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Abstract
Zonal flows are expected to play a major role in the heat transfer mechanism of geophysical
bodies such as the Earth’s core or Jupiter’s atmosphere. However due to the turbulent
regime the systems are in, and the specific force balance, dominated by rotation, it is very
hard to accurately model zonal flows. This causes their formation and dynamics to still
not be well understood. Experimental studies propose a complementary approach where
all scales of structures coexist. However most of the existing experimental set-ups remain
far from the relevant regimes found in the natural systems.

We present a new laboratory experiment built to study zonal flows induced by thermal
convection, called ZoRo. The originality of this new apparatus resides in the fact that all
balances, forcings and geometry are closest to the geophysical bodies. In order to match
those, ZoRo is a rapidly rotating spheroid (flattened sphere) filled with air.

In order to experimentally study zonal flows, all physical ingredients are reunited in
the apparatus, and we measure the flow field. Since the working fluid is air (a gas),
it is very challenging to accurately measure its velocity. To tackle to this problem, we
implemented a new velocimetry technique based on acoustic resonances of the fluid cavity,
the modal acoustic velocimetry (MAV). In order to isolate the velocity acoustic signature,
we develop theoretical predictions that take into account the main relevant effects that
influence the acoustic spectrum (cavity’s geometry, fluid’s diffusions, container elasticity,
etc.). It is then possible to retrieve the flow field using acoustic frequencies through an
inverse problem. MAV is a well-suited technique for measuring global azimuthal flows
such as zonal flows. It is very sensitive to variations in the flow structure, down to a few
centimetres. We were able to image the internal flow velocity with non-intrusive sensors
thanks to MAV.

Résumé
Les vents zonaux sont une famille d’écoulement jouant un rôle majeur dans la transmission
de la chaleur dans les systèmes géophysiques tels que le noyau de la Terre ou l’atmosphère
de Jupiter. Cependant ces systèmes présentent des régimes turbulents dominés par la
rotation, ce qui rend l’étude des vents zonaux difficile. De ce fait les méchanismes de
leur formation et de leur dynamique sont encore mal compris. Les études expérimen-
tales permettent une approche complémentaire où toutes les tailles de structures peuvent
facilement coexister. Pour des raisons pratiques, la plupart des expériences existantes
présentent des régimes différents de ceux des systèmes planétaires.

Nous présentons une nouvelle expérience de laboratoire appelée ZoRo pour étudier
les vents zonaux. L’originalité de ce nouveau montage est qu’il se rapproche autant que
possible des conditions présentes dans les systèmes planétaires. Pour ce faire, nous avons
choisi de construire un sphéroïde (sphère aplatie) rempli d’air en rotation rapide.

Pour mesurer la vitesse des éoulements nous avons développé une nouvelle technique
de mesure qui s’appuie sur les modes acoustiques de la cavité fluide. Cette technique est
non-intrusive et particulièrement adaptée à la mesure d’écoulement azimuthaux de grande
échelle. Nous avons testé cette méthode sur des cas synthétiques puis des écoulements
réels mesurés dans ZoRo. Grâce à la résolution d’un problème inverse, il est possible de
remonter au champ de vitesse à partir des fréquences des modes acoustiques.
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1
Introduction

Alone we go faster, together we go further.

- African saying,

This thesis presents a first landmark towards new zonal jets laboratory experiments, where
we focused on developing the Modal Acoustic Velocimetry (MAV) technique, building on
the pioneering work of Triana et al. (2014). In this chapter, we present the motivations
that gave birth to this work.

First we will present zonal flows in rotating planets, their observations and some of the
methods used to try and understand them, including numerical modelling and laboratory
reduced models.We will then present why we decided to build a new experiment (ZoRo),
its originality and how it complements the existing studies.

Due to the specificities of the newly built experiment, we show that the usual flow
measurements techniques are not suitable for ZoRo. We present the modal acoustic ve-
locimetry method, first proposed by Triana et al. (2014), and how it fits the experimental
constraints.

This newly developed velocimetry technique is based on acoustic normal modes, and
how their frequency changes in presence of a velocity field. This methodology is widely
used in seismology, helio-seismology and astero-seismology to retrieve the systems’ rotation
and internal structure. We present a brief overview of the existing studies that inspired
the framework of this thesis.

Incidentally, acoustic normal modes are also used in metrology to determine gases
properties. Due to the high precision measurements, metrologists developed very accurate
theories to describe many experimental effects that may influence the acoustic spectrum.
We will present a few studies that will later be useful. Finally we give a general outline
of this thesis in §1.4.
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12 CHAPTER 1. INTRODUCTION

1.1 Zonal flows
The observation of fluid dynamics in planetary layers brings out a very rich physical
system that is not yet well understood (Ingersoll, 1990). One of the most striking direct
observations are the very impressive bands visible on Jupiter’s or Saturn’s atmosphere
(Figure 1.1, left) (Porco et al., 2003). Those bands have been proven to be the signature
of strong alternating winds propagating parallel to the planet’s equator, either east-wards
or west-wards. Such azimuthal winds are called zonal flows (or zonal jets) and can be
observed on the Earth as well (Galperin and Read, 2016), in the atmosphere and oceans
as seen in Figure 1.1, right, but also in the outer core (Livermore et al., 2017).
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Figure 1.1 Annual mean values of mean zonal wind in color from the
ERA40 Atlas.

mechanisms for spinning up baroclinic, subtropical jet streams
by angular-momentum-conserving overturning circulations. We
then review our understanding of how eddies interact with the
zonal-mean flow in Section 1.4. A summary of the many exter-
nal influences on Earth’s jet structure and variability is provided
in Sections 1.5 and 1.6. The phenomena of equatorial superro-
tation on Venus, Titan and Earth’s quasi-biennial oscillation are
examined in Section 1.7. We then offer some concluding re-
marks in Section 1.8.

1.2 Observed zonal flows

Zonal jets are not only fundamental features of Earth’s winds,
they are also ubiquitous in Solar System planetary atmospheres.
We begin by discussing Earth’s zonal winds and general circula-
tion, since it forms the foundation of much of our understanding
of atmospheric dynamics.

1.2.1 Earth

The pattern of surface winds were historically the first to be well
characterized; Figure 1.1 shows that while annual-mean surface
zonal winds vary with season, the alternating pattern of easter-
lies and westerlies is a permanent feature. The boundary layer is
in direct frictional contact with Earth’s surface, and the alternat-
ing surface zonal wind pattern indicates the atmosphere receives
angular momentum from the surface in regions of surface east-
erlies and gives it back to the surface in regions of westerlies,
while a steady wind pattern implies these torques must balance
on average. To maintain this surface wind pattern, an overturn-
ing circulation must also be present (see Section 1.3). Roughly
coincident with the boundaries between alternating overturning
cells there are two westerly jet streams, one in each hemisphere,
separated by a region of very weak easterlies near the equator.
The westerly jets have a baroclinic structure with vertical shear
and become more barotropic with increasing latitude. The ori-
gin of the baroclinic and barotropic structures of the jets will be
discussed in detail below.

The atmospheric circulation on Earth is characterized by the
presence of multiple jets, both in the troposphere and in the
stratosphere.

Figures 1.2 and 1.3 show the spatial field of the annual-mean
wind speed in the upper part and the lower part of the tropo-
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Figure 1.3 Annual mean values of wind amplitude in color and wind
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sphere (Uppala et al., 2005). Different jet structures can be dis-
tinguished.

First in the Northern hemisphere, three zonal jets are ob-
served, one in the midlatitudes at around 45◦N over the At-
lantic ocean, one in the subtropics at around 35◦N over the Pa-
cific Ocean, and another one in the subtropics around 30◦N over
North Africa extending over the North Arabian Peninsula. The
jets over the Atlantic and the Pacific are intensified on the West-
ern part of the oceanic basins, near the East coasts of Asia and
the United States. Their typical wind speed is around 50m/s and
they are strongly barotropic by their strong signature near the
surface (compare Figs.1.2 and 1.3). The jet over the Atlantic
ocean is more oriented southwest-northeast compared to the
other ones. The subtropical jet over North Africa has a typical
speed of 30m/s and is much more baroclinic with almost no sig-
nature at surface. In the Southern hemisphere, the jet structure
is much more zonal. A circumpolar jet at around 50◦S with a
jet with maximum intensity in a region between 0◦E and 120◦E
is the analog of the midlatitude jets of the North Atlantic. A
subtropical jet around 30◦S is also present over Australia and
downstream (Fig. 1.2). Finally, weak easterlies are observed at
the surface and associated with the Hadley cell (Fig. 1.3).

Figure 1.1 show that the tropospheric jets have their core at
around 300hPa (i.e. 12km of altitude). The different jets possess
strong vertical shears which are related by a meridional temper-
ature gradient (baroclinicity) via the thermal wind relation. This
baroclinicity is responsible of the development of storms inside
of the subpolar jets. The tropospheric jets vary during the dif-
ferent seasons, with a meridional shift towards the Pole during
Hemispheric winters. In the Northern Atlantic the subtropical

Figure 1.1: Left: Jupiter’s atmosphere, an image of Jupiter taken by the Hubble wide field camera
in 2014, with the cloud-level zonal flows (thick black line) as function of latitude as measured
during Juno’s 3rd perijove of Jupiter on December 11th 2016 (Tollefson et al., 2017). Longitudinal
spread is 45◦. From (Kaspi et al., 2018). Right: Earth’s atmosphere, annual mean values of wind
amplitude (in colour) and wind vectors (arrows) at 300hPa. From ERA40 Atlas. From Galperin
and Read (2016).

Zonal flows are expected to be an important family of fluid motions in geophysical
systems. Since most planets and stars are subject to rotation, that inherently changes the
dynamics, and zonal flows are the only family of flows that is not destabilized by it (Vallis,
2017). The relative importance of rotational effects can be measured by the dimensionless
Ekman number, that gives the ratio between viscous and Coriolis forces,

Ek = ν

Ωa2 , (1.1)

where ν is the fluid viscosity, Ω the rotation rate and a a typical lengthscale of the system
(e.g. radius of the planet).

To fully grasp the relative importance of rotational effects, it is useful to consider a
complementary dimensionless number that gives the ratio between a rotation period and
a typical advective time scale. That is the Rossby number, given by

Ro = U

Ωa, (1.2)

where U is a typical flow velocity.
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Geophysical systems tend to have very low Rossby number (∼ 10−7) and Ekman
number (10−7 ∼ 10−15) hence their dynamics are expected to be mostly dominated by
rotation (Pedlosky, 1987). In particular, in the low Rossby, low Ekman numbers limit,
the momentum conservation equation reduces to a balance between Coriolis forces and
the pressure gradient, called the geostrophic balance (Vallis, 2017), as

2Ω× v = − 1
ρ0
∇P, (1.3)

where P is the pressure, v and Ω the velocity and rotation vectors. Taking the curl of
eq. (1.3), we see that if rotation dominates, the flows are expected to be invariant along
the rotation axis, or the Taylor-Proudman theorem, which gives for Ω = Ωez,

∂v

∂z
= 0. (1.4)

Zonal flows are thought to be an important factor in planetary dynamos as they can
contribute to the heat transfer while verifying the geostrophy constraints (Heimpel et al.,
2005; Heimpel and Pérez, 2011; Guervilly and Cardin, 2017). But the mechanisms that
govern their formation and structures are still not well understood today (Dowling, 1995;
Kong et al., 2018).

The main forcing is expected to be thermal convection, that transports heat in the
radial direction. An interesting dimensionless number to consider is the Prandtl number,
which gives the ratio between viscous and thermal diffusion,

Pr = ν

κ
, (1.5)

where κ is the thermal diffusivity. In planetary systems, the Prandtl number is low
(10−2 ∼ 10−4), which means the thermal gradients tend to smoother out mainly due to
their thermal diffusion. This causes the thermal convection regimes to be much more
turbulent than for higher Pr (Vallis, 2017). In such turbulent regimes, zonal flows are
global planetary-scale structures that are steady in time (Yarom et al., 2013; Aurnou
et al., 2015). The emergence of those global structures is expected to result from non-
linear interactions (Rhines, 1975; Vallis and Maltrud, 1993).

In order to explore Jupiter’s atmosphere, several spatial missions have been launched
(Vasavada and Showman, 2005), including the recent Juno mission (Bolton and Team,
2010) from NASA (National Aeronautics and Space Administration). One of the main
objectives of Juno is to determine the depth of the zonal jets, by using high-precision
measurements of Jupiter’s gravitational field (Kong et al., 2013, 2015; Zhang et al., 2015;
Iess et al., 2018).

Parallel to those observation missions, in order to try and understand the physical
mechanisms behind those flows, a number of numerical simulations have been performed,
successfully reproducing their main features (e.g. Condie and Rhines (1994); Christensen
(2002); Kaspi et al. (2009); Gastine et al. (2014); Guervilly and Cardin (2017); Cao and
Stevenson (2017) or Heimpel et al. (2005), reproduced in Figure 1.2). However the relevant
force balance is yet to be attained with numerical simulations (Schaeffer et al., 2017). Due
to the vastly different length scales, from global zonal flows at planetary scale down to the
turbulent eddies that can be a thousand times smaller, the computational cost needed to
fully resolve the problem is huge. Hence the majority of the studies considers problems
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that are more reasonably modelled. The historical approach is to alter the force balance
(e.g. by increasing the Ekman number) into regimes that can be numerically modelled in
a reasonable amount of time.

Due to the effects of rotation, zonal jets can form columnar quasi-geostrophic flows
(Busse, 1994) with a concentric cylindrical shells structure (Kaspi et al., 2018; Kong et al.,
2018). The invariance along the rotation axis allows to carry simplified bi-dimensional
simulations, reducing the computational costs and allowing to explore regimes closer to
the natural systems’ (Guervilly and Cardin, 2017).

Figure 1.2: A snapshot of the longitudinal winds maintained on the outer and inner boundaries in a
simulation of Jupiter using a Boussinesq, deep rotating convection model. Reds represent prograde
winds; blues retrograde. Heimpel et al. (2005) adapted by Stanley and Glatzmaier (2010).

1.1.1 Experimental models

Turbulence and non-linear interactions are very difficult to accurately model numerically.
In order to explore the parameter space and compare with the numerical results, several
laboratory models have been developed. We present a few of the existing experimental
set-ups used to model zonal flows, and why we decided to build a new apparatus.

Overview of existing experiments

Many laboratory experiments of various shapes and goals exist. We can separate them
depending on the working fluid that can be electrically conductive fluids, using liquid
metals (e.g. Gillet et al. (2007); Aurnou and Olson (2001)) and non-conductive fluids (e.g.
Manneville and Olson (1996); Cabanes et al. (2017)), the experiment geometry, either
shallow (e.g. Read et al. (2004); Espa et al. (2010)) or with deep structures (e.g. Manneville
and Olson (1996); Yarom and Sharon (2014)). A distinction can also be made based on
which forcing is used to inject energy in the system, either thermal (e.g. Smith et al. (2014);
Read et al. (2015)) or mechanical (e.g. Espa et al. (2010); Noir and Cébron (2013)).
In Figure 1.3 we reproduced two experimental results, left a spherical thermally forced
convection, and right a cylinder with mechanical forcing, both experiments work with
water.
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Figure 1.3: Left: Time lapse photos in UV light showing band structure of thermal convection in
rotating spherical shells. The inner/outer radius ratio is 0.76, similar to the convecting regions of
Jupiter. Values of the experimental parameters are Ek = 2.10−6 and Ra = 2.109 (approx. 100
times the critical value). Adapted from Manneville and Olson (1996). Right: Experimental polar
view of 4,900 Lagrangian particle tracks, collected between 4,900 and 5,350 rotations. Tracks are
coloured on the basis of their instantaneous zonal azimuthal velocity direction, with red (blue)
being prograde (retrograde) (Cabanes et al., 2017).

Among the deep fluid systems, we can distinguish the full three dimensional apparatus,
such as spheres (Manneville and Olson, 1996) or quasi-spheres (Noir et al., 2009, 2012; Noir
and Cébron, 2013), and the set-ups that take the beta-effect (Vallis, 2017) into account
but stay mainly two-dimensional (e.g. Yarom et al. (2013); Zhang and Afanasyev (2014);
Cabanes et al. (2017)). While the former are less constraining for the fluid, they are
mainly oriented towards mechanical forcings such as libration or precession (Noir and
Cébron, 2013; Le Dizès, 2015; Le Dizès and Le Bars, 2017).

Thermal convection is expected to drive the zonal flows, so the relevant dimensionless
number to attain the correct balance of forces is the Prandtl number. In planetary fluids,
the Prandtl number is small (∼ 10−2), meaning that the thermal diffusivity dominates.
Such regime is easily reached by liquid metals, but hardly by water (Pr = 7). This leads
many experiments to prefer mechanical forcings, either by adding shear stress (Jougla,
2019) or by injecting energy at small scales and letting it (inverse) cascade (e.g. Yarom
et al. (2013); Cabanes et al. (2017)).

We are interested in low Prandtl number fluids in a three-dimensional container with
thermal forcings, that are the closest to the natural systems.

The new ZoRo experiment

We aim to build an experiment closer to the forcing balance found in geophysical bod-
ies than previously done. We are also dedicated to build an experiment that is as less
constrained as possible in order to keep a highly complex problem, since we believe this
complexity is needed in order to see the emergence of global structures such as zonal flows.

We build a new experiment called Zonal flows in Rotating fluids (ZoRo), part of the
Turbulence and Dynamo in planetary cores (TuDy) ANR-funded project. The ZoRo
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experiment is a full (no inner core) quasi-sphere (oblate spheroid, flattened along the
rotation axis) filled with gas that can rotate rapidly around its symmetry axis. It is one
of the first laboratory experiment using gas in a rotating enclosure to study zonal flows,
and very few laboratory experiments use rotating gas at all (Menaut et al., 2019).

The (quasi) spherical geometry allows us to explore the deeper structures, while cylin-
drical tanks mostly are in the shallow-water approximation, e.g. Afanasyev and Wells
(2005). This fully three dimensional system also imposes less constraints on the fluid and
better reproduce the natural geometry. In the pursue of building a relatively unconstrained
experiment, thermal gradient is used to inject energy in the system, and we aim to observe
the coupled effect of thermal convection and rapid rotation. Gases have a Prandtl number
less than one (0.7 for air), and are easier to handle than liquid metal, especially since
we focus on hydrodynamics (no magnetic field). Gases are also much lighter, allowing
faster rotation rates, hence an equilibrium dominated by rotation as observed in planetary
systems.

However flow velocity measurements in gas are challenging compared to transparent
(in the visible wavelength) liquids, such as water. We will present a brief overview of the
most commonly used velocimetry techniques, and show that modal acoustic velocimetry
(MAV) is the best suited one for ZoRo.

1.2 Experimental velocimetry techniques

Since the aim of the experiment is to study zonal flows, the main quantity to retrieve is the
azimuthal flow velocity. Depending on the specific conditions and fluid considered, some
velocimetry techniques may be more suitable than others. We present a brief overview
of the widely used velocimetry techniques, their advantages and drawbacks that led us to
choose the modal acoustic velocimetry (MAV), recently proposed by Triana et al. (2014).

In order to constrain the fluid as little as possible, we want a non-intrusive measurement
technique. This rules out the historical anemometers (e.g. hot film anemometer), that also
present the disadvantage of being local, and thus giving sparse information on the flow.

Among the non-intrusive techniques, one major family of velocimetry techniques is
based on optical means, with the obvious advantage to allow a direct visualisation of the
flow. The idea is to acquire with an optical camera the fluid flow that is made visible,
for example with particle seeding. The successive images are then compared to recon-
struct the flow in time, for example with interferometry or with particle tracking, such as
Particle Imaging Velocimetry (PIV) (Wereley and Meinhart, 2010). In order to improve
the tracking, additional means can be used to make the seeds more visible, for example
by choosing fluorescent particles, giving the Laser Induced Fluorescence (LIF) technique
(Kinsey, 1977; Hishida and Sakakibara, 2000), or by heating them, with Laser Induced
Incandescence (LII) (Vander Wal and Weiland, 1994; Michelsen et al., 2007). These tech-
niques are widely used today, including in recent zonal jets experiments (Cabanes et al.,
2017).

One major drawback of these methods is that, since the measurement is based on
optics, it can only be applied to transparent fluids. Experiments using liquid metal prefer
to use Doppler based velocimetry techniques. They present the advantage that they can
be performed with visible light (laser Doppler (Albrecht et al., 2013)) but also with ultra-
sounds, which can propagate even in opaque fluids (Brito et al., 2001). Second drawback
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is that they are mainly bi-dimensional, so the visualisation takes place in the lightened
plane (e.g. laser sheet), which is limiting for zonal flows observations.

The techniques mentioned so far rely on the hypothesis that the seeds are neutrally
buoyant particles, hence measuring the particle’s velocity is equivalent to measuring the
fluid’s velocity. However the ZoRo experiment is filled with air for which it is very difficult
to find such tracers (Melling, 1997), especially for the fast rotation rates attainable by
ZoRo, up to 50 Hz or 3000 revolutions per minute (rpm). Fast rotation creates a strong
centrifugal force that would rapidly gather the denser particles near the outer boundary
(in less than 1 second for standard smoke particles in air rotating at 3000 rpm). So seeding
the fluid is not practically feasible for ZoRo.

Other visualisation techniques such as ombroscopy or holography, rely on the variations
of the medium’s refractive index, due to temperature for example (Pentland, 1987). They
present the advantage of not needing seeds in the fluid, but are effective only for shallow
transparent fluids. In addition to this, we are also interested in reproducing in ZoRo
some mechanically induced zonal flows (Le Bars et al., 2015), for which there would be no
temperature nor density changes, hence disabling these techniques.

Following the pioneering work of Triana et al. (2014), we further develop modal acoustic
velocimetry to measure the flows in a rapidly rotating gas cavity. This method relies on
acoustic normal modes, present in any fluid filled cavity, and more generally in any enclosed
system. Each normal mode is associated with an eigen-frequency, that depends on the
system’s shape and the propagating medium’s properties. It is then possible to retrieve the
medium’s velocity by measuring the frequency variations, e.g. compared to the medium
at rest. This method gives a full three-dimensional global measure of the fluid velocity by
having non-intrusive sensors at the system’s surface.

1.3 Acoustic normal modes

Measurements of acoustic normal mode frequencies have been used in various domains to
infer very diverse properties of the resonating medium. We present three complementary
domains that inspired us in various stages of this study.

1.3.1 Global seismology

Elastic waves propagation in the Earth, e.g. generated from earthquakes, is a major source
of indirect information on the planet’s interior (Dziewonski and Anderson, 1981). When
an earthquake is large enough it can excite the planet’s normal modes, or free oscillations
(Backus and Gilbert, 1961; Park, 2005), giving insights on global properties, such as
elasticity, density or anisotropy (Dahlen and Tromp, 1998). Seismologists distinguish
pressure (or spheroidal) modes nSl and torsional (or toroidal) modes nTl, where n and l
gives the number of radial and surface nodes. Those modes can be identified in a long
period spectrum of oscillations, as seen in Figure 1.4, from Park (2005).

It appeared that the measured normal frequencies are different from the expected val-
ues predicted by theoretical calculations developed for a radially-symmetric elastic sphere
(Lamb, 1881). In particular, some peaks are splitted compared to the theory, with 2l + 1
peaks in place of one. This observation is succesfully explained by the rotation of the Earth
which was not previously taken into account in the predictions (Backus and Gilbert, 1961;
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Figure 1.4: Schematic of the motion of free oscillations 0S2 , 0T2 , 0S3, and 0S0 superimposed on
a spectrum computed from 240 hours of vertical seismic motions recorded at the CAN (Canberra,
Australia) station of the Geoscope Network. From Park (2005).

Pekeris et al., 1961). Earth has many other parameters that differs from the simple model
of an elastic sphere. One that is of great interest for us is the departures from spheric-
ity. Just like rotation, it causes splitting in the normal mode frequencies that have been
observed quite early as well (Woodhouse and Dahlen, 1978). Other effects include hetero-
geneity in the medium, in the elasticity parameter or density (Dahlen and Tromp, 1998).
This perturbation method and effects influencing the Earth’s normal modes (including at
higher order in perturbation) are detailed in Dahlen and Tromp (1998).

1.3.2 Helio- and astero-seismology

Seismology applied to the Sun and then other stars, becoming helio- and astero-seismology,
has also focused on normal modes to infer the bodies’ interior structures and flow velocity
(Aerts et al., 2010; Goupil, 2011). The rotation signature on the acoustic spectrum has
been observed and interpreted (before its observation on the Earth) by Cowling (1941);
Cowling and Newing (1949); Ledoux (1951).

For the Sun, the visible free surface allows to retrieve high-resolution pressure field
from the free surface oscillations through its radial oscillations (Schou et al., 1998). It can
then be converted into a spectrum with visible normal modes, an example is reproduced
in Figure 1.5 (Schou et al., 1998; Chaplin and Basu, 2008).

Normal mode frequencies are linked to the interior properties, which can then be
retrieved if the physical relationships between the two are well understood (Christensen-
Dalsgaard et al., 1974; Christensen-Dalsgaard and Gough, 1976). This method is used
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to infer internal flow velocity in the Sun (Christensen-Dalsgaard, 2002). A typical flow
velocity map of the Sun obtained from such observations is reproduced in Figure 1.6.
This motivated its transposition into laboratory experiment and the development of the
MAV technique. It is useful to note that astero-seismologists developed local theoretical
framework to accommodate the very large pressure and temperature gradients present
in the stars’ interior (Aerts et al., 2010). The helio-seismology methods are detailed in
Christensen-Dalsgaard (2002); Aerts et al. (2010).

Figure 1.5: This amplitude spectrum of radial velocity variations observed with the GOLF (Global
Oscillation at Low Frequencies) instrument on SOHO (SOlar and Heliospheric Observatory) shows
the splittings (∆ν and δν) in the pressure modes of the Sun, from Aerts et al. (2010).

Figure 1.6: Rotation rate, as a function of depth and latitude, inferred from 12.6 yr of Michelson
Doppler Imager (MDI) observations (left) and its associated uncertainty (right). (Korzennik and
Eff-Darwich, 2011)
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One main difference between ZoRo and both Earth and stars is the outer boundary
conditions. The laboratory experiment has a rigid container while geophysical bodies
have a free surface. This difference prevents the direct transposition of some of the math-
ematical tools developed for helioseismology onto experimental conditions, e.g. Rieutord
et al. (2016), leading us to develop a new spectral decomposition suitable for laboratory
experiments’ boundary conditions (Vidal et al., 2020).

1.3.3 Gases metrology

The acoustic resonances of a gas-filled cavity are very sensitive to the gas properties,
through the sound speed. This feature is of great interest for metrologists when trying to
determine empirical laws such as state equations (Mehl et al., 2004; Moldover et al., 2014),
gas properties (Hurly et al., 2003) and universal constants (Moldover et al., 1988; Trusler,
1991). It appears that this method is so precise that measuring the eigen-frequencies of
quasi-spherical resonators is still today the most accurate technique used to determine the
Boltzmann constant (Pitre et al., 2009). Metrologists first used spherical resonators (Mehl
and Moldover, 1989) whose analytical solutions are easy to obtain. Then they switched
to quasi-spherical spheroidal (Mehl, 1982, 1986, 2007) and ellipsoidal (Guianvarc’h et al.,
2009; Mehl, 2010, 2015) shapes, whose frequencies are split due to the deviations from
sphericity (as on the Earth and stars), allowing more precise frequency determination.

In pursue of high precision measurements, metrologists developed many theoretical
tools to accurately predict all possible effects that may influence the mode frequencies,
including the container elasticity (Rand and DiMaggio, 1967; Mehl, 1985), shape defaults
due to manufacture, etc., summarized in Moldover et al. (1986). In particular they de-
veloped a perturbation theory for quasi-spherical cavity up to second-order (while Dahlen
and Tromp (1998) and Aerts et al. (2010) only use first-order) that is of great interest for
ZoRo since its ellipticity is large.

Metrologists also investigated the modes’ attenuation (due to diffusion, sound radiation
etc.) (Mehl, 1978; Moldover et al., 1986; Trusler, 1991), helping us to better understand
the experimental spectra.

Note that acousticians used the pressure normal modes perturbation due to rotation to
build a gyrometer (Bruneau et al., 1986; Herzog and Bruneau, 1989; Dupire and Bruneau,
1998; Ecotiere et al., 2004). They aim to measure a scalar rotation rate, so they focus on
a few (1 or 2) modes that are easiest to measure in their experimental apparatus. They
also work with a cylindrical cavity in order to make their device more practical to use and
worked towards miniaturization (Bourouina et al., 1997). Acoustic gyrometer is a claimed
patent (LeBlond et al., 1990).

The main difference between MAV and acoustic gyrometers is that acoustic gyrometers
focus on retrieving one scalar rotation rate, while MAV aims to retrieve the whole velocity
field.
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1.4 Outline of the thesis
This thesis is organised as follow. This section concludes the brief general introduction of
Chapter 1. In Chapter 2, we present the more specific theoretical framework we choose
to use, including the whole physical description of the problem using perturbation theory.
We will summarise the effects of rotation, ellipticity and diffusion on the acoustic spectral
response. Then we combine those effects to produce theoretical synthetic acoustic spectra
to be compared with the experimental data. Chapter 3 is dedicated to the experimental
set-up. We present the ZoRo apparatus and describe the complete measurement chain. We
start from data acquisition protocol and follow all steps in the analysis of the measured
sound signal, including the crucial step of mode identification, up to the extraction of
acoustic splitting. Then in Chapter 4 we present the Bayesian inversion problem formalism
and apply it to synthetic acoustic data. This leads us to propose quantitative measures of
an inversion accuracy. We also investigate the influence of the available mode collection
on the inversion results. Finally, in Chapter 5 we apply all the methods developed in
the previous chapter to an experimental unknown flow and try to invert it. We study a
centrifugally driven flow through open holes. A brief discussion in Chapter 6 concludes
this thesis.
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2
Theoretical acoustic spectra

Consider that with many calculations one can win the victory, so fear their
insufficiency. How unlikely is it that anyone who does not do so will win!

- Sun Tzu, The Art of War

In this chapter, we aim to give a common theoretical framework to describe sound
waves and rotating fluids. We describe more specifically normal modes of an enclosed
quasi spherical fluid cavity and how their frequency can be a signature of the flow field.
To do that, we use a perturbation theory, assuming that the effects we take into account
are small thus the system stays close to a the simpler reference problem of a cavity at rest,
where solutions are known.

We consider a fluid, governed by the usual conservation equations (mass, momentum
and heat). We linearise them under the assumption that the acoustic waves cause a
small disturbance, and complete them with constitutive equations. We are interested
in the resonances of the fluid cavity, hence its modal response. This leads to expressing
this closed system into an eigenvalue problem. This problem corresponds to the Helmholtz
wave equation if we assume a diffusionless fluid at rest, for which exact analytical solutions
are available for the the specific spherical geometry. We take this as our reference model,
that we will then perturb.

We successively add as independent perturbations the effects that are present in the
experimental apparatus and not yet taken into account in the reference model. First we
consider background rotating flows including Coriolis forces, then we perturb the resonator
geometry into a spheroid (matching our experimental apparatus’ shape), and add both
thermal and viscous diffusions. We show that second-order perturbation is needed for
geometrical correction at our apparatus’ flattening, while first-order is a priori enough for
both diffusion and rotational corrections.

By taking all those effects into account, we are able to obtain analytical prediction of
the eigenfrequencies for our resonator. We confront the theoretical values obtained with
perturbation theory with finite-element calculations, and show that they are in very good
agreement. This gives us robust theoretical predictions needed to interpret experimental
data.

23
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2.1 Formulation of the problem
We present the general framework used to describe acoustic eigen-frequencies of a cavity.
We describe the classic problem formulation, following Blackstock (2000), where we remind
the useful equations for our problem, the set of approximations we take, as well as the
boundary conditions. We also present the resolution method we use (perturbation theory)
as well as the full resolution of the problem for the reference model we choose.

2.1.1 Governing equations

General formulation

The description of a fluid behaviour breaks down to the conservation and constitutive
equations. The conservation equations for mass, momentum and energy write (Blackstock,
2000)

∂ρ

∂t
+∇ · (ρv) = M, (2.1)

ρ
Dv
Dt = ∇ · σ + F , (2.2)

ρT
Ds
Dt = −∇ · q + ϕ+Q, (2.3)

where v is the velocity field, ρ is the density, T is the temperature, s is the specific entropy,
σ is the stress tensor, q is the local heat flux, ϕ is the viscous dissipation function, and
M , F and Q are possible source terms. And where the operator D/Dt is the material
derivative (or advection operator) defined as

D( · )
Dt = ∂( · )

∂t
+ (v · ∇)( · ). (2.4)

We want to reformulate the energy conservation equation with thermodynamic vari-
ables that are more easily measurable (than entropy). Usual sets of variables involve the
pressure p, such as (p, T ) or (ρ, p). To do so, thermodynamics relations are necessary, for
instance, by definition,

ρTds = ρCpdT − αTdp, (2.5)

where α is the coefficient of isobaric thermal expansion and Cp is the specific heat at
constant pressure. For an ideal gas, it can be simplified into

ds = Cv
dp
ρ
− Cp

dρ
p
, (2.6)

with Cv the specific heat at constant volume.
In this general formulation, we introduced 6 variables ρ, v, p, T , σ, q and only 3

equations. We need to add constitutive equations into the system. Since these equations
are inherent to the fluid properties, this causes a slight loss in generality.

From now on, we will assume that:

(i) the working fluid is Newtonian, meaning that the stress tensor σ follows

σ = −pI + τ = −pI + µ[∇v + (∇v)>] + λ(∇ · v)I, (2.7)
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where I is the identity matrix and τ is the dissipative part of the stress tensor.
In the particular case of uniform viscosities, it becomes

∇ · σ = −∇p+ µ∇2v + (λ+ µ)∇(∇ · v), (2.8)

where µ is the dynamic (shear) viscosity, λ is the second coefficient of viscosity which
is related to the bulk viscosity µB through λ = µB − 2µ/3 ;

(ii) the heat transfer obeys Fourier’s law

q = −ρ0Cpκ∇T, (2.9)

where κ is the thermal diffusivity.

This is used to define the viscous dissipation function

ϕ = (∇v) : τ , (2.10)

where τ is the dissipative part of the stress tensor. We recall that the double dot product
of 2 matrices A and B is defined as A : B = AijBij using Einstein summation notation.

One last relation is needed to close the problem, that is the equation of state, which
gives an additional relation between thermodynamic variables, usually p(ρ, T ) or ρ(p, T ). A
general isentropic state equation can be expressed as small variations around a background
state (ρ0, T0, p0), which writes at leading order

ρ− ρ0 = (p− p0) ∂ρ0
∂p

∣∣∣∣
T

+ (T − T0) ∂ρ0
∂T

∣∣∣∣
p
. (2.11)

Assuming that the partial derivatives are constant within the small variations range, it
becomes

ρ = ρ0 [1 + βT (p− p0)− α(T − T0)] , (2.12)

where βT = γβs is the isothermal compressibility with γ the specific-heat ratio and βs the
isentropic compressibility.

We can here introduce the isentropic sound speed c as

c2 = dp
dρ

∣∣∣∣
s=cste

, (2.13)

or more usually, assuming small departures from background state (ρ→ ρ0), the speed of
sound c is given by

c = (ρ0βs)−1/2 = [γ/(ρ0βT )]1/2, (2.14)

and the heat capacity at constant volume Cv is Cv = Cp/γ.
We now have a closed system. Injecting the constitutive equations into the momentum

and energy conservation equations, the system eq. (2.2)–eq. (2.3) leads to

ρ [∂tv + v · ∇v] = ∇ ·
(
−pI + µ[∇v + (∇v)>] + λ(∇ · v)I

)
+ F , (2.15)

ρCp (∂tT + v · ∇T )− αT (∂tp+ v · ∇p) = ∇ · (ρCpκ∇T ) + ϕ+Q. (2.16)
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We further assume that viscous and thermal diffusivities are uniform (λ, µ, κ are
constants), there is no source terms (M = Q = 0), and the only additional force is due to
gravity F = ρg.

The complete set of conservation equations eq. (2.1), eq. (2.15)–eq. (2.16) finally be-
comes

∂tρ+∇ · (ρv) = 0, (2.17)

ρ [∂tv + v · ∇v] = −∇p+ µ∇2v + (λ+ µ)∇(∇ · v) + ρg, (2.18)

ρCp (∂tT + v · ∇T )− αT (∂tp+ v · ∇p) = ρCpκ∇2T + ϕ. (2.19)

We can now recognize the usual Navier-Stokes equation in eq. (2.18) and the usual
heat equation in eq. (2.19). For rotating fluids, it is useful to express the momentum con-
servation, or Navier-Stokes equations, eq. (2.18) in the referential rotating with the fluid.
The change of referential from the inertial referential to a rotating (non-Galilean) referen-
tial implies that additional terms appear due to the velocity composition law (Varignon’s
theorem). It then becomes in the referential rotating along Ω

ρ [∂tv + v · ∇v + 2Ω× v + Ω× (Ω× r) + dtΩ× r]
= −∇p+ µ∇2v + (λ+ µ)∇(∇ · v) + ρg, (2.20)

with Ω the angular velocity vector of the referential and r the position vector.
We can recognize the rotating Navier-Stokes equations, with the additionnal terms

being, from left to right, the Coriolis 2Ω×v, the centrifugal Ω× (Ω×r) and the Poincaré
effects dtΩ× r.

The final set of equations eq. (2.1), (2.19)–(2.20) completely describes the problem
by taking all potential effects into account. This implies a high complexity, seen both in
the number of the variables and the non-linearity of the equations. In order to solve this
system, we will further simplify it by linearizing it around a background state.

Linearized equations

The above equations are non-linear. We can consider a linearized version of those by
assuming that all quantities stay close enough to the background state so that their vari-
ations can be considered as small. We separate the total particle velocity into vt = v0 +v
with v the variations around the background state (in the rotating frame) v0, and do the
same for pressure pt = p0 + p, temperature Tt = T0 + T and density ρt = ρ0 + ρ.

In the acoustic framework, the sound waves cause disturbances in the medium (here
defined as the fluid with its background state, possibly in motion) that can be considered
small if |v| � c0 or MS = |v|/c0 � 1 with MS the (sonic) Mach number. In this small-
signal limit, the conservation equations can be linearized into (Blackstock, 2000)

∂tρ+∇ · (ρ0v + ρv0) = 0, (2.21)

ρ0 [∂tv + v0 · ∇v + v · ∇v0 + 2Ω× v]
+ ρ [∂tv0 + (v0 · ∇v0) + 2Ω× v0 + Ω× (Ω× r) + dtΩ× r]

= −∇p+ µ∇2v + (λ+ µ)∇(∇ · v) + ρg,

(2.22)
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ρ0Cp [∂tT + v0 · ∇T+ v · ∇T0] + ρCp [∂tT0 + (v0 · ∇T0)]
− αT0 [∂tp+ v0 · ∇p+ v · ∇p0]− αT [∂tp0 + v0 · ∇p0]

= ρCpκ∇2T + ϕ.

(2.23)

This system is to be considered along with the constitutive equations

ρ = ρ0 [1 + βT (p = p0)− α(T − T0)] , (2.24)
ϕ = (∇v) : τ (v0) + (∇v0) : τ (v). (2.25)

Finally this linearized system can be solved in the frequency domain, by assuming
time periodic solutions. We seek the normal modes with a harmonic time dependence
exp(−iωt), where ω is the pulsation (possibly complex). The system of governing equations
(2.21)–(2.23) can be cast into a symbolic eigenvalue equation as

− ω2u = Hu, (2.26)

where H is a complex vectorial operator linear in u, which can be the velocity v or the
Lagrangian displacement for isentropic fluids (e.g. Ledoux, 1951). Usually in acoustics,
this is then used to obtain a single (generalized) pressure equation (Hunt, 1955; Morse and
Ingard, 1986; Pierce, 1990; Blackstock, 2000; Bergliaffa et al., 2004). We keep this more
general formulation, which is later needed to take flows into account (see §2.2.1).

In order to solve this equation, it needs to be supplemented with boundary conditions.

Boundary conditions

To match the experimental conditions, we consider a gaseous cavity enclosed within a
metallic rigid container. As such, it is a good approximation to consider an infinitely rigid
container since the sound speed in the container is much larger than in the air (Moldover
et al., 1986). Then we impose at the rigid wall of the container a no-slip condition (v = 0)
and continuity of temperature and heat flux. In our case, where the thermal conductivity
is much larger in the container, it is equivalent to assume isothermal boundary condition
(Herzfeld, 1938). Note that the rigid container boundary condition has proven to be a
constraint for existing eigensolvers leading us to develop our own (Vidal et al., 2020).

Using these boundary conditions leads to an apparition of thermal and viscous acoustic
thicknesses dth and dvisc (when diffusions are not neglected), defined as (Blackstock, 2000)

dth =
√

2κ
ω

and dvisc =
√

2ν
ω
, (2.27)

with ω the angular frequency of the sound wave. Note that these acoustic layer thicknesses
depend on the frequency of the periodic solutions.
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2.1.2 Resolution method for the ZoRo case

This exact description of our problem as written in the system eq. (2.21)–(2.23) involves
non-trivial solutions. The corresponding wave equation has analytical solution only for
specific cases. In general, they can be approached with numerical schemes or spectral
decomposition (e.g. Vidal et al., 2020) but both might involve heavy calculations. Instead
we choose to use a perturbation approach.

Overview of perturbation theory

The idea of perturbation theory is to define a reference model for which simple analytical
solutions are available, and to add missing terms as a series of small perturbations (Bender
and Orszag, 1978). This method is a classic and powerful approach that has been useful
for many problems (e.g. Landau et al., 1977; Cohen-Tannoudji et al., 2018). Its drawbacks
include that we need to know a simple solution “close" to the considered case. And second
that the problem at hand and the model for which solutions are known are “close", i.e
amplitude of deviations from the chosen reference model are small, so that it stays relevant.
A perturbation series is typically

X = X0 + εX1 + ε2X2 + ε3X3 + . . . , (2.28)

where X is the solution of the complete problem as described by H, X0 is the solution
of the reference model, ε is the small parameter characterizing the deviations, and Xi are
the successive higher orders correction from the reference model.

Our primary goal is to accurately describe the flows and acoustic response within the
ZoRo experiment. ZoRo is an oblate spheroid of ellipticity e = (req−rpol)/req = 0.05, filled
with gas (air) and rotating around its revolution axis up to 30 Hz. The ZoRo experimental
set-up is detailed in Chapter 3.

ZoRo is a rotating aspherical cavity, relatively close to a diffusionless sphere at rest,
that we will choose as our reference model. The main deviations from this idealised
reference model are: the spheroidal shape, the rotation and the diffusion effects. We can
define for each of these effects a dimensionless number that characterizes their deviation
from the reference model, and we will consider the perturbation theory valid if this number
is small. The shape deviation is defined by the ellipticity e = 0.05 � 1. The rotational
effects relative strength is given by the sonic Mach numberMS , that compares the rotation
rate (maximum 30 Hz in ZoRo) to the typical resonance frequency (the fundamental mode
is around 600 Hz) so MS < 30/600 = 0.05� 1. The viscous and thermal adimensionned
diffusions are given by ν/(ca) ' 2 · 10−7 and κ/(ca) ' 3 · 10−7 respectively, with a the
cavity typical lengthscale and c the sound speed.

In conclusion ZoRo rotates slowly (compared to the sound speed), it is relatively non-
dissipative (Moldover et al., 1986) and its ellipticity is moderate enough to stay close
to a sphere, justifying the perturbation method with the diffusionless sphere at rest as
reference model. For the chosen reference model, the above equations are equivalent to
the Helmholtz equation for which exact analytical solutions are known for the sphere. The
rotational, geometry and diffusion effects will then be successively treated as perturbations,
following Lynden-Bell and Ostriker (1967).

Note that for spheroids, complete solutions for diffusionless medium at rest exist
but involve spheroidal coordinates, which considerably increase the resolution complexity
(Chang, 1971, 1972).
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Reference model: the diffusionless sphere at rest

We take as reference model a diffusionless fluid at rest enclosed in a perfect sphere of
radius a, so that λ = µ = 0 and Ω = 0, and neglect the gravity. Under these restrictive
assumptions, and assuming the time-dependence ∝ exp(−iωt), the eigenvalue equation
eq. (2.26) becomes

ω2v = −c2∇ (∇ · v) = H0v. (2.29)

Assuming that the sound waves are irrotational, we can then introduce the velocity
potential Ψ as v = ∇Ψ, which is linked to acoustic pressure by p = −∂Ψ/∂t (Blackstock,
2000). Coupled with the further assumption of time-periodicity, this allows us to retrieve
the well-known Helmholtz equation, or the usual wave equation

(
∇2 + k2

)
p(r) = 0, (2.30)

with k = ω/c the wavenumber.
The Helmholtz equation eq. (2.30) is projected onto spherical coordinates (r, θ, φ), so

that p(r) = p(r, θ, φ) = R(r)Θ(θ)Φ(φ). Its solutions are (Russell, 2010)

p(r, θ, φ) = [jl(kr) +Byl(kr)] Pml (cos θ) A cos(mφ+ C), (2.31)

where A, B, C are integration constants to be determined with boundary conditions.
We also introduced Pml the associated Legendre polynomial of order l and degree m,

that carries the angular dependence, defined as

Pml (x) = (−1)m(1− x)m/2 dmPl(x)
dxm , (2.32)

where Pl(x) is the Legendre polynomial of order l, given by

Pl(x) = 1
2ll!

dl

dxl
[
(x2 − 1)l

]
. (2.33)

The radial dependence is taken into account with jl and yl the spherical Bessel functions
of the first and second kind respectively, defined as

jl(kr) =
√
π

2rJl+1/2(kr), (2.34)

yl(kr) = (−1)l+1
√
π

2rJ−l−1/2(kr), (2.35)

where Jl(kr) =
∞∑
n=0

(−1)n

n! Γ(n+ l + 1)

(
kr

2

)2n+l
is the Bessel function and Γ is the Gamma

function.
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Another usual expression for the general pressure solution eq. (2.31) consists in sepa-
rating the angular and radial dependences into

p(r, θ, φ) = [jl(kr) +Byl(kr)]Yml (θ, φ), (2.36)

where Yml (θ, φ) is the spherical harmonic of order l and degree m and fully describes the
surface pressure field.

We consider a full sphere (with no inner core), so the boundary condition at the center
(r = 0) imposes B = 0. For each l there is an infinity of k that are solutions of eq. (2.36),
forming a continuous spectrum of modes. We index them with n going from 0 to ∞.

Finally the pressure field associated to the cavity’s free oscillations is given by

pnlm(r, θ, φ) = jl(knlr)Yml (θ, φ). (2.37)

The triplet (n, l,m) fully characterizes one acoustic mode, we will denote it nSml ,
following the nomenclature used for the eigenmodes in the Earth (Dahlen and Tromp,
1998). Some modes hold special properties, that we will use further in the manuscript.

In particular we distinguish:

- zonal modes, m = 0, which are independent of φ i.e. symmetric around the z axis,

- radial modes, l = 0, which are homogeneous at the sphere surface,

- overtones, n > 0, which have at least one radial node.

The addition of the outer boundary condition: a rigid, no-slip boundary at the con-
tainer enclosure, writes out as

∂jl(knlr)
∂r

∣∣∣∣
r=a

= 0. (2.38)

This completes the quantification of modes, and leaves only the discrete modes where n
is an integer. The quantified wavenumber knl can thus be written as knl = znl/a, with znl
the nth zero of the derivative of the spherical Bessel function of order l. Its corresponding
resonance frequency fnl is given by

fnl = cknl
2π = cznl

2πa. (2.39)

We remark here that the frequency is independent of m so all modes with the same
n and l share the same frequency in the sphere: the modes are degenerated in frequency.
This property is directly linked to the spherical symmetry, where the longitudinal direction
φ cannot be distinguished without more constraints.

The eigenfrequencies with the relevant values for ZoRo are computed for the sphere
of same volume, which corresponds to a radius a = 0.1966 m, and c = 343.2638 m.s−1.
The lowest frequencies are given in Table 2.1 and represented in figure Figure 2.1.
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Figure 2.1: Acoustic eigenmode frequencies for a sphere of radius a = 0.1966 m and sound speed
c = 343.2638 m/s for increasing order l, up to n = 6.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
l = 0 0 1309 2183 3056 3929 4802
l = 1 578 1651 2558 3447 4329 5208
l = 2 928 2026 2949 3848 4736 . . .
l = 3 1254 2385 3327 4236 5132
l = 4 1569 2735 3695 4615 . . .
l = 5 1877 3076 4054 4987
l = 6 2181 3412 4408 5353
l = 7 2483 3744 4757 . . .
l = 8 2782 4071 5101
l = 9 3078 4396 . . .
l = 10 3374 . . .
l = 11 3669
l = 12 3962
l = 13 4255

. . .

Table 2.1: Frequency (Hz) of the first (n, l) eigenmodes for a sphere of radius a = 0.1966 m and
sound speed c = 343.2638 m/s.
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2.2 Perturbation theory for our study cases

In order to accurately predict the acoustic resonances of the experimental apparatus, we
need to perturb the reference model into a system closer to the experiment. Starting from
the reference model described above, we will now successively add fluid flow and rotation
as a perturbation from the chosen reference model. Then we will perturb the shape of the
container, and finally consider diffusion effects.

2.2.1 Background rotating flows

We focus on a sphere rotating around one of its diameter. This configuration breaks
the spherical symmetry by imposing a rotation axis and more importantly by creating
azimuthal flows (from solid body rotation to more complicated ones). The existence of
these flows breaks the azimuthal symmetry and lifts them-degeneracy, leading to a splitting
of the eigenfrequency of the sphere at rest (in the inertial frame).

We aim to characterize and calculate the modes’ rotational splittings. To do so, we
follow the method detailed in Aerts et al. (2010), from where we extracted the steps
relevant for our study and simplified their general formalism for our specific case. This
method gives the acoustic rotational splitting compared to the reference model which is
a motionless sphere. All the calculations (from eq. (2.42) onward) are valid in the non-
rotating inertial referential, which is the referential of interest for stars measurements, as
the observer is supposed immobile with respect to the body’s rotation.

First-order perturbation theory in flow velocity

We start from the reference model described in §2.1.2. We assume that the rotation
rate Ω is slow compared to the acoustic frequencies, allowing us to consider first-order
perturbation only. In practice, this leads us to neglect the centrifugal effects that are
second-order in Ω, and keep only the (first-order) Coriolis effects. Within the attainable
experimental conditions, the rotation rate has slow temporal variations, so we expect
the Poincaré effects to be negligible as well. We will also assume that axisymmetric
rotation is the only source of motion so v0 = Ω × r = Ωr sin θeφ. We now take the
Coriolis effect into account. Since it is directly related to the fluid background velocity,
the simple acoustic way of expressing the eigenvalue problem with the (scalar) pressure
variable only is not valid anymore, and we go back to the vectorial momentum conservation
equation eq. (2.22). With the approximations for the reference model (no diffusions,
gravity neglected), eq. (2.22) valid in the non-rotating inertial frame thus reduces to

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p. (2.40)

We separate the variables into a background and perturbation part, following Lynden-
Bell and Ostriker (1967). We write v = v0 +v′ with ′ denoting the Eulerian perturbation,
and use the same notation for ρ, p and g. The perturbed continuity equation writes as

0 = ∂ρ

∂t
+∇ · (ρv) = ∂(ρ0 + ρ′)

∂t
+∇ · ((ρ0 + ρ′)(v0 + v′)), (2.41)
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keeping only the first-order of perturbation, it becomes

0 = ∂ρ′

∂t
+ ρ0∇ · v′ + ρ′∇ · v0. (2.42)

The Lagrangian description is necessary when the system is self-graviting (Chan-
drasekhar, 1964). It is also of particular interest when the medium properties are not
homogeneous and display large variations across the system, as encountered in stars due
to the strong pressure and temperature gradients (Aerts et al., 2010). Following the as-
teroseismology framework from Aerts et al. (2010), we will use the Lagrangian description
as well.

Let δr be the local fluid displacement due to acoustic perturbation, δv the local
perturbed velocity. The correspondence between Eulerian and Lagrangian descriptions is
given by

δv = Dδr

Dt
= ∂δr

∂t
+ (v0 · ∇)δr = v′ + (δr ·∇)v0, (2.43)

where D/(Dt) stands for the material derivative defined in eq. (2.4).
The first-order Lagrangian momentum equation is then,

ρ0
∂2δr

∂t2
+ 2ρ0 (v0 · ∇) ∂δr

∂t
= −∇p′, (2.44)

where we neglected the quadratic term in velocity (v0 · ∇)2 δr.
To proceed further we assume that time dependencies are all ∝ exp(−iωt) only, allow-

ing the momentum equation to be rewritten

− ρ0ω
2δr − 2iωρ0 (v0 · ∇) δr = −∇p′. (2.45)

This equation corresponds to the general form of perturbed eigenvalue equation, eq.
(3.330) from Aerts et al. (2010)

ω2δr = H δr =
(
H̄0 + δH

)
δr, (2.46)

with H̄0 = 1/ρ0∇p′ the equivalent of the H0 operator valid for the reference model for
local displacement and δH = −2iω (v0 · ∇) the perturbation operator. Both H̄0 and δH
are linear functionals of δr.

We project the displacement δr onto the natural spherical coordinates, separating the
radial and horizontal components as δr = ξrer + ξh = ξrer + ξθeθ + ξφeφ. Combining ξr
and ξh gives the complete local displacement δr, Aerts et al. (2010), eq. (3.132),

δr =
√

4πRe

{[
ξ̃r(r)Yml (θ, φ)er + ξ̃h(r)

(
∂Yml
∂θ

eθ + 1
sin θ

∂Yml
∂φ

eφ

)]
e−iωt

}
. (2.47)
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Splitting calculation

The perturbation of the squared eigenfrequency is given, from Schiff (1969), by

δf2 = 〈δr|δH δr〉
〈δr|δr〉

, (2.48)

with 〈·|·〉 the inner product defined as

〈x | y〉 =
∫
V
ρ0 x

∗ · y dV, (2.49)

where ∗ stands for the complex conjugate and
∫
V dV is the integral over the system’s

volume.
Injecting the δH deduced from the momentum equation, the squared frequency per-

turbation becomes,
δf2 = 〈δr| − 2iω (v0 · ∇) δr〉

〈δr|δr〉
. (2.50)

For small perturbations the frequency perturbation can be approximated by δf =
δf2/(f + f0) ' δf2/(2f0) ' δf2/(2f), so the first-order acoustic splitting is given by
(eq. (3.332) in Aerts et al. (2010))

δf ' −i

∫
V
ρ0δr

∗ (v0 · ∇) δr dV∫
V
ρ0|δr|2dV

= −i R
I . (2.51)

For the simple case where the velocity is due to axisymmetric rotation only, in the
inertial frame we have v0 = Ω× r = Ωr sin θeφ, so

(v0 · ∇)δr = imΩδr
+ Ω [− sin θδr · eφer − cos θδr · eθeθ + (sin θδr · er + cos θδr · eθ)eφ]

= imΩδr

+
√

4πΩ
[
ξ̃h
∂Yml
∂φ

er − cot θξ̃h
∂Yml
∂φ

eθ +
(

sin θξ̃rYml + cos θξ̃h
∂Yml
∂θ

)
eφ

]
.

(2.52)
By injecting the local displacement δr from eq. (2.47) in eq. (2.51), we have the

numerator

R =
∫
V
ρ0δr

∗ ·
{

imΩδr +
√

4πΩ
[
ξ̃h
∂Yml
∂φ

er − cot θξ̃h
∂Yml
∂φ

eθ

+
(

sin θξ̃rYml + cos θξ̃h
∂Yml
∂θ

)
eφ

]}
dV

= im
∫
V
ρ0Ω|δr|2dV

+ 4π
∫
V
ρ0Ω

[
−ξ̃r

∗Ym∗l ξh
∂Yml
∂φ
− cot θ|ξh|2

(
∂Yml
∂θ

)∗ ∂Yml
∂φ

+ ξ̃h
∗
ξ̃r

(
∂Yml
∂φ

)∗
Yml + cot θ|ξh|2

(
∂Yml
∂φ

)∗ ∂Yml
∂θ

]
dV.
(2.53)
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We remark that in this expression, the spherical harmonic Yml , or its derivative, is
always multiplied by its complex conjugate. Here we use the convention Yml (cos θ) =
(−1)mclmPml (cos θ) exp(imφ), so all the exp(±imφ) vanish, and the integration over φ is
trivial. Using these simplifications, and dropping the ·̃, we have at the end

R = im8π2c2
lm

∫ π

0

∫ a

0
ρ0Ω

[
|ξr|2Pml (cos θ)2 + |ξh|2

((
∂Pml (cos θ)

∂θ

)2

+ m2

sin2 θ
Pml (cos θ)2 − 2 cot θPml (cos θ)∂P

m
l (cos θ)
∂θ

)

− ξ∗rξhPml (cos θ)2 − ξ∗hξrPml (cos θ)2
]
r2 sin θdrdθ

= im8π2c2
lmRnlm.

(2.54)

The same arguments can be applied to the denominator I of δω in eq. (2.48), leading to

I = 8π2c2
nlm

∫ π

0

∫ a

0
ρ0

[
|ξr|2Pml (cos θ)2 + |ξh|2

(
∂Pml (cos θ)

∂θ

)2

+ |ξh|2
m2

sin2 θ
Pml (cos θ)2

]
r2 sin θdrdθ

= 8π2c2
nlmInlm.

(2.55)

We can associate to each eigen mode nSml a quantified rotational splitting δfnlm given by

δfnlm = m
Rnlm
Inlm

= fnlm − fnl, (2.56)

with fnl the degenerated frequency at rest of all modes from the nSl multiplet and fnlm
the non-degenerate frequencies perturbed by rotation of each nSml mode. In practice in
the experiment, we are able to measure |fnlm − fnl(−m)| = 2 δfnlm.

From now on we will use the fully normalized Legendre polynomials P̃ml defined as

P̃ml = (−1)m
√

2l + 1
2

(l −m)!
(l +m)!P

m
l , (2.57)

so that it verifies ∫ π

0
P̃ml (cos θ)2 sin θdθ = 1. (2.58)

Using this normalisation, we can rewrite Inlm into Inl (now independent from m), as

Inl =
∫ a

0
ρ0
(
|ξr|2 + l(l + 1)|ξh|2

)
r2dr. (2.59)
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Finally the rotational mode splitting is given by

δfnlm=m

∫
S

Ω

(|ξr|2−2ξrξh
)
P̃ml

2 + |ξh|2
(∂P̃ml

∂θ

)2

+ m2

sin2 θ
P̃ml

2−2 cot θP̃ml
∂P̃ml
∂θ

dS∫ a

0

(
|ξr|2 + l(l + 1)|ξh|2

)
r2dr

,

(2.60)
with

∫
S · dS =

∫ π
0
∫ a
0 · r2 sin θdrdθ integral over the surface, and P̃ml is implicitly applied

on cos θ.
Note that in our case, the displacement functions are real, hence ξ∗rξh = ξrξ

∗
h = 2ξrξh.

It is also useful to note that if to obtain this simplified we assumed axisymmetry, leading
Ω to be independent of φ, in the general case Ω(r, θ).

With this expression a few properties are useful to remark:

- Rnlm is an even function of m (and Inl is independent of m) thus δf is an odd
function of m, implying that δfnl−m = −δfnlm,

- P̃ml (x) is either symmetric or antisymmetric with respect to x = 0, so for x = cos θ
this is verified around θ = π/2, thus the rotational splitting is only influenced by the
symmetric component of Ω with respect to the equator.

Useful formalism

It is useful to rewrite the acoustic splitting as (eq. (3.349), Aerts et al. (2010))

δfnlm = m

∫ π

0

∫ a

0
Knlm(r, θ)Ω(r, θ)drdθ, (2.61)

with Knlm the rotational sensitivity kernel defined as

Knlm = 1
Inl

∫ π

0

∫ a

0
ρ0

[
|ξr|2Pml (cos θ)2 + |ξh|2

((
∂Pml (cos θ)

∂θ

)2

+ m2

sin2 θ
Pml (cos θ)2 − 2 cot θPml (cos θ)∂P

m
l (cos θ)
∂θ

)

− 2ξrξhPml (cos θ)2
]
r2 sin θdrdθ,

(2.62)

where we dropped the ˜ over the fully normalized Legendre polynomials.
Sensitivity kernel vary vastly between modes, as shown in Figure 2.2, allowing us to

deduce the spatial distribution of Ω(r, θ) depending on which modes are affected (see
Appendix A for a more exhaustive list of kernels).

These expressions give the acoustic rotational splitting compared to the reference model
which is a motionless sphere, hence valid in the non-rotating inertial frame. However, in
the experiment the acoustic sensors are embarked in the rotating container for practical
reasons. The acoustic response we measure is thus in the referential rotating with the
container (which can be different from the fluid mean rotating referential, especially for
non-uniform rotating flows).
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Figure 2.2: Sensitivity kernels Knlm in the (r, θ) meridional plane, left K011 for mode 0S1
1 , right

K133 for mode 1S3
3 .

The measured splitting (in the rotating frame) is then δf rotnlm and its expression is
given by

δf rotnlm = mΩref −m
∫ a

0

∫ π

0
Knlm(r, θ)Ω(r, θ)rdrdθ, (2.63)

with Ωref the angular velocity in the rotating referential. In practice, we will choose
the referential as the frame rotating with the experimental container, which is the frame
attached to the acoustic sensors. Note that the fluid angular velocity Ω(r, θ) should still
be expressed in the inertial frame.

Ledoux coefficients

In general, the fluid angular frequency depends on r and θ. In the specific case where Ω
depends on r only (shellular rotation), we can rewrite Rnlm using the properties of the
fully normalised Legendre polynomials as done with Inlm. Ω(r) lets the integrals in r and
θ to be independent with only Legendre polynomials in the integrals over θ.

Then Rnlm becomes

Rnlm =
∫ a

0
r2ρ0(r)Ω(r)

[
|ξr(r)|2 + |ξh(r)|2 (l(l + 1)− 1)− ξ∗rξh − ξrξ∗h

]
dr, (2.64)

and we can rewrite eq. (2.61) as (eq. (3.355)–(3.357), Aerts et al. (2010))

δfnlm = mβnl

∫ a

0
Knl(r)Ω(r)dr, (2.65)

where the rotational sensitivity kernel from eq. (2.62) takes the simpler (independent from
m) form

Knl = r2ρ0(r)
(
|ξr(r)|2 + l(l + 1)|ξh(r)|2

)∫ a

0
r2ρ0(r)

(
|ξr(r)|2 + l(l + 1)|ξh(r)|2

)
dr
, (2.66)
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and the constant coefficient βnl is

βnl =

∫ a

0
r2ρ0(r)

[
|ξr(r)|2 + |ξh(r)|2 (l(l + 1)− 1)− ξ∗rξh − ξrξ∗h

]
dr∫ a

0
r2ρ0(r)

(
|ξr(r)|2 + l(l + 1)|ξh(r)|2

)
dr

. (2.67)

Note that the sensitivity kernels are normalised so that
∫ a
0 Knl(r)dr = 1. When Ω is

uniform (solid-body rotation), the rotational splitting simply becomes

δfnlm = mβnlΩ. (2.68)

Equivalently, in the frame rotating with the fluid (Ωshell = Ω), it writes

δf rotnlm = −mCnlΩ, (2.69)

where we introduced Cnl the spherical Ledoux coefficient for rotational splitting, named
after Ledoux (1951),

Cnl = 1− βnl =

∫ a

0
r2ρ0(r)

(
ξh(r)2 + 2ξrξh

)
dr∫ a

0
r2ρ0(r)

(
ξr(r)2 + l(l + 1)ξh(r)2

)
dr
. (2.70)

To have a better idea of the extent of splitting for each mode, we consider the spe-
cial case of solid-body rotation through the Ledoux coefficient. As seen in its definition
eq. (2.70), the coefficient depends only on the local displacements ξr and ξh due to the
acoustic pressure waves. By using eq. (2.47) they can be written as:

ξr = djl
dr (knlr) = R′(r) and ξh = jl(knlr)

r
= R(r)/r,

making the n dependence obvious. Note that R(r) is the radial component of the solution
from the wave equation resolution (as given in eq. (2.36)) and that the Ledoux coefficients
are independent from the system’s dimensions, frequencies, and density (if we suppose the
fluid homogeneous). We give their evolution for the first modes in Figure 2.3 and their
values for a chosen collection of modes in Table 2.2. For high-degree (large l) modes, the
Ledoux coefficient is ∝ l−2 so approaches 0 asymptotically, as seen in eq. (2.70).

Note that this rotational splitting exists in the case of a solid-body rotation observed
in the frame rotating with the fluid. This is non-trivial since in that referential the fluid
is effectively immobile. But due to the existence of the Coriolis effects that interact with
the acoustic waves, a clear splitting signature is visible on the acoustic eigenfrequencies.

This is actually an exact mechanical analogue of the Zeeman effect (Zeeman, 1897;
Pekeris et al., 1961), where the presence of an external magnetic field (ana. rotational
field) causes to lift the degeneracy in the energy levels of an atom (ana. frequency of an
acoustic mode) leading to splitting of its spectral lines (Cohen-Tannoudji et al., 2018).

Acoustic splitting in rotating frame

The simple solid-body rotation case, can be used as verification of the change of referentials
between inertial and rotating. Let us remind eq. (2.63)

δf rotnlm = mΩref −m
∫ a

0

∫ π

0
Knlm(r, θ)Ω(r, θ)rdrdθ.
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For solid-body rotation measured in the frame rotating with the fluid, Ωref = Ω, so
eq. (2.63) becomes

δf rotnlm = mΩ
(

1−
∫ a

0

∫ π

0
Knlm(r, θ)rdrdθ

)
= mΩ (1− βnl) , (2.71)

and we retrieve the Ledoux coefficient Cnl = 1− βnl.
Another interesting extreme case is the measure of a still fluid from a rotating frame.

Then Ω(r, θ) = 0, but an acoustic splitting still appear, purely due to Doppler effect, and
takes the form

δf rotnlm = mΩref. (2.72)

For more general velocity profile, it is useful to decompose Ω(r, θ) into Ωref+Ωrot(r, θ),
where we singled out the flow velocity present in the rotating frame. Then eq. (2.63)
becomes

δf rotnlm = mΩref −m
∫ a

0

∫ π

0
Knlm(r, θ)

[
Ωref + Ωrot(r, θ)

]
rdrdθ (2.73)

= mΩrefCnl −m
∫ a

0

∫ π

0
Knlm(r, θ)Ωrot(r, θ)rdrdθ. (2.74)
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Figure 2.3: Ledoux coefficients for the first modes.
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2.2.2 Geometry of the resonator

Azimuthal fluid flows provoke a frequency splitting that lifts the frequency degeneracy
within a nSml multiplet. In the experiment we measure the frequency difference between
the ±m modes. In a spherical geometry, all the nSml modes share the same frequency at
rest, so when rotational flows are added, the spectrum can become crowded, leading to
delicate identification of the different modes. Since each multiplet is 2l + 1 degenerated,
this difficulty is even more pronounced for high l modes. Yet those modes carry important
information for the velocity field retrieval due to their finer spatial sensitivity kernels
Knlm, as seen in eq. (2.62) (more nodes as n and l increase). These modes with higher l
(and n) are necessary to improve the spatial resolution of the flow inversion, so the mode
identification problem is very limiting.

In order to overcome this issue, it is helpful to spread the spectrum by lifting some of
the degeneracy at rest. This can be achieved by breaking the spherical symmetry of the
cavity. Since we are interested in studying zonal flows, it is worthwhile to only partially
break the spherical symmetry and keep the resonator axisymmetric. By doing so, the
frequency degeneracy is partially lifted by the geometry at rest and then further lifted by
rotational flows. Perturbation theory for quasi-spherical geometries have been developed
up to second-order by metrologists (Mehl, 1982, 1986, 2007), as such resonators have been
of major interest for the determination of the universal gas constant R (Moldover et al.,
1988) or the Boltzmann constant (Pitre et al., 2009).

An interesting shape for us is thus the oblate spheroid and we choose its revolution
axis identical to the rotation axis. For this particular geometry, a first-order perturbation
development has also been proposed by seismologists to account for the Earth’s shape
(Dahlen, 1968), and up to second-order by metrologists (Mehl, 2007).

Formalism

We will follow the method presented by Mehl (2007) who used Morse and Feshbach
(1953b)’s formalism to develop a perturbation theory up to second-order on the resonator’s
geometry. Their method is general and applicable to any quasi-spherical shape. Match-
ing the experiment’s shape, we will consider the oblate spheroid only. ZoRo is an oblate
spheroid with equatorial radius req = 20 cm and polar radius rpol = 19 cm. We define its
flattening as

e = (req − rpol)/req = 0.05. (2.75)

Note that the deformation expression is different from Mehl’s formulation, and that he
takes as reference model, the sphere of same volume as the spheroid. Instead of the usual
ellipse equation (

x

req

)2

+
(

y

rpol

)2

= 1, (2.76)

Mehl defines the shape of the aspherical cavity by the evolution of its boundary radius rs
with θ and φ as (Mehl, 1986)

rs = req[1− εF(θ, φ)], (2.77)

where F is a smooth positive function of order 1 and ε is another measure of the flat-
tening, which will serve as the expansion parameter. Note that when F describes the
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ellipse of eq. (2.76), the correspondence between the two flattening parameters e and ε is
straightforward and given by

ε = (req − rpol)/rpol = e req/rpol. (2.78)

The shape function F itself can be expanded in ε as

F = F0 + εF1 +O(ε2). (2.79)

The perturbation method used by Mehl (2007) expands the shape functions into spherical
harmonics. For our oblate spheroid, they correspond to (truncated at second-order),

F0 = 2
3
√
π Y0

0 + 4
3

√
π

5 Y
0
2 ,

F1 = − 4
15
√
π Y0

0 −
22
21

√
π

5 Y
0
2 −

8
35
√
π Y0

4 .

(2.80)

Then the shape description given in eq. (2.81) becomes, from the corrected eq. (53) of
Mehl (2007),

rs = rpol√
1 + (2ε+ ε2) cos2 θ

. (2.81)

Combining eq. (2.79) with eq. (2.81), we get eq. (54) of Mehl (2007),

F = cos2 θ + ε

(1
2 cos2 θ − 3

2 cos4 θ

)
+O(ε2). (2.82)

Following Morse and Feshbach (1953b)’s formalism, we express the geometry pertur-
bation as the difference of squared wavenumbers. The perturbation valid at second-order
is then defined as

[k(2)
nlm]2 − k2

nl

k2
nl

= dk2
nlm

(1)ε+ dk2
nlm

(2)ε2, (2.83)

with dk2
nlm

(i) the ith-order correction for the squared wavenumber, following Mehl (2007).
We will successively consider first- and second-order (in ε) shape perturbation terms

for an oblate spheroid (compared to the sphere of same volume).

First-order ellipticity correction

At first-order (in ε), the radial eigenvalue k(1)
nlm of a nSml mode in an aspherical cavity

defined by (2.81) and (2.79) is given by

[k(1)
nlm]2 − k2

nl

k2
nl

= ε dk2
nlm

(1). (2.84)

At first-order, the geometry correction corresponds to a (first-order) self-coupling term
given by

dk2
nlm

(1) = SC
(1)
nlm = 2

∫ [
z2
nl |Yml |2F0 − |r∇Yml |2F0

]
dΩ

z2
nl − l(l + 1)

, (2.85)

where
∫

dΩ represents the integral over solid angle, and znl = knla is the nth root of j′l
and a the radius of the reference sphere. A term equal to −2〈F0〉 must be added to the
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right hand-side of eq. (2.85) if one uses a reference sphere with the same volume as the
aspherical cavity, as done in Mehl (2007).

The shape function F0(θ, ϕ) can be expanded in spherical harmonics as

F0 =
∑
l0,m0

Fm0
l0
Ym0
l0
, (2.86)

It is then convenient to introduce the following functions:

Amm
′

ll′ (F0) = 2
∑
l0,m0

Fm0
l0

∫
Ym0
l0

[
Ym′
l′

]∗
Yml dΩ, (2.87)

Bmm′
ll′ (F0) = −2

∑
l0,m0

Fm0
l0

∫
Ym0
l0

[
r∇Ym′

l′

]∗
· r∇Yml dΩ. (2.88)

where ∗ stands for the complex conjugate.
Then, we rewrite equation (2.85) as

SC
(1)
nlm = z2

nlA
mm
ll (F0) +Bmm

ll (F0)
z2
nl − l(l + 1)

. (2.89)

These quantities have been individually determined by Mehl (2007), §3.2. In order to
have a systematic determination, we express the solid angle integrals of equations (2.87)
and (2.88) as Gaunt-type integrals, which are related to Wigner 3j symbols through∫

Ym1
l1

(
Ym2
l2

)∗
Ym3
l3

dΩ

= (−1)m1

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 −m2 m3

)
, (2.90)

and∫ (
r∇Ym1

l1

)
·
(
r∇Ym2

l2

)∗
Ym3
l3

dΩ

= −−l1(l1 + 1)− l2(l2 + 1) + l3(l3 + 1)
2

∫
Ym1
l1

(
Ym2
l2

)∗
Ym3
l3

dΩ, (2.91)

with the fully normalised spherical harmonics defined in Dahlen and Tromp (1998), p. 917.

For an oblate spheroid, eq. (2.80) shows that the first-order shape function F0 only
contains Y0

0 and Y0
2 contributions, allowing us to compare with Dahlen (1968)’s result. At

first-order the frequency splitting induced by geometry δfgeom = fnlm − fnl is quadratic
in m, which can be seen by rewritting it as (Dahlen, 1968, 1976)

δfgeom = fnl

(
m2 − l(l + 1)

3

)
γnl e, (2.92)

where γnl is the (first-order) ellipticity coefficient, defined as (Dahlen, 1976)

γnl = −3
2l(l + 1)dknl0

(1), (2.93)
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where we introduced the first-order geometry correction dknlm(1) = 1
2dk

2
nlm

(1) at first-order.
Note that with this formulation, the m2 dependency is explicit and γnl is independent of
m. This implies that dknlm(1) only needs to be evaluated for one m = 0, for example,
considerably reducing the calculations.

Dahlen used a third definition of the spheroidal shape, that is slightly different from
that of Mehl eq. (2.94), given by (Dahlen, 1976)

rs(θ)
[
1− 2

3εP
0
2 (cos θ)

]
= a, (2.94)

and plotted in Figure 2.4 for comparison, but both definitions are equivalent at first-order.
We verified that the first-order geometrical corrections given by Mehl (2007) and

Dahlen (1976) give identical values (provided we take into account their different defini-
tions of reference model and ellipticity). Dahlen (1968) also provides integral expressions
to calculate γnl in the more general situation of Earth’s normal modes.

Figure 2.4: Shape difference between Dahlen (1968) and Mehl (2007) definition. Left overall
quadrant, right difference between the two definitions.

Second-order ellipticity correction

Mehl (2007) obtained the expressions of the second-order geometry corrections, using the
formalism of Morse and Feshbach (1953b).

In contrast to first-order, second-order corrections for a given nSml mode involve cou-
pling with several n′Sm′

l′ modes. Thus, second-order corrections stem from both the second-
order self-coupling term SC

(2)
nlm and the CC(2)

nlm cross-coupling term,

dk2
nlm

(2) = SC
(2)
nlm + CC

(2)
nlm. (2.95)

Expanding F1 and F2
0 in spherical harmonics as in eq. (2.86), the self-coupling second-

order contribution can be written, using functions defined in eqs. (2.87)–(2.88), as

SC
(2)
nlm = z2

nlA
mm
ll (F1−F2

0 )+Bmm
ll (F1)

z2
nl − l(l + 1)

+ z2
nlA

mm
ll (F0)+Bmm

ll (F0)
z2
nl − l(l + 1)

· z
2
nlA

mm
ll (F0)

z2
nl − l(l +1)

. (2.96)
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A term equal to −〈F0〉2 + 2〈F2
0 〉 − 2〈F1〉 − 2〈F0〉SC(1)

nlm must be added to SC(2)
nlm if one

uses a reference sphere with the same volume as the aspherical cavity. The cross-coupling
contribution is

CC
(2)
nlm =

∑
l′m′ |z2

nlA
mm′
ll′ (F0) +Bmm′

ll′ (F0)|2Snll′
z2
nl − l(l + 1)

+ |z
2
nlA

m0
l0 (F0) +Bm0

l0 (F0)|2

2z2
nl

[
z2
nl − l(l + 1)

] , (2.97)

where the Snll′ sums up the contribution of all l′-modes with radial mode number n′ 6= n.
The Slnl′ sums are the only elements that are linked to the radial functions, and they are
evaluated explicitly by Mehl (2007), eqs. (26)–(27), after correcting the sign of the second
term of Sln0, as pointed out by Mehl (2010).

At this order, the equivalence between dk2
nlm

(2) and dknlm(2) is not trivial anymore, so
we instead express the geometrical frequency correction as

f
(2)
nlm

fnl
= k

(2)
nlm

knl
=
(
1 + dk2

nlm
(1)ε+ dk2

nlm
(2)ε2

)1/2
. (2.98)

Application to ZoRo’s geometry

We used the first-order formulation to determine ZoRo’s flattening before construction. We
wanted a deformation big enough to clearly distinguish the different |m| modes’ frequency
at rest and allow precise mode identification. But keeping in mind that we want to measure
the flow velocity, the ellipticity must be moderate enough so the combined splitting from
both geometry and rotation is small enough so that the resulting frequency is far enough
from the neighbour modes, again to allow accurate mode identification. This preliminary
study allowed us to choose the flattening e = 0.05.

Using the formulas given above, we can now have a more precise prediction of the in-
fluence of the geometry on ZoRo’s acoustic spectrum. We computed both orders geometry
corrections for ZoRo’s configuration. We also compared these values with finite-element
calculations done with the commercial software COMSOL. Details on the numerical im-
plementation are given in Appendix B. The finite-element scheme cannot be separated
into first and second-order. In order to compare the coefficients, we fitted the frequencies
for ZoRo with a third-order polynomial for increasing ellipticity ε as

fnlm(ε) = fnl + γ
(1)
nlmε+ γ

(2)
nlmε

2 + γ
(3)
nlmε

3, (2.99)

with ε = e req/rpol. We have checked that the results are unchanged when higher orders
are taken into account in this fit.

We then are able to compare γ(1)
nlm with fnl dk2

nlm
(1)/2 and γ(2)

nlm with

fnl

[1
2
(
dk2

nlm
(2) + 2〈F0〉dk2

nlm
(1)
)
− 1

8
(
dk2

nlm
(1) + 〈F0〉

)2
]
.

First-order ellipticity coefficients γ(1)
nlm from eq. (2.93) agree with the finite-element sim-

ulation with COMSOL. We give the values of γnl for a selection of modes in Table 2.2. For
second-order, we again compare the theoretical correction with the coefficients obtained
with finite-element calculations, and add the values given by Mehl (2007). We compile all
results in Figure 2.5.
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When the mode order increases (larger l), we remark a few important points:

(i) the second-order correction can be very large (even larger than the first-order),
especially for m = 0, as seen in the higher frequency modes in Figure 2.5,

(ii) the second-order correction can take (large) negative values for l = 2, m = 0, which
may take precedence over the first-order and thus reduce or even invert the sign of
the geometrical splitting, causing modes to switch in frequency.
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Figure 2.5: Ellipticity second order γ(2)
nlm corrections for diffusionless acoustic eigenmodes in our

experiment. We reproduced Mehl (2007)’s original results for modes l = 0 (connected by dotted
line) and l = 1 (connected by dashed lines) and compare them with our implementation of the
theory of Mehl (2007) (symbols) and with finite element calculations in oblate spheroids (dots
connected by solid lines for a given m). All results from the three different methods are consistent.

Figure 2.6: Frequency evolution with ellipticity, for the 1S2 multiplet left, and 2S2 right. Solid
colour lines are from COMSOL simulations, dotted lines from Vidal et al. (2020). Dashed line
indicates the chosen ellipticity for the experimental set-up.
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Indeed, combining geometrical corrections from both orders, we observe that modes
1S0

2 and 1S1
2 have the same frequency and that 2S0

2 and 2S1
2 have switched place, which is

consistent with experimental observations.
These two multiplets are the first in frequency to display such behaviour. We focus

on them and look at their frequency evolution with increasing flattening. We compare
the perturbation theory with the finite-element calculations described above and with a
Galerkin spectral decomposition (Vidal et al., 2020) in Figure 2.6. For those modes, we can
see that ZoRo’s flattening is out of the range of validity for first-order perturbation, corre-
sponding to the tangents at e = 0, and that second-order is sufficient to accurately predict
the frequency. In the following, we will take both orders in perturbation as geometrical
correction.

2.2.3 Dissipation in the fluid

In a laboratory experiment, viscous and thermal diffusion takes place in the medium. To
include them in the theoretical predictions, we proceed by perturbation theory from a
diffusionless sphere at rest (Rayleigh, 1894).

In the reference model, we also neglected all dissipation terms. Although they are
expected to be relatively small, it can be useful to take their effects into account. We
inject their effects as perturbations in our problem (Kirchhoff, 1868; Jordan and Keiffer,
2016). We follow the approach of Moldover et al. (1986) to calculate diffusion contribution
on eigenmodes.

Since the diffusionless medium only give the resonance diffusionless (real) frequency,
diffusion is needed to predict their width, relative amplitude and exact location (Trusler,
1991). In air, dissipation of acoustic modes is mostly dominated by viscous friction and
heat diffusion at the boundaries in contact with the enclosing shell. Some minor contri-
butions might come from the bulk viscosity (Moldover et al., 1986).

In the spherical geometry, exact solutions for standing waves are well-known and conve-
niently represented by a complex frequency ∆fnlm = δnlm+ignlm where the imaginary part
gnlm describe the resonance’s half-width. In presence of a rigid shell, effects influencing the
complex frequencies can be linearly superposed (Moldover et al., 1986). Among the signifi-
cant effects, we take into account thermal and viscous boundary ∆fbound = δbound+igbound
and thermal and viscous bulk effects ∆fbulk = igbulk (very small compared to the boundary
contribution for air). Note that the bulk’s contribution only affect the imaginary part of
the frequency, i.e. does not affect the mode’s frequency. Thus, frequencies are the sum of
those correction terms added onto the diffusionless solutions, i.e.

fnlm = fnl + δbound, (2.100a)
gnl = gbound + gbulk, (2.100b)

with fnl the eigen frequencies for the reference model. The equivalent imaginary part
equals 0 as the reference model is diffusionless. Expression for each term is detailed in
Moldover et al. (1986), Part I.

The bulk contribution is Moldover et al. (1986), eq. (39),

gbulk = k2
nl

4πa2

[
(γ − 1)κ+ 4

3ν + νbulk

]
, (2.101)
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where dth =
√
κ/(πfnl) and dvisc =

√
ν/(πfnl) are the thicknesses of the thermal and

viscous boundary layers respectively, as defined in eq. (2.27).
The boundary contribution is given in Moldover et al. (1986), eq. (42), by

δbound + igbound = fnl
(1− i)

2a
(γ − 1) dth + l(l + 1) dvisc/z2

nl

1− l(l + 1)/z2
nl

, (2.102)

Note that boundary effects, both due to thermal and viscous layers, have a non-zero
real part that shift the real part of the frequency, fnl is reduced by δbound.
We give the values of the total contribution gnl for a selection of modes in Table 2.2. Note
that contrary to the real part, gnl is independent of m hence all modes within a multiplet
display a similar peak shape.

2.3 Building of a theoretical synthetic spectra

2.3.1 Superposition of perturbations

In presence of a rigid shell, effects influencing the complex frequencies can be linearly
superposed (Moldover et al., 1986; Trusler, 1991). Thus, frequencies are the sum of those
correction terms added onto the diffusionless solutions, i.e.

fnlm = fnl + δΩ + δgeom + δbound, (2.103a)
gnl = gbound + gbulk, (2.103b)

with fnl = cznl/(2πa), where we take δΩ as first-order rotational correction, δgeom second-
order geometry correction and δbound first-order dissipation correction. The predicted
frequencies taking into account all those effects is plotted in Figure 2.7.

Figure 2.7: Theoretical eigenfrequencies for spheroid of e = 0.05 at rest, with both first and
second-order geometrical corrections obtained with perturbation theory taken into account.
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n l fnl (Hz) Cnl γnl gnl (Hz)
0 1 578.41 0.8573 −0.9144 0.2340
0 2 928.67 0.3869 −0.1505 0.3731
0 3 1254.34 0.2387 −0.0604 0.5135
0 4 1569.06 0.1683 −0.0325 0.6568
0 5 1877.42 0.1278 −0.0204 0.8030
0 6 2181.59 0.1018 −0.0140 0.9519
0 7 2482.73 0.0839 −0.0102 1.1035
0 8 2781.59 0.0709 −0.0078 1.2574
0 9 3078.65 0.0611 −0.0061 1.4136
0 10 3374.25 0.0534 −0.0049 1.5720
0 11 3668.63 0.0473 −0.0041 1.7323
0 12 3961.98 0.0423 −0.0034 1.8946
1 0 1248.59 0.0991 0.0000 0.0956
1 1 1650.66 0.0601 −0.4360 0.1311
1 2 2025.66 0.0424 −0.1013 0.1714
1 3 2385.18 0.0324 −0.0466 0.2145
1 4 2734.38 0.0260 −0.0270 0.2596
1 5 3076.09 0.0216 −0.0176 0.3063
1 6 3412.07 0.0184 −0.0125 0.3543
1 7 3743.49 0.0159 −0.0093 0.4035
1 8 4071.16 0.0140 −0.0072 0.4538
2 0 2146.63 0.0335 0.0000 0.1283
2 1 2558.04 0.0242 −0.4145 0.1519
2 2 2949.29 0.0188 −0.0979 0.1795
2 3 3326.88 0.0152 −0.0455 0.2094
2 4 3694.45 0.0128 −0.0265 0.2411
2 5 4054.30 0.0109 −0.0174 0.2742
3 0 3029.94 0.0168 0.0000 0.1568
3 1 3446.84 0.0132 −0.4079 0.1761
3 2 3847.44 0.0108 −0.0968 0.1984
3 3 4236.01 0.0091 −0.0450 0.2229

Table 2.2: For an air-filled sphere reference model with c = 343.2638 m/s and a = 0.1966 m.
We give for a selection of modes labelled by n the radial mode number and l the angular mode
number: fnl the mode frequency, and coefficients computed by first-order perturbation theory Cnl
the Ledoux coefficient, γnl the ellipticity coefficient, gnl the imaginary part of mode frequency due
to dissipation.
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Under our set of approximations, acoustic resonances are equivalent to damped har-
monic oscillators. Close to their resonant frequencies, such oscillators have a (complex)
frequency response following (at first-order) a Lorentzian function (Trusler, 1991; Morse
and Ingard, 1986)

Anlm(f) =
∣∣∣∣ Anlm
(f − fnlm)− ignl

∣∣∣∣ , (2.104)

with

Anlm = A |Pml (cos θsp)Pml (cos θel) jl(knla) cos [m(φel − φsp)]| , (2.105)

where A is a constant, Pml is the associated Legendre polynomial of degree l and order
m, θsp, φsp and θel, φel the co-latitude and longitude of the source (in the experimental
setup, a speaker), resp. receiver (electret).

Taking into account all the previously described perturbations, we can have a theo-
retical expression of the frequency response for each acoustic eigenmode, by taking the
damping factor as gnl and the peak maximum frequency as fnlm. Then, by adding all mode
contributions, we are able to create a theoretical synthetic acoustic spectrum matching our
experimental configuration. In Figure 2.8 we compare our theoretical synthetic spectrum
(in green) with finite-element calculations (in blue), and find very good agreement again.
All major features: (real) frequency, relative amplitude and width are successfully repro-
duced. Comparison between theoretical and experimental acoustic spectra is discussed in
Chapter 3.

Figure 2.8: Synthetic acoustic spectrum for ZoRo configuration, calculated with perturbation
theory second-order in geometry and first-order in diffusion (in green), and finite-element (in
blue). Spectra are continued from top to bottom panel. Both spectra are normalised to have the
average amplitude over the given frequency window (grey line) equals to 1. The real frequencies
from perturbation theory (with diffusion) are given for comparison across the spectra.
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We can do the same exercise in presence of a background flow. In Figure 2.9 we choose
to add a solid-body rotation of the fluid at 10 Hz, and compute the theoretical spectra
we obtain with perturbation theory (first-order rotation, second-order geometry and first-
order diffusion). As detailed above, at first order, rotational flows only influence the real
part of the eigenfrequency, and the |m| degeneracy is lifted.

Figure 2.9: Synthetic acoustic spectrum for ZoRo configuration with solid-body rotation flow at
10 Hz, calculated with perturbation theory first-order in rotation, second-order in geometry and
first-order in diffusion. Spectrum at rest is given in comparison in dashed lines. The real frequencies
from perturbation theory (with diffusion) are given for comparison across the spectra.

2.3.2 Discussion

Other effects might influence the spheroid’s acoustic spectrum. We list and explore a
few of them that are mentioned in the literature as potentially relevant. They include
uneven shell surface finishing, presence of holes in the shell or a seam between the two
hemispheres. All of those are expected to be negligible for our apparatus (Moldover et al.,
1986).

The finite elasticity of the container may modify significantly the acoustic resonances
when acoustic and elastic eigenfrequencies are close (Moldover et al., 1986). The finite
elasticity of the ZoRo container allows a coupling between acoustic and elastic modes,
modifying their eigenfrequencies (Moldover et al., 1986). Elastic eigenfrequencies of the
ZoRo spheroidal shell container have been estimated with finite-element (COMSOL Mul-
tiphysics) and analytical calculations. In the latter case, the elastic influence on acoustic
eigenfrequencies can be calculated with the thin-shell approximation (Rand and DiMag-
gio, 1967). This allows us to consider spherical and spheroidal containers. In the spherical
geometry, this calculation can also be done without the thin-shell approximation by fol-
lowing Mehl (1985) or Lonzaga et al. (2011), who corrected some typos and gave also the
modification of elastic modes due to the fluid coupling. The two approaches give very
similar results and predict frequency shifts from 0.1 to 1 Hz far from the eigenfrequencies,
but they can reach 10 Hz near acoustic resonances of the container. We have successfully
compared those predictions with finite element calculations.

Further comparison with the experiment is difficult, due to the complex shell geometry
(sensors holes, shafts, equatorial bulge, etc.) and the influence of the frame supporting
the spheroid. Nevertheless, finite-element calculations confirm that these complexities do
not modify the order of magnitude of elastic effects. Near acoustic resonances, elastic
resonances can thus be one of the cause to the shifts left in the experimental spectrum
that are unexplained by the finite-element computations. It can be noted that the sign of
acoustic frequency shifts due to the shell elasticity is not uniform (it can either lower or
raise acoustic frequencies). Yet, since the shifts are very small compared to the flattening
effect, no mode switching should occur, so it should not impede mode identification.
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Coupling between the elastic shell and the outer surrounding fluid is expected to also
possibly have an influence on the complex eigenfrequency, i.e. both on the frequency
and on the damping rate of modes. Theoretical calculations on the modes l = 0 can be
performed (Moldover et al., 1986), confirming finite-element predictions. This suggests
that this effect is very small in ZoRo. Sound radiation in the surrounding air can thus be
discarded in the interpretation of the ZoRo experimental results.

Key points

We aim to use acoustic resonances to measure flow velocity within our experimen-
tal apparatus. In order to interpret the acoustic signatures, we rely on theoretical
developments to understand the influence of various physical effects on the acoustic
spectra without flows (at rest).

To do that we choose as reference model the diffusionless sphere at rest, where
analytical solutions are simple, and we use perturbation theory to accommodate for
the remaining effects that are expected to be at play in the experiment.

We add the spheroidal geometry and diffusion (viscous and thermal) corrections
and are able to predict the complex eigenfrequencies of our experimental resonator.

Using the same method, we are able to predict the acoustic signature of ax-
isymmetric rotational flows within the cavity. This provides the tools to tackle the
inverse problem, which consists, in our case, in retrieving the flow field with acoustic
measurements.

Rotational splitting

δωnlm = m

∫ π

0

∫ a

0
Knlm(r, θ)Ω(r, θ)rdrdθ

or in the rotating frame

δf rotnlm = mΩref −m
∫ a

0

∫ π

0
Knlm(r, θ)

[
Ωref + Ωrot(r, θ)

]
rdrdθ

= mΩrefCnl −m
∫ a

0

∫ π

0
Knlm(r, θ)Ωrot(r, θ)rdrdθ.
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3
Acoustic splitting measurements

in the ZoRo experiment

Ce n’est qu’en essayant continuellement que l’on finit par réussir. Autrement
dit : plus ça rate, plus on a de chances que ça marche.

- Jacques Rouxel, Les Shadocks

Physical properties of resonators control their resonances, hence their acoustic spectra.
For a given resonator, a thorough understanding of those spectra allows to retrieve the
physical quantity of interest, such as internal flow velocity. We aim to measure experi-
mental acoustic signatures of rotational flows. In order to retrieve zonal flows, we built a
spheroidal resonator called Zonal flows in Rotating fluids (ZoRo).

This chapter contains in §3.1 a full description of the experimental set-up, as well as a
typical protocol used to measure the acoustic response of the apparatus. Then in §3.2, we
present the data processing used to obtain useful acoustic spectra, including the crucial
step of mode identification. Starting from the theoretical predictions, we are able increase
the accuracy of this identification by taking advantage of the symmetry properties of the
pressure field. From fully identified spectra, we then extract the frequency splittings due
to presence of flows for a number of modes. To do this we developed two complementary
fit procedures.

We are then able to extract a number of frequency splittings out of an experimental
spectrum at rest. Finally in §3.3, we apply our procedure to solid-body rotation (with-
out internal flows) and show that the experiment is in very good agreement with both
analytical and numerical predictions from Chapter 2.

Prior to this experiment, we built a spherical prototype called ZoRo1 that helped us
in the design and development of the data analysis. We briefly present some of the results
we obtained in the ZoRo1 prototype in Appendix D.

53
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3.1 Experimental setup

3.1.1 Presentation of ZoRo

Spheroidal container

The experimental set-up consist of a 1 cm thick container made with aluminium based
alloy (Thyssenkrupp by Constellium cast, MecAlu+ 7000 series) enclosing an axisymmetric
oblate spheroidal cavity filled with gas of equatorial radius req = 20 cm, and polar radius
rpol = 19 cm (Figure 3.1). The ellipticity is defined as e = (req − rpol)/req = 0.05.
Dimensions of the shell are ensured up to 0.1 mm. In order to attain such precision, special
care has been given during the fabrication process, especially to the junction plane between
the two hemispheres and the coaxiality (both between the hemispheres and the shafts)
which have been identified in the literature as potential defaults (Mehl, 1986). Static and
dynamic balancing with the shell rotating up to fΩ = Ω/(2π) = 70 Hz in the experimental
conditions, revealed less than 0.2 g of unbalanced mass for a total rotating spheroid mass
of 32.5 kg (balancings were done by a mandated expert using accelerometers).

Air-tightness is ensured by custom made plastic gaskets on each sensor hole and at
the equatorial seam of the shell. Additional holes provided for future temperature and
pressure sensors, are plugged closed for acoustic campaigns. The spheroidal shell can
accommodate overpressure up to 4 times the atmospheric pressure P0 and under-pressure
down to P0/2. In the following, the cavity is filled with air at atmospheric pressure P0.

Rotation and motor

The spheroid’s revolution axis is mounted on the shaft of an electric motor (ref. Kollmorgen
AKM73Q). In order to minimize the motor vibrations, it is mounted on a frame distinct
from the frame supporting the acoustic cavity. The spheroid’s shaft is coupled with the
motor through a vibration-reducing jaw-type coupler (ref. ROTEX SH38 from KTR).
In this configuration, the motor can rotate up to 50 Hz, or 3000 revolutions per minute
(rpm). We successfully rotated the apparatus up to 70 Hz (without instrumentation).

The motor is controlled through a compact Remote Input Output controller (ref. cRIO-
9064 from National Instruments), allowing up to one operation every 62 µs. The rotation
rate is independently measured with a magnetic revolution counter, 3 magnets are embed-
ded in the shell’s equatorial bulge, and are detected in the non-rotating frame. Thanks
to this, we verified that the rotation rate displays less than 1% of variation from the
instructed value (mainly oscillations around the instructed value).

Acoustic instrumentation

At T = 20◦C and atmospheric pressure, the cavity’s fundamental mode is around 578 Hz,
which is in the audible range. This allows us to use standard audio material. Acous-
tic pressure is measured by electrets (ref. Projects Unlimited TOM-1545P-R) connected
to a mixing table (ref. TASCAM US-16x08). Acoustic waves are produced by 36 mm-
diameter audio speakers with working range 400-6000 Hz (ref. Multicomp MCKP3648SP1-
4758) connected to a sound card (ref. Asus TeK, Xonar DGX), through 20 W amplifiers
(ref. LEPY LP-808), see Figure 3.2, right panel, for a schematic of the acquisition chain.
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Figure 3.1: Schematic photo of the experimental apparatus mounted on its working frame (photo
by Max Solazzo).

For cleaner signals, acoustic resonances are excited by chirps sweeping over the frequencies
of interest. Both source and data files are sampled at 44.1 kHz and written in 16-bits in
the uncompressed audio Waveform Audio File Format (WAVE), corresponding to standard
CD audio quality.

The instrumentation is mounted in through holes in the aluminium shell to be in direct
contact with the gas, and have been fixed to be as less protruding as possible (less than
1 mm). Ideally their protrusion should be kept within the viscous Ekman layer in order
to have as little influence on the internal flow as possible.

The apparatus can accommodate up to four speakers and fourteen electrets, half on
each hemisphere, at respectively ±45◦ and ±30◦ latitude (Figure 3.2). All speakers are
on the same meridional plane (at 0◦ and 180◦), electrets are evenly spaced on their lati-
tude (every 51.4◦); lower and upper hemispheres are strictly symmetric (with respect to
the equator). The exact sensor positions are detailed in the technical drawings used to
manufacture ZoRo, chosen excerpts are reproduced in Appendix C.

The instrumentation is embarked and rotates with the shell (see embarked system in
Figure 3.1). Electric signals (power and data) are transmitted from the rotating to the
laboratory referential through two slip rings with gold-gold contacts (ref. PSR-HSC-36
and ref. PSRT-38H-24 from Panlink), located above and under the main frame. To avoid
contamination, acoustics acquisition (electrets’ signals) pass through the top slip-ring and
excitation (speakers’ signals) pass through the bottom one.
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Figure 3.2: Left: Schematic of the experimental set-up ZoRo, with acoustic instrumentation:
electrets (green) and speakers (blue). Right: Function diagram of acoustic data acquisition chain
with photo of speaker and electret.

3.1.2 Experimental protocol

Acoustic source generation

In order to increase the signal over noise ratio, we excite the resonances of interest with
the speakers. We can play up to four different soundtracks, one on each speaker, which
allows us to excite up to four resonances at the same time, assuming that the signals are
linearly superposed.

In practice we play linear chirps centered on the predicted frequency of the mode
we want to measure (obtained with analytical computations from Chapter 2). Chirps
are signals whose frequency changes, either increasing or decreasing, with time. In this
sense it is a special case of frequency modulation (where frequencies can go up and down
successively). The signal x(t) is defined on a time-dependent phase ψ as x(t) = sin(ψ(t)).
Thus the instantaneous frequency f(t) is defined as the phase rate

f(t) = 1
2π

dψ(t)
dt . (3.1)

We use the simple linear chirp, where frequency changes linearly with time, going from
f1 to f2 during a time T as

f(t) = f1 + f2 − f1
T

t. (3.2)
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In this case, the signal takes the form

x(t) = sin
(
ψ0 + 2π

(
f0t+ f2 − f1

2T t2
))

, (3.3)

with ψ0 = ψ(t = 0), the initial phase.
For time-dependent flows, we need to find a compromise between the time of the chirp

T , to maximize the sweep time on the resonance frequency, and the typical time-scale of
the flow. A typical source sweeps over a 40 Hz window centred on the estimated frequencies
at rest f0 = (f2 − f1)/2 with a sweep time of 1 s (see skematic of the source frequency
played by the speaker in Figure 3.3).

Figure 3.3: Schematic of frequency over time of a typical sound source played by the speakers.
Succession of several chirps centred on the predicted frequency of interest.

Sound speed variations

Resonance eigenfrequencies are directly related to the sound speed (as seen in eq. (2.39))
which in turn is sensitive to the gas thermodynamic properties. Eigenfrequencies are
mainly dependent on the fluid temperature and humidity (Zuckerwar, 1996) that can
drastically change from one experimental run to another. Long term variations are typ-
ically due to season change and weather. Short term variations (within an hour) can be
attributed to the viscous or vibratory heating and cooling caused by the rotation.

Dependence of the sound speed with temperature can be expressed for dry air, com-
bining eq. (2.14) and Diu et al. (1989), through the empirical relation

c = 331.3×

√
T (K)
273.15 m/s. (3.4)

The system is highly sensitive to temperature, as a difference of 1 K causes a shift of
frequency about 1 Hz of the fundamental mode. The same temperature difference causes
increasingly large frequency shifts for higher frequency modes.

Due to this sensitivity, the source we play may easily miss the resonances if the fre-
quency shift causes the eigenfrequency to be outside our excitation window. It is chal-
lenging to obtain high precision measurements in both temperature and humidity, hence
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accurate prediction of the resonance frequencies are out of reach in our experiment. In
order to address this issue, we take advantage of the linear relation between eigenfrequency
and the sound speed. A single eigenfrequency is enough to determine all mode frequencies
by determining the apparent sound speed of the run (Koulakis et al., 2018).

In order to accurately tune the experiment, we choose a non-degenerate mode as
reference (for example 2S0, around 2170 Hz) and we play a larger range frequency chirp
to make sure the mode will be excited. Thanks to this mode frequency reference, we are
able to deduce any eigenmode frequency by applying a homothetic transformation and
generate the ad hoc sources. The ad hoc frequencies are simply related to a reference by
fad hoc = fref × f ref200 /f

mes
200 , where the reference frequency is arbitrary, typically taken as

fnlm obtained from theoretical calculations. In practice, a tuning (verification of the shift
in frequency) is needed every hour or more often depending on the mechanical forcings
applied to the spheroid.

Data acquisition

We can acquire up to 8 acoustic signals simultaneously. We make use of this multiple
measurements to probe the pressure field at several locations. This feature is of great
interest to separate modes that are close in frequency, as detailed later in 3.2.2.

Since we do not amplify or pre-amplify our acquisition signal, the calibration of the
sound volume is done with the source output. The resonances can reach amplitudes several
order of magnitude above the source level. Thus the calibration is done manually, aiming
to use the dynamic range as much as possible without saturating the electrets.

In addition to the acoustic response of ZoRo, the data files also contain information on
synchronisation with the source and with the rotation. We take advantage of the internal
synchronisation system of the mixing table, and directly wire both the source and the
revolution counter on separated acoustic inputs.

At the end, the acquired data file presents 10 channels in WAVE format, channels 1–8
are the acoustic data signals from the spheroid, channel 9 gives the start of each chirp
played by the source and channel 10 gives the rotation frequency (divided by 3, the number
of magnets we embedded on ZoRo as counters).

3.2 Data analysis

3.2.1 Spectral domain Fourier transform

We are interested in the acoustic spectra of the resonating cavity. Starting from the tem-
poral signal, we use a Fourier transform to represent our acoustic signal in the frequency
domain. For a measured data, the signal is discretely sampled (at 44.1 kHz in our case).
The discrete Fourier transform is defined as

x̂k =
N−1∑
j=0

exp−2iπkj/N xj, (3.5)

where xj are discrete values taken by the temporal signal, N the number of sampled points
and x̂k the discrete spectral response in the Fourier domain.

Here some subtleties are at play to avoid aliasing when doing so. It is useful to recall
that the source we play, hence the signal we retrieve, is mostly a linear chirp. It is quite
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intuitive to see that in the frequency domain, frequencies between f0 and f1 will contribute
whereas all the others do not, which leads to a hat-like spectrum plus Gibbs oscillations.
Analytic formulation is not simple and involves the so-called Fresnel integrals

C(X) =
∫ X

0
cos

(
πy2

2

)
dy and S(X) =

∫ X

0
sin
(
πy2

2

)
dy, (3.6)

where the Gibbs oscillation rate is proportional to T (f2 − f1).
Analytic expression of the Fourier transform of a linear chirp is given by

x̂k =
√

T

2(f2 − f1) exp
(
−i(k− f0)2 T

4π(f2 − f1)

)
[C(X+) + iS(X+) + C(X−) + iS(X−)] ,

(3.7)
with

X± =
√
πT (f2 − f1)

(
1± k− 2πf0

π(f2 − f1)

)
.

For a time-dependent flow, we are interested in exciting a frequency over and over in
order to follow its time dependency. The signal we use in our source is then a succession
of M times the same chirp. The Fourier transform of such a signal is tricky since the
same frequency is met M times but with possibly different phases which leads to aliasing
the signal at the chirp duration rate. To avoid this effect, we need all frequencies to have
the same phase function ψ(t) throughout all iterations of chirps, in other words, each
frequency should be able to be continuously completed between two chirps.

The frequency met at a given time 0 < ti < T during the linear chirp eq. (3.8)
is associated with a phase ψi(t) written in eq. (3.9), which is obtained by integrating
eq. (3.1).

fi = f1 + f2 − f1
T

ti, (3.8)

ψi(t) = ψ0 − 2πf2 − f1
2T t2i + 2πt

(
f1 + f2 − f1

T
ti

)
. (3.9)

The non-aliasing condition can be written as a phase equality between the chirp at
time ti+mT and the sinusoidal signal at constant frequency fi, leading to eq. (3.10). Since
at each chirp iteration, the frequency fi of interest will be met at the same phase ψi(ti),
it is equivalent to say that an entire number of period M of the constant signal should be
able to fit in any of chirp duration period T , which gives eq. (3.11)

ψi(t = ti + mT ) = ψi(ti) + 2πn, (3.10)
m = (f0T + (f1 − f0)ti) n. (3.11)

In particular m must be an integer. Let us verify if it can be satisfied through an entire
chirp. In practice we sample the data discretely at fsample = 44.1 kHz. Since the frequency
is linearly changing due to the chirp, each data point can be associated with its own specific
frequency, and we want eq. (3.11) to be verified for each of them, i.e. for each ti = T/i
with i from 1 to fsample. It is clear that eq. (3.11) is only satisfied for specific values of ti,
and in general not for all of them.

That implies that any succession of chirps will be aliased. To avoid this problem, we
analyse each chirp separately. It is therefore needed to have precise time of chirp’s starts
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to be able to separate them without mixing two iterations, and thus mixing the phases
from different chirps.

We show in Figure 3.4 an acoustic spectrum obtained for ZoRo at rest for one electret,
with a continuous linear chirp going from 400 to 5000 Hz in 90 s. The resonances are
clearly visible, with their amplitude well above the noise and source level.

Figure 3.4: Experimental acoustic spectrum of ZoRo for the lowest resonances.

We remark that some “anti-peaks” appear clearly (in log-scale), with a sound pressure
level much lower than even the mean noise, around 1400 Hz for example. These can be
interpreted as frequencies that have their nodes close to the sensor position. Indeed, when
we take the average over longitude, taking all spectra from the 7 electrets of one hemi-
sphere, the anti-peaks disappear and leave a much smoother spectrum. In the following,
the spectra we show are averaged over the longitudes unless mentioned otherwise.

Note that when the apparatus rotates, the data can become noisier. A solution to
still exploit the noisier data is to stack several spectra, using the fact that the signal is
coherent from a run to another while noise is random. We sometimes apply a low-pass
filter, in which case the spectrum is used for visualisation purposes only.

3.2.2 Mode identification at rest

We are interested in the relation between the eigenfrequencies and spatial structure, as
detailed in Chapter 2. In order to link the two, it is essential to identify the acoustic
peaks, meaning to uniquely attribute a (n, l,m) triplet to each peak. Mode identification
is also crucial to accurately measure the splitting of a nS±ml doublet. A wrong label might
lead us to pair together different modes or even from different multiplets. This creates
false information that would severely impair the inversion problem by either imposing
contradictory splittings or that would lead to non-physical flows. We focus here on the
spectra obtained from ZoRo at rest.

Continuity from sphere

At leading order, ZoRo is close to a sphere, so we expect its eigenfrequencies to be close to
those of a sphere of similar dimensions, as detailed in Chapter 2. Following Mehl (2007),
we choose to consider the sphere of same volume as our spheroid (radius a = 0.1966 m),
and we reported the predicted eigenfrequencies fnl of a sphere obtained with the Helmholtz
equation eq. (2.30), along with their labels nSl in Figure 3.5 (dashed lines). As discussed
above, the frequencies can shift due to the conditions in the lab at the time of the run.
In this case, we calculated the spherical eigenfrequencies with the apparent sound speed
deduced using the experimental frequency of the reference mode 2S0

0 .
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Figure 3.5: Spectrum of ZoRo, averaged over all electrets of the northern hemisphere (longitudinal
average). Theoretical predictions for the sphere of same volume is plotted for comparison with
their labels (vertical lines).

We first observe that all peaks are close to the resonances of the reference model, con-
firming the use of a perturbation method for geometry. Around the spherical predictions
fnl, there are groups of peaks that we label with the spherical nSl multiplet. They cor-
respond to degeneracy lifting of the resonances. The lowest frequency modes are clearly
separated. We note that those groups contain l+ 1 peaks confirming that the degeneracy
is only partially lifted, as predicted by the geometrical perturbation theory.

Qualitatively, the frequency splitting can be compared to the difference between eigen-
frequencies of spheres of radius req and rpol. For example, the fundamental mode 0S1 of
a sphere of radius req is predicted at 578 Hz and at 604 Hz for a radius rpol, agreeing, at
lowest order, with the splitting observed in our spheroid between the two peaks near 0S1.

We also use the synthetic spectra to further identify the |m| peaks within a multiplet.
In Figure 3.6, we show the experimental spectrum (in black) alongside with both the
analytical (green) and finite-element predictions (blue), reproduced from Figure 2.8. To
compare with the synthetic spectra, we apply the homothetic transformation described in
§3.1.2 on the experimental spectrum to match the theoretical value of 2S0

0 frequency (i.e.
2146 Hz, see Table 2.2).

This comparison shows that all major features are reproduced by the perturbation
theory: both frequencies (real part), relative amplitude of peaks and their shape (imagi-
nary part) are very similar. This further confirms that the perturbation theory is a valid
approach for ZoRo, both for geometry and dissipation. Deviations between synthetic and
experimental spectra are visible in some narrow frequency range (e.g. around 1600 Hz)
where some experimental peaks seem to be missing. The dissipation in the experiment
is expected to be higher than from the values used in the theory, where we neglected air
humidity and other effects such as the container elasticity. This might cause some peaks
to be hidden in the experimental spectrum by the neighbouring peaks.

Another helpful observation is the difference in the frequency imaginary part, hence
half-width of peaks. Modes with n = 0 are more diffusive than the overtones n > 0 (Mehl,
2007), and this is exacerbated if the mode is non-degenerate (l = 0). The difference is
clearly visible in frequency range where two multiplets with different n overlap, around
2750 Hz the transition frequencies between 1S4 and 0S8, or around 2150 Hz, where 2S0 is
surrounded by the high m modes of the 0S6 multiplet.
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Figure 3.6: Acoustic spectra for ZoRo configuration at rest obtained with perturbation theory
(top), experimental data (middle) and finite-element calculations (bottom). Mode frequencies and
labels from the theory are given across the three spectra for comparison (vertical lines, different
line types are used for n, different colours for m). Experimental spectrum is averaged over all
electrets of one hemisphere. For each spectrum, amplitude is normalised by its mean on the given
frequency window.

This allows to identify experimental peak when the spectrum is sparse. However this
method reaches its limit for higher l multiplets and high frequency (in our configuration
around 2800 Hz), where eigenmodes are close. In those cases, the modes interact with
each other (mountain range instead of peaks) leading to uncertainties in the identification.

Usage of symmetry

To help identify the modes, we use symmetry properties of the pressure field, in particular
with respect to the equator, thanks to the symmetrical disposition of both the acoustic
sources and sensors.

Since the pressure field at the resonator’s surface is mapped on the spherical harmonics
Yml , as shown in eq. (2.36), it displays the same symmetries. Acoustic modes with even
l−m are symmetric with respect to the equator; those with odd l−m are anti-symmetric
(Morse and Feshbach, 1953a). Acoustic sources impose both wave phase and the positions
of the anti-nodes, so playing several speakers at the same time strengthens modes with
the same symmetries as the source pattern, whereas modes with incompatible symmetries
are extinguished, or, in practice, strongly weakened. To amplify this effect, acoustic
response of the resonator is systematically measured with at least a pair of equatorially
symmetric electrets and we make use of the symmetry properties in the data analysis
as well. Measured signals are summed, or subtracted, to match the source pattern and
further attenuate the unwanted modes.

In Figure 3.7, we show an example of symmetry usage on mode 2S2 (around 2940 Hz).
To obtain these spectra two speakers symmetric with respect to the equator simultaneously
play first in-phase then in anti-phase (phase opposition). Acoustic response is measured
with four pairs of equatorially symmetric electrets. Measured time series of the in-phase
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Figure 3.7: Left: Experimental acoustic spectra centered on the 2S2 multiplet. Two speakers
symmetric with respect to the equator simultaneously play, first in-phase (purple) then in phase
opposition (blue). Right: sketch of the surface pressure field for the corresponding modes modes.
Symmetric positioning of the electrets allows to further extinguish modes with sum and subtrac-
tion of temporal signals. The sum strengthens the symmetric modes with even |m| = 0, 2 and
subtraction strengthens the odd |m| = 1.

speakers are summed for each pair. We compute the frequency spectra which are then
averaged, shown in figure 3.7 (purple). We do the equivalent for phase opposition sources
signal with subtraction of each pair, shown in figure 3.7 (blue). The summed spectra of
the in-phase source (purple) enhance the even |m| (0 and 2), subtracted spectra of phase
opposition source (blue) enhance the odd |m| = 1.

By successively extinguishing even and odd l−m modes, we are able to identify, each
peak of the experimental spectrum up to 3500 Hz. Symmetry provides a confirmation
on the coarse identification from comparison with the synthetic spectra. And at higher
frequency it provides complementary information by identifying the different |m| within a
multiplet.

Figure 3.8: Experimental acoustic spectrum at rest for the lowest modes, averaged over all electrets
of one latitude. The spectrum is continued from top to bottom frame. Acoustic resonances are
excited by speakers with a continuous linear chirp from 500 to 3500 Hz. Groups of peaks can be
labelled with nSl according to theoretical prediction of a sphere of same volume (labels on brackets).
Using the symmetry technique developed in III B, peaks can be systematically identified by their
m numbers (dashed lines) up to 2500 Hz. Above this threshold, we can only identify some modes
among those that are not too close.
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With this we can further compare measured with synthetic spectra on Figure 3.6.
We observe that the synthetic spectra accurately reproduces the experimental acoustic
behaviour, including the mode switching predicted between 2S0

2 and 2S1
2 . This also com-

forts us in the understanding that second-order correction in geometry is indeed needed at
ZoRo’s ellipticity. Focusing on the 2S2 multiplet, we compare more precisely the predicted
and measured frequency in Figure 3.9 and show that second-order is sufficient.
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Figure 3.9: Frequency evolution of 2Sm2 modes with e, req being kept constant, given by finite-
element simulations (circles) and global polynomial computations (Vidal et al., 2020) (dashed
lines). Both agree with experimental data (crosses) at ZoRo ellipticity e = 0.05 (black line).

3.2.3 Splitting extraction

Having identified the peaks in the experimental spectrum, we are now interested in ex-
tracting splitting between ±m modes of the same doublet, in order to retrieve the velocity
field. We have developed two routines of splitting extraction, both are semi-manual fit of
the measured acoustic spectrum to retrieve the local maxima.

They heavily rely on the identification described above, as the fits run in a given
narrow window, determined for each mode based on their identification. Furthermore, the
two fits both require initial guess of the peak frequency, that we choose close to the right
modes, according to mode identification. In both case, we apply the fits to the separated
spectra (either symmetric or anti-symmetric modes only), to minimize the fitting errors.
Note that we measure the frequency gap between the two ±m modes, which corresponds
to |2δfnlm|, twice the splitting from eq. (2.69).

The first routine is a linear fit starting from the theoretical synthetic spectra, and
the second routine is a non-linear fit starting from local maxima. We show examples on
splitting extraction on both solid-body rotation and internal flows data.

Linear fit from theoretical spectra

We fit the observed ±m pairs of spectral peaks with theoretical synthetic spectra, carrying
a grid search on the four following parameters: the frequency splitting between the two
peaks, their mean frequency, their width, and their amplitude, see eq. (2.104)–(2.105).
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For each combination of parameters, we evaluate the misfit as the root-mean square (rms)
difference between the observed and theoretical synthetic spectra (in log scale) in the
frequency window of the mode. The neighbouring modes contribution is taken into account
as background. We obtain the best frequency splitting from the combination yielding the
smallest misfit. The error is estimated from the minimum and maximum splittings for
which some parameter combinations produce a misfit of typically 1.05 times the minimum
misfit.

In Figure 3.10 we show examples of the fits of acoustic spectra performed for obtaining
rotational splittings for a solid-body rotation of 10 Hz.

Figure 3.10: Experimental spectra (blue) for a selection of equatorially-symmetric acoustic modes
for fΩ = 10 Hz, and synthetic spectra built with the method described in the main text. The thick
magenta line is the best fit provided by the grid search, yielding the rotational splitting. The thin
“min” and “max” lines are the spectra yielding the min and max acceptable splitting. The “ori”
green spectra is built with the “nominal” parameters, used as a starting point of the grid search.

Note that this fit implicitly imposes that: the two ±m peaks are supposed symmet-
ric/identical, no filtering is required (all signal is taken as part of the Lorentzian), and the
Lorentzian function implies that the modes are independent and the window frequency
is narrow. This method is useful for known flows allowing us to compute the theoretical
synthetic spectra. If the measured splitting deviates greatly from the synthetic spec-
trum (eg unknown flow far from the assumption), the initial guess is manually created by
hand-picking the peak maxima and creating a new ad hoc synthetic spectrum with two
Lorentzian function (half-width is kept the same).
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Non-linear fit using local maxima

We developed a second complementary mode extraction routine. This time the peak form
is taken as the general solution of a damped harmonic oscillator, as done by Mehl (1978),
(note that close to f0, this expression is equivalent to the previously introduced Lorentzian
function)

x(f) = (a1 + ia2)f
2gnlf0 + i(f2 + g2

nl − f2
0 )
. (3.12)

Its real part, corresponding to signal amplitude, is then

A0 = |x(f)| =

√
a2

1 + a2
2 f√

(f2 − f2
0 + g2

nl)2 + 4g2
nlf

2
0

, (3.13)

with f0 the frequency of the peak maximum, gnl the attenuation, a1, a2 amplitude param-
eters.

We fit the data with a sum of two independent functions, and add a complex linear
background as b1 + ib2 + (c1 + ic2)f , with b1, b2, c1, c2 parameters to account for the
background noise. So instead of the 4 parameters from the previous fit, we now have to find
12 unknowns (we need to fit 2 Lorentzians, one for each mode, the background parameters
are assumed the same for both). To find them, we use the Python scipy.optimize.curve_fit
function. It consists of a non-linear least-square fit based on the MINPACK Fortran library
(Cowell, 1984). We choose to use the Trust Region Reflective algorithm method (Byrd
et al., 1988).

This time the initial guess is taken as the local maxima, found by a simple threshold
condition (blue circles). Again, this method is semi-manual in the sense that when the
data are noisy, initial guesses are given by hand. In Figure 3.11 we show examples of
this fit for same modes and same data as Figure 3.10. We consider that the fit fails if
the covariance is more than 1 Hz, which corresponds to a reasonable error in the peak
detection, in which case we take the local maxima as initial guess.

Note that this time the spectrum is fitted in linear scale (log scale in the first fit pro-
cedure), the noise is accounted for with separated parameters allowing constant noise and
linear noise evolution with frequency, the fit being non-linear it is very sensitive to the
initial guess. We do not impose symmetry between the two ±m modes anymore.

Data analysis steps:

1. sum/difference of temporal signal to separate symmetric and anti-symmetric modes,

2. Fourier transform of each part of the signal to obtain acoustic spectra,

3. apply homothetic transformation to match a chosen reference mode frequency in all
spectra (by default the reference is 2S0

0 ),

4. identify modes with symmetry and comparison with synthetics,

5. define frequency ranges for each doublet nS±ml of interest,

6. apply either of the fits on the small frequency windows to extract the splitting.
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Figure 3.11: Example of non-linear fit procedure for a non-trivial internal flow (centrifugal flow
driven by open holes at fΩ = 10 Hz, see Chapter 5 for more details on this flow). Experimental
data in colour lines (purple for symmetric modes, blue for anti-symmetric modes), non-linear fit
in dashed black lines, circles gives the local maximum detection. When the signal is noisy, local
maximum detection is not helpful anymore.

3.3 Application to solid-body rotation

We consider the case of solid-body rotation (no flows) and apply the procedures we devel-
oped to treat the data, compute the spectra and extract splittings. To obtain these flows,
we impose a constant rotation rate to the container and we wait for 2 minutes, a long time
compared to the spin-up time (∼ 5 s at 10 Hz), such that the fluid is uniformly rotating
with the container (Greenspan, 1968). Then, the fluid is at rest in the frame rotating with
the container. For more details on the spin-up flows see §4.3.1.

Using the protocol developed above to acquire and identify acoustic modes at rest,
we measure the acoustic response in presence of rotation. The top panel of Figure 3.12
shows typical splittings due to solid-body rotations for the 0S2 multiplet. Focusing first
on the original peak (i.e. with no rotation) around 910 Hz, we observe that it splits into
two peaks about half-height on both sides of the original peak. We note that the splitting
increases with the rotation rate.

For certain resonances, we remark that the spectrum can display less peaks than pre-
dicted by the perturbation theory, the degeneracy should be completely lifted, yielding
2l + 1 peaks. When the frequencies of peaks are too close, this may lead to an apparent
single peak (accidental degeneracy), as shown near 930 Hz at the rotation rate 20 Hz (Fig-
ure 3.12, top, blue curve). This is confirmed by the fact that when modes are degenerated
in frequency (accidentally or from geometrical symmetry), their amplitudes are summed
up. The blue peak around 930 Hz is indeed higher than expected (from continuity from
previous and following rotation rates). This is also visible near 910 Hz where the modes
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are degenerated at rest (Figure 3.12 top, red curve), and the peak’s amplitude is halved
when the modes are separated by rotation (Figure 3.12 top, orange curve). Symmetry
separation is also useful to confirm each mode identification after rotation is added. We
use the symmetry method detailed above to separate odd and even m modes. In the
bottom panel of Figure 3.12 we separate the 0S2 multiplet by symmetry at fΩ = 25 Hz.
The vertical lines show the frequencies given by the perturbative approach taking into
account the first-order rotation effects. This allows to identify the mode 0S−2

2 at 930 Hz
and the mode 0S+1

2 at 926 Hz, and shows that a large rotation rate can cause a frequency
switch as seen for these two modes.This lifts the ambiguity that could have arisen from a
naive reading of the bottom purple curve (fΩ = 25 Hz) in the top panel. This enforces the
need to have robust mode identification technique in order to retrieve accurate splitting
measurement. We can also identify the m = 0 mode around 940 Hz by the fact that it is
the only mode not influenced by rotation at first-order, as shown by eq. (2.69).

For a given nSml mode, perturbation theory predicts a linear increase of the rotational
splitting with the rotation rate. To verify this prediction and its validity domain, we ex-
tract splittings for a collection of non-axisymmetric eigenmodes over our range of working
rotation rates (from rest to 30 Hz).
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Figure 3.12: Experimental spectra centred on 0S2. Top: for solid body rotation at increasing
rotation rates from rest (top, red) to fΩ = 25 Hz (bottom, violet) with 5 Hz increment. Spectra
are filtered (low-pass) and vertically shifted for visualisation purposes. Bottom: for solid body
rotation at fΩ = 25 Hz separated by symmetry, m = ±1 (blue, subtracted) and m = 0, ±2
(purple, summed). The dashed lines shows the perturbation theory predictions.
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Figure 3.13: Rotational splittings of chosen modes for increasing rotation rates. Experimental
(circles) and finite element (blue crosses) splittings are measured by the difference between the
±m peak frequencies. Theoretical linear splittings (lines) are given by |2δΩ|, see equation (2.69).
For theoretical splittings, equatorially symmetric modes are shown in red solid lines and anti-
symmetric modes in black dashed line; we use the same choice of colours for the experimental
splittings.
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Figure 3.14: Comparison between the theoretical Ledoux coefficients multiplied by l+1 (connected
by lines for n = 0, 1, 2) and their experimental counterparts deduced from the mode splitting
measured in ZoRo (rotating at 20 Hz) for several l-modes of various m, being either symmetric
(ES, hot-coloured triangles) or anti-symmetric (EA, cold-coloured circles) with respect to the
equator (colour online). When possible, several ±m pairs are included for one nSl multiplet.
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In Figure 3.13, we show a selection of experimental splittings as a function of rotation
rate (the experimental splittings being measured by the difference between the ±m peak
frequencies). At first glance, we observe that they agree well with the theoretical linear
predictions |2δΩ| given by equation (2.69) and shown by the lines. The blue crosses
show our finite-element calculations predictions which are, in many cases, closer to the
experimental data than the theory (see e.g. 0S2

2 or 0S1
2 ). In our range of rotation rates,

the numerical splittings also follow a linear trend with a different slope due to the effect of
ellipticity (Vidal et al., 2020). The different slope defines a spheroidal Ledoux coefficient,
which now depends on m by contrast with the spherical one (which is independent of m,
see eq. (2.70)).

In our range of rotation rates, rotational splittings in the sphere are predicted to be
proportional to fΩ, but also to m through the spherical Ledoux coefficients. By succes-
sively focusing on various non-axisymmetric multiplets, we retrieve the rotational splittings
for a larger collection than before. We have extracted rotational splittings for 24 modes
at fΩ = 20 Hz with the method detailed above and computed the associated spheroidal
Ledoux coefficients (frequency splitting divided by 2mfΩ). Figure 3.14 shows these Ledoux
coefficients for different ±m pairs of peaks as a function of l. For each mode, the experi-
mental Ledoux coefficients (symbols) agree roughly with the linear theory (lines) and the
deviations can be explained by the ellipticity of the container (see l = 2, n = 0 in Fig-
ure 3.13 and 3.14). Conversely, the determination of the rotation rate can be obtained by
measuring any splitting if the spheroidal Ledoux coefficient is known.

We also verify that the nSml modes are still separated even with high rotation rates, to
validate a posteriori that the chosen flattening of our apparatus is suitable for rotational
flows measurements.

Key points

Experimental set-up ZoRo:

Axisymmetric spheroid of 0.05 ellipticity,

Filled with air,

Rotates on its revolution axis up to 30 Hz,

Instrumented with embarked speakers and electrets.

Data analysis:

Fourier transform for acoustic spectrum,

Identify peaks with nSml doublet or modes,

Extract splittings between nS±ml modes in presence of rotation and flows.



4
Acoustic splitting inversion of

known flows

Reannuals are plants that grow backwards in time. You sow the seed this
year and they grow last year. [...] anyone who forgets to sow seeds of a crop
that has already been harvested twelve months before risks disturbing the entire
fabric of causality, not to mention acute embarrassment.

- Terry Pratchett, Mort

We described in Chapter 2 the analytical relationship between the flow field in a
spheroidal cavity and its acoustic resonances. Thanks to this, we are able to predict the
spectral acoustic response from any flow field. We aim to take advantage of this relation
to do the reverse and use the acoustic spectrum to obtain information on the flow velocity.
To do this we need to solve an inverse problem.

In our case the direct problem is to find the acoustic splittings knowing the flow field,
and the inverse problem consists in finding the flow knowing the splittings. In this chapter
we will present how to tackle our inverse problem, detail the procedure we use and apply
it to various synthetic cases.

We use the linear Bayesian formalism to express the inverse problem and find the
best matching flow field for a given dataset of acoustic splittings. Then we validate the
inversion method using synthetic cases, where we try to retrieve known flows. We apply the
inversion procedure on analytical velocity profiles for spins up. We then move onto more
complicated azimuthal profiles from numerical simulations of realistic thermally driven
zonal flows.

Finally we developed a working inversion implementation for our problem. Along the
way we implemented objective criteria to determine if an inversion is accurate. Study of
synthetic cases allowed us to confirm that the flows we aim to study are within the resolu-
tion of our modal acoustic velocimetry method. We also verified that the mode collections
we are able to extract from experimental data are sufficient to accurately retrieve the flow
field.

At the end of this chapter we have all the necessary tools to move on to the inversion
of acoustic splittings obtained from real experimental data.

71
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4.1 General inversion theory
The inverse problem allows to retrieve a physical quantity that we are not able to directly
measure through other accessible data. In order to solve the inverse problem, it is essential
to have the relationship between the two quantities at play, in our case flow velocity and
acoustic splittings. We will focus on linear inversions as eq. (2.61) gives a linear relation
between the measured data and the model. We recall their relationship from eq. (2.61) as

δωnlm︸ ︷︷ ︸
∆

= m

∫ π

0

∫ a

0
Knlm(r, θ)

m︷ ︸︸ ︷
Ω(r, θ) rdrdθ︸ ︷︷ ︸

G

,

We used this formulation to predict the acoustic splitting for a given flow, which is
called the forward (or direct) problem. In symbolic formulation we can write the forward
linear problem as

∆ = Gm, (4.1)

with ∆ the data vector, m the model vector and G the matrix which gives the theoretical
relationship between the two. In our case the data are the acoustic splittings, the model is
the flow velocity and G contains the sensitivity kernel integration. Note that in our case
m encompasses the flow velocity at each wanted spatial position.

In practice, for a collection of M modes and a spatial discretized grid for (r, θ) of
size p × q, ∆ is a vector of length M and contains the acoustic splitting for each mode,
m is a vector of length pq and contains the flow velocity on each grid point and G is a
(non-square) matrix of size M × pq. In order to be able to retrieve small flow structure,
we want a relatively fine spatial grid. This causes M � pq and our problem is largely
under-determined. Then eq. (4.1) can equivalently be written as:

∆1
...

∆M

 =

G11 · · · Gpq1
... . . . ...

G1M · · · GpqM

 ·

m1
...
...

mpq

 . (4.2)

Since the accessible measure, the acoustic splittings, is not the physical quantity of
interest, the measurement method is indirect. Retrieving the fluid velocity is equivalent
to solving the inverse problem

m = G−1∆. (4.3)

However G is generally not invertible (often not square). To circumvent this difficulty
many inversion methods have been developed (e.g. Bertero, 1986; Golub et al., 1999; Menke
and Eilon, 2015). Here we choose to use the Bayesian inversion.

4.1.1 Bayesian formalism for Gaussian linear model

The Bayesian inversion was first developed by Tarantola and Valette (1982a,b). It takes a
probabilistic approach and aims to find the most likely solution along with its probability
density. It considers that a priori the solutions follow a homogeneous probability density
and by adding more information with additional data, some become more likely than others
(Tarantola, 1987). Since the information added are measured data of actual realisations,
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it comes down to a conditional probability which is given by the Bayesian inference (Bayes
and Price, 1763), hence the inversion’s name. The method is fully described in Tarantola
(1987), we will only remind here the useful formulas for our specific case.

We assume that both the data and the model contain errors that obey a Gaussian
distribution. The measurement errors on the data can be expressed with the covariance
matrix of the data Cdd, and the a priori information on the model with the covariance
matrix of model parameter Cpp.

In this case, the best fitting model in the least-square sense m̂, is given by (Tarantola,
1987, eq. (1.106))

m̂ = CppG
T (Cdd +GCppG

T )−1∆, (4.4)

where ·T indicates the transposed matrix. The accuracy of the inversion can be estimated
by looking at the difference between the real and inverted model, rendered by the resolution
matrix R defined to verify m̂ = Rm, leading to (Tarantola, 1987, eq. (3.62))

R = CppG
T (Cdd +GCppG

T )−1G. (4.5)

In the ideal case, the inverted model should verify the forward model exactly, corresponding
toR = Id the identity matrix, but in general what is retrieved is a posteriori reconstructed
data ∆̂ = GRm.

We use the difference between the measured data ∆ and the reconstructed data ∆̂ to
define the inversion misfit φ̂

φ̂ =

√√√√ 1
M

M∑
i=1

(
∆̂i −∆i

ei

)2

. (4.6)

A necessary condition for an accurate inversion is to have a misfit less than 1, meaning
that in average, the reconstructed data are within the error of the measured data. This
condition is sometimes not sufficient, as it would allow some modes to be very far from
the measured value provided other modes are close enough to compensate that deviation.

A complementary indicator of the inversion accuracy is to count the number of data
mode that are within the error of the measurements, we define this normalised number as

N̂ =
N
(
|∆i − ∆̂i| < ei

)
i=1...M

M
, (4.7)

where N(X) counts the number of occurrences where the condition X is verified. This
condition allows us to define a threshold of the number of splittings that are correctly
retrieved after the inversion under which we will not consider the inversion accurate any-
more. Typically we want at least N̂ > 0.5, i. e. more than half of the data can be retrieved
(within their error bar) after the inversion.
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4.1.2 Computation formulation

The effects of global solid-body rotation is well understood and we verified in §3.3 that
they can be predicted at first-order with the theoretical spherical Ledoux coefficients. This
allows us to focus on the remaining flows by performing the inversion in the frame rotating
with the container. Then eq. (2.61) becomes

δf rotnlm = −m
∫ π

0

∫ a

0
Knlm(r, θ)

m︷ ︸︸ ︷
Ωrot(r, θ)rdrdθ︸ ︷︷ ︸

G

. (4.8)

This also implies that all inversions will be considered in the spherical geometry. Al-
though the spheroidal shape is taken into account in order to predict the acoustic frequen-
cies (needed to accurately extract the splittings), it has no influence on the ±m modes
splittings (at first order in rotation and at our current attainable rotation rates ≤ 30 Hz).

Projection onto spherical harmonics

We have an under-determined problem. In order to reduce the unknowns we want to
retrieve, following Triana et al. (2014), we remark that, in the spherical geometry, the
spherical harmonics form a natural basis for the angular dependence of the velocity field.
Provided the velocity field is axisymmetric and symmetric with respect to the equator,
the azimuthal velocity can then be written as (Nataf, 2013)

uφ(r, θ) =
lmax∑

odd l′′=1
ul′′(r)P1

l′′(cos θ). (4.9)

The rotational sensitivity kernel Knlm can similarly be decomposed, as seen in eq. (2.62),
into

Knlm(r, θ) =
2l+1∑

odd l′=1
Kl′(r)P1

l′(cos θ), (4.10)

where Kl′ , the reduced sensitivity kernel, depends on r only.
Then injecting both expressions into eq. (2.61), it becomes

δfnlm = m

∫ a

0

∫ π

0

2l+1∑
odd l′=1

l′′max∑
odd l′′=1

Kl′(r)Ul′′(r)P1
l′(cos θ)P1

l′′(cos θ)drdθ
sin θ . (4.11)

Taking advantage of the orthogonality and normalisation of the spherical harmonics, it
simplifies into

δfnlm = m
2l+1∑

odd l′=1

l′′max∑
odd l′′=1

l̃(l̃ + 1)
∫ a

0
Kl′(r)ul′′(r)dr, (4.12)

where l̃ = min(l′, l′′) and lmax is the truncation degree of the velocity projection.
This expression allows the inversion to focus on the radial dependence while the angular

θ dependence is entirely accounted for by the Legendre polynomials. The new numbers of
unknown is then plmax (instead of pq), where lmax is typically smaller than 10.
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Cylindrical projection of sensitivity kernels

In rotating fluids, the geostrophic (or quasi-geostrophic) balance can rule the global struc-
ture of the flow by imposing invariance along the rotation axis (vertical axis in our case)
(Vallis, 2017). In such cases it is useful to rewrite the rotation sensitivity kernels in cylin-
drical coordinates and take advantage of this invariance to reduce the number of unknowns
once again. We change our variables from (r, θ) to (s, z) with the relations{

s = r sin θ,
z = r cos θ,

or
{
θ = arctan(s/z),

r =
√
s2 + z2.

(4.13)

Our relation then becomes for geostrophic flows

δfnlm = m

∫ a

s=0

∫ h(s)

z=−h(s)
Knlm(s, z)Ω(s, z)dsdz = m

∫ a

s=0
Ω(s)

(∫ h(s)

z=−h(s)
Knlm(s, z)dz

)
ds,

(4.14)
with h(s) =

√
a2 − s2 the half-column height. We can now define a new radial sensitivity

kernel, projected onto the cylindrical radius

Nnlm(s) = 2
∫ h(s)

z=0
Knlm(s, z) dz, (4.15)

and eq. (2.61) now depends on one dimension only, once again reducing the number of
unknowns in the inversion. Note that both the cavity and the sensitivity kernels are
symmetric with respect to the equator, allowing Nnlm to be determined on the half-column
only (more cost-efficient). In Figure 4.1 we show examples of these radial kernels along
with the corresponding Knlm.

In the following, the flows we consider are all supposed geostrophic, at least at first-
order, allowing us to use the cylindrical projection.
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Figure 4.1: Sensitivity kernels in spherical coordinates as defined in eq. (2.62) (top) and Nnlm(s)
(bottom) for 0S1

1 , 1S3
3 and 2S2

2 . Note that they are both plotted against adimensional radius.
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Covariance matrices

In the data covariance matrix, we include all the errors on the splitting determination ei,
possibly different for each mode. Those errors are assumed to be independent for each
acoustic mode, thus uncorrelated and leading to a diagonal matrix

Cdd(i, j) = e2
i δij , (4.16)

where δij stands for the Kroenecker symbol.
The model covariance matrix encompasses all a priori information on the model, which

can also be interpreted as imposed constraints. We implemented a smoothing constraint
which imposes a relaxation length on the spatial grid as (Triana et al., 2014)

Cpp(i, j) = σ2
p exp

(
−|ri − rj |

2

δ2

)
, (4.17)

where δ is the radial correlation length and σp is a measure of the model allowed amplitude
variations.

Our inversion then has two adjustable parameters: σp, which gives the amplitude
freedom of the model; and δ, the radial correlation length. In order to determine the best
fitting parameters for our specific inversion, we look at the difference between the data
and reconstructed splittings. We consider that an inversion is accurate if the misfit φ̂ is
smaller than 1. Among those, we want the inversions that fit a majority of the data, so
N̂ should be at least 0.5, preferably much larger. Then we want to have a reasonably well
constrained inverse model, so we define as suitable inversion parameters the (σp, δ) pairs
that verifies φ̂ < 1 and N̂ >> 0.5, and whose inverted flow seems plausible (no oscillations
at small length-scale). In practice we progressively decrease the acceptable threshold of N̂
from 0.95 until we find a suitable pair of parameters or reach 0.5, value where the inversion
is not considered accurate anymore.

Figure 4.2: Illustrative case of quantitative parameters measuring the inversion accuracy (example
given on the flow from Chapter 5). Left: Splitting misfit φ̂ between model and inverted splittings
(in Hz) for different parameters σp and δ. Right: Normalised number of inverted splittings N̂
within error bars of the data. The inversion is considered accurate for φ̂ < 1 and normalised
number of splittings N̂ > 0.95.
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A typical misfit map for a scan of values for σp and δ is shown in Figure 4.2 (performed
for a synthetic case of centrifugal open holes flow, described in Chapter 5, using a typical
realistic mode collection presented in Figure 4.8). The misfit distribution corresponds to
the intuitive understanding of the two inversion parameters, if the model is too constrained
(with small σp or large δ), it cannot fit the data, hence the large misfit. Both parameters
σp and δ can constrain the inversion either by imposing the solution to be close to the
prior with small σp, or by imposing radial correlation with large δ.

In practice, δ can be quite small. This brings out the fact that our theory relation
is smoothing the model, which is expected as we measure global modes. The sensitivity
kernels are inherently correlating spatial regions with each other, as seen in Figure 4.1, so
the addition of a correlation parameter is not essential.

For real data acquired in ZoRo, it is sometimes needed to engage in an iterative process
between the inversion parameters and the splitting extraction. We remarked that the data
that are not well fitted for any pair of parameters, are often the modes for which splitting
extraction was difficult in the data analysis. This allows us to improve the splitting
extraction (usually hand-picking the peaks) or remove the mode completely in order to
avoid adding inaccurate information in the inversion. We then scan over the parameters
again, etc.

4.2 Influence of mode collection
We first study some simple cases to have a better idea of the inversion biases. More
particularly, we investigate the influence of the collection of modes used, since the number
of modes available in the experiment is limited by whether we are able to correctly perform
their identification. We choose to do this collection test on solid-body rotation flow, where
the fluid rotates at a constant rotation rate Ω different from the observational referential
frame rotation rate Ωref . The splittings are the flow splittings, corresponding to a solid-
body rotation of 5 Hz (in the rotating referential). Starting from this solid-body rotation
flow, we create the corresponding acoustic splittings using the forward model, described
in eq. (2.61). We then try to retrieve the flow model with different mode collections. All
inversions are done with the same spatial grid and an arbitrary error on the data ei = 0.1,
identical for all data. For each collection, we take the best inversion parameters σp and δ
as described above.

4.2.1 All modes up to n = 3, l = 10
We first choose to perform the inversion using all modes up to n = 3 and l = 10, which
corresponds to the ideal collection within the frequency range of our experiment (220
modes). This test serves to check which flow structures we will be able to resolve at
best. We attributed the same arbitrary error to all the synthetic data of 0.1 Hz. For this
collection, the best parameter pair is σp = 3.2 and δ = 0.1.

In Figure 4.3 we plot the s-profile of the angular velocity found with this inversion (in
solid blue line), along with the exact solution we used to produce the splittings (in dashed
red). We remark first that for intermediate radii, between s = 0.3 and 0.9, the inverted
velocity profile is very close to the model (in dimensionless cylindrical radius, with s = 0
the rotation axis and s = 1 the shell boundary). In the area close to the rotation axis
(small s) the inverted solution overshoots the expected value then drops to zero, while the
expected velocity is constant across the cavity, and same at lesser degree near the shell.
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To understand this behaviour, it is useful to recall that in our case the prior model is
taken as zero. When no information are available from the data the inversion will tend
to this prior model. In our case the spatial extent of the data information is given by
the radial sensitivity kernels Nnlm (as defined in eq. (4.15)). For this mode collection an
averaged sensitivity kernel 〈Nnlm〉 is given for comparison in orange line in Figure 4.3. This
is consistent with the intuitive understanding that no acoustic mode within our collection
contains information on the central region below s = 0.1 where the sensitivity stays very
low until s = 0.3, and same above s = 0.95.

Figure 4.3: Rotation rate of the fluid for solid-body rotation (of the fluid) at Ω = 5 Hz against
adimensioned cylindrical radius. In solid blue, the results from inversion with all modes up to
n = 3, l = 10. The model we want to retrieve is reminded in dashed red. For comparison the
radial sensitivity kernel averaged over the mode collection 〈Nnlm〉 is added in solid orange.

Another approach to quantify the inversion trust regions is to consider the resolution
kernel R, defined in eq. (4.5). As described above, in the ideal case, R should be a
Dirac centred on the target position. This can also be useful to infer the inversion spatial
resolution. We show in Figure 4.4, the resolution kernel for different target radii. We can
see that for radius s ≥ 0.2, the kernel is centred at the target radius, although the peak
is smoothed compared to the wanted Dirac function, with a half-width of about 0.15. For
s < 0.2 the resolution kernel is not centered on the target anymore, which means that the
inversion is not able to accurately retrieve the flow at those positions. This indicates that
our inversion is inaccurate near the center (for s below a/5), so any flow inversion below
this radius should not be taken as realistic.

It is interesting to note that this resolution quantification shows that the inversion
is accurate down to s = 0.2, which is closer to the center than what the velocity profile
suggests. This defines the regions where the inversion is not able to accurately predict
the velocity, we indicate them in grey in Figure 4.3. The resolution kernel maximum also
significantly drops when the targets are located near the center, showing that the inversion
is also less sensitive in these regions, which is consistent with the observed behaviour of
the mean sensitivity 〈Nnlm〉.
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Figure 4.4: Resolution kernels R for target radius at s = 0.9, 0.7, 0.5, 0.3, 0.2 and 0.1 (dashed
lines) in dimensionless cylindrical radius for solid-body rotation of the fluid of 5 Hz inverted using a
all modes up to n = 3, l = 10. For s < 0.2 the inversion is not able to retrieve the target anymore.

From the resolution peaks half-width, we can deduce the apparent spatial resolution
of the inversion. We are not able to describe structures smaller than this length, so for
this given collection and set of parameters, we have a spatial resolution of 0.15 a ≈ 3 cm
with ZoRo’s radius. The resolution kernels peak’s half-width can be compared with the
correlation length given by the δ parameter. As δ tends to smooth the model, the spatial
resolution given by the mode collection is optimum if it is larger than δ. Here we have
0.15 > 0.1 = δ.

As a final verification, we apply the forward model on the inverted velocity profile,
and compare the splittings we obtain to the ones we used to do the inversion. We show
in Figure 4.5 the initial predictions in black and the splittings from the inverted model
in red. All splittings obtained after the inversion match the initial ones within the error
bar. This confirms that the inversion is free of errors, and the above mentioned features
are inherent to our problem.
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Figure 4.5: Acoustic splittings comparison between the initial splittings used to perform the inver-
sion ∆i (in black) with the splittings obtained from the inverted flow ∆̂i (in red). The selection of
modes (n, l,m) used for the inversion is shown on figure. All splittings obtained after the inversion
match the initial ones within their error bar. Note that the splittings here are due to the flow only
(solid-body rotation splittings predicted with the theoretical spherical Ledoux coefficients have
been deducted), small splitting means that the mode is mainly sensitive to solid-body rotation.

4.2.2 Realistic mode collection

The above collection is very optimistic. We do the same exercise with a more realistic
collection, comprising only of modes for which we have been able to extract the splittings
from real experimental data. We choose here a typical collection of those modes. The
collection is given in Figure 4.6, where we verify that we are able to retrieve the data
splittings from the inversion result. For this collection, the best parameter pair is σp = 7.4
and δ = 0.01.

The angular velocity resulting from the inversion is given in Figure 4.7. We see that
we are still able to retrieve the correct angular velocity, but in a slightly smaller region
between s = 0.4 and 0.95 (compared to s = 0.3 to 0.95). We also remark that this time
the velocity profile is not as flat but displays small oscillations around the expected value.
The overshoot near the center is also more pronounced and further away (around s = 0.3
compared to 0.2 previously).

The corresponding resolution kernels are shown in Figure 4.8, and we see that the
spatial resolution is not changed much (from 0.15 to ≈ 0.2 a). The inversion with this
collection is then considered accurate between 0.3 and 0.95.

This is very encouraging because it shows that the modes we are able to extract in the
experimental data are a priori sufficient to image most of the cavity’s extent and retrieve
flow structures at the centimetre scale, down to ≈ 4 cm. We will now use this realistic
mode collection and test it against different realistic flows, that display more complicated
spatial structure than solid body rotation.
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Figure 4.6: Acoustic splitting comparison for solid-body rotation of the fluid of 5 Hz between the
(synthetic) data splittings used to perform the inversion (in black) with the splittings obtained
from the inverted flow (in red). The realistic collection of modes (n, l,m) used for the inversion
is shown in abscissa. All splittings obtained after the inversion match the initial ones within the
error bar.

Figure 4.7: Angular velocity in the frame rotating with the container for solid body rotation of the
fluid of Ω = 5 Hz against adimensioned cylindrical radius. In solid blue, the results from inversion
from a realistic mode collection, given in Figure 4.6. The model we want to retrieve is reminded
in dashed red. The inversion seems to retrieve the correct angular velocity between s = 0.4 and
0.95 with small oscillations of typical lengthscale of around 0.1a.
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Figure 4.8: Resolution kernels for target radius at s = 0.9, 0.7, 0.5, 0.3, 0.2 and 0.1 (dimensionless
cylindrical radius) for solid-body rotation of the fluid of 5 Hz inverted using a realistic mode
collection. For radius s < 0.3 the inversion is not able to retrieve the target anymore.

4.3 Application to synthetic cases

We apply the above formalism to solve our inverse problem for synthetic cases. We use
these studies as benchmarks before tackling real data inversion. To do this we choose
realistic azimuthal flows relevant for our experiment. We deduce the acoustic splittings
from the velocity field and then retrieve the velocity with the inverse problem.

We first focus on spin up, as it is close to solid-body rotation, being mechanically
driven, while having a more complex structure. Spin up also has the advantage of having an
analytical solution in the sphere which allows us to directly compare our results to known
velocity fields. We then try to invert realistic zonal flows driven by thermal convection
obtained with numerical simulations. We use the velocity profiles from Guervilly and
Cardin (2017).

4.3.1 Spin up flows

We consider small changes in the rotation rate, and study the transient regimes between
two rotation rates (Greenspan, 1968). In our case, we will consider a container rotating at
a constant rate Ω−∆Ω filled with fluid at equilibrium, i.e. rotating as solid-body rotation
at the rate of the container. And we define the spin up as the instantaneous change of
rotation rate of the container of +∆Ω. The container then rotates at the new constant
rate Ω. The response of the fluid and in particular its recovery up to equilibrium again
was first studied by Greenspan and Howard (1963); Greenspan (1964, 1965) and then
summarized in his monograph (Greenspan, 1968) and later by Benton and Clark (1974);
Duck and Foster (2001).



4.3. APPLICATION TO SYNTHETIC CASES 83

Analytic solution and splitting prediction (forward model)

The spin up flow can be separated in different time scales, first creation of the Ekman
layer in the dimensionless time scale Ω−1, then Ekman pumping in the spin up time
τ = Ω−1E−1/2, during which the all fluid particles passed through the Ekman layers, and
finally all residual motions disappear after the diffusion time Ω−1E−1, where the Ekman
number E = ν/(Ωa2) is the ratio of viscous forces over Coriolis forces (Greenspan, 1968).

Under the linear approximation Ro = ∆Ω/Ω� 1, or in practice Ro < 0.2 (Benton and
Clark, 1974), analytical solutions are available for the spherical geometry. The solutions
are developed in Greenspan (1968) section 2.12, and the velocity field (in the frame rotating
with the container) is given in Deleplace (2005), eq. (2.35) and gives in their dimensional
form

vrotφ (r, θ, t) = −∆Ω exp
(

−E1/2t/τ

(a2 − r2 sin2 θ)3/4

)
r sin θ, (4.18)

or equivalently the fluid angular velocity Ωrot
flow(r, θ, t) is

Ωrot
flow(r, θ, t) = −∆Ω exp

(
−E1/2t/τ

(a2 − r2 sin2 θ)3/4

)
. (4.19)

In a spin up, the velocity is maximum near the container immediately after the change
of rotation rate. It then slowly decreases as the momentum is propagated from the con-
tainer to the bulk. We show the evolution of velocity with cylindrical radius and time in
Figure 4.9.
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Figure 4.9: Azimuthal velocity in the frame rotating with the container at Ω for spin up from 9 to
10 Hz against cylindrical radius s and adimensionalised time t/τ . After one spin up time most of
the volume rotates at the new rotation rate, and most of the differential velocity occur before half
of the spin up time.
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Using the routine we developed in Chapter 2, we can produce synthetic spectra cor-
responding to this flow. We show in Figure 4.10 the expected spectra for a collection of
chosen modes. We can compare the splitting from spin up to solid-body rotation. Before
the change of rotation rate, we have the spherical Ledoux splittings (red dashed lines).
Then, immediately after the rotation change, the acoustic response varies greatly from
mode to mode (solid lines), corresponding to spitting due to Doppler effect, as detailed in
§2.2.1. For the n = 0 modes, almost no difference is visible while for n = 1 modes, the
splitting is much larger than the one expected from solid-body rotation. After one spin
up time (τ = 12 s for Ω = 10 Hz), we mostly recover the solid-body rotation splittings
again at the new rotation rate. For comparison we show the splittings predicted by the
spherical Ledoux coefficients again, at the new rotation rate Ω (purple dashed lines).

Figure 4.10: Top left: Spin up flow structure (hemispheres) for increasing time compared with the
shell rotation rate (coloured line). The blue gradient gives the velocity in the fluid (same colour
bar as Figure 4.9). Other panels: Synthetic spectra for corresponding increasing times (solid
lines) for modes 0S1

1 (bottom left), 1S3
3 (top right), 2S2

2 (bottom right). Colours show successive
dimensionless times, separated by 0.1τ , from 0.1τ to τ , and correspond to the timeline in top left
panel. Solid-body rotation splittings for Ω−∆Ω = 9 Hz and Ω = 10 Hz are given for comparison
in dashed lines.

Inversion of acoustic splitting

Using this velocity profile, we can predict at any given time the residual splitting of any
acoustic mode with eq. (2.61). We compute the splittings for the same typical realistic
mode collection as above and show the results in Figure 4.11. Here the synthetic splitting
data are associated to an arbitrary error ee = 0.2. Then in this figure, if the residual
splitting is close to 0, it means that the mode is not sensitive to differential flows (with spin
up spatial structure). This is insightful to further understand the behaviour of acoustic
modes and discriminate which modes to preferentially extract for a given flow structure.
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Figure 4.11: Acoustic splitting comparison for spin up from Ω − ∆Ω = 9 Hz to Ω = 10 Hz, at
t = 0.2τ after change of rotation rate of the container, between the initial splittings used to perform
the inversion (in black) with the splittings obtained from the inverted flow (in red). The selection
of modes (n, l,m) used for the inversion is the same as in Figure 4.6. All splittings obtained after
the inversion match the initial ones within the error bar.

To determine the best pair of parameters, we do a grid search on σp and δ, and consider
the pairs that verify both φ̂ and N̂ criteria. We find that δ = 0.1 (in its dimensionless
form) is always a good fit, while, depending on the spin up time, the best σp varies from
0.6 to 1.2. In order to compare the results for the different times, we take the same value
for all inversions, and we choose the largest value σp = 1.2. The velocity profiles obtained
as such are plotted on Figure 4.12 in blue solid lines, along with the expected models
(dashed lines), for various times after change of rotation rate (from top to bottom 0.1, 0.2,
0.5 and 1 spin up time τ).

We seem to be able to retrieve the correct velocity profile for all radii above 0.35.
However we recall that the mode collection we invert does not provide any information
near the container boundary (close to s = 1), as shown by the sensitivity kernels. In
Figure 4.12 we reproduced the irrelevant regions deduced from Figure 4.8 in grey. The
good agreement between the inverted and initial velocity profiles near s = 1 is coincidental
hence is not relevant to discriminate the inversions. Focusing on the region from s = 0.3
to 0.95, the inverted and model velocity match very well. The only notable difference
is the presence of oscillations in the inverted profile, at lengthscale around the inversion
resolution, as observed for the solid body rotation case.
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Figure 4.12: Angular velocity in the frame rotating with the container for spin up from Ω−∆Ω =
9 Hz to Ω = 10 Hz, for increasing times after rotation change. In solid blue lines, the results from
inversion from a realistic collection of modes. The model we want to retrieve is reminded in dashed
lines. The inversion seems to retrieve the correct angular velocity for all radii above s = 0.35.

4.3.2 Zonal flows driven by thermal convection

We built ZoRo with the primary goal to study thermal convection in presence of fast
rotation. Convective flows transport heat in the radial direction and it has been shown that
due to the effects of rotation they form columnar quasi-geostrophic flows (Busse, 1994).
In some regimes, in particular for low viscosity, strong alternating zonal jets appear that
have been observed in gaseous giants or in the Earth’s core (Porco et al., 2003; Livermore
et al., 2017). Those jets are expected to form concentric cylindrical shells (Kaspi et al.,
2018; Kong et al., 2018) that are expected to have significant influence on acoustic global
modes (Aerts et al., 2010; Triana et al., 2014). These zonal flows have been successfully
reproduced both in laboratory experiments (Manneville and Olson, 1996; Gillet et al.,
2007; Read et al., 2015; Cabanes et al., 2017) and numerical simulations (Christensen,
2002; Gastine et al., 2014; Guervilly and Cardin, 2017).

Inversion of velocity profiles from realistic numerical simulations

In order to validate our experiment for convective zonal flows study, we apply the inversion
procedure to try and retrieve typical zonal velocity profiles. We use the numerical results
of Guervilly and Cardin (2017) who scanned different regimes with realistic values for
geophysical bodies with a quasi-geostrophic assumption. Example of the velocity obtained
with their numerical simulation is reproduced in Figure 4.13.

We selected three very different velocity profiles among the ones presented in Figure 2
of Guervilly and Cardin (2017). Note that the velocity profiles are given in the rotating
frame, corresponding to the flow velocity we are able to invert.
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Figure 4.13: Snapshots of the radial velocity (left) and the azimuthal velocity (right) in the equa-
torial plane, for case (i), from Guervilly and Cardin (2017).

We choose to consider:

(i) Ra = 7.45 1010, E = 10−8, Pr = 0.1, corresponding to Ra/Rac = 0.96 (profile 1 of
Figure 2 from Guervilly and Cardin (2017), velocity map reproduced in Figure 4.13),

(ii) Ra = 5 1011, E = 10−8, Pr = 0.1, corresponding to Ra/Rac = 6.44 (profile 5),

(iii) Ra = 5 1010, E = 10−7, Pr = 0.1, corresponding to Ra/Rac = 9.94 (last frame).

Following the same procedure as above, we first produce the corresponding acoustic
splittings predicted by the forward model. We attribute an arbitrary value to ei = 10. We
then invert those with the same realistic mode collection (as in Figure 4.6). The inversion
parameters are δ = 0.01 for all profiles, and σp = 50 for (i), σp = 5000 for (ii) and
σp = 1250 for (iii). Note that this seemingly big discrepancy between the three parameter
comes from the velocity profiles initial amplitudes. Indeed, with those values of σp, the
relative constraint imposed on the model is constant for all three profiles, equal to 25%.

The inverted velocity profiles we obtain are shown in Figure 4.16 in solid blue lines,
along with the initial profile from Guervilly and Cardin (2017), Figure 2, in dashed red.
The splitting comparison and resolution kernels are shown for case (i) only in Figure 4.14
and Figure 4.15. Note that the angular velocity is non-dimensional (adimensionned by
Ra, Guervilly and Cardin (2017)), leading to adimensionned splittings, hence the very
large values shown in Figure 4.14.

We can see in Figure 4.16 that for both (i) and (iii) cases, the inverted velocity profile
match the initial ones very well (in the relevant radial regions for our mode collection).
But for (ii) in Figure 4.16, the inversion seems to be able to retrieve only an average of the
expected profile. This case presents multiple jets that dominate the flow (Guervilly and
Cardin, 2017) and display sign inversion at relatively small length-scale, around 0.1 (in
dimensionless cylindrical radius). Unfortunately this length corresponds to our resolution
limit, and we are indeed not able to retrieve the given profile, but only an estimation of the
mean velocity amplitude. This is also visible on profile (iii) where the inversion smooths
out the sharp negative jets.



88 CHAPTER 4. ACOUSTIC SPLITTING INVERSION OF KNOWN FLOWS

In conclusion we are able with a realistic mode collection to retrieve complex velocity
profiles even with several jets of opposite signs. We are however limited in resolution to
around a/5 ≈ 4 cm, so all flows that display features of this length-scale or smaller remain
out of reach with our method.

Figure 4.14: Acoustic splittings comparison between the initial splittings used to perform the
inversion (in black) with the splittings obtained from the inverted flow (in red) for case (i). The
selection of modes (n, l,m) used for the inversion is shown in abscissa. All splittings obtained after
the inversion match the initial ones within the error bar.

Figure 4.15: Resolution kernels for case (i) for target radius at s = 0.9, 0.7, 0.5, 0.3, 0.2 and 0.1
(dimensionless cylindrical radius). For radius s < 0.2 the inversion is not able to retrieve the target
anymore.
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(i)

(ii)

(iii)

Figure 4.16: Angular velocity in the rotating frame for zonal flow from numerical simulations
results from Guervilly and Cardin (2017), for chosen profiles described in main text (in dashed
red). In solid blue lines, the results from inversion from our realistic collection of modes. The
initial model we want to retrieve is reminded in dashed red. We are able to retrieve the correct
velocity both structure and amplitude for (i) and (iii). In (ii) the oscillations length-scale is smaller
than our inversion resolution. The inversion fails to retrieve a meaningful velocity profile, and only
manages to retrieve an averaged velocity.
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4.4 Discussion

Throughout the chapter we made several assumptions that we deemed reasonable. We
will now more formally verify the validity of those assumptions and discuss how they affect
the inversion accuracy and limits. We will also discuss the estimation of the errors due
to the inversion and show that we currently have no good measure of these, and need to
continue relying on the comparison with synthetic cases.

4.4.1 Validity of the z-invariance assumption

We will first investigate the z-invariance that we assumed throughout this chapter. We
want to verify if the geostrophy can be retrieved without imposing it. To do that we recall
that the numerical simulations from Guervilly and Cardin (2017) are performed on the
equatorial plane only and then extrapolated in the whole spherical volume. They are thus
invariant along the z direction by construction. We also use the same synthetic acoustic
splittings as before, i.e. from the forward model where z-invariance is assumed. Thanks
to both of these, the acoustic splittings fully carry the z-invariance, and any deviation
from geostrophy will be due to the inversion procedure, through the sensitivity kernels
structures of the mode collection or equivalently to insufficient inversion constraints (with
an infinite number of modes, any structure should be perfectly retrieved).

Using the formalism detailed in §4.1.2, we perform the inversion in (r, θ) without
further constraints. We show in Figure 4.17 the inverted angular velocity in (r, θ) for case
(i) without assuming z-invariance. The synthetic splittings used for inversion are those we
created for the radial inversion. The inversion was performed using the same parameters
as for the radial one δ = 0.1, σp = 50, and the truncation for angular projection lmax = 6.
The splittings comparison are shown in Figure 4.18 and the resolutions kernels (one for
each projection degree) in Figure 4.19.

Figure 4.17: Adimensionned angular velocity map obtained from a spherical inversion on (r, θ)
with the latitudinal component projected onto spherical harmonics up to degree 13.
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We globally retrieve the invariance along z axis, except in the central region, which is
to be expected from the sensitivity kernels structure. This gives us confidence in the fact
that the z-invariance assumption is not overly constraining the inversion, but only helps
to reduce the number of variables, as intende. This also means that we will be able to
distinguish geostrophic from non-geostrophic structures in ZoRo.

Figure 4.18: Acoustic splitting comparison between the initial splittings from geostrophic profile
(in black) with the splittings obtained from inversion in (r, θ) (in red) for case (i). The selection
of modes (n, l,m) used for the inversion is shown in abscissa. All splittings obtained after the
inversion match the initial ones within the error bar.

Figure 4.19: Resolution kernels for all Ul′ used for inversion (symbols), for case (i) for target radius
at s = 0.9, 0.7, 0.5, 0.3, 0.2 and 0.1 (dimensionless spherical radius). For s < 0.2 the inversion is
not able to retrieve the target anymore.
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4.4.2 Influence of the sign of acoustic splittings

The current data analysis on experimental data only allows to extract the absolute value
of acoustic splitting. As seen in Figure 4.14, the splittings can have both signs depending
on whether +m or −m mode has highest frequency. This introduces a measurement bias
that may affect the inversion. We test this effect by performing the same inversion but
with the absolute value of the splittings from Figure 4.14.

Since the flow display alternating jets such as the profiles from Guervilly and Cardin
(2017), forcing all splittings to be positive might cause that no valid inversion can be
found. Typically for case (i), there is no (σp, δ) pair that allow the misfit φ̂ to be less than
1. We manage to reduce φ̂ by increasing ei = 15, but as seen in Figure 4.20, the result is
not satisfactory (φ̂ = 2.5). For strong alternating flows, which are typically expected from
zonal jets, it is necessary to be able to distinguish ±m modes.

Note that for spin up flows and prograde solid-body rotation, the experimental bias has
no influence as all splittings are already positive. For a globally retrograde flow (negative
splittings) but without change of sign, this bias should only affect the inverted flow sign.
For an example of such flow and how taking all splittings as positive would affect its
inversion, see Chapter 5, §5.2.1.

Figure 4.20: Acoustic splitting comparison between the absolute splittings (in black) with the
splittings obtained from the inverted flow (in red) for case (i). The selection of modes (n, l,m)
used for the inversion is shown in abscissa.

4.4.3 Determination of the inverted model errors

In a Bayesian inversion, the usual error on the model is given by Tarantola (1987), eq.
(3.38), as

Ĉpp =
(
GTCdd

−1G+Cpp−1
)−1

, (4.20)

and corresponds to the so-called posteriori model covariance. This matrix depends on
the data but also on the initial parameters of the inversion σp and δ through the model
covariance matrix.
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We reproduce in the middle panel of Figure 4.21 the inversion results (solid blue) of
Guervilly and Cardin (2017), with the same parameters (δ = 0.01, σp = 1250) as (iii) from
Figure 4.16, along with the corresponding errors determined as eq. (4.20) in blue shade.

Figure 4.21: Influence of σp on the velocity profile (solid blue) inverted from synthetic data taken
from Guervilly and Cardin (2017) (red dashed), σp = 625 (top), 1250 (middle) and 2500 (bottom).
Estimated errors on the inversion results, as defined in eq. (4.20) are given in shaded blue.
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We remark that the shaded area is slightly smaller for intermediate radii, where the
data carry information and constrain the model. We then try to understand the influence
of the inversion parameters, δ show no visible influence on the error, but σp significantly
changes its value. For comparison we show in Figure 4.21, the same inverted profile from
the same data and we vary σp, from 625 (top panel) to 2500 (bottom panel). Note that
the small misfit condition is still verified by those values, and that there is not visible
difference in the inversion result, even allowing the synthetic profile (red dashed line) to
be outside of the estimated model error.

Recalling the inversion parameter scan maps (e.g. Figure 4.2, σp presents a lower
bound, but there is seemingly no upper bound. It seems that for our study, the freedom
allowed to the model can never be too large, as there is no influence on the inversion results
even for very large values of σp, showing that the data give consistent constraints. However
that also means that we currently have no objective measure of the model’s errors, and
have to rely on synthetic tests to gain insights on the confidence of each set of inversion
parameters and data collection.

Key points

Linear Bayesian inversion to retrieve flow field from acoustic splitting

Tools to quantitatively define an accurate inversion

Test the inversion routine on synthetic flows from simple solid-body rotation to
spin-up and realistic zonal flows from numerical simulations

Validation of the radial inversion for z-invariant flows



5
Modal acoustic velocimetry

applied to experimental zonal flows

Des petits trous, des petits trous, toujours des petits trous.

- Serge Gainsbourg, Le Poinçonneur des Lilas

In the previous chapters we presented the experimental apparatus, as well as all the
data acquisition, analysis and inversion procedure that are useful to measure a flow velocity
field within ZoRo. We now want to apply our MAV routine on a realistic unknown flow
that can typically be found in ZoRo. For this first confrontation with real data, we want
to study a mechanically induced azimuthal flow. This allows us to apply the procedures
we developed so far without further complications (that would arise from temperature
gradients for example).

We choose to study the velocity field induced by centrifugal pumps. In order to induce
this flow we opened some of the holes we have on the apparatus, while rotating. The
openings are placed at different latitudes, hence submitted to a different centrifugal pres-
sure, pumping the fluid and creating a flow. Using the protocol and techniques from data
acquisition, analysis and inversion routines we developed, we now apply all of them to
describe this centrifugally driven flow. We start from the experimental observations and
study the acoustic splittings. We then invert those data to retrieve an azimuthal flow. In
order to check whether the inverted velocity is realistic, we compare it with results from
finite-element numerical simulations.

There is a good agreement between the velocity profiles obtained from finite-element
simulation and experimental data. This allows us to be confident in the MAV method
applied on experimental data. We then try to propose a physical mechanism to explain
the measured flow. This is still work in progress but preliminary force balances show that
this centrifugally driven flow might be a large scale geostrophic flow formed from many
small scale quasi-geostrophic vortices.

We managed to image a non-trivial geostrophic flow, with similar mechanisms as zonal
flows, using modal acoustic velocimetry in ZoRo.

95
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5.1 Experimental observation

We first present how we induce the centrifugally driven flow we want to study, and its
signature on the acoustic data. We then deduct the corresponding velocity profile using
the inversion procedure described in Chapter 4.

5.1.1 Description of the experimental protocol

We make use of the through holes initially provided for thermal sensors. They are disposed
in groups of seven, equally spaced in longitude (separated by 6.67◦ from each other) on
two co-latitudes (27◦ and 60◦). The holes are 8-mm long threaded cylinders of 4 mm
in diameter, narrowing into a 2 mm-diameter cylinder 2 mm before reaching the cavitiy.
Figure 5.1 shows a sketch of the holes’ geometry and their disposition on the spheroidal
shell. Excerpts of technical drawings with exact positions of each hole and their geometry
are given in Appendix C.

The open holes are symmetric both with respect to the equator and the meridian
plane. When we open one hole in a series, all corresponding holes on all other series are
also open. In practice we studied three configurations: one hole open (in each series so in
total 8 symmetric open holes) shown in green in Figure 5.1, three open holes (24 in total)
in blue and all seven open holes (56 in total) in red. After opening the chosen pipes, we
rotate the spheroid and wait for stationary state (equivalent of several spin-up time).

Figure 5.1: Left: Sketch of the holes positions on ZoRo, top view. In colour frame (green, blue,
red) the open holes for resp. 1, 3 and 7 open holes configurations. Speakers and electrets positions
are indicated for comparison. The southern hemisphere is strictly symmetric. Right: cut through
view of one hole, dimensions are in mm.

5.1.2 Direct observations

We apply the data acquisition and data analysis protocol described in Chapter 3. We
first note that the modes do split in frequency and that these splittings are qualitatively
different from solid-body rotation. We define as residual splitting (or flow splitting), the
splitting left after subtracting the splitting due to solid-body rotation as predicted by the
spherical Ledoux coefficients given in eq. (2.70).
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In Figure 5.2, we compile the flow splittings for a chosen collection of modes for in-
creasing rotation rates when all holes are open (7 open holes configuration). The open
holes clearly induce a flow, which is different from solid-body rotation (retrieved when all
flow splittings are zero). The flow splittings increase with the rotation rate. At first glance
they seem proportional to the rotation rate, except for the fundamental 0S1

1 mode which
stays close to zero (solid-body rotation). Larger m modes also seem to display steeper
slopes, with the exception of 0S1

1 again.
All these observations give us some first insights on the expected velocity profile.

Indeed the seemingly proportionality withm and fΩ hints towards a profile with a constant
velocity, different from the container rotation rate. But the presence of few modes for
which this is not verified shows that the open holes driven flow is more complicated and
motivates the inversion.

Figure 5.2: Flow splitting for increasing rotation rates for 7 open holes configuration. The flow
splitting is zero for solid-body rotation at the container rotation rate.

5.1.3 Real data inversion

For each rotation rate, we apply the inversion routine developed in Chapter 4 to retrieve
a velocity profile in the cavity. Note that since we now work with real data, the modes we
are able to extract vary from one run to another, as seen in Figure 5.2 where some modes
are missing for several rotation rates. This directly implies that the inversion is based on
one specific dataset that is potentially different for each run. Due to the variable data
collection, we have different inversion parameters σp and δ for each run, chosen as the
best pair for each specific dataset, determined with the systematic grid search described
in Chapter 4. A typical set of parameters is σp = 1 Hz, δ = 0.2.
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In Figure 5.3 we show the normalised misfit and number of accurate splittings for
real data collection extracted for 25 Hz with all holes open. The corresponding best
inversion parameters is σp = 2 Hz, δ = 0.1. The corresponding inversion results is shown
in Figure 5.4, with the associated resolution kernels in Figure 5.6.

Figure 5.3: Left: Splitting misfit between model and inverted splittings (in Hz) for different pa-
rameters σp and δ. Right: Normalised number of inverted splittings within error bars of the data.
The inversion is considered accurate for misfit < 1 and normalised number of splittings > 0.5.

Figure 5.4: Fluid angular velocity in the frame rotating with the container for 7 open holes at
Ω = 25 Hz against adimensioned cylindrical radius. The mode collection used for inversion are
given in Figure 5.5.

We recall from Chapter 4 that regions near the center and the boundary should not
be taken into account, as confirmed by the poor resolution kernels in those areas. A com-
pilation of the inverted velocity profiles for various rotation rates are shown in Figure 5.7,
for the 7 open holes configuration. Note that since each dataset is comprised of a different
mode collection, the areas where the inversion is not accurate anymore are slightly differ-
ent for each profile. We represented in grey the regions where the inversion is typically
not accurate for these collections.
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We retrieve that the velocity is larger when the rotation rate increases. The profiles
seem relatively homogeneous in the center of the cavity (where the inversion is accurate),
with a slightly higher value at small radius (near the rotating axis). This is qualitatively
consistent with the observations we had on the acoustic splittings themselves, when we
predicted a mostly flat profile.

Figure 5.5: Acoustic splitting comparison between the experimental splittings (in black) with the
splittings obtained from the inverted flow (in red). The selection of modes nSlm used for the
inversion is shown in abscissa. All splittings obtained after the inversion match the initial ones
within their error bar.

Figure 5.6: Resolution kernels for target radius at s = 0.9, 0.7, 0.5, 0.3, 0.2 and 0.1 (dimensionless
cylindrical radius), for inversion of 7 open holes, 25 Hz. For radius s < 0.2 the inversion is not
able to retrieve the target anymore.
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Figure 5.7: Inverted velocity profiles for 7 open holes configuration at rotation rates: 28, 25, 24,
18, 15, 12, 10 and 7 Hz in solid lines (from cold to hot colours). The grey regions are indicative of
where the inversions are not accurate anymore.

5.2 Finite-element simulations

5.2.1 Axisymmetric simulations

To reduce the calculation cost, we take the axisymmetric assumption again, so the series
of holes become hollow torii in the container. This may lead to important changes in the
amplitude of the flow but we expect the geometry of the flow to be quite similar to the
one in the experiment. The angular velocity obtained for rotation rate 20 Hz is shown
in Figure 5.8 (dashed red), along with the inverted profile using a realistic collection of
modes (blue). In the simulations, the toric hole is D = 1 mm wide and L = 1 cm long.

Firstly we verify that we should be able to retrieve this type of profile using MAV. The
flow structure is pretty similar to the inverted flows from real splitting data. However one
striking fact is that the simulations predicts a global retrograde (negative) flow while the
real data inversions give the opposite sign. Note that the maximum (absolute) amplitude
of the angular velocity is significantly higher than the value obtained from experimental
data. This can be linked with the fact that the total surface of pipe is much larger in the
simulation than the experiment. However no easy scaling are available at first sight.

As discussed in Chapter 3 and Chapter 4, in the experiment, we are only able to retrieve
the absolute splitting. Since we are not able to distinguish the two ±m modes, we may
lose relevant information needed to correctly invert the flow. We can verify the splittings’
sign importance on this inversion, where we know the velocity profile we should retrieve.
Figure 5.8 clearly shows a retrograde flow, which is associated with negative splittings.
We try to retrieve the same profile by taking the absolute values of all splittings. We
compare the inverted flow obtained as such with the (absolute) profile from simulations
in Figure 5.9.
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We again retrieve the correct structure, which was expected since the velocity profile is
globally smooth, and stays retrograde (no alternating jets). This also successfully explains
the sign difference between the experimental and numerical velocity profiles. However the
amplitude of the flow velocity obtained with such simulations are pretty far from the
measured ones, leading us to reconsider the validity of the axisymmetry assumption.

Note that we are confident in having a retrograde flow since the flow splitting increases
the Ledoux splittings. This means that the additional flow has the same sign as the Coriolis
effect, which induces a retrograde drift of the acoustic waves, as showed by Backus and
Gilbert (1961).

Figure 5.8: Angular velocity profile obtained with finite-element simulation for toric holes driven
flow at 20 Hz (dashed red). The inversion of this known flow using mode collection from Figure 4.6
is plotted for comparison in solid blue.

Figure 5.9: Angular velocity profile obtained with finite-element simulation in the frame rotating
with the container for holes driven flow at 20 Hz against adimensioned cylindrical radius, absolute
value in dashed orange. The inversion of this known flow using mode collection from Figure 4.6 is
plotted for comparison in solid blue.
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5.2.2 Three-dimensions (3D) simulations

The discrepancy of (absolute) amplitude between simulations and experiments is not satis-
factory. In order to better reproduce the experimental conditions, we modelled each holes
and ran three-dimensions (3D) equatorially symmetric simulations. A typical velocity map
is plotted in Figure 5.10 for a 7 open holes configuration.

A compilation of velocity profiles obtained with 3D simulations for various rotation
rates and number of open holes is grouped in Figure 5.11. We can see that the velocity
amplitudes are much closer to the experimental ones. We confirm the increase of flow
velocity with rotation rates. The dependence with the number of holes is not very clear.
At low rotation rate (4 Hz, in blue), all 1, 3 and 7 open holes configurations (dash-dotted,
dashed and solid lines respectively) have very similar profiles. But for higher rotation
rates, e.g. 10 Hz (brown) and 15 Hz (yellow) we seem to able able to distinguish a linear
relation between the velocity and the number of open holes.

Figure 5.10: Snapshot of azimuthal velocity map (m/s) from full equatorially symmetric 3D finite-
element simulation with 7 open holes, rotating at 4 Hz. The black rectangles represent the holes.

Figure 5.11: Angular velocity (absolute) profile from full 3D finite-element simulation for increasing
rotation rates (colours). Different holes configurations are represented: 7 open holes (solid lines),
3 (dashed), and 1 (dash-dotted).
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5.2.3 Comparison with the experiment

The (absolute) amplitude of the angular velocity from the 3D finite-element simulation is
much closer to the experimental profiles. In order to compare them, we show a superpo-
sition of both profiles for the same configuration.

We focus on the effect of the shell rotation rates for a given open holes configuration. In
Figure 5.12 we show velocity profiles obtained from both experimental data inversions and
finite-element simulations, for 7 open holes for increasing shell rotation rates. Profiles from
numerics and experimental data are overall pretty consistent, with the same amplitude
and global structure. They differ significantly only in the regions where the inversion is
not to be trusted, as symbolised by the grey areas in Figure 5.12.

Figure 5.12: Angular velocity profiles obtained with full 3D finite-element simulation for increasing
rotation rates (dashed lines) and real data inversion (solid lines) for the 7 open holes configuration
and increasing rotation rates: 4 Hz (blue), 10 Hz (brown) and 15 Hz (yellow).

We seem to observe that the holes-driven flow amplitude is mostly proportional to
the shell rotation rate. We also remark that the experimental profiles display some radial
oscillations that are not reproduced by the simulations. Those are a signature from the
mode collection again, as mentioned in Chapter 4, due to the fact that the mode collection
we managed to extract does not fully constrain the inversion. This effect is especially
strong on the lower 4 Hz rotation rate, where the flow splittings are rather small, hence
difficult to accurately extract (and separate from the rotational splittings).

We started to investigate the influence of the number of open holes. We remarked that
the flow amplitude decreases with the number of open holes, as predicted by the finite-
element simulations. However this leads to small flow splittings that are in turn more
difficult to accurately extract. This is still work in progress and we currently have too few
reliable inverted velocity profiles to be able to deduct a clear trend on the influence of the
number of open holes.
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5.3 Physical description of the flow

We now try to understand the physical mechanisms at play to interpret the observations.
The difference in pressure caused by centrifugal effect is expected to induce a flow in the
holes, which in turn causes a global zonal flow.

We first consider the relation between the pressure gradient and the flow it can produce
in the holes. Then we will consider the balance with the bulk to try and recover a relation
with the global zonal flow velocity.

5.3.1 In the hole

In presence of rotation, a pressure gradient due to centrifugal effects appear. When there
are several openings in the container, at positions with different pressure, a circulation
can take place. This is the principle of centrifugal pumps (Shah et al., 2013). The hole we
open to induce the centrifugal zonal flow can be considered as a pipe, where the general
Bernoulli equation reads (Guyon et al., 2001)

(a + K)1
2ρv

2
hole + L

L

D

1
2ρv

2
hole = pin − p0 = pcent, (5.1)

where D = 2 mm, L = 1 cm are the diameter and length of the pipe, p0 and pin are the
ambient pressure and the pressure in the cavity respectively.

In this equation, the energy related to advection is proportional to a which is the
energy coefficient (or kinetic energy correction factor) of the flow. For a uniform flow
a = 1 and a = 2 for a Poiseuille flow. K is the coefficient of the singular head loss,which
may depend on D, and is typically around 1 for an outlet or an inlet. Finally L is the
regular head loss coefficient (or Darcy-Weisbach friction coefficient), usually given by the
Colebrook equation (Brkić, 2011) or Moody diagrams (Darcy, 1857; Moody, 1944).

Typically, for a Reynolds number Re = vholeD/ν < 103, the flow is a Poiseuille flow,
leading to L = 64/Re, whereas L is a rugosity-dependent constant for Re > 103, around
L = 0.01− 0.1. In this equation,

pcent = ρ(Ωa)2

2
(
sin2 θout − sin2 θin

)
= ρ(δsΩa)2

2 (5.2)

is the driving pressure due to the centrifugal force, with a the radius of the container and
δ2
s = sin2 θout − sin2 θin with the inlet and outlet holes at θin and θout respectively. For
θout = 2θin = π/3, which is typically the case for ZoRo, we have δ2

s = 1/2.
The velocity in the hole (or pipe) is thus controlled by a local balance, and can be

solved analytically (quadratic polynomial). Using e.g. L = 64/Re, we obtain

vhole = 32Lν
D2(a + K)


√√√√1 +

(
δsaΩD2

√
a + K

32Lν

)2

− 1

 (5.3)

= 0.4
[√

1 + Ω2/32− 1
]
, (5.4)

with a = 0.2 m, ν = 2.10−5 m2/s and a = K = 2.
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This equation corresponds to a Poiseuille profile in presence of an inlet and an outlet.
We recover that vhole ∝ Ω in the regime of large Ω where the regular head loss is negligible,
i.e. when a+K� LL/D or Re > 160. Note that this assumption will also give the correct
order of magnitude when LL/D = 0.05− 0.5 < a + K = 4 for Re > 103. We also verified
with finite-elements simulations that this it the correct order of magnitude of vhole.

In this regime, pcent is mainly balanced by (a+K)1
2ρv

2
hole, and the exact solution gives

vhole ≈
δsΩa√
a + K

− 32Lν
D2(a + K) ≈

δsΩa√
a + K

, (5.5)

for large Ω, i.e. a constant Rossby number

Ro = vhole
Ωa ≈

δs√
a + K

∼ 1
4 . (5.6)

5.3.2 In the bulk

In the bulk, the inviscid linearised fluid equations govern the flow. They write as (Black-
stock, 2000)

∂tvs − 2Ωvφ = −∂rp (5.7)
∂tvφ + 2Ωvs = 0. (5.8)

At the inlet, the flow goes away from the rotation axis (in the s direction), leading
to retrograde columnar vortex, whereas the flow converge towards the outlet, leading to
prograde columnar vortex (Aubert et al., 2002), similar to cyclones and anti-cyclones seen
in the atmosphere. Due to the positions of the holes, the quasi-geostrophic vortices are
aligned and then create a large scale geostrophic flow in the bulk (conveyor belt), a drawing
of the flows created by such a mechanism is shown in Figure 5.13.

In the experiments, the size ` of these vortices is given by

` = max(D,hE1/3), (5.9)

where h is the height of the geostrophic column. We may thus expect a change of trend for
D = hE1/3, i.e. 10 Hz using D = 2 mm and h = 10 cm. One can thus expect a retrograde
bulk flow between the cylindrical radii of the inlet and the outlet. The columnar vortex
are balanced by the Ekman drag, leading to a local vorticity

ω̃ = −vhole

√
Ω/ν, (5.10)

and vhole ∝ Ω, as explicited in eq. (5.5). So this gives for large enough rotation rates
(typically > 10 Hz in the experiment),

vbulk
φ ∝ f3/2

Ω . (5.11)
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Figure 5.13: Drawing of the expected flow structure. Each hole behave like a centrifugal pump
creating columnar quasi-geostrophic vortices, which in turn create a large scale geostrophic flow
(Aubert et al., 2002).

5.3.3 Comparison with the experiment

From the inverted velocity profile it is difficult to discriminate the variations due to the
inversion itself (limited and influenced by its spatial resolution) and actual physically
relevant variations. So we decided to consider the maximum angular velocity within each
profile. We compile the (experimental) maximum inverted angular velocity for increasing
rotation rates and 7 open holes configuration in Figure 5.14 (in log-scale). The predicted
f

3/2
Ω law is added in dashed line for comparison. Here the pre-factor used is 0.04.

The experimental inverted velocity can be explained with this law for rotation rates,
above 10 Hz. However more experimental data would be welcomed to complete the dataset
and be more confident in whether we verify the predicted scaling.

We can consider a more precise force balance by supposing that the azimuthal velocity
vcolφ ≈ ω`φ of the columnar vortex exerts a viscous drag on the bulk of the fluid: a
bulk column of area ∼ ah is put in rotation by the vortex surface, of ∼ N`φh in the
experiments (with N the number of columns, i.e. of opened holes), and of ∼ ah in the
COMSOL axisymmetric simulations. Using the surface area ratio as an estimate of the
coupling efficiency, one can thus expect a bulk azimuthal velocity of

vbulkφ ≈ N`φ
a
vcolφ ≈ −

N`2φ
a
vhole

√
Ω/ν, (5.12)

where N = a/`φ allows to retrieve the case of COMSOL axisymmetric simulations. In the
experiments, this gives, for large enough rotation rates (typically > 10 Hz),

vbulkφ ≈ −N δs Ω3/2`2√
ν(a + K)

= −3.5 · 10−3N f
3/2
Ω (5.13)

with ` = D and fΩ = Ω/(2π) is the rotation rate in Hz.
For the experimental values with 7 open holes, the pre-factor is 0.03, very close to the

experimental value of 0.04.
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Figure 5.14: Experimental absolute angular velocity (averaged in obtained with inversion of data
at increasing rotation rates, for 7 open holes configurations (red circles). Finite-element solutions
for same configuration are shown in blue diamonds for comparison. The predicted relation with
f

3/2
Ω is given in dashed black line, here with prefactor 0.04. For comparison the fΩ slope is given
in dash-dotted black line.

5.4 Discussion

Flows driven by the centrifugal force through numerous narrow holes are very rich both
by the parameters we can vary and its physical mechanisms that is close to convective
zonal flows. We have reproduced a zonal flow induced by mechanical energy injection at
small scale, which is comparable to e.g. Cabanes et al. (2017).

However the open holes change the boundary condition from a no-slip to a no-stress
boundary, and this is expected to affect the acoustic modes. Indeed when we consider
low rotation rates, the splittings do not seem to follow a clear slope anymore. As seen
in Figure 5.15, the flow splitting seem to hit a plateau around 5 Hz for several mode. In
particular for the fundamental mode 0S1, the flow splitting is minimum at 5 Hz and goes
up again at lower rotation rates.

In order to investigate this effect, we looked at the splitting at rest (no flows, no
rotation) but with the holes open. In Figure 5.16, we show a comparison between acoustic
spectra at rest for all closed holes (top) and all open holes (bottom). The splitting at
rest (around 4 Hz) for all open holes is consistent with the observed trend from 5 Hz
downwards. Note that this effect is most important for n = 0 modes and almost negligible
for n > 0 modes.

It is now clear that this splitting is purely due to the change of boundary conditions,
and is not to be attributed on actual flow velocity in the cavity. In order to investigate
this issue further, we ran full 3D finite-element simulations both at rest and with rotation,
and retrieve the same results.

One particular fact is that the influence of the hole dimension (diameter D and
length L). Indeed the influence of the opening depends on the hole geometry, and in
particular the D/L ratio. When the ratio is large the hole is closer to a simple opening
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Figure 5.15: Flow splitting for increasing rotation rates for 7 open holes configuration. Symbols
give the n number, colour the m number. The flow splitting is zero for solid-body rotation at the
container rotation rate.

and when it is large, it verifies the asymptotic relations valid for pipes. We plotted in
Figure 5.17 the evolution of the acoustic eigen frequencies with the length of the pipe L
for different open holes configurations. We can see that the free boundary condition is the
key element here as there is no significant difference between closed holes (closed at the
end of the hole), dashed red, and no holes at all, black line. At rest the frequency shift
seem proportional to the number of holes. We also remark the steep slope near L = 0,
where the cavity is almost in contact with the outside fluid, and the change of slope seems
to be around L = 0.2 cm, which corresponds to the experimental hole diameter.

We are now convinced that the local change of boundary condition has a non-negligible
effect on acoustic frequencies. It is possible to take this effect into account using the theory
developed by Moldover et al. (1986). We started to implement his theory, but it is still
work in progress. We show some values of splitting due to open holes (at rest) obtained
with the two methods, finite-element simulations and Moldover et al. (1986)’s theory in
Table 5.1, along with the splittings measured in the experiment.

As we can see the theorerical implementation still needs improvement, although it
retrieves the correct relative splittings. The finite-element calculations values are quite
close to the experiment, once again validating its relevance for the experimental apparatus.
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Figure 5.16: Experimental acoustic spectra centred around 0S1 at rest with 7 open holes config-
uration (top) and all closed holes (bottom). The predicted frequencies for a closed container are
shown in vertical lines.

Figure 5.17: Evolution of acoustic mode frequency for the fundamental multiplet 0S1, left m = 1,
right m = 0. The colours correspond to different number of open holes (0 up to 6), and no holes
(smooth container).
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Mode Exp. COMSOL Theory
0S1

1 3.47 2.00 0.52
7 open holes 0S1

2 4.5 2.6 0.69
0S2

2 1.59 0.79 0.20
0S1

1 1.75 0.95
3 open holes 0S1

2 2.74 1.23
0S2

2 1.15 0.51

Table 5.1: Acoustic splitting (Hz) at rest for 7 and 3 open holes, values from the experimental
measures, finite-element calculations and theory from Moldover et al. (1986).

Key points

We presented some preliminary results we have on a zonal flow driven by centrifugal
pumps. So far we did the following:

Successful imaging of centrifugal pumps driven flow using MAV

Verification with finite-element simulation (axisymmetric and 3D)

First insights on theoretical scalings

Discussion around the influence of the boundary condition modification in pres-
ence of holes



6
Conclusions and Perspectives

The more I learn, the more I know that I don’t know.

- Plato, Apology

6.1 Conclusions

We implemented a new velocimetry technique called modal acoustic velocimetry (MAV).
This technique relies on the acoustic resonances of the fluid cavity. The resonance fre-
quencies are sensitive to the resonating medium internal properties but also to its velocity.
In particular azimuthal flows can be linked to a splitting in mode frequency. This feature
has been used in helio-seismology to image the Sun’s internal flows. Recently a labora-
tory equivalent was proposed by Triana et al. (2014). Following this pioneering work, we
build a new experimental apparatus with the long term goal of studying thermally driven
zonal flows using MAV. The new ZoRo experiment is an air-filled oblate spheroid rotating
around its symmetry axis. We conceived, manufactured and built the ZoRo experiment,
and implemented the measurements chain needed to apply MAV on it.

In order to isolate the flow velocity influence on the acoustic spectra we have used
theoretical developments to predict the main relevant effects that influence the acoustic
spectrum. We use the perturbation theory approach and linearly superpose the devia-
tions from the initial reference model, the diffusionless gaseous sphere at rest. To do so we
followed the existing work from various domains that have used normal modes. We consid-
ered the flow influence with the framework used by astero-seismologists (Aerts et al., 2010),
the diffusion effects (thermal and viscous) are taken into account thanks to the metrolo-
gist’s framework (Moldover et al., 1986) and finally the expression of the geometrical effect
comes from both seismologists (Dahlen and Tromp, 1998) and metrologists (Mehl, 2007).
Combining all those different theories allowed us to fully describe the acoustic spectrum
corresponding to the experimental set-up and better understand the spectra measured
in the experiment. We also compared those results to finite-element simulations, using
the commercial software COMSOL. We managed to create realistic theoretical synthetic
spectra that correspond well to the data obtained from the ZoRo measurements.

111
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Having the theoretical description is needed to solve the inverse problem, where we
measure the acoustic splittings and try to retrieve the flow field. We then test the inversion
routine against synthetic cases. We choose realistic and relevant flows with increasing
complexity, and try to retrieve the given velocity profile with acoustic modes inversion.
We first invert solid-body rotation of the fluid, then spin up using velocity profiles predicted
with theoretical calculations. Then we confront the inversion against realistic profiles of
zonal flows driven by thermal convection, obtained with numerical simulations by Guervilly
and Cardin (2017). We verified that MAV is a suitable measurement technique to retrieve
zonal flows, even those that display complicated velocity profiles with multiple jets.

Finally we apply the routines we developed on an experimental flow. We choose to
study a centrifugally driven zonal flow, obtained by opening small holes in the container
while in rotation. It is a mechanically induced flow where energy is injected as small-scale
and back-cascaded toward global zonal flow, similar to what we expect would happen with
a thermally driven flow. We successfully retrieved relevant velocity profiles using MAV,
with spatial resolution down to a few centimeters. We are able to discuss some of the
mechanisms driving the zonal flow structures and the different regimes we can attain.

In conclusion, we showed that MAV is a well-suited measurement technique to study
zonal flows. MAV allows to retrieve a global velocity profile with relatively high spatial
resolution, while being non-intrusive and without needing to seed the fluid. We fully
developed both the experimental, theoretical and numerical tools to apply MAV on ZoRo.
This forms the first step towards the study of zonal flows driven by thermal convection in
a regime closer to that of natural systems than existing experiments.

6.2 Perspectives

We present some possible perspective of future work, including some unfinished applica-
tions that were not included in this manuscript. We then suggest some ideas for further
possible experiments and application of MAV.

6.2.1 Improvements on MAV technique

Splitting extraction improvements

In the continuity of the present work, we can use mechanically driven flows that we men-
tioned to further improve the MAV technique. We showed in Chapter 4 synthetic cases
of spin up. We would like to reproduce the synthetic spectra and velocity profile using
real experimental data, on both spin up and down. In order to do so, we need a precise
synchronisation between the motor jerk and the acoustic signal. We recently implemented
this on the experimental apparatus, which should allow us to investigate those flows.

A second limitation is the frequency resolution of the acoustic spectra. Since the flow
is time-dependent, in order to capture its time variation, the acquisition time needs to
be short (compared to the flow variation). However the frequency resolution is inversely
proportional to the acquisition time: 10 s of signal allows a resolution down to 0.1 Hz
while 1 s gives only one data point every 1 Hz, which is the typical half-width of the
acoustic resonance peak. In order to tackle this issue, we previously used an equivalent
technique on the spectrum, stacking several iteration of the same flow moment to cancel
out the noise. But in order to significantly improve the frequency resolution, some sort of
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interpolation is needed which is not satisfactory. In order to solve this issue, we plan to
rely on the phase of the Fourier transform. The phase is not affected by the noise so can
easily be averaged over many iteration to improve the peak frequency determination.

We are currently investigating how the study of the signal phase can bring additional
information for data analysis. We have 7 electrets uniformly distributed on each latitude,
so we should be able to fully discriminate the m of any mode up to 3 by performing a
Laplace transform. This would further help mode identification and could significantly
increase the number of available modes. This is of particular interest since the small m
modes are very close to each other (geometry splitting in m2 at first-order), so they are
currently difficult to extract.

More accurate synthetic predictions of acoustic spectra

In particular we would like to take into account the coupled terms between ellipticity and
rotation that we saw can make a difference when rotation rate starts to get faster. To
do so we can use the eigenfunctions corresponding to the spheroid up to second-order
(instead of the spherical functions). This would define spheroidal Ledoux coefficients and
the spheroidal sensitivity kernels, allowing more accurate flow inversions.

We would also like to include second-order perturbation in rotation, as Vidal et al.
(2020) shows that second-order Coriolis terms should be visible at ZoRo’s rotation rate
range (starting from 20 Hz). We would also like to include centrifugal effects that is also
second-order in rotation. Expression of both of these additional terms have been proposed
by Dahlen and Tromp (1998), but some theoretical considerations are needed to adapt it
for ZoRo.

Change of working fluid

From the experimental side, it would be interesting to try and change the working fluid.
Preliminary studies showed that different gases may have very different attenuation process
when the bulk contribution can be larger than the boundary’s. A gas of particular interest
would be SF6 which has a very small dissipation, hence would display thinner peaks in its
acoustic spectra than air. This feature could allow more precise mode identification and
frequency measurements.

MAV would also be of particular interest for experiments using liquid metals, since
they are opaque (in the visible wavelength). However attempts to use MAV on liquid
sodium have been unsuccessful so far. The main concern would be the ratio of acoustic
impedances (∝ ρc2) between the container and the fluid. It is very large for gases enclosed
in metal shells (∼ 106 for air in aluminium, as in ZoRo), but not for liquids (∼ 4 for
water in plexiglas and ∼ 50 for liquid sodium in aluminium, which was tested so far). The
container impedance is still larger so the method should be able to work but we expect
the resonances to be much more difficult to measure. It would thus be interesting to start
by trying to apply MAV on simpler liquids such as water. Acousticians recently managed
to efficiently excite acoustic waves in a water tank (Novak et al., 2018) that could help to
implement MAV in such conditions. Such change of working fluid is possible thanks to
the gas-tightness of ZoRo apparatus, and it would generalise MAV to be usable in both
gases and liquids.
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6.2.2 Geophysical applications

Centrifugal holes driven flows

We presented a first set of data along with their inverted velocity profiles. However
as discussed in Chapter 5, we have not fully exploited the parameters available in the
experimental conditions. We aim to further investigate the influence of the number of
open holes to see if the data agree with the theoretical predicted evolution.

Additionally, the open holes induce a splitting at rest by changing the boundary con-
ditions locally. This caused the acoustic splittings to be intricate at low rotation rates. In
order to separate the two effects, it would be useful to differentiate the two ±m modes.
In order to do that we tried to track each peak based on its amplitude. This method was
not very successful as the amplitudes tend to vary from on rotation rate to another.

We are currently investigating the phase of the Fourier transform of the acoustic signal.
So far we only used its module to extract the acoustic spectrum (and marginally the
dissipation to help distinguish the overtones). But the phase changes depending on the
mode, and in particular depending on its sign (Ecotiere et al., 2004). The phase could
also serve to improve the spectral resolution of the mode eigenfrequency.

Longitudinal librations

Longitudinal librations are a relevant type of geophysical forcings that mechanically induce
zonal flows. And it is a type of flow that we can easily implement with the ZoRo experi-
mental set-up. They consist in having the container rotation rate oscillate in time (while
keeping the same rotation axis). They are characterized by the mean rotation rate Ω0
(or offset), the amplitude Alib and frequency ωlib of the oscillations. The flow induced in
the bulk by such container movements can be theoretically predicted for small amplitude
flows (small Rossby number) in the frame rotating at Ω0, by (Deleplace, 2005)

vφ(r, θ, t) = Alibr sin θ Ek1/2

(Ek + ω2
libL

3)1/2 sin
[
ωlibt+ arctan

(
−ωlibL

3/2

Ek1/2

)]
(6.1)

where L =
√
a− r2 sin2 θ is the column height and Ek is the Ekman number.

An example of longitudinal libration flow is represented in the left panel of Figure 6.1
against time. It corresponds to Alib = 1 Hz and the period Tlib = 7 s. Longitudinal
librations are interesting because of the very large variation of flows they can induce
depending on the regime. Depending on the libration parameters ratio, it can be considered
as a succession of spins up and down, create inertial waves (Aldridge and Toomre, 1969;
Sauret et al., 2013), or even instabilities (Cébron et al., 2012, 2014) that can be turbulent
and create large scale zonal mean flows (Noir et al., 2010; Sauret et al., 2010; Busse, 2010;
Le Dizès, 2015). Librations are also interesting from the geophysical point of view as they
are part of the mechanical forcings observed in geophysical bodies that have the potential
to affect the energy transfer (Noir et al., 2009; Le Bars et al., 2015; Vidal and Cébron,
2017). We show in the right panel of Figure 6.1, the regimes we can attain within ZoRo
experimental conditions (in green) along with the predicted values for the regime change.

It would be interesting to try to recover the different predicted regimes, and measure
the full flow as existing experimental study of longitudinal libration only acquire data
on bi-dimensional plane at the time (mostly due to the laser sheet geometry in the PIV
technique they use).
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Figure 6.1: Left: Azimuthal velocity in the frame rotating at Ω0 for longitudinal libration of
amplitude Alib = 1 Hz, period T = 7 s against cylindrical radius s and time. The start of each
libration period is indicated by dashed lines. Within a period the fluid goes through a retrograde
and prograde phase where it is slower (resp. faster) rotating than the average rate Ω0. Right:
Librations regimes separated by dashed lines, in green the attainable regimes within ZoRo. The
parameters corresponding to the left panel velocity field is indicated by the blue circle.

Thermal gradients

The next step towards realistic zonal flows is to add the thermal ingredient into the
experiment. This comes with several challenges, some that we already started to tackle.

Experimental adjustments ZoRo was conceived with this goal in mind, so it can
accommodate all additional thermal sources and sensors. The thermal gradient is imposed
from the outside of the container using infra-red radiants (ref. 198-8529 from RadioSpare)
mounted on the frame (see Appendix C for details). The container presents two types of
pre-drilled holes intended for temperature sensors. The first kind are non-through holes
where we mounted digital temperature sensors (ref. D18B20 from Maxim Arduino) in
contact with the container. They are distributed at three latitudes on each hemisphere
(see Appendix C for detailed positions). The role of these sensors is to measure the
overall container temperature with a twofold purpose, first to know what is the surface
temperature in contact with the fluid cavity, and second to monitor this temperature in
order to ensure that the container temperature is below the maximum working temperature
of the instrumentation in contact with it (speakers, electrets, wires...). Both the infra-red
heating and container temperature sensors have been successfully tested on ZoRo.

The second kind of temperature sensors are NTC thermistors (ref. TT5-10KC3-70
from TEWA Thermico Ltd), mounted in through holes (the holes used to induced the
centrifugal flow) and they have the sensitive component in contact with the gas inside
the cavity. We aim to use the thermistors to track the temperature anomalies that are
expected to be carried by the large scale zonal flow (Guervilly and Cardin, 2017), in order
to have a complementary velocity measurements as well as an insight on the temperature
in the cavity. This is the reason why a lot of sensors are needed (56 can be mounted on
the container at the same time). One challenge arises from the fact that the acquisition
wires need to go through a slip ring with limited entries (36 at most). In order to solve
this problem we choose to multiplex the thermistors’ signals. The idea is to successively
measure the N wanted channels during a period T each, creating only one (longer) data
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signal of length NT that would contain all the data from all the channels depending on
the time: from 0 to T is the data from channel 1, T to 2T from channel 2, etc. We adapted
and manufactured an electronic card for this purpose (original electronic card design by
Yoann Corre, Menaut (2019)). Our design is given in Appendix E, we successfully tested
it in “desk” conditions and plan to mount it on ZoRo to test it in experimental conditions.

Theoretical developments One of the major difficulty of adding thermal gradient is
the sensitivity of sound speed with temperature, as observed in Chapter 3.

The theoretical influence of local change of temperature on normal modes has been
explicitly proposed only recently by Koulakis et al. (2018). Dahlen and Tromp (1998)’s
formalism allow local changes of density and elastic parameters, and we plan to apply it
to our acoustic case.

This was one of the objective of Arnaud Piet’s Master thesis (Piet, 2019), partly
reproduced in Appendix F. We do not fully understand how to predict acoustic spectra
in presence of any temperature profile yet. One of the upcoming work is to tackle this
problem again building on Piet (2019)’s preliminary work.

We already ran some preliminary finite-element simulations that gave us some insights
on the expected results. We would also like to extend the method used in Vidal et al.
(2020) to include thermal gradients and compare it with future experimental results.

Thermal wind experiment Thermal winds present the advantage of including the
thermal ingredient we were missing while being a well-known stable flow with analytical
solutions (Vallis, 2017).

We ran some preliminary experiments of thermal winds and measured the correspond-
ing spectral acoustic response. This was part of the Master thesis of Piet (2019). An
example of acoustic spectra with both rotation and thermal gradient, is plotted in Fig-
ure 6.2.

While doing so, we ran into several difficulties. First since the experimental system
allows only either heating or cooling (not both at the same time), the experiment must be
conducted in a transient regime where the average temperature either goes up or down. As
already discussed in Chapter 3, this causes the spectrum to drift in frequency, which can
be observed on Figure 6.2. This drift complicates the spectrum interpretation, enforcing
the need to have a reliable theoretical model for local changes in the fluid’s temperature.

Those preliminary qualitative observations are nonetheless very encouraging as we can
clearly see a signature of those thermally driven flows compared to a simple solid-body
rotation.

Change of pressure

ZoRo is capable of supporting over and under pressure in its cavity, which allows change
of fluid but also controlled pressure variations in the cavity.

This feature is of great interest because in gases a change in pressure only change
the gas density (at first order). This means that a change of pressure is directly linked
(mainly proportional) to a change of Ekman number. To double the pressure is equivalent
to dividing the Ekman number by 2. This would allow even smaller Ekman number,
allowing us to study regimes even closer to what can be seen in the natural systems.
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(c) Symmetric signal around 0S4
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Figure 6.2: Acoustic spectra for a selection of modes for a solid-body rotation (black) and a
equatorial cooling with rotation (colours). Left (right) column are the sum (difference) of acoustic
signal respectively. During the cooling, the apparent temperature deduced from the 2S0 modes
frequency goes from 314 K (red) down to 309 K (dark blue). From Piet (2019).

Change of geometry

We chose spheroidal geometry with the idea of only partially lifting the degeneracy at rest,
in order to have a clear distinction when there is a velocity involved (apparition of peaks).
However we are now confident in all the mode identification and extraction routines, and
the experimental acoustic spectra have proven to be strikingly well predicted by theory
and numericals.

It would be interesting to consider a non-axisymmetric container this time such as a
triaxial ellipsoid. This would lift all degeneracy at rest, and would help distinguish the
±m of a multiplet, hence bring additional information on the flow direction.

Ellipsoids are also relevant from a planetary point of view, since they allow even more
instabilities than an axisymmetric body (Noir et al., 2012; Grannan et al., 2014; Le Bars
et al., 2015; Vidal and Cébron, 2017).
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Acoustic spectra carry a lot of information on both the cavity where they resonate and
on the medium they propagate in. They are a very sensitive and completely measurable
quantity, while requiring very little instrumentation. In that sense they are the perfect
observational technique. However this quality is also what makes this technique so difficult
to use, as a lot of parameters influence the acoustic spectra sometimes even interacting
with each other. Retrieving only one effect and isolating its signature in the acoustic
spectrum is the challenge of MAV. I believe we started to make a dent on this problem,
explaining one effect after another, hopefully paving the way for even more interesting
applications of this technique.
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A
Rotational sensitivity kernels

Rotational sensitivity kernels Knlm as defined in eq. (2.62). We show a more complete set
of kernels than in the main text, one page per n (n = 0, n = 1, n = 2 ).

Please note that we show here the adimensional kernel (computed with adimensionned
radius of the sphere a = 1). The structures remain unchanged, and the amplitude of the
dimensionned Knlm from main text can be retrieved by simply multiply the admensional
kernels by 1/aZoRo = 1/0.2 = 8 (with 0.2 m the dimensional ZoRo radius).
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B
Finite-element calculations with

COMSOL Multiphysics

All finite-element simulations were carried out with the commercial software COMSOL.
We present here an overview of the numerical procedures we used, some of the difficulties
we came across and how we solved them.

B.1 Built-in COMSOL (version 5.4) capabilities and limita-
tions

Finite-element calculations, on which relies the commercial software COMSOL Multi-
physics, allow calculating acoustic modes in arbitrary geometries, in particular in the
exact geometry of ZoRo. In this section, we show how one can determine accurately the
effects, on modes, of rotation and thermo-viscous diffusion with COMSOL. Indeed, these
effects cannot be simply calculated using the acoustic (scalar) equation governing the pres-
sure p, and require thus to consider the more complex (vectorial) Navier-Stokes equations
governing the velocity field u. This can be done using the aeroacoustics interface of COM-
SOL, but three-dimensional (3D) calculations are too costly to resolve the thin acoustic
boundary layers, and the built-in axisymmetric interface discard any possible azimuthal
dependency of the fields.

In order to perform efficient axisymmetric calculations with a 2D mesh and a possible
azimuthal dependency, we have thus exploited the axisymmetry of our spheroidal geom-
etry by assuming a periodic dependency exp[i(ωt + mφ)], with the imaginary unit i, the
cylindrical coordinates (r, φ, z), the azimuthal wavenumber m, the time t and the angular
eigenfrequency ω. Built-in COMSOL interfaces allow such 2D calculations for the acoustic
equation but not for the Navier-Stokes equations, for which the built-in interface is limited
to m = 0.

The scripts taking into account the following modified equations are available at https:
//www.isterre.fr/annuaire/member-web-pages/david-cebron/.
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B.2 How to calculate COMSOL axisymmetric aero-acoustic
modes with m 6= 0 ?

To consider a possible azimuthal flow v using the built-in COMSOL axisymmetric interface
for aeroacoustics, we need an additional equation governing v, and the ansatz exp[i(ωt+
mϕ)] will add supplementary terms in every equation. Note also that additional terms are
also required to take into account the rotation of the frame.

In practice, we have used two sets of axisymmetric COMSOL aero-acoustics interfaces
in the frequency domain, such that equations (2.21)-(2.23) are solved for two sets of
unknowns named (u, T, p) and (u2, T2, p2), where u = (u,w) is the built-in unknown
velocity field in the cylindrical coordinates, with the cylindrico-radial velocity component
u, and the axial velocity w along the z axis. Note that the interface ’Heat transfer in Fluids’
is not well suited since eigensolvers are not built-in COMSOL for this interface, while using
the PDE interface is difficult since the axisymmetric interface is not built-in (r and z are
surprisingly treated as Cartesian coordinates in the built-in PDE interface). Then, noting
with a subscript 2 the quantities associated with the set of equations governing (u2, T2, p2),
the required additional equation is given by the equation governing the unknown T2, which
is formally the same as equation (2.23). Indeed, the (scalar) equation governing v is the
same as the one governing T2 provided that (i) the velocity u2 is replaced by u, (ii) the
density ρ2 is replaced by ρ, (iii) we set λ2 = µ2 = 0, such that the velocity u2 does not
contribute to the eigenmode damping calculation, and λ2 = µ, α2 = 0, Cp2 = 1, T02 = v0,
with the basic state u0 = (u0, w0). Then, in the frame rotating at Ω = Ωẑ = 2πfΩẑ,
the following source terms (due to m 6= 0 and rotation) have been calculated using the
commercial software MAPLE (symbolic computations) and added in the COMSOL built-
in equations. In cylindrical coordinates (r, φ, z), these source terms read

M = − iρ0mv

r
− iρmv0

r
, (B.1)

Fr = −ρ0

[
v0
r

(imu− 2v)− 2Ωv
]

+ ρ

[
v2

0
r

+ 2Ωv0 + Ω2r

]

− µ

r2

(
2imv +m2u

)
+ im

(
µB + µ

3

)(
∂rv

r
− v

r2

)
, (B.2)

Fz = − iρ0mv0w

r
− µm

2

r2 w +
(
µB + µ

3

) im∂zv
r

, (B.3)

and

Q = −Cp
i
r
ρ0mv0T + α

i
r
T0mv0p− λ

m2

r2 T , (B.4)

Q2 = −ρ0

[
v0(imv + u) + u0v

r
+ 2Ωu

]
− ρ

[
u0v0
r

+ 2Ωu0

]
− im

r
p+ µ

r2

[
2imu− (1 +m2)v

]
+
(
µB + µ

3

)[ im(∂ru+ ∂zw)
r

+ imu−m2v

r2

]
,

(B.5)

where the azimuthal velocity v is actually governed by the built-in temperature equation
of COMSOL for T2, and where Q2 is the source term to add in the set of equations
governing (u2, T2, p2). Note that these supplementary terms have been simply obtained
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by subtracting, from the full equations, the equations in the particular case v = m = Ω = 0
corresponding to the COMSOL built-in equations.

In all our calculations, we have actually considered a homogeneous basic state (we have
checked that the centrifugal forces are negligible in the context of the ZoRo experiment)
at 20◦C, using the parameters of table B.1. Note also that global rotation, via the Coriolis
force, adds a supplementary family of eigenmodes named inertial modes (Greenspan, 1968).
However, since the global rotation rate for ZoRo is small compared to the sound speed,
there is no hybridization between acoustic and inertial modes (Vidal et al., 2020).

Table B.1: Parameter values used in the COMSOL calculations, for homogeneous ambient pressure
p0 = 1 atm and temperature T0 = 20◦ (see p. 315 of Blackstock, 2000, for the chosen value of
µB).

ρ0 µ µB Cp α λ βT γ c
kg.m−3 Pa.s Pa.s J.kg−1.K−1 K−1 W.K−1.m−1 Pa−1 m.s−1

1.204 1.81 · 10−5 0.6 µ 1005.42 3.41 · 10−3 2.58 · 10−2 9.87 · 10−6 1.4 343.194

B.3 Boundary conditions and details on the numerics

To be as close as possible to the experiment, we impose at the fluid boundary a no-
slip condition, i.e. (u, v, w) = (0, 0, 0) in the frame attached to the rigid container, and a
constant temperature. These conditions leads to a modification of the (complex) eigenvalue
due to respectively the viscous and thermal boundary layers. Because of the large thermal
conductivity of the metallic container of ZoRo compared to the one of air, the COMSOL
calculations neglect the finite thermal conductivity of the container (which would modify
the boundary heat loss and thus the thermal damping of acoustic modes). In the main
calculations shown in the article, the finite elasticity of the boundary is also neglected
(the boundary is assumed to be perfectly rigid, preventing any radiation of sound in the
surrounding fluid). However, calculations with an elastic boundary (with and without a
sound radiation in a surrounding fluid) have also been performed in order to validate the
elasto-acoustic estimates of the theoretical perturbative calculation (see section B.4 for
details on these calculations).

In addition to eigenvalue calculations, COMSOL also allows us to calculate, in the
frequency domain, the fluid response for a given excitation source. At the locations of the
experiment audio speakers and taking into account the finite size of the audio speaker,
we have thus prescribed a velocity iω at the boundary, both in the normal and tangential
directions. Then, the pressure is recorded, in the COMSOL calculation, at the point where
the electrets are positioned in the experiment (the finite size of electrets is neglected in
COMSOL calculations). Finally, the fluid response is calculated for a large number of m,
and the complete response is then simply obtained by summing the results obtained for
each m.

In order to give an idea of the CPU time required for such calculations, one can consider
the numerical calculations we have done to reproduce the acoustic spectrum measured
experimentally between 500 Hz and 2335 Hz. For this calculation, the fluid response has
been calculated for each m between 0 and 6 for ∼ 3000 well-chosen frequencies, with
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a step of 0.2 Hz near the resonance peaks and with typically 15 calculated frequencies
between the acoustics peaks. To capture correctly the thin boundary layers, we have used
a fine mesh model with ∼ 160 000 degrees of freedom. Even if the calculation of a unique
fluid response takes only ∼ 12s on a 6 cores desktop computer, we had to do ∼ 20 000
calculations, leading to a CPU time of 3 days on this computer. Thus, the calculation of
the complete spectrum between 500 Hz and 3000 Hz (typical resolution of 0.2 Hz near the
resonances), which requires to consider all the values of m between 0 and 8, has taken a
full week of calculation (or 1 day using a 64 cores cluster).

Note finally that careful tests of numerical convergence have been systematically per-
formed. We have checked that the boundary layers are well resolved, with several mesh
points within the boundary layer thickness

√
ν/ft = 100µm, with ft = 2 kHz the typical

acoustic frequency and ν = µ/ρ0 = 2 · 10−5 m2.s−1 the typical air kinematic viscosity in
experiments (the thermal boundary layer thickness is similar since the air Prandtl number
is Pr = ρCpν/λ = 0.7). Our tests of numerical convergence (see appendix C of Vidal
et al., 2020) show that, for a given number of degrees of freedom, increasing the elements
order decreases (respectively increases) the accuracy of the calculated eigenfrequency (re-
spectively damping). We have thus used systematically Lagrange elements of order 3 for
the pressure and order 4 for the velocity and temperature.

B.4 Elastic container, boundary coupling and sound radia-
tion in the surrounding outer fluid

COMSOL also allows built-in calculations of pure elastic modes of the container. Even
without any shell model approximation, such calculations are not costly, which allows 3D
calculations. Considering a linear elastic container with completely free boundaries, such
3D calculations give a (degenerate) fundamental mode at 2853 Hz for a 1 cm thick sphere
of internal radius 0.2 m, with a Young modulus of 71 GPa, a Poisson’s ratio of 0.33 and
a density of 2810 kg.m−3. Considering now the 1 cm thick spheroidal geometry of ZoRo,
of internal semi-axes 0.2 m and 0.19 m, this mode is split into a mode at 2807 Hz and
another (degenerate) mode at 2854 Hz.

Now, if we consider the COMSOL built-in axisymmetric calculations of elastic modes
with arbitrary m and the previously developed axisymmetric model for acoustic modes,
one can modify the boundary condition to take into account the two-way coupling between
elastic and acoustic modes. However, built-in axisymmetric models do not allow any axial
boundary displacement on the symmetry axis. While this is not a problem for acoustic
modes with a rigid boundary, this axial displacement constraint only allows us to recover
the 3D elastic modes verifying this condition, but also leads to additional elastic modes
(e.g. m = 1 additional modes). Having this issue in mind, we have performed axisymmetric
calculations of elasto-acoustic (diffusive) modes to obtain insights and order of magnitude
estimates, but we have also done 3D calculations of the diffusionless counterparts of these
modes by considering the cheaper scalar acoustic equation (which neglects diffusion and
rotation). For instance, both approaches give that, for a 1 cm thick sphere of internal
radius 0.2 m, the elastic coupling leads to a 0.1% increase of the fundamental acoustic
frequency (around 568 Hz), while the next acoustic eigenfrequency (around 912 Hz) is
decreased by 0.01%. Calculations in the spheroidal geometry of ZoRo give similar results.

Finally, one can also add a surrounding fluid in order to allow sound radiation in the
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outer fluid. To do so, we have solved the scalar acoustic equation in the outer fluid, cou-
pled to the outer boundary of the elastic container. In order to mimic a sound radiation
in an infinite domain, we have to prevent any sound reflection at the outer (computa-
tional) boundary of the outer fluid domain. To do so, we have used the built-in perfectly
matched layer (PML) of COMSOL, which is an additional surrounding domain where the
acoustic waves are absorbed. Using the advised structured mesh for the PML region, we
have thus performed elasto-acoustic calculations with sound radiation. These calculations
have confirmed that the sound radiation can be largely neglected in the discussion of the
experimental results of ZoRo.
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C
Excerpts of ZoRo’s technical

drawings

The mechanical design and realisation of ZoRo is the work of Max Solazzo, mechani-
cal engineer at ISTerre (IE, CNRS). Instrumentation implementation, user interface for
controlling the set-up and acquire the data were done with help from Yann Do, instru-
mentation engineer (AI, CNRS). Both are part of the Geophysical Instrumentation Team
(SIG) of ISTerre.

139



C ( 1 : 2 )

D ( 1 : 2 )

E ( 1 : 2 ) F ( 1 : 2 )

C

D

E

F

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

A A

B B

C C

D D

E E

F F

G G

H H

Approbateur :

Echelle :

n°
REF. FICHIER

Ensemble :

Auteur :

Date :

FOLIO

Date :

FORMAT INDICE

max solazzo 29/10/2018

  

ZR2-EN 0301 01
ZR2-EN0301-01.idw

ZoRo2

Ensemble structure

A1

1:2,5

1 /7 
1381 rue de la piscine, Domaine Universitaire 
38400 Saint-Martin-d'Hères
CS 40700, 38058 Grenoble cedex 9
https://isterre.fr
max.solazzo@univ-grenoble-alpes.fr
+33 (0)4 76 63 59 07

Toute reproduction et utilisation est interdite sans autorisation (lois : n°57-298 du 11/07/92 - art.5 (V) JORF 03/07/92)

Service 
Instrumentations 
GeophysiquesInstitut des Sciences de la Terre

01 premiere emission max solazzo 12/11/2018

Historique des révisions
Rév. Description Aut. Date

4

6

3

2

5

10

9

7

2
5

5
0

30

9
7

2

�76,1

�160

1
4

1
2

6

1
2

�85



G
 (

 2
 :
 1

 )H
 (

 1
 :
 1

 )

Li
st

e 
de

 p
iè

ce
s

M
A

T
IE

R
E

D
E

S
C

R
IP

T
IO

N
N

° 
D

E
 P

IE
C

E
Q

T
E

A
R

T
IC

LE
m

ec
al

u+
de

m
i-s

ph
er

e 
ba

ss
e

Z
R

20
10

2-
01

1
1

m
ec

al
u+

de
m

i-s
ph

er
e 

ha
ut

e
Z

R
20

10
2-

02
1

2
F

K
M

jo
in

t t
or

iq
ue

 D
F

 8
01

 4
12

,4
8x

6,
94

JT
R

18
86

68
1

3
A

2 
E

cr
ou

 h
ex

ag
on

al
. P

ro
du

it 
de

 c
la

ss
e 

A
 e

t B
IS

O
 4

03
2 

- 
M

8
18

4
A

2
R

on
de

lle
s 

pl
at

es
 -

 S
ér

ie
 s

ta
nd

ar
d 

- 
P

ro
du

it 
de

 c
la

ss
e 

A
IS

O
 7

08
9 

- 
 8

18
5

A
2 

V
is

cy
lin

dr
iq

ue
 à

 s
ix

 p
an

s 
cr

eu
x

IS
O

 4
76

2 
- 

M
8 

x 
40

18
6

A
ci

er
G

ou
pi

lle
 a

ve
c 

co
ur

on
ne

 e
t t

ar
au

da
ge

 in
te

rn
e,

 a
ci

er
 in

ox
yd

ab
le

 m
ar

te
ns

iti
qu

e
IS

O
 8

73
5 

- 
8 

x 
35

 -
 A

2
7

D

D

B B

A
A

F

E

G

H

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

A
A

B
B

C
C

D
D

E
E

F
F

G
G

H
H

A
p

pr
ob

at
e

ur
 :

E
ch

el
le

 :

n°
R

E
F

. F
IC

H
IE

R

E
ns

em
bl

e 
:

A
u

te
ur

 :

D
at

e
:

F
O

LI
O

D
at

e
 :

F
O

R
M

A
T

 
IN

D
IC

E

m
a

x 
so

la
zz

o
08

/1
1

/2
0

17

 
 

Z
R

2
-E

N
01

02
01

Z
R

2-
E

N
01

02
.id

w

Z
oR

o2

en
se

m
bl

e 
de

m
i-s

ph
er

es

A
1

 

1 
/2

 
13

8
1 

ru
e 

de
 la

 p
is

ci
ne

, 
D

om
a

in
e 

U
ni

ve
rs

ita
ire

 
38

4
00

 S
ai

n
t-

M
a

rt
in

-d
'H

èr
e

s
C

S
 4

07
00

, 
38

0
58

 G
re

no
b

le
 c

ed
ex

 9
ht

tp
s:

//
is

te
rr

e.
fr

m
ax

.s
o

la
zz

o
@

u
n

iv
-g

re
n

o
b

le
-a

lp
es

.f
r

+
33

 (
0)

4 
76

 6
3 

5
2 

2
8

T
ou

te
 r

e
pr

od
uc

tio
n

 e
t u

til
is

a
tio

n 
e

st
 in

te
rd

ite
 s

a
ns

 a
ut

or
is

at
io

n 
(l

oi
s 

: n
°5

7
-2

98
 d

u
 1

1/
07

/9
2 

- 
a

rt
.5

 (
V

) 
JO

R
F

 0
3

/0
7

/9
2

)

S
er

vi
ce

 
In

st
ru

m
e

nt
at

io
n

s 
G

eo
ph

ys
iq

ue
s

In
st

itu
t d

es
 S

ci
en

ce
s 

de
 la

 T
er

re

6 5
2 1

4 7

46
6

�

20
°

10
°

�
12

5

31

10
0

�

45
°

45
°

�
41

8

200

21
0

�
8

20
°

60
°

60
°

35

31

46
6

�

8
�

H
8

( -
00

,0
22

+
)

C
D

G

21

7 3

2 13
7

e
n

ta
ill

e
 s

tr
o

bo
 to

ut
 le

s 
60

°

�
2,

5 
-8

 P
ro

fo
nd

eu
r

M
3x

0.
5 

- 
6H

m
o

nt
ag

e 
ai

m
a

nt
s 

12
0°

�
6,

75
 D

éb
ou

ch
an

t
M

8x
1.

25
 -

 6
H

12
0°

tr
ou

s 
de

 le
va

g
e

415

207,52
sp

he
ro

id
e 

co
m

po
sé

 d
e 

2 
de

m
is

ph
er

e 
en

 m
ec

al
u+

®
, a

lu
m

in
iu

m
 s

er
ie

7x
xx

R
m

ax
48

0M
P

a,
 R

e0
.2

 4
30

M
P

a,
 A

 2
.8

%
, 1

50
H

B
, Y

ou
ng

 7
1G

P
a

à 
us

in
er

 d
an

s 
2 

bl
oc

s 
sc

ié
 d

e 
to

le
 tr

ac
tio

nn
é/

co
m

pr
es

sé
 T

65
1/

65
22

 
50

0x
50

0x
22

5 
fr

ai
sé

e 
2 

fa
ce

s 
22

5m
m

 (
0+

0.
2)

 
m

as
se

 c
al

cu
lé

e 
en

se
m

b
le

 2
1.

05
0k

g
 (

av
ec

 v
is

se
rie

)
vi

te
ss

e 
de

 r
ot

at
io

n 
25

00
 t/

m
in

 =
 1

50
00

 d
eg

/s
 =

 4
1.

7 
H

z
vi

te
ss

e
 li

m
ite

 m
o

te
ur

 3
0

0
0 

t/
m

in
 =

 1
80

0
0 

d
e

g/
s 

=
 5

0
hz

m
o

te
ur

 k
o

llm
o

rg
en

 A
K

M
7

3Q
 v

ib
ra

tio
n 

cl
a

ss
e

 A
 (

E
N

6
0

03
4-

14
) 

p
o

ur
 u

n
e 

pl
ag

e 
de

 v
ite

ss
e 

d
e

 6
0

0
 à

 3
6

00
  

tr
 /

 m
in

 e
t 

u
n 

ce
n

tr
e 

d'
ar

b
re

 e
nt

re
 5

3
-1

32
 m

m
, l

a 
va

le
u

r 
de

 
vi

b
ra

tio
n 

au
to

ris
ée

 e
st

 d
e

 1
,6

 m
m

 /
 s

m
a

x 
re

l v
ib

ra
tio

n
 d

is
p

la
ce

m
en

t 6
5

µ
m

, 
m

a
x 

ru
n-

ou
t 1

6µ
m

.

E
N
00
02

950

415

38
,1

�

49
0

�

12

12

250 285

B
O

N
 P

O
U

R
 F

A
B

R
IC

A
T

IO
N



A
-
A

 (
 1

 :
 2

 )

B
-
B

 (
 1

 :
 2

 )

U
 (

 2
 :
 1

 )

A
A

B B

U

V

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

A
A

B
B

C
C

D
D

E
E

F
F

G
G

H
H

A
pp

ro
ba

te
ur

 :

T
o
u
te

 r
e

p
ro

d
u
ct

io
n
 e

t 
u
til

is
a
tio

n
 e

st
 in

te
rd

ite
 s

a
n

s 
a
u

to
ri
sa

tio
n
 (

lo
is

 :
 n

°5
7
-2

9
8

 d
u
 1

1
/0

7
/9

2
 -

 a
rt

.5
 (

V
) 

JO
R

F
 0

3
/0

7
/9

2
)

M
at

iè
re

 :

S
er

vi
ce

 
In

st
ru

m
en

ta
tio

ns
 

G
eo

ph
ys

iq
ue

s

A
ut

eu
r 

:
E

ch
el

le
 :

n°
R

E
F

. F
IC

H
IE

R

E
lé

m
en

t :

E
ns

em
bl

e 
:

T
ra

ite
m

en
t :

D
at

e 
:

D
at

e 
:

R
ug

os
ité

 R
a 

:

F
O

LI
O

F
O

R
M

A
T

T
ol

. g
én

ér
al

es
 :

IN
D

IC
E

m
ax

 s
ol

az
zo

13
/1

0/
20

17
 

 

Z
R

20
10

2-
02

-0
6.

id
w

Z
R

2
01

02
-0

2

Z
oR

o2
 

A
1

1 
/2

 0
6

de
m

i-s
ph

er
e 

ha
ut

e
 

1:
2

M
A

C
A

LU
 +

 (
al

lia
ge

 d
e 

se
rie

 7
xx

x)
 

fH
 

1
38

1 
ru

e 
d

e 
la

 p
is

ci
ne

, D
om

a
in

e
 U

n
iv

er
si

ta
ire

 
3

84
00

 S
a

in
t-

M
ar

tin
-d

'H
èr

e
s

C
S

 4
0

70
0,

 3
8

05
8 

G
re

no
bl

e
 c

e
de

x 
9

h
ttp

s:
//

is
te

rr
e.

fr
m

a
x.

so
la

zz
o

@
u

n
iv

-g
re

n
o

b
le

-a
lp

es
.f

r
+

33
 (

0
)4

 7
6 

63
 5

9 
07

In
sti

tu
t d

es
 S

cie
nc

es
 d

e 
la 

Te
rre

01
pr

em
ie

re
 e

m
is

si
on

13
/1

0/
20

17
m

ax
 s

ol
az

zo

02
es

qu
is

se
, v

oi
r 

Z
R

20
10

2-
01

-0
3_

es
qu

is
se

.p
df

02
/0

4/
20

18
m

ax
 s

ol
az

zo

03
po

si
tio

n 
or

ig
in

e 
an

gl
es

 u
si

na
ge

s 
ca

pt
eu

rs
23

/0
4/

20
18

m
ax

 s
ol

az
zo

04
no

te
 5

0H
7 

+
 b

on
 p

ou
r 

fa
b

30
/0

4/
20

18
m

ax
 s

ol
az

zo

05
an

gl
e 

G
1/

8 
23

° 
(C

10
)

03
/0

7/
20

18
m

ax
 s

ol
az

zo

06
no

ta
tio

n 
fil

et
ag

e 
N

P
T

 +
 c

ou
pe

 U
-U

 6
0°

 +
 m

od
if 

co
sm

et
iq

ue
s

12
/1

1/
20

18
m

ax
 s

ol
az

zo

R
év

is
io

ns

R
év

.
D

es
cr

ip
tio

n
D

at
e

A
ut

.

C
as

se
r 

le
s 

an
gl

es
 v

ifs
 n

o
n 

co
té

s 
pa

r 
un

 r
ay

on
 o

u 
un

 c
ha

nf
re

in

�0
.0

5
�0

.0
5

�0
.1

�0
.1

5
�0

.2
�0

.3
�0

.5
-

400
0

200
0

100
0

400
12

0
30

6
3

3
6

30
12

0
40

0
10

00
20

00
0.

5
Ec

ar
ts

 a
ut

or
isé

s 
po

ur
 ta

ille
s 

de
 b

as
e

Cla
sse

 de
 to

lér
an

ce

Dé
sig

na
tio

n

fin

Ec
art

s a
uto

ris
és

 po
ur 

les
 co

tes
 lin

éa
ire

s e
xc

ep
té 

po
ur 

les
arê

tes
 in

ter
rom

pu
es

f

D
es

cr
ip

tio
n

> jusq
u'à

> jusq
u'à

> jusq
u'à

> jusq
u'à

> jusq
u'à

> jusq
u'à

> jusq
u'à

> jusq
u'à

Ec
art

s a
uto

ris
és

 po
ur 

co
tes

 an
gu

lai
res

Ec
art

s a
uto

ris
és

 po
ur 

lon
gu

eu
rs 

en
 m

m 
du

 cô
té 

le 
plu

s p
eti

t d
e l

'an
gle

�0
�5'

>
40

0

�0
�10

'
�0

�20
'

�0
�30

'
�1

�

> jus
qu

'à
50 12

0
> jus

qu
'à

10
50

jus
qu

'à
10

> jus
qu

'à
40

0
12

0
Ra

yo
ns

 / 
ch

an
fre

ins

3
0.

5
> jusq

u'à
63

> jusq
u'à

6
>

�0
.2

�0
.5

�
1

C
ot

at
io

n 
to

lé
ra

nc
ée

: T
ol

é
ra

nc
es

 g
én

ér
al

es
 p

ou
r 

di
m

en
si

on
s 

sa
ns

 in
di

ca
tio

ns
 in

di
vi

du
el

le
s 

(I
S

O
 2

76
8-

1)

P
oi

ds
 c

al
cu

lé
 d

e 
la

 p
iè

ce
: 1

0,
41

0 
kg

�
�

0
,0

5

46
6

�18
x�

9 
D

éb
ou

ch
an

t

�
49

0

41
2

�
h7

( -
0,

06
3

0
)

+

(2
00

)

(190)

46
6

� �
12

5

10
0

�

50
�

H
7

( -
00,

02
5

+
) 

in
te

rf
ac

e 
di

re
ct

e 
et

 u
ni

qu
e

à 
Z

R
20

00
2-

06

2x
�

7 
D

éb
ou

ch
an

t
av

an
t t

ro
us

 g
ou

pi
lle

s

(4
5)

16 �

R
2

0,
5

ca
ss

er
 a

re
te

s 
vi

ve
s 

ex
t. 

x4
5°

7
�

H
9

( -
00,

04
+

) 
po

ss
ib

le
 d

e 
re

al
es

er
 a

u
m

on
ta

ge
 

(v
oi

r 
E

N
01

02
)

ou
 Ø

8H
7 

et
 �

Ø

1 
X

 4
5°

 C
ha

nf
re

in

1 6,5

0,
5 

X
45

° 
C

ha
nf

re
in

1 
X

 4
5°

 C
ha

nf
re

in

41
2

�
H

8
( -

00,
1

+
)

46
6

�
�

45
1

p
o
rt

e
e
 j

o
in

t

C
1.

6

23
°

208

M
8x

1.
25

 -
 6

H
 1

4

12

A

B

�
Ø

0
,0

2
B

A

16

8,
5

0,
2 

X
 4

5°
 C

ha
nf

re
in

�
Ø

0
,0

2
B

A

20
,5

�
9

18
 

10
°

60
°

1

20
°

20
°

40
°

208

46
6

�

3x
 M

8x
1.

25
 -

 6
H

 
à 

12
0°

 (
le

va
ge

)

M
8x

1.
25

 -
 6

H

M
8x

1.
25

 -
 6

H

6 entailles strobo sur 360°

20
°

�
Ø

0
,1

20
°

60
°

10

casser arete vive

es
qu

is
se

 d
e 

ba
se

226,9

(19,9)

B
O

N
 P

O
U

R
 F

A
B

R
IC

A
T

IO
N

1/
8 

- 
27

 N
P

T

1/
8 

- 
27

 N
P

T

23
°



V
 (

 1
 :
 2

 )

M
-
M

 (
 1

 :
 2

 )
 c

o
u
p
e
 u

s
in

a
g
e
 t

a
p
e
s
 H

P
V

-
V

 (
 1

 :
 2

 )
 c

o
u
p
e
 t

h
e
rm

is
ta

n
ce

U
-
U

 (
 1

 :
 2

 )
 c

o
u
p
e
 P

T
10

0

T
-
T

 (
 1

 :
 2

 )
 c

o
u
p
e
 e

le
ct

re
t

N
-
N

 (
 1

 :
 2

 )

M

M

V

VU

U

T

T
N

N

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

A
A

B
B

C
C

D
D

E
E

F
F

G
G

H
H

A
pp

ro
ba

te
ur

 :

T
o
u
te

 r
e

p
ro

d
u
ct

io
n
 e

t 
u
til

is
a
tio

n
 e

st
 in

te
rd

ite
 s

a
n

s 
a
u

to
ri
sa

tio
n
 (

lo
is

 :
 n

°5
7
-2

9
8

 d
u
 1

1
/0

7
/9

2
 -

 a
rt

.5
 (

V
) 

JO
R

F
 0

3
/0

7
/9

2
)

M
at

iè
re

 :

S
er

vi
ce

 
In

st
ru

m
en

ta
tio

ns
 

G
eo

ph
ys

iq
ue

s

A
ut

eu
r 

:
E

ch
el

le
 :

n°
R

E
F

. F
IC

H
IE

R

E
lé

m
en

t :

E
ns

em
bl

e 
:

T
ra

ite
m

en
t :

D
at

e 
:

D
at

e 
:

R
ug

os
ité

 R
a 

:

F
O

LI
O

F
O

R
M

A
T

T
ol

. g
én

ér
al

es
 :

IN
D

IC
E

m
ax

 s
ol

az
zo

13
/1

0/
20

17
 

 

Z
R

20
10

2-
02

-0
6.

id
w

Z
R

2
01

02
-0

2

Z
oR

o2
 

A
1

2 
/2

 0
6

de
m

i-s
ph

er
e 

ha
ut

e
 

1:
2

M
A

C
A

LU
 +

 (
al

lia
ge

 d
e 

se
rie

 7
xx

x)
 

fH
 

1
38

1 
ru

e 
d

e 
la

 p
is

ci
ne

, D
om

a
in

e
 U

n
iv

er
si

ta
ire

 
3

84
00

 S
a

in
t-

M
ar

tin
-d

'H
èr

e
s

C
S

 4
0

70
0,

 3
8

05
8 

G
re

no
bl

e
 c

e
de

x 
9

h
ttp

s:
//

is
te

rr
e.

fr
m

a
x.

so
la

zz
o

@
u

n
iv

-g
re

n
o

b
le

-a
lp

es
.f

r
+

33
 (

0
)4

 7
6 

63
 5

9 
07

In
sti

tu
t d

es
 S

cie
nc

es
 d

e 
la 

Te
rre

51
,4

3°
7x

el
ec

tr
et

15
°

6,
67

°

15
°

6,
67

°

40
°

6,
67

°
40

°

6,
67

°

45
°

3x
 M

3x
0.

5 
- 

6H
  à

 1
20

°
fix

at
io

n 
ai

m
an

t

M
8x

1.
25

 -
 6

H
le

va
ge

17
,8

6°
(

)

5°

el
ec

tr
et

 7
 x

 ±
51

.4
°

208

1

(190)

50
�

H
7

( -
00,

02
5

+
)

�42

8 
M

IN

45
°

60�

8,
5 

M
A

X

6x
 M

5x
0.

8 
- 

6H
 �

6

�
Ø

0
,0

5

e
q
u
id

is
ta

n
t 

6
0
°

0,
2 

X
 4

5°
 C

ha
nf

re
in

0,
5 

X
 4

5°
 C

ha
nf

re
in

1 
X

 4
5°

 C
ha

nf
re

in

0,
5 

X
 4

5°
 C

ha
nf

re
in

0,
5 

X
 4

5°
 C

ha
nf

re
in

R
2

30
°

60
°

30
°

�
49

0�
46

6

ta
pe

 H
P

2x
�

7 
D

éb
ou

ch
an

t
pr

ep
er

ça
ge

 a
va

nt
 c

on
tr

e-
al

es
ag

e 
au

 m
on

ta
ge

 (
?)

33
°

27
°

27
°

33
°

M
4x

0.
7 

- 
6H

8 
M

A
X

2 
se

rie
s 

de
 7

 tr
ou

s 
1x

 s
ym

et
riq

ue
s

�
2

30
°P

T
10

0

2 
se

rie
s 

de
 3

 P
T

10
0 

1x
 s

ym
et

riq
ue

30
°

30
°

21
°

30
°

58
°

�5

1,
7

10

10
0

12
5

Ø

�
8 

-1
0 

P
ro

fo
nd

eu
r

M
8x

1.
25

 -
 6

H

208

1 
g
o
u
p
il
le

 s
e
rr

é
, 
1 

g
o
u
p
il
le

 e
n
 p

la
ce

�
�

0
,0

2
A

B

a
le

s
a
g
e
s
 p

o
s
s
ib

le
 a

u
 m

o
n
ta

g
e
 d

e
s
 a

rb
re

s

218

226,2

(11)

(19,2)

222,2

(15,2)

(11,6)

218,6

208

3x
2�

5 
-7

 P
ro

fo
nd

eu
r

M
6x

1 
- 

6H

2 
se

rie
s 

de
 3

 tr
ou

s 
1x

 s
ym

et
riq

ue
s

51
,4

3°

8,
3

(
)

M
8x

1.
25

 -
 6

H
7 



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

Ap
pr

ob
at

eu
r :

Ec
he

lle
 :

n°
R

EF
. F

IC
H

IE
R

E
ns

em
bl

e 
:

Au
te

ur
 :

D
at

e 
:

FO
LI

O

D
at

e 
:

FO
R

M
AT

 
IN

D
IC

E

m
ax

 s
ol

az
zo

29
/0

5/
20

18

 
 

ZR
2-

EN
00

05
01

ZR
2-

EN
00

05
-0

1.
id

w

Zo
R

o2

en
se

m
bl

e 
m

on
ta

ge
 c

ap
te

ur
s

A2

1 /
2 

13
81

 ru
e 

de
 la

 p
is

ci
ne

, D
om

ai
ne

 U
ni

ve
rs

ita
ire

 
38

40
0 

Sa
in

t-M
ar

tin
-d

'H
èr

es
C

S 
40

70
0,

 3
80

58
 G

re
no

bl
e 

ce
de

x 
9

ht
tp

s:
//i

st
er

re
.fr

m
ax

.s
ol

az
zo

@
un

iv
-g

re
no

bl
e-

al
pe

s.
fr

+3
3 

(0
)4

 7
6 

63
 5

9 
07

To
ut

e 
re

pr
od

uc
tio

n 
et

 u
til

is
at

io
n 

es
t i

nt
er

di
te

 s
an

s 
au

to
ris

at
io

n 
(lo

is
 : 

n°
57

-2
98

 d
u 

11
/0

7/
92

 - 
ar

t.5
 (V

) J
O

R
F 

03
/0

7/
92

)

S
er

vi
ce

 
In

st
ru

m
en

ta
tio

ns
 

G
eo

ph
ys

iq
ue

s
In

st
itu

t d
es

 S
cie

nc
es

 de
 la

 T
er

re

N
O

M
EN

C
LA

TU
R

E
M

AT
IE

R
E

M
AS

SE
D

ES
C

R
IP

TI
O

N
N

° D
E 

PI
EC

E
Q

TE
N

°
 

31
,0

98
 k

g
so

us
-e

ns
em

bl
e 

en
 ro

ta
tio

n
ZR

2-
EN

00
02

1
1

 
0,

23
1 

kg
pi

qu
ag

e 
ga

z 
sw

ag
el

ok
ZR

2-
EN

10
01

4
2

 
0,

07
6 

kg
en

se
m

bl
e 

H
P

ZR
2-

EN
01

03
4

3
 

0,
00

0 
kg

su
pp

or
t t

he
rm

is
ta

nc
e

ZR
2-

EN
02

03
56

4
 

0,
00

3 
kg

su
pp

or
t e

le
ct

re
t

ZR
2-

EN
02

04
14

5
 

0,
00

2 
kg

en
se

m
bl

e 
PT

10
0

ZR
2-

EN
02

06
12

6
 

0,
00

4 
kg

Ai
m

an
t d

is
qu

e 
C

S-
S-

15
-0

4-
N

C
SS

15
04

N
6

7
A2

0,
00

1 
kg

Vi
s 

à 
tê

te
 fr

ai
sé

e 
à 

si
x 

pa
ns

 c
re

ux
IS

O
 1

06
42

  -
 M

4 
 x

  8
6

8

01
pr

em
ie

re
 e

m
is

si
on

m
ax

 s
ol

az
zo

13
/1

1/
20

18

H
is

to
riq

ue
 d

es
 ré

vi
si

on
s

R
év

.
D

es
cr

ip
tio

n
A

ut
.

D
at

e

1 64

53

2

985


49

0

415


38

,1

16

4

2

1

5 44

5
3

3

56

6

320250

8
7



A-
A 

( 1
 : 

2.
5 

)
B-

B 
( 1

 : 
2.

5 
)

C 
( 2

 : 
1 )

th
er

mi
st

an
ce

D 
( 2

 : 
1 )

 
el

ec
tr

et

E-
E 

( 1
 : 

2.
5 

)

F 
( 2

 : 
1 )

Pt
10

0

G-
G 

( 1
 : 

2.
5 

)

H 
( 2

 : 
1 )

ha
ut

-p
ar

le
ur

J 
( 1

 : 
1 )

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

Ap
pr

ob
at

eu
r :

Ec
he

lle
 :

n°
R

EF
. F

IC
H

IE
R

E
ns

em
bl

e 
:

Au
te

ur
 :

D
at

e 
:

FO
LI

O

D
at

e 
:

FO
R

M
AT

 
IN

D
IC

E

m
ax

 s
ol

az
zo

29
/0

5/
20

18

 
 

ZR
2-

EN
00

05
01

ZR
2-

EN
00

05
-0

1.
id

w

Zo
R

o2

en
se

m
bl

e 
m

on
ta

ge
 c

ap
te

ur
s

A2

2 /
2 

13
81

 ru
e 

de
 la

 p
is

ci
ne

, D
om

ai
ne

 U
ni

ve
rs

ita
ire

 
38

40
0 

Sa
in

t-M
ar

tin
-d

'H
èr

es
C

S 
40

70
0,

 3
80

58
 G

re
no

bl
e 

ce
de

x 
9

ht
tp

s:
//i

st
er

re
.fr

m
ax

.s
ol

az
zo

@
un

iv
-g

re
no

bl
e-

al
pe

s.
fr

+3
3 

(0
)4

 7
6 

63
 5

9 
07

To
ut

e 
re

pr
od

uc
tio

n 
et

 u
til

is
at

io
n 

es
t i

nt
er

di
te

 s
an

s 
au

to
ris

at
io

n 
(lo

is
 : 

n°
57

-2
98

 d
u 

11
/0

7/
92

 - 
ar

t.5
 (V

) J
O

R
F 

03
/0

7/
92

)

S
er

vi
ce

 
In

st
ru

m
en

ta
tio

ns
 

G
eo

ph
ys

iq
ue

s
In

st
itu

t d
es

 S
cie

nc
es

 de
 la

 T
er

re

A

A B

B

C
D

E

E

F

G

G

H

J

5 5

1
0,

55
Ø3,

3

1,
8

0,
5

7,
5

- 00,
4

+
Ø

5
- 0

,10+
Ø

jo
in

t p
la

t

3

6

5

4

0,
5

3,
8

Ø
2,

1
Ø

M
8x

1.
25

 - 
6H

M
6x

1 
- 6

H

M
4x

0.
7 

- 6
H

10
,5

42Ø

72 36

5,22,
3

10

13

7
8

31

10

8
7



146 APPENDIX C. EXCERPTS OF ZORO’S TECHNICAL DRAWINGS



D
Spherical prototype: ZoRo1

We briefly present the spherical prototype ZoRo1 that we built before having the current
ZoRo apparatus. ZoRo1 helped us to better understand how the acoustic spectra look
like, and to sharpen both numerical and theoretical tools on a slightly easier experiment
(as it was spherical) before getting to the spheroid.

We have encountered difficulties in building ZoRo1, which in turn helped us better
prepare for the current experiment. In particular, ZoRo1 was not perfectly spherical and
presented geometrical defaults that made mode identification much more difficult that it
is on ZoRo. Also, due to some manufacturing defaults, it could not rotate fast enough for
relevant geophysical regimes. However we still have measured some rotating flows with
ZoRo1, which made us realise how dense the acoustic spectrum was and gave us the idea
to build a spheroid instead. Although ZoRo1 was a failure in the sense that it was not
suitable for good MAV measurements, it was a helpful prototype that is still able to guide
us for future experiments.

D.1 Experimental set-up

The experimental set-up (Figure D.1) consist of a a = 20 cm radius container made of a
thin spherical brass shell enclosing air, the working fluid. The container is mounted on a
motor shaft allowing rotation of the system and mechanical forcing of the fluid through
viscous friction (same motor as ZoRo), through a rigid 1:1 coupling (discarded). For
experiments with thermal gradients, forcing is done by infra-red radiants (same as ZoRo)
installed on the non-rotating supported frame (ZoRo is on a different frame), 20 cm away
from the sphere surface.

The container was not as spherical as expected, which proved problematic for MAV but
it was also very limiting in terms of rotation rates. Since the container is not axisymmetric,
it is not well balanced, hence creates many vibrations while rotating. The fastest rotation
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we reached with ZoRo1 is 15 Hz (half the rate of ZoRo).

Figure D.1: Left: Photo of the experimental prototype set-up ZoRo1, mounted on its frame. Right:
Schematic position of acoustic sensors.

The eigen-frequencies of ZoRo1 are close to ZoRo’s. We have used the same electrets
and speakers to acquire the acoustic signal. Nine electrets are installed on the inner
surface of the brass shell (Figure D.1 right, in green) in contact with the air, at two facing
longitudes and four latitudes symmetric with respect to the equator. One additional
electret is placed at the equator. As for the speakers, four of them are fixed within the
shell, at the two poles, the equator and mid-latitude (Figure D.1 right, in blue), but only
two can be played at the same time (4 in ZoRo).

All sensors have been fixed to be as little protruding as possible, ideally keeping the
irregularity within the Ekman layer for flows to be undisturbed by the sensors. However as
we decided the sensors positions through trials and errors, the internal surface is much less
smooth than ZoRo’s, and both the electrets and speakers are glued (instead of screwed).
This allowed us to define precisely where we wanted the acoustic sources and sensors to
be on ZoRo.

The acquisition chain is mostly the same, with some improvements made for ZoRo (e.g.
we added a basic electronic circuit in the electret’s power supply that slightly improved
the measured signal).
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D.2 Theoretical acoustic spectrum

D.2.1 At rest

This time the apparatus is (supposed to be) a perfect sphere, so the theoretical prediction
of the resonance frequencies is much easier, simply given by the solutions of the Helmholtz
equation eq. (2.30), which are given for a sphere in eq. (2.37).

We show an experimental acoustic spectrum (at rest) with the predicted eigen frequen-
cies in Figure D.2. Overall the theory predicts the experimental resonances well.

500 1000 1500 2000 2500 3000 3500
10-1

100

101

102

103

Figure D.2: Experimental acoustic spectrum (frequency in Hz) of ZoRo1 first resonances (in red),
compared with theoretically predicted frequencies from eq. (2.37) (in black).

By comparing observed frequency spectrum with the predicted frequency we can iden-
tify a number of modes in the experimental spectrum. However this method reaches its
limit for higher frequency (in our configuration around 2500 Hz), where eigenmodes are
closer together, leading to uncertainties in the mode identification.

In a perfect sphere configuration, all the m modes from a multiplet are degenerate at
rest. In order to differentiate them we need to break the spherical symmetry. To do that we
impose a solid-body rotation, in ZoRo1 it is the easiest way to lift the degeneracy. And the
rotational splittings should follow the Ledoux coefficients, allowing a simple verification.

D.2.2 Solid-body rotation

We show in the left panel of Figure D.3 the experimental acoustic spectra around 0S1 for
increasing rotation rates, from rest (red) to 9 Hz (violet). Then in Figure D.4, we plot
the sum and difference of the previous signal to distinguish symmetric and anti-symmetric
modes within the multiplet. We can clearly separate the ±1 mode on the left panel and
the m = 0 mode on the right.

ZoRo1 is overall more noisy, as it has only electrets in 2 longitudes so no average is
possible to clear up the signal. The speakers are not symmetric with each other so we can
only use the symmetry properties on the electrets, which is less efficient to extinguish the
modes of opposite symmetry.

We are still able to globally retrieve the theoretical splitting predicted by the spherical
Ledoux coefficients (red lines in Figure D.3).

Furthermore, for modes with larger l, rotational splitting is not enough to clearly
separate the m with the attainable rates in our set-up, inciting us to switch to a spheroid,
where the degeneracy is partially lifted at rest.
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Figure D.3: Left: Spectra of fundamental mode 0S1 for increasing rotation rates (arbitrary units).
Right: Extracted frequency splittings separated by symmetry, symmetric modes in purple, anti-
symmetric modes in blue. Theoretical predictions using spherical Ledoux coefficient is plotted in
red for comparison.
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Figure D.4: Spectra of fundamental mode 0S1 for increasing rotation rates (same colour legend
as Figure D.3). Left panel: summed signals enhances the modes symmetric with respect to the
equator, here the odd m = ±1. Right panel: subtracted signals enhances the anti-symmtric modes,
here the even m = 0.

D.3 Azimuthal flows measurements

We did some flow measurements with ZoRo1. We will briefly plot the corresponding
acoustic spectra for a few modes.

D.3.1 Spin up

Figure D.5 shows experimental acoustic spectra for different times after spin up (change
of the container rotation rate from 3 to 4 Hz). The first spectrum at the top corresponds
to solid-body rotation at the initial (3 Hz) rotation rate. We can clearly retrieve the fact
that some modes, e.g. 0S1

1 , are almost blind to this differential flow while 1S3 shows a
large signature clearly different from the solid-body rotation one. This is consistent with
the observations we made from their respective sensitivity kernels spatial structures in
Chapter 2, and with theoretical predictions of the splitting for spin up flow (symbols)
as shown in Figure D.5. We remark, as in the synthetics in Chapter 4, that for 1S3 the
biggest splitting is displayed right after the rotation changes, corresponding to Doppler
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splitting.
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Figure D.5: Spectra of fundamental mode 0S1 left, 1S3, right, for increasing time during a spin
up from 3 Hz to 4 Hz. Symbols are predicted splittings form analytical velocity profile for the
successive spin up times (triangles) and solid-body rotation at starting and ending rotation rate
(stars).

D.3.2 Longitudinal librations

Figure D.6 shows experimental acoustic spectra for different times within a libration pe-
riod. Since the flow is periodic, we stacked several periods together to cancel out some
noise. The libration shown here has the container oscillating around 4 Hz with an ampli-
tude of 1 Hz during a 7 s period (following a sine function). Again we can clearly retrieve
the fact that 0S1

1 , is not affected by the oscillation (compared to solid-body rotation) to
this differential flow while 1S3 shows a large signature clearly different from the solid-body
rotation one.
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Figure D.6: Spectra of fundamental mode 0S1 left, 1S3, right, for increasing time during one
libration period.

We tried to invert some of those flows. However due the unsatisfactory mode identifi-
cation, very few modes are available to perform the inversion, resulting in inverted profiles
that are not very physically relevant and that we do not fully trust.
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E
Multiplexer electronic card

design

Functional schematic and board sketch of ZoRo multiplexer electronic card, inspired by
the design of Yoann Corre, with the help of Patrick La Rizza and Yann Do. This card is
used to multiplex the thermistor’s signal in order to reduce the number of wire passing
through the slip rings.
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F
Thermal wind equations

We reproduce some excerpts of Arnaud Piet’s Master 2 Thesis (Piet, 2019), for theoretical
studies of thermal winds.

F.1 Thermal wind equation
We start from the momentum energy conservation eq. (2.22), under the Boussinesq ap-
proximation

∂v

∂t
+ 2Ω× v = − 1

ρ0
∇P + ρ′

ρ0
g. (F.1)

Taking the curl of eq. (F.1) , we get the static vorticity equation

2(Ω · ∇)v =∇× [α(T − T0)g] . (F.2)

In ZoRo the rotation is along Ω = Ωez only (and in the case of thermal wind studies,
Ω will be taken as constant). Further simplification can be done by recalling that g is a
potential, hence ∇× g = 0, and eq. (F.2) becomes

∂v

∂z
= αΩs

2 ∇(T − T0)× es. (F.3)

Focusing only on the axisymmetric variation of temperature, we get the so-called thermal
wind equation (Vallis, 2017)

∂vφ
∂z

= αΩs
2

∂T

∂z
, (F.4)

where vφ = v · eφ.

F.2 The uniform internal heating full sphere
The heat conservation equation eq. (2.23) with a constant volumic internal heating Q is

ρCp
∂T

∂t
= ρCpκ∇2T +Q. (F.5)
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For a stationary profile, we can compute the heat flux q0 at the outer boundary, i.e. at
the aluminium shell. For simplicity, in the following, the cavity is assumed to be heated
at the perfectly spherical boundary r = r0 = a. At the boundary, we have

q0 = r0Q

3 . (F.6)

and the temperature then becomes

T (r) = − Q2kr
2 + T0. (F.7)

Injecting into the thermal wind equation eq. (F.4) gives
∂vφ
∂z

= −αΩsz
2

Q

ρCpκ
. (F.8)

After integration we get
vφ(s, z) = − αΩQ

4ρCpκ
sz2 +A(s), (F.9)

with A(s) an integration constant that only varies with the cylindrical radius s.
Using the boundary condition vφ(r = r0) = 0, we finally get

vφ(s, z) = − αΩQ
4ρCpκ

s(z2 + s2 − r2
0), (F.10)

or in spherical coordinates

vφ(r, θ) = −αΩQr2
0

4ρCpκ

(
r2

r2
0
− 1

)
r sin θ. (F.11)

The thermal wind is maximum in the equatorial plane at s = r0/
√

3 and reaches

αΩQr3
0

6
√

3ρCpκ
= αΩΦ0r

2
0

2
√

3ρCpκ
. (F.12)

Taking the variables for ZoRo rotating at 10 Hz, it gives vφ = 1.98 m/s at its maximum.
Here we want to compute the thermal wind for a stable stratified case. It corresponds

to the case of a cooling on the surface, and where the external layers are colder than
internal layers. If we keep in mind the idea of an inverted gravity (due to the centrifugal
acceleration), heavy cold air masses will stay at the outside.

We have thus to consider an external cooling which is equivalent to an internal heating
and so Q > 0 and q0 > 0.

One can match the inviscid flow eq. (F.11) with a boundary layer. Using r0 as the
length scale and Ω−1 as the time scale, the flow eq. (F.11) becomes then

uφ(r, θ) = Ro s(r2 − 1) [1− exp(−λζ) cos (λζ)] , (F.13)

with the Rossby number Ro=αq0r0/(4ρCpκ), the boundary layer variable ζ=Ek−1/2(1−r)
and λ =

√
cos θ the inverse of the characteristic thickness δ = 1/λ of the boundary layer.

Note that a boundary layer flow in the direction eθ also exists, given by

uθ(r, θ) = Ro s(r2 − 1) exp(−λζ) sin (λζ) . (F.14)
Note that the bulk inviscid solution vanishes at the boundary, such that there is no Ekman
pumping nor circulation.
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Figure F.1: Thermal wind created by constant heat flux and internal heating. Left: temperature
variation (K), right: thermal wind velocity (m/s)

F.3 The heat flux latitudinal variation
We now have to consider the case without any internal heating and thus : Q = 0. In this
case, eq. (F.5) becomes

∇2T = 0. (F.15)

For a spherical geometry, the solutions of this equation are spherical harmonics. And
general solutions can be written as

T = f(r)F (θ, φ). (F.16)

By separating variables and re-writting eq. (F.15) as a system of two equations, we
find

d
dr

(
r2 df

dr

)
= l(l + 1) = K. (F.17)

We obtain then f(r) = Crl + D

rl+1 and F (θ, φ) = Y0
l (θ), where C and D are two

integration constants to be determined with the boundary conditions.
The first boundary condition is given by the non-divergence of the temperature field

at r = 0, giving = 0.
The second one is the heating of the shell

jQ = −ρCpκ∇T (r0). (F.18)

The external flux is considered axisymmetric: Φl = φlY0
l , where Y 0

l are the spherical
harmonics of degree l and order m = 0. Considering n = −ur the re -entrant normal of
the sphere, we can write:

jQ · n = Φl. (F.19)
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Thus we obtain
φlY0

l (θ) = ρCpκ l Cr
l−1
0 Y0

l (θ), (F.20)

giving us the constant C = φlr0
rl0lρCpκ

.

Finally, the temperature T can be written as

T = φlr0
lρCpκ

(
r

r0

)l
Y0
l (θ) + T0. (F.21)

Injecting into the thermal wind equation the azimuthal wind is then in cylindrical coordi-
nates

vφ(s, z) =
∫
∂uφ(s, z)

∂z
dz = αΩs

2

∫
∂T (s, z)
∂z

dz

= αΩs
2 T (s, z) + C(s)

= αΩs
2

φlKlr0(s2 + z2)
l
2

lkrl0
Pl
(

z√
s2 + z2

)
+ C(s),

(F.22)

where the Kl are the spherical harmonics’ coefficients preceding the Legendre polynomials

Y0
l (θ) = Kl Pl(cos θ) =

√
2l + 1

4π Pl(cos θ),

or equivalently in the spherical coordinates

vφ(r, θ) = αΩφlKl

2lρCpκ
rl

rl−1
0
Pl(cos θ) + C(s). (F.23)

The explicit relations for the first few l are given in Table F.1.

l vφ(r, θ)− C(s) T (r, θ)

1 αΩφ1K1
2ρCpκ

r2 sin θ cos θ φ1K1
ρCpκ

r cos θ

2 αΩφ2K2r
3

8ρCpκr0
sin θ[3 cos2 θ − 1] φ2K2r

2

4ρCpκr0
[3 cos2 θ − 1]

3 αΩφ3K3r
4

12ρCpκr2
0

sin θ[5 cos3 θ − 3 cos θ] φ3K3r
3

6ρCpκr2
0

[5 cos3 θ − 3 cos θ]

4 αΩφ4K4r
5

64ρCpκr3
0

sin θ[35 cos4 θ − 30 cos2 θ + 3] φ4K4r
4

32ρCpκr3
0

[35 cos4 θ − 30 cos2 θ + 3]

Table F.1: Explicit relations for temperature and thermal wind velocity for the first degrees l,
integration constant C(s) to be determined.
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Note that the constant C(s) cannot be explicitly determined by the boundary con-
ditions vφ(s, z = ±

√
r2

0 − s2) = 0. Indeed, until now we consider the hypothesis of an
inviscid fluid with the aim of computing the thermal wind velocity. The cancel of the
tangential velocity at the shell is thus valid for the total velocity field and we have to add
a viscous boundary layer.

In this way, for l = 1 we obtain

ṽφ(r, θ) = αΩφ1K1
2ρCpκ

sin θ cos θr2
[
1− exp

(
−(r0 − r) cos θ

r0
√
Ek

)
cos

((r0 − r) cos θ
r0
√
Ek

)]
, (F.24)

with Ek the Ekman number.
The full explicit relations for the first few l are given in Table F.2.

l ṽφ(r, θ) T (r, θ)

1
αΩφ1K1

2ρCpκ
sin θ cos θr2 φ1K1r

ρCpκ
cos θ

×
[
1−exp

(
− (r0 − r) cos θ

r0
√
E

)
cos
(

(r0 − r) cos θ
r0
√
E

)]

2 αΩφ2K2

4ρCpκr0
r sin θ(r2 − r2

0) φ2K2r
2

4ρCpκr0
(3 cos2 θ − 1)

3
αΩφ3K3r

4

12ρCpκr2
0

sin θ(5 cos3 θ − 3 cos θ) φ3K3r
3

6ρCpκr2
0

(5 cos3 θ − 3 cos θ)

×
[
1−exp

(
− (r0 − r) cos θ

r0Ek1/2

)
cos
(

(r0 − r) cos θ
r0Ek1/2

)]

4 αΩφ4K4

4ρCpκr3
0
r sin θ

[
r4 − r4

0 − 5r2 sin θ(r2 − r2
0)
] φ4K4r

4

32ρCpκr3
0

(35 cos4 θ − 30 cos2 θ + 3)

Table F.2: Explicit relations for temperature and thermal wind velocity for the first degrees l.

For a typical experiment in ZoRo, r0 = 0.2 m, f = 7 Hz, and νair = 1.516×10−5 m2s−1,
which gives Ek = 4.31× 10−6, and the thickness of the boundary layer is then
δ = r0Ek

1/2 = 4.15× 10−4 m. Adding an Ekman boundary layer can be done for all the
odd l to match the boundary conditions. For the even l , the shape of the velocity fields
satisfy the condition vφ

(
s, z = ±

√
r2

0 − s2
)

= 0.
Velocity and temperature fields for thermal forcing l = 1, l = 2, l = 3 are represented

in Figure F.2, Figure F.3 and Figure F.4 respectively.
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Figure F.2: Temperature (K) and thermal wind velocity (m/s) for external forcing l = 1.

Figure F.3: Temperature (K) and thermal wind velocity (m/s) for external forcing l = 2.

Figure F.4: Temperature (K) and thermal wind velocity (m/s) for external forcing l = 3.


	devant le jury composé de€:
	Mme. Séverine ROSAT
	Chargée de Recherche, EOST, Université de Strasbourg, Rapportrice
	M. Frank STEFANI
	Chercheur, Helmholtz-Zentrum Dresden-Rossendorf, Rapporteur
	Mme. Helle PEDERSEN€
	Physicienne CNAP, Université Grenoble Alpes, Présidente
	M. Santiago Andres TRIANA
	Docteur, Royal Observatory of Belgium, Examinateur
	M. Philippe CARDIN
	Directeur de Recherche, Université Grenoble Alpes, Directeur de thèse
	M. David CÉBRON
	Chargé de Recherche, Université Grenoble Alpes, Co-Directeur de thèse
	Introduction
	Zonal flows
	Experimental models

	Experimental velocimetry techniques
	Acoustic normal modes
	Global seismology
	Helio- and astero-seismology
	Gases metrology

	Outline of the thesis

	Theoretical acoustic spectra
	Formulation of the problem
	Governing equations
	Resolution method for the ZoRo case

	Perturbation theory for our study cases
	Background rotating flows
	Geometry of the resonator
	Dissipation in the fluid

	Building of a theoretical synthetic spectra
	Superposition of perturbations
	Discussion


	Acoustic splitting measurements
	Experimental setup
	Presentation of ZoRo
	Experimental protocol

	Data analysis
	Spectral domain Fourier transform
	Mode identification at rest
	Splitting extraction

	Application to solid-body rotation

	Acoustic splitting inversion of known flows
	General inversion theory
	Bayesian formalism for Gaussian linear model
	Computation formulation

	Influence of mode collection
	All modes up to n=3, l=10
	Realistic mode collection

	Application to synthetic cases
	Spin up flows
	Zonal flows driven by thermal convection

	Discussion
	Validity of the z-invariance assumption
	Influence of the sign of acoustic splittings
	Determination of the inverted model errors


	Application to experimental flows
	Experimental observation
	Description of the experimental protocol
	Direct observations
	Real data inversion

	Finite-element simulations
	Axisymmetric simulations
	Three-dimensions (3D) simulations
	Comparison with the experiment

	Physical description of the flow
	In the hole
	In the bulk
	Comparison with the experiment

	Discussion

	Conclusions and Perspectives
	Conclusions
	Perspectives
	Improvements on MAV technique
	Geophysical applications


	References
	Rotational sensitivity kernels
	Details on finite-element calculations
	Built-in COMSOL capabilities and limitations
	How to calculate COMSOL axisymmetric aero-acoustic modes with m =0 ?
	Boundary conditions and details on the numerics
	Elastic container, coupling and radiation

	Excerpts of ZoRo's technical drawings
	Spherical prototype: ZoRo1
	Experimental set-up
	Theoretical acoustic spectrum
	At rest
	Solid-body rotation

	Azimuthal flows measurements
	Spin up
	Longitudinal librations


	Multiplexer electronic card design
	Thermal wind equations
	Thermal wind equation
	The uniform internal heating full sphere
	The heat flux latitudinal variation


