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Thèse de doctorat



Contents

1 Introduction 5
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Chapter 1

Introduction

1.1 Français

Le but de cette thèse est d’étudier les plongements isométriques PL du tore
carré plat dans l’espace E3 = (R, 〈, 〉). En 2012, un plongement isométrique
C1 du tore carré plat dans E3 a été construit explicitement en [BJLT12] et
[BJLT13]. Rappellons que le tore carré plat est le quotient T2 = E2/(Ze1 +
Ze2) où (e1, e2) est une base orthonormale de E2. Un plongment f : T2 → E3

est isométric si le pulback par f de la métrique induite par E3 dans f(T2)
cöıncide avec la métrique euclidienne dans T2. Ici, on s’intéresse aux plonge-
ments linéaires par morceaux (PL) au lieu des plongements C1.

Un plongement PL est un plongement linéaire dans E3 d’un complex
simplicial C qui triangule T2. Soit h : C → T2 une telle triangulation.
Un plongement isom]’etrique PL de T2 es un plongement linéaire g :
C → E3 qui induit une isométrie entre C et f(C), où C est fournit, avec le
pullback par h, du la métrique euclidienne en T2, et f(C) est equipée de la
métrique induite par E3. Remarquons que h et g définissent une isométrie
f : T2 → E3 d’accord au diagramme suivant.

C
g

��

h // T2

f
��

E3

On rappelle finalement qu’un plongement linéaire d’un complex simplicial
envoie chaque arête dans un segment droit dans E3. En 1996 Burago et Zal-
galler [BZ95] ont montré que chaque surface polyhédrique admet un plonge-
ment siométrique PL dans E3. L’année suivante, Zalgaller [Zal00] a construit
un plongement isométrique PL explicite de cylindres longs et tores rectan-
gulaires plats longs, mais jusqu’à présent, aucun plongement PL explicite
du tore carré plat n’était connu. Dans la première partie de cette thèse on
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6 CHAPTER 1. INTRODUCTION

a donné un tel plongement, see figure 1.3. Plus spécifiquement, on a montré
le résultat suivant.

Figure 1.1: A PL isometric embedding of the square flat torus.

Theorem 1.1.1. Il existe un plongement isométrique PL du tore carré plat
avec au plus 48 points.

L’idée derrière cette construction est d’utiliser les corrugations et a été
inspiré de la théorie de l’intégration convèxe. Ce résultat pose la question
du nombre minimal de sommets nécessaires pour obtenir un plongement du
tore carré plat. Autrement dit, on cherche la triangulation la plus petite
du tore qui admets un plongement linéaire isométrique à T2. La triangu-
lation minimal est connu comme le tore de Moebius. Son un-squelette est
le ghraphe complet de sept sommets. Il admet an plongement linéaire, le
tore de Császár [Csá49a] qui n’est isométrique à aucun tore plat. See figure
1.4. On conjecture que le tore de Moebius n’a aucun plongement linéaire
isométrique à T2.

Pour comprendre cette conjecture, on remarque d’abord que que dans
le diagramme précédent, la fonction h induit une triangulation géodésique
T dans T2 telle que chaque arête est une géodésique minimisante, c’est à
dire un segment géofésique. Comme dans E2 les translations agissent de
façon isométrique dans l’ensemble des triangulations de T2, on considère
l’espace GE(M,T2) de triangulations géodésiques de T2 isomorphes à C
modulo cette action. En particulier, T (modilo translations) est un élément
de GE(M,T2). Lorsque C = M , on est capable de donneer une description
complète de l’espace de configurations GE(M,T2).
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Figure 1.2: Left, the Moebius triangulation of the torus. Right, the Császár
torus.

Theorem 1.1.2. L’espace de configurations GE(M,T2) est l’union disjointe
de 12 produits de simplexes

GE(M,T2) =
12⋃
i=1

∆i
x ×∆i

y,

où ∆i
x, ∆i

y son simplexes de dimension 6.

Soit T ∈ GE(M,T2). On denote par LT (E3) l’ensemble de plongements
linéaires isométriques de T dans E3 et par LT2(M,E3) l’union de LT (E3)
pour tout T ∈ GE(M,T2). Montre que le tore de Moebius n’a aucun plonge-
ment linéaire à T2 est donc équivalent à montrer que l’espace LT2(M,E3)
es vide, i.e. que LT (E3) es vide pour tout T ∈ GE(M,T2). On a réussi à
montrer ce résultat pour un sous-espace relativement grand de GE(M,T2).

Theorem 1.1.3. Pour chaque i = 1, . . . , 12, il y a une section fi : ∆i
x →

∆i
x × ∆i

y dont l’image Si = fi(∆
i
x) a un voisinage de dimension 12 N(Si)

tel que pour chaque T ∈ GE(Si), on a LT (E3) = ∅.

Ce résultat n’est pas trivial et repose dans une estimation fine de quelques
quantités géométriques associées à des sub-configurations de chaque T ∈ Si.

1.2 English

The goal of this work is to study PL isometric embeddings of the square flat
torus in Euclidean space E3 = (R3, 〈 , 〉). In 2012, a C1 isometric embed-
ding of the square flat torus in E3 was explicitly constructed in [BJLT12]
and [BJLT13]. Recall that the square flat torus is the quotient T2 =
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E2/(Ze1 + Ze2) where (e1, e2) is an orthonormal basis of E2. An embed-
ding f : T2 → E3 is isometric if the pullback by f of the metric induced
by E3 on f(T2) coincides with the Euclidean metric on T2. Here, we are
interested in piecewise linear (PL) embeddings instead of C1 embeddings.

A PL embedding is a linear embedding into E3 of a simplicial complex
C that triangulates T2. Let h : C → T2 be such a triangulation. A PL
isometric embedding of T2 is a linear embedding g : C → E3 that induces
an isometry between C and f(C) where C is endowed with the pullback by h
of the Euclidean metric on T2 and f(C) is equipped with the metric induced
by E3. Observe that h and g define an isometric map f : T2 → E3 according
to the following diagram.

C
g

��

h // T2

f
��

E3

We finally recall that a linear embedding of a simplicial complex sends each
edge to a linear segment in E3. In 1996 Burago and Zalgaller [BZ95] proved
that any connected compact polyhedral surface admits an PL isometric em-
bedding into E3. The year after Zalgaller [Zal00] constructed explicit PL
isometric embeddings of long cylinders and long flat tori, but up to now no
explicit PL embedding of the square flat torus was known. In the first part
of this thesis we provide such an embedding, see Figure 1.3. More precisely

Figure 1.3: A PL isometric embedding of the square flat torus.

we prove the following

Theorem 1.2.1. There exists a PL isometric embedding of the square flat
torus with at most 48 vertices.
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Figure 1.4: Left, the Moebius triangulation of the torus. Right, the Császár
torus.

The idea behind the construction is to use corrugations and was inspired
by the convex integration theory. This result raises the question of the min-
imal number of vertices needed a PL isometric embedding of the square flat
torus. In other words, we look for the smallest triangulation of the torus
that admits a linear embedding isometric to T2. The minimal triangula-
tion is known as the Moebius torus. Its one-skeleton (vertex-edge graph)
is the complete graph on 7 vertices. It admits a linear embedding, the so-
called Császár torus [Csá49b] which is not isometric to any flat torus. See
Figure 1.4 We conjecture that the Moebius torus has no linear embedding
isometric to T2.

In order to understand this conjecture, we first note that in the above
diagram, the map h induces a geodesic triangulation T on T2 such that every
edge is a distance minimizing geodesic i.e. a geodesic segment. Since E2 acts
isometrically by translations on the set of geodesic triangulations of T2 we
consider the space GE(C,T2) of geodesic triangulations of T2 isomorphic to
C modulo this action. In particular T (modulo translations) is an element
of GE(C,T2). When C = M we are able to give a complete description of
the space of configurations GE(M,T2).

Theorem 1.2.2. The configuration space GE(M,T2) is the disjoint union
of 12 products of simplices

GE(M,T2) =

12⋃
i=1

∆i
x ×∆i

y,

where ∆i
x,∆

i
y are 6-dimensional simplices.
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Let T ∈ GE(M,T2). We denote by LT (E3) the set of linear isometric
embeddings of T in E3 and by LT2(M,E3) the union of LT (E3) over all
T ∈ GE(M,T2). Proving that the Moebius torus has no linear embedding
isometric to T2 is thus equivalent to show that the space LT2(M,E3) is
empty, i.e. that LT (E3) is empty for every T ∈ GE(M,T2). We were able
to prove this result for a relatively large subspace of GE(M,T2).

Theorem 1.2.3. For each i = 1, . . . , 12, there exists a section fi : ∆i
x →

∆i
x×∆i

y whose image Si = fi(∆
i
x) has a 12-dimensional neighborhood N(Si)

such that for every element T ∈ N(Si) we have LT (E3) = ∅.

This result is already non trivial and relies on a tight estimation of some
geometric quantities associated to sub-configurations of each T ∈ Si.



Chapter 2

PL-embedding of the Flat
Torus into E3

We present a 2-parameter family of explicit PL-embeddings of the flat square
torus T2 = E2/Z2 into E3. One of them only involves 48 vertices.

2.1 Introduction

In [BZ95], Burago and Zalgaller proved that any connected compact poly-
hedral surface admits an isometric piecewise linear (PL) immersion into E3.
Recall that a polyhedral surface is 2-dimensional manifold endowed with
a polyhedral metric i. e. a metric such that every point has a neighbor-
hood isometric to the neighborhood of the vertex of a cone in E3. Their
approach relies on the Nash-Kuiper C1-embedding Theorem ([Nas54] and
[Kui54]) and their construction is not explicit for this reason (see [Sau12] for
a discussion). In addition to an initial PL-approximation of an almost C1

isometric embedding, the construction of Burago-Zalgaller involves several
subdivision steps so that the resulting triangulation is very large. Finding
an explicit triangulation with few vertices appears a real challenge. Zal-
galler investigated the question of how to construct explicit PL-embeddings
of cylinders or flat tori and found a solution for long cylinders and long
tori [Zal00]. Recall that a flat torus is the quotient of the two-dimensional
Euclidean plane by a lattice. It is called rectangular when the lattice itself
is rectangular. The above construction of Zalgaller restricted to rectangular
tori requires that the width is at least twice of its height. In this article,
we provide the first explicit PL-embeddings of short rectangle tori including
the square torus.

Theorem 2.1.1. There exists a PL isometric embedding of any rectangular
torus with at most 48 vertices.

Our PL-embeddings are inspired from the corrugated C1 isometric embed-

11
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Figure 2.1: PL isometric embeddings of the square flat torus with 6, 10 and
30 corrugations (x = 0.1, see below)

dings of the flat torus generated by the Convex Integration Theory and
constructed in [BJLT13] and [BJLT12]. Essentially, we construct PL corru-
gations along one side of the rectangle to introduce flexibility and to allow
the identifications between the opposite sides. We show that six corrugations
are enough to obtain a PL-isometric embedding. The corresponding num-
ber of vertices is 48. If the isometric constraint is released, it is known that
the torus admits a PL-embedding with 7 vertices and that this number can
not be reduced [Csá49b] and [BE91]. The question of the minimum number
of vertices of a PL-isometric embedding of a flat torus is quite natural but
probably very difficult.

2.2 Triangulations of the square torus

In this section we describe a family of triangulations T (x, n) of the square
torus depending on two parameters, n ∈ N≥6 and x ∈ ]0, 0.15[.

General description of T (x, n).– Let (ε1, ε2) be an orthonormal basis of
E2 and let T2 = E2/Zε1⊕Zε2 be the square torus. We consider π : E2 → T2

the covering map and D := [0, 1[2⊂ E2 a fundamental domain. We identify
the triangulation T (x, n) with its trace on D, namely with π−1(T (x, n))∩D.
The triangulation is built from a pattern which consists of 8 triangles located
on vertical ribbon of width 1

2n . This pattern is then reflected and translated
to create the whole triangulation (see figure 2.2).

Each ribbon will be mapped into R3 to generate half of a PL corrugation (see
Figure 4). The rotational symmetry of the embedding combined with the
isometric constraints greatly compel the geometry of the trapezoids aibidici.
They are, for this reason, the basic pieces of the triangulation and we now
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Figure 2.2: The triangulation T (x, n) (the initial ribbon is in grey).

Figure 2.3: Basic trapezoid (view with a quarter turn with respect to Figure
2.2).

describe them.

The basic piece of T (x, n).– We consider the trapezoid a0b0c0d0 and we
denote by ` its larger basis, by h its height and by θa and θb its angles at a0

and b0. We assume and 0 < θa ≤ π
2 and 0 < θb <

π
2 . See figure 2.3.

We now give a choice of the quantities h, `, θa and θb that will fulfill the
rotational and isometric constraints. Let n ∈ N≥6 and x ∈ ]0, 0.15[, we put

(A1) h = 1
2n

(A2) ` = Φ(x, h) where

Φ(x, h) =
hδ(x) sin(2hπ)√

(σ(x)− (x+ 0.1) cos(2hπ)δ(x))2 + x2 sin2(2hπ)δ2(x)
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with δ(x) =
√

1− (2x− 0.9)2 and σ(x) = −2x2 + 1.9x+ 0.1.

(A3) y = 0.9− x

We then locate the trapezoid at positions:

a0 =

(
0,

1

4
(1 + 2`(0.1 + 2x))

)
, b0 =

(
0,

1

4
(1 + 2`(−1.9 + 2x))

)
,

c0 =

(
h,

1

4
(1 + 0.2`)

)
, d0 =

(
h,

1

4
(1− 0.2`)

)
The triangulation T (x, n).– We build another trapezoid a′0b

′
0c
′
0d
′
0 by re-

flecting a0b0c0d0 through the line y = 1
2 , we have

a′0 =

(
0,

1

4
(3− 2`(0.1 + 2x))

)
, b′0 =

(
0,

1

4
(3− 2`(−1.9 + 2x))

)
,

c′0 =

(
h,

1

4
(3− 0.2`)

)
, d′0 =

(
h,

1

4
(3 + 0.2`)

)
Let s be the reflection through the vertical line of abscissa h. We set
a1 = s(a0), b1 = s(b0), a′1 = s(a′0) and b′1 = s(b′0) and we add the obvi-
ous edges to define the two new trapezoids a1b1c0d0 and a′1b

′
1c
′
0d
′
0. Let τ be

the translation of vector 2hε1. For every i ∈ {1, ..., n−1} we set ai := τ i(a0),
..., d′i = τ i(d′0) and define the trapezoids aibicidi, a

′
ib
′
ic
′
id
′
i, ai+1bi+1cidi and

a′i+1b
′
i+1c

′
id
′
i. See Figure 2.2. We complete the triangulation T (x, n) by

adding for every i ∈ {0, ..., n − 1} the Euclidean segments aidi, a
′
id
′
i, aia

′
i,

cic
′
i, aic

′
i, ai+1c

′
i, and four families of edges bib

′
i, did

′
i, bid

′
i and bi+1d

′
i whose

traces on D are broken into two pieces. Namely the trace of the edge bib
′
i

is π−1(π([bi, b
′
i − ε2]))∩D and respectively π−1(π([di, d

′
i − ε2]))∩D for did

′
i,

π−1(π([bi, d
′
i − ε2])) ∩ D for bid

′
i and π−1(π([bi+1, d

′
i − ε2])) ∩ D for bi+1d

′
i.

For a latter use we will need the following lemma.

Lemma 2.2.1. For every n ∈ N≥6 and x ∈ ]0, 0.15[ we have

`2 <
h2

δ2(x) sin2(2πh) + x2
.

Proof. After substituting ` by its expression (A2), the inequality of the
lemma reads:

h2 sin2(2πh)δ2(x)

(σ(x)− (0.1 + x)δ(x) cos(2πh))2 + x2δ2(x) sin2(2πh)
<

h2

δ2(x) sin2(2πh) + x2
.

This last inequality is easily seen to be equivalent to the following one:

fn(x) < σ(x) where fn(x) = δ2(x) sin2
(π
n

)
+ δ(x) cos

(π
n

)
(0.1 + x).
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Let In = {t ∈ ]0, 1] | fn(t) < σ(t)}. Using that the sequence (fn(t))n∈N∗ is
decreasing, it can be checked that In = ∅ if n ≤ 5 and that

]0, 0.15[ ⊂ I6 ⊂ ... ⊂ In.

This proves the lemma.

2.3 PL embeddings of the square torus

In this section we describe for each n ∈ Nn≥6 and x ∈]0, 0.15[ a linear
embedding of the triangulation T (x, n) into E3. We denote by O the origin
of E3 and we introduce the three following points of E3:

ΩA =

(
0, 0,

1

4
(1− 2`(0.1 + 2x))

)
ΩB =

(
0, 0,

1

4
(1− 2`(1.9− 2x))

)
Ω∗ =

(
0, 0,

1

4
(1− 0.2`)

) (2.1)

We define a PL map F : T2 → E3 by its image on every vertex of T (x, n):

F (ai) = ΩA + r4

(
cos

(2i+ 1)π

n
,− sin

(2i+ 1)π

n
, 0

)
F (bi) = ΩB + r1

(
cos

(2i+ 1)π

n
,− sin

(2i+ 1)π

n
, 0

)
F (ci) = Ω∗ + r3

(
cos

2iπ

n
,− sin

2iπ

n
, 0

)
F (di) = Ω∗ + r2

(
cos

2iπ

n
,− sin

2iπ

n
, 0

)
(2.2)

and similarly,

F (a′i) = −ΩA + r4

(
cos

(2i+ 1)π

n
,− sin

(2i+ 1)π

n
, 0

)
F (b′i) = −ΩB + r1

(
cos

(2i+ 1)π

n
,− sin

(2i+ 1)π

n
, 0

)
F (c′i) = −Ω∗ + r3

(
cos

2iπ

n
,− sin

2iπ

n
, 0

)
F (d′i) = −Ω∗ + r2

(
cos

2iπ

n
,− sin

2iπ

n
, 0

)
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Figure 2.4: Left, view of a slice of F (T2), on the vertical axis zA, zB and z∗
denote the vertical coordinates of ΩA, ΩB and Ω∗. Right, view from above
of F (T2), the circles have radii r1 < r2 < r3 < r4.

for all i ∈ {0, . . . , n− 1} and where r1, r2, r3 and r4 are given by:

r4 =

√
h2 − `2x2

sin(2πh)

r3 = r4 cos(2πh)− `x
r2 = r3 − c0d0

r1 = r4 − `δ(x).

(2.3)

Note that the points F (ai), i ∈ {0, ..., n}, lie in a circle of radius r4 and of
center ΩA. Similarly, the points F (bi), i ∈ {0, ..., n}, lie in a circle of radius
r1 and of center ΩB, and so on. See Figure 2.4.
Observe that in this figure we have assumed that 0 < r1 < r2 < r3 < r4.
The fact that these inequalities hold is ensured by the following lemma:

Lemma 2.3.1. We have: 0 < r1 < r2 < r3 < r4.

Proof. We first note that

r4 − r3 = r4 (1− cos(2πh)) + `x > 0

whence r4 > r3. We also have r3 > r2 since r2 = r3 − c0d0. The proof that
r1 < r2 is less straightforward. We have

r1 < r2 ⇐⇒ r4 − `δ(x) < r3 − c0d0 ⇐⇒ r4 − r3 < `δ(x)− c0d0
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Since r3 = r4 cos(2πh)− `x and c0d0 = 0.1` the last inequality reduces to

r4(1− cos(2πh)) < `(δ(x)− 0.1− x).

Replacing r4 with its value in the above inequality, we obtain

√
h2 − `2x2 (1− cos(2πh))

sin(2πh)
< ` (δ(x)− 0.1− x)

Observe that both sides are positive, therefore this inequality is equivalent
to

(h2 − `2x2) (1− cos(2πh))2 < `2 (δ(x)− 0.1− x)2 sin2(2πh)

i. e.

h2 (1− cos(2πh))2 < `2
(

(δ(x)− 0.1− x)2 sin2(2πh) + x2 (1− cos(2πh))2
)
.

By (A2) we obtain

(1− cos(2πh))2 <
sin2(2πh)δ2(x)

(
(δ(x)− 0.1− x)2 sin2(2πh) + x2 (1− cos(2πh))2

)
(σ(x)− (0.1 + x)δ(x) cos(2πh))2 + x2 sin2(2πh)δ2(x)

or equivalently

(1− cos(2πh))2 (σ(x)− (0.1 + x)δ(x) cos(2πh))2 < sin4(2πh)δ2(x) (δ(x)− 0.1− x)2

Taking the square root, we obtain

(1− cos(2πh)) (σ(x)− (0.1 + x)δ(x) cos(2πh)) < sin2(2πh)δ(x) (δ(x)− 0.1− x) .

We thus have to prove that

σ(x)− (0.1 + x)δ(x) cos(2πh)

δ(x)(δ(x)− 0.1− x)
<

sin2(2πh)

1− cos(2πh)
.

To do so, we remark that the right term is greater than 1 and we show that
the left term is lower than 1. This will be achieved if

gn(x) := σ(x)− (0.1 + x)δ(x) cos(2πh)− δ(x)(δ(x)− 0.1− x)

is negative. It is straightforward to see that

gn(x) = 2x2 − 1.7x− 0.09 + δ(x)(0.1 + x)(1− cos(2πh)).

Since δ(x) < 1 for x ∈ ]0, 0.15[, we have

gn(x) ≤ 2x2 − 1.7x− 0.09 + (0.1 + x)
(

1− cos
(π

6

))
=: g(x)
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Figure 2.5: Constructions of ei, fi, e
′
i and f ′i

It is then easily seen that g(x) < 0 for every x ∈ ]0, 0.15[. It follows that
gn(x) < 0 thus proving r1 < r2.

It remains to prove that r1 > 0. Since r1 = r4 − `δ(x), it is enough to show
that `2δ2(x) < r2

4 i. e.

`2δ2(x) <
h2 − x2`2

sin2(2πh)

that is

`2 <
h2

δ2(x) sin2(2πh) + x2

which holds by lemma 2.2.1.

2.4 Proof of Theorem 2.1.1

In this section, we prove that the map PL map F : T2 → E3 described
above is both isometric and an embedding. To show that F is isometric, it
is enough to prove that every triangle of T (x, n) is mapped isometrically by
F . In turn, this reduces to show that F preserves the lengths of the edges
of the triangulation.
For practical reasons, we introduce supplementary families of points in D.
For every i ∈ {0, ..., n − 1} we consider the points ei ∈ [cic

′
i] such that

aiciei is a right triangle (resp. e′i ∈ [cic
′
i] such that a′ic

′
ie
′
i is a right triangle).

Similarly, we also consider the points fi ∈ [did
′
i] such that dibifi is a right

triangle (resp. f ′i ∈ [did
′
i] such that d′ib

′
if
′
i is a right triangle), see Figure 2.5.

Lemma 2.4.1. We have:

ΩA =

(
0, 0,

cic
′
i

2
− ciei

)
, ΩB =

(
0, 0,

did
′
i

2
− difi

)
and

Ω∗ =

(
0, 0,

did
′
i

2

)
=

(
0, 0,

cic
′
i

2

)
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Proof. By construction cidi = `−eici−difi, moreover eici = `x and difi = `y
thus cidi = 0.1` and 1 − 2cidi = 1 − 0.2`. On the other hand, we have
1 − 2cidi = did

′
i + cic

′
i = 2did

′
i = 2cic

′
i since cic

′
i = did

′
i. Thus Ω∗ =(

0, 0,
did
′
i

2

)
=
(

0, 0,
cic
′
i

2

)
. The remaining cases are similar.

Lemma 2.4.2. Let

Ψ(`, x, h) = `2σ(x)− ` (r4 − r2 cos(2πh)) δ(x) (2.4)

If ` satisfies (A2) then Ψ(`, x, h) = 0.

Proof. Squaring (A2) and rearranging we deduce

`2(σ(x)− (x+ 0.1) cos(2hπ)δ(x))2 − sin2(2πh)δ2(x)(h2 − x2`2) = 0.

It follows that

`(σ(x)− (x+ 0.1) cos(2hπ)δ(x))− sin(2πh)δ(x)
√
h2 − x2`2 = 0

or equivalently

`σ(x)− δ(x)
(

(x+ 0.1) cos(2hπ)`+ sin(2πh)
√
h2 − x2`2

)
= 0. (2.5)

We then observe that the rightmost factor is equal to r4 − r2 cos πn , indeed

r4 − r2 cos
π

n
= r4 − r4 cos2 π

n
+ `x cos

π

n
+ c0d0 cos

π

n

= r4

(
1− cos2 π

n

)
+ ` cos

π

n
(x+ 0.1)

= r4 sin2 π

n
+ ` cos

π

n
(x+ 0.1)

= sin
π

n

√
h2 − x2`2 + ` cos

π

n
(x+ 0.1) .

We have obtained `σ(x)− δ(x)
(
r4 − r2 cos πn

)
= 0

Proposition 2.4.3. The PL map F : T2 → E3 is isometric.

Proof of proposition 2.4.3. It is enough to prove that the distance of every
edge [p, q] in T (x, n) is preserved under f , i.e. dE3(F (p), F (q)) = d(p, q). To
save space, we often write pq for d(p, q) in this proof. A direct computation
shows that d2

E3(F (ci), F (c′i)) = d2(ci, c
′
i) and d2

E3(F (di), F (d′i)) = d2(di, d
′
i).

By lemma 2.4.1, we have

d2
E3(F (ai), F (bi)) = (r4 − r1)2 + (ciei − difi)2

= `2δ2(x) + `2 (x− y)2 = `2 = (aibi)
2
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d2
E(F (ai), F (ci)) = r2

4 + r2
3 − 2r4r3 cos

π

n
+ (ciei)

2

= r2
4 +

(
r4 cos

π

n
− `x

)2
− 2r4

(
r4 cos

π

n
− `x

)
cos

π

n
+ (ciei)

2

= r2
4 sin2 π

n
+ `2x2 + (ciei)

2

= h2 + (ciei)
2 = (aici)

2.

d2
E3(F (di), F (ai)) = r2

4 + r2
2 − 2r4r2 cos

π

n
+ (ciei)

2

= r2
4 +

(
r4 cos

π

n
− `x− cidi

)2

− 2r4

(
r4 cos

π

n
− `x− cidi

)
cos

π

n
+ (ciei)

2

= r2
4 sin2 π

n
+ `2x2 + (cidi)

2 + 2cidi`x+ (ciei)
2

= h2 + (cidi)
2 + 2cidi.ciei + (ciei)

2

= h2 + (dici + ciei)
2 = (aidi)

2.

d2
E3(F (bi), F (di)) = r2

1 + r2
2 − 2r1r2 cos

π

n
+ (difi)

2

= r2
2 + (r4 − `δ(x))2 − 2r2 (r4 − `δ(x)) cos

π

n
+ (difi)

2

= (difi)
2 + r2

2 + r2
4 − 2r2r4 cos

π

n

+ `2δ2(x)− 2r4`δ(x) + 2r2`δ(x) cos
π

n

Since r2
2 + r2

4 − 2r2r4 cos πn = d2(F (di), F (ai))− (ciei)
2 we have

r2
2 + r2

4 − 2r2r4 cos
π

n
= h2 + (dici + ciei)

2 − (ciei)
2 = h2 + (diei)

2 − (ciei)
2.

For the last equality we have used that ei, ci and di are aligned in this order.
We then can write

d2
E3(F (bi), F (di)) = (difi)

2 + h2 + (diei)
2 − (ciei)

2 + `2δ2(x)

− `δ(x)
(

2r4 − 2r2 cos
π

n

)
= (difi)

2 + h2 + `2((1− y)2 − x2 + δ2(x))

− `δ(x)
(

2r4 − 2r2 cos
π

n

)
= (difi)

2 + h2 + 2Ψ(`, x, h).

For the second equality we have used that diei = `(1− y) and ciei = `x and
for the third equality we have used that (1− y)2 − x2 + δ2(x) = 2σ(x). By
lemma 2.4.2, Ψ(`, x, h) = 0, we thus have

d2
E3(F (bi), F (di)) = (bidi)

2
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as desired. We also have

d2
E(F (ci), F (di)) = (r3 − r2)2 = (cidi)

2.

By Lemma 2.4.1, we have

dE3(F (ai), F (a′i)) = cic
′
i − 2ciei.

With the help of Figure 5, it is easily seen that

cic
′
i − 2ciei = cic

′
i − ciei − c′ie′i = aia

′
i.

Similarly,

dE3(F (bi), F (b′i)) = did
′
i − 2difi

= did
′
i − difi − d′if ′i

= bib
′
i.

Using once again Lemma 2.4.1 we compute

d2
E3(F (ai), F (c′i)) = r2

4 + r2
3 − 2r4r3 cos

π

n
+ (cic

′
i − ciei)2

= h2 + (cic
′
i − ciei)2

= (aic
′
i)

2.

A similar computation shows that d2
E3(F (ai+1), F (c′i)) = d2

T2(ai+1, c
′
i). Fi-

nally,

d2
E3(F (bi), F (d′i)) = r2

1 + r2
2 − 2r1r2 cos

π

n
+ (did

′
i − difi)2

= h2 + (did
′
i − difi)2

= (bid
′
i)

2

and similarly d2
E3(F (bi+1), F (d′i)) = bi+1d

′
i.

Proposition 2.4.4. The PL map F : T2 → E3 is an embedding.

Proof. The proof reduces to show that if the images of two triangles of
T (x, n) have a non empty intersection set then they intersect along a com-
mon edge or vertex. Since the image of the ribbons are included in disjoint
wedges, it is enough to check this fact for the eight triangles of a vertical
ribbon of T (x, n). The computations related to this tedious check will not
be reported here.

Case of rectangular tori.– Elongating the vertical faces of F (T2), we
can obtain any rectangular flat torus.
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Chapter 3

Linear embedding of the
Moebius Torus

3.1 The Moebius’ torus

We recall that a triangulation of the torus is given by a simplicial complex
C and a homeomorphism f : |C| → T2 where |C| is the carrier space of C.
It is well known that every surface can be triangulated.

v

v1

v2

Figure 3.1: Edge contraction

A classical operation on triangulations is called edge contraction, it con-
sists of collapsing an edge into a vertex (see figure 3.1). This operation
does not always result in a simplicial complex. We say that a surface is
irreducible if no edge can be contracted to produce a simplicial triangu-
lation. It has been proved that every topological surface admits a finite
number of irreducible triangulations [BE89]. In particular it is known that
the torus has 21 irreducible triangulations [MT01, Sec. 5.4]. Among those
the Moebius’ torus is the only one with 7 vertices wich is minimal for all
triangulations of the torus. More precisely the Moebius’ torus has 7 ver-
tices, 21 edges and 14 faces. The automorphism group has order 42 and is
generated by τ = (0156324) and ρ = (123456) (see figure 3.2).

23
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Proposition 3.1.1. If we number the vertices of M 0, . . . , 6 so that the
neighbors of vertex 0 are in the cyclic order 1, 2, 3, 4, 5, 6, 1, then there are
only two possible lists of triangles namely:

(LI) : (012), (023), (034), (045), (056), (061), (135), (154), (142), (163),
(264), (265), (253), (364).

(LII) : (012), (023), (034), (045), (056), (061), (143), (135), (125), (164),
(254), (246), (263), (365).

The two possibilities correspond to the two possible orientations of the cycle
of neighbors (see figure 3.2).

The first list correspond when the vertices are oriented clockwise and
the second list correspond when they are oriented counterclockwise, we will
take then the faces of the Moebius’ torus as those in the list (LI). The list
is invariant under cyclic permutation of indexes 1 to 6.

LI

0 1 5 6 3 2 4 0

66 3 2 4 0 1 5

Figure 3.2: Combinatorial description of the Moebius’ torus. The ver-
tex numbering is such that the neighbors of vertex 0 appear ordered as
1, 2, 3, 4, 5, 6, 1.

Note that the 1-skeleton of the Moebius’ torus is the complete graph on
seven vertices, which we denote by K7. Although its size is very small,
the Moebius’ torus has many linear embeddings in E3 as proved in [BE], in
particular the Csáczár torus is a linear embedding of the flat torus in E3

[Csá49b] (see figure 3.3).

The main goal is to show that the number of vertices in the construction of
a PL square flat torus made in the first part of this manuscript can not be
lowered too much. For this we would like to show that the Moebius’ torus
has no linear embeddings isometric to the square flat torus in E3 and even
more, in En with n > 0.

In this part we give strong arguments to conjecture that for M the Moebius’
torus LT2(M,E3) is empty, as we have already pointed, every element of



3.1. THE MOEBIUS’ TORUS 25

Figure 3.3: Csáczár torus: a linear embedding of T2 in E3.

LT2(M,E3) can be seen as a linear isometrically embedding of a metric tri-
angulation T ∈ GE(M,T2). We first give a precise definition of GE(M,T2)
and we give some evidences that no T ∈ GE(M,T2) can be isometrically
linearly embedded in E3.

Before we consider this space, we first give some properties of the distance
computation on T2. We note by dE2(, ) the usual Euclidean distance in E2

and dT2(, ) the distance in the square torus seen as a quotient of E2.

We consider π : E2 → T2 the covering space of T2 with π the quotient map.
For a point P in E2, we denote by

VP :=
{
Q ∈ E2| ∀P ′ ∈ π−1π(P ), dE2(P,Q) ≤ dE2(P ′, Q)

}
its Voronoi cell with respect to π−1π(P ) = P + Z2. It is easily seen that
VP = P + [−1

2 ,
1
2 ]2. We will often use the following property:

Lemma 3.1.2. Let P,Q ∈ E2, then dE2(P,Q) = dT2(π(P ), π(Q)) if and
only if Q ∈ VP .

Proof. Put p = π(P ) and q = π(Q) and let γ a path from p to q. We denote
by γ̃ : [0, 1]→ E2 the lift of γ with γ̃(0) = P . We have Q′ := γ̃(1) ∈ P + Z2

and we have

length(γ) = length(γ̃) ≥ dE2(P,Q′) ≥ dE2(P,Q0)

whereQ0 is any lift of q in VP . The last inequality is strict wheneverQ′ 6∈ VP .
Note that all lifts of q in VP are at the same distance from P . It follows
that π([P,Q0]) is a minimizing geodesic, whence dT2(p, q) = dE2(P,Q0). We
conclude that dT2(p, q) = dE2(P,Q) if and only if Q ∈ VP .
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3.2 The space GE(M,T2) of geodesic triangulations

Recall that a PL isometric embedding of T2 in E3 induces a geodesic trian-
gulation T on T2 such that every edge of T is a geodesic segment in T2. In
particular, every linear isometric embedding of M in E3 which is isometric
to T2 induces a geodesic triangulation T . In fact we claim that this triangu-
lation satisfies the following unique shortest path property: every pair
of vertices is connected by a unique geodesic in T2.

Proof of the claim: Consider a linear isometric embedding f : M → E3. We
denote by T the induced geodesic triangulation. Let p, q be two vertices
on T and γ, λ be shortest paths from p to q (see figure 3.4). Then f(γ)
and f(λ) are two shortest paths on f(M) ⊂ E3. Since the 1-skeleton of the
Moebius’ torus is a complete graph, pq is an edge of M such that f(p) and
f(q) are connected by a line segment in E3. By uniqueness of shortest paths
in E3 it follows that f(λ) = f(γ) = [f(p), f(q)]. Assume that γ and λ are
different, we take the first point r where λ and γ become different. Clearly
f cannot be injective on any neighborhood of r. This contradicts the fact
that f is an immersion and so an embedding .

Note that E2 acts isometrically by translations on the set of linear em-
beddings of M in T2. We denote by GE(M,T2) the space of linear embed-
dings of M in T2 with the shortest path property, where the embeddings are
considered modulo the action of E2. It is equivalent to work with marked
(minimizing) geodesic triangulations of T2 isomorphic to M . We will thus
note by T an element of GE(M,T2) keeping in mind that the vertices of T
have distinct labels. Hence, two triangulations are equivalent if and only if
they are related by a translation that preserves the labels. We denote by
V (T ) = {p0, . . . p6} the seven marked vertices of T . From now on, we set
p0 = π(0, 0) since T is taken modulo translations.

In this section, we study the space GE(M,T2). This space GE(M,T2)
is endowed with a natural distance; for this we choose a basepoint ∗ of M
once for all and given two embeddings f, g : M → T2 we put d(f, g) =
sup
x
dT2(f∗(x), g(x)) where f∗ is the translate of f that coincides with g at

the basepoint ∗ of M .

Lemma 3.2.1. d is a distance in GE(M,T2) and the topology induced by d
is independent of the base point of M .

Proof. Let us first show that d is a distance: Take d(f, h) = sup
x
dT2(f∗(x), h(x)).

We have dT2(f∗(x), h(x)) = dT2(f(x)+h(∗)−f(∗), h(x)) = dT2(f(x)+h(∗)−
f(∗) + g(∗) − g(∗), h(x)) = dT2(f(x) + g(∗) − f(∗), h(x) + g(∗) − h(∗)) ≤
dT2(f(x) + g(∗) − f(∗), g(x)) + dT2(g(x), h(x) + g(∗) − h(∗)) = dT2(f(x) +
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p q
π[P, Q]=[p, q]

π[P, Q']

Figure 3.4: Two different paths form p q in T2.

g(∗)−f(∗), g(x))+dT2(g(x)−g(∗)+h(∗), h(x)). This fact implies that for ev-
ery x ∈M , sup

x
dT2(f∗(x), h(x)) ≤ sup

x
dT2(f∗(x), g(x))+sup

x
dT2(g∗(x), h(x)),

or equivalently d(f, h) ≤ d(f, g) + d(g, h).

Now, d(f, g) = sup
x
dT2(f∗(x), g(x)) = sup

x
dT2(f(x)−f(∗)+g(∗), g(x)) =

sup
x
dT2(f(x), g(x)− g(∗) + f(∗)) = d(g, f).

Moreover d(f∗(x), g∗(x)) = 0 if and only if sup
x
dT2(f∗(x), g∗(x)) = 0 if

and only if f∗(x) = g∗(x).

We show now that the topology induced by d is independent of the
base point ∗ of M . For that, take d′(f, g) = sup

x
dT2(f∗′(x), g(x)) where

f∗′ is the translated of f that coincides with g in another basepoint ∗′ of
M . In general d and d′ do not coincide but we have d′ < d < 2d so they
define the same topology. We have dT2(f∗(x) + g∗(∗′) − f∗(∗′), g∗(x)) =
dT2(f∗(x)− f∗(∗′), g∗(x)− g∗(∗′)) ≤ dT2(f∗(x), g∗(x)) + dT2(f∗(∗′), g∗(∗′)) ≤
2d(f∗, g∗).

Lemma 3.2.2. Let T ∈ GE(M,T2) be a geodesic triangulation of T2, and
let [p, q] be an edge of T . Then [P,Q] ⊂ E2 is a lift of [p, q] if and only if

p = π(P ), q = π(Q), and Q ∈
◦
VP , i.e. |xQ − xP | < 1

2 and |yQ − yP | < 1
2 ,

where Q := (xQ, yQ) and P = (xP , yP ).

Proof. Obviously we must have p = π(P ) and q = π(Q) for [P,Q] to be a

lift of [p, q]. If Q ∈
◦
VP , then Q is the unique lift of q contained VP . It follows

from 3.1.2 that π[P,Q] = [π(P ), π(Q)] as desired. Now suppose that [P,Q]
is a lift of [p, q]. By lemma 3.1.2 we have Q ∈ VP . If Q ∈ ∂VP then there
exists Q′ 6= Q in VP such that q = π(Q′). Then π([P,Q′]) and π([P,Q])
are two distinct shortest paths from p to q contradicting the unique shortest
path property (see figure 3.4).

We define D0 :=
]
−1

2 ,
1
2

]2
a fundamental domain of π. Note that the

restriction of π : D0 → T2 is bijective, this is not true for VP since for
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Figure 3.5: The four quadrants in the fundamental domain D0.

every point Q in ∂VP , there is at least another point Q′ ∈ ∂VP such that
π(Q) = π(Q′). Since D0 is a fundamental domain of π, we can take the
elements of V (T ) and work with their unique lift in D0. We denote those lifts
by P1, . . . , P6 (remember that T ∈ GE(M,T2)). Recall that the Moebius’
torus induces an embedding of the complete graph K7 in T2. This and
the fact that T is given by a simplicial complex implies that the star StP0

of the vertex P0 consists of a cycle of six triangles and the link LkP0 is
composed of six edges. We may suppose that the labels of the vertices
is such that they appear in the following (clockwise) order in the cycle:
P1, P2, P3, P4, P5, P6, P1. The points Pi can not be chosen independently, to
see this we subdivide D0 into four quadrants Q1 :=

]
0, 1

2

]
×
]
0, 1

2

]
, Q2 :=]

0, 1
2

]
×
]
−1

2 , 0
]
, Q3 :=

]
−1

2 , 0
]
×
]
−1

2 , 0
]

and Q4 :=
]
−1

2 , 0
]
×
]
0, 1

2

]
(see

figure 3.5).
We prove the following property:

Proposition 3.2.3. Let T ∈ GE(M,T2). Every quadrant Qi contains one
or two vertices of T̃ . Moreover Qi and Qi+2 have the same number of
vertices for i = 1, 2.

Remark: In particular the only possible distributions of the vertices are
the two following ones: (see figure 3.6).

To prove proposition 3.2.3 we need the following lemmas:

Lemma 3.2.4. Let P,Q,R ∈ E2 be joined by three segments in the lift of
T ∈ GE(M,T2), then [PQR] does not contain any lift of a vertex of T in
its interior, in particular [PQR] is a lift of a face of T .

Proof. Suppose that [PQR] contains a lift of some vertex of T , by lemma
3.1.2 the coordinates of P,Q and R differ by at most 1

2 . Hence [PQR] lies
in the interior of a fundamental domain of π. It ensues that π([PQR]) is a
disc of T2, so that π(∂[PQR]) is a separating 3-cycle in T2. Because K7 has
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Figure 3.6: Possible arrangement of the vertices in each quadrants.

no separiting 3-cycle, it must be that all the remaining vertices lie inside
[PQR]. However, this would contradict the fact that K7 is not planar.

Lemma 3.2.5. A quadrant can not contain more than two vertices (P0 not
included).

Proof. Assume there are three vertices P1, P2 and P3 in the same quadrant
Qi. By lemma 3.2.2 [Pi, Pj ] must be a lift of the edge [pi, pj ] for i, j ∈
{0, 1, 2, 3}. It follows that the lift of the complete graph on p0, . . . , p3 induces
a complete graph K4 on the points P0, . . . , P3. Since the relative interior
of the edges [Pi, Pj ] can not intersect, the only possible configurations for
P0, P1, P2 and P3 is when some vertex Pi, i ∈ {1, 2, 3}, is in the interior of
the triangle formed by the other three vertices Pj , Pk and P0 (see figure 3.7).
This is in contradiction with lemma 3.2.4.

Remark 3.2.6. There can not be three collinear vertices in Qi. If this is the
case then the edge between extrema points intersect with the edges between
the medium point and every extrema point.

Lemma 3.2.7. Assume that Qi contains two vertices (P0 not included),
then Qi+1 can not contain two vertices, (it is understood that Qi+4 = Qi).

Proof. Let Pj , Pj+1 be two vertices in Qi. Assume that Qi+1 contains two
vertices. Recalling that the points are located in a cyclic clockwise order,
those points must be Pj+2 and Pj+3. We claim that [Pj , Pj+3] is not an edge
of the lift T̃ of T . Indeed if [Pj , Pj+3] was an edge of T̃ , then by lemma
3.2.2, [p0pjpj+3] would be a triangle of T . However, according to our vertex
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Pi

P0

Pj

Pk

Figure 3.7: Configuration of points in Qi.

indexation, the Moebius triangulation does not contain that triangle (see
figure 3.2). By an analogous argument, we can claim that [Pj , Pj+2] and
[Pj+1, Pj+3] are not edges of T̃ . Suppose that i = 1, then the previous claim
implies that [Pj , Pj+3 + e2], [Pj , Pj+3 + e2] and [Pj+1, Pj+3 + e2], (where
e1, e2 is the canonical basis of E2) are edges of T̃ so we have that [Pj , Pj+2 +
e2, Pj+3 +e2] and [Pj , Pj+3 +e2, Pj+1 +e2] are triangles of T̃ by lemma 3.1.2.
We deduce that [pj , pj+2, pj+3] and [pj , pj+3, pj+1] must be triangles of T .
Whence (j, j+ 2, j+ 3) and (j, j+ 3, j+ 1) must be triangles of M . Looking
at the two possible lists of faces in proposition 3.1.1, we conclude that this is
not possible no matter the value of j ∈ {1, . . . , 6}. For i = 2, 3, 4 are studied
similarly replacing e2 by e1,−e2,−e1 respectively.

Proof of proposition 3.2.3
Let Ni the number of vertices in the quadrant Qi without taking in account
P0. By lemma 3.2.5 we know that max(Ni) = 2 for all i = 1, . . . , 4. We have
the three cases: N1 = 0, N1 = 1 and N1 = 2.

• Case 1: N1 = 2. By lemma 3.2.7, N2 6= N1, so we have N2 = 0 or
N2 = 1 by lemma 3.2.5. IfN2 = 0 thenN3+N4 = 4 which is impossible
since at least one ofQ3 orQ4 must contains three vertices contradicting
lemma 3.2.5 or N3 = 2 = N4 contradiction lemma 3.2.7. Then N2 = 1
necessarily. This implies that N3 +N4 = 3. By lemma3.2.5 Q3 and Q4

contain at least one vertex. Assume that N3 = 1, then N4 = 2 = N1

which contradicts lemma 3.2.7. We have then necessarily N3 = 2 and
N4 = 1. We are thus in the configuration described in the right side
of figure 3.6.

• Case 2: N1 = 1. If N2 = 1, then N3 + N4 = 4 which is impossible
by the same argument as in case 1. If N2 = 0 then N3 + N4 = 5
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but max(Ni) = 2 then this case is also impossible. Necessary we have
N2 = 2. We are back to case 1 with N2 replacing N1, that means
N3 = 1 and N4 = 2. We are thus in the configuration described in the
left side of figure 3.6.

• Case 3: N1 = 0. We have N2 + N3 + N4 = 6. The only way of not
contradicting lemma 3.2.5 if when N2 = N3 = N4 = 2 but in this case
lemma 3.2.7 is not verified. �

3.3 Configuration space

In this section we describe geometrically the space GE(M,T2). Note that if
the vertices V (T ) in T are given, the triangulation T is entirely determined
by the unique shortest path property and because the edges and the seven
vertices should conform a complete graph K7. We introduce the set Ṽ (T ),
consisting of the lifts of vertices in T contained in D0. There is clearly
a bijection between V (T ) and Ṽ (T ). Indeed, if we denote by Pi the lift
of pi contained in D0, Pi is unique because D0 is a fundamental domain.
The bijection is then given by pi 7→ Pi. Since P0 is fixed to (0, 0), the
set Ṽ (T ) is determined by the 12 coordinates of P1, . . . , P6. The above
bijection allows us to identify GE(M,T2) with a certain subspace of R12.
To study geometrically GE(M,T2), we will find different restrictions to the
coordinates of Pi ∈ Ṽ (T ). We denote the coordinates of these vertices by
Pi = (xi, yi) for i = 1, . . . , 6.

We denote by CI the situation corresponding to elements of GE(M,T2)
such that the lift of the elements of V (T ) are arranged as in the right side of
figure 3.6. Similarly, the notation CII corresponds to elements GE(M,T2)
such that the lifts of the elements of V (T ) are arranged as in the left side of
figure 3.6. Additionally we introduce the notation CI,1 for the situation CI
such that the lift of p1 is located in Q2. The lift of p1 is the only one between
all the lifts of vertices on T2 located in Q2 for the arguments given in the
proof of lemma 3.2.3. In general, we denote by CI,i the case where CI is
such that the lift of pi is the only one in Q2 and by CII,i the case where CII
is such that the lift of pi is the only one in Q1 for i = 1, . . . , 6. Recall that
if there is a vertex Pi in Q1 (or Q2), since the vertices are ordered cyclically
clockwise as P1, P2, P3, P4, P5, P6, P1, all the quadrants of the vertices are
determined as seen in lemma 3.6.

Remark 3.3.1. Since the automorphisms of the map p : R2 → T2 are the
integer translations, then if [P,Q] is a lift of [p, q], then [P +k1e1 +k2e2, Q+
k1e1 + k2e2] is also a lift of [p, q] for ki ∈ Z, i = 1, 2.

Note also that if [p, q, r] is a triangle of a triangulation T of T2, [P,Q] a
lift of [p, q] and [Q,R] a lift of [q, r], then necessarily [P,R] is a lift of [p, r]
such that [P,Q,R] is a lift of the face [p, q, r].
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The following result give us necessary and sufficient conditions for the
coordinates of Pi, for i = 1, . . . , 6.

Theorem 3.3.2. The subspace CI,3 ⊂ GE(M,T2) is described by the fol-
lowing equations:

(1). x2 − x0 <
1
2

(2). x6 − x2 < −1
2

(3). x1 − x6 <
1
2

(4). x4 − x1 < −1
2

(5). x3 − x4 <
1
2

(6). x5 − x3 < −1
2

(7). x0 − x5 <
1
2

and

(1’). y1 − y0 <
1
2

(2’). y5 − y1 < −1
2

(3’). y6 − y5 <
1
2

(4’). y3 − y6 < −1
2

(5’). y2 − y3 <
1
2

(6’). y4 − y2 < −1
2

(7’). y0 − y4 <
1
2

Before proving this theorem, we prove two consequences of the equations
given in the preceding theorem. The first one gives us information about the
position of the vertices P0, . . . , P6. The second shows that the star around
every vertex has the same structure, that is, StarPi consists of a cycle of 6
triangles.

Lemma 3.3.3. Let Pi verify equations 3.3.2, for i = 0, . . . , 6, we have the
following sequences:

i) x5 < x4 < x6 < x0 < x3 < x1 < x2

ii) y4 < y3 < y5 < y0 < y2 < y6 < y1

Proof. i) Adding (5) and (6) we find x5 < x4, adding equations (3) and
(4), we have x4 < x6. Adding (1) and (2) we have x6 < x0 = 0.
Adding (6) and (7), we have 0 = x0 < x3. Adding equations (4) and
(5), we find x3 < x1. Finally, adding (2) and (3) we have x1 < x2. We
verified the first sequence.

ii) Adding (5′) and (6′), we have y4 < y3. Adding (3′) and (4′), we have
y3 < y5. Adding (1′) and (2′), we have y5 < y0 = 0, adding (6′) and
(7′), we have 0 = y0 < y2. Adding (4′) and (5′), we find y2 < y6.
Finally, adding (2′) and (3′) we have y6 < y1.
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The next lemma is a straightforward consequence of the equations given
in 3.3.2:

Lemma 3.3.4. Let P0, . . . , P6 verifying the equations of theorem 3.3.2, with
P0 = (0, 0). Then Pi ∈ D0 for all i ∈ {0, . . . , 6}.

Proof. We add equations (1) to (3) to find x1 <
1
2 and adding −((4) + · · ·+

(7)) we have x1 > 0. Then, we have

0 < x1 <
1

2
(3.1)

Equation (1′) and the addition of the negative of the remaining equations
show that

0 < y1 <
1

2
(3.2)

Adding the negative of equations (2) to (7) and by equation (1), we find
that

0 < x2 <
1

2
(3.3)

Adding (1′) to (5′) we find y2 <
1
2 and adding −(6′)− (7′), we have 0 < y2.

The above equations imply that

0 < y2 <
1

2
(3.4)

Adding (1) to (5) and making −(6)− (7), we have

0 < x3 <
1

2
(3.5)

Adding (1′) to (4′) and adding the negative of the remaining equations, we
have

− 1

2
< y3 < 0 (3.6)

Adding (1) to (4) and adding the opposite of the other equations, we have

− 1

2
< x4 < 0 (3.7)

By equation (7′) and the addition of equations (1′) to (6′) we find

− 1

2
< y4 < 0 (3.8)

Adding equations (1) to (6) and by equation (7), we have

− 1

2
< x5 < 0 (3.9)
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Adding (1′) and (2′), and the addition of the negative of the other equations
show that

− 1

2
< y5 < 0 (3.10)

Adding (1) and (2) and adding the negative of the remaining equations, we
have

− 1

2
< x6 < 0 (3.11)

Adding equations (1′) to (3′), and adding the negative of the other equations,
we have

0 < y6 <
1

2
(3.12)

Equations 3.1 to 3.12 (and the fact that P0 = (0, 0)), imply Pi ∈ D0 for all
i = 0, . . . , 6.

Before proving the next result, we introduce some notations. We denote

Di := Pi +D0

and

Qij := Pi +Qj

for i = 1, . . . , 6 and j = 1, . . . , 4, so that Di is a fundamental domain with

Pi placed at the center of Di and
{
Qij

}4

j=1
are quadrants of Di.

Lemma 3.3.5. Let P0, P1, . . . , P6 contained in R2 with P0 = (0, 0), such
that their coordinates verify the equations given in 3.3.2. The lift of the
points p0, . . . , p6 found in Di define an hexagon along with a point inside
it that we will call central point. Inside of this hexagon there is a cycle of
six triangles, where all the triangles have the central point as common point
and the interior of these triangles do not intersect. After an appropriate
relabeling of the points {p0, . . . , p6}, their lifts in Di satisfy exactly the same
equations as in 3.3.2 if the coordinate system is centered at Pi.

Proof. First of all, note that by lemma 3.3.3, we can conclude that the points
are disposed around P0 = (0, 0) in the cyclic order P1, P2, P3, P4, P5, P6, P1.

We now verify that the lift of the points p0, . . . , p6 in D0 define the
hexagon and the central point as described in the statement.

By lemma 3.3.4, Pi ∈ D0 ⊂ VP0 , we know that |x0 − xi| < 1
2 and that

|y0 − yi| < 1
2 . That means that π([P0, Pi]) is the shortest path between

π(P0) = p0 and π(Pi) = pi. Therefore [P0, Pi] is a lift of the segment
[p0, pi] by lemma 3.2.2. We now verify that π([Pi, Pi+1]) is the shortest path
between pi and pi+1:
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• π([P1, P2]): Adding equations (2) and (3), we have x1 − x2 < 0 < 1
2

and subtracting the remaining equations, i.e., making −((4) + · · · +
(7))− (1) we find x1 − x2 > −1

2 , so |x1 − x2| < 1
2 . Similarly, if we add

(1′) + (6′) + (7′) we have y1− y2 <
1
2 and if we subtract the rest of the

equations, that is −((2′) + · · ·+ (5′)), we have y1 − y2 > 0 > −1
2 . We

deduce that |y1−y2| < 1
2 , then π([P1, P2]) is the shortest path between

p1 and p2.

• π([P2, P3]): Adding (1), (6) and (7) we have x2 − x3 <
1
2 , subtracting

the remaining equations we have x2 − x3 > 0 > −1
2 , so |x2 − x3| < 1

2 .
On the other hand, from equation (5′) and subtraction of (1′) − (4′)
and (6′) and (7′) we have −1

2 < 0 < y2 − y3 <
1
2 so that |y2 − y3| < 1

2 ,
then π([P2, P3]) is the shortest path between p2 and p3.

• π([P3, P4]): From equation (5) and subtracting the reminding equa-
tions we find 1

2 < 0 < x3 − x4 <
1
2 . Making (1′) + · · ·+ (4′) + (7′) and

subtracting (5′) and (6′) we have −1
2 < 0 < y3 − y4 <

1
2 . We deduce

that π([P3, P4]) is the shortest path between p3 and p4.

• π([P4, P5]): Adding (1) to (4) and (7) and subtracting the remaining
equations we obtain −1

2 < 0 < x4 − x5 <
1
2 . Adding (3′) to (6′) and

subtracting the other equations we have −1
2 < y4 − y5 < 0 < 1

2 . That
is, |x4−x5| < 1

2 and |y4−y5| < 1
2 , thus π([P4, P5]) is the shortest path

between π(P4) = p4 and π(P5) = p5.

• π([P5, P6]): Adding (3) to (6) and adding the negative of the remaining
equations we have −1

2 < x5 − x5 < 0 < 1
2 . On the other hand, if

we add (4′) to (7′) and (1′) + (2′), and by equation (3′). We have
−1

2 < y5 − y6 < 0 < 1
2 . This implies |x5 − x6| < 1

2 and |y5 − y6| < 1
2 .

We conclude that π([P5, P6]) is the shortest path between p5 and p6.

• π([P6, P1]): Adding equations (4) to (7) and (1) and (2), and taking
the negative of equation (3), we obtain −1

2 < x6−x1 < 0 < 1
2 . Adding

(2′) and (3′), and taking the negative of the addition of the remaining
equations we have −1

2 < y6 − y1 < 0 < 1
2 . Thus |x6 − x1| < 1

2 and
|y6− y1| < 1

2 implying that π([P6, P1]) is the shortest path between p6

and p1.

Since π([P0, Pi]), π([P0, Pi+1]) and π([Pi, Pi+1]) are the shortest path be-
tween their respective projections, we deduce from lemma 3.2.2 that [P0, Pi, Pi+1]
⊂ D0 is projected as a triangle [p0, pi, pi+1] contained in T2.

To fix the ideas, we see which are the lifts of pi found in D1. Evidently,
P1 is the lift of p1 contained in D1, In general, Pj ∈ D1 if and only if
|x1 − xj | < 1

2 and |y1 − yj | < 1
2 , by definition of D1.

• The lift of p0 in D1: Because P1 ∈ D0, we know that |x0 − x1| < 1
2

and |y0 − y1| < 1
2 , therefore P0 is the lift of p0 contained in D1.
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• The lift of p2 in D1: As we proved previously, π([P1, P2]) is the shortest
path between p1 and p2, that is |x1−x2| < 1

2 and |y1−y2| < 1
2 . Hence,

P2 is the lift of p2 in D1.

• The lift of p3 in D1: Adding (1) to (3) and (6) + (7) and making
−(4) − (5), we find −1

2 < 0 < x1 − x3 < 1
2 . Adding (2′) to (4′)

and subtracting the other equations we have 1
2 < y1 − y3 < 1. Thus

−1
2 < y1− (y3 + 1) < 0 < 1

2 , i. e., |x1−x3| < 1
2 and |y1− (y3 + 1)| < 1

2
and then P3 + e2 is the lift of p3 in D1.

• The lift of p4 in D1: Adding (1) to (3) to (5) to (7), and taking the
negative of equation (4), we have 1

2 < x1 − x4 < 1 so that −1
2 <

x1 − (x4 + 1) < 0 < 1
2 . Adding equations (1′) and (7′), and adding

the negative of the other equations, we find 1
2 < y1 − y4 < 1 and thus

−1
2 < y1 − (y4 + 1) < 1

2 , then P4 + e1 + e2 is the lift of p4 in D1.

• The lift of p5 in D1: Adding (1) to (3) and (7), and making −(4)−(5)−
(6) we have 1

2 < x1−x5 < 1 then −1
2 < x1− (x5 +1) < 0 < 1

2 . Adding
(3′) to (7′) and (1′) and by equation −(2′), we have 1

2 < y1 − y5 < 1
and then −1

2 < y1 − (y5 + 1) < 0 < 1
2 , then P5 + e1 + e2 is the lift of

p5 in D1.

• The lift of p6 in D1: As we proved previously, π([P6, P1]) is the shortest
path between p6 and p1, then P6 is the lift of p6 that is located in D1.

We see now that the lifts of p0, . . . , p6 in D1 verify the equations given
in 3.3.2; for that, we relabel these vertices: we denote P 1

0 := P1, P 1
1 :=

P5 + e1 + e2, P 1
2 := P4 + e1 + e2, P 1

3 := P2, P 1
4 := P0, P 1

5 := P6 and
P 1

6 := P3 + e2. We note P 1
i = (Xi, Yi).

By equation (4), we have X2 −X0 = (x4 + 1)− x1 < −1
2 + 1 = 1

2 .
By equation (5), we have X6 −X2 = x3 − (x4 + 1) < −1

2 .
By equation (6), we have X1 −X6 = (x5 + 1)− x3 <

1
2 .

By equation (7), we have X4 −X1 = x0 − (x5 + 1) < −1
2 .

By equation (1), we have X3 −X4 = x2 − x0 <
1
2 .

By equation (2), we have X5 −X3 = x6 − x2 < −1
2 .

By equation (3), we have X0 −X5 = x1 − x6 <
1
2 .

On the other hand, we have:
By equation (2′), we have Y1 − Y0 = (y5 + 1)− y1 <

1
2 .

By equation (3′), we have Y5 − Y1 = y6 − (y5 + 1) < −1
2 .

By equation (4′), we have Y6 − Y5 = (y3 + 1)− y6 <
1
2 .

By equation (5′), we have Y3 − Y6 = y2 − (y3 + 1) < −1
2 .

By equation (6′), we have Y2 − Y3 = (y4 + 1)− y2 <
1
2 .

By equation (7′), we have Y4 − Y2 = y0 − (y4 + 1) < −1
2 .

By equation (1′), we have Y0 − Y4 = y1 − y0 <
1
2 .

Since the points P 1
i verify the same equations as the points Pi, then

the set of points
{
P 1
i

}6

i=0
verify the same properties of the set of points
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{Pi}6i=0, that is, the lifts of p0, . . . , p6 in D1 conform an hexagon with edges
[P 1
i , P

1
i+1], along with a central point (in this case the central point is P1)

and inside the hexagon six triangles [P 1
i , P

1
0 , P

1
i+1]. Also, the points appear

in a cyclic order around P1 as follows: P 1
1 , P

1
2 , P

1
3 , P4,

1 P 1
5 , P

1
6 , P

1
1 .

Similarly, it can be shown that the lifts of p0, . . . , p6 in D2 conform an
hexagon along with the central point P2. These lifts are placed as follows:
we relabel as P 2

0 := P2, P 2
1 := P4 + e1 + e2, P 2

2 := P6 + e1, P 2
3 := P5 + e1,

P 2
4 := P3, P 2

5 := P0 and P 2
6 := P1 so that P 2

3 ∈ Q2
2 and it is the only

lift in this quadrant. As in the previous case, the coordinates of the points{
P 2
i

}6

i=0
verify the equations 3.3.2.

For the lifts of {p0, . . . , p6} contained in D3, the relabeling is made as
follows: P 3

0 := P3, P 3
1 := P2, P 3

2 := P5 + e1, P 3
3 := P1 − e2, P 3

4 := P6 − e2,
P 3

5 := P4 and P 3
6 := P0. It can be shown that P 3

3 is the only point in Q3
2.

The coordinate of this points verify equations 3.3.2.

For the lifts of {p0, . . . , p6} contained in D4, the relabeling is made as
follows: P 4

0 := P4, P 4
1 := P0, P 4

2 := P3, P 4
3 := P6 − e2, P 4

4 := P2 − e1 − e2,
P 4

5 := P1− e1− e2 and P 4
6 := P5. It can be shown that P 4

3 is the only point
in Q4

2. The coordinate of this points verify equations 3.3.2.

For the lifts of {p0, . . . , p6} contained in D5, the relabeling is made as
follows: P 5

0 := P5, P 5
1 := P6, P 5

2 := P0, P 5
3 := P4, P 5

4 := P1 − e1 − e2,
P 5

5 := P3− e1 and P 5
6 := P2− e1. It can be shown that P 5

3 is the only point
in Q5

2. The coordinate of this points verify equations 3.3.2.

For the lifts of {p0, . . . , p6} contained in D6, the relabeling is made as
follows: P 6

0 := P6, P 6
1 := P3 + e2, P 6

2 := P1, P 6
3 := P0, P 6

4 := P5, P 6
5 :=

P2− e1 and P 6
6 := P4 + e2. It can be shown that P 6

3 is the only point in Q6
2.

The coordinate of this points verify equations 3.3.2.

For all the lifts of {p0, . . . , p6} in Di for i = 2, . . . , 6 it can be shown as
in the case D1, that the lifts verifies the same equations and therefore the
same properties as in the case D0.

We recap the notations for P ij in the following dictionary.

Definition 3.3.6 (Dictionary).

P i0 := Pi and P 0
i := Pi for i = 0, . . . , 6

.
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P 1
1 := P5 + e1 + e2 P 1

2 := P4 + e1 + e2 P 1
3 := P2

P 1
4 := P0 P 1

5 := P6 P 1
6 := P3 + e2

P 2
1 := P4 + e1 + e2 P 2

2 := P6 + e1 P 2
3 := P5 + e1

P 2
4 := P3 P 2

5 := P0 P 2
6 := P1

P 3
1 := P2 P 3

2 := P5 + e1 P 3
3 := P1 − e2

P 3
4 := P6 − e2 P 3

5 := P4 P 3
6 := P0

P 4
1 := P0 P 4

2 := P3 P 4
3 := P6 − e2

P 4
4 := P2 − e1 − e2 P 4

5 := P1 − e1 − e2 P 4
6 := P5

P 5
1 := P6 P 5

2 := P0 P 5
3 := P4

P 5
4 := P1 − e−e2 P 5

5 := P3 − e1 P 5
6 := P2 − e1

P 6
1 := P3 + e2 P 6

2 := P1 P 6
3 := P0

P 6
4 := P5 P 6

5 := P2 − e1 P 6
6 := P4 + e2

Recall that from the proof of lemma 3.3.5, the points P ij play the same
role as the point Pj in equations 3.3.2, when we are placed in Di. Then, all
properties that are true for Pj are also true for P ij .

Remark 3.3.7. A consequence of lemma 3.3.5 is that there is one and only
one lift of pj contained in Qi2 for all i = 0, . . . , 6

Proof of theorem 3.3.2. ⇐) Suppose that equations (1) to (7) and (1′)
to (7′) are verified. We will prove that for every π(Pi) with i = 1, . . . , 6;

A. There is uniqueness of shortest path between every pair of points.

B. The set of these shortest paths induce a triangulation of the torus
corresponding to the configuration CI,3.

From lemma 3.3.4, we know that Pi ∈ D0 for all i = 0, . . . , 6. We can say
even more; equations 3.1 to 3.12, imply that P1, P2 ∈ Q1, P3 ∈ Q2, P4, P5 ∈
Q3 and P6 ∈ Q4 so we are in a configuration CI,3. Moreover, by lemma 3.3.3
the vertices Pi are found in a cyclic clockwise order P1, P2, P3, P4, P5, P6, P1.

We verify now that the points P0, . . . , P6 induce a triangulation T̃ and
consequently their projections π(Pi) induce a triangulation by geodesic seg-
ments T of T2.

As proved in lemma 3.3.5, around P0 there is a cycle of six triangles
[P0, Pi, Pi+1] where the projection of every segment is the shortest path be-
tween the respective vertices. We know that the vertices pi define a complete
graph K7, so there are in all 21 edges. Because the triangles [P0, Pi, Pi+1]
define 12 edges, and we know that these edges do not intersect, it remains
to prove that the remaining 9 edges do not intersect with any lift of the
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P0-e1+e2

P1

P2

P3
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Figure 3.8: Tiling of E2 with the lift of a triangulation of T2.
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hexagon defined by the lifts of pi, for i = 0, . . . , 6 in D0 + ae1 + ae2 for all
(a, b) ∈ Z2.

First of all, we show which one is the shortest path between the vertices
corresponding to the remaining edges:

• Shortest path between p1 and p3: As we saw in the proof of 3.3.5,
P3 + e2 is the lift of p3 in D1, then π([P3 + e2, P1]) is the shortest path
between p3 and p1.

• Shortest path between p1 and p4: As we saw in the proof of 3.3.5,
P4 + e1 + e2 is the lift of p4 in D1, then π([P4 + e1 + e2, P1]) is the
shortest path between p4 and p1.

• Shortest path between p1 and p5: As we saw in the proof of 3.3.5,
P5 + e1 + e2 is the lift of p5 in D1, then π([P5 + e1 + e2, P1]) is the
shortest path between p5 and p1.

• Shortest path between p2 and p4: Adding equations (2) to (4), we have
(x4 + 1) − x2 <

1
2 and adding the remaining equations we find −1

2 <
− < (x4 + 1)− x2. On the other hand, by equation (6′), we conclude
that −1

2 < y2 − (y4 + 1) and adding the remaining equations we find
y2− (y4 +1) < 0 < 1

2 . Then |x2− (x4 +1)| < 1
2 and |y2− (y4 +1)| < 1

2 ,
then π([P4 + e1 + e2, P2]) is the shortest path between p4 and p2.

• Shortest path between p2 and p5: Adding (2) to (6), and adding the
negative of the remaining equations, we find −1 < x5 − x2 < −1

2 then
−1

2 < (x5 + 1)− x2 <
1
2 . If we add (1′), (2′), (6′) and (7′) and adding

the negative of the other equations, we find −1
2 < y5 − y2 < 0 < 1

2 ,
then |(x5 + 1) − x2| < 1

2 and |y5 − y2| < 1
2 so π([P2, P5 + e1]) is the

shortest path between p2 and p5.

• Shortest path between p2 and p6: By equation (2), we have 1
2 < x2−x6

and adding the remaining equations, we have x2−x6 < 1. That means
−1

2 < x2− (x6 + 1) < 1
2 . Adding (4′) and (5′) and adding the negative

of the other equations, we have −1
2 < y2 − y6 < 0 or equivalently

−1
2 < y2 − y6 <

1
2 . Then π([P2, P6 + e1]) is the shortest path between

p2 and p6.

• Shortest path between p3 and p5: Adding (1) to (5) and (7) and taking
−(6), we have 1

2 < x3 − x5 < 1 so that −1
2 < x3 − (x5 + 1) < 0 < 1

2 .
On the other hand, if we add (3′) and (4′) and we add the negative
of the remaining equations we find −1

2 < y3 − y5 < 0 < 1
2 . That is

|x3− (x5 + 1)| < 1
2 and |y3− y5| < 1

2 We conclude that π([P5 + e1, P3])
is the shortest path between p5 and p3.

• Shortest path between p3 and p6: Adding equations (3), (4) and (5),
we have x3 − x6 <

1
2 . Adding the remaining equations we have −1

2 <
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x3−x6. On the other hand, equation (4′) tell us that y3− (y6−1) < 1
2

and adding the other equations we find −1
2 < 0 < y3 − (y6 − 1). Then

|x3−x6| < 1
2 and |y3− (y6−1)| < 1

2 . This implies that π([P3, P6−e2])
is the shortest path between p3 and p6

• Shortest path between p4 and p6: Adding (1), (2), and (5) to (7) and
adding the negative of (3) and (4), we have −1

2 < 0 < x6 − x4 <
1
2 .

Adding (1′) to (3′) and (7′) and adding the negative of the remaining
equations, we have 1

2 < y6 − y4 < 1 so −1
2 < (y6 − 1) − y4 <

1
2 . We

conclude that π([P4, P6 − e2]) is the shortest path between p4 and p6.

Once we know which are the lifts of the shortest paths between the
vertices, we prove that in fact they do not intersect any lift of [pi, pj ] in
D0 + ae1 + be2 for all (a, b) ∈ Z2.

1. [P1, P3 + e2]: The lift of [p1, p3] is [P1, P3 + e2]. This edge intersects
D0 and D0 + e2 so we will verify that [P1, P3 + e2] does not intersect
the hexagon in D0 or in D0 + e2 defined by the lifts of {pi}6i=0. By
lemma 3.3.3 and 3.3.2, we know that x3 < x1 and y1 < y3 + e2.
Moreover, every point Q := (x, y) ∈ [P1, P3 + e2] verifies x3 < x < x1

and y1 < y < y3 + 1. If [P1, P3 + e1] intersects an edge [Pi, Pj ] in
D0 + e2, that would mean that there is a point R := (u, v) ∈ [Pi, Pj ]
such that x3 < u < x1 and y1 < v < y3 + e2. Now by lemma 3.3.3,
all points S = (α, β) contained in [P0 + e2, P3 + e2], [P3 + e2, P2 + e2],
[P0 + e2, P2 + e2], [P1 + e2, P2 + e2], [P0 + e2, P1 + e2], [P0 + e2, P6 + e2],
[P6 +e2, P1 +e2], [P5 +e2, P6 +e2], and [P0 +e2, P5 +e2] verify that β >
y3+1 and consequently any point in these edges could be contained also
in [P1, P3 + e2]. On the other hand, any point T := (t1, t2) contained
in [P4 + e2, P0 + e2], [P4 + e2, P3 + e2] or [P4 + e2, P5 + e2], verifies
by lemma 3.3.3, that t1 < x3, then any point in these edges could be
also contained in [P1, P3 + 1]. We conclude that [P1, P3 + e2] does not
intersect any edge of the hexagon in D0 + e2. Remark also that by
lemma 3.3.3, we know that every point U := (u1, u2) on the hexagon
contained in D0 verifies that u2 < y1. This implies that any point in
this hexagon but P1 can be contained in [P1, P3 + e2]. We deuce that
[P1, P3 + e2] does not intersect any edge of the hexagon in D0 neither.
Then [P1, P3 + e2] does not intersect any hexagon in D0 + ae1 + be2

for all a, b ∈ Z.

2. [P3 + e2, P6]: The lift of [p3, p6] as seen previously is [P3 + e2, P6]. As
in the previous case, it is sufficient to verify that [P3 + e2, P6] does
not intersect any lift of [pi, pj ] in D0 and in D0 + e2. By lemma 3.3.3,
we know that any point Q := (x, y) contained in [P3 + e2, P6] verifies
that x6 < x < x3 and y6 < y < y3 + 1. As in the previous case, every
point S := (s1, s2) different of P3 + e2, contained in [P0 + e2, P3 + e2],
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[P3 + e2, P2 + e2], [P0 + e2, P2 + e2], [P1 + e2, P2 + e2], [P0 + e2, P1 + e2],
[P0+e2, P6+e2], [P6+e2, P1+e2], [P5+e2, P6+e2], and [P0+e2, P5+e2]
verifies that s2 > y1 + 1. That means that any point contained in
these edges can be also contained in [P3 + e2, P6]. Similarly, any point
T := (t1, t2) different to P6 contained in [P6, P0], [P5, P0], [P4, P0],
[P3, P0], [P2, P0], [P6, P5], [P5, P4], [P4, P3] and [P3, P2] verifies that
t2 < y6, therefore any point in these edges could be also be contained in
[P6, P3+e2]. Now, the lines (P4+e2, P3+e2) and (P6, P3+e2) intersect
in P3 +e2 and since y6 < y4 +1 then P6 6= P4 +e2, therefore, these lines
can not intersect in any other point, we can say even more, P4 + e2 is
strictly over P6, then the segment [P4 + e2, P3 + e2] is completely over
the segment [P6, P3 + e2] outside their common point point P3 + e2.
Similarly, we can deduce that [P6, P1] is completely under the segment
[P6, P3 +e2] except for the point P6 where they intersect. We conclude
that [P6, P3 + e2] does not intersect [P1, P6] or [P4 + e2, P3 + e2]. Now,
every point U : (u1, u2) in [P4 + e2, P5 + e2] verifies that u1 < x4 and
by lemma 3.3.3 we know that x4 < x6, then any point contained in
this segment could be also contained in [P6, P3 +e2]. Every point V :=
(v1, v2) contained in [P1, P2] verifies by lemma 3.3.3 that v1 > x1 > x3

so any point on this segment could be also be in the segment [P6, P3 +
e2]. Finally, we verify that [P6, P3 + e2] can not intersect [P1, P0] or
[P4 + e2, P0 + e2]. Suppose that [P6, P3 + e2] touches [P4 + e2, P0 + e2].
since every point W := (w1, w2) in [P4 + e2, P0 + e2] verifies by lemma
3.3.3 that x4 < w1 < x3 and y4 + 1 < w2 < y0 + 1, then outside of
the point P4 + e2, the segment [P4 + e2, P0 + e2] is completely over
the segment [P4 + e2, P3 + e2], and as we show previously, [P6, P3 + e2]
is completely under the segment [P4 + e2, P3 + e2]. If there is an
intersection point between [P6, P3 + e2] and [P4 + e2, P0 + e2], then
there exist a point I := (α, β) such that α < x3 and I ∈ [P6, P3 +
e2]∩ [P4 + e2, P3 + e2], bu the intersection point of these segments was
P3 + e2 so there is a contradiction. A similar argument shows that
[P6, P3 + e2] and [P1, P0] can not intersect since [P1, P0] is completely
under [P6, P1] (outside the point P1) and every point Z := (z1, z2) in
[P1, P0] verifies x6 < z1 < x1. We conclude that [P6, P3 + e2] does not
intersect any edge of the hexagons in D0 or in D0 + e2, therefore any
hexagon in D0 + ae1 + be2 for all a, b ∈ Z.

3. [P4 + e2, P6]: The lift of [p4, p6] is [P4 + e2, P6]. Since this segment is
contained in D0 and in D0 + e2, we verify that it does not intersect
any edge of the hexagons in D0 or in D0 + e2. Every point Q := (x, y)
contained in [P4 +e2, P6] verifies that x4 < x < x6 and y6 < y < y4 +1
by lemma 3.3.3 and equations 3.3.2. Now, by the same lemma, we
have that every point R = (r1, r2) in [P6, P0], [P6, P5], [P0, P5], [P5, P4],
[P0, P4], [P4, P3], [P0, P3], [P3, P2] and [P0, P2] verifies that r2 < y6 then
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any point in these segments could be also contained in [P6, P4 + e2].
Moreover every point S := (s1, s2) conforming the hexagon and the
edges [P0 + e2, Pi + e2] for i = 1, . . . , 6 verify that s2 > y4 + 1 then
[P4 + e2, P6] can not intersect any lift of [pi, pj ] in D0 + e2. Now, every
point T := (t1, t2) in [P1, P0], [P1, P6] and [P1, P2] verifies that t1 > x6,
then any point in these edges can be also in the edge [P6, P4 +e2]. This
and the previous arguments shows that the edge [P6, P4 + e2] does not
intersect the hexagon in D0 nor in D0 + e2. In consequence, it does
not intersect any lift of [pi, pj ] in D0 + ae1 + be2 for all A,B ∈ Z.

4. [P2, P5+e1]: The lift of [p2, p5] is [P2, P5+e1]. By lemma 3.3.3, we know
that any point Q := (x, y) in [P2, P5 + e1] verifies that x2 < x < x5 + 1
and that y5 < y < y2. In one hand, every point R := (r1, r2) in the
lifts of [pi, pj ] in D0 verify that r1 < x2. On the other hand, every
point S := (s1, s2) contained in the lifts of [pi, pj ] in D0 + e1 verifies
that s1 > x5 + 1, then it could not be also in [P2, P5 + e1]. Then,
[P2, P5 + e1] does not intersect any lift of [pi, pj ] in D0 or in D0 + e1

and consequently in D0 + ae1 + be2 for all a, b ∈ Z.

5. [P2, P6 + e1]: The lift of [p2, p6] is [P2, P6 + e1]. By lemma 3.3.3 and
equations 3.3.2, we know that every point Q := (x, y) ∈ [P2, P6 + e1]
is such that x2 < x < x6 + 1 and y2 < y < y6. Now, every point
R = (r1, r2) outside of P2 contained in the lifts of [pi, pj ] in D0 is
such that r1 < x2, thus neither of these points can be contained also
in [P2, P6 + e1]. This implies that [P2, P6 + e1] does not intersect the
hexagon in D0. On the other hand, all the points S := (s1, s2) outside
P6 + e1 contained in the edges [P6 + e1, P1 + e1], [P6 + e1, P0 + e1],
[P1 + e1, P0 + e1], [P1 + e1, P2 + e1], [P2 + e1, P0 + e1], [P2 + e1, P3 + e1],
[P3 + e1, P0 + e1], [P3 + e1, P4 + e1],and [P4 + e1, P0 + e1] verify that
s1 > x6 + 1, then any point in these edges could be also contained in
[P2, P6 + e1]. Therefore, [P2, P6 + e1] does not intersect any of these
edges. Now, since y0 < y2 by lemma 3.3.3, every point T := (t1, t2)
contained in [P5 + e1, P0 + e1] and in [P5 + e1, P4 + e1] verifies that
t2 < y2 by lemma 3.3.3, then there are no points in these edges that are
also in the edge [P2, P6 + e1] therefore [P2, P6 + e1] does not intersect
[P5 + e1, P0 + e1] nor [P5 + e1, P4 + e1]. Finally, edges [P2, P6 + e1] and
[P5 +e1, P6 +e1] intersect in P6 +e1. Moreover y5 < y2 by lemma 3.3.3,
then P5+e1 is not contained on the segment [P2, P6+e1], hence, P6+e1

is the only intersection point of [P2, P6 + e1] and [P5 + e1, P6 + e1]. We
deduce that [P2, P6 + e1] does not intersect the hexagon in D0 or in
D0 + e1 and then any hexagon in D0 + ae1 + be2 for all a, b ∈ Z.

6. [P3, P5 +e1]: The lift of [p3, p5] is [P3, P5 +e1]. Every point Q := (x, y)
contained in [P3, P5 + e1] verifies, by lemma 3.3.3 and equations 3.3.2
that x3 < x < x5 + 1 and y3 < y < y5. Every point R := (r1, r2)
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different of P5+e1 contained in the lifts of [pi, pj ] onD0+e1 verifies that
x5+1 < x, then any point in the hexagon in D0+e1 can be at the same
time in [P3, P5 +e1] and in edges in D0 +e1, then [P3, P5 +e1] does not
intersect the any lift of [pi, pj ] inD0+e1. Now, every point S := (s1, s2)
different of P3 in [P0, P1], [P6, P1], [P0, P6], [P6, P5], [P0, P5], [P5, P4],
[P0, P4], [P4, P3], and [P0, P3] is, by lemma 3.3.3, such that s1 < x3,
then [P3, P5 + e1] can not intersect any of these edges. For the points
T := (t1, t2) in [P0, P2] and [P1, P2], we know by lemma 3.3.3 that
t2 > y5, thus [P3, P5 +e1] can not intersect any of these edges. Finally,
edges [P3, P5+e1] and [P3, P2] have P3 as common point. Since y2 > y5,
then P2 6∈ [P3, P5 + e1] and then P3 is their only common point. We
deduce that [P3, P5 + e1] does not intersect any lift of [pi, pj ] in D0.
We conclude that this edge does not intersect any lift of [pi, pj ] in
D0 + ae1 + be2 for all a, b ∈ Z.

7. [P1, P4 + e1 + e2]: The lift of [p1, p4] is [P1, P4 + e1 + e2]. This edge can
be contained in D0, D0 +e1 , D0 +e2 and D0 +e1 +e2. Then we verify
that it does not intersect the hexagons in these domains. Every point
Q = (x, y) contained in [P1, P4 + e1 + e2] verifies that x1 < x < x4 + 1
and y1 < y < y4 + 1. Now, every point R := (R1, R2) different of
P4 + e1 + e2 and P4 + e2, in the hexagons contained in D0 + e1 + e2

and in D0 + e2, verifies, by lemma 3.3.3, that r2 > y + 4 + 1. Since
x4 < x1, the point P4 +e2 is completely in the left of [P1, P4 +e1 +e2].
We have also that every point S := (s1, s2) different to P1 and P1 +e1,
contained in the hexagon in D0 or in D0 + e1 verifies, by the same
lemma, that s2 < y1. Since x4 + 1 < x1 + 1 by equations 3.3.2, the
point P1 + e1 is completely at the right of [P1, P4 + e1 + e2]. These
inequalities imply that any point in the hexagon in D0, in D0 + e2, in
D0 + e1 or in D0 + e1 + e2, outside P1 and P4 + e1 + e2, could be also
contained in [P1, P4 +e1 +e2], then [P1, P4 +e1 +e2] does not intersect
these hexagons.

8. [P1, P5 + e1 + e2]: The lift of [p1, p5] est [P1, P5 + e1 + e2]. This edge
could be contained in D0, D0+e1, D0+e2 or D0+e1+e2. All the points
Q = (x, y) contained in [P1, P5 + e1 + e2] verify that x1 < x < x5 + 1
and y1 < y < y5 + 1. Now, every point R := (r1, r2) different to
P + 5 + e1 + e2 or P5 + e1 contained in the hexagon in D0 + e1 + e2 or
in D0 +e2 verifies that r1 > x5 + 1, by lemma 3.3.3, we also know that
y5 < y1, which means that the point P5 + e1 is completely under the
segment [P1, P5 +e1 +e2]. Moreover, every point S := (s1, s2) different
to P1 contained in the hexagon in D0, verifies that s2 < y1. This and
the previous argument means that [P1, P5 + e1 + e2] can not intersect
the hexagons in D0, D0+e1 or in D0+e1+e2 outside the points P1 and
P5 + e1 + e2. Every point T := (t1, t2) different to P1 + e2 contained in
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[P1 + e2, P0 + e2], [P1 + e2, P6 + e2], [P6 + e2, P0 + e2], [P6 + e2, P5 + e2],
[P5+e2, P0+e2], [P5+e2, P4+e2], [P4+e2, P0+e2], [P4+e2, P3+e2] and
[P3 +e2, P0 +e2] verify that t1 < x1 and since y1 +1 > y5 +1 by lemma
3.3.3, we have that the point P1 + e2 is completely over the segment
[P1, P5 + e1 + e2]. We conclude that [P1 + e2 + e2] does not intersect
any of these edges. Moreover, every point U := (u1, u2) contained in
[P2+e2, P1+e1] and [P2+e2, P0+e0] verifies that u2 > y5+1 by lemma
3.3.3, then [P1, P5 + e1 + e2] does not intersect these edges. Finally,
in the sixth case we showed that [P3, P5 + e1] does not intersect any
hexagon, then [P3 +e1, P5 +e1 +e2] does not intersect any hexagon, in
particular the hexagons in D0 + e1 + e2 and in D0 + e2. Now, we know
that P5 + e1 + e2 ∈ [P3, P5 + e1 + e2] and by lemma 3.3.3, every point
V := (v1, v2) ∈ [P3 + e2, P5 + e1 + e2] different to P3 + e3, verifies that
u2 > y3 + 1. Since y1 < y3 + 1 by equations 3.3.2, P1 is not contained
in this segment, in fact, the last inequality shows that P1 is completely
under the segment [P3 + e2, P5 + e1 + e2], and since, by lemma 3.3.3,
every point Q = (x, y) ∈ [P1, P5 +e1 +e2] verifies that x3 < x < x5 +1,
then the segment [P1, P5 + e1 + e2] is completely under the segment
[P3 + e2, P5 + e1 + e2] outside their intersection point P5 + e1 + e2.
Similarly,every point W := (w1, w2) different to P3 + e2, contained in
[P3 + e2, P2 + e2] verifies that x3 < w1 < x5 + 1 and y3 + 1 < w2. and
since y2+1 > y5+1 then P2+e2 is not contained in [P3+e2, P5+e1+e2]
and is completely over this segment. We deduce that [P3 + e2, P2 + e2]
is completely over the segment [P3 + e2, P5 + e1 + e2] outside their
intersection point P3 + e2. In we suppose then that [P1, P5 + e1 + e2]
intersects the segment [P3+e2, P2+e2], then there is a point I different
to P5 +e1 +e2 in [P1, P5 +e1 +e2] that intersects [P3 +e2, P5 +e1 +e2],
which is a contradiction because P5 + e1 + e2 is their only intersection
point. Then, [P1, P5 + e1 + e3] does not intersect any edge of the
hexagon in D0 +e2, and in consequence, any hexagon in D0 +ae1 +be2

for all a, b ∈ Z.

9. [P2, P4 + e1 + e2]: The lift of [p2, p4] is [P2, P4 + e1 + e2]. Every point
Q := (x, y) in [P2, P4 + e1 + e2] verifies that x2 < x < x4 + 1 and
y2 < y < y4 + 1. Now, every point R := (r1, r2) different to P2 and
P2+e2, in the hexagon D0 and in D0+e2 verifies that r1 < x2, and also
we know by lemma 3.3.3 that y2 + 1 > y4 + 1 then [P2, P4 + e1 + e2]
does not intersect any point contained in the hexagons in D0 or in
D0 + e2 outside P2. By lemma 3.3.3, we know also that every point
S := (s1, s2) different to P4 + e1 + e2 in the hexagon in D0 + e1 + e2

verifies that s2 > y4 + 1, then [P2, P4 + e1 + e2] does not intersect
the hexagon in D0 + e1 + e2. We have that every point T := (t1, t2),
different of P4 + e1, contained in [P6 + e1, P1 + e1], [P6 + e1, P0 + e1],
[P1 + e1, P2 + e1], [P1 + e1, P0 + e1], [P2 + e1, P3 + e1], [P2 + e1, P0 + e1],
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[P3 + e1, P4 + e1], [P3 + e1, P0 + e1] and [P4 + e1, P0 + e1], verifies that
t1 > x4+1 and since y4 < y1, P4+e1 is not contained in P2, P4+e1+e2].
We deduce that [P2, p4 + e1 + e2] does not intersect any of these edges.
We have that any point U := (u1, u2) in [P3 + e1, P0], [P3 + e1, P4 + e1]
verifies that u2 < y2, then [P2, P4 + e1 + e2] does not intersect these
edges neither. Finally, since y4 + 1 > y6 and y3 < y2, the segments
[P2, P4 +e1 +e2] and [P3 +e1, P6 +e1] are not contained in the segment
[P2, P6 + e1] as every point V := (v1, v2) in this segment verifies that
y2 < v2 < y6 +1. Since x3 +1 > x2 and x4 +1 < x6 +1, we deduce that
the segments [P2, P4 + e1 + e2] and [P3 + e1, P6 + e1] are completely
over and under the segment [P2, P6 + e1] respectively, outside their
intersection point (P2 and P6 + e1 respectively). If [P2, P4 + e1 + e2]
intersects [P3 + e1, P6 + e1], then there is, by continuity, a point I ∈
[P3 + e1, P6 + e1] different to P6 + e1 and P3 + e1, where [P2, P6 + e1]
and [P2, P4 + e1 + e2] intersects, but since P2 is in the intersection
of these two segments and it is the only intersection point, then we
have a contradiction. We conclude that [P2, P4 + e1 + e2] does not
intersects any point in the hexagon in D0 + e1, therefore any hexagon
in D0 + ae1 + be2 for all a, b ∈ Z.

We have proved that the 9 edges that do not conform the hexagon in
D0 do not intersect this hexagon. That means that around P0 there is a
triangulation consisting of a cycle of 6 triangles since all properties that are
true for D0 are also true for Di. By lemma 3.3.5, we conclude that around
any point Pi, there is a triangulation consisting in a cycle of 6 triangles.
Hence, the lifts of the edges [pk, pl] do not intersect. We deduce that we are
in the case CI,3.

⇒) Reciprocally, suppose that we are in a configuration type CI,3, since
P3 ∈ Q2, we know in which quadrant is contained every other point Pi. We
will prove that equations (1)− (7) and (1′)− (7′) are verified.

For that, note that [Pi, Pi+1] and [P0, Pi] are lifts of [pi, pi+1] and [p0, pi]
for all i = 1, . . . , 6 for every configuration, this is because the lift of Starp0

is StarP0 and the shortest path property implies that StarP0 is contained
in D0 (see figure 3.8). We will now verify which are the lifts of the other 9
edges.

1. Lift of [p1, p3]: Since P1 ∈ Q1 and P3 ∈ Q3, then, by the shortest path
property, the possible lifts for [p1, p3] are [P1, P3] and [P1, P3 + e2].

Case 1: If [P1, P3] is the lift of [p1, p3], then, since [P0, P1] and [P0, P3]
are lifts of [p0, p1] and [p0, p3], then, by lemma 3.2.4 [P0, P1, P3]
is a lift of a triangle, that is, [p0, p1, p3] ∈ T , which means that
(013) ∈ LI, the list of proposition 3.1.1, which is a contradiction.



3.3. CONFIGURATION SPACE 47

Case 2: The contradiction in case 1 implies that [P1, P3 + e2] is the lift of
[p1, p3].

2. Lift of [p6, p4]: Since P6 ∈ Q4 and P4 ∈ Q3, then, by the shortest path
property, the possible lifts for [p6, p4] are [P6, P4] and [P6, P4 + e2].

Case 1: If [P6, P4] is the lift of [p6, p4], then, since [P0, P6] and [P0, P4] are
lifts of [p0, p6] and [p0, p4], then, by lemma 3.2.4 [P0, P6, P3] is a
lift of a triangle, the triangle [p0, p6, p3] ∈ T , which means that
(064) ∈ LI, which is a contradiction.

Case 2: The contradiction in case 1 implies that [P6, P4 + e2] is the lift of
[p6, p4].

3. Lift of [p3, p5]: Since P3 ∈ Q2 and P5 ∈ Q3, the possible lifts for [p3, p5]
are [P3, P5] and [P3, P5 + e1].

Case 1: If [P3, P5] is the lift of [p3, p5], then, since [P0, P3] and [P0, P5] are
lifts of [p0, p3] and [p0, p5], then by lemma 3.2.4 [P0, P3, P5] is a
lift of a triangle, which means that (035) ∈ LI, we have then a
contradiction.

Case 2: The contradiction in case 1 implies that [P3, P5 + e1] is the lift of
[p3, p5].

4. Lift of [p2, p6]: Since P2 ∈ Q1 and P3 ∈ Q4, the possible lifts for [p2, p6]
are [P2, P6] and [P2, P6 + e1].

Case 1: If [P2, P6] is the lift of [p2, p6], then, since [P0, P2] and [P0, P6]
are lifts of [p0, p2] and [p0, p6], then by lemma 3.2.4 [P0, P3, P5]
is a lift of a triangle which means that (035) ∈ LI, which is a
contradiction.

Case 2: The contradiction in case 1 implies that [P2, P6 + e1] is the lift of
[p2, p6].

5. Lift of [p3, p6]: The possible lifts for [p3, p6] are [P6, P3], [P6, P3 − e1],
[P6, P3 + e2] or [P6, P3 − e1 + e2].

Case 1: If [P3, P6] is the lift of [p6, p3], since [P0, P3] and [P0, P6] are lifts
of [p0, p3] and [p0, p6], then by lemma 3.2.4, [P0, P3, P6] is a lift of
a triangle, hence (063) ∈ LI which is a contradiction.

Case 2: If [P6, P3 − e1] is a lift of [p6, p3], then, since [P5, P6], is a lift of
[p5, p6] and as we saw previously, [P3, P5 + e1] is a lift of [p3, p5],
that is [P3− e1, P5] is a lift of [p3, p5], then by lemma 3.2.4, [P3−
e1, P6 + e1, P5] is the lift of a triangle, then (365) ∈ LI which is a
contradiction.
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Case 3: If [P6, P3 − e1 + e2] is a lift of [p3, p6]. We saw that [P6, P4 + e1]
is a lift of [p6, p4]. Since (634) ∈ LI and [P6, P3 − e1 + e2] and
[P6, P4 + e1] are lifts of [p3, p6] and [p6, p4], then [P3, P4 + e1] is a
lift of [p3, p4] which is a contradiction.

Case 4: Since any of the other cases are possible, then the lift of [p3, p6]
is [P6, P3 + e2].

6. Lift of [p1, p5]: The possible lift for [p1, p5] are [P1, P5], [P1, P5 + e1],
[P1, P5 + e2] or [P1, P5 + e1 + e2]

Case 1: If [P1, P5] is a lift of [p1, p5], since [P0, P1] and [P0, P5] are lifts
of [p0, p1] and [p0, p5] respectively, then [P0, P1, P5] is the lift of a
triangle and this means that (015) ∈ LI which is a contradiction.

Case 2: We know that (154) ∈ LI and that [P4, P5] is a lift of [p4, p5]. If
we suppose that [P1, P5 + e2] is a lift of [p1, p5], then [P1, P5 +
e2, P4 + e2] is a lift of a triangle. This means that [P1, P4 + e2]
must be a lift of [p1, p4]. If this is the case, since [P1, P3 + e2]
is a lift of [p1, p3] as seen previously and [P3 + e2, P4 + e2] is a
lift of [p3, p4], then [P1, P3 + e2, P4 + e2] is a lift of a triangle by
lemma 3.2.4, but (134) 6∈ LI, then [P1, P4 + e2] can not be a lift
of [p1, p4], therefore [P1, P5 + e2] is not a lift of [p1, p5].

Case 3: Suppose that [P1, P5 + e1] is a lift of [p1, p5], since (153) ∈ LI
and [P3, P5 + e1] is a lift of [p3, p5], then necessarily we have that
[P1, P3] is a lift of [p1, p3], which is a contradiction as we know
that [P1, P3 + e2] is a lift of [p1, p3]

Case 4: Because the cases 1-3 are not possible, then the lift pf [p1, p5] is
[P1, P5 + e1 + e2].

7. Lift of [p1, p4]: The possible lifts for [p1, p4] are [P1, P4], [P1, P4 + e1],
[P1, P4 + e2] or [P1, P4 + e1 + e2].

Case 1: If [P1, P4] is a lift of [p1, p4], since [P0, P1] and [P0, P4] are lifts
of [p0, p1] and [p0, p4], then [P1, P0, P4] is a lift of a triangle by
lemma 3.2.4, then (104) ∈ Li which is a contradiction.

Case 2: [P1, P4 + e2] can not be a lift of [p1, p4] as we showed in case 2
form lift of [p1, p5].

Case 3: Suppose that [P1, P4 + e1] is a lift of [p1, p4]. We know that
[P5 + e1, P4 + e1] is a lift of [p5, p4] and that (154) ∈ LI, then
necessarily [P1, P5+e1] is a lift of [p1, p5], which is a contradiction.

Case 4: Since any of the previous cases are possible, we conclude that
[P1, P4 + e1 + e2] is a lift of [p1, p4].

8. Lift of [p2, p4]: The possible lifts for [p2, p4] are [P2, P4], [P2, P4 + e1],
[P2, P4 + e2], [P2, P4 + e1 + e2].
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Case 1: If [P2, P4] is a lift of [p2, p4], since [P0, P2], [P0, P4] are lifts of
[p0, p2] and [p0, p4] respectively, by lemma 3.2.4 we have that
[P0, P2, P4] must be a lift of a triangle of T , that means that
(024) ∈ LI which is a contradiction.

Case 2: Suppose that [P2, P4 + e2] is a lift of [p2, p4]. Since [P2, P1] is
a lift of [p2, p1] and we know that (241) ∈ LI, then necessary
[P1, P4 + e2] is a lift of [p1, p4], which is a contradiction.

Case 3: Suppose that [P2, P4 + e1] is a lift of [p2, p4]. Since [P2, P1] is
a lift of [p2, p1] and we know that (241) ∈ LI, then necessary
[P1, P4 + e1] is a lift of [p1, p4], which is a contradiction.

Case 4: The fact that the other three cases are not possible means that
[P2, P4 + e1 + e2] is a lift of [p2, p4].

9. Lift of [p2, p5]: The possible lifts for [p2, p5] are [P2, P5], [P2, P5 + e1],
[P2, P5 + e2] or [P2, P5 + e1 + e2].

Case 1: If [P2, P5] is a lift of [p2, p5], since [P0, P2] and [P0, P5] are lifts
of [p0, p2] and [p0, p5], then [P0, P2, P5] is a lift of a triangle by
lemma 3.2.4, then (025) ∈ LI which is a contradiction.

Case 2: Suppose that [P2, P5 + e2] is a lift of [p2, p5]. Since [P2, P3] is a
lift of [p2, p3] and (253) ∈ LI, then necessarily [P2, P5 + e2, P3] is
a lift of a triangle, hence [P3, P5 + e2] is a lift of [p3, p5], but we
know that a lift of [p3, p5] is [P3, P5 + e1], then [P2, P5 + e2] can
not be a lift of [p2, p5].

Case 3: Suppose that [P2, P5 + e1 + e2] is a lift of [p2, p5]. Since [P2, P3] is
a lift of [p2, p3] and (235) ∈ LI, then [P2, P5 + e1 + e2, P3] is a lift
of a triangle, therefore [P3, P5 + e1 + e2] is a lift of [p3, p5] which
is a contradiction.

Case 4: Since any of the previous cases are possible, then [P2, P5 + e1] is
a lift of [p2, p5].

Once we know all the lifts of the edges [pi, pj ], the equations are deduced
since, by lemma 3.2.2 we have that if [Pi + ae1 + be2, Pj + ce1 + de2] is a lift
of [pi, pj ], then |xi + a− (xj + c)| < 1

2 and |yi + b− (yj + d)| < 1
2 .

Remark 3.3.8. We have studied properties of configuration CI,3, that is,
the second quadrant Q2 of D0 contains only one point, the point P3. But
relabeling, the same results are true for configurations of type CI,i, that is,
configurations where the only point in Q2 of D0 is the point Pi for i =
0, . . . , 6.

Similarly, if we relabel, all the properties are true for configurations of
type CII,i, consisting of configurations where the quadrant Q1 in D0 contains
only the point Pi.
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Theorem 3.3.9. The equations given in 3.3.2 describe two simplexes of
dimension 6, so the configuration space for configuration type CI,3 can be
denoted by ∆x ×∆y .

Proof. First of all, note that the coordinates xi verify −1
2 < xi <

1
2 and

yi verify also −1
2 < yi <

1
2 . This implies that the space described by

the vertices Pi, for i = 0, . . . , 6 is bounded. Furthermore, we have seven
equations in R6 for the first coordinate (and seven equations in R6 for the
second coordinate) that define the intersection of seven half-spaces. We
prove now that this intersection is non empty. Take P0 = (0, 0), P1 =(

2
7 ,

3
7

)
, P2 =

(
3
7 ,

1
7

)
, P3 =

(
1
7 ,−

2
7

)
, P4 =

(
−2

7 ,−
3
7

)
, P5 =

(
−3

7 ,−
1
7

)
and

P6 =
(
−1

7 ,
2
7

)
. We show that these points verify the equations given in

3.3.2. Indeed, we have:

(1). x2 − x0 = 3
7 <

1
2

(2). x6 − x2 = −4
7 < −

1
2

(3). x1 − x6 = 3
7 <

1
2

(4). x4 − x1 = −4
7 < −

1
2

(5). x3 − x4 = 3
7 <

1
2

(6). x5 − x3 = −4
7 < −

1
2

(7). x0 − x5 = 3
7 <

1
2

and

(1’). y1 − y0 = 3
7 <

1
2

(2’). y5 − y1 = −4
7 < −

1
2

(3’). y6 − y5 = 3
7 <

1
2

(4’). y3 − y6 = −4
7 < −

1
2

(5’). y2 − y3 = 3
7 <

1
2

(6’). y4 − y2 = −4
7 < −

1
2

(7’). y0 − y4 = 3
7 <

1
2

We have a non empty bounded intersection of seven half-spaces, we de-
duce then that this intersection is a 6-simplex. In general, the equations
given in 3.3.2 define a product of two six-simplex, denoted by ∆x for the
simplex defined by equations (1) − (7) and ∆y for the simplex defined by
equations (1′) − (7′). In particular, all the triangulations of CI,3 are con-
tained in a space of dimension 12.

By remark 3.3.8, the other 11 cases presented have similar equations as
configuration CI,3, we deduce that the equations associated to these con-
figurations define a product of 6-simplexes. We have then the following
corollary:

Corollary 3.3.10. The configuration space GE(M,T2) is given by

GE(M,T2) =

12⋃
i=1

(∆x ×∆y)i,

where ∆x×∆y denote the product of two (different) 6-simplex, ∆x and ∆y.
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Lemma 3.3.11. The vertices of the closure of ∆x defined by equations 3.3.2
are given by:

• v1 =
(
0, 0, 0,−1

2 ,−
1
2 ,−

1
2

)
• v2 =

(
1
2 ,

1
2 ,

1
2 , 0, 0, 0

)
• v3 =

(
1
2 ,

1
2 , 0, 0,−

1
2 , 0
)

• v4 =
(

1
2 ,

1
2 , 0,−

1
2 ,−

1
2 , 0
)

• v5 =
(

1
2 ,

1
2 ,

1
2 , 0,−

1
2 , 0
)

• v6 =
(
0, 1

2 , 0,−
1
2 ,−

1
2 , 0
)

• v7 =
(
0, 1

2 , 0,−
1
2 ,−

1
2 ,−

1
2

)
On the other hand, the vertices of the closure of ∆y defined by equations

3.3.2 are given by:

• w1 =
(
0, 0,−1

2 ,−
1
2 ,−

1
2 , 0
)

• w2 =
(

1
2 ,

1
2 , 0, 0, 0,

1
2

)
• w3 =

(
1
2 ,

1
2 , 0,−

1
2 , 0,

1
2

)
• w4 =

(
1
2 , 0, 0,−

1
2 , 0,

1
2

)

• w5 =
(

1
2 , 0,−

1
2 ,−

1
2 ,−

1
2 , 0
)

• w6 =
(

1
2 , 0,−

1
2 ,−

1
2 , 0, 0

)
• w7 =

(
1
2 , 0,−

1
2 ,−

1
2 , 0,

1
2

)
Proof. Since the inequalities in 3.3.2 are strict, the two 6-simples ∆x and
∆y are open. The closure of them are defined by the equations with non
strict inequalities, that is:

(i). x2 − x0 ≤ 1
2

(ii). x6 − x2 ≤ −1
2

(iii). x1 − x6 ≤ 1
2

(iv). x4 − x1 ≤ −1
2

(v). x3 − x4 ≤ 1
2

(vi). x5 − x3 ≤ −1
2

(vii). x0 − x5 ≤ 1
2

and

(i’). y1 − y0 ≤ 1
2

(ii’). y5 − y1 ≤ −1
2

(iii’). y6 − y5 ≤ 1
2

(iv’). y3 − y6 ≤ −1
2

(v’). y2 − y3 ≤ 1
2

(vi’). y4 − y2 ≤ −1
2

(vii’). y0 − y4 ≤ 1
2

These equations imply:

(1-1). 0 ≤ x1 ≤ 1
2

(2-1). 0 ≤ x2 ≤ 1
2

(3-1). 0 ≤ x3 ≤ 1
2

(4-1). −1
2 ≤ x4 ≤ 0

(5-1). −1
2 ≤ x5 ≤ 0

(6-1). −1
2 ≤ x6 ≤ 0

and
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(1-2). 0 ≤ y1 ≤ 1
2

(2-2). 0 ≤ y2 ≤ 1
2

(3-2). −1
2 ≤ y3 ≤ 0

(4-2). −1
2 ≤ y4 ≤ 0

(5-2). −1
2 ≤ y5 ≤ 0

(6-2). 0 ≤ y6 ≤ 1
2

We will now find the vertices of the two 6-simplex ∆x and ∆y. Every
vertex of ∆x has the form vk = (x1, x2, x3, x5, x5, x6) for k = 1, . . . , 7, where
xi ∈

{
0, 1

2

}
for i = 1, 2, 3 and xj ∈

{
−1

2 , 0
}

for j = 1, 2, 3. Indeed, if xi
or xj do not take these values, then they are at the interior of ∆x (or at
the exterior) thus vk could not be a vertex. Similarly, every vertex vl of the
closure of ∆y has the form vl = (y1, y2, y3, y4, y5, y6), where y1, y2, y6 ∈

{
0, 1

2

}
and y1, y4, y5 ∈

{
−1

2 , 0
}

. By equations (i)− (vii) and (1− 1)− (6− 1), we
have the following cases:

1. If x1 = 0, then x4 = −1
2 , x3 = 0 and x5 = −1

2 .

2. If x1 = 1
2 , then x6 = 0 and x2 = 1

2 .

3. If x2 = 0, then x6 = −1
2 , x1 = 0, x4 = −1

2 , x3 = 0 and x5 = −1
2 .

4. If x2 = 1
2 , then there is no other point than can be fixed.

5. If x3 = 0, then x5 = −1
2 .

6. If x3 = 1
2 , then x1 = 1

2 , x4 = 0, x6 = 0 and x2 = 1
2 .

7. If x4 = 0, then x1 = 1
2 , x6 = 0 and x2 = 1

2 .

8. If x4 = −1
2 , then x3 = 0 and x5 = −1

2 .

9. If x5 = 0, then x3 = 1
2 , x4 = 0, x1 = 1

2 , x6 = 0 and x2 = 1
2 .

10. If x5 = −1
2 , then there is no other point that can be fixed.

11. If x6 = 0, then x2 = 1
2 .

12. If x6 = −1
2 , then x1 = 0, x4 = −1

2 , x3 = 0 and x5 = −1
2 .

In the third and ninth cases, we have all points fixed, that is, we have
the vertices v1 =

(
0, 0, 0,−1

2 ,−
1
2 ,−

1
2

)
and v2 =

(
1
2 ,

1
2 ,

1
2 , 0, 0, 0

)
. This implies

that any other vertex has to be such that x2 = 1
2 and x5 = −1

2 .

If x1 = 1
2 , by the second case and the previous argument, we have a

vertex of the form vk =
(

1
2 ,

1
2 , ·, ·,−

1
2 , 0
)
. We can have x3 = 0 because by the

fifth case x5 = −1
2 so there is no contradiction, so that the vertex takes the

form vk =
(

1
2 ,

1
2 , 0, ·,−

1
2 , 0
)
. Seventh case implies no contradiction so we can

have x4 = 0. In this case, the vertex becomes v3 =
(

1
2 ,

1
2 , 0, 0,−

1
2 , 0
)
. Also,

eighth case implies no contradiction and in this case, the vertex becomes
v4 =

(
1
2 ,

1
2 , 0,−

1
2 ,−

1
2 , 0
)
. On the other hand, if x3 = 1

2 , by the sixth case,
we have x4 = 0 and we have no contradictions with the other points. In this
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case, the vertex takes the form v5 =
(

1
2 ,

1
2 ,

1
2 , 0,−

1
2 , 0
)
. We have studied all

cases where x1 = 1
2 .

If x1 = 0, by the first case and a previous argument, the vertices will take
the form vk =

(
0, 1

2 , 0,−
1
2 ,−

1
2 , ·
)
. By the eleventh case, we can have x6 = 0

with no contradiction, so than the vertex becomes v6 =
(
0, 1

2 , 0,−
1
2 ,−

1
2 , 0
)
.

By the twelfth case, we can have x6 = 1
2 which do not lead to any con-

tradiction, so that the vertex becomes v7 =
(
0, 1

2 , 0,−
1
2 ,−

1
2 ,−

1
2

)
. We have

studied all the cases where x1 = 0.

These are all vertices since we have studied all possible case for x1, more-
over ∆x is a 6-simplex so we have just 7 vertices.

We now determine the vertices of ∆y. By equations (i′) − (vii′) and
(1− 2) to (6− 2), we have the following cases:

1. If y1 = 0, then y5 = −1
2 , y6 = 0, y3 = −1

2 , y2 = 0 and y4 = −1
2

2. If y1 = 1
2 , then there is no other point that can be fixed.

3. If y2 = 0, then y4 = −1
2 .

4. If y2 = 1
2 , then y3 = 0, y6 = 1

2 , y5 = 0 and y1 = 1
2 .

5. If y3 = 0, then y6 = 1
2 , y5 = 0 and y1 = 1

2 .

6. If y3 = −1
2 , then y2 = 0 and y4 = −1

2 .

7. If y4 = 0, then y2 = 0, y3 = 0, y6 = 1
2 , y5 = 0 and y1 = 1

2 .

8. If y4 = −1
2 , then there is no other point that can be fixed.

9. If y5 = 0, then y1 = 1
2 .

10. If y5 = −1
2 , then y6 = 0, y3 = −1

2 , y2 = 0 and y4 = −1
2 .

11. If y6 = 0, then y3 = −1
2 , y2 = 0 and y4 = −1

2 .

12. If y6 = 1
2 , then y5 = 0 and y1 = 1

2 .

If y1 = 0 the remaining points are fixed as seen in the first case. In
this case, the vertex becomes w1 =

(
0, 0,−1

2 ,−
1
2 ,−

1
2 , 0
)
. The case where

y4 = 0 is similar, the vertex becoming w2 =
(

1
2 ,

1
2 , 0, 0, 0,

1
2

)
. This implies

that every other vertex must be such that y1 = 1
2 and y4 = −1

2 , then of the
form wl =

(
1
2 , ·, ·,−

1
2 , ·, ·

)
.

If y2 = 1
2 , by the previous argument and the fourth case, we have w3 =(

1
2 ,

1
2 , 0,−

1
2 , 0,

1
2

)
.

We can have y2 = 0 since it does not imply any contradiction (see third
case). In this case, the vertex takes the form wl =

(
1
2 , 0, ·,−

1
2 , ·, ·

)
. If y3 = 0,

by the fifth case, we have w4 =
(

1
2 , 0, 0,−

1
2 , 0,

1
2

)
. By the sixth case, we can
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Figure 3.9: Some vertices of ∆x ×∆y.

have y3 = −1
2 , so the vertex becomes wl =

(
1
2 , 0,−

1
2 ,−

1
2 , ·, ·

)
. We can have

y5 = −1
2 without having a contradiction, so that, by the tenth case, we

have w5 =
(

1
2 , 0,−

1
2 ,−

1
2 ,−

1
2 , 0
)
. We can also have y5 = 0 by the ninth

case, then, the vertex takes the form wl =
(

1
2 , 0,−

1
2 ,−

1
2 , 0, ·

)
. We have

no contradiction whether y6 = 0 or y6 = 1
2 , so that, we have the vertices

w6 =
(

1
2 , 0,−

1
2 ,−

1
2 , 0, 0

)
and w7 =

(
1
2 , 0,−

1
2 ,−

1
2 , 0,

1
2

)
.

Since we have studied all cases for y2, then these are the only vertices,
in addition to the fact that ∆y is a 6-simplex (see figure 3.9).

Example: Central configuration. Among all the different triangulations
of type CI,3, there is a special one that we will call Central configuration.
This configuration consists of seven vertices whose lifts have the following
coordinates: P0 = (0, 0), P1 =

(
2
7 ,

3
7

)
, P2 =

(
3
7 ,

1
7

)
, P3 =

(
1
7 ,−

2
7

)
, P4 =(

−2
7 ,−

3
7

)
, P5 =

(
−3

7 ,−
1
7

)
and P6 =

(
−1

7 ,
2
7

)
(see figure 3.10). In theorem
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3.3.9 we show that these points verify equations 3.3.2, so these lifts cor-
respond indeed to configuration CI,3. We have the following geometrical
property of the Central configuration:

Proposition 3.3.12. In the Central configuration, all the lifts of the faces
in T2 are congruent.

Proof. We calculate the length of the sides of the lifts of all triangles in
T . By all the previous results, we know which are lifts of the faces of the
triangulation type CI,3 in T2. We denote by `(Pi, Pj) the length of the
segment [Pi, Pj ] and we denote by [Pi, Pj , Pk] ≡ [Pi′ , Pj′ , Pk′ ] whenever two
triangles are congruent.

1. Take the triangle [P0, P1, P2]. We have that `(P0, P1) =
√

13
7 := `1,

`(P0, P2) =
√

10
7 := `2 and `(P1, P2) =

√
5

7 := `3.

2. Take the triangle [P0, P2, P3]. Then `(P0, P2) = `2, `(P0, P3) = `3 and
`(P2, P3) = `1, then [P0, P1, P2] ≡ [P0, P2, P3].

3. Take the triangle [P0, P3, P4]. We know that `(P0, P3) = `3, moreover
`(P0, P4) = `1 and `(P4, P3) = `2, then [P0, P3, P4] ≡ [P0, P2, P3].

4. Take the triangle [P0, P4, P5]. We have `(P0, P4) = `1, on the other
hand, `(P0, P5) = `2 and `(P4, P5) = `3, we deduce that [P0, P4, P5] ≡
[P0, P3, P4].

5. Take the triangle [P0, P5, P6]. We have `(P0, P5) = `2. We have also
`(P0, P6) = `3 and `(P5, P6) = `1. Then [P0, P5, P6] ≡ [P0, P4, P5].

6. Take the triangle [P0, P6, P1]. We know that `(P0, P6) = `3 and that
`(P0, P1) = `1. On the other hand, `(P6, P1) = `2. We deduce
[P0, P6, P1] ≡ [P0, P5, P6].

7. Take the triangle [P2, P6 + e1, P5 + e1], we have P6 + e1 =
(

6
7 ,

2
7

)
and

P5 + e1 =
(

4
7 ,−

1
7

)
, then `(P2, P6 + e1) = `2, `(P2, P5 + e1) = `3 and

`(P6 + e1, P5 + e1) = `1. Therefore [P2, P6 + e1, P5 + e1] ≡ [P0, P6, P1].

8. Take the triangle [P2, P5 + e1, P3]. We know that `(P2, P5 + e1) = `3
and that `(P2, P3) = `1. We have also `(P5 + e1, P3) = `2. Then
[P2, P5 + e1, P3] ≡ [P2, P6 + e1, P5 + e1].

9. Take the triangle [P3, P5 + e1, P1 − e2]. We have P1 − e2 =
(

2
7 ,−

4
7

)
.

We know that `(P3, P5 + e1) = `2. Now, `(P3, P1 − e2) = `3 and
`(P1 − e2, P5 + e1) = `1, then [P3, P5 + e1, P1 − e2] ≡ [P2, P5 + e1, P3].

10. Take the triangle [P1−e2, P4 +e1, P5 +e1]. We have P4 +e1 =
(

5
7 ,−

3
7

)
.

We know that `(P1−e2, P5+e1) = `1. Since translations are isometries,
we know also that `(P4 + e1, P5 + e1) = `3. Moreover, `(P1 − e2, P4 +
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e1) = `2. We have then that [P1 − e2, P4 + e1, P5 + e1] ≡ [P3, P5 +
e1, P1 − e2].

11. Take the triangle [P1−e2, P4 +e1, P2−e2]. We have P2−e2 =
(

3
7 ,−

6
7

)
.

We know that `(P1 − e2, P4 + e1) = `2 and that `(P1 − e2, P2 − e2) =
`3. On the other hand, we have `(P4 + e1, P2 − e2) = `1. Then
[P1 − e2, P4 + e1, P2 − e2] ≡ [P1 − e2, P4 + e1, P5 + e1].

12. Take the triangle [P2 − e2, P4 + e1, P6 + e1 − e2]. We have P6 + e1 −
e2 =

(
6
7 ,−

5
7

)
. We know that [P4 + e1, P2 − e2) = `1. We have that

`(P2 − e2, P6 + e1 − e2) = `2 and that `(P4 + e1, P6 + e1 − e2) = `3.
Then [P2 − e2, P4 + e1, P6 + e1 − e2] ≡ [P1 − e2, P4 + e1, P2 − e2].

13. Take the triangle [P1−e2, P3, P6−e2]. We have P6−e2 =
(
−1

7 ,−
5
7

)
. We

have already seen that `(P3, P1−e2) = `3 and that `(P1−e2, P6−e2) =
`2. We have that `(P3, P6 − e2) = `1 and thus [P1 − e2, P3, P6 − e2] ≡
[P2 − e2, P4 + e1, P6 + e1 − e2].

14. Take the triangle [P4, P3, P6 − e2]. We know that `(P3, P6 − e2) =
`1 and that `(P4, P3) = `2. Moreover, `(P4, P6 − e2) = `3, hence,
[P4, P3, P6 − e2] ≡ [P1 − e2, P3, P6 − e2].

Remark 3.3.13. The central configuration corresponds to the barycenter
of ∆x × ∆y. Indeed, the barycenter of ∆x, bar∆x is given by bar∆x =

1
7

7∑
i=1

vi where vi are the vertices of ∆x. Computing, we find bar∆x =(
2
7 ,

3
7 ,

1
7 ,−

2
7 ,−

3
7 ,−

1
7

)
, corresponding to the first coordinate of points P1, . . . , P6.

On the other hand, bar∆y = 1
7

7∑
i=1

wi where wi are the vertices of ∆y.We find

hence bar∆y =
(

3
7 ,

1
7 ,−

2
7 ,−

3
7 ,−

1
7 ,

2
7

)
, which corresponds to the second coor-

dinates of points P1, . . . , P6.

3.4 Aligned configurations

Recall from chapter 1 that we have introduced by LT2(M,E3) the space of
linear embeddings of the Moebius torus M into E3. In chapter II, we have
constructed a simplicial complex C isometric to T2 and a linear embedding
of this complex into E3, showing that LT2(C,E3) is non empty. We have
conjectured that LT2(M,E3) is empty. Let T ∈ GE(M,T2). We denote by
LT (E3) the set of linear isometric embeddings of T in E3. We obviously
have

LT2(M,E3) =
⋃
T

LT (E3).
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P0

P1

P2

P3P4

P6

P4+e1

P5+e1

P6+e1

P1-e2

P2-e2

P6-e2 P6+e1-e2
P6-e2

P2-e2
P6+e1-e2

P1-e2

P4+e1

P5+e1
P0

P2
P5

Figure 3.10: Lift of the central configuration

The aim of this section is to show that LT (E3) = ∅ for every aligned
configuration T (see the definition 3.4.3).

Definition 3.4.1. Let (jkl) and (jlm) be in LI, (the list of triangles in
proposition 3.1.1) and let [Pj , Pk, Pl] and [Pj , Pl, Pm] be lifts of the corre-
sponding triangles having a common edge [Pj , Pl]. We call butterfly the
union of two such triangles, [Pj , Pk, Pl]∪ [Pj , Pl, Pm] and we call their com-
mon edge [Pj , Pl] the body of the butterfly (see figure 3.4). Using the ter-
minology of simplicial complexes, a butterfly is the star of its body. We say
that two butterflies are equivalent if and only if one of them is a translation
of the other one by a translation of vector in Ze1 + Ze2.

Notation: For short, we write P1[P2, P3]P4 for the butterfly [P1, P2, P3] ∪
[P2, P3, P4]. We consider the 7 consecutive butterflies (see Figure 3.12):

• B0 := P1[P0, P2]P3

• B1 := P 1
1 [P 1

0 , P
1
2 ]P 1

3 + e1

• B2 := P 2
1 [P 2

0 , P
2
2 ]P 2

3
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Pj

Pk

Pm

Pl

Figure 3.11: The butterfly Pk[Pj , Pl]Pm.
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16
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P2=P0
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P2=P0
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P2=P0
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P2=P0
2

P1

P1
2 P1

6

P1
1

P1
4 P1

3

P1
5

P3
2

P3
6

P3
1

P3
4

P3
3

P3
5

P0

B2

B6

B1

B4

B3

B5

B0

P2=P0
2

P2=P0
62

P2=P0
16

P2=P0
41

P2=P0
34

P2=P0
53

P5
2

Figure 3.12: The butterflies Bi’s on the broken line `1. For clarity, we write
P ij for P ij + v, where v is an integral translation.
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• B3 := P 3
1 [P 3

0 , P
3
2 ]P 3

3 + 2e1 + e2

• B4 := P 4
1 [P 4

0 , P
4
2 ]P 4

3 + 2e1 + e2

• B5 := P 5
1 [P 5

0 , P
5
2 ]P 5

3 + 3e1 + e2

• B6 := P 6
1 [P 6

0 , P
6
2 ]P 6

3 + e1,

and we denote by B := {Bi}6i=0. We denote by `1 the broken line formed by
the bodies of the butterflies B0, . . . , B6. They appear consecutively in the
following order: B0, B2, B6, B1, B4, B3 and B5.

Lemma 3.4.2. All the butterflies of the set B are non equivalents. As a
consequence, B contains a unique lift of [pj , pk, pl] for every (jkl) ∈ LI.

Proof. The butterfly B0 contains a lift of two triangles whose vertex indices
are (012) and (023). The butterfly B1 contains, by definition 3.3.6, a lift of
the triangles [p1, p5, p4] and [p1, p4, p2]. That is, triangles with indices (154)
and (142). The butterfly B2 contains a lift of [p2, p4, p6] and [p2, p6, p5],
then triangles with indices (246) and (265). The butterfly B3 contains lifts
of triangles whose vertex indices are (325) and (351). The butterfly B4,
contains, by definition 3.3.6, lifts of triangles with indices (403) and (436).
The butterfly B5 contains two triangles whose indices correspond to (560)
and (504). Finally, the lifts of the triangles contained in B6 have indices
(631) and (610). Note that the triangles in B have different indices two by
two. Moreover, we only have one lift of a triangle with index (jkl) for every
(jkl) ∈ LI since LI has 14 elements and B contains 14 triangles. We deduce
that no two triangles in B are equivalent.

Let θi be the angle between the body of the butterfly Bi and the hori-
zontal direction, for i = 1, . . . , 7 (see figure 3.13).

Definition 3.4.3. We say that an element T is an aligned configuration
if for all i = 0 . . . , 6, θi = arctan 1

3 .

We denote by S the subspace of CI,3 ⊂ GE(M,T2) consisting of all
aligned configurations (see figure 3.14). Observe that for every T ∈ S,
the bodies of the Bi’s are aligned for i = 0, . . . , 6. In particular, the Central
configuration described in the previous section is in S. We have the following
proposition for S:

Proposition 3.4.4. S can be written as the graph of an affine map f :
∆x → ∆y, where ∆x and ∆y are the simplices of theorem 3.3.9.

The proof of this proposition is postponed at the end of this section.
The main result of this section is the following:

Theorem 3.4.5. There exists a 12-dimensional neighborhood N(S) of S
such that for every element T of N(S), we have LT (E3) = ∅.
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θiiP0

iP1

iP3

iP2

Figure 3.13: A butterfly and its angle.
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1
P1
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3

P1
5

P0
P0

2
P0

6 P0
1

P0
4

P0
3 P0

5

Figure 3.14: An element T of S. Here again, we write P ij for P ij + v, where
v is an integral translation.
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To prove this theorem we need some lemmas. We denote AB := B − A
for A,B ∈ En, and we write AB = (XAB, YAB). We will denote by ‖AB‖n,
or simply ‖AB‖, the norm of AB.

Definition 3.4.6. We say that a butterfly R1[R0, R2]R3 of a configuration T
is realizable in Euclidean space En if there exist four points Q0, Q1, Q2, Q3 ∈
En such that dT2(π(Ri), π(Rj)) = ‖QiQj‖ for every (i, j).

Lemma 3.4.7. Let R1[R0, R2]R3 be a butterfly of some configuration in
CI,3 (see figure 3.4). The butterfly is realizable in En, for n ≥ 3, if and only
if

‖R′1R3‖2 ≤ ‖R′′1R3‖2,

where R′′1 := R1 − e2, and R′1 is the reflexion of R1 through the segment
[R0, R2].

Proof. Consider four pointsQ0, Q1, Q2, Q3 ∈ En such that dT2(π(Ri), π(Rj)) =
‖QiQj‖ for every (i, j) 6= (1, 3) with i < j. In particular, ‖Q0Q1‖2 =
‖R0R1‖2 and ‖Q1Q2‖2 = ‖R1R2‖2. Fixing Q0, Q2, Q3, the extrema of the
‖Q1Q3‖2 seen as a function of Q1 satisfy the Lagrange multiplier equation:

2〈Q1Q3, .〉En = 2λ〈Q0Q1, .〉En + 2µ〈Q1Q2, .〉En

for some λ, µ. Said differently, Q1Q3 is in the plane spanned by Q0Q1

and Q1Q2. The extrema of ‖Q1Q3‖ are obtained when Q0, Q1, Q2, Q3 are
coplanar. In Figure 3.4 this corresponds to the maximum ‖R1R3‖ and the
minimum ‖R′1R3‖. Clearly, every intermediate distance can be realized as
soon as n ≥ 3 by pivoting triangle R0R1R2 about the axis R0R2. Note that
for any configuration in CI,3 we have

dT2(π(R1), π(R3)) = ‖R′′1R3‖ < ‖R1R3‖.

Hence, R1[R0, R2]R3 is realizable if and only if ‖R′1R3‖ ≤ ‖R′′1R3‖.

We denote by eϕ the unitary vector (cosϕ, sinϕ), with ϕ ∈ [0, 2π[. We
have the following:

Lemma 3.4.8. The butterfly P i1[P i0, P
i
2]P i3 with angle θi is realizable if and

only if

4 cos2 θi

(
YP i1P i0

−XP i1P
i
0

tan θi

)(
YP i3P i2

−XP i3P
i
2

tan θi

)
− 1 ≤ 2YP i1P i3

Proof. By lemma 3.4.7, we have:

||P ′1 − P i3||2 ≤ ||P i1 − e2 − P i3||2 (3.13)
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R1

R0

R2

R3

R'1

R''1=R1-e2

Figure 3.15: Butterfly with points R′1 and R′′1 as described above.

Now, the reflexion of P i1, P ′1 through the segment [P i0, P
i
2], can be written as

P ′1 = P i1 + 2
〈
P i1P

i
0, eθi+π

2

〉
eθi+π

2
. Then, we have

||P ′1 − P i3||2 = ||P i1 + 2
〈
P i1P

i
0, eθi+π

2

〉
eθi+π

2
− P i3||2

= ||P i1 + 2
〈
P i1P

i
0, eθi+π

2

〉
eθi+π

2
||2

− 2
〈
P i1 + 2

〈
P i1P

i
0, eθ+π

2

〉
eθi+π

2
, P i3

〉
+ ||P i3||2

= ||P i1||2 + 4
(〈
P i1P

i
0, eθi+π

2

〉)2
+ 4

〈
P i1P

i
0, eθi+π

2

〉〈
P i1, eθi+π

2

〉
− 2

〈
P i1, P

i
3

〉
− 4

〈
P i1P

i
0, eθi+π

2

〉〈
P i3, eθi+π

2

〉
+ ||P i3||2

= ||P i1 − P i3||2 + 4
(〈
P i1P

i
0, eθi+π

2

〉)2
+ 4

〈
P i1P

i
0, eθi+π

2

〉〈
P i1 − P i3, eθi+π

2

〉
= ||P i1P i3||2 + 4

(〈
P i1P

i
0, eθi+π

2

〉)2
+ 4

〈
P i1P

i
0, eθi+π

2

〉〈
P i1P

i
3, eθi+π

2

〉
= ||P i1P i3||2 + 4

〈
P i1P

i
0, eθi+π

2

〉(〈
P i1P

i
0, eθi+π

2

〉
−
〈
P i1P

i
3, eθi+π

2

〉)
= ||P i1P i3||2 + 4

〈
P i1P

i
0, eθi+π

2

〉(〈
P i1P

i
0, eθi+π

2

〉
+
〈
P i3P

i
1, eθi+π

2

〉)
= ||P i1P i3||2 + 4

〈
P i1P

i
0, eθi+π

2

〉〈
P i3P

i
0, eθi+π

2

〉
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And we have also

||P i1 − e2 − P i3||2 = ||P i1 − e2||2 − 2
〈
P i1 − e2, P

i
3

〉
+ ||P i3||2

= ||P i1||2 − 2
〈
P i1, e2

〉
+ 1− 2

〈
P i1, P

i
3

〉
+ 2

〈
e2, P

i
3

〉
+ ||P i3||2

= ||P i1P i3||2 + 2
〈
P i1P

i
3, e2

〉
+ 1

We can write P i3P
i
0 = P i3P

i
2+P i2P

i
0, then

〈
P i3P

i
0, eθi+π

2

〉
=
〈
P i3P

i
2 + P i2P

i
0, eθi+π

2

〉
=〈

P i3P
i
2, eθi+π

2

〉
+
〈
P i2P

i
0, eθi+π

2

〉
, since P i2P

i
0 ⊥ eθi+π

2
, we have

〈
P i3P

i
0, eθi+π

2

〉
=〈

P i3P
i
2, eθi+π

2

〉
.

We have then that the condition of lemma 3.4.7 can be written as follows:

4
〈
P i1P

i
0, eθi+π

2

〉〈
P i3P

i
2, eθi+π

2

〉
≤ 2

〈
P i1P

i
3, e2

〉
+ 1 (3.14)

Recall that eθi+π
2

=
(
cos
(
θi + π

2

)
, sin

(
θi + π

2

))
= (− sin θi, cos θi). We have

the following inequality:

4
(
−XP i1P

i
0

sin θi + YP i1P i0
cos θi

)(
−XP i3P

i
2

sin θi + YP i3P i2
cos θi

)
− 1 ≤ 2YP i1P i3

or equivalently:

4 cos2 θi

(
−XP i1P

i
0

tan θi + YP i1P i0

)(
−XP i3P

i
2

tan θi + YP i3P i2

)
− 1 ≤ 2YP i1P i3

(3.15)

We can now prove Theorem 3.4.5:

Proof of theorem 3.4.5. We first consider the case where the considered con-
figuration is in S. Since the angle of each butterfly in B is arctan 1

3 , we have
that for every i the following points

P i0, P
i
2, P

i
6 + e1, P

i
1 + e1, P

i
4 + 2e1 + e2, P

i
3 + 2e1 + e2, P

i
5 + 3e1 + e2

lie on a line with slope 1
3 . Suppose that each butterfly Bi, or equivalently

P i1[P i0, P
i
2]P i3, is realizable. Then (3.15) is satisfied. Using that cos2 θi = 9

10
we may thus write

18

5

(
YP i1P i0

−
XP i1P

i
0

3

)(
YP i3P i2

−
XP i3P

i
2

3

)
− 1 ≤ 2YP i1P i3

From the above points alignments, we deduce that the vectors P i1P
i
0 − e1

and P i3P
i
2 − 2e1 − e2 have slope 1

3 . It follows that

YP i1P i0
=
XP i1P

i
0
− 1

3
and YP i3P i2

− 1 =
XP i3P

i
2
− 2

3
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whence

YP i1P i0
−
XP i1P

i
0

3
= −1

3
and YP i3P i2

−
XP i3P

i
2

3
=

1

3

Replacing in (3.15), we get

− 7

10
≤ YP i1P i3 = YP i3

− YP i1 (3.16)

With the help of the dictionary 3.3.6, we compute

YP 0
1 P

0
3

= YP3 − YP1

YP 1
1 P

1
3

= YP2 − YP5 − 1

YP 2
1 P

2
3

= YP5 − YP4 − 1

YP 3
1 P

3
3

= YP1 − YP2 − 1

YP 4
1 P

4
3

= YP6 − YP0 − 1

YP 5
1 P

5
3

= YP4 − YP6

YP 6
1 P

6
3

= YP0 − YP3 − 1

Summing inequation (3.16) over all i’s we obtain

− 7

10
× 7 ≤ −5,

or equivalently 49 ≥ 50, which is an obvious contradiction. We conclude
that at least one of Bi is not realizable, so that every configuration in S is
not realizable in En, for n ≥ 3. More precisely, we have proved that for all
configurations in S

7∑
i=0

(
4 cos2 θi

(
−XP i1P

i
0

tan θi + YP i1P i0

)(
−XP i3P

i
2

tan θi + YP i3P i2

)
− 1− 2YP i1P i3

)
=

1

10

By continuity, the left hand side must be strictly positive in some neighbor-
hood N(S) of S. This implies that (3.15) is not satisfied for at least one
i, i.e. that Bi is not realizable. We conclude that LT (E3) = ∅ for every
T ∈ N(S).

We prove the proposition 3.4.4:

Proof of proposition 3.4.4. To simplify the notations, we introduce the fol-
lowing points.
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• R0 := P0

• R1 := P2

• R2 := P6 + e1

• R3 := P1 + e1

• R4 := P4 + 2e1 + e2

• R5 := P3 + 2e1 + e2

• R6 := P5 + 3e1 + e2

Note that the set {Ri}6i=0 contains one and only one lift of pi ∈ T2 for
every i = 0, . . . , 6. We denote Ri = (Xi, Yi). From 3.3.2, it is easily seen
that a configuration is in CI,3 if and only if

I. X1 −X0 <
1
2

II. X2 −X1 <
1
2

III. X3 −X1 <
1
2

IV. X4 −X3 <
1
2

V. X5 −X4 <
1
2

VI. X6 −X0 <
1
2

VII. X0 −X6 < −5
2

I’. Y3 − Y0 <
1
2

II’. Y6 − Y3 <
1
2

III’. Y2 − Y6 < −1
2

IV’. Y5 − Y2 <
1
2

V’. Y1 − Y5 < −1
2

VI’. Y4 − Y1 <
1
2

VII’. Y0 − Y4 < −1
2

Such a configuration is in S if and only if it moreover satisfies

Yi =
Xi

3
(3.17)

for i = 0, . . . , 6. These last equations express the alignment of the Ri’s. A
configuration in S is thus a point of the graph of the map f : ∆x → R6

given by f(X1, . . . , X6) =
(
X1
3 , . . . ,

X6
3

)
. Here we have used the coordinates

(R1, . . . , R6) instead of (P1, . . . , P6) for a configuration. Conversely, consider
a configuration (R1, . . . , R6) = ((X1, . . . , X6), f(X1, . . . , X6)) in the graph
of f . In order to show that this configuration is in S it is enough to prove
that f(X1, . . . , X6) ∈ ∆y. Now, we have that Yi = Xi

3 , and the equations
I − V I imply that

Yi+1 − Yi <
1

6

for i = 0, . . . , 5, while equation V II implies

Y0 − Y6 < −
5

6
.

. We now verify that these inequalities imply equations I ′ − V II ′:

• Y3 − Y0 = (Y3 − Y2) + (Y2 − Y1) + (Y1 − Y0) < 3× 1
6 = 1

2 .

• Y6 − Y3 = (Y6 − Y5) + (Y5 − Y4) + (Y4 − Y3) < 3× 1
6 = 1

2
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• Y2 − Y6 = −(Y6 − Y5)− (Y5 − Y4)− (Y4 − Y3)− (Y3 − Y2) < −4× 1
6 =

−2
3 < −

1
2

• Y5 − Y2 = (Y5 − Y4) + (Y4 − Y3) + (Y3 − Y2) < 3× 1
2 = 1

2

• Y1−Y5 = −(Y5−Y4)−(Y4−Y3)−(Y3−Y2)−(Y2−Y1) < −4× 1
6 < −

1
2

• Y4 − Y1 = (Y4 − Y − 3) + (Y3 − Y2) = (Y2 − Y1) < 3× 1
6 = 1

2

• Y0−Y4 = −(Y4−Y3)−(Y3−Y2)−(Y2−Y1)−(Y1−Y0) = −4× 1
6 < −

1
2

This proves that f(∆x) ⊂ ∆y.



Chapter 4

Numerical experiments

Through this work, several computational programs have been used to fix
ideas about the realizability of a random triangulation T in CI,3. In this
chapter we give the results obtained from the numerical exploration as well
as the mathematical method used. All the programs were written in Python.
To write the programs we use some results of the Gramian matrix that we
now recall.

4.1 Method used

Let v1, . . . , vk a set of k vectors in En, their Gramian matrix is defined to
be:

G(v1, . . . , vk) := (〈vi, vj〉)ij .

The Gramian of v1, . . . , vk is the determinant of G(v1, . . . , vk).
Let {e1, . . . , en} be an orthonormal basis of En and A the matrix of

v1, . . . , vk in this basis, i.e., A = (v1, . . . , vk). We denote by AT the transpose
of A, then we have

G(v1, . . . , vk) = ATA.

Since det(ATA) = det(A)2, we deduce that detG(v1, . . . , vk) ≥ 0.
If k = n, since the n-volume of the parallelotope spanned by v1, . . . , vn

is given by vol(v1, . . . , vn) = |det(A)|, we have that

detG(v1, . . . , vn) = vol2(v1, . . . , vn)

.
In particular, if v1, . . . , vn are linearly dependent, then det(v1, . . . , vn) =

0. In general, we have the following property (see [Bar99]):

Proposition 4.1.1. Let v1, . . . , vk ∈ En, we have

detG(v1, . . . , vk) = vol 2
k(v1, . . . , vk)

67
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where volk (v1, . . . , vk) is the k-dimensional volume of the parallelotope gen-
erated by v1, . . . , vk. In particular, if k > n then det G(v1, . . . , vk) = 0.

Let T ∈ GE(M,T2). We denote by `ij the distance dT2(Pi, Pj) and by
`0i the distance dT2(P0, Pi). If in addition there is a linear embedding f of
T into E3, i t defines 6 vectors in En:

vi = f(P0)f(Pi)

and by the preservation of distances of the lengths we have

||vi|| = d(P0, Pi) = `0i

||vj − vi|| = d(Pi, Pj) = `ij

.

We now introduce a new k × k matrix Γ(`ij)defined by.

Γ(`ij) :=
1

2

(
`20i + `20j − `2ij

)
ij
.

Observe that this matrix only depends on the triangulation T . Since we
have assumed that T admits an linear isometric embedding in En we must
have:

G(v1, . . . , v6) = Γ(`ij) (4.1)

since 〈vi, vj〉 = 1
2

(
`20i + `20j − `2ij

)
.

The equality 4.1 could be used to prove that a given T ∈ GE(M,T2)
admits a linear isometric embedding in En. Indeed, if such an embedding
exists, then

detG(vi1 , . . . , vik) > 0

for every 1 ≤ k ≤ n and every k-subset Ik = {i1, . . . , ik} of {1, . . . , 6}. In
particular, if some minor of Γ(`ij) satisfies

det (Γ(`ij)i,j∈Ik) < 0,

then T admits no linear embedding.

4.2 Computing Gramians

The first program entitled toremoebius.py explores the Gramians of 7
vertices P0, . . . , P6 (with P0 = (0, 0)) of a random configuration in CI,3.

Let P ∈ R12 be defined by the successive coordinates of P1, . . . , P6.
The program takes a random admissible point P ∈ R12 and computes the
Gramian associated to it. It also computes the signs of the minors of size 4
and 5 of Γ(`ij). We have run several tests and observed in every case that
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at least one minor of size 4 was negative. In fact, we observed that one of
these negative minors corresponded to one of the 7 butterflies with body on
`1. This is the case for the central configurations where the negative minors
of size 4 are equal and correspond precisely to the 7 butterflies with body
on `1. We also checked with the program rationalpoint.py that for all the
49 vertices of the configuration space CI,3 one of the seven butterflies is non
realizable.

These observations motivated to explore more systematically the 7 mi-
nors of size 4 associated to the butterflies B0, . . . , B6 along `1. The program
entitled pointshazard.py calculates amongst a number of n configurations,
how many of them have 0 out of the 7 butterflies with negative determinant,
how many of these configurations have only one butterfly with negative de-
terminant and so on until 7 butterflies. We have run this program with n
up to 107 and collected the results in the following table. Row i indicates
how many of the 107 random configurations have i negative minors among
the 7.

Number of butterflies with
negative Gramian

Number of configurations

0 0

1 10

2 5725

3 251718

4 2484910

5 4919382

6 2124913

7 213342

These results consolidate our conjecture that at least one the 7 but-
terflies is not realizable. We should remark, however, that the number of
experiments, is very small with respect to the dimension of the the space of
configurations which is 12-dimensional. Indeed, sampling as few as 4 points
in every dimension already gives 412 ' 1.6 107 configurations to be tested.

4.3 Exploring geometric and algebraic character-
istics of 7 butterflies

We first tried to identify thanks to some geometrical characteristics one
among the 7 butterflies that would always be non realizable. For this, we
first recall the criterion for realizability of Lemma 3.4.7.

Let A[B,C]D a butterfly as seen in figure 4.1, A′ the reflexion of A
through the segment [B,C] and A′′ the point A − e2. Then, A[B,D]C is
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A

B

C

D

A'

A''  =A-e2

Figure 4.1: Butterfly A[B,C]D.

realizable if and only if ||A′D|| ≤ ||A′′D||. It is plausible that the butterfly
for which ||A′D|| is minimal always fails the test, hence is not realizable. Un-
fortunately, we wrote a program calcul-distances-arets.py and we found
examples that contradict this intuition. We tried other criteria in the same
spirit, but none of them have succeeded.

We have also computed the sum of the seven Gramians associated to the
butterflies hoping that this sum would be negative. This would indeed have
implied that at least one of the butterflies is not realizable. The program
det-sum.py computes this sum. However, the result of this experiment was
again negative, as we found a positive sum for some admissible configura-
tions.

We already saw that the central configuration studied in section 3 of
chapter 2 is non realizable. We know even more, by lemma 3.3.12 we have
that all butterflies are congruent, therefore every butterfly in the central
configuration is non realizable. We also saw that the 49 vertices of the
configuration space CI,3 have a non realizable butterfly. One approach to
extend this to all configurations is to prove (1) the non realizability on
the boundary of CI,3 and (2) that if a boundary configuration c has a non
realizable butterfly, this butterfly remains unrealizable on the whole segment
Sc that connects c to the central configuration. We were unable to show any
of these two points. To show the difficulty of point (2) we have plotted the
values of the 7 Gramians along the segment Sc where c has only one negative
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Gramian. See Figure 4.2.

Figure 4.2: Plot of the 7 Gramians along the segment Sc. The abscissa is the
interpolation parameter between 0 (for c) to 1 (for the central configuration).
The vertical axis represents the value of the Gramian. We also display the
constant zero value for reference. Left, a typical case for c where 5 out of 7
Gramians are negative. Right, all the Gramians of c except 1 are positive!
Note that the curve for the negative Gramian is not monotone.

4.4 Visualization

In order to facilitate the exploration of the configuration space we wrote
some visualization tools. We can first visualize any configuration by plotting
its seven vertices in D0 as on Figure 4.3. We also wrote a program to draw
part of the lift of the triangulation corresponding to a configuration. See
Figure 4.4.

From the butterfly in Figure 4.1, we know that A[B,C]D is realizable if
and only if ||A′D|| ≤ ||A′′D||. The same criteria is true if we change the role
of points D and A, that is, A[B,C]D is realizable if and only if ||D′A|| ≤
||D′′A||, where D′ is the reflexion of D through the segment [B,C] and
D′′ = D+ e2. We consider the bisector line between D′ and D′′. Obviously,
||D′A|| ≤ ||D′′A|| if and only if A is on the same side as D′ with respect to
this line (see figure 4.5). We can thus visualize pictorially if a butterfly is
realizable by drawing this bisector line. The program pavagepapillon.ggb
written in geoGebra shows a configuration with the bisector lines of the
seven butterflies. The user can move each of the points P1, P2, . . . , P6 to
generates different configurations (see figure 4.6) and see in realtime if the
configuration is realizable.

.
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Figure 4.3: Plot of the seven points P0, . . . , P6 in D0 of an admissible con-
figuration.

Figure 4.4: Part of the triangulation of the plane defined by the lift of a
configuration.
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A

B

C

D

D'

D''   =D-e2

Figure 4.5: A butterfly with and the bisector of D′ and D′′.

Figure 4.6: An admissible configuration showing which butterflies are non
realizable.
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Polyhedral embeddings of the Flat Square Torus

Abstract: In 1996, Burago and Zalgaller showed the following theo-
rem:
Theorem (Burago and Zalgaller): Let S a polyhedral surface, then
S admits an isometric PL embedding in E3.
This theorem shows in particular that the Flat Square Torus admits
an isometric PL embedding in E3

This theorem shows in particular that the Flat Square Torus admits
an isometric PL embedding in E3. In 1997, Zalgaller gives such an
embedding for rectangular flat torii. In the first part of this work, we
construct an explicit embedding of the flat square torus T2 in E3. This
result is stated as follows:
Theorem: There is an isometric PL embedding of the square flat torus
T2 with at most 48 points.
We know that the minimal triangulation of the torus is the Moebius
torus M . The 1-skeleton of the Moebius torus is the graph K7. We
consider the set GE(M,T2) of all geodesic triangulations of T2 isomor-
phic to M modulo translations. The description of this space is stated
as follows:
Theorem: The configuration space GE(M,T2) is the disjoint union of
12 products of simplices

GE(M,T2) =
12⋃
i=1

∆i
x ×∆i

y,

where ∆i
x and ∆i

y are two 6-dimensional simplices.

We denote by LT (E3) the set of lineal isometric embeddings of T in E3

and we put LT3(M,E3) =
⋃
T
LT (E3) for T ∈ GE(M,T2), we have:

Theorem: For every i ∈ {1, . . . , 12}, there is fi : ∆i
x → ∆i

x×∆i
y such

that the image Si = f(∆i
x) has a neighborhood N(Si) of dimension 12

such that for every T ∈ N(Si), we have LT (E3) = ∅.

Keywords: Embedding; Moebius Torus; Flat Square Torus.



Plongements polyédriques du tore carré plat

Résumé: En 1996, Burago et Zalgaller ont montré le théorème suivant:
Théorème (Burago et Zalgaller): Soit S une surface ployhédrique, alors
S admet un plongment isométrique PL dans E3.
Ce théorème nous montre en particulier que le tore carré plat admet un plong-
ment isométrique PL dans E3. En 1997, Zalgaller construit un tel plongement
de tores rectangulaires plat longs dans E3. Dans la première partie de cette
thèse, on fait un plongment explicite du tore carré plat T2 dans E3. Ce premier
résultat est énoncé dans le théorème suivant:
Théorème: Il y a un plongement isométrique PL du tore carré plat T2 avec
au plus 48 points.
On sait que la triangulation minimale du tore est le tore de Moebius M . Le
1-squelette du tore de Moebius est le graphe K7. On considère l’ensemble
GE(M,T2) de toutes les triangulations géodésiques de T2 isomorphes à M ,
modulo translations. La description de cette espace s’énonce dans le théorème
suivant:
Théorème: L’espace de configuration GE(M,T2) est l’union disjointe de 12
produits de simplexes

GE(M,T2) =
12⋃
i=1

∆i
x ×∆i

y,

où ∆i
x et ∆i

y sont deux simplexes de dimension 6.

On dénote par LT (E3) l’ensemble de plongements linéaires isométriques d’une
triangulation T de T2 dans E3 et on pose LT2(M,E3) =

⋃
T
LT (E3) for T ∈

GE(M,T2), on a:
Théorème: Pour chaque i ∈ {1, . . . , 12}, il existe fi : ∆i

x → ∆i
x × ∆i

y telle

que l’image Si = f(∆i
x) a un voisinage N(Si) de dimension 12 tel que pour

chaque T ∈ N(Si), on a LT (E3) = ∅.

Mots clés: Plongement; Tore de Moebius; Tore carré plat.

Image en couverture : Description très courte de l’image (facultative).

Crédit image : xxx yyy.
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