Polyhedral embeddings of the Flat Square Torus

Patricia Tanessi Quintanar Cortes

To cite this version:

Patricia Tanessi Quintanar Cortes. Polyhedral embeddings of the Flat Square Torus. Number Theory [math.NT]. Université de Lyon, 2019. English. NNT: 2019LYSE1354 . tel-02613763

HAL Id: tel-02613763
https://theses.hal.science/tel-02613763
Submitted on 20 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THESE de DOCTORAT DE L'UNIVERSITE DE LYON
 opérée au sein de I'Université Claude Bernard Lyon 1

Ecole Doctorale InfoMaths, ED 512

Spécialité : Mathématiques
N. d'ordre 2019LYSE1354

Soutenue publiquement le 18/12/2019 par :

Patricia Tanessi Quintanar Cortés

Plongements polyédriques du tore carré plat

Devant le jury composé de :

Mme. Nina Amenta	Professeure	Rapporteure
M. Pascal Romon	Maître de conférences	Rapporteur
Mme. Raphaëlle Chaine	Professeure des Universités	Examinatrice
M. Arnau Padrol	Maître de conférences	Examinateur
M. Vincent Borrelli	Maître de conférences, Université Lyon 1	Directeur de
M. Francis Lazarus	Directeur de recherche, Université Grenoble-Alpes	th`ese Directeur \\ & & de th`ese

Institut
 Camille

Jordan Laboratuire de recharche en mathématiques Lyon/Saint-Étienne

Plongements polyédriques du tore carré plat

Tanessi Quintanar Cortés

Thèse de doctorat

Contents

1 Introduction 5
1.1 Français 5
1.2 English 7
$2 \quad P L$-embedding of the Flat Torus into \mathbb{E}^{3} 11
2.1 Introduction 11
2.2 Triangulations of the square torus 12
2.3 PL embeddings of the square torus 15
2.4 Proof of Theorem [2.1.1 18
3 Linear embedding of the Moebius Torus 23
3.1 The Moebius' torus 23
3.2 The space $G E\left(M, \mathbb{T}^{2}\right)$ of geodesic triangulations 26
3.3 Configuration space 31
3.4 Aligned configurations 56
4 Numerical experiments 67
4.1 Method used 67
4.2 Computing Gramians 68
4.3 Exploring geometric and algebraic characteristics of 7 butterflies 69
4.4 Visualization 71

Chapter 1

Introduction

1.1 Français

Le but de cette thèse est d'étudier les plongements isométriques $P L$ du tore carré plat dans l'espace $E^{3}=(\mathbb{R},\langle\rangle$,$) . En 2012, un plongement isométrique$ C^{1} du tore carré plat dans \mathbb{E}^{3} a été construit explicitement en [BJLT12] et BJLT13. Rappellons que le tore carré plat est le quotient $\mathbb{T}^{2}=\mathbb{E}^{2} /\left(\mathbb{Z} e_{1}+\right.$ $\mathbb{Z} e_{2}$) où (e_{1}, e_{2}) est une base orthonormale de \mathbb{E}^{2}. Un plongment $f: \mathbb{T}^{2} \rightarrow \mathbb{E}^{3}$ est isométric si le pulback par f de la métrique induite par \mathbb{E}^{3} dans $f\left(\mathbb{T}^{2}\right)$ coïncide avec la métrique euclidienne dans \mathbb{T}^{2}. Ici, on s'intéresse aux plongements linéaires par morceaux $(P L)$ au lieu des plongements C^{1}.

Un plongement PL est un plongement linéaire dans \mathbb{E}^{3} d'un complex simplicial C qui triangule \mathbb{T}^{2}. Soit $h: C \rightarrow \mathbb{T}^{2}$ une telle triangulation. Un plongement isom]'etrique PL de \mathbb{T}^{2} es un plongement linéaire g : $C \rightarrow \mathbb{E}^{3}$ qui induit une isométrie entre C et $f(C)$, où C est fournit, avec le pullback par h, du la métrique euclidienne en \mathbb{T}^{2}, et $f(C)$ est equipée de la métrique induite par \mathbb{E}^{3}. Remarquons que h et g définissent une isométrie $f: \mathbb{T}^{2} \rightarrow \mathbb{E}^{3}$ d'accord au diagramme suivant.

On rappelle finalement qu'un plongement linéaire d'un complex simplicial envoie chaque arête dans un segment droit dans \mathbb{E}^{3}. En 1996 Burago et Zalgaller BZ95] ont montré que chaque surface polyhédrique admet un plongement siométrique $P L$ dans \mathbb{E}^{3}. L'année suivante, Zalgaller Zal00 a construit un plongement isométrique $P L$ explicite de cylindres longs et tores rectangulaires plats longs, mais jusqu'à présent, aucun plongement $P L$ explicite du tore carré plat n'était connu. Dans la première partie de cette thèse on
a donné un tel plongement, see figure 1.3. Plus spécifiquement, on a montré le résultat suivant.

Figure 1.1: A PL isometric embedding of the square flat torus.

Theorem 1.1.1. Il existe un plongement isométrique $P L$ du tore carré plat avec au plus 48 points.

L'idée derrière cette construction est d'utiliser les corrugations et a été inspiré de la théorie de l'intégration convèxe. Ce résultat pose la question du nombre minimal de sommets nécessaires pour obtenir un plongement du tore carré plat. Autrement dit, on cherche la triangulation la plus petite du tore qui admets un plongement linéaire isométrique à \mathbb{T}^{2}. La triangulation minimal est connu comme le tore de Moebius. Son un-squelette est le ghraphe complet de sept sommets. Il admet an plongement linéaire, le tore de Császár Csá49a qui n'est isométrique à aucun tore plat. See figure 1.4. On conjecture que le tore de Moebius n'a aucun plongement linéaire isométrique à \mathbb{T}^{2}.

Pour comprendre cette conjecture, on remarque d'abord que que dans le diagramme précédent, la fonction h induit une triangulation géodésique \mathcal{T} dans \mathbb{T}^{2} telle que chaque arête est une géodésique minimisante, c'est à dire un segment géofésique. Comme dans \mathbb{E}^{2} les translations agissent de façon isométrique dans l'ensemble des triangulations de \mathbb{T}^{2}, on considère l'espace $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ de triangulations géodésiques de \mathbb{T}^{2} isomorphes à C modulo cette action. En particulier, \mathcal{T} (modilo translations) est un élément de $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. Lorsque $C=M$, on est capable de donneer une description complète de l'espace de configurations $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$.

Figure 1.2: Left, the Moebius triangulation of the torus. Right, the Császár torus.

Theorem 1.1.2. L'espace de configurations $G E\left(M, \mathbb{T}^{2}\right)$ est l'union disjointe de 12 produits de simplexes

$$
G E\left(M, \mathbb{T}^{2}\right)=\bigcup_{i=1}^{12} \Delta_{x}^{i} \times \Delta_{y}^{i}
$$

où $\Delta_{x}^{i}, \Delta_{y}^{i}$ son simplexes de dimension 6 .
Soit $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. On denote par $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ l'ensemble de plongements linéaires isométriques de \mathcal{T} dans \mathbb{E}^{3} et par $L_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)$ l'union de $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ pour tout $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. Montre que le tore de Moebius n'a aucun plongement linéaire à \mathbb{T}^{2} est donc équivalent à montrer que l'espace $L_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)$ es vide, i.e. que $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ es vide pour tout $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. On a réussi à montrer ce résultat pour un sous-espace relativement grand de $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$.

Theorem 1.1.3. Pour chaque $i=1, \ldots, 12$, il y a une section $f_{i}: \Delta_{x}^{i} \rightarrow$ $\Delta_{x}^{i} \times \Delta_{y}^{i}$ dont l'image $S_{i}=f_{i}\left(\Delta_{x}^{i}\right)$ a un voisinage de dimension $12 N\left(S_{i}\right)$ tel que pour chaque $\mathcal{T} \in G E\left(S_{i}\right)$, on a $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)=\emptyset$.

Ce résultat n'est pas trivial et repose dans une estimation fine de quelques quantités géométriques associées à des sub-configurations de chaque $\mathcal{T} \in S_{i}$.

1.2 English

The goal of this work is to study PL isometric embeddings of the square flat torus in Euclidean space $\mathbb{E}^{3}=\left(\mathbb{R}^{3},\langle\rangle,\right)$. In 2012, a C^{1} isometric embedding of the square flat torus in \mathbb{E}^{3} was explicitly constructed in BJLT12] and BJLT13. Recall that the square flat torus is the quotient $\mathbb{T}^{2}=$
$\mathbb{E}^{2} /\left(\mathbb{Z} e_{1}+\mathbb{Z} e_{2}\right)$ where $\left(e_{1}, e_{2}\right)$ is an orthonormal basis of \mathbb{E}^{2}. An embed$\operatorname{ding} f: \mathbb{T}^{2} \rightarrow \mathbb{E}^{3}$ is isometric if the pullback by f of the metric induced by \mathbb{E}^{3} on $f\left(\mathbb{T}^{2}\right)$ coincides with the Euclidean metric on \mathbb{T}^{2}. Here, we are interested in piecewise linear (PL) embeddings instead of C^{1} embeddings.

A PL embedding is a linear embedding into \mathbb{E}^{3} of a simplicial complex C that triangulates \mathbb{T}^{2}. Let $h: C \rightarrow \mathbb{T}^{2}$ be such a triangulation. A PL isometric embedding of \mathbb{T}^{2} is a linear embedding $g: C \rightarrow \mathbb{E}^{3}$ that induces an isometry between C and $f(C)$ where C is endowed with the pullback by h of the Euclidean metric on \mathbb{T}^{2} and $f(C)$ is equipped with the metric induced by \mathbb{E}^{3}. Observe that h and g define an isometric map $f: \mathbb{T}^{2} \rightarrow \mathbb{E}^{3}$ according to the following diagram.

We finally recall that a linear embedding of a simplicial complex sends each edge to a linear segment in \mathbb{E}^{3}. In 1996 Burago and Zalgaller [BZ95] proved that any connected compact polyhedral surface admits an PL isometric embedding into \mathbb{E}^{3}. The year after Zalgaller [Zal00] constructed explicit PL isometric embeddings of long cylinders and long flat tori, but up to now no explicit PL embedding of the square flat torus was known. In the first part of this thesis we provide such an embedding, see Figure 1.3 . More precisely

Figure 1.3: A PL isometric embedding of the square flat torus.
we prove the following
Theorem 1.2.1. There exists a $P L$ isometric embedding of the square flat torus with at most 48 vertices.

Figure 1.4: Left, the Moebius triangulation of the torus. Right, the Császár torus.

The idea behind the construction is to use corrugations and was inspired by the convex integration theory. This result raises the question of the minimal number of vertices needed a PL isometric embedding of the square flat torus. In other words, we look for the smallest triangulation of the torus that admits a linear embedding isometric to \mathbb{T}^{2}. The minimal triangulation is known as the Moebius torus. Its one-skeleton (vertex-edge graph) is the complete graph on 7 vertices. It admits a linear embedding, the socalled Császár torus Csá49b which is not isometric to any flat torus. See Figure 1.4 We conjecture that the Moebius torus has no linear embedding isometric to \mathbb{T}^{2}.

In order to understand this conjecture, we first note that in the above diagram, the map h induces a geodesic triangulation \mathcal{T} on \mathbb{T}^{2} such that every edge is a distance minimizing geodesic i.e. a geodesic segment. Since \mathbb{E}^{2} acts isometrically by translations on the set of geodesic triangulations of \mathbb{T}^{2} we consider the space $\operatorname{GE}\left(C, \mathbb{T}^{2}\right)$ of geodesic triangulations of \mathbb{T}^{2} isomorphic to C modulo this action. In particular \mathcal{T} (modulo translations) is an element of $\operatorname{GE}\left(C, \mathbb{T}^{2}\right)$. When $C=M$ we are able to give a complete description of the space of configurations $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$.

Theorem 1.2.2. The configuration space $G E\left(M, \mathbb{T}^{2}\right)$ is the disjoint union of 12 products of simplices

$$
G E\left(M, \mathbb{T}^{2}\right)=\bigcup_{i=1}^{12} \Delta_{x}^{i} \times \Delta_{y}^{i}
$$

where $\Delta_{x}^{i}, \Delta_{y}^{i}$ are 6-dimensional simplices.

Let $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. We denote by $\mathrm{L}_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ the set of linear isometric embeddings of \mathcal{T} in \mathbb{E}^{3} and by $\mathrm{L}_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)$ the union of $\mathrm{L}_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ over all $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. Proving that the Moebius torus has no linear embedding isometric to \mathbb{T}^{2} is thus equivalent to show that the space $\mathrm{L}_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)$ is empty, i.e. that $\mathrm{L}_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ is empty for every $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. We were able to prove this result for a relatively large subspace of $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$.

Theorem 1.2.3. For each $i=1, \ldots, 12$, there exists a section $f_{i}: \Delta_{x}^{i} \rightarrow$ $\Delta_{x}^{i} \times \Delta_{y}^{i}$ whose image $S_{i}=f_{i}\left(\Delta_{x}^{i}\right)$ has a 12-dimensional neighborhood $N\left(S_{i}\right)$ such that for every element $\mathcal{T} \in N\left(S_{i}\right)$ we have $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)=\emptyset$.

This result is already non trivial and relies on a tight estimation of some geometric quantities associated to sub-configurations of each $\mathcal{T} \in S_{i}$.

Chapter 2

$P L$-embedding of the Flat Torus into \mathbb{E}^{3}

We present a 2-parameter family of explicit PL-embeddings of the flat square torus $\mathbb{T}^{2}=\mathbb{E}^{2} / \mathbb{Z}^{2}$ into \mathbb{E}^{3}. One of them only involves 48 vertices.

2.1 Introduction

In BZ95], Burago and Zalgaller proved that any connected compact polyhedral surface admits an isometric piecewise linear $(P L)$ immersion into \mathbb{E}^{3}. Recall that a polyhedral surface is 2-dimensional manifold endowed with a polyhedral metric i. e. a metric such that every point has a neighborhood isometric to the neighborhood of the vertex of a cone in \mathbb{E}^{3}. Their approach relies on the Nash-Kuiper C^{1}-embedding Theorem (Nas54] and Kui54) and their construction is not explicit for this reason (see Sau12 for a discussion). In addition to an initial $P L$-approximation of an almost C^{1} isometric embedding, the construction of Burago-Zalgaller involves several subdivision steps so that the resulting triangulation is very large. Finding an explicit triangulation with few vertices appears a real challenge. Zalgaller investigated the question of how to construct explicit PL-embeddings of cylinders or flat tori and found a solution for long cylinders and long tori [Zal00]. Recall that a flat torus is the quotient of the two-dimensional Euclidean plane by a lattice. It is called rectangular when the lattice itself is rectangular. The above construction of Zalgaller restricted to rectangular tori requires that the width is at least twice of its height. In this article, we provide the first explicit $P L$-embeddings of short rectangle tori including the square torus.

Theorem 2.1.1. There exists a PL isometric embedding of any rectangular torus with at most 48 vertices.

Our $P L$-embeddings are inspired from the corrugated C^{1} isometric embed-

Figure 2.1: $P L$ isometric embeddings of the square flat torus with 6,10 and 30 corrugations ($x=0.1$, see below)
dings of the flat torus generated by the Convex Integration Theory and constructed in BJLT13] and BJLT12]. Essentially, we construct PL corrugations along one side of the rectangle to introduce flexibility and to allow the identifications between the opposite sides. We show that six corrugations are enough to obtain a $P L$-isometric embedding. The corresponding number of vertices is 48 . If the isometric constraint is released, it is known that the torus admits a $P L$-embedding with 7 vertices and that this number can not be reduced [Csá49b] and [BE91]. The question of the minimum number of vertices of a $P L$-isometric embedding of a flat torus is quite natural but probably very difficult.

2.2 Triangulations of the square torus

In this section we describe a family of triangulations $\mathcal{T}(x, n)$ of the square torus depending on two parameters, $n \in \mathbb{N}_{\geq 6}$ and $\left.x \in\right] 0,0.15[$.

General description of $\mathcal{T}(x, n)$.- Let $\left(\epsilon_{1}, \epsilon_{2}\right)$ be an orthonormal basis of \mathbb{E}^{2} and let $\mathbb{T}^{2}=\mathbb{E}^{2} / \mathbb{Z} \epsilon_{1} \oplus \mathbb{Z} \epsilon_{2}$ be the square torus. We consider $\pi: \mathbb{E}^{2} \rightarrow \mathbb{T}^{2}$ the covering map and $\mathcal{D}:=[0,1]^{2} \subset \mathbb{E}^{2}$ a fundamental domain. We identify the triangulation $\mathcal{T}(x, n)$ with its trace on \mathcal{D}, namely with $\pi^{-1}(\mathcal{T}(x, n)) \cap \mathcal{D}$. The triangulation is built from a pattern which consists of 8 triangles located on vertical ribbon of width $\frac{1}{2 n}$. This pattern is then reflected and translated to create the whole triangulation (see figure 2.2).
Each ribbon will be mapped into \mathbb{R}^{3} to generate half of a $P L$ corrugation (see Figure 4). The rotational symmetry of the embedding combined with the isometric constraints greatly compel the geometry of the trapezoids $a_{i} b_{i} d_{i} c_{i}$. They are, for this reason, the basic pieces of the triangulation and we now

Figure 2.2: The triangulation $\mathcal{T}(x, n)$ (the initial ribbon is in grey).

Figure 2.3: Basic trapezoid (view with a quarter turn with respect to Figure 2.2 .
describe them.

The basic piece of $\mathcal{T}(x, n)$.- We consider the trapezoid $a_{0} b_{0} c_{0} d_{0}$ and we denote by ℓ its larger basis, by h its height and by θ_{a} and θ_{b} its angles at a_{0} and b_{0}. We assume and $0<\theta_{a} \leq \frac{\pi}{2}$ and $0<\theta_{b}<\frac{\pi}{2}$. See figure 2.3 .
We now give a choice of the quantities h, ℓ, θ_{a} and θ_{b} that will fulfill the rotational and isometric constraints. Let $n \in \mathbb{N}_{\geq 6}$ and $\left.x \in\right] 0,0.15$ [, we put
(A1) $h=\frac{1}{2 n}$
$(\mathrm{A} 2) \quad \ell=\Phi(x, h)$ where

$$
\Phi(x, h)=\frac{h \delta(x) \sin (2 h \pi)}{\sqrt{(\sigma(x)-(x+0.1) \cos (2 h \pi) \delta(x))^{2}+x^{2} \sin ^{2}(2 h \pi) \delta^{2}(x)}}
$$

$$
\text { with } \delta(x)=\sqrt{1-(2 x-0.9)^{2}} \text { and } \sigma(x)=-2 x^{2}+1.9 x+0.1
$$

(A3) $y=0.9-x$
We then locate the trapezoid at positions:

$$
\begin{gathered}
a_{0}=\left(0, \frac{1}{4}(1+2 \ell(0.1+2 x))\right), \quad b_{0}=\left(0, \frac{1}{4}(1+2 \ell(-1.9+2 x))\right), \\
c_{0}=\left(h, \frac{1}{4}(1+0.2 \ell)\right), \quad d_{0}=\left(h, \frac{1}{4}(1-0.2 \ell)\right)
\end{gathered}
$$

The triangulation $\mathcal{T}(x, n)$.- We build another trapezoid $a_{0}^{\prime} b_{0}^{\prime} c_{0}^{\prime} d_{0}^{\prime}$ by reflecting $a_{0} b_{0} c_{0} d_{0}$ through the line $y=\frac{1}{2}$, we have

$$
\begin{aligned}
a_{0}^{\prime}=\left(0, \frac{1}{4}(3-2 \ell(0.1+2 x))\right), \quad b_{0}^{\prime} & =\left(0, \frac{1}{4}(3-2 \ell(-1.9+2 x))\right), \\
c_{0}^{\prime}=\left(h, \frac{1}{4}(3-0.2 \ell)\right), \quad d_{0}^{\prime} & =\left(h, \frac{1}{4}(3+0.2 \ell)\right)
\end{aligned}
$$

Let s be the reflection through the vertical line of abscissa h. We set $a_{1}=s\left(a_{0}\right), b_{1}=s\left(b_{0}\right), a_{1}^{\prime}=s\left(a_{0}^{\prime}\right)$ and $b_{1}^{\prime}=s\left(b_{0}^{\prime}\right)$ and we add the obvious edges to define the two new trapezoids $a_{1} b_{1} c_{0} d_{0}$ and $a_{1}^{\prime} b_{1}^{\prime} c_{0}^{\prime} d_{0}^{\prime}$. Let τ be the translation of vector $2 h \epsilon_{1}$. For every $i \in\{1, \ldots, n-1\}$ we set $a_{i}:=\tau^{i}\left(a_{0}\right)$, $\ldots, d_{i}^{\prime}=\tau^{i}\left(d_{0}^{\prime}\right)$ and define the trapezoids $a_{i} b_{i} c_{i} d_{i}, a_{i}^{\prime} b_{i}^{\prime} c_{i}^{\prime} d_{i}^{\prime}, a_{i+1} b_{i+1} c_{i} d_{i}$ and $a_{i+1}^{\prime} b_{i+1}^{\prime} c_{i}^{\prime} d_{i}^{\prime}$. See Figure 2.2. We complete the triangulation $\mathcal{T}(x, n)$ by adding for every $i \in\{0, \ldots, n-1\}$ the Euclidean segments $a_{i} d_{i}, a_{i}^{\prime} d_{i}^{\prime}$, $a_{i} a_{i}^{\prime}$, $c_{i} c_{i}^{\prime}, a_{i} c_{i}^{\prime}, a_{i+1} c_{i}^{\prime}$, and four families of edges $b_{i} b_{i}^{\prime}, d_{i} d_{i}^{\prime}, b_{i} d_{i}^{\prime}$ and $b_{i+1} d_{i}^{\prime}$ whose traces on \mathcal{D} are broken into two pieces. Namely the trace of the edge $b_{i} b_{i}^{\prime}$ is $\pi^{-1}\left(\pi\left(\left[b_{i}, b_{i}^{\prime}-\epsilon_{2}\right]\right)\right) \cap \mathcal{D}$ and respectively $\pi^{-1}\left(\pi\left(\left[d_{i}, d_{i}^{\prime}-\epsilon_{2}\right]\right)\right) \cap \mathcal{D}$ for $d_{i} d_{i}^{\prime}$, $\pi^{-1}\left(\pi\left(\left[b_{i}, d_{i}^{\prime}-\epsilon_{2}\right]\right)\right) \cap \mathcal{D}$ for $b_{i} d_{i}^{\prime}$ and $\pi^{-1}\left(\pi\left(\left[b_{i+1}, d_{i}^{\prime}-\epsilon_{2}\right]\right)\right) \cap \mathcal{D}$ for $b_{i+1} d_{i}^{\prime}$.

For a latter use we will need the following lemma.
Lemma 2.2.1. For every $n \in \mathbb{N}_{\geq 6}$ and $\left.x \in\right] 0,0.15$ [we have

$$
\ell^{2}<\frac{h^{2}}{\delta^{2}(x) \sin ^{2}(2 \pi h)+x^{2}}
$$

Proof. After substituting ℓ by its expression (A2), the inequality of the lemma reads:

$$
\frac{h^{2} \sin ^{2}(2 \pi h) \delta^{2}(x)}{(\sigma(x)-(0.1+x) \delta(x) \cos (2 \pi h))^{2}+x^{2} \delta^{2}(x) \sin ^{2}(2 \pi h)}<\frac{h^{2}}{\delta^{2}(x) \sin ^{2}(2 \pi h)+x^{2}} .
$$

This last inequality is easily seen to be equivalent to the following one:

$$
f_{n}(x)<\sigma(x) \text { where } f_{n}(x)=\delta^{2}(x) \sin ^{2}\left(\frac{\pi}{n}\right)+\delta(x) \cos \left(\frac{\pi}{n}\right)(0.1+x) \text {. }
$$

Let $\left.\left.\mathcal{I}_{n}=\{t \in] 0,1\right] \mid f_{n}(t)<\sigma(t)\right\}$. Using that the sequence $\left(f_{n}(t)\right)_{n \in \mathbb{N}^{*}}$ is decreasing, it can be checked that $\mathcal{I}_{n}=\emptyset$ if $n \leq 5$ and that

$$
] 0,0.15\left[\subset \mathcal{I}_{6} \subset \ldots \subset \mathcal{I}_{n}\right.
$$

This proves the lemma.

2.3 PL embeddings of the square torus

In this section we describe for each $n \in \mathbb{N}_{n \geq 6}$ and $\left.x \in\right] 0,0.15[$ a linear embedding of the triangulation $\mathcal{T}(x, n)$ into \mathbb{E}^{3}. We denote by O the origin of \mathbb{E}^{3} and we introduce the three following points of \mathbb{E}^{3} :

$$
\begin{align*}
& \Omega_{A}=\left(0,0, \frac{1}{4}(1-2 \ell(0.1+2 x))\right) \\
& \Omega_{B}=\left(0,0, \frac{1}{4}(1-2 \ell(1.9-2 x))\right) \tag{2.1}\\
& \Omega_{*}=\left(0,0, \frac{1}{4}(1-0.2 \ell)\right)
\end{align*}
$$

We define a $P L$ map $F: \mathbb{T}^{2} \rightarrow \mathbb{E}^{3}$ by its image on every vertex of $\mathcal{T}(x, n)$:

$$
\begin{align*}
& F\left(a_{i}\right)=\Omega_{A}+r_{4}\left(\cos \frac{(2 i+1) \pi}{n},-\sin \frac{(2 i+1) \pi}{n}, 0\right) \\
& F\left(b_{i}\right)=\Omega_{B}+r_{1}\left(\cos \frac{(2 i+1) \pi}{n},-\sin \frac{(2 i+1) \pi}{n}, 0\right) \\
& F\left(c_{i}\right)=\Omega_{*}+r_{3}\left(\cos \frac{2 i \pi}{n},-\sin \frac{2 i \pi}{n}, 0\right) \tag{2.2}\\
& F\left(d_{i}\right)=\Omega_{*}+r_{2}\left(\cos \frac{2 i \pi}{n},-\sin \frac{2 i \pi}{n}, 0\right)
\end{align*}
$$

and similarly,

$$
\begin{aligned}
& F\left(a_{i}^{\prime}\right)=-\Omega_{A}+r_{4}\left(\cos \frac{(2 i+1) \pi}{n},-\sin \frac{(2 i+1) \pi}{n}, 0\right) \\
& F\left(b_{i}^{\prime}\right)=-\Omega_{B}+r_{1}\left(\cos \frac{(2 i+1) \pi}{n},-\sin \frac{(2 i+1) \pi}{n}, 0\right) \\
& F\left(c_{i}^{\prime}\right)=-\Omega_{*}+r_{3}\left(\cos \frac{2 i \pi}{n},-\sin \frac{2 i \pi}{n}, 0\right) \\
& F\left(d_{i}^{\prime}\right)=-\Omega_{*}+r_{2}\left(\cos \frac{2 i \pi}{n},-\sin \frac{2 i \pi}{n}, 0\right)
\end{aligned}
$$

Figure 2.4: Left, view of a slice of $F\left(\mathbb{T}^{2}\right)$, on the vertical axis z_{A}, z_{B} and z_{*} denote the vertical coordinates of Ω_{A}, Ω_{B} and Ω_{*}. Right, view from above of $F\left(\mathbb{T}^{2}\right)$, the circles have radii $r_{1}<r_{2}<r_{3}<r_{4}$.
for all $i \in\{0, \ldots, n-1\}$ and where r_{1}, r_{2}, r_{3} and r_{4} are given by:

$$
\begin{align*}
& r_{4}=\frac{\sqrt{h^{2}-\ell^{2} x^{2}}}{\sin (2 \pi h)} \\
& r_{3}=r_{4} \cos (2 \pi h)-\ell x \tag{2.3}\\
& r_{2}=r_{3}-c_{0} d_{0} \\
& r_{1}=r_{4}-\ell \delta(x) .
\end{align*}
$$

Note that the points $F\left(a_{i}\right), i \in\{0, \ldots, n\}$, lie in a circle of radius r_{4} and of center Ω_{A}. Similarly, the points $F\left(b_{i}\right), i \in\{0, \ldots, n\}$, lie in a circle of radius r_{1} and of center Ω_{B}, and so on. See Figure 2.4 .
Observe that in this figure we have assumed that $0<r_{1}<r_{2}<r_{3}<r_{4}$. The fact that these inequalities hold is ensured by the following lemma:
Lemma 2.3.1. We have: $0<r_{1}<r_{2}<r_{3}<r_{4}$.
Proof. We first note that

$$
r_{4}-r_{3}=r_{4}(1-\cos (2 \pi h))+\ell x>0
$$

whence $r_{4}>r_{3}$. We also have $r_{3}>r_{2}$ since $r_{2}=r_{3}-c_{0} d_{0}$. The proof that $r_{1}<r_{2}$ is less straightforward. We have

$$
r_{1}<r_{2} \Longleftrightarrow r_{4}-\ell \delta(x)<r_{3}-c_{0} d_{0} \Longleftrightarrow r_{4}-r_{3}<\ell \delta(x)-c_{0} d_{0}
$$

Since $r_{3}=r_{4} \cos (2 \pi h)-\ell x$ and $c_{0} d_{0}=0.1 \ell$ the last inequality reduces to

$$
r_{4}(1-\cos (2 \pi h))<\ell(\delta(x)-0.1-x) .
$$

Replacing r_{4} with its value in the above inequality, we obtain

$$
\frac{\sqrt{h^{2}-\ell^{2} x^{2}}(1-\cos (2 \pi h))}{\sin (2 \pi h)}<\ell(\delta(x)-0.1-x)
$$

Observe that both sides are positive, therefore this inequality is equivalent to

$$
\left(h^{2}-\ell^{2} x^{2}\right)(1-\cos (2 \pi h))^{2}<\ell^{2}(\delta(x)-0.1-x)^{2} \sin ^{2}(2 \pi h)
$$

i. e.

$$
h^{2}(1-\cos (2 \pi h))^{2}<\ell^{2}\left((\delta(x)-0.1-x)^{2} \sin ^{2}(2 \pi h)+x^{2}(1-\cos (2 \pi h))^{2}\right)
$$

By (A2) we obtain
$(1-\cos (2 \pi h))^{2}<\frac{\sin ^{2}(2 \pi h) \delta^{2}(x)\left((\delta(x)-0.1-x)^{2} \sin ^{2}(2 \pi h)+x^{2}(1-\cos (2 \pi h))^{2}\right)}{(\sigma(x)-(0.1+x) \delta(x) \cos (2 \pi h))^{2}+x^{2} \sin ^{2}(2 \pi h) \delta^{2}(x)}$
or equivalently

$$
(1-\cos (2 \pi h))^{2}(\sigma(x)-(0.1+x) \delta(x) \cos (2 \pi h))^{2}<\sin ^{4}(2 \pi h) \delta^{2}(x)(\delta(x)-0.1-x)^{2}
$$

Taking the square root, we obtain
$(1-\cos (2 \pi h))(\sigma(x)-(0.1+x) \delta(x) \cos (2 \pi h))<\sin ^{2}(2 \pi h) \delta(x)(\delta(x)-0.1-x)$.
We thus have to prove that

$$
\frac{\sigma(x)-(0.1+x) \delta(x) \cos (2 \pi h)}{\delta(x)(\delta(x)-0.1-x)}<\frac{\sin ^{2}(2 \pi h)}{1-\cos (2 \pi h)}
$$

To do so, we remark that the right term is greater than 1 and we show that the left term is lower than 1 . This will be achieved if

$$
g_{n}(x):=\sigma(x)-(0.1+x) \delta(x) \cos (2 \pi h)-\delta(x)(\delta(x)-0.1-x)
$$

is negative. It is straightforward to see that

$$
g_{n}(x)=2 x^{2}-1.7 x-0.09+\delta(x)(0.1+x)(1-\cos (2 \pi h))
$$

Since $\delta(x)<1$ for $x \in] 0,0.15[$, we have

$$
g_{n}(x) \leq 2 x^{2}-1.7 x-0.09+(0.1+x)\left(1-\cos \left(\frac{\pi}{6}\right)\right)=: g(x)
$$

Figure 2.5: Constructions of $e_{i}, f_{i}, e_{i}^{\prime}$ and f_{i}^{\prime}

It is then easily seen that $g(x)<0$ for every $x \in] 0,0.15[$. It follows that $g_{n}(x)<0$ thus proving $r_{1}<r_{2}$.

It remains to prove that $r_{1}>0$. Since $r_{1}=r_{4}-\ell \delta(x)$, it is enough to show that $\ell^{2} \delta^{2}(x)<r_{4}^{2}$ i. e.

$$
\ell^{2} \delta^{2}(x)<\frac{h^{2}-x^{2} \ell^{2}}{\sin ^{2}(2 \pi h)}
$$

that is

$$
\ell^{2}<\frac{h^{2}}{\delta^{2}(x) \sin ^{2}(2 \pi h)+x^{2}}
$$

which holds by lemma 2.2.1.

2.4 Proof of Theorem 2.1.1

In this section, we prove that the map PL map $F: \mathbb{T}^{2} \rightarrow \mathbb{E}^{3}$ described above is both isometric and an embedding. To show that F is isometric, it is enough to prove that every triangle of $\mathcal{T}(x, n)$ is mapped isometrically by F. In turn, this reduces to show that F preserves the lengths of the edges of the triangulation.
For practical reasons, we introduce supplementary families of points in \mathcal{D}. For every $i \in\{0, \ldots, n-1\}$ we consider the points $e_{i} \in\left[c_{i} c_{i}^{\prime}\right]$ such that $a_{i} c_{i} e_{i}$ is a right triangle (resp. $e_{i}^{\prime} \in\left[c_{i} c_{i}^{\prime}\right]$ such that $a_{i}^{\prime} c_{i}^{\prime} e_{i}^{\prime}$ is a right triangle). Similarly, we also consider the points $f_{i} \in\left[d_{i} d_{i}^{\prime}\right]$ such that $d_{i} b_{i} f_{i}$ is a right triangle (resp. $f_{i}^{\prime} \in\left[d_{i} d_{i}^{\prime}\right]$ such that $d_{i}^{\prime} b_{i}^{\prime} f_{i}^{\prime}$ is a right triangle), see Figure 2.5.

Lemma 2.4.1. We have:

$$
\Omega_{A}=\left(0,0, \frac{c_{i} c_{i}^{\prime}}{2}-c_{i} e_{i}\right), \quad \Omega_{B}=\left(0,0, \frac{d_{i} d_{i}^{\prime}}{2}-d_{i} f_{i}\right)
$$

and

$$
\Omega_{*}=\left(0,0, \frac{d_{i} d_{i}^{\prime}}{2}\right)=\left(0,0, \frac{c_{i} c_{i}^{\prime}}{2}\right)
$$

Proof. By construction $c_{i} d_{i}=\ell-e_{i} c_{i}-d_{i} f_{i}$, moreover $e_{i} c_{i}=\ell x$ and $d_{i} f_{i}=\ell y$ thus $c_{i} d_{i}=0.1 \ell$ and $1-2 c_{i} d_{i}=1-0.2 \ell$. On the other hand, we have $1-2 c_{i} d_{i}=d_{i} d_{i}^{\prime}+c_{i} c_{i}^{\prime}=2 d_{i} d_{i}^{\prime}=2 c_{i} c_{i}^{\prime}$ since $c_{i} c_{i}^{\prime}=d_{i} d_{i}^{\prime}$. Thus $\Omega_{*}=$ $\left(0,0, \frac{d_{i} d_{i}^{\prime}}{2}\right)=\left(0,0, \frac{c_{i} c_{i}^{\prime}}{2}\right)$. The remaining cases are similar.

Lemma 2.4.2. Let

$$
\begin{equation*}
\Psi(\ell, x, h)=\ell^{2} \sigma(x)-\ell\left(r_{4}-r_{2} \cos (2 \pi h)\right) \delta(x) \tag{2.4}
\end{equation*}
$$

If ℓ satisfies $(A 2)$ then $\Psi(\ell, x, h)=0$.
Proof. Squaring (A2) and rearranging we deduce

$$
\ell^{2}(\sigma(x)-(x+0.1) \cos (2 h \pi) \delta(x))^{2}-\sin ^{2}(2 \pi h) \delta^{2}(x)\left(h^{2}-x^{2} \ell^{2}\right)=0
$$

It follows that

$$
\ell(\sigma(x)-(x+0.1) \cos (2 h \pi) \delta(x))-\sin (2 \pi h) \delta(x) \sqrt{h^{2}-x^{2} \ell^{2}}=0
$$

or equivalently

$$
\begin{equation*}
\ell \sigma(x)-\delta(x)\left((x+0.1) \cos (2 h \pi) \ell+\sin (2 \pi h) \sqrt{h^{2}-x^{2} \ell^{2}}\right)=0 \tag{2.5}
\end{equation*}
$$

We then observe that the rightmost factor is equal to $r_{4}-r_{2} \cos \frac{\pi}{n}$, indeed

$$
\begin{aligned}
r_{4}-r_{2} \cos \frac{\pi}{n} & =r_{4}-r_{4} \cos ^{2} \frac{\pi}{n}+\ell x \cos \frac{\pi}{n}+c_{0} d_{0} \cos \frac{\pi}{n} \\
& =r_{4}\left(1-\cos ^{2} \frac{\pi}{n}\right)+\ell \cos \frac{\pi}{n}(x+0.1) \\
& =r_{4} \sin ^{2} \frac{\pi}{n}+\ell \cos \frac{\pi}{n}(x+0.1) \\
& =\sin \frac{\pi}{n} \sqrt{h^{2}-x^{2} \ell^{2}}+\ell \cos \frac{\pi}{n}(x+0.1)
\end{aligned}
$$

We have obtained $\ell \sigma(x)-\delta(x)\left(r_{4}-r_{2} \cos \frac{\pi}{n}\right)=0$
Proposition 2.4.3. The $P L$ map $F: \mathbb{T}^{2} \rightarrow \mathbb{E}^{3}$ is isometric.
Proof of proposition 2.4.3. It is enough to prove that the distance of every edge $[p, q]$ in $\mathcal{T}(x, n)$ is preserved under f, i.e. $d_{\mathbb{E}^{3}}(F(p), F(q))=d(p, q)$. To save space, we often write $p q$ for $d(p, q)$ in this proof. A direct computation shows that $d_{\mathbb{E}^{3}}^{2}\left(F\left(c_{i}\right), F\left(c_{i}^{\prime}\right)\right)=d^{2}\left(c_{i}, c_{i}^{\prime}\right)$ and $d_{\mathbb{E}^{3}}^{2}\left(F\left(d_{i}\right), F\left(d_{i}^{\prime}\right)\right)=d^{2}\left(d_{i}, d_{i}^{\prime}\right)$. By lemma 2.4.1, we have

$$
\begin{aligned}
d_{\mathbb{E}^{3}}^{2}\left(F\left(a_{i}\right), F\left(b_{i}\right)\right) & =\left(r_{4}-r_{1}\right)^{2}+\left(c_{i} e_{i}-d_{i} f_{i}\right)^{2} \\
& =\ell^{2} \delta^{2}(x)+\ell^{2}(x-y)^{2}=\ell^{2}=\left(a_{i} b_{i}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
d_{E}^{2}\left(F\left(a_{i}\right), F\left(c_{i}\right)\right) & =r_{4}^{2}+r_{3}^{2}-2 r_{4} r_{3} \cos \frac{\pi}{n}+\left(c_{i} e_{i}\right)^{2} \\
& =r_{4}^{2}+\left(r_{4} \cos \frac{\pi}{n}-\ell x\right)^{2}-2 r_{4}\left(r_{4} \cos \frac{\pi}{n}-\ell x\right) \cos \frac{\pi}{n}+\left(c_{i} e_{i}\right)^{2} \\
& =r_{4}^{2} \sin ^{2} \frac{\pi}{n}+\ell^{2} x^{2}+\left(c_{i} e_{i}\right)^{2} \\
& =h^{2}+\left(c_{i} e_{i}\right)^{2}=\left(a_{i} c_{i}\right)^{2}
\end{aligned}
$$

$$
d_{\mathbb{E}^{3}}^{2}\left(F\left(d_{i}\right), F\left(a_{i}\right)\right)=r_{4}^{2}+r_{2}^{2}-2 r_{4} r_{2} \cos \frac{\pi}{n}+\left(c_{i} e_{i}\right)^{2}
$$

$$
=r_{4}^{2}+\left(r_{4} \cos \frac{\pi}{n}-\ell x-c_{i} d_{i}\right)^{2}
$$

$$
-2 r_{4}\left(r_{4} \cos \frac{\pi}{n}-\ell x-c_{i} d_{i}\right) \cos \frac{\pi}{n}+\left(c_{i} e_{i}\right)^{2}
$$

$$
=r_{4}^{2} \sin ^{2} \frac{\pi}{n}+\ell^{2} x^{2}+\left(c_{i} d_{i}\right)^{2}+2 c_{i} d_{i} \ell x+\left(c_{i} e_{i}\right)^{2}
$$

$$
=h^{2}+\left(c_{i} d_{i}\right)^{2}+2 c_{i} d_{i} \cdot c_{i} e_{i}+\left(c_{i} e_{i}\right)^{2}
$$

$$
=h^{2}+\left(d_{i} c_{i}+c_{i} e_{i}\right)^{2}=\left(a_{i} d_{i}\right)^{2}
$$

$$
d_{\mathbb{E}^{3}}^{2}\left(F\left(b_{i}\right), F\left(d_{i}\right)\right)=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \frac{\pi}{n}+\left(d_{i} f_{i}\right)^{2}
$$

$$
=r_{2}^{2}+\left(r_{4}-\ell \delta(x)\right)^{2}-2 r_{2}\left(r_{4}-\ell \delta(x)\right) \cos \frac{\pi}{n}+\left(d_{i} f_{i}\right)^{2}
$$

$$
=\left(d_{i} f_{i}\right)^{2}+r_{2}^{2}+r_{4}^{2}-2 r_{2} r_{4} \cos \frac{\pi}{n}
$$

$$
+\ell^{2} \delta^{2}(x)-2 r_{4} \ell \delta(x)+2 r_{2} \ell \delta(x) \cos \frac{\pi}{n}
$$

Since $r_{2}^{2}+r_{4}^{2}-2 r_{2} r_{4} \cos \frac{\pi}{n}=d^{2}\left(F\left(d_{i}\right), F\left(a_{i}\right)\right)-\left(c_{i} e_{i}\right)^{2}$ we have $r_{2}^{2}+r_{4}^{2}-2 r_{2} r_{4} \cos \frac{\pi}{n}=h^{2}+\left(d_{i} c_{i}+c_{i} e_{i}\right)^{2}-\left(c_{i} e_{i}\right)^{2}=h^{2}+\left(d_{i} e_{i}\right)^{2}-\left(c_{i} e_{i}\right)^{2}$.
For the last equality we have used that e_{i}, c_{i} and d_{i} are aligned in this order. We then can write

$$
\begin{aligned}
d_{\mathbb{E}^{3}}^{2}\left(F\left(b_{i}\right), F\left(d_{i}\right)\right) & =\left(d_{i} f_{i}\right)^{2}+h^{2}+\left(d_{i} e_{i}\right)^{2}-\left(c_{i} e_{i}\right)^{2}+\ell^{2} \delta^{2}(x) \\
& -\ell \delta(x)\left(2 r_{4}-2 r_{2} \cos \frac{\pi}{n}\right) \\
& =\left(d_{i} f_{i}\right)^{2}+h^{2}+\ell^{2}\left((1-y)^{2}-x^{2}+\delta^{2}(x)\right) \\
& -\ell \delta(x)\left(2 r_{4}-2 r_{2} \cos \frac{\pi}{n}\right) \\
& =\left(d_{i} f_{i}\right)^{2}+h^{2}+2 \Psi(\ell, x, h)
\end{aligned}
$$

For the second equality we have used that $d_{i} e_{i}=\ell(1-y)$ and $c_{i} e_{i}=\ell x$ and for the third equality we have used that $(1-y)^{2}-x^{2}+\delta^{2}(x)=2 \sigma(x)$. By lemma 2.4.2, $\Psi(\ell, x, h)=0$, we thus have

$$
d_{\mathbb{E}^{3}}^{2}\left(F\left(b_{i}\right), F\left(d_{i}\right)\right)=\left(b_{i} d_{i}\right)^{2}
$$

as desired. We also have

$$
d_{E}^{2}\left(F\left(c_{i}\right), F\left(d_{i}\right)\right)=\left(r_{3}-r_{2}\right)^{2}=\left(c_{i} d_{i}\right)^{2}
$$

By Lemma 2.4.1, we have

$$
d_{\mathbb{E}^{3}}\left(F\left(a_{i}\right), F\left(a_{i}^{\prime}\right)\right)=c_{i} c_{i}^{\prime}-2 c_{i} e_{i} .
$$

With the help of Figure 5, it is easily seen that

$$
c_{i} c_{i}^{\prime}-2 c_{i} e_{i}=c_{i} c_{i}^{\prime}-c_{i} e_{i}-c_{i}^{\prime} e_{i}^{\prime}=a_{i} a_{i}^{\prime}
$$

Similarly,

$$
\begin{aligned}
d_{\mathbb{E}^{3}}\left(F\left(b_{i}\right), F\left(b_{i}^{\prime}\right)\right) & =d_{i} d_{i}^{\prime}-2 d_{i} f_{i} \\
& =d_{i} d_{i}^{\prime}-d_{i} f_{i}-d_{i}^{\prime} f_{i}^{\prime} \\
& =b_{i} b_{i}^{\prime} .
\end{aligned}
$$

Using once again Lemma 2.4.1 we compute

$$
\begin{aligned}
d_{\mathbb{E}^{3}}^{2}\left(F\left(a_{i}\right), F\left(c_{i}^{\prime}\right)\right) & =r_{4}^{2}+r_{3}^{2}-2 r_{4} r_{3} \cos \frac{\pi}{n}+\left(c_{i} c_{i}^{\prime}-c_{i} e_{i}\right)^{2} \\
& =h^{2}+\left(c_{i} c_{i}^{\prime}-c_{i} e_{i}\right)^{2} \\
& =\left(a_{i} c_{i}^{\prime}\right)^{2}
\end{aligned}
$$

A similar computation shows that $d_{\mathbb{E}^{3}}^{2}\left(F\left(a_{i+1}\right), F\left(c_{i}^{\prime}\right)\right)=d_{\mathbb{T}^{2}}^{2}\left(a_{i+1}, c_{i}^{\prime}\right)$. Finally,

$$
\begin{aligned}
d_{\mathbb{E}^{3}}^{2}\left(F\left(b_{i}\right), F\left(d_{i}^{\prime}\right)\right) & =r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \frac{\pi}{n}+\left(d_{i} d_{i}^{\prime}-d_{i} f_{i}\right)^{2} \\
& =h^{2}+\left(d_{i} d_{i}^{\prime}-d_{i} f_{i}\right)^{2} \\
& =\left(b_{i} d_{i}^{\prime}\right)^{2}
\end{aligned}
$$

and similarly $d_{\mathbb{E}^{3}}^{2}\left(F\left(b_{i+1}\right), F\left(d_{i}^{\prime}\right)\right)=b_{i+1} d_{i}^{\prime}$.

Proposition 2.4.4. The $P L$ map $F: \mathbb{T}^{2} \rightarrow \mathbb{E}^{3}$ is an embedding.
Proof. The proof reduces to show that if the images of two triangles of $\mathcal{T}(x, n)$ have a non empty intersection set then they intersect along a common edge or vertex. Since the image of the ribbons are included in disjoint wedges, it is enough to check this fact for the eight triangles of a vertical ribbon of $\mathcal{T}(x, n)$. The computations related to this tedious check will not be reported here.

Case of rectangular tori.- Elongating the vertical faces of $F\left(\mathbb{T}^{2}\right)$, we can obtain any rectangular flat torus.

Chapter 3

Linear embedding of the Moebius Torus

3.1 The Moebius' torus

We recall that a triangulation of the torus is given by a simplicial complex C and a homeomorphism $f:|C| \rightarrow \mathbb{T}^{2}$ where $|C|$ is the carrier space of C. It is well known that every surface can be triangulated.

Figure 3.1: Edge contraction
A classical operation on triangulations is called edge contraction, it consists of collapsing an edge into a vertex (see figure 3.1). This operation does not always result in a simplicial complex. We say that a surface is irreducible if no edge can be contracted to produce a simplicial triangulation. It has been proved that every topological surface admits a finite number of irreducible triangulations BE89. In particular it is known that the torus has 21 irreducible triangulations [MT01, Sec. 5.4]. Among those the Moebius' torus is the only one with 7 vertices wich is minimal for all triangulations of the torus. More precisely the Moebius' torus has 7 vertices, 21 edges and 14 faces. The automorphism group has order 42 and is generated by $\tau=(0156324)$ and $\rho=(123456)$ (see figure 3.2).

Proposition 3.1.1. If we number the vertices of $M 0, \ldots, 6$ so that the neighbors of vertex 0 are in the cyclic order $1,2,3,4,5,6,1$, then there are only two possible lists of triangles namely:
(LI) : (012), (023), (034), (045), (056), (061), (135), (154), (142), (163), (264), (265), (253), (364).

(LII) : (012), (023), (034), (045), (056), (061), (143), (135), (125), (164),

 (254), (246), (263), (365).The two possibilities correspond to the two possible orientations of the cycle of neighbors (see figure 3.2).

The first list correspond when the vertices are oriented clockwise and the second list correspond when they are oriented counterclockwise, we will take then the faces of the Moebius' torus as those in the list $(L I)$. The list is invariant under cyclic permutation of indexes 1 to 6 .

Figure 3.2: Combinatorial description of the Moebius' torus. The vertex numbering is such that the neighbors of vertex 0 appear ordered as $1,2,3,4,5,6,1$.

Note that the 1-skeleton of the Moebius' torus is the complete graph on seven vertices, which we denote by K_{7}. Although its size is very small, the Moebius' torus has many linear embeddings in \mathbb{E}^{3} as proved in BE , in particular the Csáczár torus is a linear embedding of the flat torus in \mathbb{E}^{3} [Csá49b (see figure 3.3).
The main goal is to show that the number of vertices in the construction of a $P L$ square flat torus made in the first part of this manuscript can not be lowered too much. For this we would like to show that the Moebius' torus has no linear embeddings isometric to the square flat torus in \mathbb{E}^{3} and even more, in \mathbb{E}^{n} with $n>0$.
In this part we give strong arguments to conjecture that for M the Moebius' torus $\mathrm{L}_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)$ is empty, as we have already pointed, every element of

Figure 3.3: Csáczár torus: a linear embedding of \mathbb{T}^{2} in \mathbb{E}^{3}.
$\mathrm{L}_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)$ can be seen as a linear isometrically embedding of a metric triangulation $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. We first give a precise definition of $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ and we give some evidences that no $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ can be isometrically linearly embedded in \mathbb{E}^{3}.
Before we consider this space, we first give some properties of the distance computation on \mathbb{T}^{2}. We note by $d_{\mathbb{E}^{2}}($,$) the usual Euclidean distance in \mathbb{E}^{2}$ and $d_{\mathbb{T}^{2}}($,$) the distance in the square torus seen as a quotient of \mathbb{E}^{2}$.
We consider $\pi: \mathbb{E}^{2} \rightarrow \mathbb{T}^{2}$ the covering space of \mathbb{T}^{2} with π the quotient map.
For a point P in \mathbb{E}^{2}, we denote by

$$
V_{P}:=\left\{Q \in \mathbb{E}^{2} \mid \forall P^{\prime} \in \pi^{-1} \pi(P), d_{\mathbb{E}^{2}}(P, Q) \leq d_{\mathbb{E}^{2}}\left(P^{\prime}, Q\right)\right\}
$$

its Voronoi cell with respect to $\pi^{-1} \pi(P)=P+\mathbb{Z}^{2}$. It is easily seen that $V_{P}=P+\left[-\frac{1}{2}, \frac{1}{2}\right]^{2}$. We will often use the following property:

Lemma 3.1.2. Let $P, Q \in \mathbb{E}^{2}$, then $d_{\mathbb{E}^{2}}(P, Q)=d_{\mathbb{T}^{2}}(\pi(P), \pi(Q))$ if and only if $Q \in V_{P}$.

Proof. Put $p=\pi(P)$ and $q=\pi(Q)$ and let γ a path from p to q. We denote by $\tilde{\gamma}:[0,1] \rightarrow \mathbb{E}^{2}$ the lift of γ with $\tilde{\gamma}(0)=P$. We have $Q^{\prime}:=\tilde{\gamma}(1) \in P+\mathbb{Z}^{2}$ and we have

$$
\text { length }(\gamma)=\text { length }(\tilde{\gamma}) \geq d_{\mathbb{E}^{2}}\left(P, Q^{\prime}\right) \geq d_{\mathbb{E}^{2}}\left(P, Q_{0}\right)
$$

where Q_{0} is any lift of q in V_{P}. The last inequality is strict whenever $Q^{\prime} \notin V_{P}$. Note that all lifts of q in V_{P} are at the same distance from P. It follows that $\pi\left(\left[P, Q_{0}\right]\right)$ is a minimizing geodesic, whence $d_{\mathbb{T}^{2}}(p, q)=d_{\mathbb{E}^{2}}\left(P, Q_{0}\right)$. We conclude that $d_{\mathbb{T}^{2}}(p, q)=d_{\mathbb{E}^{2}}(P, Q)$ if and only if $Q \in V_{P}$.

3.2 The space $G E\left(M, \mathbb{T}^{2}\right)$ of geodesic triangulations

Recall that a $P L$ isometric embedding of \mathbb{T}^{2} in \mathbb{E}^{3} induces a geodesic triangulation \mathcal{T} on \mathbb{T}^{2} such that every edge of \mathcal{T} is a geodesic segment in \mathbb{T}^{2}. In particular, every linear isometric embedding of M in \mathbb{E}^{3} which is isometric to \mathbb{T}^{2} induces a geodesic triangulation \mathcal{T}. In fact we claim that this triangulation satisfies the following unique shortest path property: every pair of vertices is connected by a unique geodesic in \mathbb{T}^{2}.

Proof of the claim: Consider a linear isometric embedding $f: M \rightarrow \mathbb{E}^{3}$. We denote by \mathcal{T} the induced geodesic triangulation. Let p, q be two vertices on \mathcal{T} and γ, λ be shortest paths from p to q (see figure 3.4). Then $f(\gamma)$ and $f(\lambda)$ are two shortest paths on $f(M) \subset \mathbb{E}^{3}$. Since the 1 -skeleton of the Moebius' torus is a complete graph, $p q$ is an edge of M such that $f(p)$ and $f(q)$ are connected by a line segment in \mathbb{E}^{3}. By uniqueness of shortest paths in \mathbb{E}^{3} it follows that $f(\lambda)=f(\gamma)=[f(p), f(q)]$. Assume that γ and λ are different, we take the first point r where λ and γ become different. Clearly f cannot be injective on any neighborhood of r. This contradicts the fact that f is an immersion and so an embedding .

Note that \mathbb{E}^{2} acts isometrically by translations on the set of linear embeddings of M in \mathbb{T}^{2}. We denote by $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ the space of linear embeddings of M in \mathbb{T}^{2} with the shortest path property, where the embeddings are considered modulo the action of \mathbb{E}^{2}. It is equivalent to work with marked (minimizing) geodesic triangulations of \mathbb{T}^{2} isomorphic to M. We will thus note by \mathcal{T} an element of $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ keeping in mind that the vertices of \mathcal{T} have distinct labels. Hence, two triangulations are equivalent if and only if they are related by a translation that preserves the labels. We denote by $V(\mathcal{T})=\left\{p_{0}, \ldots p_{6}\right\}$ the seven marked vertices of \mathcal{T}. From now on, we set $p_{0}=\pi(0,0)$ since \mathcal{T} is taken modulo translations.

In this section, we study the space $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. This space $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ is endowed with a natural distance; for this we choose a basepoint $*$ of M once for all and given two embeddings $f, g: M \rightarrow \mathbb{T}^{2}$ we put $d(f, g)=$ $\sup d_{\mathbb{T}^{2}}\left(f_{*}(x), g(x)\right)$ where f_{*} is the translate of f that coincides with g at the basepoint $*$ of M.

Lemma 3.2.1. d is a distance in $G E\left(M, \mathbb{T}^{2}\right)$ and the topology induced by d is independent of the base point of M.

Proof. Let us first show that d is a distance: Take $d(f, h)=\sup d_{\mathbb{T}^{2}}\left(f_{*}(x), h(x)\right)$. We have $d_{\mathbb{T}^{2}}\left(f_{*}(x), h(x)\right)=d_{\mathbb{T}^{2}}(f(x)+h(*)-f(*), h(x))=d_{\mathbb{T}^{2}}(f(x)+h(*)-$ $f(*)+g(*)-g(*), h(x))=d_{\mathbb{T}^{2}}(f(x)+g(*)-f(*), h(x)+g(*)-h(*)) \leq$ $d_{\mathbb{T}^{2}}(f(x)+g(*)-f(*), g(x))+d_{\mathbb{T}^{2}}(g(x), h(x)+g(*)-h(*))=d_{\mathbb{T}^{2}}(f(x)+$

Figure 3.4: Two different paths form $p q$ in \mathbb{T}^{2}.
$g(*)-f(*), g(x))+d_{\mathbb{T}^{2}}(g(x)-g(*)+h(*), h(x))$. This fact implies that for every $x \in M, \sup _{x} d_{\mathbb{T}^{2}}\left(f_{*}(x), h(x)\right) \leq \sup _{x} d_{\mathbb{T}^{2}}\left(f_{*}(x), g(x)\right)+\sup _{x} d_{\mathbb{T}^{2}}\left(g_{*}(x), h(x)\right)$, or equivalently $d(f, h) \leq d(f, g)+d(g, h)$.

Now, $d(f, g)=\sup d_{\mathbb{T}^{2}}\left(f_{*}(x), g(x)\right)=\sup d_{\mathbb{T}^{2}}(f(x)-f(*)+g(*), g(x))=$ $\sup d_{\mathbb{T}^{2}}\left(f(x), g(x)-{ }^{x}(*)+f(*)\right)=d(g, f)$.

Moreover $d\left(f_{*}(x), g_{*}(x)\right)=0$ if and only if $\sup _{x} d_{\mathbb{T}^{2}}\left(f_{*}(x), g_{*}(x)\right)=0$ if and only if $f_{*}(x)=g_{*}(x)$.

We show now that the topology induced by d is independent of the base point $*$ of M. For that, take $d^{\prime}(f, g)=\sup d_{\mathbb{T}^{2}}\left(f_{*^{\prime}}(x), g(x)\right)$ where $f_{*^{\prime}}$ is the translated of f that coincides with g in another basepoint $*^{\prime}$ of M. In general d and d^{\prime} do not coincide but we have $d^{\prime}<d<2 d$ so they define the same topology. We have $d_{\mathbb{T}^{2}}\left(f_{*}(x)+g_{*}\left(*^{\prime}\right)-f_{*}\left(*^{\prime}\right), g_{*}(x)\right)=$ $d_{\mathbb{T}^{2}}\left(f_{*}(x)-f_{*}\left(*^{\prime}\right), g_{*}(x)-g_{*}\left(*^{\prime}\right)\right) \leq d_{\mathbb{T}^{2}}\left(f_{*}(x), g_{*}(x)\right)+d_{\mathbb{T}^{2}}\left(f_{*}\left(*^{\prime}\right), g_{*}\left(*^{\prime}\right)\right) \leq$ $2 d\left(f_{*}, g_{*}\right)$.

Lemma 3.2.2. Let $\mathcal{T} \in G E\left(M, \mathbb{T}^{2}\right)$ be a geodesic triangulation of \mathbb{T}^{2}, and let $[p, q]$ be an edge of \mathcal{T}. Then $[P, Q] \subset \mathbb{E}^{2}$ is a lift of $[p, q]$ if and only if $p=\pi(P), q=\pi(Q)$, and $Q \in \stackrel{\circ}{V}_{P}$, i.e. $\left|x_{Q}-x_{P}\right|<\frac{1}{2}$ and $\left|y_{Q}-y_{P}\right|<\frac{1}{2}$, where $Q:=\left(x_{Q}, y_{Q}\right)$ and $P=\left(x_{P}, y_{P}\right)$.

Proof. Obviously we must have $p=\pi(P)$ and $q=\pi(Q)$ for $[P, Q]$ to be a lift of $[p, q]$. If $Q \in \dot{V}_{P}^{\circ}$, then Q is the unique lift of q contained V_{P}. It follows from 3.1.2 that $\pi[P, Q]=[\pi(P), \pi(Q)]$ as desired. Now suppose that $[P, Q]$ is a lift of $[p, q]$. By lemma 3.1 .2 we have $Q \in V_{P}$. If $Q \in \partial V_{P}$ then there exists $Q^{\prime} \neq Q$ in V_{P} such that $q=\pi\left(Q^{\prime}\right)$. Then $\pi\left(\left[P, Q^{\prime}\right]\right)$ and $\pi([P, Q])$ are two distinct shortest paths from p to q contradicting the unique shortest path property (see figure 3.4).

We define $\left.\left.D_{0}:=\right]-\frac{1}{2}, \frac{1}{2}\right]^{2}$ a fundamental domain of π. Note that the restriction of $\pi: D_{0} \rightarrow \mathbb{T}^{2}$ is bijective, this is not true for V_{P} since for

D_{0}	
Q_{4}	Q_{1}

Figure 3.5: The four quadrants in the fundamental domain D_{0}.
every point Q in ∂V_{P}, there is at least another point $Q^{\prime} \in \partial V_{P}$ such that $\pi(Q)=\pi\left(Q^{\prime}\right)$. Since D_{0} is a fundamental domain of π, we can take the elements of $V(\mathcal{T})$ and work with their unique lift in D_{0}. We denote those lifts by P_{1}, \ldots, P_{6} (remember that $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$). Recall that the Moebius' torus induces an embedding of the complete graph K_{7} in \mathbb{T}^{2}. This and the fact that \mathcal{T} is given by a simplicial complex implies that the star $\operatorname{St} P_{0}$ of the vertex P_{0} consists of a cycle of six triangles and the link $L k P_{0}$ is composed of six edges. We may suppose that the labels of the vertices is such that they appear in the following (clockwise) order in the cycle: $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{1}$. The points P_{i} can not be chosen independently, to see this we subdivide D_{0} into four quadrants $\left.\left.\left.\left.Q_{1}:=\right] 0, \frac{1}{2}\right] \times\right] 0, \frac{1}{2}\right], Q_{2}:=$ $\left.\left.\left.\left.\left.\left.\left.] 0, \frac{1}{2}\right] \times\right]-\frac{1}{2}, 0\right], Q_{3}:=\right]-\frac{1}{2}, 0\right] \times\right]-\frac{1}{2}, 0\right]$ and $\left.\left.\left.\left.Q_{4}:=\right]-\frac{1}{2}, 0\right] \times\right] 0, \frac{1}{2}\right]$ (see figure 3.5.

We prove the following property:
Proposition 3.2.3. Let $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. Every quadrant Q_{i} contains one or two vertices of $\tilde{\mathcal{T}}$. Moreover Q_{i} and Q_{i+2} have the same number of vertices for $i=1,2$.

Remark: In particular the only possible distributions of the vertices are the two following ones: (see figure 3.6).

To prove proposition 3.2 .3 we need the following lemmas:
Lemma 3.2.4. Let $P, Q, R \in \mathbb{E}^{2}$ be joined by three segments in the lift of $\mathcal{T} \in G E\left(M, \mathbb{T}^{2}\right)$, then $[P Q R]$ does not contain any lift of a vertex of \mathcal{T} in its interior, in particular $[P Q R]$ is a lift of a face of \mathcal{T}.

Proof. Suppose that $[P Q R]$ contains a lift of some vertex of \mathcal{T}, by lemma 3.1.2 the coordinates of P, Q and R differ by at most $\frac{1}{2}$. Hence $[P Q R]$ lies in the interior of a fundamental domain of π. It ensues that $\pi([P Q R])$ is a disc of \mathbb{T}^{2}, so that $\pi(\partial[P Q R])$ is a separating 3 -cycle in \mathbb{T}^{2}. Because K_{7} has

Figure 3.6: Possible arrangement of the vertices in each quadrants.
no separiting 3 -cycle, it must be that all the remaining vertices lie inside [PQR]. However, this would contradict the fact that K_{7} is not planar.

Lemma 3.2.5. A quadrant can not contain more than two vertices (P_{0} not included).

Proof. Assume there are three vertices P_{1}, P_{2} and P_{3} in the same quadrant Q_{i}. By lemma $\widehat{3.2 .2}\left[P_{i}, P_{j}\right]$ must be a lift of the edge $\left[p_{i}, p_{j}\right]$ for $i, j \in$ $\{0,1,2,3\}$. It follows that the lift of the complete graph on p_{0}, \ldots, p_{3} induces a complete graph K_{4} on the points P_{0}, \ldots, P_{3}. Since the relative interior of the edges $\left[P_{i}, P_{j}\right]$ can not intersect, the only possible configurations for P_{0}, P_{1}, P_{2} and P_{3} is when some vertex $P_{i}, i \in\{1,2,3\}$, is in the interior of the triangle formed by the other three vertices P_{j}, P_{k} and P_{0} (see figure 3.7). This is in contradiction with lemma 3.2.4,

Remark 3.2.6. There can not be three collinear vertices in Q_{i}. If this is the case then the edge between extrema points intersect with the edges between the medium point and every extrema point.

Lemma 3.2.7. Assume that Q_{i} contains two vertices (P_{0} not included), then Q_{i+1} can not contain two vertices, (it is understood that $Q_{i+4}=Q_{i}$).

Proof. Let P_{j}, P_{j+1} be two vertices in Q_{i}. Assume that Q_{i+1} contains two vertices. Recalling that the points are located in a cyclic clockwise order, those points must be P_{j+2} and P_{j+3}. We claim that $\left[P_{j}, P_{j+3}\right]$ is not an edge of the lift $\tilde{\mathcal{T}}$ of \mathcal{T}. Indeed if $\left[P_{j}, P_{j+3}\right]$ was an edge of \mathcal{T}, then by lemma 3.2.2. $\left[p_{0} p_{j} p_{j+3}\right]$ would be a triangle of \mathcal{T}. However, according to our vertex

Figure 3.7: Configuration of points in Q_{i}.
indexation, the Moebius triangulation does not contain that triangle (see figure 3.2. By an analogous argument, we can claim that $\left[P_{j}, P_{j+2}\right]$ and $\left[P_{j+1}, P_{j+3}\right]$ are not edges of $\tilde{\mathcal{T}}$. Suppose that $i=1$, then the previous claim implies that $\left[P_{j}, P_{j+3}+e_{2}\right],\left[P_{j}, P_{j+3}+e_{2}\right]$ and $\left[P_{j+1}, P_{j+3}+e_{2}\right]$, (where e_{1}, e_{2} is the canonical basis of \mathbb{E}^{2}) are edges of $\tilde{\mathcal{T}}$ so we have that $\left[P_{j}, P_{i+2}+\right.$ $e_{2}, P_{j+3}+e_{2}$] and $\left[P_{j}, P_{j+3}+e_{2}, P_{j+1}+e_{2}\right]$ are triangles of $\tilde{\mathcal{T}}$ by lemma 3.1.2. We deduce that $\left[p_{j}, p_{j+2}, p_{j+3}\right]$ and $\left[p_{j}, p_{j+3}, p_{j+1}\right]$ must be triangles of \mathcal{T}. Whence $(j, j+2, j+3)$ and $(j, j+3, j+1)$ must be triangles of M. Looking at the two possible lists of faces in proposition 3.1.1, we conclude that this is not possible no matter the value of $j \in\{1, \ldots, 6\}$. For $i=2,3,4$ are studied similarly replacing e_{2} by $e_{1},-e_{2},-e_{1}$ respectively.

Proof of proposition $\mathbf{3 . 2 . 3}$

Let N_{i} the number of vertices in the quadrant Q_{i} without taking in account P_{0}. By lemma 3.2.5 we know that $\max \left(N_{i}\right)=2$ for all $i=1, \ldots, 4$. We have the three cases: $N_{1}=0, N_{1}=1$ and $N_{1}=2$.

- Case 1: $N_{1}=2$. By lemma 3.2.7, $N_{2} \neq N_{1}$, so we have $N_{2}=0$ or $N_{2}=1$ by lemma 3.2 .5 . If $N_{2}=0$ then $N_{3}+N_{4}=4$ which is impossible since at least one of Q_{3} or Q_{4} must contains three vertices contradicting lemma 3.2.5 or $N_{3}=2=N_{4}$ contradiction lemma 3.2.7. Then $N_{2}=1$ necessarily. This implies that $N_{3}+N_{4}=3$. By lemma $3.2 .5 Q_{3}$ and Q_{4} contain at least one vertex. Assume that $N_{3}=1$, then $N_{4}=2=N_{1}$ which contradicts lemma 3.2.7. We have then necessarily $N_{3}=2$ and $N_{4}=1$. We are thus in the configuration described in the right side of figure 3.6 .
- Case 2: $N_{1}=1$. If $N_{2}=1$, then $N_{3}+N_{4}=4$ which is impossible by the same argument as in case 1. If $N_{2}=0$ then $N_{3}+N_{4}=5$
but $\max \left(N_{i}\right)=2$ then this case is also impossible. Necessary we have $N_{2}=2$. We are back to case 1 with N_{2} replacing N_{1}, that means $N_{3}=1$ and $N_{4}=2$. We are thus in the configuration described in the left side of figure 3.6 .
- Case 3: $N_{1}=0$. We have $N_{2}+N_{3}+N_{4}=6$. The only way of not contradicting lemma 3.2 .5 if when $N_{2}=N_{3}=N_{4}=2$ but in this case lemma 3.2.7 is not verified.

3.3 Configuration space

In this section we describe geometrically the space $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. Note that if the vertices $V(\mathcal{T})$ in \mathcal{T} are given, the triangulation \mathcal{T} is entirely determined by the unique shortest path property and because the edges and the seven vertices should conform a complete graph K_{7}. We introduce the set $\tilde{V}(\mathcal{T})$, consisting of the lifts of vertices in \mathcal{T} contained in D_{0}. There is clearly a bijection between $V(\mathcal{T})$ and $\tilde{V}(\mathcal{T})$. Indeed, if we denote by P_{i} the lift of p_{i} contained in D_{0}, P_{i} is unique because D_{0} is a fundamental domain. The bijection is then given by $p_{i} \mapsto P_{i}$. Since P_{0} is fixed to $(0,0)$, the set $\tilde{V}(\mathcal{T})$ is determined by the 12 coordinates of P_{1}, \ldots, P_{6}. The above bijection allows us to identify $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ with a certain subspace of \mathbb{R}^{12}. To study geometrically $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$, we will find different restrictions to the coordinates of $P_{i} \in \tilde{V}(\mathcal{T})$. We denote the coordinates of these vertices by $P_{i}=\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, 6$.

We denote by C_{I} the situation corresponding to elements of $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ such that the lift of the elements of $V(\mathcal{T})$ are arranged as in the right side of figure 3.6. Similarly, the notation $C_{I I}$ corresponds to elements $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ such that the lifts of the elements of $V(\mathcal{T})$ are arranged as in the left side of figure 3.6. Additionally we introduce the notation $C_{I, 1}$ for the situation C_{I} such that the lift of p_{1} is located in Q_{2}. The lift of p_{1} is the only one between all the lifts of vertices on \mathbb{T}^{2} located in Q_{2} for the arguments given in the proof of lemma 3.2.3. In general, we denote by $C_{I, i}$ the case where C_{I} is such that the lift of p_{i} is the only one in Q_{2} and by $C_{I I, i}$ the case where $C_{I I}$ is such that the lift of p_{i} is the only one in Q_{1} for $i=1, \ldots, 6$. Recall that if there is a vertex P_{i} in Q_{1} (or Q_{2}), since the vertices are ordered cyclically clockwise as $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{1}$, all the quadrants of the vertices are determined as seen in lemma 3.6 .

Remark 3.3.1. Since the automorphisms of the map $p: \mathbb{R}^{2} \rightarrow \mathbb{T}^{2}$ are the integer translations, then if $[P, Q]$ is a lift of $[p, q]$, then $\left[P+k_{1} e_{1}+k_{2} e_{2}, Q+\right.$ $\left.k_{1} e_{1}+k_{2} e_{2}\right]$ is also a lift of $[p, q]$ for $k_{i} \in \mathbb{Z}, i=1,2$.

Note also that if $[p, q, r]$ is a triangle of a triangulation \mathcal{T} of $\mathbb{T}^{2},[P, Q] a$ lift of $[p, q]$ and $[Q, R]$ a lift of $[q, r]$, then necessarily $[P, R]$ is a lift of $[p, r]$ such that $[P, Q, R]$ is a lift of the face $[p, q, r]$.

The following result give us necessary and sufficient conditions for the coordinates of P_{i}, for $i=1, \ldots, 6$.

Theorem 3.3.2. The subspace $C_{I, 3} \subset G E\left(M, \mathbb{T}^{2}\right)$ is described by the following equations:
(1). $x_{2}-x_{0}<\frac{1}{2}$
(5). $x_{3}-x_{4}<\frac{1}{2}$
(2). $x_{6}-x_{2}<-\frac{1}{2}$
(3). $x_{1}-x_{6}<\frac{1}{2}$
(6). $x_{5}-x_{3}<-\frac{1}{2}$
(4). $x_{4}-x_{1}<-\frac{1}{2}$
(7). $x_{0}-x_{5}<\frac{1}{2}$
and
(1'). $y_{1}-y_{0}<\frac{1}{2}$
$\left(5^{\prime}\right) \cdot y_{2}-y_{3}<\frac{1}{2}$
(2'). $y_{5}-y_{1}<-\frac{1}{2}$
(3'). $y_{6}-y_{5}<\frac{1}{2}$
(4'). $y_{3}-y_{6}<-\frac{1}{2}$
$\left(6^{\prime}\right) \cdot y_{4}-y_{2}<-\frac{1}{2}$
$\left(7^{\prime}\right) \cdot y_{0}-y_{4}<\frac{1}{2}$

Before proving this theorem, we prove two consequences of the equations given in the preceding theorem. The first one gives us information about the position of the vertices P_{0}, \ldots, P_{6}. The second shows that the star around every vertex has the same structure, that is, $\operatorname{Star} P_{i}$ consists of a cycle of 6 triangles.

Lemma 3.3.3. Let P_{i} verify equations 3.3.2, for $i=0, \ldots, 6$, we have the following sequences:
i) $x_{5}<x_{4}<x_{6}<x_{0}<x_{3}<x_{1}<x_{2}$
ii) $y_{4}<y_{3}<y_{5}<y_{0}<y_{2}<y_{6}<y_{1}$

Proof. i) Adding (5) and (6) we find $x_{5}<x_{4}$, adding equations (3) and (4), we have $x_{4}<x_{6}$. Adding (1) and (2) we have $x_{6}<x_{0}=0$. Adding (6) and (7), we have $0=x_{0}<x_{3}$. Adding equations (4) and (5), we find $x_{3}<x_{1}$. Finally, adding (2) and (3) we have $x_{1}<x_{2}$. We verified the first sequence.
ii) Adding (5^{\prime}) and (6^{\prime}), we have $y_{4}<y_{3}$. Adding (3^{\prime}) and (4^{\prime}), we have $y_{3}<y_{5}$. Adding $\left(1^{\prime}\right)$ and $\left(2^{\prime}\right)$, we have $y_{5}<y_{0}=0$, adding $\left(6^{\prime}\right)$ and $\left(7^{\prime}\right)$, we have $0=y_{0}<y_{2}$. Adding $\left(4^{\prime}\right)$ and $\left(5^{\prime}\right)$, we find $y_{2}<y_{6}$. Finally, adding $\left(2^{\prime}\right)$ and $\left(3^{\prime}\right)$ we have $y_{6}<y_{1}$.

The next lemma is a straightforward consequence of the equations given in 3.3.2:

Lemma 3.3.4. Let P_{0}, \ldots, P_{6} verifying the equations of theorem 3.3.2, with $P_{0}=(0,0)$. Then $P_{i} \in D_{0}$ for all $i \in\{0, \ldots, 6\}$.

Proof. We add equations (1) to (3) to find $x_{1}<\frac{1}{2}$ and adding $-((4)+\cdots+$ (7)) we have $x_{1}>0$. Then, we have

$$
\begin{equation*}
0<x_{1}<\frac{1}{2} \tag{3.1}
\end{equation*}
$$

Equation (1^{\prime}) and the addition of the negative of the remaining equations show that

$$
\begin{equation*}
0<y_{1}<\frac{1}{2} \tag{3.2}
\end{equation*}
$$

Adding the negative of equations (2) to (7) and by equation (1), we find that

$$
\begin{equation*}
0<x_{2}<\frac{1}{2} \tag{3.3}
\end{equation*}
$$

Adding (1^{\prime}) to $\left(5^{\prime}\right)$ we find $y_{2}<\frac{1}{2}$ and adding $-\left(6^{\prime}\right)-\left(7^{\prime}\right)$, we have $0<y_{2}$. The above equations imply that

$$
\begin{equation*}
0<y_{2}<\frac{1}{2} \tag{3.4}
\end{equation*}
$$

Adding (1) to (5) and making $-(6)-(7)$, we have

$$
\begin{equation*}
0<x_{3}<\frac{1}{2} \tag{3.5}
\end{equation*}
$$

Adding $\left(1^{\prime}\right)$ to $\left(4^{\prime}\right)$ and adding the negative of the remaining equations, we have

$$
\begin{equation*}
-\frac{1}{2}<y_{3}<0 \tag{3.6}
\end{equation*}
$$

Adding (1) to (4) and adding the opposite of the other equations, we have

$$
\begin{equation*}
-\frac{1}{2}<x_{4}<0 \tag{3.7}
\end{equation*}
$$

By equation $\left(7^{\prime}\right)$ and the addition of equations $\left(1^{\prime}\right)$ to $\left(6^{\prime}\right)$ we find

$$
\begin{equation*}
-\frac{1}{2}<y_{4}<0 \tag{3.8}
\end{equation*}
$$

Adding equations (1) to (6) and by equation (7), we have

$$
\begin{equation*}
-\frac{1}{2}<x_{5}<0 \tag{3.9}
\end{equation*}
$$

Adding $\left(1^{\prime}\right)$ and $\left(2^{\prime}\right)$, and the addition of the negative of the other equations show that

$$
\begin{equation*}
-\frac{1}{2}<y_{5}<0 \tag{3.10}
\end{equation*}
$$

Adding (1) and (2) and adding the negative of the remaining equations, we have

$$
\begin{equation*}
-\frac{1}{2}<x_{6}<0 \tag{3.11}
\end{equation*}
$$

Adding equations $\left(1^{\prime}\right)$ to $\left(3^{\prime}\right)$, and adding the negative of the other equations, we have

$$
\begin{equation*}
0<y_{6}<\frac{1}{2} \tag{3.12}
\end{equation*}
$$

Equations 3.1 to 3.12 (and the fact that $P_{0}=(0,0)$), imply $P_{i} \in D_{0}$ for all $i=0, \ldots, 6$.

Before proving the next result, we introduce some notations. We denote

$$
D_{i}:=P_{i}+D_{0}
$$

and

$$
Q_{j}^{i}:=P_{i}+Q_{j}
$$

for $i=1, \ldots, 6$ and $j=1, \ldots, 4$, so that D_{i} is a fundamental domain with P_{i} placed at the center of D_{i} and $\left\{Q_{j}^{i}\right\}_{j=1}^{4}$ are quadrants of D_{i}.

Lemma 3.3.5. Let $P_{0}, P_{1}, \ldots, P_{6}$ contained in \mathbb{R}^{2} with $P_{0}=(0,0)$, such that their coordinates verify the equations given in 3.3.2. The lift of the points p_{0}, \ldots, p_{6} found in D_{i} define an hexagon along with a point inside it that we will call central point. Inside of this hexagon there is a cycle of six triangles, where all the triangles have the central point as common point and the interior of these triangles do not intersect. After an appropriate relabeling of the points $\left\{p_{0}, \ldots, p_{6}\right\}$, their lifts in D_{i} satisfy exactly the same equations as in 3.3.2 if the coordinate system is centered at P_{i}.

Proof. First of all, note that by lemma 3.3.3. we can conclude that the points are disposed around $P_{0}=(0,0)$ in the cyclic order $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{1}$.

We now verify that the lift of the points p_{0}, \ldots, p_{6} in D_{0} define the hexagon and the central point as described in the statement.

By lemma 3.3.4, $P_{i} \in D_{0} \subset V_{P_{0}}$, we know that $\left|x_{0}-x_{i}\right|<\frac{1}{2}$ and that $\left|y_{0}-y_{i}\right|<\frac{1}{2}$. That means that $\pi\left(\left[P_{0}, P_{i}\right]\right)$ is the shortest path between $\pi\left(P_{0}\right)=p_{0}$ and $\pi\left(P_{i}\right)=p_{i}$. Therefore $\left[P_{0}, P_{i}\right]$ is a lift of the segment $\left[p_{0}, p_{i}\right]$ by lemma 3.2.2. We now verify that $\pi\left(\left[P_{i}, P_{i+1}\right]\right)$ is the shortest path between p_{i} and p_{i+1} :

- $\pi\left(\left[P_{1}, P_{2}\right]\right)$: Adding equations (2) and (3), we have $x_{1}-x_{2}<0<\frac{1}{2}$ and subtracting the remaining equations, i.e., making $-((4)+\cdots+$ (7)) - (1) we find $x_{1}-x_{2}>-\frac{1}{2}$, so $\left|x_{1}-x_{2}\right|<\frac{1}{2}$. Similarly, if we add $\left(1^{\prime}\right)+\left(6^{\prime}\right)+\left(7^{\prime}\right)$ we have $y_{1}-y_{2}<\frac{1}{2}$ and if we subtract the rest of the equations, that is $-\left(\left(2^{\prime}\right)+\cdots+\left(5^{\prime}\right)\right)$, we have $y_{1}-y_{2}>0>-\frac{1}{2}$. We deduce that $\left|y_{1}-y_{2}\right|<\frac{1}{2}$, then $\pi\left(\left[P_{1}, P_{2}\right]\right)$ is the shortest path between p_{1} and p_{2}.
- $\pi\left(\left[P_{2}, P_{3}\right]\right):$ Adding (1), (6) and (7) we have $x_{2}-x_{3}<\frac{1}{2}$, subtracting the remaining equations we have $x_{2}-x_{3}>0>-\frac{1}{2}$, so $\left|x_{2}-x_{3}\right|<\frac{1}{2}$. On the other hand, from equation $\left(5^{\prime}\right)$ and subtraction of $\left(1^{\prime}\right)-\left(4^{\prime}\right)$ and $\left(6^{\prime}\right)$ and $\left(7^{\prime}\right)$ we have $-\frac{1}{2}<0<y_{2}-y_{3}<\frac{1}{2}$ so that $\left|y_{2}-y_{3}\right|<\frac{1}{2}$, then $\pi\left(\left[P_{2}, P_{3}\right]\right)$ is the shortest path between p_{2} and p_{3}.
- $\pi\left(\left[P_{3}, P_{4}\right]\right)$: From equation (5) and subtracting the reminding equations we find $\frac{1}{2}<0<x_{3}-x_{4}<\frac{1}{2}$. Making $\left(1^{\prime}\right)+\cdots+\left(4^{\prime}\right)+\left(7^{\prime}\right)$ and subtracting $\left(5^{\prime}\right)$ and $\left(6^{\prime}\right)$ we have $-\frac{1}{2}<0<y_{3}-y_{4}<\frac{1}{2}$. We deduce that $\pi\left(\left[P_{3}, P_{4}\right]\right)$ is the shortest path between p_{3} and p_{4}.
- $\pi\left(\left[P_{4}, P_{5}\right]\right):$ Adding (1) to (4) and (7) and subtracting the remaining equations we obtain $-\frac{1}{2}<0<x_{4}-x_{5}<\frac{1}{2}$. Adding $\left(3^{\prime}\right)$ to $\left(6^{\prime}\right)$ and subtracting the other equations we have $-\frac{1}{2}<y_{4}-y_{5}<0<\frac{1}{2}$. That is, $\left|x_{4}-x_{5}\right|<\frac{1}{2}$ and $\left|y_{4}-y_{5}\right|<\frac{1}{2}$, thus $\pi\left(\left[P_{4}, P_{5}\right]\right)$ is the shortest path between $\pi\left(P_{4}\right)=p_{4}$ and $\pi\left(P_{5}\right)=p_{5}$.
- $\pi\left(\left[P_{5}, P_{6}\right]\right):$ Adding (3) to (6) and adding the negative of the remaining equations we have $-\frac{1}{2}<x_{5}-x_{5}<0<\frac{1}{2}$. On the other hand, if we add $\left(4^{\prime}\right)$ to $\left(7^{\prime}\right)$ and $\left(1^{\prime}\right)+\left(2^{\prime}\right)$, and by equation $\left(3^{\prime}\right)$. We have $-\frac{1}{2}<y_{5}-y_{6}<0<\frac{1}{2}$. This implies $\left|x_{5}-x_{6}\right|<\frac{1}{2}$ and $\left|y_{5}-y_{6}\right|<\frac{1}{2}$. We conclude that $\pi\left(\left[P_{5}, P_{6}\right]\right)$ is the shortest path between p_{5} and p_{6}.
- $\pi\left(\left[P_{6}, P_{1}\right]\right)$: Adding equations (4) to (7) and (1) and (2), and taking the negative of equation (3), we obtain $-\frac{1}{2}<x_{6}-x_{1}<0<\frac{1}{2}$. Adding $\left(2^{\prime}\right)$ and $\left(3^{\prime}\right)$, and taking the negative of the addition of the remaining equations we have $-\frac{1}{2}<y_{6}-y_{1}<0<\frac{1}{2}$. Thus $\left|x_{6}-x_{1}\right|<\frac{1}{2}$ and $\left|y_{6}-y_{1}\right|<\frac{1}{2}$ implying that $\pi\left(\left[P_{6}, P_{1}\right]\right)$ is the shortest path between p_{6} and p_{1}.

Since $\pi\left(\left[P_{0}, P_{i}\right]\right), \pi\left(\left[P_{0}, P_{i+1}\right]\right)$ and $\pi\left(\left[P_{i}, P_{i+1}\right]\right)$ are the shortest path between their respective projections, we deduce from lemma 3.2 .2 that $\left[P_{0}, P_{i}, P_{i+1}\right]$ $\subset D_{0}$ is projected as a triangle $\left[p_{0}, p_{i}, p_{i+1}\right]$ contained in \mathbb{T}^{2}.

To fix the ideas, we see which are the lifts of p_{i} found in D_{1}. Evidently, P_{1} is the lift of p_{1} contained in D_{1}, In general, $P_{j} \in D_{1}$ if and only if $\left|x_{1}-x_{j}\right|<\frac{1}{2}$ and $\left|y_{1}-y_{j}\right|<\frac{1}{2}$, by definition of D_{1}.

- The lift of p_{0} in D_{1} : Because $P_{1} \in D_{0}$, we know that $\left|x_{0}-x_{1}\right|<\frac{1}{2}$ and $\left|y_{0}-y_{1}\right|<\frac{1}{2}$, therefore P_{0} is the lift of p_{0} contained in D_{1}.
- The lift of p_{2} in D_{1} : As we proved previously, $\pi\left(\left[P_{1}, P_{2}\right]\right)$ is the shortest path between p_{1} and p_{2}, that is $\left|x_{1}-x_{2}\right|<\frac{1}{2}$ and $\left|y_{1}-y_{2}\right|<\frac{1}{2}$. Hence, P_{2} is the lift of p_{2} in D_{1}.
- The lift of p_{3} in D_{1} : Adding (1) to (3) and (6) $+(7)$ and making $-(4)-(5)$, we find $-\frac{1}{2}<0<x_{1}-x_{3}<\frac{1}{2}$. Adding $\left(2^{\prime}\right)$ to $\left(4^{\prime}\right)$ and subtracting the other equations we have $\frac{1}{2}<y_{1}-y_{3}<1$. Thus $-\frac{1}{2}<y_{1}-\left(y_{3}+1\right)<0<\frac{1}{2}$, i. e., $\left|x_{1}-x_{3}\right|<\frac{1}{2}$ and $\left|y_{1}-\left(y_{3}+1\right)\right|<\frac{1}{2}$ and then $P_{3}+e_{2}$ is the lift of p_{3} in D_{1}.
- The lift of p_{4} in D_{1} : Adding (1) to (3) to (5) to (7), and taking the negative of equation (4), we have $\frac{1}{2}<x_{1}-x_{4}<1$ so that $-\frac{1}{2}<$ $x_{1}-\left(x_{4}+1\right)<0<\frac{1}{2}$. Adding equations (1^{\prime}) and (7^{\prime}), and adding the negative of the other equations, we find $\frac{1}{2}<y_{1}-y_{4}<1$ and thus $-\frac{1}{2}<y_{1}-\left(y_{4}+1\right)<\frac{1}{2}$, then $P_{4}+e_{1}+e_{2}$ is the lift of p_{4} in D_{1}.
- The lift of p_{5} in D_{1} : Adding (1) to (3) and (7), and making -(4) - (5) (6) we have $\frac{1}{2}<x_{1}-x_{5}<1$ then $-\frac{1}{2}<x_{1}-\left(x_{5}+1\right)<0<\frac{1}{2}$. Adding $\left(3^{\prime}\right)$ to $\left(7^{\prime}\right)$ and $\left(1^{\prime}\right)$ and by equation $-\left(2^{\prime}\right)$, we have $\frac{1}{2}<y_{1}-y_{5}<1$ and then $-\frac{1}{2}<y_{1}-\left(y_{5}+1\right)<0<\frac{1}{2}$, then $P_{5}+e_{1}+e_{2}$ is the lift of p_{5} in D_{1}.
- The lift of p_{6} in D_{1} : As we proved previously, $\pi\left(\left[P_{6}, P_{1}\right]\right)$ is the shortest path between p_{6} and p_{1}, then P_{6} is the lift of p_{6} that is located in D_{1}.
We see now that the lifts of p_{0}, \ldots, p_{6} in D_{1} verify the equations given in 3.3.2 for that, we relabel these vertices: we denote $P_{0}^{1}:=P_{1}, P_{1}^{1}:=$ $P_{5}+e_{1}+e_{2}, P_{2}^{1}:=P_{4}+e_{1}+e_{2}, P_{3}^{1}:=P_{2}, P_{4}^{1}:=P_{0}, P_{5}^{1}:=P_{6}$ and $P_{6}^{1}:=P_{3}+e_{2}$. We note $P_{i}^{1}=\left(X_{i}, Y_{i}\right)$.

By equation (4), we have $X_{2}-X_{0}=\left(x_{4}+1\right)-x_{1}<-\frac{1}{2}+1=\frac{1}{2}$.
By equation (5), we have $X_{6}-X_{2}=x_{3}-\left(x_{4}+1\right)<-\frac{1}{2}$.
By equation (6), we have $X_{1}-X_{6}=\left(x_{5}+1\right)-x_{3}<\frac{1}{2}$.
By equation (7), we have $X_{4}-X_{1}=x_{0}-\left(x_{5}+1\right)<-\frac{1}{2}$.
By equation (1), we have $X_{3}-X_{4}=x_{2}-x_{0}<\frac{1}{2}$.
By equation (2), we have $X_{5}-X_{3}=x_{6}-x_{2}<-\frac{1}{2}$.
By equation (3), we have $X_{0}-X_{5}=x_{1}-x_{6}<\frac{1}{2}$.
On the other hand, we have:
By equation $\left(2^{\prime}\right)$, we have $Y_{1}-Y_{0}=\left(y_{5}+1\right)-y_{1}<\frac{1}{2}$.
By equation (3^{\prime}), we have $Y_{5}-Y_{1}=y_{6}-\left(y_{5}+1\right)<-\frac{1}{2}$.
By equation (4^{\prime}), we have $Y_{6}-Y_{5}=\left(y_{3}+1\right)-y_{6}<\frac{1}{2}$.
By equation $\left(5^{\prime}\right)$, we have $Y_{3}-Y_{6}=y_{2}-\left(y_{3}+1\right)<-\frac{1}{2}$.
By equation (6^{\prime}), we have $Y_{2}-Y_{3}=\left(y_{4}+1\right)-y_{2}<\frac{1}{2}$.
By equation $\left(7^{\prime}\right)$, we have $Y_{4}-Y_{2}=y_{0}-\left(y_{4}+1\right)<-\frac{1}{2}$.
By equation (1^{\prime}), we have $Y_{0}-Y_{4}=y_{1}-y_{0}<\frac{1}{2}$.
Since the points P_{i}^{1} verify the same equations as the points P_{i}, then the set of points $\left\{P_{i}^{1}\right\}_{i=0}^{6}$ verify the same properties of the set of points
$\left\{P_{i}\right\}_{i=0}^{6}$, that is, the lifts of p_{0}, \ldots, p_{6} in D_{1} conform an hexagon with edges [P_{i}^{1}, P_{i+1}^{1}], along with a central point (in this case the central point is P_{1}) and inside the hexagon six triangles $\left[P_{i}^{1}, P_{0}^{1}, P_{i+1}^{1}\right]$. Also, the points appear in a cyclic order around P_{1} as follows: $P_{1}^{1}, P_{2}^{1}, P_{3}^{1}, P_{4},{ }^{1} P_{5}^{1}, P_{6}^{1}, P_{1}^{1}$.

Similarly, it can be shown that the lifts of p_{0}, \ldots, p_{6} in D_{2} conform an hexagon along with the central point P_{2}. These lifts are placed as follows: we relabel as $P_{0}^{2}:=P_{2}, P_{1}^{2}:=P_{4}+e_{1}+e_{2}, P_{2}^{2}:=P_{6}+e_{1}, P_{3}^{2}:=P_{5}+e_{1}$, $P_{4}^{2}:=P_{3}, P_{5}^{2}:=P_{0}$ and $P_{6}^{2}:=P_{1}$ so that $P_{3}^{2} \in Q_{2}^{2}$ and it is the only lift in this quadrant. As in the previous case, the coordinates of the points $\left\{P_{i}^{2}\right\}_{i=0}^{6}$ verify the equations 3.3.2.

For the lifts of $\left\{p_{0}, \ldots, p_{6}\right\}$ contained in D_{3}, the relabeling is made as follows: $P_{0}^{3}:=P_{3}, P_{1}^{3}:=P_{2}, P_{2}^{3}:=P_{5}+e_{1}, P_{3}^{3}:=P_{1}-e_{2}, P_{4}^{3}:=P_{6}-e_{2}$, $P_{5}^{3}:=P_{4}$ and $P_{6}^{3}:=P_{0}$. It can be shown that P_{3}^{3} is the only point in Q_{2}^{3}. The coordinate of this points verify equations 3.3.2.

For the lifts of $\left\{p_{0}, \ldots, p_{6}\right\}$ contained in D_{4}, the relabeling is made as follows: $P_{0}^{4}:=P_{4}, P_{1}^{4}:=P_{0}, P_{2}^{4}:=P_{3}, P_{3}^{4}:=P_{6}-e_{2}, P_{4}^{4}:=P_{2}-e_{1}-e_{2}$, $P_{5}^{4}:=P_{1}-e_{1}-e_{2}$ and $P_{6}^{4}:=P_{5}$. It can be shown that P_{3}^{4} is the only point in Q_{2}^{4}. The coordinate of this points verify equations 3.3.2.

For the lifts of $\left\{p_{0}, \ldots, p_{6}\right\}$ contained in D_{5}, the relabeling is made as follows: $P_{0}^{5}:=P_{5}, P_{1}^{5}:=P_{6}, P_{2}^{5}:=P_{0}, P_{3}^{5}:=P_{4}, P_{4}^{5}:=P_{1}-e_{1}-e_{2}$, $P_{5}^{5}:=P_{3}-e_{1}$ and $P_{6}^{5}:=P_{2}-e_{1}$. It can be shown that P_{3}^{5} is the only point in Q_{2}^{5}. The coordinate of this points verify equations 3.3.2.

For the lifts of $\left\{p_{0}, \ldots, p_{6}\right\}$ contained in D_{6}, the relabeling is made as follows: $P_{0}^{6}:=P_{6}, P_{1}^{6}:=P_{3}+e_{2}, P_{2}^{6}:=P_{1}, P_{3}^{6}:=P_{0}, P_{4}^{6}:=P_{5}, P_{5}^{6}:=$ $P_{2}-e_{1}$ and $P_{6}^{6}:=P_{4}+e_{2}$. It can be shown that P_{3}^{6} is the only point in Q_{2}^{6}. The coordinate of this points verify equations 3.3.2.

For all the lifts of $\left\{p_{0}, \ldots, p_{6}\right\}$ in D_{i} for $i=2, \ldots, 6$ it can be shown as in the case D_{1}, that the lifts verifies the same equations and therefore the same properties as in the case D_{0}.

We recap the notations for P_{j}^{i} in the following dictionary.

Definition 3.3.6 (Dictionary).

$$
P_{0}^{i}:=P_{i} \quad \text { and } \quad P_{i}^{0}:=P_{i} \quad \text { for } \quad i=0, \ldots, 6
$$

$P_{1}^{1}:=P_{5}+e_{1}+e_{2}$	$P_{2}^{1}:=P_{4}+e_{1}+e_{2}$	$P_{3}^{1}:=P_{2}$
$P_{4}^{1}:=P_{0}$	$P_{5}^{1}:=P_{6}$	$P_{6}^{1}:=P_{3}+e_{2}$
$P_{1}^{2}:=P_{4}+e_{1}+e_{2}$	$P_{2}^{2}:=P_{6}+e_{1}$	$P_{3}^{2}:=P_{5}+e_{1}$
$P_{4}^{2}:=P_{3}$	$P_{5}^{2}:=P_{0}$	$P_{6}^{2}:=P_{1}$
$P_{1}^{3}:=P_{2}$	$P_{2}^{3}:=P_{5}+e_{1}$	$P_{3}^{3}:=P_{1}-e_{2}$
$P_{4}^{3}:=P_{6}-e_{2}$	$P_{5}^{3}:=P_{4}$	$P_{6}^{3}:=P_{0}$
$P_{1}^{4}:=P_{0}$	$P_{2}^{4}:=P_{3}$	$P_{3}^{4}:=P_{6}-e_{2}$
$P_{4}^{4}:=P_{2}-e_{1}-e_{2}$	$P_{5}^{4}:=P_{1}-e_{1}-e_{2}$	$P_{6}^{4}:=P_{5}$
$P_{1}^{5}:=P_{6}$	$P_{2}^{5}:=P_{0}$	$P_{3}^{5}:=P_{4}$
$P_{4}^{5}:=P_{1}-e_{-} e_{2}$	$P_{5}^{5}:=P_{3}-e_{1}$	$P_{6}^{5}:=P_{2}-e_{1}$
$P_{1}^{6}:=P_{3}+e_{2}$	$P_{2}^{6}:=P_{1}$	$P_{3}^{6}:=P_{0}$
$P_{4}^{6}:=P_{5}$	$P_{5}^{6}:=P_{2}-e_{1}$	$P_{6}^{6}:=P_{4}+e_{2}$

Recall that from the proof of lemma 3.3.5, the points P_{j}^{i} play the same role as the point P_{j} in equations 3.3 .2 , when we are placed in D_{i}. Then, all properties that are true for P_{j} are also true for P_{j}^{i}.

Remark 3.3.7. A consequence of lemma 3.3.5 is that there is one and only one lift of p_{j} contained in Q_{2}^{i} for all $i=0, \ldots, 6$

Proof of theorem 3.3.2. $\Leftarrow)$ Suppose that equations (1) to (7) and (1') to $\left(7^{\prime}\right)$ are verified. We will prove that for every $\pi\left(P_{i}\right)$ with $i=1, \ldots, 6$;
A. There is uniqueness of shortest path between every pair of points.
B. The set of these shortest paths induce a triangulation of the torus corresponding to the configuration $C_{I, 3}$.

From lemma 3.3.4, we know that $P_{i} \in D_{0}$ for all $i=0, \ldots, 6$. We can say even more; equations 3.1 to 3.12 imply that $P_{1}, P_{2} \in Q_{1}, P_{3} \in Q_{2}, P_{4}, P_{5} \in$ Q_{3} and $P_{6} \in Q_{4}$ so we are in a configuration $C_{I, 3}$. Moreover, by lemma 3.3.3 the vertices P_{i} are found in a cyclic clockwise order $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{1}$.

We verify now that the points P_{0}, \ldots, P_{6} induce a triangulation $\tilde{\mathcal{T}}$ and consequently their projections $\pi\left(P_{i}\right)$ induce a triangulation by geodesic segments \mathcal{T} of \mathbb{T}^{2}.

As proved in lemma 3.3.5, around P_{0} there is a cycle of six triangles [P_{0}, P_{i}, P_{i+1}] where the projection of every segment is the shortest path between the respective vertices. We know that the vertices p_{i} define a complete graph K_{7}, so there are in all 21 edges. Because the triangles $\left[P_{0}, P_{i}, P_{i+1}\right]$ define 12 edges, and we know that these edges do not intersect, it remains to prove that the remaining 9 edges do not intersect with any lift of the

Figure 3.8: Tiling of \mathbb{E}^{2} with the lift of a triangulation of \mathbb{T}^{2}.
hexagon defined by the lifts of p_{i}, for $i=0, \ldots, 6$ in $D_{0}+a e_{1}+a e_{2}$ for all $(a, b) \in \mathbb{Z}^{2}$.

First of all, we show which one is the shortest path between the vertices corresponding to the remaining edges:

- Shortest path between p_{1} and p_{3} : As we saw in the proof of 3.3.5, $P_{3}+e_{2}$ is the lift of p_{3} in D_{1}, then $\pi\left(\left[P_{3}+e_{2}, P_{1}\right]\right)$ is the shortest path between p_{3} and p_{1}.
- Shortest path between p_{1} and p_{4} : As we saw in the proof of 3.3.5, $P_{4}+e_{1}+e_{2}$ is the lift of p_{4} in D_{1}, then $\pi\left(\left[P_{4}+e_{1}+e_{2}, P_{1}\right]\right)$ is the shortest path between p_{4} and p_{1}.
- Shortest path between p_{1} and p_{5} : As we saw in the proof of 3.3.5, $P_{5}+e_{1}+e_{2}$ is the lift of p_{5} in D_{1}, then $\pi\left(\left[P_{5}+e_{1}+e_{2}, P_{1}\right]\right)$ is the shortest path between p_{5} and p_{1}.
- Shortest path between p_{2} and p_{4} : Adding equations (2) to (4), we have $\left(x_{4}+1\right)-x_{2}<\frac{1}{2}$ and adding the remaining equations we find $-\frac{1}{2}<$ $-<\left(x_{4}+1\right)-x_{2}$. On the other hand, by equation (6^{\prime}), we conclude that $-\frac{1}{2}<y_{2}-\left(y_{4}+1\right)$ and adding the remaining equations we find $y_{2}-\left(y_{4}+1\right)<0<\frac{1}{2}$. Then $\left|x_{2}-\left(x_{4}+1\right)\right|<\frac{1}{2}$ and $\left|y_{2}-\left(y_{4}+1\right)\right|<\frac{1}{2}$, then $\pi\left(\left[P_{4}+e_{1}+e_{2}, P_{2}\right]\right)$ is the shortest path between p_{4} and p_{2}.
- Shortest path between p_{2} and p_{5} : Adding (2) to (6), and adding the negative of the remaining equations, we find $-1<x_{5}-x_{2}<-\frac{1}{2}$ then $-\frac{1}{2}<\left(x_{5}+1\right)-x_{2}<\frac{1}{2}$. If we add $\left(1^{\prime}\right),\left(2^{\prime}\right),\left(6^{\prime}\right)$ and $\left(7^{\prime}\right)$ and adding the negative of the other equations, we find $-\frac{1}{2}<y_{5}-y_{2}<0<\frac{1}{2}$, then $\left|\left(x_{5}+1\right)-x_{2}\right|<\frac{1}{2}$ and $\left|y_{5}-y_{2}\right|<\frac{1}{2}$ so $\pi\left(\left[P_{2}, P_{5}+e_{1}\right]\right)$ is the shortest path between p_{2} and p_{5}.
- Shortest path between p_{2} and p_{6} : By equation (2), we have $\frac{1}{2}<x_{2}-x_{6}$ and adding the remaining equations, we have $x_{2}-x_{6}<1$. That means $-\frac{1}{2}<x_{2}-\left(x_{6}+1\right)<\frac{1}{2}$. Adding $\left(4^{\prime}\right)$ and ($\left.5^{\prime}\right)$ and adding the negative of the other equations, we have $-\frac{1}{2}<y_{2}-y_{6}<0$ or equivalently $-\frac{1}{2}<y_{2}-y_{6}<\frac{1}{2}$. Then $\pi\left(\left[P_{2}, P_{6}+e_{1}\right]\right)$ is the shortest path between p_{2} and p_{6}.
- Shortest path between p_{3} and p_{5} : Adding (1) to (5) and (7) and taking $-(6)$, we have $\frac{1}{2}<x_{3}-x_{5}<1$ so that $-\frac{1}{2}<x_{3}-\left(x_{5}+1\right)<0<\frac{1}{2}$. On the other hand, if we add (3^{\prime}) and (4^{\prime}) and we add the negative of the remaining equations we find $-\frac{1}{2}<y_{3}-y_{5}<0<\frac{1}{2}$. That is $\left|x_{3}-\left(x_{5}+1\right)\right|<\frac{1}{2}$ and $\left|y_{3}-y_{5}\right|<\frac{1}{2}$ We conclude that $\pi\left(\left[P_{5}+e_{1}, P_{3}\right]\right)$ is the shortest path between p_{5} and p_{3}.
- Shortest path between p_{3} and p_{6} : Adding equations (3), (4) and (5), we have $x_{3}-x_{6}<\frac{1}{2}$. Adding the remaining equations we have $-\frac{1}{2}<$
$x_{3}-x_{6}$. On the other hand, equation (4^{\prime}) tell us that $y_{3}-\left(y_{6}-1\right)<\frac{1}{2}$ and adding the other equations we find $-\frac{1}{2}<0<y_{3}-\left(y_{6}-1\right)$. Then $\left|x_{3}-x_{6}\right|<\frac{1}{2}$ and $\left|y_{3}-\left(y_{6}-1\right)\right|<\frac{1}{2}$. This implies that $\pi\left(\left[P_{3}, P_{6}-e_{2}\right]\right)$ is the shortest path between p_{3} and p_{6}
- Shortest path between p_{4} and p_{6} : Adding (1), (2), and (5) to (7) and adding the negative of (3) and (4), we have $-\frac{1}{2}<0<x_{6}-x_{4}<\frac{1}{2}$. Adding $\left(1^{\prime}\right)$ to $\left(3^{\prime}\right)$ and $\left(7^{\prime}\right)$ and adding the negative of the remaining equations, we have $\frac{1}{2}<y_{6}-y_{4}<1$ so $-\frac{1}{2}<\left(y_{6}-1\right)-y_{4}<\frac{1}{2}$. We conclude that $\pi\left(\left[P_{4}, P_{6}-e_{2}\right]\right)$ is the shortest path between p_{4} and p_{6}.

Once we know which are the lifts of the shortest paths between the vertices, we prove that in fact they do not intersect any lift of $\left[p_{i}, p_{j}\right]$ in $D_{0}+a e_{1}+b e_{2}$ for all $(a, b) \in \mathbb{Z}^{2}$.

1. $\left[P_{1}, P_{3}+e_{2}\right]$: The lift of $\left[p_{1}, p_{3}\right]$ is $\left[P_{1}, P_{3}+e_{2}\right]$. This edge intersects D_{0} and $D_{0}+e_{2}$ so we will verify that $\left[P_{1}, P_{3}+e_{2}\right.$] does not intersect the hexagon in D_{0} or in $D_{0}+e_{2}$ defined by the lifts of $\left\{p_{i}\right\}_{i=0}^{6}$. By lemma 3.3.3 and 3.3.2, we know that $x_{3}<x_{1}$ and $y_{1}<y_{3}+e_{2}$. Moreover, every point $Q:=(x, y) \in\left[P_{1}, P_{3}+e_{2}\right]$ verifies $x_{3}<x<x_{1}$ and $y_{1}<y<y_{3}+1$. If $\left[P_{1}, P_{3}+e_{1}\right]$ intersects an edge $\left[P_{i}, P_{j}\right]$ in $D_{0}+e_{2}$, that would mean that there is a point $R:=(u, v) \in\left[P_{i}, P_{j}\right]$ such that $x_{3}<u<x_{1}$ and $y_{1}<v<y_{3}+e_{2}$. Now by lemma 3.3.3, all points $S=(\alpha, \beta)$ contained in $\left[P_{0}+e_{2}, P_{3}+e_{2}\right],\left[P_{3}+e_{2}, P_{2}+e_{2}\right]$, $\left[P_{0}+e_{2}, P_{2}+e_{2}\right],\left[P_{1}+e_{2}, P_{2}+e_{2}\right],\left[P_{0}+e_{2}, P_{1}+e_{2}\right],\left[P_{0}+e_{2}, P_{6}+e_{2}\right]$, $\left[P_{6}+e_{2}, P_{1}+e_{2}\right],\left[P_{5}+e_{2}, P_{6}+e_{2}\right]$, and $\left[P_{0}+e_{2}, P_{5}+e_{2}\right]$ verify that $\beta>$ $y_{3}+1$ and consequently any point in these edges could be contained also in $\left[P_{1}, P_{3}+e_{2}\right]$. On the other hand, any point $T:=\left(t_{1}, t_{2}\right)$ contained in $\left[P_{4}+e_{2}, P_{0}+e_{2}\right],\left[P_{4}+e_{2}, P_{3}+e_{2}\right]$ or $\left[P_{4}+e_{2}, P_{5}+e_{2}\right]$, verifies by lemma 3.3.3, that $t_{1}<x_{3}$, then any point in these edges could be also contained in $\left[P_{1}, P_{3}+1\right]$. We conclude that $\left[P_{1}, P_{3}+e_{2}\right]$ does not intersect any edge of the hexagon in $D_{0}+e_{2}$. Remark also that by lemma 3.3.3, we know that every point $U:=\left(u_{1}, u_{2}\right)$ on the hexagon contained in D_{0} verifies that $u_{2}<y_{1}$. This implies that any point in this hexagon but P_{1} can be contained in $\left[P_{1}, P_{3}+e_{2}\right]$. We deuce that [$P_{1}, P_{3}+e_{2}$] does not intersect any edge of the hexagon in D_{0} neither. Then $\left[P_{1}, P_{3}+e_{2}\right]$ does not intersect any hexagon in $D_{0}+a e_{1}+b e_{2}$ for all $a, b \in \mathbb{Z}$.
2. $\left[P_{3}+e_{2}, P_{6}\right]$: The lift of $\left[p_{3}, p_{6}\right]$ as seen previously is $\left[P_{3}+e_{2}, P_{6}\right]$. As in the previous case, it is sufficient to verify that $\left[P_{3}+e_{2}, P_{6}\right]$ does not intersect any lift of $\left[p_{i}, p_{j}\right]$ in D_{0} and in $D_{0}+e_{2}$. By lemma 3.3.3. we know that any point $Q:=(x, y)$ contained in $\left[P_{3}+e_{2}, P_{6}\right]$ verifies that $x_{6}<x<x_{3}$ and $y_{6}<y<y_{3}+1$. As in the previous case, every point $S:=\left(s_{1}, s_{2}\right)$ different of $P_{3}+e_{2}$, contained in $\left[P_{0}+e_{2}, P_{3}+e_{2}\right]$,
$\left[P_{3}+e_{2}, P_{2}+e_{2}\right],\left[P_{0}+e_{2}, P_{2}+e_{2}\right],\left[P_{1}+e_{2}, P_{2}+e_{2}\right],\left[P_{0}+e_{2}, P_{1}+e_{2}\right]$, $\left[P_{0}+e_{2}, P_{6}+e_{2}\right],\left[P_{6}+e_{2}, P_{1}+e_{2}\right],\left[P_{5}+e_{2}, P_{6}+e_{2}\right]$, and $\left[P_{0}+e_{2}, P_{5}+e_{2}\right]$ verifies that $s_{2}>y_{1}+1$. That means that any point contained in these edges can be also contained in $\left[P_{3}+e_{2}, P_{6}\right]$. Similarly, any point $T:=\left(t_{1}, t_{2}\right)$ different to P_{6} contained in $\left[P_{6}, P_{0}\right],\left[P_{5}, P_{0}\right],\left[P_{4}, P_{0}\right]$, $\left[P_{3}, P_{0}\right],\left[P_{2}, P_{0}\right],\left[P_{6}, P_{5}\right],\left[P_{5}, P_{4}\right],\left[P_{4}, P_{3}\right]$ and $\left[P_{3}, P_{2}\right]$ verifies that $t_{2}<y_{6}$, therefore any point in these edges could be also be contained in $\left[P_{6}, P_{3}+e_{2}\right]$. Now, the lines $\left(P_{4}+e_{2}, P_{3}+e_{2}\right)$ and $\left(P_{6}, P_{3}+e_{2}\right)$ intersect in $P_{3}+e_{2}$ and since $y_{6}<y_{4}+1$ then $P_{6} \neq P_{4}+e_{2}$, therefore, these lines can not intersect in any other point, we can say even more, $P_{4}+e_{2}$ is strictly over P_{6}, then the segment $\left[P_{4}+e_{2}, P_{3}+e_{2}\right]$ is completely over the segment $\left[P_{6}, P_{3}+e_{2}\right]$ outside their common point point $P_{3}+e_{2}$. Similarly, we can deduce that $\left[P_{6}, P_{1}\right]$ is completely under the segment [$P_{6}, P_{3}+e_{2}$] except for the point P_{6} where they intersect. We conclude that $\left[P_{6}, P_{3}+e_{2}\right.$] does not intersect $\left[P_{1}, P_{6}\right]$ or $\left[P_{4}+e_{2}, P_{3}+e_{2}\right]$. Now, every point $U:\left(u_{1}, u_{2}\right)$ in $\left[P_{4}+e_{2}, P_{5}+e_{2}\right]$ verifies that $u_{1}<x_{4}$ and by lemma 3.3.3 we know that $x_{4}<x_{6}$, then any point contained in this segment could be also contained in $\left[P_{6}, P_{3}+e_{2}\right]$. Every point $V:=$ $\left(v_{1}, v_{2}\right)$ contained in $\left[P_{1}, P_{2}\right]$ verifies by lemma 3.3.3 that $v_{1}>x_{1}>x_{3}$ so any point on this segment could be also be in the segment $\left[P_{6}, P_{3}+\right.$ $\left.e_{2}\right]$. Finally, we verify that $\left[P_{6}, P_{3}+e_{2}\right]$ can not intersect $\left[P_{1}, P_{0}\right]$ or $\left[P_{4}+e_{2}, P_{0}+e_{2}\right]$. Suppose that $\left[P_{6}, P_{3}+e_{2}\right]$ touches $\left[P_{4}+e_{2}, P_{0}+e_{2}\right]$. since every point $W:=\left(w_{1}, w_{2}\right)$ in $\left[P_{4}+e_{2}, P_{0}+e_{2}\right]$ verifies by lemma 3.3.3 that $x_{4}<w_{1}<x_{3}$ and $y_{4}+1<w_{2}<y_{0}+1$, then outside of the point $P_{4}+e_{2}$, the segment $\left[P_{4}+e_{2}, P_{0}+e_{2}\right]$ is completely over the segment $\left[P_{4}+e_{2}, P_{3}+e_{2}\right]$, and as we show previously, $\left[P_{6}, P_{3}+e_{2}\right]$ is completely under the segment $\left[P_{4}+e_{2}, P_{3}+e_{2}\right]$. If there is an intersection point between $\left[P_{6}, P_{3}+e_{2}\right]$ and $\left[P_{4}+e_{2}, P_{0}+e_{2}\right]$, then there exist a point $I:=(\alpha, \beta)$ such that $\alpha<x_{3}$ and $I \in\left[P_{6}, P_{3}+\right.$ $\left.e_{2}\right] \cap\left[P_{4}+e_{2}, P_{3}+e_{2}\right]$, bu the intersection point of these segments was $P_{3}+e_{2}$ so there is a contradiction. A similar argument shows that [$P_{6}, P_{3}+e_{2}$] and $\left[P_{1}, P_{0}\right.$] can not intersect since $\left[P_{1}, P_{0}\right.$] is completely under $\left[P_{6}, P_{1}\right]$ (outside the point P_{1}) and every point $Z:=\left(z_{1}, z_{2}\right)$ in [P_{1}, P_{0}] verifies $x_{6}<z_{1}<x_{1}$. We conclude that $\left[P_{6}, P_{3}+e_{2}\right.$] does not intersect any edge of the hexagons in D_{0} or in $D_{0}+e_{2}$, therefore any hexagon in $D_{0}+a e_{1}+b e_{2}$ for all $a, b \in \mathbb{Z}$.
3. $\left[P_{4}+e_{2}, P_{6}\right]$: The lift of $\left[p_{4}, p_{6}\right]$ is $\left[P_{4}+e_{2}, P_{6}\right]$. Since this segment is contained in D_{0} and in $D_{0}+e_{2}$, we verify that it does not intersect any edge of the hexagons in D_{0} or in $D_{0}+e_{2}$. Every point $Q:=(x, y)$ contained in $\left[P_{4}+e_{2}, P_{6}\right]$ verifies that $x_{4}<x<x_{6}$ and $y_{6}<y<y_{4}+1$ by lemma 3.3.3 and equations 3.3.2. Now, by the same lemma, we have that every point $R=\left(r_{1}, r_{2}\right)$ in $\left[P_{6}, P_{0}\right],\left[P_{6}, P_{5}\right],\left[P_{0}, P_{5}\right],\left[P_{5}, P_{4}\right]$, $\left[P_{0}, P_{4}\right],\left[P_{4}, P_{3}\right],\left[P_{0}, P_{3}\right],\left[P_{3}, P_{2}\right]$ and $\left[P_{0}, P_{2}\right]$ verifies that $r_{2}<y_{6}$ then
any point in these segments could be also contained in $\left[P_{6}, P_{4}+e_{2}\right]$. Moreover every point $S:=\left(s_{1}, s_{2}\right)$ conforming the hexagon and the edges $\left[P_{0}+e_{2}, P_{i}+e_{2}\right]$ for $i=1, \ldots, 6$ verify that $s_{2}>y_{4}+1$ then $\left[P_{4}+e_{2}, P_{6}\right]$ can not intersect any lift of $\left[p_{i}, p_{j}\right]$ in $D_{0}+e_{2}$. Now, every point $T:=\left(t_{1}, t_{2}\right)$ in $\left[P_{1}, P_{0}\right],\left[P_{1}, P_{6}\right]$ and $\left[P_{1}, P_{2}\right]$ verifies that $t_{1}>x_{6}$, then any point in these edges can be also in the edge $\left[P_{6}, P_{4}+e_{2}\right]$. This and the previous arguments shows that the edge $\left[P_{6}, P_{4}+e_{2}\right]$ does not intersect the hexagon in D_{0} nor in $D_{0}+e_{2}$. In consequence, it does not intersect any lift of $\left[p_{i}, p_{j}\right]$ in $D_{0}+a e_{1}+b e_{2}$ for all $A, B \in \mathbb{Z}$.
4. $\left[P_{2}, P_{5}+e_{1}\right]$: The lift of $\left[p_{2}, p_{5}\right]$ is $\left[P_{2}, P_{5}+e_{1}\right]$. By lemma 3.3 .3 , we know that any point $Q:=(x, y)$ in $\left[P_{2}, P_{5}+e_{1}\right]$ verifies that $x_{2}<x<x_{5}+1$ and that $y_{5}<y<y_{2}$. In one hand, every point $R:=\left(r_{1}, r_{2}\right)$ in the lifts of $\left[p_{i}, p_{j}\right]$ in D_{0} verify that $r_{1}<x_{2}$. On the other hand, every point $S:=\left(s_{1}, s_{2}\right)$ contained in the lifts of $\left[p_{i}, p_{j}\right]$ in $D_{0}+e_{1}$ verifies that $s_{1}>x_{5}+1$, then it could not be also in $\left[P_{2}, P_{5}+e_{1}\right]$. Then, [$\left.P_{2}, P_{5}+e_{1}\right]$ does not intersect any lift of $\left[p_{i}, p_{j}\right]$ in D_{0} or in $D_{0}+e_{1}$ and consequently in $D_{0}+a e_{1}+b e_{2}$ for all $a, b \in \mathbb{Z}$.
5. $\left[P_{2}, P_{6}+e_{1}\right]$: The lift of $\left[p_{2}, p_{6}\right]$ is $\left[P_{2}, P_{6}+e_{1}\right]$. By lemma 3.3.3 and equations 3.3.2, we know that every point $Q:=(x, y) \in\left[P_{2}, P_{6}+e_{1}\right]$ is such that $x_{2}<x<x_{6}+1$ and $y_{2}<y<y_{6}$. Now, every point $R=\left(r_{1}, r_{2}\right)$ outside of P_{2} contained in the lifts of $\left[p_{i}, p_{j}\right]$ in D_{0} is such that $r_{1}<x_{2}$, thus neither of these points can be contained also in $\left[P_{2}, P_{6}+e_{1}\right]$. This implies that $\left[P_{2}, P_{6}+e_{1}\right]$ does not intersect the hexagon in D_{0}. On the other hand, all the points $S:=\left(s_{1}, s_{2}\right)$ outside $P_{6}+e_{1}$ contained in the edges $\left[P_{6}+e_{1}, P_{1}+e_{1}\right],\left[P_{6}+e_{1}, P_{0}+e_{1}\right]$, $\left[P_{1}+e_{1}, P_{0}+e_{1}\right],\left[P_{1}+e_{1}, P_{2}+e_{1}\right],\left[P_{2}+e_{1}, P_{0}+e_{1}\right],\left[P_{2}+e_{1}, P_{3}+e_{1}\right]$, $\left[P_{3}+e_{1}, P_{0}+e_{1}\right],\left[P_{3}+e_{1}, P_{4}+e_{1}\right]$, and $\left[P_{4}+e_{1}, P_{0}+e_{1}\right]$ verify that $s_{1}>x_{6}+1$, then any point in these edges could be also contained in [$\left.P_{2}, P_{6}+e_{1}\right]$. Therefore, $\left[P_{2}, P_{6}+e_{1}\right]$ does not intersect any of these edges. Now, since $y_{0}<y_{2}$ by lemma 3.3.3, every point $T:=\left(t_{1}, t_{2}\right)$ contained in $\left[P_{5}+e_{1}, P_{0}+e_{1}\right]$ and in $\left[P_{5}+e_{1}, P_{4}+e_{1}\right]$ verifies that $t_{2}<y_{2}$ by lemma 3.3.3, then there are no points in these edges that are also in the edge $\left[P_{2}, P_{6}+e_{1}\right.$] therefore [$P_{2}, P_{6}+e_{1}$] does not intersect [$\left.P_{5}+e_{1}, P_{0}+e_{1}\right]$ nor $\left[P_{5}+e_{1}, P_{4}+e_{1}\right]$. Finally, edges $\left[P_{2}, P_{6}+e_{1}\right]$ and [$\left.P_{5}+e_{1}, P_{6}+e_{1}\right]$ intersect in $P_{6}+e_{1}$. Moreover $y_{5}<y_{2}$ by lemma 3.3.3. then $P_{5}+e_{1}$ is not contained on the segment $\left[P_{2}, P_{6}+e_{1}\right]$, hence, $P_{6}+e_{1}$ is the only intersection point of $\left[P_{2}, P_{6}+e_{1}\right]$ and $\left[P_{5}+e_{1}, P_{6}+e_{1}\right]$. We deduce that $\left[P_{2}, P_{6}+e_{1}\right]$ does not intersect the hexagon in D_{0} or in $D_{0}+e_{1}$ and then any hexagon in $D_{0}+a e_{1}+b e_{2}$ for all $a, b \in \mathbb{Z}$.
6. $\left[P_{3}, P_{5}+e_{1}\right]$: The lift of $\left[p_{3}, p_{5}\right]$ is $\left[P_{3}, P_{5}+e_{1}\right]$. Every point $Q:=(x, y)$ contained in $\left[P_{3}, P_{5}+e_{1}\right]$ verifies, by lemma 3.3.3 and equations 3.3 .2 that $x_{3}<x<x_{5}+1$ and $y_{3}<y<y_{5}$. Every point $R:=\left(r_{1}, r_{2}\right)$
different of $P_{5}+e_{1}$ contained in the lifts of $\left[p_{i}, p_{j}\right]$ on $D_{0}+e_{1}$ verifies that $x_{5}+1<x$, then any point in the hexagon in $D_{0}+e_{1}$ can be at the same time in $\left[P_{3}, P_{5}+e_{1}\right]$ and in edges in $D_{0}+e_{1}$, then $\left[P_{3}, P_{5}+e_{1}\right]$ does not intersect the any lift of $\left[p_{i}, p_{j}\right]$ in $D_{0}+e_{1}$. Now, every point $S:=\left(s_{1}, s_{2}\right)$ different of P_{3} in $\left[P_{0}, P_{1}\right],\left[P_{6}, P_{1}\right],\left[P_{0}, P_{6}\right],\left[P_{6}, P_{5}\right],\left[P_{0}, P_{5}\right],\left[P_{5}, P_{4}\right]$, $\left[P_{0}, P_{4}\right],\left[P_{4}, P_{3}\right]$, and $\left[P_{0}, P_{3}\right]$ is, by lemma 3.3.3, such that $s_{1}<x_{3}$, then $\left[P_{3}, P_{5}+e_{1}\right]$ can not intersect any of these edges. For the points $T:=\left(t_{1}, t_{2}\right)$ in $\left[P_{0}, P_{2}\right]$ and $\left[P_{1}, P_{2}\right]$, we know by lemma 3.3.3 that $t_{2}>y_{5}$, thus $\left[P_{3}, P_{5}+e_{1}\right]$ can not intersect any of these edges. Finally, edges $\left[P_{3}, P_{5}+e_{1}\right]$ and $\left[P_{3}, P_{2}\right]$ have P_{3} as common point. Since $y_{2}>y_{5}$, then $P_{2} \notin\left[P_{3}, P_{5}+e_{1}\right]$ and then P_{3} is their only common point. We deduce that $\left[P_{3}, P_{5}+e_{1}\right]$ does not intersect any lift of $\left[p_{i}, p_{j}\right]$ in D_{0}. We conclude that this edge does not intersect any lift of $\left[p_{i}, p_{j}\right]$ in $D_{0}+a e_{1}+b e_{2}$ for all $a, b \in \mathbb{Z}$.
7. $\left[P_{1}, P_{4}+e_{1}+e_{2}\right]$: The lift of $\left[p_{1}, p_{4}\right]$ is $\left[P_{1}, P_{4}+e_{1}+e_{2}\right]$. This edge can be contained in $D_{0}, D_{0}+e_{1}, D_{0}+e_{2}$ and $D_{0}+e_{1}+e_{2}$. Then we verify that it does not intersect the hexagons in these domains. Every point $Q=(x, y)$ contained in $\left[P_{1}, P_{4}+e_{1}+e_{2}\right]$ verifies that $x_{1}<x<x_{4}+1$ and $y_{1}<y<y_{4}+1$. Now, every point $R:=\left(R_{1}, R_{2}\right)$ different of $P_{4}+e_{1}+e_{2}$ and $P_{4}+e_{2}$, in the hexagons contained in $D_{0}+e_{1}+e_{2}$ and in $D_{0}+e_{2}$, verifies, by lemma 3.3.3, that $r_{2}>y+4+1$. Since $x_{4}<x_{1}$, the point $P_{4}+e_{2}$ is completely in the left of $\left[P_{1}, P_{4}+e_{1}+e_{2}\right]$. We have also that every point $S:=\left(s_{1}, s_{2}\right)$ different to P_{1} and $P_{1}+e_{1}$, contained in the hexagon in D_{0} or in $D_{0}+e_{1}$ verifies, by the same lemma, that $s_{2}<y_{1}$. Since $x_{4}+1<x_{1}+1$ by equations 3.3.2, the point $P_{1}+e_{1}$ is completely at the right of $\left[P_{1}, P_{4}+e_{1}+e_{2}\right]$. These inequalities imply that any point in the hexagon in D_{0}, in $D_{0}+e_{2}$, in $D_{0}+e_{1}$ or in $D_{0}+e_{1}+e_{2}$, outside P_{1} and $P_{4}+e_{1}+e_{2}$, could be also contained in $\left[P_{1}, P_{4}+e_{1}+e_{2}\right]$, then $\left[P_{1}, P_{4}+e_{1}+e_{2}\right.$] does not intersect these hexagons.
8. $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$: The lift of $\left[p_{1}, p_{5}\right]$ est $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$. This edge could be contained in $D_{0}, D_{0}+e_{1}, D_{0}+e_{2}$ or $D_{0}+e_{1}+e_{2}$. All the points $Q=(x, y)$ contained in $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$ verify that $x_{1}<x<x_{5}+1$ and $y_{1}<y<y_{5}+1$. Now, every point $R:=\left(r_{1}, r_{2}\right)$ different to $P+5+e_{1}+e_{2}$ or $P_{5}+e_{1}$ contained in the hexagon in $D_{0}+e_{1}+e_{2}$ or in $D_{0}+e_{2}$ verifies that $r_{1}>x_{5}+1$, by lemma 3.3.3, we also know that $y_{5}<y_{1}$, which means that the point $P_{5}+e_{1}$ is completely under the segment $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$. Moreover, every point $S:=\left(s_{1}, s_{2}\right)$ different to P_{1} contained in the hexagon in D_{0}, verifies that $s_{2}<y_{1}$. This and the previous argument means that $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$ can not intersect the hexagons in $D_{0}, D_{0}+e_{1}$ or in $D_{0}+e_{1}+e_{2}$ outside the points P_{1} and $P_{5}+e_{1}+e_{2}$. Every point $T:=\left(t_{1}, t_{2}\right)$ different to $P_{1}+e_{2}$ contained in
$\left[P_{1}+e_{2}, P_{0}+e_{2}\right],\left[P_{1}+e_{2}, P_{6}+e_{2}\right],\left[P_{6}+e_{2}, P_{0}+e_{2}\right],\left[P_{6}+e_{2}, P_{5}+e_{2}\right]$, $\left[P_{5}+e_{2}, P_{0}+e_{2}\right],\left[P_{5}+e_{2}, P_{4}+e_{2}\right],\left[P_{4}+e_{2}, P_{0}+e_{2}\right],\left[P_{4}+e_{2}, P_{3}+e_{2}\right]$ and $\left[P_{3}+e_{2}, P_{0}+e_{2}\right]$ verify that $t_{1}<x_{1}$ and since $y_{1}+1>y_{5}+1$ by lemma 3.3.3, we have that the point $P_{1}+e_{2}$ is completely over the segment $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$. We conclude that $\left[P_{1}+e_{2}+e_{2}\right]$ does not intersect any of these edges. Moreover, every point $U:=\left(u_{1}, u_{2}\right)$ contained in $\left[P_{2}+e_{2}, P_{1}+e_{1}\right]$ and $\left[P_{2}+e_{2}, P_{0}+e_{0}\right]$ verifies that $u_{2}>y_{5}+1$ by lemma 3.3.3, then $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$ does not intersect these edges. Finally, in the sixth case we showed that $\left[P_{3}, P_{5}+e_{1}\right]$ does not intersect any hexagon, then $\left[P_{3}+e_{1}, P_{5}+e_{1}+e_{2}\right]$ does not intersect any hexagon, in particular the hexagons in $D_{0}+e_{1}+e_{2}$ and in $D_{0}+e_{2}$. Now, we know that $P_{5}+e_{1}+e_{2} \in\left[P_{3}, P_{5}+e_{1}+e_{2}\right]$ and by lemma 3.3.3, every point $V:=\left(v_{1}, v_{2}\right) \in\left[P_{3}+e_{2}, P_{5}+e_{1}+e_{2}\right]$ different to $P_{3}+e_{3}$, verifies that $u_{2}>y_{3}+1$. Since $y_{1}<y_{3}+1$ by equations 3.3.2, P_{1} is not contained in this segment, in fact, the last inequality shows that P_{1} is completely under the segment $\left[P_{3}+e_{2}, P_{5}+e_{1}+e_{2}\right]$, and since, by lemma 3.3.3, every point $Q=(x, y) \in\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$ verifies that $x_{3}<x<x_{5}+1$, then the segment [$P_{1}, P_{5}+e_{1}+e_{2}$] is completely under the segment $\left[P_{3}+e_{2}, P_{5}+e_{1}+e_{2}\right]$ outside their intersection point $P_{5}+e_{1}+e_{2}$. Similarly,every point $W:=\left(w_{1}, w_{2}\right)$ different to $P_{3}+e_{2}$, contained in $\left[P_{3}+e_{2}, P_{2}+e_{2}\right]$ verifies that $x_{3}<w_{1}<x_{5}+1$ and $y_{3}+1<w_{2}$. and since $y_{2}+1>y_{5}+1$ then $P_{2}+e_{2}$ is not contained in $\left[P_{3}+e_{2}, P_{5}+e_{1}+e_{2}\right]$ and is completely over this segment. We deduce that $\left[P_{3}+e_{2}, P_{2}+e_{2}\right]$ is completely over the segment $\left[P_{3}+e_{2}, P_{5}+e_{1}+e_{2}\right]$ outside their intersection point $P_{3}+e_{2}$. In we suppose then that $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$ intersects the segment $\left[P_{3}+e_{2}, P_{2}+e_{2}\right]$, then there is a point I different to $P_{5}+e_{1}+e_{2}$ in $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$ that intersects $\left[P_{3}+e_{2}, P_{5}+e_{1}+e_{2}\right]$, which is a contradiction because $P_{5}+e_{1}+e_{2}$ is their only intersection point. Then, $\left[P_{1}, P_{5}+e_{1}+e_{3}\right]$ does not intersect any edge of the hexagon in $D_{0}+e_{2}$, and in consequence, any hexagon in $D_{0}+a e_{1}+b e_{2}$ for all $a, b \in \mathbb{Z}$.
9. $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$: The lift of $\left[p_{2}, p_{4}\right]$ is $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$. Every point $Q:=(x, y)$ in $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$ verifies that $x_{2}<x<x_{4}+1$ and $y_{2}<y<y_{4}+1$. Now, every point $R:=\left(r_{1}, r_{2}\right)$ different to P_{2} and $P_{2}+e_{2}$, in the hexagon D_{0} and in $D_{0}+e_{2}$ verifies that $r_{1}<x_{2}$, and also we know by lemma 3.3 .3 that $y_{2}+1>y_{4}+1$ then $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$ does not intersect any point contained in the hexagons in D_{0} or in $D_{0}+e_{2}$ outside P_{2}. By lemma 3.3.3, we know also that every point $S:=\left(s_{1}, s_{2}\right)$ different to $P_{4}+e_{1}+e_{2}$ in the hexagon in $D_{0}+e_{1}+e_{2}$ verifies that $s_{2}>y_{4}+1$, then $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$ does not intersect the hexagon in $D_{0}+e_{1}+e_{2}$. We have that every point $T:=\left(t_{1}, t_{2}\right)$, different of $P_{4}+e_{1}$, contained in $\left[P_{6}+e_{1}, P_{1}+e_{1}\right],\left[P_{6}+e_{1}, P_{0}+e_{1}\right]$, $\left[P_{1}+e_{1}, P_{2}+e_{1}\right],\left[P_{1}+e_{1}, P_{0}+e_{1}\right],\left[P_{2}+e_{1}, P_{3}+e_{1}\right],\left[P_{2}+e_{1}, P_{0}+e_{1}\right]$,
$\left[P_{3}+e_{1}, P_{4}+e_{1}\right],\left[P_{3}+e_{1}, P_{0}+e_{1}\right]$ and $\left[P_{4}+e_{1}, P_{0}+e_{1}\right]$, verifies that $t_{1}>x_{4}+1$ and since $y_{4}<y_{1}, P_{4}+e_{1}$ is not contained in $\left.P_{2}, P_{4}+e_{1}+e_{2}\right]$. We deduce that $\left[P_{2}, p_{4}+e_{1}+e_{2}\right.$] does not intersect any of these edges. We have that any point $U:=\left(u_{1}, u_{2}\right)$ in $\left[P_{3}+e_{1}, P_{0}\right],\left[P_{3}+e_{1}, P_{4}+e_{1}\right]$ verifies that $u_{2}<y_{2}$, then $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$ does not intersect these edges neither. Finally, since $y_{4}+1>y_{6}$ and $y_{3}<y_{2}$, the segments $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$ and $\left[P_{3}+e_{1}, P_{6}+e_{1}\right]$ are not contained in the segment [$\left.P_{2}, P_{6}+e_{1}\right]$ as every point $V:=\left(v_{1}, v_{2}\right)$ in this segment verifies that $y_{2}<v_{2}<y_{6}+1$. Since $x_{3}+1>x_{2}$ and $x_{4}+1<x_{6}+1$, we deduce that the segments $\left[P_{2}, P_{4}+e_{1}+e_{2}\right.$] and $\left[P_{3}+e_{1}, P_{6}+e_{1}\right]$ are completely over and under the segment $\left[P_{2}, P_{6}+e_{1}\right]$ respectively, outside their intersection point (P_{2} and $P_{6}+e_{1}$ respectively). If [$P_{2}, P_{4}+e_{1}+e_{2}$] intersects $\left[P_{3}+e_{1}, P_{6}+e_{1}\right]$, then there is, by continuity, a point $I \in$ $\left[P_{3}+e_{1}, P_{6}+e_{1}\right]$ different to $P_{6}+e_{1}$ and $P_{3}+e_{1}$, where $\left[P_{2}, P_{6}+e_{1}\right.$] and $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$ intersects, but since P_{2} is in the intersection of these two segments and it is the only intersection point, then we have a contradiction. We conclude that $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$ does not intersects any point in the hexagon in $D_{0}+e_{1}$, therefore any hexagon in $D_{0}+a e_{1}+b e_{2}$ for all $a, b \in \mathbb{Z}$.

We have proved that the 9 edges that do not conform the hexagon in D_{0} do not intersect this hexagon. That means that around P_{0} there is a triangulation consisting of a cycle of 6 triangles since all properties that are true for D_{0} are also true for D_{i}. By lemma 3.3.5, we conclude that around any point P_{i}, there is a triangulation consisting in a cycle of 6 triangles. Hence, the lifts of the edges $\left[p_{k}, p_{l}\right]$ do not intersect. We deduce that we are in the case $C_{I, 3}$.
$\Rightarrow)$ Reciprocally, suppose that we are in a configuration type $C_{I, 3}$, since $P_{3} \in Q_{2}$, we know in which quadrant is contained every other point P_{i}. We will prove that equations $(1)-(7)$ and $\left(1^{\prime}\right)-\left(7^{\prime}\right)$ are verified.

For that, note that $\left[P_{i}, P_{i+1}\right]$ and $\left[P_{0}, P_{i}\right]$ are lifts of $\left[p_{i}, p_{i+1}\right]$ and $\left[p_{0}, p_{i}\right]$ for all $i=1, \ldots, 6$ for every configuration, this is because the lift of $\operatorname{Star} p_{0}$ is $\operatorname{Star} P_{0}$ and the shortest path property implies that $\operatorname{Star} P_{0}$ is contained in D_{0} (see figure 3.8). We will now verify which are the lifts of the other 9 edges.

1. Lift of $\left[p_{1}, p_{3}\right]$: Since $P_{1} \in Q_{1}$ and $P_{3} \in Q_{3}$, then, by the shortest path property, the possible lifts for $\left[p_{1}, p_{3}\right]$ are $\left[P_{1}, P_{3}\right]$ and $\left[P_{1}, P_{3}+e_{2}\right]$.

Case 1: If $\left[P_{1}, P_{3}\right]$ is the lift of $\left[p_{1}, p_{3}\right]$, then, since $\left[P_{0}, P_{1}\right]$ and $\left[P_{0}, P_{3}\right]$ are lifts of $\left[p_{0}, p_{1}\right]$ and $\left[p_{0}, p_{3}\right]$, then, by lemma $3.2 .4\left[P_{0}, P_{1}, P_{3}\right]$ is a lift of a triangle, that is, $\left[p_{0}, p_{1}, p_{3}\right] \in \mathcal{T}$, which means that $(013) \in L I$, the list of proposition 3.1.1, which is a contradiction.

Case 2: The contradiction in case 1 implies that $\left[P_{1}, P_{3}+e_{2}\right]$ is the lift of $\left[p_{1}, p_{3}\right]$.
2. Lift of $\left[p_{6}, p_{4}\right]$: Since $P_{6} \in Q_{4}$ and $P_{4} \in Q_{3}$, then, by the shortest path property, the possible lifts for $\left[p_{6}, p_{4}\right]$ are $\left[P_{6}, P_{4}\right]$ and $\left[P_{6}, P_{4}+e_{2}\right]$.

Case 1: If $\left[P_{6}, P_{4}\right]$ is the lift of $\left[p_{6}, p_{4}\right]$, then, since $\left[P_{0}, P_{6}\right]$ and $\left[P_{0}, P_{4}\right]$ are lifts of $\left[p_{0}, p_{6}\right]$ and $\left[p_{0}, p_{4}\right]$, then, by lemma $3.2 .4\left[P_{0}, P_{6}, P_{3}\right]$ is a lift of a triangle, the triangle $\left[p_{0}, p_{6}, p_{3}\right] \in \mathcal{T}$, which means that $(064) \in L I$, which is a contradiction.

Case 2: The contradiction in case 1 implies that $\left[P_{6}, P_{4}+e_{2}\right.$] is the lift of [p_{6}, p_{4}].
3. Lift of $\left[p_{3}, p_{5}\right]$: Since $P_{3} \in Q_{2}$ and $P_{5} \in Q_{3}$, the possible lifts for [p_{3}, p_{5}] are $\left[P_{3}, P_{5}\right]$ and $\left[P_{3}, P_{5}+e_{1}\right]$.

Case 1: If $\left[P_{3}, P_{5}\right]$ is the lift of $\left[p_{3}, p_{5}\right]$, then, since $\left[P_{0}, P_{3}\right]$ and $\left[P_{0}, P_{5}\right]$ are lifts of $\left[p_{0}, p_{3}\right]$ and $\left[p_{0}, p_{5}\right]$, then by lemma $3.2 .4\left[P_{0}, P_{3}, P_{5}\right]$ is a lift of a triangle, which means that $(035) \in L I$, we have then a contradiction.
Case 2: The contradiction in case 1 implies that $\left[P_{3}, P_{5}+e_{1}\right]$ is the lift of $\left[p_{3}, p_{5}\right]$.
4. Lift of $\left[p_{2}, p_{6}\right]$: Since $P_{2} \in Q_{1}$ and $P_{3} \in Q_{4}$, the possible lifts for $\left[p_{2}, p_{6}\right.$] are $\left[P_{2}, P_{6}\right]$ and $\left[P_{2}, P_{6}+e_{1}\right]$.

Case 1: If $\left[P_{2}, P_{6}\right]$ is the lift of $\left[p_{2}, p_{6}\right]$, then, since $\left[P_{0}, P_{2}\right]$ and $\left[P_{0}, P_{6}\right]$ are lifts of $\left[p_{0}, p_{2}\right]$ and $\left[p_{0}, p_{6}\right]$, then by lemma $3.2 .4\left[P_{0}, P_{3}, P_{5}\right]$ is a lift of a triangle which means that $(035) \in L I$, which is a contradiction.

Case 2: The contradiction in case 1 implies that $\left[P_{2}, P_{6}+e_{1}\right]$ is the lift of [p_{2}, p_{6}].
5. Lift of $\left[p_{3}, p_{6}\right]$: The possible lifts for $\left[p_{3}, p_{6}\right]$ are $\left[P_{6}, P_{3}\right],\left[P_{6}, P_{3}-e_{1}\right]$, $\left[P_{6}, P_{3}+e_{2}\right]$ or $\left[P_{6}, P_{3}-e_{1}+e_{2}\right]$.

Case 1: If $\left[P_{3}, P_{6}\right]$ is the lift of $\left[p_{6}, p_{3}\right]$, since $\left[P_{0}, P_{3}\right]$ and $\left[P_{0}, P_{6}\right]$ are lifts of $\left[p_{0}, p_{3}\right]$ and $\left[p_{0}, p_{6}\right]$, then by lemma 3.2.4, $\left[P_{0}, P_{3}, P_{6}\right]$ is a lift of a triangle, hence $(063) \in L I$ which is a contradiction.
Case 2: If $\left[P_{6}, P_{3}-e_{1}\right]$ is a lift of $\left[p_{6}, p_{3}\right]$, then, since $\left[P_{5}, P_{6}\right]$, is a lift of $\left[p_{5}, p_{6}\right]$ and as we saw previously, $\left[P_{3}, P_{5}+e_{1}\right]$ is a lift of $\left[p_{3}, p_{5}\right]$, that is $\left[P_{3}-e_{1}, P_{5}\right]$ is a lift of $\left[p_{3}, p_{5}\right]$, then by lemma 3.2.4, $\left[P_{3}-\right.$ $\left.e_{1}, P_{6}+e_{1}, P_{5}\right]$ is the lift of a triangle, then $(365) \in L I$ which is a contradiction.

Case 3: If $\left[P_{6}, P_{3}-e_{1}+e_{2}\right]$ is a lift of $\left[p_{3}, p_{6}\right]$. We saw that $\left[P_{6}, P_{4}+e_{1}\right]$ is a lift of $\left[p_{6}, p_{4}\right]$. Since $(634) \in L I$ and $\left[P_{6}, P_{3}-e_{1}+e_{2}\right]$ and $\left[P_{6}, P_{4}+e_{1}\right]$ are lifts of $\left[p_{3}, p_{6}\right]$ and $\left[p_{6}, p_{4}\right]$, then $\left[P_{3}, P_{4}+e_{1}\right]$ is a lift of $\left[p_{3}, p_{4}\right]$ which is a contradiction.
Case 4: Since any of the other cases are possible, then the lift of $\left[p_{3}, p_{6}\right.$] is $\left[P_{6}, P_{3}+e_{2}\right]$.
6. Lift of $\left[p_{1}, p_{5}\right]$: The possible lift for $\left[p_{1}, p_{5}\right]$ are $\left[P_{1}, P_{5}\right],\left[P_{1}, P_{5}+e_{1}\right]$, $\left[P_{1}, P_{5}+e_{2}\right]$ or $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$

Case 1: If $\left[P_{1}, P_{5}\right]$ is a lift of $\left[p_{1}, p_{5}\right]$, since $\left[P_{0}, P_{1}\right]$ and $\left[P_{0}, P_{5}\right]$ are lifts of $\left[p_{0}, p_{1}\right]$ and $\left[p_{0}, p_{5}\right]$ respectively, then $\left[P_{0}, P_{1}, P_{5}\right]$ is the lift of a triangle and this means that $(015) \in L I$ which is a contradiction.
Case 2: We know that $(154) \in L I$ and that $\left[P_{4}, P_{5}\right]$ is a lift of $\left[p_{4}, p_{5}\right]$. If we suppose that $\left[P_{1}, P_{5}+e_{2}\right]$ is a lift of $\left[p_{1}, p_{5}\right]$, then $\left[P_{1}, P_{5}+\right.$ $\left.e_{2}, P_{4}+e_{2}\right]$ is a lift of a triangle. This means that $\left[P_{1}, P_{4}+e_{2}\right]$ must be a lift of $\left[p_{1}, p_{4}\right]$. If this is the case, since $\left[P_{1}, P_{3}+e_{2}\right.$] is a lift of $\left[p_{1}, p_{3}\right]$ as seen previously and $\left[P_{3}+e_{2}, P_{4}+e_{2}\right]$ is a lift of $\left[p_{3}, p_{4}\right.$], then $\left[P_{1}, P_{3}+e_{2}, P_{4}+e_{2}\right.$] is a lift of a triangle by lemma 3.2.4, but $(134) \notin L I$, then $\left[P_{1}, P_{4}+e_{2}\right]$ can not be a lift of $\left[p_{1}, p_{4}\right]$, therefore $\left[P_{1}, P_{5}+e_{2}\right.$] is not a lift of $\left[p_{1}, p_{5}\right]$.
Case 3: Suppose that $\left[P_{1}, P_{5}+e_{1}\right]$ is a lift of $\left[p_{1}, p_{5}\right]$, since $(153) \in L I$ and $\left[P_{3}, P_{5}+e_{1}\right]$ is a lift of $\left[p_{3}, p_{5}\right]$, then necessarily we have that [P_{1}, P_{3}] is a lift of $\left[p_{1}, p_{3}\right]$, which is a contradiction as we know that $\left[P_{1}, P_{3}+e_{2}\right]$ is a lift of $\left[p_{1}, p_{3}\right]$
Case 4: Because the cases 1-3 are not possible, then the lift pf $\left[p_{1}, p_{5}\right]$ is $\left[P_{1}, P_{5}+e_{1}+e_{2}\right]$.
7. Lift of $\left[p_{1}, p_{4}\right]$: The possible lifts for $\left[p_{1}, p_{4}\right]$ are $\left[P_{1}, P_{4}\right],\left[P_{1}, P_{4}+e_{1}\right]$, $\left[P_{1}, P_{4}+e_{2}\right]$ or $\left[P_{1}, P_{4}+e_{1}+e_{2}\right]$.

Case 1: If $\left[P_{1}, P_{4}\right]$ is a lift of $\left[p_{1}, p_{4}\right]$, since $\left[P_{0}, P_{1}\right]$ and $\left[P_{0}, P_{4}\right]$ are lifts of $\left[p_{0}, p_{1}\right]$ and $\left[p_{0}, p_{4}\right]$, then $\left[P_{1}, P_{0}, P_{4}\right]$ is a lift of a triangle by lemma 3.2.4, then $(104) \in L i$ which is a contradiction.
Case 2: $\left[P_{1}, P_{4}+e_{2}\right]$ can not be a lift of $\left[p_{1}, p_{4}\right]$ as we showed in case 2 form lift of $\left[p_{1}, p_{5}\right]$.
Case 3: Suppose that $\left[P_{1}, P_{4}+e_{1}\right]$ is a lift of $\left[p_{1}, p_{4}\right]$. We know that $\left[P_{5}+e_{1}, P_{4}+e_{1}\right]$ is a lift of $\left[p_{5}, p_{4}\right]$ and that $(154) \in L I$, then necessarily $\left[P_{1}, P_{5}+e_{1}\right]$ is a lift of $\left[p_{1}, p_{5}\right]$, which is a contradiction.
Case 4: Since any of the previous cases are possible, we conclude that $\left[P_{1}, P_{4}+e_{1}+e_{2}\right]$ is a lift of $\left[p_{1}, p_{4}\right]$.
8. Lift of $\left[p_{2}, p_{4}\right]$: The possible lifts for $\left[p_{2}, p_{4}\right]$ are $\left[P_{2}, P_{4}\right],\left[P_{2}, P_{4}+e_{1}\right]$, $\left[P_{2}, P_{4}+e_{2}\right],\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$.

Case 1: If $\left[P_{2}, P_{4}\right]$ is a lift of $\left[p_{2}, p_{4}\right]$, since $\left[P_{0}, P_{2}\right],\left[P_{0}, P_{4}\right]$ are lifts of [p_{0}, p_{2}] and $\left[p_{0}, p_{4}\right]$ respectively, by lemma 3.2 .4 we have that [$\left.P_{0}, P_{2}, P_{4}\right]$ must be a lift of a triangle of \mathcal{T}, that means that $(024) \in L I$ which is a contradiction.
Case 2: Suppose that $\left[P_{2}, P_{4}+e_{2}\right]$ is a lift of $\left[p_{2}, p_{4}\right]$. Since $\left[P_{2}, P_{1}\right]$ is a lift of $\left[p_{2}, p_{1}\right]$ and we know that $(241) \in L I$, then necessary $\left[P_{1}, P_{4}+e_{2}\right]$ is a lift of $\left[p_{1}, p_{4}\right]$, which is a contradiction.
Case 3: Suppose that $\left[P_{2}, P_{4}+e_{1}\right]$ is a lift of $\left[p_{2}, p_{4}\right]$. Since $\left[P_{2}, P_{1}\right]$ is a lift of $\left[p_{2}, p_{1}\right]$ and we know that $(241) \in L I$, then necessary [$P_{1}, P_{4}+e_{1}$] is a lift of $\left[p_{1}, p_{4}\right]$, which is a contradiction.
Case 4: The fact that the other three cases are not possible means that $\left[P_{2}, P_{4}+e_{1}+e_{2}\right]$ is a lift of $\left[p_{2}, p_{4}\right]$.
9. Lift of $\left[p_{2}, p_{5}\right]$: The possible lifts for $\left[p_{2}, p_{5}\right]$ are $\left[P_{2}, P_{5}\right],\left[P_{2}, P_{5}+e_{1}\right]$, $\left[P_{2}, P_{5}+e_{2}\right]$ or $\left[P_{2}, P_{5}+e_{1}+e_{2}\right]$.

Case 1: If $\left[P_{2}, P_{5}\right]$ is a lift of $\left[p_{2}, p_{5}\right]$, since $\left[P_{0}, P_{2}\right]$ and $\left[P_{0}, P_{5}\right]$ are lifts of $\left[p_{0}, p_{2}\right]$ and $\left[p_{0}, p_{5}\right]$, then $\left[P_{0}, P_{2}, P_{5}\right]$ is a lift of a triangle by lemma 3.2 .4 , then $(025) \in L I$ which is a contradiction.
Case 2: Suppose that $\left[P_{2}, P_{5}+e_{2}\right]$ is a lift of $\left[p_{2}, p_{5}\right]$. Since $\left[P_{2}, P_{3}\right]$ is a lift of $\left[p_{2}, p_{3}\right]$ and $(253) \in L I$, then necessarily $\left[P_{2}, P_{5}+e_{2}, P_{3}\right]$ is a lift of a triangle, hence $\left[P_{3}, P_{5}+e_{2}\right]$ is a lift of $\left[p_{3}, p_{5}\right]$, but we know that a lift of $\left[p_{3}, p_{5}\right]$ is $\left[P_{3}, P_{5}+e_{1}\right]$, then $\left[P_{2}, P_{5}+e_{2}\right]$ can not be a lift of $\left[p_{2}, p_{5}\right]$.
Case 3: Suppose that $\left[P_{2}, P_{5}+e_{1}+e_{2}\right]$ is a lift of $\left[p_{2}, p_{5}\right]$. Since $\left[P_{2}, P_{3}\right]$ is a lift of $\left[p_{2}, p_{3}\right]$ and $(235) \in L I$, then $\left[P_{2}, P_{5}+e_{1}+e_{2}, P_{3}\right]$ is a lift of a triangle, therefore $\left[P_{3}, P_{5}+e_{1}+e_{2}\right]$ is a lift of $\left[p_{3}, p_{5}\right]$ which is a contradiction.
Case 4: Since any of the previous cases are possible, then $\left[P_{2}, P_{5}+e_{1}\right]$ is a lift of $\left[p_{2}, p_{5}\right]$.

Once we know all the lifts of the edges $\left[p_{i}, p_{j}\right]$, the equations are deduced since, by lemma 3.2 .2 we have that if $\left[P_{i}+a e_{1}+b e_{2}, P_{j}+c e_{1}+d e_{2}\right]$ is a lift of $\left[p_{i}, p_{j}\right]$, then $\left|x_{i}+a-\left(x_{j}+c\right)\right|<\frac{1}{2}$ and $\left|y_{i}+b-\left(y_{j}+d\right)\right|<\frac{1}{2}$.

Remark 3.3.8. We have studied properties of configuration $C_{I, 3}$, that is, the second quadrant Q_{2} of D_{0} contains only one point, the point P_{3}. But relabeling, the same results are true for configurations of type $C_{I, i}$, that is, configurations where the only point in Q_{2} of D_{0} is the point P_{i} for $i=$ $0, \ldots, 6$.

Similarly, if we relabel, all the properties are true for configurations of type $C_{I I, i}$, consisting of configurations where the quadrant Q_{1} in D_{0} contains only the point P_{i}.

Theorem 3.3.9. The equations given in 3.3.2 describe two simplexes of dimension 6 , so the configuration space for configuration type $C_{I, 3}$ can be denoted by $\Delta_{x} \times \Delta_{y}$.
Proof. First of all, note that the coordinates x_{i} verify $-\frac{1}{2}<x_{i}<\frac{1}{2}$ and y_{i} verify also $-\frac{1}{2}<y_{i}<\frac{1}{2}$. This implies that the space described by the vertices P_{i}, for $i=0, \ldots, 6$ is bounded. Furthermore, we have seven equations in \mathbb{R}^{6} for the first coordinate (and seven equations in \mathbb{R}^{6} for the second coordinate) that define the intersection of seven half-spaces. We prove now that this intersection is non empty. Take $P_{0}=(0,0), P_{1}=$ $\left(\frac{2}{7}, \frac{3}{7}\right), P_{2}=\left(\frac{3}{7}, \frac{1}{7}\right), P_{3}=\left(\frac{1}{7},-\frac{2}{7}\right), P_{4}=\left(-\frac{2}{7},-\frac{3}{7}\right), P_{5}=\left(-\frac{3}{7},-\frac{1}{7}\right)$ and $P_{6}=\left(-\frac{1}{7}, \frac{2}{7}\right)$. We show that these points verify the equations given in 3.3.2. Indeed, we have:
(1). $x_{2}-x_{0}=\frac{3}{7}<\frac{1}{2}$
(5). $x_{3}-x_{4}=\frac{3}{7}<\frac{1}{2}$
(2). $x_{6}-x_{2}=-\frac{4}{7}<-\frac{1}{2}$
(3). $x_{1}-x_{6}=\frac{3}{7}<\frac{1}{2}$
(6). $x_{5}-x_{3}=-\frac{4}{7}<-\frac{1}{2}$
(4). $x_{4}-x_{1}=-\frac{4}{7}<-\frac{1}{2}$
(7). $x_{0}-x_{5}=\frac{3}{7}<\frac{1}{2}$
and
(1'). $y_{1}-y_{0}=\frac{3}{7}<\frac{1}{2}$
(5'). $y_{2}-y_{3}=\frac{3}{7}<\frac{1}{2}$
(2'). $y_{5}-y_{1}=-\frac{4}{7}<-\frac{1}{2}$
(6'). $y_{4}-y_{2}=-\frac{4}{7}<-\frac{1}{2}$
(3'). $y_{6}-y_{5}=\frac{3}{7}<\frac{1}{2}$
$\left(4^{\prime}\right) . y_{3}-y_{6}=-\frac{4}{7}<-\frac{1}{2}$
(7^{\prime}). $y_{0}-y_{4}=\frac{3}{7}<\frac{1}{2}$

We have a non empty bounded intersection of seven half-spaces, we deduce then that this intersection is a 6 -simplex. In general, the equations given in 3.3 .2 define a product of two six-simplex, denoted by Δ_{x} for the simplex defined by equations $(1)-(7)$ and Δ_{y} for the simplex defined by equations $\left(1^{\prime}\right)-\left(7^{\prime}\right)$. In particular, all the triangulations of $C_{I, 3}$ are contained in a space of dimension 12.

By remark 3.3.8, the other 11 cases presented have similar equations as configuration $C_{I, 3}$, we deduce that the equations associated to these configurations define a product of 6 -simplexes. We have then the following corollary:
Corollary 3.3.10. The configuration space $G E\left(M, \mathbb{T}^{2}\right)$ is given by

$$
G E\left(M, \mathbb{T}^{2}\right)=\bigcup_{i=1}^{12}\left(\Delta_{x} \times \Delta_{y}\right)_{i}
$$

where $\Delta_{x} \times \Delta_{y}$ denote the product of two (different) 6-simplex, Δ_{x} and Δ_{y}.

Lemma 3.3.11. The vertices of the closure of Δ_{x} defined by equations 3.3.2 are given by:

- $v_{1}=\left(0,0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$
- $v_{5}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,-\frac{1}{2}, 0\right)$
- $v_{2}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0\right)$
- $v_{3}=\left(\frac{1}{2}, \frac{1}{2}, 0,0,-\frac{1}{2}, 0\right)$
- $v_{6}=\left(0, \frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, 0\right)$
- $v_{4}=\left(\frac{1}{2}, \frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, 0\right)$
- $v_{7}=\left(0, \frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$

On the other hand, the vertices of the closure of Δ_{y} defined by equations 3.3.2 are given by:

- $w_{1}=\left(0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0\right)$
- $w_{5}=\left(\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0\right)$
- $w_{2}=\left(\frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{2}\right)$
- $w_{3}=\left(\frac{1}{2}, \frac{1}{2}, 0,-\frac{1}{2}, 0, \frac{1}{2}\right)$
- $w_{4}=\left(\frac{1}{2}, 0,0,-\frac{1}{2}, 0, \frac{1}{2}\right)$
- $w_{6}=\left(\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, 0,0\right)$
- $w_{7}=\left(\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{2}\right)$

Proof. Since the inequalities in 3.3 .2 are strict, the two 6 -simples Δ_{x} and Δ_{y} are open. The closure of them are defined by the equations with non strict inequalities, that is:
(i). $x_{2}-x_{0} \leq \frac{1}{2}$
(v). $x_{3}-x_{4} \leq \frac{1}{2}$
(ii). $x_{6}-x_{2} \leq-\frac{1}{2}$
(iii). $x_{1}-x_{6} \leq \frac{1}{2}$
(vi). $x_{5}-x_{3} \leq-\frac{1}{2}$
(iv). $x_{4}-x_{1} \leq-\frac{1}{2}$
(vii). $x_{0}-x_{5} \leq \frac{1}{2}$
and
(i'). $y_{1}-y_{0} \leq \frac{1}{2}$
(v'). $y_{2}-y_{3} \leq \frac{1}{2}$
(ii'). $y_{5}-y_{1} \leq-\frac{1}{2}$
(iii'). $y_{6}-y_{5} \leq \frac{1}{2}$
(iv'). $y_{3}-y_{6} \leq-\frac{1}{2}$
(vi'). $y_{4}-y_{2} \leq-\frac{1}{2}$

These equations imply:
(1-1). $0 \leq x_{1} \leq \frac{1}{2}$
(3-1). $0 \leq x_{3} \leq \frac{1}{2}$
(5-1). $-\frac{1}{2} \leq x_{5} \leq 0$
$(2-1) .0 \leq x_{2} \leq \frac{1}{2}$
$(4-1) .-\frac{1}{2} \leq x_{4} \leq 0$
(6-1). $-\frac{1}{2} \leq x_{6} \leq 0$
and
(1-2). $0 \leq y_{1} \leq \frac{1}{2}$
(2-2). $0 \leq y_{2} \leq \frac{1}{2}$
(3-2). $-\frac{1}{2} \leq y_{3} \leq 0$
(5-2). $-\frac{1}{2} \leq y_{5} \leq 0$
$(4-2) .-\frac{1}{2} \leq y_{4} \leq 0$
$(6-2) .0 \leq y_{6} \leq \frac{1}{2}$

We will now find the vertices of the two 6 -simplex Δ_{x} and Δ_{y}. Every vertex of Δ_{x} has the form $v_{k}=\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{5}, x_{6}\right)$ for $k=1, \ldots, 7$, where $x_{i} \in\left\{0, \frac{1}{2}\right\}$ for $i=1,2,3$ and $x_{j} \in\left\{-\frac{1}{2}, 0\right\}$ for $j=1,2,3$. Indeed, if x_{i} or x_{j} do not take these values, then they are at the interior of Δ_{x} (or at the exterior) thus v_{k} could not be a vertex. Similarly, every vertex v_{l} of the closure of Δ_{y} has the form $v_{l}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)$, where $y_{1}, y_{2}, y_{6} \in\left\{0, \frac{1}{2}\right\}$ and $y_{1}, y_{4}, y_{5} \in\left\{-\frac{1}{2}, 0\right\}$. By equations $(i)-(v i i)$ and $(1-1)-(6-1)$, we have the following cases:

1. If $x_{1}=0$, then $x_{4}=-\frac{1}{2}, x_{3}=0$ and $x_{5}=-\frac{1}{2}$.
2. If $x_{1}=\frac{1}{2}$, then $x_{6}=0$ and $x_{2}=\frac{1}{2}$.
3. If $x_{2}=0$, then $x_{6}=-\frac{1}{2}, x_{1}=0, x_{4}=-\frac{1}{2}, x_{3}=0$ and $x_{5}=-\frac{1}{2}$.
4. If $x_{2}=\frac{1}{2}$, then there is no other point than can be fixed.
5. If $x_{3}=0$, then $x_{5}=-\frac{1}{2}$.
6. If $x_{3}=\frac{1}{2}$, then $x_{1}=\frac{1}{2}, x_{4}=0, x_{6}=0$ and $x_{2}=\frac{1}{2}$.
7. If $x_{4}=0$, then $x_{1}=\frac{1}{2}, x_{6}=0$ and $x_{2}=\frac{1}{2}$.
8. If $x_{4}=-\frac{1}{2}$, then $x_{3}=0$ and $x_{5}=-\frac{1}{2}$.
9. If $x_{5}=0$, then $x_{3}=\frac{1}{2}, x_{4}=0, x_{1}=\frac{1}{2}, x_{6}=0$ and $x_{2}=\frac{1}{2}$.
10. If $x_{5}=-\frac{1}{2}$, then there is no other point that can be fixed.
11. If $x_{6}=0$, then $x_{2}=\frac{1}{2}$.
12. If $x_{6}=-\frac{1}{2}$, then $x_{1}=0, x_{4}=-\frac{1}{2}, x_{3}=0$ and $x_{5}=-\frac{1}{2}$.

In the third and ninth cases, we have all points fixed, that is, we have the vertices $v_{1}=\left(0,0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$ and $v_{2}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0\right)$. This implies that any other vertex has to be such that $x_{2}=\frac{1}{2}$ and $x_{5}=-\frac{1}{2}$.

If $x_{1}=\frac{1}{2}$, by the second case and the previous argument, we have a vertex of the form $v_{k}=\left(\frac{1}{2}, \frac{1}{2}, \cdot, \cdot,-\frac{1}{2}, 0\right)$. We can have $x_{3}=0$ because by the fifth case $x_{5}=-\frac{1}{2}$ so there is no contradiction, so that the vertex takes the form $v_{k}=\left(\frac{1}{2}, \frac{1}{2}, 0, \cdot,-\frac{1}{2}, 0\right)$. Seventh case implies no contradiction so we can have $x_{4}=0$. In this case, the vertex becomes $v_{3}=\left(\frac{1}{2}, \frac{1}{2}, 0,0,-\frac{1}{2}, 0\right)$. Also, eighth case implies no contradiction and in this case, the vertex becomes $v_{4}=\left(\frac{1}{2}, \frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, 0\right)$. On the other hand, if $x_{3}=\frac{1}{2}$, by the sixth case, we have $x_{4}=0$ and we have no contradictions with the other points. In this
case, the vertex takes the form $v_{5}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,-\frac{1}{2}, 0\right)$. We have studied all cases where $x_{1}=\frac{1}{2}$.

If $x_{1}=0$, by the first case and a previous argument, the vertices will take the form $v_{k}=\left(0, \frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, \cdot\right)$. By the eleventh case, we can have $x_{6}=0$ with no contradiction, so than the vertex becomes $v_{6}=\left(0, \frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, 0\right)$. By the twelfth case, we can have $x_{6}=\frac{1}{2}$ which do not lead to any contradiction, so that the vertex becomes $v_{7}=\left(0, \frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$. We have studied all the cases where $x_{1}=0$.

These are all vertices since we have studied all possible case for x_{1}, moreover Δ_{x} is a 6 -simplex so we have just 7 vertices.

We now determine the vertices of Δ_{y}. By equations $\left(i^{\prime}\right)-\left(v i i^{\prime}\right)$ and $(1-2)$ to $(6-2)$, we have the following cases:

1. If $y_{1}=0$, then $y_{5}=-\frac{1}{2}, y_{6}=0, y_{3}=-\frac{1}{2}, y_{2}=0$ and $y_{4}=-\frac{1}{2}$
2. If $y_{1}=\frac{1}{2}$, then there is no other point that can be fixed.
3. If $y_{2}=0$, then $y_{4}=-\frac{1}{2}$.
4. If $y_{2}=\frac{1}{2}$, then $y_{3}=0, y_{6}=\frac{1}{2}, y_{5}=0$ and $y_{1}=\frac{1}{2}$.
5. If $y_{3}=0$, then $y_{6}=\frac{1}{2}, y_{5}=0$ and $y_{1}=\frac{1}{2}$.
6. If $y_{3}=-\frac{1}{2}$, then $y_{2}=0$ and $y_{4}=-\frac{1}{2}$.
7. If $y_{4}=0$, then $y_{2}=0, y_{3}=0, y_{6}=\frac{1}{2}, y_{5}=0$ and $y_{1}=\frac{1}{2}$.
8. If $y_{4}=-\frac{1}{2}$, then there is no other point that can be fixed.
9. If $y_{5}=0$, then $y_{1}=\frac{1}{2}$.
10. If $y_{5}=-\frac{1}{2}$, then $y_{6}=0, y_{3}=-\frac{1}{2}, y_{2}=0$ and $y_{4}=-\frac{1}{2}$.
11. If $y_{6}=0$, then $y_{3}=-\frac{1}{2}, y_{2}=0$ and $y_{4}=-\frac{1}{2}$.
12. If $y_{6}=\frac{1}{2}$, then $y_{5}=0$ and $y_{1}=\frac{1}{2}$.

If $y_{1}=0$ the remaining points are fixed as seen in the first case. In this case, the vertex becomes $w_{1}=\left(0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0\right)$. The case where $y_{4}=0$ is similar, the vertex becoming $w_{2}=\left(\frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{2}\right)$. This implies that every other vertex must be such that $y_{1}=\frac{1}{2}$ and $y_{4}=-\frac{1}{2}$, then of the form $w_{l}=\left(\frac{1}{2}, \cdot, \cdot,-\frac{1}{2}, \cdot, \cdot\right)$.

If $y_{2}=\frac{1}{2}$, by the previous argument and the fourth case, we have $w_{3}=$ $\left(\frac{1}{2}, \frac{1}{2}, 0,-\frac{1}{2}, 0, \frac{1}{2}\right)$.

We can have $y_{2}=0$ since it does not imply any contradiction (see third case). In this case, the vertex takes the form $w_{l}=\left(\frac{1}{2}, 0, \cdot,-\frac{1}{2}, \cdot, \cdot\right)$. If $y_{3}=0$, by the fifth case, we have $w_{4}=\left(\frac{1}{2}, 0,0,-\frac{1}{2}, 0, \frac{1}{2}\right)$. By the sixth case, we can

Figure 3.9: Some vertices of $\Delta_{x} \times \Delta_{y}$.
have $y_{3}=-\frac{1}{2}$, so the vertex becomes $w_{l}=\left(\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, \cdot, \cdot\right)$. We can have $y_{5}=-\frac{1}{2}$ without having a contradiction, so that, by the tenth case, we have $w_{5}=\left(\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0\right)$. We can also have $y_{5}=0$ by the ninth case, then, the vertex takes the form $w_{l}=\left(\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, 0, \cdot\right)$. We have no contradiction whether $y_{6}=0$ or $y_{6}=\frac{1}{2}$, so that, we have the vertices $w_{6}=\left(\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, 0,0\right)$ and $w_{7}=\left(\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{2}\right)$.

Since we have studied all cases for y_{2}, then these are the only vertices, in addition to the fact that Δ_{y} is a 6 -simplex (see figure 3.9).

Example: Central configuration. Among all the different triangulations of type $C_{I, 3}$, there is a special one that we will call Central configuration. This configuration consists of seven vertices whose lifts have the following coordinates: $P_{0}=(0,0), P_{1}=\left(\frac{2}{7}, \frac{3}{7}\right), P_{2}=\left(\frac{3}{7}, \frac{1}{7}\right), P_{3}=\left(\frac{1}{7},-\frac{2}{7}\right), P_{4}=$ $\left(-\frac{2}{7},-\frac{3}{7}\right), P_{5}=\left(-\frac{3}{7},-\frac{1}{7}\right)$ and $P_{6}=\left(-\frac{1}{7}, \frac{2}{7}\right)$ (see figure 3.10). In theorem
3.3 .9 we show that these points verify equations 3.3.2, so these lifts correspond indeed to configuration $C_{I, 3}$. We have the following geometrical property of the Central configuration:

Proposition 3.3.12. In the Central configuration, all the lifts of the faces in \mathbb{T}^{2} are congruent.

Proof. We calculate the length of the sides of the lifts of all triangles in \mathcal{T}. By all the previous results, we know which are lifts of the faces of the triangulation type $C_{I, 3}$ in \mathbb{T}^{2}. We denote by $\ell\left(P_{i}, P_{j}\right)$ the length of the segment $\left[P_{i}, P_{j}\right]$ and we denote by $\left[P_{i}, P_{j}, P_{k}\right] \equiv\left[P_{i^{\prime}}, P_{j^{\prime}}, P_{k^{\prime}}\right]$ whenever two triangles are congruent.

1. Take the triangle $\left[P_{0}, P_{1}, P_{2}\right]$. We have that $\ell\left(P_{0}, P_{1}\right)=\frac{\sqrt{13}}{7}:=\ell_{1}$, $\ell\left(P_{0}, P_{2}\right)=\frac{\sqrt{10}}{7}:=\ell_{2}$ and $\ell\left(P_{1}, P_{2}\right)=\frac{\sqrt{5}}{7}:=\ell_{3}$.
2. Take the triangle $\left[P_{0}, P_{2}, P_{3}\right]$. Then $\ell\left(P_{0}, P_{2}\right)=\ell_{2}, \ell\left(P_{0}, P_{3}\right)=\ell_{3}$ and $\ell\left(P_{2}, P_{3}\right)=\ell_{1}$, then $\left[P_{0}, P_{1}, P_{2}\right] \equiv\left[P_{0}, P_{2}, P_{3}\right]$.
3. Take the triangle $\left[P_{0}, P_{3}, P_{4}\right]$. We know that $\ell\left(P_{0}, P_{3}\right)=\ell_{3}$, moreover $\ell\left(P_{0}, P_{4}\right)=\ell_{1}$ and $\ell\left(P_{4}, P_{3}\right)=\ell_{2}$, then $\left[P_{0}, P_{3}, P_{4}\right] \equiv\left[P_{0}, P_{2}, P_{3}\right]$.
4. Take the triangle $\left[P_{0}, P_{4}, P_{5}\right]$. We have $\ell\left(P_{0}, P_{4}\right)=\ell_{1}$, on the other hand, $\ell\left(P_{0}, P_{5}\right)=\ell_{2}$ and $\ell\left(P_{4}, P_{5}\right)=\ell_{3}$, we deduce that $\left[P_{0}, P_{4}, P_{5}\right] \equiv$ $\left[P_{0}, P_{3}, P_{4}\right]$.
5. Take the triangle $\left[P_{0}, P_{5}, P_{6}\right]$. We have $\ell\left(P_{0}, P_{5}\right)=\ell_{2}$. We have also $\ell\left(P_{0}, P_{6}\right)=\ell_{3}$ and $\ell\left(P_{5}, P_{6}\right)=\ell_{1}$. Then $\left[P_{0}, P_{5}, P_{6}\right] \equiv\left[P_{0}, P_{4}, P_{5}\right]$.
6. Take the triangle $\left[P_{0}, P_{6}, P_{1}\right]$. We know that $\ell\left(P_{0}, P_{6}\right)=\ell_{3}$ and that $\ell\left(P_{0}, P_{1}\right)=\ell_{1}$. On the other hand, $\ell\left(P_{6}, P_{1}\right)=\ell_{2}$. We deduce $\left[P_{0}, P_{6}, P_{1}\right] \equiv\left[P_{0}, P_{5}, P_{6}\right]$.
7. Take the triangle $\left[P_{2}, P_{6}+e_{1}, P_{5}+e_{1}\right]$, we have $P_{6}+e_{1}=\left(\frac{6}{7}, \frac{2}{7}\right)$ and $P_{5}+e_{1}=\left(\frac{4}{7},-\frac{1}{7}\right)$, then $\ell\left(P_{2}, P_{6}+e_{1}\right)=\ell_{2}, \ell\left(P_{2}, P_{5}+e_{1}\right)=\ell_{3}$ and $\ell\left(P_{6}+e_{1}, P_{5}+e_{1}\right)=\ell_{1}$. Therefore $\left[P_{2}, P_{6}+e_{1}, P_{5}+e_{1}\right] \equiv\left[P_{0}, P_{6}, P_{1}\right]$.
8. Take the triangle $\left[P_{2}, P_{5}+e_{1}, P_{3}\right]$. We know that $\ell\left(P_{2}, P_{5}+e_{1}\right)=\ell_{3}$ and that $\ell\left(P_{2}, P_{3}\right)=\ell_{1}$. We have also $\ell\left(P_{5}+e_{1}, P_{3}\right)=\ell_{2}$. Then $\left[P_{2}, P_{5}+e_{1}, P_{3}\right] \equiv\left[P_{2}, P_{6}+e_{1}, P_{5}+e_{1}\right]$.
9. Take the triangle $\left[P_{3}, P_{5}+e_{1}, P_{1}-e_{2}\right]$. We have $P_{1}-e_{2}=\left(\frac{2}{7},-\frac{4}{7}\right)$. We know that $\ell\left(P_{3}, P_{5}+e_{1}\right)=\ell_{2}$. Now, $\ell\left(P_{3}, P_{1}-e_{2}\right)=\ell_{3}$ and $\ell\left(P_{1}-e_{2}, P_{5}+e_{1}\right)=\ell_{1}$, then $\left[P_{3}, P_{5}+e_{1}, P_{1}-e_{2}\right] \equiv\left[P_{2}, P_{5}+e_{1}, P_{3}\right]$.
10. Take the triangle $\left[P_{1}-e_{2}, P_{4}+e_{1}, P_{5}+e_{1}\right]$. We have $P_{4}+e_{1}=\left(\frac{5}{7},-\frac{3}{7}\right)$. We know that $\ell\left(P_{1}-e_{2}, P_{5}+e_{1}\right)=\ell_{1}$. Since translations are isometries, we know also that $\ell\left(P_{4}+e_{1}, P_{5}+e_{1}\right)=\ell_{3}$. Moreover, $\ell\left(P_{1}-e_{2}, P_{4}+\right.$
$\left.e_{1}\right)=\ell_{2}$. We have then that $\left[P_{1}-e_{2}, P_{4}+e_{1}, P_{5}+e_{1}\right] \equiv\left[P_{3}, P_{5}+\right.$ $\left.e_{1}, P_{1}-e_{2}\right]$.
11. Take the triangle $\left[P_{1}-e_{2}, P_{4}+e_{1}, P_{2}-e_{2}\right]$. We have $P_{2}-e_{2}=\left(\frac{3}{7},-\frac{6}{7}\right)$. We know that $\ell\left(P_{1}-e_{2}, P_{4}+e_{1}\right)=\ell_{2}$ and that $\ell\left(P_{1}-e_{2}, P_{2}-e_{2}\right)=$ ℓ_{3}. On the other hand, we have $\ell\left(P_{4}+e_{1}, P_{2}-e_{2}\right)=\ell_{1}$. Then $\left[P_{1}-e_{2}, P_{4}+e_{1}, P_{2}-e_{2}\right] \equiv\left[P_{1}-e_{2}, P_{4}+e_{1}, P_{5}+e_{1}\right]$.
12. Take the triangle $\left[P_{2}-e_{2}, P_{4}+e_{1}, P_{6}+e_{1}-e_{2}\right]$. We have $P_{6}+e_{1}-$ $e_{2}=\left(\frac{6}{7},-\frac{5}{7}\right)$. We know that $\left[P_{4}+e_{1}, P_{2}-e_{2}\right)=\ell_{1}$. We have that $\ell\left(P_{2}-e_{2}, P_{6}+e_{1}-e_{2}\right)=\ell_{2}$ and that $\ell\left(P_{4}+e_{1}, P_{6}+e_{1}-e_{2}\right)=\ell_{3}$. Then $\left[P_{2}-e_{2}, P_{4}+e_{1}, P_{6}+e_{1}-e_{2}\right] \equiv\left[P_{1}-e_{2}, P_{4}+e_{1}, P_{2}-e_{2}\right]$.
13. Take the triangle $\left[P_{1}-e_{2}, P_{3}, P_{6}-e_{2}\right]$. We have $P_{6}-e_{2}=\left(-\frac{1}{7},-\frac{5}{7}\right)$. We have already seen that $\ell\left(P_{3}, P_{1}-e_{2}\right)=\ell_{3}$ and that $\ell\left(P_{1}-e_{2}, P_{6}-e_{2}\right)=$ ℓ_{2}. We have that $\ell\left(P_{3}, P_{6}-e_{2}\right)=\ell_{1}$ and thus $\left[P_{1}-e_{2}, P_{3}, P_{6}-e_{2}\right] \equiv$ $\left[P_{2}-e_{2}, P_{4}+e_{1}, P_{6}+e_{1}-e_{2}\right]$.
14. Take the triangle $\left[P_{4}, P_{3}, P_{6}-e_{2}\right]$. We know that $\ell\left(P_{3}, P_{6}-e_{2}\right)=$ ℓ_{1} and that $\ell\left(P_{4}, P_{3}\right)=\ell_{2}$. Moreover, $\ell\left(P_{4}, P_{6}-e_{2}\right)=\ell_{3}$, hence, $\left[P_{4}, P_{3}, P_{6}-e_{2}\right] \equiv\left[P_{1}-e_{2}, P_{3}, P_{6}-e_{2}\right]$.

Remark 3.3.13. The central configuration corresponds to the barycenter of $\Delta_{x} \times \Delta_{y}$. Indeed, the barycenter of Δ_{x}, bar Δ_{x} is given by bar $\Delta_{x}=$ $\frac{1}{7} \sum_{i=1}^{7} v_{i}$ where v_{i} are the vertices of Δ_{x}. Computing, we find bar $\Delta_{x}=$ $\left(\frac{2}{7}, \frac{3}{7}, \frac{1}{7},-\frac{2}{7},-\frac{3}{7},-\frac{1}{7}\right)$, corresponding to the first coordinate of points P_{1}, \ldots, P_{6}. On the other hand, bar $\Delta_{y}=\frac{1}{7} \sum_{i=1}^{7} w_{i}$ where w_{i} are the vertices of Δ_{y}. We find hence bar $\Delta_{y}=\left(\frac{3}{7}, \frac{1}{7},-\frac{2}{7},-\frac{3}{7},-\frac{1}{7}, \frac{2}{7}\right)$, which corresponds to the second coordinates of points P_{1}, \ldots, P_{6}.

3.4 Aligned configurations

Recall from chapter 1 that we have introduced by $\mathrm{L}_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)$ the space of linear embeddings of the Moebius torus M into \mathbb{E}^{3}. In chapter II, we have constructed a simplicial complex C isometric to \mathbb{T}^{2} and a linear embedding of this complex into \mathbb{E}^{3}, showing that $\mathrm{L}_{\mathbb{T}^{2}}\left(C, \mathbb{E}^{3}\right)$ is non empty. We have conjectured that $L_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)$ is empty. Let $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. We denote by $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ the set of linear isometric embeddings of \mathcal{T} in \mathbb{E}^{3}. We obviously have

$$
L_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)=\bigcup_{\mathcal{T}} \mathrm{L}_{\mathcal{T}}\left(\mathbb{E}^{3}\right) .
$$

Figure 3.10: Lift of the central configuration

The aim of this section is to show that $\mathrm{L}_{\mathcal{T}}\left(\mathbb{E}^{3}\right)=\emptyset$ for every aligned configuration \mathcal{T} (see the definition 3.4.3).

Definition 3.4.1. Let ($j k l$) and ($j l m$) be in LI, (the list of triangles in proposition 3.1.1) and let $\left[P_{j}, P_{k}, P_{l}\right]$ and $\left[P_{j}, P_{l}, P_{m}\right]$ be lifts of the corresponding triangles having a common edge $\left[P_{j}, P_{l}\right]$. We call butterfly the union of two such triangles, $\left[P_{j}, P_{k}, P_{l}\right] \cup\left[P_{j}, P_{l}, P_{m}\right]$ and we call their common edge $\left[P_{j}, P_{l}\right]$ the body of the butterfly (see figure 3.4). Using the terminology of simplicial complexes, a butterfly is the star of its body. We say that two butterflies are equivalent if and only if one of them is a translation of the other one by a translation of vector in $\mathbb{Z} e_{1}+\mathbb{Z} e_{2}$.

Notation: For short, we write $P_{1}\left[P_{2}, P_{3}\right] P_{4}$ for the butterfly $\left[P_{1}, P_{2}, P_{3}\right] \cup$ [P_{2}, P_{3}, P_{4}]. We consider the 7 consecutive butterflies (see Figure 3.12):

- $B_{0}:=P_{1}\left[P_{0}, P_{2}\right] P_{3}$
- $B_{1}:=P_{1}^{1}\left[P_{0}^{1}, P_{2}^{1}\right] P_{3}^{1}+e_{1}$
- $B_{2}:=P_{1}^{2}\left[P_{0}^{2}, P_{2}^{2}\right] P_{3}^{2}$

Figure 3.11: The butterfly $P_{k}\left[P_{j}, P_{l}\right] P_{m}$.

Figure 3.12: The butterflies B_{i} 's on the broken line ℓ_{1}. For clarity, we write P_{j}^{i} for $P_{j}^{i}+v$, where v is an integral translation.

- $B_{3}:=P_{1}^{3}\left[P_{0}^{3}, P_{2}^{3}\right] P_{3}^{3}+2 e_{1}+e_{2}$
- $B_{4}:=P_{1}^{4}\left[P_{0}^{4}, P_{2}^{4}\right] P_{3}^{4}+2 e_{1}+e_{2}$
- $B_{5}:=P_{1}^{5}\left[P_{0}^{5}, P_{2}^{5}\right] P_{3}^{5}+3 e_{1}+e_{2}$
- $B_{6}:=P_{1}^{6}\left[P_{0}^{6}, P_{2}^{6}\right] P_{3}^{6}+e_{1}$,
and we denote by $\mathcal{B}:=\left\{B_{i}\right\}_{i=0}^{6}$. We denote by ℓ_{1} the broken line formed by the bodies of the butterflies B_{0}, \ldots, B_{6}. They appear consecutively in the following order: $B_{0}, B_{2}, B_{6}, B_{1}, B_{4}, B_{3}$ and B_{5}.

Lemma 3.4.2. All the butterflies of the set \mathcal{B} are non equivalents. As a consequence, \mathcal{B} contains a unique lift of $\left[p_{j}, p_{k}, p_{l}\right]$ for every $(j k l) \in L I$.

Proof. The butterfly B_{0} contains a lift of two triangles whose vertex indices are (012) and (023). The butterfly B_{1} contains, by definition 3.3.6, a lift of the triangles $\left[p_{1}, p_{5}, p_{4}\right]$ and $\left[p_{1}, p_{4}, p_{2}\right]$. That is, triangles with indices (154) and (142). The butterfly B_{2} contains a lift of $\left[p_{2}, p_{4}, p_{6}\right]$ and $\left[p_{2}, p_{6}, p_{5}\right]$, then triangles with indices (246) and (265). The butterfly B_{3} contains lifts of triangles whose vertex indices are (325) and (351). The butterfly B_{4}, contains, by definition 3.3.6, lifts of triangles with indices (403) and (436). The butterfly B_{5} contains two triangles whose indices correspond to (560) and (504). Finally, the lifts of the triangles contained in B_{6} have indices (631) and (610). Note that the triangles in \mathcal{B} have different indices two by two. Moreover, we only have one lift of a triangle with index $(j k l)$ for every $(j k l) \in L I$ since $L I$ has 14 elements and \mathcal{B} contains 14 triangles. We deduce that no two triangles in \mathcal{B} are equivalent.

Let θ_{i} be the angle between the body of the butterfly B_{i} and the horizontal direction, for $i=1, \ldots, 7$ (see figure 3.13).

Definition 3.4.3. We say that an element \mathcal{T} is an aligned configuration if for all $i=0 \ldots, 6, \theta_{i}=\arctan \frac{1}{3}$.

We denote by S the subspace of $C_{I, 3} \subset \mathrm{GE}\left(M, \mathbb{T}^{2}\right)$ consisting of all aligned configurations (see figure 3.14). Observe that for every $\mathcal{T} \in S$, the bodies of the B_{i} 's are aligned for $i=0, \ldots, 6$. In particular, the Central configuration described in the previous section is in S. We have the following proposition for S :

Proposition 3.4.4. S can be written as the graph of an affine map f : $\Delta_{x} \rightarrow \Delta_{y}$, where Δ_{x} and Δ_{y} are the simplices of theorem 3.3.9.

The proof of this proposition is postponed at the end of this section. The main result of this section is the following:

Theorem 3.4.5. There exists a 12-dimensional neighborhood $N(S)$ of S such that for every element \mathcal{T} of $N(S)$, we have $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)=\emptyset$.

Figure 3.13: A butterfly and its angle.

Figure 3.14: An element \mathcal{T} of S. Here again, we write P_{j}^{i} for $P_{j}^{i}+v$, where v is an integral translation.

To prove this theorem we need some lemmas. We denote $A B:=B-A$ for $A, B \in \mathbb{E}^{n}$, and we write $A B=\left(X_{A B}, Y_{A B}\right)$. We will denote by $\|A B\|_{n}$, or simply $\|A B\|$, the norm of $A B$.

Definition 3.4.6. We say that a butterfly $R_{1}\left[R_{0}, R_{2}\right] R_{3}$ of a configuration \mathcal{T} is realizable in Euclidean space \mathbb{E}^{n} if there exist four points $Q_{0}, Q_{1}, Q_{2}, Q_{3} \in$ \mathbb{E}^{n} such that $d_{\mathbb{T}^{2}}\left(\pi\left(R_{i}\right), \pi\left(R_{j}\right)\right)=\left\|Q_{i} Q_{j}\right\|$ for every (i, j).

Lemma 3.4.7. Let $R_{1}\left[R_{0}, R_{2}\right] R_{3}$ be a butterfly of some configuration in $C_{I, 3}$ (see figure 3.4). The butterfly is realizable in \mathbb{E}^{n}, for $n \geq 3$, if and only if

$$
\left\|R_{1}^{\prime} R_{3}\right\|_{2} \leq\left\|R_{1}^{\prime \prime} R_{3}\right\|_{2}
$$

where $R_{1}^{\prime \prime}:=R_{1}-e_{2}$, and R_{1}^{\prime} is the reflexion of R_{1} through the segment [$\left.R_{0}, R_{2}\right]$.

Proof. Consider four points $Q_{0}, Q_{1}, Q_{2}, Q_{3} \in \mathbb{E}^{n}$ such that $d_{\mathbb{T}^{2}}\left(\pi\left(R_{i}\right), \pi\left(R_{j}\right)\right)=$ $\left\|Q_{i} Q_{j}\right\|$ for every $(i, j) \neq(1,3)$ with $i<j$. In particular, $\left\|Q_{0} Q_{1}\right\|^{2}=$ $\left\|R_{0} R_{1}\right\|^{2}$ and $\left\|Q_{1} Q_{2}\right\|^{2}=\left\|R_{1} R_{2}\right\|^{2}$. Fixing Q_{0}, Q_{2}, Q_{3}, the extrema of the $\left\|Q_{1} Q_{3}\right\|^{2}$ seen as a function of Q_{1} satisfy the Lagrange multiplier equation:

$$
2\left\langle Q_{1} Q_{3}, \cdot\right\rangle_{\mathbb{E}^{n}}=2 \lambda\left\langle Q_{0} Q_{1}, \cdot\right\rangle_{\mathbb{E}^{n}}+2 \mu\left\langle Q_{1} Q_{2}, \cdot\right\rangle_{\mathbb{E}^{n}}
$$

for some λ, μ. Said differently, $Q_{1} Q_{3}$ is in the plane spanned by $Q_{0} Q_{1}$ and $Q_{1} Q_{2}$. The extrema of $\left\|Q_{1} Q_{3}\right\|$ are obtained when $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ are coplanar. In Figure 3.4 this corresponds to the maximum $\left\|R_{1} R_{3}\right\|$ and the minimum $\left\|R_{1}^{\prime} R_{3}\right\|$. Clearly, every intermediate distance can be realized as soon as $n \geq 3$ by pivoting triangle $R_{0} R_{1} R_{2}$ about the axis $R_{0} R_{2}$. Note that for any configuration in $C_{I, 3}$ we have

$$
d_{\mathbb{T}^{2}}\left(\pi\left(R_{1}\right), \pi\left(R_{3}\right)\right)=\left\|R_{1}^{\prime \prime} R_{3}\right\|<\left\|R_{1} R_{3}\right\|
$$

Hence, $R_{1}\left[R_{0}, R_{2}\right] R_{3}$ is realizable if and only if $\left\|R_{1}^{\prime} R_{3}\right\| \leq\left\|R_{1}^{\prime \prime} R_{3}\right\|$.
We denote by e_{φ} the unitary vector $(\cos \varphi, \sin \varphi)$, with $\varphi \in[0,2 \pi[$. We have the following:

Lemma 3.4.8. The butterfly $P_{1}^{i}\left[P_{0}^{i}, P_{2}^{i}\right] P_{3}^{i}$ with angle θ_{i} is realizable if and only if

$$
4 \cos ^{2} \theta_{i}\left(Y_{P_{1}^{i} P_{0}^{i}}-X_{P_{1}^{i} P_{0}^{i}} \tan \theta_{i}\right)\left(Y_{P_{3}^{i} P_{2}^{i}}-X_{P_{3}^{i} P_{2}^{i}} \tan \theta_{i}\right)-1 \leq 2 Y_{P_{1}^{i} P_{3}^{i}}
$$

Proof. By lemma 3.4.7, we have:

$$
\begin{equation*}
\left\|P_{1}^{\prime}-P_{3}^{i}\right\|^{2} \leq\left\|P_{1}^{i}-e_{2}-P_{3}^{i}\right\|^{2} \tag{3.13}
\end{equation*}
$$

Figure 3.15: Butterfly with points R_{1}^{\prime} and $R_{1}^{\prime \prime}$ as described above.

Now, the reflexion of $P_{1}^{i}, P_{1}^{\prime}$ through the segment $\left[P_{0}^{i}, P_{2}^{i}\right]$, can be written as $P_{1}^{\prime}=P_{1}^{i}+2\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle e_{\theta_{i}+\frac{\pi}{2}}$. Then, we have

$$
\begin{aligned}
\left\|P_{1}^{\prime}-P_{3}^{i}\right\|^{2} & =\left\|P_{1}^{i}+2\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle e_{\theta_{i}+\frac{\pi}{2}}-P_{3}^{i}\right\|^{2} \\
& =\left\|P_{1}^{i}+2\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle e_{\theta_{i}+\frac{\pi}{2}}\right\|^{2} \\
& -2\left\langle P_{1}^{i}+2\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta+\frac{\pi}{2}}\right\rangle e_{\theta_{i}+\frac{\pi}{2}}, P_{3}^{i}\right\rangle+\left\|P_{3}^{i}\right\|^{2} \\
& =\left\|P_{1}^{i}\right\|^{2}+4\left(\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\right)^{2}+4\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\left\langle P_{1}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle \\
& -2\left\langle P_{1}^{i}, P_{3}^{i}\right\rangle-4\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\left\langle P_{3}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle+\left\|P_{3}^{i}\right\|^{2} \\
& =\left\|P_{1}^{i}-P_{3}^{i}\right\|^{2}+4\left(\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\right)^{2}+4\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\left\langle P_{1}^{i}-P_{3}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle \\
& =\left\|P_{1}^{i} P_{3}^{i}\right\|^{2}+4\left(\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\right)^{2}+4\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\left\langle P_{1}^{i} P_{3}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle \\
& =\left\|P_{1}^{i} P_{3}^{i}\right\|^{2}+4\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\left(\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle-\left\langle P_{1}^{i} P_{3}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\right) \\
& =\left\|P_{1}^{i} P_{3}^{i}\right\|^{2}+4\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\left(\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle+\left\langle P_{3}^{i} P_{1}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\right) \\
& =\left\|P_{1}^{i} P_{3}^{i}\right\|^{2}+4\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\left\langle P_{3}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle
\end{aligned}
$$

And we have also

$$
\begin{aligned}
\left\|P_{1}^{i}-e_{2}-P_{3}^{i}\right\|^{2} & =\left\|P_{1}^{i}-e_{2}\right\|^{2}-2\left\langle P_{1}^{i}-e_{2}, P_{3}^{i}\right\rangle+\left\|P_{3}^{i}\right\|^{2} \\
& =\left\|P_{1}^{i}\right\|^{2}-2\left\langle P_{1}^{i}, e_{2}\right\rangle+1-2\left\langle P_{1}^{i}, P_{3}^{i}\right\rangle+2\left\langle e_{2}, P_{3}^{i}\right\rangle+\left\|P_{3}^{i}\right\|^{2} \\
& =\left\|P_{1}^{i} P_{3}^{i}\right\|^{2}+2\left\langle P_{1}^{i} P_{3}^{i}, e_{2}\right\rangle+1
\end{aligned}
$$

We can write $P_{3}^{i} P_{0}^{i}=P_{3}^{i} P_{2}^{i}+P_{2}^{i} P_{0}^{i}$, then $\left\langle P_{3}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle=\left\langle P_{3}^{i} P_{2}^{i}+P_{2}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle=$ $\left\langle P_{3}^{i} P_{2}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle+\left\langle P_{2}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle$, since $P_{2}^{i} P_{0}^{i} \perp e_{\theta_{i}+\frac{\pi}{2}}$, we have $\left\langle P_{3}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle=$
$\left\langle P_{3}^{i} P_{2}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle$.

We have then that the condition of lemma 3.4.7 can be written as follows:

$$
\begin{equation*}
4\left\langle P_{1}^{i} P_{0}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle\left\langle P_{3}^{i} P_{2}^{i}, e_{\theta_{i}+\frac{\pi}{2}}\right\rangle \leq 2\left\langle P_{1}^{i} P_{3}^{i}, e_{2}\right\rangle+1 \tag{3.14}
\end{equation*}
$$

Recall that $e_{\theta_{i}+\frac{\pi}{2}}=\left(\cos \left(\theta_{i}+\frac{\pi}{2}\right), \sin \left(\theta_{i}+\frac{\pi}{2}\right)\right)=\left(-\sin \theta_{i}, \cos \theta_{i}\right)$. We have the following inequality:
$4\left(-X_{P_{1}^{i} P_{0}^{i}} \sin \theta_{i}+Y_{P_{1}^{i} P_{0}^{i}} \cos \theta_{i}\right)\left(-X_{P_{3}^{i} P_{2}^{i}} \sin \theta_{i}+Y_{P_{3}^{i} P_{2}^{i}} \cos \theta_{i}\right)-1 \leq 2 Y_{P_{1}^{i} P_{3}^{i}}$ or equivalently:

$$
\begin{equation*}
4 \cos ^{2} \theta_{i}\left(-X_{P_{1}^{i} P_{0}^{i}} \tan \theta_{i}+Y_{P_{1}^{i} P_{0}^{i}}\right)\left(-X_{P_{3}^{i} P_{2}^{i}} \tan \theta_{i}+Y_{P_{3}^{i} P_{2}^{i}}\right)-1 \leq 2 Y_{P_{1}^{i} P_{3}^{i}} \tag{3.15}
\end{equation*}
$$

We can now prove Theorem 3.4.5.
Proof of theorem 3.4.5. We first consider the case where the considered configuration is in S. Since the angle of each butterfly in \mathcal{B} is $\arctan \frac{1}{3}$, we have that for every i the following points

$$
P_{0}^{i}, P_{2}^{i}, P_{6}^{i}+e_{1}, P_{1}^{i}+e_{1}, P_{4}^{i}+2 e_{1}+e_{2}, P_{3}^{i}+2 e_{1}+e_{2}, P_{5}^{i}+3 e_{1}+e_{2}
$$

lie on a line with slope $\frac{1}{3}$. Suppose that each butterfly B_{i}, or equivalently $P_{1}^{i}\left[P_{0}^{i}, P_{2}^{i}\right] P_{3}^{i}$, is realizable. Then 3.15 is satisfied. Using that $\cos ^{2} \theta_{i}=\frac{9}{10}$ we may thus write

$$
\frac{18}{5}\left(Y_{P_{1}^{i} P_{0}^{i}}-\frac{X_{P_{1}^{i} P_{0}^{i}}}{3}\right)\left(Y_{P_{3}^{i} P_{2}^{i}}-\frac{X_{P_{3}^{i} P_{2}^{i}}}{3}\right)-1 \leq 2 Y_{P_{1}^{i} P_{3}^{i}}
$$

From the above points alignments, we deduce that the vectors $P_{1}^{i} P_{0}^{i}-e_{1}$ and $P_{3}^{i} P_{2}^{i}-2 e_{1}-e_{2}$ have slope $\frac{1}{3}$. It follows that

$$
Y_{P_{1}^{i} P_{0}^{i}}=\frac{X_{P_{1}^{i} P_{0}^{i}}-1}{3} \quad \text { and } \quad Y_{P_{3}^{i} P_{2}^{i}}-1=\frac{X_{P_{3}^{i} P_{2}^{i}}-2}{3}
$$

whence

$$
Y_{P_{1}^{i} P_{0}^{i}}-\frac{X_{P_{1}^{i} P_{0}^{i}}}{3}=-\frac{1}{3} \quad \text { and } \quad Y_{P_{3}^{i} P_{2}^{i}}-\frac{X_{P_{3}^{i} P_{2}^{i}}}{3}=\frac{1}{3}
$$

Replacing in (3.15), we get

$$
\begin{equation*}
-\frac{7}{10} \leq Y_{P_{1}^{i} P_{3}^{i}}=Y_{P_{3}^{i}}-Y_{P_{1}^{i}} \tag{3.16}
\end{equation*}
$$

With the help of the dictionary 3.3.6, we compute

$$
\begin{aligned}
& Y_{P_{1}^{0} P_{3}^{0}}=Y_{P_{3}}-Y_{P_{1}} \\
& Y_{P_{1}^{1} P_{3}^{1}}=Y_{P_{2}}-Y_{P_{5}}-1 \\
& Y_{P_{1}^{2} P_{3}^{2}}=Y_{P_{5}}-Y_{P_{4}}-1 \\
& Y_{P_{1}^{3} P_{3}^{3}}=Y_{P_{1}}-Y_{P_{2}}-1 \\
& Y_{P_{1}^{4} P_{3}^{4}}=Y_{P_{6}}-Y_{P_{0}}-1 \\
& Y_{P_{1}^{5} P_{3}^{5}}=Y_{P_{4}}-Y_{P_{6}} \\
& Y_{P_{1}^{6} P_{3}^{6}}=Y_{P_{0}}-Y_{P_{3}}-1
\end{aligned}
$$

Summing inequation 3.16 over all i 's we obtain

$$
-\frac{7}{10} \times 7 \leq-5
$$

or equivalently $49 \geq 50$, which is an obvious contradiction. We conclude that at least one of B_{i} is not realizable, so that every configuration in S is not realizable in \mathbb{E}^{n}, for $n \geq 3$. More precisely, we have proved that for all configurations in S
$\sum_{i=0}^{7}\left(4 \cos ^{2} \theta_{i}\left(-X_{P_{1}^{i} P_{0}^{i}} \tan \theta_{i}+Y_{P_{1}^{i} P_{0}^{i}}\right)\left(-X_{P_{3}^{i} P_{2}^{i}} \tan \theta_{i}+Y_{P_{3}^{i} P_{2}^{i}}\right)-1-2 Y_{P_{1}^{i} P_{3}^{i}}\right)=\frac{1}{10}$
By continuity, the left hand side must be strictly positive in some neighborhood $N(S)$ of S. This implies that (3.15) is not satisfied for at least one i, i.e. that B_{i} is not realizable. We conclude that $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)=\emptyset$ for every $\mathcal{T} \in N(S)$.

We prove the proposition 3.4 .4
Proof of proposition 3.4.4. To simplify the notations, we introduce the following points.

- $R_{0}:=P_{0}$
- $R_{4}:=P_{4}+2 e_{1}+e_{2}$
- $R_{1}:=P_{2}$
- $R_{5}:=P_{3}+2 e_{1}+e_{2}$
- $R_{2}:=P_{6}+e_{1}$
- $R_{3}:=P_{1}+e_{1}$
- $R_{6}:=P_{5}+3 e_{1}+e_{2}$

Note that the set $\left\{R_{i}\right\}_{i=0}^{6}$ contains one and only one lift of $p_{i} \in \mathbb{T}^{2}$ for every $i=0, \ldots, 6$. We denote $R_{i}=\left(X_{i}, Y_{i}\right)$. From 3.3.2, it is easily seen that a configuration is in $C_{I, 3}$ if and only if
I. $X_{1}-X_{0}<\frac{1}{2}$
I'. $Y_{3}-Y_{0}<\frac{1}{2}$
II. $X_{2}-X_{1}<\frac{1}{2}$
II'. $Y_{6}-Y_{3}<\frac{1}{2}$
III. $X_{3}-X_{1}<\frac{1}{2}$
III'. $Y_{2}-Y_{6}<-\frac{1}{2}$
IV. $X_{4}-X_{3}<\frac{1}{2}$
IV'. $Y_{5}-Y_{2}<\frac{1}{2}$
V. $X_{5}-X_{4}<\frac{1}{2}$
V'. $Y_{1}-Y_{5}<-\frac{1}{2}$
VI. $X_{6}-X_{0}<\frac{1}{2}$
VI'. $Y_{4}-Y_{1}<\frac{1}{2}$
VII. $X_{0}-X_{6}<-\frac{5}{2}$
VII'. $Y_{0}-Y_{4}<-\frac{1}{2}$

Such a configuration is in S if and only if it moreover satisfies

$$
\begin{equation*}
Y_{i}=\frac{X_{i}}{3} \tag{3.17}
\end{equation*}
$$

for $i=0, \ldots, 6$. These last equations express the alignment of the R_{i} 's. A configuration in S is thus a point of the graph of the map $f: \Delta_{x} \rightarrow \mathbb{R}^{6}$ given by $f\left(X_{1}, \ldots, X_{6}\right)=\left(\frac{X_{1}}{3}, \ldots, \frac{X_{6}}{3}\right)$. Here we have used the coordinates $\left(R_{1}, \ldots, R_{6}\right)$ instead of $\left(P_{1}, \ldots, P_{6}\right)$ for a configuration. Conversely, consider a configuration $\left(R_{1}, \ldots, R_{6}\right)=\left(\left(X_{1}, \ldots, X_{6}\right), f\left(X_{1}, \ldots, X_{6}\right)\right)$ in the graph of f. In order to show that this configuration is in S it is enough to prove that $f\left(X_{1}, \ldots, X_{6}\right) \in \Delta_{y}$. Now, we have that $Y_{i}=\frac{X_{i}}{3}$, and the equations $I-V I$ imply that

$$
Y_{i+1}-Y_{i}<\frac{1}{6}
$$

for $i=0, \ldots, 5$, while equation $V I I$ implies

$$
Y_{0}-Y_{6}<-\frac{5}{6} .
$$

. We now verify that these inequalities imply equations $I^{\prime}-V I I^{\prime}$:

- $Y_{3}-Y_{0}=\left(Y_{3}-Y_{2}\right)+\left(Y_{2}-Y_{1}\right)+\left(Y_{1}-Y_{0}\right)<3 \times \frac{1}{6}=\frac{1}{2}$.
- $Y_{6}-Y_{3}=\left(Y_{6}-Y_{5}\right)+\left(Y_{5}-Y_{4}\right)+\left(Y_{4}-Y_{3}\right)<3 \times \frac{1}{6}=\frac{1}{2}$

66 CHAPTER 3. LINEAR EMBEDDING OF THE MOEBIUS TORUS

- $Y_{2}-Y_{6}=-\left(Y_{6}-Y_{5}\right)-\left(Y_{5}-Y_{4}\right)-\left(Y_{4}-Y_{3}\right)-\left(Y_{3}-Y_{2}\right)<-4 \times \frac{1}{6}=$ $-\frac{2}{3}<-\frac{1}{2}$
- $Y_{5}-Y_{2}=\left(Y_{5}-Y_{4}\right)+\left(Y_{4}-Y_{3}\right)+\left(Y_{3}-Y_{2}\right)<3 \times \frac{1}{2}=\frac{1}{2}$
- $Y_{1}-Y_{5}=-\left(Y_{5}-Y_{4}\right)-\left(Y_{4}-Y_{3}\right)-\left(Y_{3}-Y_{2}\right)-\left(Y_{2}-Y_{1}\right)<-4 \times \frac{1}{6}<-\frac{1}{2}$
- $Y_{4}-Y_{1}=\left(Y_{4}-Y-3\right)+\left(Y_{3}-Y_{2}\right)=\left(Y_{2}-Y_{1}\right)<3 \times \frac{1}{6}=\frac{1}{2}$
- $Y_{0}-Y_{4}=-\left(Y_{4}-Y_{3}\right)-\left(Y_{3}-Y_{2}\right)-\left(Y_{2}-Y_{1}\right)-\left(Y_{1}-Y_{0}\right)=-4 \times \frac{1}{6}<-\frac{1}{2}$

This proves that $f\left(\Delta_{x}\right) \subset \Delta_{y}$.

Chapter 4

Numerical experiments

Through this work, several computational programs have been used to fix ideas about the realizability of a random triangulation \mathcal{T} in $C_{I, 3}$. In this chapter we give the results obtained from the numerical exploration as well as the mathematical method used. All the programs were written in Python. To write the programs we use some results of the Gramian matrix that we now recall.

4.1 Method used

Let v_{1}, \ldots, v_{k} a set of k vectors in \mathbb{E}^{n}, their Gramian matrix is defined to be:

$$
G\left(v_{1}, \ldots, v_{k}\right):=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i j}
$$

The Gramian of v_{1}, \ldots, v_{k} is the determinant of $G\left(v_{1}, \ldots, v_{k}\right)$.
Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of \mathbb{E}^{n} and A the matrix of v_{1}, \ldots, v_{k} in this basis, i.e., $A=\left(v_{1}, \ldots, v_{k}\right)$. We denote by A^{T} the transpose of A, then we have

$$
G\left(v_{1}, \ldots, v_{k}\right)=A^{T} A
$$

Since $\operatorname{det}\left(A^{T} A\right)=\operatorname{det}(A)^{2}$, we deduce that $\operatorname{det} G\left(v_{1}, \ldots, v_{k}\right) \geq 0$.
If $k=n$, since the n-volume of the parallelotope spanned by v_{1}, \ldots, v_{n} is given by $\operatorname{vol}\left(v_{1}, \ldots, v_{n}\right)=|\operatorname{det}(A)|$, we have that

$$
\operatorname{det} G\left(v_{1}, \ldots, v_{n}\right)=\operatorname{vol}^{2}\left(v_{1}, \ldots, v_{n}\right)
$$

In particular, if v_{1}, \ldots, v_{n} are linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=$ 0 . In general, we have the following property (see Bar99]):

Proposition 4.1.1. Let $v_{1}, \ldots, v_{k} \in \mathbb{E}^{n}$, we have

$$
\operatorname{det} G\left(v_{1}, \ldots, v_{k}\right)=\operatorname{vol}_{k}^{2}\left(v_{1}, \ldots, v_{k}\right)
$$

where vol $_{k}\left(v_{1}, \ldots, v_{k}\right)$ is the k-dimensional volume of the parallelotope generated by v_{1}, \ldots, v_{k}. In particular, if $k>n$ then $\operatorname{det} G\left(v_{1}, \ldots, v_{k}\right)=0$.

Let $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$. We denote by $\ell_{i j}$ the distance $d_{\mathbb{T}^{2}}\left(P_{i}, P_{j}\right)$ and by $\ell_{0 i}$ the distance $d_{\mathbb{T}^{2}}\left(P_{0}, P_{i}\right)$. If in addition there is a linear embedding f of \mathcal{T} into \mathbb{E}^{3}, it defines 6 vectors in \mathbb{E}^{n} :

$$
v_{i}=f\left(P_{0}\right) f\left(P_{i}\right)
$$

and by the preservation of distances of the lengths we have

$$
\begin{gathered}
\left\|v_{i}\right\|=d\left(P_{0}, P_{i}\right)=\ell_{0 i} \\
\left\|v_{j}-v_{i}\right\|=d\left(P_{i}, P_{j}\right)=\ell_{i j}
\end{gathered}
$$

We now introduce a new $k \times k$ matrix $\Gamma\left(\ell_{i j}\right)$ defined by.

$$
\Gamma\left(\ell_{i j}\right):=\frac{1}{2}\left(\ell_{0 i}^{2}+\ell_{0 j}^{2}-\ell_{i j}^{2}\right)_{i j} .
$$

Observe that this matrix only depends on the triangulation \mathcal{T}. Since we have assumed that \mathcal{T} admits an linear isometric embedding in \mathbb{E}^{n} we must have:

$$
\begin{equation*}
G\left(v_{1}, \ldots, v_{6}\right)=\Gamma\left(\ell_{i j}\right) \tag{4.1}
\end{equation*}
$$

since $\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{2}\left(\ell_{0 i}^{2}+\ell_{0 j}^{2}-\ell_{i j}^{2}\right)$.
The equality 4.1 could be used to prove that a given $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ admits a linear isometric embedding in \mathbb{E}^{n}. Indeed, if such an embedding exists, then

$$
\operatorname{det} G\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)>0
$$

for every $1 \leq k \leq n$ and every k-subset $I_{k}=\left\{i_{1}, \ldots, i_{k}\right\}$ of $\{1, \ldots, 6\}$. In particular, if some minor of $\Gamma\left(\ell_{i j}\right)$ satisfies

$$
\operatorname{det}\left(\Gamma\left(\ell_{i j}\right)_{i, j \in I_{k}}\right)<0,
$$

then \mathcal{T} admits no linear embedding.

4.2 Computing Gramians

The first program entitled toremoebius.py explores the Gramians of 7 vertices P_{0}, \ldots, P_{6} (with $P_{0}=(0,0)$) of a random configuration in $C_{I, 3}$.

Let $\mathcal{P} \in \mathbb{R}^{12}$ be defined by the successive coordinates of P_{1}, \ldots, P_{6}. The program takes a random admissible point $\mathcal{P} \in \mathbb{R}^{12}$ and computes the Gramian associated to it. It also computes the signs of the minors of size 4 and 5 of $\Gamma\left(\ell_{i j}\right)$. We have run several tests and observed in every case that

4.3. EXPLORING GEOMETRIC AND ALGEBRAIC CHARACTERISTICS OF 7 BUTTERFLIES69

at least one minor of size 4 was negative. In fact, we observed that one of these negative minors corresponded to one of the 7 butterflies with body on ℓ_{1}. This is the case for the central configurations where the negative minors of size 4 are equal and correspond precisely to the 7 butterflies with body on ℓ_{1}. We also checked with the program rationalpoint.py that for all the 49 vertices of the configuration space $C_{I, 3}$ one of the seven butterflies is non realizable.

These observations motivated to explore more systematically the 7 mi nors of size 4 associated to the butterflies B_{0}, \ldots, B_{6} along ℓ_{1}. The program entitled pointshazard.py calculates amongst a number of n configurations, how many of them have 0 out of the 7 butterflies with negative determinant, how many of these configurations have only one butterfly with negative determinant and so on until 7 butterflies. We have run this program with n up to 10^{7} and collected the results in the following table. Row i indicates how many of the 10^{7} random configurations have i negative minors among the 7 .

Number of butterflies with negative Gramian	Number of configurations
0	0
1	10
2	5725
3	251718
4	2484910
5	4919382
6	2124913
7	213342

These results consolidate our conjecture that at least one the 7 butterflies is not realizable. We should remark, however, that the number of experiments, is very small with respect to the dimension of the the space of configurations which is 12 -dimensional. Indeed, sampling as few as 4 points in every dimension already gives $4^{12} \simeq 1.610^{7}$ configurations to be tested.

4.3 Exploring geometric and algebraic characteristics of 7 butterflies

We first tried to identify thanks to some geometrical characteristics one among the 7 butterflies that would always be non realizable. For this, we first recall the criterion for realizability of Lemma 3.4.7.

Let $A[B, C] D$ a butterfly as seen in figure 4.1, A^{\prime} the reflexion of A through the segment $[B, C]$ and $A^{\prime \prime}$ the point $A-e_{2}$. Then, $A[B, D] C$ is

Figure 4.1: Butterfly $A[B, C] D$.
realizable if and only if $\left\|A^{\prime} D\right\| \leq\left\|A^{\prime \prime} D\right\|$. It is plausible that the butterfly for which $\left\|A^{\prime} D\right\|$ is minimal always fails the test, hence is not realizable. Unfortunately, we wrote a program calcul-distances-arets.py and we found examples that contradict this intuition. We tried other criteria in the same spirit, but none of them have succeeded.

We have also computed the sum of the seven Gramians associated to the butterflies hoping that this sum would be negative. This would indeed have implied that at least one of the butterflies is not realizable. The program det-sum.py computes this sum. However, the result of this experiment was again negative, as we found a positive sum for some admissible configurations.

We already saw that the central configuration studied in section 3 of chapter 2 is non realizable. We know even more, by lemma 3.3 .12 we have that all butterflies are congruent, therefore every butterfly in the central configuration is non realizable. We also saw that the 49 vertices of the configuration space $C_{I, 3}$ have a non realizable butterfly. One approach to extend this to all configurations is to prove (1) the non realizability on the boundary of $C_{I, 3}$ and (2) that if a boundary configuration c has a non realizable butterfly, this butterfly remains unrealizable on the whole segment S_{c} that connects c to the central configuration. We were unable to show any of these two points. To show the difficulty of point (2) we have plotted the values of the 7 Gramians along the segment S_{c} where c has only one negative

Gramian. See Figure 4.2,

Figure 4.2: Plot of the 7 Gramians along the segment S_{c}. The abscissa is the interpolation parameter between 0 (for c) to 1 (for the central configuration). The vertical axis represents the value of the Gramian. We also display the constant zero value for reference. Left, a typical case for c where 5 out of 7 Gramians are negative. Right, all the Gramians of c except 1 are positive! Note that the curve for the negative Gramian is not monotone.

4.4 Visualization

In order to facilitate the exploration of the configuration space we wrote some visualization tools. We can first visualize any configuration by plotting its seven vertices in D_{0} as on Figure 4.3. We also wrote a program to draw part of the lift of the triangulation corresponding to a configuration. See Figure 4.4 .

From the butterfly in Figure 4.1, we know that $A[B, C] D$ is realizable if and only if $\left\|A^{\prime} D\right\| \leq\left\|A^{\prime \prime} D\right\|$. The same criteria is true if we change the role of points D and A, that is, $A[B, C] D$ is realizable if and only if $\left\|D^{\prime} A\right\| \leq$ $\left\|D^{\prime \prime} A\right\|$, where D^{\prime} is the reflexion of D through the segment $[B, C]$ and $D^{\prime \prime}=D+e_{2}$. We consider the bisector line between D^{\prime} and $D^{\prime \prime}$. Obviously, $\left\|D^{\prime} A\right\| \leq\left\|D^{\prime \prime} A\right\|$ if and only if A is on the same side as D^{\prime} with respect to this line (see figure 4.5). We can thus visualize pictorially if a butterfly is realizable by drawing this bisector line. The program pavagepapillon.ggb written in geoGebra shows a configuration with the bisector lines of the seven butterflies. The user can move each of the points $P_{1}, P_{2}, \ldots, P_{6}$ to generates different configurations (see figure 4.6) and see in realtime if the configuration is realizable.

Figure 4.3: Plot of the seven points P_{0}, \ldots, P_{6} in D_{0} of an admissible configuration.

Figure 4.4: Part of the triangulation of the plane defined by the lift of a configuration.

Figure 4.5: A butterfly with and the bisector of D^{\prime} and $D^{\prime \prime}$.

Figure 4.6: An admissible configuration showing which butterflies are non realizable.

Bibliography

[Bar99] Nils Barth. The gramian and k-volume in n-space: some classical results in linear algebra. Journal of Young Investigators, 2(1):1-4, 1999.
[BE] Juroen Bokowski and Anselm Efloert. Of mobim'torus with 7 vertices.
[BE89] David W Barnette and Allan L Edelson. All 2-manifolds have finitely many minimal triangulations. Israel Journal of Mathematics, 67(1):123-128, 1989.
[BE91] Jürgen Bokowski and Anselm Eggert. All realizations of möbius' torus with 7 vertices. Structural Topology 1991 núm 17, 1991.
[BJLT12] Vincent Borrelli, Saïd Jabrane, Francis Lazarus, and Boris Thibert. Flat tori in three-dimensional space and convex integration. Proceedings of the National Academy of Sciences, 109(19):72187223, 2012.
[BJLT13] Vincent Borrelli, Saıd Jabrane, Francis Lazarus, and Boris Thibert. Isometric embeddings of the square flat torus in ambient space. Ensaios Matemáticos, 24:1-91, 2013.
[BZ95] Yuriy Dmitrievich Burago and Viktor Abramovich Zalgaller. Isometric piecewise-linear embeddings of two-dimensional manifolds with a polyhedral metric into \mathbbr^3. Algebra i analiz, $7(3): 76-95,1995$.
[Csá49a] Ákos Császár. A polyhedron without diagonals. Acta Sci. Math., Szeged, 13(140-142):1950, 1949.
[Csá49b] Ákos Császár. A polyhedron without diagonals. Acta Sci. Math., Szeged, 13(140-142):1950, 1949.
[Kui54] N. Kuiper. On c1- isometric embeddings. Ann. of Math. (2) 60, 1954.
[MT01] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. 10, 2001.
[Nas54] John Nash. C1 isometric imbeddings. Annals of mathematics, pages 383-396, 1954.
[Sau12] Emil Saucan. Isometric embeddings in imaging and vision: Facts and fiction. Journal of Mathematical Imaging and Vision, 43(2):143-155, 2012.
[Zal00] VA Zalgaller. Some bendings of a long cylinder. Journal of Mathematical Sciences, 100(3):2228-2238, 2000.

Polyhedral embeddings of the Flat Square Torus

Abstract

In 1996, Burago and Zalgaller showed the following theorem: Theorem (Burago and Zalgaller): Let S a polyhedral surface, then S admits an isometric $P L$ embedding in \mathbb{E}^{3}. This theorem shows in particular that the Flat Square Torus admits an isometric $P L$ embedding in \mathbb{E}^{3} This theorem shows in particular that the Flat Square Torus admits an isometric $P L$ embedding in \mathbb{E}^{3}. In 1997, Zalgaller gives such an embedding for rectangular flat torii. In the first part of this work, we construct an explicit embedding of the flat square torus \mathbb{T}^{2} in \mathbb{E}^{3}. This result is stated as follows: Theorem: There is an isometric PL embedding of the square flat torus \mathbb{T}^{2} with at most 48 points. We know that the minimal triangulation of the torus is the Moebius torus M. The 1 -skeleton of the Moebius torus is the graph K_{7}. We consider the set $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ of all geodesic triangulations of \mathbb{T}^{2} isomorphic to M modulo translations. The description of this space is stated as follows:

Theorem: The configuration space $G E\left(M, \mathbb{T}^{2}\right)$ is the disjoint union of 12 products of simplices

$$
G E\left(M, \mathbb{T}^{2}\right)=\bigcup_{i=1}^{12} \Delta_{x}^{i} \times \Delta_{y}^{i},
$$

where Δ_{x}^{i} and Δ_{y}^{i} are two 6-dimensional simplices.
We denote by $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ the set of lineal isometric embeddings of \mathcal{T} in \mathbb{E}^{3} and we put $L_{\mathbb{T}^{3}}\left(M, \mathbb{E}^{3}\right)=\bigcup_{\mathcal{T}} L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ for $\mathcal{T} \in \operatorname{GE}\left(M, \mathbb{T}^{2}\right)$, we have:
Theorem: For every $i \in\{1, \ldots, 12\}$, there is $f_{i}: \Delta_{x}^{i} \rightarrow \Delta_{x}^{i} \times \Delta_{y}^{i}$ such that the image $S_{i}=f\left(\Delta_{x}^{i}\right)$ has a neighborhood $N\left(S_{i}\right)$ of dimension 12 such that for every $\mathcal{T} \in N\left(S_{i}\right)$, we have $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)=\emptyset$.

Keywords: Embedding; Moebius Torus; Flat Square Torus.

Plongements polyédriques du tore carré plat

Résumé: En 1996, Burago et Zalgaller ont montré le théorème suivant:
Théorème (Burago et Zalgaller): Soit S une surface ployhédrique, alors S admet un plongment isométrique $P L$ dans \mathbb{E}^{3}.
Ce théorème nous montre en particulier que le tore carré plat admet un plongment isométrique $P L$ dans \mathbb{E}^{3}. En 1997, Zalgaller construit un tel plongement de tores rectangulaires plat longs dans \mathbb{E}^{3}. Dans la première partie de cette thèse, on fait un plongment explicite du tore carré plat \mathbb{T}^{2} dans \mathbb{E}^{3}. Ce premier résultat est énoncé dans le théorème suivant:
Théorème: Il y a un plongement isométrique PL du tore carré plat \mathbb{T}^{2} avec au plus 48 points.
On sait que la triangulation minimale du tore est le tore de Moebius M. Le 1-squelette du tore de Moebius est le graphe K_{7}. On considère l'ensemble $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$ de toutes les triangulations géodésiques de \mathbb{T}^{2} isomorphes à M, modulo translations. La description de cette espace s'énonce dans le théorème suivant:
Théorème: L'espace de configuration $G E\left(M, \mathbb{T}^{2}\right)$ est l'union disjointe de 12 produits de simplexes

$$
G E\left(M, \mathbb{T}^{2}\right)=\bigcup_{i=1}^{12} \Delta_{x}^{i} \times \Delta_{y}^{i}
$$

où Δ_{x}^{i} et Δ_{y}^{i} sont deux simplexes de dimension 6.
On dénote par $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ l'ensemble de plongements linéaires isométriques d'une triangulation \mathcal{T} de \mathbb{T}^{2} dans \mathbb{E}^{3} et on pose $L_{\mathbb{T}^{2}}\left(M, \mathbb{E}^{3}\right)=\bigcup_{\mathcal{T}} L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)$ for $\mathcal{T} \in$ $\operatorname{GE}\left(M, \mathbb{T}^{2}\right)$, on a:
Théorème: Pour chaque $i \in\{1, \ldots, 12\}$, il existe $f_{i}: \Delta_{x}^{i} \rightarrow \Delta_{x}^{i} \times \Delta_{y}^{i}$ telle que l'image $S_{i}=f\left(\Delta_{x}^{i}\right)$ a un voisinage $N\left(S_{i}\right)$ de dimension 12 tel que pour chaque $\mathcal{T} \in N\left(S_{i}\right)$, on a $L_{\mathcal{T}}\left(\mathbb{E}^{3}\right)=\emptyset$.

Mots clés: Plongement; Tore de Moebius; Tore carré plat.

Image en couverture : Description très courte de l'image (facultative).
Crédit image : xxx yyy.

INF MATHS

