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1 Introduction

Most of natural scenes have a wide range of illumination conditions, ranging from night
scenes to outdoor scenes (see Figure 1.1a). The Human Visual System (HVS) processes
the scene radiances in a nonlinear manner through different adaptation processes. It
forms a percept where all details are visible. Electronic devices capture the scene
radiances linearly. An image Tone Mapping Operator (TMO) is necessary to nonlinearly
encode the image as well as to map it to the display characteristics so that the displayed
image corresponds to our memory of the original scene (see Figure 1.2). Assume
that Observer 1 and Observer 2 are looking at the same scene but in two different
environments. Observer 2 is viewing the scene on a monitor after it has been captured,
stored, and tone mapped. Observer 1, on the other hand, is watching the scene in the
real world. The final goal is that the tone mapped scene should match the perception
of the real-world scene and thus Observers 1 and 2 will feel that they perceive the same
scene.

Luminance is the physical measure of scene radiances, given in candela per square
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Figure 1.1: Functional luminance range of the HVS.

meter (cd/m2). The dynamic range (or contrast ratio) is the luminance ratio between
the brightest and the darkest object in a scene. An unit of contrast ratio in form of
logarithm with base 2 is f-stops, sometimes, using logarithm with base 10 is then called
orders of magnitude.

An High Dynamic Range (HDR) image with different levels of (under-exposed or
over-exposed) exposure of the scene is the representation of a real-world scene (i.e.
HDR scenes where its very dark and bright areas are rendered at the same time) whose
dynamic range exceeds by far that of the output displays. With HDR scenes, it is
likely that some parts of their representation are clipped by the capturing process.
Typical examples of HDR scenes are sunny outdoor scenes or a view of an indoor room
with objects visible outside the window. The dynamic ranges of several natural scenes
were measured and 1 : 160 was found to be an average contrast ratio. Outdoor scenes
usually have a larger dynamic range, which can reach a contrast ratio of three orders of
magnitude (1 : 1000) or more. Scenes with fog tend to have a small contrast ratio.

Currently used display technologies are Cathode Ray Tube (CRT) or Liquid Crystal
Displays (LCD). We will call these standard displays and define their dynamic range as
being standard as opposed to HDR displays which have a much larger dynamic range.
The contrast ratio of standard displays is generally 1 : 100 but new LCD monitors can
reach 1 : 400. Prints have a contrast ratio of 1 : 50− 1 : 500, depending on the printing
technology. Newly developed HDR displays have a contrast ratio reaching 1 : 25000,
depending on the viewing conditions. Indeed, most of the display devices available
nowadays are not able to natively display HDR content. Entry level monitors/displays
have a low contrast ratio of only around 1 : 200. Although high-end LCD televisions have
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Figure 1.2: The relationship between the tone mapped image and the real-world scene.

a much high contrast ratio, on average around 1 : 10000, they are typically discretized
at 8-bits and rarely at 10-bits per color channel. This means that colors shades are
limited to 255. Moreover HDR display devices currently remain too expensive.

An example is provided in Figure 1.3. The left image, known as "Memorial" HDR
test image with 18.38 f-stops in HDR Matlab Toolbox [1], is the image captured by the
HDR camera and displayed on LDR device. The right image corresponds to the tone
mapped image. The image captured by the HDR camera looks too dark although the
image perceived by our visual system has more contrast in the shadows.

The HVS is able to perceive real-word scenes with a wide range of luminance levels
and intensities in Figure 1.1b. The different cells in the retina are the main factor how
the HVS adapts to different luminance levels. The rod cells are used in high luminance
levels (higher than 0.01 cd/m2) and cone cells in low luminance levels (lower than 10
cd/m2). The HVS state when only the rod cells are used, is called scotopic vision, and
when only cone cells are used, is called photopic vision. The state when both cells are
active, is called mesopic vision. Only when cone cells are active the HVS can see color.
Therefore at the scotopic vision state, the HVS is color blind (see [2]).

For the most part, the rod and cone cells are the reason for the range of the Human
Visual Adaptation (HVA) as shown in Figure 1.1c. The rod and cone cells are also
called the photoreceptors. The latter convert absorbed light into neural responses in
a nonlinear manner. The relative responses of a dark-adapted rod and cone cells are
illustrated in Figure 1.4. It has been proven that the shapes of the response curves at any
background are independent of the background. The visual system always maintains its
log-linear property for about 3 log units of intensity range around any background when
given enough time to adapt. In the psychophysical studies, the HVA is evaluated by
measuring the minimum amount of incremental light by which an observer distinguishes
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(a) "Memorial" HDR test image (b) Our tone mapped image

Figure 1.3: HDR image and LDR image versus traditional displays: Left image is captured by
the HDR camera and displayed on traditional displays; Right image is perceived by our visual
system and displayed on traditional displays.

a test object from the background light. This minimum increment is called a visual
threshold or Just-Noticeable Difference (JND). The perception of luminance obeys the
Weber’s law, which can be expressed as:

∆Ib
Ib

=K, (1.1)

where Ib is the background luminance, ∆Ib is the just noticeable incremental luminance
over the background by the HVS, and K is a constant called the Weber fraction. Weber’s
law is maintained over a wide range of background luminances and breaks only at very
low or hight light conditions. This phenomenon is often called light adaptation or
luminance masking in the literature of image quality assessment.

Many image TMOs have been proposed. Their main concerns are to reduce the
dynamic range (contrast, color gamut, details...) of HDR images to the dynamic range
of LDR display device while preserving, as much as possible, the appearance of the
captured scene in terms of contrast and the overall impression of brightness and colors.

2 Scope of the thesis

This thesis focuses on the conversion of HDR images into LDR images. Such images are
problematic when they are shown on standard LDR monitors since their dynamic range
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Figure 1.4: Relative response of dark-adapted rod and cone cells.

exceeds by far that of the display. To solve this problem, four image tone mapping
operators have been proposed. Moreover, investigations have been made to access the
image quality of the HDR tone mapped images using an objective quality metric.

3 Organization and contributions of the thesis

This thesis proposes new image tone mapping operators and objective image quality
metric. The thesis’s organization is provided by Figure 1.5 and summarized below:

Chapter 2 gives a state of art on image tone mapping operators (global, local,
frequency, segmentation,...) and reviews some important metric quality evaluations of
tone mapped images (HDR image tone mapping metrics). At the end of this chapter, a
decision is taken on the metric that will be used to assess the tone mapped images.

Chapter 3 proposes an image tone mapping operator for enhancing the contrast
using piecewise linear mapping that models the "s-shaped" curve simulating them, the
well-adapted perception of the Human Visual System.

Chapter 4 proposes image tone mapping operators for detail preservations based on
Essential Non-Oscillatory (ENO) multiresolution families such as separable approaches
(Point-Value, Cell-Average) and non-separable approach (Cell-Average) processed by its
multiresolution representation (approximation and details domains).

Chapter 5 proposes an image tone mapping operator with the aim of the contrast
enhancement and detail preservation using: (i) the near optimal separable adaptive
lifting scheme as the first stage, and (ii) the piecewise linear mapping on the coarse
reconstruction as the second stage.
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Figure 1.5: Thesis outline.

Chapter 6 studies the HDR image tone mapping assessment where the improvement
of the tone mapped quality index (TMQI) according to our training dataset is discussed.

Chapter 7 concludes this thesis by summarizing the contributions. It reviews
the algorithms that have been proposed and their important roles in the contrast
enhancement and preservation of details. Finally it discusses future works.

Appendix A shows the computation of separable multiresolution ENO (Point-Value,
Cell-Average) coefficients. Appendix B describes the computation of non-separable
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multiresolution ENO (Cell-Average) coefficients. Appendix C explains how to compute
near optimal filter coefficients. In oder to support the HDR image tone mapping
assessment, Matlab user interface has been made (see in Appendix D).
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This chapter concerns the state of art on HDR image tone mapping operators. It
reviews and classifies the most important methods of tone mapping operators developed
in the literature. The end of this chapter discusses the main objective metrics for
evaluating the HDR tone mapped images and a decision is taken on the metric that
will be used on this thesis to assess the tone mapped images.

1 Introduction

Image tone mapping is the operation that adapts the dynamic range of the HDR content
to suit the low dynamic range of a given standard display. Tone mapping operator
(TMO) is performed using an operator f which is defined as:

f(I) : RN×M×chi −→ DN×M×cho , (2.1)

where I is the HDR image of size N ×M ; ch is the number of color bands (typically
ch= 3) with Ri ⊆ R, Do ⊂ Ri; and the set Do = [0, 255] is related to the standard LDR
monitors.

The human eyes have abilities to be better awareness of details in luminance than in
color channels. Therefore, this thesis focuses on changes in luminance. Only luminance
is usually tone mapped by a TMO (denote fL), while colors are unprocessed. Therefore,
the equation (2.1) becomes:

f(I) :



LLDR = fL(LHDR) : RN×Mi −→ [0, 255],
RLDR

GLDR

BLDR

= LLDR

(
1

LHDR


RHDR

GHDR

BHDR


)s
,

(2.2)

where LLDR and LHDR are respectively LDR and HDR luminance values, s ∈ (0,1] is a
color saturation factor that decreases the saturation effect.

After the application of fL, each color channel is clamped in the range [0, 255]. Note
that the original gamut is greatly modified in this process, and the tone mapped color
appearance can result in great differences from that in the original image. Research
addressing this issue will be presented. TMOs can be classified in different groups based
on the property of f and the processing techniques that are adopted as summarized in
Table 2.1.

2 Image tone mapping operators for high dynamic range images

The four main groups of the classification are:

i. Global operators: The operator uses the entire HDR image. The mapping is
applied to all pixels with the same operator fL. For more details, one can see the
references [3], [4], [5], [6], [7], [8], [9], [10], [25], [26], [27], [28], [29] and [30].
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Table 2.1: Classification of TMOs: Global (G), Local (L), Frequency (F), Segmentation (Seg),
Perceptual (Per), Empirical (Em) and Temporal (T).

Tone Mapping Operators G L F Seg Per Em T
1 Linear Mapping [3] X X

2 Exponential Logarithmic Mapping [3] X X

3 Quantization Technique [3] X X

4 Perceptual Brightness Reproduction [4] X X X

5 Contrast Based Scale Factor [5] X X

6 Visual Adaptation Model [6] X X

7 Histogram Adjustment [7] [8] X X

8 Time Dependent Visual Adaptation [9] X X

9 Adaptive Logarithmic [10] X X X

10 Spatially Variant Tone Reproduction [11] X X

11 Photographic Tone Reproduction [12] X X

12 Multi-Scale [13] X X X

13 Tone Mapping Operator for High
Contrast Images [14]

X X

14 Local Model of Eye Adaptation [15] X X

15 Low Curvature Image Simplifiers [15] X X

16 Bilateral Filtering [16] X X

17 Gradient Domain Compression [17] X X

18 Trilateral Filtering [18] X X

19 Image Color Appearance Model [19] X X

20 Retinex Methods [20] X X

21 Interactive Manipulation [21] X X

22 Exposure Fusion [22] X X

23 Segmentation Approach [23] X X

24 Lightness Perception [24] X X

25 Wavelets Domain Compression [25] [26] X X

26 Compression Integration [27] [28] [29] X X

27 Adaptive Histogram Equalization [30] X
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ii. Local operators: The operator computes a local adaptation for each pixel as well
as a neighborhood of pixels i.e. mapping a pixel depends on its neighbors. As
a result, local operators are frequently more expensive/costly to compute than
global ones. For more details, one can see the references [11], [12], [13] and [15].

iii. Frequency/Gradient operators: In the frequency domain, the operator reduces the
dynamic range of image components selectively based on their spatial frequency
where low and high frequencies of the images are separated. While the operator is
applied to the low frequencies, high frequencies are usually kept as they preserve
fine details. The gradient operators modify the derivative of an image to achieve
dynamic range reduction. These are described in [15], [16], [17], [18], [19], [20],
[25] and [26].

iv. Segmentation operators: The HDR image is segmented in broad regions and a
different mapping is applied to each region. For more information, one can read
the following references [21], [22], [23] and [24].

Another classification has been proposed:

i. Perceptual operators: These operators can be global, local, based on segmentation,
or frequency/gradient operators. The main focus is that the function f models
some aspects of the HVS. For more details, one can see the references [4], [5], [6],
[7], [8], [9], [10], [13], [14], [15], [18], [19], [20], [23] and [24].

ii. Empirical operators: These operators can be global, local, based on segmentation,
or frequency/gradient operators. In this case, fL does not try to mimic the HVS,
but it tries to create aesthetically-pleasing images inspired by other fields, such as
photography. The proposed works are available in [3], [11], [12], [15], [16], [17],
[21] and [22].

iii. Temporal operators: These operators are designed to be also suitable for HDR
video content and animations. The proposed methods are given by the following
references [4], [10], [13], [27], [28] and [29].

Following the classifications in local, global, segmentation and frequency operators, let
us present below some of them.

2.1 Global tone mapping operators

Among the large set of TMOs, we describe below only the main popular tone mapping
operators.
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2.1.1 Logarithmic and exponential mapping

Among the nonlinear mappings, the logarithmic and exponential mappings are the most
straightforward mapping. The main usages are in providing a baseline result against
which all other operators may be compared. After all, any other operator is likely to
be more complex and expect other operators to provide improved visual performance
compared with logarithm and exponential mappings.

For logarithmic mapping, the luminance is given by:

LLDR(xn,ym) = log10(1 + LHDR(xn,ym))
log10(1 +LHDRmax) , (2.3)

while the luminance of exponential mapping is:

LLDR(xn,ym) = 1− exp
(
− LHDR(xn,ym)

LHDRave

)
, (2.4)

where

LHDRave = exp
( 1
N ×M

N∑
n=1

M∑
m=1

log(LHDR(xn,ym) + ε)
)
, (2.5)

with ε in small parameter to avoid the logarithmic singularities.

2.1.2 Brightness reproduction

In [31], Tumblin and Rushmeier based the work on psychophysical data, realizing that
the human visual system is already solving the dynamic range reduction problem. It
aims at preserving the sensation of brightness of the HDR image before and after the
dynamic range reduction. They proposed the following transform:

LLDR(xn,ym) =m(LHDRave)×LLDRa×
(LHDR(xn,ym)

LHDRave

) γ(LHDRave)
γ(LLDRa)

, (2.6)

where

m(LHDRave) = (
√
Cmax)γwd−1, γwd = γ(LHDRave)

1.855 + 0.4log10(LLDRa)
, (2.7)

LLDRa is the display adaptation luminance, typically between 30 and 100 cd/m2 for
LDR displays, Cmax is the maximum displayable contrast, and γ(x) is given by the
following expression:

γ(x) =

1.855 + 0.4log10(x+ 2.3 · 10−5) for x≤ 100 cd/m2

2.655 otherwise
. (2.8)

2.1.3 Contrast-based scale factor

In [5], Ward focused less on brightness perception and attempt to preserve contrasts
instead. The model matches the Just Noticeable Differences (JNDs):

LLDR(xn,ym) =m×LHDR(xn,ym), (2.9)

with m= 1
LLDRmax

(
1.219 + (LLDRmax2 )0.4

1.219 + (LHDRave)0.4

)2.5

, (2.10)
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with LHDRave given by equation (2.5). The maximum display luminance LLDRmax
should be specified by the user, and typically in the range of 30 to 100 cd/m2. Thus,
the differences are preserved without spending the limited number of display steps on
differences undetectable by the HVS.

2.1.4 Visual adaptation model

The concept of matching Just Noticeable Differences, as explored by Ward in [5],
was also used by Ferwerda et al. in their operator [6]. They based their operator
on different psychophysical data, with a somewhat different functional shape as a
result. Whereas Ward’s contrast-based scale factor incorporates only photopic lighting
conditions, Ferwerda et al. in [6] added a scotopic component. They also modeled the
loss of visual acuity under scotopic lighting, as well as the process of light and dark
adaptation which takes place over time. In Ferwerda’s operator, display intensities are
computed from world intensities by multiplying the latter with a scale factor and adding
an offset which allows contrast and overall brightness to be controlled separately.

2.1.5 Adaptive logarithmic

In [10], Drago applied a logarithmic compression to the input luminance, but the base of
the logarithm is adjusted according to each pixel’s value. The base is varied between 2
and 10 allowing contrast and detail preservation in dark and medium luminance regions
while still compressing light regions by larger amounts using the following relationship:

LLDR(xn,ym) = LLDRmax
100log10(1 +LHDRmax) ·

log10(1 + LHDR(xn,ym))
log10

(
2 + 8

(
LHDR(xn,ym)
LHDRmax

)α) , (2.11)

with α= log(b)
log(0.5) , b ∈ [0,1].

2.1.6 Quantization

In [3], Schlick proposed the following rational function:

LLDR(xn,ym) = pLHDR(xn,ym)
(p− 1)LHDR(xn,ym) +LLDRmax

for p ∈ [1,∞), (2.12)

where
p= ∆L

2N ·
LHDRmax
LHDRmin

for uniform quantization, (2.13)

and

p= ∆L

2N ·
LHDRmax
LHDRmin

(
1− k+ k

LHDR(xn,ym)√
LHDRmax ·LHDRmin

)
for non-uniform quantization,

(2.14)
where ∆L is the Just Noticeable Difference or quantized display luminance step and
N = 8, k ∈ [0,1].
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2.1.7 Histogram adjustment

In [8], Duan used the following function to compress the luminance of the high dynamic
range image LHDR(xn,ym) to display luminance D:

D(xn,ym) = (Dmax−Dmin)×
log(LHDR(xn,ym) + τ)− log(LHDRmin + τ)

log(LHDRmax + τ)− log(LHDRmin + τ) +Dmin, (2.15)

where Dmax and Dmin are the minimum and maximum luminance of the visualization
devices. The parameter τ controls the overall brightness of the mapped image.

In general, a larger τ makes the mapped image darker and smaller τ makes the
mapped LDR image brighter. The parameter τ can be computed in two ways: (i) the
manual choice of τ as a trial-and-error process, τ = α(LHDRmax −LHDRmin), with
α≥ 0; or (ii) automatically based on the global luminance intensities.

This global tone mapping operator is named Histogram Adjustment based Linear
Equalization Quantizer (HALEQ). The straight solution is to find the cutting points,
denoted c0, c1,..., c255 in the range of the HDR image D, which satisfy the following
function:

ci = ciu +β(cinu− ciu) = (1−β)ciu +βcinu, (2.16)

where 0≤ β ≤ 1 is a controlling parameter which is a constant for all the process; ciu,
cinu are cutting points of the uniform mapping, of the histogram equalization methods,
respectively.

The algorithm first divides the range of D into two segments according to equa-
tion (2.16). Then these two segments are each independently divided into 2 sub-segments
according to equation (2.16). The process is then applied recursively onto each resul-
tant sub-segment to divide it into 2 sub-segments based on equation (2.16) until the
predefined number of sub-segments 256 are created (see Figure 2.1). It then remaps to
the display grey-level [0, 255] correspondingly .

Latter, Anas [30] modified the constant β by an adaptive parameter βi in each bin
so that the cutting points ci are deduced as the average of the logarithm luminance
values on each sub-interval [ciu, cinu].

2.2 Local tone mapping operators

Local operators improve the quality of the tone mapped image over global operators
by attempting to reproduce both the local and the global contrast. This is achieved
by having a function f , the mapping operator, which takes into account the intensity
values from the neighboring pixels of the pixel being tone mapped. However, neighbors
have to be chosen carefully; otherwise, halos around edges can appear. Let us present
at the following some methods developed in the literature.
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Dmin Dmaxcu0cnu0 c0

Level 1

Dmin
Level 2

Dmaxcu1,0 cnu1,0c1,0 cu1,1 cnu1,1c1,1

Dmin
Level 3

Dmax

Dmin
Level 4

Dmax

Level 8
255 split points with 256 segments

Dmin Dmax

Figure 2.1: Recursive binary cut approach implementation of HALEQ.

2.2.1 Spatially variant

In [11], Chiu et al. noted that artists frequently make use of spatially varying techniques
to fool the eye into thinking that a much larger dynamic range is present in artwork
than actually exists. In particular, the areas around bright features may be dimmed
somewhat to accentuate them. The basic formulation of their operator multiplies each
pixel’s luminance by a scaling factor s(x,y) which depends on the pixel itself and its
neighbors. For s(x,y) to represent a local average, it may be produced a low-pass
filtered version of the input image. Chiu et al. note that most low-pass filters produce
similar results.

2.2.2 Retinex

In [20] and [32], Rahman applied the retinex theory for tone reproduction. It applies on
the image by a Gaussian-blurred version with a wide filter kernel. Their operator comes
in two different forms: single-scale and multiscale.
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For single-scale version, the tone mapped HDR luminance is given by:

LLDR(xn,ym) = exp
(

log(LHDR(xn,ym))− k log
(
Gσ(xn,ym) ∗LHDR(xn,ym)

))
.

(2.17)
For multiscale version, the HDR tone mapped image is provided by:

LLDR(xn,ym) = exp
[ N∑
n=0

wn
(

log(LHDR(xn,ym))−

k log
(
Gσ, n(xn,ym) ∗LHDR(xn,ym)

))]
, (2.18)

where ∗ is the convolutional product; and Gσ(xn,ym) is a Gaussian filter given by
Gσ(xn,ym) = 1

2πσ2 e
−x

2+y2

2σ2 where σ is the standard deviation of the Gaussian distribu-
tion. The value of k specifies the relative weight of the blurred image. Larger values
of k will cause the compression to be more dramatic but also create bigger halos. N
is the number of scales, and wn the weight of n-th scale is given by the relationship
wn = (N−n−1)f∑N

m=1(N−m−1)f
. The parameter f , controlling the relative weight of each of the

scales, determines which of the Gaussian-blurred images carries the most importance.

2.2.3 Image color appearance model

In [12], Fairchild incorporated the spatial processing models in the human visual system
for contrast enhancement, photoreceptor light adaptation functions that enhance local
details in highlights and shadows, and functions that predict a wide range of color
appearance phenomena.

2.2.4 Tone mapping operator for high contrast images

In [14], Ashikhmin proposed three steps. First step: estimating local adaptation
luminance at each point in the image. Second step: applying a simple function to these
values to compress them into the required display range. Since important image details
can be lost during this process; the third step reintroduces details in the final pass over
the image.

2.2.5 Photographic tone reproduction

In [12], Reinhard strategy is based on photographic principles. Indeed, this method
simulates the burning and dodge effect that photographers applied using the following
relation:

LLDR(xn,ym) =
Lm(xn,ym)

(
1 + Lm(xn,ym)

L2
white

)
1 +Lm(xn,ym) , (2.19)

where Lm(xn,ym) = a
LHDRa

is the initial scaling of the photographic tone-reproduction;
a is the chosen exposure for developing the film in the photographic analogy.

Reinhard views the log average luminance LHDRa as a useful approximation of a
scene’s key. This equation introduces a new user parameter, Lwhite, which denotes the
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smallest luminance value that will be mapped to white. By default, this parameter is
set to the maximum world luminance (after the initial scaling).

2.2.6 Time dependent visual adaptation

In [9], Pattanaik offered a new operator to include these appearance changes in ani-
mations or interactive real-time simulations, and to match a user’s visual responses to
those the user would experience in a real-world scene.

Large, abrupt changes in scene intensities can cause dramatic compression of visual
responses followed by a gradual recovery of normal vision. Asymmetric mechanisms
govern these time dependent adjustments, and offer adaptation to increased light that
is much more rapid than adjustment to darkness. The operator accepts a stream of
scene intensity frames and creates a stream of color display images.

2.3 Frequency tone mapping operators

Frequency-based operators have the same goal of preserving edges and local contrast
as local operators. In the case of frequency operators, as the name implies, this is
achieved by computing in the frequency domain instead of the spatial domain. The
main observation for such methods is that edges and local contrast are preserved if
and only if a complete separation between large features and details is achieved. Some
methods are briefly described bellow.

2.3.1 Bilateral filtering

In [16], Durand has separated the HDR image into a high-frequency component that
contains only LDR information and a low-frequency component with an HDR is ex-
plicitly exploited by attenuating low frequencies. Separation of an image into separate
components whereby only one of the components needs to be compressed may also be
achieved by applying an edge-preserving smoothing operator.

2.3.2 Gradient

In [17], Fattal found that any drastic change in the luminance across a high dynamic
range image must give rise to large magnitude luminance gradients at some scales. Fine
details, such as texture, on the other hand, correspond to gradients of much smaller
magnitude. This idea is then used to identify large gradients at various scales, and
attenuate their magnitudes while keeping their direction unaltered. The attenuation
must be progressive, penalizing larger gradients more heavily than smaller ones, thus
compressing drastic luminance changes, while preserving fine details. A reduced high
dynamic range image is then reconstructed from the attenuated gradient field.
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2.3.3 Edge-avoiding wavelets

In [25], Fattal used the second generation wavelets, or wavelets based on lifting scheme
developed by Swelden. The lifting scheme is an efficient implementation of the fast
wavelet transform and more importantly, it provides a methodology for constructing
biorthogonal wavelets through space, without the aid of Fourier transform. This makes
it a well-suited framework for constructing second-generation wavelets that adapts to
the spatial particularities of the data. In this construction one starts with some given
simple and often translation-invariant biorthogonal basis and performs a sequence of
modifications that adapts and improves the wavelets. The lifting scheme divides this
scheme into three main steps: split, predict, and update. Fattal used the edge-avoiding
function,

wjk(l) = 1
|vj(k)− vj(l)|α + ε

, (2.20)

where indexes k, and l are in neighboring positions of the vector v (all represent for the
image); α is between 0.8 and 1.2, and ε = 10−5 for images with pixels ranging from
zero and one. It is used to derive two different 2D wavelet constructions: Weighted
Cohen-Daubechies-Feauveau Wavelets (WCDF) as (2,2)-CDF wavelets, and Weighted
Red-Black Wavelets (WRB) as red-black quincunx lattice approach. The approximation
vj−1 and details dj−1 are scaled the different components before reconstruction such as
αa× v0 and αd×{d0,d1, ...,dj−1, ...,dJ−1}.

Both TMO operators are costly in terms of computations and requiring the storage
of weight coefficients for the reconstruction step.

2.3.4 Subband compression with wavelets

In [26], Li used a symmetrical analysis-synthesis filter bank typically Haar pyramid and
applied local gain control to the subbands. Although so, in computation, Li added the
post-processing methods in visual results such as cutting off the brightest and darkest
parts as well as adding 15% of a histogram equalized layer to the results, however
without post processing it’s black. Therefore, the mapped images look like unnatural.

2.4 Segmentation tone mapping operators

Recently, a new approach to the tone mapping problem has emerged in the form of
segmentation operators. Strong edges and most of local contrast perception is located
along the border of large uniform regions. Segmentation operators divide the image into
uniform segments, apply a global operator at each segment, and finally merge them.
One additional advantage of such a method is that gamut modifications are minimized
because a linear operator for each segment sometimes is, in many cases, sufficient. Some
works are described at the following.
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2.4.1 Segmentation and adaptive assimilation for detail preservation

The first segmentation-based TMO was introduced by Yee and Pattanaik [23]. Their
operator divides the HDR image into regions and calculates an adaptation luminance
for each region. This adaptation luminance can be used as an input to a global operator.
The first step of the segmentation is to divide the image into regions, called categories,
using a histogram in the logarithmic domain. Contiguous pixels of the same category
are grouped together using a flood-fill approach. Finally, small groups are assimilated
into a bigger one, obtaining a layer.

2.4.2 Interactive manipulation

In [21], Lischinski presented a new interactive tool for making local adjustments of tonal
values and other visual parameters in an image. Rather than carefully selecting regions
or hand-painting layer masks, the user quickly indicates regions of interest by drawing a
few simple brush strokes and then uses sliders to adjust the brightness, contrast, and
other parameters in these regions. The effects of the user’s sparse set of constraints are
interpolated to the entire image using an edge-preserving energy minimization method
designed to prevent the propagation of tonal adjustments to regions of significantly
different luminance. The resulting system is suitable for adjusting ordinary and high
dynamic range images, and provides the user with much more creative control than
existing tone mapping algorithms.

3 HDR image quality assessment

The visual quality can be most reliably measured in subjective way where a group of
observers assign quality scores to the presented images. This way of assessing, however,
is both tedious and expensive and often result in high variance between observers. In
many areas, it is much more practical to use instead objective quality metrics to estimate
the perceived image quality without subjective judgments. This section gives a short
classification of the available metrics to assess tone mapped HDR images and describes
in more detail a metric designed for comparing high dynamic range images.

3.1 Objective quality metric classification

Although numerous image comparison algorithms are classified as quality metrics, it does
not mean that they compute the same quality measure. Some metrics are better suited
for estimating quality of low-bandwidth video transmission, where large distortions are
common and acceptable, and other for compression of medical images, where visual
distortions must be avoided. Therefore, it is important to distinguish between all kinds
of visual metrics, and choose the one that is appropriate for a particular application.

A high-level classification of the metrics is shown in Table 2.2. Depending whether a
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Table 2.2: Classification of HDR image quality assessment - objective quality metrics: Full-
reference, Limited-reference and No-reference.

HDR Image
Quality
Assessment
-
Objective
Quality Metrics

Full-reference Limited-reference No-reference

Perceptual
-weighted

Structural
similarity

Statistical
naturalness

1 DRIM [33] X

2 TMQI1 [34] X X

3 TMQI2 [35] X X

4 FSITM [36] X

metric requires a non-distorted reference image, some limited statistics of such an image
or no image at all, it can be respectively classified as a full-reference, limited-reference
and no-reference. Although there are extensive studies on the limited-reference and
no-reference metrics, majority of quality metrics require a reference image. No-reference
metrics are usually limited to a single type of distortion, such as JPEG blocky artifacts
or blurring, and cannot match in accuracy the full-reference metrics.

The metrics can be further divided into those that produce a single quality measure
(e.g., a numerical value) for an image or a video sequence and those that produce a
distortion map, which estimates the local magnitude of distortion or probability of
detection (usually for each pixel). The performance of a metric that computes a single
quality measure is usually evaluated in comparison with the subjective data, for example
from the LIVE image quality assessment database [37].

The following sections do not cover the area of quality metrics in general, but focus
on particular metrics designed especially to assess tone mapped HDR images.

3.2 Current possibilities in objective quality assessment of tone-mapped images

In case of using objective metrics for evaluating tone-mapped images, the situation is
similar to the enhanced images. The assessment is restricted either to no reference
criteria, which were mostly trained and tested in different context, or the specially
adjusted full reference metrics. All of the full reference image quality metrics assume
that the dynamic range of the original and processed image are the same. However, in
the case of tone-mapped HDR images, the dynamic range between the two versions
differ (i.e. IHDR is an HDR image while ILDR is LDR). That is why the development of
metrics is not easy. The following sections describe the metrics that have been designed
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in order to overcome this issue.

3.2.1 Dynamic range independent metric

The first metric enabling the comparison of images regardless their dynamic ranges
was Dynamic Range Independent Metric (DRIM) [33]. It uses the detection model
from HDR-VDP [38], calibrated on the data from ModelFest dataset [39], to indicate
which regions contain visible contrast in HDR image and its tone-mapped version. The
metric then creates three distortion maps showing the regions where the contrast is
either lost (i.e. contrast change is perceivable in HDR but imperceivable in LDR image),
amplified (the opposite case), or reversed (the polarity is changed - mostly caused by
halo artifacts) by tone-mapping process. The framework of the metric is visualized in
Figure 2.2. DRIM inherits high computational requirements and the necessity to specify
viewing conditions and display parameters. The metric is designed for visualization
of perceived distortions regarding the image contrast. Therefore it does not allow for
calculating a single quality value. User graphic interface is available at the web-page
site 1 (see Figure 2.3 and Figure 2.4).

Optical
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Photoreceptors
nonlinearity

Neural
CSF

Cortex
transform

Lost
of visible
contrast

IHDR

Amplification
of visible
contrast

Reversal
of visible
contrast

Optical
transfer
function
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CSF

Cortex
transform

ILDR

Constrast detector prediction

Bank
filter

Bank
filter

Bank
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Visualization of structural changes

Distortion
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Figure 2.2: The framework of DRIM.

3.2.2 Tone-mapped image quality index 1

Another approach has been introduced by Yeganeh and Wang known as Tone-Mapped
image Quality Index (called TMQI1) [34]. This quality metric is composed of two parts:
the Structural Fidelity 1 (SF1) part and Statistical Naturalness 1 (SN1) part.

1http://driiqm.mpi-inf.mpg.de

http://driiqm.mpi-inf.mpg.de
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Figure 2.3: HDR and LDR image quality metrics online (at the web-page site http: // driiqm.
mpi-inf. mpg. de ).

SF1 is a modification of the Multi Scale Structural Similarity Index (MS-SSIM) [40]
to be adapted to HDR and LDR images. This modification does not penalize the
difference in signal strength if they are both under or over the visibility threshold. This
is determined by a nonlinear mapping of the signals’ standard deviations according to
Contrast Sensitivity Function (CSF). SF1 for a patch u is computed as:

SF1
(
IHDR(u),ILDR(u)

)
=

2σ′
(
IHDR(u)

)
·σ′
(
ILDR(u)

)
+C1

σ
′2(IHDR(u)

)
+σ

′2(ILDR(u)
)

+C2
×

σ
(
IHDR(u),ILDR(u)

)
+C2

σ
(
IHDR(u)

)
·σ
(
ILDR(u)

)
+C2

, (2.21)

where σ′(.) is the standard deviation of the patch after the nonlinear mapping; σ
(
IHDR(u)

)
,

σ
(
ILDR(u)

)
and σ

(
IHDR(u),ILDR(u)

)
are the local standard deviations and cross cor-

relation between the two corresponding patches in HDR and LDR images, respectively;
and C1, C1 are positive constants that make sure the equation not divided by zero.

Note that the luminance component is missing, compared the SSIM definition, but
the structural element (i.e. the second fraction in equation (2.21)) remains the same.

The mapping is defined as follows:

σ′(σ) = 1√
2πθσ

∫ σ

−∞
exp[−(x− τσ)2

2θ2
σ

], (2.22)

http://driiqm.mpi-inf.mpg.de
http://driiqm.mpi-inf.mpg.de
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Figure 2.4: DRIM online result (at the web-page site http: // driiqm. mpi-inf. mpg. de ).

where
θσ(f) = τσ(f)

k
, (2.23)

with f being a spatial frequency and k representing a constant obtained from Crozier’s
law [41], typically ranging from 2.3 to 4.

The authors proposed to use k = 3. The threshold for the signal’s standard deviation
is given by:

τσ(f) = µ̄√
2×λ×CSF (f)

, (2.24)

where µ̄ is the mean intensity value (set to 128 by the authors) and λ is a constant
used to fit the physiological data. TMQI1 uses the CSF as introduced by Mannos and
Sakrison [42] and fits to the data measured by Kelly [43]. The map of SF1 is averaged
on each scale and the final SF1 index is obtained in the same way as in the case of
MS-SSIM.

The second measure implemented in TMQI1 – i.e. SN1 – does not use reference
and is based on the assumption that naturalness of an image can be modeled by the
probability distribution of the brightness and contrast (means and standard deviations)
in natural gray-scale images. The means and standard deviations, base on the analysis
done on 3000 images, follow a Gaussian (N ) and a Beta (B) distribution respectively.

http://driiqm.mpi-inf.mpg.de


26 Chapter 2. State of art on HDR image tone mapping operators

The distributions are then given by N (115.94, 27.99) and B(4.4, 10.1).

Assuming that brightness and contrast are mutually independent, the probability
that the image is natural is then expressed as:

SN1(ILDR) = 1
K(ILDR) ×PdfN (115.94, 27.99)(ILDR)×PdfB(4.4, 10.1)(ILDR), (2.25)

where K is a factor used for the normalization, thus:

K(ILDR) = max{PdfN (115.94, 27.99)(ILDR), PdfB(4.4, 10.1)(ILDR)}. (2.26)

The final TMQI1 is a combination of the two measures defined as:

TMQI1(IHDR,ILDR) = a×SF1α(IHDR,ILDR) + (1− a)×SN1β(ILDR). (2.27)

The authors used fixed parameters a= 0.8012, α= 0.3046 and β = 0.7088.

3.2.3 Tone-mapped image quality index 2

Based on TMQI1, later on, Ma et al. [35] revised both of the terms and proposed a
new version of the index Tone Mapped Image Quality Index called TMQI2. It is also
composed of two parts: the Structural Fidelity 2 (SF2) part and Statistical Naturalness
2 (SN2) part. Namely, the contrast visibility model for HDR images has been adapted
to the local luminance when calculating SF2. The estimate of the contrast in the HDR
reference is therefore computed as the standard deviation in a patch divided by the
local mean. The SN2 term is modified much more severely.

The authors argued that the distribution of the means and standard deviations
leading to the natural image depends on the mean and the standard deviation of
the original image (obtained from the logarithm of the HDR reference). Therefore,
they designed a subjective experiment and let observers adjusting the means and
standard deviations of 60 natural images in order to find the lower and upper bounds for
naturalness. These bounds were then fitted with a linear model. The transitions from
the boundary to the mean are expressed by Gaussian cumulative distribution functions.
SN2 is then obtained as a product of the probabilities that the image is natural in
terms of its mean and its standard deviation. TMQI2 is then given by this relation:

TMQI2(IHDR,ILDR) = 1
2SF2(ILDR,IHDR) + 1

2SN2(ILDR). (2.28)

3.2.4 Feature similarity index for tone-mapped images

The last full-reference metric that will be discussed here is a Feature Similarity Index for
Tone-Mapped images (FSITM) [36]. It uses the phase congruency features to calculate
the difference between original and tone-mapped version of the image. More specifically,
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Table 2.3: Tone Mapped Image Quality Index 1 (TMQI1) (HDR test images are available at the
HDR Toolbox [1]; The PLCC with the corresponding MOS is 0.588).
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Lausanne1 7.71 0.824 0.793 0.702 0.837 0.782 0.747 0.914 0.831 0.982 0.916
CraterLake1 8.13 0.842 0.790 0.716 0.792 0.761 0.776 0.946 0.862 0.973 0.954
Shasta2 8.48 0.762 0.727 0.570 0.743 0.707 0.649 0.906 0.794 0.954 0.927
Synagogue 8.57 0.922 0.910 0.827 0.875 0.884 0.913 0.965 0.755 0.949 0.966
Anturium 8.73 0.860 0.794 0.723 0.808 0.768 0.759 0.964 0.889 0.964 0.963
BowRiver 9.53 0.819 0.778 0.726 0.879 0.787 0.783 0.962 0.864 0.960 0.961
Bridges 11.17 0.787 0.757 0.646 0.785 0.720 0.714 0.969 0.860 0.908 0.947
Stairway1 13.37 0.760 0.741 0.554 0.781 0.717 0.792 0.906 0.782 0.887 0.911
ArchRock 13.60 0.798 0.784 0.613 0.800 0.776 0.840 0.976 0.951 0.915 0.961
DollDoll 13.89 0.735 0.722 0.568 0.720 0.721 0.707 0.882 0.733 0.865 0.888
ClockBuilding 14.19 0.755 0.752 0.487 0.757 0.735 0.750 0.951 0.757 0.920 0.965
OxfordChurch 15.43 0.794 0.770 0.459 0.792 0.701 0.836 0.986 0.889 0.877 0.985
BottlesSmall 16.03 0.765 0.770 0.549 0.764 0.691 0.773 0.916 0.928 0.954 0.921
Montreal 16.06 0.617 0.338 0.336 0.668 0.588 0.586 0.862 0.624 0.895 0.945
SmallOffice 16.29 0.735 0.727 0.521 0.736 0.671 0.728 0.955 0.943 0.854 0.966
Light 17.46 0.786 0.778 0.356 0.763 0.551 0.760 0.969 0.971 0.888 0.971
BridgeStudios2 18.13 0.704 0.660 0.461 0.738 0.649 0.767 0.957 0.764 0.890 0.964
Memorial 18.38 0.780 0.768 0.364 0.773 0.535 0.761 0.935 0.927 0.834 0.919
ClaridgeHotel 23.44 0.807 0.772 0.692 0.834 0.751 0.238 0.925 0.856 0.963 0.929
Mistaya1 23.77 0.812 0.787 0.635 0.845 0.784 0.157 0.961 0.861 0.961 0.963
BrookHouse 23.98 0.806 0.768 0.665 0.815 0.756 0.088 0.976 0.982 0.932 0.976
PeaceRocks 24.13 0.841 0.795 0.744 0.819 0.782 0.110 0.918 0.828 0.849 0.912
GGpark2 24.41 0.821 0.776 0.700 0.836 0.766 0.111 0.974 0.842 0.928 0.975
AtriumNight 28.68 0.778 0.741 0.400 0.780 0.622 0.149 0.964 0.965 0.887 0.944
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Table 2.4: Tone Mapped Image Quality Index 2 (TMQI2) (The PLCC with the corresponding
MOS is 0.512).
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Lausanne1 7.71 0.790 0.283 0.159 0.372 0.250 0.233 0.795 0.372 0.644 0.760
CraterLake1 8.13 0.921 0.411 0.334 0.420 0.395 0.317 0.401 0.436 0.702 0.355
Shasta2 8.48 0.726 0.261 0.220 0.361 0.256 0.148 0.692 0.327 0.797 0.631
Synagogue 8.57 0.690 0.612 0.377 0.831 0.717 0.523 0.395 0.421 0.565 0.390
Anturium 8.73 0.724 0.337 0.238 0.407 0.306 0.284 0.555 0.396 0.842 0.544
BowRiver 9.53 0.843 0.271 0.140 0.402 0.304 0.397 0.631 0.500 0.768 0.550
Bridges 11.17 0.345 0.303 0.166 0.367 0.226 0.252 0.871 0.394 0.787 0.875
Stairway1 13.37 0.372 0.344 0.139 0.429 0.274 0.367 0.618 0.402 0.826 0.509
ArchRock 13.60 0.412 0.323 0.080 0.454 0.237 0.475 0.656 0.878 0.937 0.519
DollDoll 13.89 0.354 0.330 0.198 0.346 0.270 0.304 0.884 0.336 0.462 0.828
ClockBuilding 14.19 0.348 0.322 0.082 0.411 0.241 0.292 0.849 0.378 0.892 0.717
OxfordChurch 15.43 0.362 0.246 0.055 0.461 0.131 0.559 0.542 0.931 0.597 0.426
BottlesSmall 16.03 0.356 0.352 0.112 0.416 0.190 0.627 0.858 0.853 0.716 0.822
Montreal 16.06 0.262 0.196 0.202 0.367 0.203 0.252 0.533 0.300 0.704 0.243
SmallOffice 16.29 0.305 0.288 0.165 0.336 0.211 0.272 0.882 0.806 0.370 0.878
Light 17.46 0.354 0.327 0.084 0.377 0.074 0.283 0.916 0.873 0.537 0.873
BridgeStudios2 18.13 0.214 0.162 0.059 0.306 0.135 0.422 0.763 0.411 0.570 0.633
Memorial 18.38 0.373 0.320 0.037 0.420 0.048 0.292 0.907 0.908 0.468 0.763
ClaridgeHotel 23.44 0.523 0.355 0.260 0.398 0.335 0.008 0.598 0.352 0.728 0.581
Mistaya1 23.77 0.427 0.361 0.108 0.451 0.300 0.001 0.696 0.529 0.921 0.674
BrookHouse 23.98 0.365 0.303 0.166 0.453 0.269 0.002 0.721 0.896 0.947 0.706
PeaceRocks 24.13 0.520 0.392 0.273 0.448 0.381 0.000 0.526 0.416 0.865 0.508
GGpark2 24.41 0.439 0.335 0.166 0.452 0.286 0.000 0.517 0.397 0.900 0.486
AtriumNight 28.68 0.366 0.256 0.077 0.443 0.118 0.002 0.498 0.692 0.872 0.405
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it computes the Locally Weighted Mean Phase Angle (LWMPA) to compute the phase
congruency. The main advantage of this feature is its robustness against noise.

Let the lGeρ,r and lGoρ,r be a quadratic pair of log-Gabor wavelets, i.e. evenly and
oddly symmetric, on the scale ρ and orientation r. The responses for a two-dimensional
signal (e.g. an image I) are obtained as:

[eρ,r(I), oρ,r(I)] = [I ∗ lGeρ,r ∗ lGoρ,r], (2.29)

where the operator ∗ is the convolution operator.

The LWMPA is then computed as:

LWMPA(I) = arctan2
[∑
ρ,r

eρ,r(I),
∑
ρ,r

oρ,r(I)
]
, (2.30)

where arctan2(.) is defined as:

arctan2(x,y) = 2arctan x√
x2 + y2 + y

. (2.31)

The values of LWMPA(I) range from −π/2 to π/2. The binary phase congruency
map PCG can then be obtained as:

PCG(I) =H(LWMPA(I)), (2.32)

where H(.) is the Heaviside (unit-step) function defined as:

H(t) =


1 t > 0
1
2 t= 0

0 t < 0.

(2.33)

The authors proposed to calculate the FSITM for each channel, denoted "ch". The
similarity of the congruency maps for a channel "ch" is computed as:

SCGch(IHDR,ILDR) = PCGch(IchHDR)∩PCGch(IchLDR)
N ×M

, (2.34)

with N and M being the image width and height, respectively.

The final index can then be obtained from this equation:

FSITM ch(IHDR,ILDR) = λSCGch(IHDR,ILDR) + (1−λ)SCGch(ln(IHDR),ILDR),
(2.35)

where the parameter λ is set experimentally between 0 and 1.
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Table 2.5: Feature Similarity Index for Tone-Mapped images (FSITM) with red channel (The
PLCC with the corresponding MOS is 0.018).
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Lausanne1 7.71 0.945 0.958 0.958 0.937 0.964 0.932 0.900 0.881 0.896 0.895
CraterLake1 8.13 0.945 0.957 0.962 0.926 0.961 0.943 0.918 0.917 0.901 0.911
Shasta2 8.48 0.953 0.957 0.925 0.929 0.961 0.912 0.903 0.906 0.907 0.885
Synagogue 8.57 0.942 0.950 0.949 0.902 0.955 0.918 0.923 0.855 0.865 0.921
Anturium 8.73 0.928 0.948 0.964 0.908 0.957 0.937 0.882 0.888 0.880 0.877
BowRiver 9.53 0.948 0.967 0.958 0.923 0.965 0.932 0.902 0.904 0.900 0.895
Bridges 11.17 0.896 0.924 0.925 0.872 0.939 0.917 0.837 0.826 0.858 0.777
Stairway1 13.37 0.935 0.940 0.893 0.880 0.942 0.912 0.890 0.892 0.884 0.882
ArchRock 13.60 0.921 0.938 0.930 0.904 0.947 0.884 0.866 0.863 0.858 0.859
DollDoll 13.89 0.794 0.809 0.874 0.775 0.822 0.798 0.719 0.816 0.782 0.717
ClockBuilding 14.19 0.886 0.899 0.844 0.822 0.896 0.902 0.835 0.862 0.816 0.831
OxfordChurch 15.43 0.926 0.939 0.836 0.885 0.935 0.893 0.889 0.874 0.854 0.882
BottlesSmall 16.03 0.835 0.831 0.752 0.794 0.824 0.749 0.790 0.809 0.815 0.780
Montreal 16.06 0.863 0.696 0.660 0.817 0.848 0.851 0.837 0.854 0.817 0.807
SmallOffice 16.29 0.824 0.820 0.698 0.748 0.806 0.796 0.820 0.841 0.824 0.816
Light 17.46 0.868 0.836 0.530 0.835 0.677 0.809 0.830 0.862 0.908 0.830
BridgeStudios2 18.13 0.884 0.884 0.783 0.858 0.895 0.823 0.799 0.845 0.846 0.791
Memorial 18.38 0.915 0.881 0.517 0.895 0.736 0.861 0.879 0.902 0.939 0.852
ClaridgeHotel 23.44 0.929 0.946 0.936 0.864 0.957 0.446 0.845 0.848 0.889 0.844
Mistaya1 23.77 0.929 0.945 0.934 0.889 0.947 0.423 0.885 0.883 0.875 0.885
BrookHouse 23.98 0.908 0.930 0.907 0.892 0.940 0.506 0.852 0.868 0.857 0.852
PeaceRocks 24.13 0.938 0.959 0.959 0.891 0.962 0.517 0.881 0.879 0.879 0.878
GGpark2 24.41 0.940 0.955 0.954 0.905 0.965 0.513 0.881 0.865 0.884 0.875
AtriumNight 28.68 0.843 0.836 0.715 0.809 0.804 0.559 0.815 0.823 0.824 0.809
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3.3 Comparison of the reference metrics

Since the DRIM metric does not allow for calculating a single quality value, in order
to compare the performance of the metrics, simulations have been conducted under
Matlab environnement using the HDR Toolbox ([1]) with 274 HDR test images. The
results are obtained with 24 HDR images from 7 f-stops to 29 f-stops, indoor and
outdoor scenes, namely, "Lausanne1", "CraterLake1", "Shasta2", "Synagogue", "An-
turium", "BowRiver", "Bridges", "Stairway1", "ArchRock", "DollDoll", "ClockBuilding",
"OxfordChurch", "BottlesSmall", "Montreal", "SmallOffice", "Light", "BridgeStudios2",
"Memorial", "ClaridgeHotel", "Mistaya1", "BrookHouse", "PeaceRocks", "GGpark2" and
"AtriumNight". 10 TM methods are used to test such as "Drago" [10], "Reinhard" [44],
"Ward" [7], "Durand" [16], "Tumblin" [31], "Schlick" [3], "Duan" [8], "Fattal" WRB [25],
"Li" [26] and "Husseis" [30]. The different parameters are chosen so as to give the best
results in terms of visual quality in all reference methods. All tone mapped images
are rendered in equation (2.2) with color saturation s= 0.5. Table 2.3, Table 2.4 and
Table 2.5 show tone mapped quality indexes of TMQI1 [34], TMQI2 [35] and FSITM [36]
with red channel, respectively.

An observer notes each tone mapped image with a corresponding mark (with no-
reference of HDR displays) using the scale ranging from 0 until 5: 5 for excellent, 4 very
good, 3 good, 2 accepted, 1 unsatisfactory and 0 failed. The Mean Opinion Score (MOS)
table is obtained upon 26 observers. Pearson’s Linear Correlation Coefficient (PLCC) is
selected to measure the relation between the visual quality of the tone mapped image
and the MOS.

In next sections of this thesis, TMQI1 [34] (called TMQI) is selected as a metric to
measure the quality of tone mapped images since the PLCC with the corresponding
MOS is highest (0.588) compared to TMQI2 [35] (0.512) and FSITM [36] (0.018). This
work is investigated in Chapter 6.

4 Conclusion

The state of art shows that the tone mapping problem can be solved by several different
approaches. Taking into account different aspects: including global, local contrast
reproduction, fine details preservation without introducing halo artifacts, the HVS
behavior, etc. Despite the large number of techniques, the dynamic range compression
has been mainly tackled on the luminance values of the input HDR image. In spite of
the large number of TMOs that have been developed, the tone mapping problem is still
an open issue.

Global operators are characterized by a mapping that is identical for all pixels
(i.e., a single tone-mapping curve is used throughout the image). This makes them
computationally efficient, but there is a limit to the dynamic range of the input image
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beyond which successful compression becomes difficult. Global operators are of necessity
monotonically increasing operators. Otherwise, visually unpleasant artifacts will be
introduced. Local operators improve the quality of the tone mapped image over global
operators by attempting to reproduce both the local and the global contrast. This is
achieved because the mapping operators take into account the intensity values from
the neighboring pixels of the pixel being tone mapped. However, neighbors have to
be chosen carefully; otherwise, halos around edges can appear. Frequency-dependent
operators are interesting from a historical perspective as well as for the observations
about image structure they afford. These algorithms may therefore help us better
understand the challenges we face when preparing HDR tone mapped images to be
displayed on standard LDR display devices. The following also explores gradient domain
operators, in that they are algorithmically related to frequency domain operators.

As it has been shown, many techniques have been proposed for HDR image tone
mapping. With such a large number of techniques, it is useful to understand the relative
merits of each. As a consequence, several methodologies have now been put forward
that evaluate and compare the variety of approaches. Evaluation of the techniques
provides a better understanding of the relationship between an operator and the image
attributes. This can help in the development of operators more suited to a particular
application - for example, an improved method for highlighting those parts of an image
that are perceptually important to the HVS.

The following chapter proposes the first HDR image tone mapping contribution of
this thesis which is based on a non-uniform histogram adjustment.
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Proposed TMO based on an non-uniform histogram
adjustment

This chapter investigates a global tone mapping method. It solves the problems
of contrast and is based on piecewise linear perceptual quantizer modeling the
"s-shaped" curve of the Human Visual Adaptation. In order to get more optional
contrasts, this method can be diverse from changing `-norm space. Our work has
been published in the conference IEEE ISIVC 2018 (9th International Symposium
on Signal, Image, Video and Communications 1).

Abstract

1 [45] B. C. Thai, A. Mokraoui, and B. Matei. “Piecewise Linear Perceptual Quantizer as a Non-
Uniform Histogram Equalization Adjustment for Contrast Enhancement of Tone Mapped HDR Images”.
In: 9th IEEE International Symposium on Signal, Image, Video and Communications (ISIVC) (Nov.
2018).
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1 Introduction

The response curves for both rods and cones in the eye can be fitted with the following
equation:

R

Rmax
= In

In +σn
, (3.1)

where R is the photoreceptor response (0<R<Rmax); Rmax is the maximum response;
I is luminance or light intensity; σ is the semi-saturation constant (the intensity that
causes the half-maximum response); and n is a sensitivity control exponent that has a
value generally between 0.7 and 1.0 (see [46] and [47]). Characteristics of the function
are continuous, strictly monotonic increasing according to the positive value of its first
derivative (i.e. nσnIn−1/(In +σn)2 > 0, ∀I > 0) and bounded in [0,1].

This equation, known as the Michaelis-Menten equation (or Naka–Rushton equation),
models an "s-shaped" function (on a log-linear plot) that appears repeatedly in both
psychophysical experiments and widely diverse direct-neural measurements. The role of
σ in equation (3.1) is to control the position of the response curve on the (horizontal)
intensity axis. It is thus possible to represent the response curves of rods and cones
shown in Figure 3.1 by simply using two different values of σ, called σrod and σcone, in
equation (3.1).
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Figure 3.1: Relative response of dark-adapted rod and cone cells.

The proposed algorithm adjusts the logarithm luminance distribution of the HDR
image according to a perceptual quantizer using a piecewise linear function with respect
to modeling an "s-shaped" function of the Human Visual Adaptation (HVA). The
proposed algorithm is summarized in Figure 3.2.
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2 Non-uniform distribution of the HDR logarithm luminance values

This section proposes to adjust locally the distribution of the HDR image logarithm
luminance values according to the HVS to enhance the contrast using a piecewise linear
function. This strategy is inspired from [48] which has been developed for compression
purpose. However, modifications are made mainly to avoid the problem of empty bins
of equal size.

Before describing the proposed HDR image tone mapping approach, introduce some
notations. The original HDR image is assumed to be of size N ×M . Denote LHDR
the HDR image luminance. In the rest of this chapter, the HDR image luminance is
considered in the logarithm domain since it is well adapted to the HVS. It is denoted
ĨHDR and defined as follows:

ĨHDR := {ĨHDR(xn,ym) = log10(LHDR(xn,ym)) (3.2)
for 1≤ n≤N and 1≤m≤M},

where ĨHDR(xn,ym) is the HDR logarithm luminance value of the pixel located at
position (xn,ym) on the image.
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Figure 3.2: Diagram block of the proposed HDR image TM algorithm based on non-uniform
histogram adjustment scheme.

The ĨHDR values are first sorted and classified into equal B bins defined by cutting
points denoted ciuHDR (with 1 ≤ i ≤ B). The index i refers to the bin number. A
non-uniform histogram equalization is also performed. cinuHDR (with 1≤ i≤B) cutting
points, defining the bounds of the non-uniform consecutive B bins, are deduced. From
uniform and non-uniform cutting points, new cutting points locally adapted to the
logarithm luminance values are deduced as described below.

The new lower bound (i.e. new cutting point) of each bin, denoted l̃iHDR(1), is then
adjusted by the introduction of the parameter βi as follows:

l̃iHDR(1) = ciuHDR +βi(cinuHDR− ciuHDR), (3.3)

where βi is a positive parameter smaller than 1 depending on the sub-interval [ciuHDR, cinuHDR].

Since the lower cutting point l̃iHDR(1) is deduced as the average of the logarithm
luminance values on each sub-interval [ciuHDR, cinuHDR] as in [30], the parameter βi is
then given by:

βi = mean(ĨHDR[ciuHDR, cinuHDR])− ciuHDR
cinuHDR− ciuHDR

. (3.4)



3. Piecewise linear perceptual quantizer 37

Note that this strategy avoids having empty bins.

Therefore the ĨJHDR values are classified into non-uniform B bins as follows:

ĨJHDR =
{
l̃HDR(k) for k = 1, ...,NJ ×MJ

}
=



l̃1HDR(1), . . . , l̃1HDR(K1) for bin 1,

l̃2HDR(1), . . . , l̃2HDR(K2) for bin 2,
...

l̃iHDR(1), . . . , l̃iHDR(Ki) for bin i,
...

l̃BHDR(1), . . . , l̃BHDR(KB) for bin B,
(3.5)

depending on the quantization level set, where Ki is the number of values in the i-th
bin (i.e. 1≤ i≤B; Ki > 0) and satisfying the following relation:

B∑
i=1

Ki =NJ ×MJ . (3.6)

3 Piecewise linear perceptual quantizer

The "s-shaped" TM perceptual curve, as discussed above, is modeled by a piecewise
linear curve on each bin as shown in Figure 3.3. Consider the i-th bin, defined by
[l̃iHDR(1), ..., l̃iHDR(Ki)], the HDR values are then modeled as follows:

l̂iLDR(k) = ai l̃
i
HDR(k) + bi with k ∈ [1,Ki], (3.7)

where ai (with ai , 0) and bi are two unknown parameters depending on the i-th bin.

To compute these two unknown parameters, we first propose to rewrite equation (3.7)
in such a way that it depends only on the parameter ai. To do so, the parameter ai is
expressed as follows:

ai = l̂iLDR(Ki)− l̂iLDR(1)
l̃iHDR(Ki)− l̃iHDR(1)

, (3.8)

where l̂iLDR(Ki) and l̂iLDR(1) are unknown values.

The parameter bi is then easily deduced as follows:

bi = l̂iLDR(1)− ai l̃iHDR(1) = l̂iLDR(1)− l̂iLDR(Ki)− l̂iLDR(1)
l̃iHDR(Ki)− l̃iHDR(1)

l̃iHDR(1). (3.9)

Replacing this expression in equation (3.7), results in the following equation:

l̂iLDR(k) = ai
[
l̃iHDR(k)− l̃iHDR(1)

]
+ l̂iLDR(1), (3.10)

where l̃iHDR(k) are known values.
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Figure 3.3: Piecewise linear curve modelization ("s-shaped" curve).

From equation (3.10), one can deduce the relationship between the l̃iHDR(k) and
l̂iLDR(k):

l̃iHDR(k) = l̂iLDR(k)− l̂iLDR(1)
ai

+ l̃iHDR(1). (3.11)

The unknown parameter ai is then deduced so that the norm-M space error (or
Minkowski metric error) between the HDR value and its quantized version, denoted
l
i
HDR(k) (i.e. when l̂iLDR(k) has been supported a rounding process according to a
scalar quantization), is minimized in the i-th bin:

arg min
ai

‖liHDR(k)− l̃iHDR(k)‖MM , with M > 0, (3.12)
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which is equivalent to:

arg min
ai

∥∥∥( l̂iLDR(k)− l̂iLDR(1)
ai

+ l̃iHDR(1)
)
−
( liLDR(k)− l̂iLDR(1)

ai
+ l̃iHDR(1)

)∥∥∥M
M
.

(3.13)

This equation is simplified as follows:

arg min
ai

Ki∑
k=1

∣∣∣ liLDR(k)− l̂iLDR(k)
ai

∣∣∣M · pi, (3.14)

where pi is the probability of the l̃iHDR(k) value in the i-th bin given by:

pi = Ki∑B
i=1Ki

. (3.15)

Extending this relation to all bins involves the computation of a global norm-M
space error Ψ between the HDR values and its quantized version, denoted liHDR(k) (i.e.
when l̂iLDR(k) has been supported a rounding process according to a scalar quantization):

Ψ =
B∑
i=1

Ki∑
k=1

∣∣∣ liLDR(k)− l̂iLDR(k)
ai

∣∣∣M · pi. (3.16)

If we assume that the expected value ∑Ki
k=1

∣∣∣l̂iLDR(k)− l̂iLDR(k)
∣∣∣M in each bin is the

same:
Ki∑
k=1

∣∣∣l̂iLDR(k)− l̂iLDR(k)
∣∣∣M = ξ = const, ∀i= 1...B, (3.17)

equation (3.16) is simplified and becomes:

Ψ =
B∑
i=1

pi
(ai)M

· ξ, with ai > 0. (3.18)

Denote lLDRmax (respectively lLDRmin) the maximum (respectively minimum) LDR
luminance value. Introduce δi as the difference between HDR logarithm luminance in
two consecutive bins:

δi = l̃i+1
HDR(1)− l̃iHDR(1). (3.19)

However a constraint related to the limit sum of the projected heights equal to the
entire LDR range:

B∑
i=1

ai · δi = lLDRmax− lLDRmin. (3.20)

Note that (see Figure 3.3):

B∑
i=1

δi = l̃BHDR(KB)− l̃1HDR(1). (3.21)
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Therefore, the optimization problem can now be written by the slope ai:

arg min
ai

B∑
i=1

pi
(ai)M

· ξ, s.t
B∑
i=1

ai · δi = lLDRmax− lLDRmin. (3.22)

This problem can be solved analytically using the Lagrangian function:

L(ai,λ) =
B∑
i=1

pi
(ai)M

· ξ+λ
( B∑
i=1

ai · δi− lLDRmax + lLDRmin
)
, (3.23)

where λ is the Lagrangian multiplier.

The partial derivatives of the Lagrangian L(ai,λ) with respect to the parameter ai
and λ must be equal to zero: 

∂L(ai,λ)
∂ai

= 0
∂L(ai,λ)

∂λ = 0.
(3.24)

These equations lead to solve the following system:−Mξ pi
(ai)M+1 +λ · δi = 0,∑B

i=1ai · δi− lLDRmax + lLDRmin = 0.
(3.25)

The slopes ai is deduced from the first equation of the system (3.25):

ai = (Mξ · pi
λ · δi

)1/(M+1). (3.26)

Replacing this result in the second equation of the system (3.25) provides:

B∑
i=1

(Mξ · pi
λ · δi

)1/(M+1) · δi = lLDRmax− lLDRmin, (3.27)

where one can deduce that:

(Mξ

λ
)1/(M+1) = lLDRmax− lLDRmin∑B

i=1 δi · (piδi )
1/(M+1) . (3.28)

These last equations involve the following result:

ai = lLDRmax− lLDRmin∑B
i=1 δi · (piδi )

1/(M+1) · (
pi
δi

)1/(M+1), (3.29)

which is equivalent to:

ai = lLDRmax− lLDRmin∑B
i=1(δi)M/(M+1) · (pi)1/(M+1) · (

pi
δi

)1/(M+1). (3.30)

As it can be seen in equation (3.30) the slope ai is positive. The slope ai is
proportional to pi which satisfies the constrained condition given by equation (3.20),
the more probability pi (with the same interval δi) the more value ai, and vice versa.
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In the specific cases: (i) if the parameter M → ∞, the limitation of slope ai is
constant:

ai = lim
M→∞

lLDRmax− lLDRmin∑B
i=1(δi)M/(M+1) · (pi)1/(M+1) · (

pi
δi

)1/(M+1)

= lLDRmax− lLDRmin∑B
i=1(δi)1 · (pi)0 · (pi

δi
)0 = lLDRmax− lLDRmin∑B

i=1 δi

= lLDRmax− lLDRmin
l̃BHDR(KB)− l̃1HDR(1)

= const, (3.31)

therefore the "s-shaped" curve is globally linear, (ii) if the parameter M → 0, the
limitation of slope ai is:

ai = lim
M→0

lLDRmax− lLDRmin∑B
i=1(δi)M/(M+1) · (pi)1/(M+1) · (

pi
δi

)1/(M+1)

= lLDRmax− lLDRmin∑B
i=1(δi)0 · (pi)1 · (pi

δi
)1 = lLDRmax− lLDRmin∑B

i=1 pi
· pi
δi

= lLDRmax− lLDRmin
δi

· pi. (3.32)

Hence the unknown parameter bi is calculated (i.e. bi = l̂iLDR(1)−ai× l̃iLDR(1)) and
LDR mapped values are deduced according to equation (3.7). The global piecewise
linear curve is continuous and strictly monotonic increasing according to the positive
slopes (i.e. ai > 0, or angles 0°< atan(ai)< 90°).

4 Simulation results

This section discusses the performance of the proposed HDR image tone mapping
approach. The tone mapped image quality is measured with the Tone-Mapped im-
age Quality Index 1 (TMQI1) metric [34]. Simulations have been conducted under
Matlab environnement using the HDR Toolbox ([1]) with 274 test HDR images. The
results are obtained with 24 HDR images from 7 f-stops to 29 f-stops, indoor and
outdoor scenes, namely, "Lausanne1", "CraterLake1", "Shasta2", "Synagogue", "An-
turium", "BowRiver", "Bridges", "Stairway1", "ArchRock", "DollDoll", "ClockBuilding",
"OxfordChurch", "BottlesSmall", "Montreal", "SmallOffice", "Light", "BridgeStudios2",
"Memorial", "ClaridgeHotel", "Mistaya1", "BrookHouse", "PeaceRocks", "GGpark2" and
"AtriumNight". The different parameters are chosen so as to give the best results in
terms of TMQI1 metric in all reference methods. All tone mapped images are rendered
in equation (2.2) with color saturation s= 0.5.

The proposed TM approaches, namely:

i. "Proposed_NUHA_NM" deployed with `M = `1, `2, `3, `4, `6, `10,

ii. "Proposed_NUHA_NIn" for `∞ with ai given by equation (3.31),
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iii. "Proposed_NUHA_NZe" for ai given by equation (3.32),

are used for B = 256, lLDRmax = 255 and lLDRmin = 0.

Table 3.1 provides the TMQI1 metrics. The results show that our TM approach is
competitive to those developed in the literature. Moreover less norm space concerns,
more the performance increases. On the other hand, the "Proposed_NUHA_NZe"
almost has the higher metric but the visual quality of tone mapped image is less good
since artifacts appear, see Figure 3.4c and Figure 3.6c. By comparison, the details around
light are clearly visible on Figure 3.4. Indeed Figure 3.5, providing the tone mapping
curves with different norm spaces, confirms the performance when the computation is
derived in the `1 norm space since the curve is closest to the "s-shaped" curve. The
"s-shaped" curve can be diverse, see Figure 3.7 and of course, the contrast will change,
see Figure 3.6.

The normalized histograms of "Light" tone mapped images with different norm
spaces are shown in Figure 3.8b, Figure 3.8c, Figure 3.8d, Figure 3.8e, Figure 3.8f,
Figure 3.8h, and Figure 3.8g. The normalized histogram of "Proposed_NUHA_NZe"
tends to be flat, as a result, it gets more contrast. The derivation in `1 space (the
mean absolute error measure, or "Proposed_NUHA_N1") allows both small and large
values to be represented. One can also observe that the visual quality of our tone
mapped image given in Figure 3.9a is better than "Duan" tone mapped image provided
in Figure 3.9b in particular around the light.

Figure 3.10 compares the visual quality of the "OxfordChurch" tone mapped image
using "Duan" method and our approach (in `1). The stained glass window at the church
background presents a better contrast and details with our approach although our
TMQI is lower (0.897 compared to 0.986).

Figure 3.11 compares the visual quality of the "WardFlowers" tone mapped image
using "Fattal" WRB and our approach (in `1). Some details, on flowers and rocks, are
lost on "Fattal" tone mapped image compared to our approach. Moreover, our tone
mapped image is of better contrast.

The performance of proposed approach is confirmed on more than 274 test HDR
images where the details and contrast are better represented than other competitive
methods.



4. Simulation results 43

Table 3.1: Tone Mapped Image Quality Index 1 (TMQI1).
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Lausanne1 7.71 0.918 0.872 0.863 0.859 0.856 0.853 0.850 0.844
CraterLake1 8.13 0.949 0.861 0.846 0.839 0.834 0.829 0.825 0.817
Shasta2 8.48 0.933 0.826 0.807 0.799 0.794 0.789 0.785 0.778
Synagogue 8.57 0.965 0.811 0.790 0.782 0.777 0.772 0.767 0.761
Anturium 8.73 0.957 0.929 0.920 0.915 0.912 0.908 0.905 0.898
BowRiver 9.53 0.958 0.852 0.830 0.820 0.814 0.808 0.803 0.795
Bridges 11.17 0.953 0.942 0.934 0.930 0.926 0.923 0.919 0.905
Stairway1 13.37 0.909 0.848 0.839 0.833 0.829 0.824 0.820 0.810
ArchRock 13.60 0.944 0.918 0.894 0.882 0.875 0.868 0.861 0.851
DollDoll 13.89 0.886 0.842 0.831 0.825 0.821 0.818 0.815 0.809
ClockBuilding 14.19 0.967 0.901 0.883 0.873 0.867 0.861 0.855 0.846
OxfordChurch 15.43 0.974 0.897 0.876 0.866 0.861 0.855 0.849 0.839
BottlesSmall 16.03 0.915 0.850 0.840 0.835 0.832 0.828 0.825 0.820
Montreal 16.06 0.941 0.752 0.731 0.721 0.715 0.709 0.703 0.692
SmallOffice 16.29 0.962 0.927 0.918 0.912 0.909 0.905 0.901 0.893
Light 17.46 0.958 0.916 0.888 0.872 0.863 0.852 0.843 0.827
BridgeStudios2 18.13 0.964 0.845 0.826 0.815 0.809 0.802 0.795 0.785
Memorial 18.38 0.907 0.922 0.890 0.874 0.865 0.855 0.846 0.832
ClaridgeHotel 23.44 0.934 0.766 0.753 0.748 0.744 0.740 0.737 0.732
Mistaya1 23.77 0.963 0.823 0.806 0.799 0.795 0.791 0.788 0.782
BrookHouse 23.98 0.971 0.851 0.824 0.813 0.808 0.803 0.799 0.792
PeaceRocks 24.13 0.879 0.788 0.771 0.766 0.763 0.760 0.757 0.747
GGpark2 24.41 0.972 0.794 0.781 0.776 0.774 0.771 0.769 0.764
AtriumNight 28.68 0.924 0.842 0.814 0.802 0.795 0.788 0.782 0.765
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(a) Proposed_NUHA_N1 (TMQI1=0.916) (b) Proposed_NUHA_N2 (TMQI1=0.888)

(c) Proposed_NUHA_NZe (TMQI1=0.958) (d) Proposed_NUHA_NIn (TMQI1=0.827)

Figure 3.4: "Light" HDR test image (17.46 f-stops) with several norms.
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Figure 3.5: Tone-mapping curves with `M norm space for "Light" HDR test image.



4. Simulation results 45

(a) Proposed_NUHA_N1 (TMQI1=0.850) (b) Proposed_NUHA_N2 (TMQI1=0.840)

(c) Proposed_NUHA_NZe (TMQI1=0.915) (d) Proposed_NUHA_NIn (TMQI1=0.820)

Figure 3.6: "BottlesSmall" HDR test image (16.03 f-stops) with several norms.
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Figure 3.7: Tone-mapping curves with `M norm space for "BottlesSmall" HDR test image.
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Figure 3.8: Normalized histograms of "Light" tone mapped images (norm spaces `1, `2, `3, `4, `10,
NZe and NIn).
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(a) Proposed_NUHA_N1 (`1) (b) "Duan"

Figure 3.9: "Light" HDR test image (17.46 f-stops) - Left image: Proposed_NUHA_N1
(TMQI1=0.916); Right image: "Duan" (TMQI1=0.969).

Figure 3.10: "OxfordChurch" HDR test image (15.43 f-stops) - Left image: Proposed_NUHA_N1
(TMQI1=0.897); Right image: "Duan" (TMQI1=0.986).
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Figure 3.11: "WardFlowers" HDR test image (14.01 f-stops) - Left image: Proposed_NUHA_N1
(TMQI1=0.930); Right image: "Fattal" WRB (TMQI1=0.875).

5 Conclusion

The proposed HDR image TM approach is able to enhance the contrast of LDR images.
This is due to the adjustment of the HDR logarithm luminance values distribution
according to the perceptual piecewise linear function. Simulation results confirm the
relevance of the proposed approach both in terms of the TMQI1 metric and the visual
quality of the displayed images.

The next chapter proposes tone mapping operators using multiresolution technique
to enhance the details visibility.
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Proposed TMOs based on Essential Non-Oscillatory
multiresolution families

This chapter investigates a new kind of local tone mapping operators based on
multiresolutions according to separable (Point-Value, Cell-Average) or non-separable
(Cell-Average) multiresolution approaches using Essential Non-Oscillatory strategies.
These methods improve detail visibility because the purpose of decomposition is
to better represent the details of the complex HDR image preserving as much as
possible the HDR image quality. Two detailed descriptions of our proposed methods
have been published in the conferences EUSIPCO 2016 1and ISSPIT 2017 2.

Abstract

1 [49] B. C. Thai, A. Mokraoui, and B. Matei. “Performance Evaluation of High Dynamic Range
Image Tone Mapping Operators Based on Separable Nonlinear Multiresolution Families”. In: 24th IEEE
European Signal Processing Conference (EUSIPCO) (Aug. 2016), pp. 1891-1895.

2 [50] B. C. Thai et al. “Image Tone Mapping Approach Using Essentially Non-Oscillatory Bi-
quadratic Interpolations Combined with a Weighting Coefficients Strategy”. In: IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT) (Dec. 2017), pp. 089-094.
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1 Introduction

To adapt the prediction near the singularities of the data, Harten et al. proposed to use
Essentially Non-Oscillatory interpolation techniques. In [51], Harten et al. introduced
a data-dependent piecewise-polynomial interpolation technique which they refer to as
Essentially Non-Oscillatory (ENO) interpolation. The original intention behind ENO
interpolation is to avoid the Gibbs-like phenomenon obtained when using centered
interpolation techniques in approximating functions with jump discontinuities. An ENO
interpolant produces a monotone profile when interpolating across a jump. The basic
idea behind an ENO technique is to construct the piecewise polynomial pieces using
only information from regions of smoothness of the interpolated function when this is
possible.

The proposed Image TMOs rely on separable and non-separable nonlinear mul-
tiresolution approaches based on data dependent interpolation. It exploits the ENO
interpolation strategy developed by Harten [52], [53], [51] and [54] where Point-Value
(PV) mutiresolution family and Cell-Averarage (CA) multiresolution family are con-
sidered. These families have the ability to introduce in their mathematical model
the isolated singularities such as edge points in the image thus avoiding the Gibbs
phenomenon particularly harmful in tone mapped images.

2 Global TMO scheme based on ENO multiresolution families

The proposed approaches are described in the following sections and summarized by
the block diagram in Figure 4.1. The original HDR image, considered at the finest
resolution level denoted J , is assumed to be of size NJ ×MJ . Denote LHDR and LLDR
respectively the HDR and LDR image luminance. The index j refers to the resolution
level (with j = 1, ...,J).

In the rest of this chapter, the HDR image luminance is considered in the logarithm
domain since it is well adapted to the HVS. It is denoted IJ and defined as follows:

IJ :=
{
IJ (xn,ym) = log10(LHDR(xn,ym)) for 1≤ n≤NJ and 1≤m≤MJ

}
, (4.1)

where IJ (xn,ym) is the HDR logarithm luminance value of the pixel located at position
(xn,ym).

The proposed TMOs are based on multiresolution approaches:

i. Separable multiresolution ENO Point-Value (PV) and Cell-Average (CA),

ii. Non-separable multiresolution ENO Cell-Average (CA).

They will be described at the following sections.
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Figure 4.1: Diagram block of the proposed HDR image TM algorithm based on multiresolution
scheme.

3 TMO based on separable multiresolution ENO point-value scheme

The separable multiresolution ENO Point-Value scheme consists of three main stages:
(forward) decomposition, weighting and (backward) reconstruction described as follows.

3.1 Separable forward algorithm

This section concerns the first stage of the HDR image TM algorithm. It decomposes
the logarithm luminance of the original HDR image into approximations and details
resolution levels. This decomposition is achieved according to the forward process of a
separable (i.e. 1D-signal in horizontal and vertical directions) Point-Value lifting scheme.
This choice, among the various developed decomposition strategies in the literature,
is motivated by the fact that the relevant details are accurately predicted since the
coefficients of the filters are adapted locally to the data to be processed.

The decomposition process consists to go from the finest resolution level J to the
coarsest resolution level 0. At a given resolution level j (with 1≤ j ≤ J), the algorithm
deals with the approximation coefficients obtained at resolution level j i.e. Ij(xn,yk)
(with 1≤ n≤N j and 1≤ k ≤M j) as shown in Figure 4.2. The forward process steps
of the separable decomposition algorithm are described below.

3.1.1 Split 1D-signal into odd and even indexes (step 1)

At a given resolution level j and a given n belonging to [1,N j ] (i.e. xn), the algorithm
starts with splitting the horizontal 1D-signal, i.e. Ij(xn,yk) for 1≤ k ≤M j , into a set
of odd Ij(xn,y2k−1) and even Ij(xn,y2k) indexes as down-sampling:

{Ij(xn,yk) with 1≤ k ≤M j}

:= {Ij(xn,y2k−1), Ij(xn,y2k) with 1≤ k ≤M j/2 }. (4.2)

The process is then repeated on each row until n=N j .
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Figure 4.2: Separable lifting scheme decomposition principle.

3.1.2 Approximation resolution level in a point-value scheme (step 2)

Based on this split, the approximation coefficient located at position (xn,yk), denoted
Vj−1(xn,yk) for a given n, is computed on a PV scheme as follows:

Vj−1(xn,yk) = Ij(xn,y2k) for 1≤ k ≤M j/2. (4.3)

The process is then repeated until n=N j . The pixel value Vj−1(xn,yk) is defined by
the Point-Value of the underlying cubic Lagrange function p(x) at the mid point of the
cell [k, k+ 1]:

Vj−1(xn,yk) = p(k+ 1/2). (4.4)

3.1.3 Detail resolution level based on 1D point-value ENO prediction (step 3)

The detail coefficient, denoted Dj−1(xn,y2k−1) for a given n, is then computed at odd
indexes (xn,y2k−1) as follows:

Dj−1(xn,y2k−1) = Ij(xn,y2k−1)− Îj(xn,y2k−1) for 1≤ k ≤M j/2, (4.5)

where Îj(xn,y2k−1) is the predicted logarithm luminance value at odd position (xn,y2k−1)
and resolution level j.

This predicted value is approximated by using those approximation coefficients from
the prediction stencil of length equal to four defined as:

Puj−1(xn,yk,u) := {k+u− 1, k+u, k+u+ 1, k+u+ 2}, (4.6)
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where u is an integer in [−1,0,1], corresponding to the position of the stencil with respect
to k. There are then three kinds of stencils, left, center and right with u = −1,0,1,
respectively as follows: for the left stencil:

Puj−1(xn,yk,−1) := {k− 2, k− 1, k, k+ 1}, (4.7)

for the center stencil:

Puj−1(xn,yk,0) := {k− 1, k, k+ 1, k+ 2}, (4.8)

for the right stencil:

Puj−1(xn,yk,1) := {k, k+ 1, k+ 2, k+ 3}. (4.9)

A cubic Lagrange polynomial pu(x) is defined to interpolate four values of approx-
imation coefficients Vj−1 on the stencil Puj−1(xn,yk,u). Therefore there are three
polynomials (p−1(x), p0(x), p1(x)) attached to the corresponding stencils. The four
unknown coefficients are deduced from the four interpolation conditions on the stencil,
see in Appendix A.1.

In order to measure the degree of oscillations of such polynomials, the following
functions for summation of relevant points on the stencils are used: for the left stencil:

ζ(Puj−1(xn,yk,−1)) = |Vj−1(xn,yk−2)−Vj−1(xn,yk−1)|+
|Vj−1(xn,yk−1)−Vj−1(xn,yk)|+ |Vj−1(xn,yk)−Vj−1(xn,yk+1)|,

for the center stencil:

ζ(Puj−1(xn,yk,0)) = |Vj−1(xn,yk−1)−Vj−1(xn,yk)|+
|Vj−1(xn,yk)−Vj−1(xn,yk+1)|+ |Vj−1(xn,yk+1)−Vj−1(xn,yk+2)|,

for the right stencil:

ζ(Puj−1(xn,yk,1)) = |Vj−1(xn,yk)−Vj−1(xn,yk+1)|+
|Vj−1(xn,yk+1)−Vj−1(xn,yk+2)|+ |Vj−1(xn,yk+2)−Vj−1(xn,yk+3)|.

The predicted value is deduced so that the optimal value u is the solution of the
following minimization problem:

u∗ = arg min
−1≤u≤1

ζ(Puj−1(xn,yk,u)). (4.10)

This is expressed as the ENO interpolations as choosing the best stencil. The pixel
value Îj(xn,y2k−1) is defined on the mid point of cell [k, k+ 1] as follows:

Îj(xn,y2k−1) = pu∗(k+ 1/2). (4.11)
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The predicted value Îj(xn,y2k−1) is one of three possibilities as follows:


p−1(k+ 1/2) for the left stencil at u=−1

p0(k+ 1/2) for the center stencil at u= 0

p1(k+ 1/2) for the right stencil at u= 1

(4.12)

=


+ 1

16Vj−1(xn,yk−2)− 5
16Vj−1(xn,yk−1) + 15

16Vj−1(xn,yk) + 5
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− 1
16Vj−1(xn,yk−1) + 9

16Vj−1(xn,yk) + 9
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in compact forms where ⊗ is the product term by term. The predict value chooses one
of three possibilities depended on optimized stencil where the difference of pixels on
coarse is less oscillated.

All the best stencils Puj−1(xn,yk,u∗) are stored to be used in the adaptive lifting
scheme backward process to reconstruct the decomposed 1D-signal. The horizontal
decomposition steps (i.e. 1, 2 and 3) are summarized in Figure 4.3.
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Figure 4.3: 1D-signal decomposition using separable multiresolution ENO PV in a horizontal
direction.

3.1.4 Arrangement of approximation and detail coefficients

To process the 1D-signal in the vertical direction and for sake of convenience, the
approximation and details coefficients are organized as shown in Figure 4.3 and renamed
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as follows:
{Vj−1(xn,yk) for 1≤ k ≤M j/2 and ∀n ∈ [1,N j ]}

:= {Wj(xk,ym) for 1≤ k ≤N j and ∀m ∈ [1,M j/2]}.
(4.15)

{Dj−1(xn,y2k−1) for 1≤ k ≤M j/2 and ∀n ∈ [1,N j ]}
:= {Uj(xk,ym) for 1≤ k ≤N j and ∀m ∈ [1,M j/2]}.

(4.16)

3.1.5 Repeat steps 1, 2 and 3

Steps 1, 2 and 3 are now being applied on Wj(xk,ym) and Uj(xk,ym) for a given
m ∈ [1,M j/2]. Figure 4.4 summarizes the vertical 1D-signal forward decomposition.
Note that the approximation step requires the prediction of Ŵj(x2k−1,ym) (respec-
tively Ûj(x2k−1,ym)) based on a set of best stencils Pvj−1(xk,ym,v∗) (respectively
Pwj−1(xk,ym,w∗). These stencils need to be stored for the backward process lifting
scheme to reconstruct the decomposed logarithm luminance image.

Finally, the approximation resolution level Ij(xn,ym) is divided into four blocks: ll,
lh, hl and hh. The block ll concerns the approximation resolution denoted Ij−1; and the
other three blocks lh, hl and hh contain the detail resolutions, named Dj−1

lh ,Dj−1
hl ,Dj−1

hh ,
respectively (see Figure 4.2). Note that the size of each block is deduced as the half size
of Ij in each direction:

M Ij :=
(
Ij−1, Dj−1

lh , Dj−1
hl , Dj−1

hh

)
. (4.17)

The decomposition process can be iterated on Ij−1 until I0. The finest HDR logarithm
luminance IJ is then represented by 3J + 1 resolution levels as follows:

M IJ :=
(
I0,D0

lh,D0
hl,D0

hh, ...,D
j−1
lh ,Dj−1

hl ,Dj−1
hh , ...,DJ−1

lh ,DJ−1
hl ,DJ−1

hh

)
. (4.18)

3.2 Weightings

To reduce the dynamic range, we propose to modify differently the coefficients of each
resolution level as follows:

I′0 = αa× I0,

D′0lh = αd×D0
lh, D′0hl = αd×D0

hl, D′0hh = αd×D0
hh,

. . .

D′j−1
lh = αd×Dj−1

lh , D′j−1
hl = αd×Dj−1

hl , D′j−1
hh = αd×Dj−1

hh , (4.19)
. . .

D′J−1
lh = αd×DJ−1

lh , D′J−1
hl = αd×DJ−1

hl , D′J−1
hh = αd×DJ−1

hh .

where 0< αa,αd < 1. Figure 4.5 summarizes the weighting process.

In order to reduce the dynamic range, these positive constant parameters αa, αd
are set less than 1 in an empirical way. The important condition αa < αd is used to
enhance details visibility when reconstructing.
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Figure 4.4: 1D-signal decomposition using separable multiresolution ENO PV in a vertical
direction.
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Figure 4.6: Separable lifting scheme reconstruction principle.

3.3 Separable backward algorithm

The adaptive lifting scheme backward process starts with the four coarsest resolution
levels, i.e (I′0, D′0lh, D′0hl, D′0hh), to generate the approximation coefficients I′1. The
same process is then iterated until reaching the finest resolution i.e. j = J corresponding
to the intermediate HDR image, denoted I′J , of size NJ ×MJ .

Assume first that the algorithm processed all resolution levels until j− 1. Therefore
the next step consists to recover the approximation image I′j of size N j ×M j using
the following blocks: I′j−1, D′j−1

lh , D′j−1
hl and D′j−1

hh . The reconstruction processes
are carried out inversely to the decomposition stage, first in a vertical direction (see
Figure 4.7) and then in a horizontal direction (see Figure 4.8). The mathematical
equations describing this process are derived in what follows.

First the algorithm deals with the coefficients in a vertical direction using I′j−1 and
D′j−1

hl . At a given m, the approximation coefficients at odd positions W′j(x2k−1,ym)
with 1≤ k ≤N j/2 are deduced as follows:

W′j(x2k−1,ym) = Ŵ′j(x2k−1,ym) + D′j−1
hl (xk,ym) for 1≤ k ≤N j/2, (4.20)

where Ŵ′j(x2k−1,ym) is the predicted coefficient, at odd position, deduced from ENO
PV scheme of the neighboring approximation coefficients I′j−1(x2k−1,ym) as follows:

Ŵ′j(x2k−1,ym) = pv∗(k+ 1/2). (4.21)
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Figure 4.7: 1D-signal reconstruction using separable multiresolution ENO PV in a vertical
direction.
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Figure 4.8: 1D-signal reconstruction using separable multiresolution ENO PV in a horizontal
direction.
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The predicted value Ŵ′j(x2k−1,ym) is one of three possibilities as follows:
p−1(k+ 1/2) for the left stencil at v =−1

p0(k+ 1/2) for the center stencil at v = 0

p1(k+ 1/2) for the right stencil at v = 1

(4.22)

=



∑[
+ 1

16 − 5
16 +15

16 + 5
16

]
⊗
[
I′j−1(xk−2,ym) I′j−1(xk−1,ym) I′j−1(xk,ym) I′j−1(xk+1,ym)

]
∑[
− 1

16 + 9
16 + 9

16 − 1
16

]
⊗
[
I′j−1(xk−1,ym) I′j−1(xk,ym) I′j−1(xk+1,ym) I′j−1(xk+2,ym)

]
∑[

+ 5
16 +15

16 − 5
16 + 1

16

]
⊗
[
I′j−1(xk,ym) I′j−1(xk+1,ym) I′j−1(xk+2,ym) I′j−1(xk+3,ym)

]
(4.23)

The best stencil Pvj−1(xk,ym,v∗) is those computed and stored in the decomposition
process. The approximation coefficients W′j(x2k,ym), at even positions, are deduced:

W′j(x2k,ym) = I′j−1(xk,ym) for 1≤ k ≤N j/2. (4.24)

The odd and even approximation coefficients are then merged to constitute the
1D-signal as follows:

{W′j(xk,ym) for 1≤ k ≤N j}

:= {W′j−1(x2k−1,ym), W′j−1(x2k,ym) for 1≤ k ≤N j/2}. (4.25)

This process is repeated for all m to build W′j of size N j ×M j/2.

On the other hand, these same steps are applied to D′j−1
lh and D′j−1

hh to generate the
new block U′j of size N j×M j/2 (see Figure 4.7). As in the decomposition strategy, W′j

and U′j are respectively renamed V′j−1 and D′j−1 and the same steps are performed but
according to a horizontal direction (see Figure 4.8). Finally, we get the approximation
coefficients I′j at resolution level j.

I′j := M−1
(
I′j−1,D′j−1

lh ,D′j−1
hl ,D′j−1

hh

)
. (4.26)

The process is then iterated until j = J :

I′J := M−1
(
I′0,D′0lh,D′0hl,D′0hh, ...,D

′j−1
lh ,D′j−1

hl ,D′j−1
hh , ...,D′J−1

lh ,D′J−1
hl ,D′J−1

hh

)
.

(4.27)
Simulation results will be discussed in section 6.1.

4 TMO based on separable multiresolution ENO cell-average scheme

This TMO algorithm has the same steps as TMO based on separable ENO Point-Value
scheme. The difference lies in computations of approximation in section 4.1.2 and
predicted values in section 4.1.3.
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4.1 Separable forward algorithm

4.1.1 Split 1D-signal into odd and even indexes

The process is the same as in section 3.1.1.

4.1.2 Approximation resolution level in a cell-average scheme

The approximation resolution level is replaced (i.e. the equation (4.3)) by:

Vj−1(xn,yk) = 1
2
(
Ij(xn,y2k−1) + Ij(xn,y2k)

)
for 1≤ k ≤M j/2. (4.28)

The pixel value Vj−1(xn,yk) is defined by the Cell-Average of the underlying quadratic
Lagrange function p(x) as follows:

Vj−1(xn,yk) =
∫

Cj−1
k

p(x)dx=
∫ k+1

k
p(x)dx, (4.29)

where the cell Cj−1
k is defined as [k, k+ 1].

4.1.3 Detail resolution level based on 1D cell-average ENO prediction

The process is the same as in section 3.1.3. In the detail resolution level, this predicted
value is approximated by using those approximation coefficients from a prediction stencil
of length equal to three cells defined as:

Cuj−1(xn,yk,u) := {[k+u− 1,k+u], [k+u,k+u+ 1], [k+u+ 1,k+u+ 2]}, (4.30)

where u is an integer in [−1,0,1], corresponding to the position of the stencil with respect
to k. There are then three kinds of stencils, left, center and right with u = −1,0,1,
respectively as follows: for the left stencil:

Cuj−1(xn,yk,−1) := {[k− 2,k− 1], [k− 1,k], [k,k+ 1]}, (4.31)

for the center stencil:

Cuj−1(xn,yk,0) := {[k− 1,k], [k,k+ 1], [k+ 1,k+ 2]}, (4.32)

for the right stencil:

Cuj−1(xn,yk,1) := {[k,k+ 1], [k+ 1,k+ 2], [k+ 2,k+ 3]}. (4.33)

A quadratic Lagrange polynomial pu(x) is defined to interpolate three values of
approximation coefficients Vj−1 on the stencil Cuj−1(xn,yk,u). Therefore there are
three polynomials (p−1(x), p0(x), p1(x)) attached to the corresponding stencils. The
three unknown coefficients are deduced from the three interpolation conditions on the
stencil, see in Appendix A.2.
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In order to to measure the degree of oscillations of such polynomials, the following
functions for summation of relevant points on the stencils are used: for the left stencil:

ζ(Cuj−1(xn,yk,−1)) = |Vj−1(xn,yk−2)−Vj−1(xn,yk−1)|+
|Vj−1(xn,yk−1)−Vj−1(xn,yk)|, (4.34)

for the center stencil:

ζ(Cuj−1(xn,yk,0)) = |Vj−1(xn,yk−1)−Vj−1(xn,yk)|+
|Vj−1(xn,yk)−Vj−1(xn,yk+1)|, (4.35)

for the right stencil:

ζ(Cuj−1(xn,yk,1)) = |Vj−1(xn,yk)−Vj−1(xn,yk+1)|+
|Vj−1(xn,yk+1)−Vj−1(xn,yk+2)|. (4.36)

The predicted value is deduced so that the optimal value u is the solution of the
following minimization problem:

u∗ = arg min
−1≤u≤1

ζ(Cuj−1(xn,yk,u)). (4.37)

The pixel value Îj(xn,y2k−1) is defined on the lower-half cell [k, k+ 1/2] as follows:

Îj(xn,y2k−1) = 2
∫ k+1/2

k
pu∗(x)dx. (4.38)

Discussion: The pixel value Vj−1(xn,yk) is defined on the cell [k, k+ 1],

Vj−1(xn,yk) =
∫ k+1

k
pu∗(x)dx, (4.39)

while the predicted value Îj(xn,y2k) at the even index is defined on the remained
upper-half cell [k+ 1/2, k+ 1],

Îj(xn,y2k) = 2
∫ k+1

k+1/2
pu∗(x)dx. (4.40)

Note that due to the consistency condition, the prediction and projection operators
satisfy:

Îj(xn,y2k−1) + Îj(xn,y2k) = 2Vj−1(xn,yk). (4.41)

The predicted value Îj(xn,y2k−1) is one of three possibilities as follows:
2
∫ k+1/2
k p−1(x)dx for the left stencil at u=−1

2
∫ k+1/2
k p0(x)dx for the center stencil at u= 0

2
∫ k+1/2
k p1(x)dx for the right stencil at u= 1

(4.42)



4. TMO based on separable multiresolution ENO cell-average scheme 65

=



∑[
−1

8 +1
2 +5

8

]
⊗
[
Vj−1(xn,yk−2) Vj−1(xn,yk−1) Vj−1(xn,yk)

]
∑[

+1
8 +1 −1

8

]
⊗
[
Vj−1(xn,yk−1) Vj−1(xn,yk) Vj−1(xn,yk+1)

]
∑[

+11
8 −1

2 +1
8

]
⊗
[
Vj−1(xn,yk) Vj−1(xn,yk+1) Vj−1(xn,yk+2)

]
.

(4.43)
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Figure 4.9: 1D-signal decomposition using separable multiresolution ENO CA in a horizontal
direction.

4.1.4 Arrangement of approximation and detail coefficients

The process is the same as in section 3.1.4. The processes are summarized in Figure 4.9
and Figure 4.10.

4.1.5 Repeat steps 1, 2 and 3

The process is the same as in section 3.1.5. The approximation resolution level Ij(xn,ym)
is divided into four blocks: ll, lh, hl and hh.

M Ij :=
(
Ij−1, Dj−1

lh , Dj−1
hl , Dj−1

hh

)
. (4.44)

The decomposition process can be iterated on Ij−1 until I0. The finest HDR logarithm
luminance IJ is then represented by 3J + 1 resolution levels (or subbands) as follows:

M IJ :=
(
I0,D0

lh,D0
hl,D0

hh, ...,D
j−1
lh ,Dj−1

hl ,Dj−1
hh , ...,DJ−1

lh ,DJ−1
hl ,DJ−1

hh

)
. (4.45)

4.2 Weightings

The process is the same as in section 3.2.
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Figure 4.10: 1D-signal decomposition using separable multiresolution ENO CA in a vertical
direction.

4.3 Separable backward algorithm

In separable backward algorithm (see Figure 4.11 and Figure 4.12), the modified
approximation coefficients W′j−1(x2k−1,ym) are computed as follows:

Ŵ′j(x2k−1,ym) = 2
∫ k+1/2

k
pv∗(x)dx. (4.46)

The predicted value Ŵ′j(x2k−1,ym) is one of three possibilities as follows:
2
∫ k+1/2
k p−1(x)dx for the left stencil at v =−1

2
∫ k+1/2
k p0(x)dx for the center stencil at v = 0

2
∫ k+1/2
k p1(x)dx for the right stencil at v = 1

(4.47)
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]
.

(4.48)

Instead of using equation (4.24), the approximation coefficients W′j(x2k,ym), at
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Figure 4.11: 1D-signal reconstruction using separable multiresolution ENO CA in a vertical
direction.

even positions, are deduced:

W′j(x2k,ym) = 2I′j−1(xk,ym)−W′j(x2k−1,ym) for 1≤ k ≤N j/2. (4.49)
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Figure 4.12: 1D-signal reconstruction using separable multiresolution ENO CA in a horizontal
direction.

Finally, we get the approximation coefficients I′j at resolution level j.

I′j := M−1
(
I′j−1,D′j−1

lh ,D′j−1
hl ,D′j−1

hh

)
. (4.50)
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The process is then iterated until j = J :

I′J := M−1
(
I′0,D′0lh,D′0hl,D′0hh, ...,D

′j−1
lh ,D′j−1

hl ,D′j−1
hh , ...,D′J−1

lh ,D′J−1
hl ,D′J−1

hh

)
.

(4.51)
Simulation results will be discussed in section 6.1.

5 TMO based on non-separable multiresolution ENO scheme

Considering the advantages of the prediction (left, right) polynomials, the separable
multiresolution ENO scheme can extract details information from a 2D-signal in four
directions (i.e. for the horizontal: 0°, 180°, and for the vertical: 90°, 270°). Besides
the four directions, the non-separable multiresolution ENO scheme can extract details
information from the 2D-signal in four diagonal directions such as 45°, 135°, 225° and
315° due to extension of more predict directions.

The proposed HDR image tone mapping operator is based on the non-separable
decomposition developed in [55] and [56]. The prediction operator is related on the
smoothness properties of the function p(x,y), considered as a bi-dimensional smooth
function and represented by a piecewise polynomial function of degree two, modeling the
complex HDR image (i.e. smooth regions separated by edges). To adapt the prediction
near the singularities, ENO interpolation techniques are then deployed. There are
three main stages: (forward) decomposition, weighting and (backward) reconstruction.
Unlike the separable case, the non-separable decomposition and reconstruction don’t
use intermediate steps (see Figure 4.13), and the weighting stage applies for an adaptive
way (without constant). Three stages are described as follows.

5.1 Non-separable forward algorithm

The decomposition process consists to go from the finest resolution level J to the coarsest
resolution level 0. The forward process steps of the separable decomposition algorithm
are described below (see Figure 4.14).

5.1.1 Split 2D-signal into four indexes

Assume a 2D-signal of size [N j×M j ] at a given resolution level j, and the lengthsN j ,M j

divided by 2. The algorithm starts with splitting 2D-signal into a set of Ij(x2n−1,y2m−1),
Ij(x2n−1,y2m), Ij(x2n,y2m−1) and Ij(x2n,y2m) pixel values as follows:

{Ij(xn,ym) with 1≤ n≤N j and 1≤m≤M j} (4.52)

:=
{[Ij(x2n−1,y2m−1) Ij(x2n−1,y2m)

Ij(x2n,y2m−1) Ij(x2n,y2m)

]}
(4.53)

:= {Ij(x2n−1,y2m−1), Ij(x2n−1,y2m), Ij(x2n,y2m−1), Ij(x2n,y2m), (4.54)
with 1≤ n≤N j/2 and 1≤m≤M j/2 }.
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Figure 4.13: Non-separable lifting scheme decomposition and reconstruction principle.
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Figure 4.14: Non-separable multiresolution ENO decomposition.
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5.1.2 Approximation resolution level in a 2D cell-average scheme

Based on this split, the approximation coefficient located at position (xn,ym), denoted
Ij−1(xn,ym) for a given n and m, is computed on a CA scheme as follows:

Ij−1(xn,ym) = 1
4
∑∑[

Ij(x2n−1,y2m−1) Ij(x2n−1,y2m)
Ij(x2n,y2m−1) Ij(x2n,y2m)

]

= 1
4
(
Ij(x2n−1,y2m−1) + Ij(x2n−1,y2m) + Ij(x2n,y2m−1) + Ij(x2n,y2m)

)
,

with 1≤ n≤N j/2 and 1≤m≤M j/2,

(4.55)

where ∑∑ indicates sum of all elements in matrix.

The pixel value Ij−1(xn,ym) is defined by the Cell-Average of the underlying bidi-
mensional function p(x,y) modeling the image, as follows:

Ij−1(xn,ym) =
∫

Cj−1
(n,m)

p(x,y)dxdy =
∫ n+1

n

∫ m+1

m
p(x,y)dxdy, (4.56)

where the 2D cell Cj−1
(n,m) is defined as [n,n+ 1]× [m,m+ 1].

5.1.3 Detail resolution level based on 2D cell-average ENO prediction

The error coefficients, denoted εj(x2n−1, y2m−1), εj(x2n−1,y2m), εj(x2n,y2m−1) and
εj(x2n,y2m), are then computed as follows:[

εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
=

=
[
Ij(x2n−1,y2m−1) Ij(x2n−1,y2m)
Ij(x2n,y2m−1) Ij(x2n,y2m)

]
−
[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
, (4.57)

or 

εj(x2n−1,y2m−1) = Ij(x2n−1,y2m−1)− Îj(x2n−1,y2m−1)

εj(x2n−1,y2m) = Ij(x2n−1,y2m)− Îj(x2n−1,y2m)

εj(x2n,y2m−1) = Ij(x2n,y2m−1)− Îj(x2n,y2m−1)

εj(x2n,y2m) = Ij(x2n,y2m)− Îj(x2n,y2m).

(4.58)

These predicted values Îj(x2n−1,y2m−1), Îj(x2n−1,y2m), Îj(x2n,y2m−1) and Îj(x2n,y2m)
are approximated by using those approximation coefficients from prediction stencil of
size (equal to 3× 3 cells) defined on cells as:

Sj−1(xn,ym, r1, r2) =


Cj−1

(n+r1−1,m+r2−1) Cj−1
(n+r1−1,m+r2) Cj−1

(n+r1−1,m+r2+1)
Cj−1

(n+r1,m+r2−1) Cj−1
(n+r1,m+r2) Cj−1

(n+r1,m+r2+1)
Cj−1

(n+r1+1,m+r2−1) Cj−1
(n+r1+1,m+r2) Cj−1

(n+r1+1,m+r2+1)

 ,
(4.59)
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where r1, r2 is an integer in [−1,0,1], corresponding to the position of the stencil
with respect to (n,m). There are then nine kinds of stencil positions: down-left
(DL) with (r1, r2) = (−1,−1), down-center (DC) with (r1, r2) = (−1,0), down-right
(DR) with (r1, r2) = (−1,1), center-left (CL) with (r1, r2) = (0,−1), center-center (CC)
with (r1, r2) = (0,0), center-right (CR) with (r1, r2) = (0,1), upper-left (UL) with
(r1, r2) = (1,−1), upper-center (UC) with (r1, r2) = (1,0) and upper-right (UR) with
(r1, r2) = (1,1).

A bi-quadratic Lagrange polynomial p(r1,r2)(x,y) is defined to interpolate nine values
of approximation coefficients Ij−1 on the stencil Sj−1(xn,ym, r1, r2). Therefore there
are nine polynomials (p(−1,−1)(x,y), p(−1,0)(x,y), p(−1,1)(x,y), p(0,−1)(x,y), p(0,0)(x,y),
p(0,1)(x,y), p(1,−1)(x,y), p(1,0)(x,y) and p(1,1)(x,y)) attached to nine corresponding sten-
cils. The nine unknown coefficients are deduced from the nine interpolation conditions
on the stencil, see in Appendix B.

In order to measure the degree of oscillations of such polynomials, the following
functions are used:

ζ(Sj−1(xn,ym, r1, r2)) =
∑∑

Sj−1(xn,ym,r1,r2)
|∆Ij−1

x |+ |∆Ij−1
y |, (4.60)

where ∆Ij−1
x and ∆Ij−1

y indicate differences of pixels on vertical and horizontal directions,
respectively.

The predicted value is deduced so that the optimal values (r1, r2) are the solution of
the following minimization problem:

(r∗1, r∗2) = arg min
−1≤r1,r2≤1

ζ(Sj−1(xn,ym, r1, r2)). (4.61)

This is expressed as the ENO interpolations as choosing the best stencil. The predicted
values are interpolated on the approximation resolution level Ij−1(xn,ym), and defined
in one-fourths (i.e. [n,n+ 1/2]× [m,m+ 1/2], [n,n+ 1/2]× [m+ 1/2,m+ 1], [n+
1/2,n+ 1]× [m,m+ 1/2] and [n+ 1/2,n+ 1]× [m+ 1/2,m+ 1]) of the 2D cell as follows:

[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
=

4

∫ n+1/2
n

∫m+1/2
m p(r∗1 ,r∗2)(x,y)dxdy

∫ n+1/2
n

∫m+1
m+1/2 p(r∗1 ,r∗2)(x,y)dxdy∫ n+1

n+1/2
∫m+1/2
m p(r∗1 ,r∗2)(x,y)dxdy

∫ n+1
n+1/2

∫m+1
m p(r∗1 ,r∗2)(x,y)dxdy

 . (4.62)

For example, if the pair of (r∗1, r∗2) = (0,0) as the center-center case, the four predicted
values are deduced as follows:[

Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (4.63)
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(4.64)

where

Ij−1
CC =


Ij−1(xn−1,ym−1) Ij−1(xn−1,ym) Ij−1(xn−1,ym+1)
Ij−1(xn,ym−1) Ij−1(xn,ym) Ij−1(xn,ym+1)

Ij−1(xn+1,ym−1) Ij−1(xn+1,ym) Ij−1(xn+1,ym+1)

 , (4.65)

and ⊗ is the product term by term.

Discussion: Due to the consistency condition, the prediction and projection operators
satisfy: ∑∑[

Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= 4Ij−1(xn,ym). (4.66)

Four predicted values are one of nine possibilities as shown in Appendix B. All the
best stencils Sj−1(xn,ym, r∗1, r∗2) are stored to be used in the lifting scheme backward
process to reconstruct the decomposed 2D-signal. These errors can be written in a
non-redundant way with a base matrix of change H. The matrix of this change H has

Hl = 1
4

[
+1 +1
+1 +1

]
, Hh = 1

4

[
+1 +1
−1 −1

]
, (4.67)

Hv = 1
4

[
+1 −1
+1 −1

]
, Hd = 1

4

[
+1 −1
−1 +1

]
. (4.68)

Therefore the detail subbands are deduced from[
εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
(4.69)

as follows: for the horizontal detail subband:

Dj−1
h (xn,ym) =

∑∑
Hh⊗

[
εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
(4.70)

=
∑∑ 1

4

[
+1 +1
−1 −1

]
⊗
[
εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
(4.71)
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for the vertical detail subband:

Dj−1
v (xn,ym) =

∑∑
Hv ⊗

[
εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
(4.72)

=
∑∑ 1

4

[
+1 −1
+1 −1

]
⊗
[
εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
(4.73)

for the diagonal detail subband:

Dj−1
d (xn,ym) =

∑∑
Hd⊗

[
εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
(4.74)

=
∑∑ 1

4

[
+1 −1
−1 +1

]
⊗
[
εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
. (4.75)

However, due to the consistent condition, we get

∑∑
Hl⊗

[
εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
(4.76)

=
∑∑ 1

4

[
+1 +1
+1 +1

]
⊗
[
εj(x2n−1,y2m−1) εj(x2n−1,y2m)
εj(x2n,y2m−1) εj(x2n,y2m)

]
= 0. (4.77)

Finally, the approximation resolution level Ij(xn,ym) is divided into four subbands: l,
h, v and d. The subband l concerns the approximation resolution denoted Ij−1; and the
other three subbands h, v and d contain the detail resolutions, named Dj−1

h ,Dj−1
v ,Dj−1

d ,
respectively (see Figure 4.13). Note that the size of each subband is deduced as the half
size of Ij in each direction:

M Ij :=
(
Ij−1,Dj−1

h ,Dj−1
v ,Dj−1

d

)
. (4.78)

The decomposition process can be iterated on Ij−1 until I0. The finest HDR logarithm
luminance IJ is then represented by 3J + 1 resolution levels or subbands as follows:

M IJ :=
(
I0,D0

h,D0
v,D0

d, ...,D
j−1
h ,Dj−1

v ,Dj−1
d , ...,DJ−1

h ,DJ−1
v ,DJ−1

d

)
. (4.79)

5.2 Adaptive weightings

This section proposes to individually weight each subband’s coefficient in order to reduce
in an appropriate manner the HDR image dynamic range. For this, the proposed weight
is a positive value between 0 and 1 depending on the statistical properties of each
subband and the neighborhood. The main operations are described in the following (see
Figure 4.15).
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Figure 4.15: Adaptive weightings.

First, the absolute value of the subband coefficients is taken: A0
l = |I0|, Aj−1

h =
|Dj−1

h |, Aj−1
v = |Dj−1

v |, Aj−1
d = |Dj−1

d | for j = 1, ...,J . Denote Aj−1
sb (x,y), with sb =

l,h,v,d and j = 1, ...,J , the positive coefficient at position (x,y) in the subband sb at
resolution level j−1. We associate to this coefficient its weighted average in the domain
corresponding to the subband sb:

aj−1
sb (x,y) = Aj−1

sb (x,y) ∗G(x,y), (4.80)

where ∗ is the convolutional product; and G(x,y) is a Gaussian filter given by:

G(x,y) = 1
2πσ2

sb

e
−x

2+y2

2σ2
sb , (4.81)

where σsb is the standard deviation of the Gaussian distribution of the subband sb

deduced from the median component in [56]:

σsb = median(Aj−1
sb )

0.6745 . (4.82)

After this, a monotonic nonlinear decreasing function F (as in [26]) is applied on
the coefficients aj−1

sb , resulting in the positive weighting coefficient qj−1
sb (x,y) between 0

and 1, as follows:

qj−1
sb (x,y) = F(aj−1

sb (x,y)) = 1

(aj−1
sb (x,y)+ε
δj−1

)1−γ
, (4.83)
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where γ ∈ [0,1] is the compressive factor; j − 1 the resolution level (i.e. j = 1, ...,J)
associated to the subband sb. ε is used to avoid singularities when the power 1− γ is
a positive value. δj−1 is considered as a gain control stability level depending on the
resolution level j− 1, and the intensity of subband:

δj−1 = [1− (j− 1)(1− ξ)
J

]× Āj−1
sb , (4.84)

where Āj−1
sb is the average of Aj−1

sb . The subband coefficients are then weighted as
follows:

I′0 = q0
l ⊗ I0 and D′j−1

sb = qj−1
sb ⊗Dj−1

sb , (4.85)

with sb= h,v,d; j = 1, ...,J ; and ⊗ is the product term by term. The modified subbands
(or multiresolution levels) can be rewritten as follows:(

I′0,D′0h ,D′0v ,D′0d , ...,D
′j−1
h ,D′j−1

v ,D′j−1
d , ...,D′J−1

h ,D′J−1
v ,D′J−1

d

)
. (4.86)

5.3 Non-separable backward algorithm

The non-separable backward algorithm performs the inverse procedures of the non-
separable forward steps as described below (see Figure 4.16).

5.3.1 Modified errors in 2D cell-average scheme

In the backward process, the matrix of this change of basis H̃ has the following forms:

H̃l =
[
+1 +1
+1 +1

]
, H̃h =

[
+1 +1
−1 −1

]
, (4.87)

H̃v =
[
+1 −1
+1 −1

]
, H̃d =

[
+1 −1
−1 +1

]
. (4.88)

Like the separable backward algorithm, the non-separable backward process starts
with the four coarsest resolution levels, i.e (I′0, D′0h , D′0v , D′0d ), to generate the ap-
proximation coefficients I′1. The same process is then iterated until reaching the finest
resolution i.e. j = J corresponding to the intermediate HDR image, denoted I′J , of size
NJ ×MJ .

Assume first that the algorithm processed all resolution levels until j− 1. Therefore
the next step consists to recover the approximation image I′j of size N j ×M j using the
following blocks: I′j−1, D′j−1

h , D′j−1
v and D′j−1

d .

Based on three subbands D′j−1
h , D′j−1

v and D′j−1
d , the modified errors are organized

and computed as follows:[
ε′j(x2n−1,y2m−1) ε′j(x2n−1,y2m)
ε′j(x2n,y2m−1) ε′j(x2n,y2m)

]
, (4.89)
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where

ε′j(x2n−1,y2m−1) =
∑∑

H̃l⊗
[

0 D′j−1
h (xn,ym)

D′j−1
v (xn,ym) D′j−1

d (xn,ym)

]
(4.90)

=
∑∑[

+1 +1
+1 +1

]
⊗
[

0 D′j−1
h (xn,ym)

D′j−1
v (xn,ym) D′j−1

d (xn,ym)

]
(4.91)

ε′j(x2n−1,y2m) =
∑∑

H̃h⊗
[

0 D′j−1
h (xn,ym)

D′j−1
v (xn,ym) D′j−1

d (xn,ym)

]
(4.92)

=
∑∑[

+1 +1
−1 −1

]
⊗
[

0 D′j−1
h (xn,ym)

D′j−1
v (xn,ym) D′j−1

d (xn,ym)

]
(4.93)

ε′j(x2n,y2m−1) =
∑∑

H̃v ⊗
[

I′j−1(xn,ym) D′j−1
h (xn,ym)

D′j−1
v (xn,ym) D′j−1

d (xn,ym)

]
(4.94)

=
∑∑[

+1 −1
+1 −1

]
⊗
[

0 D′j−1
h (xn,ym)

D′j−1
v (xn,ym) D′j−1

d (xn,ym)

]
(4.95)

ε′j(x2n,y2m) =
∑∑

H̃d⊗
[

0 D′j−1
h (xn,ym)

D′j−1
v (xn,ym) D′j−1

d (xn,ym)

]
(4.96)

=
∑∑[

+1 −1
−1 +1

]
⊗
[

0 D′j−1
h (xn,ym)

D′j−1
v (xn,ym) D′j−1

d (xn,ym)

]
. (4.97)

Split

NONSEPENO Prediction

Hl

Hh

Hd

Merge

I j(xn,ym)
1 £ n£ N j

1 £ m£ M j

Image
I j

CA

I j(x2n,y2m)

I j(x2n,y2m-1)

I j(x2n-1,y2m)

I j(x2n-1,y2m-1) D j-1(xn,ym)

I j-1(xn,ym)
I j-1

D j-1

D j-1(xn,ym)

D j-1(xn,ym)

D j-1

D j-1

h
h

v
v

d
d

e j(x2n,y2m)

e j(x2n,y2m-1)

e j(x2n-1,y2m)

e j(x2n-1,y2m-1)

Hv

NONSEPENO Prediction

I j(x2n,y2m)

I j(x2n,y2m-1)

I j(x2n-1,y2m)

I j(x2n-1,y2m-1)

Image
I j

NONSEP ENO
RECONSTRUCTION

NONSEP ENO
DECOMPOSITION

I j(x2n-1,y2m-1)
1 £ n£ N j /2
1 £ m£ M j /2

I j(x2n-1,y2m)
1 £ n£ N j /2
1 £ m£ M j /2

I j(x2n,y2m-1)
1 £ n£ N j /2
1 £ m£ M j /2

I j(x2n,y2m)
1 £ n£ N j /2
1 £ m£ M j /2

1 £ n£ N j /2
1 £ m£ M j /2

1 £ n£ N j /2
1 £ m£ M j /2

1 £ n£ N j /2
1 £ m£ M j /2

1 £ n£ N j /2
1 £ m£ M j /2

z(S j-1(xn,ym,r1,r2))

D j-1(xn,ym)

D j-1(xn,ym)

D j-1(xn,ym)

h

v

d

1 £ n£ N j /2
1 £ m£ M j /2

1 £ n£ N j /2
1 £ m£ M j /2

1 £ n£ N j /2
1 £ m£ M j /2

1 £ n£ N j /2
1 £ m£ M j /2

I j-1(xn,ym)

Hl

Hh

Hd

Hv

I j(x2n-1,y2m-1)

I j(x2n-1,y2m)

I j(x2n,y2m-1)

I j(x2n,y2m)e j(x2n,y2m)

e j(x2n,y2m-1)

e j(x2n-1,y2m)

e j(x2n-1,y2m-1)

I j(xn,ym)
1 £ n£ N j

1 £ m£ M j

I j-1(xn,ym) (r1, r2) *  *

r1, r2 *  * (xn,ym)

Figure 4.16: Non-separable ENO reconstruction.
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5.3.2 Modified predicted values in 2D cell-average scheme

Since the best stencils Sj−1(xn,ym, r∗1, r∗2) are stored, the modified predicted values
are interpolated on the modified approximation resolution level I′j−1(xn,ym), and
defined in one-fourths (i.e. [n,n+ 1/2]× [m,m+ 1/2], [n,n+ 1/2]× [m+ 1/2,m+ 1],
[n+ 1/2,n+ 1]× [m,m+ 1/2] and [n+ 1/2,n+ 1]× [m+ 1/2,m+ 1]) of the 2D cell as
follows: [

Î′j(x2n−1,y2m−1) Î′j(x2n−1,y2m)
Î′j(x2n,y2m−1) Î′j(x2n,y2m)

]
=

4

∫ n+1/2
n

∫m+1/2
m p(r∗1 ,r∗2)(x,y)dxdy

∫ n+1/2
n

∫m+1
m+1/2 p(r∗1 ,r∗2)(x,y)dxdy∫ n+1

n+1/2
∫m+1/2
m p(r∗1 ,r∗2)(x,y)dxdy

∫ n+1
n+1/2

∫m+1
m p(r∗1 ,r∗2)(x,y)dxdy

 . (4.98)

The four predicted values are one of nine possibilities as shown in Appendix B. For
example, if the pair of (r∗1, r∗2) = (0,0) as the center-center case, the four predicted values
are deduced as follows: [

Î′j(x2n−1,y2m−1) Î′j(x2n−1,y2m)
Î′j(x2n,y2m−1) Î′j(x2n,y2m)

]
=

= 4
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(4.99)

where

I′j−1
CC =


I′j−1(xn−1,ym−1) I′j−1(xn−1,ym) I′j−1(xn−1,ym+1)
I′j−1(xn,ym−1) I′j−1(xn,ym) I′j−1(xn,ym+1)

I′j−1(xn+1,ym−1) I′j−1(xn+1,ym) I′j−1(xn+1,ym+1)

 . (4.100)

5.3.3 Merge four indexes into 2D-signal

See Figure 4.16. Therefore, all pixels of finer multiresolution level are deduced
[
I′j(x2n−1,y2m−1) I′j(x2n−1,y2m)
I′j(x2n,y2m−1) I′j(x2n,y2m)

]
=

=
[
ε′j(x2n−1,y2m−1) ε′j(x2n−1,y2m)
ε′j(x2n,y2m−1) ε′j(x2n,y2m)

]
+
[
Î′j(x2n−1,y2m−1) Î′j(x2n−1,y2m)
Î′j(x2n,y2m−1) Î′j(x2n,y2m)

]
(4.101)



78 Chapter 4. Proposed TMOs based on ENO multiresolution families

, or 

I′j(x2n−1,y2m−1) = ε′j(x2n−1,y2m−1) + Î′j(x2n−1,y2m−1)

I′j(x2n−1,y2m) = ε′j(x2n−1,y2m) + Î′j(x2n−1,y2m)

I′j(x2n,y2m−1) = ε′j(x2n,y2m−1) + Î′j(x2n,y2m−1)

I′j(x2n,y2m) = ε′j(x2n,y2m) + Î′j(x2n,y2m).

(4.102)

Finally four kinds of predicted values are merged into the image I′j . The image I′j can
be written as follows:

I′j := M−1
(
Ij−1,Dj−1

h ,Dj−1
v ,Dj−1

d

)
. (4.103)

This iterates till j = J in order to reconstruct the finest image I′J :

I′J := M−1
(
I′0,D′0h ,D′0v ,D′0d , ...,D

′j−1
h ,D′j−1

v ,D′j−1
d , ...,D′J−1

h ,D′J−1
v ,D′J−1

d

)
.

(4.104)
Simulation results will be discussed in section 6.2.

6 Simulation results and discussions

The simulation results are organized in two parts: the first part concerns the separable
mutiresolution (ENO PV, ENO CA) approaches (see section 3 and section 4, respectively)
and the second part is related to the non-separable mutiresolution (ENO CA) approach
(see section 5) described in the following sections.

6.1 For separable mutiresolution approaches

This section compares the quality of the tone mapped images using the mutiresolution
families described in section 3 and section 4. Two TMO operators, namely:

i. "Proposed_SEPENOPV_LJ" for ENO Point-Value,

ii. "Proposed_SEPENOCA_LJ" for ENO Cell-Average,

are used with the following parameters: αa = 0.3, αd = 0.7 and J = 1,2. The parameters
αa, αd are set less than 1, and the condition αa < αd is set in an empirical way in order
to get the best tone mapped images in term of details visibility.

Figure 4.17 and Figure 4.18 show the "Light" and "BottlesSmall" HDR test tone
mapped images. One can conclude that the tone mapped images show good details
preservations as well as details visibility due to the decomposition level. However,
considering on the level, the more level J the more artifacts appear (see in Figure 4.17b
and Figure 4.17d), therefore we limit the number of level to 2, although the highest
metrics are mostly belonged to the method "Proposed_SEPENOCA_L2" in Table 4.1.
The range of values is clamped by 255, that is why the normalized histograms are
abruptly increased in the last bin.
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(a) SEPENOPV_L1 (TMQI1=0.968) (b) SEPENOPV_L2 (TMQI1=0.960)

(c) SEPENOCA_L1 (TMQI1=0.972) (d) SEPENOCA_L2 (TMQI1=0.970)

Figure 4.17: "Light" HDR test image (17.46 f-stops) - Proposed_SEPENO (PV and CA) with
J = 1,2.
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(a) SEPENOPV_L1 (TMQI1=0.903) (b) SEPENOPV_L2 (TMQI1=0.931)

(c) SEPENOCA_L1 (TMQI1=0.901) (d) SEPENOCA_L2 (TMQI1=0.934)

Figure 4.18: "BottlesSmall" HDR test image (16.03 f-stops) - Proposed_SEPENO (PV and CA)
with J = 1,2.

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

(a) SEPENOPV_L1 (TMQI1=0.968)

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

(b) SEPENOPV_L2 (TMQI1=0.960)
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(d) SEPENOCA_L2 (TMQI1=0.970)

Figure 4.19: Normalized histograms of "Light" tone mapped images - Proposed_SEPENO (PV
and CA) with J = 1,2.
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Table 4.1: Tone Mapped Image Quality Index 1 (TMQI1) - Separable (PV and CA) approach
for levels J = 1,2.

Images DR f-stops SEPCA_L1 SEPCA_L2 SEPPV_L1 SEPPV_L2
Lausanne1 7.71 0.817 0.835 0.817 0.830
CraterLake1 8.13 0.833 0.863 0.838 0.862
Shasta2 8.48 0.770 0.788 0.779 0.790
Synagogue 8.57 0.755 0.755 0.754 0.747
Anturium 8.73 0.882 0.896 0.880 0.888
BowRiver 9.53 0.835 0.868 0.834 0.862
Bridges 11.17 0.855 0.863 0.855 0.861
Stairway1 13.37 0.762 0.773 0.767 0.775
ArchRock 13.60 0.921 0.957 0.919 0.950
DollDoll 13.89 0.730 0.732 0.728 0.728
ClockBuilding 14.19 0.751 0.753 0.752 0.750
OxfordChurch 15.43 0.876 0.895 0.873 0.885
BottlesSmall 16.03 0.901 0.934 0.903 0.931
Montreal 16.06 0.606 0.613 0.608 0.618
SmallOffice 16.29 0.943 0.934 0.942 0.928
Light 17.46 0.972 0.970 0.968 0.960
BridgeStudios2 18.13 0.733 0.747 0.742 0.757
Memorial 18.38 0.932 0.918 0.927 0.903
ClaridgeHotel 23.44 0.840 0.857 0.842 0.855
Mistaya1 23.77 0.840 0.863 0.837 0.853
BrookHouse 23.98 0.970 0.981 0.967 0.973
PeaceRocks 24.13 0.841 0.830 0.840 0.822
GGpark2 24.41 0.843 0.851 0.840 0.841
AtriumNight 28.68 0.973 0.970 0.966 0.950
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6.2 For non-separable mutiresolution approach

This section concerns the non-separable mutiresolution approach described in section 5.
TMO operator namely "Proposed_NONSEPENO_LJ" is used with the following pa-
rameters: J = 1,2, γ = 0.6 and ξ = 0.1.

(a) NONSEPENO_L1 (TMQI1=0.962) (b) NONSEPENO_L2 (TMQI1=0.951)

Figure 4.20: "Light" HDR test image (17.46 f-stops) - Proposed_NONSEPENO with J = 1,2.

(a) NONSEPENO_L1 (TMQI1=0.900) (b) NONSEPENO_L2 (TMQI1=0.903)

Figure 4.21: "BottlesSmall" HDR test image (16.03 f-stops) - Proposed_NONSEPENO with
J = 1,2.

Figure 4.20 and Figure 4.21 show "Light" and "Bottle" HDR test tone mapped images.
The tone mapped images are good in terms of details visibility. The more details are
extracted due to the non-separable approach as well as the adaptive weighting technique.
This confirms the behaviors of the normalized histograms in Figures 4.22 with existing
many peaks or edges. We limit the number of level to 2. The highest metrics are mostly
belonged in the method "Proposed_NONSEPENOCA_L1" in Table 4.2.
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Figure 4.22: Normalized histograms of "Light" tone mapped images - Proposed_NONSEPENO
with J = 1,2.
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Table 4.2: Tone Mapped Image Quality Index 1 (TMQI1) - Non-separable approach for levels
J = 1,2.

Images DR f-stops NONSEP_L1 NONSEP_L2
Lausanne1 7.71 0.916 0.933
CraterLake1 8.13 0.943 0.940
Shasta2 8.48 0.918 0.863
Synagogue 8.57 0.972 0.968
Anturium 8.73 0.969 0.978
BowRiver 9.53 0.953 0.952
Bridges 11.17 0.968 0.956
Stairway1 13.37 0.896 0.892
ArchRock 13.60 0.952 0.943
DollDoll 13.89 0.888 0.905
ClockBuilding 14.19 0.939 0.935
OxfordChurch 15.43 0.934 0.916
BottlesSmall 16.03 0.900 0.903
Montreal 16.06 0.820 0.816
SmallOffice 16.29 0.945 0.954
Light 17.46 0.962 0.951
BridgeStudios2 18.13 0.913 0.917
Memorial 18.38 0.913 0.885
ClaridgeHotel 23.44 0.925 0.936
Mistaya1 23.77 0.974 0.980
BrookHouse 23.98 0.983 0.970
PeaceRocks 24.13 0.943 0.925
GGpark2 24.41 0.980 0.974
AtriumNight 28.68 0.934 0.916

6.3 Comparison and discussion

Figure 4.23a shows "Light" HDR tone mapped image with Proposed_NONSEPENO_L1
method. It can be seen that the reconstruction of details with natural ways is better
than "Li" approach (Figure 4.23b). Indeed, Li added the post-processing methods in
visual results such as cutting off the brightest and darkest parts as well as adding 15%
of a histogram equalized layer to the result.
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(a) NONSEPENO_L1 (TMQI1=0.962) (b) "Li" (TMQI1=0.888)

Figure 4.23: "Light" HDR test image (17.46 f-stops) - Proposed_NONSEPENO_L1 versus "Li".

The "Anturium" HDR tone mapped image with Proposed_SEPENOCA_L1 in
Figure 4.24a shows better details than "Duan" method in Figure 4.24b particularly
around leaves.

(a) SEPENOCA_L1 (TMQI1=0.882) (b) "Duan" (TMQI1=0.964)

Figure 4.24: "Anturium" HDR test image (8.73 f-stops) - Proposed_SEPENOCA_L1 versus
"Duan".
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(a) NONSEPENO_L1 (TMQI1=0.913) (b) "Duan" (TMQI1=0.935)

(c) "Fattal" WRB (TMQI1=0.927) (d) "Li" (TMQI1=0.834)

Figure 4.25: "Memorial" HDR test image (18.38 f-stops) - Proposed_NONSEPENO_L1 versus
"Duan", "Fattal" and "Li".

Figure 4.25a, Figure 4.25b, Figure 4.25c and Figure 4.25d provide the visual qual-
ity of the "Memorial" HDR tone mapped images. One can observe that the details
are well rendered in favor of our method (e.g. tiles, rosette). In Figure 4.25a, the
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tiles on the top right on the tone mapped image are better rendered in the method
Proposed_NONSEPENO_L1. Figure 4.26 compare the visual quality between separa-
ble and non-separable method; one can see that the non-separable is better than the
separable.

(a) SEPENOCA_L1 (TMQI1=0.932) (b) NONSEPENO_L1 (TMQI1=0.913)

Figure 4.26: "Memorial" HDR test image (18.38 f-stops) - Proposed_SEPENOCA_L1 versus
Proposed_NONSEPENO_L1.

Our TMOs using ENO approaches have the ability to solve isolated singularities.
The luminance of "AtriumNight" HDR tone mapped image is represented on Figure 4.27a
where the red rectangle frames a specific area. This area is shown in Figure 4.27b,
Figure 4.27c, Figure 4.27d, Figure 4.27e, as close-ups of the four tone mapped im-
ages using "Fattal" WRB [25], "Fattal" WCDF [25], Proposed_SEPENOCA_L1 and
Proposed_SEPENOPV_L1. It can be seen that the horizontal edge of the staircase
step is better rendered with non-linear multiresolution families using dependent data
interpolation. We can observe that horizontal and vertical edges of all tone mapped
images are well rendered. This is related to advantages of the ENO approaches.
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(a) AtriumNight (LDR luminance)

(b) "Fattal" WRB (c) "Fattal" WCDF (d) SEPENOCA_L1 (e) SEPENOPV_L1

Figure 4.27: Close-up of the tone mapped image luminance using "Fattal" RWB [25], "Fattal"
WCDF [25], Proposed_SEPENOCA_L1 and Proposed_SEPENOPV_L1.

7 Conclusion

This chapter proposed image tone mapping operators based on Essential Non-oscillatory
multiresolutions such as separable approaches (Point-Value, Cell-Average) and non-
separable approach (Cell-Average). These TMO methods, which are global and local,
have the ability to reduce the dynamic range while preserving details in the tone mapped
image.

The aim of the following chapter is to preserve the details and enhance the contrast
of the tone mapped images.
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Proposed TMO based on the contrast enhancement
and details preservation

This chapter concerns High Dynamic Range (HDR) image Tone Mapping (TM)
issue to convert HDR images into Low Dynamic Range (LDR) images while
preserving as much as possible the HDR image visual quality. The developed
approach proceeds in three main stages. The first one decomposes the HDR
image using a separable near optimal lifting scheme. This latter relies on an
adaptive powerful prediction step formulated by a linear weighted combination
of the neighboring pixels at each resolution level. These weights are deduced
in such a way to extract as much as possible the relevant finest details in the
complex HDR image. The second stage, before reconstructing the decomposed
image, judiciously modifies the approximation and detail coefficients according to
their entropy. Finally, the third stage acts as a perceptual quantizer. It adjusts the
distribution of the logarithm intermediate LDR luminance with respect to the HVS
using a piecewise linear function. Simulation results show that the proposed TM
approach provides good results compared to existing competitive TM operators.
The results of our work have been published at the 22nd IEEE Signal Processing:
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1 Introduction

The great difficulty in setting up an HDR image tone mapping algorithm lies in the way
in which the relevant information is chosen, responding both to a good visual quality
rendering confirmed by an observer (or measured by a quality metric) on low-dynamic
display devices and to a faithfulness fairly close to the HDR image. In this objective,
the TM algorithm described in this section first proposes to decompose the HDR image
into several levels of resolution, approximations and details, then to analyze and refine
each level of resolution to retain only the relevant information in the sense of a visual
rendering evaluated by a quality metric.

The developed HDR image TM algorithm is composed of four main stages described
in the following sections and summarized by the block diagram in Figure 5.1. The first
stage, described in section 3, concerns the separable adaptive lifting scheme. After having
appropriately weighted the coefficients of each resolution levels (in section 4), the third
stage presented in section 5 reconstructs the intermediate LDR image. Finally the last
stage, given in section 6, adjusts the logarithm luminance of the intermediate LDR image
according to a perceptual linear quantizer with respect to the HVS properties. Before
describing the proposed HDR image TM algorithm, the following section introduces
some notations.

2 Notations

The original HDR image, considered at the finest resolution level denoted J , is assumed
to be of size NJ ×MJ . Denote LHDR and LLDR respectively the HDR and LDR image
luminance. The index j refers to the resolution level (with j = 1, ...,J); B is the total
number of bins; and the index i represents the given bin (i= 1, ...,B).

In the rest of this chapter, the HDR image luminance is considered in the logarithm
domain since it is well adapted to the HVS. It is denoted IJ and defined as follows:

IJ =
{
IJ (xn,ym) = log10(LHDR(xn,ym)) for 1≤ n≤NJ and 1≤m≤MJ

}
, (5.1)

where IJ (xn,ym) is the HDR logarithm luminance value of the pixel located at position
(xn,ym).

3 The adaptive lifting scheme forward algorithm

This section concerns the first stage of the HDR image TM algorithm. It decomposes
the logarithm luminance of the original HDR image into approximations and details
resolution levels. This decomposition is achieved according to the forward process of a
separable (i.e. 1D-signal in horizontal and vertical directions) near optimal Cell-Average
lifting scheme. This choice, among the various developed decomposition strategies in
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Figure 5.1: Diagram block of the proposed HDR image TM algorithm based on contrast and
details combination scheme.
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Figure 5.2: Separable lifting scheme decomposition principle (this scheme is given in Chapter 4).

the literature, is motivated by the fact that the relevant details are accurately predicted
since the coefficients of the filters are adapted locally to the data to be processed.

The decomposition process consists to go from the finest resolution level J to the
coarse resolution level 0. At a given resolution level j (with 1≤ j ≤ J), the algorithm
deals with the approximation coefficients obtained at resolution level j i.e. Ij(xn,yk)
(with 1≤ n≤N j and 1≤ k ≤M j) as shown in Figure 5.2. The forward process steps
of the separable decomposition algorithm are described below.

1. Split 1D-signal into odd and even indexes
At a given resolution level j and a given n belonging to [1,N j ] (i.e. xn), the algorithm
starts with splitting the horizontal 1D-signal, i.e. Ij(xn,yk) for 1≤ k ≤M j , into a set
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of odd Ij(xn,y2k−1) and even Ij(xn,y2k) indexes as follows:

{Ij(xn,yk) with 1≤ k ≤M j}

:= {Ij(xn,y2k−1), Ij(xn,y2k) with 1≤ k ≤M j/2 }. (5.2)

The process is then repeated until n=N j .

2. Approximation resolution level in a cell-average scheme
Based on this split, the approximation coefficient located at position (xn,yk), denoted
Vj−1(xn,yk) for a given n, is computed on a Cell-Average (CA) scheme as follows:

Vj−1(xn,yk) = 1
2
(
Ij(xn,y2k−1) + Ij(xn,y2k)

)
for 1≤ k ≤M j/2. (5.3)

The process is then repeated until n=N j .

3. Detail resolution level based on an adaptive prediction
The detail coefficient, denoted Dj−1(xn,y2k−1) for a given n, is then computed at odd
indexes (xn,y2k−1) as follows:

Dj−1(xn,y2k−1) = Ij(xn,y2k−1)− Îj(xn,y2k−1) for 1≤ k ≤M j/2, (5.4)

where Îj(xn,y2k−1) is the predicted logarithm luminance value at odd position (xn,y2k−1)
and resolution level j.

This predicted value is expressed as a linear weighted combination of the neighboring
approximation coefficients:

Îj(xn,y2k−1) =
2∑
i=0

uj−1
i (xn) ·Vj−1(xn,yk+i−1) for 1≤ k ≤M j/2, (5.5)

where the weights uj−1
i (xn) (with i= 0,1,2) have to preserve the average of the initial

1D-signal satisfying then the following condition:

2∑
i=0

uj−1
i (xn) = 1. (5.6)

These weights uj−1
i (xn) are deduced so that the Mean Squared Error (MSE) between

Îj(xn,y2k−1) and Ij(xn,y2k−1) (for 1≤ k ≤M j/2) is minimized:

E = arg min
uj−1
i

‖Îj(xn,y2k−1)− Ij(xn,y2k−1)‖22 for 1≤ k ≤M j/2. (5.7)

Therefore these weights are computed so that the partial derivatives of the MSE, given
by equation (5.7), with respect to uj−1

i (xn) (i.e. i = 0,1,2) are equal to zero. See
more in Appendix C. Denote uj−1(xn) =

[
uj−1

0 (xn), uj−1
1 (xn), uj−1

2 (xn)
]T the weight

vector at resolution level j− 1 related to the row (xn) according to the coefficient to be
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approximated. Calculations lead to solve this system of equations provided in a matrix
form:

Γj−1 ·uj−1 = rj−1, (5.8)

where Γj−1 is the autocorrelation matrix defined as follows:

Γj−1 =


Rj−1(0) Rj−1(1) Rj−1(2)
Rj−1(−1) Rj−1(0) Rj−1(1)
Rj−1(−2) Rj−1(−1) Rj−1(0)

 , (5.9)

with Rj−1(i) the autocorrelation of Vj−1(xn,yk) given by:

Rj−1(i) = Vj−1(xn,yk+i−1) ·Vj−1(xn,yk−1), (5.10)

and rj−1 is the cross-correlation vector defined as:

rj−1 =


rj−1(0)
rj−1(1)
rj−1(2)

 , (5.11)

where rj−1(i) represents the cross-correlation function between Vj−1(xn,yk) and Ij(xn,y2k−1)
for 1≤ k ≤M j/2 provided by:

rj−1(i) = Vj−1(xn,yk+i−1) · Ij(xn,y2k−1). (5.12)

Therefore the weights, associated to the row xn, are deduced as follows:

uj−1(xn) = (Γj−1)−1 · rj−1. (5.13)

All the weight vectors are stored to be used in the adaptive lifting scheme backward
process to reconstruct the decomposed 1D-signal. The horizontal decomposition steps
(i.e. 1, 2 and 3) are summarized in Figure 5.3.
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Figure 5.3: 1D-signal decomposition in a horizontal direction.

4. Arrangement of approximation and detail coefficients
To process the 1D-signal in the vertical direction and for sake of convenience, the
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approximation and details coefficients are organized as shown in Figure 5.2 and renamed
as follows:

{Vj−1(xn,yk) for 1≤ k ≤M j/2 and ∀n ∈ [1,N j ]}
:= {Wj(xk,ym) for 1≤ k ≤N j and ∀m ∈ [1,M j/2]}.

(5.14)

{Dj−1(xn,y2k−1) for 1≤ k ≤M j/2 and ∀n ∈ [1,N j ]}
:= {Uj(xk,ym) for 1≤ k ≤N j and ∀m ∈ [1,M j/2]}.

(5.15)

5. Repeat steps 1, 2 and 3
Steps 1, 2 and 3 are now being applied on Wj(xk,ym) and Uj(xk,ym) for a given
m ∈ [1,M j/2]. Figure 5.4 summarizes the vertical 1D-signal forward decomposition.
Note that the approximation step requires the prediction of Ŵj(x2k−1,ym) (respectively
Ûj(x2k−1,ym)) based on a set of weights vj−1

i (respectively wj−1
i ). These weights need

to be stored for the backward process lifting scheme to reconstruct the decomposed
logarithm luminance image.

Finally, the approximation resolution level Ij(xn,ym) is divided into 4 blocks: ll, lh,
hl and hh. The block ll concerns the approximation resolution denoted Ij−1; and the
other three blocks lh, hl and hh contain the detail resolutions, named Dj−1

lh ,Dj−1
hl ,Dj−1

hh ,
respectively (see Figure 5.2). Note that the size of each block is deduced as the half size
of Ij in each direction:

M Ij :=
(
Ij−1, Dj−1

lh , Dj−1
hl , Dj−1

hh

)
. (5.16)

The decomposition process can be iterated on Ij−1 until I0. The finest HDR logarithm
luminance IJ is then represented by 3J + 1 resolution levels as follows:

M IJ :=
(
I0,D0

lh,D0
hl,D0

hh, ...,D
j−1
lh ,Dj−1

hl ,Dj−1
hh , ...,DJ−1

lh ,DJ−1
hl ,DJ−1

hh

)
. (5.17)

4 Weighting step according to the entropy of each subband

Before performing the adaptive lifting scheme backward process, the HDR image TM
approach proposes to modify the approximation and detail coefficients in an appropriate
way taking into account the information available in each subband measured by the
entropy as explained below.

Denote Ea the entropy of the approximation coefficients at the coarsest resolution
level 0; and Ej−1

d the entropy at resolution level j − 1 of the detail coefficients set
{Dj−1

lh ,Dj−1
hl ,Dj−1

hh }. The weighting algorithm initializes the number of resolution levels,
denoted Nl, to J (i.e. Nl = J). The weighting algorithm processes as follows.

1. Computation of the entropies
The weighting algorithm computes the Nl+ 1 entropies namely Ea, E0

d , E1
d , ..., E

j−1
d ,...,

ENl−1
d .
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Figure 5.4: 1D-signal decomposition in a vertical direction.

2. Computation of the weights
Based on the Nl + 1 calculated entropies, positive weights smaller than one are deduced
as follows: 

αa =
∑Nl

i=1E
i−1
d

Ea+
∑Nl

i=1E
i−1
d

αj−1
d =

Ea+
∑Nl

i=1,,(j−1)E
i−1
d

Ea+
∑Nl

i=1E
i−1
d

for j = 1, ...,Nl
(5.18)

where αa is the weight associated to the approximation coefficients at coarsest resolution
level 0; and αj−1

d is the weight related to detail coefficients at resolution level j− 1.

3. Modification of the detail and approximation coefficients
The coefficients of the four coarsest resolution levels are modified according to:

I′0 = αa× I0,

D′0lh = α0
d×D0

lh, D′0hl = α0
d×D0

hl, D′0hh = α0
d×D0

hh. (5.19)

4. Reconstruction of the coarsest subband
The modified coefficients in step 2 are used to reconstruct the coarsest subband, denoted
I′1, according to the adaptive lifting scheme backward process (see section 5). The
number of resolution levels Nl = J is then reduced to Nl− 1 (i.e. Nl =Nl− 1) to deal
with step 4.

5. Repeat steps 1, 2, 3 and 4
The Nl entropies (associated to 3Nl− 2 subbands) are computed again to update the
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Figure 5.5: Separable lifting scheme reconstruction principle (this scheme is given in Chapter 4).

weights αa and {αj−1
d with j = 1, ...,Nl} according to steps 1 and 2 (see equation (5.18)).

After that, these weights are applied on the coefficients I′1, D′1lh, D′1hl, D′1hh to build I′2

as explained in step 3. These steps are repeated until Nl = 0 thus reconstructing the
coarse tone mapped HDR image denoted ĨJLDR, called coarse LDR image.

5 The adaptive lifting scheme backward algorithm

The adaptive lifting scheme backward process starts with the 4 coarsest resolution
levels, i.e (I′0, D′0lh, D′0hl, D′0hh), to generate the approximation coefficients I′1. The
same process is then iterated until reaching the finest resolution i.e. j = J corresponding
to the intermediate HDR image, denoted I′J , of size NJ ×MJ .

Assume first that the algorithm processed all resolution levels until j− 1. Therefore
the next step consists to recover the approximation image I′j of size N j ×M j using
the following blocks: I′j−1, D′j−1

lh , D′j−1
hl and D′j−1

hh . The reconstruction processes
are carried out inversely to the decomposition stage, first in a vertical direction (see
Figure 5.6) and then in a horizontal direction (see Figure 5.7). The mathematical
equations describing this process are derived in what follows.

First the algorithm deals with the coefficients in a vertical direction using I′j−1 and
D′j−1

hl . At a given m, the approximation coefficients at odd positions W′j(x2k−1,ym)
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with 1≤ k ≤N j/2 are deduced as follows:

W′j(x2k−1,ym) = Ŵ′j(x2k−1,ym) + D′j−1
hl (xk,ym) for 1≤ k ≤N j/2, (5.20)

where Ŵ′j(x2k−1,ym) is the predicted coefficient, at odd position, deduced from the
weighted combination vj−1

i (ym) (with i = 0,1,2) of the neighboring approximation
coefficients I′j−1(x2k−1,ym) as follows:

Ŵ′j(x2k−1,ym) =
2∑
i=0

vj−1
i (ym) · I′j−1(xk+i−1,ym) for 1≤ k ≤N j/2. (5.21)

The weights vj−1
i (ym) are those computed and stored in the decomposition process.

While the approximation coefficients W′j(x2k,ym), at even positions, are deduced in a
CA scheme:

W′j(x2k,ym) = 2I′j−1(xk,ym)−W′j(x2k−1,ym) for 1≤ k ≤N j/2. (5.22)

The odd and even approximation coefficients are then merged to constitute the
1D-signal as follows:

{W′j(xk,ym) for 1≤ k ≤N j}

:= {W′j−1(x2k−1,ym), W′j−1(x2k,ym) for 1≤ k ≤N j/2}.
(5.23)

This process is repeated for all m to build W′j of size N j ×M j/2.

In the other hand, these same steps are applied to D′j−1
lh and D′j−1

hh to generate the
new block U′j of size N j×M j/2 (see Figure 5.6). As in the decomposition strategy, W′j

and U′j are respectively renamed V′j−1 and D′j−1 and the same steps are performed but
according to a horizontal direction (see Figure 5.6). Finally, we get the approximation
coefficients I′j at resolution level j. The process is then iterated until j = J :

I′J := M−1
(
I′0,D′0lh,D′0hl,D′0hh, ...,D

′j−1
lh ,D′j−1

hl ,D′j−1
hh , ...,D′J−1

lh ,D′J−1
hl ,D′J−1

hh

)
.

(5.24)
Denote ĨJLDR ≡ I′J the coarse LDR image logarithm luminance image.

6 Perceptual quantizer with respect to the human visual system using a piece-
wise linear function

This stage proposes to adjust locally the distribution of the coarse LDR image logarithm
luminance ĨJLDR according to the HVS to enhance the contrast using a piecewise linear
function. This strategy is inherited from Chapter 3 with the same procedures in section 3.
The horizontal axis "HDR logarithm luminance values" l̃iHDR(k) is replaced by "Coarse
LDR luminance values" l̃iLDR(k) in Figure 3.3.

The lower bound (cutting point) of each bin is then adjusted as follows:

l̃iLDR(1) = ciuLDR +βi(cinuLDR− ciuLDR), (5.25)
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Figure 5.6: 1D-signal reconstruction in a vertical direction.
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Figure 5.7: 1D-signal reconstruction in a horizontal direction.

where βi is a positive parameter smaller than 1 depending on the sub-interval [ciuLDR, cinuLDR].
Since the lower cutting point l̃iLDR(1) is deduced as the average of the logarithm lumi-
nance values on each sub-interval [ciuLDR, cinuLDR] as in [30], the parameter βi is then
given by:

βi = mean(ĨLDR[ciuLDR, cinuLDR])− ciuLDR
cinuLDR− ciuLDR

. (5.26)

The parameter βi can be set constant.

The parameter ai is expressed as follows:

ai = l̂iLDR(Ki)− l̂iLDR(1)
l̃iLDR(Ki)− l̃iLDR(1)

, (5.27)
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where l̂iLDR(Ki) and l̂iLDR(1) are unknown values. See section 3 in Chapter 3. pi is the
probability of the l̃iLDR(k) value in the i-th bin given by:

pi = Ki∑B
i=1Ki

. (5.28)

Introduce δi as the difference between coarse LDR luminance in two consecutive bins:

δi = l̃i+1
LDR(1)− l̃iLDR(1). (5.29)

The constraint related to the limit sum of the projected heights equal to the entire LDR
range:

B∑
i=1

ai · δi = lLDRmax− lLDRmin. (5.30)

The final equation involves the following result:

ai = lLDRmax− lLDRmin∑B
i=1(δi)M/(M+1) · (pi)1/(M+1) · (

pi
δi

)1/(M+1). (5.31)

See section 3 in Chapter 3. In the specific cases: (i) if the parameter M →∞, the
limitation of slope ai is constant:

ai = lLDRmax− lLDRmin
l̃BLDR(KB)− l̃1LDR(1)

= const, (5.32)

(ii) if the parameter M → 0, the limitation of slope ai is:

ai = lLDRmax− lLDRmin
δi

· pi. (5.33)

The unknown parameter bi is calculated by the equation: bi = l̂iLDR(1)− ai× l̃iLDR(1).
LDR mapped values are computed as follows:

l̂iLDR(k) = ai l̃
i
LDR(k) + bi with k ∈ [1,Ki]. (5.34)

The global piecewise linear curve is continuous and strictly monotonic increasing
according to the positive slopes (i.e ai > 0, or angles 0°< atan(ai)< 90°).

7 Simulation results

This section evaluates the quality of the proposed HDR tone mapped images. Simulations
have been conducted under Matlab environment using the HDR Toolbox using a large
set of test HDR images with low, medium and high f-stops ([1]). The tone-mapped
image quality is measured with the Tone-Mapped image Quality Index 1 (TMQI1)
metric developed in [34]. This metric, upper-bounded by 1, evaluates the quality of the
LDR image using the original HDR image.

The proposed TM approaches, namely:
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i. "Proposed_CEDP_Opt_LJ_NM" for adaptive βi deduced from equation (5.26)
with M = 1,2,3,4,6,10 (`1, `2, `3, `4, `6, `10),

ii. "Proposed_CEDP_Lin_LJ_NM" for constant βi = 0.25 with M = 1,2,3,4,6,10,

iii. "Proposed_CEDP_LJ_NIn" for the case `∞ with ai given by equation (5.32),

iv. "Proposed_CEDP_LJ_NZe" for ai given by equation (5.33),

are deployed with B = 256, lLDRmax = 255, lLDRmin = 0, J = 1, ...,5.

TMQI1 metrics of those algorithms are provided in Table 5.1 for different levels
(J = 1, ...,5) and in Table 5.2 for different norms (M = 1,2,3,4,6,10). Almost the
TMQI1 metrics of "Proposed_CEDP_Lin" method are higher than those of "Pro-
posed_CEDP_Opt". The visual quality for two approaches is good and almost the
same as shown in Figure 5.8 although the intermediate mapping curves are fairly different
(see Figure 5.9).

Figure 5.8: "BottlesSmall" HDR test image (16.03 f-stops) - Left image:
Pro_CEDP_Lin_L1_N1 (TMQI1=0.878); Right image: Pro_CEDP_Opt_L1_N1
(TMQI1=0.854).

In most cases, one can observe that (i) less norm space concerns, more the perfor-
mance increases; (ii) more number of decomposition level concerns, more the metric
performance is. Figure 5.10 compares the visual quality of the "BottlesSmall" tone
mapped image using 1 and 5 decomposition levels. One can notice that the details are
well rendered when 5 decompositions are used. This is shown in Figure 5.11 by zooming
in on the table board of the luminance tone mapped images. This is found the interme-
diate mapping curves in Figure 5.12 with impacts of increasing the number of resolution
levels from J = 1 until J = 5. The intermediate mapping curves in Figure 5.13 and
Figure 5.14 show impacts of increasing the number of norm spaces (M = 1,2,3,4,6,10)
for the "Light" and "BottlesSmall" HDR test images. The curves’ behaviors are very
different.

Table 5.3 shows TMQI1 of both methods "Pro_CEDP_Lin" and "Pro_CEDP_Opt"
for the "Light" HDR test image at several norms (M = 1,2,3,4,5) and levels (J =
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Table 5.1: Tone Mapped Image Quality Index 1 (TMQI1) for several levels J = 1,2,3,4,5
(absolute norm M = 1).
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Lausanne1 7.71 0.903 0.920 0.946 0.965 0.970 0.875 0.886 0.906 0.924 0.930
CraterLake1 8.13 0.899 0.913 0.934 0.947 0.949 0.866 0.876 0.888 0.905 0.914
Shasta2 8.48 0.885 0.904 0.929 0.955 0.968 0.830 0.841 0.856 0.866 0.875
Synagogue 8.57 0.877 0.890 0.905 0.908 0.902 0.813 0.823 0.838 0.847 0.861
Anturium 8.73 0.957 0.975 0.984 0.980 0.969 0.931 0.928 0.931 0.935 0.936
BowRiver 9.53 0.951 0.966 0.969 0.956 0.937 0.838 0.823 0.821 0.816 0.812
Bridges 11.17 0.955 0.965 0.974 0.971 0.959 0.935 0.933 0.936 0.944 0.949
Stairway1 13.37 0.882 0.898 0.920 0.939 0.952 0.842 0.829 0.827 0.827 0.828
ArchRock 13.60 0.986 0.987 0.976 0.950 0.925 0.907 0.885 0.873 0.871 0.873
DollDoll 13.89 0.873 0.896 0.920 0.935 0.944 0.842 0.839 0.840 0.843 0.841
ClockBuilding 14.19 0.940 0.949 0.951 0.940 0.925 0.901 0.903 0.905 0.907 0.910
OxfordChurch 15.43 0.980 0.989 0.982 0.963 0.942 0.878 0.864 0.861 0.860 0.859
BottlesSmall 16.03 0.878 0.897 0.919 0.933 0.939 0.854 0.868 0.882 0.893 0.901
Montreal 16.06 0.900 0.921 0.935 0.937 0.930 0.751 0.747 0.749 0.752 0.757
SmallOffice 16.29 0.943 0.946 0.945 0.935 0.921 0.918 0.903 0.891 0.887 0.885
Light 17.46 0.971 0.973 0.968 0.957 0.945 0.920 0.923 0.931 0.937 0.942
BridgeStudios2 18.13 0.912 0.941 0.962 0.963 0.953 0.847 0.853 0.852 0.855 0.861
Memorial 18.38 0.960 0.945 0.917 0.889 0.867 0.923 0.918 0.917 0.915 0.912
ClaridgeHotel 23.44 0.920 0.934 0.952 0.963 0.967 0.743 0.717 0.700 0.705 0.702
Mistaya1 23.77 0.935 0.959 0.972 0.974 0.966 0.810 0.785 0.770 0.763 0.761
BrookHouse 23.98 0.979 0.985 0.980 0.961 0.938 0.850 0.841 0.839 0.838 0.840
PeaceRocks 24.13 0.950 0.937 0.914 0.881 0.855 0.772 0.761 0.755 0.748 0.745
GGpark2 24.41 0.979 0.985 0.982 0.964 0.942 0.779 0.766 0.762 0.760 0.760
AtriumNight 28.68 0.970 0.945 0.917 0.894 0.878 0.806 0.790 0.778 0.771 0.768
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Table 5.2: Tone Mapped Image Quality Index 1 (TMQI1) for several norms M = 1,2,3,6, NIn
and NZe (one level J = 1).
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Anturium 8.73 0.963 0.896 0.957 0.946 0.938 0.924 0.931 0.921 0.915 0.907
BowRiver 9.53 0.958 0.782 0.951 0.928 0.911 0.876 0.838 0.815 0.805 0.794
Bridges 11.17 0.959 0.905 0.955 0.946 0.939 0.927 0.935 0.926 0.921 0.915
Stairway1 13.37 0.915 0.793 0.882 0.865 0.854 0.834 0.842 0.828 0.820 0.809
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AtriumNight 28.68 0.905 0.744 0.970 0.958 0.929 0.867 0.806 0.784 0.774 0.762
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CEDP_Lin_L1_N1, TMQI1=0.878

CEDP Opt L1 N1, TMQI1=0.854

Figure 5.9: Intermediate mapping curves for "BottlesSmall" HDR test image:
Pro_CEDP_Lin_L1_N1 versus Pro_CEDP_Opt_L1_N1.

Figure 5.10: "BottlesSmall" HDR test image (16.03 f-stops) - Left image:
Pro_CEDP_Lin_L5_N1 (TMQI1=0.939); Right image: Pro_CEDP_Lin_L1_N1
(TMQI1=0.878).

1,2,3,4,5). There are two directional ways: the norm is represented for enhancing
contrast while the level is for extracting details visibility. There are 50 (= 5× 10)
metric results. One can see that the highest value (0.973) is belonged to method
"Pro_CEDP_Lin" at norm 1 and level 1.

Figure 5.15 compares the visual quality of the "SmallOffice" tone mapped image
using "Duan", "Fattal" WRB, "Li" and our approach. Compared to other tone mapped
images, "Li" tone mapped image doesn’t seem to be natural. Indeed its normalized
histogram given in Figure 5.16 shows that the pixel grey levels are limited to 60. Some
of the details from outside the office (via the window) are lost on "Fattal" tone mapped
image (brightness) contrary to our approach and "Duan" method. Indeed the brightness
on "Fattal" tone mapped image is confirmed by the pic corresponding to a grey level
equal to 255 on its normalized histogram (see Figure 5.16). However "Duan" tone
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Figure 5.11: "BottlesSmall" LDR image luminance cropped and zoomed - Left im-
age: Pro_CEDP_Lin_L5_N1 (TMQI1=0.939); Right image: Pro_CEDP_Lin_L1_N1
(TMQI1=0.878).
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CEDP Lin L5 N1, TMQI1=0.939

Figure 5.12: Intermediate mapping curves for "BottlesSmall" HDR test image for
Pro_CEDP_Lin_LJ_N1: impact of increasing the number of resolution levels from J = 1
until J = 5.

−1.5 −1 −0.5 0 0.5 1 1.5
0

50

100

150

200

250

300

Coarse LDR luminance values

L
D

R
 l

u
m

in
a
n
c
e
 v

a
lu

e
s

 

 

CEDP_L1_NZe, TMQI1=0.955

CEDP Opt L1 N1, TMQI1=0.920
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Figure 5.13: "Light" HDR test image (17.46 f-stops) - Intermediate mapping curves for
Pro_CEDP_Opt_L1_NM: impact of increasing the number of norm spaces M = 1,2,3,4,6,10,
NIn and NZe.
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CEDP_L1_NZe, TMQI1=0.922

CEDP Opt L1 N1, TMQI1=0.854

CEDP Opt L1 N2, TMQI1=0.844

CEDP Opt L1 N3, TMQI1=0.838

CEDP Opt L1 N4, TMQI1=0.835

CEDP Opt L1 N6, TMQI1=0.831

CEDP Opt L1 N10, TMQI1=0.828

CEDP L1 NIn, TMQI1=0.823

Figure 5.14: "BottlesSmall" HDR test image (16.03 f-stops) - Intermediate mapping curves for
Pro_CEDP_Opt_L1_NM: impact of increasing the number of norm spaces M = 1,2,3,4,6,10,
NIn and NZe.

Table 5.3: "Light" HDR test image (17.46 f-stops) - Tone Mapped Image Quality Index 1
(TMQI1) for several norms (M = 1,2,3,6, NIn and NZe) and levels (J = 1,2,3,4,5).
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Level J = 1 0.955 0.831 0.971 0.954 0.933 0.895 0.920 0.891 0.876 0.856
Level J = 2 0.942 0.841 0.973 0.963 0.947 0.911 0.923 0.897 0.883 0.864
Level J = 3 0.920 0.853 0.968 0.969 0.959 0.929 0.931 0.907 0.894 0.876
Level J = 4 0.894 0.864 0.957 0.969 0.964 0.941 0.937 0.915 0.903 0.887
Level J = 5 0.872 0.873 0.945 0.966 0.966 0.947 0.942 0.922 0.911 0.895
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(a) Pro_CEDP_Lin_L1_N1 (TMQI1=0.943) (b) "Fattal" WRB (TMQI1=0.943)

(c) "Li" (TMQI1=0.854) (d) "Duan" (TMQI1=0.955)

Figure 5.15: "SmallOffice" HDR test image (16.29 f-stops) for some tone mapping operators.

mapped image is a little darker (armchair, office wall) than our tone mapped image.
This analysis is well supported by the normalized histograms of our approach and
"Duan" method. The comparison of the histograms proves that our strategy stretches
the too-dark areas and suppresses the too-bright areas.

Figure 5.17 compares the visual quality of the "Memorial" tone mapped image using
"Duan" and "Fattal" methods and our approach. One can observe that the details are
well rendered in favor of our method (e.g. tiles, rosette). Indeed the details on tills (see
Figure 5.17) and rosette (see Figure 5.18) are better rendered by our approach. This is
indeed confirmed by the metric values.

Figure 5.19 presents "AttriumNight" tone mapped image considered as high f-stops
HDR image. Even if the TMQI related to the TM "Pro_SEPENOCA_L1" approach
(0.973) is higher than our approach "Pro_CEDP_Opt_L1_N1" (0.806), the visual
rendering is of better quality for the image mapped with our method (see details e.g.
stairs). A similar result is provided by Figure 5.20 where the HDR "BrookHouse" image
(high f-stops) has been mapped using "Fattal" method (0.982) and our approach (0.979).
However the contrast of our tone mapped image is better. This also can be observed on
Figure 5.21 using "Montreal" HDR test image where some details are indeed preserved
(e.g. the tower roof). This can be explained by the fact that the choice of TMQI1



108
Chapter 5. Proposed TMO based on the contrast enhancement and details preservation

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

(a) Original HDR luminance

−4 −3 −2 −1 0 1 2
0

0.01

0.02

0.03

(b) Logarithm of original HDR luminance

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

(c) Pro_CEDP_Lin_L1_N1

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

(d) "Fattal" WRB

0 50 100 150 200 250 300
0

0.02

0.04

0.06

(e) "Li"

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

(f) "Duan"

Figure 5.16: Normalized histograms of original "SmallOffice" HDR luminance and its tone
mapped images.

Figure 5.17: "Memorial" HDR test image (18.38 f-stops) - Left image: Pro_CEDP_Lin_L1_N1
(TMQI1=0.960); Middle image: "Duan" (TMQI1=0.935); Right image: "Fattal" WRB
(TMQI1=0.927).
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Figure 5.18: "Memorial" LDR image luminance "Rosette" zoomed - Left image:
Pro_CEDP_Lin_L1_N1 (TMQI1=0.960); Middle image: "Duan" (TMQI1=0.935); Right
image: "Fattal" WRB (TMQI1=0.927).

parameters were learned on 8 TM algorithms and therefore may not correspond to a
relevant choice of its parameters in our favor (see [34]).

Figure 5.22 represents "OxfordChurch" tone mapped image, considered as medium
f-stops HDR image, using "Duan" method and our approach. Although the metrics
are slightly different (0.986 versus 0.980, respectively), the visual rendering is of better
quality in favour of our method, especially in the stained glass window at the back of
the church.

Figure 5.23 compares the visual quality of the "WardFlowers" tone mapped image
using "Fattal" and our approach. Some details, on flowers and rocks, are lost on "Fattal"
tone mapped image compared to our approach. Moreover, our tone mapped image if of
better contrast. A similar result is provided by Figure 5.24 where the HDR "StreetLamp"
image has been mapped using "Pro_SEPENOCA_L1" method and our method. The
brightness of our tone mapped is better.

This approach increases the number of the multiresolution level up to 5, compared
to the TMOs using ENO multiresoltion (to 2). The performance of our approach is
confirmed on more than 274 test HDR images where the details and contrast are better
represented than other competitive methods.
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Figure 5.19: "AtriumNight" HDR test image (28.68 f-stops) - Left image:
Pro_CEDP_Opt_L1_N1 (TMQI1=0.806); Right image: Pro_SEPENOCA_L1
(TMQI1=0.973).

Figure 5.20: "BrookHouse" HDR test image (23.98 f-stops) - Left image:
Pro_CEDP_Lin_L1_N1 (TMQI1=0.979); Right image: "Fattal" WRB (TMQI1=0.982).
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Figure 5.21: "Montreal" HDR test image (16.06 f-stops) - Left image: Pro_CEDP_Opt_L1_N1
(TMQI1=0.751); Right image: "Husseis" (TMQI1=0.945).

Figure 5.22: "OxfordChurch" HDR test image (15.43 f-stops) - Left image:
Pro_CEDP_Lin_L1_N1 (TMQI1=0.980); Right image: "Duan" (TMQI1=0.986).

Figure 5.23: "WardFlowers" HDR test image (14.01 f-stops) - Left image:
Pro_CEDP_Lin_L1_N1 (TMQI1=0.930); Right image: "Fattal" WRB (TMQI1=0.875).
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Figure 5.24: "StreetLamp" HDR test image (13.83 f-stops) - Left image:
Pro_CEDP_Lin_L1_N1 (TMQI1=0.911); Right image: "Pro_SEPENOCA_L1"
(TMQI1=0.855).
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8 Conclusion

A new HDR image TM approach which is able not only to preserve the relevant details
but also to enhance the contrast of LDR images has been proposed. This is essentially
related to: (i) the forward process of the near optimal local adaptive Cell- Average lifting
scheme where the filter coefficients are locally adapted to the content; (ii) the weighting
operation depending on the entropy of each resolution level; (iii) the adjustment of the
coarse LDR image luminance distribution according to the perceptual piecewise linear
function. Simulation results performed on a large set of HDR test images (low, medium
and high f-stops) confirm the relevance of the proposed approach both in terms of the
TMQI metric and the visual quality of the displayed image.

The next chapter presents a study of HDR image tone mapping assessment based on
the improvement of the tone mapped quality index (TMQI) according to our training
dataset.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu
neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat.
Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel
leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis
nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci
dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor
lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec
aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio
metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante.
Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis.
Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt
tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante.
Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis,
molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula,
eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc
eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel
magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim.
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Vestibulum pellentesque felis eu massa.
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Impact of the TMQI parameters on the visual quality
of the tone mapped images

This chapter discusses the choice of the parameters of the TMQI metric. A
discussion around these parameters shows their inadequacy since the experimental
context has been modified. The proposed parameters show a strong correlation
between the modified metric and the MOS.

Abstract
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1 Introduction

The authors in [34] proposed the TMQI1 and used a small dataset of 8 TMOs named
"Reinhard" [12], "Drago" [10], "Durand" [16], "Mantiuk [59], "Pattanaik" [9] and three
remained TMOs in Adobe Photoshop namely "Exposure and Gamma", "Equalize His-
togram" and "Local Adaptation" respectively, and 15 HDR test images whose dynamic
range from 8 f-stops to 18 f-stops. These images are available at the web-page site 1.
The mean opinion scores were given with corresponding HDR displays ranging from 1
until 8: 1 for the best, 8 for the worst, upon 20 observers. The training process was
based on the Pearson’s Linear Correlation Coefficient. The parameters of the TMQI1
were obtained: a= 0.8012, α= 0.3046 and β = 0.7088 with the following equation (see
section 3.2.2 in Chapter 2).

TMQI1(IHDR,ILDR) = a×SF1α(IHDR,ILDR) + (1− a)×SN1β(ILDR). (6.1)

Figure 6.1: "Montreal" HDR test image (16.06 f-stops) - Left image: Pro_CEDP_Opt_L1_N1
(TMQI1=0.751); Right image: "Husseis" (TMQI1=0.945).

Figure 6.2: "Montreal" LDR image luminance of "tower roof" zoomed - Left image:
Pro_CEDP_Opt_L1_N1 (TMQI1=0.751); Right image: "Husseis" (TMQI1=0.945).

For the TMQI1, there is no relation between the visual quality and the metric for
the "Montreal" HDR tone mapped image where some details are indeed preserved (e.g.

1http://qtpfsgui.sourceforge.net/

http://qtpfsgui.sourceforge.net/
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the tower roof) as Figure 6.1 where the red rectangles frame the specific areas shown in
Figure 6.2. This can be explained by the fact that the choice of TMQI1 parameters
were learned on the small dataset (8 TM algorithms and 15 HDR test images) and
therefore may not correspond to a relevant choice of its parameters in our favor.

2 Tone mapping quality index for machine learning

The Mean Opinion Score (MOS), as subjective quality measure requiring the services
of a huge number of human observers, has been long regarded as the best method of
image quality measurement. However, the MOS method is expensive, and it is usually
too slow to be useful in real-world applications. The goal of objective image quality
assessment research is to design computational model that can predict perceived image
quality accurately and automatically. The modified metric is described as follows.

2.1 Build the training dataset

The training dataset uses 24 HDR test images with different dynamic range (or contrast
ratio) from 7 f-stops to 29 f-stops namely "Lausanne1", "CraterLake1", "Shasta2",
"Synagogue", "Anturium", "BowRiver", "Bridges", "Stairway1", "ArchRock", "DollDoll",
"ClockBuilding", "OxfordChurch", "BottlesSmall", "Montreal", "SmallOffice", "Light",
"BridgeStudios2", "Memorial", "ClaridgeHotel", "Mistaya1", "BrookHouse", "PeaceRocks",
"GGpark2" and "AtriumNight", see Figure D.1a to Figure D.1x in Appendix D.

15 TM methods are used to test such as "Drago" [10], "Reinhard" [44], "Ward" [7],
"Durand" [16], "Tumblin" [31], "Schlick" [3], "Duan" [8], "Fattal" WRB [25], "Li" [26],
"Husseis" [30], "Proposed_NUHA", "Proposed_SEPENO", "Proposed_NONSEPENO",
"Proposed_CEDP_Lin" and "Proposed_CEDP_Opt".

2.2 Mean opinion score

The TM images are shown on the ColorEdge CG242W Color LCD monitor with a
good calibration in a random order (with no-reference of HDR displays) during the
testing period. An observer notes each tone mapped image with the corresponding mark
ranging from 0 until 5: 5 for excellent, 4 very good, 3 good, 2 accepted, 1 unsatisfactory
and 0 failed. The chosen criteria is based on ability to recover details with natural ways.
In order to have a confidential calculation, a Matlab User Graphic Interface has been
proposed in Appendix D. The outcome of the experiments with 26 observers is shown
in the MOS table (see Table 6.1).

2.3 Training, learning parameters

Our modified parameters are based on TMQI1 [34] with the bigger training dataset.
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Table 6.1: MOS with no-reference of HDR displays (ranging from 0 until 5: 5 for excellent, 4 very
good, 3 good, 2 accepted, 1 unsatisfactory and 0 failed; All values are rounded by two-decimals
precision).
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Lausanne1 1.56 1.63 1.06 0.63 1.00 1.13 3.06 3.00 2.31 2.94 3.44 3.13 3.00 3.63 3.75
CraterLake1 1.75 1.88 1.25 1.06 1.13 2.19 2.50 2.50 2.19 2.38 2.75 2.56 2.31 2.88 3.00
Shasta2 1.25 1.19 0.81 0.69 1.13 1.25 2.44 2.56 2.00 2.31 2.75 2.63 2.38 2.81 2.94
Synagogue 2.19 2.00 0.38 0.31 0.63 1.13 2.63 2.88 2.19 2.69 3.13 3.00 2.81 3.75 4.06
Anturium 2.00 1.81 0.69 0.63 0.94 0.75 2.94 3.31 1.88 3.00 3.75 3.44 3.13 4.06 4.38
BowRiver 1.63 1.75 1.00 1.06 1.25 1.81 2.44 2.56 2.00 2.50 2.50 2.63 2.38 2.75 3.13
Bridges 2.38 2.31 0.81 0.25 1.69 1.44 3.19 3.38 2.31 3.00 3.94 3.44 3.25 4.06 4.19
Stairway1 2.06 2.13 1.25 0.44 1.75 1.63 2.88 2.94 2.00 2.94 3.00 3.00 2.94 3.06 3.13
ArchRock 2.19 2.31 1.69 0.44 0.94 0.75 2.94 3.06 2.38 2.94 3.19 3.13 3.00 3.13 3.00
DollDoll 1.75 1.13 0.63 0.50 0.38 1.19 3.38 2.88 2.63 3.25 3.63 3.00 3.44 3.75 4.06
ClockBuilding 2.00 2.06 0.75 0.44 0.56 2.00 3.19 2.63 2.69 3.19 3.50 2.88 3.25 3.63 3.94
OxfordChurch 2.13 2.19 2.00 0.13 1.13 1.19 2.81 2.94 2.06 2.94 3.38 3.06 3.00 3.50 3.69
BottlesSmall 2.19 2.00 0.38 0.31 0.63 1.13 2.63 2.88 2.19 2.69 3.13 3.00 2.81 3.75 4.06
Montreal 1.75 1.88 1.25 1.06 1.13 2.19 2.50 2.50 2.19 2.38 2.75 2.56 2.31 2.88 3.00
SmallOffice 1.63 1.75 1.00 1.06 1.25 1.81 2.44 2.56 2.00 2.50 2.50 2.63 2.38 2.75 3.13
Light 1.56 1.63 1.06 0.63 1.00 1.13 3.06 3.00 2.31 2.94 3.44 3.13 3.00 3.63 3.75
BridgeStudios2 2.00 1.81 0.69 0.63 0.94 0.75 2.94 3.31 1.88 3.00 3.75 3.44 3.13 4.06 4.38
Memorial 1.25 1.19 0.81 0.69 1.13 1.25 2.44 2.56 2.00 2.31 2.75 2.63 2.38 2.81 2.94
ClaridgeHotel 2.06 2.13 1.25 0.44 1.75 1.63 2.88 2.94 2.00 2.94 3.00 3.00 2.94 3.06 2.13
Mistaya1 2.00 2.06 0.75 0.44 0.56 2.00 3.19 2.63 2.69 3.19 3.50 2.88 3.25 3.63 2.94
BrookHouse 2.19 2.31 1.69 0.44 0.94 0.75 2.94 3.06 2.38 2.94 3.19 3.13 3.00 3.13 2.00
PeaceRocks 2.13 2.19 2.00 0.13 1.13 1.19 2.81 2.94 2.06 2.94 3.38 3.06 3.00 3.50 2.69
GGpark2 2.38 2.31 0.81 0.25 1.69 1.44 3.19 3.38 2.31 3.00 3.94 3.44 3.25 4.06 2.19
AtriumNight 1.75 1.13 0.63 0.50 0.38 1.19 3.38 2.88 2.63 3.25 3.63 3.00 3.44 3.75 2.06

Average 1.91 1.86 1.03 0.55 1.04 1.37 2.86 2.89 2.22 2.84 3.24 2.99 2.91 3.42 3.27
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2.3.1 Pearson’s linear correlation coefficient

Denote

i. normalized matrix MOS for all figures in Table 6.1 with 24 HDR test images and
15 TMOs (N = 24 rows, M = 15 columns),

ii. matrix TMQI for the respective values that have been predicted by an objective
quality metric (same size of MOS).

The predicted scores have been mapped to the same scale between 0 and 1. The
Pearson’s Linear Correlation Coefficient (PLCC) is a measure of the linear correlation
between two matrices MOS and TMQI. This can be measured by PLCC as

PLCC =
∑N
n=1

∑M
m=1(MOS(n,m)−MOS) · (TMQI(n,m)−TMQI)√∑N

n=1
∑M
m=1(MOS(n,m)−MOS)2 ·

∑N
n=1

∑M
m=1(TMQI(n,m)−TMQI)2

,

(6.2)
where MOS and TMQI are mean values of two matrices MOS and TMQI, respectively.
PLCC has a value between −1 and +1, where +1 is total positive linear correlation, 0
is no linear correlation, and −1 is total negative linear correlation.

2.3.2 Approach 1

Approach 1 namely "TMQI_A1": Compute the best parameters by an iteration method
for 24 HDR test images. See Algorithm 6.1.

2.3.3 Approach 2

Approach 2 namely "TMQI_A2": Compute the best parameters by an iteration method
for each image and then compute final average results. See Algorithm 6.2.
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Algorithm 6.1: Approach 1. Compute the best parameters in terms of the Pearson’s
linear correlation coefficient.
Input: MOS (24 images × 15 TMOs);
24 reference HDR images IHDR(n), n= 1..24;
360 LDR images ILDR(n,m), n= 1..24 and m= 1..15;
Output: Best set of parameters a, α, β;

1 Pmax=−1;
2 for a← 0.1 to 1 by 0.1 do
3 for α← 0.1 to 1 by 0.1 do
4 for β← 0.1 to 1 by 0.1 do

// Compute TMQI table (24 images x 15 TMOs) named myTable

with current parameters
5 for n← 1 to 24 do
6 for m← 1 to 15 do
7 myTable(n,m)=theTMQI(IHDR(n), ILDR(n,m), a, α, β);

// Compute Pearson’s Linear Correlation Coefficient
8 P = PLCC(MOS, myTable);

// Save max values
9 if P > Pmax then
10 best_a= a;
11 best_alpha= α;
12 best_beta= β;
13 Pmax= P ;

1 Function theTMQI(IHDR, ILDR, a, α, β):
2 Compute SF1(IHDR,ILDR);
3 Compute SN1(ILDR);
4 TMQI1 = a×SF1α + (1− a)×SN1β ;
5 return TMQI1;
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Algorithm 6.2: Approach 2. Compute the best parameters in terms of the Pearson’s
linear correlation coefficient for each image and then compute final average results.
Input: MOS (24 images × 15 TMOs);
24 reference HDR images IHDR(n), n= 1..24;
360 LDR images ILDR(n,m), n= 1..24 and m= 1..15;
Output: Best final set of parameters a, α, β;

1 for n← 1 to 24 do
2 Pmax(n) =−1;
3 for a← 0.1 to 1 by 0.1 do
4 for α← 0.1 to 1 by 0.1 do
5 for β← 0.1 to 1 by 0.1 do

// Compute TMQI vector (15 TMOs) named myLine with
current parameters

6 for m← 1 to 15 do
7 myLine(m)=theTMQI(IHDR(n), ILDR(n,m), a, α, β);

// Compute Pearson’s Linear Correlation Coefficient
8 P = PLCC(MOS(n, :), myLine);

// Save max values
9 if P > Pmax(n) then
10 best_a(n) = a;
11 best_alpha(n) = α;
12 best_beta(n) = β;
13 Pmax(n) = P ;

// Save final results
14 best_final_a= mean(best_a);
15 best_final_alpha= mean(best_alpha);
16 best_final_beta= mean(best_beta);
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3 Experimental results

After the training processes, the best parameters in terms of the PLCC for two approaches
are described as follows:

i. Approach 1. TMQI_A1 with a= 0.1, α= 0.1, β = 0.2 and PLCC = 0.7120,

ii. Approach 2. TMQI_A2 with a= 0.192, α= 0.213, β = 0.254 and PLCC = 0.7102.
Table 6.2 describes the best parameters for every HDR test image.

Table 6.3, Table 6.4 and Table 6.5 show tone mapped quality indexes for TMQI1,
TMQI_A1 and TMQI_A2, respectively.

The experimental results based on four criteria are described as follows.
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Table 6.2: Approach 2 namely TMQI_A2. Compute the best parameters by an iteration method
for each image and then compute final average results.

Images a α β Pmax

Lausanne1 0.100 0.100 0.200 0.729
CraterLake1 0.100 0.100 0.200 0.708
Shasta2 0.100 0.100 0.100 0.824
Synagogue 0.100 0.100 0.100 0.340
Anturium 0.300 1.000 0.300 0.816
BowRiver 0.100 0.100 0.100 0.636
Bridges 0.100 0.100 0.100 0.838
Stairway1 0.100 0.100 0.100 0.640
ArchRock 0.100 0.100 0.800 0.776
DollDoll 0.100 0.100 0.200 0.858
ClockBuilding 0.100 0.100 0.100 0.837
OxfordChurch 0.100 0.100 0.400 0.694
BottlesSmall 0.600 1.000 0.300 0.774
Montreal 0.100 0.100 0.100 0.640
SmallOffice 0.600 0.100 0.200 0.917
Light 0.100 0.100 0.400 0.933
BridgeStudios2 0.100 0.100 0.100 0.713
Memorial 0.300 0.100 0.500 0.964
ClaridgeHotel 0.100 1.000 0.100 0.420
Mistaya1 0.100 0.100 0.200 0.597
BrookHouse 0.400 0.100 0.300 0.786
PeaceRocks 0.600 0.100 1.000 0.502
GGpark2 0.100 0.100 0.100 0.499
AtriumNight 0.100 0.100 0.100 0.835

Average 0.192 0.213 0.254 ___
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Table 6.3: Default Tone Mapped Image Quality Index 1 (TMQI1) with a= 0.8012, α= 0.3046
and β = 0.7088 (PLCC = 0.5880; All values are rounded by two-decimals precision).
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Lausanne1 0.82 0.79 0.70 0.84 0.78 0.75 0.91 0.83 0.98 0.92 0.92 0.83 0.93 0.97 0.93
CraterLake1 0.84 0.79 0.72 0.79 0.76 0.78 0.95 0.86 0.97 0.95 0.95 0.86 0.94 0.95 0.91
Shasta2 0.76 0.73 0.57 0.74 0.71 0.65 0.91 0.79 0.95 0.93 0.93 0.79 0.92 0.97 0.87
Synagogue 0.92 0.91 0.83 0.87 0.88 0.91 0.96 0.75 0.95 0.97 0.96 0.76 0.97 0.91 0.86
Anturium 0.86 0.79 0.72 0.81 0.77 0.76 0.96 0.89 0.96 0.96 0.96 0.90 0.98 0.98 0.94
BowRiver 0.82 0.78 0.73 0.88 0.79 0.78 0.96 0.86 0.96 0.96 0.96 0.87 0.95 0.97 0.84
Bridges 0.79 0.76 0.65 0.78 0.72 0.71 0.97 0.86 0.91 0.95 0.96 0.86 0.97 0.97 0.95
Stairway1 0.76 0.74 0.55 0.78 0.72 0.79 0.91 0.78 0.89 0.91 0.91 0.78 0.90 0.95 0.84
ArchRock 0.80 0.78 0.61 0.80 0.78 0.84 0.98 0.95 0.91 0.96 0.94 0.96 0.95 0.99 0.91
DollDoll 0.73 0.72 0.57 0.72 0.72 0.71 0.88 0.73 0.86 0.89 0.89 0.73 0.91 0.94 0.84
ClockBuilding 0.76 0.75 0.49 0.76 0.74 0.75 0.95 0.76 0.92 0.97 0.97 0.75 0.94 0.95 0.91
OxfordChurch 0.79 0.77 0.46 0.79 0.70 0.84 0.99 0.89 0.88 0.98 0.97 0.89 0.93 0.99 0.88
BottlesSmall 0.77 0.77 0.55 0.76 0.69 0.77 0.92 0.93 0.95 0.92 0.92 0.93 0.90 0.94 0.90
Montreal 0.62 0.34 0.34 0.67 0.59 0.59 0.86 0.62 0.90 0.94 0.94 0.62 0.82 0.94 0.76
SmallOffice 0.74 0.73 0.52 0.74 0.67 0.73 0.96 0.94 0.85 0.97 0.96 0.94 0.95 0.95 0.92
Light 0.79 0.78 0.36 0.76 0.55 0.76 0.97 0.97 0.89 0.97 0.96 0.97 0.96 0.97 0.94
BridgeStudios2 0.70 0.66 0.46 0.74 0.65 0.77 0.96 0.76 0.89 0.96 0.96 0.76 0.92 0.96 0.86
Memorial 0.78 0.77 0.36 0.77 0.54 0.76 0.94 0.93 0.83 0.92 0.92 0.93 0.91 0.96 0.92
ClaridgeHotel 0.81 0.77 0.69 0.83 0.75 0.24 0.93 0.86 0.96 0.93 0.93 0.86 0.94 0.97 0.70
Mistaya1 0.81 0.79 0.63 0.84 0.78 0.16 0.96 0.86 0.96 0.96 0.96 0.86 0.98 0.97 0.76
BrookHouse 0.81 0.77 0.66 0.82 0.76 0.09 0.98 0.98 0.93 0.98 0.97 0.98 0.98 0.98 0.84
PeaceRocks 0.84 0.79 0.74 0.82 0.78 0.11 0.92 0.83 0.85 0.91 0.89 0.84 0.94 0.95 0.75
GGpark2 0.82 0.78 0.70 0.84 0.77 0.11 0.97 0.84 0.93 0.97 0.97 0.85 0.98 0.99 0.76
AtriumNight 0.78 0.74 0.40 0.78 0.62 0.15 0.96 0.97 0.89 0.94 0.92 0.97 0.93 0.97 0.77
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Table 6.4: Approach 1. New Tone Mapped Image Quality Index 1 (TMQI_A1) with a = 0.1,
α= 0.1 and β = 0.2 (PLCC = 0.7120; All values are rounded by two-decimals precision).
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Lausanne1 0.64 0.49 0.28 0.69 0.43 0.47 0.90 0.73 0.99 0.90 0.91 0.75 0.94 0.98 0.94
CraterLake1 0.80 0.65 0.32 0.63 0.56 0.61 0.96 0.84 1.00 0.96 0.95 0.85 0.95 0.97 0.94
Shasta2 0.58 0.41 0.22 0.39 0.36 0.39 0.89 0.65 0.98 0.92 0.93 0.66 0.92 0.99 0.90
Synagogue 0.92 0.89 0.71 0.86 0.84 0.94 0.96 0.51 0.98 0.96 0.96 0.50 0.97 0.89 0.86
Anturium 0.79 0.60 0.31 0.61 0.49 0.55 0.97 0.86 0.97 0.97 0.96 0.87 0.99 1.00 0.95
BowRiver 0.70 0.47 0.32 0.84 0.51 0.64 0.99 0.82 0.97 0.99 0.98 0.84 0.97 1.00 0.77
Bridges 0.53 0.43 0.24 0.44 0.32 0.38 0.99 0.82 0.89 1.00 0.97 0.83 0.99 0.99 0.97
Stairway1 0.43 0.34 0.17 0.45 0.32 0.61 0.88 0.57 0.85 0.89 0.89 0.57 0.86 0.96 0.74
ArchRock 0.48 0.34 0.19 0.48 0.31 0.73 0.99 0.96 0.89 0.97 0.95 0.97 0.95 1.00 0.88
DollDoll 0.48 0.41 0.16 0.35 0.36 0.41 0.89 0.48 0.85 0.89 0.88 0.48 0.93 0.98 0.83
ClockBuilding 0.40 0.37 0.12 0.39 0.30 0.38 0.99 0.45 0.94 0.99 1.00 0.46 0.98 0.99 0.95
OxfordChurch 0.41 0.29 0.14 0.42 0.23 0.70 0.99 0.85 0.82 1.00 0.98 0.86 0.92 1.00 0.81
BottlesSmall 0.47 0.49 0.15 0.48 0.21 0.73 0.91 0.93 0.98 0.92 0.92 0.95 0.90 0.97 0.93
Montreal 0.20 0.09 0.09 0.26 0.20 0.18 0.91 0.26 0.94 0.97 0.97 0.26 0.85 1.00 0.78
SmallOffice 0.34 0.32 0.12 0.32 0.19 0.35 0.99 0.98 0.85 1.00 0.99 0.99 0.99 0.98 0.95
Light 0.48 0.46 0.09 0.42 0.13 0.42 1.00 1.00 0.87 1.00 0.98 0.99 0.98 1.00 0.97
BridgeStudios2 0.29 0.24 0.14 0.30 0.23 0.59 0.97 0.59 0.89 0.98 0.99 0.60 0.93 1.00 0.88
Memorial 0.40 0.32 0.09 0.40 0.14 0.30 0.95 0.94 0.73 0.94 0.94 0.93 0.91 0.99 0.94
ClaridgeHotel 0.65 0.50 0.25 0.74 0.40 0.18 0.92 0.79 0.98 0.92 0.93 0.80 0.94 0.99 0.50
Mistaya1 0.58 0.45 0.19 0.73 0.40 0.18 0.97 0.78 0.96 0.97 0.97 0.79 1.00 0.99 0.55
BrookHouse 0.56 0.45 0.22 0.61 0.37 0.14 0.99 1.00 0.92 0.99 0.99 1.00 1.00 1.00 0.81
PeaceRocks 0.75 0.51 0.27 0.70 0.45 0.20 0.94 0.76 0.75 0.93 0.90 0.79 0.97 0.98 0.51
GGpark2 0.65 0.46 0.31 0.70 0.44 0.14 0.99 0.76 0.91 0.99 0.98 0.79 1.00 1.00 0.62
AtriumNight 0.42 0.25 0.12 0.58 0.16 0.21 0.98 0.99 0.87 0.96 0.93 0.99 0.94 0.99 0.59
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Table 6.5: Approach 2. New Tone Mapped Image Quality Index 1 (TMQI_A2) with a= 0.192,
α= 0.213 and β = 0.254 (PLCC = 0.7102; All values are rounded by two-decimals precision).
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Lausanne1 0.62 0.47 0.28 0.66 0.42 0.45 0.88 0.71 0.99 0.89 0.89 0.73 0.92 0.98 0.93
CraterLake1 0.78 0.62 0.32 0.60 0.53 0.58 0.95 0.82 0.99 0.95 0.95 0.83 0.94 0.96 0.93
Shasta2 0.55 0.39 0.22 0.37 0.34 0.36 0.87 0.62 0.97 0.91 0.92 0.63 0.90 0.99 0.88
Synagogue 0.90 0.87 0.68 0.84 0.82 0.93 0.95 0.48 0.97 0.96 0.95 0.47 0.97 0.87 0.84
Anturium 0.76 0.58 0.31 0.58 0.47 0.52 0.96 0.84 0.96 0.96 0.95 0.86 0.99 0.99 0.94
BowRiver 0.67 0.45 0.32 0.82 0.49 0.61 0.98 0.80 0.97 0.98 0.98 0.82 0.96 0.99 0.75
Bridges 0.50 0.41 0.25 0.42 0.32 0.36 0.98 0.79 0.88 0.99 0.97 0.81 0.98 0.99 0.96
Stairway1 0.41 0.34 0.19 0.43 0.31 0.58 0.86 0.54 0.83 0.88 0.88 0.54 0.84 0.96 0.71
ArchRock 0.46 0.34 0.21 0.46 0.32 0.70 0.99 0.95 0.88 0.97 0.94 0.96 0.94 1.00 0.86
DollDoll 0.45 0.39 0.18 0.34 0.35 0.39 0.87 0.45 0.83 0.87 0.86 0.46 0.91 0.97 0.81
ClockBuilding 0.39 0.36 0.15 0.38 0.30 0.37 0.98 0.43 0.93 0.99 0.99 0.44 0.97 0.98 0.94
OxfordChurch 0.40 0.30 0.16 0.41 0.25 0.67 0.99 0.83 0.80 0.99 0.98 0.84 0.91 1.00 0.79
BottlesSmall 0.45 0.47 0.17 0.45 0.23 0.70 0.90 0.92 0.98 0.91 0.91 0.94 0.89 0.96 0.91
Montreal 0.21 0.11 0.11 0.26 0.21 0.20 0.89 0.25 0.92 0.96 0.96 0.26 0.82 0.99 0.75
SmallOffice 0.34 0.32 0.15 0.32 0.22 0.34 0.99 0.98 0.83 0.99 0.99 0.98 0.99 0.98 0.94
Light 0.46 0.44 0.11 0.40 0.16 0.40 0.99 0.99 0.85 0.99 0.98 0.99 0.98 1.00 0.96
BridgeStudios2 0.29 0.25 0.16 0.30 0.24 0.56 0.97 0.56 0.87 0.98 0.98 0.57 0.92 0.99 0.86
Memorial 0.39 0.32 0.12 0.39 0.17 0.31 0.94 0.92 0.70 0.92 0.92 0.92 0.90 0.98 0.93
ClaridgeHotel 0.62 0.48 0.26 0.71 0.38 0.14 0.91 0.77 0.98 0.91 0.92 0.78 0.93 0.98 0.47
Mistaya1 0.55 0.43 0.21 0.71 0.39 0.12 0.96 0.76 0.96 0.96 0.96 0.77 1.00 0.98 0.52
BrookHouse 0.54 0.43 0.23 0.58 0.36 0.09 0.99 1.00 0.91 0.99 0.98 1.00 1.00 1.00 0.79
PeaceRocks 0.73 0.49 0.28 0.67 0.43 0.13 0.92 0.73 0.73 0.91 0.88 0.76 0.96 0.97 0.48
GGpark2 0.62 0.44 0.30 0.67 0.42 0.09 0.98 0.74 0.90 0.98 0.98 0.76 1.00 1.00 0.59
AtriumNight 0.40 0.26 0.13 0.55 0.19 0.14 0.98 0.99 0.85 0.95 0.92 0.99 0.93 0.99 0.56
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3.1 Higher Pearson’s linear correlation coefficient

Reapplying the equation (6.2), the Pearson’s Linear Correlation Coefficient with the
corresponding MOS increases from 0.588 (TMQI1) to 0.7102 (TMQI_A2) and to 0.7120
(TMQI_A1).

3.2 Lower absolute mean error

The Absolute Mean Error (AME) between the metric and normalized MOS (using the
same training dataset) has been reduced: 0.3758 for TMQI1, 0.2722 for TMQI_A2 and
0.2626 for TMQI_A1.

AME = 1
N ×M

N∑
n=1

M∑
m=1
|TMQI(n,m)−MOS(n,m)| (6.3)

As it can be seen in Table 6.6, the default TMQI1 is not well-designed for the
dataset, particularly for the images: "CraterLake1", "Shasta2", "Synagogue", "BowRiver",
"ArchRock", "SmallOffice" and "Memorial" with high absolute errors in last column with
red marks (0.44, 0.43, 0.45, 0.46, 0.41, 0.42, 0.43 respectively). In addition, it is not
good for most of TM operators such as "Drago", "Durand", "Tumblin", "Schlick", "Li"
with high errors in last row (0.41, 0.68, 0.51, 0.40, 0.47 respectively).

The number of red marks in Table 6.7 is reduced such as for only the image
"Synagogue" (0.42), and for two methods: "Durand" and "Li" (0.42 and 0.46 respectively).
The blue marks, which are shown well-designed, appear with images: "DollDoll" (0.18)
and "ClockBuilding" (0.19), and with TMOs: "Drago" (0.18), "Reinhard" (0.13), "Ward"
(0.11), "Tumblin" (0.16) and "Proposed_CEDP_Opt" (0.17).

In coincidence with Table 6.7, the number of red marks in Table 6.8 is reduced (0.41
for the image "Synagogue", 0.40 and 0.45 for methods "Durand" and "Li" respectively).
More blue marks appears for images: "Bridges" (0.19), "Stairway1" (0.19), "DollDoll"
(0.17), "ClockBuilding" (0.19), and for methods: "Drago", "Reinhard", "Ward", "Tumblin"
and "Proposed_CEDP_Opt" (0.16, 0.12, 0.11, 0.15, 0.15 respectively).

Figure 6.3 and Figure 6.4 show one of the best designed on our training dataset.
The absolute mean errors are reduced for the image "DollDoll" and method "Ward".
However, the method "Ward" in Figure 6.4 is still limited for the image "Synagogue"
and remained at the high errors (0.6) for two approaches (TMQI_A1 and TMQI_A2).
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Table 6.6: Absolute errors between the normalized MOS scores and the default TMQI1 metrics
(Ordering of images is shown as previous tables; All errors are rounded by two-decimals precision;
The AME is 0.3758; Last row and column show averages: the red marks are related to high
errors (≥ 0.4); the blue marks are related to low errors (< 0.2)).
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0.51 0.47 0.49 0.71 0.58 0.52 0.30 0.23 0.52 0.33 0.23 0.21 0.33 0.25 0.18 0.39
0.49 0.41 0.47 0.58 0.54 0.34 0.45 0.36 0.54 0.48 0.40 0.35 0.48 0.37 0.31 0.44
0.51 0.49 0.41 0.61 0.48 0.40 0.42 0.28 0.55 0.46 0.38 0.26 0.44 0.41 0.29 0.43
0.48 0.51 0.75 0.81 0.76 0.69 0.44 0.18 0.51 0.43 0.34 0.16 0.41 0.16 0.05 0.45
0.46 0.43 0.59 0.68 0.58 0.61 0.38 0.23 0.59 0.36 0.21 0.21 0.35 0.17 0.06 0.39
0.49 0.43 0.53 0.67 0.54 0.42 0.47 0.35 0.56 0.46 0.46 0.34 0.48 0.42 0.21 0.46
0.31 0.29 0.48 0.73 0.38 0.43 0.33 0.18 0.45 0.35 0.17 0.18 0.32 0.16 0.11 0.33
0.35 0.32 0.30 0.69 0.37 0.47 0.33 0.19 0.49 0.32 0.31 0.18 0.31 0.34 0.22 0.35
0.36 0.32 0.28 0.71 0.59 0.69 0.39 0.34 0.44 0.37 0.31 0.33 0.35 0.36 0.31 0.41
0.38 0.50 0.44 0.62 0.65 0.47 0.21 0.16 0.34 0.24 0.16 0.13 0.22 0.19 0.03 0.32
0.36 0.34 0.34 0.67 0.62 0.35 0.31 0.23 0.38 0.33 0.27 0.18 0.29 0.23 0.12 0.33
0.37 0.33 0.06 0.77 0.48 0.60 0.42 0.30 0.46 0.40 0.30 0.28 0.33 0.29 0.14 0.37
0.33 0.37 0.47 0.70 0.57 0.55 0.39 0.35 0.52 0.38 0.29 0.33 0.34 0.19 0.09 0.39
0.27 0.04 0.09 0.46 0.36 0.15 0.36 0.12 0.46 0.47 0.39 0.11 0.36 0.36 0.16 0.28
0.41 0.38 0.32 0.52 0.42 0.37 0.47 0.43 0.45 0.47 0.46 0.42 0.48 0.40 0.29 0.42
0.47 0.45 0.14 0.64 0.35 0.53 0.36 0.37 0.43 0.38 0.27 0.35 0.36 0.25 0.19 0.37
0.30 0.30 0.32 0.61 0.46 0.62 0.37 0.10 0.52 0.36 0.21 0.07 0.29 0.15 0.01 0.31
0.53 0.53 0.20 0.64 0.31 0.51 0.45 0.41 0.43 0.46 0.37 0.41 0.44 0.40 0.34 0.43
0.39 0.35 0.44 0.75 0.40 0.09 0.35 0.27 0.56 0.34 0.33 0.26 0.35 0.35 0.28 0.37
0.41 0.37 0.48 0.76 0.67 0.24 0.32 0.34 0.42 0.33 0.26 0.29 0.33 0.25 0.17 0.38
0.37 0.31 0.33 0.73 0.57 0.06 0.39 0.37 0.46 0.39 0.33 0.36 0.38 0.36 0.44 0.39
0.42 0.36 0.34 0.79 0.56 0.13 0.36 0.24 0.44 0.32 0.22 0.23 0.34 0.25 0.21 0.35
0.35 0.31 0.54 0.79 0.43 0.18 0.34 0.17 0.47 0.37 0.18 0.16 0.33 0.17 0.32 0.34
0.43 0.52 0.28 0.68 0.55 0.09 0.29 0.39 0.36 0.29 0.20 0.37 0.25 0.22 0.36 0.35

0.41 0.38 0.38 0.68 0.51 0.40 0.37 0.28 0.47 0.38 0.29 0.26 0.36 0.28 0.20
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Table 6.7: Approach 1. Absolute errors between the normalized MOS scores and the new
TMQI_A1 metrics (Ordering of images is shown as previous tables; All errors are rounded by
two-decimals precision; The AME is 0.2626; Last row and column show averages: the red marks
are related to high errors (≥ 0.4); the blue marks are related to low errors (< 0.2)).
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0.33 0.17 0.06 0.56 0.23 0.25 0.28 0.13 0.53 0.32 0.22 0.13 0.34 0.26 0.19 0.27
0.45 0.28 0.07 0.42 0.34 0.17 0.46 0.34 0.56 0.49 0.40 0.34 0.49 0.40 0.34 0.37
0.33 0.17 0.06 0.25 0.13 0.14 0.40 0.14 0.58 0.46 0.38 0.14 0.44 0.43 0.31 0.29
0.48 0.49 0.63 0.80 0.71 0.72 0.43 0.07 0.54 0.42 0.33 0.10 0.41 0.14 0.05 0.42
0.39 0.24 0.17 0.49 0.31 0.40 0.38 0.20 0.60 0.37 0.21 0.19 0.37 0.18 0.07 0.30
0.37 0.12 0.12 0.62 0.26 0.28 0.50 0.31 0.57 0.49 0.48 0.32 0.50 0.45 0.15 0.37
0.05 0.03 0.08 0.39 0.02 0.09 0.35 0.14 0.43 0.40 0.19 0.14 0.34 0.18 0.13 0.20
0.02 0.08 0.08 0.36 0.03 0.29 0.30 0.02 0.45 0.30 0.29 0.03 0.27 0.35 0.11 0.20
0.04 0.12 0.15 0.39 0.13 0.58 0.40 0.34 0.42 0.39 0.31 0.35 0.35 0.37 0.28 0.31
0.13 0.19 0.03 0.25 0.29 0.17 0.21 0.10 0.33 0.24 0.15 0.12 0.24 0.23 0.02 0.18
0.00 0.04 0.03 0.30 0.18 0.02 0.35 0.07 0.40 0.36 0.30 0.11 0.33 0.26 0.17 0.19
0.01 0.15 0.26 0.40 0.00 0.46 0.43 0.26 0.41 0.41 0.31 0.25 0.32 0.30 0.07 0.27
0.03 0.09 0.07 0.42 0.09 0.51 0.39 0.36 0.55 0.39 0.29 0.35 0.34 0.22 0.11 0.28
0.15 0.28 0.16 0.05 0.03 0.26 0.41 0.24 0.50 0.50 0.42 0.25 0.38 0.42 0.18 0.28
0.02 0.03 0.08 0.11 0.06 0.01 0.51 0.47 0.45 0.50 0.49 0.46 0.52 0.43 0.33 0.30
0.17 0.13 0.12 0.30 0.07 0.19 0.38 0.40 0.41 0.41 0.30 0.37 0.38 0.27 0.22 0.27
0.11 0.12 0.00 0.17 0.05 0.44 0.39 0.07 0.51 0.38 0.24 0.08 0.30 0.19 0.00 0.20
0.15 0.08 0.07 0.26 0.09 0.05 0.47 0.42 0.33 0.47 0.39 0.41 0.44 0.43 0.35 0.29
0.24 0.08 0.00 0.65 0.05 0.15 0.34 0.21 0.58 0.33 0.33 0.20 0.35 0.37 0.08 0.26
0.18 0.04 0.04 0.64 0.29 0.22 0.33 0.26 0.42 0.33 0.27 0.22 0.35 0.26 0.03 0.26
0.13 0.02 0.12 0.52 0.18 0.01 0.40 0.39 0.45 0.40 0.35 0.37 0.40 0.37 0.41 0.30
0.33 0.07 0.13 0.67 0.22 0.03 0.37 0.17 0.34 0.34 0.22 0.18 0.37 0.28 0.03 0.25
0.17 0.00 0.15 0.65 0.10 0.15 0.35 0.09 0.45 0.39 0.20 0.10 0.35 0.19 0.19 0.23
0.07 0.02 0.01 0.48 0.09 0.03 0.31 0.42 0.35 0.31 0.21 0.39 0.25 0.24 0.18 0.22

0.18 0.13 0.11 0.42 0.16 0.23 0.38 0.23 0.46 0.39 0.30 0.23 0.37 0.30 0.17
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Table 6.8: Approach 2. Absolute errors between the normalized MOS scores and the new
TMQI_A2 metrics (Ordering of images is shown as previous tables; All errors are rounded by
two-decimals precision; The AME is 0.2722; Last row and column show averages: the red marks
are related to high errors (≥ 0.4); the blue marks are related to low errors (< 0.2)).
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0.30 0.14 0.07 0.54 0.22 0.22 0.27 0.11 0.53 0.30 0.21 0.10 0.32 0.26 0.18 0.25
0.43 0.25 0.07 0.39 0.30 0.14 0.45 0.32 0.56 0.48 0.40 0.32 0.48 0.39 0.33 0.35
0.30 0.15 0.06 0.23 0.12 0.11 0.39 0.11 0.57 0.45 0.37 0.11 0.43 0.43 0.29 0.27
0.47 0.47 0.60 0.78 0.69 0.70 0.43 0.09 0.54 0.42 0.33 0.13 0.41 0.12 0.03 0.41
0.36 0.21 0.17 0.46 0.28 0.37 0.37 0.18 0.59 0.36 0.20 0.17 0.37 0.18 0.06 0.29
0.34 0.10 0.12 0.60 0.24 0.24 0.49 0.29 0.57 0.48 0.48 0.30 0.49 0.44 0.12 0.35
0.03 0.05 0.08 0.37 0.02 0.07 0.34 0.12 0.41 0.39 0.18 0.12 0.33 0.18 0.13 0.19
0.00 0.09 0.06 0.34 0.04 0.26 0.29 0.05 0.43 0.29 0.28 0.06 0.25 0.34 0.09 0.19
0.02 0.12 0.13 0.37 0.13 0.55 0.40 0.34 0.40 0.38 0.31 0.34 0.34 0.37 0.26 0.30
0.10 0.17 0.06 0.24 0.27 0.15 0.19 0.12 0.31 0.22 0.14 0.14 0.22 0.22 0.00 0.17
0.01 0.05 0.00 0.29 0.19 0.03 0.34 0.09 0.39 0.35 0.29 0.14 0.32 0.25 0.15 0.19
0.02 0.14 0.24 0.39 0.02 0.43 0.43 0.24 0.38 0.41 0.30 0.23 0.31 0.30 0.05 0.26
0.01 0.07 0.10 0.39 0.11 0.47 0.37 0.35 0.54 0.37 0.28 0.34 0.33 0.21 0.10 0.27
0.14 0.26 0.14 0.05 0.01 0.24 0.39 0.25 0.49 0.49 0.41 0.26 0.36 0.41 0.15 0.27
0.01 0.03 0.05 0.11 0.03 0.02 0.50 0.46 0.43 0.49 0.49 0.45 0.51 0.43 0.32 0.29
0.15 0.11 0.10 0.28 0.04 0.17 0.38 0.39 0.39 0.41 0.29 0.37 0.38 0.27 0.21 0.26
0.11 0.11 0.02 0.18 0.05 0.41 0.38 0.10 0.50 0.38 0.23 0.12 0.29 0.18 0.02 0.20
0.14 0.08 0.05 0.25 0.06 0.06 0.46 0.41 0.30 0.46 0.37 0.40 0.43 0.42 0.34 0.28
0.21 0.05 0.01 0.62 0.03 0.19 0.33 0.18 0.58 0.32 0.32 0.18 0.34 0.37 0.04 0.25
0.15 0.02 0.06 0.62 0.28 0.28 0.32 0.24 0.42 0.33 0.26 0.19 0.35 0.26 0.06 0.26
0.10 0.04 0.10 0.50 0.17 0.06 0.40 0.38 0.44 0.40 0.34 0.37 0.40 0.37 0.39 0.30
0.30 0.05 0.12 0.64 0.20 0.10 0.36 0.15 0.32 0.33 0.21 0.15 0.36 0.27 0.06 0.24
0.14 0.02 0.14 0.62 0.08 0.20 0.34 0.06 0.44 0.38 0.19 0.07 0.35 0.18 0.15 0.23
0.05 0.04 0.01 0.45 0.12 0.09 0.30 0.41 0.33 0.30 0.19 0.39 0.24 0.24 0.15 0.22

0.16 0.12 0.11 0.40 0.15 0.23 0.37 0.23 0.45 0.38 0.29 0.23 0.36 0.30 0.15
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Figure 6.3: Compare between TMQI1, TMQI_A1 and TMQI_A2 for "DollDoll" HDR test
image (each group has 15 corresponding methods).
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Figure 6.4: Compare between TMQI1, TMQI_A1 and TMQI_A2 for "Ward" method (each
group has 24 corresponding images).
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3.3 More relevant region

Define 2D Cartesian coordinate system with two axises: the (upward) vertical axis
tmqi and the (rightward) horizontal axis mos which correspond to values of TMQI
and normalized matrix MOS, respectively. One node is generated from a pair of their
values between 0 and 1. An objective quality metric will be ideal if all values are same
(TMQI≡MOS) as well as all nodes are marked on the "black" line 45° (or tmqi=mos)
shown in Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8. The more population of
points near the line the better metric.

It is possible to rescale the corresponding marks ranging from 0 until 5: 5 for excellent,
4 very good, 3 good, 2 accepted, 1 unsatisfactory and 0 failed into the normalized levels:
1 for excellent, 0.8 very good, 0.6 good, 0.4 accepted, 0.2 unsatisfactory and 0 failed.
Therefore, the interval 0.2 is a minimal difference between two consecutive levels so
that the metric gives a mark either a upper level or a lower level from the best level
(tmqi=mos).

Based on the minimal difference between two consecutive levels, it is defined 3
regions as follows:

i. Define relevant region: (make sure nodes around the best level; the metric gives
a mark either a upper level or a lower level from the best level)


0≤mos≤ 1

0≤ tmqi≤ 1

|tmqi−mos|< 0.2

⇔



0≤mos≤ 1

0≤ tmqi≤ 1

tmqi <mos+ 0.2

tmqi >mos− 0.2

(6.4)

ii. Define near-relevant region: (skip one level, up or down)


0≤mos≤ 1

0≤ tmqi≤ 1

0.2≤ |tmqi−mos|< 0.4

(6.5)

It can be divided into two sides:

Up side



0≤mos≤ 1

0≤ tmqi≤ 1

tmqi≥mos+ 0.2

tmqi <mos+ 0.4

(6.6)
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Figure 6.5: Relevant, near-relevant and irrelevant regions on the default TMQI1 metrics versus
the normalized MOS scores.

Down side



0≤mos≤ 1

0≤ tmqi≤ 1

tmqi >mos− 0.4

tmqi≤mos− 0.2

(6.7)

iii. Define irrelevant regions: (skip two levels, up or down)
0≤mos≤ 1

0≤ tmqi≤ 1

|tmqi−mos| ≥ 0.4

(6.8)

It can be divided into two sides:

Up side


0≤mos≤ 1

0≤ tmqi≤ 1

tmqi≥mos+ 0.4

(6.9)

Down side


0≤mos≤ 1

0≤ tmqi≤ 1

tmqi≤mos− 0.4.

(6.10)

For the TMQI1, the number of points falling into the relevant region is 48 (13.33%),
near-relevant 172 (47.77%) and irrelevant 140 (38.88%). In TMQI_A1, the number of
points falling into the relevant region is 138 (38.33%), near-relevant 138 (38.33%) and
irrelevant 84 (23.33%). In TMQI_A2, the number of points falling into the relevant
region is 143 (39.72%), near-relevant 147 (40.83%) and irrelevant 70 (19.44%). In term
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Figure 6.6: Relevant, near-relevant and irrelevant regions on the new TMQI_A1 metrics versus
the normalized MOS scores.
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Figure 6.7: Relevant, near-relevant and irrelevant regions on the new TMQI_A2 metrics versus
the normalized MOS scores.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized MOS

T
M

Q
I

 

 

TMQI1 Default

TMQI App1

TMQI App2

Figure 6.8: Relevant, near-relevant and irrelevant regions on the TMQI1, new TMQI_A1 and
TMQI_A2 metrics versus normalized MOS scores.
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of the relevant region, one can conclude that the TMQI_A2 metric is the best because
of the highest number of points (143 with 39.72%).

3.4 More visual correlation

This section discusses the visual quality versus the TMQI.

3.4.1 Low quality tone mapped images

Figure 6.9: "Stairway1" HDR test image (13.37 f-stops) - "Drago" with MOS=0.412,
TMQI1=0.760 and TMQI_A1=0.431 (too bright at window, too dark around walls).
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Figure 6.10: "ClaridgeHotel" HDR test image (23.44 f-stops) - "Tumblin" with MOS=0.350,
TMQI1=0.751 and TMQI_A1=0.396 (too dark).

Figure 6.11: "BrookHouse" HDR test image (23.98 f-stops) - "Reinhard" with MOS=0.463,
TMQI1=0.768 and TMQI_A1=0.445 (too dark).
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Figure 6.12: "SmallOffice" HDR test image (16.29 f-stops) - "Schlick" with MOS=0.363,
TMQI1=0.728 and TMQI_A2=0.344 (too dark).

Figure 6.13: "Stairway1" HDR test image (13.37 f-stops) - "Fattal" WRB with MOS=0.588,
TMQI1=0.782 and TMQI_A2=0.538 (too bright at window).
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3.4.2 High quality tone mapped images

Figure 6.14: "DollDoll" HDR test image (13.89 f-stops) - Proposed_CEDP_Opt_L1_N1 with
MOS=0.813, TMQI1=0.843 and TMQI_A2=0.808 (close to the MOS).

Figure 6.15: "BottlesSmall" HDR test image (16.03 f-stops) - Proposed_NONSEP_L2 with
MOS=0.563, TMQI1=0.903 and TMQI_A2=0.889 (close to the MOS).
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Figure 6.16: "ClaridgeHotel" HDR test image (23.44 f-stops) - Proposed_SEPENOCA_L2 with
MOS=0.600, TMQI1=0.857 and TMQI_A1=0.799 (close to the MOS).

Figure 6.17: "Lausanne1" HDR test image (7.71 f-stops) - Proposed_SEPENOCA_L2 with
MOS=0.625, TMQI1=0.835 and TMQI_A1=0.754 (close to the MOS).

Figure 6.18: "PeaceRocks" HDR test image (24.13 f-stops) - Proposed_SEPENOCA_L1 with
MOS=0.613, TMQI1=0.841 and TMQI_A1=0.788 (close to the MOS).
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Figure 6.19: "Synagogue" HDR test image (8.57 f-stops) - Proposed_CEDP_Lin_L4_N1 with
MOS=0.750, TMQI1=0.908 and TMQI_A2=0.869 (close to the MOS).

Figure 6.20: "OxfordChurch" HDR test image (15.43 f-stops) - Proposed_CEDP_Opt_L1_N1
with MOS=0.738, TMQI1=0.878 and TMQI_A2=0.788 (close to the MOS).
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Figure 6.21: "AtriumNight" HDR test image (28.68 f-stops) - Proposed_CEDP_Opt_L5_N1
with MOS=0.412, TMQI1=0.768 and TMQI_A2=0.562 (close to the MOS).

Figure 6.22: "BowRiver" HDR test image (9.53 f-stops) - Proposed_CEDP_Opt_L1_N1 with
MOS=0.625, TMQI1=0.838 and TMQI_A2=0.747 (close to the MOS).
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Figure 6.23: "Montreal" HDR test image (16.06 f-stops) - Left image: Pro_CEDP_Opt_L1_N1
with TMQI_A1=0.987 (TMQI1=0.751); Right image: "Husseis" with TMQI_A1=0.963
(TMQI1=0.945) (improved metric).

Figure 6.24: "BridgeStudio2" HDR test image (18.13 f-stops) - Left image:
Pro_CEDP_Opt_L1_N1 with TMQI_A1=0.987 (TMQI1=0.847); Right image: "Hus-
seis" with TMQI_A1=0.978 (TMQI1=0.964) (improved metric).
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4 Conclusion

Two modified metrics (TMQI_A1 and TMQI_A2) have been proposed to evaluate the
visual quality of HDR tone mapped images. These metrics have the closer relation
with the visual quality compared to the default metric TMQI1: (i) the PLCC with the
corresponding MOS increases from 0.588 (TMQI1) to 0.7102 (TMQI_A2) and to 0.7120
(TMQI_A1); (ii) the AME between metrics and normalized MOS has been improved
such as 0.3758 for TMQI1, 0.2722 for TMQI_A2 and 0.2626 for TMQI_A1; (iii) the
population of points in relevant region is higher; and (iv) the visual correlation has been
improved according to the MOS.

The visual quality of our TMOs is confirmed and competitive to the image tone
mapping operators available in the state of the art. One can see in Table 6.1 the average
MOS for our methods, i.e. "Pro_NUHA", "Pro_SEPENO", "Pro_NONSEPENO",
"Pro_CEDP_Lin" and "Pro_CEDP_Opt", remain at higher levels (3.24, 2.99, 2.91,
3.42 and 3.27 respectively).
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Conclusion

The objective of this thesis is to propose tone mapping operator to convert high dynamic
range image into low dynamic range image so that the latter is of good visual quality in
accordance to the TMQI. Four TMOs have been developed: (i) Non-uniform histogram
adjustment, (ii) Separable ENO multiresolution families (Point-Value, Cell-Average), (iii)
Non-separable ENO multiresolution (Cell-Average), and (iv) TMO based on combination
between contrast enhancement and details preservation.

The first global tone mapping operator using non-uniform histogram adjustment
solves the contrast problem based on piecewise linear equation modeling the "s-shaped"
curve in adequation to the well-adapted perception of the HVS. It takes for all account
pixels divided by B-bin non-uniform histogram distributions. The purpose of this
strategy is to enhance the contrast by acting on the M -norm space.

The second and third local tone mapping operators using ENO multiresolution
families according to separable (Point-Value, Cell-Average) or non-separable (Cell-
Average) multiresolution approaches improve detail visibility because the purpose of
decomposition is used to extract the details of the complex HDR image preserving as
much as possible the HDR image quality. These families have the ability to introduce
in their mathematical model the isolated singularities such as edge points in the image
thus avoiding the Gibbs phenomenon particularly harmful in tone mapped images.

The fourth (global, local) tone mapping operator based on a separable near optimal
lifting scheme combined to the perceptual quantizer with respect to the HVS solving
both advantages of contrast enhancement as well as detail visibility.

The study related to the HDR tone mapped metric (TMQI) shows that the pa-
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rameters that have been tuned in the original paper [34] are not relevant since they
have been trained on a small dataset of TMOs (only 8) and HDR test images (only
15). New parameters, more adapted, have been proposed in the accordance to the
MOS. Two proposed metrics have been improved the performance with visual quality
in four aspects: (i) the PLCC with the corresponding MOS increases; (ii) the overall
absolute mean error between metrics and normalized MOS has been improved; (iii) the
population of points in relevant region is higher; and (iv) the visual correlation has been
improved according to the MOS.

For future work, several investigations are possible. The first direction consists to
extend the HDR tone mapped image with ENO multiresolution families to HDR video.
Indeed, the temporal direction of the HDR video will be processed. The second direction
concerns the non-uniform histogram adjustment approach which will be exploited for
compression of the HDR content. The latter can be stored, processed and transmitted
with the LDR information and its residual information using JPEG frameworks, for
example. The third direction concerns the development of TMQI metric with an HDR
reference.
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ix

Computation of separable multiresolution ENO coef-
ficients

This appendix concerns the computation of separable ENO coefficients in PV and
CA cases. Requirements: These coefficients are constant, independent to an index k
and applied for all pixels in the vector of image. An index k will shift through the
length of vectorial approximation (i.e. Vj−1(xn,yk)) with the same performance of one
polynomial as the case k = 0.

1 ENO point-value

Denote p−1(x), p0(x) and p1(x) the three polynomials which corresponding to the
following points on the coarse scale:

p−1(x)−→Puj−1(xn,yk,−1)−→ [k− 2, k− 1, k, k+ 1]

p0(x) −→Puj−1(xn,yk,0) −→ [k− 1, k, k+ 1, k+ 2]

p1(x) −→Puj−1(xn,yk,1) −→ [k, k+ 1, k+ 2, k+ 3].

(A.1)

These are attached to the corresponding stencils Puj−1(xn,yk,u) with u=−1,0,1. The
pixel value Vj−1(xn,yk) is defined by the Point-Value of the underlying cubic Lagrange
function pu(x) modeling the vector, as follows:

Vj−1(xn,yk) = pu(k). (A.2)

Since the approximation Vj−1(xn,yk) is from Ij(xn,yk) at even index by down-sampling
operator, the predicted value Îj(xn,y2k−1) at odd index is the value of function at the



148 Appendix A. Computation of separable multiresolution ENO coefficients
k k+1 k+2k-1k-2 k+3

p-1(x)  "left case"

p0(x)  "center case"

p1(x)  "right case"
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k k+1 k+2k-1k-2 k+3
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Figure A.1: Three of corresponding polynomials are attached on the coarse scale.

mid point on the cell [k, k+ 1]:

Îj(xn,y2k−1,u) = pu(k+ 1/2). (A.3)

1.1 At the center case

See Figure A.1. The cubic polynomial p0(x) = ax3 + bx2 + cx+ d interpolates on
{Vj−1(xn,yk−1), Vj−1(xn,yk), Vj−1(xn,yk+1), Vj−1(xn,yk+2)}. Four values have the
following relationships:

Vj−1(xn,yk−1) = p0(k− 1) = d+ c(k− 1) + a(k− 1)3 + b(k− 1)2

Vj−1(xn,yk) = p0(k) = d+ ck+ ak3 + bk2

Vj−1(xn,yk+1) = p0(k+ 1) = d+ c(k+ 1) + a(k+ 1)3 + b(k+ 1)2

Vj−1(xn,yk+2) = p0(k+ 2) = d+ c(k+ 2) + a(k+ 2)3 + b(k+ 2)2.

(A.4)

On the other hand, as mentioned the requirements above, the index k will shift through
the length of Vj−1 with the same performance of one polynomial as the case k = 0.
Therefore, 

Vj−1(xn,y−1) = b− a− c+ d

Vj−1(xn,y0) = d

Vj−1(xn,y1) = a+ b+ c+ d

Vj−1(xn,y2) = 8a+ 4b+ 2c+ d.

(A.5)

Solve the system (A.5) to find the polynomial coefficients a, b, c, d:

a=−1
6Vj−1(xn,y−1) + 1

2Vj−1(xn,y0)− 1
2Vj−1(xn,y1) + 1

6Vj−1(xn,y2)

b= 1
2Vj−1(xn,y−1)−Vj−1(xn,y0) + 1

2Vj−1(xn,y1)

c=−1
3Vj−1(xn,y−1)− 1

2Vj−1(xn,y0) + Vj−1(xn,y1)− 1
6Vj−1(xn,y2)

d= Vj−1(xn,y0).

(A.6)

Replacing these results in equation (A.3), the predicted value is applied for the case
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k = 0:

Îj(xn,y2k−1,0) = p0(k+ 1/2) = (A.7)

=− 1
16Vj−1(xn,yk−1) + 9

16Vj−1(xn,yk) + 9
16Vj−1(xn,yk+1)− 1

16Vj−1(xn,yk+2).

1.2 At the left case

See Figure A.1. The cubic polynomial p−1(x) = ax3 + bx2 + cx+ d interpolates on
{Vj−1(xn,yk−2), Vj−1(xn,yk−1), Vj−1(xn,yk), Vj−1(xn,yk+1)}. Four values have the
following relationships:

Vj−1(xn,yk−2) = p−1(k− 2) = d+ c(k− 2) + a(k− 2)3 + b(k− 2)2

Vj−1(xn,yk−1) = p−1(k− 1) = d+ c(k− 1) + a(k− 1)3 + b(k− 1)2

Vj−1(xn,yk) = p−1(k) = d+ ck+ ak3 + bk2

Vj−1(xn,yk+1) = p−1(k+ 1) = d+ c(k+ 1) + a(k+ 1)3 + b(k+ 1)2.

(A.8)

On the coarse scale, k will shift through the length of Vj−1(xn,yk) with the same
performance of one polynomial as the case k = 0. Therefore,

Vj−1(xn,y−2) = 4b− 8a− 2c+ d

Vj−1(xn,y−1) = b− a− c+ d

Vj−1(xn,y0) = d

Vj−1(xn,y1) = a+ b+ c+ d.

(A.9)

Solve the system (A.9) to find the polynomial coefficients a, b, c, d:

a=−1
6Vj−1(xn,y−2) + 1

2Vj−1(xn,y−1)− 1
2Vj−1(xn,y0) + 1

6Vj−1(xn,y1)

b= 1
2Vj−1(xn,y−1)−Vj−1(xn,y0) + 1

2Vj−1(xn,y1)

c= 1
6Vj−1(xn,y−2)−Vj−1(xn,y−1) + 1

2Vj−1(xn,y0) + 1
3Vj−1(xn,y1)

d= Vj−1(xn,y0).

(A.10)

Replacing these results in equation (A.3), the predicted value is applied for the case
k = 0:

Îj(xn,y2k−1,−1) = p−1(k+ 1/2) = (A.11)

= 1
16Vj−1(xn,yk−2)− 5

16Vj−1(xn,yk−1) + 15
16Vj−1(xn,yk) + 5

16Vj−1(xn,yk+1).

1.3 At the right case

See Figure A.1. The cubic polynomial p1(x) = ax3 + bx2 + cx+ d interpolates on
{Vj−1(xn,yk), Vj−1(xn,yk+1), Vj−1(xn,yk+2), Vj−1(xn,yk+3)}. Four values have the
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following relationships:

Vj−1(xn,yk) = p1(k) = d+ ck+ ak3 + bk2

Vj−1(xn,yk+1) = p1(k+ 1) = d+ c(k+ 1) + a(k+ 1)3 + b(k+ 1)2

Vj−1(xn,yk+2) = p1(k+ 2) = d+ c(k+ 2) + a(k+ 2)3 + b(k+ 2)2

Vj−1(xn,yk+3) = p1(k+ 3) = d+ c(k+ 3) + a(k+ 3)3 + b(k+ 3)2.

(A.12)

On the coarse scale, k will shift through the length of Vj−1(xn,yk) with the same
performance of one polynomial as the case k = 0. Therefore,

Vj−1(xn,y0) = d

Vj−1(xn,y1) = a+ b+ c+ d

Vj−1(xn,y2) = 8a+ 4b+ 2c+ d

Vj−1(xn,y3) = 27a+ 9b+ 3c+ d.

(A.13)

Solve the system (A.13) to find the polynomial coefficients a, b, c:

a=−1
6Vj−1(xn,y0) + 1

2Vj−1(xn,y1)− 1
2Vj−1(xn,y2) + 1

6Vj−1(xn,y3)

b= Vj−1(xn,y0)− 5
2Vj−1(xn,y1) + 2Vj−1(xn,y2)− 1

2Vj−1(xn,y3)

c=−11
6 Vj−1(xn,y0) + 3Vj−1(xn,y1)− 3

2Vj−1(xn,y2) + 1
3Vj−1(xn,y3)

d= Vj−1(xn,y0).

(A.14)

Replacing these results in the equation (A.3), the predicted value is applied for the case
k = 0:

Îj(xn,y2k−1,+1) = p1(k+ 1/2) = (A.15)

= 5
16Vj−1(xn,yk) + 15

16Vj−1(xn,yk+1)− 5
16Vj−1(xn,yk+2) + 1

16Vj−1(xn,yk+3).

The results are rewritten by the equation (A.7), equation (A.11) and equation (A.15)
as follows:

Îj(xn,y2k−1) =


Îj(xn,y2k−1,−1) for the left case

Îj(xn,y2k−1,0) for the center case

Îj(xn,y2k−1,+1) for the right case

(A.16)

=


+ 1

16Vj−1(xn,yk−2)− 5
16Vj−1(xn,yk−1) + 15

16Vj−1(xn,yk) + 5
16Vj−1(xn,yk+1)

− 1
16Vj−1(xn,yk−1) + 9

16Vj−1(xn,yk) + 9
16Vj−1(xn,yk+1)− 1

16Vj−1(xn,yk+2)

+ 5
16Vj−1(xn,yk) + 15

16Vj−1(xn,yk+1)− 5
16Vj−1(xn,yk+2) + 1

16Vj−1(xn,yk+3)
(A.17)
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=



∑[
+ 1

16 − 5
16 +15

16 + 5
16

]
⊗
[
Vj−1(xn,yk−2) Vj−1(xn,yk−1) Vj−1(xn,yk) Vj−1(xn,yk+1)

]
∑[
− 1

16 + 9
16 + 9

16 − 1
16

]
⊗
[
Vj−1(xn,yk−1) Vj−1(xn,yk) Vj−1(xn,yk+1) Vj−1(xn,yk+2)

]
∑[

+ 5
16 +15

16 − 5
16 + 1

16

]
⊗
[
Vj−1(xn,yk) Vj−1(xn,yk+1) Vj−1(xn,yk+2) Vj−1(xn,yk+3)

]
(A.18)

in compact forms where ⊗ is the product term by term.

2 ENO cell-average

Denote p−1(x), p0(x) and p1(x) the three polynomials which corresponding to the
following intervals on the coarse scale:

p−1(x)−→Cuj−1(xn,yk,−1)−→ {[k− 2,k− 1], [k− 1,k], [k,k+ 1]}

p0(x) −→Cuj−1(xn,yk,0) −→ {[k− 1,k], [k,k+ 1], [k+ 1,k+ 2]}

p1(x) −→Cuj−1(xn,yk,1) −→ {[k,k+ 1], [k+ 1,k+ 2], [k+ 2,k+ 3]}.

(A.19)

These are attached to the corresponding stencils Cuj−1(xn,yk,u) with u = −1,0,1.k k+1 k+2k-1k-2 k+3
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Figure A.2: Three of corresponding polynomials are attached on the coarse scale.

The pixel value Ij−1(xn,yk) is defined by the Cell-Average of the underlying quadratic
function pu(x) modeling the vector, as follows:

Vj−1(xn,yk) =
∫

Cj−1
k

pu(x)dx=
∫ k+1

k
pu(x)dx, (A.20)

where the 1D cell Cj−1
k is defined as [k, k+ 1]. Two predicted values are deduced as

follows: at the odd index:

Îj(xn,y2k−1,u) = 2
∫ k+1/2

k
pu(x)dx, (A.21)

at the even index:
Îj(xn,y2k,u) = 2

∫ k+1

k+1/2
pu(x)dx (A.22)

Note that Îj(xn,y2k−1,u) + Îj(xn,y2k,u) = 2Vj−1(xn,yk).
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2.1 At the center case

See Figure A.2. The quadratic polynomial p0(x) = ax2 + bx + c interpolates on
{Vj−1(xn,yk−1), Vj−1(xn,yk), Vj−1(xn,yk+1)}. Three values have the following rela-
tionships:

Vj−1(xn,yk−1) =
∫ k
k−1 p0(x)dx= 1

3a−
1
2b+ c− ak+ bk+ ak2

Vj−1(xn,yk) =
∫ k+1
k p0(x)dx= 1

3a+ 1
2b+ c+ ak+ bk+ ak2

Vj−1(xn,yk+1) =
∫ k+2
k+1 p0(x)dx= 7

3a+ 3
2b+ c+ 3ak+ bk+ ak2.

(A.23)

On the coarse scale, k will shift through the length of Vj−1(xn,yk) with the same
performance of one polynomial as the case k = 0. Therefore,

Vj−1(xn,y−1) = 1
3a−

1
2b+ c

Vj−1(xn,y0) = 1
3a+ 1

2b+ c

Vj−1(xn,y1) = 7
3a+ 3

2b+ c.

(A.24)

Solve the system (A.24) to find the polynomial coefficients a, b, c:
a= 1

2Vj−1(xn,y−1)−Vj−1(xn,y0) + 1
2Vj−1(xn,y1)

b=−Vj−1(xn,y−1) + Vj−1(xn,y0)

c= +1
3Vj−1(xn,y−1) + 5

6Vj−1(xn,y0)− 1
6Vj−1(xn,y1).

(A.25)

Replacing these results (a, b, c) in the equation (A.21), the predicted value at the odd
index is applied for the case k = 0:

Îj(xn,y2k−1,0) = 2
∫ k+1/2

k
p0(x)dx= 1

8Vj−1(xn,yk−1)+Vj−1(xn,yk)−1
8Vj−1(xn,yk+1)

(A.26)
Replacing the results (a, b, c) in the equation (A.22), the predicted value at the even
index is applied for the case k = 0:

Îj(xn,y2k,0) = 2
∫ k+1

k+1/2
p0(x)dx=−1

8Vj−1(xn,yk−1)+Vj−1(xn,yk)+ 1
8Vj−1(xn,yk+1)

(A.27)

2.2 At the left case

See Figure A.2. The quadratic polynomial p−1(x) = ax2 + bx + c interpolates on
{Vj−1(xn,yk−2), Vj−1(xn,yk−1), Vj−1(xn,yk)}. Three values have the following rela-
tionships:

Vj−1(xn,yk−2) =
∫ k−1
k−2 p−1(x)dx= 7

3a−
3
2b+ c− 3ak+ bk+ ak2

Vj−1(xn,yk−1) =
∫ k
k−1 p−1(x)dx= 1

3a−
1
2b+ c− ak+ bk+ ak2

Vj−1(xn,yk) =
∫ k+1
k p−1(x)dx= 1

3a+ 1
2b+ c+ ak+ bk+ ak2.

(A.28)
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On the coarse scale, k will shift through the length of Vj−1(xn,yk) with the same
performance of one polynomial as the case k = 0. Therefore,

Vj−1(xn,y−2) = 7
3a−

3
2b+ c

Vj−1(xn,y−1) = 1
3a−

1
2b+ c

Vj−1(xn,y0) = 1
3a+ 1

2b+ c.

(A.29)

Solve the system (A.29) to find the polynomial coefficients a, b, c:
a= 1

2Vj−1(xn,y−2)−Vj−1(xn,y−1) + 1
2Vj−1(xn,y0)

b=−Vj−1(xn,y−1) + Vj−1(xn,y0)

c=−1
6Vj−1(xn,y−2) + 5

6Vj−1(xn,y−1) + 1
3Vj−1(xn,y0).

(A.30)

Replacing these results (a, b, c) in the equation (A.21), the predicted value at the odd
index is applied for the case k = 0:

Îj(xn,y2k−1,−1) = 2
∫ k+1/2

k
p−1(x)dx=−1

8Vj−1(xn,yk−2)+1
2Vj−1(xn,yk−1)+5

8Vj−1(xn,yk)
(A.31)

Replacing the results (a, b, c) in the equation (A.22), the predicted value at the even
index is applied for the case k = 0:

Îj(xn,y2k,−1) = 2
∫ k+1

k+1/2
p−1(x)dx= 1

8Vj−1(xn,yk−2)−1
2Vj−1(xn,yk−1)+11

8 Vj−1(xn,yk)

(A.32)

2.3 At the right case

See Figure A.2. The quadratic polynomial p1(x) = ax2 + bx + c interpolates on
{Vj−1(xn,yk), Vj−1(xn,yk+1), Vj−1(xn,yk+2)}. Three values have the following rela-
tionships:

Vj−1(xn,yk) =
∫ k+1
k p1(x)dx= 1

3a+ 1
2b+ c+ ak+ bk+ ak2

Vj−1(xn,yk+1) =
∫ k+2
k+1 p1(x)dx= 7

3a+ 3
2b+ c+ 3ak+ bk+ ak2

Vj−1(xn,yk+2) =
∫ k+3
k+2 p1(x)dx= 19

3 a+ 5
2b+ c+ 5ak+ bk+ ak2.

(A.33)

On the coarse scale, k will shift through the length of Vj−1(xn,yk) with the same
performance of one polynomial as the case k = 0. Therefore,

Vj−1(xn,y0) = 1
3a+ 1

2b+ c

Vj−1(xn,y1) = 7
3a+ 3

2b+ c

Vj−1(xn,y2) = 19
3 a+ 5

2b+ c.

(A.34)

Solve the system (A.34) to find the polynomial coefficients a, b, c:
a= 1

2Vj−1(xn,y0)−Vj−1(xn,y1) + 1
2Vj−1(xn,y2)

b=−2Vj−1(xn,y0) + 3Vj−1(xn,y1)−Vj−1(xn,y2)

c= 11
6 Vj−1(xn,y0)− 7

6Vj−1(xn,y1) + 1
3Vj−1(xn,y2).

(A.35)
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Replacing these results (a, b, c) in the equation (A.21), the predicted value at the odd
index is applied for the case k = 0:

Îj(xn,y2k−1,+1) = 2
∫ k+1/2

k
p1(x)dx= 11

8 Vj−1(xn,yk)−1
2Vj−1(xn,yk+1)+1

8Vj−1(xn,yk+2)
(A.36)

Replacing the results (a, b, c) in the equation (A.22), the predicted value at the even
index is applied for the case k = 0:

Îj(xn,y2k,+1) = 2
∫ k+1

k+1/2
p1(x)dx= 5

8Vj−1(xn,yk)+1
2Vj−1(xn,yk+1)−1

8Vj−1(xn,yk+2)

(A.37)

The following predicted values at odd indexes are rewritten from the equation (A.26),
equation (A.31) and equation (A.36):

Îj(xn,y2k−1,−1) =−1
8Vj−1(xn,yk−2) + 1

2Vj−1(xn,yk−1) + 5
8Vj−1(xn,yk)

Îj(xn,y2k−1,0) = 1
8Vj−1(xn,yk−1) + Vj−1(xn,yk)− 1

8Vj−1(xn,yk+1)

Îj(xn,y2k−1,+1) = 11
8 Vj−1(xn,yk)− 1

2Vj−1(xn,yk+1) + 1
8Vj−1(xn,yk+2).

(A.38)
The following predicted values at even indexes are rewritten from the equation (A.27),
equation (A.32) and equation (A.37):

Îj(xn,y2k,−1) = 1
8Vj−1(xn,yk−2)− 1

2Vj−1(xn,yk−1) + 11
8 Vj−1(xn,yk)

Îj(xn,y2k,0) =−1
8Vj−1(xn,yk−1) + Vj−1(xn,yk) + 1

8Vj−1(xn,yk+1)

Îj(xn,y2k,+1) = 5
8Vj−1(xn,yk) + 1

2Vj−1(xn,yk+1)− 1
8Vj−1(xn,yk+2).

(A.39)

In the thesis, only predicted values at odd indexes are used:

Îj(xn,y2k−1) =


Îj(xn,y2k−1,−1) for the left case

Îj(xn,y2k−1,0) for the center case

Îj(xn,y2k−1,+1) for the right case

(A.40)

=


−1

8Vj−1(xn,yk−2) + 1
2Vj−1(xn,yk−1) + 5

8Vj−1(xn,yk)

+1
8Vj−1(xn,yk−1) + Vj−1(xn,yk)− 1

8Vj−1(xn,yk+1)

+11
8 Vj−1(xn,yk)− 1

2Vj−1(xn,yk+1) + 1
8Vj−1(xn,yk+2)

(A.41)

=



∑[
−1

8 +1
2 +5

8

]
⊗
[
Vj−1(xn,yk−2) Vj−1(xn,yk−1) Vj−1(xn,yk)

]
∑[

+1
8 +1 −1

8

]
⊗
[
Vj−1(xn,yk−1) Vj−1(xn,yk) Vj−1(xn,yk+1)

]
∑[

+11
8 −1

2 +1
8

]
⊗
[
Vj−1(xn,yk) Vj−1(xn,yk+1) Vj−1(xn,yk+2)

] (A.42)

in compact forms where ⊗ is the product term by term.
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Computation of non-separable multiresolution ENO
coefficients

This appendix concerns the computation of non-separable ENO Cell-Average coefficients.
Requirements: These coefficients are constant, independent to parameters (n,m) and
applied for all pixels of the image. A pair of (n,m) will shift through the area of 2D
approximation (i.e. Ij−1(xn,ym)) with the same performance of one polynomial as the
case (n,m) = (0,0).

Denote p(−1,−1)(x,y), p(−1,0)(x,y), p(−1,1)(x,y), p(0,−1)(x,y), p(0,0)(x,y), p(0,1)(x,y),
p(1,−1)(x,y), p(1,0)(x,y), p(1,1)(x,y) the nine polynomials which corresponding to the
coarse scale. These are attached to the 2D stencils Sj−1(xn,ym, r1, r2) with r1, r2 in
[−1,0,1] corresponding to the position of the stencil with respect to (n,m) as follows:

Sj−1(xn,ym, r1, r2) =


Cj−1

(n+r1−1,m+r2−1) Cj−1
(n+r1−1,m+r2) Cj−1

(n+r1−1,m+r2+1)
Cj−1

(n+r1,m+r2−1) Cj−1
(n+r1,m+r2) Cj−1

(n+r1,m+r2+1)
Cj−1

(n+r1+1,m+r2−1) Cj−1
(n+r1+1,m+r2) Cj−1

(n+r1+1,m+r2+1)

 .
(B.1)

There are then nine kinds of stencil positions: down-left (DL) with (r1, r2) = (−1,−1),
down-center (DC) with (r1, r2) = (−1,0), down-right (DR) with (r1, r2) = (−1,1), center-
left (CL) with (r1, r2) = (0,−1), center-center (CC) with (r1, r2) = (0,0), center-right
(CR) with (r1, r2) = (0,1), upper-left (UL) with (r1, r2) = (1,−1), upper-center (UC)
with (r1, r2) = (1,0) and upper-right (UR) with (r1, r2) = (1,1). See Figure B.1.

The general bi-quadractic polynomial is p(r1,r2)(x,y) = ax2y2 + bx2y+ cxy2 + dxy+
ex2 + fy2 + gx+ hy + k. Through the Cartesian coordinate system, there are nine
bi-quadractic polynomials p(r1,r2) corresponding to each stencil Sj−1(xn,ym, r1, r2) with
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(r1, r2) ∈ {(−1,−1), (−1,0), (−1,1), (0,−1), (0,0), (0,1), (1,−1), (1,0), (1,1)}. It is
attached to the nine cells in 3× 3 square.

The pixel value Ij−1(xn,ym) is defined by the Cell-Average of the underlying bidi-
mensional polynomial p(r1,r2)(x,y) modeling the image, as follows:

Ij−1(xn,ym) =
∫

Cj−1
(n,m)

p(r1,r2)(x,y)dxdy =
∫ n+1

n

∫ m+1

m
p(r1,r2)(x,y)dxdy, (B.2)

where the 2D cell Cj−1
(n,m) is defined as [n,n+ 1]× [m,m+ 1].

Four predicted values, Îj(x2n−1,y2m−1), Îj(x2n−1,y2m), Îj(x2n,y2m−1) and Îj(x2n,y2m),
are interpolated from Ij−1 at the interest position (xn,ym), and defined in one-fourths
(i.e. [n,n+1/2]×[m,m+1/2], [n,n+1/2]×[m+1/2,m+1], [n+1/2,n+1]×[m,m+1/2]
and [n+ 1/2,n+ 1]× [m+ 1/2,m+ 1]) of the 2D cell as follows:[

Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
=

4

∫ n+1/2
n

∫m+1/2
m p(r1,r2)(x,y)dxdy

∫ n+1/2
n

∫m+1
m+1/2 p(r1,r2)(x,y)dxdy∫ n+1

n+1/2
∫m+1/2
m p(r1,r2)(x,y)dxdy

∫ n+1
n+1/2

∫m+1
m p(r1,r2)(x,y)dxdy

 . (B.3)
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(n,m) (n,m+1) (n,m+2)(n,m-1)(n,m-2) (n,m+3)

(n-1,m) (n-1,m+1) (n-1,m+2)(n-1,m-1)(n-1,m-2) (n-1,m+3)

(n-2,m) (n-2,m+1) (n-2,m+2)(n-2,m-1)(n-2,m-2) (n-2,m+3)

(n+1,m) (n+1,m+1) (n+1,m+2)(n+1,m-1)(n+1,m-2) (n+1,m+3)

(n+2,m) (n+2,m+1) (n+2,m+2)(n+2,m-1)(n+2,m-2) (n,m+3)

(n+3,m) (n+3,m+1) (n+3,m+2)(n+3,m-1)(n+3,m-2) (n+3,m+3)

x

y

CC

UCUL

CL

DCDL

CR

UR

DR
y

x

Figure B.1: There are nine bi-quadratic polynomials attached to the 2D cartezian coordinates
system of the coarse scale: (Up) Each has size of 3× 3 cells with the centered cell marked by the
label: upper-left (UL) with (r1, r2) = (−1,−1), upper-center (UC) with (r1, r2) = (−1,0), upper-
right (UR) with (r1, r2) = (−1,1), center-left (CL) with (r1, r2) = (0,−1), center-center (CC) with
(r1, r2) = (0,0), center-right (CR) with (r1, r2) = (0,1), down-left (DL) with (r1, r2) = (1,−1),
down-center (DC) with (r1, r2) = (1,0) and down-right (DR) with (r1, r2) = (1,1); (Down)
Zooming part.
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1 At the center-center case

See Figure B.1. On the coarse scale, a pair of (n,m) will shift through the area of
Ij−1(xn,ym) with the same performance of one polynomial as the case (n,m) = (0,0).
Therefore, the bi-quadratic polynomial p(0,0)(x,y) = ax2y2 + bx2y+ cxy2 + dxy+ ex2 +
fy2 + gx+hy+ k interpolates on:


Ij−1(x−1,y−1) Ij−1(x−1,y0) Ij−1(x−1,y1)
Ij−1(x0,y−1) Ij−1(x0,y0) Ij−1(x0,y1)
Ij−1(x1,y−1) Ij−1(x1,y0) Ij−1(x1,y1)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8

 (B.4)

Nine values have the following relationships:



Ij−1(x−1,y1) =
∫ 0
−1
∫ 2

1 p(x,y)dxdy = 7
9a+ 1

2b−
7
6c−

3
4d+ 1

3e+ 7
3f −

1
2g+ 3

2h+ k

Ij−1(x0,y1) =
∫ 1

0
∫ 2

1 p(x,y)dxdy = 7
9a+ 1

2b+ 7
6c+ 3

4d+ 1
3e+ 7

3f + 1
2g+ 3

2h+ k

Ij−1(x1,y1) =
∫ 2

1
∫ 2

1 p(x,y)dxdy = 49
9 a+ 7

2b+ 7
2c+ 9

4d+ 7
3e+ 7

3f + 3
2g+ 3

2h+ k

Ij−1(x−1,y0) =
∫ 0
−1
∫ 1

0 p(x,y)dxdy = 1
9a+ 1

6b−
1
6c−

1
4d+ 1

3e+ 1
3f −

1
2g+ 1

2h+ k

Ij−1(x0,y0) =
∫ 1

0
∫ 1

0 p(x,y)dxdy = 1
9a+ 1

6b+ 1
6c+ 1

4d+ 1
3e+ 1

3f + 1
2g+ 1

2h+ k

Ij−1(x1,y0) =
∫ 2

1
∫ 1

0 p(x,y)dxdy = 7
9a+ 7

6b+ 1
2c+ 3

4d+ 7
3e+ 1

3f + 3
2g+ 1

2h+ k

Ij−1(x−1,y−1) =
∫ 0
−1
∫ 0
−1 p(x,y)dxdy = 1

9a−
1
6b−

1
6c+ 1

4d+ 1
3e+ 1

3f −
1
2g−

1
2h+ k

Ij−1(x0,y−1) =
∫ 1

0
∫ 0
−1 p(x,y)dxdy = 1

9a−
1
6b+ 1

6c−
1
4d+ 1

3e+ 1
3f + 1

2g−
1
2h+ k

Ij−1(x1,y−1) =
∫ 2

1
∫ 0
−1 p(x,y)dxdy = 7

9a−
7
6b+ 1

2c−
3
4d+ 7

3e+ 1
3f + 3

2g−
1
2h+ k.

(B.5)
Solve the system (B.5) to find the polynomial coefficients a, b, c, d, e, f , g, h, k:

=⇒



a=m0 + 1
4m1− 1

2m2 + 1
4m3− 1

2m4− 1
2m5 + 1

4m6− 1
2m7 + 1

4m8

b= 1
2m4−m0 + 1

2m5− 1
2m6 +m7− 1

2m8

c= 1
2m2− 1

2m1−m0 +m4− 1
2m6 + 1

2m7

d=m0−m4 +m6−m7

e= 1
6m2− 1

12m1− 5
6m0− 1

12m3 + 5
12m4 + 5

12m5 + 1
6m6− 1

3m7 + 1
6m8

f = 1
6m1− 5

6m0 + 5
12m2− 1

12m3− 1
3m4 + 1

6m5 + 1
6m6 + 5

12m7− 1
12m8

g = 5
6m0 + 1

6m1− 1
6m2− 5

6m4− 1
3m6 + 1

3m7

h= 5
6m0 + 1

3m4− 1
6m5− 1

3m6− 5
6m7 + 1

6m8

k = 25
36m0− 1

18m1− 5
36m2 + 1

36m3 + 5
18m4− 5

36m5 + 1
9m6 + 5

18m7− 1
18m8.

(B.6)

Replacing these results in the equation (B.3), four predicted values are applied for



2. At the center-left case 159

the case (n,m) = (0,0) as follows:
Îj(x2n−1,y2m−1) = 4[+ 1

256m1 + 1
32m2− 1

256m3 + 1
32m4 + 1

4m0− 1
32m5− 1

256m6− 1
32m7 + 1

256m8]
Îj(x2n−1,y2m) = 4[− 1

256m1 + 1
32m2 + 1

256m3− 1
32m4 + 1

4m0 + 1
32m5 + 1

256m6− 1
32m7− 1

256m8]
Îj(x2n,y2m−1) = 4[− 1

256m1− 1
32m2 + 1

256m3 + 1
32m4 + 1

4m0− 1
32m5 + 1

256m6 + 1
32m7− 1

256m8]
Îj(x2n,y2m) = 4[+ 1

256m1− 1
32m2− 1

256m3− 1
32m4 + 1

4m0 + 1
32m5− 1

256m6 + 1
32m7 + 1

256m8]
(B.7)

Denote

Ij−1
CC =


Ij−1(xn−1,ym−1) Ij−1(xn−1,ym) Ij−1(xn−1,ym+1)
Ij−1(xn,ym−1) Ij−1(xn,ym) Ij−1(xn,ym+1)

Ij−1(xn+1,ym−1) Ij−1(xn+1,ym) Ij−1(xn+1,ym+1)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8


(B.8)

In compact forms, four predicted values are rewritten as follows:[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (B.9)

= 4



∑∑
+ 1

256 + 1
32 − 1

256
+ 1

32 +1
4 − 1

32
− 1

256 − 1
32 + 1

256

⊗ Ij−1
CC

∑∑
− 1

256 + 1
32 + 1

256
− 1

32 +1
4 + 1

32
+ 1

256 − 1
32 − 1

256

⊗ Ij−1
CC

∑∑
− 1

256 − 1
32 + 1

256
+ 1

32 +1
4 − 1

32
+ 1

256 + 1
32 − 1

256

⊗ Ij−1
CC

∑∑
+ 1

256 − 1
32 − 1

256
− 1

32 +1
4 + 1

32
− 1

256 + 1
32 + 1

256

⊗ Ij−1
CC


(B.10)

where ⊗ is the product term by term.

2 At the center-left case

See Figure B.1. The bi-quadratic polynomial p(−1,0)(x,y) = ax2y2 + bx2y+ cxy2 +dxy+
ex2 + fy2 + gx+hy+ k interpolates on:

Ij−1(x−1,y−2) Ij−1(x−1,y−1) Ij−1(x−1,y0)
Ij−1(x0,y−2) Ij−1(x0,y−1) Ij−1(x0,y0)
Ij−1(x1,y−2) Ij−1(x1,y−1) Ij−1(x1,y0)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8

 (B.11)

With the same procedures as the center-center case, it derives nine relationships
and then solves the system to find nine polynomial coefficients (a, b, c, d, e, f , g, h,
k). Finally replacing these coefficients in the equation (B.3), four predicted values are



160 Appendix B. Computation of non-separable multiresolution ENO coefficients

applied for the case (n,m) = (0,0) as follows:
Îj(x2n−1,y2m−1) = 4[− 1

256m1 + 1
64m2 + 5

256m3− 1
32m4 + 1

8m0 + 5
32m5 + 1

256m6− 1
64m7− 5

256m8]
Îj(x2n−1,y2m) = 4[+ 1

256m1− 1
64m2 + 11

256m3 + 1
32m4− 1

8m0 + 11
32m5− 1

256m6 + 1
64m7− 11

256m8]
Îj(x2n,y2m−1) = 4[+ 1

256m1− 1
64m2− 5

256m3− 1
32m4 + 1

8m0 + 5
32m5− 1

256m6 + 1
64m7 + 5

256m8]
Îj(x2n,y2m) = 4[− 1

256m1 + 1
64m2− 11

256m3 + 1
32m4− 1

8m0 + 11
32m5 + 1

256m6− 1
64m7 + 11

256m8]
(B.12)

Denote

Ij−1
CL =


Ij−1(xn−1,ym−2) Ij−1(xn−1,ym−1) Ij−1(xn−1,ym)
Ij−1(xn,ym−2) Ij−1(xn,ym−1) Ij−1(xn,ym)

Ij−1(xn+1,ym−2) Ij−1(xn+1,ym−1) Ij−1(xn+1,ym)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8


(B.13)

In compact forms, four predicted values are rewritten as follows:[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (B.14)

= 4



∑∑
− 1

256 + 1
64 + 5

256
− 1

32 +1
8 + 5

32
+ 1

256 − 1
64 − 5

256

⊗ Ij−1
CL

∑∑
+ 1

256 − 1
64 + 11

256
+ 1

32 −1
8 +11

32
− 1

256 + 1
64 − 11

256

⊗ Ij−1
CL

∑∑
+ 1

256 − 1
64 − 5

256
− 1

32 +1
8 + 5

32
− 1

256 + 1
64 + 5

256

⊗ Ij−1
CL

∑∑
− 1

256 + 1
64 − 11

256
+ 1

32 −1
8 +11

32
+ 1

256 − 1
64 + 11

256

⊗ Ij−1
CL


(B.15)

3 At the center-right case

See Figure B.1.
Îj(x2n−1,y2m−1) = 4[+ 11

256m1− 1
64m2 + 1

256m3 + 11
32m4− 1

8m0 + 1
32m5− 11

256m6 + 1
64m7− 1

256m8]
Îj(x2n−1,y2m) = 4[+ 5

256m1 + 1
64m2− 1

256m3 + 5
32m4 + 1

8m0− 1
32m5− 5

256m6− 1
64m7 + 1

256m8]
Îj(x2n,y2m−1) = 4[− 11

256m1 + 1
64m2− 1

256m3 + 11
32m4− 1

8m0 + 1
32m5 + 11

256m6− 1
64m7 + 1

256m8]
Îj(x2n,y2m) = 4[− 5

256m1− 1
64m2 + 1

256m3 + 5
32m4 + 1

8m0− 1
32m5 + 5

256m6 + 1
64m7− 1

256m8]
(B.16)

Denote

Ij−1
CR =


Ij−1(xn−1,ym) Ij−1(xn−1,ym+1) Ij−1(xn−1,ym+2)
Ij−1(xn,ym) Ij−1(xn,ym+1) Ij−1(xn,ym+2)

Ij−1(xn+1,ym) Ij−1(xn+1,ym+1) Ij−1(xn+1,ym+2)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8


(B.17)



4. At the upper-left case 161

In compact forms, four predicted values are rewritten as follows:[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (B.18)

= 4



∑∑
+ 11

256 − 1
64 + 1

256
+11

32 −1
8 + 1

32
− 11

256 + 1
64 − 1

256

⊗ Ij−1
CR

∑∑
+ 5

256 + 1
64 − 1

256
+ 5

32 +1
8 − 1

32
− 5

256 − 1
64 + 1

256

⊗ Ij−1
CR

∑∑
− 11

256 + 1
64 − 1

256
+11

32 −1
8 + 1

32
+ 11

256 − 1
64 + 1

256

⊗ Ij−1
CR

∑∑
− 5

256 − 1
64 + 1

256
+ 5

32 +1
8 − 1

32
+ 5

256 + 1
64 − 1

256

⊗ Ij−1
CR


(B.19)

4 At the upper-left case

See Figure B.1.
Îj(x2n−1,y2m−1) = 4[+ 1

256m1− 1
64m2− 5

256m3− 1
64m4 + 1

16m0 + 5
64m5− 5

256m6 + 5
64m7 + 25

256m8]
Îj(x2n−1,y2m) = 4[− 1

256m1 + 1
64m2− 11

256m3 + 1
64m4− 1

16m0 + 11
64m5 + 5

256m6− 5
64m7 + 55

256m8]
Îj(x2n,y2m−1) = 4[− 1

256m1 + 1
64m2 + 5

256m3 + 1
64m4− 1

16m0− 5
64m5− 11

256m6 + 11
64m7 + 55

256m8]
Îj(x2n,y2m) = 4[+ 1

256m1− 1
64m2 + 11

256m3− 1
64m4 + 1

16m0− 11
64m5 + 11

256m6− 11
64m7 + 121

256m8]
(B.20)

Denote

Ij−1
UL =


Ij−1(xn−2,ym−2) Ij−1(xn−2,ym−1) Ij−1(xn−2,ym)
Ij−1(xn−1,ym−2) Ij−1(xn−1,ym−1) Ij−1(xn−1,ym)
Ij−1(xn,ym−2) Ij−1(xn,ym−1) Ij−1(xn,ym)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8


(B.21)

In compact forms, four predicted values are rewritten as follows:[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (B.22)

= 4



∑∑
+ 1

256 − 1
64 − 5

256
− 1

64 + 1
16 + 5

64
− 5

256 + 5
64 + 25

256

⊗ Ij−1
UL

∑∑
− 1

256 + 1
64 − 11

256
+ 1

64 − 1
16 +11

64
+ 5

256 − 5
64 + 55

256

⊗ Ij−1
UL

∑∑
− 1

256 + 1
64 + 5

256
+ 1

64 − 1
16 − 5

64
− 11

256 +11
64 + 55

256

⊗ Ij−1
UL

∑∑
+ 1

256 − 1
64 + 11

256
− 1

64 + 1
16 −11

64
+ 11

256 −11
64 +121

256

⊗ Ij−1
UL


(B.23)
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5 At the upper-center case

See Figure B.1.

Îj(x2n−1,y2m−1) = 4[− 1
256m1− 1

32m2 + 1
256m3 + 1

64m4 + 1
8m0− 1

64m5 + 5
256m6 + 5

32m7− 5
256m8]

Îj(x2n−1,y2m) = 4[+ 1
256m1− 1

32m2− 1
256m3− 1

64m4 + 1
8m0 + 1

64m5− 5
256m6 + 5

32m7 + 5
256m8]

Îj(x2n,y2m−1) = 4[+ 1
256m1 + 1

32m2− 1
256m3− 1

64m4− 1
8m0 + 1

64m5 + 11
256m6 + 11

32m7− 11
256m8]

Îj(x2n,y2m) = 4[− 1
256m1 + 1

32m2 + 1
256m3 + 1

64m4− 1
8m0− 1

64m5− 11
256m6 + 11

32m7 + 11
256m8]

(B.24)

Denote

Ij−1
UC =


Ij−1(xn−2,ym−1) Ij−1(xn−2,ym) Ij−1(xn−2,ym+1)
Ij−1(xn−1,ym−1) Ij−1(xn−1,ym) Ij−1(xn−1,ym+1)
Ij−1(xn,ym−1) Ij−1(xn,ym) Ij−1(xn,ym+1)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8


(B.25)

In compact forms, four predicted values are rewritten as follows:

[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (B.26)

= 4



∑∑
− 1

256 − 1
32 + 1

256
+ 1

64 +1
8 − 1

64
+ 5

256 + 5
32 − 5

256

⊗ Ij−1
UC

∑∑
+ 1

256 − 1
32 − 1

256
− 1

64 +1
8 + 1

64
− 5

256 + 5
32 + 5

256

⊗ Ij−1
UC

∑∑
+ 1

256 + 1
32 − 1

256
− 1

64 −1
8 + 1

64
+ 11

256 +11
32 − 11

256

⊗ Ij−1
UC

∑∑
− 1

256 + 1
32 + 1

256
+ 1

64 −1
8 − 1

64
− 11

256 +11
32 + 11

256

⊗ Ij−1
UC


(B.27)

6 At the upper-right case

See Figure B.1.


Îj(x2n−1,y2m−1) = 4[− 11
256m1 + 1

64m2− 1
256m3 + 11

64m4− 1
16m0 + 1

64m5 + 55
256m6− 5

64m7 + 5
256m8]

Îj(x2n−1,y2m) = 4[− 5
256m1− 1

64m2 + 1
256m3 + 5

64m4 + 1
16m0− 1

64m5 + 25
256m6 + 5

64m7− 5
256m8]

Îj(x2n,y2m−1) = 4[+ 11
256m1− 1

64m2 + 1
256m3− 11

64m4 + 1
16m0− 1

64m5 + 121
256m6− 11

64m7 + 11
256m8]

Îj(x2n,y2m) = 4[+ 5
256m1 + 1

64m2− 1
256m3− 5

64m4− 1
16m0 + 1

64m5 + 55
256m6 + 11

64m7− 11
256m8]

(B.28)
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Denote

Ij−1
UR =


Ij−1(xn−2,ym) Ij−1(xn−2,ym+1) Ij−1(xn−2,ym+2)
Ij−1(xn−1,ym) Ij−1(xn−1,ym+1) Ij−1(xn−1,ym+2)
Ij−1(xn,ym) Ij−1(xn,ym+1) Ij−1(xn,ym+2)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8


(B.29)

In compact forms, four predicted values are rewritten as follows:

[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (B.30)

= 4



∑∑
− 11

256 + 1
64 − 1

256
+11

64 − 1
16 + 1

64
+ 55

256 − 5
64 + 5

256

⊗ Ij−1
UR

∑∑
− 5

256 − 1
64 + 1

256
+ 5

64 + 1
16 − 1

64
+ 25

256 + 5
64 − 5

256

⊗ Ij−1
UR

∑∑
+ 11

256 − 1
64 + 1

256
−11

64 + 1
16 − 1

64
+121

256 −11
64 + 11

256

⊗ Ij−1
UR

∑∑
+ 5

256 + 1
64 − 1

256
− 5

64 − 1
16 + 1

64
+ 55

256 +11
64 − 11

256

⊗ Ij−1
UR


(B.31)

7 At the down-left case

See Figure B.1.


Îj(x2n−1,y2m−1) = 4[− 11
256m1 + 11

64m2 + 55
256m3 + 1

64m4− 1
16m0− 5

64m5− 1
256m6 + 1

64m7 + 5
256m8]

Îj(x2n−1,y2m) = 4[+ 11
256m1− 11

64m2 + 121
256m3− 1

64m4 + 1
16m0− 11

64m5 + 1
256m6− 1

64m7 + 11
256m8]

Îj(x2n,y2m−1) = 4[− 5
256m1 + 5

64m2 + 25
256m3− 1

64m4 + 1
16m0 + 5

64m5 + 1
256m6− 1

64m7− 5
256m8]

Îj(x2n,y2m) = 4[+ 5
256m1− 5

64m2 + 55
256m3 + 1

64m4− 1
16m0 + 11

64m5− 1
256m6 + 1

64m7− 11
256m8]

(B.32)

Denote

Ij−1
DL =


Ij−1(xn,ym−2) Ij−1(xn,ym−1) Ij−1(xn,ym)

Ij−1(xn+1,ym−2) Ij−1(xn+1,ym−1) Ij−1(xn+1,ym)
Ij−1(xn+2,ym−2) Ij−1(xn+2,ym−1) Ij−1(xn+2,ym)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8


(B.33)

In compact forms, four predicted values are rewritten as follows:

[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (B.34)
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= 4



∑∑
− 11

256 +11
64 + 55

256
+ 1

64 − 1
16 − 5

64
− 1

256 + 1
64 + 5

256

⊗ Ij−1
DL

∑∑
+ 11

256 −11
64 +121

256
− 1

64 + 1
16 −11

64
+ 1

256 − 1
64 + 11

256

⊗ Ij−1
DL

∑∑
− 5

256 + 5
64 + 25

256
− 1

64 + 1
16 + 5

64
+ 1

256 − 1
64 − 5

256

⊗ Ij−1
DL

∑∑
+ 5

256 − 5
64 + 55

256
+ 1

64 − 1
16 +11

64
− 1

256 + 1
64 − 11

256

⊗ Ij−1
DL


(B.35)

8 At the down-center case

See Figure B.1.


Îj(x2n−1,y2m−1) = 4[+ 11

256m1 + 11
32m2− 11

256m3− 1
64m4− 1

8m0 + 1
64m5 + 1

256m6 + 1
32m7− 1

256m8]
Îj(x2n−1,y2m) = 4[− 11

256m1 + 11
32m2 + 11

256m3 + 1
64m4− 1

8m0− 1
64m5− 1

256m6 + 1
32m7 + 1

256m8]
Îj(x2n,y2m−1) = 4[+ 5

256m1 + 5
32m2− 5

256m3 + 1
64m4 + 1

8m0− 1
64m5− 1

256m6− 1
32m7 + 1

256m8]
Îj(x2n,y2m) = 4[− 5

256m1 + 5
32m2 + 5

256m3− 1
64m4 + 1

8m0 + 1
64m5 + 1

256m6− 1
32m7− 1

256m8]
(B.36)

Denote

Ij−1
DC =


Ij−1(xn,ym−1) Ij−1(xn,ym) Ij−1(xn,ym+1)

Ij−1(xn+1,ym−1) Ij−1(xn+1,ym) Ij−1(xn+1,ym+1)
Ij−1(xn+2,ym−1) Ij−1(xn+2,ym) Ij−1(xn+2,ym+1)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8


(B.37)

In compact forms, four predicted values are rewritten as follows:

[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (B.38)

= 4



∑∑
+ 11

256 +11
32 − 11

256
− 1

64 −1
8 + 1

64
+ 1

256 + 1
32 − 1

256

⊗ Ij−1
DC

∑∑
− 11

256 +11
32 + 11

256
+ 1

64 −1
8 − 1

64
− 1

256 + 1
32 + 1

256

⊗ Ij−1
DC

∑∑
+ 5

256 + 5
32 − 5

256
+ 1

64 +1
8 − 1

64
− 1

256 − 1
32 + 1

256

⊗ Ij−1
DC

∑∑
− 5

256 + 5
32 + 5

256
− 1

64 +1
8 + 1

64
+ 1

256 − 1
32 − 1

256

⊗ Ij−1
DC


(B.39)
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9 At the down-right case

See Figure B.1.
Îj(x2n−1,y2m−1) = 4[+121

256m1− 11
64m2 + 11

256m3− 11
64m4 + 1

16m0− 1
64m5 + 11

256m6− 1
64m7 + 1

256m8]
Îj(x2n−1,y2m) = 4[+ 55

256m1 + 11
64m2− 11

256m3− 5
64m4− 1

16m0 + 1
64m5 + 5

256m6 + 1
64m7− 1

256m8]
Îj(x2n,y2m−1) = 4[+ 55

256m1− 5
64m2 + 5

256m3 + 11
64m4− 1

16m0 + 1
64m5− 11

256m6 + 1
64m7− 1

256m8]
Îj(x2n,y2m) = 4[+ 25

256m1 + 5
64m2− 5

256m3 + 5
64m4 + 1

16m0− 1
64m5− 5

256m6− 1
64m7 + 1

256m8]
(B.40)

Denote

Ij−1
DR =


Ij−1(xn,ym) Ij−1(xn,ym+1) Ij−1(xn,ym+2)

Ij−1(xn+1,ym) Ij−1(xn+1,ym+1) Ij−1(xn+1,ym+2)
Ij−1(xn+2,ym) Ij−1(xn+2,ym+1) Ij−1(xn+2,ym+2)

=


m1 m2 m3
m4 m0 m5
m6 m7 m8


(B.41)

In compact forms, four predicted values are rewritten as follows:[
Îj(x2n−1,y2m−1) Îj(x2n−1,y2m)
Îj(x2n,y2m−1) Îj(x2n,y2m)

]
= (B.42)

= 4



∑∑
+121

256 −11
64 + 11

256
−11

64 + 1
16 − 1

64
+ 11

256 − 1
64 + 1

256

⊗ Ij−1
DR

∑∑
+ 55

256 +11
64 − 11

256
− 5

64 − 1
16 + 1

64
+ 5

256 + 1
64 − 1

256

⊗ Ij−1
DR

∑∑
+ 55

256 − 5
64 + 5

256
+11

64 − 1
16 + 1

64
− 11

256 + 1
64 − 1

256

⊗ Ij−1
DR

∑∑
+ 25

256 + 5
64 − 5

256
+ 5

64 + 1
16 − 1

64
− 5

256 − 1
64 + 1

256

⊗ Ij−1
DR


(B.43)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu
neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat.
Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel
leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis
nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci
dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor
lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec
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aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio
metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante.
Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis.
Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt
tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante.
Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis,
molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula,
eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc
eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel
magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim.
Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt
ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse
platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum
fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio
placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh
sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.
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Computation of near optimal filter coefficients

This appendix concerns the computation of near optimal filter coefficients later called
weights. These weights are computed based on the vector of approximation at the coarse
level (i.e. Vj−1(xn,yk) for a given row n) and the odd-index vector of approximation
at the finer level (i.e. Ij(xn,y2k−1) for a given row n). While the separable ENO
multiresolution approach uses three kinds of polynomials (left, center and right) whose
coefficients are constant and applied for all rows or columns, in the separable near optimal
multiresolution approach, however, these coefficients are different and depending on each
row or column. This approach is used to find the minimization of Mean Squared Error
(MSE) between the odd-index values of approximation at the finer level (i.e. Ij(xn,y2k−1)
for a given row n) and the corresponding predicted values (i.e. Îj(xn,y2k−1)).

The approximation coefficient located at position (xn,yk), denoted Vj−1(xn,yk) for
a given n for 1≤ k ≤M j/2.

k k+1 k+2k-1k-2 k+3

p-1(x)  "left case"

p0(x)  "center case"

p1(x)  "right case"

(n,m) (n,m+1) (n,m+2)(n,m-1)(n,m-2) (n,m+3)

(n-1,m) (n-1,m+1) (n-1,m+2)(n-1,m-1)(n-1,m-2) (n-1,m+3)

(n-2,m) (n-2,m+1) (n-2,m+2)(n-2,m-1)(n-2,m-2) (n-2,m+3)

(n+1,m) (n+1,m+1) (n+1,m+2)(n+1,m-1)(n+1,m-2) (n+1,m+3)

(n+2,m) (n+2,m+1) (n+2,m+2)(n+2,m-1)(n+2,m-2) (n,m+3)

(n+3,m) (n+3,m+1) (n+3,m+2)(n+3,m-1)(n+3,m-2) (n+3,m+3)

k k+1 k+2k-1k-2 k+3

1 £ k£ M j /2
" nÎ [1 , N j]

V j-1(xn,yk)
[u j-1(xn),

I j(xn,y2k-1)

I j(xn,y2k-1)

0 u j-1(xn),1 u j-1(xn)]T
2

u j-1(xn) =

1 £ k£ M j /2
" nÎ [1 , N j]

D j-1(xn,y2k-1)

1 £ k£ M j /2
" nÎ [1 , N j]

1 £ k£ M j /2
" nÎ [1, N j]

x

x

x

y

p-1(x)  "left case"

p0(x)  "center case"

p1(x)  "right case"

Figure C.1: Near optimal filter for estimating a designed signal Ij(xn,y2k−1) based on an
excitation Vj−1(xn,yk) (with 1≤ k ≤M j/2 and for a given n).
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The prediction of pixel at the position (xn,y2k−1), denote Îj(xn,y2k−1) for 1≤ k ≤
M j/2, of the 1-D signal Ij(xn,yk) for 1≤ k ≤M j is based on weighted combination
uj−1
i (xn), (i = 0,1,2) of the neighborhood pixels of the approximation coefficients

Vj−1(xn,yk) for 1≤ k ≤M j/2:

Îj(xn,y2k−1) =
2∑
i=0

uj−1
i (xn) ·Vj−1(xn,yk+i−1), (C.1)

corresponding to the weighting of a filter preserving the average of the initial signal and
therefore satisfying the following relationships:

2∑
i=0

uj−1
i (xn) = 1. (C.2)

The weights uj−1
i , (i= 0,1,2) are deduced so that the MSE between Îj(xn,y2k−1)

and Ij(xn,y2k−1) for 1≤ k ≤M j/2 is minimized:

arg min
wj−1
i

‖Îj(xn,y2k−1)− Ij(xn,y2k−1)‖22 for 1≤ k ≤M j/2. (C.3)

Denote
E = ‖Îj(xn,y2k−1)− Ij(xn,y2k−1)‖22 for 1≤ k ≤M j/2. (C.4)

It can be written by

E =
[ 2∑
i=0

uj−1
i (xn) ·Vj−1(xn,yk+i−1)− Ij(xn,y2k−1)

]2
for 1≤ k ≤M j/2. (C.5)

To find uj−1
i (xn), the partial derivatives of the error E with respect to the parameters

uj−1
i must be equal to zero: 

∂E
∂uj−1

0
= 0

∂E
∂uj−1

1
= 0

∂E
∂uj−1

2
= 0.

(C.6)

For the parameter uj−1
0 :

∂E

∂uj−1
0

= 2
[ 2∑
i=0

uj−1
i ·Vj−1(xn,yk+i−1)− Ij(xn,y2k−1)

]
·Vj−1(xn,yk−1) for 1≤ k ≤M j/2

= 2
2∑
i=0

uj−1
i ·Vj−1(xn,yk+i−1) ·Vj−1(xn,yk−1)− 2Ij(xn,y2k−1) ·Vj−1(xn,yk−1).

(C.7)

Denote
Rj−1(i) = Vj−1(xn,yk+i−1) ·Vj−1(xn,yk−1), (C.8)
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rj−1(i) = Vj−1(xn,yk+i−1) · Ij(xn,y2k−1), (C.9)

where Rj−1(i) is autocorrelation function of Vj−1(xn,yk) for 1≤ k ≤M j/2; and rj−1(i)
is cross-correlation function between Vj−1(xn,yk) and Ij(xn,y2k−1) for 1≤ k ≤M j/2.
Then it gives

∂E

∂uj−1
0

= 2
2∑
i=0

wj−1
i ·Rj−1(i)− 2rj−1(0). (C.10)

For the parameter uj−1
1 :

∂E

∂uj−1
1

= 2
[ 2∑
i=0

uj−1
i · Ij−1(xn,yk+i−1)− Ij(xn,y2k−1)

]
· Ij−1(xn,yk) for 1≤ k ≤M j/2

= 2
2∑
i=0

uj−1
i · Ij−1(xn,yk+i−1) · Ij−1(xn,yk)− 2Ij(xn,y2k−1) · Ij−1(xn,yk)

= 2
2∑
i=0

uj−1
i ·Rj−1(i− 1)− 2rj−1(1).

(C.11)

For the parameter uj−1
2 :

∂E

∂uj−1
2

= 2
[ 2∑
i=0

uj−1
i · Ij−1(xn,yk+i−1)− Ij(xn,y2k−1)

]
· Ij−1(xn,yk+1) for 1≤ k ≤M j/2

= 2
2∑
i=0

uj−1
i · Ij−1(xn,yk+i−1) · Ij−1(xn,yk+1)− 2Ij(xn,y2k−1) · Ij−1(xn,yk+1)

= 2
2∑
i=0

uj−1
i ·Rj−1(i− 2)− 2rj−1(2).

(C.12)

From the results given by the equation (C.10), equation (C.11) and equation (C.12)
the system (C.6) is rewritten as follows:

∑2
i=0u

j−1
i (xn) ·Rj−1(i) = rj−1(0)∑2

i=0u
j−1
i (xn) ·Rj−1(i− 1) = rj−1(1)∑2

i=0u
j−1
i (xn) ·Rj−1(i− 2) = rj−1(2).

(C.13)

In matrix form, the weights uj−1
i (xn) are the solution of the linear system:

Γj−1 ·uj−1(xn) = rj−1 (C.14)

where

Γj−1 =


Rj−1(0) Rj−1(1) Rj−1(2)
Rj−1(−1) Rj−1(0) Rj−1(1)
Rj−1(−2) Rj−1(−1) Rj−1(0)

 (C.15)
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and

rj−1 =


rj−1(0)
rj−1(1)
rj−1(2)

 (C.16)

It solves
uj−1(xn) = (Γj−1)−1 · rj−1.

The weights uj−1 are stored for the row n so as later to reconstruct the signal in the
backward process.
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Matlab graphic user interface for the assessment of
the visual quality of the tone mapped images

This appendix concerns the protocols of the graphic user interface for the assessment of
the visual quality of the tone mapped images under Matlab environment. An observer
is invited to the testing room in the laboratory L2TI. All HDR tone mapped images
are shown on the ColorEdge CG242W Color LCD monitor with a good calibration. A
Matlab graphic user interface has been developed. It saves the time and stores the
elapsed time of each observer during the test and can statistically analyze the results.
It helps the computation more confidential.

The training dataset uses 24 HDR test images with different dynamic range (or
contrast ratio) from 7 f-stops to 29 f-stops namely "Lausanne1", "CraterLake1", "Shasta2",
"Synagogue", "Anturium", "BowRiver", "Bridges", "Stairway1", "ArchRock", "DollDoll",
"ClockBuilding", "OxfordChurch", "BottlesSmall", "Montreal", "SmallOffice", "Light",
"BridgeStudios2", "Memorial", "ClaridgeHotel", "Mistaya1", "BrookHouse", "PeaceRocks",
"GGpark2" and "AtriumNight", see Figure D.1a to Figure D.1x.

15 TM methods are used to test such as "Drago" [10], "Reinhard" [44], "Ward" [7],
"Durand" [16], "Tumblin" [31], "Schlick" [3], "Duan" [8], "Fattal" WRB [25], "Li" [26],
"Husseis" [30], "Proposed_NUHA", "Proposed_SEPENO", "Proposed_NONSEPENO",
"Proposed_CEDP_Lin" and "Proposed_CEDP_Opt".

Each tone mapped image is marked (with no-reference of HDR displays) ranging
from 0 until 5: 5 for excellent, 4 very good, 3 good, 2 accepted, 1 unsatisfactory and 0
failed.
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(a) Lausanne1 (b) CraterLake1 (c) Shasta2 (d) Synagogue

(e) Anturium (f) BowRiver (g) Bridges (h) Stairway1

(i) ArchRock (j) DollDoll (k) ClockBuilding (l) OxfordChurch

(m) BottlesSmall (n) Montreal (o) SmallOffice (p) Light

(q) BridgeStudios2 (r) Memorial (s) ClaridgeHotel (t) Mistaya1

(u) BrookHouse (v) PeaceRocks (w) GGpark2 (x) AtriumNight

Figure D.1: Training dataset of 24 HDR test images.
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There are some instructions shown on the screen:

i. The number of test images is 24,

ii. There are fifteen methods with random orders displayed on the screen,

iii. Fifteen methods are divided in five sessions, namely A, B, C, D and E,

iv. The mark for each image is between 0 and 5: 5=Excellent, 4=Very Good, 3=Good,
2=Accepted, 1=Unsatisfactory and 0=Failed,

v. The chosen criteria is based on ability to recover details with natural ways.

Figure D.2: Starting form

Figure D.3: Instruction form

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu
neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat.
Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel
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Figure D.4: First session form - Session A

Figure D.5: Closing form

leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis
nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci
dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor
lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec
aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio
metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante.
Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis.
Pellentesque cursus luctus mauris.
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Figure D.6: "THAI_L2TI.xls" data-sheet result

Figure D.7: Mean opinion scores calculation

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt
tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante.
Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis,
molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula,
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eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc
eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel
magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim.
Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt
ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse
platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum
fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio
placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh
sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus
semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam.
Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit
risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor.
Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim
interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor
ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas.
Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur
consectetuer.
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Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu
neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat.
Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel
leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis
nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci
dignissim rutrum.
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Résumé : La conversion d’une image à grande gamme dynamique (HDR) en une image à faible gamme
dynamique est étudiée de façon à garantir un rendu visuel de cette dernière de bonne qualité. La première
contribution concerne le rehaussement de contraste de l’image mappée en utilisant une fonction linéaire par
morceaux pour que l’égalisation d’histogramme soit ajustée à la "s-courbe" d’adaptation du système visuel
humain. La deuxième et troisième contributions portent sur la préservation des détails de l’image HDR. Des
approches multirésolution séparables et non séparables, basées sur des stratégies non oscillatoires, prenant
en compte les singularités de l’image HDR dans la dérivation du modèle mathématique, sont proposées. La
quatrième contribution non seulement préserve les détails mais également améliore le contraste de l’image
HDR mappée. Un schéma de lifting séparable "presque optimal" est proposé. Il s’appuie sur une étape
de prédiction adaptative des coefficients. Cette dernière repose sur une combinaison linéaire pondérée
des coefficients voisins pour extraire les détails pertinents sur l’image HDR à chaque niveau de résolution.
Un mappage linéaire par morceaux est ensuite appliqué à la reconstruction grossière. Les résultats de
simulation fournissent de bonnes performances en termes de qualité visuelle et de métrique TMQI (Tone
Mapped Quality Index) par rapport aux approches de mise en correspondance tonale classiques. L’impact
des paramètres TMQI sur la qualité visuelle des images mappées est discuté. Les paramètres proposés
montrent une forte corrélation entre la métrique modifiée et la note moyenne d’opinion.

Title : Tone Mapping Operators for High Dynamic Range Images.

Keywords : High Dynamic Range (HDR) image, Low Dynamic Range (LDR) image, Image tone Mapping
Operators, Human Visual System, Mean Opinion Score, Histogram equalization, Tone Mapped Quality
Index, Separable multiresolution, Non-separable multiresolution, Lifting scheme, Essentially Non-Oscillatory
interpolation, Prediction.

Abstract : The conversion of High Dynamic Range (HDR) image into Low Dynamic Range (LDR) image
is investigated so that the visual rendering of the latter is of good quality. The first contribution focused on
the contrast enhancement of the tone mapped image using a piecewise linear function as a non-uniform
histogram equalization adjustment to model the "s-shaped" curve of the human visual adaptation. The
second and third contributions are concerned with the details preservation of the HDR image on the tone
mapped image. Separable and non-separable multiresolution approaches based on essential non-oscillatory
strategies, taking into account the HDR image singularities in the mathematical model derivation, are
proposed. The fourth contribution not only preserves details but also enhances the contrast of the HDR
tone mapped image. A separable "near optimal" lifting scheme using an adaptive powerful prediction step is
proposed. The latter relies on a linear weighted combination depending on the neighbouring coefficients to
extract the relevant finest details on the HDR image at each resolution level. A piecewise linear mapping is
then applied on the coarse reconstruction. Simulation results provide good performance, both in terms
of visual quality and Tone Mapped Quality Index (TMQI) metric, compared to existing competitive tone
mapping approaches. The impact of the TMQI parameters on the visual quality of the tone mapped images
is discussed. The proposed parameters show a strong correlation between the modified metric and the
Mean Opinion Score (MOS).



Bibliography 185


	Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Notations
	Introduction
	Introduction
	Scope of the thesis
	Organization and contributions of the thesis
	List of publications

	State of art on HDR image tone mapping operators
	Introduction
	Image tone mapping operators for high dynamic range images
	HDR image quality assessment
	Conclusion

	Proposed TMO based on an non-uniform histogram adjustment
	Introduction
	Non-uniform distribution of the HDR logarithm luminance values
	Piecewise linear perceptual quantizer
	Simulation results
	Conclusion

	Proposed TMOs based on ENO multiresolution families
	Introduction
	Global TMO scheme based on ENO multiresolution families
	TMO based on separable multiresolution ENO point-value scheme
	TMO based on separable multiresolution ENO cell-average scheme
	TMO based on non-separable multiresolution ENO scheme
	Simulation results and discussions
	Conclusion

	Proposed TMO based on the contrast enhancement and details preservation  
	Introduction
	Notations
	The adaptive lifting scheme forward algorithm
	Weighting step according to the entropy of each subband
	The adaptive lifting scheme backward algorithm
	Perceptual quantizer with respect to the human visual system using a piecewise linear function
	Simulation results
	Conclusion

	Impact of the TMQI parameters on the visual quality of the tone mapped images
	Introduction
	Tone mapping quality index for machine learning
	Experimental results
	Conclusion

	Conclusion
	Appendix Computation of separable multiresolution ENO coefficients
	ENO point-value
	ENO cell-average

	Appendix Computation of non-separable multiresolution ENO coefficients
	At the center-center case
	At the center-left case
	At the center-right case
	At the upper-left case
	At the upper-center case
	At the upper-right case
	At the down-left case
	At the down-center case
	At the down-right case

	Appendix Computation of near optimal filter coefficients
	Appendix Matlab graphic user interface for the assessment of the visual quality of the tone mapped images
	Bibliography

