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Abstract

Candida glabrata is simultaneously a commensal of human gut and a pathogenic yeast with an increasing

prevalence. It is often associated with fatal bloodstream infections, notably because of its ability to

resist azole treatments, evade the immune system and easily colonize the human host. Also, it displays

incredible abilities to adapt and resist adverse growth conditions. However, little is known about C.

glabrata capacities to adapt and the underlying regulations. This assessment led to the implementation

of the Candihub project. It aims to describe the mechanisms that allow C. glabrata to survive and thrive

as a pathogen and has a focus on the transcriptional regulatory networks promoting the yeast strong

resistance to stress.

My PhD project was undertaken within the framework of Candihub. I tried to unravel the regulation

networks associated to several transcription factors. These factors were chosen because of their key roles

in controlling an array of stress responses : iron deprivation, iron excess, oxidative stress, osmotic stress...

To achieve that goal, I performed high-throughput transcriptomic (microarrays) and genomic (ChIP -seq)

analyses. This led to the construction of a wide network of interactions. Afterwards, I focused on smaller

parts of this network.

The first part tackled the role of the CCAAT-Binding Complex in respiration and iron homeostasis.

The CBC is very conserved across the fungi. In S. cerevisiae, it controls cellular respiration, while in

pathogenic fungi such as C. albicans, it controls the iron homeostasis. We showed that the CBC has

a dual role in C. glabrata : it interacts with the regulatory subunit Hap4 to control respiration and it

collaborates with Yap5 to act on iron homeostasis.

The second part was based on the use of comparative transcriptomics to uncover unknown features

of the iron starvation response of C. glabrata. We demonstrated the significance of Aft2 in response

to iron starvation and we identified the regulatory network of Aft2. This revealed the involvement of

genes responsible for ribosome rescue in the No GO Decay pathway, thus suggesting a link between iron

homeostasis and the NGD.
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Résumé

Candida glabrata est à la fois un commensal de l’homme et une levure pathogène dont la prévalence est

en train d’exploser. Elle est souvent cause d’infections systémiques mortelles, notamment en raison de

ses aptitudes à résister aux azoles, limiter sa détection par le système immunitaire et facilement coloniser

l’hôte humain. Par ailleurs, elle possède une incroyable capacité à s’adapter et résister aux conditions de

croissance défavorables. Cependant, on ne sait que très peu de choses sur les capacités d’adaptation de

C. glabrata et les régulations qui les sous-tendent. Ce constat a mené à la création du projet Candihub,

qui a pour but de décrire les mécanismes permettant à ce champignon de survivre et prospérer en tant que

pathogène de l’homme. Candihub se focalise sur les réseaux de régulations transcriptionnelles favorisant

la forte résistance au stress de Candida glabrata.

Mon projet de thèse s’est déroulé dans le cadre de Candihub. J’ai révélé les réseaux de régulation

associés à plusieurs facteurs de transcription. Ces facteurs ont été spécialement choisis en raison de leurs

rôles clés dans le contrôle de diverses réponses au stress, telles que la carence en fer, l’excès de fer, les

stress oxydatif et osmotique... Dans ce but, j’ai réalisé des expériences haut-débit de transcriptomique

(puces à ADN) et génomique (ChIP-seq). Cela a mené à la construction d’un vaste réseau d’interactions.

Je me suis ensuite concentré sur des sous-ensembles de ce réseau.

La première partie a abordé le rôle du CCAAT-Binding Complex dans la respiration et l’homéostasie

du fer. Le CBC est très conservé parmi les champignons. Dans S. cerevisiae, il contrôle la respiration

cellulaire tandis que dans les champignons pathogènes tels que C. albicans, il gère l’homéostasie du

fer. Nous avons montré que le CBC a un double rôle dans C. glabrata : il interagit avec la sous-unité

régulatrice Hap4 pour contrôler la respiration et il collabore avec Yap5 pour réguler l’homéostasie du fer.

La deuxième partie est fondée sur l’utilisation de la transcriptomique comparative pour découvrir de

nouvelles propriétés de la réponse à la carence en fer de C. glabrata. Nous avons démontré l’importance

d’Aft2 dans la réponse à la carence en fer et identifié le réseau de régulation d’Aft2. Cela a révélé le rôle

de gènes normalement impliqués dans le sauvetage des ribosomes dans la voie du No Go Decay, ce qui

suggère l’existence d’un lien entre l’homéostasie du fer et le NGD.
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Introduction
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Candida glabrata, a yeast with many faces

Candida glabrata is an interesting model organism. Despite its name, it is phylogenetically closer

to Saccharomyces cerevisiae than to other Candida species. It gained interest a few years ago when

its pathogenic potential was fully revealed. But even now, a lot is still unknown about this yeast. For

example, we still don’t know whether it is asexual and if it really is commensal of the human host. All

these questions will be tackled in the following part.

1.1 A hectic phylogenetic classification

The classification of the haploid hemiascomycete Candida glabrata has been quite vibrant for a

long time. Due to the resemblance with some previously discovered fungi, it was first called Crypto-

coccus glabratus after its discovery on grapes (Berlese, 1894) and in human stools (Anderson, 1917), a

century ago. Its name switched to Torulopsis glabrata in 1938 (Lodder et al., 1938), after the authors

noticed that the yeast wasn’t able to form pseudomycelium and had morphological and physiological

characteristics resembling the ones of Torulopsis yeasts. Then, it changed to Candida glabrata in 1978

(Yarrow et al., 1978), following an important change in yeast classification and the disappearance of

the Torulopsis genus. Finally, it was attributed to the Nakaseomyces clade by Kurtzman et al., 2003,

after they performed a huge phylogenetic work thanks to the study of several genes, including rDNA

genes, translation elongation factor, actin, RNA polymerase and mitochondrial genes. This clade also

comprises three environmental species (N. bacilisporus, N. delphensis, C. castelli) added by Kurtzman

et al., 2003, and two other pathogenic species (C. nivariensis and C. bracarensis) were added later to

that clade (Alcoba-Flórez et al., 2005; Correia et al., 2006).
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1.2 Close to Saccharomyces spp, far from Candida spp ?

The phylogenetic study of Kurtzman et al., 2003 was soon followed by the publication of the whole

genomic sequence of C. glabrata ATCC2001 strain by the Genolevures consortium (Dujon et al., 2004).

They revealed that C. glabrata genome is composed of 13 chromosomes, totaling around 12.3 Mb.

The genome has an average GC content of 38.8% and encodes for 5283 CDS. It resembles the overall

structure of S. cerevisiae which is 12.1 Mb long, has an average GC content of 38.3% and encodes

for 5807 CDS. Some other genomic similarities between the two species can be found in Table 1.1.

This article highlighted the closeness of C. glabrata and S. cerevisiae. They both underwent a Whole

Genome Duplication (WGD) event (Wolfe et al., 1997; Dietrich et al., 2004; Kellis et al., 2004) before

their divergence as distinct species, as shown by the shared duplicated blocks of sister chromosomal

regions (Lalo et al., 1993; Dujon et al., 2004). C. glabrata also displays exactly the same set of 42 tRNA

encoding genes than S. cerevisiae. The two species even share an average of 65% of sequence identity

between orthologous proteins ; this is translated by the fact that approximately 4800/5300 genes in C.

glabrata have an homologue in S. cerevisiae (Gabaldón et al., 2016).

Species S. cerevisiae C. glabrata
Genome size (Mb) 12.1 12.3

Average GC content (%) 38.3 38.8
Total CDS 5,807 5,283

Total tRNA genes 274 207
Average gene density (%) 70.3 65.0
Average GC in CDS (%) 39.6 41.0

Average CDS size (codons) 485 493
Median CDS size (codons) 398 409

Maximum CDS size (codons) 4,911 4,881

TABLE 1.1. General characteristics of S. cerevisiae and C.
glabrata genomes. This table is adapted from Dujon et al., 2004.

However, as close as they may be, this 35% discrepancy between these two yeasts is the same

than the difference between human sequences and zebrafish (Gabaldón et al., 2013). In a general way,

Nakaseomyces spp genomes are smaller and contain fewer genes than S. cerevisiae (Gabaldón et al.,

2013). One explanation could be that C. glabrata has a much higher rate of loss of duplicated genes (Du-

jon et al., 2004). According to this team, C. glabrata lost so much paralogues that it resulted in reductive

evolution, associated with loss of functions and decrease genome redundancy. Even more striking, C.

glabrata genome redundancy is equivalent to that of Kluyveromyces lactis, a pre-WGD species. Mainly,

the genes were lost in galactose metabolism, phosphate metabolism, cell rescue, defence and virulence
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and nitrogen and sulphur metabolism compared to S. cerevisiae and three other yeast species. Among

other genomic differences, S. cerevisiae genome contains active transposon (Krastanova et al., 2005),

while all Nakaseomyces species, including C. glabrata have transposon-free genomes (Gabaldón et al.,

2013). Last but not least, C. glabrata is pathogenic while S. cerevisiae isn’t, which indicates some pro-

found genomic differences in these yeast. As mentioned previously, C. glabrata has some specific genes

with no homology to S. cerevisiae. Though one could have thought that these specific genes might be

an explanation as to why C. glabrata is pathogenic, while S. cerevisiae is not, Gabaldón et al., 2016

indicated that most differences in gene content was not related to virulence.

Despite these differences and the fact that Candida albicans is also pathogenic, C. glabrata is even

more distant from this yeast than it is from S. cerevisiae (Dujon et al., 2004; Fitzpatrick et al., 2006), as

represented in Figure 1.1. Another major difference between C. glabrata and C. albicans is the change in

C. albicans genetic code : in this species, the codon CTG is translated as a serine, while in other yeasts,

including S. cerevisiae and C. glabrata, it is translated as a leucine.

C. albicans and C. glabrata have a common ecological niche, they can both cause infections in

human ranging from benign to fatal and they even share a common species name. However, despite

these common points, they still are very distant species according to their genomic sequences as well as

some of their phenotypic features. For example, C. glabrata cells are usually described as budding yeast

or pseudohyphae (under certain specific conditions such as limiting nitrogen conditions (Csank et al.,

2000)), while C. albicans cells can be shaped into yeast, pseudohyphae, hyphae or chlamydospores. A

more complete comparison of several features in these two yeasts and S. cerevisiae can be found in Table

1.2. Nevertheless, these two Candida species are both pathogen, and this pathogenicity had a big impact

in bringing them under the focus of research.

1.3 An "emerging" opportunistic pathogen

Candida glabrata began to draw attention only long after its discovery, even though it was identified

as early as the beginning of the 20th century. It only received significant consideration in the late 80’s,

when it was noticed to be one of the main cause of fungal infections in immunocompromised individuals

(Just et al., 1989). Following this statement, the increasing incidence of this yeast was acknowledged in

the late 20th century when it was declared as an emerging pathogen (Hazen, 1995). It was also noticed
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FIGURE 1.1. Phylogenetic tree of the Saccharomycotina clade. Schematic representation based of the phyloge-
netic tree inferred by X.-X. Shen et al., 2016. The tree was inferred from the concatenation-based analysis of 1233
single-copy orthologues. The Whole Genome Duplication is indicated by a black star. The CUG-clade is depicted
by red branches on the tree. C. glabrata, C. albicans and S. cerevisiae are highlighted in bold.

that its prevalence tends to increase with age, antibiotic treatment, length of stays in hospitals, diabetes

mellitus. . . (Angoulvant et al., 2016).

Usually, Candida glabrata is a harmless fungi of the human gut microbiota. However, given some

specific conditions, it can proliferate and trigger superficial benign infections such as oral or vaginal

thrush, gastrointestinal tract infection or urinary bladder infection (Pfaller et al., 1998; Fidel et al., 1999),

hence the adjective “opportunistic”. In the worst cases, it can breach the mucosal barriers, enter the

bloodstream and disseminate throughout the body, causing systemic candidiasis infections with high

mortality rates (40-60%), especially in immunocompromised individuals (cancer patients undergoing

chemotherapy, transplanted patients, for example) and elder people (Angoulvant et al., 2016).

Systemic candidiasis are now reported to account for 75% of all invasive fungal infections (D.L. Horn
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Feature/Species C. glabrata C. albicans S. cerevisiae
Ploidy Haploid Diploid Diploid

Virulence Opportunistic pathogen Opportunistic pathogen Non-pathogenic
Major sites of infection Oral, vaginal, disseminated Oral, vaginal, disseminated Non-infectious

Mating genes Present Present Present
Sexual cycle Unknown Known (cryptic) Known

Clonal population structure Yes Yes No
Phenotypic switching Present Present Absent

True hyphae Absent Present Absent
Pseudohyphae Present Present Present

Biofilm formation Present Present Present
Major adhesins Lectins (EPA genes) Lectins Lectins (FLO genes)

Hwp1 adhesin Sexual agglutinins
Als adhesins

Auxotrophy Niacin, thiamine, pyridoxine None None
Azole resistance Innate resistance Susceptible Susceptible

Mitochondrial function Petite positive Petite negative Petite positive

TABLE 1.2. Comparison of C. glabrata, C. albicans and S. cerevisiae. ECM : extracellular matrix ; Hwp1 :
hyphal cell wall protein. This table is adapted from Kaur et al., 2005.

et al., 2007; Azie et al., 2012) and Candida spp are in the top five causes of nosocomial bloodstream in-

fections (Gudlaugsson et al., 2003; Pfaller et al., 2007). Most of the time, Candida albicans is the main

cause of candidiasis (50-70%), followed by C. glabrata (20-30%) (Perlroth et al., 2007). However, the

role of C. glabrata as cause of candidiasis is rapidly increasing, perhaps because of its natural resistance

to the compounds usually administered as treatment of this disease, namely azoles (Jandric et al., 2011;

Pfaller, 2012). It can also easily acquire resistance to another class of antifungal, the echinocandins. It

was shown that resistance increases in case of a pre-treatment. Additionally, a phenomenon of cross-

resistance to other drugs can appear in strains already resistant to fluconazole (Komshian et al., 1989;

Malani et al., 2005). One of the principal cause of the innate resistance of C. glabrata is the increased

efflux of drugs driven out of the cells by pumps, usually regulated by PDR1. When this gene is over-

expressed, the cells tend to bear an increased resistance and a increased virulence. Also, some changes

in the cell wall have been reported to prevent drug diffusion (Parkinson et al., 1995; Clark et al., 1996;

Vermitsky et al., 2004; Ferrari et al., 2011a). All these mechanisms are reviewed in Sanglard, 2002.

C. glabrata and C. albicans can both easily infect humans, however their strategies are different on

several points (reviewed in Brunke et al., 2013) :

Adhesion : C. albicans have Als and Hwp adhesins, while C. glabrata has Epa adhesins. Also, both

species can form biofilms on host cells or medical devices (Iraqui et al., 2005; Nobile et al., 2006).

Invasion : C. albicans mainly use its hyphae form to gain access to epithelial cells. The invasion

mechanism in C. glabrata is not known yet, as this yeast doesn’t form true hyphae. However,
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it was noticed that C. glabrata infections cause reduced inflammatory reaction from the host,

contrary to C. albicans. It might suggest a smoother way for C. glabrata to enter its host.

Interaction with immune cells : The two species have very different approach : shortly after internaliza-

tion in macrophages, C. albicans uses hyphae to burst them, while C. glabrata uses the phagosome

as a safe haven to multiply before bursting it. Once again, this has the advantage to be more quiet

against the immune system of the host.

Nutrient acquisition : C. albicans is much better equipped to face the host in nutrients acquisition. It

has no known auxotrophy and owns several integration pathways for a lot of nutrients, including

metallic ions. On the other hand, C. glabrata loss of genes after WGD caused the disappearance

of several important pathways (mentioned in Section 1.2). This lack has to be compensated for the

cells to survive and thrive.

All these mechanisms are summarised in Figure 1.2. Finally, given these dissimilarities and the

phylogenetic disparity between C. glabrata and C. albicans, it is likely that their pathogenicity and their

infection strategies came from different and independent evolutions.

1.4 C. glabrata genome plasticity : a huge impact

Over the years, it became clear that Candida glabrata possesses an impressive genome plasticity and

can be rearranged easily. Several teams reported some interesting features and consequences to this very

dynamic nature of the C. glabrata genome, which could go as far as considering the rearrangements as an

adaptive mechanism. The first clue might be the high rate of loss of paralogues after the WGD, leading to

a reductive evolution (Dujon et al., 2004) (Table 1.1). Shin et al., 2007 reported that changes in karyotype

can appear quickly in strains isolated at different time intervals in the same patient without antifungal

therapy. They also showed that these strains were able to acquire azole resistance under treatment with

azole compounds. Ahmad et al., 2013 reported that the number of chromosomes of C. glabrata can vary

among different isolates. Especially, they found extra chromosomes created by segmental duplication

and translocation. They supposed that it was a way for C. glabrata to improve its fitness around new

environments. Poláková et al., 2009 also noticed some size variation in the chromosomes, but more im-

portantly, they remarked that new supernumerary chromosomes carried duplicated genes among which
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FIGURE 1.2. Infection strategies of C. glabrata and C. albicans. These two yeasts have very different methods
to infect the host. However, there is still a lot of unknown processes involved in C. glabrata pathogenicity. Adapted
from Brunke et al., 2013.

the orthologues of S. cerevisiae family of ABC transporters, which plays a role in pleiotropic drug re-

sistance and yeast-host interaction genes. Overall, these karyotype variations correlated with antifungal

drug resistance.

C. glabrata genome contains the family of EPA genes (homologues of the FLO genes in S. cere-

visiae), coding for cell-wall proteins, which are known to be responsible for the adherence to human

epithelium (Cormack et al., 1999; Gabaldón et al., 2013). Coincidentally, Muller et al., 2009 reported

size variation in tandem arrays of repeated genes, which often encode the EPA genes, suggesting a role

in adaptation to the host (Figure 1.3). It also suggests a role in virulence because these tandem repeats

were also found to encode aspartyl proteases responsible for adherence to mammalian cells and survival

in macrophages (Kaur et al., 2007).

However, this genomic changes also happen very quickly in lab strains : Bader et al., 2012 noticed

some karyotypic modifications that could be associated to phenotypic variations. It shows that genome
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FIGURE 1.3. Genomic processes responsible for the evolution of C. glabrata. EPA genes : family of GPI-
anchored cell wall proteins that facilitate host recognition and C. glabrata adherence. Adapted from Moran et al.,
2011).

plasticity occurs not only during the harsh conditions of host infection, but also in laboratory conditions

during a very short time and without strong selective pressures.

Hence, it seems that chromosome remodeling and gene duplications play an important role in the

specialization to specific environments, virulence, and interaction with the host (Butler et al., 2009;

Moran et al., 2011; Gabaldón et al., 2018).

1.5 Breaking C. glabrata clichés

1.5.1 A commensal yeast ?

Candida glabrata is often considered as a human commensal, even if its prevalence can vary a lot

between studies and is influenced by a range of factors, including the age, the previous use of antifungal

treatments and the medical condition of a patient. C. glabrata has been detected in human flora (oropha-

ryngeal, digestive, vaginal), on medical devices (Iraqui et al., 2005), phones (Kordecka et al., 2016) but

it can also be found in non-human related niches such as fermenting coffee beans (de Melo Pereira et al.,

2014) or cloaca of several bird species (Cafarchia et al., 2008; Francesca et al., 2014; Al-Yasiri et al.,

2016). These are all diverse isolation sites, sometimes without any link between them (for example,

mobile phone and bird cloaca or with human (for example, bird cloaca and human). It suggests that

either C. glabrata is a commensal of several sources, or that it contaminated all these secondary sources

from a primary source that is still unknown. This supposition is coherent with the fact that C. glabrata
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is not always found in these niches. This type of behaviour has been shown for other yeasts, such as C.

albicans (Bensasson et al., 2018) or S. cerevisiae (Goddard et al., 2015).

FIGURE 1.4. Phylogenetic structure of 33 Strains of C. glabrata. This tree indicates the phylogenetic structure
of the strains based on SNPs data analysis. Total number of SNPs isn’t displayed, but a range of 4.66 to 6.56 SNPs
per kb per strain when compared to the reference strain (as sequenced by Dujon et al., 2004) is observed. Each
colour designates a clade. Super-indices indicate pairs of strains isolated in the same patient, but on different body
site or at a different date. Body site and country of the isolation are displayed, along with the mating type of the
strains. Adapted from Carreté et al., 2018.

One strong argument in favour of the human commensality of C. glabrata is the existence of phylo-

genetically distinct clades among the yeast population related to specific geographical origins. In other

words, some distinct clades were defined according to genetic and phenotypic markers, and these clades

were specific to a geographical zone (Dodgson et al., 2003; Dodgson et al., 2005; Brisse et al., 2009;

Rolland et al., 2010; Schwarzmüller et al., 2014). However, these studies were only performed on a few

markers, and consequently, the number of detected clades varied a lot. This problem was solved by the

study of Carreté et al., 2018, who assessed genomic and phenotypic variations in 33 C. glabrata isolates

coming from all over the world. They were able to sequence these strains and class them into tree with

seven clades (Figure 1.4). On this tree, it appears quite clear that strains of the same clade clustered
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together despite their geographical origin (for example, cluster I with USA and Belgium), which would

go against a human commensality of C. glabrata : this undermines the idea of a genomic co-evolution

between C. glabrata and human, as we could have expected if there was a commensal relationship be-

tween them. It lets us think that human activities and transportations caused the crossing of strains that

have been isolated for a long time, most likely in specific geographical areas.

However, C. glabrata displays several traits that let us think of it as a commensal of human. The

optimal growth temperature of C. glabrata is close to 37°C, the normal internal temperature of the human

body. This is a huge advantage as both a commensal and an opportunistic pathogen. C. glabrata has a

higher stress resistance and an enhanced ability to sustain prolonged starvation. It can withstand very

high concentrations of H2O2 (also considered as oxidative stress), varying concentration of bio-available

iron, lack of oxygen, among others, and can also resist to shortage of nutrients caused by protective

mechanisms of the human host. Especially, the adaptation to use alternative nutrients and survive long

periods of starvation is essential for C. glabrata to survive macrophage engulfment (Roetzer et al., 2010)

and use the macrophage as a “Trojan horse” to invade the whole body of the host. This type of adaptation

reminds the bacteria surviving internalization in amoebae and the subsequent oxidative and osmotic

stresses (Greub et al., 2004), as well as the likely selection for bacterial virulence and resistance traits

(Tosetti et al., 2014; Hao et al., 2015). Additionally, earlier, C. glabrata can also resist to antifungal drugs

and acquire new resistances, which is an useful mechanisms for a human pathogen. Also, C. glabrata

genome has remodeled its cell-wall components resulting in a higher adherence. The ability to adhere

to the host tissues is mediated by cell-wall-associated proteins called adhesins (reviewed in Groot et al.,

2013). This translates into the presence of a high number of particular adhesins encoded by the EPA

family of genes . This adhesins proved to be crucial in virulence and to form biofilms (Cormack et al.,

1999; Roetzer et al., 2011a), an ability which increases resistance, virulence and persistence in the host.

Finally, C. glabrata has lost several hundreds of genes, including genes in the pyridoxine, thiamine and

nicotinic acid biosynthetic pathways (Dujon et al., 2004; Kaur et al., 2005). The fact that the human host

is a really stable growth environment, because all its parameters (temperature, oxygen, nutrients. . . ) are

regulated through homeostasis, could be an explanation to the loss of specific pathways in C. glabrata.

It also means that this yeast has a higher dependence of the host, and rely on it to acquire nutriments. All

these features tend to show an adaptation of C. glabrata to its human host.

Nonetheless, several of these features (growth at 37°C, loss of the nicotinic acid pathway and pres-

ence of auxotrophies) are shared by all Nakaseomyces species, pathogenic and non-pathogenic, and the
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expansion of the EPA family was linked to virulence in the pathogenic Nakaseomyces (C. glabrata, C.

bracarensis, C. nivariensis). This means that not all these changes are specific to C. glabrata and its com-

mensalism (or its pathogenicity). Hence, C. glabrata clearly displays commensal traits but the repercus-

sions of this commensalism on C. glabrata genome are not clearly identified yet. This could be because

C. glabrata might be a recent human commensal (which hasn’t left genomic traces yet) or/and because

we still lack experimental data on the comparisons between C. glabrata and other Nakaseomyces.

1.5.2 An asexual yeast. . . for now

C. glabrata is believed to be an asexual haploid fungus, which reproduces exclusively by budding.

Though it is haploid and can bud, it might not be as asexual as we thought, even if its mating has never

been actually observed. Yeast in the same clade than C. glabrata and S. cerevisiae often have two mating

types in haploid cells. These haploid cells can merge, forming diploids, which can then undergo meiosis

and sporulation (Muller et al., 2008). To increase their adaptive potential, haploid cells can also switch

mating types through recombination with silent loci after an HO endonuclease cut (Haber, 2012).

One of the reasons supporting a sexual reproduction of C. glabrata is the existence and the obser-

vation of mating types a and α (Muller et al., 2008; Carreté et al., 2018). Even more striking, Brockert

et al., 2003 reported mating type switching during infection of a host and Butler et al., 2004 reported

mating type switching during laboratory growth. Interestingly, C. glabrata possesses a seemingly intact

mating machinery in its genome (S. Wong et al., 2003), composed of orthologues of genes involved in

mating in S. cerevisiae : MTL1, MTL2 and MTL3 genes were found in C. glabrata (Srikantha et al.,

2003; Butler et al., 2004). MTL1 is the expression locus, while MTL2 and MTL3 encodes a and α mating

informations. The genome also contains an homothallic (HO) endonuclease, which is known to be re-

sponsible for gene conversion events that underlies mating type switching in S. cerevisiae. Additionally,

Butler et al., 2004 found a putative HO endonuclease recognition site in MTL1.

All these findings were further confirmed by Carreté et al., 2018, who furthermore demonstrated the

existence of illegal repair events during switching (Figure 1.5). They also found traces of selective con-

straints in mating genes. Even more interesting, they found the same levels of constraint in C. glabrata

than in S. cerevisiae or C. albicans, which have functional sexual and parasexual cycles, respectively.

This tends to show that sexual genes in C. glabrata are still under selective pressure, most likely because

they are still functional. Also, switching is lethal to many C. glabrata cells in laboratories Boisnard et al.,
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2015, which shows that the switch is tightly regulated. Besides, they discovered evidences of chimeric

patterns in chromosomes, which is the result of sexual mating between yeasts of different clades.

FIGURE 1.5. Example of illegal repair events during switching in C. glabrata. BS means Before Switching.
AS means After Switching. Adapted from Carreté et al., 2018. Case 1 represents a normal conversion event at
MTL1, which switched mating type from a to α . Case 2 shows the classic a-to-α switch at MTL1 accompanied
by illegitimate conversion at MTL2, resulting in a triple-α strain. Case 3 displays an illegitimate MTL2 conversion
without the MTL1 switch. Case 4 represents an illegitimate MTL3 conversion without the MTL1 switch, resulting
in a triple-a strain.

To summarize, Candida glabrata keeps distinct a and α haploid mating types and distinct associated

cellular identities (Muller et al., 2008) ; it shows evidences of mating type switches in populations issued

of isolates and laboratory populations (Brockert et al., 2003; Butler et al., 2004) and sexual recombination

(Dodgson et al., 2005; Carreté et al., 2018). All this lets us think that C. glabrata might still be mating

but rarely and we just haven’t found yet the adequate conditions to observe it.
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Candida glabrata and the stress responses

As mentioned in the previous part, one of the possible explanations of C. glabrata success as a human

pathogen and a commensal of a lot of ecological niches could be its genome plasticity, among other

things. This genome plasticity has been shown to allow the yeast to adapt to a range of environments,

which can vary a lot in pH, temperature, oxygen and iron availability, oxidative stress. . . A brutal change

in these conditions is perceived by the yeast as a stress and triggers several pathways that aim to adapt

the cells to their new environment to improve their survival and growth. The phenomenon of adaptation

to improve the cells fitness in a specific environment is called stress response. Besides genome plasticity,

stress responses can also take the form of transcriptional adaptations inducing changes in gene expression

and protein composition of the cell. We can distinguish two kinds of stress responses : a general stress

response, which is activated as soon as the cells detect an environmental variation, regardless of the

change, and stress responses specifically adapted to the triggers perceived by the cells.

2.1 A general response : the Environmental Stress Response (ESR)

The Environmental Stress Response (ESR) corresponds to the regulation of a core set of genes in

response to sub-optimum growth conditions, regardless of the stress imposed. It means that the cells

react to changes in the environment by up and down-regulating the same set of genes for every condition,

whether it is temperature, pH or nutrients availability. . . On a more practical way, it also means that these

genes will display close expression profiles during the stress response. The ESR was studied in Candida

glabrata by Roetzer et al., 2008 through the yeast transcriptional response to four conditions : glucose

starvation, osmotic stress (addition of NaCl in the media), heat stress (growth at 42°C) and oxidative

stress (addition of hydrogen peroxide in the media). They identified 782 genes as members of the ESR.

Among those, 358 were induced and 424 were repressed. Interestingly, the ESR seems to be triggered

not only by deeply detrimental growth conditions, but also by small environmental changes which do
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not severely impact cell growth or viability. Nevertheless, the ESR is caused by the transition from an

optimal environment to a sub-optimal environment and therefore is not activated when cells go back

from a sub-optimal environment to an optimal growth environment. It is equally noteworthy that the

ESR intensity is adapted to the severity of the environmental stress : the more severe the environmental

changes are, the longer the ESR is and the more acute are the genes induction and repression.

The genes composing the ESR are enriched in several functional categories. More specifically, the

stress response causes the general repression of cytosolic translation (ribosome biogenesis, rRNA and

tRNA processing, translation initiation and elongation), nucleotide biosynthesis, cell growth and secre-

tion. On the other hand, it causes the induction of HSP chaperone proteins (as well as protein folding and

degradation), cellular redox reactions, DNA damage repair and genes involved in energy storage and car-

bohydrate metabolism. In short, all these changes aim to protect DNA, save energy by repressing protein

synthesis and cell growth and rearrange the proteome to keep the proteins essential for stress response

and basic cell functioning. It gives rise to an interesting phenomenon : the simultaneous induction of

both synthetic and catabolic enzymes, which aim to help produce the suitable proteins and destroy the

useless ones. The ESR might also be the cause of cross-resistance to various stresses, in which cells

exposed to a low dose of one stress become resistant to a low dose of a second stress : by protecting

the pathways previously mentioned after a first stress, the cells are already in a resistance state which

reduces the impact of a second stress.

Roetzer et al., 2008 also showed that Msn2/Msn4 TF are partially responsible for the ESR. Deletion

of Msn2/4 abolishes the induction/repression of a part of the ESR and render cells more sensitive to

stress exposure. These factors bind on the STRE motif (AGGGG) (discovered by Martínez-Pastor et

al., 1996 in S. cerevisiae), which happens to be one of the most enriched motifs in ESR genes. Msn

factors expression and localisation are tightly regulated. When cells encounter stresses, these TFs are

induced, and Msn2/4 proteins are relocated from cytoplasm to nucleus to induce several genes of the

ESR. When cells return to a more growth-friendly environment, Msn2/4 are down-regulated and they are

exported from the nucleus. Thus, the import/export of these TF is essential for their regulation abilities.

The mechanisms involved in nuclear import and export are not fully understood yet, but it is clear that

the Nuclear Export Signal (NES) (especially the conserved HD1 domain) and the Nuclear Localisation

Signal (NLS) play an important role. The NLS drives nuclear import. Nuclear export requires HD1

domain presence, as well as exportin Msn5. Currently, it is supposed that HD1 is the target site of Msn5

exportin and that the Protein Kinase A (PKA) phosphorylation site within HD1 has a regulatory role.
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Msn2 activity is likely regulated by PKA and TOR pathways, which phosphorylate the HD1 domain and

the NLS, but these assumptions remain to be proven in C. glabrata.

These findings differ only slightly from the ESR study of S. cerevisiae (Gasch et al., 2000)). They

used 13 different stress conditions and found that the core set of genes contains 868 genes, among which

283 are upregulated and 585 are downregulated. In both C. glabrata and S. cerevisiae, ESR genes

represent 15% of the total number of genes in the genome. Several dozens of the ESR genes are common

between the two species (Fig 2.1). As a consequence, there is an enrichment in the same GO categories

in both species (see previous paragraphs). However, there are still a few differences in the targets : genes

of sterol and ergosterol biosynthesis are deeply repressed upon stress in C. glabrata while they are not

in S. cerevisiae. Some of these genes were showed to be linked with cell growth and drug resistance

(Geber et al., 1995; Montañés et al., 2011), which might explain their down-regulation during the ESR.

Additionally, some interesting genes are up-regulated in C. glabrata and down-regulated in S. cerevisiae

: PHO84 (involved in heavy metal tolerance, Rosenfeld et al., 2010), VPH2 (involved in vacuolar pH

and lifespan extension, Ruckenstuhl et al., 2014), TBF1 (TF involved in DNA protection, Ribaud et al.,

2012). Interestingly, Wapinski et al., 2010 showed that C. glabrata lost the down-regulation of ribosomal

proteins in ESR, while it is conserved from S. cerevisiae to C. albicans.

FIGURE 2.1. ESR genes in S. cerevisiae and C. glabrata genomes. The overlap between the ESR of the two
species is depicted as a Venn diagram. C. glabrata and S. cerevisiae data are from Roetzer et al., 2008; Gasch
et al., 2000, respectively.
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The expression of ESR genes in S. cerevisiae is regulated by different TF, depending on the envi-

ronmental condition encountered, and governed by several different upstream signaling pathways. Msn2

general role and localisation are especially conserved in S. cerevisiae (Görner et al., 1998; Görner et al.,

2002). Other pathways are involved, and it seems that each stress condition activates specific pathways.

Notably :

- PKA and PKC pathways trigger the ESR (especially repression of ribosomal proteins) in response

to lack of nutrients and impaired secretion, respectively (Klein et al., 1994; Neuman-Silberberg

et al., 1995; Nierras et al., 1999).

- ESR-induced genes during osmotic stress are regulated by the High Osmolarity Glycerol (HOG)

pathway (Rep et al., 2000).

- ESR-triggering by DNA damage is controlled by DNA damage specific Mec1 pathway (Gasch

et al., 2001).

Unfortunately, most of these transcription factors and pathways are poorly studied in C. glabrata. The

PKA pathway seems to be involved in adaptation to nutrient deprivation and biofilm formation (Schwarzmüller

et al., 2014; d’Enfert et al., 2016), but it wasn’t proven to be involved in ESR regulation. The PKC path-

way plays a role in response to cell wall damaging agents, however it wasn’t linked to the ESR (Borah

et al., 2011). Schwarzmüller et al., 2014 noted that Mec1 isn’t essential in C. glabrata while it is in S.

cerevisiae and that its deletion modifies the cells fitness which suggests that the Mec1 regulatory net-

works functions differently between the two species, but once again, no link was made with the ESR.

Nevertheless, Gregori et al., 2007 and Roetzer et al., 2008 showed that Hog1 function is conserved in C.

glabrata and it retains its role in ESR, particularly during osmotic stress.

A part of the ESR genes is also conserved in other species such as L. kluyveri (Brion et al., 2016), S.

pombe (D. Chen et al., 2003), Aspergillus spp (Kawasaki et al., 2002; Du et al., 2006). Usually, the target

genes in these species have GO categories similar to those of S. cerevisiae and C. glabrata. The ESR

existence is still unclear in C. albicans because of contradictory findings (Enjalbert et al., 2003; Harcus

et al., 2004; Enjalbert et al., 2006; Roy et al., 2013), even if at least a small part of the regulations seems

to be conserved.

Regarding the role of Msn2, there are contradictory signs in previously mentioned species. The

Msn2 DNA binding domain is found in genes in other species, but this is usually the only conserved part
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between these genes and C. glabrata Msn2. A team found STRE binding proteins in S. pombe (Kunitomo

et al., 2000), however they didn’t seem to be involved in stress response. Nevertheless, the HD1 domain

is conserved in K. lactis and A. gossypii, as well as the embedded PKA phosphorylation site and is

enough to trigger nuclear export of Msn2 in these species. However, the HD1 region doesn’t appear to

be conserved in C. albicans and its close species, which led Roetzer et al., 2008 to hypothesise that the

HD1 domain and the Msn2-mediated stress response appeared after the divergence of C. albicans from

the evolutionary path leading to S. cerevisiae and C. glabrata. Enjalbert et al., 2006 found no role for

Msn2 in C. albicans ESR. Ramsdale et al., 2008 showed that C. albicans Mnl1 (Msn2 correspondent in

this yeast) is still binding to STRE motifs, however, they only reported its role in weak-acid response, and

not in a larger environmental stress response. On the other hand, Alonso-Monge et al., 1999 reported

an important role for Hog1 in several types of stress in C. albicans (osmotic stress, weak acid stress,

oxidative stress). Also, it was shown by D. Chen et al., 2003, that Sty1 (Hog1 S. cerevisiae orthologue

in S. pombe) is required for ESR regulation in S. pombe. Hence, the ESR of these two species might be

carried out by transcription factors that are different from Msn2 orthologues.

Besides the control of the ESR, these signaling systems have also been involved in regulating more

specialized stress responses and the associated gene expression. These pathways simultaneously regulate

both the ESR and specialized responses specifically adapted to the environmental conditions that activate

the pathways.

2.2 Condition-specific stress responses

Like most unicellular organisms, Candida glabrata has a multitude of ways to deal with ever-

changing growth conditions or unfavorable media and nutrients starvation. These situations are per-

ceived by the cells as stresses and trigger stress responses specifically adapted to answer the changes in

growth media. As a result, C. glabrata has a lot of different stress response pathways. In the following

parts, a handful of them will be addressed, as well as the strong connections that exist between them :

the absence of oxygen, the oxidative stress response, the respiratory pathway and iron homeostasis. We

focused on these stresses because they are of interest to our team and because some of them (oxidative

stress, changes in iron concentration) are important for C. glabrata virulence.
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2.2.1 Rox1, a mediator of response to hypoxia

ROX1 was extensively studied in S. cerevisiae since the early 80’s. It was first discovered as a repres-

sor of ANB1, a translation elongation factor especially expressed during hypoxia (Lowry et al., 1986).

Lowry et al., 1988 confirmed the repressing effect of Rox1 on another gene involved in hypoxia, CYC7,

and Ter Linde et al., 2002 and others used genome-wide approaches to show that under aerobic media,

Rox1 represses several tens of genes required for hypoxia transition and adaptation. This regulation

is permitted by Rox1 binding on the ATTGTTCTC motif found in the promoters of its targets (Bala-

subramanian et al., 1993). The binding is mediated by HMG (High Mobility Group) domain. Deckert

et al., 1995 also found that Rox1 ability to repress its targets was probably linked to its DNA bending

capacities : when Rox1 is bound, it bends DNA at an angle of 90 degrees, preventing other activators or

polymerases to bind and promote or start transcription. Currently, ROX1 is almost uncharacterised in C.

glabrata. Schwarzmüller et al., 2014 reported no impact of Rox1 deletion on C. glabrata fitness in the

condition they tested (azole susceptibility and biofilm formation). However, Gupta et al., 2017 showed

that Rox1 has a role in biofilm formation and biofilm resistance to azole under hypoxic condition. Addi-

tionally, they suggested that Rox1 is involved in resistance to hypoxia. This last role resembles a lot to

the role of S. cerevisiae Rox1.

However, in S. cerevisiae, Rox1 activity is also mediated by its interactions with several other proteins

(Kastaniotis et al., 2000; Sertil et al., 2003; Mennella et al., 2003; Klinkenberg et al., 2005). Rox1

interacts synergistically with Mot3 to repress the transcription of hypoxic genes, and that Mot3 activity

is regulated by oxygen, like Rox1. It is also able to recruit the Tup1/Ssn6 complex, a known general

transcriptional repressor, to repress its targets.

With all these data, the ability of Rox1 to regulate its targets was also rapidly linked to the presence

of oxygen and heme : Lowry et al., 1988 and L. Zhang et al., 1999 showed that ROX1 is induced by

heme, and this finding laid the bases of ROX1 regulatory network. Indeed, Keng, 1992 demonstrated

that Heme Activated Protein 1, Hap1, was required to induce ROX1 to regulate HEM13. Zitomer et al.,

1997 went further and found that the presence of heme induces Hap1 which in turns induces Rox1 which

represses his targets. On the other way, absence of heme causes ROX1 repression by Hap1, thus lifting

Rox1 repression on hypoxia genes. This makes sense, given that heme biosynthesis is strongly linked to

oxygen availability. Also, according to Proft et al., 2005, Sko1 is another possible regulator of ROX1, as

well as Ixr1 (Castro-Prego et al., 2009).
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Besides its regulation by heme and oxygen and its impact on hypoxic genes, S. cerevisiae Rox1

was found to be involved in a variety of roles, such as lipid metabolism (Vasconcelles et al., 2001;

Kwast et al., 2002), cell wall mannoproteins regulation (Abramova et al., 2001), ergosterol biosynthesis

regulation with Hog1 during osmotic stress (Jensen-Pergakes et al., 2001; Montañés et al., 2011) and

fermentation (Fujiwara et al., 1999). More interestingly, Rox1 was also linked to metal homeostasis and

oxidative stress response, which is not so surprising given the relationships between oxygen and ROS

production : C.-M. Wong et al., 2003 showed that Rox1 regulates TSA2, a key gene of the OSR. Liu

et al., 2013 determined that oxidative stress lowers the occupancy of Rox1 on hypoxic gene promoters,

thus inducing their de-repression. Finally, Caetano et al., 2015 confirmed that during oxidative stress

caused by cadmium, Yap1 activates ROX1 to repress FET4, providing a link between Rox1, OSR and

metals. This link might be conserved in C. glabrata, because Merhej et al., 2016 found that Yap1 binds

and regulates ROX1 in response to selenite, which causes oxidative stress, among others. Still in C.

glabrata, Rox1 has another role in metal homeostasis : Srikantha et al., 2005 showed that it regulates

CCC2, a copper transporter. This regulation is conserved in S. cerevisiae (Ter Linde et al., 2002). Also,

C. glabrata Rox1 was linked to mitochondrial dysfunction (Ferrari et al., 2011b). Nevertheless, the role

of Rox1 doesn’t seem to be conserved in K. lactis (Fang et al., 2009) nor in C. albicans, where it controls

filamentous growth (Khalaf et al., 2001; Kadosh et al., 2001).

2.2.2 The oxidative stress response (OSR)

Oxidative stress occurs when the concentration of Reactive Oxygen Species (ROS) present in or

around the cell is higher than the detoxification abilities of the yeast or when damages resulting from

ROS accumulation starts proving difficult to repair. ROS are highly reactive chemical species contain-

ing oxygen, such as the superoxide anion (O –
2 ), hydrogen peroxide (H2O2) and hydroxyl radical (HO ).

These compounds can damage DNA, oxidize proteins and lipids and ultimately cause cell death. There

are several sources of ROS (reviewed in D’Autréaux et al., 2007). First, they are by-products of nor-

mal aerobic metabolism, especially cellular respiration : for example, they are formed during oxidative

phosphorylation, which aims to produce ATP. Additionally, hydroxyl radicals and superoxide anions are

produced during Fenton reactions, in which metallic ions (which are often iron and copper, see Stohs

et al., 1995) in contact with hydrogen peroxide are oxidized, leading to the formation of the previously

mentioned species. Heavy metals such as cadmium and lead can also cause oxidative stress by peroxi-

dising lipids and oxidising glutathiones (Stohs et al., 1995; Z.-S. Li et al., 1997). The damages caused
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by oxidation of proteins and lipids has a great cost in ATP and NADP(H) for the cells, because the re-

duction processes of these compounds are very expensive in energy. Finally, pathogenic yeasts such as

C. glabrata are likely to come into contact with ROS when they are engulfed by macrophages during

the systemic invasion of a host. Phagocytes are the first line of host defense against fungal infections

and when they encounter a pathogen, they quickly use the NADPH oxidase complex to produce ROS

designed to kill it (Segal et al., 2012), such as, for example, hypochlorous acid, the main reactive compo-

nent of bleach. Failing in NADPH oxidase functioning of the host often leads to increased susceptibility

to fungal infections, which displays a strong link between oxidative stress and virulence (Roetzer et al.,

2011b; Seider et al., 2014). This shows how important it is for C. glabrata to efficiently deal with ROS

and maintain a proper redox homeostasis.

It was also shown that the Oxidative Stress Response (OSR) plays a key role in C. glabrata survival

and replication after engulfment in macrophages (Kaur et al., 2007; Wellington et al., 2009; Roetzer et al.,

2010; Roetzer et al., 2011b; Seider et al., 2011). The OSR is so efficient in C. glabrata that this yeast can

withstand very high H2O2 concentrations : while the H2O2 concentration inside a macrophage is 0.4 mM,

C. glabrata can resist up to 40 mM H2O2 given proper conditions (Roetzer et al., 2010), which might

partially explain its persistence in these immune cells. Studies showed that C. glabrata is particularly

resistant to hydrogen peroxide, compared to S. cerevisiae and isolates of C. albicans (Cuéllar-Cruz et al.,

2008), even if OSR is quite conserved between S. cerevisiae and C. glabrata (Roetzer et al., 2008; Salin

et al., 2008; Saijo et al., 2010; Roetzer et al., 2011b; Gutiérrez-Escobedo et al., 2013). Cuéllar-Cruz

et al., 2008 also proved that C. glabrata ROS resistance is further increased in stationary phase.

The currently available data suggest that C. glabrata has a robust and most likely redundant antioxi-

dant system. The OSR in C. glabrata is performed through the induction of enzymatic (catalases, SODs,

and peroxidases) and non-enzymatic (glutathione) mechanisms. It will mainly use three pathways to deal

with ROS and especially hydrogen peroxide.

- The catalase pathway (Green box in Figure 2.2) : catalases decompose H2O2 to water and oxy-

gen. While S. cerevisiae has two catalases, CTT1 (cytoplasmic catalase) and CTA1 (peroxisomal

catalase), C. glabrata has only one, CTA1. Interestingly, CgCTA1 combines features (induction

conditions and intracellular localisation) of the two catalases of S. cerevisiae (Roetzer et al., 2010;

Roetzer et al., 2011b). Even if CTA1 orthologue of C. albicans (CAT1) was proved to be important

for virulence (Nakagawa et al., 2003), that is not the case in C. glabrata, despite being essential to

hydrogen peroxide resistance (Cuéllar-Cruz et al., 2008; Roetzer et al., 2010).
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- The glutathione pathway (Blue box in Figure 2.2) : it is constituted by glutathione (GSH), glutare-

doxins and a glutathione reductase. This system uses a series of reactions that are expensive in

energy and reduced materials. Glutathione (GSH) is an essential tripeptide composed of glycine,

cysteine and glutamate synthesized by the action of GSH1 and GSH2 (Meister, 1974). In C.

glabrata, GSH1 is essential (Yadav et al., 2011). GSH acts as an electron donor for conversion of

H2O2 into water. Accordingly, it produces an oxidised form of GSH, glutathione disulfide (GSSG)

(Penninckx, 2000). This reaction is catalysed by the glutathione peroxidase enzymes Gpx1 and

Gpx2. GSH is reformed by reduction of GSSG by the glutathione reductase, Glr1, using NADPH

as an electron donor. The glutaredoxins Grx1 and Grx2 may also be involved in the maintenance

of a high GSH to GSSG ratio.

- The thioredoxin pathway (Red box in Figure 2.2) : this system also uses a series of complex

and expensive reactions. Detection of ROS leads to the activation of TRR1, a reductase which

consumes NADPH to reduce the thioredoxin Trx2. Trx2 then reduces the thioredoxin peroxidase

Tsa1, which converts H2O2 to H2O. In the same reaction, Tsa1 is also reduced back to its initial

form (Grant, 2001). In S. cerevisiae, Tsa1 is expressed at high basal levels even in unstressed cells.

This might be because it is an essential antioxidant of ROS (its deletion renders cells sensitive to a

range of oxidative stressors) but also because Tsa1 was linked to genome stability and protection

(Iraqui et al., 2009).

Furthermore, superoxides anions and hydroxyl radicals are converted to hydrogen peroxide by super-

oxide dismutases (SOD) (Briones-Martin-Del-Campo et al., 2014). This allows the anions to enter one

of the three recycling pathways mentioned above. SODs are metalloenzymes that catalyze the dismuta-

tion of O –
2 into H2O2 and oxygen. SODs always have a metal cofactor, which can be copper, zinc, iron,

manganese. . . C. glabrata has two SOD genes, SOD1 (Copper and Zinc SOD) and SOD2 (Manganese

SOD). SOD1 and SOD2 are constitutively expressed, even in the absence of oxidative stress (Roetzer

et al., 2011b), contrary to S. cerevisiae, and are also highly induced in glucose starvation. Unlike in C.

albicans, sole deletion of SOD1 doesn’t impact survival in macrophages (Roetzer et al., 2011b).

Additionally, C. glabrata can reduce the impact of heavy metals with the use of chelator proteins

called metallothioneins. Two of them are identified in this yeast : MT-I (CAGL0D01265g) and MT-II

(CAGL0H04257g) (Mehra et al., 1989), however their functioning is still unclear. Mehra et al., 1994 also

demonstrated the use of phytochelatins (GSH derivatives) to chelate cadmium. Finally, pigments also
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FIGURE 2.2. Pathways of the OSR in C. glabrata. Drugs involve for example Menadione, a known cause of
O –

2 production, or benomyl. Fenton processes are oxidation reactions between hydrogen peroxide and metals,
such as iron. Heavy metals can be Cadmium ions, for example. ROS and ROS producers are in orange boxes and
orange drawing respectively. The three main H2O2 detoxification pathways are also boxed : catalase (green, in
cytoplasm and peroxisomes), glutathione (blue) and thioredoxin (red). TFs are in violet. The genes identified as
transcriptionally regulated by oxidative stress and Yap1 are written in red. The conformational change of Yap1
which prevents it from leaving the nucleus is represented by a black cross. Curved arrows are redox reactions.
Green double-ended arrows imply a positive feedback. Dashed arrows represent putative pathways.

play a role against H2O2 protection : Brunke et al., 2010 showed that a tryptophan-derived pigment is a

by-product of the Ehrlich pathway of tryptophan degradation and its production is mainly driven by the

aromatic aminotransferase I (Aro8).

The OSR in C. glabrata is mainly governed by four transcription factors, which have redundant

targets. These information are summarised in Figure 2.2. The first TFs are Msn2 and Msn4, which

were previously mentioned for their importance in the ESR. The most striking gene under their control

is CTA1. Additionally, Cuéllar-Cruz et al., 2008 showed that Msn2 is important for resistance to ROS

especially in stationary phase, while Msn4 is essential in both stationary phase and log-phase.

The third factor involved in OSR regulation is Skn7. Skn7 was originally isolated as a high-copy
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number suppressor of a strain defective in β -glucan synthesis : J.L. Brown et al., 1993 revealed that Skn7

was controlling KRE9, a gene encoding for a glycoprotein involved in cell wall beta-glucan assembly.

Several teams confirmed that result and found other target genes involved in the same pathways, namely

osmotic stress response and cell wall regulation.

Afterwards, a huge focus was made to understand Skn7 activation upon osmotic stress. In particular,

Ketela et al., 1998; Lu et al., 2003; Lu et al., 2004; Shankarnarayan et al., 2008 deciphered the mechanism

of Skn7 activation. It starts with the detection of osmotic stress by the sensor kinase module Sln1. This

event provokes the auto-phosphorylation of Sln1 and the transfer or the phosphorylated group from Sln1

to Ypd1. This last protein is a shuttle that will go into the nucleus to interact with Skn7, which it

activates by transfer of the phosphorylated group with the help of Mog1. After its activation, Skn7 will

regulate its targets and contribute to the regulation of the HOG pathways, the main pathway to respond

to osmotic stress. In parallel, Skn7 can also be activated by the plasma membrane-associated cell wall

sensor MID2 (Ketela et al., 1999). Interestingly, MID2 is known to interact with genes required for cell

wall construction and cell wall integrity signalling, and deletion of MID2 leads to resistance to calcofluor

white, an agent attacking the fungal cell wall and triggering the osmotic response.

The osmotic stress function of Skn7 might be conserved in C. glabrata : Juárez-Cepeda et al., 2015

showed that the EPA2 adhesin encoding gene is responsive to stress and that its activation relies on

Skn7, the EPA genes being well-known for their role in biofilm formation. However, it seems that this

function is lost in C. albicans : Basso et al., 2017 reported that in C. albicans, Skn7 lost its role in

cell wall regulation and osmotic stress response, but acquired the ability to regulate filamentation and

morphogenesis.

In parallel, Skn7 was also found to be involved in the oxidative stress response in S. cerevisiae

(Morgan et al., 1997; Lee et al., 1999; Tsuzi et al., 2004). This role is conserved in C. glabrata :

Skn7 is responsible for the induction of genes critical to the OSR such as GPX2, TRX2, TRR1, TRR2,

TSA1, TSA2 or CTA1 (Cuéllar-Cruz et al., 2008; Saijo et al., 2010). Interestingly, Skn7 is constitutively

localised in the nucleus in C. glabrata (Roetzer et al., 2011b), so its activation during stress doesn’t

rely on cellular localisation. Eventhough, it is still unclear how Skn7 is activated, Gómez-Pastor et al.,

2013 showed in S. cerevisiae that Trx2p regulates Skn7p phosphorylation and thus modulates Skn7p-

dependent promoter activation during oxidative stress. This displays a clear link with the fact that Skn7

has to be phosphorylated to activate antioxidant genes (He et al., 2009). Given that both Skn7 and Trx2
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are conserved in C. glabrata and that Skn7 still regulates TRX2, it is possible that phosphorylation may

also play a role in Skn7 activation in this species. Additionally, Skn7 might also be activated by the

Ras/PKA and MAPK pathways (Charizanis et al., 1999). However, these mechanisms weren’t studied

in C. glabrata. The role of Skn7 as a regulator of oxidative stress is conserved across many species of

fungi, including C. albicans (Homann et al., 2009; Basso et al., 2017), A. fumigatus (Lamarre et al.,

2007) and C. neoformans (K.-W. Jung et al., 2015). The conservation of the Skn7 regulatory network

across several species is reviewed in Pais et al., 2016.

Additionally, other roles were associated to Skn7 in S.cerevisiae : it is involved in recombinational

repair of double-strand breaks in DNA by controlling Rad51 with the help of Yap1 (Yi et al., 2016).

It might also be involved in heat shock response, given that it can interact with Hsf1 to activate heat

shock genes (Raitt et al., 2000) and that cells deleted for Skn7 are more sensitive to heat Morano et

al., 2012. Also, Skn7 is often considered as a Heat Shock Factor-like TF, because it shares structural

homologies with Hsf1 (Raitt et al., 2000) and both Skn7 and Hsf1 bind the same DNA motif, namely

TTCnnGAAnnTTC (Raitt et al., 2000 and Amin et al., 1988). In C. glabrata, Skn7 is also linked to

virulence : Saijo et al., 2010 showed that cells deleted for Skn7 present an attenuated virulence in murine

model. It implies that this factor or its targets are likely to be involved in virulence processes.

Finally, in C. glabrata, most of the genes mentioned here, including Skn7, are also co-regulated

by Yap1 (Merhej et al., 2016), the last factor that will be mentioned here and the most important in

term of transcriptional regulation. It has been shown that Yap1 and Skn7 have independent roles in

regulating oxidative stress adaptation, but also co-operate to regulate many genes by co-binding the

same promoters, and this is similar to S. cerevisiae (Roetzer et al., 2011b). Moreover, in S. cerevisiae,

Skn7 has to be phosphorylated to physically interact with Yap1 (Mulford et al., 2011). In C. glabrata,

contrary to Skn7, Yap1 is essential to the OSR, but not in virulence (Cuéllar-Cruz et al., 2008; K.-H.

Chen et al., 2007). Upon oxidative stress, Yap1 is translocated from the cytoplasm to the nucleus and

phosphorylated in S. cerevisiae : Gpx3 is a key sensor of oxidative stress, and when it is reduced, it

changes Yap1 conformation and especially its NES, preventing its export of the nucleus by Crm1 (Yan

et al., 1998), which leads to Yap1 accumulation in the nucleus. While there is no effective clue on

Gpx3 role in OSR in C. glabrata, Yap1 functional domains (NLS, NES and Gpx3 interaction domain)

are conserved, so this mechanism might also be conserved. Indeed, Roetzer et al., 2010 showed that

Yap1 is localised in the nucleus after oxidative treatment. Once in the nucleus, the bZIP TF Yap1 will

regulate a wide range of targets, including genes in oxidative stress and redox homeostasis (previously
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mentioned genes and also GSH genes, for example), drug resistance (K.-H. Chen et al., 2007), cadmium

resistance, iron metabolism, heme biosynthesis. . . (Merhej et al., 2016). It will do so by binding mainly

the YRE-O motif TTACTAA (K.-H. Chen et al., 2007; Lelandais et al., 2008; Merhej et al., 2016), even

if other binding motifs were reported (Lelandais et al., 2008; Tan et al., 2008; Kuo et al., 2010; Goudot

et al., 2011), notably the YRE-A motif TTACGTAA. It is also interesting to note that Yap1 and its role in

oxidative stress are very conserved across fungi (Enjalbert et al., 2006; Wang et al., 2006; Lessing et al.,

2007; Leal et al., 2012; Paul et al., 2015).

If we take into account all these studies, we can note that the OSR in Candida glabrata has some

interesting global features : The regulation of genes involved in oxidative stress is dose dependent in C.

glabrata (Puttnam, 2012) : the more acute the stress is, the more genes are up/down-regulated and the

more intense the expression variations are. It also varies with the length of the stress imposed to the

cells. The comparison of the results of Lelandais et al., 2008 and Roetzer et al., 2010 also shows that

the transcriptional regulation is conditioned by the oxidative stressor used : benomyl, menadione and

H2O2 don’t exactly elicit the same response. Finally, given the genes involved in the OSR, the stress

response appears to be strongly related to cellular respiration and iron homeostasis (Merhej et al., 2016).

Indeed, many genes induced in response to oxidative stress are also involved in metal ion homeostasis

(see Introduction Chapter 3).

2.2.3 The CCAAT-Binding Complex as a link between oxidative stress and respiration

Over the years, several teams identified other factors involved in oxidative stress, but one especially

stood out from the crowd : Hap4. It was noteworthy for several reasons. First, in S. cerevisiae, Hap4

was found to be involved in the regulation of genes belonging to the OSR, such as SOD1 (Chevtzoff

et al., 2010), SOD2 (Pinkham et al., 1997) and TSA2 (C.-M. Wong et al., 2003). Second, Petryk et al.,

2014 suggested that Hap4 and Yap1, the key regulator of the OSR, diverged from a common ancestor,

which might suggest common regulating features. Finally, still in S. cerevisiae, Chevtzoff et al., 2010

showed that ROS regulate Hap4 activity and that Hap4 quantity plays an important role in the reduction

of mitochondria biogenesis induced by ROS. All of this tends to display a strong link between ROS,

the subsequent OSR, mitochondria and thus respiration. However, Hap4 is much better known for its

huge role in regulation of cellular respiration alongside the CCAAT Binding Complex (CBC), reviewed

in Bolotin-Fukuhara, 2017. Given that literature on CBC is quite restricted in C. glabrata, most of the
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following information is inferred from S. cerevisiae, which proved to be a close species with shared

features.

The CBC is a heterotrimeric complex which is widely conserved from yeast to plants and mammals,

being named NF-Y A/B/C in the latter and Hap2/3/5 in the former. The HAP complex was discovered

in S. cerevisiae in the early 80’s by Guarente’s team, who studied the regulation of the CYC1 gene,

coding for isocytochrome c, a protein of the mitochondrial respiratory chain. (Guarente et al., 1983)

found an “enhancer” region responding to heme presence in the upstream sequence of CYC1. They

later looked for trans-acting mutation affecting this region and found a mutant (Guarente et al., 1984)

corresponding to the first member of the CBC, which was named HAP2 (Pinkham et al., 1985). At that

time, this group already noticed a link between HAP2 and growth on non-fermentable carbon sources,

as well as the likely ability of Hap2 to bind on DNA (Pinkham et al., 1987). The identification of the

second member of the CBC, HAP3, was done by the same team in the same way a few years later (Hahn

et al., 1988). Interestingly, they also showed that Hap2 and Hap3 were interacting in a complex, which

formation was sensitive to the carbon source (Olesen et al., 1987), and they found a common binding

motif on DNA for both factors : CCAAT, hence the name of the complex. The third and last member

of the CBC, Hap5, was identified by McNabb et al., 1995 using a yeast two-hybrid screen. Incidentally,

it shared the same binding motif and the same carbon source phenotype than Hap2 and Hap3. This

team also demonstrated that the CBC (Hap2/3/5) can bind to DNA without any other protein association.

Although being essential to growth in non-fermentable carbon source, none of these proteins are actually

transcriptionally induced by such a growth media. Orthologues of the three proteins are present in C.

glabrata. In the mean time, several studies also confirmed that the Hap factors were highly homologous

with human and mouse proteins and shared the same DNA binding domain. It was even showed that

heterologous complex are steady (Becker et al., 1991).

Interestingly, Forsburg et al., 1989 identified a last gene, called HAP4, using the same method than

Hap2 and Hap3. Despite not resembling the other CBC proteins, not being required for CBC binding

on DNA, and not directly binding the CCAAT motif on DNA, it has the same carbon source phenotype

(unable to grow on non-fermentable carbon source). The fact that CBC binding by itself isn’t enough

to provoke a transcriptional regulation and that HAP4 is transcriptionally induced on non-fermentable

media, contrary to HAP2/3/5 implies that Hap4 is an activator part of the complex. All domains of interest

found in the Hap proteins are represented in Figure 2.3. Hap4 clearly displays an activator domain,

contrary to Hap2/3/5. Noteworthy, Hap4 proteins were only found in fungi (including C. glabrata) and
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never identified in the CCAAT-binding proteins of mammals (Mantovani, 1999), which correlates with

the fact that NFY complex alone can both bind DNA and activate transcription.

FIGURE 2.3. Representation of the four proteins of the HAP complex in S. cerevisiae. This figure is adapted
from Bolotin-Fukuhara, 2017. A represents domains of interaction between the subunits of the CBC. B represents
domains of interaction with Hap4. C represents DNA binding domain. D represents domain of interaction between
the CBC and Hap4. E represents activation domains of Hap4. The subunits Hap2, Hap3 and Hap5 first form an
heterotrimer. It will bind to Hap4 mainly via the Hap5 recruitment domain, provided the DNA-binding sequence
CCAAT is present (McNabb et al., 2005).

The study of the CBC targets began simultaneously with the discovery of the members of the com-

plex. Amongst the first targets identified were HEM1 (Keng et al., 1987), involved in heme biosynthesis,

COX genes (Trueblood et al., 1988; Trawick et al., 1989) which constitute the cytochrome c oxidase

enzyme (the fourth complex of the respiratory chain) and CYT1 (Schneider et al., 1991) which belongs

to the third complex of the respiratory chain. These targets and the previous data suggested a strong link

between the Hap proteins and the regulation of genes of the respiratory metabolism. This was further

validated by the identification of other genes under CBC regulation through promoter dissection and

low-throughput molecular approaches : KGD1 (Repetto et al., 1989), HEM3 (Keng et al., 1992), CIT1

(Rosenkrantz et al., 1994). . . Finally, genome wide studies with microarrays allowed to confirm this and

to identify hundreds of genes targeted by the CBC. For example, Murphy et al., 2015 studied the impact

of Hap4 overexpression in glucose and found that it mostly induced mitochondria and TCA functioning

and biogenesis as well as ribosomal proteins biogenesis. The overexpression even brought the cells in

a state of respiratory energy production despite the availability of glucose for fermentation. Buschlen

et al., 2003 performed the opposite experiment by deleting Hap2 and Hap4 to compare the expression

with WT cells. They were able to add a few roles for the CBC, including induction of components of

the mitochondrial translation apparatus, induction of genes related to mitochondrial proteins folding and
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import as well as mitochondrial carriers. They noticed that most of these genes (and especially the res-

piratory chain genes) contain at least one CCAAT motif in their promoter. A large proportion of these

targets seems to be conserved in C. glabrata (see Results and discussion 5).

The Hap activation of these genes relies on the necessity to activate respiration, for example when

glucose is not available. It also depends on the growth rate of the cells. Basically, when glucose is scarce

and growth drops below a certain limit, Hap4 is induced and the CBC activates the aforementioned targets

(Raghevendran et al., 2006; Fendt et al., 2010). This regulation seems to be correlated with the needs

of the cells : the more they need the respiratory pathway, the stronger Hap4 is induced. It means that

Hap4 will be totally repressed during fermentation, mildly activated during diauxic shift and even more

during full-respiratory growth. Other causes of activation of the Hap complex, when it is in charge of

respiration activation, include alteration of chromatin structure (Galdieri et al., 2016), increase in heme

biosynthesis (T. Zhang et al., 2017) and cellular glutathione redox state (Yoboue et al., 2012).

However, the high-throughput analyses also widened the scope of the CBC targets to non-respiratory

chain related genes such as FBP1 and PCK1 (Mercado et al., 1992), key genes of the gluconeogenesis,

RPM2, a mitochondrial RNase P, AAC2 (Betina et al., 1995), an ADP/ATP carrier, IME1 (Purnapatre

et al., 2002), a meiosis regulator and ASN1/GDH1, two enzymes involved in nitrogen metabolism (Riego

et al., 2002; Hernández et al., 2011). Buschlen et al., 2003 also found genes involved in oxidative

stress (most likely to respond to the ROS produced during respiration), amino acids biosynthesis, cell

morphology, mating, drug resistance, rRNA metabolism, sterol metabolism and pseudohyphal growth.

Hap4 was even linked to apoptosis (Leadsham et al., 2010). All these findings are in accordance with

the numerous phenotypes that were associated to mutations in the CBC and Hap4 (Bolotin-Fukuhara,

2017). With its essential roles in respiration and seemingly in other pathways, the CBC ought to interact

with a lot of other transcription factors to coordinate the required transcriptional responses. For example,

studies of the upstream region of Hap4 revealed putative binding sites for several regulators such as

GLN3, GCR1, GIS1, RGT1, MOT3. . . All of which are known to be involved in functions proven to

be associated with the HAP complex (for example, glucose and nitrogen metabolism, cell cycle. . . ).

Unfortunately, there is only a few concrete proofs of TFs interacting with the CBC. Lundin et al., 1994

identified a strong Mig1 (a glucose repressor) binding site in Hap4 promoter, however, Mig1 deletion

didn’t impact Hap4 expression. Roberts et al., 2009 found that Rsf1 is induced in respiration on non-

fermentative media (namely, glycerol) and binds several genes associated to Hap4 but there is no direct

connection between the two TFs. Brons et al., 2002 found a connection between Hap4 and Cat8, a
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gluconeogenic TF, where deletion of one factor deeply affects the expression of the other; as well as the

subsequent target genes but weren’t able to show a direct binding. As one of the few evidences of direct

interaction, Foster et al., 2013 proved that Sut1, a TF involved in filamentous growth, directly bind on

Hap4 and down-regulates its expression. Soontorngun et al., 2007; Soontorngun et al., 2012 determined

that Rds2 binds on Hap4 and also activates its expression. Also, Rds2 has a set of targets common with

Hap4. Finally, they integrated all their data in a model explaining the interactions of transcriptional

regulators involved in utilization of non-fermentable carbon sources such as SUT1, HAP4, CAT8 and

RDS2 (Figure 2.4). The pathways regulated by the CBC and the responsible TF are summarized in

Figure 2.5.

FIGURE 2.4. Interaction of transcriptional regulators involved in the utilization of non-fermentable carbon
sources in S. cerevisiae. This figure is adapted from Soontorngun et al., 2012. Solid lines indicate binding and
expression regulation. Dashed lines indicate only binding.

Hap2, Hap3 and Hap5 are conserved throughout evolution and it is quite easy to identify them in

genomic sequences using homology detection. This does not hold true for Hap4 which quickly diverged.

For example, even if Kluyveromyces lactis is quite close to S. cerevisiae, only two domains of less than

20 amino acids are conserved between the Hap4 proteins of each species (Bourgarel et al., 1999). In

more distant species such as S. pombe, the activation domain of the protein is lost and only the site

of interaction with Hap5 (16 aa) is conserved (McNabb et al., 1997). However, these 16 aa are really

conserved across evolution and allowed to identify Hap4-like proteins in many species. Interestingly, in

yeasts distant of S. cerevisiae, this Hap4-like proteins often have a bZip DNA-binding domain resembling

the one found in Yap1. The first protein with these characteristics was called HapX and was identified
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FIGURE 2.5. CBC known roles and associated transcription factors in S. cerevisiae. This figure sums up
the roles of the CBC when cells encounter a non-fermentable carbon source. Black lines indicate an interaction
between the CBC and Hap4. The red line indicates that the CBC has a role but not Hap4. An arrow indicates an
activation, a perpendicular line indicates a repression. Putative supplementary TF involved are specified on the
black/red lines.

in Aspergillus nidulans by Tanaka et al., 2002. They also showed that this protein was involved in iron

homeostasis, which is an interesting feature considering the role of iron in respiration. The relationship

between iron homeostasis, oxidative stress and respiration is not so surprising given that iron excess is

deleterious to the cells, allowing Fenton reactions to take place and provoke oxidative stress. Conversely,

iron is required in many pathways among which the synthesis of the respiratory components such as

iron-sulfur clusters, for example. Additionally, other HapX proteins were found in plant pathogens

(Verticillium dahliae (Wang et al., 2018) and Fusarium oxysporum (López-Berges et al., 2012)) and

human pathogens Cryptococcus neoformans (W.H. Jung et al., 2010), Aspergillus fumigatus (Schrettl

et al., 2010), Blastomyces dermatitidis (Marty et al., 2015), Arthroderma benhamiae (Kröber et al.,

2016) and C. albicans, where it is called Hap43 (Hsu et al., 2011; Singh et al., 2011). In all these

species, an interaction between the CBC and a HapX protein is required to mediate iron homeostasis and

virulence. Even if a possible link between iron homeostasis and the CBC hasn’t been explored much in S.

cerevisiae, it would be interesting to know where Candida glabrata stands on this topic : is C. glabrata



2.2. Condition-specific stress responses 33

CBC involved in respiration (given its similarity with S. cerevisiae) or in iron homeostasis ?

2.2.4 The iron homeostasis is linked with respiration and oxidation

Iron acquisition, besides being a key virulence factor for several fungal pathogens (Bairwa et al.,

2017; Gerwien et al., 2018), is first and foremost an essential metal in a majority of organisms. This is

probably because of the diversity of pathways it is involved in, such as oxygen transport, tricarboxylic

acid (TCA) cycle, respiratory chains in mitochondria or Fe-S cluster biogenesis also in mitochondria

(Outten et al., 2013). Furthermore, iron starvation, for example, renders cells more sensitive to oxidative

stress (Blaiseau et al., 2001). Hence, regulating iron acquisition, utilization and storage is mandatory for

any organism, and even more for fungi like C. glabrata, which encounter rapidly changing media. The

yeast can face two kinds of challenge : an iron-depleted media, or an excess of iron. These challenges

will be solved using different mechanisms and regulators, which are represented in Figures 2.6 and 2.7.

2.2.4.1 Response to iron-depleted media

In case of iron deficiency, C. glabrata combines two types of solutions to get back to normal iron

levels. It can increase its iron uptake and repress iron consuming genes. All the mechanisms involved

are represented on Figure 2.6.

The iron uptake is mediated through several means :

- The utilization of siderophores (I in Figure 2.6), which is one of the most efficient pathway.

Siderophores are heterogeneous small molecules with a very high affinity for the iron ion (Fe3+).

They are usually secreted by micro-organisms (bacteria and fungi) in the extracellular media to

bind the iron that is available there. One of the interest to form a complex between ferric iron

and siderophores is to prevent it from undergoing Fenton reactions, thus avoiding formation of

hydroxyl radicals and oxidative stress. Hence, this protects microorganisms against iron toxicity

(Eisendle et al., 2006). Complexes made of iron and siderophores will then either go directly into

the cell or the ions will be delivered to specific transporters sitting on the yeast surface. These

transporters will then bring the iron into the cells. However, siderophore biosynthesis is impossi-

ble in C. glabrata because it is lacking a key enzyme, Sid1. Thus, it has to hijack xenosiderophores

(siderophores synthesized by other fungi or bacteria). To that end, the yeast uses the membrane

transporter Sit1 (Nevitt et al., 2011) to bring xenosiderophore-iron complexes in the cell.
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- The high-affinity reductive iron pathway (II in Figure 2.6) : in S. cerevisiae, this pathway involves

two sequential steps. The first step happens at the cell surface. It comprises the reduction of ferric

iron to soluble ferrous iron by ferric reductases encoded by the FRE genes (FRE1 and FRE2). This

allows the extraction of ferric ions when they are bound to siderophores for example. The second

step is the re-oxidation of the ferrous form to the ferric form by a multicopper ferroxidase (Fet3)

coupled with transport into the cell by a permease (Ftr1). The last two genes are conserved in C.

glabrata and activated during iron uptake (Srivastava et al., 2014; Gerwien et al., 2016). How-

ever, Gerwien et al., 2017 showed that even if the three putative ferric reductases they identified

(including FRE6 and FRE8) are induced during iron starvation and regulated by Aft1, these genes

are dispensable during iron-dependent growth and don’t impact extracellular iron uptake. Also,

they detected no extracellular ferric reductase activity, which led them to suppose the existence of

an excreted low-molecular weight non-protein ferric reductant, as in C. albicans. This compound

would take care of the extracellular ferric reduction and compensate for the absence of surface

reductases.

- The utilization of host compounds (III in Figure 2.6) : C. glabrata is able to use ferritin and

non-protein-bound iron (FeCl3) as iron sources in a pH-dependent manner : the lowering of the

pH can increase iron solubility or provoke the release of iron from host molecules (Lestas, 1976;

Kasper et al., 2014; Gerwien et al., 2018). Given that C. glabrata can manipulate the pH, for

example in macrophages (Kasper et al., 2015), it would seem possible that it uses the mechanism

during iron import. Interestingly, in S. cerevisiae, Diab et al., 2013 proved that the disruption of

vacuolar acidification leads to lower cytosolic pH and induces expression of the Aft1/2 regulon

and the cytosolic peroxiredoxin Tsa2, providing a link between iron homeostasis and pH as well

as a link between iron homeostasis and redox metabolism. Also, due to contradictory reports, it is

still unclear whether C. glabrata can use host compounds such as haemoglobin, though Srivastava

et al., 2014 demonstrated that C. glabrata is able to grow on iron-depleted media supplemented

with heme or haemoglobin. This pathway might involve Ccw14 (a cell wall protein containing

the CFEM domain which shares domain homology with the C. albicans heme transporters Rbt5

and Rbt51), Hmx1 (a heme-binding peroxidase involved in the degradation of heme) and Mam3

(a protein with similarity to haemolysins).

- Release of vacuolar iron (IV in Figure 2.6) : vacuoles are used for iron storage in period of iron

excess. When required, C. glabrata is able to release iron from the vacuoles thanks to the Smf3
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transporter. The Fth1/Fet5 complex, composed of Fth1/Fet5 coupled to a ferric reductase, resem-

bling the reductive uptake system of the plasma membrane (Ftr1/Fet3) could also be involved.

However, once again, reports are contradictory : FTH1 was found to be iron regulated by Ger-

wien et al., 2016 but deletion of FTH1 or FET5 did not cause sensitivity to the iron chelator BPS

(Srivastava et al., 2014).

- The use of low-affinity transporters (V in Figure 2.6) : the broad-spectrum metal transporters for

iron, copper and zinc can be used to import iron. In C. glabrata and S. cerevisiae, this role is

probably played by the Fet4, situated at the plasma membrane (Srivastava et al., 2014; Gerwien

et al., 2016).

These key genes compose the iron-regulon and are induced during iron starvation (Srivastava et al.,

2015; Gerwien et al., 2016; Nagi et al., 2016). This transcriptional activation is controlled by two

paralogous transcription factors, Aft1 and Aft2, which are also induced during iron starvation. In S.

cerevisiae, their induction relies on the detection of low cytosolic iron levels by a process involving

the mitochondrial iron-sulfur (Fe-S) cluster biogenesis and assembly pathway (O.S. Chen et al., 2004;

Rutherford et al., 2005; Hausmann et al., 2008). Also, their regulation depends on DNA binding and

nuclear localization (Yamaguchi-Iwai et al., 2002; Ueta et al., 2012; Poor et al., 2014). In C. glabrata,

Aft1 is a strong inducer of genes involved in iron uptake at the plasma membrane and genes responsible

for the cytoplasmic adaptation to low iron conditions (Srivastava et al., 2014; Srivastava et al., 2015;

Gerwien et al., 2016). These last category of genes notably includes the CTH genes, which encode RNA

binding proteins involved in the selective degradation of mRNAs encoding iron consuming proteins in S.

cerevisiae and C. glabrata (see Puig et al., 2005; Puig et al., 2008 for S. cerevisiae CTH1 and CTH2 and

Gerwien et al., 2016 for C. glabrata CTH2). This is actually the second mechanism used by C. glabrata

to salvage iron during iron shortage. In S. cerevisiae, Aft2 shares some targets with Aft1 but is also

responsible for the specific activation of intracellular iron trafficking, with genes such as the vacuolar

iron transporter Smf3 and the mitochondrial iron transporter Mrs4 (Rutherford et al., 2003; Courel et al.,

2005). This situation is conserved in C. glabrata (see Results and discussion Chapter 6). Still in the

baker’s yeast, Aft1 was shown to regulates its targets via the binding to the TGCACCC motif, while

Aft2 binds to the ACACCC motif (Courel et al., 2005). This also seems to be conserved in C. glabrata

(see Gerwien et al., 2016 and Srivastava et al., 2015 and Results and discussion Chapter 6). Finally,

in addition to the S. cerevisiae-like Aft1 response under iron starvation, C. glabrata also possesses a

C. albicans-like network represented by Sef1 (Gerwien et al., 2016), in which this TF regulates genes
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involved in the TCA cycle, glutamate biosynthesis and iron sulfur cluster-dependent functions during

iron variation.

FIGURE 2.6. Mechanisms of iron-deprivation response in C. glabrata. This figure sums up the different mech-
anisms involved in response to iron starvation. Roman numeral indicates the different pathways. I is the integration
of xenosiderophores. II is the high-affinity reductive iron pathway. III is the utilization of host compounds and
possibly heme/hemoglobin. IV is the release of vacuolar iron. V is the use of low-affinity transporters. Red crosses
indicate inactivated pathway. Dashed arrows indicate pathways proven to exist in S. cerevisiae and likely to exist
in C. glabrata given the conservation of genes, targets and roles. Question marks represent unsure pathways or
genes that haven’t been proved to exist/to be involved yet.

2.2.4.2 Response to iron-excess

In case of iron excess, C. glabrata uses three types of approaches to appropriate iron levels. It can

increase its iron consumption, store iron as a useful stock to deal with future iron shortage and repress

iron uptake genes (Nevitt et al., 2011; Merhej et al., 2016; Sharma et al., 2016). All the mechanisms

involved are represented on Figure 2.7. Overall, the iron excess response is widely conserved between S.

cerevisiae and C. glabrata, because it involves the same target genes and the same TF, namely the bZIP

protein Yap5 (see L. Li et al., 2008; L. Li et al., 2011; L. Li et al., 2012; Pimentel et al., 2012 for S.
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cerevisiae and Merhej et al., 2015; Merhej et al., 2016 for C. glabrata). Yap5 belongs to the Yap family

of TF. It is responsible for most of the aspects of the iron excess response :

- It induces the CCC1 transporter (I in Figure 2.7), which moves cytoplasmic iron into the vacuole,

thus decreasing the cytosolic concentration of iron (see O.S. Chen et al., 2000; L. Li et al., 2008;

L. Li et al., 2001 for S. cerevisiae and Merhej et al., 2015; Merhej et al., 2016 in C. glabrata).

- It can also induce genes encoding for iron-sulfur cluster proteins (II in Figure 2.7) thus contributing

to iron sequestration. These genes are ISA1, TYW1, ACO1, RLI1, SDH2 and GLT1 and play a role

in mitochondria, TCA cycle, ribosome biogenesis. Additionally, Yap5 induces HEM3, which is

important in heme biosynthesis (see Kaut et al., 2000; Noma et al., 2006; Narahari et al., 2000;

Kispal et al., 2005; Dibrov et al., 1998; Filetici et al., 1996; Keng et al., 1992 for S. cerevisiae and

Merhej et al., 2015; Merhej et al., 2016 in C. glabrata).

- Yap5 induces Grx4 (see L. Li et al., 2011; Pimentel et al., 2012 for S. cerevisiae and Merhej

et al., 2015; Merhej et al., 2016 in C. glabrata (III in Figure 2.7), a glutaredoxin that can sense

iron-sulfur clusters concentration in the cytoplasm (Mühlenhoff et al., 2010). Grx4 negatively

controls the activity of Aft1 and Aft2 : in case of iron excess, there is a sufficient quantity of

Fe-S clusters and they bind to Grx3 and Grx4. These complexes then interact with Aft factors,

forcing them to leave their promoter targets (Ueta et al., 2012) and stopping the induction of

iron uptake genes. Interestingly, Yap5 expression is induced by the same Fe-S clusters that are

produced following Yap5 induction (L. Li et al., 2012). Miao et al., 2009 demonstrated that Atm1,

a mitochondrial inner membrane transporter, is essential to the excretion of Fe-S clusters outside

of the mitochondria and thus to the regulation of Aft1 and Aft2. It was also shown that GSH is

essential to this regulation because GSH depletion causes constitutive activation of the Aft1/2 iron

regulon (Rutherford et al., 2005). The requirement for GSH might originate from its role as a

Fe-S cluster ligand within Grx3/4 complexes. Furthermore, GSH role in OSR is secondary to its

essential role in iron metabolism (Kumar et al., 2011).

Besides, Srivastava et al., 2014 established the involvement of YFH1 in iron excess. Yfh1 is a

mitochondrial matrix iron chaperone which oxidizes and stores iron. This protein is required for Fe–S

clusters biosynthesis in the mitochondria, and its deletion leads to constitutive activation of the high-

affinity iron uptake pathway as well as an increase in the cellular iron content. Sharma et al., 2016 also

found that upon iron excess, Ftr1 membrane permeases move to the vacuole in a Vps34 kinase-dependent
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manner (IV in Figure 2.7). This prevents cells from importing iron through the pathway mentioned earlier

(the high-affinity reductive iron pathway). However, we don’t know exactly how these two systems work

and further researches are required. Other features of the iron excess response of C. glabrata will be

detailed in (Results and discussion Chapter 5).

FIGURE 2.7. Mechanisms of iron-excess response in C. glabrata. This figure sums up the different mechanisms
involved in response to iron excess. Roman numeral indicates the different pathways. I is the induction of the
CCC1 transporter. II is the induction of iron consuming genes. III is the induction of the Grx mediated inactivation
of Aft factors. IV is Ftr1 relocation to vacuole in a Vps34-dependent manner. Red crosses indicate inactivated
pathway. Dashed arrows indicate pathways proven to exist in S. cerevisiae and likely to exist in C. glabrata given
the conservation of genes, targets and roles. Question marks represent unsure pathways or genes that haven’t been
proved to exist/to be involved yet.
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Candihub, the study of transcriptional net-

works of Candida glabrata stress responses

Over the past few years, incredible technical improvements were made, such as Next-Generation

Sequencing or RNA-seq. This type of experiments now generates huge amounts of data that need to be

carefully analyzed in order to answer the biological questions we ask. The methods to analyze such data

improved in parallel of the technical evolution. One major consequence of these technical and analytical

enhancements is the change of paradigm towards the things we study : whereas before we were limited

to single sided investigations of simple phenomena, we are now able to integrate several types of data

(for example, transcriptomic data, proteomic data, microscopy. . . ) to build models precisely describing

and explaining very complex events. This allows to study events involving a lot of players interacting

together, for instance genes expression during an organism stress response. This global approach at a

higher level is called systems biology. F. Horn et al., 2012 describe it as “a comprehensive quantitative

analysis of the interactions of a large number of functionally diverse and frequently multifunctional sets

of elements, such as genes, proteins, metabolites, which produce coherent behaviours in time and space.”.

3.1 Networks : a model to represent connections between various ele-

ments

One of the goals of systems biology is to unravel the interactions and the links existing between

elements of one or several processes. This leads to the creation of networks, defined by Wasserman et

al., 1994 as “systems whose elements are somehow connected”. Basically, a network represents which

elements are connected or interacting, or not. An example of network can be found in Figure 3.1. Nodes

(the circles on Figure 3.1) and edges (the lines between circles on Figure 3.1) are the basic components
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of a network. Nodes represent units in the network (genes, proteins, metabolites, neurons. . . ), while

edges represent the interactions between the units (gene A is induced by gene B, protein A and B interact

together in a complex, metabolite A is a precursor of metabolite B, neuron A sends information to neuron

B. . . ). Edges can be weighted to represent more accurately a phenomenon. For instance, if a metabolite

can be the precursor of two metabolites but the chemical environment favours one type of reaction, the

edge representing the favoured reaction will have more weight.

FIGURE 3.1. Example of a network and some of its characteristics. This network has 16 nodes and 17 edges.
Red node has a degree of 3. Orange node has a degree of 2. Green nodes have the highest values of betweenness.

Hence, the structure (or the topology) of a network in itself is a gold mine of information. This

information is extracted from a network by calculating numerous indices and index : distances, density,

costs. . . Among the most important properties of a network are found degree and betweenness centrality.

Degree (or connectivity) is the number of edges that connect a node. In Figure 3.1, red node has a degree

of 3 while orange node has a degree of 2. Interestingly, the calculation of the degree allows to define

some nodes as hubs, which are strongly connected to the rest of the network (green nodes in Figure

3.1). Betweenness of a node is the number of shortest paths between two other nodes that pass through

the studied node. In other words, it measures the centrality of a node in a network. Nodes with high

betweenness essentially serve as connections between different portions of the network (i.e. interactions

must pass through this node to reach other portions of the network). Still in Figure 3.1, the nodes

with highest betweenness are the nodes in green. This measure is linked with the notion of bottleneck : a

bottleneck (see Figure 3.1) is a node with a high betweenness, which removal would split the network in 2
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or more smaller subnetworks. All these measures help to characterize the networks and draw conclusions

from them.

3.2 The transcriptional regulatory networks

Networks studies can be applied to several fields, amongst which transcriptional regulation of the

genes in a cell or an organism. Transcriptional regulatory networks play an important role in biological

processes, because they define groups of co-regulated genes that act together to fulfill specific functions

at the proper time and place. For example, it is particularly useful to determine the involvement of genes

during stress response or to define the components of a pathway. Transcriptional regulation is the means

by which cells regulate the genes expression. It is mediated by two things : cis-regulatory elements and

transcription factors. Cis-regulatory elements are regions of non-coding DNA often found in promoters

which regulate the transcription of neighboring genes thanks to the binding of Transcription Factors

(sequence specific DNA binding proteins that regulate a sets of target genes), hence the existence of

interactions. The fact that the transcriptional relationship between genes and TF is not reciprocal (a TF

binds on a gene promoter to modify its expression, not the other way around) introduces new elements

in the networks :

- Nodes will have different roles, thus all nodes won’t be equivalent. There will be two categories :

target genes bound by TF and the TF themselves.

- Edges will have a specific direction : an edge will always leave a TF to reach a target gene.

- Given that a TF can activate or repress a target gene, not all edges will be equivalent.

These elements have to be taken into account to obtain proper Gene Regulatory Networks (GRN).

Babu et al., 2004 showed that global transcriptional regulatory networks have scale-free topologies,

which means that they are heterogeneous, with the majority of the regulators having relatively few target

genes, and a few regulators having a large number of targets. They also demonstrated the existence of

genes with a lot of inbound connections, i.e. hubs. These are especially interesting because they are

central in the network and are involved in a lot of processes. For this reason, hubs usually are essential

genes with high conservation and key roles in organizing a coherent cellular functioning. In case of

pathogens or cancerous cells, they often are promising drug targets (Jonsson et al., 2006). Noteworthy, a

hub can also be a TF bound by several other transcription factors. This implies a hierarchical organization
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in the TF, with high level master regulators (Msn2 and Msn4, for example) and low level regulators (Sef1

in C. glabrata, for instance). Obviously, the higher the TF is in the hierarchy, the more crucial it is for

cell functioning and survival. Finally, some TF are useful in a lot of different conditions, which make

them hubs because of their numerous co-regulatory associations with various other TF (Balaji et al.,

2006). This could be the case of Yap1, for example. Thus, precisely identify hubs could have an impact

on medical outcome as well as understanding whole pathways in an organism.

3.3 The Candihub project : deciphering stress responses in Candida species

using transcriptional regulatory networks

As explained in the previous parts (Introduction Chapters 1 and 2), the ability of Candida glabrata

and Candida albicans to adapt and resist to variations of their environment is a key parameter to acquire

virulence features and be successful pathogens. As pathogens, they are confronted with a range of niches,

each one with a varying pH, temperature, redox potential, carbon source or metal availability. They are

also confronted with violent attacks from the immune system. All these brutal changes in the yeast

environment cause stresses that need to be addressed in order for Candida to survive and thrive. These

stresses trigger several pathways that can be general stress responses or specialized responses adapted to

the very nature of the stress. The stress response pathways usually include a lot of players and several

layers of regulation, which render the pathways hard to decipher. This difficulty is accentuated by the

multitude of interactions between the players of the pathways, creating huge maps of interactions. As

such, these phenomena would be best studied and understood using a transcriptional regulatory networks

approach.

However, performing such powerful systemic studies requires a lot of data to precisely describe the

events to investigate. Unfortunately, there were only a few available high-throughput data in Candida

species, especially compared to Saccharomyces cerevisiae as shown in Table 3.1, eventhough C. glabrata

and C. albicans genomes have been available since 2004 (Dujon et al., 2004; Jones et al., 2004). Up to

2013, the Gene Expression Omnibus from the NCBI contained almost 1400 S. cerevisiae high-throughput

datasets (including expression profiling and genome binding/occupancy profiling), while it displayed

only 134 and 30 C. albicans and C. glabrata high-throughput datasets, respectively. Hence, Candida

species were clearly lagging behind S. cerevisiae. As a consequence, in 2013, several of the interactions

networks of S. cerevisiae were deciphered, while most of Candida networks were unknown.
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Species Transcriptomic datasets Genomic datasets
Saccharomyces cerevisiae 1091 306

Candida albicans 110 24
Candida glabrata 26 4

TABLE 3.1. Number of high-throughput experiments performed in S.
cerevisiae, C. albicans and C.glabrata up to 2013 included. Transcriptomic
datasets include expression profiling by array, expression profiling by genome
tiling array and expression profiling by high-throughput sequencing. Genomic
datasets include genome binding/occupancy profiling by array, genome bind-
ing/occupancy profiling by genome tiling array and genome binding/occupancy
profiling by high-throughput sequencing.

3.3.1 Description and goals of the Candihub project

The previous assessments and the will to understand Candida stress responses and virulence led to

the implementation of the Candihub project in 2014 for the duration of 5 years. The Candihub project,

which is funded by the french Agence Nationale de la Recherche, includes three partners :

- Christophe d’Enfert and his team, based at the Institut Pasteur in Paris. He was part of the interna-

tional consortium that annotated the C. albicans genome and he created the first public database for

accessing genomic information in C. albicans (d’Enfert et al., 2005). He participated to the first

transcriptomic analyses conducted in this species and also discovered and characterized several

new transcriptional regulators involved in morphogenetic switching and biofilm formation (Bon-

homme et al., 2011; Chauvel et al., 2012), which are key parameters of virulence. His team was

also involved in the construction of tools for large-scale genetic screening in Candida species, such

as a collection of C. albicans strains overexpressing genes of signal transduction pathway(Chauvel

et al., 2012) and a collection of C. glabrata strains deleted for more than 600 individual genes, in-

cluding many TFs (Schwarzmüller et al., 2014).

- Frédéric Devaux and his team, based at the Institut de Biologie Paris-Seine and Gaëlle Lelandais

from the Université Paris-Saclay. They have developed experimental and in silico strategies to

characterize the structure of transcriptional regulatory networks in the model yeast S. cerevisiae,

in which they described the networks of TFs involved in several environmental stress responses

(Palková et al., 2002; Fardeau et al., 2007; Salin et al., 2008). They also participated in the creation

of the first public repository for transcriptome data (Lelandais et al., 2004). They performed anal-

yses in other yeast species, including C. albicans and C. glabrata, in order to analyze the evolution

of the transcriptional regulatory networks (Banerjee et al., 2008; Goudot et al., 2011). Addition-

ally, they conducted some of the first transcriptome analyses in C. glabrata (Lelandais et al., 2008)
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and published the first RNA sequencing study of multidrug resistance in C. albicans (Dhamgaye

et al., 2012).

- Jean-Michel Camadro, at the Institut Jacques-Monod. He created the Proteomics core facility of

the IJM and has a strong expertise in mass spectrometry applied to structural biology (Combes et

al., 2009) and protein/protein interactions (Komarova et al., 2011). His team developed protocols

in quantitative proteomics that allow the accurate quantification of more than 3.500 expressed

proteins in simple eukaryotes such as C. glabrata and C. albicans (Léger et al., 2016). Jean-

Michel Camadro also collaborated with bioinformaticians and proposed mathematical models of

metabolic adaptation of yeast to oxygen in relation to iron homeostasis and oxidative stress (Achcar

et al., 2011).

The creation of the Candihub project fully benefited from the development of new resources for

Candida species, such as deletion libraries. Noble et al., 2010 and Schwarzmüller et al., 2014 created

collections of strains possessing one deleted gene for C. albicans and C. glabrata respectively. These

libraries account for 11% and 12% of their repective genomes. Such deleted strains can be useful,

for example, to measure the transcriptomic impact of a transcription factor, for example. Candihub

also benefited from the develoment of genome editing techniques such as CRISPR (Vyas et al., 2015),

because C. D’Enfert’s team used it to engineer new strains of C. albicans.

Candihub aims to decipher the C. glabrata and C. albicans transcriptional regulatory networks in-

volved in the adaptation of the two species to changing environments using data produced with genomic

and transcriptomic experiments (see Introduction Part 3.3.2). The global analysis of the topology and

functioning of the interaction networks that connect the genes of Candida species is an essential step

towards the understanding of their coping mechanisms as well as the functioning of the whole organ-

isms. The topologies of these networks might also lead to the identification of regulatory hubs (key

genes or master regulator TF), which may very well be relevant targets for antifungal therapy, as shown

in Altwasser et al., 2012 : in this paper, the authors gathered information available on C. albicans, such

as expression profiles and known interactions, to infer genome-wide gene regulatory interaction net-

works. Afterwards, they identified regulatory hubs in the network, 15% of which are already described

in literature as influenced by antifungal drugs. This shows the potential of networks studies.
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3.3.2 Building the Candihub networks

This leaves open key questions : how can such networks be built ? Which experiments can be

performed ? On which strains ? These questions will be adressed in the next parts.

3.3.2.1 Types of C. glabrata strains used in this work

This part will briefly explains the different strains used in the C. glabrata part of the Candihub

project.

3.3.2.1.1 ∆HTL strain

During my PhD, I worked with the ∆HTL strain that was constructed by Jacobsen et al., 2010. This

strain is derived from the ATCC2001 background (also called CBS138 background). It was obtained by

deleting the HIS3, TRP1 and LEU2 genes in the ATCC2001 strain using the dominant nourseothricin

resistance marker SAT1 (Reuss et al., 2004; J. Shen et al., 2005) and the associated SAT1 flipper method.

Briefly, they amplified homologous regions of 500 bp flanking a gene of interest and ligated them into a

plasmid already containing a SAT1 marker under a strong promoter, a recombinase and a SAT1-caFLP

gene. This gene encodes a site-specific recombinase FLP, under control of an inducible promoter. There

are also direct repeats of the FLP recombination target sequence (FRT) encapsulating the cassette (Fig

3.2, panel A). They repeated this operation for the three genes of interest and created gene deletion

cassettes for HIS3, TRP1 and LEU2. The deletion cassettes were then transformed by electroporation

into the ATCC2001 strain, as described in Köhler et al., 1997; Reuss et al., 2004 for example. Afterwards,

they plated the transformants on a media containing nourseothricin, which allowed the identification of

cells who had recombined with the plasmid containing the resistance SAT1 gene (Fig 3.2, panel B). The

next step consisted in activating the inducible promoter of the recombinase, thus causing the excision of

the SAT1 cassette and rendering cells sensitive to nourseothricin back again (Wirsching et al., 2000). This

whole deletion thus leaves only a FRT site on the genome (Fig 3.2, panel C). Additionally, they tested the

excision of the cassettes by measuring nourseothricin sensitivity of the transformants, and checked them

by PCR and southern blot to account for correct genomic integration (Fig 3.2, panel C). The ∆HTL was

the origin strain of all modified strains (gene-deleted or gene-tagged) that I used in the chapters detailing

my results part and mainly played the crucial role of “control strain”.
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FIGURE 3.2. Construction of ∆HTL strain. The 5’ and 3’ flanks are adapted to the flanking regions of the gene
of interest (HIS3, TRP1 or LEU2). Arrows indicate the PCR verifications. Adapted from Jacobsen et al., 2010.

3.3.2.1.2 TF deleted strains

Several experiments required strains deleted for a transcription factor, such as transcriptomic experi-

ments designed to determine the impact of a TF on gene expression. These deleted strains were obtained

from pre-existing collections (Merhej et al., 2015; Schwarzmüller et al., 2014), all coming from the

parental ∆HTL strain. Most of the strains came from the Schwarzmüller collection (Schwarzmüller et

al., 2014). They took an approach of targeted gene disruption with homologous flanking regions. They

used the fusion PCR technique (Noble et al., 2005) to build deletion cassettes containing 500 bp homol-

ogous flanking regions and the NAT1 marker. They also added unique barcode identifiers in the deletion

cassettes. After electroporation and transformation, they selected the recombinants on nourseothricin

and tested the correct genomic integration by PCR and southern blot as well as the absence of the target

genes, to avoid the presence of a duplication of the target gene elsewhere in the genome.

3.3.2.1.3 myc-tagged TF strains

Chromatine Immuno-Precipitation experiments required strains with a tagged for transcription fac-

tor. We chose the myc epitope (Evan et al., 1985; Munro et al., 1987). myc-tagging cassette comes

from the M. Longtine’s plasmids (Longtine et al., 1998) collection. It contains 13 myc epitopes and
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an auxotrophic marker. The cassette was amplified by PCR with oligonucleotides containing homology

sequences flanking the desired genomic insertion points in 5’. After purification of the PCR products,

this DNA was transformed into the cells using a standard yeast transformation protocol (Schiestl et al.,

1989) and we plated these cells on selective media. In this clones, we verified that the myc-insertions

were in phase with the target genes using PCR and Sanger sequencing (Sanger et al., 1977). We also

checked the tagged protein size and production by western blot (Merhej et al., 2015).

3.3.2.2 Approaches to build networks

There are two options to build a network : either a combination of experimental data and mathemat-

ical modelling or a fully experimental network determination.

3.3.2.2.1 Mathematical inference of regulatory networks from experimental data

Network inference is a systems biology approach that predicts regulatory interactions between genes

based on transcriptomic data such as RNA-seq or microarrays. Basically, the structure of a Gene Regu-

latory Networks is reconstructed from expression data of genes responding to a stimulus, like a stress. It

presumes the existence of such data, otherwise, the network inference can’t be performed and the GRN

can’t be reconstructed.

The principle is to use these expression data as an input to model the network. Lots of mathematical

modelling can be used, each with its own pros and cons, but the choice of the method will be mainly

guided by the biological question, the size of the network and the amount of available data. For example,

time-consuming methods won’t be used to reconstruct a genome-wide network : this fact is related

to the curse of dimensionality, which states that the number of possible network structures increases

exponentially with the number of genes (Schulze et al., 2016) (in some cases, this can be bypassed by

the prediction of the smallest number of interactions needed to fit the measured data). Or small datasets

cannot be used to reconstruct genome-wide networks, hence the need to carefully choose the model.

If the network to reverse engineer is large, it is of interest to use algorithms that are computation-

ally fast and use simplified mathematical models. These models can be based on correlation between

genes predicting undirected edges (for example, correlation-based algorithms (Stuart et al., 2003)) or

causal relations between genes using weighted, directed edges (regression-based algorithms (Hecker et

al., 2009)). The resulting networks allow to study the topology, essentially thanks to the calculation of

node-degree distribution and betweenness centrality. With these indices, it is easy to identify hubs or
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genes with a large influence on the network. If the desired network is smaller, one can use more sophis-

ticated algorithms taking into account supplementary biological aspects, such as the presence of known

transcription factor binding sites in promoters. These algorithms are usually based on on Boolean logic

(Müssel et al., 2010), Bayesian networks (Hartemink et al., 2001), differential equation systems (Vlaic

et al., 2012) and linear (Weber et al., 2013) or nonlinear differential equation systems (X. Yang et al.,

2012). The smaller the network, the easier it is to have solid results (given the data provided are good).

The usual workflow of GRN inference can be found in Figure 3.3. Additional information can be found

in Linde et al., 2015; Dix et al., 2016; Guthke et al., 2016; Schulze et al., 2016.

FIGURE 3.3. Workflow of GRN inference. This figure is from Linde et al., 2015. It represents the exchanges
between experiment and computational processings. Experiments produces transcriptomic data that will be pro-
cessed. Feature selection and modelling will allow to infer a GRN. This GRN is then confronted to experimental
data for validation or adaptation of the model.
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3.3.2.2.2 Direct determination of regulatory networks

The other way to build a gene regulatory network is to use only experimental data. It is likely to be

more time-consuming and more expensive than network inference, but the results are usually more reli-

able (for example, Margolin et al., 2007 showed how small variations can create fake positive interactions

in a reconstructed network). Besides, it is also a solid base for future network inferences. Functional

genomics has given powerful approaches to efficiently describe the set of targets associated to a specific

TF. For instance, genome-wide Chromatin Immuno-Precipitation (ChIP) experiments can determine a

complete list of the promoters bound by a TF. This can be coupled with transcriptome analyses of loss

or gain of function TF mutants that identify genes which expression depends on a TF. The association of

both types of experiments proved fruitful several times, as almost all transcriptional regulatory networks

of S. cerevisiae have been described (Harbison et al., 2004). The techniques chosen for the Candihub

project will be explained in the following parts.

Analyses of the impact of TF mutations on expression by microarrays Microarrays have been

used for a long time to study gene expression (P.O. Brown et al., 1999): researchers began to use them in

the middle of the 90’s. Since then, this technique has been well perfected, especially the manufacturing

of the chips wearing the oligonucleotides probes and the amount of probes available on a single chip,

but the idea remained the same : to study transcriptomics at a genome-wide level in a single experiment.

Microarrays are now opposed to the much more recent RNA-seq technique, which offers new interesting

features such as ability to detect novel or rare transcripts, wider range of expression quantification and

higher specificity and sensitivity. However, despite the prices drop of RNA-seq, a lot of labs keep using

microarrays, mainly because they are faster, cheaper, easier to use and provide a simple way to explore

transcriptomes in a systematic manner. Also, RNA-seq is far from being exempt of biological and sta-

tistical biases and we have much more perspective and expertise on microarray biases because we have

been experimenting with them for a longer time span. For a summary of biological biases encountered

with microarrays, see Jaksik et al., 2015, who listed the factors affecting microarray reliability.

The power and universality of DNA microarrays is based on the specificity and affinity of comple-

mentary base-pairing. Briefly, arrays of thousands of DNA probes are printed on glass microscope slides

using a robot. The probes are short sequences designed to match parts of the sequence of known or

predicted open reading frames. To compare the relative abundance of each of these gene sequences in

two RNA samples (for example, the total mRNA isolated from two different cell populations, such as
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a control population and a population deleted or overexpressed for a TF), the two RNA samples are

first extracted from the cells and reverse-transcribed into cDNA. Then, the cDNA samples are labelled

using different fluorescent dyes. Most of the time, the dyes are Cy3 and Cy5. They are then mixed

and hybridized with the probes on the microarray (Figure 3.4). For a review on biases introduced by

hybridization and the possible corrections, see Koltai et al., 2008.

FIGURE 3.4. Microarray experiment worflow. This figure represents the different steps required in a microarray
experiment.

After hybridization, the microarray is read by a scanner that illuminates each spot and measures

fluorescence for each dye separately. These fluorescent measurements are used to determine the ratio,

and in turn the relative abundance of the sequence of each specific gene in the two mRNA samples. A

pre-processing step is required here, as they are biases caused by the scanner, impact of background,

etc. . . It can also result of the chemical properties of the fluorescent dyes used : for instance, Cy5 is

more sensitive to ozone than Cy3, which means that the experimental environment can cause the faster

degradation of Cy5. All these biases are solved using pixel averaging, background subtraction, transcript
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intensity summarization and removal of non-informative/not expressed transcripts (Cordero et al., 2007;

Welle, 2013).

Afterwards, bio-informatics treatment will merge the fluorescence of spots corresponding to the same

gene and apply a normalization, generally performed using LOESS method (Cleveland, 1979; Cleveland

et al., 1988; Cleveland, 1981; M.C. Yang et al., 2001). Other normalization methods are reviewed in

Do et al., 2006. Finally, expression data are put through statistical tests (linear tests such as t-tests,

or Bayesians models, see Quackenbush, 2006 for review) to check for genes or group genes which

expression statistically differs between the two tested conditions. Once vetted, these results can be

used to perform prediction analyses, or clustering and gene enrichment analyses. This may lead to new

functional annotations for unknown genes as well as network inference of regulatory interactions (see

previous part) ; microarrays are useful to measure the impact of a TF deletion or overexpression and

allows to identify direct and indirect target genes of a TF.

Analyses of TF binding sites by ChIP-seq One of the major flaws of transcriptomic studies is

that they don’t permit the identification of sole direct targets. Genes which expression varies upon a

transcription factor mutation can be directly bound by a TF or can be downstream in the same pathway :

in both case, gene expression will change but that does not always imply that the gene is a target of the

transcription factor. On the opposite, if a gene expression doesn’t change upon a TF deletion, it might

be because this gene is not the target of the studied TF or because several TFs have a redundant role in

regulating this gene. An efficient way to solve these problems is to study the binding location of the TF

in the genome. One of the best course to achieve that is to perform Chromatin Immuno-Precipitation

(ChIP) experiments followed by next-generation sequencing.

ChIP is a valuable method to investigate protein-DNA interactions. Since its discovery it has been

indispensable to identify binding sites and patterns of DNA-interacting proteins, such as transcription

factors or histones. The first ChIP experiment was performed in the early 80’s (Gilmour et al., 1984;

Gilmour et al., 1985) and was designed to study precise locations of the genome. ChIP became a routine

after 2000 and in 2007, three labs (Barski et al., 2007; Johnson et al., 2007; Mikkelsen et al., 2007)

published the first ChIP-seq experiments, producing genome-wide analyses of transcription factor bind-

ing sites. This was a game changer, especially considering the decreasing cost of sequencing nowadays.

Additionally, a lot of ChIP derivatives were developed. Most of them are reviewed in Collas, 2010.
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Even if the endpoint techniques of ChIP have changed, the core protocol hasn’t changed much (Fig-

ure 3.5). It starts with formaldehyde fixation of the biological material of interest. Formaldehyde is a

very reactive agent that interacts, through its nucleophilic core, with amino groups of amino-acids and

side chains of DNA bases. Fixation preserves the DNA-proteins associations that would otherwise be

lost or disturbed during the next steps. The cross-linking reaction is stopped by adding glycine. The

cells are then lysed. This step removes cytoplasmic and membrane proteins, breaks the nucleus and help

removing the non- cross-linked proteins. After lysis, a suspension of soluble chromatin is obtained by

sonication : the chromatin is sheared to '300-500bp fragments. This step is important, because the

shorter the DNA fragments are, the higher the resolution of the final results is. However, there is a

minimum size determined by the endpoint analysis : for instance, fragments should not be shorter than

sequencing reads in case of ChIP-seq. Chromatin can also be sheared using specific DNA endonucleases,

such as micrococcal nuclease, or a combination of sonication and nuclease treatment. The chromatin is

then subjected to immunoprecipitation with an antibody against the protein of interest. The specificity

of the antibody will determine the quality and reliability of the results : antibodies should have a high

affinity for the antigen under stringent conditions, and should not cross-react with other proteins. In any

case, a negative control precipitations in the absence of antibody (this is called the input) should be per-

formed. After the IP, the crosslinks are reversed and the immuno-precipitated DNA fragments are then

purified and analyzed (see below for the different analyzes, but the idea behind ChIP is that if the protein

under investigation is associated with a specific genomic region, DNA fragments from this region should

be enriched in the immuno-precipitate).

This type of protocol raises a few remarks :

- The formaldehyde cross-linking step is quite empirical because little is known about its specificity

and efficiency, and variability in cross-linking from one experiment to the next have been reported.

Still, if the crosslinking time is too short, the IP will fail. If it’s too long, it will prevent chromatin

shearing during sonication. Thus, this step must be adapted to the cells, the proteins, the organ-

ism. . . For some proteins, cross-linking turned out to be difficult or even impossible (Gavrilov

et al., 2015), and it can also cause changes to the chromatin composition, thus decreasing the ChIP

efficiency (Beneke et al., 2012). Formaldehyde might also be the reason for non-specific enrich-

ments of highly expressed genes (Park et al., 2013; Teytelman et al., 2013), a well-known fact

among labs performing ChIP. Besides, it is a possible carcinogen. The next obvious question is

“Can we use something else ?”. The answer is yes : several chemical compounds (acridine orange,



3.3. The Candihub project : deciphering stress responses in Candida species using transcriptional

regulatory networks
53

FIGURE 3.5. Chromatin Immuno-Precipitation protocol. This figure is adapted from Collas, 2010. It displays
the steps to perform a ChIP assay, as well as the possible readouts of the experiment. Sequencing represents Next
Generation Sequencing. The part on the bottom-right of the figure is a visualization of sequenced reads mapped
on a reference genome and the detection of a peak, corresponding to a binding site.

cisplatin, dimethylarsinic acid, potassium chromate) or types of light (UV light and lasers) can be

used (Das et al., 2004). However, most of them lose the biggest advantage of formaldehyde : its

crosslinking is easily reversible. Formaldehyde also has another flaw : it can capture proteins that

are close to DNA but not directly bound on it (for example, proteins interacting with a complex

directly bound to DNA), producing false positive results. It is one of the reasons why O’Neill

et al., 2003 developed Native-ChIP, which avoids using formaldehyde. Nevertheless, it also has

disadvantages (Jordán-Pla et al., 2018), such as possible movements of proteins along DNA during

lysis/sonication and inefficient capture of weak DNA-binders, such as TF. This explains why we

used formaldehyde in our experiments.

- The IP relies a lot on the antibody that is used. A high affinity antibody will give impressive
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results, while a bad counterpart won’t properly precipitate DNA. Thus, the antibodies need to be

validated. Wardle et al., 2015 reviewed this topic and proposed some techniques to appraise this

reagent. But even with a proper validation, the antibodies may not efficiently immuno-precipitate

all of the antigen from one experiment to the next. The use of specific antibodies also implies that

everytime someone wants to study a new proteins using ChIP, he has to get a new proper antibody,

or create one if it is not already existing. Unfortunately, this procedure is very long and expensive.

A more affordable and easier idea is to add a peptide tag on the protein of interest. In this case, the

antibody is always the same, but the tag can be placed on different proteins. The main condition

for such a system is that the tag should not change the behavior of the protein (for example, an

overexpression of the tagged protein may cause non-specific interactions with genomic sites or

protein complexes).

- Even if they are perfectly adapted to an experiment, the antibodies can still provoke false positives

by binding on non-specific proteins or directly on DNA. Besides the input control, another control,

called “mock”, can be used. It relies on performing ChIP on untagged cells. This way, it allows

the investigator to find the DNA regions that are always bound (directly or not) by mistake and

decrease the number of false-positives.

Despite, ChIP is still an incredible technique with several strong advantages : it can be performed

in vivo, thus allowing the dynamic visualization of DNA-interacting proteins in their natural context,

through the characterization of their association with specific genomic targets. This method can be

applied to virtually any protein, as long as you have the right antibody, or the right epitope to tag the

protein. ChIP, and especially ChIP-seq, gives extremely precise results on binding sites.

Yet, another important question remains : how is analyzed the immuno-precipitated DNA ? There

are two main ways to analyze the ChIP products. First, the DNA can serve as a template for precise

mapping by quantitative-PCR using primers for specific regions of interest. Second, the DNA can be

used for high throughput analysis. It will be either by hybridization to a microarray covering a subset

or the complete genome of the organism (ChIP on chip) or directly by sequencing (ChIP-seq). The high

throughput approach is more expensive and takes more time to perform than the qPCR, but it is much

more precise and provides a huge amount of data, that allow to precisely determine the binding sites of

a TF as well as mutations in these sites. A more detailed comparison of ChIP-chip and ChIP-seq can be

found in Hoffman et al., 2009.
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We selected the ChIP-seq approach for the Candihub project. The sequencer we used is an Illumina

NextSeq 500, which produces 75 bp single reads. We also chose to multiplex several samples (i.e.

gather several samples in a single sequencing lane). To multiplex the samples, we used the Illumina

Multiplexing Sample Preparation Oligonucleotide Kit. The general principle is to add barcodes to all

the DNA fragments of a sample, using one specific barcode for each sample. The multiplexing allowed

us to decrease the sequencing costs and avoided a uselessly big number of reads for a single sample :

given the small size of C. glabrata genome, we didn’t need 140 millions of 75 bp reads (approximately

2500 times the length of the genome) for a single sample. Hence, as all multiplexed data provided by

a sequencer, the reads and the sequences needed to be cleaned before being analyzed for TF binding

sites. We trimmed the barcodes and adapters off the reads using Cutadapt. Cutadapt was also used to

trim sequence with a poor quality. Then, we mapped the reads on the reference genome of C. glabrata

CBS138 using Bowtie. We chose to remove the reads mapping at multiple locations in the genome and

the reads with strictly more than one mismatch. While this may generate false negatives, it assured us

that no false positives were created by mapping the same read twice or more. Once all these steps were

performed, the next step was to locate the binding sites.

The use of sequencing after ChIP experiments introduced new questions. In particular, one recurring

question is : “How can we identify the binding sites with these data ?”. When we look at the sequencing

data using a visualization tool, for example Integrative Genome Viewer, it is possible to see an accu-

mulation of reads at certain locations. These accumulations take the form of a peak (see Figure 3.5).

Hence, a peak is an enrichment of specific DNA sequences which corresponds to a binding site of the

studied protein. Peak detection is a crucial step in ChIP-seq data analysis. Choosing a suitable algorithm

and optimized parameters to perform that task is critical as well. Several softwares were developed to

automate the peak-calling procedure, i.e. the detection of peaks or binding sites. Thomas et al., 2017

determined the features defining a good ChIP-seq peak calling algorithm. To analyze our ChIP-seq data,

we used bPeaks (Merhej et al., 2014). Its functioning is based on 4 parameters : the number of reads in

the IP sample (P1), the number of reads in the control sample (P2), the value of log fold change between

numbers of reads in IP and control samples (P3) and the sequencing coverage in both IP and control

samples (P4). A peak is detected if it presents a high P1, P3, P4 and a low P2. The most important

parameters are P3 and P4. In the plethora of available softwares, we chose bPeaks for three reasons :

- It was specially developed for small genomes. As a consequence, bPeaks exhibits a small com-

putational time, as demonstrated by the benchmark of Merhej et al., 2014, who compared bPeaks
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with three popular peak-calling programs : MACS (Y. Zhang et al., 2008), SPP (Kharchenko et al.,

2008) and BayesPeak (Spyrou et al., 2009; Cairns et al., 2011).

- bPeaks is more precise in term of peak size : it usually gives peaks of 200 bases while the other

softwares displayed peaks of several thousands of bases. The reason is that bPeaks analyses the

ChIP-seq signals at the nucleotide level.

- Despite its simple mathematical model, it gives the same results than more complex algorithms

such as MACS, SPP or Bayespeak.

To summarize, bPeaks is a good peak-caller that detects thinner peaks in a shortest period of time com-

pared to other softwares, thanks to its simple mathematical model. However, one major default of this

simple model is that bPeaks provides no statistical evaluation for each peak it detects. Hence, the ad-

dition of different types of information (such as transcriptomic data, phenotypic screening, presence of

known binding sites in the peaks) is particularly useful to help evaluate the relevance of a peak.

3.3.3 Proof of concept of Candihub : the Yap network

Outside the Candihub project, I also performed transcriptomic analyses in the frame of the study of

the regulatory interactions of the Yap family, which contains seven transcription factors. Using ChIP-seq

and transcriptomic analyses, we reconstructed a part of the regulatory network associated to six of these

factors and we were able to confidently define the binding sites of 5 TF, which allowed us to establish

the strong conservation of DNA binding preferences between C. glabrata and S. cerevisiae. We also

provided functional annotations for Yap1, Yap5 and Yap7 : Yap1 is mainly targeting genes in the oxida-

tive stress response, oxido-reduction processes, chemical stress response and heme biosynthesis. Yap5

controls genes involved in iron-sulfur cluster biogenesis and iron homeostasis. The majority of Yap1

and Yap5 targets are conserved in S. cerevisiae and textitC. albicans. Despite its role as transcriptional

repressor of nitric oxide oxidase (Merhej et al., 2015), we discovered that Yap7 binds genes in cytosolic

and mitochondrial iron-sulfur assembly pathway, iron-sulfur cluster binding, oxidoreductases and heme

metabolism. Overall, this data displayed the strong interconnection of Yap1, Yap5 and Yap7 which are

situated in the middle of redox homeostasis, oxygen consumption and iron metabolism. We only had

a few targets for Yap2, but they are involved in cadmium resistance, which let us think that this role

is also conserved between C. glabrata and S. cerevisiae. Besides, we identified around 40 targets for

Yap4/6, but we did not find any enriched functions. The enrichment of Sko1 binding motif among the

target promoters might be a proof that Yap4/6 retained its role in osmotic stress, but this needs further
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confirmation. All these results are presented in (Merhej et al., 2016), which can be found in Appendices

6.3.8. Given that the experimental techniques and the analysis softwares used in this paper are the same

than in Candihub, this work also played the role of "proof of concept" on Candihub feasibility.

3.3.4 Goals of my PhD

My PhD took place in the frame of the Candihub project. I worked in Frédéric Devaux’s team and

thus focused on a single species, Candida glabrata. My role was to study 6 transcription factors essential

in different stress responses by defining their sets of targets and their impact on gene expression in those

stress conditions. When it was possible and in the focus of the lab, I investigated more thoroughly the

TFs and their networks.

The TFs were chosen based on previous projects of the lab. The team analyzed and compared the

transcriptomic responses of eight different yeast species (among C. glabrata and C. albicans) to the same

pleiotropic stress : selenite. Selenite was chosen because it causes a pleiotropic stress, i.e. it triggers

several different stress response pathways, including iron starvation, oxidative stress, unfolded protein

response and general stress responses. Salin et al., 2008 showed that selenite is a suitable compound

to study regulatory interactions between different stress response pathways. This project allowed the

team to identify homologous TF which expression variations were identical (activated/repressed) when

encountering stressful conditions. For this reason and because of the interests of the lab, we selected

6 TFs and decided to investigate Aft1, Aft2, Hap4, Hap5, Rox1 and Skn7. The role of these TFs in S.

cerevisiae and sometimes in C. glabrata was presented previously. Rox1 and Skn7 were only studied by

ChIP-seq and my results on these TFs will be mentioned in Results and Discussion Chapter 4. My study

of Hap4 and Hap5 functions led to the publication presented in Results and Discussion Chapter 5. The

roles of Aft1 and Aft2 were unraveled in the publication presented in Results and Discussion Chapter 6.
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Stress responses in Candida glabrata : a highly

interconnected network

4.1 Introduction

As mentioned in the last part of the introduction, we performed several experiments of ChIP-seq

on different transcription factors (Aft1, Aft2, Hap4, Hap5, Rox1, Skn7) in the frame of the Candihub

project. This part will present an overview of all the ChIP-seq results obtained. Due to promising results,

some of the transcription factors were studied more intensively and associated with transcriptomic data.

These studies are presented in the following chapters (5 and 6).

4.2 Selection of the ChIP conditions

All our ChIP-seq experiments followed the same principle : the idea was to detect the binding targets

of a TF when it is induced. To that end, we tagged the desired factors with a myc epitope to perform

the ChIP (see Introduction Chapter 3.3.2) and we selected a range of conditions specifically designed to

activate the TFs (and favour their binding as well) and the associated stress response. We used the pre-

existing knowledge on the role of the factors to select growth conditions creating a stress and favouring

the induction of the TF. When there was no publications on the role of a TF in C. glabrata, we looked

for information in S. cerevisiae, assuming that given the closeness of the two species, the functions of

the TF would be conserved. These conditions are summarised in Table 4.1.

The main reason for not applying a stress is that the TF is already naturally highly expressed, for

example Rox1, which is highly expressed in normoxia. Aft factors are major regulators of the iron

starvation response, hence we chose an iron chelator, BPS, to provoke iron-deprived conditions and
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Transcription Factor Condition Stress
Aft1 BPS (500 µM ; 30 min) Iron starvation
Aft2 BPS (500 µM ; 30 min) Iron starvation
Hap4 YPD None
Hap4 Glycerol (2% ; 4h) Non-fermentative media
Hap5 YPD None
Rox1 YPD None
Skn7 NaCl (1 M ; 20 min) Osmotic stress
Skn7 H2O2 (0.4 mM ; 30 min) Oxidative stress

TABLE 4.1. Summary of the conditions used to perform ChIP-seq. BPS
stands for BathoPhenanthroline diSulfonic acid, an iron chelator. YPD is rich
growth medium, which is equivalent to an absence of stress. Glycerol is the
same media than YPD, except that glucose was replaced by glycerol.

induce them. Hap4 and Hap5 were tested in rich growth conditions (YPD) because C. glabrata still uses

respiration in glucose, even it favours fermentation. This explains why we also tested Hap4 in glycerol

: the absence of glucose forces the cells to use the respiratory pathway and induces Hap4, the major

regulator of Hap5 and the CBC in this case. Finally, Skn7 has two main roles, in the osmotic and the

oxidative stress responses, which is why we used hydrogen peroxide, one of the major cause of ROS for

C. glabrata, and salt, which creates a strong imbalance in osmotic pressure between the outside media

and inside the cells.

4.3 Sequencing of the immuno-precipitated DNA

Once the ChIP experiments were performed, we used next generation sequencing as a readout. A

sequencing platform added barcodes to our samples, which allowed to multiplex them in a sequencing

lane, thus decreasing the costs, and avoided us to recover too many sequences for a single sample. We

used an Illumina NextSeq 500 sequencer. Table 4.2 recapitulates the number of reads we obtained for

each sample.

We can see (Table 4.2) that the total number of reads vary a lot between the different samples. It

may come from the differences of quantity in immuno-precipitated DNA. This differences come from

discrepancies in ChIP efficiency. After sequencing, we had to process and filter the reads. We used

Cutadapt to remove the adapters and the barcodes, as well as sequences with a poor quality. Hence, the

length of the reads went from 75 bp to a length comprised between 50 and 63 bp. We used Bowtie to

map the reads and index them. These steps usually cause losses of reads, and these experiments were no

exception. Table 4.2 presents the reads lost at each step and the final number of reads that can be used for

interpretation. Unmapped reads are quite low. They may be caused by poor DNA quality at the end of
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Sample Total number of reads Unmapped reads Reads with multiple mapping Mapped reads
Aft1 23 504 142 4 019 726 3 581 407 15 897 225 (67,6%)
Aft2 15 128 355 3 449 879 3 111 168 8 556 653 (56,6%)

Mock Aft1 and Aft2 39 488 011 5 479 152 7 730 683 26 260 347 (66,5%)
Hap4-YPD 36 555 113 8 976 363 1 075 015 26 503 735 (72,5%)

Mock Hap4-YPD 21 220 235 4 935 651 1 687 771 14 593 254 (68,8%)
Hap4-Glycerol 40 684 484 11 802 113 1 059 429 27 822 942 (68,4%)

Mock Hap4-Glycerol 37 265 683 12 383 552 1 076 635 23 805 496 (63,9%)
Hap5 36 964 004 4 974 366 12 518 716 19 392 382 (52,5%)
Rox1 38 952 784 6 522 398 4 976 088 27 449 314 (70,5%)

Mock Hap5 and Rox1 21 220 235 4 935 651 1 687 771 14 593 254 (68,8%)
Skn7-H2O2 22 644 073 3 742 245 2 249 131 16 644 954 (73,5%)

Mock Skn7-H2O2 24 755 146 8 596 053 2 335 959 13 817 917 (55,8%)
Skn7-NaCl 27 368 366 3 539 712 4 610 518 19 196 006 (70,1%)

Mock Skn7-NaCl 28 674 640 7 126 743 5 392 910 16 142 595 (56,3%)
Input 45 032 807 1 644 101 1 683 912 41 702 562 (92,6%)

TABLE 4.2. Summary of the reads number obtained after sequencing and processing. First
column is the number of reads obtained with the sequencing. Second column provides the number
of non-aligned reads. Third column is the number of reads that aligned at multiple locations in the
genome. They were removed from the analyses. Last column presents the number of mapped reads and
the percentage of mapped reads compared to the total number of reads.

the ChIP or by sequencing errors. Reads aligned multiple times are usually sequencing artefacts. Despite

the reads losses, the final number of reads are substantial and largely enough to study TFs binding on a

small yeast genome (12.3 Mb).

4.4 Peak-calling and identification of the targets

After the reads filtering, the next step to perform is the peak-calling. As mentioned earlier, we used

the bPeaks software. For each set of data, we first launched a "calibration" run. It means that we gave

bPeaks several ranges of parameters in order to evaluate the number of peaks found with each set of

parameter. Then, we chose a set of parameters (usually a set that gave a median number of peaks,

compared to peaks found with the most stringent or the loosest sets or parameters) and evaluated the

quality of the peaks found by checking them on IGV (Thorvaldsdóttir et al., 2013). This visual inspection

allowed us to check for the presence of false-positives (such as peaks on highly expressed ORFs and

tRNA). If necessary, i.e. if a set of parameters gave too many false peaks or a restricted number of peaks,

we relaunched the peak-calling with other parameters. Once a set of parameters was fixed, we performed

two peak-callings using this set of parameters : we compared the IP sample to the input control, and the

IP sample to the mock control. This gave two lists of peaks for each sample. We kept only the peaks

appearing in both peak-calling procedures. This method helped us to achieve a peak calling with few

false-positives and a reasonable number of peaks. The next step was to assign promoters to the peak lists.

Table 4.3 displays the number of peaks and potential targets for each transcription factor.
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Transcription Factor Number of peaks Potential targets GO enrichment
Aft1 109 148 Iron homeostasis
Aft2 63 88 Iron homeostasis

Oxidative stress response
Hap4-Glycerol 314 437 Cellular respiration

Oxido-reduction processes
Hap5 113 154 Cellular respiration
Rox1 370 473 Filamentous growth regulation

Skn7-H2O2 193 267 Oxidative stress response
Skn7-NaCl 156 200 No enrichment)

TABLE 4.3. Peaks, targets and GO enrichment of each transcription factor. First column is the
number of peaks found with bPeaks. Second column provides the number gene promoters associated
to those peaks. Last column presents the GO processes enriched in the genes list. GO enrichment
were evaluated thanks to the GO Term Finder tool of the CGD (http://www.candidagenome.org/cgi-
bin/GO/goTermFinder).

The table 4.3 reveals that peaks number and potential targets are always different. It is caused by

the fact that we can’t always assign one promoter to a peak : if the peak is between two diverging

promoters, it is impossible to choose one gene. To validate only one gene, supplementary informations

are required, like transcriptomic data, binding motif presence... It is also possible, eventhough unlikely,

that both genes are bound by the TF. There are huge variations between the peaks/potential targets of

each TF. This may be caused by the importance and the different roles of a TF : a transcription factor

with a restricted role will have less targets than a TF on top of the regulatory chain. Hence, it is not

surprising to see a lot of potential targets for Hap4 and Rox1, while Aft2 has only a small set of targets.

We also performed GO processes enrichment analyses that can be found in Table 4.3. Skn7-Nacl didn’t

present any enrichment because most of its targets were classified as "Unknown biological process" in

the CGD. This analysis highlighted two interesting facts : 1. Aft2 displays an enrichment in oxidative

stress response genes that was previously unknown in Candida glabrata. 2. Rox1 targets are enriched

in genes of filamentous growth. Despite the fact C. glabrata rarely forms filaments, it is surprising

because it resembles more C. albicans Rox1 than S. cerevisiae’s. CaRox1 was reported to play a role in

regulation of filamentation while ScRox1 represses hypoxia genes during aerobiosis. Hence, it is likely

this GO enrichment in filamentous growth among Rox1 targets comes from a wrong annotation transfer

between C. glabrata and C. albicans. The other GO categories we found are in perfect accordance with

the current knowledge on the TFs. Noteworthy, while it is not enriched for this category, Skn7-H2O2 has

a lot of targets involved in cell wall maintenance and regulation, which reminds of one of the roles of

Skn7 in S. cerevisiae.
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4.5 Representing the Candihub network

When the targets of the transcription factors are defined, it is possible to use these lists to represent

the interactions between TF and genes. We chose Cytoscape (Shannon et al., 2003) to perform that task.

The network can be found in Figure 4.1.

To build this network, we used two sets of data :

- The ChIP-seq data of the Candihub project (Aft1, Aft2, Hap4, Hap5, Rox1, Skn7). When data for

several conditions were available for a same transcription factor, we fused the lists of targets and

removed the duplicates.

- The ChIP-seq data previously produced by the team during the study of the Yap family (Yap1,

Yap2, Yap3b, Yap4-6, Yap5, Yap7) (Merhej et al., 2015; Merhej et al., 2016).

Hence, this network comprises 1057 nodes, including the 12 transcription factors and 1955 edges. The

high number of nodes is not surprising given the wide diversity of the stress studied. The high number of

edges (around twice the number of nodes) shows the strong interconnection between the different stress

networks. Also, this network perfectly respects the scale-free model that is usually attributed to this type

network (see Table 4.4) : there are a lot of weakly connected nodes (degree≤2, violet and red nodes) and

a minority of strongly connected nodes (degree≥6, dark green and mid-green nodes), or hubs. Because

we assembled several pathways in this network, we probably found 12 genes that are at the crossroads

of several stress responses. These central genes (nodes with degrees 6 and 7) are HEM3, SIT1, CCC1,

APT2, ATG41, EFM1, TAL1, STR3, OYE2, CAGL0M11682g, CAGL0H07337g and CAGL0L09911g.

Interestingly, iron homeostasis is well represented with 3 genes (HEM3, SIT1, CCC1), which tends to

further highlight the importance of that metal in yeast. The other genes are diverse and are involved in

redox processes, autophagy, cell wall, biosynthetic processes. These genes are likely to have crucial role

in the cell survival. Additionally, the low number of targets of Yap3b probably means that we didn’t use

the proper stress condition to activate the TF Of note, Yap2 and Yap5 have no exclusive targets : all their

targets are shared with one or several other transcription factors. This could mean that Yap2 and Yap5

are often acting as co-regulators (in the testes conditions, at least).

Some aspects of this wide network will be further discussed in the next chapters.
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Node degree 1 2 3 4 5 6 7
Number of nodes 516 311 134 56 23 8 4

TABLE 4.4. Distribution of the node degrees. These data were obtained via
target couting on Cytoscape.

FIGURE 4.1. Network of interactions of C. glabrata stress responses. Transcription factors are the large light
blue circles, target genes are the smaller colored circles. The color represents the node degrees. This network
displays the data obtained during the Candihub project and the data obtained by the team during the study of Yap
networks (Merhej et al., 2015; Merhej et al., 2016). This network was built thanks to Cytoscape (Shannon et al.,
2003).
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The CBC Impacts Respiratory Genes and

Iron Homeostasis in Candida Glabrata

5.1 Introduction

As mentioned in Introduction Chapter 3, my PhD evolved out of the Candihub ANR project, which

aimed to describe the transcriptional regulation networks involved in several stress responses in both

Candida albicans and Candida glabrata. The project was especially focusing on the role of transcription

factors in these responses, among which the Yeast activator protein (Yap) family of b-ZIP transcription

factors. A previous study of the lab tackled the role of this family in Candida glabrata (Merhej et al.,

2016). This family contains 7 members which are known to play an important role in a variety of stress

responses such as oxidative stress, osmotic stress, heavy metals stress, nitrosative stress and iron stress.

It was also posited that Yap5 might interact with the CCAAT binding complex (CBC) through a vestigial

HaP4-like domain, the same way Yap5 orthologues (HapX proteins) are interacting with the CBC to act

on iron homeostasis in Saccharomycetales such as C. albicans.

Following this hypothesis, we tried to unravel the role of the CBC in C. glabrata. To that extent, we

performed DNA microarrays and Chromatin-ImmunoPrecipitation followed by sequencing to determine

the targets of the CBC, and especially the targets of the Hap5 subunit which is known to be responsible

for the DNA-binding ability of the CBC. We showed that the CBC plays a dual role in C. glabrata. It

impacts the activation of respiratory genes through its interaction with Hap4 when yeast cells can’t use

the fermentation pathway. It is also crucial for the iron excess response through its interaction with Yap5

to activate iron consuming genes. Interestingly, Yap5 cannot bind to its target promoters without Hap5.

Co-immunoprecipitation experiments implied an interaction between Yap5 and Hap5. Further experi-

ments showed that the Hap4-like domain of Yap5 was likely to play a role in this interaction, because
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mutations in this domain drastically weakened Yap5 binding to its targets as well as its interaction with

Hap5.

Thus, Yap5 can be labeled as another regulatory subunit of the CCAAT-Binding Complex, which

displays a new essential role in iron homeostasis. The role of the CBC seems to be conserved in species

distant of C. glabrata such as Schizosaccharomyces pombe, even if the mechanisms of the CBC in iron

homeostasis vary a lot between S. pombe (where Php4 binds the CBC that binds DNA) and C. glabrata

(where the CBC and Yap5 both bind DNA and also interact together).

For this work, I performed the microarrays and the associated transcriptomic analyses. I performed

the ChIP-seq experiments and the subsequent bioinformatic analyses (peak calling, cis-regulatory motifs

enrichment analyzes). I also performed the q-PCR experiments and made their analyses.

5.2 Publication
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The CCAAT-Binding Complex 
Controls Respiratory Gene 
Expression and Iron Homeostasis in 
Candida Glabrata
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The CCAAT-binding complex (CBC) is a heterotrimeric transcription factor which is widely conserved 
in eukaryotes. In the model yeast S. cerevisiae, CBC positively controls the expression of respiratory 
pathway genes. This role involves interactions with the regulatory subunit Hap4. In many pathogenic 
fungi, CBC interacts with the HapX regulatory subunit to control iron homeostasis. HapX is a bZIP 
protein which only shares with Hap4 the Hap4Like domain (Hap4L) required for its interaction with 
CBC. Here, we show that CBC has a dual role in the pathogenic yeast C. glabrata. It is required, along 
with Hap4, for the constitutive expression of respiratory genes and it is also essential for the iron 
stress response, which is mediated by the Yap5 bZIP transcription factor. Interestingly, Yap5 contains 
a vestigial Hap4L domain. The mutagenesis of this domain severely reduced Yap5 binding to its targets 
and compromised its interaction with Hap5. Hence, Yap5, like HapX in other species, acts as a CBC 
regulatory subunit in the regulation of iron stress response. This work reveals new aspects of iron 
homeostasis in C. glabrata and of the evolution of the role of CBC and Hap4L-bZIP proteins in this 
process.

The CCAAT-binding complex (CBC) is a heterotrimeric transcription factor which is conserved from fungi to 
vertebrates and plants and which specifically recognizes the CCAAT DNA motif. In yeasts, the three subunits of 
the CBC are called Hap2/3/5. In fungi, the Hap2/3/5 complex is sufficient to bind DNA but it requires a fourth sub-
unit to regulate transcription of some of its target genes1–3. Many roles have been attributed to fungal CBC but the 
most extensively studied are its requirement for the regulation of respiration in Saccharomyces cerevisiae on one 
hand, and its involvement in the regulation of iron homeostasis in many other fungal species (including several 
human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans) on the other hand 
(Supplementary File S1). In the model yeast S. cerevisiae, the regulatory subunit Hap4 allows the CBC to activate 
the expression of the respiratory pathway genes in the absence of glucose4–7 (Supplementary File S1). In this model, 
HAP4 is transcriptionally induced by non-fermentable carbon sources, while the expression and DNA binding of 
Hap2/3/5 are constitutive8. Hap4 indirectly binds DNA through its interaction with CBC. A conserved motif of 16 
amino acids in the Hap4 sequence has been shown to be required for this interaction3, 9, 10. In the pathogenic yeast 
Candida albicans and in many other fungal species (e.g. Aspergillus fumigatus, Aspergillus nidulans, Cryptococcus 
neoformans, Fusarium oxysporum, …), the CBC plays an important role in iron homeostasis11–19. This role is 
mediated by the HapX (named Hap43 in C. albicans) regulatory subunit. HapX acts by repressing the expression 
of iron consuming genes in iron starvation conditions and by activating these genes in iron excess11, 13, 17, 18, 20.  
HapX proteins have few similarity with Hap4 except for the 16 amino acids domain (called Hap4Like or Hap4L) 
which is required for their interaction with Hap512, 18, 21, 22. In addition, they also have a bZIP DNA binding 
domain similar to the one found in the oxidative stress response factor Yap112, 18, 21–23. In Yap1, this domain is 
responsible for the specific recognition of the YRE (Yap Response Element) DNA motif (TTACTAA). The role of 
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this domain in HapX proteins remains to be elucidated since HapX and Hap43 clearly bind CCAAT motifs indi-
rectly through their interaction with CBC, rather than YREs11, 20, 24. However, HapX also contributes to the DNA 
binding specificity of the CBC-HapX complex in A. nidulans and the bZIP domain is absolutely required for the 
regulation of transcription by Hap43 in C. albicans18, 25.

In S. cerevisiae, in contrast to C. albicans and Aspergillus sp., CBC does not seem to contribute to the global iron 
starvation response26, but its role in iron homeostasis has actually been poorly investigated in this species27 (dis-
cussed in refs 28, 29). A potential ortholog of Hap43/HapX, named Yap7, has been identified in S. cerevisiae18, 23,  
but it is not directly involved in iron starvation or iron excess responses21.

In the present study, we analyzed the role of the CBC in the yeast Candida glabrata, a human pathogen which 
is evolutionary much closer to S. cerevisiae than to C. albicans30. We identified the targets of Hap5 using chroma-
tin immunoprecipitation followed by high-throughtput sequencing (ChIP-seq) and transcriptome analyses. We 
found that Hap5 binds many genes involved in respiration and positively controls their expression. As in S. cere-
visiae, this function requires the Hap4 regulatory subunit. More surprisingly, we observed that Hap5 directly con-
trols the iron stress response mediated by the Yap5 bZip transcription factor. We showed that Yap5 cannot bind 
the promoter sequence of GRX4 in the absence of Hap5 and co-immunoprecipitation experiments suggested that 
Hap5 interacts with Yap5. Interestingly, Yap5 contains a sequence which resembles the N-terminal part of the-
Hap4L domains of Hap4 and HapX. Full deletion or substitutions of the conserved amino acids in this sequence 
severely impaired Yap5 binding to its targets and its interaction with Hap5. Our results revealed a key role of CBC 
in the iron stress response of C. glabrata and identified Yap5 as a new CBC regulatory subunit.

Results
Hap5 targets and controls both the respiratory genes expression and the Yap5 mediated iron 
stress response. To identify the targets of CBC in C. glabrata, we analyzed the DNA binding pattern of 
Hap5 by ChIP-seq. We chose this subunit because it was shown in other species to be essential for the assem-
bly, the DNA binding and the activity of CBC31, 32. Moreover, Hap5 is the CBC subunit which recruits Hap4 
through a Hap4 recruitment domain which is present only in fungi32. We performed ChIP-seq on exponentially 
growing cells in rich glucose media. The peak calling procedure identified 113 bound promoters and 154 poten-
tial target genes (Supplementary File S2). Bioinformatic analyses using the peak motif software unambiguously 
identified the CCAAT box as the most enriched motif in the ChIP peaks, being present in 85% of them (Fig. 1, 
Supplementary File S2). Gene Ontology analyses of the list of potential target genes showed a strong enrichment 
in genes encoding proteins involved in cellular respiration (p = 1.6 × 10−23), ATP metabolism (p = 6.1 × 10−29), 
oxido-reduction processes (p = 1.7 × 10−20) and TCA cycle (p = 6.2 × 10−10). Half of the targeted promoters were 
associated to a gene encoding a mitochondrial protein (p = 3.4 × 10−18). These included genes encoding subunits 

Figure 1. The Hap5 network in Candida glabrata. An arrow indicates a potential regulatory interaction based 
on ChIP-seq. The color of the targets indicates their belonging to respiratory pathways (yellow) or not (white). 
The most enriched DNA motif in ChIP peaks is represented at the bottom right. The Yap5 data are from ref. 
29. The gene names indicated are those of the S. cerevisiae orthologs (according to the CGD database, www.
candidagenome.org). For the sake of clarity, only the names of the genes which are discussed in the main text 
are indicated.
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of the respiratory complexes (COX, ATP and QCR genes, COR1, …), mitochondrial transporters (AAC3, POR1, 
…) and enzymes of the TCA cycle (ACO1, SDH2, KGD1, KGD2, …) (Fig. 1).

Another remarkable feature of the ChIP results is that all the targets previously identified for Yap529 were also 
bound by Hap5 (Fig. 1). These correspond to 9 genes induced by Yap5 in iron excess conditions and encoding the 
glutaredoxin Grx4, the iron–sulfur cluster containing enzymes Aco1, Tyw1, Sdh2, Rli1 and Glt1, the iron-sulfur 
cluster maturation enzyme Isa1, the heme biosynthetic enzyme Hem3 and the iron vacuolar transporter Ccc1.

To measure the impact of Hap5 on the expression of its targets, we performed transcriptome analyses comparing 
gene expression between a hap5Δ mutant and wild type cells. Because our ChIP-seq results showed an interaction 
between Hap5 and the targets of Yap5, we performed these transcriptome experiments on cells grown in three dif-
ferent conditions: standard rich media, iron excess and iron starvation. Among the 113 target promoters identified 
by ChIP-seq, 55 showed altered expression of one of the corresponding gene in at least one of the three tested growth 
conditions (Fig. 2A). Two main types of targets were distinguished based on their expression profiles (Fig. 2B). The 
first one included 48 genes which expression was diminished in the mutant in at least two of the three tested condi-
tions (Fig. 2). Among them, 39 showed lower expression in all three conditions (Fig. 2A). This group of « constitu-
tively » affected targets included mainly genes encoding proteins related to respiration and mitochondrial activity. 
The second group included 7 genes which expression was specifically impaired in iron excess conditions (Fig. 2). 
These genes were all previously shown to be regulated by Yap529. In this group, GRX4 has a special status since its 
expression is down regulated in the Hap5 mutant in iron excess conditions but up-regulated in the same mutant 
upon iron starvation (Fig. 2A). Actually, this GRX4 expression pattern is exactly the same as the one previously 
described for yap5Δ mutants29. ChIP-Q-PCR analyses showed that the binding of Hap5 to GRX4 was constitutive 
and independent of iron availability (Supplementary File S3), as previously described for Yap529.

Hap5 cooperates with Hap4 in the regulation of respiratory genes expression and with Yap5 in 
the iron excess response. Our ChIP-seq and transcriptome experiments demonstrated a dual role for Hap5 in 
the constitutive expression of respiratory genes on one hand, and in the iron excess activation of Yap5 targets on the 
other hand. The first role is consistent with what was previously shown for CBC in S. cerevisiae. In this species, Hap5 
requires the regulatory subunit Hap4 to control the expression of respiratory genes in the absence of glucose2, 5–7.  
To clarify the potential interplays between Hap5, Hap4 and Yap5 in C. glabrata, we performed Q-PCR analyses of 
ATP2 (group 1 in Fig. 2B) and GRX4 (group 2 in Fig. 2B) expression in wild type, hap5Δ, hap4Δ and yap5Δ cells 
grown either in glucose, glycerol (a non-fermentable carbon source) or iron excess. As observed in our transcrip-
tome analyses, ATP2 levels are decreased in the hap5Δ mutant in all three growth conditions examined. Remarkably, 
the same pattern was observed for the hap4Δ mutant, while ATP2 levels were independent on the presence of YAP5 

Figure 2. Transcriptome analyses of Hap5 impact on gene expression. The wild type and hap5Δ strains were 
grown in three different conditions (rich media, iron excess or iron starvation) and their transcriptomes were 
compared using microarrays. (A) Venn diagram representing the overlaps between the lists of Hap5 ChIP 
targets being significantly down regulated compared with wild type in YPD (blue line), BPS (green line) or 
iron excess (black line). The red line includes the only Hap5 ChIP target (GRX4) which was significantly 
up-regulated upon BPS treatment. The gene names are from the S. cerevisiae orthologs, when available. (B) 
Eisengram of the expression profiles of the genes from the Venn diagram. The values used are log2 of hap5Δ/
wild type expression ratios. The color scale is indicated. The conditions used are 1: YPD; 2: iron excess (2 mM 
FeSO4 for 30 minutes); 3: iron starvation (0.5 mM BPS for 30 minutes).
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(Fig. 3A). Similar results were obtained for another respiratory gene (namely COX12, Supplementary File S4). In 
contrast, the basal levels of GRX4 remained unaffected in all three mutants but its induction by iron excess was 
totally abolished in the hap5Δ and yap5Δ mutants, while being unaffected by the deletion of HAP4 (Fig. 3B).

To further investigate the relationships between Hap5 and Yap5, we compared the Hap5 and Yap5 ChIP-peak 
positions and sequences. We observed that the Yap5 and Hap5 ChIP peaks were at the same locus. Moreover, 
seven out of nine Yap5-Hap5 ChIP targets had both a YRE motif and a CCAAT box in their Yap5 and Hap5 peaks 
(Supplementary File S5). Of note, ACO1 and SDH2, which contain only a CCAAT-box in their promoters, are also 
the only two Hap5-Yap5 targets which behaved as respiratory pathway genes and not as iron excess response genes in 
the transcriptome experiments presented in Fig. 2. Strikingly, the YRE and CCAAT box found in the 7 other targets 
were always located very close to each other, with a spacing varying from 10 to 14 base pairs between the two motifs 
(Supplementary File S5). A genome-wide search for co-occurrences of CCAAT-box and YRE with a spacing from 
10 to 14 base pairs showed that this situation is very unusual, being present in only 28 gene promoters in C. glabrata. 
This conserved and unusual spacing between the two motifs in 7 out of 9 of the promoters which were co-regulated 
by Hap5 and Yap5, strongly suggested that Yap5 and Hap5 had to interact to control the expression of those genes.

We next performed ChIP analyses of Yap5 binding to GRX4 in wild type and hap5Δ cells (Fig. 4). We observed 
that the absence of Hap5 totally abolished Yap5 binding to its target. In a previous work, we noticed that Yap5 
contains a degenerated but still recognizable Hap4L motif just upstream of its bZIP domain21. This motif cor-
responds to the N-terminal half of the canonical Hap4L domain (Fig. 4A). To assess the potential role of this 
sequence in the interaction between Yap5 and Hap5, we mutagenized the conserved part of the Yap5-Hap4L 
domain and tested by ChIP the capacity of the mutated Yap5 versions to bind GRX4 in the presence of a wild type 
Hap5 (Fig. 4). First, we deleted the 11 amino acids of the conserved part of Yap5-Hap4L domain. In C. albicans, a 
similar deletion in the Hap4L-bZIP protein Hap43 was shown to abolish its capacity to regulate iron homeosta-
sis18. The corresponding Yap5 mutant protein (yap5-Hap4LΔ) was normally expressed (Supplementary File S6) 
but unable to bind GRX4 promoter (Fig. 4B). Next, we performed amino-acid substitutions at positions of the 
Yap5-Hap4L domain that are conserved in the Hap4 protein (S33P and K34E) (Fig. 4A). These substitutions were 
chosen because they were shown to abolish the activity of Hap4 in S. cerevisiae and therefore are likely to affect 
residues essential for the Hap4L-Hap5 interaction9. These mutations severely diminished the binding of Yap5 to 
GRX4 compared to the wild type version (Fig. 4B, Supplementary File S6).

These results strongly suggested that Yap5 and Hap5 had to interact to control the expression of their com-
mon targets. To support this hypothesis, we performed co-immunoprecipitation (co-IP) experiments by tagging 
the chromosomic version of Hap5 with protein A and transforming the resulting strain with a plasmid bearing 
the wild type or the mutated versions of Yap5-myc under the control of the native YAP5 promoter. IP samples 
obtained by immunoprecipitating Hap5-ProtA were then analyzed by western blot using an anti-myc antibody 
(Fig. 4C) or an antibody with a high affinity for Protein A (Supplementary File S7). A clear band corresponding to 
Yap5-myc was observed in the Hap5-ProtA IP with the wild type version of Yap5, but not with the two Yap5 ver-
sions mutated for the Hap4L domain (Fig. 4C). This difference was not due to differences in the input samples or 
in the IP efficiency since the input Yap5-myc signals were not lower for the mutants compared with the wild type 
and since the input and IP Hap5-ProtA signals were equivalent in all lanes (Fig. 4C and Supplementary File S7). 
This result supports the model in which Yap5 interacts with Hap5 through its Hap4L domain.

Discussion
In this work, we identified a part of the transcriptional network associated with CBC, more particularly the Hap5 
subunit, in the pathogenic yeast C. glabrata. As mentioned in the introduction, the main role described for CBC 
in the model yeast S. cerevisiae is the activation of respiratory pathway genes in the absence of glucose. This also 
involves the regulatory subunit Hap4. Very recently, it was reported that hap5Δ and hap4Δ strains have a severe 

Figure 3. Analyses of the impact of Hap5, Hap4 and Yap5 on ATP2 and GRX4. The relative expression of 
ATP2 (A) and GRX4 (B) was measured by Q-RTPCR in wild type, hap5Δ, hap4Δ and yap5Δ strains grown in 
glucose, glycerol or iron excess. The values represent the expression levels of the ATP2 or GRX4 genes relative 
to ACT1 (used as an internal control) and to the wild type grown in glucose. The experiments were performed 
three times on biologically independent samples. Error bars represent the pearson standard deviation. A t-test 
was performed to compare, for each growth condition, the mutants to the corresponding wild type. The results 
of the test are indicated by the stars as follows *p < 0.05, **p < 0.01, ***p < 0.001.
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growth defect in non-fermentable carbon sources in C. glabrata, indicating that this role may be conserved in this 
species33. Consistently with this observation, our genome-wide analyses showed that Hap5 positively controls the 
expression of many mitochondrial protein encoding genes, including subunits of the respiratory complexes and 
enzymes from the TCA cycle. We also showed that Hap4 is required for this regulation. Hence, this role in cellular 
respiration seems to be perfectly conserved between S. cerevisiae and C. glabrata.

More unexpectedly, we demonstrated a role of the C. glabarata CBC in iron homeostasis. Hap5 was found to 
bind the promoters of the genes of the Yap5-dependent iron stress regulon (i. e. GRX4, ISA1, RLI1, HEM3, TYW1, 
GLT1, CCC1, ACO1 and SDH2) and is necessary for their induction in iron excess conditions (Figs 1, 2 and 3). 
Hap5 also plays a role in the negative regulation of GRX4 in iron starved conditions (Fig. 2). This is reminiscent 
of the situation extensively described in C. albicans and many other fungal pathogens, in which the CBC plays 
an important role in iron starvation and iron stress responses. Hence, the CBC of C. glabrata seems to combine 
features of S. cerevisiae CBC (positive regulation of respiration) and C. albicans CBC (positive regulation of iron 
stress response) (Fig. 5). Interestingly enough, this is not the only example of this kind. It was recently shown that 
the iron starvation regulation in C. glabrata relies on a hybrid network which combines the “S. cerevisiae- like” 
Aft1 activity with the “C. albicans- like” Sef1 transcription factor33.

Figure 4. Molecular basis of the Yap5-Hap5 interaction. (A) Multiple alignments of the Hap4L domains 
of Hap4 (from S. cerevisiae), wild type C. glabrata Yap5, Yap5-Hap4LΔ and Yap5-mut2. For the latter, the 
substitutions are highlighted in red. (B) ChIP-QPCR was performed on strains expressing a myc-tagged Yap5 
in presence (wild type) or absence (hap5Δ) of HAP5 and on strains expressing the two different Yap5 mutant 
versions. All strains were grown in YPD. The values represent the IP/Input ratios of the GRX4 promoter 
relative to the enrichment of the YHB1 promoter (used as an internal control), expressed as a percentage 
of the enrichment obtained for the wild type Yap5. The experiments were performed twice on biologically 
independent samples. Error bars hence represent the standard error of the mean. (C) Western blot analyses 
of the co-immunoprecipitation experiments using Hap5-Protein A as bait and wild type or mutated versions 
of Yap5-myc as prey. Upper panel: input samples (INPUT), lower panel: immunoprecipitated samples (IP). 
Immunoblotting was performed with a mouse anti-myc antibody (Roche). The Yap5 protein is fused to 13 
c-Myc epitopes and the corresponding band is expected at 65 kDa. The Hap5-Protein A fusion is expected at 
45 kDa and is also detected by the anti-myc antibody (although with a low affinity), because Protein A non-
specifically interacts with IgG. Note the similar intensity of the Hap5-ProtA bands in the IP, which indicates 
that the IP efficiency was equivalent from one lane to another. The star indicates the 50 kDa band corresponding 
to the large chain of the anti-Mouse antibodies used for the IP. The co-immunoprecipitation experiment was 
performed twice on biologically independent samples and gave consistent results. The ladder on the right was 
copied and pasted from the white light image of the membrane. Immunoblotting of the same membranes with 
rabbit IgG-HRP polyclonal antibody (PAP; code Z0113; Dako), which has a high affinity for Protein A, can be 
found in Supplementary File S7.
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In S. cerevisiae and C. glabrata, iron stress response has been shown to be controlled by the Yap5 bZIP tran-
scription factor21, 34–36. This regulation absolutely requires the direct binding of Yap5 to YRE motifs (TTACTAA) 
in the promoters of these genes29, 34, 35. We showed here that Hap5 is also necessary for this regulation to happen. 
More precisely, Yap5 is unable to bind and activate its targets in the absence of Hap5 (Fig. 4). Remarkably, the 
YRE and CCAAT motifs in the promoters of the Hap5-Yap5 iron stress regulon exhibited a conserved spacing of 
10 to 14 base pairs, suggesting that the proximity of the two transcription factors on DNA is important for their 
activity. We previously noticed that Yap5 contains a Hap4L like domain which actually corresponds to half of the 
canonical Hap4L domain found in published CBC regulatory subunits such as Hap4 in S. cerevisiae and Hap43/
HapX in pathogenic fungi21. Remarkably, this motif was not found in a global search for Hap4L-bZip bipartite 
domains18 and did not pass the statistical cut-off in a Hap4L search using the Pfam database21. Yet, partial deletion 
or point mutations of this domain severely reduced Yap5 binding to GRX4 and this domain was necessary for the 
Yap5-Hap5 interaction detected in co-IP experiments (Fig. 4). These results suggest that, like HapX and Hap43, 
Yap5 needs to interact with the CBC to control iron homeostasis and that the conserved amino-acids of its trun-
cated Hap4L domain play a key role in this interaction. In this model, Yap5 would function as a CBC regulatory 
subunit of a special kind, since it has its own DNA interaction which is as important for its action than its interac-
tion with CBC and since its Hap4L domain significantly diverged from the canonical version.

This observation shed new interesting light on the conservation of the role of CBC in fungi and on the diver-
gence of the associated regulatory mechanisms (Fig. 6). In the fission yeast Schizosaccharomyces pombe, iron 
homeostasis is regulated by Php4 which negatively controls the expression of iron consuming genes in iron 
starved cells by binding to the CBC through its HAP4L domain and by sensing iron by the intermediate of Grx4 
(reviewed in ref. 15). As far as we know, Php4 does not directly bind DNA and does not contain a bZIP domain. 
In many pathogenic and non-pathogenic fungi (Aspergillus sp., Cryptoccocus neoformans, Fusarium sp., Candida 
albicans), HapX/Hap43 proteins negatively regulate iron consuming genes in iron starvation and positively reg-
ulate them in iron excess12, 13, 16–18, 20. They directly sense iron concentration through conserved cysteine rich 
motifs20. Gene expression regulation by HapX involves both binding to CBC and direct interaction with a DNA 
consensus (TGAC) which is close to a half-YRE site and which may rely on the bZIP domain of HapX11, 20, 25. The 
Yap5 functioning described here is very close to HapX, except that Yap5 binds a full YRE site29, 34, 35. Interestingly, 
Yap5 senses iron excess through a cysteine rich domain (CRD) which is very similar to the CRD of HapX37. 
Moreover, like HapX, C. glabrata Yap5 can act both as a repressor or an activator, depending on iron availability29. 
Then, CBC’s role in iron homeostasis is globally conserved (except that its role in iron starvation in C. glabrata is 
marginal and restricted to the repression of GRX4) but its mechanisms of action have diverged from a Hap4-like 
functioning in S. pombe to a fully cooperative DNA binding model in C. glabrata. In this model, the CBC-HapX 
case would be an intermediate situation, in which HapX also contribute to DNA binding specificity and affinity 
but in which the interaction with CBC is predominant (Fig. 6).

This model also provides keys to the answer to a long standing question, which is the basis of the Yap DNA 
binding specificity. Yap1, Yap2, Yap5 and Yap7 all recognize TTACTAA as their favorite consensus binding 
site. Yet, ChIP-seq and ChIP-chip analyses revealed that they have quite different sets of targets29, 38. The strong 
dependence of Yap5 DNA binding on the presence of both an YRE motif and of a CCAAT motif bound by Hap5 
at a distance of 10–14 base pairs may partly explain its target specificity compared to the other Yap proteins, since 
this particular co-occurrence is very unusual in the genome of C. glabrata.

Additional roles of CBC have been described in fungi. For instance, in C. albicans and in S. cerevisiae, CBC has 
a role in the transcription activation of genes required for growth on poor nitrogen sources (e.g. GDH1, GDH3 and 
ASN1 in S. cerevisiae; MEP2 and SAP2 in C. albicans)19, 39–44. This activity is independent of the regulatory subunits 
Hap4 and Hap4339–44. It rather involves cooperative action between the CBC and specific DNA binding transcription 
factors, such as the GATA factor Gln3 in S. cerevisiae42. Moreover, CBC has been shown to be a negative regulator of 
ergosterol biosynthesis and azole resistance in Aspergillus fumigatus45, while having a positive role on ERG9 expres-
sion in S. cerevisiae46. Finally, CBC plays an important role in the oxidative stress response of Aspergillus nidulans 
and Hansenula polymorpha23, 47. The overexpression of the Hap4B regulatory subunit of H. polymorpha (which is 
orthologous to the HapX proteins48) is able to complement the yap1Δ sensitivity to hydrogen peroxyde in S. cer-
evisiae23. Our ChIP-seq results also suggest that some of these roles may be conserved in C. glabrata. Indeed, the 

Figure 5. A dual role for CBC in Candida glabrata. CBC plays a dual role in the control of cellular respiration 
(together with the regulatory subunit Hap4) and of the iron stress response mediated by the Yap5 transcription 
factor.
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glutamate dehydrogenase encoding gene GDH1 and the ammonium permease encoding gene MEP3 were targeted 
by Hap5 in our experiments. Also, a handful of oxidative stress response genes were bound by Hap5 in C. glabrata 
(e.g. OYE2, SOD2, CTA1, …). Further investigations will be required to decipher the role of Hap5 in these processes.

Methods
Strains and primers. The lists of the strains and primers used in this study are available in Supplementary 
Files S8 and S9, respectively. All the deleted strains used in this study were obtained from existing collections21, 49, 50  
and were verified by PCR before use. The genomic myc-tagging of Hap5 was performed as described previously51. 
Briefly, myc-tagging cassette was PCR amplified from the M. Longtine’s plasmids52 with oligonucleotides contain-
ing homology sequences flanking the desired genomic insertion points in 5′. At least 10 micrograms of purified 
PCR product was used to transform HTL cells using a standard yeast transformation protocol21. Genotyping 
of the clones growing on selective media was done by PCR. The correct myc-tagging of Hap5 was verified by 
sequencing of the gene and western blot21.

The genomic TAP-tagging of Hap5 was obtained with the same strategy except that the TAP-TRP1 cassette was 
amplified from the pBS1479 plasmid53.

For the mutagenesis of YAP5, we started from the pGRB2-YAP5myc plasmid21 and used the Quick change 
site-directed mutagenesis kit from Agilent, following the recommendations of the supplier. The mutant plasmids 
were controlled by sequencing. After transformation in C. glabrata using the “one-step” yeast transformation 
protocol21, the correct expression of the Yap5 mutant proteins was tested by western blot (Supplementary File S6).

Yeast Cultures and Growth Conditions. All cultures were conducted in a rotative shaker at 30 °C. 
The standard growth media was YPD (Glucose 2%, yeast extract 1%, Bactopeptone 1%). For growth in 
non-fermentable conditions, glucose was replaced by 2% glycerol. The following stress conditions were used: 
2 mM iron sulfate in CSM (2% glucose, 0.67% Yeast Nitrogen base, 0.08% Complete Synthetic Media (MP Bio)) 
for iron excess conditions and 0.5 mM bathophenanthroline disulfonate (BPS) in YPD for iron starvation con-
ditions. The cells were exposed to the corresponding stress for 30 minutes. The strains harboring HIS3 or TRP1 
selection cassettes were grown in solid or liquid CSM media without the corresponding amino acid.

Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-seq). For ChIP, 
myc-tagged strains were grown in YPD until exponential phase (OD = 0.8). Cross-linking of the cells and ChIP 
were performed as described previously54. The parental HTL (untagged strain) was grown and processed the same 
way to provide the mock-IP samples. Sequencing of the IPs, Input DNAs and mock IPs samples and primary 
data analyses (quality controls and mapping of the reads) were performed as described previously54. Peak calling 
was performed with the bpeaks software51, using both the Input DNA and the mock IP as references. For peak 
calling using the Input DNA as reference, the bpeaks parameters were T1 = 1.9, T2 = 6, T3 = 1, T4 = 0.7. For peak 
calling using the Mock IP as reference, the bpeaks parameters were T1 = 1.9, T2 = 6, T3 = 1, and T4 = 0. Only 
the peaks that were found with both analyses were kept for further processing. These peaks were then manually 
checked on a genome browser55 to discard artefactual peaks (e.g., peaks centered on a tRNA locus, peaks perfectly 
overlapping a highly expressed ORF) which would have escaped the bpeaks filter. Peaks located outside of a pro-
moter region (i.e. between convergent ORF or inside ORFs) were also discarded from the final list presented in 
Supplementary File S2.

Figure 6. The evolution of the roles of CBC and its regulatory subunits in the control of fungal iron 
homeostasis. In Schizosaccharomyces pombe, Php4 plays an important role in the iron starvation response by 
repressing the iron consuming genes through its interaction with the CCAAT Binding Complex (CBC) which 
is mediated by its Hap4Like domain (Hap4L) (reviewed in ref. 15). In C. glabrata, Yap5 is a major regulator of 
the iron stress response which activates iron consuming genes21, 29. Yap5 binding to its targets requires CBC, 
probably by direct interaction with Hap5 through its vestigial Hap4L domain (this work). However, Yap5 also 
interacts directly with DNA through its bZIP domain and this interaction is essential for its regulatory  
activity29, 35, 36. Interestingly enough, the situation in filamentous ascomycetes (e.g. Aspergillus or Fusarium 
species) and in C. albicans is an intermediate between S. pombe and S. cerevisiae. HapX plays an important dual 
role in activating the iron stress response and in repressing the same genes in iron starvation11, 12, 18, 20. HapX 
interacts with CBC through its conserved Hap4L domain, but it also directly contributes to the binding of the 
CBC-HapX complex to a bipartite DNA motif, probably through its bZIP sequence18, 20, 24, 25.
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DNA Motif Enrichment analyses. DNA sequences of ChIP peaks were retrieved from their genomic loca-
tions (BED file) using the “getfasta” function from the BEDTOOLS suite56. These genomic sequences were used 
as inputs for the peak-motif tool to search for regulatory motifs57. An additional filtering step was added to the 
standard peak motif procedure to discard low complexity motifs (e.g., CCCCCCC).

The co-occurrences of YRE and CCAAT motifs in the ChIP peaks shared by Yap5 and Hap5 were confirmed 
by visual inspection of the peak sequences using IGV55. The genome-wide search of YRE-CCAAT co-occurrences 
with a spacing of 10–14 bp in C. glabrata promoters was performed using the DNA pattern search in RSAT58 
and a dedicated R-script which automatically identified co-occurrences in promoters and measured the distance 
between the two motifs.

Network Building. The ChIP peaks were assigned to genes as described previously51. When a peak was 
located in a divergent promoter (i.e., an intergenic region in between two divergent genes) the two genes were 
fused in one target in the network named “gene 1/gene 2”. The network was represented using the igraph R 
library59. The presence of a ChIP peak was used as the parameter to define interactions (arrows) between Hap5 
and its targets. The GO criterion was used to differentially color the target promoters (Fig. 1). GO analyses were 
performed using the “GO term finder” tool at the CGD database, with default parameters60.

Transcriptome Analyses. Knock-out and wild type strains were grown in 50 mL of YPD until expo-
nential phase (OD = 0.8) and then stressing agents were added. After 30 min, 15 mL of each cell cultures were 
flash-frozen in two volumes of cold ethanol and collected by centrifugation. Total RNA was extracted, quality 
controlled and quantified as described previously21. One microgram of total RNA was used for fluorescent cDNA 
synthesis according to the amino-allyl protocol21. The cDNAs were labeled with Cy3 and Cy5 and hybridization 
was performed as previously described21. Two biologically independent experiments were performed for each 
condition, using dye switch. We used custom C. glabrata Agilent arrays in an 8 × 60 k format (array express 
accession number: A-MEXP-2402). After overnight hybridization and washing, the slides were scanned using a 
2- micron Agilent microarray scanner. The images were analyzed using the feature extraction software (Agilent 
technologies) and normalized using global LOESS61. The mean of the biological replicates was calculated. A gene 
was considered as being differentially expressed if its mean absolute Log2(fold change) value was more than 0.5 
and if its expression variation was considered as being statistically significant using the LIMMA package with a 
cut-off p-value of 0.0562.

Real Time Quantitative PCR (Q-PCR) analyses. For RNA extraction, cDNA synthesis and qPCR, cells 
were grown in the appropriate medium until exponential phase (OD = 0.8), then stressing agents were added for 
30 min when required. Cells were then snap-frozen in cold ethanol and collected by centrifugation. Cells lysis 
was mechanically performed with glass beads using a Fastprep®-24 bead beater (MP Biomedicals). Total RNA 
extraction was carried out using the RNeasy extraction kit (Qiagen) following the manufacturer’s instructions. 
The concentration of each sample was determined using NanoPhotometer® spectrometer (IMPLEN). For each 
sample, 1 μg of the total RNA were DNAse treated using Turbo DNA-free kit (Ambion). After DNAse treatment, 
0.2 μg of total RNA were used to perform cDNA synthesis using Superscript II Reverse Transcriptase according 
to the manufacturer’s instructions (Invitrogen). The resulting cDNA were diluted to three different concentra-
tions (1:10, 1:20 and 1:40). Quantitative PCR reactions were performed on a C1000 TM Thermalcycler (Bio-rad) 
with a 2X SYBR Green master mix (Promega). The qPCR reaction mixture contained 0.5 μM of each primer and 
4 μL of one of the three dilutions of the cDNA. These dilutions served as triplicate for each sample. The primers 
used for qPCR are listed in Supplementary File S7. The relative expression for a given gene was generated by 
calculating the difference in the abundance between the transcripts of this gene compared to the transcripts of 
the ACT1 gene, used as an endogeneous reference, based on the ΔCt method. Finally, the expression values were 
normalized with the expression of the studied gene in the wild type strain grown in glucose given the arbitrary 
value 1 (Fig. 3).

For Chromatin-immunoprecipitation followed by qPCR (ChIP-qPCR), three serial dilutions (1:4, 1:8, 1:16) 
of immunoprecipitated samples were simultaneously processed together with Input samples used for normaliza-
tion. The primers used for qPCR are listed in Supplementary File S7. The enrichment of the YHB1 promoter was 
used as an endogenous control. Q-PCR was performed as described above. The relative enrichment of a specific 
locus in the immunoprecipitated DNA relatively to the Input DNA and to the YHB1 promoter enrichment was 
determined using the ΔΔCt method.

Co-immunoprecipitation experiments and western blots. Co-immunoprecipitation using 
Hap5-Protein A as bait was performed as described63 except that we started from 100 mL of cell culture at 
OD = 0.8 in CSM-His media, that we used DynabeadsTM PanMouse IgG and that all the IP sample was mixed 
with 2X Laemmli for western blots. Proteins contained in 15 µl of Input or IP samples were separated on 10% 
SDS-Polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were then transferred to Whatman® Protan® 
BA83 nitrocellulose membrane (GE Healthcare). Immunoblotting of Yap5-myc wild type and mutant proteins 
were performed using 1:10000 mouse IgG Anti-cMyc (Roche) and 1:10000 anti-mouse IgG-HRP (Promega) as 
primary and secondary antibodies. Detection of the signals was performed using G:BOX Chemi XT4 (Syngene) 
following incubation with UptiLightTM HRP blot chemiluminescent ECL substrate (Interchim).

Data availability. The ChIP-seq data can be downloaded from the GEO database (accession number: 
GSE91371). The complete microarray data are available at Array express database under the accession number: 
E-MTAB-5348.
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5.3 Supplementary results

5.3.1 Introduction

In addition to the previous results, we addressed three more issues in order to complete some unre-

solved questions of the publication. First, we looked for other evidences showing that both Hap5 and

Yap5 binding to DNA through their specific motifs is essential to iron excess response. To that end, we

used a reporter gene approach, the set-up of which is described in the next part. In parallel, we tried to

evaluate the conservation of the Hap5-Yap5 regulation system across various species belonging to the

Saccharomycetales clade by looking at the promoter sequences of the orthologues of the Hap5-Yap5

regulon. Finally, we also studied the binding of Hap4, the regulatory subunit of the CCAAT-Binding

Complex, and compared its targets with those bound by Hap5 and Yap5.

5.3.2 The YRE and the CCAAT motifs are required to activate the iron excess response

To address the question of the importance of Hap5 and Yap5 binding motifs in iron excess response,

we decided to use a LacZ reporter gene under the control of different versions of the GRX4 promoter.

For reasons of ease, we chose to make this constructions on plasmids rather than modify the genomic

locus of GRX4. We obtained the pZLG plasmid construct from Garcia et al., 2010. This plasmid contains

the Escherichia coli LacZ sequence under the control of Saccharomyces cerevisiae ZWF1 promoter, an

URA3 marker and S. cerevisiae ARS sequence (Garcia et al., 2010). Then, Jawad Merhej used PCR and

XhoI/KpnI cloning to add C. glabrata ARS sequence and a HIS3 marker, both coming from pGRB2.1-

Myc-His plasmid (Frieman et al., 2002). The resulting plasmid is pZLG-HU-CGSC, abbreviated as pSG.

J. Merhej then used PCR and SacII/NotI cloning to add the YHB1 promoter, thus transforming pSG

plasmid into pSG-promCgYHB1. This last plasmid was the starting point for the plasmid constructions

used in our reporter gene assay.

The goal was to replace YHB1 promoter by GRX4 promoter. To reach that goal, Thierry Delaveau

amplified genomic DNA from HTL strain (Jacobsen et al., 2010) with the following set of primers :

908-PromCgGRX4-SacII-SmaI-PrF and 909-PromCgGRX4-NotI-PrR (see Appendix X for sequences).

After SmaI/NotI digestion of pSG-promCgYHB1, he cloned the GRX4 promoter in the plasmid with the

LacZ reporter gene. The plasmid was then checked by Sanger sequencing and transformed into the HTL

strain using the “one-step” yeast transformation protocol (Schiestl et al., 1989; Willins et al., 2002). We

also mutated either the Yap5 binding motif (the YRE : TTACTAA) or the Hap5 binding motif (CCAAT)
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in GRX4 promoter using the Quick change site-directed mutagenesis kit from Agilent, following the

recommendations of the supplier. These mutant plasmids were then checked by Sanger sequencing and

transformed into the HTL strain using the “one-step” yeast transformation protocol.

These three transformed strains (HTL + plasmid GRX4-LacZ, HTL + plasmid GRX4-mutYRE-LacZ,

HTL + plasmid GRX4-mutCCAAT-LacZ) were exposed to iron excess (2mM FeSO4 in CSM-His for 30

min) to create a stress. Cells were harvested and processed to perform qRT-PCR according to the protocol

used in Thiébaut et al., 2017.

FIGURE 5.1. Analysis of the impact of binding motifs presence on the activation of GRX4 promoter. Panel
A shows the expression of GRX4 after measurement by q-RTPCR in HTL + GRX4-LacZ, HTL + GRX4-mutYRE-
LacZ, HTL + GRX4-mutCCAAT-LacZ and HTL + long GRX4-LacZ strains grown in iron excess (2mM FeSO4 in
CSM-His for 30 min) relative to ACT1 used as an internal control. The experiments were performed two times
on biologically independent samples. Error bars thus represent the standard error of the mean. Panel B can be
separated in four columns. First column contains the strain names. Second column displays the situation of the
promoter (if and how it was mutated). Third column displays the ORF associated to the GRX4 promoter in second
columns. Last column shows the relative expression of LacZ after measurement by q-RTPCR in HTL + GRX4-
LacZ, HTL + GRX4-mutYRE-LacZ, HTL + GRX4-mutCCAAT-LacZ and HTL + long GRX4-LacZ strains grown
in iron excess (2mM FeSO4 in CSM-His for 30 min). The values represent the expression levels of LacZ relative
to ACT1 used as an internal control. The experiments were performed two times on biologically independent
samples. Error bars thus represent the standard error of the mean.
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For each sample, the efficiency of the iron excess stress was acknowledged by measuring endogenous

GRX4 expression (Figure 5.1, panel A). With a minimal induction of 2.7, GRX4 was strongly activated

independently of the strain, which means two things : the iron excess stress was efficient and triggered

the activation of the iron stress response pathway. It also means that the introduction of plasmids carrying

mutations in GRX4 promoter didn’t change the stress response compared to the introduction of a plasmid

carrying the wild-type GRX4 promoter. Figure 5.1, panel B shows the expression of the LacZ reporter

gene under the control of GRX4 promoter during iron excess response. The first thing to notice is that the

activation of the reporter gene is weaker than the activation of the endogenous GRX4 (1.8 vs 3.4). We

tried to counter the loss in LacZ activation by increasing the length of the GRX4 promoter we cloned into

the plasmid, in case some unknown regulatory zones were situated further away of the transcription start.

It resulted in the strain HTL + plasmid long GRX4-LacZ. However, we can see that it didn’t impact GRX4

activation (relative expression of 3.2) nor LacZ activation (relative expression of 1.9), so we didn’t try

to mutate the Hap5-Yap5 binding sites in this strain. Still, we can clearly see that the activation of LacZ

(0.92 vs 1.8) is lost when the promoter is mutated (red and blue columns in the histogram, for the deletion

of the YRE and the CCAAT sites respectively), showing that both motifs are necessary to activate GRX4

following the iron stress. Thus, the absence of Yap5 or Hap5 binding sites in DNA prevents C. glabrata

from activating the iron excess stress response pathway.

5.3.3 The YRE and the CCAAT motifs are differentially conserved in the Saccharomyc-

etales

We wanted to evaluate the conservation of the Hap5-Yap5 regulation system in a variety of pathogenic

and non-pathogenic fungi. In order to do that, we studied the conservation of the CCAAT-motif and the

YRE (TTACTAA), as well as their spacing. We started by selecting 30 species spanning all the Saccha-

romycetales clade, ranging from Saccharomyces cerevisiae to Yarrowia lipolytica. We tried to represent

all the sub-clades of the Saccharomycetales and we favored the species which had reliable genomic

sequences available. When several genomes of a same sub-clade were available but their assemblies

weren’t entirely completed, we selected the genomes (and thus the species) with the smallest number of

contigs.

For each of these 30 species, we recovered the promoter sequences of the orthologues of the genes

involved in iron excess reponse in C. glabrata (CCC1, GLT1, GRX4, HEM3, ISA1, RLI1, TYW1). For
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species with properly annotated genomes such as Saccharomyces or Candida species, the upstream pro-

moter sequences are clearly identified and were easily retrieved in the Saccharomyces Genome Database

(Cherry et al., 2012; Engel et al., 2014), the Saccharomyces sensu stricto website (Scannell et al., 2011)

and the Candida Genome Database (Skrzypek et al., 2017). More precisely :

- To access the data on SGD, we used the search field to access the gene page, then we went to the

“Sequence” tab to use the “Analyze Sequence” tool with the options “S288C vs. other species”

and “Fungal Alignment”. From there, we selected the desired species in the “Hits” boxes and

picked the “Upstream ORF DNA” option in the sequence type. It allowed to download a fasta file

containing the promoter sequences of several Saccharomyces species.

- On the Saccharomyces sensu stricto website, we went to the “Intergenics” page and we selected

the desired promoter sequence in the “Sequence” column. It displays a fasta-like page format that

contain the promoter sequence for several species that can be easily saved.

- To recover the data on CGD, we used the search field to access the gene page, then we went to the

“Homologs” tab and used the “Genomic +/- 1000 BP (multi-FASTA format)” option to download

a fasta files containg the gene sequences and their 1000 flanking bases upstream and downstream

for several species.

For the species without properly annotated genomes and unfinished assemblies, we had to use an-

other approach and we defined the promoters as approximately 1000 bases before the transcription

start site. Thanks to the SGD, we obtained the S. cerevisiae proteic sequences for the orthologues of

the seven C. glabrata genes mentioned earlier. For the following steps, we primarily used the GRYC

(Genome Resources for Yeast Chromosomes) website (http://gryc.inra.fr/index.php?page=home) to re-

trieve the data required to perform our study. On the website, we went to the “BLAST” tab to use the

“blastp” tool (Altschul et al., 1990; Altschul et al., 1997). We selected the desired species in the “Select

species/strain(s)” option and used the S. cerevisiae protein sequences as “Input query”. The other default

settings were fitting so we didn’t change them. For the next steps, we only used the blast hits with a

s-score greater than 350. The hits allowed us to retrieve the DNA sequence for the orthologues as well

as their chromosomal locations. From there, we went to the “Download” tab of the website, selected the

species of interest and displayed the fasta files of the scaffold of interest. After locating an orthologue in

the associated scaffold, we extracted the promoter sequence of said orthologue. We repeated that for all

the orthologues of the 7 genes.
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Still, we lacked data for a few species, so we applied the same procedure on the NCBI website which

has a bigger database than GRYC : we used the blastp tool to find orthologue proteins and corresponding

gene sequences. We used the default settings except for the modification of the “Organism” field to

restrain the search and render it faster. We only worked with blast hits with a score greater than 200. We

used NCBI Assembly and NCBI Genome to find and extract the promoter sequences of all the remaining

orthologues.

Once all the promoter sequences were retrieved, we analysed them to check for CCAAT or YRE

presence. When both motifs were found in a promoter, we calculated the distance between them. The

results are presented in Figure 5.2, which allows several assessments.

The motifs are conserved in Candida glabrata closest species (Nakaseomyces delphensis and Can-

dida bracarensis) for all genes except ISA1. So are the distances (10-14 bases, as mentioned in the

previous paper and Figure 5.2) for a majority of genes (GRX4, CCC1, TYW1, RLI1. HEM3 and GLT1

are also quite close). Another interesting feature is that the system seems to be even more conserved in

Naumovozyma castelli, where all motifs are conserved as well as most distances, although this species is

further from C. glabrata than C. bracarensis or N. delphensis.

The Saccharomyces clade is displaying a certain conservation and might even be more homogenous

in itself than the Candida/Nakaseomyces clade : motifs and distances are strongly conserved in GRX4,

CCC1, TYW1 and HEM3. Intriguingly, motifs in ISA1 promoters all sustained a mutation but kept the

canonical distance and most likely their role. It was shown in L. Li et al., 2008; L. Li et al., 2011;

Pimentel et al., 2012 that CCC1, TYW1 and GRX4 are bound by Yap5 in S. cerevisiae and are still crucial

to iron excess response, meaning that at least a part of the regulation is conserved between the species

despite the mutation in the sequence.

Last interesting feature relates to the difference of motifs conservation between the promoters : mo-

tifs in GRX4 and CCC1 are highly conserved across the biggest part of the tree (from S. cerevisiae to

Kluyveromyces lactis) whereas motifs in GLT1 are lost outside the Candida/Nakaseomyces clade. The

other genes are an in-between situation, especially TYW1 and HEM3 which are strongly conserved in

the upper part half of the tree but totally lost in the other half. Distance between the motifs in these

genes as well as CCC1 is also strongly conserved, but the most impressive example resides in GRX4

: almost everytime both binding motifs are conserved, they are separated by 14 bases. There are only

two exceptions, N. bacillisporus and K. lactis, and even then, the distance is quite close to the canonical
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FIGURE 5.2. Analysis of the conservation of CCAAT-motif and YRE and their spacing in 30 species of the
Saccharomycetales clade. The left panel is a schematic representation of a phylogenetic tree adapted from Aubin
Fleiss’ data. It is based on the comparison of 350 homologous synteny blocks present in the 30 species considered.
The Whole Genome Duplication is indicated by a black star. The CUG-clade is depicted by red branches on the
tree. The right panel is a table displaying the results of the analyses of motifs and spacing conservation. Each
line represents a species, and each column corresponds to a gene. Color code can be explained as follows : a
red cell means both canonical CCAAT-motif and YRE (TTACTAA) were found in the promoter sequence of the
corresponding gene and species. An orange cell means both CCAAT-motif and YRE (TTACTAA) were found in
the promoter sequence of the corresponding gene and species but one of the motifs has a single mutation. A white
cell can have two different interpretations : 1. The motifs have two or more mutations in total. 2. Either only
one or no motif was found in the promoter sequence. A grey cell means that no orthologue was found. Finally,
the number in the cell is the distance between the two motifs when they are both present ; we only represented
distance between 9 and 28 bases. The upper limit was chosen because it corresponds to 5% of the total number of
distances (see Fig X). Coincidently, it is equal to twice the maximum distance found in C. glabrata. It is supposed
to account for genetic divergence between the species represented in the tree. The bottom limit might account for
the steric blockage caused by the binding of two transcription factors : if the binding sites are too close, it is likely
one transcription factor will hinder the binding of the other.

distance. The conservation of the distance across such divergent species might even be a stronger sign

than the conservation of the motifs that the iron excess response mediated by these genes is conserved.



5.3. Supplementary results 85

However, this is only an in silico analysis and it might differ with the regulations that are actually

happening in these species. Especially, the presence of one or both motifs doesn’t guarantee the binding

of the transcription factors on the promoters. Still, CCAAT is a short motif that appears several thousand

times in all the upstream sequences of the genome, and this assessment is also true for YRE (TTACTAA),

even if it is longer than CCAAT. In C. glabrata, over the thousands of likely combinations, 1033 upstream

sequences contain a CCAAT/YRE couple. In this case, the average distance between the motifs is 182

bases. Only 27 motifs couples have a distance between 10 and 15 bases, among which 7 are our genes

of interest. Then, it would be highly unlikely that both motifs and distances were conserved from S.

cerevisiae to K. lactis without some evolutionary pressure. Confirming this supposition, Merhej et al.,

2015 showed that GRX4 activation by Yap5 in iron excess response is conserved in Lachancea kluyveri

and Kluyveromyces lactis. If we summarise, it means that Yap5 role is conserved in species as far as

K. lactis, while its binding motif is also conserved and the distance between the CCAAT and the YRE

is conserved. This forms a huge body of evidence towards the conservation of the Hap5-Yap5 iron

regulation system from S. cerevisiae to K. lactis.

On another side, variations in the motifs sequence or the distance don’t always mean the regulation

is lost : distance in CCC1 promoter in S. cerevisiae is bigger than the usual 10-14 bases but the gene

kept its functioning and its regulation (L. Li et al., 2008). CCC1 in C. glabrata doesn’t contain the exact

motifs but it plays a role in iron response (Merhej et al., 2015). But the best example might be found in

further species : the Hap43/HapX (the equivalent of C. glabrata Yap5 in further species) role seem to

be conserved in species such as Cryptococcus neoformans (W.H. Jung et al., 2010) or Aspergillus spp

(Hortschansky et al., 2007; Schrettl et al., 2010; Gsaller et al., 2014).

In the last two articles, they also showed that Afu4g12530 (CCC1 orthologue in A. fumigatus),

Afu1g07380 (GLT1), Afu4g10690 (ISA1), Afu1g10310 (RLI1), Afu6g12930 (ACO1), Afu5g10370 (SDH2)

expression are up-regulated by HapX in iron excess response, which suggests that the regulation system

is conserved, or at least a major part of it (4/7 genes plus ACO1 and SDH2 which are targets of Hap5

and Yap5). Interestingly, they didn’t report the finding of a YRE motif in these promoters. However, the

absence of YRE binding motif can be explained by the fact that the HapX interaction with DNA seems

to be degenerated in this species while it is mandatory in C. glabrata. Despite the absence of a YRE

motif in HapX targets in Aspergillus spp, Hortschansky et al., 2015 still reported the presence of a DNA

binding motif for HapX, TGAT, which is quite close to a semi-YRE motif. Thus it is likely the regulation

system and especially the binding motifs diverged in species further from C. glabrata than K. lactis, for
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example Cryptococcus spp or Aspergillus spp. However, this system is still partially conserved in these

further species, because for example CCC1, GLT1, ISA1, RLI1, ACO1, SDH2 are still targeted by HapX

during iron stress response.

Interestingly, Candida albicans seems to be at a crossroads in the conservation of the system involved

in iron excess response. Our data in Figure 5.2 indicates that even if the motifs nor the distances are not

perfectly conserved in this species compared to Candida spp for example, some slightly mutated motifs

are still present and the overall spacing is conserved. This is reinforced by the results of C. Chen et al.,

2011 who found that C. albicans iron response is partially mediated through Hap43 binding to the same

target genes except GRX4. Also, the Hap43 DNA binding seems to retain some significance, because

Singh et al., 2011 and Srivastav et al., 2018 showed that any mutation in the bZIP domain responsible

for the DNA binding of Hap43 impaired its functioning in iron homeostasis. Thus, the system seems to

be conserved in C. albicans.

Nonetheless, it was reported in Skrahina et al., 2017 that Candida albicans Hap43 isn’t involved in

iron excess response, which is at odds with our suppositions. However, if we look carefully, we can

see in these data that CCC1 activation in iron excess is lost when Hap43 is deleted, which means that

Hap43 activates CCC1 during iron excess response. It resembles a lot Yap5 role in C. glabrata. ACO1,

another up-regulated target of Yap5 in iron excess, shows the same behavior than CCC1. In opposition,

HEM3 expression is clearly independent of Hap43 presence in iron excess, which doesn’t resemble the

C. glabrata model. Thus, with these contradictory data on 3 orthologues of Yap5 targets, it would be

interesting to look at the expression of the other Yap5-targeted orthologues in C. albicans in iron excess.

Hap43 could still have a role in iron excess response, but this role would be much more restricted than

the role of Yap5 in C. glabrata or HapX in Aspergillus spp.

Another point we didn’t entirely approach is the role of the Hap5-Yap5 system in iron deprivation

stress. In S. cerevisiae, the response to iron starvation consists in activating Aft1 and Aft2 who in turn

activates the iron uptake genes and the CTH genes who post-transcriptionally repress the iron consuming

genes (Yamaguchi-Iwai et al., 1995; Yamaguchi-Iwai et al., 1996; Blaiseau et al., 2001; Rutherford et

al., 2001; Rutherford et al., 2003; Puig et al., 2005). Later, Pujol-Carrion et al., 2006 showed that GRX4

regulates the nuclear localisation of Aft1 and Pimentel et al., 2012, showed that the deletion of YAP5

modifies the cellular localization of Aft1, thus changing its abilities to regulate gene expression. So far,

that is the only link between the Hap5-Yap5 system and the Aft system during iron deprivation stress
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in this species. In C. glabrata, Merhej et al., 2016 demonstrated that Yap5 represses GRX4 during iron

deprivation. There was no other report of Yap5 involvement in iron starvation in C. glabrata. Gerwien

et al., 2016 proved that Aft1 role and its targets (including CTH2 gene) in S. cerevisiae are partially

conserved in C. glabrata. They also showed that CTH2 causes the repression of Sef1, which is an

activator of iron-consuming genes but reported no role for Yap5. In C. albicans, the equivalent of the

Hap5-Yap5 system is conserved with the huge role of Hap43 : during iron starvation, Sef1 activates iron

uptake genes as well as Hap43 (C. Chen et al., 2011). Hap43 then represses Sfu1 and iron consuming

genes (C. Chen et al., 2011; Singh et al., 2011; Hsu et al., 2011) thanks to its interaction with the CCAAT-

Binding Complex (Baek et al., 2008). In Cryptococcus spp or Aspergillus spp, it was shown that HapX

has a dual role in iron deprivation and iron excess response and that it controls some sets of genes that are

shared between the two opposite conditions (Hortschansky et al., 2007; W.H. Jung et al., 2010; Gsaller

et al., 2014). HapX and the CBC have a prominent role in iron deprivation in these species. Given that

HapX in Aspergillus spp has a role in both conditions, we could think that C. glabrata and C. albicans

had opposite evolutionary directions : Yap5 retained a strong activating role in iron excess and a weak

negative role in iron deprivation while Hap43 retained a weak activating role in iron excess and a strong

negative role in iron deprivation.

5.3.4 Hap4 might still interact with the CBC during iron excess response

In addition to deciphering the regulation network of Hap5 and Yap5, we also wanted to investigate the

network associated to Hap4, the other known regulatory subunit of the CBC. To that end, we performed

ChIP-seq experiments to study Hap4 binding on DNA and determine its target genes. After peak-calling

procedure, manual verification of the peaks and identification of the target promoters, we found that

Hap4 had 314 peaks corresponding to 437 potential targets. 104 of these targets are common with Hap5

targets (Figure 5.3), including the 7 genes of the iron regulon (CCC1, GLT1, GRX4, HEM3, ISA1, RLI1,

TYW1) and several genes of the respiratory pathway. Despite the qPCR results in the article showing

no involvement of Hap4 in iron excess response, this might suggest the contrary, namely Hap4 being

involved in iron excess response through the binding of the 7 target genes common to Hap5 and Yap5.

However, the binding peaks of Hap4 in the iron regulon genes are much weaker than those of Hap5

(Figure 5.4, panel A). Conversely, Hap4 peaks in the respiratory genes are much stronger than those

of Hap5 (Figure 5.4, panel B). This clear difference in peak intensity can be explained by a weaker

binding of Hap4 in iron excess response : basically, Hap4 would be the default regulatory subunit of

the CBC thus present most of the time around the complex, and it would be replaced by Yap5 during
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FIGURE 5.3. Representation of Hap4 and Hap5 networks. This network was obtained with Cytoscape (Shan-
non et al., 2003) using Hap5 ChIP-seq results (Thiébaut et al., 2017) and Hap4 ChIP-seq results (unpublished
data). As indicated, red nodes are transcription factors, green nodes are the 7 genes of the Hap5-Yap5 iron excess
regulon and blue nodes are all the other targets.

iron excess response. The overall presence of Hap4 around the CBC would be captured in ChIP because

of the formaldehyde crosslinking used in the protocol : the crosslinking could lead to the artefactual

association of Hap4 to DNA, despite Hap4 not really binding in the promoters of iron regulon genes.

Another possibility is that Yap5 interacts with the CBC but does not replace Hap4, which could mean

that Hap4 still has a role in iron excess response. This could be tested by measuring the impact of the

deletion of Hap4 on gene expression during iron excess.

5.3.5 Conclusion

These supplementary data highlight the fact that the presence of both Hap5 binding motif (CCAAT)

and Yap5 binding motif (TTACTAA) is crucial to the activation of the genes involved in the iron excess

response. The loss of one of the binding sites is enough to impair the pathway activation. These sites

are differentially conserved in the Saccharomycetales clade, and so is the distance between them. Nev-

ertheless, it is likely the regulation system spans from S. cerevisiae to K. lactis even if some divergences
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FIGURE 5.4. Representation of the binding peaks of Hap4 in the promoters of 7 iron responsive genes
and 7 respiratory genes. This figure was obtained with captures of Integrative Genomics Viewer representation
(Robinson et al., 2011; Thorvaldsdóttir et al., 2013). The top lane corresponds to the Hap5 ChIP-seq. The middle
lane corresponds to the Hap4 ChIP-seq. The bottom lane corresponds to a mock ChIP-seq. Panel A represents
binding in the iron regulon genes. Panel B represents binding in 7 respiratory genes chosen as representatives of
the set of targets of Hap4. Scale unit is in number of reads.

are seen in the motif and the distance. This system is also likely conserved in C. albicans, and probably

derives from the more complete system in Aspergillus spp. To be sure, some additional experiments are

required, such as ChIP-seq on Hap5 and Yap5 orthologues in iron excess followed by motif enrichment

analyses in the ChIP-seq peaks. It would allow to determine their target genes and binding motifs in this

condition, as well as the distance between the motifs and clearly decipher the conservation of the system

across the species. Another point that would need further clarification is the possible involvement of

Hap4 in iron excess response.
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Comparative Transcriptomics Reveals New

Features of Iron Starvation in Candida glabrata

6.1 Introduction

Another transcription factor we took interest in during the Candihub project was the Aft2 transcrip-

tion factor. Aft2 and its paralog Aft1 are known in S. cerevisiae for their role in iron homeostasis,

especially during the iron deprivation response. Incidentally, they share several target genes and most

of them are involved in iron homeostasis. More precisely, when facing iron depletion, they activate

iron uptake genes such as FET3, ATX1, SIT1. . . and CTH genes who post-transcriptionally repress the

iron consuming genes (Yamaguchi-Iwai et al., 1995; Yamaguchi-Iwai et al., 1996; Blaiseau et al., 2001;

Rutherford et al., 2001; Rutherford et al., 2003; Puig et al., 2005). Aft2 also has some specific targets

such as SMF3 (a vacuolar iron transporter) and MRS4 (a mitochondrial iron transporter) as shown in

Rutherford et al., 2001; Rutherford et al., 2003; Courel et al., 2005. In C. glabrata, it was also reported

that Aft2 was regulated by Yap1, one of the main factor involved in oxidative stress response (Salin et

al., 2008). Gerwien et al., 2016 reported that the deletion of AFT2 didn’t impact cell growth in a wide

variety of conditions, including metal restrictions, non-fermentative carbon sources and stress exposure,

but except for the previous statements, little was known on Aft2 in Candida glabrata. In this frame, the

Candihub project was an interesting way to improve our knowledge on Aft2.

We began the study by performing ChIP-seq on Aft2 in iron-depleted conditions. These conditions

were reached using BPS. The ChIP-seq allowed us to define the target genes of the factor. The analysis of

the ChIP-seq peaks gave 88 target genes. Over 80% of this promoters contain the ACACCC motif which

is identical to the consensus identified for Aft2 in S. cerevisiae (Courel et al., 2005). A Gene Ontology

analysis showed that these target genes are enriched in iron homeostasis and oxidative stress response,
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like in S. cerevisiae. Obviously, some of these targets are shared with Aft1 or Aft2 in the model yeast.

However, we found some genes specific to C. glabrata’s Aft2.

We tried to evaluate the impact of Aft2 on the expression of the targets defined previously. We looked

at transcriptomic data comparing aft2∆ cells to wild type cells in several conditions : YPD (optimal

growth), BPS (iron deprivation), selenite (which is also causing an iron deprivation among other things)

and cadmium. We noticed almost no significant changes in YPD. However, most of the genes which

expression varied in the stress conditions were Aft2 targets in ChIP-seq. One of these common targets is

MAK16b and its data are quite unsettling.

MAK16b role is unknown while its paralog, MAK16 is conserved in several species and plays a role

in ribosome biogenesis. Interestingly, only C. glabrata and some really close species have 2 paralogs of

MAK16. For example, S. cerevisiae has only one MAK16. We had at our disposal some transcriptomic

data resulting from a time-course study of the stress response of 8 species of yeast (Saccharomyces

cerevisiae, Candida glabrata, Lachancea kluyveri, Lachancea thermotolerans, Kluyveromyces lactis,

Candida albicans, Debaryomyces hansenii, Y. lipolytica) to selenite, a pleiotropic stress activating several

response pathways including iron starvation and oxidative stress response (Salin et al., 2008). When we

looked at MAK16 expression profile, we saw that it was repressed in the same way in all the species.

However, MAK16b had the opposite behavior : it was induced during stress.

This led us to look for others Regulatory Outliers (RO) (meaning genes that have different expres-

sion profiles when compared to the expression profiles of their orthologs in other species), especially

in the Aft2 regulon. To this end, Mariam Sissoko and Hugues Ripoche designed a script, called REG-

ULOUT, to automate the identification of genes with unique expression profiles in their orthogroups, aka

to identifying Regulatory Outliers. Briefly, REGULOUT needs two types of file to work : first, a table

containing the expression profiles obtained in the different species and second, a table describing the

orthology relationships between genes. REGULOUT calculates all the pairwise distances between the

expression profiles of all the genes belonging to an orthogroup, then it looks for genes which minimal

distance value in the orthogroup is higher than a distance cut-off set up by the user.

When we used REGULOUT on the selenite data previously mentioned, we found 38 ROs in Candida

glabrata. Among these 38 ROs, we identified 4 ROs specific to iron starvation and bound by Aft2.

Additional experiments showed that two of these genes (DOM34b and HBS1) are required for C. glabrata

growth in iron depleted conditions. Particularly, the S. cerevisiae orthologues of these two genes are
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involved in ribosome rescue by the NO GO decay pathway. Thus it might suggest a link between Aft2

response to iron starvation and the No Go Decay pathway in C. glabrata.

For this work, I performed the multistress Candida glabrata microarray experiments and the subse-

quent analyses. I performed the transcriptome analyses of the aft2∆ mutant strain. I also performed the

ChIP experiments, the peak calling and the cis-regulatory motif enrichment analyses.

6.2 Publication
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In this work, we used comparative transcriptomics to identify regulatory outliers (ROs)
in the human pathogen Candida glabrata. ROs are genes that have very different
expression patterns compared to their orthologs in other species. From comparative
transcriptome analyses of the response of eight yeast species to toxic doses of selenite,
a pleiotropic stress inducer, we identified 38 ROs in C. glabrata. Using transcriptome
analyses of C. glabrata response to five different stresses, we pointed out five ROs
which were more particularly responsive to iron starvation, a process which is very
important for C. glabrata virulence. Global chromatin Immunoprecipitation and gene
profiling analyses showed that four of these genes are actually new targets of the
iron starvation responsive Aft2 transcription factor in C. glabrata. Two of them (HBS1
and DOM34b) are required for C. glabrata optimal growth in iron limited conditions. In
S. cerevisiae, the orthologs of these two genes are involved in ribosome rescue by the
NO GO decay (NGD) pathway. Hence, our results suggest a specific contribution of
NGD co-factors to the C. glabrata adaptation to iron starvation.

Keywords: yeast, Aft, ChIP-seq, NO GO decay, evolution

INTRODUCTION

Candidemia are systemic infections caused by different Candida yeast species. They are responsible
for high mortality rates (40–50%) in immunocompromised patients, despite the existing treatments
(Pfaller and Diekema, 2007). These last 20 years, Candida glabrata has become the second leading
cause of candidemia, behind the extensively studiedCandida albicans (Pfaller et al., 2014). Although
they have similar names, C. glabrata and C. albicans are very different species (Brunke and Hube,
2013). C. glabrata, in evolutionary terms, is more closely related to the model yeast Saccharomyces
cerevisiae than to C. albicans (Dujon et al., 2004). It actually belongs to the Nakaseomyces clade.
In contrast to C. albicans, C. glabrata is a haploid. It is less susceptible to the azole compounds
which are commonly used to treat candidemia and can rapidly develop high-level resistance
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(Pfaller and Diekema, 2007). Moreover, it has evolved distinct
invasive strategies and unique transcriptional responses to stress
compared to other pathogenic fungi. For instance, Candida
glabrata is able to survive and multiply in macrophages by
escaping or inhibiting most of the phagolysosome anti-microbial
weapons (Kaur et al., 2007; Seider et al., 2011, 2014; Kasper et al.,
2015). Identifying the specificities of C. glabrata is therefore a
key issue to understand its virulence and eventually find efficient
treatments.

One obvious way to find C. glabrata particularities is
comparative genomics (Gabaldon and Carrete, 2015). The
comparison of C. glabrata and S. cerevisiae genomes indicated
that C. glabrata has lost some genes involved in galactose,
phosphate, nitrogen, and sulfur metabolisms (Roetzer et al.,
2011). These gene losses resulted in auxotrophy for nicotinic
acid, pyridoxine, and thiamine (Dujon et al., 2004; Domergue
et al., 2005). These features were hypothesized to be related to
the pathogenic nature of C. glabrata. However, the sequencing
of five more Nakaseomyces species, including two species found
in human patients and three, non-pathogenic, environmental
species, showed that most of these changes were actually shared
by both pathogenic and non-pathogenic Nakaseomyces species
(Gabaldon et al., 2013). This study identified the amplification
of the EPA genes, which encode for glycosyl-phosphatidylinositol
(GPI)-anchored cell wall proteins involved in cell adhesion,
stress responses and recognition by the innate immune system
(Cormack et al., 1999; De Las Penas et al., 2003, 2015; Domergue
et al., 2005; Juarez-Cepeda et al., 2015; Vitenshtein et al., 2016) as
the main genomic feature correlating with virulence in this clade
(Gabaldon et al., 2013; Gabaldon and Carrete, 2015).

Besides gene gains and losses, phenotypic diversity can also
arise from gene regulation divergence (Romero et al., 2012;
Roy and Thompson, 2015; Thompson et al., 2015; Johnson,
2017). Hence, numerous cases have been described in which
changes in the cis- or trans- regulatory elements of otherwise
conserved genes can lead to the emergence of new functions
(Romero et al., 2012; Thompson et al., 2015). For instance,
the evolution of pregnancy in mammals was associated with
transcriptional network rewiring driven by transposable elements
(Lynch et al., 2011, 2015). In yeasts, the loss of an AT rich cis-
regulatory element in the promoters of oxidative phosphorylation
and mitochondrial ribosomal protein genes following a Whole
Genome Duplication event (WGD) allowed for the appearance
of a respiro-fermentative life style in extent post-WGD species
(Ihmels et al., 2005; Habib et al., 2012; Thompson et al.,
2013). Comparative transcriptomics (i.e., the comparison of gene
expression profiles in different species) has been extensively used
in yeasts to identify changes in gene regulation that accompanied
the appearance of new physiological properties (Ihmels et al.,
2005; Lavoie et al., 2010; Wapinski et al., 2010), to achieve
model phylogeny for regulatory evolution (Roy et al., 2013;
Thompson et al., 2013) or to predict transcriptional regulatory
networks in non-model species (Koch et al., 2017). In the
present work, we used comparative transcriptomics to identify
regulatory outliers (ROs) in C. glabrata and in seven other yeast
species. ROs are genes that have very different expression profiles
from their orthologs in the other species. To find them, we

designed REGULOUT, a program which automatically identifies
genes with unique profiles among their group of orthologs
(i.e., orthogroups). We applied REGULOUT to comparative
transcriptome analyses of the response of eight yeast species
to toxic doses of selenite, a pleiotropic stress inducer. From
these data, REGULOUT identified 38 ROs in C. glabrata. Using
transcriptome analyses of theC. glabrata response to five different
stresses, we pointed out five C. glabrata ROs which were more
particularly responsive to iron starvation, a process which is very
important for C. glabrata virulence (Nevitt and Thiele, 2011;
Srivastava et al., 2014). Global chromatin Immunoprecipitation
(ChIP-seq) and gene profiling analyses showed that these five
genes were under the control of the iron starvation responsive
transcription factor Aft2 and that four of them were actually
C. glabrata specific Aft2 targets as compared to S. cerevisiae.
Phylogenetic analyses of the promoter sequences of these four
genes suggest that their control by Aft2 was fixed after the WGD.
Interestingly, the amount of Aft motifs in the promoters of
those genes was particularly high in the Nakaseomyces sub-clade
including the three potentially pathogenic species sequenced
to date (namely C. glabrata, Candida bracarensis and Candida
nivariensis), as compared with the non-pathogenic Nakaseomyces
sub-clade or with the Saccharomyces genus. Among these four
genes, two (HBS1 and DOM34b) were required for optimal
growth of C. glabrata in iron limited conditions. In S. cerevisiae,
the orthologs of these two genes are involved in ribosome
rescue by the NO GO decay (NGD) pathway. Hence, our results
demonstrate the power of comparative functional genomics
to identify novel regulatory systems in non-model species
and suggest a specific contribution of NGD co-factors to the
C. glabrata strategy for its adaptation to iron starvation.

MATERIALS AND METHODS

Strains and Growth Conditions
For comparative transcriptomic analyses, we used the following
strains: Saccharomyces cerevisiae S288C, Candida glabrata
CBS138, Lachancea kluyveri CBS3082, Lachancea thermotolerans
CBS6340, Kluyveromyces lactis CBS2359, Candida albicans
SC5315, Debaryomyces hansenii CBS767, Yarrowia lipolytica
CLIB122. All strains were grown in rich media at 30◦C (YPD:
1% bacto peptone, 1% yeast extract, 2% glucose) on a rotating
shaker (150 rpm), except the halophilic yeast D. hansenii which
was grown in YPD supplemented with 0.5 M NaCl.

For C. glabrata mutant strain construction, we used the HTL
background (his3-, trp1-, leu2-) (Schwarzmuller et al., 2014).
The tagging of DOM34a, DOM34b, HBS1, and MAK16b with
TAP tag was performed by PCR and homologous recombination
as described in Merhej et al. (2015). The tagging cassette was
PCR amplified from the pBS1479 plasmid (Puig et al., 2001).
The tagging of AFT2 with a myc epitope was performed exactly
as described (Merhej et al., 2015) using the myc-His cassette
from the Longtine’s collection (Longtine et al., 1998). The
AFT2 deleted strain was obtained from the Schwarzmuller et al.
(2014) collection. The MAK16b deleted strain was obtained by
PCR and homologous recombination as described previously
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(Merhej et al., 2015). The HBS1, DOM34a, and DOM34b deletion
mutants were obtained by a two steps PCR process using large
homologous regions as described previously (Schwarzmuller
et al., 2014). For all deletions, we used the TRP1 deletion cassette
from the Longtine’s collection (Longtine et al., 1998). For all
constructs, the positive clones were selected by growth on CSM-
TRP media, except for the AFT2-MYC tagged construct which
was screened on CSM-HIS media (2% glucose, 0.67% yeast
nitrogen base, recommended amounts of CSM-HIS or CSM-TRP
from MP Bio). The proper insertion of the cassettes at the targeted
genomic loci and the absence of wild type versions of the targeted
gene was controlled by PCR. All primers used in this study are
available in Supplementary File S1.

Multispecies Transcriptome Analyses:
Basic Experimental Set Up and RNA
Extractions
For each species, we first determined the dose of selenite required
for a 100% decrease of the growth rate in exponential phase. The
results were: 0.5 mM for C. albicans, D. hansenii, K. lactis, and
L. kluyveri, 1 mM for C. glabrata, 5 mM for L. thermotolerans,
10 mM for S. cerevisiae and Y. lipolytica. Next, we performed
kinetic experiments in which the cells were grown in YPD (or
YPD+ salt for D. hansenii as indicated above) at 30◦C until they
reach an optical density (OD) at 600 nm of 0.6–0.7. Then, we split
the cultures in two: one sub-culture received a mock treatment
while the second was treated by the indicated amount of selenite
(sodium selenite from sigma, stock solution prepared at 0.2 M
in water). This step defines time zero. Every 10 min from time
10 to time 80 min, 20 mL of each culture were collected and
flash-frozen in 30 mL of cold (−80◦C) absolute ethanol. The cells
were centrifuged (5 min, 4,000 rpm), washed with cold (4◦C)
distilled sterilized water, centrifuged again and cell pellets were
stored at −80◦C. In parallel to sample collection, the OD of the
two cultures was measured every 30 min for 3 h to assess the
impact of the selenite treatment on the growth rate. For each
species, 6–10 independent kinetic series were generated. Only the
four series which were the closest to the 100% decrease of growth
rate as compared to the mock treated cultures were used for RNA
extraction and microarray analyses. RNAs were extracted using
the RNeasy kit (Qiagen) following the protocol provided by the
supplier. The quality of the RNA extracts was checked on agarose
gels prior to reverse transcription.

Multispecies Transcriptome Analyses:
Microarray Design, Microarray
Experiments, Data Analyses
Agilent 8x60k custom microarrays were designed for each species
(array express accession numbers: A-MEXP-2402, A-MEXP-
2365, A-MTAB-642 to 647). For probes design, we used the
Teolenn software version 2.0.1 (Jourdren et al., 2010). The
genome sequences and ORFs positions used to create probe
sequences were downloaded from the Genolevures website. Only
the coding sequences were used for probe design, introns and
intergenic regions were not considered. The masked genomes
(i.e., without repeated sequences) required for Teolenn were

created using RepeatMasker version open-3.2.8 with the “-pa
4 -species fungi -xsmall” arguments. The main features of the
design are summarized in Supplementary File S2. There were
no probe replicates on the arrays but each ORF was covered by
eight different probes in average. For microarray experiments,
1 µg of total RNA was used for fluorescent cDNA synthesis
according to the amino-allyl protocol (Merhej et al., 2015).
The cDNAs were labeled with Cy3 and Cy5 and hybridization
was performed as previously described (Merhej et al., 2015).
Four biologically independent experiments were performed for
each condition, using dye switch. After overnight hybridization
and washing, the slides were scanned using a 2-micron Agilent
microarray scanner. The images were analyzed using the feature
extraction software (Agilent Technologies) and normalized using
global LOESS (Lemoine et al., 2006). The mean of the four
biological replicates was calculated. A gene was considered as
being induced (repressed) if its mean Log2(fold change) value
was more than 0.75 (less than −0.75) and if its expression
variation was considered as being statistically significant using
the LIMMA package with a cut-off p-value of 0.01 (Ritchie et al.,
2015) for at least two consecutive time points. The complete
microarray data are available at Array express database under
the accession numbers: E-MTAB-7022, E-MTAB-7023, E-MTAB-
7044 to 7047, E-MTAB-7049 and E-MTAB-7053. The processed
dataset is available in Supplementary Table T1.

REGULOUT
REGULOUT is a python program which takes as an input a
multispecies expression matrix and the repartition of the genes
in orthogroups. There are two parameters which need to be
set up by the user: the minimal size of the orthogroups to be
used and the Euclidian distance cut-off to be applied. Then
REGULOUT calculates, for each orthogroup reaching the defined
minimal size, the pairwise distances between the expression
profiles of the genes belonging to the orthogroup. In a next
step, REGULOUT defines as ROs all the genes which minimal
pairwise distance in their orthogroup is equal to or higher
than the minimal distance cut-off. As an output, REGULOUT
provides a text file with the name of the ROs, their minimal
distance in their orthogroup, the ID number and the size of their
orthogroup. It also generates automatically PNG files with the
expression profiles of the orthogroups in which at least one RO
has been identified. REGULOUT can be freely downloaded from
www.lcqb.upmc.fr/REGULOUT/, together with a tutorial and the
input data sets used in this study. More precisely, the input files
used in this article were the expression matrix for all species and
the composition of yeast orthogroups taken from the PhylomeDB
database (Huerta-Cepas et al., 2014). The distribution of the sizes
of the orthogroups is available in Supplementary File S3. The
minimal size of the orthogroups to be used was set up to 8 to
work mostly with genes which were conserved in all the eight
yeast species that were considered. The impact of this filter on
the number of expression profiles analyzed by REGULOUT is
indicated in Supplementary File S2. The minimal distance cut-
off was set up at 3, which corresponded to the 75 percentile
of all the possible pairwise distances in the dataset. From the
raw output of REGULOUT (440 genes), we filtered out the
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genes which were defined as ROs based on expression variations
that were poorly reproducible (p-value > 0.01). Because the
Euclidian distance that we used is very sensitive to stochastic
variations for genes with a large amplitude in their expression
changes, we also removed from the RO list the genes belonging to
orthogroups in which all the members had the same directionality
in their expression variations (see Supplementary File S4 for an
illustration). The filtered REGULOUT output contained 289 ROs
which are listed in Supplementary Table T2.

Multi-Stress Transcriptome Analyses in
C. glabrata
All cultures were conducted in a rotating shaker at 30◦C in
YPD (glucose 2%, yeast extract 1%, bacto peptone 1%). Stress
conditions used were: 1 mM for sodium selenite, 1 M for NaCl,
2 mM for cadmium chloride, 5 mM for iron sulfate or 0.5 mM
for bathophenanthroline disulfonate (BPS). Stressed and mock-
treated cells were collected as described above, 20 min and 40 min
after treatment. RNA extractions, microarray hybridization and
data normalization were performed as described above. For the
aft2∆ versus wild type comparisons, the stress concentrations
were the same as above but the cells were collected only 30 min
after treatment. The complete microarray data are available at
Array express database under the accession numbers: E-MTAB-
7023, E-MTAB-7042, and E-MTAB-7043.

Chromatin Immunoprecipitation and
High-Throughput Sequencing (ChIP-Seq)
For Aft2 ChIP experiments, myc-tagged strains were grown in
YPD until exponential phase (OD = 0.8), they were then treated
by 0.5 mM of BPS for 60 min. Cross-linking of the cells and ChIP
were performed as described previously (Merhej et al., 2016).
The parental HTL (untagged strain) was grown and processed
the same way to provide the mock-IP samples. Sequencing
of the IPs, Input DNAs and mock IPs samples and primary
data analyses (quality controls and mapping of the reads) were
performed as described previously (Merhej et al., 2016). Peak
calling was performed with the bpeaks software, using both the
Input DNA and the mock IP as references (Merhej et al., 2014).
For peak calling using the Input DNA as reference, the bpeaks
parameters were T1 = 1, T2 = 6, T3 = 1, T4 = 0.7. For peak
calling using the Mock IP as reference, the bpeaks parameters
were T1 = 1, T2 = 6, T3 = 1, and T4 = 0. Only the peaks that
were found in both analyses were kept for further processing.
These peaks were then manually checked on a genome browser
(Thorvaldsdottir et al., 2013) to discard artifactual peaks (e.g.,
peaks centered on a tRNA locus, peaks perfectly overlapping a
highly expressed ORF) which would have escaped the bpeaks
filter. Peaks located outside of a promoter region (i.e., between
convergent ORF or inside ORFs) were also discarded from the
final list presented in Supplementary Table T3. For DNA motif
prediction, DNA sequences of ChIP peaks were retrieved from
their genomic locations (BED file) using the “getfasta” function
from the BEDTOOLS suite (Quinlan and Hall, 2010). These
genomic sequences were used as inputs for the peak-motif tool
to search for regulatory motifs (Thomas-Chollier et al., 2012). An

additional filtering step was added to the standard peak motif
procedure to discard low complexity motifs (e.g., CCCCCCC).
The list of Aft targets from S. cerevisiae was obtained from
Yeastract (Teixeira et al., 2018) and completed by the “regulation”
pages of the SGD1, taking all the documented regulatory
interactions using DNA binding or expression evidences and
keeping only the targets which were found in relevant growth
conditions (i.e., metal stress conditions). The raw ChIP-seq data
can be downloaded from the GEO database with the accession
number GSE116077.

Bioinformatics Analyses: Gene Ontology,
Hierarchical Clustering, Promoter
Sequence Analyses
Gene ontology (GO) analyses were performed using the
GO term finder tool at the Candida Genome Database2 for
C. albicans, C. glabrata, and D. hansenii (with the names
of the C. albicans orthologs), at the Saccharomyces Genome
Database for S. cerevisiae, the two Lachancea species, K. lactis
and Y. lipolytica (using the names of the S. cerevisiae
orthologs). The hierarchical clustering of Figure 2 was performed
using Mev with Euclidian distance, optimization of gene leaf
order and average linkage. For phylogenetic analyses of the
promoter sequences, we downloaded the promoter sequences
(i.e., 500 base pairs upstream of the ATG) from the Genome
Resources for Yeast Chromosomes database (GRYC3), except
for the Saccharomyces sequences which were taken from the
www.saccharomycessensustricto.org website (Scannell et al.,
2011) and for the Kazachstania Africana sequences which were
downloaded from the NCBI website. The sequences used can be
found in Supplementary Files S5–S8.

Western Blot Analyses
The cells were grown in YPD at 30◦C until they reach an OD
at 600 nm of 0.6–0.7. Then, we split the cultures in two: one
sub-culture received a mock treatment while the second was
treated by 0.5 mM BPS. This step defines time zero. At 30,
60, and 90 min, 10 mL of each culture were collected and
centrifuged (5 min, 4,000 rpm), washed with cold (4◦C) distilled
sterilized water, centrifuged again and cell pellets were stored
at −80◦C. Proteins were separated on 10% SDS-polyacrylamide
gel electrophoresis (SDS-PAGE). Proteins were then transferred
to Whatman R© Protan R© BA83 nitrocellulose membrane (GE
Healthcare). Immunoblotting of the protein A-tagged proteins
was performed with a rabbit IgG-HRP polyclonal antibody (PAP;
code Z0113; Dako), which has a high affinity for Protein A. The
membrane was stripped by boiling 30 min in 62.5 mM Tris-HCl
pH 6.8, SDS 2% and 4 mM DTT, followed by 10 washes in PBS-
Tween (0.1%). Then, immunoblotting of the ribosomal protein
Rpl3, used as a loading and transfer control, was performed
using 1:10000 rabbit IgG Anti-Rpl3 [gift from M. Garcia: refer
to (Delaveau et al., 2016)] and 1:15000 anti-rabbit IgG-HRP

1www.yeastgenome.org
2www.candidagenome.org
3http://gryc.inra.fr/
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(Promega) as primary and secondary antibodies, respectively.
Detection of the signals was performed using G:BOX Chemi
XT4 (Syngene) following incubation with UptiLightTM HRP blot
chemiluminescent ECL substrate (Interchim).

Growth Assays
Growth assays were performed in 96 well plates using a TECAN
Sunrise machine. Exponential phase growing cultures of the
strains to be tested were diluted to OD = 0.1 in a 50 mL
sterile Falcon tube. The 96 well plate was filled with 90 µL of
the cultures. Then, 10 µL of BPS 0.5 mM stock solution (iron
starvation conditions, final concentration 0.05 mM) or 10 µL of
sterile water (mock treatment) were added to each well to reach a
final culture volume of 100 µL. Cell growth at 30◦C was followed
for 24 h. The slope of the linear part of the log(OD) = f(t) curve
was extracted and used as the growth rate of each culture in
exponential phase. Two technical replicates were made in each
plate.

RESULTS

Identifying Regulatory Outliers From
Comparative Transcriptomics Data
The starting point of this study consisted in analyzing and
comparing the response of eight yeast species (S. cerevisiae,
C. glabrata, L. kluyveri, L. thermotolerans, K. lactis, C. albicans,
D. hansenii, and Y. lipolytica) to the stress caused by detrimental
doses of selenite. These eight species were chosen because
they span the whole Hemiascomycetes tree and because of
their high-quality genome annotation at the time when we
started the study (Genolevures et al., 2009). Selenite was
chosen because it was shown to induce both iron starvation
and oxidative stress responses in S. cerevisiae (Salin et al.,
2008; Herrero and Wellinger, 2015), two stress conditions
that C. glabrata is facing when invading the human body
and being internalized by the cells of the innate immune
system (Nevitt and Thiele, 2011; Brunke and Hube, 2013).
A key challenge in comparative transcriptomics is to set up
the growth conditions to make the physiological state of
the different species as similar as possible and to minimize
irrelevant differences in gene expression (Kuo et al., 2010;
Thompson et al., 2013). To do so, we adjusted the selenite
doses used for each species to obtain the same 100% increase
in the generation time. Then, RNA samples were collected
at eight time points after selenite exposure and compared to
the RNAs extracted from a control culture mock-treated for
the same duration using microarrays. Four replicates were
performed for each species and each time point. Supplementary
Table T1 provides the average log2 of the expression ratios
between treated and untreated cells for each measured gene
in each species for the eight time points, together with a
statistical assessment of the significance of the gene expression
variations.

As a posteriori validation of our approach, we examined the
expression patterns of genes from the general Environmental
Stress Response (ESR), which were shown to be highly conserved

among the species we studied (Gasch et al., 2000, 2004; Gasch,
2007; Roy et al., 2013; Thompson et al., 2013). We observed that
the induction of genes encoding proteasomal subunits and the
repression of genes from the Ribosome Biogenesis (Ribi) regulon
were consistent between the different species (Supplementary
File S9). This was a good indication that the eight species
were encountering physiologically similar stress conditions. To
identify ROs from these 44,723 expression profiles, we designed a
program called REGULOUT (Figure 1, left panel). REGULOUT
takes as input files the expression profiles obtained in the different
species and a table describing the orthology relationships between
genes (i.e., the names of the genes composing each orthogroup).
For each orthogroup taken independently, it calculates all the
pairwise distances between the expression profiles of all the
genes belonging to the orthogroup. Then, it looks for genes
which minimal distance value in the orthogroup is higher
than a distance cut-off set up by the user. Those genes with
special expression profiles are the so-called “ROs.” The key
parameters for REGULOUT are the minimal distance that the
user accepts to define a RO and the minimal number of genes
for an orthogroup to be considered in the analysis. We applied
REGULOUT to our data with parameters corresponding to
genes conserved in most of our yeast species (i.e., minimal
orthogroup size = 8) and to a minimal distance cut-off equal
to the 75 percentile of all the calculated pairwise distances (i.e.,
d = 3). With this criterion, we identified a total of 289 ROs
in the eight species, ranging from 6 in L. thermotolerans up
to 87 in C. albicans (Figure 1 and Supplementary Table T2).
Careful examination of the corresponding expression profiles
led us to distinguish three different situations: directional ROs,
quantitative ROs and timing-related ROs. Directional ROs
are unique in the directionality of their regulation (i.e., up-
regulation, down-regulation or unchanged expression). This
is exemplified by the DOM34 orthogroup in Figure 1 (right
panel). In this example, the expression of one C. glabrata
member (CAGL0B04675g) is strongly induced by selenite while
its paralog in C. glabrata and its orthologs in the seven other
species show unchanged or reduced expression. The quantitative
ROs have the same directionality of regulation than other
members of the orthogroup, but with much larger amplitude.
This is exemplified by the HBS1/SKI7 orthogroup in the right
panel of Figure 1. HBS1 is induced by selenite in C. albicans,
D. hansenii, L. kluyveri, and C. glabrata, but the induction
of the C. glabrata gene CAGL0G02255g is sufficiently higher
than its orthologs to be considered as a RO by REGULOUT.
The timing-related ROs have the same directionality and
range of regulation than some of their orthologs, but with a
different timing. This is exemplified by the GCV1 orthogroup
in Figure 1 (right panel). GCV1 is induced in several species
following selenite exposure but the pattern of early and transient
induction is unique to the S. cerevisiae member of this group
(YDR019c).

Gene ontology analyses indicated that only a few GO
terms were enriched in the RO lists of the different species
(Supplementary File S10). These include genes of the arginine
biosynthesis pathway (ARG3, ARG4, ARG5,6, ARG8, CPA1,
CPA2), which were much more strongly induced by selenite
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FIGURE 1 | Rationale and outputs of REGULOUT. (Left) This scheme summarizes the rationale of REGULOUT. The table at the bottom indicates the number of
regulatory outliers identified for each species with the parameters indicated in the material and methods. (Right) Expression profiles [Log2(selenite/mock treatment
expression ratio)] as a function of time (1 unit = 10 min) for three orthogroup (DOM34, HBS1/SKI7, and GCV1). The names of the genes in the orthogroup are
indicated at the right of each graph. The names of the regulatory outliers are underlined. The colors are: blue for C. glabrata, green for S. cerevisiae, black for
C. albicans, orange for L. thermotolerans, red for D. hansenii, brown for L. kluyveri, yellow for K. lactis. The phylome DB logo was taken from the phylome DB
database website (Huerta-Cepas et al., 2014).

in C. albicans than in any other species, and orthologs for the
two main actors of a ribosome disassembly pathway named
NGD (DOM34 and HBS1), which were specifically induced in
C. glabrata. Also, several amino-acid metabolism genes (ARG3,
HIS1, HIS4, HIS7, CPA1, LYS12, MET6, TRP3) had special
expression patterns in C. glabrata. This was already noticed in
a previous comparative transcriptomics study analyzing the heat
shock stress response in eight yeast species (Roy et al., 2013).

Five ROs in C. glabrata Are Induced in
Iron Starvation Conditions
As mentioned above, selenite triggers several stress responses
(iron starvation, oxidative stress response, DNA damage. . .)
(Pinson et al., 2000; Salin et al., 2008; Perez-Sampietro et al.,
2016) and therefore the ROs identified from the selenite
comparative transcriptomics data may actually respond to
different physiological signals and pathways. We were more
particularly interested in identifying ROs in C. glabrata which
would be linked to the iron starvation response. With this
goal in mind, we focused on the 38 C. glabrata ROs and took
advantage of transcriptome data analyzing the response of
C. glabrata to five different stress conditions (osmotic stress,
iron excess, cadmium, BPS or selenite treatments), which
were obtained in the frame of another project (unpublished
data). For the present work, we only extracted the data for the

C. glabrata ROs (Supplementary Table T4). We then clustered
them according to their expression profiles in these five stress
conditions (Figure 2). Doing so, we could point out a group of
five ROs which showed early and strong induction in response
to the two iron starvation conditions (namely BPS and selenite
treatments) and unchanged or slightly increased expression in
response to osmotic and iron excess stresses. This group included
the C. glabrata orthologs of the S. cerevisiae genes encoding the
Grx3 glutaredoxin (CAGL0L11990g), the Mmt2 mitochondrial
iron transporter (CAGL0E06006g), the Mak16 ribosome
biogenesis factor encoding (CAGL0F00715g) and the Dom34
and Hbs1 translation surveillance factors (CAGL0B04675g and
CAGL0G02255g). For the sake of simplicity, we will call the
C. glabrata genes by the name of their S. cerevisiae orthologs in
the rest of the article. For DOM34 and MAK16, two paralogs
exist in C. glabrata. In these cases, the BPS and selenite inducible
versions will be called MAK16b and DOM34b and the versions
with unchanged or repressed expression patterns will be called
MAK16a (CAGL0G06248g) and DOM34a (CAGL0H03949g).
Among these five ROs, three were directional ones (GRX3,
DOM34b and MAK16b), meaning that they were induced
by selenite only in C. glabrata, and two were quantitative ROs
(HBS1 and MMT2), meaning that they were also induced in other
species, but to a lesser extent than in C. glabrata (Supplementary
File S11).
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FIGURE 2 | Hierarchical clustering of the 38 C. glabrata ROs based on their expression profiles in response to different stress conditions. Expression profiles
[Log2(stressed cells/mock treatment expression ratio)] are represented by a color code (scale at the bottom). Two duration times of treatment were used (20 min and
40 min). The names of the genes are based on the names of their closest homologs in S. cerevisiae. A group of genes which is more particularly induced in iron
limited conditions (BPS and selenite) has been highlighted by a red box.

GRX3, DOM34b, HBS1, and MAK16b Are
New Targets of the Aft2 Transcription
Factor in C. glabrata
Interestingly enough, these five genes were also induced by
cadmium in C. glabrata (Figure 2). In the model yeast
S. cerevisiae, BPS and selenite trigger an iron starvation
transcriptional response which is controlled by the two

paralogous transcription factors Aft1 and Aft2 (Blaiseau et al.,
2001; Rutherford et al., 2001, 2003; Courel et al., 2005; Salin et al.,
2008; Perez-Sampietro and Herrero, 2014; Perez-Sampietro et al.,
2016). However, only the Aft2 regulon is reproducibly induced
by cadmium, while most of the Aft1 regulon remains unchanged
or is even repressed (Fauchon et al., 2002; Caetano et al., 2015).
The expression profiles of the five ROs identified in Figure 2
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hence suggested that their particular stress regulation pattern in
C. glabrata could be due to Aft2.

The Aft2 regulon was not previously deciphered in C. glabrata.
Then, to test our hypothesis, we conducted genome-wide
chromatin immunoprecipitation (ChIP-seq) on a Aft2 myc-
tagged strain in iron starvation conditions induced by BPS
treatment. ChIP-seq analyses identified 63 promoters bound by
Aft2, corresponding to 88 potential gene targets (Supplementary
Table T3 and Figure 3, left panel). Sequence analyses of the
ChIP peaks identified the ACACCC motif as being the most
enriched in the Aft2 bound locus, being present in 80% of
the target promoters (Figure 3, left panel). This motif is
identical to the consensus previously identified for Aft2 in
S. cerevisiae (Courel et al., 2005; Conde e Silva et al., 2009).
GO analyses revealed an enrichment in genes involved in iron
homeostasis (p-value = 5.15e-08) and oxidative stress response
(p-value = 0.00276) (Figure 3, left panel). More specifically, Aft2
targeted genes belonging to the iron homeostasis category were
involved in the reductive iron uptake pathway (FRE8, FET4),
the siderophore iron uptake pathway (SIT1), the intracellular
iron transport (MRS4, SMF3, CCC1, MMT2) and the iron–sulfur
cluster biogenesis and assembly pathway (ISU1, ISU2, ISD11,
NFS1, YAH1). In connection with redox homeostasis, Aft2 bound
the promoters of the genes encoding the reductasesHBN1,OSM1,
YHB1, RNR1, RNR2, and ERG4, the superoxide dismutases SOD1
and SOD2, the catalase CTA1 and the peroxiredoxin AHP1.
Interestingly, Aft2 also targets genes involved in autophagy
(ATG8, ATG19, and ATG41), which may be consistent with the
recent finding that mitophagy is triggered by iron starvation in
C. glabrata (Nagi et al., 2016).

Then we compared the set of targets identified in C. glabrata
with those of Aft2 and Aft1 in S. cerevisiae (Figure 3, left panel).
Half of theC. glabrataAft2 targets were also targets of Aft1 and/or
Aft2 in S. cerevisiae (Figure 3, left panel). Among these conserved
targets is MMT2, which was consistent with our observation that
MMT1 and MMT2 are also induced by selenite in S. cerevisiae
(Supplementary File S11). Reciprocally, 50% of the Aft2 targets
were specific to C. glabrata (“specific” meaning here as compared
to S. cerevisiae). Among these C. glabrata “specific” Aft2 targets
were GRX3, DOM34b, HBS1, and MAK16b.

To measure the impact of Aft2 on the expression of
its potential targets, we performed transcriptome analyses
comparing the aft2∆ and wild type strains grown either in
optimal conditions (YPD), iron starvation caused by BPS or
by selenite, and cadmium exposure. Twenty-four of the 63
promoters bound by Aft2 (38%) were associated to a gene
which showed a significant decrease of expression in the aft2∆
cells in at least one growth condition. Reciprocally, among the
30 genes which were the most reproducibly affected by AFT2
deletion, 23 (77%) were directly targeted by Aft2 according to
our ChIP-seq results (Figure 3, right panel). Among the seven
genes which showed changed expression but no binding in ChIP-
seq, only one had a potential connection with iron homeostasis
(MET8, encoding a ferrochelatase) but remarkably six of them
(the exception being GCV1) had an Aft2 binding motif in
the 500 bp upstream of their ATG (data not shown). These
differences in expression were observed only in stress conditions

and not in optimal growth conditions (except for AFT2 itself,
which was constitutively deleted in the mutant strain). The four
new targets of interest (GRX3, DOM34b, HBS1, and MAK16b)
showed decreased expression in the aft2∆ strain in all three
stress conditions, but with different ranges (Figure 3, right panel).
Hence, our results demonstrate that the increase of expression of
GRX3, DOM34b, HBS1, and MAK16b in C. glabrata is controlled
by Aft2.

DOM34b and HBS1 Are Required for
Optimal Growth in Iron Starvation
Conditions
This regulation of MAK16b, DOM34b, and HBS1 by Aft2 in
C. glabrata was particularly intriguing because none of the
processes they are contributing to in the model yeast S. cerevisiae,
namely ribosome biogenesis for Mak16, Dom34 and Hbs1 and
ribosome rescue pathway for Dom34 and Hbs1, were directly
connected to the transcriptional regulation of iron homeostasis.

Therefore, we assessed the physiological impact of these new
regulatory interactions. First, we wanted to know if the increase
that we observed at the mRNA level for DOM34b, MAK16b, and
HBS1 in iron starvation conditions was translated to the protein
level. We constructed C. glabrata strains with genomic TAP-
tagged versions of DOM34b, MAK16b, and HBS1. A strain tagged
for DOM34a was also constructed as a control for a gene which is
not induced by stress at the mRNA level. We performed Western
blot analyses on these four strains grown in presence or absence
of BPS. We observed a clear and fast induction of Dom34b,
Mak16b, and Hbs1 in response to stress, which was perfectly
mimicking what was observed at the mRNA level (Figure 4, left
panel and Supplementary Files S12, S13). In contrast, Dom34a
displayed unchanged expression levels, as expected.

Second, we assessed the importance of MAK16b, DOM34b,
and HBS1 in the adaptation to iron starved conditions. We
constructed strains deleted for these three genes. We included
in our phenotypic analyses strains deleted for DOM34a and for
AFT2. The growth rates of these strains in exponential phase were
measured in presence or absence of 0.05 mM BPS and compared
to the growth rate of the isogenic wild type strain (Figure 4, right
panel). Two independent clones were tested for each strain. All
mutant strains had similar growth rates compared to the wild
type in standard growth conditions (Figure 4, upper right panel).
In presence of BPS, the dom34a∆, mak16b∆ and aft2∆ strains
did not show any growth defect (Figure 4, bottom right panel).
In contrast, the dom34b∆ and hbs1∆ mutants had a decreased
fitness in iron starvation conditions.

The Regulation of DOM34b and HBS1 by
Iron Starvation Probably Arose From the
Whole Genome Duplication (WGD)
As mentioned above, in post-WGD species such as S. cerevisiae
and C. glabrata, there are two Aft transcription factors: Aft2
having a preference for the ACACCC motif and Aft1 being
more likely associated to TGCACCC (Courel et al., 2005;
Conde e Silva et al., 2009; Goncalves et al., 2014; Srivastava
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FIGURE 3 | The Aft2 regulon in C. glabrata. (Left) The 63 Aft2 target promoters, as defined by ChIP-seq (Supplementary Table T3), were separated in two
groups: target promoters which ortholog is also an Aft target in S. cerevisiae and target promoters which ortholog has not been identified as an Aft target in
S. cerevisiae. Only the names of the genes which are discussed in the main text are indicated. The names of the five ROs of interest are in bold. The targets are
colored according to the two main GO terms enriched among Aft2 targets: blue = redox homeostasis, green = iron metabolism. The most enriched DNA motif
among all ChIP-peaks is indicated at the bottom right. (Right) Transcriptomic comparison of gene expression between the wild type and the aft2∆ mutant in four
growth conditions. The 30 most affected genes are represented here. The names of genes which were also targeted by Aft2 in our ChIP-seq experiment are in bold.
The names of the five ROs of interest have been underlined. The results of two biologically independent replicates are indicated for each growth condition. The
complete results are available in Supplementary Table T5.

et al., 2015; Gerwien et al., 2016; this work). Besides post-
WGD species, the role of the Aft transcription factors in
the control of the iron regulon is apparently conserved
in the whole Saccharomycetaceae family, together with their
DNA binding preference for PuGACCC motifs (Conde e
Silva et al., 2009; Goncalves et al., 2014). To assess the
evolution of the regulation of DOM34b and HBS1 by Aft2
and iron starvation that we characterized in C. glabrata,
we analyzed the promoter sequences of the orthologs and
ohnologs of these two genes in several post- and pre-
WGD yeast species spanning the Saccharomycetaceae tree,
looking for ACACCC (Aft2-like) and GCACCC (Aft1-like)
motifs on both DNA strands (Figure 5 and Supplementary
Files S5, S6, S14).

In post-WGD species, the evolution of the DOM34
orthogroup is complex and different situations were observed.
In some species (e.g., Candida glabrata and its three most
related Nakaseomyces species, but also Naumovozyma castellii,
Kazachstania Africana, and Saccharomyces uvarum) the two
ohnologs DOM34a and DOM34b were retained. In others
(e.g., Tetrapisispora blattae, Candida castellii, Nakaseomyces
bacillisporus) only one copy remained and reciprocal BLAST
or synteny analyses could not indicate without ambiguity if it
corresponded to the DOM34a or DOM34b paralog in the other

species. Finally, in most Saccharomyces species, one of the two
ohnologs was split in two or more ORFs by non-coding insertions
(e.g., YCL001w-a and YCL001w-b in S. cerevisiae) and is probably
on its way to pseudogenization. Promoter analyses indicated
a clear enrichment for Aft motifs in the DOM34b lineage of
the post-WGD species compared to the DOM34a lineage or
to the DOM34 orthologs in the pre-WGD species (Figure 5).
However, this enrichment is heterogeneous. It is particularly
obvious in C. glabrata and its close relatives C. bracarensis,
N. delphensis, and C. nivariensis, in which the position of one of
the Aft2-like motif is particularly well-conserved while the rest
of the promoter sequence largely diverged (Supplementary File
S15). In contrast, there is a loss of the Aft motif enrichment in
the Saccharomyces species, which seems to be correlated to the
pseudogenization of one of the two ohnologs.

A similar pattern was observed for HBS1: there is a clear
enrichment for Aft motif in the HBS1 lineage of post-WGD
species compared with its SKI7 ohnolog or with the SKI7/HBS1
orthologs in pre-WGD species (Supplementary File S14). Again,
this enrichment in post-WGD species was heterogeneous with,
for instance, a clear conservation in the C. glabrata sub-clade of
the Nakaseomyces genus but no Aft motifs in promoters of the
HBS1 versions in the two other Nakaseomyces species C. castellii
and N. bacillisporus.
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FIGURE 4 | Protein expression levels and fitness analyses in iron starvation conditions. (Left) Western blot analyses of the Dom34b-TAP, Hbs1-TAP, Mak16b-TAP,
and Dom34a-TAP strains grown in YPD or in YPD + 0.5 mM BPS. Cells were collected 30, 60, and 90 min after the start of BPS or mock treatments. The signal
obtained for the Rpl3 ribosomal protein was used as a loading control. Full gel pictures are available in Supplementary File S12. A quantification of the Western
blot signals from two biologically independent replicates is available in Supplementary File S13. (Right) Growth rates in exponential phase of different strains in
YPD (upper) or in YPD + 0.05 mM BPS (lower). Two independent clones were tested for each mutant strains. The values are the average of six measurements: three
independent biological replicates with two technical replicates for each of them.

This phylogenetic analysis strongly suggests that the Aft
motifs were fixed in the promoters of DOM34b and HBS1 after
the whole genome duplication, in a process equivalent to a
neo-functionalization event. Then their evolution varied from
strong conservation in some species to disappearance in others,
possibly reflecting different selection pressures exerted on this
new regulation. Yet, it is very important to remember that the
presence of an Aft motif does not imply that the motif is active
and that the corresponding gene is under Aft regulation. Still, the
high conservation of the position of Aft motifs in the promoter
of DOM34b in C. glabrata and its three most related species,
while the rest of the promoter diverged, strongly suggests that this
motif is under positive selection in these species and then that the
regulation that we characterized here for C. glabrata is also active
in these three species (Supplementary File S15).

DISCUSSION

In this study, we designed a program, called REGULOUT,
for the identification of conserved genes with divergent

expression profiles from comparative transcriptomics datasets.
The inputs of REGULOUT are multispecies gene expression
profiles on one hand and the composition of orthogroups
on the other. Hence, REGULOUT can be applied to any
group of species for which this information is available. The
output of REGULOUT is strongly influenced by the distance
cut-off chosen and the type of distance used but also by
the way the orthogroups were defined and by the stress
conditions which were tested. Hence, the label of “ROs” that
we introduced in this article is more a technical concept
than a straightforward biological feature and REGULOUT
should be used as a fast way to sort out lists of potentially
interesting cases and not as a tool for gene annotation.
We applied REGULOUT to transcriptomics data obtained
from eight yeast species responding to the stress caused by
detrimental doses of selenite. To assess the power of REGULOUT
in highlighting new, biologically meaningful, regulations, we
investigated further the 38 ROs identified in the human
pathogen C. glabrata and we focused on those which were
more particularly induced by stress conditions associated to iron
starvation.
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FIGURE 5 | Analyses of the promoters of the DOM34 orthogroup in 28 Saccharomycetaceae species. The tree is a schematic representation of the phylogeny of the
species inspired from Vakirlis et al. (2016) for the Lachancea species and from Shen et al. (2016) for all the other species. The Whole Genome Duplication (WGD) is
indicated by a red star. The positions of the Aft sites in the promoters of the genes are indicated by colored boxes (color code is on the upper right part). The
boundaries of the Aft2 ChIP peak in the C. glabrata DOM34b gene are indicated by dashed vertical lines. The ORFs in the DOM34b lineage of the Saccharomyces
genus (lower right part of the tree) are interrupted ORFs probably corresponding to pseudogenes. The names of the three pathogenic Nakaseomyces species are
underlined. The sequences used for this analysis can be found in Supplementary File S5.

Iron acquisition is a critical challenge for most
microorganisms and a key virulence factor for many fungal
pathogens (reviewed in Bairwa et al., 2017; Gerwien et al., 2018).
Iron acquisition genes are required for the survival of C. glabrata
in the macrophages, its adhesion to epithelial cells and for its
virulence in animal models (Nevitt and Thiele, 2011; Seider et al.,
2014; Srivastava et al., 2014; Brunke et al., 2015). In S. cerevisiae,
the iron starvation transcriptional response is controlled by
the two paralogous transcription factors Aft1 and Aft2. Aft1
activates the expression of genes involved in iron uptake at the
plasma membrane (e.g., FET3, FTR1, ATX1, FRE1-3, SIT1, . . .)
and genes involved in the cytoplasmic adaptation to low iron
conditions, especially the CTH1 and CTH2 genes encoding RNA
binding proteins involved in the selective degradation of mRNAs
encoding iron consuming proteins (Puig et al., 2005, 2008). Aft2
shares some targets with Aft1 but also specifically activates the
expression of genes encoding, for instance, the vacuolar iron
transporter Smf3 and the mitochondrial iron transporter Mrs4
(Rutherford et al., 2003; Courel et al., 2005; Martinez-Pastor
et al., 2017).

Previous studies have shown that many aspects of the iron
homeostasis regulation in C. glabrata resemble what had been
shown in S. cerevisiae. Like S. cerevisiae, C. glabrata strongly
depends on the reductive pathway and siderophore uptake for

extracellular iron acquisition (Nevitt and Thiele, 2011; Srivastava
et al., 2014; Gerwien et al., 2016). Low affinity iron transport
mediated by the Fet4 protein also exists in C. glabrata (Srivastava
et al., 2014; Gerwien et al., 2016). We showed here that FET4 is
targeted by Aft2 but the sole deletion of AFT2 had no impact
on its induction by BPS, selenite or cadmium (Supplementary
Tables T3, T5). The key genes of the iron regulon in S. cerevisiae
are also induced by iron starvation in C. glabrata (Srivastava et al.,
2015; Gerwien et al., 2016; Nagi et al., 2016). C. glabrata Aft1 plays
a major role in the up-regulation of membrane iron uptake and is
itself induced by iron starvation (Srivastava et al., 2015; Gerwien
et al., 2016). Moreover, the enrichment of Cth2 motif in the
3′UTR of genes from theC. glabrata iron regulon suggests that the
post-transcriptional negative regulation of iron consuming genes
is also active in this species (Gerwien et al., 2016). In this work,
we showed that the role of Aft2 in the control of intracellular
iron trafficking and homeostasis is globally conserved. Especially,
the two main specific targets of Aft2 in S. cerevisiae, MRS4 and
SMF3 (Courel et al., 2005), were also regulated by this factor
in C. glabrata (Figure 3). As in S. cerevisiae (Blaiseau et al.,
2001; Rutherford et al., 2001), the aft2∆ mutant exhibited no
particular growth defect in response to stress in C. glabrata
(Srivastava et al., 2014; Gerwien et al., 2016; Figure 4 of this
work).
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However, several important differences in iron homeostasis
control have also been observed between C. glabrata and other
model yeast species. For instance, the deletion of the C. glabrata
ferric reductase encoding genes FRE8 and FRE6 does not seem to
impact the C. glabrata extracellular iron uptake or extracellular
ferric reduction activities, in contrast to what has been shown in
S. cerevisiae and C. albicans (Gerwien et al., 2017). Still, these two
genes are induced by iron starvation (Nagi et al., 2016; Gerwien
et al., 2017) and regulated by Aft2 (this work) and Aft1 (Gerwien
et al., 2017), respectively. Moreover, iron starvation was shown
to induce the expression of the autophagy genes ATG32, ATG11,
and ATG8 (Srivastava et al., 2015; Nagi et al., 2016) and to trigger
mitophagy in C. glabrata but not in S. cerevisiae (Nagi et al.,
2016; reviewed in Fukuda and Kanki, 2018). We showed here
that the iron starvation induction of ATG8 is under the control
of Aft2 (Figure 3). Of note, ATG32 and ATG11 are required for
C. glabrata dissemination in mice and survival in macrophages,
respectively (Roetzer et al., 2010; Nagi et al., 2016).

REGULOUT pointed out GRX3, MAK16b, DOM34b, and
HBS1 as being particularly responsive to selenite exposure in
C. glabrata. Further analyses showed that in C. glabrata these four
genes were also sensitive to BPS and cadmium treatment, but
not to iron excess or osmotic stress (Figure 2). We investigated
the regulatory mechanisms underlying these expression patterns
and found that the stress response of these four genes is under
the control of Aft2 in C. glabrata (Figure 3). Our analyses
of the evolution of the promoter sequences of the DOM34
and HBS1 orthogroups in 14 post-WGD and 14 pre-WGD
yeast species revealed enrichment for Aft-like DNA binding
motifs in the DOM34b and HBS1 orthologs but neither in the
pre-WGD orthologs nor in the DOM34a and SKI7 ohnologs
(Figure 5). This strongly suggests that this regulation appeared
after the whole genome duplication and was subsequently lost in
Saccharomyces cerevisiae. This is consistent with previous, more
global, observations that duplicated genes are often differentially
expressed and evolve divergent regulatory patterns (Gu et al.,
2004; Conant and Wolfe, 2006; Tirosh and Barkai, 2007;
Wapinski et al., 2007; Thompson et al., 2013), with one of
the paralogs retaining the ancestral expression profile while the
regulation of the other copy evolves more rapidly (Gu et al.,
2005). This can be achieved by changes in the transcription
factors that regulate the paralogs (Wapinski et al., 2010; Perez
et al., 2014; Pougach et al., 2014), by loss and/or gain of different
cis-regulatory elements in their promoters (Papp et al., 2003;
Zhang et al., 2004; Ihmels et al., 2005) or by a combination
of both mechanisms. The latter scenario might be the one at
work in our case. Indeed, based on the observation that the
Aft transcription factor of the pre-WGD species K. lactis fulfills
the Aft1 but not the Aft2 functions, it was proposed that the
mitochondrial and vacuolar control of iron homeostasis by Aft2
appeared as a neo-functionalization event after the WGD and
the duplication of the Aft ancestral gene (Conde e Silva et al.,
2009). Then, the acquisition of Aft2 regulation by DOM34b and
HBS1 would be concomitant to the emergence of the specific role
of this transcription factor. Among the post-WGD species, the
enrichment of Aft motifs in the promoters of the DOM34b and
HBS1 was especially clear in the Nakaseomyces sub-lineage which

contains C. glabrata and two other potential human pathogens
(C. bracarensis and C. nivariensis) (Gabaldon et al., 2013)
(Figure 5 and Supplementary File S14), as compared to the other
Nakaseomyces sub-clade or to the Saccharomyces genus. A similar
pattern was also observed for GRX3/4, which showed a dramatic
enrichment of Aft motifs in the promoters of the GRX3 lineage in
the C. glabrata sub-clade (Supplementary File S16). C. glabrata,
C. bracarensis, C. nivariensis and their non-pathogenic relative
N. delphensis were also the only yeast species to have two MAK16
orthologs, with the promoter of the MAK16b paralog being
enriched in Aft DNA motifs (Supplementary File S17). Hence,
the presence of two DOM34, GRX3/4 and MAK16 orthologs and
the co-regulation of DOM34b, HBS1, GRX3, and MAK16b by
Aft2 may be a specificity of this Nakaseomyces sub-clade, which
is enriched in hosts of the human body (three species out of
four). To go further in the characterization of this regulation, it
would be interesting to determine the actual contribution of the
different Aft motifs in the promoters of the genes by site-directed
mutagenesis.

Why were these new regulations fixed in C. glabrata and lost
in S. cerevisiae? In other terms, how could these four genes
contribute to iron homeostasis in C. glabrata? In S. cerevisiae, the
cytosolic monothiol glutaredoxins Grx3 and Grx4 play a central
role in communicating the mitochondrial iron status to Aft1 and
Aft2 (Ojeda et al., 2006; Pujol-Carrion et al., 2006; Kumanovics
et al., 2008). In iron replete cells, the mitochondrial Fe–S clusters
biogenesis is very active and Fe–S clusters are exported to the
cytosol where Grx3 and Grx4 form Fe–S bridged homodimers
which has the capacity to transfer its Fe–S cluster to Aft1 and
Aft2, therefore decreasing their DNA binding affinity by favoring
the formation of Fe/S bridged Aft homodimers (Kumanovics
et al., 2008; Ueta et al., 2012; Poor et al., 2014; Chi et al., 2018).
This role of Grx3/4 proteins in the regulation of iron homeostasis
is conserved from yeasts to humans (Li et al., 2012; Labbe et al.,
2013; Jacques et al., 2014; Banci et al., 2015; Encinar del Dedo
et al., 2015). It may seem counter-intuitive that C. glabrata Aft2
induces the expression of a protein which would negatively
control its activity. However, besides its role in the regulation
of Aft1/2, Grx3 (and its ohnolog Grx4) also makes important
contributions to the oxidative stress response and to the cytosolic
and nuclear Fe–S cluster protein assembly (Molina et al., 2004;
Herrero et al., 2010; Muhlenhoff et al., 2010; Pujol-Carrion and
de la Torre-Ruiz, 2010; Vall-Llaura et al., 2016; Pujol-Carrion and
Torre-Ruiz, 2017).

In S. cerevisiae, MAK16 was initially identified in a screen for
the maintenance of the killer virus double stranded RNA genome
(Wickner and Leibowitz, 1979; Icho et al., 1986). Later on,
genetic, biochemical and cryoEM analyses showed that Mak16
is actually involved in the biogenesis of the 60S ribosomal
particles (Ohtake and Wickner, 1995; Capowski and Tracy, 2003;
Pellett and Tracy, 2006; Altvater et al., 2012; Kater et al., 2017;
Zhou et al., 2018). MAK16 is an essential gene, conserved from
yeast to human (Kaback et al., 1984; Wickner et al., 1987).
As mentioned above, C. glabrata and its three most closely
related Nakaseomyces species (C. nivariensis, N. delphensis and
C. bracarensis) have two MAK16 paralogs, which we named here
MAK16a and MAK16b. MAK16b was obviously not essential
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in C. glabrata since the mak16b∆ mutant cells grew at wild
type rates in YPD (Figure 4). As all members of the ribosome
biogenesis (RiBi) regulon, MAK16 was repressed by stress in all
the species we examined (Supplementary File S11). This was also
true for MAK16a in Candida glabrata, which was consistently
repressed by selenite and by all the other stresses that we tested
(Supplementary File S11, unpublished data). Then, the dramatic
induction of MAK16b by selenite, cadmium and BPS, and its
regulation by Aft2, is particularly intriguing. The sole link that
can be made between Mak16 proteins and stress responses based
on the literature is the fact that they were proposed to form an
atypical class of glutathione-S transferases (GSTs) (McGoldrick
et al., 2005). GSTs are enzymes which assist the cell in the defense
against reactive oxygen species (reviewed in Kalinina et al., 2014).
Moreover, glutathione plays a key role in iron sensing by Grx3/4
and in iron–sulfur cluster assembly (Muhlenhoff et al., 2010;
Kumar et al., 2011; Ueta et al., 2012; Martinez-Pastor et al., 2017;
Cardenas-Rodriguez et al., 2018). Still, this annotation of MAK16
orthologs as GSTs only relies on immunological criteria, i.e., the
Mak16 protein of the trematode Schistosomamansoni was probed
by an anti-serum against purified S. mansoni GSTs (Milhon et al.,
2000), and an actual GST activity was never proven for these
proteins. Moreover, the fact that the deletion of MAK16b does not
alter the growth ofC. glabrata in iron starvation conditions makes
its actual contribution to the iron homeostasis in this species
questionable.

In contrast to MAK16b, DOM34b, and HBS1 were required
for optimal growth in iron starvation conditions, suggesting
a role for these genes in the adaptation to iron limitation

in C. glabrata (Figure 4). Dom34 and Hbs1 are also highly
conserved proteins which are found in all eukaryotes, but they
are not essential in yeasts. In S. cerevisiae, Dom34 and Hbs1,
together with the general translation termination factor Rli1,
were initially described as being responsible for a translation
surveillance pathway called NGD, which rescues and recycles
the ribosomes that stall before translation is completed (Doma
and Parker, 2006; Passos et al., 2009; Simms et al., 2014; see
Buskirk and Green, 2017; Simms et al., 2017, for recent reviews).
Later on, the NGD co-factors were shown to be involved in
ribosome biogenesis (Kispal et al., 2005; Yarunin et al., 2005;
Cole et al., 2009; Lebaron et al., 2012; Strunk et al., 2012) and
in the re-activation of hibernating ribosomes prior to quiescence
exit (van den Elzen et al., 2014). Dom34 and Hbs1 also have a
role in preventing ectopic translation of mRNA 3′ untranslated
regions (Guydosh and Green, 2014), that is especially important
in conditions in which the activity of Rli1 in regular translation
termination is impaired (Young et al., 2015). In S. cerevisiae,
the expression of DOM34 and HBS1 is not regulated by stress
and these proteins have not been connected to the regulation
of iron homeostasis. So, what could be the functional meaning
of the strong induction of DOM34b and HBS1 by BPS, selenite
and cadmium in C. glabrata? Actually, a quite direct connection
can be made between iron starvation and the Dom34-Hbs1 co-
factor Rli1. Indeed, Rli1 is an essential Fe–S cluster containing
protein (Paul et al., 2015). This iron–sulfur cluster is required
for most of Rli1 functions and is very sensitive to redox stress
(Kispal et al., 2005; Yarunin et al., 2005; Alhebshi et al., 2012). As
a consequence, the number of unrecycled ribosomes in 3′UTRs

FIGURE 6 | Hypothetical working model for the role of Dom34b and Hbs1 in iron starvation adaptation of C. glabrata. Iron starvation alters the functioning of the
essential iron–sulfur cluster containing Rli1 in ribosome recycling at many levels: 1- by reducing the iron–sulfur cluster biogenesis potential, 2- by generating oxidative
stress which was shown to strongly alter Rli1 activity, 3- by inducing the expression of the Cth2 RNA binding protein which targets part of the Rli1 mRNAs for
degradation and 4- specifically in C. glabrata, by inducing mitophagy, which may reduce the mitochondrial biogenesis of iron–sulfur clusters. However, iron starvation
also triggers the activation of Aft2 which may compensate the decreased activity of Rli1 by overexpressing 1- components of the mitochondrial core iron–sulfur
cluster biogenesis machinery; 2- the glutaredoxin Grx3 which is involved in the delivery of iron–sulfur clusters to Rli1 in the cytosol and 3- the Dom34b and Hbs1
ribosome rescue factors, which, together with the constitutively expressed paralog Dom34a, may contribute to increase the ribosome recycling activity of Rli1. In this
scheme, the red lines indicate the regulations which are specific to C. glabrata as compared to S. cerevisiae. The dashed lines indicate hypothetical activities which
have not yet been supported by experimental data (namely: an impact of mitophagy on iron–sulfur cluster biogenesis and a role of Dom34b and Dom34a in
ribosome rescue in C. glabrata).
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increases upon treatment with oxidizing agents, such as diamide,
which targets iron–sulfur cluster proteins (Guydosh and Green,
2014). Some authors even called Rli1 the “Achilles’ heel” of
the cells in oxidizing conditions and hypothesized that Rli1
dysfunction is the main cause of cell death in acute oxidative
stress (Alhebshi et al., 2012).

Hence, iron starvation is likely to alter the essential Rli1
activity in ribosome rescue at many levels (Figure 6). Indeed,
iron starvation has been shown to render yeast cells more
sensitive to oxidative stress (Blaiseau et al., 2001; Matsuo et al.,
2017). Moreover, the Fe–S cluster biogenesis, which takes place
in the mitochondria, obviously depends on the iron supply
(reviewed in Outten and Albetel, 2013). Finally, in S. cerevisiae
and in C. glabrata, iron starvation provokes the Aft1-mediated
overexpression of the RNA binding protein Cth2 which targets
the Rli1 mRNA to degradation pathways (Puig et al., 2001, 2005;
Gerwien et al., 2016). These effects may be particularly and
specifically amplified in C. glabrata due to the active mitophagy
triggered by iron limitation conditions (Nagi et al., 2016), which
may also alter mitochondrial Fe–S cluster biogenesis. Thus, it
is tempting to hypothesize that the transcriptional induction of
DOM34b and HBS1 would be a C. glabrata strategy to better
cope with the decreased Rli1 activity caused by iron starvation
(Figure 6). Interestingly enough, such a transcriptional up-
regulation of DOM34 and HBS1 to compensate Rli1’s defects
has already been described in human erythroblasts (Mills et al.,
2016). When differentiating in red blood cells, erythroblasts face
a difficult challenge: they completely get rid of their mitochondria
and hence lose the capacity of producing iron–sulfur clusters,
while having to maintain an active translation of hemoglobin,
and therefore an active ribosome rescue process, in the last
differentiation stages. They do so by transiently overexpressing
Pelota (the human equivalent for DOM34) and HBS1L (the
human ortholog ofHBS1), which compensates for the progressive
loss of active Rli1 (ABCE1 in Human) (Mills et al., 2016). Then,
the hypothetical model that we propose for C. glabrata (Figure 6)
would be analog to what was described for human erythroblasts.
Of note, the induction of GRX3 by Aft2 can also take place
in this model, because Grx3 is involved in the transfer of the
Fe–S cluster for the biogenesis of cytosolic and nuclear Fe–S
proteins, such as Rli1 (Muhlenhoff et al., 2010) (Figure 6). This
model is also consistent with our observation that in C. glabrata
Aft2 targets several components of the core iron–sulfur cluster
machinery. Obviously, many experiments, which go far beyond
the scope of this study, will be required to test this working
model. Especially, the actual contribution of Hbs1, Dom34a and
Dom34b to ribosome rescue in C. glabrata, the precise role of

Grx3 in the C. glabrata iron starvation response and the potential
link between the regulation of these genes by Aft2 and the iron
starvation-triggered mitophagy in C. glabrata will need to be
thoroughly investigated.
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6.3 Supplementary results

6.3.1 Introduction

Additionally to these results, we focused on two other questions related to the role of AFT factors

and GRX genes regulation in iron-starvation response. We studied the binding of Aft2 paralogue, Aft1, in

iron-limited conditions and we compared these findings with the transcriptomic impact of AFT1 deletion

performed by other teams. We also tried to understand the differences in GRX3 and GRX4 regulation

: both genes are involved in iron deprivation response, however it seems that these genes have evolved

quite distinct regulation pathways, and even if they are paralogues, they seem to be involved in different

networks and have different roles.

6.3.2 Aft1 network in Candida glabrata

In addition of studying Aft2 role during iron-deprivation response in C. glabrata, we were also in-

terested in understanding a part of the regulation network associated to its paralogue Aft1. Thus, we

performed ChIP-seq experiments on myc-tagged Aft1 factor in iron-limiting conditions. To achieve

these conditions, we used 0.5 mM of BPS for 30 min. After peak-calling procedure, manual verification

of the peaks and identification of the target promoters, we found 109 binding peaks, which correspond

to 148 potential targets (Figure 6.1). GO analysis of these targets showed an enrichment in genes in-

volved in homeostasis of transition metals homeostasis (p = 4.25.10-9) and especially iron homeostasis

(p = 3.52.10-8) with genes in high-affinity reductive iron uptake, siderophore uptake and Fe–S cluster

assembly pathways. This was the first time Aft1 role was studied by ChIP-seq in C. glabrata. However,

several teams had already performed transcriptional studies of Aft1 and other genes potentially involved

in iron homeostasis in the last few years.

If we exclude Aft1 and Aft2, Srivastava et al., 2014 showed the involvement of 12 genes in iron

homeostasis. These genes are FTR1, FET3, CCC2, FRE6, SIT1, FET4, FTH1, HMX1, FET5, YFH1,

CCW14 and MAM3. Over these 12 genes, the first 8 are directly bound by Aft1 (Figure 6.1). Addition-

ally, Aft1 also binds ISU1, which is known to interact with YFH1 in S. cerevisiae (Gerber et al., 2003;

Ramazzotti et al., 2004) and it binds other members of the FET and CCW families, even if we didn’t

find FET5 and CCW14 among its targets. This shows a huge overlap between iron homeostasis genes

defined by Srivastava et al., 2014 and our ChIP results. Later, Gerwien et al., 2016 confirmed the crucial

role of Aft1 in iron uptake during iron deprivation in C. glabrata and acknowledged that the following
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FIGURE 6.1. Visualization of Aft1 and Aft2 networks. This network was obtained with Cytoscape (Shannon
et al., 2003) using Aft2 ChIP-seq results (Benchouaia et al., 2018) and Aft1 ChIP-seq results (unpublished data).
As indicated, red nodes are transcription factors, dark green nodes are genes involved in iron homeostasis, light
green nodes are genes related to the homeostasis of non-iron metals such as copper and zinc, orange nodes are
genes involved in cellular respiration, yellow nodes are genes involved in oxidative stress response and blue nodes
are all the other targets.

genes belong to the iron uptake and recycling processes pathways as a part of the system activated by

Aft1 : FTR1, FET3, SIT1, FTH1, HMX1 and CTH2 (Figure 6.1). All these genes are bound by Aft1

in our ChIP. Interestingly, they also showed that CTH2 is transcriptionally regulated by Aft1 and has a

role of negative post-transcriptional regulator of iron consuming genes (such as CCC1, MMT2, HEM15,

CTA1, COX6, CYC1, CYT1, CCP1, ISA1, ACO1, IDH1 and IDH2). Gerwien et al., 2017 added another

element to the list of genes under Aft1 control, namely FRE6, which is also among Aft1 targets in our

results (Figure 6.1).

Unfortunately, further investigation of Gerwien et al., 2016 transcriptomic data didn’t reveal a greater

overlap between our ChIP results and their most repressed/activated genes upon Aft1 deletion. During

our microarray assays, we considered that a gene is activated if the log2(expression ratio) of this gene

is greater than 0.8, and repressed if it’s lower than -0.8. When we applied this criteria to Gerwien et

al., 2016 data, we found 681 activated genes and 563 repressed genes, among which only 34 and 36
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genes, respectively, belonged to our ChIP targets. This discrepancy may have several causes. Firstly,

we didn’t use the same methods to achieve the iron-deficiency condition. While we only added BPS in

large excess in the media, Gerwien et al., 2016 used a protocol to completely remove all iron from the

growth media. This might create differences in the cell response to iron deprivation. Secondly, we chose

stringent parameters ChIP peak calling, thus it is possible we missed some peaks that would correspond

to genes whose expression is varying in the transcriptomic data. To answer that caveat, looser parameters

were tested. A few more common peaks between ChIP and transcriptome were retrieved, but it didn’t

account for the huge difference between Aft1 targets in ChIP and in transcriptomic. The last possible

explanation is a problem inherent to transcriptomic experiments : it is impossible to know whether the

effect of a deletion of a TF on gene expression is direct or indirect. Hence the importance to combine

experiments such as ChIP-seq and microarrays. For example, Gerwien et al., 2016 reported variation

in expression of several genes post-transcriptionally regulated by CTH2 (see previously). None of these

genes are targeted by Aft1 in ChIP. However, CTH2 is a target of Aft1 which regulates its expression,

which explains why the deletion of Aft1 impacts the expression of CTH2 targets without directly binding

them.

Overall, despite the lack of overlap between genomic and transcriptomic data, these results tends to

go in the same direction : GO analyses of top repressed/activated genes in Gerwien’s data showed an

enrichment in metal homeostasis genes, respiratory genes and redox genes, which are the types of targets

we have in ChIP (Figure 6.1). Also, it seems to display the importance of Aft1 in iron homeostasis, as

in S. cerevisiae. Moreover, Srivastava et al., 2015 found TGCACCC (Aft1 binding motif in the baker’s

yeast) to be the most enriched motif in the promoters of the genes induced during iron-deprivation.

Gerwien et al., 2016 made the same statement and also found an enrichment of this motif in the genes

they identified as Aft1 targets and our ChIP data confirmed this assertion : this motif is the most enriched

motif in our ChIP peaks as well (61% of the peaks contain it). Additionally, it confirms the prediction of

Gonçalves et al., 2014 claiming that Aft1 binding motif in C. glabrata was TGCACCC.

6.3.3 C. glabrata Aft1 has several functions shared with S. cerevisiae Aft1

The available data on Aft1 factor in C. glabrata is much more restricted than in S. cerevisiae. Still, we

can draw a short comparison between the two species. This transcription factor is best known in S. cere-

visiae, the species in which it was discovered. Yamaguchi-Iwai et al., 1995, showed that overexpression

of Aft1 increases cell susceptibility to media containing high iron concentrations. Aft1 overexpression
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wasn’t studied in C. glabrata. Interruption of S. cerevisiae Aft1 causes susceptibility to iron-depleted

conditions and impairs cell growth. However, they reported no growth difference for both AFT1-modified

strains in rich growth media such as YPD. Contrary to S. cerevisiae, Aft1 deletion in C. glabrata seems

to be lethal in cells cultivated in rich growth media such as YPD. To delete this transcription factor and

maintain a cell line deleted for Aft1, a strong iron supplementation in the growth media is required (Ger-

wien et al., 2016). This implies that Aft1 is much more important to cell metabolism and survival in C.

glabrata and that it might be essential in some conditions. This is confirmed by Srivastava et al., 2014

who weren’t able to delete AFT1 in C. glabrata in standard growth conditions. Similarly, in our team,

Thierry Delaveau showed that AFT1 deletion in YPD was possible only if the cells were provided with a

plasmid expressing a WT version of AFT1.

Our ChIP-seq experiments revealed that most of the aforementioned iron homeostasis genes (such as

CCC2, FET3, FRE6, SIT1, CTH2. . . ) are actually bound by Aft1 during iron deprivation the same way

they are in S. cerevisiae (FRE6 was shown to be under the control of Aft1 in this species by Martins et al.,

1998). Most of these genes belong to the pathways of high-affinity reductive iron uptake, siderophore

uptake and Fe–S cluster assembly. Thus, recent data (Srivastava et al., 2014; Gerwien et al., 2016 and our

ChIP experiments) tends to show that Aft1 crucial role in iron uptake during iron deprivation is conserved

in C. glabrata. It also showed that some genes belonging in other pathways are bound by Aft1 in S.

cerevisiae and C. glabrata, for example ATG41 (autophagy), CTR1 (copper transport), GIP3 (glycogen

metabolism), LSM5 (mRNA processing). This is in accordance with the finding that Aft1 roles in S.

cerevisiae are not limited to iron homeostasis : it was shown that this TF is also involved in copper and

zinc metabolism (L. Li et al., 2004; Pagani et al., 2007), cell cycle and chromosome segregation (Casas

et al., 1997; Measday et al., 2005), biotin metabolism, nitrogen assimilation, and purine biosynthesis

(Shakoury-Elizeh et al., 2004) and pH homeostasis, cell-wall stability and DNA damage (Berthelet et al.,

2010). Srivastava et al., 2014 and Srivastava et al., 2015 reported the involvement of C. glabrata Aft1

in response to pH variation and adherence respectively, and in a more general way, our ChIP-seq data

displayed several targets involved in all the pathways previously mentioned. This might be an indication

that several roles of Aft1 are conserved between S. cerevisiae and C. glabrata.

Another common point between the two species is the binding motif of Aft1. In S. cerevisiae,

Yamaguchi-Iwai et al., 1996 showed that Aft1 favours binding to PyPuCACCC sequence, which is most

of the time TGCACCC. As commented earlier, this favourite binding motif seems to be conserved in C.

glabrata.
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6.3.4 C. glabrata Aft1 and Aft2 roles are only partially redundant

As shown in Benchouaia et al., 2018, Srivastava et al., 2014 and Gerwien et al., 2016, aft2∆ cells

exhibit a growth rate similar to wild type cells in standard growth conditions (YPD) as well as iron-

depleted conditions. This is different from the aft1 deleted cells, which cannot grow in standard growth

media nor iron-depleted media. This might suggest that some roles are specific to each factor and raise

the interesting question of the differences existing between these paralogues.

This is further confirmed by the ChIP-seq results of both factors. While Aft1 shows an enrichment

in genes of transition metals homeostasis and particularly iron homeostasis, Aft2 targets are enriched in

iron homeostasis and oxidative stress response (Figure 6.1). Aft2 has a majority of specific targets in

several pathways. In iron homeostasis, these specific pathways are the reductive iron uptake (FRE8),

the intracellular iron transport (MRS4, SMF3, CCC1, MMT2) and the iron-sulfur cluster biogenesis and

assembly (ISU2, ISD11, NFS1, YAH1). In redox homeostasis and oxidative stress response, these spe-

cific functions are reductases (HBN1, YHB1, RNR1, ERG4. . . ), sodium dismutases (SOD1, SOD2) and

catalase (CTA1). Thus, it is clear that Aft2 has a more important role in oxidative stress than Aft1. This is

further supported by the fact that Aft2 is regulated by Yap1 (Salin et al., 2008), a key factor in oxidative

stress response and targets ROX1, a TF involved in response to oxygen availability. Additionally, our

study disclosed some new functions for Aft2, such as a role in No Go Decay and a possible involvement

in mitophagy, which haven’t been listed yet as roles for Aft1.

Interestingly, Aft1 and Aft2 only share 24 common targets in ChIP. Among this common targets, a

large proportion of them are known to be key genes in iron homeostasis (FET4, GRX3, HEM12, ISU1,

LSO1, SIT1, YAP5). In these common targets, only 5 genes have a changed expression when Aft2 is

deleted, while 19 genes display expression variation upon Aft1 deletion, which can let us think that Aft1

is the main regulator of these genes despite the fact they also are Aft2 targets.

ChIP-seq experiments revealed two other interesting features. Firstly, it is likely both factors are sub-

mitted to an autoregulation phenomenon, given the fact they are targeting their own promoters. Secondly,

Aft1 and Aft2 shares a core binding motif, namely CACCC. Indeed, Aft1 tends to bind on TGCACCC

sequences and Aft2 tends to focus on CACCC sequences. The resemblance of the binding motifs might

explain why some targets are shared between the two factors.
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6.3.5 Relationship between Aft factors in S. cerevisiae share some features with C. glabrata

Blaiseau et al., 2001 and Rutherford et al., 2001 showed that sole deletion of Aft2 doesn’t have iron-

dependent phenotype in S. cerevisiae, which resembles C. glabrata. Accordingly, our Aft2-myc ChIP

data showed the conservation of several targets compared to S. cerevisiae : as displayed in the previous

article, our study of Aft2 targets demonstrated an enrichment in genes involved in iron homeostasis

(reductive iron uptake pathway, siderophore iron uptake pathway, intracellular iron transport and iron-

sulfur cluster biogenesis), oxidative stress response (reductase enzymes, sodium dismutase enzymes and

catalase enzymes), which resembles S. cerevisiae.

Rutherford et al., 2001 reported that double deletion of Aft1 and Aft2 renders cells more sensitive

to low-iron conditions than the single aft1. So far, the double deletion of Aft1 and Aft2 hasn’t been

carried out in C. glabrata, so we cannot compare yet the impact in this species. This implies that the

Aft factors have a partially redundant role in S. cerevisiae and thus, some common target genes. This

was confirmed by Rutherford et al., 2003 and Courel et al., 2005, who showed that reductases (FRE1-2),

permeases (FTR1, FET3), iron transporters (FIT1-3, CCC2) and genes promoting mRNA degradation

(CTH2), among other genes, are common targets of the Aft factors. These common genes between the

Afts are mostly not conserved in C. glabrata, except for a few genes such as LSO1 or ISU1, even if we

still find some genes of the same families conserved in C. glabrata (for example, FET4 instead of FET3).

The fact that some targets are shared by the two factors can be represented by the similarity of the Aft

binding motifs : TGCACCC for Aft1(Yamaguchi-Iwai et al., 1996) and ACACCC for Aft2 (Courel et al.,

2005; Silva et al., 2009). In all the studies of the binding motifs, the core motif seems to be CACCC,

which might allow the binding of one factor on the targets of the other. However, it does not prevent some

genes to be specifically activated by one factor, for example Aft1 is specifically activating genes involved

in cell surface iron uptake systems (Rutherford et al., 2003; Courel et al., 2005) (ARN1, SIT1. . . ) while

Aft2 is specifically regulating vacuolar iron storage (Rutherford et al., 2001) and mitochondrial iron

transport, subcompartmentation and use (SMF3, MRS4. . . ) (Courel et al., 2005). Thus, the binding

motifs of the Aft factors are conserved between S. cerevisiae and C. glabrata, and so is a part of the

specific targets of Aft1 or Aft2.

However, interestingly, overexpression of Aft2 in aft1∆ cells partially compensate the growth defi-

ciency in iron-dependent conditions and oxidative stress conditions (Blaiseau et al., 2001; Castells-Roca

et al., 2011). This was confirmed in Courel et al., 2005, who showed that the amount of one Aft factor
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is increased in the absence of its paralog under iron depletion. In other words, in iron-limiting condition,

when an Aft factor is absent, the other Aft is overexpressed to compensate for the lack of gene activation

during iron-deficiency response. This might suggest that there is a cross-regulation between Aft1 and

Aft2, at least at the proteic level. This situation is trickier in C. glabrata : ChIP experiments revealed

that each Aft is binding its own promoter, which lets think of an autoregulation of each factor. This is

confirmed by the fact that AFT2 deletion doesn’t impact Aft1 expression in iron-depleted media. How-

ever, Aft2 is activated in aft1-deleted cells upon encounter of iron-limiting media, which doesn’t fit with

the theory of autoregulation, and required more investigations.

6.3.6 Relationship between Aft factors in more distant species

In the other post-WGD species, we can also find two Aft factors, and they both kept the same

favourite binding motifs : Aft1 has a strong affinity to TGCACCC while Aft2 favours ACACCC (Courel

et al., 2005; Silva et al., 2009; Gonçalves et al., 2014; Srivastava et al., 2015; Gerwien et al., 2016).

Most likely, we can suppose that the Aft factors kept their role in iron homeostasis in these species. In

pre-WGD species, such as Kluyveromyces lactis, there is only one Aft factor, KlAft. It was identified

by (Silva et al., 2009) thanks to its high resemblance in proteic domains with both S. cerevisiae Aft1

and Aft2. The deletion of KlAft had the same impact than the deletion of Aft1 and Aft2 in S. cerevisiae

in iron depleted conditions and the insertion of Aft1 into Klaft∆ only partially restored the phenotype.

They also noted that KlAft controlled the expression of several orthologues of cell surface iron transport

genes in S. cerevisiae but not intracellular iron transporter genes. To put it another way : KlAft controls

orthologues of Aft1 targets but not of Aft2 targets. However, they reported that KlAft was binding the

ACACCC sequence (Aft2 binding motif) in its target genes, which means that KlAft has the same role

than Aft1 but binds to the Aft2 motif. Gonçalves et al., 2014 performed a more precise study of Aft

binding motif in species from S. cerevisiae to K. lactis. They found orthologues of S. cerevisiae Aft1

targets in all the species (although K. lactis lacks any Cth2 ortholog) which might let us think that Aft

conserved its role in these species. Moreover, they found that TGCACCC is the most enriched motif in

the orthologues in all species but K. lactis. It suggests that TGCACCC is the ancestral Aft-binding site

and that it diverged toward ACACCC in K. lactis and S. cerevisiae Aft2.

In species even more distant of S. cerevisiae than K. lactis, such as Candida albicans, the iron depri-

vation response is mainly carried out through three transcription factors : Sef1 (Homann et al., 2009; C.

Chen et al., 2012), Hap43 (Baek et al., 2008; C. Chen et al., 2011) and Sfu1 (Lan et al., 2004; Singh et al.,
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2011). Liang et al., 2010 found one sequence homologous to S. cerevisiae Aft2, termed CaAft2. They

reported that CaAft2 can save S. cerevisiae aft1∆ growth defect under iron depleted conditions, which

means that CaAft2 has the same role than Aft1. However, they also showed that deletion of CaAft2

had no impact on cell growth in iron depleted conditions. Most likely, it was caused by compensatory

mechanisms from the other iron acquisition pathways in C. albicans. They proved that CaAft2 has a

role in ferric reductase activity which also resembles Aft1 activity in S. cerevisiae. They also found

that CaAft2 had a role on cell morphology and invasive growth. Finally, they reported the finding of

several TGCACCC motifs in ferric reductase genes such as FRE2 or FRP1. Thus, it seems that CaAft2

shares common features with S. cerevisiae Aft1. Interestingly, Xu et al., 2012 showed that CaAft2 was a

transcriptional repressor of MRS4 through the core CACCC motif. It means that MRS4 is still regulated

by Aft2 in C. albicans. Nonetheless, it is the first and only report so far of the negative action of Aft

factors, which always play the role of genes activators. Xu et al., 2013 deciphered more clearly this dual

role of CaAft2: it both activates genes such as FRP1, FET3, FTR1. . . (Aft1 targets in S. cerevisiae) and

represses genes such as MRS4, SMF3. . . (Aft2 targets in S. cerevisiae). They also showed that CaAft2

has a role in oxidative stress response. Overall, it seems that CaAft2 shares a lot of features with both S.

cerevisiae Aft1 and Aft2 : common target genes, common binding motif, role in iron homeostasis oxida-

tive stress, pH and cell wall stability, same phenotypic impact upon deletion. However, it also strongly

differs from S. cerevisiae in its transcriptional regulation abilities : whereas Aft factors in S. cerevisiae

and all the other species are transcriptional activators only, CaAft2 is both a transcriptional activator and

repressor.

6.3.7 GRX3 and GRX4 are involved in iron-deprivation response under different regula-

tions

GRX3 and GRX4 are both bound by Aft2 as showed in the ChIP-seq data of the article. The deletion

of AFT2 only impacts GRX3 expression, while GRX4 expression remains unchanged (supplementary

data of the article). In our ChIP-seq data (unpublished), GRX3 is also bound by Aft1, but not GRX4.

Also, Gerwien et al., 2016 reported no change in GRX3 nor GRX4 expression when AFT1 was deleted.

When we take into account the results of the previous part (namely GRX4 is regulated by the Hap5-Yap5

system, whereas GRX3 isn’t), it could show an interplay between the Aft regulation and the Hap5-Yap5

regulation (Figure 6.2).
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FIGURE 6.2. Visualization of the links between GRX genes and several transcription factors. This network
was obtained with Cytoscape (Shannon et al., 2003) using data mentioned previously. As indicated, red nodes are
transcription factors, blue nodes are target genes GRX3 and GRX4, a red arrow indicates an activating interaction,
a black arrow indicates an unknown direction of regulation and a dotted arrow indicates a possible interaction.

We put in parallel these results and the presence of Aft1, Aft2, Hap5-Yap5 binding sites in GRX3 and

GRX4 across 28 Saccharomycetacae species (Figure 6.3). The first thing to notice is the repartition of Aft

binding motifs and CCAAT-YRE binding motifs : in pre-Whole Genome Duplication species, we find a

majority of CCAAT-YRE sites in GRX3/4. However, in species who underwent the WGD, most of the

CCAAT-YRE are found in GRX4 genes, while the Aft sites are found in GRX3. This seems to be almost

exclusive : you can find one type of sites or the other, but rarely both types in the same gene. A major

exception to this statement is found in Naumovozyma castelli, where one gene gathers all the motifs and

the other is totally empty of them. Unfortunately, BLAST results didn’t give significant clues about the

identity of this gene, so we still don’t know whether this gene is GRX3 or GRX4. This repartition of

presence/absence of binding sites appears quite logical with the ChIP results in mind : there are Aft1 and

Aft2 sites in GRX3, and we showed this gene was found in the ChIP targets of both factors.

Conversely, GRX4 contains CCAAT-YRE motifs and is bound by Hap5 and Yap5. However, it also

holds an Aft1 site, which seems to be unused given we didn’t find GRX4 as a target of Aft1. Finally,

there is an Aft2 site in GRX4. This site is used because we showed with ChIP that this gene is targeted

by Aft2. However, the deletion of Aft2 has no effect on GRX4 expression, which could mean this gene is
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FIGURE 6.3. Analyses of the promoters of the GRX3/4 orthogroup in 28 Saccharomycetaceae species. The
tree is a schematic representation of the phylogeny of the species inspired from Vakirlis et al., 2016 for the
Lachancea species and from X.-X. Shen et al., 2016 for all the other species. The Whole Genome Duplica-
tion (WGD) is indicated by a red star. The positions of the Aft1/Aft2/Hap5/Yap5 binding sites in the promoters of
the genes are indicated by colored boxes. Color code is on the upper right part. As previously, only the CCAAT
and YRE motifs spaced by a maximum of 28 bases are displayed. The boundaries of the Aft2 ChIP peak in the C.
glabrata GRX3 gene are indicated by dashed vertical lines. This figure was adapted from Fig S14 of the article.

subjected to several regulations at the same. An obvious answer could be the Hap5-Yap5 regulation. In

this case, the Hap5-Yap5 regulation would be “epistatic” to the Aft2 regulation, eventhough testing such

an hypothesis would require more experiments. Another explanation of the absence of effect of Aft2

deletion on GRX4 expression could be the existence of spurious binding (Spivakov, 2014).

These differences in binding sites and regulation between GRX3 and GRX4 might be the start of

differentiating the functions of the two genes. Until now, the studies suggested that these two proteins are

very much alike, have the same cellular location and have the same function (Pujol-Carrion et al., 2006;

Mühlenhoff et al., 2010; Ueta et al., 2012; Poor et al., 2014; Martínez-Pastor et al., 2017). However,

most of the time the authors are studying only one of the proteins and just assume that the other protein

will behave in the same way because of their similar structure. Even if they do have a lot in common, this

might not be perfectly true. For example, the previous results indicate that in C. glabrata, Grx3 belongs

to the Aft regulation of iron homeostasis, whereas Grx4 is as the crossroads of Aft and Hap5-Yap5
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regulation. In the same vein, Abdalla et al., 2018 recently showed that Grx3 and Grx4 have different

patterns of expression during the cell cycle. Grx3 is mainly expressed during the M stage, while Grx4

expression is greater, especially in the G1-S stages. This kind of results let us think that Grx3 and Grx4

might not be as similar as we think presently and that we just haven’t found yet their differences.

Additionally, we also found that YAP5 is a target of Aft1. Yap5 is strongly induced during iron-

deficiency (Gerwien et al., 2016; Merhej et al., 2016), however the log2(expression) of Yap5 in iron

deficiency in the microarrays of Gerwien et al., 2016 drops from 2.9 to 1.3 (supplementary data of

Gerwien et al., 2016). Basically, Yap5 induction is partially lost when Aft1 is deleted, which could mean

that Aft1 induces Yap5 in this condition. This would clearly exhibit a link between the Aft regulation

and the Hap5-Yap5 regulation (Figure 6.2). However, the deletion of Aft2 doesn’t impact the expression

of Yap5 (previous manuscript).

6.3.8 Conclusion

These supplementary data clearly exhibited an intricate network (or even networks) in iron home-

ostasis. Besides the key role of GRX genes, the impact of the Hap5-Yap5 system on GRX4 and the

impact of the Aft1-Aft2 on GRX3 and possibly GRX4, it becomes more and more obvious that these two

transcriptional regulation systems are linked. Interestingly, while we highlighted the likely conservation

of the Hap5-Yap5 system in the previous part, we discussed and illustrated the strong conservation of the

Aft system in this part. Indeed, the Aft system appears to be quite conserved between S. cerevisiae and C.

glabrata. It is likely conserved in other post-WGD species, and displayed some common features with

pre-WGD species such as K. lactis, and even further species such as C. albicans. Finally, the existence

of a double transcriptional role in C. albicans raise another exciting question : was the repressing role of

Aft in C. albicans acquired or was it lost during evolution of the other species ?
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This manuscript allowed me to present the work I have been doing during my PhD for the last three

years. It can be summarised in three main parts.

Overall, we performed high-throughput ChIP-seq experiments on 6 transcription factors (Aft1, Aft2,

Hap4, Hap5, Rox1 and Skn7) in stress conditions designed to activate the binding of said TFs : iron

starvation for Aft1 and Aft2, YPD and non-fermentable media for Hap4, YPD for Hap5 and Rox1 and

osmotic and oxidative stresses for Skn7. These are the first data of this type on these TFs in Candida

glabrata. Moreover, this largely increases the available ChIP-seq data in this yeast : a search on the

NCBI-GEO database reveals that the genome occupancy of only 3 TFs was studied by ChIP-seq in C.

glabrata (without taking into account the TFs previously studied by the lab). Hence, this work triples

the number of studied TF. Besides, among the 5 datasets available on genome occupancy, two of them

originate from my PhD (and another one originate from the team). This displays the importance and the

strength of the Candihub project in providing high-throughput genome occupancy data on C. glabrata.

Additionally, we generated expression data on the impact of the deletion of AFT2 and HAP5 in several

stress conditions. All these data are likely to help the scientific community working on Candida glabrata.

More data will come, as the team will perform ChIP-seq on Mac1 (a TF involved in copper homeostasis),

Zap1 (a TF involved in zinc homeostasis) and Pdr1 (a TF involved in C. glabrata drug resistance). This

will further reinforce the usefulness of the Candihub project and my PhD.

When we combined these data with previous ChIP-seq data of the team on the Yap family of tran-

scription factors, we were able to reconstruct a rich regulatory network of interactions describing the

stress responses of Candida glabrata. This network comprises 12 TFs and more than a 1000 genes and

almost 2000 interactions. It is the biggest network reconstructed in C. glabrata using only experimen-

tal data. Thanks to this network, we were able to identify 12 genes at the core of the network. In all

likelihood, these genes are essential for the yeast to adapt or to survive a range of various stresses. Inter-

estingly, three of these genes (HEM3, CCC1, SIT1) are involved in iron homeostasis. This result might

be biased because we studied several TFs involved in iron homeostasis. However, these genes are equally

bound by TF known to be involved in iron homeostasis and TF unrelated to iron homeostasis, though

some TFs are close to iron metabolism, for example Yap1 in oxidative stress. In any case, these genes are

targeted by many TFS and thus are at the crossroads of several key pathways. This shows how important

they are for C. glabrata. Accordingly, these genes required to be investigated more thoroughly.
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Still, many things remain to be unraveled. We produced an extensive amount of data that can be

investigated even deeper. For example, a possible interesting study could reside in detailing Skn7 func-

tions. Skn7 is known in S. cerevisiae to be involved in oxidative and osmotic stress responses. Given the

targets obtained in our ChIP-seq, these roles might be conserved in C. glabrata. In particular, we noticed

that there are a lot of genes encoding cell wall proteins and cell wall surface proteins such as GPI-anchor

proteins among the targets. One of them is Rlm1, which is involved in cell wall buiding and maintenance

in S. cerevisiae. This could show a link between Skn7 and the cell wall. This is further strengthened by

the fact that Rlm1 has a paralog, Smp1, which is induced in osmotic stress. Despite not being directly

bound by Skn7, Smp1 is under the control of transcription factors Hog1 and Rim101, which are targets

of Skn7 in S. cerevisiae. To clarify this situation, I performed ChIP-seq experiments on Rlm1 and Smp1

in conditions of cell wall stress. Unfortunately, these experiments failed, maybe because of the condi-

tions that were used. This needs further investigations. Additionally, I built strains deleted for SKN7

and RLM1, SKN7 and SMP1 and RLM1 and SMP1. Unluckily, I didn’t have time to experiment on them

with microarrays and this also needs further focus. Thus, Skn7 seems to be an compelling lead for future

prospects.

On one hand, on top of the ChIP-seq results, we also focused on the role of the CCAAT Binding

Complex in C. glabrata. This complex had never been studied in this yeast before. We demonstrated

that the CBC has a double role in cellular respiration and iron homeostasis, depending on its interacting

regulatory proteins. The CBC and Hap4 are responsible for the activation of the respiratory genes when

the respiratory pathway is needed and the CBC-Yap5 complex is activating iron consuming genes in case

of iron excess. This latter regulation is highly dependant on the presence of both Hap5 and Yap5 binding

motifs, namely CCAAT and TTACTAA, as the loss of one motif impairs the activation of iron excess

genes.

This double role of C. glabrata CBC is new and particularly interesting, because it is in-between the

CBC role in S. cerevisiae (respiration) and the CBC role in fungi such as C. albicans (iron homeostasis).

This model might even bridge the gap on the CBC role existing between S. cerevisiae and further yeast

species. While the CBC was thought to be mainly responsible for the respiratory pathway in S. cerevisiae,

it might not stand true : all the C. glabrata targets of the CBC and Yap5 have orthologues in S. cerevisiae.

Some of these targets were already demonstrated to be involved in iron excess reponse in S. cerevisiae

and regulated by Yap5, exactly like in C. glabrata. Additionally, the promoters of these target genes

present both Hap5 and Yap5 binding motifs with a conserved spacing between them, compared to C.
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glabrata. Even more striking, some of these promoters are actually bound by Hap5 in S. cerevisiae

(demonstrated by ChIP-chip) during growth in rich media. The relationship between Hap5 and these

specific targets was never studied in iron excess, but this could be the sign that the CBC and Yap5

also play a role during iron excess response in S. cerevisiae. Further species such as Lachancea kluyveri

and Kluyveromyces lactis also display orthologues of C. glabrata iron excess genes, conserved regulation

between Yap5 and a part of these targets and conserved binding motifs and spacing between those motifs.

Even if these proofs are weaker than in S. cerevisiae, it is possible that the CBC-Yap5 role in iron excess

is conserved in L. kluyveri and K. lactis. This means that the involvement of the CBC and Yap5 during

iron excess reponse is more frequent than what was thought previously. It also means that several yeast

species between S. cerevisiae and C. albicans share the same mechanisms, including pathogenic and

non-pathogenic species. As a consequence, despite being crucial in iron excess response, the CBC-Yap5

complex is unlikely to be a specific feature of C. glabrata pathogenicity. Nevertheless, this needs to be

further confirmed, for example by studying the link between the CBC and virulence in C. glabrata.

On the other hand, we investigated the iron-starvation response of C. glabrata, and especially the

role of Aft factors in it. Aft1 was previously studied using transcriptomic approaches and we completed

this set of data with the first ChIP-seq ever performed on C. glabrata Aft1. Our ChIP-seq experiments

confirmed the findings of the previous teams about the targets, the GO enrichment among the targets and

the binding motif. More important, it definitely confirms the crucial role of Aft1 during iron-starvation

response. This group of studies also highlighted the common points between C. glabrata and its ortho-

logue in S. cerevisiae : targets, role and binding motif are very similar in both species. These studies

also allowed to show the closeness between C. glabrata Aft1 and Aft in pre-Whole Genome Duplication

species.

We also studied the role of Aft1 paralogue, Aft2, during iron-starvation response using transcriptomic

and genomic approaches, which is entirely new because this TF was never studied before in C. glabrata.

We were able to identify Aft2 regulatory network during iron-starvation response, as well as Aft2 binding

motif. This displayed a few targets shared with C. glabrata Aft1 (as well as their roles), but it especially

emphasized that Aft factors have dissimilar roles in C. glabrata. C. glabrata Aft1 and Aft2 have more

differences than S. cerevisiae Aft1 and Aft2, despite the fact that Aft2 has the same binding motif and

common targets in both species. This was particularly clear when we were able to identify four genes

specifically regulated by Aft2 in C. glabrata under iron starvation, compared to C. glabrata Aft1 and

S. cerevisiae Aft2 networks. Among these four genes, two are required for optimal growth in iron
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starvation conditions. The regulation of these two genes likely arose from the WGD, and is only found

in C. glabrata and its sister Candida species. Interestingly, this clade is enriched in pathogenic species,

which might show a link between this new-found regulation and pathogenicity. This could make sense

given that iron homeostasis is a key virulence factor. However, we need to check for the conservation

of this Aft2-dependant regulation under iron starvation in other species between S. cerevisiae and C.

glabrata to draw a conclusion. In any case, it shows that Aft factors have evolved new functions and

transcriptional regulations in C. glabrata compared to S. cerevisiae.

As a conclusion, this work permitted to gain a huge knowledge into C. glabrata iron homeostasis

by unraveling mechanisms of the unknown iron-excess response and completing previous data on the

iron-starvation response. Additionally, and maybe more importantly, it gave new information on the

evolution of the transcriptional regulatory networks of the Aft factors and the CBC-Yap5 complex and

brought new data on the relationship between iron homeostasis and pathogenicity. However, a lot remains

to be understood.

These data also show that networks reconstructed with a combination of transcriptomics and ge-

nomics experiments are reliable. However, genomics experiment like ChIP-seq are still very expensive

and long to perform. There may be a way to bypass these problems with the use of softwares such as RE-

DUCE (Foat et al., 2006). The principle of REDUCE is the following : it takes as input transcriptomics

data and promoter sequences and then uses a mathematical model to associate expression variations to

DNA motif of 5 to 12 bases. It is easy to locate these motifs in the genome and associate them with

promoters or genes. They can also be entered in databases (such as Yeastract for yeast) to check whether

these motifs are already linked to a known transcription factor. The combination of several types of infor-

mations (gene expression, binding motif, "target" genes, link to a known TF...) could lead to interesting

results while being much more affordable than genomics studies.
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The yeast Candida glabrata has become the second cause of systemic candidemia

in humans. However, relatively few genome-wide studies have been conducted in

this organism and our knowledge of its transcriptional regulatory network is quite

limited. In the present work, we combined genome-wide chromatin immunoprecipitation

(ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe

the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C.

glabrata. We described a transcriptional network containing 255 regulatory interactions

and 309 potential target genes. We predicted with high confidence the preferred DNA

binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap

DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable

functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon

which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new

roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the

regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response

to iron starvation. These transcription factors define an interconnected transcriptional

network at the cross-roads between redox homeostasis, oxygen consumption, and iron

metabolism.

Keywords: yeast, Yap, ChIP-seq, transcriptome, regulatory networks, evolution

INTRODUCTION

Candida glabrata is a unicellular yeast from the Hemiascomycetes phylogenetic group and
a commensal host of the human mucosal microbiota. However, in patients with severe
immunodeficiency, it can cause invasive systemic infections, with high mortality rates (about
40–60%). While Candida albicans remains the main cause of systemic candidiasis (50–70%), C.
glabrata ranks second (20–25%), and its prevalence has increased in the last decades (Perlroth
et al., 2007). An important prerequisite to the acquisition of virulence traits in C. glabrata is its



Merhej et al. The YAP Transcriptional Network in Candida glabrata

ability to adapt and be resistant to environmental variations,
which allows the pathogen to colonize many different niches
and organs in the human body, with very different features in
terms of pH, temperature, redox potential, iron, zinc, or oxygen
availability, etc. (Domergue et al., 2005; Nevitt and Thiele, 2011).
Moreover, C. glabrata is able to survive and grow in the harsh
environment of the phagolysosomes of macrophages (Seider
et al., 2011, 2014).

The mechanisms that allow these adaptations rely partially
on transcriptional regulatory networks. Systematic combination
of transcriptome analyses of loss of function mutants for
different transcription factors and of genome-wide chromatin
immunoprecipitation has led to the comprehensive description
of genome-wide transcriptional regulatory networks in themodel
yeast Saccharomyces cerevisiae (Babu et al., 2004; Harbison et al.,
2004; Teixeira et al., 2014). These global approaches have also
been extensively used in C. albicans. In this species, more than
75 specific transcription factors (over a total of about 150) have
been analyzed by genome-wide approaches and comprehensive
network-basedmodels are available for ribosome biogenesis, iron
homeostasis, or biofilm formation (Lavoie et al., 2010; Chen et al.,
2011; Nobile et al., 2012; Fox et al., 2015). In contrast, the global
transcriptional regulation in C. glabrata has been poorly studied.
As of 2016, only 10 transcription factors have been analyzed
on a genome-wide scale in this species (Vermitsky et al., 2006;
Lelandais et al., 2008; Roetzer et al., 2008, 2011; Kuo et al.,
2010a; Caudle et al., 2011; Ferrari et al., 2011; Miyazaki et al.,
2013; Noble et al., 2013; Paul et al., 2014; Merhej et al., 2015;
Wu et al., 2015). While C. glabrata and C. albicans share a
common ecological niche and are from the same genus, they
are very distant species according to their genomic sequence,
and their ability to successfully infect humans involves quite
different strategies (Brunke and Hube, 2013). For instance, in
contrast to C.albicans, the ancestor of C.glabrata and S.cerevisiae
experienced a whole-genome duplication event. In addition,
C.albicans is usually diploid, switching frequently from yeast to
hyphal growth under stress conditions, while C.glabrata is strictly
haploid and grows mostly in the yeast form. Therefore, the C.
glabrata transcriptional networks cannot be simply inferred from
the knowledge acquired in C. albicans (Gabaldon and Carrete,
2015).

In the present work, we conducted a network-based analysis
of the seven transcription factors belonging to the Yap (Yeast
AP1) family in C. glabrata. The Yap proteins belong to the pap
subfamily of bZIP transcription factors and are homologous
to the CREB, ATF2, and Fos/Jun transcription factors of
vertebrates (Fujii et al., 2000; Reinke et al., 2013). The model
yeast S. cerevisiae has 8 Yap members (named ScYap thereafter;
Supplementary File S1), most of which are involved in adaptation
to environmental changes (Rodrigues-Pousada et al., 2010).
ScYap1 is the major regulator of oxidative stress responses caused
by reactive oxygen species (ROS), metals and drugs (reviewed
in Rodrigues-Pousada et al., 2010). ScYap2 (also named Cad1),
the ohnolog of Yap1, is involved in cadmium resistance (Hirata
et al., 1994; Azevedo et al., 2007; Mazzola et al., 2015). The role
of ScYap3 is unknown but it has been shown to contribute to the
resistance to benzenic compounds and to 6-Nonadecynoic acid

(North et al., 2011; Xu et al., 2012; Adeboye et al., 2014). The
ScYap4 (also named Cin5) and ScYap6 ohnologs are involved in
salt stress response (Mendizabal et al., 1998; Nevitt et al., 2004; Ni
et al., 2009). ScYap5 is responsible for the activation of the high
iron stress response (Li et al., 2008; Pimentel et al., 2012). ScYap7,
the ohnolog of ScYap5, was recently found to be a repressor of the
nitric oxide oxidase encoding gene YHB1 (Merhej et al., 2015)
and ScYap8 is involved in the response to arsenic (Bobrowicz
et al., 1997; Amaral et al., 2013; Kumar et al., 2015).

C. glabrata has 7 Yap members, which slightly differ from
the S. cerevisiae family (Supplementary File S1). Orthologues
of Yap1 (CAGL0H04631g), Yap2 (CAGL0F03069g, named
CgYap1 thereafter), Yap5 (CAGL0K08756g, named CgYap5
thereafter), and Yap7 (CAGL0F01265g, named CgYap7
thereafter) are present, but Yap8 is absent. Two versions of
Yap3 (CAGL0K02585g and CAGL0M10087g, named CgYap3a
and CgYap3b thereafter) and only one ortholog for the Yap4 and
Yap6 pair (CAGL0M08800g, named CgYap4/6 thereafter) are
found. Only three of these Yaps have been studied previously in
C. glabrata. CgYap1 has been shown to be involved in oxidative
stress response, with a set of targets which is significantly
conserved compared to ScYap1, but with different DNA binding
preferences (Chen et al., 2007; Cuellar-Cruz et al., 2008; Lelandais
et al., 2008; Kuo et al., 2010a; Goudot et al., 2011; Roetzer et al.,
2011). CgYap7 has been shown to have a conserved role in nitric
oxide oxidase repression (Merhej et al., 2015). Finally, as in S.
cerevisiae, CgYap5 is involved in the activation of the CCC1 and
GRX4 genes under high iron conditions (Merhej et al., 2015). In
the present work, we conducted chromatin immunoprecipitation
experiments followed by high-throughput sequencing (ChIP-
seq) and transcriptome analyses to determine the targets for
the seven Yap transcription factors of C. glabrata. The CgYap
network included 309 genes and 255 regulatory interactions.
From these results, we could predict with high confidence the
preferred DNA binding sites for 5 of the 7 CgYaps and show a
strong conservation of the Yap DNA binding properties between
S. cerevisiae and C. glabrata. We provided functional annotation
for 3 of the 7 CgYaps and identified for Yap1 and Yap5 a core
regulon which is conserved in S. cerevisiae, C. glabrata, and
C. albicans. Our data pointed out new roles for CgYap7 in the
regulation of iron-sulfur cluster biogenesis, for CgYap1 in the
regulation of heme biosynthesis and for CgYap5 in the repression
of GRX4 in response to iron starvation.

MATERIALS AND METHODS

Strains
The list of the strains used in this study is available in
Supplementary File S2. All the strains were derived from the
1HTU parental strain (Kitada et al., 1995). The genomic myc-
tagging and deletion of the different CgYAP was performed as
described previously (Merhej et al., 2014, 2015). Briefly, deletion
or myc-tagging cassettes were PCR amplified from the M.
Longtine’s plasmids (Longtine et al., 1998) with oligonucleotides
containing in 5′ homology sequences flanking the desired
genomic insertion points. At least 10micrograms of purified PCR
product was used to transform1HTU cells using a standard yeast
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transformation protocol (Merhej et al., 2015). Genotyping of the
clones growing on selective media was done by PCR. The PCR-
verified clones for the knock-out were then verified by southern
blot (Merhej et al., 2015). The correct myc-tagging of the CgYAP
was verified by sequencing of the gene and western blot (Merhej
et al., 2015). All the oligonucleotides used for cassette preparation
and genotyping are listed in Supplementary File S2.

Yeast Cultures and Growth Conditions
All cultures were conducted in a rotative shaker at 30◦C
in YPD (Glucose 2%, yeast extract 1%, Bactopeptone 1%).
Stress conditions used were: 1mM sodium selenite, 1M
NaCl, 2mM cadmium chloride, 5mM iron sulfate, or 0.5mM
bathophenanthroline disulfonate (BPS). These doses were
chosen, based on preliminary microarray and growth assay
experiments, to induce a transcriptional response in the wild type
without causing significant differences of growth rates between
the wild type and the CgYAP knock-out mutants (data not
shown).

Chromatin Immunoprecipitation and
High-Throughput Sequencing
For ChIP, myc-tagged CgYAP strains were grown in YPD until
exponential phase (OD = 0.8) and then stressing agents were
added for 30min. Cross-linking of the cells and ChIP were
performed as described previously (Lelandais et al., 2016). The
parental 1HTU (untagged strain) was grown and processed the
same way to provide the mock-IP samples. Sequencing of the IPs,
Input DNAs and mock IPs samples and primary data analyses
(quality controls and mapping of the reads) were performed as
described previously (Lelandais et al., 2016). All experiments
were performed twice and the reads of the replicate averaged
before the peak calling step, except for CgYap5 for which one
of the two replicates had poor read coverage and was not used
for further analyses. Peak calling was performed with the bpeaks
software (Merhej et al., 2014), using both the Input DNA and the
mock IP as references. For peak calling using the Input DNA as
reference, the bpeaks parameters were T1 = 2, T2 = 2, T3 =

1.5, T4 = 0.7. For peak calling using the Mock IP as reference,
the bpeaks parameters were T1 = 2, T2 = 2, T3 = 1.5, and
T4 = 0. Only the peaks which were found by the two analyses
were kept for further processing. These peaks were thenmanually
checked on a genome browser (Thorvaldsdottir et al., 2013) to
discard artifactual peaks (e.g., peaks centered on a tRNA locus or
perfectly overlapping a highly expressed ORF) which would have
escaped the bpeaks filter (Supplementary Files S3, S4). The ChIP
seq data can be downloaded from the GEO database (accession
number: GSE77904).

Transcriptome Analyses
Knock-out and wild type strains were grown in 50mL of YPD
until exponential phase (OD= 0.8) and then stressing agents were
added. After 30min, 20mL of each cell cultures were flash-frozen
in two volumes of cold ethanol and collected by centrifugation.
The OD of the cultures were monitored before the stress
treatment and every 30min for 2 h after stress treatment. Only
samples from wild type and knock-out cultures which showed

similar growth rates (±10%) (Thompson et al., 2013) were used
for transcriptome comparisons. Total RNAwas extracted, quality
controlled and quantified as described previously (Merhej et al.,
2015). One microgram of total RNA was used for fluorescent
cDNA synthesis according to the amino-allyl protocol (Merhej
et al., 2015). The cDNA were labeled with Cy3 and Cy5 and
hybridization was performed as previously described (Merhej
et al., 2015). Two biologically independent experiments were
performed for each condition, using dye switch. We used
custom C. glabrata Agilent arrays in an 8 × 60 k format (array
express accession number: A-MEXP-2402). After overnight
hybridization and washing, the slides were scanned using a 2-
micron Agilent microarray scanner. The images were analyzed
using the feature extraction software (Agilent technologies) and
normalized using global LOESS (Lemoine et al., 2006). The mean
of the biological replicates was calculated. A gene was considered
as being differentially expressed if its mean absolute Log2(fold
change) value was more than 0.75 and if its expression variation
was considered as being statistically significant using the LIMMA
package with a cut-off p-value of 0.02 (Ritchie et al., 2015). The
complete microarray data are available at Array express database
under the accession number: E-MTAB-4457.

TFBS Predictions
DNA sequences of ChIP peaks were retrieved from their genomic
locations (BED file) using the “getfasta” function from the
BEDTOOLS suite (Quinlan and Hall, 2010). These genomic
sequences were used as inputs for the “peak-motif ” tool to
search for regulatory motifs (Thomas-Chollier et al., 2012). An
additional filtering step was added to the standard peak motif
procedure to discard low complexity motifs (e.g., CCCCCCC) or
motifs which were found in <20% of the peaks (Supplementary
File S5).

Network Building
The ChIP peaks were assigned to genes as described previously
(Merhej et al., 2014). When a peak was located in a divergent
promoter (i.e., an intergenic region in between two divergent
genes) the two genes were fused in one target in the network
named “gene 1/gene 2,” unless we had transcriptome evidence
supporting the regulation of one of the two genes. In this
case, only the name of the regulated gene was kept. The
network was represented using the igraph library (igraph.org, R
programming language; Csardi and Nepusz, 2006), combining
three different types of information (Supplementary Table 1).
The ChIP parameter was used to define interactions (arrows)
between the different Yap factors and their target promoters. The
transcriptome parameter was used to color arrows depending on
the directionality of the regulation (activation, repression, or no
detected change). The TFBS parameter was used to color target
promoters depending of the presence of the identified TFBS in
the corresponding ChIP peaks.

Gene Ontology and Gene Set Enrichment
Analyses
GO analyses were performed using the “GO term finder” tool at
the CGD database, with default parameters (Inglis et al., 2012).
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GSEA were performed using the GSEA module of the Jexpress
software suite with a cut-off FDR of 1% (Subramanian et al.,
2005; Stavrum et al., 2008). We used as input files transcriptome
analyses of the responses of C. glabrata wild type cells to
fluconazole (Kuo et al., 2010b), sodium salt (Roetzer et al., 2008;
Wapinski et al., 2010), heat shock (Roetzer et al., 2008; Wapinski
et al., 2010), hydrogen peroxide (Wapinski et al., 2010; Roetzer
et al., 2011), menadione (Roetzer et al., 2011), glucose starvation
(Roetzer et al., 2008), sorbic acid (Jandric et al., 2013), iron
excess and iron starvation (this work, E-MTAB-4457), cadmium
chloride and sodium selenite (Thiebaut et al., unpublished data).

RESULTS

The Yap Network in C. glabrata
To identify the gene targets and characterize the regulatory
interactions of the seven Yap transcription factors of C. glabrata,
we used three different approaches. First, we performed ChIP-
seq experiments using myc-tagged versions of each factor. For
CgYap1, CgYap2, CgYap4/6, and CgYap5, we submitted the
corresponding tagged strains to stress conditions known to
induce full activity of their S. cerevisiae orthologues, i.e., oxidative
stress caused by a metalloid (namely selenium) for Yap1 (Haugen
et al., 2004; Salin et al., 2008), cadmium for Yap2 (Azevedo et al.,
2007; Mazzola et al., 2015), salt excess for Yap4/6 (Nevitt et al.,
2004; Ni et al., 2009), and iron excess for Yap5 (Li et al., 2008;
Pimentel et al., 2012). For CgYap7, which was shown to have a
constitutive activity (Merhej et al., 2015), the experiments were
performed in standard growth conditions. For the two orthologs
of Yap3, whose role remains unknown in S. cerevisiae, the
experiments were performed using cells grown in YPD and cells
exposed to a pleiotropic stress inducer (selenite; Salin et al., 2008).
The ChIP-seq data were analyzed taking as a reference both the
input control and the mock IP control, to sort out a maximum of
the false positive peaks due to highly expressed loci (Park et al.,
2013; Teytelman et al., 2013). Second, we used the ChIP-seq data
to predict the preferred Transcription Factor DNA binding sites
(TFBS) for each CgYap. Reciprocally, we identified all the ChIP-
peaks which contain the predicted consensus in their promoter
sequence. Third, we compared the transcriptome of wild type and
null mutants for each CgYap, using the same growth conditions
as those used for ChIP-seq experiments. Hence, we identified the
genes for which expression was altered, directly or indirectly, in
the absence of the corresponding transcription factor.

To build a network from these three sources of information,
we used a scoring system based on simple but meaningful logical
rules (Supplementary Table 1). Briefly, a regulatory interaction
was included in the network if it was detected by ChIP-seq.
Then, the interactions and the edges were differently labeled
depending on the transcriptome and TFBS data (Figure 1). As
a consequence, the different interactions in the final network
do not have the same value, depending on whether they
were supported by one, two, or three experimental evidences
(Supplementary Table 1). The final CgYap network contained 6
transcription factors and 255 regulatory interactions involving
214 promoters and 309 potential target genes (Figure 1). We
could not identify any target gene for CgYap3a, neither by

ChIP-seq or by transcriptome analyses. Notably, 62% of the
interactions in the network were supported by at least two
evidences (Figure 1). The majority of the ChIP targets that we
identified had only one peak in their promoter. However, in
few cases, several binding sites could be unambiguously detected
for CgYap1 and CgYap7 (Supplementary File S6). The number
of interactions for each CgYap was highly variable, from 3
for CgYap2, up to 118 for CgYap7 (Figure 1). Relatively few
redundancies were observed between the different Yaps, only 38
genes (18% of the edges) are targeted by more than one CgYap.

C. glabrata Yap Transcription Factor
Binding Sites
As mentioned above, the peaks identified from ChIP-seq data
were used to predict the TFBS for 5 of the 7 studied CgYap
(Figure 2). In S. cerevisiae, the Yap proteins were classified in
two categories based on their preferred TFBS (named YRE for
Yap Response Elements): ScYap1, ScYap2, ScYap5, and ScYap7
bind to YRE-O (TTACTAA) motifs while ScYap3, ScYap4, and
ScYap6 rather recognize YRE-A (TTACGTAA) motifs (Tan et al.,
2008; Kuo et al., 2010a). We found that this dichotomy was
remarkably conserved in C. glabrata (Figure 2). The predicted
binding sites for CgYap1, CgYap5 and CgYap7 were very close
to the perfect YRE-O consensus. In contrast, the YRE-A motif
was enriched in the ChIP peaks of CgYap3b and CgYap4/6.
These YRE motifs were identified as the best predicted motifs
for all Yaps, except for CgYap4/6 (Figure 2, Supplementary File
S5). For this transcription factor, the best identified motif was
ATGACGTCAT, which differs from the canonical YRE-A motif
by its higher GC content and which actually corresponds to
the consensus motif published for another bZIP subfamily, the
CREB/ATF2 factors (Fujii et al., 2000). Interestingly enough, in
S. cerevisiae this motif was associated to the Sko1 transcription
factor, which is a yeast homolog of the ATF2/CREB factors
(Pascual-Ahuir et al., 2001; Gordan et al., 2011). Sko1 has been
shown to contribute to the salt stress response of S. cerevisiae,
together with ScYap4 and ScYap6, and to share a large number of
targets with these factors (Ni et al., 2009).

The proportion of ChIP peaks containing the best predicted
TFBS was remarkably high (from 41% for Yap1 up to 100% for
Yap3b) (Figures 1, 2). This provided a posteriori confirmation
that our ChIP-seq analyses procedure efficiently filtered out the
false positive peaks.

Directionality of the CgYap Activities
Because we included transcriptome data in our network, we
could determine the directionality (i.e., activation or repression)
of some of the regulatory interactions set up by the different
Yap proteins (Figure 1). This allowed us to predict the activator
or repressor nature of these CgYaps. We observed that, in
the conditions that were studied (selenite, excess of iron, salt
stress, or YPD, respectively), CgYap1 and CgYap5 were strict
activators, while CgYap4/6 and CgYap7 were strict repressors
(Figure 1). The deletion of CgYap2 and CgYap3b had no effect
on their targets in the conditions that we studied and therefore
we had no information on their activity. The overlaps between
transcriptome results and ChIP-seq results were remarkably
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FIGURE 1 | The Yap network of Candida glabrata. The large circles represent the CgYap transcription factors (1 = CgYap1; 2 = CgYap2, etc.) and the small

circles are the potential targets. An arrow indicates a potential regulatory interaction based on ChIP-seq. The color of the arrow indicates the directionality of the

potential regulation based on transcriptome data (red, positive regulation; green, negative regulation; black, no change detected). The color of the targets indicates the

consensus DNA sequences detected in the ChIP-peaks (see color code on the upper right). The percentage of targets for each CgYap is indicated on the bottom

right. This network was represented using I-GRAPH and the information from Supplementary Table 1.

high in the sense that, taking into account the directionality
mentioned above, between 40 and 90% of the expression
changes observed in the transcriptome analyses involved genes
to which promoters were bound by the TF according to ChIP-
seq data (Supplementary File S7). The reciprocal was not true
for CgYap7 and CgYap4/6, for which most of the ChIP targets
showed unchanged expression in the mutant. This may be
due either to functional redundancies for the regulation of
these genes or because our transcriptome experiments were
not conducted in conditions in which these regulations were
active.

Functional Annotation of the Yap Network
We performed Gene Ontology (GO) term enrichment analyses
on the whole set of genes in the network and on the individual
sets of target of each CgYap (Figure 3, Supplementary Table
1). The whole network was enriched in GO categories related
to oxido-reduction processes and iron homeostasis (Figure 3).
CgYap1, CgYap5, and CgYap7 were the main contributors to
these categories, while CgYap2, CgYap3b, and CgYap4/6 did
not show any significant enrichment. More specifically, CgYap1
was the main contributor of targets related to oxidative stress
response, oxido-reduction and chemical stress response (e.g.,
TRR1, TRX2, OYE2, GPX2, TSA1, CTA1, SRX1, . . . ). Its target
set was also enriched in genes involved in heme biosynthesis
(HEM1, HEM3, HEM15, and HEM2). CgYap5 target list was

clearly associated to iron sulfur cluster binding (ISA1, TYW1,
ACO1, RLI1, SDH2, GLT1) and iron homeostasis (GRX4, CCC1).
The only GO category to be enriched in CgYap7 targets was
iron sulfur cluster metabolism. This includes genes involved in
the cytosolic and mitochondrial iron sulfur assembly pathway
(CIA1, CIA2, DRE2, NAR1, CFD1, IBA57, JAC1) and in iron
sulfur cluster binding (LYS4, SDH2). CgYap7 also targets 10 genes
encoding oxidoreductases (CCP1, ERG11, YHB1, OYE2, etc. . . )
and genes encoding heme containing proteins (YHB1, CCP1)
or related to heme metabolism (HEM3, CYC3). The targets of
CgYap1 and CgYap7 includedmany genes encoding transcription
factors. For instance, several transcription factors involved in
oxygen homeostasis and oxidative stress responses are targeted
by CgYap1 (ROX1, MSN4, RPN4, SKN7, IXR1). Remarkably,
CgYap1 and CgYap7 both bound their own promoter, suggesting
auto-regulation (Supplementary Table 1).

Conservation of the CgYap1/5/7
Subnetwork
The functional annotation presented above pointed out a
CgYap1/CgYap5/CgYap7 network centered on iron and redox
homeostasis. To assess the conservation of this sub-network we
compared the targets of CgYap1, CgYap5, and CgYap7 with the
targets of their orthologues in S. cerevisiae and C. albicans (Li
et al., 2008, 2011; Salin et al., 2008; Znaidi et al., 2009; Chen
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FIGURE 2 | CgYaps Transcription Factor Binding Sites predictions based on ChIP peaks. The motifs were predicted from the ChIP-peaks sequences using

Peak Motif (Thomas-Chollier et al., 2012). The motifs previously found for the Yap transcription factors in S. cerevisiae and for CgYap1 in C. glabrata are indicated (Tan

et al., 2008; Kuo et al., 2010a; Goudot et al., 2011). The complete Peak Motif predictions are available in Supplementary File S5.

et al., 2011; Hsu et al., 2011; Singh et al., 2011; Pimentel et al.,
2012; Supplementary Table 2). The functional categories in which
Yap1 and Yap5 are involved were remarkably conserved: ScYap1
and Cap1 are also involved in oxido-reduction processes (Salin
et al., 2008; Znaidi et al., 2009), ScYap5 and Hap43 are involved
in iron homeostasis, but ScYap5 is an activator of iron stress
response while Hap43 has a role in repressing iron consuming
genes in iron limiting conditions (Li et al., 2008; Hsu et al., 2011;
Singh et al., 2011). No clear GO category could be attributed
to ScYap7 besides its role in YHB1 repression but all previous
genome-wide studies (for instance Harbison et al., 2004) have
been conducted in a strain background in which the ScYAP7 gene
is interrupted by a frame-shift mutation (Merhej et al., 2015).
In terms of gene targets, the three Yap5 targets which had been
validated in S. cerevisiae (CCC1, GRX4, and TYW1; Li et al.,
2008, 2011; Pimentel et al., 2012) were conserved in C. glabrata
(Figure 4A). Remarkably, despite the large evolutionary distance
between C. glabrata and C. albicans, all CgYap5 targets, except
GRX4, are targets of its orthologue Hap43 (Figure 4B). Hap43
also shares 19 targets with CgYap7, many of which are involved
in iron sulfur cluster metabolism, redox homeostasis or heme
metabolism (e.g.,NAR1,DRE2, LYS4, SDH2, SSU1,OYE2, YHB1,
CCP1, HEM3, . . . ).

Among the 82 targets that we identified for CgYap1, 28
are orthologous to targets of ScYap1 and 20 to Cap1 targets
(Figures 4C,D). Of these, 15 were common to the three
orthologs. This set of highly conserved Yap1 targets includes
several enzymes known to play important roles in redox balance
(OYE2, TRX2, TRR1, CTA1, GPX2, GSH1, ZWF1, CCP1),
the MFS permease FLR1 (named MDR1 in C. albicans) and,
remarkably, Yap1 itself, suggesting that the auto-regulation of
Yap1 may actually play a significant role in its function. Besides
this relatively high conservation of the Yap1 regulon in yeasts, a
remarkable specificity of CgYap1 is its role in the direct regulation
of several genes encoding enzymes of the heme biosynthetic
pathway, a feature which was documented neither in S. cerevisiae
nor in C. albicans.

Overlap between the CgYap Network and
Stress Responses in C. glabrata
We next used Gene Set Enrichment Analyses (GSEA;
Subramanian et al., 2005) to look for enrichments of our
CgYap target sets in transcriptome analyses of C. glabrata wild
type cells to various environmental stresses. The list and origin
of the transcriptome data which were used can be found in the
methods. As could have been expected from the results presented
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FIGURE 3 | Functional annotation of the CgYap network. Gene ontology analyses were performed on the target sets of the CgYap network. The main enriched

categories are represented here by the colors of the corresponding targets (color code on the bottom left). “Oxido-reduction” corresponds to the GO categories

“oxidation-reduction process,” “response to oxidative stress,” and “oxidoreductase activity.” “Transcription factor” corresponds to the GO category “sequence-specific

DNA binding.” “transcription factor (stress responsive)” corresponds to the GO category “regulation of transcription from RNA polymerase II promoter in response to

stress.” “Heme biosynthesis” corresponds to the GO category “heme biosynthetic process.” “iron metabolism” corresponds to the GO categories “iron-sulfur cluster

assembly,” “iron-sulfur cluster binding” and “iron ion homeostasis.” “Organitrogen” corresponds to the GO category “organonitrogen compound metabolic process.”

The complete GO results are available in Supplementary Table 1. The names of the genes which are discussed in the main text are indicated. The phenotypes of the

CgYAP mutant strains in various stress conditions are shown in Supplementary File S10.

in the previous chapters, the CgYap1 targets were significantly
enriched among the genes induced by oxidative stress causing
agents (H2O2, selenite, iron, with the exception of menadione;
Supplementary File S8), supporting the general role of this
transcription factor in the oxidative stress response of C. glabrata
(Lelandais et al., 2008; Roetzer et al., 2011). More surprisingly,
the targets of CgYap1 were enriched in heat shock and sorbic
acid stress responses. Interestingly enough, the HSE (Heat
Shock Element) was found to be present in 25% of the CgYap1
ChIP peaks (Supplementary File S5). In S. cerevisiae, previous
works have identified connections between Yap1 activity on
one hand and Hsf1 and some gene regulatory modules induced
by heat shock on the other (Hahn et al., 2006; Wu and Li,
2008; Nussbaum et al., 2014). Our results suggest that these
connections might be conserved in C. glabrata. In contrast, the
targets of CgYap4/6 were not particularly enriched in osmotic
stress responses caused by NaCl excess (Supplementary File
S8), which questions the conservation in C. glabrata of the
role of the ScYap4 and ScYap6 in this process. As expected, the
targets of CgYap5 were globally induced by iron excess in C.
glabrata but we also observed that the CgYap5 set of targets

was significantly repressed in iron depleted conditions caused
by BPS treatment or selenite exposure (Supplementary File
S8, Figure 5A). Moreover, our transcriptome analyses of iron
starvation and iron excess responses in wild type C. glabrata
cells showed that CgYAP5 itself had expression levels which
were inversely correlated to the iron concentration (Figure 5B),
suggesting an active role for this transcription factor in iron
starvation. Obviously, the fact that CgYap5 targets were repressed
by iron starvation did not necessarily mean that CgYap5 was
directly involved in this regulation. For instance, in S. cerevisiae,
the repression of many iron consuming genes such as ACO1,
SDH2, ISA1, and CCC1 in iron starved conditions occurs
pos-transcriptionally and is mediated by the RNA binding
proteins Cth1 and Cth2 (Puig et al., 2005). To assess the actual
role of CgYap5 in the iron starvation response of C. glabrata,
we analyzed the transcriptome response of ∆Cgyap5 cells to
BPS treatment and compared this response with the one of
wild type cells. We observed that most of the genes, which
were dependent on Yap5 for their high iron induction, were
similarly repressed by BPS in the wild type and in the ∆Cgyap5
mutant (exemplified by SDH2 on Figure 5C), indicating that this
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FIGURE 4 | Conservation of the CgYap1/5/7 subnetwork in S. cerevisiae and C. albicans. Graphs represent the targets of CgYap1, CgYap5, and CgYap7

which were also shown to be regulated by ScYap5 (A), Hap43 (B), ScYap1 (C), and Cap1 (D). The color code for the gene targets is the same as for Figure 3. Only

the GO code of the conserved targets is shown. The names of the genes which are discussed in the main text are indicated. The data used to draw this figure are

available in Supplementary Table 2.

repression was not CgYap5 dependent. The only exception was
GRX4, for which repression was totally abolished when CgYap5
was absent (Figure 5D). Consistent with these results, ChIP-seq
experiments conducted in iron-replete conditions showed that
the binding of CgYap5 to GRX4 promoter was constitutive,
while binding to its other targets was detected only at high iron
concentrations (Figures 5E,F). Notably, the GRX4 expression
level was previously shown to be independent of CgYap5 in
standard growth conditions (Merhej et al., 2015), indicating that
the effect detected here was indeed specific of iron starvation.
These results strongly suggest that, in addition to its role in the
iron stress response, CgYap5 plays an active role in the iron
starvation response by directly repressing the expression of
GRX4.

DISCUSSION

A Methodology to Build Highly Consistent
Regulatory Networks
Global ChIP and transcriptome analyses are powerful tools
to achieve comprehensive descriptions of large transcriptional
regulatory networks (Babu et al., 2004; Harbison et al., 2004).

However, the interpretation of these networks is dampened by
the tendency of these techniques to generate large numbers
of false positives. For instance, highly expressed genomic
regions (tRNA genes, glycolytic enzymes encoding genes, etc.)
have been shown to be nonspecifically enriched in ChIP-

seq experiments, leading to tens to hundreds of misidentified
“targets” (Park et al., 2013; Teytelman et al., 2013). This bias is
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FIGURE 5 | CgYap5 acts as a repressor of GRX4 in iron starvation. (A) Graphical output of the Gene Set Enrichment Analyses, using as a gene set the targets

of CgYap5 identified in our study and using as a test dataset the response of wild type C. glabrata cells to iron starvation caused by 0.5mM BPS. The transcriptome

data are symbolized by the gray scale with the most induced genes on the left and the most repressed on the right. The positions of the CgYap5 targets are indicated

on this scale by black vertical lines. (B) The expression of CgYAP5 is inversely correlated to iron concentration. Histograms based on microarray analyses of the C.
glabrata response to high iron concentration and to iron starvation caused by BPS. (C,D) SDH2 and GRX4 in response to high iron or to iron starvation, in wild type

(black bars) or 1Cgyap5 (white bars) cells. The impact of the CgYAP5 deletion on the repression of GRX4 in low iron conditions was confirmed by Q-RT-PCR

(Supplementary File S11). (E,F) Binding of CgYap5 to the promoters of SDH2 and GRX4 in high iron or in normal iron (YPD media) conditions (ChIP-seq).

better captured, but only partially corrected, using mock IP as
reference for peak calling, rather than input DNA (Park et al.,
2013; Krebs et al., 2014). For transcriptome analyses, relatively
minor differences between wild type and mutant growth rates
or stress response dynamics can eventually produce tens of
differentially expressed genes which have no real relationship
with the mutation being tested (Thompson et al., 2013). We
took into account these previous observations and designed
experimental and bioinformatics procedures in which, 1- peak
calling was performed using both the input DNA and the mock
IP as references to efficiently sort out peaks corresponding to
tRNA or highly expressed ORFs loci; and 2- only wild type
and mutant cell cultures having very similar growth rates before
and after the stress treatment were compared in transcriptome

analyses. These simple precautions led to a final network showing
unusually high consistency between ChIP results and TFBS
predictions on the one hand, and ChIP and transcriptome
results on the other hand. Indeed, between 40 and 100% of
the ChIP peaks identified contained one or several YRE (Yap
Response Element). For comparison, the rate of YRE containing
peaks in previous ChIP-chip studies conducted on the Yaps
of S. cerevisiae (Tan et al., 2008; Ni et al., 2009) or on Yap1
in C. glabrata (Kuo et al., 2010a) ranged from 15 to 30%.
Similarly, between 40 and 90% of the genes for which the
transcriptome data showed an expression change had a ChIP
peak in their promoter. This percentage ranged from 0 to 25%
in a previous study of the S. cerevisiae Yap family (Tan et al.,
2008).
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These data allowed us to propose targets with a reasonably
high level of confidence for 6 of the 7 Yaps in C. glabrata, to
predict the preferred binding motifs of 5 of them and identify
enriched functional categories for CgYap1, CgYap5, and CgYap7.

Conserved DNA Binding Properties of the
Yap Transcription Factors
TFBS predictions based on the ChIP peaks pointed out a
perfect conservation in the DNA binding properties of Yap1,
Yap3b, Yap4/6, Yap5, and Yap7. As in S. cerevisiae (Tan et al.,
2008), CgYap1, CgYap5, and CgYap7 were predicted to recognize
preferentially the YRE-O site (TTACTAA) while CgYap3b and
CgYap4/6 rather binds YRE-A (TTACGTAA). This result is
consistent with the high conservation of the DNA binding
domains of these proteins between C. glabrata and S. cerevisiae
(Kuo et al., 2010a). Yet, this was unexpected in the case
of CgYap1. Indeed, it was previously proposed, based on
bioinformatic predictions from ChIP-chip data, that CgYap1
shifted its binding preferences from YRE-O to YRE-A due to
a single mutation in the DNA binding domain compared to
ScYap1 (Kuo et al., 2010a). This model was toned down by
further analyses of the same dataset, which showed that YRE-O
were as frequent as YRE-A in the promoters of CgYap1 targets
(Goudot et al., 2011). Our ChIP-seq data unambiguously suggest
that YRE-O is the preferred DNA binding site of CgYap1 and
that the co-evolution scenario previously published has to be
reconsidered. The discrepancy between these different studies
may rely on the size of the genomic sequences which were used
for TFBS predictions. Indeed previous ChIP-chip data provided
peaks which were as wide as intergenic regions (800 base pairs
in Goudot et al., 2011) while the binding regions identified by
our ChIP-seq analyses for CgYap1 were 300 base pairs in average,
leading to a much more precise identification of the actual
binding location of the transcription factor (Supplementary
File S4).

The Yap1 Core Regulon
Hence, the DNA binding properties of Yap1 were remarkably
conserved between S. cerevisiae, C. glabrata, and C. albicans,
since the YRE-O was also shown to be the preferred binding
motif of Cap1 (Znaidi et al., 2009; Goudot et al., 2011).
What was true for DNA binding was also true at the level
of gene targets and functional annotations. Indeed, our data
confirmed the role of CgYap1 in redox homeostasis, as previously
demonstrated (Chen et al., 2007; Lelandais et al., 2008; Kuo
et al., 2010a; Roetzer et al., 2011). We identified a core Yap1
regulon of 28 targets between S. cerevisiae and C. glabrata
and 15 conserved targets between S. cerevisiae, C. glabrata,
and C. albicans. Notably, this enlarged by more than two-
fold the list of conserved Yap1 targets which were previously
identified (Kuo et al., 2010a; Goudot et al., 2011). This core Yap1
regulon is composed mostly of well-known and highly conserved
actors of oxidative stress response such as gluthation peroxidase
and gluthation synthetase, catalase, mitochondrial peroxydase,
enzymes of the thioredoxin pathway (thioredoxins, thioredoxin
reductase, thioredoxin peroxidase, and thioredoxin peroxydase
reductase), the FLR1/MDR1 permease, enzymes involved in
NADPHmetabolism (NADPH oxydoreductase of the Old Yellow

Enzyme family and glucose phosphate dehydrogenase). This
confirms that, as suggested by previous work, oxidative stress
response in general and the Yap1 control of this response in
particular, do not fundamentally differ in C. glabrata compared
with S. cerevisiae and C. albicans (Cuellar-Cruz et al., 2008;
Lelandais et al., 2008; Kuo et al., 2010a; Gulshan et al., 2011;
Roetzer et al., 2011; Briones-Martin-Del-Campo et al., 2014).
Also, Yap1 binding to its own promoter, which had been
demonstrated in C. albicans and S. cerevisiae (Salin et al., 2008;
Znaidi et al., 2009), was conserved in C. glabrata. Although the
primary activation of Yap1 has been shown to be at the post-
translational level (Kuge et al., 1997; Zhang et al., 2000), this high
conservation suggests that Yap1 autoregulation could play a role
in conditions of acute oxidative stress, such as the ones used in the
aforementioned studies. In support to this hypothesis, ScYAP1,
CgYAP1 and CAP1 were all shown to be induced by oxidative
stress at the mRNA level (Salin et al., 2008; Znaidi et al., 2009).

Insights in the Roles of Yap2 and Yap4/6 in
C. glabrata
Only three ChIP targets could be detected for CgYap2 and
CgYap3b, which did not allow us to propose functional
annotations for these two factors. Still, it is interesting to notice
that CgYap2 targets YCF1, which encodes a vacuolar transporter
playing a key role in cadmium detoxification in S. cerevisiae
(Wemmie et al., 1994; Li et al., 1997) and TNA1, the inactivation
of which leads to cadmium sensitivity (Ruotolo et al., 2008).
This suggests that the role of ScYap2 in cadmium resistance is
conserved in C. glabrata. In S. cerevisiae, the activity of Yap2 is
hidden by its partial functional redundancy with Yap1 (Azevedo
et al., 2007; Iwai et al., 2010; Mazzola et al., 2015). Hence, it would
be interesting to conduct ∆Cgyap2 transcriptome analyses in a
context in which CgYAP1 has been knocked out.

We identified about 40 potential targets for CgYap4/6. The
enrichment of the Sko1 binding motifs in the ChIP peaks
indicated that the role of ScYap4 and ScYap6 in osmotic stress
response may be conserved in C. glabrata. However, our GSEA
and GO analyses showed that the CgYap4/6 targets were enriched
neither in NaCl responsive genes nor in any particular functional
category and the actual role of this factor remains to be
elucidated. Our transcriptome analyses suggested that CgYap4/6
acts as a transcriptional repressor in the conditions that we tested.
In S. cerevisiae, this point is controversial. ScYap4 and ScYap6
have been shown to recruit the general transcriptional repressor
Tup1 (Hanlon et al., 2011) and bioinformatic analyses based
on transcriptome data have suggested that they could be both
repressors and activators (Tan et al., 2008). However, previous
studies based on northern blots had shown that ScYap4 positively
impacts the expression of three genes in response to osmotic
shock (Nevitt et al., 2004).

CgYap5 Can Act Both as an Activator and a
Repressor of Glutaredoxin Expression,
Depending on Iron Availability
Similarly to CgYap1, CgYap5 has a conserved role in the iron
stress response. In S. cerevisiae, Yap5 acts at three levels against
iron excess by 1- the induction of the glutaredoxin Grx4
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which senses iron-sulfur clusters in the cytoplasm (Muhlenhoff
et al., 2010) and negatively controls the activity of the Aft1/2
transcriptional activators of iron uptake (Ojeda et al., 2006;
Ueta et al., 2012); 2- the induction of Ccc1 which transports
cytoplasmic iron into the vacuole (Li et al., 2008); and 3-
the overexpression of Tyw1 which is an iron-sulfur cluster
containing protein and therefore contribute to iron sequestration
(Li et al., 2011). We showed here that, in iron excess conditions,
CgYap5 similarly controls the expression of GRX4, CCC1, and
genes encoding proteins involved in iron sequestration either
through iron-sulfur cluster binding and biogenesis (TYW1,
GLT1, ACO1, RLI1, SDH2, ISA1) or through heme biosynthesis
(HEM3).

In addition to this conserved role in the detoxification of
iron excess, we showed that CgYap5 is overexpressed in response
to iron starvation and that it represses the expression of GRX4
in these conditions. As mentioned above, Grx4 inhibits the
iron starvation response by promoting the nuclear export of
Aft1/2 when iron-sulfur clusters are abundant (reviewed in
Lill et al., 2014). The regulation of glutaredoxin activity is
mostly post-translational (Lill et al., 2014), but transcriptional
repression of GRX4 by CgYap5 may provide a supplementary
layer of regulation to ensure full Aft1/2 activity in iron starvation
conditions (Figure 6). This new role of Yap5 may be conserved
in S. cerevisiae, since ScYap5 has been shown to bind the GRX4
promoter independently of iron concentration and since the
deletion of ScYAP5 negatively impacts the nuclear localization
of Aft1/2 in iron limiting conditions (Pimentel et al., 2012).
However, the inactivation of ScYAP5 does not seem to impact
GRX4 expression in iron-replete cells (Pimentel et al., 2012).

This dual role of CgYap5 is reminiscent of its HapX orthologs.
HapX was initially identified as a key regulator of iron starvation
response in filamentous ascomycetes (Hortschansky et al., 2007;
Schrettl et al., 2010; Lopez-Berges et al., 2012), basidyomycetes
(Jung et al., 2010), and hemiascomycetes of the C. albicans
clade (where it is called Hap43; Hsu et al., 2011; Singh et al.,
2011). HapX acts by repressing iron consuming genes when
iron is limiting and HapX proteins are more expressed in iron
starvation than in iron excess growth conditions (Singh et al.,

FIGURE 6 | A dual role for CgYap5 in iron excess and iron starvation. In

iron excess (Left Panel), CgYap5 induces an iron stress response which is

very similar to what was described in S. cerevisiae. In iron starvation (Right

Panel), CgYap5 represses GRX4 expression and may indirectly contribute to

the induction of iron uptake genes by the Aft1/2 transcription factors.

2011; Gsaller et al., 2014). However, HapX was shown recently
to play an additional role in activating the expression of some of
its targets in response to iron excess in Aspergillus and Fusarium
sp. (Gsaller et al., 2014). Interestingly, Yap5 and HapX both sense
iron by directly binding iron-sulfur clusters through a conserved
cysteine rich domain (CRD; Gsaller et al., 2014; Rietzschel et al.,
2015). Our data indicate that Yap5 and HapX may have more
in common than just this CRD. As indicated above, CgYap5
is also overexpressed and able to repress transcription in iron
starved cells (Figure 6). Moreover, all the CgYap5 targets that we
identified, except GRX4, are targets of Hap43. This conservation
of targets is remarkable considering that Hap43 and Yap5 have
different DNA binding properties: Hap43, like HapX in other
fungi, mainly binds CCAAT boxes through its Hap4L like
domain (Hortschansky et al., 2007, 2015; Chen et al., 2011), while
Yap5 binds YRE-O using exclusively its bZIP region (this work, Li
et al., 2008; Pimentel et al., 2012). Still, the role of CgYap5 in iron
starvation is limited to a modest repression of GRX4 expression,
while HapX strongly represses the expression of tens of iron
consuming genes in these conditions (Supplementary File S9).

This new role of Yap5 opens the question of the molecular
mechanisms which would allow CgYap5 to be a transcriptional
repressor when iron is limiting. Several hypotheses can
be mentioned, based on the literature. The transcriptional
repression by Hap43 requires its Hap4L domain and involves
the CCAAT binding complex (Singh et al., 2011). Yap5 only
has a vestigial Hap4L domain (Merhej et al., 2015), which was
supposed to be non-functional although its activity has actually
never been tested so far. Second, Yap7, the ohnolog of Yap5, has
been shown to repress transcription by recruiting the general
repressor Tup1 (Merhej et al., 2015). Moreover, functional
connections between Hap43 and Tup1 have been reported in
C. albicans (Hsu et al., 2011). Additionally, the shift of Yap5
from an activator to a repressor could be controlled by iron
availability, since the binding of iron-sulfur clusters to ScYap5
was shown to significantly change its conformation (Rietzschel
et al., 2015).

Interconnections between CgYap1,
CgYap5, CgYap7, and the C. glabrata

Stress Response Network
Our data led us to propose new roles for Yap1 and Yap7 in the
regulation of genes involved, respectively, in heme biosynthesis
and in the biogenesis of iron-sulfur cluster proteins. Previously,
Yap7 was shown to be a repressor of the heme-containing
nitric oxide oxidase Yhb1 in C. glabrata and S. cerevisiae
(Merhej et al., 2015). Our ChIP-seq data indicated that CgYap7
binds many genes encoding enzymes of the cytoplasmic and
mitochondrial iron sulfur cluster biogenesis pathway. This result
is particularly interesting considering the important role played
by the mitochondrial iron sulfur clusters in the sensing of iron
availability and in regulating the activity of Yap5, the onholog of
Yap7 (Lill et al., 2014; Rietzschel et al., 2015).

In S. cerevisiae, there is little evidence of a connection
between Yap1 and heme biosynthesis, besides the binding of
ScYap1 to HEM1 (Salin et al., 2008) and the regulation by
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FIGURE 7 | CgYap1, CgYap5, and CgYap7 define a transcriptional network at the cross-roads between iron homeostasis, oxygen consumption, and

stress response. The plain arrows are regulations which were demonstrated to occur in C. glabrata. The dashed arrows are regulations which were demonstrated in

S. cerevisiae and were just hypothesized by functional annotation transfer in C. glabrata. Targeted transcription factors are in blue, kinases and phosphatases in

green, iron sulfur cluster binding proteins in red, and heme biosynthetic genes in pink.

ScYap1 of the heme-dependent repressors IXR1 and ROX1
(Castro-Prego et al., 2010; Caetano et al., 2015). We show
here that CgYap1 directly targets four of the eight enzymes
involved in this pathway (HEM1, HEM2, HEM3, HEM15) and
CgYAP1 deletion clearly impacted the expression of three of
them (HEM1, HEM3, and HEM15). Hence, we defined here a
CgYap1/CgYap5/CgYap7 network deeply involved in oxygen and

iron sensing by tuning redox homeostasis, heme biosynthesis,
iron storage, and iron sulfur cluster metabolism (Figure 7). Each
factor has its own specificity (CgYap1 in redox balance and
heme biosynthesis, CgYap5 in iron storage and CgYap7 in iron-
sulfur clusters biogenesis) but there are some interconnections
between them. For instance, CgYap5 and CgYap1 positively
control themitochondrial iron-sulfur cluster proteinsmaturation
factors Isa1 and Isu1/2/Isa2, respectively. Also, the HEM3 gene,
encoding the prophobilinogen deaminase (third step of heme
biosynthesis) came out as a “hub” in this network, being positively
regulated by CgYap1 and CgYap5 in response to oxidative stress
or iron excess, respectively, and repressed by CgYap7 in standard
growth conditions (Figure 3). Similarly, CCP1, encoding the
cytochrome c peroxydase which acts as a heme-based sensor
of the mitochondrial oxidative stress (Martins et al., 2013),
is positively regulated by CgYap1 and repressed by CgYap7
(Figure 3).

Another interesting feature of CgYap1 and CgYap7 is the
strong enrichment for transcription factors among their targets.
For instance, they potentially control the expression of several

transcription factors known in S. cerevisiae for being involved
in the regulation of hypoxic genes and oxygen consumption
(Rox1 and Ixr1 for CgYap1 and Mot3, Hap1 and Sut2 for
CgYap7; Figure 7; Castro-Prego et al., 2010; Gonzalez Siso et al.,
2012). They also target some regulators involved in the general
Environmental Stress response. This is for instance the case of
the Rpn4 and Msn4 transcription factors for CgYap1 or of the
Hog1, Hkr1, and Gac1 stress signaling proteins for CgYap7.
Additionally, CgYap1 seems to positively control the expression
of SKN7, which encodes a regulator of oxidative stress response
known to cooperate with Yap1 both in S. cerevisiae and in C.
glabrata (Morgan et al., 1997; Lee et al., 1999; Saijo et al., 2010;
Roetzer et al., 2011). This suggests that the network described
here is tightly connected to other transcriptional responses and
that CgYap1 and CgYap7 are master regulators in the C. glabrata
hierarchy of transcription factors (Jothi et al., 2009; Bhardwaj
et al., 2010).
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