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Abstract 
Evacuations are necessary during earthquake crisis to mitigate and avoid risks of exposure to 

hazards that can cause injury or death. Evacuation are social in nature. This is mainly because the main 
agents in evacuations are people who possess highly evolved social strategies for coping with danger. 
Social attachment theory posits that proximity seeking behaviours are activated during danger. In this 
situation people seek attachment figures. Attachment figures include familiar people, places, object, etc. 
The presence of attachment figures promotes the feeling of calm and safety. Conversely, their absence 
result in anxiety and flight. This means for example that during disasters individuals may seek family 
members, before evacuating. Also, this explains the behaviour why people gather personal property 
before heading to familiar exits and places, or follow groups/crowds, etc.  

In this framework, a multidisciplinary approach – based on social, geoscience, spatial and computer 
sciences – is proposed to simulate individuals’ behaviours after an earthquake in the city of Grenoble, 
France. For this purpose, SOLACE, a multi agent model on crisis evacuations was developed to answer 
eight key questions (Q1 to Q8) that can explain the nature and impact of human evacuation behaviour 
modulated by social attachment. The effect of several parameters on the number of arrivals in safe areas 
was observed: social attachment (Q1); knowledge (Q2); number of close bonds (Q3); time of day (Q4); 
presence of disability (Q5); presence of casualties (Q6); earthquake intensity (Q7); and radius of danger 
zones around buildings (Q8).   

The results of the experiments point to the importance of social interactions during evacuations. The 
behaviours of individuals are significantly affected by their social environment that responds to the 
challenges imposed by the physical environment produced by earthquake disasters. The capacity and 
tendency for social interaction are inherent in humans and need to be considered in evacuations. It was 
shown that social attachment is important because it can facilitate saving more lives during earthquake 
disasters. 

The first and main contribution of the research is to add to arguments stressing the importance of human 
behaviour and the social dynamics that emerge during crisis evacuations. The second major contribution 
of the study is SOLACE, the multi agent-based model for earthquake evacuation implemented using 
social attachment. The third major contribution is that the research supports the benefit of using accurate 
spatial data in dynamic multi agent-based models. 
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Résumé  
 
L’évacuation des populations est nécessaire pendant les crises sismiques afin d'atténuer et d'éviter 
l'exposition à des dangers qui peuvent causer des blessures ou la mort. Tout comme le risque, 
l’évacuation est de nature sociale. Cela s'explique principalement par le fait que les personnes qui 
évacuent possèdent des stratégies sociales très évoluées pour faire face au danger. La théorie de 
l'attachement social suppose que la recherche de personnes ou de lieux familiers  est réalisée en situation 
de danger. Dans cette situation, les gens recherchent des figures d'attachement. Les figures 
d'attachement comprennent des personnes, des lieux, des objets familiers, etc. La présence de figures 
d'attachement favorise le sentiment de calme et de sécurité. Inversement, leur absence entraîne l'anxiété 
et la fuite. Cela signifie, par exemple, qu'en cas de catastrophe, les personnes peuvent chercher des 
membres de leur famille avant d'évacuer. Cela explique aussi pourquoi les gens recueillent des biens 
personnels avant de se diriger vers des sorties et des endroits familiers, ou de suivre des groupes ou des 
foules, etc. 
 
Dans ce contexte, une recherche pluridisciplinaire a été menée, basée sur les apports des sciences 
sociales, de la terre, de l’information spatiale et de l’informatique, pour simuler les comportements des 
individus à la suite d’un séisme dans la ville de Grenoble (France). Dans cette optique, SOLACE, un 
modèle multi-agents sur les évacuations de crise, a nous avons développé pour répondre à huit questions 
clés (Q1 à Q8) qui peuvent expliquer la nature et l'impact des comportements d'évacuation humaine 
modulés par les liens sociaux. L'effet de plusieurs paramètres sur le nombre d'arrivées dans les zones 
sûres a nous avons observé: il s’agit de l'attachement social (Q1), des connaissances (Q2), du nombre 
de liens étroits (Q3), de l'heure de la journée (Q4), de la présence d'un handicap (Q5), de la présence de 
victimes (Q6), de l'intensité du séisme (Q7) et du rayon des zones dangereuses autour des bâtiments 
(Q8).   
 
Les résultats des expériences montrent l'importance des interactions sociales pendant les évacuations. 
Les comportements des individus sont fortement influencés par leur environnement social qui répond 
aux défis imposés par l'environnement physique produit par les catastrophes sismiques. La capacité et 
la tendance à l'interaction sociale sont inhérentes aux humains et doivent être prises en compte dans les 
évacuations. Nous avons démontré que l'attachement social est important parce qu'il peut faciliter le 
sauvetage d'un plus grand nombre de vies lors de catastrophes sismiques. 
 
La première et principale contribution de la recherche est d’appuyer les arguments soulignant 
l'importance du comportement humain et des dynamiques sociales qui émergent lors des évacuations 
de crise. La deuxième contribution majeure de l'étude est SOLACE, le modèle multi-agents 
d'évacuation en cas de tremblements de terre mis en œuvre en utilisant l'attachement social. La troisième 
contribution majeure est que la recherche confirme l'avantage d'utiliser des données spatiales précises 
dans des modèles dynamiques multi-agents. 
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CHAPTER 1. INTRODUCTION 

1.1 General description of the problem 

The innate individual human response when faced with danger is geared towards survival or self-
preservation (Mobbs, Hagan, Dalgleish, Silston, & Prévost, 2015). Traditionally, individual responses 
to danger were more popularly viewed with respect to the fear response and on purely egoistic1 terms. 
These responses include freeze, fight, flight, fright, or faint (Schmidth, Richey, Zvolensky, & Maner, 
2008; Bracha, 2004). Panic, which refers to irrational, groundless, hysterical flight with the complete 
disregard for others, has also been used to describe the “chaotic behaviour” of escaping crowds (Heide, 
2004). Escape panic in particular has be identified as the cause of highly competitive behaviours, during 
escapes from disasters in mass gatherings, that resulted in stampedes, causing injuries and deaths (Ngai, 
Burkle, Hsu, & Hsu, 2009; Khan & Noji, 2016). Experts however consider mass panic occurring in 
emergencies to be rare, a myth, unsupported by evidence, and do not accurately describe human 
behaviour during emergencies (Cocking, Drury, & Reicher, 2009; Heide, 2004). 

Human behaviour however during disasters are numerous, varied, dynamic and complex. The egoistic 
perspective is not sufficient to describe human behaviour in crisis scenarios. This is evidenced by 
behaviours during disasters which are non-egoistic, such as collective action (cooperation) and altruism2 
(Cocking, Drury, & Reicher, 2009; Ma H. K., 2017; Heide, 2004). Humans are intrinsically social, and 
behaviours during disasters are social in nature (Dunbar, 2019). People are embedded in social 
structures, institutions and relationships where interactions are governed by social and cultural norms 
(Burns, Roszkowska, Johansson, & Corte, 2018; Misyak, Melkonyan, Zeitoun, & Charter, 2014; 
Bianchi & Squazzoni, 2015). People utilise highly evolved social strategies at their disposal, but are 
modulated by learned cultural norms when individually or collectively handling threat (Alexander_a, 
2012). Social constraints and role obligations do not suddenly dissolve, but are actually amplified in 
emergency situations (Goltz, 2017). According to Mawson, people do not flee danger, but seek the 
proximity of familiar people and places during threat situations (Mawson_a, 2005). The reason 
according to Mawson is that separation from attachment figures is a much greater stressor than the 
threat itself. This social attachment view, which extends to the domain of disasters the pioneering work 
on attachment by Bowlby and Ainsworth (Bowlby_a, 1982; Ainsworth, 1989), may provide the key to 
the deeper understanding of social and collective behaviours when responding to threats (e.g. seeking 
others, following leaders, herding, moving as a group, etc.). This may also explain risky behaviours, 
such as remaining with others in danger zones, or heading towards danger to be with loved ones. 

The benefits of social and collective response to threat has been developed through evolution (Gavrilets, 
2015). People are less anxious when in a group, therefore reducing the risk of panic (Moussaïd & 
Trauernicht, 2016). When part of a group, it less demanding cognitively, and less stressful when 
minding threat. This is so because at the very basic level of seeking safety, more pairs of eyes are able 
to scan and identify threat when dangers present themselves. The proper identification and assessment 
of hazards and the threats posed, with knowledge, can in theory, bring forth the appropriate response. 
Individuals also have different sensitivities or personalities, which can affect their situational awareness 
and assessment of risk (Slovic & Weber, 2002). The notion of being safe also is relative and may be 
different with respect to each person. Strategies employed by people therefore, when coping with life 
threatening situations, can be different from others. Also, adopted actions to implement survival 
strategies may be facilitated by individual capabilities, or hampered by physical and mental limitations 
(e.g. mobility impairments, disability, decreased sensory awareness). A mixture of individuals with 
different personality traits within groups can facilitate survival in disasters (Ein-Dor_b, 2014). When in 

                                                
1 Egoistic or egocentric, taken only from the perspective of the individual’s self without taking cognisance of 
others 
2 Altruism, meaning disinterested and self-less concern for the well-being of others 
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social groups, individuals needing help can be provided aid by others. Individuals can either act as 
sentinels, follow, lead, mimic or help others when escaping threat (Ein-Dor_b, 2014).  

Evacuation is the strategy used to safeguard human lives during disasters. Paramount to ensuring 
general safety of populations is having people evacuate to safe areas as fast as possible. During 
evacuations complex social interactions may be influenced by different attachment styles triggering 
variations in individual behaviour (Ein-Dor_a, 2014; Ein-Dor T. , Mikulincer, Doron, & Shaver, 2010). 

Given the inevitability of encounters with different disasters in the future (albeit with random and 
unpredictable occurrence), it is highly justified to study evacuations, to increase the number of survivors. 
Understanding the impact of social behaviours on evacuations is paramount, as social interaction is 
central during evacuations. This will require bottom-up microscopic modelling and simulation of 
individual humans as cognitive social agents and their social behaviours during crisis scenarios. 
Simulation can provide a way of visualising possible futures with the interplay of space and time 
processes from multiple factors simultaneously considered in evacuation scenarios (Bianchi & 
Squazzoni, 2015). 

Agent-based modelling (ABM) has been used to study complex social interactions between 
heterogeneous agents via computer simulations (Bianchi & Squazzoni, 2015). The ABM of evacuation 
of large heterogeneous populations during disasters is a complex task. This requires the integration of 
social interactions into the model to replicate the complexity inherent in reality. The ABM approach 
can facilitate the understanding and highlight the importance of social contexts by looking at individual 
behaviours during disasters in a micro-oriented perspective (Bianchi & Squazzoni, 2015). Experts agree, 
that to achieve more realism in models, the physical, social and psychological aspects of human 
behaviour need to be implemented in models (Chu, Pan, & Law, 2011). However, human social 
behaviours are only recently being integrated into evacuation models (Zhou, et al., 2010). This is the 
outstanding challenge to improve evacuation models which lack social interactions.  

ABM and social simulations of evacuations have been developed to study crisis events. The objectives 
of these models vary, and can include (1) forensic analysis of past events, (2) evaluation of building 
floor or city layouts for optimal evacuation design, (3) definition of evacuation strategies, and (4) 
visualisation for more effective risk awareness campaigns (Ronchi, Kuligowski, Reneke, Peacock, & 
Nilsson, 2013; Bulumulla, Padgham, Singh, & Chan, 2017). Most of the models are for fire, flood and 
large crowd events. There are very few models for earthquakes. Of the models for earthquakes, most 
model only the evacuation towards safe areas in distant locations and travelling by car. In these models 
the effect of exposure of people to building damage such as injuries or death are not considered. Also, 
blockage of pathways from debris damage are not considered. In particular models, for pedestrian level 
evacuations during the onset and few seconds just after earthquakes, are few. The scale of 
implementation of the models vary. Most of the simulations deal with egress from indoor locations such 
as from rooms, buildings, stadiums or other large venues. Micro-level pedestrian evacuation simulations 
of outdoor city scale environments are rare and less common. 

Accuracy in modelling also demands the precise spatial and temporal representation of the object/entity 
crisis environment that defines the context of crisis environments. Modelling the physical environment, 
the phenomena, and hazards has received much focus in risk and disaster sciences and related domains. 
The concentrations has been on prediction, dynamics of phenomena, etc. and the has been the forte of 
most risk modelling. Data from these studies are represented in their correct locations and dimensions 
as geospatial data. Developments in ABM platforms, such as GAMA, make it possible to integrate 
geospatial data with dynamic models (Drogoul, et al., 2013). In the GAMA simulation platform 
everything is an agent. Geospatial objects are easily integrated into models. For evacuations, faithful 
representation of buildings, open spaces, pathways, and safe areas, in their correct locations, dimensions, 
and distances locations makes for realistic estimates of evacuation times. 
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The particular focus of this work is the modelling and simulation of social evacuation behaviours of 
heterogeneous human populations during earthquake disasters using ABM. Surviving strong 
earthquakes requires evacuating structures and seeking safety by heading towards safe areas. Regardless 
of the absence or presence of damage, vulnerable buildings must be emptied immediately to ensure 
safety of occupants, especially from damage from possible after-shocks3.  

Earthquakes are natural phenomena that are sudden, occur without warning, random, and currently 
remain unpredictable (Geller, 1997). Earthquakes are caused by a sudden slip on a fault to release the 
build-up of tectonic stresses (USGS_b, 2019). The measure of energy released by the earthquake at the 
source (or hypocentre of focus4) is called magnitude. It is based on measurement of the maximum 
motion recoded by a seismograph (USGS_c, 2019). The larger the magnitude, the higher the energy 
released, the greater the potential for damage (IRIS_b, 2019). The frequency of worldwide earthquake 
occurrence (per year) is shown in Figure 1. According to IRIS5  (2019), earthquakes are always 
happening somewhere on the planet. From IRIS, globally: (a) magnitude 2 earthquakes are generally 
not felt, but occur several hundred times a day; (b) major earthquakes (greater than magnitude 7), 
happen more than once per month; and (c) great earthquakes (greater than magnitude 8), occur once a 
year (IRIS_b, 2019).  

Some areas such as those in active tectonic regions such as the Pacific Ring of Fire, account for 80% 
of the occurrence of very strong earthquakes, and 90% or all earthquakes. Areas with active faults zones 
are also very prone to earthquakes. Earthquakes can also re-occur in the same general area. Earthquakes 
can occur in swarms for a long period, especially after a very strong earthquake. Return periods describe 
the repeat occurrence of earthquakes. For some areas a damaging earthquake can happen every 50 years, 
100 years, or 400 years, etc. Comparing this to the span of average human lifetimes, one can consider 
experiencing a highly destructive earthquake to be very rare. Establishing return periods of earthquakes 
is also challenging, as geologic record of earthquakes do not go back very far into the past. Also, new 
active faults are also being discovered. Some are revealed usually after an unexpected earthquake. 
Increased coverage from new seismic sensors deployments in the field make possible the discovery of 
new active regions. 

                                                
3 Succeeding quakes may be stronger or weaker. In both cases possible damage can result from weakened 
structures. 
4 The hypocentre or focus is a point on the fault plane where the rupture starts. The depth is taken at the hypocentre. 
The epicenter is the location on the earth’s surface vertically above the hypocentre (Seismology Research Centre, 
2019) 
5 IRIS (Integrated Research Institutions for Seismology) 
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Figure 1. Worldwide frequency of earthquakes (IRIS_b, 2019) 

The measure used to describe the effect of earthquakes on humans, structures (buildings) and other 
objects on the surface is called intensity (USGS_a, 2019). The higher the intensity value, the greater the 
effect of the shaking. The effect of the earthquake decreases as the distance from the source increases. 
The effects of intensity on people and objects are described in Table 1. A more detailed review of the 
effects on structures is presented in Chapter 2. 

Table 1. Intensity and effects on People and Objects, EMS-98 (Grünthal, European Macroseismic Scale 1998, 1998)  

Intensity Description Observed effects on people Observed effect on objects 
I Not felt Not felt, even under the most favourable 

circumstance. 
No effect. 

II Scarcely felt Tremor is felt only at isolated instances 
(>1%). 

No effect. 

III Weak Felt indoors by a few; people at rest feel 
a swaying or light trembling. 

Hanging objects swing slightly. 

IV Largely 
observed 

Felt indoors by many; felt outdoors by a 
few; few are awakened; level of 
vibration is not frightening; vibration is 
moderate; observers feel a slight 
trembling or swaying of the building, 
room or bed, chair, etc. 

China, glasses, windows, and doors rattle; 
hanging objects swing; light furniture shakes 
visibly in a few cases; woodwork creaks in a 
few cases. 

V Strong Felt indoors by most, outdoors by few; a 
few people are frightened and run 
outdoors; many sleeping people are 
awakened; observers feel a strong 
shaking or rocking of the whole 
building, room or furniture. 

Hanging objects swing considerably; china 
and glasses clatter together; small top-heavy 
and/or precariously supported objects may be 
lifted or fall down; doors and windows swing 
open or shut; in a few cases window panes 
break; liquids oscillate and may spill from 
well-filled containers; animals indoors may 
become uneasy. 

VI Slightly 
damaging 

Felt by most indoors and by many 
outdoors; few persons lose their balance; 
many people are frightened and run 
outdoors. 

Small objects of ordinary stability may fall 
and furniture may be shifted; in a few 
instances glasses and dishware may break; 
farm animals (even outdoors) may be 
frightened. 

VII Damaging Most people are frightened and try to run 
outdoors; many find it difficult to stand, 
especially on upper floors. 

Furniture is shifted and top-heavy furniture 
may be overturned; objects fall from shelves 
in large numbers; water splashes from 
containers, tanks and pools. 

VIII Heavily 
Damaging 

Many find it difficult to stand, even 
outdoors. 

Furniture may be overturned; objects like TV 
sets, typewriters, etc., fall to the ground; 
tombstones may occasionally be displaced, 
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twisted or overturned; waves may be seen on 
soft ground. 

IX Destructive General panic; people may be forcibly 
thrown to the ground. 

Many monuments and columns fall or are 
twisted; waves are seen on soft ground. 

X Very 
Destructive 

  

XI Devastating   
XII Completely 

devastating 
  

Few: 0 – 20%; Many: 10 – 60 %; Most: 50 – 100 %  

The possible range of intensities near the epicentres of earthquakes produced with respect to magnitudes 
are shown in Table 2. The effects of earthquakes can be felt over large geographical regions. Increasing 
distance from the source however decreases the effect. Other factors that can result in the variation of 
effects and can be due to different physical factors such as elevation, soil type, typology of building (i.e. 
construction, materials, design, number of floors), etc.  

Earthquakes with high magnitude, long duration and shallow depth, become destructive when they 
occur very close to highly populated areas. High intensities can result in many deaths, injuries and 
property damage. Poorly built structures (i.e. those that do not comply with local building codes) are 
more prone to collapse during strong earthquakes. The longer the duration of building shaking, the 
greater the damage (IRIS_a, 2019). Building codes define regulations for design, construction, 
alteration and maintenance of structures (FEMA, 2019). According to FEMA, these codes specify the 
minimum requirements to ensure the health, safety and welfare of building occupants. Eurocode 8 is 
used in Europe for the design of structures for earthquake resistance (JRC-EC, 2018). The purpose of 
Eurocode 8 is that, in the event of earthquakes, (a) human lives are protected, (b) damage is limited, 
and (c) structures important for civil protection remain operational. Building codes are regularly 
updated to (a) address shortcomings of the current code (e.g. insufficient design for minimum intensity 
parameter); (b) include improvements in technology (e.g. better construction practices, retrofits), (c) 
address newly discovered threats (e.g. occurrence of higher intensity quake in the area; discovery of 
new faults; possibility of future higher magnitude/intensity earthquakes) (Vaughan & Turner, 2013; 
FEMA, 2019). 

Table 2 Magnitude and intensity comparison near epicentre (USGS_a, 2019) 

Magnitude Typical Maximum Modified Mercalli Intensity 
1.0 – 3.0 I 
3.0 – 3.9 II – III 
4.0 – 4.9 IV – V 
5.0 – 5.9 VI – VII 
6.0 – 6.9 VII - IX 

7.0 and higher VIII or higher 

Large loss of life during earthquakes has been reported in countries where enforcement of building and 
seismic codes is poor, such as Haiti, Pakistan, China and Nepal. (Nienhuys, 2015). Table 3 presents 
notable earthquake events in these countries with the number of deaths, damaged buildings and 
evidence of the application of seismic codes. Chile is an example of a country which has benefitted 
from the strict implementation of building codes (Franklin, 2015). Chile’s buildings are required to 
withstand 9.0 magnitude earthquakes. With earthquake resistant structures, Chile withstood a very 
strong 8.4 magnitude earthquake in September 2015 with few casualties and very minimal number of 
damaged buildings. It can be seen from Table 1 that even with higher magnitude earthquakes, Chile’s 
building damage and loss of life is very much lower than the aforementioned countries. 
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Table 3 Comparison of casualties and building damage with respect to building codes (Nienhuys, 2015) 

Year Country Mw
6 Max 

PGA g 
Deaths Damaged 

Buildings 
Deaths per 

1000 collapsed 
buildings 

Date Code 
Published 

Evidence of 
seismic code 

applied 
2005 Pakistan, 

Kashmir 
7.6 0.23 88,000  ?400,000 ?220.0 1986 No 

2008 China, 
Sichuan 

7.9 0.23 87,150 ?1,000,00
0 

?87.0 1959 No 

2010 Chile 8.8 0.65 525 81,000 6.5 1972 Yes 
2010 Haiti, 

Léogâne 
7.0 0.44 222,570 105,000 2,120.0 Not available - 

2015 Nepal 7.8 ≈0.25 8,790 605,253 14.5 1994 No 
2015 Chile, 

Illapel 
8.3 0.25 15 270 - 1972 Yes 

? Data is not adequately verifiable especially for Low Income Countries (LIC); - not sure; � approximately 

Compared to other natural calamities, deadly earthquake disasters occur with rarity. However, the 
number of casualties from earthquake disasters from 1996 to 2015, at 55.6% (Figure 2), has been the 
largest compared to other disasters (CRED, 2016). The majority of deaths during earthquakes are from 
damaged structures (Kenny, 2009). In particular 75% are caused by building collapse (Coburn, Spence, 
& Pomonis, 1992). 

 

Figure 2 Percentage of deaths per disaster type, 1996 – 2015 (CRED, 2016) 

Earthquake prediction is currently an impossible task (Geller, 1997). However, recurrence interval 
(return periods) of earthquakes can be established from statistical analysis of past earthquake data. 
Recurrence intervals are useful for risk mitigation efforts. Earthquake “Big One” scenarios have been 
developed for many major cities that are earthquake prone. These scenarios are used to prepare 
populations for projected future damaging earthquakes. Experts agree that these strong earthquakes will 
happen, however the time of occurrence is not known. The “Big One” earthquake scenarios for major 
cities most prone to earthquakes are shown in Table 4. “Big One” scenarios are used to prepare 
populations for large earthquakes by way of earthquake drills. Citizens are taught proper evacuation 
behaviours and directed to nearest safe areas. Authorities test institutional readiness in implementing 
community evacuation plans and in deploying personnel and resources for rescue work and managing 
cascade effects like fires. 

                                                
6 Mw, Moment magnitude 
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Table 4 World’s most earthquake prone cities (Smith J. P., 2019) 

City Population Last Major 
Strong Quake 

Big One 
Magnitude 

Return 
Period 

Deaths Injuries 

Tokyo, Japan (Tokyo Metro. 
Govt., 2019; Hurst, 2019) 

37 M 1923 (Mw 7.9) M 7.3 100 years 
(Due)  

9,700 150,000 

Jakarta, Indonesia 17.7 M  M 8.7    
Manila, Philippines (Sabillo, 

2015; JICA, 2004) 
12 M 1658 (Ms 7.5) M 7.2 400 - 500 

years 
(Overdue) 

34,000 114,000 

Los-Angeles, USA 10 M 1857 M 7.8 100 years 
(Overdue) 

1,800 50,000 

Osaka, Japan 19.2 M   100-150 
years 

  

1.2 Significance of the problem 

Disastrous earthquakes are sure to happen in the future. The only uncertainty is the time when these 
will occur. Strong earthquakes are anticipated where large stresses build up, especially in active fault 
zones where expected earthquakes have exceeded their known recurrence intervals (earthquakes are 
overdue)7.  

These future earthquakes pose dangers to large populations, especially in the large. The exposure of the 
general population to earthquake is most significant compared to other hazards (Pesaresi, et al., 2017). 
The most current estimate in 2015 of the number of people potentially exposed to earthquake is 2.72 
billion or 37% of the global population (GEO-JRC, 2017). More than 170 million people in Europe are 
potentially exposed to earthquakes (Pesaresi, et al., 2017). The breakdown for exposure of populations 
different global regions is shown in Table 5. For cities, globally, 700 million people living in urban 
centres are exposed (EC-JRC, 2018). Top ten big cities (shown in Figure 3) exposed to earthquakes 
include, Jakarta (Indonesia), Tokyo (Japan), Dhaka (Bangladesh), Mumbai (India), Cairo (Egypt), 
Mexico City (Mexico), Beijing (China), Osaka (Japan), Istanbul (Turkey) and Karachi (Pakistan). The 
combined population of these the top 10 cities is 200 million people. 

Table 5 2015 Population and Built-up surface potentially exposed to earthquake by region, 475 years Return Period 
(Pesaresi, et al., 2017) 

Category Africa Asia Europe Latin 
America 

North 
America 

Oceania N/A Total 

Exposed 
Population-
Inhabitants 

(unit in Million) 

233.3 1,912.2 173.5 304.4 73.9 20.0 0.4 2,717.8 

Exposed built-up 
(unit in Km2) 

11,102 121,814 46,257 25,167 27,895 5,888 83 238,207 

Demographic changes especially ageing societies point to challenges, especially to the mobility of 
individuals to successfully carry out speedy evacuations. Figure 4 shows the increasing trend in the 
number of 60 years and older exceeding the number or younger (>60) by 2050 for the world population, 
and around 2020 for OECD countries. Most of these populations will also be concentrated in cities. 
This means that evacuation plans must be studied and adopted for this future older population. The 
problem with current evacuation plans and simulations is that are based mostly on the mobility of 
healthy adults. Future plans must be developed to be more inclusive especially for those with mobility 
limitations. 

                                                
7 With time, stresses accumulate in active fault zones. The release of these stresses, result in large earthquakes. 
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Figure 3 Top ten urban centres population exposed to seismic magnitude greater than class 5 in MMI scale. Data shown is 
for 2015, and showing the change since 1990 (EC-JRC, 2018) 

 
Figure 4 Population change by age-group, world and OECD countries, 1950 to 2090. OECD calculations are based on 

United Nations Department of Economic and Social Affairs, Population Division (2010), World Population Prospects: The 
2010 Revision, United Nations (OECD, 2015) 

1.3 Problem statement 

The certainty of future earthquakes, especially in large populated areas, points to the need and 
urgency of developing solutions to minimise impacts of disasters. Ideally, universal compliance to 
building codes could help ensure that structures are earthquake resilient (UNCRD, 2008). According to 
UNCRD, this is currently not the case especially for poor and developing countries. Governments have 
obligations to implement building codes. However countries do not become completely building 
compliant overnight. Improvements and strict implementations of building codes may also be too slow, 
even for developed countries, and this may not be able to keep up with impending disasters. 
Enforcement will be challenging for old cities with historic city centres and heritage sites, as there will 
be structures that pre-date modern building codes. Compliance also will entail huge costs and requires 
a long time to achieve. In this context, impacts of disasters and can only be minimised but not totally 
eliminated (Lacasse, 2016). The ultimate test of compliance or non-compliance to building codes, or 
even the effectiveness of current building codes, unfortunately can be seen only after major earthquake 
events (Nienhuys, 2015). 

Evacuations will always be necessary as people will need to seek safe areas to survive earthquake 
disasters. This is especially true when individuals think that they are vulnerable and perceive the risk 
of building damage or collapse. Solutions focusing on human behaviours can be less costly and maybe 
much faster to implement, compared to cost and speed of making structural improvements. The social 
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and behavioural approach can likewise be beneficial in developing awareness and proactive attitudes 
towards earthquake risk into local cultures and communities (Shapira, Aharonson-Daniel, & Bar-Dayan, 
2018). A well ingrained culture on earthquake risk can be strategic to maintain vigilance both in the 
short term and for the future (Ibrion_b, Mokhtari, & Nadim, 2015; Ibrion_a & Paltrinieri, 2018; Ibrion_c, 
2017). This is especially needed because of the possible long intervals between destructive earthquakes 
which can skip several human generations. 

Social attachment theory is used in this research as the guiding framework for individual behaviour and 
social interactions during earthquake evacuations. Social attachment refers to the activation of 
affiliation or proximity seeking behaviours towards attachment figures during threat situations 
(Mawson, 2005). Attachment figures refer to individuals for whom a person shares a social bond such 
as family members and friends. Social bonds can likewise be formed with strangers when situations 
imposed by shared identity is present (such as a dangerous situation or common activity) (Tajfel & 
Turner, 1986; Drury, Cocking, & Reicher, 2009). Social attachment is extended in this work to include 
attachment to objects (e.g. phone, wallet, computer), places (e.g. home, familiar routes, safe areas), 
tasks (e.g. routine, work), and pets. 

1.3.1 Need for a realistic behavioural model 

Realistic ABM and microscopic pedestrian social evacuation simulations are needed to study the 
impact of human behaviour in different earthquake crisis scenarios. The complexity of the problem of 
modelling social interactions during evacuations in the context of an earthquake disaster is immense 
and may be solved using ABM. Bottom-up and microscopic scale modelling of pedestrian social 
behaviours with interactions with objects in correct geographic space has the potential to create possible 
evacuation scenarios of crisis environments. 

Realistic models of earthquake crisis evacuations can be beneficial in identifying the critical factors that 
would make evacuations successful, resulting to more saved lives. Social interactions during the 
expected crisis will be inevitable especially in cities with high concentrations of people. The impact of 
behaviours needs to be tested to define advice on proper behaviours. Resilience to earthquakes of 
current and planned infrastructures needs to be tested using simulations to ensure that: (a) evacuation 
plans are updated and assure inclusivity; (b) more safe areas are identified or designed; (c) bottlenecks 
that limit the mobility and the flow of people are eliminated.  

Agent based models may prove to be good tools to deliver formalisations of social behaviours during 
earthquakes. These formalisations have the potential to encapsulate and transmit to future generation 
the knowledge on earthquakes evacuations and their impact. Long recurrence intervals between 
earthquakes result in the threat of earthquakes being forgotten leading to lowering of risk perceptions. 
The current stock of vulnerability data (people and structures) from different domains is rich and can 
be integrated into social geospatial ABMs to develop realistic dynamic models and simulations. 
Developing a social and geographic ABM for earthquake evacuation will help addressing the lack of 
realistic geographically referenced social simulations for crisis scenarios. 

1.3.2 Need for a multi-disciplinary approach 

The complexity inherent in crisis situations provides huge challenges for modellers and requires 
inputs from different domains; therefore a multi-disciplinary approach in necessary. Replicating this 
complexity requires the integration of the social and physical elements of seismic risk with spatial and 
temporal dynamics in developing a basic multi agent model. The domains relevant to this work are 
geographic information science, geoscience, social science and computer science. The intersection of 
these domain would lead to the objective of this. The tight coupling of insights, methods, techniques 
and data from the domains are necessary in building the realistic pedestrian evacuation models.  
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Figure 5 shows the four core areas with the dominant themes and example keywords. The diagram in 
the figure can be viewed in several ways. From each quadrant, one can see the domain, the dominant 
theme, and key topics or keywords respectively. In a clockwise direction, the upper left quadrant is on 
social science and deals with human aspects such as behaviour and human factors. The upper right 
quadrant is for computer science, with the focus on artificial intelligence in particular agent-based 
modelling. The lower right quadrant shows geographic information science, which concentrates on 
accurate geospatial representations of data. The lower left quadrant is for geoscience, which deals with 
environment or context of the crisis such as the hazards and vulnerable structures.  

Pairings of the domains also have some significance. The left half of the figure, composed of social 
science and geoscience, describes the context of the seismic crisis. The right half of the figure, 
composed of computer science and geographic information science, defines methods, tools and 
implementation tasks to build and implement the computer model. The upper half pairs of social science 
and computer science deal with salient and dynamic aspects of social behaviours. The lower half pairs 
geoscience and geoinformation science defines the static, physical and spatial aspects of risk and other 
components of the model. 

 

Figure 5 Relevant domains for modelling human behaviour in a seismic crisis context 

Basic parameters of time, distance and speed are crucial parameters for evacuations. These parameters 
are important to accurately quantify arrival times in safe areas. In particular, these refer to individual 
speeds, distances, and amount of time needed to reach safe zones. To realistically simulate movement 
and behaviours in their correct spatial contexts, the crisis environment needs to be constructed with 
correct spatial configurations. This can be done using real geographic data. Geographic information 
science provides the tools and techniques to develop the spatial model of the crisis environment. Related 
attribute information can likewise be linked to location and integrated to the spatial model.  

The characterisation of the effects of shaking on structures and people is explained by the geosciences. 
Different earthquake intensities, define unique damage scenarios to vulnerable structures. Distribution 
of debris damage can be generated around different building typologies. Delays in evacuations are also 
caused by debris blocking pathways or trapping individuals. Debris can also cause injuries or death. 
Exposure to damage, injuries and death can impact behaviours and social interactions.  
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Observed behaviours during evacuations can be explained by theories from the social sciences, that 
provide the strong foundation needed for developing the models. In the definition of heterogeneous 
populations, the level of detail needs to be representative of the real population being modelled. For the 
population of human agents, it needs to be reflective of existing demographics. Basic attributes should 
at least include age and disability. These basic profiles can be used to define the structure of the 
population. Social roles, membership in groups, social and economic activities, daily mobility, and 
possible behaviours can be generated from the demographic data.  

Computer science through agent-based modelling and simulation can integrate the inputs from the 
aforementioned domains to design and implement a model and run multiple simulations. Algorithms 
can be used to define how agents move around space, interact socially, and respond to the physical 
elements of the synthetic crisis environment. Data processing and visualisation techniques are useful 
for the analysis of results and the generation of conclusions. 

1.3.3 Need for models that are easily understood by stakeholders 

This body of work falls into the general category of disasters, risk and public safety research. 
Therefore, the primary stakeholders of this study are the general public, authorities and interested 
experts from different domains dealing with pedestrian earthquake evacuations. Results are expected to 
help enhance people’s current perception of seismic risk. The hope is to inspire concrete actions to 
mitigate this risk. Examples of concrete actions are (a) the development of optimum evacuation 
strategies that are inclusive of all mobility types, (b) the modification of space to facilitate fast 
evacuations, and (c) addressing seismic structural vulnerabilities. For the model to be useful and have 
impact, it has to be easily understood.  

The multi-disciplinary nature of the problem requires that elements or components used in developing 
the model are readily understandable by experts and the general public. These components include data, 
theories, techniques, algorithms and software code. Simulation results should also be communicated in 
a form that is easy to understand. The output should likewise be very visual and can be in easy formats 
such as graphs, maps, videos, and dynamic real time displays. The model interface should also be easy 
to use where tools to modify parameter setting are accessible. This will allow users to define their own 
scenarios to test and run in simulations. Advanced users of the model can modify the data (attributes 
and spatial data) to update the model. The model can also be configured to expand coverage or 
completely change the study area. 

1.4 Research questions and hypotheses 

The objective of evacuations is to save human lives during disasters. The measure of success for 
evacuation used in the research is the number of arrivals in safe areas. Evacuations are social in nature 
and therefore, the interactions between individuals as they interact with the crisis environment can have 
effects on their evacuation. To establish the significance of several parameters on evacuation, eight 
research questions were developed focused on the determining the impact success of evacuations. The 
research questions and accompanying hypothesis are presented as follows: 

• Question 1 (Q1): Does social attachment affect the number of arrivals in safe areas 

Hypothesis: Yes, social attachment can affect the number of arrivals. Social attachment 
triggers affiliation or proximity seeking behaviours that result in emergent social 
interactions. Social attachment is expressed in pre-evacuation behaviours and social 
interactions during evacuations. These behaviours and interactions can take away or shave 
off precious seconds from actually heading towards safe areas. With all these emergent 
social interactions accounted for, over-all, social attachment can delay evacuations leading 
to lesser number of arrivals in safe areas. 



 

 29 

• Question 2 (Q2): Does the knowledge of nearby safe areas affect the number of arrivals in 
safe areas? 

Hypothesis: Yes, knowledge of the location of nearby safe areas increases the number 
of arrivals in safe areas. Knowing where to go defines precise navigation goals or targets. 
This can help speed up the evacuation of individuals. A result of this is the greater number 
of arrivals in safe areas compared to the case when knowledge is not available. 

• Question 3 (Q3): How does the number of close bonds affect evacuation? 

Hypothesis: A larger number of closely bonded individuals during evacuation can 
delay evacuations. The number and type of social interactions during evacuations can slow 
down individuals. The presence of many closely bonded individuals in an area can result 
in individuals moving towards and staying with the groups rather than proceeding to safe 
areas. This can result in lesser number of arrivals in safe areas. 

• Question 4 (Q4): How does the time of day affect evacuation? 

Hypothesis: Daytime evacuations allow for a greater number of agents to arrive in safe 
areas. Night time evacuations will result in lesser arrivals in safe areas. This is due to 
the difference in perception distances. Perception distances allow individuals to see in the 
forward or gaze directions. Perception distances are much longer during daytime than night 
time. Longer perception distances allow individuals to see other people, objects and safe 
places, which are much further. The overall effect is more people arriving in safe areas. 

• Question 5 (Q5): How does disability affect the number of arrivals in safe areas? 

Hypothesis: Presence of disabled individuals in the population will result in a lower 
number of arrivals in safe areas. The disabled are relatively slower than able individuals 
during evacuations. Social interactions between persons with disability and able individuals 
can also effectively slow down evacuations. 

• Question 6 (Q6): Does the presence of casualties on the route affect the number and time 
of arrivals in safe areas? 

Hypothesis: Presence of casualties in the route can trigger evacuations and result in 
more arrivals in safe areas. Presence of casualties (i.e. injured and dead) in the routes can 
modify behaviour and trigger evacuation. The presence of deaths and injuries provide the 
cue or confirmation of a dangerous or life-threatening situation. This cue forces individuals 
to immediately consider moving to safe zones.  

• Question 7 (Q7): Does intensity affect the number of arrivals in safe areas? 

Hypothesis: High intensities will result in a lesser number of arrivals in safe areas. 
There is an inverse relationship between intensity and the number of arrivals in safe areas. 
High intensities create more damage, blocking routes towards safe areas. Being hit by 
debris can cause deaths and injuries. 

• Question 8 (Q8): How does the radius of the danger zone around buildings affect the 
number of arrivals? 

Hypothesis: Large radius of danger zones around buildings decreases the number of 
arrivals in safe areas. Danger zones are areas around structures where the probability of 
individuals being trapped, hurt or killed by debris is high. A larger radius for danger zones 
conversely decreases the effective area allotted for safe zones. A larger danger zone radius 
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likewise increases the evacuation travel distance from buildings to safe zones. Blocked 
pathways within danger zones force individuals to take longer routes toward safe areas. 

1.5 Contributions 

The main contribution of this thesis is a social geographic microscopic pedestrian evacuation model 
of seismic crisis. The name of the model is SOLACE for SOciaL Attachment and Crisis Evacuations. 
SOLACE implements social attachment theory (Mawson_a, 2005) as the core framework that governs 
social interactions during disasters. The model is specific to the City of Grenoble, France and 
implemented at the scale of the census blocks comprising the city. This model uses spatial data (e.g. 
buildings, roads), behaviours, demographics, probabilities and macro-seismic assessments data. Human 
agents in this model are social, cognitive and spatially aware. They are capable of socially interacting 
with each other. The interactions are within the context provided by spatially distributed physical effects 
of earthquake shaking and damage. The crisis context (i.e. intensity scenarios) is guided by the work of 
Riedel, et al. which used a macro scale seismic risk assessment method to define structural vulnerability 
and damage (Riedel_a, et al., 2015).  

The model is envisioned to be useful as a platform to test different scenarios where social attachment 
is relevant or not during evacuations. The model also accounts for human factors, demographic 
distribution, mobility of populations during different times of day/week, social interactions, cultural 
predispositions or norms of behaviours, configurations of the built environment, presence or absence 
of evacuation plans and seismic vulnerability of structures. With the model’s use of geospatial 
information, which is commonly used by urban planners, SOLACE has the potential to aid in the 
development policies related to public safety.  

SOLACE may be used to model evacuations in different places. Data layers appropriate to new study 
areas however would need to be acquired. For France, since data exist and are available, minor 
modifications can easily be done. SOLACE also has possibility to be applied outside of France, 
provided that the data is available. Use of the model may help the exploration of different scenarios to 
prepare for future disasters. 

The thesis also contributes to the long-standing problem in geographic information science, which is 
integrating static spatial geometry and data with dynamic social processes. GIS is traditionally static. 
Computer science through agent-based modelling makes this integration of static and dynamic 
spatiotemporal processes possible. Several insights from this integration are presented at the conclusion 
of this research. 

1.6 Structure of the thesis 

The succeeding chapters of the thesis are organized as follows: Chapter 2 presents a concise review 
of the literature on seismic risk and the crisis context. Chapter 3 presents a state of the art on pedestrian 
evacuation models. Chapter 4 details the adopted methodology. Chapter 5 discussed SOLACE, the 
agent-based model for social attachment. Chapter 6 describes the implementation of the model. Chapter 
7 describes the design of the experiments. Chapter 8 presents the results of the experiments. Chapter 9 
discusses the results of the study, future work and closes with a conclusion.
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CHAPTER 2. SEISMIC RISK & CRISIS CONTEXT 
This chapter elaborates on risk and crisis during earthquake disasters. The objective is to provide 

the proper context, rationale, and firm foundation for the development of the agent-based model for 
earthquake evacuations. The chapter is divided into four parts. The first section presents a global context 
of the work within the concepts and terminologies related to risk. The second section is on the physical 
aspects of seismic risk from the viewpoint of geoscience. Discussions revolve around the concept of 
hazard and the impact on structures and people. The third section is on the social aspects of the crisis 
from the perspective of social science. This section focuses on the human and social response to 
earthquakes. A rich discussion on the relevant theories to explain these behaviours is also presented. 
This is consistent with this work’s focus on human factors and behaviour of individuals and groups 
during disaster evacuations. The physical environment provides the setting where all these social 
interactions take place. The fourth part provides a small discussion and summary of the chapter. 

2.1  Disaster, crisis, risk and related concepts  

Within the focus of this study, the following definitions of crisis, disaster, risk, hazard, exposure, 
vulnerability and capacity are presented. The definitions are used and viewed in the context of an 
individual, social group and buildings effected by earthquakes.  

Crisis can be defined as an unexpected and unwanted hazardous event that can lead to an unstable or 
dangerous situation that can severely interrupt and pose a serious threat to the fundamental values, norms, 
and normal functioning of exposed individuals, groups, communities or the whole society (Poal, 1990; 
Stern, 2003; Boin, 2005). The focus of this work is seismic crisis. The scenarios considered are 
developing crisis conditions triggered by an earthquake. The time frame considered for the scenarios is 
the first thirty minutes of the event (during and immediately after). This covers the moment of the start 
of shaking and the resulting evacuation. The effect of the crisis on people is the primary focus. In 
particular, individual behaviours and dynamic social interactions during earthquake evacuations.  

A disaster is defined as a serious disruption of the functioning of a community at any scale due to 
hazardous events interacting with conditions of exposure, vulnerability and capacity. It leads to one or 
more of the following: human, material, economic and environmental losses and impacts (UNISDR_a, 
2019). Disasters happen not only because of the causing natural events, but also due to the social, 
political and economic environments that influence how people live (Wisner, Blaikie, Cannon, & Davis, 
2003). 

Disaster risk refers to the potential of loss of life, injury, or destroyed or damage assets that can occur 
in a system, society, or a community during a specific period of time (UNISDR_a, 2019). The general 
model used to calculate risk is shown in Equation 1 (Alexander_a, 2012; UNISDR_a, 2019). This, 
according to UNISDR is determined probabilistically as a function of hazard, exposure and vulnerability. 
A second equation (Equation 2) includes capacity.  

Equation 1 Risk Equation 1  

!"#$	 = '()(*+	 × 	-./0#1*2	 × 	31452*(6"4"78 

The other version of the risk equation that includes capacity as a parameter is shown in Equation 2. 

Equation 2 Risk Equation 2 

!"#$	 = 	'()(*+	 × 	-./0#1*2	 × 	31452*(6"4"78	9(/(:"78  
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Hazard is defined as possible future occurrence of a natural process, phenomenon or human activity 
that may cause loss of life, injury or other health impacts, property damage, social and economic 
disruption or environmental degradation (UNISDR_a, 2019; Cardona, et al., 2012). Most of the previous 
studies on risk especially before the 1990s focused on the hazard aspect (Cardona, et al., 2012). In this 
work, earthquake is the natural hazard in focus. Increasing degree or intensity of earthquakes cause 
widespread damage in the affected area. Debris and damage structures from earthquake shaking are 
hazards that can injure or cause loss of life (Johnston, et al., 2014).  

Exposure is defined as the situation of people, infrastructure, housing, production capacities, and other 
tangible human assets located in hazard-prone areas (UNISDR_a, 2019). From Equation 1, it can be 
seen that, when there is no exposure to a hazard, there is also no associated risk. For extreme disasters, 
exposure, is the more dominant parameter that defines the degree of disaster risk (UNISDR_b, 2019). 
Extreme disasters affect all, regardless of the degree of vulnerability. Exposure changes with time and 
location (Cardona, et al., 2012). The continued growth of cities concentrates populations and assets in 
very few places. When these cities are located in hazard prone areas, or when hit by natural hazards, 
exposure is very high (Brecht, Deichmann, & Wang, 2013). Earthquakes are felt over very large areas 
and can occur within the interval of a few seconds. Areas closer to the epicentre generally incur more 
damage. The resulting damage can be extensive over affected regions. Debris or collapsed structures 
expose large populations of individuals to danger. Building inventories are therefore important to 
determine the level of exposure of structures and facilities (Bevington, et al., 2012). Studies of historical 
earthquakes point to the distribution of vulnerable structures and their level of occupancy during 
earthquakes to be the main factors controlling the severity of human loss (Jaiswal_1 & Wald, 2008). As 
people spend more time indoors (almost up to 90% inside buildings) than outdoors, the exposure of 
populations to building related damage will be high (Klepeis, et al., 2001; WHO-Europe, 2013). The 
area nearest to vulnerable structures, defined from the building edge, defines the deposition zone for 
debris. Immediate exposure of individuals to debris in this deposition zone can pose dangers and can 
result in injuries or loss of life. Longer term effects can be displacement or coping with loss (ACAPS, 
2013; Bengtsson_a, Lu, Thorson, Garfield, & Schreeb, 2011; Lu, Bengtsson, & Holme, 2012).  

Vulnerability refers to the conditions determined by physical, social, economic and environmental 
factors or processes which increase the susceptibility of an individual, a community, assets or systems 
to the impacts of hazards (UNISDR_a, 2019). Vulnerability is inherent and unique in the case of 
individuals, social groups, objects, or situations. Many parameters however define vulnerability, making 
it difficult to be precisely assessed (Weichsekgartner, 2016). Furthermore, vulnerability changes 
depending on parameters used for scale, time and space (Cardona, et al., 2012). Also, the influencing 
variables and characteristics of vulnerability change over time. The focus on vulnerability has increased 
in more recent risk research, and is has now gained the same level of emphasis as the study of hazards 
(Cardona, et al., 2012). According to Cardona et. al., vulnerability strengthens the contribution of the 
human and social dimensions in the risk equation.  

Capacity refers to the combination of all the strengths, attributes and resources available to manage and 
reduce disaster risk and strengthen resilience, like evacuation plans, preventive information, emergency 
services, etc. (UNISDR_a, 2019). Coping capacity is the usual term used in disaster literature. As can 
be deduced from Equation 2, when the capacity to cope with a disaster is high, the risk posed by a 
disaster becomes low. Capacity includes the social structure that can help individuals cope and deal with 
the effects of disasters. 

2.2  Physical elements of seismic crisis 

The physical elements of seismic risk are discussed in this section. In particular, the impact of 
earthquakes on buildings, people and environment objects. This provides the detailed description of the 
environmental cues that can possibly be perceived by individuals, at the moment of shaking. Then, a 
state of the art of the seismic vulnerability of buildings is presented. 
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2.2.1 Seismology and buildings 

Here the semantic framework of seismic risk is covered. 

Intensity can be defined as a classification of the strength of shaking in terms of its locally observed 
effects during an earthquake (Musson R. M., 2012). Intensity is descriptive rather than analytical, but 
capable of being used for analysis and interpretation (Grünthal, European Macroseismic Scale 1998, 
1998). Also, intensity scales consist of a series of descriptions of the different degrees of earthquake 
shaking on people, objects, nature, and damage to various building typologies (Grünthal, European 
Macroseismic Scale 1998, 1998). Different countries use macroseismic intensity scales fitted to local 
conditions and experience. Examples are the European Macroseismic Scale of 1998 (EMS-98), Japan 
Meteorological Agency (JMA) Seismic Intensity Scale and the Modified Mercalli Intensity (MMI) Scale 
of the United States (Grünthal, European Macroseismic Scale 1998, 1998; JMA, 2018; USGS, 2018). 
The scale assignments however are not equivalent. Musson et al. devised a conversion from different 
scales to EMS-98 (Musson, Grünthal, & Stucchi, 2009). The awareness of differences in intensity scales 
is important especially when interpreting compiled observations and reports from different countries. 

Variation in felt intensities have been observed from tall buildings. Stronger earthquake vibrations are 
felt in upper storeys than from lower storeys (Grünthal, European Macroseismic Scale 1998, 1998). 
Also, from Grünthal, the severity of the vibrations can also depend on the behaviour of buildings 
according to the frequency of the shaking, and variations in elevation. More symmetric and regular 
building designs are also able to withstand earthquake shaking.  

Variation in intensities can also be influenced by soil amplification or topographical conditions. Sites 
with alluvial soil deposits, and basin type topographies normally report higher intensities. Examples of 
these areas include Mexico City, and Grenoble, France (Dunand & Guéguen, 2012).   

Table 6 Differentiation of structures into vulnerability classes, EMS-98 (Grünthal, European Macroseismic Scale 1998, 
1998) 

Type of Structure Vulnerability Class 
A B C D E F 

M
A

SO
N

R
Y

 

Rubble stone, fieldstone       
Adobe (earth brick)       
Simple stone       
Massive stone       
Unreinforced, with manufactured stone 
units 

      

Unreinforced, with RC floors       
Reinforced or confined       

R
EI

N
FO

R
CE

D
 

C
O

N
C

R
ET

E 
(R

C
) 

Frame without earthquake-resistant 
design (ERD) 

      

Frame with moderate level of ERD       
Frame with high level of ERD       
Walls without ERD       
Walls with moderate level of ERD       
Walls with high level of ERD       

STEEL Steel structures       
WOOD Timber structures       

Legend:            most likely vulnerability class;               probable range;             
                         Range of less probable, exceptional cases  

Vulnerability is used in EMS-98 to express differences in the way buildings respond to earthquake 
shaking. Buildings are classified into different typologies. The typologies include masonry, reinforced 
concrete, steel and wood. These are further grouped to vulnerability classes, A to F. Typologies and 
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vulnerability assignments are shown in Table 6. Damage, with respect to typology is classified from 
Grades 1 to 5, in the order of increasing damage. For each intensity, EMS-98 provides the damage grade 
with respect to the vulnerability class. Deformation of buildings under earthquake loading depends on 
building type. Damage grades specific for masonry and reinforced concrete structures are detailed in 
Table 7.  

The impact of shaking on buildings at different intensities is detailed in Table 8. It details the EMS-98 
intensity scale (Grünthal, European Macroseismic Scale 1998, 1998). The tables include the intensity 
category, general description, and the effect on buildings. Quantities are described by overlapping 
probability ranges namely: Few, 0 to 20%; Many, 10 to 60%; and Most, 50 to 100%. From the table it 
can be seen that no buildings are damaged at earthquake intensities less than V. Starting from intensity 
V, with increasing intensities, more damage is observed from the different building typologies. The 
quality and level of detail of building typologies and the description of degrees of damage in EMS-98 
makes it a very useful tool for investigating vulnerability, seismic hazard and seismic risk (Musson R. 
M., 2012; Giovinazzi & Lagomarsino, 2004) 

Table 7 Damage grades for masonry and reinforced concrete structures, EMS-98 (Grünthal, European Macroseismic Scale 
1998, 1998) 

Grade Description Masonry Reinforced Concrete 
1 Negligible to slight 

damage (no structural 
damage, slight non-
structural damage) 

Hair-line cracks in very few walls; 
fall of small pieces of plaster only; 
fall of loose stones from upper parts 
of buildings in very few cases. 

Fine cracks in plaster over frame members or 
in wall base; fine cracks in partitions and 
infills. 

2 Moderate damage 
(slight structural 
damage, moderate non-
structural damage) 

Cracks in many walls; fall of fairly 
large pieces of plaster; partial 
collapse of chimneys. 

Cracks in columns and beams of frames and 
in structural walls; cracks in partition and 
infill walls; fall of brittle cladding and plaster; 
fall of mortar from the joints of wall panels. 

3 Substantial to heavy 
damage (moderate 
structural damage, 
heavy non-structural 
damage 

Large and extensive cracks on most 
walls; Roof tiles detach; Chimneys 
fracture at the roof line; Failure of 
individual non-structural elements 
(partitions, gable walls) 

Cracks in columns and beam column joints of 
coupled walls; spalling of concrete cover; 
buckling of reinforced rods; large cracks in 
partition and infill walls; failure of individual 
infill panels. 

4 Very heavy damage 
(heavy structural 
damage, very heavy 
non-structural damage) 

Serious failure of walls; partial 
structural failure of roofs and 
floors. 

Large cracks in structural elements with 
compression failure of concrete and fracture 
rebars; bond failure of beam reinforced bars; 
tilting of columns; Collapse of a few columns 
or of a single upper floor 

5 Destruction (very heavy 
structural damage) 

Total or near collapse Collapse of ground floor or parts (e.g. wings) 
of buildings. 

 
Table 8 Classification of damage, EMS-98 (Grünthal, European Macroseismic Scale 1998, 1998) 

Intensity Description Effect on buildings 
I Not felt No damage. 
II Scarcely felt No damage. 
III Weak No damage. 
IV Largely observed No damage. 
V Strong Damage of grade 1 to a few buildings or vulnerability class A and B. 
VI Slightly 

damaging 
Damage of grade 1 is sustained by many buildings of vulnerability class A and B; a few 
of class A and B suffer damages of grade 2; a few of class C suffer damage of grade 1 

VII Damaging Many buildings of vulnerability class A suffer damage of grade 3, a few of grade 4; 
many buildings of vulnerability class B suffer damage of grade 2, a few of grade 3; a few 
buildings of vulnerability class C sustain damage of grade 2; a few buildings of 
vulnerability class D sustain damage of grade 1. 

VIII Heavily 
damaging 

Many buildings of vulnerability class A suffer damage of grade 4, a few of grade 5; 
many buildings of vulnerability class B suffer damage of grade 3, a few of grade 4; many 
buildings of vulnerability class C suffer damage of grade 2, a few of grade 3; a few 
buildings of vulnerability class D sustain damage of grade 2. 

IX Destructive Many buildings of vulnerability class A sustain damage of grade 5; many buildings of 
vulnerability class B suffer damage of grade 4, a few of grade 5; many buildings of 
vulnerability class C suffer damage of damage of grade 3, a few of grade 4; many 
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buildings of vulnerability class D suffer damage of grade 2, a few of grade 3; a few 
buildings of vulnerability class E sustain damage of grade 2. 

X Very Destructive Most buildings of vulnerability class A sustain damage of grade 5; many buildings of 
class B sustain damage of grade 5; many buildings of vulnerability class C suffer damage 
of grade 4, a few of grade 5; many buildings of vulnerability class D suffer damage of 
grade 3, a few of grade 4; many buildings of vulnerability class E suffer damage of grade 
2, a few of grade 3; a few buildings of vulnerability class F sustain damage of grade 2. 

XI Devastating Most buildings of vulnerability class B sustain damage of grade 5; most buildings of 
vulnerability class C suffer damage of grade 4, many of grade 5; many buildings of 
vulnerability class D suffer damage of grade 4, a few of grade 5; many buildings of 
vulnerability class E suffer damage of grade 3, a few of grade 4; many buildings of class 
F suffer damage of grade 2, a few of grade 3. 

XII Completely 
Devastating 

All buildings for class A, B and practically all of vulnerability class C are destroyed; 
Most buildings of vulnerability class D, E and F are destroyed; the earthquake effects 
have reached maximum conceivable effects. 

Few: 0 – 20%, Many: 10 – 60%, Most: 50 – 100% 
 

2.2.2 State of the art in seismic vulnerability assessment of buildings at urban 
scale 

The large exposure of people and buildings in urban areas to earthquake makes seismic risk 
assessments necessary and urgent. To establish an appraisal of the risk, conducting very detailed risk 
assessment of buildings is ideal. Estimating the vulnerability of buildings at the urban and regional 
scales however, requires a large number of samples (Giovinazzi & Lagomarsino, 2004). This is 
expensive, time consuming and complicated (Riedel_a, et al., 2015; Giovinazzi & Lagomarsino, 2004).  
Many studies on vulnerability to seismic risk of large urban areas similarly faced this difficulty in a lack 
of data (Senouci, Bard, Farsi, & Beck, 2013; Guettiche, Guéguen, & Mimoune, 2017). In particular, 
detailed and extensive building stock inventories with the necessary structural and constructional 
parameters, are lacking. To overcome this limitation of data, macro scale seismic analysis methods have 
been proposed by several authors (Giovinazzi & Lagomarsino, 2004; Riedel_a, et al., 2015). Macro 
scale methods when adapted as a strategy result in reduced cost of building surveys at the urban scale 
(Guettiche, Guéguen, & Mimoune, 2017). Because of the low cost and relative simplicity compared to 
other methods, macro-seismic scale method may have greater possibility of being implemented 
especially for developing countries and cities with moderate risk.  

The macro scale methodology of Giovinazzi and Lagomarsino developed vulnerability curves for 
buildings consistent with the EMS98 macroseismic scale, building typologies, vulnerability classes and 
damage scale (Giovinazzi & Lagomarsino, 2004). Their vulnerability calculations likewise include the 
effect of soil amplification. Classical probability theory and fuzzy set theory to develop the method. 
Their method was proposed to be used for vulnerability and damage scenario assessment of European 
towns under the RiskUE project.  

Riedel et al., 2015 developed a macro scale methodology for seismic vulnerability assessment of urban 
environments using readily available data. Their method used association rule learning and support 
vector machines (Riedel_a, et al., 2015). They proposed two vulnerability proxies that create a 
relationship between building characteristics present in the French national census database, and the 
most probable EMS98 vulnerability class. The authors claim that the method can be applied anywhere 
provided basic information on buildings are available. The information on the buildings included date 
of construction, number of floors ranked by category, roof shape, construction material, qualitative 
description of plan and elevation and position in the block. The data used to develop the proxies was 
from Grenoble, France. It was tested for Nice using the more sophisticated RiskUE method and 
produced similar results. 

A novel urban scale risk assessment method was developed by Salameh et al., 2017. They investigated 
the relationship between site and building frequencies using ambient vibration measurements (Salameh, 
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et al., 2017). Sets of numerical simulations were analysed using neural networks that yielded easy-to-
use mathematical relationships. Interpolated maps for damage increments to buildings in test sites in 
Beirut, Lebanon were calculated using a neural network approach. From an older study, and still using 
ambient vibration measurements, Salameh, et al., 2016, found that only the height of a building has a 
significant influence in the determination of the fundamental period for a structure (Salameh, et al., 
2016). They also concluded that the fundamental period depends on the soil type the building is 
constructed on. 

Scenarios of the debris created in outdoor urban environments from the damaged buildings have been 
studied in more recent earthquake events (Rojo, Beck, & Lutoff, 2017; Santarelli, Bernardini, & 
Quagliarini, 2018). Deposition of debris along streets relate to building vulnerability, earthquake 
severity and width of the street with respect to building height and width (Santarelli, Bernardini, & 
Quagliarini, 2018). The debris from building damage that fall into pathways highly expose individuals 
to risk and influence pedestrian evacuation mobility. Debris can (1) completely block pathways, (2) act 
as obstacles, (3) trap or entomb individuals, or (4) cause injuries and deaths (Ramirez & Peek-Asa, 
2005). 

2.3  Human and social aspects of seismic risk 

2.3.1 Earthquakes and people 

A person’s perception of shaking during earthquakes can depend on several factors. It can include 
(a) intensity of the shaking, (b) response of the structure, (c) presence of visual and auditory cues from 
surroundings, and (d) individual sensitivity to the event.  

Human behaviours and psychological conditions are strongly correlated to seismic intensities (Ohta & 
Omote, 1977; Kuwata & Tanaka, 2002). People’s responses range from bad to worse with increasing 
intensity (Ohta & Omote, 1977). The EMS-98 intensity scale (Table 1) is used to describe the effects 
and response of individuals’ and environment objects to earthquakes (Grünthal, European Macroseismic 
Scale 1998, 1998). The scale provides a very general description of individual sensitivities, responses, 
and encountered difficulties, due to shaking. In the scale, evacuation is described as egress from indoor 
locations as running outdoors. The succeeding section provides a richer discussion on crisis evacuations 
and human behaviour. 

2.3.2 Evacuation and human behaviour  

Evacuation is the temporary mass physical movement of people that collectively emerge from 
coping with threats, damages or disruptions (Aguirre B. , 1983). The objective is to move as many 
people as possible from areas of danger or possible harm to locations that are safe. This must be done 
with the least amount of time possible before the destructive effects of the hazard are felt (Averill, et al., 
2005; Kuligowski & Hoskings, 2010). Immediate evacuations are needed for sudden onset events that 
can create extensive damage and result in large numbers of injuries and deaths. Sudden onset events 
occur without warning and lasts a few seconds (Norton, Schreet, Aitken, Herard, & Lajolo, 2013). 
People are generally caught unaware and unprepared during these events. Earthquakes are sudden onset 
events that can likewise directly trigger other hazards. The resulting hazards include tsunamis, landslides, 
ground subsidence, liquefaction, fires, and failures in major transportation, industrial and nuclear 
infrastructures. These secondary hazards may occur just a bit after the shaking. These possibilities add 
to the anxiety of people and fuel more the urgency to evacuate. Longer duration events such as typhoons 
and floods normally can be anticipated due to warnings. In these situations, people are able to prepare 
before proceeding to evacuate.  

Delayed evacuation has been seen as cause of many deaths in past disasters. Examples are the September 
11, 2001 terrorist attack on the World Trade Centre (WTC) in the United States, and the 2011 Great 
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East Japan earthquake and tsunami (Averill, et al., 2005; Fraser_a, Leonard, Matsuo, & Murakami, 
2012). Delays in evacuation are due to pre-movement actions individuals perform before actually 
heading to safety (Vistnes, Grubits, & He, 2005). Iwanaga and Matsuura, found that delays in evacuation 
during the 2011 Great East Japan earthquake and tsunami were generally caused by psychological 
conditions of normality bias, “sympathy behaviour” (or imitation, contagion), and altruism (or helping) 
behaviour (Iwanaga & Matsuura, 2014).  

Emotional reactions to crisis are triggered with the perception of cues from the physical and/or social 
environment. This perception can shape an individual’s resulting behaviour. The reactions can include 
fear, anxiety, confusion, anger, bewilderment, frustration, etc. These emotions can either start, hasten, 
stall or even completely stop evacuations. When people are within a group, emotional cues are quickly 
detected by members, thereby affecting the behaviour of the group (Papelis, et al., 2011). Without 
appropriate cues, and individual knowledge of evacuation protocols, people may ignore/disregard, wait, 
or evacuate improperly (Johnson, Johnson, & Sutherland, 2011).  

Figure 6 details the possible sequence of events/actions with their temporal duration in an earthquake 
event. Shaking lasts only for a few short seconds. Individuals need to evacuate to safe areas within 
minutes. Return to homes can be within a few hours. This is only possible when the danger has subsided 
(no threat of aftershocks) and building evaluation/inspections show no serious visible structural damage 
(Bazzuro, Cornell, Menun, & Motahari, 2004). The return however can be after a longer period, such as 
several days, if there is damage, and repairs are possible. Longer term accommodation may need to be 
secured when return is impossible, as in the case of total structural collapse. 

 
Figure 6 Temporal context of events and actions for earthquake evacuations (Alexander D. , 1990) 

Evacuations can be divided into different stages namely pre-evacuation, evacuation and post-evacuation. 
In all of these stages, people have been reported to perform actions that deviate from immediately 
heading to, or remaining in, safe areas. During shaking, individuals are advised to protect selves by 
doing the officially prescribed set of actions: duck, cover, and hold-on (ECA, 2019; OSHA, 2019).  

Pre-evacuation is the stage where the critical decision to evacuate is made. Most of the delays occur 
during the pre-evacuation stage. In this stage, an individual perceives the ground-shaking, evaluates the 
situation, defines options and plan, decides on the option to take, and executes chosen plan into actions. 
The decision to evacuate for example can be facilitated by: (1) observations of the threat, (2) clear 
instructions to evacuate given during the event, (3) level of fear, (4) adopting similar actions/evacuation 
of friends and co-worker, and (5) previous evacuation experience (Averill, et al., 2005). Also, people 

PRE-
EVACUATION 

EVACUATION POST 
EVACUATION 
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tend to adjust behaviour with respect to the severity of the threat, and generally do not evacuate at the 
same time (Sorensen, 1991).  

During the pre-evacuation stage, individuals seek information to confirm the experienced hazard and 
solicit advice on the proper things to do. Information is derived from face to face conversations, by 
phone, announcements, checking the internet, social media and radio for news, looking outside 
(windows/doors) or simply milling around. Family members or other close relations are sought to be 
gathered in one place or called by phone to confirm if safe. Some individuals manage objects or property. 
Examples of this include getting belongings, shutting down computers or turning off the power or the 
gas. Some individuals simply freeze or are unable to move and stay immobile (Prati, Catufi, & 
Pietrantoni, 2012). Other individuals maintain their current activity/task and disregard the hazard 
completely (Lindell_a, et al., 2016; Prati, Catufi, & Pietrantoni, 2012). When inside a car for example, 
individuals may continue driving (Lindell_a, et al., 2016; Ohta & Omote, 1977). Some seek protection 
from under sturdy tables. Others are able to help other individuals requiring aid. 

The actual evacuation stage is when an individual decides to evacuate. At this stage, egress from the 
danger zone is made, and the individual heads toward known safe areas. Individuals employ different 
strategies to move towards safe areas. Depending on the intensity the hazard and an individual’s mobility, 
people either crawl, walk, run or are assisted to evacuate. Typical evacuation speeds found in current 
studies are presented in Table 9.  

Table 9 Evacuation speeds 

Mode Category Individual (meters/sec) Group (meters/sec) Source 
Crawl All body types 0.65 – 0.90  (Kady & Davis, 2009) 
Walk Children 

Adult 
Elderly 

0.56 – 0.84 
0.91 – 1.73 
0.70 – 1.11 

- 
0.88 
0.75 

(Adams & R., 2011; Kady & 
Davis, 2009; Fraser, et al., 
2014) 

Run Children 
Adult 
Elderly 

1.14 – 2.23 
1.78 – 3.83 

- 

 (Adams & R., 2011; Wood & 
C, 2012) 

Disabled All types 0.10 – 1.77 0.21 – 1.98 (Shi, Xie, Cheng, Zhou, & 
Zhang, 2009; Boyce, Shields, & 
Silcock, 1999) 

Rescue device All types  0.55 – 1.5 (Adams & R., 2011) 
Stairs Children 

Adult 
Elderly 

0.25 – 1.4 
0.056 – 1.7 

0.21 

 (Larusdottir & Diderichs, 2011; 
Peacock, Hoskins, & 
Kuligowski, 2011; Fraser, et al., 
2014) 

 

Following behaviour, such as following leaders, or groups, has been observed. This results in emergent 
macro-level herding and flocking towards exits and safe areas (D'Orazio, Spallazzi, Quagliarini, & 
Bernardini, 2014a). Providing help to others is common, especially to those with mobility impairments 
(Averill, et al., 2005). This however introduces some delays. Groups with mobility impaired members, 
particularly the disabled, tend to remain together, adopting the speed of the slowest member. Large 
groups effectively constrict pathways, slows down evacuations, and delays egress especially of non-
group members (Samuelson, 2011).  

During the post-evacuation stage, together with personal safety, regrouping with close family members, 
friends and colleagues become the main motivations (Alexander D. , 1990). When all members are 
accounted for, individuals or groups settle down to rest and recover from their evacuation. However, 
when some members are missing, some return to danger areas to rescue or provide help (Iwanaga & 
Matsuura, 2014). When the danger has passed, some return home to recover property or supplies (Prati, 
Catufi, & Pietrantoni, 2012; Alexander D. , 1990). 
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2.3.3 State of the art in the study of evacuation and human behaviour  

General observations of crisis behaviour from earthquakes and other disaster studies are presented 
in this section. Each case provides examples of individual or group behaviours in different social 
contexts such as with family members, friends, colleagues or strangers. The cases also present different 
locational contexts such as the home and workplace. The influence of location on evacuation is of 
interest. The level of familiarity and attachment to one’s home for example is greater than other places. 
Also, in general, homes are considered as safe havens and provide protection from the elements. The 
pull of the home on the individual can delay evacuations when inside homes. For workplaces, presence 
of formal evacuation protocols can be in place to facilitate faster egress from structures. Familiarity with 
office layouts and exits likewise can hasten egress (Iliyas & Mani, 2018). The much lesser personal 
bonds shared by individuals with people at work may make evacuation more focused on personal and 
individual safety. This relative lack of attachment, or pull of the workplace and people at work, in theory, 
can lead to faster evacuations.  

Close family relationships are highlighted in Jon et al.’s study of behaviours during the Christchurch, 
New Zealand and Hitachi, Japan earthquakes (Jon, et al., 2016). Notable behaviours included (1) 
contacting family members, (2) protecting children, (3) going home, (4) going to the home of a relative 
or friend. This agrees with the findings of Mikami and Ikeda and reported by Iwanaga and Matsuura 
who found that people during disasters tend to get together with family members (Mikami_a & Ikeda, 
1985; Iwanaga & Matsuura, 2014). This is done to ensure the safety of all members so that they may 
eventually evacuate together. These behaviours were also reported by survivors of the 2011 Great East 
Japan Earthquake and Tsunami. In this disaster, many people died unnecessarily due to delayed 
evacuation or non-evacuation. The delays resulted from fulfilling social and family responsibilities (to 
children and elderly parents). Interestingly this is in direct contrast to the findings of Heath et al. In their 
study of the household evacuation during the California floods of 1997, they found that households with 
children more successfully evacuated than households without children (Heath S. E., Kass, Beck, & 
Glickman, 2001). This may be explained by the protective actions of parents prioritising children and 
prompting the urgent evacuations. Heath however found a delay in the evacuation of households with 
pets. Some households treat pets as family members and owners prefer to stay with pets at home due to 
logistical difficulties of capturing or transporting pets.  

Flight behaviour is one of the strongest features of mass behaviours in Italian earthquakes (Alexander 
D. , 1990). This anxious behaviour can be traced back to previous hazard experiences such as the 
eruptions of Mount Vesuvius, known existence of other hazards and knowledge of the poor structural 
integrity of old buildings. During tremors, residents generally seek family members, run outdoors and 
regroup with other members. Those away from home however, return to check for the safety of family 
members and the resulting damage to their dwellings. 

Group interaction was observed by D’Orazio et. al. from the analysis of earthquake evacuation video 
data (D'Orazio, Spallazzi, Quagliarini, & Bernardini, 2014a). The observed groups: exchanged 
information, moved closer together, and evacuated away from danger. Individuals either followed other 
individuals (leader-follower behaviour) or formed groups (herding or flocking behaviour) (D'Orazio, 
Spallazzi, Quagliarini, & Bernardini, 2014a).  

Selfish behaviours are rare during disasters (Cocking, Drury, & Reicher, 2009). What has been 
observed to be common is the prevalence of altruism. Increased levels of altruism results in people 
helping each other. In the intensively studied Sept. 11, 2001 terrorist attack at the World Trade Centre 
(WTC event) in the US, many survivors reported providing and receiving help during evacuation 
(Averill, et al., 2005). In the study, it was found that occupants helped others even when aware of the 
heightened risk, before proceeding with their own evacuation. Twenty percent reported being helped by 
someone and thirty percent helped others. Individuals helped others with mobility impairments induced 
by injury, disability, health condition, pregnancy and old age. Sources of help included co-workers, 
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superiors (manager/supervisor), floor warden, police officer, fire fighter and strangers. Evacuation 
delays can be deadly as it should be noted that many who helped other people also perished from being 
caught in the structural collapse of the WTC towers 1 and 2. Other notable behaviours in the WTC 
during pre-evacuation which included: (1) talking to others, (2) gathering personal items, (3) helping 
other people, (4) searching for others, (5) talking on the phone and moving between floors.  

The abovementioned examples demonstrate the social nature of human behaviour during crisis 
evacuations. These are governed by social bonds that are either strong and fixed such as within family 
members or weak and dynamic with friends or colleagues or strangers. These ties strongly influence 
behaviour when people evacuate as families, groups of friends or strangers in large crowds. To 
differentiate altruism with respect to the cost-associated with helping, between kin and non-kin 
relationships, a questionnaire-based study was conducted by Stewart-Williams, 2007 (Stewart-Williams, 
2007). In the study it was found that as cost of helping increase, kin received a larger share of the given 
help than non-kin. For low-cost help, people helped friends more than siblings. For medium-cost, 
siblings are friends are helped equally. For very high-cost help, a greater willingness to help sibling than 
friends. The work of Bode et al. reproduces in an experiment the same idea of the relationship between 
increased cost and frequency or strength of helping behaviour (Bode, Miller, O'Gorman, & Codling, 
2015). Their experiment used a virtual environment to simulate pedestrian evacuation from a building. 
Their results showed that the reduction in the frequency in helping behaviour is gradual rather than 
having sharp transitions. Moussaïd and Trauernicht developed a conceptual “Help-or-Escape” game to 
test helping behaviour during disaster evacuation (Moussaïd & Trauernicht, 2016). They found that 
people may maintain or increase the same helping intention but are able to help less in an emergency 
condition due to the mechanical restriction imposed by limited time. They concluded that emergencies 
seem to amplify people’s natural cooperation tendency. A summary of observed evacuation behaviours, 
mentioned in this section are summarised in Table 10 with respect to the different stages of evacuation. 

Table 10 Evacuation behaviour 

Stage Behaviour Actions Source 
Pre- 
evacuation 

Seeking information Milling, talking to 
others (by phone, face 
to face) 

(Averill, et al., 2005; Bernardini, D'Orazio, & 
Quagliarini, 2016; Kuligowski & Hoskings, 2010; 
Jon, et al., 2016; Zhou_a, et al., 2018; Beck, Dugdale, 
Truong, Adam, & Colbeau-Justin, 2014) 

Seeking family 
members/other people 

Calling, searching (Mikami_b & Ikeda, 1985; Jon, et al., 2016; Fraser, et 
al., 2014; Alexander D. , 1990; Johnston, et al., 2014; 
Zhou_a, et al., 2018) 

Manage 
objects/property 

Get belongings, shut 
down computers, turn 
off power/gas 

(Averill, et al., 2005; Jon, et al., 2016; Zhou_a, et al., 
2018; Beck, Dugdale, Truong, Adam, & Colbeau-
Justin, 2014) 

Freeze Stay in place (Prati, Catufi, & Pietrantoni, 2012; Lindell_b, et al., 
2016; Jon, et al., 2016; Beck, Dugdale, Truong, 
Adam, & Colbeau-Justin, 2014) 

Maintain activity Continue working, 
driving 

(Averill, et al., 2005; Jon, et al., 2016; Lindell_b, et 
al., 2016; Zhou_a, et al., 2018; Beck, Dugdale, 
Truong, Adam, & Colbeau-Justin, 2014) 

Seek protection Drop-cover-and hold on (Wood & Glik, 2013; D'Orazio, Spallazzi, 
Quagliarini, & Bernardini, 2014a; Lindell_b, et al., 
2016; Zhou_a, et al., 2018) 

Helping Protect others, assist 
mobility impaired 
(children, pregnant 
women, elderly, 
disabled, injured) 

(Urata & Hato, 2012; Kuligowski & Hoskings, 2010; 
Johnston, et al., 2014; Zhou_a, et al., 2018) 

Evacuation Flight Move (walk, run, 
crawl), use stairs, 
elevator, head towards 
home, go to nearest exit 
or safe area 

(Fraser, et al., 2014; Kady & Davis, 2009; 
Kuligowski, et al., 2015; Alexander D. , 1990) 
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Following Follow leader, herding, 
flocking 

(Beck, Dugdale, Truong, Adam, & Colbeau-Justin, 
2014; D'Orazio M. , Quagliarini, Bernardini, & 
Spalazzi, 2014b) 

Helping others Assist mobility 
impaired 

(Averill, et al., 2005) 

Post-
evacuation 

Regrouping Regrouping with family 
members, friends, 
colleagues 

(Prati, Catufi, & Pietrantoni, 2012) 

Helping/rescue Returning to danger 
areas to rescue family 
member, friend, 
colleague 

(Fraser_b, Leonard, Matsuo, & Murakami, 2012; 
D'Orazio M. , Quagliarini, Bernardini, & Spalazzi, 
2014b) 

Recover objects Return home to get 
supplies 

(Prati, Catufi, & Pietrantoni, 2012) 

 

2.3.4 Social theories that explain crisis and evacuation behaviours 
Social theories that explain the complex behaviour of people during evacuations can be divided into 

three categories: (1) based on popular notions, (2) attachment, and (3) group behaviour. Several theories 
are necessary to account for the complexity of social behaviours. Each theory has its own focus, 
strengths and weaknesses in explaining behaviour. Each theory complements the other theories to 
provide the broader explanation of behaviours.  

2.3.4.1 Popular notions 

The first category presents popular notions derived from observations of individual behaviour. This 
includes Normative, Emergent Norm and Panic Theories.   

Normative theory states that everyday social roles and rules that govern daily life applies and can be 
observed in emergency situations (Chu, Pan, & Law, 2011). Examples of this include respecting and 
helping elders, caring for and prioritising children, aiding the disabled, following traffic rules, obeying 
instructions of authority figures, and maintaining social order and organisation. This theory assumes 
that human behaviour is predictable during disasters. Expected proper behaviours during disasters are 
prescribed in manuals and evacuation plans and practiced during drills. Social norms however, are likely 
to be followed during slow onset disasters, where there is longer time available to allow for social norms 
to take hold during lengthy evacuations (Frey, Savage, & Torgler, 2011).  

Unexpected or illogical behaviours however are observed during disasters, which cannot seem to be 
explained by the assumptions of normative theory. For example, individuals may follow only the 
familiar routes to an exit, even if these are not the designated/fastest evacuation pathways (Ma, Wang, 
& Larrañaga, 2011). During indoor evacuations, people normally head towards the familiar front door, 
usually missing or not using nearby exits (Rai & Wong, 2009). Taking another example from aircraft 
evacuations, people have been observed to take the time in retrieving luggage before proceeding to 
evacuate from a burning aircraft (FSF, 2004). These illogical behaviours can be due to the differences 
in how individuals handle stress imposed by crises. Stress can make individuals more prone to cognitive 
biases that distort judgement and decision-making (Comes, 2016; Johnston & S., 2009; Murata, 
Nakamura, & Karwowski, 2015).  

Emergent Norm Theory posits that crisis destroys traditional normative guidelines defining appropriate 
behaviour. Because of the context and urgency demanded by crisis situations, people are forced to 
interact and create new meanings or norms to guide behaviour (Aguirre & Wenger, 1998). Once a 
dominant norm is defined, group members with differing opinions may remain silent for fear of group 
censure. Aguirre et al. add that enduring social relationships determines the social interactions associated 
with the emergence of a dominant norm (Aguirre & Wenger, 1998). This can be the result of an instance 
of collective behaviour such as risk taking, use of common resources or cooperation. 
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Panic refers to inappropriate or excessive fear and/or flight and is where instinct overwhelms 
socialisation and dissolves collective bonds (Mawson_a, 2005). Survival becomes the primary objective 
of the individual resulting in competitive behaviours within the crowd (Strauss, 1944; Drury, Cocking, 
& Reicher, 2008). Panic can be viewed on two levels: (1) individual panic as disorganisation due to fear; 
and (2) mass panic as disorderly flight leading to disastrous results for crowds (Ma, Wang, & Larrañaga, 
2011). Crowd stampedes for example are attributed to panic leading to fatalities where people are 
crushed or trampled by the crowd (Helbing, Farkas, & Vicsek, Simulating Dynamical Features of Escape 
Panic, 2000; Riboldi, 2014).  

Mawson’s review of literature on panic yielded the following interesting findings (Mawson_b, 2007). 
(1) Firstly, the behaviours can be described as panic: manic or hyperactive behaviour, flight, aggression, 
desperate attacks on people, emotional explosion, agitation and motor restlessness, and immobility or 
freezing; (2) Secondly, individuals experiencing panic are susceptible to social influence, such as being 
infected with fear, or mimicking the behaviour of others (looking when other run, escaping through the 
same exits as other people). (3) Lastly, individuals may experience the deterioration of cognitive 
function and personality. These can include temporary impairments in perception, cognition, and control 
of motor impulses, difficulties in thinking, feelings of bewilderment, puzzlement and confusion.   

Many experts however believe that mass panic is rare in disasters and that it is largely a myth and 
unsupported by evidence (Cocking, Drury, & Reicher, 2007). Ma et al. however support the existence 
of panic for crowd disasters (Ma, Wang, & Larrañaga, 2011). An individual’s panic reaction can be 
helpful in triggering flight, allowing individuals to immediately seek shelter, go to the nearest exit, and 
head towards a safe area. Alternatively, panic can be deadly, for example when individuals freeze, or 
are unable to move, this will delay their evacuation. According to Ma et al., panic prone individuals 
include children, females, the elderly, the mobility impaired, those with strong beliefs, those having 
poor knowledge, and those experiencing fatigue and weakened perception (Ma, Wang, & Larrañaga, 
2011). From the same authors, the necessary conditions for panic to occur include (1) a confined space 
caused by a structure, a dark environment, or being in a crowd, (2) beliefs on the potential danger, and 
(3) presence of triggers such as an earthquake or fire. 

2.3.4.2 Attachment behaviours 

The second category presents the social theories explaining the observation that individuals tend to 
seek the family members and other close relations and during threat situations. This category includes 
Attachment, Social Attachment and Social Baseline theories. 

Human beings have innate attachment behavioural systems (Bowlby_a, 1982). This motivates 
individuals to seek the proximity of significant others (attachment figures) during times of need or threat 
(Bowlby_a, 1982; Ainsworth, 1989). Attachment figures include family members, friends, pets, 
colleagues, authorities and even strangers. Objects, places, and information present within the sphere of 
social interaction are also considered as attachment figures. Non-human attachment figures evoke 
familiarity and are usually linked to a person or a fond memory. During threat, affiliation to attachment 
figures is activated. The presence of attachment figures results in providing an individual with a sense 
of security, thereby reducing stress and anxiety. Attachment therefore can regulate other emotions such 
as fear and panic by allowing individuals to focus on attachment figures. Such attachments can influence 
an individual’s decisions, destinations (goals), social interactions, and speed/direction of movement. 
This can lead to pre-evacuation behaviours that seek, protect and defend attachment figures (Adam C. , 
Danet, Thanagarjah, & Dugdale, 2016b). Attachment to a place, such as the home, invokes memories 
of safety and warmth provided, and may influence the decision to stay or evacuate during dangerous 
situations. Other examples include seeking family members, milling, herding, protecting property, 
seeking pets, helping others/strangers, etc. Table 11 presents attachment figures and possible behaviours 
during evacuations.  
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Humans fundamentally desire and maintain interpersonal attachments. However, the strength of bonds 
varies depending on the attachment figure. A person may be more strongly attached to their pet than 
their mother. The strength of emotional bonds for different relationships may also vary across cultures. 
Strong bonds are a natural result of high familiarity, which is strengthened with frequent social 
interaction (Suvilehto, Glerean, Dunba, Hari, & Nummenmaa, 2015). This familiarity facilitates faster 
perception (recognition) of attachment figures, especially from a distance, when affiliation or proximity 
seeking behaviours are activated during disasters (Liccione, et al., 2014; Mawson, 2005; Kok, Taubert, 
Burg, Rhodes, & Alais, 2017; O'Toole, et al., 2011; Barton & Corrow, 2016). Perceiving the familiars 
at some distance, or perception distance, can be through sight such as seeing facial expression, body 
language, posture, gesture, actions, signals/signs. This can also be through hearing such as voice, sound, 
calling by name, cry for help, screams or warnings. Perception is also influenced by cognitive 
representations resident in memory or acquired through knowledge (Liccione, et al., 2014). 

Table 11 Attachment figures and possible behaviours during evacuations 

Attachment figure Examples Example behaviour Source 
Person Child, spouse, 

parent, sibling, kin, 
friend, colleague, 
leader, mobility 
impaired, stranger 

Seeking, calling, checking on 
the whereabouts, following, 
leading, helping, rescuing 

(Jon, et al., 2016; Averill, et al., 2005; 
Drury, Cocking, & Reicher, 2009) 

Group Family, relatives, 
friends, colleague 

Reuniting with members, 
following group (decision, 
direction/heading), relocating to 
group’s home, herding, flocking  

(Averill, et al., 2005; Prati, Catufi, & 
Pietrantoni, 2012; Daamen W. , et al., 
2014a; D'Orazio M. , Quagliarini, 
Bernardini, & Spalazzi, 2014b) 

Object Personal property Recovering personal property (Averill, et al., 2005; Flight Safety 
Foundation, 2004; Prati, Catufi, & 
Pietrantoni, 2012; Lindell_b, et al., 
2016) 

Place Home, exits, 
entrance, pathways, 
routes, designated 
safe area, elevator 

Returning home, take familiar 
routes, head towards entrance, 
known exits/safe areas 

(Jon, et al., 2016; Prati, Catufi, & 
Pietrantoni, 2012; Averill, et al., 2005; 
D'Orazio M. , Quagliarini, Bernardini, 
& Spalazzi, 2014b) 

Animals Pets, farm animals Staying home with pets, 
evacuating with pets 

(Heath S. E., Kass, Beck, & Glickman, 
2001) 

Task Work, routine, 
driving, sleeping 

Continuing with current task, 
getting luggage before 
evacuating aircraft during 
emergency 

(Wood & Glik, 2013; D'Orazio, 
Spallazzi, Quagliarini, & Bernardini, 
2014a) 

Information News, 
announcements 

Seek from conversations, radio, 
email, social media, etc. 

(Averill, et al., 2005) 

Social attachment theory is based on Bowlby’s attachment theory and is used to explain behaviours 
specifically in disaster situations. According to Mawson, the response to a variety of threats and disasters 
is not to flee or attack but affiliation. Affiliation refers to seeking the proximity of familiar persons and 
places, even if it involves approaching or remaining in a situation of danger (Mawson, 2005). Mawson 
also states that separation from attachment figures is a greater stressor than the physical danger itself. 
Whereas the presence of familiar persons and places have a calming effect. Mawson argues that this 
may provide an explanation of several evacuation behaviours. Examples include the (1) slow reaction 
of individuals within groups to warning, (2) delay in leaving work areas, (3) waiting for social group 
members before evacuating and (4) seeking family members. 

The central ideas of the theory are: (1) the dominant motive in disasters is to maintain proximity to 
familiars, (2) flight involves the movement away from danger and towards people and places viewed as 
familiar, (3) flight-and-affiliation depends on perceived danger and social context (i. e. the location and 
activities of familiars, (4) fear is diminished by proximity to attachment figures, (5) when an individual 
is close to attachment figures, in the presence of threat, intense affiliation is triggered, and does not 
cause flight, (6) moving as a group maintains proximity during flight, (7) mild threats can induce flight-
and-affiliation behaviours when individuals are alone or with strangers. 
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According to Mawson, there are four possible outcomes of individual and collective reaction to threat 
and disaster. As presented in Table 12, (1) Top left: when attachment figures are present and the 
perceived degree of danger produces mild anxiety, affiliation is triggered producing increased 
attachment. Individuals tend to seek the proximity of familiar people and locations. (2) Bottom left: 
when attachment figures are present and the perceived danger is severe producing fear or terror, 
occasional or low-to-intense flight and affiliation is triggered resulting in orderly evacuations. (3) Top 
right: when attachment figures are absent, and the perceived danger is mild, this triggers low intensity 
flight-and-affiliation, resulting in orderly evacuation away from danger and towards the familiar, and 
(4) Bottom right: when the attachment figure is absent, and the perceived danger is high, intense flight-
and-affiliation is triggered resulting in mass panic.  

Table 12 Affiliative reactions to threat (Mawson, 2005) 

 Attachment Figures (Predisposing Conditions) 
Present Absent 

Perceived Degree 
of Danger 

(Precipitating 
conditions object) 

Mild Anxiety Affiliation (Increased 
attachment), seek the proximity of 
familiar people and locations 

Low intensity flight-and-affiliation, 
orderly evacuation away from the 
danger and towards the familiar 

Severe 
Fear/Terror 

Occasional low-to-intense flight 
and affiliation; orderly evacuation 

Intense flight-and-affiliation; mass 
panic 

Evacuation behaviours that can be explained by social attachment theory include: (1) individuals with 
close ties seeking each other and evacuating as a group, (2) movement to familiar exits and doorways 
(entrance), (3) delayed evacuation start (departure), (4) slow evacuation speeds, (5) slow reaction to 
warnings and waiting for primary group members, (6) reluctance to leave one’s home, (7) preservation 
of social organisation, (8) mutual aid and cooperation, (9) calmness during evacuations, (10) heading 
home, (11) seeking other survivors (formation of groups), and (12) reuniting with familiar people and 
surroundings (Mawson, 2005; Iliyas & Mani, 2018).  

Social baseline theory provides the neuro-scientific explanation as to why humans form social ties and 
seek proximity (Coan, 2008). Beckes and Coan believe that human brains prefer proximity to predictable 
social environments. When proximity is maintained, or re-established, the brain is less vigilant in 
detecting potential threats (Beckes & Coan, 2011). From the same authors, humans utilise social 
resources or social proximity to conserve costly cognitive resources through social regulation of emotion. 
This includes the distributing the task of detecting environmental risks across individuals within groups. 
This also results to inter-dependence in achieving goals and providing help during times of need. 

2.3.4.3 Group formation and behaviours 

Formation of groups have been observed during evacuations. If one is to follow the previously 
discussed theories on attachment, one would expect clustering or only of individuals with close 
relationships such as families or friends. It is however a common observation that groups can be 
composed of individuals with varying degrees of strength of social bond. It is even possible to have a 
group composed of complete strangers. This is inevitable especially for large disasters. Disasters 
therefore can facilitate the formation of new bonds and new attachments. This section discusses the 
social theories to explain the formation of social groups and the resulting behaviours. Group behaviour 
during disaster may be explained by social defence, self-categorisation and social identity theories. 
These theories extend social attachment theory to the level of social groups.  

Social defence theory extends Bowlby’s and Mawson’s attachment theories. Ein-dor et al. claim that 
having a mix of secure, anxious and avoidant members in a group provides unique survival advantages 
(Ein-Dor T. , Mikulincer, Doron, & Shaver, 2010). Secure individuals are good leaders and are best at 
coordinating tasks. They are however slower to react to dangers because of proximity seeking 
behaviours. Anxious individuals are fast in detecting and reacting to danger and can act as sentinels of 
groups. Avoidant individuals are accustomed to looking out for their own interests and more likely to 
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rely on self-protective flight-or-fight reactions in times of danger. Primarily motivated to save 
themselves, they are first to open exits, break windows and can find routes for other group members to 
follow. This theory may help to explain the different behaviours found in a in group of individuals. 

Self-categorisation theory refers to the process when a person categorises himself or herself as an 
individual or a group member. This involves the process of de-personalisation where the individual 
stereotypes themselves in line with the group. This process of self-categorisation as a group member 
makes crowd behaviour possible (Turner & Killian, 1987). This results to two types of crowds. A 
physical crowd of individuals that shares only physical location, and a psychological crowd where 
people act together. Social behaviour observed in emergencies is a consequence of emergent self-
categorisation rather than a function of pre-existing bonds, prior interpersonal relationships or 
interactions (Daamen W. , et al., 2014b; Drury, Cocking, & Reicher, 2008). From the same study, this 
makes individuals transition and adapt to become part of a psychological crowd useful in surviving mass 
emergencies and disasters. This differs from social-defence theory in that self-categorisation theory 
focuses on a person identifying with a group rather than characteristics of individuals in a group. 

Social identity theory corrects the limitation of social attachment theory in explaining the behaviour 
with unfamiliar people, objects and strangers. Social attachment theory suggests that people may display 
panic behaviour when with strangers. This is contrary to the observed helping behaviour among 
strangers during disasters (Drury, Cocking, & Reicher, 2009). Social identity theory accounts for the 
development of bonds between strangers in unfamiliar places precipitated by events. Shared social 
identity increases supportive behaviour and coordination during emergency situations. Helping 
behaviour towards strangers, such as aiding the elderly and injured individuals or rescuing people under 
rubble can be explained by social identity theory. 

A summary table of the theories is presented in Table 13. It can be concluded in this section that social 
interactions facilitated by attachment can influence evacuation behaviour during disasters and crisis 
events. Cocking et al. identify that the strength of social attachment theory over the panic model is its 
emphasis on the maintenance of social bonds and the co-operative nature of groups during disasters 
(Cocking, Drury, & Reicher, 2007). Cocking and colleagues however identified two main drawbacks: 
(1) the pessimistic implications for large groups as it is more difficult to ensure safe evacuation of all 
group members; and (2) it discounts the possibility of developing attachment bonds and eventual co-
operation between strangers. 

Table 13 Social theories 

Category Theory Idea Behaviour Source 
Popular 
Notions 

Normative Social norms and bonds 
persist during disasters, social 
structure is retained 

Normal, helping, 
cooperation 

(Chu, Pan, & Law, 
2011) 

Emergent Norm Dissolution or suspension of 
existing norms, creation of 
new norms (non-traditional) 
from social interaction 

Non-traditional/Illogical (Aguirre & Wenger, 
1998) 

Panic Breakdown of existing bonds 
and norms (social and 
cultural) 

Herding, irrational, selfish, 
disorderly and competitive 

(Mawson, 2005; Ma, 
Wang, & Larrañaga, 
2011; Helbing & 
Johansson, 2013; 
Strauss, 1944; Drury, 
Cocking, & Reicher, 
2008) 

Attachment 
Behaviour 

Attachment Bond formation from 
childhood developed towards 
adult life  

Proximity seeking (Bowlby, 1982; 
Mikulincer & Shaver, 
2007) 

Social 
attachment 

Activation of attachment 
bonds during threat 

Proximity seeking, 
cooperation 

(Mawson, 2005) 
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Social baseline Instinctive development of 
social bonds to maximise 
social resources and 
distribution of risk 

Proximity seeking, 
cooperation, sentinel 

(Sivers I. v., et al., 
2016; Tajfel & Turner, 
1986) 

Group 
Behaviour 

Social defence Variation in attachment styles 
between groups is optimal to 
ensure survival during 
disaster 

Leadership, cooperation, 
sentinel, anxious 

(Ein-Dor T. , 
Mikulincer, Doron, & 
Shaver, 2010) 

Self -
categorisation 

Individuals transition to 
become members of the 
psychological crowd, shared 
fate 

Cooperation (Turner & M, 1987) 

Social identity Development of bonds 
between strangers in 
unfamiliar locations and 
disaster situations 

Helping (Sivers I. v., et al., 
2016; Tajfel & Turner, 
1986; Drury, Cocking, 
& Reicher, 2009) 

2.4  Summary of the chapter  

This chapter described the seismic crisis environment with respect to the physical environment and 
social aspects. The physical aspect presented earthquakes as a hazard and how it affects exposed 
structures and individuals. Risk is described by the intensity of the earthquake hazard, exposure and 
vulnerability. The social aspect described how people are affected and behave during crisis. Social 
theories were presented to explain these behaviours. Social attachment theory was described as the 
underlying framework that govern social interactions during disasters. 

As a final analysis, the underlying behaviour for social interactions can be attributed to social attachment 
theory. Feeling of safety when with attachment figures and therefore the activation of proximity seeking 
behaviours is towards familiars is core to the theory. Familiarity is driven by strong social bonds present 
in existing relationships or weak social bonds that are formed dynamically and in-situ by the disaster 
context (through the formation of new social identities via self-categorisation). New attachment figures 
can be formed on-the-fly with non-familiars and this can accommodate strangers. The motivations for 
the behaviours of seeking safety are explained by social baseline and social defence theories. Individual 
conduct during disasters such as observance or existing norms are explained by normative theories, or 
through new norms of behaviour as explained by emergent norm theory.  

The main benefit of using social attachment is its possible usefulness in modelling. The emphasis on 
attachment figures, highlights the social nature of evacuation behaviours as reported from literature. The 
theory provides the answers to the question why people evacuate. It lays out the main motivations for 
crisis behaviour. These include actions or goals. Individuals moving or heading towards goals points to 
the sensitivity of evacuation to spatial elements present in the crisis environment. With these explanatory 
elements, social attachment theory is suitable for modelling pedestrian evacuation behaviour especially 
on large spatial scales such as large communities like cities. The next chapter is about the state of the 
art of modelling evacuation behaviour. 
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CHAPTER 3. STATE OF THE ART 
Pedestrian evacuation models require accurate representations of crisis environments and realistic 

social interactions. This chapter presents a state of the art in the realistic modelling of pedestrian 
evacuation during earthquake crisis scenarios. The chapter is divided into four sections. The first is a 
brief note and introduction on pedestrian models. The second section focuses on the use of 
geoinformation in the development of realistic spatial models of earthquake crisis environments. This 
section focuses on the strengths of GIS in creating synthetic spatial environments and populations. The 
section also identifies the weaknesses of GIS particularly the handling of time, which is an outstanding 
area of concern for improvement in the context of dynamic crisis modelling. The third section presents 
the developments in realistic multi agent-based modelling of human behaviour during crisis evacuations. 
This section presents models and social simulations applied to evacuations. The chapter ends in the 
fourth section with a short conclusion. 

3.1  Pedestrian evacuation models 

Pedestrian evacuation is the situation where individuals or groups travel on foot, by walking or 
running from areas of danger to safer areas. This has been main mode of evacuation especially during 
the start and the first few minutes of sudden onset events such as earthquakes. Movement is usually 
from indoor locations towards outdoor open areas considered safe from debris and damage. Pedestrians 
have more flexibility in moving to different locations, especially when travelling by car is not feasible 
(FHWA, 2018). The study of pedestrian models is critical in the development of evacuation scenarios. 
Determining the fastest routes, or the nearest safe areas for people to seek shelter, is important to 
everyone, especially to decision makers and planners. Lessening the amount of time needed for 
individuals to reach safe areas is the desired outcome of evacuation plans. The more lives saved, within 
the least time possible, the more effective the plan. Plans can focus on enhancing mobility of populations 
in urban spaces by ensuring accessibility of evacuation routes and safe areas. Pedestrian evacuation 
models can also be useful in preparing for actual evacuations by anticipating challenges learned from 
models (Gaire, Song, Christensen, Sharifi, & Chen, 2018).  

Making evacuations faster and efficient is the focus of evacuation studies. Understanding the causes of 
delays is crucial. In the context of crowd dynamics in pedestrian evacuations, this requires the 
appreciation of the complementary interplay between the natural and social environments (Sieben, 
Schumann, & Seyfried, 2017). Physically based models consider pedestrians as particles. Social models 
consider pedestrians as individuals with cognitive and social abilities. 

To quantify evacuation delays, current evacuation strategies concentrate on the physical and spatial 
aspects of natural environments such as (1) evacuation time, (2) evacuation routes (best, fastest, shortest), 
(3) effectiveness of building layouts, (4) availability and placement of exits, (5) placement of guidance 
or information aids or alarms, and (6) effects of barriers, etc.  

Social aspects studied in evacuation models include the effect of egress speeds and behaviour of people, 
as individuals or groups. The speed adopted for movement in current models however is usually the 
speed of able-bodied individuals. Movement speed depends on individual characteristics when a person 
is alone. When embedded in a group, individuals adjust their speeds with respect to group members, 
especially when in the company of mobility challenged individuals (Frydenlund, Elzie, Collins, & 
Robinson, 2014). A decrease in walking speed is also observed with increasing group size (Moussaid, 
Perozo, Garnier, Helbing, & Theraulaz, 2010). Also, from Moussaid et al. (2010), dynamic social 
interactions, when present, also affect the physical organisation or configuration of groups or crowds. 
This can likewise affect the speed of evacuations. Increases in the size of social groups in a crowd 
likewise lengthens egress time (Bode, Holl, Mehner, & Seyfried, 2015). Bode et al. in their crowd egress 
experiments that presence of social groups increased the average egress time of individuals (Bode, Holl, 
Mehner, & Seyfried, 2015). Other findings in Bode et al.’s study are: (a) individuals in social groups 
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took longer to show movement response, (b) groups took longer to move towards exit zone, and (c) 
social groups followed longer paths towards exits. Krüchten and Shadschneider also had a similar 
finding and concluded that even with the initial benefit of order and compactness in movement, groups 
with cooperative behaviour are slower to evacuate (Krüchten & Schadschneider, 2017). Lastly Bode et 
al. conclude that social groups can affect the pre-movement time and movement time of evacuating 
individuals (Bode, Holl, Mehner, & Seyfried, 2015).  

The realistic modelling of pedestrian crowds requires the considerations imposed by different scales 
(Kneidl, Hartmann, & Borrman, 2012). According to Kneidl et al. (2012), in addition to behavioural 
aspects, movement on the short-scale and human navigation on the large-scale also needs to be modelled 
properly. Different scales define different levels of analysis. The scales are categorised as micro, meso, 
and macro scales. For pedestrian evacuation simulations, the relevance of scale in different contexts are 
presented in Table 14.  

Table 14 Variations in scale in modelling pedestrian evacuation simulations 

Domain Micro Meso Macro Source 
Perspective Local  Global (Nasi, 2013) 
Pedestrian 
simulation 

Individual 
pedestrian and 
Interactions 

Individual pedestrian, 
simplified dynamics 
and flow 

Pedestrian flow (Kormanova, 2013) 

Pedestrian 
simulation 
problems 

Consider each 
individual, can 
control different 
parameters related 
to dynamics (e.g. 
velocity) 

Consider individuals 
but not individual 
interactions b/w them 

Focus on problem of space 
allocation for individuals 
(e.g. mean velocity, linear 
momentum, density, flow, 
kinetic energy) 

(Martinez-Gil, Lozano, 
Garcia-Fernandez, & 
Fernandez, 2017) 

Evacuation Each individual at 
risk, detailed 
representation of 
evacuation routes 

Between micro and 
macro; lumped 
parameters; 
evacuation time based 
on capacity of 
evacuation routes, 
geographical basis 

Estimate evacuation times 
based on key parameters 
(e.g. lumped population 
groups, distance to nearest 
shelter or higher ground, 
evacuation route, average 
evacuation speed.  

(Lumbroso, et al., 2010) 

Evacuation Detailed 
evacuation 
planning 

Detailed evacuation 
planning 

First order estimates of 
evacuation times for 
relatively large areas. 

(Lumbroso, et al., 2010) 

Models Cellular automata, 
social force, 
velocity-based, 
discrete choice, 
lattice gas 

 Hughes model, Jiang et al. (Martinez-Gil, Lozano, 
Garcia-Fernandez, & 
Fernandez, 2017; Liu, 
Zeng, Chen, & Wu, 
2017) 

Models Every pedestrian 
is considered as 
an individual. 

Aggregation of 
several pedestrians in 
a region (e.g. room, 
hall, railway platform)  

See crowd as a continuum 
medium characterised by 
averaged quantities 
(velocity, mean velocity) 

(Twarogowska, Goatin, 
& Duvigneau, 2014; 
Teknomo, Takeyama, & 
Inamura, 2010; Teknomo 
& Gerilla, 2008) 

The model scale used in simulations depends on the domain or parameter investigated. Microscopic 
models describe individuals and interactions (Kormanova, 2013). Macroscopic models produce 
pedestrian flows, and human interaction is not closely studied (Kormanova, 2013). In macroscopic 
models, crowds are seen as a continuum characterized by averaged quantities (e.g. density, mean 
velocity) (Twarogowska, Goatin, & Duvigneau, 2014). Macroscopic models are concerned with 
emergent phenomena, such as the emergence of crowds. Mesoscopic models combine aspects of 
microscopic and macroscopic models and therefore, (a) can handle individuals, (b) includes 
simplifications of dynamics and, (c) requires less data (Kormanova, 2013). Microscopic models have 
high granularity or detail and require longer computation times. The benefit of macroscopic models, 
according to Kormanova, is the speed of the simulations, which require less computation time. Several 
studies have proposed hybrid methods, which enable transitions between scales to produce more realism 
in models. 
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Being built from the ground up, the microscopic scale is ideal for observing emergent properties of 
complex systems. The benefit of having a microscopic model at the scale of an individual is having the 
ability to precisely define and specify characteristics of the primary actors, who are the human 
individuals, in pedestrian evacuations. Also, having the crisis environment modelled from the 
perspective of an individual, or how one will possibly see or experience it in reality, provides the benefit 
of being able to test spatial and social configuration that are familiar to planners and stakeholders. The 
results or emerging dynamics from the models would likewise be relatable, easy to understand, or 
surprising results easier to accept. Aggregation is also possible from the micro to the meso and macro 
scales (Crooks, Castle, & Batty, 2007). The reverse, or disaggregation, from the macro, to meso, then 
to micro however is not possible. 

In this work, we consider spatial, social and temporal aspects. Simulations using agent-based models 
benefit from the dynamic transitioning between scales. Agents can be developed at the micro scale, but 
agent interactions happen in at the meso and micro scales. Emergent properties manifest at the 
aggregation of scales. Emergence is the set of unexpected behaviours that result from the interaction 
between different components of the environment (Johnson C. W., 2006). 

Detailed empirical observations of pedestrian evacuations have been reported in several studies. The 
studies included the pre-evacuation behaviours, and the associated delay time for each action, and modes 
of movement (e. g. walk, run, assisted). They can be used in the calibration of models and development 
of scenarios. Example are for indoor and outdoor scenarios. These studies are detailed in Table 15. 

Table 15 Behaviour and time studies (Delay) 

Domain Collection method Behaviours Delay 
time 

Modes of 
Movement 

Source 

Earthquake Annotated video tapes Yes Yes Yes (Zhou_b, et al., 2018) 
Earthquake Annotated video tapes Yes   (D'Orazio M. , 

Quagliarini, Bernardini, 
& Spallazi, 2014b) 

Fire Fire investigation, 
unannounced drill, 
experiments 

Yes Yes Yes (Shi, Xie, Cheng, Zhou, 
& Zhang, 2009) 

Fire, Drill, 
WTC 

Derived from other studies,  Yes Yes Yes (Fahy & Proulx, 2001) 

Various 
Contexts 

Experiments, drills, 
compiled from other studies 

Yes Yes Yes (Peacock, Kuligowski, 
& Averill, 2011) 

The study of pedestrian evacuation and its dynamics is a young and a growing field. In 2011, Averill 
outlined five grand challenges for the field. These include (1) developing and validating a 
comprehensive theory that can predict human behaviour during pedestrian evacuations, (2) building a 
comprehensive database of actual emergency data, (3) accept and embrace variance due the inherent 
stochasticity of pedestrian movement and evacuations, (4) integrate results of indoor evacuation models 
with fire models for more accuracy and reliable design of models, and (5) accept and embrace 
technology that improve people’s movement, situational awareness, and egress pathways in evacuations 
(Averill J. D., 2011). 

The spatial aspects of crisis environments are discussed in the next section. 

3.2  Geographic information and spatial models of crisis environments  

3.2.1 Geoinformation, GIScience, GISystems (GIS)  

Geographical information or geoinformation refers to the information on the surface or near the 
surface of the earth. At the core of geoinformation is location. Location can be the common attribute 
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that can be used to link seemingly unrelated objects or information. To illustrate, a building for example 
can have data on coordinates, address, land use, property valuation, soil type, risk zonation (e.g. 
earthquake, crime, health risk, pollution), service area (e.g. for utilities, delivery service, cellular service, 
transportation routes), distance and travel times to (e.g. road, school, hospital, work, safe zone), etc. An 
individual can likewise be linked to the location of this building based on activity (e.g. residence, work, 
etc.). 

Popular geoinformation technologies used in daily life, especially for navigation, are maps, global 
positioning system (GPS) receivers, geographic information systems (GIS), and remote sensing. 
Goodchild defines geographic information science, or GIScience, as “that branch of information science 
that deals with the geographical domain” (Goodchild M. F., 2011). He further clarifies the definition by 
stating that, it deals with “the set of fundamental scientific questions raised by geographic information 
and the technologies that collect, manipulate and communicate it.” Also, Goodchild, defines geographic 
information systems as the computer system that performs operations on geographical data. This 
includes acquisition, compilation, display, analysis and modelling, sharing and archiving. 

3.2.2 Utility of geoinformation and GIS for risk and crisis research 

Precision and faithful representations or modelling of crisis environments is a requisite to gaining 
optimum appraisals of risk. For pedestrian evacuation models in particular, with the focus on human 
life, the required degree of precision and detail is high. The elements of risk need to be in the correct 
spatial and temporal contexts. These contexts include spatial configurations or dimensions, shapes, 
heights, distances, elevations, temporal variations, and other characteristics of elements of the 
environment. Building the accurate contexts into risk or disaster models however requires a multitude 
of data from across several domains (van Westen & Geordiadou, 2001).  

Use of geospatial technologies for disaster management is increasing (Abdalla & Li, 2010). According 
to Abdalla and Li, this is due to the following reasons: (1) increasing accessibility of data and technology, 
(2) reliability and effectiveness in providing accurate models or real-world phenomena, (3) ability to 
embed information from different sources, (4) effectiveness in generating knowledge and (5) decision 
aid support.  

GIS has been used in several studies to define accurate spatial models of seismic crisis environment 
scenarios using real geographic data (Hori, et al., 2018 ; Abdalla & Li, 2010; Saputra, et al., 2017 ). A 
clear analytical definition of vulnerability is crucial (Section 2.1), as this allows for the easy 
implementation in a GIS environment (Giovinazzi & Lagomarsino, 2004). Hazard and vulnerability data 
can be used for the (1) development of damage scenarios, (2) consequences on buildings and people, 
and (3) evaluation of economic loss. Damage and loss scenarios are powerful tools in the design of 
efficient seismic mitigation policies, GIS also becomes a useful policy instrument (Senouci, Bard, Farsi, 
& Beck, 2013). Applications of GIS, related to large scale (urban) earthquakes include (1) seismic 
microzonation8 and site effects, (2) macrozonation9, (3) macroseismic10 vulnerability assessments, (4) 

                                                
8 Seismic microzonation is sub dividing a region into smaller areas having different potential for hazardous effects 
(Gupta & Zafar, 2016). Further from Gupta and Zafar, the effects of earthquakes depend on ground 
geomorphological attributes, which consist of geological, geomorphology and geotechnical information. 
According to Stéphane Cartier, “the scientific characterization of seismic micro-zones enables the definition of 
more precise rules for building and urban planning” (Cartier, 2007). Seismic microzonation requires input from 
civil engineering and engineering geology, in particular, from the field of geotechnical engineering (Mihalic, 
Ostric, & Krkac, 2011). Micro zonation is usually carried out or cities and urban centres (Anbazhagan, 2013). 
9  Macrozonation is carried out considering seismicity, geology without considering geotechnical aspects 
(Anbazhagan, 2013). Seismic macrozonation maps are based on regional characterisation of earthquake hazards 
at smaller scales (Mihalic, Ostric, & Krkac, 2011). Generally done, at the scale of a large region such as a district, 
state or country. 
10 Macroseismic, in this context, is the adjective used to describe methodologies that identify with the European 
Macroseismic Scale (Bernardini, Giovinazzi, Lagomarsino, & Parodi, 2007).  
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damage assessments, (5) design of evacuation plans, and (6) shelter location-allocation problems (Riedel, 
Guéguen, & Dunand, 2014; Riedel I. , et al., 2014; Coutinho-Rodrigues, Natividade-Jesus, & Sousa, 
2015; Glatron & Beck, 2008; Zhao, Coates, & Xu, 2017; Nwe & Tun, 2016; Saputra, et al., 2017 ; Hori, 
et al., 2018 ; Nath & Thingbaijam, 2009; Zhao, et al., 2017) (Rezaie & Panahi, 2015).   

A very good example of spatial modelling with GIS for seismic crisis in the urban context is the work 
of Hori et al., 2018. They developed the integrated earthquake simulation (IES) to analyse processes 
related to earthquake hazard and disaster for a Tokyo Metropolis test site (Hori, et al., 2018 ). Fragility 
or vulnerability curves and finite element methods were used to define and generate hazard scenarios 
using GIS buildings and soils data. Use of high-performance computing facilities was necessary to run 
the simulation for a 10 km x 10 km test area. The K computer, Japan’s supercomputer was used in the 
calculations. The authors plan to extend IES as a base for generating social simulations of evacuations. 

For pedestrian city scale evacuation with GIS, a very good example is the work of Shimura and 
Yamamoto, 2014. The authors used multi-objective genetic algorithms to optimize the determination of 
optimal evacuation routes during earthquake disasters (Shimura & Yamamoto, 2014). Evacuation is 
evaluated over road network vectors polyline shapefiles. Destination evacuation sites are polygons. 
Other layers in the model are building footprints and parks. Daytime and night time populations in roads 
were considered. Population data was generated from several census statistics. Also considered in their 
study are dynamic conditions that can affect evacuations. The events considered are debris blocking 
streets and fire. The adopted methodology was an attempt for a quantitative, objective and more realistic 
approach in the determination of evacuation routes in earthquake evacuation plans.  

GIS has also been utilized in the study of affected populations of earthquake disasters. One area is the 
visualisation and analysis of patterns of post disaster displacements. Tracking displaced individuals has 
been done using (1) anonymized geo-located mobile phone records and (2) cell tower mobile traffic data 
(ACAPS, 2013; Bengtsson, Lu, Thorson, Garfield, & Scheeb, 2011; Wilson, et al., 2016; Sekimoto, 
2013). Movement data collected from SIM cards and GPS coordinates from mobile devices can be used 
to estimate the magnitude, distribution and trends in population displacement (Bengtsson, Lu, Thorson, 
Garfield, & Scheeb, 2011; Kawahata, Mizuno, & Ishii, 2017; Song, Zhang, Sekimoto, & Horanont, 
2013).  

Mobility of populations in built and open spaces during earthquake disasters can define exposure to risk 
posed by damage. GIS has been used in modelling population exposure to risk with respect to daily and 
seasonal variations in building occupancy (Robinson, et al., 2018). Daytime and night time indoor 
populations of residential and non-residential buildings differ and this was found to affect projections 
of population loss during possible earthquakes (Robinson, et al., 2018; Ara S. , 2013; Wood, Ratliff, 
Schelling, & Weaver, 2014; Ara S. , 2014). For disaster research, the representation of the population at 
any point in time of a day is very important (Harland, Birkin, & Martin, 2014). Exposure of populations 
to earthquakes, especially for outdoor environments, can be potentially derived from origin-destination, 
household-travel, or activity surveys (Chapleau & Morency, 2005; Singh, 2005). The very fine temporal 
resolution or time slices in these surveys are normally hourly intervals for an entire day. This is very 
useful in establishing the location of populations with high precision at very specific periods within the 
day. This allows for the creation very fine population exposure and loss models. Different scenarios can 
be defined based on  hourly mobility and therefore account for time related variations in population 
densities. This can complement the limitation of population census survey data, which normally feature 
only a static snapshot of household populations. They can only be used to represent night time estimates 
of residential populations indoors (Harland, Birkin, & Martin, 2014; Batista e Silva & Poelman, 2016). 

Synthetic populations are usually generated for use in microscopic models and microsimulations of 
urban areas (Farooq, Bierlaire, Hurbubia, & Flötteöd, 2013; Philips, Clarke, & Watling, 2017). Synthetic 
populations are necessary to address data limitations especially due to privacy restrictions. Populations 
are based on data from census, activity surveys or household travel surveys. GIS has been used to define 
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the spatial distribution and locations with respect to daily activity and linked land use (McBride, Davis, 
Lee, & Goulias, 2016). A toolkit has been developed by Kevin et al. for generating spatially explicit 
synthetic populations (Chapuis, Taillandier, Renaud, & Drogoul, 2018). It works directly with GIS data 
and can produce synthetic populations at varying spatial scales with acceptable realism. The tool is 
promising and can be very useful for fine grained pedestrian evacuation microsimulations. 

3.2.3 Limitations of GIS  

The power of GIS is its ability to create accurate representation of the real world (Goodchild M. , 
2005). However, GIS is traditionally static. Spatial information has been collected and processed as 
snapshots of phenomena. Much of the focus of development and use in GIS has been on the spatial 
aspect at the expense of the temporal dimension (Brown, Riolo, Robinson, North, & Rand, 2005). It is 
not fully capable of handling time or complex dynamic temporal information. One strategy that can be 
adopted to address this limitation has been to include time as an additional attribute to layers. This makes 
spatio-temporal visualisations possible, and to some extent, geosimulations11 of complex phenomena 
(Marceau & Beneson, 2011). The issue about handling time in GIS can be resolved as the technology 
progresses.  

Gahegan, in his critique of GIS, said that the research focused on GIS and time has revolved around 
providing temporality for objects (Gahegan, 2017). Further he stressed that current GIScience ontology 
favoured the primacy of objects rather than process. He pointed out that when GIS is able to represent 
processes that give rise to objects, or simulate processes acting on objects, GIS will be a more powerful 
modelling environment for complex and dynamic systems. An example of an ideal GIS, according to 
Gahegan, is one that integrates physically based and socially based models.  

Another limitation of GIS, also owing to its static heritage, is that it lacks operators that explicitly 
describe the movement of features (Brown, Riolo, Robinson, North, & Rand, 2005). This is a problem 
especially for dynamic microscopic pedestrian evacuation models, where navigation of space is 
important in the realistic evaluation (Hussein, 2016). When fine scales are used in modelling, where 
streets, buildings, and parcels of property, questions on local dynamics of movement become more 
significant than location (Batty, 2003). In this context, according to Batty, geometry becomes key, and 
together with dynamics, this poses important challenges for GIS. This is a concern as the way geometry 
is handled with movement has not been a focus of spatial analysis. Dynamics is the Achilles heel of 
geography and GIS (Batty, 2003). 

Another great issue is the apparent lack of GIS data. For example, generally there is insufficient data 
related to seismic vulnerability at the urban scale (Senouci, Beck, Farsi, & Cartier, 2018). There are 
many issues on GIS data that are becoming part of general public concern. Issues include: (a) availability, 
(c) quality, (d) completeness, (e) reliability, (f) rights, and (g) privacy. On the technical side, these are 
(a) collection, (b) models, (c) methodologies, (d) algorithms, (e) technical infrastructures. In the context 
of crisis, the issues in GIS are: (a) immediacy, (b) relevancy, and (c) sharing (Cai, Sharma, MacEachren, 
& Brewer, 2006). Many of these issues are being addressed and some progress is being made as 
technologies and policies on data improve. The efforts to share geospatial data in open formats and the 
use of open platforms can help resolving this problem of data for disasters (Poorazizi, Hunter, & 
Steiniger, 2015; Goetz & Zipf, 2012).  

                                                
11 Geosimulation is a simulation methodology with explicit attention to space and geography (Benenson & Torrens, 
2004). According to Benenson and Torrens, with geosimulations, urban systems are considered as aggregations of 
spatially non-modifiable elements, or objects at atomic resolutions (i.e. people as individuals, buildings, etc.). 
Directly quoting the same authors "geosimulation models concentrate on the collective outcomes of interactive 
behavior, treating observed patterns and phenomena at above-individual levels of urban hierarchy as emergent”. 
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There is however an inherent problem in how GIS data is collected, still, with respect to time. Most 
collection campaigns or activities record or collect snapshots of phenomena. What still remains to be 
seen, especially in the context of disasters, are full recordings or continuous collections of data about 
phenomena, as they happen, and during the entirety of a phenomena’s occurrence. In particular, data 
with high fidelity and fine temporal and spatial resolutions are needed for disaster events. Availability 
of this data, impacts modelling and most importantly the validation of results from dynamic models. 
Data points from current geographic data might be not be enough to fully develop and validate models 
and evaluate results of dynamic simulations. 

Agent based modelling and pedestrian simulations are discussed in the next section. 

3.3  Agent based models  

3.3.1 Agent based modelling, social simulation, pedestrian simulation 

A computational agent is a discrete entity defined in terms of its attributes and behaviours. 
Wooldridge and Jennings describe agents to be autonomous, operating without direct human 
intervention, having social ability (i.e. interacts with other agents), able to perceive and respond to their 
environment, and exhibiting goal directed behaviour (Wooldridge & Jennings, 1995). Gilbert and 
Troitzsch add that agents can be constructed to simulate some simplified aspects of human intentions 
which can include beliefs, desires, motives and emotions (Gilbert & Troitzsch, 2005). Multi-agent 
systems (MAS) allow heterogeneous agents to cooperate according to complex modes of interaction 
(Ferber, 2007). MAS have been used to investigate several phenomena and have proven to be a powerful 
tool for modelling in the social sciences and other related fields (Kravari & Bassiliades, 2015).  

Agent based models are good examples of process models which make use of sophisticated 
representations of time and behaviour (Brown, Riolo, Robinson, North, & Rand, 2005). However, 
according to Brown et al., process models have traditionally been implemented at the expense of 
sophisticated representations of space and spatial relationships. Current developments show agent-based 
models and tools are now being been integrated with GIS (Drogoul, et al., 2013; Taillandier, Amoroux, 
& Drogoul, 2010; Amoroux, Chu, Boucher, & Drogoul, 2007; Daudé, et al., 2019). This integration 
gives modellers the ability to link agents to actual geographic locations (Crooks A. T., 2006). According 
to Brown et al., the “rich temporal representations of agent-based models complement the spatial data 
representations of GIS” (Brown, Riolo, Robinson, North, & Rand, 2005). However, on the integration 
of GIS, Crooks and Castle noted the following issues: (1) quoting Gilbert, the integration is still a 
difficult process (Gilbert N. , 2007); (2) many considerations on data in particular the type, how to use, 
and how agents would interact with the data, and (3) large computational overhead when dealing with 
thousands of agents interacting with vector and raster features (Crooks & Castle, 2012). 

Among the MAS architectures, a belief, desire, and intention (BDI) approach is ideal for modelling 
people (Adam & Gaudou, 2016). From Adam and Gaudou, BDI attempts to capture the common 
understanding of how humans reason with: beliefs which represent knowledge of the environment and 
the agent’s self or internal state, desires or the goals the individual decides to achieve, and the intentions 
which describe a set or sequence of steps needed to achieve the determined goals. Still from the same 
authors, BDI architecture allows an agent to err. BDI enables agents to have  subjective representations 
of the environment in terms of beliefs that can be incomplete, flawed or different from other agents. 
Also, agents can communicate and reason with other agents, have the ability to explain behaviours, 
exhibit emotion, able to internalise norms, and capable of making independent decisions. 

3.3.2 Social simulation of evacuations  

Agent based modelling has been useful in modelling complex and dynamic systems. According to 
Crooks et al., ABM is fast becoming a dominant paradigm in social simulation (Crooks, Castle, & Batty, 



 

 54 

2007). Social simulations deal with the modelling of large populations of synthetic agents that represent 
humans or groups of humans. The entities that are modelled are ideally equipped with attributes and 
behaviours that representative real humans in the scenarios being modelled (Balke & Gilbert, 2014). In 
order to increase the accuracy of social simulations, models need to be as close as possible to reality 
(Bourgais, Taillandier, & Vercouter, 2018). This requires giving the agents social features. 

Agent based models have been implemented to simulate human social behaviour during evacuations. 
Some of the models are implemented guided by data from observations and surveys. Social theories are 
often not explicitly stated. The succeeding paragraphs describe different models and the social theories 
used to model agent evacuation behaviour. The models are likewise evaluated with respect their level 
of use of attachment and social attachment theory either explicitly or implicitly. To do this the following 
indicators are sought: (1) mention of social relationships, (2) existence of social groups, (3) affiliation 
and proximity seeking behaviours towards familiars or attachment figures during danger. 

3.3.2.1 Social force model  

The social force model (SFM) from Helbing et al. is a very popular model for pedestrian behaviour 
during panic and normal situations (Helbing D. , Farkas, Molnar, & Vicsek, 2002). In the social force 
model, pedestrians are modelled as particles, with motion governed by laws akin to and conforming to 
Newtonian laws of physics. Helbing et al. define social forces which can be repulsive or attractive forces, 
similar to relationships between human agents and human with their environment. Notable parameters 
in the model for normal situation include: (1) a “territorial effect” which is a repulsive force that 
maintains the distance between pedestrians. This territorial effect is defined by the strength of interaction 
and repulsive interactions which are culture dependent. (2) A social force for attractive interactions 
towards objects such as window displays, and a (3) social force for joining behaviour, such as for 
families, friends or tourist groups. This parameter makes sure that individuals in a social group re-join 
the group when separated by other pedestrians. This parameter can be seen as analogous to the close 
bonds between family members, friends or the pull of a safe area. The panic situation is governed by 
another equation. Social forces for panic situations include the (1) physical interaction forces which are 
defined by a body force and sliding friction force, and (2) repulsion to boundaries or walls and other 
obstacles.  

The model is commonly used for indoor scenarios especially along narrow pathways and bottlenecks. 
It is often used as a base model and modified to suit the objectives of other studies. Simulation results 
of Helbing et al. replicated several empirical observations of scenarios. For normal situations, they were 
able to replicate (1) lane formation, (2) oscillations at bottlenecks, (3) dynamics at intersections. For 
panic situations, the model replicated (1) freezing by heating effect, (2) transitioning to incoordination 
due to clogging, (3) faster is slower effect due to impatience, (3) phantom panics, and (4) ignorance of 
available exits. Simulation results according to the authors suggest that the optimal behaviour during 
escape situations is a suitable mixture of individualistic and herding behaviour. 

With respect to social attachment theory, SFM has provision for social bonds of social groups in the 
joining behaviour parameter. However, the discussion on the social force parameters is very general, 
and needs further clarification. Some examples of points to be clarified are (1) the definition of bond 
strength with respect to social relationships, (2) the social contexts in which attraction or repulsion is 
activated, or (3) how to quantify parameters such as the effect of culture. Also, the SFM is not able to 
explain the social factors and motivations for movement. Other than panic, the attraction forces were 
not supported with other social theories. The pedestrian agents are also non-cognitive with only the 
binary choices of attraction or repulsion. The modelled moment is during evacuation or egress, no pre-
evacuation behaviours are defined. The social forces however, as used in the paper are applied to explain 
behaviours and flow of individuals in indoor, narrow passageways and bottle necks. It is not stated how 
the model will be applied with respect to evacuation in large open spaces. 
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3.3.2.2 Roan’s model  

Roan developed an agent-based simulation model based on the study of human behaviour from fire 
investigation reports (Roan, 2013). The work demonstrated panic and to some extent emergent norm 
theories by simulating trampling during stampedes. The simulation is a grid-based agent base model. 
For agent navigation it used A* shortest path search and the Primary Queue Flood fill algorithms. 
Pedestrian were only categorised based on age as child, adult and elderly. No social relationships were 
defined to avoid complexity of behaviour and modelling methods. Other agents are door and fire/smoke. 
The model was used to recreate and test indoor fire scenarios from previous deadly fire events. These 
are the (1) Gothenburg dance hall, (2) Rhode Island nightclub and (3) Helmet chicken processing plant. 
Strategies of agents tested included (1) evacuating through main exits, (2) communicating with others 
after noticing fire; panic behaviour starts in some agents, (3) evacuating through windows, (4) finding 
shelter, (5) search for alternative routes, and (6) escape from fire or smoke. To validate the results, 
casualty statistics from the model were compared with the casualty reports from the fires and a 
visualisation of the location of deaths in the simulated spaces. Some level of agreement was achieved 
between model results and fire report with respect to the number of deaths, injuries and location of 
deaths (e.g. main exit, hallways). 

Roan’s model is a good example of the application of panic for fire events that occur in enclosed and 
unfamiliar locations. In these events, panic is usually used to describe people’s reactions. The main 
strategy to survive is to head for the nearest exit, which unfortunately, causes more deaths due to 
stampedes and trapping. People usually seek to exit through the door from which they entered. Not 
considering to include social groups, in the model, may seem appropriate, in the context of considering 
only panic as the main influence of behaviour. Panic implies the breakdown of social structure or social 
norms. Also, in considering the chaotic physical environment of occupants during fires, it might be 
difficult to identify and seek others due to the dark environment or presence of smoke. However, for 
social gatherings and venues, people of the same social groups normally stay in one location. Adding 
social attachment in the model can make it more realistic. 

3.3.2.3 Earthquake Pedestrian Evacuation Simulation (EPES)  

Earthquake Pedestrian Evacuation Simulation (EPES) model pedestrian (children, adult and 
disabled) behaviour during an earthquake (D'Orazio M. , Quagliarini, Bernardini, & Spallazi, 2014b). 
The model implements a modified version of Helbing’s social force model to include the behaviours 
derived by the authors from the study of evacuation video tapes. The social force model is modified by 
the authors to reflect panic and evacuation conditions during an earthquake. Herding and collision 
avoidance are replicated in the model. The combination of ABM architecture and social force approach 
is seen to produce more realistic simulations. Social attachment is implemented through the bonds that 
maintain cohesion in pedestrian groups (clans), and the attraction to safe areas. Social attachment theory 
here is not directly or fully implemented but can be considered as implied.  

Pedestrian motion decisions are based on (1) avoiding obstacles and other people, (2) necessity to follow 
group behaviour, (3) maintenance of own desired speed, and (4) a drive-to-target term. The benefit of 
the model is its specificity to the earthquake scenario. It includes pre-evacuation and evacuation 
behaviours, as well as algorithms to calculate paths towards safe areas. Pre-evacuation behaviour are 
connected to the EMS98 intensity scales, with percentages defined per intensity values. Modified 
parameters from the social force model are: (1) drive-to-target force which defines (a) attraction to safe 
areas, (b) herd behaviour (c) influence of collective velocity, and (d) formation of groups; (2) Attractive 
forces which define (a) attraction for group bonds, formation of evacuation groups; (3) Repulsive force, 
which is a mechanism used to (a) avoid contact and maintain safe distance from hazards such as 
buildings, debris, or conversely (b) maintain safe distance to safe areas, shelters. The model also defines 
the criteria for the formation of damage in the area called mean damaged grade based on the vulnerability 
and ductility index of the building combined with the EMS magnitude. The software implementation of 
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EPES features a GIS environment built in the TAJ development environment, using Java IDE-Eclipse 
translated in the Alan language.  

Similar to the Helbing’s social force model, EPES, provides a general but very technical framework and 
gives equations for agent attraction and repulsion to elements in the crisis environment. EPES is 
appropriate for the seismic crisis scenario. Further elaboration on the social aspects particularly 
attachment expressed in the clan bond and attraction parameter are needed to explain further pedestrian 
motivations for movement. Social attachment theory, when used as the analysis framework to explain 
evacuation behaviour can further add to explaining pedestrian motivations for proximity seeking actions. 

3.3.2.4. Evacuation Simulation with Children, Authorities, Parents, Emotions 
and Social Comparison (ESCAPES)  

Evacuation Simulation with Children, Authorities, Parents, Emotions and Social Comparison 
(ESCAPES) is an airport evacuation tool focused on the spread of knowledge, emotional contagion and 
social comparison (Tsai, et al., 2011). The main social theory implemented is Social Comparison Theory 
(SCT). SCT explains the tendency of people who face uncertainty to copy the actions of other people 
who are in close proximity. Notions of connectivity and neighbourhood are introduced by the authors 
in ESCAPES. The focus of the simulations are families composed of parents and children. Social 
attachment and social attachment theory are expressed in the seeking behaviours of family members 
during evacuations. Agents in ESCAPES include travellers, families and authorities. Emotional, 
informational and behavioural interactions are implemented with the Belief Desire and Intention 
architecture. Agent in the model have access to 14 available behaviours. The interaction between agents 
include: (1) spread of knowledge, which includes the knowledge of an exit locations and knowledge of 
the event (2) emotional contagion and (3) social comparison. During evacuations, parents immediately 
seek children before proceeding to an exit. Children, while travelling slower, exclusively follow parents 
(Tsai, et al., 2011). ESCAPES also feature the calming effect of the presence of authorities during 
dangerous situations. 

3.3.2.5 Exitus  

Exitus focuses on the evacuation of individuals with mobility impairments (Manley, 2012). Agents 
include no-disabled, motorised and non-motorised wheelchair users, visually impaired, hearing 
impaired and stamina impaired. This model addresses a need for more models on the evacuation of the 
mobility impaired. Exitus implements Helbing’s Social Force Model and Hall’s Proxemics theory (Hall, 
1990). Social attachment is expressed through seeking and helping behaviours in assisting the mobility 
impaired. Attachment is also expressed in the interpersonal distances defined in proxemic theory. 
Experiments with different dimensions of wheelchairs were conducted to investigate (1) clogging effect 
in hallways and stairwells, and (2) use of elevators. Model evacuation time was likewise tested with 
Exitus in different scenarios such as airport and sports arena evacuation scenarios. 

3.3.2.6 Multi-Agent Simulation for Egress Analysis (MASSEgress)  

Multi-Agent Simulation for Egress Analysis (MASSEgress) simulates individual behaviour through 
sensing, decision making, behaviour selection and motor control. Interaction between agents define 
social behaviour. Panic and emergent norm theories are implemented. This results in queuing, 
competition, herding, and leader following behaviours (Pan, 2006). MASSEgress provides a realistic 
way of perceiving other agents and obstacles in the environment using the concept of a view volume, 
which consist of a view angle and a perception range. A person is visible when inside the view volume 
and not occluded by any obstacle. The decision-making process is described by (1) familiarity, (2) 
decision making type, (3) urge to exit, (4) stress threshold type, and (5) herd factor. Behaviour selection 
is governed by decision rules. Different decision rules and styles are constructed for different personality 
types. Steering behaviours in MASSEgress includes: (1) random walk; (2) collision avoidance, (3) seek, 
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(4) negotiation or exchanging information, and agreement, and (5) target following. Social behaviours 
in MASSEgress are sensitive to (1) individual behaviour, (2) group size, (3) individual behaviour within 
a crowd, and (4) effects of geometric constraints.  

MASSEgress has been used to simulate egress from small indoor to large venues. This includes 
evacuation simulations for (1) a small room, (2) department store, (3) night club fire, and (4) a university 
building. The model was envisioned to incorporate characteristics of social and organisational 
interaction to extend its ability in modelling human behaviour. 

3.3.2.7 Social Agents for Egress (SAFEgress – 2014)  

Social Agents for Egress (SAFEgess-2014) simulates evacuation behaviours of occupants affiliated 
to social groups, defined by a unique structure and group norm (Chu, Parigi, Law, & Latombe, 2014). 
Agents are defined by static and dynamic profiles. Static profiles include (1) physical characteristics 
(e.g. age, gender, body size, speed, personal space), (2) familiarity with the environment, (3) knowledge 
of exits, (4) group affiliation, (5) social order and, (6) assigned roles. Dynamic profiles include: (1) 
location, (2) urge, (3) knowledge, (4) visible group member, and (5) neighbouring agents. Factors 
implemented include group intimacy, leadership and separation distance. High intimacy groups include 
couples or families. Lower intimacy groups can represent co-workers. SAFEGress has been use in 
indoor evacuation experiments. The authors observed interesting results and egress patterns when visual 
and cognitive abilities were provided to agents. Although not directly stated in the paper, social 
attachment is applied in the model evidenced by the existence of social groups, and use of familiarity, 
and intimacy in agent profiles. 

3.3.2.8 Social Agents for Egress (SAFEgress – 2015)  

Social Agents for Egress (SAFEgess-2015) implements the modelling evacuation of social groups 
and emulates human capabilities of perception and navigation (Chu M. L., 2015). Different agent 
behaviours modelled include: (1) following perception to evacuate; (2) following knowledge to evacuate; 
(3) navigating with group members; (4) navigating with entire social group; (5) following the crowd to 
evacuate; and (6) following authority’s instructions. In a simulation step, agents perceive the 
environment, interprets the urge to evacuate, and decides a behaviour through a tiered reasoning process, 
and interpret the action. Agents, when with a social group, tend to adopt longer routes and take more 
time to exit. SAFEGress allows the testing of different behavioural models to decouple the effects of 
individual and social factors related to egress performance. Strength of affiliation to social group is 
defined by an agent’s group compliance attribute. Group influence and intimacy level is the parameter 
that describes the social group. Simulations results with SAFEegress showed that group size and type, 
affect how fast consensus to evacuate is achieved. Larger group sizes take longer to decide. Groups with 
high intimacy likewise arrive at decisions faster. With respect to the urge to evacuate, individual 
members of a group adopt the highest urge among visible group members. This makes agents evacuate 
sooner that when alone. SAFEGress has been tested for indoor scenarios like a museum and a  stadium. 
Social attachment is embedded in SAFEGress and is evident from the use of social groups and the 
concept of intimate groups. Social attachment theory likewise has been mentioned by the author with 
respect to people attaching to familiar places and people during disasters. This likely helped in the 
development of the theoretical framework of the SOLACE model. 

3.3.2.9 Social Identity Model Application (SIMA)  

Social Identity Model Application (SIMA) implements the social categorisation and social identity 
theories with a focus on helping behaviour. In particular, the focus is helping others or strangers. It has 
two main components implemented in sequence: establishing social identity then helping behaviour. 
Pedestrians who do not share a social identity with a group heads straight for safety without caring for 
others (Sivers I. v., et al., 2016). From Drury et al., “social identity could operate as a function of the 
(shared) threat when people experience and emergency” (Drury J. , et al., 2009). Also, from Drury et al. 
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shared identities promote supportive behaviours during emergencies. SIMA was used to recreate the 
scenario of a London Underground bombing event. The results showed helping behaviour and agents 
formed orderly queues to evacuate. The simulation produced similar results matching survivor accounts. 
This is relevant, as this further validates the role of social attachment theory. As strangers are able to 
form a new social group triggered by the shared identity from a disaster, the newly formed social group, 
and its members become new attachment figures. Closely bonded groups are known to help each other, 
and likewise, produce orderly queues during egress. 

3.3.2.10 Okaya and Takahashi’s Robocup Rescue  

Okaya and Takahashi’s RoboCup Rescue simulation is an evacuation model based on the BDI 
architecture and Helbing’s Social Force Model. The model developed revolved around the role human 
relationships and its effects on (1) states of BDI at each timestep, (2) agent intentions such as altruism 
are integrated in the social force model and (3) other physical factors. This was developed using the 
RoboCup Rescue Simulation v. 1 (RCRS) platform (Okaya & Takahashi, 2011). Agents in the model 
are adults, parents and children. Agents are able to establish the belief, of risk to themselves, or with 
respect to the family; have the desire to avoid the risk, perform the intention to evacuate or seek refuge 
or hear guidance. The intention of parents, in the family context, is to seek and evacuate with their child. 
Child agents always have the intention of following parents. Results showed delayed evacuation times 
for parents who take care of their children. The results of evacuation simulations reveal (1) family 
members evacuate together; (2) guidance during evacuation affects crowd behaviours; and (3) 
evacuation takes more time when congestion occurs. This model implements the social attachment from 
the presence of family agents and seeking behaviours. 

3.3.2.11 Liu et al.’s model  

Liu et al. presented a framework coupling building and human behaviour in an earthquake scenario 
(Liu, et al., 2016). The model tries to extend ABM research by integrating engineering models of 
structural hazards. Physical modelling of the crisis environment employed finite element methods. 
Social group formation and strong social relationships are defined by agents sharing the same home 
base. The strength of relationship to neighbour agents is lesser. Group formation is facilitated by the 
agent’s willingness to form groups and is defined by a function. Agents are also able to switch groups, 
when a group that it shares a stronger connection with is encountered. Group behaviour includes 
grouping and travelling. Herding behaviour is done by individuals or groups not familiar with a building. 
Rescuing behaviour is the expression of an agent’s altruism. Social algorithms included in the egress 
model are grouping, herding, rescuing and information sharing. Results showed that for all damaged 
scenarios, social behaviours produced significant delays in evacuation. Results of simulation found that 
grouping behaviours increase evacuation time. The authors noted from their results, that the mean 
evacuation time can be underestimated by as much as 20%, if social behaviours are not included. 
Attachment and social attachment are implemented implicitly in the model. 

3.3.2.12 Lou et al.’s model  

Lou et al. developed a simulation for normal and emergency scenarios for a Singapore train station 
(Lou, et al., 2008). Social group and crowd related behaviours are modelled from social psychology, 
such as social attachment theory. The authors consider a two-stage cognitive process in decision making. 
This includes (1) situational awareness grounded on expectations about people, social roles and events, 
and triggered by external stimulus, (2) consequent changes in internal attributes influence feelings, 
social states and physical condition. Individual agents are categorised into (1) roles, namely staff, 
civilian or tourist; (2) age groups, as child, adult, and elderly; (3) strength of social relationship as normal 
tie, strong tie, or individual, (4) personalities: altruist, common person, or avoidantist. Modelled 
behaviours include: wander, flock, evade, lead, follow, seek, individual escape, group escape, idle, help, 
and run aimlessly. In the normal situation, people wander individually or as a group. 
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3.3.2.13 Simulation of Transient Evacuation and Pedestrian Movements 
(STEPS)  

Simulation of Transient Evacuation and Pedestrian movements (STEPS) by Mott MacDonald Ltd 
is a microsimulation tool for pedestrian movement (Waterson & Pelliser, 2010). This can be used for 
normal and emergency conditions (evacuation mode). Agent attributes include free walking speed, 
awareness, patience, association to other members (a ‘family’ group), and pre-movement time. This 
model implements attachment and social attachment theory. 

3.3.2.14 Ta et. al.’s Model  

Ta, et al. presented an excellent and very detailed formalisation of group behaviours and actions 
during emergency situations based on social theory (Ta, Gaudou, Longin, Ho, & Nguyen, 2017). The 
model accounts for social relations in the defining of people as a group, attributes of groups, the their 
behaviours and actions according to group type. Effects of emotion and group behaviour on evacuation 
decision making were considered. Agent behaviours within social and physical groups were formalised. 
Also, included in the model, are the influence of communication, knowledge and guidance provided by 
authorities (leaders, security agents). This model implements the attachment and social attachment 
theory. 

3.3.2.15 Wang et al.’s Model  

Wang et al. developed an optimisation method for emergency evacuation and considered social 
bond effects (Wang, Luh, Chang, & Marsh, 2009). They considered the disorder and blocking effects 
caused by social bonds during evacuations. According to them, close bonds such as with family 
members and familiar colleagues help maintain order in evacuations. This is demonstrated by queuing 
behaviours that make evacuations smooth and efficient. Loose bonds between unfamiliar individuals 
can increase competitiveness resulting in pushing and shoving behaviours. This triggers disorder, 
blocking of exits and eventual delays in evacuation. The model implements social attachment theory. 

3.3.2.16 Zia et al.’s Model  

Zia et al.’s model is implemented as a city scale evacuation simulation using the leader-follower 
strategy (Zia, Farrahi, Riener, & Ferscha, 2013). Proximity and the level of knowledge of a leader 
influences the following behaviour of the agents. Running the model on a high-performance 
environment ensured success in simulating a large population of agents. The model used a cellular 
automata or a grid-based model of the city to facilitate processing. The authors conclude that scale 
becomes a real issue when the population of agents includes billions of space agent and millions of 
mobile agents. An additional advice is to minimise interactions of moving agents to tolerable limits to 
ensure completion of simulations. This however will constrain the success of large-scale evacuation 
social simulation with cognitive and social agents implemented with BDI. 

3.3.2.17 Adam et al.’s Model  

Adam et al. implemented the BDI architecture with the Tactics Development Framework (TDF) to 
model evacuation and protective behaviours of residents during bushfires (Adam C. , Danet, 
Thangarajah, & Dugdale, 2016). Behaviours implemented in the model can be categorized as attachment 
behaviours are (1) defend property (stay and defend it), (2) stay alive (protect self and family). Also, 
place attachment can be seen in the actions of a civilian agent which are shelter at home, defend property, 
monitor house, prepare property and fight fire. 
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3.3.2.18 Agent-based Model for Earthquake Evacuation in Lebanon 
(AMEL) 

Agent-based Model for Earthquake Evacuation in Lebanon (AMEL) is a model and prototype of a 
simulator showing pedestrian movements following different human behaviours after an earthquake 
(Truong, Beck, Dugdale, & Adam, 2013; Beck, Dugdale, Truong, Adam, & Colbeau-Justin, 2014). The 
behaviours were synthesised from survey results and focused on people’s mobility. Leader-follower 
behaviour was implemented. Agents are able to perceive other agents, move to safe areas and follow 
leaders. 

A summary of the reviewed models is shown in Table 16. The table details the model, dominant social 
theory used, types of the social agents, and the implemented behaviours. Summaries of technical details 
for each model are shown in Table 17, Table 18, Table 19, Table 20 and Table 21. The legend used in 
the table includes: (Y) for implemented, (*Y), for mimicked or simulated, (-) for not implemented, and 
() blank for not specified. 

Table 16 ABM implementing social theories for evacuations 

Model Theory Agents Behaviour 
EPES (D’Orazio et al., 
2014b) 

Panic, Social 
Attachment 

Pedestrian (child, adult, 
disabled), clan 

Herding 

ESCAPES (Tsai et al., 
2011) 

Social Comparison, 
Attachment, Social 
Attachment 

Family members, travellers, 
authorities 

Follow parent, drag into shop, find 
child, find the other parent 

EXITUS (Manley, 2012) Social Force Model, 
Proxemics Theory, 
Attachment, Social 
Attachment 

Non-disabled, motorised 
wheelchair users, non-
motorised wheelchair users, 
visually impaired, hearing 
impaired, stamina impaired 

Helping 

(Liu et al., 2016) Social Attachment Adult, elderly Grouping, herding, rescuing, and 
information sharing 

(Luo et al., 2008) Social Attachment Staff, civilian, tourist, child, 
adult, elderly 

Wander, flock, evade, lead, follow, 
seek, escape (individual, group), 
idle, help, run aimlessly 

MASSEgress (Pan, 2006) Panic, Emergent Norm, 
Attachment, Social 
Attachment 

Individuals Competition, queuing, herding, 
leader-follower 

Robocup Rescue (Okaya 
and Tokahashi, 2011) 

Panic, Social Force, 
Social Attachment 

Adult, parent, child Group evacuation, guidance 

SAFEgress-2014 (Chu et 
al., 2014), (Chu and Law, 
2013) 

Social Attachment Family, couple, co-worker Group evacuation 

SAFEgress-2015(Chu, 
2015) 

Social attachment Building occupants Navigating with group, following 
(crowd, authority) 

SIMA (Sivers et al., 
2016) 

Social Identity, Self- 
Categorisation, 
Attachment, Social 
Attachment 

Pedestrians Helping 

Social Force (Helbing et 
al., 2002; Helbing and 
Johansson, 2013) 

Panic, Social Force, 
attachment, Normative 

Pedestrian, family Panic, herding, queuing, 
cooperation, self-organisation 

(Roan, 2013) Panic, Emergent Norm Individuals Panic, trampling, queuing, self- 
organisation 

STEPS (Waterson and 
Pelliser, 2010), (Caliendo 
et al., 2012) 

Normative, Social 
Attachment 

Family, friends Walking, association, evacuating 
together 

(Ta et al., 2017) Panic, Social 
attachment 

Customers, leaders, family, 
friends, colleagues 

Leader-follower, seek members, 
maintain group, share information 

(Wang et al., 2009) Social attachment Family Queuing, pushing and shoving 
(Zia et al., 2013) Social attachment Pedestrian Leader-follower, seek leader 
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(Adam et al., 2016) Social attachment Civilian, family, property Stay alive (protect self and family), 
stay and defend (property), take 
cover in shelter 

AMEL (Truong et al., 
2013; Beck et al., 2014) 

Social attachment Pedestrians Imitate others (Leader-follower), 
seek, same activity (move, stay in 
place), change activity (move to 
safe area, unsafe area), stay in 
place) 

 

Table 17 details several implementation parameters related to the models. Fields in the table describe: 
the parameter used to facilitate social interaction, Social Bonds; type of disaster or crisis or Hazard; if 
the model concerns indoor Occupants or Pedestrians; the number of agents tested, Population; use of 
BDI or Decision tree; use of spatial data, GIS, or generic vector data, CAD; the spatial extent, if within 
building, city block or city, Scale; if implemented in Vector, or Grid formats; implements or results as 
Individual, Group or Crowd; sets up the risk environment such as fire, earthquake or flood, in the Hazard 
field; and the simulation Platform used. Table 18 is a continuation of Table 17. 

From Table 17 to Table 18 it can be seen that: (a) social bond is assigned using parameters usually 
defined by group ID, (b) generic models of evacuation are common, (c) fire is more commonly modelled 
than earthquakes, (d) most model indoor occupants and few outdoor pedestrians, (e) small population 
of agents are modelled, very few model large populations, (f) BDI is used by some models, most use 
decision trees, (g) generic vector and CAD data are used for indoor evacuations, while GIS for district 
to city scale implementations, (h) most employ a grid, (i) individual agent behaviours are mostly 
modelled with some having attributes for group and crowd behaviours, (j) most hazards are not modelled 
as dynamic environment objects but indicated by alarms or cues, and (k) most platforms used require 
specialised computer science skills. 

Table 19 presents the type of agents in the models. The types of agents are attachment figures in social 
contexts and presented as individuals, groups, and non-human entities. Human agents include adult, 
elderly, disabled, injured, child, spouse, parent, sibling, kin, pet, friend, colleague, authority, and 
stranger. Social groups include: family, friends, colleagues, authorities, and strangers. Non-human 
agents include place, object, task and information. This table shows that most models have attachment 
figures that (1) are individual: adults, children, elderly and the disabled. (2) within groups of families, 
friends and colleagues, (3) evacuate to safe places (exits, designated safe areas). Seldomly modelled are 
objects (e.g. phones, bags, property), and tasks (e.g. chores, work, driving). 

Table 20 shows the different types of behaviours implemented. In models, agents are able to Lead, 
Follow, Seek, Help, Freeze, Wait, Manage property, Ignore, Mill around, Regroup, Flee, Protect, Seek 
cover, Stay in place, Continue task, Grab objects, Inform, Go to exit/safe area, Rescue, be 
Altruistic/cooperative, Do not know what to do, Wander, Herd, Compete, Queue, Panic, or have Normal 
behaviour. Most of the models implement the lead, follow, seek, helping and herd behaviours. Detailed 
pre-evacuation behaviours are seldom implemented in models. These include: freeze, wait, manage 
property, ignore event, mill around, protect others, seek cover, stay in place, continue tasks and grab 
objects 

Table 21 shows other complex concepts implemented. These include: emotion, contagion, 
communication, decision making, norms, trust, inclusion of transport network, rescue, institutional 
response, physical modelling of earthquake effects, use of guidance (such as for alerts/alarms, and 
wayfinding e.g. signage), stress, patience, knowledge, and experience, and cascading Effects: tsunami, 
fire, and other cascading effects.  

The reviewed models reveal several observations. The first observation is that most of the models 
implement, attachment and social attachment, in an implicit manner. This can be seen from the use of 
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social groups, relationships between agents, and the seeking behaviours of agents. It is only the model 
of Lou et al., 2008, which explicitly stated their implementing social attachment theory.  

The second observation is that Helbing’s social force model is often used to implement attraction and 
repulsion between agents especially when social bonds are difficult to quantify. The equations and 
parameters in the social force model are generic and have been applied in many models. Having being 
based on the kinetic energy equations in physics, it has been successfully used to define the motion of 
agents in models and simulations (Wang P. , 2016). Using the equation and parameters need to be 
clarified, or contextualised to the type of force being defined. For example, models, such as EPES, 
Exitus and that of Okaya and Takahashi, actually modify and refine the definitions of the social force 
model parameters to meet the needs of the models. The main critique to the social force model is the 
particle like behaviour of agents, and the lack of cognitive abilities of agents. In reality, people can stop 
motion, and change direction. To add cognitive features to the particle-like (or particle only) features of 
the social force model, BDI has been integrated in Okaya and Takahashi’s RoboCup Rescue model.  

The third observation is that several of the models do not account for the fine differences in individual 
characteristics such as age, roles (e.g. parent, child), membership in groups, mobility and 
impairments/disability, in defining heterogeneous populations. EXITUS is the only model that focused 
on disability. EPES also had disabled agents as part of the population. SIMA included agents with 
injuries. Elderly agents are included in EPES, Liu et al., SAFEgress, and Roan’ model. Parental roles 
are featured in ESCAPES, Lou et al., and RoboCup Rescue.  

The fourth observation is that most models only address indoor evacuations, at the scale of a room, 
building floor, or large venues such as stadiums and concert halls. This can be due to the limits imposed 
by computing resources. Also, this can be due to the focus of most of the models, which evaluate and 
investigate past disaster events such as fires, stampedes and terrorist attacks that occur in indoor 
environments. Knowledge and data accumulated in these areas, particularly in fire disasters, support the 
development of models.  

The fifth observation is that pre-movement or pre-evacuation behaviours are not considered in the 
models. Detailed pre-evacuation and evacuation behaviours need to be considered to have a better 
estimate of total evacuation time. This observation is particularly true for egress models modelling panic 
situations. Examples are social force, EPES, ESCAPES, SAFEGress, MASSEgress. This can be due to 
the focus of the models on egress speeds or movement towards exits. Adding cognitive features to egress 
models, such as with BDI, can provide agents with the menu of actions that can define pre-evacuation 
actions.  

The sixth observation is that most interactions are only with other human agents. Behaviours should 
also account for interactions with non-human attachment figures such as places, objects, tasks and 
information. These interactions improve models as it can explain actions such as retrieving objects, 
preferring to stay in place, etc.  

The seventh observation is that most of the models are implemented using grids (cellular automata) and 
are very mathematical using complex equations.  

The eight observation is that real geographic data for modelling large areas are seldom used.  

The ninth observation is that the BDI architecture can be used to model more complex dynamics and 
behaviours.  
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Lastly the tenth observation is that the models focused more on human agents. There was a lack of 
discussions on how the risk scenario and environment agent (e.g. building vulnerability, spread of fire) 
were set in the models. 

3.4  Summary of the chapter  

The chapter presented the efforts in developing realistic microscopic pedestrian evacuation 
simulations during crisis. Achieving realism requires the integration of geographic information and 
agent based social simulation and modelling. The two domains complement each other in creating the 
spatial and temporal fidelity and resolutions needed to recreate the dynamic social processes in crisis 
evacuations. Agent based modelling facilitates the creation of cognitive and social agents that interact 
with space.  

Social attachment is presented as the underlying social theory used in the presented evacuation social 
simulations and models. In the models, social attachment was implicit with respect to the existence of 
social groups defined by bonds such as family, friends, colleagues and strangers. The mechanism for 
social interactions however are governed by other more dominant social theories such as social force, 
panic, social identity theories etc. 

SOLACE advances the state of the art by explicitly focusing on social attachment, which facilitates the 
microscopic social interactions during pedestrian evacuations. The SOLACE cognitive/social agents are 
situated in an earthquake crisis environment modelled using geographic data. The effect of social 
attachment on evacuation will be tested with SOLACE using different scenarios.   
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Table 17 Model Implementation  

 
 

Model 

 
 

Social Bond 

 
 

Hazard 
 
 O

cc
up

an
t 

Pe
de

st
ri

an
 

Po
pu

la
tio

n 

BD
I 

D
ec

isi
on

-  t
re

e  

G
IS

 

C
A

D
/v

ec
to

r   
 

Scale 

V
ec

to
r 

G
ri

d 

In
di

vi
du

al
 

G
ro

up
 

C
ro

w
d 

H
az

ar
ds

 

 
 

Platform 
 
 
 

EPES (D’Orazio 
et al., 2014b) 

Cohesion (Cij,b), clan bond, 
shared evacuation target bond 

Earthquake Y Y 1000 
- 

Y Y 
- 

City Sector 
- 

Y Y Y 
- 

Y IDE-Eclipse, Alan 
Plug-in 

ESCAPES (Tsai 
et al., 2011) 

Family bond, contagion, 
mimic others (social 
comparison) 

Generic Y 
- 

100 Y 
- - 

Y Building 
(airport) 

Y 
- 

Y Y 
- - 

OpenSteer (C++), 
Massive Software 

EXITUS 
(Manley, 2012) 

Social force, proxemic 
threshold 

Generic Y 
- 

71; 400; 
15000 - 

 
- 

Y Building 
(school, 
office, 
airport 
stadium) 

- 
Y Y Y   C++, MFC library 

(Windows) 

(Liu et al., 2016) Shared home base defines 
strong bond  
 

Earthquake Y 
- 

259; 
450 - 

 
- 

Y Building   Y Y  Y NetLogo 

(Luo et al., 2008) Attraction tendency, 
relationship type, group id 

Explosion Y 
- 

64 
- 

Y   Building 
(train 
station) 

  Y Y   Java 2D and 3D 

MASSEgress 
(Pan, 2006) 

Bond to leader, herding factor Generic Y 
- 

980; 
350; 
420; 
2524; 
600 

- 
Y 

- 
Y Building, 

department 
store, 
nightclub 

- 
Y Y Y Y 

- 
C++, Visual 
LISP, OpenGL 

Robocup Rescue 
(Okaya and 
Tokahashi, 2011) 

Kin Relationship, altruism 
(falt) 

Generic Y Y 550 Y 
- 

Y 
- 

Building 
(hall), Block 

  Y Y  
- 

RoboCup Rescue 
Simulation v.1 
(RCRS) 

SAFEgress 2014 
(Chu et al., 2014), 
(Chu and Law, 
2013 

Predefined social group 
(default leader, intimacy, 
influence, seeking-property), 
crowd (social order, roles) 

Generic, 
Fire 

Y 
- 

2002 
- 

Y 
- 

Y Building 
- 

Y Y Y Y 
- 

OpenGL 

SAFEgress 2015, 
(Chu, 2015) 

Pre-defined social group, 
social group index, group 
(compliance, influence, 
consensus, separation 
tolerance, intimacy), crowd 
compliance 

Generic Y 
- 

100; 
1000;35
0;550;1
320 

- 
Y 

- 
Y Building 

(museum, 
stadium) 

- 
Y Y Y Y 

- 
C++ 

Legend: (Y) - implemented, (*Y) - mimicked, (-) - not implemented, and ( ) blank – not specified.  
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Table 18 Model Implementation - Continued 
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Platform 

SIMA (Sivers et al., 
2016), (Seitz, 2016) 

Person sharing social 
identity parameter 
percsharingSI, proximity 

Bomb attack Y 
- 

192; 
60 - 

Y 
- 

Y Train station Y 
- 

Y Y Y 
- 

Optimal Steps 
Model 
(OSM), 
Vadere 

Social Force (Helbing et 
al., 2002; Helbing and 
Johansson, 2013) 

Attracting forces fik
att(t), 

joining behaviour 
Generic Y Y 200; 

90 - 
 

- 
Y Multiscale   Y Y Y 

- 
Java 

(Roan, 2013) Common destination, 
situation/context 

Fire Y 
- 

500; 
400; 
458; 
90 

- 
Y 

- - 
Floor 
(nightclub, 
dance hall, 
factory) 

- 
Y Y 

- - 
Y Repast 

STEPS (Caliendo et al., 
2012; Waterson and 
Pelliser, 2010; 
Kuligowski et al., 2010) 

Association to a 'family 
group' 

Generic, fire Y Y 156 
- 

 
- 

Y Building, 
airport, stadium, 
stations, road 
tunnel 

- 
Y Y Y 

- - 
 

(Wang et al., 
2009),(Wang et al., 2008) 

Social bond (α) Fire Y 
- 

110 
- 

 
- 

 Building 
- 

Y Y Y Y Y FDS+Evac 
5.20 

(Ta et al., 2017), (Ta et 
al., 2015) 

Group ID (social, 
physical), roles (leader, 
follower), knowledge 

Fire Y 
- 

50 
- 

Y 
- 

 Building 
(market) 

  Y Y Y Y GAMA 

(Zia et al., 2013) Proximity, leader-
follower, knowledge 

Generic, 
flood - 

Y  
- 

Y Y 
- 

City sector, city  Y Y    Repast HPC 

(Adam et al., 2016) Family, property 
ownership 

Bushfire 
- 

Y 125
00; 
200
K 

Y 
- - - 

 
- 

Y Y 
- - 

Y GAMA 

AMEL(Truong et al., 
2013), (Beck et al., 2014) 

Leader-follower, 
knowledge 

Earthquake 
- 

Y 100
0 - 

Y Y 
- 

 City district Y 
- 

Y Y 
- 

Y GAMA 

Legend: (Y) - implemented, (*Y) - mimicked, (-) - not implemented, and ( ) blank – not specified. 
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Table 19 Attachment figures in the models 
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Pl
ac

e 
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n 

EPES (D’Orazio et al., 2014b) Y Y Y - Y - - - - - - - - - - - - - Y - - - 
ESCAPES (Tsai et al., 2011) Y - - - Y - Y - - - - Y - Y - - Y - Y - - - 
EXITUS (Manley, 2012) Y - Y - - - - - - - - - - - - - - - Y - - - 
(Liu et al., 2016) Y Y - - - - - - - - - - - - - - - - Y - - - 
(Luo et al., 2008) Y - - - Y Y Y Y Y - - - - - - - - - Y - - Y 
MASSEgress (Pan, 2006) Y - - - - - - - - - - - - - - - - - Y - - - 
Robocup Rescue (Okaya and Tokahashi, 
2011) 

Y - - - Y - Y - - - - Y - Y - - - - Y - - Y 

SAFEgress (2014) (Chu et al., 2014), (Chu 
and Law, 2013) 

Y - - - - Y - - - - - - - Y - Y - - Y - - - 

SAFEgress (2015)(Chu, 2015) Y Y - - Y - - - - - - Y - Y Y - Y - Y Y - - 
SIMA (Sivers et al., 2016), (Seitz, 2016) Y -  Y - - - - - - - - - - - - - Y Y - - - 
Social Force (Helbing et al., 2002; Helbing 
and Johansson, 2013) 

Y - - - - - - - - - - - - Y Y - - Y Y Y - - 

(Roan, 2013) Y Y - - Y - - - - - - - - - - - - - Y - - Y 
STEPS (Caliendo et al., 2012; Waterson and 
Pelliser, 2010; Kuligowski et al., 2010) 

Y - - - - - - - - - - - - Y Y - - - Y - - - 

(Wang et al., 2009),(Wang et al., 2008) Y - - - - - - - - - - - - - - - - - Y - - - 
(Ta et al., 2017), (Ta et al., 2015) Y - - - - - - - - - - Y Y Y Y Y Y Y Y - - Y 
(Zia et al., 2013) Y - - - - - - - - - - - - - - - - - Y - - Y 
(Adam et al., 2016) Y - - - - - - - - - - - - - - - - - Y - - - 
AMEL(Truong et al., 2013), (Beck et al., 
2014) 

Y Y - - Y - - - - - - Y - - - - - - Y - Y - 

Legend: (Y) - implemented, (*Y) - mimicked, (-) - not implemented, and ( ) blank – not specified. 
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Table 20 Behaviours in models 
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W
an
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H
er

d 
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Q
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Pa
ni

c  

N
or
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al

 

EPES (D’Orazio et al., 
2014b) 

Y Y - - - - - - - Y - - - - - - - Y - - - - Y - - Y - 

ESCAPES (Tsai et al., 
2011) 

Y Y Y - - - - - - - - - - - - - - Y - - - Y - - - - - 

EXITUS (Manley, 2012) - - - Y - - - - - - - - - - - - - Y - - - - - - - - - 
(Liu et al., 2016) - - - - - - - - - Y - - - - - - Y Y Y - - - Y - - - - 
(Luo et al., 2008) - Y Y Y Y - - - - - - - - - - - - Y - - - Y - - - - - 
MASSEgress (Pan, 2006) Y Y Y - - - - - - - - - - - - - - Y - Y - Y Y Y Y - - 
Robocup Rescue (Okaya 
and Tokahashi, 2011) 

Y Y Y - - - - - - - - - - - - - - Y - - - - - - - - - 

SAFEgress (2014) (Chu et 
al., 2014), (Chu and Law, 
2013) 

- Y Y - - - - - - - - - - - - - - Y - - - - - - - - - 

SAFEgress (2015)(Chu, 
2015) 

Y Y Y - - Y - - - Y - - - - - - - Y - - - Y - - - - - 

SIMA (Sivers et al., 2016), 
(Seitz, 2016) 

- - Y Y - - - - - - - - - - - - - Y - - - - - - Y - - 

Social Force (Helbing et al., 
2002; Helbing and 
Johansson, 2013) 

- - - - - - - - - - - - - - - - - Y - - - - - - - Y Y 

(Roan, 2013) - - Y - - Y - - - - - - Y - - - - Y - - - - - Y Y Y - 
STEPS (Caliendo et al., 
2012; Waterson and 
Pelliser, 2010; Kuligowski 
et al., 2010) 

- - - - - - - - - Y - - - - - - - Y - - - - - - Y - - 

(Wang et al., 2009),(Wang 
et al., 2008) 

- - - - - - - - - - - - - - - - Y Y - - - - - Y Y - - 

(Ta et al., 2017), (Ta et al., 
2015) 

Y Y Y Y - Y - - Y Y - - - - - - - Y - - - - Y - - Y - 

(Zia et al., 2013) Y Y Y - - - - - - - - - - - - - - Y - - - - - - - - - 
(Adam et al., 2016) - - - - - - Y - - - - - - Y - - - Y - - - - - - - - - 
AMEL(Truong et al., 
2013), (Beck et al., 2014) 

Y Y Y - - - - - - - - - Y Y Y Y - Y - - - Y - - - - - 

Legend: (Y) - implemented, (*Y) - mimicked, (-) - not implemented, and ( ) blank – not specified. 
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Table 21 Other features of models 
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EPES (D’Orazio et al., 2014b) - - - - - - - - - - - - - - - Y - - - - - - - 
ESCAPES (Tsai et al., 2011) Y Y - - - - Y - - - - Y - - - - - - - - - - - 
EXITUS (Manley, 2012) - - - - - - - - - - - - - - - - - - - - - - - 
(Liu et al., 2016) - - - - - - - - - - - - - - - Y - - - - - - - 
(Luo et al., 2008) - - - - - - - - - - - - - - - - - - - - - - - 
MASSEgress (Pan, 2006) - - - - - - Y Y - Y - - - - Y - - - - - - - - 
Robocup Rescue (Okaya and Tokahashi, 2011) - - - - - - Y Y - - - Y - - - - - - - - - - - 
SAFEgress (2014) (Chu et al., 2014), (Chu and 
Law, 2013) 

- - - - - - - - - - - Y - - Y - - - - - - - - 

SAFEgress (2015)(Chu, 2015) - - - - - Y - Y Y - - Y - - Y - - - - - - - - 
SIMA (Sivers et al., 2016), (Seitz, 2016) - - - - - - - - - - - - - - - - - - - - - - - 
Social Force (Helbing et al., 2002; Helbing and 
Johansson, 2013) 

- - - - - - - - - - - - - - - - - - - - - - - 

(Roan, 2013) - Y - - - - Y - Y - Y - - - - - - - - - Y - - 
STEPS (Caliendo et al., 2012; Waterson and 
Pelliser, 2010; Kuligowski et al., 2010) 

- - - - - - - - Y - Y - - - - - - - - Y - - - 

(Wang et al., 2009), (Wang et al., 2008) - - - - - - - Y - Y Y - - - - - - - - - - - - 
(Ta et al., 2017), (Ta et al., 2015) Y Y - Y - Y Y - Y - - Y - - - - - - - - - - - 
(Zia et al., 2013) - - - - - - - - - - - Y - - - - - - - - - Y - 
(Adam et al., 2016) - - - - - - - - - - - - - - - - - - - - - - Y 
AMEL (Truong et al., 2013), (Beck et al., 
2014) 

- - - - - - - - - - - - Y - Y - - - - - - - - 

Legend: (Y) - implemented, (*Y) - mimicked, (-) - not implemented, and ( ) blank – not specified 
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CHAPTER 4. DESCRIPTION OF THE METHODOLOGY 
This chapter details the methodology used in the study. The chapter is divided into five sections. 

The first section discusses the multi-disciplinary approach. The second section describes the detailed 
methodology. The third section presents the study area. The fourth section describes the general sources 
of data. The fifth section presents a short conclusion. 

4.1  Multi-disciplinary approach  

The first task of this work is to determine the influence of social factors, specifically social 
attachment, on pedestrian evacuations during earthquake crisis. The accomplishment of this task 
requires a realistic and very detailed agent based pedestrian evacuation model for seismic crisis that is 
geospatial, microscopic, cognitive and social. These descriptions come from very different fields. 
Earthquakes are from the domain of the geosciences, geospatial from geographic information science 
(GIScience), social from social science, and microscopic and cognitive pertains to agent simulations 
from computer science. 

The multi-disciplinary approach combines the four domains. Each of the domains (1) contributes to 
building the necessary seismic context, (2) provides the theories, methods and tools to develop and 
implement a geographic agent-based model, and (3) ensures that social attachment is implemented as 
the framework for interaction. This integration is illustrated in Figure 7. In the figure, each circle defines 
the relevant features represented by the keywords considered from each domain. The quadrants, where 
each of the circles falls defines the theme. The themes are geospatial, environment, human and artificial 
intelligence. The intersections refer to integrations of the domains. The left and right halves define roles 
of the domains in the model. 

 

Figure 7 Multi-disciplinary approach carried out to develop a simulation of earthquake crisis 
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The domains in the left half portion of the figure, are used to define the seismic crisis context. These are 
geoscience and social science. Geoscience describes the physical aspects of the environment. This 
includes the physical elements of risk which are the earthquake hazard, vulnerable structures, damage 
or debris, and danger zones. Social science describes the human element. This focuses on the primary 
actor of evacuations, the human individual. Considered in this domain are individual and group 
behaviour, human factors, social dynamics, and social attachment.  

The domains in the right half portion of the figure provide the methods and tools that facilitate the 
implementation of the model and simulations. These are provided by GIScience and computer science. 
GIScience defines the geospatial context of the crisis. It ensures that model elements are in the correct 
geographic locations, scale, distances, dimensions and configurations. Computer science, through multi 
agent modelling, transforms all these crisis elements into dynamically interacting agents. It glues 
together all the inputs from the three other domains to implement the multi-agent model and simulation.  

The intersections of the domains give rise to interesting combinations. These combinations are presented 
in the following paragraphs. The purpose of the discussion is to look into the contribution of the 
synergies of the domains in more detail. The other objective is to stress the necessity of the integration 
of the domains to achieve the goal of the research. 

The crisis context is described first with geoscience and social science. (1) The combination of 
geoscience and social science appropriately defines the context of the crisis with respect to the physical 
and social aspects. This combination defines the response and behaviours of individuals during seismic 
crisis events. An example of this is the description or observations of the response of the individuals 
provided by the EMS98 scale. These observations are from field surveys and used as inputs in the 
creating evacuation protocols or procedures based on earthquake intensity measures. This combination 
however is not enough to define a realistic model needed by this study. The combination lacks the spatial 
representation of both the risk and implementation of dynamic agent social interactions.  

(2) When geoscience is combined with GIScience, it can produce geospatial simulations of the crisis. 
In these simulations, geographically correct representation of the crisis environment, such as spatial 
distribution of vulnerable and damaged structures, can be achieved. Examples of results from this 
integration are risk maps, evacuation routes and plans, dynamic geospatial simulations and 3D 
visualisations of the risk environment. This combination however also lacks the human and dynamic 
cognitive and social elements.  

(3) When geoscience is combined with computer science, it can be used to develop computational 
models for or determining patterns or earthquake return periods and forecasting earthquakes. Examples 
of this are mathematical formalisations and related graphs of earthquake phenomena. This can include 
calculations of return periods, magnitude-intensity determination, building integrity calculations, etc. 

The combinations of the other domains are discussed next starting with social science. (4) Considering 
only social science and computer science produces agent based social simulations, with cognitive agents. 
However, missing elements would be the earthquake crisis context and explicit geographic 
representation or dynamic visualisation.  

(5) When only social science and GIScience are considered, the result would be a geovisualisation or 
geosimulation of population distributions and daily mobility without the crisis context. Implementing 
agent social interaction with social rules of behaviour is also not possible. Good examples of these are 
demographic distribution maps during different times (day, year, past, present, future projections). 
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(6) When only computer science and GIScience are considered, it can produce agent based geospatial 
simulations, however only of geographic objects and without the seismic crisis and related social context. 
An example of this is are 3D maps of physical features of or urban areas which includes buildings, street 
networks and open spaces. 

From the points considered in the preceding paragraphs, it is clear that achieving the objective of the 
study requires the multi-disciplinary approach. Integrating all the four domains with respect to the 
themes, namely geospatial, environment, human, and artificial intelligence, makes possible the 
development of an agent based geospatial social simulation for seismic crisis evacuations using 
cognitive agent architectures. 

4.2  Description of the methodology  

The methodology adopted consists of nine major components or nodes. These are: (1) inputs, (2) 
conceptual modelling, (3) software implementation, (4) software code verification, (5) instantiation, (6) 
calibration, (7) sensitivity analysis, (8) simulation experimentation, and (9) validation. The methodology, 
with these major nodes, is illustrated in Figure 8. A discussion or each node is presented in the following 
paragraphs. The numbered steps are discussed thereafter. 

 
Figure 8 Detailed methodology carried out to develop a simulation of earthquake crisis 

 

The initial node describes the inputs which refer to data collected from various sources. Examples of 
data include (1) spatial layers such as buildings and roads; (2) macroseismic building vulnerability and 
damage probabilities; (3) demographic data; (4) behavioural data reported from (a) previous studies, (b) 
observed from collected video data. More details on inputs are discussed in Section 4.4 of this chapter.   

IMPLEMENTATION 

SOFTWARE 
CODE 
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Conceptual modelling node refers to development of the model and sub-models from the gathered data. 
Models developed in the study are classified into three categories: models of the (1) physical crisis 
environment, (2) the individual, and (3) social dynamics. The models include the: (1) model of the 
individual and social interaction based on social attachment, or the attachment model; (2) conceptual 
agent-based model described in the diagrams, (3) motion and navigation of individuals in free space, (4) 
model of the spatial environment, (5) model of the seismic crisis environment, (6) the multi-agent model 
design. The models are discussed in more details in Chapter 5.  

Software implementation refers to the process of transforming the conceptual model into software code. 
This involves translating the objects, agents and interactions into the syntax of the software environment 
used. The GAMA platform, that was used in this study, is further discussed in Section 4.5.1. 

Software verification12 refers to the node where the software code of the model is checked to ensure 
compliance with the design of the conceptual model. The software code is also checked for errors, first 
with respect to syntax and then for runtime errors. The runs are checked visually and also parametrically. 
In the adopted methodology, every node’s contribution is checked, what each ensures goodness of fit 
and realism.  

Instantiation refers to the initialisation of the model by setting the spatial layers and parameters for crisis 
scenarios. For example, initial layers include buildings, street network, safe area locations, and danger 
zones, etc. Initial parameters are from the collected data mentioned in the input node. Some examples 
of initial parameters are (1) heterogeneous agent population with respect to demographic characteristics, 
(2) maximum movement speeds of agents, (3) strength of social bonds, (4) time of day, (5) intensity of 
the earthquake felt in the area, (6) duration of the shaking, (7) probabilities for behaviours, etc. These 
layers and parameters are further discussed in Chapter 5. 

Calibration13 of the multi-domain model in the study physical and social developed in this study requires 
different methods. Calibration with existing data and making sure they are used in the instantiation of 
the model is what is only possible with the model. Examples of data used for calibration of the model 
include population distributions, damage and vulnerability probabilities. So far, no earthquake event of 
damaging nature has occurred in the city of Grenoble and has been experienced by the current population. 
Evacuation data in the IRIS or city scale for a damaging event is also not available. Is making sure that 
when realistic parameters are used, this is also calibration? Comparison with casualty statistics from 
previous earthquake events. Calibration base on the probabilities for actions detailed in previous studies. 
Social interactions produce delays. 

Sensitivity Analysis14 was used to test the dominance of parameters in the study with respect to effects 
on number of arrivals on safe areas. Owing to many sub-models used and many parameters in the study 
(geotechnical, 2D/3D space), sensitivity analysis will be done only on the social attachment parameters. 
An example is the effect of: (1) presence or absence of social attachment, and (2) perception distance 
during night time or daytime scenarios. These parameters refer to Chapter 5, models and Chapter 7, 
experiments.  

The simulations/experiments run the code using the parameters. This generates new simulation data such 
as artificial histories for agents. This data is used to create visualisations, develop analyses, draw 
conclusions, and make comparisons with the real system. Examples of experimental scenarios to test 
effects on evacuations are (1) daytime and night time population distributions, (2) presence or absence 
                                                
12 “Computerised model verification ensures that the computer programming and implementation of the 
conceptual model are correct” (Sargent, 2000). 
13 Calibration as used here is “determining model parameters using real world data” (Darvishi & Ahmadi, 2014). 
14 Sensitivity analysis consists of changing the values of the input and internal parameters of the model to 
determine the effect on model behaviour and output (Sargent, 2000). 
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of social interactions in evacuations, (3) geographic scale used (a) 2 IRIS, (b) 6 IRIS and (c) 69 IRIS or 
city scale. The experiments are discussed in Chapter 7, and results in Chapter 8. 

Validation15 is central to the modelling process and it involves comparing the model, the simulation runs, 
and results of parameters, to reality. Consultation with experts (both scientific and practitioners) are 
done to validate the code the simulation runs. Particular attention is given to the realism the code imparts 
to the simulation. This also requires explaining to the experts how the code is written to explain agents 
in the simulation environment. The modes of validation adopted include consulting with domain experts, 
revisiting literature, cross checking with and collected survey and video data. Validation is done in the 
following (1) checking the code, (2) visual inspection of (a) agent locomotion, (b) debris generation, (c) 
social interaction of agents, (d) casualties and injuries; (3) statistical results. The benefit of having a 
GIScience environment is both its visual and parametric nature. Validation can proceed via visual 
inspection of agent behaviours in the microscopic pedestrian simulation as well as the ability to inspect 
parameters using statistical analysis and data visualisations such as graphs. An example of non-realistic 
behaviour which can be checked visually and parametrically are agents moving through barriers like 
buildings, debris, or natural features such as water bodies like rivers. Movement of agents in strict 
geometric patterns like straight lines and following corners is also not realistic. Video recordings of 
simulation runs are taken. These are used to evaluate the realism in agent movement in the synthetic 
crisis environment.  

Figure 8 illustrates the 29 steps involved in this methodology. (1) Inspecting input data for fitness and 
possible inclusion to the model. Examples of input data are spatial data layers (e.g. buildings, roads), 
population, human factors (age, disability, and speed), behaviours observed in past earthquakes, 
vulnerability of buildings and probabilities for damage, etc. There are further discussed in Section 4.4. 
This also includes collected video data of actual earthquake disaster events. Video data allow for the 
very detailed study of microscopic behaviours as disaster events unfold. These behaviours are not 
usually described in detail in written reports. Having the video data allows for calibration of agent 
movements, social interactions, and interactions of individuals with the crisis environment.  

(2) Input data is validated as acceptable for use in building the model. Data is modified when needed. 
For example, the original shapefile of buildings data does not contain building typology and 
vulnerability. The typology and vulnerability is however included in the IRIS boundary shapefile layer. 
The data is in the macro scale at the level of the IRIS. For assigning the data to buildings, The such as 
adapting the data from a source originally at the macro scale, and scaling it down to the micro scale, i.e. 
to the building level. An example is the macro seismic assessment of vulnerability which is evaluated 
over large areas. Values can be in percentages, but buildings need to be assigned a category for typology, 
vulnerability and damage. This can involve finding new data when inputs are missing. Another example 
is the location of egress points or doorways from buildings, which are often not available. Therefore, 
doors are added to the spatial database by digitisation and editing vector attributes. For population data, 
the number assigned to different land uses, are likewise not provided in its raw form. The distribution 
has to be derived from the population dataset.  

(3) Inputs are used in developing the conceptual design of models and sub-models. Interactions of agents 
and model components are presented in diagrams described in Chapter 5. Each model component is also 
designed. For example, spatial data like buildings and roads, are used to develop the crisis environment. 
                                                
15 In general, validation as defined by Darvishi and Ahmadi, is the process that helps to understand whether a 
model can produce valid or correct outcomes (Darvishi & Ahmadi, 2014). As used by Sargent and defined in 
Schelinger, validation is the “substantiation that a computerized model within its domain of application possesses 
a satisfactory range of accuracy consistent with the intended application of the model” - (Schlesinger, 1979; 
Sargent, 2000). Validation techniques, from those discussed by Sargent, employed in this study, include animation, 
event validity, face validity (consultation with experts), animation/video, parametric or statistical analysis of 
simulation results, parameter variability-sensitivity analysis, and graphical representation (Sargent, 2000; Darvishi 
& Ahmadi, 2014). 
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Evacuation behaviour data derived from previous studies are used to define the probabilities for 
individual actions and resulting group behaviour. (4) Conceptual models are checked with the available 
quantitative and qualitative data. (5) Design of conceptual models are finalised with the final set of 
inputs. (6) Conceptual model undergoes validation via consultation with experts, checking available 
literature, and collected video (e.g. first-person point of view from mobile devices, CCTV cameras and 
news report). (7) Finalisation of the validated model. (8) The conceptual model is transformed into 
software code. (9) The initial software model is checked to match the conceptual model. (10) The initial 
software model is finalised. (11) The code of the initial software model undergoes code verification. (12) 
Consultation with experts to validate the software code. (13) Integration of expert comments on the 
software code. (14) Software model is finalised.  

(15) The software model is initialised or instantiated using preliminary parameters. This involves 
running the model in the designed user interface using the GAMA platform. The user interface shows 
the simulation in full 2D and 3D space. Dynamic interaction of model elements can likewise be seen at 
simulation run time. Examples are the generation of debris during the earthquake, the effect of debris 
on structures, pathways and human agents (injury, death, trapping, or delay), individual movement in 
free space, evacuation of individuals from buildings through doorways towards safe areas, and social 
interaction during evacuation. Data from the simulation can be viewed and inspected at simulation run 
time. Individual agents can be clicked on and inspected for attributes such as age, speed, social group, 
evacuation delay, health status (injured, dead), beliefs, desires, intentions, plans, etc. Data can also be 
viewed in tabular form as raw values, or as dynamic graphs and charts. The data generated from running 
the model is saved and visualised using GAMA and the data exploration interface has been built using 
Python. The tabular and chat data is dynamically displayed during simulation run-time using a web 
browser. Examples of data displayed are the number of agents arriving in safe areas, the number of 
people injured or dead, pre-evacuation behaviours and delay times in evacuation, etc. The interface also 
allows the inspection of code sections for syntax and run-time errors allowing for code corrections 
during model initialisation tests. Examples of errors normally encountered are exceptions. These are 
only encountered during simulation runs and can be due to many things such as vector geometry or null 
pointers.  

(16) The model is tested and calibrated with more realistic data. Examples for the individual are 
movement speeds, and the angle and distance of visual perception. Examples for social aspects include, 
social bonds, social attachment related behaviours, probabilities for behaviours, etc. For physical aspects, 
the debris generation is based on earthquake intensity scenarios. (17) The model is refined using the 
calibrated parameters. (18) The calibrated model is instantiated using calibration parameters. (19) 
Sensitivity analysis is initiated. Tests for sensitivity analysis are conducted using some parameters. 
Parameters of focus include social bonds, perception distances, time day, presence and absence of social 
attachment in evacuations. (20) Checking instantiation parameters effects on sensitivity analysis. (21) 
When the parameters are stable or do not create variations in calculations, they can be finalised and a 
full sensitivity analysis using all parameters of interest can be conducted. (22) Design experiments and 
simulations. (23) Verify and validate design of experiments and simulation. (24) Finalise simulation and 
experiments. Run the simulations. (25) Check/compare simulation/experiment results with inputs/real 
data. (26) Checked simulation with real data. (27) Final validation of simulation and experiments results. 
(28) Validated results and considered to finalise output. (29) Final assessment of the simulation output. 
When the results are not satisfactory, the process will start again until an acceptable model producing 
realistic results is achieved. 

This ends the discussion on the detailed methodology adopted in this work. The next sections will 
present the study area and sources of data that were considered in order to develop the model. 
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4.3  Study area  

The study area considered in the study is Grenoble, France. It is a city located at the foot of the 
Northern Alps in the southeast of France. Its centroid coordinates are 45° 10' 57.35"N, 5° 43' 15.13"E. 
The maps showing the location of Grenoble with respect to the metropolitan France is shown in Figure 
9. The detailed map of Grenoble showing its shape, IRIS boundaries and surrounding communes is 
shown in Figure 10. 

 

Figure 9 Location of Grenoble with respect to Metropolitan France. Map by Julius Bañgate, 2019 with data from (BRGM, 
2019; Google, 2018). BRGM was the source of the Department boundaries. Google is the source of the terrain basemap.   

 

Figure 10 Grenoble city boundary map by Julius Bañgate, 2019 with data from: (Riedel_a, et al., 2015; OpenStreetMap & 
Contributors, 2018; BRGM, 2019). The IRIS boundary data is from Rieldel et a.l; the Commune boundary is from BRGM; 

the basemap is from OpenStreetMap.  

Grenoble’s population is 160,215 individuals according to the 2013 IRIS16 census tracks level national 
census data (INSEE, 2019). The city holds great social, economic and technological importance due to 
the presence of many advanced research institutions and industries (AEPI, 2019; AEPI_b, 2013). 
Nuclear research facilities devoted to developing civilian applications are also located in the city (CEA, 
2015). Grenoble’s historic city centre is the venue for many social, residential, commercial and tourist 
activities. Due to many different activities in the city, the spatial distribution of the population within 
the city changes during the day, the days of the week and the seasons. The city’s daily population also 

                                                
16 IRIS is a French accronym for Ilots Regroupés pour l’Information Statistique or in English ‘aggregated units for 
statistical information’ (INSEE_b, 2019). INSEE is the Intitut national de la statistique et des études économiques, 
it « collects, analyses and disseminates information on French economy and society” (INSEE_b, 2019). 

 

Grenoble, France 
45° 10' 57.35"N,  
5° 43' 15.13"E 
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increases due to the influx of non-residents from surrounding municipalities (André-Poyaud, 
Chardonnel, Charleux, & Tabaka, 2016). 

The historic city centre of Grenoble hosts many old and historic buildings (Ville de Grenoble, 2013). 
Newer buildings can be found in the southern portion of the city as the direction of urban growth has 
been southward (Coppé, Enaudi, Menousse, & Munar, 2013). The presence of the Isère river and 
Chartreuse mountain range limits the expansion of the city towards the north. According to Dunand and 
Guéguen, 2012, the city centre is mainly built in masonry (Dunand & Guéguen, 2012). Also, from the 
same authors, suburbs surrounding the city are built with reinforced concrete. Newer suburbs located in 
the city’s outskirts are heterogeneous and were built with either masonry or concrete. Additionally, 
newer suburbs located in the city’s outskirts are heterogeneous and were built with either masonry or 
concrete. 

In terms of seismicity, Grenoble lies in a zone of average seismicity (BRGM, 2019). Figure 11 shows 
the new seismic zones of France released in 2011. This new map shows the indicative location of 
Grenoble within the average seismic zone17. The reclassification of Grenoble to the average seismic 
zone communicates higher seismic risk. This significant change could help to increase the level of 
awareness of populations to the significance of seismic risk in Grenoble. New research, especially 
dealing with perceptions of risk will have to seek a way to use the data and results from previous research 
in their methodologies.  

 

Figure 11 Seismic zones for metropolitan France May 1, 2011, article D.563-8-1 du code de l’environnement, Ministère de 
l’Ecologie, du Développement durable, des Transports et du Logement. Map is created by Julius Bañgate, 2019 with data 

from published GIS Data Source: (BRGM, 2019) 

Compared to the rest of France, this region where Grenoble is located, experiences high seismic activity 
(Thouvenot, Fréchet, Jenatton, & Gamond, 2003). Very low magnitude/intensity earthquakes are 
frequently detected by seismic sensors in the city and the surrounding areas. However, the occurrence 
however of disastrous earthquakes are rare and have long return periods (Dunand & Guéguen, 2012). 

                                                
17 It should be noted that the older seismic zone map prior to May 1, 2011, classifies Grenoble within the lower 
moderate zone category (BRGM, 2019). As a consequence, prior studies used this moderate category (Beck, 
André-Poyaud, Chardonnel, Davoine, & Lutoff, 2010; Guéguen, et al., 2009; Dunand & Guéguen, 2012) 

Grenoble, France 
45° 10' 57.35"N,  
5° 43' 15.13"E 
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According to the authors, probabilistic studies project the possibility of recording intensity VII to VIII 
having an annual probability of 0.002 or a 475-year return period.  

A local source of seismicity is the active fault in the Belledonne mountain range (ISTerre, 2019; 
Thouvenot, Fréchet, Jenatton, & Gamond, 2003). Another nearby fault, called the Voreppe fault, 
according to ISTerre team, possibly crosses the city but its activity is not known. Also, according to 
ISTerre team, there could still be other potentially dangerous faults that could exist in the Vercors and 
Chartreuse massifs that remain to be discovered. The Belledonne fault area is located southeast of the 
city, which can be a local source of future strong earthquakes. The return periods of earthquakes (units 
in magnitude, M) in the Belledonne fault zone are: M=3.5 every15 years; M=4.0 every 40 years; M5.0 
every 300 years; and M6.0 every 2000 years (ISTerre, 2019). Figure 12 shows the seismicity of the 
Belledonne fault zone.  

 

Figure 12 Seismicity of Grenoble and in the Belledonne fault area (ISTerre, 2019; Thouvenot, Fréchet, Jenatton, & Gamond, 
2003). The grey broken line is the fault. The left image shows more recent earthquakes indicating magnitudes. The right 

image shows historic earthquakes.  

Table 22 shows the historical earthquakes with reported intensities starting from intensity IV, as felt 
from Grenoble (IGrenoble) (www.sisfrance.net, 2018). The intensity felt at the earthquake source of 
epicentre (IOrigin) is also indicated. It can be seen that large historical earthquakes have mostly been 
recorded in Grenoble at intensity V and very few at intensity VI. Intensity VII was recorded in the 
Corrençon earthquake of April 25, 1962. Intensities less than IV have been recorded but were not 
included in the table since these low intensity earthquakes are seldom perceived by the population.  

Table 22 Historical earthquakes from intensity IV felt in Grenoble (www.sisfrance.net, 2018). Please note that the intensity 
values IOrigin and IGrenoble are expressed as real numbers and not in their roman numeral equivalents. 

Date Time Local Epicenter, Region IOrigin IGrenoble 
12 December 1963 13 h 24 min 57 sec Vercors (Correncon-En-Vercors), Dauphine 6 4 
7 December 1963 10 h 39 min Vercors (Correncon-En-Vercors), Dauphine 6 4 
25 April 1963 13 h 36 min 11 sec Vercors (Monteynard), Dauphine 7 5 
25 April 1962 4 h 44 min 48 sec Vercors (Correncon-En-Vercors), Dauphine 7.5 6.5 
12 April 1962 13 h 38 min 5 sec Vercors (Correncon-En-Vercors), Dauphine 5 4.5 
3 March 1961 0 h 52 min 27 sec Belledonne (Uriage), Dauphine 5 4.5 
30 May 1946 4 h 41 min 38 sec Valais (Chalais), Switzerland 7 5 
18 July 1938 0 h 57 min Queyras (Guillestre), Alpes, Dauphinoises 7 5 
17 January 1937 1 h Greivaudan (Grenoble), Dauphine 4 4 
29 April 1905 1 h 59 min 15 sec Massif du Mont-Blanc (Lac D’Emosson), 

Switzerland 
7.5 4.5 

23 February 1887 5 h 50 min Riviera di Ponente (Imperia-Bussana), Italy 9 6 
27 November 1884 22 h 57 min Queyras (Guillestre), Alpes Dauphinoises 7 5 



 

 78 

10 December 1882 17 h 40 min Belledonne-Pelvoux, Alpes Savoyardes 5 5 
5 August 1881 0 h 30 min Belledonned-Pelvoux, Alpes Savoyardes 6 5.5 
22 July 1881 2 h 45 min Belledonned-Pelvoux, Alpes Savoyardes 7 5 
12 November 1869 0 h 2 min Greivaudan (Domene), Dauphine 4 4 
19 May 1866 9h 12 min Laragne (Le Motte-du-Caire), Alpes Provencales 7.5 4 
25 July 1855 12 h 50 min Valais (Visp), Switzerland 9 5 
7 January 1851 23 h 30 min Gresivaudan (Grenoble), Dauphine 5 4.5 
3 April 1839 18 h 30 min Gresivaudan (Domene), Dauphine 6 5 
19 February 1822 8 h 45 min Bugey (Belley), Bresset et Jura Bressan 7.5 5.5 
2 April 1808 17 h 45 min Piemont (Torre Pellice), Italie 8 4.5 
12 September 1785 0 h 15 min Piemont (Val de Susa, Oulx), Italie 7 4 
15 October 1784 12 h 3 min Massif de la Chartreuse (S. Chambery), Alpes 

Savoyardes 
6.5 5 

15 August 1782 16 h Belledone (Uriage), Dauphine 6 5 
15 February 1644 4 h 30 min Alpes Nocoises (Roquebilliere), Alpes Maritimes 8 4 

A map of the historical earthquakes, with intensities larger than 5 in the Grenoble vicinity is presented 
in Figure 13. Data is from the historical earthquake catalogue of www.sisfrance.net. The map also covers 
a larger area to show the relevant earthquakes occurring in Italy and Switzerland. It can be seen from 
Table 22 and Figure 13, that strong earthquakes occurring in far locations, such as Italy and Switzerland, 
are felt in Grenoble, although at lower intensities. Examples are the February 23, 1887 Riviera de 
Ponente, Italy earthquake occurring with intensity IX at the epicentre and felt in Grenoble as intensity 
VI. Another example is the May 30, 1946 Valais, Switzerland earthquake occurring with an intensity 
VII at the epicentre and felt in Grenoble at intensity V. 

 

Figure 13 Location of historical earthquakes in the nearby region. Earthquakes have intensities greater than 5 around 
Grenoble. Earthquake data from www.sisfrance.net (www.sisfrance.net, 2018). Map by Julius Bañgate, 2019 with data on 

Seismic zones and boundaries from planseisme.fr (www.planseisme.fr, 2018). Topographic data from OpenTopo 
(OpenTopogaphy, 2018) 

Grenoble is located in a small-size, deep, Y shaped sediment-filled basin that has fill materials that 
amplify seismic ground motion (Cornou, Bard, & Dietrich, 2003; Dunand & Guéguen, 2012). The shape 
of the valley and type of soil contribute to prolonging the duration of the shaking. This amplification 
could explain why the effect of far-occurring earthquakes are felt in Grenoble. This brings also the 
unfortunate consequence of the amplification for nearer earthquakes. According to Dunand and 
Gueguen, Grenoble can be divided into two zones of intensity amplification, based on this soil material 
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(Dunand & Guéguen, 2012). Zone 1 is comprised of type B soils which consist of sand and gravel. Zone 
1 increments intensity values to 0.7. Zone 2, is comprised of type C soils, which consists of silt and clay. 
Zone 2 increments intensity by 1.5; Figure 14 illustrates these zones of amplification. It should be noted 
that the old historical city centre lies within Zone 2. With greater site amplification, and presence of old 
structures, more structural damage can be expected from Zone 2 than Zone 1. In general, according to 
the authors, the overall seismic risk for Grenoble is rated as moderate, when considering the probability 
of damage, collapse and loss. 

Being in the region of average seismicity, which is one of the highest in mainland France, the risk of 
earthquakes to the population of Grenoble is real. However, the rare occurrence of earthquakes is seen 
as a possible hindrance to the development of a sound culture on seismic risk (Beck, André-Poyaud, 
Chardonnel, Davoine, & Lutoff, 2010). This low risk perception can result in non-definitive 
commitments to reduce seismic risk from authorities (Dunand & Guéguen, 2012).  

A deadly earthquake on average is experienced in France every 100 years (McPartland, 2014). The last 
deadly earthquake was the Lambesc, Provence earthquake in 1909 (Lacassin, Tapponnier, Meyer, & 
Armijo, 2001). If the occurrence pattern will be the same, a disastrous tremor in France is already long 
overdue.  

 

Figure 14 Grenoble zone amplification increments, zone boundaries are estimated and digitized based on a figure from  
Dunand & Guéguen, 2012. Map by Julius Bañgate, 2019.  

The aforementioned characteristics of Grenoble make it a good site to model crisis behaviour and 
develop different crisis scenarios. Future earthquakes are certain but the current population has no 
experience with disastrous earthquakes. In the event of an earthquake, the population may fail to 
recognize the natural hazard and not behave in accordance with recommended behaviours during 
earthquake events (Beck, André-Poyaud, Chardonnel, Davoine, & Lutoff, 2010). The old structures in 
the city will be tested for their resilience to earthquake damage. This will also confirm if building codes 
are sufficient or properly complied with for newer structures. Developing the scenarios can be useful in 
anticipating worst-case scenarios which are necessary to enable planners to optimise efforts in 
evacuating populations, or respond to the needs for help or rescue.  
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4.4  Sources of data  

The data needed to develop model and simulation scenarios come from sources from different domains. 
The data from different sources used in this research are detailed in Table 23. Data are categorised with 
respect to themes namely social (human), geospatial (spatial), and geoscience (seismic). Other 
descriptive fields in the table include the name of the data, its source, and purpose or how the data is 
used in this research.  

The human population is characterised by social data. Details of the population are derived from the 
national statics data at the IRIS level, provided by the INSEE. The data attributes that are considered 
include population counts for different age groups, number of households, employment and disability. 
Age and disability are the major human factors when considering individual mobility. The age groups 
considered include child (0 to 2 years, and 3 to 14 years), adult (15 to 29 years, and 30 to 59 years), and 
elderly (60 + years). The age groupings include percentage values of the population that go to school, 
work, or who are retired. The activities of the age groups are crucial in recreating the spatial distribution 
of the population for different time scenarios.  

The spatial distribution of the population during the day and night are derived from demographic data 
and mobility surveys. New data from the current research of Menin et al. on daily mobility (Menin, 
Nedel, Davoine, & Chardonnel, 2018) is also considered. The strength of social relationships or bonds 
for France are derived from the work of Suvilehto et al. (Suvilehto, Glerean, Dunba, Hari, & 
Nummenmaa, 2015). Social behaviours and evacuation speeds during disasters are derived from the 
reviewed literature presented in Chapter 2 and from gathered video data.  

Geospatial vector data are used to define the crisis environment using shapefiles in the RGF-
93/Lambert-93 projection. The base map on buildings footprints, road network, open spaces (parks), 
and natural features (rivers) are from BDTOPO (IGN, 2017). Points of interest showing locations of 
establishments, businesses, etc., which are not available from official sources, are derived from 
OpenStreetMap (OpenStreetMap & Contributors, 2018). Spatial layers not available from the 
aforementioned sources, such as location of building doorways, are determined using address data (Open 
Data Grenoble-Alpes-Metropole, 2018) or digitized from satellite images. Additional context is 
provided by BDTOPO, OpenStreetMap, Google StreetView, and Google Satellite imagery (IGN, 2017; 
OpenStreetMap & Contributors, 2018; Google, 2018). Other spatial layers such as safe areas and hazard 
zones are derived from GIS using spatial analysis and geoprocessing.  

A comprehensive and detailed building inventory for seismic vulnerability and damage is not available 
for Grenoble. Damage and vulnerability probabilities for each building are derived from the work of 
Riedel et al. (Riedel_a, et al., 2015). Probability values are presented for each IRIS unit. The 
probabilities for vulnerability are used to assign buildings to different typologies. The damage 
probabilities are used to determine damaged buildings during different earthquake intensity scenarios. 

Table 23 Description of data used for model development, initialisation of parameters and validation of results 

Category Data Literature Source Purpose/target 
Social 
(Human) 

Demography National Census at IRIS 
level (INSEE, 2019) 

Generate population based on age groups. 

Disability National Census at IRIS 
level (DREES, 2017) 

Add a disability attribute to individuals.  

Daily Mobility (Menin, Nedel, Davoine, & 
Chardonnel, 2018) 

Distribution of population in different parts of the 
city especially during daytime. 

Social ties/bond 
strength 

(Suvilehto, Glerean, Dunba, 
Hari, & Nummenmaa, 
2015) 

Calibration of an individual’s perception distance 
based on bonds to implement affiliation, 
perception, and recognition in the model. 

Evacuation 
behaviour 

Literature survey detailed in 
Chapter 2, Questionnaire 

Calibration of probabilistic assignment of crisis 
behaviour during evacuation. 
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Survey Reports, E.g. (Beck, 
André-Poyaud, Chardonnel, 
Davoine, & Lutoff, 2010) 

Evacuation Speed Literature survey Define individual speeds during evacuations. 
Video 
documentation of 
actual earthquake 
events 

YouTube (Collection of 
videos from different 
earthquake events) 

Gather pre-evacuation and evacuation behaviours 
during the event; Validation of realistic behaviour 
of agents in model and simulation. 

Geospatial 
(Spatial) 
 

Grenoble boundary (Riedel_a, et al., 2015) Define model extents, aggregated from IRIS 
boundaries. 

IRIS Boundary (Riedel_a, et al., 2015) Attributes used as probabilities for generating 
attributes of enclosed features (population, 
buildings). 

Address (Open Data Grenoble-
Alpes-Metropole, 2018) 

Address/location of residences and 
establishments. 

Buildings BDTOPO (IGN, 2017) Provide location of people indoors. These also 
serve as barriers to movement and define the 
boundaries of alleyways and streets. When they 
are damaged during a crisis scenario they provide 
the source of debris. 

Road network BDTOPO (IGN, 2017), 
OpenStreetMap 
(OpenStreetMap & 
Contributors, 2018)  

Provide pathways, routes towards safe areas 
during evacuations. Centre lines of roadways are 
the initial safe areas. Also provides guidance to 
agents when evacuating to safe areas. 

Open Spaces 
(Parks) 

BDTOPO (IGN, 
2017)(IGN, 2017); 
OpenStreetMap 
(OpenStreetMap & 
Contributors, 2018) 

Define safe areas Open space, safe areas. 

Points of Interest 
(POIs) 

OpenStreetMap 
(OpenStreetMap & 
Contributors, 2018) 

Used to define the locations of individual agents 
not inside home locations. Location of 
establishments, used to define doorways, and 
use/type of locations. 

Doorways Digitised from satellite 
imagery 

Used as starting locations for evacuation, 
especially during night time scenarios. 
Occupancy; location of “indoor” agents. 

Natural 
features/Rivers 

BDTOPO (IGN, 2017) Barriers to movement. These are used to restrict 
pedestrian movement in pathways. 

Evacuation Routes City Planning Office, or 
delineated from data 

Officially defined routes for evacuation. 

Danger Zones Derived from data using 
geoprocessing tools 

Used to define deposition areas for debris around 
buildings. 

Safe areas Derived from data using 
geoprocessing tools, and 
vector editing 

Areas free from debris. Used as destinations of 
agents during evacuations. 

Geoscience 
(Seismic) 
 

Vulnerability for 
each IRIS  

(Riedel_a, et al., 2015) Used to assign the building typology attribute (a, 
b, c, d, e, f) using probabilistic method. 

Damage Probability 
for each IRIS 

(Riedel_a, et al., 2015) Probabilistic assignment of damage to a building 
with respect to intensity (0,1,2,3,4,5). 

Zones of intensity 
amplification (based 
on soil type) 

(Dunand & Guéguen, 2012) Used in defining scenarios with intensity 
amplification. 

Video 
documentation of 
damage during 
actual earthquake 
events 

YouTube (Collection of 
video recordings from 
different earthquake events) 

Used for modelling damage and deposition of 
debris nearby structures. Videos are also used as 
a basis for human interaction with debris 
especially in encountering injuries and casualties. 

 

4.5  Summary of the chapter  

The chapter discussed the multi-disciplinary approach and detailed methodology adopted in 
developing the models. A description of Grenoble as the study area was presented. The discussion 
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revolved around the characteristics of the city and the seismicity of the area. The chapter also presented 
the dataset considered in the study.  

It can be concluded from this chapter that adopting Grenoble as the study area for developing the model 
and simulation is appropriate for the following reasons: (1) it is a city vulnerable to seismic risk; (2) 
steps are needed to increase awareness and inspire action from local authorities and the local population 
to more thoroughly address seismic risk, (3) initial body of work has been done to investigate physical 
and social vulnerability in Grenoble (E.g. (Beck, André-Poyaud, Chardonnel, Davoine, & Lutoff, 2010; 
Dunand & Guéguen, 2012) ); (4) data is available to build the spatial model of a synthetic seismic crisis 
environment, and (5) the availability of local experts from different domains to help validate the model. 

The next chapters will present the other components of the detailed methodology. Chapter 5 will discuss 
the models, developed using the input datasets, and guided by the detailed reviews from Chapter 2 and 
3. Chapter 6 discusses how the model was implemented. 
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CHAPTER 5. AGENT BASED MODEL OF SOCIAL 
ATTACHMENT  

This chapter presents the SOciaL Attachment and Crisis Evacuations (SOLACE) model. SOLACE 
is developed using social attachment theory as the framework for modelling human behaviour during 
seismic crisis evacuations. The use of the word “solace” as the name of the model for this crisis context 
is appropriate. In the English language, solace is a noun which means comfort or consolation during 
times of distress or sadness. The model is the product of the multi-disciplinary methodology 
implemented in this work. The key components necessary to build this generic model include sub-
models developed from complementary domains. Social science defines the models of the individual, 
and the interactions driven by social attachment within social groups. Geoscience provides the models 
for earthquake effects and generation of damage and debris. GI science defines the spatial model for the 
crisis environment. Computer science provides the multi-agent framework and tools to integrate the sub-
models within a generic dynamic model and simulation environment. These domain-specific models are 
described in the subsequent sections. 

The chapter is divided into seven sections. Each section discusses the components or sub-models that 
make up SOLACE. Important concepts used in developing the model are discussed in the sections18. 
Section 5.1 presents the model of the human individual agent, built using social attachment as the 
governing framework. Section 5.2 discusses the model for agent’s individual motion and navigation in 
free space. Section 5.3 presents the model of the spatial environment defined by layers of geographic 
data. Section 5.4 presents the model of the seismic crisis environment, or the scenarios starting from 
earthquake shaking to evacuations. Section 5.5 describes in more details SOLACE with a UML diagram. 
Section 5.6 describes the software ecosystem developed to facilitate data visualisation and analysis from 
SOLACE. Section 5.7 presents as short conclusion. 

5.1  Model of the individual and social attachment  

The model of the individual integrates human factors, cognitive functions and social abilities. The 
mobility (i.e. means and speed of movement) of an individual in the crisis environment is primarily 
determined by human factors. Significant to this study are the limitations imposed by age and disability. 
According to social attachment theory, crises or threat situations activate attachment or affiliation 
(Mawson, 2005). This triggers proximity seeking behaviour towards attachment figures. Proximity 
seeking behaviours influence the motivations, goals, speeds and directions of individual actions. 

The conceptual model for social attachment developed in this research is presented in Figure 15. In the 
model, the attachment figures are human individuals and groups, places, objects/property, 
task/routine/activity and information. Attachment between human individuals and groups are governed 
by the strength of social bonds. Non-human elements (like pets, places or objects) are included when 
they hold significance or social meaning to individuals or groups. This happens when non-human 
elements are involved in social interactions or can evoke memories of persons and past experiences. The 
significance can also be primarily economic, in the sense of monetary value or the amount of time 
invested (e.g. computer containing research work, etc.). Pets for example are often considered as family 
members (Heath S. E., Kass, Beck, & Glickman, 2001). An example of attachment to a place is a 
person’s attachment to one’s home or neighbourhood (Scannel & Gifford, 2013). For objects, it can be 
personal property like a wallet, mobile phone, computer, luggage, etc. The mobile phone in particular 
is used to connect with family members and seek information on their conditions. Working, driving and 
sleeping are examples of tasks or routines. Information in general refers to the safety of human and non-
human attachment figures during the crisis. When attachment figures are near, information is acquired 

                                                
18 The level of detail of the concepts for developing the model are too granular to be included in Chapter 2 and 
Chapter 3. Also, the fine details do not fit thematically in the previous chapters, which were already very lengthy. 
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by seeking and direct checking on their situation. When the attachment figures are far, information can 
be derived from making phone calls, social media and radio and tv broadcasts.   

 

Figure 15 SOLACE Attachment Model 

The succeeding sections present further details about the model. 

5.1.1 Social distance and strength of bonds  

In the SOLACE model, social attachment is expressed as social distance (SD), social distance bond 
strength (SDBond), and affective perception distance (PD). The ranking used in the model are based on 
the notion of the strength of interpersonal ties from Granovetter (Granovetter, 1973). According to 
Granovetter, the strength is determined by the combination of the amount of time, the emotional 
intensity, intimacy and the reciprocal services that characterize the tie. In the SOLACE model, the values 
for parent and child (core family member) are the highest. Especially in the formative years, children 
spend significant amounts of time with parents. Strong bonds are likewise formed between siblings. 
Relatives and other kin members (grandparents, aunt, cousin, etc.), likewise can form strong ties with 
core family members. Individuals can also from strong ties with friends. The bonds become weaker (in 
decreasing order) with colleagues, acquaintances and strangers. Bonds with strangers can be formed 
especially during crises (see Section 2.3.4.3) (Drury, Cocking, & Reicher, 2009).   

In the conceptual model shown in Figure 15, a social distance, ranging from 1 to 10 is used to set the 
priority for perceiving and reacting towards attachment figures. Social distance describes personal 
closeness, strong personal ties or social bond, and familiarity. The highest priority is given to individuals 
with the highest social bond strength with respect to the reference individual. For example, for a 
reference adult (HAd) who is a parent, first priority (SD = 1) is accorded to child (HCd) due to very high 
social bond SDBond = 10; second priority (SD = 2) to partner (HSp) with social bond SDBond = 9; third 
priority (SD = 3) to parents (HSp) with social bond SDBond = 8; fourth priority to siblings (HSb, SD = 4, 
SDBond = 7); fifth to next of kin (HKn, SD = 5, SDBond = 6); sixth to pets (APe, SD = 6, SDBond = 5), seventh 
to friends (HFr, SD = 7, SDBond = 4), eighth to colleagues (HCo, SD = 8, SDBond = 3), ninth to authorities 
(HKn, SD = 9, SDBond = 2) and last priority to strangers (HSt, SD = 10, SDBond = 1). Table 24 details the 
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mapping between social distance and social bond with respect to the relationships described in the 
conceptual model.  

Table 24 Social distance (SD) and strength of bond (SB) from a reference adult parent 

Attachment Figure Altruistic Egoistic Membership in Social Groups 
SD SDBond SD SDBond 

Adult (HAd) 0 0 10 10 Nuclear 
Family 

Nuclear 
Family + 
Grand 
Parents 

Close 
Family 

Extended Ultra 
extended 
Family 
(With 
Pets) 

Child (HCd) 1 10 0 0 
Spouse/ Partner 
(HSp) 

2 9 0 0 

Parent (HPa) 3 8 0 0  
Sibling (HSb) 4 7 0 0   
Kin (HKn) 5 6 0 0    
Pets (APe) 6 5 0 0     
Friend (HFr) 7 4 0 0 Friends (GFr) 
Colleague (HCo) 8 3 0 0 Colleagues (GCo) 
Authority (HAu) 9 2 0 0 Authorities (GAu) 
Stranger (HSt) 10 1 0 0 Strangers (GSt) 

Aggregation of individuals into social groups is also included in the attachment model. The strong bonds 
between family members (GFa) for example are represented by the thick red lines in Figure 15. Sub-
categories in the family group include (a) nuclear family which includes the couple and their child; (b) 
nuclear family with grandparents; (c) close family, which includes the siblings; (d) extended family with 
includes the next of kin or relatives; and (e) ultra-extended family which includes the pets as family 
members. Other social groups include friends (GFr), colleagues (GCo), authorities (GAu) and strangers 
(GSt). Group membership of individuals are not mutually exclusive and can overlap. A sibling or friend 
for example can also be a colleague. The bonds and structure of the sub-groups are context-related and 
adopted to French society. 

The values for SD and SDBond presented in Table 24 represent altruistic and egoistic scenarios that will 
lead the experiments. In the altruistic scenario, the values for social distance SD are in increasing order 
of priority from 1 to 10. In the altruistic case, the individual does not put priority on oneself but only to 
others. This is represented by the zero social distance value for the human adult HAd. Also, the strength 
of bond SDBond, to the self is also zero in the altruistic case. 

The reverse is true for an egoistic case. In this situation the reference individual only thinks of itself. 
Here relationships exist, but are not given priority and strength (with SD = 10 to oneself and SD = 0 to 
the rest). This would result in high social bond strength only to oneself, and zero to the rest (SDBond = 10 
to oneself and SDBond = 0 to the rest). In this case no social interaction is possible. This also means that 
egoistic individuals would only focus on themselves, give themselves priority, and would only try to 
protect and save themselves. Other individuals can be perceived but only treated like other objects in 
the environment and treated as obstacles and barriers. The only possible interaction is maintaining 
distance or avoidance. This effectively reduces to individuals approximating the behaviour of particles. 
The individual focuses on saving only himself or.herself to reach an objective which is a safe area. 

The role of familiarity in perception has been discussed in Section 2.3.4.2. 

5.1.2 Visual familiarity and limits to perception imposed by distance  

Complex and chaotic environments during disasters provide multiple distractions that can make the 
finding of other individuals difficult. Individual differences due age for example also affect the ability 
to focus (avoid distractions). The results of the work of Cohen & Gordon-Salant, suggested that “older 
adults are more susceptible to irrelevant auditory and visual competition in real-world environments”, 
than younger individuals (Cohen & Gordon-Salant, 2017). Also, the same authors dynamic visual scenes 
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provide distractions affecting listening performance. During disasters, the ability to focus to find others 
may be explained by (1) preferential processing during recognition tasks of personally familiar faces 
and voices, and (2) activation of proximity seeking behaviours due to social attachment (Keyes & 
Zalicks, 2016; Fontaine, Love, & Latinus, 2017; Mawson, 2005). 

Familiar individuals can be perceived more easily and can then be approached or attended to faster. This 
familiarity influences the focus and attention of agents during navigation. Ultimately it determines their 
goals (destinations) and direction of movement (towards chosen goals) in the environment. Many 
environmental factors such as visibility and audibility limit detection and recognition. Spatial distance 
(proximity) is a limiting parameter in detection and recognition. As distance increases, the power to 
detect and recognise decreases. This section expounds on the influence of distance on the visual factors 
that influence recognition. The formalised equation for affective perception distance is presented as 
Equation 3 in section 5.1.4 

Distance is the crucial parameter used in the model for agent navigation towards attachment figures. 
This navigation is influenced by what the agent can perceive and focus its attention within its visual 
field. In effect, distance acts as the spatial filter that limits the perception of non-relevant and far objects 
in the agent’s immediate environment. Ultimately this section operationalises the link between social 
distance and spatial distance. In particular preferential attachment and selective perception moderated 
by distance. Social attachment is used as the social filter. Spatial distance acts as the spatial filter. To 
expound further, it is how people with different social distances (i.e. variations in strengths in social 
bonds) perceive each other with respect to their relative spatial distances (i.e. proximity) in the crisis 
environment. Important concepts are discussed here as these are important in developing the model and 
were not included in Chapter 2 and Chapter 3. In particular, the concepts are familiarity (social), spatial 
distance (spatial), lighting conditions (environment), and human vision (human factors). The objective 
of the section is to justify the choice of 50 meters as the effective reference perception distance used in 
the model. The following discussions are necessary as the search in the literature did not result in a 
useful reference for use in the value for perception distance. 

Familiarity facilitates fast perception (detection and recognition) of attachment figures even from a 
distance, and in chaotic scenes (Liccione_a, et al., 2014; Kok, Taubert, Burg, Rhodes, & Alais, 2017; 
O'Toole, et al., 2011; Barton & Corrow, 2016; Suvilehto, et al., 2015). High familiarity naturally follows 
from strong attachment bonds among individuals (Suvilehto, et al., 2015). Individuals for example, are 
more exposed to family members through the unique pattern of historical interaction (Liccione_b, et al., 
2014). Liccione et al. adds that the frequency of encounters refines the stored representation of family 
members in an individual’s mind. As a direct consequence, this makes recognition of family members 
faster when compared to others. This high level of familiarity according to Liccione et al., facilitates the 
recognition of faces, and also discerning facial expressions. Keyes and Zalicks found that “socially 
important personally familiar faces are processed preferentially to socially unimportant familiar and 
unfamiliar faces” (Keyes & Zalicks, 2016; Gobbini, et al., 2013). The familiarity with face (1) increases 
identification accuracy, (2) facilitates generalization of the recognition process even at suboptimal 
conditions, (3) activates brain regions associated with sematic, episodic and emotional information 
representations of a person, (4) facilitate faster mental processing and recognition (Natu & O'Toole, 
2011; Balas, Cox, & Conwell, 2007).  

Spatial distance defines a limit to the recognition of other individuals and objects in the surroundings. 
Recognition performance degrades with increasing distance (Loftus & Harley, 2005). Faces become 
featureless beyond 35 meters (Maertens, 1884; Moughtin, 2003). Fortunately, even when the face is not 
visible, recognition of individuals is still possible. O’Toole et al. found that “human judgements of 
identity are likely based on the collaborative computations of multiple representations of face and body” 
(O'Toole, et al., 2011). Recognition of others can be through bodily shape, gait, and 
gestures/mannerisms during while walking or running, or a person’s choice of embellishments like 
colourful clothing (Adilla, 1993). With these other cues, individuals can be identified even at much 
longer distances. For example, Adilla reported that people can identify other people even further than 
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500 meters. Table 25 below shows examples of distances related to visual recognition considered by 
other authors. 

Table 25 Distances related to perception, fixation and recognition of people 

Distance (meters) What can be recognised Source 
4 to 18 Tendency to fixate on other pedestrians. (Fotios, Yang, & Uttley, 2015) 

8 Recognition performance remains at a plateau of 
maximum performance, approximately 90%. 

(Loftus & Harley, 2005; Fotios, Yang, 
& Uttley, 2015) 

10 Ideal facial recognition distance; Reduction of 
recognition performance to 75 %. 

(Loftus & Harley, 2005; Fotios, Yang, 
& Uttley, 2015) 

10 to over 50 Range of fixation distance during daytime, outdoors 
and in a residential area. 

(Fotios, Yang, & Uttley, 2015) 

>11 Pedestrians after dark may not be sufficiently visible. (Fotios, Yang, & Uttley, 2015) 
12 People can be distinguished. (Maertens, 1884; Moughtin, 2003) 

12 to 15 Reasonable distance to have a look at another person. (Fotios, Yang, & Uttley, 2015) 
12 to 24.9 Mean recognition distance. (Fotios, Yang, & Uttley, 2015) 

15 Interpersonal judgment possible. (Fotios, Yang, & Uttley, 2015) 
22 Normal identification of people in daylight is 

possible. 
(Fotios, Yang, & Uttley, 2015; 
Maertens, 1884) 

22.5 Person can be recognised. (Maertens, 1884; Moughtin, 2003) 
23 Reduction of recognition performance to 25%. (Loftus & Harley, 2005; Fotios, Yang, 

& Uttley, 2015) 
25 Facial recognition distance for public safety. (Fotios, Yang, & Uttley, 2015)* 
35 Face becomes featureless. (Maertens, 1884; Moughtin, 2003) 
50 During daytime and with normal vision, people and 

objects can be recognised. 
(Fotios, Yang, & Uttley, 2015) 

52 Fixation to unfamiliar sections during daytime. (Fotios, Yang, & Uttley, 2015) 
135 Body gestures can be discerned. (Maertens, 1884; Moughtin, 2003) 

1200 People can be seen. (Maertens, 1884; Moughtin, 2003) 

Lighting conditions affect the distances for detecting and recognising people and objects. Poor lighting 
conditions result in poor visibility. This situation requires people and objects to be nearer to be detected 
and recognised. Daytime provides the ideal lighting conditions for visibility. This visibility however can 
be reduced by the presence of particles like dust (due to debris collapse), smoke, fog, smog, mist and 
rain. Trapped individuals indoors without emergency lighting within collapsed structures lose all 
visibility. Night time is particularly challenging as illumination from street lights do not fully 
approximate visibility during daytime conditions. Earthquake disasters happening during night time can 
force individuals to evacuate outdoors and struggle with poor lighting conditions to seek attachment 
figures and safe areas. Power can also be cut from homes and streets making visibility evacuations more 
difficult. Moonlight can aid in visibility however is decreased during full moon towards no-moon 
conditions (Nichols & Powers, 1964). 

Individual human factors also play a significant role in the ability to perceive other individuals and the 
environment. Age is a major factor as visual ability is normally poorer with increased age (Wright & 
Rea, 1984; Del Viva & Agostini, 2007). Young and older persons perform differently to different 
lighting conditions (Rahm & Johansson, 2018; Fotios & Boyce, 2015). From Rahm and Johansson’s 
experiment, younger individuals outperformed older individuals in visual tasks when lighting is brighter. 
However older people are more used to and can outperform younger individuals in poorer lighting 
conditions. Younger individuals can detect smaller objects better than older people (Fotios & Boyce, 
2015). This can enable younger people to detect small debris and avoid tripping or falling during 
evacuations. A composite vision score was developed by Salthouse et al. in their study of the relationship 
of age and vision (Salthouse, Hancock, Meinz, & Hambrick, 1996). Figure 16 shows the result of the 
work of Salthouse et al. In the figure, the regression analysis of visual acuity of three study groups shows 
the decrease of visual acuity with age using the authors’ composite vision score. Each dot in the graphs 
represents an individual. 
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Figure 16 Regression analysis results comparing visual acuity and age in three study groups (Salthouse, Hancock, Meinz, 
& Hambrick, 1996) 

Clarity of detail in perceiving objects can be measured by visual acuity. The Figure 17 shows the 
relationship of visual acuity with respect to distance. If an individual with normal vision, visual acuity 
20/20, can see an object 50 meters away, it would require other individuals with poorer vision to go 
closer to achieve the same level of detail. A comparison of the detail for 20/20 vision with 20/200 vision 
shown in Figure 18. 

 

Figure 17 Visual acuity with respect to distance from object 
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Figure 18 Visual acuity and normal vision 20/20 vs 20/200 (www.allaboutvision.com, 2018) 

5.1.3 Voice familiarity and the limits to perception imposed by distance  

Recognising other individuals is also possible through the familiarity of the human voice. A person 
is more likely to respond to a familiar voice than a non-familiar one. The response can be immediate as 
one’s name is called by a familiar voice for example. Calling out for help, or calling the other person by 
name during search is often the situation when the other individual is not visible, or the perceiving 
person is not visible to the other. Like vision, the human voice is limited by distance. The preceding 
subsection discusses the role of human voice and distance in perception. Like in vision, the search in 
the literature did not result in the definitive spatial distance value for voice perception. This section 
therefore also justifies the choice of 50 meters as the reference spatial perception distance for the model. 

Hearing plays an important and complementary role with vision in perceiving and recognizing other 
individuals (Yovel & Belin, 2013). Voices, like vision, can provide information on the speech content, 
age, gender, emotional state, affective state, personality, state of health and identity of a person 
(Kriegstein & Giraud, 2006; Sidtis & Kreiman, 2011; Barton & Corrow, 2016; Smith H. M., 2016; 
Lavan, Scott, & McGettigan, 2016; Yovel & Belin, 2013). During social situations, in many cases, facial 
and auditory information are processed by the brain simultaneously and in a similar manner (Yovel & 
Belin, 2013). Individuals have unique vocal signatures that facilitate recognition and identification 
(Fontaine, Love, & Latinus, 2017). In the context of identification however, visual recognition of faces 
is considered to be more superior than voice recognition (Stevenage, et al., 2012; Barsics, 2014). 
Humans are very good in identifying familiar voices (Fontaine, Love, & Latinus, 2017). Like in visual 
perception, the familiar voices of attachment figures would get the attention of focus of an individual 
more than others. Even in very noisy environments, listeners can better understand personally familiar 
voices such as from that of a spouse or a close friend than strangers (Souza, Gehani, Wright, & McCloy, 
2013). 

Hearing is especially useful when visual means of communication or deriving information are not 
possible. Examples are conversations between individuals separated by barriers such as debris, walls or 
structures. During zero or low visibility conditions like night time individuals can seek for help or seek 
others by shouting (Adilla, 1993). Trapped individuals or survivors usually tap walls to indicate their 
presence to rescuers. Familiar people can be identified by voice or by responding to calls with their 
names (Barton & Corrow, 2016; Tacikowski & Ehrsson, 2016).  

Human are hardwired to respond to the cries of babies, even when they are not the parents. In the study 
of Young et al., hearing the cries of infants activates brain regions that make individuals more aware, 
attentive, active and ready to provide care (Young, et al., 2016). This activation of the flight and fight 



 

 90 

response, and elevated level of alertness can be useful during disasters in saving the life of the child and 
the individuals themselves. 

Table 26 Voice levels with respect to distance from source 

Distance Voice levels (dB) 
feet meters Normal Raised Very 

Loud 
Shout_1 Shout_

2 
Shout_

3 
Shout_

4 
Shout_

5 
Baby-
Cry 

Scream 

1.0 0.3 70 76 82 88 90 100 105 110 115 126 
2.0 0.6 64 70 76 82 84 94 99 104 109 120 
3.0 0.9 60 66 72 78 80 90 95 100 105 116 
6.0 1.8 54 60 66 72 74 84 89 94 99 110 

12.0 3.7 48 54 60 66 68 78 83 88 93 104 
24.0 7.3 42 48 54 60 62 72 77 82 87 98 
32.8 10 40 46 52 58 60 70 75 80 85 96 
65.6 20 34 40 46 52 54 64 69 74 79 90 
164.0 50 26 32 38 44 46 56 61 66 71 82 
328.1 100 20 26 32 38 40 50 55 60 65 76 
656.2 200 14 20 26 32 34 44 49 54 59 70 
1640.4 500 6 12 18 24 26 36 41 46 51 62 
2296.6 700 3 9 15 21 23 33 38 43 48 59 
3280.8 1000 0 6 12 18 20 30 35 40 45 56 

Hearing decreases with increasing distance from the source. Sound pressure level19 decreases by 6 
decibels for every doubling of distance from the source (www.EngineeringToolBox.com, 2018).  

In social settings, the distance for talking with normal voice levels at 60 dB is usually at 1 to 4 meters. 
For outdoor activities like playing games, people talk with raised or very loud voices at distances of 5 
to 10 meters. Table 26 provides the different voice levels with respect to distance from the source. It is 
calculated using the inverse square law and with the tool provided by the Engineering Tool Box website 
(www.EngineeringToolBox.com, 2018). The sound pressure level at the source location is indicated and 
measured from a reference of 1 ft from the source. The voice levels farther away from the source both 
in feet and meters is indicated. The highlighted row is for the voice levels at 50 meters from the source. 
The black diagonals indicate voice levels for near person conversation at 60 dB. The intersection 
between 50 meters and Shout_4 (105 dB) is highlighted in red. Figure 19 provides the graph of these 
values. Figure 20 shows the buffer distances from various locations within the UGA campus. 

The calculated decibel values in Table 26 are for ideal conditions where (1) there is absence of noise, 
and (2) sound can travel unimpeded from the source to the receiver. Unfortunately modelling the 
propagation of sounds in urban environments is complicated. Sounds can be absorbed, dampened, 
scattered or reflected by different objects present in the environment. This is made more complicated 
by urban configurations which consists of large streets, small alleys and the tall buildings. The presence 
of ambient noise sources can make hearing difficult and requires talking with more effort (Pearsons, 
Bennett, & Fidell, 1977). For simplicity the study adopts 50 meters, as a convenient value to serve as 
the maximum perceptible range for a loud shout to be heard. It is implied that individuals in real crisis 
situations, make the effort to be heard by others farther away by shouting at greater than 105 dB. 
Coincidentally, 50 meters is also the visual perceptible distance for recognizing people and objects. 

 

                                                
19 From Engineering Toolbox, the typical subjective description of sound pressure level: 0-40 dB, quiet to very 
quiet; 60 – 80 dB, noisy; 100 dB, very noisy and > 120 dB, intolerable. The threshold for hearing is 0 dB. A normal 
conversation where individuals are 1 meter apart is at 60 dB. The sound of rustling leaves or a mosquito is 20 dB. 
A whisper is 30 dB. A quiet street and office, and whispered speech is at 50 dB. Laughter is 65 dB. The threshold 
for discomfort is 110 dB. A siren 30 meters away is heard at 120 dB. (www.EngineeringToolBox.com, 2018).. An 
infant’s cry can go up to 115 dB. Screams approximate infant cries (Begault, 2008). 
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Figure 19 Voice levels at a distance from source calculated using the Inverse Square Law. As reference 0 dB, threshold for 
hearing; 20 dB, sound of rustling leaves or a mosquito; 40 dB, quiet room, home, bird call; 60 dB normal conversation where 
individuals are 1 meter apart; 80 dB is a road with busy traffic; 100 dB, motor horns 7 meters away; 120 dB, siren 30 meters 
away; 140 dB, is the threshold for pain. (Engineering Toolbox, 2018). 

Older people tend to produce sounds at lower decibels (Begault, 2008). It will therefore take more effort 
for older individuals to shout or cry for help, and be heard over long distances. Hearing others likewise 
is a challenge for older people as decreased hearing performance and hearing loss is also common as 
individuals grow older (Humes, 2007; Kolarik, Moore, Zahorik, Cirstea, & Pardhan, 2016). 

 

 

Figure 20 Example visualisation of distances from a noise point source outside the LIG Building on the UGA Campus. The left 
image is the LIG building. The image on the right is the open space in front of the University Science Library. The normal 
conversation distance is 1 to 4 meters. Beyond 4 meters individuals need to talk louder or at much higher decibels to be heard 
by other individuals. To be heard at the level of a normal conversation at 50 meters, in ideal situations, from the origin, the 
voice level has to be at 105 dB (Shout_5 in Table 26). 
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5.1.4 Affective Perception Distance  

According to Mawson, proximity seeking behaviours are activated during threat situations. Proximity 
seeking behaviours during disasters to succeed (i.e. finding the person being sought; or arrival in the 
location of the person being sought) requires attachment figures to be perceived. The distance or range 
within which attachment figures are perceived is defined in this work as affective perception distance, 
PDBond. Equation 3 presents a formalisation to calculate PDBond. 

Equation 3 

!"#$%& = !"($)*+,
- 	× 	(1 +

1
10
	× 4"#$%&) 

In Equation 3, PDNormal refers to the normal perception distance within which people and objects are 
recognised. The value used for PDNormal is 50 meters. The main justification for the use of 50 meters, is 
that at this range with normal lighting conditions and normal vision, it is possible to detect and recognise 
of people and objects (Fotios, Yang, & Uttley, 2015). This was discussed in section 5.1.2. The second 
justification has been extensively discussed in Section 5.1.3. It was shown in that section that, at 50 
meters it is possible to hear another individual at the level of a normal conversation (60 dB). This can 
be provided that effort to shout at 115 dB is made from the source of the noise.  

The constant k is the bias imposed by the environment (i.e. visibility). For full visibility during daytime, 
the value of k = 1. With low visibility during night time, the value for k = 0.2. For reduced visibility 
due to fog/snow, k = 0.8. Appropriate assumptions and values for k need to be made to successfully 
apply the affective perception distance equation in simulations. 

Values for PDNormal can likewise be affected by human factors ℎ7. In this work, this is expressed in 
Equation 4. PDNormal is relative to a person. It can also be diminished or shortened by poor vision or poor 
hearing, which can be due to age. Equation 5 likewise shows the proposed formalisations for the human 
factors vision ℎ789:9;<  and voice ℎ78;9=> . Equation 5 specifies the dominant situation applicable to 
calculate ℎ7. When there is visibility or k>0, ℎ789:9;< is used. When there is no visibility k=0, ℎ78;9=>  is 
used. The supremacy of vision, specifically with face recognition over voice has been established in 
Sections 5.1.2 and 5.1.3. This work therefore considers more parameters related to vision and visibility, 
than voice. 

Equation 4 

!"($)*+, = ℎ7 × 	!" 

Equation 5 

ℎ7 = ?
ℎ789:9;<, A > 0
ℎ78;9=>, A = 0 

For the current model, a simplification is applied by considering the value ℎ789:9;<= 1. This means that 
agents regardless of age are considered to have (1) normal (or optimal) vision and hearing, and (2) strong 
vocal ability for shouting. This simplification is due to the difficulty of finding data quantifying visual 
and auditory acuity, and strength of voice, with respect to distance, for the study area population. 
However, when these data are available, it is possible to generate models and equations to quantify 
ℎ789:9;< and ℎ78;9=> .  
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In the case of vision, deriving from the work of Salthouse et al., ℎ789:9;< uses the values of the Snellen 
Visual Acuity Ratio (SVAR) (Salthouse, Hancock, Meinz, & Hambrick, 1996). This ratio ranges from 
0 to 1 and relates visual acuity with age. The graphs from the work of Salthouse et al., are presented in 
Section 3.1.2. An approximate value for ℎ7CDED$%  for example can be calculated from the regression 
equation from Study 3 of Salthouse et al.’s work. This is show in Equation 6. 

Equation 6 

ℎ7CDED$% = 4FGH = 0.934 − (0.009	 × 	GNO) 

Figure 21 shows the !"($)*+,  values when SVAR is equated to ℎ7CDED$%. The decrease in visual acuity 
with age is shown. The reference visual perception distance of 50 meters likewise decreased with age.   

 

Figure 21 PDNormal values with respect to values with respect to Age based on Salthouse et al.’s Snellen Visual Acuity Ratio 
and 50 meters visual perception distance (Salthouse, Hancock, Meinz, & Hambrick, 1996)  

To illustrate the use of affective perception distance as a spatial filter, consider for example a parent 
perceiving a child (where SDBond = 10), with respect to a crowd of strangers (SDBond = 1), during daytime. 
This will result in !"#$%& 	=100 for the child and !"#$%& 	=55 for the strangers. This means that a parent 
may be able to recognise the child, even at 100 meters. This is twice the normal perception/recognition 
distance. Strangers will need to be very close to be perceived. If the child and strangers are at the same 
distance, the child will be perceived first. 

The values for strength of emotional bonds for France for different relationships have been quantified 
(Suvilehto, et al., 2015). These values shown in Table 27, can be used as values for strength on bonds, 
SDBond in Equation 3. Unfortunately, the value for child is not included in the study of Suvilehto, et. al. 
In the model, the maximum value of 10.0 is assumed as the strength of bond between parent and child 
and is used in Equation 3.  

Table 27 Mean strength of emotional bonds for France (Suvilehto, et al., 2015) 

Relation Partner Parent Sibling Kin Friend Acquaintance Stranger 
Strength of Bond 8.82 7.77 7.51 5.29 7.57 3.84 2.17 

The results of applying Equation 3 using data from Table 27 is shown in the graph in Figure 22. The 
graphs illustrate the “boosting effect” of social attachment in the perception of other individuals. 
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Figure 22 Perception distance influenced by social bond strength 

For the perception distance of normal environment objects, for which an individual has no bond, 
PDNoBond, the value of SDBond = 0. This will reduce Equation 3 to Equation 7. 

Equation 7 

!"($#$%& = !"($)*+,
-  

Perception of locations and destination can be based on knowledge of the location of the attachment 
figures. Consider, Equation 8, in the situation where knowledge of the location is known, P% = 1, 
!"-%$Q,R&SR = 	∞. This means that, when an individual perceives using knowledge, or knows the 
location of an attachment figure, distance is not a factor. It also means that visual perception of the final 
destination/goal is not necessary. In the model, familiarity with the area is assumed. Knowledge of the 
route towards the destination is implied. Means to acquire this knowledge using maps or getting 
instructions is assumed to be available to individuals. To navigate, the individual needs only to maintain 
heading or direction towards the known location of the goal. This is for example shown in Section 7.1.2. 
The limiting factors in maintaining the goal are priority of the current goal with respect to other goals, 
or the amount of time allotted to reach a goal. If knowledge is not available P% = 0, !"U%$Q,R&SR 	= 	0. 
When the knowledge is uncertain or between 0 and 1, !"U%$Q,R&SR = !"#$%& . When the knowledge 
of other attachment figures is uncertain, agent’s focus on what is occurring in their immediate 
environment. 

Equation 8 

!"U%$Q,R&SR 	= V
∞, P% = 	1

!"#$%&, 0 > P% < 	1
0, P% = 0

 

An example for the case when P% = 1, is a situation where the location of children, who are in school or 
in the home, is known to the parents. Parents would move toward these locations during disaster to 
recover their children regardless of the distance within the study area. A first priority for a parent for 
example is to fetch a child from school first, before heading to an evacuation site. Other examples of 
perception using knowledge are heading to the nearest safe areas, official evacuation sites or the location 
of one’s home.  

An example where knowledge can be zero P% = 0 is in the case of tourists experiencing a disaster in an 
unfamiliar place. In this case evacuation destination choice can be based solely on inputs from 
immediate and direct visual perception. Knowledge can be gained by consulting an evacuation map, 
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engaging in social interaction, or seeking information from social media or other sources. Another 
example is the lack of awareness of what is happening, such as when a person is sleeping. In this case, 
perception of the shaking is not possible therefore not resulting to any continuing with current activity. 

Social attachment is also related to delay time. Actions such as seeking loved ones in the immediate 
crisis environment and via phone before evacuating, is an example of social attachment at work. Another 
example is the hesitation to leave without securing property. Delay time is further discussed in Section 
5.5. Pre-evacuation behaviours are detailed in Table 28. 

5.2  Individual motion and navigation in free space  

Realistic motion and navigation of individuals are modelled in SOLACE using affective perception 
distance, object perception distance, perception angle (or angle of vision for eyesight), and immediate 
perception area. Individuals move in free space, towards the direction of attachments figures or target 
locations such as roads and safe areas.  

Figure 23 illustrates this model for motion and navigation. The figure shows (1) the individual as a blue 
triangle labelled H; (2) the rotation of the individual from its centroid to change direction or orientation 
or heading indicated by blue thick arrows; (3) immediate perception area inside the yellow-orange 
triangle. This triangle is formed inside the perception angle indicated by the thin blue arrows; (4) the 
perception area with the perception angle that oscillates or swings in front of the agent to indicate gaze 
direction and attention; (5) a random step or “footstep” inside the perception area that can be taken by 
the agent to move forward; changes to the heading and perception area/angle occurs during every 
“footstep”; (6) location of attachment figure; (7) perception line that indicates that the attachment figure 
is detected by the agent as indicated by the red arrow; the detection of the attachment figure is only 
possible when it is inside the perception angle and within the perception distance range; (8) the affective 
perception distance range !"#$%& ; it is possible to lose track of the attachment figures if they are beyond 
the !"#$%& ; (9) a step along the forward direction of perception line that indicates movement towards 
the attachment figure; (10) barriers such as buildings, debris and bodies of water that may exist between 
the agent and the attachment figure. 

 

Figure 23 Movement and navigation of the individual in the SOLACE model 
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When moving, the individual scans the environment for attachment figures. The individual can scan 
within a defined perception angle for vision. This perception angle and the short forward distance from 
the individual defines the immediate perception area where near objects are visible. Scanning of the 
environment is made by changing the orientation of the perception angle and area. The orientation is 
changed by swinging the perception area in the front of the individual. If no attachment figure is found, 
an intermediate target is determined inside its perception area, and the individual moves forward. This 
is similar to making a forward footstep. If an attachment figure is detected, the footstep is made in the 
direction of the attachment figure, within the perception area.  

After every footstep, the scan of the environment for attachment figures is repeated. This re-scan is 
necessary as locations of people can dynamically change. Also, it is possible to encounter other 
attachment figures to whom one may have a stronger bond. This can result in a change in target 
individuals. Also, bidirectional social interaction is possible only when individuals face or see each other. 
Otherwise it will reduce to a leader-follower scenario. When a barrier is encountered, individuals can 
change direction and try to move around the barrier. Examples of barriers are debris, building walls or 
water bodies. Presence of dead individuals can also force the change in direction of movement. The 
speed of movement is defined by human factors. For example, younger individuals can walk or run 
faster than older adults. Those with disability or other form of limited mobility will be slower compared 
to average active adults. 

An example scenario of an adult parent agent navigating towards a child agent traversing the crisis 
environment is shown in Figure 24. (1) An adult agent is located at home and indoors. (2) Another agent 
is perceived outdoors and the agent follows it outdoors. (3) The road is perceived and the agent heads 
towards and travels on it. (4) The obstacles such as debris are perceived and avoided by the agent. (5) 
A group of adults and children is encountered and the agent decides to follow the group. (6) Agent 
arrives near the school with a crowd of adults in children in front of the school. The adult agent manages 
to perceive and locate the child from a distance. (7) The adult agent heads towards the child. (8) The 
child follows adult-parent. (9) The adult agent perceives a group of adult and child agents congregating 
in the safe area. (10) The adult and child arrive in the safe area.   

 

Figure 24 Example of agent movement in SOLACE model 

5.3  Model of spatial environment  

A vector-based approach is used in the research. A realistic representation of Grenoble’s urban form 
and in 3D is facilitated by using a GIS. The geographic layers used are illustrated in Figure 25. The 
layers used are: (1) IRIS boundaries defining the extent of study area; (2) natural features such as rivers 
and other bodies of water; (3) road network defining pathways; (4) buildings; (5) doorways; (6) open 
spaces; (7) danger zones; (8) safe areas; (9) evacuation routes; (10) earthquake hazard occurring at time 
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T; (11) damage and debris created during the earthquake; and (12) spatial distribution of human 
population at time T. 

 

Figure 25 SOLACE Spatial data model 

Additional GIS data modelling was used to generate some of the spatial layers. This includes (1) free 
space; (2) danger zones; (3) safe areas; and (4) spatial distribution of population at different time 
scenarios. Figure 26 shows the types of spaces in the study area which can act as barriers (buildings, 
other built features, natural features); or allow movement (free space). For the free space areas, these 
are further categorised as safe areas to move about, or dangerous as it exposes the agent to the risk of 
falling debris. 

 

Figure 26 Study area features that act allow agent movement or as barriers  

Free space defines areas where individuals are able to move around. It is generated from subtracting 
layers that define barriers from the extents of the study area. The layers defining barriers include (1) 
buildings, (2) doorways, (3) other built features (e. g. train tracks), and (4) natural features (e. g. rivers). 
This is illustrated in Figure 27. 
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Figure 27 Extracting free space by subtracting barrier layers from extents 

Danger zones define areas around buildings where debris may be deposited. This is illustrated by Figure 
28. A buffer zone defining the danger zone is generated using a GIS. The distance around the edge of a 
building equivalent to half the height (H) of the structure is used to generate this danger zone. The value 
(H/2) is adopted due to the absence of a model for the field of debris deposition around structures in 
Grenoble. This distance parameter can be changed later when a better model for debris deposition is 
developed. 

 

Figure 28 SOLACE danger zones 

This value of H/2 is however a conservative estimate, as video footage of collapsing structures can 
produce debris even beyond the length of the height, H of a structure. For safety during threat of building 
collapse during fires, firemen usually establish a collapse zone around buildings with a distance of 1.5 
times the height of a structure (1.5 x H) (Naum, 2018; Dansbach, 2009). This assumes that the structure 
will topple forward from its base, with its full height. The additional 50% of the height is the added 
measure for safety. This distance greatly contrasts with the 6-meter perimeter debris deposition distance 
from an intensity VII earthquake from the study of Rojo et al. (Rojo, Beck, & Lutoff, 2017). The 
observations were from the earthquake debris damage resulting from the 2011 Lorca Spain earthquake 
(MW 5.5, Intensity VII). Their study analysed 9 cases, representing damage from 3 and 4 storey 
buildings. However, some areas may have taller buildings and debris may fall beyond 6 meters. 

Safe areas are free spaces that do not fall within buildings and danger zones. This is shown as the green 
zone in Figure 29. In simulation experiments, an agent is considered to have reached safety when the 
agent is already in the green zone. Specific locations within safe areas can be designated as meeting 
spots during disasters. This is analogous to evacuation assembly points set in place by authorities20. In 
the figure, this is indicated by the dark green circle in the safe zone. The distribution of safe spots can 
be modified easily in GIS environments. This provides the capability to test the effectiveness of different 
patterns or configurations of safe spots distribution within urban areas to optimise evacuations. Within 

                                                
20 Officially designated areas are marked with evacuation assembly point signs  image source: International 
Standards Organisation (IS0, 2019) 
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cities, officially designated safe areas for evacuations normally include parks, parking lots and large 
open venues for sporting events.  

 

Figure 29 SOLACE Safe Areas extracted by the subtracting building footprint and danger zone from free space   

The spatial and temporal distribution of people in indoor and outdoor locations, for each IRIS, is based 
on data from the national census data. Values from this data are used as upper limits to generate the 
synthetic human population for daytime, night time, weekday, and weekend scenarios. The IRIS level 
population values distributed to the level of buildings (to define occupancy for building with specific 
uses such as home, school, work, public place) and open spaces (such as parks and pedestrian walkways). 
The distribution is random but based on building use, open space type, and activity during different 
times of the day. For example, during the night or during weekends, most of the population will be 
distributed in homes. During a regular workday, the working population will be located in work places. 
Non-working individuals, such as the retired population, can be distributed in residential homes or parks.  

5.4  Model of seismic crisis environment  

A simplified conceptual model for the earthquake scenario in SOLACE is shown in Figure 30. From the 
figure, an earthquake (Eqk), occurring at an epicentre, of given magnitude and duration triggers the 
crisis scenario. The effect of the earthquake on people, structures, and the soil is expressed as intensity. 
As shown in the figure, buildings are represented by piles of squares. Each square is a floor in the 
building. The colours of each floor represent the intensity at each floor. Lighter tones mean less intensity, 
while darker red tones refer to more intense shaking in the floor. Different soil types represented as 
hexagonal tiles. Different types of soil will have different amplification effects on building shaking. For 
Grenoble, two zones of intensity amplification (see Figure 14), based on soil types, have been identified 
(Dunand & Guéguen, 2012) . 

From the figure, in the first case, Case 1, buildings and soil near the epicentre of the earthquake are 
exposed to more shaking and therefore higher intensities. For reference, the observed differences in the 
behaviours of people at different intensities has been detailed in Table 1. Upper floors are also subject 
to much higher intensities than lower floors. Human occupants in the upper floors may therefore 
experience these much higher intensities and this may trigger self-protective actions and evacuation 
behaviours. Occupants in the lower floors may feel less shaking or may not even be aware of the 
earthquake. High intensities can result in damage indoors and outdoors. In the figure, debris damage is 
generated in the danger zone outside the structure as a grey block. The amount of damage and debris 
generated depends on the (a) building height, (b) typology, (c) vulnerability class, (d) damage 
probability, (e) earthquake intensity and the duration of the shaking. In case 1, the building, is a well-
built structure with four floors. It is able to withstand high intensities from a nearby quake with very 
few debris damage. 
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Figure 30 SOLACE earthquake modelling 

Case 2, shows a building which is poorly built and with weaker material. It has the same number of 
floors as in Case 1, a similar distance to the epicentre, and soil type in the same amplification zone. 
More damage and debris are generated for this case. Case 3 shows a well-built structure, compliant with 
building codes, and consisting of more floors. The distance from the epicentre is similar to the first two 
cases. This structure is not damaged or create debris. This case also shows people located in the 
uppermost floor. The individuals experience the intensity of the shaking relative to their building floor. 
Case 4 shows a moderately-built structure but located farther away from the epicentre; it suffers minor 
damage and produce few debris. Case 5 shows a poorly built structure, located farther away from the 
epicentre, but on a soil-type belonging to the higher intensity amplification zone. This situation produces 
more damage and debris. Case 6 shows human individuals located outdoors. At the ground level, people 
experience the earthquake based on the response of the soil and distance from the epicentre.  

For this this conceptual model, simple equation to quantify felt intensity of the individual at the building 
floor level, bfeltIntensity is shown in Equation 9. Parameters included are: earthquake intensity, eqIntensity; 
distance from the earthquake epicentre, eqDistance; and building floor, bfloor. The eqIntensity is calculated 
from Equation 10, the reference intensity refIntensity, value considered and is corrected for amplification 
due to soil type. 

Equation 9 

X7R,YZ%YR%EDY[ = O\Z%YR%EDY[ 	× 	]1 +
^_.`a	×	bcd;;ef

Rgh9:ij<=>
k 

Equation 10 

O\Z%YR%EDY[ = 	 l
mOnZ%YR%EDY[ + 0.7, pqrO	 = 1
mOnZ%YR%EDY[ + 1.5, pqrO = 2  

Damage to structures and creation of debris are determined by assigning vulnerability and damage 
probabilities from Rieldel et al. (Rieldel, et al., 2014) to the building data. Debris blocks are created for 
each intensity scenario considered. Lower intensities create fewer debris with a smaller footprint. The 
dimension of debris blocks is increased with increasing intensity. This is analogous to a larger debris 
footprint, from greater damage, due to larger intensities. The types of debris created for intensity V, VI, 
VII and VIII are based on the size of footprint, and created as small squares, with dimensions in meters 
(n x n meters). The typologies are small (1m x 1m), medium (2m x 2m), large (3m x 3m) and huge 
debris (4m x 4m) respectively. For larger intensities, an additional meter for every unit increase in 
intensity is added to the dimension of the square debris block. This is shown in Equation 11. 
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Equation 11 

r = 	 V
0, urvOrwxvy < F
1, urvOrwxvy = F

r + (urvOrwxvy − F), urvOrwxvy > F
 

 

Equation 12 is used to calculate the number of debris, ndebris , blocks to be created. One parameter is 
damage category, cDamage. The damage categories are 0, 1, 2, 3, 4 and 5 in the order of increasing damage 
effects. The number of debris produced for each vulnerability class is kDebris. This is derived using 
Equation 13. Other parameters used for generating the number of debris are earthquake intensity, 
eqIntensity, from Equation 10; height of the building in meters bHeight; and constant, lDebris to limit the drawn 
debris blocks in the model/simulation for faster computation. The lDebris value for intensity V, VI, VII 
and VIII are 100, 500, 1000, 1500 and 2000 respectively. 

Equation 12 

rzRb)DE 	= {z+*+SR ×	AzRb)DE × 	O\Z%YR%EDY[ ×	X|RDS}Y ×	
1

~zRb)DE
 

The parameter kDebris is the rate of debris production probability for each building vulnerability class. 
Vulnerability classes are a, b, c, d, and e in the order of decreasing damage production. Masonry 
structures for example are assigned to vulnerability class a, and can produce more debris than reinforced 
concrete, which belongs to class e. The number of debris produced is probabilistic and can fall within a 
range. For example, masonry structures can produce a minimum of 1 to a maximum of 10 debris blocks. 
The rules for deriving kDebris is shown in Equation 13. The vulnerability classes are a, b, c, d and e. The 
maximum debris counts for each class are a', b', c', d' and e' respectively where a'> b'> c'> d'> e'.  
Example values for each class are 10, 7, 5, 3 and 1 respectively. 

Equation 13 

A&Rb)DE =

⎩
⎪
⎨

⎪
⎧
		AÉ ∈ [1, Ü′], Fâ = 	Ü
AÉ ∈ [1, X′], Fâ = 	X
AÉ ∈ [1, {′], Fâ = 	{
AÉ ∈ [0, É′], Fâ = 	É
AÉ ∈ [0, O′], Fâ = 	O

 

5.5  SOLACE multi-agent model and UML diagram  

The SOLACE multi-agent model is described by the simplified UML diagram in Figure 31. All 
elements of the model are agents interacting in geographic space. (1) The earthquake agent is the 
phenomenon that is generated in the environment, triggers the crisis scenario, and affects all agents. Its 
attributes include magnitude, duration and intensity. (2) Soil agents amplify the intensity of the 
earthquake. Their attributes include type and zone. (3) Building agents are located within a soil agent. 
Their attributes include typology (construction material), use, and height. (4) Debris agents are produced 
when building agents are damaged due the intensity of the earthquake. (5) Danger zone agents are 
located at the perimeter of building agents. These zones are areas of deposition for debris agents. These 
also define areas where exposed individuals can be injured, killed or trapped by debris. (6) Safe area 
agents are evacuation zones that are located outside danger zone agents. They can be a designated shelter, 
an open space, or road sections. (7) The individual human agents are heterogeneous with different 
characteristics defined by age, gender, roles, social group, etc. Human agents occupy indoor and outdoor 
locations in the environment. They can only move in free space. Interactions with the environment and 
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socially with other human agents are possible. Examples of behaviours during evacuations include move 
to safe area, seek family members, follow a leader, etc.   

 

Figure 31 SOLACE simplified UMLClass diagram 

A probabilistic approach is applied in how agents choose pre-evacuation behaviours. This is used in 
calculating the delay time in evacuating buildings. The steps for this approach include the following. (1) 
A list of pre-evacuation actions or behaviours is prepared. Each of the behaviours is based on SOLACE 
social attachment model. The attributes for each behaviour includes (a) a range of time to complete the 
action, d and (b) the probability to be selected for a probability scenario, ProbSc = i, and (c) a GOTO 
parameter, which bootstraps egress from a building. Examples of this actions include proceed to safe 
area and rescue child from school. Table 28 presents the complete list of pre-evacuation behaviours. 
Probability scenarios can be (a) uniform probability, all can be selected, probabilities for each action p 
= 1. (b) uniform probability of p = 0.5 for all actions. (c) randomly assigned probability value, p = 
random(0,1.0), (d) probability assigned by an expert, or (e) probabilities derived from a survey. This is 
shown in Equation 14. (2) The number of behaviours for each agent is determined by selecting a random 
value, N from the count of possible actions. This is shown in Equation 15. (3) N actions are selected 
from the !OäãDEY  to derive the actions for each agent. This new set of actions comprise the !OäER,RåYR& 
list, shown in Equation 16. It is possible that the number of actions in the !OäER,RåYR& is not equal to N. 
The probability values assigned to some actions may additionally act as a filter, the values may be too 
small to be included in the final list of pre-evacuation actions. 

Equation 14 

!OäãDEY = [X_(É_, ç_, éèêè_), Xë(Éë, çë, éèêèë), … , X%(É_, ç_, éèêè%)], !mqXìå = 	x 

Equation 15 

î = mÜrÉqï	[~OrNvℎ(!OäãDEY)] 

Equation 16 

!OäER,RåYR& ⊆ !OäãDEY  
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Table 28 Pre-evacuation behaviours in the SOLACE model 

Context Micro-Actions Examples 
Information Observe immediate environment  Look outside windows 

Confirm with others when in a group Talk to colleagues to confirm is an earthquake or if 
situation is life threatening. 

Seek information from media  Turn on radio, check the Internet, watch news on TV 
Document event  Take photos, video, selfie 
Inform others  Notify others on social media, post photos, live video; 

Call others  
Self Protect self Seek cover under the table 

Stabilise self Maintain balance during shaking 
Move away from object Move away from walls and furniture 
Walk or run during shake Immediate egress from building 
Walk or run after shake Wait for shaking to stop and egress from the building 
Evacuate to safe area  Go any open area such as roads, parks 
Evacuate to assigned area  Go to officially designated safe are 
Freeze Stay immobile because of fear. 
Weigh options and decide Choose route and possible exits before egress  
Continue current task Proceed with task as normal. Remained and continued 

working; Woke up but slept again; Continued driving 
Stopped current task Stopped working and observed the environment 
Stay still Remain immobile and continue to observe shaking 
React, scream Screaming out of fear 
React, enjoyed the experience Not fearful but enjoyed having experienced a quake 
React, hope for shaking to stop Fearful and hope for the shaking to stop 
Do nothing Stay immobile and do nothing. It can be because the 

shaking is not felt, or not considered as a threat to the 
self.  

Waited for shaking to stop Wait for shaking to stop before egress 
Pray Pausing and praying for personal safety. 
Move Out Immediate egress from buildings 
Stay indoors Stay inside for fear of falling debris from higher floors. 

Family Phone/call family member  Calling family members who are outdoors to confirm 
their safety 

Seek nearest family member Find other family members inside homes before 
evacuating. 

Get kids immediately Getting babies and other children before egress 
Others Help Calming others; Assist injured, elderly and disabled 

Follow towards exit.  Copy others actions like heading towards egress 
Check on dependent Check on the elderly or children before evacuation 
Protect someone Shield others from debris or falling furniture 

Property Turn-off gas Close gas mains and stoves. 
Close doors and windows Close doors or windows to avoid being robbed 
Hold/prop objects Prop furniture, large TV sets 
Grab objects Get personal property like wallets, documents, 

computer 
Grab emergency kit Get emergency, survival, or first aid kits 

Egress of agents from buildings proceed immediately when a behaviour with the GOTO parameter is 
selected. When no GOTO parameter is selected, the durations of all selected actions are totalled before 
egress. An immediate change in behaviour to egress can be triggered when a human agent perceives 
debris or other human agents who are injured or deceased. The model for egress with pre-evacuation 
behaviours is shown in Figure 32. 
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Figure 32 Model for building egress 

Delay time to leave a building, êzR,+[ is calculated, for an agent at a building floor, ä7,$$)  by summing 
the durations for all the selected pre-evacuation actions, ê#R}+CD$ó) , and adding the time required to 
travel through building floors to the ground level, ê7,$$) . Calculations for ê#R}+CD$ó)  and êzR,+[  is 
shown in Equation 17 and Equation 18 respectively. When an agent has a behaviour with a GOTO 
parameter, the value for ê#R}+CD$ó)  = 0. 

Equation 17 

ê#R}+CD$ó) =òÉD

%

Dô_

				,			öℎOmO	ÉD	time	for		XD ∈ !OäER,RåYR& 

Equation 18 

êzR,+[ = ê#R}+CD$ó) + (ä7,$$) ×	ê7,$$)) 

During pedestrian evacuation, agent decision making, behaviour and social interaction are implemented 
using the BDI approach. Table 29 illustrates several examples of an individual agent’s beliefs, desires 
and possible actions in different contexts. Desires can be contradictory to each other. As an example, 
seeking family member involves putting oneself in danger. 

Table 29 Examples of BDI implemented with social attachment in SOLACE 

Context Beliefs Desires Actions 
Normal situation None None None 
During extreme earthquake I’m not safe Be safe Seek attachment 

figures/objects, protect self, 
egress, evacuate 

During moderate earthquake I’m safe, my building is safe None None 
At safe area with family I’m safe Stay safe Stay 
At safe area but missing 
family member 

I’m safe, my family member 
is unsafe 

Stay safe, family member is 
safe 

Seek family member, call, 
return to danger area 

This decision-making process is shown in Figure 33. The human agent (1) is sensitive to the environment 
and dynamically evaluates the current context, (2) formulates a belief about the situation, (3) each belief 
is associated with a desire, and the highest priority desire is selected, (4) the highest priority desire 
becomes the agent’s intention, (5) a plan of action is chosen to achieve that selected intention, and (6) 
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the context is re-evaluated. The described process repeats until the desired context, for example, being 
safe, is reached. 

 

Figure 33 Human agent decision making 

Behaviours considered for the model and implemented using BDI are listed in Table 30. The table details 
how agents interact with targets in the crisis environment and among themselves. BDI acts as a dynamic 
switch and facilitates agent cognitive decision making especially during agent social interactions. BDI 
is able to manage the (1) different relationships for each specific agent as shown in the social attachment 
model in Figure 15, (2) dynamic social interactions resulting from relationships using !"#$%&  as a 
measure of priority, and (3) conflicting scenarios during evacuations. Examples of conflicting scenarios 
are (1) attachment related pre-evacuation behaviours such as retrieving property before evacuating to 
safety, (2) when an adult agent needs to move away from the location where a dead agent is present, but 
that agent is a close family member. BDI also is used to enable movement of agent movement towards 
goals such as head toward safe areas. 

Table 30 Evacuation behaviours modelled/implemented taking into account BDI 

Agent Target Micro-Actions Reason/motivation 
Human agents 
(adult and child) 

Earthquake Perceive earthquake Physical threat 
Debris Perceive and move away from Physical threat 

Change pre-evacuation behaviour Physical threat; seek 
refuge/safety  

Road centreline Move to centre of road Seek refuge/safety 
Safe area Move to safe area Seek refuge/safety 

Slow down when inside safe area  Seek refuge/safety 
Doors Move from Egress to seek refuge or 

attachment figures 
Move towards Affiliation/proximity seeking 

(attachment to place, property, 
location of attachment figures) 

Buildings, bodies of water, 
fenced areas (train tracks) 

Avoid, move away from Physical barrier 

Injured or dead adult and 
child 

Change pre-evacuation behaviour Indication of immediate threat 

Injured adult or child Perceive and move towards Help others in need  
Adult Adult family member Perceive and move towards Affiliation/proximity seeking 

Child family member Perceive and move towards Affiliation/proximity seeking 
Child family member when 
role of adult is parent 

Perceive and move towards Affiliation/proximity seeking 

Adult kin Perceive and move towards Affiliation/proximity seeking 
Child kin Perceive and move towards Affiliation/proximity seeking 
Adult friend Perceive and move towards Affiliation/proximity seeking 
Child friend Perceive and move towards Affiliation/proximity seeking 
Adult colleague Perceive and move towards Affiliation/proximity seeking 
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Child of colleague Perceive and move towards Affiliation/proximity seeking 
Adult stranger Perceive and move towards Affiliation/proximity seeking 
Child stranger Perceive and move towards Affiliation/proximity seeking 
Child when role of adult is 
teacher 

Perceive and move towards Affiliation/proximity seeking 

Adult who is elderly or 
disabled 

Perceive and move towards Help others in need 

Child only Adult family member Perceive and move towards Affiliation/proximity seeking 
Adult family member when 
role of adult is parent 

Perceive and move towards Affiliation/proximity seeking 

Child family member 
(sibling) 

Perceive and move towards Affiliation/proximity seeking 

Adult kin (uncles/aunts) Perceive and move towards Affiliation/proximity seeking 
Child kin (cousins) Perceive and move towards Affiliation/proximity seeking 
Adult friend Perceive and move towards Affiliation/proximity seeking 
Child friend Perceive and move towards Affiliation/proximity seeking 
Adult “colleague” who is a 
teacher 

Perceive and move towards Affiliation/proximity seeking 

Adult “colleague” who is 
not a teacher but in school 

Perceive and move towards Affiliation/proximity seeking 

Child colleague (classmate) Perceive and move towards Affiliation/proximity seeking 
Adult stranger Perceive and move towards Affiliation/proximity seeking 
Child stranger Perceive and move towards Affiliation/proximity seeking 

5.6  Software application model and system architecture  

A multi-platform approach used to implement SOLACE. This strategy is used to take advantage of 
available software tools for data processing, simulation, dynamic data reporting, and 2D/3D 
visualisation. 

 

Figure 34 SOLACE System Architecture 

The architecture and complimentary roles of the technologies are shown in Figure 34. (1) Model 
parameters are derived from data. (2) Spatial data are pre-processed using Quantum GIS (QGIS) (QGIS 
Development Team, 2018). (3) The model code is written using the BDI architecture with the GAMA 
Platform (Grignard, et al., 2013). (4) Output of the simulation runs are saved at every time step as text 
files in CSV form. (5) Spatial data outputs include shapefiles and KML files. (6) Statistical analysis and 
data mining tools are used to process the CSV data. (7) A custom user interface developed using Python 
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facilitates dynamic data visualisation using a web browser. (8) The web browser uses JavaScript to 
display D3 charts and tables, and Leaflet/Folium web maps. (9) QGIS is used to process shapefiles for 
spatial analysis and dynamic 2D and 3D map visualisations and animations. (10) Google earth is used 
to visualise and create animations using KML files within photorealistic 3D scenes and street views. 

5.7 Summary of the chapter  
The chapter discussed the different components that make up SOLACE. The model uses social 

attachment are the framework for behaviours during seismic crisis situations. The behaviours included 
in the model are consistent with Mawson’s social attachment theory (Mawson, 2005). Affiliation 
activated by the treat from earthquake, prompts proximity seeking behaviours towards attachment 
figures. Familiarity facilitates the recognition of attachment figures from a distance. The role of distance 
in recognition of personally familiar individuals has been highlighted in the chapter. Distance is relevant 
to the model in the following concepts (1) social distance 4"#$%& , (2) affiliation distance (!"#$%& ), and 
(3) spatial distance for recognition tasks, modulated by human factors and environment conditions. 
Distance functions as a filter to prioritise perception and actions such as movement towards attachment 
figures. Affiliation distance is the direct expression of social attachment in SOLACE. It functions as a 
dynamic spatial filter in the prioritisation of attachment figures for proximity seeking behaviours. The 
location of an attachment figure defines the direction of agents during motion.  

This function of distance as a filter highlights the importance of the accurate representation of 
geographic space to achieve a realism in the evacuation model. The spatial model of the crisis 
environment is built using real geographic data. With this dataset, the 2D and 3D distribution of 
earthquake effects on environment objects (buildings) and human agents are simulated. The effects of 
earthquakes shaking is more severe when closer to the source and at much higher floors. Human agents 
are located in building floors and outside. Taller buildings with poor construction produce more debris 
at farther distance from the structures. Vulnerability and damage probabilities of buildings are derived 
from a macroseismic study (Riedel et al., 2014). Danger zones are areas of deposition for debris. Safe 
areas are zones where no debris is deposited. Safe areas generated from geoprocessing task on 
geographic data. 

Dynamic interactions of agent elements are facilitated in the multi-agent model. These interactions 
include (1) damage or debris creation of buildings due to extreme shaking and long earthquake durations, 
(2) individual human agent interactions with earthquake damage, and (3) social interactions. The BDI 
architecture is used to simulate the cognitive decision making of agents implement individual and social 
behaviours. 

The system architecture or software model for SOLACE is composed of several modules. The software 
code for the agent-based simulation is develop using GAML with the GAMA platform. Geographic data 
is managed and pre-processed using QGIS. Utilities to store data and visualise dynamic graphs of the 
data are developed in Python. Basic data analysis is done using spreadsheets.  

To conclude, SOLACE has been developed using different components, with social attachment as the 
core motivation and foundation for the model. In the chapter, this was shown from the development the 
core social attachment model, evacuation behaviours, and agent-based software model and architecture. 
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CHAPTER 6. IMPLEMENTATION, CALIBRATION & 
VALIDATION OF THE SOCIAL ATTACHMENT MODEL 

 

This chapter details the relevant workflows and key software code implemented to develop 
SOLACE. Geospatial data that defines the crisis environment are pre-processed using the GIS tools 
available in QGIS (QGIS Development Team, 2018). The prepared data is used in agent-based 
modelling using the GAMA platform (Grignard, Taillandier, Gaudou, Vo, & Drogoul, 2013). A highly 
visual approach was used in the many steps using QGIS and GAMA. Dynamic data visualisations tools 
to explore simulation results were likewise developed using Python, JavaScript, D3 and viewed in the 
browser using HTML.  

The chapter is divided into the following sections. Section 6.1 discusses the use of GIS in preparing the 
spatial model of the crisis environment. Section 6.2 discusses the use of ABM in developing the code 
for the model. Section 6.3 discusses the hardware configuration used to run SOLACE. Section 6.4 details 
the activities involved to calibrate the model. Section 6.5 provides the short summary and conclusion to 
the chapter. 

6.1 Spatial data processing workflows 
Spatial data used in the agent-based model were prepared using geoprocessing21 with GIS. The key 

geoprocessing tasks involved (1) deriving safe areas and danger zones, (2) integrating damage and 
vulnerability attributes to building data, and (3) editing and creating new data such as adding doorways 
to buildings. Doors have been created by selecting nodes from building polygon outlines. Other tasks to 
integrate attribute information are attribute joins, spatial joins, and editing data tables. 

Vector data were also integrated with attribute data using GIS. Attribute data include vulnerability and 
damage probabilities from Quantum GIS or QGIS, which was used to process the spatial thematic data 
layers. Thematic layers include buildings, safe areas, free areas. Processing included vector data editing 
and attribute encoding. These finalised thematic layers were used as inputs to the agent-based model 
and simulation in GAMA. This workflow is shown in Figure 35. This represents the generic process for 
each data which will be detailed in the following subsections.  

 

Figure 35 Spatial data processing workflows 

Spatial data and non-spatial attribute data were prepared for integration into the agent-based model using 
GIS. Quantum GIS or QGIS was used to process the spatial thematic data layers. Thematic layers 
include buildings, safe areas, free areas. Processing included vector data editing and attribute encoding. 
These finalised thematic layers were used as inputs to the agent-based model and simulation in GAMA.  

                                                
21 Geoprocessing includes procedures for data manipulation and processing of geospatial data (Sherman, 2008). 
Example operations on data using QGIS are buffer, clip, difference, dissolve, intersect, and union (Roth, 2018). 
Vector editing was also done to simplify data. 
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6.1.1 Deriving safe areas and danger zones 
The workflow for deriving safe areas and danger zones is shown in Figure 36. The layers used 

include shapefiles from BDTOPO, OpenStreetMap and the IRIS boundaries from Riedel et al., 2014 
(Riedel, Guéguen, & Dunand, 2014). Preparing the data for integration into the model includes (1) 
geoprocessing and (2) building the attribute tables. Figure 37 shows the GIS layers used. Figure 38 
shows the zoomed in version. Table 31 provides the details and characteristics of the data. 

 

Figure 36 Geoprocessing workflow for the creation of danger zones and safe areas 

 

 
Figure 37 Spatial layers used in the model at the scale of the city of Grenoble 
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Figure 38 Safe areas and danger zones in the city center of Grenoble. Danger zones are the red areas around buildings. The 
width of the zone or the distance from the building is half the height of the structure. The safe areas are the green coloured 
spaces. Large open spaces suitable for evacaution in the figure are (1) Place Victor Hugo, (2) Parc Jardin de Ville, (3) 
Verdun, (4) Parc du Département de l’Isere, (5) Parc Jadin des Plantes, (6) Parc Paul Mistral, and (7) Parc Jardin Hoche. 

 
Table 31 Data layers in Figure 37 and Figure 38  

Category Data Colour Source Purpose/target 
Geospatial 
(Spatial) 
 

Grenoble boundary Pink (Riedel_a, et al., 2015) Define model extents, aggregated from 
IRIS boundaries. 

IRIS Boundary  (Riedel_a, et al., 2015) Attributes used as probabilities for 
generating attributes of enclosed features 
(population, buildings). 

Buildings  BDTOPO (IGN, 2017) Provide location of people indoors. These 
also serve as barriers to movement and 
define the boundaries of alleyways and 
streets. When they are damaged during a 
crisis scenario they provide the source of 
debris. 

Road network  BDTOPO (IGN, 2017), 
OpenStreetMap 
(OpenStreetMap & 
Contributors, 2018)  

Provide pathways, routes towards safe 
areas during evacuations. Centre lines of 
roadways are the initial safe areas. Also 
provides guidance to agents when 
evacuating to safe areas. 

Geospatial 
(Spatial) 
Geoscience 
(Seismic) 
 

Doorways  Digitised from satellite 
imagery 

Used as starting locations for evacuation, 
especially during night time scenarios. 
Occupancy; location of “indoor” agents 

Natural 
features/Rivers 

 BDTOPO (IGN, 2017) Barriers to movement. These are used to 
restrict pedestrian movement in pathways. 

Danger Zones  Derived from data using 
geoprocessing tools 

Used to define deposition areas for debris 
around buildings 

Safe areas  Derived from data using 
geoprocessing tools, and 
vector editing 

Areas free from debris. Used as 
destinations of agents during evacuations. 
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6.1.2 Scaling macroseismic damage and vulnerability data to the building level  
Building vulnerability and damage was derived from IRIS level macroseismic vulnerability and 

damage attributes. The workflow of assigning IRIS level macroseismic data to buildings within an IRIS 
is shown in Figure 39. The steps involved are (1) deriving the centroids of buildings resulting to a point 
shapefile; (2) spatial attribute join by assigning the building centroid points to the bounding IRIS 
polygon; (3) attribute join operation linking the data from the building centroid points to the building 
polygon data. The result is a building polygon shapefile with the attributes of the IRIS layer. 

 

 
Figure 39 Assigning building with IRIS damage and vulnerability data 

The fields in the resulting attribute table of the building shapefile with the combined vulnerability and 
damage probability data from the IRIS shapefile are detailed in Table 32. The probability values are 
used later in the assignment vulnerability and damage for each building. This is discussed in Section 
6.2.2.1. 

Table 32 Building data with IRIS attributes 

IRIS data Fields Type Description 
ID String Building ID 
HAUTEUR Integer Building height 
IRIS (code, Integer), IRIS_NAME (String)  IRIS Code and Name 
ZONE Integer Soil Zone 
D_pa, D_pb, D_pc, D_pd, D_ pe Float Probability Typology (for typologies a, b, c, d, and e) 
D_d0V_p, D_d1V_p, D_d2V_p, D_d3V_p, 
D_d4V_p, D_d5V_p 

Float Probability Damage Degree Intensity V (for degree 0, 
1, 2, 3, 4, and 5) 

D_d0VI_p, D_d1VI_p, D_d2VI_p, D_d3VI_p, 
D_d4VI_p, D_d5VI_p 

Float Probability Damage Degree Intensity VI (for degree 
0, 1, 2, 3, 4, and 5) 

D_d0VII_p, D_d1VII_p, D_d2VII_p, D_d3VII_p, 
D_d4VII_p, D_d5VII_p 

Float Probability Damage Degree Intensity VII (for degree 
0, 1, 2, 3, 4, and 5) 

D_d0VIII_p, D_d1VIII_p, D_d2VIII_p, 
D_d3VIII_p, D_d4VIII_p, D_d5VIII_p 

Float Probability Damage Degree Intensity VIII (for degree 
0, 1, 2, 3, 4, and 5) 

D_d0IX_p, D_d1IX_p, D_d2IX_p, D_d3IX_p, 
D_d4IX_p, D_d5IX_p 

Float Probability Damage Degree Intensity IX (for degree 
0, 1, 2, 3, 4, and 5) 

D_d0X_p, D_d1X_p, D_d2XI_p, D_d3X_p, 
D_d4X_p, D_d5X_p 

Float Probability Damage Degree Intensity X (for degree 0, 
1, 2, 3, 4, and 5) 

D_d0XI_p, D_d1XI_p, D_d2XI_p, D_d3XI_p, 
D_d4XI_p, D_d5XI _p 

Float Probability Damage Degree Intensity XI (for degree 
0, 1, 2, 3, 4, and 5) 

D_d0XII_p, D_d1XII_p, D_d2XII_p, D_d3XII_p, 
D_d4XII_p, D_d5XII_p 

Float Probability Damage Degree Intensity XII (for degree 
0, 1, 2, 3, 4, and 5) 

 

Figure 40 shows map of the buildings, IRIS and resulting buildings with IRIS attributes. Different 
colours represent IRIS boundaries. The buildings are the black polygons on the leftmost image. The 
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centre image shows IRIS boundaries as large polygons with different colours. The buildings assigned 
with attributes with respect the enclosing IRIS are shown in on the rightmost image. Here the buildings 
reflect the colours of the enclosing IRIS. 

 

 
Figure 40 Building data with IRIS layer attributes 

 

6.1.3 Spatial data subsets  
The Grenoble study area covers 69 IRIS boundaries and contains a large number of spatial elements 

with complex geometries. This includes buildings, danger zones, safe areas, etc. Each layer, which is 
composed of many individual components, introduces complexity. During simulation runs, very high 
model complexities result in very slow processing times. The strategies adopted on vector data to 
manage complexity and speed up data processing are: (1) minimise the number of individual vector 
elements; (2) use simple geometries; (3) simplify attribute tables and minimize number of fields; and (4) 
create smaller subsets of the data. 

To facilitate testing, calibration and some experiments on the model, smaller spatial subsets of the data 
were used. The subsets are small, medium and large areas. The large set covers the entire city of 
Grenoble. Figure 41 shows the two subsets of the data. The figure includes (1) small area covering two 
IRIS zones in the old historic centre, namely Victor Hugo and Grenette, and (2) medium area showing 
a map covering nine IRIS zones. The nine IRIS zones are Victor Hugo, Grenette, Aigle, Championnet, 
Génissieu, Hoche, Jean Jaurès, Préfecture, and Saint-André.  

The spatial layers used in the model for each spatial subset are detailed in Table 33. The categories for 
the vectors are boundary, building, building damage, danger zone, doors, roads, safe areas, land cover 
and land use, and other layers. The number of vector elements or records for each layer is indicated. In 
Table 33, it can be noticed that for building damage and danger zones, layers for each intensity scenario 
are presented. For example, Building_Damage_Int5 and Danger_Zone_Int5 for an intensity V 
earthquake scenario. For the building damage layer, only buildings with damage are considered (i.e. 
damage class >= 1). Similarly, for the danger zone only danger zone polygons containing the buildings 
with damage are considered. Higher intensities result in more damaged buildings and damaged zones. 
This strategy of deriving subsets of the building data with respect to intensity scenarios gives a fewer 
number of vector polygons. This speeds up the simulation experiments. 

 
 



 

 113 

 

 
Figure 41 2-IRIS Subset (Left), 9-IRIS Subset 

In the case of safe areas (or evacuations areas), Safe Area polygons are fewer in number than Safe Spots. 
Safe Area polygons however define very large zones and have more complex geometries. Safe Areas, 
in general, refer to safe areas away from buildings. Safe Spots are small circles within the Safe Area 
polygon footprint and offer more precise destinations for agent displacements. Safe spots are analogous 
to meeting spots or rally points. This is also useful in distributing evacuating agents in a more realistic 
pattern similar to those observed in real evacuations. The use of these two types of safe areas was tested 
in the experiments. 

Table 33 Number of vector elements for the model for each layer 

Category Fields Type Number of vector elements 
Small Area  Medium Area Large area  

Boundary IRIS  COUNT 2 9 69 
Boundary Polygon 1  1 

Building Building_Outline Polygon 73  6244 
Building damage 
for each Intensity 
scenario 

Building_Damage_Int5 Polygon 12 56 426 
Building_Damage_Int6 Polygon 116 439 3491 
Building_Damage_Int7 Polygon 304 1037 7984 
Building_Damage_Int8 Polygon 386 1485 11588 
Building_Damage_Int9 Polygon 459 1768 14493 
Building_Damage_Int10 Polygon 471 1872 15994 
Building_Damage_Int11 Polygon 472 1899 16611 
Building_Damage_Int12 Polygon 473 1902 16717 

Danger Zone for 
each damaged 
building 

Danger_Zone_Int 5 Polygon 20 83 553 
Danger_Zone_Int 6 Polygon 144 571 4530 
Danger_Zone_Int 7 Polygon 394 1402 10561 
Danger_Zone_Int 8 Polygon 503 1985 15315 
Danger_Zone_Int 9 Polygon 598 2384 19090 

Doors Door_Centroid Point 380 1492 10865 
Roads Roads Polygon 203 727 6169 
Safe Areas SafeArea >0.5 Polygon 34 184  

SafeArea >0.5 <=1.5 Polygon 32 177 1477 
SafeArea > 1.5 Polygon 3 25 726 
Safe Spots >0.5 <=1.5 Polygon   16634 
Safe Spot > 1.5 Polygon   120 

Land cover and 
Land use 

Water Body (e.g. river, pond) Polygon 1 3 20 
Rail Polygon 0 1 8 
Cemetery Polygon 0 0 1 

Other layers Mask Polygon 1 1 1 
Extent Polygon 1 1 1 
Free Space Polygon 3 13 171 
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6.1.4 Vector data modification (adding doors, carving out doorways and simplify 
layers)   

Modifications in the vector data layer were necessary to implement the crisis scenario and ensure 
mobility of agents. Of particular concern was providing precision for source locations for agents and a 
single means for egress of structures. Egress points are necessary for more accurate results for 
evacuation times.  

Doors in buildings play a key role in the model. These are where indoor agents are generated, free to 
move about “indoors”, and egress during evacuations. Doors in the shape of semi-circles are carved-out 
of building polygons. Doors are placed in the side of buildings close to roads. Attributes for doors 
indicate the use of the building such as home, school, work and public area. In the model, at least one 
door is created for each building polygon. Buildings are considered as barriers in the model. Doors are 
the parts of buildings where movement of agents is possible. Figure 42 illustrates the different types of 
doors in buildings.  Table 34 shows the attributes of doors. 

 
Figure 42 Doors and buildings in SOLACE. Human agents are generated inside door polygons at the start of the simulations. 

Table 34 Attributes for doors  

Fields Values 
Use Home, School, Work, Public 
Building_ID ID of enclosing building 
IRIS Name of enclosing IRIS boundary 

The use of doors as starting points for agent motion is a simplification and compromise. The main reason 
is that the simulation deals with pedestrians emerging from buildings and evacuating towards safe areas. 
In this way there is no need to model agents moving from different floors in the building to the door; 
rather the agents’ exits are timed (i.e. staged delays) to reflect which floor they may be on and their pre-
evacuation activities. The other reasons are (1) a common point is needed for egress, (2) buildings have 
at least one door and locations can be validated from street photographs, (3) there is more control in 
managing egress times of agents through pre-evacuation delay times, (4) unnecessary navigation delays 
by building wall barriers are generated when agents are generated indoors, and (5) no data is available 
for building indoor layouts or floor plans. 
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Other modifications on the data are simplifications of building layers. Only buildings close to streets, 
or “outer buildings” are retained and used in the model. “Inner buildings” are edited out and not 
included. This is to lessen the number of building polygons, minimize model complexity and improve 
processing times. Inner and outer buildings are shown in Figure 42. 

6.2 Agent based modelling workflow  
The software code for SOLACE is written in GAML within the GAMA development environment. 

GAMA was chosen for the model due to its (1) easy to read high level programming syntax, (2) open 
source framework, which makes examples available, (3) capability to seamlessly integrate geospatial 
data, (4) capacity to build in BDI architecture, (5) tools to inspect agent characteristics, (6) crisp and 
excellent opengl 3D map display, and (7) export csv and shapefile data. 

A modular strategy was adopted to manage the code. This is shown in Figure 43. The set of modules 
includes (1) scenario and shapefile generator for building vulnerability and damage, 
BuildingDamageScenario.gaml; (2) shapefile data manager Data_Shapefile.gaml; (3) population data 
definition file Data_Population.gaml; (4) social perception distance definition file 
Data_SocialAttachment.gaml. (5) human species definition file, Species_Human.gaml; (6) adult species 
definition file Species_Adult.gaml; and (7) child species definition file Species_Child.gaml; These are 
imported into the main module SOLACE.gaml. 

 

Figure 43 SOLACE Code Modules 

 

The SOLACE.gaml main module imports and integrates the aforementioned modules. It also contains 
code components for the (1) parameter interface, (2) initialisation, (3) output data management, (4) other 
species, (5) experiments, and (6) display. 

6.2.1 GAMA simulation user interface  

The simulation user interface for SOLACE is shown in Figure 44 and Figure 45. The Map View 
window provides a visually rich map environment to dynamically view the simulation in 2D or 3D. As 
shown in Figure 44, the Mode parameters view provides the interface for changing values for the (1) 
population of agents, (2) intensity and duration of earthquakes can be changed, (3) day or night context, 
etc. These dynamic settings facilitate the testing of “what if” scenarios without changing the code. This 
however requires restarting the simulation. Also shown in Figure 45, the Model parameters view with 
dynamic controls such as sliders used to change parameter settings. Examples are changing layer 
opacities or the vertical exaggeration of buildings. These dynamic controls when modified do not require 
the reloading of the simulation. The changes are immediately applied in the next simulation time step.  
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Figure 44 SOLACE user interface using GAMA (2D) 

 

 

 
Figure 45 SOLACE user interface using GAMA (3D) 
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6.2.2 Use of probabilities in generating agent populations 

Attribute data gathered from different sources are in macroscopic form. That is, data describe 
characteristics of large areas such as the IRIS level. Examples of this data are macroseismic assessments 
and demographic characteristics. The values are usually in percentages and are linked to IRIS boundaries 
or polygons. Disaggregating these data for generating heterogeneous populations of microscopic agents 
requires the use of probabilities.  

In the study, the percentages are used as probabilities to generate the heterogeneous population of agents. 
The flip() operator, available in GAMA is used to evaluate the probabilities (GAMA Development Team, 
2018). When evaluating a float value representing a probability, a boolean is returned. When the result 
is true, a parameter is assigned a value. For example, for a building located in an IRIS with 50 percent 
masonry structures, if flip(0.5)=true, the building is assigned the typology masonry.   

6.2.2.1 Use of probabilities in generating agent populations and assigning 
vulnerability and damage to every building (GAML Code) 

 

The probabilistic method is used to assign attributes on vulnerability or typology of damage for each 
building. The building shapefile with IRIS level macroseismic data evaluated with QGIS in Section 
6.1.2, is further processed using GAML code. The shapefile is first accessed as shown in the pseudocode 
shown Code 1. The GAML code for this is shown in the Code 30 (Appendix). 

  
 
 

Attributes from shapefiles are made readily accessible in GAMA provided that the field names are 
indicated together with the declaration of the parameter type. Examples of field names indicated in Code 
2 are D_pa, D_pb, D_pc, D_pd, D_pe, D_d0V_P, D_d1V_P, D_d2V_P, etc (see Table 32). The field 
values are of type float. These are used as probabilities in SOLACE. The GAML code is shown in Code 
31 (Appendix). 

 
 
 
 
 
 
 

For example, in the Code 3, to get the typology typeVC, the D_pa value is evaluated first, if its flip(D_pa) 
results in the value of 1, the typeVC is assigned the value a. When this happens, the succeeding 
probabilities, D_pb, D_pc, and D_pd are not evaluated. However, if the first in the list, D_pa results in 
a 0 value, the next parameter D_pb is evaluated similar to D_pb. The flip() function with the probability 
valued is evaluated until the value of 1 is reached, and the appropriate typology is assigned. This 
evaluation is shown in Table 35. The GAML code is shown in Code 32. 

 

buildingIntensityVShapefile <- path to the building shapefile; 
      
 

Code 1 

Value for D_pa; Value for D_pb; Value for D_pc; Value for D_pd; Value for D_pe;  
 
Value for D_d0V_P; Value for D_d1V_P; Value for D_d2V_P; Value for D_d3V_P;  
Value for D_d4V_P; Value for D_d5V_P; 
  
Value for D_d0VI_P; Value for D_d1VI_P; Value for D_d2VI_P; Value for D_d3VI_P; 
Value for D_d4VI_P; Value for  D_d5VI_P; 
 
. . . . .  
 
 

Code 2 
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Table 35 Evaluating probabilities for building typology typeVC with the flip() function. The assigned value to typeVC is 
contained within the braces (i.e. “a”, “b”, “c”, “d”, or “e”). 

Parameter flip1() flip2() flip3() flip4() flip5() 

D_pa True, [“a”] False False False False 

D_pb - True, [“b”] False False False 

D_pc - - True, [“c”] False False 

D_pd - - - True, [“d”] False 

D_pe - - - - True, [“e”] 

 

The calculation for the values of the damage scenarios (0 to 5) for the different intensity scenarios from 
V to XII are similarly derived using the flip() function. The scenarios are typeDCV, typeDCVI, 
typeDCVII, typeDCVIII, typeDCIX, typeDCX, typeDCXI, and typeDXII. The evaluation is implemented 
using Code 4. The GAML code is shown in Code 33. The evaluation for the scenario typeDCV is shown 
in Table 36. 

 

 

 

 

 

 

Table 36 Evaluating probabilities for building damage typeDCV during an intensity V earthquake scenario with the flip() 
function. The assigned value is contained within the braces (i.e. 0, 1, 2, 3, 4, or 5).   

Parameter flip1() flip2() flip3() flip4() flip5() flip6() 

D_d0V_P True, [0] False False False False False 

D_d1V_P - True, [1] False False False False 

D_d2V_P - - True, [2] False False False 

D_d3V_P - - - True, [3] False False 

D_d4V_P - - - - True, [4] False 

D_d5V_P - - - - - True, [5] 

Assign typology for building 
     - evaluate probability flip function using probability value for typology a 
          - if True the value “a” is assigned, and calculation finishes 
   - if False the next typology is evaluated 
        - evaluate probability flip function using probability value for typology b 
             - if True the value “b” is assigned, and calculation finishes  
                    - if False, the next typology is evaluated 

. . . 
                       - if True assign the value for the typology, and calculation finishes 
                       *when value is False evaluation continues until typology e is reached 
     
 

Code 3 

Assign damage for intensity V  
    - evaluate probability flip function using probability value for Intensity V, level 0        
      damage 
         - if True assign the value 0 and calculation finishes 
         - if False, evaluate next level 

- evaluate probability flip function using probability value for Intensity V,    
level 1 damage 

                   - if True assign the value 1, and calculation finishes 
                   - if False, evaluate next level 
                       . . . 
                       - if True assign the value for the level, and calculation finishes 
                       *when value is False evaluation continues until level 5 is reached 
 
Assign damage for intensity VI, VII, VIII, IX, X, XI and XII 

-  evaluated in the a similar manner to intensity V but using the respective probabilities      
for intensity and level of damage   

Code 4 
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The result of the code is a buildings’ shapefile containing the attributes for vulnerability and damage for 
each seismic scenario. This is used as the probabilistic vulnerability and damage scenario for the multi 
agent simulation. New scenarios can likewise be generated by running the GAMA code. The line of 
code for saving the shapefile with the appropriate field names is shown in Code 5 . The GAMA code is 
shown in Code 34 

 

 
The maps for vulnerability and damage probability for intensity VIII earthquake generated from the 
resulting building shapefile are shown in Figure 46. 

 
Figure 46 Left: Building Vulnerability – Typology (A to E); Damage: Building Damage (0 to 5) for Intensity VIII Scenario. 

The building shapefile data is used to create the building agents in SOLACE. For example, creating the 
building agents for an intensity VI earthquake scenario requires the lines of code shown in Code 6. The 
GAMA code is shown in Code 35. 

 

 
 
 

In the init section of the code, the building agent is created as shown in Code 7. The GAMA code is 
shown in Code 36. 

 
 

 

 

 

save building data as shapefile to a directory with the following attributes id, height, 
typology assignment (a to e), and damage probability from intensity V to XII  

Code 5 

Load into the model the building shapefile for the intensity VI scenario from a 
specific directory. 
 

Code 6 

Create the building agent from the from the building shapefile for intensity  VI 
scenario. 
 
 

Code 7 
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In the definition of the building species agent, the parameters are derived directly from the building 
shapefile attribute fields. As shown in Code 8, the field names are ScBH1_VC, ScBH1DV and 
HAUTEUR for vulnerability, damage and height respectively. The appearance of building agents are 
defined in the aspect section. The colours are assigned to the respective vulnerability class (a, b, c, d and 
e) and damage category (0, 1, 2, 3, 4 and 5). The depth parameter calls the HAUTEUR field values to 
render the building heights in 3D. The GAMA code is shown in Code 37. 

 

 

 

 

 

 

 

The result of Code 6, Code 7, and Code 8 are shown in Table 37 and Table 38. Table 37 shows the 
building agents drawn in the simulation with respect to vulnerability class. The vulnerability classes are 
from A to E in the order of decreasing vulnerability. Table 38 shows building damage category from 1 
to 5 in the order of increasing damage. 

Table 37 Building Vulnerability Class in the order of decreasing vulnerability 

Typology A B C D E 
Colour red green blue yellow violet 
3D 

     

Examples 
(Grünthal, European 
Macroseismic Scale 
1998, 1998) 

Masonry 
(rubble stone, 
adobe-earth 
brick) 

Masonry (simple 
stone, unreinforced 
with manufactured 
stone units) 

Masonry (massive 
stone, unreinforced 
with RC22 floors); 
RC (frame w/o 
ERD23, walls 
withour ERD) 

Masonry 
(reinforced or 
confined); RC 
frame with 
moderate ERD); 
Timber structures 

RC walls and 
RC frame 
with high 
level of ERD; 
Steel 
structures. 

 

 

 

 

                                                
22 RC – Reinforced concrete 
23 ERD – Earthquake Resistant Design 

Building species for intensity VI scenario 
     - characteristics 
         - building height (HAUTEUR * height multiplier) 
         - building vulnerability class (a, b, c, d or e) 
         - building damage for intensity VI (0, 1, 2, 3, 4, and 5) 
     - drawing the building  
  - based on vulnerability 
       - type a (Red) 
              - type b (Green) 
              - type c (Blue) 
              - type d (Yellow) 
              - type e (Violet) 
         - based on damage at intensity VI 
       - damage 0 (White) 
              - damage 1 (Yellow) 
              - damage 2 (Orange) 
              - damage 3 (Red) 
              - damage 4 (Maroon) 
              - damage 5 (Black) 
 
  
 
 

Code 8 
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Table 38 Building Damage Grade in the order of increasing damage 

Damage Class 0 1 2 3 4 5 
Colour White yellow orange red maroon Black 
3D  

Not 
displayed      

Damage 
(Grünthal, 
European 
Macroseismic 
Scale 1998, 
1998) 

No 
damage 

Negligible to 
slight damage 
(no structural 
damage, slight 
non-structural 
damage) 

Moderate 
damage (slight 
structural 
damage, 
moderate non-
structural 
damage) 

Substantial to 
heavy damage 
(moderate 
structural damage, 
heavy non-
structural 
damage) 

Very heavy 
damage 
(heavy 
structural 
damage, very 
heavy non-
structural 
damage 

Destruction 
(very heavy 
structural 
damage) 

A 3D snapshot of Grenoble showing an intensity VIII earthquake scenario for building vulnerability and 
damage are shown in Figure 47 and Figure 48 respectively. In both figures, the displayed buildings are 
those with damage grades greater or equal to 1 (>=1). To further clarify, black grey spaces between 
buildings indicate locations for buildings that are not damaged. 

 

Figure 47 Building vulnerability classes from left to right are from A to E in the order of decreasing vulnerability.  



 

 122 

 

Figure 48 Building damage at Intensity VIII scenario. Values are from from left to right are from 1 to 5 in the 
order of increasing damage. 

6.2.2.2 Debris creation  

Building agents create debris agents. The debris agents are deposited in the danger zone surrounding 
the building. The amount of debris created depends on the building attributes such as vulnerability. 

A reflex defined in the buildings species is used to create debris during the start of the earthquake and 
within its duration. This statement is expressed in Code 9. The GAMA code is shown in Code 38. The 
approach used to create debris is probabilistic. 

 

 

Probability to produce debris for each typology is defined in Code 10. The equivalent GAMA code is 
shown in Code 39. A probable random integer k_debris, is picked from a range of values between 1 to 
10. Typologies that are highly vulnerable to damage create more debris. Typologies are from a, b, c, d, 
and e, in the order of decreasing vulnerability. For example, in Code 10, for a Type a structure such as 
masonry, a k_debris random value from 1 to 10 debris is picked. For a structure with minimal 
vulnerability type e, such as engineered reinforced concrete, a k_debris value between 0 and 1 is picked. 

 

 

 

Create debris for every time step from the start of the earthquake until the shaking stops 
 
 

Code 9 
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The number of debris n_debris created for each time step is calculated as shown in Code 11. The 
equivalent GAMA code is shown in Code 40. The debris agent is created in the danger zone adjacent to 
(or nearest) the damaged building. The footprint of the debris block is simplified to the shape of a square. 
The dimensions of the debris block increase with increasing intensity. This is analogous to having more 
debris covering the ground with increased damage from increasing intensity. The purpose of this 
simplification is to facilitate faster simulation times by lessening the number of debris agents created.  

 

 

 

 

 

 

 

 

 

 

As indicated in Code 11 and Code 40, (1) intensity V earthquake produces smallDebris with a dimension 
of 1x1 meter; (2) intensity VI produces mediumDebris (2x2 meter) (3) intensity VII produces bigDebris 
(3x3 meters); intensity greater than VIII produces huge debris (4x4 meters). In the calculation for 
n_debris, the relevant parameters are the typology expressed in k_debris; damage level (ScBH1DV for 
intensity V, ScBH1DVI for intensity VI, ScBH1DVII for intensity VII, ScBH1DVIII for intensity VIII, 
ScBH1DIX for intensity IX, ScBH1DX for intensity X, ScBH1DXI for intensity XI, and ScBH1DXII for 
intensity XII); the intensity of the earthquake and height of the building; and a value for each intensity 
are used as a denominator. The purpose of the denominator together is to lessen the number of debris 
agents produced. A large number of agents greatly slows down the simulation. This lesser number of 
debris agents for higher intensities however is compensated by the larger footprints occupied by debris. 
The intensity related parameters are detailed in Table 39. 

Number of debris created (k_debris)based on building typology 
     - if the building typology is “a” then 
          - generate a random number of debris between 1 and 10 
     - if the building typology is “b” then  
          - generate a random number of debris between 1 and 7 
     - if the building typology is “c” then  
          - generate a random number of debris between 1 and 5 
     - if the building typology is “d” then  
          - generate a random number of debris between 0 and 3 
     - if the building typology is “e” then  
          - generate a random number of debris between 0 and 1 
 
 

Code 10 

Number of debris created (n_debris) based on intensity, damage and height 
     - if the intensity is V 
          - n_debris is calculated for each building using the following: 
 

r_&Rb)DE = 	
ÉÜïÜNO	 × 	#	qn	ÉOXmxw	nqm	X§x~ÉxrN	vyçq~qNy	 × 	xrvOrwxvy	 × 	X§x~ÉxrN	ℎOxNℎv	

ÉOrqïxrÜvqm
 

 
    
   - calculating n_debris 

r_&Rb)DE = 	
ScBH1DV	 × 	A_ÉOXmxw × 	5	 × 	´G¨ê≠¨H	

650
 

 
          - create the small debris agents in random location within the danger zone around the    
            building. The number of small debris agent around the building should be equal to  
            n_debris.   
     - if the intensity is VI 
          - calculate n_debris for each building for intensity 6 
 
 

r_&Rb)DE = 	
ScBH1DVI	 × 	A_ÉOXmxw × 	6	 × 	´G¨ê≠¨H	

500
 

 
  - create the medium debris agents in random location within the danger zone around 
    thebuilding. The number of medium debris agent around the building should be equal     
    to n_debris. 

     - if the intensity is VII . . . 
     - ...  
     - if the intensity is XII . . . 
 
 
 

  
           
  
                        
 
    
 

Code 11 
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Table 39 Intensity related parameters in the calculation of debris values are 0, 1, 2, 3, 4 and 5. 

Scenario Field for 
Vulnerability 
Class 

Field for 
Damage Grade 
(0, 1, 2, 3, 4 or 5) 

Debris type Dimensions Denominator 

Intensity V ScBH1_VC ScBH1DV smallDebris 1x1 meter 650 

Intensity VI ScBH1_VC ScBH1DVI mediumDebris 2x2 meter 500 

Intensity VII ScBH1_VC ScBH1DVII bigDebris 3x3 meter 1000 

Intensity VIII ScBH1_VC ScBH1DVIII hugeDebris 4x4 meter 1500 

Intensity IX ScBH1_VC ScBH1DIX hugeDebris 4x4 meter 1500 

Intensity X ScBH1_VC ScBH1DX hugeDebris 4x4 meter 1500 

Intensity XI ScBH1_VC ScBH1DXI hugeDebris 4x4 meter 1500 

Intensity XII ScBH1_VC ScBH1DXII hugeDebris 4x4 meter 1500 

To implement building collapse at Damage level 5 (which usually occurs starting from Intensity VI), 
debris are directly created in buildings’ doorway and footprint, during the duration of the earthquake at 
each simulation time step. That is the doorway that has the same ID as the building. The implementation 
is shown in Code 12. The equivalent GAMA code is shown in Code 41. Figure 49 shows the debris 
blocks in the simulation. 

 

 

 

 

Figure 49 Violet squares are debris created by damaged buildings during the duration of the earthquake in the 
simulation. Debris are generated within danger zones. Snapshot of a simulation for intensity.. 

6.2.2.3 Spatially distributed heterogeneous human agent populations  

In the model, human agents are divided into two categories: adult and children. Child agents are less 
than 15 years old. Adult agents are greater than or equal to 15 years old. This grouping is based on the 
available demographic data for each IRIS unit. Age groups for children are from 0 to 2 and 3 to 14. For 
adults, the ages are grouped 15 to 29, 30 to 59, and greater or equal to 60.  

If the intensity is VI and the damage level for the building is 5 
     - create huge debris in the door or inside the building 
 

Code 12 
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Human agents are created for each IRIS region based on the population. Human agents can be created 
in indoor or outdoor locations within each IRIS boundary. The number of agents created in each location 
is based on daily activity and is dependent on the time of day. During night time, agents are created 
inside homes. During daytime, agents are distributed in the home, work, school, public and outdoor 
locations. For indoor locations, human agents are created in the centroid of doorways. For outdoor, 
human agents are created in free space. 

The generation of the heterogeneous human agent population and its spatial distribution in the model is 
implemented in the following code sections. Code 13 shows the parameters needed such as list of 
locations (use), age group (age group), speeds (evacSpeedMax) and probabilities for disability with 
respect to age groups are indicated. A parameter disabilityON functions as a switch to include, or not, 
the disability parameter. This is useful in some experiments to determine the impact of disability in the 
population. The equivalent GAMA code is shown in Code 42. 

 

 

 

 

 

 

Code 14 shows the list of IRIS locations considered. The equivalent GAMA code is shown in Code 43.  
This list can change depending on the IRIS units considered.   

 

 
 
 

Code 15 shows the format of the data for each IRIS in the list in Code 14. The equivalent GAMA code 
is shown in Code 44.  The population for each age group in different locations is indicated as a list. The 
age groups are 0 to 2, 3 to 14, 15 to 29, 30 to 59, and greater than 60. The locations are home, work, 
school, public and outdoors. The data shown in Code 15 is for night time conditions where people are 
assigned to homes. A percentage parameter, pctPop is also used to limit the population considered. 
Limiting the number of human agents considered in the simulation is useful in experiments. A full 
population (or 100% or pctPop = 1.000) for the whole of Grenoble is possible however this is 
computationally expensive and takes a very long time to complete. 

 

 

 

//General parameters in generating human agents 
List of building locations based on use or activity 
     - Home, Work, School, Public, "Outdoor" 
List of age groups  
     - "adult", "elderly", "child"; 
List of ranges maximum values for evacuation speeds for age group 
     - adult (0 to 3.8 m/sec] 
     - child 0 to 2 yrs old (0.0 m/sec) 
     - child 3 to 14 (0.0 to 2.23 m/sec) 
     - elderly (0 to 1.11 m/sec) 
     - disabled (0 to , 1.77) 
List of probability for disability based on statistical data on age       
     - 0.012, 0.024, 0.013, 0.028, 0.039, 0.035, 0.090, 0.067, 0.123, 
       0.102, 0.125, 0.124, 0.217,0.229, 0.423, 0.361 
Setting if disability to is considered 
     - if disability is not considered 
          - disabilityON <- false; 
     - if disability is considered 
          - disabilityON <- True 
    
 
 
 
 

Code 13 

List of IRIS locations considered  
     -  "Crequi_VHugo", "Grenette", "AIGLE","CHAMPIONNET","GENISSIEU","HOCHE","JEAN  
        JAURES","PREFECTURE,…,"WALDEC ROUSSEAU"  

Code 14 
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Code 16 shows the data for daytime scenario. The equivalent GAMA code is show in Code 45. Notice 
the values for different locations. The full population is used as indicated by the pctPop value of 1.000 
or 100%. 

 
 
 
 
 
 
 
 
 
 

Code 17 shows the list grouping age group data from different IRIS units. The equivalent GAMA code 
is shown in Code 46 . Shown is the list for the 30 to 59 age groups. This is used in Code 18 to generate 
populations in batches using age groups. 

 
 
 
 
 
 

Code 18 shows how agents are generated in the model. The GAMA code is shown in Code 47.This code 
uses Code 13 to Code 17. Code 18 loops over the lists and creates the agents for ease age group, use and 
IRIS location. Disability is also assigned to agent when the parameter disabilityON = true. Assignment 
of disability is probabilistic and uses the flip() function. The speed of the individual is assigned based 
on the range of values for the age group. 

The human agents created in the simulation are detailed in Table 40. Agents are point locations rendered 
as simple 2D or 3D graphics in the map. A triangular perception area representing gaze, and attention is 
also shown for each active agent. Agents within the angle formed by the perception area, and when in 
range, can be perceived by the agent. When the other agent is perceived a perception line is drawn. This 
perception area also indicates the direction of movement. Screenshots of the agents from 2D and 3D 
versions of the simulation are also provided. The three health conditions of agents are also presented. 

//Generating population for night time scenario (E.g. All agents are at home) 
- Multiplier (pctPop) is used to generate a Percentage of the population. 
     - if pctPop = 0.002, this means that 2% of the indicated population is generated 
- distribute the population for age groups based on activity/location    
     - population distribution (example Adult 30 – 59 y.o. for 1 IRIS unit) 
          - Adult (30 to 59 y.o.) at Home: pctPop x Estimated value (= 660) 
   - Adult (30 to 59 y.o.) at Work: pctPop x Estimated value (= 0) 
   - Adult (30 to 59 y.o.) at School: pctPop x Estimated value (= 0) 
          - Adult (30 to 59 y.o.) at Public: pctPop x Estimated value (= 0) 
          - Adult (30 to 59 y.o.) at Outdoor: pctPop x Estimated value (= 0) 
 
 
 

Code 15 

//Generating population for day time scenario (E.g. Agents are at different locations) 
- Multiplier (pctPop) is used to generate a Percentage of the population. 
     - if pctPop = 1.000, this means that 100% of the indicated population is generated 
- distribute the population for age groups based on activity/location    
     - population distribution (example Adult 30 – 59 y.o. for 1 IRIS unit) 
          - Adult (30 to 59 y.o.) at Home: pctPop x Estimated value (= 0) 
   - Adult (30 to 59 y.o.) at Work: pctPop x Estimated value (= 594) 
   - Adult (30 to 59 y.o.) at School: pctPop x Estimated value (= 0) 
          - Adult (30 to 59 y.o.) at Public: pctPop x Estimated value (= 0) 
          - Adult (30 to 59 y.o.) at Outdoor: pctPop x Estimated value (= 66) 
 

Code 16 

List of population of adults (30 – 59 y.o.) for each IRIS location 
 - "Crequi_VHugo", "Grenette", "AIGLE","CHAMPIONNET","GENISSIEU","HOCHE","JEAN  
    JAURES","PREFECTURE,…,"WALDEC ROUSSEAU"data for list<list> I30_59  
]; 
 

Code 17 
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This include healthy, injured and deceased or dead agents. Deceased agents are inactive and therefore 
do not have perception areas. 

 

 

 

 
 

Table 40 Human agents in SOLACE 

Agent Type Function Description Screenshot 
3D 2D 

Adult Point Social, 
Cognitive 

Age > 15 years old. 
Exhibits cognitive and 
social behaviours 
during earthquakes 
and evacuations.  

Healthy. 3D: Black head. Grey 
body. Yellow perception area. 
2D: Small blue triangle. Yellow 
perception area. 

  

Injured. 3D: Red head. Yellow 
perception area. 2D: Red small 
triangle. Yellow perception area   
Deceased. 3D: White head 
inside debris. No perception. 
No movement. 2D: White 
triangle inside debris. No 
perception area. 

  

Child Point Social, 
Cognitive 

Age <= 15 years old. 
Exhibit cognitive and 
social behaviours 
during earthquakes 
and evacuations. 

Healthy. 3D: Green head and 
body. 2D: Orange square. 
Green perception area.    
Injured. 3D: Red head, green 
body, green perception area. 
2D: Red square. Green 
perception area. 

  

Deceased. 3D: White head, 
green body, inside debris, no 
perception area. 2D: White 
square, inside debris  

  

6.2.2.4 Creating non-human agents  

Non-human agents included in the simulation are grouped into environment, hazard and safe areas. 
The agents are detailed in Table 41. Except for earthquake and debris, these layers are created directly 
from shapefiles. The workflow is similar to the creation of building agents discussed in Section 6.2.2.1. 
This workflow is illustrated in Figure 50. The steps involved in creating agents from shapefiles include: 
(1) specifying a shapefileName and the path to the shapefile; (2) creation of the species speciesName 
from the shapefile; (3) defining the species speciesName with the relevant parameters (i.e. int, float, 
string) and specifying how the species is drawn in the aspect section; and (4) display the agent by calling 
the species speciesName in the experiment. 

 

- Generate the population of agents with respect to the age groups for each IRIS location. 
     - assign age  
     - assign location (home, work, school, public, or open area) 
     - assign role 
     - assign speed 
     - if disability is considered  
          - assign disability (based on probabilities for age groups) 
          - change previously assigned speed and assign new speed based on disability 

Code 18 
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Figure 50 Creating non-human agents from shapefiles 

 
Table 41 Non-human agents in SOLACE 

Category Agent Type Function Description Screenshot 
2D 

Environment Free Space Polygon Allow free 
movement 

Allows movement of human agents. 
Includes doors, roads and danger 
zones. 

Not displayed 

Road centre Polygon Pathway White intersecting linear polygons 
indicating road centre line. Allows 
movement of human agents; Provides 
guidance; Initial destination to in 
early evacuation 

 

Door Point Source of agents Semi circles located on the sides of 
buildings. Starting location of indoor 
agents  

Building Polygon Barrier, Debris 
Source 

Structures that are vulnerable to 
earthquake shaking 

 
Water Body Polygon Barrier Includes rivers and ponds 

 
Railway  Polygon Barrier Fenced area, Railway zone 

 
Cemetery Polygon Barrier Fenced area, Cemetery zone 

 
Hazard Earthquake Point Barrier The phenomena and hazard being 

modelled. Increasing intensities 
 

Debris Polygon Phenomena Created during earthquake shaking by 
buildings and deposited around 
Danger Zones 

 

 
Danger 
Zone 

Polygon  Orange area around buildings. The 
width of the zone is half the height of 
the building. Site for debris 
deposition 

 

Safe areas Safe area > 
0.5 Bldg Ht. 

Polygon Evacuation 
Destination 

Contiguous areas away from 
buildings (> 0.5 x height of building) 

 
 

6.2.3 Complex multi-agent dynamics  

In the SOLACE model, human agents respond to presence of other human agents and environment 
objects (or non-human agents). Objects in the environment either function as barriers, hazards or safe 
areas. Barriers such as buildings and bodies of water, restrict movement and require that human agents 
to move around them. Hazards such as earthquake and debris force human agents to move away. Safe 
areas are sought by human agents when evacuating. Social interaction governed by social attachment 
facilitates the movement of human agents towards attachment figures. Implementation of interactions 
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of human agents and other agents in the simulation are defined using a mix of simple reflexes and the 
BDI architecture. 

6.2.2.1 Interactions with barriers  

Human interaction with, and navigation around, barriers such as building agents are defined in 
simple reflexes. Code 19 is an example of a reflex that allows an adult agent to avoid nearby building 
polygons when these are close to it by a distance lesser than 5 meters. In Code 19, the agent can change 
its forward direction when nearby buildings are detected. This is indicated by the heading parameter. 
The GAMA code is shown in Code 48. 

 

 

 

6.2.2.2 Interactions with debris in the environment (avoidance, injury, death) 

Human agents can be hit by debris causing injury or death. In the GAML code this is handled as a 
reflex. The flip () function in GAMA is used here to define the probability for the injury or death. 
Currently the value is 0.5 or 50 percent probability for each case. The reflex in Code 20 can be read as: 
an adult can be hurt by small debris when it is outdoors, the intensity of the earthquake is V, the agent 
is active or healthy and the time is during the duration of the earthquake. Also, when the adult agent is 
very near the centre of the debris, there is a probability that it can be dead or injured. A child agent has 
a similar reflex. The equivalent GAMA code is shown in Code 49. 

 

 

 

 

By default agents perceive and avoid debris. This is also implemented as a reflex as shown in Code 21. 
The equivalent GAMA code is shown in Code 50. 

  

 

 

 

 

 

Avoid buildings when they are nearby (less than 2 meters away) 
     - when a building is nearby 
 - change direction or heading 

- move forward in the new direction 
 

Code 19 

An agent is hurt by debris when its location (outdoors) overlaps the location of debris at 
the instant the debris is created. The intensity is V and debris are created in the first 10 
seconds. 
     - a probability of (50%) evaluated to determine is the agent is dead 
          - if true, the agent is dead. 
          - if false, the agent is injured. 
       
  
 

Code 20 

An agent can avoid debris when it is active (i.e. not dead) 
     - detect all nearby debris 
     - select the nearest debris 
     - change location away from debris  
 
 
 

Code 21 
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Figure 51 Effect of debris on human agents. Healthy adult and child agents have black and green heads 
respectively. Injured agents have red heads. Dead agents have white heads and do not have perception areas. 

(a) Top view.  (b) Side view. 
 

6.2.2.3 Defining social relationships  

Social relationships or groupings are defined in the agent by adding an ID attribute. Each agent is 
assigned an ID for all possible relationships. These are family, kin, friend and colleague. When agents 
share the same ID, they belong to the same group. If agents do not share the same ID in any of the 
aforementioned relationships, they are strangers.  

The ID assignment for family members and colleagues are based on the building-door ID and floor 
number they occupy at the start of the simulation. For example, in work environments, individuals 
sharing the same building+floor ID string are colleagues. In a similar fashion, adult teachers with 
students in a class will share the same building+floor ID string. This is shown in Code 22. The 
equivalent GAMA code is shown in Code 51. 

 

 

 

 

 

 

Kin and friend relationships are assigned a random value based on a range. This is shown in Code 23. 
The GAMA code is shown in Code 52. The ranges for idKinMax and idFriendMax can be changed in 
the simulation model parameter interface during testing. Having very small ranges to pick random values 
for idKinMax and idFriendMax produces many relatives and friends. Very large ranges produce many 
strangers. 

 

 

 

 

Assigning agents with IDs for family (idFamily) and colleage (idColleague) at the start of 
the simulation 
     - assign the agent to a door in a building located in floor/level.  
     - extract the building ID  
     - generate relationship ID by combining the building ID with the building floor number. 
       Agents having the same relationship ID are in the same social group. 
          - if the location of the agent is “Home”, the generated relationship ID is for a  
            Family relationship. 
          - if the location of the agent is “Work”, the generated relationship ID is for a  
            Colleague-Work relationship. 
          - if the location of the agent is “School”, the generated relationship ID is for a  
            Colleague-School relationship. 
 
           
 
 
 

Code 22 

Assigning agents with IDs for kin (idKin) and friend (idFriend) at the start of the 
simulation. Agents having the same relationship ID are in the same social group. 
     - for idKin a random value is assigned based on the maximum value for kin (idKinMax) 
     - for idFriend a random value is assigned based on the maximum value for friend 
       (idFriendMax) 
 
 

Code 23 
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6.2.2.4 Social attachment implemented with BDI  

Social attachment is implemented in the model through (1) attachment-based pre-evacuation 
behaviours resulting in delayed egress from buildings, and (2) perception of other human agents during 
evacuations. The simulation uses the basic features of GAMA’s BDI architecture to implement social 
attachment. Basic features only include the use of predicates, beliefs, desires, intentions and plans24. 

Code 24 shows the BDI predicates used in plans and reflexes of a human adult agents. The equivalent 
GAMA code is shown in Code 53. 

 

 

 

Code 25 shows the BDI predicates used in plans and reflexes of a human child agent. The equivalent 
GAMA code is shown in Code 54. 

 

 

 

 

Pre-evacuation behaviours are triggered by the detection of noticeable earthquake shaking. A portion of 
the reflex for detecting earthquakes and assigning pre-evacuation action is show in Code 26. The full 
code determines pre-evacuation actions and calculates delay time to egress. When the decision of the 
agent is to leave, the next choice of evacuation actions is determined by BDI parameters. This is shown 
in Code 26. The equivalent GAMA code is shown in Code 55. 

 

 

 

 

 

 
Perception of other human individuals are determined by the perception distance range. The values for 
perception distance are contained in the Data_SocialAttachment.gaml file and imported into the 
SOLACE.gaml main module. The values for perception distance are shown in Code 27. The values are 
in the calculated using the perception distance bond equation. The values are for day, night and snow 
scenarios respectively. The equivalent GAMA code is shown in Code 56. 

                                                
24 Features of BDI that are not used are the social architecture, emotions, norms, persistence and personality. 

List of BDI predicates used by adult agents 
 - normal, adult_move_to_Door, stay_feelsafe, moveout, adult_move_to_road, 
   adult_move_to_safearea, adult_helpInjuredAdult  

Code 24 

List of BDI predicates used by child agents 
     - child_move_to_safearea, child_move_to_road, child_move_to_adultTeacher, 
       child_move_to_adultFamily, child_move_to_adultFamilyParent, child_move_to_adultKin, 
       child_move_to_adultFriend, child_move_to_adultColleague, child_move_to_adultStranger,  
       child_move_to_childFamily, child_move_to_childKin, child_move_to_childFriend,  
       child_move_to_childColleague, child_move_to_childStranger  
 

Code 25 

When the earthquake is detected by the agent 
     - remove the existing belief and desire of the agent for a normal (or no earthquake 
        situation) 
     - add the following desires 
          - adult_move_to_road, adult_move_to_safearea, adult_move_to_adultFamily, 
            adult_move_to_childFamily, adult_move_to_childFamily_Parent, adult_move_to_adultKin, 
            adult_move_to_childKin);adult_move_to_adultFriend, adult_move_to_childFriend,  
            adult_move_to_adultColleague, adult_move_to_childColleague, 
            adult_move_to_adultStranger, adult_move_to_childStranger, 
            adult_Teacher_move_to_child, adult_helpInjuredAdult 

      
 

Code 26 
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The perception of other human agents using perception distance is implemented in a BDI plan. An 
example of a plan is shown in Code 28. The equivalent GAMA code is shown in Code 57. The plan is 
for an adult moving towards an adult family member. The adult can move if it is active (i.e. not deceased), 
if it is not in an evacuation zone, and if its location is less than the perception distance for family member. 
Also, the adult should have the same ID as the nearest adult. If the previously stated conditions are true, 
then the other adult will be detected and the adult can move towards the other adult. 

In the simulation interface, when human agents perceive another agent, perception lines are drawn. The 
colour of the perception line indicates the relationship between the two agents. Table 42 details the 
perception lines that are defined in the simulation interface. This table also includes the perception lines 
when agents detect elements in the environment or non-human agents. 

 

 

 

 

Table 42 Perception lines available for the model – adult agents perceiving others/objects 

Agent Target Relationship 
with the target 

Type Perception 
Line Colour 

Illustration 

Adult Adult Family BDI Blue 
 

Kin BDI Violet 
 

Friend BDI Magenta 
 

Colleague BDI Yellow-Green 
 

Stranger BDI Yellow 
 

Injured Reflex Turquois 
 

Dead Reflex Black 
 

Child Family BDI Blue 
 

Kin BDI Violet 
 

Friend BDI Magenta 
 

Colleague BDI Yellow-Green 
 

Stranger BDI Yellow 
 

Injured Reflex Turquois 
 

Dead Reflex Black 
 

Environment Road BDI White 
 

Safe Area BDI Forest green 
 

The perception distances (meters) used for day, night and snow scenarios for   
     - //perception distance (format: DAY, NIGHT, SNOW) 
     - child (PD_Child) <- [100.0, 100.0, 100.0]; 
     - family (PD_Family) <- [100.0, 100.0, 100.0]; 
     - partner (PD_Partner) <- [94.10, 4.11, 43.03]; 
     - parent (PD_Parent) <- [88.85, 3.89, 40.63]; 
     - kin (PD_Kin) <- [76.45, 3.34, 34.96]; 
     - friends (PD_Friends) <- [87.85, 3.84, 40.17]; 
     - acquaintances (PD_Acquintance) <- [69.20, 3.03, 31.65]; 
     - stranger (PD_Stranger) <- [60.85, 2.66, 27.83]; 
      
 
 

Code 27 

Active adult agent moves towards a family member when the family member is perceived by the 
agent (is nearby) 
     - perceive family member 
     - move towards family member 
      
 

Code 28 
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Debris Reflex Magenta 
 

Adult  Child  BDI Orange 
 

Adult – Parent Child Family BDI Red 
 

Adult - Teacher Child Authority BDI Red 
 

Child 
 

Adult - Teacher Subordinate BDI Red 
 

Adult - Parent Family BDI Red 
 

Adult Family BDI Blue 
 

Kin BDI Violet 
 

Friend BDI Magenta 
 

Colleague BDI GreenYellow 
 

Stranger BDI Yellow 
 

Injured BDI Turquois 
 

Dead Reflex Black 
 

Child Family BDI CornflowerBlue 
 

Kin BDI Violet 
 

Friend BDI Magenta 
 

Colleague BDI GreenYellow 
 

Stranger BDI Yellow 
 

Injured BDI Turquois 
 

Dead Reflex Black 
 

Environment Road BDI White 
 

Safe Area BDI Light Green 
 

Debris Reflex Magenta 
 

 

6.2.4 Versions of running the simulation 

 Running the simulation is done in several ways, full, limited or headless (Table 43). The first is 
running with the full interface as shown in Figure 44 or Figure 45. The full interface is useful for 
visualising the map, tables, code, charts, etc. This approach however requires more computer processing 
resources resulting to longer processing times. The longer duration becomes more significant when 
running the simulation with a large population of agents. The second way is a limited approach (or a 
semi-headless mode) where displays of the map and charts are disabled. The facilities for inspecting 
code errors and table attributes are still active. These allows for checking the simulations during runtime. 
This saves computing resources and allows for faster processing times compared to the full interface 
version. The third option is the full headless mode where the simulation is run only in the terminal. This 
approach is the fastest as is utilises the least resources. However, it provides no possibilities to inspect 
the simulation during runtime. Also, initial tests using the headless version SOLACE would fail during 
the simulation test runs and therefore not utilised. 

The limited approach was fully utilised in running the simulations and generating the data for analysis. 
This provided the opportunity to check the simulation, inspect the errors and check the generated data. 
The saved simulation data is saved as a CSV file and visualised and analysed with tools that were 
developed external to the model. This tool is discussed in Section 6.2.5. The strategy of using a separate 
visualisation tool allowed the simulation to only generate the simulation data. The developed browser-
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based chart display, allowed for the dynamic updates to chart of simulation results on-the-fly or during 
simulation runs.  

Table 43 Ways of running SOLACE 

GAMA Feature Function Full Limited Headless 
Editor Write and edit GAML code ü ü - 

Save CSV and shapefile data via the code ü ü - 

Add/remove height parameter for 3D display via the 
code 

ü ü  

Models Manage models ü ü - 

Errors Check runtime errors ü ü - 

Parameters Set and modify parameters ü ü - 

Tables View simulation data ü ü - 

Manually save CSV data during a time step ü ü - 

Map Display View and explore simulation in 2D/3D. Pan, zoom and 
rotation of simulation space possible 

ü - - 

Manually export screenshots ü - - 

Screen capture video via external application (Eg. 
Quicktime, Kazam) 

ü - - 

Charts  View charts ü - - 

Via Terminal Run GAML code via terminal, parameter testing and 
calibration 

- - ü 

 

6.2.5 SOLACE data visualisation user interface  
The SOLACE data visualisation user interface was developed to dynamically view data from the 

simulation external to the GAMA environment (Figure 52 and Figure 53). Tables and charts are 
available in the GAMA platform. These features however add to the processing load of the application 
making the simulation run more slowly. Having the chart and table feature outside of the GAMA 
environment gives a faster simulation. The technologies used to develop the dynamic view of tables and 
charts were Python, JavaScript, D3 and html (Figure 54). The purpose of the dynamic displays is mainly 
to allow the viewing of simulation results in real time. The display in the web browser is refreshed to 
reflect the updated data coming from running the SOLACE the simulation. Simulation results can 
likewise be viewed, graphed and analysed using standard spreadsheets. This however requires more 
processing steps, longer times, and is not dynamic.   

 

 

Figure 52 SOLACE data view user interface 
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Figure 53 Python code creating the SOLACE menu items for creating charts displaying information for evacuation, 
perception and location 

 

Figure 54 Python code for displaying data as a chart or a table in the browser. An html file is created using python. In the 
code, D3 is used to embed the data using javascript. 

 

6.2.6 Simulation data 
Evacuation simulation data is stored as CSV25 files. The CSV files produced by the simulation are 

described in Table 44. A set of these six CSV files are created for each simulation run. New data at 
every simulation timestep is appended to the files26. The six CSV files record (1) initial simulation 
parameter values Table_InitFile, (2) evacuation status in raw values Table_EvacStatus, (3) evacuation 
status in percent values Table_EvacStatus (%), (4) actions chosen by agents during re-evacuation 
Table_ActionFile, (5) time for each action chosen during pre-evacuation Table_TIMEFile, and (6) set 
of actions which includes a GOTO pre-evacuation action Table_GOTOFile. The machine time duration 
is also recorded when each cycle completes. This facilitates inspection of simulation performance or 
calculation of average time per time step. 

                                                
25 Comma Separated Variables/Values, CSV files 
26 GAMA has a built-in table showing default simulation data for all agents during every time step. This data 
however is not saved automatically and is discarded after each simulation run. A portion of the code in SOLACE 
is dedicated to saving the data in an aggregated form. The aggregated data is displayed in dynamic tables and 
charts to facilitate real-time monitoring of simulation results. The results are viewed through dynamic tables and 
charts viewed and updated in a browser. 
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Table 44 Tables available in the Python UI 

Table Description Number of fields/ Parameters 

Table_InitFile Values of key parameters at the start of simulation 12 

Table_EvacStatus Values of parameters at every timestep in raw counts 132 

Table_EvacStatus (%) Values of parameters at every timestep in percent 132 

Table_ActionFile Pre-evacuation actions chosen by agent. Used to quantify 
delays. Applies the probabilities for each action. 

47 

Table_TIMEFile Time allocations for each action based on ranges. 47 

Table_GOTOFile Pre-evacuations actions with the GOTO parameter. Set of 
actions with the GOTO parameter is needed to be selected for 
an agent to egress a structure. 

15 

The CSV files are accessible using the SOLACE Data View interface as shown in Figure 55. The table 
showing the data for evacuation status is displayed on a web browser page as shown in Figure 56. The 
table showing the data for pre-evacuation actions and consumed time for the actions are shown in Figure 
57. 

 

Figure 55 Evacuation progress file in percent. Dynamic D3 browser-based tables to monitor and inspect generated tables 
compare evacuation progress in real time. 

 

 

Figure 56 Evacuation progress file in percent viewed from a web browser. Dynamic D3 browser based tables to 
monitor and inspect generateted compare evacuation progress in real time. 
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Figure 57 GOTO file viewed from a web browser. Dynamic D3 browser-based tables to monitor and inspect generated 

compare evacuation progress in real time. 

6.2.7 Dynamic time series charts  

Dynamic charts facilitate the visualisation of stored CSV data from the simulation. Technologies used 
to develop the dynamic charts are Python, Javascript, D3 and html. The charts are made accessible by a 
customised interface developed using Python. A python code is called by the user interface menu options. 
The python code (1) calls the chosen CSV file. D3 javascript is used to render the page in the web 
browser. The simulation user interface together with sample web charts are shown in Figure 58. The list 
of charts produced from the simulation using the custom tool are detailed in Table 45. The categories of 
the chart include evacuation, perception and location for the different types of agents (adult, child and 
elderly). 

 

 

Figure 58 Dynamic D3 browser-based charts to monitor and compare evacuation progress in real time 
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Table 45Time series charts available in the Python UI 

   Adult Child Elderly All 

Chart Category Parameters 
per Chart 

Raw % Raw % Raw % Raw % 

Multichart Evacuation 4       ü ü 

Chart_Exposure Evacuation 7       ü ü 

Chart_InjuredDeceased Evacuation 4       ü ü 

Chart_ALLStat Evacuation 7 ü ü ü ü     

Chart_@SafeAreaAll Evacuation 15 ü ü ü ü ü ü ü ü 

Chart_PerceiveSoc Perception 10 ü ü ü ü   ü ü 

Chart_PerceiveSoc_Modify Perception 8 ü ü ü ü   ü ü 

Chart_PerceiveEnv Perception 12 ü ü ü ü   ü ü 

Chart_RealSpeeds Perception 10 ü ü ü ü   ü ü 

Chart_Agents at Location Location 12 ü ü ü ü   ü ü 

Chart Occupied Doors Location 10       ü ü 

 

6.3 Hardware considerations  
SOLACE can run in GAMA installed in desktop and server environments. However, running on a 

remote server with a more powerful hardware configuration is preferred. Table 46 details the hardware 
configurations used to develop SOLACE and eventually run simulation experiments. Machines should 
have many hardware cores (>= 40) and a large memory footprint (>=141GB). GAMA is able to optimise 
simulation performance using parallel processing. Having many cores speeds up parallel processing 
greatly. This enables large simulation experiments to complete simulation time steps at much faster 
speeds. Large simulation experiments cover large geographic areas such as (1) several city blocks, (2) 
many IRIS units, and (3) the entire city. Large geographic areas involve many geographic entities, all 
of which are agents, resulting in many complex interactions. Large area simulations with cognitive 
agents especially utilizing BDI is computationally expensive and result in very slow simulation runs. 
Simulation experiments covering small area can be run on a laptop or desktop with 8 effective cores. 

Table 46 Hardware Platforms used for developing and running SOLACE simulations 

Machine Processor Arch Physica
l Cores 

Effectiv
e Cores  

Memory 
(GB) 

Swap 
(GB) 

 Minutes per Cycle (Ave) 

2IRIS 6IRIS 69IRIS 
LIG Server 
(Debian 
Linux) 

Intel(R) 
Xeon(R) 
CPU E5-

2640 v4 @ 
2.40GHz 

X86_64 40 40 141G 18.6 0.66 
mins per 

cycle 

2.64 
mins 
per 

cycle 

- 

LIG Docker Intel(R) 
Xeon(R) 
CPU E5-

2620 v4 @ 
2.10GHz 

X86_64 8 8 23 G  - - 18.83 
mins per 

cycle 

Fab Lab 
(Ubuntu 
Linux) 

Intel(R) 
Xeon(R) 
CPU E5-

1650 v3 @ 
3.50GHz 

x86_64 12 12 31.3G 2.0 0.82 
mins per 

cycle 

- - 
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Laptop 
(MacOSX) 

Intel Core i7 
1600 MHz 

DDR3 @2,5 
GHz 

x86_64 4 8 16G  1.18 
mins per 

cycle 

- - 

Table 46 shows the configuration of running SOLACE on a Linux server and a client machine accessing 
the data. The server can be left alone running the simulation experiments. The simulations can be run in 
full, limited and headless modes. The limited mode, as discussed in Section 6.3.3, is preferred in running 
SOLACE as it can write the simulation data in the designed CSV file format. CSV files can be accessed 
by the client machine to produce analysis and direct visualisations of the data. Retrieving the simulation 
data from the server can be done using the ssh and rsync protocol in Linux or the Mac.     

 

Figure 59 SOLACE Server Configuration 

6.4  Calibration, simulation and validation 

Calibration of the model required using the data from diffing sources. These sources include 
behavioural data reported from the reviewed literature. Video data from several earthquake events from 
all around the world were likewise reviewed, and behaviours noted to verify or enrich the gathered 
behaviours from literature, as there has been no observed behaviours from actual disastrous earthquakes 
in the Grenoble study area. Finally, scientific and operational experts were consulted in order to validate 
the model.  

6.4.1 Calibrating population data 

Concerning pedestrian mobility and speeds, Testing model runs if agents behave as expected. 
Mobility in free space. Respecting barriers. Navigation via shortest paths. Dynamic social interaction 
between agents. Origin and destination actions. Casualty generation. Debris generation. Delay via pre-
evacuation actions. Multi-scale testing of agent behaviour (indoor, outdoor, city block, IRIS, city level). 

Behaviour data noted from survey results reflected in the reviewed of the model required using the 
data from multiple sources. The behaviours are implemented in the model area listed in Table 28 from 
Chapter 3. These behaviours are from sources also mentioned in Chapter 3 such as Table 10.  

6.4.2 Checking disaster video footage  

Pedestrian behaviour from video recordings of simulation runs were compared with video from 
earthquake events from different countries. The videos include indoor and outdoor footage taken from 
mobile devices and CCTV cameras. 

6.4.2.1 Indoor video – pre-evacuation behaviours  

Agents egress from doors of buildings at different time intervals. Indoor behaviour in the model is 
defined to mimic real word scenarios. Examples of indoor video data are (a) May 12, 2015, Nepal 
earthquake (Bajracharya, 2018) and (b) March 11, 2011 Sendai, Japan earthquake (No Comment TV, 
2018). In Figure 60-a, pre-evacuation behaviours include seeking protection under the table, exchanging 
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information with colleagues, waiting for others to make the move, mimicking others and managing 
personal property.  

 

Figure 60 Validating social dynamics in the simulation by comparing with video from indoor scenes. (a) Nepal, May 12, 
2015 earthquake. (b) March 11, 2011 Sendai, Japan earthquake. 

Similarly, in the simulation runs, agents are probabilistically assigned pre-evacuation behaviours. This 
results to variations in the triggering of different possible behaviours. Like in video and journal reports, 
some agents do no immediately move out of the structures. The timing of egress from structures vary 
due to the actions assigned to the agents during pre-evacuation.  

6.4.2.2 Outdoor video – pedestrian evacuation behaviours outdoors  

The realism of the dynamics of agent behaviour during the runs of the simulation is checked with 
video taken during earthquakes from outdoor locations. Figure 61-a shows the CCTV footage from a 
market in Asan, Nepal during the April 25, 2015 earthquake (Pokhrel, 2018). In the video, individuals 
converge at the centre of this market square to seek safety. The annotated lines, indicate gaze and 
direction of movement. Most of the lines point towards empty spaces farther away from structures. A 
single line can be seen moving towards the opposite direction. The circles show close grouping of 
individuals. Hugging and holding hands can indicate close relationships. Figure 61-b is the result from 
simulation. The yellow and green perception areas located in front of agents similar to the Asan video, 
indicate gaze, intent to move to a direction, and direction of movement. The perception drawn between 
agents indicate relationship. Clustering and close proximity can likewise be observed among agents as 
they move towards safe areas. The clustering can be forced, due to the narrowing of passageways 
resulting from the presence of debris. This can also be due to social interaction among individuals with 
close relationships. 
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Figure 61 Emergent spatial patterns of social dynamics in the simulation by comparing with video from outdoor scenes. (a) 
Asan, Nepal, April 25, 2015 earthquake (b) simulation showing agent dynamics. 

The pattern created by pedestrian clusters in a large open space in shown in Figure 62. Figure 62-a 
shows the pattern created in Zocalo Square, Mexico City during the Sept. 19, 2017 earthquake 
(Hollogram Studio Viral, 2018). Figure 62-b shows the spatial pattern of agent distribution in the park, 
Place Victor Hugo in Grenoble. The patterns in Figure 62-a and Figure 62-b are somewhat similar in 
the sense that more agents cluster in the outer sections of the park fronting the main pedestrian 
passageways. 

 

Figure 62 Emergent spatial patterns of social dynamics in the simulation by comparing with video from outdoor scenes. (a) 
Zocalo Square, Mexico City during the Sept. 19, 2017 earthquake (b) clusters of agents in Place Victor Hugo, Grenoble. 

Social interaction with respect to the presence of debris, injuries and deaths as replicated in the model 
are likewise checked with real video data. Figure 63-a shows the effect of debris damage during the 
Mexico earthquake on Sept. 19, 2017 (Yoti, 2018). The group of individuals in the figure are helping 
an old lady injured by falling debris. Figure 63-c shows this scenario implemented in the model. Debris 
can injure or kill agents. The default action of agents when perceiving debris is to move away. However, 
when an injured or dead agent is perceived, depending on the strength of attachment bond, agents can 
move toward the stay with the injured or dead agent. In the model, it is possible for agents to move 
through debris. 
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Figure 63 Emergent spatial patterns of social dynamics in relation to presence of debris, injuries and deaths. (a) 
pedestrian scene from Mexico earthquake on Sept. 19, 2017 (b) simulation showing agent interaction width debris 
and other agents. In the figure, injured agents have red head and dead agents have white heads. Healthy agents 
have black (adult) and green heads (child). (c) pedestrian scene, Christchurch, New Zealand  

 

6.4.3 Consultation with experts to validate the model 

Validation of the model and simulation required the opinion of experts from the different domains 
covered by the study. The experts consulted are social scientists, computer scientist, geoscientists and 
practitioners (Figure 64). The overall assessment is a general acceptance of the model as a first attempt 
to simulate evacuation behaviour integrating social, spatial and geophysical aspects.  

 

Figure 64 Consultation with experts 

The model and simulation have likewise been presented in three multi-disciplinary conferences focusing 
on risk. During the ISCRAM 2017 Conference in Albi France, the review of literature for the basis of 
social attachment has been presented. At the ICTDM 2017 conference in Munster Germany, initial 
results of the model were discussed. At the Risk 2018 Conference in Spain more results from the model 
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was presented. The general opinion gathered from the conferences that the model can be useful, similar 
to the results of the consultation with experts.  

6.5  Summary of the chapter  

This chapter presented the implementation of SOLACE. Different aspects of the model from (1) 
geospatial data pre-processing, (2) agent-based model code and simulation implementation, and (3) data 
visualisation. The discussions focused on how social attachment was implemented in the model. 
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 CHAPTER 7. DESIGN OF EXPERIMENTS 
 

This chapter details the design of experiments. It presents the scenarios used to evaluate the effect 
of social attachment on pedestrian evacuations during earthquakes. The sensitivity of social attachment 
to different parameters is determined. This short chapter is divided into the following sections. Section 
7.1 describes the experiment scenarios. Section 7.2  provides a general description of the experiments. 
Section 7.3 provides a short conclusion. 

7.1  Experiment scenarios  

Different simulation experiments are designed to evaluate the influence of different parameters on 
evacuation using the model. Each parameter tested seeks to answer the research questions described in 
Section 1.4 of Chapter 1. In particular, Question 1 is focused on the role of social attachment on 
evacuations. Question 2 explores the effect of knowledge; Question 3 looks at the role of the number of 
close bonds; Question 4 compares the effect of time of day: Question 5, effect of the presence of 
disability; Question 6, effect of the presence of casualties; Question 7, effect of intensity; and Question 
8, the effect of the radius of danger zones around buildings. 

The research questions explored in this research fall into three general categories. The categories include 
(1) social aspects as the framework for evacuations; (2) human factors, that impose limits to human 
mobility during evacuations; and (3) the physical context of the earthquake crisis environment. The 
experiment scenarios are grouped into the following themes shown in Table 47.  

Table 47 Themes for the research questions 

Theme Research 
Question 

Topic Keywords Number of 
Experiments 

Underlying 
social 
aspects 

1 Role of Social Attachment Attachment 120 
2 Effect of Knowledge Knowledge 30 (Set 1) 

2 (Set 2) 
30 (Set 3) 

3 Role of Number of Close bonds  Social Bonds 30 
Human 
Factors 

4 Time of day (Day vs Night) Visibility, Population 
Distribution 

60 

5 Disability (With disabled, No 
disabled) 

Disability, speed, 
mobility 

40 

Crisis 
Environment 

6 Casualties Dead, Injured, 
Intensity 

40 

7 Intensity Debris, Intensity 40 
8 Radius of Danger Zones Danger Zones 23 

 

7.1.1 Question 1. Role of social attachment 

This question tries to determine the effect of social attachment on evacuation arrivals in safe areas. 
The two scenarios considered are With Attachment and No Attachment. Experiments are conducted 
for different intensities and the time of day for the 2 IRIS areas. The radius used for the danger zone is 
half the height of buildings. The perception distance for the safe area is 20 meters. The reference 
perception distance (PDN) used is 50 meters. The maximum value used for IDs for family and kin groups 
is 50. Individuals with disability are included in the simulation. The parameters are presented in Table 
48. The results are presented in section 8.3.1.  
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Table 48 Parameters and values for question 1 experiments 

Coverage Intensity Time RadiusDZ PDSA PDN IDFam_Kin Disability Attachment 
2 IRIS 4,5, 6 or 8 Day or Night H/2 20 m 50 m 50 Yes W-A/N-A 

 

7.1.2 Question 2. Role of knowledge  

This question looks at the influence of the knowledge of safe areas in evacuations. The hypothesis 
is that when locations of safe areas are known, it would lead to more individuals arriving in safe areas. 
Knowledge of the location of safe areas allows individuals to perceive safe areas and makes possible 
goal directed spatial navigation (towards safe areas). This will eventually result in more evacuation 
arrivals. Also linked to this hypothesis is that, with directed spatial navigation guided by knowledge, the 
time required to navigate towards safe areas is lessened resulting to reduced evacuation times and 
therefore early arrivals in safe areas.  

Conversely, if individuals do not have knowledge of the location of safe areas, goal directed spatial 
navigation is not possible; they are not able to navigate towards safe areas. Individuals are able to reach 
safe areas only by chance. This may result in very low arrivals in safe areas. It may also require longer 
times for individuals to chance upon arriving in safe areas. 

Two sets of experiments were done to test these hypotheses. In the first set, the safe areas are in very 
close proximity to the initial locations of the agents. This set uses the standard safe areas around 
buildings. In the second set of experiments, a single safe area is defined in a location far from the initial 
location of agents. This single safe area can be reached by a 15-minute walk in ideal conditions. Ideal 
conditions mean that (1) movement towards safe areas is done immediately and fast; (2) shortest path is 
taken to navigate towards safe areas; (3) evacuation is not disturbed by other actions; and (4) the shortest 
path is not blocked. 

7.1.2.1 SET 1. Nearby safe area 

Perception distance is used as the indicator of knowledge of the safe area. The variable parameter 
in the experiment is the perception distance of safe areas (PDSA). The values used for limited knowledge 
are 20 meters and 50 meters. These values are within the visual perception distance. Aside from being 
equated to limited knowledge, these limited ranges also allow individuals to recognize and discover safe 
areas when they fall within their perception distance. For high or absolute knowledge, 10 kilometres is 
used. The experiments are conducted over 2 IRIS areas. The effect of debris is eliminated by using 
Intensity IV. Night time is used to ensure that all individuals start from indoor locations. A No 
Attachment scenario is used to also eliminate the effect of social influence through social bonds. The 
other parameter constants used in the experiments are presented in Table 49. 

Table 49 Parameters and values for question 2 experiments 

Coverage Intensity Time RadiusDZ  PDSA PDN IDFam_Kin Disability Attachment 
2 IRIS 4 Night H/2 20 m/50 m/10 km 50 m 50 Yes N-A 

PDSA (Perception Distance Safe Area), PDSÂ (Perception Distance Normal), W-A (With Attachment), N-A (No Attachment), H (Building 
Height), DZ (Disaster Zone) 

7.1.2.2 SET 2. Single safe area far from population initial location – free 
space navigation  

Considering the surprising results of set 1 (see Section 8.3.2.1), the effect of long (10 km) and short (20-
meter) perception distance in finding a single safe area is tested by a simple experiment using a subset 
of the model data shown in Figure 65. In this experiment, 5 % of the population for the 2 IRIS area (244 
adults, 17 children) is generated within the IRIS 2 boundary. Evacuation of agents towards a single safe 
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area 500 to 600 meters from the IRIS 2 boundary is recorded for the duration of 5400 cycles. In Figure 
65, the safe area is a single circle located south east of the IRIS 2 area in Parc Mistral27. The evacuation 
catchment radius around the safe area is shown in Figure 66. It is possible to reach this middle green 
safe area within 15 minutes by walking when the average walking speed is 1.4 meters per second. By 
running with an average speed of 3.0 meters per second, it is possible to reach the safe area within 7 
minutes. Intensity IV earthquake during night time is considered for the scenarios. The simulation is 
recorded for 5400 cycles (i.e. 1 hour 30 minutes).  

 

Figure 65 Simple experiment on individual navigation through urban pathways. 

 

Figure 66 Catchment radius of the safe area defined by the black circle drawn with thick broken lines. 

7.1.2.3 SET 3. Single safe area located in a distant location from the 
population initial location, with shortest path navigation, percentage of the 
population with knowledge of safe area 

In this set of experiments, improvements on the use of knowledge in the navigation strategy of agents 
to reach safe areas is implemented. The improvement is the ability of agents to evacuate using the 

                                                
27 As a reference, the distance from Parc Victor Hugo to the safe area in Parc Mistral, using the nearest major roads 
(Boulevard Agutte Sembat and Boulevard Maréchal Lyautey) is approximately 900 meters. Using this path, at the 
comfortable walking speed of 1.4 meters per second (Bohannon, 1997; Fritz & Lusardi, 2009), it will take 
approximately 11 minutes to reach the safe area. 
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shortest paths to move towards the nearest safe area. In these set of experiments, when an agent has 
knowledge of the safe area, individual agents are also able to select and head towards the nearest shortest 
possible route to use for navigation. When taking the shortest route, agents focus in reaching the safe 
area and stay within road centrelines. For roads enclosed by buildings on both sides, road centre lines 
the farthest locations from the buildings, and can be considered safer when evacuating. Agents are able 
to strictly follow the shortest path road centreline (implemented as snapping to the vector centreline) 
when they are very close to the centre line by at least 1 meter. Prior to this close proximity to the 
centreline, agents are able to move freely in free space and are able to interact with other agents. This 
navigation using shortest path road centrelines is in shown in Figure 67. 

 

Figure 67 Agent navigation towards safe area using the shortest path. Agents (small yellow triangles on roads) move from 
initial building locations (dark grey and light grey polygons) towards the safe area (green circle) by way of shortest paths 
defined from road centrelines (white-orange vector lines). The intensity simulated is Intensity IV, which explains the absence 
of debris damage and therefore blocked pathways.  

Three sets of experiments were conducted using this navigation strategy. The summary of the parameters 
used in this set of experiments is show in Table 50. Testing the effect of knowledge was done by varying 
the percentage of the population with knowledge of the safe area. In the first set, 100% of the population 
have knowledge. In the second set 66% of the population have knowledge. In the last set, 0% of the 
population have knowledge. The experiments were run until it reached 6000 cycles. This is equivalent 
to 1 hour and 40 minutes evacuation time. This long duration was allowed due to the initial observation 
that it was not possible to have the agents reach the safe area within 900 cycles (equivalent to 15 minutes). 
The earthquake intensity simulated is intensity VI. The scenario used is for night time. This ensures that 
agents are in home environments.  



 

 148 

 

Figure 68 Agent navigation around blocked pathways. The agent with the long and green perception line has perceived a road 
segment which is part of the shortest route (white with thin red centreline). In its current location, the agent is able to travel 
freely in space as it navigates towards the portion of the shortest path towards safe zones. Buildings without damage are shown 
as grey polygons. Damaged buildings are yellow-orange polygons. Debris blocking roadways are shown as violet squares. 
Red polygons surrounding damaged buildings are danger zone. 

 
Table 50 Parameters and values for question 2 experiments – set 3 

Coverage Intensity Time RadiusDZ Knowledge 
Safe Area 

PDN IDFam_Kin Disability Attachment 

2 IRIS 6 Night H/2 100%/60%/0% 50 m 50 Yes N-A 
 

7.1.3 Question 3. Role of the number of close bonds 

This question looks at the influence of the number of close bonds on evacuation. The hypothesis is 
that there would be few evacuation arrivals when there are many close bonds. This is due to the high 
likelihood that closely bonded individuals will hesitate to leave each other especially in danger zones. 
Staying in the initial locations during the earthquake to be with others can result in non-evacuations, or 
delayed arrivals in safe areas. 

To answer this question two types of with attachment scenarios are compared. The first scenario has 
many individuals sharing many close bonds (i.e. family, kin and friends). The second scenario has many 
individuals with weak bonds or having many strangers. It should be noted that social attachment during 
disasters can form with strangers. The bond however is much weaker than with closely bonded 
individuals.  

The social bonds in the experiments is defined by group membership and implemented as perception 
distances. Closely bonded individuals are more familiar to each other. This familiarity facilitates 
recognition and perception event at much longer distances. This familiarity also imposes bias or acts as 
spatial and preferential attachment filter. For example, when two other individuals fall within the 
perception angle, the one with the stronger bonds to the perceiver is perceived over the other with lesser 
bond. The variable used in the experiment to implement the two scenarios is the range of the ID for kin 
and friends. The ID for family members is assigned from building ID and floor number. The range of 
50 is used for the scenario with many close bonds. The range of 1000 is used for the scenario with many 
strangers. The parameters used in the experiments are detailed in Table 51. The results of these 
experiments are shown in section 8.3.3. 
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Table 51 Parameters and values for question 3 experiments 

Coverage Intensity Time RadiusDZ PDSA PDN IDKin_Friends Disability Attachment 
2 IRIS 4 Night H/2 20m 50 m 50 or 1000 Yes W-A 

PDSA (Perception Distance Safe Area), PDSÂ (Perception Distance Normal), W-A (With Attachment), N-A (No Attachment), H (Building 
Height) 

7.1.4 Question 4. Effect of time of day  

This question looks at the influence of the time of day on evacuations. The main variable tested in 
the experiments is time of day. Experiment results of day and night scenarios are superimposed and 
compared in the context of different earthquake intensities. The two main differences between night and 
day scenarios are (1) initial locations of individuals at the start of the simulation, and (2) length of 
perception distances.  

The hypothesis for this question is that there will be more arrivals in safe areas during the day than night 
time. This is based on the several ideas. First, the daytime scenario already has an advantage since some 
individuals are already outdoors and can already be in safe areas; and are spatially more spread out at 
different indoor locations (i.e. homes, schools, work areas and public places). During night time all 
individuals are indoors in homes. Second, individuals can see farther during the daytime than night time. 
The third reason is that attachment bonds between family members are very strong which can delay 
evacuation. During daytime, individuals exposed strengths of bonds since they can be co-located with 
non-family members. The parameters used in the experiments are detailed in Table 52. 

Table 52 Parameters and values for question 4 experiments 

Coverage Intensity Time RadiusDZ PDSA PDN IDKin_Friends Disability Attachment 
2 IRIS 4, 6 or 8 Day or Night H/2 20m 50 m 50 Yes W-A 

PDSA (Perception Distance Safe Area), PDSÂ (Perception Distance Normal), W-A (With Attachment), N-A (No Attachment), H (Building 
Height) 

7.1.5 Question 5. Effect of the presence of disability 

This question looks at the scenario when disability is considered in the population of evacuees. The 
two scenarios considered are With Disabled and No Disabled in the context of with attachment and no 
attachment for Intensity VI. The hypothesis is that for the population with disabled, there will be lesser 
overall arrivals in safe areas. This is based on the premise that disabled individuals are slower to evacuate. 
The evacuation of non-disabled individuals may be influenced by the disabled due to social attachment. 
The parameters used in the experiments are detailed in Table 53. 

Table 53 Parameters and values for question 5 experiments 

Coverage Intensity Time RadiusDZ PDSA PDN IDKin_Friends Disability Attachment 
2 IRIS 6 Day H/2 20m 50 m 50 Yes or No W-A/N-A 

PDSA (Perception Distance Safe Area), PDSÂ (Perception Distance Normal), W-A (With Attachment), N-A (No Attachment), H (Building 
Height) 

 

7.1.6 Question 6. Effect of the presence of casualties 

This question looks into the effects of the presence of casualties (i.e. injured and deceased) on the 
route during evacuations. Interactions with casualties along the route may influence the evacuation of 
individuals. Strong social attachment bonds may result in individuals staying with casualties who are 
attachment figures. On the other hand, the presence of casualties may act as cues that can trigger 
immediate evacuation to safe areas. This may happen especially when individuals share very low 
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attachment bonds and may move away from casualties. The hypothesis for this question is that more 
interactions in the route will result in lesser arrivals in safe areas. 

The scenarios considered with attachment, day conditions at intensities 4, 5, 6 and 8. The parameters 
for the experiments are shown in Table 54. The results include (1) casualties, (2) interactions with 
casualties, and (3) arrivals in safe areas. 

Table 54 Parameters and values for question 6 experiments 

Coverage Intensity Time RadiusDZ PDSA PDN IDKin_Friends Disability Attachment 
2 IRIS 4, 5, 6 and 8 Day H/2 20m 50 m 50 Yes W-A 

PDSA (Perception Distance Safe Area), PDSÂ (Perception Distance Normal), W-A (With Attachment), N-A (No Attachment), H (Building 
Height) 

7.1.7 Question 7. Effect of intensity 

This section looks at the role of intensity with respect to the number of arrivals in safe areas. Results 
from previous questions were actually presented in the context of different intensities. The discussions 
however focused on the social and behavioural aspects. This section will provide the physical context 
particularly related to the debris damaged produced at different intensities and its impact on evacuations. 
The scenarios considered with attachment, day conditions at intensities 4, 5, 6 and 8. These are the same 
set of experiments used in Question 6 (see Section 8.3.6). For reference, the parameters for the 
experiments are shown in Table 54.  

7.1.8 Question 8. Effect of the radius of danger zones and availability of safe 
areas 

This section looks at the effect of the radius of danger zones on the number of arrivals in safe areas. 
Taller buildings will have larger danger zones around them. Large danger zones around buildings define 
the area with the largest probability where an individual can be trapped or hit by falling debris (and 
therefore can be killed or injured). Areas with many adjacent buildings will have overlapping danger 
zones. This define overlapping probabilities or risk. Larger danger zones effectively push safe areas 
farther away from buildings. This means that an increased distance needs to be traversed by individuals 
during evacuations. This in effect increases the required time to reach safe areas.  

In this section, the hypothesis is that large radius for danger zones would result in lesser arrivals in 
safe areas. The parameters considered for the experiments are detailed in Table 55. 

Table 55 Parameters and values for question 8 experiments 

Coverage Intensity Time RadiusDZ PDSA PDN IDKin_Friends Disability Attachment 
IRIS2, IRIS9, 

IRIS69 
VI Night H/2 or 6 m 20m 50 m 50 Yes W-A/N-A 

PDSA (Perception Distance Safe Area), PDSÂ (Perception Distance Normal), W-A (With Attachment), N-A (No Attachment), H (Building 
Height) 

Figure 69 shows the map of available safe areas for the radius of danger zone from (a) half the building 
height, and for (b) uniform 6 meters around buildings. By visual comparison it can be seen that there 
are more safe areas available to individuals if the radius used is 6 meters. The safe areas for the radius 
of half the height of building occur as patches and farther away from buildings. 
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Figure 69 Map of available safe areas (a) > Half the height of buildings (b) uniform 6 meters around buildings 

Table 56 shows the comparison of the values for available safe areas for the IRIS 2 coverage used in the 
experiments. It can be seen that the percentage of available safe areas is much greater for the 6-meter 
radius and is at 25.24% of the total area. For the radius using half the height of the building, the available 
safe area is just 14.37 % of the total coverage. Figure 70 shows the pie chart for the distribution of 
danger zone, barriers and safe areas. 

Table 56 Size of danger zones, safe areas and barriers (in square meters and percent)  

Radius of danger zone 
from building (meters) 

Danger Zone (DZ), 
(sq. meters)  

Barriers (B) 
sq. meters 

Safe Area (SA) 
sq. meters 

DZ % B% SA% TOTAL 
% 

Half of building Height 
(H/2) 

103436.90 139396.54 40759.93 36,47 49,15 14,37 100 

6 meters  72631.37 139396.54 71565.46 25,61 49,15 25,24 100 

 

 
 

Figure 70 Available safe areas (a) > Half the height of buildings (b) uniform 6 meters around buildings  

7.2  General description of experiments and simulation with the model  

The workflow for the experiments is shown in Figure 71. (1) The scenario is defined in the GAML 
code. This requires setting the appropriate data such as the shapefiles, population and perception 
distance. The parameters for the scenario are set. The prefix for the filenames of the resulting CSV files 
is set. (2) The experiment is run in limited display mode. (3) A CSV file is extracted from the results 
folder. (4) Data is visualised using the SOLACE data view tool. Analyses of the data and comparison 
with results from other scenarios are done using spreadsheets. 

(a)                                                                                 (b) 

(a)                                                                                                 (b) 
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Figure 71 Workflow for the experiments 

7.2.1 Time  

Earthquakes are sudden onset events. Ideally, evacuations need to be immediate and fast. That is, 
pedestrians need to be in outdoors, and in safe areas after a very short time after an earthquake event. 
The model and simulation experiments are used to investigate the very first few seconds after an 
earthquake. The duration of agent evacuation data recorded for each simulation experiment is 15 minutes. 
One simulation time step is equivalent to 1 second. This 15-minute period translates to 900 timesteps 
for each experiment. This duration is set in the simulation as shown in Code 29. The equivalent GAMA 
code is shown in Code 58. For longer duration observations, the value can be changed in the code or in 
the model parameter interface. 

 

 
 
 

During the initial tests, it was observed that large numbers of agents greatly reduce the speed of the 
simulation run. A single run of an experiment using the small area subset with 2 IRIS units, and target 
duration of 1800 timesteps (30 minutes), finishes after approximately one day on a machine with 40 
cores and 141GB memory. In the new experiments, the number of agents was reduced or minimised to 
ensure that simulation run completes in the required timestep (900 timesteps or 15 minutes). The strategy 
adopted to limit the number of agents is the use of a smaller spatial coverage for the experiments. In 
GAMA, all elements of the model are agents. This includes the buildings, roads, roads, debris, etc. The 
complex geometries of spatial layers add to processing times. The population of cognitive human BDI 
agents likewise requires longer processing durations. The city population of Grenoble is 64,000 
individuals from the census data. This large number of BDI agents results in very slow simulation runs. 

7.2.2 Spatial extents  

A majority of the experiments for sensitivity analysis was implemented using the smallest data 
subset covered by 2 IRIS units. This 2 IRIS subset includes a small population of human and 
environment agents. The objective is to generate many results from multiple simulation runs. Adopting 
this small area makes reaching this objective possible. A smaller number of experiments was conducted 
on the moderate sized subset covering 9 IRIS units. The city scale simulation covering 69 units was 
implemented last with a very limited number. The reason for using subsets is to optimise the time 
available for the experiments. This is also due to limitations of the computer hardware that greatly 
impact the speed of simulation runs. 

End the simulation 900 cycles after the start of the earthquake. 
      
 

Code 29 
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7.2.3 Parameters  

The simulation experiments use different types of values for parameters. The values are relative to 
the scenario considered. The parameters used in the model are shown in Table 57. The last column 
indicates the parameter modified for each change in scenario. At the top of the list are the parameters 
usually modified before the start of each experiment scenario. These include intensity, time of day, 
building damage and danger zone. The remaining parameters are modified for situations that require 
fine tuning of values. 

Table 57 Initial simulation parameters 

Description Parameter Type Modified 
to set 

scenario 

Values 

Intensity eqIntensity Int Yes IV, V, VI or VIII 
Context or Time of day Context Int Yes Day or Night 
Building Damage Shapefile for damage scenario 

at intensity 
Shapefile Yes  

Danger Zone Shapefile for damage scenario 
at intensity 

Shapefile Yes  

Duration of Earthquake eqDuration Int  No 10 cycles 
Time for start of earthquake eqTime Int No 3rd cycle 
Base Shapefiles Shapefiles defining 

environment 
Shapefile No Roads,  

Agent Population IRIS population Int No IRIS population 
Perception Distance 
(meters) 

 
PD_Child, 
PD_Partner,  
PD_Parent,  
PD_Kin,  
PD_Friends,  
PD_Acquaintance, 
PD_Stranger,  
PD_Family,  
 
PD_debris, PD_road, 
PD_safeArea, PD_walls  

Float Yes Day, Night, Snow 
[100.0, 100.0, 100.0] 
[94.10, 4.11, 43.03] 
[88.85, 3.89, 40.63] 
[76.45, 3.34, 34.96] 
[87.85, 3.84, 40.17] 
[69.20, 3.03, 31.65] 
[60.85, 2.66, 27.83] 
[100.0, 100.0, 100.0] 

 
10 meters, 20 meters,  

4 meters, 5 meters   
Separation Distance 
(meters) 

separation_Others, 
separation_Deceased, 
separationDebris 

Float No 1 meter 
5 meters 
5 meters 

Avoidance Distance 
(meters) 

avoidance_Others, 
avoidance_Deceased, 
avoidance_Debris 

Float No 1 meter 
5 meters 
5 meters 

Probabilities evacSpeedMax,  
probDisability, 
actionProbabilities, 
preEvacActions_Master, 
preEvacActions_TimeRANG
E_MASTER 

Float No List of speeds in m/sec 
List of probability 

values 
List of action 
probabilities 

List of actions 
List of time ranges for 

actions 
Social Group ID_string idFamily, idColleague String No BuildingID+Floor# 
Social Group ID_float  idKinMax, idFriendMax,  Float No 50, 50 
Species definition Adult, Child, Human Species No  
Behaviours Behaviours String No List of behaviours 
Behaviour Probabilities Probability for each 

behaviour 
Float Yes Probabilities for 

behavours 
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7.3  Summary of the chapter  

This chapter presented the design of simulation experiments for different scenarios. The objective 
of the experiments is to determine the impact of parameters on evacuation using the model. The focus 
of each experiment highlighted merits of model components to provide realism in simulating earthquake 
evacuations. The defined scenarios show that the model SOLACE is flexible and can be configured to 
represent and design different earthquake scenarios. Parameters can be adjusted to the level of 
complexity needed in experiments. Fine tuning probabilities used in the simulation is possible by 
changing the values as needed in the GAML code. The limit to the number of experiments that can be 
performed is defined by the capacity of hardware. Multiple scenarios can be explored especially when 
an HPC infrastructure is used. 
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CHAPTER 8. RESULTS 
 

This chapter presents the results of experiments covering different earthquake evacuation scenarios. 
The chapter is divided into the following: Section 8.1 provides a brief introduction; Section 8.2  
describes the charts used in presenting the results; Section 8.3 discusses the experiment results with 
respect to the research questions; and Section 8.4 summarises and concludes the chapter. 

8.1  Introduction 

The relevance to evacuation of different parameters is tested in each scenario. The effect of the 
parameters on evacuation is evaluated based on the number of arrivals in safe areas. As the objective of 
evacuations is saving lives, a large percentage of arrivals in safe areas is used as the measure of 
evacuation success. The scenarios are compared solely on this criterion.  

The data on the number of agents reaching safe areas are recorded over 900 simulation cycles. In the 
experiments, one simulation cycle is equivalent to 1 second. For each experiment run of 900 cycles, this 
is equivalent to simulating the first 15 minutes of evacuation immediately after the earthquake event. 
The experiment scenario evaluating the effect of knowledge is a special case where data for 6000 
simulation cycles is used for analysis. Section 7.1 indicates the respective details on simulation 
parameters and experiment scenarios. The different scenarios are presented in Table 47 and the default 
parameters used in the simulation are shown in Table 57.  

8.2  Description of charts used  

Several charts are used to present simulation results in this chapter. The types of charts used are 
histograms, time series, x-y scatter plots and pie charts. The data is from the CSV file generated from 
each simulation run. The charts are processed using MS Excel. 

The comparisons of scenario results are presented using histogram charts accompanied by time series 
plots. The histogram plots show the values of arrivals of agents at the 900th or 6000th cycle. Time series 
charts are used to plot the values from the 1st to the 900th cycle or 6000th. X-Y scatterplots are used to 
compare results involving the different earthquake intensities: 4, 5, 6 and 8. Time series plots may 
likewise accompany X-Y scatterplots. Pie charts are also used for easy comparison of results. 

8.3  Answers to research questions 

The results of experiments covering the eight research questions (discussed in Section 1.4 of  
Chapter 1, and experiment design elaborated in Section 7.1 and Chapter 7), are presented in this section. 

8.3.1 Question 1: Does social attachment affect the number of arrivals in safe 
areas?  

 

Figure 72 and Figure 73 show the results for day and night evacuations respectively for Intensity 
IV. Figure 74 and Figure 75 show the results for day evacuations at intensities V and VI respectively. 
Figure 76 and Figure 77 show the day and night evacuations respectively for Intensity VIII. The 
summary of the percentage arrivals and calculated differences are presented in Table 58. 
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Figure 72 Adult arrivals in safe areas, Intensity IV – Day (a) histogram, (b) timeseries 

 

 

Figure 73 Adult arrivals in safe areas, Intensity IV - Night (a) histogram, (b) timeseries 

 

 

 

Figure 74 Adult arrivals, Intensity V – Daytime (a) histogram, (b) timeseries; 

(a)                                                                                                                      (b) 

(a)                                                                                                                      (b) 

(a)                                                                                                                      (b) 
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Figure 75 Adult arrivals, Intensity VI – Daytime (a) histogram, (b) timeseries 

 

 

 

Figure 76 Adult arrivals, Intensity VIII – Day (a) histogram, (b) timeseries 

 

 

Figure 77 Adult arrivals, Intensity VIII – Night (a) histogram, (b) timeseries 

In the six charts shown in Figure 72 to Figure 77, it can be seen that evacuations With Attachment 
result in more arrivals in safe areas than evacuation with No Attachment. This trend is consistent for 

(a)                                                                                                                      (b) 

(a)                                                                                                                      (b) 

(a)                                                                                                                      (b) 
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both day and night conditions. The difference between With Attachment and No Attachment is more 
pronounced or larger for night conditions as shown in Figure 73 and Figure 77. Here With Attachment 
dominates No Attachment with differences of 19.30% for Intensity IV and 3.6% for Intensity VIII, 
respectively. 

Comparing day and night conditions with respect to intensities reveal that the difference for With 
Attachment and No Attachment is much greater for night than day conditions. For Intensity IV this 
can be seen by comparing Figure 72 with Figure 73. In this case, the 19.30 % difference for the night 
condition is greater than the 9.84 % difference for the day condition. For Intensity VIII, this is seen by 
comparing Figure 76 with Figure 77. In this case, the 3.6 % difference for the night condition is greater 
than the 0.5 % difference for the day condition.  

Comparing With Attachment and No Attachment with respect to intensity, it can be seen that the 
difference becomes smaller as the intensity increases. This trend can be seen from Figure 72 and Figure 
77 and from values in Table 58. The difference is largest for Intensity IV and becomes very small at 
Intensity VIII. This is consistent for both day and night conditions. Table 58 shows the summary values 
and calculated differences from the experiments. The difference is derived by subtracting with-
attachment and no-attachment results. 

Table 58 Difference in percentage arrivals in the With Attachment and No Attachment scenarios 

 Day Night Difference (With Attachment – No Attachment) 
Intensity W-A N-A W-A N-A Day (%) Night (%) (Night – Day) % 
Intensity IV  63.02 53.18 68.97 49.67 9.84 19.30 9.46 
Intensity V 63.18 53.64 - - 9.54 - - 
Intensity VI 48.22 44.96 - - 3.26 - - 
Intensity VIII 27.82 27.32 25.83 22.23 0.5 3.6 3.1 

 W-A (With Attachment), N-A (No Attachment)  

Figure 78 shows the X-Y plots of the values from Table 58. Figure 78-a shows the values for With 
Attachment and No Attachment for the day condition with respect to intensities. For both scenarios, a 
decreasing trend can be seen in the number of arrivals at intensity becomes higher. The difference 
between the two scenarios also decreases. Figure 78-b plots the arrivals for both the day and night time 
condition for both the With Attachment and No Attachment scenarios at intensities 4 and 8 
respectively. The larger differences in arrivals at Intensity IV implies that attachment has significant 
influence on evacuation at the lowest intensity. The clustering of the data points at the higher Intensity 
VIII shows that the influence of attachment becomes negligible at higher intensities.  

From the results of these experiments, it can be concluded that the number of arrivals in safe areas is 
expected to be larger when social attachment plays an active role in the evacuation. That is, agents are 
able to socially interact, with the interaction facilitated by social attachment. This however can only 
happen when agents are mobile, can interact, and able to move towards safe areas. At higher earthquake 
intensities, barriers can hinder social interaction and the may block access to safe areas. In this situation, 
the beneficial effects of social attachment to evacuation is muted by the presence of barriers. 
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Figure 78 Comparison across different intensities – (a) Daytime only for Intensity IV, 5, 6 and 8, (b) Extreme values Intensity 
IV vs Intensity VIII for Day and night time scenarios  

To further illustrate the beneficial effects of social attachment on evacuation, please consider how 
individuals perceive goals in the No Attachment and With Attachment scenarios shown in Figure 79. 

 
 

Figure 79 Perceiving Goals: (a) no social attachment, (b) with social attachment 

 

For the No Attachment scenario shown in Figure 79-a, perception of a goal (such as a safe area) will 
be limited by the range of perception (distance) of the individual. When the goal is not perceived, the 
individual continuously seeks for it in the environment. The small forward movements (footsteps) 
guided by limited vision would reduce to a random walk (Barbosa, et al., 2018; Natapov, Czamanski, 
& Fisher-Gewirtzlan, 2016; Rudnick & Gaspari, 2004). The individual needs to be close enough to a 
goal to be able to perceive a goal. When the goal is perceived, the individual is guided towards the goal 
by a perception line. This leads to perceptually directed behaviour (M., Klatzky, Golledge, & Philbeck, 
1999); or biased random walk (Rudnick & Gaspari, 2004); or goal directed behaviour or wayfinding 
(Brunyé, Gardony, Holmes, & Taylor, 2018). Please refer to the model of the agent illustrated in Figure 
23 of Section 5.3 Chapter 5. In this no attachment scenario, the evacuation is solely by-individual, i.e. 
the agent is alone and left to its own means and sets of behaviours in navigating towards safe areas. 

(a)                                                                                                                      (b) 

(a)                                                                                             (b)  
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In the With Attachment scenario shown in Figure 79-b, the limited perception of individuals is 
effectively extended by the perception of the attachment figure, and an ultimate goal, by perception 
distance propagation (Weiss, 1978) or (forward markov chain) (e.g. nodes in a view graph (Franz, Mallot, 
& Wiener, 2005)) ) (Dalton, Hölscher, & Montello, 2019). This is also called indirect perception (Vaez, 
Burke, & Alisadeh, 2016) or indirect search (Kunze, Doreswamy, & Hawes, 2014). This results to the 
individual being indirectly guided to the goal, which in this case can be a safe area. To illustrate 
perception distance propagation, consider for example an Agent perceives and moves towards another 
Agent 2, who perceives and moves towards Agent 3, who in turn perceives a Safe Area. The Agent 
effectively moves closer to the safe area guided by the previous position of Agent 2, who was in turn 
also guided by the position of Agent 3. However, it may be the case that Agent 3 is not headed towards 
the safe area. This may lead the Agent to move farther away from the goal. Also, the perception of other 
agents may likewise be discontinued due to: (1) other agents moving out of range caused by (a) 
differences in speeds, (b) blocked pathways, (c) complex layout of built environment; or (2) shifting of 
gaze or attention. When attachment figures are not in range, movement of agents reduce to a random 
walk. 

For earthquake evacuations any movement away from initial vulnerable environments is important. 
With social attachment, the presence of attachment figures can pull agents away from vulnerable 
locations. Familiar agents, when within visual range and perception angle, are readily perceived by an 
agent. Distance acts as a filter for preferential attachment. This may help facilitating the clustering of 
individuals or the formation of evacuation groups. Having many individuals in a group and moving in 
the same direction, provides many possible targets or attachment figures. A large group has a high 
probability being noticed or perceived. Other individuals not within the cluster of individuals, but within 
range, may gravitate towards group members, further increasing group size. Social attachment therefore 
presents the agents with many intermediate goals. This results to more possibilities during social 
interactions. This is illustrated in Figure 80. Different pre-evacuation behaviours would ensure different 
egress time from buildings. Individuals that are first to egress, but remain within range, can provide the 
direction for evacuating social group members. 

 
Figure 80 Creation of Social Groups facilitated by social attachment 

The beneficial effect of social attachment on evacuation can therefore be summarized to (1) initiate 
movement from initial locations by having attachment figures as intermediate goals; (2) trigger group 
formation and evacuation as groups; (3) provide individuals with increased degrees of freedom for 
multi-modal goal seeking and action (e.g. following), modulated by attachment bonds and spatial 
proximity; (4) increased probability for goal-directed (seeking) behaviours facilitated by the presence 
of attachment figures; (5) extension of perception distance by perception distance propagation or indirect 
perception. These insights provide explanation to the result that With Attachment result in more arrivals 
in safe areas than No Attachment.  
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The almost similar trends in arrivals for high Intensity VIII scenario can be due to the isolating influence 
of debris. The presence of debris in pathways from high intensity earthquakes results in limited 
individual mobility and reduces the possibility for perception distance propagation. There will still be 
social interactions but these may be localised away from safe areas. The individuals physically may not 
be able to escape these island traps. Individuals who are outside this island traps, may likewise be 
attracted to groups in isolated pockets delaying or completely ignoring going to safe areas. When this 
happens, the beneficial effect of social attachment for evacuation to safe areas is muted at increased 
intensity. This is eventually cancelled out for Intensity VIII as show in Figure 78-b. The small advantage 
though of social attachment for the night time condition for the high intensity scenario is highlighted in  

Figure 77-b. For Intensity VIII, the cause of the low number of arrivals, aside from low mobility, is due 
to the high number of casualties. 

The large difference in the agent arrivals between Intensity IV and VIII highlights the importance of 
mobility (Table 58 and Table 59). The difference between arrivals for With Attachment and No 
Attachment in daytime is 35.2% and 25.86% respectively. For the night time, the values are 43.14% and 
27.44% respectively. From the values, it can be seen that there are more arrivals for the low Intensity 
IV scenarios than for Intensity VIII. Unlike the high Intensity VIII scenario previously described, no 
debris are generated in Intensity IV. Evacuation is not hampered by blocked pathways and individuals 
are able to interact. In this context, the main factor that can influence the arrivals is the duration of pre-
evacuation actions, prior to egress from buildings. 

Table 59 Difference in percentage arrivals in the with attachment and no-attachment scenarios for Intensity IV and VIII 

 Day Night Difference (With attachment – no 
attachment) 

Intensity W-A N-A W-A N-A Day (%) Night (%) (Night – 
Day) % 

Intensity IV  63.02 53.18 68.97 49.67 9.84 19.30 9.46 
Intensity VIII 27.82 27.32 25.83 22.23 0.5 3.6 3.1 
Difference  
(Intensity IV – Intensity 
VIII) 

35.2 25.86 43.14 27.44 9,34 15,7 6,36 

 W-A (With Attachment), N-A (No Attachment) 

To summarise and answer the research question: social attachment is beneficial to evacuation especially 
when mobility towards safe areas is possible. The social interactions made possible by social attachment 
increases the probability for individuals to reach safe areas. With social attachment, the mode of 
evacuation is individually or in groups. With no social attachment, evacuation is exclusively an 
individual effort. The probability of reaching safe areas is much greater than with no attachment case 
where evacuation purely rests on the individual without the influence of others. 

8.3.2 Question 2: Does the knowledge of nearby safe areas affect the number of 
arrivals in safe areas? 

8.3.2.1 Set 1. Nearby safe areas  
Table 60 lists the almost similar results for the number of arrivals in safe areas for the three distances 
defining knowledge. Figure 81 gives the charts showing the effect of knowledge of the location of safe 
areas. It can be seen from Figure 81-a that the difference is very small at the 900th cycle. The trend in 
the time series plot shown in Figure 81-b also shows that this difference is consistently small from the 
1st to the 900th cycle.   
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Figure 81 Effect of knowledge of safe areas on adult arrivals, Intensity IV – Night (a) histogram, (b) timeseries 

 
Table 60 Effect of knowledge of safe areas on adult arrivals 

Coverage 20 meters 50 meters 10 km 
Percentage Arrivals  49.67 49.47 49.71 

The results of this set of experiments showed that the different ranges of perception distance used to 
represent knowledge does not produce noticeable differences in the number of agent arrivals in safe 
areas. This result is opposite to the hypothesis that the number of arrivals of agents with the scenario 
with absolute knowledge (perception distance of 10 km) to be greater than the 50-meter and the 20-
meter perception distances.  

The main reason for this similarity in the plots, can be the close proximity of safe areas from the initial 
locations of individuals. This relatively short distance cancels out the advantage of absolute knowledge. 
If the safe areas however are very far (such as greater 500 meters), the scenario with absolute knowledge 
may have more arrivals. This is possible because with the far distance, absolute knowledge can enable 
goal directed behaviour to reach safe areas. In the situation where the safe area is very far, when the 
perception distance is 20 or 50 meters, individuals will only engage in undirected random walks. In this 
case, the probability of reaching safe areas will be very low.  

8.3.2.2 Set 2. Single safe area far from population initial location – free 
space navigation  

The results of these experiments are shown in Table 61. Very few arrivals in the safe area were recorded 
within 5400 cycles. For example, the first arrival in experiment 1 occurred at the 1892nd cycle. The 
duration between succeeding arrivals is also very long: in the same experiment, the 2nd individual 
arrived at the 2758th cycle, and the 3rd in the in the 4815th cycle respectively. For scenario where 
individuals had short perception distance of 20 meters, no arrivals were observed. These simple 
experiments showed that the 10 km safe area perception distance provided the individuals the capability 
to detect the safe area. The results of the simple experiment indicate that long perception distance ranges, 
or absolute knowledge of safe area locations is useful when navigating towards a remote safe area.   

Table 61 Simple experiment. Number of arrivals after 5400 cycles (1 hour 30 minutes) 

 No Attachment 
Coverage 20 meters 10 km 
Number of Arrivals 0 3 

(a)                                                                                 (b) 
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The small experiment with a single safe area in a far location resulted in very few agents reaching safe 
zones. This proves the following: (1) safe zones that are far can be found when individuals know where 
they are (can be perceived) even at far away distances; (2) far located safe zones require more time for 
evacuation. This longer length of time is due to (a) longer distances to travel; (b) almost finite average 
walking/running speeds; and (c) Even when the destination is known, the possibility to get disoriented 
and lost is high, especially in cities dissected by many pathways. Taking a wrong turn in city streets has 
the potential to increase getting lost. To be able to find far safe areas faster, (a) routes towards safe areas 
also need to be specified or marked for direction guidance; (b) high familiarity with city streets; (3) 
nearby safe zones need to be provided/accessible for individuals for immediate evacuations. Nearby 
zones would ensure that even without knowledge of specific safe areas individuals will be able to 
discover safe areas with random visual search; (4) many individuals are able to reach safe areas when 
nearby. Faster evacuation time is needed for earthquake events. Reaching safe areas with the least 
amount of time can make accounting for missing individuals faster; (5) the model needs improvement 
in terms of navigation and search strategies or ensuing guidance (markers) to direct individuals in safe 
areas that are far away. This is similar in real situations.  

Another possible reason could be the continuous forward movement of individuals when they start to 
emerge from buildings. Egress is done even without the benefit of having the final goal of arriving at a 
definitive safe area location. When no goal is detected, random walk enables agents to move farther 
away from source locations. Moving forward increases the probability of finding safe areas especially 
when they fall within the range of perception.  

Another possible contributing factor to this result could be the structure of the urban area. Roadways act 
as intermediate goals providing agents guidance in navigating urban space. Buildings act as barriers that 
constrain the movement within roadways and open spaces. Even with absolute knowledge of safe areas, 
individuals are forced to navigate around buildings to reach safe areas. Dense urban centres with many 
buildings, dissected by many roadways can pose navigation challenges in reaching safe areas. 

8.3.2.3 Set 3. Single safe area located in a distant location from the 
population initial location, with shortest path navigation, percentage of the 
population with knowledge of safe area 

The results of this set of experiments are shown in Table 62 and Figure 82. It can be seen from Figure 
82 that for the scenarios with populations of agents with 100% and 66 % knowledge, agents start arriving 
in safe areas after approximately 1100 cycles. The scenario with 0% of the population having no 
knowledge of the safe area do not have arrivals. The experiments with the most arrivals in the safe area 
are the experiments with 100% of the population having the knowledge of safe area locations. The 
arrivals peaked at an average of 83% at the 6000th cycle. The second set of experiments with 66% of the 
population having knowledge of safe areas, reached the peak of average arrivals at approximately 53%. 
The experiments with the population with 0% knowledge continue to have no arrivals at the 6000th cycle. 
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Figure 82 Results of evacuation with knowledge 

 
Table 62 Number of arrivals after 6000 cycles 

 Percent of the Population with knowledge of safe areas 
 0 % 66 % 100 % 
Percentage Arrivals  0 % 53.33 % 82.91 % 

The result from the set of experiments confirm the importance of knowledge in the search for safe areas 
during evacuations. This is especially true if the location of the safe area is far and difficult to reach. 
Complex configurations of city environments can make navigation complicated for agents, especially 
when pathways are blocked and agents need to find alternative pathways. It is also impossible for 
trapped agents to move out of damaged zones. 

For both the 66% and 100% knowledge scenarios, it can be seen from Figure 82 that not all of the agents 
with knowledge arrived in safe areas. This can be due to different possible reasons. One possible reason 
are the pre-evacuation behaviours assigned to agents. An agent with knowledge agent may have been 
assigned behaviours which consume a considerable amount of time. Some agents with knowledge may 
also have chosen to stay and not evacuate. Some agents may likewise be trapped, injured or have died 
from debris. 

With the result that knowledge is important, several improvements in the scenarios therefore can be 
done to improve the chances of agents arriving in safe areas within the least amount of time (less than 
15 minutes). That is, placement of safe areas must be as close as possible to agents so that the safe areas 
can be reached easily and faster by agents. This underscores the importance of the strategic placement 
of safe areas in urban environments. This can be ensured in the creation of city evacuation plans.  

Using the experiment data as an example, and shifting the centre of the15-minute walking radius to the 
centre of the boundary (IRIS 2), the different scenarios for placement of safe areas shown in Figure 83 
could be tested. In Figure 83-a, several safe areas can be placed in open areas outside the red IRIS 2 
boundary. Each agent with knowledge can choose the nearest safe area. This can minimise travel time 
and effectively allow agents with knowledge to reach safe areas much faster. A large number of safe 
areas likewise present agents with more options, as pathways to some areas may be blocked by debris.  
Locating safe areas closer and closer to the boundary such as in Figure 83-b and Figure 83-c and even 
inside the boundary as in Figure 83-d, can improve evacuation times and the number of safe area arrivals. 
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Figure 83 Possible configurations of safe areas to improve evacuation. (a) Open areas far from the boundary. (b) Open 

areas closer to the boundary. (c) A mix of boundaries outside and inside the boundary. (d) Safe areas away from buildings 
inside the boundary.  

8.3.2.4 Short conclusion from 3 sets of experiments  

The summary of the results of the scenarios is shown in Table 63.  

Table 63 Summary of results for experiment on evacuation with knowledge 

Experiment Set Scenario Arrivals in safe areas 
Set 1 – Safe areas are located nearby (Greater 
than Half of the building height), 900 Cycles 

Limited Knowledge – 20 meters PDSA 49.67 % 
Limited Knowledge – 50 meters PDSA 49.47 % 
Broad Knowledge – 10 kilometres PDSA 49.71 % 

Set 2 – Single safe area far from population, 
5400 Cycles  

Limited Knowledge – 20 meters PDSA 0% 
Broad Knowledge – 10 kilometres PDSA 3 Agents 

Set 3 – Single safe area far from population, 
Percentage of population with broad 
knowledge and with shortest path navigation, 
6000 Cycles 

0 % Knowledge 0 % 
66 % Knowledge 53.30 % 
100 % Knowledge 82.91% 

From Table 63, it can be seen that the knowledge of nearby safe areas is important and this makes a 
huge difference in the number of arrivals in nearby safe areas. This is especially true when the location 
of an identified safe areas is far from the initial locations of evacuating populations. For safe areas that 
are located far away from individuals, successful evacuation requires that the shortest path directly 
leading to the safe area is also known, and used by evacuating individuals. Random walks directed in 
the opposite direction of safe areas, or agents doing actions that consume time away from actually 
evacuating to safe areas, result in either delayed- or non- arrival in safe areas. 

The ideal scenario for successful evacuations is that 100% of individuals are knowledgeable of where 
safe areas are, and of what routes to. However, in reality only a percentage of individuals in a locality 
may have knowledge of safe areas and the associated shortest paths. Locals would have the advantage 
of having more knowledge of routes, and are therefore expected to move towards the direction of safe 
areas with ease. Having no knowledge is difficult at shown by the experiments. From the experiments 
it was shown that increasing the knowledge of populations of where safe areas are, can help ensure the 
greater number of arrivals in safe areas. 
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The detrimental effect of limited knowledge of the location of safe areas can be minimised or cancelled 
out by ensuring that safe areas are in close proximity and are easy to find. This close proximity allows 
for the possibility that safe areas can be directly sought or discovered by agents even through random 
walks. This point is clearly demonstrated in Figure 81. The results from Figure 81 showed that there are 
arrivals in safe areas which are located very near the evacuating agents. Also, in this case, there seemed 
to be no discernible difference for agents navigating with knowledge or no knowledge of the location 
of safe areas. 

8.3.3 Question 3: How does the number of close bonds affect evacuation? 
 
Figure 84 presents the charts showing the effects of the number of social bonds on evacuation. 
It can be seen from Figure 84-a that at the 900th cycle, there are more arrivals in safe areas for 
the scenario where there are many close bonds than for the scenario with many strangers. The 
difference in the number of arrivals is 13,14 %. The time series plot in Figure 84-b shows the 
scenario with many close bonds consistently having more arrivals in safe areas than the scenario 
with many strangers from the 1st to the 900th cycle. The difference between the arrivals from 
the two scenarios also seem to grow larger from the 1st to the 900th cycle. 

 

Figure 84 Effect of the number of social bonds on adult arrivals in safe areas, 

The result is contrary to the hypothesis that there will be few arrivals if there are more social bonds. 
However, the result of having more arrivals for the scenario with many close bonds is consistent with 
the results from Question 1 (in Section 8.3.1). This helps confirming that when attachment is present in 
evacuations, it results in more arrivals in safe areas.  

The contribution of Question 3 is in highlighting the role of strong and weak social bonds in evacuations. 
Having many close bonds in the population makes available to individuals a large pool of attachment 
figures that can provide guidance during evacuations. This large pool can facilitate the creation of 
supergroups that can help pulling group members towards safe areas resulting in more arrivals. 

Weak social bonds with strangers likewise facilitate evacuation. Although arrivals are fewer that of the 
scenario with many close bonds, arrivals with strangers are much greater than for the scenario with no 
attachment. This is shown in Figure 85 and Table 64. The scenario with strangers results in arrivals 
which are 6.16% greater than for no attachment. The trend in the time series plot in Figure 85-b shows 
that the arrivals in the weak attachment scenario with more strangers is consistently greater than that for 
no attachment. The difference also increases from the 1st to the 900th cycle. 
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Figure 85 Effect of the number of social bonds compared with No-Attachment Intensity IV – Night (a) histogram, (b) 
timeseries 

 
Table 64 Effect of social bonds on the number of arrivals in safe areas 

 No Attachment Bonds Many Strangers Many Close Bonds 
Number of Arrivals 49.67 55.83 68.97 

The hypothesis was that there would be few evacuation arrivals when there are many close bonds, since 
individuals will be constrained from leaving original locations, due to the strong attraction towards 
attachment figures. The results showed that this is not the case. What had not been fully considered is 
the possibility that individuals may move together or follow others when they egress and head to safe 
areas. Also, individuals will have different styles in responding to threat situations resulting in variations 
in pre-evacuation behaviours. Social bonds in real populations are inherently variable and intermixed. 
Some will be first to make a move or exit, and others just follow. This facilitates perception distance 
propagation and actually benefits evacuations. Strong attachment bonds would prompt others to follow. 
This is shown in Figure 84 and Figure 85. These same strong bonds can also motivate individuals to 
search or fetch others, even moving towards danger zones, before moving to safe areas. 

As a conclusion to answer the question, a large number of close bonds result in greater arrivals in safe 
areas than when there are many strangers. The weak social bond with strangers also benefits evacuations 
and results in more arrivals in safe areas than the case when there is no social attachment at all. The 
results of these experiments highlight the importance of having more close bonds in communities to 
facilitate evacuations. 

8.3.4 Question 4: How does the time of day affect evacuation?  
Figure 86, Figure 87 and Figure 88 compare the effect of night and day on the number of arrivals in safe 
areas for Intensity IV, VI and VIII respectively. From the figures, the advantage of the day condition 
can be seen in the first cycle. There are agents already located in safe areas. However, from Figure 86 
and Figure 87, it can be seen that this advantage is erased as the arrivals for the night condition, both for 
the Intensity IV and VIII, overtake the arrivals for the day scenario. The difference between the night 
and day condition for Intensity IV is the largest at 5.69 %. For Intensity VI, the difference is smaller at 
1.07 %. The time series plots in Figure 86-b and Figure 87-b show the gradual increase in arrivals for 
the night condition finally overtaking the values for the day condition. This happens at cycle 305 for 
Intensity IV, and much later at cycle 650 for Intensity VI. 
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The situation for Intensity VIII however is different as shown in Figure 88. The daytime condition seems 
to maintain its advantage (in this case 2.88 %) on number of arrivals over the night condition. This can 
be seen from the timeseries plot in Figure 88-b. At the 900th cycle the arrivals in day condition is greater 
than the night condition by 1.99%. 

 
 

Figure 86 Effect of the time of day on evacuation, Intensity IV: (a) histogram, (b) timeseries 

 

 
 

Figure 87 Effect of the time of day on evacuation, Intensity VI: (a) histogram, (b) timeseries 

 

 
 

Figure 88 Effect of the time of day on evacuation,Intensity VIII: (a) histogram, (b) timeseries; 

(a)                                                                                 (b) 

(a)                                                                                 (b) 

(a)                                                                                 (b) 
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Table 65 shows the summary of the results of the difference in percentage arrivals with respect to the 
time of day. Figure 89 shows the x-y plot of this summary. 

Table 65 Difference in percentage arrivals with respect to time of day at the 900th cycle 

Intensity Day Night Difference (Night – Day) 
Intensity IV  63.02 68.71 5.69 
Intensity VI 48.22 49.29 1.07 
Intensity VIII 27.82 25.83 - 1.99 

 

Figure 89 Comparison of day vs night time evacuation arrivals with respect to intensity at the 900th cycle 

This has been presented to be true for day and night conditions and for all intensities considered. The 
observed large difference in the Night condition than the Day condition however comes as a pleasant 
surprise and is seemingly counter intuitive. It is counter intuitive in the sense that perception distances 
for attachment figures are much shorter during night than day conditions. One would expect the day 
condition to have more arrivals in safe areas. However, as previously mentioned, this is surprisingly not 
the case with social attachment. This result actually highlights the role of social attachment in 
evacuations. 

The significance of social attachment particularly for the night condition may be explained in particular 
by perception distance propagation or indirect perception. Even with shorter perception distances, 
individuals are effectively able to perceive goals such as safe areas through others. Perception distance 
propagation however is not enough to explain the dominance of social attachment. For social attachment 
to be applied, attachment figures need to be within perception range. In this context, location plays a 
very significant role. For night conditions individuals are co-located at home with family members who 
they share very strong social bonds. In this situation the influence of social attachment is effectively 
optimal. Evacuation is done as a family group. Leading evacuating family members provide a very 
strong pull, guiding other member in the direction of safe areas. In addition, homes may likewise be 
located in places close to safe areas.  

Night time conditions with attachment facilitates the formation of groups with members that are initially 
co-located or close together. The short perception distance for attachment figures during night time 
ensures this situation. Only attachment figures that are close are perceived by individuals. Other 
attachment figures outside this short perception distance range are effectively filtered out. The short 
perception distances during night time and strong bonds between members would ensure the creation of 
more compact cohesive groups. These factors present during night time conditions could explain the 
large number of arrivals in safe areas. 
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For the day condition with attachment, individuals may be co-located with non-family members for 
whom the strength of social bonds vary. Individuals are present in different types of locations, e.g. home, 
school, work, public places and outdoors, based on their daytime activity. This can result in to the 
formation of different groups based on social bonds that are weaker than family bonds. Individuals may 
eventually shift to groups with whom individuals they share stronger bonds. This is especially true when 
groups are headed in different directions. This shifting of perception may impact the number arrivals in 
safe zones.  

From the results in these set of experiments, it can be concluded that the time of day affects the 
evacuation arrivals in safe areas. Consistent with the results from Question 1, the combination of night 
time, with-attachment and low intensity conditions produce the more arrivals in safe areas, than the 
daytime condition. This result also further validates and strengthens the finding that social attachment 
facilitates more arrivals in safe areas. 

The contribution of the results from Question 4 are the findings that (1) the arrivals for night time, while 
much lesser than daytime at the start of the simulation, become much greater than daytime arrivals at 
later cycles; (2) The difference between night time and daytime arrivals become much lesser with 
increasing intensities. (3) For increasing intensities, the cycle where night time arrivals become much 
greater than daytime is shifter to a much later time; and (4) for the highest intensity considered, the 
daytime scenario is able to maintain its initial lead and is able to maintain slightly more arrivals than 
night conditions. This can be seen from the time series chart in Figure 88-b, where the day and night 
plots are almost parallel.  

The discussion on the benefits of social attachment for night-time evacuations have been elaborately 
discussed in Question 1. Question 4 adds the insight that (1) time of day with social attachment is 
significant for low intensities. (2) At slightly higher intensities, the effect of time of day is diminished 
such that the difference is very small. (3) At very high intensities the effect of time of day with 
attachment is cancelled out. This can be seen from similar trend in the day and night plots in Figure 88-
b. This can be interpreted as almost similar rates of arrivals in safe areas. The daytime arrivals are only 
greater because of the individuals already located in safe areas at the start of the simulation. 

8.3.5 Question 5: How does disability affect the number of arrivals in safe areas?  
Figure 90 shows the results of the scenario were disabled individuals are included in the evacuation 
scenario with attachment. The without attachment scenario is shown in Figure 91. From the histograms 
both of Figure 90-a and Figure 91-a, it can be seen that the number of arrivals for the case with no 
disabled is slightly greater than that with disabled at the 900th cycle. The small differences for the 
percentage arrivals are detailed in Table 66. For the with attachment scenario the difference is 0.68%. 
For the no attachment scenario, the difference is 0.45%. Comparing between with attachment and no 
attachment, the difference is for no disabled at 3.49%, which is slightly larger than for with disabled at 
3.26%. The time series charts in Figure 90-b and Figure 91-b show almost similar plots with the with 
the population without disabled generally having slightly more arrivals.   
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Figure 90 Effect of the presence of disabled, Intensity VI – With Attachment: (a) histogram, (b) timeseries; 

 

 

 
 

Figure 91 Effect of the presence of disabled, Intensity VI – No Attachment: (a) histogram, (b) timeseries 

 
Table 66 Difference in percentage arrivals with respect to presence of disabled at the 900th cycle 

Scenario With 
Disabled % 

No 
Disabled % 

Difference (No Disabled – 
With Disabled) % 

With attachment  48.22 48.90 0.68 
No Attachment 44.96 45.41 0.45 
Difference (With Attachment – No 
Attachment) 

3.26 3.49 0.23 

 

From the results it can be concluded that the presence of disabled in the evacuating population has a 
slight effect on evacuation arrivals in safe areas. This confirms the hypothesis that arrivals are lesser 
when disability is present in the population. The small difference in the results for the scenarios can be 
mainly due to the small number of disabled individuals in the population. Another reason can be that 
the daytime condition at Intensity VI, considered for the experiments, already yield relatively low 
arrivals in safe areas. The differences may be larger if (1) there are more disabled in the population; (2) 
night conditions; and (3) low Intensity IV.  

(a)                                                                                 (b) 

(a)                                                                                 (b) 
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To briefly conclude and answer Question 4, the presence of disabled in the population affects the total 
number in safe areas. The situation where there are no disabled results to more arrivals than populations 
with disabled. 

8.3.6 Question 6: Does the presence of casualties on the route affect the number 
and time of arrivals in safe areas?  

Figure 92-a shows the number of active individuals28 with respect to the number of deaths and injuries 
shown in Figure 92-b and Figure 92-c respectively. It can be seen that the low intensity earthquakes 
produced very few casualties, ranging from 0 to 5 percent. However, the higher Intensity VIII 
earthquakes resulted to a large percentage of deaths reaching 39.38%, and many injuries at 21.68 %. 

 

Figure 92 Casualties on the route, (a) active agents, (b) deceased, and (c) active injured adult agents 

Figure 93 focuses on active agents and casualties for the large Intensity VIII day and night conditions. 
Figure 93-a shows the number of active agents at 60.62% for the day and 58.12% for the night condition. 
From Figure 93-b and Figure 93-c, it can be seen that the numbers of casualties are high. For the 
deceased, there are 39.38% and 41.88 percent for day and night respectively. For the injured, there are 
21.68% and 23.13% for day and night respectively. Also, it is noticeable that there are more casualties 
for the night time than the daytime scenario. The difference however is very small. The difference in 
the deceased and injured for night and day are 2.5 % and 1.45 % respectively. 

                                                
28 Active individuals can move around and interact. Injured agents are active agents. Deceased individuals are 
immobile and cannot interact. 
 

(a)                                                                               (b)                                                                            (c) 
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Figure 93 Casualties on the route, Intensity VIII, (a) number of active, (b) deceased, and (c) injured 

The interactions with casualties are shown in Figure 94 and Figure 95. Figure 94 shows the number of 
adult agents interacting with deceased adults. Figure 95 shows adult agent interactions with injured 
adults. It can be seen that more interactions are generated for the high Intensity VIII than for the other 
intensities. Intensity VIII the generated interactions at the 900th cycle with deceased at 54.80% (Figure 
94-a) and with injured at 54.05% (Figure 95-a). Intensity VI generated lesser interaction with deceased 
at 27.12 % (Figure 94-a) and with injured at 31.94% (Figure 95-a). Intensity V generated far lesser 
interaction with the deceased at 0.65% (Figure 94-a) and 2.13% with the injured (Figure 95-a). Intensity 
IV generated no interactions as there are no casualties. 

 
 

Figure 94 Adult agents interacting with deceased adult agents along the route (a) histogram, (b) time series 

 

(a)                                                                               (b)                                                                            (c) 

(a)                                                                               (b) 
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Figure 95 Adult agents interacting with injured adult agents along the route (a) histogram, (b) time series 

The time series plot of the social interactions with the deceased and injured are shown in Figure 94-b 
and Figure 95-b respectively. It can be seen that the interactions with casualties for the Intensity VIII 
scenario is consistently the largest compared with all the lower intensities from the 1st to the 900th cycle. 
Intensity VIII started the sharp increase in interactions during the very first cycles. This coincides with 
the period just after the earthquake where debris is produces causing casualties. The plot for Intensity V 
is less steep in the initial cycles and exhibits a gradual increase. Although it is consistently much less 
than for Intensity VIII, the trend of the plot seems parallel to Intensity VIII, especially from 
approximately the 150th cycle. Similar to that of Intensity VIII, from the 150th cycle the increase is 
gradual producing a not so steep slope in the graph. From Figure 94-b, the plots for Intensity V show 
almost a very flat graph due to the very-low values (less than 1%) for interactions with deceased agents. 
However, from Figure 95-b the interaction with injured individuals, although very small (less than 
2.13%), shows a more defined gradually increasing graph. The plot for Intensity IV is flat at zero arrivals 
(as shown by the blue line) since there are no casualties. 

The large number of interactions with casualties can be seen as direct indicators of the large damage in 
individuals’ immediate surroundings. Gradual increase in the values, as seen in the timeseries plots, can 
indicate casualties being discovered on the route to safe areas. Injured individuals are able to move about 
and have higher probabilities of being encountered by other individuals. Multiple encounters with 
casualties are also possible especially when agents are trapped with the casualties in the same location. 

Figure 96 shows the arrivals in safe areas with respect to intensities 4, 5, 6 and 8 respectively. At the 
900th cycle, as shown from Figure 96-a, the arrivals are 63.02%, 63.18%, 48.22%, and 27.82% 
respectively. It can be seen that there are more arrivals for low intensities than higher intensities. In the 
timeseries plot shown in Figure 96-b, it can be seen that the plots for Intensity IV and 5 seem almost 
similar and have consistently the largest, gradually increasing values from the 1st to the 900th cycle. 
The lesser in arrivals is from Intensity VI, followed by the lowest arrivals from Intensity VIII. The order 
of the graphs for arrivals in safe areas are reversed compared to that of the graphs for interactions with 
casualties (Figure 94 and Figure 95). 

 

(a)                                                                               (b) 
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Figure 96 Percent arrivals in safe areas – With Attachment, Day (a) histogram, (b) timeseries 

Table 67 provides the summary comparing evacuation arrivals with respect to presence of casualties. It 
shows the intensity, number of active individuals, casualties, interaction with casualties, arrivals and 
non-arrivals in safe areas, and difference between the no-arrivals and number of deceased (NA-D). 

Table 67 Percentage arrivals and interaction with casualties at the 900th cycle, Day, With Attachment 

  Casualties Interaction with 
Casualties 

at theSafe Area Differenc
e 

Intensity Active Deceased Injured Deceased Injured Arrivals Non-
Arrivals 

(NA) 

NA-D  

IV  100.00 0.00 0.00 0.00 0.00 63.02 36.98 36.98 
V 99.94 0.06 0.07 0.65 2.13 63.18 36.82 36.76 
VI 95.02 4.98 3.38 27.12 31.94 48.22 51.78 46.80 
VIII 60.62 39.38 21.68 54.80 54.05 27.82 72.18 32.80 

From the results presented in the section, it can be seen that the presence of casualties in the routes 
directly result in low arrivals in safe areas. A large number of deceased automatically lowers the number 
of survivors who can evacuate. For example, from Table 67, the number of active agents is significantly 
reduced with increasing intensity. That is, all agents are active (100%) for Intensity IV; 99.94% for 
Intensity V; 95.02% for Intensity VI; and lowest for Intensity VIII at 60.62%. However not many active 
agents are able to arrive in safe area at the 900th cycle. The arrivals are 63.02%, 63.18%, 48.22% and 
27.82 percent for intensities IV, V, VI and VIII respectively. The non-arrivals are 0%, 0,06%, 4.49% 
and 39.38 percent intensities IV, V, VI and VIII respectively. The pie-charts showing these results are 
shown in Figure 97. 

 
 

Figure 97 Percent arrivals and non-arrivals in safe areas – With Attachment, Day (a) Intensity IV, (b) Intensity V, (c) 
Intensity VI, (d) Intensity VII 

(a)                                                                               (b) 

(a) Int IV                 (b)  Int V                                       (c) Int VI                                (d) Int VIII 
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Structural collapse can produce many deaths and injuries especially when people are directly exposed 
to damage. The number of deaths shown in Figure 97 is high at 39%, especially for the Intensity VIII 
Scenario. This was calculated with the maximum 50 % probability of dying or getting injured when hit 
by debris. The 50% is similar to the death and injury percentages (shown in Table 68) used in the 
calculation of Coburn et al’s lethality ratio29 (Coburn_1, Spence, & Pomonis, 1992; Coburn & Spence, 
2002). Estimating casualties with models for earthquakes is a difficult task and has been the subject of 
many studies which are use either empirical, hybrid and analytical methods (Jaiswal_2, Wald, & Hearne, 
2009). The USGS uses the PAGER platform in issuing fatality estimates. Alexander investigates the 1:3 
ratio of deaths to injuries during earthquakes in (Alexander_2, 1985). Current casualty models used in 
post-earthquake event estimations involve high degrees of uncertainty and has yet to produce a very 
accurate results in predicting casualties (mortality and morbidity) and is an active domain needing more 
research (Alexander & Magni, 2013; Spence & So, 2011).  

Table 68 Estimated injury distributions at building collapse, % of trapped occupants (Coburn_1, Spence, & Pomonis, 1992; 
Coburn & Spence, 2002)  

Triage injury category Masonry Reinforced concrete (RC) 
Dead or unsaveable 20  40 
Life threatening cases needing immediate medical 
attention 

30 10 

Injury requiring hospital treatment 30 40 
Light injury not necessitating hospitalization 20 10 

The effect of social attachment can be subtle and difficult to quantify. The results for the Intensity IV, 
daytime scenario can be considered as a baseline condition. That is, it is not influenced by additional 
debris which can act as barriers and no casualties. The normal trend is that Intensity IV provides the 
largest number of arrivals and arrivals decrease with increasing intensity. The arrivals however from 
Intensity V (63.18%) is slightly larger than from Intensity IV (63.02%). Also, the trend in the time series 
plot in Figure 8.20-b show arrivals in Intensity V becoming larger than Intensity IV. It is a curious case 
which may imply that social attachment, triggered while encountering casualties, may have some 
beneficial effects, however small, in promoting the evacuation of other individuals. 

To briefly summarise and answer the question, the high number of casualties in the route contributes to 
the low number of arrivals in safe areas especially for high intensities. High damage in the environment 
is equivalent to high exposure causing the casualties. Presence of the damage likewise limits mobility 
of individuals and can concentrate interactions in confined locations. Increased probability of 
interactions among attachment figures or casualties are possible in these situations. However, limitations 
in mobility does not allow individuals to reach safe areas. In the situation of high intensities resulting to 
extreme damage and casualties, the benefit of social attachment and interactions is cancelled out and 
does not result in more arrivals in safe areas during immediate evacuation.  

More precision in the model in terms of casualties (population exposure) can be achieved if the 
following are used in the model: (1) more accurate probabilities for succumbing to injury and death 
when exposed to debris and damage during building collapse; (2) accurate building occupancy data 
during different times of the day; (3) precise locations of individuals at different times of the day; (4) 
updated building data (a) door locations; (b) floor layouts, (c) vulnerability. The benefit of using the 
model is the ability to explore different scenarios, the results of which can be used for efforts related to 
preparedness. In the simulation runs, exposure to debris hazard is the prime determinant of injury or 
death. This exposure is determined by the location of agents. This location is also defined by daily 
mobility. 

                                                
29 Lethality ratio is the ratio of the number of people killed to the number of occupants present in collapsed 
buildings of a particular building class (e.g. masonry or reinforced concrete (RC)) (Coburn_1, Spence, & 
Pomonis, 1992; Coburn & Spence, 2002). Fatality rate is a similar term used in PAGER (So & Pomonis, 2012). 
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8.3.7 Question 7: Does intensity affect the number of arrivals in safe areas?  

In the previous section discussing Question 6, Figure 97 and Table 67 showed the effect of intensity on 
evacuation for the 2-IRIS coverage area. From Figure 97, it can be seen that the number of arrivals in 
safe areas decrease with increasing intensity. The low Intensity IV and V conditions have larger number 
of arrivals compared to intensities VI and VI. This is mainly due to the very few casualties resulting 
from debris damage. Large numbers of debris likewise are barriers that can completely block 
passageways hindering movement towards safe areas. 

Figure 98 shows the average count of debris created at different intensities. Debris are generated around 
vulnerable buildings at every cycle for the duration of the shaking. From Figure 98 it can be seen that 
Intensity VIII resulted in the largest value in the number of generated debris with 3976 debris blocks. 
Intensity VI comes second with 995 debris blocks, then Intensity V with 14 debris blocks, and lastly 
Intensity IV with no debris. 

 
 

Figure 98 Number of Debris and Intensity –(a) histogram at 14th Cycle, (b) timeseries 0 to 20th Cycle 

The dimensions of the debris created during the experiments are different for each intensity. The 
difference in dimension result in different footprints when created around vulnerable buildings in danger 
zones. Larger debris footprints are more dangerous since these increase the probability of hitting an 
individual. Debris when created during the duration of the earthquake can pile up or overlap in danger 
zones. Debris with larger footprints can fill pathways more easily effectively blocking evacuation routes. 
The types of debris and those produced in the experiments are shown in Table 69. The dimension of 
debris for different intensities are 1 x 1 meter for Intensity V; 2 x 2 meters for Intensity VI; and 4 x 4 
meters for Intensity VIII. From the experiments, the total effective amount of debris, in square meters, 
are 14.4 for Intensity V; 3978.8 for Intensity VI; and 63619.2 for Intensity VIII. 

Table 69 Debris production with respect to intensities 

Intensity Debris 
Type 

Size 
(meter) 

Footprint 
(sq.m.) 

Number 
Debris 

Total debris 
(sq.m.) 

Deaths 
(%) 

Injuries 
(%) 

Arrivals 
(%) 

Intensity IV  - - - 0 0 0 0 63.02 
Intensity V Small 1 x 1  1 14 14 0.06 0.07 63.18 
Intensity VI Medium 2 x 2 4 994 3978 4.98 3.38 48.22 
Intensity VII Large 3 x 3  9 - - - - - 
Intensity VIII  Huge 4 x 4 16 3976 63619 39.38 21.68 27.82 

The large difference in arrivals in safe areas between high intensity and lower intensity events can be 
explained by the impact of the debris. Debris generates casualties and defines physical limits to the 
mobility of individuals moving towards safe areas. This is demonstrated by the number or deceased 
from Intensity VIII is the largest at 39.38% deceased and 21.68% injured. The total casualties (i.e. 

(a)                                                                                 (b) 
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deceased + injured) therefore would be 61,06% of the population. Arrivals in safe areas are likewise 
very low at 27.82%. The active uninjured population accounts for just 33.24%. 

Debris hinder swift evacuation when it blocks shortest paths towards safe areas. Consider for example 
the damage during the August 24, 2016 Amatrice, Italy earthquake shown in Figure 99 and Figure 100. 
The earthquake occurred with a magnitude of 6.0 and an estimated maximum EMS30 intensity of X 
(Quest, et al., 2016). In the areas that suffered the most damage, debris from collapsed building walls 
deposited into adjacent pathways. Trapped individuals needed to be rescued from collapsed structures. 

 
Figure 99 Debris damage during the August 24, 2016 Amatrice, Italy earthquake (Mag. 6, Int X) (Legi il Firenzepost, 2016; 

Quest, et al., 2016) 

 

 
Figure 100 Damage during the August 24, 2016 Amatrice, Italy earthquake (Mag. 6, Int X) (Mesa, 2016; Quest, et al., 2016) 

Table 70 and Table 71 show the level of building damage for the intensity scenarios with respect to the 
different coverage areas (2-IRIS, 9-IRIS, and 69-IRIS). The values in Table 70 are raw counts while 
that in Table 71 are in percentages. The levels of damage are in increasing order from 1 to 5. For the 
more detailed discussion on building damage grades, please refer to Table 7. From the values in Table 
70 and Table 71, it can be seen that the number/percentage of buildings with different levels of damage 
increases with intensity. Large numbers of damaged buildings are expected to produce more debris, 
especially for the buildings with level 5 damage. The experiment conducted was for the IRIS-2 coverage 

                                                
30 EMS Intensity – European Microseismic Scale Intensity 
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and it produced a significant number of debris as shown in Table 69. Running the experiments for the 
IRIS-9 and IRIS-69 can simulate this damage scenario. 

Table 70 Number of buildings with different levels of damage for each intensity scenario (Probabilistic) 

 2-IRIS 9-IRIS 69-IRIS  
Int 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
IV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
V 11 0 0 0 0 41 0 0 0 0 323 0 0 0 0 
VI 24 73 0 0 0 73 282 0 0 0 471 2074 0 0 0 
VII 67 32 10 140 0 230 118 25 453 0 1406 839 173 3253 0 
VIII  97 94 36 9 150 373 316 172 32 592 2483 2213 1271 291 5330 

 
Table 71 Percentage of buildings with different levels of damage for each intensity scenario (Probabilistic) 

 2-IRIS 9-IRIS 69-IRIS 
Int 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
IV  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
V 2.8 0 0 0 0 2.8 0 0 0 0 2.8 0 0 0 0 
VI 6.2 18.9 0 0 0 4.9 19.0 0 0 0 4.1 17.9 0 0 0 
VII 17.4 8.3 2.6 36.3 0 15.5 7.9 1.7 30.5 0.0 12.1 7.2 1.5 28.1 0 
VIII  25.1 24.4 9.3 2.3 38.9 25.1 21.3 11.6 2.2 39.9 21.4 19.1 11.0 2.5 46.0 

 

The probabilistic distribution of building damage for the aforementioned coverage areas for the intensity 
VIII scenario are shown in Figure 101, Figure 102 and Figure 103 respectively. From the figures, it can 
be seen that the distribution of damage is spread out in the coverage areas. The areas with the high 
concentration of level 5 damage are expected to produce the most casualties. These areas will likewise 
have many blocked routes hindering the evacuations of individuals to safe areas. 

 

 
Figure 101 Buildings with damage for Intensity VIII within the 2-IRIS coverage area 
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Figure 102 Buildings with damage for Intensity VIII within the 9-IRIS coverage area 

 

 
Figure 103 Buildings with damage for Intensity VIII within the 69-IRIS coverage area 

To briefly conclude and provide the answer to the question, intensity affects the arrivals in safe areas. 
Larger intensities would result more damage and eventually to lesser arrivals in safe areas. This is mainly 
due to increased casualties. Debris likewise hinder physical mobility, trapping individuals who wish to 
move towards safe areas.  

The study of the effects of earthquakes at different intensities are equally important. Extreme or large 
intensity earthquakes are rare. However, smaller earthquakes intensity quakes are much more common. 
Cumulative effects of small earthquake events are greater (Gaillard, 2019). This more common 
occurrence directly implies more people are exposed to its effects. The cumulative effects of earthquakes 
are also therefore greater across populations at different time scales or generations or histories. 
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8.3.8 Question 8: How does the radius of the danger zone around buildings affect 
the number of arrivals in safe areas?  

 

Figure 104 shows the effect on evacuation of a large radius used to delineate the danger zones around 
buildings. It can be seen that the radius of half the height of the building has fewer and much slower 
arrivals in safe areas. For the case where a uniform 6-meter radius is adopted to delineate the danger 
zone, more arrivals are observed. 

 
 

Figure 104 Effect of radius of the danger zone on evacuation – With Attachment (a) histogram, (b) timeseries 

Large danger zones around buildings provide greater area and probability for debris damage to be 
deposited in large street sections. This also increases the probability for individuals to be trapped, injured 
or killed by debris. Larger radius for danger zones likewise decreases the effective area allotted for safe 
zones. Larger danger zone radius likewise increases the evacuation travel distance from buildings to 
safe zones. Blocked pathways force individuals to find other routes. This can make travel distances 
much longer. The nearest safe zone from a cluster of vulnerable structures can be very far. Longer 
distances result in much longer travel times or in this case evacuation time to reach safe zones. Individual 
evacuations times may exceed the cut-off time of 15 minutes. Arrivals beyond the 15- minute cut-off 
time is not counted. Larger danger zones therefore have the effect of decreasing the number of arrivals 
in safe areas.  

The amount or area of safe zones and their spatial distribution, defines accessibility and also affect 
evacuations. Figure 105 shows the spatial distribution available safe areas in the extents for IRIS 2, IRIS 
9, and IRIS 69. The radius of the danger zone considered is half the height of buildings. 

(a)                                                                                 (b) 
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Figure 105 Safe areas with respect to extents (IRIS 2, IRIS 9 and IRIS 69) 

Table 72 shows the total areas of safe areas available to agents. The radius of the danger zone considered 
is half the height of the building. The pie charts in Figure 106 shows the danger zones, safe areas and 
barriers in the thee IRIS extents. It can be seen that for the amount of safe areas in decreasing order is 
from IRIS 69, IRIS 9 and IRIS 2 respectively. Also, the ratio of available safe area to danger zones is 
much greater in IRIS 69, than IRIS 9 and IRIS 2 with values of 2.10, 0.50 and 0.39 respectively. This 
trend is similar when comparing the ratio of safe areas to barriers. For IRIS 69, there are more safe areas 
than barriers. This means that there is more probability for agents to find safe areas than encountering 
barriers. The subsets IRIS 9 and IRIS 2 cover Grenoble’s urban core with more buildings or barriers. 
This is illustrated by the ratio of safe areas to barriers of 0.37 and 0.29 respectively. 

Table 72 Available areas for IRIS extents with danger zone at half the height of adjacent buildings 

Coverage Area Danger 
Zone (DZ) 

Barriers (B) Safe Area 
(SA) 

DZ % B% SA% TOTAL 
% 

SA/DZ 

IRIS 2 283593.37 103436.90 139396.54 40759.93 36.47 49.15 14.37 100.00 0.39 
IRIS 9 1271099.83 448314.43 599988.85 222796.55 35.27 47.20 17.53 100.00 0.50 
IRIS 69 18190865.09 4019368.72 5711486.26 8460010.11 22.10 31.40 46.51 100.00 2.10 

 
 

 
 

Figure 106 Danger zones, safe areas, and barriers (a) IRIS 2, (b) IRIS 9, (c) IRIS 69 

Figure 107 shows the effect of increased coverage from IRIS 2, IRIS 9 and IRIS 69 on evacuation. With 
the increase in coverage, comes the increase in available safe areas to agents. From Figure 107-a, it can 
be seen the 69-IRIS coverage area has the most arrivals in safe areas compared to the IRIS-2 and IRIS-
9. This can be explained by the fact that there are more safe areas accessible to agents. From Figure 106 

(a)                                                                         (b)                                                                        (c) 
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it can be seen that the 69-IRIS coverage has 46.51 % of its extents devoted to safe areas. Also, from 
Figure 106, it can be seen that the area covered by barriers (or buildings) is the smallest at 31.4%. 
Conversely, this means that agents have more free space for navigation. Agents can likewise move more 
easily towards safe areas. The danger zone for the 69-IRIS coverage is also the smallest at 22%. This 
means that this coverage has Accordingly, the arrivals for the 9-IRIS coverage ranks second in the 
percentage of arrivals as seen from Figure 107. Also, it has 17.53 % of its extents classified as safe areas. 
The last with respect to the number of arrivals is the 2-IRIS coverage, with the smallest percentage of 
safe areas in its extent coupled with the largest percentage for barriers at 49.15%. Aside from having 
fewer safe areas as options for evacuation, many barriers restrict navigation. 

 
 

Figure 107 Effect of increased coverage and availability of safe area (a) histogram, (b) timeseries 

To briefly conclude and provide an answer to the research question, the radius used in the delineation 
of danger zones affects the arrivals in safe areas. A small radius such as 6 meters will lead to more 
arrivals in safe areas. This is due to the following (1) makes the distance of safe areas shorter to traverse 
and therefore it is faster to reach, (2) minimises the deposition area of debris, therefore reducing the 
probability for casualties. When safe areas are readily accessible due to the reduced area of danger zones, 
the probability of reaching safety is higher. For more clustered urban centres, safe areas are fewer and 
farther away from buildings or individual source locations. Urban areas with more open spaces will have 
many safe areas that can be easily reached by individuals during evacuations. 

8.4  Summary of the chapter  

A summary of the results is shown in Table 73, Figure 108 and Figure 109. In Table 73, the arrivals 
in safe areas are presented for each scenario. The last two columns present the hypothesis and the 
conclusion on the verification of the hypothesis respectively.  

Table 73 Summary of results 

Research 
Question 

Parameter Scenario Arrivals in Safe 
Areas 

Q1: Attachment With Attachment Int IV-Day 63.02 % 
Int V-Day 63.18 % 
Int VI - Day 48.22 % 
Int VIII – Day 27.82 % 
Int IV-Night 68.97 % 
Int V-Night - 
Int VI – Night - 
Int VIII – Night 25.83 % 

No Attachment Int IV-Day 53.18 % 
Int V-Day 53.64 % 
Int VI - Day 44.96 % 
Int VIII – Day 27.32 % 
Int IV-Night 49.67 % 

(a)                                                                                 (b) 
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Int V-Night - 
Int VI – Night - 
Int VIII – Night 22.23 % 

Q2: Knowledge Limited Knowledge - Nearby Safe Area PDSA = 20 meters 49.67 % 
Limited Knowledge - Nearby Safe Area PDSA = 50 m 49.47 % 
Broad Knowledge – Nearby Safe Area PDSA = 10 KM 49.71 % 
Limited Knowledge (Far Safe Area) PDSA = 20 meters 0% 
Limited Knowledge (Far Safe Area) – 5400 Cycles PDSA = 10 KM 3 arrivals 
100% of Population with Knowledge (Far Safe Area) – 
6000 Cycles 

PDSA = 10 KM 82.91 % 

66 % of Population with Broad (Far Safe Area) – 6000 
Cycles 

PDSA = 10 KM 53.30 % 

0% of Population with Broad knowledge (Far Safe Area) – 
6000 Cycles 

PDSA = 10 KM 0 % 

Q3: Number of 
Close Bonds 

No Bonds  49.67 % 
Few Close Bonds (Many Strangers)  55.83 % 
Many Close Bonds (Few Strangers)  68.97 % 

Q4: Time of 
Day 

Day Int IV-Day 63.02 % 
Int VI – Day 48.22 % 
Int VIII - Day 27.82 % 

Night Int IV- Night 68.71 % 
Int VI – Night 49.29 % 
Int VIII - Night 25.83 % 

Q5: Disability With Disabled With Attachment 48.22 % 
No Attachment 44.96 % 

No Disabled With Attachment 48.90 % 
No Attachment 45.41 % 

Q6: Casualties Few Casualties Int IV 63.02 % 
Int V 63.18 % 

Many Casualties Int VI 48.22 % 
Int VIII 27.82 % 

Q7: Intensity Low Intensity (IV, V) Int IV 63.02 % 
Int V 63.18 % 

Moderate Intensity (VI) Int VI 48.22 % 
High Intensity (8) Int VIII 27.82 % 

Q8: Radius of 
Danger Zone 

Small Radius  6 meters  75.46 % 
Large/Variable Radius H/2 49.29 % 

From Table 73, it can be seen that with respect to attachment (Question 1), the scenario with attachment 
resulted to more arrivals in safe areas than no attachment. With respect to knowledge (Question 2), 
having knowledge (of safe areas and the shortest paths towards safe areas) results to more arrivals in 
safe areas, than no-knowledge or limited knowledge. With respect to close bonds (Question 3), having 
more close bonds during evacuation results to more arrivals in safe areas than having no bonds, or 
limited bonds.  

With respect to time of day (Question 4), night time evacuations resulted to more arrivals in safe areas 
than during daytime scenarios. This result is actually consistent and directly follows from the results 
from Question 1 and Question 4. During night time scenarios, individuals are in home locations with 
family members with whom they share strong attachment bonds.  

With respect to the presence of disability in the population (Question 5), the results are not very 
conclusive as the results are very similar. The arrivals however for with no disabled is just a bit higher. 
This is maybe due to the considered small population of disabled in the population. Significantly 
increasing the population of disabled in the simulation may provide clearer results. Also increasing 
simulation cycles may also show more discernible differences. 

With respect to the number of casualties (Question 6), more casualties from high intensity earthquakes, 
result in fewer arrivals in safe areas than less casualties. With respect to earthquake intensities (Question 
7), low intensity earthquakes result in more arrivals than higher intensities result in fewer arrivals in safe 
areas. With respect to the radius of danger zones from buildings (Question 7), a large radius for danger 
zones result in lesser arrivals in safe areas than danger zones from smaller radius. 



 

 185 

Figure 108 shows a histogram of the percentage arrivals of agents in safe areas the 900th cycle after the 
start of the earthquake in the simulation. The horizonal axis of the graph shows the respective scenarios 
(1 to 24); intensity (IV, V, VI and VIII), with attachment (Yes or No); the time (Day or Night); and the 
standard or default case (Yes or No). Bounding boxes clustering the results into intensities are provided 
to facilitate easy reading. Lines also divide the sections in the bounding boxes with respect to attachment 
and time of day. It can be seen from Figure 8.1 that scenarios with attachment have more arrivals than 
scenarios with no attachment. This is also more noticeable for night time scenarios in low intensity 
experiments. 

The time series graphs for the experiment scenarios are shown in Figure 109. The graphs show the 
progress of arrivals of adult agents in percentages values at every cycle or second during the evacuation. 
The total duration recorded is 900 cycles reckoned from the start of the earthquake. The curves are 
drawn as 4-line types. They correspond to the same grouping of intensities as in  

Figure 72. Light solid lines show Intensity IV; dotted lines show Intensity V; darker solid lines show 
Intensity VI; dashes with dots show Intensity VIII. It can be seen from Figure 8.2 that, increasing 
intensities lead to lesser and much slower arrivals. 

 

 

Figure 108 Evacuation arrivals of adults in safe areas at cycle 900 (15 minutes) for all scenarios. 

LEGEND: Y = Yes; - = No, D = Day; N = Night 
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Figure 109 Evacuation arrivals of adults in safe areas at cycle 900 (15 minutes) for all scenarios. 
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CHAPTER 9. CONCLUSION 

9.1  Synthesis and conclusions  

This study sought to answer different research questions related to the social aspects of earthquake 
evacuations. For this purpose, a multi-agent model was conceived and implemented with GAMA. Table 
74 details these answers with respect to the hypothesis posited at the start of this work. 

Table 74 Summary of answers to research questions 

Research Questions Hypothesis Hypothesis Confirmed? 
Q1: Does social attachment affect 
the number of arrivals in safe areas? 

YES. Social attachment can affect the number 
of arrivals in safe. Lesser arrivals are expected 
with social attachment. 

YES, social attachment affects the number of 
arrivals. However, contrary to the hypothesis, 
there are actually more arrivals in safe areas 
when social attachment is considered. 

Q2: Does having the knowledge of 
nearby safe areas affect the number 
arrivals in safe areas? 

YES, knowledge of the location of nearby safe 
areas increases the number of arrivals in safe 
areas. 

YES. Hypothesis confirmed. 

Q3: How does he number of close 
bonds affect evacuation? 

The number of close bonds in the population 
affect evacuations and can result in lesser 
number of arrivals in safe areas. 

NO. There were actually more arrivals in safe 
areas when there are many closely bonded 
individuals in the evacuating population. 

Q4: How does the time of day 
affect evacuation? 

Daytime evacuation result in more arrivals in 
safe areas. Night time evacuation, result in 
fewer arrivals. 

NO. Actually, there were fewer arrivals in safe 
areas during daytime. More arrivals in were 
observed during night time. 

Q5: How does disability affect the 
number of arrivals in safe areas? 

Presence of disabled individuals in the 
population will result in lower number of 
arrivals in safe areas. 

YES. Hypothesis confirmed. 

Q6: Does the presence of casualties 
on the route affect the number and 
time of arrivals in safe areas? 

The presence of casualties in the route can 
trigger evacuations and therefore result in more 
arrivals in safe areas. 

NO. Although the presence of casualties can 
trigger the evacuation of other individuals, this 
is also an indicator of the extreme vulnerability 
of the structures in the same location. More 
casualties are expected and therefore less 
arrivals in safe areas.  

Q7: Does intensity affect the 
number of arrivals in safe areas? 

High intensities will result in lesser number of 
arrivals in safe areas. 

YES. Higher intensities result in greater 
building damage. This can result in injuries, 
deaths and the trapping of survivors through 
blocked pathways. This effectively lessens 
arrivals in safe areas. 

Q8: How does the radius of danger 
zones around buildings (and 
consequently the size of safe areas) 
affect the number of arrivals? 

Large radius of danger zones around buildings 
(and consequently fewer safe areas) decreases 
the number of arrivals in safe areas. 

YES. Large danger zones result in lesser 
number of arrivals in safe areas especially for 
higher intensities.  

Evacuation is a complex dynamic process and many elements need to be modelled for it to be realistic, 
believable and useful for scientific research and policy31 development. At the very core of this research 
are people. With human beings as the primary concern, it is necessary to know the reasons and 
motivations behind people’s behaviours during evacuations. A good understanding of these underlying 
motivations gives the strong foundation for modelling and implementing the behaviours observed from 
disasters videos, and those gathered from literature.  

Social dynamics influence evacuations. This is supported by the findings of this research (in Section 
8.3.1) that shows how social attachment plays a beneficial role in evacuations. Specifically, more people 
can arrive in safe areas when social attachment is present and it facilitates social interaction during 
evacuation. Social attachment defines core motivations for individual micro-actions or behaviours 
(Mawson_a, 2005). Social attachment bonds provide the basic ingredient necessary for group formation. 
The emergence of social groups is the result of proximity seeking behaviours activated during threat.  

The results of this research also showed that knowledge of the location of safe areas is important for 
successful evacuations. Knowledge enables reaching safe areas using shortest pathways (by avoiding 
blocked roads). What has not been implemented is the direct sharing of knowledge during social 

                                                
31 Policies related to disaster risk reduction, response, preparedness, mitigation, and management 
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interactions. This could be approached by building on the results of the social attachment and knowledge 
experiments. When social interaction includes the transfer of knowledge, by way of communication, the 
location of safe areas can spread in the population therefore effectively increasing the arrivals in safe 
areas. When individuals decide to keep the information to themselves (or not share with others), or avoid 
social interactions, the percentage of knowledge of safe areas will not change. When this happens as in 
the results from Section 8.3.2.3, one can expect a fewer number of arrivals in safe areas.  

Information on safe areas and shortest pathways can still be acquired by individuals through evacuation 
maps, signals/arrows or directional sensors installed in strategic locations in cities. Acquiring knowledge 
in this manner has not been implemented, but as in the case above, it could be considered. As in the 
spread of knowledge by social interaction above, humans with knowledge who share information are 
akin to information kiosks, however they are mobile. In improving the simulation, in-place or static 
sources of information can be added, in such a way that when agents approach this information source, 
knowledge about the shortest path to the nearest safe area is acquired, and the agent proceeds to evacuate 
accordingly using this knowledge. Evacuation information and knowledge systems for smart cities of 
the future for example may integrate this strategy. Such systems can provide accurate real time 
information especially on the status of damage on evacuation pathways thus aiding evacuation. This 
point further stresses the important role of information in evacuations. Moving further, agents acquiring 
this information, can share these with others. In this manner, the knowledge is spread, and eventually 
this increases the chance that other evacuees can reach safe areas. 

Having more social bonds facilitates evacuations. That is, the more social bonds the individual have, the 
possibility in reaching safety is increased. Knowledge of where to go of course is needed for successful 
evacuations. This was shown in Section 8.3.3. This result is consistent with the results from Section 
8.3.1, and therefore further strengthens the role of social attachment in evacuations. This means that 
when social bonds are present, even at strengths that are weaker than core family bonds, it is enough to 
influence how individuals evacuate, and eventually ensure arrivals in safe areas.  

The influence of human factors that limit mobility, or the distance with which others can be perceived, 
were also tested in two sets of experiments. Day and night time evacuation scenarios were used to test 
the effect of visual perception distance (in Section 8.3.4). The night scenario was found to result in more 
arrivals in safe areas than daytime. This is contrary to the expected result that daytime arrivals were 
supposed to have more arrivals due to the longer perception distances available to agents. The advantage 
offered by night scenarios is that during night time agents are mostly at home with close proximity of 
their family. This cancels out the advantage of longer perception distances. That is, they can see their 
family members. The close proximity and preferential attachment to be close to agents with stronger 
bonds (in this case), facilitates group formation32 , and evacuation as groups. This leads to more 
individuals reaching safe areas. During daytime scenarios, agents are more distributed (or scattered) in 
different locations. In these locations, the strength of social bonds can vary and can also be weak. 
Therefore the formation of groups can be more difficult. The results of these experiments, although 
originally focused on visual perception distance, further strengthen the role of social interactions in 
facilitating evacuations. It could be interesting to explore the scenario where agents are at home 
locations with family members during daytime (such as on a weekend, or a holiday), in order to see if a 
greater number of agents arrival in safe areas when compared to the night time scenario results. This 
can be further explored in future experiments with the model. 

The impact of the presence of disability (i.e. with mobility impairments) on evacuation population was 
explored in Section 8.3.5. The result did not show a significant difference in the number of arrivals for 
between the population of disabled or non-disabled agents. This can be due to the short 15 minute 

                                                
32 Note that the groups formed in the simulation are composed of loosely coupled individuals. That is, agents are 
not locked to a group or to an individual. Agents can move in and out of groups, depending on who and what they 
perceive. Agents implement multi-modal behaviour and can move in different directions. 
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duration considered for the evacuation. The results however showed that a slightly higher number of 
arrivals in the population without disabled agents (Figure 90 and Figure 91). In reality, disability is 
disadvantageous to mobility. Increasing the simulation time could establish if this is the case. Real 
populations include individuals with disability and this should be included in simulations to make results 
more realistic. In order to make evacuations plans to be more inclusive, they should be based on studies 
that include disability.  

Large intensity earthquakes cause considerable damage to structures that result in many injuries and 
deaths. The influence of different intensities resulting to casualties (injuries and deaths) was presented 
in Section 8.3.6. Increasing intensities result in an increasing number of deaths and casualties and fewer 
arrivals in safe areas. The other cause is the presence of debris that blocks pathways that trap survivors. 
The production of debris at different intensities is presented in Section 8.3.7. More debris are generated 
with increasing intensities.  

The results of the impact of large danger zones around buildings are presented in Section 8.3.8. From 
the results, it can be seen that large danger zones result in fewer arrivals in safe areas. Danger zones 
around buildings define the regions where debris damage have the highest probability of impact (by 
falling and deposition). Areas outside of danger zones are safe from debris, and are safe areas33. Falling 
debris puts evacuating populations at risk of injury or death especially when these zones are traversed. 
When people egress from buildings or pass along roadways bounded by structures, they expose 
themselves to the risk of falling debris. The size of danger zones around structures are physically defined 
by their dimensions (i.e. height and width). Tall structures effectively have large danger zones. When 
structures are not vulnerable (safe) to earthquakes, no damage or debris are expected to fall within its 
danger zone. However, when a structure is vulnerable, debris are expected to fall in their respective 
danger zones. Larger intensities, as described Section 8.3.7 produce more debris in the respective danger 
zones.  

Built-up urban environments are heterogeneous and are a mix of different structures with different 
vulnerabilities. The danger zones of these non-vulnerable and vulnerable building can overlap and debris 
from vulnerable structures can affect non-vulnerable ones. When individuals from safe structures decide 
to evacuate, they become exposed to the damage from the adjacent vulnerable buildings. These 
observations further strengthen the importance of implementing strict policies for seismic 
building/structural codes. These policies, when properly implemented can help ensure that structures 
can survive earthquakes and result in minimal or no damage. When all structures are equally “built to 
code”34 this can significantly reduce the risk to people during earthquakes. 

To conclude, overall, the results of the experiments point to the importance of social interactions during 
evacuations. The behaviours of individuals are significantly affected by their social environment that 
responds to the challenges imposed by the physical environment produced by earthquake disasters. The 
capacity and tendency for social interaction are inherent in humans and need to be considered in 
evacuations. It was shown that social attachment is important because it can facilitate saving more lives 
during earthquake disasters. 

9.2  Contributions 

The first and main contribution of the research is to add to arguments stressing the importance of human 
behaviour and the social dynamics that emerge during crisis evacuations. Needless to say, people are 

                                                
33 It can be argued that the areas inside safe buildings are also safe areas. However, building-code compliant 
structures are not indestructible and on built on some level of safety. Earthquakes can still render some damage to 
buildings and aftershocks can further weaken structures leading to more damage and increased probability of 
collapse. 
34 Following building codes 
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the focus of evacuations and this is true for all types of disasters. The difference of between disasters is 
the nature of the hazards involved. Earthquake disasters are different in the sense that earthquakes are 
unpredictable, have no warning, occurs in short durations, and the effects are felt over a very large area. 
Focusing on human behaviour therefore can make the results of the study especially the social aspects, 
relevant to other evacuation research.  

The second major contribution of the study is SOLACE, the multi agent-based model for earthquake 
evacuation implemented using social attachment. Human behaviour is complex and is difficult to model. 
Earthquake disasters also produce complex and challenging environments that are likewise difficult to 
model. The GAMA platform proved to be an effective tool to combine the social and environmental 
aspects needed to attempt in developing a realistic model of the crisis scenarios. The model was useful 
in testing some aspects of human behaviour and the physical environment. BDI in GAMA was useful 
in the development of cognitive agents. Using the model actually opened up more interesting question 
concerning different scenarios. Also, many other parameters can be added and tested in the model. This 
flexibility offered in the GAMA platform, means that the model can be changed, with respect to data, 
and the parameters used in calibrating simulation experiments. This flexibility likewise gives the model 
the potential to be applied to other areas.  

The third major contribution is that the research supports the benefit of using accurate spatial data in 
dynamic multi agent-based models. Spatial data are heavily used by government institutions around the 
world in their planning processes (Antolfe, Doherty, & Marin-Ferrer, 2018; Fekete, et al., 2015). 
Geosimulation and geocomputation have been used mostly in the modelling of the dynamics of physical 
processes and urban systems. However most of these studies do not sufficiently integrate human 
behaviour and social dynamics. This is mainly due to the limits imposed by the complexity of these 
models that require large computing power and resources (Torrens, 2001). Concerning of multiagent 
models, most lack the use of spatial data. Currently there are very few agent-based models implementing 
complex human behaviours for evacuations with accurate geospatial data. Integrating spatial data 
increases the realism of multi agent models. This makes the model and the results of simulations 
relatable and easily explainable to other scientists from different domains, experts, and practitioners. 
Evacuation is very sensitive to the precision used in representing space and time in models. Modelling 
exposure to debris hazard requires the spatial data on buildings, their vulnerabilities, and temporal 
precision in generating and depositing debris in danger zones. Populations are likewise generated based 
on occupancy at different times of day. The scheduling of egress from structures is likewise influenced 
by pre-evacuation actions and the number of floors traversed by agents. Lastly, the configuration of 
streets and locations of safe areas contribute to the duration of evacuations and arrivals in safe areas. 

9.3  Future work  

The research has been very useful in testing initial insights on the effects of social and behavioural 
aspects on earthquake evacuation. Furthermore, the work has a lot of potential when applied to the four 
domains that constitute the model. 

9.3.1 Improving the model 

Many improvements are proposed to further increase the realism of the model. The following can 
be done. 

The building dataset has used probabilistically assigned typologies and vulnerability attributes based on 
IRIS level percentages (see Section 6.1.2). An ideal dataset would be to use the actual building stock of 
the city with data for each building based on official seismic assessments. Desired data and attributes 
would include age of the building, typology, damage and vulnerability at different intensities, building 
design, floor plan, number of floors, elevation, locations of doorways and emergency exits, etc. Having 
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these values available for each building could enhance the model and increase the realism of the 
simulation results.  

Using accurate building occupancy data for different times of the day is crucial in the modelling the 
distribution of populations. Although this dataset is ideal, it is unfortunately not used in the current 
model. The distribution of the population for the different scenarios has been probabilistically assigned 
based on the IRIS level population data (see Section 6.2.2.3). Data on households when available will 
also be useful in establishing the possible social relationships in source locations. The use of very 
detailed individual and household data in simulations however opens up ethical and privacy concerns 
(Torrens, 2001). 

Officially designated safe areas and their associated evacuation routes can be used in the future scenarios. 
Acquiring this data for the model has not been possible. What has been used instead as safe areas are 
areas where debris can probably not be deposited (which is the distance away from buildings) (see 
Section 5.3, Section 5.4 and Section 6.1.1). An exact determination of the danger zones around buildings 
is likewise needed. Having this data can greatly improve the realism of simulations. 

The model can be improved by adding missing physical features that also act as barriers or pose risks 
during evacuations. These include moving and parked cars, trams, trains, fences, trees and chimneys. 
The only barriers used in the model are buildings, water bodies, generated debris and fatalities. Adding 
these missing elements can likewise improve the realism of the evacuation scenarios. 

There are many possible models that can refine the different aspect of SOLACE. For the geospatial 
model of the spatial environment, a more detailed urban model (2D and 3D) could be integrated. This 
can include a more complete set of buildings, establishments and land use. The information to include 
can be similar to the level of details in OpenStreetMap, GoogleMaps or Google Earth (OpenStreetMap 
& Contributors, 2018; Google, 2018). 

The behaviour data were gathered from a mix of sources (see Table 10 and Table 28). The model can 
benefit from more accurate human behaviour data, preferably from earthquake survivors. However, 
finding these survivors and conducting interviews however can be difficult. Important details can be 
forgotten especially when interviews are conducted long after earthquake events. Video data during 
earthquakes when available are very useful since these can be analysed at different levels of detail and 
context (physical setting, social setting, culture, etc.). Survey data on earthquake behaviours (possible 
experience, possible actions) is also very useful, but require a large number of samples. It is also difficult 
to project possible “actual” behaviours into future earthquake events especially if the sample population 
has not experienced an earthquake event. 

On the social aspect, an improved model on social bonds is desired. Quantification of social bonds is 
another active area of research where new methods are being explored. Culture also defines social 
structures, relationships and therefore also the strength of social bonds. New studies quantifying social 
bond strength with respect to different cultural settings and social environments can help improve the 
model. Also, integration of other models for dynamic social and psychological aspects relating to the 
individual can improve the model. This includes emotions, contagion, communication, spread of 
information, etc. 

Still on the social aspect, an improved model for distributing populations in geographic space can help 
improve the model. New population distribution models from mobility studies, and household travel 
surveys can help improve the model. 
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Concerning the geoscience aspect, a model on how earthquakes are felt at different floor levels is 
particularly desirable. Earthquakes are usually felt more from the upper floors of taller buildings than 
on lower floors. Individuals located at lower floors usually do not sense low magnitude earthquakes. 
This difference in experiences in earthquakes is significant since it can result in varied behaviours from 
individuals residing in the same building. In addition, a more accurate model of debris creation, 
deposition in danger zones and the delineation of danger zones would be useful. The current model uses 
the method described in Section 6.2.2.2 with the amount of debris being shown in Section 8.3.7. This 
resulted in a large number of casualties for intensity VIII (Figure 97). A better model of debris creation 
and deposition could result in fewer numbers of debris and casualties.  

Lastly, there is a need for a more accurate casualty model. Specifically, a method for establishing the 
probability of being hurt or dying when hit by debris during earthquakes is needed. Currently the model 
uses a 50% probability of being injured or killed by debris (i.e. agent location intersects with a debris 
polygon) (see 8.3.6). This probability is computed during each time that an agent is hit by debris during 
shaking. This interaction is shown in Section 6.2.2.2. The number of casualties using this probabilistic 
assignment of injury or death, is high (Figure 97). A more accurate casualty model could result in fewer 
casualties.  

For the computer science domain there are many possible models that can be incorporated to improve 
the model. These can include (1) improved model for agent navigation and perception; and (2) BDI 
models of incorporating emotion, contagion, spread of knowledge, communication, etc. BDI can 
implementations can be further enhanced to accommodate large populations of cognitive agents. The 
performance of models can likewise be improved by using different computing infrastructures such as 
HPC and GRID environments.   

9.3.2 Possible applications in different domains 

SOLACE can be useful in exploring different what-if scenarios in each of the four domains that 
constitute the model. 

9.3.2.1 Geospatial science 

The model can be useful for urban planning in the context of ensuring the evacuation preparedness 
of people during disasters. The effect on evacuation of existing and future configurations of the urban 
space can be tested using the model. For example, different configurations or placements of safe areas, 
meeting points and evacuation routes can be tested in the model (see Figure 83). An evacuation 
efficiency rating could be developed using the model to indicate the efficiency of safe area and meeting 
point placements, and evacuation routes. Impact of changes in urban configurations (such as new 
constructions, closed roads, additional residential areas) can likewise be tested using the model. 

It is possible to apply SOLACE for data at different levels of spatial detail or scale, for example the 
larger metropolitan area of Grenoble. Applying the model to different municipalities in France is also 
possible. The data on building vulnerability and damage at the IRIS level has been calculated for the 
whole of France by Riedel et al. (Riedel, Guéguen, & Dunand, 2014). Spatial data on buildings and 
roads are available as well from both government and open sources. Mixing data however from different 
sources can be challenging especially in ensuring goodness of fit between datasets. 

Testing the flexibility of applying the model to different areas is very important. Once the model is 
proven flexible and useful, it can be applied in the modelling of the evacuation potential of areas outside 
of France. This is significant because there are many countries that are prone to earthquakes. Applying 
the model in these countries may help in efforts to prepare for future earthquakes. Difficulty in directly 
applying the model can be from the unavailability of detailed building stock data, with attributes on 
vulnerability and damage at different intensities. Spatial data, especially when not available from official 
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sources, can be acquired from OpenStreetMap. Depending on the country, very fine level of detail can 
be available (e.g. buildings, roads, points of interest (establishment, schools, facilities, etc.)). When data 
is not available, the help of the OpenStreetMap community can be sought to generate the needed map 
features (OpenStreetMap & Contributors, 2018; Albuquerque, Eckle, Henfort, & Zipf, 2016). The level 
of detail in OpenStreetMap data is sufficient to be used in the model. Data from official sources however 
is preferred. 

Applying SOLACE at the scale of single building with a complex layout can also be explored. Indoor 
evacuation was actually tested at the start of the research before SOLACE was completed. The basic 
model for indoor evacuation tested with a complex layout is show in Figure 110. The zoomed in version 
of the egress point at the door is shown in Figure 111.  

 

Figure 110 Indoor evacuation in a hospital floor with complex layout (Bañgate, 2016) 

 

Figure 111 Egress from building (Bañgate, 2016) 

SOLACE can be customised to use the spatial data for this type of indoor model. The walls for example 
are analogous to the building barriers. Like the buildings in the city model, the walls can have attributes 
for typology (e.g. wood, cement, glass), and vulnerability and damage at different levels of intensity. 
Weak indoor wall materials can (e.g. glass, masonry) be damaged or collapse during high intensity 
earthquakes. These can block pathways, cause injuries and death. The population of agents can be 
generated in rooms based on designed occupancy. The relationships of the agents can also be assigned. 
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For example, for work environments, most will be colleagues or friends. For residential apartments, 
most will be family members. Some indoor environments will have a complex mix of possible 
relationships such as in hospitals, airports, etc.  

The correct geographic representations of the spatial elements is very crucial in modelling indoor 
evacuations. The dimensions of indoor elements need to be correct. Examples are the lengths and widths 
of pathways, and location and widths of egress points. Narrow widths can define bottlenecks for exiting 
crowds. Needless to say, this also includes correctly representing the correct size and widths of building 
occupants (people). Individuals with large footprints can more effectively block pathways. For example, 
it was found that there are higher densities and faster flow through doors in the evacuation of children 
than that of adults (Larusdottir & Diderichs, 2011). Figure 112 shows the layout of one of the floors of 
the LIG building overlaid on a Google satellite image. Having the correct geographic reference ensure 
that the distances to be travelled by agents are reflective of actual measurements on the ground. These 
distances affect estimates of travel time. 

 

Figure 112 Floor layout of LIG Building 

A wider range of spatial scales and therefore spatial complexity can be explored using SOLACE. Models 
can become very complex and may still give a similar result from a simpler and less complex model. 
Very complex models also consume large computing resources and take a long time to run. For 
applications such as disaster modelling that demands a level of urgency, slow simulation runs are not 
acceptable especially in the response stage of the crisis management cycle. In the planning stage 
however, highly accurate but slow simulation runs still be very useful. Finding the right mix of spatial 
elements with acceptable levels of model complexity may hopefully be explored in the future using the 
developed model. 

9.3.2.2 Social sciences 

In social sciences, different parameter settings for social behaviours during evacuations can be tested. 
A possible practical application is the testing of scenarios of compliance with recommended actions 
during earthquake evacuations. Ideal behaviours and durations can be set in the model (see Section 5.5). 
Scenarios with different levels of compliance can be tested in the simulation. 

The impact of compliance to recommended behaviours can be tested with respect to present and future 
demographic characteristics and spatial distribution of populations. The trend in developed nations is 
the increase in the population of the elderly and fewer younger individuals. This makes mobility a 
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primary concern especially in the future. Setting population characteristics and distribution for example 
are shown in Section 6.2.2.3.  

The influence of culture on evacuation is also a very interesting area. In the model, the influence of 
culture can be set using the parameter for social attachment bonds. The research established that social 
attachment is beneficial to evacuations. This therefore implies that communities or cultures with close 
attachment bonds have better chances evacuating successfully. Culture is manifested by how families 
and households are structured (e.g. single parents, many kids, elderly parents living with family, large 
family size, extended families, etc.). Culture is also manifested in the settlement patterns and 
organisation of urban space. Work environments have their own professional culture, and with less 
personal relationships. The model can be used to test the evacuation potential of different cultures in 
evacuation. The model therefore has the potential to be used in different spatial scales, and in other 
places such as other cities, other urban areas or other countries. Culture also affects behaviours and risk 
perception. A future work can focus on the integration of risk perception into the social model of 
behaviours. 

9.3.2.3 Geoscience 

A future work in the domain of geoscience can be the testing of the effect of the different levels of 
compliance to current and future building codes. Different earthquake intensity scenarios can be used to 
test the damage patterns using damage and vulnerability potential values of the building stock. Another 
area of research is exploring and improving the methodology of assigning vulnerability and damage 
attributes to individual buildings. This data is usually only provided for large zones (such as 
municipalities, IRIS/survey unit) that enclose many buildings. The data needs to be scaled down to the 
level of each building. A simplified method of attribute assignment needs to be explored.  

Establishing the most accurate configuration of danger zones needs to be explored. That is, a more 
precise radius around buildings must be found. This also requires an accurate debris deposition model, 
as the risk of casualties is linked with exposure to debris at the base of buildings. Site effects which may 
amplify the seismic waves depending on the soil typology or topography, and thus lead to differences 
in intensity over the studied area, have also not been fully explored in the SOLACE model, and need to 
be addressed in future work.  

Scenarios with variable intensity distribution in the study area also need to be explored in future works. 
In each of the experiments, a single intensity assignment for the whole study area was used. In reality 
however, how earthquakes are felt in landscapes vary. Also areas that are closer to the earthquake can 
also experience more pronounced shaking.  

9.3.2.4 Computer science 

A future work in the domain of computer science can be the development of a serious game based 
on SOLACE. The serious game can be used to assist decision makers in testing the effects of policy 
direction by testing different scenarios using the model. Examples of policies to be explored could be: 
assessing building earthquake resilience through the implementation of building codes; the effect of 
retrofitting old structures; launching information campaigns to raise awareness; building a smart city 
infrastructure, delineation of safe evacuation routes; installing clearer signage to safe areas. A game for 
example can consist of balancing the allocation of financial resources with respect to the cost of adopting 
earthquake preparedness strategies. A serious game for the public could be developed to both test and 
also raise the awareness of the public on earthquake preparedness (e.g. having a plan, securing indoor 
furniture, having an emergency kit, etc.), and adopting prescribed evacuation behaviour (e.g. drop/cover/ 
hold on, not running outside immediately, going to a meetup point, etc.)  
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Another possible area for future work is the integration of SOLACE with other models that are currently 
missing in the simulation. An example is the addition of a multi-modal transportation model with 
moving vehicles. This is missing in the current pedestrian evacuation model. Another improvement can 
be the integration of a model of rescue and emergency services (e.g. fire and medical teams). A model 
of fire can also be integrated into SOLACE. Fires also usually start after earthquakes due to exposed 
and leaking gas pipelines. Integrating more elements into the model needs to be studied. The added 
complexity into the model may require more computing resources. 

Another area is testing the performance of the model in grid and in high performance computing (HPC) 
environments. The high complexity of the model results in very slow processing times. Adding more 
complexity to the model by involving larger populations of agents, larger spatial coverage, and more 
building elements, would require very powerful computing resources. Running the simulation using 
GPUs other than normal CPUs may also increase performance. The decrease in computational 
performance with increased model complexity also necessitates the search for and adoption of strategies 
that can enable running complex models with less powerful computing resources. This includes adoption 
of less demanding algorithms and cognitive architectures for the human agents. Computer code can also 
be streamlined and optimized. Having the ability to run the simulations will less computing resources 
may further promote the use of the model in disaster planning efforts by organisations and communities. 

9.4  Concluding remarks  

Earthquake crisis evacuations are social in nature. This character of evacuations requires that the 
behavioural and social nature of individuals be the centre of the research. Social attachment is an 
important framework in modelling human behaviour during evacuations. It’s the provides a strong and 
logical explanation for the basis of human action during disasters. The SOLACE model developed in 
the research is built with social attachment as the basis for agent behaviour in the simulations. Results 
using SOLACE supports the argument that social aspects and human behaviour need to be considered 
in evacuation studies and in the development of evacuation models.  

The role of the accurate geographic representation of the crisis environment has also been highlighted 
in the research. Distance is particularly important in the model since it limits perception. Longer 
distances mean longer time to reach safe areas. Shortest paths allow individuals to reach the nearest safe 
areas faster. Blocked pathways make the distance to safe areas longer, resulting in an increased time to 
reach safe areas. Social relationships are also defined by distance. In the model, familiar individuals 
(with whom one shares a very strong bond) are recognised much faster or easier than those with lesser 
bonds such as strangers. Distance is therefore is used as a preferential filter. With this core role of 
distance in the model, a less accurate representation of distance is not acceptable. 

The role of cognitive and social agents has also been core to the research. The multiagent based 
modelling approach with BDI agents has been very useful in realising the crucial social interactions 
implemented in the model. The importance of the models and simulations are underscored by the ease 
with which different scenarios were designed, implemented, and used to generate the needed data for 
analysis and visualisations. The simulations generated a level of complexity in emergent social 
interactions and dynamics between spatial elements needed to simulate a believable crisis environment.  

The contribution of the research as discussed in Section 9.2 points to its usefulness in earthquake 
evacuation research. More research in the future are admittedly needed to refine the model, and test its 
fit for use in applications in different domains.   
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APPENDIX 

Appendix 1.0  GAMA Code  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

buildingIntensityVShapefile <-  
     file('../includes/GrenobleCore_BuildingsDamageAug202k18_GTEST_PROB_run.shp'); 
 

Code 30 Getting the shapefile with damage and vulnerability data. (Equivalent to Code 1)   

float D_pa; float D_pb; float D_pc; float D_pd; float D_pe;  
float D_d0V_P; floatD_d1V_P; float D_d2V_P; float D_d3V_P; float D_d4V_P;  
float D_d5V_P;  
float D_d0VI_P; float D_d1VI_P; float D_d2VI_P; float D_d3VI_P; float D_d4VI_P; 
float D_d5VI_P;  
 

Code 31 Getting the values from fields of type float. (Equivalent to Code 2) 

string typeVC <- flip(D_pa) ? "a" :( flip(D_pb) ? "b": (flip(D_pc) ? "c": 
(flip(D_pd) ? "d": (flip(D_pd)?"e":"e")))); 
 

Code 32 Assigning building typology (vulnerability class) using the flip() function. (Equivalent to Code 3) 

int typeDCV <- flip(D_d0V_P) ? 0 : (flip(D_d1V_P) ? 1: (flip(D_d2V_P) ? 2:    
     (flip(D_d3V_P) ? 3:(flip(D_d4V_P) ? 4 : (flip(D_d5V_P) ?5:1)))));  
int typeDCVI <-flip(D_d0VI_P) ? 0 : (flip(D_d1VI_P) ? 1: (flip(D_d2VI_P) ? 2: 
     (flip(D_d3VI_P) ? 3:(flip(D_d4VI_P) ? 4 : (flip(D_d5VI_P) ?5:2))))); 
 

Code 33 Assigning building damage for intensity scenarios using the flip() function. (Equivalent to Code 4) 

save buildings to:"../shapefiles/buildingsDamageRun_Scenario5.shp" type:"shp" 
     with:[ID::"ID",HAUTEUR::"HAUTEUR",IRIS::"IRIS",IRIS_NAME::"IRIS_NAME",  
     typeVC::"ScBH1_VC",typeDCV::"ScBH1DV",typeDCVI::"ScBH1DVI", 
     typeDCVII::"ScBH1DVII",typeDCVIII::"ScBH1DVIII", 
     typeDCIX::"ScBH1DIX",typeDCX::"ScBH1DX", 
     typeDCXI::"ScBH1DXI",typeDCXII::"ScBH1DXII"]; 
 

Code 34 Saving building data to shapefile (Equivalent to Code 5) 

file buildingIntensityVIShapefile <- file('../includes/      
     GrenobleCore_BuildingsDamageAug202k18_CLIP_IntV_Sc5_Outer_IntVI.shp');  
 

Code 35 Load the building shapefile for intensity VI scenario (Equivalent to Code 6) 

init { 
     create buildingsIntVI from: buildingIntensityVIShapefile; 
} 
 
 

Code 36 Initialise building agent from building shapefile (Equivalet to Code 7) 
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species buildingsIntV { 
     int HAUTEUR; /*building height from BDTOPO */ 
     string ScBH1_VC; //EMS-98 Vulnerabilty Class ( a,b,c,d,e) 
     int ScBH1DVI; //Scenario: Damage at Intensity VI (0, 1, 2,3,4,5) 
 
     aspect default{  
          //VULNERABILITY TYPOLOGY 
          if (eqMagnitude <= 3){ 
        draw shape colour: (ScBH1_VC = "a") ? # red : ((ScBH1_VC = "b") ? # 
green 
               : ((ScBH1_VC = "c") ? # blue : ((ScBH1_VC = "d") ? # yellow : 
((ScBH1_VC 
               = "e") ? # violet : #black)))) border: # grey depth: HAUTEUR *  
               height_multiplier; 
          } 
          //DAMAGE 
          elseif (eqIntensity = 6){ 
        draw shape colour: (ScBH1DVI = 0) ? # white : ((ScBH1DVI = 1) ? # 
yellow 
               : ((ScBH1DVI = 2) ? # orange : ((ScBH1DVI = 3) ? # red : ((ScBH1DVI = 
4) 
               ? # maroon : ((ScBH1DVI = 5) ?# black : # lightblue))))) border: # 
               Grey depth: HAUTEUR * height_multiplier; 
   } 
     } 
} 
 
 

Code 37 Building species (Equivalent to Code 8) 

reflex createDebris when: (time >= eqtime) and (time <= (eqtime + eqDuration)){ } 
 
 

Code 38 Creating debris at every timestep within the duration of the simulated earthquake. Equivalent to 
Code 9 

int k_debris; 
int DLAYER; 
//added random probabilities with max range for creation of debris wrt typology 
if (ScBH1_VC = 'a'){ 
     k_debris <- rnd(1, 10); 
} else if (ScBH1_VC = 'b'){ 
     k_debris <- rnd(1, 7); 
} else if (ScBH1_VC = 'c'){ 
     k_debris <- rnd(1, 5); 
} else if (ScBH1_VC = 'd'){ 
     k_debris <- rnd(0, 3); 
} else if (ScBH1_VC = 'e'){ 
     k_debris <- rnd(0, 1); 
} 
 

Code 39 Amount of debris created based on typology (Equivalent to Code 10) 

int n_debris; 
if eqIntensity = 5{ 
     n_debris <- int(ScBH1DV * k_debris * eqIntensity * HAUTEUR / 650); 
     create smallDebris number: n_debris{ 
          shape <- square(1.0) rotated_by rotation; 
          location <- any_point_in((dangerZoneV_VIII where (each.DLAYER = 5)  
               closest_to (myself))intersection  
                      geometry(freeSpaceLayer)); 
}  
    
 

Code 40 Debris created at each time step (Equivalent to Code 11) 

if (eqIntensity = 6 and ScBH1DVI = 5){ 
     create hugeDebris number: 1{ 
          BSource <-myself.ID; 
   shape <- square(4.0) rotated_by rotation; 
   list<doors> nearby_doors <- doors overlapping (2 around myself); 
   location <- (doors where (each.ID = myself.ID)); 
     } 
} 
 

Code 41 Building collapse (Equivalent to Code 12) 
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list<string> use <- ["Home", "Work", "School", "Public", "Outdoor"]; 
list<string> agegroup <- ["adult", "elderly", "child"]; 
list<float> evacSpeedsMax <- [3.8, 0.0, 2.23, 1.11, 1.77];  
//Format for SPEEDS: adult, child_0_2,child3_14, elderly, disabled 
list<float> probDisability <- [0.012, 0.024, 0.013, 0.028, 0.039, 0.035, 0.090, 0.067, 
0.123, 
     0.102, 0.125, 0.124, 0.217,0.229, 0.423, 0.361]; 
bool disabilityON <- false; //true if disability ON, and false if not included 
 
 
 

Code 42 General parameters. Equivalent to Code 13. 

list<string> iris <- ["Crequi_VHugo", "Grenette", "AIGLE","CHAMPIONNET","GENISSIEU", 
     "HOCHE","JEAN JAURES","PREFECTURE,…,"WALDEC ROUSSEAU" 
]; 
 

Code 43 List of IRIS units. Equivalent to Code 14 

//NIGHT TIME SCENARIO 
float pctPop<-0.002;//percentage of population, to limit agent creation 
 
//1. Crequi-VictorHugo format: [home, work, school, public, outdoors] 
list<int> VHpopChild0_2 <-[pctPop*45,pctPop*0,pctPop*0,pctPop*0,pctPop*0]; 
list<int> VHpopChild3_14 <-[pctPop*199,pctPop*0,pctPop*0,pctPop*0,pctPop*0]; 
list<int> VHpopAdultY15_29 <-[pctPop*739,pctPop*0,pctPop*0,pctPop*0,pctPop*0]; 
list<int> VHpopAdultM30_59 <-[pctPop*660,pctPop*0,pctPop*0,pctPop*0,pctPop*0]; 
list<int> VHpopElderlyG60 <-[pctPop*535,pctPop*0,pctPop*0,pctPop*0,pctPop*0]; 
 

Code 44.Generating night time population.  Equivalent to Code 15  

//DAYTIME SCENARIO 
float pctPop<-1.00;//percentage of population, to limit agent creation 
  
//1. Crequi-VictorHugo format: [home, work, school, public, outdoors] 
list<int> VHpopChild0_2 <-[pctPop*41,pctPop*0,pctPop*0,pctPop*0,pctPop*4]; 
list<int> VHpopChild3_14 <-[pctPop*0,pctPop*0,pctPop*179,pctPop*0,pctPop*20]; 
list<int> VHpopAdultY15_29 <-[pctPop*38,pctPop*246,pctPop*381,pctPop*0,pctPop*74]; 
list<int> VHpopAdultM30_59 <-[pctPop*0,pctPop*594,pctPop*0,pctPop*0,pctPop*66]; 
list<int> VHpopElderlyG60 <-[pctPop*354,pctPop*128,pctPop*0,pctPop*0,pctPop*54]; 
 

Code 45 Generating day time population. Equivalent to Code 16. 

list<list> I30_59 <-[VHpopAdultM30_59,GRpopAdultM30_59,I214AdultM30_59,I215AdultM30_59, 
     I211AdultM30_59,I216AdultM30_59,I203AdultM30_59,I212AdultM30_59,I206AdultM30_59, 
     ….,I610AdultM30_59,I110AdultM30_59  
]; 
 

Code 46 List of the population of Adults (30 -59 y.o.) for each IRIS. Equivalent to Code 17. 
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loop i from: 0 to: 3 step:1{ 
     int k<-0; 
     loop j over:I30_59 { 
          create adult number:j[i]{ 
               location <- one_of(doors where ((each.Activity = use[i]) and  
               (each.IRISName = iris[k]))).location; 
     a_ageGroupsChoice<-agegroup[0];a_subGroup <- subgroup[0];a_use <- use[i]; 
            a_role <- role[0];a_age <- rnd(30, 59);a_speed <- rnd(evacSpeedsMax[0]); 
            a_indoor <- true;a_outdoor <- false;a_IRIS <- iris[k]; 
      
            if (disabilityON = true){ 
          if ((a_age >= 25) and (a_age <= 34)){ 
               a_disabled <- flip(rnd(probDisability[2], probDisability[3])); 
          } else if ((a_age >= 35) and (a_age <= 44)){ 
     a_disabled <- flip(rnd(probDisability[4], probDisability[5])); 
          } else if ((a_age >= 45) and (a_age <= 54)){ 

   a_disabled <- flip(rnd(probDisability[6], probDisability[7])); 
          } else{ 
     a_disabled <- flip(rnd(probDisability[8], probDisability[9])); 
          } 
          if (a_disabled = true){ 
     a_speed <- rnd(0, evacSpeedsMax[3]); 
          } 
     }  
 }   
     k <- k+1; 
     } 
} 
 

Code 47 Generating human agent population. Equivalent to Code 18. 

reflex adult_avoidBuildings when: (self.location distance_to   
     any_point_in(buildings closest_to (self)) < 5.0){ 
     point acc <- { 0, 0 }; 
     list<buildings> nearby_Buildings <- (buildings at_distance 2.0); 
     loop obs over: nearby_Buildings{ 
          acc <- acc - (obs.location - location); 
     } 
     heading <- heading + rnd(-30, 30); 
     speed <- a_speed;   
     velocity <- velocity + acc; 
} 
  

Code 48 Agent avoiding buildings. Equivalent to Code 19. 

reflex adult_hurtBy_smallDebris when: a_outdoor = true and (eqIntensity = 5) and  
     is_active = true and (time >= eqtime) and (time <= (eqtime + eqDuration)) and  
     self.location distance_to centroid(smallDebris closest_to (self)) <= 1{ 
     if length(smallDebris overlapping (self))>0{ 
          speed <- 0.00001; 
          if flip(0.5) = true{ 
               is_deceased <- true; 
               is_active <- false; 
          } else{ 
               is_injured <- true; 
   } 
     } 
} 
 

Code 49 Generating casualties. Equivalent to Code 20. 

reflex adult_avoid_smallDebris when: is_active = true and (eqIntensity = 5){ 
     point acc <- { 0, 0 }; 
     list<smallDebris> nearby_smallDebris <- (smallDebris at_distance separationDebris); 
     loop obs over: nearby_smallDebris{ 
          acc <- acc - (obs.location - location); 
     } 
     velocity <- velocity + acc; 
} 
 

Code 50 Agents avoiding debris. Equivalent to Code 21. 
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string idColleague; 
string idFamily; 
 
reflex initialize when: time = 0{ 
     bldgfloor <- int(((doors closest_to (self)).HAUTEUR) / floorHt); 
     b_floor <- rnd(0, (bldgfloor - 1)); 
 
     if (doors closest_to (self)).Activity="Home"{ 
          idFamily <- string((doors closest_to (self)).ID)+string(b_floor);  
     } else if (doors closest_to (self)).Activity="Work"{ 
          idColleague <- string((doors closest_to (self)).ID)+string(b_floor); 
     } else if (doors closest_to (self)).Activity="School"{ 
          idColleague <- string((doors closest_to (self)).ID)+string(b_floor); 
     } 
     do add_desire(normal);do add_belief(normal); 
} 
 

Code 51 Defining social relationships. Equivalent to Code 22. 

int idKinMax; 
int idFriendMax; 
  
int idKin <- rnd(0, idKinMax); 
int idFriend <- rnd(0, idFriendMax); 
 
 

Code 52 Assigning kin and friend IDs. Equivalent to Code 23. 

predicate normal <- new_predicate("normal_stay");  
predicate adult_move_to_Door <- new_predicate("adult_move_to_Door"); 
predicate stay_feelsafe <- new_predicate("stay_feelsafe");  
predicate moveout <- new_predicate("adult_moveout");  
predicate adult_move_to_road <- new_predicate("adult_move_to_road");  
predicate adult_move_to_safearea <- new_predicate("adult_move_to_safearea");  
predicate adult_move_to_safeareaSPOTS <- new_predicate("adult_move_to_safeareaSPOTS");  
predicate adult_move_to_safearea0p5SPOTS <- new_predicate("adult_move_to_safeareaSPOTS");  
predicate adult_helpInjuredAdult <- new_predicate("adult_helpInjuredAdult"); 

Code 53 Predicates for adult agents. Equivalent to Code 24 

predicate child_move_to_safearea <- new_predicate("child_move_to_safearea");  
predicate child_move_to_road <- new_predicate("child_move_to_road");  
predicate child_move_to_adultTeacher <- new_predicate("child_move_to_adultTeacher");  
predicate child_move_to_adultFamily <- new_predicate("child_move_to_adultFamily");  
predicate child_move_to_adultFamilyParent <- new_predicate("child_move_to_adultFamilyParent");  
predicate child_move_to_adultKin <- new_predicate("child_move_to_adultKin");  
predicate child_move_to_adultFriend <- new_predicate("child_move_to_adultFriend");  
predicate child_move_to_adultColleague <- new_predicate("child_move_to_adultColleague");  
predicate child_move_to_adultStranger <- new_predicate("child_move_to_adultStranger");  
predicate child_move_to_childFamily <- new_predicate("child_move_to_childFamily");  
predicate child_move_to_childKin <- new_predicate("child_move_to_childKin");  
predicate child_move_to_childFriend <- new_predicate("child_move_to_adultFriend");  
predicate child_move_to_childColleague <- new_predicate("child_move_to_childColleague");  
predicate child_move_to_childStranger <- new_predicate("child_move_to_childStranger");  
 

Code 54 Predicates for child agents. Equivalent to Code 25 
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reflex detectEarthquake when: (time = eqtime){ 
     //PRE-EVACUTION ACTIONS SECTION  
 
     //WHEN THE DECISION IS TO MOVE OUT TO EVACUAT  
     //BDI SECTION 
     do remove_desire(normal);do remove_belief(normal); 
     do add_desire(adult_move_to_road);do add_desire(adult_move_to_safearea); 
     do add_desire(adult_move_to_adultFamily);do add_desire(adult_move_to_childFamily); 
     do add_desire(adult_move_to_childFamily_Parent); 
     do add_desire(adult_move_to_adultKin);do add_desire(adult_move_to_childKin); 
     do add_desire(adult_move_to_adultFriend);do add_desire(adult_move_to_childFriend); 
     do add_desire(adult_move_to_adultColleague);do add_desire(adult_move_to_childColleague); 
     do add_desire(adult_move_to_adultStranger);do add_desire(adult_move_to_childStranger); 
     do add_desire(adult_Teacher_move_to_child); do add_desire(adult_helpInjuredAdult); 

      
 

Code 55 Reflex when detecting earthquakes. Equivalent to Code 26..  

global { 
     /** Insert the global definitions, variables and actions here */ 
     //for social ties, this are set here from pre-calculated values in the formula, but      
     can be dynamically set,   
  
     //perception distance (format: DAY, NIGHT, SNOW) 
     //list<string> Context <-["day","night","snow"]; 
     list<float> PD_Child <- [100.0, 100.0, 100.0]; 
     list<float> PD_Partner <- [94.10, 4.11, 43.03]; 
     list<float> PD_Parent <- [88.85, 3.89, 40.63]; 
     list<float> PD_Kin <- [76.45, 3.34, 34.96]; 
     list<float> PD_Friends <- [87.85, 3.84, 40.17]; 
     list<float> PD_Acquintance <- [69.20, 3.03, 31.65]; 
     list<float> PD_Stranger <- [60.85, 2.66, 27.83]; 
     list<float> PD_Family <- [100.0, 100.0, 100.0]; 
} 
 

Code 56 Perception distances.  Equivalent to Code 27. 

plan adult_move_to_adultFamily intention: adult_move_to_adultFamily when: is_active = true 
and (atEvacZone = false) and (self.location distance_to (adult closest_to (self)) < 
PD_family) and (self.idFamily = (adult closest_to (self)).idFamily){ 
     point pointAdultFamily <- (adult closest_to (self)).location; 
     perceived_areaAdultFamily <- (cone(heading - 10, heading + 10) intersection  
     world.shape) intersection polygon([self.location, pointAdultFamily.location]); 
   
     if (perceived_areaAdultFamily != nil){ 
 perceived_areaAdultFamily <- perceived_areaAdultFamily masked_by (buildings, 
        precision); 
 perceiveChildDeceased_Child <- false;perceiveAdultDeceased_Child <- false; 
 perceiveChildDeceased_Adult <- false;perceiveAdultDeceased_Adult <- false; 
 perceiveChildTeacher <- false;perceiveAdultTeacher <- false; 
 perceiveFamilyAdult <- true;perceiveFamilyChild <- false; 
 perceiveKinAdult <- false;perceiveKinChild <- false; 
 perceiveFriendAdult <- false;perceiveFriendChild <- false; 
 perceiveColleagueAdult <- false;perceiveColleagueChild <- false; 
 perceiveStrangerAdult <- false;perceiveStrangerChild <- false; 
 perceiveSMALLDebris <- false;perceiveMEDIUMDebris <- false; 
 perceiveBIGDebris <- false;perceiveHUGEDebris <- false; 
 perceiveAreaInFront <- false;perceiveRoad <- false; 
 perceiveSafeArea <- false; 
 a_following <- true;   
     } else{ 
 perceiveFamilyAdult <- false; 
 a_following <- false; 
     } 
} 
 

Code 57. Perceiving other agents. Equivalent to Code 28  

int endCyle <- eqtime+900; 
 

Code 58 End simulation. Equivalent to Code 29. 


