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Dirigée par :
Jean-Paul COMET

Co-encadrée par :
David ROUQUIE

Soutenue le : 9 juillet 2019

Devant le jury, composé de :
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Invité
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Titre : De l’utilisation des données publiques pour la prédiction de la toxicité des produits chimiques

Résumé : L’évaluation de la sécurité des composés chimiques repose principalement sur les résultats des
études in vivo, réalisées sur des animaux de laboratoire. Cependant, ces études sont coûteuses en terme de
temps, d’argent et d’utilisation d’animaux, ce qui les rend inadaptées à l’évaluation de milliers de composés.
Afin de prédire rapidement la toxicité potentielle des composés et de les prioriser pour de futures études,
des solutions alternatives sont actuellement envisagées telles que les essais in vitro et les modèles prédictifs
d’apprentissage automatique. L’objectif de cette thèse est d’évaluer comment les données publiques de Tox-
Cast et ToxRefDB peuvent permettre de construire de tels modèles afin de prédire les effets in vivo induits
par les composés, uniquement à partir de leur structure chimique.
A cette fin, et après pré-traitement des données, nous nous focalisons d’abord sur la prédiction de la bio-
activité in vitro à partir de la structure chimique puis sur la prédiction des effets in vivo à partir des données
de bio-activité in vitro.
Pour la prédiction de la bio-activité in vitro, nous construisons et testons différents modèles de machine lear-
ning dont les descripteurs reflètent la structure chimique des composés. Puisque les données d’apprentissage
sont fortement déséquilibrées en faveur des composés non toxiques, nous testons une technique d’augmenta-
tion de données et montrons qu’elle améliore les performances des modèles. Aussi, par une étude à grande
échelle sur des centaines de tests in vitro de ToxCast, nous montrons que la méthode ensembliste ”stacked
generalization” mène à des modèles fiables sur leur domaine d’applicabilité.
Pour la prédiction des effets in vivo, nous évaluons le lien entre les résultats des essais in vitro ciblant des
voies connues pour induire des effets endocriniens et les effets in vivo observés dans les organes endocri-
niens lors d’études long terme. Nous montrons que, de manière inattendue, ces essais ne sont pas prédictifs
des effets in vivo, ce qui soulève la question essentielle de la pertinence des essais in vitro. Nous faisons
alors l’hypothèse que le choix d’essais capables de prédire les effets in vivo devrait reposer sur l’utilisation
d’informations complémentaires comme, en particulier, les données mécanistiques.

Mots clés : Prédiction de la toxicité, données publiques, apprentissage automatique

Title : Evaluation of the use of public toxicological data for chemical hazard prediction through computa-
tional methods

Abstract : Currently, chemical safety assessment mostly relies on results obtained in in vivo studies perfor-
med in laboratory animals. However, these studies are costly in term of time, money and animals used and
therefore not adapted for the evaluation of thousands of compounds. In order to rapidly screen compounds
for their potential toxicity and prioritize them for further testing, alternative solutions are envisioned such
as in vitro assays and computational predictive models. The objective of this thesis is to evaluate how the
public data from ToxCast and ToxRefDB can allow the construction of this type of models in order to
predict in vivo effects induced by compounds, only based on their chemical structure. To do so, after data
pre-processing, we first focus on the prediction of in vitro bioactivity from chemical structure and then on
the prediction of in vivo effects from in vitro bioactivity data.
For the in vitro bioactivity prediction, we build and test various models based on compounds’ chemical
structure descriptors. Since learning data are highly imbalanced in favor of non-toxic compounds, we test
a data augmentation technique and show that it improves models’ performances. We also perform a large-
scale study to predict hundreds of in vitro assays from ToxCast and show that the stacked generalization
ensemble method leads to reliable models when used on their applicability domain.
For the in vivo effects prediction, we evaluate the link between results from in vitro assays targeting path-
ways known to induce endocrine effects and in vivo effects observed in endocrine organs during long-term
studies. We highlight that, unexpectedly, these assays are not predictive of the in vivo effects, which raises
the crucial question of the relevance of in vitro assays. We thus hypothesize that the selection of assays able
to predict in vivo effects should be based on complementary information such as, in particular, mechanistic
data.

Keywords : Toxicity prediction, public data, machine learning
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INTRODUCTION

INTRODUCTION

Toxicity caused by chemical compounds (whether natural or synthetic) to living organisms and

the environment is a growing concern for the entire population. In particular for humans, xeno-

biotics have been associated with several human health issues such as increased incidences of

cancers, reduced fertility, metabolic disorders such as diabetes [208]. Indeed, beside the exposure

of all the natural small molecules contained in the food and beverages we are eating and drink-

ing, we are daily exposed to a variety of synthetic chemicals such as food additives, households

products, personal care products, drugs or pesticides which can induce various adverse effects

above certain dose levels and duration of exposure. Adverse effects include carcinogenicity (in-

duction of tumors), mutagenicity (induction of DNA damages), reproductive toxicity (alteration

of sexual functions and fertility) and endocrine mediated toxicity (alteration of the endocrine

system). Endocrine toxicity has raised a lot of attention, in particular in Europe, as endocrine

mediated toxicants are believed to induce adverse effects via non-threshold mechanisms conse-

quently preventing the classical use of exposure-based risk assessment. This led instead to the

application of hazard-based regulation for this type of compounds.

The current regulation for the registration and marketing of non genotoxic (worldwide) and

non endocrine active (in Europe) compounds is based on a risk assessment process that evaluates

the toxicity caused by molecules to human health and the environment in order to define their

safe conditions of use. This assessment relies on a series of toxicity studies performed in vivo in

several rodent and non-rodent species of laboratory animals, for different durations of exposure

(from some days up to the whole life-time of animals) and over critical windows of exposure

(gestation and shortly after birth). These studies aim at identifying the potential hazard of

chemicals to finally characterize their risk through an assessment of individuals’ exposure to the

compounds. In vitro studies, performed using biochemical assays and cell based assays, can also

complete the in vivo ones in order to determine the biological mechanisms that are involved in

the pathways leading to toxic effects. The elucidation of these pathways is important for risk

assessment since it allows the regulators to conclude if effects are relevant to humans.

However, toxicity studies, in particular the in vivo ones, are time, money and laboratory animals
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consuming which raises ethical and economical concerns. They are also questioned about their

ability to inform about the toxicity caused to humans due to the interspecies extrapolation. In

addition, many compounds already on the market or natural compounds have very little to no

information about their toxic potential preventing a good evaluation of their risk. Nonetheless,

this lack of data cannot be filled using the traditional in vivo testing methods since they are

not adapted to the rapid evaluation of thousands of chemicals. Therefore, regulations in Europe

such as REACH [82] (Registration, Evaluation, Authorization and registration of Chemicals)

and authorities such as the US Environmental Protection Agency (EPA) in the United States

are asking for new optimized testing methods which are more predictive of toxicity as well as

more reliable, faster, and less animals consuming than actual methods.

In recent years, this urgent challenge has been considered by the toxicology community who

proposed a new testing paradigm, the Tox21 vision [55], that aims at shifting from the tradi-

tional testing approaches towards a predictive toxicology based on new alternative approaches

enabling a rapid screening of compounds for their toxic potential in order to prioritize them for

further testing. Such alternative approaches are also of great interest for phytopharmaceutical

and pharmaceutical companies since they follow essentially the same approach to de-risk early

candidate compounds in the hit identification and hit optimization phases. Moreover, these new

approaches should also focus on the identification of biological mechanisms that induce toxicity.

Among the envisioned alternative methods for predictive toxicology are: (1) the use of human-

relevant in vitro assays to provide hints about the bioactivity of chemicals, meaning their ability

to affect biological processes and, (2) the use of in silico methods to perform data analysis and

integration and to develop predictive models of in vivo toxicity.

Following the new paradigm, initiatives have been launched in order to generate large amount

of data such as the ToxCast and Tox21 programs which performed in vitro High-Throughput

Screening on thousands of chemicals [260, 217]. Moreover, many studies have been completed in

order to develop computational models to either understand the mechanisms of toxicity, based

for example on systems biology or to predict toxicity, based for example on machine learning.

Precisely, systems biology aims at modeling the interactions of the components of complex bi-

ological systems, at different levels of organizations, while machine learning aims at predicting

a specific property based on existing data that enable a learning algorithm to associate char-

acteristic features to the specific property by finding informative relationships. These types of

computational approaches and in particular machine learning, require a large amount of data to

generate accurate models in order to go over the maximum of conditions which induce toxicity.

Nevertheless, the availability and usability of toxicological data is often challenging for diverse

reasons and necessitates an evaluation of their suitability to in silico modeling.

Even if a lot of work has been already performed in using computational approaches for toxicity

prediction, there are still needs for good and reliable methods. Specifically, machine learning has

been widely used for the prediction of diverse types of effects and appeared to result in a broad

range of models’ performances (from really bad to quite good). Thus, no "ultimate" method has

been clearly identified to produce sufficiently accurate models.
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Actually, this challenge of finding the best method is in practice unsolvable because of a well

known limitation of machine learning, exposed by Wolpert in 1996 in the "No Free Lunch" theo-

rem [279]: no algorithm works better than the others for every problem and an algorithm which

is good for one specific problem may not be good for another one. Indeed, since a model is

an idealization of the reality, it is made of hypotheses and assumptions that highly depend on

the considered problem. Thus, these hypotheses differ for each problem and different problems

should be associated with different models. Although the theorem has been stated more than

two decades ago, it is still discussed and considered today by machine learning scientists [112].

Specifically, the "No Free Lunch" theorem implies that, if we want to build a good machine

learning model, we should try multiple algorithms to find the one that works the best. Conse-

quently, a large part of research in machine learning focuses on finding the type of algorithm

that generates good models for a specific type of data; toxicological data in our case.

Objective and approach

This thesis comes from a CIFRE 1 agreement between academic research and the agrochemicals

division of Bayer and takes place at the interface between two major disciplines: computer

science and toxicology. According to the toxicological context, our motivation is to develop

in silico tools, and in particular machine learning (ML) methods, for the early prediction of

potential hazard of compounds using the publicly available data. This motivation fits with one

of the current objective of Bayer, which intends to use computational approaches to perform

compounds’ selection in the early phases of the development of new plant protection products

in order to reduce animal use, cost and development time.

As illustrated in Figure 1, the ideal objective would be to predict effects observed in long-term

in vivo studies, directly from the chemical structure of compounds. Nonetheless, this long-term

prediction seems to be ambitious [259] because of the high level of biological complexity and

variability and because toxicity can results from a long chain of causality involving multiple

pathways at different biological levels [226]. Indeed, the performance of ML models tends to be

better when the complexity of the modeled property is low and conversely. We therefore propose

a two-stage ML approach where the first stage (1) is to predict bioactivity (in vitro assays) based

on chemical structures and the second stage (2) is to predict in vivo toxicity from in vitro data,

possibly combined with chemical structure (2’). Models resulting from these two stages should

then be chained up to predict in vivo toxicity directly from structural data for a new compound

for which only the molecular structure is known.

Similar works to our two-stage approach have already been proposed. For example, Martin

et al. in 2011 [179] developed the Profile-QSAR method which is composed of two steps: first,

ML models are built to predict the activity of compounds in hundreds of kinase in vitro assays

based on chemical structure and second, predictions from the previous models are used as input

of another ML model to predict the activity for a new kinase. In 2017, a new version of this

1In French: CIFRE = Conventions Industrielles de Formation par la REcherche
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Compound 
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1 2
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Figure 1: Objective and the proposed 2-stage machine learning approach. The objective is to develop

ML models to predict potential hazard of compounds. The ideal would be to directly predict in vivo outcomes from

chemical structure but it seems too ambitious. We therefore propose a two-stage approach constituted of: (1) the

prediction of in vitro results based on chemical structure and (2) the prediction of in vivo outcomes based on in

vitro data, possibly combined with chemical structure (2’).

method has been published: the Profile-QSAR 2.0 which is based on different ML algorithms

than the first version [180]. More recently, in 2018, Guan et al. [110] proposed to predict rat

carcinogenicity using a ML model whose descriptors are the predictions from four ML models

predicting four different in vitro bioassays.

These works illustrate that the general idea of chaining two types of models has been considered

by several scientists but it is only recently that is has been implemented, and for specific cases.

Here we suggest to evaluate how this global idea could be applied in a large scale context, without

focusing on a particular set of in vitro assays as intermediate data. Indeed, we aim at using all

the available in vitro assay results to find the combination of assays that is the best predictive

of an effect of interest through machine learning. It is only when this set has been identified

that we propose to build ML models to predict each of these assays. Obviously, even if we are

interested here in in vitro assays, other intermediate data could be envisaged.

In order to build ML models such as proposed in our approach, three types of data are

required: chemical structure of compounds, results from in vitro assays and results of in vivo

studies. The first step therefore consists in reviewing the publicly available data and choosing the

most appropriated ones for our purpose by taking into account the various challenges raised by the

different resources. Then, each stage of the two-stage approach can be evaluated independently

by building ML models using different types of learning algorithms. Indeed, because of the "No

Free Lunch" theorem, all the work presented in this manuscript focuses on the use of several

types of algorithms and machine learning methods, as well as the study of criteria that enable

the building of the best and most reliable models. If sufficient performance are obtained, the

chaining of the two types of ML models will therefore be envisaged. Indeed, since the performance

of the global approach is a composition of the performance of each of the two stages, these two

performances should be high enough to result in a correct global performance. In particular, the
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studies proposed in this manuscript show that our two-stage approach is not generalizable to

the prediction of all types of effects due to insufficient performances obtained in each of the two

stages.

Reading guide

This manuscript is organized in six chapters. The three first chapters focus on the multidisci-

plinary context of the work while the three last ones present the studies that have been performed

in order to contribute to the overall objective.

Chapter 1 presents the toxicological context of this work and aims at defining the important

notions required by the reader to understand the general concepts of toxicology. It first focuses

on the current regulation of chemical compounds and then develops the principles that enable

their risk assessment, on which the regulation relies. It finally highlights the need for alternative

approaches and gives examples of existing initiatives that have been started or achieved in order

to address this need.

Chapter 2 focuses on generalities on machine learning methods, because numerous methods are

used afterwards, see the "No free lunch" theorem. In particular, it details the principle of the

global methodology and the different steps that are required to build ML models. These steps

include data processing, learning and evaluation and each of these steps can be performed by

considering various techniques which are more or less detailed according to their importance for

the understanding of the following work.

Chapter 3 puts the disciplines of toxicology and computer science together in order to inform

the reader on what is already available for toxicity prediction using in silico tools. It first lists

the existing resources for toxicological data as well as the various challenges they raise and puts

an accent on the data used in our work. Secondly, it provides a large overview of the state of the

art of compounds’ bioactivity and toxicity prediction using computational tools. This overview

is split into two parts corresponding to the two stages of our approach: the prediction of in vitro

bioactivity and the prediction of in vivo toxicity.

Chapter 4 presents the results of a preliminary study that focuses on the first stage of our two-

stage approach: the prediction of in vitro assay results from the chemical structure of compounds.

Constrained by the amount of data, we build ML models for only 37 in vitro assays, using two

datasets composed of different number of compounds and we also tests several ML methods as

well as data augmentation.

Chapter 5 presents a second study that aims at developing ML models for the prediction of in

vitro bioactivity from chemical structure of compounds. Contrary to the previous study, this one

proposes a large scale analysis by building ML models for more than 500 assays. It enables us

to evaluate how to build good ML models with the type of data used. Indeed, after comparing

several ML methods, we propose an approach that results in reliable models when combined with

the estimation of the applicability domain.

Chapter 6 presents the results of a study related to the second stage of our approach: the pre-
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diction of in vivo toxicity from in vitro data, possibly combined to chemical structure. In this

study we specifically focus on in vivo effects observed in endocrine organs and try to evaluate

their relation with in vitro assays supposed to target the biological pathways leading to endocrine

effects. This relation is first evaluated through simple statistical analysis and then by ML mod-

eling. The results show that the in vitro assays are not sufficiently informative of the in vivo

effects to enable their prediction., we further discuss the possible reasons of this finding.

We end this manuscript by providing a general discussion and conclusion on the results obtained

in the three studies. In particular, we further discuss the possible reasons of the findings of the

last study. We finally propose perspectives for further work.
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Risk assessment for new molecules:

actual and future trends

This chapter introduces the toxicological context and the generalities about the risk assessment

for new small molecules, focusing on the regulation of plant protection products (PPPs) (i.e

pesticides). We show that current approaches raise various issues and concerns regarding animal

usage and extrapolation of the results obtained in laboratory animals to humans and that there

is a need for new alternative methods, including computational tools.

1.1 The regulatory context

All the living beings are daily exposed to a variety of chemical compounds, either naturals or

synthetics, which can induce adverse toxic effects if a combination of dose level and duration

of exposure sufficiently is achieved. Regarding the synthetic compounds manufactured by the

chemical industry, we can distinguish several types of compounds ranging from pharmaceutical

ones to plant protection products (PPPs) through food additives, household products or cosmet-

ics. Worldwide, every new industrial compound should be demonstrated as safe for the human

health and the environment in order to be registered and placed on the market. This is done by

performing various toxicity studies allowing the characterization of the potential hazard caused

by the chemicals. These studies are different according to the type of chemical compounds: the

more in depth safety evaluation being for pharmaceutical and plant protection products by far.

For example, in the case of pharmaceuticals, pre-clinical studies are first performed using labo-

ratory animals (rodent and non-rodent species) and they are followed by clinical studies directly

performed in humans. Regarding cosmetic compounds, animal testing is banned in several coun-

tries including the EU (since 2013) and tests are only performed using non animal alternative

methods. In this work, we are mainly focusing on PPPs for which the studies conducted for

the risk assessment process follow essentially the same approach as the one for pharmaceutical

products in the pre-clinical phase. For obvious reasons, PPPs are not tested in humans.
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Regarding the registration of chemical compounds, each country has its own legislation and

standards which can sometimes be difficult to harmonize [118]. Here we focus on the European

Union (EU) legislation.

Since 2007, the REACH regulation about the Registration, Evaluation, Authorization and re-

striction of Chemicals governs the industrial chemicals legislation in the EU, in particular for

high production volume chemicals [82]. Indeed, REACH asks all companies, manufacturers,

importers and users of more than one ton of chemical substances per year to register the com-

pounds with the European Chemicals Agency (ECHA) (European agency specifically created in

2007 for the REACH regulation). To apply for a registration, companies should identify the risks

of the substance and provide a technical dossier as well as a chemical safety report which demon-

strate how the substance can be used safely. Then, ECHA evaluates the registration and assess

how the risk can be managed and finally gives its authorization as well as restrictions if necessary.

The REACH regulation applies for any type of chemical compounds, including PPPs in par-

ticular for their intermediate of synthesis. In the EU, the legislation for approval of PPPs is

principally based on the Regulation (EC) No 1107/2009 [84] which is accompanied by other reg-

ulations and directives and is in accordance with the REACH regulation. The European Food

Safety Authority (EFSA) is the European Commission agency in charge of reviewing all test

results provided by the entity asking for the approval of a new substance. In particular, they

review the risk assessments (described in Section 1.2.2), provide scientific advice to the European

Commission on possible risks related to the substance and set maximum residue levels (MRLs)

which are the legal limits for the substance residue in food and animal feed. EFSA is also in

charge of the renewal of substance approval. Indeed, an approval is generally valid for 10 years,

after which an application for a renewal should be submitted.

In the United States, the Environmental Protection Agency (EPA) is in charge of the regis-

tration of PPPs.

Whatever the considered agency for registration, a risk assessment should be performed by

the requesting entity and its process is described in the next section.

1.2 From hazard characterization to risk assessment: general

principles

Before introducing the principle and process of risk assessment for PPPs, some important notions

and concepts have to be defined.
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1.2.1 Definitions

Adverse effect: An adverse effect is a "change in the morphology, physiology, growth, devel-

opment, reproduction or life span of an organism, system, or (sub) population that results in an

impairment of functional capacity, an impairment of the capacity to compensate for additional

stress, or an increase in susceptibility to other influences" [134].

Hazard: The hazard represents the "inherent property of an agent or situation having the

potential to cause adverse effects when an organism, system or population is exposed to that

agent" [134]. Basically, it is a potential source of harm for a person or the environment.

Exposure: The exposure represents the "concentration or amount of a particular agent that

reaches a target organism, system or (sub) population in a specific frequency for a defined

duration" [134].

Risk: The risk is the "probability of the adverse effect occurring in an organism, system or (sub)

population caused under specified circumstances by exposure to an agent" [134]. More generally,

the risk is the likelihood that an organism may be harmed if exposed to the hazard and it

therefore depends on both the hazard and the exposure according to the following definition:

Risk = Hazard× Exposure

1.2.2 Risk assessment

Chemical risk assessment corresponds to the process that enables the evaluation of the potential

risk caused by a chemical to organisms, systems and populations in the context of defined expo-

sure. This process has been introduced in 1983 by a famous publication from the US National

Research Council called the "Red Book" [54] and further detailed in another report in 1994 [56].

Currently, the overall process consists of four steps which are detailed hereafter and illustrated

in Figure 1.1.

1. Hazard 
characterization

2.Dose-response 
assessment

3. Exposure
assessment

4. Risk
characterization

Toxicity assessment

Figure 1.1: The risk assessment process. The process includes 4 steps.

1. Hazard characterization: This step aims at identifying the adverse effects that can be

caused by a chemical. In particular, it describes the target organs and the type of toxicity
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(neurotoxicity, carcinogenicity, hepatotoxicity, developmental toxicity, etc.) as well as the

conditions under which it occurs. In the case of PPPs, this information is obtained from

in vivo studies performed in laboratory animals (rodents and non-rodents) during which

several parameters are measured or evaluated (clinical signs, weights, clinical and anatomic

pathology, histopathology, etc.). More details about these studies are given in Section 1.2.3.

2. Dose-response assessment: This step further evaluates the conditions under which the

hazard can occur by quantifying the relationship between the dose of exposure and the

severity of the toxic effects. The dose-response concept is based on the famous maxim

from Paracelsus who said that "only the dose makes the poison" which enunciates that

a substance can induce its adverse effects only if it reaches a certain concentration in

an organism. Therefore, the dose-response assessment aims at looking for the minimal

dose at which an effect is induced which is called the Lowest-Observed-Adverse-Effect-

Level (LOAEL). Another commonly used dose is the No-Observed-Adverse-Effect-Level

(NOAEL) which corresponds to the highest tested dose of exposure for which no effect

could be observed compared to a control group in a given repeated dose toxicity study.

These doses are obtained after in vivo studies performed in laboratory animals and are

expressed either in parts per million (ppm) or milligram per kilogram of body weight per

day (mg/kg/d).

In order to estimate "safe" levels for humans by extrapolation, the smallest NOAEL ob-

tained in the set of conducted toxicity studies is divided by an uncertainty factor which

takes into account the interspecies variability (between laboratory animals and humans)

and the intra-species variability (due to human sensitivity differences according to gender,

age, health, genetics, etc.). In general, a factor of 10 is applied for the two types of vari-

ability, resulting in a total uncertainty factor of 100 (10 × 10). Thus, the resulting "safe"

exposure for humans equals NOAEL/100 and is called the Reference Dose (RfD) or Ac-

ceptable Daily Intake (ADI) and corresponds to the amount of substance to which a human

can be exposed on a daily basis over lifetime without any undesirable effect. For example,

if the smallest NOAEL of 50 mg/kg/d is obtained for a given compound, the resulting ADI

for humans will be 0.5 mg/kg/d. A representation of the dose-response curve with the

different doses described above is displayed in Figure 1.2

Hazard characterization and dose-response assessment constitute the toxicity assessment.

3. Exposure assessment: This step measures (for already marketed compounds) or esti-

mates (for new compounds) the levels at which the organisms are exposed to the considered

chemical or its residues. In particular, it involves the identification of the population that

could be exposed as well as the route, the magnitude and the duration or frequency of

exposure. In particular for PPPs, we distinguish operators who will handle the products

from the rest of the population and another limit value is specifically derived for operators:

the Acceptable Operator Exposure Level (AOEL). Overall, the exposure assessment step

results in an exposure estimate.
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Dose (mg/kg/d) 

Response

Adverse effect

Non adverse effect
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Uncertainty factor

ADI / RfD

Figure 1.2: Schema of the dose-response curve with the corresponding doses. LOAEL = Lowest-

Observed-Adverse-Effect-Level; NOAEL = No-Observed-Adverse-Effect-Level; ADI = Acceptable Daily Intake;

RfD = Reference Dose.

4. Risk characterization: This step integrates the information obtained from the toxicity

assessment and the exposure assessment in order to conclude on the likelihood that the

hazard associated with the compound will occur in the population. It defines the nature of

the risk but also the uncertainties encountered in the different steps of the risk assessment

process. At the end, the risk is either "acceptable" (i.e. the expected exposure does not

exceed the limit values) or "unacceptable" (i.e. the expected exposure does exceed the

limit values). In the latter case, the compound cannot be commercialized.

Risk characterization is often followed by the risk management which aims at mitigating

the risk and evaluating the impacts of regulatory measures on the risk. In the end, risk

characterization and risk management lead to registration decisions.

The risk assessment approach as detailed here is "threshold based" since it considers that com-

pounds induce their adverse effects above a certain dose. Nonetheless, other approaches for

chemical regulation are considered such as:

• The non-threshold based approach: it is followed by North American Authorities

and corresponds to the case of carcinogenic chemicals for which dose-response curves are

assumed to have in a first place no threshold, meaning that any exposure can lead to a

cancer. Moreover, the effect accumulates after each exposure to the chemical resulting

in a linear dose-response from which the slope factor, also known as Q* (Q-star), can be

computed. It corresponds to the dose level which would induce an incidence of cancer of

one individual in a population of 1 million individuals taking into account the incidence

of tumors observed in the corresponding bioassay. It is used to estimate the risk over

individuals lifetime continuously exposed to the chemical. To have the compound evaluated

in a classical risk based approach, the applicant needs to make the demonstration that the
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compound is inducing tumor via theshold based mechanisms. The demonstration represents

basically the elucidation of the toxic Mode of Action involved in the tumor formation (see

Section 1.2.5).

• The hazard-based approach: in that case, if some specific hazards are identified to be

caused by chemicals, they are directly banned from the market, without considering the

exposure. This is in particular the case for genotoxicity worldwide and endocrine active

chemicals in EU.

These two approaches are often considered at the same time since it is the characterization of

hazard that inform about the non-threshold characteristic.

1.2.3 Toxicology studies

In order to generate data to enable risk assessment, toxicity in vivo studies are performed using

laboratory animals. They aim at looking at various endpoints (or outcomes) which are the

results of an interaction between a chemical substance and the biology of an organism. Several

types of studies are required by the authorities and should follow the international test guidelines

proposed by the Organization for Economic Co-operation and Development (OECD) [202]. In

particular, these guidelines require that regulatory studies should be performed according to the

Good Laboratory Practice (GLP) [197] which ensures the generation of high quality and reliable

data by providing international standards regarding the process and conditions under which

studies should be planned, performed, monitored, recorded and reported. Toxicology studies

include [202]:

• Acute toxicity studies: they evaluate the mortality induced by a compound after either

a single-dose exposure or multiple exposures in a short period of time (< 24 hours). Ad-

ministration routes can be oral, dermal and inhalation. If mortality is observed, a LD50

(Lethal Dose 50%) is derived, corresponding to the dose at which 50% of the individuals

dies (if the compound is administered by inhalation, it is the LC50 for Lethal Concentra-

tion 50%). Acute toxicity studies enable the definition of a limit value used for PPPs: the

Acute Reference Dose (ARfD) [81].

• Short-term studies: they evaluate the adverse effects of repeated exposure to different

dose levels during up to 10% of the animal’s lifespan. Usually, at least 3 dose levels are

used in order to inform about the dose-response relationship and derive the NOAEL. We

distinguish sub-acute studies from subchronic studies according to the time of exposure

(respectively 14 to 28 days and 90 days in rodents).

• Long-term studies: also called chronic studies, they evaluate the adverse effects of re-

peated exposure during the expected lifespan of the animal (2 years in rodents). They

inform about the systemic toxicity and dose-response relationship. They are usually com-

bined to carcinogenicity studies which look for the potential of compounds to induce cancer.

• Reproductive and developmental studies: they evaluate the potential adverse effects

on the sexual function and fertility of both male and female adults and the development
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of offsprings since the embryonic and fetus stages. These studies require two generations

of animals.

• Genotoxicity studies: they evaluate the capacity of compounds to induce DNA damage

and chromosomal changes (regarding the number or the structure). More specifically,

mutagenicity studies look for the genetic changes that are caused by mutations in the

genes. A combination of in vitro and in vivo assays can be used for these studies and no

NOAEL can be derived since they are a category of carcinogens with no-threshold effects.

• Neurotoxicity studies: they evaluate the capacity of compounds to affect the structure,

function and development of the nervous system in both acute and repeated dose effects.

• Toxicokinetic studies: they inform about the fate of a compound and its metabolites

when it enters the body of an organism, in particular regarding the 4 following processes:

absorption, distribution, metabolism and excretion (ADME). Usually, a single dose admin-

istration (and two dose levels) is sufficient to measure the ADME properties. Information

from toxicokinetic studies help for further dose selection for long-term studies and con-

tribute to the animal-to-human extrapolation for risk assessment.

1.2.4 Classification and labelling

For most of these studies, a classification of chemicals can be performed according to the Globally

Harmonized System of Classification and Labelling of Chemicals (GSH) which has been devel-

oped by the United Nations in order to standardize and harmonize classification and labelling of

chemicals [92]. GHS is an international voluntary system which can be adopted by countries and

adapted to their own regulations. In the EU, the Regulation (EC) No 1272/2008 on the Classi-

fication, Labelling and Packaging of Substances and Mixtures (CLP regulation) [83] constitutes

the reference and requires that new substance category, classification and labelling should be

notified to ECHA before their marketing. The different classes are related to physical hazards

(e.g. explosives, flammable, corrosive, etc.), health hazards (e.g. acute toxicity, mutagenicity,

carcinogenicity, etc.) or environmental hazards (e.g. aquatic toxicity, hazard to the ozone layer).

Each hazard class is divided into numbered categories informing about the severity of the hazard

with a category of 1 corresponding to the most severe hazard. For example the carcinogenicity

class is divided into 3 categories:

• 1A: Substances known to have carcinogenic potential for humans, based on human evidence

• 1B: Substances presumed to have carcinogenic potential for humans, based on animal

evidence (experimental animal data)

• 2: Suspected human carcinogens, based on evidence obtained from human and/or animal

studies but not sufficiently convincing to place the substance in Categories 1A and 1B.

Then, once a chemical has been assigned to a class and a category, the labeling elements that

should appear on its packaging can be determined. They contain signal words, hazard pic-

tograms (among 9), hazard statements and precautionary statements. Moreover, a Safety Data

Sheet should be provided to give more advice and safety precaution for the use of the substance.
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Among the health hazard classes of the CLP are the carcinogenicity, mutagenicity and toxicity

for the reproduction which represent the most hazardous ones and therefore the most highly

concerned by regulators. The three classes are divided into the categories 1A, 1B and 2 and

compounds inducing at least one of the three adverse effects are classified as CMRs (Carcinogens,

Mutagens, Reprotoxic). CMR substances benefit of a particular interest in the risk assessment

since they should be avoided and replaced as much as possible except if their exposure has been

determined as "negligible" (only for categories 1B and 2).

1.2.5 Assessing the relevance to human: MoA studies

The studies described previously are used for descriptive toxicology which aims at producing data

to inform about the potential hazard of compounds by identifying adverse outcomes. But the

use of mechanistic studies is also required in the risk assessment process in order to understand

the nature of the hazard and its relevance to humans. Basically, descriptive studies identify

"what" happens and mechanistic studies describe "how" it happens. Indeed, mechanistic studies

aim at identifying and evaluating the biological processes leading to an adverse effect, called the

Mode Of Action (MOA). This term has been originally defined by the International Program on

Chemical Safety (IPCS) from the World Health Organization (WHO) in a conceptual framework

for evaluating the MOA of chemical carcinogens [244]. Later on, the concept of Adverse Outcome

Pathways (AOP) has been proposed to describe the existing knowledge regarding the causal links

of a sequence of biological events that lead to an adverse effect [8]. These two concepts are highly

similar and we use them interchangeably in the following.

The AOP concept is illustrated in Figure 1.3. It starts with a biological event called the

Molecular Initiating Event (MIE) that corresponds to the chemical interaction between the com-

pound and its biological target and leads to an Adverse Outcomes (AO) through intermediate

events called Key Events (KE). An AOP begins at the molecular level and goes up to the individ-

ual or the population level through key events at the cellular, organ and organism levels. The key

events are required but often not sufficient to induce the adverse outcome in the absence of other

key events. Moreover, key event relationships (KER) should describe the causal relationships

between the key events. This causal link is demonstrated based on the modified Bradford-Hill

criteria and using a weight of evidence approach as proposed by Meek et al. [186]. Key criteria

are the dose and time concordances as well as reversibility evaluations. The entire elucidation

of an AOP (MOA) is performed using a combination of both in vitro and in vivo assays. It is

important to keep in mind that several AOPs or MOAs can lead to a specific adverse outcome

through different MIEs and KEs.

In 2012, the OECD launched a program for the development of AOPs in order to make them

available in a web-based platform so that all the knowledge from the community can be brought

together. This resource is called AOP-KB [267].
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Once a MOA has been elucidated for a specific toxic outcome, its relevance to human can be

assessed according to the IPCS Human Relevance Framework [27]. This evaluation of the rele-

vance to humans then helps to perform risk assessment, classification and labeling. A compound

inducing an adverse effect through a non relevant to human MOA is assumed to be "safe".

Molecular
initiating event

(MIE)

Key event (KE)

Key event (KE)

Adverse 
outcome

KER = Key Event Relationship

KER

KER

...

Figure 1.3: Schema of the Adverse Outcome Pathway concept. An AOP is composed of a Molecular

Initiating Event (MIE) and several Key Events (KE) leading to an adverse outcome. Causal relationships between

the events are described by Key Event Relationships (KER).

Figure 1.4 represents the postulated AOP for liver-mediated thyroid tumors leading to follic-

ular cell adenomas in the thyroid of male mice [223]. This AOP starts with the activation of the

Constitutive Androstane Receptor (CAR) or the Pregnane X Receptor (PXR) in the liver (MIE)

which induces metabolic enzymes of the phase II in the liver (KE1) and consequently a changes

in circulating concentration of thyroid hormones (KE2): increase of the Thyroid Stimulation

Hormone (TSH) and decrease of the Thyroxine 4 (T4). At the cellular level, this is translated by

an increased cellular proliferation (KE3) and a follicular cell hyperplasia (KE4) finally leading to

the development of tumors. Regarding the relevance to humans, the literature provides evidence

that the process involving hepatic activity on thyroid hormones and leading to thyroid tumors

in rodents is not likely to induce tumor development in humans [62]. This AOP is therefore

probably not relevant to humans.

Beyond providing mechanistic information for the evaluation of relevance to humans in a reg-

ulatory context, the AOP concept offers several advantages to the entire toxicology community.

In particular, they allow the collection of mechanistic information at different biological levels,

the linkage of mechanistic events to adverse outcomes or can be used for the design of new in

vitro methods and computational models for toxicity prediction [164]..

1.2.6 The case of endocrine active chemicals

Since the 1990s, endocrine active chemicals, also called endocrine disrupting chemicals (EDCs)

have raised a lot of interest and concern regarding their risk for human health and the envi-
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Figure 1.4: Example of Adverse Outcome Pathway: the liver-mediated thyroid tumors AOP lead-

ing to adenomas in thyroid of male mice [223]. The MIE corresponds to an activation of CAR/PXR

hepatic nuclear receptors leading to the adverse outcome through three key events at the cellular and organ lev-

els. CAR:Constitutive Androstane Receptor, PXR:Pregnane X Receptor, THS:Thyroid Stimulation Hormone, T4:

Thyroxine 4.

ronment [143]. An endocrine disruptor has been defined by the World Health Organization

(WHO) as "an exogenous substance or mixture that alters function(s) of the endocrine sys-

tem and consequently causes adverse health effects in an intact organism, or its progeny, or

(sub)populations" [133]. Specifically, they interfere with metabolic processes, they bind to hor-

mones’ receptors and mimic their biological activity but lead to unwanted response and they also

bind to transport proteins in blood and alter the hormones circulation. If sufficiently potent,

these functional disruptions can lead to diverse adverse outcomes at the whole organism level

such as developmental and reproductive effects, neurobehavioral troubles, immune disorders or

cancers [232]. There are numerous mechanistic pathways that result in these effects, including

activation of nuclear receptors (e.g. Estrogen Receptor (ER), Androgen Receptor (AR)), alter-

ation of steroid pathway enzymes and neurotransmitter receptors [64]. The rationale for which

EDCs are of high concern is that their mechanisms of action are not threshold dependent: their

effect are not necessarily observed above a certain dose and can even appear at low doses, result-

ing in non-monotonic dose response curves as illustrated in Figure 1.5 [265]. This prevents the

use of traditional toxicity studies to characterize their hazard. Therefore, their risk assessment

and regulation should be based on mechanistic studies rather than descriptive toxicity.

EDCs represent a broad variety of chemicals, ranging from natural such as mycotoxins and phy-

toestrogens, to synthetic such as drugs, household products, plastics and PPPs. However, as of

today, most of the EDCs are still lacking assessment regarding their potential endocrine activity.

In 1999, the US EPA created the Endocrine Disruptor Screening Program (EDSP) in order

to screen PPPs and environmental chemicals for their potential to affect the endocrine sys-
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Figure 1.5: Examples of non-monotonic response curves that can be obtained with EDCs. a) Inverted

U-shaped curve, b) U-shaped curve, c) Multiphasic curve

tems [88]. The program is based on a two-tiered approach proposing a battery of in vitro and

in vivo assays to detect estrogen and androgen related effects induced by various MOA. On the

one hand, the tier 1 is composed of five in vitro tests (estrogen and androgen receptor binding,

estrogen transcriptional activation, aromatase and steroidogenesis activity) and six in vivo assays

(rat uterotrophic assay, rat Hershberger assay, rat male and female pubertal assays, amphibian

metamorphosis assay and short-term reproduction in fish assay). On the other hand, the tier

2 includes in vivo multi-generational studies which have the goal to further characterize the

compounds that were identified as active in the Tier 1 assays. The actual testing of compounds

started in 2009 with a first list of 67 compounds followed in 2010 by a second list of 109 com-

pounds.

Following the launch of the EDSP program, the OECD developed in 2002 a conceptual framework

that provides an approach built on several tiers for testing and assessment of endocrine-disrupting

potential of chemicals [196]. The initial level is based on existing information and aim at priori-

tizing compounds for further testing in the following levels that include more and more biological

complexity by starting with in vitro assays and going to more complex in vivo studies.

In the EU, according to the Regulation 1107/2009, a compound with endocrine disrupting

properties cannot be considered and is completely banned from the market. Nonetheless, before

2018, there was no existing criteria to define the potential endocrine effects induced by chemicals.

Indeed, since 2009 several rules and guidances for the evaluation of the endocrine disrupting

potential of PPPs have been published but there were a lot of uncertainties. In 2013, EFSA

proposed a draft criteria to define EDC that is based on 3 requirements [53]:

• The presence of an adverse effect in an intact organism,

• The presence of an endocrine activity,

• A plausible causal relationship between the previous two.

With this definition, endocrine disruption is considered as a mode of action and not a simple

adverse effect and it therefore requires mechanistic studies to be demonstrated. Moreover, EFSA

proposed that EDC could be divided into two categories analogous to the CMR classification

(known or presumed and suspected ED).

Finally, it was only in 2018 that the ED scientific identification criteria for PPPs has been officially
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published by the European commission in a new directive with a new EFSA/ECHA guidance

document [75]. The novelty compared to other adverse effects is that regulation of EDCs is only

based on hazard and does not take into account exposure. Nonetheless, the guidance focuses

on ED effects caused by estrogenic, androgenic, thyroidal and steroidogenic (EATS) pathways

because they are the ones for which there is a good mechanistic understanding and for which

OECD in vivo and in vitro test guidelines exist.

1.3 The need for alternative methods

1.3.1 The rationale

The current risk assessment process and related toxicology studies raise several concerns. First,

the approach is expensive and time consuming and requires a high number of laboratory animals

which is an important ethical issue. Regarding this last issue, the Three R (3R) rule has been

proposed in 1959 and presents three principles for a more ethical use of laboratory animals:

replacement (find new methods to avoid animal use), reduction (use of methods that enable the

use of fewer animals for the same quality and quantity of information) and refinement (use of

methods that increase animal welfare and reduce animal pain and stress) [225].

Moreover, the number of compounds that need to be tested is always increasing and there are

a lot of chemicals for which little or no toxicity data are available (including PPPs). This in-

crease is partly due to the new directives and initiatives for a better toxicity testing, such as the

REACH regulation which asks for more information for an important number of chemicals that

are currently lacking of data. Indeed, an estimation of the number of chemicals falling under

REACH ranged from 68,000 to 100,000 corresponding to 54 million of laboratory animals and

a testing cost of 9.5 billion euros [224]. Unfortunately, the traditional approaches cannot deal

with this high need for testing.

Lastly, because data are obtained using laboratory animal studies on which high doses of chemi-

cals are tested, they may not be representative of the actual risk to human health [155]. Indeed,

if the hazard is successfully characterized in those studies, the extrapolation of its risk to other

species and life stages is not evident which raises the question of concentration relevance.

According to this situation, there is an urgent need for new alternative methods that would

help to face all the issues encountered with the traditional approaches. Ideally, these methods

should be more predictive, more reliable, faster, cheaper and provide information about the MOA

of chemicals. The entire community knows that the development of new methods can take years

and that the methods will raise uncertainties which should be identified in order to determine

whether the new methods are more reliable than the actual ones. Since the last two decades,

efforts are made in that sense and the goal is to move from a risk assessment based on animal

hazard data towards human based in vitro assays in which compounds are tested at relevant

concentrations. This "shift" is further illustrated in the next section.
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1.3.2 How to address the need?

In 2007, the National Research Council (NRC) of the National Academy of Science in the US

published a report entitled "Toxicity Testing in the 21st Century: A Vision and a Strategy" [55].

This report proposes a paradigm shift in toxicology by suggesting an increased use of in vitro

and in silico methods for toxicity assessment. In particular, these methods should help to [6]:

• Increase the number of tested chemicals,

• Decrease the time and cost of testing,

• Significantly reduce animal testing,

• Increase the ability to determine the human risks of environmental chemicals by incorpo-

rating data on the mode of action and information on tissue doses and human exposure.

In 2008, following the release of the NRC report, the Toxicology in the 21st century (Tox21)

American consortium has been created. This federal collaboration gathers the US EPA, the

National Institute of Health (NIH) (and specifically its National Center for Advancing Transla-

tion Sciences, NCATS), the National Toxicology Program (NTP) from the National Institute of

Environmental Health Sciences (NIEHS) and the Food and Drug Administration (FDA). The ob-

jective of this collaboration is to develop methods to "rapidly and efficiently evaluate the safety of

commercial chemicals, pesticides, food additives or contaminants and medical products". Specifi-

cally, these methods should help at identifying chemically-induced biological activity, prioritizing

compounds for further and deeper testing and developing predictive models of in vivo toxicity.

Basically, this Tox21 vision wants to base the risk assessment on the elucidation of toxicity

pathways which were defined as "cellular response pathways that, when sufficiently perturbed,

would be expected to result in adverse health effects" [55]. Compared to the AOP, the toxic-

ity pathway only considers chemical, macromolecular and cellular levels. In order to elucidate

these toxicity pathways, several alternative methods can be envisioned such as in vitro High-

Throughput Screening (HTS), functional genomics and computational methodologies [6].

HTS: High-Throughput Screening techniques allow the testing of several thousands of com-

pounds in several in vitro assays in parallel. This can be achieved by the use of robotic platforms

that perform standardized protocols of miniaturized biological assays. In the end, HTS enables

a rapid screening of chemicals and their prioritization for further testing, at lower cost than an-

imal testing. Assays can be performed cell free (in a biochemical medium containing molecular

entities) or can be cell based (in isolated cell lines) using one to several concentrations of com-

pounds and enable measuring the ability of compounds to interact with proteins, genes or cells

and therefore affect their functions. More precisely, these assays generally measure the binding

of chemicals to receptors, the gene expression levels using reporter genes, the activation or inhi-

bition of enzymatic activity and effects in cells such as cytotoxicity or changes in cell size and
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shape. Thus they help in identifying the cellular responses induced by chemicals by evaluating

several pathways and triggering MIE and KE of specific AOPs [141]. They potentially also have

the advantage of avoiding the animal to human extrapolation since they use human cell lines

and concentrations of compounds that are relevant to actual levels of human exposure [222].

Functional genomics: The term "omics" refers to all the fields of biology ending with the

suffix -omics such as genomics, transcriptomics, proteomics or metabolomics. In "omics" studies,

large number of biological entities (genes, transcripts, proteins, metabolites) are measured and

analyzed to describe and understand the biological functions and dynamics of organisms. These

measures can be performed after either in vitro or in vivo experiments.

In particular, functional genomics tries to link genes-related data to biological outcomes by

analyzing a large panel of genes and proteins and enabling the generation of gene expression

profiles. Functional genomics can provide interesting and important information about toxicity

pathways and AOPs by looking at the perturbed genes after the exposure to chemicals. Such as

in vitro assays, genomics can be performed in high-throughput which results in a large amount

of data. Therefore, bioinformatics tools are required to perform data analysis and interpretation.

Computational methods: They can be used for two distinct tasks: (1) data analysis and

integration or (2) development of computational models for biological simulations and predic-

tions. Regardless of the considered task, computational methods play a significant role since they

enable the integration of all the generated data which are then used to build predictive models.

This would help to identify toxicity pathways and AOPs and also to prioritize compounds that

would need further testing for risk assessment. Among computational tools we can cite ma-

chine learning (including Quantitative Structure-Activity Relationship, QSAR), grouping and

read-across or physiologically based toxicokinetic models (PBTK). These methods are further

detailed in Chapter 3.

These alternative methodologies are intended to be used in Integrated Approaches to Testing

and Assessment (IATA) which are defined as approaches for chemical safety assessment based on

the integration of data from various methods and sources [199]. For example they can incorpo-

rate in vitro and in vivo data as well as computational methods for either new data generation or

existing data interpretation and integration. In the end, they aim at helping in the development

and understanding of AOPs and MOAs.

In line with the Tox21 vision, initiatives have been launched during the last decades in order

to seek for alternative methods and several entities have been created:

• The International Cooperation on Alternative Test Methods (ICATM) has been created in

2009 in order to promote the international cooperation for the development and validation

of new alternative approaches in order to support the 3R rule. It gathers several govern-
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mental organizations from Europe, US, Canada, Japan, Korea, China, Brazil. In Europe,

it includes the European Union Reference Laboratory for alternatives to animal testing

(EURL ECVAM) which has already validated alternative methods for acute toxicity, eye

irritation, genotoxicity, skin sensitization, skin irritation, etc.

• In the US, the Tox21 program have been launched with the goal to generate HTS data for

a large library of compounds. The ToxCast program is the US EPA contribution to the

Tox21 program [68]. These two programs are further detailed in Chapter 3, Section 3.2.2.

The US EPA also launched the ExpoCast program in complement to the ToxCast one

in order to gather exposure information thanks to the development of high-throughput

methods that estimate exposure [131].

• In Europe, REACH promotes the use of alternative methods for the hazard assessment of

chemical substances in order to reduce the number of tests on animals. The legislation

states that laboratory animal studies should be performed only as a last option and that

the use of IATA strategies should be envisioned such as eliminating duplicate studies,

promoting data sharing and using existing data [82].

Still in Europe, the Safety Evaluation Ultimately Replacing Animal Testing (SEURAT-1)

initiative has been launched in 2013 after the banning of cosmetic products containing

ingredients tested on animals. It was composed of 7 projects and aimed at looking for

new alternative methods to help in the regulatory risk assessment [103]. Following the

SEURAT project, the EU-ToxRisk initiative has been launched in 2016 and gathers 38

European partners (and one university from the US) with the goal to develop a "new

way of risk assessment" [58]. In particular, the objective is to use IATA comprising in

vitro assays, omics technologies and computational tools in order to get a mechanistic

understanding of adverse effects induced by chemicals.

• In Japan, the Toxicogenomics Project had the objective to use omics technologies in order

to generate gene expression data and identify mechanisms leading to adverse effects as

biomarkers of toxicity and therefore help in risk assessment [263].

1.4 Position of the thesis in this context

According to the current toxicological context, the objective of this thesis is to evaluate how

the public data generated for toxicity assessment could be exploited by computational tools to

help in the prioritization of compounds and to support the 3R principle. This is in line with the

Tox21 vision but it is also responding to the objective of agrochemical companies such as Bayer.

The ideal would be to predict in vivo outcomes caused by compounds directly from their chemical

structure but due to the large number of events happening between the entrance of the chemical

in the organism and its effect, it seems quite ambitious and the consideration of other type of

information is necessary.

Moreover, since the interest for alternative approaches is quite recent and that we are still in

the early stage of the validation of these methods, we think it is important to test the relevance
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of in vitro derived bioactivity signatures and their ability to predict in vivo outcomes through

computational models.

We therefore propose to focus on three types of information: chemical structure of compounds,

in vitro bioactivities generated in HTS and in vivo outcomes observed in toxicity studies and

we distinguish two stages to predict in vivo outcomes from chemical structure. Indeed, in our

two-stage approach described in the Introduction, the first stage aims at predicting in vitro re-

sults based on chemical structure information while the second stage aims at predicting in vivo

outcomes based on in vitro data. To do so, we mostly use machine learning approaches whose

generalities are described in the next Chapter.
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Machine learning: generalities

This chapter aims at introducing or reminding the generalities and rationales of machine learning.

Artificial intelligence can be defined as the computational science which develops techniques

to make the machines able to simulate intelligence and can result for instance, for the general

public, in robots or expert systems. Machine learning (ML) is a specific field of artificial intelli-

gence that enables computers to "learn" from existing data on which they are trained. Thanks to

learning algorithms that are based on statistical approaches, ML allows the detection of patterns

inside the data which are learnt in order to make predictions or decisions on new examples with

regard to a specific task. We commonly say that algorithms generalize from their experience.

The first ML algorithms were developed in the late 1950s and since the 21st century, ML has

gained a big interest in many fields. Indeed, due to the emergence and availability of big data on

which it is difficult to perform comprehensive analysis using simple statistical methods, computer

scientists have focused on ML methods and the development of effective algorithms. Today, a

lot of companies are relying on big data and ML to provide competitive products and services.

Examples of applications of ML include image processing, face recognition, natural language

processing, object detection, financial analysis, medical diagnosis, etc.

After briefly having presented the principle of machine learning, we describe in more details

the different required steps to generate a model starting with data processing, followed by the

learning and finally the evaluation. The last section of this chapter focuses on methods that

enable the handling of imbalanced datasets.

2.1 Principle of machine learning

In order to design a ML approach, several elements are required:

• A task to complete: it corresponds to the problem that the ML model should solve and

we essentially distinguish three main types of task: classification, regression and clustering.
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A description of these tasks is provided in Section 2.3.1.

• Data: they are essential to build ML models and their quality is directly linked to the

performance of the future model. They are used as input to train the algorithm (training

set) and test the resulting model (testing set). They are characterized by several input

variables also named descriptors or features and sometimes by a desired output. Most of

the time, data are not ready for machine learning and need to be pre-processed [292]. Data

can be of various types such as numbers, words, images, sounds, etc.

• A learning algorithm: this is the mathematical method that learns from the training

set. Numerous ML algorithms exist and their choice mostly depends on the type of data

used as input as well as the task to complete.

• Performance metrics: they are used to evaluate the model’s performance and they also

differ according to the considered tasks. More details are provided in Section 2.4.2.

The machine learning process can be divided into two phases: the learning and the task

completion (see Figure 2.1).

Data 
processing

Task learning -
ML algorithm

Performance 
evaluation

Training set

Final modelNew data

Task completion

Learning

Output prediction, 
decision, etc

?

Testing set PredictionsModel

Figure 2.1: Machine learning rationale. Learning: based on a training set on which is firstly performed

data processing, a ML algorithm tries to learn how to give good answers for a considered task. Performance of

the resulting model is evaluated on a testing set and the model is retrained until it reaches acceptable performance.

Task completion: once the model has sufficient performance, it can be used to complete the specific task for new

observations.

1. During the learning phase, an algorithm is trained to build a mathematical model that

will be able to give answers to complete a considered task. The learning is performed using

a training dataset composed of input data called examples or observations. Performance

of the model is evaluated during this phase using a testing set composed of examples for

which we already know the answer to the considered task but that were not included

in the training dataset. If performance is sufficient, the model can be used in the next

phase, otherwise it is retrained with other hyperparameters (i.e parameters controlling the
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learning algorithm itself) until it reaches the desired performance; this is called parameter

tunning.

2. Once the model has sufficient performance, it can enter the second phase which consists of

applying the model on new data in order to complete the considered task.

2.2 Dataset processing

Before entering the learning step, data need to be pre-processed in order to make them handable

by the learning algorithms. Indeed, raw data are generally not in a proper format to be read

by ML algorithms and they can contain missing, incorrect and noisy values as well as duplicate

observations. Moreover, the input data need to be relevant for the task to complete, meaning

that the features used should sufficiently describe the problem. Data processing is therefore

crucial for the development of good ML models since the quality of data is directly linked to

the quality of the resulting model. In general, this step requires the largest amount of time and

effort from the scientists [292].

We can distinguish different steps in the data processing:

Merging and formatting the data: Sometimes data are extracted from different sources

and need to be aggregated into a unique and consistent format that is readable by the learning

algorithm.

Removing of duplicate observations: Depending on the problem to model, having a unique

version of each observation can be important to avoid the induction of noise in the model. Indeed,

the training data have to be representative of the real world and in some cases, if observations

are repeated several times, the model will base its learning in favor of these observations with

the risk of giving less consideration on the others.

Removing of outliers: Extreme values are generally not representative of the data and can

also affect the performance of the model in the same way that duplicate observations. Here again

it depends on the modeling problem and in particular on the information carried by the outliers:

if an outlier comes from errors in the data it is safer to remove it but if the outlier is a real

one it can have a lot of meaning and may be important to be considered by the model. Several

methods exist to automatically detect outliers and therefore proceed to a case by case evaluation

of their importance [126].

Dealing with missing values: There are different methods to handle missing values in the

input features. Basically, they can be either removed from the dataset or replaced by another

value which can be the mean or median of all the other values of the given feature or a computed

guess made by more complex algorithms [12].

Scaling of features: When features have different units and various scales, the learning algo-

rithm might give more consideration on the ones with the largest scale. To avoid this and make

all the features to contribute equally to the model, feature scaling can be used and the different

methods include: standardization (also called Z-score normalization, it rescales the features such

that, after treatment, their mean equals 0 and their variance equals 1), min-max normalization (it
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rescales the range of the features into the interval [0,1] or [-1,1]) and decimal point normalization

(it transforms the values of the features by moving the decimal point according to the number

of digits of the maximal value; if the maximal value has 3 digits, all the values are divided by

103) [236].

Feature selection: It aims at removing irrelevant and redundant features in order to reduce

the dimensionality of the feature space and hence avoid the curse of dimensionality which states

that the more the features in the dataset, the more observations are required to learn correctly.

In particular, this relation is exponential: in one dimension, if the observations cover 10% of

the space, in two dimensions the same data will cover 1% of the space and only 0.1% of a

three dimensional space (see Figure 2.2 for an illustration). Several approaches can be used to

reduce the number of features: first, features with a low variance can be removed since they

do not discriminate the different observations. Next, redundancy is avoided by removing one of

two highly correlated features. Then, several algorithms can be used to keep the most relevant

features.
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Figure 2.2: The curse of dimensionality. In one dimension, if the observations cover 10% of the space, in

two dimensions the same data will cover 1% of the space and only 0.1% of a three dimensional space.

These algorithms can be divided into three categories [111, 254]:

• Filter methods: they rank the features according to a statistical test (Chi-squared, cor-

relation coefficient, F-score etc.) and keep the best ones [138]. The test is performed

individually between each feature and the output, before the learning phase.

• Wrapper methods: they are used during the learning phase and aim at selecting the

best set of features by testing different combinations during the training [111]. Several

methods can be applied to generate the set of features such as forward selection (starts

with one feature and add the best significant one at each iteration, stops when performance

is not improved anymore), backward elimination (starts with all features and removes the

least significant at each iteration, stops when performance is affected) or recursive feature

elimination (starts with all features and estimates their importance after learning the model

to remove the least important at each turn, stops when performance is affected).
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• Embedded methods: also used during the learning phase, they combine the advantages

of the two previous methods by learning which features are contributing the best to the

performance of the model [175]. They are generally preferred to the wrapper methods

since they are less computationally costly. Some learning algorithms such as decision

trees and Naive Bayes (see Section 2.3.2) already include a built-in mechanism to perform

this type of feature selection. Apart from them, the most common algorithms are based

on regularization methods, also called penalization methods, that are performing feature

weighting. Indeed, by using an objective function (or penalty function) that minimizes the

errors of the predictions, they assign a small (or close to zero) coefficient to the features

that do not contribute to the model: the features are therefore penalized since their weight

is low and they are finally removed from the dataset.

2.3 Learning algorithms

2.3.1 Types of learning

Once the data have been processed and are ready for learning, they can be fed to the learning

algorithm [3]. Different types of learning exist according to the input data.

Supervised learning: In that case each training example is labeled with an output (already

known) and the algorithm is trained on the input-output pairs of data and build a mathematical

model able to predict the unknown output for a new example. In other words, the algorithm

tries to map inputs to outputs by inferring a mathematical function [63].

Two tasks can be achieved by supervised learning algorithms: classification and regression. On

the one hand, the classification is used when the desired output is a discrete variable representing

a category or a class (in the case of two classes, we talk about binary classification). On the

other hand, the regression is used for approximation of continuous output.

Unsupervised learning: In that case the desired output is unknown and the algorithm looks

for patterns in the data in order to group them into categories according to similarities and

differences in the features. Contrary to the supervised learning which aims at predicting an

output for a new observation, the unsupervised model tries to extract general rules that explain

relationships between the input variables [3].

The most common tasks of unsupervised learning include clustering [200] (i.e. grouping of obser-

vations into clusters according to their similarity), dimensionality reduction [264] (i.e. reducing

the number of input variables to a few principal components), and association rules learning [286]

(i.e. finding relationships between the descriptive features).

Semi-supervised learning: It is a mix between the two previous types of learning since one

part of the input examples is labeled and the other part is not. The model should learn both the

structure of the data and the output of labeled data in order to be able to make predictions [41].
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Reinforcement learning: Here, the algorithm learns how to behave from its experiences in

order to optimize a quantitative reward over time. Each time, it has to make decisions according

to its current environment and receives a positive or negative reward. In the end, the goal of

the algorithm is to maximize the sum of the reward obtained at each trial meaning that it has

learnt the best behavior [250].

Since in this work we only use labeled data in order to predict different types of output, the

next section will only focus on supervised learning.

2.3.2 Methods and types of algorithms for supervised learning

Learning algorithms can be classified according to several criteria such as the type of task they

perform (classification, regression) or the method on which they are based. Here is a list of the

most commonly used methods.

Regression algorithms: They model the relationship between the input variables and the

output and try to minimize the predictions error. The model is iteratively refined according

to error of predictions. Examples of regression algorithms are the linear regression which tries

to fit the best linear equation of the form f(x) = a × x + b between the variables [11] (the

linear regression can be simple or multiple according to the number of variables); and the logistic

regression [70, 201] which is a classification method that learns to fit a sigmoid function of type

f(x) = 1
1+e−x . It returns a value corresponding to the probability of an observation to belong to

a class. This predicted probability is then transformed into a predicted binary value according

to a threshold (generally 0.5)1.

Bayesian algorithms: They are mostly used for classification tasks and are based on the

Bayes’ Theorem [152] which proposes a formula to calculate conditional probabilities. In the

case of Bayesian algorithms, the posterior probability of the class c given the observation (input

value) x (P (c|x)) is computed according to the following equation:

P (c|x) =
P (x|c)P (c)

P (x)

Bayesian classifiers make the strong assumption that all features are independent such that,

for each feature xi of a new observation and each class cj , the posterior probability P (cj |xi)
of the class given the feature can be computed according to the previous equation. Then, the

probability of the class given all the features P (cj |x1, ..., xn) is computed as the product of all

independent posterior probabilities:

P (cj |x1, ..., xn) =

n∏
i=1

P (cj |xi)

1Note that despite its name, the logistic regression is a classification method.
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The class with the highest probability is finally assigned to the new observation. Bayesian

algorithms have the advantage of being fast and highly scalable and the most famous one is the

Naïve Bayes classifier [189, 154].

Kernel algorithms: They aim at transforming an original data space where data are not

linearly separable into a higher dimensional space in order to go back to a linear problem where

the data can be discriminated using a linear function. Hence the linear separation in the high

dimensional space is equivalent to a non linear separation in the original space. To do so, the

algorithms use the "kernel trick" which consists of applying a kernel function to transform and

project the input data into the higher dimensional space. Since a computation of the coordinates

of the data in the high dimensional space would be too energy consuming, kernel functions have

been introduced to avoid computing the scalar product in the high dimensional space and to allow

a computation of this product directly in the initial space [231]. Examples of kernel functions

include polynomial, Gaussian, sigmoid and hyperbolic tangent functions. In the end, algorithms

look for the optimal hyperplane separating the different classes in the higher dimensional space.

Two known kernel algorithms are the Support Vector Machine (SVM) [192] which tries to find the

hyperplane that maximizes the margin between the different classes and the Linear Discriminant

Analysis (LDA) [166] which assumes that data are normally distributed whereas SVM does not

make assumptions. An illustration of the representation of the data before and after applying a

kernel function is provided in Figure 2.3.

Figure 2.3: Example of the application of a kernel function to linearly separate the data. Left:

representation of the data in their original space, dots and squares cannot be linearly discriminated. Right:

representation of the data in a higher dimension space when a kernel function has been applied. Dots and squares

are separable using a hyperplane.

Instance based algorithms: They compare new data to one or some of the most similar in-

stances of the training set to make their predictions. The most popular instance based algorithm

is the k-Nearest Neighbor (kNN) which looks for the k-Nearest Neighbors of a new data point

by measuring a distance (Euclidean, Manhattan, Jaccard, etc.) and assigns their majority vote

to the new observation [63]. An illustration of a kNN classifier is given in Figure 2.4.
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k = 5

k = 3
?

Class A Class B

New example to classify

Figure 2.4: Illustration of a kNN classifier. When k=3, two neighbors of the new example belong to the

class A and the other one belongs to the class B: class A is therefore assigned to the observation. When k=5,

class B is assigned since 3 neighbors are belonging to this class (versus 2 for class A).

Decision tree algorithms: As indicated by their name, they are based on a tree where the

nodes correspond to a condition regarding the input variables of the data and the leaves represent

the final decision (i.e. the prediction). A simple example of decision tree is provided in Figure 2.5.

The conditional rules in the nodes are generated based on conditional probabilities computed on

the training data. At each node, in order to choose the feature which best splits the observations,

algorithms use different criteria that measure the homogeneity of the target output in the possible

subsets [63, 154]. Decision trees are fast, accurate and easily interpretable which places them

among the favorite methods. Examples of decision tree algorithms are the Classification and

Regression Tree (CART) and the C5.0 which differ by the criteria they use [171] (Gini impurity

for CART and information gain for C5.0).

Outlook  

Rainy

Overcast

Sunny

YES
Humidity
> 60% ?

Windy

True False Yes No

NO YES NO YES

Figure 2.5: Example of small decision tree that decides if playing tennis is a good idea according

to the weather. Here three descriptors are considered to make the decision: the first one is the outlook and

according to it, humidity and wind can also be considered.
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Artificial Neural Networks (ANN) algorithms: Inspired from the biological neurons, they

are composed of different layers of interconnected nodes (neurons) including an input layer which

receives input data, one to several hidden layers and one output layer which returns the pre-

dicted output (see Figure 2.6-a) [63]. Each node receives information (values) from the neurons

of the previous layer and combine them into a value thanks to a propagation function which is

most often a weighted sum of the inputs. Then, an activation function is applied to compute

the output of the neuron after comparison to a threshold: below the threshold, the neuron is

inactive (its output is generally 0 or -1) and above the threshold, the neuron is active (its output

is generally 1). This output is then passed to the neurons of the next layer (i.e. the successor

neurons). Among the most known activation functions are the linear ones (identity or sigmoid)

used for example by the perceptron algorithm or the Radial Basis Function (RBF) used by the

eponymous networks [154]. An illustration of a single neuron (the perceptron) is presented in

Figure 2.6-b.

Each connexion between a neuron and its successor carries a weight which is modified and up-

dated during the learning phase which aims at finding the parameters of the network that lead

to the correct predictions [189]. To do so, a loss function mapping the predicted values to the

actual ones (and therefore calculates the error predictions) has to be minimized. This is done

by an algorithm from the gradient descent class in which the gradient of the loss function is

computed using a technique called backpropagation. It allows the update of the weights of the

network.

Input layer Hidden layer Output layer 

...

...

x1

x2

xn

y1

y2

(a) Schema of an artificial neural network

Propagation 
function

Activation 
function yi

x1

x2

xn

w1

w2

wn

෍𝐱𝐢. 𝐰𝐢 0

1

(b) A single neuron: the perceptron

Figure 2.6: a) Schema of an artificial neural network with the three types of layers: input, hidden and

output. The input layer receives the input data and the output layer computes the final predicted output. b) Single

neuron (perceptron): it receives input values which are combined by a propagation function and passed to an

activation function to compute the output that will float to the next layers.

In general, information in ANN flows from the input to the output without any feedback loop

and these networks are called feed-forward networks [11].

Many types of ANN exist and differ according to their structure, their activation function, their
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types of learning, etc. We can for example mention the family of Recurrent Neural Networks

(RecNN)2 which enables the modeling of sequential data [25, 162]. Indeed, besides computing

the output for each time step of the sequence, the RecNN "memorizes" its internal state for this

considered time step in order to feed it to the upstream neurons through recurrent connections

to compute the output for the next time step. Another example is the class of Random Neural

Networks (RNN) which are RecNN inspired by the spiking probabilistic behavior of biological

neurons with a "product form solution" [98], integrating excitatory and inhibitory spiking signals

resulting in respectively increase or decrease of values of the neurons receiving the spikes [99].

Deep learning: It is considered as an entire field of machine learning that uses neural networks

with many hidden layers called Deep Neural Networks [162]. For several years, it has become

the most popular method of machine learning and have proved its high efficiency in image and

natural language processing, computer vision, speech recognition, etc. Networks used in deep

learning are often referred as a "black box" because of the difficulty to know what is happening

within the hidden nodes. Examples of architectures of deep neural networks are the RecNN

(same than previously with a many hidden layers) and Convolutional Neural Networks (CNN)

which include convolutional, pooling and fully connected layers and try to mimic the neurons of

the visual cortex [163].

Ensemble algorithms: All the previously described methods allow the building of single mod-

els that result in one prediction. Indeed, each type of learning algorithm makes some hypotheses

to predict, as well as possible, a particular output and this prediction is sometimes not obvious.

The idea of ensemble algorithms is to take several models that have been independently trained

to predict the same output in order to combine their hypotheses in a unique model. This com-

bination finally leads to a consensus prediction that is more accurate than the ones of the single

models [65].

Several methods combining the single models (also called weak or base models) have been devel-

oped:

• Bagging: in that case, multiple models are trained using different random subsets of

the original training data and the prediction for a new observation is either the average

of the predictions made by all the models (for regression tasks) or the majority vote of

the predictions (for classification tasks) [30]; Figure 2.7-a) illustrates the method. This

method is also called bootstrapped aggregation and leads to the decrease of the variance

of the model [284], i.e. how much the predictions for a same observation differ from each

other.

• Random Forests: it is a special form of bagging that combines multiple decision trees

trained on different subsets of the training set. The difference with bagging is that a

random selection of the features is performed to build each base model [31]. In other

2Note that Recurrent Neural Networks are commonly abbreviated in "RNN" but here we use the abbreviation

RecNN to make the distinction with Random Neural Networks (RNN)
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words, the choice of the feature that will split the data at each node is done randomly,

from a random subset of the features, which avoids to always consider the same set of

features. Figure 2.7-b) illustrates the Random Forest method.

D1 D2 Dn

Dataset D

Vote

Model 1 Model 2 Model n

Bootstrap sampling

Predictions

p1 p2 pn

. . .

(a) Bagging
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(c) Boosting

Figure 2.7: Schema of three ensemble methods. a) Bagging, b) Random Forests , c) Boosting

• Boosting: these algorithms aim at converting several weak learners into a single strong

learner [65, 284]; the method is illustrated in Figure 2.7-c).

Basically, weak models are built sequentially and each new model is trained by considering

the performance of predictions of the previous one. For example in the case of AdaBoost,

the standard boosting algorithm [289], an important weight is assigned to each observation

that has been mispredicted by the previous learner such that the actual one will focus more

on difficult examples in order to correctly predict them: we say that these observations are
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"boosted". Another well known boosting algorithm is the gradient boosting where each

weak learner is trained on the remaining error from the previous model [95]. Indeed, this

error is computed in a loss function which is minimized thanks to the gradient descent

method.

Boosting methods allow the decrease of both bias and variance of the final model (see

Section 2.4.2 for details).

• Stacking: also called stacked generalization, it combines the base models that learnt on

a same subset of the training data into a meta-classifier which uses the predictions from

the base models as input to generate an output [278]. Unlike bagging and boosting, the

stacking method has the advantage of allowing the combination of models built using differ-

ent types of learning algorithms and therefore takes advantage of their various underlying

hypotheses. Stacking methods are more described in Chapter 5 since we apply them in the

context of toxicological data.

Most of the algorithms described in this section have hyperparameters (e.g. the number of

k-neighbors for the KNN, connection weights for ANN, etc.) that can be tuned in order to obtain

the best model. This parameter tuning is performed during the validation step which aims at

building the model with correct sufficient performance.

2.4 Model evaluation

In order to ensure that a model is good enough to be used for real cases and even choose the

best model among several, it is essential to evaluate its performance during a validation step.

This step allows the verification that a model generalizes well, meaning that it is able to provide

good predictions for unseen data and not only for the data used to train it. Indeed, when a

model performs very well on the training data but is not able to make good predictions for new

data (i.e. the variance is high), we talk about overfitting. In other words, the model has learnt

so much that it perfectly represents and fits the data it has seen to generalize to others. By

contrast, underfitting corresponds to the fact that a model is too simple to be able to produce

good predictions at all, whether on the training data or on new data. Therefore, the goal is to find

a compromise for which the predictions on the training data are good and the generalization to

new data is the best. This compromise is known as the bias-variance trade-off. Bias and variance

are two different sources of error for ML models [101]: on the one hand the bias corresponds to

the difference between predicted and actual values and reflects underfitting; on the other hand

the variance is the variability of the model to predict a given observation. A high variance means

that changes in the training data on which is trained a model will result in varying predictions

for a same observation and this reflects overfitting. In general, models have low bias and high

variance or conversely. The objective is to find the best balance where both bias and variance

are low, meaning that the model neither overfits nor underfits.
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2.4.1 Validation

We distinguish two types of validation: internal and external. In general, when no sufficient data

is available, the original dataset is directly split into a training set used to train the model and

on which the internal validation is performed and a test set which is never used for the learning

and will enable to perform the external validation [189].

Internal validation: It is performed during the learning phase using the training data and

can sometimes allow the tuning of hyperparameters of the algorithm in order to reach the best

performance on these training data.

The most used technique is the k-fold cross-validation in which the training set is randomly split

into k folds of equivalent size [189], as illustrated in Figure 2.8. At each turn, one fold is held

out to serve as a test set and the k-1 remaining folds are used to train the model which predicts

the outputs of the isolated fold. The process is repeated for each fold so that all the observations

have been used once in a test set. In the end, the average of the performance obtained on the

k-folds can be computed.

Training set

Training folds (k-1) Testing fold

. . .

1st iteration

2nd iteration

3rd iteration

10th iteration

Figure 2.8: Schema of the cross-validation process, example with 10 folds. The entire training set is

split into 10 distinct folds and at each step of the cross-validation, 9 folds are used to train the model while the

remaining one is used as a test set to compute performance. The process is repeated as many times as the number

of folds, here 10 times.

In the case of a classification task, it is recommended to perform stratification in order to

ensure that the training and the test set have the same proportions of observations from the

different classes. For example, considering a training set composed of 1000 observations with

20% belonging to a class A and 80% to a class B, in a 10-fold stratified cross-validation, each

"held out" fold will contain 100 observations with 20 from the class A and 80 for the class B.

The usual number of folds is 5 or 10 but a specific case of the k-fold cross-validation is the

leave-one-out cross-validation which leaves out only one example at each turn and the model

learns using all the remaining. One big disadvantage of this method is that it highly increases

the computation time. Besides, the leave-one-cluster-out cross-validation is a particular case
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which requires to first apply clustering: grouping observations into several clusters such that

the observations within a same cluster are more similar to each other than to the observations

in the other clusters. Then, in the leave-one-cluster-out cross-validation, an entire cluster of

observations is used to test the model and evaluate how good the model can predict observations

different to the ones in the training set.

Another method is called the Monte Carlo cross-validation where training and test data are

independently and randomly partitioned in each run so that a same observation can be used in

multiple test sets [282].

External validation: It is performed when a model is completely trained and it uses a test set

which has not been used during the learning phase. It is the real validation since it mimics a real

world scenario (evaluation of performance on unseen data) but it is sometimes not performed

because of the unavailability of data.

Another useful method to test a ML model is the y-scrambling, or y-randomization [228]. In

that case, the output value (y) of the training data are randomly reassigned to the input (x)

such that there is no link between inputs and outputs. A model is built using this "random"

training set and its performance is computed on the same test set than the real model. The

performance of the two models are compared and if they are equivalent, it means that the real

model is performing randomly.

2.4.2 Estimation of performance

After validation, performance metrics can be computed to evaluate the model. These metrics

are different according to the task that is modeled.

Classification task: In the case of a binary classification problem, we use a confusion matrix

as illustrated in Figure 2.9 where:

• TP (True Positives) is the number of examples predicted as positives which are actually

positives

• TN (True Negatives) is the number of examples predicted as negatives which are actually

negatives

• FP (False Positives) is the number of examples predicted as positives but which are actually

negatives

• FN (False Negatives) is the number of examples predicted as negatives but which are ac-

tually positives

Note that most of the algorithms do not directly compute a binary value but rather a prob-

ability of belonging to a class. In order to obtain the binary value, they compare the computed

probability to a decision threshold which is usually set to 0.5 by default. Thereby, if the proba-

bility is greater than this threshold, the prediction is "positive" and "negative" otherwise.
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Actual

1 0

Predicted
1 TP FP

0 FN TN
Figure 2.9: Confusion matrix

Many performance metrics can be derived from this confusion matrix and we describe here the

ones that will be used in the following [127]:

• The sensitivity (or recall) is the proportion of actual positives that have been predicted

correctly:
TP

TP + FN

• The specificity is the proportion of actual negatives that have been predicted correctly:

TN

TN + FP

• The Balanced Accuracy (BA) is the mean between sensitivity and specificity:

Sensitivity + Specificity

2

• The accuracy is the proportion of correctly predicted examples among all:

TP + TN

TP + TN + FP + FN

Another commonly used metric is the ROC score (or AUC ROC) and corresponds to the

value of the area under the Receiver Operating Characteristic (ROC) curve. This curve plots the

sensitivity against (1− specificity) (or False Positive Rate) such as illustrated in Figure 2.10.

Basically, a ROC curve is a step curve which is built as follow: for each decision threshold

ranging from 0 to 1 with a given step, the corresponding confusion matrix is determined after

comparison with the probability computed by the model to the decision threshold3. Therefore,

for a threshold of 0, since probabilities are positive, all the binary predicted values will equal to

1 (positive). Conversely, a threshold of 1 will result in only negative predicted values (0). Then,

sensitivity and specificity are computed from the confusion matrix and plotted on the graph

representing the sensitivity according to (1 − specificity). In the case of a decision threshold

of 0, sensitivity and specificity respectively equal to 1 and 0 and conversely for a threshold

of 1. They correspond to the 2 extreme points of the ROC curve. The process is repeated for

various decision thresholds between 0 and 1 so that the curve can be drawn. The more numerous

decision thresholds are, the more precise the curve is. Note that the decision threshold value is
3Note that only the binary predicted values change according to the decision threshold but not the predicted

probabilities.
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Figure 2.10: Example of ROC curves for three different models. The model resulting in the grey curve

is better than the one resulting in the red curve but both are better than a random model. The blue curve is the

identity line and corresponds to random predictions.

not visible on the plot. Finally, the AUC (Area Under the Curve) of the ROC is computed and

correspond to the ROC score.

The closest this ROC score is to 1, the best the model is and a score of 0.5 means that the

model is predicting randomly (i.e it corresponds to the identity line). In the example given in

Figure 2.10, the blue line is the identity line which highlights randomness, the green and red

curves correspond to two different models which are better than random models, with the model

corresponding to the green curve being the best with a high ROC score (0.9).

Unlike the previous metrics, the ROC curve has the advantage of considering a model’s perfor-

mance obtained for different decision thresholds and not only one (0.5 most of the time) and

therefore allows the identification (and even selection) of the best threshold depending on the

desired performance. For example, if we want to get a high sensitivity despite a high specificity,

we will probably select a threshold lower than 0.5 which would correspond to a point on the left

part of the ROC.

Many other metrics can be computed from the confusion matrix, including the precision (also

called Positive Predicted Value), the Negative Predicted Value, the Matthew’s correlation coef-

ficient (MCC) and the F-score.

Regression task: In the case of regression models, the goal is to predict continuous values as

close as possible to the actual (correct) values: it is an approximation. In order to quantify this,

two types of metrics can be computed, based either on the distance or the correlation between

predicted and actual values.

Regarding distance based metrics, the most commonly used is the Root Mean Squared Error

(RMSE) which corresponds to the square root of the average squared sum of distances between
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the predicted values (ŷ) and the actual ones (y), according to the following formula:

RMSE =

√
1

n
Σn
i=1

(
yi − ŷi

)2
The other well known metric, easier to interpret, is the Mean Absolute Error (MAE) and cor-

responds to the absolute difference between the predicted and actual values, with the following

formula:

MAE =
Σn
i=1|yi − ŷi|

n

With regard to correlation, the coefficient of determination (noted R2) is the common metric

that indicates how the predicted values (ŷ) are correlated to the actual ones (y). It corresponds

to the difference between 1 and the ratio of the residual sum of squares (SSres = Σn
i=1(yi− ŷi)2)

and the total sum of squares (SStot = Σn
i=1(yi − ȳ)2, where ȳ is the mean of the actual values).

Thus, the R2 is computed according to the following formula:

R2 = 1− SSres
SStot

= 1− Σn
i=1(yi − ŷi)2

Σn
i=1(yi − ȳ)2

In the case of linear regression, R2 is the square of the Pearson correlation coefficient.

2.5 Dealing with imbalanced data

There are many classification problems for which the datasets are imbalanced, meaning that the

number of observations in the different classes is unequal, in particular in the case of two classes.

In such cases, classifiers tend to favor the majority class and result in good predictions regarding

this class versus bad predictions regarding the minority class. In order to limit the bias induced

by imbalanced datasets, several techniques can be applied and we describe the most commonly

used in the following.

Cost-sensitive learning: Unlike regular learning where all misclassifications are treated equally,

this method applies a cost to penalize the misclassifications and this cost is heavier when the

minority class is misclassified [79]. Since the goal of the ML algorithm is to minimize the total

cost, it will learn by paying more attention to the minority class.

Undersampling: In that case, observations from the majority class are removed from the

training set, either randomly (we talk about random undersampling) or based on the representa-

tion of the original dataset into the descriptors space (we talk about informed undersampling).

For the second approach, the kNN algorithm can be applied to select the observations to remove

(from the majority class) according to their distance to the ones of the minority class [298]. Basi-

cally, this method can be applied in different ways by, for example, removing observations having

the smallest (or largest) average distance to the k closest (or farthest) minority class examples,

or keeping only a given number of majority class examples that surround each minority class
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example. Cluster-based undersampling is also used and consists in applying a clustering algo-

rithm on the dataset and to select one or some representative observation(s) from each cluster

to keep in the training dataset [287]. Note that to apply undersampling, the original dataset

should contain a lot of data.

Oversampling: In contrast to undersampling, oversampling aims at increasing the number of

observations of the minority class and is usually applied when the amount of data in the original

dataset is insufficient. We also talk about data augmentation. Here also, the oversampling can

be done randomly by duplicating random existing observations or cluster-based by duplicating

observations in each cluster obtained after clustering to get an equal number in all clusters [114].

Nonetheless, these two approaches can suffer from overfitting since they use exact replications of

the minority samples. The most popular oversampling technique used to face this issue is called

Synthetic-Minority Over-Sampling Technique [42, 43], or SMOTE for short.

The SMOTE method aims at creating new synthetic samples based on linear interpolation

of actual data. Basically, for each observation i of the minority class, it randomly selects one of

its k-nearest neighbors (k) of the minority class in the descriptors space and generate a random

example that is along the line between i and k according to the following formula:

xnew = xi + (xk − xi)× δ

where x corresponds to the vector of descriptors (input features) of the different observations

and δ is a random number from the interval [0,1].

This process is repeated for all or part of the k-nearest neighbors of each observation from the

minority class, according to the desired final number of new samples.

Adaptive algorithms of the SMOTE technique have been proposed including:

• Borderline-SMOTE [116] : unlike the original SMOTE where all observations from the

minority class are used, in that case only the borderline observations from this class are over-

sampled. These observations correspond to the ones for which the number of neighbors,

among its k-nearest neighbors, belonging to the majority class is greater than its number

of neighbors from the minority class. The borderline observations are therefore close to the

border between the majority and the minority class.

• Adaptive Synthetic Sampling (ADASYN) [123]: unlike the standard SMOTEmethod where

the same number of samples is synthesized for each minority class example, here the number

of new samples generated varies. In particular, this number depends on the distribution of

the majority examples around the considered minority class observation: the more neigh-

bors belong to the majority class, the more samples are synthesized. This thus forces the

algorithm to focus on these examples from the minority class that are more difficult to learn.

In this chapter we provided a broad overview of machine learning. Some of the methods

described will be applied to toxicological data in order to build: (1) ML models that predict in
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vitro bioactivities from chemical structure of compounds and (2) ML models that predict in vivo

toxic outcomes from in vitro data, eventually combined with chemical structures. In order to

build such models, we first need to look for the appropriate public data and the next chapter

provides a review of the available resources.
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Computational toxicology for toxicity

prediction

This chapter focuses on the computational tools that are used to establish the link between

the different types of toxicological data. A key component for computational toxicology is the

development of large databases gathering well structured and standardized information easily

downloadable and handable by users. Therefore, the first part of this chapter focuses on the

different types of toxicological data and existing databases, with emphasis on the data used in

this thesis. In particular, we focus on three types of data: compound structure, in vitro activity

and in vivo toxicity. Secondly, we propose to present a large but not exhaustive overview of what

has been done so far using these data in order to predict potential toxicity of compounds and

help in their prioritization and risk assessment. With this overview we demonstrate that, due to

the quite recent interest for computational methods applied to toxicology, there is still a lack of

uniformity and concordance with respect to the methods to use.

3.1 Data in toxicology

3.1.1 Types of data

Chemical structure: The chemical structure is the most simple type of information regarding

a compound. It does not require to perform any experimental test to be determined except if

the compound is unknown. Hence, the structure is a cost-free and rapidly accessible information

having a lot of interest in toxicity prediction. Indeed, if the prediction could be based only on

the structural information, it would save a lot of time, money and laboratory animals.

In order to be read and interpreted by computers, the information provided by the chemical

structure should be represented in understandable format. Various types of chemical structure

representations are known and we review some of them in Section i).
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In vitro data: As stated in Chapter 1, in vitro assays are tests performed in solutions con-

taining biological molecules, in cells or even in "lower" organisms (e.g zebrafish, c. elegans).

Each test measures a specific bioactivity such as protein binding, gene activation, cell death, etc.

In general, the activity corresponds to a percentage of activation or inhibition compared to a

baseline control. To test the effect of compounds on these activities, assays are performed either

using one single concentration of compound or a range of concentrations (in nanoMolar nM ,

microMolar µM or milliMolar mM). In the first case the result is a binary value (i.e active /

inactive) and in the second case it results in a concentration-response curve which enables the

computation of several values, see Figure 3.1. The most used values are the EC50 (half maxi-

mal effective concentration) and IC50 (half maximal inhibitory concentration) which respectively

refers to the concentration of compound inducing 50% of activity or inhibition. They are de-

termined by considering both the baseline and the maximal response which is reached when the

response is stable (i.e the curve has reached a plateau).

These assays can be performed in high-throughput screening (HTS) allowing the generation of a

lot of data in a short amount of time thanks to the use of robots. During the last decades, HTS

has been performed in the context of several initiatives in order to obtain bioactivity signatures

of compounds for prioritization purposes.

Concentration

Response

EC50

Maximal response - 100 %

50 %

Baseline - 0% 

(a) EC50

IC50

Maximal inhibition - 100 %

50 %

Minimal inhibition – 0%

Inhibition

Concentration

(b) IC50

Figure 3.1: Concentration-response curve. a) Concentration-activity curve to determine the EC50 value

which corresponds to the concentration of compound inducing 50% of activity, b) Concentration-inhibition curve

to determine the IC50 value which corresponds to the concentration of compound inducing 50% of inhibition.

In vivo data: They are the results of in vivo experiments performed in laboratory animals.

There are various types of in vivo toxicity studies with different durations and outcomes of

interest, aiming either at the description of the hazardous profile of compounds (guideline studies)

or at a better understanding of adverse effects (MoA studies). The most important ones have

been already described in Chapter 1, Section 1.2.3. The results of these studies available in

databases can be of different types such as:

• Number of animals with the outcome and total number of animals in the study, for each

tested dose and sometimes several time points. These numbers can also be expressed as a

ratio.

• Doses such as LD50 (Lethal Dose 50%), NOAEL (No-Observed-Adverse-Effect-Level),
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LOAEL (Lowest-Observed-Adverse-Effect-Level), etc. (see Chapter 1, Section 1.2.3).

• Binary value informing about the presence or absence of the outcome.

Omics data: As also stated in Chapter 1, omics refers to several disciplines generating data

for various biological entities in order to map them to biological outcomes (diseases, adverse

effects, phenotypes, etc). In particular, toxicogenomics studies aim at analyzing the expression

of a large panel of genes and their transcripts after exposure of cells (in vitro) or of an entire

organism (in vivo) with a chemical of interest in order to investigate the molecular mechanisms

inducing toxicity. This analysis results in gene expression profiles where each gene activity is

quantified using a baseline control. These profiles help in understanding the molecular mecha-

nisms of toxicity and ultimately build links between cellular and physiological mechanism taking

place during the formation of an adverse effect. Such as in vitro assays, toxicogenomics can be

performed in high-throughput studies thanks to the use of, for example, DNA micro-arrays (or

DNA chips) or Next Generation Sequencing.

Mechanistic data: They refer to all the information that is useful to characterize mechanisms

of toxicity. More specifically, they correspond to MOA and AOPs and should include MIE, KEs

as well as weight of evidence to demonstrate the causal link between each KE. See Figures 1.3

and 1.4 of Section 1.2.5 for more details.

3.2 Existing sources of toxicological data

A number of sources (either publicly accessible or with restricted access) provide toxicological

related data. Table 3.1 is a synthetic summary of the most important resources, which focuses

on publicly available ones. A more detailed description of these resources is available in Ap-

pendix A. Note that other data sources specific to pharmaceutical compounds are also available

but since we are not specifically interested in this type we decided to not integrate them in this

summary table.

There are several sources providing information about chemical structures only but they are

generally not used for toxicological purpose. Indeed, most of the databases that contain toxi-

cological data also provide information regarding the structure of compounds. Nonetheless, we

can still cite the two following resources for chemical structures: PubChem [268, 269] and the

Distributed Structure-Searchable Toxicity database [216], named DSSTox.

Regarding in vitro data, we can mention several resources such as, already cited PubChem,

ChEMBL [21], Chemical Effects in Biological Systems (CEBS) [271], the Estrogenic Activity

Database (EADB) [237] and data generated during the Tox21 [260] and ToxCast [68, 217] pro-

grams. Note that some of these resources also include in vivo and / or genomics data.

53



CHAPTER 3. COMPUTATIONAL TOXICOLOGY FOR TOXICITY PREDICTION

T
ab
le

3.
1:

S
u
m
m
ar
y
of

ex
is
ti
n
g
re
so
u
rc
es

fo
r
to
xi
co
lo
gi
ca
l
da
ta
.
N
A

=
N
on

A
va
ila

bl
e.

Fo
r
ab
br
ev
ia
ti
on

s,
se
e
m
ai
n
te
xt

an
d
lis
t
of

ab
br
ev
ia
ti
on

s

N
am

e
of

th
e
d
at
ab

as
e

T
yp

e
of

d
at
a

U
R
L

A
C
T
oR

in
vi
tr
o
,i
n
vi
vo

,c
he

m
ic
al

st
ru
ct
ur
es
,e

xp
os
ur
e,

E
D
SP

pr
og

ra
m
n,

et
c

ht
tp

s:
//

ac
to

r.
ep

a.
go

v/
ac

to
r/

ho
me

.x
ht

ml

A
O
P
-K

B
M
ec
ha

ni
st
ic

in
fo
rm

at
io
n

ht
tp

s:
//

ao
pw

ik
i.

or
g/

C
E
B
S

in
vi
tr
o
,i
n
vi
vo

ht
tp

s:
//

ma
nt

ic
or

e.
ni

eh
s.

ni
h.

go
v/

ce
bs

se
ar

ch
/

C
hE

M
B
L

in
vi
tr
o

ht
tp

s:
//

ww
w.

eb
i.

ac
.u

k/
ch

em
bl

/

C
O
SM

O
S
D
B

C
he

m
ic
al

st
ru
ct
ur
es
,i
n
vi
vo

ht
tp

:/
/w

ww
.c

os
mo

st
ox

.e
u/

wh
at

/C
OS

MO
Sd

b/

C
M
ap

G
en

om
ic
s

ht
tp

s:
//

po
rt

al
s.

br
oa

di
ns

ti
tu

te
.o

rg
/c

ma
p/

C
P
D
B

in
vi
vo

ca
nc

er
st
ud

ie
s

ht
tp

s:
//

to
xn

et
.n

lm
.n

ih
.g

ov
/c

pd
b/

C
T
D

T
ox
ic
og

en
om

ic
s

ht
tp

:/
/c

td
ba

se
.o

rg
/

D
SS

T
ox

C
he

m
ic
al

st
ru
ct
ur
es

ft
p:

//
ne

wf
tp

.e
pa

.g
ov

/C
OM

PT
OX

/S
us

ta
in

ab
le

_C
he

mi
st

ry
_D

at
a/

Ch
em

is
tr

y_
Da

sh
bo

ar
d

E
A
D
B

in
vi
tr
o
,i
n
vi
vo

es
tr
og

en
ic

ac
ti
vi
ty

re
la
te
d
da

ta
ht

tp
s:

//
ww

w.
fd

a.
go

v/
Sc

ie
nc

eR
es

ea
rc

h/
Bi

oi
nf

or
ma

ti
cs

To
ol

s/
Es

tr
og

en
ic

Ac
ti

vi
ty

Da
ta

ba
se

EA
DB

/d
ef

au
lt

.h
tm

eT
O
X

in
vi
vo

ht
tp

:/
/e

to
xs

ys
.c

om
/

Fe
dT

ex
in

vi
vo

de
ve
lo
pm

en
ta
la

nd
re
pr
od

uc
ti
ve

st
ud

ie
s

ht
tp

:/
/p

ub
li

ca
.f

ra
un

ho
fe

r.
de

/s
ta

rw
eb

/p
ub

09
/e

n/
in

de
x.

ht
m

H
E
SS

in
vi
vo

ht
tp

s:
//

ww
w.

ni
te

.g
o.

jp
/e

n/
ch

em
/q

sa
r/

he
ss

-e
.h

tm
l

P
ub

C
he

m
C
he

m
ic
al

st
ru
ct
ur
es
,i
n
vi
tr
o

ht
tp

s:
//

pu
bc

he
m.

nc
bi

.n
lm

.n
ih

.g
ov

/

R
ep

D
os
e

in
vi
vo

ht
tp

s:
//

re
pd

os
e.

it
em

.f
ra

un
ho

fe
r.

de
/i

nd
ex

.p
hp

T
G
-G

A
T
E
s

T
ox
ic
og

en
om

ic
s,
in

vi
vo

ht
tp

s:
//

db
ar

ch
iv

e.
bi

os
ci

en
ce

db
c.

jp
/e

n/
op

en
-t

gg
at

es
/d

ow
nl

oa
d.

ht
ml

T
ox
21

in
vi
tr
o

ht
tp

s:
//

nt
p.

ni
eh

s.
ni

h.
go

v/
re

su
lt

s/
to

x2
1/

tb
ox

/i
nd

ex
.h

tm
l

T
ox
C
as
t

in
vi
tr
o

ht
tp

s:
//

ww
w.

ep
a.

go
v/

ch
em

ic
al

-r
es

ea
rc

h/
ex

pl
or

in
g-

to
xc

as
t-

da
ta

-d
ow

nl
oa

da
bl

e-
da

ta

T
ox
R
ef
D
B

in
vi
vo

ft
p:

//
ne

wf
tp

.e
pa

.g
ov

/c
om

pt
ox

/H
ig

h_
Th

ro
ug

hp
ut

_S
cr

ee
ni

ng
_D

at
a/

An
im

al
_T

ox
_D

at
a/

N
am

e
of

th
e
d
at
ab

as
e

P
ro
vi
d
er

N
u
m
b
er

of
co
m
p
ou

n
d
s

N
u
m
b
er

of
en

d
p
oi
nt
s
/
st
u
d
ie
s

T
yp

e
of

co
m
p
ou

n
d
s

L
as
t
re
le
as
e

R
ef
er
en

ce
s

A
C
T
oR

U
S
E
PA

>
50

0,
00
0

N
A

(>
50
0
da

ta
so
ur
ce
s)

A
ll

R
eg
ul
ar
ly

up
da

te
d

[1
40

]

A
O
P
-K

B
O
E
C
D

–
co
lla

bo
ra
ti
ve

w
or
k

N
A

25
8
A
O
P
s
an

d
19

10
K
E
s

N
A

R
eg
ul
ar
ly

up
da

te
d

[2
75

]

C
E
B
S

N
T
P

/
N
IE

H
S

>
11
,0
00

>
8,
00
0
st
ud

ie
s
fo
r
19

da
ta

ty
pe

s
A
ll

R
eg
ul
ar
ly

up
da

te
d

[2
71
,1

61
]

C
hE

M
B
L

E
M
B
L
/
E
B
I

>
1.
8
m
ill
io
ns

>
12
,0
00

ta
rg
et
s

D
ru
gs

R
eg
ul
ar
ly

up
da

te
d

[2
1]

C
O
SM

O
S
D
B

P
ar
t
of

th
e
SE

U
R
A
T

E
ur
op

ea
n
pr
oj
ec
t

>
40

,0
00

st
ru
ct
ur
es

an
d
>

16
00

co
m
po

un
ds

w
it
h
in

vi
vo

re
su
lt
s

12
,0
00

st
ud

ie
s

C
os
m
et
ic
s

20
13

[2
83
]

C
M
ap

B
ro
ad

In
st
it
ut
e

>
1,
30

0
>
7,
00
0
ge
ne

s
+

L1
00
0
as
sa
y

A
ll

20
17

[1
60

,2
48
]

C
P
D
B

U
ni
ve
rs
it
y
of

C
al
ifo

rn
ia
,B

er
ke
le
y

15
47

65
40

st
ud

ie
s

A
ll

20
01

[9
1]

C
T
D

N
or
th

C
ar
ol
in
e
St
at
e
U
ni
ve
rs
it
y

>
15

,0
00

>
45
,0
00

ge
ne

s
A
ll

R
eg
ul
ar
ly

up
da

te
d

[1
82
,1

09
]

D
SS

T
ox

U
S
E
PA

>
70

0,
00

0
N
A

A
ll

R
eg
ul
ar
ly

up
da

te
d

[2
16
]

E
A
D
B

U
S
F
D
A

>
8,
21

2
1,
28
4
in

vi
tr
o
as
sa
ys

an
d
in

vi
vo

st
ud

ie
s

A
ll

20
12

[2
37
]

eT
O
X

C
on

so
rt
iu
m

of
30

pa
rt
ne

rs
>
8,
00

0
>
8,
00
0

M
os
tl
y
ph

ar
m
ac
eu

ti
ca
ls

20
16

[2
45
]

Fe
dT

ex
Fr
au

nh
of
er

In
st
it
ut
e
fo
r
T
ox

ic
ol
og

y
30

0
53
5
st
ud

ie
s

A
ll
?

N
A

[2
3]

H
E
SS

Ja
pa

ne
se

N
IT

E
>
50

0
>
50
0
st
ud

ie
s

A
ro
un

d
50
0

R
eg
ul
ar
ly

up
da

te
d

[2
29

]

P
ub

C
he

m
N
C
B
I

>
97

m
ill
io
ns

st
ru
ct
ur
es

an
d
>

3
m
ill
io
ns

co
m
po

un
ds

w
it
h
in

vi
tr
o
da

ta
>

1
m
ill
io
n
bi
oa
ss
ay
s

A
ll

R
eg
ul
ar
ly

up
da

te
d

[2
68
,2

69
]

R
ep

D
os
e

Fr
au

nh
of
er

In
st
it
ut
e
fo
r
T
ox
ic
ol
og

y
93

0
3,
10
0
st
ud

ie
s

A
ll

N
A

[2
4]

T
G
-G

A
T
E
s

Ja
pa

ne
se

T
ox
ic
og

en
om

ic
s
P
ro
je
ct

17
0

>
20
,0
00

ge
ne

s
P
ha

rm
ac
eu
ti
ca
ls

20
12

[1
32
,2

63
]

T
ox
21

T
ox
21

co
ns
or
ti
um

A
ro
un

d
10

,0
00

>
70

as
sa
ys

A
ll

O
ct
ob

er
20
18

[2
60
]

T
ox
C
as
t

U
S
E
PA

A
ro
un

d
1,
80

0
>

1,
00
0
as
sa
ys

A
ll

O
ct
ob

er
20
18

[6
8]

T
ox
R
ef
D
B

U
S
E
PA

>
40

0
A
ro
un

d
5,
90
0
st
ud

ie
s

A
ll

20
19

[2
14

]

54

https://actor.epa.gov/actor/home.xhtml
https://aopwiki.org/
https://manticore.niehs.nih.gov/cebssearch/
https://www.ebi.ac.uk/chembl/
http://www.cosmostox.eu/what/COSMOSdb/
https://portals.broadinstitute.org/cmap/
https://toxnet.nlm.nih.gov/cpdb/
http://ctdbase.org/
ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard
https://www.fda.gov/ScienceResearch/BioinformaticsTools/EstrogenicActivityDatabaseEADB/default.htm
http://etoxsys.com/
http://publica.fraunhofer.de/starweb/pub09/en/index.htm
https://www.nite.go.jp/en/chem/qsar/hess-e.html
https://pubchem.ncbi.nlm.nih.gov/
https://repdose.item.fraunhofer.de/index.php
https://dbarchive.biosciencedbc.jp/en/open-tggates/download.html
https://ntp.niehs.nih.gov/results/tox21/tbox/index.html
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/Animal_Tox_Data/


Chapter 3

Concerning the in vivo data, the following resources can be highlighted: the Hazard Evalua-

tion Support System (HESS) [229], the RepDose database [24], the Fertility and Developmental

Toxicity in Experimental animals database (FedTEX) [23], the Carcinogenic Potency Database

(CPDB) [91], the COSMOS database [283], eTOX [245] and ToxRefDB [214].

Moreover, examples of databases dedicated to genomics data are the Toxicogenomics Project-

Genomics Assisted Toxicity Evaluation Systems (TG-GATEs) [132], the Comparative Toxicoge-

nomics Database (CTD) [182, 109] and the Connectivity Map (CMap) [160, 248]. For mechanistic

data, we can evoke AOP-KB [275].

Finally, the Aggregated Computational Toxicology Resource (ACToR) is the EPA’s on line ware-

house that stores data from thousands of public sources [140]. In particular, it includes some of

the previously mentioned sources (i.e. DSSTox, ToxCast, ToxRefDB) as well as the results from

the EDSP and ExpoCast programs (see Chapter 1, Section 1.2.6 and 1.3.2, respectively).

Although a lot of data are publicly available regarding compound toxicity, they are not always

appropriate for an efficient use in in silico purpose. The next section lists some of the challenges

encountered when using these resources.

3.2.1 Challenges in using toxicity data for computational purpose

Toxicity data are characterized by several limitations obliging scientists to face various challenges.

First, the data structures are not always in machine readable format: either the structure is not

provided in the database (e.g. in TG-GATEs) and the mapping to other databases or services

such as PubChem is required or it is provided but in an inappropriate representation for further

use and therefore need to be transformed and curated.

Moreover, one of the biggest issue with toxicological data is the lack of homogeneity, either within

a database or between several ones. This heterogeneity can be observed for both the compounds’

identifiers and the results of toxicity studies. In particular, regarding in vitro studies, differences

come from the protocol used to perform a same assay in various laboratories (inter-labs differ-

ences), the name of assay targets or the types of results that are provided (e.g. dose-response

curves, EC50 or active/inactive). With respect to in vivo data, heterogeneity concerns all the

parameters of the studies such as the laboratory animal species used, the doses, the time points,

the administration routes, etc., but also the name of observed endpoints (discussed later) and

the types of results (e.g. LOAEL, incidence of the considered endpoints, etc.). Consequently,

this heterogeneity rises challenges to aggregate data from various databases and such aggrega-

tion should be done with caution with a particular attention on redundancy and inconsistence

of results.

Last but not least, a big challenge regarding toxicity data is the use of a consistent and universal

ontology [121]. Indeed, as stated earlier, the name of endpoints is a marker of heterogeneity,

whether between or within databases. Most of the databases do not use controlled vocabularies

to describe the endpoints which is an important problem since it is what is considered in the final
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risk assessment. An ontology is defined as an effective and structured way of describing terms

and concepts. The entire community agrees that ontology is required and some initiatives such

as ToxML [218] and OpenTox [255, 9] are working in that way. Moreover, the use of standardize

format like Standard for Exchange of Nonclinical Data (SEND) [50] is considered as well as the

development of universal pathology terminology in the International Harmonization of Nomen-

clature and Diagnostic (INHAND) project [145].

Finally, another specific characteristic of toxicological data is the imbalanced property of the

results: most of the compounds for which data are available are "negative". It is in particular

the case for in vitro activity data where most of the compounds are inactive. This imbalanced

characteristic in favor of inactive compounds has to be taken into account in the context of

predictive toxicology.

Currently, US EPA is one of the most advanced entity that provides inter-operable data

enabling the aggregation of several types of information. Indeed, they provide the three types of

data we are focusing on (chemical structure, in vitro and in vivo) with a common identifier for

the compounds. Moreover, these data are almost ready-to-use avoiding an important processing

step. Finally, since these data have been generated in the context of the Tox21 vision in order to

enable prioritization of compounds for further testing and development of predictive approaches,

they are well adapted for a computational purpose. For these reasons, we decided to use EPA’s

data in further work. We therefore provide a broader description of these data in the next section.

3.2.2 Focus on the data used in this thesis

The US EPA provides chemical structures of compounds in the DSSTox database, in vitro bioac-

tivity data from both Tox21 and ToxCast program in the ToxCast database and in vivo data in

the ToxRefDB. All these data are also available in the ACToR system.

DSSTox: The Distributed Structure-Searchable Toxicity database is a resource [216] that gath-

ers chemical structures of compound, their corresponding physico-chemical properties and toxic-

ity data (in vitro bioassays). Today it includes data for over 700,000 compounds and is publicly

available through the EPA’s website. In the work presented in this manuscript, the release from

2015 was used and contains 9011 structures along with their unique identifier (DSSTox_GSID),

name, molecular formula, molecular weight and other structural representations such as SMILES,

InChi, InChiKey, etc. All these information are provided in a single file, using the Structure Data

File (SDF) format (see Section i)).

Tox21: In order to apply the new vision described in Chapter 1, the Tox21 consortium launched

the Tox21 program that aimed at using the expertise from the different agencies to generate a

lot of data to rapidly screen compounds. In particular, the ultimate objective is to identify

in vitro signatures that could help in the prediction of in vivo toxicity [128]. Between 2005

and 2016, two phases have been conducted in order to generate HTS data for more than 75
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assays (corresponding to more than 100 endpoints) originally developed in the context of a

collaboration between NCATS and NTP. These assays are performed in 1,536-well plates allowing

the rapid testing of a large number of compounds. As of today, a library of approximately 10,000

compounds, the Tox21 10K library [130], has been tested in these assays and this library includes

environmental chemicals, food additives, drugs, chemical mixtures, etc. [260]. Assays can be

categorized into phenotypic, target-specific and pathway-based assays and measure the following

list of endpoints [128]:

• Cell viability

• Apoptosis (cell death)

• Membrane integrity

• DNA damage / epigenetics

• Mitochondrial toxicity

• Phospholipidosis

• Ion channel and GPCR signaling - G-protein coupled receptor

• Cytokine secretion

• CYP induction - cytochrome P450

• Nuclear Receptor signaling

• Stress response signaling

All the data generated during the Tox21 program are available through different sources including

the Tox21 Toolbox1, CEBS, PubChem and the ToxCast database from EPA.

ToxCast: The Toxicity Forecasting (ToxCast) program is one of the EPA’s contribution to the

Tox21 collaboration. It was originally launched in 2007 by the US EPA in order to deal with

the large number of environmental chemicals that require testing for their potential toxicity.

The main goal of the program is to develop methods based on HTS, computational approaches

and omics technologies to detect and predict potential of compounds for toxicity and prioritize

them for further screening and animal testing [68, 217]. By testing chemicals in hundreds of

HTS assays, the objective is to obtain bioactivity profiles or signatures that are predictive of in

vivo toxic potential. Currently, ToxCast uses more than 1000 HTS assays that are performed

in several independent laboratory platforms and vendors which are coordinated by the National

Center for Computational Toxicology (NCCT) in EPA.

Most of the cell based assays are performed in rat and human cell lines. Around 1,800 compounds

have been screened in these assays and the assays which turned out to be the most useful have

then been considered by the Tox21 program to extend the testing to the 10K library. Results

generated within both the ToxCast and the Tox21 program are analyzed by the NCCT and

correspond today to 1192 assay endpoints (mostly performed at multiple concentrations) and

more than 9000 compounds. Nonetheless, note that not all the compounds have been tested in

all the assays.

Depending on the needs of the users, the ToxCast and Tox21 data are available through several
1https://ntp.niehs.nih.gov/results/tox21/tbox/index.html
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sources, namely the iCSS ToxCast Dashboard2 for a quick and easy access and consultation,

the ToxCast data download page3 for the download of entire data files and a MySQL database

provided with a R package (tcpl) for a full data access [227].

Several versions of the ToxCast and Tox21 data have been released since the beginning due to

the acquisition of new data and the evolution of data analysis (in particular quality control)

methods and the last release (third version) dates from October 2018. In the work presented

here, we used the October 2015 release (second version) still available through the download

page4. Different types and levels of information are available in the 2015 release such as assays

information, concentration-response plots and summary files of various results obtained after

data analysis. This analysis has been performed by the NCCT using a pipeline provided by the

R package tcpl and composed of 6 different levels [90]. Basically, this pipeline aims at processing,

normalizing and fitting the acquired concentration-response for each pair of compound and assay

to a mathematical regression model (constant, hill or gain-loss) and finally determine activity

values such as the AC50 which corresponds to the concentration inducing 50% of activity (either

activation or inhibition) and usually known as EC50 or IC50
5. These AC50 are reported in

a matrix where assays are listed across the columns and compounds down the rows and are

expressed in micromolar (µM). When a compound was not tested in an assay, it is reported as

"NA" and if a compound was inactive in the assay (i.e. no AC50 could be determined), a value

of 1,000,000 is reported. Another useful matrix is the "hit call" matrix (hitc) which indicates

if a compound is active (1), inactive (0) or not tested (-1) in the assay. All the compounds

are identified using their ToxCast identifier (chid) and their DSSTox identifier (DSSTox_GSID)

which enables the crossing of the different sources of information.

ToxRefDB: The Toxicity Reference Database has been developed by the US EPA to gather

results of in vivo studies from various sources using partially harmonized terminology [214]. In

particular, it is probably one of the best examples of pretty well curated database including

quite standardized ontology. This database was designed to help in the development of models

for the prediction of toxicity and for the validation of the ToxCast in vitro assays. The database

is regularly improved and updated and the current ToxRefDB2.0 version contains data for more

than 400 compounds tested in various toxicology studies. These studies were conducted in rat,

mouse, rabbit and dog with exposure duration ranging from some days to the animal lifetime.

It also gathers multi-generational and reproductive studies. In total, more than 1,000 endpoints

are characterized and for each endpoint induced by a compound, the corresponding NOAEL or

LOAEL is given. Each study referenced in the database is accompanied by various information

such as its quality, its duration, the laboratory animal species used, the number of animals in

each group of test, the tested doses, etc. The ToxRefDB is available through the ToxCast data

2https://actor.epa.gov/dashboard/
3https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
4ftp://newftp.epa.gov/COMPTOX/High_Throughput_Screening_Data/Previous_Data/ToxCast_Data_

Release_Oct_2015/
5Note that this AC50 term is specific to ToxCast and refers to both EC50 and IC50
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download page. In the work presented here, we used the release from October 2014 where results

are reported into flat files in which compounds are also identified using their DSSTox_GSID.

Table 3.2 provides a summary of the three sources of data used in the work presented here.

Table 3.2: Summary of data used. In this work we focus on data regarding compound structures, in vitro

bioactivity and in vivo studies provided by the US EPA.

Type of data Compound structures In vitro assays In vivo studies

Source DSSTox ToxCast / Tox21 ToxRefDB

Number of compounds 9,011 structures 10,000 > 400

Number of assays / endpoints NA 821 assays > 1,000 endpoints

Compounds identifier DSSTox_GSID DSSTox_GSID DSSTox_GSID

After having sketched the toxicological databases, we propose an overview that shows how

these data can be used for a computational purpose.

3.3 From chemical structure to in vitro activity or in vivo toxicity

Firstly, we focus on the computational methods that evaluate the link between chemical structure

and in vitro activity or in vivo toxicity of compounds.

3.3.1 Non machine learning approaches

So-called non-testing methods aim at generating data about chemicals’ effect only from their

structure and are not necessarily based on machine learning. In particular, they include the three

following approaches which have been acknowledge by the OECD and REACH as alternative

methods [213].

Rule based models: Structural alerts are fragments within a molecule which are associated

with a specific activity, they are also called toxicophores. They enable the definition of rules of

the form "if A is B then T" where A is a structural alert, B is its value (presence or absence

of A) and T is the toxic effect. These rules are derived either from experts knowledge or from

probabilities computed using large datasets. Rule-based models are used to design new chemical

compounds (drugs and pesticides) and lists of structural alerts are available for specific toxic

endpoints such as carcinogenicity, hepatotoxicity, cytotoxicity, etc. [212]. Moreover, rule-based

models have been implemented and made available in several software called "expert systems"

including Toxtree [203], Derek Nexus or Meteor Nexus [178] (from Lhasa Limited company).

Chemical category and read-across: Read-across aims at making interpolation of activities

from a group of similar compounds for which the considered activity is known [57]. It first

requires to perform chemical grouping (or category formation) where chemicals are grouped

into categories according to their similarity on several characteristics [80]: chemical structure,
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mechanism of action, physico-chemical properties, biological interactions, etc [212]. In read-

across, the hypothesis is that compounds belonging to a same category will be associated with

the same activity or effect. Therefore, the predicted activity of a new compound will correspond

to the one of the compounds that share the same class (called analogs). There are two types

of read across: the analog approach when the new compound is compared to only one or a

small number of similar compounds and the category approach when it is compared to many

other compounds of the same group. If category approach is better to increase confidence in the

predictions, it is also more difficult since the category has to be well defined and sometimes the

data do not allow performing category approach because of bad quality and / or uncertainty.

Structure-activity relationship (SAR): This is a qualitative method which aims at looking

for relationships between fragments of the chemical structure (chemical functions, groups) and

the presence or absence of an activity. These techniques suppose that the biological effects

of new chemical compounds can be deduced (or predicted) from their molecular structure. In

particular, they assume that compounds with similar structures may share similar biological and

toxicological properties. Hence, SAR methods base their predictions on existing data regarding

compounds that are structurally similar to the new compound [280]. In order to look for this

similarity, they sometimes apply clustering methods using various similarity measures such as

the Tanimoto index or the Euclidean distance [147].

The quantitative version of SAR is the so-called QSAR and belongs to the machine learning

field. Since most of the work presented in the following chapters involve QSAR modeling, the

next section focuses on this approach in further details.

3.3.2 Quantitative Structure-Activity relationship (QSAR)

QSAR is a well known ML approach that aims at predicting compounds activity from their

chemical structure. It has been firstly introduced by Hansch in 1962 [120, 119] and intensively

studied since then. On the one hand, input features correspond to molecular descriptors which are

automatically computed from the structure of the compounds. On the other hand, the predicted

output is an activity which can be a physico-chemical property (e.g. logP, solubility), a biological

activity measured in in vitro assay (e.g. molecular binding, gene transcription, mutagenicity),

or an effect observed in in vivo studies (e.g. carcinogenicity, endocrine effect).

i) Molecular descriptors

In order to prepare the datasets for learning, molecular descriptors of the compounds have to be

computed by software using the information provided by the chemical structure for which various

representations exist. Nonetheless, these representations are sometimes incorrect and therefore

need to be cleaned before the computation of the molecular descriptors.

In the following, we first review the most used structural representations of compounds’ structure,

we then detail how to ensure the quality of these representations thanks to a data curation process
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and we finally summarize the different types of molecular descriptors.

Chemical structure representations: In order to be stored in databases, chemical structures

must be encoded into standardized formats that are readable by software. These representations

must be unique and non-ambiguous which is not the case of the molecular formula or the Inter-

national Union of Pure and Applied Chemistry (IUPAC) nomenclature [270].

Chemical structure representations can be either in one dimension (linear) or in two dimensions

(connection tables). Here are the most commonly used representations (illustrated in Table 3.3

for the caffeine molecule):

• SMILES: it stands for Simplified Molecular Input Line Entry Specification and is a linear

string notation encoding the atoms of a molecule (except hydrogens) and their bonds

(simple and double bonds, branches, rings) [273]. The biggest limitation of SMILES is

that there is no unique algorithm to generate them and therefore one structure can have

several versions of SMILES (but one SMILES refers to a unique compound). Nonetheless,

standard methods have been recently proposed to generate canonical SMILES [194].

• InChi: it stands for IUPAC International Chemical Identifier and is also a linear string

notation which corresponds to the digital form of the IUPAC name [125]. It is unam-

biguous and unique and is composed of a maximum of six layers informing about different

characteristics of the structure (formula, connectivity, hydrogens, isotopes, stereochemistry

and charge).The InChiKey has been derived from InChi in order to reduce the length of

the InChi into a condensed identifier with a fixed number of characters (27) making easier

their processing in databases [270].

• Molfile format: it is a file text format which contains header information followed by

a connection table which represents the structure of molecules in two dimensions. The

connection table is composed of [270]:

1. A counts line informing about the number of atoms and bonds,

2. An atom block where each line corresponds to one atom and inform about its 3D

coordinates, symbol, charge, etc,

3. A bond block where each line corresponds to a bond between two atoms,

4. A properties block giving information about additional properties such as charges and

isotopes.

• Structure Data File (SDF) format: it is also a text format which gathers structural in-

formation for several compounds, unlike the Molfile [270]. For each compound, it includes

the corresponding Molfile with associated data that can be identifiers, physico-chemical

properties, biological activity, etc. Information regarding each compound are delimited by

a separator.
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Table 3.3: Examples of representations of the caffeine structure.

Molecule name Caffeine

2D structure

Molecular formula C8H10N4O2

IUPAC name 1,3,7-trimethylpurine-2,6-dione

SMILES CN1C=NC2=C1C(=O)N(C(=O)N2C)C

InChi 1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3

InChi Key RYYVLZVUVIJVGH-UHFFFAOYSA-N

Connection table

(MolFile format)

24 25  0     0  0  0  0  0  0999 V2000
3.7320    2.0000    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0
2.0000   -1.0000    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0
3.7320   -1.0000    0.0000 N   0  0  0  0  0  0  0  0  0  0  0  0
5.5443    0.8047    0.0000 N   0  0  0  0  0  0  0  0  0  0  0  0
4.5981   -0.5000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
3.7320    1.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
[...]
6.4443    1.5626    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0
6.0476    2.3446    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0
5.2656    1.9479    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0
2.3100    1.5369    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0
1.4631    1.3100    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0
1.6900    0.4631    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0

1  9  2  0  0  0  0
2 10  2  0  0  0  0
3  8  1  0  0  0  0
3 10  1  0  0  0  0
3 12  1  0  0  0  0
4  7  1  0  0  0  0
4 11  1  0  0  0  0

[...]
13 20  1  0  0  0  0
13 21  1  0  0  0  0
14 22  1  0  0  0  0
14 23  1  0  0  0  0
14 24  1  0  0  0  0

M CHG . . . . .
M ISO . . . 
M  END

Counts line

Atom block 

Bond block 

Properties block 

Chemical data curation: One other crucial step before the generation of molecular descrip-

tors is, as stated in Chapter 2, to ensure the correctness of the input data and in particular

the quality of the structure representation in the case of QSAR modeling. Fourches et al. [93]

proposed a standardized data curation procedure which they recommend to apply before any

QSAR modeling and whose main steps are summarized below.

1. Removal of inorganics and mixtures: most of descriptor-generating software cannot

process inorganic compounds and salts and results in many errors during the descriptors’

calculation. Therefore, this type of molecules, which is not known to induce biological

activity, should be removed from the data.

Additionally, in some cases a single structural representation encodes for several compounds

(mixtures) and not only one which is also not well suited to compute molecular descriptors.

When mixtures contain several organic compounds of the same size, it is recommended to

completely discard it. Otherwise, when there is one major organic compound mixed with
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smaller ones and/or small inorganic molecules, the biggest one can be kept while the others

are deleted.

2. Structural conversion and cleaning: the conversion of SMILES into 2D structures

enables visualizing the molecules and cleaning them from salts, ions and other non desired

charges in order to get neutralized compounds. It is also recommended to add explicit

hydrogens.

3. Normalization of specific chemical function: sometimes the same functional groups

can be differently represented due to an electronic effect within the molecule which makes

the electrons moving inside the functional group. In the chemical structure representation,

this generally results in double bonds that are represented at different locations of the

functional group. Nonetheless, all these representations correspond to the same molecule

and it is therefore recommended to normalize them into a standard form.

4. Removal of duplicates: some compounds can appear several times in a same dataset

due to the use of different IDs and only one must be kept in order to avoid bias when

modeling. The removal can be done by using canonical SMILES.

5. Manual checking: The last recommended step would consist of carefully and manu-

ally looking at each curated structure, in particular when the previous steps have been

performed automatically. Nonetheless, due to the large number of compounds that are

constituting ML datasets, this step would lead to the loss of a considerable amount of

time. Furthermore, this is not so obvious that a "human" check would be more efficient

than an automated check.

To perform the different steps of the data curation process, except the manual checking, various

software are publicly available [262].

Molecular descriptors: All the structure representations described above can be used to

compute the molecular descriptors that will constitute the input features of the QSAR model.

Many types of descriptors exist with different levels of complexity and chemical structure repre-

sentations. Indeed, we distinguish 1D, 2D and 3D descriptors which are respectively computed

from the molecular formula, the two-dimensional structural formula or the three-dimensional

conformation of the molecule [48]. The most popular descriptors are the 1D and 2D and include

the following classes [73]:

• Constitutional descriptors: they are related to the components of the molecule (e.g.

number of specific atoms, number of single, double, triple bounds, number of rings, etc).

• Physico-chemical descriptors: they are estimation of the physico-chemical properties

of the molecule and are sometimes included in the previous class (e.g. molecular weight,

solubility, partition coefficient such as logP which corresponds to the logarithm of the ratio

of a compound’s concentrations measured in the two phases of the octanol/water solvent,

etc).
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• Geometrical descriptors: they are related to the spatial arrangements of the components

of the molecule (e.g. molecular surface area, volume, moments of inertia, etc).

• Topological descriptors: they are based on the topology of the molecular graph and

lead to various indexes (e.g. Wiener index, Randic index, etc).

• Electrostatic and quantum descriptors: they are related to the electronic nature of

the molecule and to the molecular orbital (e.g. partial atomic charge, polarizability, energy,

etc).

• Fragment-based descriptors and fingerprints: they are binary vectors coding the

presence or absence of specific substructures in the molecule [37]. Different types and "dic-

tionnaries" of fingerprints exist including Molecular ACCess System (MACCS) keys [74],

PubChem fingerprints [117], Extended-Connectivity Fingerprints (ECFP) [220], E-state

fingerprints [115], Klekota-Roth fingerprints [221], etc. They can be computed by a variety

of open source and proprietary software packages [37].

As already described in Chapter 2 Section 2.2, once generated these descriptors have to be

selected using different existing methods in order to reduce the dimensionality and keep only the

ones that are the most relevant [104]. In particular, a general rule of thumb suggests that at least

five times more observations than descriptors should be used for QSAR modeling [233, 261].

Then, learning and evaluation of the QSAR model can be performed as described in Chapter 2.

Finally, an important concept specific to QSAR models and whose purpose is to estimate the

reliability of the predictions has to be considered: the applicability domain. Because of its

importance and since we consider the applicability domain in our work, the next section focus

on this notion.

ii) Applicability domain

Requirements for the validation of good QSAR models have been proposed and in particular the

OECD defined five principles for toxicological predictive models which are the following [198]:

1. A defined endpoint: the bioactivity, toxic effect that is predicted by the model should be

clear and the experimental conditions used to measure it should be identified;

2. An unambiguous algorithm: the learning algorithm as well as the parameters used to learn

the model should be precise to ensure reproducibility of the predictions;

3. A defined domain of applicability: refers to the structural, physico-chemical space defined

by the compounds that constitute the training set of the model and in which the model is

applicable to make new predictions for unseen compounds;

4. Appropriate measures of goodness-of-fit, robustness, and predictivity: the first too points

refer to the use of an internal validation using a training set and the third one to the use

of an external validation using an appropriate test set. The training and test set should be

clearly identified as well as the metrics used to measure resulting performance;
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5. A mechanistic interpretation, if possible: this refers to the description of the association

between the descriptors used in the model and the endpoint that is predicted. Nonetheless,

this association is not always obvious.

These five principles clearly highlight the importance of the applicability domain and we provide

here a definition of this concept as well as the methods used to estimate it.

Definition: Several definitions of the Applicability Domain (AD) have been proposed and the

Setubal Workshop report [136] proposed the following one: “The AD of a (Q)SAR is the physico-

chemical, structural, or biological space, knowledge or information on which the training set

of the model has been developed, and for which it is applicable to make predictions for new

compounds. The AD of a (Q)SAR should be described in terms of the most relevant parameters

i.e. usually those that are descriptors of the model. Ideally, the (Q)SAR should only be used

to make predictions within that domain by interpolation not extrapolation.” Therefore, this tool

allows one to evaluate the reliability of predictions by defining when and for which compounds

a supposed valid model is applicable.

Methods to define the applicability domain: Basically, the AD enables the estimation

of the similarity between training and test compounds [239]. In practice, there are different

approaches to define the applicability domain [137, 190]:

• Range-based methods: these methods consider the ranges of values of each individ-

ual descriptor to define an n-dimensional hyper-rectangle space with n being the number

of descriptors (Figure 3.2-a). Nonetheless, limitations are that the hyper-rectangle can

include empty space (i.e. large regions in the n-dimensional space where no compound

is represented due to non-uniformity of data distribution) and that correlation between

descriptors is not taken into account. A more advanced method that considers correla-

tions and reduces the empty space is the Principal Component Analysis (PCA) [276], see

Figure 3.2-b. Indeed, it transforms the axes into Principal Components (PCs) that are

aligned with the directions of the greatest variations of the training set. The computed

ranges then correspond to the minimum and maximum values of each PC and define a new

n-dimensional hyper-rectangle. The number of PCs to keep depends on the amount of the

total variance one wishes to explain. There is no particular rule for choosing the number of

PCs to keep but several heuristics have been proposed such as choosing the desired amount

of total variance to explain and keep the PCs in accordance or selecting the PCs whose

eigenvalue is greater than a predefined threshold [207].

• Distance-based methods: they compute the distance between a new data point and

all the points of the training set using different approaches: the distance to the mean,

the average distance between the new point and all the points of the training set or the

maximum distance between the new point and all the points of the training set. This

distance can then be compared to a threshold in order to decide if the new point is close
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or not to the training data. The three most used distance are Euclidean, Mahalanobis [60]

and Manhattan distance.

• Geometric methods: they aim at computing the convex hull which is the smallest convex

space that include the original data, see Figure 3.2-c. The biggest limitation of these

methods is that the computation of the convex hull is a geometry problem with a high

complexity [44].
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Figure 3.2: Illustration of methods to define the applicability domain in a 2-dimensional space

a) Range-based method, b) PCA-based method, c) Geometric method.

• Probability density distribution methods: these methods aim at estimating the prob-

ability density of the data and are either parametric or non-parametric [240]. While the

parametric methods assumes that the probability density distribution of the data corre-

sponds to standard distributions (Gaussian or Poisson), non-parametric ones do not make

any assumption. Once the probability density has been estimated, the goal is to find the

smallest region (in one dimension or more) that comprises a desired fraction of the total

probability; this region is called the "highest density region".

Global vs local QSAR: QSAR can be divided into two types of models: global and local ones.

Global QSAR are built using a large and diverse set of compounds and are therefore characterized

by a wide AD while local QSAR are usually developed using a specific class of similar compounds

resulting in a narrow AD. In term of performance, global QSAR are naturally good for a diverse

set of compounds but can result in poor performance for highly similar molecules while local

QSAR are good for only similar compounds to the ones used in the training set [87]. The choice

between these two strategies when building a new model is not evident as it depends on the

nature of available data and the initial objective for building the models. The literature is still

unclear on this topic since it appears to be a case-by-case problem [124, 238].

iii) Current use of QSAR in toxicology

QSAR methods can be used to help in risk assessment of chemical compounds, for example by

supporting prioritization for further testing, providing information to fill data gaps and comple-

menting existing experimental data, or by directly replacing some in vitro assays and in vivo
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studies [280].

In particular, QSAR and other computational methods are already applied in the regulatory

context. For example, computational toxicology approaches are accepted in lieu of in vitro test-

ing for pharmaceutical compounds by the International Conference on Harmonisation (ICH) M7

guideline in order to assess the mutagenic potential of impurities [256]: it requires the prediction

of an in vitro mutagenicity assay through two complementary methodologies, namely QSAR

and rule-based experts. Besides, in a guidance for dietary risk assessment, EFSA also asks for

at least two independent models (rule based and ML based) to predict genotoxicity of PPPs

and their plant residues, such as QSAR and rule-based [77]. Lhasa Limited [178] (Nexus) and

Leadscope6 are two examples of companies providing QSAR and rule-based models to enable

such predictions, in compliance with the proposed guidelines.

Moreover, the REACH legislation in EU promotes the use of QSAR and the OECD has estab-

lished several reports regarding the regulatory use of QSAR and other alternative methods. It

has also developed, in collaboration with ECHA (European Chemicals Agency), an open-access

tool aiming at filling data gaps by providing a workflow that integrates chemical grouping and

read-across: the OECD QSAR Toolbox7 [66]. Nonetheless, it does not directly provides QSAR

models.

Another example of the desire of having QSAR models for regulatory purposes is the CAESAR

project which has been funded by the European Commission. Indeed, this project aimed at

developing models for the REACH legislation [15]. Basically, five QSAR models have been de-

veloped for the five following endpoints: bioconcentration in fish, skin sensitization, mutagenicity,

carcinogenicity and developmental toxicity. These models have been validated according to the

five OECD principles mentioned earlier [198] and are freely available on the project website8.

These models can also be found in the VEGA9 software along with other robust and validated

QSAR models [17].

In the US, the EPA also developed a tool with QSAR models to allow the users to estimate the

toxicity of their compounds: the Toxicity Estimation Sotfware Tool (TEST) 10.

TopKat (Dassault Systèmes, Biovia)11 is another software providing this type of models for var-

ious toxic endpoints. In particular the models have been reported to the European Commission

Joint Research Center.

Finally, an ensemble method using a Bayesian model has been recently proposed to predict the

potential of a chemical to be carcinogenic or not. The input features of the model are the pre-

dictions of four open-source QSAR tools used for regulatory risk assessment (including OECD

ToolBox) [210].

An extensive review of all the tools and software available for toxicity prediction (including QSAR

6http://www.leadscope.com/
7www.qsartoolbox.org
8www.caesar-project.eu/
9www.vegahub.eu/portfolio-item/vega-qsar/

10www.epa.gov/chemical-research/toxicity-estimation-software-tool-test#pubs
11www.3dsbiovia.com/products/datasheets/ds_topkat.pdf
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and other methods) has been released as a technical report by the European Commission [97].

Apart from these existing available QSAR models which aim to help for risk and hazard

assessment, a lot of work has been performed to develop models to predict various in vitro ac-

tivities or toxic effects.

Examples of tentative of predicted outcomes in vivo include: acute oral toxicity [295, 159, 167],

carcinogenicity [16, 18], drug induced liver injury [291], hepatotoxicity [174, 169], hepatocellular

hypertrophy [5], cytotoxicity [251], mutagenicity [18], etc.

Regarding the prediction of in vitro bioactivity, if we only consider the in vitro data from the

ToxCast / Tox21 project, we can already mention a number of studies. First, the Tox21 challenge

held in 2014 asked the different competitors to build QSAR models to predict 12 in vitro assays

related to stress response and nuclear receptor signaling pathways, using a dataset of more than

12,000 compounds [129]. This challenge raised a lot of interest and resulted in good models that

were based on different types of methods [36, 71, 1] with the best ones using deep learning [183].

Following this challenge, other models have been developed to predict the same assays [10, 215].

More generally, assays measuring nuclear receptor binding are intensively studied and modeled

using QSAR. For example, before the Tox21 challenge, QSAR for estrogen and androgen receptor

binding had already been proposed [290, 47] and recently improved using new techniques [193].

Then, Ng et al. developed decision tree models to also predict estrogen receptor binding using

different sources, including ToxCast [191]. Moreover, Gadaleta et al. recently tried to build

QSAR models to predict assays related to Molecular Initiating Events of AOPs that lead to

hepatic steatosis [96]. These assays include 6 receptor binding assays and one nuclear factor

activation assay from ToxCast. Others used data from Tox21 to predict aromatase binding from

fingerprints [72]. Finally, a really recent study used several ML approaches to detect potential

endocrine disrupting chemicals (EDCs) by predicting their activity against six nuclear receptor

targets, related to endocrine disruption (ED) [249].

In summary, these studies show that QSAR models are better when they predict direct

chemical effects corresponding to molecular initiating events (binding, activation, etc.) than

events or outcomes occurring further in the AOPs. Therefore, the development of such predictive

models, when sufficiently performing, could help for screening and prioritization of compounds

for further testing. However, QSAR is not adapted to the prediction of in vivo toxicity and we

can anticipate that other types of information are required to reach this goal, such as in vitro

activity.

3.4 From in vitro activity to in vivo toxicity

We now focus on the prediction of toxicity observed in vivo from in vitro data using non-ML

and ML computational approaches. A summary of the studies reviewed here is provided at the

end of this section in Table 3.4.
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3.4.1 Non machine learning approaches

Simple statistical analysis: Statistical measures such as correlation coefficient, odds ratio,

Student’s t-test, Fisher’s test, chi-squared, etc. aim at explaining the relationship between

variables. In particular, univariate association describes the relation between pairs of variables

and has been applied to measure the association between in vitro assays and in vivo outcomes of

interest. For example, Chandler et al. [38] performed univariate associations between results of

tests performed in embryonic stem cells and in vivo developmental toxicity using Student’s and

Fisher’s tests (they also applied this method between embryonic stem cells tests and ToxCast

assays). Kleinstreuer et al. [150] used the same approach between ToxCast in vitro assays and in

vivo carcinogenesis observed in several organs of rats and mice. Indeed, they computed the odds

ratio between each pair of assay / cancer endpoint to find the most significant pairs. Judson et

al. [139] also used correlation metrics to demonstrate the utility of ToxCast in vitro data. In

particular they found association between some in vitro assays and rat liver tumors and they

highlighted a negative correlation between the number of pathways disturbed by a chemical

(according to the related in vitro assays) and the lowest dose at which the compound induces

in vivo toxicity. An extension of the univariate association is the multivariate analysis where

several variables are used to explain one variable of interest.

Moreover, a recent study used various types of methods to evaluate how carcinogenicity could

be predicted based on in vitro ToxCast assays related to "key carcinogen characteristics" [13].

They attempted to explain the difference between carcinogenic and non carcinogenic compounds

based on their activity in in vitro assays. To do so, they used descriptive statistics measures

including the Negative Predicted Value, the Sensitivity, the Specificity, the p.values of statistical

tests and similarity metrics such as the Jaccard coefficient.

Linear additive models: These models simply aggregate the results of several in vitro assays

into one model by assuming an equal contribution from each assay. This method has been

used by US EPA researchers for the development of estrogen receptor activity [142, 33] and

androgen receptor activity [149] models. Basically, respectively 18 and 12 ToxCast assays target

key events along the ER and AR pathways and chemicals were tested in these assays at different

concentrations. For each compound tested in these assays, and each concentration, the models

compute a predicted value for the activity of the compound in the global pathway by linearly

integrating the results of each of the 18 (resp. 12) assays. Finally, a concentration-response curve

was obtained for the entire pathway using predicted activities for all tested concentrations. The

AUC of the curve has been computed and corresponds to the score of the model, ranging from

0 to 1. This score was then compared to a threshold in order to determine if the compound was

agonist, antagonist or inactive for the corresponding pathway. The results were compared to in

vitro and short term in vivo public data regarding ER and AR activity (including the EDSP

results, see Chapter 1, Section 1.2.6) which enabled the researchers to validate their models.
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Connectivity mapping: A connectivity map aims at establishing connections between gene

expression signatures of compounds and biological processes leading for example to toxic effects

or diseases. The method is based on the comparison of a given gene expression profile to several

reference profiles using a specific statistical test (Kolmogorov-Smirnov test). This comparison

enables assigning a "connectivity score" ranging from -1 (negative connectivity) to 1 (positive

connectivity) for each reference profile. Profiles are then ranked according to their score [160].

Connectivity mapping has been applied for toxicity prediction and its ability to detect potential

toxicity of compounds with an indication about the involved mechanisms has been shown [243].

Moreover, Caiment et al. have demonstrated the usefulness of the method to predict compounds

hepatocellular carcinogenicity using the TG-Gates database as a reference dataset [35].

Physiologically-Based Toxicokinetics modeling (PBTK): In vitro to in vivo extrap-

olation (IVIVE) is an approach that aims at transposing in vitro experimental data to pre-

dict in vivo physiological phenomena such as toxicokinetics and toxicodynamics. Toxicokinetics

(TK) describes the fate of compounds in living organisms, including Absorption, Distribution,

Metabolism and Excretion (ADME). Toxicodynamics (TD) refers to the toxic effects induced by

the compounds highlighted by its dynamic interactions with the target molecules [14]. IVIVE

analyses are based on quantitative models composed of mathematical equations that numerically

simulate the in vivo systems using parameters measured in in vitro assays.

PBTK (known as PBPK for pharmacology) is a commonly used method for IVIVE to describe the

ADME properties of compounds. The method consists of mathematically modeling the physio-

logical processes occurring in several tissue compartments of the living organisms (e.g. liver, kid-

ney, brain, skin, etc.) when a compound is administered. On the one hand, tissue compartments

are characterized by multiple parameters such as volume, blood flows, transport, metabolism,

protein abundance, etc. and are connected by the blood [14]. On the other hand, compounds

are characterized by: (1) physico-chemical properties such as molecular weight, lipophilicity and

pKa; and (2) biological properties such as unbound fraction, partition coefficients, permeabil-

ity, solubility, clearance, etc. [157]. In the end, when both organs parameters and compounds

properties are known by the model, associated with a given dose and route of administration, it

allows the simulation of the concentration of the compound of interest in different tissues as well

as its metabolites, at various time points. Note that these models are applied to different species

and can also account for inter and intra population variability. There are several commercial

software available for PBTK modeling such as PK-Sim (Bayer) [78] and Simcyp (Certara) [135].

PBTK reverse dosimetry refers to the use of PBTK models in the reverse order in such a way

that they calculate the dose of compound required to obtain a desired concentration in a specific

tissue [172]. This approach has been used a lot, for example to predict neurotoxicity, developmen-

tal, liver or kidney toxicity [172] or to compare in vitro and in vivo estrogen receptor activity [40].

More recently, reverse dosimetry has been used to investigate if LOAEL obtained in in vivo stud-

ies measuring ED endpoints could be extrapolated from observed-effect concentrations measured

in in vitro assays looking for potential endocrine disrupting compounds [85].
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3.4.2 Machine learning approaches

Unsupervised machine learning: Shah et al. [235] performed an unsupervised multivariate

analysis to compare compounds nuclear receptor (NR) activity measured in in vitro assays with

several stages of liver cancer lesions observed in rat and mouse in vivo studies. Basically, they

performed two independent hierarchical clustering to partition the compounds into: (1) 7 nuclear

receptors groups (for the in vitro data) and (2) 8 cancer lesions progression groups (for the in

vivo data). For each pair of NR group and lesion group, they computed the ratio of the number

of compounds belonging to both groups of the pair and the total number of compounds in the

considered lesion group. They could conclude that compounds having a high NR activity were

associated with hepatocarcinogens while compounds with low NR activity did induce mild or no

lesions at all. Moreover, Sipes et al. [241] clustered 976 ToxCast compounds according to their

structure and bioactivity results from 331 assays and were able to identify potential targets of

compounds as well as possible modes of action.

Another example of unsupervised learning is the use of self-organizing map (SOM) that en-

ables dimensionality reduction and therefore representative visualization of high-dimensional

data [153]. SOM has been applied by Huang et al. to predict 72 in vivo toxicity endpoints from

the results of 30 ToxCast in vitro assays for around 10,000 compounds (i.e. the Tox21 10K li-

brary) [130]. Basically, the compounds were initially clustered using a SOM algorithm according

to their activity profiles and using the Euclidean distance to measure similarity. Then, these

clusters were used to predict the 72 in vivo endpoints: for each cluster and endpoint, a toxicity

score was computed using a Fisher’s test to represent the toxic potential of the compounds from

the cluster. This score considers the proportion of compounds in the cluster that are positive for

the endpoint according to the proportion in the entire dataset. These scores were finally used

to predict the potential toxicity of a new compound after its assignment to a cluster. Note that

this study has also been performed using structural fingerprints instead of in vitro activity and

the resulting models showed better performances.

Supervised machine learning: Martin et al. [181] and Sipes et al. [242] proposed supervised

ML models that respectively predict rat reproductive toxicity and developmental toxicity based

on ToxCast in vitro assays results, using LDA. They previously selected in vitro assays (among

more than 500) that were associated with the endpoints of interest by applying univariate fea-

ture selection (i.e. they measured the association between each assay and the in vivo outcomes

using Pearson correlation, Student’s t-test and chi-squared test). The selected assays where then

aggregated into groups of assays sharing a same target and the average of AC50 values measured

for each assay of the group was computed and assigned to the group. This allowed the reduction

of the number of total features and avoided the use of redundant assays. Finally, these aggre-

gated values (one per group of aggregated assays) were used as input features of ML models that

predict several reproductive or developmental toxicity endpoints using a LDA algorithm. After

cross-validation, the resulting BA were greater than 70%.
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Nonetheless, the approaches used by Martin and Sipes have been reconsidered by Thomas et

al. [259] in a large analysis which compared various scenarios and ML methods to predict 60

in vivo endpoints from ToxRefDB, resulting in 84 ML models in total. Among the scenarios

was the aggregation of the results of several in vitro assays sharing a same target into only

one descriptor for ML models and they showed that it did not lead to better performance than

the use of unaggregated data. Moreover, they suggested that pre-filtering assays according to

a univariate selection prior the cross-validation (i.e. only once for the whole learning) indeed

inflates the results but they suggested that this was due to an induction of bias into the models.

They therefore recommended to use this method during the cross-validation: for each loop of

the cross-validation, the prefiltering is performed based on the actual examples of the training

set which are different for each loop.

This recommendation has been followed by Liu et al. in two studies, in which they developed ML

models to predict either three specific endpoints regarding hepatotoxicity [169] or 35 outcomes

regarding chronic toxicity of 19 other organs [170], observed in rat in vivo studies collected from

ToxRefDB. In both studies, they evaluated the performances of different types of ML algorithms

and used two to three types of descriptors: molecular descriptors, structural fragments, and

results of in vitro ToxCast assays (note that structural fragments were used only in the second

study). For each endpoint, they built several models with a varying number of descriptors used

as input (from 5 to 60 depending on the studies) that were selected inside the cross-validation

loop according to the measure of the univariate association between each descriptor and the

endpoint (t-test or ANOVA F-value). Finally, for each descriptors type, they looked at the de-

scriptors that were the most frequently used (i.e. selected after univariate association) among

all the models.

Moreover, in the previously described study that evaluated how carcinogenicity could be pre-

dicted based on in vitro ToxCast assays, ML models have also been built using Logistic Regres-

sion, CARTs, Bayesian methods and Random Forests [13]. All the methods used in this study,

whether based on ML or not, showed that it was not possible to predict carcinogenicity from the

results of the selected in vitro assays.

Finally, other ML models developed for toxicity prediction use genomic profiles as input features.

For example, expression profiles of 27 genes of the liver were used in Random Forest algorithms

to predict hepatocarcinogenicity [89]. Moreover, as part of a challenge, data from the Tox21 1000

genomes project [4] were used to predict human toxic responses to environmental compounds [76].

These data include the genotype profiling of more than 800 cell lines from various populations,

gene expression data for some of these cell lines and cytotoxic assay results performed in these

cell lines for more than 100 compounds. Indeed, the 1000 genomes project provides genomics

data for around 1000 humans from different populations (European, African, Asia, etc).
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Table 3.4: Examples of methods used to link in vitro bioactivity and other types of information to in

vivo outcomes. Methods are grouped into non machine learning and machine learning ones (both unsupervised

and supervised). ER: Estrogen Receptor, AR: Androgen Receptor, NR: Nuclear Receptor
Method Input data Predicted outcome Reference

Non machine learning methods

Univariate association
Embryonic stem cells assays Developmental toxicity [38]

In vitro assays Rodent carcinogenesis [150]

Descriptive statistics
In vitro assays In vivo toxicity in general [139]

In vitro "key carcinogenic" assays Carcinogenicity [13]

Linear additive models
In vitro assays (ER related) Estrogen receptor activity [142, 33]

In vitro assays (AR related) Androgen receptor activity [149]

Connectivity mapping Gene expression signatures Hepatocarcinogenicity [35]

PBTK

In vitro assays
Neurotoxicity, developmental toxicity,

liver toxicity, kidney toxicity
[172]

In vitro assays (ER related) Estrogen receptor activity [40]

In vitro assays (AR/ER related) Endocrine effects [85]

Machine learning methods

Clustering

In vitro assays (NR related) Hepatocarcinogenicity [235]

Chemical structure, in vitro assays Modes of action [241]

In vitro cytotoxicity assays Rat acute toxicity [295]

Chemical structure, bioactivity profiles 72 in vivo adverse outcomes [130]

Supervised machine learning

In vitro assays Reproductive toxicity [181]

In vitro assays Developmental toxicity [242]

Chemical structure, in vitro assays 60 in vivo adverse outcomes [259]

Chemical structure, in vitro assays Hepatotoxicity [169]

Chemical structure, structural fragments,

in vitro assays
35 in vivo adverse outcomes [170]

In vitro "key carcinogenic" assays Carcinogenicity [13]

Genomic profiles Hepatocarcinogenicity [89]

Genomic profiles Human general cytotoxicity [76]

Chemical structure +

in vitro concentration - response
Acute toxicity [234]

Chemical structure +

in vitro concentration - response +

target affinity

Acute toxicity [2]

Structural fingerprints + HTS data General compounds’ activity [219]

Chemical structure + transcriptomics Hepatotoxicity [174]

Chemical structure + imaging assays Hepatotoxicity [297]

Chemical structure + MOA information Drug induced liver injury [281]

3.4.3 Combination of several types of information

As already mentioned previously, some studies tried to combine several types of information

to improve in vivo toxicity predictions [173]. For example, Huang et al. used SOM to cluster

compounds according to either their bioactivity profiles or their chemical structure. They also

combined the two types of clusters to generate "consensus clusters" and used them as input

of ML models for 67 endpoints. They concluded that performances of the models based on

combined data were higher than the ones of the structure-based models and the bioactivity-

based models [130]. Other works also proposed to use clustering methods to integrate several

information, for example for rat acute toxicity prediction [295].

The most common way of using several types of information is to perform data pooling, meaning
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merging the data into "hybrid" sets of descriptors for further modeling [173]. For instance,

Sedykh et al. pooled concentration-response data obtained in cell based assays available in

PubChem and chemical structure information to predict acute toxicity and showed that the

models had better performance than the basic QSAR ones [234]. This study has been extended by

adding a third type of descriptors: the protein target affinity information, which again resulted in

improved accuracy of predictions [2]. Then, Riniker et al. transformed HTS data from PubChem

assays into so called binary or float HTS-fingerprints and showed that models built with both

structural fingerprints and HTS-fingerprints were leading to better or similar performance than

QSAR models based on structural fingerprints only [219].

However, this improvement is not clear in every study. Indeed, in their large analysis for the

prediction of 60 in vivo endpoints, Thomas et al. [259] also compared the performance of models

based on either in vitro assays alone, molecular descriptors alone, or a combination of both.

They were able to conclude that ML models based on in vitro assays do not perform better than

those based on structural descriptors and that the combination of both types of descriptors does

not improve the performance.

These conclusions have also been obtained when combining structural information to either

transcriptomics [174] or imaging assays [297] results to predict drug hepatotoxicity.

Moreover, in their two studies [169, 170], Liu et al. also built ML models based on a combination

of different types of descriptors. For hepatotoxicity, the combination of structural descriptors

and in vitro bioactivity data did not lead to significantly higher performances than the use of

structural descriptors alone. Nonetheless, the second study demonstrated that a combination

of bioactivity data with chemical descriptors or structural fragments is slightly more predictive

than the use of chemical descriptors or structural fragments alone.

Finally, MOA information obtained in in vitro assays have been combined to chemical structure

information to predict drug-induced liver injury (DILI) and resulted in a small improvement of

performance compared to simple QSAR models [281]. In particular, 4 assays have been identified

to be more predictive of DILI.

Apart from data pooling which has been exemplified here, other approaches have been proposed

to integrate chemical and biological data. These methods include [173]:

• Model pooling: it is based on ensemble modeling. For example, the results from chemical-

based models and biological-based models are pooled in order to make a consensus vote to

obtain the final predictions.

• Network modeling: known associations between chemicals, biological targets, bioactivi-

ties and toxicity endpoints are modeled into graphs where edges represent the associations

between the different entities (represented by nodes). These networks may consider sev-

eral types of associations such as direct interactions or statistical correlations and aim at

inferring new associations from the existing ones. This type of networks has been mainly

proposed in pharmacology in order to identify drug-target interactions [26].
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• Use of chemical structure to estimate biological parameters: this method is mostly

used for PBTK when some required parameters for modeling are unknown. In such cases,

QSAR is applied to estimate this parameters.

3.5 Summary

In this chapter we first introduced the existing data in toxicology and then proposed a large

overview of the state of the work related to computational methods applied to these data.

We showed that: (1) there is a high variety and variability of toxicological data as well as a lack

of standardization in data sources and (2) there is an important diversity of the types of methods

and learning algorithms used to establish the links between the different types of data.

Consequently, it is difficult to define universal criteria to select the most appropriated computa-

tional approaches for toxicity modeling and prediction. This can be partly due to the "No Free

Lunch" theorem but also to the variability of toxicological data (in term of quality, quantity,

diversity of acquisition methods, etc.) and above all, to the long and complex chain of causality

between a Molecular Initiating Event (MIE) and a long-term outcome. Moreover, we can also

point out the key importance of the physiological relevance of in vitro assays and the lack of

quantitative translation from in vitro to in vivo (from µM to mg/kg/day). Therefore, the com-

munity encounters difficulties to take out some recommendations from the experience of the last

15 years that could be applied for a large diversity of problems. This is particularly illustrated by

the numerous studies that are permanently published regarding the development and evaluation

of new alternative methods.
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From structure to activity: a

preliminary study guided by the

two-stage approach

In this chapter we focus on the first stage of the two-stage approach whose goal is to build

machine learning models that predict the activity measured in in vitro assays from the chemical

structure of compounds. As already described in Chapter 3, this type of relation is known as

Quantitative Structure-Activity Relationship (QSAR). Here we focus on the results of 37 in vitro

assays from the ToxCast database and we build models to classify the compounds into actives

or inactives for each of these assays. We use different types of machine learning methods and we

apply data augmentation to balance the original datasets.

Part of this chapter has been published in the international journal Sensors [107] and has also

been presented at the International Conference on Artificial Neural Networks [108].

4.1 Machine learning on datasets constrained by in vivo data

4.1.1 Data used

Since the objective of the two-stage approach is to predict in vivo outcomes, the datasets are

restricted to compounds for which both in vitro and in vivo data are available. We therefore use

the 3 sources of data provided by the US EPA to build the datasets:

• the DSSTox database which provides more than 9,000 unique chemical structures as SDF

files (October 2015 release);

• the ToxCast database which gathers AC50 measured for about 10,000 compounds tested

in more than 1,000 in vitro assays (October 2015 release);

• the ToxRef database which collects the results of different types of in vivo studies per-

formed on several hundreds of compounds (October 2014 release).
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As already mentioned previously, it is important to use correct data to build relevant models.

Therefore, we proceed to a data curation of the chemical structures by applying an automated

workflow implemented in Knime [22] which performs the following tasks: removal of inorganics

and salts, conversion into 2D structures, standardization of chemical functions, conversion into

canonical SMILES and removal of duplicates. In the end, 8325 unique and cleaned chemical

structures are kept.

Since we aim to build classifiers, we transform the AC50 continuous values from ToxCast into

binary ones. As stated in Section 3.2.2, when no activity had been measured for a compound,

its reported value for the considered assay is 1, 000, 000. We then set 1 if the AC50 is comprised

into the interval [0; 1, 000, 000[ and 0 if it is equal to 1, 000, 000.

Based on the three databases, the selection of the in vivo constrained datasets is obtained

according to the three following steps, illustrated in Figure 4.17(b).

i) Looking for the overlap between structural, in vitro and in vivo data

First, we look for the overlap of compounds which are common to the three databases and for

which in vivo results of studies performed in rats during two years are available in ToxRefDB.

This results in a matrix composed of 418 compounds and 915 available ToxCast assays. Nonethe-

less, since not all the compounds have been tested in all the assays, this matrix is incomplete

and contains 16% of missing values. We therefore need to look for a complete matrix in order to

avoid any noise that can be induced by missing values.

Compound 
structure 

• DSSTox

• 8,318 unique 
substances

In vitro assays

• ToxCast

• 10,000 
compounds/ 
821 assays

In vivo studies

• ToxRefDB

• 445 compounds 
with chronic rat 
studies

Complete matrix: 404 compounds x 60 assays

Overlap: 418 compounds x 821 in vitro assays

Final data: 404 compounds x 37 assays

All compounds tested in all assays ?

Assays with more than 5% of active compounds?

Figure 4.1: Schema of the process to obtain the final data for the in vivo constrained datasets.

Starting with the available compound structures, in vitro assay results and in vivo studies, we first look for the

overlap of compounds, then for the corresponding complete matrix and we finally remove assays containing less

than 5% of active compounds. The final matrix corresponds to 404 compounds and 37 assays.
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ii) Looking for the maximal biclique: a NP-complete problem

The matrix can be considered as a bipartite graph which is commonly used to represent re-

lationships between two different types of data constituting two disjoint sets of vertices [293].

In our case, the two sets of vertices correspond to the 418 compounds and the 915 assays and

edges between these two sets inform about an existing relationship between one assay and one

compound (Figure 4.2). Basically, when a compound has been tested in an assay, an edge is

present between these two vertices; it is absent otherwise.

•
a 1

•
a 2

•
…

•
a m

•
c 1

•
c 2

•
c 3

•
…

•
c n

c1        c2           c3          … c418

a1        a2          …        a915

Vertex of 
compounds 

Vertex of 
assays

Figure 4.2: Schema of a bipartite graph. One vertex corresponds to the 915 assays and the other one to the

418 compounds.

Looking for a complete matrix of n compounds and m assays where all compounds have been

tested in all assays is equivalent to finding a subgraph of the bipartite graph where all edges exist

between the two subsets of vertices. This complete subgraph is called a biclique [206]. Since we

want to maximize the number of compounds and assays in our matrix, we should look for the

maximum biclique which is the largest one of the bipartite graph.

The maximum biclique problem has been largely studied since more than 50 years [177] and

can be broken down into two problems:

• The vertex maximum biclique that looks for a biclique with the maximal number of vertices,

• The edge maximum biclique that looks for a biclique with the maximal number of edges.

If the first problem has a polynomial complexity, the second one has been proved to be NP-

complete by reduction to the clique problem [206] which itself has been shown NP-complete

by reduction to the 3SAT problem [144]. Moreover, the number of maximal bicliques can be

exponential in the graph size. Nonetheless, several algorithms have been proposed to face the

edge maximum biclique problem and the last one is called "Maximum Biclique Enumeration

Algorithm" (MBEA) and is able to find all maximal bicliques of a bipartite graph [293]. The

MBEA was inspired by the well known Bron-Kerbosh algorithm which has been designed to find

all cliques of undirected graphs [32]. Basically, it combines branch and bound technique and

pruning to efficiently eliminate paths of the tree search that do not include maximal bicliques.

We applied the MBEA on our graph composed of 418 compounds and 915 assays (418×915) with
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a total number of 319,700 edges (i.e. number of existing pairs of assay and tested compound).

The algorithm found a total of 3302 bicliques, a vertex maximal biclique of size 214×905 and an

edge maximal biclique of size 324× 745. However, since ML performs better with larger number

of examples in the datasets, we decide to use the biclique composed of the largest number of

compounds. Among the 3302 bicliques found by the MBEA algorithm, the one that corresponds

to this constraint is of size 404× 60. It has a number of assays lower than those of the maximal

bicliques (i.e. 905 and 745) but it is sufficient for the purpose of this study.

iii) Assays filtering

Now that we have a complete matrix with the largest possible number of compounds (404), we

finally proceed to a filtering of assays and remove all the ones with less than 5% of active (or

inactive) compounds so that we work with datasets with a reasonable minimum number of ob-

servations in the two classes. This corresponds to 23 assays and we finally end up with a matrix

of 404 compounds and 37 assays.

Figure 4.3 shows the percentage of positive compounds in the datasets corresponding to these

37 in vitro assays. We observe that the datasets are highly imbalanced in favor of negative com-

pounds, the ratio between positive and negative ranging from 5% (assay number 11) to 30%

(assay number 17), with a mean around 12%.
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Figure 4.3: Percentage of positive compounds (Y-axis) in the 37 in vivo constrained datasets corresponding

to the 37 in vitro assays (X-axis).

All these 37 in vitro ToxCast assays have been performed by the NIH as part of the Tox21

project and they mostly target nuclear receptors (Androgen Receptor (AR), Estrogen Recep-

tor (ER), Glucocorticoid Receptor (GR), Peroxisome Proliferator-Activated Receptor (PPAR),

Tyrosine Receptor (TR)) and the transcription factor p53. The full list of assays with their

corresponding target is provided in Appendix B.
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4.1.2 Generation and selection of chemical descriptors

Two types of chemical descriptors are computed from the SDF of the 404 compounds:

1. 74 physico-chemical properties such as the molecular weight, the number of bonds, the

solubility, etc., computed using the RDKit Open-Source software1;

2. 4870 fingerprints computed using the Python’s pybel package [195] and the PaDEL soft-

ware [285].

Then, the physico-chemical properties are normalized into the interval [0, 1] using the min-

max normalization [204] and fingerprints being present in less than 5% of compounds are removed,

leading to a final number of 731 fingerprints.

4.1.3 Learning procedure

For each of the 37 in vitro assays, we build 8 different models using 8 learning algorithms based

on three types of methods: neural networks, tree ensemble and SVM (see Section 2.3.2). The

details of the chosen algorithms are the following:

• Radial Basis Function Network (RBF): it is a one-hidden layer ANN where each

neuron uses a radial basis activation function in the form of the Gaussian function to

compute the output.

• Random Neural Network (RNN): it is a model of the spiking probabilistic behavior

of biological neural systems where each single cell (neuron) receives spikes from the cells

from the previous layer [99]. The structure and weights of the RNN are determined using

the cross-validation approach developed in [294].

• Multi-Layer RNN (MLRNN): it is a deep learning extension of the RNN which

proposes a multi-layer architecture composed of several hidden layers of single cells [288].

The structure is fixed as having 20 inputs and 100 intermediate nodes and a cross-validation

approach is used to determine the optimal structure and weights of the network; 20 trials

are conducted to average the results.

• Dense RNN: it is a more complex extension of the RNN where cells are grouped into clus-

ters such that they all receive the same spikes from the cells of the previous layer [100]. In

each cluster, cells communicate with each other in a RecNN using direct interactions called

"soma-to-soma" interactions. This is also inspired by the human brain where some areas

are composed of densely grouped neurons which directly communicate together. Similar

to the MLRNN, 20 trials are conducted to average the results and the structure of the

Dense RNN used is composed of 20 inputs and 100 intermediate nodes.

• Convolutional Neural Network (CNN): it is one of the well-known types of deep

learning networks based on weight-sharing and composed of convolutional, pooling and fully

connected layers [163]. Here, we use the following structure of layers: input - convolutional

- convolutional - pooling - fully connected - output, organized in sequence [49].

1RDKit: Open-source cheminformatics; http://www.rdkit.org
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• Multi Layer Perceptron (MLP): it is another commonly used method in deep learning,

which is generally a multi-layer fully-connected neural network [165]. It can use different

types of activation functions and here we use the following: eax

1+eax with a ≥ 0.

• XGBoost: it is a tree ensemble method that uses gradient boosting. The open-source

software library XGBoost [46] provides an easy-to-use tool for implementing it.

• SVM: a support vector machine that uses a Radial Basis Function kernel. Here we use

the source code described in [39] and available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.

In order to evaluate the performance of the classifiers, each in vivo constrained dataset is ran-

domly and equally separated into a training set (50%) and a testing set (50%). The process is

repeated 50 times and the performance metrics are computed as the average of the 50 experi-

ments. We use the four following metrics to evaluate the performance: sensitivity, specificity,

balanced accuracy (BA) and ROC score.

4.1.4 Results on imbalanced datasets

Results of the 8 algorithms for the 37 in vitro assays

Figures 4.4 and 4.5 summarize the mean-value of the four metrics obtained respectively on the

training sets and the testing sets for the classifiers that predict all 37 assays using the 8 methods

described previously. Figures 4.6 and 4.7 represent the standard-deviations computed for each

metric over the 50 runs of learning.

From the BA mean values, as shown in Figures 4.4(a) and 4.5(a), the MLP, CNN, DenseRNN,

MLRNN, XGBoost and RBFN classify the training and testing datasets well while the RNN and

SVM fail to do so. However, MLP, CNN, XGBoost and RBF reach really high performance

on the training datasets and when comparing to the performance of testing set, this denotes

overfitting.

Concerning the testing results, none of the method is able to reach good sensitivity, whatever the

in vitro assay, but the specificity is high meaning that the classifiers tend to predict everything

as negative. This is explained by the imbalanced property of the datasets since sensitivity is

higher when datasets are more balanced. As an example, the assay 17 is the most balanced one

with around 30% of positive compounds and the corresponding classifiers reach higher sensitivity

(except for the SVM).

Regarding the ROC AUC means, all methods, including the RNN and SVM, obtain acceptable

training and testing values. The reason could be that the classification thresholds for the methods

trained with unbalanced training datasets may need to be adjusted carefully and accordingly

rather than using the standard one (e.g., 0.5). Indeed, the thresholds could be chosen based on

the proportion of positive instances. Because we work on 37 distinct datasets and assays and

since the best decision threshold is unique to each model, we do not investigate the effect of the

thresholds here. Nonetheless, it would have been worth to do it if we had wished to develop one
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Figure 4.4: Training mean-value results (Y-axis) versus different assays (X-axis) when the MLP, CNN,

DenseRNN, MLRNN, XGBoost, RNN, RBFN and SVM are used to classify the in vivo constrained datasets.
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Figure 4.5: Testing mean-value results (Y-axis) versus different assays (X-axis) when the MLP, CNN,

DenseRNN, MLRNN, XGBoost, RNN, RBFN and SVM are used to classify the in vivo constrained datasets.
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Figure 4.6: Training standard-deviation results (Y-axis) versus different assays (X-axis) when the MLP,

CNN, DenseRNN, MLRNN, XGBoost, RNN, RBFN and SVM are used to classify the in vivo constrained datasets.
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Figure 4.7: Testing standard-deviation results (Y-axis) versus different assays (X-axis) when the MLP,

CNN, DenseRNN, MLRNN, XGBoost, RNN, RBFN and SVM are used to classify the in vivo constrained datasets.
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or two particular ML models, as Chen et al. did for three datasets related to cancer using four

ML methods [45].

Finally, the standard deviations values summarized in Figures 4.6 and 4.7 are in concordance

with the mean values. Indeed, they equal 0 in the case of RNN and SVM for BA, sensitivity

and specificity since these algorithms are not able to learn well and therefore predict everything

as negative. For the other methods, standard deviations are varying in the same way that their

corresponding mean values and they are higher for sensitivity compared to BA and specificity

since true positives are the most difficult to predict due to imbalanced data.

Overall, these results show that the algorithms tend to lead to comparable performance when

applied to this type of data. More particularly, the sensitivity is quite low and the specificity is

high but the results vary between assays and depend on their corresponding datasets. In order

to demonstrate this relation between performance and the number of positive compounds in the

datasets, we then look at their correlation.

Impact of the number of positive compounds on the performance

To investigate the performance differences among the assays, we rank the testing BA and ROC

AUCs of the 37 assays using the average-rank ranking method [29], where a higher rank repre-

sents a better performance. Basically, for each of the 8 algorithms, the 37 datasets are ordered

according to their BA (resp. ROC AUCs) mean values or standard deviations computed after

the 50 runs of learning. Then, the average rank of each of the 37 datasets is computed over the

rankings obtained for the 8 algorithms. For better comparisons, values of all average ranks are

linearly normalized into the interval [0;1]. The method is illustrated in Table 4.1 for an example

considering 4 assays, 3 algorithms and arbitrary BA mean values.

Table 4.1: Example of the average-rank ranking method. The example is for 4 assays and 3 algorithms:

first, for each algorithm, a rank is given to the 4 assays according to their average BA mean values computed

during the 50 runs of learning. Then, the average rank of each assay over the 3 algorithms is computed and

normalized into the interval [0;1].

Algo 1 Algo 2 Algo 3

Average

BA mean

Assay

rank

Average

BA mean

Assay

rank

Average

BA mean

Assay

rank

Average

rank

Normalized

rank

Assay 1 0.7 1 0.8 1 0.7 2 1.33 1

Assay 2 0.6 4 0.74 4 0.68 3 3.66 0

Assay 3 0.65 3 0.76 2 0.71 1 2 0.71

Assay 4 0.67 2 0.75 3 0.66 4 3 0.28

Figures 4.8(a) and 4.8(b) respectively show the normalized average ranks of mean values and

standard deviations of testing BA and ROC AUCs for the 37 assays. The proportion of positive

instances in the 37 datasets (ranging from 5 to 30%) is also displayed on the two figures and

assays are arranged in ascending order of percentage of positives along the x axis.

For the results of mean values, the correlation coefficient between the proportion of positive in-
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stances and the BA (resp. the AUC ranks) equals 0.57 (resp. 0.38) with p-value of 2.410× 10−4

(resp. 2.0× 10−2). This positive correlation can be seen in Figure 4.8(a), in particular when

looking beyond the assay 19. Nonetheless, this correlation is not clear at each point of the plot

suggesting that there are some assays for which the ML methods used are not suitable. Gen-

erally, assays with sufficient positive instances (e.g., Assays 2, 6 and 17) have a high average

rank meaning that they tend to have a relatively high testing BA and ROC AUC whatever the

algorithm used to build the classifiers. On the contrary, for the assays with few positive instances

(e.g., Assays 14 and 19), the testing performance tend to be low.

The results of Figure 4.8(b) clearly highlight a negative correlation between the standard de-

viations of BA and AUC ranks and the proportion of positive instances in the datasets and

coefficient correlation values are respectively −0.72 and −0.91 with p-values of 1.9× 10−7 and

2.3× 10−15. Therefore, the more the datasets are balanced, the more the ML methods behave

similarly: if the average rank over all algorithms is close to 1, this denotes that they are all

performing well on the considered dataset. However, when the number of positive instances in a

dataset is low, performance tend to vary much more according to the methods.

Overall, these results show that the number of instances from the minority class (i.e. the pos-

itive compounds here) is correlated with the performance of the models. We now wonder if an

equivalent number of positive and negative compounds would increase the performance and we

use a data augmentation technique to generate balanced datasets.
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Figure 4.8: Average ranks of testing balanced accuracies and testing AUCs means (a) or standard deviations

(b) (left Y-axis) and the proportion of positive instances (right Y-axis) versus the 37 assays arranged in ascending

order of percentage of positives (X-axis) when the MLP, CNN, DenseRNN, MLRNN, XGBoost, RNN, RBFN and

SVM are used to classify the in vivo constrained datasets.

4.1.5 Results on balanced datasets

In order to create balanced datasets, we apply the SMOTE [43] data augmentation technique on

the training sets while the corresponding testing sets remain unchanged (see Section 2.5).

As previously, Figures 4.9, 4.10, 4.11 and 4.12 summarize the mean-value and standard deviation

results of the four metrics obtained on the training sets and on the testing sets using the 8 ML

methods for the 37 assays.
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Figure 4.9: Training mean-value results (Y-axis) versus different assays (X-axis) when the 8 ML methods

are used to classify the in vivo constrained datasets after data augmentation.
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(a) Assay vs testing balanced accuracy
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(b) Assay vs testing sensitivity
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(c) Assay vs testing specificity
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Figure 4.10: Testing mean-value results (Y-axis) versus different assays (X-axis) when the 8 ML methods

are used to classify the in vivo constrained datasets after data augmentation.
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(d) Assay vs training AUC

Figure 4.11: Training standard-deviation results (Y-axis) versus different assays (X-axis) when the 8 ML

methods are used to classify the in vivo constrained datasets after data augmentation.
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(a) Assay vs testing balanced accuracy
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Figure 4.12: Testing standard-deviation results (Y-axis) versus different assays (X-axis) when the 8 ML

methods are used to classify the in vivo constrained datasets after data augmentation.
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According to Figure 4.9, we see that training BAs are always above 70%, even using the RNN

and SVM methods which are still the ones that perform worse. Moreover, we see that the training

sensitivity is largely increased compared to Figure 4.4(b) with the lowest values around 75%.

Nonetheless, we see that RBF, XGBoost, CNN and MLP result in training values close or equal

to 1 which typically suggests overfitting since this trends is not observed anymore for testing

results where all the algorithms have varying performance according to the assays. In particular,

comparing Figures 4.10(a) and 4.10(b)(based on balanced training datasets) with Figure 4.5(a)

and 4.5(b) (based on imbalanced training datasets), we see that BAs and sensitivities obtained

on the testing datasets for some assays are increased with data augmentation.

Finally, as already observed for imbalanced datasets, standard deviations values (Figures 4.11

and 4.12) are consistent with their corresponding mean values. Indeed, methods with the lowest

training performance have larger training standard deviations (RNN and SVM) and these values

equal 0 for methods that suffer from overfitting. After testing, similar to the mean values, the

standard deviations vary according to the assays for all algorithms. Furthermore, they are in the

same range than the ones obtained on imbalanced testing datasets (Figure 4.7).

Figure 4.13 presents a comparison between the results based on unbalanced and balanced

training datasets. For each assay, we report the highest testing BA, sensitivity, specificity and

ROC AUC achieved on unbalanced and balanced dataset and that we previously observed in

Figures 4.5 and 4.10. In consequence, the algorithm that led to these values can differ between

unbalanced and balanced results as well as between assays.
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Figure 4.13: Highest testing results (Y-axis) versus different assay index (X-axis) of the 8 ML methods to

classify the in vivo constrained datasets before and after data augmentation.
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We observe that the highest testing BAs and testing sensitivities for most assays are increased

after data augmentation. This suggests that, when training datasets have been artificially bal-

anced, the classifiers are better in detecting positive compounds and do not predict almost all

compounds as negative. This finally leads to an increase of the sensitivity and a decrease of the

specificity to more acceptable values.

All these results show that data augmentation is able to increase performance of models but for

most of the assays the testing performance is still not sufficient.

4.1.6 Analysis of the chemical descriptor space of the compounds

In order to explore the distribution of the compounds in the chemical space, we apply a Principal

Components Analysis (PCA) on the compounds of the training set to reduce their 805 chemical

descriptors to two principal components. We then project the compounds of both the training

set and the test set on this two-dimensional space. This analysis has been performed for the

37 datasets and led to the same results for all of them: Figures 4.14(a) and 4.14(b) illustrate

the results for assays 14 and 17, respectively. These figures display the plots obtained for the

datasets of the two assays which respectively contain 8 and 30.7% of positive compounds and

for which the performance of the classification task were the lowest and the highest.

From the figures of the PCA, we can not see any pattern in the plots that separates positive

and negative compounds but since the two first PCs explain only 25% of the variance, we could

think that a better separation would be observed in a higher dimension space. However, this

is probably not the case because the percentage of variance explained by the third PC and the

following is already low (e.g. PC 3 and 4 respectively explain 7% and 4% of variance for assay

17).

Most of the compounds of the test set (crosses) are included in the domain delimited by the

compounds of the training set meaning that they are well represented by the training set. Nev-

ertheless, for the few test compounds that are not within this domain but not far from it, we

can wonder if they are well predicted by the classifiers. This brings out the interest of defining

an applicability domain to assess the reliability of a machine learning model and its predictions.

Next, to look at the effect of the data augmentation, we project the observations generated by

the SMOTE method on the same PCs than previously (i.e. the ones obtained with the training

set compounds before SMOTE). Figures 4.14(c) and 4.14(d) are the resulting plots for assays 14

and 17 and clearly show that the new "synthetic" compounds are inside the space delimited by

the compounds of the original training set. This observation is not surprising since SMOTE is

an interpolation method. Therefore, this data augmentation technique cannot help to improve

the predictions for compounds that are not included in this space.

According to the classification task results, performances of some assays are low (in partic-

ular the sensitivity) even after applying data augmentation. Furthermore, the PCA analysis

of the chemical space pointed out that, whatever the ratio of positive compounds, no pattern
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Figure 4.14: Principal Component Analysis. (a),(b): PCA of the compounds of the training sets for assays

14 and 17 before data augmentation and plots of the compounds of the test sets. (c),(d): Plots of the generated

observations by SMOTE on the PCA "before" data augmentation.

discriminating the two classes of compounds could be observed in a two-dimension space. This

suggests that the chemical descriptors cannot explain the classification performance variability

among assays and we now wonder if this could be due to a too small number of compounds. To

test this hypothesis, we use larger datasets.

4.2 Machine learning on extended datasets and comparison to

the in vivo constrained ones

In this section we use bigger datasets in order to evaluate the impact of using more observations

on the performance of the models. To get a first idea, we build new models using both the

previous in vivo constrained datasets and bigger ones in order to compare the performance on

the same 37 in vitro assays.
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4.2.1 Data used

To obtain larger datasets, we extend the in vivo constrained datasets composed of 404 compounds

to the entire ToxCast database which leads to a total number of 7691 compounds. As illustrated

in Figure 4.15, the 37 resulting datasets are still highly imbalanced in favor of negative compounds

with a range of percentage of positive compounds going from 2.5% for assay number 1 to 22%

for assay number 17.
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Figure 4.15: Percentage of positive compounds (Y-axis) in the 37 extended datasets corresponding to the

37 in vitro assays (X-axis).

4.2.2 Learning procedure and evaluation

The same descriptors than previously are computed for the 7691 compounds (74 physico-chemical

properties and 4870 fingerprints) but we use a different method to select them for learning.

Indeed, the descriptors selection is composed of the two following steps:

1. Removal of descriptors having a variance close to 0: in such case, the descriptor is not

sufficiently informative to discriminate the compounds;

2. Removal of highly correlated descriptors: for each of the 37 in vitro assays, we perform a

Fisher test (F-test) between each descriptor and the binary value of the assay and we select

the 20% descriptors that have the lowest p-value (they correspond to the most associated

ones to the considered assay).

Thereby, the finally selected descriptors are different for each dataset and depend on the corre-

lation with the corresponding assay outputs.

This descriptor selection is applied to the two types of datasets (in vivo constrained and extended

ones) for a valid comparison.

4.2.3 Learning procedure

Here we choose a classical and usual learning algorithm to build the new models based on the

two types of datasets: we use the Random Forest (RF) [31] classifier from Python Scikit-learn

toolbox [205].
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We perform an internal 10-fold cross-validation and repeat the process 10 times to finally compute

the average BA, sensitivity and specificity and evaluate the models’ performance.

4.2.4 Results on both in vivo constrained and extended datasets

Imbalanced datasets

Figure 4.16 presents the results obtained on both the in vivo constrained datasets (404 com-

pounds) and the extended ones (7691 compounds). We see that the performance obtained with

the extended datasets are higher than the ones obtained on the in vivo constrained datasets.

Nonetheless, for both types of datasets, the sensitivity is low (< 50%) and the specificity is high

(> 90%), suggesting that the RF algorithm is not able to detect true positives and simply pre-

dicts almost everything as negative. As already observed using the in vivo constrained datasets,

performance vary a lot between assays and here again, we want to evaluate the effect of balancing

the datasets.
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Figure 4.16: Performance results (Y-axis) versus different assays (X-axis) when the RF is used to classify

both the in vivo constrained datasets and extended datasets.

Balanced datasets

We use the same data augmentation technique than previously (SMOTE) to generate balanced

training sets for all the models. The obtained BAs, sensitivities and specificities are presented

in Figure 4.17. We observe that the results are improved after data augmentation (compared to

Figure 4.16) for both types of datasets. In particular, the sensitivities and BAs are respectively

increased by 8% and 3% in average. Nonetheless, sensitivity stays low compared to specificity.

Even after data augmentation, performance is higher for the extended datasets than for the in

vivo constrained ones confirming that a larger number of observations helps the learning and

leads to better classifiers. Since performances are still not sufficient for most of the assays when

using extended and balanced datasets, it suggests that they do not only depend on the methods

used but mainly on the suitability of the data to the considered problem.
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Figure 4.17: Performance results (Y-axis) versus different assays (X-axis) when the RF is used to classify

both the in vivo constrained datasets and extended datasets with data augmentation.

4.3 Conclusion

In this chapter we built ML models to predict the results observed in in vitro assays based on

the structure of the compounds. Since the two-stage approach requires in vivo data, the data

used were constrained by the available data in both ToxCast and ToxRefDB and we were able

to build classifiers for 37 in vitro assays from ToxCast.

We first used 404 compounds and 8 ML algorithms to build the 37 models and we then applied

the SMOTE data augmentation technique to balance the datasets which were originally highly

imbalanced in favor of negative compounds. We showed that for some assays, ML models were

able to correctly predict in vitro activity, in particular after balancing the datasets. Nonetheless,

we highlighted that classification performance depend on the assays since assays having the most

balanced datasets were easier to predict than the ones with few instances of positive compounds.

We then used extended datasets composed of 7691 compounds to evaluate the importance of

the datasets size on the prediction of the same 37 in vitro assays. The results showed that

the performance increases with the size of the datasets but are still low for most of the assays,

in particular the sensitivity, due to the imbalanced property of data. In that case again, data

augmentation improved performance.

Nevertheless, this study is not sufficient to demonstrate that good models can be obtained to

constitute the first stage of the two-stage approach, since performances are insufficient for most

of the assays. Hence, a larger analysis on more assays would be interesting in order to explore

if we could build more relevant models for some specific assays and which types of methods are

suitable for the data available.

94



CHAPTER 5

From structure to activity: a large

scale analysis

This chapter focuses on a large scale analysis using all the available data in ToxCast in order

to evaluate how to build good ML models with this type of data, relaxing the constraint due

to the two-stage approach. We therefore build ML classifiers for each of the ToxCast in vitro

assay, first using simple algorithms and then using an ensemble method. Also, the applicability

domain is used in order to assess the relevance of the predictions. Part of this chapter has been

published in the international Journal of Information and Chemical Modelling [106].

5.1 Datasets building

5.1.1 Data used

In this work we use the entire ToxCast database released in October 2015. Precisely, we use

the "hitc matrix" which reports the values of 9076 compounds tested in 1192 in vitro assays.

Among all the compounds, 8599 correspond to unique structures according to their SMILES

identifiers [273] available in the DSSTox database.

As described in Chapter 3, the hitc matrix results are provided as categorical values:

• 0 means inactive,

• 1 means active,

• −1 means undetermined,

• NA means Non Assigned.

Since our goal here is to build binary classifiers that predict if a compound is active or inactive

in the assays, compounds with "undetermined" or "Non Assigned" values are not used. Hence,

assays that contain only −1 and/or NA values are removed from the matrix, resulting in a total

of 1092 assays.

For each of these 1092 assays, we build a dataset composed of the number of compounds tested
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in the assay (i.e. compounds with either 1 or 0 values), which implies that the number of

compounds in the datasets varies according to the assays. For all the compounds, we generate

chemical descriptors and Figure 5.1 summarizes the workflow that we use to compute and select

these descriptors.

Original 
dataset

8599 unique 
compounds with
SMILES
One in vitro assay

Chemical 
descriptors
computation

PLP (164)
PaDEL (1444)

Compounds and 
descriptors
selection

Remove
compounds with
NA or -1 values
Low variance 
Highly correlated 
descriptors

Criteria
verification

At least 10 
compounds in 
each class? 
At least 5 times 
more compounds 
than descriptors? 

Final 
dataset

Figure 5.1: Workflow of the data processing for one in vitro assay. For each in vitro assay, the

original dataset contains the list of tested compounds with their structure from which chemical descriptors are

computed. The compounds for which the reported value for the assay is NA or -1 are removed and the molecular

descriptors having a low variance or being highly correlated with other descriptors are then removed (see methods

in Section 5.1.2). Only datasets containing at least 10 compounds of the two classes (positive and negative) and

at least 5 times more compounds than descriptors are kept. They correspond to the final datasets.

5.1.2 Generation and selection of chemical descriptors

i) Descriptors computing

Two software are used to compute several 1D and 2D chemical descriptors using the SMILES

representation of the compounds: PaDEL-Descriptor [285], an open source software, and Pipeline

Pilot (PLP) [59], developed by Dassault Systèmes BIOVIA. Respectively 1444 and 164 descriptors

are computed with PaDEL and PLP and are mostly continuous values except for constitutional

descriptors which refer to the number of various components in the compounds. Each type

of descriptors will be used independently for machine learning, meaning that there are two

datasets for each in vitro assay: one PLP dataset and one PaDEL dataset. Regarding PaDEL,

there are compounds for which the software is not able to compute all the descriptors, probably

due to errors in the SMILES representation. Indeed, as described in Chapter 3, some molecular

descriptors cannot be computed with improper structures. Even if we performed a data curation,

we could have omitted some errors during the final manual check due to the important number of

compounds (> 8000). To avoid the use of incorrect data, we choose to remove from the datasets

the compounds for which at least one descriptor cannot be computed. After this step, 2184

datasets are available: 1092 with 164 PLP descriptors and 1092 with 1444 PaDEL descriptors.

ii) Selection of descriptors

In order to reduce the number of descriptors in the datasets, we proceed to a selection depending

on the nature of their values (categorical or continuous).

First, for the categorical descriptors, we remove the ones that have a low variance because they

do not enough discriminate the compounds. To do so, we use the nearZeroVar function from
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the R caret package [158] which looks at two characteristics to remove a descriptor: (1) the ratio

of the frequency of the most common value to the frequency of the second most common value

and (2) the number of unique values out of the total number of compounds in the datasets. If

(1) is greater than 4 and (2) is lower than 0.3, the descriptor is removed.

Then, to limit redundancy of descriptors with continuous values, we discard one of two highly

correlated descriptors using the findCorrelation function from the R caret package. Basically,

this function computes the absolute value of pair-wise correlations and compares it to a defined

threshold (here we choose 0.8). If two descriptors have a correlation greater than this threshold,

the function looks at the average absolute correlations of the two descriptors with all the other

descriptors and removes the one with the highest average.

The set of descriptors finally kept differs among the datasets since it depends on the compounds

that have been tested in the corresponding in vitro assays.

5.1.3 Datasets filtering

Finally, in order to keep datasets with enough representative of each class, we remove the ones

with less than 10 members of active or inactive compounds. We also remove the datasets for

which the number of compounds is lower than 5 times the number of descriptors. We finally end

up with 515 datasets with PLP descriptors and 414 with PaDEL ones.

5.1.4 Datasets are highly imbalanced

Figures 5.2-(a) and 5.2-(c) show the total number of compounds in the 515 PLP and 414 PaDEL

datasets, respectively. For PLP, this number ranges between 115 and 7810 with average and

median values of 3054 and 3362, respectively. For PaDEL, the size ranges from 1391 to 7516

with average and median values of 3546 and 3259, respectively.

More interestingly, Figures 5.2-(b) and 5.2-(d) represent the percentage of active compounds in

the datasets. Regarding PLP, the average percentage is about 12% with the highest percentage

being 83%. However, 58% of the datasets (300/515) contain less than 10% of actives. For

PaDEL, there is no dataset with more than 50% of active compounds and 66% of the datasets

(275/414) have less than 10% active compounds. The average percentage is about 9%.

Overall, these numbers highlight that, based on a binary classification of the assays results, the

datasets are highly imbalanced in favor of inactive compounds.

5.2 Simple classifiers

For each of the PLP and PaDEL datasets, we first build simple classifiers using the following

algorithms and learning procedure.Unlike the previous chapter, here we use only five basic algo-

rithms since it is a large scale study with an important number of datasets which prevents us

from reviewing various algorithms.
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Figure 5.2: Distribution of datasets according to the total number of compounds or the percentage

of positive compounds. (a), (b) Distribution of the 515 PLP datasets according to the total number of

compounds in the datasets and the percentage of active compounds in the datasets. (c),(d) Distribution of the

414 PaDEL datasets according to total the number of compounds in the datasets and the percentage of active

compounds in the datasets.

5.2.1 Machine learning algorithms

We choose five commonly used algorithms that cover the different types of existing classification

methods (see Section 2.3.2 for details):

• A Linear Discriminant Analysis (LDA): we use the implementation from the R package

MASS [266];

• An Artificial Neural Network (ANN): we use the implementation from the R package

NNET [211], the network is composed of a single hidden layer;

• A Support Vector Machine (SVM): we use the implementation from the R package e1071 [188];

• A Naïve Bayes (Bayesian): implemented in Pipeline Pilot ;

• A Random Forest (RF): implemented in Pipeline Pilot.

5.2.2 Learning procedure and validation

The learning procedure applied to each dataset and for each algorithm is described in Figure 5.3.

First, we split each dataset into a training set (80%) and a test set that will constitute the

external test set (20%).

We then use the training set to learn the models and perform a stratified 5-fold internal cross-

validation to estimate internal performance. To guarantee that each fold contains at least one

member of each class of molecules, active and inactive compounds are first separated and ran-
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domly split into 5 sub-folds. Then, the five folds of the cross-validation are built by merging one

sub-fold from each class. The cross-validation is repeated 5 times and the average performance

is computed.

Then we perform external validation using the model built on the entire training set to predict

the values of the test set previously set aside and we compute external performance.

The entire process (from the splitting of the dataset to the external validation) is repeated 5

times and the average of the performance metrics is computed.

The following four metrics are used to evaluate the performance: ROC score, balanced accuracy,

sensitivity and specificity.

As already mentioned in Chapter 2, in the case of two-class predictions, the predicted continuous

number that is returned by the algorithms is automatically transformed into a binary one ac-

cording to a threshold. There are several ways to determine this threshold and it has been shown

that the traditional default method (threshold = 0.5) was unreliable for most of the datasets [94].

One of the best approach is to maximize the percentage of correctly classified observations (i.e.

the accuracy or BA). We chose an equivalent approach based on the opposite, that is to say the

minimization of the balanced error rate which corresponds to the average of the errors on each

class, and equals to (1−BA), or:

1

2

(
FN

TP + FN
+

FP

TN + FP

)

Predicted
output

80%

20%

Learning
Stratified

cross-validation
Training set

Test set

Final dataset

Internal
performance

Model
External

performance

Input

Figure 5.3: Workflow of the learning procedure for one in vitro assay. The dataset obtained in 5.1 is

split into training set (80%) and test set (20%). The training set is used to learn the model using one of 5 different

algorithms and a stratified 5-fold cross-validation is performed to get the internal performance of the model. The

test set is then used to compute external performance of the model.

5.2.3 Results

Internal cross-validation results on all datasets

For the five ML algorithms, we compute the mean and standard deviation of each performance

metric obtained after internal cross-validation over the 515 PLP models (Figure 5.4-(a) or the

414 PaDEL models (Figure 5.4-(b). For the two types of descriptors and the five algorithms, the
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four metric means are comprised between 0.6 and 0.73 (except ANN-PaDEL sensitivity which is

equal to 0.52) and standard deviations are large, ranging from 0.06 to 0.19. According to these

results, none of the algorithms is able to reach high performance and we are not able to rank

them because of too large and overlapping standard deviations.
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Figure 5.4: Comparison of performance metrics (ROC score, sensitivity, specificity and BA) after

internal cross-validation for the 5 ML algorithms. (b) Models using PaDEL descriptors and all 414

datasets. (a) Models using PLP descriptors and all 515 datasets. None of the algorithms is able to reach high

performance.

As we already showed that the data are imbalanced, we now consider if this characteristic can

explain the previous results. For all the 5 algorithms, Figure 5.5 presents the plots of the balanced

accuracy (BA) obtained for each dataset according to the percentage of active compounds. These

plots display a “funnel” shape with BA variability decreasing when datasets are more balanced.

In particular, we observe lower BA variability for datasets containing at least 10% of compounds

in the minority class (i.e. positive compounds). For datasets with low percentage of positives,

most of the BA variability is due to the variability of the sensitivity, which depends on the number

of positive compounds in the datasets: for a same ratio of positive compounds, the larger the

number of positives, the higher the sensitivity. Note that this funnel shape is also observed for

the plots of the 4 other metrics and that we obtain similar results with PaDEL datasets except

that the percentage of positive compounds stops at 50% (data not shown).

Figure 5.6 presents the variance of ROC score obtained with RF algorithm trained on PLP

datasets according to the percentage of positive compounds in the datasets. For each range of

percentages, we compute the variance of ROC score over all the datasets having a percentage of
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Figure 5.5: Balanced accuracy according to the percentage of positive compounds in PLP datasets

for the 5 ML algorithms. BA gets stable when the percentage of positive compounds in datasets increases. For

datasets with a low percentage of positives, most of the BA variability is due to the variability of the sensitivity,

which depends on the number of positive compounds in the datasets: the larger the number of positives, the higher

the sensitivity.

positive compounds in that range. The figure shows that the variance of the ROC score tends to

decrease when datasets are more balanced. We can determine a cut-off: when datasets contain at

least 10% of positive compounds, the associated variance is always below 0.0065. Similar results

are obtained with PaDEL datasets and other algorithms (data not shown).
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Figure 5.6: Variance of ROC score according to the percentage of positive compounds after internal

cross-validation for Random Forest models based on PLP descriptors. Variance is lower than 0.0065

when percentage of positive compounds is greater than 10%.

Together, these results suggest that the imbalanced nature of datasets has a negative impact

on models’ performances and that these classical learning methods are not suitable for highly

imbalanced datasets. This finding is in agreement with previous work from different domains

which highlighted the need for techniques to face imbalanced issues, for example for detection of

oil spills [156] or fraudulent telephone calls [86]. Indeed, the use of common algorithms does not
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cope with the problems related to the imbalanced property of data [43].

Moreover, the models with very few positive compounds will be characterized by a limited

applicability domain regarding this class of compounds. Consequently, a new positive compound

will have a low chance to be within the applicability domain and its associated prediction will

be of low confidence.

Based on these considerations, we decide to try if we could obtain better performance when

considering datasets which contain at least 10% of compounds belonging to the minority class.

This leads us to focus on 139 PaDEL and 215 PLP remaining datasets.

Internal cross-validation results on a subset of more balanced datasets

Figure 5.7 shows the means of each performance metric over the 139 and 215 models obtained

on the PaDEL and PLP datasets, respectively. The means of all metrics are between 0.63 and

0.75 and here again the results are in the same range for the 5 ML algorithms (BA around 0.68).

Interestingly, standard deviations are lower than previously (when using all the datasets): BA

standard deviation decreases in average from 0.07 to 0.04, sensitivity ones from 0.16 to 0.10

and specificity ones from 0.14 to 0.09. However, despite this improvement, it is still difficult to

rank the algorithms and conclude on the most appropriated to the data, no matter the type of

descriptors used.

0.4

0.5

0.6

0.7

0.8

0.9

ANN Bayesian LDA RF SVM

(a) PaDEL descriptors

0.4

0.5

0.6

0.7

0.8

0.9

ANN Bayesian LDA RF SVM

(b) PLP descriptors

Metrics

ROC_AUC

Sensitivity

Specificity

Balanced accuracy

Figure 5.7: Comparison of performance metrics (ROC score, sensitivity, specificity and BA) after

internal cross-validation for the 5 ML algorithms. (a) Models using PaDEL descriptors and he 139

datasets with at least 10% of compounds in the minority class. (b) Models using PLP descriptors and the 215

datasets with at least 10% of compounds in the minority class. Performance of the 5 algorithms are on the same

range and standard deviations are smaller compared to the previous results based on all the datasets.
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In order to quantify the advantage of using more balanced datasets, we perform a Student’s

t-test: Table 5.1 shows the p-values of the t-test that compare the mean of the 4 metrics between

the datasets containing strictly less than 10% of compounds of the minority class and the ones

containing at least 10% of compounds, for the 5 algorithms and the 2 types of descriptors used.

Note that here we assume that datasets are independent, so that there means are independent

too and therefore comparable using the t-test. According to this test, most of the metrics means

are significantly different, meaning that the use of more balanced datasets has an impact on the

models’ performances. In particular, the sensitivity is always significantly increased suggesting

that the use of more balanced datasets helps in the detection of true positives. We also remark

that for ANN_PADEL, Bayesian_PADEL and Bayesian_PLP, if sensitivity and specificity are

significantly different between the two types of datasets considered for the test, this difference is

not sufficient to obtain a significant difference for the BA.

Overall, the same tendencies are observed with both types of descriptors but PLP datasets

contain fewer descriptors which confers several advantages. In particular, they are generally easier

to understand as they are related to well-known physico-chemical properties such as molecular

weight or solubility. Also, other advantages of building ML models with fewer descriptors are

to decrease model complexity, to reduce chances of overfitting, and to decrease computational

time [104, 111], as already mentioned in Chapter 2. Therefore, we focus only on PLP datasets

for the rest of the study.

Table 5.1: p-values of Student’s t-test performed on the 4 metrics for the 5 algorithms and 2 types

of descriptors, between the datasets that contain strictly less than than 10% of active compounds

and the datasets that contain at least 10% of active compounds. The p-values lower than 0.05 are in

bold. Most of the metrics means are significantly different meaning that the use of more balanced datasets has an

impact on the models’ performances.
Method Descriptor type ROC AUC Balanced Accuracy Sensitivity Specificity

ANN PADEL 1.10× 10−4 9.06× 10−2 1.58× 10−4 1.15× 10−3

Bayesian PADEL 6.32× 10−7 5.96× 10−1 5.95× 10−4 2.00× 10−3

LDA PADEL 1.29× 10−13 4.85× 10−7 2.98× 10−9 9.03× 10−2

RF PADEL 2.40× 10−23 1.04× 10−15 1.70× 10−22 8.48× 10−4

SVM PADEL 8.76× 10−22 3.55× 10−13 3.85× 10−8 3.73× 10−1

ANN PLP 1.66× 10−7 1.20× 10−4 3.30× 10−13 7.59× 10−7

Bayesian PLP 2.11× 10−1 7.82× 10−2 2.55× 10−2 1.47× 10−4

LDA PLP 3.79× 10−5 1.69× 10−2 6.80× 10−4 1.79× 10−1

RF PLP 2.15× 10−8 9.39× 10−6 8.98× 10−10 5.69× 10−3

SVM PLP 6.71× 10−15 2.31× 10−10 1.46× 10−17 1.09× 10−4

External validation results

We then perform an external validation on the 215 PLP datasets and we choose to present in

Figure 5.8 the average BA, sensitivity and specificity obtained for the 5 ML algorithms.

Except for the Bayesian algorithm, sensitivity is very low (under 0.4) and specificity is high

(greater than 0.8) which leads to a BA around 0.6. Moreover, sensitivity and specificity standard

deviations for ANN, LDA, RF and SVM models are large (between 0.09 and 0.27), which once
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again prevents us from drawing conclusions on the usefulness of these methods. According to

these results, ANN, LDA, RF and SVM do not seem to be able to build good models, even when

only focusing on datasets with at least 10% of compounds in the minority class. We hypothesize

that they are too sensitive to imbalanced datasets as Mazurowski et al. [184] already showed for

neural networks. Indeed, they performed a large scale analysis on simulated imbalanced data

and studied the impact of this characteristic on two neural network methods. He concluded that

even a small imbalance in the training set led to a deterioration of the performance.

On the contrary, the Bayesian algorithm seems to be more suited to imbalanced datasets since

BA, sensitivity and specificity are greater than 0.6 with smaller standard deviations. However,

in order to ensure confidence in the models, we consider that models are not good enough when

their performance are lower than 0.7 for all metrics. Thus, the different types of methods used

here seem to not be suited to the data and we suggest that using more than one simple algorithm

could improve the models’ performances. In particular, we propose to use ensemble techniques.
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Figure 5.8: Comparison of performance metrics (sensitivity, specificity and balanced accuracy)

after external validation for the 5 algorithms on PLP datasets with at least 10% of compounds in

the minority class (215 datasets). ANN, LDA, RF and SVM are not able to lead to good performance and

do not seem suitable for the data while Bayesian seems to be more appropriate.

Descriptor importance analysis

When interpreting a QSAR model, we often want to understand how each descriptor contributes

to the final decision. In order to assess descriptor relevance, different methods exist including the

"permutation importance" [247] which, for each descriptor in turn, compares the performances

between a model built on the original dataset and a model built on a dataset where the considered

descriptor has been randomly permuted. The permutation of a descriptor refers to the random

reassignment of all its values to the observations of the dataset, such that there is no more

relation between the observations and the descriptor. In the end, if the permuted descriptor has

a strong effect on the output prediction, the model trained on the permuted data will results in

lower performance than the original one.

Here we use the permutation importance approach in order to quantify the relative importance
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of each descriptor in the datasets. For each model built with a randomly permuted descriptor,

we compute the absolute difference between its ROC score and the ROC score of the original

model (non permuted). Then, we are able to rank the descriptors according to this difference:

the larger the difference, the greater the presumed importance of the descriptor.

We perform the permutation importance on the 10 RF models (based on PLP datasets) that

results in the best performance, i.e. the ones that reached BA, sensitivity and specificity greater

than 0.7 after external validation. We finally compute the average rank of each descriptor over

this 10 models.

Table 5.2 shows the top three descriptors that obtained the highest rank:

1. The Ghose and Crippen octanol-water partition coefficient AlogP [102]: it is the

logarithmic ratio of the concentration of a compound in a two-phase solvent, here octanol

and water. It indicates hydrophobicity and hydrophilicity of a compound.

2. The molecular solubility [257]: it informs about the ability of a compound to enter the

systemic circulation and directly affects its bioavailability [230].

3. The molecular weight: like AlogP, it is one of the 4 components taken into account by

the Lipinski’s rule of five [168] which considers 4 molecular criteria important for chemical

discovery.

Descriptor Average rank

AlogP 1.27

Molecular Solubility 2.27

Molecular Weight 5.54

Table 5.2: Top three descriptors obtained by computing the average rank of each descriptor after

applying the "permutation importance" method on the ten datasets corresponding to the ten best

models. AlogP, molecular solubility and molecular weight are the three most important descriptors.

Our analysis also highlights other important descriptors such as the sum of carbons with two

single bonds or the sum of carbons with two single bonds and one double bond. This type of

descriptors might be helpful if we would like to go further and investigate the modes of action

that explain the activity of the molecules.

In this partial analysis, the most important descriptors are found to be the ones that are the

easiest to interpret biologically and chemically. Moreover, when looking at the 10 assays cor-

responding to the 10 best models used1, we see that most of them measure receptor binding

which suggests that these three descriptors are important for this specific type of assays. These

results therefore need to be extended to more assays by performing a large scale analysis on more

datasets and using other algorithms.

1List of the 10 assays:
ATG_PXR_TRANS_up; ATG_SREBP_CIS_up; TOX21_AR_BLA_Agonist_ratio; TOX21_GR_BLA_Agonist_ch1;
TOX21_GR_BLA_Agonist_ratio; TOX21_GR_BLA_Antagonist_ch2; TOX21_GR_BLA_Antagonist_viability;
TOX21_MMP_ratio_down; TOX21_MMP_viability; TOX21_p53_BLA_p1_viability.
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5.3 An ensemble method: the stacked generalization

As the previous results showed that one algorithm alone is not able to lead to good models on

our data, we now test if combining several models in an ensemble method (see Chapter 2) could

improve the results. Since we want to combine different types of methods, we decide to use

the Stacked Generalization technique [278, 113] which, unlike bagging and boosting, allows the

use of heterogeneous models. Furthermore, this method has been recently shown to be more

appropriate to imbalanced data in a study performed on 5 imbalanced datasets from different

domain [176]. They showed that simple methods such as Bayesian, Decision trees and Logistic

Regression are not sufficient to reach high performance and that each of these methods has

its own pros and cons. They therefore proposed a theoretical analysis of the effectiveness of

ensemble methods to learn from imbalanced data and concluded in a favor for the boosting and

stacking techniques. Regarding the methods to combine, we first choose to keep the Bayesian

method because it seems to be the most suitable for our data according to the previous results.

Moreover, we choose the RF method because it is based on a really different representation of

the data than the Bayesian one (trees versus instances).

5.3.1 General principle

The Stacked generalization ensemble technique (also called stacking) involves the training of a

learning algorithm called "meta learner" that combines the predictions of several "base learners"

in order to obtain a higher level learner. Basically, the training set is split into two disjoint

sets where the first part is used to train the base learners and the second part to test them and

generate predictions. These predictions are finally used as the inputs of the meta learner with

the corresponding outputs being the correct responses.

5.3.2 Learning procedure and validation

The procedure used to learn the stacked models is illustrated in Figure 5.9 and detailed hereafter.

First, we randomly split each dataset into one training set (Train 1) and two test sets (Test 1 and

Test 2) in the following proportions: 60%, 24% and 16% (see ovals in Figure 5.9). On Train 1,

we train both a Bayesian and an RF algorithms to build the base models B1 and RF1 and we

test them on Test 1 to obtain predictions P1-b and P1-rf (see the blue workflow in Figure 5.9).

We then use the predictions P1-b and P1-rf, respectively produced by models B1 and RF1, as

input descriptors of the meta-learner to train a so-called stacked model using a naive Bayesian

algorithm. The outputs to learn are the actual outputs of Test 1 (orange workflow of Figure 5.9).

We choose the Bayesian learner as meta learner due to its ease of implementation and fast

computing.

Then, a stratified 5-fold cross-validation is performed to find the best threshold for the stacked

model: the training set containing P1-b and P1-rf as input features and actual output values of

Test 1 is split into 5 folds which are all used once as a test set while the 4 remaining folds are
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used to learn the model. In some cases, the number of positive compounds in Test 1 is lower than

5 and the 5-folds are therefore impossible to compute (since all the folds should have the same

ratio of positives to negatives). In those cases, the entire dataset is removed from the study. In

the other cases, the 5-fold cross-validation is repeated three times. Finally, we evaluate external

predictive performance of the stacked model on Test 2 (orange workflow of Figure 5.9).

In order to compare the performance of the stacked models with the simple classifiers on the

same test set, we merge Train 1 and Test 1 to train simple Bayesian and Random Forest learners

and build models B2 and RF2 (see red workflow in Figure 5.9). We then compute their external

predictive performances on Test 2.

Note that we also built stacked models using 3 to 5 base models (by iteratively adding ANN, SVM

and LDA to RF and Bayesian) on a subset of datasets (data not shown). Since the performance

did not change significantly according to the number of models used, we decided to keep only

two base models for a matter of computing time.
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Figure 5.9: Principle of the Stacked generalization method.

Blue Workflow: A Bayesian B1 and a RF RF1 models are built using Train 1 (60% of the dataset). The

models are then used to make predictions P1-b and P1-rf on Test 1.

Orange workflow: the predictions P1-b and P1-rf are used to train a Stacked Bayesian model (Stacked).

Red workflow: By merging Train 1 and Test 1 to train a simple Bayesian model B2 and simple RF model RF2,

we are able to compare performances of B2, RF2 and the Stacked model on Test 2.

5.3.3 Results

Comparison to simple classifiers

The stacked generalization is applied to all the PLP datasets, including those with less than 10%

of positive compounds. Over the 515 datasets, 32 are removed because of the failure to compute

the 5-fold cross-validation as described above. We therefore obtain 483 Stacked models with the
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483 corresponding B2 and RF2 models.

We compare the predictive performances of the 483 simple Bayesian and RF models (B2 and

RF2) with the Stacked ones. Table 5.3 shows, for the three types of methods, the number of

models that reach a certain value of ROC score. First, less RF2 models are able to reach ROC

score greater than 0.6 compared to the B2 and Stacked ones and only 30 among the 483 have

ROC score above 0.8. Furthermore, if an equivalent number of B2 and Stacked models reach 0.6

and 0.7 values of ROC score, when looking at higher and better performance (above 0.75 and

0.8), the Stacked method becomes clearly better than the Bayesian one. Finally, when we look

at the method that leads to the highest ROC score for each model, the Stacked is the winner for

61% of models (294/483), followed by the Bayesian one with 30% of models (147/483) and the RF

with only 9% (42/483) (data not shown). These results confirm that the Stacked generalization

method is able to build more models with good performances than simple algorithms.

Table 5.3: Comparison of simple Bayesian B2 and Random Forest RF2 models with Stacked gen-

eralization models on the 483 PLP datasets. The comparison of the number of models that reach a certain

value of ROC score shows that the Stacked generalization method is able to build more models with higher ROC

score than simple methods.
Method ROC ≥ 0.60 ROC ≥ 0.70 ROC ≥ 0.75 ROC ≥ 0.80

Stacked 417 319 253 144

Bayesian 416 321 223 90

RF 356 205 89 30

Figure 5.10 shows the ROC curves of B2 and stacked models for one particular assay (TOX21_

ERa_BLA_Antagonist_ratio) measuring the expression of the Estrogen Receptor gene2. The

associated dataset is composed of 7810 molecules, 13% of which are active in the in vitro assay.

We observe that the ROC curve of the Stacked model is always above the one of the B2 model

and the ROC scores are equal to 0.84 and 0.77 for the two models, respectively. Since the ROC

curve displays the sensitivities and their corresponding specificities obtained for all threshold

values between 0 and 1, we can choose a specific threshold according to a desired sensitivity or

specificity. As an example, a sensitivity of 85% corresponds to a specificity of about 73% with

the Stacked model and only of 52% with the Bayesian one (see dotted lines in Figure 5.10). This

again illustrates the difference of performances between the two models and the ability of the

Stacked model to detect more inactive compounds than the Bayesian one, for the same number

of actives detected. Naturally, one can move this threshold depending on the desired stringency

of the model output. The same analysis on other assays lead to the same observations and

conclusions (data not shown).

2see https://actor.epa.gov/dashboard
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Figure 5.10: ROC curves obtained for models trained on the dataset of the assay

TOX21_ERa_BLA_Antagonist_ratio with the two types of methods (Stacked generalization and

simple Bayesian). ROC curve of the Stacked model is always above the one of simple Bayesian model. For

a given Sensitivity of 85%, the Bayesian model detects 52% of the inactive molecules whereas the Stacked model

detects 73% of them.

Focus on a subset of in vitro assays highlighted as being correlated to in vivo toxicity

Since the bioactivity assays can be seen as an intermediate step towards the evaluation of the in

vivo toxicity, several works have relevantly focused on the link between ToxCast in vitro assays

and toxicity outcomes observed in vivo. In particular, as already mentioned in Chapter 3, in

2015 Liu and co-workers [169] built ML models that predict in vivo chronic toxicity observed in

liver based on either chemical descriptors, bioactivity descriptors (i.e. ToxCast in vitro assays)

or a combination of both. This study has been extended in 2017 to 19 other organs [170]. They

extracted in both studies the 36 (resp. 50) in vitro assays most frequently used in their models

and which were supposed to be the most correlated with in vivo liver (resp. 19 other organs)

toxicity.

Since we built models for the majority of the ToxCast in vitro assays, we propose here to focus

on the ones that predict these assays. More precisely, among the 36 (resp. 50) in vitro assays

highlighted by Liu, we were able to build classifiers for 25 (resp. 38) of them. Because 11 assays

are common to both sets (25 and 38), we finally have models for 52 assays, using the simple

algorithms and the stacked method. Table 5.4 summarizes the best ROC score we obtained

for the models of these 52 assays and the corresponding method used (simple Bayesian, RF or

Stacked generalization). For 71% of the assays (37/52), the Stacked generalization is the method

leading to the best ROC score. Also, for 62% of the assays (32/52) the ROC score is greater

than 0.75 meaning that we are able to build good classifiers to predict some of the in vitro assays

featured by Liu. Altogether, these results show that the Stacked generalization method allows

one to build classifier models that predict in vitro assays which have been previously shown to

be associated to in vivo toxicity outcomes. This suggest that we could think about replacing all

or part of these in vitro assays by in silico predictions and use these predictions as input of Liu’s

ML models, as we already suggest in our two-stage approach.
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Table 5.4: Most frequently used assays in Liu’s models and the best ROC scores we obtained with

either the Stacked generalization or simple methods (Bayesian or RF). Assays are sorted by decreasing

ROC score. Stacked generalization method has the best ROC score for 71% of the assays and this score is greater

than 0.75 for 62%.
Assay name Liver Others ROC Bayesian(B)/

score Stacked(S)/
score RF (RP)

BSK_KF3CT_SRB_down × 0,855 S

TOX21_TR_LUC_GH3_Antagonist × 0,842 S

APR_HepG2_CellLoss_24h_dn × 0,842 B

TOX21_ERa_BLA_Antagonist_ratio × 0,839 S

ATG_VDRE_CIS_up × × 0,836 S

ATG_SREBP_CIS_up × 0,834 S

ATG_PBREM_CIS_up × 0,834 S

ATG_MRE_CIS_up × 0,834 S

ATG_PXR_TRANS_up × 0,833 S

APR_HepG2_MitoticArrest_72h_up × × 0,830 S

TOX21_ERa_LUC_BG1_Antagonist × 0,828 S

TOX21_PPARd_BLA_agonist_ratio × 0,827 S

TOX21_Aromatase_Inhibition × 0,821 S

ATG_TGFb_CIS_up × 0,819 S

ATG_RARa_TRANS_up × 0,815 S

APR_HepG2_StressKinase_1h_up × 0,815 B

ATG_RORE_CIS_up × 0,812 B

BSK_3C_Vis_down × 0,811 S

ATG_PXRE_CIS_up × × 0,810 S

BSK_BE3C_SRB_down × 0,809 S

ATG_NRF2_ARE_CIS_up × 0,793 S

ATG_PPRE_CIS_up × × 0,791 S

NVS_GPCR_hOpiate_mu × 0,791 S

ATG_RXRb_TRANS_up × 0,787 S

ATG_C_EBP_CIS_up × 0,785 S

ATG_LXRb_TRANS_up × 0,780 B

ATG_BRE_CIS_up × × 0,780 S

TOX21_PPARg_BLA_antagonist_ratio × 0,775 S

ATG_Oct_MLP_CIS_up × 0,771 S

APR_HepG2_MicrotubuleCSK_72h_up × 0,760 B

APR_HepG2_MitoMembPot_1h_dn × 0,759 B

ATG_NFI_CIS_up × 0,754 B

ATG_NF_kB_CIS_up × 0,749 B

NVS_MP_rPBR × × 0,749 RF

NVS_ADME_hCYP2C19 × × 0,733 S

APR_HepG2_CellCycleArrest_24h_up × 0,733 B

NVS_NR_hAR × 0,727 B

ATG_ERE_CIS_up × 0,717 S

NVS_ADME_hCYP1A2 × 0,717 B

NVS_NR_mERa × 0,708 S

ATG_IR1_CIS_up × 0,708 S

APR_HepG2_CellCycleArrest_72h_dn × 0,705 S

NVS_NR_hPXR × 0,691 B

NVS_NR_hCAR_Antagonist × 0,689 S

NVS_MP_hPBR × × 0,682 S

TOX21_ERa_LUC_BG1_Agonist × × 0,676 S

NVS_TR_hNET × 0,668 S

APR_HepG2_NuclearSize_72h_up × 0,650 B

NVS_NR_hER × × 0,649 S

TOX21_TR_LUC_GH3_Agonist × 0,646 S

APR_HepG2_MitoMass_24h_up × 0,599 B

APR_HepG2_MitoMass_72h_up × × 0,537 S

5.4 Estimation of the applicability domain to assess the quality

of predictions

The previous results showed that we were able to build good models to predict in vitro activity

based on the structure of compounds, in particular using the stacked generalization method. In
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order to evaluate if these models could be used for further investigation, we propose to estimate

their applicability domain (AD) and assess the relevance of the predictions.

5.4.1 Estimation of the applicability domain

Here we use two different approaches to estimate the applicability domain of the previously built

models: a range-based method using Principal Component Analysis (PCA) and a distance-based

method (see Sectionii)).

PCA-based approach: In the first approach, we apply a PCA directly on the chemical de-

scriptors of the compounds used in the training set in order to reduce the space to only a few

principal components (PCs). Basically, the PCs are computed to explain a minimum of 80%

of the variance or a minimum of 10 components if 80% of the variance is explained with fewer

components. Thus, the number of principal components is different for each dataset. Then, for

each PC descriptor, a range of acceptable values is defined by the minimal and maximal PCs

values observed in the training set. For an unseen compound, if the value of at least one of its PC

descriptors is out of the previously computed range, the compound is flagged “out of domain”.

For each model, we compute the average of the four performance metrics obtained on an external

test set using either all the compounds or only the compounds that are in the AD (note that

when the test set has only one active compound within the AD, the dataset is removed from the

analysis).

Table 5.5 shows the percentage of assays for which performance metrics are higher when consid-

ering the test set with only the compounds belonging to the AD compared to the entire test set

(compounds in and out of the AD). For more than 50% of the assays, ROC score and BA are

higher when "out of AD" compounds are excluded. Specificity is higher for 88% of the assays but

only 16% show higher sensitivity when using only "in AD" compounds. This can be explained

by the low number of active compounds in the test sets which results in equivalent performance

regardless of the compounds taken into consideration. Moreover, the number of compounds "out

of AD" is comprised between 5 and 10 for all the test sets meaning that most of the compounds

are included in the AD and that the compared results are based on highly similar test sets (both

"in AD test set" and "entire test set" differ from only 5 to 10 compounds). These results are

therefore not really highlighting the usefulness of the estimation of the AD but show that our

models do represent well the compounds of the test set.

Table 5.5: Percentage of models with higher performance when using only "in AD" compounds

than when using all compounds.

Metric % of assays

ROC score 53.2

BA 53.0

Sensitivity 16.0

Specificity 88.3
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Distance based approach: In the second approach, we compute the average Euclidean dis-

tance from each molecule of the test set to its three closest neighbors from the training set [239].

After sorting the compounds in ascending order of the average distance, we first cut the test set

into disjoint blocks of 50 compounds. We then count the number of good predictions in each of

these blocks.

Figure 5.11 displays the results of this approach applied to the previously built simple Bayesian3

and Stacked models of the assay TOX21_ERa_BLA_Antagonist_ratio which was reported by

Liu to be linked to chronic liver toxicity [169].

The ROC scores of the two models were 0.77 and 0.84 for the simple Bayesian and the Stacked,

respectively. The test set that enabled to build these models was composed of 1251 compounds,

corresponding to 24 disjoint blocks of 50 compounds and one block of 51.

In Figure 5.11, we observe that the percentage of good predictions decreases (from 100% to less

than 50%) when the average distance to the three closest compounds in the training set increases.

This highlights that we can be more confident in the predictions when the compounds are closer

to the ones of the training set. Moreover, the percentage of good predictions with the Stacked

model is greater than with the Bayesian one (except for blocks 20 to 23).
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Figure 5.11: Percentage of good predictions made by the Stacked model and the simple Bayesian

in all blocks of 50 predictions according to the average distance between the molecules of the test

set and their three closest compounds of the training set. The dataset used corresponds to the assay

TOX21_ERa_BLA_Antagonist_ratio. Percentage of good predictions decreases when the average Euclidean

distance to the training set increases. Percentage of good predictions of Stacked model is almost always greater

than that of the Bayesian model.

Together, these two approaches that estimate the AD demonstrate that it is an important

parameter to take into account for further new predictions. Indeed, it enables one to evaluate

the reliability of predictions and can be used as an important parameter for the selection of

compounds for further testing.

3Note that we do not compare to the RF model since it has lower performance than the Bayesian one.
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5.5 Conclusion

In this chapter, we performed a large scale analysis in order to build classifiers for all the assays

from the ToxCast database, based on the compounds’ chemical structures. We first used classical

learning methods and two different sets of descriptors (PLP and PaDEL). The results showed

that all classifiers performed similarly and led to insufficient performance, even after removing

the most imbalanced datasets.

We then built ensemble classifiers using the stacked generalization method and obtained higher

performances. In particular, good performances were reached for in vitro assays that have pre-

viously been shown to be related to specific in vivo toxicity outcomes.

Finally, we proposed to estimate the applicability domain of the models in order to evaluate the

reliability of the predictions. We showed, using two approaches, that the AD is an important

parameter to take into account for further use of the models.

Overall, we demonstrated that we could develop good and reliable machine learning models to

predict some of the in vitro ToxCast assays by using the stacked generalization method combined

to an estimation of the AD.

Now that we have explored the link between chemical structure information and in vitro bioac-

tivity, we decide to focus on the second interesting relationship for toxicity prediction: between

in vitro bioactivity data and in vivo observed adverse outcomes. Indeed, in the following chapter

we evaluate this link using simple statistical methods and machine learning.

113



CHAPTER 5. FROM STRUCTURE TO ACTIVITY: A LARGE SCALE ANALYSIS

114



CHAPTER 6

From in vitro activity to in vivo toxicity

This chapter is devoted to the evaluation of the link between in vitro bioactivity data from

ToxCast and in vivo outcomes observed in rat long-term studies available in ToxRefDB. Since

endocrine disruptor chemicals (EDCs) are currently of high interest, we focus on endocrine

toxicity by considering: (1) in vitro assays related to Estrogen Receptor (ER), Androgen Receptor

(AR) and steroidogenesis pathways and (2) in vivo effects observed in three endocrine organs

(i.e. adrenal gland, testis, ovary) and two sex accessory organs (i.e. prostate and uterus). In a

first part, we look at the relationship between each in vitro assay and the in vivo outcomes and

compare it with the relationship between the published ER (resp. AR) EPA’s computational

model results and these same outcomes. Then, we build ML models to predict the in vivo

outcomes, either based on in vitro assays, on chemical structure or on both types of descriptors1.

6.1 Endocrine Disruptor Chemicals: reminders

As already stated in Chapter 1, Endocrine Disruptor Chemicals (EDCs) are of high priority since

they can lead to adverse outcomes, and are considered by regulatory authorities in EU as being

able to induce adverse outcomes via non monotonic dose-response phenomena. Thus in Europe,

a chemical that have been shown to induce endocrine adverse effects is banned from the market.

Therefore, it is important for the agrochemicals industry to be able to assess, as early as possible,

the potential endocrine mediated adverse effects of compounds under development. Moreover,

since the majority of marketed compounds lacks of evaluation concerning these type of effects, it

is also important for the regulatory authorities to rapidly screen for potential EDCs and prioritize

them for further testing. Several short term in vivo assays have been proposed by the OECD

to evaluate endocrine mediated toxicity, including the uterotrophic assay in rodents (screening

for estrogenic properties), a 28-day oral toxicity study in rodents, a 21-day fish assay and a re-

production test performed in Daphnia Magna (a small planktonic crustacean) [19]. These tests

1Part of the work presented in this chapter has been submitted to an international journal and is currently in

the reviewing process [105].

115



CHAPTER 6. FROM IN VITRO ACTIVITY TO IN VIVO TOXICITY

were originally included in the Tier 1 of the US EPA Endocrine Disruptor Screening Program

(EDSP) (see Chapter 1) which is composed of six in vivo tests and five in vitro assays related to

androgen, estrogen and steroidogenesis pathways. These tests have been performed for a short

list of compounds and results are publicly available in the ACToR system (see Chapter 3).

In line with the Tox21 vision, alternative methods are envisioned to assess endocrine potential

of compounds and finally to replace the in vivo tests after validation [19]. In particular, this

validation is possible only if the new methods perform equivalently or better than the existing

approved ones. Furthermore, as evoked in Chapter 1, the risk assessment of EDCs should be

based on mechanistic studies rather than descriptive toxicology since endocrine disruption is con-

sidered as a mode of action. Therefore, alternative methods should be based on the mechanistic

evaluation of EDCs. In particular, among the well known pathways leading to endocrine effects

are the estrogenic, androgenic, thyroidal and steroidogenic pathways (known as EATS). In this

work we focus on the estrogenic (E), androgenic (A) and steroidogenic (S) pathways. Basically,

the estrogenic and androgenic pathways are the ones induced by the activation of the estogen

receptor (ER) and the androgen receptor (AR), respectively. The steroidogenesis pathway is the

one leading to the synthesis of all the steroid hormones such as the cortisol (synthesized in the

adrenal glands), the estradiol (sexual hormone synthetized in ovaries) or the testosterone (sexual

hormone synthesized in the testes and ovaries). These three pathways are involved in various

biological functions in the whole organism and their perturbation can lead to several adverse ef-

fects. In particular, these effects are observed in female reproductive organs (such as ovaries and

uterus), in male reproductive organs (such as testes and prostate) and in adrenal glands when

respectively estrogenic pathway, androgenic pathway and steroidogenesis pathway are altered.

In the ToxCast program, several HTS in vitro assays are targeting these pathways. Some of

the results have already been used in order to assess their relevance and to develop predictive

models and part of these studies has been reviewed in Chapter 3. In particular, the results from

18 assays related to the estrogenic pathway and 12 assays related to the androgenic pathway

have been integrated in computational linear additive models in order to predict agonist and

antagonist compounds of the two pathways, as already described in Chapter 3 [33, 142, 149].

A high correlation between the predictions based on in vitro ToxCast assays and short-term in

vivo effects observed in estrogen and androgen dependent tissues could be measured on a lim-

ited number of compounds (50 to 100). Since we use the results from these models in the work

presented here, more details about the methods to compute them are provided later on.

6.2 Data used

Again, the data used in this study are the ones released by the US EPA.

Chemical structures: Chemical structure information is obtained from the DSSTox database,

released in October 2015 and providing a SDF file containing 9011 unique substances (see Chap-

ter 3 for details).
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In vivo toxicity data: In vivo data are obtained from the ToxRefDB v1.0 released in October

2014 (see Chapter 3 for details).

Here we focus on outcomes observed in rat long-term studies, referred to as “CHR” i.e studies in

ToxRefDB. Of the CHR studies, 80% are 2-year rat carcinogenicity studies and 20% are 13-week

to 31-month studies. We only use studies that have been referred to as “acceptable guideline”

in the database (i.e. studies are complete and meet official guideline requirements), therefore

retaining studies for 445 compounds. We focus on outcomes observed in five endocrine related

organs: adrenal glands, ovary, testis, prostate and uterus. For each organ, various specific effects

are listed in ToxRefDB and often describe a more general outcome. We therefore classify and

group these specific effects into categories related to a particular adverse outcome and the full list

of effects included into each category is provided in Appendix D. We finally obtain 9 outcomes

distributed as follows among the 5 organs:

• 3 outcomes for Adrenal glands: steroidogenesis effects, stimulation and injury,

• 2 outcomes for Ovary: effects on germinal cells, effects on interstitial cells,

• 1 outcome for Uterus: effect in uterus,

• 2 outcomes for Testis: effects on spermatogenesis, effects on interstitial cells,

• 1 outcome for Prostate: effect in prostate.

For each category independently, we use these in vivo results as binary data by assigning 1

to compounds that induce an effect, whatever the corresponding LOAEL or NOAEL, and 0

otherwise.

In vitro bioactivity data: In vitro data are extracted from the ToxCast database, released

in October 2015. Precisely, we use the AC50 matrix which reports AC50 measured for each

compound-assay pair (see also Chapter 3 for details).

Of the 445 compounds selected from ToxRefDB, 418 are also in the ToxCast database. As we

focus on the E, A and S endocrine pathways, we manually select in vitro assays related to these

pathways, based on literature, expertise and knowledge:

• For E: we select the 18 assays used by the published EPA’s ER computational models [33,

142],

• For A: we select the 12 assays used by the published EPA’s AR computational models [149],

• For S: we select 11 assays that measure the activity concentration of hormones synthesized

during the steroidogenesis and 2 assays measuring the activity of one enzyme involved in

this synthesis (the aromatase, which in particular converts testosterone into estradiol),

• Others: we also select 8 assays related to receptors known to be present in the 5 considered

organs and involved in endocrine effects.

In an effort to ensure a robust dataset with enough representatives of active versus inactive

compounds, we apply a filter to keep only assays that have at least 5% of active compounds

(among the 418 compounds overlapping between ToxCast and ToxRefDB) and we end up with

42 assays.

The final list of assays is available in Table 6.1 and Appendix C provides the same list with the
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associated pathway and type of each assay. In summary we use 12 assays related to ER (E), 9

related to AR (A), 2 related to aromatase (S), 11 related to steroidogenesis hormones (S) and 8

related to other receptors (O).

6.3 Estimation of relation between in vitro assays and in vivo

outcomes

Firstly, we estimate the relation between each of the 42 in vitro assays and each of the 9 in vivo

effect categories. For this we use a simple statistical method described below.

6.3.1 Methods

Statistical measure

In vitro assay results (AC50) are turned into binary values: 1 if the ToxCast data analysis

pipeline determined that the chemical was active in the assays and so an AC50 was reported,

and 0 otherwise.

For each pair of in vitro assay and in vivo outcome, we compute the three following metrics:

• Sensitivity = TP/(TP + FN);

• Specificity = TN/(TN + FP );

• Balanced Accuracy (BA) = (Sensitivity+Specificity)
2 ;

where TP (respectively TN) is the number of True Positive (respectively True Negative) com-

pounds, i.e. compounds which are positive (respectively negative) for both in vitro assay and

in vivo outcome; and FP (respectively FN) is the number of False Positive (respectively False

Negative) compounds, i.e. compounds which are positive (respectively negative) in vitro but

negative (respectively positive) in vivo.

Comparison to ER and AR computational models

In order to not only look at the relation of the in vivo outcomes with each in vitro assay consid-

ered independently, we also evaluate the relation of these outcomes with a combination of assays.

To do so, we refer to the published work of EPA’s researchers for the prediction of ER [142, 33]

and AR activity of compounds [149], see Section 3.4.1. Indeed, they proposed computational

models that aggregate the results of several in vitro assays related to ER and AR pathways.

Since we use the results of these models in our work, the end of this section technically presents

the method developed by the authors to combine the assays and compute a predicted activity of

compounds.

As briefly stated in Section 3.4.1, for each tested compound, these models integrate the con-

centration - response curves obtained for each of the 18 (resp. 12) assays related to ER (resp.

AR) pathway. In particular, the models take into account the non specific assay interference
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Table 6.1: Summary of in vitro data. Number of positive and negative compounds in each of the 42 in vitro

assays selected and in the EPA’s models for ER and AR over the 418 compounds.
Assay name Pathway # of tested # of inactive # of active % of active

compounds compounds compounds compounds

ACEA_T47D_80hr_Positive E 367 319 48 13.08

ATG_ERE_CIS_up E 397 277 120 30.23

ATG_ERa_TRANS_up E 397 297 100 25.19

OT_ER_EraERb_0480 E 368 328 40 10.87

OT_ER_EraERb_1440 E 368 341 27 7.34

OT_ER_ErbERb_0480 E 368 328 40 10.87

OT_ER_ErbERb_1440 E 368 345 23 6.25

OT_Era_EREGFP_0120 E 368 340 28 7.61

OT_Era_EREGFP_0480 E 368 345 23 6.25

TOX21_Era_BLA_Antagonist_ratio E 404 319 85 21.04

TOX21_Era_LUC_BG1_Agonist E 404 335 69 17.08

TOX21_Era_LUC_BG1_Antagonist E 404 332 72 17.82

NVS_NR_cAR A 373 329 44 11.80

NVS_NR_hAR A 388 346 42 10.82

NVS_NR_rAR A 397 377 20 5.04

OT_AR_ARELUC_AG_1440 A 368 343 25 6.79

OT_AR_ARSRC1_0480 A 368 336 32 8.70

OT_AR_ARSRC1_0960 A 368 307 61 16.58

TOX21_AR_BLA_Antagonist_ratio A 404 292 112 27.72

TOX21_AR_LUC_MDAKB2_Antagonist A 404 308 96 23.76

TOX21_AR_LUC_MDAKB2_Antagonist2 A 402 278 124 30.85

CEETOX_H295R_11DCORT_dn S 349 301 48 13.75

CEETOX_H295R_ANDR_dn S 349 307 42 12.03

CEETOX_H295R_CORTISOL_dn S 349 314 35 10.03

CEETOX_H295R_DOC_dn S 349 319 30 8.60

CEETOX_H295R_ESTRADIOL_up S 349 328 21 6.02

CEETOX_H295R_ESTRONE_dn S 349 331 18 5.16

CEETOX_H295R_ESTRONE_up S 349 324 25 7.16

CEETOX_H295R_OHPROG_dn S 349 312 37 10.60

CEETOX_H295R_OHPROG_up S 349 324 25 7.16

CEETOX_H295R_PROG_up S 349 322 27 7.74

CEETOX_H295R_TESTO_dn S 349 314 35 10.03

NVS_ADME_hCYP19A1 S 384 360 24 6.25

TOX21_Aromatase_Inhibition S 404 286 118 29.21

ATG_Sp1_CIS_up O 397 344 53 13.35

ATG_GRE_CIS_dn O 397 360 37 9.32

ATG_SREBP_CIS_up O 397 290 107 26.95

NVS_NR_bPR O 384 355 29 7.55

NVS_NR_hGR O 393 340 53 13.49

NVS_NR_hPR O 393 371 22 5.60

TOX21_GR_BLA_Agonist_ratio O 404 375 29 7.18

TOX21_GR_BLA_Antagonist_ratio O 404 372 32 7.92

ER EPA model E 361 356 5 1.39

AR EPA model A 361 306 55 15.24
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of compounds (i.e. compounds that are active in the assay but not due to a specific activity

towards the biological target): for each concentration, the models assume that the global activity

of the compound in the entire pathway is a non-weighted linear sum of its activities in all the

assays triggering the pathways but also of non specific activities. Also, by using a non-weighted

sum, the models assume that each of the 18 (resp. 12) assay equally contributes to the global

ER (resp. AR) pathway activity.

Finally, for each compound and each concentration, the models enable the computation of a

global predicted activity for the entire pathway. The activities for all the concentrations are

then transposed into a concentration-curve for which the AUC can be computed and which cor-

responds to the predicted final (ER) (resp. AR) score of the ER (resp. AR) pathway model,

ranging from 0 to 1. More details about the mathematical functions used to compute these

models can be found in Judson et al. [142] (ER model) and Kleinstreuer et al. [149] (AR model).

For both models, these predictions were translated as follows:

• score ≥ 0.1: compound is active in the pathway;

• 0 < score < 0.1: inconclusive;

• score = 0: compound is inactive in the pathway.

Moreover, the models also consider assay-interference and cytotoxicity by computing several

quality criteria and putting some flags to the final scores.

Regarding the ER model, two scores are computed for each pair of compound and assay:

• a Z-score that flags non selective assay activity due to cytotoxicity by using the results

of 35 cytotoxicity assays available in ToxCast. In particular this score assumes that, if a

compound shows cytotoxicity at a concentration lower than the concentration at which it

is active in an ER-related assay, then this activity is not relevant and the compound is a

false positive for the considered ER assay. For each assay and compound, the Z-score is

computed by measuring the difference between the AC50 obtained for the compound in

the assay and the median AC50 obtained in the cytotoxicity assays, with regards to global

cytotoxicity across all chemicals. This could be seen to an equivalent to a standardization

which rescales the data by centering and reducing according to the cytotoxicity results.

A low Z-score (lower than 3) indicates that the activity measured in the considered assay

could be due to cytotoxicity and not to a target-selective mechanism;

• a T-score that corresponds to the maximum activity measured (i.e. the highest point of

the concentration-response curve). Indeed, since concentration-response curves are normal-

ized compared to a control or baseline, the maximal activity is a relative percentage not

necessarily equals to 100%. The T-score corresponds to the highest value of this relative

percentage.

For each compound, a median of all their Z-scores and T-scores obtained in all assays are com-

puted and referred to respectively as med.Z and med.T.

Regarding the AR model, for each pair of compound and assay, a confidence score is provided
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and takes into account the score of the model, the same Z-score as for the ER model and the

results of a supplemental assay which can confirm the antagonist activity of chemicals and there-

fore that it is a True Positive. Basically, one of the assay was run twice with two different

initial experimental conditions which allowed the distinction between specific and non specific

compounds for this assay.

Among the 418 compounds from our study, 361 have a score available for the ER and AR

models. To discriminate between positive and negative compounds for these models, we choose

the following thresholds for the different values available:

• Positive for ER model if model score > 0.1 and med.T > 50% and med.Z > 3; negative

otherwise,

• Positive for AR model if model score > 0.1 and confidence score for antagonist activity >

0; negative otherwise.

In the end, 5 compounds are positive for the ER model and 55 for the AR model.

We perform the analysis of the relation between the ER and AR models and the in vivo effects

as previously described for the 42 assays independently. Note that from the 18 assays used by

Judson et al. [142] in their model for ER, 7 are excluded from our study because their hit rate

is below our cutoff of 5%. This is also the case for 3 assays of the 12 used by Kleinstreuer et

al. [149] for the AR model.

6.3.2 Results

From the 418 compounds that have both in vivo data for chronic rat studies in ToxRefDB and

in vitro results in ToxCast, 349 have been tested in all the 42 selected in vitro assays. Table 6.1

provides for each assay and the two EPA’s model the total number of compounds tested (among

the 418) with the number of positive and negative ones as well as the corresponding percentage

of actives.

The results show a range of percentage of actives only between 5 and 30% (mean 12.7%) indica-

tive of highly imbalanced data in favor of negative compounds.

Regarding the computational models for ER and AR, scores are available for 361 compounds

among the 418. After applying the previously described filters to discriminate between positives

and negatives, only 5 compounds are positive among the 361 for the ER model (1.4%) and 55

for the AR model (15%).

Table 6.2 summarizes the in vivo data used with the number of positive and negative compounds

among the 418 for each of the 9 effect categories for the 5 organs. Here again the data are highly

imbalanced in favor of negative compounds with 4 to 16% of positive compounds depending on

the category.

For each in vivo outcome, we plot the sensitivity, specificity and balanced accuracy in order

to evaluate the relation of the outcome with the 42 selected in vitro assays and the AR and ER
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Table 6.2: Summary of in vivo data. Number of positive and negative compounds in each of the 9 endocrine

in vivo outcomes over the 418 compounds.

In vivo endpoint
# negative

compounds

# positive

compounds

# tested

compounds

% positive

compounds

Figure

Steroidogenesis adrenal glands 360 58 418 13.88 Figure 6.1

Stimulation adrenal glands 350 68 418 16.27 Figure 6.1

Injury adrenal glands 363 55 418 13.16 Figure 6.1

Germinal cells ovary 387 31 418 7.42 Figure 6.2

Insterstitial cells effect ovary 382 36 418 8.61 Figure 6.2

Uterus effect 375 43 418 10.29 Figure 6.2

Spermatogenesis testis 375 43 418 10.29 Figure 6.3

Interstitial cells testis 351 67 418 16.03 Figure 6.3

Prostate effect 401 17 418 4.07 Figure 6.3

models. Figures 6.1, 6.2 and 6.3 respectively correspond to the effects in adrenals, ovaries and

uterus, and testes and prostate.

Relation with the 42 in vitro assays: We observe that for all pairs of assay and in vivo

outcome, the specificity is high (between 0.85 and 0.95) and the sensitivity is very low (lower

than 0.3) leading to an overall BA around 0.5. Of note, ER pathway related assays (E)2 do not

show a higher BA for ovary and uterus outcomes compared to the other assays (Figure 6.2). The

same is observed for the steroidogenesis (S) and AR (A)3 pathways related assays and adrenal

gland (Figure 6.1) and testis and prostate outcomes (Figure 6.3), respectively.

Relation with the ER and AR computational models:

• For the ER model, we do observe an increase of BA and sensitivity for 4 outcomes (effects

on germinal cells ovary, on uterus, on spermatogenesis testis and on prostate) but since

there is only 1.4% of positive compounds for this model in our datasets, we cannot consider

this finding as relevant without another study extended to more compounds.

• For the AR model, when specifically looking at the relation with effects in prostate and

testis, we do not see any difference compared to the individual AR pathway related assays.

This result show that even the aggregation of several assays related to the AR pathway

does not improve the link with the selected in vivo outcomes that are examined here.

Overall, this simple statistical analysis demonstrates that, globally, there is no mutual linear

correlation between the 42 in vitro assays and any of the selected in vivo outcomes when we use

the results of each assay independently. Somewhat surprisingly, this observation is also made for

the in vitro assays with targets physiologically related to specific in vivo adverse outcomes (e.g.

in vitro AR assays are not correlated with effects observed in prostate or testis known to result

2Here we do not consider the ER EPA’s model since we only look at each assay independently.
3Here we do not consider the AR EPA’s model since we only look at each assay independently.
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(a) Steroidogenesis adrenals
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(b) Stimulation adrenals
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(c) Injury adrenals

Figure 6.1: Results of statistical analy-

sis for adrenals. Balanced accuracy (pink),

sensitivity (blue) and specificity (purple) be-

tween each of the 42 in vitro assays or one of

the two EPA computational models (ER and

AR) and the in vivo outcomes observed after

rat chronic studies in adrenals. E: estrogen

pathway related assays (including ER model),

A: androgen pathway related assays (including

AR model), S: steroidogenesis pathway related

assays, O: other assays.

from a perturbation of the AR pathway).

We could already anticipate that a single assay alone would not be sufficient to inform about

a long-term in vivo outcome. That is why we also evaluated the relation between the in vivo

outcomes and the results of the EPA’s computational models that consider a linear combina-

tion of several in vitro assays. Nonetheless, still no relation could be concluded. Since these

computational models only perform a linear combination, we propose to investigate non lin-

ear combinations through ML methods and therefore investigate if in vivo outcomes could be

predicted by a combination of several of the 42 in vitro assays using machine learning.

6.4 Machine Learning to predict in vivo outcomes

We use ML methods to predict the in vivo outcomes observed in the five considered organs

from either the structure of compounds and / or their in vitro bioactivity. In particular, we

build three classifiers for each of the 9 in vivo effect categories for the five organs: one based

on biological descriptors (the 42 in vitro assays), one based on the chemical structure (physico-

chemical properties and fingerprints) and one based on a combination of both types of descriptors.
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(a) Effects on germinal cells ovary
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(b) Effects on interstitial cells ovary
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(c) Effects on uterus

Figure 6.2: Results of statistical anal-

ysis for ovary and uterus. Balanced ac-

curacy (pink), sensitivity (blue) and specificity

(purple) between each of the 42 in vitro assays

or one of the two EPA computational models

(ER and AR) and the in vivo outcomes ob-

served after rat chronic studies in ovaries and

uterus. E: estrogen pathway related assays (in-

cluding ER model), A: androgen pathway re-

lated assays (including AR model), S: steroido-

genesis pathway related assays, O: other as-

says.

6.4.1 Methods

The ML approach used here is inspired from the work of Liu et al. who built ML models

based on the same types of descriptors to predict in vivo effects observed in the liver [169], see

Section 3.4.2.

Datasets

Since the ML methods used in this approach are not good at handling missing data, we identify

a complete matrix between all in vitro and in vivo available data. For this we only include com-

pounds that have been tested in all the 42 assays previously selected. From the 418 compounds

available in both ToxCast and ToxRefDB, 341 compounds meet this criteria which is eight less

than previously because these 8 compounds are not included in ToxRefDB.

Table 6.3 summarizes the number of positive and negative compounds in the datasets used for

each in vivo effect category for the 5 organs. As Liu et al., we choose to be quite stringent and

call a compound negative (assigned a value of 0) for a specific organ only if it is negative for all

the effect categories related to this organ. For example, if a compound does not induce any of
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(a) Effects on interstitial cells testis
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(b) Effects on spermatogenesis testis
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(c) Effects on prostate

Figure 6.3: Results of statistical analy-

sis for testis and prostate. Balanced ac-

curacy (pink), sensitivity (blue) and specificity

(purple) between each of the 42 in vitro as-

says or one of the two EPA computational

models (ER and AR) and the in vivo out-

comes observed after rat chronic studies in

testes and prostate. E: estrogen pathway re-

lated assays (including ER model), A: an-

drogen pathway related assays (including AR

model), S: steroidogenesis pathway related as-

says, O: other assays.

the 3 category effects in the adrenal glands (Steroidogenesis effects, Stimulation or Injury), it is

considered as “negative”. However, if a compound induces one of these 3 category effects (e.g.,

Stimulation), it is considered positive in the “Stimulation” dataset but discarded from the two

other adrenal glands datasets (Steroidogenesis effects and Injury). Therefore, not all the 341

compounds are represented in each dataset.

The table illustrates that for all the endpoints considered, the datasets for ML are ones again

highly imbalanced in favor of negative compounds. The lowest percentage of actives is for the

effects in the prostate (4.5%) and the highest is for stimulation in adrenal glands (19%).

Chemical descriptors

The SDF for the 341 compounds is an extract of the SDF from the DSSTox database contaning

9011 structures.

After cleaning the structures of the compounds (removing salts and inorganic elements, neutral-

izing and checking for duplicates), we compute two types of molecular descriptors:

• 74 physico-chemical properties using the RDKit4 tool available in Knime [22]. Continuous
4http://www.rdkit.org/
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Table 6.3: Datasets for machine learning. Number of positive and negative compounds for each dataset

to predict the 9 in vivo outcomes corresponding to 5 endocrine organs. For adrenal glands, testis and ovary,

compounds are negatives for the organ if they are negative for all the organ’s categories.

Organ name Endpoint
# positive

compounds

% positive

compounds

# negative

compounds

Adrenal glands

Steroidogenesis effects 51 16

264Stimulation 62 19

Injury 47 15

Ovary
Effect on germinal cells 25 7.5

307
Effect on interstitial cells 29 8.6

Uterus Uterus effect 33 9.7 308

Testis
Effect on spermatogenesis 33 11

270
Effect on interstitial cells 56 17

Prostate Prostate effect 15 4.5 326

values are normalized between 0 and 1 using the min-max normalization [204];

• 731 fingerprints using the pybel package in Python [195] and PaDEL software [285]

Bioactivity descriptors

The 42 in vitro assays selected are used as individual descriptors of the bioactivity of compounds.

As in Liu et al. [169], we set AC50 values of inactive compounds to 1.106µM and transformed

all the AC50 according to the following formula:

AC ′50 = 6− log10(AC50)

This formula gives inactive compounds a value of 0 and represents active ones on a continuous

ascending scale and reflects their potential activity. Then the values are normalized between 0

and 1 using the min-max normalization [204].

Learning procedure and evaluation

The learning procedure is also inspired from Liu et al. and is implemented in Python2.7.

In total, we use the 8 following classification algorithms (see Chapter 2 for details):

• Linear Discriminant Analysis (LDA)

• Naïve Bayes (NB)

• Support Vector Machines (SVM) with two different kernels: linear (SVCL) and radial basis

function (SVCR)

• Classification and regression trees (CART)

• K-nearest neighbors (KNN)

• Random Forest (RF)

126



Chapter 6

• Ensemble technique (ENSMB) for which the prediction corresponds to the majority vote

of the six previous classifiers

All these algorithms are used with their default parameters except for RF for which we use 100

trees.

Compared to Liu, we add the Random Forest algorithm because it is an ensemble method that

performs better in terms of generalization than a single regression tree which lowers risk of over-

fitting and that can handle many input features [252].

For each model, a 10-fold cross-validation testing is performed and repeated 20 times. For

each step in the cross-validation loop, the descriptors are ranked by computing their impor-

tance score using the Random Forest attribute feature_importance which is based on the Gini

index [187] (measure that provides a relative ranking of the features). Note that this is different

from Liu et al. who computed the univariate association between each pair of descriptor and in

vivo outcome. Indeed, we prefer the feature_importance because, unlike the univariate associa-

tion, it considers all the features together at the same time to compute the rank, and not one by

one. This ranking reflects which of the descriptors are the most important to build the trees that

best split the data into subsets corresponding to the two classes. Then, classifiers are built using

the 10 best descriptors and iteratively adding one descriptor at each step. This iteration stops

at 42 descriptors when only in vitro assays are used and at 70 (arbitrary value inspired from Liu

et al.) when molecular descriptors are used (either alone or combined to in vitro ones). For each

outcome and classification algorithm, the process finally leads to 33 models (10 to 42 descriptors)

based on in vitro assays, 61 models (10 to 70 descriptors) based on molecular descriptors and

also 61 models based on a combination of both. Performance of all classifiers are evaluated using

the three following metrics: sensitivity, specificity, and balanced accuracy (BA). Finally, for each

triplet of outcome, algorithm and descriptor type, we look for the model that reaches the highest

BA among all and report its corresponding sensitivity and specificity as well as the number of

descriptors used in the model.

Data augmentation

Since the datasets in this study are imbalanced (more inactive compounds than active ones) we

use a data augmentation technique to rebalance the data and evaluate whether it affects the

performance of the classifiers. We utilize the Synthetic minority over-sampling technique [43],

SMOTE for short, see Section 2.5 for details. We use this technique in each step of the cross-

validation loop in order to increase the number of compounds of the minority class of each

training set.

6.4.2 Performance results

Figures 6.4, 6.5 and 6.6 show the performances of the models obtained for the 9 effects using the

Random Forest (RF) algorithm, before and after performing data augmentation using SMOTE.
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The results obtained with all the methods are available in Appendix E.

Performance of ML models based on in vitro assays

Regarding ML models that are based on in vitro assays alone, whatever the in vivo outcomes,

all models have low sensitivity (between 0.05 and 0.09) and high specificity (between 0.95 and

0.99), and BA between 0.50 and 0.53.

In order to evaluate the impact of the SMOTE technique, we perform a paired t-test that

compares the average performance over the 200 (20 × 10-fold cross-validation) values obtained

on the original data (imbalanced) and the average performance over the 200 values obtained after

applying SMOTE (balanced data). Table 6.4 reports the p-values obtained for the t-test for the

9 in vivo outcomes and the 3 performance metrics. This table shows that, considering a cutoff of

0.05 for significance, the SMOTE method significantly affects sensitivity and specificity. When

looking at Figures 6.4, 6.5 and 6.6, the sensitivity is increased by a factor of at least 2 for all

outcomes (for example in Figure 6.1, (a) and (b), sensitivity increases from 0.08 to 0.48 for the

outcome "steroidogenesis adrenals"). On the contrary, the specificity is always decreased (from

0.96 to 0.89 for the same outcome, see Figure 6.1, (a) and (b)). Consequently, these opposite

variations result in a BA still around 0.50, not significantly different from the results obtained

on imbalanced datasets, except for two outcomes. Similar results are obtained with the other

algorithms (see Appendix E).

Table 6.4: Effect of the SMOTE technique on ML models based on in vitro assays. The table presents

the p-values of the t-test which compares the average performance of ML models before and after applying the

SMOTE technique. p-values lower than 0.05 are in bold. bio = in vitro assays

In vivo outcome Figure
Bio

BA Sensitivity Specificity

Steroidogenesis adrenal glands 6.4(a) & (b) 9.12× 10−1 8.58× 10−30 9.29× 10−36

Stimulation adrenal glands 6.4(c) & (d) 5.49× 10−1 1.72× 10−13 2.95× 10−18

Injury adrenal glands 6.4(e) & (f) 8.21× 10−4 8.60× 10−30 2.55× 10−32

Germinal cells ovary 6.5(a) & (b) 2.07× 10−1 1.44× 10−2 2.05× 10−20

Insterstitial cells effect ovary 6.5(c) & (d) 1.07× 10−2 2.94× 10−7 1.06× 10−18

Uterus effect 6.5(e) & (f) 1.63× 10−1 7.19× 10−8 6.63× 10−14

Spermatogenesis testis 6.6(a) & (b) 1.86× 10−1 1.47× 10−3 3.68× 10−7

Interstitial cells effect testis 6.6(c) & (d) 8.28× 10−1 2.00× 10−27 1.35× 10−33

Prostate effect 6.6(e) & (f) 3.04× 10−1 2.32× 10−2 1.80× 10−15

These results show that ML models that predict in vivo effects observed in endocrine organs

from the selected in vitro assays do not perform better than chance (BA around 0.5) and that

data augmentation does not help to increase their performance. This highlights that a combina-

tion (linear or not) of different in vitro assays is also not correlated to the selected long-term in

vivo effects and cannot help to predict them.
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(e) Injury adrenals, without SMOTE
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(f) Injury adrenals, with SMOTE

Figure 6.4: Performances of ML models that predict adrenals outcomes using RF algorithm. a,b)-

Steroidogenesis, c,d)- Stimulation, e,f)- Injury. Left panel: without SMOTE methods, right panel: with SMOTE

method. The reported results correspond to the models that reaches the highest BA among all the 33 or 61 RF

models with its corresponding sensitivity, specificity as well as the number of descriptors used (numbers in the

legend). The different colors represent the types of descriptors used in the models (bio: in vitro assays, chem:

molecular descriptors, combined: combination of both).

Performance of ML models based on molecular descriptors

We now look at the performance of ML models based on only molecular descriptors or combined

with in vitro assays in order to see if chemical structure information helps in the predictions.

Without data augmentation, we observe that the performance of the models is similar to the

ones of the models built with in vitro assays alone. These observations are confirmed by a t-test
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(b) Effet on germinal cells ovary, with SMOTE
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(f) Effet on uterus, with SMOTE

Figure 6.5: Performances of ML models that predict ovaries and uterus outcomes using RF al-

gorithm. a,b)- Effects on germinal cells, c,d)- Effects on interstitial cells, e,f)- Effects on uterus. Left panel:

without SMOTE methods, right panel: with SMOTE method. The reported results correspond to the models that

reaches the highest BA among all the 33 or 61 RF models with its corresponding sensitivity, specificity as well as

the number of descriptors used (numbers in the legend). The different colors represent the types of descriptors

used in the models (bio: in vitro assays, chem: molecular descriptors, combined: combination of both).

(performed in the same way than previously) comparing the results of the ML models based

on in vitro assays and either molecular descriptors only or molecular descriptors combined with

in vitro assays: no significant difference of the average BA between each type of descriptors is

observed, using a p.value cutoff of 0.05 (data not shown).

Regarding the impact of the SMOTE technique, the p-values of the t-test comparing results before

and after applying the SMOTE method are presented in Table 6.5. From Figures 6.4, 6.5, 6.6
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(a) Effet on spermatogenesis in testis, without SMOTE
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(d) Effet on interstitial cells testis, with SMOTE
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(e) Effect on prostate, without SMOTE
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(f) Effet on prostate, with SMOTE

Figure 6.6: Performances of ML models that predict testis and prostate outcomes using RF algo-

rithm. a,b)- Effects on spermatogenesis, c,d)- Effects on interstitial cells, e,f)- Effects on prostate. Left panel:

without SMOTE methods, right panel: with SMOTE method. The reported results correspond to the models that

reaches the highest BA among all the 33 or 61 RF models with its corresponding sensitivity, specificity as well as

the number of descriptors used (numbers in the legend). The different colors represent the types of descriptors

used in the models (bio: in vitro assays, chem: molecular descriptors, combined: combination of both).

and Table 6.5, we observe that, whether for the models based on molecular descriptors alone

(chem) or the ones based on the two types of descriptors (combined), the specificity is always

significantly decreased. Nonetheless, the sensitivity is generally not significantly increased re-

sulting in an overall BA not significantly impacted.
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Table 6.5: Effect of the SMOTE technique on ML models based on molecular descriptors. The table

presents the p-values of the t-test which compares the average performance of ML models before and after applying

the SMOTE technique. p-values lower than 0.05 are in bold. chem = molecular descriptors
In vivo

outcome
Figure

Chem Combined

BA Sensitivity Specificity BA Sensitivity Specificity

Steroidogenesis

adrenal glands
6.4(a) & (b) 7.10× 10−1 3.06× 10−1 3.36× 10−4 6.03× 10−1 4.49× 10−1 1.99× 10−4

Stimulation

adrenal glands
6.4(c) & (d) 3.48× 10−2 9,84E-02 2.31× 10−13 7.21× 10−2 7.61× 10−2 3.64× 10−12

Injury

adrenal glands
6.4(e) & (e) 8.53× 10−1 5.78× 10−1 2.32× 10−2 1.23× 10−1 4.82× 10−1 1.67× 10−12

Germinal

cells ovary
6.5(a) & (b) 3.07× 10−1 9.30× 10−2 5.94× 10−12 3.86× 10−1 6.56× 10−2 2.45× 10−11

Insterstitial

cells effect ovary
6.5(a) & (d) 7.97× 10−3 3.28× 10−6 1.91× 10−17 3.29× 10−2 7.38× 10−3 1.98× 10−2

Uterus effect 6.5(e) & (e) 8.69× 10−1 4.39× 10−1 4.15× 10−14 9.93× 10−1 9.29× 10−2 3.98× 10−22

Spermatogenesis

testis
6.6(a) & (b) 7.68× 10−1 3.72× 10−1 1.38× 10−4 7.89× 10−1 1.60× 10−2 9.49× 10−15

Interstitial cells

effect testis
6.6(c) & (d) 9.68× 10−1 9.87× 10−7 1.29× 10−20 8.37× 10−1 4.28× 10−2 3.29× 10−7

Prostate effect 6.6(e) & (e) 3.93× 10−1 7.41× 10−2 4.96× 10−11 8.61× 10−1 1.80× 10−1 7.38× 10−15

Table 6.6: Comparison of models’ performance according to the types of descriptors they use and

when SMOTE is applied. The table presents the p-values of the t-test which compares the average performance

of ML models based on in vitro assays alone and the ones based either on chemical descriptors or on a combination

of in vitro assays and chemical descriptors (combined). p-values lower than 0.05 are in bold. bio = in vitro assays

In vivo

outcome
Figure

BA Sensitivity Specificity

Bio VS

chemical

Bio VS

combined

Bio VS

chemical

Bio VS

combined

Bio VS

chemical

Bio VS

combined

Steroidogenesis

adrenal glands
6.4(b) 5.44× 10−1 7.19× 10−1 1.51× 10−25 1.56× 10−28 2.54× 10−35 1.19× 10−36

Stimulation

adrenal glands
6.4(d) 1.08× 10−1 3.32× 10−1 1.03× 10−5 3.34× 10−5 5.63× 10−5 1.30× 10−4

Injury

adrenal glands
6.4(f) 2.75× 10−2 1.88× 10−2 1.78× 10−24 1.44× 10−22 3.02× 10−30 2.76× 10−27

Germinal

cells ovary
6.5(b) 4.28× 10−4 5.05× 10−4 9.04× 10−1 2.53× 10−1 1.17× 10−19 1.66× 10−12

Insterstitial

cells effect ovary
6.5(b) 2.32× 10−4 8.52× 10−4 9.40× 10−4 7.12× 10−5 1.76× 10−14 7.63× 10−17

Uterus effect 6.5(f) 5.26× 10−1 3.82× 10−1 9.44× 10−5 2.20× 10−3 2.00× 10−17 3.96× 10−12

Spermatogenesis

testis
6.6(b) 1.59× 10−1 7.83× 10−2 3.50× 10−2 9.77× 10−2 5.53× 10−2 8.23× 10−1

Interstitial cells

effect testis
6.6(d) 3.70× 10−1 1.92× 10−1 1.37× 10−18 1.02× 10−19 1.02× 10−26 7.90× 10−27

Prostate effect 6.6(f) 2.64× 10−1 7.33× 10−1 5.86× 10−2 6.82× 10−2 5.70× 10−11 3.01× 10−8

Table 6.6 presents the results of the t-test comparing the performance of ML models based

on in vitro assay alone and either molecular descriptors only or molecular descriptors combined
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with in vitro assays, when the SMOTE technique is applied. From Figures 6.4, 6.5, 6.6 and

Table 6.6, we can see that, except for one outcome (spermatogenesis testis), the specificity is

always significantly higher for models based on molecular descriptors, whether alone or com-

bined with in vitro assays, than the one of models based on in vitro assays only. Conversely,

sensitivity is generally significantly lower when molecular descriptors are used. According to

what we previously noticed, this decrease in sensitivity is probably due to the fact that SMOTE

significantly increases sensitivity of in vitro assay-based models but not the one of models based

on molecular descriptors. This could be explained by the nature of the descriptor values which

are continuous in the first case and mostly binary in the second case. Indeed, the original version

of SMOTE has been implemented for continuous features and may perform worse when applied

to a mix between continuous and binary features. In most cases, the models results in a BA not

significantly different between the three types of models (it is significantly different for injury in

adrenals and the two outcomes of ovary). Therefore, it seems that neither the type of descriptors

used nor the SMOTE data augmentation technique contributes to an improvement of the mod-

els’ performance. However, since the Figure and Tables presented here provide the performance

only for the model which reaches the best BA but not the best sensitivity, we may observe higher

sensitivity for other models but the BA would be lower (e.g. the best sensitivity obtained for

steroidogenesis in adrenal glands is 0.15 but the corresponding BA equals 0.51). Similar results

are obtained with the other algorithms (see Appendix E).

Finally, these results show that using chemical structure to predict the long-term in vivo effects

is neither better nor worse than using the results of the selected in vitro assays.

6.5 Conclusion

In this chapter we evaluated the ability of 42 in vitro assays related to endocrine pathways to

predict in vivo outcomes observed in rat long-term studies in three endocrine organs and two

sex accessory organs, using data from ToxCast and ToxRefDB. Despite the small number of

compounds (418) for which both in vitro and in vivo data are available, we were able to draw

some conclusions.

First, we showed that there is no relationship between the 42 in vitro assays and the in vivo

outcomes, even for assays that are specific for relevant pathways known to occur in the target

organs. To determine if better results could be obtained by considering results from multiple

assays, we also performed the analysis using the results from the published ER and AR com-

putational models from US EPA. For the AR model, the use of a linear additive approach that

considers several assays targeting the same pathway did not show more important relation with

long-term in vivo outcomes. Regarding the ER model, we were not able to conclude because of

the small number of positive compounds.

Second, using several ML algorithms, we demonstrated that the combination (not necessarily

linear) of the 42 assays was not able to predict the in vivo outcomes. After applying a data aug-

mentation technique to face the highly imbalance nature of the training datasets, performances
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of the models were not improved.

Finally, the predictions from ML models built on the selected in vitro assays are not better

than those derived from molecular descriptors alone. Moreover, a combination of both types of

descriptors also did not improve performances.

In conclusion, this study highlights that the 42 selected in vitro assays do not provide information

about the in vivo outcomes observed in endocrine and associated organs in rat long-term studies

and raises the question of the utility of these in vitro assays for compounds’ prioritization, in

particular in the case of endocrine mediated effects. This kind of study should be extended to

other in vitro assays and in vivo outcomes in order to explore if the same trends come out.
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CONCLUSION

Outcomes of the work

The overall objective of this thesis was to evaluate how the public data generated for toxicity

assessment could be exploited by machine learning to help in the prioritization of compounds,

in line with the Tox21 vision initially proposed by the US NRC in 2007. This objective also fits

with that of Bayer, which supported this work as part of a CIFRE agreement. Indeed, Bayer

is developing computational approaches to perform compounds’ selection in the early phases

of the development of Plant Protection Products. Here, we focused on information provided by

chemical structure of compounds, on in vitro bioactivity results and on in vivo studies performed

in laboratory animals. Since the direct prediction of in vivo effects from the chemical structure

was ambitious, we preferred to focus on two sub-tasks: (1) the prediction of in vitro bioactivity

from the chemical structure and (2) the prediction of in vivo effects from the in vitro results.

Then, if the two types of ML models had performed well, we would have proposed to chain them

in a two-stage approach.

Available toxicological data

Before performing any computational study, data should be collected from various sources, cu-

rated and standardized to make them consistent for the purpose of the study. They also need to

be harmonized for a relevant aggregation of several data sources. When considering the publicly

available data, we highlighted various challenges regarding their use by computational methods

such as uneasy access, heterogeneity within and between databases (regarding the format of re-

sults, the representation of compounds, etc) and a lack of harmonized ontology. Moreover, with

regard to toxicological data, we could observe variability in term of quality and results, a high im-

balanced property (a lot more negative compounds compared to the positive ones) and in general

a small volume of data. All these challenges are known by the community [121] and initiatives

have emerged to work on it such as ToxML [218] or OpenTox [255, 9]. Various organizations

are also making progress in developing terminology and ontologies. For example, the US FDA
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utilizes a standardized format called Standard for Exchange of Nonclinical Data (SEND) [50]

and the Society of Toxicology Pathology and the European Society of Toxicology are leading

the International Harmonization of Nomenclature and Diagnostic (INHAND) project [145], that

aims at defining criteria for observed effects in rats and mice. In the pharmaceutical domain,

such initiatives are more advanced and we can cite the Open PHACTS [122] and the eTOX [245]

projects.

In our work, we decided to use the data released by the US EPA (DSSTox, ToxCast and

ToxRefDB), in particular because they provide the three types of information we wanted to

use and because it seems the least challenging and the most suitable resource for our purpose.

Indeed, the three databases share the same compounds’ identifiers facilitating their aggregation

and provide almost "ready-to-use" data avoiding a lot of pre-processing to make them machine

readable.

Moreover, by proposing an overview of the studies that have been performed so far regarding

computational tools applied to toxicological data, with a specific interest in ML methods, we

showed that there is no universal recommendation for the development of such models, probably

due to the important variability of data (number of data points, number of positive compounds,

data quality) and the high complexity of biological phenomena characterized in the different in

vitro assays.

From chemical structure to in vitro bioactivity

Regarding the first task which aimed at predicting in vitro bioactivity based on chemical struc-

ture, we demonstrated in two studies that models’ performances were highly depending on the

assays but that it was still possible to build models reaching almost 70% of Balanced Accuracy

(BA) for some assays. In particular, we showed that model’s performance could be improved

by the use of data augmentation techniques and by an increase of the number of observations

used in the training set. Moreover, in a large scale study we developed models to predict risk

associated with hundreds of ToxCast assays and we highlighted that the stacked generalization

ensemble method was appropriate for the data used and could lead to models reaching an AUC

ROC of more than 0.75. We could therefore think about using these models for the filtering

of chemical structures. We also showed the importance of taking into account the applicability

domain to estimate the reliability of predictions.

Since we built models for several assays without focusing on specific ones, observations and con-

clusions raised by the two studies are general. However, if ones want to build ML models for

one or some specific assay(s), even if these observations can be used as a starting point, further

work would be required to construct better models. For example, we could think of using other

molecular descriptors, fine tuning hyper-parameters, testing other ensemble methods and data

augmentation techniques, etc. In particular, we refer to the numerous published papers about

the building of good QSAR models [61, 262, 48] which result from a long expertise in this domain.

In any, case, it is important to have in mind that models’ performance highly depends on the
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quality of the input data.

More generally, we should highlight the growing interest of regulatory authorities in the use of

QSAR models for toxicity prediction. Indeed, some QSAR models are already requested by au-

thorities for risk assessment such as the ones that predict mutagenicity (in particular the Ames

test) of pharmaceutical compounds [256] (ICH M7 guideline) and genotoxicity of PPPs [77]

(EFSA guidance on dietary risk assessment). Moreover, EFSA has recently evaluated the ap-

plicability of existing in silico models that predict genotoxicity and gave recommendations for

a Weight-of-Evidence approach that integrates in silico predictions, experimental results and

expert knowledge to perform risk assessment [20]. In particular, they concluded that all QSAR

models for the Ames test (mutagenicity) were resulting in significant predictions but not the

models predicting other genotoxicity endpoints (e.g. chromosomal aberrations), which therefore

should be improved. This specific case demonstrates that regulatory authorities are willing to

move towards the proposed paradigm for a risk assessment based on alternative approaches and

are encouraging the scientific community to develop reliable in silico methods. Another example

is the case of acute toxicity: in 2018 a workshop has been organized by the ICCVAM acute toxic-

ity workgroup in order to discuss the possibility of using acute toxicity predictive models instead

of in vivo studies in regulatory purpose [151]. Indeed, the combined predictions of several in

silico models have been shown to reach really good performance when compared to animal data.

The workshop members therefore proposed recommendations and next steps for their integration

into regulatory use.

From in vitro bioactivity to in vivo outcomes

With respect to the second task whose goal was to predict in vivo outcomes from in vitro assays,

we highlighted that no relation could be observed between in vitro assays targeting pathways

known to induce endocrine effects and in vivo effects observed in endocrine organs after rat long-

term studies. This observation was first made for in vitro assays considered alone (one assay

versus one effect). However, the use of ML methods that combine the results of several assays

into predictive models of the in vivo effects also did not lead to good performance, since BA was

around 0.5. These results can be explained by several reasons.

First, the in vitro assays that were used do not give information about the ADME properties of

compounds and therefore their results do no reflect the dose dependencies that can be observed

in in vivo context. However, these properties are critical to enable reliable in vitro - in vivo

extrapolation (IVIVE) and therefore to obtain accurate in vivo predictions. This aspect was

recently highlighted by Thomas [258] and Klaren et al. [148].

Besides, these assays do not represent the set of all possible biological pathways leading to ad-

verse endocrine effects but only target some of them. Indeed, each assay only targets one specific

biological event and it is clearly acknowledged that one assay alone will not help to predict tox-

icity since it will be only partially related to an in vivo effect [296]. Also, in vitro assays only

mimic a small spectrum of the cellular and physiological processes taking place in complex whole

137



CONCLUSION

organisms such as mammals since they do not capture intercellular and inter-organ communi-

cations that actually happen in the whole organism [34]. This prevents from detecting in vivo

responses that require multi-tissue interactions [7], which is specifically the case in endocrine me-

diated toxicity with the important role of the pituitary gland in the regulation of the endocrine

function.

Also, assays selected in the ToxCast project were not originally designed to be predictive of

specific long-term in vivo outcomes or toxicological modes of action and are probably not the

most suitable for ML modeling [185]. Indeed, these assays were mostly selected based on their

technical and economical feasibility and not according to their biological importance, or toxicity

relevance [68].

Finally, we can also discuss the quality and relevance of in vivo data from ToxRefDB. Indeed,

challenges in using this database in its initial release have already been discussed by Plunkett

et al. [209]. Nonetheless, we should state that major improvements have been performed since

the first release such that the ToxRefDB 2.0 version is one of the best examples of pretty well

curated databases including standardized ontology [272].

Even if our observations are specific to endocrine toxicity and that the evaluation of the

link between in vitro assays and in vivo effects should be expanded to other types of adverse

outcomes, it is known that the previously mentioned limitations of in vitro assays are valid for

most of HTS assays and need to be considered. The Tox21 consortium recently released a new

strategic and operational plan that takes into account these key challenges in order to gain a

scientific confidence in the in vitro assays [258]. In particular, they intend to address the lack of

metabolic competence of in vitro assays, to develop alternative tests predictive of human dose-

response and to deploy new methods and computational approaches to perform IVIVE and focus

on assays targeting molecular events in high priority AOPs.

According to the results obtained for the two types of predictions, we can already anticipate

that the two-stage approach proposed in the Introduction of this manuscript is not relevant.

Indeed, if we chain two ML models for which BA performances are around 0.7 and 0.5, we do not

expect a final good BA since prediction errors will propagate from one model to the other. More

work is therefore required to improve the intermediate steps and generate good models before

considering the entire approach.

Perspectives

The results presented in this manuscript along with the numerous drawbacks of in vitro assays

highlighted the big challenge to predict in vivo outcomes based on in vitro data alone. Therefore,

the consideration and the integration of other types of information in computational tools seems

to be essential to face this challenge. In particular, as pointed in the Tox21 vision, the focus

on mechanistic knowledge is crucial since it enables the understanding and characterization of
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pathways leading to adverse outcomes in a systemic approach rather than the simple identification

and the characterization of hazards caused by compounds. In a series of three papers recently

published, Wolf, Doe, Cohen et al. [277, 69, 52] considered the specific case of carcinogenicity

and suggested that the current evaluation of carcinogenic potential of compounds that is based

on the identification of hazard alone (after long-term rodent studies) should be replaced because

of its insufficient biological relevance. Indeed, they stated that the carcinogenic potency of a

compound is the result of a multi-stage probabilistic process that depends on the dose level,

on the duration of exposure and on toxicokinetic properties. Therefore, they proposed that

the entire risk potential should be assessed using a rationale stepwise process which takes into

account the AOP knowledge.

Here we propose two approaches that consider mechanistic knowledge. On the one hand, existing

mechanistic knowledge could be potentially used to build good and relevant ML models to predict

in vivo toxicity. On the other hand, ML can help in the discovery and elucidation of possible

AOPs based on available data.

Towards an integration of mechanistic knowledge: a mechanistic-driven approach

In general, since the results of our work showed that there is no evident link between the 42 in

vitro assays selected and in vivo endocrine mediated effects observed in rat long term studies,

we would suggest being cautious when interpreting the meaning and relevance of in vitro assay

results in general. In particular, we believe that compounds’ prioritization should be based on

the evaluation of the risk of toxicity pathways alterations that are causally associated with in

vivo adverse outcomes rather than proposing a pure in vivo adverse outcomes prediction. Ide-

ally, a mechanistic-driven approach should be conducted to help in the selection of appropriate

in vitro assays specifically addressing the alteration of a given adverse outcome pathway [222].

Indeed, since one or few assays do not represent the complexity of the entire organism, several

assays should be considered and carefully selected.

Our proposed mechanistic-driven approach is illustrated in Figure 1. Basically, considering an

adverse outcome (AO) of interest for which an AOP or mode of action has been elucidated,

we suggest to base the predictive ML models on the assays triggering the MIE and KEs of the

AOP (AO model). Indeed, we first make the hypothesis that if a compound is active in all or

part of the n assays targeting the AOP’s events, it could induce the AO when the compound is

administered to the laboratory animal. Thus, we think that a ML model that uses the results of

the n in vitro assays as descriptors to predict the AO of interest would correctly inform on the

potential of compounds to alter the AOP leading to this AO. Of course, these in vitro descriptors

can also be combined with structural features if it can improve the performance of the final AO

model. Nonetheless, this implies that the physiological relevance of the in vitro assays selected

has been demonstrated. In general, assays that enable the measure of MIEs and KEs have been

defined for validated AOPs and information are publicly available, for example in the AOP-Wiki.

On the contrary, relevant assays would have to be developed and validated. It is for example
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the case of developmental toxicity for which limited knowledge exists in term of mode of action,

preventing the development of corresponding assays.

Moreover, the in vitro data can be used to build ML models for each of the in vitro assays

targeting the MIE and KEs (respectively MIE models and KE models) based on compounds’

structure. Thus, if a compound has not been tested in all the assays required by the ML model

predicting the considered AO, the missing values could be predicted from its structure (with a

error risk) rather than by performing the experimental test.

We think that the most important challenge for the construction of this type of ML model

(whether AO model or MIE and KE models) will be the lack of data regarding results for the

considered in vitro assays as well as the adverse outcome. Therefore, we suggest that HTS will

have to be performed for the maximum number of chemicals, including all the ones for which

in vivo data are available. Furthermore, one important limitation for the in vivo prediction

concerns the lack of description of the bioavailability properties of compounds, mainly obtained

from few in vitro assays and physico-chemical properties. In order to face this limitation and

to also take into account the dose-effect relationship, we believe that toxicokinetics information

(ADME properties) of compounds are necessary to complete the evaluation of the pathways

altered by the compounds in in vitro assays. If not already available, this type of information

can be obtained either by the use of in vitro assays or estimated by PBTK models, possibly

coupled with a reverse dosimetry approach, or even by ML methods such as, recently proposed,

multi-task deep learning [274]. Moreover, toxicogenomics data regarding genes that are involved

in the considered AOP can also be integrated in this approach.

MIE KE1 … KEn AO

Assay(s)MIE Assay(s)KEnAssay(s)KE1

Structure

In vitro

AO model

KE model
KE model

MIE model

Figure 1: A mechanistic-driven approach. The upper part of the figure summarizes the ML models that

we intended to build in the presented work. The lower part describes the proposed mechanistic-driven approach:

starting with a known AOP (bottom line), in vitro assays targeting the MIE and KEs are identified. Results from

these assays are used as descriptors of a ML model to predict the AO of interest (AO model). ML models can

also be built to predict the in vitro assays constituting the AO model, based on the structure of compounds. MIE:

Molecular Initiating Event, KE: Key event, AO: Adverse Outcome.
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Finally, we can consider two use-cases to apply these ML models for the detection of the

potential of a new compound to induce the AO of interest through an alteration of the considered

AOP. These use-cases depend on the type of data available:

1. If the new compound has been tested in all the n in vitro assays used in the model: in that

case, the AO model predicting the AO of interest can be directly used with the in vitro

results as input descriptors, possibly combined with structural features;

2. If the new compound has not been tested at all or has been partially tested in some of the

in vitro assays used in the model: in that case, missing bioactivities can be either mea-

sured by directly testing the compound in the corresponding in vitro assays or predicted

if reliable MIE and KE models have been developed for the corresponding in vitro assays.

In the end, if sufficient data is available, we hope that this approach would result in in silico

models with high predictive performance and meaningful mechanistic interpretation.

Machine Learning to help in the development of new AOPs: a data-driven approach

In the previous approach, we suggested to use mechanistic knowledge to help in the development

of good ML models. On the contrary, the data-driven approach proposes to use existing data

and ML methods to increase mechanistic knowledge and help in the elucidation of new AOPs.

Indeed, as already done with genomics data for the reconstruction of gene regulation networks,

we propose here to use in vitro data for the reconstruction of mechanistic networks.

The approach is illustrated in Figure 2. Basically, starting with a pool of in vitro assays for

which enough data are available and considering an AO of interest, the idea is to build several

ML models to predict the AO (step 1 of the figure). At the beginning, the input training set for

modeling is composed of bioactivity descriptors corresponding to the results of all available in

vitro assays. Contrary to what we did for the prediction of endocrine outcomes in Chapter 6, no

"knowledge-based" pre-selection of the assays is performed. Then various models are built using

several methods of feature selection (including filter, wrapper and embedded methods detailed in

Chapter 2) in order to accurately look for the most descriptive in vitro assays. The construction

of such ML models should be performed using an automatic and systematic workflow such that

a large number of models can be built but only the ones reaching the desired performance are

kept.

We then propose to interpret the in vitro assays that are used to build these good models by

identifying their biological targets (step 2 of the figure). This interpretation should be based on

a biological knowledge that enables a mapping between assays and biological events.

Finally, the idea is to find relationships between identified events (still based on biological knowl-

edge) in order to extract mechanistic information and deduce new possible AOPs (step 3 of the

figure). This step should be combined to systems biology approaches such as the development of

toxicological networks to finally identify previously unknown compound-target interactions and

toxicity mechanisms. Obviously, the resulting new hypothesis should be assessed and confirmed
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or rejected thanks to biological experiments performed in "wet laboratory".

Here also we can think about integrating other types of information such as ADME properties

and toxicogenomics. This is in particular what US EPA, in collaboration with other partners,

intends to do within the Human Toxome project that aims at generating omics data to deduce

toxicological modes of action [28].

AO

Pool of ML models

Pool of in 
vitro assays

Assay1          Target1

Assay2          Target2

…

Assayn  Targetn

Mechanistic information 

KE?

1

MIE?

KE?

Compound

2

3

Figure 2: A data-driven approach to elucidate potential new AOP of a given adverse outcome.

1) ML models are built using data from all in vitro assay results available. 2) Assays that are used to build

good models are interpreted and their biological targets are identified. 3) Mechanistic information are extracted to

develop new AOPs.

This kind of approach that aims at identifying new mechanisms has already been proposed

and some of them based on clustering methods have been reviewed in Chapter 3 [130, 241].

Moreover, Kim et al. [146] developed a workflow allowing the identification of assays relevant for

the prediction of hepatotoxicity and finally providing new insights into the possible mechanisms

and events that lead to this AO. Besides, as part of systems biology, toxicological networks are

developed to identify interactions between chemicals, biological entities and outcomes based on

available data [253].

In the end, we hope that this kind of data-driven approaches will enable the discovery of pre-

viously unknown mechanisms and here again, the most important limitation is the availability

of sufficient data, both in vitro to broadly evaluate toxicity pathways and in vivo, necessary to

build the physiological and phenotypic anchoring.

To conclude, in a purpose of early toxicity prediction, computational tools can be very useful

to integrate the relevant in vitro biological activities induced by compounds. Nonetheless, the

currently available technologies and in vitro assays that describe bioactivities of compounds as-

sociated with in vivo adverse outcomes only enable us to characterize a risk of altering a toxicity

pathway or an AOP instead of a true in vivo adverse outcome. Moreover, in silico approaches

cannot work alone and an important biological knowledge should be considered, regarding var-
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ious types of information (bioactivity, toxicokinetics, mechanistic information), integrated by

systems approaches.

We propose here two types of approaches that integrate these information and a recent pa-

per reinforces our proposal since it suggests to consider the same kind of approaches (either

mechanistic-driven or data-driven) [51]. Since our two approaches should be used for specific AO

of interest, we would suggest to first apply them to well known AOs such as hepatotoxicity in

order to provide a first proof of concept. Then, if the mechanistic-driven approach turns out to

result in good ML models and the data-driven approach retrieves known AOPs and mechanistic

events, they could be extended and generalized to other AOs in order to cover the largest mech-

anistic knowledge.

Last but not least, we hope that this kind of integrative approach could help in making the new

vision of Tox21 a reality !
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APPENDIX A

Toxicological data resources description

A.1 Chemical structures

PubChem: This database contains the structure of more than 97 million of compounds along

with their physico-chemical properties and other various information. Since PubChem also con-

tains in vitro data, it is further described below.

DSSTox: The Distributed Structure-Searchable Toxicity database is a US EPA resource [216]

that maps chemical structures of compounds with their corresponding physico-chemical property

and toxicity data (in vitro bioassays) into SDF files (see Section i)). Today it includes data for

over 700,000 compounds. It is also included in the ACToR system (see below).

A.2 In vitro data

Here are listed resources that mostly provide data obtained in in vitro experiments but some of

them also include in vivo and / or genomics data.

PubChem: Released in 2004, this public database provides in vitro activity results as well as

chemical structure of compounds [268, 269]. It is maintained by the National Center for Biotech-

nology Information (NCBI) from the NIH and is freely available. Today, the database contains

more than 97 million of compound structure entries from all categories of small chemicals and

includes results for more than 1 million of biological assays (not necessarily related to toxicity).

These results concern around 3 million of compounds corresponding to almost 240 million of

bioactivities.

ChEMBL: This public database is maintained by the European Bioinformatics Institute (EBI)

since 2009 and gathers curated literature data for bioassay results regarding drug-like com-

pounds [21]. Today, more than 15 million of bioactivities are available for almost 2 million of

distinct compounds. Some of PubChem bioassays are included in ChEMBL.
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CEBS: It stands for Chemical Effects in Biological Systems and is a public database developped

by the NIEHS to gather data generated by the NTP [271, 161] but also from other depositors

from academic, industrial and governmental laboratories. It also includes in vivo data from

various types of studies as well as toxicogenomics data.

EADB: The Estrogenic Activity Database has been developed by the US Food and Drug Ad-

ministration to gather estrogenic activity in vitro and in vivo data from the public domain [237].

On the one hand, it stores results of more than 1,200 in vitro assays mostly performed in human

and rat cell lines for more than 8,000 compounds. On the other hand, it contains in vivo data

from two short term assays that measure the effect of compounds on uterine weight and called

uterotrophic assays. Nonetheless, the EADB has been populated only when it was created in

2012 and has not been updated afterwards. The results of these assays are also available in the

FDA’s Endocrine Disruptors Knowledge Database (EKDB) [67].

ACToR: The Aggregated Computational Toxicology Resource is the EPA’s warehouse that

includes data from various types and sources (more than a thousand) and over 500,000 com-

pounds [140]. In particular it includes HTS data (ToxCast), in vitro and in vivo data from the

EDSP program [88], in vivo data from toxicity studies (ToxRefDB), exposure data (ExpoCast),

etc.

A.3 In vivo data

Some of the sources mentioned in the previous section contain in vivo data along with in vitro

ones but here is a broader list of sources providing only in vivo data.

HESS DB: HESS stands for Hazard Evaluation Support System and is an integrated platform

of the Japanese National Institute of Technology and Evaluation (NITE) that provides two

databases, released in 2012 [229]. The first gathers information on in vivo toxicity studies and

toxicity mechanisms (the repeated dose toxicity database) and the second one is a metabolism

knowledge database containing information on ADME properties of compounds measured in rat

and humans. More than 500 in vivo studies are available in the database for which around 500

effects are evaluated.

RepDose: This database provides NOAELs and LOAELs from in vivo repeated dose toxicity

studies of several duration (short term to chronic) performed in rat, mouse and dog [24]. It is

maintained by the Fraunhofer Institute for Toxicology and Experimental Medicine (Germany)

and contains about 3,100 studies corresponding to around 930 compounds.

FedTEX: The Fertility and Developmental Toxicity in Experimental animals database has also

been developed by the Fraunhofer Institute to gather reproductive and developmental studies

performed in rodent and rabbit for almost 300 compounds [23].
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CPDB: The Carcinogenic Potency Database has been developped in the University of Cali-

fornia, Berkeley and gathers the data from chronic and long-term cancer in vivo studies from

the literature and the NTP [91]. A total of 1,547 compounds have data but the database has

not been updated after 2001. Among the provided data is the TD50 which corresponds to the

dose inducing tumors in half of the tested animals. The database is currently available through

TOXNET1 (Toxicology Data Network) which is an online collection of toxicology databases held

by the NIH.

COSMOS DB: This database has been developed in the context of the SEURAT European

initiative [103]. The goal of the COSMOS project was to develop in silico models to predict

human repeated dose toxicity of cosmetic compounds [283]. To do so, a database has been

released containing more than 40,000 compound structures and more than 12,000 in vivo toxicity

studies for around 1,600 cosmetic compounds.

eTOX: eTOX is a consortium started in 2010 and funded by the European Innovative Medicines

Initiative [246]. It gathers partners from academia, pharmaceutical industry and biotechnology

companies in order to develop in silico tools to predict the toxicity of pharmaceutical compounds

in the early stage of their development. To do so, they established a database where in vivo tox-

icological data obtained in the pharmaceutical companies (including Bayer) are shared. The

database also includes public data from the RepDose database. The project ended in 2016 and

the database contains more than 1,900 compounds associated to around 8,000 studies which are

accessible to the consortium partners only [245].

A.4 Genomics data

TG-GATEs: The Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation Sys-

tems (TG-GATEs) is a database storing toxicogenomics data obtained during the Japanese

Toxicogenomics Project (TGP) [132, 263]. The database counts data for 170 pharmaceutical

compounds that have been tested either in human and rat hepatocytes (in vitro) or in rat (in

vivo). In vivo data from the traditional toxicity studies are also available in the database.

CTD: The Comparative Toxicogenomics Database has been launched in 2004 to provide data

describing relationships between chemicals, genes, proteins and diseases in order to enable the un-

derstanding about chemical exposures and human health [182]. It is regularly updated with data

from the literature and currently contains curated data for more than 15,000 compounds [109].

This resource also provides tools for data analysis and is available through TOXNET.

CMap: The Connectivity Map has been created by the Broad Institute of MIT and Harvard

and collects more than 7,000 gene expression profiles obtained from human cells treated with

1https://toxnet.nlm.nih.gov/
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more than 1,300 molecules [160]. The most recent version, dating from 2017, provides results for

the L1000 assay that measures transcripts of 978 "landmark" human genes and corresponding to

more than 1 million profiles [248]. The Broad Institute also provides data analysis tools accessible

in a web platform2.

A.5 Mechanistic data

AOP-KB: The AOP wiki3 is a collaborative database which gathers information regarding

AOPs. It is part of the AOP-Knowledgebase (AOP-KB) repository launched by the OECD to

enable the scientific community to share knowledge related to AOPs [275].

2https://clue.io
3https://aopwiki.org
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APPENDIX B. LIST OF THE 37 ASSAYS USED IN CHAPTER 4
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APPENDIX C

List of the 42 selected assays in Chapter 6
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APPENDIX C. LIST OF THE 42 SELECTED ASSAYS IN CHAPTER 6

Table C.1: List of the selected 42 assays that are related to E, A and S endocrine pathways with the pathway

they are linked to and their type. E = estrogen, A = androgen, S = steroidogenesis, O = others

Assay name in ToxCast Pathway Type of assay
ACEA_T47D_80hr_Positive E Cell proliferation
ATG_ERE_CIS_up E mRNA induction
ATG_ERa_TRANS_up E mRNA induction
OT_ER_EraERb_0480 E Protein complementation
OT_ER_EraERb_1440 E Protein complementation
OT_ER_ErbERb_0480 E Protein complementation
OT_ER_ErbERb_1440 E Protein complementation
OT_Era_EREGFP_0120 E Reporter gene
OT_Era_EREGFP_0480 E Reporter gene
TOX21_Era_BLA_Antagonist_ratio E Reporter gene
TOX21_Era_LUC_BG1_Agonist E Reporter gene
TOX21_Era_LUC_BG1_Antagonist E Reporter gene
NVS_NR_cAR A Receptor binding
NVS_NR_hAR A Receptor binding
NVS_NR_rAR A Receptor binding
OT_AR_ARELUC_AG_1440 A Reporter gene
OT_AR_ARSRC1_0480 A Coregulator recruitment
OT_AR_ARSRC1_0960 A Coregulator recruitment
TOX21_AR_BLA_Antagonist_ratio A Reporter gene
TOX21_AR_LUC_MDAKB2_Antagonist A Reporter gene
TOX21_AR_LUC_MDAKB2_Antagonist2 A Reporter gene
CEETOX_H295R_11DCORT_dn S Hormone measurement
CEETOX_H295R_ANDR_dn S Hormone measurement
CEETOX_H295R_CORTISOL_dn S Hormone measurement
CEETOX_H295R_DOC_dn S Hormone measurement
CEETOX_H295R_ESTRADIOL_up S Hormone measurement
CEETOX_H295R_ESTRONE_dn S Hormone measurement
CEETOX_H295R_ESTRONE_up S Hormone measurement
CEETOX_H295R_OHPROG_dn S Hormone measurement
CEETOX_H295R_OHPROG_up S Hormone measurement
CEETOX_H295R_PROG_up S Hormone measurement
CEETOX_H295R_TESTO_dn S Hormone measurement
NVS_ADME_hCYP19A1 S Enzyme activity
TOX21_Aromatase_Inhibition S Enzyme inhibition
ATG_Sp1_CIS_up O mRNA induction
ATG_GRE_CIS_dn O mRNA induction
ATG_SREBP_CIS_up O mRNA induction
NVS_NR_bPR O Receptor binding
NVS_NR_hGR O Receptor binding
NVS_NR_hPR O Receptor binding
TOX21_GR_BLA_Agonist_ratio O Reporter gene
TOX21_GR_BLA_Antagonist_ratio O Reporter gene
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APPENDIX D

List of in vivo effects from ToxRefDB

grouped into outcomes categories

153



APPENDIX D. LIST OF IN VIVO EFFECTS FROM TOXREFDB GROUPED INTO
OUTCOMES CATEGORIES

Table D.1: List of observed effects from ToxRefDB that are grouped in each of the 9 category outcomes.

Outcome category Effects

Adrenals –

Steroidogenesis effects

Organ weight, Vacuolization, Vacuolization cytoplasmic,

Fatty change, Lipidosis

Adrenals –

Stimulation

Organ weight, Hyperplasia, Hypertrophy, Atrophy,

Adenoma, Adenoma / carcinoma combined

Adrenals –

Injury

Organ weight, Angiectasis, Cyst, Cytologic alterations,

Degeneration, Hemorrhage, Hyperemia, Inflammation,

Pigmentation, Necrosis

Ovary –

Effects on germinal cells

Organ weight, Atrophy, Follicle count, Cyst (follicle),

Hypertrophy

Ovary -

Effects on interstitial cells

Organ weight, Hyperplasia, Pigmentation, Lipidosis,

Stromal hyperplasia, Vacuolization

Uterus

Organ weight, Adenocarcinoma, Atrophy, Carcinoma,

Dilatation, Horn distended, Endometriosis, Hydrometra,

Hyperplasia, Hypertrophy, Mass, Metaplasia, Nodule(s),

Polyp (all sorts),

Testis – Spermatogenesis
Organ weight, Aspermatogenesis, Atrophy, Degeneration,

Delayed spermiation, Retained spermatids, Necrosis,

Reduced spermatogenesis, Spermatogenic arrest

Testis - Effects on interstitial cells
Organ weight, Adenoma, Interstitial cell tumor benign,

Interstitial cell tumor NOS, Hyperplasia, Hypertrophy

Prostate Organ weight, Adenoma, Atrophy, Hyperplasia
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APPENDIX E

Performance of the ML models built in

Chapter 6

Tables E.1 to E.6 summarize the balanced accuracy, sensitivity and specificity obtained with

the 8 types of algorithms and the three types of descriptors (bio = in vitro assays, chem =

molecular structure, cb = combination of both) to predict in vivo outcomes observed after rat

long-term studies in adrenal glands, ovaries, uterus, testes and prostate, using either imbalanced

datasets (without SMOTE method) or balanced datasets (with SMOTE method). For each

triplet of outcome, algorithm and descriptor type, the reported results correspond to the model

that reaches the highest BA among all with its corresponding sensitivity and specificity as well

as the number of descriptors used. Metrics values correspond to the mean of the 20 runs and

values in parenthesis to the standard deviations.
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APPENDIX E. PERFORMANCE OF THE ML MODELS BUILT IN CHAPTER 6

Table E.1: Performance of ML models that predict in vivo outcomes in adrenal glands on imbalanced datasets

(without SMOTE)

In vivo outcome
ML

algorithm

Number of

descriptors
Balanced Accuracy Sensitivity Specificity

bio chem cb bio chem cb bio chem cb bio chem cb

Steroidogenesis

adrenal glands

CART 20.0 41.0 15.0 0.52 (0.07) 0.55 (0.11) 0.54 (0.10) 0.08 (0.13) 0.23 (0.22) 0.24 (0.20) 0.96 (0.06) 0.88 (0.09) 0.88 (0.09)

ENSMB 18.0 31.0 20.0 0.50 (0.02) 0.51 (0.05) 0.51 (0.05) 0.01 (0.04) 0.05 (0.10) 0.04 (0.10) 1.00 (0.02) 0.99 (0.03) 0.99 (0.04)

KNN1 12.0 58.0 35.0 0.51 (0.05) 0.51 (0.07) 0.52 (0.08) 0.05 (0.10) 0.09 (0.13) 0.10 (0.15) 0.98 (0.09) 0.96 (0.08) 0.96 (0.10)

LDA 11.0 20.0 16.0 0.50 (0.02) 0.53 (0.09) 0.52 (0.09) 0.01 (0.05) 0.16 (0.17) 0.18 (0.17) 1.00 (0.02) 0.98 (0.07) 0.98 (0.08)

NB 12.0 68.0 43.0 0.50 (0.07) 0.52 (0.13) 0.53 (0.13) 0.06 (0.14) 0.47 (0.30) 0.46 (0.30) 0.99 (0.07) 0.85 (0.30) 0.85 (0.30)

RF 38.0 66.0 67.0 0.52 (0.06) 0.52 (0.08) 0.52 (0.07) 0.08 (0.12) 0.12 (0.15) 0.10 (0.13) 0.96 (0.05) 0.99 (0.06) 0.99 (0.06)

SVCL 10.0 13.0 12.0 0.50 (0.00) 0.51 (0.05) 0.51 (0.06) 0.00 (0.00) 0.05 (0.10) 0.06 (0.10) 1.00 (0.00) 1.00 (0.05) 1.00 (0.05)

SVCR 19.0 64.0 40.0 0.50 (0.02) 0.52 (0.05) 0.51 (0.05) 0.01 (0.04) 0.05 (0.10) 0.05 (0.10) 1.00 (0.02) 1.00 (0.04) 1.00 (0.03)

Stimulation

adrenal glands

CART 37.0 47.0 14.0 0.52 (0.06) 0.53 (0.10) 0.54 (0.10) 0.09 (0.11) 0.22 (0.19) 0.24 (0.19) 0.96 (0.05) 0.87 (0.09) 0.87 (0.09)

ENSMB 12.0 11.0 69.0 0.50 (0.02) 0.50 (0.04) 0.51 (0.04) 0.01 (0.04) 0.03 (0.07) 0.03 (0.07) 1.00 (0.02) 0.99 (0.04) 0.99 (0.04)

KNN1 17.0 67.0 64.0 0.50 (0.05) 0.50 (0.07) 0.51 (0.07) 0.05 (0.11) 0.10 (0.13) 0.14 (0.15) 0.97 (0.10) 0.94 (0.07) 0.93 (0.10)

LDA 13.0 29.0 16.0 0.50 (0.02) 0.51 (0.08) 0.51 (0.08) 0.01 (0.04) 0.14 (0.14) 0.15 (0.14) 1.00 (0.02) 0.98 (0.07) 0.98 (0.08)

NB 17.0 44.0 48.0 0.51 (0.07) 0.52 (0.10) 0.52 (0.11) 0.09 (0.13) 0.38 (0.27) 0.38 (0.27) 0.98 (0.11) 0.85 (0.24) 0.86 (0.24)

RF 37.0 57.0 64.0 0.51 (0.06) 0.51 (0.07) 0.51 (0.07) 0.07 (0.11) 0.11 (0.12) 0.11 (0.13) 0.95 (0.05) 0.97 (0.07) 0.98 (0.07)

SVCL 10.0 11.0 25.0 0.50 (0.00) 0.50 (0.05) 0.50 (0.05) 0.00 (0.00) 0.05 (0.09) 0.06 (0.10) 1.00 (0.00) 1.00 (0.04) 1.00 (0.05)

SVCR 10.0 64.0 69.0 0.50 (0.02) 0.50 (0.04) 0.51 (0.04) 0.01 (0.04) 0.03 (0.06) 0.04 (0.08) 1.00 (0.02) 1.00 (0.04) 1.00 (0.04)

Injury

adrenal glands

CART 26.0 26.0 37.0 0.52 (0.07) 0.56 (0.12) 0.56 (0.12) 0.09 (0.14) 0.26 (0.22) 0.25 (0.22) 0.97 (0.06) 0.89 (0.08) 0.89 (0.08)

ENSMB 33.0 10.0 10.0 0.50 (0.03) 0.51 (0.05) 0.52 (0.06) 0.01 (0.05) 0.05 (0.10) 0.07 (0.11) 1.00 (0.02) 0.99 (0.03) 0.99 (0.03)

KNN1 26.0 57.0 38.0 0.51 (0.06) 0.51 (0.08) 0.52 (0.08) 0.07 (0.14) 0.10 (0.17) 0.10 (0.17) 0.99 (0.14) 0.95 (0.07) 0.96 (0.09)

LDA 33.0 14.0 14.0 0.50 (0.02) 0.53 (0.09) 0.53 (0.09) 0.00 (0.04) 0.17 (0.18) 0.16 (0.18) 1.00 (0.02) 0.99 (0.07) 0.99 (0.06)

NB 20.0 52.0 32.0 0.52 (0.07) 0.53 (0.13) 0.53 (0.12) 0.51 (0.49) 0.50 (0.34) 0.57 (0.36) 0.99 (0.46) 0.87 (0.34) 0.81 (0.31)

RF 22.0 67.0 57.0 0.52 (0.07) 0.53 (0.08) 0.54 (0.08) 0.09 (0.14) 0.12 (0.16) 0.13 (0.18) 0.96 (0.05) 0.99 (0.05) 0.99 (0.05)

SVCL 10.0 10.0 11.0 0.50 (0.00) 0.51 (0.06) 0.52 (0.06) 0.00 (0.00) 0.06 (0.11) 0.07 (0.12) 1.00 (0.00) 1.00 (0.05) 1.00 (0.05)

SVCR 20.0 14.0 13.0 0.50 (0.01) 0.52 (0.05) 0.52 (0.05) 0.00 (0.03) 0.05 (0.10) 0.05 (0.09) 1.00 (0.02) 1.00 (0.03) 1.00 (0.03)

Table E.2: Performance of ML models that predict in vivo outcomes in adrenal glands on balanced datasets

(with SMOTE)

In vivo outcome
ML

algorithm

Number of

descriptors
Balanced Accuracy Sensitivity Specificity

bio chem cb bio chem cb bio chem cb bio chem cb

Steroidogenesis

adrenal glands

CART 10.0 61.0 18.0 0.52 (0.09) 0.52 (0.10) 0.53 (0.11) 0.17 (0.32) 0.19 (0.19) 0.25 (0.21) 0.87 (0.26) 0.85 (0.08) 0.82 (0.08)

ENSMB 17.0 65.0 64.0 0.51 (0.11) 0.52 (0.11) 0.52 (0.11) 0.44 (0.30) 0.26 (0.21) 0.25 (0.19) 0.57 (0.26) 0.78 (0.09) 0.80 (0.09)

KNN1 38.0 52.0 69.0 0.50 (0.11) 0.52 (0.13) 0.52 (0.13) 0.37 (0.29) 0.35 (0.23) 0.33 (0.23) 0.63 (0.30) 0.68 (0.10) 0.72 (0.10)

LDA 17.0 62.0 64.0 0.51 (0.11) 0.52 (0.12) 0.53 (0.13) 0.60 (0.31) 0.42 (0.23) 0.43 (0.24) 0.41 (0.26) 0.63 (0.11) 0.64 (0.10)

NB 25.0 49.0 64.0 0.52 (0.11) 0.49 (0.13) 0.50 (0.13) 0.75 (0.24) 0.58 (0.25) 0.57 (0.25) 0.28 (0.18) 0.41 (0.15) 0.43 (0.16)

RF 41.0 16.0 13.0 0.52 (0.09) 0.52 (0.09) 0.52 (0.09) 0.48 (0.41) 0.10 (0.17) 0.09 (0.17) 0.55 (0.36) 0.95 (0.07) 0.96 (0.06)

SVCL 10.0 61.0 64.0 0.52 (0.11) 0.52 (0.13) 0.53 (0.14) 0.54 (0.34) 0.41 (0.23) 0.42 (0.25) 0.51 (0.31) 0.63 (0.11) 0.64 (0.10)

SVCR 35.0 66.0 61.0 0.51 (0.10) 0.53 (0.11) 0.52 (0.10) 0.48 (0.26) 0.30 (0.21) 0.24 (0.23) 0.54 (0.21) 0.75 (0.11) 0.80 (0.11)

Stimulation

adrenal glands

CART 14.0 47.0 63.0 0.50 (0.09) 0.51 (0.10) 0.51 (0.10) 0.25 (0.19) 0.21 (0.18) 0.18 (0.18) 0.76 (0.19) 0.81 (0.09) 0.84 (0.09)

ENSMB 11.0 64.0 63.0 0.50 (0.10) 0.49 (0.10) 0.50 (0.10) 0.42 (0.28) 0.23 (0.18) 0.23 (0.18) 0.58 (0.28) 0.76 (0.10) 0.77 (0.09)

KNN1 33.0 48.0 57.0 0.50 (0.09) 0.50 (0.12) 0.50 (0.11) 0.45 (0.34) 0.33 (0.21) 0.35 (0.21) 0.54 (0.32) 0.66 (0.11) 0.65 (0.10)

LDA 11.0 57.0 63.0 0.50 (0.10) 0.50 (0.12) 0.51 (0.12) 0.54 (0.32) 0.40 (0.22) 0.41 (0.21) 0.46 (0.29) 0.60 (0.10) 0.62 (0.11)

NB 14.0 54.0 63.0 0.50 (0.10) 0.47 (0.12) 0.48 (0.12) 0.70 (0.25) 0.51 (0.23) 0.51 (0.23) 0.30 (0.21) 0.43 (0.15) 0.45 (0.15)

RF 13.0 61.0 63.0 0.51 (0.09) 0.50 (0.08) 0.50 (0.08) 0.20 (0.30) 0.12 (0.15) 0.13 (0.14) 0.81 (0.28) 0.87 (0.08) 0.87 (0.07)

SVCL 11.0 60.0 68.0 0.51 (0.10) 0.51 (0.12) 0.51 (0.12) 0.55 (0.35) 0.41 (0.21) 0.39 (0.21) 0.46 (0.32) 0.60 (0.13) 0.63 (0.12)

SVCR 14.0 58.0 63.0 0.50 (0.09) 0.51 (0.11) 0.50 (0.11) 0.34 (0.30) 0.31 (0.20) 0.25 (0.22) 0.65 (0.29) 0.70 (0.12) 0.75 (0.14)

Injury

adrenal glands

CART 29.0 30.0 23.0 0.54 (0.10) 0.55 (0.11) 0.54 (0.11) 0.47 (0.25) 0.25 (0.21) 0.26 (0.20) 0.62 (0.21) 0.85 (0.08) 0.83 (0.08)

ENSMB 16.0 31.0 19.0 0.54 (0.11) 0.54 (0.11) 0.54 (0.11) 0.53 (0.32) 0.26 (0.21) 0.24 (0.21) 0.54 (0.29) 0.82 (0.09) 0.83 (0.08)

KNN1 16.0 27.0 19.0 0.50 (0.11) 0.54 (0.13) 0.54 (0.13) 0.35 (0.32) 0.41 (0.23) 0.42 (0.25) 0.66 (0.29) 0.67 (0.11) 0.66 (0.10)

LDA 12.0 68.0 23.0 0.54 (0.11) 0.54 (0.13) 0.54 (0.13) 0.63 (0.35) 0.44 (0.25) 0.40 (0.24) 0.44 (0.27) 0.64 (0.10) 0.67 (0.10)

NB 41.0 68.0 65.0 0.53 (0.10) 0.50 (0.14) 0.50 (0.13) 0.89 (0.25) 0.57 (0.29) 0.57 (0.28) 0.17 (0.19) 0.43 (0.17) 0.43 (0.17)

RF 29.0 25.0 52.0 0.55 (0.10) 0.53 (0.09) 0.53 (0.09) 0.49 (0.25) 0.12 (0.17) 0.14 (0.15) 0.61 (0.20) 0.94 (0.05) 0.92 (0.06)

SVCL 16.0 68.0 26.0 0.54 (0.10) 0.54 (0.13) 0.54 (0.13) 0.70 (0.35) 0.43 (0.26) 0.44 (0.23) 0.39 (0.30) 0.65 (0.10) 0.65 (0.12)

SVCR 16.0 69.0 52.0 0.54 (0.10) 0.54 (0.12) 0.53 (0.11) 0.42 (0.36) 0.32 (0.25) 0.19 (0.24) 0.66 (0.29) 0.76 (0.14) 0.87 (0.12)
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Table E.3: Performance of ML models that predict in vivo outcomes in ovaries and uterus on imbalanced

datasets (without SMOTE)

In vivo outcome
ML

algorithm

Number of

descriptors
Balanced Accuracy Sensitivity Specificity

bio chem cb bio chem cb bio chem cb bio chem cb

Germinal cells

ovary

CART 15.0 22.0 13.0 0.53 (0.10) 0.57 (0.14) 0.57 (0.14) 0.10 (0.20) 0.21 (0.27) 0.21 (0.28) 0.98 (0.04) 0.95 (0.06) 0.96 (0.05)

ENSMB 16.0 12.0 12.0 0.52 (0.07) 0.55 (0.10) 0.55 (0.10) 0.05 (0.15) 0.11 (0.20) 0.10 (0.19) 1.00 (0.01) 1.00 (0.02) 1.00 (0.02)

KNN1 21.0 19.0 14.0 0.53 (0.08) 0.56 (0.11) 0.55 (0.11) 0.07 (0.18) 0.13 (0.21) 0.12 (0.21) 1.00 (0.08) 0.99 (0.07) 0.99 (0.09)

LDA 10.0 12.0 10.0 0.52 (0.06) 0.57 (0.13) 0.57 (0.13) 0.04 (0.12) 0.20 (0.27) 0.22 (0.27) 1.00 (0.02) 0.99 (0.05) 0.99 (0.05)

NB 11.0 19.0 27.0 0.54 (0.11) 0.58 (0.17) 0.56 (0.17) 0.26 (0.37) 0.88 (0.44) 0.88 (0.43) 0.97 (0.34) 0.49 (0.40) 0.46 (0.39)

RF 10.0 16.0 54.0 0.53 (0.09) 0.55 (0.10) 0.55 (0.10) 0.08 (0.19) 0.10 (0.20) 0.11 (0.21) 0.98 (0.03) 1.00 (0.03) 1.00 (0.03)

SVCL 10.0 10.0 10.0 0.50 (0.00) 0.53 (0.10) 0.54 (0.11) 0.00 (0.00) 0.10 (0.19) 0.12 (0.21) 1.00 (0.00) 1.00 (0.04) 1.00 (0.03)

SVCR 10.0 31.0 49.0 0.52 (0.06) 0.53 (0.08) 0.53 (0.09) 0.04 (0.13) 0.07 (0.17) 0.07 (0.17) 1.00 (0.01) 1.00 (0.02) 1.00 (0.02)

Insterstitial cells

ovary

CART 10.0 35.0 30.0 0.52 (0.08) 0.55 (0.13) 0.55 (0.13) 0.06 (0.15) 0.18 (0.25) 0.19 (0.26) 0.99 (0.04) 0.94 (0.06) 0.95 (0.06)

ENSMB 27.0 35.0 13.0 0.51 (0.03) 0.52 (0.06) 0.53 (0.07) 0.01 (0.07) 0.04 (0.12) 0.06 (0.14) 1.00 (0.02) 1.00 (0.03) 1.00 (0.02)

KNN1 12.0 62.0 61.0 0.51 (0.06) 0.52 (0.08) 0.52 (0.09) 0.04 (0.13) 0.08 (0.18) 0.11 (0.18) 1.00 (0.13) 0.98 (0.09) 0.98 (0.09)

LDA 20.0 19.0 11.0 0.50 (0.02) 0.56 (0.12) 0.56 (0.13) 0.00 (0.03) 0.18 (0.24) 0.19 (0.25) 1.00 (0.02) 0.98 (0.05) 0.98 (0.05)

NB 16.0 46.0 41.0 0.51 (0.08) 0.55 (0.13) 0.53 (0.14) 0.33 (0.44) 0.85 (0.44) 0.83 (0.43) 0.95 (0.43) 0.54 (0.40) 0.53 (0.40)

RF 12.0 42.0 52.0 0.52 (0.07) 0.51 (0.08) 0.52 (0.07) 0.06 (0.15) 0.05 (0.15) 0.05 (0.14) 0.99 (0.03) 1.00 (0.04) 1.00 (0.04)

SVCL 10.0 10.0 11.0 0.50 (0.00) 0.52 (0.08) 0.52 (0.08) 0.00 (0.00) 0.07 (0.15) 0.07 (0.15) 1.00 (0.00) 1.00 (0.04) 1.00 (0.03)

SVCR 21.0 61.0 64.0 0.50 (0.00) 0.51 (0.04) 0.51 (0.05) 0.00 (0.00) 0.02 (0.09) 0.03 (0.10) 1.00 (0.01) 1.00 (0.03) 1.00 (0.02)

Uterus effect

CART 11.0 38.0 69.0 0.52 (0.09) 0.54 (0.11) 0.54 (0.12) 0.10 (0.18) 0.16 (0.22) 0.17 (0.23) 0.98 (0.04) 0.93 (0.07) 0.94 (0.06)

ENSMB 10.0 12.0 20.0 0.51 (0.06) 0.53 (0.06) 0.53 (0.07) 0.03 (0.12) 0.07 (0.13) 0.07 (0.14) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02)

KNN1 11.0 12.0 17.0 0.51 (0.07) 0.54 (0.09) 0.53 (0.08) 0.05 (0.15) 0.11 (0.18) 0.11 (0.18) 0.99 (0.12) 0.98 (0.06) 0.99 (0.10)

LDA 10.0 20.0 20.0 0.52 (0.07) 0.51 (0.08) 0.54 (0.10) 0.05 (0.14) 0.08 (0.16) 0.12 (0.19) 1.00 (0.04) 1.00 (0.05) 0.98 (0.05)

NB 12.0 16.0 14.0 0.55 (0.11) 0.56 (0.13) 0.56 (0.14) 0.58 (0.48) 0.80 (0.42) 0.79 (0.42) 0.96 (0.45) 0.73 (0.38) 0.72 (0.39)

RF 10.0 18.0 20.0 0.52 (0.07) 0.53 (0.07) 0.53 (0.09) 0.06 (0.14) 0.08 (0.15) 0.09 (0.17) 0.97 (0.04) 1.00 (0.04) 1.00 (0.03)

SVCL 10.0 14.0 10.0 0.50 (0.00) 0.50 (0.04) 0.52 (0.07) 0.00 (0.00) 0.02 (0.08) 0.06 (0.14) 1.00 (0.00) 1.00 (0.03) 1.00 (0.04)

SVCR 11.0 44.0 67.0 0.51 (0.04) 0.52 (0.07) 0.52 (0.07) 0.02 (0.08) 0.06 (0.13) 0.05 (0.14) 1.00 (0.01) 1.00 (0.02) 1.00 (0.02)

Table E.4: Performance of ML models that predict in vivo outcomes in ovaries and uterus on balanced

datasets (with SMOTE)

In vivo outcome
ML

algorithm

Number of

descriptors
Balanced Accuracy Sensitivity Specificity

bio chem cb bio chem cb bio chem cb bio chem cb

Germinal cells

ovary

CART 17.0 35.0 34.0 0.52 (0.11) 0.57 (0.15) 0.57 (0.14) 0.14 (0.22) 0.23 (0.30) 0.23 (0.28) 0.90 (0.13) 0.91 (0.05) 0.92 (0.05)

ENSMB 13.0 16.0 28.0 0.53 (0.13) 0.59 (0.16) 0.59 (0.15) 0.19 (0.28) 0.29 (0.31) 0.30 (0.30) 0.87 (0.19) 0.89 (0.07) 0.87 (0.07)

KNN1 13.0 13.0 45.0 0.54 (0.11) 0.60 (0.17) 0.58 (0.16) 0.15 (0.22) 0.44 (0.34) 0.35 (0.31) 0.93 (0.05) 0.75 (0.09) 0.81 (0.08)

LDA 23.0 25.0 21.0 0.53 (0.15) 0.60 (0.18) 0.61 (0.18) 0.63 (0.36) 0.47 (0.35) 0.44 (0.34) 0.43 (0.27) 0.74 (0.11) 0.78 (0.10)

NB 23.0 12.0 11.0 0.52 (0.14) 0.55 (0.16) 0.56 (0.17) 0.58 (0.38) 0.74 (0.30) 0.74 (0.32) 0.47 (0.32) 0.37 (0.14) 0.38 (0.13)

RF 13.0 16.0 46.0 0.52 (0.11) 0.56 (0.12) 0.56 (0.12) 0.13 (0.26) 0.13 (0.25) 0.15 (0.23) 0.91 (0.22) 0.98 (0.05) 0.96 (0.04)

SVCL 23.0 43.0 52.0 0.53 (0.14) 0.61 (0.17) 0.62 (0.18) 0.60 (0.35) 0.52 (0.34) 0.53 (0.35) 0.46 (0.30) 0.71 (0.10) 0.70 (0.09)

SVCR 15.0 64.0 63.0 0.53 (0.13) 0.55 (0.14) 0.55 (0.13) 0.18 (0.29) 0.20 (0.27) 0.18 (0.26) 0.87 (0.20) 0.90 (0.06) 0.92 (0.06)

Insterstitial cells

ovary

CART 15.0 19.0 12.0 0.50 (0.10) 0.55 (0.13) 0.55 (0.13) 0.20 (0.29) 0.21 (0.25) 0.20 (0.24) 0.81 (0.26) 0.89 (0.07) 0.89 (0.06)

ENSMB 37.0 56.0 41.0 0.52 (0.12) 0.56 (0.14) 0.58 (0.15) 0.48 (0.36) 0.27 (0.28) 0.29 (0.30) 0.56 (0.28) 0.86 (0.08) 0.86 (0.07)

KNN1 17.0 35.0 24.0 0.51 (0.08) 0.57 (0.16) 0.57 (0.16) 0.07 (0.25) 0.37 (0.30) 0.38 (0.30) 0.94 (0.19) 0.77 (0.09) 0.75 (0.09)

LDA 36.0 44.0 42.0 0.54 (0.14) 0.59 (0.16) 0.59 (0.16) 0.80 (0.28) 0.48 (0.31) 0.48 (0.32) 0.28 (0.16) 0.71 (0.09) 0.70 (0.10)

NB 36.0 49.0 65.0 0.54 (0.13) 0.53 (0.14) 0.54 (0.15) 0.82 (0.26) 0.74 (0.31) 0.74 (0.31) 0.26 (0.13) 0.31 (0.22) 0.33 (0.11)

RF 15.0 47.0 22.0 0.50 (0.10) 0.53 (0.10) 0.53 (0.10) 0.20 (0.31) 0.11 (0.19) 0.09 (0.20) 0.80 (0.27) 0.96 (0.05) 0.97 (0.05)

SVCL 36.0 67.0 62.0 0.53 (0.13) 0.59 (0.16) 0.59 (0.16) 0.80 (0.30) 0.50 (0.30) 0.49 (0.31) 0.26 (0.21) 0.68 (0.14) 0.69 (0.10)

SVCR 37.0 68.0 67.0 0.52 (0.11) 0.53 (0.12) 0.53 (0.11) 0.48 (0.37) 0.19 (0.23) 0.17 (0.22) 0.57 (0.31) 0.87 (0.08) 0.89 (0.07)

Uterus effect

CART 18.0 43.0 40.0 0.52 (0.11) 0.53 (0.12) 0.54 (0.11) 0.14 (0.20) 0.18 (0.24) 0.19 (0.22) 0.91 (0.15) 0.89 (0.06) 0.89 (0.07)

ENSMB 21.0 61.0 37.0 0.54 (0.13) 0.54 (0.13) 0.54 (0.13) 0.26 (0.25) 0.25 (0.26) 0.24 (0.26) 0.81 (0.17) 0.83 (0.07) 0.85 (0.08)

KNN1 11.0 11.0 53.0 0.55 (0.11) 0.55 (0.15) 0.56 (0.15) 0.18 (0.20) 0.39 (0.28) 0.32 (0.29) 0.91 (0.11) 0.71 (0.08) 0.79 (0.08)

LDA 11.0 58.0 45.0 0.55 (0.14) 0.54 (0.15) 0.55 (0.15) 0.34 (0.28) 0.46 (0.30) 0.43 (0.28) 0.76 (0.19) 0.62 (0.12) 0.66 (0.10)

NB 21.0 10.0 11.0 0.53 (0.14) 0.54 (0.15) 0.54 (0.15) 0.52 (0.38) 0.65 (0.32) 0.64 (0.28) 0.54 (0.34) 0.43 (0.19) 0.44 (0.13)

RF 19.0 13.0 30.0 0.53 (0.10) 0.53 (0.09) 0.53 (0.09) 0.16 (0.21) 0.08 (0.17) 0.10 (0.17) 0.90 (0.14) 0.98 (0.05) 0.97 (0.05)

SVCL 21.0 57.0 45.0 0.55 (0.14) 0.55 (0.15) 0.56 (0.15) 0.37 (0.29) 0.51 (0.31) 0.47 (0.31) 0.73 (0.24) 0.59 (0.12) 0.64 (0.11)

SVCR 31.0 61.0 66.0 0.53 (0.13) 0.53 (0.11) 0.53 (0.11) 0.25 (0.26) 0.18 (0.23) 0.19 (0.23) 0.82 (0.20) 0.88 (0.10) 0.87 (0.09)
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Table E.5: Performance of ML models that predict in vivo outcomes in testes and prostate on imbalanced

datasets (with SMOTE)

In vivo outcome
ML

algorithm

Number of

descriptors
Balanced Accuracy Sensitivity Specificity

bio chem cb bio chem cb bio chem cb bio chem cb

Spermatogenesis

testis

CART 33.0 23.0 63.0 0.51 (0.08) 0.53 (0.11) 0.52 (0.11) 0.06 (0.15) 0.16 (0.20) 0.14 (0.21) 0.97 (0.05) 0.92 (0.07) 0.92 (0.07)

ENSMB 18.0 49.0 26.0 0.50 (0.02) 0.50 (0.03) 0.50 (0.03) 0.00 (0.03) 0.02 (0.07) 0.01 (0.06) 1.00 (0.02) 0.99 (0.03) 1.00 (0.03)

KNN1 37.0 45.0 46.0 0.50 (0.05) 0.50 (0.06) 0.50 (0.07) 0.02 (0.11) 0.04 (0.12) 0.05 (0.15) 0.98 (0.10) 0.97 (0.06) 0.98 (0.07)

LDA 26.0 13.0 13.0 0.50 (0.03) 0.51 (0.09) 0.51 (0.10) 0.01 (0.06) 0.09 (0.16) 0.12 (0.18) 1.00 (0.03) 0.99 (0.06) 0.99 (0.06)

NB 13.0 66.0 15.0 0.53 (0.10) 0.52 (0.13) 0.53 (0.13) 0.53 (0.48) 0.81 (0.46) 0.84 (0.45) 0.95 (0.45) 0.58 (0.41) 0.58 (0.41)

RF 29.0 64.0 63.0 0.51 (0.07) 0.51 (0.07) 0.51 (0.06) 0.05 (0.13) 0.05 (0.14) 0.05 (0.12) 0.97 (0.04) 0.99 (0.05) 1.00 (0.04)

SVCL 10.0 16.0 10.0 0.50 (0.00) 0.50 (0.04) 0.50 (0.05) 0.00 (0.00) 0.02 (0.07) 0.03 (0.09) 1.00 (0.00) 1.00 (0.03) 1.00 (0.03)

SVCR 16.0 49.0 63.0 0.50 (0.02) 0.51 (0.04) 0.51 (0.05) 0.01 (0.04) 0.02 (0.08) 0.03 (0.09) 1.00 (0.01) 1.00 (0.03) 1.00 (0.03)

Interstitial cells

testis

CART 20.0 13.0 61.0 0.51 (0.05) 0.52 (0.09) 0.52 (0.10) 0.06 (0.11) 0.20 (0.18) 0.18 (0.18) 0.97 (0.05) 0.89 (0.09) 0.89 (0.09)

ENSMB 28.0 43.0 51.0 0.50 (0.03) 0.50 (0.03) 0.50 (0.04) 0.01 (0.05) 0.02 (0.07) 0.02 (0.07) 1.00 (0.03) 0.99 (0.03) 0.99 (0.04)

KNN1 10.0 58.0 64.0 0.50 (0.05) 0.51 (0.07) 0.51 (0.07) 0.09 (0.19) 0.11 (0.15) 0.12 (0.15) 0.98 (0.16) 0.94 (0.09) 0.94 (0.10)

LDA 33.0 19.0 11.0 0.50 (0.01) 0.52 (0.08) 0.52 (0.08) 0.01 (0.03) 0.14 (0.15) 0.16 (0.16) 1.00 (0.02) 0.99 (0.07) 0.99 (0.07)

NB 22.0 68.0 69.0 0.51 (0.06) 0.51 (0.11) 0.52 (0.11) 0.10 (0.19) 0.40 (0.32) 0.44 (0.32) 0.99 (0.19) 0.86 (0.27) 0.84 (0.29)

RF 12.0 47.0 60.0 0.50 (0.05) 0.50 (0.06) 0.51 (0.06) 0.05 (0.09) 0.07 (0.11) 0.08 (0.13) 0.96 (0.05) 0.98 (0.07) 0.98 (0.06)

SVCL 10.0 19.0 14.0 0.50 (0.00) 0.50 (0.05) 0.50 (0.05) 0.00 (0.00) 0.04 (0.09) 0.05 (0.10) 1.00 (0.00) 1.00 (0.04) 1.00 (0.05)

SVCR 23.0 47.0 64.0 0.50 (0.03) 0.50 (0.04) 0.51 (0.04) 0.01 (0.05) 0.03 (0.07) 0.04 (0.09) 1.00 (0.01) 0.99 (0.04) 0.99 (0.04)

Prostate effect

CART 16.0 67.0 19.0 0.51 (0.08) 0.52 (0.12) 0.53 (0.15) 0.04 (0.16) 0.08 (0.25) 0.10 (0.29) 0.99 (0.03) 0.97 (0.05) 0.97 (0.05)

ENSMB 21.0 44.0 56.0 0.51 (0.06) 0.51 (0.05) 0.50 (0.05) 0.02 (0.12) 0.02 (0.11) 0.01 (0.10) 1.00 (0.01) 1.00 (0.01) 1.00 (0.02)

KNN1 21.0 49.0 37.0 0.51 (0.07) 0.51 (0.08) 0.51 (0.09) 0.03 (0.15) 0.03 (0.16) 0.04 (0.18) 1.00 (0.14) 1.00 (0.05) 1.00 (0.07)

LDA 18.0 14.0 18.0 0.51 (0.06) 0.52 (0.12) 0.53 (0.13) 0.02 (0.11) 0.08 (0.24) 0.10 (0.26) 1.00 (0.02) 1.00 (0.04) 0.99 (0.04)

NB 14.0 38.0 62.0 0.52 (0.16) 0.52 (0.22) 0.54 (0.21) 0.43 (0.47) 0.85 (0.46) 0.84 (0.45) 0.88 (0.43) 0.53 (0.32) 0.56 (0.29)

RF 21.0 65.0 62.0 0.51 (0.08) 0.51 (0.07) 0.51 (0.07) 0.04 (0.15) 0.02 (0.14) 0.02 (0.15) 0.99 (0.02) 1.00 (0.02) 1.00 (0.02)

SVCL 10.0 12.0 18.0 0.50 (0.00) 0.50 (0.05) 0.50 (0.06) 0.00 (0.00) 0.01 (0.10) 0.02 (0.11) 1.00 (0.00) 1.00 (0.02) 1.00 (0.02)

SVCR 11.0 44.0 56.0 0.50 (0.00) 0.51 (0.06) 0.51 (0.06) 0.00 (0.00) 0.02 (0.12) 0.02 (0.11) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)

Table E.6: Performance of ML models that predict in vivo outcomes in testes and prostate on balanced

datasets (with SMOTE)

In vivo outcome
ML

algorithm

Number of

descriptors
Balanced Accuracy Sensitivity Specificity

bio chem cb bio chem cb bio chem cb bio chem cb

Spermatogenesis

testis

CART 33.0 68.0 37.0 0.52 (0.09) 0.51 (0.11) 0.52 (0.11) 0.09 (0.17) 0.13 (0.20) 0.16 (0.21) 0.94 (0.06) 0.89 (0.08) 0.88 (0.08)

ENSMB 32.0 24.0 11.0 0.51 (0.10) 0.51 (0.12) 0.51 (0.12) 0.11 (0.20) 0.19 (0.23) 0.16 (0.23) 0.92 (0.09) 0.82 (0.07) 0.86 (0.09)

KNN1 33.0 68.0 58.0 0.52 (0.09) 0.52 (0.14) 0.51 (0.14) 0.10 (0.19) 0.28 (0.27) 0.26 (0.28) 0.95 (0.12) 0.76 (0.09) 0.75 (0.10)

LDA 14.0 24.0 18.0 0.51 (0.13) 0.51 (0.15) 0.51 (0.15) 0.26 (0.24) 0.35 (0.29) 0.33 (0.29) 0.76 (0.20) 0.67 (0.10) 0.69 (0.09)

NB 31.0 59.0 63.0 0.48 (0.12) 0.50 (0.14) 0.50 (0.14) 0.46 (0.39) 0.68 (0.30) 0.69 (0.30) 0.50 (0.36) 0.31 (0.13) 0.30 (0.14)

RF 37.0 35.0 62.0 0.52 (0.09) 0.51 (0.08) 0.51 (0.08) 0.10 (0.18) 0.06 (0.15) 0.07 (0.15) 0.94 (0.05) 0.95 (0.06) 0.94 (0.05)

SVCL 29.0 68.0 11.0 0.50 (0.12) 0.50 (0.15) 0.50 (0.15) 0.29 (0.34) 0.45 (0.29) 0.27 (0.30) 0.72 (0.30) 0.56 (0.11) 0.74 (0.10)

SVCR 32.0 62.0 48.0 0.50 (0.08) 0.51 (0.10) 0.51 (0.11) 0.06 (0.16) 0.17 (0.20) 0.11 (0.21) 0.94 (0.10) 0.85 (0.10) 0.91 (0.09)

Interstitial cells

testis

CART 20.0 13.0 61.0 0.51 (0.05) 0.52 (0.09) 0.52 (0.10) 0.06 (0.11) 0.20 (0.18) 0.18 (0.18) 0.97 (0.05) 0.89 (0.09) 0.89 (0.09)

ENSMB 28.0 43.0 51.0 0.50 (0.03) 0.50 (0.03) 0.50 (0.04) 0.01 (0.05) 0.02 (0.07) 0.02 (0.07) 1.00 (0.03) 0.99 (0.03) 0.99 (0.04)

KNN1 10.0 58.0 64.0 0.50 (0.05) 0.51 (0.07) 0.51 (0.07) 0.09 (0.19) 0.11 (0.15) 0.12 (0.15) 0.98 (0.16) 0.94 (0.09) 0.94 (0.10)

LDA 33.0 19.0 11.0 0.50 (0.01) 0.52 (0.08) 0.52 (0.08) 0.01 (0.03) 0.14 (0.15) 0.16 (0.16) 1.00 (0.02) 0.99 (0.07) 0.99 (0.07)

NB 22.0 68.0 69.0 0.51 (0.06) 0.51 (0.11) 0.52 (0.11) 0.10 (0.19) 0.40 (0.32) 0.44 (0.32) 0.99 (0.19) 0.86 (0.27) 0.84 (0.29)

RF 12.0 47.0 60.0 0.50 (0.05) 0.50 (0.06) 0.51 (0.06) 0.05 (0.09) 0.07 (0.11) 0.08 (0.13) 0.96 (0.05) 0.98 (0.07) 0.98 (0.06)

SVCL 10.0 19.0 14.0 0.50 (0.00) 0.50 (0.05) 0.50 (0.05) 0.00 (0.00) 0.04 (0.09) 0.05 (0.10) 1.00 (0.00) 1.00 (0.04) 1.00 (0.05)

SVCR 23.0 47.0 64.0 0.50 (0.03) 0.50 (0.04) 0.51 (0.04) 0.01 (0.05) 0.03 (0.07) 0.04 (0.09) 1.00 (0.01) 0.99 (0.04) 0.99 (0.04)

Prostate effect

CART 10.0 59.0 60.0 0.50 (0.11) 0.53 (0.15) 0.52 (0.15) 0.07 (0.24) 0.12 (0.29) 0.10 (0.29) 0.93 (0.12) 0.94 (0.05) 0.94 (0.05)

ENSMB 22.0 55.0 69.0 0.50 (0.15) 0.54 (0.18) 0.54 (0.17) 0.14 (0.29) 0.20 (0.35) 0.20 (0.35) 0.87 (0.16) 0.89 (0.06) 0.88 (0.06)

KNN1 30.0 63.0 69.0 0.50 (0.12) 0.54 (0.19) 0.53 (0.19) 0.07 (0.27) 0.20 (0.38) 0.19 (0.38) 0.93 (0.16) 0.88 (0.07) 0.87 (0.07)

LDA 12.0 68.0 56.0 0.50 (0.20) 0.58 (0.22) 0.57 (0.22) 0.39 (0.44) 0.45 (0.43) 0.42 (0.43) 0.62 (0.31) 0.72 (0.09) 0.73 (0.08)

NB 26.0 66.0 53.0 0.51 (0.19) 0.53 (0.22) 0.51 (0.22) 0.64 (0.45) 0.77 (0.45) 0.77 (0.45) 0.39 (0.27) 0.28 (0.12) 0.25 (0.12)

RF 14.0 63.0 69.0 0.50 (0.13) 0.51 (0.10) 0.51 (0.09) 0.09 (0.26) 0.05 (0.21) 0.05 (0.18) 0.92 (0.12) 0.97 (0.03) 0.97 (0.04)

SVCL 26.0 67.0 69.0 0.50 (0.20) 0.59 (0.22) 0.58 (0.22) 0.47 (0.44) 0.46 (0.43) 0.44 (0.43) 0.54 (0.32) 0.72 (0.10) 0.72 (0.09)

SVCR 10.0 55.0 69.0 0.51 (0.14) 0.52 (0.14) 0.51 (0.13) 0.12 (0.28) 0.10 (0.28) 0.11 (0.26) 0.90 (0.11) 0.94 (0.05) 0.92 (0.05)
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