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Introduction

“There is a crack, a crack in everything
That’s how the light gets in.”

– Leonard Cohen

If the study of light as a physical phenomenon is quite old, its use to extract
information about our environment might be even older. When we learn about
how Thales measured the size of the Kheops pyramid, beyond teaching us about
the similar triangle theorem which carries his name, this measurement uses two
properties of light. First, Thales uses the fact that light travels in a straight line.
Second, what allows him to measure the size of the pyramid is not the measure of
any amount of light, but rather the measure of the absence of light: the shadow of
the pyramid. Discriminating between the presence or absence of light is a simple
measurement which can easily reach good sensitivities. These two aspects make
the calculation conducted by Thales possible.

Among the di�erent types of light which can be produced, we will be partic-
ularly interested in laser light. One of the unique features of laser light is termed
coherence. The electromagnetic �eld emitted by a laser is spatially and temporally
coherent: the beam which is emitted or ampli�ed by a laser has remarkable prop-
erties of directionality, spectral purity and intensity. Ever since the �rst laser light
emission realized by Theodore H. Maiman in 19641, the variety of wavelength at
which laser light can be emitted has greatly increased. The operating regimes of
lasers (in the pulsed regime for example, the control of the pulse duration or of the
repetition rate) can also now be controlled with very good precision. The devel-
opment of such remarkable light sources is the fruit of parallel e�orts from funda-
mental and industrial research. Conversely, laser light has allowed for tremendous
progress both for fundamental research but also for countless new and unexpected
functions in many di�erent types of industry [Siegman 86].

1We cannot fail to mention the fact that at that time, Maiman worked in an industrial laboratory.
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INTRODUCTION

As we presented with the example of the size of the Kheops pyramid, light is
an instrument of choice to perform measurements and gain information. A �rst
aspect of measurements performed with laser light is that they allow to reach ex-
ceptionnal precisions. For each type of measurement one wishes to perform, the
type of light used is tuned. Lasers operating in the pulsed regime are used to per-
form time of �ight measurements. Such a measurement technique allows for in-
stance to estimate the distance between earth and the Moon with an accuracy of
a few millimeters [Murphy Jr. 08]. Time-of-�ight measurements are also the work-
ing principle of the lidar technology (LIght Detection And Ranging) which is now
used in a huge range of �elds such as topography, defense or archeology. As an ex-
ample, the European Space Agency launched this summer the Aeolus observation
satellite whose mission is the observation of the atmosphere’s dynamic. It carries
a Doppler-lidar which uses near ultraviolet light pulses to probe the wind currents
of the atmosphere. Lengths can be measured using interferometry, which relies on
the temporal coherence of the electric �elds used. Interferometry was developed
at the end of the 18th century with the pioneering works of Michelson and Morley
[Michelson 87, Gouy 88, Michelson 90]. Using the extraordinary coherence proper-
ties of laser light, the precision of the distance measurements achievable with inter-
ferometry has reach truly extraordinary precision: just before the start of this Ph.D,
the interferometers of the Virgo and LIGO collaborations were able to measure the
coalescence of two black holes at a distance of ∼ 410 megaparsec (or 13 billions of
billions of billions of kilometers) [Abbott 16]. In this signal, the peak displacement
measured by the interferometers was of the order of 2 × 10−18 m. But light is also
more simply used to image objects which may be too small, too far away, etc. Using
the coherence properties of laser light, phenomena which were beforehand untrack-
table can now be imaged such as the dynamics of chemical reactions [Lindinger 04].
In many �elds — for instance medical imaging — the superiority of information re-
trieval using imaging is the fact that imaging is a non-destructive measurement.
The manipulation of the spatial pro�les of electromagnetic �elds has also allowed
to make great progress in the �eld of imaging — in particular in situations where tra-
ditional imaging techniques failed. Structured illumination has allowed the advent
of some super-resolution microscopy techniques [Hell 94, Gustafsson 01]. Adap-
tive optics has allowed to overcome the limitations that the atmosphere �uctua-
tions imposed on astronomical imaging [Beckers 93, Roddier 99, Tyson 10]. More
generally the �eld of wavefront shaping constituted a major turning point for the
imaging of opaque media [Vellekoop 15] for instance in biomedical imaging [Yu 15]
but also in quantum information [De�enne 16] and communication technologies
[Schwartz 09].
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INTRODUCTION

If light allows us to gain information by measurement, it also a very powerful
tool to transmit information. Smoke signals were used by native americans as an
e�ective long-distance communication system. The Chappe telegraph system was
developed at the end of the 18th century and used for over 50 years. Using this sys-
tem, a complete message could be transmitted over more than 200 km in less than
one hour. But it is laser light which has introduced a complete upheaval in the �eld
of telecommunications with the advent of �ber-optic communications. Developed
in the 1970s, �ber-optics has played a major role in the advent of the information
revolution which characterizes the last 50 years. The �rst transatlantic cable to
use optical �ber went in operation in 1988. To this date, it is estimated that 448
optical cables lie on oceans �oors. They make up for a total length of 1.2 million
km [TeleGeography 18]. To increase the data rate of the information transmitted
in one optical �ber, multiplexing is used. Multiplexing techniques use all degrees
of freedom of the electric �eld: wavelength, polarization, time and phase. All these
multiplexing techniques are now well established. The shaping of the intensity pro-
�le of the laser light launched into some speci�c types of optical �bers is the last
degree of freedom left to allow the increase of the data rate transmitted through
these physical channels. The current world record of data transfer in an optical
�ber is of 10 Pb/s (10 millions of Gb/s) [Soma 18] and was achieved using specially
engineered �ber combined with all the di�erent types of multiplexing techniques.
The spatial multiplexing was realized using the multi-plane light conversion tech-
nology (MPLC) [Morizur 10, Morizur 11b, Labroille 14] which we will introduce in
this manuscript (see �gure 1). To give a sense of the order of magnitude of the data
rate which was achieved, 10 Pb/s, Cisco estimated in 2017 that the total IP tra�c
for the year 2018 would be of 102 960 Pb/month [Cisco 17], which translates to 0.04
Pb/s.

Light does not only allow to gain or transport information, it can also be used
to directly manipulate matter. Modi�cation of the intensity pro�le of laser beams
proves useful for the optimization of a number of processes. In atomic physics for
instance, two dimensional “light sheets” allow to trap atoms in a plane [Davidson 95].
Other con�gurations allow to arrange them in arrays [Verkerk 92, Grynberg 93] or
even arbitrary 3D structures [Barredo 18]. Atoms are not the only objects which
can be trapped and moved using light beams: optical tweezzers [Ashkin 86] are
for instance used to manipulate or probe the mechanical properties of polymers,
proteins or enzymes [Mo�tt 08]. At much higher powers, the interaction between
laser light and matter has found a great variety of applications in industry. The
use of lasers in a number of processes often allows higher fabrication rates and im-
proved energy e�ciencies. The automotive, aerospace, medical, semiconductor and
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INTRODUCTION

Figure 1: Physical implementation of the MPLC system presented in �gure 2.9. The
golden plate is the collection of phase plates while the piece of glass facing it is a
plane mirror. ©CAILabs.
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electrical industries are some of those who make use of these high intensity lasers.
In laser processing, the light-matter interaction e�ciency is a�ected by the laser
wavelength, the power or quantity of light as well as the operating regime of the
laser [Steen 91]. The engineering of the transverse pro�le distribution also leads
to improved e�ciencies [Dickey 05]. For instance, in the context of this thesis, we
used shaped light pulses of femtosecond durations to drill sub-100 nm channels in
glass.

The transverse intensity pro�le of a laser beam can be engineered in a number
of ways which we will develop in this manuscript. Among them the MPLC technol-
ogy will be our privileged object of study. This tool was developed as part of studies
of the spatial properties of light at the quantum level and of the quantum protocols
which can be implemented using spatial quantum �uctuations [Morizur 11b]. Fol-
lowing this work, the company CAILabs was founded in 2013 to exploit this tech-
nology. Applications range from spatial mode multiplexing in telecommunications
to spatial pro�le shaping for laser processing. The MPLC system also �nds its place
in research laboratories, for instance in the context of free-space optical communi-
cations [Li 17] or quantum optics [Morizur 11a]. While it was developed in a quan-
tum optics context, the MPLC tool is a classical object. Indeed, most of the basic
concepts which are needed to describe laser physics — and all the practical details
— can be described using classical tools [Siegman 86]. This also applies to the de-
scription of laser light. For this reason, except for a few speci�c details, we will not
use in this manuscript the quantum description of the electromagnetic �eld and will
stick to a purely classical description. This thesis was conducted within the frame-
work of a CIFRE collaboration between the Laboratoire Kastler-Brossel — where
the MPLC technology was invented — and the company CAILabs which possesses
and develops it. Two di�erent lines of research were pursued during the course of
this thesis. The �rst one concerns the development of new use cases of the MPLC
technology, which should be relevant both as relevant scienti�c work as well as for
future industrial applications. The second aims at gaining a deeper understanding
of the fundamental phenomena which underlie the MPLC technology e�ciency.

This thesis is organized as follows. In the �rst chapter we introduce the no-
tion of spatial modes, which can be derived from Maxwell’s equations and will be
the main tool used in the rest of the manuscript. We present how spatial modes
can be modi�ed and in particular introduce the MPLC technology. In the second
chapter, we consider the problem of the spatial resolution of imaging systems. We
then introduce the theory of parameter estimation and derive a fundamental limit
to spatial resolution. We present the fact that modal decomposition is an optimal
measurement scheme for the problem of the estimation of the separation of two
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INTRODUCTION

incoherent point sources. We �nally present the experiment we conducted to vali-
date such results. In the third chapter, we show how spatial mode basis change can
be tailored so as to allow the manipulation of one spatial degree of freedom of the
electromagnetic �eld by another. In the last chapter, we present how we modeled
the transmission properties of the MPLC system. We use tools from random matrix
theory to derive models for the distribution of the transmission coe�cients of the
MPLC and compare our results to other systems.
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Chapter 1

Modes of the electromagnetic �eld

“It’s a dangerous business, Frodo, going out your door. You step into the
Road, and if you don’t keep your feet, there is no knowing where you might
be swept o� to.”

– Bilbo Baggins
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1.1. MODES OF THE ELECTROMAGNETIC FIELD

The aim of this chapter is to introduce the concepts and notations necessary to
describe classical electromagnetic �elds. We begin with the description of modes
of the electromagnetic �eld and linger on spatial modes, which are essential to the
understanding of the remainder of this thesis. We then describe the di�erent tech-
niques which allow for the manipulation such spatial modes. Finally, we present
the multi-plane light conversion (MPLC) technology exploited by CAILabs — the
study of which is the heart of this work.

1.1 Modes of the electromagnetic �eld
The description of the electromagnetic �eld uses the concept of modes which we
detail in this section (see [Fabre 11] for a reference manual on the subject).

1.1.1 Maxwell’s equations
Maxwell’s equations encompass the wave-like behaviour of light. We consider a
real electric �eld E (r , t), and magnetic �eld B (r , t)1. The frequency Fourier decom-
position of the electric �eld is expressed as:

E (r , t) =
1
√

2π

∫ ∞

−∞

Ẽ (r ,ω) e−iωtdω . (1.1)

The complex �eld is composed of the sum of positive frequency E(+) and negative
frequency E(−) components of the real �eld. The positive frequency component is
de�ned as:

E(+) (r , t) =
1
√

2π

∫ ∞

0
Ẽ (r ,ω) e−iωtdω . (1.2)

Both components carry the same information and are linked by the following equa-
tion:

E (r , t) = E(+) (r , t) + E(+)∗ (r , t) = E(+) (r , t) + E(−) (r , t) . (1.3)
In vacuum, and in the absence of currents and charges, the complex �eld follows
Maxwell’s equations:

∇ · E(+) = 0 ∇ × E(+) = −
∂B(+)

∂t
(1.4)

∇ · B(+) = 0 ∇ × B(+) = µ0ϵ0
∂E(+)

∂t
1Bold characters designate vectors.
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CHAPTER 1. MODES OF THE ELECTROMAGNETIC FIELD

where ϵ0 is the permittivity of free space and µ0 the permeability of free space. They
are linked to the speed of light in vacuum c by the relation c = 1/√ϵ0µ0.
Maxwell’s equations can be combined to �nd the wave equation:

∇2E(+) =
1
c2
∂2E(+)

∂t2 . (1.5)

1.1.2 Traveling plane waves
We make the assumption that the system we describe lies in a �nite volume. We then
de�ne another �nite volumeV , of cubic shape and side length L, which encompasses
the former. We de�ne the spatial Fourier components of the complex �eld as:

En (t) =
1
L3

∫
V
d3r E(+)(r , t)e−ikn ·r (1.6)

where the wave vector kn is de�ned as:

kn · x = nx
2π
L

; kn · y = ny
2π
L

; kn · z = nz
2π
L
. (1.7)

with
(
nx ,ny,nz

)
∈ Z3. kn in turns de�ne the angular frequency ωn = c |kn |.

Maxwell’s equations impose:

kn · En (t) = 0. (1.8)

which means the spatial Fourier components of the electromagnetic �eld are thus
necessarily orthogonal to the wave vector in Fourier space. They are called trans-
verse �elds and lie in a two dimensional space. One can choose a real basis {ϵn,s}s∈1,2
of this space, and the projection of the �eld on this basis gives the polarization com-
ponents of the �eld2. We can �nally rewrite, using a common index i = {n, s} the
expression of the �eld:

E(+) (r , t) =
∑
i

Ei (t)ϵie
ikn ·r . (1.9)

In the formalism we derived, normalized solutions to the wave equation can be
written as:

ui (r , t) = ϵie
i(kn ·r−ωnt) (1.10)

2The vectors ϵn,s can be chosen to be complex — in which case they need to be orthogonal with
respect to the Hermitian product.
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1.1. MODES OF THE ELECTROMAGNETIC FIELD

with i = {n, s}. The norm is de�ned using the following scalar product:
1
L3

∫
d3r uiu

∗
i ′ . (1.11)

Hence, the electric (and magnetic) �eld can be described using the scalar compo-
nents Ei on the mode basis of the polarized traveling plane waves

E(+)(r , t) =
∑
i

Ei(t)ui (r , t) . (1.12)

1.1.3 Mode basis change
The decomposition of equation 1.9 is not the only possible one. One can use any
ensemble of vector functions {ui (r )} which satisfy the following equations:

1
L3

∫
V
d3r u∗i (r , t) · uj (r , t) = δi,j (1.13)∑

i

u∗i (r , t) · ui (r
′, t) = δ (r − r ′) . (1.14)

Let {wi (r , t)} be another suitable mode basis. We can de�ne the unitary matrix U
as:

Ui,j =
1
L3

∫
V
d3r u∗i (r , t)wj (r , t) (1.15)

which allows to switch from one mode basis to another

wj (r , t) =
∑
i

Ui,j ui (r , t) . (1.16)

This mode basis change matrix will be studied in more details in section 1.3.

1.1.4 Temporal and spectral modes
The decomposition presented above is called the normal mode decomposition. Each
mode consists of an independent monochromatic polarized wave. This representa-
tion, while convenient for instance in the case of a monochromatic beam of light, is
not very well suited to pulses of light for instance. If we consider a �eld of a single
polarisation where the spectrum is centered around an angular frequency ω0 and
small compared to this frequency (∆ω � ω0), we can write

E(+)(r , t) =
∑
i

Eiui (t − ri/c) e
i(ki ·r−ω0t) (1.17)

10



CHAPTER 1. MODES OF THE ELECTROMAGNETIC FIELD

where {ui (t)} is a set of orthonormal temporal modes, whose time derivatives varies
slowly with respect to ω0 and ri is the projection on r on the unit vector de�ned by
ki . The same reasoning can be applied to the Fourier expression of the �eld:

E(+)(r ,ω) =
∑
i

Eiui (ω − ω0) e
iki ·r (1.18)

where {ui (ω)} are referred to as spectral modes. This concept of temporal modes,
while central in the study of ultra-short laser pulses, will not be developed further
in this thesis.

1.1.5 Spatial modes
The concept of spatial modes is the central object of this thesis. This concept proves
itself very useful in the study of a number of light beams, in particular laser beams.
Indeed, in the plane normal to their direction of propagation, laser beams have a
�nite extent. As an example, beams propagating inside optical �bers are, by design,
localized to the physical dimensions of the �ber. The goal of this section is to de-
rive the expression of spatial modes bases {ui} which may describe a monochrome
linearly polarized �eld.
We will use in the remainder of this thesis, except on a few occasions, the parax-
ial approximation. This approximation is applied when considering beams which
are composed of plane waves with wave vectors close to the propagation axis of
the beam — the angle between the wave vector and the direction of propagation
should be small. Using the expression of the �eld we derived in 1.12, in the case of
a monochromatic, linearly polarized �eld, we can rewrite the wave equation 1.5 as
the Helmholtz equation — a more complete derivation of this equation can be found
in [Siegman 86]: [

∇2 + k2] E (x,y, z) = 0. (1.19)
By de�nition, plane waves are solutions of this equation. We choose z as the prop-
agation axis and look for solutions which have the following form:

E(x,y, z) = u (x,y, z) e−ikz . (1.20)

The exp (−ikz) components oscillates rapidly along z with a period equal to the
wavelength of the light λ (k = 2π/λ). By inserting this expression in 1.19, and
factorizing the exp (−ikz) term, we can rewrite the wave equation:

∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2 − 2ik ∂u
∂z
= 0. (1.21)
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1.1. MODES OF THE ELECTROMAGNETIC FIELD

The paraxial approximation states that the transverse spatial pro�le of the beam
evolves slowly along z compared to one wavelength, but also compared to the vari-
ations caused by the �nite transverse size of the beam. It can be expressed as follows:����∂2u

∂z2

���� � ����2k ∂u∂z ���� and
����∂2u

∂z2

���� � ����∂2u

∂x2

���� and
����∂2u

∂z2

���� � ����∂2u

∂y2

���� . (1.22)

We rewrite equation 1.21 using this approximation:

∂2u

∂x2 +
∂2u

∂y2 − 2ik ∂u
∂z
= 0. (1.23)

We �nally derive the paraxial wave equation

∇2
T u − 2ik ∂u

∂z
= 0. (1.24)

∇2
T =

∂2

∂x2 +
∂2

∂y2 is the Laplacian operator in the transverse plane. The paraxial
approximation is commonly accepted to be valid for beams whose plane wave com-
ponents propagate with angles up to 0.5 rad (∼ 29°) [Siegman 86]. In the paraxial
approximation, we can write the electric �eld in the following form:

E(+) = ei(k0z−ω0t)
∑
i

Eiũi . (1.25)

Modes ũj can be separated in transverse (ui ) and longitudinal (vk ) parts:

ũj = uivk (1.26)

The transverse part ui (x,y, z) obeys

1
L2

∬
dxdy uiu

∗
j = δij ∀z ∈ R (1.27)

while the longitudinal part vk (t − z/c) = vk (τ ) obeys:

c

L

∫
dτ vkv

∗
l = δkl (1.28)
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CHAPTER 1. MODES OF THE ELECTROMAGNETIC FIELD

Gaussian beam One exact solution to the scalar wave equation is a spherical
wave:

E (x,y, z) =
exp

(
−ik

√
(x − x0)2 + (y − y0)2 + (z − z0)2

)
√
(x − x0)2 + (y − y0)2 + (z − z0)2

. (1.29)

In the context of the paraxial approximation, we take the situation in which the
spherical wave is considered on a transverse plane which is far from z0 along the z
axis, and for coordinates x,y which are also not too far from the axis (|x − x0 | �
|z − z0 | and |y − y0 | � |z − z0 |). The Fresnel approximation to di�raction theory
states that we can make the following approximations:√

(x − x0)2 + (y − y0)2 + (z − z0)2 ' z − z0 +
(x − x0)

2 + (y − y0)
2

2(z − z0)
(1.30)

1√
(x − x0)2 + (y − y0)2 + (z − z0)2

'
1

z − z0
(1.31)

In order to simplify expressions and without losing generality, we set x0 = 0,y0 = 0.
Using the Fresnel approximation and 1.29, we derive the expression of the paraxial
spherical wave E(x,y, z) = u(x,y, z)e−ik(z−z0) with:

u (x,y, z) =
1

z − z0
exp

(
−ik

x2 + y2

2 (z − z0)

)
. (1.32)

This expression is not satisfactory as such, since the “beam” is not localized along
the propagation axis. We set z0 = 0 and introduce a complex term iq0 with q0 ∈ R:
we replace the z − z0 term by the function q(z) = z + iq0. This function is called
the complex radius of curvature. This allows us to de�ne the transverse spatial
pro�le of a gaussian spherical beam — which is still a solution of the paraxial wave
equation (in the paraxial and Fresnel approximations):

u (x,y, z) =
1

q(z)
exp

(
−ik

x2 + y2

2q(z)

)
. (1.33)

Using the complex radius of curvature, we de�ne the following quantities:

1
q(z)

=
1

R(z)
− i

λ

πw2(z)
, (1.34)

tanψ (z) = πw2(z)

λR(z)
=

z

zR
, (1.35)

13



1.1. MODES OF THE ELECTROMAGNETIC FIELD

zR =
πw2

0
λ
. (1.36)

Equation 1.34 for z = 0 gives q0 = zR . We can rewrite equation 1.33 as:

u (x,y, z) =

√
2
π

1
w(z)

exp
(
−
x2 + y2

w2(z)

)
exp

(
−ik

x2 + y2

2R(z) + iψ (z)
)

(1.37)

which is the general expression of a Gaussian beam. Using this expression, we can
give physical meanings to the quantities introduced above. R(z) is the radius of
curvature of the phase of the beam and w(z) the waist size of the beam. We can
rewrite these quantities as functions of the parameters w0 and z − R:

w(z) = w0

√
1 +

(
z

zR

)2
(1.38)

R(z) = z +
z2
R

z
. (1.39)

zR is called the Rayleigh length: zR gives the propagation distance after which the
waist size has increased by a factor of

√
2. This quantity will be used extensively in

chapter 3. ψ (z) is called the Gouy phase. The Gaussian beam is a very important
tool: it correctly describes the electric �eld in many optical systems. It is nonethe-
less not the only solution to the paraxial wave equation.

Hermite-Gaussian modes If one looks at solutions of the paraxial wave equa-
tion which are separable in the cartesian coordinate system (unm(x,y, z) = un(x, z)×
um(y, z)), one derives the following decoupled di�erential equations:

∂2un
∂x2 − 2ik ∂un

∂z
= 0 (1.40)

∂2um
∂y2 − 2ik ∂um

∂z
= 0 (1.41)

Solution to these equations is the Hermite-Gauss modes family which calls upon
the Hermite polynomials. These functions are solution to the following di�erential
equation: d2 f

dx2 − 2x d f
dx = −2nf with n ∈ N. The �rst Hermite polynomials read as
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follow:

H0(x) = 1 (1.42)
H1(x) = 2x (1.43)
H2(x) = 4x2 − 2 (1.44)
H3(x) = 8x3 − 12x (1.45)
H4(x) = 16x4 − 48x + 12 (1.46)

These polynomials are orthogonal with respect to the weight function e−x
2 :∫ +∞

−∞

Hm(x)Hn(x)e
−x2

dx =
√
π2nn!δnm (1.47)

The one-dimensional expression of a Hermite-Gaussian transverse pro�le is

un(x, z) =

(
2
π

)1/4 (
1

2nn!w0

)1/2 (
q(0)
q(z)

)1/2 [
q∗(0)
q(0)

q∗(z)

q(z)

]n/2
Hn

(√
2x

w(z)

)
exp

(
−i

kx2

2q(z)

)
.

(1.48)
Using the expressions of the Gouy phase and waist size derived in the previous
section, we can write

q(0)
q(z)

=
w0
w(z)

exp (iψ (z)) (1.49)

[
q∗(0)
q(0)

q∗(z)

q(z)

]n/2
= exp (inψ (z)) (1.50)

A Hermite-Gaussian transverse pro�le of index n in the x direction and indexm in
the y direction can be expressed as

unm(x,y, z) =

(
2
π

)1/2 (
1

2n+mn!m!w2(z)

)1/2
Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
×

exp
[
−

(
x2 + y2)
w2(z)

]
exp

[
−ik

(
x2 + y2)
2R(z) + i (n +m + 1)ψ (z)

]
(1.51)

and will be referred to as HGnm modes. Their spatial extent is equal to that of the
Gaussian mode up to a

√
n +m + 1 proportionality factor.
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Figure 1.1: Amplitude of the �rst four Hermite-Gaussian modes.

Laguerre-Gaussian modes The same derivation can be conducted in the case
of separable functions in the cylindrical coordinate system. The solution found
de�nes the family of Laguerre-Gaussian transverse pro�les and uses the generalized
Laguerre polynomials, which read as follows:

Lm0 (x) = 1 (1.52)
Lm1 (x) = −x +m + 1 (1.53)

Lm2 (x) =
x2

2 − (m + 2)x + (m + 2)(m + 1)
2 (1.54)

Lm3 (x) =
−x3

6 +
(m + 3)x2

2 −
(m + 2)(m + 3)x

2 +
(m + 1)(m + 2)(m + 3)

6 (1.55)

Lmp+1(x) =
(2p + 1 +m − x)Lmp (x) − (p +m)Lmp−1(x)

p + 1 (1.56)

A Laguerre-Gaussian beam of radial index p ∈ N and of azimuthal indexm ∈ Z can
be expressed as

upm(r , θ, z) =

√
2p!

(1 + δ0m)π (m + p)!
1

w(z)

( √
2r

w(z)

) |m |
L |m |p

(
2r 2

w2(z)

)
×

exp
[
−

r 2

w2(z)

]
exp

[
−ik

r 2

2R(z) + i (2p +m + 1)ψ (z) + imθ
]

(1.57)

One particularly interesting feature of Laguerre-Gaussian beams is the presence of
the exp [imθ ] term. Indeed, for m , 0, the mode possesses an orbital momentum
along z: its phase describes helices. We will refer to them as LGm

p modes.

16



CHAPTER 1. MODES OF THE ELECTROMAGNETIC FIELD

−4 −2 0 2 4−1

−0.5

0

0.5

1

x

u
(x
,y
=

0,
z
=

0)
LG0

0 LG0
1 LG0

2 LG0
3

Figure 1.2: Amplitude of the �rst four Laguerre-Gaussian modes.

Other types of free-spacemodes The types of modes which can exist is as large
as the number of types of solutions to the wave equation given the constraints of
the medium the light propagates in. In free space, an interesting type of modes we
wish to dwell upon is that of non-di�racting beams. Non di�racting beams were
�rst introduced in [Durnin 87a, Durnin 87b], using general solutions of the wave
equation derived in [Whittaker 03]. Fields of the type

E (x,y, z, t) = exp [i (βz − ωt)]
∫ 2π

0
A (ϕ) exp [iα (x cosϕ + y sinϕ)]dϕ (1.58)

(with β2+α2 = (ω/c)2 andA (ϕ) any continuous complex function ofϕ) are solutions
of the wave equation. If β > 0, the time-average intensity at (x,y) is constant:
∀z ∈ R, I (x,y, z = 0) = I (x,y, z). This property means these solutions do not
di�ract. As an example, if one takes A (ϕ) = 1/(2π ), we �nd

E (x,y, z, t) = exp [i (βz − ωt)]
∫ 2π

0
exp [iα (x cosϕ + y sinϕ)]dϕ2π

= exp [i (βz − ωt)] J0
[
α
√
x2 + y2

]
(1.59)

where J0 is the zero-order Bessel function of the �rst kind. We de�ne an ideal Bessel
beam in cylindrical coordinates (r , θ , z) as

E (r , θ, z, t) = exp [i (βz − ωt)] Jn [αr ] exp (inθ ) (1.60)

with Jn thenth order Bessel function. This “non-di�racting” property of such modes
unfortunately renders them unphysical: indeed, the energy of such modes is in�nite
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[McGloin 05]. However, �nite-energy realization of Bessel beams can take the form
of Bessel-Gauss beam — Bessel beams with a Gaussian envelope [Gori 87], which
are discussed in appendix A.

-00

-10

-20

Figure 1.3: Experimental measurement (dB scale) of the intensity of a Bessel-Gauss
beam — the image was taken during the preparatory works of A.

Non-di�racting beams also contain the families of Airy and Mathieu beams,
which both carry the name of the equation their envelope is a solution of [Mazilu 10,
Berry 79, Siviloglou 07, Gutiérrez-Vega 00].

Prolate spheroidal wave functions Although we do not aim at making a
complete zoology of free-space spatial modes, we �nally mention the circular pro-
late spheroidal wave functions (PSWF) which are used in the context of hard-aperture
imaging since they possess the property of being an orthonormal basis of bandwidth-
limited functions [Landau 61, Slepian 61]. These functions arise in two di�erent
contexts: as solutions of a second order Sturm-Liouville equation and as the spec-
trum of an integral operator. A good review of these functions is [Wang 17] — which
we make a brief summary of in this paragraph. First, we consider the subclass of
functions f (t) ∈ L2 (R) whose Fourier transform f̃ (ω) is zero for ω >W (W is the
bandwidth parameter). Such a function is called W -bandlimited. The space of all
W -bandlimited functions is known as the Paley-Wiener space. The time-frequency
problem which was addressed by Slepian et al. [Slepian 83] can be stated as follow:
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to what extent can the energy of a function belonging to the Paley-Wiener space
be concentrated in a �nite interval (which means there exists a value T such that
f (t) = 0 for |t | > T /2)? This question amounts to studying the Fredholm integral
equation of the second kind: �nd µ ∈ R and function ϕ such that

Bϕ (x) =

∫ +1

−1

sin c (x − t)
π (x − t)

ϕ (t)dt = µϕ (x) with c > 0 (1.61)

where x ∈ [−1, 1] and c = πWT . Spectral theory indicates that the operator B
admits a countable set of eigenvalues and eigenfunctions {µn,ϕn}n∈N:∫ +1

−1

sin c (x − t)
π (x − t)

ϕn (t ; c)dt = µn(c)ϕn (x ; c) (1.62)

The eigenvalues are strictly positive and form a decreasing series µ0(c) > µ1(c) >
... > 0. The eigenfunctions are orthogonal and complete in L2 ([−1, 1]). The func-
tion ϕn (x ; c) are the PSWF of degree n and bandwidth c . If we de�ne the operator
F as

Fcϕ (x ; c) =
∫ +1

−1
eicxtϕ (t ; c)dt (1.63)

one can verify that
Bϕ (x ; c) = 2π

c

(
F ∗c ◦ Fc

)
ϕ (x ; c) (1.64)

This equation implies that B and Fc have the same eigenfunctions {ϕn} and eigen-
values {inλn (c)} with the relation

λn (c) =

√
2π
c
µn (c) (1.65)

The integral operators Fc commute with the second-order di�erential operator
de�ned by:

Dc
x = −

d

dx

(
1 − x2) d

dx
+ c2x2 (1.66)

which corresponds to the Sturm-Liouville equation. Indeed:

Dc
x

∫ +1

−1

sin c(x − t)
π (x − t)

dt =

∫ +1

−1

sin c(x − t)
π (x − t)

dt . (1.67)

The PSWF {ϕn} are thus also eigenfunctions of the Sturm-Liouville problem

Dc
xϕn(x ; c) = χnϕn(x ; c) for x ∈ [−1, 1] (1.68)
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This problem arises from solving the Helmholtz equation in prolate spheroidal co-
ordinates by separation of variables. It is a special case of the spheroidal wave
equation withm = 0 [Wang 17]:

d

dx

[ (
1 − x2) dϕ

dx

]
−

[
m2

1 − x2 + c
2x2

]
ϕ = −λϕ with x ∈ [−1, 1] (1.69)

The functions {ϕn} we introduced are thus the PSWF of order 0. The essential
property of the PSWF we are interested in is the fact that they are eigenfunctions
of an operator (Fc) which is related to the �nite Fourier transform. They form an
orthogonal basis of the Paley-Wiener space of c-bandlimited functions and can be
used as a basis for the decomposition of bandlimited functions. In the �eld of optics,
these functions are particularly useful in imaging. Virtually all imaging systems are
aperture-limited: the bandwidth of the collected signal is limited by the extent of
the optical instruments of the system, which takes the form of a circular pupil. We
will develop the use of the PSWF in this context in chapter 2.

Waveguide modes Free-space propagation is only one of the many propagation
regimes in which one might be interested when looking at light propagation. One
other particularly interesting regime is that of light propagation in waveguides,
such as optical �bers to only name one, where we are interested in modes which
are bound to the waveguide. The model we choose to present here is that of the step-
index �bers — which allows for solutions to be derived analytically — although the
reasoning is similar for graded index �bers, or other types of index pro�les. Most
types of waveguides and waveguide modes are presented in detail in [Snyder 83].
The transverse pro�le of an ideal step-index �ber is composed of two parts: a core
of radius rcore and refractive index nco and a cladding of theoretically in�nite extent
and refractive index ncl , with nco > ncl . The refractive index is de�ned by the phase
velocity v of the light in the unguided medium: n = c/v (c is the speed of light
in vacuum) and is thus a function of the wavelength λ or equivalently the angular
frequency ω. We also assume the �ber to be in�nite in the longitudinal direction
(z is the unit vector of this axis) in order to have translational invariance in that
direction:

Ej (x,y, z) = ej (x,y) exp
(
iβjz

)
=

[
et j (x,y) + ezj (x,y)z

]
exp

(
iβjz

)
(1.70)

where we separate the transverse and longitudinal components of the �eld, and βj
is the propagation constant of mode j.

We look at modes which do not attenuate as they propagate (βj ∈ R) and which
are bounded — which translates into βj > 0. When taking the temporal dependence
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Cladding
Core

Coatings

Figure 1.4: Sketch of the structure of an optical �bre — not to scale. The coating
layers protect the physical �ber but play no role in the con�nement of light in the
�ber.

into account, the �eld varies as exp
(
iβjz − iωt

)
. The phase velocity of a mode is

given by vpj = ω/βj . Another useful notion is that of group velocity. Under certain
conditions (see [Smith 70] for a detailed account), for instance in absence of absorp-
tion, the group velocity of a mode gives the speed at which the power in a given
mode is transmitted, and it is given by νдj = dω/dβj . When replacing the expression
of 1.70 in the source-free vector wave equation, one can derive [Snyder 83]:(

∇2
T + n

2ω
2

c2 − β
2
j

)
ej(x,y) = − (∇T + iβiz)

(
et j(x,y) · ∇T lnn2) . (1.71)

In a step-index �ber, except at the interface between core and cladding, we have
∇T lnn2 = 0 which means that(

∇2
T + n

2ω
2

c2 − β
2
j

)
ej(x,y) = 0 (1.72)

everywhere, except at the interface. The requirement that the �elds should (i) have
a �nite norm everywhere, (ii) be bounded to the waveguide and (iii) satisfy the
boundary condition of the core-cladding interface (continuity as well as continuity
of the �rst derivative at the interface) leads to an eigenvalue equation for the modal
propagation constant βj — whose derivation is beyond the scope of this thesis. The
�ber parameterV = krcore

√
n2
co − n

2
cl

governs the number of solutions to this eigen-
value equation and their value. In a simple step-index �ber, when 0 < V < 2.405, the
�ber operates in the single mode regime, meaning only one spatial mode is guided
by this �ber. Other types of optical �bers include few-mode �bers where a small
number of modes are supported, which have non-degenerate group velocities, and
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multi-mode �bers where a large number of modes can be supported, with degenera-
cies of the group velocities. One last element worth mentioning in the derivation
of modes of waveguides is that its cross-sectional geometry/refractive-index pro�le
induce speci�c polarization properties3.

1.1.6 Typically available spatial modes

The spatial modal description of an electromagnetic �eld lies primarily in the type
of source where it comes from. Thermal light emitted by a light bulb cannot be
described by a single spatial mode, but rather by an in�nite sum over a mode basis
— for instance, the plane wave mode basis. We will focus in this thesis almost
entirely on laser light. Laser light is — in a majority of cases — produced by �elds
in cavities [Grynberg 10]. The geometry of these cavities imposes constraints on
the spatial modes of the �eld for it to be resonant. The properties of the cavity will
also determine whether the laser is single-mode or multi-mode, that is if it can be
described as a single spatial mode, or as a statistical superposition of several spatial
modes. The same analysis holds true for temporal modes. For usual laser cavities,
the output of the cavity is a Gaussian beam. By playing with the cavity parameters,
Hermite-Gaussian beams, as well as Laguerre-Gaussian beams, can be produced.
Fibered lasers produce in most cases beams which are composed of the eigenmodes
of the �ber used.

1.2 Shaping the light

Di�erent spatial modes have di�erent properties that might be interesting depend-
ing on the desired application. It is thus of great interest to be able to shape a laser
beam in order to change its spatial properties. Several lossless techniques exist to
carry out this operation, which we will present here. An even larger number of
beam shaping techniques involving loss exist — among which are slides and inten-
sity masks. We will however not detail the existing lossy techniques in this section.
The shaping techniques are mode-independent in the sense that all the modes of

3Indeed, we mentioned previously that the solutions to Maxwell’s equation should be continuous
at the index pro�le boundaries. A useful image to keep in mind is that the phase acquired by a plane
wave upon re�ection on a �at surface depends on the polarization. In circular �bers, transverse
electric and transverse magnetic (TE and TM) modes are supported. In the case of more complex
index pro�les, the ∇T lnn2 term in 1.71 induces hybrid modes which are referred to as EH and HE
modes.
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which the shaped beam is composed will “see” the same transformation4. Mode-
dependent shaping will be introduced in the following section.

1.2.1 Conventional geometrical optics

Conventional geometrical optics are actually a very versatile and convenient tool
to change the spatial mode of a beam. Geometrical optics consists of the use of mir-
rors, lenses, prisms, beam splitters, diaphragms and such combined with free-space
propagation. Flat mirrors allow to change the propagation direction of a beam,
curved mirrors can collimate or focus a beam. Lenses used in f − f con�gura-
tion implement a spatial Fourier transform of the �eld. Telescopes allow to change
the waist size of a beam. Iris diaphragms and blades �lter out a fraction of the
beam. Lenses can also introduce aberrations, which usually represent a hindrance
in imaging systems. These aberrations are in fact undesired shaping of the optical
beam which can in certain cases prove useful. Cavities and interferometers are in
most cases composed exclusively of geometrical optic elements.

A noteworthy example of the large shaping possibilities o�ered by a smart op-
tical design is the conversion of Hermite-Gaussian modes into Laguerre-Gaussian
modes and vice-versa using two spherical lenses and two cylindrical lenses with
perpendicular principal planes [Beijersbergen 93, Alekseev 98]. This transforma-
tion uses the following equality:

LG |m−n |
min{n,m}

=

N∑
k=0

ikb(n,m,k)HGN−k,k (1.73)

with

b(n,m,k) =

(
(N − k)!k!

2Nn!m!

)1/2 1
k!

dk

dtk
[(1 − t)n (1 + t)m] |t=0. (1.74)

The conversion of the beams uses the fact that the Gouy phases acquired by the
beams is not the same in both direction (x and y). The distance between lenses is
chosen such that the phase di�erence at the exit from the lens at the time when the
wave fronts overlap will be π/2 for a conversion from LGnm to HGkl modes.

4This remark holds true for the case for co-propagating modes — modes which are already sepa-
rated spatially can be shaped independently.
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1.2.2 Phase masks
The other main type of spatial shaping tool is phase masks. The physical imple-
mentation of a phase mask is called a phase plate. After transmission or re�ection
on phase mask, the output electric �eld (Eout ) can be expressed as:

Eout (x,y, z, t) = eip(x,y) × Ein (x,y, z, t) (1.75)

where p is the phase mask pattern and Ein the incident �eld. This operation can,
for instance, be completed using a piece of glass of varying thickness: the glass
having a propagation index di�erent than that of air, di�erent parts of the beam
will accumulate di�erent phases after having propagated in the phase plate. If the
phase plate is thin enough, refraction e�ects can be neglected, allowing the phase-
plate to be approximated as having a pure phase e�ect. Another type of plates —
which use birefringence e�ects as well as phase di�erence engineering — can be
used to introduce an angular orbital momentum in an optical beam and are referred
to as q-plates. Beams with circular polarization have an angular momentum called
spin angular momentum, while beams with helical wavefronts (such as LGm

p with
m , 0) carry orbital angular momentum. q-plates are generally liquid crystal cells,
which display a pattern called a topological charge. These phase plates allow to
perform an exact conversion of the spin angular momentum to the orbital angular
momentum [Marrucci 06, Marrucci 13].
Another such example is that of glass axicons [McLeod 54]. An axicon is a conical
piece of glass with the revolution axis of the cone aligned with the direction of
propagation of the beam. A plane wave propagating in an axicon will produce a
Bessel beam: in A we use re�ective axicons — and not transmissive axicons — to
produce and characterize Bessel beams with record conical angles. It can be noted
that since glass axicons rely on refraction, they do not need to be thin.

1.2.3 Recon�gurable phase masks
Another type of phase masks are recon�gurable phase masks, such as spatial light
modulators (SLM) [Efron 94, Rosales-Guzmán 17]. SLM can work in transmission
or re�ection — and require to work with only one polarization of light. The key
element of a SLM is a thin layer of, for instance, nematic liquid crystals. This liquid
is composed of molecules which orientation can be controlled by an electric �eld.
Their orientation in the liquid will, in turn, modify the optical index of the liquid.
By using arrays of independently controlled liquid crystal pixels, one can at will and
in a dynamical way control the phase pattern imposed on a beam. SLM are the most
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CHAPTER 1. MODES OF THE ELECTROMAGNETIC FIELD

polyvalent tool to produce a phase mask because of their very good resolution and
recon�gurability. This technology has had an enormous impact in optics allowing
the emergence of many new �elds such as optical manipulation [Grier 03], pulse
shaping [Weiner 00], microscopy [Maurer 10] and many more. However, they suf-
fer from a number of drawbacks. First of all, their price remains quite high. Another
drawback is the fact that in most technologies, the pixels need to be “refreshed”
which means the phase pattern they display is not rigorously constant in time. This
phenomenon is referred to as phase �ickering. The presence of liquid-crystal cells
implies that SLM are not compatible with high powers — whether in the pulsed or
continuous regimes. The di�raction patterns displayed on the SLM often have more
than one order of di�raction which introduces losses. Finally, the fact that they are
only compatible with one linear polarization reduces their e�ciency.

Figure 1.5: Photograph of a DMD. Image taken from [Mignardi 16].

Deformable surfaces are the second type of recon�gurable phase masks. Two
main types exist: deformable mirrors and digital micro-mirror devices (DMDs). De-
formable mirrors consist of a layer of pixel actuators which is covered by a de-
formable re�ective membrane. DMDs are arrays of small pixel mirrors, which ori-
entation can be very quickly switched between two positions — in practice, the light
reaching each pixel can be steered in one of two directions, towards the image one
wants to display or towards a dump. Each pixel can thus be de�ned as “on” or “o�”.
These two technologies have allowed the emergence of the �eld of adaptive optics,
allowing for instance for tremendous progress in astronomical imaging [Beckers 93,
Roddier 99, Tyson 10]. Adaptive optics is a technology which allows the improve-
ment of the resolution of imaging systems, by compensating for the turbulence of
the medium the light goes through before reaching its observation plane. These
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turbulences can be caused by atmospheric distortions in the case of astronomy or
free-space communications. In living tissue imaging, these turbulences will origi-
nate from the movements of the tissues that light goes through. The adaptive sur-
face will dynamically correct the aberrations caused by the imaging medium by
compensating them.

Figure 1.6: Images of Neptune captured by ESO Very Large Telescope with and
without the use of adaptive optics. In this implementation, four lasers are shot
from the ground to the region of the sky which is to be imaged. The excitation they
cause in the atmosphere is used to measure the amount of turbulence in the air. This
information is then used to modulate the surface of the ground telescope mirror
for it to compensate the aberrations caused by the atmosphere. On the corrected
image, one can distinguish much sharper details of the surface of Neptune than
on the image obtained without adaptive optics. (18/07/2018 — ESO/P. Weilbacher
(AIP)).

1.2.4 Multiplexing techniques
Multiplexing is a method by which several signals are sent through the same medium,
using the same physical resource. In optics, this consists in bringing several inde-
pendent optical modes together so that they become co-propagating. Several de-
grees of freedom can be exploited to implement multiplexing: wavelength [Keiser 99],
time-domain [Kani 06] and polarization [Hill 92] multiplexing are for instance ma-
ture technologies. We will present in this section spatial multiplexing [Berdagué 82,
Murshid 08, Richardson 13]. The assessment of a multiplexing technique uses the
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following �gures of merit: the number of modes, the coupling e�ciency, the mode
selectivity as well as the cross-talk between modes.

Figure 1.7: Schematic illustration of a photonic lantern. (b)-(d) Microscope images
of a �ber bundle cross section at di�erent positions in the taper transition. Image
taken from [Noordegraaf 09].

Photonic lanterns are another type of technology which allows the multiplexing
of modes in the context of �bered optics [Richardson 13]. Schematically, a pho-
tonic lantern is an assembly of the cores of single mode �bers which are fused
together to form a multi-mode �ber core. Two main types of photonic lanterns
exist. The �rst technique amounts to the tapering of a preform consisting of a
bundle of �bers placed inside a low-index capillary. The �bers arrangement in the
preform as well as their type (step-index or graded-index, hollow-core, single or
multi-mode �ber, etc.) leads to a variety of performances for these types of lanterns
[Velázquez-Benítez 18]. Nonmode selective photonic lanterns can be fabricated us-
ing identical single mode �bers. These lanterns require the use of multiple-input
multiple-output (MIMO) methods to unscramble the information at the output of
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the demultiplexer [Ryf 14, Guan 15]. Mode selectivity can be achieved by using dis-
similar �bers and/or using speci�c geometrical arrangements of �bers in the pre-
form such that each single-mode �ber excites only one spatial mode. When this
fusing process respects adiabatic conditions, the modes of the di�erent single-mode
�bers can be shaped independently into the di�erent eigenmodes of the multi-mode
�ber [Leon-Saval 05, Birks 15]. Fiber-based photonic lanterns o�er the advantage of
being all-�bered devices which can be directly spliced to transmission �bers. The
second type of photonic lantern fabrication uses ultrafast laser inscription which
writes 3D waveguides in a bulk of glass [Guan 15]. This fabrication technique can
be fully automated which ensures accurate layout control.

To be exhaustive on the question of spatial multiplexing technologies, the �rst
implementation of multiplexing operations was made using binary phase plates and
beam splitters [Ryf 12]. We also mention mode couplers [Gross 15], Y-junction cou-
plers [Driscoll 13], micro-ring mode couplers [Luo 14] and �bered mode-selective
couplers [Chang 14]. One of the important drawbacks of these approaches is their
limited bandwidth of operation as well as the fact that they cannot easily be scaled
to many modes.

1.3 The Multi-Plane Light Conversion Technology
The Multi-Plane Light Conversion (MPLC) technology was invented in the Lab-
oratoire Kastler-Brossel and is now developed and commercialized by the com-
pany CAILabs. This thesis revolves around the study of its properties as well as
the development of novel uses cases. All the results developed here are derived in
[Morizur 10, Morizur 11b, Labroille 14] in greater details.

1.3.1 Back to mode basis change
We de�ned in 1.1.3 the matrixU which gives the mode basis change fromui (r , t) to
wi (r , t). Since we are here interested in spatial modes only, we will often drop the
t dependency and make the r dependency implicit. We can translate this in more
conventional mathematical concepts by considering that, in free space, E lies in an
in�nite dimensional space. We rewrite equation 1.12 as

E(+)(r , t) =
∑
i

Ei ui (r , t) . (1.76)

Because {ui} is a complete orthonormal mode basis, E can uniquely be described
by the vector e = {Ei}. If we refer to W as the matrix for the mode basis change
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from wi (r , t) to ui (r , t) we can write:

Wij =

∫
d3rw∗i uj =

(∫
d3rwiu

∗
j

)∗
=

(∫
d3ru∗jwi

)∗
= U ∗ji (1.77)

that isW = U †. Furthermore, we can deduce from this derivation that U †U = I : U
is a unitary matrix.

Any element of an optical setup can also be modeled as a matrix M : with a �xed
choice of transverse mode basis, the electric �eld before and after this optical ele-
ment will be related by the relation eout = Mein. If the optical element introduces
no losses, this matrix M is unitary as well. Hence, any linear optical element im-
plements a mode basis change. However, the set of the unitary transforms that can
be implemented with lossless conventional optics (mirrors, lenses, beam-splitters)
is only a subset of the unitary group5.

1.3.2 Exemples of matrix representation

We will here describe two speci�c types of unitary transform: the Fourier transform
and the transformation implemented by a phase mask. In speci�c mode bases, these
transformation can be written in a simple way. We introduce �rst the pixel mode
basis — it allows to easily model a mode in the usual cartesian coordinate system.
The use of this mode basis only makes sense if the �elds we want to describe have
�nite spatial transverse extensions. We make the assumption that the �eld E(x,y, z)
we want to describe has a spatial extent which is smaller than L in both directions
at z = 0. We then choose Npixel such that the �eld has no spatial feature smaller
than the length ∆pixel = L/Npixel . Using these de�nitions, we de�ne a pixel basis Si,j
with (i, j) ∈ n1,Npixelo of size ∆pixel × ∆pixel . The center of pixel Si,j has coordinates
(xi,yi). The representation of the �eld in this basis is de�ned in the following way

Ei,j (x,y, z = 0) = E (xi,yi, z = 0) if (x,y) ∈ Si,j (1.78)
Ei,j (x,y, z = 0) = 0 if (x,y) < Si,j

Hence, E (x,y, z = 0) is correctly described in the pixel mode basis by the vector Ek
with k ∈ n1,Npixelo2. In such a basis, the matrix MPP describing the action of a

5If we exclude cylindrical lenses from this ensemble, this subset for instance preserves cylindrical
symmetry, which means it is not equal to the unitary group.
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phase plate on a �eld can be written as a diagonal matrix:

MPP =
©«
eiϕ1 0 · · ·

0 eiϕ2 · · ·
...

...
. . .

ª®®¬ (1.79)

As indicated in 1.2.3, a phase plate can be physically implemented using a SLM. The
number and the size of the pixels will be �xed by that of the SLM.

f f f f

MFT MFT

iris

Figure 1.8: Implementation of f − f and 4 − f transforms and de�nition of MFT .

While the pixel mode basis in convenient to express the transformation induced
by a phase mask, the Hermite-Gauss mode basis is also an interesting mode basis
to describe certain optical transformations, in particular the optical Fourier trans-
form. Indeed, the Hermite-Gauss mode basis is, like other mode bases and up to a
scaling constant, stable by Fourier transform. A spatial Fourier transform can be
implemented using a lens of focal length f in a f − f con�guration (see �gure 1.8)
[Lohmann 93]. In this case, the relation between the input and output waists of
a Hermite-Gauss mode basis is wout = (2πλ f ) /win. In the input Hermite-Gauss
mode basis HGmn,in de�ned bywin and output mode basis HGmn,out de�ned bywout ,
we have MFTHGmn,in = i

m+nHGmn,out , where MFT designated the Fourier transform
matrix. We note that four Fourier transforms in a row make up for the identity:

(MFT )
4 = I (1.80)

1.3.3 Implementing any unitary matrix
LetUPP be the group of all “phase-plate” matrices andUFT that of the Fourier trans-
form matrices in the pixel basis. It is shown in [Borevich 81] that any unitary matrix
M can be constructed by a �nite product of elements of UPP and UFT . This means
that any mode basis change (unitary matrix) can be realized by a �nite number of
phase plates (MPP ) and spatial Fourier transforms (MFT ). This result lies at the heart
of the working principle of the MPLC [Morizur 11b]. As an illustration, we de�ne
the matrix Tij (θ ) as the matrix representing the action of a beamsplitter between
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pixels i and j in the pixel mode basis. Using a permutation in the mode basis it is
always possible to write Tij (θ ) as:

Tij (θ ) =

©«
cos (θ ) sin (θ ) 0 0 · · ·
− sin (θ ) cos (θ ) 0 0 · · ·

0 0 1 0 · · ·
...

...
. . .

ª®®®®¬
(1.81)

A �nite sequence of a maximum of 17 successions of MPP and MFT is su�cient to
build any Tij (θ ) [Borevich 81].

1.3.4 Physical implementation of the MPLC
The previous section introduces a result which states the existence of a �nite series
of elements of MPP and MFT that can implement any given mode unitary transform.
One can easily see that a physical implementation of such a series is in practice ill-
suited, due to the high number of matrices/optical operations to be performed.

The problem the MPLC addresses is slightly di�erent from the problem we ad-
dressed theoretically. The MPLC aims at performing unitary transforms on a limited
number of modes: we only aim at shaping deterministically a subset of the modes of
a complete mode basis. This problem has a smaller complexity than the one which
was presented in the previous part. Instead of developing theoretical solutions for
every speci�c transform one could want to perform, numerical optimization rou-
tines have been derived to derive a more “reasonable” number of operations for a
given unitary transform.

We note here that while the derivation we presented in the previous section
makes use of a perfect Fourier transform, we will throughout this thesis use free-
space propagation. Free-space propagation, on a distance large enough to cover
the near-�eld to far-�eld range, implements a Fourier transform. This result can be
derived using Fraunhofer approximation (see [Goodman 96]) or alternatively using
the fractional Fourier transform [Mendlovic 93, Ozaktas 93, Lohmann 93]. In the
case of a Gaussian beam, such a distance can estimated using the characteristic
spatial extent of a mode w0 as zR (w0) = πw

2
0/λ.

To go further, one needs to �rst state the characteristics of the mode basis change
one wishes to implement. This includes

• the number Nm of modes one wishes to shape simultaneously

• the wavelength λ of the �elds
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• the input mode basis {ui}i∈[1,Nm] with its characteristic spatial extent w0,i

• the output mode basis {wi}i∈[1,Nm] with its characteristic spatial extent w0,o .

One also need to specify the physical characteristics and limitations of the system
we wish to build:

• the number of phase plates used in the system Np

• the size of the pixels composing the phase plate dx and dy

• the number of said pixels nx and ny

• the distance between each phase plate 2L

• the regularity constraints that the choice of material or fabrication technique
imposes on the phase functions ϕj(x,y), j ∈ [1,Np] of the phase plates.

As stated above, a rule of thumb for the choice of the propagation distance is the
following: 2L ≥

(
π max{w0,i,w0,o}

2) /λ.
An actual MPLC system is physically implemented as a succession of phase

plates placed next to each other between which light bounces o� of a plane mirror
placed parallel to the phase plates. The distance between the phase plates and the
mirror is given by L so that the total free-space propagation the beam takes place on
a 2L distance. Figure 2.9 shows how a MPLC is physically implemented. The phase
plates are stacked next to each other on a larger phase plate. This phase plate faces
a plane mirror. The angle introduced by these bounces is taken into account in the
optimization routines but is small enough so that the paraxial approximation is still
valid. Finally, �gure 1 shows a photograph of such a physical implementation.

Physical implementations of MPLC have �rst been developed by CAILabs to
perform spatial multiplexing operations: several spatially separated independant
monomode beams are “combined” — meaning they share the same propagation axis
— using a MPLC. The operation performed by the MPLC is a spatial mode basis
change between a basis of displaced gaussian beams to the basis de�ned by the
eigenmodes of a multi-mode �ber. This operation allows di�erent signals carried
by independant light beams to travel along the same optical �ber.

Other unitarymatrix implementations In a Mach-Zehnder interferometer used
with only one beam as an input, the amount of light in each of the output arms can
be continuously modulated from 0 to 100 % by adjusting the length of one of the two
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Figure 1.9: Schematic representation of a MPLC system. The unitary transformation
which is presented on this image is a mode basis change between spatially separated
modes which are outputs of single-mode �bers (in green) and co-propagating modes
of a multi-mode �ber (in orange). The phase plate is represented as the golden sur-
face at the back of the picture, while the plane mirror lies in front of it. The modes
sizes are matched between the �bers and the MPLC system using a vertical array of
micro-lenses for the single-mode �bers and a single micro-lens for the multi-mode
�ber. Next to the micro-lenses, the spatial distributions of the modes are plotted.
The transformation can be made in both directions: if one injects light into one of
the single mode �bers, the output mode will be one of the multi-mode �ber. In-
versely, if only one mode of the multi-mode �ber is excited, only the corresponding
single mode �ber will receive energy. ©CAILabs.
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arms — or equivalently the phase of the light in one arm with respect to the other
arm. Since both arms are spatially separated, this implements a simple multiplexing
operation. Such interferometers can be cascaded, allowing for more complex mul-
tiplexing implementations (in [Reck 94], authors demonstrate that such simple in-
terferometers can be used as the “building blocks” of any unitary matrix). However,
a free-space implementation of such an array is not quite scalable. On the contrary,
on-chip waveguide arrays of such interferometer meshes produce promising results
[Clements 16, Annoni 17].

1.4 Conclusion
In this chapter, the formalism necessary to the description of spatial modes of the
electromagnetic �eld is introduced. Spatial mode bases are a central object through-
out this manuscript and we described the di�erent existing techniques which allow
to perform mode basis changes on spatial modes of the electromagnetic �eld. Fi-
nally, the MPLC system was introduced.
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Chapter 2

Improving optical resolution using
modal analysis

“Pourtant s’ils savaient ! Là est le pays des merveilles, le vrai pays des fées:
le réel.”

– François Cavanna
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Imaging systems often have the goal of providing the observer with more infor-
mation than what can be obtained with the naked eye. More information can mean
more detail or more accuracy. Its function might also be to record the obtained
image for later use. The link between the object, that is the information we wish
to acquire, and the image, the information we do acquire, is given not only by the
physical properties of the imaging system, but also by the properties of the light
which is used to perform the imaging operation. Very good introductions to this
�eld can be found in [Mandel 95, Goodman 00]. Most of the derivations of the �rst
part of this chapter are taken from both these references. We will �rst establish the
formalism describing optical imaging and give the classical resolution limits which
apply in the case of the imaging of two incoherent point sources. We will look in
a second part at the di�erent techniques which were developed to overcome these
limitations. We will then make an introduction to parameter estimation theory and
using this formalism, derive the limitations in the estimation of the displacement
of a point source. Using the tools of estimation theory we show theoretically and
experimentally that one can design spatial demultiplexers which are optimal tools
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for the measure of the displacement of one single point source. We also show that
the problem of the distance measurement between two point sources and the dis-
placement measurement of a unique source can be described using the same tools.
Using a MPLC system, we make the experimental demonstration of the measure-
ment of both the displacement of one source and the distance between two inco-
herent point sources by performing intensity measurements on the di�erent modes
of the signal. Finally, we take a step back from parameter estimation by introduc-
ing the �eld of compressed sensing. This discipline opens the path to new types of
imaging systems through optimization and careful sensing mode basis design — the
experimental realization of which could be made using MPLC systems.

2.1 Optical resolution

Electromagnetic �elds have �uctuations associated to them. The statistical prop-
erties of light, which we have not discussed in the previous chapter, play an im-
portant role in the outcome of optical experiments. The simplest phenomenon il-
lustrating these �uctuations is the interference e�ect: when two �elds which are
coherent with one another are combined, one can observe interference fringes. On
the contrary, if the two �elds’ �uctuations are independent, no interference pattern
is observed. The �eld studying these e�ects is called optical coherence theory since
these interference phenomena depend on the correlations that exist between the
light �uctuations of both beams. The problem we are interested in can be schemat-
ically described as follows: an electric �eld illuminates an object and the resulting
light is transmitted through an imaging system. What we have access to is the in-
tensity pattern in the image plane. From this image, we aim at extracting as much
information as possible on the physical system, the object. The imaging system, but
also the very properties of the light- and in particular its coherence properties —
will determine the intensity pattern we measure, and thus the information we can
access.

2.1.1 Mathematics of coherence and imaging

In this section, we introduce the formalism which is necessary for the description
of the �uctuations of the electric �eld — regardless of their classical or quantum
origin. This formalism of image formation in partially coherent light is necessary
to the characterization of the intensity distribution found in the image plane for
any experimental situation. It also allows to identify the individual e�ects of the
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imaging system, the object and the illuminating �eld. We take E (r , t) the positive
frequency component of the �eld, which we de�ned in subsection 1.1.1 (we drop
the (+) superscript to simplify notations). E (r , t) �uctuates in time. We de�ne the
cross-correlation function of the �eld as

Γ (r1, r2; t1, t2) = 〈E∗ (r1, t1)E (r2, t2)〉. (2.1)

The average is taken over di�erent realizations of E: it is a statistical ensemble
average. Since we are in a stationary regime, the origin of time plays no role, which
means we can replace the expression of the cross-correlation function by

Γ (r1, r2;τ ) = 〈E∗ (r1, t)E (r2, t + τ )〉. (2.2)

This function is known as the mutual coherence function. The intensity at point r is
given by I (r , t) = E∗ (r , t)E (r , t). Then, the average intensity at point r is:

〈I (r , t)〉 = 〈E∗ (r , t)E (r , t)〉 = Γ (r , r ; 0) . (2.3)

Finally, we de�ne the mutual intensity as

J (r1, r2) = Γ (r1, r2; 0) . (2.4)

Coherence time The coherence time∆τ at point r is a measure of the time period
during which correlations of the �eld can be observed:

(∆τ )2 =

∫ ∞
−∞

τ 2 |Γ (τ )|2 dτ∫ ∞
−∞
|Γ (τ )|2 dτ

(2.5)

with Γ (τ ) = Γ (r , r ;τ )1.
The situation we are interested in is described in �gure 2.1. The electric �eld

Esource (α, β ; t) emitted by the light source is transmitted to the object plane through
the illumination system. The light Eo (x,y; t) which reaches the object plane goes
through the object (which is characterized by the transmittance function tobject(x,y))
and leaves the object plane as E′o (x,y; t). Finally, the �eld Eimage (u,v ; t) reaches
the image plane after going through the imaging system. We aim at establishing
a relation between the mutual intensities in the object and image planes. We �rst
place ourselves in the paraxial approximation, with z as the propagation axis of light
as well as the rotational symmetry axis of the imaging system. We will consider the

1We also have Γ (−τ ) = Γ∗ (τ ).
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Source
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(α, β) (x,y) (u,v)

F (x,y;α, β) K (u,v ;x,y)

Imaging
optics

Illumination
optics

Figure 2.1: Illumination and imaging systems (from [Goodman 00]).

transverse pro�les of the �eld with respect to the z axis. For this reason, we now
write J (x1,y1;x2,y2).

In order to describe imaging setups we introduce the amplitude spread func-
tion of a system K (u,v ;x,y). We assume that under the quasi monochromatic ap-
proximation, any imaging system can be described by such a function. The ampli-
tude spread function allows to relate the mutual intensity leaving the object plane
J ′o (x1,y1;x2,y2) to the mutual intensity reaching the image plane Jimage (u1,v1;u2,v2)
with the following equation:

Jimage (u1,v1;u2,v2) =

⨌ ∞

−∞

J ′o (x1,y1;x2,y2)K (u1,v1;x1,y1)

× K∗ (u2,v2;x2,y2)dx1dy1dx2dy2 (2.6)

The intensity distribution in the image �eld can be calculated using
the previous expression: Iimage (u,v) = Jimage (u,v ;u,v). The quantity
K (u1,v1;x1,y1)K

∗ (u2,v2;x2,y2) is the impulse response of the system — it
allows to relate the mutual intensity at the image point (u1,v1;u2,v2) to an object
of mutual intensity consisting of an impulse at (x1,y1;x2,y2). Under conditions
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speci�ed in detail in [Goodman 00]2, which amounts to the system being space
invariant, equation 2.6 can be written as a convolution:

Jimage (u1,v1;u2,v2) =

⨌ ∞

−∞

Jo (x1,y1;x2,y2)K (u1 − x1,v1 − y1)

× K∗ (u2 − x2,v2 − y2)dx1dy1dx2dy2. (2.7)

In this case, the amplitude spread function is now a function of only two variables.
The point spread function is the normalized amplitude spread function K (u,v).
The formalism we have derived here is also valid to describe the illuminating sys-
tem, that is the optical system which links the optical source to the object plane.
The light emitted by the source at the point (α, β) can be represented by the �eld
Esource (α, β ; t). The illumination from this point which reaches the object on point
(x,y) is expressed as

Eo (x,y; t) =
∬ ∞

−∞

F (x,y;α, β)Esource (α, β ; t − δ1)dαdβ (2.8)

where F is the amplitude spread function of the illuminating system and δ1 is a
delay which depends on (x,y) and (α, β)3. The illumination which leaves the object
is E′o (x,y; t) = Eo (x,y; t) × tobject (x,y) where tobject (x,y) is the transmittance of the
(thin) object — which we assume to be independent of the source point. tobject can
be complex: the object can absorb light and add spatial dephasing.
As an example, we give the transmittance function tlens(x,y) of a thin lens, which
is given by the following equation:

tlens(x,y) = P(x,y) exp
[
−i

π

λ f

(
x2 + y2) ] (2.9)

where λ is the wavelength of the light, f is the focal length of the lens, and P(x,y)
is the aperture function of the lens (P = 0 outside the lens aperture).

2These conditions are non trivial and not always satis�ed. The object coordinates and coordi-
nate axis must be normalized such that the magni�cation factor between the coordinates (x,y) and
(u,v) is unity. The coordinate axis must be oriented such that image inversion e�ects are removed.
Finally, the amplitude spread function K must not contain any space-variant phase factors. This last
condition is the most binding. As an example, a two lens telecentric system satis�es this condition.
Systems where the phase factors of K and K∗ cancel each other in the interest range of separation
can also be considered space-invariant.

3In the same way, we can write Eimage (u,v ; t) =
∬ ∞
−∞

K (u,v ;x,y)E ′o
(
x,y; t − δ ′1

)
dxdy, with δ ′1 a

delay which depends on (u,v) and (x,y).
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We can express the mutual intensity reaching the object as

Jo (x1,y1;x2,y2) = 〈Eo (x1,y1; t − δ1)E
∗
o (x2,y2; t − δ2)〉 (2.10)

in the monochromatic assumption where |δ1 − δ2 | � ∆τ . The intensity at coordi-
nates (u,v) in the image plane can �nally be expressed as

Iimage (u,v) =

⨌ ∞

−∞

K (u − x1,v − y1)K
∗ (u − x2,v − y2) tobject (x1,y1) t

∗ (x2,y2)

× Jo (x1,y1;x2,y2)dx1dy1dx2dy2. (2.11)

This equation states that the knowledge of K , tobject and Jo allows the calculation of
Iimage.

In this section, no assumption was made on the coherence properties of the
light source and the formalism we derived is valid for partially coherent sources.
However, we will now focus on the simpler cases of totally coherent or incoherent
illumination.

2.1.2 Incoherent case
In the case of total incoherence, each point of the source is considered to be totally
independent of the other points. We can describe the mutual intensity reaching the
object plane as

Jo (x1,y1;x2,y2) = I0 δ (x2 − x1,y2 − y1) (2.12)
where we suppose the illumination to be spatially homogeneous, that is equal to I0
at any point. By inserting this expression in equation 2.11, we �nd the following
expression:

Iimage (u,v) = I0

∬ ∞

−∞

|K (u − x,v − y)|2
��tobject (x,y)

��2 dxdy. (2.13)

In the case of incoherent homogeneous illumination, the image intensity is propor-
tional to the convolution of the object intensity transmittance |t |2 with the intensity
spread function |K |2. An imaging system with incoherent imaging is linear in in-
tensity.

2.1.3 Coherent case
In the case of full coherence, the expression of the mutual intensity is

Jo (x1,y1;x2,y2) = I0 (2.14)
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where we again make the assumption of spatial homogeneity. This equation is
equivalent to assuming that the object is illuminated with a plane wave whose
wave-vector is normal to the object. When inserting this equation in 2.11 we now
�nd

Iimage (u,v) = I0

����∬ ∞

−∞

K (u − x,v − y) tobject (x,y)dxdy

����2 (2.15)

which can be rewritten in the following form (since I = |E |2)

Eimage (u,v) =
√
I0

∬ ∞

−∞

K (u − x,v − y) tobject (x,y)dxdy. (2.16)

An imaging system with fully coherent illumination is thus linear in complex am-
plitude.

Coherence of natural light sources To illustrate this notion of spatial coher-
ence of light sources, we derive here the spatial coherence area of two natural light
sources: the sun and a star (Betelgeuse). In an observation plane at a given dis-
tance from a light source, the �elds considered at two di�erent points r1 and r2 are
coherent if r1 and r2 both belong to the coherence area associated to this source.
We designate by ∆Ω the solid angle a source subtends at the point of observation.
For the sun, this value is ∆Ωsun ' 6.81 × 10−5 sr, while for the Betelgeuse star, it is
∆ΩB ' 4.15 × 10−14 sr. The coherence area of a source is given by ([Mandel 95]):

∆A ∼ λ
2
/∆Ω (2.17)

where λ
2

is the wavelength of observation. For λ
2
= 1.55µm, ∆Ωsun ' 3.53 × 10−2

mm2 and ∆ΩB ' 57.9 m2.

2.1.4 Imaging two point sources

One of the two imaging problems which are at the heart of of this chapter consists
in imaging two point sources. In the terms of the formalism introduced above, this
simply writes

t (x,y) = a δ

(
x −

d

2 ,y
)
+ b δ

(
x +

d

2 ,y
)

(2.18)

where (a,b) ∈ C and we assume that the point sources lie on the x axis and are
separated by a distance d . Using the expression of the image plane intensity in the
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coherent case we can write

Ii(u,v) = I0

����a K (
u −

d

2 ,v
)
+ b K

(
u +

d

2 ,v
)����2 . (2.19)

For incoherent illumination, we have

Ii(u,v) = I0

(
|a |2

����K (
u −

d

2 ,v
)����2 + |b |2 ����K (

u +
d

2 ,v
)����2) . (2.20)

For further analysis, we need to have access to the amplitude spread function of
the system — hence to de�ne an imaging system. We here choose the simple and
classic situation of a 4f imaging system (see �gure 1.8). Two identical lenses of
focal length f are placed at distances f of the object and image plane. They are
separated by a distance 2f . At a distance 2f of the object plane lies a pupil which
is the aperture stop of the whole system. In the case of a simple circular pupil, we
can give an analytical expression of K [Goodman 00]:

K (ρ) =
2πR2

(λ f )2


J1

(
2πRρ
λ f

)
2πRρ
λ f

 (2.21)

where R is the radius of the pupil, ρ is the radial coordinate and J1 is the �rst Bessel
function of the �rst kind. The intensity pattern of a single point source is called an
Airy pattern (see �gure 2.2).

In the remaining of this thesis, we will only consider the case of incoherent
illumination. While the expression of the Airy pattern is analytical, it is in most
imaging contexts approximated by a Gaussian function since this form often allow
simpli�cations in calculations.
The Airy pattern is responsible for the limits in resolution of an imaging system:

indeed, a point source is imaged as a pattern with spatial extent — it is blurred. The
size of the Airy pattern is a function of the parameters of the imaging system. It
also gives the smallest size of detail which can be present in an image: it quanti�es
the resolution power of the imaging system.

2.1.5 Historical resolution criteria
The question of telling apart two distinct light sources is as old as optical imaging.
Several criteria have been derived to estimate the smallest distance at which two
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Figure 2.2: Airy pattern and its Gaussian approximation (FWHM ' 0.99).

points could be distinguished by their images, that is the smallest distance at which
one can still obtain information on the actual distance between two light sources.
We present here some of the most well-known resolution criteria.

The numerical aperture (NA) of an imaging system is dimensionless number
which characterizes the range of angles (in a geometrical optics picture) over which
a ray can enter or exit the system: NA = n sin imax with n the index of refraction
of the medium and imax the half-angle of the cone of light that can enter or exit the
system.

Abbe criterion Ernst Abbe [Abbe 73] devised the �rst resolution criterion. He
stated that the imaging resolution was limited to half a wavelength normalized by
the numerical aperture of the system, which amounts to

dAbbe = 0.5 λ

NA
. (2.22)

Rayleigh criterion The most famous of these criteria is attributed to Lord
Rayleigh [Lord Rayleigh 79]. It states that two points can be resolved if the �rst
minimum of the Airy pattern formed by one source coincides with the maximum
of the pattern formed by the second source:

dRayleiдh ' 0.61 λ

NA
. (2.23)

Sparrow criterion In an astronomical observation context, another criterion was
derived in [Sparrow 16] stating that as long as the derivative of the total intensity
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around zero went negative, two sources could still be distinguished:

dSparrow = 0.47 λ

NA
. (2.24)
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Figure 2.3: Illustration of di�erent resolution criteria.

Generally speaking, imaging techniques which allow one to distinguish sources
separated by a distance smaller than the Rayleigh criterion are called super-
resolution techniques. To conclude this part, we wish to include here a quote from
[Goodman 00] which we �nd particularly insightful:
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We note [...] that the question of when two closely spaced point sources
are barely resolved is a complex one and lends itself to a variety of rather
subjective answers. [...] In fact, the ability to resolve two point sources
depends fundamentally on the signal-to-noise ratio associated with the
detected image intensity pattern, and for this reason, criteria that do
not take account of noise are subjective.

2.1.6 A di�erent take on the problem

Compared to the approach used in the de�nition of the above resolution criteria,
the problem of the smallest distinguishable detail in an image has been addressed
in a slightly di�erent way in [di Francia 69, Bertero 82b, Bertero 82a]. Instead of
considering an image as being a collection of points, it is modeled as a continuous
function. In section 2.1.1, we have derived that the image and the object are linked
by a convolution. This convolution operation can be modeled as an operator, whose
properties (singular values, etc..) can be linked to the imaging performances of
the system. We give here the case of an incoherent illumination in one dimension
with a rectangular aperture stop, details of which can be found in [Bertero 82a].
Derivation for the case of coherent illumination can be found in [Bertero 82b]. We
de�ne X as the spatial extent of the object and I ′o as the intensity transmittance
function of the object. The bandwidth of the system is de�ned as [−2Ω, 2Ω], which
can be calculated from the parameters of the imaging system. We can de�ne the
operator A in one dimension with the following equation [Bertero 82a]:

Iimage (x) =
(
AI ′o

)
(x) =

∫ X/2

−X/2

sin2[Ω (x − y)]

πΩ(x − y)2
I ′o(y)dy, |x | ≤ X/24 (2.26)

The sampling theorem states that the smallest useful sampling length isR = π/(2Ω).
This is a rephrasing of the fact that details smaller than this length will not be
resolved by the imaging system — which is coherent with the results we presented
in the previous part.

4In the coherent case, the operator is de�ned by [Bertero 82b]:

(
AI ′o

)
(x) =

∫ X /2

−X /2

sin [Ω (x − y)]
π (x − y)

I ′o (y)dy, |x | ≤ X/2. (2.26)
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2.2 Overcoming the classical resolution limitations
in imaging

The resolution limits we presented in the previous part have been derived early on
in the study of imaging. A huge body of work has been dedicated to overcoming
these limitations. We present in this section some of the most well known and/or
noteworthy works aiming at improving the resolving power of imaging systems —
without claiming to establish an exhaustive list on the subject.

Analytical continuation We build on the formalism introduced in 2.1.6 and de-
�ne the reduced variables t = 2x/X and c = XΩ/2. We rewrite 2.25 as(

AI ′o
)
(t) =

∫ 1

−1

sin2 [c (t − s)]

πc (t − s)2
I ′o(X/2s)

2ds
X
, |t | ≤ 1. (2.27)

A is an operator, which is self-adjoint, non-negative, injective and compact in
L2 (−1, 1) [Bertero 82a]. The trace of this operator is the Shannon number S =
XΩ/π . S is also the number of coe�cients, according the sampling theorem, which
is necessary to describe the image. In [di Francia 69], using information theory, the
Shannon number is shown to be the number of degrees of freedom of the image.

As an operator, A admits eigenvalues λk — which are all strictly positive — and
normalized eigenfunctions ϕk which form a basis in L2 (−1, 1). These functions are
the spheroidal prolate functions we introduced in 1.1.5. When ordered in a decreas-
ing sequence, the eigenvalues of A have the following property: for k > 4c/π , they
go to zero exponentially fast. To simplify notations, we write I ′o = f and Iimage = д.
We de�ne д̄ = Af̄ as the noise-free image in the region |t | ≤ 1, we can derive f̄ as

f̄ (t) =
+∞∑
k=0

д̄k
λk
ϕk (t) (2.28)

with
д̄k =

∫ 1

−1
д̄ (t)ϕk (t)dt . (2.29)

This results is referred to as analytical continuation. It can be rephrased in the
following way: if the object has a �nite size, its Fourier transform is an analytical
function.
Hence, the knowledge of the Fourier transform of the object over a �nite inter-
val is su�cient to reconstruct the function unambiguously. In an optical imaging
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context, this means that if we were able to perfectly record the intensity pro�le
(without any kind of noise), an analytical continuation of the image intensity pro-
�le combined with the knowledge of the imaging system properties would allow to
reconstruct perfectly the object pro�le. This result is not only valid for optical imag-
ing [di Francia 69] and was derived beforehand in the context of radio astronomy
[Lo 61] and electronic information [Wolter 61]: indeed, an electronic signal trans-
mitted over a communication channel of limited bandwidth can be modeled with
the same mathematical tools. However, as we will develop in the next part, if this
mathematical argument is indeed true, the notion of a noise-free image is of little
use. Although classical noise may be almost cancelled in the best imaging systems,
quantum noise is always present. For k > S , λk ' 0 and the information carried
by ϕk is virtually lost. This analysis in developed in more details in [Kolobov 00].
Finally, in this formalism, another measure of the resolution power can be de�ned
as the distance between consecutive zeros of the highest order spheroidal prolate
function transmitted by the system.

Aperture synthesis We have seen in 2.1.4 that the image of a point is given by
the following expression:

K (ρ) =
2πR2

(λ f )2


J1

(
2πRρ
λ f

)
2πRρ
λ f

 . (2.30)

The size of this pattern is scaled by the size R of the limiting pupil or aperture
stop. Aperture synthesis is a process used in interferometry: it combines the sig-
nals from several di�erent telescopes, allowing to reach a resolution which is equiv-
alent to that of a telescope which would have the size of the surface de�ned by all
the telescopes (see 2.4). This technique was �rst developed in the context of radio
astronomy by Martin Ryle and his coworkers5.

Super-resolved �uorescence microscopy Another �eld which has greatly
driven the quest of super-resolution is microscopy. We presented in part 2.1.5 the
fact that the resolution limitation is proportional to the wavelength of the �eld used.
Making use of the fact that the De Broglie wavelength of an electron is much smaller
than the wavelength of visible light, electron microscopy has allowed for tremen-
dous improvement, for instance in the imaging of surfaces. However, this technique

5Martin Ryle was awarded the physics Nobel prize in 1974 for his work along with Antony
Hewish.
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Figure 2.4: Images taken by the Very Large Telescope Interferometer (VLTI) of the
dusty ring around the aging double star IRAS 08544-4431. By combining light from
four di�erent telescopes, the VLTI reaches the optical resolution of a telescope of
150m radius. Aperture synthesis was here combined with a technique allowing to
block the light of the star in order to reveal the star’s surroundings (ESO/Digitized
Sky Survey 2).
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is not viable in the context of live imaging and/or biological imaging since it requires
the samples to be prepared — for instance coated with a re�ective material. In the

Figure 2.5: Image of the cytoskeleton of a cell taken with three di�erent microscopy
techniques (the scale bar indicates 3µm). The leftmost part is taken with conven-
tional di�raction limited total internal re�ection �uorescence (TIRF) and has a 220
nm resolution. The second strip illustrated structured illumination (SIM) TIRF and
shows a 97 nm resolution. The last strip shows non linear SIM-TIRF, based on the
patterned excitation of the photoswitchable �uorescent proteins (62 nm resolution).
This image is taken from [Li 15].

context of biological imaging, the need for techniques allowing to image samples
without damaging them has led to many important developments. The chemistry
Nobel prize was awarded in 2014 to Eric Betzig, Stefan Hell and William Moerner
for the development of super-resolved �uorescence microscopy. The use of �uo-
rescent molecules allows to avoid using an illumination system, which means that
the complete characterization of the illumination and its coherence properties is in
this case not necessary. However, when a high number of �uorophores are present
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in a sample, their di�raction patterns still overlap. The work of Betzig, Hell and
Moerner [Betzig 06, Klar 00, Hell 94, Moerner 89] has been to make use of the �u-
orescence properties of di�erent �uorophores to overcome this limitation: using
structured illumination and di�erent illumination wavelengths, �uorophores can
be made to emit individually or in very small numbers. In this situation, a post
treatment on the image can allow to determine their position knowing the prop-
erties of the imaging system. By combining many observation cycles, or scanning
the samples, the location of the �uorophores can thus be determined with a preci-
sion overcoming Abbe’s criterion. Knowledge of the imaging system (shape of the
di�raction pattern in order to extract a precise position) is combined with sparsity
of the signal (no two di�raction patterns overlap) and multiple acquisition frames
to achieve extraordinary6 resolution powers (see �gure 2.5).

2.3 Elements of parameter estimation theory
We stated at the beginning of this chapter that electromagnetic �elds have �uctua-
tions. These �uctuations have various origins. Thermal light is constituted of many
di�erent contributions. These contributions are independent, such that their sum
must be described in statistical terms. In the case of laser light, the electromagnetic
�eld originates from a stable source. Even so, spontaneous emission cannot be ne-
glected in the emission process. Moreover, vibration in the laser cavity, from the
mirrors for instance, will introduce additional �uctuations. Finally, the complete
quantum description of light emission introduces fundamental �uctuations which
are inherent to the quantum nature of light. The most fundamental limitation is
given by the Heisenberg uncertainty principle7. All these �uctuations are modeled
through the concept of noise.

2.3.1 Noise

The study of noise in physics lies at the con�uence of several di�erent �elds which
are information theory, statistics, statistical physics, stochastic processes and prob-
ability theory [Réfrégier 02]. Noise has two origins: it can be inherent to the signal
itself, or be introduced by the detection process. No measurement is a priori free
from noise. Probability theory studies and characterizes noise. We are generally
interested in the second order properties of noise, which are called correlation —

6A resolution power of the order of the Angström is reported in [Weisenburger 17].
7For two conjugate variables x and p, the product of their variance is bounded: σxσp ≥ ~/2.
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for example as in the de�nition of the cross-correlation function (de�ned in 2.1).
In the context of an experiment, we study the random variable X . By making M
di�erent measurements, we have access to the realizations of this random variable
{mi}, i ∈ n1,Mo. All the measurements mi belong to the ensemble of the possi-
ble outcome values for the variable X which is {xi} (in the discrete case — in the
continuous case, the possible outcome values belong to a continuous interval). The
frequency of outcome xi is given by the probabilitypi (with

∑
i pi = 1). The expected

value of X and its variance are de�ned respectively by:

E [X ] =
M∑
i1

xipi (2.31)

σ 2 (X ) = E
[
(X − E (X ))2

]
. (2.32)

σ (X ) is the standard deviation. The nth order momentum of X is de�ned as E (Xn).
From the M measurements we can for example extract the mean of this random
variable realization X =

(∑M
i mi

)
/M .

Signal to noise ratio A central tool in the study of noise is the signal to noise
ratio (SNR). It is de�ned by

SNR =
Psiдnal

Pnoise
(2.33)

which is the ratio of the meaningful information — the signal — to the super�uous
and unwanted information — the noise. P is the average power and the signal to
noise ratio expresses the ratio of the power of the signal without noise on the power
of the noise without signal.

Noise and probability distributions We present here some important noise
probability distributions and the contexts in which they are used.

Gaussian distribution The well known central limit theorem states that the
addition of independent random variables of �nite second order momentum con-
verges to a normal distribution. This is why it is common to make the hypothesis
that the noise which is added to a signal is gaussian. The normal distribution is
given by

P (X = x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2
(2.34)

where µ is equal to the expected value and σ to the standard deviation.
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Poissonian distribution The noise distribution associated with the proba-
bility of a given number k ∈ N of events occurring in a �xed interval of time is the
Poisson distribution:

Pθ (X = k) =
θke−k

k! . (2.35)

For instance, P (X = k) gives the probability to count k particles in a �xed period
of time. θ is the characteristic parameter of the distribution — it is also equal to
its expected value and its variance. Shot noise is a type of electronic noise, which
originates in the discrete nature of electrical charges — or of photons in optical
devices — and is modeled by a Poisson process.

Other types of noise White noise refers to a random process in which the
spectral power density8 of noise is constant for all frequencies. Quantization noise
appears in the context of numerical signal processing. It originates in the mapping
of the signal value to a smaller set of values, given by the number of bits this value
can be represented on.

Limits All these types of noise introduce �uctuations in the signal. Some of these
noises can be completely suppressed by a careful engineering of the measurement
apparatus, or be made su�ciently small that they play a negligible role. However,
some of them are inherent to the nature of the signal one wants to measure, such
as shot noise.

Quantum mechanics, through the Heisenberg uncertainty principle, states
that some quantities cannot be known simultaneously with arbitrary precision.
This principle limits the precision with which one can estimate certain parameters
and is referred to as quantum noise. The standard quantum limit designates the
theoretical limit reachable with coherent states, while the Heisenberg limit gives
the absolute limit one can achieve, even with speci�cally engineered quantum
states [Caves 81].

2.3.2 Limits on parameter estimation
Estimation theory is a branch of signal processing which is concerned with the esti-
mation of parameters in the presence of noise. Its aim is to derive the ultimate sen-

8The spectral power density describes how the power of a signal is distributed over frequencies.
It is de�ned as the Fourier transform of the autocorrelation function of the signal. It is commonly
expressed in watts per hertz (W/Hz).
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sitivity which can be attained in a given context — that is with a given type of mea-
surement. We give here an introduction to the main concepts of estimation theory.
Fuller descriptions and derivations can be found in [Réfrégier 02, Pinel 10, Jian 14].
Figure 2.6 illustrates the process by which one gains information on a parameter

Imaging system Detection +
Measure: X

Estimator
θ̃ of θ

Parameter θ

Field E0 Field Eθ

data processing

Figure 2.6: Parameter estimation.

through optical measurement. An input �eld E0 is altered in a way that depends on
a parameter θ . At the output of the imaging system, the �eld is Eθ . The measure-
ment process gives access to a value x , a realization of the random variableX . From
this value — or a collection of these values corresponding the outcome of di�erent
measurements — one calculates, possibly with data processing, an estimation of θ :
θ̃ . As an example, if X admits the Poisson distribution Pθ , the mean of the measure
x = {x1, x2, ..., xM } is an estimator of θ . For the purposes of notation, θ will desig-
nate both the parameter and the true parameter value. As an example, further in this
chapter, we will try to estimate the displacement of a point source with respect to
a reference position or the separation between two incoherent point sources. The
displacement will in both these cases be the parameter, and will be expressed in
meters.

Bias of an estimator The bias of an estimator is de�ned as

bθ̃ = E[θ̃ ] − θ . (2.36)

This quantity quanti�es the accuracy of this estimator by measuring how close to
the true parameter value θ the estimation we make is. If bθ̃ = 0, the estimator is
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0
0

E[θ̃ ] θ

σθ̃

bθ̃

x

θ̃ (x)

Figure 2.7: Estimator function θ̃ . bθ̃ is the bias of the estimator and σθ̃ the standard
deviation.

said to be unbiased.

Variance of the estimator Another important quantity to consider is the sen-
sitivity with which we estimate a parameter — or the precision. The sensitivity is
characterized by the variance of the estimator:

σ 2
θ̃
= E[θ̃ 2] −

(
E[θ̃ ]

)2
(2.37)

and the standard deviation σθ̃ . The mean-squared error of the estimator is MSE =
σ 2
θ̃
+ b2

θ̃
.

Likelihood and log-likelihood Our goal is to be able to deduce from a mea-
surement sample x the parameter θ of a probability distribution. The likelihood Lθ
is the probability of measuring x :

Lθ (x) =
M∏
i=1

Pθ (xi) . (2.38)

The log-likelihood is de�ned as

lθ (x) = lnLθ (x) =
M∑
i=1

ln Pθ (xi). (2.39)
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The Shannon information brought by the set of measurements x is −
∑

i ln Pθ (xi):
the log-likelihood is the opposite of the Shannon information. With the de�nition
of the likelihood, we can rewrite the de�nitions of the estimator’s expectation value
and sensitivity:

E[θ̃ ] =

∫
Lθ (x) θ̃ (x)dx (2.40)

σ 2
θ̃
=

∫
Lθ (x)

(
θ̃ (x) − E[θ̃ ]

)2
dx . (2.41)

Fisher information and Cramér-Rao bound We wish to know how precise a
given measurement can be regardless of the processing or post-treatment one might
apply on it: we thus aim at establishing a lower bound to the variance σθ̃ regardless
of the choice of the estimator θ̃ . We note that the estimator θ̃ (x) is independent of
θ . Using the de�nition of the expectation value of an estimator we can write∫

Lθ (x)
(
θ̃ (x) − E[θ̃ ]

)
dx = 0 (2.42)

and derive this expression with respect to θ (all the derivatives are taken at θ = θ ,
that is the parameter and its value are referred to by the same letter):

−

∫
Lθ (x)

dE[θ̃ ]

dθ

�����
θ

dx +

∫
∂Lθ (x)

∂θ

����
θ

(
θ̃ (x) − E[θ̃ ]

)
dx = 0. (2.43)

We can simplify this expression by integrating the �rst term and noticing that
∂lθ
∂θ

���
θ
= 1

Lθ

∂Lθ
∂θ

���
θ
:

dE[θ̃ ]

dθ

�����
θ

=

∫
Lθ (x)

∂lθ (x)

∂θ

����
θ

(
θ̃ (x) − E[θ̃ ]

)
dx . (2.44)

We use the Cauchy-Schwarz inequality and write(
dE[θ̃ ]

dθ

�����
θ

)2

≤

(∫
Lθ (x)

(
θ̃ (x) − E[θ̃ ]

)2
dx

)
×

(∫
Lθ (x)

(
∂lθ (x)

∂θ

����
θ

)2
dx

)
. (2.45)

The last term of the right-hand part of the inequality can be rewritten as
M

∫
Lθ (x)

(
∂ ln (Lθ (x))
∂θ

���
θ

)2
dx where M is again the number of measurements per-

56



CHAPTER 2. IMPROVING OPTICAL RESOLUTION USING MODAL ANALYSIS

formed. The �rst term corresponds to the variance of θ̃ . We de�ne the Fisher infor-
mation as

IF (θ ) =

∫
Lθ (x)

(
∂ ln (Lθ (x))
∂θ

����
θ

)2
dx =

∫ 1
Lθ (x)

(
∂Lθ (x)

∂θ

����
θ

)2
dx . (2.46)

We can thus rewrite inequality 2.45 as:(
dE[θ̃ ]

dθ

�����
θ

)2

≤ σ 2
θ̃
×MIF (θ ) (2.47)

The Fisher information only depends on the measurement noise: it does not depend
on the estimator θ̃ . This means that the Fisher information does not depend on how
we use the measurement to calculate the estimator θ̃ . However, it does depend on
the value of θ . The Fisher information measures the amount of information that one
measurement reveals about the value of θ . Moreover, we note that if the estimator
is unbiased, E[θ̃ ] = θ which implies that dE[θ̃ ]

dθ

���
θ
= 1. We can now rewrite equation

2.47 as
σ 2
θ̃
≥

1
MIF (θ )

. (2.48)

This inequality is known as the Cramér-Rao bound [Cramér 99, Rao 47]. It states
that no estimator ofθ can have a variance smaller than that given by the Cramér-Rao
bound. The estimators which saturate the bound are said to be e�cient estimators.
We de�ne

δθmin =
1√

MIF (θ )
. (2.49)

This equality states that the smallest variation of θ we can discriminate from noise
in M measurements (that is with a SNR of 1) is given by δθmin.

The quantum Cramér-Rao bound can be derived using the tools of quantum
mechanics [Caves 81, Helstrom 69, Pinel 10, Jian 14]. The bound we derived here
can be referred to as the semi-classical Cramér-Rao bound. The quantum Cramér-
Rao bound takes into account all the positive operator-valued measures9 — which
means that this bound, as opposed to the semi-classical one, is calculated for all pos-
sible measurements. The quantum Cramér-Rao bound reaches a similar expression
— the quantum Fisher information is expressed using the density operator of the
state. The quantum Cramér-Rao bound of coherent states is equal to the standard
quantum limit introduced earlier in this chapter.

9A measure assigns numbers — here probabilities — to the subsets of a given set. The elements
of a measure are probability operators. In quantum mechanics they are positive operators, hence
the positive operator-value measure name [Barnett 09].
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Statistical distance The problem of parameter estimation can be apprehended
in a di�erent manner: with a given experimental outcome {x1, x2, ...}, we want to
be able to know with certainty whether the parameter of the distribution is equal
to θ or θ ′. We want to be able to distinguish the probability distributions Pθ and Pθ ′ .
In order to tackle this problem, one needs to use the concept of statistical distance
[Jian 14]10. This study is however outside the scope of this thesis.

2.3.3 Parameter estimation for optical resolution
The experimental situation we are interested in is the following: we want to eval-
uate the separation between two point sources with the best possible accuracy and
sensitivity. This statement illustrates why parameter estimation theory is useful for
us: its gives a tool to �nd the best sensitivity we may aim to reach — and can also al-
low us to evaluate whether a certain type of measurement saturates the Cramér-Rao
bound. In order to assess that problem, we will �rst consider another experimental
situation: the estimation of the displacement of one beam with respect to a refer-
ence position. We make here the assumption that the only source of noise present
in our measurement is shot noise.

2.3.3.1 Intensity measurement

We consider intensity measurements, which are the most common (and easiest)
measurements one can make. For instance, a camera records intensity on each one
of its pixels. The electric �eld we consider in this part is a coherent, single-mode
�eld. We introduce the total number of photons of the �eld N and give the expres-
sion of the mean value of the electric �eld in the image plane during one coherence
time ∆τ :

Ē (r , θ ) = 2
√
NEu0 (r , θ ) (2.50)

where u0 (r , θ ) is the normalized spatial distribution of the �eld. We assume that
the total intensity of the beam is independent of the parameter θ . In the case of
the displacement of a beam, one can easily see that it is indeed the case. The mean
photon number during the same time interval is given by

n̄ (r , θ ) =
��Ē (r , θ )��2 /(4E ) = N |u0 (r , θ )|

2 . (2.51)

We wish to establish the Cramér-Rao bound for the evaluation of θ in the sole pres-
ence of shot noise. We make the assumption that the light can be described as

10The relative entropy, or Kullback-Leibler divergence is a measure of the discrepancy between
two probability distributions.
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being composed of independent photons, meaning its intensity �uctuations follow
a Poisson distribution: the probability of measuring nk photons on pixel k during
one coherence time11, given the parameter θ , is given by

Pθ (k = nk) =
n̄k (θ )

nk e−n̄k (θ )

nk ! (2.52)

with n̄k (θ ) the real number of photons. The likelihood of measuring a given inten-
sity image n = {nk} is given by

Lθ (n) =
∏
k

Pkθ (k = nk) . (2.53)

We also can write ∫
∂n̄

∂θ
(r , θ )dr = 0 (2.54)

since we speci�ed that the total intensity is independent of θ (the quantity∫
n̄ (r , θ )dr is a constant). We can derive the Fisher information from these def-

initions (the complete derivation can be found in [Delaubert 07]):

IF =

∫ [
1

n̄ (r , θ )

(
∂n̄ (r , θ )

∂θ

)2
−
∂2n̄ (r , θ )

∂θ 2

] �����
θ=0

dr . (2.55)

Using equation 2.54 we can show that the integral of the left part is equal to zero.
By interverting the order of the norm and the derivative, one can further show that

IF = 4N
∫ [
∂ |u0 (r , θ )|

∂θ

����
θ=0

]2
dr . (2.56)

This results tells us that a displacement can be measured with precision if the �eld
has a spatial pro�le such that the overlap between its spatial mode u0 and its dis-
placed version is small. The measurement of the displacement of �elds with rapid
spatial variations is more precise than that of �elds with uniform spatial pro�les.

2.3.3.2 Case of a gaussian transverse pro�le

To go further, we need to specify the spatial pro�le of the �eld in equation 2.56 and
its dependence on the parameter we want to probe. We make the hypothesis that

11We take the measurement time equal to the coherence time ∆τ .
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the spatial pro�le of the �eld is Gaussian: we describe the situation of the image of
a point source displaced from the center of the imaging system. This assumption is
coherent with the fact that we want to consider a point source — we showed in part
2.1.4 that the intensity distribution of a point source in a di�raction limited imaging
system could be well approximated by a Gaussian function. To make use of the
notations we introduced in the previous chapter, we note that the �eld of a gaussian
beam at z = 0 possesses a spatially uniform phase pro�le. The parameter we want
to probe is the displacement in the transverse plane. It can be characterized by two
parameters d and β . In cartesian coordinates, with respect to a reference position
that we take to be (x0,y0) = (0, 0), the displacement is de�ned as (d cos β,d sin β).
In this paragraph we take β = 0 to keep notations simple. The generic parameter θ
introduced in the previous notations is thus replaced by the displacement amplitude
d . We will thus, without loss of generality, write u0 (r , θ ) = HG00 (x − d,y, z = 0)12.
A simple derivation gives

∂HG00 (x − d,y, 0)
∂d

=
1
w0

HG10 (x − d,y, 0) . (2.57)

Using this equality and equation 2.56 we can express the Fisher information as

IF =
4N
w2

0
. (2.58)

Finally, the Cramér-Rao bound states that with any intensity measurement, the
smallest displacement dmin that can be distinguished from noise is

dmin =
w0

2
√
N
. (2.59)

This result is well-known [Fabre 00, Treps 04, Hsu 04]: parameter estimation the-
ory indicates that, in the case of a centered beam (d = 0), the sensibility with which
one can measure the displacement of a �eld around does not depend on said dis-
placement. Since w0 can be made as small as the order of magnitude of λ (w0 ≥ λ),
using an intense �eld (N � 1), dmin can be made quite small compared to λ.

12The choice of the Hermite-Gaussian beam is justi�ed by the fact that we choose z = 0: this
ensures that the phase term plays no role. The formalism of the Hermite-Gaussian beam also ensures
that the modes are orthogonal and are normed to unity. The validity of this choice for z , 0 is not,
to our knowledge, demonstrated.
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Sensitivity enhancement strategies In the case where one can control the pa-
rameters of the �eld, we see that in this measurement scheme, the measurement
sensitivity can be enhanced using classical means by:

• using a beam with a smaller waistw0 (ie. by increasing the aperture stop size,
see 2.2).

• increasing the number of photons N (that is the intensity of the beam).

With non-classical illumination, one can engineer the �eld to have sub-Poissonian
quantum intensity �uctuations described by a noise standard deviation σI <
1/
√
N 13 [Caves 81, Barnett 03]. In this case, the Cramér-Rao bound gives

dmin =
w0σI

2
√
N
. (2.60)

2.3.3.3 Phase and �eld measurements

In [Delaubert 07], the Cramér-Rao bound for the transverse displacement of a beam
is also derived in the case of phase and �eld measurements. We make here a brief
summary of the main results presented in this reference. We �rst write the trans-
verse pro�le of the �eld as

u0 (r , θ ) = |u0 (r , θ )| e
iϕ0(r ,θ ) (2.61)

where ϕ0 (r , θ ) is the phase distribution of the �eld. The description we use here
is only semi-classical and not a rigorous quantum mechanical derivation since we
make the assumption that the intensity and the phase of the �eld can be measured
independently. We introduce the following quantities:

1
a2 =

∫ [
∂ |u0 (r , θ )|

∂θ

����
θ=0

]2
dr (2.62)

1
b2 =

∫ [
∂u0 (r , θ )

∂θ

����
θ=0

]2
dr (2.63)

1
c2 =

∫
|u0 (r , 0)|2

[
∂ |ϕ0 (r , 0)|
∂θ

����
θ=0

]2
dr (2.64)

13The �eld is said to be squeezed [Grynberg 10].
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which are linked by the following equation: 1
b2 =

1
a2 +

1
c2 . a, b and c are respec-

tively associated with �eld, intensity and phase measurements. The Fisher informa-
tions associated with each type of measurement can be expressed as I f ieldF = 4N /b2,
I
intensity
F = 4N /a2 and I

phase
F = 4N /c2. As a consequence, we can write:

I
f ield
F = I

intensity
F + I

phase
F . (2.65)

This result, while elegant, is not surprising: the �eld having phase and intensity
components, it is only natural that the information contained in the �eld should be
the sum of that contained in the phase and intensity parts. However, in the case we
address here, that is of a gaussian intensity pro�le u0 (r , θ ) (again with z = 0) we
have ∂ϕ0(r ,0)

∂θ = 0 which means that IphaseF = 0 and

I
f ield
F = I

intensity
F . (2.66)

Hence, the Cramér-Rao bound derived in 2.3.3.2 is valid for any measurement
scheme.

2.3.3.4 Split detector sensitivity

A common and simple way to measure the displacement of a beam is to use a split-
detector. A split-detector14 is the simplest version of a di�erence measurement
[Treps 05]. In the following derivation, the time dependency will not be written
explicitly, and the mean values will be averaged over time. We de�ne D− as the left
half of the detector and D+ as the right half. The intensity which is measured by
either halves of the detector is given by

I− =

∬
D−

E∗ (x,y)E (x,y)dxdy

I+ =

∬
D+

E∗ (x,y)E (x,y)dxdy

(2.67)

and the signal delivered by the split detector is s ∝ (I+ − I−). We decompose the
�eld on a mode basis such that the �rst mode of the basis u0 is the mean �eld mode:

E(x,y) =
∑
i

Xi ui(x,y). (2.68)

14A split-detector consists in two photodiodes which have the shapes of two half-disks. The
intensity signals of the two halves are subtracted and normalized by the total intensity: if the beam
is symmetrical, this signal gives the distance of the barycentre of the beam with respect to the center
of the detector.
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u0 is the mean �eld mode, which means we have 〈X0〉 = E0 (we can choose E0 ∈ R)
and 〈Xi>0〉 = 0. Since we are interested in the �uctuations of these quantities, we
write Xi = 〈Xi〉 + δXi . We can now write

I+ − I− =
∑
i,j

X ∗i X j

[∬
D+

u∗i uj −

∬
D−

u∗i uj

]
(2.69)

and from this

δ (I+ − I−) =
∑
i,j

(
〈X ∗i 〉δX j + 〈X j〉δX

∗
i

) [∬
D+

u∗i uj −

∬
D−

u∗i uj

]
= 〈X0〉

∑
j

(
δX j + δX

∗
j

)
×

[∬
D+

u∗0uj −

∬
D−

u∗0uj

]
. (2.70)

We now introduce the �ipped transverse mode u1(x,y) as

u1(x,y) =

{
HG00(x,y) if x > 0
−HG00(x,y) if x < 0

(2.71)

and we complete the basis for i > 1 so as to form an orthonormal basis. Using the
de�nition of u1, we can rewrite equation 2.70 as

δ (I+ − I−) = 〈X0〉
∑
j

(
δX j + δX

∗
j

)
×

∬
D
u∗1uj . (2.72)

Since the mode basis we chose is orthonormal, we �nally have

δ (I+ − I−) = 〈X0〉
(
δX1 + δX

∗
1
)

(2.73)

The �uctuation of the signal we measure with a split detector is thus proportional
to the projection of the �eld on the �ipped mode u1.
In the case of a displacement measurement, in the limit of small displacement, and
using a Taylor series, we can write (see 2.57):

HG00 (d, 0) = HG00 (0, 0) +
d

w0
HG10 (0, 0) + o (d) . (2.74)

Using this equation and noting that
∫
u∗1 HG00 = 0 and

∫
u∗1 HG10 =

√
2/π , the

signal we measure with a split detector is proportional to
(√

2
π

d
w0

)2
. Hence, since

the noise we consider in both cases are equal, the split detection has a 2/π ' 0.64
(in)e�ciency relative to an ideal intensity measurement. This widespread displace-
ment measurement technique is therefore suboptimal.
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2.4 Distancemeasurement using a spatialmode de-
multiplexer

As we stated beforehand, the problem we aim to tackle is that of the resolution
of two incoherent point sources. While old and very well described since the 19th

century, this problem is still very much current, as evidenced by the activity in this
research domain. We presented in section 2.2 two domains in which this problem
is particularly relevant: optical microscopy and astronomy. In this section we show
that spatial mode demultiplexing is, for this particular problem, an optimal mea-
surement scheme.

2.4.1 Hypothesis testing

We �rst make a brief mention of the use of spatial demultiplexing in a closely related
context. A similar yet di�erent problem than the separation estimation for two point
sources was treated in [Helstrom 73]. The physical situation is the same as the one
we consider in this chapter. The question which is addressed is however slightly
di�erent: how can an observer know for sure he is seeing two close point sources as
indeed two rather than one? Using quantum detection theory to �nd the optimum
processing of the aperture �eld, the author seeks the ultimate resolvability of the
sources15.

The optimum strategy found in this work is to decompose the aperture �eld
into a countable set of spatial modes. This is, to our knowledge, the �rst time that
this type of projective measurement was put forward. This idea will be at the heart
of the next section. In [Helstrom 73] however, the spatial modes pro�les depend
on the separation between the two sources, thus hindering the usefulness of this
method.

2.4.2 Detection modes

We introduce in this part the formalism of noise or detection modes developed in
the group in the last decade(s). We �rst de�ne the normalized mean photon �eld at
θ = 0 as

v0 (r , θ ) =
u0 (r , θ )

‖u0 (r , θ )‖
(2.75)

15An important hypothesis which is made (and which we also have made) is that no background
light is present, such that only the quantum nature of the light introduces noise in the measurement.
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with E(+) (r , t ;θ ) = u0 (r , θ ) ei(kz−ω0t) (see equation 1.25). We de�ne the detection
mode as

v1 (r ) =
∂u0 (r , θ ) /∂θ

‖∂u0 (r , θ ) /∂θ ‖

����
θ=0
. (2.76)

Finally, we complete this mode basis by other orthonormal modes vi>1. The mode
basis {vi≥1} does not depend on θ since v1 was de�ned at θ = 0. It can be shown
(see [Pinel 12]) that the quantum Cramér-Rao bound for a pure Gaussian state in
this mode basis has a very simple expression:

IF = 4Γ−1
θ=0,[1,1]

∂u0 (r , θ )

∂θ


θ=0

(2.77)

where Γ−1
θ ,[1,1] is the �rst left top element of the symmetrized covariance matrix of

the �eld calculated in the basis {vi≥1}
16. In the case of a coherent state, we have

Γ−1
θ ,[1,1] = 1. We can thus rewrite the Fisher information as

IF = Nθ

[
4
∂v0
∂θ

2

θ=0
+

(
∂Nθ/∂θ

Nθ

����
θ=0

)2
]

(2.78)

where Nθ = ‖u0 (r , θ ) ‖2. If the total number of photons does not depend on the
parameter of interest θ , the Fisher information only depends on the normalized
�rst derivative of the normalized mean �eld. Therefore, one needs only to measure
this speci�c mode to reach the best sensitivity. This result has quite a broad scope
and was used in a number of works [Treps 05, Lassen 07, Delaubert 08, Pinel 12,
Pinel 10, Jian 14]. Many of the results we will present later in this section can be
derived using equation 2.77.

2.4.2.1 Case of displacement measurement

Measurement of a single precise mode of the �eld is possible, for instance through
the use of homodyne detection. Homodyne detection uses a second intense �eld,
the reference �eld, which has a well controlled spatial mode. It allows to very pre-
cisely measure the �uctuations of the signal �eld on the spatial mode de�ned by
the reference �eld. This measurement scheme was used in [Hsu 04, Delaubert 06a,
Delaubert 06b] but also in [Sun 14].

16See [Pinel 12, Jian 14] for more details.
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2.4.3 Spatial demultiplexing for distance and separationmea-
surement

The idea we present in this section is the following. In the case of separation or
displacement measurement of Gaussian beams, the measurement scheme which
consists in measuring the intensities of the modal components of the electrical �eld
in the Hermite-Gauss mode basis saturates the Cramér-Rao bound. The information
this measurement gives on the modal decomposition of the �eld is su�cient to
determine the displacement or separation. The information which is lost through
the use of this scheme could not allow for any precision improvement for transverse
distance measurement.

2.4.3.1 Derivation of the Cramér-Rao bound for separation measurement

While the concepts introduced in this chapter date back to more than ten years,
a recent surge of interest was sparked by a series of papers [Tsang 16b, Nair 16,
Lupo 16]. In these papers, two di�erent groups make the complete derivation of
the quantum Cramér-Rao bound on the separation measurement precision in the
case of two incoherent, di�raction-limited, low-intensity sources:

IF ' N∆k2 (2.79)

where N is the total number of photons reaching the detection plane and ∆k2 is
the spatial variance of the derivative of the point-spread function K (x,y) in the
displacement direction (we again take x as the displacement direction):

∆k2 =

∬ +∞

−∞

����∂K∂x (x,y)����2 dxdy. (2.80)

The Cramér-Rao bound for the two-dimensional problem is derived in [Ang 17].
The situation described here (distance between two point sources) and the one

we treated earlier in this chapter (displacement of one point source) are not the
same, and the expression of the Cramér-Rao bound of equation 2.58 cannot be com-
pared to that of equation 2.79. We will �rst rephrase equation 2.79 for it to match our
notations. Using the formalism we introduced in the previous section (the point-
spread function is K (x,y) = HG00 (x,y, z = 0)) and using equation 2.57, we have

∆k2 =

∬ +∞

−∞

[
1
w0
|HG10 (x,y)|

]2
dxdy =

1
w2

0
. (2.81)

66



CHAPTER 2. IMPROVING OPTICAL RESOLUTION USING MODAL ANALYSIS

We can now rewrite the Fisher information of equation 2.79 as

I
q
F =

N

w2
0
. (2.82)

where the superscriptq stresses the fact that this is the quantum Fisher information.
In order to compare this result with the derivation presented in the previous

section we must make the following precision: in [Tsang 16b, Lupo 16], the distance
which is to be measured is the separation between two point sources. The total
intensity can be written as |HG00 (−d/2, 0)|2 + |HG00 (d/2, 0)|2. The point sources
are located at a distance d/2 from the origin for the total separation to be equal to
d . We suppose that the centroid of the system is known. We can rewrite equation
2.57 as

∂HG00 (x − d/2,y, 0)
∂d

=
1

2w0
HG10 (x − d/2,y, 0) . (2.83)

We suppose that the total number of photons is again equal to N . We thus say that
the number of photons emitted by one of the two sources isαiN withα1+α2 = 1. We
use the same derivation as in 2.3.3.2 and �nd that the Fisher information associated
with one point source is

IcF ,i =
αiN

w2
0
, i ∈ {1, 2} (2.84)

where c expresses the fact that this is the (semi-)classical Fisher information. Since
the two sources are incoherent, they are independent. Hence, we can sum both their
Fisher informations to �nd the Cramér-Rao bound of the whole system. We �nd

IcF =
N

w2
0
. (2.85)

The quantum treatment and our semi-classical approach �nd, for this speci�c prob-
lem, the same bound: IcF = I

q
F . Another derivation of this result can be found in

[Tsang 16a]. The link between classical and quantum resolution limits is also inves-
tigated in [Tsang 18] using a mean-squared error approach, that the author relates
to compressed sensing derivations (see section 2.5). In [Rehacek 17a], the Cramér-
Rao bound for the estimation of the centroid, separation and relative intensities of
two incoherent point sources is derived.

2.4.3.2 Measurement schemes

The Cramér-Rao bound gives an information on the maximum sensitivity one can
achieve. In [Tsang 16b, Lu 16, Tsang 17, Ang 17], Tsang and coworkers introduce a
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measurement scheme which saturates the Cramér-Rao bound and consists precisely
in spatial mode demultiplexing, whether in one or two dimensions. If the point-
spread function of the imaging system is taken to be a Gaussian, the optimum de-
multiplexing basis is exactly the Hermite-Gaussian mode basis. In [Tsang 16b], it is
shown that in the limit of an in�nite number of modes, the information gathered on
all the modes of this basis is equal to the Fisher information. The Fisher information
acquired by demultiplexing only HG10 is derived in [Yang 17]. In [Rehacek 17b],
the possible demultiplexing mode bases are examined. It is again showed that in
the limit of small displacements, a mode basis generated using the derivatives of
the point-spread function allows to access all the available information with one
measurement. In [Lu 16], it is shown that demultiplexing can also be used to ad-
dress the problem of hypothesis testing since both problems are related (see 2.4.1).
In [Tsang 17], the author shows that a demultiplexing scheme in which the outputs
can be made to interfere allows to gain access to any higher order momentum of
the �eld. The validity of a simpli�ed version of spatial mode demultiplexing for dis-

d

=

c00(d) ×

c10(d) ×

c20(d) ×

c30(d) ×

+
. . .

Figure 2.8: Distance measurement through demultiplexing. The ci (d) coe�cients
are the projection of the displaced Gaussian on the di�erent modes of the Hermite-
Gauss mode basis.

tance measurement was tested in recent years [Paúr 16, Tang 16, Yang 16, Tham 17]
— the simpli�cation coming from the fact that only one spatial mode is measured.
In order to access the HG10 detection mode, several strategies are employed: a cav-
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ity in [Yang 16] (as in [Sun 14]), a phase plate producing a �ip mode in the case of
[Tham 17] or a spatial light modulator in the case of [Paúr 16]. Interferences are
used in [Tang 16].

2.4.4 Experimental evaluation

We developed an experimental setup to assess the performances of a demultiplexing
system on the measurement of the distance between two incoherent sources. The
originality in our approach resides in the use of a MPLC system. Since the MPLC
can simultaneously demultiplex multiple spatial modes, we can have access to the
intensity in several modes at the same time. In this way, we increase the amount of
information about the separation that we can access. This also allows us to probe
larger displacements (meaning we are not limited to the regime of d/w0 � 1), as
well as other parameters such as the direction of the displacement (the angle β in
�gure 2.10).

2.4.4.1 Presentation of the experiment

Optical setup As we indicated earlier in this chapter, we are interested in the
measurement of the distance between two incoherent point sources. We have also
showed that the intensity pro�le of a point-like source could be approximated by
the point spread function of the imaging system — and that the point spread func-
tion of an imaging system with a circular aperture stop could be well approximated
by a Gaussian function. For this reason, instead of point sources, we use two Gaus-
sian beams and will study them in the plane where their waist is minimum. In our
analysis, we make the assumption that the information about the centroid of the
two beams is already known. For this reason, we need the two beams to have sym-
metrical and opposite displacements with respect to a reference axis — the optical
axis of our setup. Furthermore, to probe di�erent separation regimes, the separation
between the two sources should be modular.

In order to produce two symmetrical Gaussian beams, we used the setup de-
scribed in 2.9. The output of a collimated single-mode �ber can be well approxi-
mated by a Gaussian beam. This beam is injected in a Mach-Zehnder-like con�gu-
ration: a beam splitter splits the incoming beam in two, and the two beams are re-
combined on a second beam splitter. Before being recombined, the two beams travel
in two di�erent arms, where two Dove prisms have been inserted. A Dove prism
is a re�ective prism which is used to invert an image using total internal re�ection.
The two Dove prisms are oriented at 90° from each other. In this con�guration,
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v0

v1

v2

v3
v4
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MPLC

Dove +45°

Dove -45°

Figure 2.9: Experimental setup. The input beam goes through a Mach-Zehnder
interferometer con�guration. In both arms of the setup, Dove prisms, orientated
respectively at +45° and -45°, allow to make the displacement of the beams in both
arms symmetrical with respect to the optical axis. The recombined beams are then
injected using two adjustment mirrors into the MPLC system. The sum of the two
beams which enters the MPLC system can be described as a superposition of modes
u0≤i≤8. Each input mode is demultiplexed and sent to a spatially separated spatial
mode v0≤i≤8. Each of these modes is coupled into a separate single-mode �ber.
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if the input beam is perfectly aligned with the optical axis, the two output beams
overlap completely at the output. If the input beam is displaced in the transverse
plane, the two beams which recombine on the output beam splitter have opposite
displacements (see �gure 2.10).

x

y

1

2

d β

Figure 2.10: The beams 1 and 2 have opposite displacements in the x-y plane. Their
position is given by the absolute displacementd and the angle β of the displacement
with respect to the x axis.

This con�guration is described in �gures 2.9 and 2.11. The displacement of the
input beam is realized using a translation stage. The mirror which is used to in-
ject the input beam in the �rst beam splitter is mounted on a micro-meter precision
translation stage. The two beams which are recombined thus have Gaussian pro�les
and symmetrical tunable displacements with respect to the optical axis. We used a
�bered SLD (Thorlabs S5FC1005S, 50 nm bandwidth) at a wavelength of λ = 1500
nm as a source. The coherence length of the light is L = c/(π∆ν ) = 15.3µm.
The length of each arm of the Mach-Zehnder-like setup is of the order of 30 cm.
We can thus consider the two recombining beams to be incoherent. The waist of
the beam exiting the Mach-Zehnder-like setup is situated shortly before the output
beam splitter. In order to be able to access that plane, we constructed a telescope
after the output beam splitter (which is not represented in �gure 2.9). This tele-
scope also allows for the scaling of the waist size. Indeed, the waist size of the input
beam is w0 = 1 135µm, while the MPLC system we use is designed for a waist of
w0 = 227µm. The magni�cation factor of the telescope is equal to 1/5.

This con�guration allows not only to study the case of the separation of two
incoherent point sources, but also that of one displaced point source. Indeed, by
blocking the light in one of the arms of the setup, we recover a single displaced
beam. We will use this feature to compare the results of distance measurement for
one or two point sources.

The output beamsplitter possesses a second port, indicated by the letter B in
�gure 2.11. The beams which exit both output ports are identical. We inserted a
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quadrant detector (Thorlabs PDQ30C) after this second port. This instrument allows
to assess the displacement of a single beam with very good precision (even though
we proved earlier in this chapter this it did not perform an optimal measurement).
This second measurement will provide us with a comparison for the displacement
measurement we perform with through modal analysis.

A

translation stage

B

Figure 2.11: Experimental setup. Light at output A goes to the MPLC demultiplexer.
Light at output B goes to the 4-quadrant detector.

MPLC system We have presented in the previous sections that modal analysis is
an optimal measurement scheme for the estimation of the distance between two in-
coherent point sources. This modal analysis will be experimentally realized through
the use of a MPLC system as a demultiplexing system. The left part of �gure 2.9
illustrates how the decomposition of a displaced mode over a Hermite-Gauss mode
basis is shaped by the MPLC system into the modes of a collection of single-mode
�bers. Using a Taylor series, we have shown that up to the �rst order in displace-
ment a beam of gaussian pro�le could be described as a sum of the HG00 and HG10
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modes. An expansion at higher orders brings into play the higher-order elements
of the Hermite-Gauss mode basis. Since this mode basis is complete, a displaced
beam can always be described as a sum of Hermite-Gauss modes, whatever the dis-
placement value. This decomposition is described in �gure 2.8 and is also valid for
the case of two incoherent point sources. Although this analysis is valid even for
large displacements or separations, we will stay in a small displacement regime so
as to limit the number of modes necessary to describe the displaced beam. Each of
these Hermite-Gauss mode is independently shaped into spatially separated Gaus-
sian modes which are coupled to single-mode �bers.

The measurement we perform in this experiment is the intensity measurement
of the output of each of these single-mode �bers. For a perfect MPLC system, this
amounts to the measurement of the intensity of the decomposition of a beam onto
the Hermite-Gauss mode basis. In �gure 2.8 the ci (d) coe�cients are amplitude
coe�cients. The quantity we have access to in the experimental con�guration is
|ci (d)|

2.

0 1 2 3
0

0.5

1

d/w0

c(
d
)2

HG00
HG10
HG20

Figure 2.12: Theoretical projections of a displaced beam with β = 0.

Figures 2.12 and 2.13 give examples of the intensity projections of a displaced
beam on the �rst 9 modes of the Hermite-Gaussian mode basis as a function of the
displacement for two displacement directions indicated by the angle β which the
displacement makes with the x axis.

2.4.4.2 MPLC system

The MPLC system we designed was a 9 mode demultiplexer (see �gure 2.9). The
input modes are free-space Hermite-Gauss modes (u0≤k≤8 = HG0≤i,j≤2). The output
modes are spatially separated and coupled into single mode �bers (v0≤k≤8). The
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Figure 2.13: Theoretical projections for a displaced beam with β = π/6.
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waist of the input modes is w0 = 227 µm. The convergence of the MPLC construc-
tion algorithm is not perfect: table 2.1 gives the overlap of the modes produced
by the calculated phase plate with respect to the theoretical modes which we aim at.

Table 2.1: Overlap of the modes produced by the algorithm with the theoretical
modes.

HG00 HG10 HG01 HG20 HG02 HG11 HG21 HG12 HG22

0.933 0.949 0.935 0.955 0.954 0.928 0.932 0.925 0.937

Figure 2.14: Capture of the input modes of the MPLC system.

During the fabrication of the MPLC system, the spatial pro�les of the produced
modes are recorded. Camera images of such pro�les are plotted in �gure 2.14. We
can assess the quality of the fabricated system by assessing qualitatively that the
produced pro�les are very close to the theoretical Hermite-Gauss modes.
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Table 2.2: Theoretical values of the crosstalk values from mode HG00.

Mode HG10 HG01 HG20 HG02 HG11 HG21 HG12 HG22

dB -26.29 -27.45 -26.86 -26.40 -45 -31.06 -38.39 -24.33

We also measure the crosstalk between spatial modes introduced by the system.
To do so, light is injected in one input mode, and the intensity in all of the output
modes is recorded separately. These values are presented in table 2.2. These mea-
surements are taken during the construction of the MPLC system. In this case, we
are only interested in the crosstalk from mode HG00: indeed, when the system is
perfectly aligned, we want to assess how much energy leaks to the higher-order
modes — since the intensity on the higher-order modes is what we measure to ac-
cess the displacement. This crosstalk will play an important role in the minimum
displacement which can be measured. The optical power measured in the mode
HGnm is Pnm and the crosstalk of mode (n,m) is given by 10 ∗ log10

(
Pn,m/P0,0

)
.

2.4.4.3 Characterization of the system

The fabricated MPLC systems’ performances do not exactly match with the theo-
retical ones. The di�erences �nd their origins in the imperfections of the optical
components, the errors in the �ber arrays’ tolerancing, the fabrication errors or the
incorrect positioning and alignment of the optical components. For this reason, the
numbers presented in tables 2.1 and 2.2 do not give a su�cient account of a MPLC
system performances.

A �rst important point is that the di�erent channels of the MPLC do not have
identical losses. This discrepancy in losses between channels is usually probed us-
ing two identical MPLC systems in a “back to back” con�guration: the output of
one system is injected into the second one, and the measured losses correspond to
the sum of the losses associated with the multiplexer and the demultiplexer for one
channel. However, in this case we only possessed one system of its kind. The pro-
cedure we used was the following one: instead of injecting light in the free-space
modes, we injected light in the di�erent �bered outputs and measured the intensity
exiting the MPLC. Table 2.3 gives the measured intrinsic e�ciency coe�cients of
the MPLC system used in the experiment. These coe�cients are calculated with
mode HG00 as a reference. It should be noted that this measurement procedure is
not perfect because we cannot discriminate the crosstalk signal from the signal we
want to measure.
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Table 2.3: Intrinsic e�ciency coe�cients of the MPLC system relative to modeHG00.

д00 д10 д01 д20 д02 д11 д21 д12 д22

1.00 0.89 1.01 0.94 1.09 0.74 0.79 1.00 0.71

The alignment of the MPLC system with the rest of the experimental setup is
another critical point. Indeed, we wish to measure a displacement with respect to
a reference position: this reference position is de�ned by the modes for which the
MPLC is designed. We need to match precisely the waist size and position of the
beam (in the z or propagation direction), as well as its direction (position in the
(x,y) plane and angle). The system we use is precisely designed to be sensitive
to any deviation from the design parameters. We make the assumption that the
crosstalk values measured during the system fabrication (see table 2.2) are the best
ones achievable and take them as our reference. The coarse alignment of the system
can be made by maximizing the intensity measured on the HG00 mode. When a
global maximum is found, it is necessary to monitor and minimize the intensities in
the higher-order modes. The minimization of the measured intensity in the higher
order modes should coincide with an increase in the intensity measured in HG00,
the most important modes to consider being the lowest order ones. The HG01 and
HG10 modes give a measure of the misalignment of the input beam with respect to
the reference axis. The HG02 and HG20 modes give a measure of the waist size and
position discrepancies with respect to the reference. The quality of the alignment is
thus assessed by how close to the theoretical crosstalk values the measured crosstalk
values are.

In the context of our experiment, the reference crosstalk values of table 2.2 will
give a bound to the minimum displacement we can access. Indeed, the Cramér-Rao
bound gives a minimum displacement dCR and the crosstalk values give another
valuedXT . At high power, dCR can be made to be arbitrary small (since it is inversely
proportional to the square root of the number of photons). In this experiment,dCR <
dXT . In a stationary regime, the crosstalk values give the minimum displacement
we can measure. We suppose, as is the case in this experiment, that the minimum
crosstalk intensities are greater than the minimum sensibility of the powermeter
we use. The minimum displacement we can measure with the reference theoretical
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crosstalk values are the following:

dXTmin,10/w0 =
√

10−26.29/10 = 4.85 10−2

dXTmin,01/w0 =
√

10−27.45/10 = 4.24 10−2.

These values give an indication of the minimum displacement which can be mea-
sured, provided the intensity or photon number is high enough so that the sensi-
tivity of the measurement is small enough.

2.4.4.4 Measurement procedure

For a run of measurement, we �rst measured the crosstalk reference of the align-
ment. As we explained, the quality of this alignment is assessed by how close to
the reference crosstalk values we are. Table 2.4 presents the crosstalk values of the
reference alignment and of every measurement run. We can �rst note that the val-
ues for the HG02 mode). We think that this is due to a slight ellipticity of the beam:
in one of the directions, the waist size does not correspond to the theoretical waist
size the MPLC system is designed for. Thus, even in the correct position, the beam
does not perfectly overlap with theHG00 mode and some energy is projected on the
HG0j modes. However, the quality of the alignments is satisfactory.

Table 2.4: Crosstalk values (in dB).

HG10 HG01 HG20 HG02 HG11 HG21 HG12 HG22

reference -26.29 -27.45 -26.86 -26.40 -45 -31.06 -38.39 -24.33
long scan -25.69 -25.83 -25.50 -22.53 -37.63 -30.81 -37.92 -27.78

short scan 1+2 -26.06 -26.50 -25.51 -22.66 -37.40 -31.64 -38.59 -27.74
short scan 1 -26.65 -29.25 -25.27 -22.75 -37.22 -31.62 -37.54 -27.72
short scan 2 -26.34 -24.90 -25.59 -22.52 -35.77 -31.15 -37.18 -27.52

After the alignment step, a measurement run is performed by introducing dis-
placement in steps using the translation stage. For each step, we record the inten-
sity of all the output modes. In order to have another measure of the introduced
displacement, a quadrant detector was installed. We also record the signal of the
quadrant detector for each step. The data for both detectors was three-fold: one set
of intensities for just one arm of the interferometer, another set for the second arm,
and a third for the superposition of both arms. In the remaining of this section we
will refer to those three sets as 1, 2 and 1 + 2.
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2.4.5 Experimental results and analysis
2.4.5.1 Measurements

We present here the results for two di�erent scans: a short scan (d ∈ [0, 0.4w0]) and
a long scan (d ∈ [0, 3w0]). The quality of the alignment of both scans is assessed by
comparing their crosstalk values to the reference ones (see table 2.4).

In the case of the short scan, we show both values for the “two incoherent
sources” situation, that is the measurements performed with both arms of the in-
terferometer (both arms of the interferometer on (1+2)) — but we also show the
measurement for each arm of the interferometer separately (values were recorded
with one arm on (1) or the other one on (2)). We plot the values of the normalized
intensities measured in all the modes in �gures 2.16, 2.17 and 2.18.

2.4.5.2 Analysis

First order analysis for displacement measurement At the �rst order, in the
reference basis of the Hermite-Gaussian mode basis, we give the following expres-
sion of a displaced gaussian beam:

HG00 (d cos β,d sin β) = HG00 (0, 0)+
d cos β
w0

HG10 (0, 0)+
d sin β
w0

HG01 (0, 0) (2.86)

with d � w0 and β giving the direction of the displacement. The measurements
we perform are intensity measurements. For small displacements, the intensities
which are detected in the HG10 and HG01 modes, I10 and I01, are proportional to
d2 cos2 β and d2 sin2 β . Thus, we can extract the measured values of d and β :

dm = w0
√
I01 + I10 (2.87)

βm = arctan
√

I01
I10
. (2.88)

This analysis is valid for d � w0 but does not use all the information that the
MPLC system provides. It is nonetheless useful to gain a quick estimation of the
displacement (again in the case of d � w0).

Numerical �t We can also numerically compute the projections on each mode as
a function of d and β : I theonm (d, β) =

∫
HG00 (d cos β,d sin β)HGnm (0, 0)dxdy. The

translation stage has micrometer-precision screw: we thus have access to a theoret-
ical displacement dtheo . We can compare this value to the measured displacement.
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To do so, we introduce the parameter b such that dm = b × dtheo . This proportion-
nality constant will be used to adjust the �ts between the functions I theonm and the
measured intensities. The 4-quadrant detector also gives an information on the ac-
tual displacement that we can compare to dm. We also introduce mode-dependent
gain parameters дnm which will be used to take into account the mode-dependent
losses of the system. The intensity measured in mode HGnm will be �tted with two
di�erent numerical models: I theonm (d, β) and дnm × I theonm (d, β). We used this numerical
model to �t the measurements we present in �gures 2.16, 2.17, 2.18 and 2.19. The
�tting parameters we used for the short scan are presented in table 2.5, while the
gains we used in the �tting operation are given in table 2.6.

2.4.5.3 Results and limitations

Figure 2.15 gives the comparison between the displacement measured by the quad-
rant detector and the displacement measured by the MPLC system. In the x direc-
tion, the measurements of both techniques are in good agreement for both arms.
There seems to be a slight displacement di�erence between the two arms. In the
y direction, the displacement measured by the quadrant detector is equal for both
arms. For small displacements, the displacement measured by the MPLC for arm 2
seems to show a small error — at large displacement, the displacements measured
for both arms becomes equal. In this direction we observe a small discrepancy be-
tween the amount of displacement measured by one technique with respect to the
other. Finally, we plot the total measured displacement for both arms and both tech-
niques and compare it with the theoretical displacement (given by the translation
stage). First, the displacement measured by the quadrant detector for both arms is
very close. It nonetheless shows a discrepancy in slope with the reference value.
The displacement measured by the MPLC system for arm (1) — which had the best
alignment crosstalk values — agrees remarkably well with the reference value for
very small displacements. We observe that for displacement greater than 0.3w0, the
estimation of the displacement is not as accurate anymore. This is consistent with
the fact that outside of the range d/w0 � 1, higher orders of the Taylor expansion
need to be taken into account. The agreement is not as good with arm (2) of the
interferometer. As we indicated, the alignment of this arm with the MPLC was not
as good (see table 2.4 and in particular the value for HG01) which gives an expla-
nation to this poorer performance. Finally, we note that overall, the measurements
made with both techniques are in good agreement, which validates the MPLC as a
distance measurement device.
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Figure 2.15: Short scan — Displacement measurement using (A) a 4-quadrant de-
tector and (B) a spatial mode demultiplexer for both arms of the Mach-Zehnder
interferometer (1, 2).
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In �gure 2.16, we plot the normalized recorded intensities in each of the output
modes with both arms of the interferometer on. Figures 2.17 and 2.18 plot the same
curves for arms (1) and (2) of the interferometer. The �rst observation we make is
that as we stated, the measurement of the displacement of one source is equivalent
to the measurement of the distance between two incoherent sources — the curves
for these two measurements are very similar. One should note that the scales are
not the same for every mode. On these curves, we also plot two theoretical �tting
curves. The �rst one, dashed, shows the theoretical projections in each mode using
the parameters we derived in table 2.5. The second one, dash-dotted, uses these
same parameters but adds an additional degree of liberty in the form of a free gain
parameterдnm. These �tting parameters are displayed in table 2.6. For the modes on
which we measure signi�cant amounts of energy, the theoretical curves �t nicely
with the data, and the gain parameters are not too far from unity. As the intensity
measured in a mode decreases, the quality of the �t drops.

Table 2.5: Displacement parameters — short scan.

β b relative intensity
1+2 1.095 0.974 1

1 1.007 0.925 0.47
2 1.138 1.0150 0.53

Table 2.6: Gain �t parameters — short scan.

д00 д10 д01 д20 д02 д11 д21 д12 д22

1+2 0.966 1.004 1.155 1.029 1.428 0.310 0.904 1.703 0.021
1 0.973 0.869 0.989 1.127 1.443 0.245 0.660 1.829 0.018
2 0.959 1.011 0.805 0.994 1.505 0.363 1.067 1.549 0.021

In �gure 2.19, we again plot the normalized recorded intensities in each of the
output modes with both arms of the interferometer on for the “long” scan. The
theoretical curves are computed in the same way as those of the short scan. The
parameters used are shown in table 2.7. We also include �gure 2.20 in which we
plot all the normalized intensity measurements on a single plot. We can clearly see
how the di�erent modes come into play as the value of the displacement increases.

The �t parameters for the long scan are β = 1.055 and b = 0.925.
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Figure 2.16: Short scan — Normalized intensity measured on each of the MPLC out-
put (solid line) with both arms of the interferometer. In dashed line is the theoretical
model for the extracted parameter of displacement and angle. In dashed dotted, we
�t the data with an additional gain which depends on the channel.
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Figure 2.17: Short scan — Normalized intensity measured on each of the MPLC out-
put (solid line) with arm 1 of the interferometer. In dashed line is the theoretical
model for the extracted parameter of displacement and angle. In dashed dotted, we
�t the data with an additional gain which depends on the channel.
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Figure 2.18: Short scan — Normalized intensity measured on each of the MPLC out-
put (solid line) with arm 2 of the interferometer. In dashed line is the theoretical
model for the extracted parameter of displacement and angle. In dashed dotted, we
�t the data with an additional gain which depends on the channel.
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Figure 2.19: Long scan - Normalized intensity measured on each of the MPLC output
(solid line) with both arms of the interferometer. In dashed line is the theoretical
model for the extracted parameter of displacement and angle. In dashed dotted, we
�t the data with an additional gain which depends on the channel.
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Figure 2.20: Long scan - Experimental projections of displaced beam.

Table 2.7: Gain �t parameters - long scan.

д00 д10 д01 д20 д02 д11 д21 д12 д22

1 1.012 0.869 1.284 0.848 0.959 1.107 0.679 1.073
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2.4.5.4 New measurements and outlooks

The results we present are encouraging but call for some supplementary measure-
ments which we did not have time to make before the end of this Ph.D. The mini-
mum signal we can measure with our apparatus should be quanti�ed and compared
to the Cramér-Rao bound. One should also characterize the noise of the source we
used.

These experimental results were taken at intensities of the order of the µW. An
interesting regime — which we did not have time to explore — in which to test this
setup is at low photon numbers. Indeed, as the Cramér-Rao bound states, at low
photon numbers, the sensitivity of distance measurement decreases. It is in this
regime that we hope to measure a signi�cant performance increase for the spatial
demultiplexing system compared to other measurement schemes. The physical im-
plementation of our setup makes it readily compatible for probing low intensity
regimes: as the output of the MPLC are �bered, they can be directly connected to
avalanche photodiodes - which can count photons individually - whilst avoiding
the loss of photons, or the contamination by stray photons.

The setup we present is also compatible with the measurement of correlations
between the di�erent modes.

2.5 A small detour through compressed sensing
We make in this �nal section a small digression toward the �eld of compressed
sensing. We wish to introduce the main tools and most important results of this
new and exciting �eld. Compressed sensing has introduced a paradigm shift in the
way one can think about information retrieval (see for instance [Bobin 08] for the
application of this theory to astronomy). Since the limits of classical imaging were
derived from information theory, compressed sensing theory brings new elements
to the imaging �eld and calls into question its limitations . The link which can be
made between the MPLC system and compressed sensing will be clari�ed in the
conclusion of this chapter.

2.5.1 Quick overview
In a general context, data acquisition goes as follows: massive amounts of informa-
tion are collected (as an example, good quality smartphones record images of more
than 2 millions pixels while the number of pixels on good quality cameras easily
exceeds 15 millions) to record as much information as possible. More than often,
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much of this information is super�uous. In any case, the amount of recorded data
is too formidable to be stored or processed as such, and these data must �rst go
through an essential compression stage. The many compression algorithms which
have emerged take advantage of the redundancy of the recorded signal to dimin-
ish the amount of capacity storage needed. The redundancy of the signal expresses
the fact that in some well chosen basis the signal is sparse. This means that the
signal, represented in this basis, only has a few signi�cant coe�cients. Sparse ap-
proximation algorithms make use of this and only record the location and value of
the highest coe�cients. Many well known formats (JPEG, MPEG, MP3) use this
process, often taking into account the limited human perception abilities to �x the
minimum thresholds. However useful and successful, this process is thus inherently
wasteful since information is recorded before being discarded.

Compressed sensing takes the opposite view by aiming at acquiring only the
useful information. In other words, the recorded data should already be compressed.
The central idea of compressed sensing is the following: while the Nyquist-Shannon
sampling theorem states that a minimum given number of samples n should be
recorded in order to perfectly capture a given bandlimited signal, if we know that
in a given basis this signal is sparse (meaning represented by k � n non-zero coef-
�cients), we can greatly reduce the number of measurements that need to be stored.
We want to directly “sense” the signal in a compressed form. A direct consequence
of this approach is to greatly diminish the number of sensors needed for the same
acquisition quality.

The �eld of compressed sensing originates in the works of Candès, Romberg,
Tao and Donoho [Candès 06a, Candès 06b, Candès 06c, Candès 06d, Donoho 06].
Very good introductions to the subject can be found in [Davenport 12, Candès 07b],
from which the following section is largely inspired.

2.5.1.1 Useful concepts

We will detail in this section some of the mathematical concepts which are at the
core of compressed sensing.

Sparsity A signal x expressed in basis ϒ is sparse if its representation in a mode
basis Ψ possesses at most k non zero coe�cients — the signal is said to be k-sparse.
The signal in itself may not be sparse in its representation basis ϒ as such but it
admits a sparse representation in some basis Ψ. If M is the basis change matrix
between basis Ψ and ϒ then x = Mc where the vector c only has k non-zero coef-
�cients. Most natural images have large portions which are uniform with a small
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Figure 2.21: The image on the left displays a 1 megapixel image and its wavelet
transform coe�cients (displayed in a randomized order). One can see that a few
wavelet coe�cients make the most important contributions. The rightmost image
shows the image reconstructed by keeping only the 25 000 largest coe�cients and
putting all the other coe�cients to 0 (that is, by discarding 97.5% of the original
information. One can see that the changes are not easily noticeable. This procedure
underlies most modern compression algorithms such as JPEG-2000. (Figure taken
from [Candès 07b].)

number of edges between them. These types of images are almost sparse. A tool
which is particularly useful for natural images compression, and more broadly for
sparse representations, is wavelet analysis (see �gure 2.21 for an illustration): in
wavelet basis, natural images are often sparse. An excellent reference on the sub-
ject is [Mallat 08].

Incoherence The second concept at the core of compressed sensing is incoher-
ence and relates to the sensing modality. It broadens the concept of time-frequency
duality: a signal which is sparse in frequency (for instance a signal which has a
Dirac function representation) is spread out in the time domain and vice versa. We
de�ne Ψ as the sparse representation basis and Φ as the measurement basis. In-
coherence expresses and quanti�es the fact that the sensing basis Φ must have a
dense representation on the basis Ψ on which the object is sparse. The measure of
the coherence between mode basis Ψ and Φ of Rn is de�ned as [Candès 07b]

µ (Ψ,Φ) =
√
n max

1≤,k,l≤n
|〈ϕk,ψl〉| . (2.89)

If bases Ψ and Φ have correlated vectors, µ (Ψ,Φ) is large. On the contrary, if Ψ
and Φ are uncorrelated, it is small. We note that µ (Ψ,Φ) ∈

[
1,
√
n
]
. Also, random
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unitary matrices are largely incoherent to most bases: if Φ is a random orthonormal
basis, then µ (Ψ,Φ) '

√
2 logn with high probability.

2.5.1.2 Main results

We will now present some of the main results of compressed sensing. The question
behind compressed sensing is (for a noiseless signal): what is the minimum number
of measurements one needs to make to be sure to be able to reconstruct the sig-
nal perfectly? For example, in the context of time-varying signals, the well-known
Shannon sampling rate gives the minimum sampling rate for a bandlimited signal.
But this bound is in fact derived only for one speci�c type of measurements: in this
case measurements which are made at �xed frequency — or equivalently measure-
ments for which samples are taken regularly in time. This type of measurement
makes the reconstruction of the measured signal straightforward. On the contrary,
compressed sensing factors in all the possible types of measurements. This implies
that the reconstruction of the signal is not unequivocal anymore. We will develop
in this section three main compressed sensing results. In these results, the choice of
the type of measurement is represented by the choice of the measurement matrix.
A measurement operation can be modeled by the multiplication of a signal vector
x with a measurement matrix. Let A ∈ Rm,n (with m < n) be the measurement or
sensing matrix. Its columns are vectors of the measurement basis Φ and y is the
measurement vector:

y = Ax . (2.90)

The reconstruction of the signal x can be expressed as an optimization problem:
knowing the measurement matrix A and the measurement result y, we want to
access the signal vector x .

We will present three measurement situations which correspond to three di�er-
ent optimization problems.

Sparse noiseless signal recovery We recall that we consider a signal which can
be expressed as x = Mc with M the mode basis change matrix between basis ϒ of
x and basis Ψ of c , with c a k-sparse vector: only the �rst k coe�cients of c are
non-zero. For any vector x̃ ∈ Rn, we can also de�ne c̃ ∈ Rn such that x̃ = Mc̃ . We
de�ne the following optimization problem:

min
x̃∈Rn
‖x̃ ‖l1 subject to y = Ax̃ (2.91)
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with ‖x̃ ‖l1 =
∑

i |x̃i |. Among all the vector x̃ which are consistant with the measure-
ment vector y, we wish to �nd the vector which has the minimum l1 norm. This
problem is a convex optimization problem. These types of optimization problems
have a large body of literature detailing many types of e�cient algorithms which
allow their resolution.

Theorem 1 The �rst theorem we wish to present is the following: we suppose
once again that x ∈ Rn and that its representation c in the basis Ψ is k-sparse. We
select a matrix A whose columns are sampled uniformly at random in the measure-
ment basis Φ. Then, if

m ≥ Cµ2 (Φ,Ψ)k logn (2.92)
where C is a positive constant, the solution to the optimization problem 2.91 is ex-
act with overwhelming probability (see [Candès 07a, Candès 07b]). If a signal is
k-sparse, the degree of incoherence between the measurement basis Φ and repre-
sentation basis Φ sets an inferior bound to the number of measurements m which
need to be taken in order to exactly recover the signal. For instance, if the basis
Ψ and Φ are perfectly incoherent we have µ (Ψ,Φ) ' 1, which means one needs
to acquire as few as k logn samples (instead of n) to reconstruct the signal. This
result can be condensed as such: by sampling a signal in a nonadaptive way (for
example using a random sensing matrix) from an incoherent domain, and using a
linear optimization algorithm, one can recover a signal perfectly.

Figure 2.22: On the left hand side is the image reconstructed with the 25 000 high-
est coe�cient on the sparse basis, while on the right hand side is the image re-
constructed with 96 000 incoherent measurements. The two images are identical,
meaning the recovery with a l1 minimization is perfect. The ratio between the spar-
sity of the image and the number of incoherent samples is roughly 1/4. (Taken from
[Candès 07b].)
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Robust compressive sampling The �rst result we presented is quite strong but
does not deal with noise. Yet, as we have seen throughout this chapter, noise plays
a major role in any type of measurement scheme. In this problem, noise comes into
two forms. First, signals are often not exactly k-sparse: n−k coe�cients are close to
zero but not exactly zero. We de�ne the signal vector x (k) = Ψc(k) where c(k) is the
vector constituted of the k largest coe�cients of c . Secondly, during the acquisition
process, noise will corrupt the data. A realistic measurement process model is in
fact

y = Ax + z, (2.93)

the vector z being the noise error term. To continue our introduction, we need to
introduce the concept of the isometry constant of a matrix.

De�nition For s in N, the isometry constant δs of a matrix A is the smallest
number such that

(1 − δs) ‖x ‖2l2 ≤ ‖Ax ‖
2
l2
≤ (1 + δs) ‖x ‖2l2 (2.94)

holds for all s-sparse vectors x (‖x ‖l2 =
√∑

i |xi |
2). A is said to obey the restricted

isometry property of order s if δs exists and δs < 1.

In order to take into account the noise, we examine two new optimization
problems. We recall that now place ourselves in the case where the sparse
representation c of the signal x is no longer k-sparse but almost k-sparse. The �rst
optimization problem we look at is the same as the preceding one:

min
x̃∈Rn
‖x̃ ‖l1 subject to y = Ax̃ . (2.95)

In the case of a signal which is not perfectly sparse, we need to impose a condition
on the sensing matrix A.

Theorem2 If the sensing matrixA admits an isometry constant which veri�es
δ2k <

√
2 − 1, the solution x∗ to problem 2.95 obeys

‖x∗ − x ‖l2 ≤ C0‖x − x
(k)‖l1/

√
k and ‖x∗ − x ‖l1 ≤ C0‖x − x

(k)‖l1 (2.96)

with C0 a constant. The distance between the solution x∗ and the signal x is can
be measured using the l1 or l2 norm. In both cases, it is bounded by the distance
between the signal and its k-sparse representation measured with the l1 norm. In
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the case of the l2 norm, this bound is made even tighter by a 1/
√
k factor. A �rst

remark is that if x is indeed k-sparse, then the reconstruction is of the signal is again
exact. If not, the reconstruction we perform is as good as if one knew ahead of time
which where the largest k coe�cients describing x and measured exactly those.
The major di�erence with theorem 1 is that this result is deterministic. Figure 2.22
illustrates this result.

We examine a �nal optimization problem for noisy data using relaxed con-
straints for reconstruction de�ned as

min
x̃∈Rn
‖x̃ ‖l1 subject to ‖Ax̃ −y‖l2 ≤ ϵ (2.97)

where ϵ is the upper bound to the level of noise of the data. In this case, we take
into account the fact that additive noise is present and relax the constraints on x̃ .
We again need to impose a condition on the sensing matrix A.

Theorem 3 Assuming that δ2k ≤
√

2 − 1, the solution x∗ of 2.97 obeys

‖x∗ − x ‖l2 ≤ C0‖x − x
(k)‖l1/

√
k +C1ϵ (2.98)

whereC0 andC1 are constants (for example, one can show that if δ2k = 1/4,C0 ≤ 5.5
andC1 ≤ 6). This theorem stats that the quality of the reconstruction is bounded by
the sum of two terms: the �rst one is linked to the fact that the signal is not exactly
sparse, while the second one is simply proportional to the noise level.

Provided we know can perform a measurement whose matrix representation
A obeys the restricted isometry condition, compressed sensing states that we can
reconstruct a signal as well as what we could have done knowing in advance the
k-largest coe�cients of the signal in the basis in which is it (almost) sparse. The
reconstruction of the signal is done using optimization algorithms.

Sensing matrices E�cient optimization algorithms are easily available. In the
context of compressed sensing, the complexity of the problem of signal retrieval
now lies in the design of suitable sensing matrices. Many di�erent strategies can
be employed but we will only present one of them for illustration (see [Candès 07b]
for more details). If one constructs a sensing matrix using one of the three routines

• sampling n column vectors at random on the unit sphere of Rn.

• sampling independent identically distributed entries from the normal distri-
bution with zero mean and 1/m variance.
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then with overwhelming probability, the resulting matrix A obeys the restricted
isometry property provided that

m ≥ C k logn/k . (2.99)

In short, compressed sensing with random matrices allows to obtain signals
which are as good as the best k-term approximation by using only O (k logn/k)
samples. Moreover, the acquisition setup is �xed — it needs not be modi�ed de-
pending on the structure of the signal. As soon as this theory was developed, it
found numerous applications. For instance, reducing the number of samples per
image allows to speed up the measurement process in magnetic resonance imaging
[Lustig 07] allowing for signi�cant improvements for patients. Compressed sens-
ing, by reducing the required number of sensors, also allows for data compression
[Duarte 05]. Finally, the principles of compressed sensing can be turned around to
design e�cient channel coding algorithms [Candès 05].

2.5.2 Compressed sensing for optical resolution

As we described in the previous part, many images satisfy the sparsity con-
straint, meaning that there exists a basis in which their sparsity k is such that
k � n where n is the number of pixels used to represent them. It is only nat-
ural that compressed sensing should be applied to the �eld of optical imaging
[Gazit 09, Shechtman 10, Willett 11]. The result we introduced in 2.2 can be rewrit-
ten in the formalism of compressed sensing: in the prolate spheroidal function basis,
the sparsity of the image is given by k = S ×π/2 where S is the Shannon number of
the imaging operator. In [Wang 12], discrete sparse objects are imaged on discrete
prolate spheroidal sequences and reconstructed exactly using compressed sensing.

Compressed sensing opens promising perspectives for the improvement of reso-
lution in imaging: for a given number of sensors, the information gathered through
compressed sensing is considerably higher than using traditional pixel imaging. In
this sense, compressed sensing does provide some kind of super-resolution. The
challenge lies on the construction of the sensing basis/measurement apparatus. In-
deed, one needs to collect the signal on an appropriate mode basis. This is where
the use of a demultiplexer such as the MPLC, which allows to choose any desired
measurement basis, should prove to be a most interesting tool.
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2.6 Conclusion

We presented in this chapter the demonstration of spatial demultiplexing as a new
method for the measurement of the displacement of one source or of the separa-
tion between two incoherent sources. The sensitivity of this method saturates the
theoretical Cramér-Rao bound, which means it is an e�cient estimator for this pa-
rameter. The MPLC giving access to several spatial modes, more than one parameter
can be estimated. We made the experimental demonstration of a distance measure-
ment in two dimensions. The fact that we can access the higher order modes also
means we can maintain optimal sensitivity even outside the regime of very small
displacement. The demultiplexing MPLC system was tailored to give the best sen-
sitivity for displacement and separation measurements. We introduced the concept
of noise or measurement modes - these modes are given by the derivative of the
spatial pro�le of the �eld with respect to the parameter we want to estimate. The
MPLC system can be built to demultiplex virtually any mode basis. This means that
any parameter, in the limit of small variation of this parameter, can be estimated
with optimal precision, as long as the spatial pro�le of the probe beam does de-
pend on this parameter. Probing the e�ciency of the MPLC in estimating di�erent
types of parameters, with di�erent kinds of illumination could lead to many new
promising experiments.

We have also introduced the theory of compressed sensing, which states that
signals with a limited amount of information can be estimated with far less coe�-
cients than what is stated by the sampling theorem. In imaging, we have introduced
two types of sensing mode basis which can verify the hypothesis required in com-
pressed sensing: random mode bases, or the prolate spheroidal function mode basis.
Imaging through random medium has already been demonstrated and has shown
very promising results. While the MPLC is in theory capable of demultiplexing a
spatial mode basis composed modes with random spatial pro�les, it should stand
out in the demultiplexing of the prolate spheroidal spatial modes. An interesting
prospect is to assess, in an imaging context, the performances of a MPLC system
with a reasonable number of modes (' 5017) for natural images. Such systems may
prove useful for multiparameter estimation, or for instance pattern recognition. As
of today, the performances of the millions of pixels of available cameras will likely
not be exceeded by a MPLC imaging system in a traditional imaging context. How-
ever, the use of a MPLC system might prove advantageous in at least two di�erent
situations. Camera pixels are limited in the speed at which they operate: the enor-

17The current MPLC systems can shape up to 45 modes [Bade 18].
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mous amount of pixels complexi�es information retrieval. Reducing the number of
sensors should allow to operate at higher speeds. Alternatively, in a context where
reducing the number of sensors might give an economic advantage (for instance at
speci�c wavelengths where traditional sensors are very expensive — for instance in
the infrared), this imaging technique could prove useful.

The two approaches we presented are opposite strategies to information re-
trieval. In the case of parameter estimation, we tailor the mode basis to the in-
formation we want to measure. In this case, a few modes carry all the relevant
information. On the contrary, in compressed sensing, we aim at designing a mode
basis which is incoherent with the mode basis in which the signal we want to mea-
sure is expressed. Both techniques open the way for new exciting applications of
the MPLC system.
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Chapter 3

Manipulation of the spatial degrees
of freedom

“And if the dam breaks open many years too soon [...]
I’ll see you on the dark side of the moon.”

– Pink Floyd
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3.1. MODE BASIS CHANGE AS A PARAMETER TRANSFER TOOL

This chapter produces a detailed outline of the results presented in [Boucher 17]
(see also B). In the previous chapter we have presented how a mode basis change
could allow the precise measurement of a spatial property of the electromagnetic
�eld: as the �eld pro�le is modi�ed, energy is transferred into higher-order modes
in which it can be detected and measured. The central idea of this chapter is now
to couple this energy into another mode basis than the detection mode basis. The
output mode basis should now correspond to another spatial degree of freedom.
This way, the spatial degrees of freedom to which correspond the input and output
mode bases are di�erent, and the modi�cation of the former has a direct e�ect on
the later.

We will introduce in a �rst part the second order Taylor series describing the
displacement, tilt, defocus and waist size change of a Gaussian beam, as well as give
a detailed description of how one can establish a link between two distinct spatial
degrees of freedom. In a second part, we will present how we designed a MPLC
system allowing the coupling of the displacement and tilt of a Gaussian beam to its
defocus. Finally, we will present the results of the experiment we constructed to
validate this analysis.

3.1 Mode basis change as a parameter transfer tool

The idea that the perturbative treatment of a modi�ed beam involves given spa-
tial mode bases was introduced in [Anderson 84] and [Hsu 04, Delaubert 06b,
Lassen 07, Labroille 14] and developed in chapter 2. We recall in the following sec-
tion the expressions of the Taylor series of a Gaussian beam for four di�erent types
of spatial degrees of freedom. The �eld we will use throughout this chapter is a
Gaussian beam:

E(+) (r ) = HG00 (r ) = LG0
0 (r ) . (3.1)

In the remaining of the chapter we will refer to this �eld as “the beam” to simplify
discussions and use the notation E(+) (r ) = u (r ). The parameters which we will
consider in this section are �rst the transverse displacement of the beam and the
tilt of the beam compared to the optical axis. In a second part we will examine the
waist size modi�cation as well as the defocusing of the beam.
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3.1.1 Displacement and tilt of a beam

In the previous chapter we have studied in detail the transverse displacement of the
beam. We recall here the expressions for this transverse displacement d and also
give the equations for the tilt p of the beam. We de�ne ũ (d,p;x,y, z) which we will
sometimes simplify as ũ (d,p):

ũ (d,p;x,y, z) = u (x − d,y, z) eipx (3.2)

with p = 2πθ/λ and θ is the tilt angle in radians.

3.1.1.1 First order analysis

At the �rst order in d and p, the Taylor development for the displaced beam gives

ũ(d,p) ' ũ (0, 0) + d ∂ũ
∂d
(0, 0) + p ∂ũ

∂p
(0, 0) (3.3)

One can show that

∂ũ

∂d
(d,p;x,y, z) = 1

w0
HG10 (x,y, z) (3.4)

∂ũ

∂p
(d,p;x,y, z) = iw0

2 HG10 (x,y, z) (3.5)

Thus we can rewrite equation 3.3 as:

ũ(d,p;x,y, z) ' HG00 (x,y, z) +

[
d

w0
+
ipw0

2

]
HG10 (x,y, z) (3.6)

3.1.1.2 Second order analysis

At the second order in d and p, we have

ũ (d,p) =ũ (0, 0) + d ∂ũ
∂d
(0, 0) + p ∂ũ

∂p
(0, 0)

+
d2

2
∂2ũ

∂d2 (0, 0) +
p2

2
∂2ũ

∂p2 (0, 0) + d × p
∂2ũ

∂d∂p
(0, 0) (3.7)
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We can derive:

∂2ũ

∂d2 (d,p;x,y, z) =
√

2
w2

0
HG20 (x,y, z) −

1
w2

0
HG00 (x,y, z) (3.8)

∂2ũ

∂p2 (d,p;x,y, z) = −
w2

0

2
√

2
HG20 (x,y, z) −

w2
0

4 HG00 (x,y, z) (3.9)

∂2ũ

∂d∂p
(d,p;x,y, z) = −i√

2
HG20 (x,y, z) +

i

2HG00 (x,y, z) . (3.10)

From these expressions we have

ũ(d,p;x,y, z) '
[
1 + idp

2 −
d

2w2
0
−
p2w2

0
8

]
HG00 (x,y, z) (3.11)

+

[
d

w0
+
ipw0

2

]
HG10 (x,y, z)

+

[
d2
√

2w0
−
p2w2

0

4
√

2
−
idp
√

2

]
HG20 (x,y, z) .

3.1.2 Defocusing
To defocus a beam is to change the position of the plane in which the waist size is at
its minimum. In the de�nition we introduced in chapter 1, this plane corresponds
to z = z0 (see equation 1.32). In much of the derivations of the previous chapters
we have set z0 = 0, and we will keep this convention in this chapter. The defocus
will be designated by δz0. A �rst order Taylor expansion gives

ũ (δz0;x,y, z) = u(x,y, z − δz0) ' u (x,y, z) − δz0
∂u

∂z
(x,y, z) (3.12)

We can express the �rst order derivative along z with modes of the Laguerre-Gauss
mode basis:

∂u

∂z
(x,y, z) =

i

2zR
[ (

1 − (kw0)
2) LG0

0 (x,y, z) + LG
0
1 (x,y, z)

]
. (3.13)

It may be noted that in this case, the �rst order derivative is not orthogonal to u.
Finally, we can express the �rst order Taylor expansion as:

u(x,y, z + z0) '

[
1 − iδz0

2zR
(
1 − k2w2

0
) ]
LG0

0 (x,y, z) −
iδz0
2zR

LG0
1 (x,y, z) . (3.14)
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We can also show that

∂2u

∂z2 (x,y, z) =
−λ2

2π 2w4
0

[
LG0

2 (x,y, z) +

(
3 +

4π 2w2
0

λ2

)
LG0

1 (x,y, z)

+

(
1
2 −

12π 2w2
0

λ2 +
8π 4w4

0
λ4

)
LG0

0 (x,y, z)

]
. (3.15)

3.1.3 Waist size change

Another spatial degree of freedom which one might want to modify is the waist size
of a beam. The waist size of the beam can be de�ned as

w (z)2 = 2 ×
∬ (

x2 + y2) ũ∗ (x,y, z) ũ (x,y, z)dxdy∬
ũ∗ (x,y, z) ũ (x,y, z)dxdy

. (3.16)

For a gaussian beam, the expression of w(z) is known and completely speci�ed by
w (z = 0) = w0. We consider now the beam ũ (δw0;x,y, z) with a waist given by
w0 + δw0:

ũ(δw0;x,y, z) ' u (x,y, z) + δw0
∂u

∂w0
(x,y, z) (3.17)

∂u

∂w0
(x,y, z) = −

1
w0

LG0
1 (x,y, z) (3.18)

ũ(δw0;x,y, z) ' LG0
0 (x,y, z) −

δw0
w0

LG0
1 (x,y, z) . (3.19)

We can also show that

∂2u

∂w2
0
(x,y, z) =

2
w2

0

[
LG0

2 (x,y, z) +
3
2 LG0

1 (x,y, z) − LG
0
0 (x,y, z)

]
. (3.20)

To complete this description, as we have seen that the derivatives along z and w0
involve the same Laguerre-Gauss mode basis, we can express the following quan-
tity:

∂2u

∂z∂w0
(x,y, z) =

−iλ

πw3
0

[
LG0

2 (x,y, z) +

(
5
2 −

2π 2w2
0

λ2

)
LG0

1 (x,y, z)

]
(3.21)
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Finally, we can write

ũ (δz0, δw0;x,y, z) =
[
1 − iδz0

2zR
(
1 − k2w2

0
)
−
δw2

0
w2

0

−
δz2

0λ
2

4π 2w4
0

(
1
2 −

12π 2w2
0

λ2 +
8π 4w4

0
λ4

)]
LG0

0 (x,y, z)

+

[
−
iδz0
2zR
−
λ2δz2

0
4π 2w4

0

(
3 +

4π 2w2
0

λ2

)
−
δw0
w0
+

3δw2
0

2w2
0

−
iλδw0δz0

πw3
0

(
5
2 −

2π 2w2
0

λ2

)]
LG0

1 (x,y, z)

+

[
−
λ2δz2

0
4π 2w4

0
+
δw2

0
w2

0
−
iδw0δz0λ

πw3
0

]
LG0

2 (x,y, z) . (3.22)

3.1.4 Coupling of spatial degrees of freedom

From the expressions we have introduced in this section, we see that the Taylor
series of the beam with respect to one spatial parameter brings up a given spatial
mode basis. It is of course possible to express a tilted beam in any mode basis.
However, we see that in the Hermite-Gauss mode basis, the expression at the �rst
or second order of a tilted mode is simple and more importantly, only involves a
small number of spatial modes. We developed this idea in the previous chapter and
showed that in order to measure a small displacement, the Hermite-Gauss mode
basis was optimal: one only needs to measure the intensity of the HG10 mode. In
the present chapter, we have also shown that the defocus of a beam as well as the
waist size change of a beam can be preferentially associated with the Laguerre-
Gauss mode basis.

The central idea of this chapter is the following. We consider the situation where
two spatial degrees of freedom are linked to two distinct mode bases (which for this
demonstration both admit the Gaussian beam as the �rst mode of the basis). In
this paragraph, we call the input and output degrees of freedom p1 and p2 and the
mode bases {ui} and {vi} respectively. We also consider an ideal mode basis change
system between those two mode bases. In this situation, a Gaussian beam launched
towards the system de�nes the input beam Ein, while the Gaussian beam exiting
the system de�nes the output beam Eout (see �gure 3.1). The decomposition of the
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Ein =
∑

fiui Eout =
∑

fivi

f0 × u0

f1 × u1

.

.

.

f0 ×v0

f1 ×v1

.

.

.

MPLC

Figure 3.1: Relation between the input and output beam modal decompositions.

input beam on the input mode basis {ui} gives the vector (f0, f1, f2, · · ·)

Ein =
∑
i

fiui with
∑
i

| fi |
2 = 1. (3.23)

The fact that the transform is perfect and unitarity means that the decomposition
of the output beam on the output mode basis {vi} is given by the same vector
(f0, f1, f2, · · ·):

Eout =
∑
i

fivi . (3.24)

In the case we consider where u0 and v0 both correspond to a Gaussian beam, if
Ein = u0 then we have (f0, f1, f2, · · · ) = (1, 0, 0, · · · ) and also Eout = v0. If the input
beam is now spatially modi�ed along the spatial parameter p1, the coe�cients of
its decomposition change from (1, 0, 0, · · ·) to a di�erent vector

(
f
p1
1 , f

p1
2 , f

p1
3 , · · ·

)
which can for instance be derived using a Taylor expansion. In this case,

Ein =
∑
i

f
p1
i ui with

∑
i

��f p1
i

��2 = 1. (3.25)

The unitarity of the transform gives:

Eout =
∑
i

f
p1
i vi . (3.26)

The output beam is thus no longer the Gaussian beam v0. In this con�guration,
modifying the parameter p1 for the input beam directly modi�es the coe�cients
of the output beam in the output mode basis. At the �rst order in p1 and p2, the
modi�cation of the parameter p1 for the input beam implies a modi�cation of the
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parameter p2 for the output beam. This means that one can gain control of one
spatial degree of freedom by modifying another spatial property of the �eld.

A �rst nuance to add to this analysis is the following. As we have derived in the
expressions of this section, it is often the case that two di�erent spatial degrees of
freedom are coupled to the same mode basis. In this case, if for the input beam one
modi�es the parameter p1, in the general case, the output beam sees the parameter
p2 and p′2 modi�ed.

Moreover, the design of the mode basis change system is in fact not completely
straightforward. Indeed, in the case where a MPLC system is used, one needs to
de�ne two orthogonal mode basis. This was the case in the analysis we conducted
with the Taylor expansion of the �rst order only. With these expressions, there is
— in the case of displacement, tilt and waist size change — orthogonality between
the spatial pro�le of the mode and its �rst derivative. Moreover, in the case of
displacement and tilt, which are linked to the same mode basis, the projection
coe�cients are decoupled in the sense that one is real (d/w0) and the other is imag-
inary (ipw0/2) as is expressed by equation 3.6. However we included the second
order expansions in the previous subsections to stress the following point: by the
second order, this orthogonality property no longer applies, as well as this decou-
pling of degrees of freedom associated to the same mode basis. For the defocus
of a beam, this property is not even true at the �rst order as equation 3.13 illustrates.

3.2 Design of a parameter transfer MPLC

In order to experimentally test the coupling of spatial degrees of freedom through
mode basis change we decided to use, as input degrees of freedom, the displacement
and tilt of the beam, and as the output degree of freedom, the defocus of the beam.

3.2.1 Existing defocusing techniques

Changing the focal position of a beam is not in itself a di�cult task. The simplest
method consists in the mechanical scan of an optical element — for example a lens,
or an axicon [Druart 08]. However, like all mechanical movements, the frequency at
which this position can be modi�ed is limited by inertia. Indeed, the fast, precise and
continuous scanning of the focal position of a beam has a wide variety of applica-
tions ranging from autofocusing systems, adaptive optics and imaging to laser pro-
cessing and optical inspection as well as di�erent types of microscopy (multipho-
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ton, confocal, light sheet microscopy, endoscopy, etc.) [Reddy 07, Sancataldo 17].
In all these �elds, a precise, high-frequency and continuous technique of scan-
ning a beam’s focal point could prove quite bene�cial. Several techniques exist
which meet some of these requirements although not often all at the same time.
The MEMs technology introduced in chapter 1 allows to perform the defocusing of
a beam [Yang 06], but the actuating speed, while greater than that of bulky sys-
tems, is still limited by inertia. Electro-optic [Shibaguchi 92] and acousto-optic
[Kaplan 01] systems o�er good alternatives with speeds reaching several hundred
of kHz. However, their use is not universal. Electro-optic lenses are polarization
dependent and require the use of polarized light. In the case of acousto-optic sys-
tems, two synchronized crystals are required in order to mimic a cylindrical lens,
which means that in order to reproduce the action of a spherical lens, four acousto-
optic systems need to be synchronized. This stacking of components introduces in-
creased levels of losses as well as complexity in the operation of the system. Liquid
crystal lenses constitute another possible technology [Sato 85, Lin 10] — although
they too require the use of polarized light. Moreover, in order for those lenses to
have long focal lengths, the thickness of the liquid crystal constituting the lens
must be increased, which in turn reduces the response time of the system. This
phenomenon introduces a trade-o� between long scanning lengths and high scan-
ning frequencies. In the pulsed regime, a sophisticated technique was developed
[Zhu 05, Durst 06, Du 09, Oron 05]. It relies on the manipulation of the spectral
bandwidth of the light pulses. Another technique allows to construct a lens with a
tunable focal length: these lenses are constructed using two non-miscible liquids,
such as oil and water, and electrowetting techniques. The electric charges at an
interface allow the modi�cation of the contact angle of a drop on a metal surface
[Berge 00]. Finally, TAG or acoustically driven liquid lenses can be used to defocus
a beam [Duocastella 13, Mermillod-Blondin 08, Duocastella 14]. The focal length of
such lenses is continuously tuned, which produces periodic defocusing.

3.2.2 Principle of the experiment

Our approach di�ers from the works described above in the sense that it does not
try to mimic the working principle of a lens. Instead, we propose to directly couple
transverse degrees of freedom to the defocusing of the beam. Several e�cients tech-
niques of beam steering are readily available [Römer 14]. In the design we propose,
the quality of control of the input spatial parameters is directly transferred on the
output parameter since the mode basis change is a passive optical operation. This
means that the system described in 3.2 could control precisely, at high frequency
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Figure 3.2: The MPLC system couples the tilt and displacement of the input beam
to the defocusing of the output beam.

and continuously the position of the focus point of a beam, without any theoretical
restriction on the polarization or power of the input beam. Indeed physical imple-
mentations of MPLC systems have proven to be compatible with high powers (up
to several kW [Garcia 17]) and shape both polarizations identically.

3.2.3 Mode bases de�nition

We introduced in 3.1.4 the fact that the “derivative” mode bases, which are natu-
ral description mode bases when writing the Taylor series of a spatially modi�ed
beam, are not in fact suitable as such for the de�nition of a MPLC system. Indeed,
order two derivatives are not orthogonal to the zero and �rst order derivatives. Suit-
able orthogonal mode bases can be de�ned analytically using orthonormalization
algorithms. However, the number of modes necessary to correctly describe large
parameter modi�cations scales up quickly.

In order to be able to realize large parameter modi�cations while using only a
small number of modes, we chose to use a numerical method for the de�nition of the
two mode bases necessary to the de�nition of the MPLC. This choice was motivated
by the fact that, in order to produce large displacements, high order derivatives must
be taken into account, involving a large number of theoretical modes.

The complexity in terms of phase plates for a MPLC system is linked to the
number of modes Nm which de�nes the transformation (see chapter 1). In this case,
we chose Nm = 5 so as to keep the number of phase plates small (Np = 10). We
found that with Nm = 5, we could theoretically obtain an overlap with a perfectly
defocused beam of more than 88% on a 4 zR range. The algorithm we devised for
the de�nition of the mode bases is depicted in �gure 3.3 in the case of defocus.

The �rst step is the de�nition of the {vi} modes in �gure 3.3: we chose beams
which are regularly defocused on the range we aim at (here 4 zR) and de�ne the
{vi} modes on a common plane P. These modes are not orthogonal. To de�ne the
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Figure 3.3: De�nition of the target modes {vi} — before orthonormalization.

output mode basis {vi}, we apply the Gram-Schmidt algorithm to the {vi} mode
family. We note that in this way, in contrary to what was the case in the previous
section, the �rst mode of the basis v0 is not a Gaussian beam.

The input mode basis {ui} is de�ned in a similar fashion, replacing the role of
defocus by that of transverse displacement. The corresponding {ui} and {vi} are
represented in �gure 3.4. As inferred by the analytical approach presented in 3.1,
the mode bases bear a close resemblance to the Hermite-Gauss and Laguerre-Gauss
mode bases. However, they are not equal.

3.2.4 De�nition of the parameter trajectory

Once the input and output mode bases are de�ned, we can calculate the projec-
tion coe�cients on each mode for all the positions within the 4zR range we chose.
For every position z(k)0 ∈ [0zR, 4zR] we want E(k)out = u

(
x,y, z − z(k)0

)
. By pro-

jecting u
(
x,y, z − z(k)0

)
on the output mode basis {vi}, we de�ne the coe�cients(

f ki , f
k
2 , f

k
3 , · · ·

)
. These coe�cients de�ne in the continuous limit the “projection
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i

ii

0 1 2 3 4

Figure 3.4: Intensity pro�les of (i) the input and (ii) output mode bases. The MPLC
system shapes mode (i, n) into mode (ii, n).

functions” { fi (z0)} and we have:

E(k)out =

4∑
i=0

fi
(
z(k)0

)
vi . (3.27)

If we consider a perfect unitary transform, we thus need to have the following
�eld at the input of the system:

E(k)in =

4∑
i=0

fi
(
z(k)0

)
ui . (3.28)

We now need to determine which couple of displacement di (z) and tilt pi (z) of the
input beam allow to produce the correct �eld E(k)in so that

E(k)in = ũ
(
di

(
z(k)0

)
,pi

(
z(k)0

)
;x,y, z

)
(3.29)

- if such a mode exists. To do so, we de�ne the overlap function:

G(k) (d,p) =

�����〈ũ (d,p;x,y, z) |
4∑

i=0
fi

(
z(k)0

)
ui〉

�����2 (3.30)

The values of d and p which maximize the functionG(k) are de�ned as d (k) and p(k).
We used a least-square numerical method to perform this optimization. In �gure 3.5
(left part) we plotted the trajectory which the input beam needs to describe in the
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Figure 3.5: Left: Calculated trajectory in normalized units. d is the transverse dis-
placement and p is the tilt imposed on the beam. w0 is the waist of the beam. This
parameter trajectory allows to scan the position of the beam focus from 0 to 4 zR
with zR the Rayleigh length of the beam. Right: Overlap between the desired out-
put (perfectly defocused gaussian beam) and (a) a “reference” beam (Gaussian beam
focused at z = 0 zR), (b) the beam produced with an ideal unitary operation and (c)
the beam produced with the actual MPLC system.

(d,p) plane for the output beam to see its focal point describe the [0 zR, 4 zR] range.
We stress the fact that this trajectory is continuous: any position between 0 and
4 zR can be attained following this trajectory. The amplitude of the displacement
and tilt are directly proportional to the waist size of the beam. For instance, in
order to move the focus point of the output beam to 4 zR , one needs to shift the
input beam by d/w0 = 1.09 and tilt it by pw0/2 = −0.15. Figure 3.5 (right) displays
the overlap between a perfectly defocused gaussian beam and the beam produced
by a perfect unitary operation when the trajectory of �gure 3.5 (left) is followed.
As a mean of comparison, we also plot the overlap between a perfectly defocused
Gaussian beam and a �xed Gaussian beam.

3.3 Experimental demonstration of beam defocus-
ing using beam steering

3.3.1 MPLC system

We built the MPLC system corresponding to the mode basis change from {ui} to
{vi} to experimentally verify the theory presented in this chapter. In table 3.1, the
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convergence of the MPLC algorithm is given for all the modes of the unitary trans-
form. The mean overlap value, 0.991, indicates a very good quality transform. In

Table 3.1: Convergence of the algorithm.

mode index 0 1 2 3 4
overlap 0.989 0.990 0.992 0.993 0.993

�gure 3.5 (right), we also plot the overlap between a perfectly defocus beam and the
beam produced with the optimized modes de�ned by the MPLC system. We can ob-
serve a very small drop of e�ciency of maximum 2% compared to the performances
of an ideal unitary system.

3.3.2 Experimental setup
Figure 3.6 presents the experimental setup we built to test the validity of our analysis
and numerical results. To have a precise control on the displacement and tilt of the
input beam, we used a liquid-crystal SLM. Acousto-optic and galvanometers can
serve the same purpose and have superior scanning speeds. In this experiment, the
maximum operating frequency was set by the SLM to 203 Hz. The speed of the total
system is set by the scanning element since the MPLC is a passive component.

We used a continuous wave laser at λ = 1064 nm coupled to a single mode �ber.
At the output of the �ber, the beam is collimated and we select one polarization
of the beam using a polarizing beam-splitter in order for it to be compatible with
the SLM. The beam produced by this system is very close to a Gaussian beam. We
then use a lens to mode-match the beam so as to produce a Gaussian beam with
a waist size w0 = 126 µm. This waist size corresponds to that which we used to
de�ne the MPLC system. The SLM surface is divided into two independant parts
which play the role of two orientable mirrors, with respective angles α1 and α2. The
beam thus re�ects twice on the SLM. The values of distances L1, L2 and L3 allow
to compute the displacement d and tilt p imposed on the beam at its waist. A 4-f
telescope was built to image the waist position of the beam. At the output of the
telescope, the beam is launched into the MPLC system. The output beam is imaged
on a scanning slit beam pro�ler using a 2-f —2-f setup. The waist size of the output
beam is w0 = 113 µm (which corresponds to zR = 37.7 mm).

The z axis is de�ned by the direction of light propagation. The x and y are re-
spectively the horizontal and vertical directions in the plane normal to the z axis. In
our implementation of this experimental setup, the footprint of the optical elements
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MPLC

Beam pro�ler
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Figure 3.6: Experimental setup. The output of a single-mode �ber is collimated
using an output coupler (OC) and mode-matched using a lens of focal length f1. The
polarization compatible with the SLM is selected using a polarizing beam splitter
(PBS). Two re�ections on the surface of the SLM allow to control the displacement
and tilt of the beam. The “tilt” angles of the virtual mirrors which constitute the two
halves of the SLM are respectively α1 and α2. The focus position of the input beam
is imaged using a 4-f telescope and injected into the MPLC system. The output
beam is imaged on a beam pro�ler using a 2-f imaging system.
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3.3. EXPERIMENTAL DEMONSTRATION OF BEAM DEFOCUSING USING BEAM STEERING

led to a small clip of one side of the beam - it is a particular problem of the experi-
mental setup and not a fundamental limit. For this reason, the quality of the beam
was degraded on the horizontal, or x , direction. The results obtained along the x
direction were consequently degraded compared to those of the y direction, and
we present here only the results on the y direction. Mirror holders with a smaller
footprint might have allowed to avoid this problem.

The experimental procedure we carried out was the following. For a given de-
focus z0, we positioned lens f2 at a distance z0+2f2 (f2 being the focal length of lens
f2) and the beam pro�ler at a distance 2f2 of the lens. We adjusted the parameters d
and p through the angles α1 and α2 so as to minimize the waist size measured by the
beam pro�ler. The correct parameters α1 and α2 were then �xed and the position of
the beam pro�ler was scanned along the propagation axis to record the evolution
of the beam waist size. The results of those measurements are presented on �gure
3.7. A Gaussian �t to the recorded data is performed in order to calculate the waist
size (dotted lines on �gure 3.7). For every position, the experimental data is plotted
as well as the corresponding numerical �t (superimposed solid lines) with the waist
size formula:

w (z) = w0

√
1 +M2

(
(z − z0)

zR

)2
(3.31)

The theoretical waist size which we aimed at producing is plotted on �gure 3.7
as well. We observe a clear defocus on a 4 zR range, con�rming the validity of
our approach. The measured waist size varies between 113 µm and 154 µm, while
the M2 factor of the �t to the measurements varies between 1.17 and 1.361. The
experimental values, while in good agreement with the theory, do not exactly match
with our model. We believe this to be mainly due to two e�ects. First, as mentioned
before, the beam was clipped in the x direction: this introduces a mismatch with
respect to a perfect Gaussian beam. Furthermore, we suspect a waist size mismatch
between the input beam experimentally produced and the beam used to produce
the MPLC device. Those two elements both reduce the overlap between the input
beam and the input mode basis used to de�ne the MPLC device.

In this experimental setup, the transmission e�ciency is limited by two ele-
ments: the e�ciency of the steering system and that of the MPLC system. The
transmission losses for the MPLC take their origin in the fact that we use �nite-size
phase plates, discrepancies between the theoretically calculated phase plates and
the printed phase plates, as well as from the losses due to the quality of the coating
used on the phase plate and mirror. On a typical telecommunication system manu-

1A perfect gaussian beam has M2 = 1.
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Figure 3.7: Experimental demonstration of defocusing over a 4 zR range using the
displacement and tilt of a beam combined with a MPLC system. The waist size
evolution on the y direction is plotted for six di�erent defocusing positions. The
dotted line represents the theoretical waist size.
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factured by CAILabs, with standard quality evaporated gold re�ective coatings and
14 re�ections (Np = 14), the overall transmission e�ciency of the system is of the
order of 70%.

3.4 Conclusion
We demonstrated in this chapter the fact that we can couple di�erent spatial pa-
rameters of a laser beam. The theoretical analysis of the Taylor series of modi�ed
Gaussian beams seeded the numerical method we developed to address large dis-
placements. To test the validity of this approach, we de�ned two orthogonal mode
bases, one associated with a transverse beam displacement or tilt, the other with
a defocus. Using a MPLC system to perform a unitary transform between those
two mode bases, we were able to numerically and experimentally couple the an-
gle and displacement of an input beam to the defocus of an output beam over a
4 zR range. Over the whole scanning range, the overlap between the numerically
simulated mode and a perfect defocused Gaussian mode is superior to 88%. An
experiment was built to validate this approach. We observed good performances
inside the design range which validate our approach. However, the experimental
setup was not ideally designed and introduced some errors which reduced the qual-
ity of the output beam compared to the numerical experiment. Outside the design
range, the quality of the beam deteriorates. We demonstrated that with this system,
we can control the defocus of a beam with the control quality one can have on the
displacement and tilt of a beam. Using the most precise techniques available for the
displacement and tilt of a beam, the scan of the focus point of a Gaussian beam in
a nearly continuous fashion in a given range is made available: in order to control
the position of the beam with a zR/10 precision (in this case 3.7 mm) along a 4 zR
defocusing trajectory, a precision of d/w0 = 0/14% and pw0/2 = 0.032% (which
in this experiment corresponds to d = 0.15µm and θ = 1µrad) is necessary. This
scanning can be done at high-frequency since no mechanical element is involved in
this system. The theoretical and numerical approaches we put forward in this work
are not limited to displacement/tilt and defocus and can be adapted to other spatial
degrees of freedom.
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Chapter 4

Numerical study of the MPLC
system properties

“When in doubt, use brute force.”
– Ken Thompson, Bell Labs
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We have introduced in section 1.3 the principle of the MPLC technology and
how such a system was designed and built. One noteworthy fact is that a typical
MPLC system has a lot of degrees of freedom. A typical system which shapes 6
modes has 14 phase plates of 320 × 500 pixels each. This means that 6 modes are
shaped using with more than 2 millions degrees of freedom. Furthermore, the pat-
terns which are written on each phase plate are not — except in the case of very
simple transforms where an analytical solution is already known — simple shapes
which can be described as functions of a few coe�cients. The large number of
degrees of freedom is the main motivation for a complex description of a MPLC
system. A given MPLC performs a mode basis change. The size of the mode bases
is �nite and orders of magnitude smaller than the number of degrees of freedom of
the system (6 modes with 2 millions pixels). For the modes which are shaped, the
transform implemented by the MPLC is unitary. One of the questions we would like
to address is: what about the other modes? We wish to study how the shaping of
a MPLC system a�ects the modes for which the transform is not de�ned. Another
question which we are interested in is to investigate how a MPLC system reacts
to misalignments (change in the length or angle between the phase plate and the
mirror for instance): how does it a�ect the modes which are shaped as well as those
for which the transform is not designed?

We say that the MPLC system is — in a certain measure — complex. While
complexity is a common concept, giving a de�nition of it is no easy task. A complex
system is more than often characterized by the fact that it possesses a large number
of degrees of freedom. One important aspect of complexity is the fact that it may
depend on the nature of the description of the system we choose, as well as the
scale of the description. A thorough study of complexity is outside the scope of this
thesis.

Complex and disordered systems have been thoroughly studied in a number of
�elds, among which is notably quantum transport. The transport properties of such
systems have been derived using a number techniques, such as the diagrammatic
approach for instance. We will in this chapter make use of the tools introduced by
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random matrix theory.
Our goal in this chapter is to develop a modelisation of MPLC systems compat-

ible with the description of complex and disordered systems. We aim at describing
the transport properties of the MPLC systems. We also would like to understand
how the di�erent constraints we put on the construction of such systems in�u-
ence their transport properties. We will in a �rst part introduce the �eld of random
matrix theory, before we describe the formalism and some results of the study of
scattering medium. Finally, we will present how we built a numerical model for the
MPLC and our e�orts to model its transport properties.

4.1 Random matrix theory

Random matrix theory is a tool which was developed for the purpose of describing
the statistical properties of complex many-body systems. It derives the statistical
properties of large matrices whose entries are randomly distributed. The symme-
tries of the matrices or the distributions of the matrix elements are used to derive
the singular values of the matrices, the correlations between the singular values and
other correlation functions of the matrix elements. This theory does not take into
account the microscopic or �ne structure of the system it studies nor does it aim at
describing these structures. Rather, this theory leans on the large scale symmetries
of the system. The success of this modelization lies in the fact that the microscopic
degrees of freedom are so plentiful that stochastic treatments provides a near exact
description of the system.

4.1.1 Historical overview of random matrix theory

Random matrices have �rst been introduced in multivariate statistical analysis by
Wishart [Wishart 28]. In an attempt to describe the experimentally measured spec-
tra of energy levels (and in particular energy level spacings) of complex nuclei,
Wigner, Dyson, Mehta and Gaudin replaced the hamiltonian of the nucleus by ran-
dom Hermitian matrices (this work is described in [Mehta 91]). They showed that,
asymptotically, the spectrum of the correlations of the energy levels only depends
on the symmetries of the system — demonstrating through this means universality
in spectral correlations.

Another �eld where random matrix was extremely successful is that of quantum
chaos. The Bohigas, Giannoni and Schmit conjecture [Bohigas 84] although not
yet formally demonstrated has proven very successful. It states that the statistical
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spectral properties of chaotic systems with time-reversal symmetry are predicted
by the random matrix theory of orthogonal Gaussian matrices.

At the end of last century, a renewed interest in the �eld was brought by the
development of a random matrix theory of quantum transport, which is concerned
with electronic mesoscopic systems. The mesoscopic scale designates the lengths
that range between the microscopic and the macroscopic scales. In the mesoscopic
study of electron transport, quantum coherence e�ects due to the wavelike nature
of electrons need to be taken into account, while the large number of atoms also
requires a statistical treatment [Beenakker 97, Akkermans 07]. The development
of the �eld of quantum transport was of course boosted by the miniaturization of
electronic components.

Because only very general concepts are used to develop this formalism, it is
easily transferable to other types of wave physics — classical or quantum. Ran-
dom matrix theory was used to study acoustic [Weaver 89, Aubry 09] and mi-
crowave systems [Stöckmann 90, Doron 90], where its predictions proved very suc-
cessful. More recently, it has been applied to light, whether to describe random
lasers (see for example [Goetschy 11]) or light scattering in disordered medium
[Vellekoop 08b, Rotter 17].

Finally, random matrix theory is a mathematical �eld of study as such
[Akemann 11]. Its tools and results �nd applications in a wide variety of disciplines
— such a neural networks, numerical linear algebra, information theory or signal
processing. As an example, [Tulino 04] gives a good review of the use of random
matrix theory to study the fundamental limits of communication channels.

4.1.2 Elements of algebra andmultivariate statistical analysis

We give in this section the de�nitions of some classical mathematical tools which
we will make use of in this chapter.

4.1.2.1 Singular value decomposition

The matrices used in random matrix theory are not necessarily square (although
it often is the case) and can be real or complex. We de�ne H as an M × N matrix:
H ∈ KM×N with K = R or C. The singular value decomposition of H is given by

H = UDV † (4.1)
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with D a M ×N diagonal matrix with real non-negative diagonal entries,U a M ×M
unitary1 matrix and V a N × N unitary matrix as well. The diagonal entries of D
de�ne the singular values of D.
The �rst P = min {M,N } columns of U and V are respectively the left- and right-
singular vectors of the corresponding singular values. With the previous de�nition,
we can write the following relations:

H †H = V
(
D†D

)
V † (4.2)

HH † = U
(
DD†

)
U †. (4.3)

Hence, the non-zero singular values of H are the square root of the non-zero eigen-
values of H †H and HH †.

4.1.2.2 Joint probability distribution

As we stated, the entries of a random matrix are random numbers. These random
variables follow probability distributions. The conditional probability is de�ned as
P (X = x |Y = y). The joint probability distribution of two discrete random vari-
ables X and Y is de�ned as

P (X = x and Y = y) = P (Y = y |X = x) P (X = x)

= P (X = x |Y = y) P (Y = y) (4.4)

and can easily be generalized to n random variables

P (X1 = x1, ... ,XN = xN ) = P (X1 = x1)

× P (X2 = x2 |X1 = x1)

...
× P (XN = xN |X1 = x1, ... ,XN−1 = xN−1) . (4.5)

If all the Xi random variables are independent, we can rewrite the joint probability
distribution as:

P (X1 = x1, ... ,Xn = xn) = P (X1 = x1) P (X2 = x2) ... P (Xn = xn) (4.6)
1A matrix U is unitary if UU † = U †U = I .
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4.1.3 Some random matrix theory results
We introduce in this section some tools and results which we will make use of in the
next sections. However, there is no need to thoroughly understand them in order
to follow the rest of the chapter. A hurried reader may very well skip the following
section.

4.1.3.1 Probability density

A key symmetry property random matrices must often verify is hermiticity — it is
for instance the case when random matrices are used to describe complex hamil-
tonians. It is however not always the case. In the current subsection we will be
interested in such Hermitian matrices, that is matrices for which H = H †. Under
this condition, H is necessarily a square matrix with Hii ∈ R and Hij = H ∗ji

2. We
de�ne the probability density of sampling the matrix H by using the same notation
as for the probability of a single random variable: P (H ). To simplify notations we
take here the example of a 2 × 2 hermitian matrix. The three matrix elements are
de�ned as independent which means they are uncorrelated. This translates to

P (H ) = P11 (H11) P22 (H22) P12 (H12) . (4.7)

Moreover, the probability density P for the three independent matrix elements H11,
H22 and H12 should be normalized:∫ ∞

−∞

P (H )dH11dH22dH12 = 1. (4.8)

We will now introduce two di�erent ensembles of random hermitian matrices which
obey supplementary condition: the probability density ofH must be invariant upon
any canonical transformation:

P (H ) = P
(
UHU −1) (4.9)

The ensemble to which U belongs de�nes the ensemble to which H belongs.
If H is real and the matrix U is orthogonal, that is if

U ∈ RN×N and U tU = UU t = I , (4.10)

H is said to belong to the Gaussian Orthogonal Ensemble (GOE).
2This notation designates complex conjugation: for (a,b) ∈ R2, (a + ib)∗ = a − ib
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If H is complex and U is unitary, that is if

U ∈ CN×N and U †U = UU † = I , (4.11)

H belongs to the Gaussian Unitary Ensemble (GUE).
In both cases, one can show (see [Haake 06]) that the probability density of the

matrix elements of a random hermitian matrix H admits a gaussian distribution:

P (H ) = Ce−A Tr H 2 (4.12)

whereA andC are constants. This results holds true for a N ×N matrix with N ∈ N.
The eigenvalues of a matrix, not its elements, are often the object in which one

is interested when studying a matrix which is why we will now derive the proba-
bility density of the eigenvalues of a matrix H . For any dimension N , a Hermitian
matrix H ∈ CN×N can be diagonalised by a unitary matrix U : H = UDU † with
D a diagonal matrix. Equation 4.12 thus implies that the eigenvalues of a random
hermitian matrix H have a reduced distribution: indeed, the description of D uses
two coe�cients while H uses four real numbers. For the sake of simplicity, we go
back to the H ∈ C2×2 case to present the following demonstration. If we set the
determinant of U to unity (which up to a phase factor is always possible), we can
write the unitary transform U using two parameters Θ and ϕ:

U =

(
cosΘ −e−iϕ sinΘ

eiϕ sinΘ cosΘ

)
(4.13)

and the matrix D takes the following expression

D =

(
E+ 0
0 E−

)
. (4.14)

E+ and E− are the eigenvalues of H . The independent elements of H can thus be
expressed as:

H11 =E+ cosΘ2 + E− sinΘ2 (4.15)
H22 =E+ sinΘ2 + E− cosΘ2 (4.16)
H12 = (E+ − E−) e

iϕ cosΘ sinΘ (4.17)

To make a change of variable in equation 4.8 from the matrix elements to the matrix
eigenvalues, we introduce the jacobian J = (E+ − E−)

2 cosΘ sinΘ. By integrating
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the angles Θ and ϕ, one can show (see [Haake 06]) that the probability distribution
of the eigenvalues of a 2 × 2 random hermitian matrix is given by

P (E+, E−) ∝ C |E+ − E− |
2 e−A (E

2
++E

2
−). (4.18)

If now the matrix H belongs to the GOE, the same derivation can be performed to
show that

P (E+, E−) ∝ C |E+ − E− | e
−A (E2

++E
2
−). (4.19)

These expressions can be generalized to higher dimensions of the matrix H . The
joint distribution of the eigenvalues Eµ of a hermitian matrix takes the following
form [Haake 06]:

P
(
{Eµ}

)
= C

1...N∏
µ<ν

��Eµ − Eν ��β exp
(
−A

N∑
µ=1

E2
µ

)
(4.20)

β is equal to 1 or 2 if the matrix belongs respectively to the GOE or the GUE3. The
�rst factor in equation 4.20 indicates clearly that there can be no degeneracies of the
eigenvalues: the probability of having two equal eigenvalues is necessarily equal to
zero. This phenomenon is known as energy level repulsion4.

4.1.3.2 Density of states

The normalized density of states of the system — or density of levels — described by
the matrix H is de�ned as

ρ (E) =
1
N

N∑
i=1

δ (E − Ei) . (4.21)

This function describes the behaviour of the typical eigenvalue. In solid-state
physics, it quanti�es the number of electronic states which are found at a given
energy. It is for instance used to de�ne Fermi’s golden rule. This expression of the
density of states is valid for one particular matrix. We would like to know what
is the typical density of states of a matrix when this matrix is sampled in a given
ensemble (for instance the GUE). We thus de�ne the ensemble averaged density of
state ρ as

ρ (E) =

∫
P (E, E2, ..., EN )dE2...dEN (4.22)

3Although its detailed description is outside the scope of this thesis, another ensemble with β = 4
can be de�ned. It is called the Gaussian Symplectic Ensemble.

4Indeed, if H is the hamiltonian of a system, the eigenvalues represent the energy levels.
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which holds for all the samples of a given ensemble. We use the same letter in
equations 4.21 and 4.22, since as N goes to in�nity, one matrix’s density of states
converges quickly to that of the ensemble it belongs to.

Semi-circle law For this integral to be well-de�ned when N →∞, a normal-
isation can be chosen such that the second-order moments of the matrix elements
〈HijHji〉

5 (for H in the GUE) take the value 1/(4N ). If so, the density of levels con-
verges almost surely to the famous Wigner’s semicircle law [Haake 06]:

ρ (E) =

{
(2/π )

√
1 − E2 if |E | ≤ 1

0 if |E | > 1
(4.23)

Marc̆enko-Pastur law Another famous distribution can be derived using
random matrix theory for a di�erent class of random matrices. We will now con-
sider not Hermitian matrices but rather N ×M matrices H with independent iden-
tically distributed entries whose mean value is equal to zero, variance to 1/N and
fourth-order momentum of orderO

(
1/N 2) . The ratioM/N → β asN ,M →∞. The

level density of the matrix H †H converges almost surely to the Marc̆enko-Pastur
distribution [Marc̆enko 67]

ρ (E) =

(
1 − 1

β

)+
δ (E) +

√
(E − a)+ (b − E)+

2πβE (4.24)

with a =
(
1 −

√
β
)2

and b =
(
1 +

√
β
)2

(see [Tulino 04])6.

4.1.4 Free probability theory
A signi�cant development in random matrix theory has been the application of the
non-commutative free-probability theory to random matrices. Free-probability was
introduced by Voiculescu [Voiculescu 83]. This theory was developed to tackle the
following problem: if we know the spectral properties of two matrices H1 and H2,
can we have information on the spectral properties of the sum H1 + H2 or H1 H2?

5The average 〈...〉 is taken as an ensemble average.
6We de�ne x+ as

x+ =

{
x if x ≥ 0
0 if x < 0

(4.25)
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In the usual context, unless H1 and H2 commute, we cannot say anything about the
properties ofH1+H2, H1 H2 or any combination ofH1 andH2. Free probability stud-
ies noncommutative random variables. The “freeness” character is the equivalent
of the classical notion of independence of random variables.

4.1.4.1 Resolvent

Several types of transforms can be de�ned to describe the spectrum properties of
random matrices (see appendix C). If we consider a Hermitian N ×N matrix H with
eigenvalues Ei , the resolvent of the matrix is de�ned as (see [Goetschy 11])

д(z) =
1
N

〈
Tr 1

z − H

〉
=

1
N

〈
N∑
i=1

1
z − Ei

〉
(4.26)

where the average 〈...〉 is taken over a number of realizations of H . The resolvent
can be linked to the level density of the matrix by

д (E + iϵ) = P
∫ ∞

−∞

dE′
ρ (E′)

E − E′
− iπρ (E) (4.27)

with P the principal value of the integral7. The expression of ρ (E) can be recipro-
cally derived from д:

ρ (E) = −
1
π

lim
ϵ→0+

Im [д (E + iϵ)] . (4.29)

The resolvent is a very useful tool in other areas, for instance in physics for the
interactions of atoms with the electromagnetic �eld [Cohen-Tannoudji 68].

4.1.4.2 Free probability

The following paragraph is greatly inspired from [Goetschy 11]. We brie�y recall
some properties of independent random variables before de�ning their free coun-
terparts. The probability density of a random variable x is given by px . Its cumulant

7The principal value is de�ned as

P
∫ b

a
f (x)dx = lim

ϵ→0

(∫ c−ϵ

a
f (x)dx +

∫ b

c+ϵ
f (x)dx

)
. (4.28)
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generating function is given by rx (z) = ln (〈ezx〉). If two random variables x1 and
x2 are independent, they verify the following properties:

〈x1x2〉 = 〈x1〉〈x2〉 (4.30)
px1+x2 = px1 px2 (4.31)
rx1+x2 = rx1 + rx2 . (4.32)

We de�ne the expectation value 〈. . . 〉Λ for a N × N random matrix X as:

〈X 〉Λ =
1
N
〈Tr X 〉 (4.33)

Two Hermitian matrices X1 and X2 are asymptotically free if for all l ∈ N and all
polynomials Pi and Qi (1 ≤ i ≤ l) we have [Tulino 04]:

∀i 〈Pi (X1)〉Λ = 〈Qi (X2)〉Λ = 0 =⇒ 〈P1 (X1)Q1 (X2) ...Pl (X1)Ql (X1)〉Λ = 0. (4.34)

This equation can be interpreted as follows: two random matrices X1 and X2 are
free if their eigenvectors are almost surely orthogonal. If X1 and X2 are free, then
we can write

〈X1X2〉Λ = 〈X1〉Λ〈X2〉Λ. (4.35)

The transforms de�ned in appendix C allow to derive interesting results for free
matrices [Goetschy 11]. The R-transform of the sum of two free matrices writes

RX1+X2(z) = RX1(z) + RX2(z). (4.36)

Likewise, the S-transform of the product of two free matrices writes

SX1X2(z) = SX1(z) SX2(z). (4.37)

The parallel with classical probability can be extended by noting two interesting
properties. The semicircle law can be seen as the free analog of the Gaussian dis-
tribution (in the case of the central limit theorem): the spectrum of the normalized
sum of free random matrices converges to the semi-circle law [Tulino 04]. Likewise,
the spectrum of the normalized sum of free random matrices of unit rank converges
to the Marc̆enko-Pastur law which can thus be seen as a free analog of the Poisson
distribution
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4.2 Scattering in complex media

In this section we aim at describing systems in which a wave propagates through
a disordered or complex medium. Even though the equations which describe the
propagation of a wavefront in such a medium could in theory be written down and
solved, it is in practice often not the case. Just like specifying all the positions and
momenta of molecules in a gas is both unrealistic and unnecessary, giving the po-
sitions of all scatterers in an opaque material, is practically infeasible and is in fact
not at all necessary to describe the interference phenomena which take place when
a wave propagates through such systems. Mesoscopic scattering theory tackles such
problems. It was originally developed to describe the quantum transport properties
of electrons, and latter adapted to describe the propagation of light in complex me-
dia [Beenakker 97, Akkermans 07]. The parallel between the two �elds can be made
by comparing the Schrödinger equation for the evolution of an electron in a poten-
tial and the scalar Helmholtz equation for an electric �eld in a medium described by
the dielectric function ϵ (r ) (a complete derivation can be found in [Rotter 17]). This
correspondence between the equations describing electronic and light scattering is
essential to transfer results and concepts from one �eld to another — the validity
of this parallel being set by the respective validity limits of both the Helmholtz and
Scrödinger equations.

4.2.1 Scattering matrix formalism

We do not aim at describing the propagation medium through its microscopic com-
ponents. Instead, we consider it as a bulk connected to a number of ports — in
this thesis we only consider the case of two connecting ports. Light or electronic
waves launched through these ports can be either re�ected or transmitted. We will
thus describe the scattering medium by its re�ection and transmission coe�cients.
The scattering matrix encompasses such a modelisation. A good introduction to
this formalism can be found in [Brouwer 97, Rotter 17] — the next section is largely
based on these references. The system we consider is described in �gure 4.1. We
suppose that the left input port can support N modes — or channels — and that
the right input port can support M modes. In the electronic case, this quantization
of the number of modes comes from the �nite transverse dimensions of the wire.
In optics, these ports can for instance be few or multi-mode �bers. We de�ne the
(N +M)×(N +M) scattering matrix S which relates incoming and outgoing modes

128



CHAPTER 4. NUMERICAL STUDY OF THE MPLC SYSTEM PROPERTIES

t

r r ′

t ′

N M

Figure 4.1: Scattering matrix components. t and t ′ are transmission matrices and r
and r ′ re�ection matrices.

as

S =

(
r t ′

t r ′

)
(4.38)

t ∈ CM×N and r ∈ CN×N respectively characterize the amplitudes of the modes
incoming from the left in �gure 4.1 which are transmitted and re�ected. t ′ ∈ CN×M
and r ′ ∈ CM×M characterize the amplitudes of the transmitted and re�ected modes
incoming from the right in �gure 4.1. The matrix S gives the relation between
the modes which come in and out of the system. We use the subscripts l and r
to designate the left and right parts in �gure 4.1 and the superscript + and − to
designate the rightward and leftward propagating modes. We can then write:

ein =

(
e+
l
e−r

)
, eout =

(
e−
l
e+r

)
and eout = Sein . (4.39)

The o�-diagonal blocks t and t ′ respectively contain the transmission amplitudes
from left to right and right to left. We make the assumption that there are no losses
nor absorption. Flux conservation requires the matrix be unitary:

S†S = SS† = 1. (4.40)

For the mode of index n incoming on the left, its transmission and re�ection coef-
�cients are Tn =

∑N
m=1 |tmn |

2 =
(
t†t

)
nn and Rn =

∑N
m=1 |rmn |

2 =
(
r†r

)
nn.

The total transmission T and re�ection R for modes incoming from the left in
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�gure 4.1 can be expressed as

T = Tr
(
t†t

)
=

∑
k

τk (4.41)

R = Tr
(
r†r

)
=

∑
k

υk (4.42)

where τk and υk are the eigenvalues of t†t and r†r 8. In general, Tn is not equal to
any of the τk , meaning the transmission coe�cient of mode n is di�erent from that
of the transmission eigenmode k . In the case where N = M , it can also be shown
[Rotter 17] that the matrices t†t and r†r can be simultaneously diagonalized and
that in this case their eigenvalues obey the following relation τk = 1 − υk .

However, t is not necessarily square. Using singular value decomposition intro-
duced in 4.1.2.1, we can write t = UDV †. The nonzero singular values σk of t are
the square roots of the eigenvalues of t†t : σk =

√
τk .

Using the scattering matrix formalism, concatenated systems can be described
simply: the transmission matrix t allows to describe the transmission properties of
two scattering media connected by a common port. In this con�guration, the total
transfer matrix is expressed as a product [Brouwer 97]:

t = t2 t1 (4.44)

with t1 the left-most scattering system transfer matrix, t2 the right-most one and
t that of the total system. The transmission properties of large scattering systems
can in this way be derived from those of smaller parts of the system.

4.2.2 Mesoscopic scattering theory
We present in the following section some of the most remarquable results derived in
mesoscopic scattering theory. As mentioned before, the goal of our approach is not
to describe every coe�cient of the scattering matrix S . Rather, we wish to deduce
the transport properties from the ensembles to which the matrix S belongs. We

8A physical quantity which is linked toT is the conductance. It is a central quantity in mesoscopic
physics. It is de�ned using the transmission matrix:

G = G0Tr t†t = G0T . (4.43)

with G0 = e2/h. In electricity, this quantity measures the capacity of a material to transmit electric
current — it is the inverse of the resistivity. The de�nition we give here allows to study this object
both in mesoscopic physics and optics (see 4.5).
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have for instance indicated in the previous section that S must be unitary when no
absorption or loss are present. We will present two speci�c cases which have been
studied in the context of mesoscopic scattering theory and for which this question
has been solved — the quantum dot and the disordered wire. The di�erent statistics
we derive for these two models stem from the origin of disorder: in one the chaos9

comes from boundary scattering whereas in the other the disorder is due to impurity
scattering.

Quantum dot A quantum dot usually designates a semiconductor structure in
which the electronic wave function is con�ned in all three dimensions. We are
interested here in quantum dots which consist of structures etched on semiconduc-
tors: they form a cavity for a two dimensional electron gas10. A quantum dot is
linked to electron reservoirs. In the case where two of them are present, a quantum
dot corresponds to the geometry studied in 4.2.1. The shape of the con�ning po-
tential may lead to ballistic chaotic trajectories. Billiards are good examples of such
potentials: in a stadium-shaped billiard (see �gure 4.2 for illustration), a classical
particle has chaotic trajectories. In the case where the coupling is ideal (there is

Figure 4.2: Stadium-shaped quantum dot. Image taken from [Chang 94].

no barrier between the quantum dot and the electron reservoirs), the probability
density of the scattering matrix S of the quantum dot at the Fermi energy11 is taken
to be constant (derivation of this result can be found in [Beenakker 11]). This prop-
erty implies that the scattering matrix belongs to the Dyson circular ensemble of

9Chaos is associated with systems where trajectories are sensitive to initial conditions: a slight
change in initial conditions leads to exponentially diverging trajectories.

10These structures are particularly interesting because the electron wavelength at the Fermi en-
ergy is two orders of magnitude greater than that of an electron in a metal. It is thus easier to study
the statistics of the level spacing in these systems compared to metallic structures since the energy
resolution required to probe the energy levels is not as sharp.

11The Fermi energy refers to the top most �lled energy level at 0 K.
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random matrices12. If we now suppose that the number of transmission and re�ec-
tion channels are equal and that N is much greater than 1 (i.e. we suppose that S
is a very large matrix), the normalized density of transmission eigenvalues can be
derived [Beenakker 11]:

ρ (τ ) =
N

π

1
√
τ
√

1 − τ
. (4.45)

This distribution has a bimodal distribution and its mean transmission value is τ̄ =
1/2 (see left part of �gure 4.4).

Quantum wire The di�usive regime in scattering systems is de�ned by the fact
that multiple scattering is the dominant process — as opposed to the ballistic regime.
In the case of a metal wire, the di�usive regime can be observed in the case where
the length L of the wire is large compared to the mean free path l while also small
compared to the localization length ξ 13: l � L � ξ . The mean free path l gives a
measure of the length after which the propagation direction of an electron is ran-
domized — it characterizes the scattering properties of the medium. In a disordered

+

Figure 4.3: Weakly scattering segments are recursively added to the wire.

wire, the degree of disorder experienced by an incoming wave depends strongly
on the “time” it spends in the medium: the thickness or length of the wire plays
an important role. To describe a disordered wire, Dorokhov, Mello, Pereyra and
Kumar (DMPK) proposed a model [Dorokhov 82, Mello 88] which breaks down the
wire into thin scattering slices and stacks them together in a recursive way (see �g-
ure 4.3). The length of each scattering element is taken to be much larger than the
wavelength while shorter than the transport mean free path. The so-called DMPK

12This ensemble is composed of unitary matrices which columns are orthogonal and have a norm
equal to 1 [Dyson 62, Beenakker 11].

13The localization length is given by ξ = (βN + 2 − β) l . β is the symmetry index and N the
number of modes [Beenakker 11].
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equation describes the evolution of the transmission eigenvalues τn as a function of
the total length of the wire L (see [Beenakker 97]). The random matrix we consider
in this case is not the scattering matrix S but the transmission matrix t . For a metal-
lic wire of cross-section A and Fermi wavelength λF

14, the number of propagating
modes can be approximated asN ' A/λ2

F . t is thus aN×N matrix (typically, N � 1).
It can be shown that in the di�usive regime, the DMPK equation can be solved. One
can deduce from it the eigenvalue density of the system (see [Beenakker 97] for a
complete derivation):

ρ (τ ) =
Nl

2L
1

τ
√

1 − τ
, for τmin ≤ τ < 1 (4.46)

with τmin ' 4e−L/2l (see right part of �gure 4.4). This distribution is again bimodal
with a mean transmission value τ̄ = l/L. The inverse values of the localization
lengths ξn must be evenly distributed [Beenakker 97]. The localization lengths and
the transmission intensity eigenvalues are related through the following equation:
τn = cosh−2 (L/ξn). This bimodal distribution was experimentally measured using
elastic waves in a disordered waveguide [Gérardin 14].

0 1
τ

ρ
( τ
)

Quantum dot

0 1
τ

Quantum wire

Figure 4.4: Bimodal distributions

Open and closed channels In both distributions de�ned in 4.45 and 4.46 and rep-
resented in �gure 4.4, we can observe that the transmission coe�cients are peaked
around 0 and 1. This means that nearly all the transmission channels are “closed”

14The Fermi wavelength is the de Broglie wavelength of the electrons present near the Fermi
energy level.
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(τn ' 0) or “open” (τn ' 1). The number of such “open” channels is discussed in
[Imry 86]. These distributions, like all objects of random matrix theory, are to be
interpreted as a statistical result: they do not specify the shape of the eigenvalue
distribution of one system but rather the shape of the eigenvalue distribution of an
ensemble of realizations of similar systems.

Conductance quantization The following result, although not connected to the
work conducted in this thesis, illustrates nicely the correspondence which can be
made between electronics and optics. Mesoscopic scattering theory makes the
demonstration of conductance quantization. When the size of the contact to a quan-
tum dot is continuously tuned, the conductance G increases in steps of size G0. As
the size of the contact increases, the number of guided modes will increase by steps
of one: the size of the contact when a step is reached corresponds to the threshold for
a new mode to be guided. Hence, according to equation 4.43, the total conductance
will increase by a factor e2/h. Since this e�ect relies entirely on the wave-like na-
ture of electrons, it can also be implemented with electromagnetic �elds, as shown
in �gure 4.5.

Figure 4.5: Conductance quantization for electronic transport through a quan-
tum point contact ((a), taken from [van Wees 88]) and light intensity transmission
through a slit of variable size ((b), taken from [Montie 91]). The complete �gure
was taken from [Rotter 17].
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4.2.3 Mesoscopic e�ects in optical systems

As we have introduced in the previous section, many phenomena �rst discovered
in the �eld of mesoscopic transport �nd their counterpart in optics. A good review
of the correspondence between the two �elds can be found in [Rotter 17]. However,
the �eld of optics o�ers one advantage to push this study further. Indeed, in the case
of electronic transport, the coherence of the electronic wave packet is at the heart
of the phenomena we describe. The systems under study should thus be protected
from decoherence, which is a technical challenge. It is also harder to individually
control modes in electronic system compared to optical systems. On the contrary,
in optics, one can manipulate electromagnetic modes individually and thus access
their re�ection or transmission coe�cients separately. The drawback of optical
systems is that the number of modes is very large which means that the scattering
matrix of a system cannot usually be completely measured. We note that a large
amount of work was conducted in the �elds of microwaves [Aubry 10] and acoustic
waves, which o�er the advantage of a reduced number of modes compared to optical
systems.

Speckle A well known optical phenomenon is speckle. Speckle is formed when
a coherent �eld is shone through, or re�ected from, a thin di�using object (for ex-
ample a sheet of paper). The resulting intensity pattern has a random aspect and
follows — in the case of perfect coherence of the source — the following probability
distribution [Goodman 76]:

p (I ) = (1/〈I 〉) e−I/〈I 〉 . (4.47)

This behaviour can be derived from the fact that the intensity on each point is the
sum of a large number of random but identically distributed random variables. The
�eld E = X + iY on point x is the sum of a large number of transmitted �elds
which have followed all the possible trajectories S to reach the observation point:
E =

∑
S ES . The �elds Es are independent and identically distributed. This means

that X =
∑

S Xs and Y =
∑

S Ys will, according to the central limit theorem, follow
the distributions:

p (X ) =
1
√

2πσ
e−X

2/2σ 2 (4.48)

p (Y ) =
1
√

2πσ
e−Y

2/2σ 2 (4.49)
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with σ 2 = 〈X 2〉 = 〈Y 2〉 = 〈I 〉/2. We can derive the joint distribution

p (X ,Y ) =
1

π 〈I 〉
e−I/〈I 〉 . (4.50)

Finally, the distribution of intensities obeys

p (I ) =

∬
p (X ,Y )δ

(
X 2 + Y 2 − I

)
dXdY =

1
〈I 〉

e−I/〈I 〉 . (4.51)

The speckle phenomenon can also be studied in the context of random matrix the-
ory and equation 4.47 derived using a di�erent demonstration (see [Kogan 95] for
the complete derivation).

Optical experiments using wavefront shaping Equation 4.46 was originally
derived for electronic transport in a waveguide. It was shown that this expression
is valid in a broader context [Nazarov 94], in particular in a slab geometry. This
is of prime interest since a large number of free-space optics experiment, in par-
ticular those in which light is sent through disordered media, can be described as
slab geometries. Optics experiment are of particular interest to test the results we
introduced thanks to the development of beam shaping techniques such as those
introduced in chapter 1. Indeed, tools such as a SLM allow to send through the
disordered medium any one mode at a time. Theoretically, this allows the mea-
surement of the t matrix (or of the r matrix). Singular value decomposition of this
measured matrix then allows to �nd the eigenmodes of propagation — that is the
“open” channels for a given disordered medium. The measurement of the transmis-
sion matrix of a sample was demonstrated in [Popo� 10, Popo� 11]. The e�ects of
an incomplete control over all the channels is studied in [Goetschy 13]. However,
the singular value distribution of the transmission matrix measured in [Popo� 10]
does not correspond to a bimodal distribution. This is due to the fact that the matrix
measured in the experimental setup is not the complete transmission matrix but
rather a �ltered version of the matrix. One of the most noteworthy experiments
conducted with optical systems is presented in [Vellekoop 08a]. The transmission
matrix coe�cients are measured and the variance of the eigenvalues distribution is
probed. The transmission matrix is �rst used to adjust the intensity and phase of
each of the available input modes so as to maximize the intensity at a given point
in a plane lying behind the scattering medium (see �gure 4.6 left). The experiment
is conducted a large number of times (by changing the disordered medium) to com-
pare the predictions of random matrix theory with the experimental results. The
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Figure 4.6: Intensity distribution of light in (a) a nonoptimized wavefront and (b) the
optimized wavefront. In (c), the intensity is summed in the y direction to average
over speckle. The dashed brown curve corresponds to the nonoptimized wavefront
while the blue solid curve displays the optimized wavefront. The complete �gure
was taken from [Vellekoop 08a].

bimodal distribution of disordered media predicts that in the case where the in-
cident wavefront is perfectly shaped to match with transmission eigenmodes, the
ratio of the incident and transmitted intensities is equal to 2/3. This ratio was ex-
perimentally measured to 0.68±0.07 in excellent agreement with theory (see �gure
4.6). This experiment is therefore a �rst experimental con�rmation of the bimodal
distribution of transmission coe�cients. In a silicon waveguide, the energy density
distribution of modes corresponding to open and closed channels was measured in
[Sarma 16].

4.3 Modelization of the MPLC
We have introduced a number of tools, among which random matrix theory, to
study the transmission properties of complex systems and want to use them to study
the transmission properties of MPLC systems. In the introduction of this chapter,
we explained that the MPLC system possesses a number of degrees of freedom much
greater than the number of constraints of the system. The transmission properties
of the MPLC system are only known for a very small number of modes: the number
of modes the MPLC system is designed to shape. In order to study the transmission
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properties of the MPLC systems for other modes, we want to gain access to the
transmission matrix of the MPLC. The experimental measurement of such a matrix
is quite a di�cult task which is why we turned to a numerical approach.

MPLC

u1

u2

u3

uNm

v1

v2

v3

vNm

L

1 2 Np

· · ·

Figure 4.7: Steps of the construction of a MPLC system.

4.3.1 Construction of the MPLC transmission matrix
A MPLC system is characterized by a collection of inputs (see �gure 4.7). First we
de�ne the number of modes to be shaped Nm and their spatial pro�les: they are
the input

(
{ui}1≤i≤Nm

)
and output

(
{vi}1≤i≤Nm

)
modes. The number of phase plates(

Np
)

and their size (mx ×my pixels), as well as the length of the separation (L) be-
tween each phase plate are chosen accordingly. As a �rst step, we chose to work
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with existing systems, meaning we used the data of MPLC systems which had al-
ready been simulated and constructed physically. In this way, we can be positive
that the numerical propagation model we use is adequate since the agreement be-
tween the simulation and the physical system has already been tested. We use this
model to build the transmission matrices of several di�erent MPLC systems.

We present here the method we used to construct the transmission matrix of
a MPLC system. As we presented in 4.2.1, a transmission matrix t relates N input
modes with M output modes. We will in this part use the integers P and Q in place
of N and M to avoid any confusion with the number of modes Nm or of phase plates
Np . We consequently �rst need to de�ne a mode basis of size P to characterize the
input of the MPLC system and similarly a mode basis of sizeQ for the output of the
system. The mode basis we chose at the output of the system is the pixel mode basis(
{ψi}1≤i≤Q

)
withQ =mx×my , withmx×my the number of pixels of the actual phase

plates. This mode basis is natural since it is the one which is used in the algorithm
which calculates the phase plates of a MPLC system. It could also be used as the
mode basis for the input of the system. However, in the system we use, Q is quite
a large number: 150 000 ≤ Q ≤ 400 000. The transmission matrix of the system is a
matrix of size Q × P . If one chooses the pixel mode basis for both the input and the
output, we have P = Q and the size the matrix t reaches makes it too big to be stored
or processed. We therefore chose as the mode basis for the input of the system the
({ϕi}1≤i≤P ) Hermite-Gauss mode basis. As was de�ned in chapter 1, the Hermite-
Gauss mode basis is constructed as a product of nx and ny modes in the x and y
directions, meaning P = nx ×ny . In practice, we choose values of P andQ such that
P � Q . Typically, P ' 650 (nx = 15 and ny = 43). The choice of the Hermite-Gauss
mode basis as the basis for the input of the system is motivated by the fact that in
most of the systems we will consider, the input modes which de�ned the MPLC sys-
tem, the modes

(
{ui}1≤i≤Nm

)
can be well described by Hermite-Gauss modes. More

than often, the input of MPLC systems are a collection of spatially separated Gaus-
sian beams. We have shown in the previous chapters that Gaussian beams which
see their spatial parameters vary from the design ones (displacement, tilt, waist size,
defocus) can very well be described as a combination of a small number of Hermite-
Gauss modes. We have mentioned in the beginning of the chapter that one of the
motivation for the study we conduct here is to investigate how misalignment of the
physical MPLC systems translates in terms of its transmission properties. Errors in
the positioning of the input beams as well as in the distance or angle between the
phase plate and the mirror can precisely be described as slightly modi�ed Gaussian
beams. We would like to stress that we do not have as much a priori information
on how to describe the output modes

(
{ṽi}1≤i≤Nm

)
of a misaligned MPLC system.
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Nevertheless, the experience acquired by technicians at CAILabs tells us that such
ṽi modes intensity pro�les often resemble speckle patterns. This is the reason why
we choose to keep the pixel mode basis as the mode basis at the output of the MPLC
system, in order to keep the possibility of having a �ne description of the transmit-
ted output modes. Finally, we had that we have tested di�erent types of mode basis
and sizes of mode basis without noticing notable di�erences linked to the choice of
the mode bases.

Thus, we constructed the transmission matrix t of a MPLC system by propa-
gating modes of basis ({ϕi}1≤i≤P ) through the complete system and projecting the
result on basis

(
{ψi}1≤i≤Q

)
. The matrix t schematically gives the link {ϕi} → {ψi}.

We have seen in the previous section that a number of models derived for transmis-
sions matrices give in fact information on the spectrum of t†t . In our case, t†t is a
square matrix of size P ×P . If we were to complete the mode bases {ui} and {vi} for
them to respectively sizes P and Q we could also express the matrix t using these
mode bases. In this case, by construction, the phase masks are optimized such that
a sub-block of size Nm × Nm of t†t is the identity matrix:

t†t =




1 0 · · · 0
0 ...
... 0
0 · · · 0 1


?

? ?


. (4.52)

Finally, we mention that another approach can be pursued to de�ne the trans-
mission matrix t of a MPLC system — although we did not use it. The constituting
elements of a MPLC system can all be represented with their own transmission ma-
trices. The free-space propagation on distance L between phase plates de�nes a
transmission matrix t0. Each phase plate sets a speci�c transmission matrix ti with
i ∈ [1,Np] (the matrices ti were de�ned in 1). The total transmission matrix is

t = tNpt0tNp−1t0 · · · t0t1. (4.53)

4.3.2 Framework
The �rst step of our approach is to derive the spectral properties of the transmission
matrices of existing MPLC systems. To study the spectral properties of a transmis-
sion matrix t , we perform the singular value decomposition of the matrix (SVD as
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de�ned in 4.1.2.1):
t = UDV † (4.54)

withU of sizeQ ×Q ,V of size P ×P and D aQ ×P diagonal matrix. Hence, we have

t†t = V
(
D†D

)
V †. (4.55)

We would like to understand if some of the models we introduced in the previous
section appear to �t the distributions we observe for existing MPLC systems and if
di�erent regimes appear depending on the number of modes Nm or phase plates Np .
The development of such a theoretical model of the MPLC transmission matrices
would allow us to identify the classes of transforms we can implement with MPLC
systems.

In a second step, we wish to understand the in�uence of the following parame-
ters on the transmission spectra of t†t matrices:

• Nm the number of modes for which the system is designed

• Np the number of phase plates

• L the distance between phase plates

Through this study we wish to investigate whether the parameters we use in the
way we currently design MPLC systems are optimal or not. This optimality criterion
can itself vary depending on the types of transforms which are implemented.

In order to meet realistic industrial or even physical manufacturing require-
ments, some limitations — such as relative smoothness of the phase plates — are
integrated in the phase plate calculation algorithm. Another interesting area of in-
vestigation which we were not able to pursue in this thesis is the study of these
fabrication constraints on the transmission properties of MPLC systems. However,
the tools we developed can be used to study this question.

4.3.3 Properties of the transmission matrix
We plot in �gure 4.8 the matrix t†t of a MPLC system with Nm = 10 (and Np = 14).
The �rst observation we can make is that the matrix is almost diagonal. When
looking at a close up of this matrix, we can see a block structure appearing. The
input modes basis {ϕi}1≤i≤P is a Hermite-Gauss basis with number of modes nx and
ny in the x and y directions respectively. The size of the blocks in t†t is equal to
nx × nx and re�ects the way the input mode basis was constructed. This structure
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nx

nx

Figure 4.8: t†t for a transform with Nm = 10 (and Np = 14). On the right we plot
the top-left corner of the t†t matrix.

is found whatever the number of modes shaped Nm or the number of phase plates
Np .

The second interesting structure we can observe comes from the singular val-
ues of t . In �gure 4.9 we plot the singular values for three di�erent values of Nm

(Nm = 6, 10, 15, the corresponding Np values are 14, 14 and 20). We can observe the
�rst Nm singular values stand out from the rest of the singular values: a gap appears.
This feature is not surprising since the system is optimized to shape and transmit
preferentially Nm modes. But this phenomenon is not systematic. On �gure 4.10,
we show a system with Nm = 9 (and Np = 20) where no clear di�erence can be
seen between the �rst Nm singular values and the rest of them. There is however
one property which di�erentiates the systems of �gure 4.9 and that of �gure 4.10.
In �gure 4.9, the output modes are �ber modes, whereas in �gure 4.10, the output
modes are Laguerre-Gauss modes. In the case where the �rst Nm singular values
stand out, this behaviour leads us to make the hypothesis that theses modes corre-
spond to the “open” channels of this system — which raises the following question:
we have seen in the previous section that open channels can be found in disordered
and chaotic systems. Can we consider a MPLC system to be disordered or chaotic?

Finally, we observe on �gure 4.9 that the overall repartition of the singular val-
ues also seems to change when the number of modes which is shaped increases.
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Figure 4.9: Singular values of di�erent MPLC systems with Nm = 6, 10, 15 and Np =

14, 14, 20. On the left we plot all the singular values while on the right we only plot
the �rst 30 singular values.
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Figure 4.10: Singular values of a MPLC systems with Nm = 9 (and Np = 14). On
the left we plot all the singular values while on the right we only plot the �rst 30
singular values.

4.3.4 Comparison with theoretical models

We derive models for the transmission matrices of MPLC systems and compare their
predictions to the actual distribution of the singular values of t .

4.3.4.1 Random Gaussian matrix

The �rst type of random matrix with which we can compare the matrix t is a ran-
dom matrix whose entries have Gaussian distributions. In making this hypothesis,
we do not impose any constraint of energy conservation on the system — since we
know that in the case we consider (scattering without absorption), energy should
be conserved. This is a coarse modeling of the system. The Marc̆enko-Pastur dis-
tribution describes the eigenvalue distributions of such matrices. Using a method
described in [De Cock 99] to �t the Marc̆enko-Pastur law with a distribution, we
compare the eigenvalue distribution for MPLC systems with Marc̆enko-Pastur dis-
tributions. We can see on �gure 4.11 that the eigenvalue distribution of a MPLC
system is not well described by the Marc̆enko-Pastur distribution. As a compari-
son, we plot the distribution of h†h for h a simulated Gaussian random matrix and
see that the �t is in this case very good.

4.3.4.2 Filtered matrix model for the MPLC system

We now introduce a �ltered random matrix approach to derive the distribution of
the eigenvalues of the matrix we measure. We recall that a scattering system can
be modeled using a scattering matrix S . For a MPLC system, we give again the
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Figure 4.11: Histograms of the eigenvalues of a matrix t†t (for Nm = 15 and Np = 20)
and of a random Gaussian matrix of the same size. The dotted line corresponds to
the corresponding Marc̆enko-Pastur distribution.

expression of S :

S =

(
r0 t ′0
t0 r ′0

)
(4.56)

We start from the fact that the complete scattering matrix S is necessary unitary
since a perfect MPLC system does not have losses. Energy conservation imposes:
S†S = 1. Because S is unitary, the resolvent of S†S is

д0(z) =
1

N +M
Tr

〈
1

z − 1

〉
=

1
z − 1 . (4.57)

The unitary character of S is a constraint that we impose to respect energy con-
servation. Since we have access to the resolvent of the matrix, we can derive the
singular value distribution of matrix S. We de�ne the projection matrices P̃1 of size
(M + N ) × N and P̃2 of size M × (N +M) such that

t0 = P̃2SP̃1. (4.58)

We also introduce the parameters m1 = N /(N +M) and m2 = M/(N +M). How-
ever, we in fact do not have access to the whole transmission matrix but we measure
only a limited number of the system’s modes. The matrix we measure is t of size
N2 × N1

15. We thus introduce the matrices P1 of size (M + N ) × N1 and P2 of size
N2 × (M + N ). The matrix t is equal to

t = P2SP1. (4.59)
15In this derivation, P = N1 and Q = N2.
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Finally, we make the assumption that the matrix S is random and that the �ltering
matrices P1 and P2 are free. In this case, a model exists to derive the singular value
distribution of t . The general approach is detailed in [Goetschy 13] and the deriva-
tion presented here was made by the author of this work. We de�ne N (z) and D (z)
which are functions of д (z):

N (z) =m1z д (z) + 1 −m1 (4.60)
D (z) =m1д (z) [zm1д (z) +m2 −m1] . (4.61)

The resolventд (z) of the matrix t can be obtained using the following implicit equa-
tion which relates D and N to the resolvent д0 of matrix S

N (z)д0

(
N 2 (z)

D (z)

)
= D (z) (4.62)

The solution to this equation system is

д± (z) =
m1 −m2 + (1 − 2m1) z ±

[
(m1 −m2)

2 + z (z − 2m1 − 2m2 + 4m1m2)
]1/2

2m1z (1 − z)
.

(4.63)
In the case wherem1 +m2 = 1, this equation can be rewritten as

д± (z) =
1 − α

2z ±
1 + α

2z

√
z − τmin
√
z − 1

. (4.64)

16 However, we are here interested in the case where the number of channels we
control when measuring S is smaller than the total number of channels. We make

16Filtered chaotic cavity The distribution of the transmission coe�cients of the scattering ma-
trix of a chaotic cavity in the case where the number of transmission and re�ection channels is not
equal can be derived [Brouwer 96]. We de�ne α = M/N as the ratio of the number of transmitted
(M) and re�ected (N ) channels. The distribution writes:

ρ (τ ) =
1 + α

2π

√
(τ − τmin)

+

τ
√

1 − τ
with τmin =

[
α − 1
α + 1

]2
. (4.65)

This distribution has a mean value τ = α
1+α which is greater than 1/2. In the limiting case where

N = M , we �nd again the bimodal distribution of equation 4.45. The resolvent of this distribution
can be shown to be

д(z) =
1 − α

2z +
1 + α

2z

√
z − τmin
√
z − 1

. (4.66)

We note that corresponds exactly to equation 4.64: in the case where the �ltering matrices P1 and
P2 are such thatm1 +m2 = 1, the �ltered matrix model presented in this section describes a chaotic
cavity.
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the assumption that N = M to simplify the problem. Moreover, the case N = M
corresponds to the bimodal distribution with which we wish to compare our system.
Since t , t0, we introduce the quantities m̃1 = N1/N and m̃2 = N2/N . The spectrum
of t†t is directly described by equation 4.63 with the parameters

m1 =
N1
2N =

m̃1
2 (4.67)

m2 =
N2
2N =

m̃2
2 (4.68)

The solution of this derivation gives the expression of the distribution of the eigen-
values of t†t :

ρ (τ ) =
1
π

√
(τ+ − τ ) (τ − τ−)

m̃1τ (1 − τ )
+max

(
1 − m̃2

m̃1
, 0

)
δ (τ ) (4.69)

with

τ± =
m̃1 + m̃2 − m̃1m̃2 ±

√
m̃1m̃2 (2 − m̃1) (2 − m̃2)

2 . (4.70)

The model for the spectrum of t†t given by equation 4.69 is the model we will use
in the following part.

4.3.4.3 Comparison of the �ltered matrix model with data
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Figure 4.12: Fit coe�cients between model 4.69 and eigenvalues distributions of ac-
tual MPLC systems. The corresponding plots are shown in 4.13. For all the systems,
Np = 14 except for Nm = 15 where Np = 20.

147



4.3. MODELIZATION OF THE MPLC

We �tted the distribution model 4.69 with the actual eigenvalue distributions
of t†t we calculate. To perform the �tting of the m̃1 and m̃2 parameters, we used
the similarity function de�ned in the supplementary material of [Froufe-Pérez 17].
We introduce a similarity function S which is de�ned as the area under the curve
of the minimum between the data and the model curves. We normalize S by the
maximum area of the two curves such that S ∈ [0, 1]. The results are plotted in
�gure 4.13. From equation 4.69 we can derive the expression of the singular value
distribution of t . We also plot on �gure 4.13 the singular value distributions and
their �ts with the parameters m̃1 and m̃2 of the eigenvalue �t. The MPLC systems
have Nm = 5, 6, 8, 9, 10 and 15. For all the systems, Np = 14 except for Nm = 15
where Np = 20. The �t parameters m̃1 and m̃2 are presented in �gure 4.12.

We �rst observe that as Nm grows, at constant Np , the number of modes we
“control” seems to decrease. This can be due to the fact as the system needs to
shape more and more modes, the area of the pattern written on the phase plates
grows, introducing more and more di�raction. Di�raction means that a portion
of the light exits the spatial extent of the phase plates on which we measure the
transmitted �eld. The second observation is that the �t for the singular values of t
does not give very good results at small Nm while the quality of the �t improves as
Nm grows. For Nm = 15, our model describes the distribution quite well.

Finally, we note that the singular value plots are easier to read than the eigen-
value ones: the peak around 0 of the eigenvalue distribution �attens the dynamic
which make comparisons di�cult. For this reason, we will in the next cases plot
only the singular value plots.

4.3.4.4 Role of Nm

We investigate the role of the number of shaped modes Nm on the singular values
distributions. We made two similar numerical experiments. We took two MPLC
systems with Nm = 10 (Np = 14) and Nm = 15 (Np = 20). Each of these systems
had associated parameters values (L, Np , size of the phase platesmx ×my). We kept
those parameters constant and constructed a series of MPLC systems with di�erent
Nm. We then calculated their singular value distributions and compared these with
our model (see �gures 4.16 and 4.17). The corresponding �tting parameters are
presented in �gures 4.14 and 4.15. We observe that our derived model seems to �t
best systems where the number of shaped modes Nm is large. This may be due to
the fact that as the number of modes we shape increases, the disorder the system
needs to introduce to shape the modes becomes more pronounced: hence, our model
of random projections describes the system better in these cases. This analysis is
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Figure 4.13: Full line: distribution of the eigenvalues of t†t (left) and singular values
of t (right) for MPLC systems with di�erent values of Nm. Dashed line: �t of the
�ltered matrix model. The coe�cients of the �t are plotted in 4.12. For all the
systems, Np = 14 except for Nm = 15 where Np = 20.
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supported by the fact that the �ts are better in the case of the system with Nm = 15
than in that with Nm = 10.
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Figure 4.14: Reference modelNm = 15 (Np = 20). Fit coe�cients between model 4.69
and eigenvalues distributions of actual MPLC systems. The corresponding plots are
shown in 4.16.

4 6 8 10 12 14 16

0.4

0.6

0.8

1

Nm

m̃

m̃1
m̃2

4 6 8 10 12 14 160.7

0.8

0.9

1

Nm

S

Figure 4.15: Reference modelNm = 10 (Np = 14). Fit coe�cients between model 4.69
and eigenvalues distributions of actual MPLC systems. The corresponding plots are
shown in 4.17.

4.3.4.5 Role of Np

We also investigate the role of the number of shaped modes Nm on the singular
values distributions. In this case we took a MPLC system with Nm = 6. We con-
structed a series of MPLC systems with a constant number of shaped modes Nm = 6
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Figure 4.16: Reference model Nm = 15 (Np = 20). Full line: distribution of the
singular values of t (right). Dashed: �t of model.
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Figure 4.17: Reference model Nm = 10 (Np = 14). Full line: distribution of the
singular values of t (right). Dashed: �t of model.
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but with varying number of phase plates Np . We calculated the corresponding sin-
gular values distributions and compared these with our model (see �gures 4.19).
The corresponding �tting parameters are presented in �gures 4.18. It seems that
our model �ts best when the number of phase plates is not too large compared
with the number of shaped modes. However, in this case the �ts are not overall
very good. This can probably be explained by the fact that the reference number of
shaped modes Nm = 6 is small.
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Figure 4.18: Fit coe�cients between model 4.69 and eigenvalues distributions of
actual MPLC system with Nm = 6. The corresponding plots are shown in 4.19.
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Figure 4.19: Full line: distribution of the singular values of t (right) of an MPLC
system with Nm = 6. Dashed: �t of model.
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4.4 Conclusion
In this chapter our aim was to study the transmission properties of the MPLC system
at large and to compare this object to models of scattering in complex media. We
have constructed a numerical model of the MPLC system which allows to construct
a numerical matrix describing its transmission properties. We observe signi�cant
statistical di�erences in the singular value distribution of the transmission matrix
when the ratio between the number of phase plates and that of shaped modes is
changed. We derive a model for the transmission matrices singular value distri-
butions using a �ltered matrix approach. This model gives good results when the
number of shaped modes Nm is su�ciently large, but does not describe the sys-
tem well for small values. The number of phase plates Np seems to be linked to
the amount of losses in the system: more re�ections induce more losses. The fact
that the values of the parameters which describe actual MPLC systems Np and Nm

are relatively small (≤ 20) hinders the capacity of random matrix theory to fully
describe these systems. Indeed, the distributions derived in the context of random
matrix theory are asymptotical ones. Moreover, random matrix theory usually stud-
ies objects which are averaged over large numbers of realization. As the algorithm
which calculates a given MPLC system is deterministic, we cannot perform such
ensemble averaging on the transmission matrices we calculate. However, the mod-
elisation we devised to calculate the transmission matrix t is in its own a useful tool
for the study of the MPLC properties. It carries a lot of phenomenological informa-
tion about the MPLC system it models and is a useful tool to study the in�uence of
the di�erent construction parameters.

A second approach which we did not have time to complete was to model the
MPLC systems as a concatenation of unit cells (as is described in 4.53) and to study
the properties of one unit cell (phase plate + free-space propagation). As we have
seen, using free probability theory, the derivation of the distribution of the product
of matrices can easily be derived from that of the distribution of each part of the
product. This approach may hold interesting results for the analysis of the trans-
mission properties of MPLC systems.
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Appendix A

Bessel beam generation

We attach in this appendix the published review paper describing the generation
and characterization of a record angle Bessel beam.
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We report the generation of Bessel–Gauss beams of high conical angle, up to 35 deg, using reflective off-axis
axicons and a magnification optical system. We experimentally characterize the beams with three-dimensional
scans. The high precision of fabrication of the axicons in the vicinity of the axicon singularity allows us to generate
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1. INTRODUCTION

Diffraction-free Bessel beams were discovered by Durnin et al.
in 1987 [1]. They are formed out of a conical interference of an
infinite number of plane waves, crossing the optical axis at the
same angle, here referred to as the conical angle. The construc-
tive interference on the optical axis produces an intense central
spot surrounded by several cylindrically symmetric lobes with
lower intensity. This beam structure is diffraction-free since
its intensity profile is invariant with propagation. Obviously,
finite energy beams preserve this structure only over a finite
distance [2]. Bessel–Gauss beams are one of those finite energy
realizations of Bessel beams. In a Bessel–Gauss beam, the in-
terference is formed after a conical phase is applied on a
Gaussian beam [3,4]. In this realization, the on-axis intensity
profile evolves smoothly with a bell-shaped profile [2,4,5], in
contrast with other forms of finite energy Bessel beams where
the on-axis intensity oscillates, such as in the first realization by
Durnin et al.

Bessel beams have found a variety of applications in optics.
They are used as optical traps [6], for light-sheet microscopy
[7,8], nonlinear optics and filamentation [9–11], for the guid-
ing of electric discharges [12,13], material processing [14–17],
or even for cellular transfection [18].

Bessel–Gauss beams are either produced from transmissive
axicons (discovered well before the diffraction-free property
[19]) or reflective spatial light modulators. While the first
enable shaping of higher-power beams, the latter enable higher-
quality beams but at the cost of very low cone angles. Two
difficulties arise in this field. On the one hand, the low conical
angle values are compensated by telescopic magnification, but

at the cost of a reduction in beam length by the square of the
magnification if high angles are needed for applications. On the
other hand, beam shaping with bulk glass axicons usually en-
counters another difficulty which is the processing of the tip,
which cannot be infinitely sharp. The roundness produces a
spherical wave which interferes with the Bessel beam. This gen-
erates deleterious oscillations of the on-axis intensity [20].
Several techniques have been developed to circumvent the
impact of blunt tips, such as Fourier filtering [20] or using
liquid immersion [21], but they are not energy efficient or
easily implementable.

Here we report high-quality Bessel–Gauss beam generation
with reflective off-axis axicons where spatial filtering is unnec-
essary. These are compatible with high powers and produce
cone angles sufficiently high that a magnification factor of only
×55 is required to generate the highest conical angles (35°) pro-
duced to the best of our knowledge. This relatively low value of
magnification also enables and generates Bessel beams with
length exceeding 100 μm.

2. REFLECTIVE AXICONS

Our experimental setup is based on reflective axicons in
oblique illumination to enable further use with high-power
lasers. In this case, it is necessary to engineer the surface
to generate off-axis beams and avoid potential distortion
due to the oblique illumination [22]. The theoretical phase
profile for the axicons we generated follows [23]: Φ�x, y� �
�2π∕λ� tan β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�α�x2 � y2

p
, where α is the incidence angle

of the beam on the axicon, and β � θ∕2, where θ is the conical
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angle of the Bessel beam produced. The factor 1/2 simply arises
from the reflection, which doubles the optical path. The axi-
cons were produced by lithography from a metallic substrate,
which has been coated by a broadband reflective dielectric
coating at a central wavelength of 800 nm for further use with
high-power femtosecond Ti:sapphire lasers. Before coating, the
RMS surface roughness of the processed metallic substrate
is 4.4 nm.

Three different axicons with different conical angles
were produced and tested, with angles θ 0

1 � 3.842 mrad,
θ 0
2 � 4.546 mrad, and θ 0

3 � 5.215 mrad. After magnification
of 1/55, as we will see later, these axicons allowed us to produce
Bessel–Gauss beams with conical angles of, respectively, θ1�25°,
θ2 � 30°, and θ3 � 35°. Figure 1(a) shows the difference
between the theoretical profile of the “on-” and “off-” axis
axicons corresponding to the cone angle of θ1 (α � 5°).

In Fig. 1(b), we show the surface profile characterization by
interferometry and its comparison with the theoretical profile.
The shape error on the profile is less than 250 nm. In particular,
we plot in the inset a magnified view around the tip. We
observe that the size of the region exhibiting a significant profile
difference from the theoretical profile is smaller than 50 μm.
This was also the case for the other two axicons produced.

3. EXPERIMENTAL SETUP

We tested the axicons one by one using the same experimental
setup, which is shown in Fig. 2. The optical source is a laser
diode with central wavelength of λ � 780 nm. The input
beam is a single-mode Gaussian beam with a waist of (radius
at 1∕e2) w0 ∼ 3 mm. The optical path was carefully adjusted so
that the axicon illumination angle is precisely α � 5°. After in-
cidence on the axicon, the beam is magnified by two successive
confocal telescopes, with magnifications factors respectively of
γ1 � 2 and γ2 � 1∕110 in order to produce a total magnifi-
cation of γ � 1∕55. The produced beam was then imaged onto
a CCD camera with an imaging system of magnification ×56
combining a ×50 microscope objective with 3.6 mm focal
length and a lens of focal length 200 mm. The imaging micro-
scope objective was mounted on a motorized translation stage
so as to scan across the Bessel beam we generated.

4. RESULTS

In Fig. 3, we plot our results for the three different axicons
used. For each Bessel–Gauss beam, we represented the cross
section (x, y) of the transverse intensity profile at the propaga-
tion distance corresponding to the peak of intensity and a cross
section (x, z) of the longitudinal intensity profile. In all three
cases, the high quality of the beam is apparent. Only a minor
deviation from perfect circular symmetry of the transverse pro-
file is observed and attributed to a small misalignment. Table 1
summarizes the experimental beam parameters.

The evolution of the on-axis intensity with propagation
distance is an important parameter qualifying the quality of
the Bessel–Gauss beam. In Fig. 4, we compare the on-axis
intensity I�r � 0, z� of the beams, shown as a black curve
with the theoretical profile (red curve) obtained from stationary
phase approximation of the diffraction integral [4,15]:
I�z� � 8πP0z sin2 θ∕�λw2� exp�−2�z sin θ∕w�2�. θ is the
conical angle, w � 3187 μm is the waist of the incident
Gaussian beam (value obtained by fitting the experimental
results), and P0 is the input peak power. We compared the

(a) (b)

Fig. 1. Characterization of axicon θ 0
1 � 3.842 mrad. (a) Difference between an “on-axis” axicon and the off-axis axicon produced.

(b) Comparison between theoretical and measured axicon profiles.

Fig. 2. Experimental setup (OC, output coupler). Lens A and lens
B make up the first telescope and have focal lengths of f A � 200 mm
and f B � 400 mm. Lens C and lens D have focal lengths of f C �
400 mm and f D � 200 mm. The pixel pitch of the camera is
4.65 μm.
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normalized profiles. An excellent agreement is found between
the experimental data and the analytical description of Bessel–
Gauss beams.

We note that commercially available transmission axicons
present a larger deviation from the perfect axicon because of
the manufacturing of the tip of the axicon. In Fig. 4(a), we
compare the profile obtained with a glass transmissive convex
axicon with angle 0.5° (from Thorlabs) associated with a mag-
nification system of 1/110 with the same input Gaussian beam.
The generated conical angle is θ � 26°, thus comparable to
the first axicon. We observe that the on-axis intensity profile
exhibits much larger deviations to the Bessel–Gauss profile
expression, which is attributed to its blunt tip.

5. CONCLUSION

In conclusion, we have demonstrated experimental generation
of high-quality Bessel–Gauss beams with high conical angles,
up to 35°. We used reflective off-axis axicons exhibiting high

Table 1. Theoretical Beam Parameters

Conical
Angle
(°)

Central Lobe
Diameter (FWHM)

(μm)

Bessel Zone Length
(measured at FWHM)

(μm)

25 0.67 130
30 0.58 110
35 0.51 95

Fig. 3. Experimental images of transverse energy distribution and
cross section of beams of 25°, 30°, and 35° conical angles.

(a)

(b)

(c)

Fig. 4. (a) 25° conical angle: comparison between the on-axis inten-
sity evolution along z for a glass axicon in transmission (blue, trian-
gles), a reflective axicon (black, disks), and the theoretical profile for a
Bessel–Gauss beam of the same conical angle (red). (b) 30° and (c) 35°
conical angles: comparison between the measured on-axis intensity
evolution and the analytical description of the on-axis intensity asso-
ciated with such conical angles.
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surface quality in excellent agreement with the target surface
profile and with a very reduced imperfect zone around the
axicon singularity. We anticipate that these results will enable
novel applications for high-power ultrafast optics, such as non-
linear optics or laser micromachining.
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Appendix B

Continuous axial scanning of a
Gaussian beam via beam steering.

We attach in this appendix the published review paper describing the results of
chapter 3.
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Continuous axial scanning of a Gaussian beam
via beam steering
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Abstract: We propose and demonstrate experimentally the transfer of one spatial degree of
freedom of a laser beam onto another one. Using a multi-plane light conversion device (MPLC)
and a modal analysis, we designed a passive setup with immediate response which couples a
displacement and tilt in the transverse plane to a longitudinal shift of the focus point of a beam.
With this design, we demonstrated a shift of the focal point of the output beam by 4 zR along the
propagation axis.
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1. Introduction

Fast, precise and continuous focal scanning has applications in many different fields, among
which are autofocusing systems, imaging, adaptive optics, laser processing, optical inspection,
and several types of microscopy (multiphoton, confocal, lightsheet microscopy and endoscopy)
[1, 2].

In all fields cited above, an optical system which can precisely scan the focal point of a beam,
at high frequency, in a continuous way, and with a high transmission efficiency is desirable.
Several techniques already exist to scan the focal point of a beam. The most common approach is
to scan a mechanical optical element, for example, a lens after a collimated beam, an axicon [3].
However, inertia imposes a limit to the modulation frequency which can be achieved with a
mechanical system. Microelectromechanical systems (MEMs) can be displayed to form a mirror
membrane, and electrostatically actuated to adjust a beam’s focus [4] but their scanning speed
remains also limited by inertia. Electro-optic [5] and acousto-optic [6] systems offer faster
alternatives, which can reach several hundred of kHz. However, they may not be used in all
the field cited above. Indeed, electro-optic lenses are polarization dependent. In the case of
acousto-optic systems, two synchronized acousto-optic crystals are needed to mimic a cylindrical
lens which leads to the need of four synchronized crystals to perform a true scan of the focal point
and a weak transmission is to be expected at the output of multiple consecutive crystals. Liquid
crystal lenses can also be used [7, 8], requiring the use of polarized light. Moreover, in order to
achieve long focal lengths, the thickness of the liquid crystal must be increased, which reduces
the response time of the system, introducing a trade-off between long scanning lengths and high
scanning frequencies. A more sophisticated technique which implements simultaneous spatial
and temporal focusing [9–12] has been developed. It relies on operating in the pulsed regime in
order to have a sufficient bandwidth to manipulate. A lens of variable focal length - containing
two non-miscible liquids, one insulating and the other conducting, such as oil and water - can
be fabricated using electrowetting: electric charges at an interface allow the modification of
the contact angle of a drop on a metal surface [13]. Finally, acoustically driven liquid lenses -
TAG lenses - can be used [14–16]. These lenses continuously vary their focal length, producing
periodically varying axial displacement, and show promising results.

In the present work, we do not try to mimic the working principle of a lens but instead,
introduce a novel modal approach to this problem. We propose to directly couple the transverse
degrees of freedom of a laser beam to its longitudinal ones. Fast and efficient technologies
allowing to scan a beam in the transverse plane are already available [17]. The combination
of these technologies with the system presented here would allow overcoming many of the
limitations listed above. We present a system capable of scanning a beam with a hundred
micrometer size waist for up to 4 Rayleigh length. The proposed system being passive, the

                                                                                            Vol. 25, No. 19 | 18 Sep 2017 | OPTICS EXPRESS 23061 

APPENDIX B. CONTINUOUS AXIAL SCANNING OF A GAUSSIAN BEAM VIA BEAM STEERING.

167



scanning rates achievable will be set by those allowed by the transverse scanning technology
chosen. The physical implementation of the MPLC device (reflective design compatible with
high-reflectivity coatings) makes it compatible with high powers (several kW [18]) for material
processing, while being also suitable for microscopy.

2. Theory

The purpose of this work is to improve the control over one degree of freedom of a laser beam
by coupling this degree of freedom to another with the help of the Multi-Plane Light Conversion
(MPLC) technology [19].

The position and tilt of a beam can be very well controlled, with high precision and at high
frequency. These will be the so-called "input" degree of freedom for the MPLC. We are interested
in controlling the position of the focal point of a Gaussian beam along its propagation axis. This
movement will define the "output" degree of freedom of the MPLC. We aim at exploiting the
good control one can have on the position of a beam and use this precise control to defocus the
beam coming out of the MPLC with comparable precision. Figure 1 illustrates schematically this
principle.

Fig. 1. The MPLC system couples the displacement (δd0) and tilt (δt0) of a beam to the
scanning of its focal point (δz0).

MPLC [19, 20] is a novel technology capable of performing, without limitations on resources,
any spatial unitary transform. A unitary transform is a transformation which implements a mode
basis change without losses. An MPLC device performs unitary transforms on spatial mode
basis of the electrical field: it shapes an orthonormal spatial mode basis into another one. The
physical transform consists of a succession of phase profiles and is implemented using several
consecutive phase plates. To produce an MPLC device, one first has to set the orthonormal input
and output mode bases necessary to the definition of the unitary transform.

2.1. Modes of displacement, tilt and defocus

References [21] and [22–24] introduce the idea that, by using a Taylor expansion of a displaced
Gaussian beam, one can find the modes which allow to describe this displacement. We write the
complex amplitude of the electric field for a fundamental Gaussian beam as E0 = E0u0 where
u0 is the normalized spatial mode describing the field and E0 is its amplitude. We will use the
following convention regarding notations: p will denote a physical quantity, p0 will refer to the
value of this physical quantity at which we evaluate the reference beam and δp0 will refer to the
amplitude of the perturbation of said physical quantity. We consider a beam E0 for which p has
the value p0. We write at the first order, the Taylor expansion of E0 for a small variation δp0 of p:

E0 |p0+δp0 ' E0

(
u0 |p0 + δp0 × ∂u0

∂p

∣∣∣∣∣
p0

)
= E0 |p0 +

δp0

pC
× E1 |p0 (1)

where pC =
∣∣∣∣
∣∣∣∣ ∂u0
∂p

∣∣∣∣
∣∣∣∣
−1

is a characteristic parameter value for the displacement (| |u| |2 =
∫

uu∗),

u1 = pC × ∂u0
∂p and E1 = E0u1. Displacing E0 |p0 by a quantity δp0 transfers energy into mode
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u1 |p0 , proportionally to δp0. In a reverse manner, if one can control the relative quantities of
energy one puts into the complex amplitudes u0 |p0 and u1 |p0 , one can tune the parameter δp0

for the total beam. This is of course only true at first order, ie. for δp0
pC
� 1.

In the case of a defocus of a Gaussian beam, focused at z0 (z being the longitudinal direction),
which has been studied in one dimension in [26], we denote the complex amplitude of the field as
(see [25], p.627): E0(ρ, z) |z0

= E0 u0(ρ, z) |z0
exp (−ik (z − z0)). The field u0 is the transverse

optical mode of the field E0, k the wave vector and z0 is the focus position of the beam. In this
case, taking into account the rotational symmetry of the problem, we use the expression (see [25],
p.647) of a Laguerre-Gauss mode LGpm and take u0(ρ, z) |z0

= LG00(ρ, z) |z0
. We use the first

order Taylor expansion to write:

E0(ρ, z) |z0+δz0
= E0

[
LG00(ρ, z) |z0

+
iδz0

zR

(
α × LG00(ρ, z) |z0

+ LG01(ρ, z) |z0

)]
exp (−ik (z − z0))

(2)
where α = 1 − (kw0)2 and w0 is the waist. We stress the fact that in this particular case,
E1(ρ, z) |z0

= E0 u1(ρ, z) |z0
exp (−ik (z − z0)) and u1 |z0 = A

(
α × LG00 |z0 + LG01 |z0

)
(where

A is a normalization factor), which means that u0 |z0 and u1 |z0 are not orthogonal.
We are also interested in the displacement and tilt of a beam in the y (vertical) direction of the

transverse plane, which are the degrees of freedom we aim at coupling to the defocus. These
displacements were studied in [21, 22] and it was shown that the mode basis which is relevant to
describe a fundamental Gaussian beam displaced or tilted along one direction of the transverse
plane is the Hermite-Gaussian mode basis. This basis is referred to as the HGnx ny basis. We
work in the (y, z) plane and set z0 = 0. At the first order, for a beam displaced along d by an
amount δd0 with respect to a reference position d0, we can write:

E0(ρ, z) |d0+δd0
= E0

[
HG00(ρ, z) |d0

+
δd0

w0
× HG01(ρ, z) |d0

]
exp (−ik z). (3)

For a beam tilted in the (y − z) plane by a quantity δt0 = 2πθy/λ, with respect to a reference
propagation axis defined by θ0 and t0 = 2πθy0/λ, we can write at the first order:

E0(ρ, z) |t0+δt0
= E0

[
HG00(ρ, z) |t0

+ i
δt0w0

2
× HG01(ρ, z) |t0

]
exp (−ik z). (4)

We observe that in both cases, u1 |p0 = HG01 |p0 and u1 |p0 is orthogonal to u0 |p0 .
The first order Taylor expansion is only valid for small variations of a parameter. However, we
aim at producing displacements of the focal point larger than zR (characteristic length for this
displacement), which means we need to take into account several higher orders of the Taylor
expansion to describe such a displacement. We recall that in order to define an MPLC device, one
needs orthonormal input and output mode bases. We introduced mode bases which are described
by linear combinations of the Hermite-Gauss and Laguerre-Gauss mode bases. But the first order
derivative in the case of a longitudinal waist displacement is not orthogonal to the Gaussian
fundamental mode. This non-orthogonality appears for the displacement and tilt starting at the
second order derivative and means that these mode bases cannot be used as such to define an
MPLC device. Suitable mode bases can be defined using these bases and an orthonormalization
algorithm.

However, we decided instead to develop a numerical method - inspired by the above theoretical
approach - to generate orthonormal input and output mode bases fitted to this "large displacement"
problem.
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2.2. Numerical approach for the definition of the input-output mode bases

The complexity (number of phase plates) of an MPLC device scales with the number of modes. In
order for our device to have a standard complexity (10 phase plates) while producing a significant
defocus (4 zR), we found it necessary through an iterative process linking the mode basis and the
defocus range to use a 5 modes mode basis (with which we can produce an overlap > 88% with
a perfect defocused Gaussian beam).

The process defining the output mode basis takes as an input the range of defocus we aim at.
We first define the modes vi , as depicted in Fig. 2: we take beams which are regularly defocused
along the 4 zR defocus range and define them on a common transverse plane P. This set of
modes vi does not constitute an orthogonal mode basis. We orthonormalize this set of modes,
using the Gram-Schmidt algorithm, defining the output mode basis we will use.

Fig. 2. Target modes before orthonormalization (output mode basis).

The input mode basis is defined in a similar fashion, replacing the role of defocus by that
of lateral displacement. We give their representation on Fig. 3. As inferred by the analytical
approach, they bear a close resemblance to the Hermite-Gauss and Laguerre-Gauss mode bases.

Fig. 3. Intensity profiles of i) Input mode basis, ii) Output mode basis. The MPLC matches
mode (i, n) with mode (ii, n) with n ∈ ~0, 4�.

With the given output mode basis, we computed the projection of the desired output modes
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(defocused Gaussian beam between 0 and 4 zR) on this basis. This led to the definition of a
projection function f i for each mode of the basis (the functions f i take their values in C). Indeed,
since we can only address the 5 modes of the output basis, we can only perform an approximation
(Eout ) of the desired output mode (Eob j

out ). For δz(k )
0 ∈ [0 zR , 4 zR], we project the desired mode

onto the output basis (vi )i∈~0,4�:

Eob j
out

∣∣∣∣
δz

(k )
0

' Eout |δz (k )
0

=

4∑

i=0

f i
(
δz(k )

0

)
× vi (5)

If we suppose a perfect MPLC device and using equation 5, we can also infer the following
decomposition:

Ein

(
δz(k )

0

)
=

4∑

i=0

f i
(
δz(k )

0

)
× ui (6)

Knowing the f i functions, we can compute the input modes: indeed, the MPLC device shapes
the different modes of the input basis while leaving their respective weight coefficients unchanged.
We have subsequently calculated for each focusing position δz(k )

0 , the displacement and tilt
couple (δd (k )

0 , δt (k )
0 ) which maximized the following function F - we set d0 = 0 and t0 = 0. F

represents the overlap between the field we aim at producing and the field we actually produce at
the input of the MPLC device:

F (δd (k )
0 , δt (k )

0 ) =

∣∣∣∣∣∣∣
〈Ein

(
δd (k )

0 , δt (k )
0

)
|

4∑

i=0

f i
(
δz(k )

0

)
× ui〉

∣∣∣∣∣∣∣

2

(7)

where the input basis is the basis (ui )i∈~0,4�. We used a least-square numerical method to perform
this optimization. In Fig. 4 (left) we have plotted, in normalized displacement and tilt units, the
trajectory which needs to be described to induce a continuous focal shift from 0 zR to 4 zR at the
output of the MPLC. We note that this trajectory is continuous, meaning that we can describe
any defocusing between 0 zR and 4 zR following this curve. The amplitudes of displacement and
tilt which needs to be imposed on the beam are functions of the size of the waist w0. For instance,
in order to shift the focus point of the beam by δz0 = 4 zR , one needs to impose a displacement
of δd0/w0 = 1.09 and a tilt of δt0w0/2 = −0.15 to the beam that is launched in MPLC device.

In Fig. 4 (right), we show the overlap between a perfectly defocused Gaussian beam and the
beam produced by a perfect unitary operation, when following the trajectory displayed on the
same figure. As a mean of comparison, we plotted the overlap between the perfectly defocused
Gaussian beam and a constant Gaussian beam.

2.3. Implementation of the MPLC

The MPLC technology can, in theory, implement perfectly any unitary transformation. However,
since the experimental resources we use are limited (size and number of phase plates, propagation
length between two phase plates), an actual MPLC only performs an approximation of the desired
unitary transform. Table 1 shows the overlap between the theoretical output modes (ideal output
mode basis displayed on Fig. 3) and the actual mode produced by the MPLC we calculated.
These overlaps are theoretical ones, and in an experimental configuration, misalignments of the
physical system with respect to the simulated one will introduce an even greater difference from
the initial "ideal" output mode basis.

On figure 4 (right), we plotted the overlap between the perfectly defocused Gaussian beam
and the optimized output mode calculated with the effective output mode basis of the MPLC. We
observe a drop in efficiency of maximum 2% compared to the performances of an ideal unitary
operation.
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Table 1. Overlap between theoretical modes and simulated modes at the output of the MPLC
Mode 0 1 2 3 4

Overlap 0.9893 0.9902 0.9920 0.9933 0.9928

Fig. 4. Left: Calculated trajectory in normalized displacement. δd0 represents the lateral
displacement imposed on the beam and w0 is the waist of the beam, δt0 represents the tilt
imposed on the beam. This trajectory needs to be impressed on the input beam for the focus
point of the beam at the output of the MPLC to see its focus point vary between 0 zR and
4 zR , zR being the Rayleigh length of the beam. Right: Overlap between the desired output
(perfectly defocused Gaussian beam) and the reference beam ie. a Gaussian beam focused at
0 zR (yellow color or (a)), the beam which would be produced by an ideal unitary operation
(red color or (b)) and the beam which can be produced by the actual MPLC we calculated
(brown color or (c)).

3. Experiment and results

We tested the validity of our numerical simulations with the following proof of principle experi-
ment (see Fig. 5).

To precisely control the displacement and tilt, we used a liquid-crystal spatial light modulator
(SLM) to control the light beam. Acousto-optic modulators or galvanometers have better perfor-
mances at high frequency and can achieve comparable steering precision. In this experiment, the
displacement and tilt being produced by the SLM, the maximum operating frequency is set by
the maximum operating frequency of the SLM - in this case 203 Hz. The MPLC being a passive
phase element, the frequency of the achieved defocus depends exclusively on the operating
frequency of the technological solution chosen to steer the beam, as long as the associated
timescale is small compared to the timescale associated with light propagation in the system.

We use a continuous wave laser at λ = 1.064 nm coupled to a single-mode fiber. At the output
of the fiber, the beam is collimated, and we select the polarization compatible with the SLM
liquid-crystals with a polarizing beam splitter. We use a lens to mode-match the beam to produce
a Gaussian beam with a waist w0 = 126 µm, which is the waist size we used to define the input
mode basis of the MPLC device. The beam then reflects twice on the SLM. The SLM is used
as two independent mirrors. We divide its active surface in two and each side plays the role of
an independent mirror which can be tilted: on the two halves, we display linear ramps of angle
α1 and α2. Knowing the lengths L1, L2 and L3, we can compute the displacement and tilt we
impose on the beam, and therefore precisely control the parameters δd0 and δt0.

Due to the footprint of the optical elements, a 4-f telescope is used to launch the light into
the MPLC fabricated by CAILabs. The MPLC is composed of a phase plate (printed using
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lithography) and a plane mirror between which the light bounces 10 times before exiting the
system. It is represented on Fig. 6 (left). At the output of this system, we used a lens in a 2f-2f
configuration to image the output mode on a scanning slit beam profiler. The MPLC was designed
for the output beam to have a waist of w0 = 113 µm (with and associated zR = 37.7 mm).

The spatial modes are defined in the plane normal to the propagation direction or z-axis. The
vertical and horizontal direction with respect to the optical table are the y and x-directions. The
footprint of the optical elements led to a small clip of one side of the beam - it is a particular
problem of the experimental setup and not a fundamental limit. For this reason, the quality of the
beam was degraded on the horizontal or x-direction. The results we obtained on the x-dimension
were consequently degraded compared to those of the y-dimension, and we present here only the
results on the y-dimension. In the present experiment, mirror holders with a smaller footprint
may have allowed to avoid this problem.

Fig. 5. Experimental setup built to implement the defocus of a beam with an MPLC device.
The output beam of a single mode fiber, collimated by an output coupler (OC), is mode-
matched to the correct waist size with lens f1. We select the correct polarization with a
polarizing beam splitter (PBS) in order for the beam to be compatible with the spatial light
modulator (SLM). Two reflections on the SLM allow to impress on the beam two successive
angles α1, α2. The focus point of the beam is imaged with a 4-f telescope and launched into
the MPLC. At the output of the MPLC, lens f2 performs a 2-f imaging of the defocused
beam. The beam transverse profile is monitored by a beam profiler.

The experimental procedure we carried out was the following. For a given displacement δz0,
we positioned lens f2 at a distance δz0 + 2×f2 (f2 being the focal length of lens f2) and the beam
profiler at a distance 2×f2 of the lens. We adjusted the parameters (δd0, δt0) through the angles
(α1, α2) to minimize the waist size measured by the beam profiler. The correct parameters (α1,
α2) were then fixed and the position of the beam profiler was scanned along the propagation axis
to record the evolution of the beam waist size. The results of those measurements are presented
on Fig. 6 (right). A Gaussian fit to the recorded data is performed in order to calculate the
waist size (dotted lines on Fig. 6 (right)). For every position, the experimental data is plotted
as well as the corresponding numerical fit (superimposed solid lines) with the waist formula:

w(z) = w0[1 +
(
M2(z − z0)/zR

)2
]1/2.

The theoretical waist size which we aimed at producing is plotted as well. We observe a clear
defocus on a 4 zR amplitude range, confirming the validity of our approach. The measured waist
size varies between 113 µm and 154 µm, while the M2 factor of the fit to the measurements
varies between 1.17 and 1.36. The experimental values, while in good agreement with the theory,
do not exactly match with our model. We believe this to be mainly due to two effects. First, as
mentioned before, the beam was clipped in the x-direction: this introduces a mismatch with
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respect to a perfect Gaussian beam. Furthermore, we suspect a waist size mismatch between the
input beam experimentally produced and the beam used to produce the MPLC device. Those
two elements both reduce the overlap between the input beam and the input mode basis used to
define the MPLC device.

In this experimental setup, the transmission efficiency is limited by two elements: the efficiency
of the steering system and that of the MPLC system. The transmission losses for the MPLC take
their origin in the fact that we use finite-size phase plates, discrepancies between the theoretically
calculated phase plates and the printed phase plates, as well as from the losses due to the quality
of the coating used on the phase plate and mirror. On a typical telecommunication system
manufactured by CAILabs, with standard quality evaporated gold reflective coatings and 14
reflections, the overall transmission efficiency of the system is of the order of 70 %. To improve
this number, the envisioned technological solutions are first to improve the quality of the coatings
used, and the accuracy of the phase plate fabrication. Also, the transmitted power does not
theoretically depend on the chosen point on the defocusing trajectory.

Fig. 6. Left: Photograph of the MPLC device used in the experimental setup. The MPLC
consists of a plane mirror facing a planar phase plate on which 10 successive phase profiles
are written to implement the desired transformation. Right: Experimental demonstration
of defocusing over 4 zR range using the displacement and tilt of a beam combined with an
MPLC. The waist size evolution in the y direction along the propagation direction of the
output beam is shown for 6 different focusing positions. The dotted black line represents the
theoretical waist size.

4. Conclusion

We demonstrate that we can couple different spatial parameters of a laser beam. Since some
parameters of the transverse profile of a laser beam can be tuned with ease and precision at
high frequency, while some others cannot be as easily modified, this coupling can be used to
improve the control quality one can have on certain parameters. In this work, we first recalled the
expression of modes which describes the small variations of one parameter, using a perturbative
treatment. This theoretical analysis seeded the numerical method we developed to address large
displacements. We defined two orthogonal mode bases, one associated with a transverse beam
displacement, the other with a defocus. Using an MPLC device coupling those two mode bases,
we were able to numerically and experimentally couple the angle and displacement of an input
beam to the defocus of an output beam over a 4 zR range. This range was chosen in order
to ensure a theoretical overlap superior to 88% between the produced mode and the perfect
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defocused Gaussian beam over the whole scanning range. Experimentally, we observed that
outside this range, the quality of the beam deteriorates. We demonstrated that with this system,
we can control the defocus of a beam with the control quality one can have on the displacement
and tilt of a beam. Using the most precise techniques available for the displacement and tilt
of a beam, the scan of the focus point of a Gaussian beam in a nearly continuous fashion in
a given range is made available: in order to control the position of the beam with a zR/10
precision (in this case 3.7mm) along a 4 zR defocusing trajectory, a precision of δd0/w0 = 0.14%
and δt0w0/2 = 0.032% (in this experiment δd0 = 0.15 µm and δθy = 1 µrad) is necessary.
This scanning can be done at high-frequency since no mechanical element is involved in this
system. The theoretical and numerical approaches we put forward in this work are not limited to
displacement/tilt and defocus and can be adapted to other spatial degrees of freedom.
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Appendix C

Transforms in free probability

We give here the de�nitions of two types of transforms introduced in 4.
The R-transform is de�ned as

R (z) = д−1 (z) −
1
z
. (C.1)

This transform allows to express some spectrum laws in a concise way [Tulino 04].
The R-transform of the semicircle law is

R (z) = z (C.2)

and the R-transform of the Marc̆enko-Pastur law is

R (z) = 1
1 − βz . (C.3)

Another type of transform is called the S-transform. If we de�ne χ (z) as a solution
of the following equation

1
χ (z)

д

(
1

χ (z)

)
− 1 = z, (C.4)

the S-transform is given by [Goetschy 11]

S (z) = 1 + z
z

χ (z) . (C.5)
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