vertical space the spectrum follows k−2z before steepening with N2k−3z . The spectral
break occurs at the buoyancy wavenumber kz/kb ∼ 1. Small scales do not feel the effect
of the stratification. The spectrum follows therefore the power law of classical turbulence
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k
−5/3
z . Is part of this energy spectra a cascade of pure weakly interacting internal gravity

waves?

Figure 1.12: Schematic representation of the compensated energy spectra observed in
the ocean. The red and blue lines represent, respectively, the horizontal and vertical
components of the energy spectra. The horizontal wavenumbers are normalized by the
Ozmidov wavenumber ko = (N3/ε)1/2, where ε is the mean dissipation rate of energy. The
vertical wavenumbers are normalized by the buoyancy wavenumber kb = N/U .

1.4 Turbulence in stratified fluids

Geophysical flows such as the ocean and atmosphere are turbulent and stratified. Un-
derstanding their dynamics is crucial in the formulation of accurate parametrizations for
climate and meteorological models. In the recent years, stratified turbulence has became
an accurate interpretation of some geophysical observations (Riley, Lindborg, 2008). In
this section, I review the stratified turbulence theory for 3D and 2D flows.

1.4.1 The Froude number in the strongly stratified turbulence regime

The Froude number is a non-dimensional parameter which represents the ratio between a
characteristic buoyancy time scale and a characteristic inertial time scale. The horizontal
and vertical Froude numbers are defined as

Fh =
U

LhN
Fv =

U

LvN
, (1.23)

where U is a horizontal characteristic velocity, Lh and Lv are the horizontal and vertical
characteristic length scales and N is the buoyancy frequency. In the past, much of the work
in stratified turbulence were based on the condition of small Froude number, Fh ∼ Fv � 1.
For instance, Riley et al. (1981) performed a scaling analysis of stratified turbulence under
the condition of small Froude number (Fh ∼ Fv � 1), and with no condition on the
Reynolds number. The resuting flow was dominated by horizontally quasi-non-divergent
motion with similarities with 2D dynamics. In a recent work, Billant, Chomaz (2001)
performed a similarity analysis of the Boussinesq equations. They showed that the vertical
Froude number is of order unity Fv ∼ 1 in the limit of strongly stratified turbulence. This
strongly non-linear regime is different to the classical Fh ∼ Fv � 1 regime considered by
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Riley et al. (1981). In the regime proposed by Riley et al. (1981), the horizontal layers are
strongly coupled by dissipative effects with strong vertical gradients. The development
of small vertical scales is not possible due to the dissipation. It prevents the flow to go
towards Fv ∼ 1. In this PhD work, we focus mainly on the strongly stratified regime
(Fh � 1 and Fv ∼ 1) due to its similarity with the regimes observed in nature.

1.4.2 Scaling analysis and the buoyancy Reynolds number

In the past, much of the work of stratified turbulence was focused on the condition of small
vertical Froude number Fv � 1. Furthermore, we have underlined that these flows were
indeed strongly affected by the dissipative effects and prevent the development towards
regimes with Fv ∼ 1. With the scaling analysis for inviscid fluids presented in Billant,
Chomaz (2001), our understanding of the strongly stratified turbulent regime move to-
wards the condition Fv ∼ 1. Billant, Chomaz (2001) argued that dissipative effects can
play an important role even at large Reynolds numbers due to the strong anisotropy of
stratified flows. In this section, I review the scalings of 3D strongly stratified turbulence
based on the scaling analysis performed by Godoy-Diana et al. (2004); Brethouwer et al.
(2007).

We consider the Navier-Stokes equations with the Boussinesq approximation expressed
with the equations (1.5) - (1.7) with a constant Brunt-Väisälä frequency N . Following the
scalings of Brethouwer et al. (2007), the non-dimensional equations are expressed as

duh
dt

= −∇hp+
1

Reα2
(∂zz + α2∇2

h)uh, (1.24)

F 2
h

duz
dt

= −∂zp+ b+
1

Reα2
(∂zz + α2∇2

h)uz, (1.25)

db

dt
= −uz +

1

ScReα2
(∂zz + α2∇2

h)b, (1.26)

∇h · uh +
F 2
h

α2
∂zuz = 0, (1.27)

where the Fh is the horizontal Froude number, Sc = ν/κ is the Schmidt number, α =
Lv/Lh is the aspect ratio and d/dt = ∂t +uh ·∇h + (Fh/α)2uz∂z. In the limit of Fh → 0
and keeping the dominant terms, the set of equations become

(∂t + uh ·∇h +
F 2
h

α2
uz∂z)uh = −∇hp+

1

Reα2
∂zzuh, (1.28)

0 = −∂zp+ b, (1.29)

(∂t + uh ·∇h +
F 2
h

α2
uz∂z)b = −uz +

1

Reα2
∂zzb, (1.30)

∇h · uh +
F 2
h

α2
∂zuz = 0. (1.31)

We now compare the dissipative terms of the order 1/Reα2 and the advective terms of
the order F 2

h/α
2. The ratio between these two quantities defines the buoyancy Reynolds

number R = ReF 2
h . The buoyancy Reynolds number can also be expressed as the ratio

between two length scales R = (Lb/Lν)2, where Lb = U/N is the buoyancy length scale
and Lν =

√
νLh/U is the dissipative length scale of large scales. Depending on the value

of R, two regimes are defined in the strongly stratified limit (Brethouwer et al., 2007).

R � 1: strongly stratified turbulent regime. The viscous and diffusive terms can be
neglected compared to O(F 2

h/α
2). The horizontal Froude number does not appear in the
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equations becoming self-similar with respect to z′N/U , where z′ is the vertical dimensional
coordinate as shown in Billant, Chomaz (2001). This suggests the scaling lv ∼ lb ∼ U/N ,
where lv is a characteristic vertical scale, and implies α ∼ Fh and Fv ∼ 1. Unlike the strat-
ified regime proposed by Riley et al. (1981), the vertical advection terms contribute to the
dynamics which are three-dimensional but strongly anisotropic. The scaling lv ∼ U/N
has been reported by simulations of stratified homogeneous turbulence (Godeferd, Sta-
quet, 2003; Waite, Bartello, 2004). It was revealed through linear stability analysis of
vortex pairs in stratified flows (Billant, Chomaz, 2000a). Experimental works of Park
et al. (1994); Holford, Linden (1999) are consistent with this scaling.

R � 1: viscosity-affected stratified turbulent regime. The vertical advection term
is negligible compared to the viscous term. The vertical interaction between layers is
therefore through vertical viscous shearing. Godoy-Diana et al. (2004) argued that the
vertical length scale is determined by a balance between the horizontal advection term and
the vertical diffusion term. This is fulfilled ifReα2 ∼ 1 and it gives lv ∼ Lν =

√
νLh/U . As

it has been mentioned before, this scaling analysis was first performed by Riley et al. (1981)
based on the condition of Fh ∼ Fv � 1, and with no condition on the Reynolds number.
In this kind of flows, the horizontal vortices dominate the dynamics with similarities to
2D dynamics. More recent works, such as Riley, Lelong (2000) among others, performed
a similar scaling analysis in the limit of Fv � 1 with strong viscous effects. In the limit
of R � 1, the inertial cascade can not develop and the dissipation occurs predominately
at large scales.

1.4.3 Coupling of the horizontal motions and internal waves

Stratified turbulent flows can be decomposed into vortical motion and internal gravity
waves. In the past, theoretical studies decoupled these two dynamics (Riley et al., 1981;
Lelong, Riley, 1991). For a small Froude number (Fh ∼ Fv � 1), they stated that non-
propagative motions (vortices) and fast propagative motions (waves) evolve over different
time scales. At the lowest order, the equation of the vertical vorticity and the equation of
the linear internal waves are indeed decoupled. The interactions among vortices and waves
are described at higher order. A substantial amount of work has been done to describe
the different types of interactions among waves and vortices (Bartello, 1995; Godeferd,
Cambon, 1994). Billant, Chomaz (2001) performed a similarity analysis of the Boussinesq
equations and confirmed that quasi-horizontal vortices and waves strongly interact in the
strongly stratified turbulent regime. Their arguments were based on the existence of
slow internal waves. In the limit of Fh = 0, the equations (1.24) - (1.25) contain quasi-
horizontal motions and slow internal gravity waves with a frequency i the range [0, N ].
Even if N � ULh, there are slow internal waves with a frequency comparable to U/Lh
(the corresponding dimensional vertical wavenumber kz = O(N/U)). The slow internal
waves strongly interact with quasi-horizontal advective motions.
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1.4.4 Direct energy cascade in strongly stratified turbulence

Mesoscale atmospheric spectra of the kinetic and potential energy display k
−5/3
h and k−3z

power-laws, respectively (Nastrom, Gage, 1985). Several works have been carried out with
the aim to explain the observed energy spectra. In particular, Gage (1979); Lilly (1983)

explained the power law k
−5/3
h as a consequence of an inverse energy cascade (energy

transfer from small to large scales) as in 2D turbulence. Herring, Métais (1989) performed
numerical simulations and reported a weak inverse energy cascade. On the other hand,
Dewan (1979, 1997) suggested the existence of a direct energy cascade generated by inter-
nal gravity waves. Lindborg (2006) proposed the strongly stratified turbulence approach
to explain the anisotropy of the energy spectra. He assumed a forward energy cascade
(energy transfer from large to small scales) along the horizontal direction, leading to the
hypothesis proposed by Taylor (1935). He deduced that forward energy cascade is asso-

ciated with the k
−5/3
h and Nk−3z power laws. The horizontal kinetic and potential energy

spectra of stratified turbulence are expressed as

EK(kh) = C1ε
2/3k

−5/3
h , EP (kh) = C2εk

−5/3
h /ε1/3, (1.32)

where ε and εP are the dissipation of the kinetic and potential enegy, and C1 and C2 are the
universal constants corresponding to Kolmogorov and the Obukhov-Corrsin of Kolmogorov
turbulence. The hypothesis of Lindborg (2006) has been confirmed by later works of
Brethouwer et al. (2007). They performed direct numerical simulations at larger resolution
(10242 × 192). The work concludes that the buoyancy Reynolds number R = ReF 2

h is
the control parameter in stratified turbulence. In both numerical studies (Lindborg, 2006;
Brethouwer et al., 2007), the forcing is restricted only to the horizontal vortical modes.
These studies and among others (Maffioli et al., 2016) reported the apparition of the shear
modes, which are modes with kh = 0. A growth of energy in the shear modes is therefore
interpreted as a tendency of the flow to form layers with a larger horizontal extent than
the box (Lindborg, 2006). Recent studies in stratified turbulence use a vortical forcing
concentrated in the vertically rotational modes with kz = 0 in order to prevent the growth
of the shear modes (Maffioli et al., 2016). The effects of the shear modes on the dynamics
is discussed later in chapter 3.

1.4.5 Internal waves and stratified turbulence

Internal gravity waves are ubiquitous in nature. They contribute significantly to the
dynamics of the ocean and atmosphere. They play an important role in the mixing of
the ocean (Wunsch, Ferrari, 2004; Sutherland et al., 2019). The breaking of internal
gravity waves allows the transfer of energy from large to small scales, where the energy
is partly dissipated in heat and partly converted in potential energy through diapycnal
mixing (Staquet, Sommeria, 2002). Recent numerical studies, such as Waite, Bartello
(2006a), performed numerical simulations of forced internal gravity waves to explain the
anisotropic spectra of the ocean E(kz) ∼ N2k−3z . They did not reproduce the spectra.
Their energy spectra was shallower than k−3z , although they steepened towards it with
increasing stratification and as long as wave breaking was resolved.

The anisotropic energy spectra of the atmosphere and ocean is observed in the pres-
ence of a variety of wave sources. It is therefore reasonable to seek an interpretation in
terms of a local statistical steady state resulting from complex wave interactions (Staquet,
Sommeria, 2002). Different approaches came up involving complex interactions between
internal waves. Weak wave turbulence is a theoretical approach based on the non-linear
interaction among small amplitude waves. The study of weakly interacting internal grav-
ity waves was first proposed by Hasselmann (1966, 1967) and reviewed by Müller et al.
(1986). In these first works, Hasselmann (1966) used only lagrangian variables implying
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only wave-wave interactions. In more recent works Caillol, Zeitlin (2000) used Eulerian
variables in their study, allowing the interactions with the vortex modes. Lelong, Riley
(1991); Godeferd, Cambon (1994) conclude that waves-vortical mode interactions are more
efficient at transferring energy than three-wave interactions. The Parametric Subharmonic
Instability (PSI) is a class of resonant wave-wave interaction, which transfers the energy
of a primary wave to two seconday waves with a frequency near the half of the primary
frequency (Bourget et al., 2013). A detailed review of resonant interactions among the
internal waves is presented in Dauxois et al. (2018). Finally, the work of Lvov et al. (2004)
show that wave turbulence formalism captures much of the variability apparent in the
oceanic wave field. In their work, they perform a characterization of the spectral curve,
which includes the Garrett-Munk spectrum, as an exact steady solution to a kinetic equa-
tion for the evolution of the wave field. A detailed review about the characterization of
the oceanic wavefield can be found in Polzin, Lvov (2011). However, the weak wave tur-
bulence approach is questionable because the oceanic internal wave field is too energetic
to be considered as an assemblage of weakly interacting waves (Holloway, 1980; Lindborg,
Riley, 2007). Anagously to the ocean, recent studies on atmospheric mesoscale dynamics
affirm that the weakly nonlinear wave theory cannot provide an explanation of the energy
spectra in the upper troposhere and lower stratosphere (Li, Lindborg, 2018).

1.5 Problem statement

We have underlined that the ocean dynamics is composed of vortical motions (eddies)
and internal gravity waves. Despite of these two motions, the ocean observations are
usually interpreted as the signature of pure internal wave mechanism. Garrett, Munk
(1975) proposed an empirical model based on an internal wave spectra to explain oceanic
measurements without explaining the energy distribution among these waves. The first
problem statement is: are we able to reproduce the empirical model proposed by Garrett,
Munk (1975) with a system only with wave modes?

In the recent years, stratified turbulence has became a powerful approach to describe
some geophysical turbulence measurements (Riley, Lindborg, 2008). Several attempts
have been carried out to explain the anisotropy of the energy spectra observed in nature.

Lindborg (2006) obtained an anisotropic energy spectra, with power laws k
−5/3
x and k−3z ,

associated with a downscale energy cascade. The hypotesis of a downscale energy cas-
cade proposed by Lindborg (2006) was later confirmed by Brethouwer et al. (2007). In
the strongly stratified turbulence regime, quasi-horizontal vortical motions and internal
waves strongly interact as derived in Billant, Chomaz (2001). Past works such as Lelong,
Riley (1991); Godeferd, Cambon (1994) concuded that vortical-wave interactions are very
efficient at transferring energy. More recent approaches, based on weak wave turbulence,
attempt to describe the oceanic wavefield (Polzin, Lvov, 2011). The second problem state-
ment is: are we able to generate turbulence driven by weakly non-linear internal gravity
waves?
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2D stratified turbulence: towards a pure wave system

The easiest way to obtain a system only with wave modes is to reduce the dimensions
of the system from 3D to 2D. By considering a vertical section of a stratified flow, we
prevent motions perpendicular to the plane. We get rid of the horizontal vortical modes
represented by the vertical vorticity ωz = 0. The 2D stratified turbulence dynamics
supports therefore only wave modes and shear modes. We remove the shear modes in all
our simulations, implying only wave-wave interactions. Furthermore, a 2D configuration
allows us to perform longer numerical simulations with a considerable lower computational
cost than the 3D DNS. In the strongly stratified regime {Fh � 1,R ≥ 1}, the characteristic
linear time (wave period) is significantly smaller than the characteristic non-linear time.
Hence, a large number of time steps is needed before the non-linearity operates. For this
reason, 2D DNS allows us to perform long numerical simulations of strongly stratified
turbulent regimes.

The two main studies in 2D stratified turbulence were carried out by Boffetta et al.
(2011); Kumar et al. (2017). Firstly, Boffetta et al. (2011) investigates numerically the
phenomenology of the energy transfer in two-dimensional weakly stratified turbulence.
They perform numerical simulations with an isotropic forcing at scales smaller than the
Ozmidov scale lf < lo < lbox. The isotropic forcing excites all modes for a given |kf |,
where kf is the forcing wavenumber. The forcing term appears only at the momentum
equations, i.e. only kinetic energy is injected. This kinetic energy is transferred from the
injection scale to large scales. This inverse cascade proceeds up to the Ozmidov scale
lo, where the effects of buoyancy are important. Kinetic energy is therefore converted to
potential energy, which is transferred towards small scales following a forward cascade of
energy. Boffetta et al. (2011) called flux loop to this novel energy transfer mechanism.
Despite the absence of large-scale dissipation, it produces statistically stationary states in
2D turbulence. On the other hand, Kumar et al. (2017) carried out a numerical study of
2D stratified turbulence for different strengths of the stratification. They use a large-scale
isotropic and random forcing. For strong stratifications, they observe the coexistence
between large-scale vertically sheared horizontal flow and small scale turbulence. Both
kinetic and potential energy spectra display a k−3 power-law associated with a direct
energy cascade. They affirm that these large horizontal scales correspond to large-scale
internal gravity waves.

Both numerical works use an isotropic forcing which implies the excitation of modes
with all possible frequencies in the range [0, N ]. This forcing scheme does not correspond
with the forcing observed in nature. Internal waves are generated mainly by tides passing
over a topography. These waves have one characteristic frequency given by the period
of the tide. Furthermore, they inject energy only into the momentum equation. In this
PhD work, we use a localized forcing scheme allowing us to force modes with the same
frequency. We inject energy into both, momentum and buoyancy equations, allowing us
to force only waves propagating towards one direction, also called prograde waves. The
numerical study of Kumar et al. (2017) analyzes the energy spectra without decoupling
the horizontal and vertical components. We have underlined that strongly stratified tur-
bulence is anisotropic. It is therefore important to analyze the horizontal and vertical
energy spectra to capture this anisotropy. Finally, the work of Boffetta et al. (2011) does
not explain which non-dimensional parameters are relevant for 2D stratified turbulence.
In this PhD work, we perform a scaling analysis of the 2D Navier-Stokes equations with
the Boussinesq approximation and with hyper-viscosity coefficient. We present the dif-
ferent regimes of 2D stratified turbulence depending on the value of the non-dimensional
parameters.
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1.6 Objectives of this thesis

Several scientific issues have been raised along this introductory chapter:

• We have mentioned that the observed oceanic energy spectra is usually interpreted
as the signature of only internal gravity waves (Garrett, Munk, 1975, 1979). We want
therefore to check if we are able to reproduce the observed energy spectra with a
system only with wave modes. The easiest way to have only wave modes is to reduce
the system to a 2D configuration. Furthermore, we seek for a forcing quantity that
allows us to force waves propagating towards one direction (prograde waves). This
quantity is the eigenmode of the 2D Navier-Stokes equations with the Boussinesq
approximation. The computation of the eigenmodes is presented in the first part of
the chapter 2.

• We have underlined that geophysical flows have a large Reynolds number. They
have a wide range of scales weakly affected by the viscosity before attaining the dis-
sipative scale. In numerical simulations, two parameters control the dissipation, the
numerical resolution and the viscosity coefficient. For a fixed numerical resolution,
one can use the Navier-Stokes viscosity coefficient ν or an hyper-viscosity coefficient
νm, where m is the hyper-viscosity order. The hyper-viscosity allows us to have
a larger portion of the grid points assigned to the inertial range, than the Navier-
Stokes viscosity. We use therefore the hyper-viscosity in all our simulations. No
scaling analysis with the Navier-Stokes equations of a stratified fluid with an hyper-
viscosity coefficient νm has been found in the bibliography. Based on the work of
Brethouwer et al. (2007), a scaling analysis of the 2D Navier-Stokes equations with
the Boussinesq approximation and with an hyper-viscosity coefficient νm is presented
in the second part of the chapter 2.

• The numerical studies of 2D stratified turbulence reported in (Boffetta et al., 2011;
Kumar et al., 2017) used a forcing scheme which excites modes with all frequencies in
the range [0, N ]. This type of forcing does not correspond with the forcing observed
in nature. Internal waves in the ocean are mainly excited by tides passing over a
topography. The time scale of the forced internal waves is similar to the period of
the tides. In chapter 3, a new forcing scheme is presented, which injects energy
into a localized region of the spectral space allowing us to force modes with similar
characteristic time scale.

• We have seen that the horizontal Froude number Fh and the buoyancy Reynolds
number R control the dynamics of 3D stratified flows. However, an accurate phe-
nomenology of 2D stratified turbulence with an hyper-viscosity coefficient has never
been reported depending on the value of the non-dimensional parameters {Fh,R8}.
In chapter 4, we perform direct numerical simulations for different stratification
strengths and different reynolds numbers. Three different regimes are finally pre-
sented in the parameter space {Fh,R8}

• Several numerical works involving internal waves reported internal waves at large
horizontal scales in strongly stratified turbulent regime (Waite, Bartello, 2006a; Lind-
borg, Brethouwer, 2007). In chapter 5, an spatio-temporal analysis is carried out in
order to identify the presence of internal gravity waves and to identify the modes
where waves are more likely to develop.

• Similar studies on strongly stratified turbulence forcing different quantities have been
performed in order to study the degree universality of the energy spectra (Waite,
Bartello, 2004, 2006a). In chapter 6, we analyze the effects of the forcing on 2D
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stratified turbulence. We perform numerical simulations forced on two different
quantities: (i) the vorticity; and (ii) the linear mode of the 2D Navier-Stokes linear
operator. Moreover, we study how the energy is distributed among the modes in the
transient states.



Chapter 2

Theory of two-dimensional
stratified turbulence

In this PhD work, we study 2D stratified turbulence dynamics by means of direct numerical
simulations. We force the eigenmodes of the linear 2D Navier-Stokes equations with the
Boussinesq approximation. We excite internal gravity waves propagating with the same
direction as the wavecector k, which is a simulation parameter. In the first part of this
chapter, I review the notions of the Fourier transform of a real signal. This tool is useful
for the computation of the linear eigenmodes of the 2D Navier-Stokes equations. In the
second part, a scaling analysis on the 2D Navier-Stokes equations with an hyper-viscosity
coefficient is performed based on the work of Brethouwer et al. (2007). Three different
regimes can be identified: weakly stratified regime, strongly stratified turbulent regime and
strongly stratified viscosity-affected regime. The resulting scaling laws from this analysis
will be tested later in chapter 4.

2.1 Spectral description: the Fourier transform

In this section, we introduce the definition of the Fourier transform of a real signal, such
as the horizontal velocity ux(x). We first consider a 1D space and periodic in the interval
[0, Lx]. The 1D Fourier transform of the signal ux(x) can be thus expressed as

ûx(kx) =
1

Lx

∫ Lx

0
ux(x)e−ikxxdx. (2.1)

In a numerical study, the wavenumber kx is limited by the spatial resolution of the
simulation. If we consider nx the number of grid points, the maximum wavenumber is
kmax = πnx/Lx. From the Fourier transform of a signal, one can compute the averaged
energy of the signal Ef through the Parseval’s theorem, which is expressed as

Ef =< u2x/2 >=
1

2

1

Lx

∫ Lx

0
ux(x)2dx =

∑
kx

|ûx(kx)|2/2. (2.2)

One can extend the expression (2.1) to a higher dimension space. We consider a
physical space periodic in the intervals [0, Lx] and [0, Lz], respectively. The 2D Fourier
transform of the horizontal velocity is thus expressed as

ûx(k) =
1

LxLz

∫ Lx

0

∫ Lz

0
uxe
−ik·xdxdz. (2.3)
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It is important to notice that the Fourier transform requires a periodic signal. It is easy
to satisfy this condition when using a periodic spatial domain. All simulations presented in
this mansucript are periodic in both directions. However, signals are usually not periodic
in time. We use a window function to overcome this issue.

2.2 Eigenmodes of the linear 2D Navier-Stokes equations

We have underlined in section 1.3.2 that the energy transfer in the ocean is assumed to
be a pure internal wave mechanism (Garrett, Munk, 1979). One of the goals of this PhD
work is to check this argument by considering a system only with waves modes. We reduce
thus the system from 3D to 2D configuration. The 2D system only contains wave modes
and shear modes. We get rid of the shear modes. As it has been mentioned above, we
are interested in forcing internal gravity waves propagating with the same direction as
the wavevector k. We remind that the wavector k is a simulation parameter. In order
to force these coherent internal gravity waves, one needs to inject energy directly into the
eigenmodes of the 2D Navier-Stokes equations.

We consider a two-dimensional domain with x- and z-directions, where the direction
of gravity follows the z-wise direction. The unitary vectors are ex and ez, respectively.
The velocity vector can be expressed as u = uxex + uzez. The direction of gravity
is the z-wise direction. We consider a linear density stratification characterized by the
buoyancy frequency N . Neglecting the non-linear and diffusive terms, the 2D Navier-
Stokes equations with the Boussinesq approximation are expressed as

∂tu = −∇p+ bez, (2.4)

∂tb = −N2uz, (2.5)

∇ · u = 0. (2.6)

Equations (2.4) and (2.5) are the time evolution of momentum and buoyancy respectively.
Equation (2.6) represents the condition for an incompressible flow. Manipulating the
above equations we obtain

∂t(∇2uz) = ∂xxb, (2.7)

∂t(∂xxb) = −N2∂xxuz. (2.8)

The time evolution of the equation (2.7) and (2.8) in the spectral space is

∂t(k
2ûz) = k2xb̂, (2.9)

∂tb̂ = −N2ûz, (2.10)

where ûz and b̂ are the spatial Fourier transform of the vertical velocity and buoyancy,
respectively.

Computation of the linear dispersion relation

At this point, one can compute the linear dispersion relation of internal gravity waves.
Applying the time derivative to the equation (2.9), one obtains

∂tt(k
2ûz) = k2x∂tb̂. (2.11)

We apply now the time evolution of the buoyancy given in (2.10) into the equation (2.11),
which is expressed as

∂tt(k
2ûz) = −k2xN2∂ttûz. (2.12)



2.2. EIGENMODES OF THE LINEAR 2D NAVIER-STOKES EQUATIONS 31

The Fourier transform of the time derivative operator is ∂tt = i2ω = −ω. The equation
(2.12) is expressed as

ω2 = N2 k
2
x

k2
, (2.13)

which is the linear dispersion relation of internal gravity waves. It gives a relation between
the frequency of the wave and its direction of propagation.

Computation of eigenvalues and eigenmodes.

We consider a new variable û′z, such that û′z = N2ûz, the above system of equations
becomes

∂̃t(û
′
z) = ω2

k b̂, (2.14)

∂̃tb̂ = −û′z. (2.15)

We consider the variables ûz and b̂ plane wave solutions. Hence, we can express them as

uz(x, t) = Ûze
i(kx−ωt), (2.16)

b(x, t) = B̂ei(kx−ωt), (2.17)

where Ûz and B̂ are the amplitudes of the wave. The phase kx − ωt propagates in the
same direction as the wavevector k when ω > 0. Analogously, the phase propagates in the
opposite direction as the wavevector k when ω < 0. We can see that −iω is an eigenvalue
of the time derivative operator as

∂̃tû
′
z = −iωû′z,

∂̃tb̂ = −iωb̂.
The equations (2.14) and (2.15) can be written in a matrix form

∂̃t

[
û′z
b̂

]
=

[
0 ω2

k

−1 0

] [
û′z
b̂

]
, (2.18)

∂tV = JV = λV, (2.19)

where λ is an eigenvalue of the operator J. To find the eigenvalues of the operator we need
to solve the equation |J − λI| = 0 as ∣∣∣∣−λ ω2

k

−1 −λ

∣∣∣∣ = 0. (2.20)

The two eigenvalues of the system are λ± = ∓iωk. They are given by the linear dispersion
relation of the internal gravity waves. The eigenmodes are a linear combination of the
variables of the system â± = Aû′z + B±b̂, where A and B± are constants. We choose a
constant A = 1. We compute the constant B± as

∂̃tâ± = ∓iωkâ± = ∓iωkû′z ∓ iωkB±b̂, (2.21)

∂̃tâ± = ∂̃tû
′
z ±B±∂̃tb̂ = ω2

k b̂∓B±û′z. (2.22)

By the identification of the equations (2.21) and (2.22), we obtain

b̂(ω2
k ± iωkB±) = (±iωk ∓B±)û′z. (2.23)

The above expression needs to be true for all values of b̂ and û′z, thus (ω2
k ± iωkB±) = 0

and (±iωk ∓B±) = 0. We obtain B± = ±iωk. The eigenmode â± can be written as

â± = N2ûz ± iωk b̂. (2.24)
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One can observe that the eigenmodes â± are a linear combination of the vertical velocity
ûz and the buoyancy b̂. The horizontal velocity ûx does not appear in the expression of the
eigemodes. The horizontal velocity ûx is indeed coupled to the vertical velocity through
the continuity equation kxûx + kzûz = 0. Furthermore, the direction of propagation of
the forced internal grvity waves depends whether we force the positive part of the linear
mode â+ = N2ûz + iωk b̂ or the negative part of the linear mode â− = N2ûz − iωk b̂. The
positive part of the linear mode excites waves propagating with the same direction as
the wavevector k (prograde waves). The negative part of the linear mode forces waves
propagating with the opposite direction as the wavevector k (retrograde waves). All
simulations in chapter 4 are forced on the positive component of the linear modes â+.
At this point, we can compute back the physical variables from the equation (2.24). The
vertical velocity ûz and buoyancy b̂ are expressed as

ûz =
1

2N2
[â+ + â−], (2.25)

b̂ =
1

2iωk
[â+ − â−]. (2.26)
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2.3 Scaling analysis of 2D stratified turbulence with an hyper-
viscosity coefficient νn

Similar to the analysis carried out by Brethouwer et al. (2007) for the 3D case, I performed
a scaling analysis of the 2D Navier-Stokes equations with the Boussinesq approximation
and for a generalized hyper-viscosity and hyper-diffusivity terms of order n. The resulting
non-dimensional quantities, such as the Reynolds number and buoyancy Reynolds num-
ber, depend on the order of the hyper-viscosity and -diffusivity terms. Nevertheless, all
simulations presented in this manuscript are computed with n = 8.

Governing equations

The two-dimensional equations of motion of a stratified, incompressible flow under the
Boussinesq approximation are

∂u′x
∂t′

+ u′x
∂u′x
∂x′

+ u′z
∂u′x
∂z′

= − ∂p
′

∂x′
+ νn

(
∂nu′x
∂x′n

+
∂nu′x
∂z′n

)
(2.27)

∂u′z
∂t′

+ u′x
∂u′z
∂x′

+ u′z
∂u′z
∂z′

= −∂p
′

∂z′
+ b+ νn

(
∂nu′z
∂x′n

+
∂nu′z
∂z′n

)
, (2.28)

∂b′

∂t′
+ u′x

∂b′

∂x′
+ u′z

∂b′

∂z′
= −N2u′z + κn

(
∂nb′

∂x′n
+

∂nb′

∂z′n

)
, (2.29)

∂u′x
∂x′

+
∂u′z
∂z′

= 0, (2.30)

where u′x is the horizontal velocity, u′z is the vertical velocity, p′ is the pressure, ρ0 =<
ρ̄(z) > is the average density and ρ̄(z) is the linear density profile, νn and κn are the hyper-
viscosity and hyper-diffusivity terms of order n. The buoyancy is defined as b = −gρ′/ρ0,
where ρ′ is the fluctuation of density from the linear density profile ρ̄(z), and g is the ac-
celeration of gravity. The Brunt-Väisälä frequency is expressed as N =

√
−(g/ρ0)∂ρ̄/∂z′.

Scaling of the equations

For a characteristic horizontal velocity and length scale Ux and lx, we can introduce
the horizontal Froude number Fh = Ux/(lxN) and the aspect ratio α = lz/lx, where lz
is the vertical length scale. Equating the inertial terms with the pressure gradient in
the horizontal momentum equation (2.27) gives a characteristic pressure p′ ∼ U2

x . Since
Fh � 1, the only way to balance the vertical pressure gradient is by density perturbations
through hydrostatic equilibrium (Billant, Chomaz, 2001). The buoyancy scales therefore
as b′ ∼ U2

x/lz and the horizontal advection of buoyancy scales as N2Uz. Hence, the
characteristic vertical velocity is Uz ∼ U3

x/(N
2lxlz). With these characteristic length

scales we define unprimed dimensionless variables

u′x = Uxux u′z =
U3
x

N2lxlz
uz b′ =

U2
x

lz
b p′ = U2

xp,

x′ = lxx z′ = lzz t′ =
lx
Ux
t,
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and we obtain the dimensionless system

∂ux
∂t

+ ux
∂ux
∂x

+
F 2
h

α2
uz
∂ux
∂z

= −∂p
∂x

+
1

Ren

[
∂nux
∂xn

+
1

αn
∂nux
∂zn

]
, (2.31)

F 2
h

[
∂uz
∂t

+ ux
∂uz
∂x

+
F 2
h

α2
uz
∂uz
∂z

]
= −∂p

∂z
+ b+

F 2
h

Ren

[
∂nuz
∂xn

+
1

αn
∂nuz
∂zn

]
, (2.32)

∂b

∂t
+ ux

∂b

∂x
+

F 2
h

α2
uz
∂b

∂z
= −uz +

1

RenScn

[
∂nb

∂xn
+

1

αn
∂nb

∂zn

]
, (2.33)

∂ux
∂x

+
F 2
h

α2

∂uz
∂z

= 0, (2.34)

where the generalized Reynolds number is Ren = Uxl
n−1
x /νn and the generalized

Schmidt number is Scn = νn/κn. One can identify three different regimes depending
on the value of the horizontal Froude number Fh and the generalized Reynolds number
Ren: weakly stratified flows (Fh ∼ 1 and large Ren), viscosity-affected strongly stratified
flows (Fh → 0 and low Ren), and strongly stratified turbulence (Fh → 0 and large Ren).
Geophysical flows such as the atmosphere and oceans belong to the strongly stratified
turbulence regime, Fh → 0 and large Re (see figure 18 of Brethouwer et al. (2007)).

2.3.1 Weakly stratified flows Fh ∼ 1

In the limit of weak stratification, the dynamics are isotropic, i.e. α ∼ 1, Fh ∼ 1 and
Ren � 1. The dimensionless equations can be simplified in:

∂ux
∂t

+ ux
∂ux
∂x

+ uz
∂ux
∂z

= −∂p
∂x
, (2.35)

∂uz
∂t

+ ux
∂uz
∂x

+ uz
∂uz
∂z

= −∂p
∂z

+ b, (2.36)

∂b

∂t
+ ux

∂b

∂x
+ uz

∂b

∂z
= −uz, (2.37)

∂ux
∂x

+
∂uz
∂z

= 0, (2.38)

representing the motion of an active scalar (buoyancy) advected by the flow. The scalar
fields in 2D turbulence have been largely studied theoretically (Moffatt, 1999; Celani et al.,
2010) and numerically (Celani et al., 2004; Lapeyre et al., 1999).

2.3.2 Strongly stratified flows Fh → 0

In the limit of strong stratification, i.e Fh → 0 and Ren � 1, the dimensionless equations
are

∂ux
∂t

+ ux
∂ux
∂x

+
F 2
h

α2
uz
∂ux
∂z

= −∂p
∂x

+
1

Ren

1

αn
∂nux
∂zn

, (2.39)

0 = −∂p
∂z

+ b, (2.40)

∂b

∂t
+ ux

∂b

∂x
+

F 2
h

α2
uz
∂b

∂z
= −uz +

1

RenScn

1

αn
∂nb

∂zn
, (2.41)

∂ux
∂x

+
F 2
h

α2

∂uz
∂z

= 0. (2.42)

We can distinguish two different regimes depending on the relative magnitude of the
vertical advection term, which is O

(
F 2
h/α

2
)
, and the diffussion terms, which are of order

O (1/(Renα
n)). The state of the flow is determined by the ratio of these two quantities

Rn = RenF
2
hα

n−2,
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where Rn is the buoyancy Reynolds number of order n. If n = 2 we obtain R2 = ReF 2
h ,

as in 3D case (Brethouwer et al., 2007).

Rn � 1: Strongly stratified turbulence regime. The viscous and diffusive terms
can be neglected compared to the vertical advection terms. Anagously to the work of
Billant, Chomaz (2001), we do not make any assumption on the magnitude of α = lz/lx.
The aspect ratio α will be determined by the dominant balance principle. Billant, Chomaz
(2001) proposed a group of invariance suggesting the existence of self-similarity respect
to the z′N/Ux, where z′ is the vertical dimensional coordinate. The group of invariances
implies that the characteristic vertical scale of the flow is inversally proportional to the
buoyancy frequency N . When N increases, the vertical scale decreases as lz ∝ 1/N .
By dimensional considerations the characteristic vertical scale of the flow is lz = Ux/N ,
leading to Fv = 1. A vertical Froude number order of unity Fv = 1 implies that Fh ∼ α.
The equations of the strongly stratified turbulence regime are expressed as

∂ux
∂t

+ ux
∂ux
∂x

+ uz
∂ux
∂z

= −∂p
∂x
, (2.43)

0 = −∂p
∂z

+ b, (2.44)

∂b

∂t
+ ux

∂b

∂x
+ uz

∂b

∂z
= −uz, (2.45)

∂ux
∂x

+
∂uz
∂z

= 0. (2.46)

The buoyancy Reynolds number in the strongly stratified turbulence regime is

Rn = RenF
n
h . (2.47)

Rn � 1: Viscosity-affected stratified flow regime. The vertical advection term is
negligible compared to the viscous terms. Godoy-Diana et al. (2004) argued that the ver-
tical length scale can only be determined by the balance between the horizontal advection
term and the vertical diffusion term

1

Renαn
∼ 1→ lz ∼ lxRe−1/nn . (2.48)

The non-dimensional equations of the viscosity-affected stratified turbulence regime
are expressed as

∂ux
∂t

+ ux
∂ux
∂x

= −∂p
∂x

+
∂nux
∂zn

, (2.49)

0 = −∂p
∂z

+ b, (2.50)

∂b

∂t
+ ux

∂b

∂x
= −uz +

1

Scn

[
∂nb

∂zn

]
, (2.51)

∂ux
∂x

= 0. (2.52)
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Chapter 3

Numerical setup and description
of a characteristic simulation

In this chapter, I present the solver used to perform Direct Numerical Simulations (DNS)
of 2D stratified turbulence. In particular, I focus on my contributions as developer of
the solver fluidsim.solvers.ns2d.strat (ns2d.strat). In the second part of the chapter, I
describe a characteristic simulation using the existing and new outputs developed during
this thesis.

3.1 ns2d.strat: 2D Boussinesq equations solver

This PhD work has been done with the Computational Fluid Dynamics (CFD) framework
FluidSim (Mohanan et al., 2019b), which is part of the wider project FluidDyn (Augier
et al., 2019). All developments during this thesis have been done in the FluidSim solver
ns2d.strat. All solvers in FluidSim are parallel High-Performance Computing (HPC) codes
with a scientific Python and C++ ecosystem. FluidSim solvers are defined by the equations
solved and the numerical methods used. A solver also contains code to save, process
and plot output data. FluidSim is a very general framework so few assumptions on the
numerical methods are done in the core of the package. Some FluidSim solvers use other
CFD codes like Dedalus and Basilisk. However, the most mature FluidSim solvers are
based on spectral methods taking advantage of Fast Fourier Transform libraries (Mohanan
et al., 2019a). It has been demonstrated that these solvers are highly efficient compared
to more traditional HPC fluid mechanics codes, and they can be run in parallel on many
cores with MPI communications.

The solver used during this thesis, ns2d.strat, solves the 2D Navier-Stokes equations
under the Boussinesq approximation with periodic boundary conditions (equations 1.5 -
1.7) in the following form:

∂tξ̂ = −û ·∇ξ − ikxb̂+ f̂ξ − νm|k|mξ̂, (3.1)

∂tb̂ = −û ·∇b+N2ûz + f̂b − κm|k|mb̂. (3.2)

The vorticity ξ̂ rather than the momentum equation is used for performance reasons.
The horizontal and vertical components of the velocity in the spectral space are expressed
as ûx and ûz respectively. The vertical component of the velocity ûz can be expressed as
a function of the vorticity ξ̂ as ûz = (ξ̂+ kzûx)/kx. f̂ξ and f̂b are the forcing terms for the
vorticity and buoyancy equations. νm and κm are, respectively, the hyper-viscosity and
hyper-diffusivity coefficients of order m. Hyper-viscosity is used in order to get an inertial-
range weakly affected by the viscosity. It has been demonstrated that a bottleneck can
appear when using hyper-viscosity instead of the Navier-Stokes viscosity (Lamorgese et al.,
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2005). The bottleneck is a bump in the energy spectra between the inertial range and the
dissipative range. All simulations in this thesis are computed with m = 8. Moreover, the
bottleneck tends to be larger with higher-order hyperviscosity. The time integration of the
non-linear terms is carried out using a fourth-order Runge-Kutta scheme. Full dealiasing
according to the 2/3-rule is used in all simulations.

3.2 Forcing scheme

In this section, I present the forcing scheme used in the solver ns2d.strat. One can force
two forcing regions in Fourier space (see figure 3.1): ring-shaped or rectangular region.
Two quantities can be forced at each region: vorticity ξ̂ and linear mode â+. Forcing
the vorticity, one injects only kinetic energy. On the other hand, forcing the linear mode
injects kinetic and potential energy. Furthermore, forcing the linear mode â+ allows us
to excite internal gravity waves propagating with the same direction as the wavector k.
These waves are called prograde waves. The wavector k is a parameter of the simulation.

kx

kz

kx,minkx,max

kz,min

kz,max

kf

θf

Rectangular

Ring-shaped

Figure 3.1: Forcing regions in the spectral space: ring-shaped (black) and rectangular
(red). At the ring-shaped region, we impose only a forcing wavenumber kf . At the
rectangular region, we impose a forcing wavenumber kf , and a direction given by the
angle θf .

3.2.1 About the forcing region: ring-shaped versus rectangular

All previous numerical studies on 2D stratified turbulence used a ring-shaped forcing region
(see works of Boffetta et al. (2011) and Kumar et al. (2017)). Furthermore, they force only
the momentum equation on modes with all possible directions in the Fourier space. The
linear dispersion of internal gravity waves relates the frequency of wave propagation with
its direction (see equation (1.19)). By exciting all possible modes in all possible directions,
one excites all time scales τl comprised between τl ∼ [0, N−1]. The forcing is not localized
in one frequency.

In the ocean, internal gravity waves are often excited with a similar time scale. For
example, tides passing over a topography excite waves with periods τl similar to the
tidal period τl ∼ Ttide. We are interested in forcing waves with similar time scale. I
have developed a new forcing scheme for the solver ns2d.strat, which allows us to force
modes in a rectangular region of the spectral space in order to excite waves with a similar
time scale. Figure 3.1 represents the two different forcing regions: ring-shaped (black)
and rectangular (red). With the ring-shaped forcing region, we impose only a forcing
wavenumber kf . With the rectangular forcing region, we impose a forcing wavenumber
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kf , and a direction given by the angle θf . By forcing a ring-shaped region, we excite all
possible modes with a wavenumber similar to the forcing wavenumber k ∼ kf . We excite
thus all possible directions. By forcing the rectangular region, we inject energy at modes
with k ∼ kf and with one direction given by the angle θf , i.e. one frequency ωf = N sin θf .
We excite only one possible direction of propagation.

New forcing scheme for the solver ns2d.strat

We have developed a new class TimeCorrelatedRandomPseudoSpectralAnisotropic in
the solver NS2D.strat. The caption 3.1 displays the two added parameters. The parameter,
angle, corresponds to the angle θf . The parameter is set to angle=45 by default. It
means that waves will propagate with 45 degrees with the vertical direction. The second
parameter, kz enable, allows us to force modes with negative vertical wavenumber kz.
When forcing waves in the first quadrant kz > 0 of the spectral space, we force waves in
the third quadrant as well, i.e. the linear mode is a real field. When forcing in the first
and second quadrant, we force therefore waves in all four quadrants of the spectral space.
By default, kz enable=False, we force only modes with positive vertical wavenumber.

Listing 3.1: Class TimeCorrelatedRandomPseudoSpectralAnisotropic

c l a s s TimeCorrelatedRandomPseudoSpectralAnisotropic (
TimeCorrelatedRandomPseudoSpectral

) :
”””Random normal ized a n i s o t r o p i c f o r c i n g .

. . i nhe r i t ance−diagram : : TimeCorrelatedRandomPseudoSpectralAnisotropic

”””

tag = ” tc random an i so t rop i c ”

@classmethod
de f comple t e params wi th de fau l t ( c l s , params ) :

””” This s t a t i c method i s used to complete the ∗params∗ conta ine r .
”””

params . f o r c i n g . s e t c h i l d (
” tc random an i so t rop i c ” , {” ang le ” : ”45” , ” k z n e g a t i v e e n a b l e ” : Fa l se }

)
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3.2.2 About the forcing quantity: vorticity ξ̂ versus linear mode â+

In the solver ns2d.strat, one can force two quantities: vorticity ξ̂ and the linear mode â+.
When forcing the vorticity, only the equation (3.1) is excited through the term f̂ξ. When
forcing the linear mode â+, both equations (equation (3.1) and (3.2)) are excited through
the forcing terms f̂ξ and f̂b. We focus now on the mathematical relation between the

vorticity ξ̂ and the linear mode â+. The vorticity can be expressed as a function of the
linear modes â+ and â− as

ξ̂ =
1

2N2

(
k2x + k2z
kx

)
(â+ + â−). (3.3)

We see that the vorticity depends on both linear modes â+ and â−. It means that both
linear modes are excited when forcing the vorticity (see figure 3.2 (a)). It excites thus
prograde and retrograde waves. Prograde waves propagate in the same direction as k.
Retrograde waves propagate in the opposite direction to k.

One of the scopes of this PhD work is to investigate whether the dynamics is domi-
nated by a wave energy cascade or not. In chapter 4, we perform DNS of 2D stratified
turbulence forced by internal gravity waves, i.e. only the linear mode â+ is forced. We
excite only prograde waves (figure 3.2 (b)). In the past, several studies of 3D stratified
turbulence forced the vortical and wave modes. They attempted to explain the anisotropy
of the energy spectra observed in the nature. Waite, Bartello (2004) performed numeri-
cal simulations of vortically forced stratified turbulence. In the work of Waite, Bartello
(2006a), they force randomly internal gravity waves in 3D stratified turbulence. They
attempt to reproduce the saturation energy spectrum E(kz) ∼ N2K−3z . In both studies,
the resulting vertical energy spectrum is shallower than the typical observations in the
atmosphere and ocean.

(a) Vorticity ξ̂ (b) Linear mode â+

Figure 3.2: Schema of forcing the vorticity ξ̂ (a) and linear mode â+ (b). The red arrow
k represents the wavevector of the forced modes. By forcing the vorticity ξ̂ (a), we force
both prograde â+ and retrograde â− waves. By forcing the linear mode â+ (b), we only
excite prograde waves.
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3.2.3 Normalization of the forcing in the solver ns2d.strat

In the above section, we have seen that one can force two quantities: vorticity ξ̂ and
the linear mode â+. The rates of injection of these quantities are expressed as Pξ (for
the vorticity) and Pa (for the linear mode), respectively. The quadratic quantity of the
vorticity is the enstrophy. The units of the injection rate of enstrophy Pξ = [T ]−3, where
[T ] is a characteristic time scale. The units of the injection rate of the quadratic quantity
for the linear mode are Pa = [L]2[T ]−7, where [L] is a characteristic length scale.

The solver ns2d.strat normalizes the forcing terms f̂ξ and f̂b of the equations (3.1) and
(3.2). The forcing terms are initially normalized such that the average over a time step
of the injection rate of the quadratic quantity be constant and equal to Pξ (when forcing

vorticity ξ̂) or to Pa (when forcing the linear mode â+). In the following, I explain the
normalization of the forcing term for the case of the vorticity. We force the vorticity ξ̂
with a forcing term f̂ξ. We can thus express the evolution of the vorticity as

∂tξ̂ = f̂ξ. (3.4)

We normalize now the forcing term f̂ξ such that the averaged injection rate Pξ of the
quadratic quantity of the vorticity is constant over a time step δt. One can write the
evolution of the quadratic quantity of the vorticity such as

∂t|ξ̂|2 = ∂tξ̂
∗ξ̂ = ξ̂∗f̂ξ, (3.5)

where ξ̂∗ is the complex conjugate of the vorticity ξ̂. Considering the equation (3.5) of the
quadratic quantity of the vorticity, the average of the injection rate Pξ over a time step δt
is given by

Pξ =

∫ δt

0

dt

δt

∑
k

∂t|ξ̂|2
2

=

∫ δt

0

dt

δt

∑
k

ξ̂∗f̂ξ. (3.6)

At this point, we consider a first-order approximation for the value of the vorticity at a
given time t such as

ξ̂(t) ' ξ̂(t = 0) + f̂ξt. (3.7)

Considering the first-order approximation, the expression of the injection of the quadratic
quantity, equation (3.6), becomes

Pξ '
∑
k

ξ̂∗(t = 0)f̂ξ +
∑
k

|f̂ξ|2
2

δt. (3.8)

The forcing term f̂ξ is proportional to the random forcing f̂r as

f̂ξ = Rf̂r. (3.9)

Finally, one obtains the following quadratic equation(∑
k

|f̂r|2
2

δt

)
R2 +

(∑
k

ξ̂∗(t = 0)f̂r

)
R− Pξ = 0, (3.10)

which gives the value of the coefficient R for which the injection rate Pξ is constant.

The fact that the two different forcing terms (vorticity f̂ξ and the linear mode f̂a) are
normalized by different quantities, it does not allow us to compare the two dynamics. In
order to overcome this issue, the forcing is now normalized by the total energy injection
rate PE . The units of the energy injection rate are PE = [L]2[T ]3. The forcing terms in
all simulations of this manuscript are normalized by the energy injection rate PE .
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3.3 Time scales of the problem

We can compute three different frequencies (inverse of the time scale) in the problem: (1)
frequency of the forced waves; (2) frequency computed from the amplitude of the forcing;
(3) frequency of the time correlation of the forcing.

(1) Frequency of the forced waves. The new forcing scheme allows to set the angle
θf (see figure 3.1). It is the angle between the wavevector kf and the vertical direction.
It sets the direction of propagation of the forced waves. We consider the linear dispersion
relation of internal gravity waves expressed in the equation (1.19). One can thus relate the
frequency of the waves to their direction of propagation. We can compute the characteristic
time scale of the forced waves as

ωl = N sin θf , (3.11)

where N is the Brunt-Väisälä frequency.

(2) Frequency of the forcing amplitude. In addition to the forcing angle θf , there
are two other parameters which need to be specified: the injection rate P and the forcing
wavevector kf . As it is mentioned above, the forcing is normalized by the total energy
injection rate PE . We can then compute the time scale of the amplitude of the forcing as

ωaf = (PEk
2
f )1/3. (3.12)

(3) Frequency of the time correlation of the forcing. The forcing is correlated in
time with a frequency of correlation given by

ωcf =
2π

τcf
, (3.13)

where τcf is the time correlation of the forcing. The time correlation is chosen by the user.
For all the simulations in the present work, I set the time correlation of the forcing to be
the same as the period of the forced waves, ωcf = ωl.

Summary of the time scales

Forced waves Amplitude forcing Correlation forcing

ωl = N sin θf ωaf = (PEk
2
f )1/3 ωcf = ωl

Table 3.1: Summary of the time scales of the solver ns2d.strat
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Non-dimensional parameters

From the time scales presented above, one can build two non-dimensional parameters. We
define the non-dimensional quantity F as the ratio between the time scale of the forced
waves ωl and the Brunt-Väisälä frequency N

F =
ωl
N

= sin θf . (3.14)

It indicates the direction of propagation of the forced waves. The non-dimensional param-
eter F is within the range [0, 1]. All simulations presented in this thesis are computed with
F = 0.7 (θf = 45◦). The forced waves have similar vertical and horizontal scale, which is
the simplest case we found to study turbulence driven by internal waves. Furthermore, we
build the non-dimensional parameter γ as the ratio between the time scale of the forced
waves ωl and the time scale of the amplitude of forcing

γ =
ωl
ωaf

. (3.15)

It indicates the intensity of the stratification in comparison to the forcing strength. Low
values of γ indicate that the dynamics is weakly stratified and strongly non-linear. The flow
feels little the effects of stratification. In the limit γ → 0, the dynamics can be considered
as quasi 2D turbulence with a passive scalar (buoyancy) advected by the flow. On the other
hand, the dynamics is strongly stratified and weakly non-linear for large γ. The effects of
stratification are important in comparison to the forcing. The direction of gravity becomes
a preferential direction. Strongly stratified flows are expected to be strongly anisotropic.
Geophysical flows such as the atmosphere and oceans are characterized for being strongly
stratified flows (Riley, Lindborg, 2008). In stratified turbulence, the horizontal Froude
number Fh is commonly used to characterize the influence of the stratification on the flow
dynamics. The horizontal Froude number can be expressed as

Fh =
U

NLh
, (3.16)

where U is a characteristic velocity, N is the Brunt-Väisälä frequency and Lh is a charac-
teristic horizontal scale. For low values of horizontal Froude number Fh � 1, the flow is
strongly influenced by the stratification. Moreover, one can express the horizontal Froude
number Fh in terms of the input non-dimensional parameters F (geometry of the forc-
ing) and γ (intensity of the stratification). The new horizontal Froude number is denoted
as Fh,f . It can be interpreted as a forcing horizontal Froude number. One can express
the Brunt-Väisälä frequency as N = ωl/F . The characteristic velocity is expressed as
U ∼ ωaf/kf . One can thus express the forcing horizontal Froude number Fh,f as

Fh,f =
F

γ
. (3.17)

We can compute a forcing Reynolds number Re8,f from the the forcing parameters P
(energy injection rate) and kf (wavevector associated with the forced modes)

Re8,f =
1

ν8

( PE
|kf |22

)1/3
. (3.18)

ν8 is the hyper-viscosity coefficient. We use hyper-viscosity in order to localize the dissipa-
tion at small scales. Hence, we have less grid points dedicated to the dissipative range and
more to the inertial range. Note that due to the use of hyper-viscosity, numerical values of
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the Re8,f should not be compared to usual values of the real Reynolds number. The com-
putation of the hyper-viscosity coefficient is presented later in section 3.6. To conclude,
the ratio between the hyper-viscosity ν8 and diffusivity κ8 is the Schmidt number

Sc8 =
ν8
κ8
. (3.19)

For all simulations presented in this PhD work, the Schmidt number is order of unity
Sc8 = 1.

Summary of the non-dimensional parameters

Geometry Stratification strength Forcing Froude Forcing Reynolds Schmidt

F = sin θ γ = ωl
ωaf

Fh,f = F
γ Re8,f = 1

ν8

(
PE
|kf |22

)1/3
Sc8 = ν8

κ8
= 1

Table 3.2: Summary of the non-dimensional parameters.

Scaling analysis of the 2D Navier-Stokes equations for the forced large-
scale waves

In this section, we have introduced the three different time scales associated with the
forcing scheme: forced waves, amplitude forcing and time correlation of the forcing. Fur-
thermore, two non-dimensional parameters {F, γ}, built from these time scales, have been
presented. At this point, it is therefore important to update the scaling analysis per-
formed in chapter 2 for the case of forced large-scale waves, including the non-dimensional
parameters of our forcing scheme {F, γ}.

We consider the set of equations in the dimensionless form (see equations (2.31) -
(2.34)) with an hyper-viscosity coefficient of order n. We consider now the aspect ratio α
scales as the ratio of the forced vertical and horizontal length scales α = kfx/kfz. We can
thus express the α as function of the angle of propagation F as

sin2 θ =
k2fx

k2fx + k2fz
→ α2 =

F 2

1− F 2
.

At this point, we attempt to express the horizontal Froude number Fh = Ux/lxN as
function of the two non-dimensional parameters {F, γ} as

Fh =
Ux
lxN

' F

ωl
P

1/3
E k

2/3
f,x =

ωaf
ωl

sin θ =
F

γ
,

where PE is the energy injection rate, ωaf is the characteristic frequency of the forcing
amplitude, ωl is the characteristic frequency of the forced waves and γ = ωl/ωaf is the
ratio between the characteristic the two characteristic frequencies. The non-dimensionless
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equations can be expressed as

∂ux
∂t

+ ux
∂ux
∂x

+
1− F 2

γ2
uz
∂ux
∂z

= −∂p
∂x

+
1

Ren

[
∂nux
∂xn

+
(1− F 2)n/2

Fn
∂nux
∂zn

]
,

(3.20)

F 2

γ2

[
∂uz
∂t

+ ux
∂uz
∂x

+
1− F 2

γ2
uz
∂uz
∂z

]
= −∂p

∂z
+ b+

F 2

γ2Ren

[
∂nuz
∂xn

+
(1− F 2)n/2

Fn
∂nuz
∂zn

]
(3.21)

∂b

∂t
+ ux

∂b

∂x
+

1− F 2

γ2
uz
∂b

∂z
= −uz +

1

RenScn

[
∂nb

∂xn
+

(1− F 2)n/2

Fn
∂nb

∂zn

]
,

(3.22)

∂ux
∂x

+
1− F 2

γ2
∂uz
∂z

= 0. (3.23)

The different regimes depend thereby on the relative magnitude of the vertical advec-
tion term O(1−F 2/γ2) and the diffusion terms O((1−F 2)n/2/RenF

n). We thus consider
an order for the hyper-viscosity coefficient n = 8. We can thus express the ratio between
the vertical advection terms and the diffusion terms as

Rw,8 =
F 8Re8

γ2(1− F 2)3
. (3.24)

Rw,8 can be interpreted as a modified buoyancy Reynolds number for the case of forced
large-scale waves. Unlike the scaling analysis presented by Brethouwer et al. (2007), we
have three relevant non-dimensional parameters {F, γ, Re8} when forcing with large-scale
waves: (1) the direction of propagation of these waves, (2) the relative magnitude of the
amplitude of forcing with the forced waves, and (3) the modified Reynolds number by the
hyper-viscosity coeffivient ν8.

3.4 Output modules of the solver ns2d.strat

In this section, I present all output modules of the solver ns2d.strat. I list the existing
modules and the new modules developed during this thesis. As mentioned in section 3.1,
each output module is a postprocessing tool with saving, loading and plotting functional-
ities.

Existing output modules:

• Print output file:
Module: fluidsim/solvers/ns2d/strat/output/print stdout.py

Class: PrintStdOutNS2DStrat

It saves the mean energy, time elapsed and time-step of the simulation.

• Physical fields:
Module: fluidsim/solvers/ns2d/strat/output/phys fields.py

Class: PhysFields2DStrat

It saves the instantaneous velocity and buoyancy fields.

• Spatial averaged energy 〈E〉 and enstrophy 〈Z〉:
Module: fluidsim/solvers/ns2d/strat/output/spatial means.py

Class: SpatialMeansNS2DStrat

It saves the time evolution of averaged energy, enstrophy, energy and enstrophy in-
jection rates and dissipation. This output is used to determine whether a simulation
has reached stationarity or not.
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• Horizontal E(kx) and vertical E(kz) energy spectra:
Module: fluidsim/solvers/ns2d/strat/output/spectra.py

Class: SpectraNS2DStrat

It is used to study how the energy is distributed among the scales.

• Horizontal and vertical spectral energy budget:
Module: fluidsim/solvers/ns2d/strat/output/spect energy budget.py

Class: SpectralEnergyBudgetNS2DStrat

It saves the horizontal Π(kx) and vertical Π(kz) flux of energy Π(k), the spectral
dissipation in both directions D(kx) and D(kz), and the spectral conversion term
B(kx) and B(kz).

New output modules developed during this PhD:

• Two-dimensional energy spectra E(kx, kz):
Module: fluidsim/solvers/ns2d/strat/output/spectra multidim.py

Class: SpectraMultiDimNS2DStrat

It illustrates how the energy is distributed among horizontal and vertical scales. I
have developed this output in order to study the effects of forcing different quantities,
vorticity ξ̂ and linear mode â+, from the transitory to steady state (see chapter 6).

• Spatio-temporal energy spectra E(kx, kz, ω):
Module: fluidsim/solvers/ns2d/strat/output/spatio temporal spectra.py

Class: SpatioTempSpectra

It returns 4-D array with the energy spectra in the two-directions of the space and
the temporal dimension. It illustrates how the energy is distributed, simultaneously,
in space and time. I have developed this output in order to identify internal gravity
waves (see chapter 5).

• Frequency energy spectra F (ω):
Module: fluidsim/solvers/ns2d/strat/output/frequency spectra.py

Class: FrequencySpectra

It returns the frequency energy spectra of the linear modes â+ and â−. I have
developed the output in order to in order to identify internal gravity waves peaks
(see chapter 5). Furthermore, it allows us to compare to ocean and atmospheric
temporal spectra. Both outputs, spatio-temporal and frequency energy spectra,
require saving a considerable number of fields in time.
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3.5 Description of a characteristic simulation

In this section, I describe an example of a simulation carried out by the solver ns2d.strat.
The numerical resolution is 1920×480. The non-dimensional parameters of the simulation
are

F = sin θf = 0.7 γ =
ωl
ωaf

= 2. (3.25)

By setting F = 0.7 (θf = 45◦), the forced waves will propagate with an angle 45◦ respect
to the vertical direction. γ = 2 indicates that the effects of stratification are strong.

3.5.1 With or without shear modes?

In most of simulations on forced stratified turbulence, a large amount of energy accumu-
lates in horizontally invariant and vertically sheared modes (kx = 0, kz). They are called
”shear modes”. The dynamics of these modes is still not well understood and different
attempts have been done in order to explain their presence. Smith, Waleffe (2002) ex-
plains the growth of the shear mode energy by resonant three wave interactions. Lindborg,
Brethouwer (2007) argues that the continous increase of energy is due to the viscous ef-
fects. In previous numerical studies (Waite, Bartello (2004, 2006a); Maffioli et al. (2016);
Herbert et al. (2016)), it has been observed that a substantial amout of energy often ac-
cumulates in these shear modes. In many cases, this accumulation continues through the
whole simulation, so that a time stationary state is not reached (Lindborg, Brethouwer,
2007). Augier et al. (2014) states that these shear modes influence the whole cascade due
to non-local interactions.

In order to study the influence of the shear modes on the dynamics, I have carried
out two simulations with the same non-dimensional parameters: (a) I allow energy to go
to the shear modes (with shear modes). (b) I prevent energy to go to the shear modes
(without shear modes). We prevent energy to go to the shear modes by setting to zero the
amplitude of energy of these modes at each time step of the simulation. Hence, there is
no flux of energy towards the shear modes without inducing a sink of energy.

(a) With shear modes (b) Without shear modes

Figure 3.3: Snapshots of the buoyancy field for two simulations: (a) with shear modes ;
(b) without shear modes. The buoyancy fields are displayed at two different times of the
simulation: (0) t = 2τaf ; (1) t = 500τaf .
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Figure 3.3 shows the instantaneous buoyancy fields for the simulation with shear modes
(figure 3.3 (a)) and without shear modes (figure 3.3 (b)). Two different times are displayed:
at the beginning of the simulation (0, t = 2τaf ); the end of the simulation (1, t = 500τaf ).
At the beginning of the simulation (t = 2τaf ), we can notify the forced waves propagating
at 45◦ respect to the vertical direction. The dynamics are similar for both simulations
(with and without shear modes). At the end of the simulation (t = 500τaf ), we clearly
see different dynamics. The simulation with shear modes (figure 3.3 (a.1)), we see large
horizontal scales with a size equals to the horizontal size of the box Lx, which means that
the energy is concentrated at the shear modes. It has to be noted the large magnitude
of the buoyancy, meaning that the energy is accumulating on these modes. When we
prevent energy to go to shear modes (figure 3.3 (b.1)), we can see also large horizontal
layers with small dissipative vertical scales. The horizontal layers are slightly inclined due
to the interdiction of energy to go to the shear modes.

Figure 3.4 displays the time evolution of the energy (top) and energy dissipation (bot-
tom) for both simulations: with shear modes (figure 3.4 (a)) and without shear modes
(figure 3.4 (b)). The energy dissipation is normalized by the energy injection rate P . The
orange lines represent the kinetic energy EK and kinetic energy dissipation εK . The blue
lines represent the potential energy EA and potential energy dissipation εA. For the sim-
ulation with the shear modes (figure 3.4 (a)), both blue and orange lines increase along
the whole simulation. It means that energy increases without being dissipated. This fact
is due to the accumulation of the energy at the shear modes. In the simulation without
shear modes (figure 3.4 (b)), the blue and orange lines converge around a constant values
meaning that a stationary state is reached. At the beginning, the energy increases linearly
with time. At t ∼ 200τaf , the energy stops increasing meaning that the energy is being
dissipated. The energy has been transferred from the injection scate to dissipative scales.
At t > 400τaf , we can see that blue and orange lines start oscillating out of phase. It
means that there is an exchange of energy between the kinetic energy EK (orange line)
and potential energy EA (blue line). This exchange of energy is likely due to the waves
with large horizontal scales observed in the figure 3.3 (b.1).

(a) With shear modes (b) Without shear modes

Figure 3.4: Time evolution of the total energy E (top, black solid line), kinetic energy EK
(top, orange line), potential energy EA (top, blue line), energy of the shear modes Eshear
(top, black dotted line), total energy dissipation ε (bottom, black line), kinetic energy
dissipation εK (bottom, orange line) and potential energy dissipation εA (bottom, blue
line). The energy dissipation is normalized by the energy injection rate P .
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Performing numerical simulations with a pseudo-spectral code with periodic boundary
conditions enhances the accumulation of the energy at the shear modes. The continous
increasing of energy at these modes does not allow us to reach a stationary state. The
shear modes engender a non-physical state out of the scope of this PhD work. I prevent
thus the energy to go to shear modes in all simulations presented in this thesis.

3.5.2 How is the structure of the flow?

One-dimensional energy spectra E(k). I focus on the energy distribution among
the different scales in the flow. Thus, I compute the horizontal E(kx) and vertical E(kz)
energy spectra. The one-dimensional (1D) kinetic energy spectra EK(k) can be expressed
as

EK(kx) =
1

2

1

δkx

∑
kz

|û(kx, kz)|2, (3.26)

EK(kz) =
1

2

1

δkz

∑
kx

|û(kx, kz)|2, (3.27)

where δkx = 2π/Lx, δkz = 2π/Lz and û(kx, kz) is the Fourier transform of the velocity.
The 1D potential energy spectra EA(k) is computed as

EA(kx) =
1

2N2

1

δkx

∑
kz

|b̂(kx, kz)|2, (3.28)

EA(kz) =
1

2N2

1

δkz

∑
kx

|b̂(kx, kz)|2, (3.29)

where b̂(kx, kz) are the Fourier transform of the buoyancy.
Figure 3.5 shows the horizontal (a) and vertical (b) compensated energy spectra. The

orange lines correspond to the kinetic energy spectra EK(k). The blue lines correspond to
the potential energy spectra EA(k). The horizontal energy spectra has been compensated
by k5/3. The vertical energy spectra has been compensated by k3. The grey vertical band
represents the forcing wavemodes. The vertical dotted lines indicate the wavenumbers
kb and ko corresponding to the buoyancy and Ozmidov length scales, respectively. The
buoyancy length scale lb represents the distance that a fluid particle, with a characteristic
velocity U , can be displaced in a fluid with a background stratification N . It is also related
to the thickness of the large horizontal layers observed in figure 3.3 (b.1). The wavenumber
kb associated with the buoyancy length scale is expressed dimensionally as

kb =
N

U
. (3.30)

The buoyancy wavenumber kb can be expressed in terms of the non-dimensional parameters
of the problem F (geometry forcing) and γ (stratification intensity) as

kb ∼
γ

F
|kf |. (3.31)

The Ozmidov scale lo is also very used in stratified turbulence studies. It is the largest
scale that can overturn in a stratified flow. For larger scale than the Ozmidov scale
l > lo, overturning is inhibited by the stratification. The wavenumber associated with the
Ozmidov scale ko can be expressed as

ko =

(
N3

ε

)1/2

, (3.32)
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where ε is the mean energy dissipation. In the stationary state, we can consider that
the mean dissipation rate equals the energy injection rate ε ∼ PE . Analogously to the
buoyancy wavenumber, we can express the Ozmidov wavenumber ko in terms of the non-
dimensional parameters

ko =

(
F

γ

)3/2

kf . (3.33)

We first focus on the horizontal energy spectra (figure 3.5, (a)). The orange (kinetic
energy spectrum) and blue (potential energy spectrum) lines are superposed for wavenum-
bers lower than the forcing wavenumers k < kf . This equipartition suggests waves are
present at scales larger than the forcing scale. It has also to be noticed that there is a
peak in the spectra at kx = 1δkx. It corresponds to the energy contained at the large
horizontal layers observed in figure 3.3 (b.1). It should be a mechanism to transfer the
energy from the injection scale to larger scales. We will see that this mechanism is due
to the two-dimensional configuration. At scales smaller than the forcing scale k > kf ,
blue and orange lines form a plateau. It means that there is a certain scale-scale energy
transfer. At large enough wavenumbers the energy is dissipated. For the vertical energy
spectra (figure 3.5 (b)), the blue and orange line have a peak within the grey vertical
band. This peak of energy corresponds to the vertical forcing scale. At scales larger than
the forcing scales k < kf , there is no much energy. Energy is transferred directly towards
small scales where it is dissipated. The adequate tools to validate these scenarios are the
energy fluxes. The computation of these quantities are discussed later in section 3.5.3.

(a) Horizontal energy spectra (b) Vertical energy spectra

Figure 3.5: Horizontal (a) and vertical (b) one-dimensional energy spectra for γ = 2.0,
F = 0.7 and forced on the vorticity ξ̂. The energy spectra are compensated by the power
law k−5/3. The horizontal axes are normalized by the horizontal kfx (left) and vertical
forcing wavenumbers kfz (right). The orange line represents the kinetic energy spectra.
The blue line represents the potential energy spectra. The grey band represents the forcing
region. The vertical dotted lines represent the buoyancy kb and Ozmidov ko wavenumbers
respectively.
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Two-dimensional energy spectra E(kx, kz). We now want to analyze how the
energy is distributed simultaneously along both, vertical and horizontal, directions. One
can compute the two-dimensional energy spectra. The two-dimensional (2D) energy spec-
tra is computed at each time step. The time decimation of the output can be specified by
the user. The output computes the 2D energy spectra for the linear modes â+ and â−. It
allows us us to study the distribution of the quadratic quantity of both linear modes â+
and â− at different times of the simulation. In order to compute the 2D energy spectra,
one have to compute first the 2D Fourier Transform of the linear eigenmode a± as

â±(kx, kz) =
1

Lx

1

Lz

∫ Lx

0

∫ Lz

0
a±(x)e−ikxdxdz. (3.34)

The energy of each Fourier mode is expressed as

Êa(kx, kz) =
1

2
|â±(kx, kz)|2. (3.35)

The energy spectrum in the spectral space (kx, kz) is then

Ea(kx, kz) =
1

2

1

δkx

1

δkz
|â±(kx, kz)|2, (3.36)

where δkx = 2π/Lx and δkz = 2π/Lz.
Figure 3.6 displays the 2D energy spectra for both linear modes â+ (figure 3.6 (top))

and â− (figure 3.6 (bottom)). It is displayed at three different times of the simulation: at
the beginning t = 0.2τaf (figure 3.6 (a)); at the transitory state t = 2τaf (figure 3.6 (b));
at the steady state t > 500τaf (figure 3.6 (c)). The colormap is the logarithm in base 10 of
the energy spectra. The white rectangular regions represents the forcing regions. At the
beginning of the simulation (figure 3.6 (a)), we can see highlighter white squares. It means
that the energy is concentrated around the forcing region at early times. We can see that
both linear modes â+ and â− are filled. It is due to the fact that the simulation is forced
on the vorticity ξ̂. Forcing the vorticity, we excite both linear modes (see equation (3.3)).
At the transitory state (figure 3.6 (b)), we see regions with wavenumbers smaller than the
forcing wavenumber k < kf highlighted, meaning that the energy has been transferred
from the forcing scale to large scales through an inverse cascade mechanism. It has to be
noticed that there is also a region with k > kf highlighted. This fact means that there
is simultaneously a forward cascade mechanism that carries energy from forcing scales
towards small scales. At the statistically stationary state (figure 3.6 (c)), a wide part of
the spectral space is filled with energy. The energy has been spread out through all scales.
It has to be notice the existence of highlighted vertically aligned squares.
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(a) t = 0.2τaf (b) t = 2τaf (c) t > 500τaf

Figure 3.6: 2D energy spectra of the linear modes â+ and â−, and for three different
times:(a) begin of the simulation t = 0.2τaf ; (b) transient state t = 2τaf ; (c) steady state
t > 500τaf . The colormap represents the logarithm in base 10 of the energy spectra. The

white square represents the forcing region. For γ = 2.0; Forced on vorticity ξ̂; kz > 0
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3.5.3 Energy transfer mechanisms

In this section, I explain how the energy is transferred among the scales in the flow.
We need to compute the spectral energy budget. The evolution equations of the kinetic
ÊK(k) = |û|2/2 and potential ÊA(k) = |b̂|2/(2N2) energies of a wavenumber k can be
expressed as

dÊK(k)

dt
= T̂K − b̂− D̂K + F̂K , , (3.37)

dÊA(k)

dt
= T̂A + b̂− D̂A + F̂A., (3.38)

where T̂K = −R[û∗(k) ·( ̂u · ∇u(k))] and T̂A = −R[b̂∗(k) ·(û ·∇b(k))] are the kinetic and
potential nonlinear transfers, D̂K(k) = ν8|k|16|û|2 and D̂A(k) = κ8|k|16|b̂|2 are the kinetic
and potential mean energy dissipation, b̂(k) = R[b̂∗(k)ûz(k)] is the buoyancy flux from
kinetic to potential energy, F̂K and F̂A are the Fourier transformed forcing terms. When
the equations (3.37) and (3.38) are summed over horizontal and vertical wavenumbers in
spectral space, we obtain,

dEK(k)

dt
= ΠK(k)−B(k)− εK(k) + PK(k), (3.39)

dEA(k)

dt
= ΠA(k) +B(k)− εA(k) + PA(k). (3.40)

where EK(k) =
∑

kx,kz≤k ÊK(k). ΠK(k) and ΠA(k) is the kinetic and potential energy flux
going outside of the wavenumber k, εK(k) and εA(k) are the kinetic and potential energy
dissipations within [0, k], B(k) represents the flux of energy going from kinetic to potential
energies, and PK(k) and PA(k) are the kinetic and potential energy injection rate by the
forcing within the range [0, k]. Total quantities are unsubscripted, i.e. Π = ΠK + ΠA.

Figure 3.7 displays the energy fluxes and dissipation rates in the horizontal (figure 3.7
(a)) and vertical (figure 3.7 (b)) directions. All curves have been averaged over the the
time interval 600 ≤ t ≤ 850, i.e. in the statistically stationary regime (see figure 3.4).
The kinetic ΠK(k) and potential ΠA(k) are represented by the orange and blue lines
respectively. They are normalized by the total mean dissipation rate ε. The black dotted
line is the total energy flux computed as Π(k) = ΠK(k) + ΠA(k). The green line is the
cumulative dissipation D(k). Since it is normalized by the mean dissipation rate ε, it
should be equal to the unity at the smallest scales. In both horizontal and vertical, the
black dotted line is positive for wavenumbers larger than the forcing wavenumber k > kf .
It means that in both cases, we have a forward cascade of energy, i.e. the energy is
transferred from large to smaller scales. This transfer is forced by the fact that dissipation
is only present at small scales. This energy transfer is dominated by the potential energy
(blue line). We can see that the orange line is negative. It means that the kinetic energy
flux ΠK is negative. The kinetic energy transfers its energy from small scales to large
scales through an inverse cascade. For low wavenumbers k < kf , the black dotted line
is equal to zero, meaning that there is no flux of energy Π(k) = 0. It has to be noticed
that dissipation (D(k), green line) acts over the whole inertial range, indicating that
our dynamics is affected by viscosity. This fact is due to the low resolution of this first
simulation. As described in the next paragraph, the resolution imposes indeed a lower
bound on the viscosity. This simulation has been performed to describe the essentials
of the analysis of stratified turbulence dynamics. Later on this manuscript, I present
simulations with larger resolutions to study strongly stratified flows weakly dominated by
viscosity.



54 CHAPTER 3. NUMERICAL SETUP AND CHARACTERISTIC SIMULATION

(a) Horizontal spectral energy budget (b) Vertical spectral energy budget

Figure 3.7: Horizontal (a) and vertical (b) spectral energy fluxes and dissipation for γ =
2.0, F = 0.7 and forced on the vorticity ξ̂. The flux and dissipation are normalized by the
mean dissipation rate of energy ε. The orange line represents the flux of kinetic energy ΠK .
The blue line represents the flux of potential energy ΠA. The black dotted line represents
the flux of the total energy Π. The green line represents the dissipation of total energy D.

3.6 Computation of the hyper-viscosity coefficient ν8

Geophysical flows such as the atmosphere and the oceans have a large Reynolds number
Re and small horizontal Froude number Fh (Brethouwer et al., 2007). They have indeed
a wide range of scales (inertial regime) weakly affected by the dissipation. The aim of this
PhD work is to investigate numerically the dynamics of the strongly stratified turbulence
regime. We use the hyper-viscosity to localize the dissipation at small scales. We assign
thus a larger proportion of grid points to the inertial range and less to the dissipative
range than by using the Navier-Stokes viscosity. Several numerical studies of stratified
turbulence adopted this approach in order to mimic large Reynolds number flows (Waite,
Bartello, 2006b; Lindborg, 2006; Lindborg, Brethouwer, 2007; Brethouwer et al., 2007;
Augier et al., 2015; Maffioli et al., 2016). In this section, I explain how the hyper-viscosity
coefficient νm (see equation 3.1) is computed in the solver. The generalized dissipation
operators are expressed as

DK = νn(−1)n+1∇2n, (3.41)

DA = κn(−1)n+1∇2n, (3.42)

respectively, where νn and κn are the hyper-viscosity and hyper-diffusivity coefficients.
All simulations of this thesis are computed with n = 8. As it has been presented above
(see table 3.2), the ratio between the viscosity and diffusivity coefficients is given by the
Schmidt number, Sc8 = ν8/κ8 = 1. It is chosen of order unity for simplicity, i.e. the
hyper-viscosity and -diffusivity coefficients are equal.
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The computation of the hyper-viscosity ν8 for a given resolution is carried out through
an iterative method. This method consists of performing short simulations, where ν8 is
updated in each simulation depending on the location of the spectral dissipation peak of
the simulation. This peak should be at the highest possible wavenumber k, i.e. smallest
possible scale. Figure 3.8 is a schematic representation of the spectral dissipation D(k) of
a simulation. After each simulation, we check the curve of the spectral dissipation D(k). If
the dissipation peak is located at too low wavenumbers, we decrease the coefficient ν8. On
the other hand, if the dissipation peak is located at too large wavenumbers, we increase the
coefficient ν8. We perform this iterative process until the coefficient ν8 reaches a constant
value and a steady state is achieved.

Figure 3.8: Representation of the spectral dissipation D(k) of a simulation. We perform
short simulations. In each simulation, the coefficient ν8 is updated. We check the spec-
tral dissipation peak of the simulation: (i) if the dissipation peak is located at too low
wavenumbers, we decrease the coefficient ν8; (ii) if the dissipation peak is located at too
large wavenumbers, we increase the coefficient ν8.

The computation of the hyper-viscosity coefficient ν8 has to be done for all stratifi-
cation strengths, i.e. γ, and all numerical resolutions. However, this iterative process is
considerable long for large resolutions. Hence, we have only computed ν8 for three reso-
lutions [240× 60, 480× 120, 960× 240]. We have fitted the points with a curve where we
can extrapolate the coefficient for larger numerical resolutions [1920 × 480, 3840 × 960].
Figure 3.9 shows the hyper-viscosity coefficient ν8 as function of the numerical resolution
for three different stratification strengths, i.e. γ. The fit for each γ is indicated in the
legend.

Figure 3.9: Hyper-viscosity coefficient ν8 (logarithmic scale) as a function of the resolution
for different values of γ = 0.5 (blue), γ = 2.0 (red) and γ = 8.0 (green). The coefficient ν8
for larger resolutions have been computed by doing a fit of the data.
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Chapter nx× nz ν8 θf(◦) γ Fh,f Forced key kz

Chapter 3.
Numerical setup

1920 × 480 4.48e-21 45 2.0 0.35 ξ̂+ kz > 0

1920 × 480 4.48e-21 45 2.0 0.35 ξ̂+ kz > 0

Chapter 4.
Effects of
varying

stratification

15360 × 960 4.30e-27 45 4.0 0.18 â+ kz > 0
15360 × 960 2.50e-27 45 8.0 0.09 â+ kz > 0
15360 × 960 2.30e-27 45 12.0 0.06 â+ kz > 0
7680 × 480 8.51e-26 45 4.0 0.18 â+ kz > 0
7680 × 480 2.78e-25 45 8.0 0.09 â+ kz > 0
7680 × 480 2.56e-25 45 12.0 0.06 â+ kz > 0
3840 × 960 2.55e-23 45 0.2 3.54 â+ kz > 0
3840 × 960 2.82e-23 45 0.3 2.36 â+ kz > 0
3840 × 960 3.05e-23 45 0.4 1.77 â+ kz > 0
3840 × 960 3.28e-23 45 0.5 1.41 â+ kz > 0
3840 × 960 3.45e-23 45 0.6 1.18 â+ kz > 0
3840 × 960 3.82e-23 45 0.8 0.88 â+ kz > 0
3840 × 960 4.07e-23 45 1.0 0.71 â+ kz > 0
3840 × 960 2.01e-23 45 2.0 0.35 â+ kz > 0
3840 × 960 2.14e-23 45 3.0 0.24 â+ kz > 0
3840 × 960 2.03e-23 45 4.0 0.18 â+ kz > 0
3840 × 960 1.70e-23 45 5.0 0.14 â+ kz > 0
3840 × 960 1.60e-23 45 6.0 0.12 â+ kz > 0
3840 × 960 1.39e-23 45 7.0 0.10 â+ kz > 0
3840 × 960 4.70e-23 45 8.0 0.09 â+ kz > 0
3840 × 960 4.32e-23 45 12.0 0.06 â+ kz > 0
3840 × 960 5.40e-23 45 16.0 0.04 â+ kz > 0
1920 × 480 5.31e-21 45 0.2 3.54 â+ kz > 0
1920 × 480 6.37e-21 45 0.5 1.41 â+ kz > 0
1920 × 480 7.37e-21 45 1.0 0.71 â+ kz > 0
1920 × 480 4.48e-21 45 2.0 0.35 â+ kz > 0
1920 × 480 4.76e-21 45 3.0 0.24 â+ kz > 0
1920 × 480 4.85e-21 45 4.0 0.18 â+ kz > 0
1920 × 480 4.05e-21 45 5.0 0.14 â+ kz > 0
1920 × 480 3.83e-21 45 6.0 0.12 â+ kz > 0
1920 × 480 3.32e-21 45 7.0 0.10 â+ kz > 0
1920 × 480 7.93e-21 45 8.0 0.09 â+ kz > 0
1920 × 480 7.29e-21 45 12.0 0.06 â+ kz > 0
1920 × 480 8.51e-21 45 16.0 0.04 â+ kz > 0
960 × 240 1.06e-18 45 0.2 3.54 â+ kz > 0
960 × 240 1.28e-18 45 0.5 1.41 â+ kz > 0
960 × 240 1.25e-18 45 1.0 0.71 â+ kz > 0
960 × 240 1.01e-18 45 2.0 0.35 â+ kz > 0
960 × 240 1.01e-18 45 4.0 0.18 â+ kz > 0
960 × 240 1.50e-18 45 8.0 0.09 â+ kz > 0
960 × 240 1.49e-18 45 12.0 0.06 â+ kz > 0
960 × 240 1.71e-18 45 16.0 0.04 â+ kz > 0

Table 3.3: List of the numerical simulations presented in the chapters 3 and 4. nx and nz
are the horizontal and vertical numerical resolutions.ν8 is the hyper-viscosity coefficient.
γ = ωl/ωaf represents the ratio between the frequency of the forced waves ωl and the fre-
quency computed from the forcing amplitude ωaf . The forcing horizontal Froude number
is expressed as Fh,f = F/γ, where F = sin θf indicates the direction of propagation of the

forced waves. Each simulation can be forced either on the vorticity ξ̂ or on the linear mode
â+. The forcing can be applied on modes with positive vertical wavenumbers kz > 0, or
modes with both positive and negative vertical wavenumbers kz ≷ 0.



Chapter 4

Effects of varying the stratification
and the Reynolds number

In this chapter, I discuss the effect of varying the stratification strength and the Reynolds
number on 2D stratified turbulence. In section 4.1, I present numerical simulations with
different stratification strength for a given Reynolds number. In section 4.2, I vary the
Reynolds number for a fixed stratification strength. I quantify the isotropy at both large
and small scales for the different regimes. The instability mechanism of the flow is analyzed
qualitatively for different stratification strengths and Reynolds numbers. In section 4.4,
a phenomenology of 2D stratified turbulence is presented with three different regimes.
Finally, in section 4.5, I describe flows with large Reynolds number and small horizontal
Froude, which are expected to be similar to the flows observed in nature.

In section 1.4, we have mentioned that two non-dimensional parameters control the
dynamics of 3D stratified turbulence: (i) the horizontal Froude number Fh, and (ii) the
Reynolds number Re. Nevertheless, these two non-dimensional quantities need to be
updated in order to include the use of an hyperviscosity coefficient and the forcing of
prograde internal gravity waves carried out in this PhD work. In section 3.3, two new
non-dimensional quantities are presented as the parameters responsible to control the
dynamics of 2D stratified turbulence. These two quantities are the forcing horizontal
Froude number Fh,f and the forcing Reynolds number Re8,f . The latter one has been
adapted with the hyper-viscosity coefficient ν8. The forcing horizontal Froude number
quantifies the strength of the stratification. The Reynolds number Re8,f estimates the
effect of the viscosity on the dynamics. The expressions of these two quantities have been
derived in equations (3.17) and (3.18) as

Fh,f =
F

γ
Re8,f =

1

ν8

( P
k22f

)1/3
. (4.1)

All numerical simulations are performed with the solver ns2d.strat presented in sec-
tion 3.1. In this chapter, all simulations are forced on the linear mode â+ on only positive
vertical wavenumbers kz > 0, and with forcing angle is θf = 45◦ (see section 3.2.2 for a
reminder of the forcing quantities). We excite therefore prograde waves, which are waves
propagating towards the same direction as the wavevector kf . The forcing scale is given
by the band in the spectral space 4δk < |kf | < 8δk, where δk = 2π/Lz. Furthermore,
the forcing injects energy at a constant rate P. In order to avoid energy accumulation as
observed in figure 3.3 (a), we prevent the energy in the shear modes E(kx = 0, kz) = 0
without a sink of energy. The time step of the simulations is limited by the Courant-
Friedrichs-Levy (CFL) condition.
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4.1 Effects of varying the stratification strength

In this section, I study the effects of varying the stratification strength Fh,f = F/γ for a
given value of the Reynolds number Re8,f . We consider an anisotropic domain such that
Lx = 4Lz, where Lx = 2π, and with a numerical resolution 3840 × 960. The simulations
have been initialized with the last state of a simulation with a lower resolution in order
to reach faster the statistically stationary state. Figure 4.1 summarizes all numerical sim-
ulations in the parameter space [Fh,f , Re8]. The simulations analyzed in this section are
displayed in green. The marker shape represents the different numerical resolutions. Note
that the markers do not follow a perfect horizontal line for a fixed numerical resolution. In
section 3.6, I explained the procedure to compute the hyper-viscosity coefficient ν8. The
coefficient ν8 depends on each simulation. Nevertheless, we are rather interested in the
order of magnitude of ν8 than its value itself.

10−1 100

Fh,f

108

1010

1012

1014

R
e 8

nx = 960 nx = 1920 nx = 3840 nx = 7680

Figure 4.1: Summary of all runs in the parameter space [Fh,f , Re8]. The marker shape
represent the different resolutions: circle (nx = 960); triangle (nx = 1920); square (nx =
3840); cross (nx = 7680); diamonds (nx = 15360). The simulations analyzed in this section
are displayed in green.

Table 4.1 summarizes the numerical and physical parameters of all simulations in this
section. In chapter 3, we have introduced the buoyancy kb and Ozmidov ko wavenumbers,
respectively. As a reminder, the buoyancy scale lb = k−1b is interpreted as the displacement
of a fluid particle with a characteristic velocity U in a background stratification charac-
terized by N . The Ozmidov wavenumber ko indicates the largest wavenumber influenced
by the buoyancy. In all simulations, buoyancy scale is larger than the Ozmidov scale
ko/kb > 1.
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γ Fh,f Re8,f ν8 kb/kf,z ko/kf,z ko/kb

0.2 3.54 1.2e+12 2.55e-23 0.2 0.5 2
0.3 2.36 1.1e+12 2.82e-23 0.4 1.0 2
0.4 1.77 1.0e+12 3.05e-23 0.6 1.5 2
0.5 1.41 9.4e+11 3.28e-23 0.8 2.1 3
0.6 1.18 9.0e+11 3.45e-23 1.0 2.8 3
0.8 0.88 8.1e+11 3.82e-23 1.2 4.3 3
1.0 0.71 7.6e+11 4.07e-23 1.1 6.0 5
2.0 0.35 1.5e+12 2.01e-23 1.4 16.9 12
3.0 0.24 1.4e+12 2.14e-23 1.7 31.0 18
4.0 0.18 1.5e+12 2.03e-23 2.0 47.7 24
5.0 0.14 1.8e+12 1.70e-23 2.2 66.7 31
6.0 0.12 1.9e+12 1.60e-23 3.1 87.6 28
7.0 0.10 2.2e+12 1.39e-23 2.7 110.4 41
8.0 0.09 6.6e+11 4.70e-23 3.3 134.9 41
12.0 0.06 7.2e+11 4.32e-23 4.3 247.8 57
16.0 0.04 5.7e+11 5.40e-23 5.9 381.6 64

Table 4.1: Overview of the physical and numerical parameters of the simulations for all
simulations presented in this section. We vary the stratification strength Fh,f , i.e. γ, for
a fixed forcing Reynolds number Re8,f with an hyper-viscosity coefficient ν8. kb, ko and
kf,z are the buoyancy, Ozmidov and vertical forcing wavenumbers, respectively.

Figure 4.2 (left) shows the time evolution of the energy for different γ. The energy
has been normalized by the quantity P/ωaf , which is the energy injected in one forcing
period τaf . The colors represent the value of the stratification strength γ, i.e Fh,f . The

error bars represent the standard deviation of the energy σE =
√
〈(Ē − E)2〉t. We see

that the energy for all simulations seems to fluctuate around a value. This means that
the energy at large scales has reached an statistically quasi-stationary state, for which the
energy injection rate equals the mean dissipation rate P ' ε̄. Unlike 2D homogeneous
turbulence, where no stationary state can be reached and with only small-scale dissipation,
2D stratified turbulence supports a mechanism to transfer energy from the forcing scale
to small dissipative scales. For low values of γ ∈ [0.2, 0.5], the statistically stationary
state is reached considerably fast. When the stratification is increased, the stationary
state is reached slowly. Furthermore, simulations with large γ present large fluctuations
at the steady state (see red line in figure 4.2 corresponding to γ = 8.0). Figure 4.2 (right)
displays the averaged energy at the steady state as function of the forcing horizontal
Froude number Fh,f = F/γ. For large stratification strengths (brown and purple lines),
the averaged energy is substantially large. In average, more energy is needed to transfer
the energy to small scales. For γ ∈ [4, 5, 6, 7, 8] (cyan, dark blue, orange, green and red
lines), one can observe a flat zone, implying that the energy needed to transfer to small
scales does not depend on the stratification. It has to be noticed that the minimum of
energy is reached for Fh,f ∼ 1. For the limit γ → 0, the dynamics becomes similar to
classical 2D turbulence with a passive scalar advected by the flow.
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γ = 0.2;
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Figure 4.2: Time evolution of the averaged energy (left) and averaged energy as function
of the horizontal forcing horizontal Froude number (right). In both graphs, the energy
is normalized by P/ωaf , which is the injected energy in a forcing period τaf . The colors
represent the different values of the stratification strength γ. The error bars of the right
plot represent the standard deviation of the energy σE =

√
〈(Ē − E)2〉t

We have underlined that some studies of stratified turbulence used the horizontal
Froude number Fh, which is the ratio between the stratification and non-linear time scales
expressed as

Fh =
U

LhN
' P

U2N
, (4.2)

where U is the root mean square of the horizontal velocity and Lh is a characteristic
horizontal scale. It is important to study how the forcing horizontal Froude number
Fh,f = F/γ scales with the original horizontal Froude number Fh. The ratio between both
Froude numbers is expressed as

Fh,f
Fh

=
F

γ

U2N

P
. (4.3)

We consider that the averaged energy scales as the square of the velocity as 〈E〉 ∼ U2,
where U is a characteristic velocity. We can thus obtain the characteristic frequency of
the forcing as ωaf = NF/γ. We can express the equation (4.3) as

Fh,f
Fh
' 〈E〉
P/ωaf

. (4.4)

The ratio of the Froude numbers Fh,f/Fh is thus the normalized averaged energy dis-
played in figure 4.2 (right). Figure 4.3 displays the ratio Fh,f/Fh as function of the forcing
horizontal Froude number Fh,f . One can observe that Fh,f scales as the original Froude
number Fh for γ ∈ [4, 5, 6, 7, 8]. As mentioned above, at these stratification strengths, the
averaged energy does not depend on the stratification strength (see figure 4.2, right). We
need, in average, the same quantity of energy to transfer the energy to dissipative scales.
For large values of γ, the scaling of equation 4.4 does not work, which might be due to
too strong dissipation.
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Figure 4.3: Ratio between the Froude numbers Fh/Fh,f as function of the forcing horizontal
Froude number Fh,f for different stratification strengths γ. The horizontal black dotted
line indicates where Fh/Fh,f is constant.

Buoyancy fields at the steady state. Figure 4.4 displays the instantaneous fields
of the quantity b/N at the statistically stationary state for six simulations: (a) γ = 0.2;
(b) γ = 0.5; (c) γ = 1.0; (d) γ = 2.0; (e) γ = 4.0; (f) γ = 8.0. For low stratification
strengths γ ≤ 1, we observe the presence of scales with the same horizontal and vertical
size, implying that the dynamics is isotropic. Furthermore, small scales are present in
the flow. As it has been mentioned before, 2D stratified turbulence supports a transfer of
energy towards small scale. Increasing the stratification strength γ, large horizontal layers
emerge in the flow with small scales. Furthermore, the thickness of the horizontal layers
decreases when we increase the stratification strength. For large stratification strengths
γ = 8, the structures are considerably smoother with few small scales.
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Figure 4.4: Snapshots of the quantity b/N in the statistically stationary state for six
different values of γ.



4.1. EFFECTS OF VARYING THE STRATIFICATION STRENGTH 63

Quantification of the large scale isotropy

In figure 4.4 and for low stratification strengths γ ∈ [0.2, 0.5], we have seen scales with
the same horizontal and vertical size, which means that the dynamics is isotropic. For a
large stratification strength (see figure 4.4 for γ ∈ [4.0, 8.0]), the dynamics becomes layered
with large horizontal scales and small vertical scales. The dynamics for large stratification
strengths is indeed anisotropic. In order to quantify, in a simple way, the isotropy at large
scales, I built an isotropy index IE defined as

IE = 4

(
EK,x
EK

− 1

)2

, (4.5)

where EK,x is the horizontal component of the kinetic energy and EK is the total kinetic
energy. The value of the isotropy index is within the range IE ∈ [0, 1]. For isotropic
flows the quantity IE = 1. For strongly anisotropic flows such as observed in figure 4.4
for γ = 8, the quantity IE ' 0. Figure 4.5 displays the isotropy index IE against
the forcing horizontal Froude number Fh,f . The colors represent different values of the
stratification strength γ. The error bars of IE are computed as δIE ∼ 2(δEK,x + δEK),
where δEK,x and δEK are the standard deviation of the horizontal kinetic energy and
total kinetic energy respectively. For small γ, IE is constant of order unity. It means
that for weak stratification strengths, the dynamics is isotropic at large scales, which is
in agreement as observed in figure 4.4 for γ ∈ [0.2, 0.5]. At γ ∼ 0.8 (brown dot), there
is a transition on the value IE which starts decreasing, which means that the flow starts
becoming anisotropic at large scales. This anisotropy at large scale is associated with the
apparition of large horizontal layers observed in figure 4.4 for γ = 1.0. The quantity IE
decreases with the stratification strength γ (see γ ∈ [0.8, 1, 2] corresponding to brown,
grey dots). For γ ∈ [3, 4, 5] (corresponding to yellow, cyan and blue dots), we see that
IE becomes constant. For large values of γ ∈ [8, 12, 16] (corresponding to red, purple
and brown dots), the quantity IE decreases with the stratification strength. It decreases
faster than for γ ∈ [0.8− 2], which may be due to the effect of viscous dissipation. Flows
with strong stratification, i.e. γ ∈ [8, 12, 16] may be affected by the dissipation even for
large horizontal scales. Viscosity damps vertical motions and enhances anisotropy at large
scales.
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Figure 4.5: Isotropy index IE against the forcing horizontal Froude number Fh,f . The
colors represent different stratification strengths γ.
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Structure of the flow

We have seen in figure 4.5 that the flows become anisotropic when the stratification in-
creases. It is therefore natural to study how the energy is distributed among the scales.
Moreover, it is interesting to investigate if the energy is shared in the same way in the
horizontal and vertical directions. In this section, I discuss the repartition of the energy
among the scales by means of the horizontal and vertical energy spectra for different strati-
fication strengths. We have seen in section 1.3.2 that the energy in the ocean is distributed
differently in the horizontal and vertical directions, meaning that observed oceanic energy
spectra are strongly anisotropic. Figure 4.6 displays the horizontal and vertical energy
spectra for three different stratification strengths: weakly stratified flows γ = 0.5 (figure
4.6 (a)), intermediate stratified flows γ = 2.0 (figure 4.6 (b)) and strongly stratified flows
γ = 8.0 (figure 4.6 (c)). The energy spectra are compensated by the power law k−5/3. The
kinetic and potential energy are represented by the orange and blue lines, respectively.
The solid lines represent the horizontal energy spectra and the dashed lines represent the
vertical energy spectra. The dashed black lines represent the power laws k−5/3 and k−3.
The red dashed line displays the model C1UNk

−2
z , where C1 = 0.02. This scaling will be

discussed later in figure 4.7. The dotted vertical lines correspond to the buoyancy kb and
the Ozmidov ko wavenumbers. The vertical grey band shows the forcing region.

For weakly stratified flows γ = 0.5 (figure 4.6 (a)), we see that the solid lines superpose
the dotted lines. It means that the horizontal and vertical energy spectra are similar,
which confirms that the flow is isotropic. For low γ, the forcing horizontal Froude number
Fh,f is of order of the unity. For scales smaller than the forcing scale k � kf , one can
observe that the potential energy (blue lines) dominates over the kinetic energy (orange
lines). For moderate stratification strengths γ = 2.0 (figure 4.6 (a)), one can notice that
the horizontal (solid lines) and vertical (dashed lines) energy spectra are not superposed.
This confirms that the dynamics is anisotropic as observed in figures 4.4 and 4.5. For
the horizontal energy spectra, we observe a peak at the first horizontal mode kx = δkx,
where δkx = 2π/Lx, which corresponds to the size of the large horizontal layers observed
in figure 4.4 for γ = 2.0. In chapter 3, it has been mentioned that we prevent the energy
to go to the shear modes (kx = 0, kz) in order to avoid concentration of energy in the shear
modes. The energy is thus transferred to the first horizontal mode kx = δkx. Furthermore,
at low wavenumbers kx < kf,x, there is an equipartition of kinetic (orange solid line)
and potential energies (blue solid line). In the vertical energy spectra (dashed lines), we
observe a peak within the forcing region, which might correspond to the thickness of the
large horizontal scales. The potential energy is transferred following a power law slightly
shallower than k−2x . It has to be noticed, in both vertical and horizontal spectra, that there
is a transition at the Ozmidov wavenumber k ∼ ko. At scales smaller than the Ozmidov
scale k > ko, the potential energy (blue lines) predominate over the kinetic energy (orange
lines).
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10−1 100 101 102

kx/kf,x, kz/kf,z

10−2

10−1

100

101

E
(k

)k
5/

3

k−5/3

k−3

C1UNk
−2
z

kokb

(c) γ = 8.0
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Figure 4.6: Horizontal (solid-line) and vertical (dashed-line) energy spectra for three dif-
ferent stratifications: (a) γ = 0.5; (b) γ = 2.0; γ = 8.0. The numerical resolution of the
simulations is 3840 × 960. The energy spectra is compensated by a power law k5/3. The
orange line represents the kinetic energy spectra. The blue line represents the potential
energy spectra. The dashed black lines represents the power laws k−5/3, k−2 and k−3.
The dotted vertical lines are the buoyancy kb and the Ozmidov ko wavenumbers. The
vertical grey band represents the forcing region. The red dashed line is the represents the
analytical expression of E(kz) = C1UNk

−2
z , where C1 = 0.02. The small vertical green

line corresponds to the characteristic vertical wavenumber.
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For large stratification strengths γ = 8 (figure 4.6 (c)), we see that the horizontal and
vertical energy spectra are substantially different, which means that the flow is strongly
anisotropic. In the horizontal energy spectra, we observe an equipartition of the kinetic
(orange solid line) and potential (blue solid line) energies at large scales observed in fig-
ure 4.6 (b). It suggests the presence of internal gravity waves with a large horizontal scale.
For kx > kf,x, both kinetic and potential energy spectra seem to decay as the power law
k−2x , suggesting a transfer of energy carried by waves. For large kx, the kinetic energy

spectrum seems to follow a k
−5/3
x power law. We now focus on the vertical energy spectra

(dashed lines). The peak of the vertical energy spectra is on the right of the forcing scale
k > kf,z. As it has been mentioned before, the peak corresponds to the thickness of these
horizontal layers which decreases when the stratification strength increases. However, the
vertical energy spectra seem to decay as the power-law k−2z , we do not see a clear break
on its slope. It might be due to the fact that the dynamics is strongly affected by the
viscosity. We may need a larger Reynolds number simulations in order to increase the
width of the inertial range. Larger Reynolds flows are discussed later in section 4.5.

As it has been mentioned above, the vertical energy spectra for large stratification
strengths follows a k−2z power law (figure 4.6 (c)). It is therefore interesting to built an
expression for the decrease of the vertical energy spectra in the strongly stratified regime.
By dimensional arguments, the vertical energy spectra scales as E(kz) = C1UNk

−2
z , where

the constant C1 is obtained by fitting the expression with the vertical energy spectra for
γ = 8.0. The value of the constant obtained is C1 = 0.02. In figure 4.7, we test the
expression of the vertical energy spectra for different stratification strengths. One can
observe that the analytical expression only works for γ ∈ [4, 5, 6, 7]. For a low stratification
strength γ = 3.0, the analytical expression does not work. It may be explained by the
fact the flow is weakly affected by the stratification. For a large stratification strength
γ = 12.0, the analytical scaling does not work, which may be explained by the fact that
the flow is strongly affected by the disssipation.
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(b) γ = 4.0
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(c) γ = 5.0
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(d) γ = 6.0
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(e) γ = 7.0
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(f) γ = 12.0
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Figure 4.7: Vertical energy spectra for six different stratification strengths: (a) γ = 3.0,
(b) γ = 4.0, (c) γ = 5.0, (d) γ = 6.0, (e) γ = 7.0 and (f) γ = 12.0. The orange line is the
kinetic energy spectrum. The blue line is the potential energy spectrum. The red dashed
line is the represents the analytical expression of E(kz) = C1UNk

−2
z , where C1 = 0.02.

The dashed black lines represents the power laws k−5/3, k−2 and k−3. The dotted vertical
lines are the buoyancy kb and the Ozmidov ko wavenumbers. The vertical grey band
represents the forcing region.
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Spectral energy budget

In this section, we study the energy transfer mechanisms by means of the spectral energy
budget. I have computed the spectral energy fluxes for three stratification strengths:
γ = 0.5, γ = 2.0 and γ = 8.0. Figure 4.8 displays the horizontal (left) and vertical (right)
spectral energy budget. The flux Π(k) is normalized by the mean energy dissipation
ε. The orange and blue lines represent the kinetic ΠK and potential ΠA energy fluxes,
respectively. The black dotted line represents the total energy flux Π = ΠK + ΠA. The
green line represents the spectral dissipation.

For weakly stratified flows (figure 4.8, (a) and (b)), we see that the horizontal (a)
and vertical (b) fluxes are similar. For wavenumbers larger than the forcing wavenumber
k > kf , the black dotted and blue lines are positive, and orange line is negative. This fact
means that energy is transferred from the injection scale to smaller scales. The fact that the
configuration is 2D, the kinetic energy carries energy from smaller scales to larger scales.
This type of dynamics generates a flux loop already observed in Boffetta et al. (2011). For
moderate and strongly stratified flows (figures 4.8 (c), (d), (e) and (f)) the mechanism of
energy transfer is different. We observe that horizontal and vertical components of the
spectral energy budget are different, which confirms that the flow is anisotropic. We now
focus on the horizontal energy flux (figures 4.8 (c) and (e)). For modes with wavenumber
smaller than the forcing wavenumber k < kf , the potential (blue) and kinetic (orange)
fluxes are the same with opposite sign. This fact means that when injecting energy, a
first loop at large scales is created. The kinetic energy is transferred from the injection
scale to large scales. At large scales there is a conversion to potential energy that carries
energy to smaller scales. For wavenumbers larger than the forcing wavenumber k > kf ,
the orange line becomes positive in a small region of the spectral space. Analogously as
the weak stratified flows, a second flux loop is created for wavenumbers larger than the
forcing wavenumbers k > kf . The energy is transferred to smaller scales by the potential
energy (blue line). The kinetic energy transfers back the energy from small to large scales
(blue line). It has to be noticed that for strongly stratified flows, i.e. γ = 8.0, the
black dotted line can not reach an horizontal plateau, which means that the dynamics is
strongly affected by the viscosity and the Reynolds number is too low to develop a clear
inertial range on the horizontal direction. Thus, the horizontal resolution must be further
increased. In the vertical energy flux (figures 4.8 (d) and (f)), the transfer of energy is
similar as of the weakly stratified flows. There is a direct cascade of energy from the
injection scale to dissipative scales. The cascade of energy is dominated by the potential
energy. A flux loop is also present. The kinetic energy is pumping back energy to large
scales.
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(b) Vertical fluxes, γ = 0.5
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(c) Horizontal fluxes, γ = 2.0
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(d) Vertical fluxes, γ = 2.0
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(e) Horizontal fluxes, γ = 8.0
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(f) Vertical fluxes, γ = 8.0
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Figure 4.8: Horizontal (b) and vertical (b) spectral energy fluxes and dissipation for
γ = 0.5, γ = 2 and γ = 8. The flux and dissipation are normalized by the mean dissipation
rate of energy ε. The orange line represents the flux of kinetic energy ΠK . The blue line
represents the flux of potential energy ΠA. The black dotted line represents the flux of
the total energy Π. The green line represents the dissipation of total energy D. The cyan
line represents the conversion from kinetic to potential energy B. The vertical grey band
represents the forcing region.
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Quantification of the isotropy at dissipative scales

In figures 4.8 (e) and (f) , we have seen that the dynamics were strongly affected by
the dissipation for γ = 8.0. For strongly stratified flows, the dissipation occurs at large
horizontal scales and small vertical scales, meaning that it is strongly anisotropic. In order
to quantify the isotropy of the dissipative scales, we have build a non-dimensional quantity
Id computed as

Id =
k1/2,x

k1/2,z
, (4.6)

where k1/2,x and k1/2,z are the wavenumbers at which the dissipation is half of the
total dissipation in the horizontal and vertical directions respectively. For flows with
Id ∼ 1 means that half of the dissipation occurs at the same wavenumber for horizontal
and vertical directions. In this case, the dissipation is isotropic. For flows with Id ∼ 0,
half of the dissipation operates at vertical wavenumbers larger than at the horizontal
wavenumbers. This means that the dissipation is anisotropic. In figure 4.9, the isotropy
of the dissipation Id is displayed against the forcing horizontal Froude number Fh,f . We
first focus on large values of Fh,f , i.e. weakly stratified flows. The quantity Id is constant
and is of order of the unity. It means that the dissipation is isotropic at flows weakly
affected by the stratification. A transition appears for a value of γ = 0.8 corresponding
to the brown dot. The isotropy of the dissipation starts decreasing as the Fh,f decreases.
When we increase the stratification strength, the flow develops into large horizontal layers.
As it has been observed in figure 4.4 for γ = 4.0, the flows contains large horizontal
layers coupled with small vertical scales. These small vertical scales might be produced
due the strong shear between the horizontal layers. For strongly stratified flows, Fh,f <
10−1 corresponding to red, purple and brown dots, the Id decays faster than for weaker
stratifications when decreasing Fh,f . The dissipation in strongly stratified flows enhances
the anisotropy of the dissipation. It has to be noticed that there are three different
scalings for the quantity IE : stratified flows affected by the dissipation, stratified flows
weakly affected by the dissipation and weakly stratified flows.
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Figure 4.9: Isotropy of the dissipation Id against the forcing horizontal Froude number
Fh,f . The numerical resolution of the simulations is 3840× 960. The dotted vertical lines
indicate the break of the slope of Id.
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Vertical structure of the strongly stratified flows

In the limit of the strong stratification, the vertical scale of the flow has two different scal-
ings (see chapter 2). Flows weakly affected by the viscosity develop layers with a thickness
proportional to the buoyancy length scale. Flows strongly affected by the viscosity develop
a vertical scale proportional to the Reynolds number. In this section, the two scalings are
tested for different stratification strengths.

Characteristic horizontal and vertical scales of the flow

The characteristic horizontal and vertical scales of the flow is computed following the work
of Brethouwer et al. (2007) as

lx =

[ ∫∞
0 EK(kx)dkx∫∞

0 kmx EK(kx)dkx

]1/m
lv =

[ ∫∞
0 EK(kz)dkz∫∞

0 kmz EK(kz)dkz

]1/m
, (4.7)

where EK(kx) and EK(kz) are the horizontal and vertical kinetic energy spectra respec-
tively. I make the choice of m = 1, which requires that EK(kz) falls faster than k−2z (see
appendix B of Brethouwer et al. (2007)). For strongly stratified flows, i.e. large γ, I expect
the vertical kinetic energy spectra EK(kz) to fall off faster than k−2z (see figure 4.6 (c)).

A. Scaling for turbulent stratified flows

Billant, Chomaz (2001) proposed a scaling for the layer thickness for strongly stratified
inviscid flows. They argued that, in the limit of strong stratification Fh → 0, the flow
adjusts its vertical length scale to the buoyancy length scale lv ∼ lb ∼ U/N , where lv and
lb are the vertical and buoyancy length scales respectively, U is a characteristic horizontal
velocity and N is the Brunt-Väisälä frequency.

B. Scaling for viscosity-affected stratified flows

For strongly viscosity-affected flows, Godoy-Diana et al. (2004) argued that the vertical
length scale is determined by the balance between the horizontal advection term and
the vertical diffusion term of the equation (2.39). The vertical length scale can thus be

expressed as lv ∼ lν8 ∼ lhRe
−1/8
8 , where lh is the horizontal characteristic scale and Re8 is

the Reynolds number with the hyper-viscosity coefficient ν8.

Test of the two scalings

Figure 4.10 (a) displays the vertical wavenumber kv ∼ 1/lv, (b) the buoyancy wavenumber
kb = N/U , (c) the compensated vertical wavenumer kv with the viscosity scaling kν8 ∼
1/lν8 and (d) the compensated vertical wavenumber kv with the buoyancy wavenumer
kb for different values of stratification strength, i.e. Fh. We now focus on figure 4.10
(a). For small values of Fh, its vertical characteristic wavenumber is relatively large.
Indeed strongly stratified flows have a small characteristic vertical scale (see γ = 8.0 of
figure 4.4). One can notice that the characteristic vertical wavenumber kv decreases when
decreasing the stratification strength Fh,f > 1. When decreasing the stratification, the
dynamics starts becoming isotropic. Its vertical scale starts increasing and becomes similar
to the characteristic horizontal scale (see figure 4.10 (b)). We now test the two scalings
proposed for strongly stratified flows: viscosity-affected stratified flows (figure 4.10 (c))
and strongly turbulent stratified flows (figure 4.10 (d)). In figure 4.10 (c), we see that
for values Fh,f < 10−1, the values of kv are aligned around the value kv/kν8 ∼ 2 × 10−2

although the scaling is not very clear. It means that the viscous scaling works for flows
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with strong stratification. At this numerical resolution, strong stratified flows are still
highly dissipative. One can notice that when decreasing stratification, i.e large values
of Fh, the scaling is not valid. For weak stratifications, the flows become isotropic and
strongly non-linear. They are not affected by the viscosity. We now focus on figure 4.10
(d). For values Fh,f ∼ 0.3, the compensated vertical wavenumber kv/kb is constant and of
order of kv/kb ∼ 0.4. The strongly stratified and turbulent scaling only works in this range
of flows at this fixed numerical resolution 3840× 960. When increasing the stratification,
i.e lower values Fh,f , the scaling does not work any longer. It is due to the viscosity effects.
The flows are strongly affected by the viscosity effects. They can only develop layers with
a thickness larger than the buoyancy length scale lb = U/N .
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Figure 4.10: (a) Characteristic vertical wavenumber kv computed as Brethouwer et al.
(2007); (b) charactersitic buoyancy wavenumber kb = N/U ; (c) compensated vertical
wavenumber kv with the viscosity-affected wavenumber kν8 ; (d) compensated vertical
wavenumber kv with the buoyancy wavenumber kb. All the quantities are plotted as
function of the forcing horizontal Froude number Fh,f . The colors represent the strength
of stratification γ. The numerical resolution of all simulations is 3840× 960.
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Instability mechanism and the Richardson number

In figure 4.4 for γ ∈ [4.0, 8.0], we have seen that the dynamics is strongly anisotropic.
Large horizontal layers are coupled with small vertical scales. The production of these
small vertical scales might be due to the strong shear between the horizontal layers. It
is therefore important to quantify the development of shear instabilities in the flow. The
shear instability, also called Kelvin-Helmholtz (KH) instability, is the overturning of a
shear layer. The non-dimensional number that quantifies the KH instability locally is
the Richardson number Ri. It locally compares the shear the vertical shear with the
stratification. It is defined as

Ri =
− g
ρ0
∂ρ
∂z

|∂zux|2
. (4.8)

It has to be noticed that the flow is unstable for Ri < 0 by gravitational instabil-
ity. The flow potentially develop shear instabilities for 0 < Ri < 1/4 (Miles, 1961). For
Ri > 1/4, the stratification damps the shear of the flow. Figures 4.11 display snapshots
of the Richardson number Ri for γ = 0.2 and γ = 0.5, i.e. weakly stratified flows. The
top figure shows the Richardson number Ri for the whole domain size. The bottom figure
displays the Richardson number of a zoomed region. The colorbar has been fixed in the
range where a shear instability potentially can develop 0 < Ri < 1/4. In figure 4.11, the
critical Richardson number Ri < 1/4 is reached everywhere. For weakly stratified flows,
the strengh of the stratification is not enough to damp the shear produced by the vorticity
field.

Figure 4.11: Local Richardson number Ri for γ = 0.2. The green color displays the
unstable regions with Ri < 0. The red rectangle shows the zoom region. The numerical
resolution is 3840× 960.

Figure 4.12 displays the Richardson number Ri for γ = 1.0. We have seen that for
γ = 1.0 the flow starts showing in large horizontal layers (see figure 4.4 for γ = 1.0). We
see that the critical Richardson number 0 < Ri < 1/4 is disposed in horizontal layers.
These layers where the Richardson number is critical correspond to the interface between
the horizontal layers observed in figure 4.4 for γ = 1.0.
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Figure 4.12: Same as figure 4.11 for γ = 1.0

For strongly stratified flows, figures 4.13- 4.14, the Richardson number is disposed in
horizontal layers with a thickness smaller than for γ = 1.0. It is due to the fact that the
horizontal layers in the physical fields decreases with the stratification. This fact has been
already observed in figure 4.4 for γ = 8.0. The critical Richardson number 0 < Ri < 1/4
appears again at the interface of these large horizontal layers. A strong shear appears at
the interface of these horizontal layers developing shear instabilities.

Figure 4.13: Same as figure 4.11 for γ = 4.0
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Figure 4.14: Same caption as figure 4.11 for γ = 8.0

Summary of 4.1: effects varying the stratification strength

In this section, we have performed numerical simulations of 2D stratified turbulence with
different stratification strengths for a fixed Reynolds number. We have observed three
different regimes depending on the value of the forcing horizontal Froude number Fh,f .
The three regimes are listed in the following:

• Fh,f ≥ 0.5. Isotropic stratified turbulence with a forward energy cascade towards
small scales. There is only one flux loop at small scales.

• 0.1 ≤ Fh,f < 0.5. Anisotropic stratified turbulence with horizontal scales weakly
affected by the viscosity. Its vertical scale is of order the buoyancy scale lv ∼ lb.
Two flux loops are observed at large and small scales respectively.

• Fh,f < 0.1. Anisotropic stratified turbulence with horizontal scales strongly affected
by the viscous dissipation.

Geophysical flows such as the atmosphere and the oceans are strongly stratified flows,
i.e. with low horizontal Froude number. We need thus to increase the Reynolds number
in order to investigate the dynamics of these flows. In the following section, we study the
dynamics of stratified turbulence for different Reynolds numbers by varying the numerical
resolution.
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4.2 Effects of varying the Reynolds number

Increasing the Reynolds number of the flow results in a dynamics less affected by the
viscosity. We increase the Reynolds number by increasing the horizontal numerical reso-
lution nx, which decreases the optimal hyper-viscosity coefficient ν8. The dependency of
the hyper-viscosity coefficient ν8 and the horizontal numerical resolution has been already
discussed in section 3.6. In this section, I discuss the effect on the dynamics of varying
the Reynolds number Re8,f for a given stratification strength Fh,f . We present numerical
simulations with four different numerical resolutions nx ∈ [960, 1920, 3840, 7680]. I choose
those simulations with a large stratification strength γ = 8.0. Furthermore, simulations
with nx ∈ [960, 1920, 3840] have a domain size Lx = 4Lz. The anisotropy of the do-
main for simulations nx = 7680 is Lx = 16Lz. Figure 4.15 displays the parameter space
[Fh,F , Re8,f ] for all runs. The numerical simulations with a value γ = 8.0 are displayed in
green. The table 4.2 summarizes the numerical and physical parameters of all simulations
presented in this section.
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Figure 4.15: Same as figure 4.1. In this section, I analyze the effect of varying the Reynolds
number R8,f for a given stratification strength Fh,f = 0.09 (γ = 8.0). The simulations
analyzed in this section are displayed in green.

nx× nz Re8,f ν8 γ Fh,f kb/kf,z ko/kf,z ko/kb

960 × 240 2.1e+07 1.50e-18 8.0 0.09 3.1 135 44
1920 × 480 3.9e+09 7.93e-21 8.0 0.09 3.3 135 41
3840 × 960 6.6e+11 4.70e-23 8.0 0.09 3.3 135 41
7680 × 480 1.1e+14 2.78e-25 8.0 0.09 4.7 135 29

Table 4.2: Overview of the physical and numerical parameters of the simulations with
a fixed stratification strength γ = 8.0. I vary the Reynolds number Re8,f . The forcing
horizontal Froude number is expressed as Fh,f . Re8,f is forcing Reynolds number. ν8 is
the hyper-viscosity coefficient. kb, ko and kf,z are the buoyancy, Ozmidov and vertical
forcing wavenumbers respectively.
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Figure 4.16 displays instantaneous fields of the quantity b/N for different numerical
resolutions. At the lowest numerical resolution 960× 240 (figure 4.16, top), the horizontal
layers are thicker than their analogous regimes with larger Reynolds number with less
small scales. At this Reynolds number, the effect of the dissipation is strong, preventing
the development of small scales in the flow. For 1920 × 480 and 3840 × 960, fields are
similar. The thickness of the horizontal layers is smaller than for 960 × 240. We can
see more small scales between these large horizontal layers than for the case with lower
resolution. The increase of the Reynolds number enhances thus the apparition of small
scales in the flow.

Figure 4.16: Snapshots of the quantity b/N in the statistically stationary state for different
numerical resolutions nx ∈ [960, 1920, 3840, 7680] and for a fixed stratification strength
Fh,f = 0.09 (γ = 8.0). Simulations nx ∈ [960, 1920, 3840] have a domain size Lx = 4Lz,
while the simulation nx = 7680 has a domain size Lx = 16Lz.
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How does the Reynolds number affect the energy spectra?

Figure 4.17 displays the energy spectra for two different numerical resolutions: (a) 960×240
and (b) 7680× 480. For a low resolution (960× 240), the horizontal energy spectra (solid
lines) decreases fast at scales smaller than the forcing scale kx > kf,x. At this resolution,
the dynamics are strongly affected by the viscosity. For a large resolution (figure 4.17
b), one can observe that the horizontal energy spectra does not decrease in the inertial
range, which means that the dynamics is weakly affected by the viscosity. The vertical
energy spectra has a peak located at k ∼ 0.5kb corresponding to the thickness of the
horizontal layers observed in figure 4.16. Furhtermore, the vertical energy spectra decays
in the inertial range with k−2z power law. At this point, two questions may come up: (i)
does the vertical energy spectra scale with k−2z power law in kf ≤ k ≤ kb?; (ii) does the

vertical energy spectra scale with k
−5/3
z for modes k > ko? The first question requires

performing numerical simulations forced at large vertical scales. The second question can
be answered by performing larger numerical simulations where the Ozmidov scale ko is
resolved. To conclude, one can notice that the dotted lines do not exist at the left side of
the grey band. The forcing vertical mode corresponds to the first vertical mode δkz of the
numerical box.
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(b) 7680× 480,R8 = 3
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Figure 4.17: Horizontal (solid-line) and vertical (dashed-line) energy spectra for two dif-
ferent numerical resolutions: (a) 960× 240; (b) 7680× 480. The stratification strength is
γ = 8.0. The blue line represents the potential energy spectra. The orange line represents
the kinetic energy spectra. The energy spectra is compensated by a power law k5/3. The
dashed black line represents the power laws k−5/3 and k−3. The red dashed line displays
the model for the vertical energy spectra E(kz) = C1UNk

−2
z , where C1 = 0.02. The

vertical grey band represents the forcing region. The green line displays the characteristic
vertical wavenumber computed with the expression 4.7.
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How does the Reynolds number affect the energy transfer
mechanisms?

Figures 4.18 and 4.19 display the horizontal and vertical spectral energy budgets for two
different numerical resolutions: (a) 960× 240 and (b) 7680× 480. We first focus on figure
4.18 (a). We see that the spectral dissipation curve (green line) starts increasing at low
wavenumbers kx, meaning that large horizontal scales are affected by the viscosity. At
the left side of the grey band, the dynamics is similar in figures 4.18 (a) and (b). It
corresponds to the flux the loop already mentioned in Boffetta et al. (2011). At small
scales for the horizontal energy budget (figure 4.18 (a)), we see that BOTH ΠK and ΠA

(orange and blue lines) tend to zero, meaning that the dissipation damps all transfer of
energy. For the vertical energy budget 4.18 (b), we see that the spectral dissipation curve
(green line) starts increasing at kx/kf,x ∼ 30. The dissipation acts at scales lower than
the forcing scale, which means that effect of dissipation is weak and a true inertial range
is developed in the horizontal direction. The effect of the Reynolds number is lower in
the vertical direction (4.19 (a) and (b)). For both numerical resolutions, the dissipation
starts acting at scales smaller than the forcing scale, which confirms that the dissipation
does not have any effect on the vertical transfer of the energy. In both cases (figures 4.19
(a) and (b)), the black dotted line becomes constant. It means that there is a transfer
of energy to small scales. The energy transfer is not dominated by the viscosity and an
inertial range develops even at low resolution.
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(b) 7680× 480,R8 = 3
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Figure 4.18: Horizontal energy fluxes for two numerical resolutions: (a) 960 × 240; (b)
7680× 480. The stratification strength is γ = 8.0. The blue line represents the potential
energy flux ΠA. The orange line represents the kinetic energy flux ΠK . The clack dotted
line represents the flux of the total energy Π = ΠK + ΠA. The green line is the cumu-
lative dissipation. The grey band represents the forcing wavenumbers. All quantities are
normalized by the mean dissipation ε.
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(a) 960× 240,R8 = 2 · 10−8
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Figure 4.19: Same as in figure 4.18 for vertical energy fluxes.

4.3 Varying stratification and Reynolds number

In this section, we analyze simulations with different stratification strengths and different
Reynolds number in order to identify the regimes in 2D stratified turbulence. We first
focus on the averaged energy of the simulations. Figure 4.20 shows the averaged energy
as function of the forcing horizontal Froude number Fh,f for all simulations. The colors
represent the four different numerical resolutions nx × nz: green square (960 × 240), red
triangle (1920× 480), blue dot (3840× 960) and yellow cross (7680× 480). The averaged
energy has been normalized by the energy injected in one period of forcing 〈E〉t/(P/ωaf ).
At low Froude number, the equation 4.3 shows that 〈E〉t/(P/ωaf ) ∼ Fh,f/Fh, where
Fh,f = F/γ and Fh is the horizontal Froude number. The errorbar displays the standard
deviation of the averaged energy. For weakly stratified flows Fh,f > 1, one can observe
that the markers are superposed. Their averaged energy slightly increases. The fact
that the markers are superposed indicate that the averaged energy does not depend on
the Reynolds number. These flows are weakly affected by the dissipation and therefore
they do not depend on the Reynolds number. The increase of the averaged energy when
decreasing the stratification has been already discussed in figure 6.4. When we decrease the
stratification strength, the mechanisms to transport energy to small scales are less efficient.
One needs to introduce, in average, more energy to reach the statistically stationary state.
We now focus on values 10−1 < Fh,f < 1. The markers are superposed indicating that
there is no dependency on the Reynolds number. The flat region around values Fh,f ∼ 10−1

indicates the location of the strongly stratified turbulence regime. The scaling presented
in the equation (4.4) indeed works for values Fh,f ∼ 10−1. Finally, for values Fh,f < 10−1,
the averaged energy increases to reach the statistically stationary state. The markers are
less clear superposed, implying dependence with the Reynolds number.
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Figure 4.20: Averaged energy E as function of the forcing horizontal Froude number Fh,f
for all simulations. The colors represent the four different numerical resolutions nx × nz:
green square (960×240), red triangle (1920×480), blue dot (3840×960) and yellow cross
(7680× 480). The errorbar displays the standard deviation of the averaged energy σE .

Shear instabilities for different Reynolds numbers

We have seen that strongly stratified flows are anisotropic. The energy dissipation takes
place at small vertical scale between the large horizontal scales. Shear instabilities can
develop due to the large vertical gradient of velocity between these large horizontal scales.
These may produce small scales where the energy is dissipated. The creation of small
scales is strongly related to the effect of the viscosity. Flows with a low Reynolds number
are strongly affected by the viscosity. The dissipation prevents the development of the
shear instabilities and the production of small scales. It has been already observed in
the field presented in figure 4.16 for 960 × 240. It is therefore important to study the
development of the shear instablities for different Reynolds number.

Figure 4.21 displays the instantaneous local Richardson number Ri for four strat-
ification strengths γ ∈ [0.2, 1, 4, 8] and for three different numerical resolutions nx ∈
[960, 1920, 3840]. Three numerical resolutions are presented for simplicity. As it has
been mentioned in figures 4.11 - 4.14, the development of the Kelvin-Helmholtz insta-
bility is only possible for values 0 < Ri < 1/4. The colormap ranges only for values of
0 < Ri < 1/4. The white regions mean that no shear instabilities can be developed. The
dependecy of the Richardson number Ri has been discussed in figures 4.11 - 4.14. I will
discuss the dependency of the Ri for different numerical resolutions nx. In fields with
γ = 0.2, we see more dark colored regions for large numerical resolutions nx = 3840 than
for low resolutions nx = 960. Simulations with low numerical resolutions are more affected
by the viscosity than simulations with larger nx. The viscosity prevents the development
of the shear instabilities on the flow. The effect of the Reynolds number, i.e. dissipation,
is more pronounced for large stratifications. We now focus on the Ri fields for γ = 8.0.
We see that, for nx = 960, the field is almost white. It means that not shear instabilities
are developed. It is due to the fact that the flow is strongly affected by the dissipation.
When we increase the numerical resolution nx = 3840, we see that zones with potential
shear instabilities start appearing on the flow. As it has been observed in figure 4.14, the
zones with lowest value Ri are the interface of the horizontal layers. The development of
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the KH instability is associated with the strong shear of the horizontal layers. It has to
be noticed that increasing the Reynolds number decreases the effect of the dissipation in
the flow. It enhances thus the possibility to develop shear instabilities.

(a) nx = 960 (b) nx = 1920
,

(c) nx = 3840

,

,

,

Figure 4.21: Local Richardson number Ri for different values of γ ∈ [0.2, 1.0, 4.0, 8.0] and
for different numerical resolutions nx ∈ [960, 1920, 3840].
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Isotropy at large scales IE and isotropy of the dissipation Id
In this section, we analyze the dependency on the Reynolds number for the isotropy at large
scales IE and isotropy of the dissipation Id. Figure 4.22 displays the isotropy quantity
IE , defined in the equation (4.5), as function of the forcing horizontal Froude number
Fh,f . The colors display the four different Reynolds number. For Fh,f > 2 · 10−1, the
markers are superposed indicating that there is no dependency on the Reynolds number.
For Fh,f < 2 · 10−1, the index IE depends on the Reynolds number. Strongly stratified
flows with a low Reynolds number are indeed affected by the viscosity. Flows with large
numerical resolution nx are less affected by viscous dissipation. Their vertical motions are
less damped by dissipation.
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Figure 4.22: Isotropy IE as function of the forcing horizontal Froude number Fh,f . The
colors represent the different numerical resolutions nx

We have seen that, for strongly stratified flows, the anisotropy is larger for those with
low Reynolds numbers than for those with large Reynolds. I study now the isotropy of
the dissipation for different numerical resolutions nx, i.e. Reynolds numbers. I use the
index Id defined in the equation (4.6). For values Id → 1, the dissipation is isotropic.
For values Id → 0, the dissipation is anisotropic. In the latter case, the dissipation occurs
at large horizontal scales with small vertical scales. It is due to the anisotropy of the
flow. As it has been mentioned in section 2, strongly stratified turbulent regimes require a
buoyancy Reynolds number R8 > 1. The quantity Id is analyzed in terms of the buoyancy
Reynolds number R8. Figure 4.23 displays the isotropy of the dissipation Id as function
of the forcing horizontal Froude number Fh,f = F/γ (figure 4.23, left) and as function of
the buoyancy Reynolds number R8 (figure 4.23, right). The colors represent the different
numerical resolutions. The vertical dotted lines indicate the breaks of the slopes indicat-
ing potentially three different regimes. These regimes will be discussed in detail later in
section 4.4. We now focus on figure 4.23 (left). For large values of Fh,f , the value of Id is
of order of unity. It means that for weak stratification flows, the dissipation is isotropic. It
has to be noticed that the markers are superposed. It means that there is no dependence
on their Reynolds number. For small values of Fh,f , the value of Id decreases. Strongly
stratified flows have an anisotropic dissipation. The markers are not anymore superposed.
The dissipation is more anisotropic for those flows with lower Reynolds number (green
square and red triangle) than for those with larger Reynolds number (blue dot and yellow
cross).
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Figure 4.23: Dissipation quantity Id as function of the horizontal forcing horizontal Froude
number Fh,f (left) and as function of the buoyancy Reynolds number R8 (right). The
colors represent the different numerical resolutions nx. The vertical dotted lines in right
figure delimit the break of the slopes.

In figure 4.23 (right), we see that the dissipation is nearly isotropic for R8 > 1. For
low values of the buoyancy Reynolds R8 < 1, the dissipation starts becoming anisotropic.
One has noticed that the markers are superposed. If our definition of R8 is valid, the
quantity Id should not have any dependence on the R8. The points should be superposed.
We can thus consider our definition of the buoyancy Reynolds number R8 valid.

Vertical scale kv for different Reynolds numbers

In this section, we analyze the characteristic vertical scale for different Reynolds numbers.
Figure 4.24 displays the vertical wavenumber kv as function of the forcing horizontal
Froude number Fh,f (a) and as function of the buoyancy Reynolds number R8 (b). The
colors represent the different numerical resolutions. In figure 4.24 (a), we see that kv
decreases when Fh,f increases. The flow becomes isotropic when increasing the value
Fh,f . Its vertical scale increases until be similar to the horizontal scale (isotropy). For
values Fh,f < 1, the value kv remains constant. It is due to the viscosity. Dissipation
does not allow the layers to decrease their thickness. Figures 4.24 (c) - (d) display the
ratio of the vertical and buoyancy wavenumbers kv/kb as function of the Fh,f and R8

respectively. It alows to check the inviscid scaling proposed by Billant, Chomaz (2001)
of the strongly stratified turbulence. We see that the scaling is not valid for large values
of forcing Froude Fh,f > 1. For values Fh,f ∼ 0.4, the ratio kv/kb is slightly constant.
We can consider that the strongly stratified regime is achieved at Fh,f ∼ 0.4. For values
Fh,f < 0.2, the scaling is not valid. For large stratification strengths, the flows become
indeed highly anisotropic and dissipative. Figures 4.24 (e) - (f) display the ratio of the
vertical and viscous wavenumbers kv/kν8 as function of the Fh,f and R8 respectively. It
allows to check the scaling proposed by Godoy-Diana et al. (2004) of strongly stratified
flows affected by the dissipation. The markers are totally scattered indicating that this
scaling is not valid.
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Figure 4.24: Vertical wavenumber kv as function of the horizontal forcing Froude number
Fh,f (a). Vertical wavenumber kv as function of the buoyancy Reynolds number R8 (b).
Ratio vertical and buoyancy wavenumbers kv/kb as function of Fh,f (c). Ratio kv/kb as
function of R8 (d). Ratio vertical and viscous wavenumber kv/kν8 as function of Fh,f (e).
Ratio kv/kν8 as function of R8 (e). The colors represent the different numerical resolutions
nx.
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4.4 Regimes in 2D stratified turbulence

This PhD work aims to develop a phenomenology of the 2D stratified turbulence. We
have reviewed, throughout the chapter 4, the dynamics of a stratified fluid for different
stratification strengths and different non-linear regimes. We have identified three different
regimes depending on the value of the buoyancy Reynolds number R8 and the forcing
horizontal Froude number Fh,f . Figure 4.25 displays the buoyancy Reynolds number R8

as function of the forcing horizontal Froude number Fh,f for all simulations performed in
this chapter. Note higher resolution simulations 15360 × 960 have been included in this
figure and they will be discussed in the next section. The colormap of the figure displays
the isotropy quantity IE . The size of the markers indicate the isotropy of the dissipation
Id. The shape of the markers represent the different numerical resolutions nx. The vertical
and horizontal dotted lines delimit the different regimes in the parameter space {Fh,f ,R8}

One can identify three different regimes depending on the value pair {Fh,f ,R8}: (i)
weakly stratified and strongly non-linear regime, (ii) strongly stratified and strongly non-
linear regime, and (iii) strongly stratified viscosity-affected regime. Weakly stratified flows
have a forcing horizontal Froude number Fh,f > 0.5. These flows are isotropic at large
scales, i.e. large IE . They have a flux loop with a forward cascade of energy towards small
scales. We focus now on the strongly stratified and strongly non-linear regime. This regime
belongs to the range Fh,f < 0.5 and R8 > 1. It is the most similar to the regimes observed
in nature. The flows are anisotropic, i.e. i.e. small IE , with isotropic dissipative scales.
A clear inertial range is developed with a forward cascade of energy towards small scales.
The vertical energy spectra follows k−2z power-law. At the interface of the large horizontal
scales, shear instabilities take place and produce isotropic small scales. The thickness of
the horizontal scales are of order lv ∼ lb, where lb is the buoyancy length scales as predicted
in Billant, Chomaz (2001). Nevertheless, we need to perform higher resolution numerical
simulations to resolve, at least, the Ozmidov length scale. It will allow us to check the
spectral break of the vertical energy spectra. We focus now on the strongly stratified but
viscosity-affected regime. These flows are delimited by Fh,f < 0.5 and R8 < 1. These
flows are anisotropic, i.e. small IE , and with anisotropic dissipative scales. The horizontal
scales are strongly affected by viscous dissipation preventing the development of a clear
inertial range. In section 4.3, we have tested the scaling proposed by Godoy-Diana et al.
(2004) for a 3D configuration. We have seen that this scaling is not valid for the same
regime for a 2D configuration. To conclude and as it has been mentioned, geophysical
flows such as oceans and the atmosphere belong to the strongly stratified and strongly
non-linear regime. They are characterized to be strongly anisotropic but with isotropic
dissipative scales. In the last part of this chapter, section 4.5, we describe the dynamics
of the strongly stratified and strongly non-linear regime. We have not considered here
turbulent regimes driven by weakly interacting waves. We expect to obtain this regime
for Fh � 1 (strong stratification) and R ∼ 1 (weakly non-linear and weakly dissipative
at large-scales). In chapter 5, we discuss turbulence driven by weakly nonlinear internal
waves by means of spatio-temporal analysis.
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Figure 4.25: Buoyancy Reynolds number R8 as function of the forcing horizontal Froude
number Fh,f for all simulations. The colormap displays the isotropy quantity IE . The
size of the markers represents the isotropy of the dissipation Id. The shape of the markers
represent the different numerical resolutions nx. Three regimes are identified: (i) weakly
stratified and strongly non-linear regime, (ii) strongly stratified and strongly non-linear
regime, and (iii) strongly stratified viscosity-affected regime.
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4.5 Description of the strongly stratified and strongly non-
linear regime Fh,f < 0.5 and R8 > 1

Geophysical flows, such as flows in the middle atmosphere or in the upper ocean, are con-
sidered to be turbulent and strongly affected by the stratification. This regime requires
both low Froude number Fh and high Reynolds number Re (Brethouwer et al., 2007).
In figure 4.9, we have seen that the flow becomes viscosity-affected for large stratifica-
tion strength in our DNS. In order to approach to geophysical regimes with horizontal
scales weakly affected by the dissipation, we have performed numerical simulations with
a numerical resolution 15360 × 960. The simulations have been performed in the French
National supercomputer Occigen (CINES). In this section, I discuss flows with a large
Reynolds number Re8, i.e. large numerical resolutions, for two different stratification
strengths γ = 4.0 and γ = 8.0. Figures 4.26 and 4.27 display the snapshots of the quantity
b/N at the statistically stationary state for γ = 4.0 and γ = 8.0, respectively. The white
rectangles represents a zoomed region, which is represented in figures below the original
figure. For γ = 4.0, the flow is developed in horizontal layers. The thickness of the layers
are similar to the vertical size of the domain. At large scales, the dynamics is strongly
anisotropic. The zoomed region shows us the presence of small scales within the layers.
We see that the dynamics is isotropic at small scales. It might be due to the fact that
small scales do not feel the buoyancy effect. For γ = 8.0, we see that the dynamics develop
in horizontal layers. The thickness of the layers decreases as the stratification strength
increases, i.e. large values of γ. We see that the flow is strongly anisotropic overall.

Figure 4.26: Snapshot of the field b/N at the statistically stationary state for γ = 4.0.
The resolution of the simulation is 15360× 960. The white rectangle displays the zoomed
region represent in figure below.
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Figure 4.27: Same as figure 4.26 but for γ = 8.0.

Energy spectra for Fh,f < 0.5 and R8 > 1

We now discuss the energy distribution among the scales. Figure 4.29 displays the energy
spectra for two values of γ: (a) γ = 4.0 , (b) γ = 8.0. The orange lines represent the
kinetic energy spectra. The blue line represent the potential energy spectra. The solid lines
represent the horizontal energy spectra. The dashed lines represent the vertical component
of the energy spectra. The energy spectra is compensated with the power law k−5/3. The
wavenumbers are normalized by the forcing wavenumbers kf,x and kf,z respectively. The
grey vertical band displays the forcing region. We first focus on the energy spectra for
γ = 4.0 (figure 4.29 (a)). For large horizontal scales kx < kf,x, the kinetic (orange solid)
and potential (blue solid) energy spectra are superposed, which suggesting the presence
of large scale internal gravity waves. We see that at the first horizontal mode, there is a
peak in the horizontal energy spectra, which corresponds to the horizontal layers observed
in figure 4.26. At small scales kx > kf,x, the kinetic energy (orange) dominates over
the potential (blue) energy along the inertial range. A transition occurs at the Ozmidov
wavenumber ko. The potential energy (blue solid line) dominates over the kinetic energy
(orange solid line). We now focus on the vertical energy spectra (dashed lines). Like
the horizontal compontent, at wavenumbers kz > kf,z, the kinetic energy spectra (orange
dashed line) dominates over the potential energy spectra (blue dashed line). There is a
transition at the Ozmidov wavenumber ko. The potential energy spectra follow the power
law of k−2 for wavenumbers kf,z < kz < ko. For wavenumbers kz > ko, the potential
energy spectra is horizontal. It means that it follows the power law k−5/3. The main
difference with the lower-resolution simulations presented in the previous sections is that
the Ozmidov scale is resolved with high resolution. We can see indeed a transition of the
energy spectra at the Ozmidov scale. At this scale, the energy spectra become isotropic
again. We now focus on the energy spectra for γ = 8.0 (figure 4.29 (b)). For kf,x < kx < kb,
the horizontal energy spectra (solid lines) seem to follow a k−2x power-law with a bump
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of the kinetic enegy spectrum at scales kx > kb. This bump, at horizontal wavenumbers
slightly larger than kb, has been also reported in previous numerical studies (Waite, 2011;
Augier et al., 2015). Figure 4.28 (a) displays the horizontal energy spectra extracted from
Waite (2011) , and figure 4.28 (b) the horizontal and vertical energy spectra extracted from
Augier et al. (2015). Both works show that the horizontal energy spectra develops a bump
at kx > kb. We have mentioned that the horizontal energy spectra scales as k−2x for modes

(a) Waite (2011) (b) Augier et al. (2015)

Figure 4.28: (a) Horizontal energy spectra extracted from Waite (2011), and (b) horizontal
(solid lines) and vertical (dashed lines) compensated energy spectra extracted from Augier
et al. (2015).

kf,x < kx < kb as reported in Waite (2011); Yokoyama, Takaoka (2019). Furthermore, an
equipartition of kinetic and potential energy is displayed at kf,x < kx < kb, suggesting
the presence of internal gravity waves. One needs to compute the energy fluxes to check
if the energy transfer is dominated by a wave mechanism. We now focus on the vertical
component of the energy spectra (dashed lines). One can observe that there is a peak at
kz > kf,z. As it has been mentioned before, this peak might be probably correspond to
the thickness of the horizontal layers. The vertical potential energy spectra (blue dashed
line) follows the power law of k−2z . There is no transition found. It might be due to the
fact that the Ozmidov wavenumber is found at the dissipative scales. It is important to
notice that the blue dashed line and orange dashed line are similar at the inertial range.
It could suggest a possible cascade dominated by internal waves.
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Figure 4.29: Horizontal (solid-line) and vertical (dashed-line) energy spectra for two dif-
ferent stratifications: (a) γ = 4.0; (b) γ = 8.0.
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Spectral energy budget for Fh,f < 0.5 and R8 > 1

We refer to the energy fluxes in order to study the energy transfer mechanisms of the
strongly stratified turbulence regime. Figures 4.30 and 4.31 display the spectral energy
budget for γ = 4.0 and γ = 8.0 respectively. The orange line is the kinetic energy flux
ΠK . The blue line is the potential energy flux ΠA. The black dotted line is the total
energy flux Π = ΠK + ΠA. The green line is the dissipation. All curves are normalized by
the mean dissipation rate ε. Note that both numerical simulations have not reached yet a
statistically stationary state at this stage of the PhD work. The total energy flux (black
dashed line) is indeed not zero for large horizontal scales kx < kf,x. Nevertheless, the
dynamics is sufficiently developed to give insights about the energy transfer meshanisms.

We focus first on the spectral energy budget for γ = 4.0 (figure 4.30). We see that the
horizontal (a) and vertical components (b) of the spectral energy budget are quite different.
It confirms that the dynamics is anisotropic. We focus on the horizontal compontent (figure
4.30 (a)). At scales kx < kf , we see that the orange line is negative and the blue line is
positive. At scales larger than the forcing scale, we have a negative flux of kinetic energy
ΠK and positive flux of potential energy ΠA. The energy is transferred from the injection
scale to large scales through an inverse cascade of kinetic energy. At large scales, where
the buoyancy effect is important, the kinetic energy is converted to the potential energy.
The potential energy is transferred down scale. At wavenumbers kf < kx < kb, the orange
and blue lines are positive. Between the forcing kf and buoyancy kb wavenumbers there
is a downscale cascade of kinetic (orange) and potential (blue) energy. It might be due to
a possible cascade of waves. At wavenumbers kx > kb there is a transition of the orange
line. The orange line becomes negative. At this point, there is an inverse cascade of
kinetic energy (orange) and a direct cascade of potential energy (blue). In the vertical
spectral energy budget (figure 4.30 (b)), we see no flux at large scales, i.e. wavenumbers
kz < kf,z. For scales smaller than the forcing scale, we see a positive blue line and negative
orange line. There is a direct cascade of energy dominated by the potential energy (blue
line) coupled with an inverse cascade of kinetic energy (orange). We see that the black
dashed lined forms a plateau around Π/ε = 1. The transfer of energy is not affected by
the dissipation.

We focus now on the spectral energy budget for γ = 8.0 (figure 4.31). We see similar
behavior as for γ = 4.0. In the horizontal component of the spectral energy budget (figure
4.31 (a)), we see the dual flux loop mechanisms. At wavenumbers kx < kf,x, it appears the
first energy flux loop. There is an inverse cascade of kinetic energy. At large scales, the
kinetic energy is converted to potential energy where is transferred towards small scales.
The second flux loop observed is at wavenumbers kx > kb, where the energy cascades
towards small scales. The vertical component of the spectral energy budget (figure 4.31
(b)) has only a direct cascade of energy. To conclude, the kinetic energy flux develops
three different regimes: (i) for kf,x < kx < kb, the kinetic energy flux is positive, (ii)
kb < kx < ko the kinetic energy flux becomes negative developing a flux loop at small
scales, and (iii) for kx > ko the kinetic energy flux becomes positive. Note that it is
the horizontal energy flux sensible to the buoyancy wavenumber kb, instead of being the
vertical energy flux. As it has been mentioned above, this positive flux of kinetic energy
could be related to a wave cascade.
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(a) Horizontal fluxes
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Figure 4.30: Horizontal (a) and vertical (b) spectral energy budget for γ = 4.0 and for
a numerical resolution 15360 × 960. The orange line is the kinetic energy flux ΠK . The
blue line is the potential energy flux ΠA. The black dotted line is the total energy flux
Π = ΠK + ΠA. The green line is the dissipation. All curves are normalized by the mean
dissipation rate ε.
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Figure 4.31: Same as figure 4.30 for γ = 8.0.



Chapter 5

Is 2D stratified turbulence driven
by weakly nonlinear interacting
internal gravity waves?

The ocean energy spectra is reconstructed as a superposition of non-linear interacting in-
ternal gravity waves from many ocean observations (Garrett, Munk, 1979). The wave-wave
interactions are thought to be responsible for the transfer of energy from low frequencies
to small spatial scales developing a continous wave spectrum. Such non-linear interactions
are based on three-waves (triad), which have been often observed experimentally in the
form of the parametric subharmonic instability (Joubaud et al., 2012; Maurer et al., 2016;
Ghaemsaidi et al., 2016). For a review of resonant interactions of waves refer to Dauxois
et al. (2018). However, the application of Weak Turbulence Theory to internal waves
remains open (Lvov et al., 2004; Polzin, Lvov, 2011). In this section, a spatio-temporal
analysis is performed in order to identify the presence of internal gravity waves. Further-
more, we focus on the phenomenon of wave-wave nonlinear interactions. In particular,
we attempt to give answers to the two following questions: (i) are we able to generate
turbulence driven by weakly nonlinear waves?, and (ii) where is this regime placed in the
parameter space {Fh,f ,R8}?

Spatio-temporal analysis have been often used to identify internal gravity waves in
stratified turbulence (Lindborg, Brethouwer, 2007; Clark di Leoni et al., 2015). It requires
saving a large amount of fields in time in order to resolve both small spatial and temporal
scales. In this PhD work, I perform a spatio-temporal analysis of linear modes â+ =
N2ûz + iωb̂ (see section 2.2 for the definition of the linear mode). One can express the
spatio-temporal energy spectra of the linear mode â+ as

Ea(kx, kz, ω) =
1

NF

∑
NF

(
1

2

1

δkx

1

δkz

1

δω
|ã+(kx, kz, ω)|2

)
, (5.1)

where NF is the number of temporal Fourier transforms performed, δkx = 2π/Lx, δkz =
2π/Lz and δω = 2π/T . Lx and Lz are the horizontal and vertical sizes of the numerical
domain. The temporal Fourier transform is performed over a windows size given by T .
The â+(kx, kz, ω) is the spatio-temporal Fourier transform of the linear mode â+ expressed
as

â+(kx, kz, ω) =
1

Lx

1

Lz

1

T

∫ Lx

0

∫ Lz

0

∫ T

0
a+(x, t)e−i(kx−ωt)dxdzdt. (5.2)
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5.1 The spatio-temporal energy spectra

The spatio-temporal energy spectra is computed for three different regimes in 2D stratified
turbulence. Figure 5.1 displays, in red, the three simulations used to perform the spatio-
temporal analysis. They correspond to the three different regimes: (a) weakly stratified
regime, (b) strongly stratified weakly affected by the viscosity, and (c) strongly stratified
viscosity-affected regime. We start saving the fields once the statistically stationary regime
is reached. The Fourier transform is computed over a windows size T = 50(2π/N). The
spatio-temporal Fourier transform of a signal assumes periodicity in both, spatial Lx,z and
temporal T , domains. As it is mentioned in chapter 3, the spatial domain has periodic
boundary conditions. The signal in spatial domain is thus Lx,z periodic. Nevertheless,
the signal in the temporal domain is not T periodic. In order to overcome this issue, I
use a classical Hanning function as a windowing function. Table 5.1 shows the numerical
parameters for the computation of the spatio-temporal spectra.
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Figure 5.1: All simulations displayed in the parameter space {Fh,f ,R8}. The marker
shape indicates the numerical resolution. The simulations used to compute the spatio-
temporal energy spectra are displayed in red. They correspond to three different regimes:
(a) weakly stratified regime, (b) strongly stratified weakly affected by the viscosity, and
(c) strongly stratified viscosity-affected regime.

The spatio-temporal energy spectra has three dimensions E(kx, kz, ω). We are thus
forced to display the spectra by means of cross-sections. Figure 5.2 shows cross-sections
of log10E

∗(kx, kz, ω) for given values of kz and for the three regimes: (a) weakly stratified
turbulence and strongly non-linear, (b) strongly stratified weakly affected by the viscosity,
and (c) strongly stratified viscosity-affected regime. E∗(kx, kz, ω) is the non-dimensional
spatio-temporal energy spectra. We consider that the spatio-temporal energy spectra has
dimensions Ea ∼ L4T−5. One could thus normalize the spectra by a quantity representing
the forcing with the same dimensions which is expressed as

Enorm = N4(PL10
f )1/3. (5.3)
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γ Fh,f R8 = Re8F
8
h ν8

0.5 1.41 1.7e+06 6.37e-21
2 0.35 1.4e+03 4.48e-21

8.0 0.09 8.4e-05 7.93e-21

Table 5.1: Overview of the numerical parameters for the computation of the spatio-
temporal energy spectra for three different stratification strenghts. The numerical res-
olution of the simulations is 1920 ×480. The stratification strength is given by the value
of γ. The forcing horizontal Froude number is expressed as Fh,f . R is the buoyancy
Reynolds number. ν8 is the hyper-viscosity coefficient. The windows size of the temporal
Fourier transform is T = 50(2π/N).

P is the energy injection rate and Lf is the forcing scale. This normalization allow us to
compare the spatio-temporal energy spectra for the three different regimes. The cross-
sections of figure 5.2 correspond to different values of the vertical wavenumber kz. The
green curve corresponds to the linear dispersion relation of internal gravity waves. The
inset plot represents the spectral space with the forcing region (red square) and the cross-
section (blue line). For the strongly stratified case (figure 5.2 (b)), the energy is less
scattered than in the weakly stratified case (figure 5.2 (a)). In figure 5.2 (b), one can
observe that the concentration of energy is offset by the curve of the dispersion relation.
It might me due to the Doppler shifts observed also in Clark di Leoni et al. (2015). They
observed that waves associated with low wavenumbers have a modified frequency due to
the advection of the large scale flow. For the three regimes, we can observe always waves
in the flux loop at horizontal scales larger than the forcing scale. Internal waves at low
horizontal wavenumbers have been also reported in Lindborg, Brethouwer (2007). In fig-
ure 5.2 (c), one can observe more energy concentrated around the dispersion relation than
in figures 5.2 (b) and (c). It might be due to the fact that the dynamics are affected by
the viscosity, i.e. less non-linear. To conclude, decreasing Fh,f implies the concentration
of energy around the linear dispersion relation with the Doppler shift.

Figure 5.3 displays cross-sections of log10E
∗(kx, kz, ω) for given values of kx. Like in

figure 5.2, the energy concentrates around the dispersion relation for low wavenumbers for
the three cases with a strong concentration at low Fh,f . The energy concentration is less
clear at large horizontal wavenumbers (right column), which it spreads from the dispersion
relation (5.3, (c)). The scattering of energy from the dispersion relation curve (green line)
can be interpreted as a measure of the non-linearity of the dynamics (Mordant, Miquel,
2017).
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(a) Weakly stratified regime {Fh,f = 1.4,R8 = 1.7 · 106}

(b) Strongly stratified weakly-affected by the viscosity {Fh,f = 0.35,R8 = 1.4 · 103}

(c) Strongly stratified strongly-affected by the viscosity {Fh,f = 0.09,R8 = 8.4 · 10−5}

Figure 5.2: Cross-sections log10E
∗(kx, kz, ω) of the non-dimensional spatio-temporal en-

ergy spectra for two given values of kz: kz = 4 rad/m−1 (left column) and kz = 24 rad/m−1

(right column), and for the three different regimes. The frequency ω is normalized by N .
The green line represents the dispersion relation ω(kx, kz). The inset graph represents the
space (kx, kz). The forcing modes are displayed in red and the blue line shows the position
of the displayed cross-section.
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(a) Weakly stratified regime {Fh,f = 1.4,R8 = 1.7 · 106}

(b) Strongly stratified weakly-affected by the viscosity {Fh,f = 0.35,R8 = 1.4 · 103}

(c) Strongly stratified strongly-affected by the viscosity {Fh,f = 0.09,R8 = 8.4 · 10−5}

Figure 5.3: Same caption as figure 5.2 for cross-sections log10E
∗(kx, kz, ω) and for kx = 8

rad/m−1 (left column) and kx = 24 rad/m−1 (right column).
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Figure 5.4 displays the frequency spectra E(kx, kz, ω) in the logarithmic scale for four
individual modes. The frequency axis ω is normalized by the buoyancy frequency N . The
inset plot displays the position of these Fourier modes in relation to the forcing modes
(black dots). The vertical dotted lines correspond to the internal gravity waves frequency
associated with the Fourier modes. For both regimes, we observe that the peaks at low
frequencies are perfectly aligned with the vertical lines at modes with lower wavenumbers
than the forcing modes (see red and green lines of the left column of the figure 5.4). It
confirms again the presence of large-scale internal gravity waves as observed in figures 5.2
and 5.3. Furthermore, the frequency spectra for the strongly stratified regime (figure 5.4,
(b) left) contains more peaks than the frequency spectra for the weakly stratified case
(figure 5.4, (a) left). In the strongly stratified case, the dynamics are indeed weakly non-
linear. At horizontal wavenumbers larger than the forcing wavenumber kx > kf,x (figure
5.4, right column), we do not peaks corresponding to the internal wave frequencies.

(a) Weakly stratified regime {Fh,f = 1.4,R8 = 1.7 · 106}

(b) Strongly stratified strongly-affected by the viscosity {Fh,f = 0.09,R8 = 8.4 · 10−5}

Figure 5.4: Frequency spectra E(kx, kz, ω) of individual Fourier modes, in the logarithmic
scale, for the regimes (a) weakly stratified regime and (b) strongly stratified viscosity-
affected regime. The frequency ω is normalized by the buoyancy frequency N. The inset
plot displays the forcing modes (black dots) and the Fourier modes for which the frequency
spectra is computed. The vertical dotted lines correspond to the frequency of the internal
gravity waves for the four Fourier modes.
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In the wave energy spectrum model proposed by Garrett, Munk (1979), the frequency
spectrum displays a ω−2 power-law for ωf < ω < N , being ωf the excitation frequency. As
it has been mentioned before, this model has been reconstructed from oceanic observations
such as the moored measurements performed by Cairns (1975). Figure 5.5 displays the
frequency spectra of the vertical displacement of the isotherms extracted from Cairns
(1975). The red arrow shows the characteristic frequency of the excitation by tides in cph
which is ωf ∼ 0.08 cph. Considering a buoyancy frequency of the ocean N ∼ 0.02s−1 ∼ 70
cph, N is out of the plot. One can observe that the frequency spectrum of this oceanic
measurement displays a ω−2 power-law.

Figure 5.5: Frequency spectra of the vertical displacement of the isotherms measured at
30◦20’N, 121◦20’W on June 1973. The image has been extracted from Cairns (1975).

Figure 5.6 (a) displays the normalized frequency spectrum for the three regimes in 2D
stratified turbulence. The spectrum is computed directly as E(ω) =

∑
kE(kx, kz, ω), and

is normalized by the quantity N4(PL4
f )1/3. Figure 5.6 (b) displays the frequency spectrum

of the DNS extracted from Le Reun et al. (2018). We first focus on figure 5.6 (a), which
contains a peak at ω/ωl ∼ 1, corresponding to the forcing frequency of the simulations. For
ω < ωl, we observe a flat spectrum similar to those observed in experiments of turbulence
driven by internal gravity waves carried out at the Coriolis platform (LEGI, France).
Unlike the work of Le Reun et al. (2018), we excite high-frequencies close to N, preventing
the developpment of the ω−2 power-law. We need therefore to increase the gap between
the characteristic forcing and buoyancy frequencies.
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(a) DNS of 2D stratified turbulence (b) DNS of Le Reun et al. (2018)

Figure 5.6: Normalized frequency spectrum E∗(ω) for three different regimes (a), calcu-
lated directly as E(ω) =

∑
kE(kx, kz, ω). E∗(ω) is normalized by the quantityN4(PL4

f )1/3

and frequency axis is normalized by the characteristic frequency of the forced waves
ωl = N sin θf . (b) Frequency spectrum of the DNS of Le Reun et al. (2018).

5.2 Where are internal waves most likely to develop?

In the previous section, we have observed that the energy concentrates along the linear
dispersion relation of internal gravity waves at low wavenumbers. It indeed confirms the
presence of large-scale waves. In this section, we analyze in which modes internal gravity
waves are most likely to occur. We use the non-dimensional quantity ε, which is the ratio
between a linear and non-linear time scale expressed as

ε =
τl
τnl

=
k2
√
E

N sin θk
(5.4)

Internal gravity waves are most likely to occur for values of ε� 1, i.e. τl � τnl. Figure 5.7
displays the value of ε in the spectral space (left column) and the two-dimensional energy
spectra E(kx, kz) (right column). The black contours in the left column represents the
isolines for the value of log10 ε. Both fields are displayed in the logarithmic scale. The field
of ε indicates in which modes the linear time is smaller than the non-linear time, i.e. small
value of log10 ε (dark region). When we decrease Fh,f , the dark region associated with low
horizontal and vertical wavenumbers increases its size. The domain of weak non linearity
is thus anisotropic, with a wider extension in kx than in kz. In all cases the non-linearity
is strong at small scales. Our observation is in qualitative agreement with the 3D DNS of
Yokoyama, Takaoka (2019) (see figure 7 of this reference). In order to have a true weakly
non-linear regime not affected by viscosity, we need to further decrease Fh,f and increase
the resolution keeping R8 ≥ 1.
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(a) Weakly stratified regime Fh,f = 3.5

(b) Moderate stratified regime Fh,f = 0.7

(c) Strongly stratified regime Fh,f = 0.2

Figure 5.7: Field of log10 ε in the spectral space (left column) and two-dimensional energy
spectra log10E(kx, kz) (right column). The black contours of the left column correspond
to the isolines of the value log10 ε.
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In order to quantify the energy contained in modes within the linear region (ε < 1),
we use the ratio

Rl =
El
E
, (5.5)

which is the energy contained in the linear modes El over the total energy E. El and E
are computed from the two-dimensional energy spectra E(kx, kz). Figure 5.8 displays the
ratioRl as function of the forcing Froude number Fh,f . The color of the markers represents
the different numerical resolution nx. For Fh,f > 0.7, Rl increases when the stratification
strength is increased. Surprisingly, for Fh,f < 0.7, the ratio Rl decreases. It can be
explained by the fact that, when the stratification is increased, the energy concentrates at
strongly non-linear modes, low kx and large kz (see figure 5.9).

Figure 5.8: Rl against the forcing Froude number Fh,f for different numerical resolutions.

Figure 5.9: 2D energy spectrum in logarithmic scale for the strongly stratified regime
Fh,f = 0.09. The dashed and solid curves display the isolines for values of ε < 1 and
ε > 1, respectively. The white curve represents ε = 1.



Chapter 6

Effects of varying the forcing on
2D stratified turbulence

All simulations presented so far have been forced on the linear mode â+, which excites
waves propagating with the same direction as the wavevector k. As it has been mentioned
before, these waves are known as prograde waves. At this point, one may wonder whether
the dynamics of 2D stratified turbulence depend on the forcing quantity or whether it is an
universal regime. Several studies of 3D stratified turbulence (Waite, Bartello, 2004, 2006a)
attempted to study numerically the degree of universality of the strongly stratified regime.
The dynamics forced by large scale waves (Waite, Bartello, 2006a) differ from simulations
forced with vortical modes (Waite, Bartello, 2004). In particular, the scaling Fv ∼ 1 is
not reached and they are not successful at reproducing the saturation spectrum N2k−3z
when forcing with waves. Lindborg, Brethouwer (2007) performed numerical simulations
with a forcing either in vortical or wave modes. In both cases, they observe a forward
energy cascade and inertial-range scaling of the horizontal kinetic and potential energy
spectra. Furthermore, it is shown that the vertical forcing wavenumber kv,f is a crucial
parameter when forcing waves. For large kv,f , they show that the resulting dynamics
forced with vortical and wave motions are similar, with an equipartition of kinetic energy
in the inertial range.

In this chapter, we attempt to study numerically the effects of varying the forcing
quantity on 2D stratified turbulence. Four different forcing schemes are thus analyzed:
(a) linear mode â+ on kz > 0, (b) linear mode â+ on both kz ≷ 0, (c) vorticity ξ̂ on
kz > 0, and (d) vorticity ξ̂ on kz ≷ 0. By forcing the vorticity ξ̂, the injected energy is
only kinetic energy. We force the vorticity equation instead of the momentum equation
since the code ns2d.strat solves directly the vorticity equation (see equation (3.1)). When
we force the linear mode, prograde waves â+, the injected energy is equally kinetic and
potential energy. All simulations presented in this chapter have a numerical resolution
1920×480. Figure 6.1 displays the 2D energy spectra of the four different forcing schemes
for the strongly stratified viscosity-affected regime {Fh,f = 0.18,R8 = 2 · 10−1}. One can
observe that the linear mode â− does not have energy when forcing the linear mode â+,
(see figure 6.1 (a) and (b)). Forcing the vorticity ξ̂ injects energy to both linear modes â+
and â− (see figure 6.1 (c) and (d)).

Figure 6.2 shows snapshots of the quantity b/N for two simulations forced on the linear
mode â+ on kz > 0 (a), and kz ≷ 0 (b) for the strongly stratified viscosity-affected regime
{Fh,f = 0.2,R8 = 2 · 10−1}. Forcing the linear mode on kz > 0 (figure 6.2 (a)) excites
waves propagating only towards the top-right corner, i.e. kx > 0 and kz > 0. However,
forcing the linear mode on kz ≷ 0 generates waves propagating towards top-right and
bottom-right corner, simultaneously, producing thus smaller scales at early times of the
simulation. The statistically stationary states seem to be similar in both cases (see figure
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(a) â+ ; kz > 0 (b) â+ and kz ≷ 0 (c) ξ̂ and kz > 0 (d) ξ̂ and kz ≷ 0

Figure 6.1: 2D energy spectra at the early time t = 0.2τaf , i.e. representing the forcing,
for the four forcing schemes: (a) linear mode â+ on kz > 0, (b) linear mode â+ on kz ≷ 0,
(c) vorticity ξ̂ on kz > 0, and (d) vorticity ξ̂ on kz ≷ 0 for the strongly stratified viscosity-
affected regime {Fh,f = 0.18,R8 = 2 · 10−1}.

6.2 bottom left and right).

(a) Linear mode â+ on kz > 0 (b) Linear mode â+ on kz ≷ 0

Figure 6.2: Snapshots of the field b/N of two simulations forced on the linear mode â+
on kz > 0 (a), and kz ≷ 0 (b), and for the strongly stratified viscosity-affected regime
{Fh,f = 0.18,R8 = 2 · 10−1}.
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In order to study the effects of forcing on the dynamics, we compare simulations with
different forcing schemes and for two different regimes. Figure 6.3 displays all simulations
in the parameter space {Fh,f ,R8}. The simulations analyzed in this chapter are displayed
in red. They correspond to: (a) weakly stratified regime, and (b) strongly stratified
viscosity-affected regime.

10−1 100

Fh,f

10−7

10−3

101

105

109

R
8

Weakly stratified
strongly non-linear

Strongly stratified
viscosity-affected

Strongly stratified
weakly affected
by viscosity

nx = 960 nx = 1920 nx = 3840 nx = 7680 nx = 15360

Figure 6.3: Same as in figure 5.1. The simulations analyzed in this section are displayed
in red.

Figure 6.4 shows the time evolution of the averaged energy for the two regimes: (a)
weakly stratified regime {Fh,f = 3.54,R8 = 1.2 ·108}, and (b) strongly stratified viscosity-
affected regime {Fh,f = 0.18,R8 = 2 · 10−1}. The averaged energy is normalized by
P/ωaf , for a given energy injection rate P and ωaf is the characteristic forcing frequency.

The green solid lines represent simulations forced on the vorticity ξ̂. The black solid
lines represent simulations forced on the prograde waves â+. The dotted lines represent
simulations forced also on negative values of kz. For weakly stratified flows and at the
stationary state, the line corresponding to the simulation forced on the vorticity (ξ̂, green
line) is different to the line corresponding to the simulation forced on the prograde waves
(â+, black line), meaning that the energy depends upon the quantity forced. It has to
be noted that the magnitude of the energy is larger in those simulations forced on the
vorticity ξ̂ (green line, figure 6.4 (a)) than those forced on the prograde waves â+ (black
line, figure 6.4 (a)). When the stratification is weak, we have a strong inverse cascade
of kinetic energy. By forcing the vorticity ξ̂ (green line), the energy injected is only ki-
netic energy. The energy will be transferred to larger scales through an inverse cascade
mechanism before transferred to smaller scales and dissipated. By forcing the prograde
waves â+ (black line), we inject potential and kinetic energy. The potential energy will
be transferred to smaller scales and dissipated, resulting in a lower averaged energy. For
strongly stratified flows (figure 6.4 (b)), the green and black lines tend to get closer at the
stationary state although with strong fluctuations. It means that the energy of the sim-
ulations forced on the prograde waves is somewhat similar to the energy forced on vorticity.
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(a) {Fh,f = 3.54,R8 = 1.2 · 108} (b) {Fh,f = 0.18,R8 = 2 · 10−1}

Figure 6.4: Temporal evolution of the normalized averaged energy for (a) weakly stratified
regime {Fh,f = 3.54,R8 = 1.2 · 108} and (b) strongly stratified regime viscosity-affected

regime {Fh,f = 0.18,R8 = 2 · 10−1} and for different forcing schemes: vorticity ξ̂ (green
lines) ; prograde waves â+ (black lines). The solid lines correspond to simulations forced
only on kz > 0. The dashed line corresponds to simulations forced on kz ≷ 0.

Figure 6.5 displays the 2D energy spectra at the statistically stationary state with four
different forcing schemes and for the weakly stratified regime {Fh,f = 3.54,R8 = 1.2 ·108}.
When forcing â+, the linear mode â− contains less energy than â+. However, when forcing
the vorticity ξ̂, both â+ and â− have similar energy since both linear modes are forced
directly. Furthermore, we do not see any clear qualitative difference at the steady state
when forcing â+ and the vorticity ξ̂ (see figure 6.5 (a) and (c)).

(a) â+ ; kz > 0 (b) â+ and kz ≷ 0 (c) ξ̂ and kz > 0 (d) ξ̂ and kz ≷ 0

Figure 6.5: 2D energy spectra at the statistically stationary state for the four forcing
schemes and for the weakly stratified regime {Fh,f = 3.54,R8 = 1.2 · 108}.
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Figure 6.6 displays the 2D energy spectra for the strongly stratified viscosity-affected
regime {Fh,f = 0.18,R8 = 2 · 10−1}. Unlike the weakly stratified case, we observe squares
at modes kz > kf,z, which correspond to the harmonics of the forcing. The difference
between the four cases is much weaker than for the weakly stratified case. We can conclude
that the observed steady state has some degree of universality.

(a) â+ ; kz > 0 (b) â+ and kz ≷ 0 (c) ξ̂ and kz > 0 (d) ξ̂ and kz ≷ 0

Figure 6.6: Same as figure 6.5 for the strongly stratified viscosity-affected regime {Fh,f =
0.18,R8 = 2 · 10−1}.
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Chapter 7

Conclusions and perspectives

In this thesis, we have studied 2D stratified turbulence by means of direct numerical simu-
lations of the 2D Navier-Stokes equations with the Boussinesq approximation constrained
in a vertical plane and with an hyper-viscosity ν8. The main motivation is to be able
to run high-resolution DNS for long times and for strong stratification with a moderate
computational cost. The simulations are forced on the linear mode of the Navier-Stokes
operator and on a localized region of the spectral space, so that only waves with similar
time scale are excited. Three regimes have been identified in 2D stratified turbulence
depending on the value of Fh,f and R8: (i) weakly stratified regime {Fh,f > 0.5}, (ii)
strongly stratified regime weakly-affected by the viscosity {Fh,f > 0.5 and R8 > 1},
and (iii) strongly stratified viscosity-affected regime {Fh,f > 0.5 and R8 < 1}. For the
weakly stratified regime, the flow is isotropic at large scales and dissipative scales. For
strongly stratified flows, large horizontal layers with small vertical layers emerge in the
flow, enhancing anisotropy at large scales. Strongly stratified weakly-affected by the vis-
cosity support isotropic dissipative scales, while viscosity-affected strongly stratified flows
contain anisotropic dissipative scales. Anagously to 3D stratified turbulence and for the
strongly stratified regime weakly affected by the viscosity, we have observed that the flow
develops a vertical scale similar to the buoyancy length scale lv ∼ U/N in agreement with
Billant, Chomaz (2001); Lindborg (2006). Furthermore, for kf,x < kx < kb, we have ob-
served that the horizontal energy spectra scales with a k−2x power-law with an equipartition
between the kinetic and potential energies, which is interpreted as a subject of internal
gravity waves. Moreover, a bump on the horizontal kinetic energy spectrum is observed at
horizontal wavenumbers slightly larger than the buoyancy wavenumber kx & kb. It seems
to be in agreement with previous numerical studies of stratified turbulence (Waite, 2011;
Augier et al., 2015).

In chapter 5, we have performed an spatio-temporal analysis of the three different
regimes. For the three regimes, we observe a concentration of energy along the disper-
sion relation for k < kf , confirming therefore the presence of internal gravity waves at
large horizontal scales in agreement with Lindborg, Brethouwer (2007). We can conclude
that waves are always present in the flux loop at horizontal scales larger than the forcing
scale. At small scales, the energy concentration along the dispersion relation is less clear,
which means that non-linearity is strong in small-scale dynamics. Furthermore, we have
analyzed at which modes the linear time is smaller than the non-linear time, indicating
thus where internal gravity waves are most likely to occur. We have observed that when
we increase the stratification strength the region of the spectral space where waves (weak
non-linearity) can occur also increases. It increases with a wider extension in kx than in
kz. This observation is in agreement with the work of Yokoyama, Takaoka (2019). In
chapter 6, we have studied the effects on the dynamics of varying the forcing quantity.
Four different forcing schemes have been used: linear mode â+ and kz > 0, linear mode â+
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and kz ≷ 0, vorticity ξ̂ and kz > 0, and vorticity ξ̂ and kz ≷ 0. We have not observed any
clear qualitative difference when forcing on the vorticity or on the linear mode, suggesting
some degree of universality of 2D stratified turbulence with respect to the forcing scheme.

Perspectives. Larger resolution numerical simulations, i.e. larger buoyancy Reynolds
number R8 with lower horizontal Froude number Fh, need to be performed to resolve the
Ozmidov scale and to attain regimes similar those observed in nature. In particular,
further spatio-temporal analysis are required for a better understanding of energy fluxes.

For the strongly stratified regime weakly-affected by the viscosity, we have observed
the presence of slow-propagating internal gravity waves associated with low kx and large
kz. All simulations in this thesis are forced on a localized region of the spectral space with
an angle θf = 45◦ respect to the vertical direction, meaning that we force modes with a
frequency close to the buoyancy frequency ωf ∼ N . We could thus decrease θf in order to
force modes with low frequencies, which is similar to the excitation frequencies observed in
nature. Internal gravity waves in the ocean are usually excited by tides with a frequency
similar to the Coriolis frequency ωf ∼ f � N . We have started to perform numerical
simulations with θf = 12◦, which its buoyancy field and energy spectra are displayed in
figure 7.1. We observe that the horizontal energy spectra (solid lines) scales with k−2x
power-law for kf,x < kx < kb with an equipartition between the kinetic and potential
energy, suggesting that the energy transfer on these modes is a signature of waves.

Finally, 3D high resolution numerical simulations are needed to be able to compare with
the recent experimental work on turbulence driven by weakly non-linear internal gravity
waves. These simulations are extremely challenging due to the high computational cost.
For weakly non-linear regimes, the simulations need to be computed for very long times
since the non-linear time scale is considerably larger than the linear time scale τNL � τL.
An intermediate step to a 3D configuration could be to have a strong anisotropic domain
with one horizontal dimension very large in comparison to the other dimensions ”pencil
domain”, supporting thus the presence of vertical vorticity. The ”pencil” configuration
would allow us to simulate flows with a large Reynolds number in the horizontal with 3D
effects for a reasonable computational cost.
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(a) Buoyancy field b/N

(b) Compensated energy spectra
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Figure 7.1: (a) Snapshot of the buoyancy field b/N, and (b) compensated energy spectra
for simulation Fh,f = 0.09 with a forcing angle θf = 12◦ forced on the linear mode â+
on kz > 0. The spatial resolution of the simulation is 3840 × 240 with a domain size
Lx = 2π = 16Lz
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Herring J. R., Métais O. Numerical experiments in forced stably stratified turbulence.
// Journal Fluid Mechanics. 1989. 202. 97–115.

Holford J.M., Linden P.F. Turbulent mixing in stratified fluid // Dyn. Atmos. Oceans.
1999. 173–198.

Holloway G. Oceanic Internal Waves Are Not Weak Waves // Journal of Physical Oceanog-
raphy. 1980. 10, 6. 906–914.

Joubaud S., Munroe J., Oddier P., Dauxois T. Experimental parametric subharmonic
instability in stratified fluids // Physics of Fluids. 2012. 24, 4. 041703.

Katz E. J. Profile of an Isopycnal Surface in the Main Thermocline of the Sargasso Sea
// Journal of Physical Oceanography. 1973. 3, 4. 448–457.

Kumar A., Verma M. K., Sukhatmae J. Phenomenology of two-dimensional stably strat-
ified turbulence under large-scale forcing // Journal of Turbulence. 2017. 18. 219–239.

Kunze E. A Unified Model Spectrum for Anisotropic Stratified and Isotropic Turbulence
in the Ocean and Atmosphere // Journal of Atmospheric Sciences. 2019.

Lamorgese A. G., Caughey D. A., Pope S. B. Direct numerical simulations of homogeneous
turbulence with hyperviscosity // Phys. Fluids. 2005. 17.

Lapeyre G., Klein P., Hua B. L. Does the tracer gradient vector align with the strain
eigenvectors in 2D turbulence? // Physics of Fluids. 1999. 11.

Le Reun T., Favier B., Bars M. Le. Parametric instability and wave turbulence driven by
tidal excitation of internal waves // Journal of Fluid Mechanics. 2018. 840. 498–529.

Lelong M. P., Riley J. J. Internal wave-vortical mode interactions in strongly stratified
flows // Journal of Fluid Mechanics. 1991. 232. 1–19.

Li Q., Lindborg E. Weakly or Strongly Nonlinear Mesoscale Dynamics Close to the
Tropopause? // Journal of the Atmospheric Sciences. 2018. 75, 4. 1215–1229.

Lilly D. K. Stratified turbulence and the mesoscale variability of the atmosphere //
Journal of the Atmospheric Sciences. 1983. 40. 749–761.



BIBLIOGRAPHY 115

Lindborg E. The energy cascade in a strongly stratified fluid // Journal of Fluid Mechanics.
2006. 550. 207–242.

Lindborg E., Brethouwer G. Stratified turbulence forced in rotational and divergent modes
// Journal of Fluid Mechanics. 2007. 586. 83–108.

Lindborg E., Riley J. J. A condition on the average Richardson number for weak non-
linearity of internal gravity waves // Tellus A: Dynamic Meteorology and Oceanography.
2007. 59, 5. 781–784.

Liu Y., , Jing Z., Wu L. Wind Power on Oceanic Near-Inertial Oscillations in the Global
Ocean Estimated From Surface Drifters // Geophysical Research Letters. 2019. 46, 5.
2647–2653.

Lvov Y. V., Polzin K. L., TabakPolzin E. G. Energy Spectra of the Ocean’s Internal Wave
Field: Theory and Observations // Phys. Rev. Lett. 2004. 92. 128501.

MacKinnon J. Mountain waves in the deep ocean // Nature. 2013. 501. 321–322.

Maffioli A., Brethouwer G., Lindborg E. Mixing efficiency in stratified turbulence //
Journal of Fluid Mechanics. 2016. 795.

Maurer P., Joubaud S., Odier P. Generation and stability of inertia–gravity waves //
Journal of Fluid Mechanics. 2016. 808. 539–561.

Miles J. On the stability of heterogeneous shear flows // Journal of Fluid Mechanics.
1961. 10. 496–508.

Millard R. Further comments on vertical temperature spectra in the MODE region //
MODE Hot Line News. 1972. 18, 1.

Moffatt H. K. The topology of scalar fields in 2D and 3D turbulence // IUTAM Symposium
on Geometry and Statistics of Turbulence. 1999. 59. 13–22.

Mohanan A. V., Bonamy C., Augier P. FluidFFT: Common API (C++ and Python) for
Fast Fourier Transform HPC Libraries // J. Open Research Software. 2019a. 7.

Mohanan A. V., Bonamy C., M. Calpe Linares, P. Augier. FluidSim: modular, object-
oriented Python package for high-performance CFD simulations // J. Open Research
Software. 2019b. 7.

Mordant N., Miquel B. Intermittency and emergence of coherent structures in wave tur-
bulence of a vibrating plate // Phys. Rev. E. Oct 2017. 96. 042204.

Munk W. H., Wunsch C. Abyssal recipes II: Energetics of tidal and wind mixing //
Deep-Sean Research. 1998. 45. 1977–2010.

Müller P., Holloway G., Henvey F., Pomphrey N. Nonlinear interactions among internal
gravity waves // Rev. Geophys. 1986. 24. 493–536.

Nastrom G. D., Gage K. S. A climatology of atmospheric wavenumber spectra of wind
and temperature observed by commercial aircraft // Journal of Atmospheric Science.
1985. 42. 950–960.

Nycander J. Generation of internal waves in the deep ocean by tides // Journal of
Geophysical Research. 2005. 110.



116 BIBLIOGRAPHY

Park Y. G., Whitehead J. A., Gnanadeskian A. Turbulent mixing in stratified fluids: layer
formation and energetics // Journal of Fluid Mechanics. 1994. 279. 279–311.

Pedlosky J. Geophysical Fluid Dynamics. 1987.

Polzin K. L., Lvov Y. V. Toward regional characterizations of the oceanic wavefield //
Reviews of Geophysics. 2011. 49, 4.

Rahmstorf S. Ocean circulation and climate during the past 120,000 years // Nature.
2002. 419. 207–214.

Richardson L.F. Weather prediction by numerical process. 1922.

Riley J. J., Lelong M. P. Fluid motion in the presence of strong stable stratification //
Annu. Rev. Fluid Mechanics. 2000. 32. 613–657.

Riley J. J., Lindborg E. Stratified Turbulence: A Possible Interpretation of Some Geo-
physical Turbulence Measurements // Journal of the Atmospheric Sciences. 2008. 65.
2416 – 2424.

Riley J. J., Metcalfe R. W., Weissman M. A. Direct numerical simulations of homogeneous
turbulence in density-stratified fluids. // Proc. AIP Conf. 1981. 76. 79–112.

Sanford T. B. Observations of the vertical structure of internal waves // Journal of
Geophysical Research (1896-1977). 1975. 80, 27. 3861–3871.

Schuster U., Watson A. A variable and decreasing sink for atmospheric CO2 in the North
Atlantic. // Journal of Geophysical Research. 2007. 112.

Smith L. M., Waleffe F. Generation of slow large scales in forced rotating stratified
turbulence, // Journal of Fluid Mechanics. 2002. 451.

Staquet C., Sommeria J. Internal gravity waves: from instabilities to turbulence //
Annual Review Fluid Mechanics. 2002. 34. 559–593.

Sutherland B. R. Internal Gravity Waves. 2010.

Sutherland B.R., Achatz U., Caulfield C. P., Klymak J. M. Recent progress in modeling
imbalance in the atmosphere and ocean // Phys. Rev. Fluids. Jan 2019. 4. 010501.

Taylor G. I. Statistical theory of turbulence part i - ii // Proc. R. Soc. Lond. 1935.
421–464.

Thorpe S. An introduction to ocean turbulence. 2005. 340–367.

Vallis G. K. Atmospheric and Oceanic Fluid Dynamics. 2006.

Waite M. L. Stratified turbulence at the buoyancy scale // Physics of Fluids. 2011. 23,
6. 066602.

Waite M. L., Bartello P. Stratified turbulence dominated by vortical motion // Journal
of Fluid Mechanics. 2004. 517. 281–308.

Waite M. L., Bartello P. Stratified turbulence generated by internal gravity waves //
Journal of Fluid Mechanics. 2006a. 546. 313–339.

Waite M. L., Bartello P. The transition from geostrophic to stratified turbulence //
Journal of Fluid Mechanics. 2006b. 568. 89–108.



BIBLIOGRAPHY 117

Webb P. Introduction to Oceanography. 2019.

Webster F. Estimates of the coherence of ocean currents over vertical distances // Deep
Sea Research and Oceanographic Abstracts. 1972. 19, 1. 35 – 44.

Wunsch C., Ferrari R. Vertical mixing, energy, and the general circulation of the ocean
// Annual Review of Fluid Mechanics. 2004. 36. 939–942.

Wurtele M.G., Sharman R.D., Datta A. Atmospheric lee waves // Annual Review Fluid
Mechanics. 1996. 28. 429–476.

Yokoyama N., Takaoka M. Energy-based analysis and anisotropic spectral distribution of
internal gravity waves in strongly stratified turbulence // Phys. Rev. Fluids. Oct 2019.
4. 104602.

Zhang Z., Wang W., Qiu B. Oceanic mass transport by mesoscale eddies // Science.
2014. 345. 322–324.

Zhang Z., Wang Y., Zhang Y., Huang R. X. Universal structure of mesoscale eddies in
the ocean // Geophysical Research Letters. 07 2013. 40.







Abstract

The oceanic motions are composed of eddies with a very large horizontal scale and 3D prop-
agating internal gravity waves. Its kinetic energy spectra follow the well-known Garrett
and Munk spectrum, which is usually interpreted as the signature of interacting internal
gravity waves. Our main motivation is to reproduce the turbulence regime observed in
nature by forcing waves.

Two-dimensional (2D) stratified flows on a vertical cross-section differ from its anal-
ogous three-dimensional flows in its lack of vertical vorticity, supporting only waves and
shear modes. In this PhD work, we perform a numerical study of 2D stratified turbulence
forced with internal gravity waves. We get rid of the shear modes, sustaining a system
only with wave modes. Unlike precedent studies, the forcing is applied to a localized region
of the spectral space, in which forced internal waves have a similar time scale. We force
intermediate-scale waves to allow the dynamics to develop both upscale and downscale
energy cascade.

We first present the different regimes of 2D stratified turbulence with a particular
interest in the ocean-like regime, i.e. strong stratification and large Reynolds number.
The dynamics of the energy cascade is analysed by means of the spectral energy budget.
Furthermore, we check if it is possible to obtain turbulence driven by weakly non-linear
ineracting waves by performing a spatio-temporal analysis. To conclude, we report results
of numerical simulations forced either on the vorticity or on the eigenmode of the Navier-
Stokes equations in order to study the degree of universality of 2D stratified turbulence
with respect to the forcing.

Résumé

Les écoulements océaniques sont composés des tourbillons ayant une grande échelle hor-
izontale et des ondes internes de gravité. Le spectre d’énergie cinétique suit le fameux
spectre de Garrett et Munk qui est habituellement interprété comme la signature des on-
des internes de gravité. Notre motivation principale est donc de reproduire le régime de
turbulence observé dans la nature avec un système forcé seulement avec des ondes.

Les écoulements stratifiés bidimensionnels (2D) sur une section transversale verticale
diffèrent des écoulements stratifiés tridimensionnels par l’absence de vorticité verticale
et par la présence d’ondes et de modes de cisaillement. Dans ce travail de thèse, nous
effectuons une étude numérique de la turbulence stratifiée 2D forcée par des ondes internes
de gravité. Nous éliminons les modes de cisaillement pour avoir un système uniquement
constitué d’ondes. Contrairement aux études précédentes, le forçage est appliqué à une
région localisée de l’espace spectral. Nous forçons aussi les ondes avec une échelle spatiale
intermédiaire pour permettre le développement d’une cascade d’énergie directe et aussi
inverse.

Nous présentons d’abord les différents régimes de turbulence stratifiée 2D avec un
intérêt particulier au régime typique de l’océan avec une forte stratification et un grand
nombre de Reynolds. La dynamique de la cascade d’énergie est analysée par un bilan
énergétique spectral. Ensuite, nous vérifions s’il est possible d’obtenir un régime de tur-
bulence d’onde faible en réalisant un analyse spatio-temporelle. Nous étudions enfin le
degré d’universalité de la turbulence stratifiée 2D par rapport au forçage.


	Dynamics of geophysical flows
	Atmosphere and ocean's role in the Earth's climate system
	Large-scale circulation of the Earth's ocean
	Deep ocean circulation and climate change
	Energy for maintaining the large-scale ocean's circulation
	The effect of rotation on the atmosphere and ocean dynamics

	Density stratification of the ocean and the atmosphere
	Stable density stratification: the buoyancy frequency
	Linear internal gravity waves

	Ocean and atmosphere are turbulent flows
	Atmospheric turbulence
	Ocean turbulence
	Ocean observations interpreted as a pure wave mechanism: the Garrett - Munk spectra

	Turbulence in stratified fluids
	The Froude number in the strongly stratified turbulence regime
	Scaling analysis and the buoyancy Reynolds number
	Coupling of the horizontal motions and internal waves
	Direct energy cascade in strongly stratified turbulence
	Internal waves and stratified turbulence

	Problem statement
	Objectives of this thesis

	Theory of 2D stratified turbulence
	Spectral description: the Fourier transform
	Eigenmodes of the linear 2D Navier-Stokes equations
	Scaling analysis 2D stratified turbulence
	Weakly stratified flows Fh 1
	Strongly stratified flows Fh 0


	Numerical setup and characteristic simulation
	ns2d.strat: 2D Boussinesq equations solver
	Forcing scheme
	About the forcing region: ring-shaped versus rectangular
	About the forcing quantity: vorticity  versus linear mode +
	Normalization of the forcing in the solver ns2d.strat

	Time scales of the problem
	Output modules of the solver ns2d.strat
	Description of a characteristic simulation
	With or without shear modes?
	How is the structure of the flow?
	Energy transfer mechanisms

	Computation of the hyper-viscosity coefficient 8

	Effects of varying the stratification and the Reynolds number
	Effects of varying the stratification strength
	Effects of varying the Reynolds number
	Varying stratification and Reynolds number
	Regimes in 2D stratified turbulence
	Description of flows with Fh,f<0.5 and R8>1

	Is 2D stratified turbulence driven by internal gravity waves?
	The spatio-temporal energy spectra
	Where are internal waves most likely to develop?

	Effects of varying the forcing
	Conclusions and perspectives

