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Abstract

Cette thèse doctorale présente ArchSAT, un théorème prouveur capable de générer des preuves
formelles, qui est utilisé pour étudier l’intégration à l’algorithme SMT de techniques de raison-
nements dits "du premier ordre". ArchSAT intègre la réecriture grâce à une théorie SMT standard,
qui permet d’accélérer la vitesse du raisonnement sur les problèmes dont certains axiomes peu-
vent être vus comme des règles de réécriture. De plus, une extension de cette théorie adaptée à
l’algorithme McSAT (plutôt que SMT), permet aussi de gérer les règles de réécriture condition-
nelles. ArchSAT intègres aussi la méthode des tableaux au travers d’une théorie SMT tradition-
nelle, afin de raisonner de manière générique sur tout le premier ordre, ce qui permet de remplacer
la transformation en forme normal conjonctive et le mécanisme des triggers habituellement util-
isés dans les prouveurs SMT. Cette théorie SMT pour la méthode des tableaux utilise par ailleurs
une variante de la superposition afin d’unifier des termes modulo égalités et règles de réécriture.
Finalement, ArchSAT est capable de générer des preuves formelles à la fois pour l’assistant de
preuve Coq, et le framework logique dedukti, ce qui permet d’assurer la correction des résultats.

Mots clés— déduction automatique, SMT, réécriture, superposition, tableau, preuve formelle,
logique du 1er ordre, unification



Abstract

This PhD thesis presents ArchSAT, an automated theorem prover with formal proof outputs,
which is used to study the integration of some first-order reasoning methods into SMT solvers.
ArchSAT integrates the notion of rewriting as a regular SMT theory, which allows us to speed up
reasoning on problems whose axioms can be turned into rewrite rules. Additionally, an extension of
the rewriting theory for the underlying McSat architecture enables ArchSAT to consider conditional
rewrite systems as well. ArchSAT also integrates a tableau method presented as a SMT theory
able to handle generic first-order reasoning, replacing the conjunctive normal form transformation
and trigger mechanism traditionally used in SMT solvers. This tableau theory uses a variant of
superposition in order to perform unification modulo equalities and modulo rewrite rules. Finally,
ArchSAT is able to generate formal proofs for the Coq proof assistant and the Dedukti logical
framework, ensuring the correctness of its results.

Keywords— automated deduction, SMT, rewriting, superposition, tableau, formal proof,
first-order logic, unification
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Introduction

Automated theorem proving is the study of programs capable of automatically proving math-
ematical formulas, a.k.a. automated theorem provers. Its most prominent field of application is
the verification of software and hardware: such a verification process typically translates a specifi-
cation and a piece of software or hardware into an equivalent mathematical formula. Proving the
formula proves that the software or hardware verifies its specification. As expected, this process
generates a formula whose size depends on the size of the software or hardware considered. Modern
software or hardware may generate very large formulas, regularly containing more than hundreds
of formulas. Proving such formulas therefore needs to be automated. This is one of the tasks that
is assigned to automated theorem provers. In order to prove the correctness of the software or
hardware, any formula that is not proved by an automated theorem prover needs to be proved by
hand, which is a complex and time-consuming process that need to be repeated for each update
to the software or hardware. Therefore, the more theorems a prover is capable of proving, and
the faster it does so, the less humans have to do manually, which speeds up the overall process of
verifying software and hardware1.

This thesis is about improving automated theorem proving, through two distinct goals. The
first goal is to increase the number of theorem proved, so as to provide even further automati-
zation of processes such as verification of software. This is achieved by combining and adapting
multiple existing techniques into one automated theorem prover. The second goal is to increase
the confidence in those proved theorems, in order to provide increased reliability on the results of
automated theorem provers: as the usage of automated theorem provers grows, so does the need
to ascertain their results are correct.

In the following, I introduce the various existing theorem proving techniques used or mentioned
throughout in this thesis. Then, I present how these theories are combined. Finally, I talk about
the independent verification of automated theorem provers results, and how the results generated
by my theorem prover in particular can be independently verified.

Reasoning modulo theories

In this thesis, I will focus on automated theorem provers that target formulas expressed in first-
order logic, because it is the most widely used logic to specify problems in practice. Additionally,
first-order problems will often use specific theories, such as arithmetic on integers or floating point
values, particularly for problems coming from verification of software.

Reasoning modulo theories has thus become standard among the automated deduction commu-
nity, as can be seen in the various competitions for automated theorem provers [12,84]. Therefore,
most of the current automated theorem provers include features to reason modulo some theo-
ries. These features can be divided into two main categories : specific and generic. The generic
approaches aim at specifying theories through axioms, which are included in a problem, and han-
dling these axioms using a generic algorithm2, whereas the specific approach relies on having
hand-crafted algorithms (typically decision procedures) for each theory to be considered.

1Note that it is not the only use of automated theorem proving. Actually, automated theorem provers can be
of help to mathematicians when elaborating formal proofs of theorems, by automatizing small steps of reasoning.

2The algorithm is generic in the sense that it accepts a wide variety of axioms that can change from one problem
to another.
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8 INTRODUCTION

The specific approach is most typically examplified by SMT1 solvers, such as z3 [41], yices2 [51],
VeriT [25], CVC4 [10], and Alt-Ergo [21]. SMT solvers are made up of a core SAT solver, which is
extended to cover many different theories by adding decision procedures together with a mechanism
for combining these decision procedures. Though the theories can be combined, they are fixed
once a solver is released: each theory supported by the solver needs a manually written decision
procedure in the source code of the SMT solver. In these cases, the problem statements do not
need to include any theory axiomatization, because the solver has an internal representation of
the theory. This internal representation of the theory allows for very efficient theory-specific
reasoning, enabling SMT solvers to be very fast on problems that only have ground formulas2.
In the cases where some axioms are not part of their builtin theories, SMT solvers typically use
instantiation patterns, or triggers, which are, in general, an incomplete strategy, except in some
specific cases [48–50].

On the other hand, first-order theorem provers tend to have more generic and complete ap-
proaches, where axioms are explicitly part of the problem, and where the prover performs some
reasoning that is generic with respect to these axioms. This is the approach mostly used in
first-order theorem provers such as Vampire [62], Zipperposition [38], and E-prover [80], which use
superposition, Zenon [24] and Princess [77] which use the tableau method, and iProver [60], which
uses the Inst-Gen instantiation framework3. While each first-order technique is different, they are
generally complete, that is, if a proof exists, the algorithm will find it in a finite amount of time,
but may loop indefinitely on problems with no proof4. Even though theoretically, any theory
can be handled using the generic mechanisms of these provers, most of them still have a specific
handling of some theories such as equality, uninterpreted functions and arithmetic. In fact, a lot
of work has been done in integrating reasoning about specific theories in first-order automated
theorem provers, ranging from integration of equality in tableau provers [16, 46], arithmetic in
tableau provers [26, 33] and superposition provers [38]. These extensions are quite intricate, in
that they involve modifications of the base algorithm considered, and thus typically result in new
algorithms whose soundness and completeness must be proved again.

Thus extending existing first-order provers to specific theories is a complex and difficult task,
which explains why these provers tend to have much less built-in theories than SMT solvers. This
limitation is one of the motivations of deduction modulo theory [47]. Deduction modulo theory
is a generic approach to better handle axioms, replacing them by computation rules (i.e. rewrite
rules), when possible. The idea behind deduction modulo theory is then to turn axioms into
rewrite rules whenever possible, and make use of the fact that rewrite rules are oriented in order
to guide the proof search. In practice, this is done by normalizing terms with regards to the
rewrite system induced by the rewrite rules. This effectively allows provers to replace deduction
steps with computation steps, which is much more efficient since it eliminates choice points in
the proof search. Deduction modulo theory has been integrated into the first-order automated
theorem provers iProver [28], Zenon [46], and Zipperposition [32], where increased performances of
these automated theorem provers have been observed.

Equational Reasoning

The theory of equality and uninterpreted functions is so pervasive that it has specific reason-
ing in almost all automated theorem provers. SMT provers usually rely on congruence closure
algorithms [41, 69] to perform reasoning on both ground equalities and uninterpreted function
symbols involved in problems, and use triggers (among other techniques) with matching modulo
equalities [40] in order to reason about quantified formulas modulo equalities. Additionally, theory
combination frameworks for SMT solvers handle the task of ensuring equalities are shared among

1SMT: Satisfiability Modulo Theories.
2The theory axiomatization is implicit in these problems. Hence the quantified formulas that axiomatize the

theory are also implicit.
3The Inst-Gen framework is similar to resolution, but when two clauses (or rather some of their literals) are

matched, instead of resolving the two clauses, it generates new instantiated forms of the input clauses using the
matching substitution.

4Note that it is theoretically impossible to have a correct, complete and terminating decision procedure for
first-order logic.
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theories. First-order theorem provers, on the other hand, have different techniques to handle
equalities and uninterpreted functions and predicates. Resolution has been extended in order to
handle equalities and uninterpreted functions better by integrating them into their calculi, which
resulted in techniques such as paramodulation [70], and superposition [38,78]. Extensive work on
better equality handling in tableau provers [14,15,74] has also been realized.

One of the main challenges of automated theorem proving is to properly use equalities when
deciding how to instantiate quantified formulas: equalities discovered during proof search, and par-
ticularly equalities induced by congruence over uninterpreted functions, extend the set of terms
that must be considered when instantiating quantified formulas. SMT solvers usually handle this
by performing e-matching through their trigger mechanism [40,66], that is matching of terms mod-
ulo some equalities. As mentioned above, this strategy is in general incomplete. A complete strat-
egy for solving first-order problems actually requires to perform simultaneous rigid e-unification1,
that is, the simultaneous unification of a list of pair of terms modulo some equalities where each
term contains rigid variables (i.e. variables that must be instantiated at most once). This problem
is in general undecidable [43,44]. Therefore, restrictions of this problem are often considered and
used in theorem provers. For instance, the tableau theorem prover Princess performs a variant
of simultaneous rigid e-unification where each variable’s bound term belongs to a finite set [6, 7],
and other theorem provers use non-simulaneous rigid e-unification, which motivates the work on
finding efficient algorithms to solve this problem [53–56].

Rewriting is an adequate theory to reason with equalities: rewrite rules on terms can be seen
as quantified equalities. Procedures such as Knuth-Bendix completion [57,59], or narrowing [5,75],
together with term normalization algorithms actually provide a way to unify terms modulo a set
of rewrite rules2. Going further, paramodulation and superposition can be seen as extensions of
these procedures to handle clauses instead of single equalities. ArchSAT notably uses rigid unit
superposition, a variant of superposition, in order to perform unification modulo equalities and
rewrite rules.

ArchSAT

As exemplified by superposition and paramodulation, combinations of theorem proving tech-
niques happen frequently, and have obtained great results. As mentioned earlier, decution modulo
theory has been integrated into the tableau theorem prover Zenon [46], and together with native
handling of polymorphism, it has been shown to greatly enhance the capabilities of Zenon [31,46].
Deduction modulo theory has also been integrated in Zipperposition [32], and into the resolution-
based theorem prover iProver, resulting in the prover called iProver Modulo, which has been proved
to significantly increase performances [28]

The work presented in this thesis is an attempt at integrating some of the techniques used
by first-order theorem provers, namely rewriting, tableau, and superposition, into SMT solvers.
Starting from an SMT solver, which has good performances on ground problems, integrating
first-order techniques aims at bridging the gap and asymmetry of performances between first-
order theorem provers. While the tableau method and superposition are standalone algorithms,
which have been used as the core of automated theorem provers, rewriting is a more transversal
technique, which has been integrated into other theorem provers with much success. This work
on integrating first-order techniques into an SMT prover has been implemented in a new theorem
prover called ArchSAT, which I developed from scratch specifically for the purposes of this thesis.
In the following, we will give an overwiew of how that integration has been done, and how it
relates to previous work.

Integration of tableau theory into the SMT architecture of ArchSAT replaces two processing
steps of regular SMT solving : the transformation into clausal normal form, and the trigger
mechanism. While regular SMT solvers need to pre-process input problems in order to transform
them into sets of clauses, the tableau theory in ArchSAT integrates this transformation into the

1This unification can be performed in many various ways. For instance, superposition does it incrementally
while resolving clauses. The e-unification is not explicit and distinct but rather interleaved with the proof search.

2Unification modulo rewrite rules is often characterized as solving equations or systems of equations in the
literature.
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proof search algorithm, lazily unfolding logical connectives as needed. This is similar to what has
been done within the Alt-Ergo solver. ArchSAT also replaces the generally incomplete handling
of quantified formulas using triggers in SMT solvers by a built-in strategy using meta-variables,
following the tableau method. Meta-variables are introduced for each quantified formula in the
same space as other ground terms1, and once a model is found by the solver, terms are unified in
order to find substitutions for the meta-variables. These substitutions are then used to instantiate
the quantified formulas. This is actually quite similar to the Inst-Gen framework mentioned above,
the main difference being that Inst-Gen considers a saturated set of clauses and simply unifies
(without using equalities nor rewrite rules), whereas ArchSAT considers a first-order model of the
input clauses and unifies modulo equalities and rewrite rules, using a variant of superposition as
described later. Though not proved, this strategy is believed to be complete, which is significant
since currently, most of the approaches to handle quantified formulas in SMT solvers are not meant
to be complete.

ArchSAT also distinguishes itself from more traditional SMT solvers when dealing with equal-
ities, by having two distinct theories: one for equality, and one for uninterpreted functions and
predicates. This is possible because ArchSAT uses an extensions of the SMT algorithm called
McSat, which builds a first-order model rather than a propositional model consistent with a the-
ory as the SMT algorithm does. The McSat algorithm uses a notion of assignment of terms to
values, which allows theories to exchange information, replacing the theory combination mecha-
nism and allowing ArchSAT to separate the reasoning about equalities from the reasoning about
uninterpreted functions and predicates.

Previous work on combining rewriting and SMT solving include the use of rewriting, or rather
normalization, inside theories, as a way to extend the internal notion congruence used in a theory’s
implementation [27], as well as on the use of SMT solvers inside a rewriting engine [76]. Rewriting
in ArchSAT is a general mechanism used in order to speed up reasoning when the input problem
contains quantified formulas that can be turned into rewrite rules. ArchSAT interprets these
quantified formulas as rewrite rules, and uses them to build a rewrite system. This rewrite system
then allows ArchSAT to normalize terms without losing any information, thus helping guide proof
search. The difference with the previous work is that the rewrite rules come from the problem,
rather than being built in the prover, thus resulting in a more generic approach.

Integration of SAT or SMT algorithms within superposition-based provers has first been in-
troduced within the theorem prover Vampire in [87]. Called AVATAR2, this techniques vastly
supercedes the various3 splitting algorithms that were used previously. Splitting algorithms in su-
perposition tried to emulate the disjunction rule of semantic tableaux, by partitioning a clause C
into two (or more) sub-clauses which share no variables, and then deciding one of the sub-clauses.
The sub-clauses which has been decided on then replaces the original clause, and a backtracking
system is then implemented in order to undo that choice later in the proof search. AVATAR also
partitions clauses, but instead of making a decision locally on one of the sub-clauses, it uses a SAT
or SMT solver to compute a propositional model of the sub-clauses, and then performs resolution
on the resulting clauses. Both splitting and AVATAR aim at improving performances of the ground
reasoning performed by superposition provers. ArchSAT uses a dual approach and integrates su-
perposition into SMT solving. A variant of superposition is used in order to unify terms while
taking into account equalities as well as rewrite rules. The results of this unification is then used
by the tableau mechanism for meta-variables in order to perform instantiations.

Certificates

In addition to the new approaches for handling quantified formulas in SMT solving, one of the
key features of ArchSAT is the ability to generate formal proofs.

As automated theorem provers become ever more complex in order to prove more problems,
it is increasingly important to be able to check or certify a prover’s results. It is a certitude that
all automated theorem provers had bugs, and most probably all automated theorem provers still

1Contrary to triggers, which are kept separate from the ground terms in the traditional SMT architecture.
2AVATAR: Advanced Vampire Architecture for Theories and Resolution.
3 [87] mentions 481 variants of splitting implemented in the Vampire prover alone.
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have bugs. In most cases, these bugs affect only very specific corner cases, however, it is almost
impossible to specify a posteriori which results of a prover may be invalidated by a given bug. The
easiest way to verify a prover’s results is thus for the prover to output some traces or certificates
that can then be checked by an independent program.

Certification of automated theorem prover’s result, although not ignored, has been less shared
than research about increasing performances of provers. Particularly, though the calculi and
algorithms that provers rely on usually provide a way to generate certificates or formal proofs,
concrete implementations rarely do offer such capabilities. This is due in part to the technical
difficulties encountered in proof generation, which can range from purely technical considerations
to differences between the theoretical calculi and the implementation. Some of these difficulties
for SMT solvers are discussed in [11].

Even when provers can produce proofs, there are significant differences between what each
prover might do. These differences range from the language of the produced proof, to the process
needed to effectively check a proof: some provers output traces that then need to be processed in
order to reconstruct a fully checkable proof.

Among the provers cited above, only a few of them offer a way to certify their results. CVC4
is able to output proofs [65] in the LFSC1 format [82], VeriT can generate proofs [8] in its own
format (described in [17]), which can then be reconstructed and checked in Coq using SMTCoq [52].
z3 does not produce proofs, but traces [22], which can then be reconstructed into formal proofs
checked by the Isabelle proof assistant [71]. Lastly, Zenon can output formal proofs in both Coq [24]
and Dedukti [36]. ArchSAT follows Zenon, and is capable of producing formal proofs for both Coq
and Dedukti.

Outline
This thesis is divided into 6 chapters, each presenting a different aspect of ArchSAT:

• First, Chapter 1 presents the kind of problems solved by automated theorem provers, de-
scribes the SAT, SMT and McSat algorithms which are the core of the ArchSAT theorem
prover. It also gives an overview of the ArchSAT theorem prover.

• Chapter 2 explains how ArchSAT is built on top of the McSat algorithm in order to perform
generic first-order reasoning. This chapter shows how the tableau method is integrated
in ArchSAT in order to reason about logical connectives and quantified formulas. It also
explains how the McSat algorithm allows us to separate the reasoning about equalities from
the one about uninterpreted functions and predicates.

• Chapter 3 focuses on the various ways ArchSAT integrates rewriting. Rewriting integration
in ArchSAT is divided in 3 parts: static, dynamic, and unification. Static rewriting in
ArchSAT is an incomplete but efficient algorithm that makes use of axioms as rewrite rules.
Dynamic rewriting is a complete mechanism to handle rewrite rules that may become true
or false during proof search in a way similar to that of triggers. Lastly, in presence of rewrite
rules, unification must be adapted to consider them, and we thus define an algorithm for
e-unification modulo rewrite rules using a variant of superposition.

• Chapter 4 explains how ArchSAT generates formal proofs. It explains how the SAT, SMT,
and McSat algorithms are able to produce proofs, and details some of the design choices and
internal representation of proofs in ArchSAT.

• Chapter 5 presents results of the benchmarks performed to compare ArchSAT and various
other automated theorem provers, in order to evaluate the usefulness of the techniques
implemented.

• Finally, Chapter 6 discusses some more technical details of the implementation of ArchSAT.

1LFSC: Logical Framework with Side Conditions.





Chapter 1

ArchSAT: an McSat prover

This chapter presents ArchSAT, a theorem prover I developped during my thesis in order to
study the integration of first-order theorem proving techniques, such as Tableaux and Rewriting,
into SMT solvers. ArchSAT’s goal is to prove arbitrary first-order formulas, with a focus on the
handling of quantified formulas, compared to traditional SMT solvers.

This chapter defines the Satisfiability problem, aka SAT, that theorem provers aim at solving,
and presents the SAT and SMT2 algorithm used respectively for solving the propositional and
ground first-order satisfiability problems. It then presents McSat, a relatively recent3 extension
of the SMT algorithm, whose aim is to further merge the first-order reasoning into the core SAT
algorithm compared to SMT.

Finally, I introduce ArchSAT, my theorem prover implementation, which is based on McSat.

1.1 SAT Solving
The SAT algorithm is nowadays fairly well established and understood. This section nonethe-

less aims at presenting once again the SAT problem and standard algorithm, first as an introduction
for the non-initiated reader, and also as a preliminary for the more recent McSat algorithm which
lacks the standardisation that SAT benefits from.

SAT solvers implementation nowadays include a staggering quantity of optimizations, rang-
ing from algorithmic optimizations for the computation of unit propagation, to low-level han-
dling of CPU cache. However, the core algorithm hasn’t changed much and is still either one of
Davis–Putnam–Logemann–Loveland (i.e. DPLL) or Conflict Driven Clause Learning (i.e. CDCL)
algorithm. This section will present CDCL as it is the one that I used in the implementation,
which has traditionally better performances on structured problems while DPLL is usually better
suited to random problems.

1.1.1 Problem

Given an countable set VP , whose elements we will write P,Q,R, . . . and call atomic proposi-
tions, we can build propositional formulas using the usual logical connective:

P := P,Q,R, . . . |>|⊥|¬P|P ∧ P|P ∨ P|P ⇒ P|P ⇔ P
We can then define as usual the notion of domain, structure, interpretation, model, evaluation,

and formula satisfiability in order to give a semantic to propositional formulas, and its relation to
the provability of formulas in classical sequent calculus.

We then consider the propositional satisfiability (SAT) problem:

Definition 1.1.1. Propositional satisfiability, a.k.a SAT: Given a formula F , does there exists a
model of F , i.e. an interpretationM such thatM � F ?

2SMT: Satisfiability Modulo Theory
3McSat was introduced in 2013

13
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Since the valuation of atomic propositions in M only matters for atoms that actually occur
in F , and that each atom can only have one of two different valuation (> and ⊥), there are
only a finite number of models to consider when checking the satisfiability of a formula, and thus
satisfiability is decidable. However, the number of such models is exponential in the number of
variables and so also exponential in the size of the formula.

Note that in classical logic, which will be used in the remainder unless specified, we can
reformulate satisfiability in terms of provability, and give an alternate definition :

Definition 1.1.2. SAT: Given a formula F , is there a proof of F ` ⊥ ?

The SAT algorithm actually doesn’t work on propositional formulas as defined above, but
instead works with clauses because their specific structure allows for specified reasoning steps that
greatly speed up the execution of the algorithm in practice. More specifically, the SAT algorithm
only works on input problems in CNF1. We therefore define the following:

Definition 1.1.3. A literal is either an atomic proposition (also called a positive literal), or the
negation of an atomic proposition (also called a negative literal): l = P |¬P .

Definition 1.1.4. A clause is a disjunction of literals: C = l1 ∨ l2 ∨ . . . ∨ ln.

Definition 1.1.5. A formula in clausal normal form is a conjunction of clauses:

F = C1 ∧ C2 ∧ . . . ∧ Cm

The restriction of the SAT algorithm to formulas in CNF is not a problem however, since it is
possible to convert an arbitrary formula into an equivalent formula in CNF, though the resulting
formula may increase exponentially in size. There exist other conversion schemes preserving
satisfiability (but not producing an equivalent formula) that are used in practice to avoid this
problem. These conversions are usually done as a linear pre-processing step in almost all existing
implementations of SAT solvers.

Contrary to most SAT solvers however, ArchSAT does not use conversion to CNF, and instead
relies on a lazy on-the-fly unfolding of logical connective to encode propositional logic into the
clausal calculus implemented by the SAT algorithm, see Section 2.1.2.

1.1.2 Algorithm
As mentioned in the previous section, the SAT algorithm solves the satisfiability problem for

formulas in CNF. The SAT algorithm works by maintaining a set S of clauses to satisfy, and
incrementally building a partial model and backtracking when the partial model is found to not
satisfy the clauses in S.

We will represent our partial model using a trail, which is an ordered list of assignments.
Assignments are either decisions or propagations. A decision is a triple containing a literal l,
an integer n called the level of the decision, and a boolean value v, and is written l 7→n v.
Propagations are triples containing a literal l, a clause C called the reason of the propagation, and
a boolean value v, and are written l C v. In the following, we will consider that any assignment
from a literal l′ to ⊥ is the same as an assignment from ¬l′ to >. For that, we must assume that
negation is involutive, i.e. ¬¬l = l. Each element in the trail has a level, which is the number of
decision appearing in the trail up to (and including) it. For instance, propagations made before
any decisions have level 0, and the first decision has level 1. In this manuscript, trails will always
be written left to right chronologically, so that the left-most element of the list is the first element
of the trail.

A trail t actually represents a partial model M, where an assignment of the form P 7→n >
or P  C > corresponds to M(P ) = >, and an assignment of the form ¬P 7→n > or ¬P  C >
corresponds toM(P ) = ⊥. We can thus consider that a trail, through its corresponding partial
model, defines a partial evaluation function on formulas (with the same semantics as usual), and
thus re-use the provability notation, so that given a trail t and an arbitrary formula F , we say
that F is true in t and write t ` F iff F evaluates to true in the partial model corresponding to t.

1clausal normal form
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Solve(S, t)
Propagate

Solve(S, t :: a C >)

C ∈ S,¬(a occurs in t)
C = a ∨ C ′ t ` ¬C ′

Solve(S, t)
Decide

Solve(S, t :: a 7→n >)

¬(a occurs in t)
n = max_level(t) + 1

Solve(S, t)
Conflict-sat

Analyze(S, t, C)
C ∈ S, t ` ¬C

Analyze(S, t :: a C >, D)
Analyze-propagation

Analyze(S, t,D)
¬(a occurs in D)

Analyze(S, t :: a 7→n >, D)
Analyze-decision

Analyze(S, t,D)
¬(a occurs in D)

Analyze(S, t :: a C >, D)
Analyze-Resolution

Analyze(S, t, C ′ ∨D′)
C = a ∨ C ′
D = ¬a ∨D′

Analyze(S, t :: _ 7→_ _ :: _ :: a 7→d′ > :: _, D)
Learn-sat

Solve(S ∪ {D}, t :: ¬a D >)

D = ¬a ∨D′
(t ` ¬D′)

Figure 1.1: Inference rules for the SAT algorithm

The maximum level of a trail t, written max_level(t) is the highest level of decisions in t. We
will say that a literal l occurs in a trail t, and write “l occurs in t” iff l or ¬l is assigned in t.
Similarly, we will also use that notation for clauses: “l occurs in C” iff l, or ¬l is one of the literals
in C.

The SAT algorithm internal state carries both the set S of clauses to satisfy, and a trail t.
Furthermore this internal state can be in one of the two following states:

• Solve(S, t), where propagations and decisions are made, until a conflict D is detected, at
which point the algorithm enters

• Analyze(S, t,D), which carries an additional clause D called the conflict, where the conflict
is analyzed in order to determine a suitable backtrack point, after which the solver can revert
to its Solver state.

We can now formalize the CDCL algorithm. In order to solve the satisfiability of a set of
clauses S, we start in the Solve(S, [])1 state, and we use the inference rules in Figure 1.1

• In rule Propagate, there is a clause C ∈ S such that, in the current partial model, all literals
but one (that we write a) are false. In this case, the only way to extend our partial model
in order to satisfy the clause C is to assign a to >, so we add the propagation a C > to
the trail. This is usually called boolean constraint propagation.

• Rule Decide introduces choice points in the trail, by deciding on a value for a not yet
assigned literal a. The idea is to try and find a model where a is true, and if that fails,
then the solver will know that a must be false (see the analyze and Backjump rules for more
explanations). In practice, in order to ensure termination, the Decide rule is restricted to
decide only on literals that occur in the set of clauses S.

• Rule Conflict-sat detects contradiction between the trail and the set of clauses to satisfy.
More precisely, assuming an input state Solve(S, t), t, the Conflict-sat rule stops propaga-
tions and decisions if a clause D ∈ S is false according to the trail t. Once such a clause is

1[] denotes the empty trail
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detected, it switches to the Analyze(S, t,D) state in order to analyze the conflict clause D
and find the decision that created the conflict.

The Analyze-Propagation, Analyze-Decision and Analyze-Resolution rules are there to go
back up the trail in order to find where to backtrack, and which decision to reverse. The idea is
to undo the propagations in reverse chronological order so that we get to the latest choice point
(i.e. decision) involved in the conflict. Importantly, the rules will rely and maintain the following
invariants on the Analyze(S, t,D) state1

1. The conflict clause D is entailed by the clauses in S.

2. The conflict clause D is false in the current trail: t ` ¬D.

Invariant 1 and 2 together ensure the fact that the current trail cannot satisfy the set of clauses
S and thus that the solver needs to backtrack. Invariant 1 will always hold and will be used to
add the conflict clause to the set S at the end of the analyze phase, in order to learn from the
conflict and avoid repeating the same bad decision, hence the name of the algorithm: Conflict
Driven Clause Learning. We thus need to satisfy the conflict clause, and for that we will look for
a point in the trail where invariant 2 does not hold anymore, by looking at the last element of the
trail.

When looking at the last element of the trail in order to refine our conflict clause, we can
distinguish four cases:

• We last propagated a literal which does not occur in the conflict, in which case there is
nothing to do (rule Analyze-Propagation)

• We last decided a literal which does not occur in the conflict, again in which case there is
nothing to do (rule Analyze-Decision)

• We last propagated a C >, and a occurs in D. We know that a being true causes D to not
be satisfied, but a being true was not a choice but rather the consequence of choices that
were made before propagating it, thus we want to look for these choices, and “eliminate” a
from the conflict clause. To do so, we will perform a resolution between the conflict clause
D and the reason C of the propagation of a. This is always possible: indeed, using invariant
2, since a occurs in D, we know that D = ¬a ∨D′. Also, given how rule Propagate works,
we know that C = a ∨ C ′. Thus the resolution always works and yields the clause C ′ ∨D′,
which is used to continue the conflict analysis (replacing D). This maintains invariant 1
because the resolution inference rule C ∨ a D ∨ ¬a

C ∨D is admissible in classical logic.
Invariant 2 is also maintained because the Propagate rule ensures that t ` ¬C ′. Also, the
SAT algorithm considers clauses as sets of literals, thus redundant occurences of a literal in
a clause are systematically eliminated in the resolution result clause.

• Finally, we last decided on a literal a, which occurs in the conflict D = ¬a∨D′. Because of
invariant 2, D is not satisfied by the trail, and thus we know that the decision was wrong.
The aim is thus to undo that decision, and add the clause D and propagate ¬a. Since D is
not satisfied by the trail, D′ is also not satisfied by the trail, and it may happen that the
last decision responsible for D′ being unsatisfied is earlier than the decision right before a,
so rule Learn-sat allows to backtrack to any point where D′ is not satisfied (and thus a can
be propagated). Once that point is chosen, We can then undo the trail up to that point, and
add the analyzed conflict clause D to the set of clauses to satisfy, which is sound because
of invariant 1. Undoing the trail ensures that we can progress: a is not assigned in t, and
t ` ¬D′2, because t :: a 7→n > ` ¬D, thus it is possible to propagate ¬a D >. Note that
it is possible in rule Learn-sat that a = b, that is, the rule only backtracks one decision.

The algorithm can then end in one of two ways:
1See Chapter 4 for more details
2And thus, the side condition t ` ¬D′ is actually redundant, but will be useful when using McSat, see Section 1.3.
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• The algorithm reaches a state Solve(S, t) in which no further inference rule is applicable. In
this case, the input problem is satisfiable. Indeed, if neither rule Propagate or Decide is
applicable, then all literals occurring in the input problems are in the trail, which means
that every clause in S can be evaluated, and since the Conflict-sat rule cannot be applied,
all clauses must be satisfied. We have thus found a model of the input clauses1

• The empty clause
∨
l∈∅ l = ⊥ is deduced during the analyze phase, in which case the analyze

phase will end in a state of the form Analyze(S, [],⊥)2. In this case the input problem is
unsatisfiable. Indeed the algorithm has proved that the input clauses allow to deduce ⊥,
which is absurd.

1.1.3 Some Examples

Let’s look at how the algorithm works on some concrete problems.

First let’s try and prove that the following clauses are satisfiable: C1 = ¬P ∨R, C2 = ¬P ∨¬R.
We get the following derivation:

Solve({C1 = ¬P ∨ R,C2 = ¬P ∨ ¬R}, [])
Decide

Solve({C1, C2}, [P 7→1 >])
Propagate

Solve({C1, C2}, [P 7→1 >,R  C1 >])
Conflict-sat

Analyze({C1, C2}, [P 7→1 >, R C1 >],C2 = ¬P ∨ ¬R)
Analyze-resolution

Analyze({C1, C2}, [P 7→1 >],¬P )
Learn-sat

Solve({C1, C2,C3 = ¬P }, [¬P  C3 >])
Decide

Solve({C1, C2, C3}, [¬P  C3 >,R 7→1 >])

At this point, there is no rule left to apply, and we have indeed found a model of the input
clauses: P is false and R is true.

Let us look at an unsatisfiable example. Consider the following clauses: C1 = P ∨ Q, C2 =
¬P ∨R, C3 = ¬Q ∨R, C4 = S ∨ T , C5 = ¬S ∨ ¬R, C6 = ¬T ∨ ¬R,

We can build the following derivation:

1Or more exactly we have found an infinite family of models: any extension of the partial model described by
the trail into a complete model, is a model of the input clauses.

2Note that this is also a final state, in the sense that no inference rule can be applied.
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Solve({ C1 = P ∨ Q,C2 = ¬P ∨ R,C3 = ¬Q ∨ R,
C4 = S ∨ T ,C5 = ¬S ∨ ¬R,C6 = ¬T ∨ ¬R

}, [])
Decide

Solve({C1, . . . , C6}, [P 7→1 >])
Propagate

Solve({C1, . . . , C6}, [P 7→1 >,R  C2 >])
Propagate

Solve({C1, . . . , C6}, [P 7→1 >, R C2 >,¬S  C5 >])
Propagate

Solve({C1, . . . , C6}, [P 7→1 >, R C2 >,¬S  C5 >,¬T  C6 >])
Conflict-sat

Analyze({C1, . . . , C6}, [P 7→1 >, R C2 >,¬S  C5 >,¬T  C6 >],C4 = S ∨ T )
Analyze-resolution

Analyze({C1, . . . , C6}, [P 7→1 >, R C2 >,¬S  C5 >],S ∨ ¬R)
Analyze-resolution

Analyze({C1, . . . , C6}, [P 7→1 >, R C2 >],¬R)
Analyze-resolution

Analyze({C1, . . . , C6}, [P 7→1 >],¬P )
Learn-sat

Solve({C1, . . . , C6,C7 = ¬P }, [¬P  C7 >])
Propagate

Solve({C1, . . . , C7}, [¬P  C7 >,Q  C1 >])
Propagate

Solve({C1, . . . , C7}, [¬P  C7 >, Q C1 >,R  C3 >])
Propagate

Solve({C1, . . . , C7}, [¬P  C7 >, Q C1 >, R C3 >,¬S  C5 >])
Propagate

Solve({C1, . . . , C7}, [¬P  C7 >, Q C1 >, R C3 >,¬S  C5 >,¬T  C6 >])
Conflict-sat

Analyze({C1, . . . , C7}, [¬P  C7 >, Q C1 >, R C3 >,¬S  C5 >,¬T  C6 >],C4 = S ∨ T )
Analyze-resolution

Analyze({C1, . . . , C7}, [¬P  C7 >, Q C1 >, R C3 >,¬S  C5 >],S ∨ ¬R)
Analyze-resolution

Analyze({C1, . . . , C7}, [¬P  C7 >, Q C1 >, R C3 >],¬R)
Analyze-resolution

Analyze({C1, . . . , C7}, [¬P  C7 >, Q C1 >],¬Q)
Analyze-resolution

Analyze({C1, . . . , C7}, [¬P  C7 >, ],P )
Analyze-resolution

Analyze({C1, . . . , C7}, [],⊥)

In this case, we indeed reach the empty clause when analyzing the second conflict, proving the
input clauses are unsatisfiable. It is also quite easy to extract a full formal proof of unsatisfiability,
see Chapter 4.1.

1.1.4 Learning strategy

It can be noted that, while the Propagate, Decide and Conflict-sat rules are standard and
present in one form or another in all presentation of the SAT algorithm, the rules related to the
analyze of the conflict, and consequently the clauses learned during the algorithm execution can
differ in other presentations. Indeed, while given a conflict, there is a unique latest decision that
generated the conflict, there are more than one way to analyze the conflict, deduce a new clause
to add to the solver state, and choose a point in the trail to backtrack to.

One such instance can be seen in the example above: when analyzing the first conflict (starting
with C4), we deduce the clause C7 = ¬P , but we could have stopped resolutions one step earlier
and instead try and learn the clause C′7 = ¬R. The decision undone would not have changed, but
the clause learnt, and thus the propagation done afterwards would be different. In this particular
case, learning C′7 would have lead to solving the problem in fewer steps. However, that would
require a more generalized rule Learn-sat.

These different strategies have been studied in [89]. The rules in Figure 1.1 correspond to the
last Unique Implication Point, or last UIP strategy for learning, while the first UIP strategy would
have learnt clause C′7.

1.1.5 Soundness, completeness

The SAT algorithm is sound and complete, see [18, 39]. No proof will be presented in this
thesis, but the detailed description in the previous section (and particularly the invariants of the
analyze phase) should be enough to understand the soundness of the algorithm. Completeness
can be proven using the fact that there is a finite number of trails, and the same trail appears at
most twice: at most once in a solve phase, and at most once in an analyze phase. This is ensured,
among other things, because once a decision a 7→n > has been undone by the Learn-sat rule, its
inverse ¬a > is propagated, thus preventing to reach an already seen trail.
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1.1.6 Implementation

When applying the algorithm in practice, it is useful to use a specific strategy when applying
the inference rules of the algorithm. Specifically, the rules are given the following order of priority:

1. The Conflict-sat rule is applied as eagerly as possible, in order to detect absurd trails as
soon as possible.

2. The Propagate rule is then applied as much as possible, in order to minimize the number
of decisions, so as to reduce the possibilities to make a bad decision.

3. Finally the Decide rule is called when no conflict is detected and no propagation can be
done.

4. The Analyze-decision, Analyze-propagation, and Analyze-resolution rules have mutu-
ally exclusive premises and thus need no priorities.

5. Finally, rule Learn-sat offers a choice point as to how far back to backtrack. Choosing to
undo only the decision that generated the conflict (i.e. choosing a = b), is typical called
backtracking, whereas choosing to backtrack as far as possible is called backjumping. The
advantage of backjump is that it allows us to revert to the earliest point where the Learn-sat
rule can propagate, whereas with the normal backtrack, the propagation done by the rule
may not need some of the most recent decisions.

It is interesting to note that these priorities are not needed for the soundness and complete-
ness of the algorithm. However, they are highly useful to lower the practical complexity of the
algorithm, especially together with concrete implementation details of efficient way to apply these
rules:

• Decision choices usually rely on some heuristics, prioritizing literals that appear the most
often in conflicts in order to reach conflicts faster.

• Propagation can be very efficiently detected and applied using a 2-watch scheme: in order to
quickly detect which clause may trigger application of rule Propagate, the solver “watches”
2 unassigned literals in each clause. Once one of the literals becomes assigned, the solver
looks for another unassigned literal. If one is found, the solver updates it watched literals
for that clause, else the only unassigned literal in the clause is propagated. This allows for
very efficient detection of propagation opportunities, and watched literals do not need to be
changed upon backtracking.

• As noted, rules Analyze-decision, Analyze-propagation, Analyze-resolution are mutu-
ally exclusive and can be merged into a single function analyzing a conflict in a very deter-
ministic and optimized manner, computing directly the final result of the conflict (particu-
larly when using the last UIP strategy), avoiding the need to compute all the intermediary
resolutions which can be quite costly.

1.2 SMT Solving

The SAT algorithm described previously only handles purely propositional formulas1. However
it is often the case that we want to solve problems involving formulas using quantified variables, and
first-order theories such as arithmetic. The SMT algorithm is an extension of the SAT algorithm
to handle precisely these cases.

1After an eventual transformation to clausal normal form.
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1.2.1 First-Order Terms and Theory Theory

Given a signature S = (V,SF ,SP), where V is an infinite set of variables, SF a set of function
symbols and SP a set of predicate symbols, we can introduce T the set of first-order terms and F
the set of first-order formulas over S. An atomic formula is a formula that does not start with a
logical connective, so it is either a predicate symbol application, or an equality. We will often use
x, y, to denote variables in V, f, g, . . . to denote function symbols in SF , and p, q, r, . . . to denote
predicate symbols in SP . To each function and predicate symbol is associated an arity which is
the number of arguments that they take. Function symbols of arity 0 will be written a, b, . . . and
their applications written without parenthesis, e.g. a instead of a(). For instance :

• a, f(b), g(x, f(c)) are terms

• p(x), q(f(c, y))→ (p(x) ∧ q(y)) are formulas.

• ∀z.¬r(z) is a quantified formula, universally quantifying the variable z in r(z).

As in Section 1.1.1, the notion of structure, interpretation, model, evaluation, and formula
satisfiability is defined as usual. Interpretation of a first-order term (or formula) t in a modelM
will be written JtKM .

A first-order theory T is a (potentially infinite) set of first-order formulas. A model of a theory
T is a structureM that satisfies all formulas of T, also writtenM � T. A formula F is said to be
satisfiable in a theory T, iff there exists a modelM of T which also satisfies F : M � F .

We can then define the satisfiability modulo theory, i.e SMT problem :

Definition 1.2.1. SMT: Given a theory T and a first-order formula F , does there exist a model
of F in T ?

First-order logic, with no theory (or rather an empty theory) is in general only semi-decidable
because of universally quantified formulas. Some more restricted problems may however be de-
cidable: for instance satisfiability of ground formulas in the theory of linear rational arithmetic
is decidable. SMT solvers commonly aim to solve efficiently these restricted problems: that is
problems that only involve ground formulas (i.e no quantified formula) over theories for which sat-
isfiability of ground formulas is decidable, in which case the SMT algorithm provides a complete
decision procedure.

Note that this section describes single-sorted first-order terms and theories. In practice, how-
ever, most provers use many-sorted first-order terms and theories, for instance for arithmetic.
Going even further, I used typed first-order terms with polymorphic types, as described in Sec-
tion 2.1.1. However, this distinction does not matter much when describing the SMT algorithm.

1.2.2 Algorithm

In order to solve satisfiability modulo theory, the SMT algorithm extends SAT in a very non-
invasive manner. As for the SAT algorithm, the SMT algorithm only accept as input a set of
clauses, but whose literals are atomic first-order formulas (i.e. either equalities or predicates)
instead of atomic propositions. The main idea is to run a SAT solver on the input clauses, in
order to find a truth value assignment for the input literals, and then verify that this assignment
is satisfiable in the theory. When combined with a transformation into clausal normal form1, the
reasoning is the split into a reasoning on clauses which handles the propositional aspect of the
input formulas, and a theory-specific reasoning, which does not need to handle the propositional
structure of the formulas.

Formally, the SMT algorithm is the same as the SAT algorithm, with the added Conflict-smt
rule from Figure 1.2. The rule allows to trigger an analyze phase and a backtrack whenever the
partial truth assignment maintained by the algorithm in the trail is inconsistent with the theory.

The end conditions for the algorithm are the same as for the SAT algorithm:

1CNF transformation on quantified formulas is a bit more intricate than in the propositional case, for more
information see Section 1.2.5.
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Solve(S, t)
Conflict-smt

Analyze(S, t,D)

t ` ¬D
T ` D

Solve(S, t)
Learn

Solve(S ∪ {C}, t)
T ` C

Figure 1.2: Inference rules for the SMT algorithm

• Either the empty clause has been reached, in which case ⊥ has been proven by the algo-
rithm. Note that Conflict-smt ensures some slightly different analyze phase invariants than
described in Section 1.1.2:

1. The conflict clause D is entailed by the clauses in S ∪ T.
2. The conflict clause D is false in the current trail: t ` ¬D.

• Or there is no rule left to apply, in which case, the truth assignment formed by the trail is
satisfiable in the theory, otherwise a conflict could be found.

Finally, note that, while the current presentation, as well as most presentations, introduce the
SMT algorithm in the context of first-order logic, the algorithm in itself is not really tied to first-
order logic specifically. More generally, given any logic, the SMT algorithm is suitable for solving
the satisfiability of sets of clauses, as long as it is provided with an adequate implementation of a
theory.

1.2.3 Examples

Let us show how the SMT algorithm works on some examples. First we consider a problem
using only equalities and some uninterpreted functions. Consider the following problem :

C1 := a = b
C2 := ¬(f(a) = f(b)) ∨ f(a) = c

Clearly, this set of clauses is satisfiable. Now let us see how the SMT algorithm reaches that
conclusion. For readability purposes, let us not use the Solve([. . .]) syntax but rather present the
trace of the algorithm in a table :

Clause Set Trail Conflict (if analyzing) Last Rule used

{ C1, C2 } []
{ C1, C2 } [a = b  C1 >] Propagate
{ C1, C2 } [a = b C1 >,f(a) = f(b) 7→1 ⊥] Decide
{ C1, C2 } [a = b C1 >, f(a) = f(b) 7→1 ⊥] C3 = ¬(a = b) ∨ f(a) = f(b) Conflict-smt
{ C1, C2, C3 } [a = b C1 >,f(a) = f(b)  C3 >] Learn-sat
{ C1, C2, C3 } [a = b C1 >, f(a) = f(b) C3 >,f(a) = c 7→1 >] Decide

SAT

Here, once both a = b and f(a) 6= f(b) are in the trail, the theory can trigger the rule
Conflict-smt, since a = b→ f(a) = (b) is a tautology in the theory of equality and uninterpreted
functions. This tautology can be found, for instance, by using a congruence closure algorithm.
This tautology is also a clause: a 6= b ∨ f(a) = f(b), and so can directly be used as a conflict
clause. We’ll discuss in the next section how theories can be implemented in practice.

Now, let’s prove that the following set of clauses is unsatisfiable:
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C1 ≡ a = b

C2 ≡ b = c ∨ b = d

C3 ≡ ¬(a = d)

C4 ≡ ¬(a = c)

Clause Set Trail Conflict (if analyzing) Last Rule used

{ C1, C2, C3, C4 } []
{ C1, C2, C3, C4 } [ a = b  C1 > ] Propagate
{ C1, C2, C3, C4 } [ a = b C1 >, a = d  C3 ⊥ ] Propagate
{ C1, C2, C3, C4 } [ a = b C1 >, a = d C3 ⊥,

a = c  C4 ⊥ ]
Propagate

{ C1, C2, C3, C4 } [ a = b C1 >, a = d C3 ⊥,
a = c C4 ⊥, b = d 7→1 > ]

Decide

{ C1, C2, C3, C4 } [ a = b C1 >, a = d C3 ⊥,
a = c C4 ⊥, b = d 7→1 > ]

C5 = ¬a = b ∨ ¬b = d ∨ a = d Conflict-SMT

{ C1, C2, C3, C4, C5 } [ a = b C1 >, a = d C3 ⊥,
a = c C4 ⊥, b = d  C5 ⊥ ]

Learn-Sat

{ C1, C2, C3, C4, C5 } [ a = b C1 >, a = d C3 ⊥,
a = c C4 ⊥, b = d C5 ⊥,
b = c  C2 > ]

Propagate

{ C1, C2, C3, C4, C5 } [ a = b C1 >, a = d C3 ⊥,
a = c C4 ⊥, b = d C5 ⊥,
b = c C2 > ]

¬a = b ∨ ¬b = c ∨ a = c Conflict-Smt

{ C1, C2, C3, C4, C5 } [ a = b C1 >, a = d C3 ⊥,
a = c C4 ⊥, b = d C5 ⊥, ]

¬a = b ∨ b = d ∨ a = c Analyze-Resolution

{ C1, C2, C3, C4, C5 } [ a = b C1 >, a = d C3 ⊥,
a = c C4 ⊥, ]

¬a = b ∨ a = d ∨ a = c Analyze-Resolution

{ C1, C2, C3, C4, C5 } [ a = b C1 >, a = d C3 ⊥, ] ¬a = b ∨ a = d Analyze-Resolution
{ C1, C2, C3, C4, C5 } [ a = b C1 >, ] ¬a = b Analyze-Resolution
{ C1, C2, C3, C4, C5 } [] ∅ Analyze-Resolution

UNSAT
In this example, we have two conflicts involving equality, where transitivity of equality is

broken. These conflicts can be found using a simple union-find algorithm [68]. Finally, at the end,
the empty clause is reached, proving the input clauses are unsatisfiable.

1.2.4 Implementation, Theory requirements and Combinations
The presentation of the SMT algorithm in Section 1.2.2 is really theoretical and while the

description of the SAT algorithm (with the rule priorities) is clear enough to be reasonably im-
plemented, SMT theories as introduced earlier may appear less straightforward to implement in
practice. This is intended, as theories are here considered as some kind of blackboxes, with a
specified external behavior (i.e. triggering Conflict-smt as soon as possible). This is in order to
make the SMT algorithm modular with regards to the theory, and allows us to consider a wide
variety of first-order theories that can be implemented as an SMT theory. Examples of first-order
theories often implemented in SMT solvers include equality and uninterpreted functions, linear
arithmetic, arrays, bitvectors, . . .

In order to trigger Conflict-smt as early as possible, the theory only has to ensure the sat-
isfiability of the trail, which is exactly the satisfiability decision problem on atomic formulas of
a given theory. Consequently, SMT theories are usually implemented using decision procedures
such as union-find [68]. the simplex algorithm, Fourier-Motzkin . . . Formally, the theory has to
ensure that there exists a model (i.e. an assignment of all variables) that satisfies the trail. As
long as that is verified, the SMT algorithm is correct. And assuming the theory is complete (i.e
its algorithm terminates), so is the SMT algorithm.

There is, however, a very useful property of SMT theories that is needed in order to achieve
good performances: incrementality. Assume an algorithm that accepts a list of inputs, and with an
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internal state. Incrementality refers to the fact that, starting from an internal state s corresponding
to a list of inputs l = [x1, . . . , xn], computing the state s′ corresponding to the list of inputs
l′ = [x1, . . . , xn, xn+1], can be done faster1 by starting from s and adding the new input xn+1,
than by computing from scratch s′ from l′. For instance, the simplex algorithm is generally
considered incremental, in that adding new constraints and finding a new solution is fast because
the work that has been done in order to satisfy the previous constraints is re-used.

Once an incremental theory is implemented, it can be integrated with a SAT solver in order
to build an SMT solver. The theory formally has access to the current state of the SAT solver,
particularly the trail. Incremental theories can thus update their internal state for each new
decision or propagation added on the trail. This internal state is then backtracked and restored
when the SAT solvers analyzes a conflict and backtracks the trail. Non-incremental theories cannot
run on every new decision of propagation in practice since it would take too long, and thus usually
can not raise rule Conflict-Smt as eagerly as incremental theories.

Finally, although it is not required, the rule Learn from Figure 1.2 is quite convenient to
consider. Such a rule could replace the Conflict-smt rule, but would break the termination
property of the SMT algorithm unless restrictions are placed on the clauses that the theory can add.
Indeed, this rule could allow a theory to introduce an infinite number of tautologies (for instance
1+1 = 2, 1+2 = 3, 1+3 = 4, . . . ), and thus prevent other rules from being applied. However, the
main point of the Learn rule is to allow the theory to encode some of its reasoning into clauses,
and rely on the capacity of the clausal calculus implemented by the rules of the SAT algorithm.
One example of such a use is to defer some theory-specific decisions back to the inference rules,
e.g. considering a theory for arithmetic that can only deal with equalities and inequations, but not
disequalities. Note that it is a realistic occurrence, as this is actually the case of arithmetic theories
that use the simplex algorithm. Now consider a propagation x = a+ b n ⊥ (which is equivalent
to ¬(x = a+ b) n >), it might be interesting for the theory to “ask” the solver to decide whether
x < a+ b or x > a+ b by adding the tautology (x = a+ b) ∨ (x < a+ b) ∨ (x > a+ b) as a clause
using rule Learn. With such a clause, it is guaranteed that the inference rules will at one point
decide or propagate either x < a+ b or x > a+ b. That way, the arithmetic theory does not have
to internally implement a case analysis on each disequality.

1.2.5 Quantified Formulas and Triggers
As mentioned earlier, the SMT algorithm, just like the SAT algorithm, only works on clauses.

While that was not a problem for propositional formulas, it is more problematic for first-order
formulas. Indeed, while Skolemization allows us to eliminate existential quantification, universal
quantification is more problematic.

What is usually done in modern SMT solvers it to leave free variables while converting the
input formulas into clausal normal form. The resulting clauses are then split into those with only
ground terms, and those in which free variables occur. In these clauses with free variables, a
heuristic is used to select some subterms, which will be called triggers. The SMT solver is then
run using only the ground clauses as input. If it reaches the empty clause, then the problem is
unsatisfiable, else if a model is found, this model is used to try and match the selected triggers with
the ground terms occurring in the model. The substitutions found are then used to instantiate
the clauses with free variables, whose instantiations2 are added to the set of ground clauses, and
the algorithm repeats.

For instance, let us consider the following problem:

F = (∀x. p(x)→ q(x))→ p(a)→ q(a)

In order to prove F , we will work by contradiction and use the SMT algorithm to prove that
¬F is unsatisfiable. Converting ¬F into clausal normal form yield the following clauses :

C0 := ¬p(x) ∨ q(x)
C1 := p(a)
C2 := ¬q(a)

1It has a lower theoretical time complexity, but more importantly a faster implementation.
2i.e. ground clauses.
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Note the implicitly universally quantified variable x in C0. Now we can, for instance, choose
q(x) as trigger1. We can run the SMT algorithm on the input set of clauses S = {C1, C2} using a
theory for uninterpreted functions and predicates, and it trivially returns the following model :

p(a) 7→ >
q(a) 7→ ⊥

With this model we can try and match any ground term in it with our trigger q(x), and we
find the substitution x 7→ a by matching q(x) with q(a). We can then apply this substitution
to the clause where the trigger originated, and we get a new clause C3 = ¬p(a) ∨ q(a). We then
add this clause to the set of ground clauses. We thus run again the SMT algorithm on the input
set of clauses {C1, C2, C3}. Naturally, this lead to reaching the empty clause, thus proving the
unsatisfiability of the clauses. We have then proved the input formula F .

Triggers thus allow SMT solvers, which are usually mainly used for ground problems, to also
handle problems using quantified formulas. However, in the general case, triggers do not yield a
complete decision procedure, more precisely, the completeness of the SMT algorithm with triggers
depend on which triggers are selected, and there are no generic and complete way of selecting
trigger, only heuristics [48–50].

1.3 McSat

McSat, introduced in [42,58], is an extension of the SMT algorithm. It solves the same problem,
that is, satisfiability of formulas modulo a theory, but it integrates the theory more than the SMT
algorithm does.

Explanations for McSat in detail requires more use of the notions of domain and interpretation
for first-order terms and formulas, than for the SMT algorithm. In order to allow for lighter
notations and explanations, in the remainder of this thesis, we consider that we have a fixed
theory T and domain of interpretation D.

1.3.1 Semantic Decision, Propagations and Models

The main goal of the McSat algorithm is to allow not only decisions on the boolean values of
literals in clauses, but also decisions on the values of variables occurring in these literals. These
decisions may then allow us to evaluate some literal. For instance, consider that a term x has
been given a value of 1 (by a mechanism that we describe later) and another term y the value of
0, then an arithmetic theory could evaluate the formula x + y > 0 and add it to the trail. More
generally, assignments of variables to concrete values, and not equivalence classes as is typically
done, gives more information and allow for efficient propagation. As in the SMT algorithm, McSat
uses a theory to reason about first-order terms and formulas, and whose role we will detail later.

Formally, we extend the notion of trail introduced in Section 1.1.2 by adding semantic decision,
which are assignments of the form t 7→n v where t is a term (usually occurring in the input clauses),
n the level of the decision (as before), and v a value to which t is assigned. Values belong to the
chosen domain D (for instance the relative numbers Z for integer arithmetic).

We also add semantic propagations of the form l n > where l is a literal and n an integer
representing a level. Intuitively, a semantic propagation l n > means that l can be evaluated
to > by using semantic decisions with level lower (or equal) than n. Using these levels, one can
define a notion of level for clauses in a trail : the maximum level of a clause C in a trail t, written
max_levelt(C), is the highest level of any semantic propagation l _ > for which l or ¬l occurs
in C, and else 0.

Finally, we also extend the notion of occurrence in a trail to also include semantic propagations
and decisions: a term u is said to occur in a trail t iff u is assigned in t, and a formula p is said
to occur in a trail t iff p or ¬p is assigned in t.

1Here we only select one trigger, but it is possible to choose more than one trigger by clause, and in some cases,
even select a set of set of triggers for each clause, only instantiating if all the triggers of a set are matched.
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Partial Interpretation As in Section 1.1.2, we will use the trail (and particularly the semantic
decisions) to represent a partial model of the input formulas. It is, however, not so simple: during
proof search, the McSat algorithm maintains in the trail a (partial) mapping from first-order terms
and formulas to model values (and not from variables and constant symbols to model values, as
is needed for a model). The intention of this mapping is to represent a set of constraints on the
model that the algorithm is building. For instance, given a function symbol f of arity 2, and a
constant a, one such constraint that we would like to be able to express in our mapping is the
following: f(a) 7→ 0, regardless of the values that f takes on other argument, and also regardless
of the value mapped to a. To that end we introduce the notion of abstract partial interpretation.

An abstract partial interpretation σ is a mapping from ground expressions to model values.
To each abstract partial interpretation we can associate a set of complete models that realizes it:

Complete(σ) = {M | ∀t 7→ v ∈ σ, JtKM = v}

Coherence An abstract partial interpretation σ is said to be coherent iff there exists at least
one model that completes it, i.e. Complete(σ) 6= ∅. One example of incoherent abstract partial
interpretation is the following mapping:

σ =


a 7→ 0
b 7→ 0

f(a) 7→ 0
f(b) 7→ 1

Indeed, in the theory of uninterpreted functions, there is no model in which a and b have the same
values, but f(a) and f(b) have different values.

Compatibility In order to do semantic propagations, we want a notion of evaluation for abstract
partial interpretations. We thus define the partial interpretation function of an abstract partial
interpretation σ as the intersection of the interpretation functions of all the completions of σ, i.e. it
is the interpretation where all completions agree. This can be axiomatised using the following
proposition :

∀t ∈ T ∪ F .∀v ∈ D. (∀M ∈ Complete(σ).JtKM = v)→ JtKσ = v

Note that as the name suggests, J.Kσ is partial as it is not defined on terms whose value can
change from one completion of σ to another.

Naturally, the semantic decisions in a trail t form an abstract partial model, and thus define
a partial interpretation function that we will write σt. We can now say that a trail t is coherent
iff σt is coherent, and for all literals a occurring in t, ¬(JaKσt

= ⊥), or in other words, for every
literal a true in the trail, there exists at least one model that completes σ and where a is satisfied.

1.3.2 Algorithm
Just as for the SMT algorithm, McSat is an extension of SAT, thus we extend the inference

rules of Figure 1.1 with those of Figure 1.3. These rules suppose that a theory T has been defined
and fixed.

• The Decide-semantic allows the theory to decide a semantic assignment for a not-yet decided
term. The only constraint is that the resulting trail must be coherent, to avoid triggering a
conflict right after a decision.

• The Propagate-semantic rule allows the theory to deduce propagations that are entailed
by semantic assignments, i.e. literals that can be evaluated using the semantic decisions.
Each such propagation is annotated with the level at which it occurred1, representing the
semantic decisions that are needed for the evaluation.

1One could instead annotate the propagation with the level of decision that are actually needed to deduce the
propagation, instead of asusming that semantic propagations were done as early as possible. However, this would
needlessly complicate the presentation of the McSat algorithm
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• The Conflict-mcsat rule mirrors the Conflict-smt rule from Figure 1.2, but also stores
the level of the clause (which is useful for treating semantic propagations in clauses).

Correctly analyzing an McSat conflict is not easy. Indeed, compared to an SMT solver, conflict
clauses may contain semantic propagations. The reasons behind a semantic propagation are
semantic decisions, so just as in the SAT algorithm where we used propagations reasons to find
the (boolean) decision at the root of the conflict, and forbid the decision, in this case we would
like to forbid the semantic decision that caused the conflict. Identifying the semantic decision is
easy, since semantic propagation store the maximum level needed for their evaluation. However,
forbidding a semantic decision is trickier: while in the boolean case, the decision could simply
be flipped: i.e if the solver had decided l 7→n >, then we knew we could propagate ¬l _ >,
effectively preventing the bad decision. In the semantic case, assignements are more generic, for
instance the decision could be x 7→n 42, in which case, forbidding a single value for x would be
very inefficient and probably not lead to an algorithm that terminates. Instead, we will choose one
of the semantic propagations in the conflict, e.g. l n >, and force the next decision of the solver
to be its negation: ¬l 7→n >, as this prevents not only the specific value that was responsible for
the conflict, but in general also prevents a lot of other values. For instance, a decision x 7→n 42,
may lead to a propagation x > 13 n >, in which case after analyzing, instead of adding x 6= 42,
we would decide ¬(x > 13) 7→n >, thus eliminating for x all values above 13.

In order to achieve that, semantic decisions which did not play a role in the conflict are simply
ignored by rule Analyze-semantic-decision, and semantic propagations are kept in the conflict
clause by rule Analyze-semantic-propagation (that is, semantic propagations are not removed
from the analyzed clause). Notice that this is why we need to store the conflict level in rule
Conflict-Mcsat; indeed the Analyze-semantic-decision removes semantic decisions (including
those present in the conflict clause), which means that we cannot access the level of these semantic
propagations later, particularly when applying future instances of Analyze-semantic-decision.
Finally, when we reach the semantic decision that created the conflict, rule Conflict-Mcsat
gathers all the semantic propagations that derive from that decision (there may be more than
one), choose one of them, and decide its negation, thus progressing since we cannot decide on the
same value that created the conflict (among many others).

1.3.3 Examples

Examples are given in Section 2.1.3.1 and 2.1.3.2, which also explains how McSat theories work
in practice.

1.3.4 Theory Requirements Combinations

Soundness Taking into account assignments means that theories for McSat have to ensure
different invariants compared to theories for SMT solvers. The conditions for raising conflicts
are different: in an SMT, the theory raises a conflict (using Conflict-smt) as soon as the set
of formulas decided and/or propagated is inconsistent. In an McSat solver, a theory keeps track
of potential values for each assignable term, refining this set for each new formulas which is
propagated or decided. A conflict is then raised (using Conflict-mcsat), as soon as one term has
no potential value left (i.e. its set of potential values is empty).

Additionally, a theory has to produce values in order for terms to be assigned using Decide-
semantic. These semantic decisions must ensure the trail stays coherent. Concretely, this means
that the new assignment should not allow formulas that are true in the trail to be evaluated to ⊥.

Completeness In order for the mSAT algorithm to be complete, it needs to assign “enough”
terms so that, if the algorithm ends in a SAT state (i.e. no inference rule is applicable, and the
empty clause has not been deduced), the trail t defines an abstract partial interpretation that
effectively evaluates all terms occuring in the problem (or else, a theory could simply not assign
any term, and the algorithm would end quickly without doing much work).
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Solve(S, t)
Decide-Semantic

Solve(S, t :: a 7→n v)

¬(a occurs in t)
n = max_level(t) + 1
t :: a 7→n v is coherent

Solve(S, t)
Propagate-Semantic

Solve(S, t :: a n >)

JaKσt = >
n = max_level(t)

Solve(S, t)
Conflict-Mcsat

Analyze(S, t, Cm)

T ` C
t ` ¬C
m = max_levelt(C)

Analyze(S, t :: a 7→n v, C
m)

Analyze-Semantic-decision
Analyze(S, t, Cm)

n > m

Analyze(S, t :: a n >, Cm)
Analyze-Semantic-propagation

Analyze(S, t, Cm)
n > m

Analyze(S, t :: u 7→n v, C
n)

Learn-McSat
Solve(S ∪ {C}, t :: l 7→n >)

C = l ∨ C ′
¬(l occurs in t)

Figure 1.3: McSat specific inference rules

While there are certainly many ways to ensure just that (particularly if the theory can decide
which terms to assign depending on the previous assignments1), I chose to use a much simpler
static and syntactic criterion. The idea is to assign only variables and terms whose head symbol is
a non-interpreted function symbol. For instance, in that criterion, assuming the input problem is
x+f(y+z) < 0, the terms to assign would always be x, y, z, and f(y+z), because y+z can simply
be evaluated, once y and z are assigned, and in turn x+f(y+z) (as well as x+f(y+z) < 0) can also
be evaluated once x and f(y+ z) are assigned. Note that it would be perfectly acceptable to also
assign y+z (since, as can be seen in that particular example, what might be of interest is the value
of the sum, rather than the values of the variables), but that would require performing constraints
propagation in the theory. In order to keep theories as simple as possible, I instead chose to only
assign variables and uninterpreted terms (i.e. terms whose head symbol is uninterpreted), and
then do a bottom-up evaluation of terms.

Usual Structure of Theories In that setting, theories tend to have the following structure:
each term to be assigned2 is mapped to a set of possible values (initially set to the whole domain).
Then, each formula that is decided or propagated is “watched”, until all its assignable terms except
one are assigned. At that point, the formula can be seen as a unit formula (by reference to unit
clauses), which can be used to refine the set of possible values for the last unassigned term. For
instance, take the formula x+ f(y + z) < 0; its watched terms are x and f(y + z), so if f(y + z)
is at one point assigned to 2, then we could refine the set of potential values for x to remove all
values superior or equal to −2.

Values for assignments are then taken from the set of potential values of the corresponding term.
Conflicts are triggered as soon as one set of potential values becomes empty. This happens when
one, or more (usually 2), formulas have generated constraints on a term t that are incompatible.
A formula implied by these incompatible constraints can then be created by “eliminating” the
term t from these contraints, and the resulting implication can be used as a conflict clause. For

1This would be very interesting in the case of terms containing “if . . . then . . . else . . . ” constructions, in order
to not assign terms that only appear in an irrelevant branch.

2These terms are easy to identify statically at the beginning of the algorithm.
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instance, let us consider the following trail [x+ y ≥ 43 7→1 > :: x− y ≤ 13 7→2 > :: y 7→3 1]. There
is no remaining potential value for x: indeed since y is assigned to 1, x + y ≥ 43 constrains x to
be greater or equal than 42, and x − y ≤ 13 constrains x to be lesser or equal than 14. We can
then use Fourier-Motzkin elimination to deduce: x + y ≥ 43 ∧ x − y ≤ 13 → 2 ∗ y ≥ 301. It is a
suitable conflict clause: ¬(x+ y ≥ 43) ∨ ¬(x− y ≤ 13) ∨ (2 ∗ y ≥ 30), because ¬(x+ y ≥ 43) and
¬(x− y ≤ 13) are already false in the trail, and 2 ∗ y ≥ 30 can be evaluated to false given that y
is assigned to 1.

Combination of Theories As can be seen in the presentation both for SMT and McSat, the
algorithms usually consider a single theory. However, we often want to combine more than one
theory, for instance in order to reason both about arithmetic and uninterpreted functions and
predicates, or also use arrays and/or bitvectors, etc. For SMT solvers, there exist frameworks
which allow us to combine some theories, but in the context of McSat, using such frameworks
would require to implement SMT theories, which have more constraints than McSat theories. For
instance the Nelson-Oppen [67] framework requires from the theories to only share the equality
symbol but no other function symbol, and to propagate back to the combinator all equalities that
they can deduce. There are very recent work on such framework for McSat [23], but this is not a
problem, as the requirements for McSat theories already allow for easy combinations, indeed the
assignment mechanisms already looks a lot like the Nelson-Oppen framework: assignments allow
us to deduce equalities by comparing values, but also to deduce disequalities. While this is not
the topic of this thesis, it has been convenient to not have to implement one of the complex SMT
theory combining framework.

1.4 ArchSAT

This section provides a brief overview of ArchSAT from a technical point of view. The rest of
this thesis describes original work I did during my thesis and integrated into ArchSAT.

First I present mSAT, a library for creating SAT, SMT and McSat solvers, that I developped in
order to keep an abstraction layer between the implementation of the McSat solver in ArchSAT,
and the various theories and experiments I performed during my thesis. This helped identify
whether the new algorithms I was testing needed modifying the core McSat algorithm, or if they
could fit into the already existing framework.

1.4.1 mSAT: A SAT Library

mSAT [30] is an OCaml library available at: https://github.com/Gbury/mSAT. See Ap-
pendix A for a poster about mSAT that was presentated at the OCaml workshop.

As was apparent in the earlier descriptions, the SAT, SMT, and McSat algorithm all share a
very consequent part of their internal mechanisms. More precisely, SAT is actually a subset of
SMT, which itself is a subset of McSat. This is easy to see: SMT and McSat both extend the
inference rules of the SAT algorithm; furthermore the Conflict-mcsat rule is the same as the
Conflict-smt, except that it records the maximum level of literals in the conflict clause. This
inclusion between the several algorithms was the motivation for also providing SAT and SMT
solver facilities when implementing McSat as a library.

Additionally, the SMT and McSat algorithms are actually modular with regards to the theory:
any theory that respects some constraints (or, in terms of programming, that implements an
interface) can be used to produce an SMT or McSat solver. Furthermore, the actual representation
of litterals that the theory uses does not matter much, since only the theory has to inspect these
terms: the inference rules presented only need to compare literals, and build negations of literals.
This is reflected in the interface provided by the library, which exposes OCaml functors that take
as argument a representation of terms, and a theory implementation, and returns an SMT or
McSat solver.

1This tautology can be obtained by subtracting x − y ≤ 13 from x + y ≥ 43, which yields x + y − (x − y) ≥
43− 13 ≡ 2 ∗ y ≥ 30.

https://github.com/Gbury/mSAT
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Compared to other implementations, let us first remark that mSAT is the first implementation
to offer a functorized SMT (and McSat) solver. Indeed, other implementations either only provide
the SAT algorithm, or provide a full SMT solver, without giving the possibility of completely
implementing one’s theory. While there are quite a few implementations of SAT or SMT solvers1
in C or C++, there are far less available in OCaml:

• A few libraries offer bindings to pure SAT solvers written in C or C++: minisat2, sattools3,
ocaml-sat-solvers4.

• Some libraries offers full SMT solving facilites: Alt-Ergo Zero5, yices2, and z3; of which only
Alt-Ergo Zero is pure OCaml.

• Alt-Ergo is a pure ocaml SMT solvers, but only provides an executable.

Note that pure SAT solver implementations are not suited to build SMT solvers, since they
usually do not provide the necessary hooks (or callbacks) needed to use incremental and efficient
theories. As such, one often needs to write a complete SAT implementation when writing an SMT
solver. mSAT aims at lessening this burden by allowing to simply write a theory, and plug it in
the SMT functor provided.

In matters of performance, mSAT compares reasonably well with existing solutions available in
OCaml. It is about 10 times slower than the OCaml bindings to the extremely optimised C solvers,
and significantly faster than Alt-Ergo Zero (see the poster in Appendix A, or the github repository
https://github.com/Gbury/sat-bench for more precise measurements). Some experiments and
optimizations have managed to reduce the gap with minisat, reducing the 10x factor to 2x or 3x,
though they have not yet been merged in the upstream version of mSAT. In any case, the current
performances of mSAT are satisfactory enough: indeed, the main focus of my work has been first-
order reasoning, in which it is the theory reasoning that tends to dominate the solving time. In
that context, the performance of mSAT on pure SAT problems do not need to be exceptional.

Lastly, one feature of mSAT that most (if not all) other implementations lack is the generation
of formal proofs when the solver reaches UNSAT. When an empty clause is reached6, a proof of
that clause can be generated, as a resolution tree whose leaves are lemmas provided by the theory.
For more information on the production of formal proofs, see Chapter 4.

1.4.2 Overview of ArchSAT

ArchSAT is a full implementation of an McSat solver, available at https://github.com/Gbury/
archsat. I developed it as the core method of evaluating the practical feasibility of algorithms I
realised during my thesis.

It is written in OCaml, using mSAT, and aims at solving first-order problems. ArchSAT uses the
dolmen (see Chapter 6.1 for more information) library to accept a wide range of input syntaxes.
More generally, a number of tips and tricks were used during the development in order to get
a concise yet expressive code; these are detailed in Chapter 6. ArchSAT is around 40k lines of
code7, not counting mSAT (about 8k lines of code), dolmen (6.5k lines of code), and other external
libraries.

Contrary to most provers8, ArchSAT uses terms that are strongly typed in a first-order poly-
morphic type system à la ML, see [19] for a full description of the type system. This allows
for a very natural and concise description of theories as, for instance, set theory axioms can be
polymorphic over the type of values contained in sets. The type-checking algorithm used is very

1mSAT being much more recent, it does not yet have many dedicated implementations, only extensions built on
top of already existing SMT solvers.

2https://github.com/c-cube/ocaml-minisat
3https://github.com/ujamjar/sattools
4https://github.com/tcsprojects/ocaml-sat-solvers
5Which is the core of Alt-Ergo factored out to be standalone.
6Actually, any clause reached by the solver can be proved, but it is less common to need a proof of a clause

other than the empty clause.
7Blank lines, comments and documentation included.
8Which tends to either use untyped terms, of strictly first-order typed terms.

https://github.com/Gbury/sat-bench
https://github.com/Gbury/archsat
https://github.com/Gbury/archsat
https://github.com/c-cube/ocaml-minisat
https://github.com/ujamjar/sattools
https://github.com/tcsprojects/ocaml-sat-solvers
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close to what is described in [31]. In the rest of the manuscript, we will thus consider that we
are using first-order polymorphic terms, though that does not change much from using simply
typed first-order terms. Note, however, using simply typed terms rather than untyped ones does
increase performance of proof search, as illustrated in [31].

ArchSAT also differs from other traditional SMT provers in that it does not perform CNF
transformation before solving. Instead, it uses a lazy CNF conversion, inspired from the tableau
proof search method, that is implemented as an McSat theory, and which is detailed in Chapter 2.
Following the inspiration from the tableau method, quantified formulas are handled by generating
meta-variables and performing unification. This is respectively explained in details in Section 2.3,
and Section 2.3.2.

Another feature of ArchSAT is the handling of rewrite rules. Indeed transforming axioms into
rewrite rules allows for better performances of automated theorem provers, as show in [28,32,34,46].
ArchSAT thus uses deduction modulo to mainly rewrite formulas (along with their subterms). In
order to do so, ArchSAT distinguishes three different uses of rewrite rules:

• Regular Rewrite rules that appear at the top-level of a problem are used to normalize ground
atomic formulas. These rewrite rules often axiomatize a theory, such as the set theory of
the B method for instance. This is presented in Section 3.2.

• Conditional rewrite rules are handled using a trigger-like mechanism, but using McSat’s
notion of evaluation to only instantiate rules whose guards are satisfied. This trigger-like
mechanism is also used to handle rewrite rules that are not at the root of a problem, that
is, rules whose truth value may change during proof search. This is detailed in Section 3.3.

• Rewrite rules are also integrated into the unification algorithm used for finding instantiations.
This is explained in Section 3.4.

Finally, whenever ArchSAT finds a proof for an input problem, it is able to generate a complete
formal proof of that problem. This formal proof is then exportable to a format that can be checked
externally, for instance by the Coq assistant prover [9]. The details of the formal proof structure
and the subtleties of its generation are documented in Chapter 4.



Chapter 2

First-Order Reasoning in Archsat

This chapter presents how generic first-order reasoning is handled in ArchSAT, and is divided
into 4 sections. First it explains how logical connectives are handled without using a CNF transfor-
mation prior to solving (as is usually done in most SMT provers), but rather using a lazy unfolding
of logical connectives by adding new clauses. Then the treatment of equalities and uninterpreted
functions is explained: instead of relying on a congruence closure algorithm like most SMT solvers,
ArchSAT splits the reasoning into two distinct theories: one for purely equational reasoning us-
ing a standard union-find algorithm, and another for uninterpreted functions and predicates that
makes use of the assignments in McSat to ensure that each uninterpreted function (or predicate)
can be given an adequate value. Finally, ArchSAT treats quantified formula much like in tableau
theory, by generating fresh constants (or skolem symbols) for existentially quantified formulas,
and meta-variables (or free variables) for universally quantified formulas. Meta-variables are then
instantiated following the substitutions returned by unification of predicates.

2.1 Pure Ground Reasoning in Archsat

2.1.1 Terms, Formulas and Blackboxes

This section describes the structure of first-order polymorphic terms that are used in ArchSAT.
Given a set of variables V, and a set of function symbols F , we can build the set of types Ty,
the set of terms T , and the set of formulas F = F,G, . . . as described in Figure 2.1. In order to
correctly express the type of polymorphic functions, we also define the set of type signatures2 ,
which represent the type of constant symbols.

Most syntax constructions that appear are relatively standard but for a few cases. First, type
variables can be quantified in formulas. Together with that, term applications take some type
arguments before the term arguments. This is what allows polymorphic function symbols to work
(and particularly allows to use the quantified types). Second, the syntax includes meta-variables
that are used during proof search, and written AF for type meta-variables, and XF for term
meta-variables. Meta-variables are tied to a formula that introduced them (denoted by F ), which
can either be a universally quantified formula F = ∀x : ty .G, or the negation of an existentially
quantified formula: F = ¬∃x : ty .G, where G is an arbitrary formula. Lastly, type signatures
represent the type of constants. Those can either have a regular type, or a function type, taking
a n-uplet of typed arguments3, or they can be polymorphic in some type variable α.

Some standard notations that help readability will be used throughout this manuscript :

• Variables in V will usually be written using α, β, . . . for type variables, and x, y, z, . . . for
term variables.

2Note that type signatures are not used in terms or formulas. In practice they appear in symbol declarations,
since only constant symbols are assigned type signatures (variables are typed using regular types).

3In first-order logic, all applications are total, hence the representation of multiple arguments with n-uplets
rather than curried arrows.

31
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Ty = α, β, . . . (type variables)
| AF (type meta-variable)
| f(ty1 , ty2 , . . .) (type constructor application)

Sy = ty (regular type)
| ty1 ∗ ty2 ∗ . . . ∗ tyn → tyn+1

(function type)
| Πα. sy (polymorphic signature)

T = x, y, z, . . . (term variables)
| XF (term meta-variable)
| f(ty1 , ty2 , . . . ; t, u, . . .) (term application)

F = > | ⊥ (True and False constants)
| t (Term predicate as atomic formula)
| t = u (Equality)
| ¬F (Negation)
| F ∧G (Conjunction)
| F ∨G (Disjunction)
| F ⇒ G (implication)
| F ⇔ G (Equivalence)
| ∀x : Type.F (Type universal quantification)
| ∃x : Type.F (Type existential quantification)
| ∀x : ty .F (Term universal quantification)
| ∃x : ty .F (Term existential quantification)

Figure 2.1: Syntax for the Types, Type Signaturs, Terms, and Formulas in ArchSAT

• Function symbols will usually be written a, b, c, . . . , f, g, h, . . .. Function symbols that takes
no argument will be written without parenthesis: a instead of a().

• Terms will often be written using t, u, v, . . .

• Successive use of the same logical connective may be concatenated according to associativ-
ity1, so as to write p ∧ q ∧ r ∧ s instead of (((p ∧ q) ∧ r) ∧ s). More generally, proof search
will not distinguish (p ∧ q) ∧ r from p ∧ (q ∧ r), as both will be considered as the formula
p∧ q ∧ r. See Chapter 4 for more details about associativity of logical connectives in formal
proofs.

• Successive quantifications may be concatenated so as to write ∀x1 : ty1 , x2 : ty2 , . . . , xn :
tyn .F instead of ∀x1 : ty1 .∀x2 : ty2 . . . .∀xn : tyn .F .

• In examples, meta-variables such as XF will often be written X when there is no confusion
as to which formula generated the meta-variable.

The type system used is mostly the same as the one presented in [31], itself mostly following
the one introduced in [19], and adapted to meta-variables and epsilon terms.

A substitution is a total function from variables to terms such that there is a finite set of
variables that are not bound to themselves. This set of variables that are not bound to themselves is
called the domain. The co-domain of a substitution is the set of variables occurring in terms in the

1Note that for proof search, the distinction between left and right associative logical connectives does not matter
since we instead manipulate lists of formulas.
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image of the domain of the substitution. In this thesis, we will consider idempotent substitutions,
i.e. substitutions for which the domain and co-domain have an empty intersection.

A boxed formula is of the form JF K, where F is a formula that does not start with a negation.
In the rest of this thesis, we will use boxed formula as atoms for the McSat solver. This means
that a literal is now either a boxed formula, or the negation of a boxed formula, and a clause
a disjunction of these literals. We thus have two distinct notions of negation: the negation of
formulas as described in Figure 2.1, and the negation of atoms as understood in the inference
rules for the McSat algorithm. This is the reason why negations are not allowed at the top of a
formula in a box: all reasoning about negation will be done by the inference rules of the McSat
algorithm. In order to do so, any negation at the top of a formula that is meant to be boxed will
“escape” the box: J¬F K will automatically be normalized to ¬JF K, and J¬¬F K into JF K. Clauses
are thus disjunctions of (possibly negated) blackboxes, for instance: ¬Jp ∨ qK ∨ JpK ∨ JqK. As was
apparent in the presentation of the SAT and McSat algorithm, the inference rules do not need to
look “inside” the blackboxes, only the theories need to look inside.

2.1.2 Unfolding Propositional Connectives using Tableaux Rules
We can now implement the Tableau proof search method as a regular theory for ArchSAT1.

Tableau proof search in ArchSAT is heavily inspired by the tableau prover Zenon [24].
The main idea is to encode the propositional calculus of logical connectives into the clausal

calculus implemented by the inference rules of the McSat algorithm. The way it is done is that,
each time the inference rules decide or propagate a boxed formula JF K, we use the rule Learn to
add some clauses that “unfold” the top logical connective of F . For that, we define a function b.c
in Figure 2.2, that maps boxed formulas to sets of clauses. Each time the inference rules decide or
propagate a boxed formula JF K, the rule Learn is used for each clause in the set bJF Kc. In order
to avoid having the same clause learned multiple times, this operation is done once per formula
F when the positive boxed formula JF K is assigned to be true, and once when the negative boxed
formula ¬JF K is assigned to be true.

More generally, arbitrary tableau inference rules can be translated into clauses. First, let us
suppose we have a translation into clauses of tableau rules handling conjunctions.Now consider
the following generic tableau rule :

P1 . . . Pn
f1,1, f1,2 . . . | f2,1, . . . | . . . | fm,1 . . .

This rule can be translated into a clause :

¬JP1K ∨ . . . ∨ ¬JPnK ∨ Jf1,1 ∧ f1,2 ∧ . . .K ∨ Jf2,1 ∧ . . .K ∨ . . . ∨ Jfm,1 ∧ . . .K
This translated clause is then to be added to the SAT solver once all the formulas P1, . . . , Pn

are true, and naturally handles branching rules by leaving the SAT solver decide on one of the
blackboxes Jf1,1 ∧ f1,2 ∧ . . .K, Jf2,1 ∧ . . .K, . . . , Jfm,1 ∧ . . .K, and then backtrack whenever is needed.

A special case for rules with exactly one branch (but possibly multiple formulas in that branch)
is needed to correctly handle conjunction. Given a tableau rule:

P1 . . . Pn
f1,1, f1,2 . . . f1,k

The rule can be translated into k clauses :

¬JP1K ∨ . . . ∨ ¬JPnK ∨ Jf1,1K
¬JP1K ∨ . . . ∨ ¬JPnK ∨ Jf1,2K

. . .

¬JP1K ∨ . . . ∨ ¬JPnK ∨ Jf1,kK

1Meaning that it does not need to be different from any other theories, contrary to CNF conversion which is
fundamentally different from arithmetic theories for instance.
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Analytic Rules

(α∧) bJP ∧QKc =
{

¬JP ∧QK ∨ JP K
¬JP ∧QK ∨ JQK (β¬∧) b¬JP ∧QKc = JP ∧QK ∨ ¬JP K ∨ ¬JQK

(β∨) bJP ∨QKc = ¬JP ∨QK ∨ JP K ∨ JQK (α¬∨) b¬JP ∨QKc =
{

JP ∨QK ∨ ¬JP K
JP ∨QK ∨ ¬JQK

(β⇒) bJP ⇒ QKc = ¬JP ⇒ QK ∨ ¬JP K ∨ JQK (α¬⇒) b¬JP ⇒ QKc =
{

JP ⇒ QK ∨ JP K
JP ⇒ QK ∨ ¬JQK

(β⇒) bJP ⇔ QKc =
{

¬JP ⇔ QK ∨ JP ⇒ QK
¬JP ⇔ QK ∨ JQ⇒ P K (β¬⇒) b¬JP ⇔ QKc =

JP ⇔ QK
∨¬JP ⇒ QK
∨¬JQ⇒ P K

δ-Rules

bJ∃x.P (x)Kc = ¬J∃x.P (x)K ∨ JP (c)K (δ∃)(c is a fresh constant)

b¬J∀x.P (x)Kc = J∀x.P (x)K ∨ ¬JP (c)K (δ¬∀)(c is a fresh constant)

γ-Rules

bJ∀x.P (x)Kc = ¬J∀x.P (x)K ∨ JP (X∀x.P (x))K (γ∀M )

b¬J∃x.P (x)Kc = J∃x.P (x)K ∨ ¬JP (X¬∃x.P (x))K (γ¬∃M )

bJ∀x.P (x)Kc = ¬J∀x.P (x)K ∨ JP (t)K (γ∀inst)

b¬J∃x.P (x)Kc = J∃x.P (x)K ∨ ¬JP (t)K (γ¬∃inst)

Figure 2.2: Rules of Tableau Theory

Each of these clauses will propagate one element of the conjunction, thus behaving in exactly
the same way as a regular tableau prover would.

Logical connectives. This section focuses on the unfolding of logical connectives (rules α and
β). A detailed explanation of how quantified formulas are handled can be found in Section 2.2 for
existentially quantified formulas, and in Sections 2.3 and 2.3.2 for universally quantified formulas.

A crucial point to remember is that rule Learn is restricted to clauses that can be proven in
the considered theory. This is why when, for instance, the inference rules decide or propagate
JP ∧ QK to be true, we cannot simply learn that JP K and JQK are true. Indeed, the assignment
of JP ∧ QK to true is susceptible to be backtracked, for instance if it was a decision. In or-
der to link the assignment of JP K and JQK to that of JP ∧ QK, the simplest is to encode it in
clauses. By seeing clauses as implications, it is easy to then understand the two clauses to learn:
JP ∧QK⇒ JP K ≡ ¬JP ∧QK ∨ JP K, and JP ∧QK⇒ JQK ≡ ¬JP ∧QK ∨ JQK.

In essence, this process simulates a lazy CNF conversion with named intermediate formulas1,
step-by-step. The main reason why this process is done lazily, that is one step at a time, instead
of recursively applying the b.c function on every input formula is to better handle quantified
formulas. Indeed, the tableau theory waits for a formula to be assigned, and then unfolds it
according to b.c. This allows us to only translate either the positive or the negative version of
a formula, since we know its truth value. If we did not know its truth value (for instance if we
wanted to perform this conversion recursively), then we would need to translate both the positive
and negative version of the formula in order to be complete. This becomes a problem for quantified
formulas. Indeed, quantified formulas are handled by substituting the bound variable with either

1Intermediary formulas are named because traditional SAT and SMT solvers only handle atomic formulas. Thus
to refer to any non-atomic formula F , a new atomic proposition equivalent to F must be created, essentially giving
a name to the formula F .
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an arbitrary term, or a meta-variable, resulting in a new formula that is not a sub-formula of
the input formula, contrary to what happens for ordinary logical connectives. Thus translating
formulas using b.c non-lazily would generate a lot of possibly useless formulas that would parasite
the proof search. This is why we wait for a formula to be assigned before unfolding its top-level
connective. Performing translation lazily also allows us to possibly find a model or a proof without
translating all formulas in a problem, and thus achieve better performances.

This theory works by only using the inference rule Learn described in Section 1.2.4. As a
consequence it is a valid theory for both SMT and McSat solvers. Furthermore, since it only
interacts with formulas, it should be trivial to integrate it into any theory combination framework
used in an SMT solver. This means that it can be effectively used as a drop-in replacement for
CNF conversion.

2.1.2.1 Example

Let us try and prove the formula F ≡ (A ∨ C) ⇒ (A ∨ B ∨ C). The proof search starts with
a single clause containing a single boxed formula, which is the negation of the goal that must be
proven:

C0 ≡ ¬J(A ∨ C)⇒ (A ∨B ∨ C)K

The inference rules directly propagate: J(A ∨ C)⇒ (A ∨B ∨ C)K C0 ⊥. Upon propagation,
the tableau theory generates and adds the two clauses in b¬J(A ∨C)⇒ (A ∨B ∨C)Kc using rule
α¬⇒ :

C1 ≡ J(A ∨ C)⇒ (A ∨B ∨ C)K ∨ JA ∨ CK
C2 ≡ J(A ∨ C)⇒ (A ∨B ∨ C)K ∨ ¬JA ∨B ∨ CK

With these two clauses, the inference rules of the McSat algorithm can now propagate JA ∨ CK C1 >
and JA ∨B ∨ CK C2 ⊥. When the formula JA ∨ CK becomes true, the tableau theory generates
the clause in bJA ∨ CKc using rule β∨ :

C3 ≡ ¬JA ∨ CK ∨ JAK ∨ JCK

At the same time, the formula JA∨B ∨CK became false, so the tableau theory also generates
the clause in b¬JA ∨B ∨ CKc :

C4 ≡ JA ∨B ∨ CK ∨ ¬JAK
C5 ≡ JA ∨B ∨ CK ∨ ¬JBK
C6 ≡ JA ∨B ∨ CK ∨ ¬JCK

With these new clauses, the inference rules now allow us to propagate JAK C4 ⊥, JBK C5 ⊥,
and JCK C6 ⊥. At that point, a conflict is detected in clause C3. The analyze phase then inspects
the trail, starting from the most recent assignment :

1. Analyze propagation JCK C6 ⊥. Since JCK occurs in the conflcit clause C3, a resolution is
performed between C3 and C6, to get D ≡ JA ∨B ∨ CK ∨ JAK ∨ ¬JA ∨ CK

2. Analyze propagation JBK C5 ⊥. Since JBK does not occur in the analyzed clauseD, nothing
needs to be done.

3. Analyze JAK C4 ⊥. Since JAK occurs in the analyzed clause D, a resolution is performed
between D and C4 to get D ≡ JA ∨B ∨ CK ∨ ¬JA ∨ CK
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4. Analyze JA ∨B ∨ CK C2 ⊥. Again, a resolution is performed betweenD and C2, and results
in D ≡ JF K ∨ ¬JA ∨ CK

5. Analyze JA ∨ CK C1 >. A resolution is performed betweenD and C1, ad results inD ≡ JF K.

6. Finally, the first propagation JF K C0 ⊥ is analyzed, and by performing a resolution between
D and C0, we get the empty clause.

In practice, the implementation does not need to perform this analyze phase: any conflict that
occurs before any decision is made will always result in the empty clause being reached during the
analyze phase, so the solver actually stop right after the conflict is found, and returns UNSAT.

We can thus conclude that the set of clauses {C0, . . . , C6} is unsatisfiable. Since clauses
C1, . . . , C6 are tautologies that are provable in first-order theory, this means that C0 is actually
unsatisfiable on its own. We can then conclude that the formula F is provable.

An example with splitting. Now, let us consider the following problem :

C0 ≡ JA ∨BK
C1 ≡ JA⇒ CK
C2 ≡ JB ⇒ CK
C3 ≡ JD ∨ EK
C4 ≡ JD ⇒ ¬CK
C5 ≡ JE ⇒ ¬CK

All 6 boxed formulas are directly propagated :

• JA ∨BK C0 >

• JA⇒ CK C1 >

• JB ⇒ CK C2 >

• JD ∨ EK C3 >

• JD ⇒ ¬CK C4 >

• JE ⇒ ¬CK C5 >

These propagations prompt the tableau theory to generate and add the following clauses :

C6 ≡ ¬JA ∨BK ∨ JAK ∨ JBK β∨

C7 ≡ ¬JA⇒ CK ∨ ¬JAK ∨ JCK β⇒

C8 ≡ ¬JB ⇒ CK ∨ ¬JBK ∨ JCK β⇒

C9 ≡ ¬JD ∨ EK ∨ JDK ∨ JEK β∨

C10 ≡ ¬JD ⇒ ¬CK ∨ ¬JDK ∨ ¬JCK β⇒

C11 ≡ ¬JE ⇒ ¬CK ∨ ¬JEK ∨ ¬JCK β⇒

Interestingly, none of these clause can propagate. In that case, the solver will decide on one
of the five undecided literals, which are : JAK, JBK, JCK, JDK and JEK. Let us suppose it decides:
JCK 7→1 >. That decision allows ArchSAT to perform two propagations:

• JDK C10 ⊥
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• JEK C11 ⊥

At that point, a conflict is detected on clause C9, where all 3 literals are false. Conflict analysis
then does the following :

• Start with the conflict clause D ≡ C9 ≡ ¬JD ∨ EK ∨ JDK ∨ JEK

• Analyze the last element on the trail: JEK C11 ⊥. Since JEK occurs in D, a resolution is
performed between D and C11, which result in a new conflcit clause D ≡ ¬JD ∨ EK ∨ JDK ∨
¬JE ⇒ ¬CK ∨ ¬JCK

• Analyze the next element on the trail: JDK C10 ⊥. Since JDK occurs in D, a resolution is
performed between D and C10, which result in a new conflcit clause D ≡ ¬JD∨EK∨¬JE ⇒
¬CK ∨ JD ⇒ ¬CK ∨ ¬JCK

• Analyze the next element on the trail: JCK 7→1 >. Rule Learn-Sat can apply, which undoes
the decision and uses C12 ≡ D ≡ ¬JD ∨ EK ∨ ¬JE ⇒ ¬CK ∨ JD ⇒ ¬CK ∨ ¬JCK to instead
propagate: JCK C12 ⊥.

At that point, a very similar processus takes place with clauses C6, C7 and C8. ArchSAT can
perform 2 propagations :

• JAK C7 ⊥

• JBK C8 ⊥

These propagation create a conflict in clause C6, where all 3 literals are false. Since we have
reached a conflict before any decision is made (the conflict analysis above backtracked before the
decision on JCK, thus the trail now does not contain any decision), this means that the problem
is unsatisfiable.

2.1.3 Congruence Closure without Congruence Closure
This section describes how equality and uninterpreted functions (and predicates) are handled

in ArchSAT, relying on McSat to implement them in distinct theories. Indeed, McSat allows us to
easily implement equality in its theory, and uninterpreted functions (and predicates) in another,
whereas traditional SMT solvers rely on a congruence closure algorithm [69] to do both tasks
at the same time. This way of separating equality reasoning from uninterpreted functions and
predicates is already present in [42, 58], but is an integral part of ArchSAT, and useful to better
understand how assignments work, which will help in Section 3.3.

2.1.3.1 Equality

Simple Equality theory for McSat. Let us first consider the theory of equality. As stated in
Section 1.3, the invariants that the theory will try to enforce is to keep for each term the constraints
on its potential values. Equalities are quite simple in that regard as the only constraint that derives
from an equality t = t′ is that when t (resp. t′) is assigned to some value v, then t′ (resp. t) must
then also be assigned to v. Similarly, a disequality t 6= t′ implies a constraint on the potential
values of t (resp. t′) as soon as t′ (resp. t) is assigned to a value v: t (resp. t′) cannot be assigned
to v. There are two cases where these constraints may be incompatible:

• if an equality t = t′ and a disequality t 6= t′′ have been propagated or decided, t′ assigned to
a value v and t′′ also assigned to v, then t has no remaining potential value. We can then
create a conflict that will be sent to the McSat algorithm using the tautology: t = t′ ∧ t 6=
t′′ ⇒ t′ 6= t′′, which gives the clause ¬Jt = t′K ∨ Jt = t′′K ∨ ¬Jt′ = t′′K1. This is indeed a
conflict clause for McSat: Jt = t′K is true in the trail (since it was propagated or decided),
Jt = t′′K is false in the trail for the same reason, and lastly, Jt′ = t′′K can be evaluated to
true, using the assignments for t′ and t′′.

1This is clearly a tautology as it states the transitivity of equality: it is equivalent to t = t′ ∧ t′ = t′′ ⇒ t = t′′
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• if two equalities t = t′ and t = t′′ have been propagated or decided, and t′ assigned to v′ and
t′′ to a v′′ different from v′. In that case just as for the other case, a conflict can be raised
using transitivity of equality: ¬Jt = t′K ∨ ¬Jt = t′′K ∨ Jt′ = t′′K. The two equalities Jt = t′K
and Jt = t′′K are true in the trail, and Jt′ = t′′K evaluates to false because of the assignments.

Now that we have seen when and how conflicts are raised, the other task the theory has to
perform is to return adequate values for assignments. Whenever the McSat algorithm asks the
equality theory for a value to assign to a term t, either an equality t = t′ has already constrained
t to be assigned the same value v as t′ (and no constraint has forbidden that value, or else a
conflict would have been raised as explained in the above paragraph), in which case we return v.
Or, in the absence of an equality constraint (i.e. if there are no constraints, or only disequality
constraints), the assignment value can be chosen freely: indeed, in first-order logic, we assume
that each type is non-empty and we have access to an infinity of distinct constants of that type1.
In order to not generate too many of these constants, in ArchSAT, we choose to assign to t a value
that we will write t̂. The only thing that we can do with values such as t̂ is to compare them,
essentially giving them the same semantics as fresh constants without having to generate such
constants. Note that it is done only in cases where the type of t is uninterpreted and thus there
is not much information on the values of that type. In cases where the type is interpreted (such
as arithmetic), more traditional values such as 1, 42, 38 , . . . would be chosen and assigned by the
arithmetic theory rather than the generic equality theory.

This description is enough to specify and implement a theory of equality for McSat. However,
it still has the inconvenience of not directly handling long chains of equality: indeed consider
a scenario where equalities t0 = t1, t1 = t2, . . . tn = tn+1, and disequality t0 6= tn+1 have been
propagated at level 0. If we then try and assign the ti (in an unspecified order), we will need to
raise quite a lot of conflict to get to an unsatisfiable result. Indeed, suppose we assign t0 to t̂0
(since there is no constraint on it), and then t2 to t̂2 (also since there is no constraint on it). We
then have a conflict because t1 has to be assigned to both t̂0 and t̂1 which are different constants.
We then learn through the conflict that t0 and t2 are equal. This process can then repeat with
t0 and ti, and learn about any equation ti = tj , before finally learning t0 = tn+1 and concluding
that the problem is unsatisfiable. This is quite inefficient both in terms of steps needed to find the
result, and in terms of how many clauses have been added which, in situations where all formulas
are not at level 0 (and thus proof search continues after finding that the disequality conflicts
with the equalities), could slow down the unit propagation mechanism considerably. In order to
avoid this problem, ArchSAT uses an union-find [85,86] structure to discover conflicts earlier when
possible.

Equality theory in ArchSAT. Formally, consider an extended union-find structure with proof
producing capabilities [68, 69], i.e. whenever two terms t and u are in the same equivalence class,
the union-find can produce a list2 of terms x1, . . . , xn, such that t = x1, x1 = x2, x2 = x3,
. . . , xn = u are equalities that have been added to the union find (up to equality symmetry),
effectively explaining why two terms are in the same equivalence class. The extension of the
union-find structure is that each equivalence class c in the union-find will carry:

• an optional pair of terms (t, v) called its tag, and representing the fact that a term t, which
belongs to the equivalence class, has been assigned to v. v will be called the tagged value
and t the tagged term of the equivalence class.

• a list of disallowed equivalence class, which are forbidden to be merged with c.

The theory for equality in ArchSAT then does the following:

• As soon as a term t is assigned to a value v, the tag of the equivalence class c of t is set to
(t, v). If c has no tags, or the tag is of the form (_, v), there is no problem setting the new
tag, else a conflict is raised (see below).

1An axiom may restrict the use of these constants in a valid model, but that does not prevent from using as
many of these constants in proof search.

2In practice, the algorithm also tries and returns the smallest explanation, in order to generate smalle, and thus
better, conflicts
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• As soon as an equality t = u is decided or propagated, then this equality is added to the
union-find algorithm, thus merging the equivalence classes of t and u. When merging the
two equivalent classes, the tags are compared, potentially raising a conflict (see below), and
the list of disallowed classes are also compared, potentially raising a conflict (see below).

• As soon as a disequality t 6= u is decided or propagated, the equivalence class of t is added
to the list of disallowed classes of the equivalence class of u (and vice-versa). This can raise
a conflict if t and u have the same equivalence class (see below).

The above operations have two ways to raise a conflict : when comparing two tags, and when
merging classes that are not allowed to be merged.

• A conflict involving tags occurs either when the theory attempts to set the tag of an already
tagged equivalence class, or when two classes with incompatible tags are attempted to be
merged. In any case, the conflict arises in the presence of two tags (t, v) and (t′, v′) such
that v 6= v′. The union-find is queried for the explanation x1, . . . , xn of why t and t′ are in
the same equivalence class. The following conflict can then be raised:

¬Jt = x1K ∨ ¬Jx1 = x2K ∨ . . . ∨ ¬Jxn = t′K ∨ Jt = t′K

This is obviously a tautology, expressing transitivity of equality on a list of terms. It is a
correct conflict clause because the equalities t = x1,. . . , xn = t′ have been added to the
union-find which only occurs when the equality has been decided or propagated (see next
point), and equality t = t′ can be evaluated to false because of the different assignments for
t and t′.

• Merging conflicts occur when two classes c and c′ are either:

– merged and the theory is trying to disallow their merging (in the case of a new dise-
quality).

– to be merged, although they are already disallowed to be merged (in the case of a new
equality). In this case, the two classes are still merged temporarily before raising the
conflict (in order to have a more homogeneous way of treating conflicts).

In both cases, the theory only has to get the disequality t = t′ that is the reason why both
classes should not be allowed to be merged, and then query the union-find for the explanation
x1, . . . , xn of why t and t′ should be in the same equivalence class. The theory can then
raise the following conflict:

¬Jt = x1K ∨ ¬Jx1 = x2K ∨ . . . ∨ ¬Jxn = t′K ∨ Jt = t′K

Which is again a trivial tautology, and is a correct conflict clause because all the equalities
in it have been decided and/or propagated so that the clause is false in the current trail.

Whenever asked for a value to assign to an unassigned term t, the theory finds the root t′ of the
equivalence class of t, and returns the value t̂′. Additionally, ArchSAT performs a non-necessary
optimisation, which is to merge any two equivalence classes that have been tagged with the same
value1.

While the description of the naive equality theory was explained in [58], it did not explore the
use of a union-find to make the theory faster, which is a contribution of this thesis. More generally,
most decision procedures usually used in SMT solvers can be adapted to McSat in order to retain
their excellent speed and conflict detection, while also interfacing properly with the assignment
mechanism which serves as a way for theories to exchange information.

1Note that the only change it makes is in the theoretical justification of the correction of conflicts clause, where
some equalities may be have to be evaluated instead simply being decided or propagated.
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Example. Let us consider the following simple example. We consider an input problem that
consists of 4 clauses:

C0 ≡ Ja = bK
C1 ≡ Ja = cK
C2 ≡ ¬Ja = dK
C3 ≡ Jb = dK ∨ Jc = dK

When starting to solve this problem, the inferences rules immediately propagate Ja = bK C0 >,
Ja = cK C1 >, and Ja = dK C2 ⊥. At this point, a decision has to be made. Let’s suppose that
the algorithm chooses to decide on a value for a. Since we do not have any constraint on the
value of a, we assign â: a 7→1 â. Then b is chosen to be assigned. Since we have a value for a, we
have exactly one constraint on the value of b, which must be the same as the value of a, because
Ja = bK is true. We thus assign the same value to b: b 7→2 â. Suppose the algorithm now chooses
to decide on a value for d. The only constraints on this value is that it must not be â since Ja = dK
is false. We thus assign d to its own distinct value: d 7→3 d̂. At that point, the theory of equality
can evaluate Jb = dK since both b and d are assigned. It can thus propagate: Jb = dK 3 ⊥. And
finally, C3 can then be used to propagate: Jc = dK C3 >. The state of the McSat algorithm is
then:

Clauses Trail

{ C0, C1, C2, C3 } [Ja = bK C0 >, Ja = cK C1 >, Ja = dK C2 ⊥,
a 7→1 â, b 7→2 â, d 7→3 d̂, Jb = dK 3 ⊥, Jc = dK C3 >]

At that point the equality theory can detect that there is no more adequate value left to assign
to c. Indeed there are two constraints on the value of c, on the one hand it must be the same as
the value of a, which is â, because Ja = cK is true in the trail (at level 0), and on the other hand
it must be the same as the value of d, which is d̂, because Jc = dK is also true (at level 3). These
two constraints cannot be satisfied since by definition â and d̂ are different values1.

Thus a conflict can be generated using the transitivity of equality: ¬Ja = cK∨¬Jc = dK∨Ja = dK.
This is indeed a conflict clause, since Ja = cK and Jc = dK are true in the trail (and thus ¬Ja = cK
and ¬Jc = dK false), and Ja = dK can be evaluated to ⊥ thanks to the assignments on a and d.
The analyze of this conflict then goes up the trail (in reverse chronological order); it performs a
resolution with C3 in order to reach the following clause: C4 ≡ ¬Ja = cK∨ Jb = dK∨ Ja = dK. Since
this clause can propagate new information at level 0, the algorithm thus backtracks to just before
the first decision (i.e. the assignment of a) was made, and adds C4 to the set of clauses that the
solver tries to satisfy, and the solver is now in the following state:

Clauses Trail

{ C0, C1, C2, C3, C4 } [Ja = bK C0 >, Ja = cK C1 >, Ja = dK C2 ⊥, Jb = dK C4 >]

Continuing solving, the inference rules may for instance choose to decide on a, and get the
semantic decision a 7→1 â (since there is no constraint on the value of a), and then decide on b
(which must have the same value as a, because Ja = bK is true in the trail), resulting in the decision
b 7→2 â. At that point, there is already no more adequate value for d left, since it should be distinct
from the value of a (Ja = dK is false in the trail), and equal to the value of b (Jb = dK is true in the
trail). However, a and b have the same value, thus a conflict is raised: ¬Ja = dK∨¬Jb = dK∨Ja = dK.
Resolution steps are then performed between this conflict and C4, C2, C1 and finally C0, reaching
the empty clause and proving that the input clauses are unsatisfiable.

In this example, there is no difference between the naive theory for equality and using a union-
find structure, since we do not need to consider chains with more than two equalities.

1Values can be syntactically compared to determine their semantic equality.
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2.1.3.2 Uninterpreted Functions and Predicates

Dealing with uninterpreted functions and predicates using assignments is actually quite easier
than what a congruence closure algorithm usually entails. All that the theory has to do is check
that assignments are coherent with the semantics of functions.

Formally, the theory of uninterpreted functions has to ensure the coherence of the partial
abstract interpretation σ built by the McSat solver, with regards to uninterpreted functions and
predicates. That means ensuring that for each uninterpreted function symbol f , there exists a
function F that can be its value in a model that completes σ. The easiest way to ensure that is
for the theory to actually build such a function F during proof search, or rather its projection on
the values considered in the problem, so that each tuple of values is mapped to a single value.

In order to ensure the existence of such a mapping, the theory must ensure that for any pair of
terms f(t1, . . . , tn) and f(u1, . . . , un), if for all 1 ≤ i ≤ n, ti and ui are assigned to the same value
vi, then f(t1, . . . , tn) and f(u1, . . . , un) are assigned to the same value v. Whenever that is not
the case, a conflict can be raised: t1 = u1 ∧ . . . ∧ tn = un → f(t1, . . . , tn) = f(u1, . . . , un), which
gives the clause: ¬Jt1 = u1K∨ . . .∨¬Jtn = unK∨ Jf(t1, . . . , tn) = f(u1, . . . , un)K where every literal
can be evaluated using assignments. For an uninterpreted predicate p (instead of an uninterpreted
function f), if p(t1, . . . , tn) and p(u1, . . . , un) have different truth assignment, then one must be
true while the other is false. Without loss of generality, let us suppose that p(t1, . . . , tn) is true,
then the conflict will be: t1 = u1 ∧ . . . ∧ tn = un ∧ p(t1, . . . , tn) → p(u1, . . . , un) which gives the
clause: ¬Jt1 = u1K ∨ . . . ∨ ¬Jtn = unK ∨ ¬Jp(t1, . . . , tn)K ∨ Jp(u1, . . . , un)K.

This is enough to fully implement a theory of uninterpreted functions and predicates: it spec-
ifies exactly what trails are incoherent, and what conflicts to raise in such cases. Note that this
theory does not decide assignments: it leaves these decisions to other theories, and only checks
the coherence of these assignments.

A little caveat is present for uninterpreted predicates, in that terms that have the proposition
type ($o in TPTP), i.e. terms that result from the application of an uninterpreted predicate, should
not be targets of assignments. Indeed, these terms of the form p(. . .) already appear directly in
blackboxes as Jp(. . .)K and the McSat algorithm can already decide on these blackboxes. For all
intents and purposes, this decision is equivalent to an assignment p(. . .) 7→ > (i.e. if a conflict
relies on the fact that p(. . .) is true because of its assignment, it will work just as well because
Jp(. . .)K is true in the trail). Consequently, atomic formula will not be assigned (as terms are), but
in ArchSAT, a dummy assignment is added following decision on blackboxed atomic formulas, in
order to avoid special-casing them in theories.

Example Let us consider the following formula P ≡ a = b ⇒ f(a) = f(b). In order to prove
such a formula, we start with a single clause :

C0 ≡ ¬JP K

The solve directly propagates, P  C0 ⊥. The solver then uses the tableau rule α¬⇒ to add
the two clauses :

C1 ≡ JP K ∨Ja = bK
C2 ≡ JP K ∨¬Jf(a) = f(b)K

Using these two clauses, the following two propagations can be made: Ja = bK C1 >, and
Jf(a) = f(b)K C2 ⊥. At that point, all propagations have been done, so the McSat algorithm
chooses to decide on a value for a. Since there is not yet any constraint on it, the value chosen is
â: a 7→1 â. After that, let us suppose the algorithm decides to choose on b; as explained above in
the theory of equality, the only value allowed for b is â, which results in the decision: b 7→2 â. Then
suppose a value for f(a) is to be chosen; as there is no constraint, ˆf(a) is chosen: f(a) 7→3

ˆf(a).
Then, a value is chosen for f(b), which must be distinct from the value of f(a), thus: f(b) 7→4

ˆf(b).
At that point, the theory of uninterpreted functions will detect a conflict, because although a and
b are assigned to the same value, f(a) and f(b) are not. It will therefore add the following clause:



42 CHAPTER 2. FIRST-ORDER REASONING IN ARCHSAT

C3 ≡ ¬Ja = bK ∨ Jf(a) = f(b)K

The analyze phase then inspects each element of the trail, starting from the most recent.
The fours semantic decisions are ignored as no literal in the clause is false because of a semantic
propagation. The algorithm then inspects the propagation Jf(a) = f(b)K C2 ⊥. Since Jf(a) =
f(b)K occurs in the conflict clause, a resolution is performed between the conflict clause C3, and C2,
that yields the clause D ≡ JP K∨¬Ja = bK. Then the propagation, Ja = bK C1 > is inspected, and
since Ja = bK occurs in D, another resolution is performed, yielding the clause D ≡ JP K. Finally,
the first propagation is analyzed, a last resolution performed, and the empty clause is reached,
demonstrating the unsatisfiability of the problem, and therefore the provability of P .

2.2 Existentially-Quantified Formulas

This section describes how existential formulas are handled in ArchSAT. More specifically some
technical aspect of how generation of Skolem terms is handled during proof search.

2.2.1 Existential Constants

As shown in Figure 2.2, the reasoning rules of the tableau theory for existentially quantified
formulas are relatively simple. Each time an existentially quantified formula ∃x : ty .P (x) (resp. a
universally quantified formula ∀x : ty .P (x)) becomes true (resp. false), a fresh constant c is
generated for that formula1, and a clause ¬J∃x : ty .P (x)K ∨ JP (c)K (resp. J∀x : ty.P (x)K ∨ ¬JP (c)K)
is added to the solver, following rule δ∃ (resp. δ¬∀). Fresh type constants are also technically
generated for formulas that quantify over types, although there are not many problems that
existentially quantify over types. Comparatively, meta-variables for types will be much more
frequent, as universal quantification is quite useful to generalize axioms.

More interesting is actually the interaction between these fresh constants and meta-variables.
As mentioned earlier, and detailed in Section 2.3, terms will at one point be unified in order to find
substitutions from meta-variables to terms. This brings an interesting problem, which is that the
generated constants are actually free of constraints during unification: a constant generated from
a formula containing a meta-variable can be unified with that same meta-variable without any
problem. As we will see this is not a problem with the way instantiation is done as explained in
Section 2.3. However, for other instantiation scheme2, it would be interesting to use Skolem terms
instead of epsilon-terms. Indeed Skolem terms are more restrictive with respect to unification,
which would allow for more subtle instantiation schemes, or even would help reduce the number of
substitutions found during unification. To that end, the next section explains the technical aspect
of generating Skolem terms dynamically during proof search.

2.2.2 Generating Skolems on the Fly

Unlike fresh constants, generating Skolem terms pose a more technical challenge. Indeed,
Skolem terms are quite easy to generate for initial formulas (which still retain free variables bound
by outer quantifiers), but it becomes harder once these free variables have been substituted by
ground terms (possibly including meta-variables). For instance, let us consider the formula:

F ≡ ∀x : ty .∃y : ty .P (x, y)

In this form, it would be quite easy to introduce a Skolem term for the existentially quantified
variable, in order to get the formula:

Fsk ≡ ∀x : ty .P (x, sk(x))

1This handling of existential formulas is different from that of Zenon which uses epsilon-terms instead of fresh
generated constants.

2for instance, arithmetic.
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However, during proof search, we do not usually have access to F , but rather to the formula
F ′ ≡ ∃y : ty .P (t, y), where x has been substituted with an arbitrary ground term t. The problem
is that looking at F ′ alone, it is impossible to determine what the free variables of F were, and
with what terms they have been substituted.

In order to overcome that problem, each quantified formula maintains a list of free terms. At
creation, this list is initialized with the list of free variables of the formula. Subsequently, each
substitution that is applied to the quantified formula is also applied to its list of free terms. When
a quantified formula then needs to generate its associated Skolem term, the list of free terms can
be used as arguments for the Skolem symbol.

Following the example before, when we create F , the existential quantifier records that it has
exactly one free variable, and initializes its free term list with [x]. When x is substituted with
t, this also applies to the list of free terms of the existential quantifier, so that F ′ has the free
term list [t]. When we try and generate a Skolem symbol for F ′, we use its list of free variables
to generate the Skolem term sk(t), which is the expected result.

While this is partly a technical issue, it is also a non-trivial theoretical point, as the instantiation
rule for Skolem terms, that is the analog of the δ rules for Skolem terms, are not directly expressible
with the structure of terms given in this thesis. Indeed, to express such rules would need to
integrate the notion of free arguments as described above into the structure of formulas presented
in Figure 2.1.

Finally, note that since ArchSAT actually uses polymorphic terms, there is actually a list of
free types along the list of free terms, following the same idea, and Skolem symbols can thus be
polymorphic.

2.3 Meta-Variables

Handling universally quantified formulas in ArchSAT is done in rounds, each with three steps.
A round starts by solving the clauses currently in the solver state using the tableau, equality
and uninterpreted function theories defined earlier. During this search, some meta-variables are
generated (very similarly to how epsilon-terms are generated), as described in Section 2.3.1. Once
proof search on the clauses in the solver state has finished, it results in a ground model of the
input problem (meta-variables are considered ground terms). At that point, some substitution
from meta-variables to terms are determined as explained in Section 2.3.2. Section 2.3.3 explains
how these substitutions are then used to instantiate the meta-variables, or rather their defining
formulas, so that new clauses are added to the solver state. At that point, proof search can then
re-start using these new clauses, and this starts another round. This process continues to be
applied until either no substitutions can be found, or an unsat result is reached.

2.3.1 Generating Meta-Variables

Meta-variables are generated for each universally quantified formula (resp. existentially quan-
tified formula) that becomes true (resp. false), and then introduced using rule γ∀M (resp. γ¬∃M ).

For reasons explained later, we may need to generate more than one meta-variable per quanti-
fied formula. Each meta-variable is thus uniquely identified by a pair of a formula and an increasing
index used to distinguish distinct meta-variables generated from the same formula.

Semantically, meta-variables are ground terms, whose existence is guaranteed because first-
order logic requires all types to be inhabited. In that sense, they behave the same way as epsilon-
terms during proof search, and will be assigned to a value by the McSat inference rules. The only
difference is during unification, when meta-variables actually behave as unification variables (i.e
substitutions bind meta-variables to terms or types).
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2.3.2 Finding Instantiations
Once meta-variables are generated, proof search proceeds as usual, until a model is found by

the inference rules of the McSat algorithm1. Once such a model is found, we will try and find
a substitution (from meta-variables to types or terms) such that its application invalidates the
propositional model2. For instance, suppose we reach a propositional model where p(a) is true and
p(X) false, for some meta-variable X. Then the substitution {X 7→ a} would actually invalidate
the propositional model, because under the substitution, p(a) is both true and false. In the next
subsection we will see how such a substitution is then used in practice.

The way this search for substitutions is done in ArchSAT is the following. When we get a
propositional model M, we first keep only the atomic formulas, since the semantics of formulas
starting with a logical connective are already fully encoded in the clausal calculus of the McSat
inference rules. We can then split the atomic formulas into four mutually exclusive lists:

• The equalities that are true

• The equalities that are false

• The predicates3 that are true

• The predicates that are false

Then, for each pair (u, v) where either u is a true predicate and v a false predicate, or u = v
is one of the false equalities, we try and unify u and v. As usual when unifying terms, we look for
a substitution σ with no cycles, so that fixpoint application of σ to a term t, written tσ, is well-
defined. Unification of u and v thus either fails, or returns a substitution σ, such that uσ = vσ
syntactically.

Note that if the list of true equalities is non-empty, this unification should be done modulo
these equalities. Section 3.4 will treat this in more details. For now, we will thus consider examples
without equalities, where simple unification is enough4.

For instance, suppose we want to prove the drinker’s paradox: D ≡ ∃x : ty . p(x) ⇒ (∀y :
ty . p(y)). Using the tableaux rules described in Figure 2.2, we start with the clause:

C0 ≡ ¬J∃x : ty . p(x)⇒ (∀y : ty . p(y))K

This clause propagates JDK C0 ⊥, which allows the tableau theory to generate a meta-variable
X ≡ X∃x:ty . p(x)⇒(∀y:ty . p(y)) using rule γ¬∃, and add the following clause:

C1 ≡ J∃x : ty . p(x)⇒ (∀y : ty . p(y))K ∨ ¬Jp(X)⇒ ∀y : ty . p(y)K

This in turn, propagates Jp(X)⇒ ∀y : ty . p(y)K C1 ⊥, which causes the tableau theory to
create the following two clauses using rule α¬⇒ :

C2 ≡ Jp(X)⇒ ∀y : ty . p(y)K ∨ Jp(X)K
C3 ≡ Jp(X)⇒ ∀y : ty . p(y)K ∨ ¬J∀y : ty . p(y)K

These two clauses allow to propagate Jp(X)K C2 >, and J∀y : ty . p(y)K C3 ⊥. Finally, the
tableau theory uses rule δ¬∀ to generate a fresh constant τ and add the clause :

C4 ≡ J∀y : ty . p(y)K ∨ ¬Jp(τ)K

1Or, as noted earlier, the SMT inference rules, since the tableau theory, including the handling of meta-variables,
is actually compatible with the SMT algorithm.

2ArchSAT is primarily aimed at proving formulas, which is done by proving there is no model of the axioms and
the negation of the goal, hence why it tries to invalidate models.

3In this context, a predicate is a formula whose head symbol is a predicate symbol.
4Robinson’s unification algorithm is currently used.
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At that point, SMT solvers have nothing more to do, whereas McSat solvers would still decide
on values for the terms occurring in the problem, however, these additional assignments would
not raise a conflict and thus not change the propositional model. The solver has thus reached the
following propositional model1:

J∃x : ty . p(x)⇒ (∀y : ty . p(y))K 7→ ⊥
Jp(X)⇒ ∀y : ty . p(y)K 7→ ⊥

Jp(X)K 7→ >
J∀y : ty . p(y)K 7→ ⊥

Jp(τ)K 7→ ⊥

We thus get exactly one true predicate: p(X) and one false predicate p(τ). We can now try
and unify p(X) and p(τ), which succeeds and yields the substitution σ = {X 7→ τ}. We will see
in the next section how this substitution is subsequently used to finish the proof of the drinker’s
paradox.

Meta-Variables and Skolem Terms Generated constant for existential formulas are quite
adequate with the schema of instantiation that is explained in the next section, where new clauses
representing the instantiations are added, without affecting the already existing meta-variables.
However, there are other ways to use the substitutions found (for instance, substituting the meta-
variables in place, or adding new equalities corresponding to the bindings of the substitution)
which could be unsound when unifying while using these generated constants.

Indeed, let us assume we are trying to prove the following satisfiable formula: ∃x : ty .∀y :
ty .p(y, x)⇒ p(x, y). We get the following clauses and propositional model:

C0 ≡ ¬J∃x : ty .∀y : ty .p(y, x)⇒ p(x, y)K
C1 ≡ J∃x : ty .∀y : ty .p(y, x)⇒ p(x, y)K ∨ ¬J∀y : ty .p(y,X)⇒ p(X, y)K
C2 ≡ J∀y : ty .p(y,X)⇒ p(X, y)K ∨ ¬Jp(τ,X)⇒ p(X, τ)K
C3 ≡ Jp(τ,X)⇒ p(X, τ)K ∨ Jp(τ,X)K
C4 ≡ Jp(τ,X)⇒ p(X, τ)K ∨ ¬Jp(X, τ)K
X ≡ X∃x:ty .∀y:ty .p(y,x)⇒p(x,y)

J∃x : ty .∀y : ty .p(y, x)⇒ p(x, y)K 7→ ⊥
J∀y : ty .p(y,X)⇒ p(X, y)K 7→ ⊥

Jp(τ,X)⇒ p(X, τ)K 7→ ⊥
Jp(τ,X)K 7→ >
Jp(X, τ)K 7→ ⊥

We can unify p(τ,X) and p(X, τ) with the substitution σ = {X 7→ τ}. However, if we try
and add the equality X = τ , or try and substitute X by τ everywhere, we would allow the McSat
algorithm to reach UNSAT and wrongly conclude that the input formula is provable. Indeed,
replacing X with τ , or otherwise constraining the value of X to be the same as τ is unsound, since
τ is introduced after X, and more precisely τ depends on X. This dependency relation between
X and τ is exactly what the Skolem symbols naturally explicit: generating Skolem terms instead

1In ArchSAT, we actually get a full first-order model which also includes assignments for X and τ , but this
information is not used for finding instantiations.
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of fresh constants would replace τ by sk(X), which would prevent unification of p(X, sk(X)) and
p(sk(X), X), as the only possible to do that is through the cyclic substitution {X 7→ sk(X)}.

Generating Skolem symbol instead of epsilon terms would also prevent unification from finding
a solution for the following variation of the drinker’s paradox: ∃x : ty .∀y : ty .p(x) ⇒ p(y) which
would make ArchSAT incomplete. In order to overcome this problem, we can generate more
than one meta-variable for each quantified variable. In the example of the above variation of the
drinker’s paradox, using Skolem terms, this would produce:

C0 ≡ ¬J∃x : ty .∀y : ty .p(x)⇒ p(y)K
C1 ≡ J∃x : ty .∀y : ty .p(x)⇒ p(y)K ∨ ¬J∀y : ty .p(X)⇒ p(y)K
C2 ≡ J∀y : ty .p(X)⇒ p(y)K ∨ ¬Jp(X)⇒ p(sk(X))K
C3 ≡ Jp(X)⇒ p(sk(X))K ∨ Jp(X)K
C4 ≡ Jp(X)⇒ p(sk(X))K ∨ ¬Jp(sk(X))K
C5 ≡ J∃x : ty .∀y : ty .p(x)⇒ p(y)K ∨ ¬J∀y : ty .p(X

′)⇒ p(y)K
C6 ≡ J∀y : ty .p(X

′)⇒ p(y)K ∨ ¬Jp(X ′)⇒ p(sk(X ′))K
C7 ≡ Jp(X ′)⇒ p(sk(X ′))K ∨ Jp(X ′)K
C8 ≡ Jp(X ′)⇒ p(sk(X ′))K ∨ ¬Jp(sk(X ′))K

So that we have the following atomic predicates:

• p(X) 7→ >

• p(X ′) 7→ >

• p(sk(X)) 7→ ⊥

• p(sk(X ′)) 7→ ⊥

As expected, unification fails for pairs (p(X), p(sk(X))) and (p(X ′), p(sk(X ′))), but succeeds
for pairs (p(X ′), p(sk(X))) and (p(X), p(sk(X ′))). Yielding two substitutions {X 7→ sk(X ′)} and
{X ′ 7→ sk(X)}. This shows that generating more than one meta-variable per quantified formula is
a way to solve the problem of incompleteness1 that Skolem-terms introduce. However, the number
of meta-variables to generate may be arbitrarily high, which means that we need to periodically
generate new meta-variables.

In conclusion, Skolem terms are a way to explicit the dependency relations between meta-
variables and existential constants, which may help filter the substitutions found, but introduces
other challenges when it come to completeness and fairness of the proof search.

2.3.3 Instantiating Meta-Variables

In this section, we suppose that we have a substitution σ from meta-variables to terms (we will
see later what adding bindings from meta-variables to types changes), and we would like to use
rules γ∀inst and γ¬∃inst to instantiate the corresponding formulas. The main idea is that for each
binding XF 7→ t ∈ σ, formula F should be instantiated with t using either rule γ∀inst or γ¬∃inst.

If we continue with the example of the drinker’s paradox, we had the substitution σ = {X 7→ τ},
with X ≡ X∃x:ty . p(x)⇒(∀y:ty . p(y)). In order to perform the instantiation, we thus use rule γ¬∃inst
to generate the clause C5 ≡ J∃x : ty . p(x) ⇒ (∀y : ty . p(y))K ∨ ¬Jp(τ) ⇒ ∀y : ty . p(y)K which is
added to the problem, and propagates ¬Jp(τ)⇒ ∀y : ty . p(y)K C5 >, which in turn triggers the
tableau theory to unfold it, so that we reach the following state:

1This is not a formal statement of completeness.
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C0 ≡ ¬J∃x : ty . p(x)⇒ (∀y : ty . p(y))K
C1 ≡ J∃x : ty . p(x)⇒ (∀y : ty . p(y))K ∨ ¬Jp(X)⇒ ∀y : ty . p(y)K
C2 ≡ Jp(X)⇒ ∀y : ty . p(y)K ∨ Jp(X)K
C3 ≡ Jp(X)⇒ ∀y : ty . p(y)K ∨ ¬J∀y : ty . p(y)K
C4 ≡ J∀y : ty . p(y)K ∨ ¬Jp(τ)K
C5 ≡ J∃x : ty . p(x)⇒ (∀y : ty . p(y))K ∨ ¬Jp(τ)⇒ ∀y : ty . p(y)K
C6 ≡ Jp(τ)⇒ ∀y : ty . p(y)K ∨ Jp(τ)K
C7 ≡ Jp(τ)⇒ ∀y : ty . p(y)K ∨ ¬J∀y : ty . p(y)K
X ≡ X∃x:ty . p(x)⇒(∀y:ty . p(y))

J∃x : ty . p(x)⇒ (∀y : ty . p(y))K 7→ ⊥
Jp(X)⇒ ∀y : ty . p(y)K 7→ ⊥

Jp(X)K 7→ >
J∀y : ty . p(y)K 7→ ⊥

Jp(τ)K 7→ ⊥
Jp(τ)⇒ ∀y : ty . p(y)K 7→ ⊥

In this state, the inference rules detect a conflict in clause C6, which after analysis, allows us to
conclude that the problem is unsatisfiable, thus proving the drinker’s paradox. Note that we did
not need to do an explicit contraction (as is usually needed for the drinker’s paradox), since every
application of the tableau theory actually does a contraction implicitly, and indeed the quantified
formula ¬∃x : ty . p(x)⇒ (∀y : ty . p(y)), is “used” twice by the tableau theory, in clauses C1 with
rule γ¬∃M , and clause C5 with rule γ¬∃inst.

This shows what happens in the simple examples. The general case, when we want to instan-
tiate multiple variables at the same time is a bit more complicated. This is where we start to
diverge a bit from the tableau proof search implemented in Zenon, which only instanciate a single
meta-variable at a time.

Nested Quantifiers Nested quantification needs special care. Consider for instance the for-
mula: ∀x : ty , y : ty .P (x, y). Generating meta-variables from this formula will yield the following
clauses and meta-variables.

C0 ≡ ¬J∀x : ty , y : ty .P (x, y)K ∨ J∀y : ty .P (X, y)K
C1 ≡ ¬J∀y : ty .P (X, y)K ∨ JP (X,Y )K
X := X∀x:ty ,y:ty .P (x,y)

Y := Y∀y:ty .P (X,y)

Suppose we now have the substitution {X 7→ tX ;Y 7→ tY }. Using rule γ∀inst for the binding
X 7→ tX yields clause C2, which will generate a new meta-variable in clause C3.

C2 ≡ ¬J∀x : ty , y : ty .P (x, y)K ∨ J∀y : ty .P (tX , y)K
C3 ≡ ¬J∀y : ty .P (tX , y)K ∨ JP (tX , Y

′)K
Y ′ := Y∀y:ty .P (tX ,y)
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However, directly applying rule γ∀inst to the binding Y 7→ tY yield the clause:

C4 ≡ ¬J∀y : ty .P (X, y)K ∨ JP (X, tY )K

The problem is that we treat each instantiation separately, and deduce two separate new
formulas P (tX , Y

′) and P (X, tY ), whereas we’d prefer to deduce P (tX , tY ). This problem with
separate instantiations can be solved by grouping successive quantified variables in clusters, and
instantiating clusters together. This actually mirrors the notation for successive quantifications:
instead of considering that a quantifiers binds a single variable, each quantifiers binds a non-ordered
list of variables. In the implementation, the list is ordered, but the instantiation mechanism looks
at all the bound variables. This allows us to correctly treat formulas such as ∀x : ty , y : ty , z :
ty .P (x, y, z) when the substitution maps x and z, or rather the meta-variables generated from x
and z, but not the one generated from y.

However grouping variables into clusters is not always possible, for instance consider the for-
mula: ∀x : ty .∃y : ty .∀z : ty .P (x, y, z). Applying tableau rules for quantified formulas generates
these clauses:

C0 ≡ ¬J∀x : ty .∃y : ty .∀z : ty .P (x, y, z)K ∨ J∃y : ty .∀z : ty .P (X, y, z)K
C1 ≡ ¬J∃y : ty .∀z : ty .P (X, y, z)K ∨ J∀z : ty .P (X, τ, z)K
C2 ≡ ¬J∀z : ty .P (X, τ, z)K ∨ JP (X, τ, Z)K
X := X∀x:ty .∃y:ty .∀z:ty .P (x,y,z)

τ := ε y : ty .∀z : ty .P (X, y, z)

Z := Z∀z:ty .P (X,τ,z)

Now consider a substitution σ = {X 7→ tX ;Z 7→ tZ}. In this case, applying the bindings
separately is even worse than in the first case, since an epsilon variable and a meta-variable are
generated, resulting in these clauses:

C3 ≡ ¬J∀x : ty .∃y : ty .∀z : ty .P (x, y, z)K ∨ J∃y : ty .∀z : ty .P (tX , y, z)K
C4 ≡= ¬J∃y : ty .∀z : ty .P (tX , y, z)K ∨ J∀z : ty .P (tX , τ

′, z)K
C5 ≡ ¬J∀z : ty .P (tX , τ

′, z)K ∨ JP (tX , τ
′, Z ′)K

C6 ≡ ¬J∀z : ty .P (X, τ, z)K ∨ JP (X, τ, tZ)K
τ ′ := ε y : ty .∀z : ty .P (tX , y, z)

Z := Z∀z:ty .P (tX ,τ,z)

We end up with the following atomic predicates: P (tX , τ
′, Z ′), P (X, τ, tZ), whereas we would

have ideally wanted to have P (tX , τ
′, tZ).

In order to avoid these situations, any substitution that is considered for instantiation is
simplified in order to only keep the meta-variables corresponding to variables that are quantified
in the outer-most clusters. Note that it is possible to have more than one outer-most cluster,
for instance if we consider two distinct quantified formulas. Some bindings are lost during this
simplification however, it should be simpler to find them again after instantiating the outer-most
variables, rather than try and instantiate deep variables. For instance, considering two formulas
∀x : ty .P (x) and ∀y : ty .∃e : ty .∀z : ty .Q(y, z), and a substitution σ = {X 7→ tX ;Y 7→ tY ;Z 7→ tZ},
we split σ into two substitutions σ1 = {X 7→ tX} and σ2 = {Z 7→ tZ} that we’ll each apply
“naively”, resulting in two instantiations :

Cx ≡ ¬J∀x : ty .P (x)K ∨ JP (tX)K
Cy ≡ ¬J∀y : ty .∃e : ty .∀z : ty .Q(y, z)K ∨ J∃e : ty .∀z : ty .Q(tY , z)K
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Polymorphism and Quantified Types Handling polymorphism brings some technical diffi-
culties with instantiation. When instantiating a type variable, and replacing it in the body of the
quantified formulas, it may (and probably will) change the type of some quantified term variables.
In that case, the substitution will generate fresh variables. This means that when instantiating
a type meta-variable and a term meta-variable which depends on it, both substitution have to
be done at the same time in order for the term variable to be adequately substituted. Not do-
ing so would not affect soundness, nor completeness, but means that the term instantiation is
not done, and would force to find another substitution involving the fresh term meta-variable,
even though we have already found the substitution. For instance, consider the following formula
F = ∀α : Type.∀x : α.P (x), and the substitution σ{α 7→ ty ;x 7→ t}. Distinguishing the substi-
tution into one type substitution σty = {α 7→ ty}, and a term substitution σt = {x 7→ t}, and
applying the type substitution first would generate the formula F ′ = ∀x′ : ty .P (x′), where x has
been renamed x′ because its type has changed due to the substitution. Afterwards, applying σt
would not change anything since the variable x doesn’t appear anymore in F ′.

This means that it is better for the representation of quantified formulas to quantify at the
same time on both a list of type variables and a list of term variables, in order to avoid some
back-and forth between the instantiation mechanism and the search for substitutions.

Another problem with polymorphism is that polymorphic substitution may inadvertently cap-
ture more variables than intended. For instance, consider a substitution σ = {α 7→ ty ;x 7→ t},
where a type variable α is assigned to an arbitrary type ty , and the term variable x, of type α, is
assigned to a term t of type ty . Applying σ directly to a term x = y, would fail because the vari-
able y, of type α (same as x), isn’t substituted, and thus applying the substitution would try and
build the equality t = y, which is ill-typed (assuming ty 6= α). While that does not happen when
dealing only with meta-variable, it is a common occurrence whenever substitution on variables are
handled. In order to avoid this problem, substitutions that are to be applied to a term u, must first
be extended with respect to the free variables in u in order to ensure that any variable whose type
changes under the substitution is mapped to a fresh variable of the adequate type. This actually
can bring quite some problems when trying to compare substitutions and applying a substitution
to many terms. Indeed, in order for comparison to be as precise as possible, extending substitu-
tions should be delayed as much as possible, because it makes substitutions bigger, and because
the same substitution can be extended into different substitutions depending on which term the
substitution is meant to be applied to. However, extending a substitution has side-effects: most
notably, it creates fresh variables, which means that extending the same substitution twice to the
same term may produce different substitutions since each extension may generate fresh variables.
This problem is currently handled by very carefully controlling when and where substitutions are
extended in ArchSAT, though a more generic solution would probably be better.

Heuristics Heuristics play an important role in theorem proving: the same algorithm with
different heuristics can have very different results. In the case of instantiation in ArchSAT, the
main choice point is, once unification has been run to find substitutions, which substitutions should
actually be used to instantiate the corresponding formula, and add clauses to the solver. This
is an important choice because most realistic problems can have so many terms that unification
easily finds at least a thousand substitutions. The problem is that, if all of these substitutions are
used to instantiate formulas, this adds a huge number of terms to the problem which means that
ground solving afterwards will take proportionally longer, and more importantly the next round
will have considerably more terms to unify, leading to even more terms, which in turns will yield
more terms to unify at the next round, . . .

In order to avoid this explosion in the number of terms, ArchSAT restricts the number of formula
instantiations done at each round1. This creates a choice point as to which instantiations to choose
among all that were found. Currently a very naive heuristic is used to chose instantiations that
were found using terms that were part of the goal, in order to introduce some sort of goal-oriented
proof search.

1At the time of writing, the default was to perform the best 10 instantiations, according to some heuristic that
can be selected (the number of instantiations done is also configurable).





Chapter 3

Rewriting in ArchSAT

This chapter presents how rewriting has been integrated into ArchSAT. First, a short intro-
duction on rewrite systems and the associated challenges is given in Section 3.1. One of these
challenges is the fact that the rewrite system considered may change during proof search, leading
to two different strategies: one where we consider the rewrite system constant during proof search,
yields the strategy which is called static rewriting in Section 3.2, and the other where the rewrite
system may freely change during proof search, which is called dynamic rewriting, and presented
in Section 3.3. Finally, rewrite rules are integrated into the unification procedure used for finding
instantiations, as described in Section 3.4.

3.1 Rewrite Systems

3.1.1 Theoretical Presentation

In the following, we borrow some of the notations and definitions of [47]. We call FV the
function that returns the set of free variables of a term or a formula. A term rewrite rule is a pair
of terms of the same type2 denoted by l −→ r, where FV(r) ⊆ FV(l). A formula rewrite rule is a
pair of formulas denoted by l −→ r, where l is an atomic formula and r is an arbitrary formula,
and where FV(r) ⊆ FV(l). A class rewrite system is a pair of rewrite systems, denoted by RE ,
consisting of R, a set of formula rewrite rules, and E , a set of term rewrite rules.

Given a class rewrite system RE , the relations =E and =RE are the congruences generated
respectively by the sets E and R ∪ E . In the following, we use the standard concepts of subterm
and term replacement: given an occurrence ω in a proposition P , we write P|ω for the term or
proposition at ω, and P [t]ω for the proposition obtained by replacing P|ω by t in P at ω. Given a
class rewrite system RE , the proposition P RE-rewrites to P ′, denoted by P −→RE P ′, if P =E Q,
Q|ω = σ(l), and P ′ =E Q[σ(r)]ω, for some rule l −→ r ∈ R, some proposition Q, some occurrence
ω in Q, and some substitution σ.

The relation =RE is not decidable in general, but there are some cases where this relation is
decidable depending on the class rewrite system RE and the rewrite relation −→RE . In particular,
if the rewrite relation −→RE is confluent and (weakly) terminating, then the relation =RE is
decidable.

In the rest of the thesis, we will assume that the rewrite system (i.e. the RE rewrite relation)
that we use is confluent and strongly terminating. Considering weakly terminating systems would
not be a problem theoretically, but would present challenges from the technical point of view,
since the rewriting strategy that allows to normalize terms would have to somehow be given to
the prover. Hence we will, in practice consider confluent and strongly terminating systems, but the
theory and algorithms described also work with weakly terminating rewrite systems. Confluence
is another point that could be relaxed: obviously, any rewrite system that can be completed into
a confluent (and terminating) system can be used with the techniques described in this section.
Completion of rewrite systems was not implemented in ArchSAT for two main reasons: first, it is

2Note that this type can contain type variables that are quantified in the rewrite rules as any other variable
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technically quite complex to properly implement and relate to the original rewrite system, second
and most importantly, the unification algorithm presented in Section 3.4 actually does perform
completion of the rewrite system.

3.1.2 Examples of Rewrite Systems

Rewrite systems can be as simple as a single rewrite rule f(gx) −→ x stating that a function f
is the inverse of g. Associativity of an operator + can be expressed as a rewrite rule (a+b)+c −→
a+ (b+ c)1.

Complex first-order theories, can often be expressed as rewrite systems. One example if the
set theory of the B method [3], which was turned into a rewrite system in [35].

Finally, conditional rewriting can be used to axiomatize the theory of arrays (or maps). We
first introduce the necessary function symbols and associated types:

array : Type→ Type
create : Πα.α→ array(α)

get : Πα.int→ array(α)→ α

set : Πα.int→ α→ array(α)→ array(α)

We can then declare 3 rewrite rules defining the results of the get function depending on the
shape of the array argument:

get(_;_, create(_, x)) −→ x

i = j → get(_; i, set(_; j, x,_)) −→ x

i 6= j → get(_; i, set(_; j,_, t)) −→ get(_; i, t)

Where the _ are arbitrary variables that are not used in the right-hand side of the rewrite
rule and thus can be safely ignored (assuming the terms that are matched are well-typed). Note
that the second rewrite rule could be replaced by get(_; i, set(_; i, x,_)) −→ x. This replaces the
condition i = j by using a non-linear rule (i.e. a rule where some variable has multiple occurrences
in its left-hand side). Besides the problems that non-linearity brings2, the condition of the third
rewrite rule cannot be erased the same way, so conditional rewriting is needed to handle such an
axiomatization of arrays.

3.1.3 Encoding Rewrite Rules using Boxes

In order to make use of rewrite rules during proof search, the rewrite system must first be
detected by ArchSAT. To do so, we use the boxes introduced in Section 2.1.1. Indeed, a term rewrite
rule (resp. a formula rewrite rule) l −→ r can be easily encoded as a formula ∀x ∈ FV(l).l = r
(resp. ∀x ∈ FV(l).l ↔ r). Reciprocally, any formula of the form ∀x.l = r (resp. ∀x.l ↔ r),
can be understood as a rewrite rule provided that that FV(r) ⊂ FV(l), and that the equality
(resp. equivalence) can be oriented using a reduction ordering3.

ArchSAT offers two ways to detect (and orient) input formulas that can be treated as rewrite
rules:

• Manual mode. Input problems can specify that some axioms or formulas are actually rewrite
rules. For instance the Zipperposition’s format format parsed by ArchSAT has a special

1Commutativity can also be expressed as a rewrite rule a+ b −→ b+ a, but it is non-terminating.
2Confluence on non-linear systems is harder to check, pattern-matching is also less efficient since some optimiza-

tions suppose linearity.
3A reduction ordering is a well-founded ordering closed under substitution and congruence.
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syntax to declare rewrite rules. In other languages such as TPTP, one can annotate formulas
to specifically tag rewrite rules. In both cases, it is important in the internal representation
of formulas to keep the order in which equalities (and equivalences) were formulated in the
input problem, since it tells how to orient the rule. This is done using the tag mechanism
described in Section 6.3.

• Automatic mode. In the absence of manual rules, ArchSAT can use some heuristics to try
and automatically detect what formulas could be used as rewrite rules. This heuristic uses a
LPO [88]1 to try and orient quantified equalities2. Quantified equivalences between atomic
formulas are also oriented using this strategy. Equivalences where one side is non-atomic
are not currently detected as rewrite rules for the following reason:

– Having a non-atomic left-hand side for a rewrite rule is not allowed in the definitions of
rewrite rules because it raises some problems concerning matching, for instance should
conjunction and disjunction be considered up to symmetry when pattern matching,
should more complex formulas be matched modulo De Morgan’s law, . . . Thus, equiva-
lences with non-atomic left-hand side are left to the general purpose instantiation.

– Non-atomic right hand sides are currently not supported in automatic mode (but are
in manual mode) because ArchSAT currently makes a difference between terms and
formulas, and the LPO ordering is only implemented on terms, thus ArchSAT cannot
compare the term that forms the atomic left-hand formula with the formula in the
right-hand side.

Thus, in ArchSAT, rewrite rules from the input problems are encoded as regular quantified
formulas. This means that any theory can simply analyze the formulas that become true (i.e. the
boxes that are decided and/or propagated by the inference rules) in order to detect rewrite rules.
This is what the rewriting theory in ArchSAT does.

3.1.4 Static and Dynamic Rewriting
Since rewrite rules are encoded as quantified formulas, it means that they are considered as

literals by the inference rules of the McSat algorithm, and as such, their truth value can vary
during the proof search. This means that the rewrite system RE that we want to use, may vary
during proof search, which significantly complicates its use. Indeed, it means that, for instance,
normal forms may evolve during proof search. While this may seem to be a specificity tied to the
architecture of ArchSAT, it is actually more general, in the sens that the actual rewrite system
that should be considered can actually change even when the rewrite rules are statically known
at the beginning.

Consider the following simple unsatisfiable problem:

f(g(x)) −→ x

a = g(b)

b 6= f(a)

There is only one rewrite rule, and all ground terms are in normal form, and neither the
theory of equality nor the theory of uninterpreted function can find a conflict using the two
ground formulas a = g(b) and b 6= f(a). This show that simply normalizing every term according
to a set of rewrite rules is not a complete strategy3. This is because theorem provers have to
reason about the congruence induced by both the rewrite system and the equalities present in
the problem. Both the rewrite system and the equalities must thus be considered together. One
interesting and useful point is that those equalities are ground: indeed, in ArchSAT all decision

1LPO: Lexicographic Path Ordering
2Note that if l ≺LPO r according to the LPO, then it implies that FV(r) ⊆ FV(l).
3The implementation of deduction modulo theories in Zenon actually fails to find a proof for this example.
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and propagations are done on boxes, and all formulas inside boxes are ground (there may be
variables quantified in the formula, but all variables in the formula are bound; however, there
can be meta-variables, which act like ground terms). Similarly in most SMT provers, quantified
axioms are handled separately (as explained in Section 1.2.5), and thus only ground equalities
may occur.

There are two ways to reason with both a rewrite system and some equations:

• Rewrite rules can use the equivalence classes induced by the equalities in the problem in order
to perform matching modulo these classes. Using this strategy on the example above, all
the terms are no longer in normal form because f(a) can match f(g(b)) using the equality
a = g(b), and thus can rewrite to b, which allows us to prove the unsatisfiability of the
problem.

• Alternatively, one can see the equalities as rewrite rules: reduction ordering are almost
always total on ground terms, thus equalities can always be oriented (for instance using a
LPO, which is total on ground terms), thus all ground equalities can be seen as rewrite rules.
In this case, we can see that not all terms are in normal form. Indeed, suppose that the
equality a = g(b) is oriented as a −→ g(b). We can then rewrite f(a) −→ b. If the equality is
oriented in the other direction: g(b) −→ a, then the rewrite system is not confluent anymore
because of the critical pair: f(g(b)) −→ b and f(g(b)) −→ f(a). Completing the rewrite
system can be done by adding the rewrite rule f(a) −→ b (resp. b −→ f(a)), which allows
us to normalize f(g(b)) into b (resp. b into f(a)). In both cases, we can conclude that the
problem is unsatisfiable.

As the example above showed, even with what seems like a static set of rewrite rules, the
rewrite relation that has to be considered changes during proof search. This means that normal
forms are dependent on the proof search context: normalization of a term may have used an
equality that is only true in one propositional branch, and so in other branches the normal form
will be different. This means that normalizing terms according to a static rewrite system defined
at the beginning of a problem is an incomplete strategy. However, it is quite useful in practice.

ArchSAT thus distinguishes three ways to use rewrite rules. The first way is static rewriting,
which corresponds to the normalization of ground terms according to a fixed, static, rewrite
system, and which is explained in Section 3.2. Dynamic rewriting, which considers the ground
equalities in the problem, is presented in Section 3.3. Finally, rewrite rules must be integrated to
the instantiation mechanism, more particularly to the unification algorithm. This is done using
rigid unit superposistion, a variant of regular superposision which is described in Section 3.4.

3.2 Static Rewriting in ArchSAT

3.2.1 Normalizing Ground Terms in ArchSAT
In this section, we suppose that we have a set of rewrite rules. These rules are, in practice,

detected by ArchSAT as explained in Section 3.1.3. We assume that this rewrite system is confluent
and strongly terminating1. It is thus very easy to compute the normal form of a given term (or a
formula) t according to this rewrite system. To do so, a very naive algorithm is to try and match
each subterm of t with each left side of a rewrite rule, replace with the right-hand side if the
match is successful, and repeat until no match can be found. Confluence guarantees unicity of the
normal form if it exists, and strong termination of the rewrite system ensures that this process
terminates (independently of the order in which the rewrites rules are used), and thus that the
normal form exists.

Rewriting can then be implemented as a regular theory in ArchSAT with the simple strategy of
trying to normalize every new atomic formula. More precisely, for each atomic formula (or rather
formula in a box) that is decided or propagated, the theory will try and compute its normal form
(if it has not already tried to do so). If a normal form (different form the initial atomic formula)
is found, then the theory will push a new clause to the solver. Whenever the theory computes the

1Though, in practice it does not matter much, see Section 3.4.
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normal form P ′ of an atomic formula P , using a list of rewrite rules l = r1, . . . , rn, it will push
the new following clause:

C ≡ ∨1≤i≤n¬JriK ∨ JP ↔ P ′K

This clauses explicitly mentions the rewrite rules that were used in order to normalize P .
This is because, similarly to the tableau theory described in Section 2.1.2, the clauses pushed by
the rewriting theory must be tautologies (i.e. they should not need any context to be provable).
Additionally, having the explicit list of rewrite rules used is very useful for generating formal proofs
(which are detailed in Chapter 4), or even simply to compute the unsat core.

Note that the normalization is only done on atomic formulas, and not terms, nor arbitrary
formulas. Normalization on terms would be somewhat redundant with the normalization on
atomic formulas: since all terms considered in the problem occur inside formulas, normalization
of the formula also normalizes any term inside it. Normalizing only atomic formulas, and not all
formulas, is done in order to normalize only formulas that are actually used: some sub-formulas
are sometimes not needed to prove a theorem. In these cases, normalizing only atomic formulas
helps avoid having to compute the normal form of sub-formulas that are not reached during proof
search.

This strategy is actually quite close to the trigger mechanism usually implemented in SMT
solvers: watch the ground terms that occur during proof search and when some match is detected,
instantiate the corresponding quantified formula. The main differences are:

• Instead of simply instantiating the quantified formula, rewriting actually substitutes inside
terms using the instantiated formula (which is either an equality or an equivalence).

• Rewriting may perform multiple instantiations in a single clause: if multiple rewrite steps
are needed to compute a normal form, all the steps are expressed using a single clause, rather
than each step in its own clause1.

Regarding completeness, this rewriting theory is, in general, incomplete as shown in Sec-
tion 3.1.4. That is not a problem, as this theory is meant to speed up ground reasoning by
performing automatic instantiations that do not introduce new propositional branches. Complete
proof search is achieved using the unification algorithm presented in Section 3.4 that can unify
terms while taking into account equalities as well as rewrite rules.

Finally, this strategy for handling rewriting is fully compatible with regular SMT solvers.
Indeed, since the rewrite rules are supposed to be true for the whole problem, they could be
omitted from the clause pushed, which then becomes clause with a single literal JP ↔ P ′K, which
can very easily be transformed into CNF before being added. The only potential problem is that
it potentially introduces new terms, which can be expensive for regular SMT solvers2, and would
thus require to run the theory at the same time as the instantiation mechanism, compared to
ArchSAT where it runs during the proof search and push new clauses immediately.

3.2.2 Example

Let us show what happens on a simple example using set theory. First, we introduce the type
constructor and function symbols for set theory:

set : Type→ Type
∈ : Πα.α→ set(α)→ Prop
⊆ : Πα.set(α)→ set(α)→ Prop

1This makes proof generation slightly more complex, see Chapter 4.
2Congruence closure algorithms typically operate on a known and fixed set of terms, and adding new terms

during proof search thus conflict with that. Thus, it can happen that adding new terms requires re-starting the
ground proof search from scratch.
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We consider the following rewrite rule defining set inclusion in terms of set membership::

R ≡ ∀α : Type.∀s, t : set(α). s ⊆ t⇔ (∀x : α. x ∈ s⇒ x ∈ t)

Now let’s try and prove the simple goal:

G ≡ ∀α : Type.∀a : set(α).a ⊆ a

This problem translates to the following sequent R ` G. We will thus try and prove the sequent
R,¬G ` ⊥ which is equivalent in classical logic. Hence, we start with two clauses: C0 ≡ JRK, and
C1 ≡ ¬JGK. The solver directly propagates R C0 > and G C1 ⊥. Once propagated, R is seen as
a rewrite rule s ⊆ t −→ (∀x : α. x ∈ s⇒ x ∈ t) by the rewriting theory, hence we do not generate
meta-variables for it since rewrite rule are handled better by the rewriting theory than by the
generic theory for quantified formulas. On the other hand, since G is false, the solver applies the
rules of the tableau theory and generate a fresh type constant and a fresh term constant for the
negated universal quantifications, that we’ll write τα and τ respectively. We then get the following
clauses:

C2 ≡ JGK ∨ ¬J∀a : set(τα).a ⊆ aK
C3 ≡ J∀a : set(τα).a ⊆ aK ∨ ¬Jτ ⊆ τK

The solver then propagates Jτ ⊆ τK C3 ⊥. At that point, the rewriting theory can normalize
τ ⊆ τ into (∀x. x ∈ τ ⇒ x ∈ τ), and generate the clause:

C4 ≡ ¬JRK ∨ Jτ ⊆ τ ⇔ (∀x. x ∈ τ ⇒ x ∈ τ)K

It is now enough for the tableau theory to apply its rules in order to prove that the problem is
unsatisfiable. The tableau theory will, among other things, generate another fresh term constant,
that we will write τx, and create the following clauses:

C5 ≡ ¬Jτ ⊆ τ ⇔ (∀x. x ∈ τ ⇒ x ∈ τ)K ∨ Jτ ⊆ τ ⇒ (∀x. x ∈ τ ⇒ x ∈ τ)K
C6 ≡ ¬Jτ ⊆ τ ⇔ (∀x. x ∈ τ ⇒ x ∈ τ)K ∨ J(∀x. x ∈ τ ⇒ x ∈ τ)⇒ τ ⊆ τK
C7 ≡ ¬J(∀x. x ∈ τ ⇒ x ∈ τ)⇒ (τ ⊆ τ)K ∨ Jτ ⊆ τK ∨ ¬J(∀x. x ∈ τ ⇒ x ∈ τ)K
C8 ≡ J(∀x. x ∈ τ ⇒ x ∈ τ)K ∨ ¬Jτx ∈ τ ⇒ τx ∈ τK
C9 ≡ Jτx ∈ τ ⇒ τx ∈ τK ∨ ¬Jτx ∈ τK
C10 ≡ Jτx ∈ τ ⇒ τx ∈ τK ∨ Jτx ∈ τK

Upon propagation of Jτx ∈ τK, a conflict will be detected in C91. Since that conflict occurs
before any decision is made, we can conclude that the problem is unsatisfiable.

3.2.3 Narrowing, Re-Quantification and Virtual Meta-variables
3.2.3.1 Motivation

Narrowing [72] is the idea of trying to unify rather than match the left-hand side of rewrite
rules. Basically, it allows us to reason about the shape of potential meta-variables instantiations:
for instance, if some meta-variable X was to be instantiated by a term that starts with g, then the
term f(X) could be rewritten using the rewrite rule f(g(x)) −→ x. Thus it might be interesting
to instantiate X with a term g(. . .), which contains a hole yet to be determined. Fortunately,
meta-variables exist especially to represent holes in terms that have not yet be chosen, thus we
can try and instantiate X with g(Y ) where Y is a new meta-variable. Narrowing thus helps reduce
(or narrow) the search space of potential instantiations for meta-variables, hence its name.

1Or, alternatively, if ¬Jτx ∈ τK is propagated, the conflict will be in C10
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Narrowing has been implemented in ArchSAT, though its usefulness in practice is much more
dependant on the choices that are made by the solver during proof search. First let us show
an example of problem where narrowing may be needed (depending on what choice the solver
makes). We consider once again, set theory, this time with some additional constructions to
represent tuples:

tup : Type→ Type→ Type
fst : Πα, β.tup(α, β)→ α

snd : Πα, β.tup(α, β)→ β

pair : Πα, β.α→ β → tup(α, β)

set : Type→ Type
∈ : Πα.α→ set(α)→ Prop
⊆ : Πα.set(α)→ set(α)→ Prop

With the following rewrite rules:

fst(_,_; pair(_,_;x, y)) −→ x R1

snd(_,_; pair(_,_;x, y)) −→ y R2

And consider a situation with the following hypotheses, that actually occurred in practice1,
with some meta-variable X:

a : Type
u, v : a X : tup(a, a)
t : set(a) r : set(tup(a, a))

C1 ≡ ¬J(v ∈ t)K
C2 ≡ Jpair(a, a : u, v) ∈ rK
C3 ≡ ¬JX ∈ rK ∨ Jsnd(a, a;X) ∈ tK

It then all depends on which literal in C3 is chosen by the solver. If it chooses that ¬JX ∈ rK is
true, then the instantiation mechanism in ArchSAT will easily unify this with Jpair(a, a : u, v) ∈ rK,
and find the instantiation X 7→ pair(a, a;u, v), which allows us to conclude that the problem is
unsatisfiable. On the other hand, if it chooses that Jsnd(a, a;X) ∈ tK is true, then simple unification
is not enough, as the only atomic formulas in the branch are:

• ¬J(v ∈ t)K
• JX ∈ rK
• Jpair(a, a : u, v) ∈ rK
• Jsnd(a, a;X) ∈ tK

Simple unification (without taking into account rewrite rules) is not enough to find any sub-
stitution in this case. The problem is still unsatisfiable, but in this case, proving it requires more
than simple unification and normalization (all terms shown above are in normal form). The so-
lution would be to somehow unify snd(a, a;X) ∈ t with v ∈ t. There are then two ways to do
that:

1Problem mem_ran_1.zf of the bset problem benchmark, see Section 5.1.
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• Either perform unification taking into account the rewrite rules. This is what the algorithm
in Section 3.4 does.

• Or, perform narrowing, which in this case, means unifying snd(a, a;X) with the left-hand
side of the rewrite rule R2: snd(_,_; pair(_,_;x, y)), which yields the substitution σ =
{X 7→ pair(a, a; . . . , . . .)} which contains some holes. This substitution can then be used
to instantiate the corresponding quantified formula, substituting the holes with new meta-
variables. After that process, simple unification will be able to unify the generated term in
order to correctly instantiate the meta-variables generated.

3.2.3.2 Narrowing and Re-Quantifying

Narrowing in ArchSAT works in the following way. Once a ground model has been found, at
the same time as regular unification tries to find substitution to instantiate, rewriting also tries
to look for substitutions by performing narrowing. In order to find substitutions, the rewriting
theory tries and unify each term (or sub-term) that occurs in the problem with the left-hand
side of a rewrite rule. When such a substitution succeeds, it will typically bind meta-variables to
terms that have free variables, namely the variables used in the rewrite rule. These variables must
therefore be re-bound when instantiating the rewrite rule.

More precisely, suppose that a term t has been unified with a rewrite rule l −→ r, resulting
in a substitution σ, in which some variables w1, . . . , wn occur. The substitution σ is then split
using clusters of quantified formulas as explained in Section 2.3.3. We thus get a finite set of
substitutions σ0, σ1, . . .. Each substitution σj binds some meta-variables that were generated by
successive quantifications in some formula F (by definition of clusters). By definition, Fj starts
with some quantifications, so let us write Fj = ∀v1, . . . , vm. P (v1, . . . , vm). The substitution σj
maps a subset vi1 , . . . , vik of the variables quantified in Fj , to terms that may contain variables
in {w1, . . . , wn}. Let us write vik+1

, . . . , vm the variables quantified in F but not bound in the
substitution. We can then generate the following clause in order to perform the instantiation:

¬J∀v1, . . . , vm. P (v1, . . . , vm)K ∨ J∀w1, . . . , wn, vik+1
, . . . , vm.P (σ(v1), . . . , σ(vm))K

With the convention that if x is not bound in σ, then σ(x) = x1.

3.3 Dynamic and Conditional Rewriting
Dynamics rewriting is a trigger-like mechanism used by ArchSAT to correctly handle the general

case of rewriting, taking into account equalities as well as rewrite rules that can become true or
false during proof search. Additionally, the specificities of the McSat architecture allows us to
extend this mechanism to also handle conditional rewrite rules with almost no performance cost.

3.3.1 Rewrite Rules as Triggers
As mentioned previously, there are two main ways to consider that the rewrite system can

change during proof search:

• Consider that the pattern matching the left-hand side of rewrite rules can change, since it
should match modulo a set of ground equalities (which can change during proof search)

• Consider equalities as new rewrite rules (which may break confluence of the rewrite system
and require a completion mechanism to recover confluence)

ArchSAT mainly consider the first solution, and performs pattern matching modulo equality
in order to find instances of rewrite rules. Pattern matching modulo a set of ground equalities
is decidable: the ground equalities induce finite congruence classes, thus pattern matching can
simply iterate over all elements of the congruence classes. In practice, some additional filtering

1Actually, in the definition, substitutions are always assumed to be total functions from variables to types and
terms, and instead "not being bound" actually means being bound to itself.
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is done in order to be more efficient, but the idea still remains the same. While this solves the
problem of finding adequate instances of rewrite rules, there is still the problem of how to use
these instances. A scheme similar to the one used for static rewriting could be used, building
clauses using the rewrite rules used, the equalities used, and finally the equivalence between a
term and its normal form. However, this could be problematic as each term could have a different
form in each propositional branch of the solver, leading to an explosion of the number of clauses,
and such lemmas would be extremely complex to prove formally (see Section 4). Instead, for each
instance of rewrite rule found by pattern matching modulo equalities, ArchSAT simply instantiate
the corresponding rewrite rule as a regular quantified formula.

Let us consider the example introduced in Section 3.1.4:

C0 ≡ J∀x : ty .f(g(x)) = xK
C1 ≡ Ja = g(b)K
C2 ≡ Jb 6= f(a)K

The quantified formula in C0 is understood as a rewrite rule f(g(x)) −→ x (either because
it has been specified as one in the input problem, or because it has been detected automatically
be ArchSAT). Static rewriting does not do anything on this example as mentioned previously,
however, matching modulo equalities finds an instance σ = {x 7→ b} for the rewrite rule, by
unifying f(a) and f(g(x)) using the equality a = g(b). ArchSAT then instantiates the rewrite rule
using the substitution, as it would do for a substitution found by unifying terms for meta-variable
instantiation, and generate the clause:

C3 ≡ ¬J∀x : ty .f(g(x)) = xK ∨ Jf(g(b)) = bK

Then, other theories, such as the ones for equality and uninterpreted functions, are able to
complete the proof.

This strategy is complete1 in cases where the only quantified formulas in the problem are
rewrite rules. Indeed, this strategy computes all potential instances of rewrite rules, thus after
these instantiations are added to the problem, ground reasoning is all that needs to be done. Thus
assuming the rewrite system is confluent and strongly normalizing, and the ground reasoning is
also complete, this strategy for instantiating rewrite rules is complete.

ArchSAT also handles adding and removing rewrite rules during proof search: since rewrite
rules are actually quantified formulas, they can become true or false during proof search. The
same mechanism that allows it to correctly handle equalities becoming true or false, also allows
it to handle rewrite rules becoming true or false. This makes it able to handle, for instance, local
rewriting.

Note that this is extremely similar to the trigger mechanism often used by SMT solvers. The
main difference is that rewrite rules (like other quantified formulas) are handled the same as
ground formulas, whereas in SMT solvers, quantified formulas are traditionally separated from the
ground reasoning. Another important difference is that this strategy only applies to quantified
formulas that can be understood as rewrite rules, compared to triggers which are used on all
quantified formulas. This should thus provide a fragment of problems on which trigger offers a
complete proof search strategy: problems with only rewrite rules and ground formulas, assuming
the triggers chosen are the left-hand side of the rewrite rules.

Finally, the tableau theory presented in Section 2.1.2 could be viewed as some kind of higher-
order rewriting or meta-triggers: each time a formula that matches some pattern is decided or
propagated, the tableaux theory generate a new clause to be added to the solver. These new
clauses can be seen as instances of higher-order lemmas which encode rewrite rules that can
pattern match on non-atomic formulas2.

1Although no proof is provided in this manuscript.
2With some special casing in order to generate clauses rather than equivalences.
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3.3.2 Conditional Rules and McSAT

Interestingly, thanks to the assignments in McSat, this trigger-like strategy can be extended to
also handle conditional rewrite rules. Conditional rewrite rules are rewrite rules that only apply
when some condition is true, for instance, as show in Section 3.1.2, arrays can be axiomatized
using conditional rewrite rules:

get(_;_, create(_, x)) −→ x

i = j → get(_; i, set(_; j, x,_)) −→ x

i 6= j → get(_; i, set(_; j,_, t)) −→ get(_; i, t)

More generally, ArchSAT can consider conditional rules of the form C1 ⇒ C2 ⇒ . . . ⇒ Cn ⇒
l −→ r which are encoded as formulas of the form ∀x1, . . . , xm.C1 ⇒ C2 ⇒ . . .⇒ Cn ⇒ l ⇔ r or
∀x1, . . . , xm.C1 ⇒ C2 ⇒ . . . ⇒ Cn ⇒ l = r modulo some conditions explained at the end of the
section1.

Whenever the left-hand side of a conditional rewrite rule is matched by the dynamic strategy
explained above, instead of directly instantiating it, ArchSAT can wait until the conditions truth
value can be computed, and then only instantiate the rule if all conditions are true. Computing
whether some arbitrary formula (such as a condition of a rewrite rule) is true or false in a given
proof search context is, generally, costly as it basically is the entailment problem that SMT solvers
are trying to solve: is a given formula entailed (or rather provable) given a set of hypotheses ?
Fortunately, assignments in McSat provide an easy and efficient way to compute the truth value
of a formula: wait for it to be assigned, and look at whether the assigned value is > or ⊥.

This requires conditions of rewrite rules to be able to be evaluated once a match for the left-
hand side has been found. In cases where this does not hold, ArchSAT’s current behaviour will
be to consider that the conditions are not true, and thus it will not do anything. Particularly
this requirement forbids conditional rewrite rules where a variable occur in a condition but not
in the left-hand side of the rewrite rule. Such conditions in rewrite rules are used for instance in
some axiomatization of the B method in order to encode typing. However, this requirement is not
sufficient to ensure that a condition can be evaluated. A sufficient criterion would be to define the
notion of an evaluable term as follows.

A term t is said to be evaluable with respect to a set of terms S iff :

• t ∈ S, or

• t is the application of an interpreted function symbol2 to terms that are all evaluable with
respect to S.

Intuitively, this defines the set of terms t whose value can be determined once the values of
terms in S is known.

A conditional rewrite rule C1 ⇒ C2 ⇒ . . . ⇒ Cn ⇒ l −→ r is said to be evaluable iff all
conditions C1, C2, . . . , Cn are evaluable with respect to the set S of all variables in l. This ensures
that whenever a match σ is found for l, if all terms bounds to variables of l in σ are assigned,
then all the guards of the rewrite rule will have a computable value. In practice, matching (even
modulo equalities) a pattern p with a term t only binds variables to terms that already exist in
t (or in the equalities), thus these terms will be assigned. Hence, an evaluable rewrite rule is
guaranteed to effectively evaluate its conditions for every potential match. ArchSAT currently
expects conditional rewrite rules to be evaluable3, in order for this trigger-like mechanism to work
correctly.

1ArchSAT also allows rewrite rules conditions can also be grouped using conjunctions instead or nested implica-
tions

2Interpreted symbols include the equality, addition, multiplication, . . .
3However, no check and/or enforcement mechanism is currently implemented to ensure that property on condi-

tional rewrite rules.
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3.4 Unifying Modulo Equalities and Modulo Rewriting

3.4.1 Motivation

In the general case, the instantiation mechanism for the tableau theory presented in Section 2.3
requires to unify terms while taking into account the equalities that are present. This is illustrated
on the following simple example, which starts with clauses C0, C1, C2, and where the tableau theory
generates the clause C3, introducing the meta-variable X.

C0 ≡ Ja = f(b)K
C1 ≡ J¬p(a)K
C2 ≡ J∀x : ty .p(f(x))K
C3 ≡ ¬J∀x : ty .p(f(x))K ∨ Jp(f(X))K

A ground model is then easily found, and the instantiation mechanism can start looking for
potential instantiations. In order to do so, as explained in Section 2.3.2, the true predicates are
unified with the false predicates1. In this example, the only such pair of terms is (p(f(X)), p(a)),
which cannot be unified directly. However, taking into account the equality a = f(b), they could
be unified using σ = {X 7→ b}.

The actual problem to solve in the general case is rigid E-unification (also called rigid unification
modulo equalities), and is defined as follows.

Definition 3.4.1. Rigid E-unification: Consider a set of equalities S and two terms (or atomic
formulas) a and b, in all of which can occur some variables (in a, b, as well as in the equalities in
S). The rigid E-unification problem is then to find a substitution σ from variables to terms, such
that Sσ ` aσ = bσ, i.e. once the substitution is applied a and b can be proven equal using the
equalities in S.

The rigid qualification is tied to the fact that in the substitution σ, each variable may be bound
at most once. This problem can then be extended into the rigid E-unification modulo rewriting
problem, which takes into account not only equalities, but also rewrite rules:

Definition 3.4.2. Rigid E-unification modulo rewriting: Consider a set of equalities E , and two
terms (or atomic formulas) a and b, in all of which can occur some variables (in a, b, as well as
in the equalities in E), and a formula rewrite system R and a term rewrite system E . The rigid
E-unification modulo rewriting problem is then to find a substitution σ from variables to terms,
such that Sσ ` aσ =RE bσ, i.e. once the substitution is applied a and b can be proven equal using
the equalities in E and the rewrite rules in RE .

ArchSAT has to solve the rigid E-unification problem modulo rewriting in order to be complete,
with the distinction that the rigid variables from the definition of the rigid E-unification modulo
rewriting problem, are the meta-variables in ArchSAT.

We propose here an approach based on superposition with rigid variables, as in previous work
by Degtyarev and Voronkov [45] and earlier work on rigid paramodulation [73], but with significant
differences. First, in order to avoid constraint solving, we do not use basic superposition nor con-
straints. Second, we introduce a merging rule, which factors together intermediate (dis)equations
that are alpha-equivalent: with multiple instances of some of the quantified formulas (amplifica-
tion), it becomes important not to duplicate work. In this aspect, our calculus is quite close to
labeled unit superposition [61] when using sets as labels. Third, unlike rigid paramodulation, we
use a term ordering2 to orient the equations.

1Members of disequalities are also unified, but there is none in the given example.
2The implementation uses a LPO.
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3.4.2 Preliminary Definitions

We write s ≈ t | Σ (resp. s 6≈ t | Σ) for the unit clause that contains exactly one equation
(resp. disequation) under hypothesis Σ (which is a set of substitutions). We write ∅ | Σ for the
empty clause under hypothesis Σ. The meaning of s ≈ t | Σ is that for every σ ∈ Σ, s ≈ t
is provable using the substitution σ for the meta-variables. We also define rename(e), where
e is an (dis)equation, as follows: let σ map every meta-variable of e to a fresh variable, then
rename(e) = eσ | {σ}. For example, rename(p(X) ≈ a) is p(v1) ≈ a | {X 7→ v1}.

As can be noticed, we keep a set of substitutions, rather than unit clauses paired with individual
substitutions, in order to avoid duplicating the work for alpha-equivalent clauses. Indeed, because
of rigid variables, we may have to generate multiple distinct meta-variables for the same formulas,
leading to some alpha-equivalent clauses. It would be inefficient to repeat the same inference
steps with each variant of these clauses. These sets of substitutions are initialized for every input
formula by using the rename(.) function. Thus, clauses do not share any variable, though they
may share meta-variables in their attached sets of substitutions.

The composition of two substitutions σ and σ′, denoted by σ ◦ σ′, is well-defined if and only if
the domains of σ and σ′ have no intersection. In this case, σ ◦ σ′ , {x 7→ (xσ)σ′|x ∈ domain(σ)}.
This definition extends to sets of substitutions: Σ◦σ′ , {σ ◦ σ′|σ ∈ Σ}. We say that a substitution
σ is compatible with another substitution σ′ if and only if σ ◦ σ′ is well-defined, and that it is
compatible with a set of substitutions Σ if and only if σ ◦ Σ is not empty. We then have σ ≤ σ′

if and only if ∃σ′′. σ ◦ σ′′ = σ′. This notion also extends to sets of substitutions: Σ ≤ Σ′ if
and only if ∀σ′ ∈ Σ′. ∃σ ∈ Σ.σ ≤ σ′. The merging of two substitutions σ ↑ σ′ is the supremum
of {σ, σ′} for the order ≤, if it exists, or ⊥ otherwise. The merging of sets of substitutions is
Σ ↑ Σ′ , {σ ↑ σ′ | σ ∈ Σ, σ′ ∈ Σ′ , σ ↑ σ′ 6= ⊥}.

Inference step will almost always involve the merging of some sets of substitutions. It is
important to note that the merging of two non-empty set of substitutions can yield an empty set
of substitution, as this is what enforces the rigidity of meta-variables. For example, the resolution
step between p(x, x)|{X 7→ a} and ¬p(y, b)|{X 7→ y} is not possible, because the result would
need to map X to a and b, which is impossible because X is rigid.

3.4.3 Inference System

In Fig. 3.1, we present the rules for unit superposition with rigid variables. We adopt notations
and names from Schulz’s paper on E [79]. A single bar denotes an inference, i.e. we add the result
to the saturation set, whereas a double bar is a simplification in which the premises are replaced
by the conclusion(s). The relation ≺ is a reduction ordering, used to orient equations and restrict
inferences, thus pruning the search space. Typically, ≺ is either a RPO or a KBO. The rules of
Fig. 3.1 work as described below:

ER is equality resolution, where a disequation s 6≈ t | Σ is solved by syntactically unifying s and
t with σ, if σ is compatible with Σ.

SN/SP is superposition into positive or negative literals. A subterm of u is rewritten using s ≈ t
after unifying it with s by σ. The rewriting is done only if sσ 6� tσ, a sufficient (but not
necessary) condition for a ground instance of sσ ≈ tσ to be oriented left-to-right.

TD1 deletes trivial equations that will never contribute to a proof.

TD2 deletes clauses with an empty set of substitutions. In practice, we only apply a rule if the
conclusion is labeled with a non-empty set of substitutions.

ME merges two alpha-equivalent clauses into a single clause, by merging the sets of substitutions.
This rule is very important in practice, to prevent the search space from exploding due to the
duplication of most formulas. Superposition deals with this explosion by removing duplicates
using subsumption, but in our context subsumption is not complete because rigid variables
are only proxy for ground terms: even if Cσ ⊆ D, the ground instance of C might not be
compatible with the ground instance of D.
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s 6≈ t | Σ
ER if σ = mgu(s, t)∅ | Σ ◦ σ

s ≈ s | Σ
TD1 >

s R t | ∅
TD2 R ∈ {≈, 6≈}>

ρ(u) ≈ ρ(v) | Σ u ≈ v | Σ′

ME ρ is a variable renaming
ρ(u) ≈ ρ(v) | Σ ∪ (Σ′ ◦ ρ)

s ≈ t | Σ u R v | Σ′
SN/SP

σ′′(u[p← t] R v) | σ′′′
if


σ′′ = mgu(u|p, s) u|p 6∈ V
σ′′(s) 6� σ′′(t) σ′′(u) 6� σ′′(v)
σ′′′ ∈ (Σ ◦ σ′′) ↑ (Σ′ ◦ σ′′)
R ∈ {≈, 6≈}

s ≈ t | Σ u[p← s] ≈ u[p← t] | Σ′ ∪ Σ′′

ES if
{

Σ′′ 6= ∅
Σ ≤ Σ′′s ≈ t | Σ u[p← s] ≈ u[p← t] | Σ′

s ≈ t | Σ u ≈ v | Σ′

RP
s ≈ t | Σ u[p← t] ≈ v | Σ′

if


u|p = s
s � t
Σ ≤ Σ′

u 6� v or p 6= λ

s ≈ t | Σ u 6≈ v | Σ′

RN
s ≈ t | Σ u[p← t] 6≈ v | Σ′

if

 u|p = s
s � t
Σ ≤ Σ′

Figure 3.1: The Set of Rules for Unit Rigid Superposition

ES is a restricted form of equality subsumption. The active equation s ≈ t | Σ can be used to
delete another clause, as in E [79]. However, ES only works if s and t are syntactically equal
to the corresponding subterms in the subsumed clause C. Otherwise, there is no guarantee
that further instantiations will not make s ≈ t incompatible with C. Moreover, C needs not
be entirely removed. Only its substitutions that are compatible with Σ are subsumed.

RN/RP are rewriting of clauses, limited to using clauses with a single empty substitution in
their set of substitutions, in order not to constrain the rewritten clause to use more specific
substitutions.

Note that the rule SN/SP generates as many equations as there are in the set (Σ◦σ′′) ↑ (Σ′◦σ′′)
because all substitutions may not always be merged. For instance, given two unit clauses:

f(x) = t|{{X1 7→ x}, {X2 7→ x}}
f(a) = v|{{X1 7→ a}}

Rule SP allows us to derive two distinct equations (t = v){x 7→ a}|{{X1 7→ a}} and (t =
v){x 7→ a}|{{X1 7→ a;X2 7→ a}}, which are non-mergeable, because the substitutions in their set
of substitutions are not alpha-equivalent (they do not even have the same domain).

Rewrite rules can be integrated into the rigid unit superposition easily. In fact, a rewrite
rule l −→ r can be expressed as an equality with an hypothesis set consisting of a single trivial
substitution s ≈ t | {∅}1. Since the trivial substitution is compatible with every substitution, it
will never prevent any inference, thus allowing us to use the unit clause as many times as needed
to rewrite terms without accumulating constraints, particularly using the rules RP and RN, whose

1The singleton set containing the trivial (or identity) substitution {∅}, must not be confused with ∅, the empty
set.
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side conditions are always verified by rewrite rules. Rigid unit superposition therefore provides an
algorithm for rigid E-unification modulo rewrite rules, as detailed in the next paragraph.

In order to add rewrite rules, we use the rewr(.) function, that takes as argument a rewrite
rule l −→ r (or a formula representing one), and returns the unit clause l ≈ r | .

3.4.4 Main Loop

The goal of this variant of superposition is to solve the rigid E-unification modulo rewriting
problem. Given a rewrite system RE , a set of equalities S, and two terms to unify a and b, the
process is then the following:

1. Start with an empty state (i.e. a set of superposition clauses).

2. For each rewrite rule l −→ r in the rewrite system RE , add to the superposition state the
clause l ≈ r | {∅}.

3. For each equality t = u in S, add to the superposition state the clause rename(t ≈ u).

4. Add the clause rename(a 6≈ b) to the superposition state.

5. Saturate the superposition state using the inference rules, until the empty clause ∅ | Σ is
found. The substitutions in Σ are solutions to the rigid E-unification modulo rewriting
problem.

Note that the saturation could be run even after the first solutions have been found, in order
to provide a decision procedure for the rigid E-unification modulo rewriting problem, which is at
the very least semi-complete.

3.4.5 Example

To illustrate the previous procedure, let us consider the following problem, coming from set
theory, where pair, fst, and snd are the constructor and destructors of tuples, f a function on
tuples, and X a rigid variable:

a � b
pair(fst(x), snd(x))) −→ x

fst(a) ≈ fst(b)
p(a) 6≈ p(pair(fst(b), X))

The saturation process is then the following. We start with 3 clauses corresponding to the
rewrite rule, the equality, and the pair of terms to unify respectively:

1 rewr(pair(fst(x), snd(x))) −→ x) pair(fst(x), snd(x)) ≈ x | {}
2 rename(fst(a) ≈ fst(b)) fst(a) ≈ fst(b) | {}
3 rename(p(a) 6≈ p(pair(fst(b), X))) p(a) 6≈ p(pair(fst(b), y)) | {X 7→ y}

The saturation process then applies rule RN using clauses 2 and 3, replacing fst(b) by fst(a)
in clause 3, because it is smaller (since our precedence is a � b). Then, rule RN effectively
performs narrowing using the rewrite rule in clause 1, in order to deduce that if X 7→ snd(a), then
pair(fst(a), X) could be rewritten to a. This yields clause 5, which can then produce the empty
clause using rule ER:

4 RN(2,3) p(a) 6≈ p(pair(fst(a), y)) | {X 7→ y}
5 SN(1,4) p(a) 6≈ p(a) | {X 7→ snd(a)}
6 ER(5) ∅ | {X 7→ snd(a)}

This produce the substitution σ = {X 7→ snd(a)} as solution of the unification modulo equali-
ties and modulo rewriting. Note that none of the instantiation mechanisms presented earlier could
solve this problem:
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• Simple unification (using the robinson algorithm) cannot unify p(a) and p(pair(fst(b), X)).

• All terms are in normal form (even considering pattern matching modulo equalities)

• Narrowing does not unify modulo equalities, and thus can not discover any potential instan-
tiation in this case.





Chapter 4

Proof Generation in ArchSAT

Confidence in an automated theorem prover’s results is complicated. On the one hand, most
automated theorem provers have now been heavily tested on known problems so they may be con-
sidered as reliable. On the other hand, they still remain quite complex in terms of implementation,
which means that bugs are almost unavoidable. Particularly, once a bug has been found in an
automated theorem prover, it is hard to evaluate all the problems on which the bug is triggered,
and thus in general all previous results of the prover might be invalidated. In order to avoid these
situations, the best solution is to certify prover’s results. This way, even bugs in the prover do
not matter as long as the certificate can be checked independently.

There are two ways to certify the results of a prover : either certify the prover itself (i.e. the
code of the prover) in order to get a certified prover, or make the prover output certificates along
its results, to get what is called a certifying prover. Certifying a whole prover is actually quite
hard, or even unrealistic in most cases, because of all the complex strategies and optimizations
that are implemented. Nevertheless, there exist some certified provers [63] but none of the best
current automated theorem provers are currently formally certified. Thus, producing a certificate
for each result is the best way to certify results for provers. In the case of theorem provers, whose
aim is to prove theorems, such certificates take the form of proof certificates, which can be checked
by an external proof checker.

We can distinguish two different categories of proof certificates currently implemented in the-
orem provers: traces and formal proofs. Most automated theorem provers provide traces, which
are certificates with no strict definition or requirements, and which are often a series of reasoning
steps defined by each prover. These traces are thus relatively easy to produce, but quite difficult
to verify, because each prover needs a dedicated checker for its traces, which is then not that
independent from the prover. On the other hand, formal proofs are checked by formal proof sys-
tems (such as the Coq proof assistant), which define very strict reasoning rules. Formal proofs
are therefore harder to produce, since the reasoning steps of the prover have to be translated into
reasoning steps accepted by the formal system. In addition, formal proofs carry increased confi-
dence, because formal proof systems are much more independent from a prover than a dedicated
checker.

Unfortunately, most of the time, producing formal proofs is more a technical challenge than a
theoretical one, and it is often ignored by automated theorem provers in favor of traces. That is
not the case for ArchSAT, which directly outputs formal proofs in independently verifiable formats.
In order to increase confidence even more, ArchSAT targets two independent formats, in order to
decrease the impact of potential bugs in proof checkers. Currently, ArchSAT therefore produces
proofs that are checkable either by the Coq proof assistant or the Dedukti logical framework.

This formal proof output relies on the Curry-Howard correspondence, which establishes a
link between formulas and types as well as proofs and terms. In that correspondence, for each
logic corresponds a type system in which types can represent formulas, and typing derivation
represent proofs. For type systems which are syntax directed (as is frequently the case), the term
at the root of a type derivation adequately encodes the whole derivation. This allows us to use
the concept of proof term, since a term can then be used to represent a proof of the formula
corresponding to its type. In the following, we will therefore repeatedly use types to represent
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formulas, and terms to represent proofs. ArchSAT currently expresses its proofs in the calculus
of constructions [37], because it is the type system used in the proof assistant Coq, which also
relies on the Curry-Howard correspondence. On the other hand, the Dedukti logical framework
is not a proof assistant, but rather a type checker that can be parametrized over a set of rewrite
rules. Thus, proofs expressed in Dedukti need to manually rely on the correspondence, encoding
the required logic into rewrite rules, and then expressing the provability of a formula by exhibiting
a term that has the corresponding type. ArchSAT will therefore use an encoding of the calculus
of constructions in Dedukti, presented in Appendix C.

In order to output formula proofs, ArchSAT has its own internal representation of proof trees
and proof terms following the Curry-Howard correspondence, which allows it to output different
forms of the same proof, namely:

• Two Coq proof scripts (using simple tactics such as apply and intro). One where the whole
proof is expressed using the internal proof tree presentation, and one where the resolution
part of the proof is kept in an internal format1.

• Following the Curry-Howard correspondence present in both tools, Coq and Dedukti proof
terms can also be generated. These terms are elaborated by ArchSAT from its representation
of the proof tree2.

• Normalized Coq and Dedukti proof terms, in which β-redexes are reduced3 (once again
produced by ArchSAT by working on the proof term).

In the following, Section 4.1 explains how rudimentary proofs are obtained from the SAT,
SMT or McSat algorithms, Section 4.2 explains how these proofs are then expressed formally.
Finally, Section 4.3 and 4.4 deal with some important details in the implementation of the proof
output, respectively the difficulty of relating proof search and formal proofs, and the structured
representation of proofs in ArchSAT.

4.1 Resolution Proofs for SAT/SMT/McSat

4.1.1 Pure Resolution Proof Trees for SAT

It is known that the SAT, SMT, and McSat algorithms are capable of providing proofs whenever
they reach UNSAT. From a theoretical point of view, the full derivation from any one of these
algorithms is already a proof of its conclusion, since the algorithms are sound. However, in practice,
these derivations are too big, and more importantly, they are not kept in memory when executing
the algorithm4. Fortunately, it is possible to extract a small proof from both the derivation and
the execution of these algorithms. In fact, we only have to be able to prove the clauses learnt after
the analyze phase.

For example, let us consider a SAT derivation (using the inferences rules defined in Figure 1.1 of
Chapter 1.1). It can be seen as a succession of Solve() and Analyze() phases, where each Analyze()
phase adds a new clause to the set of known clauses through the Learn-Sat inference rule. We
can therefore extract from any SAT derivation the ordered sequence of clauses learnt using the
Learn-Sat rule. Let us write H = H0, . . . ,Hn the set of hypothesis clauses, and C0, C1, . . . , Cm
the learnt clauses. According to the analyze phase invariants, we have that for all 0 ≤ i ≤ n,
Ci can be deduced from H ∪ {C0, . . . , Ci−1}. Furthermore, as mentioned in Section 1.1.2, the way
the Ci clause can be deduced is by using resolution between clauses in H ∪ {C0, . . . , Ci−1}. Thus,
for each Ci, we can extract clauses from each application of the Analyze-resolution rule during
its analyze phase, resulting in a list of clauses Ci,0, Ci,1, . . . , Ci,ki . The invariants of the Analyze()
phase ensures that:

1Available with the options --coqscript file.v and --coq file.v respectively.
2Available using the --dkterm file.dk and --coqterm file.v options.
3Available using the --dknorm file.dk and --coqnorm file.v options.
4Indeed, most implementations of the SAT, SMT, or McSat algorithms tend to heavily rely on an imperative

style of programming mutating a large data structure, and thus keeping the history of the proof search would be
costly.
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• Ci,j ∈ H ∪ {C0, . . . , Ci−1},

• Ci is obtained by chaining resolutions steps using the list of clauses Ci,0, . . . , Ci,ki , i.e. the
following derivation is admissible1:

Ci,0 Ci,1
resolution

D1 Ci,2
resolution

D2

...
Dki−1 Ci,kiresolution Ci

We can thus prove every Ci using previous clauses. This provides a way to prove every Ci using
only hypotheses: using C0,0, . . . , C0,k0 , one can prove C0 using only the hypotheses, let us call this
proof Π0. Then, one can prove C1 using the hypotheses and C0, but since we can prove C0 using
only the hypotheses, we can use the substitution lemma of the considered logic to simply replace
in the proof of C1 any use of C0 as an axiom by its proof Π0 in order to get a proof of C1 that only
uses hypotheses.

This shows how to extract, for any clause C reached in a SAT derivation, a resolution proof
tree where the conclusion is C, and the leaves are the hypotheses. This includes the empty clause
that is reached when the conclusion of the problem is UNSAT. In the UNSAT case, we can thus
have a resolution proof tree whose leaves are the hypotheses of the problem, and whose conclusion
is ⊥, the empty clause, thus formally proving that the problem is unsatisfiable.

In the UNSAT example used in Section 1.1.3, we have proved that the following set of clauses
is unsatisfiable:

C1 = P ∨Q
C2 = ¬P ∨R
C3 = ¬Q ∨R
C4 = S ∨ T
C5 = ¬S ∨ ¬R
C6 = ¬T ∨ ¬R

The resolution proof tree extracted from the UNSAT derivation is shown in Figure 4.12, where
clauses are represented as rectangles, each containing a list of literals separated with a comma
(instead of the usual ∨ logical disjunction), as well as a unique name (including for the clauses
generated during resolution steps). Resolution steps are drawn using arrows pointing from the
two clauses used in a resolution toward the conclusion of the resolution (with the resolved literal
explicited in an oval shape).

Note that this extraction is actually quite easy and has very little cost. All that is needed
is to store, for each learnt clause, the list of clauses used to deduce it during its analyze phase.
This is one of the methods that can be used by SAT solvers in order to compute what is called
an unsat core and which is actually a set of clauses that is enough to deduce UNSAT3. Note that
computing the unsat core is similar to computing the set of clauses that occur in the leaves of a
resolution proof tree; most provers simply only compute the set of leaves whereas in ArchSAT, the
whole resolution proof tree is computed.

1The derivation is admissible in any logic where the resolution inference rule is admissible. This includes
intuitionistic and classical logic, as well as most usual logics.

2This graph was automatically generated by ArchSAT using the --res-dot option
3In a lot of problems, not all hypotheses are needed to deduce UNSAT.
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⟦p⟧, ⟦q⟧

Hypothesis c1

⟦q⟧

⟦¬ q⟧, ⟦r⟧

Hypothesis c3

⟦r⟧

⟦s⟧, ⟦t⟧

Hypothesis c4

⟦s⟧

⟦¬ s⟧, ⟦¬ r⟧

Hypothesis c5

⟦¬ r⟧, ⟦t⟧

Resolution R5

⟦t⟧

⟦¬ t⟧, ⟦¬ r⟧

Hypothesis c6

⟦¬ r⟧

Resolution L1

⟦r⟧

⟦¬ q⟧

Resolution R2

⟦p⟧

Resolution R4

⟦p⟧

⟦¬ p⟧, ⟦r⟧

Hypothesis c2

⟦¬ p⟧

Resolution R1

⊥

Resolution R3

Figure 4.1: Resolution Proof Tree for a Simple SAT Problem
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4.1.2 Resolution Trees for SMT and McSat
Producing proof for SMT provers is basically the same as for the SAT algorithm. It uses

the same Analyze-resolution and Learn-Sat inference rules as the SAT algorithm. The only
difference is that, due to the Conflict-Smt inference rule, the leaves of the resolution proof tree
are now either an hypothesis or a tautology produced by the theory. This means that computing
a full formal proof requires the theory to provide a way to output formal proofs for the tautologies
that it produces and sends to the SMT algorithm (via the Conflict-Smt or Learn inference
rules). Producing proofs in the case of McSat is actually exactly the same as for SMT, because
the changes between SMT and McSat affect how conflicts are found rather that what conflicts are
found1.

For instance, consider the example shown in Section 1.2.3, where we have proved the following
set of clauses to be unsatisfiable:

C1 ≡ a = b

C2 ≡ b = c ∨ b = d

C3 ≡ ¬(a = d)

C4 ≡ ¬(a = c)

We get the resolution proof tree of Figure 4.2, where some of the leaves are tautologies from the
theory of equality, more precisely application of the transitivity of equality. Proving tautologies
formally can range from being quite easy to being quite hard and/or tedious depending on the
theory and formal proof system considered. For instance, the theory of equality (without unin-
terpreted functions) is quite simple: what we need to prove is only some instances of reflexivity,
symmetry2 and transitivity. On the other hand, theories such as rewriting, may have reasonably
simple lemmas but are much harder to correctly handle as they require to do a lot of substitutions
in terms (typically, in order to normalize a term), which can be quite hard to do properly. Finally
some theories actually create tautologies that are themselves quite complicated: an example would
be congruence closure theories, which can generate tautologies mixing pure equality reasoning with
uninterpreted functions.

4.1.3 Theory Tautologies in ArchSAT
This section describes the tautologies (and associated proof strategies) currently used by the

theories implemented in ArchSAT.
ArchSAT handles logical connectives, as well as first-order quantified formulas using the tableau

theory (rather than pre-processing input formulas to transform them into CNF), as explained in
Section 2.1.2. The tableau theory tautologies are presented in Figure 2.2. In this theory, quantified
formulas offer some interesting choice points:

• First, existential formulas (or negated universal ones) can either use fresh constant symbols,
of skolem symbols (as mentioned in Section 2.2). To simplify3, whatever choice has been
made during proof search, both are translated using epsilon-terms in the proof tree.

• Secondly, it may happen that meta-variables are used in the final proof. However, meta-
variables are specific to proof search and are not directly translatable in most proof assistants.
In order to overcome this problem, meta-variables are replaced by an arbitrary ground term
of the corresponding ground type when generating the proof tree. In first-order logic this
should always be possible as all types are considered inhabited. See Section 4.3.1 for more
details on the interactions with the logics of proof assistants.

1More precisely, a McSat solver quite surely finds different conflicts that a SMT prover would, but both produce
conflicts that are instances of the same theorems (such as transitivity for equality).

2Actually, symmetry of equality can be a little tricky depending on the internals of a theorem prover, see
Section 4.3.2 for more information.

3And because Skolemization would not be easy to do considering the proof structure of ArchSAT.
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⟦¬ b = c⟧, ⟦¬ a = b⟧, ⟦a = c⟧

eq/eq-trans

a

b

c

⟦a = c⟧

⟦¬ a = c⟧

Hypothesis c4

⟦¬ a = b⟧, ⟦¬ b = c⟧

Resolution R3

⟦a = b⟧

⟦a = b⟧

Hypothesis c1

⟦a = b⟧

⟦¬ b = c⟧

Resolution C2

⟦b = c⟧

⟦b = c⟧, ⟦b = d⟧

Hypothesis c2

⟦b = d⟧

⟦¬ b = d⟧, ⟦¬ a = b⟧, ⟦a = d⟧

eq/eq-trans

a

b

d

⟦a = d⟧

⟦¬ a = d⟧

Hypothesis c3

⟦¬ a = b⟧, ⟦¬ b = d⟧

Resolution R4

⟦¬ b = d⟧

Resolution C1

⟦b = c⟧

Resolution R1

⊥

Resolution R2

Figure 4.2: Resolution proof tree for a simple SMT problem
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As mentioned earlier, the theory of equality has two main categories of tautologies:

Reflexivity tautologies are of the form C ≡ x = x, where x is an arbitrary term.

Transitivity tautologies are of the form

C ≡ ¬(x1 = x2) ∨ ¬(x2 = x3) ∨ . . . ∨ ¬(xn−1 = xn) ∨ (x1 = xn)

and are proven by using the basic transitivity lemma as many times as necessary.

Uninterpreted functions and uninterpreted predicates have respectively a category of tautologies:

Function tautologies are of the form

C ≡ ¬(a1 = b1) ∨ ¬(a2 = b2) ∨ . . . ∨ ¬(an = bn) ∨ f(a1, . . . , an) = f(b1, . . . , bn)

Predicate tautologies are of the form

C ≡ ¬(a1 = b1) ∨ ¬(a2 = b2) ∨ . . . ∨ ¬(an = bn) ∨ ¬p(a1, . . . , an) ∨ p(b1, . . . , bn)

Finally, rewriting produce two kinds of lemmas:

Dynamic rewriting only generates pure instantiations of rewrite rules are produced, which can
be discharged exactly like any other quantified formula instantiation.

Static rewriting produces lemmas of the form

¬Jr1K ∨ ¬Jr2K ∨ . . . ∨ ¬JrnK ∨ JP ⇔ P ′K

where each ri is a rewrite rule (i.e. a quantified formula interpreted as a rewrite rule), P an
atomic formula, and P ′ is the normal form, computed using the rules r1, r2, . . ..

4.2 Resolution Encoding and its Implication on the Classical
Nature of Proofs

This section will describe in more details the formal logic in which ArchSAT internally expresses
its proofs before printing them in an external format (for Coq, for example). One of the aim of
ArchSAT is to be able to output formal proofs in different formats, in order to maximize confidence
in the results. As bugs may also happen in formal proof assistants such as Coq, producing proofs
for more than one proof assistant would therefore increase confidence.

Thus, ArchSAT targets more than one formal output, namely it currently can output proofs in
the Coq proof assistant format, and the Dedukti logical framework. In order to support multiple
proof outputs without duplicating work, ArchSAT has a structured internal representation of proofs
(see Section 4.4 for more details), that uses higher-order terms with dependent types. This choice
was made so that internal proofs would be able to be exported to Coq or Dedukti in a relatively
straightforward manner. Particularly, this is one reason why internal proofs in ArchSAT do not
use inductive types, since they are not present in Dedukti1.

4.2.1 Clause encoding
Although clauses and resolution can be expressed and used in any axiomatization of first-order

logic, there are some benefits in encoding them in a special way. Mainly, resolution between clauses
may be complex to automatize because in formal logic, disjunction is binary. Thus, suppose we
want to resolve two clauses C = c0∨. . .∨ci∨a∨ci+1∨. . .∨cn andD = d0∨. . .∨di∨¬a∨di+1∨. . .∨dm,
using a, in order to deduce E = c0 ∨ . . .∨ ci ∨ ci+1 ∨ . . .∨ cn ∨ d0 ∨ . . .∨ di ∨ di+1 ∨ . . .∨ dm. There
are basically two options in order to prove E:

1Of course, inductive types can be encoded in Dedukti, but it is simpler to directly axiomatize first-order logic
in Dedukti rather than encoded inductive types so that they can then be used to axiomatize first-order logic.
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• Use a generic resolution lemma, but this requires to use symmetry lemmas for disjunction in
order to re-order the clauses, so as to have: C ′ = a∨c0∨ . . .∨cn and D′ = ¬a∨d0∨ . . .∨dm,
on which the generic resolution lemma can be applied.

• Manually split all disjunctions in C, with two main different cases:

– For ci (for any i), prove the corresponding atom in E
– For a, split all disjunctions in D, where we also have two main cases:

∗ For dj (for any j), prove the corresponding atom in E
∗ For ¬a, since we also have a, we can deduce E from the exfalso axiom, which states
that any theorem is provable if ⊥ is provable.

Both of these are actually quite cumbersome, and may end up generating quite big proofs.
On the contrary, ArchSAT encodes clauses as implications (and thus, proofs of clauses as func-
tions), following what is done in [29] for iProver Modulo. Note however that only clauses are
encoded following [29], and even then with a slight difference. In superposisiton provers such as
iProver Modulo, clauses are not simply disjunction of literals, but are also implicitly quantified
over all free variables occurring in the clause. This is not the case in ArchSAT where clauses are
disjunctions of ground arbitrary first-order formulas. Thus a clause C = c0 ∨ . . . ∨ cn is encoded
as:

◦
C =def ¬c0 ⇒ ¬c1 ⇒ · · · ⇒ ¬cn ⇒ ⊥

Note that the literals ci are either formulas (without negation at the top) or single negations
of formulas.

We will call this encoding of a clause, the weak form of a clause, or simply weak clause. It has
the following three properties which makes it suitable for use in resolution proofs:

1.
◦
⊥ = ⊥

2.
◦
C can be proven from C

3. Resolution is admissible between weak clauses (and results in the weak form of the usual
resolution result): given two clauses C = c0 ∨ . . .∨ ci ∨ a∨ ci+1 ∨ . . .∨ cn and D = d0 ∨ . . .∨
dj ∨¬a∨ dj+1 ∨ . . .∨ dm, which can be resolved into a clause E = c0 ∨ . . .∨ ci ∨ ci+1 ∨ . . .∨
cn ∨ d0 ∨ . . . ∨ dj ∨ dj+1 ∨ . . . ∨ dm, we can perform resolution on

◦
C and

◦
D, which results in

the following proof of
◦
E :

fun(xc0 : ¬c0) . . . (xcn : ¬cn)(xd0 : ¬d0) . . . (xdn : ¬dn)→
◦
Cxc0 . . . xci(fun(xa : a)→

◦
Dxd0 . . . xdj (fun(x¬a : ¬a)→

x¬axa

)xdj+1
. . . xdm

)xci+1
. . . xn

With these three properties, we can encode a whole resolution proof, with the following strat-
egy:

• First, for each leaf of the resolution tree, prove the weak form of its clause.

– For hypotheses, this can be done using property 2 of weak clauses.
– For theory lemmas, it is better for the theory to directly prove the weak form of the

lemma (see next section).

• Then each resolution of the proof tree can be performed on weak clauses, using property 3.
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• Finally, we get the weak form of the empty clause, which is the empty clause as stated by
property 1.

We can thus encode whole resolution proofs using weak clauses. If we again take the pure
propositional example used in Section 1.1.3, whose resolution graph is in Figure 4.1, we can produce
the proofs (in Coq as well as Dedukti) using weak clauses which is presented in Appendix D.

4.2.2 Tableaux Lemmas and Constructive Proofs
The encoding of clauses raises an interesting question about the proof of theory lemmas. For

each theory lemma used in a resolution proof, one could either prove the lemma as a traditional
clause and then prove the weak clause from that proof, or directly prove the weak form of the
lemma. While both seem equivalent at first glance, there is one major difference in that proving
implications (i.e. weak clauses) is easier than proving disjunctions (i.e. traditional clauses) in
intuitionistic logic (without using the excluded middle).

It is easy to see that on the lemmas generated by the tableau theory presented in Section 2.1.2.
Let us take for instance the lemma generated by rule β¬∧: JP ∧QK∨¬JP K∨¬JQK. This disjunction
is not provable in intuitionistic logic. However, its weak form ¬JP ∧QK⇒ ¬¬JP K⇒ ¬¬JQK⇒ ⊥
is easily provable in intuitionistic logic.

This allows ArchSAT, a prover dedicated to classical logic, to output intuitionistic proofs when-
ever possible, i.e. when the proof found can be expressed in intuitionistic logic, it is output as a
Coq proof that does not require classical axioms. There are two conditions for a proof found by
ArchSAT to be intuitionistic:

• The goal has to be ⊥, or be the negation of a formula. Indeed, ArchSAT always does proof
by contradiction (like most theorem provers), using the negation of the goal to prove ⊥.
However, when the goal is ⊥ (or alternatively, when there are no goal1), its negation cannot
be useful for the proof, thus it is left as it is. When the goal is a negated formula, doing
a proof by contradiction is actually the same as performing an introduction : since ¬P if
traditionally defined as P → ⊥, a proof of ¬P is actually a function that takes some element
of type P and returns an element of type ⊥ according to the Curry-Howard correspondence.

• The tableau rules δ¬∀, γ¬∃M, or γ¬∃inst are not used in the proof. These rules are used
to transform a negated quantified formula into a (not negated) quantified formula using
classical De Morgan’s laws for quantifiers, which state that ¬∃x, P (x) ⇔ ∀x,¬P (x), and
¬∀x, P (x)⇔ ∃x,¬P (x).

If these two criteria are fulfilled, the classical proof found by ArchSAT can be expressed in
intuitionistic terms, and ArchSAT therefore produces an intuitionistic proof. Examples of sequents
for which ArchSAT produce classical proofs therefore include the two examples in the previous
section :

P ∨Q,¬P ∨R,¬Q ∨R,S ∨ T,¬S ∨ ¬R,¬T ∨ ¬R ` ⊥
And :

a = b, b = c ∨ b = d,¬(a = d),¬(a = c) ` ⊥

4.3 Relating Proof Search and Formal Proofs
This section explains some of the challenges associated with proof generation after proof search.

More specifically, once proof search has found a proof, or rather has reached the conclusion that
a proof exists, extracting a formal proof is not always straightforward because of many reasons,
some due to the architecture of the code of a prover, and some of which require to answer some
non-trivial theoretical questions. This section deals with the latter kind of challenges which I
encountered during implementation of proof output.

1as it is often the case for problems expressed for SMT solvers in the SMT-LIB language.



76 CHAPTER 4. PROOF GENERATION IN ARCHSAT

4.3.1 Synthetizing Terms
The first challenge (and perhaps one of the most interesting from a theory point of view), is the

creation of a term of a given type, which I called synthetizing. This should always be possible, or
at least authorized in the context of first-order theorem provers, as first-order theory traditionally
requires all types (or sorts) to be non-empty.

There are two cases in ArchSAT that require to synthetize terms:

• The use of epsilon-terms in proofs: formal epsilon-term specifications require the quantified
type to be inhabited, which means generating a term of this type to prove it is inhabited1.

• There may be meta-variables left in the proof tree at the end of proof search. For example,
this case is encountered is when proving ∃x : ty , x = x, where we generate a meta-variable
X and discover that the formula JX = XK must be false, which is unsatisfiable regardless of
the actual instance of X.

Since the specification of first-order logic actually allows us to use as axioms the inhabitability
of types, the problem could be solved easily by adding axioms to the initial problem. However,
it should not be necessary for a prover to add axioms to a problem to make it formally provable.
Furthermore, in formal proofs generated by provers, the context of the proof (that is, the type
definitions, the axioms and the goal that constitute the problem), ideally should not be generated
by the prover, since the prover could (inadvertently) introduce inconsistent axioms, thus negating
the use of the formal proof. It is therefore far better for the original formulation of a problem to
allow the prover to prove type inhabitance without additional hypotheses.

For regular first-order problems, this could imply adding constants of all the types that occur
in a given problem (which is already very often the case). The prover could then maintain an
association table from types to terms. However, this way is incompatible with polymorphism :
handling polymorphic symbols means that proof search may encounter types that do not exist
in the original problem, particularly if the goal to prove is a universally quantified lemma2, in
which case a fresh type constant (or a skolem type constructor) would be generated and terms of
this fresh type would be used during proof search. Moreover, the existence of type meta-variables
brings another problem, since it means that when generating a term of a certain type, this type
may contain type meta-variables which also should be substituted for another type. The choice
of how to replace type meta-variables could therefore influence the possibility of generating terms
of given types.

This demonstrates the need for a smarter algorithm to synthetize terms in order to properly
handle all cases. However, this is not the focus of this thesis, and I choose to have an hybrid
implementation that implements the following:

• Type meta-variables are always replaced by the same basic type defined by ArchSAT3.

• Synthetizing a term of a given type operates a breadth-first search by iterating on the
constants symbols defined in the input problem.

• The search is limited to a rather shallow depth4. If no appropriate term is found, a new
constant of the required type is generated and added to the hypotheses of the problem, in
order to not prevent the rest of the proof generation5.

This strategy succeeds in most cases, since problems using polymorphism usually define basic
constructors for polymorphic types (such as the empty list, the empty set, etc), which are found
almost instantly.

1Adding an axiom specifying that all types are inhabited is wrong in proofs produced by ArchSAT since, in the
Coq output for instance, no embedding is used, there is no way to distinguish a first-order type from other types,
and specifying all types to be inhabited would obviously be incoherent in Coq.

2For instance if the goal is to prove some property on the length of appended polymorphic lists
3ArchSAT defines a basic type for elements. Among others, the TPTP $i type, which is the default type implicitly

declared and used for terms in TPTP, is translated using this basic type.
4Currently the maximum depth is 5, as synthetizing do not require to create big terms on typical problems.
5A warning is also emitted to alert the user to this potential problem.
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4.3.2 Proof Search Congruences

The other main challenge is the disparity between the congruences that automated theorem
provers usually implement in order to speed up proof search, and their expression in a formal
setting.

In practice, during proof search, the more terms (and/or formulas) can be identified with
each other (i.e. considered equal), the better it is, since it reduces the total number of terms (or
formulas) and limits potential instantiations. Provers tend to identify terms which usually have
the same semantics, for instance a = b and b = a are often considered equal, logical connectives
such as conjunction and disjunction do not have fixed arity (and instead take a list of arguments),
etc. This is perfectly sound and helps proof search a lot, however, most formal proof assistants do
not handle these congruences between terms (or formulas). Thus, when producing a formal proof,
great care must be taken to correctly distinguish terms that were congruent during proof search
but not in formal proofs, and then relate them using lemmas.

4.3.2.1 True and False

The most obvious congruence is the one between > and ⊥. It is quite reasonable during proof
search to consider ¬> ≡ ⊥ and ¬⊥ ≡ >. However formal proof systems do not consider those
terms equal, though proving one side knowing the other is easy. Since this congruence is actually
quite simple, it could be handled directly by adding a few corner cases to some part of the formal
proof generation, though there are many places where it must be considered, and thus a likely
source of easily fixable but annoying bugs.

In order to avoid having to manually handle these cases, ArchSAT actually has a generic
mechanism to identify terms which are equivalent modulo some simple lemma applications, by
extending environment lookups, see Section 4.4 for more details.

4.3.2.2 Equality Symmetry and Substitution

Equality symmetry is another usual congruence that considers equal the two formulas a = b
and b = a for any pair of terms (a, b). However, contrary to the congruence between > and ⊥, the
special mechanism mentioned above cannot handle completely this case because it is much more
complex.

The main problem is that in order to identify a = b and b = a, one easy way is to order them
using an arbitrary term ordering, thus having a canonical representation of the equality. However,
applying substitutions may re-order equalities: consider the formula ∃x : ty ,∃y : ty , x = y, such
that in the arbitrary term ordering used, x is smaller than y. Then, when we generate epsilon-terms
ε1 and ε2 for x and y respectively, it may happen that ε1 is bigger than y. Thus, after generating
ε1, we get the formula ∃y : ty , y = ε1, where the order of equality has been reversed. This is a
problem because the specification of epsilon-terms in formal proofs helps us prove ∃y : ty , ε1 = y,
which is a different formula in a formal proof assistant. There are two solutions to palliate this
problem:

• After every instantiation or generation of epsilon-term, prove that the translated internal
formula and the formula expected by the proof assistant are equal, which requires a lot
of work and is costly for big formulas. Note that this option requires the prover to be
able to compute the formula expected by the proof assistant, which most likely means
having a separate structure for proof terms, which correctly keeps equality ordering through
substitutions (thus not honoring the congruence) in order to know which formulas are to be
proven equal.

• In the proof search terms, while keeping the congruence as is, annotate equalities with
their original order and maintain these tags through substitutions, so that when they are
translated to proof terms, the correct order can be used.

ArchSAT uses the latter option, making use of of the generic system for tagging terms and
formulas as described in Section 6.3.
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4.3.2.3 Binary Connectors vs. N-Ary Connectors

Quite identical to equality symmetry, logical connectors such as conjunction and disjunction
are naturally treated as associative (and even commutative in some cases) by automated theorem
provers, whereas they are not by proof assistants. This brings the same problems as equality
symmetry does (formulas translated from proof search do not match those expected by the proof
assistant), and can be solved the same way. Once again, ArchSAT tags disjunctions and con-
junctions with their original tree structure, in order to translate them correctly when generating
proofs.

4.4 A Structured Representation of Proofs

This section describes some technical details concerning the implementation of the proof output
of ArchSAT. Historically, ArchSAT’s first proof output targeted Coq proof scripts, and was achieved
through a combination of carefully crafted printing functions. This required manually adjusting a
lot of corner cases in the printing functions until everything worked. Then, Dedukti was targeted
for a second proof output, but Dedukti does not have a notion of proof scripts like Coq has,
which means that proof terms must be generated directly. Since Coq proof scripts generated
from ArchSAT used only simple tactics (apply, intro, exact, cut, pose proof), the proof
constructed by the printed proof script was actually directly expressible in Dedukti. However,
since it used only printing functions, there was no real way to reuse the work that was done for
Coq proof scripts. That was a real problem concerning the sharing of code between proof outputs,
as it meant that the same work had to be done again (including fixing bugs).

In order to avoid duplicating work, I thus choose to have a structured representation of the
formal proof generated by ArchSAT: instead of having an informal representation (such as the
resolution tree) that is then printed in a formal language, the informal representation is first
transformed into a structured formal proof, which then can be printed in various formats. This
way, the reasoning part of the proof is shared between different formats, which then differ mainly
by the function used to print terms in their syntax. As demonstration of the usefulness of this
split, once the proof generation was implemented and tested (in conjunction with the Coq output),
implementing the Dedukti output took only about a day of work.

More specifically, in the calculus of constructions in which ArchSAT expresses its proofs, terms
and types are not syntactically distinct, thus proof terms will be used to represent proofs as well
as types (and by extension, formulas). During proof generation, ArchSAT will first build a proof
tree, similar to a sequent calculus proof tree or, equivalently, a typing derivation. This tree will
naturally use proof terms to represent the goals and hypotheses that occur in sequents. This proof
tree can be printed as a Coq proof script. In order to also support proofs in Dedukti, in which the
proof tree can not be expressed directly, ArchSAT also implements the elaboration of this proof
tree into the corresponding proof term. This term can then be printed in the Dedukti language,
but also in the Coq language.

Since they are used pervasively in proof generation, proof terms will first be presented in
Section 4.4.1, and then proof trees in Section 4.4.2.

4.4.1 Proof Terms

ArchSAT uses polymorphic, higher-order terms with dependant types for proof generation.
This allows an easy correspondence with the calculus of constructions terms that are used in Coq.
The syntax of proof terms in ArchSAT is presented in Figure 4.3. In order to keep the code as
simple as possible, the term structure is really basic: application is curryfied and represented as
a binary constructor1 (a term is applied to another term) and a binder binds a single variable2.
An additional term constructor is added to explicitly represent let-bindings, which basically are
β-redexes: let x = u in v is the same as (λx : ty .v)u (assuming u is of type ty). This redundant

1Whereas in proof search, application is n-ary
2Whereas in proof search binders binds a list of type variables and a list of term variables
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P =Type Type
| x, y, z, . . . variable
| uv application
| let x = u in v let-binding
| λx : t. u Lambda
| ∀x : t. u Universal quantification
| ∃x : t. u Existential quantification

Figure 4.3: Syntax for the Proof Terms in ArchSAT

term constructor is introduced in order to enable a linear treatment of proofs1. This is particularly
useful in resolution proofs, which may be extremely large, and where let-bindings offer a way to
linearize the resolution graphs so that large proofs can be more easily constructed2.

As usual, this thesis will use some basic notations for proof terms:

• Some basic constants are declared with their usual type: Prop,>,⊥,=,∨,∧.

• As for proof search terms, successive quantifications may be concatenated.

• Implication is defined as ⇒≡ λP : Prop, Q : Prop. ∀v : P. Q

• Negation is defined as ¬ ≡ λP : Prop. P ⇒ ⊥

• Equivalence is defined as ⇔≡ λt : Prop, u : Prop. (t⇒ u) ∧ (u⇒ t).

The type system used for proof terms by ArchSAT is shown in Figure 4.4. It uses the standard
notions and notations for typing environments and typing statements. In this type system, the
Type constructor is defined as impredicative, which although technically unsound does not really
pose a problem, mainly because the proof generated is destined to be checked by a consistent
proof checker such as Coq or Dedukti. Moreover, the aim of proof terms in ArchSAT is more to
check that the conclusion of a reasoning step match the pre-condition of the next one, checking
low-level details such as order of equalities. Most reasoning steps in proofs generated by ArchSAT
are effectively first-order reasoning, and the higher-order and dependant types are mainly used
in order to state the theorems needed in proofs (such as introduction and elimination principles,
epsilon-term specification, . . . ).

Proof terms in ArchSAT naturally have a notion of reduction, which actually is the β-reduction,
extended to also reduce let-bindings, as well as a notion of definitions, where constants can be
defined equal to terms, and are then expanded when reducing3. The notion of definition is useful
to define usual logical connectives such as negation, and keeping them in non-reduced terms in
order to have shorter and more readable terms.

This reduction is used in the typing system, where matching of types (in rules such as App,
which requires types to have a certain shape) is performed on the reduced form of a type. Let us
note that reducing all terms eagerly is not a good idea as some terms, such as proof terms, are
rarely compared, contrary to others, such as proof term types, which are frequently compared.
This motivates the need to distinguish a term and its reduced form.

However, reduction and polymorphism raised some non-trivial challenge during implementation
concerning term comparison : in order to compare terms, one must consider the reduced forms

1Let-bindings are meant to be used in cases where the bound term t is small compared to u, allowing to perform
some treatment on t before continuing treatment of u in very large terms, whereas regular term application does
not have that kind of implicit usage constraints.

2It is easier to implement tail-recursive functions on let-bindings than applications.
3Rather than δ- reduction, this is more similar to having syntactic sugar for defined constants.
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Type
Γ ` Type : Type Ax

Γ, x : t ` x : t

Γ ` u : ∀x : ty .t Γ ` v : ty App
Γ ` uv : t[x/v]

Γ, x : ty ` u : t
Abs

Γ ` λx : ty .u : ∀x : ty .t

Γ, x : ty ` u : t
All

Γ ` ∀x : ty .u : t

Γ, x : ty ` u : t
Ex

Γ ` ∀x : ty .u : t

Γ ` u : ty Γ, x : ty ` v : t
Let

Γ ` let x = u in v : t

Figure 4.4: Type System for Proof Terms in ArchSAT

of the terms, and compare them modulo α-equivalence. Since type variables may be bound,
reduction may change the type of a bound variable, thus resulting in a new fresh variable bound
in the reduced term. This poses the problem of how to compare two non-equal terms, in order to
have a total coherent order. Indeed, consider the following situation1

• Negation is defined as ¬ ≡ λP : Prop, v : P.⊥.

• Implication is defined as ⇒≡ λP : Prop,Q : Prop.∀v : P.Q.

• A term t1 ≡ ¬A is created. Its reduced form is t′1 ≡ ∀v1 : A.⊥ (a fresh variable v1 is created
when substituting P in the definition of ¬).

• A term t2 is created2, whose reduced form is t′2 ≡ ∀v2 : B.C.

• A term t3 ≡ A⇒ ⊥ is created, whose reduced form is t′3 = ∀v3 : A.⊥ (again, a fresh variable
v3 is created when reducing the definitions of the implication and negation).

• As expected t′1 and t′3 are alpha equivalent, thus t1 and t3 are equal.

• Suppose that for non alpha-equivalent terms, in the case of variables quantified by the same
binder, comparison of terms performs the comparison of the unique id of the quantified
variables. Then, we would get t′1 < t′2 < t′3, which is inconsistent3.

This example shows the difficulty of comparing term modulo alpha-equivalence (compared to
computing equality modulo alpha-equivalence). While there may be algorithms, that correctly
compare terms modulo alpha-equivalence (for instance, using deBruijn indices), I choose to hash-
cons proof terms modulo alpha-equivalence. This way, each hashconsed terms can be assigned a
unique integer, which can then be used to obtain a total order on terms.

Finally, for reference the OCaml type definition of terms can be found in Appendix B.

4.4.2 Proof Trees
Now that proof terms are defined, we can define sequents as a pair of a set of typed term

identifiers (the axioms), and a term (which is the goal). A proof tree is then a tree4 where each
node is annotated with a sequent and a proof step. A proof step is basically a function from
sequents to arrays of sequents, which returns the sequents needed to prove the input according to
the proof step (if it returns an array of length 0, it means that there is no sequent left and the
proof step actually closes the current branch). Proof trees can also have nodes annotated with a

1Which actually occurred during the implementation.
2for instance B ⇒ C.
3And leads to a subtle bug where a key is not found in a map although it is equal to one of the keys bound in

the map.
4i.e. a directed acyclic graph.
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sequent but no proof steps, in order to represent open (or incomplete) proof trees. This allows
us to build a proof tree starting from the root, progressively eliminating open nodes using proof
steps.

4.4.2.1 Proof Steps

Here is the description of the (fairly standard) basic proof steps used in ArchSAT:

• The introduction proof step takes as argument a sequent of the form (Γ,∀x : ty , t), and
compute an array of length 1 : [|(Γ ∪ {x : ty}, t)|].

• The cut proof step takes as argument a sequent of the form (Γ, t) and a formula F , and
produce an array containing two sequents to prove: [|(Γ, F ); (Γ ∪ {h : F}, t)|], where h is a
fresh identifier.

• The let-in proof step takes as argument a sequent of the form (Γ, t) and a term u of type
F , and produces an array containing a single sequent: [|(Γ ∪ {h : F}, t)|] where h is a fresh
identifier.

• The apply proof step takes as argument a sequent of the form (Γ, g) and a term f of type
g1 ⇒ g2 ⇒ . . .⇒ gn ⇒ g, and generate an array of n sequents: [|(Γ, g1); . . . ; (Γ, gn)|]. Note
that the term f may contain function symbols declared globally (such as the transitivity
lemma for equality), but also variables bound in the environment Γ. It thus subsumes the
axiom rule in a lot of sequent-like calculus. This rule is also the only one that can generate
0 sequents, thus closing the current branch.

Additionally, ArchSAT defines a few extended proof steps to make the generation of proof trees
from resolution trees easier:

• The duplicate proof step takes as argument a sequent of the form (Γ ∪ {c1 :
◦
C1}, t), where

◦
C1 is the weak form of the clause C1, which contains some duplicate atoms. The proof step

then returns an array with a single sequent: (Γ ∪ {c1 :
◦
C1, c2 :

◦
C2}, t) where C2 is the same

clause as C1 but where duplicates have been removed.

• the resolve proof step takes as argument a sequent of the form (Γ ∪ {c1 :
◦
C1, c2 :

◦
C2}, t),

where
◦
C1 and

◦
C2 are two weak clauses, and produce an array consisting of a single sequent:

[|(Γ ∪ {c1 :
◦
C1, c2 :

◦
C2, c3 :

◦
C3}, t)|], where C3 is the result of resolution beetween C1 and C2

(and
◦
C3 its weak form).

• The mSAT backend is a big proof step that takes as argument a sequent of the form (Γ,⊥),
and a resolution tree and returns an array containing as many sequents as leaves of the
resolution tree. Each sequent is of the form (Γ, L), where L is the lemma corresponding to
the resolution tree leaf1.

While these steps could be expressed using the basic steps described above, it is nonetheless
useful to be able to have them expressed as single reasoning steps.

4.4.2.2 Positions and Tactics

Proof trees are built incrementally, starting from the root, and applying proof steps to open
nodes until the tree is closed i.e. all nodes are annotated with a proof step. To do so, ArchSAT
has a notion of position in proof trees, which intuitively represent open nodes. Proof steps may
then be applied to a position, and generate an array of positions, which correspond to the array of
sequents returned by the proof step. Positions also give access to their underlying sequent, which

1In practice, this proof step generates an empty array and takes care of proving each of the leafs internally, but
it is due to purely technical considerations.
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means that proof generation can match on the form of the goal, and query the axioms (also called
the environment) before deciding what proof step to apply. This is interesting as it allows the
implementation of tactics.

A tactic is a function that takes some positions within a proof, performs in-place modifications
of that proof (typically, by applying some proof steps), and returns some value. The returned
value can depend on the tactic, and is useful for tactics to either returns new positions within
the proof, or indicate whether the tactic closed a branch. Tactics can also inspect the shape of
sequents in order to determine what modifications to apply to the proof tree. Some concrete
examples of tactics are shown in Appendix B.

4.4.2.3 Congruences

Congruences, as explained in Section 4.3.2 are classes of formulas that even though not equal,
can be easily proven from one to another using known global constants (such as the equality
symmetry lemma for relating a = b and b = a, for example). Handling these cases manually is
quite tricky and very quickly tedious because every proof step and tactic would need to take into
account all of the congruences. In order to avoid this, a special mechanism is implemented. This
is done by modifying the function performing lookups in the environment (i.e. the axioms). Most
tactics perform lookup in the environment in order to look for a specific axiom before applying
a proof step. Usually, lookups try and find the exact term that is looked up. ArchSAT instead
allows us to register congruences that permit to lookup a list of alternate terms, and in case one
of these term is found, wrap it appropriately in order to return a term of the required type.

Let us consider the case of equality symmetry. Suppose we have an environment Γ = {eq : a =
b}. When a tactic tries and finds a term of type b = a in the environment, the lookup fails. Instead
of stopping here, the congruence for equality symmetry actually tries and look for a = b, which is
found, and returns eq. In order to return a term of type b = a as required, the congruence then
wraps it using the equality symmetry lemma, which results in a term with the expected type. The
interesting point of this mechanism is that congruences are defined once, and then every lookup
in the environment will benefit from them.

ArchSAT currently uses two congruences as described in Section 4.3.2:

True and False There are 4 cases depending on which term is looked up:

• if it is >, then no lookup is performed and the constant proof of true (let us call it I)
is returned.

• if it is ⊥ then ¬> is looked up. If the lookup is successful and returns e, then eI is
returned

• if it is ¬>, then ⊥ is looked up. If the lookup is successful and returns e, then λx : >. e
is returned

• if it is ¬⊥, then no lookup is performed and the constant term λx : ⊥. x is returned.

Equality Symmetry Again, there are 2 cases depending on which term is looked up:

• if it is a = b, then b = a is looked up. If it is successful, then the term found is wrapped
using the equality symmetry lemma1.

• if it is ¬(a = b), then ¬(b = a) is looked up. If it is successful, then the term found is
wrapped using the disequality symmetry lemma2.

Note that these congruences deal with terms with at most one negation at the top. The reason
why this is actually enough is explained in the next Section.

1The equality symmetry lemma states that ∀t : Type, a : t, b : t.a = b⇒ b = a
2The disequality symmetry lemma states that ∀t : Type, a : t, b : t.a 6= b⇒ b 6= a
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4.4.3 From Resolution Tree to Proof Tree
ArchSAT transforms the resolution tree into a proof tree by folding over the nodes of the

resolution tree in a topological order (from the leaves to the root), in order to ensure that when
translating a node of the resolution tree, its children have been translated (and more importantly
their conclusion added to the environment). Each node is translated using a let-binding that brings
its conclusion into the environment (i.e. the axioms). There are then 4 distinct cases depending
on the node of the resolution tree:

• The node is a resolution. The resolution proof step is used to deduce the conclusion of the
node, which is the result of resolution.

• The node is a duplication node. This happens when an input clause1 contains more than
one occurrence of some literal. Since some algorithms for boolean constraint propagation in
the core solver relies on clauses not containing duplicates, these duplicates are eliminated.
The duplicate proof step is used to deduce the de-duplicated weak clause.

• The node is a leaf, corresponding to a hypothesis. In this case, we have a hypothesis

C ≡ c0 ∨ . . . ∨ cn, and we want to prove
◦
C ≡ ¬c0 ⇒ . . . ⇒ ¬cn ⇒ ⊥. This is done easily by

introducing all of the ¬ci, and then splitting the disjunction of the hypothesis clause. Each
case cj is then easily closed because ¬cj has been introduced.

• The node is a lemma. The proof of the weak clause is left to the theory. This is typically done
by introducing all atoms of the weak clause, and then proving ⊥, which is usually quite easy.
These proofs vary much more than the proofs done for other nodes, as each theory typically
has multiple distinct lemma patterns to prove (for instance, equality reflexivity, equality
transitivity, equality symmetry, . . . ). The code building these proofs is of significant size
and complexity (due to the number of different lemmas that need to be proven). It is also
code that would need to be duplicated if proof output was done with nested printing function.
Therefore, it is the part of proof generation that benefits the most from the structured proof
representation.

Theory lemmas in ArchSAT are mostly quite easy to prove. The various lemmas that theories
in ArchSAT currently produce are described in Section 4.1.3. Following is an explanation of
how each are proved. Note that these proofs rely on an axiomatization of first-order logic to
provide some basic lemmas. The required axiomatization lemmas can be found in the files cc.dk,
logic.dk, classical.dk and epsilon.dk in Appendix C. This appendix shows the full first-order
axiomatization that is used in Dedukti proofs produced by ArchSAT. For Coq proofs, the standard
library is used, as it already contains all the necessary axioms and lemmas.

Equality reflexivity lemmas are direct applications of the reflexivity of equality found in the
axiomatisation of first-order logic.

Equality transitivity lemmas are also found in the axiomatisation of first-order logic.

Equality symmetry lemmas are essentially used in the congruence system, and are also taken
from the first-order axiomatization.

Function application lemmas in general are proved by using as many times as needed the
Leibniz characterisation of equalities : ∀A : Type, x : A, y : A,P : A⇒ Prop. x = y ⇒ Px⇒
Py. As a special case, when there are only 1 or 2 arguments, specialized lemmas (such as
Coq’s f_equal and f_equal2) are used to produce shorter, more readable proofs.

Predicate applications lemmas are substantially the same as the ones for function applications.

Logical connective lemmas corresponding to tableau rules α and β (see Figure 2.2) are simple
to prove using the elimination principles2 on logical connectives3.

1Input for the McSat inference rules, i.e. either a hypothesis or a theory tautology
2The elimination principles are present in the standard library of Coq, as well as in the axiomatization of

first-order used by Dedukti proofs (see Appendix C).
3Again, sometimes with argument re-ordered so as to prove branches in the intuitive order in Coq proof scripts.



84 CHAPTER 4. PROOF GENERATION IN ARCHSAT

Epsilon-terms are introduced using Hilbert’s choice operator, eventually after having applied
de Morgan’s Laws for quantified formulas (in the case of a negated universal formula).

Instantiations are more complex. As explained in Section 3.2.3, it happens that quantified
formulas are instantiated with terms that contain free variables, in which case these free
variables are quantified in the resulting formula. As for epsilon-terms, de Morgan’s law
for quantified formulas are used on negated existential formulas in order to get universal
formulas

Dynamic rewriting is exactly the same as instantiation.

Static rewriting lemmas are of the form:

¬Jr1K ∨ ¬Jr2K ∨ . . . ∨ ¬JrnK ∨ JP ⇔ P ′K

where each ri is a rewrite rule (i.e. a quantified formula interpreted as a rewrite rule), P
an atomic formula, and P ′ its normal form, computed using the rules ri. In order to prove
such lemmas, each rewrite rule is instantiated with appropriate ground terms using the same
process as for regular instantiations. Then the goal P ⇔ P ′ can be proven starting from
the reflexivity of equivalence P ⇔ P , and applying formula rewrites using transitivity of
equivalence, and term rewrites using Leibniz’s characterization of equality.

At that point, it might be interesting to note that since regular clauses allow at most one
negation at the top of each formula, and the weak encoding of clauses adds one negation to all
atoms of a clause, when proving a lemma (after introduction of the atoms), all formulas have
at most two negations at the top. Moreover, since the goal at that point is to prove ⊥, double
negation in axioms can be eliminated. Suppose a sequent of the form (Γ∪{h : ¬¬H},⊥), then by
applying h and then doing an introduction, we get the following sequent (Γ∪{h : ¬¬H,h′ : H},⊥).
This allows us to only ever have to consider term with at most one negation at the top, particularly
in congruences. On the other hand, some care must be taken when eliminating double negations,
as it might change the produced proofs. Consider a trivial clause C ≡ JP K ∨ ¬JQK where P = Q
(but we keep distinct names in order to better follow how each blackbox is translated). Its weak
form is : ¬JP K ⇒ ¬¬JQK ⇒ ⊥. We thus have to prove ⊥ knowing H0 : ¬JP K, H1 : ¬¬JQK. The
simplest way to do so is to apply H1 to H0, which is to apply the encoding of ¬JQK = ¬JP K to
the encoding of JP K, which is intuitive. However, if we eliminate the double negation in H1 in
order to get H2 : JQK, then the simplest way is to apply H2 to H1. While in this example it is
not complex, most lemma proofs need to be careful in how they handle double negations. It is
actually one point where having a structured proof helps, because the lemmas can then simply
look in the environment to see whether a term is present, and decide how to prove the lemma
using this information, whereas proving lemmas using printing functions would not usually have
this information.

ArchSAT can then output the whole proof tree:

• as a graph using the --full-dot file.gv command line option

• as a coq proof script using either the --coq proof.v (using the mSAT backend proof step to
translate the resolution proof) or the --coqscript script.v (translating each resolution
using the resolution proof step). The difference between these two output is that the mSAT
backend does not build the structured proof of each resolution, and instead uses an arrange-
ment of printing functions to handle the resolutions (the theory lemmas are sill proved using
the structured representation)1.

4.4.4 Proof Tree Example
Let us see how the transformation from resolution tree to proof tree operates. We will consider

the small example using equalities shown before :
1The current implementation of structured proof is slower than simple printing functions, hence on large pure

SAT problems, the structured proof can take a long time to be built.
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C1 ≡ a = b

C2 ≡ b = c ∨ b = d

C3 ≡ ¬(a = d)

C4 ≡ ¬(a = c)

This problem is unsatisfiable, and the resolution tree for the unsatisfiability proof is shown in
Figure 4.2. In order to build the structured proof tree from that resolution tree, ArchSAT starts
with a single node stating the sequent that needs to be proven. We will represent proof trees using
graphs, where each node is drawn using a rectangle. The root of the tree, at the top of the graph,
shows the goal with yellow background, while the hypotheses are listed under it. Arrows are then
used to link a node to its children. Open nodes use a red background1 and show the sequent that
needs to be proven in the same fashion as the root node. The graph for the empty proof tree
corresponding to the SMT problem above is the following:

False

ROOT

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

False

OPEN (1)

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

Then, each node of the resolution tree is translated, starting from the leaves. The current
order of these translations is unspecified (apart from being a topological order). In this example,
the first node to be translated is the proof of the lemma L0 ≡ ¬(a = b)∨¬(b = c)∨ (a = c). This
results in the following proof tree:

1The number in parenthesis in open nodes is a unique node identifier useful for debugging.
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False

ROOT

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

cut L0 = (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

intro E0: ~ ~ (a = b)

False

OPEN (3)

L0 (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

intro E1: ~ ~ (b = c)

intro E2: ~ (a = c)

apply E1

intro E3: (b = c)

apply E2

apply (eq_trans $i a b c c1 E3)

One can see the cut step introducing the weak form the clause L0. On the left of the cut
step is the proof of the clause : it starts by introducing each of the literals of the weak clause,
then eliminates the double negation of E1 : ¬¬(b = c) in order to get an axiom E3 : (b = c).
Interestingly, the same process (eliminating the double negation), is not done for E0 : ¬¬(a = b),
because there is already an hypothesis stating that a = b. After that, the disequality a 6= c can
be proven to be inconsistent because of the transitivity of equality.

On the right of the cut step, there is an open node where the rest of the translation of the
resolution tree will be performed. The next operation performed is to translate the input clause

C4 ≡ ¬(a = c), into its weak form
◦
C4 ≡ ¬¬(a = c) ⇒ ⊥, which is the same as ¬¬¬(a = c).

Proving the weak clause is done by introducing Ax0 : ¬¬(a = c), and then proving ⊥ using the
input clause C41. This results in the following proof tree :

1In the general case, when clauses have more than one literal, this part requires to split the disjunctions in the
input clause.
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False

ROOT

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

cut L0 = (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

intro E0: ~ ~ (a = b) cut C0 = ~ ~ ~ (a = c)

intro E1: ~ ~ (b = c) intro Ax0: ~ ~ (a = c)

False

OPEN (19)

C0 ~ ~ ~ (a = c)

L0 (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

intro E2: ~ (a = c)

apply E1

intro E3: (b = c)

apply E2

apply (eq_trans $i a b c c1 E3)

apply (Ax0 c4)

We then translate the resolution step between L0 and C0, whose resulting clause is called R0.
As mentioned previously, the resolution is represented as a single step. We thus get the next proof
tree.

False

ROOT

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

cut L0 = (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

intro E0: ~ ~ (a = b) cut C0 = ~ ~ ~ (a = c)

intro E1: ~ ~ (b = c) intro Ax0: ~ ~ (a = c) resolve R0 = L0:C0

intro E2: ~ (a = c)

apply E1

intro E3: (b = c)

apply E2

apply (eq_trans $i a b c c1 E3)

apply (Ax0 c4)

False

OPEN (42)

C0 ~ ~ ~ (a = c)

L0 (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

Note that, in order to keep proof trees more readable, not all current hypotheses are shown
in open nodes. In particular, clauses resulting from resolutions are not shown because in typical
problems they vastly outnumber the other hypotheses and do not bring much information.
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We then prove the weak clause
◦
C1, and perform a resolution between this weak clause and the

previously introduced clause R0 :

False

ROOT

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

cut L0 = (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

intro E0: ~ ~ (a = b) cut C0 = ~ ~ ~ (a = c)

intro E1: ~ ~ (b = c) intro Ax0: ~ ~ (a = c) resolve R0 = L0:C0

intro E2: ~ (a = c)

apply E1

intro E3: (b = c)

apply E2

apply (eq_trans $i a b c c1 E3)

apply (Ax0 c4) cut C1 = ~ ~ (a = b)

intro Ax0: ~ (a = b) resolve R1 = R0:C1

apply (Ax0 c1)

False

OPEN (58)

C0 ~ ~ ~ (a = c)

C1 ~ ~ (a = b)

L0 (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

We then prove the weak clause
◦
C2. In this case, the clause C2 actually does contain a disjunction,

so the proof needs to split this disjunction. This is done using the or_elim lemma from the first-
order logic axiomatization. This lemma allows to prove some formula by performing a pattern
matching on a disjunction. The exact type of the or_elim lemma is or_elim : ∀P : Prop, Q :
Prop, R : Prop, (P ∨ Q) ⇒ (P ⇒ R) ⇒ (Q ⇒ R) ⇒ R. The application of this lemma creates
two branches, each of which is proved by introducing the given literal, after which an immediate
contradiction can be found using this introduced literal and one of the literals introduced earlier
when deconstructing the weak clause that is being proven.
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False

ROOT

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

cut L0 = (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

intro E0: ~ ~ (a = b) cut C0 = ~ ~ ~ (a = c)

intro E1: ~ ~ (b = c) intro Ax0: ~ ~ (a = c) resolve R0 = L0:C0

intro E2: ~ (a = c)

apply E1

intro E3: (b = c)

apply E2

apply (eq_trans $i a b c c1 E3)

apply (Ax0 c4) cut C1 = ~ ~ (a = b)

intro Ax0: ~ (a = b) resolve R1 = R0:C1

apply (Ax0 c1) cut C2 = (~ (b = c) → ~ (b = d) →False)

intro Ax0: ~ (b = c)

False

OPEN (61)

C0 ~ ~ ~ (a = c)

C1 ~ ~ (a = b)

C2 (~ (b = c) → ~ (b = d) →False)

L0 (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

intro Ax1: ~ (b = d)

apply (or_elim (b = c) (b = d) False c2)

intro O0: (b = c) intro O0: (b = d)

apply (Ax0 O0) apply (Ax1 O0)

We then prove the last theory lemma, stating transitivity of equality on terms a, b, and d,
introduced as the weak clause L1. This lemma is proved exactly the same way as clause L0.

Afterwards, we introduce the weak clause
◦
C3, whose proof is trivial because it does not contain

any disjunction. We then have the following proof tree :
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False

ROOT

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

cut L0 = (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

intro E0: ~ ~ (a = b) cut C0 = ~ ~ ~ (a = c)

intro E1: ~ ~ (b = c) intro Ax0: ~ ~ (a = c) resolve R0 = L0:C0

intro E2: ~ (a = c)

apply E1

intro E3: (b = c)

apply E2

apply (eq_trans $i a b c c1 E3)

apply (Ax0 c4) cut C1 = ~ ~ (a = b)

intro Ax0: ~ (a = b) resolve R1 = R0:C1

apply (Ax0 c1) cut C2 = (~ (b = c) → ~ (b = d) →False)

intro Ax0: ~ (b = c) cut L1 = (~ ~ (a = b) → ~ ~ (b = d) → ~ (a = d) →False)

intro Ax1: ~ (b = d) intro E0: ~ ~ (a = b) cut C3 = ~ ~ ~ (a = d)

apply (or_elim (b = c) (b = d) False c2)

intro O0: (b = c) intro O0: (b = d)

apply (Ax0 O0) apply (Ax1 O0)

intro E1: ~ ~ (b = d) intro Ax0: ~ ~ (a = d)

False

OPEN (93)

C0 ~ ~ ~ (a = c)

C1 ~ ~ (a = b)

C2 (~ (b = c) → ~ (b = d) →False)

C3 ~ ~ ~ (a = d)

L0 (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

L1 (~ ~ (a = b) → ~ ~ (b = d) → ~ (a = d) →False)

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

intro E2: ~ (a = d)

apply E1

intro E3: (b = d)

apply E2

apply (eq_trans $i a b d c1 E3)

apply (Ax0 c3)

All that is left is to perform the last 4 resolutions, which yield the empty clause R5. Finally,
R5 is applied to close the last branch of the proof. The complete proof tree is thus the following :
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False

ROOT

c1 (a = b)

c2 ((b = c) ∨ (b = d))

c3 ~ (a = d)

c4 ~ (a = c)

cut L0 = (~ ~ (a = b) → ~ ~ (b = c) → ~ (a = c) →False)

intro E0: ~ ~ (a = b) cut C0 = ~ ~ ~ (a = c)

intro E1: ~ ~ (b = c) intro Ax0: ~ ~ (a = c) resolve R0 = L0:C0

intro E2: ~ (a = c)

apply E1

intro E3: (b = c)

apply E2

apply (eq_trans $i a b c c1 E3)

apply (Ax0 c4) cut C1 = ~ ~ (a = b)

intro Ax0: ~ (a = b) resolve R1 = R0:C1

apply (Ax0 c1) cut C2 = (~ (b = c) → ~ (b = d) →False)

intro Ax0: ~ (b = c) cut L1 = (~ ~ (a = b) → ~ ~ (b = d) → ~ (a = d) →False)

intro Ax1: ~ (b = d) intro E0: ~ ~ (a = b) cut C3 = ~ ~ ~ (a = d)

apply (or_elim (b = c) (b = d) False c2)

intro O0: (b = c) intro O0: (b = d)

apply (Ax0 O0) apply (Ax1 O0)

intro E1: ~ ~ (b = d) intro Ax0: ~ ~ (a = d) resolve R2 = L1:C3

intro E2: ~ (a = d)

apply E1

intro E3: (b = d)

apply E2

apply (eq_trans $i a b d c1 E3)

apply (Ax0 c3) resolve R3 = R2:C1

resolve R4 = C2:R3

resolve R5 = R1:R4

apply R5

All these graphs are automatically generated by ArchSAT :

• The graph of the complete proof tree can be printed using the --full-dot file.gv option

• Each intermediary proof tree can be printed as graph using the --incr-dot basename op-
tion, which instructs ArchSAT to print the temporary proof trees built during proof gener-
ation. For each node of the resolution tree translated into the proof tree, a graph will be
printed in a different file. These files will be named using the basename provided to the
option and an increasing counter : basename.000.gv, basename.001.gv, . . .

4.4.5 From Proof Tree to Proof Term

The proof tree can also be transformed into a proof term. This is actually quite easy to do,
by requiring each proof step to also be able to elaborate a proof into a term, provided the proof
terms for the branches it created. All the basic proof steps described in Section 4.4.2.1, can very
easily elaborate the proof trees they produce into terms:
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• The introduction proof step directly elaborates into a lambda abstraction. Suppose an
introduction proves (Γ,∀x : ty , t) using a proof of (Γ ∪ {x : ty}, t), which elaborates into t.
Then the proof of (Γ,∀x : ty , t) can be elaborated into λx : ty .t.

• The cut step elaborates into a let-binding. More precisely, suppose a cut proves a sequent of
the form (Γ, t) from a proof of (Γ, F ) and a proof of (Γ ∪ {x : F}, t)|], which elaborate into
proof terms e and u respectively. Then the cut proof step elaborates into let x = e in u, as
it often happens that term e is actually quite small compared to u.

• The let-in proof step can similarly elaborated into a let-binding. The only difference with
the cut is that the term e is provided during the application of the proof step.

• The apply proof step is elaborated into an application. Suppose an apply proof step proves
a sequent (Γ, g) using a function f , and sequents of the form : (Γ, g1), . . . , (Γ, gn), which
each elaborates into pi. Then, the proof of (Γ, g) can be elaborated into f(p1, . . . , pn).

ArchSAT can then output proof terms:

• in Coq using the --coqterm term.v command line option.

• in Dedukti using the --dkterm term.dk command line option.

Finally, as mentioned previously, β-reduction of terms can be computed (and sometimes must
be computed in order to build proof terms). ArchSAT thus offers a way to print a normalized
proof term, where all definitions have been expanded, and all β-redex (and let-bindings) reduced.
This is available using the command line option:

• --coqnorm norm.v for a term checkable by Coq.

• --dknorm norm.dk for a term checkable by Dedukti.

Examples of all outputs are given in appendices D, E, and F. As can be seen, normalized out-
put sometimes greatly simplifies the extra-reasoning introduced by the SMT/McSat architecture
of ArchSAT. This happens particularly on first-order problems with very few logical connectives,
whereas pure SAT proofs tend to become more complex because reducing let-bindings may du-
plicate sub-proofs. Finally, normalizing proof terms is currently quite expensive in term of time,
because type-checking is still performed during normalization. This could be greatly optimized in
further developments.



Chapter 5

Benchmarks

This Chapter presents the various benchmarks that were done to compare ArchSAT to other
theorem provers.

These benchmarks include problems using rewriting in Section 5.1, in order to measure the
usefulness of rewriting in ArchSAT and compared to the approaches of other provers. Section 5.2
and 5.3 present benchmarks using more generic problems coming from general purpose libraries
of problems, in order to compare the general approach of ArchSAT. These two benchmarks also
allow to establish a baseline for the generic performance of ArchSAT, so that the comparison on
problems involving rewriting can be evaluated and compared to this control group of benchmarks2.

In these benchmarks, we considered open and state of the art provers using similar techniques
to the one used in ArchSAT. These include tableau provers, SMT solvers, superposition solvers,
and solvers integrating rewriting, as described in each benchmark section.

5.1 Set Theory of the B Method

In order to test the implementation of rewriting in ArchSAT, we consider the set theory of the
B method [3]. This method is supported by some tool sets, such as Atelier B [81] and Rodin [4],
which are used in industry to specify and build, by stepwise refinements, software that is correct
by design. This B set theory is suitable as it can be easily turned into a theory that is compatible
with deduction modulo theory, i.e. where a large part of axioms can be turned into rewrite rules,
and for which the rewriting theory proposed previously in Chapter 3 should work. Starting from
the theory described in Chap. 2 of the B-Book [3], we therefore transform whenever possible the
axioms and definitions into rewrite rules. The resulting theory has been introduced in [35], and
a summary is presented in Fig. 5.1, with the three rewriting rules corresponding to the axiomatic
core of the B set theory that we consider.

As can be seen, the proposed theory is typed, using first-order logic extended to polymorphic
types à la ML, through a type system in the spirit of [20]. This extension to polymorphic types
offers more flexibility, and in particular it allows us to deal with theories that rely on elaborate
type systems, like the B set theory (see Chap. 2 of the B-Book [3]). The complete type system
that is used in this formalization can be found in [35]. The type constructors, i.e. tup for tuples
and set for sets, and type schemes of the considered set constructs are provided in Fig. 5.1 as
well, where Type is the type of types and o the type of formulas, and where type arguments are
subscript annotations of the constructs.

To test ArchSAT in this theory, we consider 319 lemmas coming from Chap. 2 of the B-Book [3].
These lemmas are properties of various difficulty regarding the set constructs introduced by the
B method. It should be noted that these constructs and notations are, for a large part of them,
specific to the B method, as they are used for the modeling of industrial projects, and are not
necessarily standard in set theory.

2As it happens, ArchSAT tends to solve less problems than other provers in these generic benchmarks, but more
in benchmarks involving rewriting. Hence, we can conclude that the impact of rewriting is predominant and allows
ArchSAT to surpass other provers, despite a weaker general-purpose reasoning.

93
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Type Constructors

tup : Type→ Type→ Type set : Type→ Type

Type Schemes of the Set Constructs

_ ∈ _ : Πα : Type.α→ set(α)→ o
(_,_) : Πα1, α2 : Type.α1 → α2 → tup(α1, α2)
_×_ : Πα1, α2 : Type.set(α1)→ set(α2)→ set(tup(α1, α2))
P(_) : Πα : Type.set(α)→ set(set(α))
_ = _ : Πα : Type.α→ α→ o

Axioms of Set Theory

(x, y)α1,α2
∈tup(α1,α2) s×α1,α2

t −→ x ∈α1
s ∧ y ∈α2

t

s ∈set(α) Pα(t) −→ ∀x : α.x ∈α s⇒ x ∈α t
s =set(α) t −→ ∀x : α.x ∈α s⇔ x ∈α t

Figure 5.1: Rewriting Rules of the Axiomatic Core of the B Set Theory

Alt-Ergo ArchSAT Zenon Modulo Zipperposition

Proofs (total: 320) 232 272 138 306
Rate 72.7% 85.3% 43.3% 95.9%

Total time (s) 8.42 268.69 2.86 109.88

Table 5.1: Bset Benchmarks results

As tools, we consider ArchSAT, as well as other automated theorem provers, able to deal with
first-order logic with polymorphic types and rewriting natively. In particular, we consider Zip-
perposition (version 1.5), a prover based on superposition and rewriting, as well as Zenon Modulo
(version 0.4.2), a tableau-based prover that is an extension of Zenon to deduction modulo the-
ory. To show the impact of rewriting over the results, we also include the Alt-Ergo SMT solver
(version 1.01). It would have been possible to also consider provers dealing with pure first order
logic and encode the polymorphic layer. But preliminary tests have been conducted and very low
results have been obtained even for the best state-of-the-art provers (we have considered E and
CVC4 in particular), which tends to show that polymorphism encoding adds a lot of noise in proof
search and is not effective in practice.

The experiment was run on an Intel Xeon E5-1650 v3 3.50 GHz computer, with a timeout of
90 s (beyond this timeout, results do not change) and a memory limit of 1 GiB. The results are
summarized in Tab. 5.1. In these results, we observe that ArchSAT obtains better results, in terms
of proved problems, than Zenon Modulo and Alt-Ergo, which tends to show the effectiveness of the
rewriting theory in practice. However, ArchSAT places second behind Zipperposition, which means
that there is still room for improvement regarding the implementation. Looking at the cumulative
times, Alt-Ergo is not really faster than ArchSAT and Zipperposition, which take more time to find
few more difficult problems (with a timeout of 3 s, they respectively find 260 and 303 proofs in
16.61 s and 17.61 s, while Alt-Ergo obtains the same results). These experimental results have
been published at the ABZ 2018 conference [32].
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5.2 TPTP Library
The TPTP1 library [83] is a collection of first-order problems meant to be used as benchmarks

for first-order theorem provers. It is separated into categories, which represent different kinds and
shapes of problems. It is interesting to gauge the overall performance of a theorem prover on a
variety of problems. This benchmark was meant to evaluate the global performances of ArchSAT
without rewriting, as no problems in the TPTP library is currently axiomatized using rewrite
rules. Additionally, only problems from the TPTP library that are first-order with no arithmetic
are considered in this benchmark (as arithmetic is currently not handled by ArchSAT).

A number of other theorem provers have been considered in order to be compared to ArchSAT:

• CVC4 [10], currently one of the best SMT provers, winner of the 2018 edition of SMT-
COMP [2].

• E-prover [80], is a superposition theorem prover for first-order logic with equality.

• Princess, a tableau theorem prover for Presburger arithmetic with uninterpreted predicates.

• Zenon [24] is also a tableau theorem prover, recently extended to handle polymorphism [31],
linear arithmetic [33], and rewriting [34].

• Zipperposition [38] is a superposition prover developped to handle integer linear arithmetic.

This benchmark evaluates the number of solved problems for each prover. A problem is said
to be solved by a prover, if the theorem has been proved for first-order theorem provers such as
Zenon, Princess and E-prover, or the problem (including the negation of the goal) is found to be
UNSAT for SMT provers (ArchSAT and CVC4). When relevant, the running time of the provers
on the problems solved is shown and discussed. This will often be done by using the cumulative
time of provers on the problems solved. Cumulative time for each prover is computed by taking
the list of the times spent on each problem solved, sorting that list in increasing order, and then
plotting the cumulative sum of these sorted running times. While this does not offer a point-wise
comparison of the running times of provers, it is nonetheless useful to discern global trends in
running time for each prover.

This section will first compare in Section 5.2.1 various configurations of the ArchSAT theorem
prover to evaluate the impact of some of the options that can be chosen, then ArchSAT will be
compared to the other provers listed above in Section 5.2.2.

All the benchmarks in this section have been run on an Intel Xeon E5-2660 v2 2.20 GHz, with
a timeout of 60 seconds, and a maximum memory of 2Go.

5.2.1 Archsat Variants
We first present the results of benchmarking for some configurations of ArchSAT on TPTP. We

distinguish 6 different versions of ArchSAT:

• The auto configuration of ArchSAT disables rewriting, and uses the tableau theory described
in Chapter 2, using the unification procedure presented in Section 3.4 in order to unify
modulo equalities, and the heuristic described in Section 2.3.3 to only perform the best 10
instantiations at each round.

• The auto-all configuration disables the heuristic and instead performs all the instantiations
found at each round.

• The R configuration is similar to the auto configuration, except unification is done using
only the Robinson [64] unification algorithm, which does not unify modulo equalities. Com-
pleteness is thus lost, but unification is significantly faster.

• The R-all configuration disable the heuristic and performs all instantiations at each round
using Robinson unification.

1Thousands of Problems for Theorem Provers.
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archsat
(auto)

archsat
(auto-all)

archsat
(R)

archsat
(R-all)

archsat
(rwrt)

archsat
(rwrt-R)

tp
tp
-v
7.
2.
0/
P
ro
bl
em

s
AGT (53) 8 (0) 9 (0) 9 (0) 9 (0) 8 (0) 11 (2)
ALG (457) 178 (0) 180 (0) 184 (0) 189 (4) 177 (0) 183 (0)
ANA (91) 8 (0) 11 (3) 5 (0) 7 (2) 8 (0) 5 (0)
BIO (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

BOO (140) 0 (0) 1 (0) 1 (0) 1 (0) 0 (0) 3 (2)
CAT (130) 3 (0) 3 (0) 4 (0) 3 (0) 3 (0) 5 (1)
COL (239) 42 (1) 43 (2) 25 (0) 27 (2) 27 (0) 26 (1)
COM (177) 7 (0) 9 (0) 6 (0) 7 (0) 7 (0) 7 (2)
CSR (786) 46 (0) 57 (0) 54 (1) 58 (0) 47 (0) 51 (1)
FLD (281) 7 (0) 12 (0) 9 (0) 12 (0) 7 (0) 9 (0)
GEG (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
GEO (776) 113 (0) 105 (6) 111 (0) 89 (2) 118 (0) 123 (2)
GRA (34) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)
GRP (1090) 6 (0) 26 (13) 10 (1) 12 (0) 18 (0) 22 (0)
HAL (10) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
HEN (67) 2 (0) 3 (0) 3 (0) 3 (0) 4 (0) 5 (0)
HWC (6) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

HWV (411) 7 (0) 10 (0) 14 (0) 21 (6) 7 (0) 24 (10)
KLE (241) 0 (0) 0 (0) 0 (0) 0 (0) 5 (0) 9 (4)
KRS (299) 43 (0) 32 (0) 45 (0) 32 (0) 42 (0) 45 (2)
LAT (733) 31 (1) 31 (2) 20 (0) 18 (0) 36 (0) 29 (2)
LCL (1225) 52 (0) 52 (0) 94 (4) 92 (11) 66 (0) 118 (14)
LDA (50) 2 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0)
MED (12) 1 (0) 0 (0) 3 (1) 0 (0) 1 (0) 2 (0)
MGT (157) 17 (0) 14 (1) 21 (0) 15 (2) 17 (0) 21 (0)
MSC (35) 6 (0) 6 (0) 6 (0) 8 (2) 6 (0) 6 (0)
NLP (520) 2 (0) 0 (0) 1 (0) 0 (0) 2 (0) 1 (0)
NUM (1053) 73 (1) 74 (4) 95 (4) 91 (10) 90 (5) 100 (3)
NUN (25) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0)
PHI (7) 3 (0) 2 (0) 4 (1) 2 (0) 3 (0) 3 (0)
PLA (74) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
PRD (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
PRO (72) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
PUZ (149) 24 (0) 41 (2) 25 (0) 36 (0) 22 (0) 26 (0)
REL (220) 0 (0) 0 (0) 0 (0) 0 (0) 2 (0) 2 (0)
RNG (263) 3 (0) 3 (0) 6 (1) 5 (0) 14 (0) 18 (2)
ROB (45) 2 (0) 2 (0) 0 (0) 0 (0) 0 (0) 0 (0)
SCT (291) 23 (0) 23 (0) 39 (3) 31 (0) 24 (0) 36 (2)
SET (1268) 93 (0) 98 (8) 98 (3) 100 (15) 89 (1) 123 (25)
SEU (906) 70 (2) 49 (0) 81 (7) 55 (0) 68 (2) 75 (4)
SEV (7) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 1 (0)

SWB (204) 14 (0) 21 (1) 14 (0) 20 (0) 9 (0) 13 (2)
SWC (846) 87 (0) 167 (50) 108 (6) 109 (0) 92 (0) 102 (5)
SWV (1399) 189 (1) 197 (7) 223 (8) 224 (13) 172 (0) 232 (10)
SWW (492) 15 (0) 15 (0) 35 (4) 20 (1) 23 (0) 41 (8)
SYN (1223) 326 (0) 424 (0) 417 (0) 425 (9) 322 (0) 416 (0)
SYO (104) 3 (0) 3 (0) 4 (0) 3 (0) 2 (0) 5 (1)
TOP (131) 5 (0) 5 (0) 8 (3) 5 (0) 5 (0) 5 (0)

Total (16807) 1514 (6) 1733 (99) 1786 (47) 1732 (79) 1546 (8) 1906 (105)

Table 5.2: TPTP Benchmarks Results (ArchSAT Variants)
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• The rwrt configuration is the same as the auto configuration, but with rewriting activated as
described in Chapter 3. In this case, the rewriting theory uses a heuristic to automatically
turn some axioms into rewrite rules.

• The rwrt-R configuration activates rewriting like the rwrt configuration, and uses the Robin-
son unification algorithm instead of rigid superposition.

Table 5.2 presents the number of problems solved (i.e. on which ArchSAT find UNSAT, that is
a proof), for each category of the TPTP library. In parenthesis is the number of unique problems
solved by a particular configuration, that is the number of problem that a particular configuration
solves and that no other configuration (in that same table) solves.

Rewriting. Overall, rewriting in ArchSAT increases performances (comparing the auto and R
configurations). This is due to two factors: first, there are not that many problems in TPTP that
have an axiomatization that can be turned into a rewrite system1; second, activating rewriting
has some runtime cost, slowing down ArchSAT so that some problems are no longer proved.

Unification. What is more surprising is that restricting ArchSAT to perform only simple uni-
fication improves the results, although the procedure is incomplete. This is mostly due to the
rigid superposition algorithm taking too much time in cases where unification is not possible2.
This suggests that the algorithm is not efficient enough in its current state. There are two main
ways this could be solved: better heuristics and more simplifications and redundancy criterions.
Heuristics could help rigid superposistion find solution faster, while additional redundancy crite-
rion could help cut research space, ideally enough so that problems with no solution are solved
fast enough to try other problems.

Instantiation Heuristic. As can be seen, when comparing the auto, auto-all, R and R-all
configurations, the usefulness of the heuristic varies. With the rigid superposition, deactivating
the heuristic improves significantly the number of solved problems, whereas when using regular
Robinson unification, using the heuristic is slightly better overall. This can be understood as
on complex problems that require unification modulo, there are likely few substitutions found by
unification3 hence performing all these instantiations is fine. On the other hand, in cases where
simple Robinson unification is enough, there is usually a very important number of potential
substitutions found. In this case, filtering and choosing substitutions actually proves to be of
some help, though not as much as it could be hoped.

Importantly, each configuration has unique problems that only it manages to solve (shown in
parenthesis in Table 5.2). This shows the usefulness of each of the approaches described in this
thesis.

5.2.2 Comparison with Other Provers

The results of the comparison between ArchSAT and other provers are shown in Table 5.3. In
this table, the results of all configurations of ArchSAT have been aggregated, and then compared
to the other provers. Additionally, Figure 5.2 shows the cumulative times of each prover.

While the results show that ArchSAT is a little behind the other theorem provers, ArchSAT
still manages to solve a decent number of problems. In addition, it has the lowest total cumulative
time of all provers, and importantly also has a number of unique problems solved.

The main reason for the rather low performances of ArchSAT is the differences in heuristics.
Heuristics are quite omnipresent in theorem provers currently, and are often one of the main
reason for differences in performances. ArchSAT currently has some very naive heuristics for
meta-variable instantiation as described in Section 2.3.3. However, tests have shown that varying

1Sometimes because of the absence of typing, or simply because axioms are not expressed in an adequate form.
2In practice, the superposition algorithm is restricted to search only within a maximum depth, but this depth

could probably be tuned better.
3Otherwise, given the current less than ideal performance of rigid superposition, the unification process may

simply take all the time.
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archsat cvc4 eprover princess zenon zipperposition
tp
tp
-v
7.
2.
0/
P
ro
bl
em

s
AGT (53) 12 (0) 36 (18) 17 (0) 6 (0) 17 (0) 18 (0)
ALG (457) 192 (15) 158 (5) 140 (2) 216 (38) 52 (0) 156 (15)
ANA (91) 13 (0) 0 (0) 0 (0) 11 (1) 17 (0) 32 (11)
BIO (4) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)

BOO (140) 2 (0) 0 (0) 0 (0) 3 (0) 3 (0) 43 (39)
CAT (130) 5 (0) 10 (6) 6 (2) 28 (8) 13 (0) 31 (10)
COL (239) 38 (0) 0 (0) 0 (0) 77 (13) 34 (0) 131 (50)
COM (177) 9 (1) 24 (1) 30 (3) 15 (0) 30 (1) 63 (24)
CSR (786) 68 (0) 366 (24) 418 (65) 49 (0) 106 (0) 142 (1)
FLD (281) 13 (0) 0 (0) 0 (0) 8 (0) 29 (4) 56 (28)
GEG (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
GEO (776) 146 (0) 223 (8) 294 (10) 167 (6) 247 (3) 384 (62)
GRA (34) 1 (0) 8 (0) 17 (6) 5 (0) 4 (0) 10 (0)
GRP (1090) 29 (0) 30 (5) 68 (29) 63 (4) 80 (10) 589 (458)
HAL (10) 0 (0) 4 (0) 5 (1) 0 (0) 0 (0) 0 (0)
HEN (67) 5 (0) 0 (0) 0 (0) 9 (0) 9 (0) 44 (34)
HWC (6) 0 (0) 0 (0) 0 (0) 2 (2) 0 (0) 1 (1)

HWV (411) 27 (1) 2 (0) 6 (0) 60 (12) 54 (2) 67 (10)
KLE (241) 8 (0) 110 (8) 159 (37) 13 (0) 6 (0) 75 (0)
KRS (299) 52 (1) 62 (1) 85 (13) 99 (5) 136 (20) 65 (0)
LAT (733) 39 (0) 79 (23) 76 (23) 28 (0) 42 (0) 68 (18)
LCL (1225) 128 (1) 60 (10) 142 (77) 112 (14) 117 (6) 340 (169)
LDA (50) 1 (0) 0 (0) 0 (0) 3 (0) 1 (0) 6 (2)
MED (12) 2 (0) 4 (0) 9 (0) 0 (0) 6 (0) 3 (0)
MGT (157) 23 (0) 60 (1) 66 (2) 46 (1) 92 (3) 100 (7)
MSC (35) 8 (0) 4 (0) 5 (0) 6 (0) 14 (3) 14 (4)
NLP (520) 2 (0) 22 (0) 22 (0) 20 (0) 22 (0) 28 (6)
NUM (1053) 137 (1) 404 (19) 433 (34) 254 (8) 139 (6) 360 (20)
NUN (25) 2 (0) 0 (0) 1 (1) 0 (0) 6 (0) 5 (0)
PHI (7) 3 (0) 7 (0) 7 (0) 4 (0) 6 (0) 7 (0)
PLA (74) 0 (0) 0 (0) 0 (0) 0 (0) 5 (0) 29 (24)
PRD (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
PRO (72) 0 (0) 37 (11) 35 (1) 1 (0) 3 (0) 11 (0)
PUZ (149) 42 (0) 24 (0) 31 (0) 61 (11) 65 (2) 76 (5)
REL (220) 2 (0) 4 (0) 75 (55) 4 (0) 0 (0) 39 (17)
RNG (263) 18 (0) 112 (5) 112 (11) 64 (5) 32 (0) 98 (17)
ROB (45) 0 (0) 0 (0) 0 (0) 6 (0) 1 (0) 10 (4)
SCT (291) 34 (0) 27 (9) 23 (5) 27 (7) 39 (7) 53 (13)
SET (1268) 169 (0) 280 (31) 331 (41) 323 (1) 240 (8) 457 (80)
SEU (906) 99 (0) 405 (72) 448 (70) 181 (10) 93 (0) 268 (0)
SEV (7) 1 (0) 0 (0) 1 (0) 0 (0) 1 (0) 1 (0)

SWB (204) 22 (0) 68 (6) 76 (13) 42 (2) 24 (1) 42 (0)
SWC (846) 187 (0) 214 (2) 336 (80) 343 (32) 111 (0) 471 (75)
SWV (1399) 284 (2) 291 (25) 263 (1) 372 (20) 277 (6) 464 (88)
SWW (492) 38 (0) 156 (33) 191 (76) 40 (12) 39 (4) 83 (18)
SYN (1223) 461 (1) 203 (1) 278 (0) 402 (18) 557 (9) 743 (155)
SYO (104) 5 (0) 5 (0) 7 (1) 7 (0) 14 (5) 6 (1)
TOP (131) 8 (0) 23 (7) 26 (9) 7 (0) 7 (0) 11 (1)

Total (16807) 2335 (23) 3523 (332) 4239 (668) 3184 (230) 2790 (100) 5700 (1467)

Table 5.3: TPTP Benchmark Results
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Figure 5.2: Cumulative Times for TPTP Benchmark

even slightly these heuristics, such as changing the number of instantiations done at each round,
can significantly change the behaviour of ArchSAT on some problems, from solving a problem in
less than a second to reaching a timeout after a few minutes.

The overall difference between ArchSAT and other provers is likely to be caused by a difference
of heuristics, particularly since the other provers considered are well-established and benefit from
several years of development, and thus have better and more refined heuristics. ArchSAT is still
experimental and was written from scratch for the purposes of this thesis, which focus on rewriting
and production of formal proofs, rather than performance on generic problems. This also reinforces
the importance of the good results obtained on the benchmarks of problems of the B set theory
presented in Section 5.1: ArchSAT manages to best Zenon for example1 although it has low
performances in the general case. This means that the treatment of rewriting in ArchSAT is really
quite useful and allows it to surpass other provers in the presence of a genuine rewrite system.

It is interesting to take a look at the provers’ results for each category of the TPTP library,
as the overall results are actually biased due to varying number of problems in each category: for
instance the SYN category contains a lot more problems that most other categories, therefore, a
prover that is 10% more efficient than others on problems in that particular category would gain
an overall number of problems greater than a prover that is 10% more efficient than other provers
on another category. Measuring the total number of problems proved introduce a bias that favors
provers that do well in categories with a lot of problems. A notable example are the GRP and
LCL categories, where Zipperposition gains most of its lead compared to all the other provers.

ArchSAT is actually very competitive in the ALG category, where it is the second best prover
after Princess, and has 15 unique problems solved. It also compares favorably in the SYN category,
where it places 3rd. Overall, the results for ArchSAT are encouraging considering that no heuristics
or algorithms in ArchSAT have been tailored for the TPTP benchmark.

1As well as CVC4 and Princess, which solve respectively 87 and 46 problems, and thus were omitted in the results
because of their low performances (mainly due to the encoding of polymorphism, which was necessary because they
cannot handle polymorphic terms).
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Figure 5.3: Cumulative times for SMT-LIB QF_UF benchmarks

5.3 SMTlib Library

The SMT-LIB library [13] is a collection of problems meant to be benchmarks for SMT solvers.
It provides an interesting point of comparison on general problems. Whereas the TPTP library
categories inform more about the general shape and/or provenance of the problems, the SMT-LIB
libray is split into categories according to the theories required to solve the problem. This bench-
mark presents results on the QF_UF category, which only contains problems with quantifier-free
formulas that use uninterpreted functions and predicates, and equality. ArchSAT is unfortunately
not competitive with other provers for the UF category, which contains quantified formulas using
uninterpreted functions and predicates, and thus the results for that category are not shown.

Compared to the previous section, the Zenon and E-prover provers are not show in result tables
because they cannot parse problems in the SMT-LIB language. However, the results include the
following provers that could not read the TPTP format :

• Alt-Ergo is an SMT solver written in OCaml introduced in Section 5.1.

• mc2 is an OCaml implementation of the McSat algorithm forked from mSAT by Simon
Cruanès. It can handle ground problems containing equalities and uninterpreted functions
and predicates.

All the benchmarks in this section have been run on an Intel Xeon E5-2660 v2 2.20 GHz, with a
timeout of 60 seconds, and a maximum memory of 2Go. The results of all provers on the QF_UF
catgory of SMT are summarized in Table 5.4, and the cumulative times in Figure 5.3. Different
configurations of ArchSAT are not shown here because these configurations affect mostly how
quantified formulas are handled, and thus do not have a significative impact on this experiment1.

1Some non-negligible difference do appear, most likely because, although the different configurations perform
the exact same proof search on quantifier-free formulas, they each have a slight overhead, which alters the final
results.
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qg5 (5286) 2980 (0) 2868 (0) 3335 (5) 3328 (0) 1754 (0)
qg6 (244) 34 (0) 31 (0) 121 (87) 34 (0) 1 (0)
qg7 (418) 78 (0) 73 (0) 114 (36) 77 (0) 22 (0)

Total (6396) 3378 (0) 3257 (0) 3858 (128) 3727 (0) 1814 (0)

SEQ (56) 6 (0) 20 (0) 37 (12) 25 (0) 4 (0)
TypeSafe (3) 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
e.d (100) 17 (0) 100 (0) 100 (0) 100 (0) 19 (0)

Total (6650) 3404 (0) 3404 (0) 4062 (163) 3895 (1) 1841 (0)

Table 5.4: SMTlib QF_UF Benchmarks results

Very interestingly, ArchSAT is quite competitive in this fragment. It is basically ex-aequo with
Alt-Ergo, although the algorithms used are different: Alt-Ergo has a more traditional SMT archi-
tecture with a congruence closure algorithm compared to ArchSAT, which relies on an McSat solver
where equality and uninterpreted function are handled separately. This shows the strength of the
McSat handling of equality, particularly on problems in the eq_diamond category (abbreviated
as “e.d” in the table), meant to be hard for union-find and congruence closure algorithms, where
ArchSAT solves all of the 100 problems, whereas Alt-Ergo only solves 17. The good results of mc2,
which places 2nd, also show the worth of the McSat algorithm, that allows it to be very close to
CVC4 in the number of problem proved.

ArchSAT is also better than Princess, which was expected since first-order provers such as
Princess are typically less performant than SMT solvers on pure ground problems. Finally, cu-
mulative times show Alt-Ergo and ArchSAT tied, Princess in the same order of magnitude, while
CVC4 is about 10 times faster.





Chapter 6

Implementation of ArchSAT

The code of ArchSAT is available on github: https://github.com/Gbury/archsat.
This chapter explains some technical challenges met during the implementation of ArchSAT,

and the solutions that were found. While Chapters 1, 2, 3, and 4 explained the main algorithms
used in ArchSAT, this Chapter deals with more technical aspect of the implementation of ArchSAT.
In particular, it explains how ArchSAT internals were carefully designed to be modular and easily
extensible, as well as some aspects of the user interface of ArchSAT: parsing of input languages,
typechecking of input problems and syntaxically correct output.

Most of these solutions take advantage of features of the OCaml language. Some knowledge
of the recent developments of the OCaml compiler is therefore recommended to understand some
of the sections in this chapter. The following features of OCaml will be used: polymorphic types,
generalized algebraic datatypes, extensible types, and functors.

6.1 Dolmen: A Library for Uniform Parsing of Languages

The first challenge was parsing of the input problems. Actually, there are many different
syntaxes for expressing first-order problems:

• The Dimacs format2 describes pure SAT problems.

• The iCNF format3 contains descriptions of pure SAT problems, as well as instructions for
the solvers to solve the problems with specific local assumptions.

• The SMT-LIB syntax4 defines first-order terms, and SMT-LIB files consist of a list of state-
ments to be executed by the prover.

• The Zipperposition’s format5 describes first-order problems, and has dedicated syntax for
rewrite rules and datatype declarations.

• The TPTP syntax6 describes first-order and higher order problems.

TPTP and SMT-LIB are the most usual syntaxes used by automated theorem provers. However,
a lot of provers (Zenon, Alt-Ergo, Zipperposition, . . . ) have their own specific syntax, This is a
problem as some provers are very restrictive in what syntax they are able to parse: until recently7,
the Alt-Ergo theorem prover only accepted problems in its own syntax, which made it rather
difficult to use in benchmarks where problems were expressed in SMT or TPTP syntax. Similarly,

2http://www.satcompetition.org/2009/format-benchmarks2009.html
3http://www.siert.nl/icnf/
4http://smtlib.cs.uiowa.edu/language.shtml
5https://github.com/c-cube/zipperposition/blob/master/src/parsers/Parse_zf.mly
6http://tptp.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
7Support for SMT-LIB in Alt-Ergo was removed in 2015, and then finally re-introduced in version 2.2.0 of Alt-Ergo,

which was released on April, 21, 2018
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a lot of provers only parse a very small number of input languages, even though almost all languages
describe the same first-order logic.

At the same time, although they typically refer to the same logic of first-order problems,
languages have small syntactic differences, which makes the support of many different formats
possibly complicated. For instance, some syntaxes (Dimacs, TPTP, Zipperposition’s format) de-
scribe problems, i.e. represent a list of axioms and goals, while others (iCNF, SMT-LIB) are series
of instructions to be executed by the prover. The builtin constants and typing rules also differ
slightly between languages, and will be the focus of Section 6.2. However, these differences are
mainly technical details, and they are not enough to justify the various languages restrictions and
the associated problems when experimenting. As seen in Section 5, some provers are excluded
from whole sets of problems simply because they cannot parse a language.

This was the main motivation for writing the dolmen library. dolmen is a library that intends
to provide parsers for a large part of the traditional input languages used in automated theorem
proving, and partially abstract over those input languages. dolmen is written in OCaml, and more
specifically provides functors that allow the user to create parsers for all the languages listed at
the beginning of this Section. These parsers take as argument modules that implement terms
and statements, and returns a parser for the desired language. This architecture was designed to
facilitate the use of dolmen as a drop-in replacement for hand-written parsers in theorem provers,
as it allows users to keep the same representation of terms. More specifically, for each supported
language, dolmen exposes a functor of the following type:

1 module Make
2 (L : ParseLocation.S)
3 (I : Id)
4 (T : Term with type location := L.t
5 and type id := I.t)
6 (S : Statement with type location := L.t
7 and type id := I.t
8 and type term := T.t) :
9 Language_intf.S with type statement = S.t

This functor takes 4 modules as arguments:

• L : ParseLocation.S is a module used to define location in source files, as well as the
exception that will be raised by the parser in case of lexing or parsing error. These error
definitions are required because the errors need to contain the location in the file where
the error occurs, hence the definition of the exceptions depends on the type definition for
location in files.

• I : Id is a module used to represent identifiers in source files. Identifiers are usually more
complex that simple strings. In many languages, identifiers are scoped, so that the same
string can be used to refer to different entities depending on whether it occurs in a type or
a term. Additionally, each TPTP statement has a name, which needs an identifier. This
module is thus used to define the scopes used in a language.

• T : Term is the module implementing the structure of terms (including types, formulas,
etc). This is the most significant module as it defines the abstract syntax tree, and the
corresponding functions to build it. It typically has to implement application (either currified
or not, depending on the language), term annotations, quantifications, . . .

• S : Statement is a module implementing the top-level statements (or directives) of a lan-
guage. These are mostly used to specify the hypotheses and goal of a problem, but can also
be used to set some prover options or ask the prover to output some values in SMT-LIB.

Once provided with these modules, the functor returns a module with the following interface:
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1 module type S = sig
2

3 type token
4 (** The type of tokens produced by the language lexer. *)
5

6 type statement
7 (** The type of top-level directives recognised by the parser. *)
8

9 module Lexer : Lex_intf.S
10 with type token := token
11 (** The Lexer module for the language. *)
12

13 module Parser : Parse_intf.S
14 with type token := token
15 and type statement := statement
16 (** The Parser module for the language. *)
17

18 val find : ?dir:string -> string -> string option
19 (** Helper function to find a file using a language specification.
20 Separates directory and file because most include directives in languages
21 are relative to the directory of the original file being processed. *)
22

23 val parse_file : string -> statement list
24 (** Parse the given file. *)
25

26 val parse_input :
27 [ `Stdin | `File of string ] -> (unit -> statement option) * (unit -> unit)
28 (** Incremental parsing. Given an input to read (either a file, or stdin),
29 returns a generator that will incrementally parse the statements,
30 together with a cleanup function to close file descriptors.
31 In case of a syntax error, the current line will be completely
32 consumed and parsing will restart at the beginning of the next line.
33 Useful to process input from [stdin], or even large files where it would
34 be impractical to parse the entire file before processing it. *)
35 end

This signature exposes both low-level and high-level parsing, to adapt to the user’s needs:

• High-level functions such as find and parse_file respectively help locate included files1
and parse files directly into a list of directives.

• Incremental parsing can be accessed using the parse_input function, to deal with very big
files, as well as interactive mode, as required by the SMT-LIB specification.

• Low level details are exposed in the Lexer and Parser modules, if more control over parsing
is required.

Language class. dolmen also provides an abstraction over classes of languages: a language class
in dolmen is a set of languages that all describe the same objects. Thus all languages in a class
are actually different syntaxes used to describe the same objects. For instance, dolmen defines
the class of languages used in automated theorem proving, currently called Logic2 Language

1Most languages have include statements which make provers read another file (for instance, containing axioms
common to multiple problems), which may be in another directory than the original input problem file. In order
to help in these cases, some languages, for instance TPTP, specify that included files should be searched in the
directory specified by an environment variable. The find function is used to make these specificities abstract.

2This is currently the only class defined in dolmen.
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classes in dolmen allows us to transparently parse any language supported by dolmen in that class:
similarly to the single language parsers, a language class is a functor that takes as argument an
implementation of terms and statements, and returns a function that can automatically detect
the language of a file using its extension, select the appropriate parsing function, parse the given
file, and return the parsed abstract syntax tree. This is especially interesting because adding a
parser for a new language can be done in dolmen alone, and does not require the user to change
her/his code. A resume of the interface provided by the automated theorem prover class functor
is in Figure 6.1.

More information on dolmen can be found on its github repository1, which features a tutorial,
an online documentation and some examples.

6.2 An Extensible Typechecker

The next challenge due to the number of different languages and their differences is type-
checking. While some provers do not have types, having at least simple types is necessary for
some theories (such as arithmetic, where we have to distinguish integers from rationals), and may
increase performances [31]. Even for provers that internally do not use types, checking that input
problems are well-typed is important, as incoherent input problems may make the prover crash
or make it output a wrong result.

However, typechecking multiple languages, each with some little differences, might be a litlle
more difficult than parsing them, and at the same time, slightly easier. While the syntax of
languages are quite different from each other, the typing systems of each language are almost the
same, except for a very few features. This means that while parsers for each language could not
re-use code, for typechecking, most of the code can actually be shared.

Before presenting how the extensible typechecker of ArchSAT was designed to easily handle
multiple languages, here is an excerpt of differences in type-checking of languages:

• Most builtin symbols have different names depending on the language. For instance, the
type of propositions is $o in TPTP, and Bool in SMT-LIB.

• Some languages have more builtin notions than others:

– In TPTP, conjunction, disjunction, and equality have dedicated syntax rules, whereas
in SMT-LIB, they are simply special cases of the generic application: conjunction is
simply application of the “and” function symbol.

– Zipperposition’s format specifies integers as different tokens than regular function sym-
bols, whereas in TPTP integers are regular function symbols whose name is the integer
string representation.

• The same builtin functions that exist in different languages may have different typing rules,
for instance in arithmetic. TPTP has some kind of overloading for arithmetic symbols (and
only for them), so that the same symbol for addition may be used for integers, rationals,
and reals. SMT-LIB has distinct theories for integers only, reals only, and both of them, so
the type of addition vary depending on the theory.

• The typing system may differ: Zipperposition’s format and TPTP’s TFF1 system has first-
order prenex polymorphic terms, whereas SMT-LIB has parametric functions.

• Some languages have type inference whereas other do not. TPTP specifies that the type of
unknown function symbols has to be inferred, and similarly the type of a quantified variable
should be inferred if it is not specified.

Despite all these differences, most of the typechecking is the same for all of these languages:
there is a global environment of declared constant symbols, a local environment of variables bound
by quantifiers or let-binders, typing of application is the same, . . . Duplicating work in order to

1https://github.com/Gbury/dolmen

https://github.com/Gbury/dolmen
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1 exception Extension_not_found of string
2 (** Raised when trying to find a language given a file extension. *)
3

4 (** {2 Supported languages} *)
5

6 type language =
7 | Dimacs (** Dimacs CNF format *)
8 | ICNF (** iCNF format *)
9 | Smtlib (** Smtlib format *)
10 | Tptp (** TPTP format (including THF) *)
11 | Zf (** Zipperposition format *)
12 (** The languages supported by the Logic class. *)
13

14 (** {2 High-level parsing} *)
15

16 val find :
17 ?language:language ->
18 ?dir:string -> string -> string option
19 (** Tries and find the given file, using the language specification. *)
20

21 val parse_file :
22 ?language:language ->
23 string -> language * S.t list
24 (** Given a filename, parse the file, and return the detected language
25 together with the list of statements parsed.
26 @param language specify a language; overrides auto-detection. *)
27

28 val parse_input :
29 ?language:language ->
30 [ `File of string | `Stdin of language ] ->
31 language * (unit -> S.t option) * (unit -> unit)
32 (** Incremental parsing of either a file (see {parse_file}), or stdin.
33 Returns a triplet [(lan, gen, cl)], containing the language detected
34 [lan], a generator function [gen] for parsing the input, and a cleanup
35 function [cl] to call in order to cleanup the file descriptors.
36 @param language specify a language for parsing, overrides auto-detection
37 and stdin specification. *)
38

39 (** {2 Mid-level parsing} *)
40

41 module type S = Language_intf.S with type statement := S.t
42 (** The type of language modules. *)
43

44 val of_language : language -> language * string * (module S)
45 val of_extension : string -> language * string * (module S)
46 val of_filename : string -> language * string * (module S)
47 (** These function take as argument either a language, a filename,
48 or an extension, and return a triple:
49 - language
50 - language file extension (starting with a dot)
51 - appropriate parsing module
52

53 Extensions should start with a dot (for instance : [".smt2"])
54 @raise Extension_not_found when the extension is not recognized. *)

Figure 6.1: dolmen Automated Theorem Prover Class Interface
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have a typechecker for each language would therefore be wasteful and particularly difficult to
maintain (any modification of the common part would need to be done on each typechecker).

ArchSAT relies on a unique typechecker, extensible in order to correctly deal with the specifici-
ties of each language. ArchSAT’s typechecker has a notion of local environment, used for isntance
to record the local bound variables. This local typing environment contains a function designed
to handle the cases specific to a language, which is called the builtin function. This allows us to
have a very compact description of each language specificities. More specifically, this function for
builtins of each language has the following type:

1 type symbol =
2 | Id of Dolmen.Id.t
3 (** Identifiers from Dolmen, basically a string and a scope/namespace *)
4 | Builtin of Dolmen.Term.builtin
5 (** Builtin symbols for languages. *)
6 (** Wrapper around potential function symbols from the Dolmen AST. *)
7

8 type res =
9 | Ttype : res
10 | Ty : Expr.ty -> res
11 | Term : Expr.term -> res
12 | Formula : Expr.formula -> res
13 | Tags : tag list -> res (**)
14 (** The results of parsing an untyped Dolmen term. *)
15

16 type builtin_symbols =
17 env -> Dolmen.Term.t ->
18 symbol -> Dolmen.Term.t list -> res option
19 (** Function to handle extensibility of typechecking. Called in order to
20 type applications where the head symbol is unknown to the typechecker.
21 The function is given the local environment, the whole Dolmen term being
22 typechecked, the head symbol and the argument list, and should return
23 the typecheked term. *)

The builtin function (of type builtin_symbols) of the local environment is called each time
the head symbol of an application is unknown for the typechecker. The goal of the function is then
to look at the symbol, potentially look at the terms to which it is applied, and then decide how to
typecheck the arguments terms, and then the application. This allows us to easily implement the
overloading of arithmetic function symbols for each language for example, although the common
parts of the typechecker do not handle overloading.

For instance all the specificities of the TPTP language (excluding arithmetic) fit into this simple
function :
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1 let tptp_builtins env ast s args =
2 match s with
3 | Type.Id ({ Id.name = "$_"; ns = Id.Term } as id) ->
4 Some (Type.wildcard env ast id args)
5 | Type.Id { Id.name = "$tType"; ns = Id.Term } ->
6 Some Type.Ttype
7 | Type.Id { Id.name = "$o"; ns = Id.Term } ->
8 Some (Type.parse_app_ty env ast Expr.Id.prop args)
9 | Type.Id { Id.name = "$i"; ns = Id.Term } ->
10 Some (Type.parse_app_ty env ast Expr.Id.base args)
11 | Type.Id { Id.name = "$true"; ns = Id.Term } ->
12 Some (Type.parse_app_formula env ast Expr.Formula.f_true args)
13 | Type.Id { Id.name = "$false"; ns = Id.Term } ->
14 Some (Type.parse_app_formula env ast Expr.Formula.f_false args)
15 | Type.Id id when Id.equal id Id.tptp_role ->
16 Some (Type.Tags [])
17 | _ -> None

In this case, it can be seen that the TPTP builtin symbols, such as $i, $o and $_ are parsed
as regular identifiers, since the TPTP syntax has no special case for them. It then follows that
they are represented as regular constants but with names that can be recognized. They must then
be specifically handled during typechecking, but only when the input language is TPTP. This is
easily done by pattern-matching the unknown identifiers that are given to the builtin function.
As shown in the above code there are very few special cases for TPTP. This shows the usefulness
of having a generic typechecker, extensible for the few special cases of each language.

Thanks to this separation beetween the main code of the typecher and the builtins of each
language, the common parts of the typechecker fits in about 1000 lines of code, and has very useful
features such as typo suggestions, human-readable error messages with full locations, unused
quantified variable detection, inference of type arguments in polymorphic symbol applications,
and inference of non-declared function symbols. The code defining the builtin functions for all
languages supported by ArchSAT (without arithmetic) is about 100 lines of code. The interested
reader can take a look at files src/base/type.ml and src/base/builtin.ml of the ArchSAT Git
repository1 for the code of the typechecker and builtin functions implementations respectively.
Additionally, this extensible typechecker is planned to be integrated into dolmen2.

6.3 Tags and Builtins for Preserving Semantic Data

The mechanisms presented in this thesis often need to attach some arbitrary information to
expressions, for instance the original tree structure of flattened conjunction and disjunction (as
explained in Section 4.3.2.2). This kind of information is difficult to store safely. First, because
equal expressions may need to carry different information: for instance consider the two formulas
A ∧ (B ∧ C) and (A ∧ B) ∧ C. Both are interpreted as the conjunction of the list of formulas
[A;B;C]. However, in order to store for each formula its original conjunction tree, hashtables
(or other storage that uses equality on expressions) cannot be used since they require that equal
expressions carry the same information. Instead, in ArchSAT uses polymorphic tags that can be
attached to expressions.

Polymorphic tags rely on the ability to have type-safe heterogeneous maps in OCaml, that is,
structures with the following interface:

1https://github.com/Gbury/archsat
2See https://github.com/Gbury/dolmen/pull/4

https://github.com/Gbury/archsat
https://github.com/Gbury/dolmen/pull/4
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1 type map
2 (** The type of immutable maps from tags to values. *)
3

4 type 'a t
5 (** A tag to which is mapped values of type ['a] in maps. *)
6

7 val create : unit -> 'a t
8 (** Create a new tag. *)
9

10 val empty : map
11 (** The empty map. *)
12

13 val get : map -> 'a t -> 'a option
14 (** Get the value of a tag (if it exists). *)
15

16 val add : map -> 'a t -> 'a -> map
17 (** Add a value to a tag in a map. *)

In order to have such maps, ArchSAT uses the CCMixMap module from the OCaml-containers [1]
library, which interested reader can read in more details on its Github repository: https://
github.com/c-cube/ocaml-containers.

In ArchSAT, each expression carries such an heterogeneous map, which is thus tied to the
physical representation of the expression, allowing equal expressions to have different maps. This
is how each expression is able to carry information about its original shape, but is also used for
other uses. Current uses of tags in ArchSAT includes :

• Identification of formulas that are marked as rewrite rules.

• Pretty-printing information on identifiers.

• Memoization of various functions that read and/or modify other tags on expressions (and
thus cannot be memoized using a hashtable).

6.4 Backtracking Using a Global Stack
All SMT and McSat solvers need a way to backtrack the state of the theories in order to keep

the internal state of theories synchronized with the state of the core SAT solver. To do so, ArchSAT
uses a global backtrack stack: each action that modifies the internal state of a theory registers the
corresponding reverse modification on the stack, and when the solver backtracks, every action on
the backtrack stack is executed until the backtrack point is reached. Wrappers for data structures
can be built using this backtrack stack in order to provide, for instance, hashtables whose basic
operations automatically registers the needed actions on the backtrack stack.

While not particularly new nor original, this greatly simplifies the implementation of theories,
which often store their internal state in a hashtable. A theory then only has to use a backtrackable
hashtable (which offers the same functionalities as a regular hashtable), and its internal state is
automatically backtracked, without the need of any code for backtracking in the theory itself.

The backtrack stack, as well as backtrackable hashtables that are used in ArchSAT, are imple-
mented in the file src/util/backtrack.ml of the repository.

6.5 Extensible and Type-safe Message Passing Between Ex-
tensions

SMT and McSat solvers are traditionally very modular since theories are quite independant
from each other, and can be added or removed easily. Modularity is possible because theories

https://github.com/c-cube/ocaml-containers
https://github.com/c-cube/ocaml-containers
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usually only have a static interface that they need to implement in order to work with the rest
of the prover1. In the case of SMT solvers, this interface is basically a single function, which is
given the newly assumed literals, and must either return SAT, or UNSAT with a conflict clause.
However, in practice a lot of additional features may be used (though not required) by theories.
For instance, a very common feature of SMT solvers is to allow theories to do a final check once
a propositional model is found; this allows theories to run costly non-incremental procedures at
that point. Another example is the mechanisms of rounds in ArchSAT: once a first-order model
has been found, instantiations are done, adding clauses to the solver, and then the solver restarts.
To do so, some theory must be able to detect when a first-order model has been found, in order
to look for instantiations. All these examples show that adding new features often need to extend
some theories, but not all: not all theories look for instantiations, or need a final check of the
propositional model found by the SAT solver.

For these applications, ArchSAT has a mechanism of extensible message passing and handling
for extensions. This means that any extension can send messages and respond to messages, and
that the type of messages is extensible so that new theories (or other modules within ArchSAT) can
define their own messages. The type of messages is defined as an extensible generalized algebraic
datatype using a type parameter to specify the expected type of answers to that message: a
message of type 'a msg is a message that expect an answer of the 'a:

1 type 'ret msg = ..
2 (** Messages are arbitrary data that can be sent to extensions,
3 and expect an answer of type ['ret option].
4 Note that since it is an extensible type, extensions will
5 most likely ignore most messages *)
6

7 type _ msg += If_sat : ((Expr.formula -> unit) -> unit) -> unit msg
8 (** This message contains a function to iter over current assumptions.
9 It is sent whenever the sat solver has found a propositional model.
10 Extensions interested in the final check have the possibility of
11 performing side-effects to add new clauses, or raise a conflict
12 if necessary. *)

Each extension then has to implement a handler defined as follows:

1 type handle = { handle : 'ret. 'ret msg -> 'ret option; }
2 (** Type for message handlers. Enclosed in a record to ensure full polymorphism *)

The handle function inside the an arbitrary message ocamlm, of type 'ret msg, and returns a
value of the type 'ret option. This way, the typechecker guarantees that no problem can arise at
runtime, while allowing communications of any type between the extensions. Note that wrapping
the handler function in a record is necessary to ensure that the handler is polymorphic enough
to handle all possible messages2. For messages unknown to the extension, or messages that the
extension does not need to answer, the handler function simply returns None. Thus, the simplest
handler simply ignores all messages and always returns None.

Finally, messages can be sent and the answers analyzed using the following functions:

1This is particularly explicit when looking at the functors provided by the mSAT library: each theory only has
to implement the interface recquired by the functor.

2This wrapping in a record is necessary for the current OCaml compiler, as the function requires an explicitly
polymorphic type and the compiler cannot infer such types currently, hence wrapping in a record is a way to provide
the compiler with enough type annotations.
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1 val handle : ('acc -> 'ret option -> 'acc) -> 'acc -> 'ret msg -> 'acc
2 (** Send a message to all extensions, and fold over the answers. *)
3

4 val send : unit msg -> unit
5 (** Send the given message to all extensions, ignoring any exception raised
6 during the handling of the message. *)
7

8 val ask : string -> 'a msg -> 'a option
9 (** Send the given message to the extension with the given name,
10 and returns the return value (if the extension replied). *)

Whenever a message is sent to the extensions, each handler is queried for an answer, which
is then provided to a folding function. Additionally, some wrappers are provided to simplify the
case of messages that do not expect an answer (that is, messages of type unit msg), or messages
that are meant to be sent to a particular extension (in which case, folding is unnecessary, since
there will be only one answer).

This mechanism provides a very simple way of extending the behaviour of theories without
modifying all the theories each time a new event or message is created. It is notably used during
proof generation, for theories to prove their lemmas, but also for theories to provide information
when printing resolution proof in the graphviz dot format.

6.6 A Pipeline for the Main Execution Loop
An automated theorem prover has to do a lot of tasks besides proof search: parse options, set

some configuration variables accordingly, parse the input problem, typecheck the input problem,
solve the problem, export the solution to various formats if some options have been set, . . . The
code orchestrating all of these tasks can quickly become difficult to maintain and read. This is
particularly true in the case of SMT-LIB, which requires a prover to have two distinct modes:
the regular mode where an input file is parsed, and an interactive mode where the user can
give commands one by one. This makes computational limits such as timeouts and maximum
memory harder to enforce since it must consider two distinct situations: in interactive mode, each
statement should have its own limits, whereas when solving an input file, the limits should apply
to the processing of all statements in the file.

In order to alleviate these problems, ArchSAT introduces a notion of pipeline. A pipeline is a
sequence of computations phases, that correspond to the successive tasks done by a prover. The
pipeline can then be run on an input generator of statements, which can be either the statements
written by the user in interactive mode, or a single statement that includes the input file to
consider. The main complexity of the pipeline mechanism comes from the expansion of includes.
An include statement is actually processed into a generator of statements, which requires the
pipeline to handle computation phases that evaluate to a generator of statements (statements
which themselves can evaluate to a generator of statements recursively). Additionally, pipelines
are useful to abstract over computation limits: each run of the pipeline on a statement is subject to
the computational limits set by the options. This makes limits apply to each individual statement
in interactive mode, and apply to a whole file when it is included.

A pipeline is basically a way to structure a computation: when run, it takes some inputs and
returns some outputs. It is therefore defined as a polymorphic type, which can be evaluated on
some inputs :

1 type ('a, 'b) pipeline
2 (** The type of pipelines from values of type ['a] to values of type ['b]. *)
3

4 val eval : ('a, 'b) pipeline -> 'a -> 'b
5 (** Evaluate a pipeline to a function. *)
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The simplest pipeline is the one that does nothing and directly returns its input :

1 val _end : ('a, 'a) pipeline

Non-trivial pipelines are then built by chaining operators. An operator represents an atomic
computation, whereas a pipeline is a composite computation, built from a possibly complex ar-
rangement of operators. The type of operators is also a polymorphic type :

1 type ('a, 'b) op
2 (** An operator from values of type ['a] to values of type ['b]. *)

Operators are thin wrappers around functions. Additionally, each operator is given a name,
to better identify it:

1 val apply : ?name:string -> ('a -> 'b) -> ('a, 'b) op
2 (** Create an operator from a function *)

The main way to build pipelines is to compose an operator with a pipeline. This order (operator
first, then the rest of the pipeline) is chosen in order to ensure that pipelines can be implemented
using tail-recursive calls. This is done via the (@>>>) operator1. Another combinator allows
to concatenate two pipelines, but this breaks the tail-recursive evaluation of pipelines, thus the
preferred way of building pipelines is to use operators with the (@>>>) infix symbol :

1 val (@>>>) : ('a, 'b) op -> ('b, 'c) t -> ('a, 'c) t
2 (** Add an operator at the beginning of a pipeline. *)
3

4 val (@|||) : ('a, 'b) t -> ('b, 'c) t -> ('a, 'c) t
5 (** Concatenate two pipelines. Whenever possible it is best to use [(@>>>)],
6 which creates tail-rec pipelines. *)

All of the above is fairly standard and easy to implement. The main advantage of pipelines is
to correctly manage includes statements, which make the prover insert the contents of another file
in the current file. This is tricky to do because include statements can be nested, i.e. an included
file can itself include another file, and so on. . . This requires to perform a fixpoint computation
on include statements. Pipelines in ArchSAT offer a way to insert the fixpoint computation of an
operator in a pipeline using the following functions :

1 type 'a fix = [ `Ok | `Gen of bool * 'a Gen.t ]
2 (** Type used to fixpoint expanding statements such as includes. *)
3

4 val fix : ('a * 'b, 'a * 'b fix) op -> ('a * 'b, 'a) t -> ('a * 'b, 'a) t
5 (** Perform a fixpoint expansion. *)

The fix function above is meant to compute the fixpoint of a function that generates values
of type 'b. To do so, it maintains a stack of generators of values of type 'b. The given operator
can then add a new generator g on the stack by returning a `Gen (_, g). This would typically
be a statement generator that corresponds to the results of parsing the included file. On values
that do not need to be expanded (that is, any statement that is not an include), the operator
can simply return `Ok. In this case, the statement is given to the pipeline p, which is the second
argument of the fix function. Additionally, a value of type 'a is “threaded” through the pipeline,

1Note that the composition operators for pipelines are expressed using infix symbols in order to be more readable.
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so that it can be modified by the pipeline p, and then used when generating the next statement.
This is useful for languages such as SMT-LIB where statements executed later in the pipeline can
modify the prover options.

Once a pipeline is built, running it can then be done using the eval function shown above,
which simply calls operators in the correct order. In practice however, a more complex function
is used so that when evaluating the pipeline, the time and memory limits given to the prover are
correctly enforced. This is relatively easy to do as it allows us to separate the implementation
of the concrete computations that need to be done, from the handling of computation limits.
Pipelines make the source code of the main binary much more readable. For instance, using some
infix combinators, the code of the main loop of ArchSAT looks like :

1 (fix (apply ~name:"expand" Pipe.expand) (
2 (apply ~name:"execute" Pipe.execute)
3 @>|> (f_map ~name:"typecheck" ~test:Pipe.run_typecheck Pipe.typecheck)
4 @>|> (f_map ~name:"solve" Pipe.solve)
5 @>|> (iter_ ~name:"print_res" Pipe.print_res)
6 @>>> (f_map ~name:"translate" ~test:Pipe.run_translate Pipe.translate)
7 @>|> (iter_ ~name:"export" Pipe.export)
8 @>>> (iter_ ~name:"print_proof" Pipe.print_proof)
9 @>>> (iter_ ~name:"print_model" Pipe.print_model)
10 @>>> (apply fst) @>>> _end)
11 )

Which is much more readable than the hundreds of lines that would have been required in order
to write a loop, manually order the computation phases, and correctly reset limits in the presence
of exceptions. The full code for defining pipelines is present in file src/middle/pipeline.ml of
the ArchSAT repository, while the implementation of computations phases, such as typechecking,
is in file src/middle/pipe.ml.

6.7 Escaping Identifiers for Correct Outputs
Finally, one of the most technical problems is the escaping of identifiers in exported files.

Whenever a file is written by the prover, it is usually in a defined format, such as the graphviz
language for proof graphs, the Coq or Dedukti language for formal proofs, etc. All of these formats
have different definitions of what characters are allowed to be used:

• Proof graphs in graphviz heavily use html tables, consequently characters such as ’<’, ’>’,
’&’ can be used but have to be escaped into strings such as "&gt;".

• Coq requires identifiers not to start with a digit, but they can contain (and start with)
underscores and unicode letters (a non-exhaustive list of allowed character languages is
given in the Coq documentation, but there is no precise definition of what is not allowed).

• Dedukti does not currently have a public documentation of its syntax.

• TPTP has different rules for variables and constant function symbols:

– Variables must start with an uppercase ASCII letter, and can then contain any ASCII
letter, digit, or underscore.

– Constants must start with a lowercase ASCII letter, or a dollar sign, and can then
contain any ASCII letter, digit, or underscore.

For instance, a lot of TPTP builtin symbols such as the type of propositions $o, and the
default type of term $i are not valid identifiers in Coq. Thus, this can result in syntax errors
in produced files if identifiers are not properly escaped according to each language’s specification
before being printed. However, most languages (except graphviz) do not offer a simple way to
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have a bijection between identifier names and allowed names. This means that naive escaping (or
actually renaming) of a symbol name can create artificial conflicts in the target language that do
not exist in the source.

For instance, consider two identifers named $i and #i used in an ArchSAT proof. $i comes
from the input problem in the TPTP language, and #i was generated by ArchSAT1. None of these
identifiers can be printed as such in the Coq language. A simple way to escape such names for
Coq is to replace illegal characters by an underscore. That way, most of the names are preserved
and can be linked between the original file and the proof, and escaped names are close to the
original. However, in this example, this makes $i and #i be escaped to the same name, which is
not intended, and may cause errors in the generated proof.

Thus, there is a need to check for collisions and possibly do some renaming after escap-
ing identifiers names. This is implemented in a generic way in ArchSAT, in the source file
src/util/escape.ml. This module handles both escaping and renaming, using user-provided
functions, and correctly handling unicode names. This allows us to have relatively nice variable
names such as ε2 in languages that support unicode such as Coq, while not breaking the output
on languages that have no unicode support. The usefulness of this generic implementation is that
it can be used differently for each language in order to conform to its syntax by simply providing
the escaping and renaming functions.

ArchSAT therefore ensures that it produces syntaxically correct proofs and graphs regardless
of the input format, the input names of constants and variables, and regardless of the names of
ArchSAT-generated values.

1Names can be generated for various reasons, ranging from disambiguation of nested quantification during
typechecking to names generated for epsilon-terms, or for new variables.





Conclusion

In this thesis, we have presented ArchSAT, an McSat solver in which several theories have been
integrated, such as the tableau method, rewriting, and superposition, and which can generate
formal proofs. ArchSAT’s use of rewriting successfully allows it to prove more theorems than
most other provers on problems that use rewriting, and its generated proofs make it suitable for
applications requiring high confidence in its results. Additionally, its modular architecture makes
it a very powerful tool to experiment with new theories. These strong points make ArchSAT a
unique theorem prover, which fills a currently vacant place in the automated theorem proving
community.

The tableau method is integrated into ArchSAT as a regular SMT/McSat theory, replacing both
the transformation in clausal normal form and the trigger mechanism used in most SMT solvers.
To do so, it unfolds logical connectives by generating clauses, and uses rigid meta-variables to deal
with quantified formulas. Formulas containing the meta-variables are then unified in order to find
substitutions, which are used to instantiate the corresponding formulas. As a replacement for the
clausal normal form transformation, the tableau theory seems very adequate, as the performances
of ArchSAT on pure ground problem are satisfactory. Concerning quantified formulas, the tableau
theory appears to work quite well on the TPTP library where, with a few adjustments, it should
become competitive with other automated theorem provers. This shows that the approach is
promising in practice, in addition to being one of the few methods for quantified formulas that
aim at being complete.

Rewriting is currently studied as one serious way to increase automated theorem provers per-
formances. Rewrite rules are expressive enough to axiomatize most theories, and have enough
structure so that automated theorem provers can use them much better than regular axioms.
This is shown by the integration of rewriting in ArchSAT, which is split into two parts. The first
consists in speeding up reasoning on ground terms by normalizing them, either using the static
rewrite engine, or the dynamic trigger-like mechanism. This integration allows ArchSAT to have
good results on problems axiomatized using rewrite rules: on those problems, ArchSAT surpasses
most of the other provers. This shows the usefulness of turning axioms into rewrite rules, and
validates the practical approach of its implementation in ArchSAT.

Rewriting is also integrated into the unit rigid superposition algorithm, which unifies terms
modulo equalities and rewrite rules. The algorithm relies on unit superposition, where considered
each clause only has one atom, and tags each clause with substitutions in order to enforce rigidity of
some variables. Rewrite rules are managed by considering their variables as not rigid, allowing the
algorithm to instantiate the variables in the rules as many times as required. The implementation
of this algorithm allows ArchSAT to solve problems involving both ground equalities and rewrite
rules. However, it seems currently limited to handle small or medium-sized problems. In order
to better scale, some more techniques and heuristics from existing state-of-the-art superposition
provers could be used.

Finally, the two formal proof outputs of ArchSAT offer a very strong confidence in its results.
ArchSAT has a structured representation of proofs using proof trees, allowing us to eliminate most
of the duplication that would usually come with supporting proof output in multiple different
formats. This structured representation is therefore crucial to maintain multiple proof outputs.
Additionally, this means that proofs found by ArchSAT are checked twice: a first time internally,
when building the structured proof tree, and then checked a second time by two independent proof
assistants: Coq and Dedukti. There are very few automated theorem provers with an independently
checkable proof output, and less with two such outputs. This places ArchSAT in a unique position
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concerning formal verification of automated theorem provers results.

Perspectives As show by the experiments, there is still room for improvement, for ArchSAT,
mostly regarding the handling of quantified formulas using meta-variables. The use of meta-
variables in ArchSAT allows us to have intrinsically different handling of quantified formulas than
most traditional SMT solvers, by being closer to techniques used by first-order theorem provers.
Following this idea, the instantiation mechanism used by ArchSAT currently could be replaced
by a notion of first-order conflict inspired by the technique used by the Princess theorem in [7].
This would solve the current problem where ArchSAT generates too many terms: currently, either
ArchSAT performs all instantiations that it finds by unification, or it uses a heuristic to choose
some of these instantiations. This tends to either lead to too many new terms in the former case,
or is heavily dependant on the heuristic in the latter case.

Rigid unit superposistion could be improved significantly, by adding more redundancy criteria,
inference rules, and some priorization heuristics. Particularly, the version presented in this thesis
has a scalability problem when duplicating meta-variables. This could be solved by using more
targeted redundancy criteria, inspired by the work done in other superposition provers. Addition-
ally, fine-tuning the implementation to use better prioritization of enqueued clauses in the loop of
the superposition algorithm seems to be a critical point to achieve high practical performances.
Other algorithms for solving rigid E-unification, such as in [6], could also be implemented in order
to compare them to rigid unit superposition. The drawback of using such algorithms is that they
would not deal with rewrite rules.

Completing the implementation of an arithmetic theory for ArchSAT1 would also allow us to
realize interesting experiments. More specifically, just like for the theory of equality in ArchSAT,
where a union-find algorithm was added to the standard McSat theory for equality, the standard
theory of linear rational (or real) arithmetic could be extended to use the simplex algorithm in
order to find conflicts faster. The standard theory of arithmetic, and the one extended with the
simplex could then be compared to assert the usefulness of such extensions. This experiment
would also be interesting for the theory of equality.

Finally, the formal proof output of ArchSAT is currently very heavily checked: each reasoning
step in the structured proof tree is meticulously checked, and all the proof term types are checked,
which currently slows down proof generation2. This could be solved by using simpler proof terms
with less typechecking internally, as a compromise between the pure printing solution, which has
no structured representation of proofs, and the current very structured proof tree, which has
probably too much structure. This should allow ArchSAT to generate formal proofs faster than it
currently does.

1which was started during the internship of Thomas Bernardi.
2Proof generation by ArchSAT currently takes about as much time as the checking of generated proofs by either

Coq of Dedukti.
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Appendix A

mSAT poster

mSAT was presented at the OCaml 2017 workshop, during the Internation Conference on
Functional programming [30], during the poster sessions. See next page for the full size poster,
and Section 1.4.1 for a more detailed explanation of what mSAT is.

130



mSAT:AnOCamlSATSolver
Guillaume Bury

DEDUC`EAM (INRIA) - LSV / CNRS
guillaume.bury@inria.fr

mSAT : a SAT solving library in OCaml. It solves the satisfibility of pro-
positional clauses. It is Modular : the user provides the theory. And it
produces formal proofs.

Introduction

Propagation If there exists a clause C = C ′∨ a, where C ′ is false in the
partial model, then add a 7→ > to the partial model, and record C as the
reason for a.

Decision Take an atom a that is not yet in the partial model, and add
a 7→ > to the model.

Conflict A conflict is a clause C that is false in the current partial model.
Analyze Perform resolution between the analyzed clause and the reason

behind the propagation of its most recently assigned litteral, until the
analyzed clause is suitable for backumping.

Backjump A clause is suitable for backjumping if its most recently assi-
gned litteral a is a decision. We can then backtrack to before the decision,
and add the analyzed clause to the solver, which will then enable to pro-
pagate a 7→ ⊥.

SMT Formulas using first-order theories can be handled using a theory.
Each formula propagated or decided is sent to the theory, which then has
the duty to check whether the conjunction of all formulas seen so far is
satisfiable, if not, it should return a theory tautology (as a clause), that
is not satisfied in the current partial model.

Conflict Driven Clause Learning

I Imperative design
X2-watch litteral
XBacktrackable theories (less demanding than immutable theories)
IFeatures
XFunctorized design, using generative functors
XLocal assumptions
XModel output and proof output (Coq, dot)

Implementation

module Make(Th: Theory_intf.S)() : sig

type 'f sat_state = { eval : 'f -> bool; ... }

type ('c,'p) unsat_state =

{ conflict: unit -> 'c; proof : unit -> 'p }

type res = Sat of formula sat_state

| Unsat of (clause, proof) unsat_state

val assume : ?tag:int -> atom list list -> unit

val solve : ?assumptions:atom list -> unit -> res

end

Solver Interface

regstab SAT binary only only pure SAT
minisat
sattools

ocaml-sat-solvers
SAT C bindings only pure SAT

Alt-ergo SMT binary only Fixed theory
Alt-ergo-zero SMT OCaml lib Fixed theory

ocamlyices
yices2 SMT C bindings Fixed theory

Other Solvers

Are the following H1 : a = b H2 : b = c ∨ b = d

hypotheses satisfiable ? H3 : a <> d H4 : a <> c

⟦b != d⟧, ⟦b != a⟧, ⟦a == d⟧

lemma T2

⟦a == d⟧

⟦a != d⟧

hypothesis H3

⟦b != a⟧, ⟦b != d⟧

Resolution R3

⟦b == a⟧

⟦b == a⟧

hypothesis H1

⟦b == a⟧

⟦b != d⟧

Resolution C2

⟦b == d⟧

⟦b == d⟧, ⟦b == c⟧

hypothesis H2

⟦b == c⟧

⟦b != c⟧, ⟦b != a⟧, ⟦a == c⟧

lemma T1

⟦a == c⟧

⟦a != c⟧

hypothesis H4

⟦b != a⟧, ⟦b != c⟧

Resolution R4

⟦b != c⟧

Resolution C1

⟦b == d⟧

Resolution R1

⊥

Resolution R2

Problem Example

type ('f, 'p) res = Sat | Unsat of 'f list * 'p
type 'f slice = { start:int; length:int; get:int -> 'f }

module type S = sig

val backtrack : level -> unit

val current_level : unit -> level

val assume : formula slice -> (formula, proof) res

end

Theory Interface

XEach clause records its ”history” which is the clauses used during analyzing
XMinimal impact on proof search (already done to compute unsat-core)
XSufficient to rebuild the whole resolution tree
XA proof is a clause and proof nodes are expanded on demand
→ no memory issue
XEnables various proof outputs :
•Dot/Graphviz (see example above)
•Coq (and soon Dedukti) formal proofs

Proof Generation

solver
(package)

Alt-ergo-zero
aez

mSAT
msat

minisat
(minisat/sattools)

cryptominisat
(sattools)

uuf100 (1000 pbs) 0.125 0.012 0.004 0.006
uuf125 (100 pbs) 2.217 0.030 0.006 0.013
uuf150 (100 pbs) 67.563 0.087 0.017 0.045

pigeon/hole6 0.120 0.018 0.006 0.006
pigeon/hole7 4.257 0.213 0.015 0.073
pigeon/hole8 31.450 0.941 0.096 2.488
pigeon/hole9 timeout (600) 8.886 0.634 4.075

pigeon/hole10 timeout (600) 161.478 9.579 (minisat)

160.376 (sattools)
72.050

Performances





Appendix B

Excerpts of Code for Proof Strucures

B.1 Proof Terms
Proof terms in ArchSAT are defined with the following OCaml code (extracted from the

src/proof/term.ml file of the ArchSAT code repository) :

1 type descr = private
2 | Type
3 (** The Universe at the root of everything *)
4 | Id of id
5 (** Identifiers (i.e variables, constants) *)
6 | App of t * t
7 (** Curried appliation *)
8 | Let of id * t * t
9 (** Local let binding, as (var, expr, body). *)
10 | Binder of binder * id * t
11 (** Variable binding, without argument/value *)
12 (** Term descriptors. *)
13

14 and t = private {
15 ty : t Lazy.t; (* Type of the term (lazy). *)
16 hash : int; (* Term hash (invariant modulo alpha-renaming) *)
17 index : int; (* Unique integer *)
18 term : descr; (* Term descriptor *)
19 reduced : t Lazy.t; (* Lazy reduced form *)
20 free : (id, unit) S.t; (* Set of free variables, as a substitution *)
21 }

Terms are hashconsed modulo α-renaming to ease with comparison. Types are computed lazily
to increase performances in cases where some terms are generated, and then printed, but the type
of the term is not used. Similarly, the reduced (or normalized) form of the term is computed lazily,
to avoid computing it for large terms that will not be compared to other terms.
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B.2 Proof Trees
Proof steps are defined using the following type declarations (extracted from the src/proof/proof.ml

file) :

1 type sequent = {
2 env : Env.t;
3 goal : Term.t;
4 } (** The type of sequents *)
5

6 type ('input, 'state) step = {
7

8 (* step name *)
9 name : string;
10 stat : Stats.t;
11

12 (* Printing information *)
13 print : lang ->
14 pretty * (Format.formatter -> 'state -> unit);
15

16 (* Semantics *)
17 compute : sequent -> 'input -> 'state * sequent array;
18 prelude : 'state -> Prelude.t list;
19 elaborate : 'state -> Term.t array -> Term.t;
20 } (** The type of proof steps. Proof steps are very generic, and will be
21 used to build the proof tree. *)

Proof nodes are then defined using the following type declarations (again, extracted from the
src/proof/proof.ml file) :

1 type node = {
2 id : int;
3 pos : pos;
4 proof : proof_node;
5 mutable term : Term.t option;
6 } (** A node of the proof tree. Identified by a unique id.
7 Has a link to its position within the proof, and stores the actual
8 reasoning step used in the [proof] field. *)
9

10 and pos = {
11 i : int;
12 t : node array;
13 section : Section.t;
14 } (** Positions within a proof. *)
15

16 and proof_node =
17 | Open : sequent -> proof_node
18 | Proof : (_, 'state) step * 'state * node array -> proof_node (**)
19 (** The different reasoning used to build proof nodes. Currently either
20 no reasoning is done and the node is open, or a proof step has been applied.
21 This application uses a GADT to wrap the existential type of the internal
22 state carried by the proof step. *)
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Lastly, Proof Trees are defined using the following type alias:

1 (* Alias for proof *)
2 type proof = sequent * node array
3 (** A proof is basically a pair of a sequent and an array of length 1.
4 An array is used rather than a reference to share more code with functions
5 that deal with positions. *)

The basic function to build a proof tree have the following signatures (extracted from the
src/proof/proof.mli file) :

1 val mk : sequent -> proof
2 (** Create an empty proof with the given goal and environent. *)
3

4 val root : proof -> node
5 (** Returns the root of a proof
6 @raise Open_proof if there is no step applied to the root of the proof. *)
7

8 val pos : node -> pos
9 (** Return the position of a node. *)
10

11 val apply_step : pos -> ('a, 'b) step -> 'a -> 'b * pos array
12 (** Apply a reasoning step at a position in the proof. Returns the computed
13 internal state, as well as an array of positions corresponding to the
14 branches to prove. These positions are in the same order as the branches
15 computed by the reasoning step. *)
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B.3 Proof Tactics
A proof tactic in ArchSAT is an OCaml function that takes as argument a proof position. The

return type, however, depend on the tactic. Some tactics may close a branch, and thus have the
type pos -> unit, while some may create exactly one branch and thus have type pos -> pos.
Some may have even more explicit types, such as pos -> bool, in order to indicate whether the
branch has been closed for instance. Here are some of the tactics used in ArchSAT, with their
respective types:

1 type pos
2 (** The type of proof positions *)
3

4 type ('a, 'b) tactic = 'a -> 'b
5 (** An alias type to use to identify proof tactics. *)
6

7 val exact : Prelude.t list -> Term.t -> (pos, unit) tactic
8 val apply1 : Prelude.t list -> Term.t -> (pos, pos) tactic
9 val apply2 : Prelude.t list -> Term.t -> (pos, pos * pos) tactic
10 val apply3 : Prelude.t list -> Term.t -> (pos, pos * pos * pos) tactic
11 (** Fixed arity applications. *)
12

13 val split :
14 left:((pos, unit) tactic) ->
15 right:((pos, unit) tactic) ->
16 (pos * pos, unit) tactic
17 (** Convenience operator for operating on a pair of positions. *)
18

19 val trivial : (pos, bool) tactic
20 (** Try and find the goal in the environment.
21 Returns true if the branch has been closed, else returns false. *)
22

23 val exfalso : (pos, pos) tactic
24 (** Apply exfalso, if needed, in order to get a sequent of the form
25 Gamm |- False. *)
26

27 val absurd : Term.t -> (pos, unit) tactic
28 (** Given a term [t], find [t] and its negation in the environment
29 in order to close the branch, possibly applying exfalso if needed. *)
30

31 val or_elim :
32 f:(Term.t -> (pos, unit) tactic) ->
33 Term.t -> (pos, unit) tactic
34 (** Eliminate a disjunction present in the environment. *)
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Dedukti theory files

This Appendix presents the files used by ArchSAT to encode first-order logic in Dedukti2. The
encoding used is taken from [36], and is relatively straight-forward.

C.1 Calculus of construction encoding
A first file cc.dk encodes the basic calculus of constructions into Dedukti:

1 (; This file is free software, part of Archsat. See file "LICENSE" for more details. ;)
2

3 #NAME cc.
4 (; Calculus of Construction embedded into Lambda-Pi Modulo ;)
5

6 uT : Type.
7 def eT : uT -> Type.
8

9 Pi : X : uT -> ((eT X) -> uT) -> uT.
10 PiT : (uT -> uT) -> uT.
11

12 [X : uT, Y : (eT X) -> uT]
13 eT (Pi X Y) --> x : (eT X) -> (eT (Y x))
14 [Y : uT -> uT]
15 eT (PiT Y) --> x : uT -> eT (Y x).
16

17 def Arrow : uT -> uT -> uT.
18 [ t1 : uT, t2 : uT ]
19 Arrow t1 t2 --> Pi t1 (x : eT t1 => t2).

C.2 Polymorphic first-orderlogic encoding
Then in dk_logic.dk, the basis of polymorphic first-order logic are expressed:

1 (; This file is free software, part of Archsat. See file "LICENSE" for more details. ;)
2

3 #NAME dk_logic.
4

5 (; Impredicative prop ;)

2Note that the Coq outputs do not need files such as these since there already is an axiomatisation of first-order
in its standard library
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6

7 prop : cc.uT.
8 Prop : Type.
9 [] cc.eT prop --> Prop.
10 (; def ebP : cc.eT dk_bool.bool -> Prop. ;)
11

12 imp : Prop -> Prop -> Prop.
13 forall_type : (cc.uT -> Prop) -> Prop.
14 forall : A : cc.uT -> (cc.eT A -> Prop) -> Prop.
15

16 def eeP : Prop -> cc.uT.
17 def eP : Prop -> Type
18 := f : Prop => cc.eT (eeP f).
19 [ f1 : Prop, f2 : Prop ]
20 eeP (imp f1 f2)
21 -->
22 cc.Arrow (eeP f1) (eeP f2)
23 [ A : cc.uT, f : cc.eT A -> Prop ]
24 eeP (forall A f)
25 -->
26 cc.Pi A (x : cc.eT A => eeP (f x)).
27

28 [ f : cc.uT -> Prop ]
29 eeP (forall_type f)
30 -->
31 cc.PiT (x : cc.uT => eeP (f x)).
32

33 def True : Prop := forall prop (P : Prop => imp P P).
34 def False : Prop := forall prop (P : Prop => P).
35 def not (f : Prop) : Prop := imp f False.
36 def and (A : Prop) (B : Prop) : Prop :=
37 forall prop (P : Prop => imp (imp A (imp B P)) P).
38 def or (A : Prop) (B : Prop) : Prop :=
39 forall prop (P : Prop => imp (imp A P) (imp (imp B P) P)).
40 def eqv (A : Prop) (B : Prop) : Prop :=
41 and (imp A B) (imp B A).
42

43 def exists (A : cc.uT) (f : cc.eT A -> Prop) : Prop :=
44 forall prop (P : Prop => imp (forall A (x : cc.eT A => imp (f x) P)) P).
45 def forallc (A : cc.uT) (f : cc.eT A -> Prop) : Prop :=
46 not (not (forall A (x : cc.eT A => not (not (f x))))).
47 def existsc (A : cc.uT) (f : cc.eT A -> Prop) : Prop :=
48 not (not (exists A (x : cc.eT A => not (not (f x))))).
49

50 def exists_type (f : cc.uT -> Prop) : Prop
51 := forall prop (z : Prop =>
52 (imp (forall_type (a : cc.uT =>
53 imp (f a) z))
54 z)).
55

56

57 def TrueT : Type := eP True.
58 def FalseT : Type := eP False.
59 I : TrueT.
60 False_elim : A : cc.uT -> FalseT -> cc.eT A.
61
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62 (;
63 def Istrue : dk_bool.Bool -> Type.
64 [ b : dk_bool.Bool ] Istrue b --> eP (ebP b).
65 ;)
66

67 def and_intro (f1 : Prop)
68 (f2 : Prop)
69 (H1 : eP f1)
70 (H2 : eP f2)
71 : eP (and f1 f2)
72 := f3 : Prop =>
73 H3 : (eP f1 -> eP f2 -> eP f3) =>
74 H3 H1 H2.
75

76 def and_elim1 (f1 : Prop)
77 (f2 : Prop)
78 (H3 : eP (and f1 f2))
79 : eP f1
80 := H3 f1 (H1 : eP f1 => H2 : eP f2 => H1).
81

82 def and_elim2 (f1 : Prop)
83 (f2 : Prop)
84 (H3 : eP (and f1 f2))
85 : eP f2
86 := H3 f2 (H1 : eP f1 => H2 : eP f2 => H2).
87

88 def or_intro1 (f1 : Prop)
89 (f2 : Prop)
90 (H1 : eP f1)
91 : eP (or f1 f2)
92 := f3 : Prop =>
93 H13 : (eP f1 -> eP f3) =>
94 H23 : (eP f2 -> eP f3) =>
95 H13 H1.
96

97 def or_intro2 (f1 : Prop)
98 (f2 : Prop)
99 (H2 : eP f2)
100 : eP (or f1 f2)
101 := f3 : Prop =>
102 H13 : (eP f1 -> eP f3) =>
103 H23 : (eP f2 -> eP f3) =>
104 H23 H2.
105

106 def or_elim (f1 : Prop)
107 (f2 : Prop)
108 (f3 : Prop)
109 (H3 : eP (or f1 f2))
110 (H13 : eP (imp f1 f3))
111 (H23 : eP (imp f2 f3))
112 : eP f3
113 := H3 f3 H13 H23.
114

115 def eqv_intro := f1 : Prop =>
116 f2 : Prop =>
117 and_intro (imp f1 f2) (imp f2 f1).
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118 def eqv_elim1 := f1 : Prop =>
119 f2 : Prop =>
120 and_elim1 (imp f1 f2) (imp f2 f1).
121 def eqv_elim2 := f1 : Prop =>
122 f2 : Prop =>
123 and_elim2 (imp f1 f2) (imp f2 f1).
124

125 (;
126 [] ebP dk_bool.true --> True
127 [] ebP dk_bool.false --> False.
128 ;)
129

130 (; equality ;)
131 def equal : A : cc.uT -> x : cc.eT A -> y : cc.eT A -> Prop
132 := A : cc.uT => x : cc.eT A => y : cc.eT A =>
133 forall (cc.Arrow A prop)
134 (H : (cc.eT A -> Prop) =>
135 imp (H x) (H y)).
136

137 def equalc (A : cc.uT) (x : cc.eT A) (y : cc.eT A) : Prop :=
138 not (not (equal A x y)).
139

140 def refl : A : cc.uT -> x : cc.eT A -> eP (equal A x x)
141 := A : cc.uT => x : cc.eT A =>
142 H : (cc.eT A -> Prop) =>
143 px : eP (H x) => px.
144

145 def equal_ind :
146 A : cc.uT ->
147 H : (cc.eT A -> Prop) ->
148 x : cc.eT A ->
149 y : cc.eT A ->
150 eP (equal A x y) ->
151 eP (H x) ->
152 eP (H y)
153 :=
154 A : cc.uT =>
155 P : (cc.eT A -> Prop) =>
156 x : cc.eT A =>
157 y : cc.eT A =>
158 eq: eP (equal A x y) =>
159 eq P.
160

161 def equal_sym : A : cc.uT ->
162 x : cc.eT A ->
163 y : cc.eT A ->
164 eP (equal A x y) ->
165 eP (equal A y x)
166 :=
167 A : cc.uT =>
168 x : cc.eT A =>
169 y : cc.eT A =>
170 eq : eP (equal A x y) =>
171 equal_ind
172 A
173 (z : cc.eT A => equal A z x)
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174 x
175 y
176 eq
177 (refl A x).
178

179 def equal_congr :
180 A : cc.uT ->
181 B : cc.uT ->
182 f : (cc.eT A -> cc.eT B) ->
183 x : cc.eT A ->
184 y : cc.eT A ->
185 eP (equal A x y) ->
186 eP (equal B (f x) (f y))
187 :=
188 A : cc.uT =>
189 B : cc.uT =>
190 f : (cc.eT A -> cc.eT B) =>
191 x : cc.eT A =>
192 y : cc.eT A =>
193 H : eP (equal A x y) =>
194 equal_ind A (z : cc.eT A => equal B (f x) (f z)) x y H (refl B (f x)).

These two files are directly taken from the encoding used by Zenon Modulo in [36] and make up
the basis of the encoding. However, some of the definitions are not quite practical to use. Thus, in
logic.dk, some more readable names are given to the encoding functions, and some useful proof
wrappers are defined in order to minimize differences with the Coq proofs:

1 (; This file is free software, part of Archsat. See file "LICENSE" for more details. ;)
2

3 #NAME logic.
4

5 (; Polymorphic First-order logic for Archsat ;)
6

7 def prop : Type.
8 def type : Type.
9 def proof : prop -> Type.
10 def term : type -> Type.
11 def arrow : type -> type -> type.
12

13

14 (; Constant symbols ;)
15

16 def True : prop.
17 def False : prop.
18

19 def not : prop -> prop.
20 def and : prop -> prop -> prop.
21 def or : prop -> prop -> prop.
22 def imp : prop -> prop -> prop.
23 def equiv : prop -> prop -> prop.
24

25 def forall : a : type -> (term a -> prop) -> prop.
26 def exists : a : type -> (term a -> prop) -> prop.
27

28 def foralltype : (type -> prop) -> prop.
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29 def existstype : (type -> prop) -> prop.
30

31 def equal : a : type -> term a -> term a -> prop.
32

33

34 (; Proofs of these rules in the encoding of the calculus of constructions ;)
35

36 [] type --> cc.uT.
37 [] term --> cc.eT.
38 [] arrow --> cc.Arrow.
39 [] prop --> dk_logic.Prop.
40 [] proof --> dk_logic.eP.
41

42 [] True --> dk_logic.True.
43 [] False --> dk_logic.False.
44 [] not --> dk_logic.not.
45 [] and --> dk_logic.and.
46 [] or --> dk_logic.or.
47 [] imp --> dk_logic.imp.
48 [] equiv --> dk_logic.eqv.
49 [] forall --> dk_logic.forall.
50 [] exists --> dk_logic.exists.
51 [] foralltype --> dk_logic.forall_type.
52 [] existstype --> dk_logic.exists_type.
53 [] equal --> dk_logic.equal.
54

55

56 (; True ;)
57

58 def true_intro : proof True :=
59 p : prop => x : proof p => x.
60

61

62 (; False ;)
63

64 def false_elim (p : prop)
65 : proof False -> proof p :=
66 H : proof False => H p.
67

68

69 (; Conjunction ;)
70

71 def and_intro (p : prop) (q: prop)
72 : proof p -> proof q -> proof (and p q) := dk_logic.and_intro p q.
73

74 def and_ind (p : prop) (q : prop) (r : prop)
75 : (proof p -> proof q -> proof r) -> proof (and p q) -> proof r :=
76 f : (proof p -> proof q -> proof r) => H : proof (and p q) => H r f.
77

78 def and_elim (p : prop) (q : prop) (r : prop)
79 : proof (and p q) -> (proof p -> proof q -> proof r) -> proof r :=
80 H : proof (and p q) => f : (proof p -> proof q -> proof r) => H r f.
81

82

83 (; Disjunction ;)
84
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85 def or_introl (p : prop) (q : prop)
86 : proof p -> proof (or p q) :=
87 H1 : proof p => z : prop =>
88 H2 : (proof p -> proof z) =>
89 H3 : (proof q -> proof z) => H2 H1.
90

91 def or_intror (p : prop) (q : prop)
92 : proof q -> proof (or p q) :=
93 H1 : proof q => z : prop =>
94 H2 : (proof p -> proof z) =>
95 H3 : (proof q -> proof z) => H3 H1.
96

97 def or_ind (p : prop) (q: prop) (r: prop)
98 : (proof p -> proof r) -> (proof q -> proof r) -> proof (or p q) -> proof r :=
99 f : (proof p -> proof r) => g : (proof q -> proof r) => H : proof (or p q) => H r f g.
100

101 def or_elim (p : prop) (q: prop) (r: prop)
102 : proof (or p q) -> (proof p -> proof r) -> (proof q -> proof r) -> proof r :=
103 H : proof (or p q) => f : (proof p -> proof r) => g : (proof q -> proof r) => H r f g.
104

105

106 (; Equivalence ;)
107

108 def equiv_refl (p : prop) : proof (equiv p p) :=
109 and_intro (imp p p) (imp p p) (x : proof p => x) (x : proof p => x).
110

111 def equiv_trans (p : prop) (q : prop) (r : prop)
112 : proof (equiv p q) -> proof (equiv q r) -> proof (equiv p r) :=
113 H1 : proof (equiv p q) => H2 : proof (equiv q r) =>
114 and_intro (imp p r) (imp r p)
115 (x : proof p => and_elim (imp p q) (imp q p) r H1
116 (pq : proof (imp p q) => _ : proof (imp q p) =>
117 and_elim (imp q r) (imp r q) r H2
118 (qr : proof (imp q r) => _ : proof (imp r q) =>
119 qr (pq x) ) ) )
120 (x : proof r => and_elim (imp p q) (imp q p) p H1
121 (_ : proof (imp p q) => qp : proof (imp q p) =>
122 and_elim (imp q r) (imp r q) p H2
123 (_ : proof (imp q r) => rq : proof (imp r q) =>
124 qp (rq x) ) ) ).
125

126 def equiv_not (p : prop) (q : prop)
127 : proof (equiv p q) -> proof (equiv (not p) (not q)) :=
128 H : proof (equiv p q) =>
129 and_elim (imp p q) (imp q p) (equiv (not p) (not q)) H
130 (pq : proof (imp p q) => qp : proof (imp q p) =>
131 and_intro (imp (not p) (not q)) (imp (not q) (not p))
132 (x : proof (not p) => y : proof q => x (qp y))
133 (x : proof (not q) => y : proof p => x (pq y))
134 ).
135

136

137 (; Equality ;)
138

139 def eq_subst (a : type) (x : term a) (y: term a) (p : term a -> prop)
140 : proof (equal a x y) -> proof (p x) -> proof (p y) :=
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141 H1 : proof (equal a x y) => H2 : proof (p x) =>
142 dk_logic.equal_ind a p x y H1 H2.
143

144 def eq_refl (a: type) (x: term a) : proof (equal a x x) := dk_logic.refl a x.
145

146 def eq_sym (a : type) (x : term a) (y : term a)
147 : proof (equal a x y) -> proof (equal a y x) :=
148 H1 : proof (equal a x y) => dk_logic.equal_sym a x y H1.
149

150 def not_eq_sym (a : type) (x : term a) (y : term a)
151 : proof (not (equal a x y)) -> proof (not (equal a y x)) :=
152 H1 : proof (not (equal a x y)) => H2 : proof (equal a y x) =>
153 H1 (eq_sym a y x H2).
154

155 def eq_trans (a : type) (x : term a) (y : term a) (z : term a)
156 : proof (equal a x y) -> proof (equal a y z) -> proof (equal a x z) :=
157 H1 : proof (equal a x y) => H2 : proof (equal a y z) =>
158 eq_subst a y z (s : term a => equal a x s) H2 H1.
159

160

161 (; Functions and equality ;)
162

163 def f_equal
164 (a : type) (b : type) (f : term a -> term b) (x : term a) (y : term a)
165 : proof (equal a x y) -> proof (equal b (f x) (f y)) :=
166 H : proof (equal a x y) =>
167 eq_subst a x y (z : term a => equal b (f x) (f z)) H (eq_refl b (f x)).
168

169 def f_equal2
170 (a : type) (b : type) (c : type) (f : term a -> term b -> term c)
171 (x1 : term a) (y1 : term a) (x2 : term b) (y2 : term b)
172 : proof (equal a x1 y1) -> proof (equal b x2 y2) -> proof (equal c (f x1 x2) (f y1 y2)) :=
173 H1 : proof (equal a x1 y1) => H2 : proof (equal b x2 y2) =>
174 eq_subst a x1 y1 (z1 : term a => equal c (f x1 x2) (f z1 y2)) H1 (
175 eq_subst b x2 y2 (z2 : term b => equal c (f x1 x2) (f x1 z2)) H2 (
176 eq_refl c (f x1 x2)
177 )
178 ).
179

180

181 (; Type inhabitation ;)
182

183 def inhabited : type -> prop.
184

185 def inhabits : a : type -> term a -> proof (inhabited a).

C.3 Classical logic axioms

The classical part of the reasoning is separated in a final file classical.dk, so that classical
proofs can easily be distinguished from intuitinistic proofs by checking dependencies of proof files:

1 (; This file is free software, part of Archsat. See file "LICENSE" for more details. ;)
2

3
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4 (; Law of excluded middle,
5 defined directly as the elimination of the (p \/ ~ p) disjunction ;)
6

7 classic : p : logic.prop -> z : logic.prop ->
8 (logic.proof p -> logic.proof z) ->
9 (logic.proof (logic.not p) -> logic.proof z) ->
10 logic.proof z.
11

12 (; Proof by contradiction using the exlcuded middle ;)
13

14 def nnpp (p : logic.prop)
15 : logic.proof (logic.not (logic.not p)) -> logic.proof p :=
16 H1 : logic.proof (logic.not (logic.not p)) =>
17 classic p p (H2 : logic.proof p => H2)
18 (H3 : logic.proof (logic.not p) => H1 H3 p).
19

20

21 (; de Morgan Laws for quantifiers ;)
22

23 def not_all_not_ex
24 (u : logic.type) (p : logic.term u -> logic.prop) :
25 logic.proof (logic.not (logic.forall u (x : logic.term u => logic.not (p x)))) ->
26 logic.proof (logic.exists u p) :=
27 notall : logic.proof (logic.not (logic.forall u (x : logic.term u => logic.not (p x)))) =>
28 nnpp (logic.exists u p) (abs : logic.proof (logic.not (logic.exists u p)) =>
29 notall (n : logic.term u => H : logic.proof (p n) =>
30 abs (z : logic.prop => p0 : (x : logic.term u -> logic.proof (p x) -> logic.proof z) =>
31 p0 n H
32 )
33 )
34 ).
35

36 def not_all_ex_not
37 (u : logic.type) (p : logic.term u -> logic.prop) :
38 logic.proof (logic.not (logic.forall u p)) ->
39 logic.proof (logic.exists u (x : logic.term u => logic.not (p x))) :=
40 notall : logic.proof (logic.not (logic.forall u p)) =>
41 not_all_not_ex u (x : logic.term u => logic.not (p x)) (
42 (all : logic.proof (logic.forall u (x : logic.term u => logic.not (logic.not (p x)))) =>
43 notall (n : logic.term u =>
44 nnpp (p n) (all n)
45 )
46 )
47 ).
48

49 def not_ex_all_not
50 (u : logic.type) (p : logic.term u -> logic.prop) :
51 logic.proof (logic.not (logic.exists u p)) ->
52 logic.proof (logic.forall u (x : logic.term u => logic.not (p x))) :=
53 notex : logic.proof (logic.not (logic.exists u p)) =>
54 n : logic.term u => abs : logic.proof (p n) =>
55 notex (z : logic.prop =>
56 p0 : (x : logic.term u -> logic.proof (p x) -> logic.proof z) =>
57 p0 n abs
58 ).
59



146 APPENDIX C. DEDUKTI THEORY FILES

60 def not_ex_not_all
61 (u : logic.type) (p : logic.term u -> logic.prop) :
62 logic.proof (logic.not (logic.exists u (x : logic.term u => logic.not (p x)))) ->
63 logic.proof (logic.forall u p) :=
64 H : logic.proof (logic.not (logic.exists u (x : logic.term u => logic.not (p x)))) =>
65 n : logic.term u =>
66 nnpp (p n) (k : logic.proof (logic.not (p n)) =>
67 H (z : logic.prop =>
68 p0 : (x : logic.term u -> logic.proof (logic.not (p x)) -> logic.proof z) =>
69 p0 n k
70 )
71 ).
72

73

74 (; de Morgan Laws for type quantifiers ;)
75

76 def not_all_not_ex_type
77 (p : logic.type -> logic.prop) :
78 logic.proof (logic.not (logic.foralltype (x : logic.type => logic.not (p x)))) ->
79 logic.proof (logic.existstype p) :=
80 notall : logic.proof (logic.not (logic.foralltype (x : logic.type => logic.not (p x)))) =>
81 nnpp (logic.existstype p) (abs : logic.proof (logic.not (logic.existstype p)) =>
82 notall (n : logic.type => H : logic.proof (p n) =>
83 abs (z : logic.prop => p0 : (x : logic.type -> logic.proof (p x) -> logic.proof z) =>
84 p0 n H
85 )
86 )
87 ).
88

89 def not_all_ex_not_type
90 (p : logic.type -> logic.prop) :
91 logic.proof (logic.not (logic.foralltype p)) ->
92 logic.proof (logic.existstype (x : logic.type => logic.not (p x))) :=
93 notall : logic.proof (logic.not (logic.foralltype p)) =>
94 not_all_not_ex_type (x : logic.type => logic.not (p x)) (
95 (all : logic.proof (logic.foralltype (x : logic.type => logic.not (logic.not (p x)))) =>
96 notall (n : logic.type =>
97 nnpp (p n) (all n)
98 )
99 )
100 ).
101

102 def not_ex_all_not_type
103 (p : logic.type -> logic.prop) :
104 logic.proof (logic.not (logic.existstype p)) ->
105 logic.proof (logic.foralltype (x : logic.type => logic.not (p x))) :=
106 notex : logic.proof (logic.not (logic.existstype p)) =>
107 n : logic.type => abs : logic.proof (p n) =>
108 notex (z : logic.prop =>
109 p0 : (x : logic.type -> logic.proof (p x) -> logic.proof z) =>
110 p0 n abs
111 ).
112

113 def not_ex_not_all_type
114 (p : logic.type -> logic.prop) :
115 logic.proof (logic.not (logic.existstype (x : logic.type => logic.not (p x)))) ->
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116 logic.proof (logic.foralltype p) :=
117 H : logic.proof (logic.not (logic.existstype (x : logic.type => logic.not (p x)))) =>
118 n : logic.type =>
119 nnpp (p n) (k : logic.proof (logic.not (p n)) =>
120 H (z : logic.prop =>
121 p0 : (x : logic.type -> logic.proof (logic.not (p x)) -> logic.proof z) =>
122 p0 n k
123 )
124 ).

C.4 Hilbert’s epsilons encoding
Finally, definition and specification of epsilon terms (aka Hilbert’s choice operator) are defined

in a file epsilon.dk:

1 (; This file is free software, part of Archsat. See file "LICENSE" for more details. ;)
2

3

4 (; Axiomatisation for Hilbert's epsilon operator ;)
5

6 def epsilon :
7 a : logic.type ->
8 logic.proof (logic.inhabited a) ->
9 (logic.term a -> logic.prop) -> logic.term a.
10

11 def epsilon_spec :
12 a : logic.type ->
13 i : logic.proof (logic.inhabited a) ->
14 p :(logic.term a -> logic.prop) ->
15 logic.proof (logic.exists a p) ->
16 logic.proof (p (epsilon a i p)).
17

18 (; Axiomatisation for Hilbert's epsilon operator for type existencials ;)
19

20 def epsilon_type : (logic.type -> logic.prop) -> logic.type.
21

22 def epsilon_type_spec :
23 p :(logic.type -> logic.prop) ->
24 logic.proof (logic.existstype p) ->
25 logic.proof (p (epsilon_type p)).





Appendix D

Proofs for a simple SAT problem

D.1 Input problem
Considering the problem first presented in Section 1.1.3, which can be expressed in tptp syntax

as:

1 % #expect: unsat
2

3 cnf(c1, axiom, p | q).
4

5 cnf(c2, axiom, ~ p | r).
6

7 cnf(c3, axiom, ~ q | r).
8

9 cnf(c4, axiom, s | t).
10

11 cnf(c5, axiom, ~ s | ~ r).
12

13 cnf(c6, axiom, ~ t | ~ r).
14

15 fof(goal, conjecture, $false).

We will show on the next pages the different outputs of ArchSAT, namely:

• The Coq proof script output

• The Coq and Dedukti term output generated from the proof script

• The reduced (i.e. normalized) term output for Coq and Dedukti

For each output, the goal is then to prove ⊥. Which, for the different outputs mean:

• For the Coq proof script, proving the theorem Theorem goal : False..

• For the Coq proof terms (including the normalized one), it means providing a term of type
⊥: Definition goal : False := <term_here>.

• For the Dedukti proof terms (including the normalized one), it means providing a term which
has the type of proofs of the encoded type: def goal : logic.proof logic.False := <term_here>.

149
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D.2 Coq headers
We will first show the Coq header defining all parameters, which is common to all three proofs

outputs:

1 (**
2 Proof automatically generated by Archsat
3 Input file: sat_ex1.p
4 **)
5

6 (* Implicitly declared *)
7 Parameter p : Prop.
8

9 (* Implicitly declared *)
10 Parameter q : Prop.
11

12 (* File './sat_ex1.p', line 3, character 15-20 *)
13 Axiom c1 : (p \/ q).
14

15 (* Implicitly declared *)
16 Parameter r : Prop.
17

18 (* File './sat_ex1.p', line 5, character 15-22 *)
19 Axiom c2 : ((~ p) \/ r).
20

21 (* File './sat_ex1.p', line 7, character 15-22 *)
22 Axiom c3 : ((~ q) \/ r).
23

24 (* Implicitly declared *)
25 Parameter s : Prop.
26

27 (* Implicitly declared *)
28 Parameter t : Prop.
29

30 (* File './sat_ex1.p', line 9, character 15-20 *)
31 Axiom c4 : (s \/ t).
32

33 (* File './sat_ex1.p', line 11, character 15-24 *)
34 Axiom c5 : ((~ s) \/ (~ r)).
35

36 (* File './sat_ex1.p', line 13, character 15-24 *)
37 Axiom c6 : ((~ t) \/ (~ r)).
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D.3 Coq proof script
We can produce the following proof script for Coq:

1 (**
2 Proof automatically generated by Archsat
3 Input file: sat_ex1.p
4 **)
5

6 (* Prelude: Alias *)
7 pose ( or_elim :=
8 (fun (A B P: Prop) (o: (A \/ B)) (f: (A -> P)) (g: (B -> P)) =>
9 (or_ind f g o)) ).
10

11 (* PROOF START *)
12 assert (C0: (~ p -> ~ q -> False)).
13 { intro Ax0.
14 intro Ax1.
15 apply (or_elim p q False c1).
16 - intro O0.
17 exact (Ax0 O0).
18 - intro O0.
19 exact (Ax1 O0). }
20 assert (C1: (~ ~ q -> ~ r -> False)).
21 { intro Ax0.
22 intro Ax1.
23 apply (or_elim (~ q) r False c3).
24 - intro O0.
25 exact (Ax0 O0).
26 - intro O0.
27 exact (Ax1 O0). }
28 assert (C2: (~ s -> ~ t -> False)).
29 { intro Ax0.
30 intro Ax1.
31 apply (or_elim s t False c4).
32 - intro O0.
33 exact (Ax0 O0).
34 - intro O0.
35 exact (Ax1 O0). }
36 assert (C3: (~ ~ r -> ~ ~ s -> False)).
37 { intro Ax0.
38 intro Ax1.
39 apply (or_elim (~ s) (~ r) False c5).
40 - intro O0.
41 exact (Ax1 O0).
42 - intro O0.
43 exact (Ax0 O0). }
44 (* Resolution C2/C3 -> R0 *)
45 pose proof (
46 (fun (l0: ~ ~ r) (l1: ~ t) =>
47 (C2 (fun (r0: s) => (C3 l0 (fun (r1: ~ s) => (r1 r0)))) l1))
48 ) as R0.
49 assert (C4: (~ ~ r -> ~ ~ t -> False)).
50 { intro Ax0.
51 intro Ax1.
52 apply (or_elim (~ t) (~ r) False c6).
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53 - intro O0.
54 exact (Ax1 O0).
55 - intro O0.
56 exact (Ax0 O0). }
57 (* Resolution R0/C4 -> R1 *)
58 pose proof (
59 (fun (l0: ~ ~ r) =>
60 (R0 l0 (fun (r0: t) => (C4 l0 (fun (r1: ~ t) => (r1 r0))))))
61 ) as R1.
62 (* Resolution C1/R1 -> R2 *)
63 pose proof (
64 (fun (l0: ~ ~ q) =>
65 (C1 l0 (fun (r0: r) => (R1 (fun (r1: ~ r) => (r1 r0))))))
66 ) as R2.
67 (* Resolution C0/R2 -> R3 *)
68 pose proof (
69 (fun (l0: ~ p) =>
70 (C0 l0 (fun (r0: q) => (R2 (fun (r1: ~ q) => (r1 r0))))))
71 ) as R3.
72 assert (C5: (~ ~ p -> ~ r -> False)).
73 { intro Ax0.
74 intro Ax1.
75 apply (or_elim (~ p) r False c2).
76 - intro O0.
77 exact (Ax0 O0).
78 - intro O0.
79 exact (Ax1 O0). }
80 (* Resolution C5/R1 -> R4 *)
81 pose proof (
82 (fun (l0: ~ ~ p) =>
83 (C5 l0 (fun (r0: r) => (R1 (fun (r1: ~ r) => (r1 r0))))))
84 ) as R4.
85 (* Resolution R3/R4 -> R5 *)
86 pose proof ((R3 (fun (r0: p) => (R4 R3)))) as R5.
87 exact R5.
88 (* PROOF END *)
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D.4 Coq proof terms
As well as the proof term:

1 (**
2 Proof automatically generated by Archsat
3 Input file: sat_ex1.p
4 **)
5

6 (* PROOF START *)
7 let C0 := (fun (Ax0: ~ p) (Ax1: ~ q) =>
8 (or_elim p q False c1 (fun (O0: p) => (Ax0 O0))
9 (fun (O0: q) => (Ax1 O0))))
10 in
11 let C1 := (fun (Ax0: ~ ~ q) (Ax1: ~ r) =>
12 (or_elim (~ q) r False c3 (fun (O0: ~ q) => (Ax0 O0))
13 (fun (O0: r) => (Ax1 O0))))
14 in
15 let C2 := (fun (Ax0: ~ s) (Ax1: ~ t) =>
16 (or_elim s t False c4 (fun (O0: s) => (Ax0 O0))
17 (fun (O0: t) => (Ax1 O0))))
18 in
19 let C3 := (fun (Ax0: ~ ~ r) (Ax1: ~ ~ s) =>
20 (or_elim (~ s) (~ r) False c5 (fun (O0: ~ s) => (Ax1 O0))
21 (fun (O0: ~ r) => (Ax0 O0))))
22 in
23 let R0 := (fun (l0: ~ ~ r) (l1: ~ t) =>
24 (C2 (fun (r0: s) => (C3 l0 (fun (r1: ~ s) => (r1 r0)))) l1))
25 in
26 let C4 := (fun (Ax0: ~ ~ r) (Ax1: ~ ~ t) =>
27 (or_elim (~ t) (~ r) False c6 (fun (O0: ~ t) => (Ax1 O0))
28 (fun (O0: ~ r) => (Ax0 O0))))
29 in
30 let R1 := (fun (l0: ~ ~ r) =>
31 (R0 l0 (fun (r0: t) => (C4 l0 (fun (r1: ~ t) => (r1 r0))))))
32 in
33 let R2 := (fun (l0: ~ ~ q) =>
34 (C1 l0 (fun (r0: r) => (R1 (fun (r1: ~ r) => (r1 r0))))))
35 in
36 let R3 := (fun (l0: ~ p) =>
37 (C0 l0 (fun (r0: q) => (R2 (fun (r1: ~ q) => (r1 r0))))))
38 in
39 let C5 := (fun (Ax0: ~ ~ p) (Ax1: ~ r) =>
40 (or_elim (~ p) r False c2 (fun (O0: ~ p) => (Ax0 O0))
41 (fun (O0: r) => (Ax1 O0))))
42 in
43 let R4 := (fun (l0: ~ ~ p) =>
44 (C5 l0 (fun (r0: r) => (R1 (fun (r1: ~ r) => (r1 r0))))))
45 in
46 let R5 := (R3 (fun (r0: p) => (R4 R3))) in
47 R5
48 (* PROOF END *)
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And finally the reduced proof term:

1 (**
2 Proof automatically generated by Archsat
3 Input file: sat_ex1.p
4 **)
5

6 (* PROOF START *)
7 (or_ind (fun (r0: p) =>
8 (or_ind (fun (l0: ~ p) =>
9 (or_ind (fun (O0: p) => (l0 O0))
10 (fun (r0_773: q) =>
11 (or_ind (fun (r1: ~ q) => (r1 r0_773))
12 (fun (r0_763: r) =>
13 (or_ind (fun (r0_750: s) =>
14 (or_ind (fun (r1: ~ s) => (r1 r0_750))
15 (fun (r1: ~ r) => (r1 r0_763)) c5))
16 (fun (r0_730: t) =>
17 (or_ind (fun (r1: ~ t) => (r1 r0_730))
18 (fun (r1: ~ r) => (r1 r0_763)) c6)) c4)) c3))
19 c1))
20 (fun (r0_763: r) =>
21 (or_ind (fun (r0_750: s) =>
22 (or_ind (fun (r1: ~ s) => (r1 r0_750))
23 (fun (r1: ~ r) => (r1 r0_763)) c5))
24 (fun (r0_730: t) =>
25 (or_ind (fun (r1: ~ t) => (r1 r0_730))
26 (fun (r1: ~ r) => (r1 r0_763)) c6)) c4)) c2))
27 (fun (r0_773: q) =>
28 (or_ind (fun (r1: ~ q) => (r1 r0_773))
29 (fun (r0_763: r) =>
30 (or_ind (fun (r0_750: s) =>
31 (or_ind (fun (r1: ~ s) => (r1 r0_750))
32 (fun (r1: ~ r) => (r1 r0_763)) c5))
33 (fun (r0_730: t) =>
34 (or_ind (fun (r1: ~ t) => (r1 r0_730))
35 (fun (r1: ~ r) => (r1 r0_763)) c6)) c4)) c3)) c1)
36 (* PROOF END *)
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D.5 Dedukti headers
This is the Dedukti header generated for the term and normalized term outputs:

1 (;
2 Proof automatically generated by Archsat
3 Input file: sat_ex1.p
4 ;)
5

6 (; Implicitly declared ;)
7 p: logic.prop.
8

9 (; Implicitly declared ;)
10 q: logic.prop.
11

12 (; File './sat_ex1.p', line 3, character 15-20 ;)
13 c1: logic.proof (logic.or p q).
14

15 (; Implicitly declared ;)
16 r: logic.prop.
17

18 (; File './sat_ex1.p', line 5, character 15-22 ;)
19 c2: logic.proof (logic.or (logic.not p) r).
20

21 (; File './sat_ex1.p', line 7, character 15-22 ;)
22 c3: logic.proof (logic.or (logic.not q) r).
23

24 (; Implicitly declared ;)
25 s: logic.prop.
26

27 (; Implicitly declared ;)
28 t: logic.prop.
29

30 (; File './sat_ex1.p', line 9, character 15-20 ;)
31 c4: logic.proof (logic.or s t).
32

33 (; File './sat_ex1.p', line 11, character 15-24 ;)
34 c5: logic.proof (logic.or (logic.not s) (logic.not r)).
35

36 (; File './sat_ex1.p', line 13, character 15-24 ;)
37 c6: logic.proof (logic.or (logic.not t) (logic.not r)).
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D.6 Dedukti proof terms
The Dedukti proof term:

1 (;
2 Proof automatically generated by Archsat
3 Input file: sat_ex1.p
4 ;)
5

6 (; PROOF START ;)
7 (C0: logic.proof (logic.imp (logic.not p) (logic.not (logic.not q))) =>
8 (C1: logic.proof (logic.imp (logic.not (logic.not q))
9 (logic.not (logic.not r))) =>
10 (C2: logic.proof (logic.imp (logic.not s) (logic.not (logic.not t))) =>
11 (C3: logic.proof (logic.imp (logic.not (logic.not r))
12 (logic.not (logic.not (logic.not s)))) =>
13 (R0: logic.proof (logic.imp (logic.not (logic.not r))
14 (logic.not (logic.not t))) =>
15 (C4: logic.proof (logic.imp (logic.not (logic.not r))
16 (logic.not (logic.not (logic.not t)))) =>
17 (R1: logic.proof (logic.not (logic.not (logic.not r))) =>
18 (R2: logic.proof (logic.not (logic.not (logic.not q))) =>
19 (R3: logic.proof (logic.not (logic.not p)) =>
20 (C5: logic.proof (logic.imp (logic.not (logic.not p))
21 (logic.not (logic.not r))) =>
22 (R4: logic.proof (logic.not (logic.not (logic.not p))) =>
23 (R5: logic.proof logic.False => R5 ) (R3 (r0: logic.proof p => (R4 R3)))
24 ) (l0: logic.proof (logic.not (logic.not p)) =>
25 (C5 l0
26 (r0: logic.proof r => (R1 (r1: logic.proof (logic.not r) => (r1 r0))))))
27 ) (Ax0: logic.proof (logic.not (logic.not p)) =>
28 Ax1: logic.proof (logic.not r) =>
29 (logic.or_elim (logic.not p) r logic.False c2
30 (O0: logic.proof (logic.not p) => (Ax0 O0))
31 (O0: logic.proof r => (Ax1 O0))))
32 ) (l0: logic.proof (logic.not p) =>
33 (C0 l0
34 (r0: logic.proof q => (R2 (r1: logic.proof (logic.not q) => (r1 r0))))))
35 ) (l0: logic.proof (logic.not (logic.not q)) =>
36 (C1 l0
37 (r0: logic.proof r => (R1 (r1: logic.proof (logic.not r) => (r1 r0))))))
38 ) (l0: logic.proof (logic.not (logic.not r)) =>
39 (R0 l0
40 (r0: logic.proof t => (C4 l0 (r1: logic.proof (logic.not t) => (r1 r0))))))
41 ) (Ax0: logic.proof (logic.not (logic.not r)) =>
42 Ax1: logic.proof (logic.not (logic.not t)) =>
43 (logic.or_elim (logic.not t) (logic.not r) logic.False c6
44 (O0: logic.proof (logic.not t) => (Ax1 O0))
45 (O0: logic.proof (logic.not r) => (Ax0 O0))))
46 ) (l0: logic.proof (logic.not (logic.not r)) => l1: logic.proof (logic.not t) =>
47 (C2 (r0: logic.proof s =>
48 (C3 l0 (r1: logic.proof (logic.not s) => (r1 r0)))) l1))
49 ) (Ax0: logic.proof (logic.not (logic.not r)) =>
50 Ax1: logic.proof (logic.not (logic.not s)) =>
51 (logic.or_elim (logic.not s) (logic.not r) logic.False c5
52 (O0: logic.proof (logic.not s) => (Ax1 O0))
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53 (O0: logic.proof (logic.not r) => (Ax0 O0))))
54 ) (Ax0: logic.proof (logic.not s) => Ax1: logic.proof (logic.not t) =>
55 (logic.or_elim s t logic.False c4 (O0: logic.proof s => (Ax0 O0))
56 (O0: logic.proof t => (Ax1 O0))))
57 ) (Ax0: logic.proof (logic.not (logic.not q)) =>
58 Ax1: logic.proof (logic.not r) =>
59 (logic.or_elim (logic.not q) r logic.False c3
60 (O0: logic.proof (logic.not q) => (Ax0 O0))
61 (O0: logic.proof r => (Ax1 O0))))
62 ) (Ax0: logic.proof (logic.not p) => Ax1: logic.proof (logic.not q) =>
63 (logic.or_elim p q logic.False c1 (O0: logic.proof p => (Ax0 O0))
64 (O0: logic.proof q => (Ax1 O0))))
65 (; PROOF END ;)
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And the normalized Dedukti term:

1 (;
2 Proof automatically generated by Archsat
3 Input file: sat_ex1.p
4 ;)
5

6 (; PROOF START ;)
7 (logic.or_ind p q logic.False
8 (r0: logic.proof p =>
9 (logic.or_ind (logic.not p) r logic.False
10 (l0: logic.proof (logic.not p) =>
11 (logic.or_ind p q logic.False (O0: logic.proof p => (l0 O0))
12 (r0_773: logic.proof q =>
13 (logic.or_ind (logic.not q) r logic.False
14 (r1: logic.proof (logic.not q) => (r1 r0_773))
15 (r0_763: logic.proof r =>
16 (logic.or_ind s t logic.False
17 (r0_750: logic.proof s =>
18 (logic.or_ind (logic.not s) (logic.not r) logic.False
19 (r1: logic.proof (logic.not s) => (r1 r0_750))
20 (r1: logic.proof (logic.not r) => (r1 r0_763)) c5))
21 (r0_730: logic.proof t =>
22 (logic.or_ind (logic.not t) (logic.not r) logic.False
23 (r1: logic.proof (logic.not t) => (r1 r0_730))
24 (r1: logic.proof (logic.not r) => (r1 r0_763)) c6)) c4)) c3)) c1))
25 (r0_763: logic.proof r =>
26 (logic.or_ind s t logic.False
27 (r0_750: logic.proof s =>
28 (logic.or_ind (logic.not s) (logic.not r) logic.False
29 (r1: logic.proof (logic.not s) => (r1 r0_750))
30 (r1: logic.proof (logic.not r) => (r1 r0_763)) c5))
31 (r0_730: logic.proof t =>
32 (logic.or_ind (logic.not t) (logic.not r) logic.False
33 (r1: logic.proof (logic.not t) => (r1 r0_730))
34 (r1: logic.proof (logic.not r) => (r1 r0_763)) c6)) c4)) c2))
35 (r0_773: logic.proof q =>
36 (logic.or_ind (logic.not q) r logic.False
37 (r1: logic.proof (logic.not q) => (r1 r0_773))
38 (r0_763: logic.proof r =>
39 (logic.or_ind s t logic.False
40 (r0_750: logic.proof s =>
41 (logic.or_ind (logic.not s) (logic.not r) logic.False
42 (r1: logic.proof (logic.not s) => (r1 r0_750))
43 (r1: logic.proof (logic.not r) => (r1 r0_763)) c5))
44 (r0_730: logic.proof t =>
45 (logic.or_ind (logic.not t) (logic.not r) logic.False
46 (r1: logic.proof (logic.not t) => (r1 r0_730))
47 (r1: logic.proof (logic.not r) => (r1 r0_763)) c6)) c4)) c3)) c1)
48 (; PROOF END ;)
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Proofs for a simple SMT problem

E.1 Input problem
Considering the following simple SMT problem (which is already in clausal normal form):

1 % #expect: unsat
2

3 cnf(c1, axiom, a = b).
4

5 cnf(c2, axiom, b = c | b = d).
6

7 cnf(c3, axiom, ~ a = d).
8

9 cnf(c4, axiom, ~ a = c).
10

11 fof(goal, conjecture, $false).

We will show on the next pages the different outputs of ArchSAT, namely:

• The Coq proof script output

• The Coq and Dedukti term output generated from the proof script

• The reduced (i.e. normalized) term output for Coq and Dedukti

For each output, the goal is then to prove ⊥. Which, for the different outputs mean:

• For the Coq proof script, proving the theorem Theorem goal : False..

• For the Coq proof terms (including the normalized one), it means providing a term of type
⊥: Definition goal : False := <term_here>.

• For the Dedukti proof terms (including the normalized one), it means providing a term which
has the type of proofs of the encoded type: def goal : logic.proof logic.False := <term_here>.
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E.2 Coq headers
We will first show the Coq header defining all parameters, which is common to all three proofs

outputs:

1 (**
2 Proof automatically generated by Archsat
3 Input file: smt_ex1.p
4 **)
5

6 (* Implicitly declared *)
7 Parameter _i : Type.
8

9 (* Implicitly declared *)
10 Parameter a : _i.
11

12 (* Implicitly declared *)
13 Parameter b : _i.
14

15 (* File './smt_ex1.p', line 3, character 15-20 *)
16 Axiom c1 : (a = b).
17

18 (* Implicitly declared *)
19 Parameter c : _i.
20

21 (* Implicitly declared *)
22 Parameter d : _i.
23

24 (* File './smt_ex1.p', line 5, character 15-28 *)
25 Axiom c2 : ((b = c) \/ (b = d)).
26

27 (* File './smt_ex1.p', line 7, character 15-22 *)
28 Axiom c3 : ~ (a = d).
29

30 (* File './smt_ex1.p', line 9, character 15-22 *)
31 Axiom c4 : ~ (a = c).
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E.3 Coq proof script
We can produce the following proof script for Coq:

1 (**
2 Proof automatically generated by Archsat
3 Input file: smt_ex1.p
4 **)
5

6 (* Prelude: Alias *)
7 pose ( or_elim :=
8 (fun (A B P: Prop) (o: (A \/ B)) (f: (A -> P)) (g: (B -> P)) =>
9 (or_ind f g o)) ).
10

11 (* PROOF START *)
12 assert (L0: (~ ~ (a = b) -> ~ ~ (b = c) -> ~ (a = c) -> False)).
13 { intro E0.
14 intro E1.
15 intro E2.
16 apply E1.
17 intro E3.
18 apply E2.
19 exact (eq_trans c1 E3). }
20 assert (C0: ~ ~ ~ (a = c)).
21 { intro Ax0.
22 exact (Ax0 c4). }
23 (* Resolution L0/C0 -> R0 *)
24 pose proof (
25 (fun (l0: ~ ~ (a = b)) (l1: ~ ~ (b = c)) =>
26 (L0 l0 l1
27 (fun (r0: (a = c)) => (C0 (fun (r1: ~ (a = c)) => (r1 r0))))))
28 ) as R0.
29 assert (C1: ~ ~ (a = b)).
30 { intro Ax0.
31 exact (Ax0 c1). }
32 (* Resolution R0/C1 -> R1 *)
33 pose proof ((fun (l0: ~ ~ (b = c)) => (R0 C1 l0))) as R1.
34 assert (C2: (~ (b = c) -> ~ (b = d) -> False)).
35 { intro Ax0.
36 intro Ax1.
37 apply (or_elim (b = c) (b = d) False c2).
38 - intro O0.
39 exact (Ax0 O0).
40 - intro O0.
41 exact (Ax1 O0). }
42 assert (L1: (~ ~ (a = b) -> ~ ~ (b = d) -> ~ (a = d) -> False)).
43 { intro E0.
44 intro E1.
45 intro E2.
46 apply E1.
47 intro E3.
48 apply E2.
49 exact (eq_trans c1 E3). }
50 assert (C3: ~ ~ ~ (a = d)).
51 { intro Ax0.
52 exact (Ax0 c3). }
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53 (* Resolution L1/C3 -> R2 *)
54 pose proof (
55 (fun (l0: ~ ~ (a = b)) (l1: ~ ~ (b = d)) =>
56 (L1 l0 l1
57 (fun (r0: (a = d)) => (C3 (fun (r1: ~ (a = d)) => (r1 r0))))))
58 ) as R2.
59 (* Resolution R2/C1 -> R3 *)
60 pose proof ((fun (l0: ~ ~ (b = d)) => (R2 C1 l0))) as R3.
61 (* Resolution C2/R3 -> R4 *)
62 pose proof (
63 (fun (l0: ~ (b = c)) =>
64 (C2 l0 (fun (r0: (b = d)) => (R3 (fun (r1: ~ (b = d)) => (r1 r0))))))
65 ) as R4.
66 (* Resolution R1/R4 -> R5 *)
67 pose proof ((R1 R4)) as R5.
68 exact R5.
69 (* PROOF END *)
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E.4 Coq proof terms
As well as the proof term:

1 (**
2 Proof automatically generated by Archsat
3 Input file: smt_ex1.p
4 **)
5

6 (* PROOF START *)
7 let L0 := (fun (E0: ~ ~ (a = b)) (E1: ~ ~ (b = c)) (E2: ~ (a = c)) =>
8 (E1 (fun (E3: (b = c)) => (E2 (eq_trans c1 E3)))))
9 in
10 let C0 := (fun (Ax0: ~ ~ (a = c)) => (Ax0 c4)) in
11 let R0 := (fun (l0: ~ ~ (a = b)) (l1: ~ ~ (b = c)) =>
12 (L0 l0 l1
13 (fun (r0: (a = c)) => (C0 (fun (r1: ~ (a = c)) => (r1 r0))))))
14 in
15 let C1 := (fun (Ax0: ~ (a = b)) => (Ax0 c1)) in
16 let R1 := (fun (l0: ~ ~ (b = c)) => (R0 C1 l0)) in
17 let C2 := (fun (Ax0: ~ (b = c)) (Ax1: ~ (b = d)) =>
18 (or_elim (b = c) (b = d) False c2
19 (fun (O0: (b = c)) => (Ax0 O0)) (fun (O0: (b = d)) => (Ax1 O0))))
20 in
21 let L1 := (fun (E0: ~ ~ (a = b)) (E1: ~ ~ (b = d)) (E2: ~ (a = d)) =>
22 (E1 (fun (E3: (b = d)) => (E2 (eq_trans c1 E3)))))
23 in
24 let C3 := (fun (Ax0: ~ ~ (a = d)) => (Ax0 c3)) in
25 let R2 := (fun (l0: ~ ~ (a = b)) (l1: ~ ~ (b = d)) =>
26 (L1 l0 l1
27 (fun (r0: (a = d)) => (C3 (fun (r1: ~ (a = d)) => (r1 r0))))))
28 in
29 let R3 := (fun (l0: ~ ~ (b = d)) => (R2 C1 l0)) in
30 let R4 := (fun (l0: ~ (b = c)) =>
31 (C2 l0
32 (fun (r0: (b = d)) => (R3 (fun (r1: ~ (b = d)) => (r1 r0))))))
33 in
34 let R5 := (R1 R4) in
35 R5
36 (* PROOF END *)
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And finally the reduced proof term:

1 (**
2 Proof automatically generated by Archsat
3 Input file: smt_ex1.p
4 **)
5

6 (* PROOF START *)
7 (or_ind (fun (E3: (b = c)) => (c4 (eq_trans c1 E3)))
8 (fun (r0: (b = d)) => (c3 (eq_trans c1 r0))) c2)
9 (* PROOF END *)
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E.5 Dedukti headers
This is the Dedukti header generated for the term and normalized term outputs:

1 (;
2 Proof automatically generated by Archsat
3 Input file: smt_ex1.p
4 ;)
5

6 (; Implicitly declared ;)
7 _i: logic.type.
8

9 (; Implicitly declared ;)
10 a: logic.term _i.
11

12 (; Implicitly declared ;)
13 b: logic.term _i.
14

15 (; File './smt_ex1.p', line 3, character 15-20 ;)
16 c1: logic.proof (logic.equal _i a b).
17

18 (; Implicitly declared ;)
19 c: logic.term _i.
20

21 (; Implicitly declared ;)
22 d: logic.term _i.
23

24 (; File './smt_ex1.p', line 5, character 15-28 ;)
25 c2: logic.proof (logic.or (logic.equal _i b c) (logic.equal _i b d)).
26

27 (; File './smt_ex1.p', line 7, character 15-22 ;)
28 c3: logic.proof (logic.not (logic.equal _i a d)).
29

30 (; File './smt_ex1.p', line 9, character 15-22 ;)
31 c4: logic.proof (logic.not (logic.equal _i a c)).
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E.6 Dedukti proof terms
The Dedukti proof term:

1 (;
2 Proof automatically generated by Archsat
3 Input file: smt_ex1.p
4 ;)
5

6 (; PROOF START ;)
7 (L0: logic.proof (logic.imp (logic.not (logic.not (logic.equal _i a b)))
8 (logic.imp (logic.not (logic.not (logic.equal _i b c)))
9 (logic.not (logic.not (logic.equal _i a c))))) =>
10 (C0: logic.proof (logic.not (logic.not (logic.not (logic.equal _i a c)))) =>
11 (R0: logic.proof (logic.imp (logic.not (logic.not (logic.equal _i a b)))
12 (logic.not (logic.not (logic.not (logic.equal _i b c))))) =>
13 (C1: logic.proof (logic.not (logic.not (logic.equal _i a b))) =>
14 (R1: logic.proof (logic.not (logic.not (logic.not (logic.equal _i b c)))) =>
15 (C2: logic.proof (logic.imp (logic.not (logic.equal _i b c))
16 (logic.not (logic.not (logic.equal _i b d)))) =>
17 (L1: logic.proof (logic.imp (logic.not (logic.not (logic.equal _i a b)))
18 (logic.imp (logic.not (logic.not (logic.equal _i b d)))
19 (logic.not (logic.not (logic.equal _i a d))))) =>
20 (C3: logic.proof (logic.not (logic.not (logic.not (logic.equal _i a d)))) =>
21 (R2: logic.proof (logic.imp (logic.not (logic.not (logic.equal _i a b)))
22 (logic.not (logic.not (logic.not (logic.equal _i b d))))) =>
23 (R3: logic.proof (logic.not (logic.not (logic.not (logic.equal _i b d)))) =>
24 (R4: logic.proof (logic.not (logic.not (logic.equal _i b c))) =>
25 (R5: logic.proof logic.False => R5 ) (R1 R4)
26 ) (l0: logic.proof (logic.not (logic.equal _i b c)) =>
27 (C2 l0
28 (r0: logic.proof (logic.equal _i b d) =>
29 (R3 (r1: logic.proof (logic.not (logic.equal _i b d)) => (r1 r0))))))
30 ) (l0: logic.proof (logic.not (logic.not (logic.equal _i b d))) =>
31 (R2 C1 l0))
32 ) (l0: logic.proof (logic.not (logic.not (logic.equal _i a b))) =>
33 l1: logic.proof (logic.not (logic.not (logic.equal _i b d))) =>
34 (L1 l0 l1
35 (r0: logic.proof (logic.equal _i a d) =>
36 (C3 (r1: logic.proof (logic.not (logic.equal _i a d)) => (r1 r0))))))
37 ) (Ax0: logic.proof (logic.not (logic.not (logic.equal _i a d))) => (Ax0 c3))
38 ) (E0: logic.proof (logic.not (logic.not (logic.equal _i a b))) =>
39 E1: logic.proof (logic.not (logic.not (logic.equal _i b d))) =>
40 E2: logic.proof (logic.not (logic.equal _i a d)) =>
41 (E1 (E3: logic.proof (logic.equal _i b d) =>
42 (E2 (logic.eq_trans _i a b d c1 E3)))))
43 ) (Ax0: logic.proof (logic.not (logic.equal _i b c)) =>
44 Ax1: logic.proof (logic.not (logic.equal _i b d)) =>
45 (logic.or_elim (logic.equal _i b c) (logic.equal _i b d) logic.False c2
46 (O0: logic.proof (logic.equal _i b c) => (Ax0 O0))
47 (O0: logic.proof (logic.equal _i b d) => (Ax1 O0))))
48 ) (l0: logic.proof (logic.not (logic.not (logic.equal _i b c))) =>
49 (R0 C1 l0))
50 ) (Ax0: logic.proof (logic.not (logic.equal _i a b)) => (Ax0 c1))
51 ) (l0: logic.proof (logic.not (logic.not (logic.equal _i a b))) =>
52 l1: logic.proof (logic.not (logic.not (logic.equal _i b c))) =>



E.6. DEDUKTI PROOF TERMS 167

53 (L0 l0 l1
54 (r0: logic.proof (logic.equal _i a c) =>
55 (C0 (r1: logic.proof (logic.not (logic.equal _i a c)) => (r1 r0))))))
56 ) (Ax0: logic.proof (logic.not (logic.not (logic.equal _i a c))) => (Ax0 c4))
57 ) (E0: logic.proof (logic.not (logic.not (logic.equal _i a b))) =>
58 E1: logic.proof (logic.not (logic.not (logic.equal _i b c))) =>
59 E2: logic.proof (logic.not (logic.equal _i a c)) =>
60 (E1 (E3: logic.proof (logic.equal _i b c) =>
61 (E2 (logic.eq_trans _i a b c c1 E3)))))
62 (; PROOF END ;)
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And the normalized Dedukti term:

1 (;
2 Proof automatically generated by Archsat
3 Input file: smt_ex1.p
4 ;)
5

6 (; PROOF START ;)
7 (logic.or_ind (logic.equal _i b c) (logic.equal _i b d) logic.False
8 (E3: logic.proof (logic.equal _i b c) =>
9 (c4 (logic.eq_trans _i a b c c1 E3)))
10 (r0: logic.proof (logic.equal _i b d) =>
11 (c3 (logic.eq_trans _i a b d c1 r0))) c2)
12 (; PROOF END ;)
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Proofs for a problem using rewriting

F.1 Input problem
Consider the following problem on polymorphic lists:

1 tff(list_type, type, ( list : $tType > $tType ) ).
2

3 tff(cons_type, type, ( cons : !> [A : $tType ] : ( ( A * list(A) ) > list(A) ) ) ).
4

5 tff(nil_type, type, ( nil : !> [A : $tType ] : list(A) ) ).
6

7 tff(car_type, type, ( car : !> [A : $tType ] : ( list(A) > A ) ) ).
8

9 tff(cdr_type, type, ( cdr : !> [A: $tType ] : ( list(A) > list(A) ) ) ).
10

11 tff(car_axiom, axiom,
12 (! [A : $tType, X: A , L: list(A) ] : (car(A, cons(A, X, L)) = X))).
13

14 tff(cons_axiom, axiom,
15 (! [A : $tType, X: A , L: list(A) ] : (cdr(A, cons(A, X, L)) = L))).
16

17 tff(hyp_3, conjecture,
18 (! [V_x1: $i , V_y1: list($i) , V_x2: $i , V_y2: list($i) ] :
19 ((cons($i, V_x1, V_y1) = cons($i, V_x2, V_y2))
20 => ((V_x1 = V_x2) & (V_y1 = V_y2))))).

The goal is to show that equality of two non-empty lists implies equality of the heads and
tails of the lists. Compared to the examples in Appendix D and E, this problem has en explicit
goal (instead of trying to prove ⊥ from a set of axioms). The proofs will thus aim at proving
the goal, and will all be proof by contradiction. The next pages show the term output for Coq
(proof outputs are rather big, the interested reader can download and build the ArchSAT tool2
and inspect generated proofs).

2Available at: https://github.com/Gbury/archsat
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F.2 Coq proof script

1 (**
2 Proof automatically generated by Archsat
3 Input file: rewr_ex1.p
4 **)
5

6 (* File './rewr_ex1.p', line 2, character 0-50 *)
7 Parameter list : (forall (_: Type), Type).
8

9 (* File './rewr_ex1.p', line 4, character 0-83 *)
10 Parameter cons : (forall (A: Type), (A -> (list A) -> (list A))).
11

12 (* File './rewr_ex1.p', line 6, character 0-59 *)
13 Parameter nil : (forall (A: Type), (list A)).
14

15 (* File './rewr_ex1.p', line 8, character 0-67 *)
16 Parameter car : (forall (A: Type), ((list A) -> A)).
17

18 (* File './rewr_ex1.p', line 10, character 0-72 *)
19 Parameter cdr : (forall (A: Type), ((list A) -> (list A))).
20

21 (* File './rewr_ex1.p', line 12, character 0 to line 13, character 72 *)
22 Axiom car_axiom : (forall (A: Type),
23 (forall (X: A) (L: (list A)), ((car A (cons A X L)) = X))).
24

25 (* File './rewr_ex1.p', line 15, character 0 to line 16, character 72 *)
26 Axiom cons_axiom : (forall (A: Type),
27 (forall (X: A) (L: (list A)),
28 ((cdr A (cons A X L)) = L))).
29

30 (* Implicitly declared *)
31 Parameter _i : Type.
32

33 (* Prelude: Module import *)
34 Require Import Coq.Logic.Classical.
35

36 (* Prelude: Module import *)
37 Require Import Coq.Logic.Epsilon.
38

39 (* Prelude: Alias *)
40 Definition and_elim :
41 (forall (A B P: Prop), ((A /\ B) -> (A -> B -> P) -> P)) :=
42 (fun (A B P: Prop) (o: (A /\ B)) (f: (A -> B -> P)) => (and_ind f o)).
43

44 (* Prelude: Alias *)
45 Definition eq_subst :
46 (forall (A: Type),
47 (forall (x y: A) (P: (A -> Prop)), ((x = y) -> (P x) -> (P y)))) :=
48 (fun (A: Type) (x y: A) (P: (A -> Prop)) (e: (x = y)) (proof: (P x)) =>
49 (eq_ind x P proof y e)).
50

51 (* Prelude: Alias *)
52 Definition e_1 :
53 _i :=
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54 (epsilon (inhabits (car _i (nil _i)))
55 (fun (V_x1: _i) =>
56 ~ (forall (V_y1: (list _i)) (V_x2: _i) (V_y2: (list _i)),
57 (((cons _i V_x1 V_y1) = (cons _i V_x2 V_y2))
58 -> ((V_x1 = V_x2) /\ (V_y1 = V_y2)))))).
59

60 (* Prelude: Alias *)
61 Definition e_2 :
62 (list _i) :=
63 (epsilon (inhabits (nil _i))
64 (fun (V_y1: (list _i)) =>
65 ~ (forall (V_x2: _i) (V_y2: (list _i)),
66 (((cons _i e_1 V_y1) = (cons _i V_x2 V_y2))
67 -> ((e_1 = V_x2) /\ (V_y1 = V_y2)))))).
68

69 (* Prelude: Alias *)
70 Definition e_3 :
71 _i :=
72 (epsilon (inhabits (car _i (nil _i)))
73 (fun (V_x2: _i) =>
74 ~ (forall (V_y2: (list _i)),
75 (((cons _i e_1 e_2) = (cons _i V_x2 V_y2))
76 -> ((e_1 = V_x2) /\ (e_2 = V_y2)))))).
77

78 (* Prelude: Alias *)
79 Definition e_4 :
80 (list _i) :=
81 (epsilon (inhabits (nil _i))
82 (fun (V_y2: (list _i)) =>
83 ~ (((cons _i e_1 e_2) = (cons _i e_3 V_y2))
84 -> ((e_1 = e_3) /\ (e_2 = V_y2))))).
85

86

87 (* File './rewr_ex1.p', line 18, character 0 to line 21, character 45 *)
88 Definition
89 hyp_3 :
90 (forall (V_x1: _i) (V_y1: (list _i)) (V_x2: _i) (V_y2: (list _i)),
91 (((cons _i V_x1 V_y1) = (cons _i V_x2 V_y2))
92 -> ((V_x1 = V_x2) /\ (V_y1 = V_y2))))
93 :=
94 (* PROOF START *)
95 (NNPP (forall (V_x1: _i) (V_y1: (list _i)) (V_x2: _i) (V_y2: (list _i)),
96 (((cons _i V_x1 V_y1) = (cons _i V_x2 V_y2))
97 -> ((V_x1 = V_x2) /\ (V_y1 = V_y2))))
98 (fun (G0:
99 ~ (forall (V_x1: _i) (V_y1_503: (list _i)) (V_x2_501: _i) (V_y2_499:
100 (list _i)),
101 (((cons _i V_x1 V_y1_503) = (cons _i V_x2_501 V_y2_499)) ->
102 ((V_x1 = V_x2_501) /\ (V_y1_503 = V_y2_499))))) =>
103 let L0 := (fun (E0: ~ (e_2 = e_4)) (E1:
104 ~ ~ ((cdr _i (cons _i e_3 e_4)) = e_4)) (E2:
105 ~ ~ ((cdr _i (cons _i e_1 e_2)) = e_2)) (E3:
106 ~ ~ ((cdr _i (cons _i e_1 e_2))
107 = (cdr _i (cons _i e_3 e_4)))) =>
108 (E3 (fun (E4:
109 ((cdr _i (cons _i e_1 e_2))
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110 = (cdr _i (cons _i e_3 e_4)))) =>
111 (E2 (fun (E5: ((cdr _i (cons _i e_1 e_2)) = e_2)) =>
112 (E1 (fun (E6:
113 ((cdr _i (cons _i e_3 e_4))
114 = e_4)) =>
115 (E0 (eq_trans (eq_trans (eq_sym E5)
116 E4) E6)))))))))
117 in
118 let L1 := (fun (Q0:
119 ~ ~ (forall (A: Type),
120 (forall (X: A) (L: (list A)),
121 ((cdr A (cons A X L)) = L)))) (Q1:
122 ~ ((cdr _i (cons _i e_1 e_2)) = e_2)) =>
123 (Q0 (fun (Q2:
124 (forall (A: Type),
125 (forall (X: A) (L: (list A)),
126 ((cdr A (cons A X L)) = L)))) =>
127 (Q1 (Q2 _i e_1 e_2)))))
128 in
129 let C0 := (fun (Ax0:
130 ~ (forall (A: Type),
131 (forall (X: A) (L: (list A)),
132 ((cdr A (cons A X L)) = L)))) => (Ax0 cons_axiom))
133 in
134 let R0 := (fun (l0: ~ ((cdr _i (cons _i e_1 e_2)) = e_2)) =>
135 (L1 C0 l0))
136 in
137 let R1 := (fun (l0: ~ (e_2 = e_4)) (l1:
138 ~ ~ ((cdr _i (cons _i e_3 e_4)) = e_4)) (l2:
139 ~ ~ ((cdr _i (cons _i e_1 e_2))
140 = (cdr _i (cons _i e_3 e_4)))) => (L0 l0 l1 R0 l2))
141 in
142 let L2 := (fun (E0: ~ ~ ((cons _i e_1 e_2) = (cons _i e_3 e_4)))
143 (E1:
144 ~ ((cdr _i (cons _i e_1 e_2))
145 = (cdr _i (cons _i e_3 e_4)))) =>
146 (E0 (fun (E2: ((cons _i e_1 e_2) = (cons _i e_3 e_4))) =>
147 (E1 (f_equal (cdr _i) E2)))))
148 in
149 let L3 := (fun (Ax0:
150 ~ (((cons _i e_1 e_2) = (cons _i e_3 e_4)) ->
151 ((e_1 = e_3) /\ (e_2 = e_4)))) (Ax1:
152 ~ ((cons _i e_1 e_2) = (cons _i e_3 e_4))) =>
153 (Ax0 (fun (I0: ((cons _i e_1 e_2) = (cons _i e_3 e_4))) =>
154 (False_ind ((e_1 = e_3) /\ (e_2 = e_4))
155 (Ax1 I0)))))
156 in
157 let L4 := (fun (Q0:
158 ~ (forall (V_x1: _i) (V_y1_503: (list _i)) (V_x2_501: _i)
159 (V_y2_499: (list _i)),
160 (((cons _i V_x1 V_y1_503)
161 = (cons _i V_x2_501 V_y2_499)) ->
162 ((V_x1 = V_x2_501) /\ (V_y1_503 = V_y2_499)))))
163 (Q1:
164 ~ ~ (((cons _i e_1 e_2) = (cons _i e_3 e_4)) ->
165 ((e_1 = e_3) /\ (e_2 = e_4)))) =>
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166 (Q1 (epsilon_spec (inhabits (nil _i))
167 (fun (V_y2: (list _i)) =>
168 ~ (((cons _i e_1 e_2) = (cons _i e_3 V_y2)) ->
169 ((e_1 = e_3) /\ (e_2 = V_y2))))
170 (not_all_ex_not _ _
171 (epsilon_spec (inhabits (car _i (nil _i)))
172 (fun (V_x2: _i) =>
173 ~ (forall (V_y2_582: (list _i)),
174 (((cons _i e_1 e_2)
175 = (cons _i V_x2 V_y2_582)) ->
176 ((e_1 = V_x2) /\ (e_2 = V_y2_582)))))
177 (not_all_ex_not _ _
178 (epsilon_spec (inhabits (nil _i))
179 (fun (V_y1: (list _i)) =>
180 ~ (forall (V_x2_567: _i) (V_y2_565: (list _i)),
181 (((cons _i e_1 V_y1)
182 = (cons _i V_x2_567 V_y2_565)) ->
183 ((e_1 = V_x2_567) /\ (V_y1 = V_y2_565)))))
184 (not_all_ex_not _ _
185 (epsilon_spec (inhabits (car _i (nil _i)))
186 (fun (V_x1: _i) =>
187 ~ (forall (V_y1_503: (list _i)) (V_x2_501: _i)
188 (V_y2_499: (list _i)),
189 (((cons _i V_x1 V_y1_503)
190 = (cons _i V_x2_501 V_y2_499)) ->
191 ((V_x1 = V_x2_501) /\ (V_y1_503 = V_y2_499)))))
192 (not_all_ex_not _ _ Q0))))))))))
193 in
194 let C1 := (fun (Ax0:
195 ~ ~ (forall (V_x1: _i) (V_y1_503: (list _i)) (V_x2_501:
196 _i) (V_y2_499: (list _i)),
197 (((cons _i V_x1 V_y1_503)
198 = (cons _i V_x2_501 V_y2_499)) ->
199 ((V_x1 = V_x2_501) /\ (V_y1_503 = V_y2_499))))) =>
200 (Ax0 G0))
201 in
202 let R2 := (fun (l0:
203 ~ ~ (((cons _i e_1 e_2) = (cons _i e_3 e_4)) ->
204 ((e_1 = e_3) /\ (e_2 = e_4)))) =>
205 (L4 (fun (r0:
206 (forall (V_x1: _i) (V_y1_503: (list _i))
207 (V_x2_501: _i) (V_y2_499: (list _i)),
208 (((cons _i V_x1 V_y1_503)
209 = (cons _i V_x2_501 V_y2_499)) ->
210 ((V_x1 = V_x2_501) /\ (V_y1_503 = V_y2_499))))) =>
211 (C1 (fun (r1:
212 ~ (forall (V_x1: _i) (V_y1_503: (list _i))
213 (V_x2_501: _i) (V_y2_499:
214 (list _i)),
215 (((cons _i V_x1 V_y1_503)
216 = (cons _i V_x2_501 V_y2_499)) ->
217 ((V_x1 = V_x2_501)
218 /\ (V_y1_503 = V_y2_499))))) =>
219 (r1 r0)))) l0))
220 in
221 let R3 := (fun (l0: ~ ((cons _i e_1 e_2) = (cons _i e_3 e_4))) =>
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222 (L3 (fun (r0:
223 (((cons _i e_1 e_2) = (cons _i e_3 e_4)) ->
224 ((e_1 = e_3) /\ (e_2 = e_4)))) =>
225 (R2 (fun (r1:
226 ~ (((cons _i e_1 e_2)
227 = (cons _i e_3 e_4)) ->
228 ((e_1 = e_3) /\ (e_2 = e_4)))) =>
229 (r1 r0)))) l0))
230 in
231 let R4 := (fun (l0:
232 ~ ((cdr _i (cons _i e_1 e_2))
233 = (cdr _i (cons _i e_3 e_4)))) => (L2 R3 l0))
234 in
235 let R5 := (fun (l0: ~ (e_2 = e_4)) (l1:
236 ~ ~ ((cdr _i (cons _i e_3 e_4)) = e_4)) =>
237 (R1 l0 l1 R4))
238 in
239 let L5 := (fun (Q0:
240 ~ ~ (forall (A: Type),
241 (forall (X: A) (L: (list A)),
242 ((cdr A (cons A X L)) = L)))) (Q1:
243 ~ ((cdr _i (cons _i e_3 e_4)) = e_4)) =>
244 (Q0 (fun (Q2:
245 (forall (A: Type),
246 (forall (X: A) (L: (list A)),
247 ((cdr A (cons A X L)) = L)))) =>
248 (Q1 (Q2 _i e_3 e_4)))))
249 in
250 let R6 := (fun (l0: ~ ((cdr _i (cons _i e_3 e_4)) = e_4)) =>
251 (L5 C0 l0))
252 in
253 let R7 := (fun (l0: ~ (e_2 = e_4)) => (R5 l0 R6)) in
254 let L6 := (fun (Ax0: ~ ((e_1 = e_3) /\ (e_2 = e_4))) (Ax1:
255 ~ ~ (e_2 = e_4)) (Ax2: ~ ~ (e_1 = e_3)) =>
256 (Ax2 (fun (Ax3: (e_1 = e_3)) =>
257 (Ax1 (fun (Ax4: (e_2 = e_4)) =>
258 (Ax0 (conj Ax3 Ax4)))))))
259 in
260 let L7 := (fun (Ax0:
261 ~ (((cons _i e_1 e_2) = (cons _i e_3 e_4)) ->
262 ((e_1 = e_3) /\ (e_2 = e_4)))) (Ax1:
263 ~ ~ ((e_1 = e_3) /\ (e_2 = e_4))) =>
264 (Ax1 (fun (Ax2: ((e_1 = e_3) /\ (e_2 = e_4))) =>
265 (Ax0 (fun (I0:
266 ((cons _i e_1 e_2)
267 = (cons _i e_3 e_4))) => Ax2)))))
268 in
269 let R8 := (fun (l0: ~ ~ ((e_1 = e_3) /\ (e_2 = e_4))) =>
270 (L7 (fun (r0:
271 (((cons _i e_1 e_2) = (cons _i e_3 e_4)) ->
272 ((e_1 = e_3) /\ (e_2 = e_4)))) =>
273 (R2 (fun (r1:
274 ~ (((cons _i e_1 e_2)
275 = (cons _i e_3 e_4)) ->
276 ((e_1 = e_3) /\ (e_2 = e_4)))) =>
277 (r1 r0)))) l0))
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278 in
279 let R9 := (fun (l0: ~ ~ (e_2 = e_4)) (l1: ~ ~ (e_1 = e_3)) =>
280 (L6 (fun (r0: ((e_1 = e_3) /\ (e_2 = e_4))) =>
281 (R8 (fun (r1: ~ ((e_1 = e_3) /\ (e_2 = e_4))) =>
282 (r1 r0)))) l0 l1))
283 in
284 let L8 := (fun (Ax0: ~ (e_1 = e_3)) (Ax1:
285 ~ ~ ((car _i (cons _i e_1 e_2))
286 = (car _i (cons _i e_3 e_4)))) (Ax2:
287 ~ ~ (((car _i (cons _i e_1 e_2))
288 = (car _i (cons _i e_3 e_4))) -> (e_1 = e_3))) =>
289 (Ax2 (fun (Ax3:
290 (((car _i (cons _i e_1 e_2))
291 = (car _i (cons _i e_3 e_4))) -> (e_1 = e_3))) =>
292 (Ax1 (fun (Ax4:
293 ((car _i (cons _i e_1 e_2))
294 = (car _i (cons _i e_3 e_4)))) =>
295 let O0 := (Ax3 Ax4) in
296 (Ax0 O0))))))
297 in
298 let L9 := (fun (Ax0:
299 ~ ~ ((((car _i (cons _i e_1 e_2))
300 = (car _i (cons _i e_3 e_4))) -> (e_1 = e_3))
301 /\ ((e_1 = e_3) ->
302 ((car _i (cons _i e_1 e_2))
303 = (car _i (cons _i e_3 e_4)))))) (Ax1:
304 ~ (((car _i (cons _i e_1 e_2))
305 = (car _i (cons _i e_3 e_4))) -> (e_1 = e_3))) =>
306 (Ax0 (fun (Ax2:
307 ((((car _i (cons _i e_1 e_2))
308 = (car _i (cons _i e_3 e_4))) ->
309 (e_1 = e_3))
310 /\ ((e_1 = e_3) ->
311 ((car _i (cons _i e_1 e_2))
312 = (car _i (cons _i e_3 e_4)))))) =>
313 (and_elim (((car _i (cons _i e_1 e_2))
314 = (car _i (cons _i e_3 e_4))) ->
315 (e_1 = e_3))
316 ((e_1 = e_3) ->
317 ((car _i (cons _i e_1 e_2))
318 = (car _i (cons _i e_3 e_4)))) False Ax2
319 (fun (A0:
320 (((car _i (cons _i e_1 e_2))
321 = (car _i (cons _i e_3 e_4))) ->
322 (e_1 = e_3))) (A1:
323 ((e_1 = e_3) ->
324 ((car _i (cons _i e_1 e_2))
325 = (car _i (cons _i e_3 e_4))))) =>
326 (Ax1 A0))))))
327 in
328 let L10 := (fun (Q0 Q1:
329 ~ ~ (forall (A: Type),
330 (forall (X: A) (L: (list A)),
331 ((car A (cons A X L)) = X)))) (Q2:
332 ~ ((((car _i (cons _i e_1 e_2))
333 = (car _i (cons _i e_3 e_4))) -> (e_1 = e_3))
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334 /\ ((e_1 = e_3) ->
335 ((car _i (cons _i e_1 e_2))
336 = (car _i (cons _i e_3 e_4)))))) =>
337 (Q1 (fun (Q3:
338 (forall (A: Type),
339 (forall (X: A) (L: (list A)),
340 ((car A (cons A X L)) = X)))) =>
341 (Q1 (fun (Q4:
342 (forall (A: Type),
343 (forall (X: A) (L: (list A)),
344 ((car A (cons A X L)) = X)))) =>
345 (Q2 (eq_subst _i e_3
346 (car _i (cons _i e_3 e_4))
347 (fun (_1: _i) =>
348 (((car _i (cons _i e_1 e_2)) = _1)
349 <-> (e_1 = e_3)))
350 (let I0 := (Q4 _i e_3 e_4) in
351 (eq_sym I0))
352 (eq_subst _i e_1
353 (car _i (cons _i e_1 e_2))
354 (fun (_2: _i) =>
355 ((_2 = e_3) <-> (e_1 = e_3)))
356 (let I0 := (Q4 _i e_1 e_2) in
357 (eq_sym I0)) (iff_refl (e_1 = e_3))))))))))
358 in
359 let R10 := (fun (l0:
360 ~ ~ (forall (A: Type),
361 (forall (X: A) (L: (list A)),
362 ((car A (cons A X L)) = X)))) (l1:
363 ~ ((((car _i (cons _i e_1 e_2))
364 = (car _i (cons _i e_3 e_4))) -> (e_1 = e_3))
365 /\ ((e_1 = e_3) ->
366 ((car _i (cons _i e_1 e_2))
367 = (car _i (cons _i e_3 e_4)))))) =>
368 (L10 l0 l0 l1))
369 in
370 let C2 := (fun (Ax0:
371 ~ (forall (A: Type),
372 (forall (X: A) (L: (list A)),
373 ((car A (cons A X L)) = X)))) => (Ax0 car_axiom))
374 in
375 let R11 := (fun (l0:
376 ~ ((((car _i (cons _i e_1 e_2))
377 = (car _i (cons _i e_3 e_4))) -> (e_1 = e_3))
378 /\ ((e_1 = e_3) ->
379 ((car _i (cons _i e_1 e_2))
380 = (car _i (cons _i e_3 e_4)))))) => (R10 C2 l0))
381 in
382 let R12 := (fun (l0:
383 ~ (((car _i (cons _i e_1 e_2))
384 = (car _i (cons _i e_3 e_4))) -> (e_1 = e_3))) =>
385 (L9 R11 l0))
386 in
387 let R13 := (fun (l0: ~ (e_1 = e_3)) (l1:
388 ~ ~ ((car _i (cons _i e_1 e_2))
389 = (car _i (cons _i e_3 e_4)))) => (L8 l0 l1 R12))
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390 in
391 let L11 := (fun (E0: ~ ~ ((cons _i e_1 e_2) = (cons _i e_3 e_4)))
392 (E1:
393 ~ ((car _i (cons _i e_1 e_2))
394 = (car _i (cons _i e_3 e_4)))) =>
395 (E0 (fun (E2: ((cons _i e_1 e_2) = (cons _i e_3 e_4))) =>
396 (E1 (f_equal (car _i) E2)))))
397 in
398 let R14 := (fun (l0:
399 ~ ((car _i (cons _i e_1 e_2))
400 = (car _i (cons _i e_3 e_4)))) => (L11 R3 l0))
401 in
402 let R15 := (fun (l0: ~ (e_1 = e_3)) => (R13 l0 R14)) in
403 let R16 := (fun (l0: ~ ~ (e_2 = e_4)) => (R9 l0 R15)) in
404 let R17 := (R7 (fun (r0: (e_2 = e_4)) => (R16 R7))) in
405 R17))
406 (* PROOF END *) .


	Acknowledgments
	Introduction
	ArchSAT: an McSat prover
	SAT Solving
	Problem
	Algorithm
	Some Examples
	Learning strategy
	Soundness, completeness
	Implementation

	SMT Solving
	First-Order Terms and Theory Theory
	Algorithm
	Examples
	Implementation, Theory requirements and Combinations
	Quantified Formulas and Triggers

	McSat
	Semantic Decision, Propagations and Models
	Algorithm
	Examples
	Theory Requirements Combinations

	ArchSAT
	mSAT: A SAT Library
	Overview of ArchSAT


	First-Order Reasoning in Archsat
	Pure Ground Reasoning in Archsat
	Terms, Formulas and Blackboxes
	Unfolding Propositional Connectives using Tableaux Rules
	Example

	Congruence Closure without Congruence Closure
	Equality
	Uninterpreted Functions and Predicates


	Existentially-Quantified Formulas
	Existential Constants
	Generating Skolems on the Fly

	Meta-Variables
	Generating Meta-Variables
	Finding Instantiations
	Instantiating Meta-Variables


	Rewriting in ArchSAT
	Rewrite Systems
	Theoretical Presentation
	Examples of Rewrite Systems
	Encoding Rewrite Rules using Boxes
	Static and Dynamic Rewriting

	Static Rewriting in ArchSAT
	Normalizing Ground Terms in ArchSAT
	Example
	Narrowing, Re-Quantification and Virtual Meta-variables
	Motivation
	Narrowing and Re-Quantifying


	Dynamic and Conditional Rewriting
	Rewrite Rules as Triggers
	Conditional Rules and McSAT

	Unifying Modulo Equalities and Modulo Rewriting
	Motivation
	Preliminary Definitions
	Inference System
	Main Loop
	Example


	Proof Generation in ArchSAT
	Resolution Proofs for SAT/SMT/McSat
	Pure Resolution Proof Trees for SAT
	Resolution Trees for SMT and McSat
	Theory Tautologies in ArchSAT

	Resolution Encoding and its Implication on the Classical Nature of Proofs
	Clause encoding
	Tableaux Lemmas and Constructive Proofs

	Relating Proof Search and Formal Proofs
	Synthetizing Terms
	Proof Search Congruences
	True and False
	Equality Symmetry and Substitution
	Binary Connectors vs. N-Ary Connectors


	A Structured Representation of Proofs
	Proof Terms
	Proof Trees
	Proof Steps
	Positions and Tactics
	Congruences

	From Resolution Tree to Proof Tree
	Proof Tree Example
	From Proof Tree to Proof Term


	Benchmarks
	Set Theory of the B Method
	TPTP Library
	Archsat Variants
	Comparison with Other Provers

	SMTlib Library

	Implementation of ArchSAT
	Dolmen: A Library for Uniform Parsing of Languages
	An Extensible Typechecker
	Tags and Builtins for Preserving Semantic Data
	Backtracking Using a Global Stack
	Extensible and Type-safe Message Passing Between Extensions
	A Pipeline for the Main Execution Loop
	Escaping Identifiers for Correct Outputs

	Conclusion
	Index
	Appendices
	mSAT poster
	Excerpts of Code for Proof Strucures
	Proof Terms
	Proof Trees
	Proof Tactics

	Dedukti theory files
	Calculus of construction encoding
	Polymorphic first-orderlogic encoding
	Classical logic axioms
	Hilbert's epsilons encoding

	Proofs for a simple SAT problem
	Input problem
	Coq headers
	Coq proof script
	Coq proof terms
	Dedukti headers
	Dedukti proof terms

	Proofs for a simple SMT problem
	Input problem
	Coq headers
	Coq proof script
	Coq proof terms
	Dedukti headers
	Dedukti proof terms

	Proofs for a problem using rewriting
	Input problem
	Coq proof script


