
HAL Id: tel-02612943
https://theses.hal.science/tel-02612943v1

Submitted on 19 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing and Programming Malleable Software
Philip Tchernavskij

To cite this version:
Philip Tchernavskij. Designing and Programming Malleable Software. Human-Computer Interaction
[cs.HC]. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLS499�. �tel-02612943�

https://theses.hal.science/tel-02612943v1
https://hal.archives-ouvertes.fr


Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LS
49

9

Designing and Programming
Malleable Software

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’Université Paris-Sud

École doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique (Interaction Homme-Machine)

Thèse présentée et soutenue à Orsay, le 03/12/2019, par

PHILIP TCHERNAVSKIJ

Composition du Jury :

Jean-Daniel Fekete
Directeur de Recherche, INRIA Unité de Recherche Saclay Président

Stéphane Conversy
Professeur, ENAC-LII et Université de Toulouse Rapporteur

Nicolai Marquardt
Associate Professor, University College London Rapporteur

Myriam Lewkowicz
Professeur, Université de Technologie de Troyes Examinatrice

Jutta Treviranus
Professor, OCAD University Examinatrice

Michel Beaudouin-Lafon
Professeur certifié, Université Paris-Sud Directeur de thèse



ii



iii



Titre : Concevoir et programmer des logiciels malléables

Mots clés : Interaction Homme-Machine, Modélisation Conceptuelle, Ingénierie des Systèmes Interactifs

Résumé : Les besoins des utilisateurs en matière
de fonctionnalités et d’interfaces logicielles sont variés
et changeants. Mon objectif est de permettre aux uti-
lisateurs eux-mêmes de facilement modifier ou faire
modifier leur logiciel en fonction de l’évolution de
leurs besoins. Toutefois, à mon avis, les approches
actuelles ne traitent pas cette question de façon
adéquate: L’ingénierie logicielle favorise la flexibilité
du code mais, dans la pratique, cela n’aide pas les uti-
lisateurs finaux à apporter des changements à leurs
logiciels. Les systèmes permettant à l’utilisateur de
programmer en direct (“live programming”) ou de mo-
difier le code du logiciel (“end-user programming”)
permettent aux utilisateurs de personnaliser les inter-
faces de leur logiciel en accédant et modifiant le code
source. J’adopte une approche différente, qui cherche
à maximiser les modifications qui peuvent être faites
à travers des interactions habituelles, par exemple la
manipulation directe d’éléments d’interface. J’appelle
cette approche la malléabilité logicielle. Pour com-
prendre les besoins des utilisateurs et les obstacles
à la modification des logiciels interactifs, j’étudie com-
ment les logiciels actuels sont produits, maintenus,
adoptés et appropriés dans un réseau de commu-
nautés travaillant avec des données sur la biodiver-
sité. Je montre que le mode de production des lo-
giciels, c’est-à-dire les technologies et les modèles
économiques qui les produisent, est biaisé en fa-
veur de systèmes centralisés et uniformisés. Cela
m’amène à proposer un programme de recherche in-
terdisciplinaire à long terme pour repenser les ou-

tils de développement logiciel afin de créer des in-
frastructures pour la pluralité. Ces outils peuvent ai-
der de multiples communautés à collaborer sans les
forcer à adopter des interfaces ou représentations de
données identiques. Le logiciel malléable représente
une telle infrastructure, dans laquelle les systèmes in-
teractifs sont des constellations dynamiques d’inter-
faces, de dispositifs et de programmes construits au
moment de leur utilisation. Ma contribution technolo-
gique est de recréer des mécanismes de program-
mation pour concevoir des comportements interac-
tifs. Je généralise les structures de contrôle existantes
pour l’interaction en ce que j’appelle des intrications
(“entanglements”). J’élabore une structure de contrôle
d’ordre supérieur, les intricateurs (“entanglers”), qui
produisent ces intrications lorsque des conditions
préalables particulières sont remplies. Ces conditions
préalables sont appelées co-occurrences. Les intrica-
teurs organisent l’assemblage des interactions dyna-
miquement en fonction des besoins des composants
du système. Je développe ces mécanismes dans Tan-
gler, un prototype d’environnement pour la construc-
tion de logiciels interactifs malléables. Je démontre
comment Tangler supporte la malléabilité à travers
un ensemble de cas d’étude illustrant comment les
utilisateurs peuvent modifier les systèmes par eux-
mêmes ou avec l’aide d’un programmeur. Cette thèse
est un premier pas vers un paradigme de programma-
tion et de conception de logiciels malléables capables
de s’adapter à la diversité des usages et des utilisa-
teurs.



Title : Designing and Programming Malleable Software

Keywords : Human-Computer Interaction, Conceptual Modeling, Engineering of Interactive Systems

Abstract : User needs for software features and in-
terfaces are diverse and changing, motivating the goal
of making it as easy as possible for users themselves
to change software, or to have it changed on their
behalf in response to their developing needs. Howe-
ver, in my opinion, current approaches do not address
this issue adequately: software engineering promotes
flexible code, but in practice this does not help end-
users effect change in their software. End-user and
live programming systems help users customize their
interfaces by accessing and modifying the underlying
source code. I take a different approach, seeking to
maximize the kinds of modifications that can take
place through regular interactions, e.g. direct manipu-
lation of interface elements. I call this approach mal-
leable software. To understand contemporary needs
for and barriers to modifying software, I study how
it is produced, maintained, adopted, and appropria-
ted in a network of communities working with bio-
diversity data. I find that the mode of software pro-
duction, i.e. the technologies and economic relations
that produce software, is biased towards centralized,
one-size-fits-all systems. This leads me to propose
a long-term, interdisciplinary research program in re-

forming the tools of software development to create
infrastructures for plurality. These tools should help
multiple communities collaborate without forcing them
to consolidate around identical interfaces or data re-
presentations. Malleable software is one such infra-
structure, in which interactive systems are dynamic
constellations of interfaces, devices, and programs
assembled at the site of use. My technological contri-
bution is a reconstruction of the programming mecha-
nisms used to create interactive behavior. I generalize
existing control structures for interaction as entangle-
ments, and develop a higher-order control structure,
entanglers, which produces entanglements when par-
ticular pre-conditions, called co-occurrences, are met.
Entanglers cause interactions to be assembled dyna-
mically as system components come and go. I deve-
lop these mechanisms in Tangler, a prototype environ-
ment for building malleable interactive software. I de-
monstrate how Tangler supports malleability through
a set of benchmark cases illustrating how users can
modify systems by themselves or with programmer
assistance. This thesis is an early step towards a pa-
radigm for programming and designing malleable soft-
ware that can keep up with human diversity.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France





vii

Contents

1 Introduction 5

1.1 Thesis Statement 6

1.2 Research Approach 7

1.3 Thesis Overview 9

1.4 Publications and Collaborators 10

2 Background 13

2.1 Computer Artifacts 13

2.2 The Relationship Between Design and Use 14

2.3 Accounting for Multiplicity with Artifact Ecologies 15

2.4 Tracing Extended Socio-Technical Systems with Infrastructures 16

2.5 Designing Tailorable Software 18

2.6 The App Paradigm 22

2.7 Key Takeaways from Chapter 2 29

3 Contemporary Software Design and Use in a Biodiversity Network 31

3.1 Method 33

3.2 Communities and their artifact ecologies 38

3.3 Contrasting Design Practices 51

3.4 Infrastructures for Plurality 55

3.5 Conclusion 59

3.6 Key Takeaways from Chapter 3 61

4 Malleable Software 63

4.1 Scenarios 66



viii

4.2 Discussion of scenarios 73

4.3 Key Takeaways from Chapter 4 77

5 Entanglers: A Programming Model for Malleable Software 79

5.1 Related work 81

5.2 Conceptual Model: Co-occurrences and Entanglements 88

5.3 Prototype Implementation: Tangler 90

5.4 Demonstrations 98

5.5 Discussion 105

5.6 Conclusion 107

5.7 Key Takeaways from Chapter 5 109

6 Conclusions 111

6.1 Thesis contributions 112

6.2 Directions for future research 113

6.3 Concluding comments 115

Bibliography 128

Résumé Détaillé 129



ix

List of Figures

1.1 Method triangulation in this thesis. ‘Observation’ is shorthand for
empirical investigations. Filled boxes are original research contri-
butions and outlined boxes are existing work that I apply. 9

3.1 A map of the personal and community artifact ecology of AS and
GBP. Personal and communal artifacts are grouped in transpar-
ent circles around individuals and groups. Online platforms and
artifacts are grouped in grey circles around their domains. Text
in ovals are activities, connected to participating people and arti-
facts. 45

3.2 A map of the personal and community artifact ecology of KL and
MBP. 47

4.1 Adding visualization tools to a chat environment by extracting
and assembling existing interface elements 65

4.2 The QGIS and Windows color pickers. 66

4.3 In contemporary apps, transporting an interface elements requires
first reversing the development process at the source, and then re-
iterating it at the destination. This process is not only exceedingly
complicated, the resulting artifact is also likely unsupportable in
the long term. 68

4.4 A view of one contributor’s observations on iNaturalist 69

4.5 The source code for iNaturalist in GitHub 71

5.1 Interface elements should be continuously re-connected as the
pre-conditions for particular interactions occur. 80

5.2 It should be possible to create or refine interactions among ele-
ments via additive adaptations. 80

5.3 In environments based on live objects, such as Lively, it is possible
to move interface elements between contexts, but the relationships
connecting them to their environments are likely to break in the
process. 85



x

5.4 An example of a network of interconnected webstrates. The blue
arrows are transclusions establishing application-document rela-
tionships. a) A paper, displayed on a mobile device. b) A poem.
c) Bob’s word processor editing a and b on his desktop computer.
d) Bob’s annotation webstrate which lets Bob hand-annotate web-
strates with his tablet and stylus. e) Alice’s HTML markup editor,
editing the paper a on her laptop. f) Alice’s script editor, extend-
ing Bob’s word processor on a different window of her laptop.

86

5.5 The procedure for creating entanglements from entanglers in our
programming model, illustrated with the click-through color swatch
interaction. 1: the state of elements in the system is continuously
monitored by the co-occurrence engine. 2: entanglers describe a
co-occurrence, the pre-conditions for an entanglement. The co-
occurrence engine matches this description against the system
state, and reports any successful matches. 3: entanglers contain
a template of an entanglement, which combines the co-occurring
elements with a behavior, enacting the desired integration. When
the co-occurrence engine reports a match, this template is used
to construct an entanglement with references to the co-occurring
elements. 4: the entanglement complex drives a new interaction,
causing further changes to system state. 89

5.6 TANGLER and its auxiliary modules. 93

5.7 The development of the TANGLER component tree in response to
the color swatch adaptation. Explanations in the text. 94

5.8 Original color swatch 95

5.9 Mixin to extend the color swatch 96

5.10 Option distribution to enact the mixin 96

5.11 Click-through behavior entangler for the color swatch 97

5.12 The desired behavior associated with the Connector element. Note
how the adaptation is not bounded by one object, but adds new
behavior both for the handle element and any element it becomes
attached to. 98

5.13 The line component 99

5.14 The connector component 100

5.15 The entangler for connectors 101

5.16 The behavior associating mice and cursors before and after the
desired adaptation. 102

5.17 The initial mouse policy 103

5.18 The mouse entangler 104

5.19 The mouse distributor 104



xi

5.20 A comparison of the distribution of work for various models for
programming interactions. The horizontal axis represents the life
cycle of an interaction in five phases: describing elements to be in-
tegrated, describing the behavior of the interaction, activating the
interaction by binding the behavior to concrete system elements,
the period of time where the interaction is in effect, and the mo-
ment where it is unbound or destroyed. For each kind of interac-
tion, each phase is enacted either by writing and executing code,
or by acting on the interface that houses the interaction. 106





1

Acknowledgements

An extended network of collaborators, facilitators, mentors, and friends
contributed to the production of this thesis and to my growth as a
researcher during my doctoral studies. I am grateful for the encour-
agement, shared wisdom, assistance, critiques, and care of everyone I
mention below and more.

This work was done in engagement with three research communi-
ties that were my intellectual homes for three years and change: the
ex)situ research group at Université Paris-Saclay, the center for Par-
ticipatory Information Technology (PIT) at Aarhus university, and the
Temporary Comp Collective, a loose international network of technol-
ogists with shared interests in philosophical and political perspectives
on programming and software. These groups formed a nutrient-rich
substrate that supported my everyday research activities of reading,
writing, thinking, listening, and talking. Each community introduced
me to their conceptual tools, shared their histories and open questions,
and invited me to build with and on them.

ex)situ was my daily workplace and site of many enriching PhD semi-
nars and coffee break discussions. I am thankful for all my fellow PhD
students and interns, who maintain a reciprocal, nurturing work en-
vironment, to which I hopefully contributed. Aarhus University was
my alma mater, and members of PIT were consistently present on the
periphery of my research life through online conversations and oc-
casional visits back and forth between Paris and Aarhus. I especially
appreciate Susanne Bødker for inviting me back to Aarhus on multiple
occasions, and lending me an office on my visits.

By contrast to these established Human-Computer Interaction research
groups, the Temporary Comp Collective is nascent and consists of
members in multiple places and disciplines. We are connected by



2

a desire to articulate how programming and software might be at-
tuned to political values that contrast their historically industrialist
ones – such as social equity and citizen participation. This desire
was reflected in our online reading groups and at the Salon des Re-
fusés workshops at the <PROGRAMMING> conference, which I had
the pleasure to co-organize. In this open-ended space of possibility,
Luke Church, Colin Clark, Andrea diSessa, Jonathan Edwards, Joel
Jakubovic, Stephen Kell, Clayton Lewis, Mariana Mărăs, oiu, Tomas Pet-
ricek, and Oli Sharpe facilitated early steps in developing my own
long-term research interests and extending my disciplinary bound-
aries.

Among these communities, a few individuals were my sustained part-
ners in research as mentors and collaborators. Michel Beaudouin-
Lafon was my thesis supervisor. He was an attentive editor of my
work, and helped me improve as a writer, programmer, and presenter.
Michel also gave me the independence to pursue my project through
its twists and turns. While this rarely led to straightforward outcomes,
I am grateful for the opportunity to repeatedly question my own ques-
tions. Clemens Klokmose set me on the path toward this work when
he showed me a strange piece of web technology hackery called Web-
strates during my master’s degree studies, leading to an independent
study project, a master’s thesis, and applying for a PhD position. He
was my first researcher role model, and has given much pragmatic ad-
vice and reassurance at important moments. I met Antranig Basman
a few months into the PhD, and he quickly became my closest collab-
orator for the rest of it. He helped me ask many surprising, frustrat-
ing, and necessary questions, in our long-running instant messaging
chats and in his family’s home in London. This dissertation would
be unrecognizably different without his influence. Among my fellow
doctoral students, Carla Griggio and Midas Nouwens shared my inter-
est in characterizing and dismantling the software application. They
showed me what that might look like through their research and many
stimulating conversations.

I was lucky to carry out studies, program prototypes, and co-author
papers with Antranig Basman, Simon Bates, Ghita Jalal, Clemens Klok-
mose, Wendy Mackay, Nolwenn Maudet, Midas Nouwens, and An-
drew Webb.

I am indebted to the participants of the multiple interview studies
I helped carry out, who generously shared their time and inspiring
insights. In particular I would like to thank Dimitri Brosens, Keith
Erickson, Adam Huggins, Andrew Simon, and the iNaturalist team,



3

whose contributions are presented in this thesis.

Stéphane Conversy, Jean-Daniel Fekete, Myriam Lewkowicz, Nicolai
Marquardt, and Jutta Treviranus constituted the jury for my defense.
It was a joy to answer their thoughtful questions and critiques, and I
carry them with me into my future work.

Wendy Mackay, the director of ex)situ, made (and continues to make)
a massive effort to pass on the craft skills of research to all of ex)situ.
Gladys Bakayoko, Alexandra Merlin, and Emmanuelle Theneau, ad-
ministrative workers at Laboratoire de Recherche en Informatique,
helped me through many bureaucratic hoops and were patient with
my bad French. I had the great pleasure of mentoring Jiali Liu and
Miguel Renom during their master’s thesis projects. Raphaël James
was a great co-instructor in the Fundamentals of Human-Computer In-
teraction course. Randy Trigg, whose research has inspired me greatly,
sent me his thoughts on the relationship between tailorable systems
and participatory design.

Moving to and living in Paris was periodiodically overwhelming. The
many wonderful friends I made there provided a stimulating life around
the work, and helped me survive and thrive. Carla Griggio and Ger-
mán Leiva were my adoptive parents for my year and a half in Orsay.
Andrew Webb, The English Speaking RPG in Paris community, and
the Glassjaw Appreciation Society were my partners in tabletop role-
playing adventures. John MacCallum helped transfigure despair into
acceptance. Jean-Philippe Rivière and Liz Walton got me in shape.
Léna Delval and Stacy Hsueh kickstarted my cultural life in Paris by
taking me to many great gigs. Oleksandr Zinenko and Nacho Avellino
patiently helped me navigate the bureaucratic entanglements of the
university and the state. François Maes and Jeanne Nietsczhke were
standout housemates at the Fondation Danoise. Bradley Kennedy sent
me poetry and recipes. Jingyi Li shared many good pictures of vape
shops. Vanessa Peña Araya was my favorite dance partner.

I gratefully acknowledge the sources of funding that made this re-
search possible. I was funded throughout my PhD by the European
Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme grant agreement nº 695464 “ONE -
Unified Principle of Interaction”, and my work with Nolwenn Maudet
and Andrew Webb was partially funded by ERC grant nº 321135 “CRE-
ATIV: Creating Co-Adaptive Human-Computer Partnerships”.





5

1
Introduction

We live in an age of ubiquitous computing. In the developed world,
it is commonplace to own, use, and have access to multiple digital
devices1 with different formats, running multiple domain-specific ap-

1 See, e.g., demographic data about tech-
nology adoption in Europe (Eurostat,
2016, 2018) and the United States (An-
derson, 2015; Anderson and Perrin,
2017).

plications (apps). These technologies are increasingly essential for ev-
eryday life, including participation in political and economic life. Con-
currently, people experience diverse and ongoing mismatches between
what digital tools offer them and what they need: a word proces-
sor may function well for most users, but be cumbersome for those
who often need to reference or copy material from outside the edi-
tor. An app’s shortcuts may help some users become more efficient,
but frustrate others who simultaneously use other apps with differ-
ent shortcuts for similar commands. These kinds of mismatches may
be everyday frustrations for the majority of users, but can also effec-
tively exclude users experiencing disabilities. For example, a mouse-
based interface may be unusable by people with temporarily or per-
manently impaired hand dexterity. In addition to such physical and
cognitive mismatches, digital tools may also be mismatched with hu-
man social and economic needs. For example, freelance workers’ labor
value is tied up in digital tools that they have invested in owning and
learning, and this value may be threatened when that technology is
changed, deprecated, or incompatible with the tools preferred by an
employer (Nouwens and Klokmose, 2018).

In practice, many people become adept at marshaling resources to
deal with such mismatches, e.g., creating workarounds (Gasser, 1986),
adapting technologies themselves or with the help of more capable



6

peers (Mackay, 1990b), lobbying for different technologies (Bødker
et al., 2016a), or creating support systems for learning (Clement, 1993).
This “work to make technology work” is inherent in technology use (Such-
man, 2002), but in practice, the most severe costs are passed onto
communities that fall outside designed-for norms. The contemporary
landscape of interactive software operates as a “designer-knows-best”
model that gives users very few opportunities to change their software
or to make different pieces of software work together as they see fit.
Tailorable systems researchers investigate how software systems can
be made more amenable to adaptation, i.e. how to design systems that
are as easy as possible to adapt at the site of use, whether by its direct
users or by supporting developers (MacLean et al., 1990; Schmidt and
Bannon, 1992). However, the seminal research in this tradition mostly
studied office environments in the early days of personal computing.

In this thesis, I investigate challenges to user appropriation of digital
tools in contemporary software use and production practices, and op-
portunities for reducing the cost and increasing the value of appropri-
ation. This thesis belongs to the field of Human-Computer Interaction
(HCI), which broadly aims to understand technology use and propose
future technologies. My research theme is how we may rethink the
conceptual model and principles of software to better support ongo-
ing design by its direct users and their peers. My research questions
are

• How does today’s infrastructure for software production and use
shape the kinds of design and adaptations that actually happen?

• How does an ecological view of software in use challenge the theory
and practice of tailorable systems, which is largely based around a
single uniform system in use by an individual or community?

• How can interactive behaviors be turned into units of software that
programmers can gradually add, remove, substitute, and amend?

• How can non-programming users be given effective control of such
open-ended interactive behaviors?

1.1 Thesis Statement

Today’s infrastructure of software development and use manifests it-
self in network effects that benefit large platforms and in integration



7

costs that penalize users who appropriate, tailor, and create digital
tools. These lead even small non-commercial software developers to
practice top-down, assimilative design that pushes diverse user prac-
tices to the margins. While user communities are resilient and creative
in working around platform limitations, their solutions are often frag-
ile and clunky. This motivates research into infrastructures for plural-
ism, which reduce the cost of collaboration between communities that
have made different choices regarding interfaces, functionality, data
representations, etc. I introduce malleable software as a design vision
that reconstructs the goals of tailorable systems with pluralism as a
guiding value. Malleable software is made up of interface elements
untangled from the closed worlds of apps, which can be developed by
different authors and (re-)combined by end users. I contribute toward
enabling malleable software by creating a programming model based
on entanglers, which makes interactions less brittle and more adaptable
compared to state-of-the-art programming tools.

1.2 Research Approach

I developed my thesis in the context of the European Research Council
Advanced Grant project ONE2. ONE aims to respond to the contempo-

2 http://www.erc.onerary multiplicity and diversity of digital tools by building a conceptual
model that unifies a wide variety of interaction styles and creates more
open and flexible interactive environments (Beaudouin-Lafon, 2017).
The conceptual model seeks to define interactive systems as combi-
nations of substrates to manage digital information and instruments to
manipulate substrates, both of which can be (re-)combined at will by
users.

The work in this thesis began as an investigation of what kinds of
technical infrastructures might support interfaces based on substrates
and instruments. Eventually, this work grew to encompass social and
economic infrastructures as well, as I came to understand that the pro-
ductive forces of software, e.g. the languages, editors, architectures,
and run-time environments are entangled with particular relations of
production, e.g. the ways software is packaged and sold, and the way
in which agency and labor is distributed among designers and users.
I then steered my research to investigate software adaptation socio-
technically, i.e. both in terms of organizational and technological sup-
port.

This thesis follows a typical HCI research pattern of problematizing

http://www.erc.one


8

current technology use and proposing future artifacts that may amelio-
rate the discovered problems. Whereas I begin by describing problems
occurring in a real case, I have not “closed the design loop” by evaluat-
ing my design concepts or mechanisms in a real-world setting. There
are pragmatic and conceptual barriers to carrying out such an evalua-
tion. For one, malleable software proposes significantly re-engineering
many parts of the technology stack that underlies contemporary soft-
ware, making a realistic implementation far beyond the scope of a PhD
thesis. On the other hand, a toy version of a malleable software system
would exclude participants from using their regular digital tools, de-
stroying the ecological validity of a field study. Instead, I have aimed
to design and evaluate manageable pieces of a feasible future infras-
tructure3.

3 Kari Kuutti has described a related
practical and epistemological challenge
in HCI: he argues the field is split be-
tween “blunt edge” and “leading edge”
research. Blunt edge research seeks to
understand technology use in the real
world, while leading edge research seeks
to develop future technologies. Knowl-
edge from one end is not trivially ap-
plicable at the other end. In one direc-
tion, we can’t necessarily derive general
design requirements from studying real
practices. In the other direction, we can’t
necessarily predict whether a given tech-
nology will be generally useful across
use contexts (Kuutti, 2019).

I apply techniques from across engineering and social sciences. I
triangulate methods from theoretical, empirical, and design perspec-
tives (Mackay and Fayard, 1997). Triangulation is a research strategy
that combines different methodological approaches to help manage
trade-offs between generalizability, precision, and existential realism.

Theoretical Work I take three theoretical perspectives on what software
is and how it changes:

• artifact ecologies and infrastructuring: software is a kind of mediat-
ing artifact occurring in ecologies of physical and digital artifacts
used by individuals or groups to support a web of related activities.
These artifact ecologies change continuously, through open-ended
means ranging from custom development to workarounds (Bødker
and Klokmose, 2012; Bødker et al., 2016b; Star and Bowker, 2002).

• programs and authorial networks: software is source code and run-
time representations of programs, which are the targets of authorial
gestures, such as (re-)writing code, composing modules, and instan-
tiating classes (Basman et al., 2018a).

• interfaces and tailoring: software is an interface made up of objects
such as icons, windows, and cursors, and interactions such as point-
ing, dragging, copying and pasting, etc., and is changed by config-
uration and customization, carried out with specialized parts of the
interface, such as configuration files, scripts, and plug-ins (Mackay,
1990b; MacLean et al., 1990).

I apply these perspectives analytically in chapters 3, 4, and 5 respec-
tively. The phenomena that each of them bring into focus interact.



9

Applying multiple perspectives helps me address these interactions,
as well as arguable blind spots. For example, one interaction is the
relationship between software adaptation practices in the wild and the
software engineering notion of flexible programs. Based on the find-
ings of our case study and my design goals, I argue in chapter 4 that
the flexibility goals of typical software engineering literature are ex-
tremely conservative, and ignore the pragmatic reality that most end
users, whose needs motivate adaptation, have no effective access to an
even notionally adaptable form of their software. This then leads me to
argue for more ambitious conceptions and tests of software flexibility.

Theory Design Observation

case 
study

infrastructures 
for plurality

malleable
software

modes of
software 

production

SE and ID
critiques

chapter 3

chapter 4 chapter 5

chapter 2

artifact
ecologies

infrastructures

entanglers

Figure 1.1: Method triangulation in this
thesis. ‘Observation’ is shorthand for
empirical investigations. Filled boxes are
original research contributions and out-
lined boxes are existing work that I ap-
ply.

Empirical Work I co-designed and carried out the case study pre-
sented in chapter 3. The primary data collection method was inter-
views, with additional screenshots, code, documents, and communi-
cations collected from online discussion forums, source code reposi-
tories, etc. We analyzed the data using meaning condensation (Flick
et al., 2007) in a deductive mode, seeded with the conceptual vocabu-
laries of artifact ecologies and infrastructuring. We used artifact ecol-
ogy mapping as a further analytical aid (Bødker et al., 2017). In chap-
ter 4 and 5, I analyze programming techniques and runtime forms
representative of current software development methods in relation to
the design goals for malleable software. I argue that these are unsatis-
factory both in terms of software engineering and interaction design.

Design Work I co-designed a programming model based on the novel
concept of entanglers. I developed a prototype implementation of this
model with web technologies, TANGLER. I evaluated TANGLER through
demonstrations illustrating the kinds of program adaptations it en-
ables, and compared it to related programming literature.

1.3 Thesis Overview

I did not carry out the research presented in this thesis in the chap-
ter order. Instead, I have structured the text to present my argument
and findings in an orderly way: earlier chapters give a language and
context within which to understand later ones.

In chapter 2, I present the theoretical background that grounds the
research questions and design approaches of this thesis, reviewing re-
lated work on software use, design, and the relationship between the
two.



10

In chapter 3, I investigate the needs for and barriers to software adap-
tation today in a case study of a biodiversity research network, and
introduce the overarching goal of developing socio-technical infrastruc-
tures for plurality: relations and techniques for producing software that
lets diverse user communities collaborate without having to consoli-
date their technologies.

In chapter 4, I define malleable software as one proposed infrastructure
of plurality. Malleable software is the concept of interfaces that consist
of interactive artifacts that may be freely pulled apart and (re-)com-
bined as part of use, by contrast to the app ecosystems that define
software today, in which each app defines an independent interface
that may only interact with the outside world through limited, pre-
scribed means such as exchanging files. I describe research problems
for implementing malleable software within the disciplines of software
engineering and interaction design.

In chapter 5, I describe the design and prototype of a programming
model motivated by malleable software. The goal of this model to
enable developers to create interfaces and interactions that are robust
and flexible enough to function in a software environment where parts
of the interface come and go continuously. It does so by introducing
the mechanism of entanglers, which define interactive relationships as
a combination of a co-occurrence, a machine-recognizable description
of things that may interact, and an entanglement, a relationship to be
instantiated among those things when they co-occur.

In chapter 6, I conclude with a summary of my contributions, and a
discussion of possible topics for future work.

1.4 Publications and Collaborators

While working on this thesis, I presented some of the content in re-
search publications and public presentations. Rather than being a
way of sharing essentially finished work, writing, presenting, and dis-
cussing my work has been instrumental in the larger research process.
It has helped me connect to additional literature, refine my questions
and contributions, and begin collaborations.

This thesis comprises material from the following papers:



11

[HCI.Tools] Philip Tchernavskij. Decomposing Interactive Systems. In
the HCI.Tools workshop at CHI ’17.

[SDR17] Philip Tchernavskij, Clemens Nylandsted Klokmose,
and Michel Beaudouin-Lafon. What Can Software Learn
from Hypermedia?. In Conference Companion of the 1

st

International Conference on the Art, Science, and
Engineering of Programming (PROGRAMMING ’17).
https://doi.org/10.1145/3079368.3079408

[SDR18] Antranig Basman, Philip Tchernavskij, Simon Bates,
and Michel Beaudouin-Lafon. An Anatomy of
Interaction: Co-ocurrences and Entanglements. In the
Conference Companion of the 2

nd International
Conference on the Art, Science, and Engineering of
Programming (PROGRAMMING ’18).
https://doi.org/10.1145/3191697.3214328

[PPIG18] Antranig Basman, Philip Tchernavskij. What Lies in the
Path of the Revolution. In Proceedings of the 29th
Annual Workshop of the Psychology of Programming
Interest Group (PPIG ’18).

[InPrep1] Philip Tchernavskij, Antranig Basman, Midas
Nouwens, and Michel Beaudouin-Lafon. Control and
Ownership of Artifact Ecologies in a Biodiversity Research
Network. In preparation.

[InPrep2] Philip Tchernavskij, Antranig Basman, Clemens
Klokmose, and Michel Beaudouin-Lafon.
Co-Occurrences and Entanglements: A Programming Model
for Open-Ended Interactive Systems. Submitted to the
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems.

The initial technological framing for my thesis was developed in col-
laboration with Clemens Klokmose and Michel Beaudouin-Lafon, and
presented in [HCI.Tools] and [SDR17].

An earlier version of the case study presented in chapter 3 appears
in [PPIG18]. Antranig Basman began the empirical investigation in-
dependently and proposed the initial research framing. The full case
study appears in [InPrep1]. Antranig Basman and I planned and car-
ried out the interviews and additional data gathering. Midas Nouwens,
Antranig Basman, and I contributed equally to the analysis and writ-
ing.

Iterations of the programming model presented in chapter 5 appear in

https://doi.org/10.1145/3079368.3079408
https://doi.org/10.1145/3191697.3214328


12

[SDR18] and [InPrep2], and were presented in talks I gave at Aarhus
University, OCAD University, the 2019 Common Interactive Object
Symposium, and the University of Cambridge. Michel Beaudouin-
Lafon and Clemens Klokmose conceived of the notion of entangle-
ments previously, and I began working on elaborating it into a toolkit
for interactive systems in 2016. Simon Bates independently developed
the concept of co-occurrences and the first prototype co-occurrence
engine in connection with the Global Public Inclusive Infrastructure
(GPII) project4. In May 2017, Simon Bates, Antranig Basman, and I

4 https://gpii.net/began an ongoing discussion and idea exchange relating to the design
and development of highly adaptable software. This led to the creation
of the entangler programming model, initially presented along with
several early prototypes in [SDR18]. I continued to develop the pro-
totype that turned into TANGLER throughout most of my thesis work,
and the versions of the model and prototype presented in this thesis
appear in [InPrep2].



13

2
Background

I review research on three overlapping phenomena of human-computer interac-
tion: the nature of contemporary technology use and production; the relation-
ship between technology design and use; and technological support for contin-
ued design and appropriation of technology in use. I also review recent work
seeking to characterize how software is produced and used today, and especially
how production techniques and practices manifest in use. This literature pro-
vides the basic vocabulary of my research, and provides a framework for my
research questions.

2.1 Computer Artifacts

To clarify and bound the notion of a digital tool, I take on Bødker’s
definition of computer-based artifacts. In Bødker’s terminology, an ar-
tifact is an object that mediates human actions toward other objects
or subjects (Bødker, 1991, pp. 36–44). It encompasses the common-
sense notion of tools such as pens, but also paper, screens, notations,
and graphical user interfaces (GUIs). Artifacts can temporarily “disap-
pear” in use, i.e. letting subjects direct their attention primarily at the
object of work. Bødker also defines the concept of a breakdown as a
situation in which this mediating relationship is broken and the subject
must direct their attention toward the artifact. For example, a pen may
cease to put ink on paper, causing the writer to diagnose and fix the
issue with the pen, substitute another one, or cease writing altogether.
When we analyze a computer interface, we are usually interested in
its properties as a mediating artifact: whether it suits the physical and



14

cognitive capabilities of users, draws attention to the salient objects
of work, and supports the instrumental and communicative aspects
of routine tasks. Bødker’s theoretical framework is cultural-historical
activity theory (Bødker, 1991, p. 23), but this definition of artifacts is
useful “common coin” for all HCI researchers who want to describe
the category of things they study (Nardi, 1996, pp. 10–14). It clari-
fies that 1) analog and digital artifacts are not different in essence, but
mediate human actions differently; 2) what is an artifact is subjective:
it is a role assigned to objects in use, not embedded in the process of
design; 3) the properties of an artifact are relational: the same app has
different properties based on the user, device, activity, and so on; and
4) artifacts can be studied at multiple scales, e.g., we can analyze an
app as a whole, but we can also focus on the scrollbar widget as an ar-
tifact that reoccurs across apps (sometimes with different properties).

2.2 The Relationship Between Design and Use

In HCI, design is often framed as a formalized process that ends when
technology is put into use. In practice, this distinction between de-
sign and use is questionable. For one, it implies that once the design
process is finished, an artifact should be perfectly fitted to the use sit-
uation. This does not square with the actual nature of use, in which
there are always more possible contexts:

Every real world system is an open system: It is impossible, both in
practice and in theory, to anticipate and provide for every contingency
which might arise in carrying out a series of tasks. No formal description
of a system (or plan for its work) can thus be complete. (Gerson and Star,
1986, p. 266)

or as MacLean et al. (1990) put it, “It is impossible to design systems
which are appropriate for all users and all situations.” Furthermore, HCI
researchers have extensively shown how technology use is interleaved
with design activities. It is precisely because of the many contexts
users find themselves in that they often need to adapt or adapt to the
capabilities and constraints of technologies: people modify their arti-
facts, practices, and environments in response to ongoing mismatches
and momentary breakdowns among new and old artifacts, tasks, con-
ventions, standards, community members, etc.

The HCI and Computer-Supported Cooperative Work (CSCW) litera-
ture has developed several theoretical concepts capturing the every-
day work of making technology work, and relating it to more formal-



15

ized design and development. Articulation work is the labor that pre-
cedes and frames primary work activities, i.e. the secondary activities
needed to divide, allocate, coordinate, schedule, mesh, and interrelate
work activities (Schmidt and Bannon, 1992). Co-adaptation (Mackay,
1990b), informal design (Clement, 1993), design-in-use (Henderson
and Kyng, 1995), and intrinsic design (Kaptelinin and Bannon, 2012) all
describe how users continually transform their practices and technolo-
gies in response to changing requirements and resources. Much of this
design work is enacted as articulation work. Tailoring is design work
where users modify computer artifacts directly or with the support of
technology specialists, e.g. by changing source code, configuration set-
tings, or documents (Trigg et al., 1987). Artful integrations describe

The artist-researcher Olia Lialina echoes
these theories in her proposition that
users “formed through three decades of ad-
justing general purpose technology to their
needs” have become General Purpose
Users:

General Purpose Users can
write an article in their e-
mail client, layout their busi-
ness card in Excel and shave
in front of a web cam. They
can also find a way to pub-
lish photos online without
flickr, tweet without twitter,
like without facebook, make
a black frame around pictures
without instagram, remove a
black frame from an insta-
gram picture and even wake
up at 7:00 without a “wake up
at 7:00” app. (Lialina, 2012)

the technological artifacts produced by local design processes as hy-
brid systems combining the artifacts themselves with concrete users,
routines, locations, other artifacts, etc. (Suchman, 2002) Infrastructur-
ing describes how these processes cumulatively create socio-technical
systems that support work while receding into the background (Star
and Bowker, 2002). The activities I have so far referred to as “adapta-
tion” can be variously described through any of these concepts. I apply
the theoretical framework of artifact ecologies (Bødker and Klokmose,
2012), which integrates much of this work, and aims to account for
use and design specifically in the contemporary context of multiple
heterogeneous computer artifacts.

2.3 Accounting for Multiplicity with Artifact Ecologies

Computer artifacts are usually used in close proximity and coordina-
tion with other physical and digital artifacts. Artifact ecologies are
the sets of artifacts that individuals or communities own, have access
to, and use. Jung et al. (2008) originally defined the term with a fo-
cus on personal devices, and Bødker and colleagues extended it to
include hardware and software artifacts at various level of abstrac-
tion (Bødker and Klokmose, 2012), and to encompass artifact ecologies
developed and used by communities of users (Bødker et al., 2016b).
Bødker et al.’s conception of community artifact ecologies has been de-
veloped through several studies of a volunteer community distributing
locally-sourced organic food (Bødker et al., 2016a,b, 2017). These stud-
ies richly illustrate how grassroots communities design their technolo-
gies. By contrast to corporate settings, they must rely on whichever
resources, knowledge, and labor members can spare. Bødker et al.
(2016a) find that the community’s artifact ecology develops through a
process mixing external circumstance, community strategies, and ev-



16

eryday tailoring and appropriation tactics. Examples of design stories
from the community include the appropriation of one member’s old
laptop as a payment terminal, a series of discussions and a vote at col-
lective meetings around the adoption of a new payment system, and
finding a way to hack a calendar feature into their website after its
developer left the community.

Artifact ecologies are a useful analytical lens in my context because
they draw attention to the dynamics of adoption and adaptation in to-
day’s use contexts of multiple heterogeneous computer artifacts. Com-
munity artifact ecologies are seeded with the ecologies of key members
and similar communities, as well as available general-purpose tools.
They change continually as new tools are introduced, the community
and its practice changes, and as members step in and out of deciding
roles. As the ecology is renewed, older artifacts tend to linger due
to dependencies, familiarity, and the difficulty of integrating disparate
tools and information embedded in them. As a result, the community
ecology has a complex genealogy and composition, being made up of
multiple overlapping ecologies activated in different activities.

I expand on the work of Bødker and colleagues by adopting a critical
stance toward the technologies that shape artifact ecology develop-
ment. The concrete qualities of code and interfaces shape the paths of
least resistance followed in artifact ecology development. For exam-
ple, they co-determine the relative costs of choices such as adopting
a general-purpose tool, performing some adaptation on it, or having
a specialized tool made. To investigate this shaping process, I apply
the ethnographic theory of infrastructures developed by Star and col-
leagues (Star and Ruhleder, 1996).

2.4 Tracing Extended Socio-Technical Systems with In-
frastructures

Infrastructures are the root network of technologies and practices that
lie under and support the production, distribution, maintenance, and
use of computer-based artifacts. In common use, the word “infras-
tructure” denotes large, distributed technologies that lie literally and
metaphorically beneath more local and tool-like technologies, e.g., the
electrical network supports light switches and appliances, road net-
works and oil extraction, processing, and distribution networks sup-
port personal and public transportation, and so on. Star and colleagues
have elaborated on this commonsense usage in their development of



17

infrastructural ethnography (Star and Ruhleder, 1996; Star, 1999; Star
and Bowker, 2002).

In their conception, infrastructures are not things so much as socio-
technical relations. In other words, infrastructures consist not just
of wires and asphalt, but of social relations, conventions and tech-
niques, formal standards and so on. This focus on relations also ac-
counts for the subjective, situated nature of infrastructures, e.g., the
electrical wiring in an office may be transparent infrastructure to the
worker, until it reveals itself when they spill water in a socket and the
whole hallway loses power. These socio-technical relations are them-
selves recursively infrastructural, e.g., road networks are maintained
by people, and other people still manufacture their tools, teach and
learn their skills, define and regulate their work, and so on. Star and
Bowker (2002) coin the word “infrastructuring” to direct focus to how
infrastructures are made up of the ongoing performance of particular
activities by many people. They bound and clarify their terminology
with eight salient features. Infrastructures:

• are embedded in other structures, social arrangements, and technolo-
gies;

• are transparent to use, invisibly supporting tasks;

• have temporal or spatial reach or scope beyond a single event or site
of practice;

• are learned as part of membership: outsiders and newcomers to a
community of practice encounter its infrastructure as objects to be
learned about, while members take it for granted (Lave and Wenger,
1991; Star and Ruhleder, 1996);

• are linked to conventions of practice: infrastructures shape and are
shaped by the practices they support, e.g., the electrical power net-
work is managed according to and affects the daily rhythms of elec-
tricity usage;

• embody standards that let them plug into tools and other infrastruc-
tures, but also lead to conflicts due to different local conventions;

• are built on an installed base whose strengths and limitations they in-
herit, rather than being created anew, e.g. new systems are designed
for backwards compatibility; and

• become visible upon breakdown, revealing and drawing attention to
themselves in power blackouts or bad cellular signals.



18

These features are somewhat ambiguous in distinguishing infrastruc-
tures from artifacts. Indeed, there are significant overlaps in the lan-
guage and underlying philosophy of infrastructures and artifact ecolo-
gies. Both perspectives explicitly include not only how computer arti-
facts mediate production tasks, but how they support (or necessitate)
articulation work. Their units of analysis can be distinguished some-
what by the fact that an infrastructural reading tends to address the
extended phenomena that make “ordinary technology use” possible.
For example, a keyboard may be more artifact than infrastructure to
the individual user when it is clear that the consequences of using one
keyboard vs. another are limited to their personal workflows, and that
they can easily replace their present one with a new one if they wish.
Yet the same keyboard can be read from an infrastructural point of
view, e.g., tracing the historical, economic, and technical reasons it has
a QWERTY layout.

I apply artifact ecologies to describe the configurations of things that a
person or community owns, has access to, and uses, while I apply in-
frastructures to ask how those things manifest standards, conventions,
and similar phenomena.

2.5 Designing Tailorable Software

Software tailoring is adaptation work that modifies computer artifacts
directly, e.g. by changing source code, configuration settings, or doc-
uments. Tailorable software is designed specifically to facilitate this
sort of adaptation work. MacLean et al. (1990) summarize the research
agenda of tailorable software1 when they say that “it should be as easy

1 This research program has had various
names, including tailorable (MacLean
et al., 1990), customizable (Mackay,
1990b), personalizable (Haraty et al.,
2017), or adaptable (Fischer, 1993) soft-
ware. Here I will consistently use
“tailorable”. It also overlaps signifi-
cantly with other traditions in HCI, such
as end-user development (Paternò and
Wulf, 2017) and participatory design,
e.g. (Karasti and Syrjänen, 2004).

to change software as it is to use it”. Tailorable software research is par-
ticularly design-oriented in that it is concerned with describing and
designing interfaces, architectures, and organizations that enable end
users to configure modify, or integrate their digital tools.

Tailoring Architectures

Some of this research describes qualities of programs that support dif-
ferent kinds of adaptation work. For example, Trigg et al. (1987) de-
scribe four qualities of systems that can be tuned or customized by
end-users: flexible systems provide generic objects and behaviors that
are useful to different users in different situations; parameterized sys-
tems offer a range of alternative behaviors for users to choose from;
tailorable systems let users modify behavior, e.g. by building macros,



19

specializing behaviors, or programming additional behaviors; and in-
tegratable systems can interface with or be integrated with systems ex-
ternal to themselves.

In addition to work proposing design guidelines for programs, there
is a large body of research developing software construction tools and
environments that factor in tailoring needs in various ways. These
systems range from what are effectively operating systems to more
typical programming frameworks. They often define a distinct soft-
ware development paradigm, such as live object systems in the tradi-
tion of Smalltalk (Kay, 1993; Maloney and Smith, 1995; Ingalls et al.,
2016), recombinant computing (Edwards et al., 2009), palpable com-
puting (Svensson Fors et al., 2009), and shareable dynamic media (Klok-
mose et al., 2015). I discuss these design principles and environments
in relation to my empirical findings and design goals in chapter 4 and
5.

Tailoring Cultures

Other research focuses on the motivations and means for tailoring in
various real-world settings, including the experimental Information
Lens email filtering system at a research laboratory (Mackay, 1990a), X
Windows during its deployment at MIT (Mackay, 1991), spreadsheet
development in various settings (Nardi and Miller, 1991), Computer-
Aided Design (CAD) software used by engineers and designers (Gantt
and Nardi, 1992), word processors used by administrative workers at
a university (Clement, 1993), and labor inspectors in the Danish gov-
ernment (Trigg and Bødker, 1994).

These studies describe tailoring as a social and collaborative web of
activities in which people occupy different cultural roles. For exam-
ple, Mackay describes “translators” as key community members that
help curate and distribute customizations, connecting expert develop-
ers to new and less technically skilled community members (Mackay,
1990a). Both the organizational and technological makeup of the use
setting shapes the emergence of these roles by creating, e.g. opportu-
nities, costs, and incentives. For an organizational example, in Gantt
and Nardi’s study of CAD users, the workplace paid particular ex-
pert users primarily to help other users tailor their systems (Gantt and
Nardi, 1992). For a technological example, in Mackay’s study of X Win-
dows users, the fact that customizations were created as text files made
it easy for most of the community to share and modify them (Mackay,
1991).



20

Trigg and Bødker (1994) emphasize that tailoring is not only a process
of individuating and diversifying software, but also plays a role in col-
lective efforts to standardize workflows, exemplified by how the com-
munity they study embeds standard forms and procedures as Word-
Perfect templates. Clement (1993) illustrates how tailoring is connected
with labor relations through two examples of groups of secretaries
that have been given computers but few resources to learn how to
use them. One group is well-connected enough that they create and
share a repertoire of macros and templates, while the other group ends
up collectively organizing for their workplace to set aside money and
time for training. Clement’s study is a concrete example of how tailor-
ing and other means to re-fit practices and technologies are somewhat
fungible, i.e. users select design methods that are locally available and
effective.

MacLean et al. (1990) present Buttons, a system designed to take ad-
vantage of both the social and technical tailoring means studied by
their contemporaries. Buttons is a desktop environment designed for
office workers at Xerox EuroPARC, in which the principal interface el-
ements are documents in overlapping windows and buttons. Buttons
may be used to execute commands, or gradually unfolded to expose
and configure their appearance, command parameters, and the scripts
defining their commands. MacLean et al. design the system as a tai-
loring architecture that enables many tailoring techniques ranging from
reorganizing and sharing buttons to substituting parameters to modi-
fying scripts or asking more capable peers to do so. They concurrently
attempt to create a tailoring culture by seeding the environment with
buttons encoding some of the participants’ common tasks, and by em-
bedding a designer to help users describe their needs and implement
tailorings. They report that this combination successfully helped par-
ticipants obtain a sense of ownership of their tools and to become
active tinkerers who can formulate, discuss, and execute small modifi-
cations to improve and optimize their workflows.

Tailorable Software Today

While tailorable software research has developed useful design guide-
lines and principles, the software landscape today is radically different
from that of the late 80s and early 90s. The seminal empirical studies
of tailoring we reviewed in the previous section were done when com-
puters were primarily desktop machines used in office work, provided
and maintained by the workplace. By contrast, there has been lim-
ited empirical focus on the technological conditions for adaptation in
settings where work is mediated by multiple heterogeneous personal



21

devices, platforms, and apps.

Haraty et al. (2017) have filled some of this research gap with their re-
cent study of online ecosystems for sharing software customizations.
The software use context has moved from work to everyday life and
work intermixed, the tailored artifacts have changed from desktop
software in the workplace to heterogeneous apps running on personal
devices (a game, a text editor, and two productivity applications), and
the user/developer communities from co-located professionals to in-
dependent users loosely connected by social networks and sharing
platforms. These online ecosystems are distributed and networked it-
erations of tailoring architecture and tailoring culture (MacLean et al.,
1990), consisting of different sets of tools, such as repositories for cu-
rating popular customizations, and roles, such as “packers” who com-
bine multiple customizations useful for some activity in easy-to-install
packages. The productivity applications studied by Haraty et al. are
particularly interesting because they enable customizers to create in-
tegrations, programs that combine the functionality of multiple apps
and services. For example, integrations might be automatic trigger-
action rules such as “send me an SMS notification whenever I receive
an email from a particular address”, or more efficient interfaces, such
as a command to search the contents of a website directly from the
desktop.

By contrast to earlier tailoring studies, where subjects are defined by
shared organizational membership, Haraty et al.’s subjects are defined
by shared use of particular customization platforms. This invites us to
study tailoring practices in the context of communities bound together
by a shared practice rather than a shared platform. These communities
encounter the routine incompatibilities among devices, software, and
data that are the norm in many artifact ecologies (Bødker et al., 2016b).
For example, we might ask whether integration authoring tools such
as those studied by Haraty et al. are used to bridge such incompatibili-
ties, or whether incompatibilities devalue customizations because they
are coupled with artifacts that are unusable in some contexts. We be-
gin to answer these questions in our case study (chapter 3), although
we do not find any use of integration authoring tools. Instead, the
integrations found in the case study are either combinations of man-
ual workarounds and appropriated general-purpose tools, or custom
software integrations created by professional programmers.



22

2.6 The App Paradigm

Design-in-use and tailoring activities occur even in the absence of
designed tailoring ecosystems. Instead of tailoring architectures, the
technical conditions for these activities are defined by the textual and
run-time representations of software, as well as the techniques and
processes employed in making and using it. They are not only de-
fined by interfaces and app architectures, but also by programming
languages, version control systems, file formats, APIs, etc. These com-
ponents collectively make up the material of software, in that they
determine how it may be (re-)shaped. Some recent research helps us
describe salient features of this material today.

I name the current paradigm of software construction and use “the
app paradigm” after one of its most visible characteristic phenomena.
Apps are a way of packaging and distributing software on desktop,
mobile, and web platforms. Though the term and many of the key
features of app-based software have existed at least since the personal
computer revolution of the 1970s, the socio-technical infrastructures
around it are continuously evolving. There is no agreed-upon defini-
tion of what features make something an app, but rather a set of fam-
ily resemblances that are recognizable across apps. Hence it is helpful
to think of apps as a software genre2. In this thesis I will mainly

2 Kay (1984, p. 4) describes software gen-
res as emerging from particular comput-
ing/programming paradigms, whereas
in my reading, social and economic phe-
nomena also contribute to the experience
of these genres.

talk about the app paradigm as it has existed in the last decade, i.e.
after the appearance and widespread adoption of cloud computing,
vendor-controlled app stores, and mobile devices and web browsers
as platforms for user software.

The Mode of Software Production

The app paradigm can be described as an infrastructure or a set of
infrastructural tendencies. I also draw from another theoretical con-
cept describing extended socio-technical systems, modes of production.
Modes of production are a central concept in Marxist theory used
to describe why people are organized in particular socio-economic
structures and employ particular techniques in order to subsist (Marx,
2005). Marx exemplifies several historical modes of production, such
as feudalism and capitalism. A mode of production is defined by a
combination of forces of production and relations of production, and
how they connect to each other. Forces of production refer to the
means of labor, such as tools and techniques, and the human labor
power that creates and uses them. Relations of production refer to the
way people organize themselves around labor, for example whether



23

they produce the goods they need to survive themselves or whether
they trade their labor for wages to purchase those goods.

I adapt this theoretical language to describe the contemporary mode of
software production. Rather than describing the structure of an entire
society and its historic evolution, I limit my analysis to contemporary
software development broadly, and a network of interrelated software
producers and users specifically (chapter 3). This theory foregrounds
questions about how the production of software is organized, who has
control over which resources, how ownership is distributed, and how
these elements of a mode help reproduce themselves.

One historic example of how the relations and forces of production
renew each other can be found in the invention and popularization
of information hiding in software engineering3. Parnas formulated the

3 This example is adapted from (Clark
and Basman, 2017).

idea that minimizing information exchange between program modules
supports a harmonious design process in large software development
projects, because individual developers or teams can work on modules
with minimal information about the details of other modules (Parnas,
1971). This strategy reduces the ongoing development costs of dis-
tributing functionality across many modules, thus supporting a divi-
sion of labor that allows for more complex systems to be developed.
Parnas’ motivation was to establish a more efficient, centralized man-
agement process for large, disconnected teams of programmers work-
ing in a top-down industrial design process involving prior specifica-
tion of desired functionality. Today, information hiding is embedded
in programming tools, e.g. method interfaces in object-oriented pro-
gramming, and taught through best practices, e.g. the law of Demeter,
a design guideline stating that program modules should have minimal
knowledge of and communication with each other (Lieberherr et al.,
1988). Thus a particular mode of production, the top-down distributed
team model employed by Parnas, becomes embedded in and is repro-
duced via the tools and methods it motivates.

Software evolution and maintenance

The field of software evolution studies the life cycle of programs after
they are first deployed (Bennett and Rajlich, 2000). The software evo-
lution literature has critically studied the fit between the relations of
software production and programming methodology.

Bennett and Rajlich (2000) present a staged model of the software life
cycle emphasizing the distinct kinds of programming effort needed
in different stages, e.g. software architecture is specified in initial de-



24

velopment, may be significantly revised in the evolutionary stage, and
eventually stabilizes before the system enters the servicing stage, where
changes are expected to maintain existing module boundaries and re-
lationships. These stages motivate different programming tools and
techniques, are differently suited to outsourcing, and bring up differ-
ent research problems. Their model is explicitly framed around typical
commercial software development as it was 20 years ago, i.e. systems:

• are owned by a development team that decides how it should be
evolved and when to shift to the next stage;

• have few dependencies, i.e. most of the code involved is written
from scratch; and

• may be deployed in multiple versions at once, which are serviced
and phased out in a staggered process.

According to multiple surveys, incorporation of new user require-
ments and changes in the software environment accounts for a ma-
jority of professional programmers’ efforts (Lientz and Swanson, 1980;
Nosek and Palvia, 1990). Many software engineering techniques, such
as design patterns, are motivated by the need to plan for future adap-
tations to programs. Bennett and Rajlich forcefully state that this labor
cannot be avoided solely by techniques that rely on designers to imag-
ine likely future requirements: “The fundamental problem, supported by
40 years of hard experience, is that many changes actually required are those
that the original designers cannot even conceive of.” (Bennett and Rajlich,
2000, p. 76, emphasis in original) In these cases, the cost of performing
additional design on an existing system is generally not proportional
to the complexity of the added functionality, but to the complexity of
the system.

Kell (2009) picks up this critique in the context of system develop-
ment that relies significantly on composition of existing systems and
code, where “Software grows as islands of functionality, founded on infras-
tructure including programming languages, UI toolkits, development “frame-
works”, extensible applications (browsers like Firefox, editors like Emacs) and
so on” (Kell, 2009, p. 1). He argues that the strategy of information
hiding contributes to the unmanageable cost of software evolution in
this paradigm. The “islands of functionality” Kell mentions are usu-
ally connected to their environments by a programming interface, or
API4. It is tacit in the use of these mechanisms that all new programs

4 I use “API” to refer to any method
protocol exposed by a program module,
whether as a method interface in object-
oriented programming or as a web ser-
vice endpoint. This choice of words
helps me distinguish these entities from
user interfaces.

will correctly use existing APIs and that no APIs are changed while
other programs depend on them. Both of these assumptions are fre-
quently violated in contemporary software development, leading to



25

the ongoing necessity of integration work to re-align programs with
each other. This work is expensive, because conventional program-
ming paradigms lead to assumptions about external APIs being scat-
tered throughout code modules.

Kell’s critique illustrates how the mode of production resists the emer-
gence of alternate production modes that do not follow its paths of
least resistance. The social structures of software development have
diversified since 1971, creating many situations where a program may
end up in use by multiple communities who may want to extend or
revise its design in ways unforeseen by the original developers. In this
perspective, information hiding forecloses adaptation, because unfore-
seen and local design demands are likely to cross-cut existing module
structure, increasing the cost of modifying the program (Clark and
Basman, 2017).

The Agile Turn

Gürses and van Hoboken (2017) characterize the contemporary mode
of (commercial) software production in their analysis of “the agile
turn” in software development. They highlight three recent shifts that
have accelerated software production and transformed business oper-
ations:

• Waterfall to agile development: the tools and techniques of software
development now allow for many quick iterations and “perpetual
beta” development, characterized by phenomena such as continu-
ous deployment and testing of new features.

• Shrink-wrap software to services: on the one hand, much software
functionality is now outsourced to distributed microservices, and
on the other hand, many tools that used to be released as shrink-
wrapped products have transformed into ongoing subscription ser-
vices, e.g., Microsoft Word has become Office 365 and local music
libraries and players have given way to streaming platforms such as
Spotify.

• PCs to the Cloud: hardware capacity has moved from users to
server farms, and new techniques have been developed for man-
aging these distributed computing resources, e.g. containerization
tools such as Docker.

Gürses and van Hoboken focus on how these shifts affect privacy en-
gineering and governance. They argue that the agile turn disincen-
tivizes designing for privacy on several fronts. For example, especially



26

smaller software developers are likely to compose their products by
curating some of the many available backend services for data storage,
user authentication, etc. This means that end users are defaulted into
a variety of more or less opaque service relationships, including data
collection, storage, and advertisement policies. This may adversely
affect privacy by enabling service providers to pool user data across
many apps, e.g. Google trackers are present on the majority of the
most popular websites (Altaweel et al., 2015). In another example, the
agile turn has enabled producers to gradually change software func-
tionality without informed consent by end users, further eroding their
experience of autonomy over their tools. This phenomenon is already
problematic with traditional periodic updates of shrink-wrapped soft-
ware products, which can at least often be delayed or refused (Vitale
et al., 2017).

Gürses and van Hoboken’s analysis invites us to ask how the agile turn
has affected conditions for tailoring. The methods and technologies it
has introduced are said to make software construction more flexible,
enabling designers to reuse components and revise design decisions.
This is at least rhetorically similar to the goals of tailorable software
researchers, yet it is questionable whether the traditional software en-
gineering perspective on flexibility, defined as minimizing the cost of
adjusting a system to meet a new specification (Christensen, 2010), is
even compatible with flexibility in the hands of end users. Kell (2009)
argues that traditional modularization techniques premised on infor-
mation hiding are based on the false assumption that modules will be
designed in order, and Clark and Basman (2017) show several histori-
cal examples of systems that have successfully been reused by multiple
communities while violating best practices for modularization. I inves-
tigate this contradiction in the case study in chapter 3, and in chapter 4

I elaborate a critique of software engineering flexibility based on those
findings.

Apps and Precarious Labor

Nouwens and Klokmose (2018) characterize the use side of the app
paradigm in their analysis of apps as essential tools of non-standard
knowledge workers. They interview writers, designers, and consul-
tants who are non-standard in the sense that they are not consistently
attached to one workplace but work with different employers on a per-
project basis. Nouwens and Klokmose focus on three salient qualities
of app ecologies:

• Expectation of symmetry: apps are typically designed with the as-



27

sumption that all collaborating users will use the same product or
product line;

• Document-app relationships: apps often rely on a proprietary file
format that maximizes access to the particular capabilities of the
app, but may be less legible by other apps;

• Updates: apps periodically change at the behest of producers, which
can cause breakdowns for users as interfaces are rearranged or older
features break.

These qualities manifest themselves in patterns of behavior that im-
pose undue costs on non-standard workers. Workers are expected to
acquire and learn their own apps, and a large part of their labor value
is tied to the skills and data they build up with their digital tools.
Concurrently, employers expect workers to be flexible about apps, file
formats, and workflows, e.g. adopting local collaboration tools and
conventions on a per-project basis. This tension often causes work-
ers to settle on the lowest-common software denominator, i.e. the app
or file format that is most broadly legible, at the cost of their ability to
consistently use or build up proficiency with apps that help them work
most effectively. The workarounds constructed to avoid these compro-
mises impose other costs, such as extra work to manage divergent files
and transfer and transform data across apps.

Participants express their preference for some qualities that have emerged
with newer, web-based digital tools. Zero-install tools significantly in-
crease the ability of workers to convince collaborators to adopt their
preferred tool. Sharing links to documents rather than files removes
much of the burden of managing divergent files and file types. Web
tools in general free workers from having to anticipate or be aware
of hardware and operating system compatibility issues, as the web is
increasingly a de facto standard software environment.

Based on their findings, Nouwens and Klokmose argue that HCI re-
searchers have a responsibility to design technologies that do not dis-
rupt the precarious labor value of users. They propose a set of design
goals to help mitigate the issues they find. These include supporting
technological asymmetries in collaborations, increasing users’ control
over changes made to their apps, and improved methods to enable
transfer of embedded skills and data among apps. These design goals
are highly related to the goals of tailoring, as asymmetry is a natural
consequence of the ongoing fitting of digital tools to local needs, and
as Trigg and Bødker (1994) point out, the same tailoring techniques
used to individuate software are used to institute local standards and



28

conventions that ease collaboration.



29

2.7 Key Takeaways from Chapter 2

I adopt the view that digital tools are artifacts mediating human
activities, occurring in assemblages called artifact ecologies. As-
sembling and adapting artifact ecologies is part of the ubiqui-
tous and ongoing design work carried out by user communities.
The conditions for both formalized design and this design-in-use
work are shaped by the infrastructure of software production. In-
frastructures are the “root network” of technologies and practices
that lie under and support the production, distribution, mainte-
nance, and use of computer-based artifacts. These socio-technical
systems can also be understood through the lens of modes of
production, a Marxist concept that describes the materials, tech-
niques, labor, and relations involved in producing and making use
of goods. In the contemporary software landscape, production is
characterized by web and cloud platforms, microservice architec-
tures, and continual testing/development, while use is character-
ized by routine incompatibilities among devices, software, data,
and community practices.

These points invite us to consider several research questions:

• How does today’s infrastructure for software production and
use shape the kinds of design and adaptations that actually
happen?

• How does an ecological view of software in use challenge the
theory and practice of tailorable systems, which is largely based
around a single uniform system in use by an individual or com-
munity?





31

3
Contemporary Software Design
and Use in a Biodiversity
Network

To understand the means and ends of technology adaptation today, we carry
out a case study of a biodiversity research network. The network consists of
professional and citizen researchers, conservationists, and software developers
who collect, process, and use biodiversity data. We interview stakeholders across
five communities of practice in this network, and trace the artifact ecologies
each has constructed to carry out their work. We analyze the different kinds
of design interventions carried out by different communities, and how they are
supported or resisted by the underlying socio-technical infrastructure. We find
a tension between the need for diverse technological supports appropriate to
each community of practice, and the need for scale and collaboration among
different communities. Based on my findings, I identify research problems for
technologies that support more pluralistic design.

In the previous chapter we saw adaptation – in its many forms – as
a way for (collectives of) end users to participate in and enact con-
trol over the design of computer artifacts. Bødker et al. (2016a) and
Nouwens and Klokmose (2018) have documented how people today
assemble ecologies of digital tools and the kinds of routine problems
they encounter in trying to make use of them. In this chapter, I expand
on this work by investigating how artifact ecologies are constructed
and adapted beyond the boundaries of individual users or communi-
ties. The goal is to illuminate how the app paradigm interacts with the
use patterns of adaptation, such as sharing, combining, creating, and



32

tailoring digital tools and documents.

We1 present a case study of a network of professional and citizen scien-
1 This case study was carried out with
Antranig Basman and Midas Nouwens,
and I use “we” when describing our
shared work.

tists, conservationists, and software developers engaged in collecting,
processing, and sharing biodiversity data. Through interviews with
six stakeholders in this network, we trace the ongoing process of cre-
ating, sharing, and maintaining their personal and community artifact
ecologies. We supplement this core data by collecting conversations
from public forums, issue trackers and other web venues attached to
these communities.

The network under investigation includes two volunteer-run projects
that collect and curate biodiversity data about their local environ-
ments, a non-profit organization that develops a popular tool used by
many such projects, a conservation agency, and an international con-
sortium that accumulates biodiversity data from all over the world and
makes it available for researchers. These organizations are detailed in
table 3.2. By analyzing multiple communities, we can trace how the
different productive forces they have access to and their correspond-
ing relations of production have implications for the structure of the
resulting artifact ecologies. Our empirical approach lends us a look
at the life cycle of digital artifacts, in particular the multiple relations
they participate in as objects of design, tailoring, and use within and
between communities of practice.

The background for this study is that Antranig Basman was in contact
with our primary informant, AS, for about a year prior to formal data
collection. AS founded and leads Biodiversity Galiano (GBP), a citizen
science project involving his local community in mapping the life on
Galiano Island in British Columiba, Canada2. The topic of the dialog

2 We asked the research participants
interviewed for this work whether
they would like to be credited or
anonymized. Those who asked to be
credited are identified in table 3.1. They
are identified by initials throughout the
chapter in line interview data reporting
conventions.

has been the technological support needs of grassroots biodiversity
projects. These conversations were not collected as data, but informed
our research questions, interview plans and analysis methods.

Biodiversity data is collected by professional biologists, citizen scien-
tists, and enthusiasts noting the occurrence of a particular life form in
a particular location, and may include physical specimens or samples,
photographs, drawings, etc. Usually the first data processing step is
identifying the life form, i.e. assigning a formal name associated with
a recognized taxon. Later on it may be processed to produce lists,
maps, reports, and different kinds of visualizations. The processed
data is used, for example, by biology researchers to study relationships
among species and environments and by conservationists to track the
presence of rare, threatened, or endangered species. These activities,



33

and the surrounding work to facilitate them, are distributed across the
network we study.

Individuals and communities in the network create, adopt, share, and
adapt computer artifacts to support their activities. This means that
the network contains multiple co-existing design practices, e.g. the
iNaturalist team develops a set of web and mobile apps for hundreds
of thousands of users, while GBP has assembled a hybrid ecology com-
bining off-the-shelf, tailored, and custom tools used by himself and his
immediate collaborators. We analyze these different design practices
and how they are shaped by the dominant forces and relations of soft-
ware production.

We are interested in:

• The different needs for stakeholders in this network to design their
artifact ecologies;

• The productive forces that they employ in this design work, and the
problems they encounter in doing so; and

• How these capabilities and problems reflect the technical tendencies
of the contemporary mode of software production.

Our contributions are three-fold:

1. We map how multiple overlapping communities involved in bio-
diversity research design their artifact ecologies separately and in
collaboration;

2. We analyze how the contemporary mode of software production
shapes the design interventions that these communities can enact,
and how the resulting artifact ecologies fail to fit the needs of small
collectives of users; and

3. We critically discuss these conditions, and suggest research direc-
tions for software artifacts that enable user collectives to more eco-
nomically design more useful artifact ecologies.

3.1 Method

Planning our case study was a challenge for a few different reasons.
Many field studies in HCI make use of a priori boundaries, such as



34

professional practice, organizational membership, or shared activities,
that help researchers select sites and participants. These boundaries
also enable researchers to apply heuristics for determining appropri-
ate sample sizes, such as statistical power and saturation. Our case
study started with a single viewpoint, that of AS, and a research in-
terest in the extent to which communities such as AS’s could enact
ownership of their digital tools and data. We uncovered other actors
and artifacts involved in the production and use patterns of GBP’s arti-
fact ecology through our interviews. The infrastructures that enact the
life cycles of these tools are complex, extended phenomena. We cannot
(extensively) list all the possible constituents of these infrastructures,
let alone gather and analyze data about them. Focusing on one site
or community, such as iNaturalist users or members of GBP, would be
counterproductive to our research goals, because we risk ignoring the
seams, negotiations, and breakdowns between artifact ecologies and
communities. At the same time, our goal is not to be complete, but
to draw enough of the picture with enough depth that we can see the
causes, methods, and consequences of design interventions.

In our case there is “a myriad of alternative ways of formulating the object
of ethnographic study with no assumption about the totality or unity of the
object” (Karasti and Blomberg, 2018). Therefore, we have to adopt tac-
tics for drawing a useful partial picture of our case. For example, we
revised our conception of the field under study as we engaged with
it (Karasti and Blomberg, 2018). Each interview included questions
to probe for other stakeholders and contrasting perspectives. We pur-
sued those connections that we thought were likely to further inform
our research questions. Some details of the case that we considered
highly salient were unavailable to us, such as details of the reasoning,
context, and process of some of the past design decisions described by
participants, which they could not recall or were not involved in3.

3 By contrast, Bødker et al. (2016a) had
access to detailed traces of the negoti-
ations around past design decisions in
their study of a volunteer association
distributing organic produce through
the association’s meeting minutes.

Another challenge was that all the researchers were based in Europe,
while the majority of participants were in North America. Therefore
our study did not involve any on-site data collection such as observa-
tion. This practical constraint limits our ability to capture tacit knowl-
edge and day-to-day patterns of activity in the studied communities.
We compensate for this limitation to some extent by our use of critical
incident interviewing technique, collection of online communications,
and our direct involvement in some of the design interventions we
recount.

We applied several tactics to bring infrastructural relations into focus.
These tactics were adopted from previous literature, e.g. (Bødker et al.,



35

2016a; Karasti and Blomberg, 2018). They involved looking for:

• Seams: sites of incompatibility between technologies or communi-
ties;

• Breakdowns: situations where infrastructure becomes visible be-
cause it fails;

• Design interventions: actions taken to reconfigure artifacts in re-
sponse to changing use situations, including workarounds, pro-
gramming, adoption of new artifacts, and so on;

• Artifact biographies: the phases of an artifact’s development, distri-
bution, and maintenance, and the associated sites and actors (Pol-
lock and Williams, 2010); and

• Data traces: data that capture some of the details of breakdowns,
design interventions, artifact development, etc.

Participants

We interviewed six stakeholders from five organizations (Table 3.1).
We recruited participants via snowball sampling, i.e. asking each par-
ticipant about other, similar and contrasting communities and stake-
holders they interacted with. In looking for participants, we focused
on potential “infrastructural allies”, participants who need to under-
stand infrastructures as part of their daily work (Beaulieu, 2010). This
led us to select participants who were actively involved in facilitat-
ing the work of collecting, processing, or using biodiversity data, e.g.
by selecting, sharing, tailoring, and developing digital tools for them-
selves and their communities. We stopped recruiting when we felt
that we had drawn up a substantially wide-ranging field to show sev-
eral contrasting contexts for design work. This evaluation was also
informed by external time constraints encouraging us to continue to
the next phases of the study. Recruiting and interviewing happened
over three months.

Participant Occupation Interview
(h:mm)

Andrew Simon (AS) Founder and main facilitator of GBP 1:25, 1:26

Kem Luther (KL) Co-founder and database maintainer at MBP 1:12

Adam Huggins (AH) Restoration Coordinator at GCA 1:57

Keith Erickson (KE) Executive Director at GCA 1:05

Dimitri Brosens (DB) GBIF Open Science Ambassador 0:53

P6 Funding and collaboration outreach at iNaturalist 1:13

Table 3.1: Overview of our participants.



36

The network includes several distinct communities of practice (Lave
and Wenger, 1991, p. 98–100), including professional and academic
biologists, amateur naturalists, land managers and restorers, and soft-
ware developers. These communities are connected by collaboration,
data exchange, and software production and use.

The five organizations are briefly described in table 3.2. They are re-
lated as follows: GBP and MBP are geographically adjacent projects
with similar goals, and are in the process of pursuing direct collabo-
ration. GCA shares a location with GBP and has exchanged data with
them. The iNaturalist organization develops the iNaturalist platform
for collecting and identifying biodiversity data, which is heavily used
within GBP. GBIF receives data from many partner organizations, in-
cluding iNaturalist, which it makes separately accessible through its
own infrastructure.

Organization Location Purpose Members

iNaturalista Distributed
internationally

Develops and maintains
the iNaturalist platform

9 staff members, >750,000

users across ~31,000

projects
Global
Biodiversity
Information
Facilityb

(GBIF)

Distributed
internationally

Maintains an open access
database of biodiversity
data and infrastructure for
exchanging biodiversity
data

Has sub-organizations in
58 countries and more
inside other organizations,
38 open data ambassadors

Biodiversity
Galianoc

(GBP)

Galiano Island,
BC, Canada

Volunteer-based group that
collects biodiversity data
through iNaturalist,
organizes community
events for data collection,
education, etc.

1 main facilitator, handful
of key organizers, ~100

contributors of observation
data over all time, ~500

Facebook members

Metchosin
Biodiversity
Projectd

(MBP)

Metchosin, BC,
Canada

Volunteer-based group that
facilitates professional
biology surveys and
organizes educational
events for the public

5 organizers/facilitators

Galiano
Conservancy
Associatione

(GCA)

Galiano Island,
BC, Canada

Surveys, manages, and
restores land to protect
biodiversity

8 staff members, seasonal
student interns

Table 3.2: Overview of key organiza-
tions.
a: inaturalist.org
b: gbif.org
c: biogaliano.org
d: metchosinbiodiversity.com
e: galianoconservancy.ca

Data collection

The interviews were semi-structured and the questions were open-
ended. We used Mackay’s adaptation (2002) of Flanagan’s critical in-
cident technique (1954), where questions are intended to draw out
specific instances, problems, or highlights of their technology use. We
asked participants to walk through recent or memorable examples of
their work, to explain which tools and collaborators they worked with,
what specific problems arose in their work, how they changed proce-
dures and technologies in response, etc. This technique encourages
interviewees to give detailed descriptions of specific situations, rather
than abstract statements about their general experience.

inaturalist.org
gbif.org
biogaliano.org
metchosinbiodiversity.com
galianoconservancy.ca


37

We interviewed each participant once, except for AS, whom we inter-
viewed a second time to follow up on recent developments at GBP. The
interviews were conducted via video/audio conferencing (Skype4).

4 skype.com/enEach interview was recorded and lasted between 53 and 116 minutes.
We transcribed the recordings, including pauses and non-verbal inter-
jections (laughter and exclamations), while omitting minor hesitations
and false starts.

We also collected data in the form of artifacts shared with us by par-
ticipants. These included web pages, reports, an instructional video
presenting AS’s biodiversity data curation workflow, and the history
of exchanges between AS and the iNaturalist community on the orga-
nization’s Google Group. Finally, we read public web pages run by
the key organizations (table 3.2), including iNaturalist’s documenta-
tion, user forums, and source code repository on GitHub5, as well as

5 A very widely used tool for developers
to share and manage code. github.com/
inaturalist/inaturalist

tutorials and documentation from GBIF. This data supplemented inter-
views with examples of the output and everyday usage of the involved
platforms.

Analysis

We used meaning condensation (Flick et al., 2007) to summarize data
content and interrogate it in the context of our research questions.
First, three investigators separately performed inductive, open coding
on overlapping subsets of the interview transcripts, where they labeled
all parts of the transcript that were relevant to our research questions
with a short summary code. Then all investigators discussed the open
codes and decided which topics were most salient to our study. In this
discussion we reframed codes in terms of artifact ecologies and infras-
tructures, and defined categories to group codes, including descriptive
categories such as stakeholders, activities, and artifacts, and more inter-
pretive categories such as artifact ecology negotiation. One investigator
then applied these categories to re-code the complete interview tran-
scripts and tied together the resultant codes in descriptive statements.
Finally, we used the additional data collected from public forums to
detail or revise the generated descriptions where necessary.

Additionally, we created artifact ecology maps representing the stake-
holders, activities, and artifacts of GBP and MBP (table 3.2). These
maps summarize the constellations of technological artifacts that our
participants’ communities use to carry out their work. This method
was adapted from the mapping exercise used by Bødker et al. (2017).
We used these maps to structure our descriptions of the design prac-
tices of these communities.

skype.com/en
github.com/inaturalist/inaturalist
github.com/inaturalist/inaturalist


38

We focus on four non-exclusive categories of software artifacts, distin-
guished by the kinds of objects they mediate relationships to:

• Data artifacts are the materials that participants collect, generate, and
process, e.g. spreadsheets, maps, and other documents.

• Function artifacts are the interfaces and units of functionality that
mediate work, e.g. apps, widgets, and APIs.

• Expression artifacts are the source code that produces software, as
well as secondary artifacts related to code, such as incremental ver-
sions, executing virtual machines, and plugins.

• Installation artifacts are the actual machines and networks on which
software is executed, and the software that mediates access to them,
such as cloud services for renting virtual machines6.

6 These could also be called infrastruc-
tural artifacts, but we use “installations”
to avoid confusion with the theoretical
term.

Since our interviews focused on the concrete experiences of partici-
pants, our descriptions of community artifact ecologies are more de-
tailed around their immediate activities, and less detailed at relatively
peripheral ones. We describe artifacts at different levels of abstraction
based on their role in participants’ use and design activities. For exam-
ple, AS approaches Facebook as a uniform entity, whereas in his use
and appropriation of iNaturalist, different parts of the web platform,
such as project pages and embeddable widgets, mediate different ac-
tivities. While the ecologies we map include devices such as cameras
and smartphones, as well as other physical artifacts such as field jour-
nals, we do not pay particular attention to these kinds of artifacts in
our analysis.

3.2 Communities and their artifact ecologies

Each of the organizations in our case study has different motivations,
challenges, and resources that shape their relationships with technol-
ogy and design practices. I report our findings on these aspects and
how they have shaped the development of each organization’s artifact
ecology.

Biodiversity data and taxonomy

The practice of assigning and maintaining taxonomic classifications is
central to some of the recurring issues in the network. Taxa, i.e. the dis-
tinct categories of species and evolutionary relationships among them,



39

are continuously revised as part of the practice of biology. For ex-
ample, genetic analysis of specimens may be used as a justification to
split or merge previously held taxa. When a biologist identifies an ob-
served organism with a certain species concept, that identification is
tied to an authoritative source. Taxonomic authorities are usually cu-
rated databases, which compile concepts developed in peer-reviewed
research articles. Different fields of evolutionary biology often agree
on a standard reference, such as the World Register of Marine Species7.

7 marinespecies.orgHowever, it is up to the professional judgment of individual biologists
whether they agree with a reference on a case-by-case basis. For ex-
ample, they may prefer to subscribe to an authoritative reference that
they perceive as having high standards for inclusion, or disagree with
one that they consider to lag behind the newest research. As a result,
the taxonomic categories in biodiversity databases are frequently the
sites of contention.

iNaturalist

iNaturalist is a mobile and web platform whose principal functions
are to let users collect biodiversity data by photographing plants and
animals in the wild to submit the geo-referenced and timestamped
pictures to a public database, and to identify each others’ observations
by assigning formal species concepts to them. iNaturalist users may
submit and identify observations freely, but often do so as part of
projects, which are user-created pages dedicated to some particular
purpose, such as collecting observations of seabirds in a particular
location. At the time of writing the app has over 750,000 users.

The platform started life as a student project at UC Berkeley, and is
now supported and developed by a formal organization, also named
iNaturalist, financed by the California Academy of Sciences, National
Geographic Society, and additional grants. The iNaturalist organiza-
tion has nine staff members, five of whom are developers whose ef-
forts are distributed among the web, iOS, and Android apps, a child-
oriented species identification app called Seek, and management of
development and operations. P6 is primarily responsible for commu-
nication with collaborating organizations and funding sources. One
example of a collaborating organization is the City Nature Challenge8,

8 citynaturechallenge.orga yearly competitive bioblitz where cities across the world compete to
collect and identify the most observations over a few days. In its latest
iteration, the event spanned 159 cities.

The iNaturalist apps are developed according to contemporary best
practices of software engineering, including the use of agile methods

marinespecies.org
citynaturechallenge.org


40

and cloud services described by Gürses and van Hoboken (2017), e.g.
storing observations photos in Amazon S3

9, using the Google Maps
9 aws.amazon.com/s3API10 to display and interact with maps, and Microsoft’s Azure plat-
10 cloud.google.com/maps-platformform11 for operating the testing and deployment pipeline. In addition

11 azure.microsoft.com

to the main website, the organization has agreements with multiple or-
ganizations that deploy localized instances of the iNaturalist frontend,
including local control of presentation, language, outreach, and data
sharing, but connected to the centralized backend.

As iNaturalist has evolved, it has had various encounters with compet-
ing and cooperating platforms. These encounters are indicative of how
large software projects respond to diverse user needs. For example,
previous to her employment at iNaturalist, P6 was commissioned to
build a “portal” that reused iNaturalist’s existing backend, but offered
some variant features and presentation, including using the branding
of a different institution. She found that the only available choices
were either to reimplement the function from scratch, or to fall back
to a lightly restyled version of iNaturalist’s frontend interface. From
her perspective, this resulted in a lot of wasted effort and an inferior
product:

[. . . ] where we landed, was that the project essentially ran out of funding
before we ever even fully duplicated the core function of iNaturalist, and
to give you an example, you could create your iNaturalist account, add
observations, you couldn’t add more than one photo to an observation,
you couldn’t rotate your photos, and you couldn’t edit your observations
once you uploaded them [. . . ] We spent a lot of money, and we ended
up with a totally inferior product, and I really wasn’t interested in trying
to do that again. So I’ve definitely steered people away from wanting to
do something similar [. . . ]

In another case, a localized variant of iNaturalist, Natusfera, was forked12

12 In software development, forking is
the act of copying a project’s source code
and starting independent development
on it.

from it due to different legal requirements for data storage. As the re-
spective sources have ceased to be compatible, the forked project has
become unable to take advantage of updates that have happened to
the original platform. This is likely to eventually cause Natusfera to
become economically unsustainable.

P6 reports that in at least three cases users of smaller, competing plat-
forms have made agreements with iNaturalist to migrate their obser-
vation data to the bigger platform. In these cases, the iNaturalist team
has built custom importer tools that interface with the source plat-
form’s API to copy its observation data and accounts. These platforms
were then subsumed and became disused.

aws.amazon.com/s3
cloud.google.com/maps-platform
azure.microsoft.com


41

iNaturalist’s developers are engaged in ongoing design negotiations
with its user communities in public and private forums, e.g. its now-
retired Google Group, new community forum, or GitHub page.

One prominent topic of discussion is whether and how the platform
should mediate taxonomic disputes, i.e. conversations about whether
a given taxon is valid or validly assigned. iNaturalist users who fre-
quently contribute species identifications may be promoted to the sta-
tus of curators, giving them the ability to introduce and update taxa. In
particular, curators are expected to respond to flags, a moderation re-
quest that any user can assign to taxa, observations, and comments on
the platform. This forms a second level of collective data maintenance:
all users collectively assign taxa to observations, whereas curators de-
termine whether taxa themselves are legitimate. As iNaturalist has
grown, this flag-and-moderate system has come under strain, as the
provenance and rationale behind a particular taxon may be difficult to
recover. This is an issue in particular because some taxonomic niches
are not well-covered by any standard reference, such as butterflies or
fungi, creating the potential for frequent disputes. Recently, the devel-
opers have introduced a more detailed tool, Taxon Frameworks, that is
intended to help “reining in taxonomic free-for-all”13. Taxon Frameworks

13 inaturalist.org/blog/

19977-introducing-taxon-frameworks
are a structured format for relating taxa in iNaturalist’s database with
outside references. For example, the framework for the phylum Chor-
data is sourced to the World Register of Marine Species, but includes
15 deviations, such as shifting the class Mammalia from the subphy-
lum Tetrapoda to Vertebrata.

iNaturalist receives requests from user communities to add features
related to their specific niche practice. For example, P6 reports that one
recurring request is for the platform to enable reports that a particular
species is absent in an area. Representing non-presence is necessary
for rigorous biodiversity sampling and monitoring work. iNaturalist
considers this outside their current design scope:

We have some kinda hacky workaround-y things, but nothing like the
sort of full-featured monitoring tool that they would like. And I think
that it’s allowed us to focus on our strength and continue to improve
that, without getting pulled in too many directions by trying to be a tool
that can meet everyone’s needs in the context of biodiversity science.

Instead, iNaturalist attempts to facilitate these communities in inte-
grating the platform with their local tools, e.g. through their public
API, or by agreeing to periodically send them exported subsets of iNat-
uralist’s observation data. The integration difficulties experienced by
GBP indicate that this kind of integration work would be costly.

inaturalist.org/blog/19977-introducing-taxon-frameworks
inaturalist.org/blog/19977-introducing-taxon-frameworks


42

Global Biodiversity Information Facility (GBIF)

GBIF is an international organization whose purpose is to run an open-
access online repository of biodiversity data. It is made up of a con-
sortium of partner organizations, including national and academic in-
stitutions. In some cases, these partnerships are directly between GBIF
and an organization that has the resources to periodically publish data
to GBIF’s repository, such as iNaturalist. In other cases, GBIF partners
with institutions whose employees take on the role Open Science Am-
bassadors (OSAs), who are responsible for mobilizing data from local
projects into GBIF’s infrastructure. DB is one such OSA, working at
the Research Institute for Nature and Forest in Flanders, Belgium14.

14 inbo.be/enGBIF also funds the training workshops, conference attendance, and
periodic international coordination meetings for OSAs.

GBIF has developed its own infrastructure for managing, providing,
and entering data, including the Integrated Publishing Toolkit web
app for submitting data sets. They also rely on specialized tools and
standards, such as the Darwin Core XML file standard for biodiversity
data15.

15 dwc.tdwg.org

DB’s primary task is to oversee the transfer of data from academic and
citizen science biodiversity projects in his region into the GBIF reposi-
tory. This involves finding partner projects, establishing relationships
with them, and either meeting to assist them in uploading their data
through GBIF’s Integrated Publishing Toolkit (IPT) web app, or re-
ceiving an exported file and uploading the file himself. Data sets from
local projects have to be processed to fit GBIF’s standards and to be
understandable and usable by researchers accessing it in the future.
IPT provides limited support for this processing work – such as re-
naming columns in a data set to ones that are part of Darwin Core –
but in practice it requires an open-ended set of skills and technologies.
According to DB, this is both because IPT is due for a redesign, and
because “every data set is a different story”.

Therefore, DB and his community create and share scripts, written e.g.
in R16, tools such as the open-source data cleaning app OpenRefine17,

16 r-project.org

17 openrefine.org

and tutorials on how to use these. Scripts and tutorials are created and
shared locally, in the research institute where DB works, and made
available through their GitHub account. Sometimes, these tools are
shared in the scientific community of Biodiversity Informatics to which
DB belongs. For example, the yearly conference of their interest group
TDWG, presents an award for scripts and tools that are useful to the
general community.

dwc.tdwg.org
r-project.org
openrefine.org


43

These specialist tools let DB create custom automatic routines for part-
ner projects that he receives periodic data from: “We create a script or
something which is built on their data model, so if we run the script again I
get the data [into the GBIF format].” Notably, outside of outright erro-
neous data collection or formatting, DB does not tell partner projects
to adopt GBIF’s standards, such as the Darwin Core (DwC), in their
own databases, as he argues they know better what is useful to them:
“I say to people, do not use DwC to push in your data. So if you have a re-
search project, look at the DwC and if there are any terms which you can use
in your data sets, well, that’s good, use them, but don’t try to push everything
in DwC [into your data schema] because it can really disturb your research
projects.”

Biodiversity Galiano (GBP)

GBP is a volunteer-run citizen science project whose goal is to docu-
ment and raise awareness of the flora and fauna of Location 1. The
community’s work involves collection of biodiversity data through the
iNaturalist platform, organizing community events such as bioblitzes,
– intensive one-day biological surveys – nature drawing workshops,
and kayaking trips.

The project was started by AS, who is a graduate student in biology.
One of the rationales of GBP is that participants can contribute to
the knowledge of local biodiversity by confirming historical records.
Around the same time that AS started GBP, he began a related project
of collecting and organizing all of the historical data from Location 1

about plants in his field of expertise. This historical data was sourced
from private lists prepared by professional biologists in AS’s network,
a database at a provincial university, or through contact with curators
at a provincial natural history museum. Another is that Location 1

is classified as a rare biogeoclimatic zone, having the highest density
of species at risk in its province. Concurrently, a large majority of
the land is private property, which is effectively inaccessible to inde-
pendent researchers. Thus citizen scientists are also generating new
records of species not previously known to occur in Location 1. One
of AS’s key activities is curating a database in which he collates data
gathered by project members with historical data.

Members of the GBP community vary in their level of engagement,
from largely passive Facebook group members, to frequent or one-off
observation contributors who use iNaturalist to submit geo-referenced
photographs of species encountered in Location 1, to members who
maintain the community by helping organize events, sharing pho-



44

tographs and observations on Facebook, etc. AS and these commu-
nity champions have made many efforts to engage the community,
including publishing biodiversity scavenger hunt checklists in the lo-
cal newspaper, making a sign on the local harbor inviting visitors to
contribute to iNaturalist, etc.

GBP’s technological needs are as non-uniform as its membership. On
the one hand the broader community of contributors and organiz-
ers requires accessible and usable tools that present minimal adop-
tion costs. On the other hand AS needs specialized tools for curat-
ing, analyzing, and representing data. For example, his data curation
workflow cannot happen inside iNaturalist. Firstly, it involves several
kinds of data that do not fit in iNaturalist’s ontology, such as historical
observations collected by AS, taxonomic identifications unrecognized
by iNaturalist, and annotations indicating whether a species has been
confirmed by a GBP contributor yet. Second, the iNaturalist interface
is specialized for entering and viewing data, rather than manipulat-
ing it, i.e. observations can only be accessed and edited one at time.
Thirdly, iNaturalist manages an internal list of “sensitive species”,
for which observation coordinates are automatically obscured, so AS
would also run the risk of destroying parts of his historical data by
uploading it to their database. This is not so much an issue because
AS cannot carry out his curation work with other tools, but rather be-
cause this aspect of his work does not benefit from iNaturalist’s high
usability and accessibility by the wider GBP community:

You know it’s providing a benefit for the user, it’s a great tool for learn-
ing, at a very basic level for people, but beyond that for people to more
meaningfully engage in sort of an analysis of the data [. . . ] I’m just in-
terested in making this data more accessible to people who are starting
out from a more novice standpoint, but who could go places in learning
about the species diversity of the region, and all these various ecological
patterns that I find fascinating.

AS has periodically interacted with the iNaturalist organization through
its Google group, reporting bugs, participating in discussions, and re-
questing new features. However, he has found that the tendency of
the developers is to refine iNaturalist as it exists, rather than widen-
ing its aims to meet GBP’s specific needs. We reviewed these public
threads (n=42) and found that threads which raised an issue or posed
a question were responded to with, in order of commonality, no re-
sponse (14), suggested workarounds within existing functionality (8),
explanations of existing functionality (4), explanation that a requested
feature was out of scope for the project (2), and explanations that a
future feature might account for the raised issue (2). These responses



45

came both from developers and other members of the user community.
Furthermore, AS feels that if the project would live inside iNaturalist,
it would lead to a lacking sense of ownership and transparency for
GBP:

[W]hen you pour so much of your life into something. . . say I have a
bunch of business cards printed out [laughs] it’s a very non-lucrative
business this business of documenting biodiversity, but when I meet
somebody and I pass out this business card, currently all I have is the
iNaturalist link on it. But that’s a link to a website created by, well, it’s
iNaturalist, it’s not my website. So partly I’ve been motivated to take
ownership of this project as a curator and do something that’s a little bit
more original and more authentic to the purpose.

BP1
facebook page

BP1
instagram page

P1

D3

camera
Numbers

spreadsheet

Numbers database

Google Sheets
snapshots

curating observation
data

inaturalist.org

iNaturalist
Explore Your Observations Community

Map Satellite

+
-

Vandermeer’s Observations

Int. Hook-
Moss

Loeskypnum
badium

Broad-leaved
Brook-Moss

Fern-leaved
Hook-Moss

Heart-leaved
Spear-Moss

Photo Species name Date observed Place
June 12, 2014
11:19 PM PDT

June 15, 2014
04:45 AM PDT

June 17, 2014
04:37 AM PDT

June 15, 2014
04:48 AM PDT

August 28, 2014
02:12 PM PDT

Peace 
River

Peace 
River

Peace 
River

Peace 
River

Peace 
River

project page

exported
observations

database

iNaturalist
organization

iNat google group

BP1
contributors

professional
biologists

university
herbaria

historic observation 
data

BP1 website

eol.org

Location 1
EoL place page

EoL developer

creating EoL
place page

A2
producing

observation data

cameras

iNat 
smartphone apps

P3

outreach
activities

emailed
snapshots

@

sharing
curated data

tailored
observations widgets

iNaturalist
widgets

iNaturalist
widgets

GitHub
Pull requests Issues Marketplace

app

bin

ci

.babelrc

.bowerrc

Some forgotten style

First step towards Rails

preparing to merge

React and webpack

work in progress

9 hrs

4 yrs

2 yrs

2 yrs

3 yrs

iNat github project

custom
visualizations

developer 
acquaintance

BP1 website

iNaturalist
users

confirming
observation data

WordPress CMS

building website
social media

BP1
followers

online
engagement

organizing/running
bioblitzes etc.

place pages

P2

social media

iNat Discourse forum

Figure 3.1: A map of the personal
and community artifact ecology of AS
and GBP. Personal and communal arti-
facts are grouped in transparent circles
around individuals and groups. Online
platforms and artifacts are grouped in
grey circles around their domains. Text
in ovals are activities, connected to par-
ticipating people and artifacts.

In response to this situation, AS has gradually substituted and aug-
mented iNaturalist with additional artifacts that he has more con-
trol over (figure 3.1). Currently, he primarily uses the MacOS-specific
spreadsheet app Numbers18 for data curation, and has created a com-

18 apple.com/numbersmunity website with the WordPress Content Management System (CMS)19.
19 wordpress.comHe has developed a “precise algorithm” for data curation, which in-

volves periodically querying iNaturalist for recent observations in Lo-
cation 1, extracting a CSV file, reducing the incoming data to the

apple.com/numbers
wordpress.com


46

first observation of each distinct species, integrating those data with
his master spreadsheet, and cross-verifying entries with the historical
record and taxonomic authorities. In the process of building the web-
site, he has learned to create page templates with WordPress and data
visualizations with D3

20. This process has been partially self-taught,
20 A JavaScript library for programming
data visualizations. d3js.org

using online tutorials and tailoring example artifacts, and partially
done with the help of developers AS knows socially, including one
of my co-investigators. The broader GBP community is also involved
in making the website, e.g., through photography excursions to create
content for the website’s “place pages”, which present the ecosystems
of particular locales within Location 1. At the same time, iNaturalist
remains an integral part of the community artifact ecology because it
is unparalleled as a data collection tool for the broader community of
novice naturalists.

Operating and maintaining this artifact ecology requires ongoing work
and various glue technologies. For example, the process of updating
the observations on a place page involves exporting observation data
from iNaturalist, transforming it to fit AS’s master database format,
and then copying the results to a Google Sheets spreadsheet containing
observations for the particular location, which a WordPress widget
on the GBP website automatically queries to update the appropriate
observations widget. The resulting integration is also unsatisfactory in
how it factors publicly accessible and private artifacts. With iNaturalist
and the community website, it is easy for GBP members to contribute
data and to see the project’s outputs, but much harder to participate
in all the work between these two:

So iNaturalist has done great things, but at the same time it’s also tied in
in a similar way to the pipelining of the data in one direction, producing
a byproduct, all these benefits for the individuals who are out there
exploring and stuff, but limiting to a certain extent the way in which
those users can make use of these data. (AS)

AS’s long-term goals for GBP is to make the organization self-sustaining,
and to support a network of similar organizations in the region by
sharing the tools and practices GBP has developed. To that end, he
collaborates with surrounding projects such as MBP, and has taken a
job with a conservancy in the province in which his task is to recreate
the data curation and presentation tools of GBP in their location.

Metchosin Biodiversity Project (MBP)

MBP is a volunteer-run project whose goal is to document and raise
awareness of the flora and fauna of Location 2. Like GBP, it facilitates

d3js.org


47

P2
BP2

email
@

BP2 website

professional
biologists

spreadsheet

Excel database

Excel

P1

curating
observation data

aligning databases spreadsheet

Numbers database

inaturalist.org

bulk observation
uploader

species
lists

university
herbaria

historic observation 
data

email
@A2

invitational
bioblitzes

photographers

list of 
historic surveys

platform
discussion

custom
visualizations

species
authorities

Figure 3.2: A map of the personal and
community artifact ecology of KL and
MBP.



48

the collection of biodiversity data and organizes educational events
for locals. However, MBP is different in a few respects. It is run by
a stable group of five volunteers, rather than one founder and com-
munity members who volunteer on a case-by-case basis. It facilitates
data collection by inviting professional biologists – including experts
in species that require specialized skills to detect and identify, such as
algae – to bioblitzes twice a year, rather than relying on the general
public and iNaturalist. Separately from these surveys, it organizes ed-
ucational events for the public. Location 2 is a rural district with some
large areas of undeveloped land. MBP has focused their surveys on
this land to support future conservation efforts: “[W]e have this side
goal, not only enumerating species in Location 2, [but also] providing some
basis, some database for future transitions of this land.” (KL)

KL has a background in Computer Science, and acts as MBP’s lo-
cal technology expert. In particular, he created and manages their
database, which is a collection of Excel21 spreadsheets into which he

21 office.microsoft.com/excelperiodically enters the species lists generated at the MBP bioblitzes, as
well as data from historical biodiversity inventories of Location 2. He
also manages the community’s website, which presents community
events and resources.

By contrast to GBP, MBP defers to the data collection and represen-
tation practices of invited experts. Rather than encourage usage of a
uniform tool such as iNaturalist, KL collects data gathered by experts
in whichever form they prefer, digital or analog (figure 3.2). Relatedly,
MBP has less need to foster continuous engagement with the project
by amateurs, and therefore does not operate e.g. a Facebook page. In-
stead, their community outreach consists more in organizing periodic
events and producing educational resources. As a side-effect of these
factors and the fact that we relied on KL’s perspective of the commu-
nity, our map of MBP’s artifact ecology is less dense than that of GBP.

In addition to GBP and MBP, the larger region contains two further
biodiversity documentation projects focusing on their respective lo-
cal environments. Members of these communities know each other
through the social network of naturalists in the region, and sometimes
exchange expertise and resources, e.g. participating in each others’
bioblitzes and sharing their data organization schemes. AS is inter-
ested in building these occasional meetings into a regional network of
biodiversity projects that can more closely share and develop data and
tools, and support larger-scale and comparative analyses of biodiver-
sity across the region. As a move in this direction, AS has shared with
KL the code for a custom taxonomic data visualization developed by

office.microsoft.com/excel


49

one of my co-investigators.

Like AS’s master spreadsheet, KL’s spreadsheet for collecting MBP’s
survey data is adapted to locally developed conventions for represent-
ing observations, i.e. it has a different set of columns with different
names. To make the visualization developed for AS compatible with
KL’s data, their spreadsheets must be aligned. KL first attempted to
transform MBP observations to the GBP format via Excel scripting, but
this only worked for observations that could be detected as appearing
on both data sets. Subsequently, KL realized that MBP’s data set could
be semi-automatically extended with the necessary metadata by bulk
uploading his observations to iNaturalist’s database via their CSV im-
port interface. Over the course of assembling his database, AS sourced
his version of this information from this table by hand, cutting and
pasting from iNaturalist’s UI for his observations. This information
is also publicly available via iNaturalist’s JSON-formatted API feeds,
but neither AS nor KL had access to sufficient development resources
to make use of these. In practice even the clever workaround discov-
ered by KL involved significant articulation work. The CSV format
accepted by iNaturalist upload is a fixed format, different from both
the re-download format and also from KL’s original database — so this
integration involved two stages of conversion and re-export from KL’s
spreadsheet tool, ending up with some extra columns which could
then be incorporated in yet another conversion to produce the rendi-
tion of the data suitably similar to AS’s data that it could be ingested
by the visualization tool.

The cumbersome nature of this articulation work would become pro-
hibitive if scaled up from this small local interaction between three
participants (AS, KL, and iNaturalist), to the wider network of cooper-
ating regional naturalists envisaged by AS. Even without the use case
of shared visualizations, both AS and KL would have an incentive to
align their data with iNaturalist’s schemas since this would gain ac-
cess to its built-in map-based and list-based visualizations as well as
its community. But without the ability to adopt iNaturalist’s own per-
sistence as the authoritative data store for either project, this alignment
requires this cumbersome and unscalable pipeline to be operated on a
regular basis rather than just as a one-off task.

Galiano Conservancy Association (GCA)

GCA is a conservancy whose goals are to preserve, protect, and en-
hance the quality of the human and natural environment in Location 1.
The typical work of a conservancy involves surveying and acquiring



50

land, negotiating covenants on privately held land that legally limit
its future development, and monitoring and restoring biodiversity on
land they hold. GCA also does less typical conservation projects, such
as applying sustainable agriculture principles to grow and sell produce
in a forest, or collecting and reseeding plants that were historically cul-
tivated by First Nations peoples22 in the area to turn another forest into

22 indigenousfoundations.arts.ubc.

ca/terminology
a foraging source and site for social and educational engagement with
and for indigenous people. Biodiversity data is primarily significant to
GCA because it is used to prioritize which properties to acquire, pro-
tect, and conserve. Documenting the presence of recognized at-risk
species or ecosystems can also provide social and legal leverage for
GCA’s work.

AH is a restoration coordinator and KE is the executive director of the
agency. Both of them have a wide range of responsibilities, including
defining and managing projects, applying for funding, as well as being
“boots on the ground” that e.g. map properties, survey ecosystems, and
collect seeds for propagation.

GCA’s common technological resources are several computers, some
specialized devices such as GPS units and cameras, a file-sharing server,
and a website. They do not have any dedicated technological support
staff or developers, and thus their artifact ecology is defined largely by
the off-the-shelf technologies its members bring with them. In addi-
tion to its 8 regular staff members, GCA relies on the labor of seasonal
student interns, who might e.g. work on defining a monitoring plan
for a property.

GCA keeps track of its projects through spreadsheets, maps, reports,
etc., which have accrued in their local file-sharing server for over a
decade. These data are inter-related in multiple dimensions, e.g. through
references and version histories. The organization as a whole has not
converged on settled schemes for naming, structuring, and versioning
files and folders. This situation makes it difficult to keep track of what
data GCA has in their possession, and sometimes causes serious break-
downs. In one case, KE discovered that a previous student intern had
accidentally corrupted the trail map of one of GCA’s properties, mean-
ing that the whole mapping effort has to eventually be redone. Some
of this work happens occasionally, e.g. when an intern performing a
round of measurements for a long-term monitoring project also recov-
ered and reorganized all the previous measurements for that project.
Due to their lack of personnel or financial resources, neither AH nor
KE think it is likely that GCA will be able to design, maintain, and
enforce data storage policies.

indigenousfoundations.arts.ubc.ca/terminology
indigenousfoundations.arts.ubc.ca/terminology


51

AH has convinced GCA staff to partially ameliorate this situation by
migrating GCA’s data from the file-sharing server to Google Drive.
His hope is that this will reduce the labor of accessing and sharing
data, substituting the work of installing and operating remote desktop
software to access the file server with sharing URLs. Google Drive
also has built-in file versioning, though it does not keep versions older
than 30 days for files not created with Google’s apps, e.g. PDFs and
maps. By contrast, in the above case of data loss, the problem was
only discovered a year after the trail map file was corrupted. Further-
more, Google Drive offers little help with the problem of creating and
enforcing schemes for naming and structuring the data, and even less
help for the problem of tracking related data. So far, GCA has only
partially migrated their data and workflows to this new setup.

3.3 Contrasting Design Practices

I now discuss how the artifact ecologies and design practices in our
case study manifest tendencies of the contemporary mode of software
production. By comparing the design work of different participants,
we will see how the kind of labor they do, the amount of it, and the
realistic outcomes are shaped by the productive forces they have ac-
cess to and the relations of production they operate under. I argue
that software production tools embed a centralizing tendency, which
negatively affect the ability of grassroots communities to derive value
from their design efforts.

Relations of production in the case study

The network we study is made up of several overlapping and inter-
acting relations of production. We see three broad types of relations,
characterized by the role of designers relative to the use situation. Plat-
form owners design tools for an open-ended group of users, embodying
the user/designer distinction of typical commercial software produc-
tion. User-designers design tools for their or their community’s prac-
tice, occupying the spectrum of tailors and related roles documented
in tailorable systems research. Mediators design in the space between
communities, enabling them to cooperate.

The first two categories are congruent with the practices of extrinsic
and intrinsic design described by Kaptelinin and Bannon (2012). The
third category is somewhat orthogonal to this distinction. I emphasize
it because designers enabling cooperating among communities and



52

their artifact ecologies played an important role in our findings.

Platform owners develop and maintain custom software. They require
specialized skills and tools to organize distributed development, test
and deploy systems, track bugs, etc. This relation is characterized by
a large number of users relative to designers. Consequently, designers
working in this role must evaluate which aspects of users’ practices
to focus on and support. For example, we saw iNaturalist in use as
part of personal education, academic projects, environmental restora-
tion work, biodiversity monitoring, etc. While the platform owners
are aware of these diverse use contexts, they must focus their limited
resources, e.g. by defining iNaturalist’s core functionality as “helping
people record biodiversity occurrence data [...] and crowdsource species iden-
tifications associated with those records” (P6).

Communities of practice typically invest in off-the-shelf digital tools
that partially fulfill their needs as starting points for their artifact ecolo-
gies, e.g. GBP started out with an iNaturalist project and Facebook
group as key artifacts. Off-the-shelf tools are attractive both because
they may offer appropriate interfaces and because of the network val-
ues that come with high adoption rate, e.g. presence of valuable data,
supportive community, stable funding and maintenance. We saw this
rationale in effect in the migration of user communities and their data
from smaller iNaturalist competitors. Network values also explains
why some communities lobby platform owners to expand platform
functionality for their particular needs, e.g. the iNaturalist users who
requested biodiversity monitoring features. It is likely that these users
do not have the resources to develop or maintain a high-quality moni-
toring tool of their own.

User-designers help fill the gaps between what these tools provide and
what a community needs, resulting in hybrid ecologies such as GBP’s
(figure 3.1). They assemble these systems by “happenstance, community
strategies, and everyday tailoring and appropriation tactics” (Bødker et al.,
2016a). A key value for user-designers is the feasibility and cost of
opting in and out of aspects of platforms they design around. For
example, GBP’s website is a more desirable public representation of
their work compared to that initially offered by iNaturalist’s project
pages, but requires AS to manually recreate many of the data flows
that are automatically handled by iNaturalist’s backend.

These relations of production overlap because the artifacts they create
and adapt are held in common between communities due to collabora-
tions (e.g. GBP and MBP) and producer/user relationships (e.g. GBP



53

and iNaturalist). This sometimes results in tensions, when desired or
actual design interventions made by one community affect other com-
munities. The different design stories illustrate different ways of deal-
ing with this tension. For example, AS was unable to effect change in
iNaturalist to make it support GBP’s goals beyond data collection, so
he resolved tension by working around it, gradually complementing
iNaturalist with additional artifacts.

Mediators design at the seams between communities to avoid or re-
solve design tensions and incompatibilities. DB tries to minimize ten-
sion by encouraging data sharing partners to maintain their local data
schemas rather than adopt the standards used in the GBIF repository.
AS and KL created a workaround pipeline to align the observation
data from their respective projects for visualization. In both cases, the
intervention helps the respective communities accomplish some level
of interoperation between their ecologies, but at the cost of repeated
work for the mediator. In DB’s case, he is paid for this work, and has
a suite of specialized tools for efficiently re-processing data. In AS and
KL’s case, it is unclear if they will repeat this process in the future or
invent a less clunky workflow.

Productive forces in the case study

In addition to the different relations of production, we found that our
participants made use of different tools and techniques to perform de-
sign interventions. For example, when new collection data is uploaded
to iNaturalist, the data are automatically made accessible and visible
to a combination of programs performing database requests and pro-
cessing the result into rendered HTML. By contrast, to make the same
data present on the GBP website, AS has to manually operate a multi-
step process involving exporting CSV files, reformatting them for his
master database, and copying that data to an online spreadsheet con-
nected to his website via a table widget he found online and adapted
(figure 3.1).

These productive forces occupy a spectrum between use-like and development-
like. These poles indicate different trade-offs between required skills,
expressive power, and down-the-line maintenance costs. Broadly, use-
like tools and techniques require less specialized technical skills to de-
ploy, but result in less sophisticated designs compared to development-
like ones. Table 3.3 gives an overview of some key design tools em-
ployed by our participants.



54

Data Function Expression Installations

Design-
in-use

email,
spreadsheets
(offline & offline),
maps, text
documents, CSV
files

iNaturalist,
Facebook & other
apps, WordPress

templates &
scripts, APIs

shared file server

Software
develop-

ment

databases large programs,
frameworks,
version control
systems, test
suites

cloud services

Table 3.3: An overview of the kinds of ar-
tifacts that make up the artifact ecologies
we surveyed, roughly grouped by adja-
cency to the practices of user-designers
and large-scale software development.

The hybrid ecologies produced by user-designers are useful, even es-
sential, to their communities, but they have limited avenues for im-
proving their usability. For example, it is cheaper for AS and KL to
exchange data by emailing each other CSV files than to program and
run a bespoke interface, but their solution has limited power in that
they have to manually do the work of extracting and sending data,
as well as the more taxing work of translating from one party’s data
schema to the other’s. A capable programmer could likely automate
some of this work, which is similar to DB’s routine data processing
tasks.

The productive forces of software development give platforms own-
ers several benefits in terms of scaling up systems to handle many
users and large bodies of data. For one, they can create effective and
usable interfaces by re-organizing interfaces to fit routine tasks and
automating the background involved in those tasks. Additionally, de-
velopment and operations tools, many of them cloud services such as
Microsoft Azure and Amazon S3, help them manage the processes of
creating and testing new functionality, deploying it, and keeping their
platform running and responsive.

However, this ability to scale up also comes with an implication of
consolidating around shared design choices. At every level, adopt-
ing large-scale software development tools implies community consol-
idation around certain design choices. Adopting a database requires
agreeing on how data are named and structured. Adopting a devel-
opment ecosystem requires agreeing on one body of source code and
therefore on functionality. In iNaturalist’s case, there is some flexi-
bility in this regard due to the split between frontend and backend,
e.g. localized versions of the website can be translated. The develop-
ment stories reported by P6 illustrate that the ability of the platform to
support divergent functionality is limited23.

23 There are some antecedents for large
software projects that are carefully
evolved while factoring in the diverse
needs of different communities, but
they involve substantial management
and community governance work, as in
e.g. development of the Linux kernel.

This form of scaling is not compatible with the kind of design that
our user-designers and mediators pursued. The user-designers and



55

mediators in our case study sought to create tools that bring value
to one or multiple communities of practice while letting individuals
keep their local data and interfaces as they desired. Technological
support for design-in-use in an era where digital artifacts are held in
common is not simply a matter of allowing for software modification,
it must also support maintaining and negotiating differences among
communities and individuals.

In summary, the tools of software development support the develop-
ment of usable and scalable tools, but at the cost of having to manage
functionality and data in a centralized way. Gürses and van Hoboken
(2017) argue that software increasingly defaults users into service re-
lationships that are non-trivial to understand and resist. I argue that
software analogously defaults users into functional relationships that
they may not wish to be subject to in a uniform way. In the next sec-
tion, I discuss what this implies for technological research.

3.4 Infrastructures for Plurality

Based on our case study, I have argued that contemporary tools for
software development make it too costly for communities to support
their local practices. This cost is too high in several respects. The cost
of entry, in the form of the skills and time necessary to make the kinds
of digital tools we have been making variants of for decades. The cost
of independence is more subtle, in the form of the ongoing work that
is necessary to maintain local interfaces, data schema, installations, etc.
while still being able to integrate with other tool ecosystems. Both of
these costs contribute to a centralizing tendency, a technological and
economic rationale for one-size-fits-all design.

I argue that our field should seek to develop productive forces for de-
signing and modifying software that reduce and mitigate integration
costs and network effects. I call these potential artifacts infrastructures
for plurality. A plurality is a social structure that encompasses multiple
cultures without giving any of them primacy, but acknowledges “mul-
tiple, located, partial perspectives” (Suchman, 2002). Infrastructures for
plurality are design artifacts that help users cope with the existence of
multiple partially compatible systems.

For example, AS and KL’s spreadsheet databases are partially compat-
ible in the sense that they theoretically contain data about the same
kinds of things. However, they disagree on how spreadsheet columns



56

are named, which columns exist, and even which data is valid, e.g.
where AS and KL disagree on a species authority. As a result of this
partial compatibility, AS and KL must go through a lot of cumbersome
labor to interoperate their databases, e.g. to compare their data. How-
ever, AS and KL are not interested in making their systems fully com-
patible by consolidating on one standard data representation, because
their local choices in this regard support their communities’ practices.
In this case, a pluralistic tool would enable them to share data with
less effort without requiring them to change their local data formats,
e.g. by automatically transforming data in AS’s format to KL’s format,
and vice versa.

Using this design goal as a guideline, I briefly survey some existing
green shoots of software infrastructure that may lead to better design
conditions for small collectives of users designing in networked ecolo-
gies, and point to some of the gaps between what exists in research and
what could have a practical impact in the context of our case study.

Pluralistic data

Tools for managing pluralistic data should minimize the repeated work
involved in making use of data across different practices and artifact
ecologies. The most notable development on this front is arguably
the translation of established app genres – such as spreadsheets and
word processors – into the cloud. Collaborative tools such as Google
Docs24 have made several aspects of sharing common document types

24 docs.google.comsimpler, e.g. substituting file transfers for shared URLs. As seen at
GCA, these tools are desirable to grassroots communities, but little
else has emerged to assist small-scale organizations in storing, version-
managing and curating their data online. For example, shared spread-
sheets do little to assist GBP and MBP in their data alignment task,
nor have these tools been shown to support communities in manag-
ing data with many versions and inter-relations, as is true of GCA’s
documents.

One interesting direction in this area is the Frictionless Data25 initia-
25 okfnlabs.org/projects/

frictionless-data
tive. It defines a portable standard for data packages that combines files
in various popular formats with metadata that facilitates safe importa-
tion into a different environments and repositories. As a backend, this
would be appropriate for some purposes of small-scale organizations,
such as automating the pipeline from AS’s data curation workflow to
visualizing subsets of the updated database on GBP’s website. How-
ever, several gaps remain. Firstly, the currently proposed metadata
format for data packages does not allow the expression of relations

docs.google.com
okfnlabs.org/projects/frictionless-data
okfnlabs.org/projects/frictionless-data


57

with other data sets. This makes it of limited value in representing dis-
tributed data, and in packaging data that may need to be structured
differently in different use contexts. Secondly, the initiative has not
described user-level tools for creating, manipulating, and transmitting
data packages.

To build on this work, I propose developing data bridging mechanisms
that establish persistent data sharing relationships between communi-
ties without requiring them to agree on policies for naming, structur-
ing, and curating data. The goal is to eliminate or reduce the manual
work of moving and transforming data between locations. For exam-
ple, AS should be able to establish bridges that manage the relation-
ships among his local spreadsheet database, GBP’s website, iNatural-
ist, and MBP’s database. Computer scientists have developed a for-
malism that notionally matches this concept, bidirectional lenses (Bx,
2018). A lens establishes a bidirectional transformation between two
data items and maintains them in a consistent state as changes are
made to one or the other. However, lenses have yet to manifest them-
selves in end-user-oriented interface prototypes There is research to be
done in evaluating whether current bidirectional lenses are applicable
to the kinds of data transformations exemplified in our case study, as
well as in creating usable interfaces for establishing and manipulating
them.

In discussion with AS, we noted that it is not necessarily desirable
for such lens interfaces to be completely automated. For example,
they should let users on each end step through updates and dynam-
ically amend the lens with new rules, e.g. rejecting or automatically
transforming observations of a taxon considered invalid at one end.
Basman (2019) has followed up on our case study with an in-depth
analysis of this kind of inter-community data alignment task and the
requirements for data formats and user interfaces to support them.

Pluralistic installations

Tools for pluralistic installations should enable communities of users
to acquire the hardware support necessary to operate personal and
community tools that can be made publicly accessible on the web.
This includes the entire chain of support necessary to make a piece of
software available in a particular time and place, from the hardware
(virtualized or otherwise), the energy and network costs of running
it, its connections to sources of data in its community and those of
others, the act of installing it, paying any license costs, and ensuring
that it stays running stably and free of security vulnerabilities.



58

Access to these kinds of resources is one of the factors that drives users
to ecosystems such as Google’s, in exchange for entering service rela-
tionships that are sometimes undesirable, such as having one’s data
tracked and sold to advertisers. Tools in this vein are necessary for
hypothetical desirable use patterns such as allowing a community of
users to trivially re-deploy the iNaturalist platform with alternate poli-
cies, e.g. with respect to data privacy or licensing. This form of dispute
lies behind the split between iNaturalist and the localized Natusfera,
which had to separate from the main platform due to new legal re-
quirements for data storage at its location.

At least for web applications, this is an area in which there has been
significant recent process. The last ten years have seen a proliferation
of “Something as a Service” platforms by cloud computing vendors,
where “Something” can variously be replaced by “Platform”, “Infras-
tructure”, “Software” or others. Each of these provide models where
one may rent standardized parts of the infrastructure needed to host a
web application, delegating more or less of the responsibility for it to
the provider as needed. These rely on various pieces of orchestration
technology, many of which have increasingly solid open source imple-
mentation, such as OpenStack26 and Kubernetes27, which automate

26 openstack.org

27 kubernetes.io

the processes of spinning up one or more machines of a particular
configuration that cooperate to provide a particular function.

This is a highly promising development, although the ecosystem is
still far from the state where an ordinary citizen (or expert) could turn
up and at the push of a button set up a fully configured incarnation
of their own version of a complex platform such as iNaturalist. Two
examples of initiatives aiming to help novice developers design and
host apps at minimal cost are hood.ie28 and the Small Technology

28 hood.ieFoundation29. Both provide novice-oriented documentation, curated
29 small-tech.orgopen-source tools, and novel tools to bridge the gaps between them.

They each focus on providing particular useful properties for apps as
defaults, such as working equally well on- and offline, or encrypting
network traffic. These projects may in time reduce the barrier to com-
munities such as GBP to develop homegrown tools in the same way
that user-friendly Content Management Systems such as WordPress
have enabled communities to host static websites. However, the result-
ing tools may be no easier to integrate and combine with each other
than those found in our case study.

openstack.org
kubernetes.io
hood.ie
small-tech.org


59

Pluralistic function

Tools for pluralistic function should enable end users to keep, reuse,
and integrate (parts of) interfaces they find useful in different con-
texts. These tools should aid users such as AS in assembling hy-
brid systems without substantial loss of usability or insurmountable
maintenance costs. The Buttons environment reviewed in the previ-
ous chapter (MacLean et al., 1990) exemplifies the kinds of use pat-
terns implied by this goal: users extending their interfaces piecemeal
by adding new buttons, sharing them with each other by email, and
adapting buttons to new uses by modifying their exposed parameters.
Pluralistic interfaces encompass tailorable software, but bring new de-
sign challenges stemming from the multiplicity of systems and users.
Extending the example of Buttons, it should be feasible for users to
transport their buttons between different environments with various
levels of incompatibility, either by themselves or with the help of a
developer. Pluralistic function also requires tailoring techniques to
integrate disparate system elements originating in different communi-
ties. Ultimately, these requirements imply that it should be possible
to disassemble running interfaces into their constituent parts and re-
assemble them to suit different purposes. Because of this conception of
software as a material to be re-shaped in the hands of users, I call this
design vision malleable software. These goals imply radically different
forms for programs and running software compared to those found in
the app paradigm. I pursue this design direction in the remainder of
this thesis, and review existing work and key research problems in the
next chapter.

3.5 Conclusion

In our study of a biodiversity research network, we observed moves
to expand and refine artifact ecologies occurring from multiple direc-
tions. A given community’s artifact ecology is not only theirs, but is
also held in common with other communities due to collaborations
and producer/user relationships. Therefore, changes to community
ecologies were initiated by the community itself, in concert with its
collaborators, or occurred in a top-down manner, e.g. when develop-
ers abandoned, deprecated, or modified software.

These multiple origins of design were sometimes in tension, when de-
sired or actual design interventions made by one community affect
other communities. Sometimes tensions were resolved through col-
laborative design and sometimes through workarounds, substitutions,



60

and additions around the changing artifact.

The communities in our case study used a number of techniques to
perform design interventions, from adopting an app to sharing a syn-
chronized spreadsheet to programming new apps. Some of these ar-
tifacts cost less to deploy in terms of skills, time, and front-loaded
maintenance, but are also limited in terms of their design reach, leav-
ing user-designers with some intractable design problems. As a result,
the artifact ecologies users create for themselves necessitate ongoing
articulation work, whereas developer interventions can take advan-
tage of tools that enable them to automate routine work and change
interfaces rather than adding new ones.

Additionally, the available design artifacts have bad properties when
designing for multiple heterogeneous communities: in regards to data,
function, and installations, it is generally expensive or impossible for
two or more communities to share some, but not all design deci-
sions. iNaturalist’s relationship to competing platforms and diverging
projects is indicative of how one-size-fits-all software design is embed-
ded in the technology stack. Under the current mode of production,
control over widely deployed and widely adopted software artifacts
needs to be centralized. As a result, platform owners cannot eco-
nomically do their work without treating users as a largely uniform
community, while grassroots communities hoping to collaborate must
either perform repeated integration work or consolidate their artifact
ecologies.

It should be emphasized here that I do not critique the design prac-
tices or choices of iNaturalist or other communities in the case study.
Rather, I argue that iNaturalist exemplifies a double bind of software
produced under the app paradigm: on the one hand, the platform is
extremely valuable to communities such as GBP as a free, highly us-
able and accessible tool for collecting biodiversity data. On the other
hand, those same communities face imposing costs in adapting such
systems to work in the context of their local ecologies.

Thus there is an HCI research agenda in reforming the tools of soft-
ware production to support small-scale, ad hoc, diverse, collaborat-
ing communities in making and integrating software at costs they
can afford. Based on the design problems encountered in our case
study, we propose data sharing tools based on bidirectional lenses,
infrastructure-as-a-service tools for end-users, and malleable interfaces
as representative artifacts of this reformed technology stack.



61

3.6 Key Takeaways from Chapter 3

The design practices we trace in the case study support our view
that software production tends towards centralized, top-down de-
sign. The underlying mode of software production, manifested
in social relations and technical artifacts, inhibits user communi-
ties from maintaining software that supports local differences in
data organization, functionality, and infrastructure. For example
platform owners consolidate their user communities under one
set of design choices, while grassroots communities invest ongo-
ing labor into bridging between technologies and communities.
We argue that the software production stack contributes to this
state of affairs. The tools and techniques of software engineer-
ing tend to make further design interventions to distributed soft-
ware uneconomical or impossible unless they fall within a pre-
specified design space. This infrastructural tendency manifests
itself in network effects and integrations costs. These lead even
small non-commercial software developers to practice top-down,
assimilative design that pushes diverse user practices to the mar-
gins. While user communities are resilient and creative in work-
ing around platform limitations, their solutions are often fragile
and clunky. This motivates research into and design of infras-
tructures for plurality. I envision these as tools and techniques for
software design that enable communities to adapt their technolo-
gies at a cost they can afford, and especially to reduce the cost
for communities to cooperate without having to consolidate their
technologies.





63

4
Malleable Software

I define the design goals of malleable software, which are the focus of the rest of
this thesis. Malleable software takes up the ideal of tailorable systems research,
i.e. that changing software should be as easy as using it. It refines and refocuses
the aims of that research by taking into consideration that people own and use
multiple software artifacts in changing ecologies, and that each distinct software
artifact is connected to a network of developers and collaborators. Therefore I
focus on technological interventions that reduce the reliance on stable, central
systems as the targets of adaptations. Instead, malleable software should dissolve
the boundaries of discrete systems such as apps, letting users and developers
pull them apart and (re-)combine them. I describe the goals and challenges of
creating malleable software from the perspectives of software engineering and
interaction design.

In the previous chapter we saw two distinct approaches to designing
ecologies of digital tools: software development resulting in a multi-
app platform, and a mixed approach combining off-the-shelf apps and
various glue technologies resulting in a community artifact ecology. I
found that each of these approaches offered unsatisfactory trade-offs
for grassroots communities of practice: the former approach can result
in highly usable and efficient tools, but at the high cost of software
development and maintenance. The latter approach is accessible to
resource-strapped communities, but at the cost of significant limita-
tions to usability and efficiency. Concurrently, both approaches have
trouble accounting for pluralism, i.e. the presence of and interactions
among multiple communities with multiple practices and preferences
for their digital tools. In this chapter, I describe malleable software, a
vision for developing and tailoring software that seeks to combine the



64

benefits of making design interventions accessible and making the re-
sulting artifacts usable.

Malleable software is inspired by the everyday adaptation practices
reviewed in chapter 2 and documented in chapter 3. People bring
together artifacts they find useful, organize them to fit routine tasks,
create reusable artifacts that reify local conventions, etc. Just as people
prepare their physical spaces and tools to suit their practices,1 they

1 see e.g. (Nielsen and Bødker, 2004)
and (Maudet et al., 2017) for examples
from the domains of tax assessment and
graphic design.

prepare digital artifact ecologies by, e.g.,

• installing sets of useful apps;

• organizing them in available screenspace;

• creating template files that can be copied or extended;

• naming and structuring files and folders; and

• using available configuration options.

These adaptation behaviors are limited by the rigidity of software. In
particular, they are subject to the boundaries imposed by apps. In
general, apps couple what users can do, e.g., changing color, with
what they can do it to, e.g., text. Some apps supports collaborating on
a particular task, but limit the available tools and working materials.
Some apps can be extended with new tools, but are highly specialized,
e.g., for illustration or programming. Apps can only be combined in
limited ways, e.g., it is possible to work on an image in two graphics
apps in turn, but impossible to compose those two apps to make their
respective tools available at the same time on the same image.

Malleable software aims to increase the power of existing adaptation
behaviors by allowing users to pull apart and re-combine their inter-
faces at the granularity of individual UI elements, such as toolbars,
widgets, menus, documents, and devices2. In other words, the goal

2 I mainly describe malleability in rela-
tion to the most common types of user
software, in which “UI elements” are
graphical. It is not, however, inherently
connected to visual interfaces.

is to erase the boundaries between apps and create an end-user ac-
cessible “physics of interfaces” that dictate how different interfaces
and documents can be assembled. Malleable software should enable
end users to reuse their favorite digital tools in different digital en-
vironments, combine the behaviors of multiple interfaces created by
different developers, and recruit developers to modify or substitute
interface elements.

Figure 4.1 illustrates the kind of adaptation malleable software should
enable. Here, a user of a communication app wants to create and share



65

data visualizations directly in a message thread. Therefore, she drags
some tools into the chat window, including a color picker from her
map-making environment and a graphing tool from her spreadsheet
environment. She then proceeds to use these in the same way she
would in their original environments, i.e. selecting data to visualize,
clicking an appropriate graph type, adjusting its look with the color
picker, etc.

Color picker

Color picker

Graph Data

Graph Data

Figure 4.1: Adding visualization tools to
a chat environment by extracting and as-
sembling existing interface elements

Malleable software entails a literal interpretation of the qualities of
flexible and reusable programs. The former traditionally means mini-
mizing the cost of adjusting a system to meet a new specification (Chris-
tensen, 2010), whereas the latter means that a program module can be
written once and be executed in several different contexts (Biddle and
Tempero, 1998). Malleability means that these properties should man-
ifest themselves in the hands of users. The malleable reuse scenarios I
am addressing are significantly more ambitious than those addressed
by typical programming techniques, such as design patterns. For ex-
ample, we will see that the simple-to-describe act of moving a color
picking tool from one window to another recapitulates significant pro-
gramming effort (figure 4.3).

This design vision is strongly influenced by several threads of work
in HCI and programming language research. Beaudouin-Lafon (2000)
introduced the interaction model of instrumental interaction, in which
interfaces are made up of hand tool-like instruments that mediate ac-
tions directed toward domain objects. Instrumental interaction ex-
tends and refines the design principles of direct manipulation (Shnei-
derman, 1997) by introducing the mediating artifacts of instruments,
which are decoupled from the objects of work. Klokmose and col-
leagues have subsequently appropriated Beaudouin-Lafon’s interac-
tion model for the design of multi-device interactive systems (Klok-
mose and Beaudouin-Lafon, 2009; Klokmose and Zander, 2010; Gjer-
lufsen et al., 2011; Klokmose et al., 2015). Beaudouin-Lafon (2017)
synthesized this work in his proposal for an interaction model based
on information substrates that represent digital information in multiple



66

layers of abstraction, and instruments to manipulate substrates. This
proposal was the outset for my thesis work.

Basman (2016) critiques the lacking materiality of software in the sense
that programs expose no consistent affordances for modification and
maintenance. He argues that software as a whole is unacceptably brit-
tle and rigid, particularly in how it responds to ongoing adaptations.
Clark and Shahi (2018) reflect on how the methods and tools of soft-
ware production might be reconstructed to support ongoing change in
use. They propose material software that “provides the power to be adapted,
configured, re-presented, augmented, or separated in various ways, without
needing to have been part of the original software development process or to
have access to ‘elite-level’ programming knowledge or tooling.” (Clark and
Shahi, 2018, p. 5).

I contribute to this work by describing and addressing some of the
concrete design problems that come up in bringing this vision into
reality. I start with two hypothetical scenarios of software modification
that illustrate the chasms that malleable software must cross.

4.1 Scenarios

I describe two hypothetical adaptation scenarios as benchmarks for
malleable software. By comparing idealized malleable approaches to
the realistic processes for completing these adaptations, I uncover mul-
tiple research problems.

Small-Scale Scenario: Moving a Color Picker

Figure 4.2: The QGIS and Windows
color pickers.

On the left, figure 4.2 shows a color picking tool found in the open
source geographical information system named QGIS. It is a typical



67

example of a widget recreated in many different apps. We imagine
a user that has gotten used to the particular layout, idiom and affor-
dances of this tool and wants it to be their color picker of choice in
some other context, such as formatting a text document, and wants to
know how to achieve this. People unfamiliar with the nature of to-
day’s software ecologies would be surprised to learn that the answer
to this question is that it is economically impossible. On the right,
figure 4.2 shows the standard Windows color picker, invoked from the
Eclipse code editor, which is written in the Java language. It is visually
clear that the two widgets perform the same basic function, and that
they are even capable of sharing the same representations for the color
value3.

3 The range of useful color tools is in fact
much more diverse. Jalal et al. (2015)
study how expert designers invent new
mechanisms and contexts to manipulate
color, and argue that digital color manip-
ulation has been wrongly reduced to a
simple problem of selecting and storing
colors in context-less palettes.

Our hypothetical user would like to replace the QGIS color picker for
the Windows one. In a malleable paradigm, this should hardly be
distinguishable from using the color picker in the regular way, i.e. there
should be nothing preventing the user from sampling colors from or
assigning them to the Eclipse environment from the QGIS color picker.
There should also be a direct means to assign the favored color picker
as the standard one to be spawned in the code editor, e.g. putting it in
a virtual drawer in the Eclipse interface.

In practice, a naive user expecting the color picker to be a reusable
artifact might discover that it cannot pick or drop colors outside the
window of the host application. We could imagine them closing the
host application expecting the color picker to stick around, instead of
disappearing. These kinds of problems are an everyday annoyance of
modern interfaces, causing expert users to invent various idiosyncratic
workarounds to carefully mediate between apps. For example, our
user might use the host app of the color picker as a transit station
where colors to be sampled are imported by taking a screenshot, and
exported by copying and pasting e.g. the HTML notation for the color.

Barriers to reuse originate in development choices outside even the
expert user’s control. Our example color picker originates in an app,
whereas a luckier user might have access to and prefer a color picker
hosted at the operating system level, which may travel between differ-
ent applications. On a deeper level, these problems are embedded in
the stack of technologies used to implement and run the color picker.

Given that our user is or has recruited the assistance of a developer, the
first road block to performing this adaptation is to penetrate the inside
of a delivered application to locate the color picker to-be-substituted.
Second, the developer must reconcile the form of the migrating color



68

picker with the expectations of its new environment. Added to the
difficulties created by the mismatch in implementation languages (C++
on the left, and a mix of Java and C on the right), these come together
with different idioms for interpreting the contents of memory, and
even for addressing and painting areas on the screen. Even in the case
where the color pickers are implemented in the same language, the
imported tool will likely have to be carefully modified to conform to
API requirements, such as method names, parameter order, and data
structures. It may be difficult even to circumscribe the parts of the
source code that deal with constructing the color picker to be replaced.

While some heroic efforts might succeed in transplanting this color
picker, the resulting assembly would be of little value. The user would
end up with two distinct copies of the color picker that would remain
insulated from each other, i.e. the user would still be unable to use
the same tool to pick a color in QGIS and paste it in Eclipse. More
critically, the user would effectively have taken on the responsibility
for maintaining their own personally customized version of the entire
application In summary, the color picker has no economic reuse value
across the app boundary, a poor compensation for the hundreds of
hours of developer time that went into producing it. Figure 4.3 visually
represents the hypothetical process of porting the color picker.

extract
code

access
source

embed
code

rebuild
app

Color picker

Color picker

Figure 4.3: In contemporary apps, trans-
porting an interface elements requires
first reversing the development process
at the source, and then re-iterating it at
the destination. This process is not only
exceedingly complicated, the resulting
artifact is also likely unsupportable in
the long term.

Large-Scale Scenario: Tailoring iNaturalist

In the second scenario, I consider how malleability interacts with the
presence of a larger community of users and developers. This scenario
is based on our case study, drawing in hypothetical adaptations to
iNaturalist described by AS.



69

Figure 4.4: A view of one contribu-
tor’s observations on iNaturalist

Figure 4.4 shows a typical view of the iNaturalist web app in use,
specifically the first page of a user’s contributed observations. It is
an app written mostly in the Ruby and JavaScript languages. Ar-
guably iNaturalist should offer excellent conditions to users who wish
to adapt it for their idiosyncratic needs, considering that it is open
source, developed to serve the public good, well-maintained, and has
a welcoming community. In our example, AS, an expert user, wishes
to adapt this existing platform to assist their own projects by making
a number of additions to its functionality and interface. He has a gen-
eral familiarity with the popular statistical analysis packages used in
his field, and an everyday acquaintance with web technologies, but is
certainly far from the skill-set of a professional developer.

AS wants to adapt the iNaturalist platform in (at least) the following
ways:

• Users should be able to contribute lists of species that are consid-
ered to be available in particular locations, and to associate those
lists with geographical boundaries drawn in a free-form way on
maps;

• Project owners should be able to assign project members as curators
of these lists;



70

• The existing representation of species should contain fields beyond
those currently offered, such as their natural habitat and descriptive
characteristics (e.g. “bush-like”);

• New views should be added next to the existing ones for contribut-
ing and viewing observations, such as a page to select two or more
lists and visualize their intersection or difference, e.g. as a sunburst
diagram.

In a malleable paradigm, these adaptations should be feasible to carry
out with the help of a developer with minimally-privileged access to
iNaturalist’s source code. Ideally, a programmer should be able to cre-
ate an artifact similar to our malleable color picker for each distinct
feature, from scratch or by tailoring an existing interface element ex-
tracted from iNaturalist or from elsewhere. These artifacts should then
be possible for any end user to overlay onto their personal instance of
the interface.

Let us imagine that AS has access to the resources of an expert devel-
opment team to implement the improvements for his community. The
hypothetical realistic process of adapting iNaturalist follows a simi-
lar procedure to the previous example: determining the sites where
changes are to be made, then reconciling existing expressions with the
new features we want to add. In figure 4.5, we show the root page of
iNaturalist’s source code, as shown in GitHub.

As in the previous scenario, there is total lack of correspondence be-
tween the source code and interface in use shown in figure 4.4. This
isn’t just a superficial phenomenon – there is no reliable way to deter-
mine, e.g., given the view of the “Intermediate Hook-Moss” observa-
tion in Figure 4.4, which part of the source code in one of the numerous
deeply nested directories shown in Figure 4.5 is responsible for it. This
does not owe to the particular technology choices made by iNatural-
ist’s developers – it is the routine condition of the dominant software
development paradigm. Experienced programmers take this discrep-
ancy for granted, and learning to navigate it is a core skill of large-
scale software development. This is typically done by in-depth study
of the structuring conventions used by the frameworks and commu-
nities at hand, trial-and-error programming, reading long stack traces,
and searching the source code for tell-tale strings, etc.

This scenario presents issues beyond the difficulty of simply express-
ing the desired tailoring. It brings up community-scale issues such as
how new functionality is to be shared, how it is to be developed and



71

Figure 4.5: The source code for iNat-
uralist in GitHub

tested, and at what cost, and how it is to be deployed. AS’s needs
for tailoring in this case go beyond those of a single person desiring a
personalized color picker. In this case, not only should the new func-
tionality be available to members of AS’s biodiversity project, but it
should also be possible for other communities to opt into his custom
additions, and for multiple authors’ additional functionality to be com-
bined. This requirement sums up the notion of software development
for plurality, i.e. “multiple, located, partial perspectives” (Suchman,
2002). AS recognizes and wants to plan for the fact that unrelated com-
munities may have their own perspectives on what species exist and
which aspects of them are relevant to their practice. These all need to
coexist with the “base function” offered by the core iNaturalist plat-
form itself, and its base community. How this is done in practice has
implications for the networks of cooperation that are likely to emerge,
e.g. which communities are likely to share data.



72

A typical design solution to problems such as this are to add more and
more functionality to an app over time, resulting in interfaces similar
to the “giant ribbon” familiar to users of modern office applications, in
which menus and toolbars are packed with tools represented by tiny
icons. This phenomenon has been named software bloat, and HCI re-
searchers have developed multiple tactics for curbing it, e.g. automatic
and user-controlled adaptation of interfaces (McGrenere, 2002).

Realistically, the adaptations will not appear fully formed, but will
have to be developed iteratively in the context of the existing code base
and user community. While simple prototypes and mockups might
be suitable for early stages of this process, it is inevitable that later
stages of design will have to be evaluated around patterns of real use.
This implies that it should be possible for an adapting community to
effectively sequester a running version of iNaturalist, and deploy it to
users who have opted into participating in this design process. There
are broadly three strategies available to manage this. Unfortunately, it
turns out that none of them offer favorable economics.

First, the adapting community could attempt to create a tailored iNat-
uralist that shares as much code and infrastructure with the existing
platform as possible. Modern distributed source control systems such
as git4 let the adapting community fork the platform’s source code to

4 git-scm.comcreate a separate working copy. Beyond this point, however, the costs
start to escalate rapidly. To actually run their version of iNaturalist,
they will need to become familiar with its deployment and integration
pipeline. They will also need to figure out how to share data with
the core community, itself a source of many breakdowns found in the
case study. Unless they want to commit indefinitely to maintaining
their adapted version, they will need to build a strong relationship
with the upstream community, and become familiar with their coding
guidelines, administrative practices, and ensure that their adaptation
is structured in terms that they are prepared to accept and maintain.
In practice, it is more likely that the two versions drift out of compat-
bility, as in the example of Natusfera (section 3.2). A contributing fac-
tor here is that adaptations to the forked source code are represented
by a “diff”, a set of textual additions to and removals from the code.
Diffs can be used to apply the adaptation to other copies of the source
code, or to rewind to previous versions. However, it is cumbersome,
and often impossible, to combine diffs from multiple sources, e.g. the
respective changes of the iNaturalist and Natusfera teams.

Second, the adapting community could choose to develop a new sys-
tem, replicating a large proportion of iNaturalist’s function and data

git-scm.com


73

model, ignoring elements of the interface not relevant to their needs,
and implementing their desired features. The integration with iNat-
uralist would then occur via its published APIs – e.g. observations
in the fresh system would be matched one-to-one with observations
in iNaturalist’s database, user accounts created on the new platform
would be mirrored in the other, etc. The development costs of this new
system would be extreme, and in practice integration via the API will
likely be inadequate. This was P6’s experience in the example seen in
section 3.2.

Finally, the adapting community could build a long-term working re-
lationship with the core development team, and persuade them that
their features should be added to the platform. As expressed by AS,
this path is ideal in that it allows the platform and his community to
mutually benefit: “If there was ever funding available, then it would be ap-
propriate probably to talk to the makers of iNaturalist and say ‘We have this
project that kind of dovetails or parallels with what iNaturalist is doing, what
aspect of it do you think does gel with what you’re trying to do?’.” However,
this scenario is unlikely, considering iNaturalist’s historical approach
of pursuing a narrowly scoped design so as to not spread themselves
too thin.

4.2 Discussion of scenarios

The following problems came up in the scenarios:

• Interface/code correspondence: typical programming environments
do not help adapters trace graphical elements and their behavior to
the code producing them;

• Untangling interface code: code defining interface elements is dif-
ficult to re-contextualize because it is coupled to the larger system
through references to its entities and their APIs;

• Externalizing adaptations: different forms of adaptations, such as
diffs and plugins, have different levels of support for distribution,
sharing, combination, and further adaptation;

• Federating development: existing tools such as version control sys-
tems do not help communities adapt a shared system in different
directions without breaking interoperability.

The problems of pluralistic data and installations that I briefly touched



74

upon in section 3.4 also came up peripherally in the second scenario.

Malleability and software engineering

Our scenarios deal with the key problem of software evolution, in-
corporation of new user requirements and changes in the software
environments. They re-iterate the conclusion that the cost of adapting
programs is, in general, proportional to the complexity of the adapted
systems rather the complexity of the desired features. However, the re-
lations of production implied by our scenarios is different from those
reviewed in section 2.6.

Malleable software continues the trajectory from centralized to plural-
istic software development, from Parnas’ central management (1971)
through Bennett and Rajlich’s staged model (2000) and Kell’s “grow-
ing islands of functionality” (2009). The key addition is that malleable
software conceptualizes user interfaces, traditionally the “end prod-
uct” of software development, as further sites for adaptation and in-
tegration. It can be seen as a unification of today’s highly distributed,
broadcast model of development and the local, social development
networks seen in the tailoring studies reviewed in section 2.5. Bas-
man et al. (2018a) have named this model of software production open
authorship. They visualize this as an open-ended and continuously
expanding “graph of authors” creating, adapting, combining, and us-
ing programs. Open authorship and malleable software are sympa-
thetic frameworks, the former starting at the level of programming
languages, and the latter starting at the level of user interfaces.

Basman et al. find three key properties to be conducive to open au-
thorship. First, adaptations to a system should be additive rather than
destructive, i.e. they should be performed by creating a new module
and attaching it to the existing system, rather than rewriting existing
code. Additive modification is useful because it lets the adaptations of
multiple developers be aggregated, whereas multiple modifications of
a text may not be possible to consolidate. Second, systems should be
freely and stably addressable, meaning that every part of a program
can be referenced from outside the program, e.g. by using a global
path expression, and that these references are likely to remain valid.
Addressability is key to increasing the expressive power of additive
modifications: it is the property that allows new modules to extend
properties that are deeply embedded in the source code of an exist-
ing system. Third, all elements of a system should be externalizable,
meaning that it should be possible to represent and share them as data,
e.g. as text documents. This property is necessary to enable use cases



75

such as transporting a behavior from one system to another. In the
next chapter, I discuss related work and the design of a programming
model for malleable software in terms of these properties.

Researchers in the end-user development (EUD) (Paternò and Wulf,
2017) community have developed several tools that could help com-
munities adapt and maintain malleable software. For example, Ko
and Myers (2008) have created WhyLine, a tool for tracing system be-
havior to code by selecting questions from a menu such as “Why did
this value become undefined?”. Wulf et al. (2008) review experiments
with several programming tools that help users reveal and modify the
program components making up their interfaces. Such tools would
likely be essential artifacts in a mature malleable software ecosystem.

Malleability and interaction design

I have described an aspirational division of labor between end users
and (local and remote) developers. End users should be able to bring
together interface elements and documents, and to some extent these
should be able to “just work”, as in the color picker scenario. This im-
plies that a malleable software environment has some capacity to rec-
ognize the presence of interface elements that should interact, and to
instantiate the necessary machinery. It is an open question how much
typical API matching requirements can be relaxed by computational
means. In cases where elements cannot be automatically coordinated,
it should be possible for a local developer to assist a non-programming
user by adding some code to align the elements the user is trying to
bring together. Once such an integration has been performed, it should
be possible for the user to keep and share it.

The exact line between adaptation tasks that require programming and
those that do not is a critical usability factor in malleable systems. For
example, Edwards et al. (2009) review a decade of work on an exper-
imental architecture for recombinant computing, a framework for ubiq-
uitous computing that is somewhat similar to the vision of malleable
computing. The Obje architecture created by Edwards et al. (2009)
lets users combine devices such as printers, projectors, and laptops
through a PDA interface. They conclude that allowing ad hoc inter-
operation of devices inherently creates an added cognitive burden on
users compared to off-the-shelf interfaces, because users must estab-
lish useful semantics for their devices. To reduce this interpretive bur-
den, they create a set of reusable templates that encapsulate routine
configurations of devices, called setups (Newman et al., 2008).



76

However, what is a routine configuration highly depends on the par-
ticular community of practice in which the configuration takes place.
Therefore, such templates for interaction should be possible for com-
munities of users and programmers to create and adapt. This should
allow them to collaborative shoulder the interpretive burden of design
and create a local repository of useful interactions. This hypothesis
is supported by several of the examples of community tailoring re-
viewed in section (2.5): in both Buttons (MacLean et al., 1990) and X
Windows (Mackay, 1990a), a key faculty enabling tailoring is that users
can externalize their personal customizations, as buttons and configu-
ration files, respectively.

Some researchers have developed interaction techniques that let users
modify their systems by acting directly on the interface. These demon-
strate interesting end-user adaptation techniques in addition to the
drag-and-drop adaptations I have focused on so far. Grab n’ Drop (Ea-
gan, 2017) is a malleable toolglass (Bier et al., 1994), which can be used
to “grab” buttons, e.g. from conventional toolbars, transforming them
into toolglasses. Façades (Stuerzlinger et al., 2006) provides direct ma-
nipulation techniques for splitting and combining interface widgets.
For example, Façades lets a user gather their preferred tools in a graph-
ics editing app into a custom floating palette. Improv (Chen and Li,
2017) lets users extend existing interfaces with cross-device interac-
tions by demonstrating them. For example, Improv lets users adapt a
video player to be controlled via smart watch gestures by first clicking
the play/pause button, then demonstrating a gesture to associate with
that button. EmbeddedButtons (Bier, 1992) merges UI elements and
document content, letting users create and modify buttons by modi-
fying picture and text markup tags, which represents behavior in the
same format as graphical properties such as font weight and color.

In this chapter I have described how code and interfaces currently
have unsuitable properties for malleable software. In the next chap-
ter, I survey related work to find alternative, positive properties for
malleability. I then develop a programming model that attempts to
combine these properties.



77

4.3 Key Takeaways from Chapter 4

The design vision of malleable software encompasses challenges
for both software engineering and interaction design.

From a software engineering perspective, malleable software re-
quires languages and tools for open authorship (Basman et al., 2018a).
Open authorship expands the goals of flexible and reusable pro-
gramming to encompass program transformations that are highly
unusual in current software development practice and research. If
malleable software development is to be economically feasible, an
adaptation created relative to one program should be applicable
to other programs and result in a similar change in functionality.
The inverse of this should also be possible, i.e. developers should
be able to circumscribe part of a running system and create an
adaptation that can move the circumscribed functionality to other
systems.

From an interaction design perspective, malleable software re-
quires design principles and interaction and tailoring techniques
for interfaces that can be pulled apart and (re-)combined at run-
time. Users of malleable software should not have to do ongo-
ing work to assemble the interfaces they use, but should provide
hooks for adaptation work to be done where necessary. Based on
previous work on tailorable software and design-in-use, I empha-
size that such techniques should enable the work of assembling
appropriate interfaces to be distributed among users and devel-
opers.





79

5
Entanglers: A Programming
Model for Malleable Software

Both conventional UIs and state-of-the-art UIs designed to be adaptable fail
to live up to the requirements of malleable software. A key weakness is in their
handling of interactions between system components. Interactions are generally
too brittle and too expensive to adapt to feasibly support malleable use cases. I
present a programming model that improves on these qualities by represent-
ing interactions as entanglers, declarative descriptions of the pre-conditions
and mechanisms necessary to instantiate interactions. Entanglers enable a co-
occurrence engine to recognize and construct interactions dynamically, and
enable programmers to adapt systems with new interactions. I describe Tangler,
a proof-of-concept implementation of this model, and demonstrate its power and
generality with two adaptation scenarios.

In the last chapter, I argued that conventional programming tools
are ill-suited for malleability for multiple reasons. Programming lan-
guages, software architectures, and development tools limit how user
interfaces can be combined, and how programs can be adapted, both at
the scale of individual users and distributed communities of users. In
this chapter, I focus on the specific issue of how programs can express
and execute interactions under the conditions of malleable software.
By interactions, I mean the relationships that connect elements such
as input devices, cursors, scrollbars, buttons, and document content to
each other. These relationships are made up of control structures such
as event listeners, state machines, and reactive functions.

In section 4.2, I argued that malleable systems should have some facil-



80

ity for automatically coordinating interface elements with their chang-
ing surroundings to guarantee a smooth user experience. This can be
reframed as a requirement for interactions that are “self-assembling”,
in the sense that once a programmer has created an interaction, the sys-
tem architecture is responsible for recognizing where and when they
should be instantiated. This process of automatic assembly should en-
able the basic use case where users move their tool between different
kinds of digital documents (figure 5.1).

Color picker

Color picker

Figure 5.1: Interface elements should
be continuously re-connected as the pre-
conditions for particular interactions oc-
cur.

Furthermore, in cases where the system does not have enough infor-
mation to instantiate an interaction, or users wish to reconfigure how
elements interact, it should be possible for a programmer to adapt
the system to enhance the existing interaction or produce a new one.
For example, consider a case where a user has a conventional color
picker, operated by clicking a graphical object to select it and then
clicking a color swatch to apply the color it holds. This user would
like to reuse the existing elements with a different interaction tech-
nique. They would like to be able to drag the color swatch over shapes
and then “click through” it to apply the color directly onto them, in
the manner of a toolglass (Bier et al., 1995). The code enacting this
adaptation should take an additive form, so that a system can feasibly
aggregate many such adaptations as it evolves.

{…}
adaptationpick-and-drop coloring click-through coloring

+ =
Figure 5.2: It should be possible to create
or refine interactions among elements
via additive adaptations.

To solve these issues, I deconstruct the notion of interaction into mul-
tiple concepts governing different steps of the life cycle of interactions,
i.e. their design, instantiation, enaction, and destruction. In our model,
programmers create entanglers, which are analogous to recipes for in-
teractions, i.e. they describe potential interactions. Entanglers define



81

the pre-conditions for an interaction in a co-occurrence description, and
the control structures that should be constructed when those condi-
tions are met in an entanglement template. When users create the con-
ditions for an interaction to be instantiated, the system detects a co-
occurrence of concrete elements, and instantiates an entanglement, and
when the conditions cease to be met, it is torn down.

In this chapter, I present a programming model based on these con-
cepts. Antranig Basman, Simon Bates, Michel Beaudouin-Lafon, and
Clemens Klokmose contributed to the development of this model. First,
I review previous user interface systems research that has implemented
aspects of malleable software. I then present the key concepts of our
programming model in section 5.2. In section 5.3, I present TANGLER, a
prototype implementation of the model as an integration language (Kell,
2009). In section 5.4, I demonstrate TANGLER’s capacity for adapting in-
teractive systems through two in-depth examples. I discuss our model
in relation to other programming mechanisms in section 5.5, and con-
clude with a summary of our contributions and a brief summary of
future work.

5.1 Related work

I review various techniques and systems for making software more
malleable, i.e. creating interfaces made up of parts that can be taken
apart and combined to achieve some desired composite functionality.

Plugin architectures

Sometimes designers explicitly plan for a limited version of the kind
of reuse we saw in the malleable software scenarios (section 4.1). For
example, they create plugin architectures that enable programmers to
extend apps with additional functionality.

Plugin architectures are widely adopted in today’s software ecosys-
tems, e.g. every major browser supports plugins, also called exten-
sions. Typically, the architecture provides access to an app’s document
manipulation and interface-drawing API. It also requires facilities to
execute plugin code safely. Chen (2019) provides a good example of
the design and implementation choices to be made in creating a mod-
ern plugin architecture.

Plugins have somewhat successfully allowed users to add and replace



82

functionality without programming, e.g. by installing a package from
a curated repository. For instance, at the time of writing, the Firefox
browser’s plugin repository features at least nine different color pick-
ers. Furthermore, multiple communities have invented community-
curated packs combining multiple plugins that work well together (Haraty
et al., 2017).

However, browsers clearly do not provide for the kind of malleability
presented in the scenarios. In practice, plugins form an outer layer of
customizable functionality around a core of base functionality. In the
case of browsers, both the browser interface and the interfaces pro-
vided by web pages are in the core. Even though a browser extension
can in practice modify the content of any web page, this gives it only
limited power to modify the user experience, because web apps are not
malleable. For example, an extension could be used to change the ap-
pearance of observation pages on iNaturalist’s website, but it could do
nothing to change the system’s internal notion of what kind of data
is in an observation. This can be described as a lack of addressabil-
ity, in the sense that the majority of code defining the functionality of
browsers and web pages is unadressable by plugins.

Furthermore, a plugin written for one platform is likely incompatible
with any other platforms. Therefore, plugin architectures result in
strongly bounded reuse, where creators and users of plugins commit
economically to one particular environment over others. Notably, there
are real-life cases of popular features that different developers often
choose to recreate in their chosen environments. For example, many
code editors have plugins to replicate the characteristic key bindings
of the ubiquitous vim editor1, and all the mainstream web browsers

1 vim.orghave several different ad-blocking plugins.

This situation, where each platform comes with its own conventions
for extending the interface, is reminiscent of the early days of electrifi-
cation, and similar infrastructural technologies. In hopes of dominat-
ing the market, proponents of alternating and direct current raced to
spread adoption of their chosen standard, increasing the value of their
infrastructures and locking out competitors (David and Bunn, 1988).

Black-box interface extensions

HCI researchers have created several toolkits for plugins that can be
applied to legacy software, i.e. systems that do not have plugin archi-
tectures. These black-box interface extensions (Eagan et al., 2011) can
modify the interfaces of apps without access to their internal structure

vim.org


83

or source code.

Toolkits in this tradition augment legacy apps by interfacing with them
at various levels. Scotty (Eagan et al., 2011) lets programmers create
additional interface elements for OSX apps by injecting code through
the Cocoa UI toolkit. Interface Attachments (Olsen et al., 1999) and
Façades (Stuerzlinger et al., 2006) modify features of the interface of
running applications through the windowing system. Improv (Chen
and Li, 2017) creates cross-device interactions in the browser by trans-
forming input events on remote devices to simulated input events on
existing interface elements. Prefab (Dixon and Fogarty, 2010) uses
computer vision to recognize and modify interfaces at the pixel level.

Black-box interface extensions are powerful because they create the
same sort of malleability as traditional plugins, but reduce their com-
patibility issues. However, their purpose is to enhance, reorganize, or
integrate existing systems. Therefore they are limited by the features
of the apps they target and cannot be used to build systems from the
ground up, nor disassemble and repurpose parts of a system.

Interface embedding

Several mature software platforms have provided mechanisms for shar-
ing functionality across apps by embedding interfaces and documents
inside each other. Microsoft and Apple have both developed so-called
compound document standards for their operating systems, respec-
tively named OLE2 and OpenDoc3. These let users embed, e.g., con-

2 docs.microsoft.com/en-us/cpp/mfc/

ole-background

3 web.archive.org/web/

20071009214704/http://www.

sundialsystems.com/articles/

opendoc.html

tent from a spreadsheet in a word processing document. With OLE,
embedded content can be used as a hyperlink to its “home app”, which
will be opened when the user interacts with the embedded content.
With OpenDoc, the app’s menu bar changes to present the appropri-
ate set of commands when embedded content is selected.

Several conceptually similar web technologies exist, e.g. the HTML
iframe element4 and the Java Portlet standard5. Both let several web

4 w3.org/TR/2011/WD-html5-20110525/

the-iframe-element.html

5 jcp.org/en/jsr/detail?id=162

services be aggregated on one page. iframes do this by simply dis-
playing linked pages in a window, whereas Portlets package services
in a finer-grained way, creating a composite document that can, e.g., be
styled in a uniform way. These technologies have been used to create
web mashups (Hartmann et al., 2008) and portals (Zhou, 2003), web
pages that combine tools created by different developers.

Another related mechanism is embeddable widgets. Some websites
provide snippets of markup that users can copy and paste into their

docs.microsoft.com/en-us/cpp/mfc/ole-background
docs.microsoft.com/en-us/cpp/mfc/ole-background
web.archive.org/web/20071009214704/http://www.sundialsystems.com/articles/opendoc.html
web.archive.org/web/20071009214704/http://www.sundialsystems.com/articles/opendoc.html
web.archive.org/web/20071009214704/http://www.sundialsystems.com/articles/opendoc.html
web.archive.org/web/20071009214704/http://www.sundialsystems.com/articles/opendoc.html
w3.org/TR/2011/WD-html5-20110525/the-iframe-element.html
w3.org/TR/2011/WD-html5-20110525/the-iframe-element.html
jcp.org/en/jsr/detail?id=162


84

personal websites to embed some functionality. For example, in our
case study, AS used a tool on the iNaturalist website6 to generate a

6 inaturalist.org/observations/

widget
widget that displays the most recent observations in his area.

The ability to copy and paste interface elements is a key affordance in
the kinds of reuse stories I imagine. It is an example of the value of
externalization. However, mixed interfaces created with the surveyed
techniques are severely limited because embedded elements are com-
pletely isolated from each other. As a result, they cannot support either
of the example problems described in the introduction to this chapter.
Effectively, they re-create the siloing of apps at a finer granularity.

Live object systems

Live object-oriented programming (OOP) systems in the tradition of
Smalltalk (Ingalls et al., 2016) bear strong similarities to the vision of
malleable software. In these systems, each distinct object on the screen
is associated with an object in the virtual machine, which can be ac-
cessed and edited by users to change system functionality and appear-
ance. The Buttons (MacLean et al., 1990) system that I have reviewed
previously is an exemplar of this paradigm. In the following, I treat
Lively (Ingalls et al., 2016) as a representative modern example.

Live object systems provide a convincing solution to the problem of
correspondence between interface elements and code. Lively uses a
version of the Morphic user interface toolkit (Maloney and Smith,
1995), which was designed according to the principle that “the thing
on the screen is the actual thing” (Ungar and Smith, 2013). They achieve
this by making all objects on the screen, called morphs, define their
own representation, state, and behavior. This means that the general
workflow for adapting morphs is very direct: users can point at UI ele-
ments with an inspection tool, locate the appropriate slots, and type in
new values and procedures. They can also freely reorganize morphs,
e.g. to collect frequently used buttons in a toolbar.

However, the live object paradigm presents some fundamental prob-
lems in how it deals with interactions. Lively objects interact through
typical object-oriented techniques, such as method calls, aggregation,
and inheritance, i.e. interactions are defined inside and across morphs.
Systems behaviors defined by code across multiple modules are called
cross-cutting concerns (Kiczales et al., 1997). Cross-cutting concerns
can result in excessive coupling and scattered code.

Excessive coupling results in brittle interactions. In a Lively version

inaturalist.org/observations/widget
inaturalist.org/observations/widget


85

of the color picker scenario, it would be easy to move the color picker
from one window to another, but it would very likely be non-functional
once removed from its original context (figure 5.3).

Color picker

Color picker

Figure 5.3: In environments based on
live objects, such as Lively, it is possi-
ble to move interface elements between
contexts, but the relationships connect-
ing them to their environments are likely
to break in the process.

Scattered code makes adaptation more difficult and error-prone. For
example, consider the adaptation example from the introduction to
this chapter, where a programmer wants to create a click-through in-
teraction combining a mouse cursor, a color swatch, and a shape ob-
ject. This leads to implementation trade-offs such as choosing which
objects should be extended and whether to modify their existing API
or add new methods. In this case, the additional behavior could in
theory be implemented by extending the swatch object, but would re-
quire extending its responsibilities to include acquiring target objects
and applying colors to existing objects, as well as adding guard code
to distinguish whether it is clicked to select a new color or dragged to
apply a color to objects in the canvas.

These issues are relatively mild when systems are developed in a
closed world with a very stable object graph. They are particularly
troublesome, however, in malleable systems, where objects are ex-
pected to come and go continuously.

Lincke et al. (2011) have created the context-oriented programming
(COP) library ContextJS7 to mitigate this kind of issue in Lively. COP

7 hpi.uni-potsdam.de/hirschfeld/

trac/Cop/wiki/ContextJS
builds on OOP by providing dedicated language abstractions for defin-
ing and composing adaptations to basic program behavior. The most
well-developed COP abstraction is the notion of a layer that encapsu-
lates adaptations to multiple modules (Costanza and Hirschfeld, 2005).
Layers can be dynamically activated and de-activated, and combined
with other layers. Our model bears some similarities to COP concepts,
which we discuss in section 5.5.

hpi.uni-potsdam.de/hirschfeld/trac/Cop/wiki/ContextJS
hpi.uni-potsdam.de/hirschfeld/trac/Cop/wiki/ContextJS


86

Webstrates

Webstrates (Klokmose et al., 2015) is a web server that persists and syn-
chronizes the DOM content of web pages that it hosts, so that the same
content can be accessed and modified by multiple users and devices
concurrently. This means that web pages running on Webstrates are
turned into what-you-see-is-what-I-see (WYSIWIS) collaborative inter-
faces (Stefik et al., 1987). Since web pages can contain scripts and
embed and modify other web pages, they blur the distinction between
documents and apps. Klokmose et al. call such pages web substrates,
or webstrates.

Klokmose et al. demonstrate Webstrates’ support for malleability at
two levels of granularity. First, they show multiple users connecting
their personal word processing webstrates to collaborate on a shared
document. This is achieved by making each user embed the doc-
ument webstrate through a mechanism called transclusion (Nelson,
2012). Figure 5.4 illustrates a network of webstrates transcluding each
other. Second, they show users collaboratively modifying their per-
sonal webstrates’ interfaces by extracting a button from one webstrate
and inserting it in another. This is possible because parts of a webpage
can easily be externalized as HTML markup, which is immediately
rendered when inserted into another page.

Figure 5.4: An example of a net-
work of interconnected webstrates. The
blue arrows are transclusions establish-
ing application-document relationships.
a) A paper, displayed on a mobile de-
vice. b) A poem. c) Bob’s word pro-
cessor editing a and b on his desktop
computer. d) Bob’s annotation webstrate
which lets Bob hand-annotate webstrates
with his tablet and stylus. e) Alice’s
HTML markup editor, editing the paper
a on her laptop. f) Alice’s script editor,
extending Bob’s word processor on a dif-
ferent window of her laptop.

However, Webstrates relies on conventional code with the same cou-
pling and code scattering issues that apply to live object systems. Mal-
leable tools like personalized editors and transportable buttons embed
strict assumptions about the structure and naming conventions of the



87

webstrates they can operate on. Therefore, webstrates created by dif-
ferent developers cannot be freely recombined, because they are likely
incompatible with each other. Reprogramming these elements to suit
new contexts is difficult for the same reasons.

Control Structures for Programming Interactions

Toolkits and languages for developing interactive systems have intro-
duced a diverse array of control structures for interactions, including
event listeners, state machines (Appert and Beaudouin-Lafon, 2006;
Blanch and Beaudouin-Lafon, 2006), constraint rules (Sutherland, 1963;
Myers, 1990), trigger-action rules (Ur et al., 2016), reactive data-flow
functions (Czaplicki and Chong, 2013; Elliott and Hudak, 1997), and
processes (Magnaudet et al., 2018). These are usually motivated by
creating better expressive match (Olsen Jr, 2007) between code and
desired interactive behavior, as well as making the code more main-
tainable and less error-prone (Myers, 1991).

These mechanisms are developed under the assumptions of rigid sys-
tems where interactive behaviors are expected to remain stable at run-
time. Their run-time form is generally highly divergent (Basman et al.,
2016), i.e. they cannot be targeted for modification at run time unless
the original programmer has seen fit to expose references to them.
Therefore, they tend to introduce behaviors and couplings among ele-
ments of the system that cannot be undone by subsequent adaptations.
In TANGLER, we implement event listeners, state machines, and model
relays as a set of reasonably expressive control structures. Our imple-
mentations are improved for open-ended development by giving each
control structure a declarative form that is addressable and externaliz-
able, i.e. they can be located at paths from anywhere in the program,
and they expose all references to the components they orchestrate.

Integration authoring tools

Several HCI and programming language researchers have indepen-
dently proposed decoupling interactions from interacting elements.
Following Kell (2009), I call these first-class interactions integrations.

ICon is a toolkit for creating integrations of input devices (Dragice-
vic and Fekete, 2004). These integrations, called configurations, are ex-
pressed in a visual wire diagram language, where input devices are
connected to virtual controls exposed by apps. ICon can be used to
prototype novel configurations of input devices and adapt existing
systems for accessibility, e.g. helping a user with hand tremors use



88

a mouse with a configuration that filters out small mouse movements
in the data sent to apps (Dragicevic and Fekete, 2002).

OSCAR (Newman et al., 2002) is a system that lets users construct
reusable configurations of home media devices such as speakers, screens,
and microphones to accomplish tasks such as seeing who is at the door
or playing music in their kitchen. It is built on the Obje framework for
recombinant computing (Edwards et al., 2009). Integrations created
with OSCAR are called setups. A setup that relies on having access to
a set of devices, e.g. a webcam and a screen, will work with any web-
cam and screen. However, setups are based on streaming information
from sources to destinations, i.e. transmitting media, rather than cre-
ating interactive relationships.

The PalCom architecture for multi-device interactive systems includes
a similar concept, called assemblies (Svensson Fors et al., 2009). As-
semblies define a set of dependent devices and services, and contain a
script coordinating those devices by receiving and sending messages
between their service APIs.

Entanglers are conceptually similar to these types of integrations, in
that they are reusable integrations created by programmers. The key
difference is that users or programmers must explicitly invoke config-
urations/setups/assemblies before they are used. This is appropriate
when integrations connect somewhat stable ensembles of things, e.g.
configuring a multi-device installation in a lab or setting up a projector
for a presentation. It is less appropriate, however, at the granularity
of our use scenarios, because it is unworkable to have end users se-
lect and activate an integration every time they move a widget from
one environment to another. Instead, our integrations are invoked au-
tomatically as a result of particular configurations of elements, e.g.,
cursors are automatically created in response to mice being plugged
in.

5.2 Conceptual Model: Co-occurrences and Entanglements

Our conceptual model distinguishes between the pre-conditions that
must be met for an interaction to be enacted and the actual behavior
of the integration. I call the former co-occurrences and the latter en-
tanglements. This vocabulary is inspired by the metaphor of quantum
physics.



89

In quantum physics, two or more particles can become entangled,
meaning that their states depend on each other. Entangled particles
are invisibly linked to each other even after they have been separated,
until an external event breaks the entanglement. Similarly, in inter-
active systems, different elements are often linked by invisible forces,
even when at a distance, such as the mouse and the on-screen cur-
sor, the scrollbar and the document, or the “Cut” menu item and the
currently selected text. I call the relationships among these elements
entanglements. Entanglements are the logic connecting the elements
that users perceive and act on. I use the word as a general term for the
code that enacts interactions. In current systems, entanglements are
typically implemented with control structures such as event listeners,
state machines, and reactive functions.

In quantum physics, particles become entangled in a process of col-
lision. In interactive systems, different types of such “collisions” can
occur, such as plugging in a mouse, opening a document in a scrollable
window, or selecting a span of text. I call these temporary groups of
coordinated elements co-occurrences.

co-occurrence
+

entanglementco-occurrence
description

entanglement 
template

{…}

Co-occurrence
engine

{…}

tap

1

2

3

4

state distributed
in the world

entangler
{ }

match construct

pointer

swatch

target

listeners

Figure 5.5: The procedure for creating
entanglements from entanglers in our
programming model, illustrated with
the click-through color swatch interac-
tion. 1: the state of elements in the
system is continuously monitored by
the co-occurrence engine. 2: entan-
glers describe a co-occurrence, the pre-
conditions for an entanglement. The co-
occurrence engine matches this descrip-
tion against the system state, and re-
ports any successful matches. 3: en-
tanglers contain a template of an en-
tanglement, which combines the co-
occurring elements with a behavior, en-
acting the desired integration. When the
co-occurrence engine reports a match,
this template is used to construct an en-
tanglement with references to the co-
occurring elements. 4: the entanglement
complex drives a new interaction, caus-
ing further changes to system state.

This model allows us to deconstruct the process of constructing inter-
actions. Rather than create entanglements directly, programmers write
entanglers that describe the kinds of entanglements they wish to create
along with the co-occurrences they require. The system run-time then
automatically detects co-occurrences and create entanglements in re-
sponse. I define a new declarative programming construct combining
these two components. This construct is called an entangler, because it
causes system elements to dynamically become entangled.

The first part of an entangler is a co-occurrence description, which de-
scribes a particular kind of co-occurrence and names its participating
elements. The second part is an entanglement template, which describes



90

an entanglement combining the elements named in the co-occurrence
description with one or more control structures to implement an in-
teraction. The entanglers are managed by a system component called
the co-occurrence engine, which matches co-occurrence descriptions and
instantiates entanglement templates with the matched elements. Fig-
ure 5.5 illustrates the conceptual model with the click-through color
swatch interaction from the introduction to this chapter.

Because the process depicted in figure 5.5 is automatic, our model can
let users interact smoothly even as they add and remove documents,
tools, and devices. Because entanglers are additive modifications and
can react to any combination of state across a system, our model can
support highly adaptable systems.

5.3 Prototype Implementation: Tangler

TANGLER is a proof-of-concept implementation of a programming en-
vironment based on co-occurrences and entanglements. It is imple-
mented with web technologies (JavaScript, TypeScript8, Node.js9) and

8 typescriptlang.org

9 nodejs.org

runs in any modern browser. With TANGLER programmers can con-
struct basic but highly adaptable graphical user interfaces, which I
demonstrate in section 5.4.

An Integration Language

TANGLER adapts the declarative programming paradigm of Infusion10,
10 https://fluidproject.org/

infusion.html
a framework for programming user interfaces that can be continuously
adapted for people with different abilities and preferences (Basman
et al., 2015). Infusion is an integration language, meaning that it lets
programmers express relations between values rather than directly ex-
press general computation. This design goal follows Kell’s proposal
that the key to flexible software construction is to separate integration
concerns, i.e. all the definitions establishing coupling among modules,
into a specialized domain (Kell, 2009).

We chose to build on the conceptual foundation of Infusion because
co-occurrences and entanglements recognize and orchestrate configu-
rations of state. Thus they are well-matched to a declarative program-
ming paradigm, where “code” is itself a data structure that can be
recognized and modified. TANGLER implements a subset of Infusion’s
syntax and semantics, and adds entanglers.

typescriptlang.org
nodejs.org
https://fluidproject.org/infusion.html
https://fluidproject.org/infusion.html


91

TANGLER programs are made up of components arranged in a tree
structure that can be addressed through paths and queries similar to
CSS selectors11. These selectors are a powerful addressing mechanism

11 https://developer.mozilla.org/

en-US/docs/Learn/CSS/Introduction_

to_CSS/Selectors

because they are less brittle than typical path expressions, e.g. whereas
path address needs to specify the exact sequence of nodes leading to a
referenced component, a selector can address “any component of type
A that has an ancestor of type B”. Because of this flexibility, references
to component are less likely to become invalid as the component tree
is modified and extended.

The two primary idioms by which components express relations among
state are model relays, which express bi- or uni-directional relationships
between the mutable state attached to components, and option distribu-
tions which use selectors to broadcast adaptations to other components
in the tree. Option distributions let any component act as a mixin or
mediator for other components, in addition to expressing local state
and behavior. This makes TANGLER symmetric, in the sense that the
same abstraction is used to define default behavior and adaptations
to that behavior. Since components are declarative, integrations are
inherently reversible, by destroying the integrating component, and
adaptable, by injecting further options into it. Both operations can be
performed at run-time, making TANGLER a live programming environ-
ment.

TANGLER also includes more traditional features to express outright
computation and direct component interaction, such as event listeners,
state machines, and invokers. Event listeners are the basic mechanism
for responding to user input. State machines elaborate on event lis-
teners by delegating to a different set of listeners depending on their
current internal state. Invokers correspond to object methods, famil-
iar from the object-oriented paradigm, but their side-effects are con-
strained to take the form of a mutation at a publicly declared path.

A component’s authorial lifecycle starts with the definition of a type,
analogous to an object-oriented programming class. A type definition
is a JSON record containing the default values for the kind of thing rep-
resented by the component, and may have a number of parent types,
whose defaults it inherits and extends. A component is generated at
a particular path in the tree of components by a call to the frame-
work function tangler.make, and they declare sub-components that are
instantiated at the same time. The construction call or site may pro-
vide additional options, which overwrite or extend the default values
given by the type. During the construction process, TANGLER evaluates
selectors in components to determine where to distribute events, side

https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors


92

effects, and declared adaptations.

Entanglers

Entanglers are implemented as a component type that contains a co-
occurrence description and an entanglement template. The descrip-
tion is a list of conditions naming and describing the elements of the
co-occurrence and their state. The template describes the entangler’s
product as a component that may reference the names of co-occurring
elements given in the description. When a co-occurrence begins, a
copy of the template is instantiated, with the references substituted
with mirrors of the concrete elements.

We have adapted Forgy’s Rete algorithm for production rule systems (Forgy,
1979) to implement the co-occurrence engine. This algorithm turns
currently active co-occurrence descriptions into a network where each
node matches a single condition. The matching process is executed by
sending the newest state of each component into this network. Rete
minimizes recomputation by collapsing redundant conditions across
different co-occurrence descriptions and storing partially matched data
in the network. Our implementation is based on that presented by
Doorenbos (1995). Whenever a new entangler is constructed, its co-
occurrence description is added to the Rete network. The core TANGLER

module reports any new or changed components to the Rete net-
work. Both these operations cause the network to recompute any rele-
vant conditions, possibly triggering a co-occurrence, which causes the
Rete module to signal the main TANGLER module to construct a co-
occurrence.

Rete expects conditions to either compare a component to a constant
value or two components to each other. This respectively allows condi-
tions to express intra-component state and inter-component state. The
set of available conditions can be extended by registering new predi-
cate functions with the Rete module.

Additional Modules

TANGLER features auxiliary modules to render graphics and handle
user input (Figure 5.6). In a more fully developed environment, these
could be the sites of further adaptation, e.g. to change the component
representations. In our proof-of-concept system, however, we have
decided to implement these modules as black boxes.

Components whose type is derived from viewComponent provide a draw



93

Computer

Browser

device 
server Tangler

renderer

DOM tree

component tree

subscribes

to updates

input devices

sends events

sends events

maintains device
components

Rete

renders

subscribesto updatessends co-occurrences

Figure 5.6: TANGLER and its auxiliary
modules.

function that outputs a DOM element, and is used to continuously
render the component by updating the web page running the TANGLER

instance.

Input device events reach the component tree through two routes.
Components representing input devices are managed by a Node.js
server running on the user’s computer, which users the node-hid12

12 github.com/node-hid/node-hidlibrary to register Human Interface Devices (HIDs) and monitors their
activity. The device server detects events by monitoring differences be-
tween successive device states, and forwards them to the device com-
ponent. This server is necessary to support multi-mouse and biman-
ual interactions, because the browser client cannot query the operating
system for HID data. Furthermore, an event funnel (Eagan et al., 2011,
p. 228) on the web page consumes all events emitted on DOM elements
and forwards them to the source viewComponent. To minimize confu-
sion, TANGLER events are named with a prefix denoting their source,
e.g. device-mousedown and dom-mousedown. This is a pragmatic choice
to help us demonstrate how our programming model can be used to
adapt input devices, not just GUI elements.

Programming Example

We walk through the implementation of our running example, where
a color swatch is adapted to become a click-through tool (Bier et al.,
1995).

The initial color swatch lives in a toolbar area, and reacts to being
clicked by revealing a color selection dialog. Figure 5.7.1 shows a rep-
resentation of a component tree containing this toolbar, as well as a
canvas area. Listing 5.8 defines the component type by calling the li-
brary method tangler.define, either from a JavaScript file or the browser



94

toolbar

color swatch

canvas

graphical objects

root1

2

33

toolbar

color swatch

1

2

3 33

canvas

graphical objects

2 entangler0 distributor

swatch mixin
created

root2

4

1

toolbar

color swatch

canvas

graphical objects

entanglerdistributor

0 swatch mixin

root3

toolbar

color swatch

canvas

graphical objects

entanglerdistributor

swatch mixin

root

0

mirrored components

co-occurrence
+

entanglement

4

toolbar

color swatch

canvas

graphical objects

entanglerdistributor

swatch mixin

root

2

1

0

mirrored components

co-occurrence
+

entanglement

5

Figure 5.7: The development of the
TANGLER component tree in response to
the color swatch adaptation. Explana-
tions in the text.



95

console. tangler.define stores a component definition under the given
name. It can also be used to store pure functions that will be used by
components, e.g. lines 24 and 49. We omit the definitions of such func-
tions from the examples for space reasons. We use the convention that
definitions with the prefix “tangler” are part of the “standard library”,
while user-supplied definitions are given the prefix “defs”.

1 tangler.define(’defs.colorSwatch’, {
2 // descendants of viewComponent are

rendered
3 parentType: ’tangler.viewComponent’,
4 // define the component’s mutable state
5 model: {
6 position: {
7 x: 0,
8 y: 0
9 },

10 fill: ’#ffffff’,
11 stroke: ’#000000’
12 },
13 // declare any custom events this

component can emit
14 events: {
15 activate: null
16 },
17 listeners: {
18 // when the rendered component is

clicked,
19 // fire the activate event.
20 // ’{that}’ is the self-reference

keyword
21 ’dom-click.activate’: ’{that}.events.

activate.fire’,
22 ’activate.impl’: {
23 // apply styling to make the color

selector visible
24 func: ’defs.getVisibleStyle’,
25 changePath: ’{that}.colorSelector.

model.style’
26 }
27 // ’.activate’ and ’.impl’ are

namespaces. Other

28 // listeners on the same events with
matching namespaces

29 // will displace the ones declared
here.

30 },
31 // create the color selector dialog as a

child component
32 components: {
33 colorSelector: {
34 // We omit the defintion of defs.

colorSelector for brevity
35 type: ’defs.colorSelector’,
36 // the options record is merged into

the color selector at
37 // construction. This is used to

override default values,
38 // in this case making the component

initially invisible
39 options: {
40 model: {
41 style: {
42 display: ’none’
43 }
44 }
45 }
46 }
47 },
48 // the draw function is used to render

this component
49 draw: ’defs.drawColorSwatch’
50 });

Figure 5.8: Original color swatch

The first step of the desired adaptation is to make it possible to drag
the color swatch. This corresponds to regular in-place object extension.
In TANGLER, this step can be achieved by first defining a component
to be used as a mixin that will be attached to the existing object. List-
ing 5.9 shows a mixin component that replaces the event listener on
the color swatch with a state machine that delegates between clicking
and dragging.

If the system is expected to only include a single color swatch, we
might add the mixin directly by using the library method tangler.make.
In case there may be several color swatches, we instead apply the mixin
with an option distribution (listing 5.10).

Figure 5.7.2 illustrates how the distributor inserts the mixin by resolv-
ing the selector ’root colorSwatch’. The numbers indicate the order in
which TANGLER searches for matches to the selector. First, it traverses



96

51 tangler.define(’defs.colorSwatchMixin’, {
52 // descendants of modelComponent may

contain mutable state
53 parentType: ’tangler.modelComponent’,
54 stateMachines: {
55 clickOrDrag: {
56 // idle, armed, dragging are the

machine’s states.
57 // keys inside states define

transitions.
58 // the name of the key is a

reference to the event
59 // that triggers the transition.
60 // in this case, the events are

emitted by the
61 // ’{colorSwatch}’ component, i.e.

the nearest component
62 // of that type in the tree
63 idle: {
64 ’{colorSwatch}.events.dom-

mousedown’: {
65 action: ’{that}.events.dragStart

.fire’,
66 nextState: ’armed’
67 }
68 },
69 armed: {
70 ’{colorSwatch}.events.dom-mouseup’

: {
71 action: ’{colorSwatch}.activate.

fire’,
72 nextState: ’idle’
73 },
74 ’{colorSwatch}.events.dom-

mousemove’: {
75 nextState: ’dragging’
76 }
77 },
78 dragging: {
79 ’{colorSwatch}.events.dom-

mousemove’: {

80 action: ’{that}.events.drag.fire
’

81 },
82 ’{colorSwatch}.events.dom-mouseup’

: {
83 nextState: ’idle’
84 }
85 }
86 }
87 },
88 // the model and listeners define the

state machine’s
89 // internal state and side-effects
90 model: {
91 offset: {
92 x: 0,
93 y: 0
94 }
95 },
96 events: {
97 dragStart: null,
98 drag: null
99 },

100 listeners: {
101 ’dragStart.impl’: {
102 func: ’defs.getOffset’,
103 args: [’{event}’, ’{colorSwatch}.

model.position’],
104 changePath: ’offset’
105 },
106 ’drag.impl’: {
107 func: ’defs.getNewPosition’,
108 args: [’{event}’, ’offset’],
109 changePath: ’{colorSwatch}.model.

position’
110 }
111 }
112 });

Figure 5.9: Mixin to extend the color
swatch

113 tangler.define(’defs.mixinDistributor’, {
114 // tangler.component is the basic

component type
115 parentType: ’tangler.component’,
116 distributeOptions: {
117 applyMixinToAllColorSwatches: {
118 record: ’defs.colorSwatchMixin’,
119 // ’{root colorSwatch}’ refers to

all colorSwatch
120 // components under the root

component.
121 // the sub-path .options.components

contains
122 // declarations of sub-components to

be constructed
123 target: ’{root colorSwatch}.options.

components.draggable.type’
124 },
125 }
126 });
127

128 // add the distributor to the tree
129 tangler.make(’root.

colorSwatchMixinDistributor’, ’defs.
mixinDistributor’);

Figure 5.10: Option distribution to enact
the mixin



97

from the starting point (in green) upward until a component matching
the first part of the selector, here the root (in orange). Then it tra-
verses the tree downwards from there in breadth-first order, collecting
all matches to the second part of the selector (in orange). The blue
circles are all the components being traversed, the orange one labeled
“3” is the one that matches the selector. Figure 5.7.3 illustrates how
the mixin consumes events from the swatch, indicated by the selector
’colorSwatch’. A selector containing only a type name searches upward
in the tree, checking, in turn, parents and their immediate children.

The next step of the adaptation is to create an entangler to operate the
“click-through” behavior precisely when the swatch is above an ap-
propriate component (listing 5.11). Figure 5.7.4 illustrates an entangle-
ment component immediately after creation. Its sub-components are
copies-by-reference of the components matched by the co-occurrence
engine (drawn with dashed outlines). The template immediately in-
jects the variant event listener via the selector ’{that}.swatch.events.activate’

(path shown in orange). Figure 5.7.5 shows how the injected listener
triggers the activate event.

130 tangler.define(’defs.
swatchOverSVGElementEntangler’, {

131 // descendants of entangler configure
the co-occurrence

132 // engine module
133 parentType: ’tangler.entangler’,
134 // in co-occurrence conditions, type

selectors are prefixed
135 // with colons;
136 // ’matches’ and ’overlaps’ are

predicate functions defined
137 // in the co-occurrence engine;
138 // ’swatch’ and ’target’ are variable

names that will be
139 // assigned to the components that match
140 conditions: [
141 ’swatch matches :colorSwatch’,
142 ’target matches :svgComponent’,
143 ’swatch overlaps target’
144 ],
145 entanglementTemplate: {
146 // instantiated entanglements will be

named
147 // swatchOverSVGElement1,

swatchOverSVGElement2, etc.
148 name: ’swatchOverSVGElement’,
149 // instantiated entanglements will be

of this type
150 type: ’defs.clickThroughSwatch’,
151 // the options declaration is used to

add the co-occurring
152 // components and any additional "

product" components

153 options: {
154 components: {
155 // ’{source}’ refers to the

matched co-occurrence
156 swatch: ’{source}.swatch’,
157 target: ’{source}.target’
158 }
159 }
160 }
161 });
162

163 tangler.define(’defs.clickThroughSwatch’,
{

164 // the entanglement type has no special
behavior,

165 // but is useful for selector matching
166 parentType: ’tangler.entanglement’,
167 listeners: {
168 ’{that}.swatch.events.activate’: {
169 namespace: ’impl’,
170 func: ’defs.getFillAndStroke’,
171 args: [’{that}.swatch.model’],
172 changePath: ’{that}.target.model’
173 }
174 }
175 });
176

177 tangler.make(’root.swatchEntangler’, ’defs
.swatchOverSVGElementEntangler’);

Figure 5.11: Click-through behavior en-
tangler for the color swatch



98

5.4 Demonstrations

We demonstrate how Tangler enables programmers to extend interac-
tive systems through two example adaptation stories.

Line to Connector

handle is
moved

box is
moved

handle connects 
to new box

handle follows box

Figure 5.12: The desired behavior associ-
ated with the Connector element. Note
how the adaptation is not bounded by
one object, but adds new behavior both
for the handle element and any element
it becomes attached to.

The task is to to extend an interactive Line to create a Connector. A Line

is a line segment with a draggable handle at each end. A Connector is a
line segment whose handles can be attached to arbitrary graphical ob-
jects by being dragged onto them (figure 5.12, top). When an attached
object (a node) moves, the connected handle moves with it (figure 5.12,
bottom). This example is adapted from Lincke et al. (2011).

This adaptation challenges traditional OOP approaches to adaptation
because it requires not only specializing the behavior of the line han-
dles to let them be attached and detached, but also contextually spe-
cializing the behavior of attached objects, to move any attached han-
dles. It is a useful small example of an interaction that does not cleanly
map onto a single self-contained object, but requires integrating the
behaviors of multiple distinct objects.

Listing 5.13 shows the initial Line and Handle components. A line
would be instantiated by calling tangler.make(’root.graphics.line’, ’defs.line’).

To turn a Line into a Connector, we first define the connector type as
an extension of defs.line, which injects an additional sub-component
to each of its handles (listing 5.14). This sub-component holds the
additional model state and event listeners necessary to manage the



99

1 tangler.define(’defs.line’, {
2 parentType: ’tangler.viewComponent’,
3 components: {
4 start: {
5 type: ’defs.handle’
6 },
7 end: {
8 type: ’defs.handle’,
9 options: { // override the default

position
10 model: {
11 position: {
12 x: 100,
13 y: 50
14 }
15 }
16 }
17 }
18 },
19 draw: ’defs.drawLine’
20 });
21

22 tangler.define(’defs.handle’, {
23 parentType: ’tangler.modelComponent’,
24 model: {
25 position: {
26 x: 0,
27 y: 0
28 }
29 },
30 components: {
31 dragging: {
32 type: ’defs.dragMixin’
33 }
34 },
35 draw: ’defs.drawHandle’
36 });
37

38 tangler.define(’defs.dragMixin’, {
39 parentType: ’tangler.modelComponent’,
40 stateMachines: {
41 dragMachine: {
42 idle: {
43 ’{viewComponent}.events.dom-

mousedown’: {
44 action: ’{that}.events.dragStart

.fire’,
45 nextState: ’dragging’
46 }
47 },
48 dragging: {
49 ’{viewComponent}.events.dom-

mousemove’: {
50 action: ’{that}.events.drag.fire

’,
51 nextState: ’dragging’
52 },
53 ’{viewComponent}.events.dom-

mouseup’: {
54 nextState: ’idle’
55 }
56 }
57 }
58 },
59 model: {
60 offset: {
61 x: 0,
62 y: 0
63 }
64 },
65 listeners: {
66 // store the cursor/object offset when

beginning a drag
67 ’dragStart.impl’: {
68 func: ’defs.getOffset’,
69 args: [’{event}’, ’{viewComponent}.

model.position’],
70 changePath: ’offset’
71 },
72 // update the position of the dragged

component
73 ’drag.impl’: {
74 func: ’defs.getNewPosition’,
75 args: [’{event}’, ’offset’],
76 changePath: ’{viewComponent}.model.

position’
77 }
78 }
79 });

Figure 5.13: The line component



100

cycle of attaching and detaching the connector handle from objects.
In this case, this behavior can be implemented orthogonally to the
existing dragging behavior of line handles.

1 tangler.define(’defs.connector’, {
2 parentType: ’defs.line’,
3 // put the attachingBehavior component

on both handles
4 distributeOptions: {
5 decorateStart: {
6 record: ’defs.attachingBehavior’,
7 target: ’{that}.start.options.

components.connectorHandleManager.
type’

8 },
9 decorateEnd: {

10 record: ’defs.attachingBehavior’,
11 target: ’{that}.end.options.

components.connectorHandleManager.
type’

12 }
13 }
14 });
15

16 tangler.define(’defs.attachingBehavior’, {
17 parentType: ’tangler.component’,
18 listeners: {
19 ’{handle}.events.dom-mouseup’: ’{that

}.events.attach.fire’,

20 ’{handle}.events.dom-mousedown’: ’{
that}.events.detach.fire’

21 },
22 events: {
23 attach: null,
24 detach: null
25 },
26 invokers: {
27 ’attach.impl’: {
28 func: ’defs.

getViewComponentUnderEvent’,
29 args: [’{event}’],
30 changePath: ’{handle}.model.

attachedNode’
31 },
32 ’detach.impl’: {
33 value: null,
34 changePath: ’{handle}.model.

attachedNode’
35 }
36 }
37 });

Figure 5.14: The connector component

At this point, connector handles will update their attachedNode and
offset fields when dropped on or picked up from graphical elements,
but the connector will not follow attached nodes when they move.
The second step of the adaptation is to create an entangler that recog-
nizes when handles are attached, instantiates co-occurrences of match-
ing handle-node pairs, and drives the handle-following behavior (list-
ing 5.15).

After providing the new definitions, we must instantiate both the en-
tangler and a connector:

1 tangler.make(’root.graphics.connector’, ’defs.connector’);
2 tangler.make(’root.handleNodeEntangler’, ’defs.handleNodeEntangler’);

It is informative to compare the code involved in this adaptation with
the ContextJS example presented by Lincke et al. for the same adapta-
tion (Lincke et al., 2011, pp. 1205-1206). ContextJS uses layers to adapt
object behavior. A layer encapsulates adaptations to multiple objects,
and can be dynamically activated and deactivated. Lincke et al. create
two layers, the first of which changes the behavior of Connector han-
dles, and the second of which changes the behavior of nodes. In their
case, handles affected by the Connector layer detect the object they have
been dropped on, and apply the Node layer to them. Our adaptation
has a similar first step: the connector component adds event listeners



101

38 tangler.define(’defs.handleNodeEntangler’,
{

39 parentType: ’tangler.entangler’,
40 conditions: [
41 ’handle matches :connector :handle’,
42 ’node matches :viewComponent’,
43 ’node.id equals handle.attachedNode’
44 ],
45 entanglementTemplate: {
46 name: ’attachedHandleAndNode’,
47 type: ’defs.connectorEntanglement’,
48 options: {
49 components: {
50 handle: ’{source}.handle’,
51 node: ’{source}.node’
52 }
53 }
54 }
55 });
56

57 tangler.define(’defs.connectorEntanglement
’, {

58 parentType: ’tangler.coOccurrence’,
59 model: {
60 nodePosition: ’{that}.node.model.

position’,
61 handlePosition: ’{that}.handle.model.

position’,
62 offset: {
63 x: 0,
64 y: 0
65 }
66 },
67 // in two rules, this component defines

the constraint that
68 // the handle’s position is fixed

relative to the node
69 modelRelays: {
70 updateOffset: {
71 target: ’offset’,
72 transform: {

73 x: {
74 transformType: ’tangler.sub’,
75 left: ’{that}.model.

handlePosition.x’,
76 right: ’{that}.model.

nodePosition.x’
77 },
78 y: {
79 transformType: ’tangler.sub’,
80 left: ’{that}.model.

handlePosition.y’,
81 right: ’{that}.model.

nodePosition.y’
82 }
83 },
84 // always trigger this rule before

the next one
85 priority: ’before:handleFollowsNode’
86 },
87 handleFollowsNode: {
88 target: ’handlePosition’,
89 transform: {
90 x: {
91 transformType: ’tangler.add’,
92 left: ’{that}.model.nodePosition

.x’,
93 right: ’{that}.model.offset.x’
94 },
95 y: {
96 transformType: ’tangler.add’,
97 left: ’{that}.model.nodePosition

.y’,
98 right: ’{that}.model.offset.y’
99 }

100 }
101 }
102 }
103 });

Figure 5.15: The entangler for connectors



102

to handles that make them store the identifier of the last viewCompo-

nent they have been dropped on. The coupling to the second step is
different however: rather than imperatively triggering the variation by
applying a layer, we reactively trigger the variation by fulfilling the
conditions described by defs.handleNodeEntangler.

This different approach showcases a trade-off inherent in our model.
On the one hand, it is more computationally expensive to detect the
co-occurrence between handles and nodes than simply instantiate the
variant behavior in the body of a method that will be called immedi-
ately before the behavior is needed (when a handle is dropped on top
of an object). On the other hand, our approach is more robust when
there are many possible paths to the variant behavior.

Another notable difference is that the ContextJS implementation makes
nodes contain handles, because the procedure for moving handles
must logically be attached as a listener on nodes. By contrast, in our
case, the model relays implementing this behavior (in defs.connectorEntanglement)
are attached to the co-occurrences representing each ongoing attach-
ment. We argue that this is a conceptual advantage, especially in more
complex integrations, where the co-occurrence provides straightfor-
ward access to all involved elements.

One to Two Mice

cursor

mouse1mouse2

right-hand cursor

cursor position 
updates

move mouse

left-hand cursor

move mouse

cursor position 
updates

plug 
mouse in

corresponding
cursor is created

plug first
mouse in

cursor 
is created

move mouse

cursor position 
updates

cursor position 
updates

move mouse

Before adaptation: One cursor for all mice After adaptation: One cursor per mouse

mouse1mouse2

Figure 5.16: The behavior associating
mice and cursors before and after the de-
sired adaptation.

The task is to adapt a TANGLER instance that is configured to use a
single mouse cursor (as in any modern operating system) so that it
instead has uses a different cursor for each mouse plugged into the
computer. Before the adaptation, a single cursor will no matter how
many mice are plugged in, and the movements of each mouse will be



103

mapped to that cursor (figure 5.16, left). The adaptation must pro-
vide the ability to map each mouse to a different cursor, creating and
destroying the cursors as the mice are plugged in and unplugged (fig-
ure 5.16, right).

Listing 5.17 shows the code implementing the initial mouse policy.
defs.mouseEntanglement defines the cursor, its location, and the means
of connecting each mouse to the cursor.

1 tangler.define(’defs.cursor’, {
2 parentType: ’tangler.viewComponent’,
3 model: {
4 position: {
5 x: 0,
6 y: 0
7 },
8 radius: ’10 px’
9 },

10 draw: ’defs.drawCursor’
11 });
12

13 tangler.define(’defs.mouseEntangler’, {
14 parentType: ’tangler.entangler’,
15 conditions: [
16 ’mouse matches :mouse’
17 ],
18 entanglementTemplate: {
19 name: ’mouseExists’,
20 type: ’defs.mouseEntanglement’,
21 options: {
22 mouse: ’{source}.mouse’,
23 }
24 }
25 });
26

27 tangler.define(’defs.mouseEntanglement’, {
28 parentType: ’tangler.coOccurrence’,
29 distributeOptions: {
30 // create a cursor at the constant

location {ui}.cursor
31 // ’{ui}’ resolves to a component

under the root component,
32 // which contains all elements in the

"interface" layer.
33 // redundant instances of this

distribution have no effect
34 createCursor: {
35 record: ’defs.cursor’,
36 target: ’{ui}.options.components.

cursor.type’
37 }
38 },
39 components: {
40 // mirror the created cursor locally
41 cursor: ’{ui}.cursor’,
42 // create a transducer connecting
43 // the detected mouse and created

cursor
44 transducer: {
45 type: ’defs.mouseCursorTransducer’,
46 options: {
47 components: {

48 mouse: ’{that}.mouse’,
49 cursor: ’{ui}.cursor’
50 }
51 }
52 }
53 }
54 });
55

56 tangler.define(’defs.mouseCursorTransducer
’, {

57 parentType: ’tangler.component’,
58 distributOptions: {
59 forwardMouseEvents: {
60 record: {
61 ’device-mousedown’: ’{coOccurrence

}.cursor.events.device-mousedown’,
62 // ... additional forwarded events

omitted ...
63 },
64 target: ’{coOccurrence}.cursor.

events’
65 }
66 },
67 modelRelays: {
68 // cursor.position = cursor.position +

mouse.delta
69 // rules using un-invertible

transforms work one way
70 cursorAccumulatesMouse: {
71 target: ’{that}.cursor.model.

position’,
72 transform: {
73 x: {
74 transformType: ’tangler.add’,
75 left: ’{that}.mouse.model.delta.

x’,
76 right: ’{that}.cursor.model.

position.x’
77 },
78 y: {
79 transformType: ’tangler.add’,
80 left: ’{that}.mouse.model.delta.

y’,
81 right: ’{that}.cursor.model.

position.y’
82 }
83 }
84 }
85 }
86 });

Figure 5.17: The initial mouse policy

The key to this adaptation is to replace it with a component that can
dynamically instantiate different cursor configurations depending on
the particular mouse that it is created for. To accomplish this, we create
a record that maps a mouse identifier, which identifies the hardware



104

model, to a type defining the appropriate configuration (listing 5.18).

1 tangler.define(’defs.
bimanualMouseEntanglement’, {

2 parentType: ’tangler.coOccurrence’,
3 mouseToCursorMap: {
4 ’mouse-1133-49232’: ’defs.

rightHandCursorConfiguration’,
5 ’mouse-1149-4099’: ’defs.

leftHandCursorConfiguration’,
6 // ’default’ value is returned for

invalid keys
7 // this creates a ‘‘catchall’’ cursor

for additional mice
8 ’default’: ’defs.

genericCursorConfiguration’
9 },

10 components: {
11 cursorConfiguration: {
12 // rather than provide a static type

name here,
13 // resolve one dynamically based on

the mouse id.
14 // the array-form path avoids

ambiguous parsing
15 type: [’{that}’, ’mouseToCursorMap’,

’{that}.mouse.id’],
16 options: {
17 components: {
18 mouse: ’{that}.mouse’
19 }
20 }
21 }
22 }
23 });

24

25 tangler.define(’defs.
rightHandCursorConfiguration’, {

26 parentType: ’tangler.component’,
27 distributeOptions: {
28 createCursorRemotely: {
29 record: ’defs.cursor’,
30 target: ’{ui}.options.components.

rightHandCursor.type’
31 },
32 mirrorCursorLocally: {
33 record: ’{ui}.rightHandCursor’,
34 target: ’{that}.options.components.

cursor’
35 }
36 },
37 components: {
38 transducer: {
39 type: ’defs.mouseCursorTransducer’,
40 options: {
41 mouse: ’{that}.mouse’,
42 cursor: ’{that}.cursor’,
43 }
44 }
45 }
46 });
47

48 // ... Other cursor configurations omitted
...

Figure 5.18: The mouse entangler

The last step is to add a component to the mouse entangler that re-
places the old entanglement with the new one (listing 5.19).

1 tangler.define(’defs.bimanualMousePolicyDistributor’, {
2 parentType: ’tangler.component’,
3 distributeOptions: {
4 setMousePolicy: {
5 record: ’defs.bimanualMouseCoOccurrence’,
6 target: ’{mouseEntangler}.entanglementTemplate.type’
7 }
8 }
9 });

10

11 tangler.make(’root.mouseEntangler.options.components.mousePolicy’, ’defs.
bimanualMousePolicyDistributor’);

Figure 5.19: The mouse distributor

This example illustrates the generality and power of our model. In
particular, it demonstrates how entanglers can extend the space of
variation of an interactive system in a robust way: the result of this
adaptation is a system that provides a meaningful interface whether
there are zero or more mice plugged in.

In the above example, defs.rightHandCursorConfiguration applies the same
cursor and transducer types to each new mouse as the original setup.
In practice it would likely be customized, at a minimum to visually



105

distinguish the right- and left-hand cursors. This would not have to
happen immediately however, as the new cursors may be customized
independently by distributing further options to them.

5.5 Discussion

Comparing entanglers and context-oriented programming

Entanglers bear some similarities to previous work in the context-
oriented programming (COP) field. Typical COP systems let program-
mers write layers that encapsulate extensions to several objects. Com-
monly, layers are applied at the point of a procedure call, and are active
throughout the resulting call stack, where they redirect method and
field names to context-appropriate values. Some systems have demon-
strated other techniques for activating layers. For example, Lincke
et al. (2011) demonstrate layer activation applied to particular objects,
or with particular containment relationships,i.e. a layer can be active
on instances of class A only when they are contained in objects of class
B, and not otherwise. Von Löwis et al. (2007) introduce the notion of
implicit layer activation, where layers are active while some predicate
is true, rather than when a programmer calls an activation method.

Our programming model can be characterized as a COP system with
both explicit and implicit layer activation, as well as an extensible lan-
guage for describing activation contexts. Constructing a component
that distributes options to existing components is similar in principle
to explicit layer activation, though it is a declarative system exten-
sion rather than an imperative one. Co-occurrence descriptions are
analogous to layer activation predicates, in that they are automatically
matched by the system. They constitute a language for describing
dynamically discoverable ensembles of objects. This language can ex-
press both object instances and containment relationships, as seen in
section 5.4, as well as more novel inter-object relationships, such as
visual overlap, seen in section 5.3.

Ramson et al. (2017) find that most COP systems only adapt passive
entities, i.e. parts of systems that only affect system behavior when
they are called into. They argue that implicit layer activation is neces-
sary for adapting active entities that affect system behavior without ex-
plicitly receiving control flow. Ramson et al. investigate implicit layer
activation implementation strategies, but do not explore applications.
Our example in section 5.3 demonstrates exactly the advantage they
describe: there is not one known function call or event that must oc-



106

cur before the co-occurrence between the swatch and target is active,
because they may be moved separately.

These congruencies between our model and COP imply that COP may
have more to contribute to malleable software. COP research has gen-
erally been motivated by programmer-facing concerns such as code
maintainability and flexibility. Malleable software may be an avenue
for bringing end user concerns into the COP community e.g. by de-
scribing malleable use cases as benchmarks to motivate programming
tools.

Shifting the line between programming and use

Describe
elements

Bind
elements + logic

Describe
logic

Enact
interactions

Unbind
elements + logic

Entanglers

Parameterized
integrations

Closed-world
integrations User

Programmer1 Programmer2 User

Programmer User

Programmer

Programmer3

Figure 5.20: A comparison of the distri-
bution of work for various models for
programming interactions. The horizon-
tal axis represents the life cycle of an in-
teraction in five phases: describing el-
ements to be integrated, describing the
behavior of the interaction, activating
the interaction by binding the behavior
to concrete system elements, the period
of time where the interaction is in effect,
and the moment where it is unbound or
destroyed. For each kind of interaction,
each phase is enacted either by writing
and executing code, or by acting on the
interface that houses the interaction.

In figure 5.20, I compare three broad categories of interaction in terms
of their authorial stories, i.e. how they are created, applied, and re-
moved.

Closed-world interactions are the most common approach to interaction,
modeled by containment relationships, event listeners, etc. These in-
teractions are introduced to a system by a programmer describing the
new behavior with references to the concrete elements it orchestrates,
thus coupling the steps of describing the interaction logic and binding
it to particular things. Generally, they are removed or amended by de-
structive modification, i.e. rewriting source code. They are appropriate
for closed-world designs, where the set of elements that will interact
is known and stable.

Parameterized interactions are a higher-level response to closed-world
interactions. The most basic example is an event listener binding state-
ment encapsulated by a function that takes the elements to be inte-
grated as input parameters. These types of interactions allow for a
hand-off, where different programmers may design interactions and
instantiate them. OOP mixins, explicitly activated layers, ICon con-
figurations (Dragicevic and Fekete, 2004), OSCAR setups (Newman



107

et al., 2002), PalCom assemblies (Svensson Fors et al., 2009), and dis-
tributing TANGLER components also belong to this category, because
they allow for the same decoupling between interaction design and
activation. These abstractions have a key difference from a simple in-
teraction wrapped in a function: they can be easily undone, by calling
a deactivation method or destroying them.

Finally, entanglers are an even more open-ended form of interaction.
They require a more elaborate programming process, as programmers
have to design both the pre-conditions for the interaction and its be-
havior. However, they also remove the need for explicit activation or
deactivation steps. Instead, interactions are activated by the underly-
ing system when users bring about the relevant context, and similarly
they are deactivated when the user breaks that context.

The figure illustrates how entanglers can help shift the distribution of
work between programmers and end users. As I mentioned in the
introduction to chapter 4, a key goal of the vision is that software
reusability should be a property of the user experience, rather than just
the developer experience. More broadly, infrastructures for plurality
aim to transform capabilities of programmers into user capabilities
without reducing usability, thus enabling diverse user communities to
get more value out of their adaptation work.

5.6 Conclusion

I have introduced a programming model for adapting interactions
based on co-occurrences and entanglements, and demonstrated the
usefulness of the model with our prototype implementation, TANGLER.
The key features of our programming model all contribute to making
interactions less brittle in the use context of malleable interfaces. The
declarative component tree idiom reduces coupling and increases flex-
ibility by letting adaptations target and amend any value in the tree
with option distributions and selector queries. Co-occurrence descrip-
tions let adaptations be associated with temporary configurations of
components, removing the need to attach adaptations to specific ob-
jects or call sites, and the related need for guard code checking for
appropriate pre-conditions. Entanglement templates let programmers
decide how to name and structure each entanglement, reducing their
reliance on the interfaces of integrated components.

TANGLER has several limitations that should be addressed in a more



108

mature implementation of our model, i.e. to prototype interfaces at
the scale of apps or larger systems. I discuss these as directions for
future work in the next chapter.

Our programming model shares similar principles with several context-
oriented programming (COP) systems. In this perspective, entanglers
represent a novel COP abstraction: a declarative contextual adapta-
tion, where the context is bounded by the existence and state of one or
several objects, including relational state such as whether two objects
visually overlap or not.



109

5.7 Key Takeaways from Chapter 5

Our programming model based on entanglers makes interactions
robust to run-time re-combination of UI elements, and enables
ongoing adaptation of those interactions by programmers. Its key
features each contribute to these qualities:

• Option distributions targeted with selector queries enable pro-
grammers to additively extend components in the whole tree;

• Co-occurrence descriptions enable programmers to create dy-
namic components representing temporary ensembles of sys-
tem elements;

• Entanglement templates enable programmers to attach interac-
tions to co-occurrences; and

• The co-occurrence engine creates and destroys interactions in
the background as end users re-combine interface elements.

Compared to existing mechanisms for programming interactions,
entanglers distribute the process of designing, constructing, en-
acting, and destroying interactions differently: programmers can
design interactions without having to define the concrete elements
participating in the interaction, enabling end users to control when
and where interactions are in effect. This makes entanglers a suit-
able low-level idiom for building malleable software.





111

6
Conclusions

In this thesis I have addressed user adaptation of digital tools in the
contemporary software landscape. Adaptation encompasses a wide
range of methods employed by individual users and communities to
overcome small- and large-scale mismatches between what they need
and what their tools provide. These mismatches include failures to
accommodate the physical, cognitive, social, and economic context of
technology use. As these use contexts are diverse and changing, adap-
tation work is an ongoing part of use. The costs and outcomes of
adaptation are shaped by the material and relational qualities of soft-
ware, e.g. the people, tools, and techniques that produce, distribute,
share, and maintain it. These conditions have shifted significantly in
the decades since HCI researchers began developing theoretical and
design tools to study and support adaptation work. Computer arti-
facts have moved out of the office and multiplied into an ecosystem
of devices, apps, and documents. A typical user owns, has access to,
and uses multiple artifacts produced by and held in common with
different communities. I have investigated the methods, goals, and
barriers to adaptation work in this context, and argued that they invite
us to study and create novel tools for software production. These tools
should aim to involve extended networks of users and developers in
design and adaptation of their digital tools.



112

6.1 Thesis contributions

I synthesized the concept of modes of software production by drawing in
the Marxist concept of modes of production, the ethnographic theory
of infrastructures, and the study of how software evolves and mediates
work. This theoretical tool foregrounds questions about how the pro-
duction of software is organized, who has control of which resources,
how ownership is distributed, and how these elements of a mode help
reproduce themselves. I have applied the mode of software production
framework to characterize the app paradigm, in which software is pro-
duced and distributed as apps, which offer developers increased flex-
ibility through agile methods and cloud infrastructures, but endanger
the labor value of users by limiting interoperation and adaptation.

I carried out a case study of a biodiversity research network to under-
stand the contrasting design practices of grassroots communities and
software platform owners. In particular, the case study focused on
how adaptation work interacts with cross-community collaborations. I
found that grassroots communities combine off-the-shelf, tailored, and
custom tools to serve their idiosyncratic needs, but that the resulting
hybrid systems are cumbersome to use and maintain. By contrast,
large-scale software development tools help platform owners create
highly usable interfaces, but also skew developers toward centrally
managed, one-size-fits-all design.

I proposed that HCI and computer science researchers should create
software development tools that resolve this tension between diverse
and scalable system designs. I called this research agenda infrastruc-
tures for plurality, and briefly considered how it could be applied to
generate research problems for data sharing and software deployment
tools.

I described malleable software, a design vision in which interfaces are
made up of interface elements that can be developed by different pro-
grammers and (re-)combined by end users. I critiqued existing tools
for modifying software through walkthroughs of two scenarios of mal-
leable software use cases, and related the problems I found to existing
research problems in software engineering and interaction design.

Finally, I designed a programming model to create and adapt interac-
tions for the conditions of malleable software. This model introduces
the concept of entanglers, which describe the pre-conditions and mech-
anisms of interactions separately. Entanglers enable programmers to



113

define and adapt interactions, and enable end users to re-combine in-
terface elements created by different authors. TANGLER is a proof-of-
concept implementation of this model, which I used to demonstrate
two in-depth adaptation cases. I found that entanglers have several
similarities to context-oriented programming mechanisms.

6.2 Directions for future research

I discuss directions for future research that can build on my contribu-
tions and address the limitations of my work.

Building an entangler toolkit

TANGLER is a proof of concept for entanglers, but not a sufficient envi-
ronment for prototyping usable malleable interfaces.

Performance-wise, it is adequately responsive for the size of example
we have presented, but requires more careful redesign if it is to scale
up to systems with the complexity of real-world applications. In the
near term, I aim to create a more fully featured implementation of
the programming model. Currently, co-occurrence descriptions that
involve predicates comparing very common component types against
each other, such as checking for visual overlap between graphical ele-
ments, trigger the worst-case performance of the Rete algorithm. This
form of co-occurrence is very common in complex GUIs, and may mo-
tivate adapting a different matching algorithm. This limitation may
also be addressed by applying existing libraries or optimization tech-
niques for graphical interaction. Additionally, the TANGLER compo-
nent tree is complicated to construct because each component may
affect the construction of any other component in the tree through its
option distributions. Currently, TANGLER rebuilds the component tree
from scratch whenever a new component is introduced, but this is
likely to incur significant performance penalties when the tree grows
in size. The developers of the Infusion framework that TANGLER is
based on are working on an improved construction process, which I
hope to take advantage of in future versions of the tool.

My experiments with TANGLER have also opened some subtle design
problems for the entangler model. One problem is when entangle-
ments should be destroyed. Currently, TANGLER destroys any entan-
glements created by an entangler when the triggering co-occurrence
ceases to exist. However, this may not be appropriate for some kinds of



114

interactions, e.g. when a mouse cursor is used to move a scrollbar, the
cursor may leave the scrollbar while the mouse key remains depressed
without breaking the interaction. It may be viable to let programmers
choose how entanglers should destroy entanglements on a case-by-
case basis. Another problem is the potential for conflicts and ambigu-
ity among interactions. For example, if button-pressing and dragging
interaction and dragging interactions are defined separately, it may not
be possible for users to perform these actions separately. These kinds
of issues are a common concern of interface toolkits and are typically
addressed by mechanisms such as event management (Hudson et al.,
2005) or ambiguity resolution (Schwarz et al., 2010). I am currently
experimenting with adding these mechanisms to TANGLER as types of
entanglements. This should enable programmers to create entanglers
that mediate conflicts and ambiguities in existing interactions.

Another pragmatic limitation of entanglers and TANGLER is that they
introduce a significant amount of fresh conceptual language. This lan-
guage has been useful in co-developing the model and implementa-
tion with my collaborators (Basman et al., 2018b), but may prevent the
wider research community from building on our work. I am inter-
ested in developing benchmarks and evaluation methods that opera-
tionalize malleability and open authorship. For example, benchmarks
may be based on the scenarios from chapter 4. With Antranig Basman,
I am considering developing an evaluation method for programming
tools based on differential design tasks, i.e. defining a set of related
programming exercises that a set of programmers have to solve by
sequentially adapting the same program artifact. These tools should
help situate our work in the programming literature, and motivate
other researchers to contribute their efforts.

Design principles for molding interfaces

I am particularly interested in investigating how non-programming
end users may take advantage of entanglers. MacLean et al.’s Buttons
system (1990) demonstrates the power of adding multiple tailoring
techniques with different levels of simplicity and expressiveness to a
highly adaptable base system. Such a “gentle slope” to system tailor-
ing can enable collaborative design among end users and developers,
as well as reducing the overall need for programming interventions.
The discussion in section 5.5 motivates my hypothesis that entanglers
are a suitable low-level idiom for empowering users to adapt systems
by combining different interface elements at run time. Rather than a
gentle slope from use to programming, TANGLER currently exhibits a
chasm between a few simple techniques on one side (overlaying in-



115

terface elements and plugging in devices), and programming on the
other.

In the medium term, I am interested in studying and designing tools
that can populate this middle ground in tailoring techniques for mal-
leable software. I reviewed several interaction techniques that help
users customize interfaces via direct manipulation, programming-by-
demonstration, reusable integrations of devices, and visual program-
ming tools in section 4.2 and 5.1. These form a great starting point for
this research. The other ongoing work in the ONE project (Beaudouin-
Lafon, 2017) will also develop interface concepts and design principles
for malleable systems. Indeed interaction instruments and information
substrates have been conceptualized from the start as building blocks
of interfaces that end users can recombine in the process of use.

Infrastructures for plurality

It was relatively late in my thesis research that I decided to expand my
investigation to the larger socio-technical systems around software use
and production. Doing this work let me re-evaluate the motivations
behind my initial research agenda. I believe that modes of software
production and infrastructures for plurality will be useful critical and
generative concepts for directing my long-term research efforts. I hope
to work on implementing and evaluating tools that support the design
work carried out by users and communities on the margins of our soft-
ware landscape. This will likely involve a transition toward methods
such as field studies and co-design.

6.3 Concluding comments

Part of the reason that software so often fails to suit human diversity
is that the methods and tools of software production have been devel-
oped for the values of industrial-scale engineering. There are many fu-
ture research contributions in reforming these tools of production. By
studying and transforming the extended life cycle of software, rather
than just the interface, I believe researchers in HCI and other fields can
enable new networks of use and design. I hope that the theoretical and
technological tools I have developed will help with these efforts.





117

Bibliography

Altaweel, I., Good, N., and Hoofnagle, C. J. (2015). Web privacy census.
Technology Science.

Anderson, M. (2015). Pew research center. technology device owner-
ship: 2015.

Anderson, M. and Perrin, A. (2017). Pew research center. tech adoption
climbs among older adults.

Appert, C. and Beaudouin-Lafon, M. (2006). Swingstates: Adding state
machines to the swing toolkit. In Pierce, J., editor, Proceedings of the
19th Annual ACM Symposium on User Interface Software and Technol-
ogy, UIST ’06, New York, NY, USA. ACM.

Basman, A. (2016). Building software is not (yet) a craft. In Proceedings
of the 27th Annual Workshop of the Psychology of Programming Interest
Group.

Basman, A. (2019). The naturalist’s friend: A case study and blueprint
for pluralist data tools and infrastructure. In Proceedings of the
30th Annual Workshop of the Psychology of Programming Interest Group
(PPIG 2019).

Basman, A., Church, L., Klokmose, C., and Clark, C. (2016). Software
and how it lives on - embedding live programs in the world around
them. In Proceedings of the 27th Annual Workshop of the Psychology of
Programming Interest Group (PPIG 2016).

Basman, A., Clark, C., and Lewis, C. (2015). Harmonious authorship
from different representations (work in progress). In Proceedings of
the 26th Annual Workshop of the Psychology of Programming Interest
Group (PPIG 2015).

Basman, A., Lewis, C., and Clark, C. (2018a). The open authorial prin-
ciple: Supporting networks of authors in creating externalisable de-



118

signs. In Proceedings of the 2018 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2018, pages 29–43, New York, NY, USA. ACM.

Basman, A., Tchernavskij, P., Bates, S., and Beaudouin-Lafon, M.
(2018b). An anatomy of interaction: Co-occurrences and entangle-
ments. In Conference Companion of the 2nd International Conference on
Art, Science, and Engineering of Programming, Programming&#39;18

Companion, pages 188–196, New York, NY, USA. ACM.

Beaudouin-Lafon, M. (2000). Instrumental interaction: An interaction
model for designing post-wimp user interfaces. Proceedings of the
SIGCHI conference on Human factors in computing systems - CHI ’00,
pages 446–453.

Beaudouin-Lafon, M. (2017). Towards unified principles of interaction.
In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chap-
ter, CHItaly ’17, pages 1:1–1:2, New York, NY, USA. ACM.

Beaulieu, A. (2010). From co-location to co-presence: Shifts in the use
of ethnography for the study of knowledge. Social Studies of Science,
40(5):453–470.

Bennett, K. H. and Rajlich, V. T. (2000). Software maintenance and
evolution: A roadmap. In Proceedings of the Conference on The Future
of Software Engineering, ICSE ’00, pages 73–87, New York, NY, USA.
ACM.

Biddle, R. and Tempero, E. (1998). Evaluating design by reusability.

Bier, E. A. (1992). Embeddedbuttons: Supporting buttons in docu-
ments. ACM Trans. Inf. Syst., 10(4):381–407.

Bier, E. A., Stone, M. C., Fishkin, K., Buxtonf, W., and Baudel, T. (1995).
A taxonomy of see-through tools. In Readings in Human–Computer
Interaction, pages 517–523. Elsevier.

Bier, E. A., Stone, M. C., Pier, K., Fishkin, K., Baudel, T., Conway, M.,
Buxton, W., and DeRose, T. (1994). Toolglass and magic lenses: The
see-through interface. In Conference Companion on Human Factors in
Computing Systems, CHI ’94, pages 445–446, New York, NY, USA.
ACM.

Blanch, R. and Beaudouin-Lafon, M. (2006). Programming rich inter-
actions using the hierarchical state machine toolkit. In Proceedings
of the Working Conference on Advanced Visual Interfaces, AVI ’06, pages
51–58, New York, NY, USA. ACM.



119

Bødker, S. (1991). Through the Interface - a Human Activity Approach
to User Interface Design, volume 16. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Bødker, S. and Klokmose, C. N. (2012). Dynamics in artifact ecolo-
gies. In Proceedings of the 7th Nordic Conference on Human-Computer
Interaction: Making Sense Through Design, pages 448–457. ACM.

Bødker, S., Korsgaard, H., Lyle, P., and Saad-Sulonen, J. (2016a). Hap-
penstance, strategies and tactics: Intrinsic design in a volunteer-
based community. In Proceedings of the 9th Nordic Conference on
Human-Computer Interaction, NordiCHI ’16, pages 10:1–10:10, New
York, NY, USA. ACM.

Bødker, S., Korsgaard, H., and Saad-Sulonen, J. (2016b). ‘a farmer, a
place and at least 20 members’: The development of artifact ecolo-
gies in volunteer-based communities. In Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work & Social Comput-
ing, CSCW ’16, pages 1142–1156, New York, NY, USA. ACM.

Bødker, S., Lyle, P., and Saad-Sulonen, J. (2017). Untangling the mess of
technological artifacts: Investigating community artifact ecologies.
In Proceedings of the 8th International Conference on Communities and
Technologies, C&T ’17, pages 246–255, New York, NY, USA. ACM.

Bx (2018). Bx 2018 seventh international workshop on bidirectional
transformations. Organized by Kazutaka Matsuda and Jens Weber.

Chen, R. (2019). How to build a plugin system on the web and also
sleep well at night.

Chen, X. A. and Li, Y. (2017). Improv: An input framework for im-
provising cross-device interaction by demonstration. ACM Trans.
Comput.-Hum. Interact., 24(2):15:1–15:21.

Christensen, H. B. (2010). Flexible, reliable software: Using patterns and
agile development. Taylor and Francis (Chapman and Hall/CRC).

Clark, C. and Basman, A. (2017). Tracing a paradigm for externaliza-
tion: Avatars and the gpii nexus. In Companion to the First Interna-
tional Conference on the Art, Science and Engineering of Programming,
Programming ’17, pages 31:1–31:5, New York, NY, USA. ACM.

Clark, C. and Shahi, S. (2018). On continuing creativity. In Proceedings
of the Psychology of Programming Interest Group (PPIG 2018).

Clement, A. (1993). Looking for the designers: Transforming the invisi-
ble infrastructure of computerised office work. AI & society, 7(4):323–
344.



120

Costanza, P. and Hirschfeld, R. (2005). Language constructs for
context-oriented programming: An overview of contextl. In Pro-
ceedings of the 2005 Symposium on Dynamic Languages, DLS ’05, pages
1–10, New York, NY, USA. ACM.

Czaplicki, E. and Chong, S. (2013). Asynchronous functional reactive
programming for guis. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’13, pages 411–422, New York, NY, USA. ACM.

David, P. A. and Bunn, J. A. (1988). The economics of gateway tech-
nologies and network evolution: Lessons from electricity supply his-
tory. Information Economics and Policy, 3(2):165 – 202.

Dixon, M. and Fogarty, J. (2010). Prefab: Implementing advanced be-
haviors using pixel-based reverse engineering of interface structure.
In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’10, pages 1525–1534, New York, NY, USA. ACM.

Doorenbos, R. B. (1995). Production matching for large learning sys-
tems. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH
PA DEPT OF COMPUTER SCIENCE.

Dragicevic, P. and Fekete, J. (2002). Icon: input device selection and in-
teraction configuration. In Companion proceedings of the 15th ACM
symposium on User Interface Software & Technology (UIST2), Paris,
France, pages 27–30.

Dragicevic, P. and Fekete, J.-D. (2004). The input configurator toolkit:
Towards high input adaptability in interactive applications. In Pro-
ceedings of the Working Conference on Advanced Visual Interfaces, AVI
’04, pages 244–247, New York, NY, USA. ACM.

Eagan, J. R. (2017). Grab ‘n’ drop: User configurable toolglasses. In
Bernhaupt, R., Dalvi, G., Joshi, A., K. Balkrishan, D., O’Neill, J.,
and Winckler, M., editors, Human-Computer Interaction – INTERACT
2017, pages 315–334, Cham. Springer International Publishing.

Eagan, J. R., Beaudouin-Lafon, M., and Mackay, W. E. (2011). Cracking
the cocoa nut: User interface programming at runtime. In Proceed-
ings of the 24th Annual ACM Symposium on User Interface Software and
Technology, UIST ’11, pages 225–234, New York, NY, USA. ACM.

Edwards, W. K., Newman, M. W., Sedivy, J. Z., and Smith, T. F. (2009).
Experiences with recombinant computing: Exploring ad hoc inter-
operability in evolving digital networks. ACM Trans. Comput.-Hum.
Interact., 16(1):3:1–3:44.



121

Elliott, C. and Hudak, P. (1997). Functional reactive animation. In
Proceedings of the Second ACM SIGPLAN International Conference on
Functional Programming, ICFP ’97, pages 263–273, New York, NY,
USA. ACM.

Eurostat (2016). Beyond young in europe today - digital world.

Eurostat (2018). Digital econonomy and society statistics - households
and individuals.

Fischer, G. (1993). Shared knowledge in cooperative problem-solving
systems–integrating adaptive and adaptable components. In Adap-
tive User Interfaces, pages 49–68. Elsevier.

Flanagan, J. C. (1954). The critical incident technique. Psychological
bulletin, 51(4):327.

Flick, U., Kvale, S., Angrosino, M., Barbour, R., Banks, M., Gibbs, G.,
and Rapley, T. (2007). Doing interviews. SAGE Publications Ltd,
London.

Forgy, C. L. (1979). On the efficient implementation of production systems.
PhD thesis, Carnegie-Mellon University.

Gantt, M. and Nardi, B. A. (1992). Gardeners and gurus: Patterns of
cooperation among cad users. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’92, pages 107–117, New
York, NY, USA. ACM.

Gasser, L. (1986). The integration of computing and routine work.
ACM Trans. Inf. Syst., 4(3):205–225.

Gerson, E. M. and Star, S. L. (1986). Analyzing due process in the
workplace. ACM Transactions on Information Systems (TOIS), 4(3):257–
270.

Gjerlufsen, T., Klokmose, C. N., Eagan, J., Pillias, C., and Beaudouin-
Lafon, M. (2011). Shared substance: Developing flexible multi-
surface applications. Proceedings of the 2011 annual conference on Hu-
man factors in computing systems - CHI ’11, pages 3383–3392.

Gürses, S. and van Hoboken, J. V. J. (2017). Privacy after the agile
turn. In polonetsky, J., Tene, O., and Sellinger, E., editors, Cambridge
Handbook of Consumer Privacy. Cambridge University Press.

Haraty, M., McGrenere, J., and Bunt, A. (2017). Online customization
sharing ecosystems: Components, roles, and motivations. In CSCW,
pages 2359–2371.



122

Hartmann, B., Doorley, S., and Klemmer, S. R. (2008). Hacking, mash-
ing, gluing: Understanding opportunistic design. IEEE Pervasive
Computing, 7(3):46–54.

Henderson, A. and Kyng, M. (1995). There’s no place like home: Con-
tinuing design in use. In Readings in Human–Computer Interaction,
pages 793–803. Elsevier.

Hudson, S. E., Mankoff, J., and Smith, I. (2005). Extensible input han-
dling in the subarctic toolkit. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’05, pages 381–390, New
York, NY, USA. ACM.

Ingalls, D., Felgentreff, T., Hirschfeld, R., Krahn, R., Lincke, J., Röder,
M., Taivalsaari, A., and Mikkonen, T. (2016). A world of active ob-
jects for work and play: The first ten years of lively. In Proceedings of
the 2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2016, pages
238–249, New York, NY, USA. ACM.

Jalal, G., Maudet, N., and Mackay, W. E. (2015). Color portraits: From
color picking to interacting with color. In Proceedings of the 2015 CHI
Conference on Human Factors in Computing Systems, CHI ’15, pages
4207–4216, New York, NY, USA. ACM.

Jung, H., Stolterman, E., Ryan, W., Thompson, T., and Siegel, M. (2008).
Toward a framework for ecologies of artifacts: How are digital ar-
tifacts interconnected within a personal life? In Proceedings of the
5th Nordic Conference on Human-computer Interaction: Building Bridges,
NordiCHI ’08, pages 201–210, New York, NY, USA. ACM.

Kaptelinin, V. and Bannon, L. J. (2012). Interaction design beyond
the product: Creating technology-enhanced activity spaces. Human–
Computer Interaction, 27(3):277–309.

Karasti, H. and Blomberg, J. (2018). Studying infrastructuring ethno-
graphically. Computer Supported Cooperative Work (CSCW), 27(2):233–
265.

Karasti, H. and Syrjänen, A.-L. (2004). Artful infrastructuring in two
cases of community pd. In Proceedings of the eighth conference on Par-
ticipatory design: Artful integration: interweaving media, materials and
practices-Volume 1, pages 20–30. ACM.

Kay, A. C. (1984). Computer software. Scientific American, 251:53–59.

Kay, A. C. (1993). The early history of smalltalk. The second ACM
SIGPLAN conference on History of programming languages - HOPL-II.



123

Kell, S. (2009). The mythical matched modules: Overcoming the
tyranny of inflexible software construction. In Proceedings of the
24th ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’09, pages
881–888, New York, NY, USA. ACM.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Lo-
ingtier, J.-M., and Irwin, J. (1997). Aspect-oriented programming.
In European conference on object-oriented programming, pages 220–242.
Springer.

Klokmose, C. N. and Beaudouin-Lafon, M. (2009). Vigo: Instrumen-
tal interaction in multi-surface environments. Proceedings of the 27th
international conference on Human factors in computing systems - CHI
09.

Klokmose, C. N., Eagan, J. R., Baader, S., Mackay, W. E., and
Beaudouin-Lafon, M. (2015). Webstrates: Shareable dynamic me-
dia. Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology - UIST ’15, pages 280–290.

Klokmose, C. N. and Zander, P.-O. (2010). Rethinking laboratory note-
books. Proceedings of COOP 2010, pages 119–139.

Ko, A. J. and Myers, B. A. (2008). Debugging reinvented: Asking and
answering why and why not questions about program behavior. In
Proceedings of the 30th International Conference on Software Engineering,
ICSE ’08, pages 301–310, New York, NY, USA. ACM.

Kuutti, K. (2019). From “interaction” to “transaction” research. Pre-
sentation given at the 2019 Common Interactive Objects symposium
in Sandbjerg, Denmark.

Lave, J. and Wenger, E. (1991). Situated learning: Legitimate peripheral
participation. Cambridge university press.

Lialina, O. (2012). Turing complete user. Contemporary
Home Computing, 14. contemporary-home-computing.org/

turing-complete-user. Accessed 01/10/2019.

Lieberherr, K., Holland, I., and Riel, A. (1988). Object-oriented pro-
gramming: An objective sense of style. In Conference Proceedings
on Object-oriented Programming Systems, Languages and Applications,
OOPSLA ’88, pages 323–334, New York, NY, USA. ACM.

Lientz, B. P. and Swanson, E. (1980). Software maintenance management.
Addison Wesley.

contemporary-home-computing.org/turing-complete-user
contemporary-home-computing.org/turing-complete-user


124

Lincke, J., Appeltauer, M., Steinert, B., and Hirschfeld, R. (2011). An
open implementation for context-oriented layer composition in con-
textjs. Science of Computer Programming, 76(12):1194–1209.

Mackay, W. E. (1990a). Patterns of sharing customizable software. Pro-
ceedings of the 1990 ACM conference on Computer-supported cooperative
work - CSCW ’90.

Mackay, W. E. (1990b). Users and customizable software: A co-adaptive
phenomenon. PhD thesis, Massachusetts Instititute of Technology.

Mackay, W. E. (1991). Triggers and barriers to customizing software. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’91, pages 153–160, New York, NY, USA. ACM.

Mackay, W. E. (2002). Which interaction technique works when?: Float-
ing palettes, marking menus and toolglasses support different task
strategies. In Proceedings of the Working Conference on Advanced Visual
Interfaces, AVI ’02, pages 203–208, New York, NY, USA. ACM.

Mackay, W. E. and Fayard, A.-L. (1997). Hci, natural science and de-
sign: a framework for triangulation across disciplines. In Sympo-
sium on Designing Interactive Systems: Proceedings of the 2nd conference
on Designing interactive systems: processes, practices, methods, and tech-
niques, pages 223–234.

MacLean, A., Carter, K., Lövstrand, L., and Moran, T. (1990). User-
tailorable systems: Pressing the issues with buttons. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’90, pages 175–182, New York, NY, USA. ACM.

Magnaudet, M., Chatty, S., Conversy, S., Leriche, S., Picard, C., and
Prun, D. (2018). Djnn/smala: A conceptual framework and a
language for interaction-oriented programming. Proc. ACM Hum.-
Comput. Interact., 2(EICS):12:1–12:27.

Maloney, J. H. and Smith, R. B. (1995). Directness and liveness in the
morphic user interface construction environment. In Proceedings of
the 8th Annual ACM Symposium on User Interface and Software Technol-
ogy, UIST ’95, pages 21–28, New York, NY, USA. ACM.

Marx, K. (2005). Grundrisse: Foundations of the critique of political econ-
omy. Penguin UK.

Maudet, N., Jalal, G., Tchernavskij, P., Beaudouin-Lafon, M., and
Mackay, W. E. (2017). Beyond grids: Interactive graphical substrates
to structure digital layout. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, CHI ’17, pages 5053–5064,
New York, NY, USA. ACM.



125

McGrenere, J. (2002). The design and evaluation of multiple interfaces:
A solution for complex software. PhD thesis, University of Toronto
Canada.

Myers, B. A. (1990). Creating user interfaces using programming by
example, visual programming, and constraints. ACM Trans. Program.
Lang. Syst., 12(2):143–177.

Myers, B. A. (1991). Separating application code from toolkits: Elim-
inating the spaghetti of call-backs. In Proceedings of the 4th Annual
ACM Symposium on User Interface Software and Technology, UIST ’91,
pages 211–220, New York, NY, USA. ACM.

Nardi, B. A., editor (1996). Context and consciousness: activity theory and
human-computer interaction. MIT Press.

Nardi, B. A. and Miller, J. R. (1991). Twinkling lights and nested loops:
distributed problem solving and spreadsheet development. Interna-
tional Journal of Man-Machine Studies, 34(2):161–184.

Nelson, T. H. (2012). Transclusion: Fixing electronic literature.
GoogleTalksArchive, YouTube. youtube.com/watch?v=ohiKTVVtDJA.
Accessed 01/03/2016.

Newman, M. W., Elliott, A., and Smith, T. F. (2008). Providing an in-
tegrated user experience of networked media, devices, and services
through end-user composition. In International Conference on Perva-
sive Computing, pages 213–227. Springer.

Newman, M. W., Sedivy, J. Z., Neuwirth, C. M., Edwards, W. K., Hong,
J. I., Izadi, S., Marcelo, K., and Smith, T. F. (2002). Designing for
serendipity: Supporting end-user configuration of ubiquitous com-
puting environments. In Proceedings of the 4th Conference on Designing
Interactive Systems: Processes, Practices, Methods, and Techniques, DIS
’02, pages 147–156, New York, NY, USA. ACM.

Nielsen, M. N. and Bødker, S. (2004). Desktop computing. Australian
Journal of Information Systems, special, pages 88–101.

Nosek, J. T. and Palvia, P. (1990). Software maintenance management:
changes in the last decade. Journal of Software Maintenance: Research
and Practice, 2(3):157–174.

Nouwens, M. and Klokmose, C. N. (2018). The application and its
consequences for non-standard knowledge work. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems, CHI
’18, pages 399:1–399:12, New York, NY, USA. ACM.

youtube.com/watch?v=ohiKTVVtDJA


126

Olsen, Jr., D. R., Hudson, S. E., Verratti, T., Heiner, J. M., and Phelps, M.
(1999). Implementing interface attachments based on surface repre-
sentations. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’99, pages 191–198, New York, NY, USA.
ACM.

Olsen Jr, D. R. (2007). Evaluating user interface systems research. In
Proceedings of the 20th annual ACM symposium on User interface soft-
ware and technology, pages 251–258. ACM.

Parnas, D. L. (1971). Information distribution aspects of design
methodology. Information Processing, pages 339–344.

Paternò, F. and Wulf, V. (2017). New Perspectives in End-User Develop-
ment. Springer.

Pollock, N. and Williams, R. (2010). E-infrastructures: How do we
know and understand them? strategic ethnography and the biog-
raphy of artefacts. Computer Supported Cooperative Work (CSCW),
19(6):521–556.

Ramson, S., Lincke, J., and Hirschfeld, R. (2017). The declarative nature
of implicit layer activation. In Proceedings of the 9th International Work-
shop on Context-Oriented Programming, COP ’17, pages 7–16, New
York, NY, USA. ACM.

Schmidt, K. and Bannon, L. (1992). Taking cscw seriously. Computer
Supported Cooperative Work (CSCW), 1(1-2):7–40.

Schwarz, J., Hudson, S., Mankoff, J., and Wilson, A. D. (2010). A frame-
work for robust and flexible handling of inputs with uncertainty. In
Proceedings of the 23Nd Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’10, pages 47–56, New York, NY, USA.
ACM.

Shneiderman, B. (1997). Direct manipulation for comprehensible, pre-
dictable and controllable user interfaces. In Proceedings of the 2Nd
International Conference on Intelligent User Interfaces, IUI ’97, pages
33–39, New York, NY, USA. ACM.

Star, S. L. (1999). The ethnography of infrastructure. American behav-
ioral scientist, 43(3):377–391.

Star, S. L. and Bowker, G. C. (2002). How to Infrastructure, pages 151–
162. SAGE Publications, Ltd, Thousands Oaks, CA, USA.

Star, S. L. and Ruhleder, K. (1996). Steps toward an ecology of infras-
tructure: Design and access for large information spaces. Information
systems research, 7(1):111–134.



127

Stefik, M., Bobrow, D. G., Foster, G., Lanning, S., and Tatar, D. (1987).
Wysiwis revised: Early experiences with multiuser interfaces. ACM
Trans. Inf. Syst., 5(2):147–167.

Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel, N. (2006). User
interface façades: Towards fully adaptable user interfaces. In Pro-
ceedings of the 19th Annual ACM Symposium on User Interface Software
and Technology, UIST ’06, pages 309–318, New York, NY, USA. ACM.

Suchman, L. (2002). Located accountabilities in technology production.
Scandinavian journal of information systems, 14(2):7.

Sutherland, I. E. (1963). Sketchpad: A man-machine graphical com-
munication system. In Proceedings of the May 21-23, 1963, Spring Joint
Computer Conference, AFIPS ’63 (Spring), pages 329–346, New York,
NY, USA. ACM.

Svensson Fors, D., Magnusson, B., Gestegård Robertz, S., Hedin, G.,
and Nilsson-Nyman, E. (2009). Ad-hoc composition of pervasive
services in the palcom architecture. In Proceedings of the 2009 Inter-
national Conference on Pervasive Services, ICPS ’09, pages 83–92, New
York, NY, USA. ACM.

Trigg, R. H. and Bødker, S. (1994). From implementation to design: Tai-
loring and the emergence of systematization in cscw. In Proceedings
of the 1994 ACM Conference on Computer Supported Cooperative Work,
CSCW ’94, pages 45–54, New York, NY, USA. ACM.

Trigg, R. H., Moran, T. P., and Halasz, F. G. (1987). Adaptabil-
ity and tailorability in notecards. In Human–Computer Interaction–
INTERACT’87, pages 723–728. Elsevier.

Ungar, D. and Smith, R. (2013). The thing on the screen is supposed to
be the actual thing. In International Workshop on Live Programming at
the International Conference on Software Engineering.

Ur, B., Pak Yong Ho, M., Brawner, S., Lee, J., Mennicken, S., Picard, N.,
Schulze, D., and Littman, M. L. (2016). Trigger-action programming
in the wild: An analysis of 200,000 ifttt recipes. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, CHI ’16,
pages 3227–3231, New York, NY, USA. ACM.

Vitale, F., McGrenere, J., Tabard, A., Beaudouin-Lafon, M., and
Mackay, W. E. (2017). High costs and small benefits: A field study of
how users experience operating system upgrades. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems, CHI
’17, pages 4242–4253, New York, NY, USA. ACM.



128

Von Löwis, M., Denker, M., and Nierstrasz, O. (2007). Context-oriented
programming: beyond layers. In International Conference on Dynamic
Languages (ICDL), pages 143–156.

Wulf, V., Pipek, V., and Won, M. (2008). Component-based tailorability:
Enabling highly flexible software applications. International Journal
of Human-Computer Studies, 66(1):1–22.

Zhou, J. (2003). A history of web portals and their development in
libraries. Information Technology and Libraries, 22(3):119–128.



129

Résumé Détaillé

Les besoins des utilisateurs en matière de fonctionnalités et d’interfaces
logicielles sont variés et changeants. Mon objectif est de permettre aux
utilisateurs eux-mêmes de facilement modifier ou faire modifier leur
logiciel en fonction de l’évolution de leurs besoins. Toutefois, à mon
avis, les approches actuelles ne traitent pas cette question de façon
adéquate: L’ingénierie logicielle favorise la flexibilité du code mais,
dans la pratique, cela n’aide pas les utilisateurs finaux à apporter des
changements à leurs logiciels. Les systèmes permettant à l’utilisateur
de programmer en direct (“live programming”) ou de modifier le code
du logiciel (“end-user programming”) permettent aux utilisateurs de
personnaliser les interfaces de leur logiciel en accédant et modifiant le
code source. J’adopte une approche différente, qui cherche à max-
imiser les modifications qui peuvent être faites à travers des inter-
actions habituelles, par exemple la manipulation directe d’éléments
d’interface. J’appelle cette approche la malléabilité logicielle. Pour
comprendre les besoins des utilisateurs et les obstacles à la modifi-
cation des logiciels interactifs, j’étudie comment les logiciels actuels
sont produits, maintenus, adoptés et appropriés dans un réseau de
communautés travaillant avec des données sur la biodiversité. J’ai in-
terrogé certains intervenants principaux de et autours de cette com-
munauté, et j’ai cartographié leur écosystème de technologies com-
posé par exemple de code source, fichiers partagés, applications, et
sites Internet. J’analyse ces données à l’aide de concepts issus du tra-
vail coopératif assisté par ordinateur (computer-supported cooperative
work), des études scientifiques et technologiques, du génie logiciel et
de l’économie marxiste. Je montre que le mode de production des logi-
ciels, c’est-à-dire les technologies et les modèles économiques qui les
produisent, est biaisé en faveur de systèmes centralisés et uniformisés.
Cette tendance est en conflit avec les besoins des petites communautés
d’utilisateurs, comme celle que j’etudie, qui n’ont pas les moyens de
transformer et d’intégrer leurs outils numériques en fonction de leurs



130

besoins locaux. Lorsque ces communautés s’approprient leurs outils,
elles doivent payer des coûts de main-d’œuvre continus pour main-
tenir et partager ces outils. Par contre, les développeurs de logiciels
professionnels ont des infrastructures spécialisée permettant d’éviter
ou de réduire ces coûts. Cela m’amène à proposer un programme de
recherche interdisciplinaire à long terme pour repenser les outils de
développement logiciel afin de créer des infrastructures pour la plu-
ralité (de platform, de document, de base de données entre autre).
Ces outils pourraient aider de multiples communautés à collaborer
sans les forcer à adopter des interfaces ou représentations de données
identiques. Le logiciel malléable est un exemple d’ une telle infras-
tructure, dans laquelle les systèmes interactifs sont des constellations
dynamiques d’interfaces, de dispositifs et de programmes construits
au moment de leur utilisation. Ma contribution technologique est de
recréer des mécanismes de programmation pour concevoir des com-
portements interactifs. Je généralise les structures de contrôle ex-
istantes pour l’interaction en ce que j’appelle des intrications (“en-
tanglements”). J’élabore une structure de contrôle d’ordre supérieur,
les intricateurs (“entanglers”), qui produisent ces intrications lorsque
des conditions préalables particulières sont remplies. Ces conditions
préalables sont appelées co-occurrences. Les intricateurs organisent
l’assemblage des interactions dynamiquement en fonction des besoins
des composants du système. Je développe ces mécanismes dans Tan-
gler, un prototype d’environnement pour la construction de logiciels
interactifs malléables. Je démontre comment Tangler supporte la mal-
léabilité à travers un ensemble de cas d’étude illustrant comment les
utilisateurs peuvent modifier les systèmes par eux-mêmes ou avec
l’aide d’un programmeur. Cette thèse est un premier pas vers un
paradigme de programmation et de conception de logiciels malléables
capables de s’adapter à la diversité des usages et des utilisateurs. Ce
paradigme émergent nécessite de nouvelles technologies dans des do-
maines qui sont généralement considérés comme hors de la portée de
l’IHM, tels que les bases de données et les systèmes de gestion de
versions, mais nécessite également de nouveaux modèles pour la pro-
duction et la maintenance collectives des logiciels.



131



Titre : Concevoir et programmer des logiciels malléables

Mots clés : Interaction Homme-Machine, Modélisation Conceptuelle, Ingénierie des Systèmes Interactifs

Résumé : Les besoins des utilisateurs en matière
de fonctionnalités et d’interfaces logicielles sont variés
et changeants. Mon objectif est de permettre aux uti-
lisateurs eux-mêmes de facilement modifier ou faire
modifier leur logiciel en fonction de l’évolution de
leurs besoins. Toutefois, à mon avis, les approches
actuelles ne traitent pas cette question de façon
adéquate: L’ingénierie logicielle favorise la flexibilité
du code mais, dans la pratique, cela n’aide pas les uti-
lisateurs finaux à apporter des changements à leurs
logiciels. Les systèmes permettant à l’utilisateur de
programmer en direct (“live programming”) ou de mo-
difier le code du logiciel (“end-user programming”)
permettent aux utilisateurs de personnaliser les inter-
faces de leur logiciel en accédant et modifiant le code
source. J’adopte une approche différente, qui cherche
à maximiser les modifications qui peuvent être faites
à travers des interactions habituelles, par exemple la
manipulation directe d’éléments d’interface. J’appelle
cette approche la malléabilité logicielle. Pour com-
prendre les besoins des utilisateurs et les obstacles
à la modification des logiciels interactifs, j’étudie com-
ment les logiciels actuels sont produits, maintenus,
adoptés et appropriés dans un réseau de commu-
nautés travaillant avec des données sur la biodiver-
sité. Je montre que le mode de production des lo-
giciels, c’est-à-dire les technologies et les modèles
économiques qui les produisent, est biaisé en fa-
veur de systèmes centralisés et uniformisés. Cela
m’amène à proposer un programme de recherche in-
terdisciplinaire à long terme pour repenser les ou-

tils de développement logiciel afin de créer des in-
frastructures pour la pluralité. Ces outils peuvent ai-
der de multiples communautés à collaborer sans les
forcer à adopter des interfaces ou représentations de
données identiques. Le logiciel malléable représente
une telle infrastructure, dans laquelle les systèmes in-
teractifs sont des constellations dynamiques d’inter-
faces, de dispositifs et de programmes construits au
moment de leur utilisation. Ma contribution technolo-
gique est de recréer des mécanismes de program-
mation pour concevoir des comportements interac-
tifs. Je généralise les structures de contrôle existantes
pour l’interaction en ce que j’appelle des intrications
(“entanglements”). J’élabore une structure de contrôle
d’ordre supérieur, les intricateurs (“entanglers”), qui
produisent ces intrications lorsque des conditions
préalables particulières sont remplies. Ces conditions
préalables sont appelées co-occurrences. Les intrica-
teurs organisent l’assemblage des interactions dyna-
miquement en fonction des besoins des composants
du système. Je développe ces mécanismes dans Tan-
gler, un prototype d’environnement pour la construc-
tion de logiciels interactifs malléables. Je démontre
comment Tangler supporte la malléabilité à travers
un ensemble de cas d’étude illustrant comment les
utilisateurs peuvent modifier les systèmes par eux-
mêmes ou avec l’aide d’un programmeur. Cette thèse
est un premier pas vers un paradigme de programma-
tion et de conception de logiciels malléables capables
de s’adapter à la diversité des usages et des utilisa-
teurs.



Title : Designing and Programming Malleable Software

Keywords : Human-Computer Interaction, Conceptual Modeling, Engineering of Interactive Systems

Abstract : User needs for software features and in-
terfaces are diverse and changing, motivating the goal
of making it as easy as possible for users themselves
to change software, or to have it changed on their
behalf in response to their developing needs. Howe-
ver, in my opinion, current approaches do not address
this issue adequately: software engineering promotes
flexible code, but in practice this does not help end-
users effect change in their software. End-user and
live programming systems help users customize their
interfaces by accessing and modifying the underlying
source code. I take a different approach, seeking to
maximize the kinds of modifications that can take
place through regular interactions, e.g. direct manipu-
lation of interface elements. I call this approach mal-
leable software. To understand contemporary needs
for and barriers to modifying software, I study how
it is produced, maintained, adopted, and appropria-
ted in a network of communities working with bio-
diversity data. I find that the mode of software pro-
duction, i.e. the technologies and economic relations
that produce software, is biased towards centralized,
one-size-fits-all systems. This leads me to propose
a long-term, interdisciplinary research program in re-

forming the tools of software development to create
infrastructures for plurality. These tools should help
multiple communities collaborate without forcing them
to consolidate around identical interfaces or data re-
presentations. Malleable software is one such infra-
structure, in which interactive systems are dynamic
constellations of interfaces, devices, and programs
assembled at the site of use. My technological contri-
bution is a reconstruction of the programming mecha-
nisms used to create interactive behavior. I generalize
existing control structures for interaction as entangle-
ments, and develop a higher-order control structure,
entanglers, which produces entanglements when par-
ticular pre-conditions, called co-occurrences, are met.
Entanglers cause interactions to be assembled dyna-
mically as system components come and go. I deve-
lop these mechanisms in Tangler, a prototype environ-
ment for building malleable interactive software. I de-
monstrate how Tangler supports malleability through
a set of benchmark cases illustrating how users can
modify systems by themselves or with programmer
assistance. This thesis is an early step towards a pa-
radigm for programming and designing malleable soft-
ware that can keep up with human diversity.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Introduction
	Thesis Statement
	Research Approach
	Thesis Overview
	Publications and Collaborators

	Background
	Computer Artifacts
	The Relationship Between Design and Use
	Accounting for Multiplicity with Artifact Ecologies
	Tracing Extended Socio-Technical Systems with Infrastructures
	Designing Tailorable Software
	The App Paradigm
	Key Takeaways from Chapter 2

	Contemporary Software Design and Use in a Biodiversity Network
	Method
	Communities and their artifact ecologies
	Contrasting Design Practices
	Infrastructures for Plurality
	Conclusion
	Key Takeaways from Chapter 3

	Malleable Software
	Scenarios
	Discussion of scenarios
	Key Takeaways from Chapter 4

	Entanglers: A Programming Model for Malleable Software
	Related work
	Conceptual Model: Co-occurrences and Entanglements
	Prototype Implementation: Tangler
	Demonstrations
	Discussion
	Conclusion
	Key Takeaways from Chapter 5

	Conclusions
	Thesis contributions
	Directions for future research
	Concluding comments

	Bibliography
	Résumé Détaillé

