
HAL Id: tel-02613295
https://theses.hal.science/tel-02613295

Submitted on 20 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite Element Methods for nonlinear interface
problems. Application to a biofilm growth model

Anh Thi Dinh

To cite this version:
Anh Thi Dinh. Finite Element Methods for nonlinear interface problems. Application to a biofilm
growth model. Analysis of PDEs [math.AP]. Université Sorbonne Paris Cité, 2018. English. �NNT :
2018USPCD083�. �tel-02613295�

https://theses.hal.science/tel-02613295
https://hal.archives-ouvertes.fr

Résumé

Un biofilm est un ensemble de micro-organismes tels que les bactéries, les champignons
ou encore les algues qui vivent en communauté. Les biofilms ont la capacité d’être
présents en tout lieu. Ils sont observés dans les milieux aqueux ou humides. Ils
peuvent se développer sur n’importe quel type de surface naturelle ou artificielle,
qu’elle soit minérale (roche, interfaces air-liquide...) ou organique (peau, tube diges-
tif, racines et feuilles des plantes), industrielle (canalisations, coques des navires) ou
médicale comme les prothèses et les cathéters. Cette ubiquité est à l’origine de nom-
breuses infections bactériennes. Les infections nosocomiales contractées dans les
hôpitaux sont un exemple majeur. Certaines de ces infections pouvant être mortelles.
Le traitement médical des biofilms est souvent inefficace pour lutter contre ce type
d’infection. Il est donc important de comprendre les mécanismes de croissance d’un
biofilm. Telle est la motivation de la présente thèse.

Afin de réaliser des simulations numériques d’un modèle décrivant la croissance
d’un biofilm, nous combinons différentes méthodes de calcul basées sur la méthode
Nitsche-Extended Finite Element Method (NXFEM) ainsi que sur la méthode des
lignes de niveau. Ces méthodes nous permettent d’étudier des modèles complexes
dans lesquels l’interface entre le biofilm et son environnement est capable de se
déformer tout en dépendant du temps. Ceci permet de considérer une discrétisation
à l’aide d’un maillage ne coı̈ncidant pas avec l’interface biofilm/environnement.
Nous présentons également une technique de découplage d’un système d’équations
aux dérivées partielles semi-linéaires et la façon dont nous appliquons la méthode
NXFEM pour résoudre un tel problème. Ce système est en relation avec le modèle
de croissance du biofilm qui est traité dans cette thèse

Pour l’implémentation, une boı̂te à outils NXFEM, développée en Matlab, a été
entièrement conçue pour résoudre un tel problème. Nous donnons dans ce document

les détails des algorithmes et techniques numériques utilisés afin que chacun puisse
utiliser cette boı̂te à outils pour ses propres projets.

Mots clés: NXFEM, Nitsche-Extended Finite Element Method, problème d’interface,

méthode de lignes de niveau, biofilm.

Abstract

A biofilm is a collective of living, reproducing microorganisms, such as bacteria,
that stick together as a colony or community. They appear everywhere in human life
and have impacts on our environment. Biofilm modeling, together with laboratory
experiments, has risen to produce quantitative tools for scientists to better understand
the biofilm’s growth. This thesis is motivated to research on this subject.

A combination of computational methods which are based on Nitsche-Extended

Finite Element Method (NXFEM), Level Set Method and some other stabilized
techniques is used to solve and simulate a biofilm growth model. These methods
allow us to work with a complex scheme in which the interface between the biofilm
and its environment may change with time and on an unfitted mesh. We also present
a technique of decoupling a system of semilinear differential equations and how we
apply the NXFEM method to solve such a problem. This system has a relation to a
model of biofilm’s growth which will be examined carefully in the work.

For the implementations, NXFEM toolbox which is a Matlab based toolbox is built
for solving such a problem. We also give the details of all algorithms and numerical
techniques so that everyone can use this toolbox for their own projects.

Keywords: NXFEM, Nitsche-Extended Finite Element Method, interface problem,

level set method, biofilm, unfitted mesh.

Acknowledgements

First and foremost, I express my special appreciation and thanks to my supervisors:
Mr. Jean-Stéphane Dhersin, Ms. Linda El Alaoui, and Mr. Adel Blouza. Without
their patience and kindness, I cannot finish this thesis in a most convenient way.
They gave me advice not only in my study but also in the problems I met when living
in France. I would like to thank specially to Linda and Adel for encouraging my
research and for allowing me to grow as a research scientist. Their advice on both
research as well as on my career have been invaluable. One simply could not wish
for better or friendlier supervisors.

Besides that, I would like to thank the rest of my thesis committee. I thank Mr.
Pascal Frey and Mr. Yves Renard for their insightful comments, suggestions, and
encouragement. I like to thank Mr. Nicolas Vauchelet, Mr. Sébastien Martin, and Mr.
Luís Neves de Almeida for their acceptance to be members of the committee of my
defense.

Many thanks to Mr. Hatem Zaag for his kindness in supporting me a scholarship in
the fourth year of my thesis.

I would also like to thank the staff of the LAGA laboratory for creating favorable
conditions for me to work and study there. Especially thanks to Ms. Isabelle Barbotin
and Ms. Yolande Jimenez for helping me in the missions and also in many other
trivia things I met in laboratory LAGA. They are very warm and friendly friends. Of
course, I cannot forget to say "thank you" to my librarian friend, Mr. Jean-Phillippe
Dru. He is a very friendly guy. He likes to help everyone who comes to his library,
and I was the one used to work there for a very long time.

Mr. Pascal Omnes, a teacher, a very friendly and dedicated friend, who helps me a
lot and gives me much advice about my life and career. With a few words, I cannot

say about all things I would like to thank him.

I would like to thank my friends in University Paris 13: Tarek Ghoudi, Oussama Lan-
doulsi, Mohammed Zitouni, and Antoine Kaszczyc. With their help, I can improve
my French day by day more comfortable and confident. They are very friendly, kind
and fun.

Next and finally, I express my friendly thanks to my Vietnamese friends and my
family. I write in Vietnamese for them.

Em cảm ơn anh Việt đã giúp em rất nhiều khi em bị bệnh mắt và cần người phiên
dịch. Cảm ơn anh Hoàng và Kỵ đã cho em/anh ở tạm một khoảng thời gian dài để
hoàn thành luận án. Cảm ơn Quang, Trâm, Thiện, Thủy, Nhật, chị Hòa, bé Thảo,
Long đã giúp anh rất nhiều trong việc chuẩn bị tiệc sau bảo vệ.

Em cảm ơn anh chị Dũng Trang đã giúp và xem em như một người em trong gia
đình. Em cảm ơn chị Kiều đã và đang có những lời khuyên quý giá giúp em trong
việc định hình hướng đi tiếp theo trong sự nghiệp. Em cảm ơn thầy Ngô Văn Thiện
đã luôn đồng hành và động viên em như một người bạn chân tình. Em cảm ơn chị
Đoan, chị Tú và gia đình đã cho em những giây phút ấm áp cùng gia đình các anh
chị và giúp đỡ em nhiều khi sống ở bên Pháp.

Em/Anh xin cảm ơn đến gia đình anh chị Hoàn Huyền, anh Điệp, Hoàng Gia, Trọng,
chị Nga, chị Thu, anh Chiến Bùi, anh Chiến Thái, anh Ân, anh chị Bảo Cúc, chị
Dung và rất nhiều anh, chị, em, bạn bè khác ở Pháp đã cho em/anh những phút giây
thật vui vẻ và sảng khoái như được có thêm một gia đình nữa bên Pháp.

Cảm ơn người bạn đặc biệt giấu tên của anh, người đã cùng anh chia sẻ một trong
những khoảnh khắc đẹp nhất cuộc đời anh trong giai đoạn anh làm luận án.

Em muốn dành lời cảm ơn đặc biệt đến chị Phượng, người chị đã hết lòng động viên
và giúp đỡ em không ngừng khi em gặp những khoảng thời gian khó khăn nhất khi ở
Pháp. Em cũng muốn gởi lời cảm ơn đến anh Lộc khi đã tạo điều kiện cho chúng em
đến chơi nhà anh chị và vui đùa thỏa thích để quên đi cảm giác xa quê.

Cuối cùng, con cảm ơn cha mẹ, anh cảm ơn Huy, thằng em trai nhỏ, những người đã
luôn ủng hộ, tin tưởng và động viên con trong suốt khoảng thời gian qua. Con muốn
dành kết quả này như một món quà đặc biệt biếu tặng cha mẹ.

From a friend, a brother, a son and a Vietamese guy.

Contents

Abstract iii

Acknowledgements v

Glossaries, notations and operators xi

Acronyms . xi

Notations . xii

Operators . xiv

1 Introduction 1

1.1 Biofilm . 1

1.1.1 What is biofilm? . 1

1.1.2 Modeling of biofilm . 3

1.1.3 Monod’s law . 4

1.1.4 Some former biofilm models & works . 6

1.2 Motivation & objective of thesis . 8

1.3 Methods to use . 10

1.4 Outline of the thesis . 12

I nxfem method

2 Original NXFEM 15

2.1 Nitsche’s method . 15

2.2 Original NXFEM . 16

2.3 The choice of parameters . 24

2.4 Ghost penalty & Stability property . 26

2.5 The implementation issue . 28

2.6 Numerical test cases . 32

2.6.1 Barrau’s test case . 32

2.6.2 Sinha’s test case . 33

2.6.3 The choice of parameters . 35

3 Implementation NXFEM with Matlab 37

3.1 Model . 38

3.2 Quadrature . 38

3.3 Mesh and some components . 39

3.3.1 Mesh generation . 39

3.3.2 Describe the interface . 40

3.3.3 Get triangles . 41

3.3.4 Cut triangles . 42

3.3.5 Unit normal vector . 44

3.3.6 Other components . 44

3.4 Assembling . 45

3.4.1 Assembling of the stiffness matrix . 45

3.4.2 Assembling of right hand side . 49

3.4.3 Implementing the Ghost Penalty . 51

3.4.4 Implementation issue of norms . 54

3.5 Numerical examples . 54

4 Resolution of semilinear-interface system by NXFEM 55

4.1 Model . 56

4.2 Decoupling the system of equations . 57

4.2.1 Weak formulations . 57

4.2.2 Discrete formulations . 61

4.3 Analysis . 61

4.4 The convergence . 65

4.5 A numerical test case . 72

II nxfem with biofilms

5 Level Set Method 77

5.1 Recall the method . 77

5.2 The SUPG method with a Crank-Nicolson scheme 81

5.3 Reinitialization - Fast Marching Method . 82

5.4 A numerical test case . 83

6 Application to a biofilm growth model 89

6.1 Coupling NXFEM with Level Set Method . 89

6.2 Some biofilm growth models . 90

6.2.1 Models . 91

6.2.2 Weak forms . 93

6.2.3 Discretization and iteration . 94

6.3 Some numerical test cases . 96

6.3.1 Linear model . 96

6.3.2 Nonlinear model . 98

7 Conclusion 103

7.1 The methods . 103

7.2 The NXFEM toolbox . 104

7.3 For the future . 104

appendix

A Implementation and NXFEM toolbox 107

A.1 Some principles of quadrature . 107

A.2 Connectivity of triplet [p,e,t] . 112

A.3 Proof of formula used in finding intersection points 113

A.4 Example of finding intersections . 113

A.5 Example of finding unit normal vector . 113

A.6 Implementation issue of some norms in NXFEM toolbox 113

A.6.1 Norms in standard finite element space Vh 113

A.6.2 Norms in NXFEM space V Γ
h . 116

A.7 Interpolation between Vh and V Γ
h . 118

A.7.1 From V Γ
h to Vh . 118

A.7.2 From Vh to V Γ
h . 119

B Biofilm growth 121

B.1 Biofilm’s experimental parameters . 121

references

List of Figures 127

List of Tables 130

List of Algorithms 131

Bibliography 133

Index 139

Glossaries, notations and symbols

In this section, I list all of the acronyms, operators and notations I will use throughout
this thesis. There may be ones that are only defined here and used later without recall
the definition at the place they appear.

Acronyms

Initials Meaning

1D Dimension 1 or 1 dimensional

2D Dimension 2 or 2 dimensional

DDM Domain Decomposition Method

EPS Extracellular Polymeric Substances

FEM Finite Element Method

IIM Immersed Interface Method

ips intersection points

LHS Left Hand Side

LSM Level Set Method

NFEM Nitsche Finite Element Method

Initials Meaning

NXFEM Nitsche-Extended Finite Element Method

RHS Right Hand Side

SUPG Streamline Upwinding Petrov-Galerkin method

w.r.t with respect to

XFEM Extended Finite Element Method

Notations

Notations Meaning Page

Gh set of all cells that are interseted by interface Γ. 17

Hk(Ω),Hk
0(Ω) are W k,2(Ω),W k,2

0 (Ω) respectively. xv

Hk(Ω12) Hk(Ω1∪Ω2) := {v∈ L2(Ω) : vi ∈Hk(Ωi) for i =
1,2} for k = 0,1,2 where vi = v|Ωi

.
21

HΓ a heaviside function w.r.t each subdomain Ωi. 30

ISD, ISD Interpolation operator from V Γ
h to Vh and vice

versa.
118

K,∂K element K of triangulation Th and its sides ∂K. 17

Lp(Ω) functions whose p-th power is Lebesgue inte-
grable on Ω.

xv

Lp(]0,T [;V) V -valued functions whose norm in V is in
Lp(]0,T [).

xv

Nr(x̂, ŷ) Local shape functions defined on reference trian-
gle K̂.

111

NVh
,NI ,Nnew number of standard basis functions in Vh, number

of “new” basis functions and number of degree of
freedom in V Γ

h respectively.

45

Oxy,Ox̂ŷ Coordinate systems Oxy and its reference Ox̂ŷ. 109

V,V0 V = {v ∈H1(Ω) : v = 0 on Γ}, V0 = {v ∈V : v =
0 on ∂Ω}.

xv

V h
A ,V

Γ
h,i = Vh ⊕V Γ

h,1 ⊕V Γ
h,2. NXFEM space defined by

Reusken et al. [50], cf. (2.33, 2.41).
28, 31

Notations Meaning Page

Vh standard finite element method, cf. (2.4). 16

Vσ ,V
0
σ Symbolic spaces defined in Definition 4.3. 65

W k,p(Ω),W k,p
0 (Ω) W k,p(Ω) contains functions whose derivatives up

to order k are in Lp(Ω), W
k,p
0 (Ω) contain func-

tions in W k,p(Ω) and they are zero on ∂Ω.

xv

Xa,Xb two endpoints of ΓK,h. 47

Γ,ΓK,ΓK,h,Γh the interface Γ and its part ΓK on the triangle K

and ΓK,h the segment connecting the intersection
points between Γ and boundary ∂K of element K.
Γh = ∪ΓK,h

16–18

Ω12 Ω1∪Ω2. xv

ΩT fictitious domain of physical domain Ω. 26

V Γ
h ,V

0
h finite element spaces considered in NXFEM

method, cf. (2.14), (2.15).
21, 30

K̂ Reference triangle K̂ in Ox̂ŷ which is correspond-
ing to a triangle K in Oxy under trasform mapping
P (Figure A.1). Note that, the notation ·̂ is used
to indicate the reference of some components in
Ox̂ŷ.

108

Pk vector space of polynomials in the variables
x1, . . . ,xd of global degree at most k in R

d .
16

D(Ω) infinitely differentiable functions compactly sup-
ported in Ω.

xv

E i
G set of edges used to compute the ghost penalty

terms in each subdomain Ωi, cf. (2.32).
28

I ,IΓ,I
Γ

i set of indexes numbering the nodes associated to
Vh and its subset which neighbour the interface,
cf. (2.34, 2.35).

28, 29,
119

I1,I2,I0 set of indexes numbering the nodes associated
to Vh in each subdomain Ωi and the nodes on
interface, cf. Section A.7.1.

119

Th,T
i

h conforming triangulation of domain Ω and it sub-
set which covers subdomain Ωi.

16, 17

Notations Meaning Page

n,nF unit normal vector at a given point on interface
or on edge F (its direction will be precised when
needed or be chosen arbitrarily).

16, 19

ρK diameter of largest ball inside element K. 18

ϕi,ϕk(i) enrichment basis functions proposed by Hansbo,
cf. (2.36).

29

ϕΓ
i enrichment basis functions proposed by Reusken,

cf. (2.40).
31

ϕi without additional information, they are standard
basis functions of FE space Vh.

29

{ωq,ξq} Quadrature weights and points given in Defini-
tion A.1.

107

aΩ
K ,a

ΓG

K ,aΓP
K bilinear form in assembling global stiffness matrix

Ai j, cf. (3.9).
45

hK,h diameter of each element K in Th and h :=
maxK∈Th

hK .
17

ji(·, ·) ghost penalty term, cf. (2.31). 27

kq Quadrature order given in Definition A.1. 108

Operators

Operators Meaning Page

Ih, I
∗
h , I
∗
h,i Interpolant operators defined in Definition 2.4. 23

Gh(vh) Discrete gradient operator: Gh(vh) := ∇vh −
Lh(JvhK),∀vh ∈V Γ

h .
65

Lh Lifting operator: 〈Lh(JvhK),ϕ〉Ω12
=

〈{{ϕ}} ·n,JvhK〉Γ,∀ϕ ∈ [V 0
h]

2.
65

‖·‖1/2,‖·‖−1/2 norms defined on the interface, cf. (2.21). 23

‖·‖k,X a short notation for ‖u‖Hk(X) and it’s L2 norm in
case k = 0.

xv

‖u‖Hk(Ω12)
‖u‖2

Hk(Ω12)
:= ‖u‖2

Hk(Ω1)
+‖u‖2

Hk(Ω2)
. 21

〈u,v〉K inner product on a convex set or on a line. 16

Operators Meaning Page

{{u}} average condition on an interface or on an edge of
the mesh’s element, cf. Definition 2.1.

18

P a mapping which transforms each vertex of K̂ in
Ox̂ŷ to corresponding vertex of K in Oxy, P is
given in (A.5).

109

Q a mapping which transforms each vertex of K̃ in
Ox̃ỹ to corresponding vertex of K̂ in Ox̂ŷ, Q is
given in (3.14).

51

JuK jumb condition on an interface or on an edge of
the mesh’s element, cf. Definition 2.1.

18

|K| measure of element K. xv

|||·|||1 norm defined in (4.21). 62

|||·|||2 norm defined in (4.24). 63

|||·|||H norm proposed by Hansbo [31], cf. (2.21). 23

|||·|||N norm in original Nitsche method, cf. (2.5). 16

|||·||| Symbolic norm defined in (4.27). 65

1. Introduction

Contents

1.1 Biofilm 1

1.1.1 What is biofilm? . 1

1.1.2 Modeling of biofilm . 3

1.1.3 Monod’s law . 4

1.1.4 Some former biofilm models & works . 6

1.2 Motivation & objective of thesis 8

1.3 Methods to use 10

1.4 Outline of the thesis 12

In this chapter, we take you from the start of biofilm problem to the methods and the
motivation of this thesis. We also present a general idea about biofilm and methods
people have used for recent years to solve interface problems which are the focus in
a biofilm model.

1.1 Biofilm

1.1.1 What is biofilm?

Definition. The term “biofilm” may be strange but it is something we may contact to
every day. The plaque that forms on teeth and causes tooth decay and periodontal

2 Chapter 1. Introduction

disease is a type of biofilm (Figure 1.1.a.). Biofilm is defined as a community of
micro-organisms (bacteria, fungi, algae and protozoa) attached to a surface. In [71],
biofilm is fully called as “a layer of prokaryotic and eukaryotic cells anchored to a

substratum surface and embedded in an organic matrix of biological origin”. Biofilm
may take the most responsibility for most infections [49] and bacteria inside biofilm
are more resistance to the antibiotic than planktonic cells of the same type [1].

Living environment. Biofilm is, generally, observed in aqueous media or in a
medium exposed to moisture. They can grow on any natural or artificial surface. This
surface may be mineral (rock interfaces, air-liquid,. . .) or organic (skin, plants,. . .),
industrial (pipes, oil, waste-water,. . .) or medical (prosthesis, catheters,. . .),. . .

a. On human body1. b. In nature2.

c. In food3. d. Walter filter4.

Figure 1.1. Biofilm appears everywhere in human life.

Biofilm’s life circle. The life circle of a biofilm form can be described via three
main stages: attachment, growth and dispersal [62, 44] (Figure 1.2). In the first
stage, free-floating, or isolated planktonic-state microbes encounter a submerged
surface and within minutes can become attached to this surface. They start to produce
viscous extracellular polymeric substances (EPS) and to colonize the surface. In the
second stage, EPS production allows the emerging biofilm community to develop a

1Credit: Modification of work by Klaus D. Peter (ear) and bacteriality.com (teeth).
2Credit: skfaquatics.com.
3Credit: The strange case of a biofilm-forming strain of Pichia fermentans, which controls

Monilinia brown rot on apple but is pathogenic on peach fruit - Sara Giobbe et al.
4Credit: P. Dirckx, Center for Biofilm Engineering, Montana State University, Bozeman.

1.1 Biofilm 3

complex, three-dimensional structure that is influenced by a variety of environmental
factors. Biofilm communities can develop within hours. Biofilm can growth under
everywhere and conditions, things they need to growth may be mentioned as mi-
croorganisms, moisture, nutrients and surfaces [62]. Finally, the fully mature biofilm
reaches a quasi-steady state where growth is balanced by loss through erosion and
detachment due to mechanical stress. They can propagate through detachment of
small or large clumps of cells, or by “seeding dispersal” that releases individual
cells. Either type of detachment allows bacteria to attach to a surface or to a biofilm
downstream of the original community.

Figure 1.2. Stages of the biofilm life cycle5.

Good or bad? They are in both ways. We have talked about tooth decay above
and there is also a link between biofilms with ulcerative colitis and several hospital
acquired infections. To dentists and doctors, biofilms are more than an eyesore. They
are expensive, destructive and sometimes deadly [64, 71],. . . Nevertheless, there
are some good news in that not all biofilms are bad. Some industries use them in
water-filter, production of medicines, food additives and even as cleaning agents [62,
71].

In this thesis, we focus on the “growth” stage of biofilm and study the change of its
form under some environment conditions.

1.1.2 Modeling of biofilm

A mathematical model is a description of a system of natural phenomena using math-
ematical concepts and language. The process of developing a mathematical model
is termed mathematical modelling. In this work, we develop a mathematical model
describing the growth of a biofilm model under some affects. A good understanding

5Credit: Courtesy of the Montana State University Center for Biofilm Engineering, P. Dirckx.

4 Chapter 1. Introduction

of this phenomenon is in accordance with a good model and inversely. Using and
creating a mathematical model require six steps [71]:

1. The important variables and processes acting in the system must be identified.
In our problem, necessary components are substrates, bacteria, fluid flows,
biomass flows and some antimicrobial.

2. Performing processes as mathematical expressions. In our case, this is the sys-
tem of two partial differential equations describing the evolution of substrates
and bacteria. They can be represented by Monod’s law (Section 1.1.3) and
diffused by Fick’s law.

3. The mathematical expressions are combined appropriately in equations. We
will discuss the meaning of a biofilm model in Chapter 6.

4. The parameters involved in the mathematical expressions are given values.
In our model, parameters come from real experiments and from some others’
works.

5. Approximate the solution of the system by numerical methods. If a problem has
a solution, then we approximate it by a numerical scheme. We based on the
biofilm model to work with an interface problem. From that, we choose the
NXFEM method to treat a such problem. See more detail in Part I.

6. The properties of the system are explored via the solution of the model. After
doing maths on the biofilm models, we give comments on the results and play
with them. See more in Part II.

The presence of biofilms in a wide range of situations has led researchers to study
their properties for their both good and bad aspect. It turns out that mathematical
modeling can be an efficient and essential tool for the study of biofilms because it’s
difficult to study biofilm in a laboratory with their thickness is on the order of 10 to
100 microns [42] (a micron is about 10−6 meters).

Modeling is a powerful tool for studying biofilm processes as well as for understand-
ing how to encourage good biofilms or discourage bad biofilms. A mathematical
model may be a good way to connect the different processes to each other and to
measure their relative contributions [71].

A biofilm model should be realistic in the sense that it does not necessarily contain
all phenomena within a biofilm, but it should be able to tell accurately the properties
of biofilm on which we are working.

Because we only focus on the growth of a biofilm, we see its form as a layer (without
considering its thickness) covering around the bacteria (Figure 1.3). We will work
on this layer which is an interface in a mathematical model. We will discuss this in
more detail in Section 1.2.

1.1.3 Monod’s law

In biofilm modeling, people have mainly worked on the relationship between nutri-
ents (substrates) and biomass (bacteria). This relation follows the Monod’s kinetic
[41] which is named after a French biologist Jacques Monod (1910-1976) who first
introduced it. This relation is usually presented by a nonlinear function given in (1.1)

1.1 Biofilm 5

Figure 1.3. An idea of translating a real biofilm form to a theoretical model.

gM(S) = µmax
S

KS +S
, (1.1)

in which we use S for the substrate, gM(S) for the specific growth rate of a microor-
ganism, µmax for the maximum specific growth rate and KS for the half-velocity
constant.

µmax

gM

S
0

KS

µmax

2

Figure 1.4. Monod’s relation.

The relation (1.1) tells the truth that bacteria can-
not grow up perpetually if there is an infinitely
concentration of nutrients. There is always a
maximum specific growth rate µmax which is the
maximum number of microorganisms could be
(Figure 1.4).

Monod had empirically found this kinetic, and
it’s very interesting in the sense that

• If there is no food, there are no bacteria either.
• The relation is smooth from one state to another one.
• If there is an enormous amount of food, the rate approaches the maximum

growth.

Sometimes, gM is also presented in simpler forms as in (1.2) if S≪ KS (where
k1 =

µmax

KS
) or in (1.3) if S≫ KS (where k0 = µmax). If there are over one substrate S

in the environment necessary for the bacteria’s growth, multiple terms of the form
S

KS+S
are multiplied together. However, we don’t consider this complicated cases and

we leave them for future works.

gM(S) = k1S, (1.2)

gM(S) = k0. (1.3)

6 Chapter 1. Introduction

Because of relation (1.1), in our main biofilm model, we will work on a semilinear
equation. It makes more difficult to solve the problem, we will discuss more on
Section 1.2.

1.1.4 Some former biofilm models & works

Categorization. Mathematical models for biofilm processes have been proposed
since the early of the 80s in which scientists worked on simple ordinary or partial
differential equations. For recent decades, there are many researches on modeling
biofilm with new technologies and interests. Szomolay, in his PhD thesis [74], had
classified the biofilm researches into 4 categories,

1. Resistance: an ability of a microorganism in which they can grow despite the
presence of antimicrobial in the environment.

2. Phenotypic tolerance: one of the hypotheses which explain the failure of
antimicrobial treatments is an ability of bacteria to evade the bactericidal
activity of antimicrobial.

3. Dosing: study about biofilm dosing strategies for controlling the growth of
biofilm. By adjusting the time of dosing or the concentration at each time,
ones can reduce or sometimes increase the influence of the biofilms under the
presence of antimicrobial.

4. Detachment: these are researches on the third stage of the biofilm (Figure 1.2)
under some impacts like shear stress, nutrient supply or biofilm thickness.

In this thesis, we are interested in some typical biofilm models which have relation to
our purpose of biofilm growth. For this section, we list some general form of models.
Concerning the methods that are used corresponding to them, we will discuss more
on Section 1.3.

Picioreanu. Recall the work of Picioreanu et al [68, 46, 47], they worked on several
structures of biofilm and they wanted to see the biofilm growth under the effects of
diffusive and convection substrate transports. The system (1.4) gives a basic idea
about the model they use.







dB

dt
+αB−β

γBS

KS +S
= 0,

−DS∆S+u ·∇S− γBS

KS +S
= 0,

(1.4)

where B,S are respectively bacteria and substrate in the context and u is the flow
of fluid in the environment. In this model, the biofilm growth is regulated by the
concentration of substrate under the influence of fluid flow. On the other hand, the
flow shears the biofilm surface and erodes the biofilm structural protuberances. They
considered two cases of limitation, one for transport limited and one for microbial

growth limited, then they get some nice results [47] on the dynamic structure of
biofilm evolving in non-steady-state conditions.

Chopp. Picioreanu mentioned about shear stresses [68] (which has firstly introduced

1.1 Biofilm 7

by Rittman [52]) and their effects on the biofilm structure but they didn’t consider
biofilm detachments in detail. It has been done better in the later work of Duddu,
Chopp et al. [17, 26]. Their model is introduced formally in (1.5),







−DS∆S−α
BS

KS +S
= 0, in Ωb,

−DS∆S+v ·∇S = 0, in Ω f ,
dB

dt
+∇ · (uB)−β

BS

KS +S
= 0, in Ωb,

(1.5)

where equations are separated in subdomains Ω f (fluid region) and Ωb (biofilm
region). It looks like in the model of Picioreanu (1.4) with S,B are respectively
the substrate and bacteria, there are differences in the presence of fluid outside
the biomass region v and the biomass flow u. Actually, Chopp and his coauthors
didn’t work directly on the equation of bacteria B. They worked on an intermediary
component called potential Φ which represents the advection velocity of biomass u.
This u has a close relation with the concentration of bacteria B. We will rely much
on this idea to work on our biofilm model.

The group of Chopp worked most on the techniques which help simulate the biofilm
growth and verify again some already done results of other scientists like the group
of Picioreanu. They didn’t give in details the mathematical analysis of the model
and methods they proposed. This is one of our differences in comparison with their
work. I will recall it in Section 1.3.

Beside the techniques, the group of Chopp also worked much on quorum sensing

[15, 16] which is a mechanism in which bacteria have the ability to monitor their
own population density and modulate gene expression. This is not what we concern
in this thesis.

Cogan. We are also interested in the work of Cogan [19, 20, 21, 22]. He worked
on the physiological resistance mechanism of biofilm and dosing strategies. In
this mechanism, there is the existence of novel cells namely persisters which are
extremely tolerant of antibiotics. Persister cells, together with susceptible cells, give
a very interesting relation with the presence of the antibiotic in the environment. If
an antibiotic is absent, the susceptible bacteria consume substrates and reproduce.
Otherwise, a part of susceptible cells are killed and the other one convert to persister
cells. Persister cells cannot be killed by the antibiotic nor grow. They just revert to
the susceptible cells if there is no antibiotic again. He suggested a biofilm model
given in (1.6).







dBs

dt
= g(Bs,S)
︸ ︷︷ ︸

Growth

−d(Bs,S,A)
︸ ︷︷ ︸

Disinfection

− l(Bs,S,A)
︸ ︷︷ ︸

Loss

+r(Bp,S,A)
︸ ︷︷ ︸

Reversion

,

dBp

dt
= l(Bs,S,A)
︸ ︷︷ ︸

Gain

−r(Bp,S,A)
︸ ︷︷ ︸

Reversion

,
(1.6)

where Bs,Bp,S,A are susceptible cells, persister cells, substrates and antibiotics

8 Chapter 1. Introduction

respectively. Here, the loss of Bs is also the gain of Bp and the reversion is the
same for both cases. The signs in the model show the increasing or decreasing of
concentration of biomass. All functions g,d, l,r follow the Modod kinetic (1.1).

Cogan et al [20] also worked with a mathematics system of substrate S, bacteria B,
antimicrobial A and a neutralizing agent N. Antimicrobial fails to penetrate biofilm
because there is neutralizing reaction between it and some components in biofilm
region. The relation is given in system (1.7).







∂tS+U ·∇S = ∇ · (Ds∇S)−µS

S

Ks +S
B,

∂tA+U ·∇A = ∇ · (Da∇A)− krAN,

∂tN =−krYnAN,

∂tB =−p1(A,S)B.

(1.7)

Others. As an additional reference, one can check the work of Patricio Cumsille
et al. [23]. They work on a biofilm growth model by using the hybrid Immersed
Interface Method coupling with the Level Set Method. Another one is the work of
XianLong Zhang et al. [57]. They work on a biofilm model in which biofilm grows
on an agar substrate and they use the Extended Finite Element Method to research
the problem. In this thesis, we choose different methods which are given in the next
section in comparison with theirs.

1.2 Motivation & objective of thesis

Motivation & objective. In this thesis we are interested in the growth of a bacterial
biofilm. To this end, we consider a model in which the two main components are
bacteria and substrates. The bacteria present only inside the biofilm region whereas
substrate is both inside and outside biofilm region. There are flows of fluid and
biomass on both sides of biofilm like the model of Chopp (1.5). We want to see the
dependence of bacteria on the concentration of substrates, the rate of flows and also
the presence of antibiotics. The rate of diffusion of substrate and biomass is also
considered in this case.

There are not so much differences between our model with the ones of Chopp,
Picioreanu or Cogan described above. The main difference of our work in comparison
with the others’ is the method we will use to simulate the growth of biofilm and also
the dependence of the model on parameters.

As mentioned in Section 1.1.2, we focus on the form of the biofilm, this form’s
shape is based on the interface separating biofilm with the environment. This leads
to work on an interface problem. Moreover, because of the Monod relation (1.1),
this problem is not linear anymore, we have to consider a semilinear problem in the
company of interface problem.

The big new contribution of our works in comparison with former ones is to consider
carefully the mathematical analysis of the problem. We also propose a self-building

1.2 Motivation & objective of thesis 9

Γ

u

v

S

S

B

Ω f

Ωb

Figure 1.5. An illustration of
computational domain Ω. Ω f stands
for fluid region, Ωb stands for biofilm

region.

matlab toolbox to simulate the model (cf. Chapter 3).

We are considering an evolution problem in which all components are conditional
upon a time. The interface will also change its coordinate every time step. If we use
a numerical method to solve the problem, it’s necessary to solve it on a mesh. If the
mesh depends on the position of the interface, it will be re-generated many times.
It costs too much if we are solving on a very smooth mesh or on a long time scale
problem. That’s why we choose a method with which we can only use one mesh
for the whole process. In other words, the mesh does not depend on the interface’s
change. We will discuss more about this method in Section 1.3 and Part I.

General model. With all above purposes, let us consider a convex polygonal,
Lipschitz and bounded domain Ω in R

2 containing two subdomains Ω f ,Ωb which
satisfies Ω = Ω f ∪Ωb. They present for fluid region Ω f and biofilm region Ωb. This
is an environment where the biomass B lives. In this environment, there is some
substrate S (eg. oxygen) where the biofilm can find the nutrient for their growth.
There is also the fluid v flowing outside the biofilm region and the flow of biomass
u locating inside the biofilm region. The governing equation for the fluid flow at
steady state is given by the incompressible Navier-Stokes equation (1.8)

{

v ·∇v+∇p+ 1
Re

∆v = 0 in Ω f ,

∇ ·v = 0 in Ω f ,
(1.8)

where Re is a Reynolds number, p is the hydrostatic pressure.

The biomass advection velocity, u, is associated with the volumetric expansion or
the contraction of the biofilm. Accordingly, we assume that the biofilm growth is
irrotational, that is, ∇×u = 0. Thus, u can be derived from a potential function Φ

defined in Ωb such that u = ∇Φ. The governing system of equations is given in (1.9)







∂tS−∇ · (Db
S∇S)+u ·∇S+αBg(S) = 0 in (0,T)×Ωb,

∂tS−∇ · (D f
S∇S)+v ·∇S = 0 in (0,T)×Ω f ,

∂tB−∇ · (DB∇B)+u ·∇B−βBg(S) = 0 in (0,T)×Ωb,

−∆Φ+βg(S) = 0 in Ωb.

(1.9)

Here g(S) follows the Monod’s law (1.1) under the environment of biomass flow u.
We consider here the continuity of substrates and their flow through the interface by

10 Chapter 1. Introduction

taking an interface condition for S given in (1.10). It also goes with some appropriate
boundary conditions for S,B and Φ.

JSK = JDS∇S ·nK = 0. (1.10)

Remark 1.1 For the physical meaning of signs and terms in the model of

biofilm, we refer to Section 6.2.

1.3 Methods to use

Methods to simulate biofilm model. To work with a biofilm model, we have to
deal with the fact that the interface is not steady. In [27], before describing the
method being used, Duddu et al had listed briefly and clearly the state of the art
of numerical methods to simulate a biofilm model. According to them, there are
three main branches of biofilm simulating models: cellular automata, individual-

based models and continuum models. The first two types based on a combination
of deterministic and stochastic rules on lattice or non-lattice grids. These methods
are interesting, but they are not somewhat under-control and difficult to be analyzed
mathematically. The works of Picioreanu and his group [47, 48] are examples of
these types. The continuum models do not rely on ad-hoc rules but depend much on
the conditions on the biofilm’s surface. In this thesis, we work with a continuous
model where there are continuous conditions (1.10) on the interface.

Work with fixed meshes. Naturally, a biofilm growth simulating has a close relation
to an interface problem. There are two main approaches we can use to deal with
such a problem, fitted and unfitted meshes (Figure 1.6). Sometimes, we also use
names Lagrangian representation or interface tracking for the former and Eulerian

representation of interface capturing for the latter. With a fitted mesh, the mesh grid
is fitted to the interface, the standard finite element method (FEM) seems to work
well [8, 14]. However, working on an unsteady state problem where the interface
changes its position requires the mesh has to update frequently, an unfitted mesh

where we work with only one mesh from the beginning is a better choice in this
case. A comparison of using these two ideas with finite element methods for elliptic
equations with smooth interfaces was given in [6].

There are many unfitted mesh based methods which have been proposed for re-
cent years, one of them is Immersed Boundary Method (IIM) which is particularly
designed for interface problems. The IIM is a sharp interface method based on
Cartesian grids [38]. The work of Li [39] gave an overview of this method and some
of its applications. However, when we work with discontinuous coefficients and
singular sources, especially with large ones, the accuracy obtained by using IIM is
not so good. Other interesting approaches are using Extended Finite Element Method

(XFEM) [7, 40] and Nitsche based Finite Element Method (NFEM) [31]. XFEM is
an extension of the standard finite element method in which arbitrary discontinuous

1.3 Methods to use 11

a. Fitted mesh. b. Unfitted mesh.

Figure 1.6. Fitted vs unfitted meshes.

functions and derivatives are added to the standard finite element approximation.
Arnold Reusken and his coworkers had many contributions when using XFEM for
two-phase incompressible flows problems [66, 36, 73, 50, 51]. NFEM uses the idea
of Nitsche [43] to enforce weakly the interface condition in the weak forms. Note
that, there is also relation between XFEM and NFEM which is commented in [3]. In
this thesis, I will use NFEM and its innovated versions to work with the purpose of
unfitted mesh. I use the name NXFEM to allude the relation of XFEM and NFEM.
NXFEM is also called “unfitted FEM” or “CutFEM” in some literatures.

Describe interface & its motion. With NXFEM, we do not care too much for the
position of the interface on a fixed mesh. However, the interface is not fixed at all, it
changes in evolution problems. That leads to the need of describing numerically the
interface at each time step. Thanks to Level Set Method (LSM) [45], this difficulty
can be overcome. In Section 5.1, details about LSM, also the Streamline Upwinding

Petrov-Galerkin Method (SUPG), will be presented. In this section, just to know
that the interface can be described via a level set function φ as a zero-solution of a
Cauchy problem (1.11).







∂φ

∂ t
(x, t)+∇Φ(x, t) ·∇φ(x, t) = 0, ∀(x, t) ∈Ω× (0,T),

φ(x,0) = φ 0(x), ∀x ∈Ω.
(1.11)

Notice that, the level set function φ depends on the potential function Φ given in
(1.9). Because of this relation, we can update the interface at each time step and use
the new interface to seek the concentration of substrates and bacteria. Details of the
idea on coupling NXFEM and LVS are given in Chapter 6.

Stabilization & Preconditioning. NXFEM is very powerful on tracking the interface
but it also leads to a big problem on the stability of the scheme. The methods suffer
from ill-conditioning if the interface intersects elements close to the nodes of the
mesh and leaving a very small part of the element [9, 10, 11, 50] (Figure 2.6 gives
an illustration about this). The condition number will be very large in this situation.
Additionally, the problem is worse if we work on a big contrast problem where there
is very difference between diffusion coefficients. Two possible options to be chosed
to overcome these difficulties are preconditioning and stabilization. The former is
given in [12, 37, 50, 58]. In these works, the authors proposed some optimal subspace
preconditioners in which the condition number is independent of the mesh size and

12 Chapter 1. Introduction

the interface position. These techniques also take effect on treating the contrast
problem. The second option, stabilization, is given in a series of works [9, 11, 13,
18]. In these contributions, the authors introduced an additional term called Ghost

Penalty which is added to the variational formulation over the band of elements that
are cut by the interface. This term helps the scheme be more stable. In this thesis, I
choose this technique to deal with the small cut and large contrast problems. More
details about ghost penalty method are given in Section 2.4.

1.4 Outline of the thesis

The thesis is divided into two main parts. The first one is for the NXFEM method
and the second one contains the way we apply this method to researching a biofilm
growth model. The manuscript is organnized as follows:

Chapter 2 In this chapter, I am going to recall the main idea of NXFEM and some
principle results which first proposed by A. Hansbo & P. Hansbo [31] and
later developed by some other authors. I start with the idea of Nitsche method
on a non interface problem and then give details of NXFEM on an interface
problem which borrows its idea.

Chapter 3 In this chapter, I will give in details about algorithms and guide to use
NXFEM toolbox developed by myself. I build it based on the idea of space
proposed by Hansbo in Section 2.5, coming from the idea of implementing
Standard FEM in Matlab. In other point of view, this chapter is also used to
implement NXFEM in other programming language instead of being used
only in Matlab.

Chapter 4 Under the motivation of modeling a biofilm model, we introduce a
system of semilinear unsteady interface problem. We also propose a technique
of decoupling a semilinear problem and apply the NXFEM method to prove
the existence and uniqueness of solutions and their convergent properties. In
order to prove the convergence of NXFEM discrete solutions to the continuous
ones, we apply the idea of proofs in Discontinuous Galerkin Method proposed
by Ern & Di Pietro [25]. Their work relied on techniques inspired by the Finite
Volume literature given in the work of Eymard et al. [29]. Noting that, Ern &
Di Pietro worked on the discontinuity on each side of element mesh whereas
we only work on the discontinuity of functions on the interface.

Chapter 5 As mentioned in Section 1.3, we need to track the interface’s position
on a fixed mesh from time to time. The Level Set Method helps us to do that.
In this chapter, I present a general idea of LSM, as well as its advantages,
its inherent drawback and the way we couple it with NXFEM in solving an
evolution problem. Some numerical test cases are also given.

Chapter 6 This last chapter provides a way we use the NXFEM method and the
toolbox NXFEM in solving biofilm growth models. The models we use are
introduced in literatures, but the methods are different. We also have comments
on the dependence of the model on parameters.

I
2 Original NXFEM 15

2.1 Nitsche’s method 15

2.2 Original NXFEM 16

2.3 The choice of parameters 24

2.4 Ghost penalty & Stability property 26

2.5 The implementation issue 28

2.6 Numerical test cases 32

3 Implementation NXFEM with Mat-
lab . 37

3.1 Model . 38

3.2 Quadrature . 38

3.3 Mesh and some components 39

3.4 Assembling . 45

3.5 Numerical examples 54

4 Resolution of semilinear-interface
system by NXFEM 55

4.1 Model . 56

4.2 Decoupling the system of equations 57

4.3 Analysis . 61

4.4 The convergence 65

4.5 A numerical test case 72

nxfem method

2. Original NXFEM

Contents

2.1 Nitsche’s method 15

2.2 Original NXFEM 16

2.3 The choice of parameters 24

2.4 Ghost penalty & Stability property 26

2.5 The implementation issue 28

2.6 Numerical test cases 32

In this chapter, I am going to recall the main idea of NXFEM and some principle
results which first proposed by A. Hansbo & P. Hansbo [31] and later developed
by some other authors. I start with the idea of Nitsche method on a non interface
problem and then give details of NXFEM on an interface problem which borrows its
idea.

2.1 Nitsche’s method

Nitsche didn’t present his work with a weak formulation at all. He worked on an
equivalent minimization problem in which the essential boundary conditions are
imposed in a weak sense so that we can solve a Dirichlet problem without enforcing
the boundary condition in the definition of the finite element space. The idea of

16 Chapter 2. Original NXFEM

applying this technique to a weak formulation is given in later works, e.g. [30]. To
describe the method, we consider a simple Poisson’s problem (2.1).

{

−∆u = f on Ω,

u = g on ∂Ω.
(2.1)

We would like to find a weak formulation that: (i) is satisfied by a (weak) solution
u ∈ H1(Ω), i.e. consistency; (ii) makes the associated bilinear form be symmetric

and coercive. Firstly, multiplying both sides of (2.1) by a test function v ∈ H1(Ω)
and using Green formula, we obtain

〈 f ,v〉Ω = 〈−∆u,v〉Ω = 〈∇u,∇v〉Ω−〈∇nu,v〉∂Ω

= 〈∇u,∇v〉Ω−〈∇nu,v〉∂Ω−〈u−g,∇nv〉∂Ω,
(2.2)

where in the last equality, we have added the condition u = g on the boundary ∂Ω

to get a symmetric form. Here, n denotes the unit normal vector at a given point
on ∂Ω pointing ouside the domain, 〈u,v〉K :=

∫

K uv in a convex set or on a line.
When u ∈ H1(Ω), it’s obviously a solution of (2.2). We also need an additional
term λ 〈u−g,v〉∂Ω where λ is large enough to guarantee the coercivity. Finally, we
consider the binlinear form (2.3)

〈∇u,∇v〉Ω−〈∇nu,v〉∂Ω
︸ ︷︷ ︸

consistency

−〈∇nv,u〉∂Ω
︸ ︷︷ ︸

symmetry

+λ 〈u,v〉∂Ω
︸ ︷︷ ︸

stabilization

= 〈 f ,v〉Ω−〈g,∇nv〉∂Ω +λ 〈g,v〉∂Ω, ∀v ∈ H1(Ω).

(2.3)

Put in a context where we consider a discrete solution uh in a finite element space,

Vh := {vh ∈ H1(Ω) : vh|K ∈ P
k(K),∀K ∈Th}, (2.4)

where Th is a conforming triangulation of domain Ω. Nitsche showed that if λ is
chosen in a form of ch−1 for c > 0 sufficiently large and h is the mesh size, the
discrete problem is stable in |||·|||N norm which is defined in (2.5).

|||v|||N := ‖v‖2
H1(Ω)+ ∑

E∈Gh

h−1
E v2 dx, (2.5)

for a subset Gh ⊂ ∂Ω.

2.2 Original NXFEM

Model. Consider problem (2.6) on a bounded domain Ω⊂ R
2 with a convex poly-

nomial boundary ∂Ω and a smooth interface Γ dividing Ω into two open sets Ω1,Ω2.

18 Chapter 2. Original NXFEM

C > 0 where hK and ρK are the diameter of K and the diameter of the largest ball in
K respectively.

Assumption 2.3 For K ∈ Gh, Γ cuts each element boundary ∂K exactly twice and

each open edge at most once.

Assumption 2.4 Let ΓK,h be the segment connecting the intersection points between

Γ and ∂K, we assume that ΓK,h is the function of length on ΓK in the local coordinates
(2.8).

ΓK,h = {(x,y) : 0 < x < |ΓK,h|,y = 0},
ΓK = {(x,y) : 0 < x < |ΓK,h|,y = δ (x)}. (2.8)

Remark 2.1 — Cut triangle. A triangle is called a cut triangle if the Assump-

tion 2.3 is satisfied and at least one cut point is not the vertex of this triangle.
Some special cases of cut or not-cut triangles are given in Figure 2.2. Note that,
we are considering a P

1 - finite element space so Γ on each triangle is actually
a line segment, that why we see all three cases a, b and c in Figure 2.2 are the
same. That is the reason why in the triangulation Th, there is some triangle
we see that it is cut by interface but it is still considered as a not-cut triangle
(Figure 2.3).

Γ

a. It doesn’t satisfy As-
sumption 2.3.

Γ

b. Not-cut triangle.

Γ

c. It doesn’t satisfy As-
sumption 2.3.

Γ

d. Cut two edges.

Γ

e. Go through one vertex
and cut one edge.

Figure 2.2. Some special cases of cut triangles (d,e) or not-cut triangles (a,b,c).

Definition 2.1 — Jump operator & average operator .

Before defining these two operators, we need to define a restriction of u on:

20 Chapter 2. Original NXFEM

Proposition 2.1 With the jump and average operators defined in Definition 2.1

and u,v two discontinuous functions across Γ, we have,

JuvK = JuK{{v}}+{{u}}JvK+(κ2−κ1)JuKJvK and

{{uv}}= {{u}}{{v}}+κ1κ2JuKJvK.

Proof. Denote ui = u|Ωi
,vi = v|Ωi

for i = 1,2,

JuvK = u1v1−u2v2 = ∑κiu1v1 +∑κiu2v2

= 2κ1u1v1−2κ2u2v2 +(κ2−κ1)(u1v1 +u2v2)

= 2κ1u1v1−2κ2u2v2 +(κ2−κ1)(u1v2 +u2v1)+(κ2−κ1)JuKJvK

= κ1u1v1 +κ2u1v2−κ1u2v1−κ2u2v2

+κ1u1v1−κ1u1v2 +κ2u2v1−κ2u2v2 +(κ2−κ1)JuKJvK

= JuK{{v}}+{{u}}JvK+(κ2−κ1)JuKJvK.

We also have

{{u}}{{v}}+κ1κ2JuKJvK = (κ1u1 +κ2u2)(κ1v1 +κ2v2)+κ1κ2(u1−u2)(v1− v2)

= κ2
1 u1v1 +κ2

2 u2v2 +κ1κ2u1v1 +κ1κ2u2v2

= {{uv}}.
�

Remark 2.2 For simplicity, there are many works in that authors choose κ1 =

κ2 = 1
2
. There are also many choices of forms of κi which are discussed in

Section 2.3, Hansbo & Hansbo [31] used (2.12) where |K| is the measure of K.

κi|K :=
|Ki|
|K| . (2.12)

Remark 2.3 In [5, 51], authors used a different definition of average operator,

{{u}}κ := κ1u1 +κ2u2,

{{u}}κ̂ := κ1u1 +κ2u2.
(2.13)

which leads to a different relation

JuvK = JuK{{v}}κ +{{u}}κ̂JvK.

2.2 Original NXFEM 21

In the case κ1 = κ2 =
1
2
, both of two definitions (2.11) and (2.13) of average

operator give us the same relation

JuvK = JuK{{v}}+{{u}}JvK.

Definition 2.2 We use notation of function space Hk(Ω12) as follows,

Hk(Ω1∪Ω2) = {v ∈ L2(Ω) : vi ∈ Hk(Ωi) for i = 1,2},

for k = 0,1,2 where vi = v|Ωi
and H0 stands for L2.

We equip space Hk(Ω12) by the norm:

‖u‖2
Hk(Ω12)

:= ‖u‖2
Hk(Ω1)

+‖u‖2
Hk(Ω2)

,

Discrete form. Before stepping to the discrete problem, we define finite element
spaces V Γ

h = V 1
h ×V 2

h and discrete gradient associated to them as in (2.14), (2.15)
and Definition 2.3.

V i
h := {vh ∈ L2(Ω) : vh|Ωi

∈ H1(Ωi) and vh|K ∈ P
1(K),∀K ∈ ∪iT

i
h }. (2.14)

For functions taking zero values on ∂Ω, we use space V 0
h ,

V 0
h := {vh ∈V Γ

h : vh = 0 on ∂Ω}. (2.15)

Remark 2.4 Note that, V Γ
h ⊂ H1(Ω12) and the functions in V Γ

h are no need to

be continuous across the interface.

Definition 2.3 — Discrete gradient. For all vh ∈ V Γ
h , we define ∇vh as the

piecewise gradient of vh, such that

∇vh|Ωi
= ∇(vh|Ωi

), for i = 1,2.

It’s known in [63, Lemma 1.22] that the discrete gradient defined in Definition 2.3

22 Chapter 2. Original NXFEM

is consistent corresponding to the the space H1(Ω). There is a little difference, in
this work, we are working on a discrete space in that the functions may be only
discontinuous at the interface.

Multiply both sides of (2.6) by a test function v ∈ H1(Ω12) and use Green formula
again, but this time, we consider on each subdomain,

〈 f ,v〉Ω = 〈−∇ · (k∇u),v〉Ω1
+ 〈−∇ · (k∇u),v〉Ω2

= 〈k∇u,∇v〉Ω12
−〈k∇nu,v〉∂Ω1

−〈k∇nu,v〉∂Ω2

= 〈k∇u,∇v〉Ω12
−〈k∇nu,v〉∂Ω−

∫

Γ
Jk∇nuvKds,

(2.16)

where n points from Ω1 to Ω2. Apply Propotition 2.1, (2.16) becomes

〈 f ,v〉Ω = 〈k∇u,∇v〉Ω12
−〈k∇nu,v〉∂Ω

−〈Jk∇nuK,{{v}}〉Γ−〈{{k∇nu}},JvK〉Γ +(κ2−κ1)〈Jk∇nuK,JvK〉Γ.
(2.17)

Remark 2.5 We don’t consider a test function in H1
0 (Ω) in the weak form (2.16)

because we want to apply later a test function in a finite element space of which
functions are not continuous at the interface. That’s why we take v ∈ H1(Ω12)
instead.

In order to obtain the consistency, solution of problem (2.6) must satisfy (2.17). It
means that the interface conditions and boundary condition in (2.6) take action and
(2.17) becomes

〈k∇u,∇v〉Ω12
−〈{{k∇nu}},JvK〉Γ = 〈 f ,v〉Ω−〈g,{{v}}〉Γ. (2.18)

With the same idea in Nitsche’s method, we add two more terms in the discrete form
to guarantee the symmetry and the coercivity. That leads us to consider a discrete
problem of finding uh ∈V Γ

h such that,

ah(uh,vh) = Lh(vh), ∀vh ∈V Γ
h , (2.19)

where1,

ah(uh,vh) := 〈k∇uh,∇vh〉Ω12

−〈{{k∇nuh}},JvhK〉Γ
︸ ︷︷ ︸

consistency

−〈JuhK,{{k∇nvh}}〉Γ
︸ ︷︷ ︸

symmetry

+λ 〈JuhK,JvhK〉Γ
︸ ︷︷ ︸

stabilization

,

Lh(vh) := 〈 f ,v〉Ω−〈g,{{v}}〉Γ,

(2.20)

1Compare ah in this case with the one in (2.3) to see the similarity.

2.2 Original NXFEM 23

with λ sufficiently large.

Norms. Hansbo & Hansbo have used following norms for their results in [31],

‖v‖2
1/2 := ∑

K∈Gh

h−1
K ‖v‖2

L2(ΓK)
, ‖v‖2

−1/2 := ∑
K∈Gh

hK‖v‖2
L2(ΓK)

,

|||v|||2H := ‖∇v‖2
L2(Ω12)

+‖{{∇nv}}‖2
−1/2 +‖JvK‖2

1/2.
(2.21)

Remark 2.6 It depends on the problem we are working on, choices of norm

|||·|||H are different. For example,

• In [5], Barrau considered diffusion coefficient inside the norm of gradient,
i.e. ‖k∇v‖L2(Ω12)

, because this coefficient is discontinous on the interface,
• In [51], Hieu Nguyen considered the interface condition JβuK = 0 instead

of the continuity JuK = 0, he thus used ‖JβvK‖1/2.

Definition 2.4 — Interpolant. Consider an operator Ei : H2(Ωi)→ H2(Ω)

such that (Eiw)|Ωi
= w and

‖Eiw‖s,Ω ≤C‖w‖s,Ωi
, ∀w ∈ Hs(Ωi), s = 0,1,2.

Let Ih be the standard interpolation operator and define

I∗h v := (I∗h,1v1, I
∗
h,2v2) where I∗h,ivi := (IhEivi)|Ωi

. (2.22)

We recall following results and useful remarks in the proofs. For more details in the
arguments, please see [31].

Proposition 2.2 For u ∈V Γ
h , ‖·‖−1/2 defined in (2.21) and κi =

|Ki|
|K| , the follow-

ing inverse inequality holds,

‖∇nu‖2
−1/2 ≤C‖∇u‖2

L2(Ω12)
. (2.23)

Proof. Cf. Lemma 4 in [31]. Note that, the validity of the inequality depends on the

choice of κi. In this case, Hansbo & Hansbo have used κi|K = |Ki|
|K| . If we want to use

other definitions, e.g. Section 2.3, we have to verify this property again. �

With the interpolation defined in Definition 2.4, we have a very importance inter-

24 Chapter 2. Original NXFEM

polant estimate which are used later in the proof of next results.

Theorem 2.1 Let I∗h be the interpolation operator defined in (2.22), then

|||u− I∗h u|||H ≤Ch‖u‖2,Ω12
, ∀u ∈ H1

0 (Ω)∩H2(Ω12).

Proof. A detailed proof is given in [31, Theorem 2]. Note that, the estimate depends
much on the definition of norm |||·|||H . In following chapters, we will use different
norms and thus, we need to prove again this estimate. �

Hansbo & Hansbo have also proved the consistency [31, Lemma 1], existence and
uniqueness of the problem (2.19) by following proposition.

Proposition 2.3 The discrete form ah in (2.20) is coercive on V Γ
h , i.e.,

ah(vh,vh)≥C|||vh|||2H , ∀vh ∈V Γ
h ,

provided λ is sufficiently large. It’s also continuous, i.e.,

ah(uh,vh)≤C|||uh|||H |||vh|||H , ∀vh ∈V Γ
h .

Proof. Refer to [31, Lemma 5]. In this case, they choose λ such that λ > 4C maxΩ k

where C is the coefficient obtained from inequality (2.23) and k is diffusion coeffi-
cients in problem (2.6). �

They also gave some results about a priori error estimates in Theorem 2.2, for the a

posteriori error estimates, cf. [31, Theorem 7].

Theorem 2.2 — a priori error estimates. Under Assumptions 2.2–2.4 and for

uh solving (2.19), u solving (2.6), the following estimates hold,

|||uh−u|||H ≤Ch‖u‖H2(Ω12)
, (2.24)

‖uh−u‖L2(Ω12)
≤Ch2‖u‖H2(Ω12)

. (2.25)

Proof. Cf. [31, Theorem 6]. �

2.3 The choice of parameters

The roles of parameters κ1,κ2 in Definition 2.1 and penalty parameter λ in (2.19)
are very important because they impact on the stability of the method. As mentioned

2.3 The choice of parameters 25

in the proof of Propotition 2.2, Hansbo & Hanbso chose very simple ones as in
(2.26),

κ1 =
|K1|
|K| , κ2 =

|K2|
|K| , λ = λ̂ max

{

k1
|K1|
|K| ,k2

|K2|
|K|

}

, (2.26)

for some large enough positive constant λ̂ .

In [5], the authors showed that, the choice (2.26) makes the stability depend only on
the cut geometry (where the interface cuts triangles) whereas the difference between
diffusion coefficients ki is also very important for a robust method. Therefore, they
proposed an update choice (2.27) which gives robustness regarding both the geometry
and the coefficients.

κ1 =
k2|K1|

k1|K2|+ k2|K1|
, κ2 =

k1|K2|
k1|K2|+ k2|K1|

, λ = λ̂
k1k2|ΓK|

k1|K2|+ k2|K1|
. (2.27)

Another option for λ , corresponding to weights κi in (2.27), is[2],

λ = λ̂hK
k1k2|ΓK|

k1|K2|+ k2|K1|
. (2.28)

Remark 2.7 For simplicity, we use notations κi and λ but they actually are

defined on each cut triangle, i.e., κi|K and λ |K .

All above researches give advice in which we need to choose a sufficiently large
λ̂ . However, the benefit of an increasing λ is two-faced. It helps to stabilize the
discretization and to make a small error in the interface condition. However, it leads
an increase in the condition number which is due to the fashion of which the triangles
are cut by the interface.

Remark 2.8 A stabilization technique is necessary to control the possible bad

quality of how interface intersects the computational mesh at tiny different
parts. In this thesis, we use a method named Ghost penalty [9, 13] in which
some additional “ghost penalty" terms, acting on the jumps of the gradients
over element faces in the interface zone, are added. Notice that, there is also
another approach [32] which is inspired by the XFEM in the adaptation of a
stabilisation technique presented by Barbosa and Huges [4]. This method has
an advantage of not fitting the parameters like Ghost Penalty. However, it is
necessary to consider mixed formulations with Lagrange multipliers for which

26 Chapter 2. Original NXFEM

Figure 2.5. An illustration of a
fictitious domain ΩT of a physical

domain Ω.

ΩT

Ω

it is not always easy to establish inf-sup conditions in appropriate spaces. For
simplicity of not changing our variational forms, also let it be a future research,
we consider using Ghost Penalty method under the possibility of choosing good
values for the parameters.

κ1 =
k2

k1 + k2
, κ2 =

k1

k1 + k2
, λ = 4λ̂

k1k2

k1 + k2
, (2.29)

where λ̂ which is independent of the mesh intersection but depends on the interface
is given in [13].

Remark 2.9 In practice, we need to choose empirically the value of λ̂ . There

are also some big relations of the parameters used in the method. The above
authors and works didn’t mention about it too much. In this thesis, I will give
a more clarity about the choice of parameters regarding some validation test
cases. Please step to Section 2.6 for more information.

2.4 Ghost penalty & Stability property

Fictitious domain method. Burman et al. [10, 11] have worked with fictitious

domain methods because these methods are effective for complex-shape domains
and also free-interface ones. The basic idea of fictitious domain methods is instead
of considering the physical domain Ω, we consider a larger domain ΩT which has
simpler geometry (Figure 2.5). The restriction to ΩT of the solution coincides with
the original problem’s solution which is on Ω. However, people who work with these
methods have to integrate on the fictitious domain ΩT or on the physical domain Ω.
The former gives better stabilization but lack of consistency and accuracy. The latter
gives accuracy, but the condition number is sensitive to the way domain boundary
cuts the mesh.

Ghost penalty. Put in the context of interface problem, the classical XFEM is not
good because of the ill-conditioned problem when the interface divides a triangle
into very different size parts [18] (Figure 2.6). This difficulty, coupling with a large

28 Chapter 2. Original NXFEM

In this case, we add two more ghost penalty terms ji(·, ·) to the original bilinear form
ah(·, ·) in order to control the method’s stabilization. Segments E i

G which corresponds
to each subdomain Ωi is defined in (2.32) (Figure 2.7) and the jump operator on an
edge e is defined in (2.10).

∀e ∈ E
i
G,∃K,K′ ∈T

i
h : e = K∩K′,K ∈ Gh or K′ ∈ Gh. (2.32)

We can understand the definition of E i
G as follows: for each edge e ∈ E i

G, there exists
two elements K and K′ in T i

h such that e is their common edge and at least one of
them is the member of Gh. This means, in particular, the boundary edges of T i

h are
excluded from E i

G.

Remark 2.10 Remind that if we want to use the ghost penalty method, it’s

necessary to take parameters defined in (2.29)[13].

An idea of the implementation ghost penalty is described in Section 3.4.3.

2.5 The implementation issue

Representation of NXFEM space. In the original work [31], the authors have
used NXFEM space defined in (2.14). This style of NXFEM space is a type of
domain decomposition method (DDM) where we seek a solution in each subdomain
separately.

Another interesting representation of V Γ
h which is proposed in [50] is in the style of

the XFEM method. It means that the NXFEM space is a direct decomposition of
spaces Vh,V

Γ
h,1,V

Γ
h,2:

V Γ
h =Vh⊕V Γ

h,1⊕V Γ
h,2. (2.33)

where Vh is a standard P1 finite element space defined in (2.4) and V Γ
h,i is defined as

follows (an illustration in 1D is given in Figure 2.8).

We start by defining an operator

Ri : L2(Ω)→ L2(Ω), Riv :=

{

v|Ωi
in Ωi,

0 in Ω\Ωi.

Let I be a set of indexes numbering the nodes associated with Vh and let {xk}x∈I
be the corresponding set of points on Ω. We define subsets of I which neighbor the
interface as

2.5 The implementation issue 29

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

Γ

xΓx0 x1 x2 x3 x4 x5 x6 x7 x8

Ω1 Ω2

a. Satndard FE space Vh = span{ϕ1, . . . ,ϕ7} and indices of
nodes I = {x1, . . . ,x7}, I Γ

1 = {x4}, I Γ
2 = {x3}.

ϕ3 ϕ4

Γ

xΓx3 x4 x5

R1ϕ4

b. V Γ
h,1 = span{R1ϕ4}.

ϕ3 ϕ4

Γ

xΓx2 x3 x4

R2ϕ3

c. V Γ
h,2 = span{R2ϕ3}.

Figure 2.8. An example of V Γ
h in 1D. V Γ

h = span{ϕ1, . . . ,ϕ7}⊕ span{R1ϕ4}⊕ span{R2ϕ3}.

I
Γ

i := {k ∈I : xk ∈Ω j,supp(ϕk)∩Gh 6= /0}, ∀i, j = 1,2 j 6= i, (2.34)

where ϕk are the standard basis functions associated with the node xk. Then we have
the definition of spaces V Γ

h,i

V Γ
h,i := span{Riϕk : k ∈I

Γ
i }.

It’s known in [50, Theorem 2] that V Γ
h =V h

A . Because of this relation, there are many
ways to characterize technically an NXFEM space. Below are two typical choices
given by Hansbo et al. and Reusken et al. In this thesis, I use the former.

The choice of Hansbo. In [31, Section 7], the authors gave a technical description
of space V h

H . From the standard basis functions in Vh, we replace ones living on the
elements intersected by the interface by two new basis functions, one is restricted
to Ω1, the other is restricted to Ω2. More detailed, let {ϕi}i be a standard basis of
Vh. Let IΓ be a set of indexes numbering the nodes associated with Gh (a set of
elements intersected by the interface). In other words,

IΓ := {i ∈I : |Γ∩ supp(ϕi)|> 0}. (2.35)

For each i ∈ IΓ, we define two new basis functions ϕ
(1)
i ,ϕ

(2)
i from the standard

basis function ϕi such that

ϕ
(1)
i := ϕi|Ω1

, ϕ
(2)
i := ϕi|Ω2

, (2.36)

30 Chapter 2. Original NXFEM

and then an NXFEM space is defined as

V Γ
h := span{ϕi|i ∈I \IΓ}⊕ span{ϕ(1)

i |i ∈IΓ}⊕ span{ϕ(2)
i |i ∈IΓ}. (2.37)

These new basis functions are discontinuous at the interface and take the same values
as the original standard ones, namely,







ϕ
(1)
i |Ω1

(xΓ) = limx|Ω1
→xΓ

ϕi(x) = ϕi(xΓ),

ϕ
(2)
i |Ω1

(xΓ) = limx|Ω1
→xΓ

ϕ
(2)
i (x) = 0,

ϕ
(1)
i |Ω2

(xΓ) = limx|Ω2
→xΓ

ϕi(x) = 0,

ϕ
(2)
i |Ω2

(xΓ) = limx|Ω2
→xΓ

ϕ
(2)
i (x) = ϕ

(2)
i (xΓ) = ϕi(xΓ).

(2.38)

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

ϕ
(1)
3

ϕ
(2)
3

ϕ
(2)
4

ϕ
(1)
4

Γ

xΓx0 x1 x2 x3 x4 x5 x6 x7 x8

Ω1 Ω2

Figure 2.9. 1D example of basis proposed by Hansbo & Hansbo.

V h
H = span{ϕ1,ϕ2,ϕ5,ϕ6,ϕ7}⊕ span{ϕ(1)

3 ,ϕ
(2)
3 ,ϕ

(1)
4 ,ϕ

(2)
4 }.

An illustration in 1D of basis functions described in (2.38) is given in Figure 2.9.

Remark 2.11 The choice of Hansbo doesn’t use all standard basis functions.

We will keep functions whose support are not cut by the interface while the
ones cut by the interface will be “doubled” into two new ones. We use the same

index numbering for functions whose support on Ω1, i.e. ϕi = ϕ
(1)
i , for an easier

implementation in Matlab (cf. Chapter 3).

The choice of Reusken. In [66, Section 7.9.2], the author gave a detailed description
of V h

A in which the standard finite element space is enriched by certain functions
which is discontinuous across the interface. He also gave a stability property of
such basis functions in the L2 norm [50] and it was updated later in the H1 norm by
Zunino et al. [58].

Using a Heaviside function defined as follow

2.5 The implementation issue 31

HΓ(x) =

{

0, for x ∈Ω1,

1, for x ∈Ω2,
(2.39)

we introduce basis functions

ϕΓ
i (x) := ϕi(x)(HΓ(x)−HΓ(xi)), for i ∈IΓ, (2.40)

and then an NXFEM space is defined as

V h
A :=Vh⊕ span{ϕΓ

i |i ∈IΓ}. (2.41)

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

ϕΓ
3

ϕΓ
4

Γ

xΓx0 x1 x2 x3 x4 x5 x6 x7 x8

Ω1 Ω2

Figure 2.10. 1D example of basis proposed by Reusken.
V h

A = span{ϕi}i=1,7⊕ span{ϕΓ
3 ,ϕ

Γ
4 }.

An illustration in 1D of basis functions described in (2.40) is given in Figure 2.10.

Remark 2.12 The choice of Reusken uses all standard basis functions and just

add more enrichment functions defined on basis ones whose support cut by
the interface. There is also little difference between the two choices given in
Figure 2.10 and Figure 2.8.

Remark 2.13 The basis functions defined by Hansbo& Hansbo spaned the

same finite element space as the ones defined by Reusken.

Indeed, recall Heaviside function HΓ defined in (2.39), for i ∈IΓ, Hansbo’s basis
functions (2.36) can be rewritten as follows







ϕ
(1)
i (x) = ϕi(x)HΓ(x),

ϕ
(2)
i (x) = ϕi(x)(1−HΓ(x)).

32 Chapter 2. Original NXFEM

Using notations HΓ,H
(i)
Γ for HΓ(x) and HΓ(xi) respectively, we take u ∈V h

A to get

u = ∑
i∈I \IΓ

uiϕi + ∑
i∈IΓ

u
(1)
i ϕ

(1)
i + ∑

i∈IΓ

u
(2)
i ϕ

(2)
i

= ∑
i∈I \IΓ

uiϕi + ∑
i∈IΓ

u
(1)
i ϕiHΓ + ∑

i∈IΓ

u
(2)
i ϕi(HΓ−H

(i)
Γ)

= ∑
i∈I \IΓ

uiϕi + ∑
i∈I

(u
(2)
i +(u

(1)
i −u

(2)
i)H

(i)
Γ)ϕi + ∑

i∈I
(u

(1)
i −u

(2)
i)ϕi(HΓ−H

(i)
Γ)

= ∑
i∈I \IΓ

uiϕi + ∑
i∈I

(u
(2)
i +(u

(1)
i −u

(2)
i)H

(i)
Γ)ϕi + ∑

i∈I
(u

(1)
i −u

(2)
i)ϕΓ

i

= ∑
i∈I

uiϕi + ∑
i∈I

uΓ
i ϕΓ

i ,

in which, ui = ui for i ∈ I \IΓ, ui = u
(2)
i +(u

(1)
i − u

(2)
i)H

(i)
Γ for i ∈ IΓ and uΓ

i =

u
(1)
i −u

(2)
i for i ∈IΓ. Therefore, u ∈V h

A . Thus v ∈V h
H .

Conversely, if u ∈V h
A , we have

u = ∑
i∈I

uiϕi + ∑
i∈I

uΓ
i ϕΓ

i

= ∑
i∈I

uiϕi + ∑
i∈I

uΓ
i ϕi(HΓ−H

(i)
Γ)

= ∑
i∈I \IΓ

uiϕi + ∑
i∈I

(uΓ
i +ui−uΓ

i H
(i)
Γ)ϕiHΓ + ∑

i∈I
(ui−uΓ

i H
(i)
Γ)ϕi(1−HΓ)

= ∑
i∈I \IΓ

uiϕi + ∑
i∈I

u
(1)
i ϕ

(1)
i + ∑

i∈I
u
(2)
i ϕ

(2)
i ,

where u
(1)
i = uΓ

i +ui−uΓ
i H

(i)
Γ and u

(2)
i = ui−uΓ

i H
(i)
Γ for i ∈IΓ.

2.6 Numerical test cases

In this section, we present some validation test cases introduced to illustrate the
method.

2.6.1 Barrau’s test case

The model of the first test is given in [5]. We consider a domain Ω = [−1,1]× [−1,1]
where the interface Γ is a straight line {x0}× [−1,1]. We will use NXFEM method
to find a solution of (2.43),

2.6 Numerical test cases 33







−∇ · (k∇u) = f in Ω,

JuK = Jk∇uK = 0 on Γ,

u = uex on ∂Ω.

(2.43)

x

y

−1

1

−1 1

Γ

Ω1 Ω2

The exact solution is already known as,

uex =







x2

k1
(x≤ x0),

x2− x2
0

k2
+

x2
0

k1
(x > x0),

where ki = k|Ωi
is a constant in Ωi. With this uex, the RHS f is fixed at the value

of −4. The exact solution in this case depends much on the values of diffusion
coefficients. We will apply a very different k1,k2 to check the method (k1 = 1,k2 =
100).

With the NXFEM toolbox which is described in Chapter 3, we can find a solution uh

of (2.43) as in Figure 2.11.

a. Exact solution u. b. Numerical solution uh.

Figure 2.11. Exact soltion and numerical solution in the Barrau’s test case with a fine mesh.

The corresponding L2 and |||·|||H norm and convergence rate are given in Table 2.1
and Figure 2.12. This is consistent with the result in Theorem 2.2.

2.6.2 Sinha’s test case

A similar test is given in [54]. In this test, we consider Ω = [0,2]× [0,1] with the
interface is {1}× [0,2]. The exact solution and the right hand side f are given in
(2.44).

34 Chapter 2. Original NXFEM

h ‖uh−uex‖L2 order |||uh−uex|||H order

9.52×10−2 7.3×10−3 0.51

4.88×10−2 1.7×10−3 1.82 0.32 0.7

2.47×10−2 3.91×10−4 2.01 0.17 0.9

1.24×10−2 9.97×10−5 1.93 0.08 1.1

Table 2.1. L2,‖·‖H norm errors of the solutions with different mesh sizes in Barrau’s test
case.

−4.5 −4 −3.5 −3 −2.5 −2
−10

−8

−6

−4

−2

0

log(h)

lo
g
(e

rr
o
r)

L2-norm

H-norm

Figure 2.12. The convergence in L2, |||·|||H norms of the solution in Barrau’s test case using
NXFEM method.

uex =

{

sin(πx)sin(πy) in Ω1,

−sin(2πx)sin(πy) in Ω2.
f =

{

2k1π2 sin(πx)sin(πy),

−5k2π2 sin(2πx)sin(πy).
(2.44)

Remark 2.14 Different from Barrau’s test case, the interface in this test is

fixed at x = 1, the diffusion coefficients must follow a rule that k1 = 2k2. The
solution in this test doesn’t depend on the diffusion coefficients like the one in
the Barrau’s test. In contrast, these coefficients change the RHS f .

Using NXFEM toolbox, we can obtain an approximated solution uh of (2.44) as in
Figure 2.13

The same results as in Barrau’s test for the errors and convergence rates in L2, |||·|||H
norms are also obtained. We don’t present them here. The reason we consider this
test is to check the effect of the Ghost Penalty term (GP) in the next section.

2.6 Numerical test cases 35

a. Exact solution u. b. Numerical solution uh.

Figure 2.13. Exact solution and numerical solution in the Sinha’s test case with a fine mesh.

2.6.3 The choice of parameters

As mentioned in Section 2.3, the choice of parameters is very important. With two
previous test cases, we give some interesting results about the choice of values for:

• The penalty coefficient λ and the value of λ̂ which are given in Section 2.3.
• The values of γ1,γ2 when we work with the Ghost Penalty mentioned in

Section 2.4.
• The choice of using or not using Ghost Penalty.
• The very contrast problem where the diffusion coefficients take very different

values in each subdomain Ωi.

The results we showed in the test case of Barrau’s and Sinha’s are satisfied conditions:

• λ is chosen like a form of (2.29) in which λ̂ is around 105.
• We use the ghost penalty with γ1,γ2 not being too big for both of them (around

10−3).

Remark 2.15 However, when we change a little in the above choices, we get

some interesting things. Some of them are not mentioned in any work before. All
of below results are evaluated under the view of convergence rate in L2 norm.
They will be good if the rate is approximately 2 and bad otherwise.

1. We cannot choose either large λ̂ or small it, both will give a bad result
in the convergence rate (CR). When we take λ̂ = 1010, CR = 0.9 and
CR = 1.53 for the case λ̂ = 1.

2. The ghost penalty term seems to be useless in the Barrau’s test case. We
can choose either small or 0 of λ̂ to get the same result. However, if we
take very big γ1,γ2, GP will affect badly the final result.

3. In contrast, GP only shows it power in the Sinha’s test case. If we don’t
use GP, CR = 1.6 while CR = 2.1 when GP comes.

4. There is not any problem if k1
k2
< 103, we get CR = 1.97 for those cases.

However, when we take k1 = 1,k2 = 104, CR downs to 1.47. This is for

36 Chapter 2. Original NXFEM

the case we use λ like in (2.26). Only when we apply the Barrau’s form
(2.27), CR gets back to the stability 1.93.

3. Implementation NXFEM with Matlab

Contents

3.1 Model 38

3.2 Quadrature 38

3.3 Mesh and some components 39

3.4 Assembling 45

3.5 Numerical examples 54

In this chapter, I will give in details about algorithms and guide to use NXFEM

toolbox developed by myself. I build it based on the idea of space proposed by
Hansbo in Section 2.5, coming from the idea of implementing Standard FEM in
Matlab. In other point of view, this chapter is also used to implement NXFEM in
other programming language instead of being used only in Matlab.

For convenience, I put all technical description in this chapter including implemen-
tation of decoupling system, level set method, biofilm models which are given later
in following chapters.

To access the toolbox, please email to dinhanhthimail@gmail.com.

Remark 3.1 Notice that, if I mention the name of a certain function, it also

alludes to the file with the same name. For instance, function getTriangles is

38 Chapter 3. Implementation NXFEM with Matlab

corresponding to a file named getTriangles.m in the toolbox.

Without loss of generality, I sometimes use x in replace of (x,y) in Ω⊂ R
2.

3.1 Model

This section recalls a general interface model and the discrete forms of the problem
which are given specifically in Section 2.2. We need them to describe techniques to
be used in this chapter.

Consider a problem (3.1) on a bounded domain Ω⊂ R
2 with a convex polynomial

boundary ∂Ω and a smooth interface Γ dividing Ω into two open sets Ω1,Ω2.







−∇ · (k∇u) = f on Ω1∪Ω2,

JuK = 0 on Γ,

Jk∇nuK = 0 on Γ,

u = 0 on ∂Ω.

(3.1)

A weak form of (3.1) is given in (2.7), a discrete form which is recalled from (2.19):
Seek uh ∈V Γ

h such that,

ah(uh,vh) = Lh(vh), ∀vh ∈V Γ
h ,

where

ah(uh,vh) = 〈k∇uh,∇vh〉Ω12

−〈{{k∇nuh}},JvhK〉Γ−〈JuhK,{{k∇nvh}}〉Γ +λ 〈JuhK,JvhK〉Γ,
Lh(vh) = 〈 f ,v〉Ω.

(3.2)

Remark 3.2 In comparison with the problem (2.6), here we consider g = 0,

i.e., J∇nuK = 0.

3.2 Quadrature

Principle. In order to find an approximation of an integral, we need to use quadra-
ture rules. For more information about the theory and the implementation of the
quadrature, I suggest referring to [65, Chapter 8]. In Section A.1, I recall some of its
principal properties. Understanding this well will help us much on building a toolbox
for the NXFEM method. Most of the idea in the implementation has relations to the
quadrature’s rules.

3.3 Mesh and some components 39

3.3 Getting information about the mesh and some principle
components

3.3.1 Mesh generation

Thanks to Matlab PDE Toolbox, we can generate a triangle-mesh with an important
triplet [p,e,t] containing three factors: coordinate of points p (nodes), edges e on
the boundary of the mesh and the triangle’s information t. There are two choices of
the generating: an irregular mesh or a regular mesh (Figure 3.1).

% irregular mesh

[points,edges,triangles] = initmesh(GeoDom,’hmax’,hEdgeMax);

% regular mesh

[points,edges,triangles] = poimesh(GeoDom,numSeg,numSeg);

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

a. Irregular mesh.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

b. Regular mesh.

Figure 3.1. Meshes generated by Matlab PDE Toolbox.

Remark 3.3 hEdgeMax in the code of generating the mesh is the maximum

length of segments on the boundary of the mesh. It’s not the maximum length of
all mesh edges. numSeg is the number of segments on each side of the rectangle
mesh.

Remark 3.4 The vertices of each triangle are stored counter-clockwise in t. For

instance, the triangle 1-2-3 in Figure 3.3 has 3 vertices stored in t as [1,2,3] or
[2,3,1] or [3,1,2]. An example of triangles and their presentation in t is given
in Table A.5.

A connectivity among components in [p,e,t] is given in Section A.2.

40 Chapter 3. Implementation NXFEM with Matlab

Figure 3.2. Level set function φ

corresponding to an approximated
interface Γh in the computation domain Ω.

ΓΓh

φ < 0

φ > 0

φ = 0

3.3.2 Describe the interface

An approximation Γh of the interface Γ is determined via a so-called level set function

φ (cf. Figure 3.2). Definition of a level set function is given in Section 5.1. For this
section, φ is considered as a signed distance function on Ω which measures the
distance between a point in the domain and the interface. In the implementation, we
determine the interface based on the values of φ at nodes.

Notation 3.1 Corresponding to the domain Ω given in Section 3.1, we assume that

Ω1 = {x ∈Ω : φ(x)< 0},
Ω2 = {x ∈Ω : φ(x)> 0},

Γ = {x ∈Ω : φ(x) = 0}.

1

2 3

4

5

1

k(2) k(3)

4

k(5)

k(1)

2 3

k(4)

5

Γ

Γh

Γh

Γh

Figure 3.3. An idea of doubling nodes around the interface. We keep the numbering of node
i where the support of a basis function locating on it belongs to Ω1 and we renumber it to

k(i) for otherwise (blue).

Notation 3.1 is useful to be used in the numbering of additional nodes in the NXFEM
method. We will build new Hansbo-type basis functions described in Section 2.5.
Let us consider all basis functions whose support are cut by the interface. We keep
the indexes of ones whose support lies in Ω1 and define new indexes of ones whose
support lies in Ω2 (cf. Figure 3.3). Other words, the basis defined in (2.36) will be

3.3 Mesh and some components 41

numbered in the code like (3.3). The subscript indicates the index of node in the
mesh.

ϕi := ϕi|Ω1
, ϕk(i) := ϕi|Ω2

. (3.3)

In order to get k(i) nodes, we use the function getNewNodes in the toolbox. The
numbering of these new nodes will be continued after the number of nodes of the
mesh.

3.3.3 Get triangles

As mentioned in (A.6), we need to work on the triangles of the mesh Th. Because of
special basis functions locating at nodes around the interface, we have to distinguish
the triangles based on their position regarding to the position of the interface (Fig-
ure 3.4). For each triangle, we consider the value of level set function φ (phi) at the
vertices of this triangle (φi = φ(xi)) and subject to the type of triangle, we will use
different choices. In the toolbox, we use the function getTriangles to find such
triangles.

Γh

φ < 0

φ > 0

Figure 3.4. Three types of triangles are classified: tris.NCTs1 (blue), tris.NCTs2

(green), tris.CTs (red).

Not-cut triangles tris.NCTsi contains triangles locating totally inside Ωi (i =
1,2). They have no common part with the interface, tris.CTs = {K ∈Th : K∩Γ 6=
/0}. If a triangle on which there are maxi φi < 0 for all i ∈ {1,2,3}, it is in NCTs1

because its all three vertices are located in Ω1. Conversely, if mini φi > 0, it is in
NCTs2 because three vertices are located in Ω2.

Cut triangles tris.CTs contains triangles which are cut by the interface (their
union is denoted as Gh), tris.CTs = {K ∈Th : K∩Γ 6= /0}. If a triangle on which,
there are maxi φi×mini φi < 0 for all i ∈ {1,2,3}, it is in tris.CTs because it has
two vertices locating on two sides of the interface.

If a triangle K ∈Th has three vertices who has coordinates (xi,yi), i ∈ {1,2,3}, its
area can be calculated as in (3.4). This formula will be used in some functions in the
toolbox.

42 Chapter 3. Implementation NXFEM with Matlab

|K|= 1

2
det

[

x2− x1 x3− x1

y2− y1 y3− y1

]

. (3.4)

3.3.4 Cut triangles

The main difference of NXFEM in comparison with FEM is when we want to
implement it on cut triangles (cf. Remark 2.1 to clarify what a cut triangle is). This
leads us to find all necessary information of this type of triangles. This work is done
with the help of the function getInfoCTs in the toolbox.

Type of cut triangles. The interface may cut a triangle in 3 different ways. It divides
the triangle into two different parts in shapes - a triangular shape and a quadrilateral
shape or two triangular shapes (Figure 3.5). Because we want to use quadrature rules
on a triangle to find the integrals in 2D (cf. (A.4)), we prefer to work only on the

triangle part of a cut triangle. That’s why we need to know exactly which kind of
triangle we are working on. Thanks to CT.type, the information about the type of
all cut triangles is stored in this variable.

Γ

1

1 2

a. Type 2: two vertices are lo-
cated in Ω1, one vertex is lo-

cated in Ω2.

Γ

0

1 2

b. Type 0: one vertex is lo-
cated on interface.

Γ

2

1 2

c. Type 4: two vertices are lo-
cated in Ω2, one vertex is lo-

cated in Ω1.

Figure 3.5. Three types of a cut triangle: a vertex is numbered “1” if it is in Ω1, “2” in Ω2

and “0” on Γh. The blue area is in Ω1.

If vertices are located in Ω1, we denote them as “1”; “2” for ones locating in Ω2

and “0” if they are located on the interface (Figure 3.5). Based on these numbers, I
classify all cut triangles into three types: 0, 2 and 4 (These numbers are the product
of all three numbers on three vertices.).

Intersection points. Look back to the bilinear form ah in (3.2), there are some terms
computed on the interface. In the manner of quadrature point of view, we use the
formula (A.2) to find approximate values of these forms. For this reason, we need to
know the intersection between the interface and the edges of cut triangles.

On each triangle so-called i-j-k (notation of three vertices in this orientation,
cf. Remark 3.4), we recall the value of φ on each vertex as φi,φ j,φk which are

3.3 Mesh and some components 43

corresponding to coordinates of three vertices. The function getiPs1 which follows
Algorithm 3.1 results all necessary intersections whereas the function getiPsonE2

which follows3 (3.5) helps us find intersection (x0,y0) between the interface and the
edge i-k.

x0 =
xi

2

(

1− φi +φk

φi−φk

)

+
xk

2

(

1+
φi +φk

φi−φk

)

y0 =
yi

2

(

1− φi +φk

φi−φk

)

+
yk

2

(

1+
φi +φk

φi−φk

) (3.5)

We store intersections in CT.iPs. The way we store them is also very important
because the order of two intersections in iPs will be used to find the unit normal
vector on each segment of the interface (cf. the function getUNCT, Section 3.3.5).

• If the type of a cut triangle is 2 or 4 (the interface doesn’t pass any triangle’s
vertex), the order of two intersections depends on the order of vertices of the
triangle (i→ j→ k).
• If the type of a cut triangle is 0 (the interface passes one vertex), the order of

two intersections depends on which vertex is locating on the interface. If that
vertex is i or k, the order is [intersection,vertex]. Otherwise, the order
is [vertex,intersection].

Algorithm 3.1. Determine intersection points on a cut triangle (getiPs).

Input : φi for i = 1,3 at three vertices xi of cut triangle.
Output

:

CT.iPs of size 2 coordinates ×2 intersections × NCT s.

for 1≤ τ ≤ NCT s do

r = 0;
if φ1×φ2 < 0 then

CT.iPs(:,r,τ) = getiPsonE(x1,x2,φ1,φ2);
r = r+1;

if φ2×φ3 ≤ 0 then

CT.iPs(:,r,τ) = getiPsonE(x2,x3,φ2,φ3);
r = r+1;

if φ3×φ1 ≤ 0 and r < 2 then

CT.iPs(:,r,τ) = getiPsonE(x3,x1,φ3,φ1);
r = r+1;

An example describing the idea of Algorithm 3.1 together with Algorithm 3.2 is

1getiPs means “get intersection points”
2getiPsonE means “get intersection points on edge”
3cf. a proof in Section A.3

44 Chapter 3. Implementation NXFEM with Matlab

given in Appendix A.5.

3.3.5 Unit normal vector

A unit normal vector on the interface Γh is defined from Ω1 to Ω2 and it can be
found by the function getUNCT. From the intersection points obtained in getiPs,
they are ordered in a such special way, e.g. [A,B], the algorithm to find a such unit
normal vector is given in Algorithm 3.2.

Algorithm 3.2. Determine a unit normal vector on the interface Γh (getUNCT).

Input : φi for i = 1,3 at three vertices xi of cut triangle;
Intersection points CT.iPs;
Type of cut triangles CT.type.

Output

:

CT.uN of size 2 coordinates × NCT s.

for 1≤ τ ≤ NCT s do

A = CT.iPs(:,1,τ);
B = CT.iPs(:,2,τ);
if CT.type == 0 then

if φ1 < 0 or φ3 > 0 then

CT.uN(:,τ) = getUnitNV(B,A);
else

CT.uN(:,τ) = getUnitNV(A,B);

else if φ1 < 0 then

CT.uN(:,τ) = getUnitNV(B,A);
else

CT.uN(:,τ) = getUnitNV(A,B);

When we have a segment whose two endpoints is in order
−→
AB, we will use the

function getUnitNV to find its normal vector. A normal vector of AB always points
to the left hand side when we go from A to B.

An example describing the idea of Algorithm 3.1 together with Algorithm 3.2 is
given in Appendix A.5.

3.3.6 Other components

Consider a triangle K ∈Th with three vertices i, j,k. ϕi is a shape function located
at node i. The gradient of the basis function ∇ϕi can be found by

∇ϕi(x,y) =
1

2|K|ni =
1

2|K|

[

y j− yk

xk− x j

]

, (3.6)

3.4 Assembling 45

in which |K| denotes the area of K. The function getGradPhi gives us the gradients
of three shape functions regarding three vertices of each triangle in a group of input
triangles.

3.4 Assembling

3.4.1 Assembling of the stiffness matrix

In this section, I present a way to construct a stiffness matrix which corresponds to
the bilinear form ah in (3.2). The key idea is to construct a triplet [i,j,k] which
describes a sparse matrix A. Two components [i,j] give the numbering of a column
and a row of A respectively in which the value v of A at this position is not zero.

We observe that if uh ∈V Γ
h = span{ϕi}i=1,...,Nnew satisfies (3.2),

ah(uh,ϕ j) = Lh(ϕ j), j = 1, . . . ,Nnew, (3.7)

where Nnew is the number of degrees of freedom in V Γ
h , i.e., Nnew = NVh

+NI in
which NVh

is the number of standard basis functions, NI is the number of “new”
basis ones. Because uh = Σ

Nnew
i=1 uiϕi, we can write (3.7) as

Nnew

∑
i=1

uiah(ϕi,ϕ j) = Lh(ϕ j), j = 1, . . . ,Nnew,

which can also be written as

AU = F, (3.8)

where A ji = ah(ϕi,ϕ j),Fj = Lh(ϕ j) for i, j = 1, . . . ,Nnew. More specifically,

A ji = ∑
K∈Th

aΩ
K (ϕi,ϕ j)+ ∑

K∈Th

a
ΓG

K (ϕi,ϕ j)+ ∑
K∈Th

a
ΓP
K (ϕi,ϕ j), (3.9)

where

aΩ
K (ϕi,ϕ j) =

∫

K
∇ϕi ·∇ϕ j dx,

a
ΓG

K (ϕi,ϕ j) =−〈{{k∇nϕi}},Jϕ jK〉ΓK
−〈JϕiK,{{k∇nϕ j}}〉ΓK

,

a
ΓP
K (ϕi,ϕ j) = λ 〈JϕiK,Jϕ jK〉ΓK

.

We see that, each term in (3.9) can be computed on two types of triangles, non-cut
ones and cut ones. It’s described in Figure 3.6.

46 Chapter 3. Implementation NXFEM with Matlab

Global matrix A

(getGMGG)

cut

triangles

∑K a
ΓP
K

(getTriplePPoG)

∑K a
ΓG

K

(getTripleGPoG)

∑K aΩ
K

(getTripleGGCTs)

not cut

triangles
∑K aΩ

K

(getTripleGGNCTs)

Figure 3.6. The idea of assembling the global stiffness matrix A.

On not-cut triangles. Because not-cut triangles are not cut by the interface, we
don’t need to compute aΓ

K on these such triangles. That’s why there is no terms aΓ
K

on not-cut triangles.

The term aΩ
K contains only gradients in P

1 which are constants, we don’t need to use
quadratures in this case. If K which is a not-cut triangle has three vertices i, j,k,

aΩ
K (ϕi,ϕ j) =

∫

K
∇ϕi ·∇ϕ j dx =

1

4|K|(yk− y j,x j− xk)

[

yk− y j

x j− xk

]

,

where ∇ϕi can be computed by (3.6) and |K| can be computed by (3.4).

This process is corresponding with the function getTripleGGNCTs4 in the toolbox.

On cut triangles. Different from the case of not-cut triangles, the basis functions of
V Γ

h locating on cut triangles are divided into two types, namely ones restricted on Ω1

and ones restricted on Ω2. It is already described in Section 3.3.2 and (2.36).

For the term aΩ
K where K is a cut triangle which has three vertices i, j,k, we have

aΩ
K (ϕ

(l)
i ,ϕ

(l)
j) =

∫

Kl

∇ϕ
(l)
i ·∇ϕ

(l)
j dx =

|Kl|
|K|2 (yk− y j,x j− xk)

[

yk− y j

x j− xk

]

,

where Kl = K ∩Ωl for l = 1,2. Note that, we don’t have the case of aΩ
K (ϕ

(l)
i ,ϕ

(r)
j)

where l 6= r because the intersection of these basis’ supports is empty. This can be
found in the toolbox by the function getTripleGGCTs5.

4getTripleGGNCTs means “get triple gradient-gradient on not-cut triangles”.
5getTripleGGCTs means “get triple gradient-gradient on cut triangles”.

3.4 Assembling 47

For terms a
ΓG

K ,aΓP
K , we have to consider four cases which depend on the subdomain

the basis functions located on. First,

a
ΓG

K (ϕ
(1)
i ,ϕ

(1)
j) =−〈{{k∇nϕ

(1)
i }},Jϕ

(1)
j K〉ΓK

−〈Jϕ
(1)
i K,{{k∇nϕ

(1)
j }}〉ΓK

=−〈κ1k1∇nϕi,ϕ j〉ΓK
−〈ϕi,κ1k1∇nϕi〉ΓK

,

a
ΓP
K (ϕ

(1)
i ,ϕ

(1)
j) = λ 〈Jϕ

(1)
i K,Jϕ

(1)
j K〉ΓK

= λ 〈ϕi,ϕ j〉ΓK
,

(3.10)

where we have applied Definition 2.1 for J·K,{{·}} and a restriction of basis functions
on interface (2.38). Similarly,

a
ΓG

K (ϕ
(1)
i ,ϕ

(2)
j) = 〈κ1k1∇nϕi,ϕ j〉ΓK

−〈ϕi,κ2k2∇nϕ j〉ΓK
,

a
ΓG

K (ϕ
(2)
i ,ϕ

(1)
j) =−〈κ2k2∇nϕi,ϕ j〉ΓK

+ 〈ϕi,κ1k1∇nϕ j〉ΓK
,

a
ΓG

K (ϕ
(2)
i ,ϕ

(2)
j) = 〈κ2k2∇nϕi,ϕ j〉ΓK

+ 〈ϕi,κ2k2∇nϕi〉ΓK
,

a
ΓP
K (ϕ

(1)
i ,ϕ

(2)
j) =−λ 〈ϕi,ϕ j〉ΓK

,

a
ΓP
K (ϕ

(2)
i ,ϕ

(1)
j) =−λ 〈ϕi,ϕ j〉ΓK

,

a
ΓP
K (ϕ

(2)
i ,ϕ

(2)
j) = λ 〈ϕi,ϕ j〉ΓK

.

(3.11)

We see that, in (3.10) and (3.11), there are only two principle terms 〈∇nϕi,ϕ j〉ΓK

(together with its symmetry) and 〈ϕi,ϕ j〉ΓK
. They are corresponding to a

ΓG

K and a
ΓP
K

respectively. I name these functions based on their form, i.e., “GPoG” means “gradient
and phi on Gamma” and “PPoG” means “phi and phi on Gamma”.

Term 〈∇nϕi,ϕ j〉ΓK
is computed by the function intGradnPhi which is based on

∫

ΓK

∇nϕi(x)ϕ j(x)ds =
∫ Xb

Xa

∇nϕi(x)ϕ j(x)ds =
|XaXb|
|X̂aX̂b|

∇nϕi

∫ X̂b

X̂a

N j(x̂)dŝ

= ∇nϕi|XaXb|
∫ 1

0
N j(x̂(t))dt

=
1

2
∇nϕi|XaXb|

lq

∑
q=1

ωqN j



x̂

(

1+ξq

2

)



=
1

2
∇nϕi|XaXb|

lq

∑
q=1

ωqN j

(

x̂a +
x̂b− x̂a

2
(1+ξq)

)

,

where Xa, Xb are two endpoints of ΓK and X̂a, X̂b are their corresponding coordinates
in Ox̂ŷ. Here, we applied the quadrature rule (A.2) and x̂(t) = (1− t)x̂a + tx̂b.

Remark 3.5 Notice that, for simplicity, I have used notation Ni which is corre-

48 Chapter 3. Implementation NXFEM with Matlab

sponding to the basis function ϕi on the triangle K. This notation is not theoret-
ically true because the basis function ϕi has i ∈ {1, . . . ,Nnew} while the shape
function Ni has i ∈ {1,2,3}. However, when some basis function ϕi restricts
on triangle K, it will coincide with the shape function on the corresponding
vertex. In the code, thanks to the connectivity of the triplet [p,e,t], they are
best agreed together.

Term 〈ϕi,ϕ j〉ΓK
is computed via the function intPhiPhi which is based on

∫

ΓK

ϕi(x)ϕ j(x)ds

=
∫ Xb

Xa

ϕi(x)ϕ j(x)ds =
|XaXb|
|X̂aX̂b|

∫ X̂b

X̂a

Ni(x̂)N j(x̂)dŝ

=|XaXb|
∫ 1

0
Ni(x̂(t))N j(x̂(t))dt

=
1

2
|XaXb|

lq

∑
q=1

ωqNi



x̂

(

1+ξq

2

)

N j



x̂

(

1+ξq

2

)



=
1

2
|XaXb|

lq

∑
q=1

ωqNi

(

x̂a +
x̂b− x̂a

2
(1+ξq)

)

N j

(

x̂a +
x̂b− x̂a

2
(1+ξq)

)

.

Algorithm 3.3 gives a way to compute a
ΓG

K while Algorithm 3.4 is used to compute

a
ΓP
K .

Algorithm 3.3. Determing a triple vector i, j,v used to find the global stiffness
matrix A for the term a

ΓG

K (getTripleGPoG).

Input : Cut triangles tris.CTs, intersections CT.iPs, unit noral vectors
CT.uN.

Output

:

Triple vectors i, j,vi j where vi j is corresponding to cases ϕi,ϕ j.

r = 1;
for 1≤ τ ≤ NCT s do

sτ = CT.iPs(:, :,τ);
nτ = CT.uN(:,τ);
for 1 < i < 3 do

for 1 < j < 3 do

i(r) = tris.CTs(i,τ); j(r) = tris.CTs(j,τ);
c ji = intgradnPhi(j, i,sτ ,nτ); ci j = intgradnPhi(i, j,sτ ,nτ);
v1,1(r) =−c ji− ci j; v1,2(r) = c ji− ci j;
v2,1(r) =−c ji + ci j; v2,2(r) = c ji + ci j;
r = r+1;

3.4 Assembling 49

Algorithm 3.4. Determing a triple vector i, j,v used to find the global stiffness
matrix A for the term a

ΓP
K (getTriplePPoG).

Input : Cut triangles tris.CTs, intersections CT.iPs.
Output

:

Triple vectors i, j,vi j where vi j is corresponding to cases ϕi,ϕ j.

r = 1;
for 1≤ τ ≤ NCT s do

sτ = CT.iPs(:, :,τ);
for 1 < i < 3 do

for 1 < j < 3 do

i(r) = tris.CTs(i,τ); j(r) = tris.CTs(j,τ);
v1,1(r) = intPhiPhi(j, i,sτ ,τ);
v1,2(r) = intPhiPhi(j, i,sτ ,τ);
v2,1(r) =−intPhiPhi(j, i,sτ ,τ);
v2,2(r) =−intPhiPhi(j, i,sτ ,τ);
r = r+1;

Remark 3.6 In the code, we notice on the order of i, j which follows the rule

Ai j = ah(ϕ j,ϕi).

3.4.2 Assembling of right hand side

From (3.8), we have

Fj = Lh(ϕ j) = ∑
K∈Th

LK(ϕ j) := ∑
K∈Th

∫

K
f ϕ j dx. (3.12)

Similar to the case of assembling the stiffness matrix, we also need to consider (3.12)
on not-cut and cut triangles. The process is described in Figure 3.7.

Load vector A

(getLf)

cut triangles

(getfPhiCTs)
part triangle

(getfPhiPart)

whole triangle

(getfPhiWhole)

not cut triangles

(getfPhiNCTs)

whole triangle

(getfPhiWhole)

Figure 3.7. The idea of assembling the right hand side F .

50 Chapter 3. Implementation NXFEM with Matlab

On not-cut triangles. On not-cut triangles, the integral is computed on the whole
triangle K, thanks to quadrature formula (A.4), we have the following expression
(3.13) which is corresponding to the function getfPhiWhole in the toolbox.

LK(ϕ j) =
∫

K
f (x)ϕ j(x)dx = 2|K|

∫

K̂
f (P(x̂))N j(x̂)dx̂

= |K|
lq

∑
q=1

ωq f (P(x̂q))N j(x̂q).
(3.13)

Algorithm 3.5. Determing couple vector i, f used to find load vector F for term
LK on not-cut triangles (getfPhiNCTs).

Input : Not-cut triangles tris.NCTsi and function f .
Output

:

Couple vectors j, f

r = 1;
for 1≤ τ ≤ NNCT s do

for 1 < i < 3 do

j(r) = tris.NCTsi(i,τ);
f(r) = getfPhiWhole(i,τ, f);
r = r+1;

On cut triangles. This case is very different from the one for not-cut triangles
because the supports of basis functions locating on this type of triangle is only a part
of triangle. That’s the reason why we need to modify a little bit on the quadrature
rule. We need more than one reference triangle, specifically two. An idea is illustrated
in Figure 3.8.

x

y

0
x̂

ŷ

0

1

1
x̃

ỹ

0

1

1

i

j

k

1

2

3

K1

1̂
2̂

3̂

K̂1
1̃

2̃

3̃

K̃P−1

Q−1

Figure 3.8. An idea to get the quadrature when we want to integrate on a part of triangle.

This process contains two steps,

• Step 1: K1→ K̂1 based on K→ K̂,
(

x

y

)

= P

(

x̂

ŷ

)

=

(

xi(1− x̂− ŷ)+ x jx̂+ xkŷ

yi(1− x̂− ŷ)+ y jx̂+ ykŷ

)

,

3.4 Assembling 51

dxdy = 2|K|dx̂dŷ.

• Step 2: K̂1→ K̃,
(

x̂

ŷ

)

= Q

(

x̃

ỹ

)

=

(

x1̂(1− x̃− ỹ)+ x2̂x̃+ x3̂ỹ

y1̂(1− x̃− ỹ)+ y2̂x̃+ y3̂ỹ

)

, (3.14)

dx̂dŷ = 2|K1|dx̃dỹ. (3.15)

Then we have (3.16) which is corresponding to the function getfPhiPart in the
toolbox. This function will find the integral on a part of triangle.

LK(ϕ
(1)
j) =

∫

K
f (x,y)ϕ

(1)
j (x,y)dxdy =

∫

K1

f1(x,y)ϕ j(x,y)dxdy

= 2|K|
∫

K̂1

f1(P(x̂, ŷ))N j(x̂, ŷ)dx̂dŷ

= 4|K||K1|
∫

K̃
f1(P(Q(x̃, ỹ)))N j(Q(x̃, ỹ))dx̃dỹ

= 2|K||K1|
lq

∑
q=1

ωq f1(P(Q(x̃q, ỹq)))N j(Q(x̃q, ỹq)),

(3.16)

where fi = f |Ωi
.

Remark 3.7 Note that, (3.16) is only used for the basis function whose support

is the triangular-part of a cut triangle. If one wants to find LK for some basis
function whose support is the quadrangular-part of a cut triangle, we will find
on the whole triangle first and take the substraction from the triangular part.

More specifically, suppose that ϕ
(2)
j has support K2 which is a quadrangular-part

of triangle K, then

LK(ϕ
(2)
j) =

∫

K
f ϕ

(2)
j dx =

∫

K2

f2ϕ j dx

=
∫

K
f2ϕ j dx−

∫

K1

f2ϕ j dx,

= getfPhiWhole(j,K, f2)−getfPhiPart(j,K,1, f2),

where K1 is the triangular part of K.

A full algorithm to find the load vector on cut triangles is given in Algorithm 3.6.

3.4.3 Implementing the Ghost Penalty

An idea of the Ghost penalty is given in Section 2.4. Recall that, we need to add two
following terms into the bilinear form ah,

52 Chapter 3. Implementation NXFEM with Matlab

Algorithm 3.6. Determing couple vector i, f used to find load vector F for term
LK on cut triangles (getfPhiCTs).

Input : Cut triangles tris.CTs and function fi = f |Ωi
for i = 1,2.

Output

:

Couple vectors j, f1, f2 where f1, f2 are corresponding to LK(ϕ
(1)
j) and

LK(ϕ
(2)
j) respectively.

r = 1;
for 1≤ τ ≤ NCT s do

for 1 < i < 3 do

j(r) = tris.CTs(i,τ);
if CT.type == 2 then

f1(r) = getfPhiWhole(i,τ, f1) - getfPhiPart(i,τ,2, f1);
f2(r) = getfPhiPart(i,τ,2, f2);

else

f2(r) = getfPhiWhole(i,τ, f2) - getfPhiPart(i,τ,1, f2);
f1(r) = getfPhiPart(i,τ,1, f1);

r=r+1;

jr(uh,vh) = ∑
e∈E r

G

〈γrhJ∇ne
uhKe,J∇ne

vhKe〉e, r = 1,2,

where E i
G is defined in (2.32).

Ghost penalty edges. Because ghost penalty terms are defined on special edges
of cut triangles depending on the “fictitious domain” Ω2

T
(j1 uses different edges

in comparison with j2, cf. Figure 2.7), this leads us to first find the “ghost penalty
edges” which are the ones to be used in computing each ghost penalty term.

In addition, we are computing the jump on edges J∇uh ·neKe which is defined as

J∇uh ·neKe = (∇uh)|K ·ne− (∇uh)|K′ ·ne,

where e = K ∩K′. That means, for each considered edge, we need to determine
two adjacent triangles to which this edge belongs. Another problem comes with
determining a unit normal vector on edge ne, i.e., we need to know the order of
two endpoints of each considered edge. Thanks to the function getGPEdges in the
toolbox (Algorithm 3.7), it gives us a vector idxNBTris and a 9×Nedges matrix eGP.
The former contains the indices of cut triangles and their neighbors while the latter
contains the following information.

• Rows 1,2: contains the information of two endpoints of GP edges.
• Rows 3,4: contains the information of two adjacent triangles that these edges

belongs to.

3.4 Assembling 53

• Row 5: contains the type of GP edges (1 if this edge is entirely in Ω1, 2 in Ω2

and 3 if it cuts the interface).
• Rows 6,7: the order of two endpoints in the triangle is indicated in line 3 (1, 2

or 3).
• Rows 8,9: the order of two endpoints in the triangle is indicated in line 4 (1, 2

or 3).

Why we need rows 6−9? It’s because we need to know about ∇uh on each triangle
K,K′. Thanks to the function getGradPhi (cf. (3.6)), we are able to know ∇uh on
each vertex of some triangle but in the fixed order. When we consider some edge, for
example, ei j, we don’t know its endpoints i, j are corresponding to which vertex of
the triangle K and K′ (i.e., K∩K′ = ei j), lines 6−9 help us do that.

A full algorithm and an example describing the way getGPEdges works are given in
Algorithm 3.7.

Algorithm 3.7. Determine the ghost penalty edges (getGPEdges).

Input : Triangles tris of the mesh.
Output

:

9×Nedges matrix eGP contains ghost penalty edges.

1. Find all neighbors of cut triangles (neighborTris which contains indexes in
msh.t).

2. Collect all edges of neighborTris and store them to two first lines of eGP

(eGP(1:2,:) contains two endpoints of edges).
3. Collect all triangles that contain the edges in step 2 and store them to the third

line of eGP (eGP(3,:) contains the indexes in neighborTris).
4. Remember the position of vertices of edges in step 2 in the triangles

eGP(3,:) and store them to next two lines (eGP(6:7,:)).
5. Find the other triangles which are adjacent to the triangles found in step 3 and

also contain the edges in step 2. Then we store them to the fourth line of eGP

(eGP(4,:) contains the indexes in neighborTris).
6. Remember the position of vertices found in step 2 in the triangles eGP(4,:)

and store them to eGP(8:9,:).
7. Filter out the wrong edges (to be sure that we are only considering the edges

of cut triangles).
8. Mark the type of edges and store them to eGP(5,:).

Ghost penalty terms. Recall (2.30), we look for

AG
ji = ah(ϕi,ϕ j)+ k1 j1(ϕi,ϕ j)+ k2 j2(ϕi,ϕ j)

= Ai j + k1 j1(ϕi,ϕ j)+ k2 j2(ϕi,ϕ j), for i, j = 1, . . . ,Nnew,

where Ai j is computed in (3.9).

Suppose that nodes i and j are located on the edge ei j which is the common part of
two adjacent triangles K and K′. The edge ei j falls into one of two cases, either cut

54 Chapter 3. Implementation NXFEM with Matlab

or not-cut edge.

jr(ϕ
(r)
i ,ϕ

(r)
j) =

∫

ei j

γrhJ∇ne
ϕ
(r)
i KJ∇ne

ϕ
(r)
j Kds =

∫

e
(r)
i j

γrhJ∇ne
ϕiKJ∇ne

ϕ jKds

= γrhJ∇ne
ϕiKJ∇ne

ϕ jK|e(r)i j |.
(3.17)

where ne := nei j
,e

(r)
i j = ei j∩Ωr which is either cut or not-cut edge, for r = 1,2.

Remark 3.8 We don’t have the cases jr(ϕ
(l)
i ,ϕ

(l)
j) where r 6= l because we only

consider jr which is corresponding to basis functions whose supports are located

in Ωr. We don’t have either the cases jr(ϕ
(1)
i ,ϕ

(2)
j) or jr(ϕ

(2)
i ,ϕ

(1)
j) for r = 1,2

because their supports have no common on the edges of cut triangles.

A full algorithm to find Σ2
r=1kr jr is given in Algorithm 3.8.

Algorithm 3.8. Determine the triple vectors i, j,v which are corresponding to the
ghost penalty terms.

Input : Cut triangles tris.CTs.
Output

:

Triple vectors i, j,v.

1. Get ghost penalty edges: eGP = getGPEdges().
2. Classify edges into there groups depending on the subdomain: e j1 (the not-cut

edges for the term j1), e j2 (the not-cut edges for the term j2), e jc (the cut edge
for both terms).

3. Get the triplet on each group based on (3.17).

3.4.4 Implementation issue of norms

With the same manner as in the section of assembling (cf. Sections 3.4.1, 3.4.2), we
can calculate the norms in the standard FE space or in the NXFEM space of discrete
or continuous functions. You can find more details in Section A.6.

3.5 Numerical examples

Some numerical validation test cases and comments are already given in Section 2.6.

4. Resolution of semilinear-interface sys-
tem by NXFEM

Contents

4.1 Model 56

4.2 Decoupling the system of equations 57

4.3 Analysis 61

4.4 The convergence 65

4.5 A numerical test case 72

Under the motivation of modeling a biofilm model, we introduce a system of semi-
linear interface problem. A technique of decoupling such a problem into three new
separated ones in which we can handle each of them more easily is also presented.
The equivalence between the main system and the new one has been clarified after-
ward.

For the three separated problems, we only need to work with two of them, the
remaining will be solved based on the others. There is one simple linear problem and
one nonlinear problem we need to work with. For the former, we use the standard
NXFEM method introduced in Chapter 2 to find a solution. For the latter which
has a nonlinear form, we use the fixed point theorem to demonstrate the existence
of its solution. After that, a result of the convergence of discrete solutions to the
solution of the weak problem will be showed thanks to the idea of techniques in
the Discontinuous Galerkin Method proposed by Ern & Di Pietro [25]. Their work

56 Chapter 4. Resolution of semilinear-interface system by NXFEM

actually relied on techniques inspired by the Finite Volume literature given in the
work of Eymard et al.. [29]. Note that, Ern & Di Pietro worked on the discontinuity
on each side of the mesh’s elements while we only work on the discontinuity of
functions on the interface.

4.1 Model

Main model. Let us consider a convex polygonal, Lipschitz and bounded domain
Ω in R

2 such that Ω = Ω1∪Ω2. These two regions are separated by a sufficiently
smooth interface Γ. We consider the following stationary problem (4.2) which is a
system of semilinear equations.






−∇ · (α∇u)+ vg(u) = fu in Ω,

−∇ · (β∇v)−λvg(u) = fv in Ω,

JuK = Jα∇nuK = 0 on Γ,

v = ∇nv = 0 on Γ,

u = ū on ∂Ω,

v = v̄ on ∂Ω.

(4.2)

Ω2

Ω1

Γ

Here, n denotes the unit normal at a given point on Γ pointing from Ω1 to Ω2. We
also take the following special form of g, fu, fv, v̄ which are agreed to a biofilm’s
model, i.e. there is no bacteria outside the biomass region Ω1.

g(u) =

{

g1(u) in Ω1,

0 in Ω2.
fu =

{

fu1
in Ω1,

fu2
in Ω2.

fv =

{

fv1
in Ω1,

0 in Ω2.
v̄ =

{

v̄1 on ∂Ω1\Γ,
0 on ∂Ω2\Γ.

Assumption 4.1 We suppose that ū,λ > 0, v̄1 ≥ 0 and two diffusion coefficients

α,β are assumed to be piecewise constants α = αi > 0,β = βi > 0 in Ωi for i = 1,2.
In general, we have α1 6= α2,β1 6= β2. We also assume that functions g, fu, fv satisfies
(4.3).







fu, fv ∈ L2(Ω),

g measurable with respect to x ∈Ω and 0≤ ∂g(x,u)

∂u
≤ ξ (x) ∈ L1(Ω).

(4.3)

Recall from Definition 2.2 the space H1(Ω12) and its norm. We also need to use
notation of spaces

V := {v ∈ H1(Ω) : v = 0 on Γ},
V0 = {v ∈V : v = 0 on ∂Ω}.

(4.4)

They are Hilbert spaces with the usual norms in H1(Ω).

4.2 Decoupling the system of equations 57

4.2 Decoupling the system of equations

By putting w = u+ β
αλ v, we are able to decouple the system (4.2) into three separated

problems (4.5), (4.6) and (4.7).







−∇ · (α∇w) = fw := fu +
1
λ fv in Ωi, i = 1,2,

JwK = Jα∇nwK = 0 on Γ,

w = w̄ := ū+ β
αλ v̄ on ∂Ω.

(4.5)







−∇ · (β∇v)−λvg(w− β
αλ v) = fv in Ωi, i = 1,2,

v = ∇nv = 0 on Γ,

v = v̄ on ∂Ω.

(4.6)

u = w− β

αλ
v. (4.7)

The idea of this decoupling is that instead of working directly on (4.2), we can work
on an equivalent system (4.5, 4.6, 4.7). The advantage is to change from working on
a system of equations to working on separated equations which are more easily to be
handled.

Proposition 4.1 The system (4.2) is equivalent to decoupled problems (4.5),

(4.6), (4.7). In other words, u,v is a solution of (4.2) if and only if w,v and u are
solutions of (4.5), (4.6) and (4.7).

Proof. It’s easy to get the result from definition of w, w = u+ β
αλ v. Note that,

because of the difference in the interface condition between u (with jump) and v

(without jump), we have to seek w,v before seeking u. �

4.2.1 Weak formulations

Multiply both sides of (4.5) by a test function ϕ ∈ H1
0 (Ω) and apply Green formula,

we have

〈 fw,ϕ〉Ω =−〈∇ · (α∇w),ϕ〉Ω =−〈∇ · (α∇w),ϕ〉Ω1
−〈∇ · (α∇w),ϕ〉Ω2

= 〈α∇w,∇ϕ〉Ω1
−〈α∇nw,ϕ〉∂Ω1

+ 〈α∇w,∇ϕ〉Ω2
−〈α∇nw,ϕ〉∂Ω2

= 〈α∇w,∇ϕ〉Ω12
−〈α∇nw,ϕ〉∂Ω−

∫

Γ
Jα∇nwϕKds

= 〈α∇w,∇ϕ〉Ω12
−〈Jα∇nwK,{{ϕ}}〉Γ−〈{{α∇nw}},JϕK〉Γ

+(κ2−κ1)〈Jα∇nwK,JϕK〉Γ,

(4.8)

58 Chapter 4. Resolution of semilinear-interface system by NXFEM

Because JwK = Jα∇nwK = 0 on Γ and ϕ ∈ H1
0 , we will get

〈α∇w,∇ϕ〉Ω = 〈 fw,ϕ〉Ω, ∀ϕ ∈ H1
0 (Ω). (4.9)

A weak form of (4.5) is to find w ∈ H1(Ω) such that w = w̄ on ∂Ω and w satisfies
(4.9).

Similarly, multiply both sides of (4.6) by a test function ϕ ∈ V0 and apply Green
formula on each subdomain (note that, we apply the Nitsche’s technique on each
subdomain to enforce weakly the jump on the interface, it will be helpful and be
recalled in the discrete section)

〈β∇v,∇ϕ〉Ω1
−〈β∇nv,ϕ〉∂Ω1

−〈q(v),ϕ〉Ω1
+ 〈v,θκ1ϕ−β∇nϕ〉Γ = 〈 fv,ϕ〉Ω1

,

〈β∇v,∇ϕ〉Ω1
+ 〈β∇nv,ϕ〉∂Ω2

−〈q(v),ϕ〉Ω2
+ 〈v,θκ1ϕ +β∇nϕ〉Γ = 〈 fv,ϕ〉Ω2

,

with θ sufficiently large enough and

q(v) := λvg(w− β

αλ
v).

Then we have

〈 fv,ϕ〉Ω = 〈β∇v,∇ϕ〉Ω12
−〈β∇nv,ϕ〉∂Ω−〈q(v),ϕ〉Ω

−
∫

Γ
Jβ∇nvϕKds+θ

∫

Γ
{{vϕ}}ds−

∫

Γ
Jvβ∇nϕKds.

Recall (2.11), Propotition 2.1 and expand the expression,

〈 fv,ϕ〉Ω = 〈β∇v,∇ϕ〉Ω12
−〈q(v),ϕ〉Ω

−〈Jβ∇nvK,{{ϕ}}〉Γ−〈{{β∇nv}},JϕK〉Γ
− (κ2−κ1)〈Jβ∇nvK,JϕK〉Γ +θ〈{{v}},{{ϕ}}〉Γ
+θκ1κ2〈JvK,JϕK〉Γ−〈JvK,{{β∇nϕ}}〉Γ
−〈{{v}},Jβ∇nϕK〉Γ− (κ2−κ1)〈JvK,Jβ∇nϕK〉Γ.

(4.10)

Because v = ∇nv = 0 on Γ and ϕ ∈V0,

〈β∇v,∇ϕ〉Ω−〈q(v),ϕ〉Ω = 〈 fv,ϕ〉Ω, ∀ϕ ∈V0. (4.11)

A weak form of (4.6) is to find v ∈V such that v = v̄ on ∂Ω and v satisfies (4.11).

Next, we need to verify the equivalence between the weak problems (4.5), (4.6) and
the decoupled system (4.9), (4.11). Indeed,

4.2 Decoupling the system of equations 59

Proposition 4.2 If (w,v) is a solution of (4.5, 4.6) then it is also a solution of

(4.9, 4.11). We have also the converse if the weak solution (w,v) of (4.9, 4.11)
belongs to H2(Ω).

Proof. The first statement can be obtained easily from the construction of weak
formulations. We now prove that if (w,v) solves (4.9, 4.11) and w,v ∈ H2(Ω) then it
also solves (4.5, 4.6).

First, consider problem (4.9) and w ∈ H2(Ω) is a solution of it, we have w = w̄ on
∂Ω and

〈α∇w,∇ϕ〉Ω = 〈 fw,ϕ〉Ω, ∀ϕ ∈ H1
0 (Ω).

Performing integration by parts on the 〈α∇w,∇ϕ〉Ω12
backwards on each subdomain

Ωi, we have

−〈∇ · (α∇w),ϕ〉Ω12
+ 〈Jα∇nwK,{{ϕ}}〉Γ = 〈 fw,ϕ〉Ω, ∀ϕ ∈ H1

0 (Ω). (4.12)

We choose ϕ = 0 on Γ, (4.12) becomes

−〈∇ · (α∇w),ϕ〉Ω12
= 〈 fw,ϕ〉Ω, ∀ϕ ∈ H1

0 (Ω)∩{ϕ = 0 on Γ}.

We could argue in each subdomain Ωi,

−∇ · (α∇w) = fw a.e. on Ωi.

Now back to (4.12) we have

〈Jα∇nwK,{{ϕ}}〉Γ = 0, ∀ϕ ∈ H1
0 (Ω)∩{ϕ 6= 0 on Γ}.

This implies, Jα∇nwK = 0 on Γ. To sum up, we have shown that w solves (4.9) and
w also satisfies all conditions of problem (4.5).

With the same technique, we can easily obtain the same result for problem (4.6) and
(4.7). Indeed, from (4.11) and for any ϕ ∈ H1

0 (Ω), we have

−〈∇ · (β∇v),ϕ〉Ω12
+ 〈Jβ∇nvK,{{ϕ}}〉Γ + 〈JϕK,{{β∇nv}}〉Γ−〈q(v),ϕ〉Ω = 〈 fv,ϕ〉Ω.

Choose ϕ = 0 on Γ then

−〈∇ · (β∇v),ϕ〉Ω12
−〈q(v),ϕ〉Ω = 〈 fv,ϕ〉Ω, ∀ϕ ∈ {ψ ∈ H1

0 (Ω),ψ = 0 on Γ}.

This implies −∇ · (β∇v)−q(v) = fv. Thus,

60 Chapter 4. Resolution of semilinear-interface system by NXFEM

〈Jβ∇nvK,{{ϕ}}〉Γ + 〈JϕK,{{β∇nv}}〉Γ = 0, ∀ϕ ∈ {ψ ∈ H1
0 (Ω),ψ 6= 0 on Γ}.

(4.13)

Don’t forget that ϕ ∈ H1
0 (Ω) or we have JϕK = 0, this leads to

〈Jβ∇nvK,{{ϕ}}〉Γ = 0, ∀ϕ ∈ {ψ ∈ H1
0 (Ω),ψ 6= 0 on Γ},

or we have

Jβ∇nvK = 0, on Γ. (4.14)

Replace (4.14) in (4.13), we get

〈JϕK,{{β∇nv}}〉Γ = 0, ∀ϕ ∈ {ψ ∈ H1
0 (Ω),ψ 6= 0 on Γ,JψK 6= 0 on Γ}.

or,

{{β∇nv}}= 0, on Γ. (4.15)

Coupling (4.14) and (4.15), we have ∇nv = 0 on Γ. To sum up, we have shown that
v solves (4.11) and v also satisfies all conditions of problem (4.6). �

Proposition 4.3 With g, fu, fv satisfying Assumption 4.1, the problem (4.9, 4.11)

has a unique solution.

Proof. If fw ∈ L2(Ω) and thanks to [14], problem (4.9) has unique solution in H2

on each subdomain and further,

‖w‖H1(Ω12)
+‖w‖H2(Ω12)

≤C‖ fw‖L2(Ω12)
.

It’s also known in [35, Theorem 2.1] that the semilinear problem (4.11) has unique
solution in V if fv ∈ L2(Ω) and g(x,u(x)) satisfies

g measurable w.r.t x ∈Ω and 0≤ ∂g(x,u)

∂u
≤ ξ (x) ∈ L1(Ω). (4.16)

Clearly, the choice of g in (1.1) satisfies the condition (4.16) because

0≤ ∂g

∂u
= µs

Ks

(Ks +u)2
≤ µs ∈ L1(Ω).

�

4.3 Analysis 61

4.2.2 Discrete formulations

Applying the same arguments as in Section 2.2, a discrete form of problem (4.5) is
as follows: Seek a solution wh ∈V Γ

h such that wh = w̄ on ∂Ω and

awh(wh,ϕh) = Kwh(ϕh), ∀ϕh ∈V 0
h , (4.17)

where V 0
h defined in (2.15) and

awh(wh,ϕh) := 〈α∇wh,∇ϕh〉Ω12

−〈JwhK,{{α∇nϕh}}〉Γ−〈{{α∇nwh}},JϕhK〉Γ +ζ 〈JwhK,JϕhK〉Γ,
Kwh(ϕh) := 〈 fw,ϕh〉Ω.

Similarly, look back to (4.10), if we take ϕh ∈V 0
h instead of H1

0 (Ω), we don’t have
JϕhK = 0 on Γ and the terms corresponding to this will remain in the formulation.
Moreover, because of the condition v = ∇nv = 0 on Γ instead of jump condition
like in the case of w, we need not only JvK = 0 but also {{v}} = 0 on Γ so that we
can imply v = 0 on Γ. That’s why when we apply the Nistche’s idea in (4.10), we
choose a little different coefficients. Note that, one can choose different forms of avh

based on (4.10) as long as terms contains jump and average of v will be kept. We
propose a choice of avh given in (4.19) with which, corresponding to problem (4.6),
we consider a discrete problem: Seek a solution vh ∈V Γ

h such that vh = v̄ on ∂Ω and

avh(vh,ϕh)−〈q(vh),ϕh〉Ω = Kvh(ϕh), ∀ϕh ∈V 0
h , (4.18)

where,

avh(vh,ϕh) := 〈β∇vh,∇ϕh〉Ω12
−〈JvhK,{{β∇nϕh}}〉Γ−〈{{β∇nvh}},JϕhK〉Γ

+θ〈{{vh}},{{ϕh}}〉Γ +θκ1κ2〈JvhK,JϕhK〉Γ, (4.19)

Kvh(ϕh) := 〈 fv,ϕh〉Ω.

4.3 Analysis

Proposition 4.4 For u,v ∈V Γ
h and the norms ‖·‖ 1

2
,‖·‖− 1

2
defined as in (2.21),

we have

〈u,v〉Γ ≤ ‖u‖ 1
2
‖v‖− 1

2
. (4.20)

Proof. Thanks to Hölder’s inequality and Schwarz’s inequality, we have

62 Chapter 4. Resolution of semilinear-interface system by NXFEM

〈u,v〉Γ = ∑
T∈Gh

〈h−
1
2

T u,h
1
2
T v〉ΓT

≤ ∑
T∈Gh

〈‖h−
1
2

T u‖L2(ΓT)
,‖h

1
2
T v‖L2(ΓT)

〉ΓT

≤
(

ΣT∈Gh
h−1

T ‖u‖2
L2(ΓT)

) 1
2
(

ΣT∈Gh
hT‖v‖2

L2(ΓT)

) 1
2
= ‖u‖ 1

2
‖v‖− 1

2
.

�

Proposition 4.5 — Consistency. If w,v solve the continuous problems (4.5),

(4.6) respectively then w,v also solve the discrete problems (4.17), (4.18) re-
spectively.

Proof. For w, using the same technique given in [31, Lemma 1], we are able to get

awh(w,ϕh) = Kwh(ϕh), ∀ϕh ∈V 0
Γ .

For v solving (4.18), it’s even easier because of the condition of v on Γ (v = ∇nv = 0).
After put v into avh, all terms on the interface will disappear and we get instantly the
result. �

Proposition 4.6 The following estimation hold

(i) awh(wh,ϕh)≤C|||wh|||1|||ϕh|||1, for all wh ∈V Γ
h and ϕh ∈V 0

h ,
(ii) awh(wh,wh)≥C|||wh|||21, ∀v ∈V Γ

h for all wh ∈V Γ
h ,

where |||·|||1 defined in (4.21) and α is the diffusion coefficient in the problem
(4.5).

|||vh|||21 := ‖∇vh‖2
L2(Ω12)

+‖{{α∇nvh}}‖2
−1/2 +‖JvhK‖2

1/2. (4.21)

Thus, the discrete problem (4.17) has unique solution in V Γ
h .

Proof. The estimations (i) and (ii) can be obtained from [31, Lemma 5]. The exis-
tence of unique solution can be deduced using Lax-Milgram theorem. �

Remark 4.1 There is slightly difference between |||·|||1 and |||·|||H (defined in

(2.21)) but it does not effect to the demonstrations.

Proposition 4.7 The discrete problem (4.18) has a solution vh ∈V Γ
h .

4.3 Analysis 63

Proof. Given ṽh ∈V Γ
h , consider the problem : Find vh ∈V Γ

h such that

avh(vh,ϕh)−〈q(ṽh),ϕh〉Ω = 〈 fv,ϕh〉Ω, ∀ϕh ∈V 0
h , (4.22)

We can obtain the continuity of avh thanks to Hölder’s inequality and (4.20),

|avh(vh,ϕh)| ≤ |〈β∇vh,∇ϕh〉Ω12
|+ |〈JvhK,{{β∇nϕh}}〉Γ|+ |〈{{β∇nvh}},JϕhK〉Γ|

+ |θ〈{{vh}},{{ϕh}}〉Γ|+ |θκ1κ2〈JvhK,JϕhK〉Γ|
≤C‖∇vh‖L2(Ω12)

‖∇ϕh‖L2(Ω12)
+C‖JvhK‖ 1

2
‖{{β∇nϕh}}‖− 1

2

+C‖{{β∇nvh}}‖− 1
2
‖JϕhK‖ 1

2
+C‖{{vh}}‖L2(Γ)‖{{ϕh}}‖L2(Γ)

+C‖JvhK‖ 1
2
‖JϕhK‖ 1

2

≤C|||vh|||2|||ϕh|||2.

Using the same technique as in the proof of [31, Lemma 5] with any ξ > 0, we have

avh(vh,vh)≥
1

2
‖β 1/2∇vh‖2

L2(Ω12)
+C‖vh‖2

L2(∂Ω1\Γ)

+

(
1

2
− 2CIβmax

ξ

)

‖β 1/2∇vh‖2
L2(Ω12)

+
1

ξ
‖{{β∇nvh}}‖2

− 1
2

+ ∑
T∈Gh

(

θκ1κ2−
ξ

hT

)

‖JvhK‖2
L2(ΓT)

+θ‖{{vh}}‖2
L2(Γ).

By choosing ξ = 4CIβmax (CI is the coefficient in the inverse inequality (2.23)) and

θ > ξ
hT κ1κ2

, we have

avh(vh,vh)≥C|||vh|||22, (4.23)

where |||·|||2 defined in (4.24) (β is the diffusion coefficient in problem (4.6)).

|||vh|||22 := ‖∇vh‖2
L2(Ω12)

+‖{{β∇nvh}}‖2
−1/2 +‖JvhK‖2

1/2 +‖{{vh}}‖2
L2(Γ) (4.24)

Thanks to Lax-Milgram theorem, easily to check that (4.22) has unique solution in
V Γ

h . From this, we define operator T by

T : V Γ
h −→ V Γ

h

ṽh 7−→ T (ṽh) = vh solving (4.22)

Owing to (4.23),

avh(vh,vh)≥C|||vh|||22 ≥C‖∇vh‖2
L2(Ω12)

.

Besides that,

64 Chapter 4. Resolution of semilinear-interface system by NXFEM

avh(vh,vh) = 〈q(ṽh),vh〉Ω12
+ 〈 fv,vh〉Ω ≤ |〈q(ṽh),vh〉Ω12

+ 〈 fv,vh〉Ω|
≤ ‖q‖L2(Ω)‖vh‖L2(Ω)+‖ fv‖L2(Ω)‖vh‖L2(Ω) ≤C‖∇vh‖L2(Ω12)

.

Therefore ‖∇vh‖L2(Ω12)
≤C (thanks to Poincaré’s inequality), then T is thus bounded

in V Γ
h . Take a R “large enough", T will map BR = {vh ∈V Γ

h
: ‖vh‖L2(Ω12)

≤ R} to BR.

It’s enough to prove that T is continuous to conclude by the Brouwer fixed point
theorem (cf. [61]). Indeed, let {ṽn

h}n be a sequence in V Γ
h such that ṽn

h→ ṽh. Putting
vn

h = T (ṽn
h). Because T is bounded in V Γ

h , thanks to Bolzano-Weierstrass theorem,
there exists a subsequence, also denoted vn

h, converges to a quantity so-called zh ∈V Γ
h .

What we need to do now is to prove that zh is a solution of (4.22). Take ϕh ∈V 0
h , we

have

avh(v
n
h,ϕh)−〈q(ṽn

h),ϕh〉Ω12
= 〈 fv,ϕh〉Ω.

With assumptions like in Propotition 4.3, 〈q(ṽn
h),ϕh〉Ω12

→〈q(ṽh),ϕh〉Ω12
. Moreover,

vn
h→ zh implies

〈β∇vn
h,∇ϕh〉Ω12

→ 〈β∇zh,∇ϕh〉Ω12
,

‖Jvn
hK− JzhK‖L2(Γ) = ‖Jvn

h− zhK‖L2(Γ)

2

∑
i=1

‖(vn
h− zh)|Ωi

‖L2(Γ)

≤C
2

∑
i=1

‖(vn
h− zh)|Ωi

‖L2(Ωi)
→ 0,

‖{{vn
h}}−{{zh}}‖L2(Γ) = ‖

2

∑
i=1

κi(v
n
h− zh)|Ωi

‖L2(Γ) ≤C
2

∑
i=1

‖(vn
h− zh)|Ωi

‖L2(Ωi)
→ 0.

‖{{β∇nvn
h}}−{{β∇nzh}}‖2

L2(Γ)

≤C
2

∑
i=1

‖κi∇n(v
n
h− zh)|Ωi

‖2
L2(Γ) ≤C

2

∑
i=1

∑
K

‖κi∇n(v
n
h− zh)|Ωi

‖2
L2(ΓK)

≤C
2

∑
i=1

∑
K

κ2
i |ΓK||∇n(v

n
h− zh)|Ωi

|2 =C
2

∑
i=1

∑
K

|Ki||ΓK|
|K|2 ‖∇n(v

n
h− zh)|Ωi

‖2
L2(Ki)

≤C
2

∑
i=1

∑
K

‖∇n(v
n
h− zh)|Ωi

‖2
L2(Ki)

=C
2

∑
i=1

‖∇n(v
n
h− zh)|Ωi

‖2
L2(Ωi)

→ 0.

In the estimate ‖{{β∇nvn
h}}−{{β∇nzh}}‖2

L2(Γ)
, we have used the fact that |ΓK| ≤

hK, |Ki| ≤ h2
K, |K| ≥Ch2

K . And therefore, avh(v
n
h,ϕh)→ avh(zh,ϕh). Finally, we will

get,

avh(zh,ϕh)−〈q(ṽh),ϕh〉Ω12
= 〈 fv,ϕh〉Ω,

or zh solves (4.22). Sum up, we conclude that T admits a fixed point zh = T (zh)
which solves the problem (4.18). �

4.4 The convergence 65

4.4 The convergence

In this section, we are going to show that the solutions of discrete problems obtained
from (4.17) and (4.18) will converge to solutions of weak problems (4.9) and (4.11)
respectively. In order to do that, we need to define some operators dertermined on
the interface and also their convergence result in V Γ

h . After that, we split the forms of
(4.17) (4.18) into separated terms. On each term, we will prove the convergence to
the corresponding one in the form of (4.9), (4.11). These results are obtained thanks
to the operators we define earlier.

Definition 4.1 — Lifting operator. For vh ∈ V Γ
h , let Lh : L2(Γ)→ [V Γ

h]
2 such

that
∀ϕ ∈ [V 0

h]
2, 〈Lh(JvhK),ϕ〉Ω12

:= 〈{{ϕ}} ·n,JvhK〉Γ. (4.25)

We observe that the support of Lh consists of two subdomains of which Γ is part of
the boundary ∂Ωi, or

supp(Lh) = Ω1∪Ω2 = Ω.

The following discrete gradient operators will play an important role in the analysis.

Definition 4.2 — Discrete gradient operators. For all vh ∈V Γ
h , let Gh : V Γ

h →
[V Γ

h]
2 such that,

Gh(vh) := ∇vh−Lh(JvhK). (4.26)

Definition 4.3 — Symbolic notations. It’s necessary to define symbolic

spaces Vσ ,V
0
σ as follows: Vσ :≡ H1(Ω),V 0

σ :≡ H1
0 (Ω) if σ = α and Vσ :≡

V,V 0
σ :≡ V0 if σ = β . We also define a symbolic norm |||·||| which stands for

|||·|||i, i = 1,2 given as below

|||z|||2 = ‖∇z‖2
L2(Ω12)

+‖JzK‖2
1
2

+‖{{σ∇nz}}‖2
− 1

2

+µ‖{{z}}‖2
L2(Γ), (4.27)

where σ = α,σ = β are corresponding to |||·|||1, |||·|||2 respectively and µ =
0,µ = 1 are corresponding to |||·|||1, |||·|||2 respectively.

Theorem 4.1 Let I∗h : Vσ ∩H2(Ω12)→V Γ
h be the interpolation operator defined

in Definition 2.4, then

66 Chapter 4. Resolution of semilinear-interface system by NXFEM

|||v− I∗h v||| ≤Ch‖v‖L2(Ω12)
, ∀v ∈Vσ ∩H2(Ω12). (4.28)

Proof. Look back to definition of norm |||·|||, there are 4 terms. For the first 3 terms,
using the result given from the proof of [31, Theorem 2], we have

‖∇z‖2
L2(Ω12)

+‖JzK‖2
1
2

+‖{{σ∇nz}}‖2
− 1

2

≤Ch2‖v‖2
L2(Ω12)

, ∀v ∈Vσ ∩H2(Ω12),

where z = v− I∗h v. For the last term,

‖{{z}}‖L2(Γ) = ‖
2

∑
i=1

κizi‖L2(Γ) ≤C
2

∑
i=1

‖zi‖L2(Γ) ≤C
2

∑
i=1

‖zi‖L2(∂Ωi)

≤C
2

∑
i=1

‖∇zi‖L2(Ωi)
=C‖∇z‖L2(Ω12)

≤Ch‖v‖L2(Ω12)
.

�

Proposition 4.8 Let ‖·‖− 1
2

and Lh be defined in (2.21) and (4.25) respectively,

we have the boundedness for the lifting operator Lh as following

‖Lh(JvhK)‖[L2(Ω12)]2
≤C‖JvhK‖ 1

2
, ∀vh ∈V Γ

h . (4.29)

Proof. Coming from the left hand side of (4.29), we have

‖Lh(JvhK)‖2
[L2(Ω12)]2

= 〈{{Lh(JvhK)}} ·n,JvhK〉Γ ≤C‖{{Lh(JvhK)}}‖[L2(Γ)]2‖JvhK‖L2(Γ)

≤C
(

κ1‖Lh(JvhK)|Ω1
‖[L2(Γ)]2 +κ2‖Lh(JvhK)|Ω2

‖[L2(Γ)]2

)

‖JvhK‖L2(Γ)

≤C
(

κ1‖Lh(JvhK)|Ω1
‖[L2(∂Ω1)]2

+κ2‖Lh(JvhK)|Ω2
‖[L2(∂Ω2)]2

)

‖JvhK‖L2(Γ)

(A)
≤ C

(

κ1h−
1
2‖Lh(JvhK)|Ω1

‖[L2(Ω1)]2
+κ2h−

1
2‖Lh(JvhK)|Ω2

‖[L2(Ω2)]2

)

‖JvhK‖L2(Γ)

≤C‖Lh(JvhK)‖[L2(Ω12)]2
h−

1
2‖JvhK‖L2(Γ)

≤C‖Lh(JvhK)‖[L2(Ω12)]2
‖JvhK‖ 1

2
.

In above estimate, the reason (A) comes from following estimate owing to the trace
theorem and [59, Theorem 1.3],

‖vh‖L2(∂Ωi)
≤C‖∇vh‖L2(Ωi)

≤Cd−1
i ‖vh‖L2(Ωi)

≤Ch−
1
2‖vh‖L2(Ωi)

, (4.30)

where di := supx,y∈Ωi
‖x− y‖ which is the diameter of the domain Ωi satisfies an

assumption on the domain that there exists Ci > 0 such that di ≥Ci. �

4.4 The convergence 67

Proposition 4.9 For the discrete gradient operator Gh defined in (4.26),

a) ∀vh ∈V Γ
h , ‖Gh(vh)‖[L2(Ω12)]2

≤C|||vh|||.
b) Gh(I

∗
h ϕ)→ ∇ϕ strongly in [L2(Ω12)]

2 for all ϕ ∈V 0
σ

Proof. a) Using the definition (4.26) of Gh and the triangle inequality coupling with
the boundedness (4.29) of Lh, we have

‖Gh(vh)‖[L2(Ω12)]2
= ‖∇vh−Lh(JvhK)‖[L2(Ω12)]2

≤C‖∇vh‖L2(Ω12)
+C‖Lh(JvhK)‖[L2(Ω12)]2

≤C‖∇vh‖L2(Ω12)
+C‖JvhK‖ 1

2
≤C|||vh|||.

b) For all ϕ ∈V 0
σ ,

‖Gh(I
∗
h ϕ)−∇ϕ‖[L2(Ω12)]2

≤ ‖∇(I∗h ϕ)−Lh(JI∗h ϕK)−∇ϕ‖[L2(Ω12)]2

= ‖∇(I∗h ϕ−ϕ)−Lh(J(I
∗
h ϕ−ϕ)K)‖[L2(Ω12)]2

≤C‖∇(I∗h ϕ−ϕ)‖L2(Ω12)
+C‖Lh(J(I

∗
h ϕ−ϕ)K)‖[L2(Ω)]2

≤C|||I∗h ϕ−ϕ|||+C‖J(I∗h ϕ−ϕ)K‖ 1
2

≤C|||I∗h ϕ−ϕ||| ≤Ch‖ϕ‖L2(Ω12)
.

�

Proposition 4.10 Let {vh}h be a sequence in V Γ
h and assume that this sequence

is bounded in the |||·|||-norm. Then, the family {vh}h is relatively compact in
L2(Ω).

Proof. We will borrow the idea of proofs in the work of [25] and [28]. While the
authors of [25] work on Discontinuous Galerkin Method in which they consider the
discontinuity throughout faces of all elements of the mesh and the authors of [28]
work on Finite Volume Method, our work will focus only on the zone around the
interface.

For v ∈ L1(R2), define a space BV := {v ∈ L1(R2) : ‖v‖BV <+∞} where

‖v‖BV :=
2

∑
i=1

sup{
∫

R2
v∂iϕ dx;ϕ ∈C∞

c (R
2),‖ϕ‖L∞(R2) ≤ 1}.

Extending the functions vh by zero outside Ω and for all ϕ ∈C∞
c (R

2) with ‖ϕ‖L∞(R2)≤
1, integrating by parts gives us

∫

R2
(vh)∂iϕ dx =

∫

Ω
(vh)∂iϕ dx =

∫

Ω1

(vh)∂iϕ dx+
∫

Ω2

(vh)∂iϕ dx

68 Chapter 4. Resolution of semilinear-interface system by NXFEM

=−
∫

Ω12

(ei ·∇(vh))ϕ dx+ ∑
T∈Gh

∫

ΓT

(ei ·n)JvhKϕ ds.

Hölder’s inequality and the fact that ‖ϕ‖L∞(R2) ≤ 1 will give us

−
∫

Ω12

(ei ·∇(vh))ϕ dx≤ ‖∇(vh)‖L1(Ω12)
‖ϕ‖L∞(Ω12) ≤ ‖∇(vh)‖L1(Ω12)

,

∑
T∈Gh

∫

ΓT

(ei ·n)JvhKϕ ds≤ ∑
T∈Gh

‖JvhK‖L1(ΓT)
‖ϕ‖L∞(ΓT) ≤ ∑

T∈Gh

‖JvhK‖L1(ΓT)
.

Applying Hölder’s inequality again,

‖∇vh‖L1(Ω12)
≤ ‖1‖L2(Ω12)

‖∇vh‖L2(Ω12)
≤C‖∇vh‖L2(Ω12)

∑
T∈Gh

‖JvhK‖L1(ΓT)
= ∑

T∈Gh

‖h
1
2
T h
− 1

2
T JvhK‖L1(ΓT)

≤



 ∑
T∈Gh

hT‖1‖2
L2(ΓT)





1
2


 ∑
T∈Gh

h−1
T ‖JvhK‖2

L2(ΓT)





1
2

≤C‖JvhK‖ 1
2
,

in which we have used that |ΓT | ≤ hT and the non-degenerate property of the mesh,
h2

T ≤C|T |. Therefore,
∫

R2(vh)∂iϕ dx≤C|||vh||| or we have

‖σvh‖BV ≤C|||vh||| ≤C.

From [28], for all y ∈ R
2,

C‖vh(·+ y)− vh‖L1(R2) ≤ |y|‖σvh‖BV ≤C|y|,

where |y| is the Euclidean norm of y. From this and thanks to Kolmogorov’s Com-
pactness Criterion, we have that {vh}h is relatively compact in L1(R2). Besides that,
Poincaré’s inequality helps us

‖vh‖L2(R2) = ‖vh‖L2(Ω) = ‖vh‖L2(Ω12)
≤C‖∇vh‖L2(Ω12)

≤C|||vh||| ≤C,

or {vh}h is also bounded in L2(R2), hence it is also relatively compact in L2(R2).
Finally, we have {vh}h is relatively compact in L2(Ω) because vh has been extended
by zero outside Ω. �

Theorem 4.2 Let {vh}h be a sequence in V Γ
h . Assume that this sequence is

bounded in |||·|||-norm. There exists a function v ∈Vσ such that as h→ 0, up to a
subsequence, vh→ v strongly in L2(Ω) and Gh(vh)⇀ ∇v weakly in [L2(Ω)]2.

4.4 The convergence 69

Proof. Thanks to Propotition 4.10 and Rellich’s theorem, there exists a function
v ∈ L2(Ω) and a subsequence, also denoted by vh, such that vh → v strongly in
L2(Ω). Moreover, Propotition 4.9 gives us the boundedness of Gh in [L2(Ω)]2, thus
there exists a new subsequence, again denoted as vh, and w ∈ [L2(Ω)]2 such that
Gh(vh)⇀ w weakly in [L2(Ω)]2. What we need to do is to prove that w = ∇v. Indeed,
for all ϕ ∈ [C∞

c (Ω)]2 (note that, JϕK = 0 on Γ and ϕ = 0 on ∂Ω),

〈Gh(vh),ϕ〉Ω12
= 〈∇vh−Lh(JvhK),ϕ〉Ω12

= 〈∇vh,ϕ〉Ω−〈Lh(JvhK),ϕ〉Ω12

=−〈vh,∇ ·ϕ〉Ω +
∫

Γ
Jvh(ϕ ·n)Kds−〈Lh(JvhK),ϕ〉Ω12

=−〈vh,∇ ·ϕ〉Ω + 〈JvhK,{{ϕ}} ·n〉Γ−〈Lh(JvhK),ϕ〉Ω12

=−〈vh,∇ ·ϕ〉Ω.

Observe that when h→ 0, 〈vh,∇ ·ϕ〉Ω→ 〈v,∇ ·ϕ〉Ω because of the strong conver-
gence of vh in L2(Ω). As a result,

〈w,ϕ〉Ω = lim
h→0
〈Gh(vh),ϕ〉Ω12

=−〈v,∇ ·ϕ〉Ω, ∀ϕ ∈ [C∞
c (Ω)]2.

If we can prove that JvK= 0, we can obtain w=∇v, hence v∈Vσ . Indeed, considering
the relation,

|‖JvhK‖L2(Γ)−‖JvK‖L2(Γ)| ≤ ‖Jvh− vK‖L2(Γ)

≤ ‖(vh− v)|Ω1
‖L2(Γ)+‖(vh− v)|Ω2

‖L2(Γ)

Using the relation (4.30), we have

‖(vh− v)|Ωi
‖L2(Γ) ≤ ‖(vh− v)|Ωi

‖L2(∂Ωi)

≤Cd−1
i ‖(vh− v)|Ωi

‖L2(Ωi)
≤C‖(vh− v)|Ωi

‖L2(Ωi)

Thus,

|‖JvhK‖L2(Γ)−‖JvK‖L2(Γ)| ≤C∑
i

‖(vh− v)|Ωi
‖L2(Ωi)

,

which tends to zero because vh→ v in L2(Ω). This implies

‖JvhK‖L2(Γ)→‖JvK‖L2(Γ). (4.31)

Besides that, vh is bounded in |||·|||-norm,

h−1‖JvhK‖2
L2(Γ) = ∑

T∈Gh

h−1‖JvhK‖2
L2(ΓT)

≤ ∑
T∈Gh

h−1
T ‖JvhK‖2

L2(ΓT)

70 Chapter 4. Resolution of semilinear-interface system by NXFEM

= ‖JvhK‖2
1
2

≤ |||vh|||2 ≤C,

which yields that as h→ 0,

‖JvhK‖L2(Γ)→ 0. (4.32)

From (4.31), (4.32) we have ‖JvK‖L2(Γ) = 0. This yields JvK = 0. �

Now, we have all needed tools to consider the convergence of the solutions of discrete
problems to a solution of the weak problems.

Theorem 4.3 For {wh}h,{vh}h be the sequence of discrete solutions generated

by solving discrete problems (4.17),(4.18) respectively, there exist solutions w,v
solving (4.9),(4.11) respectively such that as h→ 0, (wh,vh)→ (w,v) strongly
in L2(Ω).

Proof. Using Propotition 4.6, (4.23), Hölder’s inequality and Poincaré’s inequality,
it is inferred that,

|||wh|||21 ≤Cawh(wh,wh) = Kwh(wh)≤C‖wh‖L2(Ω) ≤C‖∇wh‖L2(Ω) ≤C|||wh|||,
|||vh|||22 ≤Cavh(vh,vh) =C〈q(vh),vh〉Ω +C〈 fv,vh〉Ω

≤ ‖q‖L2(Ω)‖vh‖L2(Ω)+‖ fv‖L2(Ω)‖vh‖L2(Ω)

≤C‖k‖L∞(Ω)(mesh(Ω))1/2‖∇vh‖L2(Ω)+C‖∇vh‖L2(Ω) ≤C|||vh|||2.

Hence, {wh}h,{vh}h are bounded in |||·|||1-norm and |||·|||2-norm respectively. Thanks
to Theorem 4.2, there exist w∗ ∈ H1(Ω) and v∗ ∈ V such that, as h→ 0, up to a
subsequence, wh→w∗,vh→ v∗ strongly in L2(Ω) and Gh(wh)⇀∇w∗,Gh(vh)⇀∇v∗

weakly in [L2(Ω)]2.

We want to prove that w∗ and v∗ are solutions of problems (4.9),(4.11) respectively.
In deed,

(i) For all ϕ ∈ H1
0 (Ω),

awh(wh, I
∗
h ϕ) = 〈α 1

2 Gh(wh),α
1
2 Gh(I

∗
h ϕ)〉Ω12

+ jwh(wh, I
∗
h ϕ) = F1 +F2,

where

F1 = 〈α
1
2 Gh(wh),α

1
2 Gh(I

∗
h ϕ)〉Ω12

,

F2 = jwh(wh, I
∗
h ϕ) = ζ 〈JwhK,JI∗h ϕK〉Γ−〈α

1
2 Lh(JwhK),α

1
2 Lh(JI∗h ϕK)〉Ω12

.

From the weak convergence of Gh(wh) to ∇w∗ and the strong convergence of Gh(I
∗
h ϕ)

to ∇ϕ (cf. Lemma 4.9), as h→ 0, we have F1 → 〈α∇w∗,∇ϕ〉Ω12
. We show that

F2→ 0 also. Indeed,

4.4 The convergence 71

|ζ 〈JwhK,JI∗h ϕK〉Γ| ≤C‖JwhK‖ 1
2
‖JI∗h ϕK‖ 1

2
≤C|||wh|||1‖JI∗h ϕ−ϕK‖ 1

2

≤C|||wh|||1|||I∗h ϕ−ϕ|||1→ 0,

|〈α 1
2 Lh(JwhK),α

1
2 Lh(JI∗h ϕK)〉Γ| ≤C‖Lh(JwhK)‖[L2(Ω12)]2

‖Lh(JI∗h ϕK)‖[L2(Ω12)]2

≤C‖JwhK‖ 1
2
‖JI∗h ϕK‖ 1

2
→ 0.

because wh is bounded in |||·|||1 and owing to Theorem 4.1 and Propotition 4.8 .

Besides that, we also have Kwh(I
∗
h ϕ)→ Kwh(ϕ). It’s because

|Kwh(I
∗
h ϕ)−Kwh(ϕ)|= |Kwh(I

∗
h ϕ−ϕ)| ≤ ‖ fw‖1,∞,Ω‖I∗h ϕ−ϕ‖L2(Ω)

≤C‖∇(I∗h ϕ−ϕ)‖L2(Ω) ≤C|||I∗h ϕ−ϕ|||1→ 0.

In short, for all ϕ ∈ H1
0 (Ω),

aw(w
∗,ϕ)← awh(wh, I

∗
h ϕ) = Kw(I

∗
h ϕ)→ Kw(ϕ). (4.33)

The remaining thing to be verified is the boundary condition w∗ = w̄ on ∂Ω. It’s
easy to obtained thanks to the strong convergence of wh to w in L2(Ω) and the trace
theorem.

In one word, w∗ is a solution of discrete problem (4.17). Since the solution of this
problem is unique (cf. Propotition 4.3), we also have that the whole sequence {wh}h

strongly converges to w∗ in L2(Ω).

(ii) Similarly, for all ϕ ∈V0,

avh(vh, I
∗
h ϕ) = 〈β 1

2 Gh(vh),β
1
2 Gh(I

∗
h ϕ)〉Ω12

+ jvh(vh, I
∗
h ϕ),

where

jvh(vh, I
∗
h ϕ) = θκ1κ2〈JvhK,JI∗h ϕK〉Γ +θ〈{{vh}},{{I∗h ϕ}}〉Γ

−〈β 1
2 Lh(JvhK),β

1
2 Lh(JI∗h ϕK)〉Ω12

.

With the same technique as in awh in a notice that,

|〈{{vh}},{{I∗h ϕ}}〉Γ|= |〈{{vh}},{{ϕ− I∗h ϕ}}〉Γ| ({{ϕ}}= ϕ = 0 on Γ)

≤C|||vh|||2|||ϕ− I∗h ϕ|||2→ 0,

we have

avh(vh, I
∗
h ϕ)→ 〈β∇v∗,∇ϕ〉Ω12

.

We want also that 〈q(vh), I
∗
h ϕ〉Ω→ 〈q(v∗),ϕ〉Ω. Indeed,

72 Chapter 4. Resolution of semilinear-interface system by NXFEM

|〈q(vh), I
∗
h ϕ〉Ω−〈q(v∗),ϕ〉Ω|

= |〈q(vh), I
∗
h ϕ〉Ω−〈q(v∗), I∗h ϕ〉Ω + 〈q(v∗), I∗h ϕ〉Ω−〈q(v∗),ϕ〉Ω|

≤ |〈q(vh)−q(v∗), I∗h ϕ〉Ω|+ |〈q(v∗), I∗h ϕ−ϕ〉Ω|.

With the same assumptions for q as in Propotition 4.3, q(x,vh(x))→ q(x,v∗(x)), a.e.
in L2(Ω) and we will get 〈q(x,vh(x)), I

∗
h ϕ(x)〉Ω→ 〈q(x,v∗(x)), I∗h ϕ(x)〉Ω thanks to

convergence dominated theorem. Moreover,

|〈q(v∗), I∗h ϕ−ϕ〉Ω| ≤ ‖q‖L2(Ω)‖I∗h ϕ−ϕ‖L2(Ω) ≤ ‖k‖L∞(mes(Ω))1/2‖I∗h ϕ−ϕ‖L2(Ω)

≤C‖∇(I∗h ϕ−ϕ)‖L2(Ω) ≤C|||I∗h ϕ−ϕ|||2→ 0.

Again, we do similarly get Kvh(I
∗
h ϕ)→ Kv(ϕ) and v∗ = v̄ on ∂Ω. We get finally that

v∗ satisfies

〈β∇v∗,∇ϕ〉Ω12
−〈q(v∗),ϕ〉Ω← avh(vh, I

∗
h ϕ)−〈q(vh), I

∗
h ϕ〉Ω = Kvh

(I∗h ϕ)→ Kv(ϕ),

or v∗ is a solution of discrete problem (4.18). Since the solution of (4.18) is unique
(cf. Propotition 4.3), we also have the strong convergence of vh to v∗ in L2(Ω). �

4.5 A numerical test case

We consider the problem (4.2) in which a domain Ω = [0,1]× [0,1] with an interface
is a circle centered at the origin with a radius r0. The boundary condition and the
source term fu, fv are determined from the exact solutions

u(x,y) =







r2

α1
if r ≤ r0,

r2− r2
0

α2
+

r2
0

α1
otherwise,

v(x,y) =







(r2− r2
0)

2

β1
if r ≤ r0,

0 otherwise,

where r =
√

x2 + y2,r0 = 0.6. Notice that the exact solutions satisfy interface con-
ditions in equation (4.2). The coefficients of this test are taken as α1 = 1,α2 =
100,β1 = 0.5.

Numerical solutions uh,vh in comparison with the exact solutions u,v are given
Figure 4.1 (here we are showing the solutions in 3D view with the z-index is the
value of solutions at points on Oxy). You can see, with a smooth mesh, we obtain
almost the same results for both exact and numerical solutions.

For a reference, we also plot the two solutions of w = u+ β
αλ v as in Figure 4.2.

The corresponding L2 norm errors and convergence rates of w−wh and v− vh are
given in Table 4.1 and Figure 4.3.

4.5 A numerical test case 73

a. An exact solution u. b. A numerical solution uh.

c. An exact solution v. d. A numerical solution vh.

Figure 4.1. An exact solution and a numerical solution of u,v in a fine mesh.

a. An exact solution w. b. A numerical solution wh.

Figure 4.2. An exact solution and a numerical solution of w in a fine mesh.

74 Chapter 4. Resolution of semilinear-interface system by NXFEM

h ‖w−wh‖L2 order ‖v− vh‖L2 order

1.34×10−1 7×10−3 2.5×10−3

6.9×10−2 2.1×10−3 1.82 5.94×10−4 2.14

3.49×10−2 5.33×10−4 2.01 1.16×10−4 2.40

1.76×10−2 1.38×10−4 1.93 2.57×10−5 2.18

Table 4.1. L2 norm errors of the solutions with different mesh sizes.

−4.5 −4 −3.5 −3 −2.5 −2

−10

−8

−6

−4

log(h)

lo
g

(e
rr

o
r)

wh
vh

Figure 4.3. The convergence of numerical solutions to exact solutions of the system.

II
5 Level Set Method 77

5.1 Recall the method 77

5.2 The SUPG method with a Crank-
Nicolson scheme 81

5.3 Reinitialization - Fast Marching Method
82

5.4 A numerical test case 83

6 Application to a biofilm growth
model . 89

6.1 Coupling NXFEM with Level Set Method
89

6.2 Some biofilm growth models 90

6.3 Some numerical test cases 96

7 Conclusion . 103

7.1 The methods 103

7.2 The NXFEM toolbox 104

7.3 For the future 104

nxfem with biofilms

5. Level Set Method

Contents

5.1 Recall the method 77

5.2 The SUPG method with a Crank-Nicolson scheme 81

5.3 Reinitialization - Fast Marching Method 82

5.4 A numerical test case 83

As mentioned in Section 1.3, we need to track the interface’s position on a fixed
mesh from time to time. The Level Set Method (LSM) which is first introduced by
Sethian and Osher in 1987 [45] helps us do that. In this chapter, I present a general
idea of LSM, as well as its advantages, its inherent drawback and a way we couple it
with NXFEM in solving an evolution problem. Some numerical test cases are also
given.

5.1 Recall the method

The LSM comes with an idea of describing implicitly the interface Γ by a zero level
set φ(x, t) = 0, where Γ is the intersection between a plane φ = 0 and a surface φ .
The surface φ depends on a time t, i.e. its change leads to the change of the shape of
the interface Γ (cf. Figure 5.1 and (5.1)).

78 Chapter 5. Level Set Method

Γ(t) = {x ∈Ω : φ(x(t), t) = 0}. (5.1)

t2

t1

t0

φ = 0

φ = 0

φ = 0

φ(x, t0)

φ(x, t1)φ(x, t2)

u

Figure 5.1. An illustration of the level set method. The interface at each time step tn is
determined by a zero-level set function φ = 0.

The main purpose of LSM is to determine a function φ such that its zero level
coincides to the interface Γ for all time. The change of Γ is controlled by a supposed
velocity u given at every point x(t) ∈ Γ(t). Then a movement of Γ can be described
by a Lagrangian equation [67, Section 3.1],

dx

dt
(t) = u(x(t), t). (5.2)

Because we want to find φ(x, t), or more precisely, we want to find a zero level of φ
at the time t. This zero level set describes the interface Γ at this time as explained
before. Given an initial value of φ at t = 0 (initial interface Γ0 := Γ(0)), it’s possible
to find φ at all time steps with the help of a motion equation,

d

dt
φ(x(t), t) = 0. (5.3)

The chain rule gives us,

∂φ

∂ t
(x(t), t)+

dx

dt
(t) ·∇φ(x(t), t) = 0.

Under the effect of the velocity u in (5.2) along the interface, we have a problem of
finding φ such that,

5.1 Recall the method 79







∂φ

∂ t
(x, t)+u(x, t) ·∇φ(x, t) = 0, ∀(x, t) ∈Ω×R

+,

φ(x, t) = φin(x, t), ∀(x, t) ∈ ∂Ωin×R
+,

φ(x,0) = φ 0(x), ∀x ∈Ω.

(5.4)

In (5.4), ∂Ωin := {x ∈ ∂Ω : u(x, t) ·nΩ < 0} is the inflow boundary where nΩ is a
outward unit normal vector on ∂Ω.

Remark 5.1 The inflow Dirichlet boundary condition which is important for

a well-posed problem is required to be satified that φin(x,0) = φ 0(x) for all
x ∈ ∂Ωin. However, a level set function obtained from (5.4) by using a time
discretization method is used in a very short time interval, hence the boundary
condition can be ignored in some cases.

The initial value φ 0 can be any function as long as its zero level set matches the
initial interface Γ0. One option is to choose φ 0 as a signed distance function defined
in (5.5),

φ 0(x) =







−d(x) if x ∈Ω1,

0 if x ∈ Γ,

d(x) if x ∈Ω2,

(5.5)

where d(x) is a distance function defined in (5.6), i.e. d measures the shortest
distance between a point x in domain to the interface.

d(x) = min
xΓ∈Γ
‖x−xΓ‖, ∀x ∈Ω, (5.6)

Recall that Ω1,Ω2 are denoted as in (5.7) based on the value of φ (We already used
these notations in Notation 3.1).

Ω1 := {x ∈Ω : φ(x)< 0},
Ω2 := {x ∈Ω : φ(x)> 0}. (5.7)

We can further compute a normal vector nΓ and a mean curvature κ on the interface
by a level set function in (5.8) [67].

nΓ =
∇φ(x)

‖∇φ(x)‖ , κ(x) = ∇ ·
(

∇φ(x)

‖∇φ(x)‖

)

, x ∈ Γ. (5.8)

The signed distance function is a good candidate for φ 0 because it has a very useful

80 Chapter 5. Level Set Method

property in that ‖∇φ 0‖= 1 almost everywhere. The gradient of φ which is close to
zero makes the numerical solution of (5.4) more difficult to find [69]. Meanwhile,
its large norm decreases the numerical stability when we need to determine Γ from
φ because it influences significantly to the transport of the interface. Moreover, the
value of nΓ and κ in (5.8) are more reliable if the gradient of φ is closer to 1.

Unfortunately, the property of signed distance function is generally lost during
advection process [56]. In practice, there are two properties we have to ensure for
the level set function at each time step t = tn: (i) the zero level of φ n describes the
interface Γ(tn) and (ii) this φ n satisfies the signed distance function’s property, i.e.
‖∇φ n‖ = 1. These two properties lead us to two main difficulties when we work
on a level set problem. First, the level set equation (5.4) is a hyperbolic equation
which cannot be solved by a standard finite element method. One solution is to
combine FEM with a stabilization technique. Following an option given in [66,
Section 7.2], we will use the streamline-diffusion finite element method (SDFEM,
which is also known as the streamline upwinding Petrov-Galerkin method) [70].
The second difficulty is to reestablish the signed distance property of the level set
function from time to time. A re-initialization technique can be used and we choose
the Fast Marching Method (FMM) [53] for our problems.

For more information, there is another common way to reinitialize φ [56], that is to
solve the first order partial differential equation for ψ = ψ(x,τ) such that,







∂ψ

∂τ
= Sα(φ)(1−‖∇ψ‖), τ ≥ 0,x ∈Ω,

ψ(x,0) = φ ,
(5.9)

where Sα = ζ√
ζ 2+α2

,ζ ∈ R, 0 < α ≤ 1. In practice, we need to use some time

discretization method to find ψ numreically with a big enough time interval (0,τ f)
for τ . However, it’s difficult to choose either a good τ f or a best α in this case.
Moreover, (5.9) is a nonlinear hyperbolic problem which is more difficult to find
a solution. That’s why we prefer to choose more technical method, that is Fast
Marching Method for our problem.

Remark 5.2 Notice that, we talk too much about a continuous function φ but

in practice, we work on an approximate φh of φ instead. Thus, an approximate
signed distance is constructed too. We keep all ideas mentioned above to this
discrete function including the reinitialization.

Remark 5.3 An important issue when we work with LSM is that the conser-

vation of mass is generally lost during a temporal and spatial discretization of
the level set equation. Some techniques are introduced in [66, Section 7.4.2] to
overcome this disadvantage. In this thesis, I will use one of them sometimes.

5.2 The SUPG method with a Crank-Nicolson scheme 81

5.2 The SUPG method with a Crank-Nicolson scheme

In this section, we will use the same techniques proposed in [66] for a discretization
of level set equation (5.4) with the notice that we ignore the boundary condition for
simplicity.

Recall that Vh is a finite element space defined on a standard mesh Th given in (2.4),
using test functions of a form vh +δKu ·∇vh for some positive number δK defined in
(5.11) and vh ∈Vh, a Streamline diffusion finite element discretization of the level
set function (5.4) is as follows: Find φh(t) ∈Vh such that,

∑
K∈Th

〈∂φh

∂ t
(t)+u(t) ·∇φh(t),vh +δKu(t) ·∇vh〉K = 0, (5.10)

for all vh ∈Vh, t ∈ [0,Tmax] and

δK =C
hK

max{ε0,‖u‖∞,K}
, (5.11)

with a given small ε0 > 0 and some positive constant C and K ∈Th.

Let {ϕi}
NVh

i=1 be a basis of Vh, we introduce matrices E(u) ∈ R
NVh
×NVh and H(u) ∈

R
NVh
×NVh such that

Ei j(u(t)) := ∑
K∈Th

〈ϕ j,ϕi +δKu(t) ·∇ϕi〉K,

Hi j(u(t)) := ∑
K∈Th

〈u(t) ·∇ϕ j,ϕi +δKu(t) ·∇ϕi〉K,

where 1≤ i, j ≤ NVh
. Thus, using

φh(t) =

NVh

∑
i=1

φi(t)ϕi, ~φ(t) := (φ1(t), . . . ,φNVh
(t)),

and ~φ 0 represents the initial value of ~φ , we can rewrite (5.10) in a matrix form: Find
~φ(t) ∈ R

NVh such that ~φ(0) = ~φ 0 and

E(u(t))
d~φ

dt
(t)+H(u(t))~φ(t) = 0, for all t ∈ [0,Tmax]. (5.12)

We suppose that [0,Tmax] is divided into a number of equal intervals τ and we denote
that tn = nτ,~φ n ≃ ~φ(tn), a θ -schema applied to (5.12) results in

~φ n+1−~φ n

τ
+θE−1(un+1)H(un+1)~φ n+1 + θ̄E−1(un)H(un)~φ n = 0, (5.13)

82 Chapter 5. Level Set Method

with θ̄ = 1−θ for θ ∈ [0,1]. In the case that u does not depend on time, (5.13) has
a form,

(E(u)+ τθH(u))~φ n+1 = (E(u)− τθ̄H(u))~φ n. (5.14)

We don’t forget to take θ = 1
2

in corresponding to the Crank-Nicolson method.

Remark 5.4 In practice, the velocity u will be replaced by a finite element

approximation uh and a Dirichlet boundary condition at the inlet ∂Ωin will be
applied in some cases.

Implementation issue. In the NXFEM toolbox, we use either the form (5.15) or the
form (5.14) in the cases if u does or does not depend on time respectively. Functions
getMEls, getMHls are used to compute the matrices E and H respectively.

(I+ τθK(un+1))~φ n+1 = (I− τθ̄K(un))~φ n, (5.15)

where K(u) = E−1(u)H(u) and I is an identity matrix. The Algorithm 5.1 illustrates
the basic steps to get the level set function at each time step.

Algorithm 5.1. Get the level set function φ at each time step.

Input : φ 0
h ,Tmax,u

0
h,θ ,δT , τ .

Output

:

φ at each time step.

t = 0;
φ old

h = φ 0
h ;

while t < Tmax do

t = t + τ;
unew

h = uh(t);

Enew = getMEls(unew
h ,θ = 1

2
,δT); Eold = getMEls(uold

h ,θ = 1
2
,δT);

Hnew = getMHls(unew
h ,θ = 1

2
,δT); Hold = getMHls(uold

h ,θ = 1
2
,δT);

Finding φ new
h from (5.14) or (5.15);

φ old
h = φ new

h ;

5.3 Reinitialization - Fast Marching Method

As mentioned before, it’s necessary to use some method of reparametrization in
order to make the level set function be a signed distance function again. We will
not focus too much on this step and we use the toolbox mshdist from Pascal Frey

5.4 A numerical test case 83

and Charles Dapogny [24] instead. Toolbox mshdist helps us compute a signed
distance function to a discrete domain on an arbitrary triangular background mesh.
In our case, it helps us reinitialize the level set function when it is far from the signed
distance function.

From the manual of this toolbox, we use the following command to reparameter the
level set function phi and couple Algorithm 5.2 and Algorithm 5.1 together. Note
that, there must be two files phi.mesh and phi.col.

mshdist phi.mesh

When the level set function is reinitialized, the interface may move a little bit. This
is due to the fact that the invariance of the zero level only applies to the continuous
case, but it does not hold true for a discrete solution. That’s why we cannot apply
the reinitialization at all time steps, it is only applied when necessary. In NXFEM

toolbox, I propose that we only apply the mshdist to reinitialize φ n
h when ‖∇φ n

h ‖
is far a way from 1, i.e.,

|‖∇φ n‖−1|> ε, (5.16)

for some ε > 0.

Algorithm 5.2. Apply reinitialization.

Input : ε,τ,φ 0
h ,Tmax.

Output

:

φ at each time step.

t = 0;
φ old

h = φ 0
h ;

while t < Tmax do

t = t + τ;
Solving φ new

h as in Algorithm 5.1;

if |‖∇φ new
h ‖−1|> ε then

Write φ new
h to phi.sol;

Write msh to phi.mesh;
Apply mshdist and update φ new

h ;

φ old
h = φ new

h ;

5.4 A numerical test case

In this section, I will use a test case proposed in [34] to illustrate the level set method
and the arguments I mentioned in the previous sections.

84 Chapter 5. Level Set Method

We will solve a level set problem (5.4) on a domain Ω = [0,1]× [0,1] with homoge-
neous Newmann boundary conditions. A velovity field u is given in (5.17).

u =

[

2sin(2πy)sin2(πx)cos(πt)

−2sin(2πx)sin2(πy)cos(πt)

]

. (5.17)

The initial condition φ 0 is a circle with the radius 0.15 and the center (0.5,0.75). It
is given in a form of the equation (5.18).

φ 0 =
√

(x−0.5)2 +(y−0.75)2−0.15. (5.18)

We investigate the change of the level set φ (a vortex) from t = 0 to t = Tmax = 1. This
vortex’s direction changes at t = 0.5 and it goes back to the old path (cf. Figure 5.2).
This means that when t = Tmax, φ must be the same as the initial φ 0 (cf. Figure 5.3).
This special property gives us a chance to examine the quality of our implementation.

Remark 5.5 In general, we need an additional step called "initialisation" which

makes the level set function become a signed distance function. With mshdist,
we are also able to do this. The function φ 0 defined in (5.18) is already a signed
distance function, we don’t need an initialisation step for this test case.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

a. For 0≤ t ≤ 1
2
.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

b. For 1
2
< t ≤ 1.

Figure 5.2. Vortex test case: Direction of velocity u at different time.

In order to estimate the quality of the method, we need below estimations in compar-
ison with the original signed distance function φ ,

5.4 A numerical test case 85

a. t = 0. b. t = 0.24. c. t = 0.48.

d. t = 0.52. e. t = 0.76. f. t = 1.

Figure 5.3. Vortex test case: Computed interface at different time.

‖φ‖L2(Γtn
h
) =




 ∑

K∈G
tn
h

∫

ΓK,h

φ(x)2 dx






1
2

,

‖φ tn
h −φ‖L2(Ω) =



 ∑
T∈Th

∫

T
|φ tn

h (x)−φ(x)|2




1
2

,

(5.19)

in which Gh is recalled to be a set of all triangles cut by the interface, ΓK,h de-
notes the segment connecting the intersection points between Γ and ∂K. Γ

tn
h ,φ

tn
h

is the approximate of Γ and φ respectively at time t = tn. Ones can find, in the
NXFEM toolbox, the corresponding functions which are called getNormL2foGh

and getNormL2stdfhf. An implementation issue of these functions are given in
Appendix A.6.1.

For example, we consider at the beginning time when tn = 0, the estimates in (5.19)
are actually the interpolation errors between φ and φh. By computing independently
on NXFEM toolbox and on FreeFem++[33], we have almost the same results which
are given in Table 5.1.

If we don’t use either SUPG or FMM, i.e. we just use the standard FEM, a strange
result which is very nice is obtained in Table 5.2 and Figure 5.4 (it goes back exactly
to the beginning position no matter how fine the mesh is). This "strange" is also
mentioned in [66] and it’s still under study.

For a hyperbolic equation like the level set equation, we should (and must) use
a stabilized method like SUPG method. Table 5.3 gives a result of using SUPG
(without using FMM). It’s really better than the result shown in Table 5.2 in which

86 Chapter 5. Level Set Method

using FreeFem++ using NXFEM toolbox

hmax order of
‖φ‖L2(Γ0

h
) sssssss

order of
‖φ 0

h −φ‖L2(Ω)

oder of
‖φ‖L2(Γ0

h
)

oder of
‖φ 0

h −φ‖L2(Ω)

19.64×10−2

9.70×10−2 2.06 2.38 2.06 2.39

4.78×10−2 1.92 1.64 1.92 1.62

2.45×10−2 2.10 2.15 2.10 2.16

1.28×10−2 2.14 2.03 2.14 2.04

Table 5.1. Vortex test case: Approximation errors computed by NXFEM toolbox and
FreeFem++ for different mesh sizes.

hmax ‖φ‖
L2(ΓTmax

h
)

order ‖φ Tmax

h −φ‖L2(Ω) order

19.64×10−2 87.40×10−4 71.92×10−4

9.70×10−2 20.37×10−4 2.09 13.30×10−4 2.42

4.78×10−2 5.23×10−4 1.92 4.21×10−4 1.62

2.45×10−2 1.28×10−4 2.58 0.99×10−4 2.65

Table 5.2. Vortex test case: Approximation errors for different mesh sizes in the case:
without SUPG and without FMM.

a. h = 9.7×10−2, t = 0. b. h = 9.7×10−2, t = 1.

c. h = 2.45×10−2, t = 0. d. h = 2.45×10−2, t = 1.

Figure 5.4. Vortex test case: Interface’s position before and after the process in the case:
without SUPG and without FMM.

we don’t use SUPG method. Besides that, when we consider an interface’s position,
it doesn’t go back to the beginning position like in the case of the standard FEM for
less number of elements. However, when we increase the number of elements of the
mesh, the result is better, cf. Figure 5.5.

5.4 A numerical test case 87

nSeg hmax ‖φ‖
L2(ΓTmax

h
)

order ‖φ Tmax

h −φ‖L2(Ω) order

11 13.82×10−2 32.57×10−3 19.90×10−3

22 6.92×10−2 8.39×10−3 1.96 6.06×10−3 1.72

44 4.07×10−2 2.81×10−3 2.06 2.25×10−3 1.87

88 2.10×10−2 0.74×10−3 2.02 0.47×10−3 2.35

Table 5.3. Vortex test case: Approximation errors for different mesh sizes in the case: with

SUPG and without FMM.

a. nSeg = 24, t = 0. b. nSeg = 24, t = 1.

c. nSeg = 26, t = 0. d. nSeg = 26, t = 1.

Figure 5.5. Vortex test case: Interface’s position before and after the process in the case:
with SUPG and without FMM.

Despite of above good results, the property in which ‖∇φ tn
h ‖ ≃ 1 cannot be guaran-

teed. More specifically, if we don’t use FMM, in the total of 100 time steps, there
are up to 16 times in which |‖∇φ tn

h −1|> ε where ε = 0.1. If we take ε = 0.5, there
will be up to 54 times. It’s obviously not good as it is if we use this level set function
as an interface in our biofilm problem.

In backwards, if we use FMM in many time steps, the zero-level property cannot be
obtained because FMM makes the interface move too much. You can see in Table 5.4,
the convergence orders are bad for the case of ‖φ Tmax

h −φ‖L2(Ω). A reason for that

is because the zero-level of φ Tmax

h and φ are different (maybe not much) but their
signed-distance values on the whole domain are very different. For this reason, we
cannot use FMM how many times we want, we need to use an estimate like (5.16).
For a comparison, we limit the number of times we use the FMM and get a better
result shown in Figure 5.6.

As mentioned before, a difficulty when working with FMM is the way we choose
the parameter ε in (5.16). It’s normal in practice and also indicated in [24, 34, 72].
This work is empirically done regarding specific problems. I don’t focus too much
time on this test case and let the work of choosing ε for our main problem in the next
chapter.

88 Chapter 5. Level Set Method

nSeg hmax ‖φ‖
L2(ΓTmax

h
)

order ‖φ Tmax

h −φ‖L2(Ω) order

37 6.60×10−2 10.03×10−3 6.34×10−2

57 4.36×10−2 5.58×10−3 1.41 4.95×10−2 0.59

77 3.45×10−2 3.45×10−3 2.06 5.03×10−2 -0.07

101 2.59×10−2 1.93×10−3 2.02 5.11×10−2 -0.05

Table 5.4. Vortex test case: Approximation errors for different mesh sizes in the case of
using both SUPG method and FMM.

a. nSeg = 26, t = 0. Unlimited number of
times using the FMM.

b. nSeg = 26, t = 1. Unlimited number of
times using the FMM.

c. nSeg = 26, t = 0. Limited number of times
using the FMM.

d. nSeg = 26, t = 1. Limited number of times
using the FMM.

Figure 5.6. Vortex test case: Interface’s position before and after the process in the case of
using FMM in 2 ways: limited and unlimited number of uses.

Remark 5.6 Summing up, we remarks some notable points,

i) Sometimes, we need to use (5.19) to estimate the quality of the level set
method. However, (5.19) shows only the quality on the whole domain, not
the position of the interface. What we need is the position of the interface,
not its values on the whole domain.

ii) A “beautiful but strange" result is obtained if we don’t use either SUPG
or FMM. However, the property ∇φ ≃ 1 is not guaranteed during the
process.

iii) A better result is obtained if we use the SUPG method for such hyperbolic
problem. However, the interface’s position is worse with less fine mesh
and it’s better otherwise.

iv) We cannot use FMM how many times we want because it makes the
interface move. It’s necessary to use estimate like in (5.16).

v) A good choice of parameters depends on the problem we are working on
and they are chosen empirically.

6. Application to a biofilm growth model

Contents

6.1 Coupling NXFEM with Level Set Method 89

6.2 Some biofilm growth models 90

6.3 Some numerical test cases 96

6.1 Coupling NXFEM with Level Set Method

Look back to the equation (1.9) of Substrate S and Biomass B,







∂tS−∇ · (Db
S∇S)+u ·∇S+αBg(S) = 0 in (0,T)×Ωb,

∂tS−∇ · (D f
S∇S)+v ·∇S = 0 in (0,T)×Ω f ,

∂tB−∇ · (DB∇B)+u ·∇B−βBg(S) = 0 in (0,T)×Ωb,

−∆Φ+βg(S) = 0 in Ωb.

(1.9 revisited)

In that equation, the velocity field u is assumed to be irrotational, i.e. ∇×u = 0.
Thus, it can be extracted from the equation of Φ thanks to u = ∇Φ and we can use
Φ to track the interface φ via an equation level set like (1.11).

90 Chapter 6. Application to a biofilm growth model







∂φ

∂ t
(x, t)+∇Φ(x, t) ·∇φ(x, t) = 0, ∀(x, t) ∈Ω× (0,T),

φ(x,0) = φ 0(x), ∀x ∈Ω.
(1.11 revisited)

By using an appropriate discretization method, we start with initial condition of
interface φ 0

h . At each time step, we seek the values of Sh and Bh based on the NXFEM
method described in Chapter 2. After that, we find a new interface for the next time
step by solving a level set equation (1.11) with the help of techniques described
in previous sections in this chapter. With the new interface, we continue to work
on a new system of Sh and Bh and keep going. An idea of this coupling method is
illustrated in Figure 6.1 and Algorithm 6.1.

Start with

φ 0
h ,u

0
h,v

0
h

Seek

Sh,Bh

Seek

Φh

Seek

unew
h ,vnew

h

Seek

φ new
h

NXFEM + Ghost Penalty
standard FEM

+ LSM + FMM

update interface

Figure 6.1. An idea of coupling NXFEM with Level Set Method.

Remark 6.1 Because we solve the equation of φ on a standard finite element

space Vh based on Φ which is solved in NXFEM space V Γ
h , we have to inter-

polate Φ to Vh. One more thing, if we want to perform the plot, we need to
interpolate the solution to Vh. For the interpolation between Vh and V Γ

h , please
see Section A.7. We use functions interNX2STD and interSTD2NX in NXFEM

toolbox to perform these tasks (cf. Section A.7.1).

For an example of this coupling method, please read Section 6.2.

6.2 Some biofilm growth models

In this section, we examine a kinetic model suggested in [27]. In this work, Chopp et

al. introduced a strategy to couple the XFEM and LSM. They used XFEM engine
on a triangle Finite Element mesh to solve equations of substrate and biomass. The
Level Set engine is used on a square finite difference grid to update the change of
interface. There are bilinear interpolations between these two engines of the substrate
and the biomass solution.

In contrast, we use only one grid for both engines. We use SUPG and FMM on a
triangle grid described in Chapter 5 for the level set equation. For equations of the

6.2 Some biofilm growth models 91

Algorithm 6.1. Coupling NXFEM with Level Set Method.

Input : φ 0
h ,u

0
h,v

0
h,g,τ,Tmax, parameters

Output

:

Sh,Bh,φh

t = 0; φ old = φ 0
h ; uold

h = u0
h; vold

h = v0
h;

while t < Tmax do

t = t + τ;
Solve equation of Sh,Bh;
Solve equation of Φh;
Solve level set equation to get φ new

h ;
Update interface Γh ;

φ old
h = φnew, uold

h = unew
h , vold

h = vnew
h ;

substrate and the biomass, we use NXFEM to find solutions in a discretization of
space and time. All of these will be implemented with the help of NXFEM toolbox.

Remark 6.2 In spite of using the same models and some parameters’ value

given in the work of Chopp et al., we focus on the methods we have used and
we give some new behaviors of the growth of the biofilm.

6.2.1 Models

Ω2

Ω1

Γ

∂Ω1

∂Ω2

∂Ω3

∂Ω4

Let us consider a convex polygonal, Lip-
schitz and bounded domain Ω in R

2

such that Ω = Ω f ∪Ωb where Ωb de-
notes the biofilm region. These two re-
gions are separated by a sufficiently
smooth interface Γ. The concentration
of the substrate S is presented both in
Ω f and Ωb and it diffuses in the domain

in different rates Db
S and D

f
S which are

such that Db
S =αDD

f
S where 0<αD < 1.

This means that we consider S diffusing
in Ωb with a lower rate because of the obstruction of the biomass in the biofilm
region. Within the biofilm, S is also affected by an advection velocity U. This velocity
will reduce an amount of S inside the biofilm. Of course, S is the main nutrient of the
biofilm, it will be also diminished if there are (much) bacteria. Outside the biofilm,
there is only the diffusive phenomenon which has an effect on S.

We derive an equation of S which describes above relations via (6.1). The negative
sign (−) indicates a reduction of the concentration of S whereas the positive one (+)
shows the increasement.

92 Chapter 6. Application to a biofilm growth model

{

∂tS = Db
S∇2S−∇ · (SU)+ f µS(S) in Ωb,

∂tS = D
f
S∇2S in Ω f ,

(6.1)

where f is the active biomass volume fraction [16], µS is the specific substrate
consumption rate which is given in (6.2).

µS(S) = µ̄S

S

K0 +S
. (6.2)

The velocity U which depends on the growth of biofilm is assumed to be irrotational,
i.e., ∇×U = 0. This leads us to find an alternative presentation Φ of U instead of
itself (in that, U = ∇Φ). We call Φ a potential. The mass balance of Φ can be derived
in terms of the rates of components inside the biofilm as in (6.3).

{

∇2Φ = f µΦ(S) in Ωb,

∇2Φ = 0 in Ω f ,
(6.3)

where µΦ = µx +µw, µx and µw are the net rate of active biomass production and
the net rate of EPS production respectively. They follow (6.4). Because there is no
bacteria outside the biofilm region, it’s reasonable if Φ is 0 in Ω f .

µx(S) = µ̄x
S

KS +S
, µw(S) = µ̄w

S

KS +S
. (6.4)

For more details about the parameters µ̄S, µ̄x, µ̄w and their values in experiments,
please reference to [26, Table A.1].

Both substrates and bacteria are continuous through the interface Γ. That why we
need to use jumb conditions for S and Dirichlet conditions for Φ (becase Φ is zero
outside Ωb). We want the flows of S and Φ to be smooth across Γ also, that why we
need flux conditions (∇n) for each of them. Summing up, we need the conditions
given in (6.5).

{

JSK = J∇nSK = 0,

Φ = ∇nΦ = 0.
(6.5)

For the test cases, we apply some Dirichlet boundary conditions for both of S and Φ

on the top of the domain.

Remark 6.3 Because of the values of S,Φ from the results in [15, 16], we can

ignore, sometimes, the time derivatives and advection terms in (6.1). It’s because
the change of the concentration S is very slightly different in time scale and the
velocity U doesn’t have a large impact on the change.

Notation 6.1 From this to the end of the chapter, for simplicity, we replace the

6.2 Some biofilm growth models 93

notations Ωb,Ω f ,S,Φ by Ω1,Ω2,u,v respectively.

With Remark 6.3 and Notation 6.1, (6.1) will be rewritten in (6.6) for the full equation
of substrate.







−∇ · (kS∇u)+ f µS(u) = 0, in Ω,

JuK = JkS∇nuK = 0, on Γ,

u = S̄, on ∂Ω3,

∇nu = 0 on ∂Ω\∂Ω3.

(6.6)

The same for (6.3) with (6.7).







−∇ · (∇v) =− f µΦ(u), in Ω,

v = ∇nv = 0, on Γ,

v = 0, on ∂Ω3,

∇nv = 0 on ∂Ω\∂Ω3,

(6.7)

where,

kS :=

{

Db
S, in Ω1,

D
f
S , in Ω2.

µ̄S :=

{

µ̄S, in Ω1,

0, in Ω2.
µ̄Φ :=

{

µ̄x + µ̄w, in Ω1,

0, in Ω2.

Remark 6.4 Different from the work of Chopp et al.in which the equation of

potential Φ was solved by the penalty method (introduced in [60]), we use here
a method which is already described in Section 4.2.2 for the equation of v.
Moreover, we use Newton method coupling with NXFEM to solve the nonlinear
equation of u.

6.2.2 Weak forms

With the same arguments and notations in Chapter 4, a weak form of (6.6) is to seek
u ∈ H1(Ω) such that u = S̄ on ∂Ω3 and u satisfies (6.8)1.

〈kS∇u,∇ϕ〉Ω + 〈 f µS(u),ϕ〉Ω = 0, ∀ϕ ∈ H1
0 (Ω). (6.8)

Similarly, a weak form of (6.7) is to seek v∈V such that v = 0 on ∂Ω3 and v satisfies

1For the definition of H1(Ω),H1
0 (Ω), cf. Definition 2.2.

94 Chapter 6. Application to a biofilm growth model

(6.9)2.

〈∇v,∇ϕ〉Ω = 〈− f µΦ(u),ϕ〉Ω, ∀ϕ ∈V0. (6.9)

6.2.3 Discretization and iteration

Again, with the same manner as in Section 2.2, a discrete form of the problem (6.8)
is as follows: Seek a solution uh ∈V Γ

h such that uh = S̄ on ∂Ω3 and u satisfies (6.10).

auh(uh,ϕh) = 0, ∀ϕh ∈V 0
h , (6.10)

where V Γ
h ,V

0
h are defined in (2.14), (2.15) and

auh(uh,ϕh) := 〈kS∇uh,ϕh〉Ω12
−〈JuhK,{{kS∇nϕh}}〉Γ

−〈{{kS∇nuh}},JϕhK〉Γ +λu〈JuhK,JϕhK〉Γ + 〈 f µS(uh),ϕh〉Ω.

A weak form (6.9) of vh is discretized: Seek a solution vh ∈V Γ
h such that vh = 0 on

∂Ω3 and vh satisfies (6.11).

avh(vh,ϕh) = Kvh(uh,ϕh), ∀vh ∈V 0
h , (6.11)

in that,

avh(vh,ϕh) := 〈∇vh,ϕh〉Ω12
−〈JvhK,{{∇nϕh}}〉Γ−〈{{∇nvh}},JϕhK〉Γ

+ 〈{{vh}},{{ϕh}}〉Γ +λvκ1κ2〈JvhK,JϕhK〉Γ,
Kvh(uh,ϕh) := 〈− f µΦ(uh),ϕh〉Ω

Remark 6.5 The main different point in our work is in the last two terms of avh.

For the nonlinear problem (6.10), we use the Newton method coupling with NXFEM
to find a solution. Let F(uh) be the LHS of (6.10) and δh ∈V Γ

h , we have

F(uh +δh)−F(uh) = 〈kS∇δh,ϕh〉Ω12
−〈JδhK,{{kS∇nϕh}}〉Γ−〈{{kS∇nδh}},JϕhK〉Γ

+λu〈JδhK,JϕhK〉Γ + 〈 f µS(uh +δh)− f µS(uh),ϕh〉Ω.

From definition (6.2) of µS,

2For the definition of V,V0, cf. (4.4).

6.2 Some biofilm growth models 95

µS(uh +δh)−µS(uh) =
∂ µS

∂uh

(uh)δ +o(δh) = µ̄S

KS

(KS +uh)2
δh +o(δh),

where o(δh)→ 0 when h→ 0. Therefore, we have a differential DF(uh) of F at uh

such that,

F(uh +δh) = F(uh)+DF(uh)δh +o(δh),

where,

DF(uh) = 〈kS∇δh,ϕh〉Ω12
−〈JδhK,{{kS∇nϕh}}〉Γ−〈{{kS∇nδh}},JϕhK〉Γ

+λu〈JδhK,JϕhK〉Γ + 〈 f µS

KSδh

(KS +uh)2
,ϕh〉Ω.

DF(uh) is a linear application which is easier to handle in NXFEM space. We go
from seeking a solution uh of (6.10) to seeking a solution δh ∈V Γ

h of problem (6.12)
w.r.t.Algorithm 6.2.

DF(uh)δh = F(uh). (6.12)

Algorithm 6.2. Newton method for finding solution uh.

Input : An initial value of uh and a stopping criteria ε .
Output

:

uh

while
‖δh‖
‖uh‖

> ε do

Solve (6.12) for δh;
Update uh by uh−δh;

Remark 6.3 reminds us not to forget the main biofilm model is an evolution problem.
It means that we are looking for solutions for each time step and from that, we can
know the growth of biofilm with time. Refer to Section 6.1, we investigate a more
detailed strategy to solve this problem.

We start with an initial interface Γ0 (at time step t0) which stands for a layer covering
biofilm region. With this Γ0, we find the substrate u1

h from (6.6) by solving problem
(6.10) thanks to Algorithm 6.2. With this substrate u1

h, we have enough information
to find the potential v1

h from (6.7) by solving problem (6.11). Because the RHS of
(6.11) is actually a constant with already known u1

h, we use the standard method
of NXFEM stated in previous chapter to find v1

h. After solving v1
h, we calculate its

gradient to find the new interface Γ1 thanks to level set equation (6.13). Keep going
until we understand the behavior of interface (biofilm) after a maximum time. The
whole process is redescribed in Algorithm 6.3.

96 Chapter 6. Application to a biofilm growth model







∂φ

∂ t
(x, t)+∇v(x, t) ·∇φ(x, t) = 0, ∀(x, t) ∈Ω× (0,T),

φ(x,0) = φ 0(x), ∀x ∈Ω.
(6.13)

Algorithm 6.3. Solving problem of biofilm.

Input : φ 0, Tmax

Output

:

un
h, vn

h, φ n at time step tn

t = 0; φ old = φ 0
h ;

while t < Tmax do

Solve (6.10) for uh based on Algorithm 6.2;
Solve (6.11) for vh;

δt = CFL
h

‖vh‖
;

t := t +δt ;
Solve (6.13) for φh at time t based on vh and the method introduced in
Chapter 5;

Update the interface with this new φh;

6.3 Some numerical test cases

6.3.1 Linear model

We consider a simpler version of (6.6) and (6.7) which is introduced in [55]. In
this version, the reaction term will be streamlined to a linear function of u. The
parameters are chosen to approximate the behavior of the nonlinear problem (6.6).

With the same interface condition and boundary condition as in (6.6) and (6.7), we
consider a problem of u,v in Ω = [0,0.5]× [0,0.5] (of size mm) such that,

{

−∇ · (kS∇u) =−αu in Ω,

−∇ · (∇v) =−βu in Ω.
(6.14)

The parameters are chosen as follows,

kS =

{

120 in Ω1,

150 in Ω2.
α =

{

3.6×106 in Ω1,

0 in Ω2.
β =

{

106 in Ω1,

0 in Ω2.

The Dirichlet condition at the top of domain: S̄ = 10−5 mgO2

mm3 . The initial interface is

chosen as a semi-circle (x−0.25)2 + y2 = r2
0.

6.3 Some numerical test cases 97

The importance of penalty terms. As mentioned in Section 2.3, the choice of
λu,λv in (6.10) and (6.11) are very important. Figure 6.2 shows a very bad result
if we use a smaller value of λ̂u and λ̂v (102 and 104 respectively) while Figure 6.3
gives a more stable solution if we use a bigger of them (106 and 108 respectively).

a. t = 0 (day) b. t = 1.52 (day) c. t = 3.22 (day)

Figure 6.2. The interface and the value of φ at different time steps (days) when we use low
values of λ̂u, λ̂v.

a. t = 0 (day) b. t = 19.91 (day) c. t = 39.35 (day)

Figure 6.3. The interface and the value of level set function φ at different time steps (days)
when we use high values of λ̂u, λ̂v.

The speed of biofilm’s growth. Figure 6.4 suggests that the growths of biofilm is
not equal at all time steps. For the first few days of growing, it grows very fast. After
that, the rate is slower with time. It can be explained by an affect of constant value of
substrate at the top of the domain and the height of the biofilm changes. Other words,
the distance between the top of the biofilm and the top of the domain is reduced and
it seems that bacteria need more time to feed themselves when their community is
bigger.

Another aspect of their growth is when we change the value of β (from 106 to 108)
which stands for the net rate of the active biomass and EPS production. Figure 6.5
illustrates this point clearly. To get the same height of the biofilm as in Figure 6.4, it
takes only 5 hours (in comparison with days in the other test). We can understand
this case easily. When we increase an amount of the active biomass and the rate of
growth, bacteria is more active to find and eat the nutrient. The same phenomenon
occurs if we increase an amount of the substrate on the top of the domain (from 10−5

mgO2

mm3 to 10−3 mgO2

mm3), bacteria have a chance to eat more nutrient than usual so they
grow faster.

The importance of Ghost Penalty. In the test of without using ghost penalty terms,

98 Chapter 6. Application to a biofilm growth model

a. t = 0 (day) b. t = 3.45 (day) c. t = 8.52 (day)

d. t = 10.26 (day) e. t = 30.01 (day) f. t = 39.35 (day)

Figure 6.4. The interface and the value of the level set function φ at different time steps
(days) when we test a regular of speed of growth.

although we keep all other parameters as in the test of Figure 6.4, we cannot obtain
good results because it takes up to 36 days for the first little change.

a. t = 0 (hour) b. t = 1.68 (hour) c. t = 5.04 (hour)

Figure 6.5. The interface and the value of the level set function φ at different time steps
(hours) when we use bigger values of β or with more substrates.

6.3.2 Nonlinear model

Go back to the problem (6.6) and (6.7), using real parameters given in literature.
These experimental parameters are given in Section B.1, they are used to compute
kS, µ̄S, µ̄Φ in a compound form. In this thesis, I use already-computed values of
kS, µ̄S, µ̄Φ which are given as below,

kS =

{

146.88 in Ω1,

183.6 in Ω2,
µ̄S =

{

8.54932 in Ω1,

0 in Ω2,
µ̄Φ =

{

8.28785 in Ω1,

0 in Ω2,

and the top Dirichlet condition S̄ = 8.3×10−6 mgO2

mm3 .

6.3 Some numerical test cases 99

Note that, we sometimes change the values of parameters to see the relation of
components in the problem.

Dome-like structure. In this test, the interface is chosen as in the linear case (a
semi-circle (x− 0.25)2 + y2 = r2

0) in the same domain Ω = [0,0.5]× [0,0.5] (size
of mm). In order to make sure that there is always enough substrate in the test case
(and also that we don’t want the biofilm reaches the source of nutrient too fast if
we reduce the height of domain), we apply a Dirichlet boundary condition on an
imagine top boundary ΓS of the domain. ΓS which depends on time t is a horizontal
line measured from the top most point of the biofilm, denoted by LS. The quantity LS

is assumed to be a constant at all times. An illustration of ΓS(t) is given in Figure 6.6.
In the following test cases, we mainly take LS = 0.1 mm.

Ω2

Ω1

Γ

ΓS

LS

Figure 6.6. An illustration of dynamic
domain.

These settings coupling with more com-
plicated terms in the equations (6.6)
and (6.7) in comparison with equations
(6.14), we obtain a different behavior.
In the linear case (cf. Figure 6.5), the
colony grow into a finger-like structure
which is toward to the subtrate (on top).
In the nonlinear case, biofilm devel-
ops into a dome-like structure which is
spreading in the horizontal direction (cf.
Figure 6.8).

We obtain the same behavior with the
linear case when we increase the amount
of substrate on ΓS. More specifically, if we apply S̄ = 1×10−4 mgO2

mm3 which is bigger

than the case in Figure 6.8 where S̄ = 8.3× 10−6 mgO2

mm3 , the biofilm grows faster
(0.42 days in comparison with 3.22 days).

Interface with noise. In the next test case, we consider an interface which contains
a noise n̂ and this interface is height ĥ mm from the bottom. With these noise and
height, we can check the behavior of the biofilm’s growth if it has a complicated
shape (there are some valleys in it form, for example).

φ(x,y) = y− ĥ+ n̂× cos(8πx). (6.15)

Remark 6.6 When we say “bigger/smaller" noise, it means that we talk about

the absolute value of n̂ (i.e. |n̂|). In (6.15), |n̂| decides the depth of the valley in
the biofilm’s shape. The sign of n̂ indicates the location of the biofilm on the
left of the domain.

First, we consider ĥ = 0.1 and n̂ = 0.1, the growth of biofilm is given in Figure 6.9.
In this case, we take S̄ = 1×10−3 (there is much substrate), the growth is thus quick.

100 Chapter 6. Application to a biofilm growth model

a. Substrate u at t = 0 (day) b. Substrate u at t = 3.22 (day)

c. Potential velocity v at t = 0 (day) d. Potential velocity v at t = 3.22 (day)

Figure 6.7. Dome-like structure of a biofilm growth when S̄ = 8.3×10−6 mgO2

mm3 .

a. Substrate u at t = 0 (day) b. Substrate u at t = 0.42 (day)

Figure 6.8. Dome-like structure of a biofilm growth when S̄ = 1×10−4 mgO2

mm3 .

6.3 Some numerical test cases 101

One can see that, with a low of noise, biofilm develops equally at different location
of its shape.

a. t = 0 (hour) b. t = 2.64 (hour) c. t = 4.8 (hour)

Figure 6.9. The height of biofilm at different times (hour).

However, if we take different levels of noise, we will see the differences in Fig-
ure 6.10. With more noise (the right figure), the growth of biofilm at the top of
moutain is faster than others in the valley. You can check the color in the plot, the
brighter color inside the biofilm region indicates the bigger potential v velocity. In
contrast, if the noise is trivial (the left figure), the growth of biofilm seems to be
equally at all locations. We can check that there is no much brighter places then the
others in the biofilm region.

a. n̂ =−0.1 b. n̂ =−0.3

Figure 6.10. Value of potential velocity v for different values of noise at time around t = 4

(day).

For the last test, we consider an interesting example in which we change the place
the substrate occurs. Look at Figure 6.11, if the substrate comes from the top of the
domain, it takes longer for the biofilm to reach to the height of 0.15 mm (1.21 days)
whereas, it takes only 0.24 days for it to reach to the same height if substrate occurs
at the bottom. We can understand this easily. Biofilm is nearer the source of nutrient
in the case of bottom than the case of top, its faster growth is reasonable. Note that,
in Figure 6.11, the plot of potential velocity also gives us a remark. In the case of
top, the highest place of biofilm grows more quickly than other locations. In the case
of bottom, the growth of biofilm seems equally for all locations on it.

102 Chapter 6. Application to a biofilm growth model

a. From top of domain at 1.21 (day). b. From bottom of domain at 0.24 (day).

Figure 6.11. Value of potential velocity vh corresponding to different locations of substrate’s
occurance.

7. Conclusion

Contents

7.1 The methods 103

7.2 The NXFEM toolbox 104

7.3 For the future 104

7.1 The methods

For such a problem like the problem biofilm growth, we need to combine many
different methods. We use NXFEM method to solve an interface problem with an
unfitted mesh. With this method, we don’t have to generate a new mesh many times,
just use one mesh for the whole process. However, the NXFEM method is not so
stable as it has to be, especially when the interface cuts the mesh at very different
parts. We need (and have to) apply some stabilized methods such as Ghost Penalty
to our scheme. The choice of parameters is also very sensitive and important if we
want to get a good result. There is not any clear standard in which we can choose
good values for them but we can do it empirically and get the right ones depending
on a specific model.

For capturing the change of an interface (e.g. biofilm’s shape), we need to use the
Level Set Method. This one is very modern and a good choice for this purpose.
However, working with it on a triangle mesh is another problem we have to handle.

104 Chapter 7. Conclusion

Thanks to the Streamline Upwinding Petrov-Galerkin method coupling with the Fast
Marching Method and Crank-Nicolson scheme, we can comfortably work with LSM.
Notice that, although FMM helps us make the level set function be a signed distance
function as it has to be, we cannot apply this kind of method every time we want. The
number of times we apply FMM in solving a level set equation is another difficulty
and it’s again chosen empirically.

In practice, working with nonlinear equations on each iteration or each time step,
we sometimes use the Newton method to get a discrete solution. Generally, we don’t
have too many troubles with this method when working with a biofilm’s model.

7.2 The NXFEM toolbox

NXFEM toolbox is built for the implementation of the NXFEM method and the
Level Set Method. All of algorithms are explained carefully to those who want to
use it in the future. For the current version, it works well only on a single core at the
time of executing. This is a disadvantage and it takes a little more time to get the
results for tests in this thesis. Of course, the toolbox is under the way of updating to
a parallel version and open to everyone to contribute.

7.3 For the future

In this work, we have only worked on problems in which the diffusion coefficients
are constant in each subdomain. It’s intersting to approach the cases with nonlinear
diffusive terms.

The growth of biofilm is also affected by the presence of antibiotics. There are
some new resistance mechanisms which only appear if there is an antibiotics in the
environment. Continue to the models in this thesis, we can add more terms relating
to this resistance and research the growth of biofilm on these cases. Of course, we
will examine the phenomena with the NXFEM method and NXFEM toolbox.

Remark 6.3 mentioned about the removing of time dependent term in the model. It’s
because the ontained values in the cases we were working on change very little in
each time iteration. However, for a more realistic phenomenon with more relations in
the model, it’s neccessary to work with a full evolution system.

appendix

A. Implementation and NXFEM toolbox

Contents

A.1 Some principles of quadrature 107

A.2 Connectivity of triplet [p,e,t] 112

A.3 Proof of formula used in finding intersection points 113

A.4 Example of finding intersections 113

A.5 Example of finding unit normal vector 113

A.6 Implementation issue of some norms in NXFEM toolbox 113

A.7 Interpolation between Vh and V Γ
h 118

A.1 Some principles of quadrature

Definition A.1 — Quadrature. [65] Let D be a non-empty, Lipschitz, compact,

connected subset of Rn. Let lq be an integer. A quadrature is an approximation
of the definite integral of a function. It’s usually stated as a weighted sum of
function values at specific points within domain of integration. So, a quadrature
on D with lq points consists of

(i) A set of lq real numbers {ω1, . . . ,ωq} called quadrature weights.

108 Chapter A. Implementation and NXFEM toolbox

(ii) A set of lq points {ξ1, . . . ,ξq} in D called Gaussian points or quadrature

nodes.

The largest integer k such that

∀g ∈ Pk,
∫

D
g(x)dx =

lq

∑
q=1

ωqg(ξq),

is called the quadrature order and is denoted by kq.

In this thesis, I will use an n-point Gaussian quadrature rule which is a quadrature
rule constructed to yield an exact result for polynomials of degree 2n−1 or less by
using suitable couples {ωq,ξq} for q = 1, . . . ,n. More specifically, I apply Gaussian
quadrature only for type of domain which is a segment (in dimension 1) or a tri-
angle (in dimension 2). Note that, n-point Gaussian quadrature is corresponding to
quadrature order kq = 2n+1 (see the proof in [65, Proposition 8.2]).

1D Case. On the reference interval [−1,1], we use formula (A.1), on a general
interval [a,b], we use formula (A.2).

∫ 1

−1
g(x)dx≃

lq

∑
q=1

ωqg(ξq).

∫ b

a
g(x)dx≃ b−a

2

lq

∑
q=1

ωqg

(

a+
b−a

2
(1+ξq)

)

.

(A.1)

(A.2)

Remark A.1 Because we mainly consider the P1-FE space (or P2-FE in some

cases), we thus don’t need too many number of Gaussian points for the quadrature
rules. It depends on the degree of polynomial function g which we are going
to find the integration on D. A table of Gaussian points and weights in 1D for
formula (A.1) is given in Table A.1. It’s corresponding to function getGaussQuad

in the toolbox (there are more points and weights in this function).

2D Case. On a reference triangle K̂, we use formula (A.3). On a general triangle K,
we use formula (A.4).

A.1 Some principles of quadrature 109

lq kq ξq Aprx ωq Aprx

1 1 0 0 2 2

2 3 ± 1√
3

±0.57735 1 1

3 5 0 0 8
9

0.888889

±
√

3
5

±0.774597 5
9

0.555556

4 7 ±
√

3
7
− 2

7

√
6
5
±0.339981 18+

√
30

36
0.652145

±
√

3
7
+ 2

7

√
6
5
±0.861136 18−

√
30

36
0.347855

Table A.1. Some Gauss–Legendre quadrature couples {ωq,ξq} on the reference interval
[−1,1].

∫

K̂
g(x̂)dx̂≃ 1

2

lq

∑
q=1

ωqg(x̂q).

∫

K
g(x)dxdy = 2|K|

∫

K̂
g(P(x̂))dx̂≃ |K|

lq

∑
q=1

ωqg(P(x̂q)),

(A.3)

(A.4)

where |K| is the area of K and P is a mapping which transforms each vertex of K̂ in
Ox̂ŷ to corresponding vertex of K in Oxy, cf. Figure A.1. In P

1-FE, P which is given
in (A.5) is corresponding to function getCoorSTD in the toolbox.

x

y

0
x̂

ŷ

0

1

1

i

j

k

K

î
ĵ

k̂

K̂
P−1

Figure A.1. Quadrature in 2D between a general triangle K in Oxy and its reference triangle
K̂ in Ox̂ŷ.

(

x

y

)

= P

(

x̂

ŷ

)

=

(

xi(1− x̂− ŷ)+ x jx̂+ xkŷ

yi(1− x̂− ŷ)+ y jx̂+ ykŷ

)

, (A.5)

110 Chapter A. Implementation and NXFEM toolbox

where {(xi,yi),(x j,y j),(xk,yk)} is the coordinate of triangle K in Oxy. These vertices
are numbered in the counter-clockwise direction. Note that, we also have dxdy =
2|K|dx̂dŷ.

Remark A.2 We also have the inverse of P in the case of P1-FE as follow

(

x̂

ŷ

)

= P−1

(

x

y

)

=

(
1

2|K|
(
(x− xi)(yk− yi)− (y− yi)(xk− xi)

)

1
2|K|
(
−(x− xi)(y j− yi)+(y− yi)(x j− xi)

)

)

.

It’s corresponding to function getCoorRef in the toolbox. A table of some
Gaussian points and weights in 2D for formula (A.3) is given in Table A.2 (there
are more points and weights in the function getGaussQuad).

lq kq {x̂q;ωq}

1 1

{(
1
3

1
3

)

;1

}

3 2

{(
1
2
, 1

2

)

; 1
3

}

,

{(
1
2
,0
)

; 1
3

}

,

{(

0, 1
2

)

; 1
3

}

4 3

{(
1
3
, 1

3

)

;−27
48

}

,

{(
1
5
, 1

5

)

; 25
48

}

,

{(
1
5
, 3

5

)

; 25
48

}

,

{(
3
5
, 1

5

)

; 25
48

}

Table A.2. Some Gauss–Legendre quadrature couples {x̂q,ωq} on the reference triangle K̂.

Quadrature in FEM. Consider the integral
∫

Ω g(x)dx where g is a smooth function.
Using the decomposition,

∫

Ω
g(u(x))dx = ∑

K∈Th

∫

K
g(u(x))dx,

we can change the computation from integrating on the whole domain Ω to inte-
grating on each triangle K. Thanks to quadrature rules (A.4), we again change to
integrating on a reference triangle K̂ which is much easier.

∫

Ω
g(u(x))dx = ∑

K∈Th

∫

K
g(u(x))dx = ∑

K∈Th

2|K|
∫

K̂
g(P(u(x̂)))dx̂

≃ ∑
K∈Th



2|K|
lq

∑
q=1

ωqg(P(u(x̂q)))



 .

(A.6)

In NXFEM or in general FEM, we are working on basic functions {ϕi}i in P
1-FE

space or P2-FE space. We cannot compute exactly the value of integrals with the

A.1 Some principles of quadrature 111

types of these functions because they are very complicated. The job is much easier if
we use quadrature rules and change to work on the local shape functions on reference
triangles which are determined in Table A.3.

P
1-FE P

2-FE

x̂

ŷ

1
2

3

K̂
x̂

ŷ

1 2

3

4
5

6

K̂

N1(x̂, ŷ) = 1− x̂− ŷ,

N2(x̂, ŷ) = x̂,

N3(x̂, ŷ) = ŷ.

N1(x̂, ŷ) = 1−3x̂−3ŷ+2x̂2 +4x̂ŷ+2ŷ2,

N2(x̂, ŷ) = 2x̂2− x̂,

N3(x̂, ŷ) = 2ŷ2− ŷ,

N4(x̂, ŷ) = 4x̂ŷ,

N5(x̂, ŷ) = 4ŷ−4x̂ŷ−4ŷ2,

N6(x̂, ŷ) = 4x̂−4x̂ŷ−4x̂2.

function getP1shapes in the
toolbox

function getP2shapes in the toolbox

Table A.3. Local shape functions defined on reference triangle K̂ where Ni(x j) = δi j.

In this chapter, I build all stiffness matrices and load vectors based on the idea of
Propotition A.1 given as below.

Proposition A.1 Let ϕi be a basis function defined in P
k-FE and ϕ̃ir is its

corresponding shape function determined on element K ∈Th at vertex r (r =
1,2,3). Let Nr be the corresponding shape function w.r.t ϕ̃r on the reference
triangle K̂. Then we have the relations

ϕ̃ir(x,y) = Nir(x̂, ŷ), ∀(x,y) = P(x̂, ŷ),r = 1,2,3.
∫

K
g(ϕ̃ir(x,y))dxdy = 2|K|

∫

K̂
g(Nir(x̂, ŷ))dx̂dŷ.

where g is a smooth function well-defined on K and K̂.

112 Chapter A. Implementation and NXFEM toolbox

A.2 Connectivity of triplet [p,e,t]

An example of mesh data [p,e,t] given in Matlab PDE toolbox is illustrated by
Figure A.2 and following description.

1 2 3

4

5
6

7 8 9
1

0 0.5 1

0.5

x

y

1

2

3 4

5

6 7

8

Figure A.2. A sample mesh: nodes (blue numbers), elements (pink numbers), coordinates
(black numbers).

p is a 2×number of nodes matrix (cf. (A.7)). Each column of p represents a node
of the mesh (blue number in Figure A.2). Its first row contains the x-coordinates
of these nodes and the second row for y. For example, if we want to consider the
y-coordinate of the 5th node, we take p(5,2).

p =

[

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0

]

, (A.7)

t is a 4× number of elements matrix (cf. (A.8)). Each column of t represents an
element of the mesh (red number in Figure A.2). Each element have three vertices
which are presented as three first numbers on each column. Each number is the index
of node in p. For example, t(3,2)= 8 is the 8-th point of the mesh, i.e. p(:,8).

t =








2 4 4 5 1 1 2 5

6 5 8 9 5 2 3 6

5 8 7 8 4 5 6 9

1 1 1 1 1 1 1 1








(A.8)

e is a 7×number of edges on the boundary matrix (cf. (A.9)). We focus on two first
rows of this matrix. It contains the indices of two endpoints in p of these edges. For
example, the bottom boundary in Figure A.2 contains two edges. The first one is
the connection between node 1 and 2, that is e(:,1). The second is 2−3 which is
e(:,2).

A.3 Proof of formula used in finding intersection points 113

e =






1 2 3 6 9 8 7 4

2 3 6 9 8 7 4 1
...

...
...

...
...

...
...

...




 , (A.9)

Notice that, the elements connectivities are all ordered in a counter-clockwise fashion,
for example, 5-th element has three vertices 1→ 5→ 4.

A.3 Proof of formula used in finding intersection points

We will prove (3.5). Indeed, because φ ∈ Vh, φ has a form of ax+ by+ c where
a,b,c ∈ R. We also recall that φi = φ(xi,yi),φk = φ(xk,yk), then

φ(x0,y0) = a
xi

2

(

1− φi +φk

φi−φk

)

+a
xk

2

(

1+
φi +φk

φi−φk

)

+b
yi

2

(

1− φi +φk

φi−φk

)

+b
yk

2

(

1+
φi +φk

φi−φk

)

+ c

=
φi

2

(

1− φi +φk

φi−φk

)

+
φk

2

(

1+
φi +φk

φi−φk

)

= 0.

A.4 Example of finding intersections

Let us consider a cut triangle, namely i-j-k, where i, j, k are its three vertices in
that order in the matrix of triangles t. We will list all possible cases in Table A.4
Example of determining intersections between cut triangle and interface.

A.5 Example of finding unit normal vector

Algorithm 3.1 in Section 3.3.4 describes how to get intersections between interface
and cut triangles. These intersections are later applied to find unit normal vector
lying interface segment Γh. In this section, I will give a detailed example explaining
them.

An example group of cut triangles which contains intersections used to find unit
normal vectors are clarified in Table A.5.

A.6 Implementation issue of some norms in NXFEM toolbox

A.6.1 Norms in standard finite element space Vh

In NXFEM toolbox, the norms given in (5.19) for finding errors of level set functions
are computed via following expressions.

114 Chapter A. Implementation and NXFEM toolbox

Type 0 Type 2 Type 4

Γ

i≡ B

j k
A

Ω1 Ω2 Γ

i

j k
A

B

Ω1 Ω2 Γ

i

j kB

A

Ω1 Ω2

Γ

k ≡ B

i j
A

Ω1 Ω2 Γ

k

i j
A

B

Ω1 Ω2 Γ

k

i j
A

B

Ω1 Ω2

Γ

j ≡ A

k i
B

Ω1 Ω2 Γ

j

k i
B

A

Ω1 Ω2 Γ

j

k i
B

A

Ω1 Ω2

Table A.4. Example of determining intersections between cut triangle i-j-k (in that order)
and interface Γh. They are all stored in CT.iPs in order of [A,B].

• For all φ ∈ L2(Ω),

‖φ(x)‖2
L2(Γh)

= ∑
K∈Gh

∫

ΓK,h

φ 2(x)ds = ∑
K

∫ Xb

Xa

φ 2(x)ds

= ∑
K

|XaXb|
|X̂aX̂b|

∫ X̂b

X̂a

φ 2(P(x̂))dŝ = ∑
K

|XaXb|
∫ 1

0
φ 2(P(x̂(t)))dt

= ∑
K

1

2
|XaXb|

lq

∑
q=1

ωqφ 2




P



x̂

(

1+ξq

2

)








= ∑
K

1

2
|XaXb|

lq

∑
q=1

ωqφ 2

(

P

(

x̂a +
x̂b− x̂a

2
(1+ξq)

))

=: getNormL2foGh2(φ),

where Xa(xa),Xb(xb) are two endpoints of ΓK,h, P is a mapping which transforms

A.6 Implementation issue of some norms in NXFEM toolbox 115

figure cut triangles

Γ

A

B

C

D E

F

1

2 3

4

5

6

7

8

Ω1

Ω2

i 1 3 3 6 6

j 2 4 5 4 8

k 3 1 4 5 7

CT.type 4 2 4 0 0

CT.iPs [A,B] [C,B] [D,C] [D,E] [F,E]

CT.uN⊥ [B,A] [C,B] [D,C] [E,D] [F,E]

Table A.5. Example of determining unit normal vectors CT.uN based on intersections
CT.iPs. This result follows Algorithm 3.2. Note that, CT.uN⊥ is an orthogonal vector of

CT.uN.

each vertex of K̂ in Ox̂ŷ to vertices of K in Oxy and (ωq,ξq) is a quadrature couple
given in Table A.1.

• For φh ∈Vh,φ ∈ L2(Ω),

‖φh−φ‖2
L2(Ω) =

∫

Ω
(φh−φ)2 dx =

∫

Ω
(φh)

2 dx+
∫

Ω
φ 2 dx−2

∫

Ω
φhφ dx

= ‖φh‖2
L2(Ω)+‖φ‖

2
L2(Ω)−2

∫

Ω
φhφ dx

=: getNormL2fhfSTD2(φh,φ),

(A.10)

where ‖φh‖L2(Ω), ‖φ‖L2(Ω) and
∫

Ω φhφ dx are constructed based on (A.11), (A.13)
and (A.14) respectively.

• For all eh = Σieiϕi ∈Vh,

‖eh‖2
L2(Ω) =

∫

Ω
eheh dx =

∫

Ω
(Σieiϕi)(Σ je jϕ j)dx = ∑

i
∑

j

ei

∫

Ω
ϕiϕ j dxe j

= ET ME =: getNormL2fhSTD2(eh),

(A.11)

where E = (ei)i and

Mi j =
∫

Ω
ϕ jϕi dx = ∑

K∈Th

∫

K
ϕ j(x)ϕi(x)dx = ∑

K

2|K|
∫

K̂
N j(x̂)Ni(x̂)dx̂

= ∑
K

|K|
lq

∑
q=1

ωqN j(x̂q)Ni(x̂q)

= ∑
K

getTriplePPWhole(K, j, i)

=: getTriplePPNCTs.

(A.12)

116 Chapter A. Implementation and NXFEM toolbox

• For all function f ∈ L2(Ω),

‖ f‖2
L2(Ω) = ∑

K∈Th

∫

K
f 2(x)dx = ∑

K

2|K|
∫

K̂
f 2(P(x̂))dx̂

= ∑
K

|K|
lq

∑
q=1

ωq f 2(P(x̂q))

=: getNormL2fSTD2(f).

(A.13)

Remark A.3 Because f doesn’t depend on the finite element space V Γ
h , we

don’t need to construct a function like getNormL2fNX for the case of NXFEM
space. The function getNormL2fSTD is enough for both cases.

• For all fh = Σi fiϕi ∈Vh, f ∈ L2(Ω),

∫

Ω
fh f dx = ∑

i

fi

∫

Ω
f (x)ϕi(x)dx = FhF, (A.14)

where Fh = (fi)i and Fi =
∫

Ω f (x)ϕi(x)dx can be found via function getfPhiNCTs

like in Algorithm 3.5.

• For all f ∈ H1(Ω),

‖∇ f‖2
L2(Ω) =

∫

Ω
(∂x f)2 +(∂y f)2 dx

= getNormL2fSTD2(∂x f)+getNormL2fSTD2(∂y f)

=: getNormL2GfSTD2(f).

(A.15)

A.6.2 Norms in NXFEM space V Γ
h

In order to calculate the norm on NXFEM space, we follow the same technique as in
section of assembling a stiffness matrix (cf. (3.9)), the difference in this case is on
the form we are considering.

• For e ∈V Γ
h ,

‖e‖2
L2(Ω) =

∫

Ω
|e|2 dx =

∫

Ω
|ΣNnew

i=1 eiϕi|dx

= 〈Σeiϕi,Σe jϕ j〉Ω = ΣiΣ jei〈ϕi,ϕ j〉e j

= EAL2ET ,

(A.16)

where E = (ei)i=1,...,Nnew and matrix AL2 is computed as in the illustration of Fig-
ure A.3. In diagram A.3, function getTriplePPNCTs can be constructed as in (A.12)

A.6 Implementation issue of some norms in NXFEM toolbox 117

and function getTriplePPPart can be constructed as in (A.17) (the same idea with
getfPhiPart illustrated in Figure 3.8).

AL2

(getMatrixL2)

cut triangles

(getTriplePPCTs)
part triangle

(getTriplePPPart)

whole triangle

(getTriplePPWhole)

not cut triangles

(getTriplePPNCTs)

whole triangle

(getTriplePPWhole)

Figure A.3. The idea of assembling the matrix AL2 for L2 norm in NXFEM.

AL2(K)(ϕ
1
i ,ϕ

1
j) =

∫

K
ϕ1

j (x)ϕ
1
i (x)dx =

∫

K1

ϕ j(x)ϕi(x)dx

= 2|K|
∫

K̂1

N j(x̂)Ni(x̂)dx̂

= 4|K||K1|
∫

K̃
N j(Q(x̃))Ni(Q(x̃))dx̃

= 2|K||K1|
lq

∑
q=1

wqN j(Q(x̃q))Ni(Q(x̃q)).

(A.17)

Remark A.4 Note that, the most difference between norms in NXFEM and

norms in standard FEM is the terms computed on cut triangles. Thus, we can
use the same function in NXFEM toolbox on not-cut triangles for both cases,
i.e. getTriplePPNCTs, getTriplePPWhole can be used both in NXFEM and
standard FEM.

• For H1 norm in V Γ
h , we apply the norm L2 and functions getTripleGGNCTs,

getTripleGGCTs like in the way we compute the stiffness matrix A (cf. Sec-
tion 3.4.1).

• For all f ∈V Γ
h , f ∈ L2(Ω),

‖ fh− f‖2
L2(Ω) =

∫

Ω
(fh− f)2 dx =

∫

Ω
f 2
h dx+

∫

Ω
f 2 dx−2

∫

Ω
f h f dx

= ‖ fh‖2
L2(Ω)+‖ f‖2

L2(Ω)−2

∫

Ω
f h f dx

=: getNormL2fhfNX2(f h, f),

(A.18)

where ‖φh‖L2(Ω), ‖φ‖L2(Ω) and
∫

Ω φhφ dx are constructed based on (A.16), (A.13)
and (A.19) respectively.

118 Chapter A. Implementation and NXFEM toolbox

• For all fh = Σi fiϕi ∈V Γ
h , f ∈ L2(Ω),

∫

Ω
f h f dx =

Nnew

∑
i=1

fi

∫

Ω
f (x)ϕi dx = FhF, (A.19)

where Fh = (fi)i and Fi = Lh(ϕi) can be computed as in (3.12).

Remark A.5 There are differences between getNormL2fhfSTD in (A.10) and

getNormL2fhfNX in (A.19). The former is computed on standard FE space Vh

whereas the latter is computed on NXFEM space V Γ
h .

• For eh ∈V Γ
h ,

‖∇e‖2
L2(Ω) =

∫

Ω
|∇e|2 dx =

∫

Ω
|ΣNnew

i=1 eiϕi|

= ΣiΣ jei〈ϕi,ϕ j〉e j = EGL2ET

= getNormL2GfhNX2(e),

(A.20)

where E = (ei)i=1,...,Nnew and matrix GL2 is computed as in (3.9) thanks to functions
getTripleGGNCTs and getTripleGGCTs in NXFEM toolbox.

A.7 Interpolation between Vh and V Γ
h

A.7.1 From V Γ
h to Vh

We use functions pdemesh, pdeplot and pdesurf from the PDE toolbox to illustrate
the mesh and the solution. However, these functions require the solution to be in the
standard FEM Vh. That’s why we need to interpolate the obtained solution in V Γ

h to
Vh.

In the NXFEM toolbox, one can use interNX2STD to perform this job. This function
follows the operator ISD:

ISD : V Γ
h −→ Vh

u 7−→ ũ
,

where u = Σi∈I \IΓ
uiϕi +Σ2

k=1Σi∈IΓ
u
(k)
i ϕ

(k)
i ∈V Γ

h and

ũ(xi) =







ui for i ∈I \IΓ,

u
(1)
i for i ∈I Γ

2 \I0,

u
(2)
i for i ∈I Γ

1 \I0,

u
(1)
i +u

(2)
i for i ∈IΓ∩I0.

A.7 Interpolation between Vh and V Γ
h 119

Recall that, I is the set of numbering of nodes associated to Vh and I1,I2,I0 are
its subset in each subdomain and on the interface respectively. We also use again the
notations of IΓ,I

Γ
i defined as in (2.34) for the nodes around the interface. For the

notation of solution u, cf. Section 2.5.

A.7.2 From Vh to V Γ
h

In many cases, we need an interpolation from Vh to V Γ
h so that the solution can be

used as a component in the computations of NXFEM space. We achieve this thanks
to function interSTD2NX in NXFEM toolbox. This function follows the operator
INX defined as

INX : Vh −→ V Γ
h

ũ 7−→ u
,

where ũ = Σiũiϕi ∈Vh, ũi = ũ(xi) and







u = Σi∈I \IΓ
uiϕi +Σ2

k=1Σi∈IΓ
u
(k)
i ϕ

(k)
i ,

ui = ũi for i ∈I \IΓ,

u
(1)
i = u

(2)
i = ũi, for i ∈IΓ.

B. Biofilm growth

Contents

B.1 Biofilm’s experimental parameters 121

B.1 Biofilm’s experimental parameters

The specific substrate consumption rate, µ̄S, is given by Michealis-Menten kinetics
as in (B.1),

µ̄S = ρx(q̂0 + γ fDb). (B.1)

The net rate of active biomass production, µ̄x, and net rate of EPS production, µ̄w,
are given by (B.2),

µ̄x = Yx/0q̂0−b,

µ̄w = (1− fD)b+Yw/0q̂0.
(B.2)

All specific values of parameters are cited in [26], for a reference of sources, please
check this article. I give in Table B.1 their values only.

122 Chapter B. Biofilm growth

Name Description Value

ρx Biomass concentration 1.0250 mg VS/mm3

ρw Inactive material concentration 1.0125 mg VS/mm3

Yx/0 Yield of active biomass due to substrate consumption 0.583 mg VS/mgO2

Yw/0 Yield of EPS due to substrate consumption 0.477 mg VS/mgO2

q̂0 Maximum specific substrate utilization rate 8 mgO2/mg VS day

K0 Half-maximum-rate concentration for utilization of substrate 5×10−7 mgO2/mm3

b Endogenous decay rate coefficient 0.3/day

Db
S Substrate diffusion coefficient in the biofilm 146.88 mm2/day

Smax Substrate concentration in bulk liquid 8.3×10−6 mgO2/mm3

fD Biodegradable fraction of active biomass 0.8

γ Chemical oxygen demand of VS 1.42 mgO2/mg VS

Table B.1. Table of experimental parameters.

references

List of Figures

1.1 Biofilm appears everywhere in human life. 2

1.2 Stages of the biofilm life cycle. 3

1.3 An idea of translating a real biofilm form to a theoretical model. 5

1.4 Monod’s relation. 5

1.5 An illustration of computational domain Ω. 9

1.6 Fitted vs unfitted meshes. 11

2.1 Illustration of the triangulation. 17

2.2 Some special cases of cut and not-cut triangles 18

2.3 Zoom-in a special triangle of Th. 19

2.4 1D example of jump and average operators in the case of κ1 = κ2 =
1
2
. 19

2.5 An illustration of a fictitious domain ΩT of a physical domain Ω. . . 26

2.6 Interface cuts triangle at positions which close to its vertex. 27

2.7 Considered edges for ghost penalty terms. 27

2.8 An example of V Γ
h in 1D. 29

2.9 1D example of basis proposed by Hansbo. 30

2.10 1D example of basis proposed by Reusken. 31

2.11 Exact soltion and numerical solution in the Barrau’s test case with a fine
mesh. 33

126 LIST OF FIGURES

2.12 The convergence in L2, |||·|||H norms of the solution in Barrau’s test case
using NXFEM method. 34

2.13 Exact solution and numerical solution in the Sinha’s test case with a fine
mesh. 35

3.1 Meshes generated by Matlab PDE Toolbox. 39

3.2 Level set function φ corresponding to an approximated interface Γh in the
computation domain Ω. 40

3.3 An idea of doubling nodes around the interface 40

3.4 Three group of triangles are classified. 41

3.5 Three types of a cut triangle . 42

3.6 The idea of assembling the global stiffness matrix A. 46

3.7 The idea of assembling the right hand side F 49

3.8 An idea to get the quadrature when we want to integrate on a part of
triangle. 50

4.1 An exact solution and a numerical solution of u,v in a fine mesh. . . 73

4.2 An exact solution and a numerical solution of w in a fine mesh. 73

4.3 The convergence of numerical solutions to exact solutions of the system.
74

5.1 An illustration of the level set method . 78

5.2 Vortex test case: Direction of velocity u at different time. 84

5.3 Vortex test case: Computed interface at different time. 85

5.4 Vortex test case: Interface’s position before and after the process in the
case: without SUPG and without FMM. 86

5.5 Vortex test case: Interface’s position before and after the process in the
case: with SUPG and without FMM. 87

5.6 Vortex test case: Interface’s position before and after the process in the
case of using FMM in 2 ways: limited and unlimited number of uses. 88

6.1 An idea of coupling NXFEM with Level Set Method. 90

6.2 The interface and the value of φ at different time steps (days) when we

use low values of λ̂u, λ̂v. 97

6.3 The interface and the value of level set function φ at different time steps

(days) when we use high values of λ̂u, λ̂v. 97

6.4 The interface and the value of the level set function φ at different time
steps (days) when we test a regular of speed of growth. 98

LIST OF FIGURES 127

6.5 The interface and the value of the level set function φ at different time
steps (hours) when we use bigger values of β or with more substrates. . . . 98

6.6 An illustration of dynamic domain. 99

6.7 Dome-like structure of a biofilm growth when S̄ = 8.3×10−6 mgO2

mm3 . 100

6.8 Dome-like structure of a biofilm growth when S̄ = 1×10−4 mgO2

mm3 . 100

6.9 The height of biofilm at different times (hour). 101

6.10 Value of potential velocity v for different values of noise at time around
t = 4 (day). 101

6.11 Value of potential velocity vh corresponding to different locations of
substrate’s occurance. 102

A.1 Quadrature in 2D between a general triangle K in Oxy and its reference
triangle K̂ in Ox̂ŷ. 109

A.2 A sample mesh for the connectivity. 112

A.3 The idea of assembling the matrix AL2 for L2 norm in NXFEM. . . 117

List of Tables

2.1 L2,‖·‖H norm errors of the solutions with different mesh sizes in Barrau’s
test case. 34

4.1 L2 norm errors of the solutions with different mesh sizes. 74

5.1 Vortex test case: Approximation errors computed by NXFEM toolbox and
FreeFem++ for different mesh sizes. 86

5.2 Vortex test case: Approximation errors for different mesh sizes in the case:
without SUPG and without FMM. 86

5.3 Vortex test case: Approximation errors for different mesh sizes in the case:
with SUPG and without FMM. 87

5.4 Vortex test case: Approximation errors for different mesh sizes in the case
of using both SUPG method and FMM. 88

A.1 Some Gauss–Legendre quadrature couples {ωq,ξq} on the reference
interval [−1,1]. 109

A.2 Some Gauss–Legendre quadrature couples {x̂q,ωq} on the reference
triangle K̂. 110

A.3 Local shape functions defined on reference triangle K̂. 111

A.4 Example of determining intersections between cut triangle and interface.
114

A.5 Example of determining unit normal vectors based on intersections 115

130 LIST OF TABLES

B.1 Table of experimental parameters. 122

List of Algorithms

3.1 Determine intersection points on a cut triangle (getiPs). 43
3.2 Determine a unit normal vector on the interface Γh (getUNCT). 44
3.3 Determing a triple vector i, j,v for term a

ΓG

K 48

3.4 Determing a triple vector i, j,v for term a
ΓP
K 49

3.5 Determing couple vector i, f for term LK on not-cut triangles. 50
3.6 Determing couple vector i, f for term LK on cut triangles. 52
3.7 Determine the ghost penalty edges (getGPEdges). 53
3.8 Determine the triple vectors i, j,v which are corresponding to the

ghost penalty terms. 54

5.1 Get the level set function φ at each time step. 82
5.2 Apply reinitialization. 83

6.1 Coupling NXFEM with Level Set Method. 91
6.2 Newton method for finding solution uh. 95
6.3 Solving problem of biofilm. 96

Bibliography

Articles

[1] DG Allison and P Gilbert. “Modification by surface association of antimicro-
bial susceptibility of bacterial populations”. In: Journal of industrial microbi-

ology 15.4 (1995), pages 311–317 (cited on page 2).
[2] Chandrasekhar Annavarapu, Martin Hautefeuille, and John E Dolbow. “A

robust Nitsche’s formulation for interface problems”. In: Computer Methods

in Applied Mechanics and Engineering 225 (2012), pages 44–54 (cited on

page 25).
[3] Pedro MA Areias and Ted Belytschko. “A comment on the article “A finite

element method for simulation of strong and weak discontinuities in solid
mechanics” by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech.
Engrg. 193 (2004) 3523–3540]”. In: Computer methods in applied mechanics

and engineering 195.9-12 (2006), pages 1275–1276 (cited on page 11).
[4] Helio JC Barbosa and Thomas JR Hughes. “The finite element method with

Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi
condition”. In: Computer Methods in Applied Mechanics and Engineering

85.1 (1991), pages 109–128 (cited on page 25).
[5] Nelly Barrau et al. “A robust variant of NXFEM for the interface problem”.

In: Comptes Rendus Mathematique 350.15-16 (Aug. 2012), pages 789–792
(cited on pages 20, 23, 25, 32).

[6] John W Barrett and Charles M Elliott. “Fitted and unfitted finite-element
methods for elliptic equations with smooth interfaces”. In: IMA journal of

numerical analysis 7.3 (1987), pages 283–300 (cited on page 10).

134 LIST OF ALGORITHMS

[7] Ted Belytschko and Tom Black. “Elastic crack growth in finite elements
with minimal remeshing”. In: International journal for numerical methods in

engineering 45.5 (1999), pages 601–620 (cited on page 10).
[8] JH Bramble and JT King. “A finite element method for interface problems in

domains with smooth boundaries and interfaces”. In: Advances in Computa-

tional Mathematics 05 (1996), page 33 (cited on page 10).
[9] Erik Burman. “Ghost penalty”. In: Comptes Rendus Mathematique 348.21-22

(2010), pages 1217–1220 (cited on pages 11, 12, 25, 27).
[10] Erik Burman and Peter Hansbo. “Fictitious domain finite element methods

using cut elements: I. A stabilized Lagrange multiplier method”. In: Com-

puter Methods in Applied Mechanics and Engineering 199.41-44 (2010),
pages 2680–2686 (cited on pages 11, 26).

[11] Erik Burman and Peter Hansbo. “Fictitious domain finite element methods
using cut elements: II. A stabilized Nitsche method”. In: Applied Numerical

Mathematics 62.4 (2012), pages 328–341 (cited on pages 11, 12, 26, 27).
[12] Erik Burman and Paolo Zunino. “Numerical approximation of large contrast

problems with the unfitted Nitsche method”. In: (2011), pages 227–282 (cited

on pages 11, 27).
[13] Erik Burman et al. “CutFEM: Discretizing geometry and partial differential

equations”. In: International Journal for Numerical Methods in Engineering

104.7 (2015), pages 472–501 (cited on pages 12, 25, 26, 28).
[14] Zhiming Chen and Jun Zou. “Finite element methods and their convergence

for elliptic and parabolic interface problems”. In: Numerische Mathematik

(1998), pages 1–23 (cited on pages 10, 60).
[15] David L Chopp et al. “A mathematical model of quorum sensing in a growing

bacterial biofilm.”. In: Journal of industrial microbiology & biotechnology

29.6 (Dec. 2002), pages 339–46 (cited on pages 7, 92).
[16] David L Chopp et al. “The dependence of quorum sensing on the depth of

a growing biofilm.”. In: Bulletin of mathematical biology 65.6 (Nov. 2003),
pages 1053–79 (cited on pages 7, 92).

[17] DavidL. Chopp. “Simulating Bacterial Biofilms”. In: Topics in Biomedical
Engineering. International Book Series (2007), pages 1–31 (cited on page 7).

[18] Susanne Claus, Erik Burman, and Andre Massing. “CutFEM: a stabilised
Nitsche XFEM method for multi-physics problems”. In: (2015), pages 171–
174 (cited on pages 12, 26).

[19] N G Cogan. “Effects of persister formation on bacterial response to dosing.”.
In: Journal of theoretical biology 238.3 (Feb. 2006), pages 694–703 (cited on

page 7).
[20] N G Cogan, Ricardo Cortez, and Lisa Fauci. “Modeling physiological resis-

tance in bacterial biofilms.”. In: Bulletin of mathematical biology 67.4 (July
2005), pages 831–53 (cited on pages 7, 8).

[21] NG Cogan. “Incorporating toxin hypothesis into a mathematical model of
persister formation and dynamics”. In: Journal of theoretical biology 248.2
(2007), pages 340–349 (cited on page 7).

[22] NG Cogan. “Two-fluid model of biofilm disinfection”. In: Bulletin of mathe-

matical biology 70.3 (2008), pages 800–819 (cited on page 7).

LIST OF ALGORITHMS 135

[23] Patricio Cumsille, Juan A Asenjo, and Carlos Conca. “A novel model for
biofilm growth and its resolution by using the hybrid immersed interface-level
set method”. In: Computers & Mathematics with Applications 67.1 (2014),
pages 34–51 (cited on page 8).

[24] Charles Dapogny and Pascal Frey. “Computation of the signed distance func-
tion to a discrete contour on adapted triangulation”. In: Calcolo 49.3 (2012),
pages 193–219 (cited on pages 83, 87).

[25] Daniele A. Di Pietro and Alexandre Ern. “Discrete functional analysis tools
for Discontinuous Galerkin methods with application to the incompressible
Navier–Stokes equations”. In: Mathematics of Computation 79.271 (2010),
pages 1303–1330 (cited on pages 12, 55, 67).

[26] Ravindra Duddu, David L Chopp, and Brian Moran. “A two-dimensional
continuum model of biofilm growth incorporating fluid flow and shear stress
based detachment.”. In: Biotechnology and bioengineering 103.1 (May 2008),
pages 92–104 (cited on pages 7, 92, 121).

[27] Ravindra Duddu et al. “A combined extended finite element and level set
method for biofilm growth”. In: International journal for numerical method

in engineering int. 2.847 (2006), pages 1–33 (cited on pages 10, 90).
[28] R. Eymard, T. Gallouët, and R. Herbin. “Discretization of heterogeneous

and anisotropic diffusion problems on general nonconforming meshes”. In:
IMA Journal of Numerical Analysis 30.4 (2010), pages 1009–1043 (cited on

pages 67, 68).
[29] Robert Eymard, Thierry Gallouët, and Raphaele Herbin. “Discretization

schemes for heterogeneous and anisotropic diffusion problems on general
nonconforming meshes”. In: Available online as HAL report 203269 (2008)
(cited on pages 12, 56).

[30] Jouni Freund and Rolf Stenberg. “On weakly imposed boundary conditions
for second order problems”. In: (1995), pages 327–336 (cited on page 16).

[31] Anita Hansbo and Peter Hansbo. “An unfitted finite element method, based
on Nitsche’s method, for elliptic interface problems”. In: Computer methods

in applied mechanics and engineering 191 (2002), pages 5537–5552 (cited on

pages xv, 10, 12, 15, 17, 20, 23, 24, 28, 29, 62, 63, 66).
[32] Jaroslav Haslinger and Yves Renard. “A new fictitious domain approach in-

spired by the extended finite element method”. In: SIAM Journal on Numerical

Analysis 47.2 (2009), pages 1474–1499 (cited on page 25).
[33] F. Hecht. “New development in FreeFem++”. In: J. Numer. Math. 20.3-4

(2012), pages 251–265 (cited on page 85).
[34] Niklas Johansson. “Implementation of a standard level set method for in-

compressible two-phase flow simulations”. In: (2011) (cited on pages 83,

87).
[35] János Karátson and Sergey Korotov. “Discrete maximum principles for FEM

solutions of some nonlinear elliptic interface problems”. In: International

Journal of Numerical Analysis and Modeling 6.1 (2009), pages 1–16 (cited on

page 60).
[36] Christoph Lehrenfeld and Arnold Reusken. “Nitsche-XFEM with Streamline

Diffusion Stabilization for a Two-Phase Mass Transport Problem”. In: SIAM

136 LIST OF ALGORITHMS

Journal on Scientific Computing 34.5 (Jan. 2012), A2740–A2759 (cited on

page 11).
[37] Christoph Lehrenfeld and Arnold Reusken. “Optimal preconditioners for

Nitsche-XFEM discretizations of interface problems”. In: Numerische Mathe-

matik 135.2 (2017), pages 313–332 (cited on page 11).
[38] Randall J Leveque and Zhilin Li. “The immersed interface method for el-

liptic equations with discontinuous coefficients and singular sources”. In:
SIAM Journal on Numerical Analysis 31.4 (1994), pages 1019–1044 (cited on

page 10).
[39] Zhilin Li. “An overview of the immersed interface method and its applica-

tions”. In: Taiwanese journal of mathematics 7.1 (2003), pages 1–49 (cited on

page 10).
[40] Nicolas Moës, John Dolbow, and Ted Belytschko. “A finite element method

for crack growth without remeshing”. In: International journal for numerical

methods in engineering 46.1 (1999), pages 131–150 (cited on page 10).
[41] Jacques Monod. “The Growth of Bacterial Cultures”. In: Annual Review of

Microbiology 3.1 (1949), pages 371–394 (cited on page 4).
[42] Ricardo Murga, Philip S Stewart, and Don Daly. “Quantitative analysis of

biofilm thickness variability”. In: Biotechnology and bioengineering 45.6
(1995), pages 503–510 (cited on page 4).

[43] J. Nitsche. “Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen
bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen
sind”. In: Abhandlungen aus dem Mathematischen Seminar der Universität

Hamburg 36.1 (1971), pages 9–15 (cited on page 11).
[44] George O’Toole, Heidi B. Kaplan, and Roberto Kolter. “Biofilm formation

as microbial development”. In: Annual Review of Microbiology 54 (2000),
pages 49–79 (cited on page 2).

[45] Stanley Osher and James A Sethian. “Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formulations”. In:
Journal of Computational Physics 79.1 (Nov. 1988), pages 12–49 (cited on

pages 11, 77).
[46] Cristian Picioreanu, Van Loosdrecht, and J J M Cheijnen. “Discrete-differential

modelling of biofilm structure”. In: Water Science and Technology 39.7
(1999), pages 115–122 (cited on page 6).

[47] Cristian Picioreanu, M C Van Loosdrecht, and J J Heijnen. “Effect of diffusive
and convective substrate transport on biofilm structure formation: a two-
dimensional modeling study.”. In: Biotechnology and bioengineering 69.5
(Sept. 2000), pages 504–15 (cited on pages 6, 10).

[48] Cristian Picioreanu, Mark CM Van Loosdrecht, Joseph J Heijnen, et al. “Two-
dimensional model of biofilm detachment caused by internal stress from liquid
flow”. In: Biotechnology & Bioengineering 72.2 (2001), pages 205–218 (cited

on page 10).
[49] Carol Potera. “Forging a link between biofilms and disease”. In: (1999) (cited

on page 2).

LIST OF ALGORITHMS 137

[50] Arnold Reusken. “Analysis of an extended pressure finite element space for
two-phase incompressible flows”. In: Computing and Visualization in Science

11.4-6 (Apr. 2008), pages 293–305 (cited on pages xii, 11, 28–30).
[51] Arnold Reusken and Trung Hieu Nguyen. “ Nitsche’s method for a transport

problem in two phase incompressible flow ”. In: Journal of Fourier Analysis

and Applications 15.5 (Aug. 2009), pages 663–683 (cited on pages 11, 20,

23).
[52] B E Rittman. “The Effect of Shear Stress on Bioflm Loss Rate”. In: Biotech-

nology and bioengineering 24.2 (1982), pages 501–506 (cited on page 7).
[53] James A Sethian. “A fast marching level set method for monotonically ad-

vancing fronts”. In: Proceedings of the National Academy of Sciences 93.4
(1996), pages 1591–1595 (cited on page 80).

[54] Rajen Kumar Sinha and Bhupen Deka. “An unfitted finite-element method for
elliptic and parabolic interface problems”. eng. In: IMA journal of numerical

analysis 27.3 (2005), pages 529–549 (cited on page 33).
[55] Bryan G Smith, Benjamin L Vaughan Jr, and David L Chopp. “The extended

finite element method for boundary layer problems in biofilm grown”. In:
Communications in Applied Mathematics and Computational Science 2.1
(2007), pages 35–56 (cited on page 96).

[56] Mark Sussman, Peter Smereka, and Stanley Osher. “A Level Set Approach for
Computing Solutions to Incompressible Two-Phase Flow”. In: 114.1 (1994),
pages 146–159. eprint: 1994 (cited on page 80).

[57] Xianlong Zhang, Xiaoling Wang, and Qingping Sun. “Modeling of Biofilm
Growth on Ager Substrate Using the Extended Finite Element Method”. In:
Procedia IUTAM 23 (2017), pages 33–41 (cited on page 8).

[58] Paolo Zunino, Laura Cattaneo, and Claudia Maria Colciago. “An unfitted
interface penalty method for the numerical approximation of contrast prob-
lems”. In: Applied Numerical Mathematics 61.10 (2011), pages 1059–1076
(cited on pages 11, 30).

Books

[59] Mark Ainsworth and J.Tinsley T Oden. A posteriori error estimation in finite

element analysis. Edited by Peter Lax Myron B. Allen III, David A. Cox. John
Wiley and Sons, 1997 (cited on page 66).

[60] Ted Belytschko et al. Nonlinear finite elements for continua and structures.
John wiley & sons, 2013 (cited on page 93).

[61] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential

Equations. Springer, 2010 (cited on page 64).
[62] Alfred B. Cunningham, John E. Lennox, and Rockford J. Ross. Biofilms: The

hypertextbook. 2010 (cited on pages 2, 3).
[63] Daniele Antonio Di Pietro and Alexandre Ern. Mathematical aspects of dis-

continuous Galerkin methods. Volume 69. Springer Science & Business Me-
dia, 2011 (cited on page 21).

[64] S. Dürr and J.C. Thomason. Biofouling. Wiley, 2009 (cited on page 3).

138 LIST OF ALGORITHMS

[65] Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite el-

ements. Volume 159. Springer Science & Business Media, 2013 (cited on

pages 38, 107, 108).
[66] S Gross and Arnold Reusken. Numerical methods for two-phase incompress-

ible flows. Volume 40. Springer Series in Computational Mathematics. 2011,
page 482 (cited on pages 11, 30, 80, 81, 85).

[67] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit

surfaces. Volume 153. Springer Science & Business Media, 2006 (cited on

pages 78, 79).
[68] Cristian Picioreanu, M van Loosdrecht, and J Heijnen. Multidimensional

modeling of biofilm structure. Delft University of Technology, Faculty of
Applied Sciences, 1999 (cited on page 6).

[69] Alfio Quarteroni and Alberto Valli. Numerical Approximation of Partial

Differential Equations. Springer, 1994 (cited on page 80).
[70] Hans-Görg Roos, Martin Stynes, and Lutz Tobiska. Robust numerical methods

for singularly perturbed differential equations: convection-diffusion-reaction

and flow problems. Volume 24. Springer Science & Business Media, 2008
(cited on page 80).

[71] O. Wanner. Mathematical Modeling of Biofilms. London: IWA Publishing,
2006 (cited on pages 2–4).

Thesis

[72] Eva Loch. “The level set method for capturing interfaces with applications in
two-phase flow problems”. 2013, page 174 (cited on page 87).

[73] Trung Hieu Nguyen and Arnold Reusken. “Numerical methods for mass trans-
port equations in two-phase incompressible flows”. Lehrstuhl für Numerische
Mathematik, 2009 (cited on page 11).

[74] Barbara Szomolay et al. “Analysis and control of a biofilm disinfection
model”. Montana State University-Bozeman, College of Letters & Science,
2006 (cited on page 6).

Index

A

average operator18, 20

B

basis function
Hansbo’s choice 29
Reusken’s choice 30

biofilm . 1
life circle . 2

C

condition number 11, 25, 26
consistency.24, 59, 62
cut triangle 18, 42

type . 42

D

decoupling . 55
Discontinous Galerkin Method 67
discrete gradient 21
discrete gradient operator 65
Domain Decomposition Method. . . .28

E

Eulerian representation 10
existence . 24, 62

F

fast marching method 80
fictitious domain 26
finite element space 21
fitted mesh . 10

G

Gaussian points 108
Gaussian quadrature rule 108
ghost penalty12, 25, 26, 51

H

heaviside function 30

I

inflow boundary Ωin 79
interface . 40
interface capturing 10
interface tracking 10
interpolant . 23

140 INDEX

estimate 24, 65
intersection point 42
inverse inequality 23

J

jump operator . 18

L

Lagrangian representation 10
large contrast problem 11, 27
level set function 40
level set method 11, 77
lifting operator 65

M

mean curvature 79
mesh

generation . 39
model

Chopp . 6
Cogan . 7
general working model 9
Hansbo’s original NXFEM.16
math model 3
Nitsche . 16
Picioreanu. .6
system of semilinear 56, 91

modeling . 3
Monod kinetic . 4

N

normal vector . 79
not-cut triangle 41
NXFEM space 11, 28

P

preconditioning.11

Q

quadrature . 38
quadrature nodes 108
quadrature order 108

quadrature weights 107
quorum sensing . 7

R

reference interval 108
reference triangle 108

S

semilinear . 55
shape function 111
shear stress . 6
signed distance function 79
sparse matrix . 45
stability . 11
stiffness matrix 45
streamline-diffusion FEM 80
symbolic norm 65
symbolic space 65
system of semilinear equation . . 12, 55

T

triangle
cut triangle 42
not-cut triangle 41

triangulation . 17

U

unfitted mesh . 10
uniqueness 24, 60, 62
unit normal vector 16, 43, 44

	Abstract
	Acknowledgements
	Glossaries, notations and operators
	Acronyms
	Notations
	Operators

	1 Introduction
	1.1 Biofilm
	1.1.1 What is biofilm?
	1.1.2 Modeling of biofilm
	1.1.3 Monod's law
	1.1.4 Some former biofilm models & works

	1.2 Motivation & objective of thesis
	1.3 Methods to use
	1.4 Outline of the thesis

	Part I — nxfem method
	2 Original NXFEM
	2.1 Nitsche's method
	2.2 Original NXFEM
	2.3 The choice of parameters
	2.4 Ghost penalty & Stability property
	2.5 The implementation issue
	2.6 Numerical test cases
	2.6.1 Barrau's test case
	2.6.2 Sinha's test case
	2.6.3 The choice of parameters

	3 Implementation NXFEM with Matlab
	3.1 Model
	3.2 Quadrature
	3.3 Mesh and some components
	3.3.1 Mesh generation
	3.3.2 Describe the interface
	3.3.3 Get triangles
	3.3.4 Cut triangles
	3.3.5 Unit normal vector
	3.3.6 Other components

	3.4 Assembling
	3.4.1 Assembling of the stiffness matrix
	3.4.2 Assembling of right hand side
	3.4.3 Implementing the Ghost Penalty
	3.4.4 Implementation issue of norms

	3.5 Numerical examples

	4 Resolution of semilinear-interface system by NXFEM
	4.1 Model
	4.2 Decoupling the system of equations
	4.2.1 Weak formulations
	4.2.2 Discrete formulations

	4.3 Analysis
	4.4 The convergence
	4.5 A numerical test case

	Part II — nxfem with biofilms
	5 Level Set Method
	5.1 Recall the method
	5.2 The SUPG method with a Crank-Nicolson scheme
	5.3 Reinitialization - Fast Marching Method
	5.4 A numerical test case

	6 Application to a biofilm growth model
	6.1 Coupling NXFEM with Level Set Method
	6.2 Some biofilm growth models
	6.2.1 Models
	6.2.2 Weak forms
	6.2.3 Discretization and iteration

	6.3 Some numerical test cases
	6.3.1 Linear model
	6.3.2 Nonlinear model

	7 Conclusion
	7.1 The methods
	7.2 The NXFEM toolbox
	7.3 For the future

	appendix
	A Implementation and NXFEM toolbox
	A.1 Some principles of quadrature
	A.2 Connectivity of triplet [p,e,t]
	A.3 Proof of formula used in finding intersection points
	A.4 Example of finding intersections
	A.5 Example of finding unit normal vector
	A.6 Implementation issue of some norms in NXFEM toolbox
	A.6.1 Norms in standard finite element space Vh
	A.6.2 Norms in NXFEM space VhG

	A.7 Interpolation between Vh and VhG
	A.7.1 From VhG to Vh
	A.7.2 From Vh to VhG

	B Biofilm growth
	B.1 Biofilm's experimental parameters

	references
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Index

