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ABSTRACT

Cavitation is the formation of vapor bubbles either in a static liquid or in a liquid
flow due to a drop in static pressure. When these bubbles collapse, as a result of
pressure recovery, they may damage adjacent surfaces. These events are major causes
of damage and nuisance in hydro machines. Modern hydro turbines are often used
to regulate power grids; therefore, they may be operated out of their designed range.
The flow-related optimal operation is different from the economic optimal usage.
Detecting and characterizing cavitation and assessing damage during operation can
be difficult or even impossible. Acoustic emission (AE) measurements provide a way
to measure cavitation without access to the flow, but interpreting the data is
challenging. This thesis presents insights in the ways of treating the AE data both in
characterizing individual pits created by cavitation impacts and in tracking the
evolution of cavitation erosion. Additionally, the erosion rates of three turbine
materials were compared, and the main reasons behind the differing erosion rates of
two martensitic turbine steels were discovered. The same high-speed cavitation
tunnel was used in all cavitation experiments. This thesis firstly presents a method
for enveloping an AE waveform signal and for counting the peak voltage values. The
resulting cumulative distributions were compared to those of cavitation pit
diameters, and from this comparison, a connection was proposed between AE peak
voltage value and pit diameter. The second result was the connection between
cavitation cloud shedding frequency and erosion evolution. The process of
demodulating high frequency AE signals effectively promotes the low frequency
shedding. The shedding frequency increased with accumulating material loss, and it
was concluded that this increase is due to geometry effects, namely surface
roughness. In addition to the two proposed methods, it was found that the decisive
factors in the differing erosion rates of the martensitic stainless steels are the prior
austenite grain size, packet and block sizes and the retained austenite fraction. This
thesis provides guidelines directly applicable, such as the martensitic steel classifying,
and methods that require further development, if one wishes to utilize them in hydro
machine cavitation monitoring instead of laboratory measurements in a cavitation
tunnel. The main outcome is that AE is a potential way to monitor cavitation, with
the important benefit of not requiring any access to the flow.
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RESUME

La cavitation est la formation de bulles de vapeur dans un liquide statique ou en
écoulement. L’érosion de cavitation se produit quand ces bulles collapsent à cause
de la récupération de pression. Ce phénomène peut endommager les parois à
proximité desquelles les bulles collapsent. Il s’agit d’un problème majeur dans les
machines hydrauliques. Par exemple, les turbines hydrauliques fonctionnent
aujourd’hui souvent dans des régions défavorables du point de vue de la cavitation,
pour réguler le réseau électrique. Mesurer la cavitation et le taux d’érosion est souvent
très difficile voire impossible. L’émission acoustique (EA) est une méthode qui
permet la mesure de cavitation sans accès direct à l’écoulement ; toutefois, les
données sont difficiles à interpréter. Cette thèse présente quelques possibilités de
traitement des données de l’EA pour quantifier les diamètres des indentations créées
par impacts individuels de la cavitation et aussi pour évaluer l’érosion de cavitation.
De plus, les taux d’érosion de trois matériaux d’aubes de turbine Francis ont été
caractérisés. Les raisons pour les différences dans le taux d’érosion de deux aciers
inoxydables et martensitiques sont analysées. Tous les essais de cavitation ont été
réalisés dans le même tunnel de cavitation haute vitesse. Un premier résultat majeur
de cette thèse est le développement d’une méthode pour compter les pics d’EA par
une technique d’enveloppe du signal. Les distributions cumulées des pics d’EA sont
comparées à celles des diamètres d’indentations. Une relation est proposée entre
l’amplitude des pics d’EA et le diamètre des indentations. Le deuxième résultat
majeur est le lien entre l’évolution de l’érosion de cavitation et la fréquence de lâcher
des nuages de cavitation. Bien que les signaux d’EA soient mesurés en haute
fréquence, un processus de démodulation a été mis en œuvre qui permet de mettre
en évidence la basse fréquence de lâcher. Cette fréquence augmente avec la rugosité
et la déformation de surface au fur et à mesure de la progression de
l’endommagement. Par ailleurs, les raisons entre les différences de taux d’érosion des
aciers inoxydables et martensitiques ont été identifiées : la taille des grains d’austénite
initiale, les tailles des plaques et plaquettes et la quantité d’austénite résiduelle sont
les principaux facteurs influants. Cette thèse propose plusieurs résultats directement
utilisables, comme la classification entre les aciers inoxydables martensitiques, ainsi
que des méthodes pour surveiller la cavitation mises au point en laboratoire dans un
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tunnel de cavitation et potentiellement applicables aux machines hydrauliques. Le
résultat majeur est que l’EA a un fort potentiel pour surveiller la cavitation et
l’érosion de cavitation avec l’avantage important qu’elle ne nécessite pas d’accès
direct à l’écoulement.
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TIIVISTELMÄ

Kavitaatioksi on ilmiö, jossa joko paikallaan olevaan tai liikkuvaan nesteeseen
muodostuu höyrykuplia staattisen paineen pudotessa. Nämä höyrykuplat romahtavat
paineen palautuessa, jolloin ne voivat vahingoittaa läheisiä pintoja. Tämä ilmiö voi
aiheuttaa vakavia vaurioita sekä häiriötä virtauskoneissa. Moderneja
vesivoimaturbiineja käytetään usein sähköverkon tasapainottamiseen, jolloin niitä
saatetaan käyttää suunnitellun optimialueen ulkopuolella. Taloudellinen optimi ei
aina ole sama kuin virtauksen suhteen optimaalinen ajotilanne. Kavitaation ja sen
aiheuttamien vaurioiden tarkastelu käytön aikana on vaikeaa tai jopa mahdotonta.
Akustisen emission (AE) mittaukset mahdollistavat kavitaation havainnoinnin ilman
suoraa yhteyttä virtaukseen, mutta näiden mittausten datan tulkitseminen on
haastavaa. Tässä väitöskirjassa esitellään tapoja tulkita AE-dataa sekä yksittäisten
kavitaatiokuplien romahdusten, että kavitaatioeroosion etenemisen tarkkailun
tasoilla. Lisäksi tässä työssä vertaillaan kolmen turbiinimateriaalin eroosionopeuksia.
Kahden martensiittisen turbiiniteräksen osalta tarkastellaan syitä eroavien
eroosionopeuksien takana. Kaikki kavitaatiokokeet suoritettiin samassa
kavitaatiotunnelissa. Ensimmäisenä esitellään menetelmä AE-signaalin verhokäyrän
käytöstä AE-signaalin maksimiamplitudien laskentaan. Näistä laskettiin
kumulatiiviset jakaumat, joita verrattiin kavitaatiokuoppien halkaisijoiden vastaaviin
jakaumiin. Tästä luotiin yhteys AE-signaalin maksimiamplitudien ja kuoppien
halkaisijoiden välille. Toinen päätulos oli yhteys kavitaatiopilven romahdustaajuuden
sekä eroosion etenemisen välille. Korkeataajuinen AE-signaali demoduloitiin
matalan taajuuden romahtamisilmiön havaitsemiseksi. Romahtamistaajuus kasvaa
materiaalihäviön kumuloituessa. Tästä pääteltiin, että taajuuden kasvu johtuu
virtausgeometrian, muutoksista. Martensiittisten terästen eroosionopeuksien erolle
löydettiin syiksi paketti- ja blokkikoot sekä jäännösausteniitin määrä. Tämä
väitöskirja esittelee suoraan hyödynnettäviä tuloksia, kuten martensiittisten terästen
luokittelu kavitaatiokestävyyden suhteen, sekä menetelmiä, jotka vaativat
jatkokehittämistä, mikäli niitä halutaan käyttää virtauskoneiden monitorointiin
pelkän laboratoriotestaamisen lisäksi. Tärkein huomio on se, että AE on erittäin
lupaava keino kavitaation mittaamiseen. Huomattavin etu AE:lla on siinä, että sen
käyttö ei vaadi suoraa yhteyttä, eikä minkäänlaista vuorovaikutusta virtaukseen.
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1 INTRODUCTION

1.1 Background

Cavitation is a major source of damage and vibrations in many modern hydro
machines. Cavitation occurs when the static pressure of a liquid drops below a
certain threshold, leading to the evaporation of the liquid. Typically, this threshold
is the saturated vapor pressure of the liquid. It may also be lower, if there are no
nucleation sites for the evaporation to commence. When cavitation occurs in a liquid
flow, in a low static pressure region, there is a chance that the vapor bubbles travel
to a higher-pressure region and violently collapse. If these collapses occur near a
solid boundary, material damage may occur. This damage is called cavitation erosion.
Typically, monitoring cavitation and cavitation erosion during machine operation is
difficult, or even impossible. (Brennen 1995; Franc & Michel 2005)

This thesis addresses the issue of cavitation monitoring by presenting novel
methods related to acoustic emission (AE) measurement. The aim is to monitor only
damaging cavitation: Damage in the form of individual pits or damage in the form
of cumulating material loss. AE measurement differs from acoustic sound
measurement, as AE refers to elastic waves traveling in a solid, rather than waves
traveling in a fluid. The source of these elastic waves can be internal stresses in a
material, external impacts, or surface contacts leading to energy release in the
material structure. Their expected frequency range is typically from 100 kHz to 1
MHz. Typically, they have a wide frequency band, as the elastic waves are the result
of events intrinsically of wide frequency range. (Holroyd 2000; Grosse 2008).

The current work concentrates on laboratory measurements, performed at the
LEGI laboratory, using a high-speed cavitation tunnel (PREVERO 2018). The
laboratory measurements provided an environment where the primary AE source
was cavitation, while all other sources were irrelevant in magnitude. In a hydraulic
machine environment, other sources such as rolling bearings or flow related impacts
might distract the measurements. In a laboratory environment, there was no doubt
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that the AE signal source was cavitation, and more importantly, that the damage to
the specimens was due to cavitation impacts. AE does not properly detect cavitation
events that occur far from surfaces, as the directed impacts towards walls lead to
significantly higher AE responses (van Rijsbergen et al. 2012). For this reason, the
potentially damaging events are detected, while the non-damaging events occurring
in the free fluid are excluded. With this approach, the AE response of erosive and
non-erosive cavitation was identified, thus providing a baseline for the extension to
a hydraulic machine, in possible future applications.

To study the possibilities of AE in cavitation monitoring, two approaches were
chosen: Cavitation pitting tests to detect individual impacts and their magnitudes,
and cavitation erosion tests to study if AE could reveal parameters that change when
the material erodes further. In the pitting tests, the cavitation collapses affected a
limited area on the specimen, leading to elastic and plastic deformation and pits with
no significant overlapping. It was expected that the impact strength would be
connected to the AE response magnitude. These pitting tests had a short duration,
typically a few minutes, while the erosion tests had a duration of tens of hours. In
the erosion testing, individual impacts were not detected, as the damage overlapping
begins to change the material and therefore AE responses so that it was not possible
to characterize the impacts. It was expected that parameters would be found that
change during the erosion tests, as the surface geometry changes and the material
strain-hardens significantly; therefore, affecting the bubble – surface interaction, and
possibly the resulting AE signal.

1.2 Objectives and Scientific Contribution

The main research objectives and research questions of this thesis were:

1. How fast do the studied steels, used in Francis turbine runner blades, erode
in a cavitation tunnel?

2. What are the main reasons behind the differing cavitation erosion rates?

3. Can individual, damaging cavitation impacts be detected and characterized
via acoustic emission?
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4. Can acoustic emission be used in tracking the erosion process of a material
experiencing cavitation erosion?

The main approach was to study the material specimens in a cavitation tunnel,
combined with AE measurements. A vast campaign of experiments was carried out,
with no prior knowledge if the research questions could be answered. Three different
materials, specimens from runner blades of Francis turbines, were subjected to
cavitation both in pitting tests and in erosion tests. The pitting tests were expected
to provide information about individual cavitation impacts and about the impact
load distributions. The aim of the erosion tests was to seek knowledge about erosion
rates, and more importantly, to find if acoustic emission could be used in tracking
the erosion evolution. The main scientific contributions of this thesis were:

1. characterizing the cavitation erosion rates of the turbine steels and
identifying the main erosion mechanisms and the reasons behind the
differing erosion resistances (Publications II and V);

2. linking the cavitation pit diameter distributions to the acoustic emission
peak voltage distributions, thus creating a method to characterize a
cavitation field in terms of resulting pit diameters, regardless of cavitation
intensity (Publications I and III); and

3. proposing a method to identify the cavitation cloud shedding frequency
by acoustic emission, and finding a way to track erosion evolution
through the changes in this frequency (Publication IV).

The author’s initial work with cavitation begun in (Ylönen 2016). In this master’s
thesis, one of the steel specimens was eroded, while recording AE with a setup
inferior in performance to that used in later work. This initial work allowed the
author to acquire the basic skills to properly run the cavitation tunnel and perform
the erosion tests. The gained knowledge was also used in defining the required
performance of the new AE setup.

The pitting tests are a well established method in cavitation research. However,
combining these tests with AE and counting the AE peak voltages was a novel
approach. Publication I explains how the AE peak voltages were extracted from
enveloped AE signals, and how they were distributed, depending on the cavitation
intensity. Publication III utilizes this method in combining pit distributions and AE
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peak distributions, thus finding a way to estimate the cavitation intensity in the
cavitation tunnel without access to the pitted surface of the specimens.

During all the erosion tests, AE was measured along with the volume loss process
of the specimens. Publication II studies the erosion rates of all the three studied
materials, the erosion process, and the reasons behind the differing rates. The AE
part of the erosion studies is discussed in Publication IV, where the tracking of the
cavitation cloud shedding frequency was introduced, in order to first identify this
frequency, and then use it in erosion evolution tracking. Publication V concentrates
on the differences in microstructure between two of the studied steels, the main
finding being that residual austenite seems to reinforce martensitic stainless steels
against cavitation impacts.
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2 CAVITATION AND CAVITATION EROSION

2.1 Cavitation

According to (Arndt 2014) Froude was the first to use the term cavitation, probably
in 1895. Euler was first to study and problematize cavitation, without using the term,
in his 1754 memoir and Reynolds was the first to carry out a study about cavitation
in a constricted tube. Cavitation was for the first time found problematic in ship
propellers, as their rotation speed begun to exceed the critical values for cavitation
to occur. Rayleigh was the first to calculate, in 1917, the erosion potential of an
individual bubble. Obviously, the early models were simplified, and insufficient in
properly assessing the complex process of, for example, bubble cloud formation,
cavitation inception, collective bubble collapses and material resistance and response
to cavitation impacts. Cavitation remains an important topic, as modern hydraulic
machines tend to be operated at their maximum performance and utility, often in
the vicinity of damaging cavitation.

The basic knowledge and understanding of cavitation and cavitation erosion is
best found from several textbooks. Young’s book Cavitation (Young 1989) offers a lot
of knowledge on the basic principles behind the phenomenon. Brennen’s Cavitation

and Bubble Dynamics (Brennen 1995) and Franc and Michel’s Fundamentals of Cavitation

(Franc & Michel 2005) both present all the required basic knowledge and they offer
supplemental information about some of the more advanced features. Kim et al.
wrote the A dvanced E xperimental and Numerical Techniques for Cavitation E rosion Prediction

(K. H. Kim et al. 2014). It concentrates more on the advanced features of cavitation,
most notably cavitation erosion. Half of it is studies and conclusions presented by
the authors and half of it is selected papers from the most recent and advanced
studies of cavitation erosion. All these were important sources for this thesis.

Cavitation may occur in a static or a moving liquid, although cavitation in a liquid
flow is more representative of the case of hydro machines. The drop in pressure
leads to the breakdown of the bonds between molecules that compose a liquid, i.e.
it vaporizes. The vapor-liquid equilibrium pressure is the saturated vapor pressure.



24

For water, it is 2315 Pa at 293 K temperature (Mills 1999). However, the nucleation
of vapor bubbles require nucleation sites, such as non-condensed gas or other
impurities. In absence of these nucleation sites, a static liquid may experience a
metastable state at negative absolute pressure, called tension (Berthelot 1849-1858;
Caupin & Herbert 2006; Heyes 2008). In the case of hydraulic machines, nucleation
sites are often abundant. Therefore, it is often practical to consider the critical
pressure for cavitation to be the saturated vapor pressure.

Rayleigh (Rayleigh 1917) first mathematically described the growth – collapse
cycle of a spherical bubble in an infinite liquid. Plesset (Plesset 1949) improved the
formulation, and thus found further insights regarding the life of a cavitation bubble
(Plesset 1970; Plesset & Chapman 1971; Plesset & Prosperetti 1977). Several authors
continued the mathematical formulation of the process, thus generating fundamental
knowledge about the lifetimes and sizes of idealized bubbles (Knapp et al. 1970);
Acosta & Parkin 1975; Hammitt 1979). These mathematical formulations are the
basis of cavitation research and they offer guidelines of what to expect from bubbles;
therefore, they are worth mentioning. This thesis, however, concentrates on
empirical studies, and these equations were never used.

The collapse process of a cavitation bubble in free liquid is symmetrical: The
vapor bubble collapses towards its center, and finally it generates a shock wave, when
the bubble walls collide. The driving force is the pressure difference: Inside the
bubble the pressure is initially saturated vapor pressure, while outside the pressure is
the ambient liquid pressure. The more interesting case is the bubble collapse near a
boundary. Due to an asymmetrical pressure field, the bubble wall away from the
boundary begins to collapse first. This leads to a liquid jet traversing the bubble and
directed to the boundary. The liquid jet gains a significant velocity, and hits the
boundary, potentially causing damage. In addition to that, the formed bubble ring
collapses violently, also potentially causing damage. (Zhang et al. 1993; Zhang et al.
1994; Brujan et al. 2002; Obreschkow 2012)

An essential parameter in many cavitation studies is the cavitation number. The
cavitation number is a non-dimensional parameter that is essentially the ratio
between the difference of a reference pressure in a hydraulic system and saturated
vapor pressure, and the pressure difference over the system. It is useful in defining
the inception or closure of cavitation in the system, as they typically occur at the
same cavitation number regardless of pressure level. Additionally, cavitation in a
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system tends to have same characteristics, such as the closure location of cavitation,
with the same cavitation number but different overall pressure or flow velocity. The
pressure difference is related to the flow velocity of the system; therefore, the ratio
is between static pressure and dynamic pressure. The cavitation number σ is generally
defined as (Franc & Michel 2005):

ߪ =
௣ೝି௣ೡ(்)Δ௣ 1

where pr is the reference pressure, pv(T) is the saturated vapor pressure at the flow
temperature and ∆p is the pressure difference over the system. The reference
pressure is typically a pressure conveniently measurable, such us the downstream
pressure of the system. The cavitation number is a relative parameter, so the exact
value alone gives no insight if there is cavitation in the system or not. The cavitation
tunnel used in this study has its cavitation inception at σ ≈ 2.8, and the erosion tests
were done at σ ≈ 0.87, where cavitation may be considered fully developed.

This thesis concentrates in experiments carried out in a hydrodynamic cavitation
tunnel (PREVERO 2018). The tunnel produces a cavitation type typical to
hydrofoils: The cloud cavitation. Traveling bubbles, which is the first main type of
cavitation, may form in a low-pressure region and then travel to a higher-pressure
region and disappear either by collapsing or by slow reduction of size. These
transient isolated bubbles are usually less erosive than attached or sheet cavities,
which are the second main cavitation type. The attached cavities form in the leading
edges of hydrofoils or blades. They follow the flow towards the trailing edge, and
potentially collapse near the foil surface, thus promoting damage. An oscillating
sheet cavity is called a cloud cavity, discussed in more detail in section 2.2. The last
main type of cavitation are the cavitating vortices. A vortex core has a lower pressure
than the rest of the vortex. With high enough vorticity, the core may cavitate. These
cavitating vortices may for example form between turbine blades, if the water flow
angle of attack is not optimal. It has the potential to be highly damaging. (Avellan
2004; Franc & Michel 2005; Escaler et al. 2006).

2.2 Cloud Cavitation Shedding Frequency

Cloud cavitation is characterized by an oscillating growth-collapse cycle of a group
of cavitation bubbles. This cloud typically grows attached to a surface, until it reaches
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a critical length for a liquid counter-current flow to form between the cavity and the
surface. This counter-current flow detaches the cloud from the surface, leading to
the near-simultaneous collapse of all the bubbles in the cloud. The bubble collapses
tend to initiate further collapses, thus the collapse of the cloud is self-driven, after it
has begun. If the collapse occurs sufficiently near to the surface, damage may occur.
The main parameters affecting the formation of such clouds are the flow velocity,
overall pressure, liquid quality, flow geometry and surface quality. By increasing flow
velocity around a hydrofoil, starting from no-cavitation state, cavitation typically
begins as individual bubbles, followed by a sheet cavity with no periodical cloud
formation. With more velocity, a cloud pattern begins to appear, and with a
sufficiently high velocity, super cavitation occurs, where cavitation closure is outside
the hydrofoil. (Brennen et al. 2000; Franc & Michel 2005; Nishimura et al. 2014;
Gnanaskandan & Mahesh 2016; Hsiao et al. 2017)

The transition from sheet to cloud cavitation occurs at a critical cavitation
number. The cavitation number for cavitation inception is the number where the
initial individual bubbles begin to form. The inception of cavitation may be pinned
to quite an exact cavitation number, but the transition from sheet to cloud cavitation
includes a transient area. Additionally, the cavitation number for the transition is also
dependent of the flow Reynolds number. (Pelz et al. 2017) mapped the transition in
their testing geometry that was a converging-diverging nozzle. With a low Reynolds
number, the cavitation remains a sheet even with low cavitation numbers, and
increasing the Reynolds number increases the critical cavitation number. A narrow
transition region is found between the sheet and cloud cavitation regions. (Keil et al.
2012)

The frequency of the cloud formation and collapse cycle is dependent of the
Reynolds number, cavitation number and channel geometry. Typically, the frequency
is expressed through the Strouhal number, which is a dimensionless number defined
as (Pelz et al. 2014):ܵݐ(ܴ݁,ߪ,݇௜) =

௙ೞு௏ 2

where Re is the Reynolds number, k i is the group of geometry parameters, for
example related to channel curvature, fs is the shedding frequency, H  is the length
parameter, for example channel height, and V  is the flow velocity. Above a critical
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Reynolds number, the Strouhal number is no longer dependent on the Reynolds
number, only on the cavitation number and channel geometry (Pelz et al. 2014).

The geometry parameter could include the surface roughness of a channel. This
notion is interesting in the scope of this thesis, as an increase in roughness would
correspond to increased cumulative erosion, as explained in Publication IV. This is
supported by the observations of (Hao et al. 2017), who found a shedding frequency
of 17 Hz for a smooth hydrofoil, while that of a rough hydrofoil was 20 Hz, in equal
flow conditions. (Stutz 2003) found no influence of roughness to the sheet cavity
shape, void fraction or time-averaged velocity. This suggests that the roughness
influences the circulation of the counter-current flow between the cloud cavity and
the surface, but not the cavity itself.

One of the main goals in this thesis was to monitor the evolution of cavitation
erosion. Monitoring this shedding frequency proved to be the most reliable way, as
the frequency was consistently found using acoustic emission measurements. The
shedding frequency is not particularly difficult to find in general, via for example
video analysis, but measuring it by AE provides a way to define the frequency during
operation and without visual access to the flow. A pressure sensor in the channel
wall sufficed for (Keil et al. 2012) and (Pelz et al. 2014), but AE has the advantage
that it is installed outside the flow, to a solid surface that has a solid transfer path to
the cavitating region. However, correlating the shedding frequency changes to
erosion evolution was a novel approach, as far as the author of this thesis is aware
of, and it was first presented in Publication IV.

The most reliable way to study the cloud cavitation phenomenon in a laboratory
environment is filming it with a high-speed video camera. This approach was also
used for Publication IV, to verify that the frequencies defined through AE are the
correct ones. The videos were kindly provided by (Gavaises et al. 2015), who also
had analyzed them. They were reanalyzed for Publication IV with a slightly different
approach. The simulation results for the cavitation tunnel geometry by (Gavaises et
al. 2015) were also compared to the frequencies defined by AE and the video
analysis, and all three were consistent with each other.

The high-speed videos from cavitation were recorded so that the cloud length is
well captured. They were filmed only from one direction, so no accurate imaging of
the cloud structures was available. The experimental procedure is explained in more
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detail in (Gavaises et al. 2015). The 2-D image was sufficient for finding the main
frequencies associated to the cavitation, as long as there was a cloud structure.
Several overall pressures and cavitation numbers were included, with cavitation
numbers where assumedly the structure was sheet cavitation rather than cloud
cavitation.

The videos were filmed in grayscale. The method for this thesis was to track the
grayscale value of all the 256 x 128 pixels through all the frames in each video, and
then calculate the fast Fourier transformation (FFT) and thus transform the grayscale
value evolution to frequency domain. In Figure 1, the grayscale value of a single
location in one of the videos is plotted, along with the frequency domain analysis.

Figure 1. Grayscale value in time and frequency domain for σ = 0.908 and an upstream pressure of
4 MPa from the high-speed videos of PREVERO cavitation tunnel.

The location marked by the small white square in Figure 1 is in the area that the
clouds typically reach when they are fully-grown. Interestingly, the dominating
frequency is found from most of the locations where there is any cavitation. Only
the masked area in the left side of the images and the right side that cavitation does
not reach, do not reveal any important frequencies. The mapped frequencies from
the full image for five different cavitation numbers were presented in Publication
IV, where also the AE based frequencies were compared to these and the results
from simulations by (Gavaises et al. 2015). This method of capturing the shedding
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frequencies by video analysis proved to be a simple, effective and fast method to
decipher if there is an oscillating cloud cavity in the system, at least in the limited
scope of the laboratory tests in the tunnel. Probably, in a more complex geometry,
the cloud cavitation phenomenon would have to be filmed with stereoscopic imaging
to capture the periodicity properly.

2.3 Cavitation Pitting

If a flat surface with minimal roughness, such as a mirror-polished metal surface,
experiences cavitation, the initial damage is observed as individual pits. An individual
bubble collapse may lead to pressures up to several GPa (Hsiao et al. 2014; Roy et
al. 2015; Roy et al. 2015). This well exceeds the yield stresses of most materials.
However, a single impact rarely leads to mass loss, in the case of engineering metals.
When the pits begin to accumulate, the mass loss occurs through fatigue. The
formation of an individual pit includes elastic and plastic deformation, the plastic
part forming the remaining pit when the loading has disappeared. Studying these
individual pits may reveal the magnitudes of the loadings required to create them.
An example of such a pit is presented in Figure 2, imaged using scanning electron
microscopy (SEM).
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Figure 2. A SEM image of a single cavitation pit on a stainless steel surface.

One approach to study the magnitudes of the loadings is via inverse finite element
method (FEM). (Roy 2015) was able to define impact loads in the same cavitation
tunnel that was used in the studies behind this thesis. Another approach is the
modelling of the cavitation bubbles through computational fluid dynamics, either
with or without fully coupled interaction with the bubble and the material surface
(Chahine & Kalumuck 1998; Hsiao & Chahine 2013; Hsiao et al. 2014). The relation
between cavitation pits and impact loads is usually considered strong, but (Choi &
Chahine 2015) stated that a pit of a certain shape might be formed from various
types of loadings. Another important factor of cavitation pitting in real materials is
the often microscopic size of the impacts. If the impact is small enough in area, the
attack may be directed not to the bulk material, but to an individual grain in the
surface (Carnelli et al. 2012).

Experimental studies related to pitting and impact loads are numerous. (Franc
2009; Franc et al. 2011; Franc et al. 2012) studied the velocity and material effects in
a cavitation tunnel, the same that was used in this thesis. They studied the impact
loads by conventional pressure sensors and they found power laws that govern the
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pit distributions, with normalized flow velocities. A different approach was by (Hujer
et al. 2015; Hujer & Muller 2018), who fitted specimens with polyvinylidene
difluoride (PVDF) pressure sensors. Additionally, (Carrat et al. 2017) utilized the
same sensors to study the impacts on a hydrofoil experiencing cavitation. The PVDF
sensors are well suited for defining the actual impulse pressures in a cavitation test
(Kang et al. 2018). A common factor in the studies in this particular cavitation tunnel,
regardless of methods, was that the pit and impact distributions followed an
exponential law: The larger the pit diameter or the impact strength, less numerous
they are in a statistical analysis.

The fact that the expected distribution is exponential was helpful in determining
firstly if measurements were likely to be correct. In the AE measurements especially,
there were occasions that the measured distributions were far from exponential.
Further analysis showed problems such as signal saturation or sensor malfunction.
The exponential distribution of pits can be well expressed as a mathematical formula,
and its properties may be easily compared, especially when a similar distribution is
found from pressure or AE measurements. The distributions were found to be more
practical to present as cumulative distributions. An exponential cumulative
distribution in cavitation pitting is expressed as:

ܰ̇௣௜௧ = ܰ̇଴,௣௜௧݁ି ವವబ 3

where ܰ̇௣௜௧ is the cumulative pitting rate, ܰ̇଴,௣௜௧ is the reference pitting rate, D is
the pit diameter and D0 is the reference pit diameter. The diameter was defined as
the equivalent diameter of a circle, calculated from the pit surface area. The reference
pit diameter D0 is the mean value of pit diameters over the distribution. The reference
pitting rate ܰ̇଴,௣௜௧  is the pitting rate when ܦ = 0. It is possible to quantify the pit
size accurately for a single pit. However, for a pit distribution to be statistically valid,
one needs to measure at least hundreds of pits. This leads to practical limitations in
the measurement setup. In Publication III, the pits were detected using an optical
profilometer with a 3.5226 μm x 3.5226 μm measurement grid. The grid resolution
was a compromise between accuracy and measurable surface size. With this
resolution, the minimum observable pit diameter was 15 μm, but the complete
eroded surface could be analyzed. This minimum pit diameter effectively leads to the
ignoring of smaller pits, as observed in Figure 3. The diameters were sorted into bins
and afterwards sorted according to their sizes. This makes the figures clearer, as each
bin may contain tens to hundreds of measured diameters.
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Figure 3. Cumulative pitting rate as a function of pit diameter for 2 MPa and 4 MPa upstream
pressures. There are no detected pits below the 15 μm limit, observed as flattening of the
linear curves. The diameter bin size was 1 μm. The scale is linear – logarithmic.

The ignored small pits of diameter less than 15 μm are observed as a flat part in the
measured curve. It does not mean that they would not exist in the eroded surface.
An assumption was made that the exponential distribution follows equation 3
globally. This assumption is based on the measurements by (Franc et al. 2012), who
measured the same types of samples using a different profilometer. They had a better
resolution with a smaller measured surface, and they found pits of the size of a few
μm, still following the exponential distribution. The linear part of the plot in Figure
3, which is in linear – logarithmic scale, corresponds to an exponential distribution.
According to this assumption, the linear trend continues below the profilometer-
based limit of about 15 μm. The 2 MPa and 4 MPa upstream pressures correlate with
the cavitation velocity, overall cavitation tunnel pressure and cavitation intensity, as
further explained in section 4.1.

2.4 Cavitation Erosion

The evolution of cavitation erosion in metals may be divided into three or four
stages, depending on the case: 1) The incubation period, 2) the acceleration period,
3) the steady state period and 4) the deceleration. The incubation period is the period
where a virgin material starts to experience cavitation erosion and the impacts cause
mostly plastic deformation in the form of pits, such as presented in section 2.3. As
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the pits begin to overlap, cracking and rupture starts to occur and the erosion moves
through acceleration period to steady state period, where the material loss rate is
relatively constant. In the deceleration period, the material surface is filled with
structural cavities that begin to damp the incoming cavitation impacts, thus reducing
material loss rate. In cavitation testing, the deceleration period is not always reached
due to limitations in the testing procedures. (Zhou & Hammitt 1983; Berchiche et
al. 2002; Franc 2009; Franc et al. 2014; Chahine et al. 2014)

Cavitation erosion often cumulates slowly in hydraulic machines, as strong
cavitation is normally detected as machine vibration, noise and performance drop.
Therefore, these operating conditions are naturally avoided. However, slowly
cumulating erosion processes lead to a loss of structural integrity, lowered
performance and in the worst case, in machine breakdown, if they are not assessed
properly. Cavitation and cavitation erosion may be avoided by machine design, but
it is not desirable to design machines too safely out of range for cavitation to happen,
due to lowered performance. Therefore, somehow knowing the extent of erosion in
long-term operation is important. (Arndt et al. 1989; Farhat & Bourdon 1998;
Bourdon et al. 1999)

In designing machines that can endure cavitation, material resistance to cavitation
erosion is an important parameter. The resistance to cavitation is often closely linked
to the material strength in terms of typical mechanical parameters, as in studies by
(Hammitt 1979; Zhou & Hammitt 1983; Hattori & Nakao 2002; Hattori et al. 2004;
Hattori & Ishikura 2010). This is not always true, as cavitation impacts may erode an
area smaller than the material grain size, thus attacking also the softer grains in an
isolated manner. For this reason, the macro-scale parameters might not provide
information about the strength against cavitation. Additionally, the impacts have a
high strain rate of up to 106 1/s (Karimi & Leo 1987). This means that the strain rate
dependency of the material has an important role. Additionally, the erosive potential
of cavitation depends on the cavitation type. (Carnelli et al. 2012; Roy 2015)

Considering all these factors, the resistance to cavitation may be stated as case-
dependent, and there is no single exact parameter to define the goodness of a
material in hydraulic channels potentially experiencing cavitation, even though
stronger material usually means better resistance. There are multiple cavitation
testing methods to compare materials. The test methods differ in how they generate
cavitation and in which form. Some of these testing methods are listed here:
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· The (ASTM G32-10, Standard Test Method for Cavitation Erosion Using
Vibratory Apparatus 2010) is a vibrating horn for basic and relatively low
cost cavitation testing. The material specimens are attached to a vibrating
horn that is in a static liquid. Cavitation is created as the pressure field around
the specimen oscillates, thus creating tension in the liquid. This type of
testing was done for example by (Kendrick et al. 2005; Hattori & Kitagawa
2010; Hattori et al. 2010; He & Shen 2012; Pöhl et al. 2015).

· The (ASTM G134-95(2010)e1, Standard Test Method for Erosion of Solid
Materials by a Cavitating Liquid Jet 2010) is a system that directs a liquid jet
on a specimen resting in static liquid. Cavitation is created in the shear layer
between the moving jet and the static liquid. It was used for example by
(Soyama & Futakawa 2004; Soyama 2013; Nishimura et al. 2014).

· Different types of rotational setups that are based on periodically opening
and closing valves. Cavitation forms due to expansion waves that this
motion creates. Some examples are presented in (Karimi 1987; Auret et al.
1993).

· Cavitation tunnels of various types. Cavitation tunnels are utilized both to
study cavitation structures and cavitation erosion. Cavitation structures were
studied for example by (Steller et al. 2005; Arabnejad et al. 2018; Chen et al.
2018) and erosion in a cavitation tunnel by (Dular et al. 2006; Dular &
Osterman 2008; Franc et al. 2012).

The ASTM G32 typically involves weighing the specimens. The specimens are small,
about 10 mm high and about 10 mm diameter cylinders, and the eroded surface
represents a relatively significant amount of the total specimen mass. Therefore, the
measurement resolution is sufficient. However, for example in the tunnel used for
this thesis, weighing the specimens would be impractical. The eroded area does not
cover the whole specimen, which is a 20 mm high and 100 mm diameter cylinder.
Measuring milligrams of erosion would be difficult from a specimen that weighs
more than 1 kg, if it is steel. For this reason, and also to provide additional
information about the erosion profile, measuring surface profiles is a better option
compared to weighing. Material loss may be simply calculated from the surface
profiles.
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In this thesis, the surface profiles were measured using a contact profilometer.
The eroded surface was a circle, with a ring shaped cavitation pattern that has a
maximum erosion rate approximately in the radial distance of 22 mm from the
specimen center. The entire eroded area ranges from 19 mm to 32 mm radius, as
observed in Figure 4. Initially the specimen was mirror polished, and it remained so
through the test campaign outside the area of effect of cavitation.

Figure 4. Eroded stainless steel specimen after 65 hours of cavitation. The arrow indicates the
profile measured for Figure 5.

The specimen in Figure 4 corresponds roughly to the maximal erosion that was
reached in the tests for this thesis. The erosion profile in the direction of the arrow
is presented in Figure 5. Eight such profiles were measured for each specimen and
each time step, and the results were averaged. The erosion rate was observed to
significantly change depending on the measurement direction, as explained in more
detail in section 5.1.
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Figure 5. Surface profile of the eroded stainless steel specimen in Figure 4. The initial profile is
virtually flat, compared to the significantly eroded surface after 65 hours of cavitation at
maximum aggressiveness.

The initial surface profiles were almost flat, compared to the eroded profiles. The
variation from the zero level due to imperfect polishing in the eroded area was
typically less than one μm. Therefore, in terms of volume loss the initial profile had
no significance when calculating the volume loss of evolved erosion stages. Anyhow,
the initial profile was measured and the volume losses of later stages were corrected
by subtracting that of the initial stage.
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3 CAVITATION DETECTION BY ACOUSTIC
EMISSION MEASUREMENTS

3.1 Acoustic Emission

Acoustic emission is defined as elastic waves that travel in a solid material. The waves
are the result of material internal stresses, external impacts or surface contacts. They
usually have a wide frequency band, resulting from the wide frequency band of the
AE event. Typically, AE is sought from the range of 100 kHz to 1 MHz, but in some
applications, wider ranges may be useful. Piezoelectric sensors are used in measuring
AE. They are attached to a surface that has a good transfer path to the expected AE
source. AE measurements could be compared to seismic measurements, as AE
sensors measure the surface motion, as do the seismograms, but the scale being in
the micro rather than the macroscale. (Achenbach 1975; Holroyd 2000; Grosse 2008;
Ohtsu et al. 2016)

Cavitation is typically considered as noise in AE measurements, as they are often
used in structural integrity monitoring. That monitoring suffers greatly if there is
cavitation near the target AE source, as it tends to bury all other signals underneath
it due to its larger magnitude. In this thesis however, cavitation is the target
parameter. Cavitation was found to induce AE voltages of about 100 times larger
than the signal from a flow without cavitation. Therefore, it was practical to assume
that all strong signals were directly or indirectly the result of cavitation.

An AE signal is typically symmetrical around zero volts and the positive and
negative voltages measure the same phenomenon. AE signals may be divided into
two main categories: burst signals and continuous signals. Continuous AE may be
for example the result of friction in a sliding contact, such as in a bearing, and it is
typically harder to characterize (Grosse 2008). Burst signals result from short
duration releases of energy, such as in crack propagation, or relevant to this thesis,
short duration impacts such as from cavitation bubble collapses. The burst signals
are typically relatively rare, representing only a tiny fraction of the total measurement
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time. However, in the cavitation tunnel used in this thesis, they were so numerous
that they almost overlapped. Publication III presents these results.

In addition to the categories of burst signals and continuous AE, another
important classification is the sensor types. The two main types are the resonance
type sensor and the broadband sensor. Both of them are in similar casing, typically
a metal cylinder of about 20 mm high and 20 mm diameter, with the detection face
made of a ceramic material. The resonance type sensor has a distinct resonance
frequency that is amplified inside the sensor. The resonance frequency is dependent
on the piezoelectric element size and material. The broadband sensor design differs
from the resonance type only so that it has a damping material around the
piezoelectric element. This damping suppresses wave reflections inside the sensor,
thus reducing the resonance frequency amplification and leading to a flatter
frequency response. (Ohtsu 2008; Inaba 2016)

AE is often treated in separate “hits”. A hit is an event of AE activity that begins
with the crossing of a voltage threshold that is either preselected, or tied to the
current average signal level. The hit ends, when a preselected time, called the hit
definition time (HDT), has passed without any threshold crossings. The parameters
defining AE activity are usually calculated over these hits. Typical parameters,
according to (Ohtsu et al. 2016), are listed here:

1) AE signal amplitude. The peak amplitude of the hit is the maximum absolute
voltage of the hit, expressed either in volts or in decibels. In decibels, the
amplitude is calculated as:݁݀ݑݐ݈݅݌݉ܣ (ܤ݀) = ݃݋20݈ ൬ ௎௎ೝ೐೑൰ 4

where U is the peak voltage value and Uref is the AE system reference voltage,
usually 1 μV.

2) AE count expresses the amount of threshold passings in a hit. AE count rate
is the AE count divided by hit length.

3) AE energy is either the time integral of the absolute values or the time
integral of the squares of the absolute values over the hit. The squared
integral produces values in Joules, if it is divided by an assumed system
impedance, for example 10 kΩ in many systems.
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4) Hit duration is the time from trigger to end of hit.

5) Rise time is the time it takes from the trigger to maximum amplitude.

6) Ratio of rise time to amplitude. This parameter provides insight on how
short the event is compared to its amplitude. This may also be expressed in
terms of counts before peak amplitude.

7) AE root mean square (RMS) value. RMS value is the square root of the mean
value of the squared voltage values over a hit.

8) Average signal level (ASL). ASL differs from RMS so that the mean value is
taken from the absolute values instead of their squared values.

The AE setup calculates these parameters by default, in one form or another, along
with some other additional parameters. Spectral parameters, such as peak frequency,
average frequency or frequency centroid, are often recorded as well. AE setups often
save the data as parameter groups defining each hit, but they might also be able to
record full waveforms, either for a short period or continuously, depending on
hardware capability. These full waveforms allow any imaginable parameters to be
calculated in post-treatment, which was found very useful in this thesis.

3.2 Cavitation and Acoustic Emission

As already mentioned in section 3.1, the cavitation tunnel used in this thesis provided
cavitation intense enough for the events to almost overlap in the AE signal. Two
sensor types were used in all measurements: One resonance type sensor and one
broadband sensor. The resonance type sensor was found to be more sensitive to the
burst signals resulting from the cavitation bubble collapses. This is probably due to
the structure of the sensors. While the damping in the broadband sensor flattens the
frequency response, it also probably increases the rise time of the sensor response.
This is well perceived in Figure 6, where broadband and resonance sensor signals are
compared.
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Figure 6. Comparison of sensor responses of an AE signal resulting from cavitation. The resonance
type sensor was a PAC R15D and the broadband sensor was a PAC D9203b. The
sampling rate for both was 5 MHz.

The nature of the signal is not so easily deciphered for the broadband sensor. It is
safe to assume that cavitation creates burst signals, as cavitation events are typically
several microseconds long (Chahine et al. 2014). Therefore, it was assumed in this
thesis that the separate bursts in the resonance signal represented individual
cavitation bubble collapses. The AE responses to bubble collapses and their
cumulative distributions was studied in Publication III, in which only resonance type
sensor results were found useful. Both the broadband and the resonance sensors
were able to measure the same frequencies for cloud shedding, presented in
Publication IV. Detecting cavitation impacts and detecting the erosion evolution
required different tools, but both of them required developing new ways to treat the
AE signals, as the default parameters provided by the AE setup were not sufficient
for these studies, as described in section 3.5.

3.3 Cavitation Impulse Detection

This section describes a method to analyze statistically the cavitation impulses via
AE. The enveloping and peak counting method presented here was the approach in
Publication III. In cavitation research, the method as presented here has not been
previously used, as far as the author of this thesis is aware of. The method produced
statistical distributions of the impacts that were possible to connect with the
cavitation pitting distributions, described in section 2.3. The relation to the statistical
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distributions was not dependent of cavitation intensity, only of the AE setup and its
transfer path, and probably the specimen material. This suggests that the AE peak
voltage values have a direct connection to the actual impact loads induced by
cavitation, but the scaling of AE voltages to impact pressures was out of the scope
of this study. The results in this thesis were compared to those of (Hujer et al. 2015;
Hujer & Muller 2018), who utilized PVDF sensors for the same purpose and in the
same cavitation tunnel. Additionally, the work by (Franc et al. 2011; Franc et al. 2012)
provided the baseline in what to search from the AE signals in the tunnel.

The principal assumption in this thesis is that the burst signals in AE represent
cavitation impulses, resulting either from single bubbles collapsing or from bubble
clouds in which individual bubbles collapse virtually simultaneously. A single burst
in AE lasted in the order of 0.1 to 1 ms. Therefore, a collective bubble collapse with
μs timescale differences would not be differentiated in these measurements. For the
purpose of impulse detection, only the results from the analysis of the resonance
type sensor were used, as they were better separated in the signal.

The AE signals in the cavitation pitting tests had the same appearance than those
in Figure 6. The approach in Publication III was rather simple: If a single bubble
collapse induces a fairly well distinguishable burst in the AE signal, the maximum
amplitude of that burst could correlate with the impact load. The AE signals were
relatively long, with different burst durations, so a reliable method to detect the peaks
was required. Enveloping the absolute values of the signal and then counting the
envelope peaks proved effective. The envelope was a peak envelope that utilized
spline interpolation, with a pre-defined minimum distance between the peaks. The
minimum distance in this thesis was chosen to be 80 samples, which corresponds to
16 μs of signal. This is about 5 times the wavelength corresponding to double the
resonance frequency of the sensor. As the absolute signal was calculated before the
enveloping, the original wave minima turned to maxima, leading to a doubled
apparent frequency. This value of minimum distance was found to properly filter out
the sensor resonance effects, while still following the overall signal shape and not
creating false peaks. Figure 7 presents an extract of an AE signal absolute value with
a fitted envelope.
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Figure 7. The enveloped signal. The peaks from the enveloped signal are detected through regular
peak counting methods.

This type of approach detects the relatively high peaks extremely effectively, but it
tends to create a large quantity of small peaks. These peaks are however insignificant
in the final analysis, as an assumption was made that AE contains more peaks than
there are pits in the pitting distributions. Therefore, it was safe to assume that voltage
peaks under a certain threshold were either from noise or from events insignificant
in damage accumulation. The total peak rate was in this thesis in the order of 10,000
peaks per second, dropping quickly if a threshold value was applied. Interestingly,
even the assumed noise and small impacts followed the same exponential
distribution in some of the measurements.

To analyze the distributions, it was chosen to display them as cumulative, as with
the pitting distributions in section 2.3. The cumulative distributions for the peak
voltages may be expressed similarly as for pits in equation 3:

ܰ̇௣௘௔௞ = ܰ̇଴,௣௘௔௞݁ି ೆೆబ 5

where ܰ̇௣௘௔௞ is the cumulative peak rate, ܰ̇଴,௣௘௔௞  is the reference peak rate, U is
the peak voltage and U0 is the reference peak voltage. The reference peak voltage is
the mean voltage over the whole distribution and the reference peak rate is the peak
rate when U =  0, assuming the distribution is valid over the whole range of voltage
values. It was found practical to define a cut-off voltage Ucutoff, which is the voltage
limit with only noise and non-damaging impacts below it. It was assumed that the
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cut-off voltage was a material and setup dependent parameter that is essential to
define for a system of this kind. Equation 5 can be expressed with the cut-off voltage
applied to it:ܰ̇௣௘௔௞ = ܰ̇଴,௣௜௧݁ି ೆషೆ೎ೠ೟೚೑೑ೆబ 6

In this form, the equation is only valid for voltages above the cut-off limit. The
Y-axis intersection is at ܰ̇଴,௣௜௧, which replaces ܰ̇଴,௣௘௔௞  in equation 5. This
formulation was found beneficial, as described in section 5.3. Figure 8 presents the
peak voltage value distribution with the cut-off voltage applied. The peak voltage
values were arranged to bins, such as in Figure 3 with the diameters, to improve
readability.

Figure 8. Peak voltage distributions for the 2 MPa and 4 MPa upstream pressures in the cavitation
tunnel. The scale is linear – logarithmic. The voltage bin size was 0.2 V.

The cut-off voltage was about 0.05 V for both upstream pressures, but it is discussed
in more detail in section 5.3. The linear part in the linear – logarithmic scale was
assumed to hold true globally, even for the 2 MPa case, even though Figure 8
suggests that below 0.1 V, the peak voltage data becomes less reliable. The most
important data, lays in the truly exponential part, as it is assumed that the small
impacts do not contribute that much in the damage accumulation. Additionally, the
4 MPa plot seems to be linear until 0 V, while the 2 MPa plot converges towards the
4 MPa value. Therefore, it was assumed that the 2 MPa plot below 0.1 V consists
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mostly of noise, generated already in the sensor or in the enveloping process, and it
can safely be excluded from the impulse distribution estimation.

3.4 Acoustic Emission Responses of Steel Ball Impacts

In an attempt to study the dependency of the impact location on the specimen
surface, a series of tests was conducted, including steel balls dropped to the surface.
This section provides no answer to how this would affect measurements in a
hydraulic machine. Even though adding some doubt in the applicability of AE
amplitude based cavitation monitoring, it does not negate the results of Publication
III. The ball drop tests points out that the results in Publication III are well applicable
in an axisymmetric geometry as in PREVERO, since the AE responses may be
statistically regarded as an average of the whole surface. Further studies of this
phenomenon would have required research out of the scope of this thesis. However,
it is important to point this out for the sake of possible future research and
development.

The AE sensors were placed behind the specimens, described in section 4.1. They
capture all the events occurring in the specimen surface, as the elastic waves radiate
well in the solid material. However, the waveguide is located in a certain position on
the surface, and therefore a question can be asked: Are cavitation impacts falling on
different locations of the specimen surface equal in their AE responses? In an
attempt to answer this question, a test campaign of dropping steel balls on specimen
surface was realized, while recording AE from the sample.

The specimens were attached to the specimen holder, but not in the cavitation
tunnel. Two steel balls of different weights were dropped on the sample surface to
different locations from a height of 35 mm, using a fixed altitude screw system. This
allowed fast repeating of loadings, even while manually returning the ball to the
system, while assuring that the balls were at the same height and that they had no
significant rotational movement when they were released. The results, presented in
Figure 9, were obtained as peak voltages of the burst AE signals generated by the
ball impact on the surface. The specimen surface was mirror-polished and non-
eroded. In total, 50 impacts were recorded for each of the 13 locations, for two
different steel ball weights.
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Figure 9. AE peak voltages resulting from steel ball impacts. The maximum voltage is highly
dependent of the impact location in respect to the sensor location.

The inner circle represents the radius of 24.5 mm, which is the distance of the AE
waveguide from the specimen centre. This radius is also roughly equal to the
maximum erosion rate in the cavitation tunnel, when the cavitation number σ ≈ 0.9.
The peak voltages presented in Figure 9 could be expected to have the highest values
as close to the sensor as possible (location 1). This indeed was true, but also the
opposite position had almost equal values (location 5). Locations 7 and 12 also have
relatively high values, compared to the low values of locations 8 to 10 and 13. The
axis consisting of locations 1 to 6 and 11 and the radius of 24.5 mm have the highest
values. In the far locations, the values seem to reduce symmetrically from the axis.
This is true for both the 0.696 g and 1.040 g balls.

As the values are symmetric around an axis, it is suggested that the effect may be
a result of wave propagation in a certain geometry, here a circle. When the specimen
holder is attached rigidly to the cavitation tunnel, the geometrical complexity further
increases. Considering this, it is unknown how the peak amplitude distribution on
the specimen surface would be during a cavitation test. This leaves an open question
if cavitation impacts occurring for example in location 1 lead to a different response
than those in location 7. There was no way of finding this out in the scope of this
thesis. As the responses are more or less symmetric, it was concluded that even if
the responses do differ, the results in Publication III are valid, especially as they
follow the expected exponential distributions. However, slight doubt is cast on the
applicability of the peak count method, and this geometry effect might be worth
studying in the future. At least it would be required to study the effects of sensor
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location, if one was to attempt hydraulic machine monitoring using the presented
method. The shedding frequencies in Publication IV are not dependent of impact
amplitudes, so these results do not cause any doubt towards the validity of the
presented erosion tracking method.

3.5 Acoustic Emission Parameter Analysis

The usual approach in AE studies is the tracking of the parameters for hits. It is a
convenient way, as most AE setups save the parameters calculated from hits by
default. Additionally, the parameters take much less storage size than the full
waveforms. For example in the pitting tests in this thesis, the combined hard disk
usage for a 6-minute run was about 62 MB for the parameter-based text file, while it
was 43 GB for the same duration of waveforms, captured with a 5 MHz sampling
frequency per sensor and for two sensors. The sizes depend on the choices made for
the threshold levels in the parametric approach and the sampling frequency, but at
least a hundred-fold increase in hard disk usage is expected when capturing the
waveforms in full.

The parametric approach has some limitations, at least in cavitation research.
They may be overcome, if sufficient experience from the application is available. In
the research behind this thesis, the parameter approach was attempted in both the
pitting tests and the erosion tests. Especially the erosion monitoring was expected
to be possible by following the changes in some parameters. However, in this thesis,
no proper correlation was found. Figure 10 and Figure 11 present the four
parameters for the resonance type sensor, while Figure 12 and Figure 13 present the
same parameters for the broadband sensor. All plots have the volume loss of the
stainless steel specimen plotted along with the parameters.
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Figure 10. Resonance type sensor, amplitude and average signal level as a function of erosion time.

Figure 11. Resonance type sensor, signal energy and RMS level as a function of erosion time.
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Figure 12. Broadband sensor, amplitude and average signal level as a function of erosion time.

Figure 13. Broadband sensor, signal energy and RMS level as a function of erosion time.

All the other calculated parameters show similar trends, with no clear indicators to
define a reliable correlation. Notably, the parameters for the resonance type sensor
have sharp rises and drops in the parameter levels. The times for these events match
with the times that the specimen was removed from the specimen holder for profile
measurements. The profile measurements were executed every five hours after an
initial sequencing of 4x30 minutes and 4x2 hours. It was assumed that the sharp rises
and drops are somehow due to the removal of the AE sensor waveguide from the
specimen. The signal level is highly sensitive to the transfer path, so even while
executed with care, it is probable that the waveguide to specimen coupling was not
always identical.
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Despite its limitations, the parametric approach has been successfully used in
cavitation research by other authors. The failure of the parametric approach in this
thesis proves in no way that the approach could not work. Using machine learning
algorithms, neural networks or some other approaches, the trends in the parameters
might be revealed better than in the basic analysis in this thesis. Most of the other
authors, however, concentrated on determining cavitation occurrence and intensity,
rather than erosion evolution. A good example of an advanced approach was by
(Look et al. 2018), who did not predefine any features to be tracked. They used
convolutional neural networks that were able to detect cavitation in a turbine with
high accuracy, with an estimate of the cavitation intensity.

Another example of a successful parametric approach was by (Schmidt et al. 2014;
Schmidt et al. 2015). They categorized Kaplan turbine and pump turbine cavitation
into four states from no cavitation to severe cavitation. Their experiments included
turbines fitted with AE sensors and means to observe visually the state of cavitation.
The classification was based on the rise of AE energy and RMS value, and the
increased fluctuation of both, when moving towards increased cavitation. (He &
Shen 2012) experimented AE and erosion evolution in the ASTM G32 vibratory
cavitation testing apparatus. They also tracked the RMS value and the signal energy
and they concluded that the average energy shows increase when the specimen mass
loss is pronounced. This relation was not found in the current study.

3.6 Cavitation Shedding Frequency Detection

As the parametric approach was found not to be suitable for the goals in this thesis,
another method, based on spectrum analysis, was developed for the tracking of
erosion evolution. As the cavitation produced in the tunnel in this thesis is cloud
cavitation, the cavitation impacts attacking the specimen surface have a periodic
nature. This was described in detail in section 2.2 and in Publication IV. The
shedding frequency in the cavitation tunnel was expected to be between a few
hundred Hz to a few kHz (Peters et al. 2015; Gavaises et al. 2015). The AE sensor
sensitivity drops rapidly below 100 kHz and the preamplifiers used in this thesis had
an analogue band-pass filter with a 100 kHz lower limit and a 400 or 1200 kHz upper
limit. Additionally, the measurement system had a digital high-pass filter of a 100
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kHz limit. Therefore, the direct spectrum computing methods were not able to
detect the shedding frequency, as later observed.

The AE signal strength is highly dependent of the energy and impact strength
induced by cavitation events to the specimen surface. Cavitation bubble collapses
occurring far from the surface do not significantly raise AE signals (van Rijsbergen
et al. 2012). Therefore, it could be assumed that even when the frequencies induced
in a collapse of a group of bubbles leads to frequency responses in the measurement
range of the AE sensors, these clustered collapse events occur at a much lower rate:
the shedding frequency.

A typical acoustic emission signal consists of continuous emission and burst
emissions (Kaiser 1950). The cloud collapses are a good example of bursts that
produce a strong response. In rolling bearing fault detection, a high-frequency
enveloping and demodulation technique may be used (Berry 1997a; Berry 1997b).
This approach was found to also serve well for the purposes of cavitation cloud
collapse detection. In the case of rolling bearings, the high frequency carrier signal is
the resonance frequency of the mounted bearing, while in the case of cloud collapse
detection; the high frequency carrier signal is the resulting signal from the sensor
resonance. In this thesis and in Publication IV, the technique was carried out using
the method presented by (Marple Jr 1999). The idea was to form a “time-analytic”
signal of the original signal, which is essentially a way to envelope the signal and to
shift the high frequency vibration into low frequencies, from which the shedding
frequency can be found via FFT analysis. The steps of the process are the following:

1. The signal was zero-averaged by subtracting the signal mean value.

2. The discrete –time Fourier transform (DTFT) X(m)  was formed through
FFT for N  amount of samples in each signal. In Publication IV, N  was
157275000 samples, corresponding to 31.455 seconds of signal with a 5
MHz sampling frequency.

3. A one-sided N-point discrete-time analytic signal was formed using the
following formulation:
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7

4. An inverse N-point DTFT was calculated via inverse FFT (IFFT). Adding
the original mean signal to this value yields the discrete-time analytic signal.

5. The analytic signal was then decimated and low-pass filtered. The low-pass
filter was an eighth order Chebyshev type 1 filter, default in the Matlab
function decimate. The decimation reduces the sampling rate, in order to
reduce sample size and to remove the unnecessary high frequency residuals.
The decimation ratio was 250 in this thesis, leading to a new sampling
frequency of 20 kHz.

6. To obtain the new demodulated frequency spectra, the spectral density was
calculated by Welch’s method. Welch’s method was chosen because it
reduces signal noise. The loss of resolution was not an issue, as the samples
were relatively long.

Figure 14 presents a short interval of an AE signal from a pitting test, with an
upper envelope that attempts to follows the overall level of the signal. The envelope
in Figure 14 was created following steps 1-4 in the demodulation process. Steps 5-6
include the low-pass filtering and transformation to frequency domain. All the data
handling for these results was done in Matlab®.
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Figure 14. The envelope visualization of the high frequency signal acting as a carrier wave to the
shedding frequency. The discrete-time analytic signal follows the original signal (blue) as
an envelope (orange).

The resulting spectra contained consistently the dominating low frequency spectra.
The method proved to be highly effective in promoting the cloud shedding
frequencies in the cavitation signals. Spectrum calculation via Welch’s method or
simple low-pass filtering with decimation of the original signal was not sufficient in
promoting the low frequency content, as visualized in Figure 15, which compares
the original, decimated and demodulated signals through their spectra. The
decimated signal was multiplied by 1000, for the purpose of visualization. Without
the multiplication, the decimated signal overlapped the original spectrum so that they
were not discernible.
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Figure 15. Comparison of the original, the decimated and the demodulated signal spectra. The
decimated signal was multiplied by 1000 only for visualization purposes, and in reality, it
would overlap almost perfectly with the original signal spectrum. All spectra were
calculated using Welch’s method.

The peaks in the low frequency range are well recognizable from the demodulated
and decimated spectrum. The original spectrum and the decimated spectrum do still
contain the same peaks, but they are so vague that it would be uncertain to attempt
the detection of the shedding frequency from them. Figure 16 is the detailed
observation of the peak frequencies, assumed to be the cavitation cloud shedding
frequency and its first harmonic frequency.

Figure 16. Comparison detail of the original, the decimated and the demodulated signal spectra.
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The decimation process includes the low-pass filtering of the original signal. It is
clear from the previous figures that this is an insufficient approach, while the
demodulation, which is effectively enveloping combined with decimation, provides
good results in terms of promoting low frequency contents. This was the approach
in Publication IV, also described in section 5.4.
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4 METHODOLOGY AND EXPERIMENTS

4.1 The PREVERO Cavitation Tunnel

All the main results in this thesis were obtained from experiments with the
PREVERO cavitation tunnel that is situated in the LEGI laboratory, in Grenoble,
France (PREVERO 2018). The tunnel is mostly utilized in cavitation erosion testing,
in either short-duration pitting tests, or long-duration erosion tests. The duration of
the tests is highly dependent of the specimen material and the tunnel operation point.
The tunnel circulates water through a test section, with the possibility to control the
pressure downstream of the test section by a pressurized nitrogen tank and upstream
by a pump that has a frequency regulator to control rotation speed. The tunnel
operation is thoroughly explained in Publications II, III and IV, and in (Franc 2009;
Ylönen 2016). This section, however, also explains the basic operation.

The material specimens are 20 mm thick and 100 mm diameter cylinders that
have a polished circular face towards the flow. The other face is towards the
specimen holder, and it has a screw thread for fixing it to place. A 16 mm diameter
nozzle feeds water to the test section that is a radially diverging channel of 2.5 mm
thickness. The water jet from the nozzle stagnates in the middle of the material
specimen and the water flow turns 90 degrees and begins to flow in all directions in
the plane. Cavitation inception occurs as the flow cross-section area drops to 62.5
% at 8 mm radius, where the nozzle ends and the 2.5 mm thick channel begins. As
the channel further diverges and the cross-section area increases, the static pressure
also increases and the formed cavitation clouds collapse and damage the sample, in
the area between 19 mm and 32 mm radius.

The flow velocity in the cavitating area and in the nozzle are major contributors
to the aggressiveness of the cavitation field. The relevant velocity is the reference
velocity calculated from the Bernoulli equation, assuming that the pressure inside the
cavitation cloud is the vapor pressure. The vapor pressure is negligent compared to
the upstream pressure, so the cavity velocity V c may be calculated from: (Franc 2009)



56

௖ܸ ≈ ටଶ௣ೠఘೢ 8

where pu is the upstream pressure of the tunnel and ρw is the water density. The
erosion tests were conducted with a 4 MPa upstream pressure in this thesis, which
is the maximum allowed pressure. This corresponds to approximately 90 m/s cavity
velocity. The 2 MPa upstream pressure used in the other pitting test corresponds to
a cavity velocity of about 63 m/s. (Franc et al. 2012) reported the following
dependency between coverage time τ and cavity velocity V c:߬ ~ ܸି଺.ହ 9

The coverage time is the theoretical time that would be taken for a surface
experiencing cavitation to be totally covered once by non-overlapping pits. In
practice, it is calculated through a pitting test where only separate pits are formed.
For example, if a surface would be covered 10 % in area with pits in 2 minutes, the
coverage time would be 20 minutes. The coverage time is linked to the erosion rate,
the exact relation being dependent on the cavitation erosion test setup (Hammitt
1979; Zhou & Hammitt 1983; Franc 2009). For this thesis, it is sufficient to estimate
the aggressiveness to have roughly the same dependency as the coverage time. As
the cavity velocity is dependent of the square root of the upstream pressure, the
coverage time is dependent on the upstream pressure as:߬ ~ ଴.ହ(௨ି଺.ହ݌)  = ௨ିଷ.ଶହ݌ 10

The 4 MPa upstream pressure is double the 2 MPa upstream pressure. Therefore,
it has a coverage time of 2ିଷ.ଶହ ≈ 0.11 times the coverage time of the 2 MPa
pressure. This means that the 4 MPa operation point is about 10 times more
aggressive than the 2 MPa operation point. The cavitation number in the tunnel is
defined as:ߪ =

௣೏ି௣ೡ௣ೠି௣೏ 11

where pd is the downstream pressure and pv is the saturated vapor pressure.
Generally pv is negligible and therefore left out from the calculation. A constant
cavitation number, regardless of the pressure levels, leads to same type of cavitation
and the same closure point in the diverging channel (Gavaises et al. 2015). The
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cavitation number is related to the occurrence of cavitation and it has no well-defined
connection with the erosive potential.

4.2 Acoustic Emission Setups

The choice of acoustic emission setup has a large influence on the applicability of
the results. In this thesis, the most important functionality was the recording of long
full waveforms with a high sampling frequency. The most important results in
Publications III and IV rely on waveforms recorded continuously for up to 6
minutes, with 5 MHz sampling frequency per sensor, and with two sensors. For the
resonance type sensor, which had bandwidth of 100 kHz to 400 kHz, the sampling
frequency was overly sufficient. The broadband sensor had a bandwidth of 100 kHz
to 900 kHz, but in the upper range, no significant information was found. Therefore,
probably the same results would have been obtained using for example a 2 MHz
sampling frequency.

The initial setup used in (Ylönen 2016) was an IOtech WaveBook/512, which is
a system having a 12-bit voltage resolution and a maximum sampling frequency of 1
MHz. One of the main limitations in that system was the limited acquisition time of
30 seconds with the maximum sampling frequency, after which the system required
several minutes to save the data. The other severe limitation was that the signal
tended to saturate, as cavitation induced a much higher AE signal than in the usual
applications that the system was designed for. The original fix for this was to utilize
a 550 kΩ resistance in the signal electrical circuit. This is a highly suspicious way to
control the saturation problem, as the additional resistor might modify the signal
shape with no true possibilities to estimate how. Fortunately, a new acquisition
system solved both the problems.

The setup used in all the results listed in this thesis was a PAC PCI-2 acquisition
system. It had an 18-bit voltage resolution and a maximum sampling frequency of
40 MHz. Continuous waveform acquisition was possible with either 10 MHz
sampling with one sensor, or divided to two sensors, 5 MHz each. The sensors had
PAC 2/4/6 preamplifiers, with the 20 dB amplification option always chosen for
these measurements. The acquisition system had a PCI express connection to a 1
TB SSD hard drive, allowing direct saving to the drive. The practical upper limit to
the size of waveform files was about 7 minutes, as overly large stream files were
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unpractical to open in post-processing. This was solved by taking for example
subsequent 30-second streams. The signal saturation problem was solved through
the option of having smaller amplifications and larger range in the system. Signal
attenuators of 40 dB (signal strength divided by 100) were also tested, but in the end,
they were not required, as the signal upper values were below the saturation limit.

The sensor used for measurements in Publications I and III was the resonance
type sensor PAC R15. A broadband sensor PAC LNWDI was also tested, but it
broke down due to the vibrations caused by the cavitation tunnel. It was larger, as it
had a built-in preamplifier, and it was more rigidly fixed to the material specimen
than the other sensor. The sensors had to be fixed to the specimen with the aid of a
waveguide that was a steel rod with the sensor fixed to it by a spring load (R15) or
by glue (LNWDI). The waveguide was fixed to the sensor by a screw thread. The
screw thread had a 90° countersink to enhance the wave transfer from signal source
to sensor. Grease was applied to all interfaces to decrease wave attenuation. Figure
17 is the photograph of the two waveguide setups, with the sensors included.

Figure 17. Two options for the waveguide setup. A) The failed LNWDI sensor and B) the one used in
most tests, with a regular size sensor fixed inside the waveguide, and another similar
sensor outside the casing.

The sensors in Publication IV were a PAC R15D resonance type sensor and a PAC
D9203B broadband sensor. The R15D differs from the R15 in Publication III only
by its differential voltage measurement. The frequency response was virtually the
same, with about 160 kHz resonance frequency. The D9203B was a differential
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sensor as well, with a relatively flat response from 100 kHz to 900 kHz. They were
both small sensors, similar in appearance than those in Figure 17B.

4.3 Contact profilometer

The requirements for the profilometer measurements differ in the erosion tests and
in the pitting tests. The pitting tests require the measurement of a continuous surface,
as large as practically possible. Therefore, they are more demanding than the erosion
tests that require only one-dimensional measurements. For the results in Publications
II and IV, the erosion profiles were measured using a contact profilometer able to
measure 1-D profiles and limited size 2-D profiles. Due to the limited surface size
of the contact profilometer, the results in the pitting tests in Publication III were
obtained using an optical profilometer able to cover the whole cavitation closure
area.

The contact profilometer (Form Talysurf 50, Taylor Hobson) had a planar
resolution of 1 μm x 0.5 μm, and a theoretical depth resolution of 3.2 nm. Figure 18
is a photograph of the profilometer measuring a specimen profile. The profilometer
tip was a 90° cone, with a 2-μm radius sphere in its end. The profiles were measured
in the radial direction, and five parallel profiles were measured each time. The parallel
profiles were 1 μm apart and they were measured to exclude the effects of possible
local anomalies. The average of the five profiles represented each measurement. For
each time step in the erosion process, the profiles were measured along eight radial
lines, called azimuthal angles, from the specimen center. The process involved
turning the sample manually between measurements.
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Figure 18. The contact profilometer measuring a specimen profile. The stainless steel specimen is in
the left and the profilometer measures the radial profile.

The result was eight profiles per time step, a full erosion test having about 15 time
steps in this thesis. From an erosion profile, such as in Figure 5, the surface loss may
be calculated as a sum of the depth values multiplied by the radial resolution:ܣ௟௢௦௦(ݐ௡) = (௡ݐ)௘ܣ − (଴ݐ)௘ܣ = ∑ (௡ݐ,ݎ)௥{ℎ௠ݏ − ℎ௠(ݐ,ݎ଴)}௠௜ୀଵ 12

where ,is the loss of area at a time instance (௡ݐ)௟௢௦௦ܣ is the area of the (௡ݐ)௘ܣ
profile, ,is the area of the profile before any erosion (଴ݐ)௘ܣ ௥ is the resolution inݏ
the radial direction, 0.5 μm in this thesis andℎ௠(ݐ,ݎ௡) is the depth at a certain radial
location and time instance. The volume loss representing a profile was chosen to be
the equivalent volume loss, if the whole sample would have exactly the same profile.
As the measurement is along a radial line, the circumference of the specimen is
dependent on the radial location of the measurement point. Therefore, the volume
loss is calculated as:

௟ܸ௢௦௦(ݐ௡) = ௘ܸ(ݐ௡) − ௘ܸ(ݐ଴) = ∑ (௡ݐ,ݎ)௥{ℎ௠ݏݎߨ2 − ℎ௠(ݐ,ݎ଴)}௠௜ୀଵ 13

where ௟ܸ௢௦௦(ݐ௡) is the volume loss at a given time instance, ௘ܸ(ݐ௡) is the volume
of the profile and ௘ܸ(ݐ଴) is the volume of the profile before any erosion. The volume
losses were averaged for the final results over all the sample azimuthal angles.
Volume loss rate was calculated by dividing the volume loss difference by time
passed between two measurements.
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4.4 Optical profilometer

The contact profilometer was found to be efficient in the erosion profile
measurements, as described in section 4.3. In measuring pitting patterns, the practical
maximum area was about 4 mm x 4 mm with a 1 μm x 1 μm resolution measurement
grid. An optical profilometer (Alicona Infinitefocus G5) was also available and it had
the possibility of scanning larger areas than these. Using a 3.5226 μm x 3.5226 μm
measurement grid, the entire impacted area of the specimen could be measured.
What was lost in resolution was gained in covered area. It was also found that in the
pitting tests, the pit coverage rate was not axisymmetric, as visualized in Publication
III. As the AE measurements are assumed to detect all cavitation impacts, detecting
all pits in the specimen was beneficial in determining the relation between AE and
pit diameters.

The basic functionality of the optical profilometer is that it has a charge-coupled
device (CCD) camera combined with a microscope. The specimens were illuminated
by a white light source and the reflected light revealed the surface topology.
Changing the vertical focal position enhanced the images, making them sharper. As
the surface was initially polished, the profilometer failed to measure the depth values
of the non-eroded surface. Fortunately, the pits were well captured, as they were less
reflective and they had distinguishable shapes.

The profilometer generated text files that contained the depth information along
with location of all the measured points, but it excluded the non-eroded points that
were not captured. As the code to detect pits from the surface expected continuous
measurement data, the non-eroded areas had to be interpolated between successive
measured points. After the interpolation process, the surface was divided into
rectangles of less than 1 mm2, with shapes as close to a square as possible. This was
done to reduce file size and to rectify locally the surface to be horizontal. The whole
specimen was slightly curved, so rectifying the specimen plane at once to be
horizontal would not work. A local plane rectification of each small area led to
virtually no error.

After the profilometer-generated surface profiles were rectified and modified to
be compatible with the pit detection code, each pit was detected and characterized.
The pit detection code was used to analyse the less than 1 mm2 surfaces. It required
a user defined depth threshold, which was chosen as 0.5 μm, following the example
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of (Franc 2009). The pit detection code then calculated the mean depth level and
detected areas that were more than the depth threshold below the mean level. The
image generated with these definitions was turned to binary. A disk with a radius of
two pixels was used as the structuring element of morphological closing of the image.
After these steps, the pit boundaries were detected and pit surface area, maximum
depth, volume, and circularity were calculated. The circularity is a parameter that
defines a shapes closeness to circle. This was used to omit scratches, which have a
much lower circularity than pits caused by cavitation impacts. After the detection of
pits, the pit depths were corrected by calculating the non-eroded surface level and
adding it to the pit depths calculated initially. All the data were treated in Matlab®.

4.5 Microscopy and EBSD

The erosion rate tests answer the question of how the materials compare in their
cavitation erosion resistance. They however do not answer the question of why.
Between very different materials, this might be answered easily. For example, it is
expected that a soft plastic would be inferior to stainless steels, as its mechanical
strength is in every way inferior. Pure aluminum is also weaker than stainless steel in
most ways, as also in its resistance to cavitation. However, comparing two stainless
steels with a similar yield stress and other macroscopic mechanical properties, but
with differing erosion rates, requires studies that are more advanced. This was the
case with the stainless steels in this thesis, as explained more in section 5.1 and in
Publications II and V. Publication II included also the erosion testing of a low-alloy
steel, which was compared to others in erosion rates, but was not interesting enough
to properly study its microstructure.

The first approach was to film the eroded and non-eroded specimen surface by
SEM. The SEM images provided insight on the erosion process, but they were alone
insufficient in determining the differences between two materials that are similar in
many ways. The SEM imaging of the eroded material surface was studied in
Publication II. The SEM image analysis, however, did not provide the reasons
behind the erosion rates. In the next step, which could have as well been the first
one, the stainless steels specimens were etched and imaged through conventional
microscopy.
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Optical microscopy revealed that both the stainless steels had a martensitic
microstructure, with small amounts of precipitates. The optical microscopy allowed
determining the prior austenite grain size of steel 1, but not of steel 2. This
information was still not totally sufficient in answering the question of why steel 1 is
so much stronger against cavitation. The third tool in searching this information was
SEM imaging combined with electron backscatter diffraction (EBSD). These results
are presented in section 5.2 and in Publication V.

SEM combined with EBSD enables the determining of grain orientations inside
individual grains. Phase identification is also possible, along with other useful
features not relevant to this thesis. The method is thoroughly explained in
(Schwarzer et al. 2009). EBSD generates diffraction patterns that allow grain
orientation and phase detection. The resolution is relatively good and the method
may be automated in many cases. The effective determination of grain orientations
and phases required an automated algorithm developed by (Nyyssönen et al. 2016;
Nyyssönen 2017). The detailed understanding of the EBSD method along with the
algorithms were out of the scope of this thesis, as the expertise of the author is too
limited for these methods. The difference between these three microscopy methods
are compared in Figure 19.

Figure 19. Comparison of the three different microscopy methods: A) Optical microscopy, 200 X
magnification, B) SEM with EBSD mapping of the prior austenite orientations, 500 X
magnification, and C) SEM image with a 500 X magnification of the eroded surface.

The optical microscope image reveals the prior austenite grains and precipitates, for
the steel in Figure 19, but the EBSD image contains more explanations for defining
the reasons behind differing erosion rates. The SEM images from the eroded region,
without EBSD, provide only qualitative information of the erosion process, and they
are insufficient in determining the true reasons behind the erosion rates. More
detailed images and descriptions are presented in Publications II and V.
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5 MAIN RESULTS

5.1 Cavitation Erosion Resistance

The cavitation erosion resistance of a material may either be:

1. The materials capability to resist the onset of material loss. A resistant
material has a long incubation time, which is defined as how long it takes to
the process being dominated by material loss rather than plastic
deformation; or

2. The materials capability to resist material loss when the erosion has reached
a relatively steady state of impacts leading to rupture, material loss and
revealing of new material surface. The erosion rate may either be defined as
volume and mass loss or as the rate of penetration depth.

It is often considered that these two are closely connected, as they are parameters
that are inherited from the materials mechanical strength. No single or easily
definable mechanical parameter is sufficient in predicting the incubation time or the
erosion rate with good accuracy. The yield stress and the ultimate stress, along with
hardness, have generally a good correlation to erosion resistance when comparing
metals, but this was not true for example comparing a low-alloy steel and an
aluminum alloy in (Ylönen 2016). An important phenomenon is also that highly
elastic materials, such as plastics or rubbers, may resist cavitation extremely well due
to the attenuation of the impact loads when the material strains. This could be
interpreted as the material escaping the loading and thus increasing the impulse time
and reducing the true stress. This is exceptionally true for example for UHMWPE
coatings that exceeded the erosion resistance of high quality stainless steels in
(Deplancke et al. 2015).

In this thesis, the incubation times were not studied in detail, and the erosion
resistance was defined through volume loss of the specimens. The volume loss was
considered a suitable parameter, as it defined the damage the entire cavitation field
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induces to the specimen. The penetration depth would have been an equally
representative parameter and it was used in tests with the same cavitation tunnel for
example in (Franc 2009).

Cavitation erosion resistance may be defined as the inverse of the erosion rate: a
material with a low erosion rate exhibits a good resistance to cavitation. It was
observed that the shape of the erosion pattern differed slightly between materials, as
presented in Figure 20. This was the main reason to compare rather the volume
losses than the erosion depths.

Figure 20. Average erosion patterns of three different steels. The exposure times were 25 hours for
the low-alloy steel and 65 hours for both stainless steels. The erosion depth divided by
eroded cross-section area highlights the differences in erosion shape.

The ratio of the erosion depth to the eroded area is significantly different for stainless
steel 2, compared to stainless steel 1 and low-alloy steel. The profiles are the averaged
profiles of all the different azimuthal angles, so they do not represent any of the
actual measured profiles. However, the average profiles are useful in comparing the
overall differences in the shape of the erosion pattern. Additionally, the minimum
depth location differs between low-alloy steel and the stainless steels. The differences
in profiles were also observed in the panorama SEM images in Publication II.

In addition to the differences in profile shape, the specimens experienced
different erosion rates depending on the sample azimuthal angle. This is most
probably not due to possible differences in the cavitation field that the tunnel
produces. To begin with, the cavitation field may be assumed axisymmetric if the
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feed nozzle is not overly damaged. Additionally, the specimens were turned 90
degrees after every time that they were removed from the tunnel for profile
measurements. Therefore, the discrepancies in the cavitation field from
axisymmetric shape would be negated in the end. The volume losses for the three
studied materials, with all the azimuthal angles, are plotted in Figure 21.

Figure 21. Volume loss dependency on azimuthal angle. The azimuthal angle is explained in section
2.4.

As the plots overlap significantly, it would be difficult to mark the azimuthal angles
in the figure. Therefore, the final volume losses are presented in Table 1. Its main
purpose is to support Figure 21, as the volume loss rates in Table 2 represent better
the erosion resistances of the materials.
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Table 1. Final volume loss values for the erosion tests as a function of the azimuthal angle. The
angle represents the measurement direction in relation to the one defined to be at 0°
angle.

Material 0°
mm3

45°
mm3

90°
mm3

135°
mm3

180°
mm3

225°
mm3

270°
mm3

315°
mm3

Low-
alloy
steel

211.2 90.5 139.4 104.2

Stainless
steel 1

89.7 92.3 102.5 112.2 91.0 91.6 112.1 108.1

Stainless
steel 2

179.2 144.5 148.0 138.5 170.9 100.7 133.7 106.9

The volume loss rate is difficult to estimate directly from the figure. It could be
interpreted that the volume loss curves just have a different offset, depending on the
incubation period length of each angle. However, as explained in Publication II, the
rates do differ significantly. Table 2 presents the erosion rate dependency on
azimuthal angle, and the average erosion rates of all the three materials.
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Table 2. Erosion rate dependency on specimen azimuthal angle. The angle represents the
measurement direction in relation to the one defined to be at 0° angle.

Material 0°
mm3

/h

45°
mm3

/h

90°
mm3

/h

135°
mm3

/h

180°
mm3

/h

225°
mm3

/h

270°
mm3

/h

315°
mm3

/h

Mean
mm3

/h

Low-alloy
steel

11.62 5.44 12.38 3.63 8.95

Stainless
steel 1

1.40 1.70 2.02 2.24 1.52 1.58 2.30 2.21 1.79

Stainless
steel 2

4.02 2.94 3.02 2.95 3.56 2.66 2.43 2.27 2.72

These differences were explained to result from local differences in the material
microstructure in Publication II. The mean erosion rates were also compared to
several other materials measured by other researchers in the same cavitation tunnel.
An interesting detail is that stainless steel 1 was from a turbine manufactured in the
1970’s, while stainless steel 2 was from a modern turbine manufactured in 2010’s.
The reasons behind the differences were identified in Publication V.

5.2 Microstructure and Erosion Resistance

The low-alloy steel had a significantly higher erosion rate, probably due to the
combined effect of oxidation and cavitation erosion, along with its inferior
mechanical properties. The oxidation process weakens the materials surface against
cavitation impacts that in turn expose new non-oxidized surface, thus increasing
oxidation rate (Kwok et al. 2006; Ryl et al. 2011). The SEM images in Publication II
were insufficient for finding the true reason behind the differing erosion resistances
of the two stainless steels. The main result from them was that the erosion process
is probably low-cycle fatigue. Typical to this type of fatigue, examples were found of
crack front propagation, with “beach-marks” marking the successive positions of the
crack front. The crack propagation of this type is illustrated in Figure 22.
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Figure 22. Crack propagation in low-cycle fatigue.

Low-cycle fatigue is expected from cavitation erosion processes with high impact
loads (Fortes Patella et al. 2013). Low-cycle fatigue occurs when the impacts lead to
plastic deformation and the crack fronts advance rapidly (Bathias & Pineau 2010).
In low-cycle fatigue, the amount of cycles is in the order of few to some tens.

The first observations providing insight into the reasons behind erosion
resistance was the optical microscope images. The material specimens from the
erosion tests were cut to pieces so that the cross section of the eroded surfaces was
accessible. The cross section surfaces were polished and etched before microscopy.
Stainless steel 1 revealed its prior austenite grains, while stainless steel 2 did not. Both
of them were identified as martensitic stainless steels. Images are available in
Publication II.

The prior austenite grain size has an effect on the impact strength and plasticity
of martensitic steels (H. J. Kim et al. 1998; Zavaleta Gutiérrez et al. 2013). From the
optical microscope images, it could be estimated that stainless steel 2 has a larger
prior austenite grain size. The estimate was based on the apparent martensite lath
structure orientation. This estimate however lacked proper proof, so the advanced
approach of SEM combined with EBSD was taken. It was efficient in determining
the martensite block and packet sizes and their orientations, along with prior
austenite grain sizes.

The EBSD measurements proved that stainless steel 1 had a significant amount
of retained austenite in the microstructure. It also had a significantly smaller packet
and block sizes, as well as a smaller prior austenite grain size. The retained austenite
fraction was up to 9 vol - % for steel 1, while it was zero for steel 2. The retained
austenite may transform to martensite through cavitation impacts. This was
observed in the edge regions of steel 1, in the about 200-μm transition region from
the edge to bulk material. In the edge, where erosion has significantly hardened the
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material, all the austenite had transformed to martensite. The transition region depth
correlates well with that measured by (Berchiche et al. 2002), who measured the
hardened layer by micro-hardness measurements for a 316L specimen that had
experienced cavitation erosion.

The interesting thing about the microstructure of steel 1 is that it resembles that
of steels that have been processed by quenching and partitioning (Q&P). The Q&P
process was not a known process, according to (Edmonds et al. 2006), before 2006.
However, steel 1 was from a turbine manufactured in the 1970’s. This indicates that
the Q&P microstructure was perhaps accidentally achieved for the steel, or that some
other treatment has provided a similar microstructure. The further analysis of these
factors are far beyond the scope of this thesis. It may be however concluded that the
microstructure for stainless steel 1, presented in Publication V, is a desired one in
manufacturing cavitation resistant steels.

5.3 Defining Cavitation Intensity by Acoustic Emission

The main result in this thesis relating to the estimation of the impacts strengths was
discussed in Publication III. Publication I presents the basic principles in utilizing
AE in cavitation testing and in using the enveloping method to detect peaks and
determine their amplitudes. Publication III combined this information to pit
distributions and presented a correlation between AE peak voltage value and pit
diameter. The cumulative pit diameters and the peak voltage values both had a long
linear range in the linear – logarithmic scale. Normalizing pit diameters with the
reference pit diameter, explained in section 2.3, and then normalizing also AE peak
voltage values with the reference peak voltage value led to almost overlapping
cumulative distributions. When corrected by first subtracting the cut-off voltage
from the voltage values, the distributions overlapped almost perfectly. The
normalized, overlapping cumulative distributions are presented in Figure 23. The
voltage values below the cut-off limit were omitted, as they are assumed to be either
from noise or from non-damaging impacts.
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Figure 23. Pit and peak cumulative distributions. The normalization causes the curves to overlap to a
high degree. The pit diameters and peak voltage values were arranged into bins, with the
same bin sizes as in Figure 3 and Figure 8.

These results were already thoroughly discussed in Publication III, where it was
stated that pit diameter distributions could be estimated from AE, using the
following relation:

஽஽బ =
௎ି௎೎ೠ೟೚೑೑௎బ 14

In this section, this relation is used to simulate pit diameter distributions from
imagined AE distributions, as the only measured AE distributions are those already
presented. The parameters D0, U0 and Ucutoff were found to remain virtually constant
between the 2 MPa and the 4 MPa upstream pressures. Only the parameters ܰ̇଴,௣௘௔௞
and ܰ̇଴,௣௜௧ change, depending on the aggressiveness of cavitation. They determine
the intersection of the Y-axis in the cumulative distributions.

Here, it is assumed that one would have AE peak voltage distributions from the
cavitation tunnel, but no way to measure the pit diameter distribution. This would
correspond to measuring AE in an operating hydraulic machine and attempting to
know what happens inside without any access to the eroding surface. The pit
diameters have a correlation between the impact loads and thus cavitation intensity,
but this correlation is not clear and is not discussed further, as the expansion from
laboratory results to hydraulic machines is out of the scope of this thesis.
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The relation between coverage time and upstream pressure was already presented
in equation 10. An assumption is made that the reference peak rate ܰ̇଴,௣௜௧ follows a

similar law. The exponent is not exactly the same, if calculated from the reference
pit rates in Table 3. The power law may be expressed here as:ܰ̇଴,௣௜௧ ~ ௨ଷ.ଷସ݌ 15

The exponent 3.34 is close to the exponent 3.25 in equation 10. The difference is
so small that further measurements might prove that it is only due to lack of a large
number of tests. However, assuming that the relation in equation 15 holds true, the
simulated reference pit rates may be listed in Table 3.

Table 3. Reference values and simulated distribution values for the connection between peak
voltage values and pit diameters.

2 MPa,
measur
ed

4 MPa,
measur
ed

Average 1 MPa,
simulated

1.5 MPa,
simulated

3 MPa,
simulated

Ucutoff (V) 0.045 0.062 0.054 0.054 0.054 0.054

U0 (V) 0.064 0.065 0.064 0.064 0.064 0.064

D0 (µm) 6.17 6.08 6.13 6.13 6.13 6.13

U0/ D0

(V/ µm)
97.28 94.22 95.75 95.75 95.75 95.75

ܰ̇଴,௣௜௧
(1/s)

598 6070 - 59 229 2320

ܰ̇଴,௣௘௔௞
(1/s)

1232 15958 - - - -

With the parameters in hand, the simulated peak voltage distributions can be
plotted using equation 6. Additionally, the pit distributions can be plotted using
equation 3. These distributions are presented in Figure 24.



73

Figure 24. Simulated peak (A) and pit (B) distributions for several cavitation tunnel upstream
pressures.  The scale is linear – logarithmic.

The cumulative rates estimated in this manner require the exponential relation in the
reference pit rate to be true. This is however not required, if there are AE
measurements available for different cavitation intensities. This would be the case in
an imagined hydraulic machine monitoring system. This type of approach relies in
the measurement of AE and pit diameter distribution in the machine, be it a
cavitation tunnel or a hydraulic machine, at least at one operation point. It requires
the assumption that the reference parameters and the cut-off voltage are not
dependent on operation point, as it was in the cavitation tunnel. In the tunnel, the
cavitation type remains the same as long as the cavitation number stays the same.
This thesis does not have an answer if these relations would still hold true and be
applicable, if the cavitation number would change. It is implied that AE peak voltage
values would be directly linked to the damage potential and pit diameter the
cavitation impacts induce, but no further verification is available.

5.4 Tracking Cavitation Erosion via Shedding Frequency

In this thesis, the changes in cavitation cloud shedding frequency were found to
correlate with evolving cavitation erosion. AE was found to detect the shedding
frequency robustly, as explained in section 3.6. A method to track the erosion
evolution via AE measurements, which do not require direct access to the eroding
surface, was presented in Publication IV. The AE methods capability of detecting
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the shedding frequency was confirmed by comparing the frequencies to those
obtained through video analysis and those from simulated results by (Gavaises et al.
2015). The frequencies correlated well for a range of cavitation numbers, from σ =
0.87 to σ ≈ 1.8. For values above 1.8, the cloud cavitation phenomenon began to
disappear, and the cavitation transitioned to sheet cavitation, which is not possible
to characterize through shedding frequency as it lacks periodic growth and collapse
cycles. With the proof that AE properly catches the shedding frequency, if properly
treated as explained in section 3.6, the AE data was utilized in connecting the
shedding frequency to erosion evolution.

The cloud to sheet cavitation transition occurs when the Reynolds number or the
cavitation number increases over a certain threshold. A transition region lies between
clearly defined structures (Pelz et al. 2014; Pelz et al. 2017). The exact values of the
dimensionless numbers depend on the flow geometry and the flow medium. The
transition region lies somewhere between σ =  1.5 and σ =  1.9 in the operation
conditions in Publication IV. This is clear from the video analysis, and it is also
observed in AE measurements and in the simulations by (Gavaises et al. 2015).

Surface roughness has been demonstrated to increase the cloud shedding
frequency (Hao et al. 2017). The erosion process in the cavitation tunnel can be
compared to the increase of roughness. When the initially mirror-polished surface
begins to erode, it first turns “frosty”, after which material loss begins to occur. In
the end of the test, when the maximum erosion depth is about 0.5 mm, erosion is so
pronounced that it could be described as transformed channel geometry rather than
roughness. The change in the shedding frequency is connected to the change in
vorticity of the flow. In Publication IV, the evolution of the shedding frequency was
plotted against time, with another plot for the erosion evolution. In Figure 25, the
X-axis is changed to erosion volume.



75

Figure 25. Shedding frequency as a function of eroded volume.

When the erosion time is changed to volume loss, the plots for the two materials
overlap significantly. For stainless steel 2, which experiences more total erosion, the
shedding frequency begins to remain constant independent of the erosion volume,
after the about 100 mm3 limit. This would probably be observed for stainless steel 1
as well, but unfortunately, the test was ended too soon to confirm this. The two
stainless steels have significantly different steady state erosion rates, as describes in
Publications II, IV and V, so it may be concluded that the change in the shedding
frequency indeed is a geometry and roughness related phenomenon. This means that
the tracking of erosion evolution using the presented method is probably not
dependent of the materials experiencing cavitation, as long as the cloud shedding
frequency is captured via AE. This method could be used in hydraulic machine
monitoring, if cloud cavitation occurs and if AE sensors could be placed so that they
properly capture the shedding frequency.
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6 CONCLUDING REMARKS

The research questions investigated in this thesis were listed in section 1.2. This
section aims to evaluate what were the concise answers to these questions and if
these answers are adequate. The thesis was divided into two main problems:
characterizing erosive cavitation and tracking the evolution of cavitation erosion.
The attempt to solve both problems included acoustic emission measurements in a
cavitation tunnel. The used AE data was in the end similar in both approaches; it
was just treated differently. Along with these results, knowledge was gained of the
erosion properties of three Francis turbine steels used in runner blades. A secondary
goal was to study if the microstructure-level reasons could be found behind the
difference in erosion rates of two stainless steels that were studied.

The first research question concerned the cavitation erosion resistances of steels
used in runner blades. This was studied through erosion tests in a cavitation tunnel
and the main results were discussed in Publication II. Three materials were studied:
A low-alloy steel and two stainless steels from different turbines. Stainless steel 1,
which was from a turbine manufactured in the 1970’s, performed the best from these
three materials. It also compared well to other steels measured by other authors. The
measure of cavitation erosion resistance was the steady-state volume loss rate. The
lower this rate, the better the materials resistance. The volume loss rate was chosen
over the mass loss rate, as cavitation damage is typically a volume-related problem,
as the structural integrity of the machines degrade based on changes in geometry.

The second question of the reason behind the differing rates culminated in the
microstructure analysis of the two studied stainless steels. These two steels had a
martensitic microstructure, observed from the optical microscope images in
Publication II. Steel 2, which was from a turbine commissioned in 2010’s, and also
performed worse that steel 1, seemed to have a larger prior austenite grain size.
Optical microscopy did not reveal the accurate grain size, nor any other effects that
might contribute to the difference. The SEM images from the eroded area in
Publication II did not give any insight to this, and they only highlighted that the
erosion process is dominated by low-cycle fatigue.
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The EBSD measurements, presented in Publication V, provided an accurate
answer to this question. Steel 1, while having a prior austenite grain size about half
of that of steel 2, had other advantages as well. It had smaller martensite packet and
block sizes, and most importantly, it had up to 9 vol-% of retained austenite, well
dispersed between packets and blocks. This significantly increases the impact
strength, and additionally, it enables an austenite – martensite transformation,
contributing to strain-hardening and increased resistance. This transformation was
observed in the edge regions where cavitation had damaged the specimens.

The third question was about detecting and characterizing individual cavitation
impacts via AE. This method was first discussed in Publication I, where the AE
enveloping and peak counting method was presented. The method was further
developed and the results were compared to pitting measurements in Publication III.
The cumulative distributions of both the AE peak voltage values and the cavitation
pit diameters, measured through optical microscopy, had a clear correlation. A
correlation was found between AE peak voltage value and the resulting pit diameter.
This allows the estimation of pit distributions through AE measurements in the
cavitation tunnel, using parameters that are AE setup and material dependent. The
pit sizes are generally related to the cavitation impact strengths, but this relation was
not further discussed in this thesis. The presented method was criticized in section
3.4, as impacts generated by dropping steel balls on the specimen surface was
observed to produce varying AE voltages, depending on impact location. This does
not prove the method false, as the ball drop test might not imitate cavitation impacts
properly, as the specimens were not attached in the cavitation tunnel, nor did they
create identical loadings compared to cavitation impacts. However, this effect should
be further studied to remove doubt.

The fourth research question concentrated on the cavitation erosion tracking via
AE. As the erosion progresses, the specimen surface both hardens and changes in
geometry, through roughness and material loss. The main results were presented in
Publication IV. Initially, parameters such as AE event energy and RMS value were
studied as potential indicators of erosion, but they did not provide any clear results.
The type of cavitation created in the tunnel is cloud cavitation, which is characterized
by periodical formation and collective collapse of clouds of cavitation bubbles. The
frequency of these events was assumed to be in the order of several kHz, which was
far below the AE sensor operation range. However, it was found that the process of
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demodulation may be used to promote these frequencies in the AE data, as they
were modulated in the high frequency signal. The demodulated frequencies were
compared to those from video analysis and to those from simulations by another
author, thus proving that the AE effectively does capture the shedding phenomenon.
It was observed that after the cavitation incubation period, the shedding frequency
increases with increasing volume loss, until it reaches a quasi-stationary level.

In the author’s opinion, these three results are the key findings of this thesis:

1) Martensitic steels with a small prior austenite grain size, a small packet and
block size and a good fraction of retained austenite dispersed in the
microstructure have a higher cavitation erosion resistance. This provides one
way to rank martensitic steels regarding material choices in hydraulic
machines.

2) The AE enveloping and peak counting method may be used in estimating
cavitation pit diameter distributions.

3) Cloud cavitation shedding frequency increases with increasing volume loss,
at least in a simple geometry as in the PREVERO cavitation tunnel, and the
changes in the frequency may be tracked via high frequency AE
measurements that are demodulated and low-pass filtered before
transforming them to the spectral domain.

To conclude this thesis, the certainty of these three methods need to be discussed.
The results in Publication V are rather well founded, so finding 1 is considered to
have a high certainty and it could be used as a guideline for turbine manufacturers
or operators commissioning turbines. The results in Publication III and the
statement in finding 2 are less certain in the author’s opinion, but they might provide
insight in comparing cavitation intensity levels even in hydraulic machines. The
method seems to perform well in the cavitation tunnel, but additional measurements
with different operation points would be beneficial. Expanding it to hydraulic
machines would require significant work. Finding 3 was considered to have a high
certainty, as the results in Publication IV are consistent and they compare well with
other methods. Expanding the method to measure erosion progression in hydraulic
machines would require knowledge of the cavitation types in the machines. Without
the periodicity in cloud cavitation, the method has no use. Therefore, in the limited
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case of cloud cavitation and of transitioning from sheet to cloud cavitation, the
method might prove highly efficient, even in hydraulic machines.
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Abstract
In order to investigate the potential of the acoustic emission technique in predicting cavitation erosion, laboratory tests were
conducted in a high-speed cavitation tunnel. One face of a cylindrical stainless steel sample was subjected to an annular cavitation
field created by the PREVERO cavitation tunnel [1]. Acoustic emission was measured from the back surface of the sample in order
to detect impacts caused by cavitation bubble or cloud collapses. Cavitation aggressiveness was varied by changing the operating
parameters of the cavitation tunnel. Two different operating points were compared. Collapsing cavitation bubbles lead to impacts
towards the sample surface and they induce elastic waves in the material. A resonance type acoustic emission sensor with a
resonance frequency of 160 kHz captured these waves during the cavitation tests. The acoustic emission waveform was measured
with a sampling frequency of 5 MHz. The sensor was mounted behind the sample using a wave-guide that maintained a transfer
path for the elastic waves to travel from the impacted surface to the sensor. The elastic waves reaching the sensor were observed
as distinguishable bursts in the acoustic emission waveform. Acoustic emission from cavitation impacts was estimated to be about
100 times stronger than acoustic emission from other sources, such as hydrodynamic events or machine vibration. This means that
the signal was almost entirely induced by cavitation. The bursts contain multiple reflections that attenuate in time and that have a
frequency content corresponding to the sensor frequency response. The bursts attenuate quickly enough not to overlap, as the
cavitation events occur with a large enough temporal separation. The hypothesis in this study is that the maximum amplitude of
the acoustic emission event voltage correlates with the strength of the cavitation bubble collapse impacting the surface. Voltage
peak value counting was applied to the acoustic emission waveform data. As the bursts contain multiple amplitude peaks due to
sensor resonance, an envelope function was fitted to the waveform for peak counting. Using this method, each counted voltage
peak value is expected to correspond to a single cavitation impact event. The pulse distribution shows an exponential decrease with
a decreasing voltage peak value rate as the peak voltage increases. This compares well with earlier studies, such as [2] and [3],
where an exponential distribution of bubble collapse amplitudes was found. The results of this study prove acoustic emission as a
direct and non-intrusive method that can be used to monitor cavitation impacts from outside of the cavitation field.

Keywords: cavitation impact detection; acoustic emission; cavitation intensity;

Introduction

The impact load induced by a cavitation bubble collapsing near a solid boundary has been studied by multiple methods,
both experimental and computational. In a cavitating flow, the impact load determines material damage in a boundary
caused by a single bubble or bubble cloud collapse. Another important factor in material damage is the impact
frequency, as cavitation erosion tends to be a cumulative process [4-6]. The impact distribution that combines the
impact frequency and amplitude of the cavitation impact loads is essential in determining the cavitation intensity of a
flow.

Cavitation impact loads have been measured by various methods. Franc et al. [2] measured the impact loads in the
PREVERO cavitation tunnel with conventional pressure sensors flush-mounted in the cavitation closure region. Hujer
et al. [3] used PVDF pressure sensors, also flush-mounted in the same tunnel. Both of them observed exponential
impact distributions. Hattori et al. [7] studied the impact pressures in an ASTM G-32 vibratory device and Okada et
al. [8] used the same device to calibrate pressure sensors for a Venturi nozzle test. In the vibratory test, the impact
distribution also follows an exponential law. Franc et al. [9] also observed the pits formed by cavitation impacts and
they observed an exponential distribution in the pit size distribution. The pit shape factor or the ratio between pit depth
and pit diameter increases with increasing cavitation intensity, meaning that larger impacts lead to deeper pits [10].

Several authors have studied acoustic emission (AE) as a method to detect and characterize cavitation and cavitation
erosion. Boorsma and Fitzsimmons [11] created a cavitation monitoring method for ship rudders and propellers.
Yongyong and Zaiyang [12] connected the AE-event energy to mass loss in an ASTM-G32 vibratory cavitation
apparatus. Schmidt et al [13; 14] worked on a cavitation detection system based in AE on a prototype Kaplan turbine.
They discovered that with properly placed sensors, cavitation leads to increase in AE root mean squared voltage value,
event energy and fluctuation of both. Van Rijsbergen et al. [15] found that acoustic emission sensors in direct contact
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with a hydrofoil capture bubble collapses near the foil surface and with the cavitation impact towards the foil, but not
those that occur in the flow far from the foil. These studies encourage further development of cavitation monitoring
by AE.

In this study, the same cavitation tunnel as used by Franc et al. [2] and Hujer et al. [3] was fitted with acoustic emission
sensors. The difference between previous studies with the tunnel in question is that the AE sensors are placed outside
of the liquid flow by placing them in the backside of the sample. Voltage peak values corresponding to individual
cavitation events were classified by their quantity and voltage. The goal was to produce similar distributions for two
different operating conditions from the acoustic emission voltage peak values and to correlate these distributions with
those of previous works.

Experiments

The experiments were carried out in the PREVERO high-speed cavitation tunnel in LEGI laboratory. The tunnel
circulates water through a radially diverging test section. Water comes in to the test section through a Ø 16 mm inlet
nozzle and the flow stagnates in the middle of the test section where the sample is located and continues to diverge
radially in a 2.5 mm thick channel. The samples are 20 mm thick cylindrical disks with a 100 mm diameter and placed
so that the sample center is in the middle of the test section. Cavitation inception is located in the beginning of the
radial section and cavitation closure is located between 21 and 26 mm radius of the disk when operating with the
typical cavitation number σ = 0.9. Cavitation number in PREVERO is defined in equation 1:. = ௉೏ି௉ೡ௉ೠି௉೏ (1)

where Pd is the pressure after the test section, Pu is the pressure before the test section and Pv is the liquid vapor
pressure.

The acoustic emission sensors were fitted to the sample using a waveguide that is fixed with a screw thread to the
sample. Figure 1(a) shows the sample disk flush mounted to the sample holder and the AE sensors fitted to the sample
from behind. Figure 1(b) presents the test section without the sample and the sample holder. The sample and the holder
were fastened to the test section so that from the inlet nozzle, the flow radially diverges to a 2.5 mm thick channel.

Figures 1(a) and 1(b). 1(a): Sample mounted to the sample holder and fitted with an AE sensor and a waveguide. 1(b): PREVERO test section
opened and with the inlet nozzle in the middle. The sample is flush mounted so that it forms a part of the other wall in the test section.

Cavitation inception occurs at the outlet of the cylindrical nozzle, as the cross section area of the flow drops to 62.5
% of that of the inlet nozzle. Cavitation closure occurs further downstream as the cross section area and therefore the
static pressure of the flow increase. Tunnel downstream tank is pressurized by nitrogen and upstream section by a
pump linked to a frequency transformer. Downstream pressure varies from ambient pressure to around 3 MPa and the
maximum upstream pressure is 4 MPa. The cavitation tunnel is presented in more detail in [1; 4].

The acoustic emission setup was a PAC PCI-2 two channel acquisition card fitted with PAC R15 and D9203b sensors
and 20/40/60 preamplifiers. The R15 sensor is a resonance type sensor with a resonance frequency of 160 kHz. A
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band-pass filter from 100 kHz to 400 kHz was used. The D9203b sensor is a broadband sensor with a frequency range
from 100 kHz to 900 kHz. In this study, only the data acquired with the R15 sensor were analyzed. The samples were
made of a stainless steel used in Francis turbines and the waveguides were made of steel.

In this study, two samples were mirror polished with successive diamond pastes and a colloidal silica suspension. One
sample was subjected to cavitation erosion for 2 minutes with a 4 MPa upstream pressure and the other for 6 minutes
with a 2 MPa upstream pressure. The 4 MPa and the 2 MPa upstream pressures correspond to 89.4 m/s and 63.2 m/s
cavity reference velocities, respectively. Cavity reference velocity is defined as the velocity in the test section where
pressure is assumed as vapor pressure. A more detailed explanation of cavity reference velocity is in [4]. Pits with this
type of exposure covered roughly 10 % of the surface of the cavitation closure area. The cavitation impacts were thus
assumed to be hitting virgin material most of the time. Acoustic emission waveforms were acquired with a sampling
frequency of 5 MHz for the full duration of the tests.

Peak value distribution by an envelope function

Impacts in the cavitation sample surface were observed in the AE waveform as quickly rising voltage peaks that
diminish exponentially. The AE waveforms were analyzed in time-voltage space. Wave propagation in the sample
and the waveguide may affect the waveforms, but this effect is not considered in detail in this study. The frequency
content of each cavitation burst or AE-event resembles that of the sensor frequency response, meaning that the impacts
provoke sensor resonance. This means that the events are mostly short duration impacts compared to the sensor time
scales. It is assumed that each voltage peak value in the waveform, with its resonance effects, corresponds to one
cavitation impact towards the sample surface. The length of a cavitation bubble collapse is in the range of some
microseconds up to some tens of microseconds [2; 16]. Through waveform observations, impact overlapping seems
not to be significant.

With the assumption that each measured maximum in the voltage peak value corresponds to a single cavitation event,
there is a need to filter out the sensor resonance effects when peak counting is applied. In most cases in this study, the
acoustic emission waveform contains more or less isolated events with breaks between them. Each event has a distinct
maximum or sometimes two or more maximums. To negate the resonance effects, an envelope function is fitted to the
waveform. As the signal is approximately symmetric around zero volts, the absolute value of the signal is calculated.
After this, the envelope function was fitted to the waveform. The envelope was calculated by spline interpolation over
local maximums. The minimum distance between local peaks was set to 16 µs, which is about five times the distance
between peaks resulting from sensor resonance. This value was found to be suitable through trial and error method.
Figure 2 presents a typical AE waveform sample fitted with an envelope function.
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from 100 kHz to 900 kHz. In this study, only the data acquired with the R15 sensor were analyzed. The samples were
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provoke sensor resonance. This means that the events are mostly short duration impacts compared to the sensor time
scales. It is assumed that each voltage peak value in the waveform, with its resonance effects, corresponds to one
cavitation impact towards the sample surface. The length of a cavitation bubble collapse is in the range of some
microseconds up to some tens of microseconds [2; 16]. Through waveform observations, impact overlapping seems
not to be significant.

With the assumption that each measured maximum in the voltage peak value corresponds to a single cavitation event,
there is a need to filter out the sensor resonance effects when peak counting is applied. In most cases in this study, the
acoustic emission waveform contains more or less isolated events with breaks between them. Each event has a distinct
maximum or sometimes two or more maximums. To negate the resonance effects, an envelope function is fitted to the
waveform. As the signal is approximately symmetric around zero volts, the absolute value of the signal is calculated.
After this, the envelope function was fitted to the waveform. The envelope was calculated by spline interpolation over
local maximums. The minimum distance between local peaks was set to 16 µs, which is about five times the distance
between peaks resulting from sensor resonance. This value was found to be suitable through trial and error method.
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Figure 2. An extract of the AE waveform and the envelope function fitted to it.

As observed in figure 2, the envelope follows the waveform, properly addressing the maximum values of each event.
If the event contains two distinct peaks, it is assumed that two events are overlapping and both are taken into account.
In the area outside the events, the envelope function may create false peaks due to noise and the formulation of the
function. This effect is negated in the results, as events falling below a certain threshold are considered as either static
noise or bubble collapses too weak to be erosive.

Results

The peak value distributions for both the 2 MPa and the 4 MPa upstream pressure tests are presented in figure 3. The
distributions are presented as cumulative so that each rate value represents the rate of voltage peak values larger than
the corresponding voltage. The bin size for peak counting was 0.02 V. The rate was expressed in [3] and [4] in counts
per second per area, with the area being the sensor active area. In this study, the sensor captures all events occurring
in the sample, so the active area cannot be properly defined.
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Figure 3. Cumulative peak rate vs. voltage peak value in linear-logarithmic scale. A linear fit was applied to the linear part of the curve.

The cumulative peak value distribution has a linear and a non-linear part in the linear-logarithmic scale. It was assumed
that the non-linear part consists of static noise and insignificantly small bubble collapses. This study focuses only on
the linear part of the distributions, corresponding to the expected exponential behavior of the cavitation impacts. The
exponential law is presented in equation 2:

ܰ̇ = ܰ̇଴݁ି ೆೆబ (2)

where ܰ̇ is the peak rate, ܰ̇଴ is the reference peak rate, U is the voltage peak value and U0 is the reference voltage.
The reference values ܰ̇଴ and U0 are presented in table 1.

Upstream pressure/cavity
reference velocity

Reference peak rate ܰ̇଴ Reference voltage U0

2 MPa / 63.2 m/s 1232 1/s 0.063 V

4 MPa / 89.4 m/s 15958 1/s 0.065 V

Table 1. Cumulative distribution reference values

The linear parts of the cumulative distributions in figure 3 are essentially parallel. The reference voltages U0 are
calculated from the slope of the linear fits and are thus almost equal. The reference peak rate ܰ̇଴ follows the cavity
reference velocity V with a relation of ܰ̇଴~ܸ଻.ସ. As the slope of the linear fit in linear-logarithmic scale does not
change with the change of operating point, it means that the ratio between cumulative impact rates remains constant
and independent of voltage peak value.

In this study, the connection between AE voltage peak values and the impact magnitude or impact damage is not
addressed. Cavitation pitting in a virgin sample tends to produce pit sizes following a same type of exponential
distribution as results in this and previous studies such as [9]. This fact is encouraging and shows that the results
presented in this study somehow represent the physical phenomenon of cavitation pitting.
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Conclusion

A method to monitor and characterize cavitation impacts by acoustic emission was presented. Acoustic emission was
measured for two different operating conditions and envelope functions were fitted to the resulting waveforms.
Voltage peak values were counted from the fitted envelope functions and cumulative distributions were calculated.
Reference peak rates and reference voltages were calculated for both operating points. The reference voltage was
about the same for both operating points and the reference peak rate had a relation of ܰ̇଴~ܸ଻.ସ.

Using the presented method, the cumulative distributions for acoustic emission voltage peak rate value may be
calculated for any operating condition by calculating the reference peak rate Ā̇଴ and reference voltage U0 and then
applying the relation between reference peak rates, if the distribution for one point is known. To validate the results,
multiple operating points should be tested. With the assumption that the relation holds as stated, the acoustic emission
distributions can be used in estimating cavitation pitting in the cavitation tunnel. The advantage of the presented
method is that it is non-intrusive, as it does not require direct access to the flow. Future studies will address these
issues in more detail. These results show the potential of using acoustic emission in cavitation detection and
characterization in laboratory testing and eventually in actual hydro machines.
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Abstract 
The accuracy of cavitation CFD is not sufficient for the flow around very simple geometries such as 
single hydrofoil. The lift force and the cavity length are underestimated particularly for the high angle 
of attack cases. One of the possible reasons of the discrepancy is the singular characteristic of sheet 
cavitation in the boundary layers that is not taken into account in the recent cavitation models. It was 
observed that the sheet cavitation is not initiated in the laminar boundary layers. The inception and 
growth of the sheet cavitation occurs at the reattachment point of the laminar boundary layer separation 
or at the transition point of the laminar boundary layer to the turbulent boundary layer. These 
characteristics were reported in many literatures however they are not well modeled for cavitation CFD. 
In this paper the laminar boundary layer zone is identified for NACA0015 hydrofoil from the high 
speed video observation. Then, cavitation CFD is carried out by deactivating the cavitation model at 
the estimated laminar boundary layer zone. This modified cavitation CFD results are discussed and 
compared to conventional cavitation CFD results and measurement results. 

Keywords: cavitation CFD; NACA0015 hydrofoil; boundary layer 

Introduction 
Cavitation CFD prediction functions are built in many commercial codes currently, and are frequently used in the 
development and design of turbomachinery such as pumps, hydraulic turbines and the ships propellers. On the other 
hand, whether the analysis accuracy of them is sufficient or not remains a matter of debate. In Japan, the effect of the 
cavitation coefficient on the lift force of a hydrofoil was analyzed with various kinds of cavitation CFD codes and the 
prediction performance was evaluated in the “Industry-University Collaborative Research Project on Numerical 
Predictions of Cavitating Flows in Hydraulic Machinery” conducted in Turbomachinery Society of Japan from 2009 
to 2011. As a result, it was found that none of these codes gave sufficient analysis accuracy, and the reliability of 
cavitation CFD came into question.(1) Responding to this situation, several groups began studies after the project to 
track down the cause and discuss improvement measures.(2-5) As part of them, this study also conducts an analysis of 
the NACA0015 hydrofoil that was analyzed in the above project, considering the characteristics of cavitation in a 
boundary layer that was not considered sufficiently in the existing analysis, and evaluates its effect on analysis 
accuracy.  

Target of the Analysis 

The target of the analysis is the flow around the NACA0015 hydrofoil installed in a cavitation tunnel. The result of 
an experiment conducted in Marine Propeller Cavitation Tunnel at The University of Tokyo is used as the verification 
data(1). The analytical domain is determined according to this experiment. The shape of the cross section of the 
measuring part in the tunnel is 600 mm in length and 150 mm in width. The chord length of the NACA0015 hydrofoil 
is 150 mm and the width 150 mm. In this study the analysis is conducted under the conditions of the inlet flow velocity 
= 8 m/s (constant) and the angles of attack = 6° and 8°. The analytical domain ranges up to 5C upstream from the 
center of the chord and down to 5C downstream from it, where C is the length of the chord. For details of other analysis 
conditions, see the reference (1). The analysis code used in this study is a commercial cord, ANSYS-FLUENT. In a 
two-dimensional steady analysis, the number of grids is about 90,000, the turbulent model is SST-k-ω model, and the 
cavitation model is the Zwart-Gerber-Belami model(6). 

 
In this study, the analysis result is arranged using the lift coefficient, Cl, with the cavitation coefficient, σ, and the 
static pressure coefficient, Cp, defined below: 
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ABSTRACT

Cavitation erosion is the most important erosion mechanism in Francis turbine

runner blades. For this reason, knowledge of a material’s ability to resist cavitation is

important in defining how suitable it is for use in a Francis turbine. In this study,

three Francis turbine materials were subjected to cavitation erosion in a high-speed

cavitation tunnel. One of the materials was a low-alloy steel, and the other two

were stainless steels. The cavitation tunnel produced an annular cavitation field on

one face of a cylindrical specimen. The test specimens underwent cavitation

erosion until the erosion had reached a maximum penetration depth of about

0.5 mm. The material surface profiles were measured at regular intervals to

calculate volume and mass loss. These losses were compared to those of several

other materials that had undergone the same tests with the same setup and

operational parameters. The materials were compared according to their steady-

state erosion rates. The steady-state erosion rate represents a material’s ability to

resist cavitation erosion once cavitation damage has already started to develop. The

low-alloy steel eroded four times faster than the two stainless steels. One of the

stainless steels tested here (Stainless steel 1) had the lowest erosion rate, along with

another previously tested stainless steel. The other stainless steel (Stainless steel

2) had a slightly greater erosion rate than the first, falling into the same class as

other lower-grade stainless steels and a nickel aluminum bronze alloy. The results

show that in choosing a turbine blade material, stainless steels outperform
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nonstainless ones. The choice of which type of stainless steel to use is significant

in turbines with cavitation problems. The eroded surfaces were analyzed with

scanning electron microscopy in order to study the erosion mechanisms, and

these studies showed that most of the damage is probably due to low-cycle fatigue.

Keywords

cavitation, hydro turbine wear, cavitation erosion resistance

Introduction

The use of renewable energy sources, such as wind or solar power, is increasingly common

in electricity production, which means that a large amount of power with modifiable out-

put is required. The current solution is to make more use of hydropower to regulate the

power grid, as this can respond to the rapidly changing demands for power. However,

when the hydropower turbines have to operate outside their optimum operational values,

they experience cavitation and other disturbances. Cavitation erosion is one of the most

significant mechanisms for wear in hydro machines. Therefore, information about the

turbine material’s ability to resist cavitation erosion is vital in avoiding damage or esti-

mating its extent, or both, after it has occurred.

Cavitation occurs in a hydro machine when the local static pressure of a flow falls

below a certain limit, typically close to liquid vapor pressure. At this point, the liquid

evaporates, forming small vapor bubbles that go with the flow. As the static pressure re-

covers, these bubbles collapse violently. Cavitation erosion occurs when a cavitation bub-

ble collapses near a boundary, such as a turbine blade. The presence of the boundary causes

the cavitation bubble to collapse nonsymmetrically, which leads to the formation of a

micro-jet of water that pierces the bubble and a shock wave caused by the collapsing bub-

ble walls [1]. When this micro-jet of water combined with the collapsing bubble ring hits

the boundary, the stress on the material exceeds its yield stress, resulting in microscopic

damage. This microscopic damage accumulates on the material’s surface, eventually lead-

ing to fatigue and rupture on a macroscopic scale.

The main parts of a Francis turbine that suffer from cavitation erosion, along with

their cavitation types, are: (1) the blade suction-side walls, inlet edge cavitation; (2) the

runner blade trailing edges, travelling bubble cavitation; (3) the runner hub walls, inter-

blade cavitating vortices; and (4) the runner blades, leading edge cavitation [2–4]. An ex-

ample of cavitation damage in Francis turbine runner blades, concentrated on the blade’s

trailing edges, is presented in Fig. 1. Cavitation may also occur in the draft tube vortex rope

of a Francis turbine, but there the cavitation bubbles rarely collapse near any boundary

structures.

The development of cavitation erosion in metals has three to four stages: incubation,

acceleration, steady-state, and deceleration [5–9]. In the incubation period, an initially

virgin material surface experiences plastic deformation, but there is negligible overlap

of the cavitation pits. The material’s ability to resist the onset of cavitation erosion is closely

linked to the length of the incubation period. After the incubation period, the material

erosion rate shifts to the acceleration period, when the initial pits start to overlap, and some

of the material starts to rupture, i.e., break away. In the steady-state period, the material loss

through rupture is in a balanced state. As material is removed, new material becomes ex-

posed to cavitation damage. In the deceleration period, if it is reached, the geometry of the
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material surface becomes so complex that air and vapor remain in the cavities in the

material, thus, potentially damping cavitation impacts and decreasing damage.

There are various methods for assessing a material’s resistance to cavitation erosion.

The ASTM G32 standardized vibratory cavitation apparatus creates a cavitation cloud in

stationary liquid with a vibrating horn (ASTMG32-10, Standard Test Method for Cavitation

Erosion Using Vibratory Apparatus [10]). Hattori, Ishikura, and Zhang [11], Hattori and

Kitagawa [12], and Hattori and Ishikura [13] used this method to compare the erosion rates

of a wide range of different metals. Kendrick, Light, and Caccese [14] used it to compare

metals and composites. The ASTM G134-95 cavitation testing apparatus, Standard Test

Method for Erosion of Solid Materials by a Cavitating Liquid Jet, provides a high-speed liquid

jet that penetrates a static liquid. Cavitation occurs in the turbulent structures in the shear

layer between the jet and the static liquid [15]. Soyama and Futakawa [16] compared multi-

ple metals and several other materials using this method. Karimi [17] studied the cavitation

erosion resistance of a duplex stainless steel with a vortex cavity generator.

Although many materials have been extensively tested with the G32 static liquid test-

ing method, few have been tested with hydrodynamic methods, as such methods generally

require a larger test setup and more complex test setup. The reasons for studying cavitation

erosion resistance in a hydrodynamic testing rig, rather than in a static liquid, have been

highlighted by Karimi and Avellan in Ref. [18] and by Chahine, Franc, and Karimi in

Ref. [15]. In a vibratory cavitation apparatus, such as the G32, the cavitation bubbles

are all virtually the same size, and the cavitation damage is distributed evenly and statically

over the whole specimen. This means that the cavitation mostly attacks the weaker

material phases. In contrast, the hydrodynamic methods produce both different-size bub-

bles and flow vorticity effects, as well as other interactions with the liquid flow. For these

reasons, it is often regarded that a hydrodynamic method, such as was used in this study,

provides a better comparison of materials than the static liquid method.

In their fatigue erosion model, Fortes Patella et al. [19] categorized the fatigue mecha-

nism in cavitation erosion as low-cycle fatigue. Low-cycle fatigue occurs when plastic

FIG. 1

The red circles indicate

cavitation damage in a Francis

turbine runner blade’s trailing

edges.
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deformation occurs with each loading, so that material failure happens after a relatively

low number of loading cycles [20]. Balyts’kyi and Chmiel [21] found a correlation between

cavitation erosion fracture and the low-cycle fatigue resistance of steel alloys. Aboul-

Kasem, Emara, and Ahmed [22] studied the particles removed from the material at differ-

ent stages of the cavitation erosion process using scanning electron microscopy (SEM).

Their study also showed that the erosion mechanism is due to fatigue and that the shape

and size of the removed particles changes as the erosion shifts from the incubation period

to the mass loss period.

In this study, the materials from three Francis turbines were tested: one low-alloy steel

and two different stainless steels (referred to here as Stainless steels 1 and 2). The test setup

was the PREVERO high-speed cavitation tunnel (LEGI Laboratory, Grenoble, France)

[23]. The tunnel creates an axisymmetric cavitation erosion pattern. The resulting cloud

cavitation is very similar to that in a hydrofoil but with a higher intensity. Franc et al. [24]

used the cavitation tunnel to study the cavitation erosion of a 7075 aluminum alloy, a

C95400 nickel aluminum bronze alloy, a 304L stainless steel, and a A2205 duplex stainless

steel, so the materials in this study were compared to those. Deplancke et al. [25] have

studied the erosion of ultrahigh molecular weight polyethylene coatings, using the same

operating parameters as Franc et al. [24], and they found that such coatings are highly

resistant to cavitation. This type of coating could protect against cavitation in hydro ma-

chines, if it were economically feasible.

Material microstructure was attempted to be revealed by polishing, etching, and

observing with an optical microscope. SEM imaging was used to study the cavitation ero-

sion mechanisms and to pinpoint how the erosion evolves. All three tested materials were

observed after they had been subjected to cavitation erosion. The images were taken from

different locations and at different magnifications, allowing an overview of the erosion

mechanisms at different stages of the erosion to be obtained, as all the stages of erosion

coexisted in the eroded specimen, depending on the location of the observed region. The

SEM images also allowed the resulting cracks and removed particles to be studied in detail.

Experimental Setup

The experiments were carried out in a high-speed cavitation tunnel, an image and a sche-

matic of which is shown in Fig. 2. The principle is that 20-mm-thick specimen disks of

100-mm diameter were placed in the radially diverging test section. The specimen disk

thus acts as an opposing wall onto which the inlet nozzle directs the incoming flow.

The incoming flow stagnates in the middle of the specimen and then follows the radially

diverging channel, which has a smaller cross-sectional area than that of the inlet nozzle.

Here, the flow velocity reaches its maximum and the static pressure its minimum. This is

where cavitation is initiated (inception). As the channel diverges, the flow velocity de-

creases, the static pressure increases, and cavitation closure occurs.

The cavitation number in the tunnel is defined in Eq 1:

σ =
Pd − Pv

Pu − Pd

(1)

where:

Pd= pressure downstream of the test section, Pa,

Pu= pressure upstream of the test section, Pa, and

Pv= liquid vapor pressure, Pa.
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The cavitation number in this study was 0.87, corresponding to an upstream pressure

of about 4 MPa and a downstream pressure of about 1.86 MPa. The downstream section is

pressurized by nitrogen gas, and a pump linked to a frequency transformer is used to

control both the upstream pressure and the flow velocity in the tunnel. Downstream pres-

sure may be set between ambient pressure and about 3 MPa, and the maximum upstream

pressure is 4 MPa. Similar cavitation tunnels can be studied in more detail in [6,23,26].

Fig. 2 presents the overview and schematic of the cavitation tunnel, along with the material

specimen and specimen holder.

The test section consists of an inlet nozzle with a 16-mm diameter, followed by a

radially diverging channel with a 2.5-mm thickness. The cross-sectional area of the chan-

nel drops by a factor of 1.6 at the beginning of the radially diverging part. This is where

cavitation begins. The cavitation bubbles collapse somewhere between 19–32 mm radial

distance from the center of the specimen, with the maximum erosion occurring at a dis-

tance of 22 mm from the center.

The main components of the cavitation tunnel are the downstream tank, the pump,

and the test section, as presented in Fig. 2. The downstream tank is pressurized by a sep-

arate pressurization tank above the downstream tank. The tunnel is filled with water so

that the pressurization tank is almost full; nitrogen gas is added from above through a

pressure regulator. The pressure regulator controls the downstream pressure and thus,

the overall pressure level of the tunnel. The pump, which is located below the tunnel,

increases the upstream pressure. The upstream pressure and the flow speed are controlled

by changing the pump rotation speed. Most of the pressure drop occurs in the test section

when the tunnel is in a cavitating state.

Three Francis turbine runner blade materials were tested: one low-alloy steel and two

stainless steels (named low-alloy steel and Stainless steels 1 and 2). All of the turbines in

question were cast, but the exact details of the manufacturing process of the runner blades

or the material specimens are the manufacturers’ confidential knowledge. The low-alloy

steel specimen was cut from an old turbine blade, as well as Stainless steel 1. Stainless steel

2 was a separately cast specimen, cast along with the turbine blades. All cutting was water

FIG. 2 The cavitation tunnel used in this study, with schematics and the specimen. The surface profiles were measured in the eight

measurement zones or lines, one profile for each. The zones were named so that 0° corresponds to “north,” 45° to “northeast,”

and so on.
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jet cutting, so it was assumed that any changes in the microstructure because of specimen

manufacturing were insignificant. Initial polishing and evening of the surface were done by

rotating sand paper grinding, with water added on the paper. Any major heating of the

specimen was thus avoided.

The specimens were first mirror polished so that the surface was subject to as little

initial strain as possible. The surface of the specimen had to be virtually untouched in order

to measure the cavitation incubation period as accurately as possible. To achieve a mirror-

polished surface, successive diamond pastes with grain sizes of 3 μm and 1 μm were used

with rotating polishing tissues. The surface was finished off using a colloidal silica suspension

with a grain size of 0.03 μm and then with yet another type of rotating polishing disk.

As the specimen mass was large compared with the mass of the eroded material

(1.2 kg compared with only a few grams), it would be difficult to accurately measure

the mass loss because of cavitation erosion by weighing. For this reason, the volume

and mass loss were defined through profile measurements. The evolution of the erosion

was typically measured at four- to five-hour intervals with a contact profilometer (Form

Talysurf 50, Taylor Hobson, Leicester, UK) with a 2-μm spherical diamond point pro-

viding the contact with the surface. The erosion evolution could be calculated from these

surface profiles, which were measured along a radial line running from the center of the

specimen center to its outer edge.

Initially, four profiles for each measurement were taken for the low-alloy steel speci-

men, but this was later found to be inadequate because the erosion evolution had some

discrepancies within one individual specimen, so eight profiles were used for the later

measurements. Eight profiles had been used for the stainless steel specimens right from

the start, as eight corresponded to the eight different azimuthal angles of the specimen (see

Fig. 2 for visualization). In order to minimize potential errors, each profile was measured

five times along parallel lines, each of them one μm apart, and then these values were

averaged out to produce one profile. The specimen underwent erosion until the maximum

measured penetration depth in at least one profile reached about 500 μm. This took about

25 hours for the low-alloy steel and about 65 hours for both the stainless steels.

The surfaces of the fully eroded specimens were analyzed with an SEM (Leo S440,

Leica Microsystems, Wetzlar, Germany). In order to form an accurate estimation of all the

erosion mechanisms in the material, a great variety of images were taken, from 20 times

magnification to up to 5,000 times magnification (20–5,000×) from different areas of the

specimen, including those areas with little to no erosion, up to the maximum erosion.

A high strain rate is typical in cavitation impacts [27]. The material parameters for the

specimens were studied with split Hopkinson pressure bar testing, which is a common

testing method for stress–strain relationships with a high strain rate. A strain rate of

2,000 1/s was used for all the steels in this study, i.e., the low-alloy steel and the Stainless

steels 1 and 2. As the strain rate is not constant in the plastic region of the specimens,

Young’s modulus is not measurable with this method, so only the yield stresses were ob-

tained and used to compare the materials.

Calculating Steady-state Volume Loss Rate

Ten to twenty profiles were obtained for each azimuthal angle for each of the specimen

disks, each corresponding to an instant of time in the erosion process. Fig. 3 shows the

erosion evolution as a function of time for the low-alloy steel specimen with an azimuthal
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angle of 0°. The maximum penetration depth varies through the different azimuthal angles

for the same specimen but is always located in the same radial location, as the erosion

pattern is axisymmetric.

The first profile plotted in Fig. 3 shows the transition area between the incubation

and acceleration periods that occurs after 46 minutes of exposure to cavitation. The ero-

sion on the specimen is visible to the naked eye, and in the measured profiles, it appears as

surface roughness. The blue curve shows the erosion after 25 hours (1,500 minutes), which

was the total exposure time of the low-alloy steel and corresponds to a penetration depth of

about 750 μm in the specimen surface for the azimuthal angle of 0° (about 450 μm for

angles 90° and 270°). The initial surfaces, presented in Fig. 4, were virtually flat compared

with the advanced erosion stages.

The initial profiles in Fig. 4 are only for one azimuthal angle, but the profiles for the

other angles are of a similar order of magnitude. The initial profiles were separated from

the subsequent ones, although this procedure has only a marginal effect, as the roughly

half-micrometer fluctuations are negligible compared with the up-to-700 micrometer pen-

etration depths. Values above zero in depth were observed for all the materials, especially

in the incubation period. This is due to the piling up of the eroding metal because of the

cavitation impacts. This is expected in materials with a high ratio between the Young’s

modulus and the yield stress, such as most metals [7].

As cavitation is assumed to be axisymmetric in the test section, one would assume an

axially uniform erosion rate in the disk. To mitigate possible anomalies in the axisymme-

tricity of the erosion, the stainless steel specimens were turned 90 degrees in the specimen

holder after each profile measurement. This procedure was introduced after the experi-

ments with the low-alloy steel, as nonuniformities had been observed in these. Even with

this procedure, the erosion depth was not equal in all the specimen azimuthal angles.

Fig. 5a–c shows photographs of the tested specimen materials after their respective full

exposure times.

The volume loss at a given time for a given specimen was calculated from the erosion

profiles, as shown in Fig. 4. To calculate the total volume loss over the specimen, the depth

value for each point was multiplied by the circumference. This meant that the volume loss

FIG. 3 Cavitation erosion evolution of low-alloy steel. For the sake of clarity, only chosen profiles corresponding to different exposure

times are displayed.
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was calculated for each profile under the assumption that the erosion profile would be the

same across the whole specimen. The average volume loss was calculated from the profiles

(either 4 or 8). Finally, the mass loss was calculated by multiplying the volume loss by the

material density.

Results

MATERIAL PROPERTIES

An external operator tested the chemical composition of the materials and these are listed

in Table 1.

The materials actually contained minor traces of several other elements, but these

were irrelevant and have been excluded from Table 1. The materials’ mechanical strength

was studied with split Hopkinson pressure bar testing, as cavitation impacts tend to have a

FIG. 4 Initial surface profiles for the low-alloy steel and Stainless steels 1 and 2.

FIG. 5 Material specimens after full exposure time: (a) low-alloy steel, 25 hours, (b) Stainless steel 2, 70 hours, (c) Stainless steel 1,

65 hours. The low-alloy steel is oxidized because of contact with water during the test.
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high strain rate. The stress–strain curve of a split Hopkinson pressure bar test is similar to

that of conventional compression tests. However, the strain rate changes significantly in

the elastic region, and because this impeded the accurate calculation of the Young’s modu-

lus, the yield stress was used. The yield stress is a significant parameter for determining

whether a cavitation impact has damaged a material [28]. The yield stress may be extracted

from the stress–strain curves by fitting a linear equation to both the elastic and the plastic

part of the curve and then finding the intersection of these equations. The yield stresses at

2,000 1/s strain rate for all three steels tested in this study are listed in Table 2. For the

comparison materials, the values for the yield stresses are taken from the literature on

conventional compression testing. The conventional pressure test value is also listed

for the low-alloy steel, but there were no listed values for the two stainless steels.

To characterize the material microstructure, the stainless steel specimens were pol-

ished, etched, and then studied through optical microscopy. Two examples of the micro-

scope images are presented in Fig. 6a–b. The microstructure study concentrated only on

the two stainless steels, as the low-alloy steel was considered an outdated turbine material,

and it was only used for erosion rate comparison.

According to the optical microscope analysis, Stainless steel 1 in Fig. 6a is fully mar-

tensitic, with small amounts of carbides and other precipitates, as well as larger slag in-

clusions. The precipitates (possibly carbides) are too small to properly resolve by optical

microscopy. The microstructure of Stainless steel 2 in Fig. 6b is predominantly marten-

sitic, with a small amount of residual δ-ferrite and carbides and other precipitates, which

have a bimodal size distribution. The dark lines in Fig. 6a emerge from the prior austenite

microstructure. They were not found in the other specimen, both because of the etching

TABLE 1

Material chemical properties. The element contents are expressed as mass percentage.

Material Fe C Cr Si Mn P S Ni Mo W

Low-alloy steel 98.69 0.205 0.0051 0.205 0.551 0.033 0.028 0.026 0.0032 0.0077

Stainless steel 1 80.00 0.046 13.80 0.238 0.726 0.026 0.014 4.385 0.201 0.219

Stainless steel 2 81.67 0.02 12.6 0.45 0.58 0.025 0.005 4.2 0.45 –

TABLE 2

Steady-state mass loss and volume loss rates of the studied materials.

Material

Steady-state volume

loss rate (mm3/h)

Steady-state mass

loss rate (mg/h)

Material density

(kg/m3)

Yield stress

(MPa)

Low-alloy steel 8.95 69.79 7,800 [34] 228, 259 at (2,000 1/s)

Stainless steel 1 1.79 13.93 7,800 452 at (2,000 1/s)

Stainless steel 2 2.72 21.23 7,800 477 at (2,000 1/s)

7075 Aluminum alloy specimen 1 7.88 22.12 2,810 [35] 103–145 [35]

7075 Aluminum alloy specimen 2 8.18 22.99 2,810 [35] 103–145 [35]

A2205 Stainless steel specimen 1 2.21 17.27 7,820 [36] 448 [36]

A2205 Stainless steel specimen 2 1.31 10.25 7,820 [36] 448 [36]

304L Stainless steel specimen 1 3.29 26.29 8,000 [37] 210 [37]

304L Stainless steel specimen 2 2.83 22.64 8,000 [37] 210 [37]

C95400 Nickel aluminum bronze specimen 1 2.86 21.34 7,450 [38] 205 [38]

C95400 Nickel aluminum bronze specimen 2 2.30 17.17 7,450 [38] 205 [38]
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treatment not being optimal for the material and the apparently much larger prior

austenite grain size.

The notable difference between the microstructures is the considerably finer prior

austenite grain size of Stainless steel 1, measured as 37 μm, with a standard deviation

of 10 μm, using the mean lineal intercept method as defined by ASTM E112, Standard

Test Methods for Determining Average Grain Size [29]. The prior austenite boundaries

of the specimen Stainless steel 2 could not be resolved. However, based on the visual ob-

servation of block and packet size and the configuration of the lath structure, the prior

austenite grain size of Stainless steel 2 is much larger, by approximately an order of mag-

nitude. The prior austenite grain size has been shown to correlate with martensite packet

and block size [30], which in turn has a negative correlation with strength. It has been

shown that impact resistance and plasticity are particularly sensitive towards prior aus-

tenite grain size [31,32], possibly explaining the better resistance of Stainless steel 1 to-

wards cavitation impacts.

STEADY-STATE EROSION RATE

The volume loss of the eroded materials as a function of time is presented in Fig. 7. The

three specimens tested in this study, i.e., the low-alloy steel and Stainless steels 1 and 2 are

presented, as are two specimens each of the other materials tested by Franc et al. [24].

Their specimens were smaller than those used for this study, as they were fitted to a speci-

men holder that holds eight specimens at a time. Their small 16-mm-diameter disks were

eroded simultaneously, but for ease of comparison, the erosion of Franc et al.’s small disks

was calculated as if they covered the same area as our large disks.

The volume loss curves of the low-alloy steel and both specimens of the 7075 aluminum

alloy follow almost the same line, these being the fastest to erode. As some of the specimens

had eroded more than the others, defining the steady-state erosion rate from only the final

erosion rate is not a fair comparison. The volume loss rate seems to fluctuate even at the

relatively steady states of erosion, as presented in Fig. 8. For this reason, the steady-state

volume loss rate is rather difficult to define. Therefore, a decision was made to define the

volume loss rate as the average of all the volume loss rates between 50 mm3 and 100 mm3.

The incubation time was not used in comparing the materials in this study, because

the variance between similar materials was too great, so its effects were removed by linear

curve fitting to the linear part of the volume loss curves in Fig. 7 and then defining the

x-axis intersection of the linear fit. To define the average volume loss rate between 50 mm3

FIG. 6

Optical microscope images of

Stainless steels (a) 1 and (b) 2.
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and 100 mm3, a fourth order polynomial function was fitted to the volume loss data. The

steady-state volume loss rate was calculated as in Eq 2:

V loss rate =
100 mm3

− 50 mm3

t100 − t50
(2)

where:

t100= time when erosion volume is 100 mm3, s, and

t50= time when erosion volume is 50 mm3, s.

FIG. 7 Volume loss of eroded materials.

FIG. 8 Volume loss rate as a function of volume loss.
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The values for t100 and t50 are instants interpolated from the polynomial fitted to the

experimental points when the volume losses are 100 mm3 and 50 mm3, respectively.

As previously explained, the specimens in our study were a different size to those used

in the comparison study. The average steady-state erosion rates and the high strain rate

yield stresses for all of the compared materials are presented in Table 2.

The material densities presented in Table 2 are general values, as they were not mea-

sured for the materials or individual specimens used in our study. For the two stainless

steels, densities are assumed to be the same as that of the low-alloy steel. In the present

work, the volume loss rate is preferred over the mass loss rate for defining the erosion rate,

thereby reducing the importance of defining the densities accurately.

A lower steady-state volume loss rate indicates higher cavitation erosion resistance.

Using this metric, our results show that the low-alloy steel has the poorest resistance to

cavitation, falling into the same category as the 7075 aluminum alloy in terms of volume

loss rate. The 304L stainless steel has a moderate resistance to cavitation and Stainless steel

2 falls into the same category as the C95400 nickel aluminum bronze alloy. Stainless steel 1

and A2205 stainless steel are both superior to all the other tested materials.

The low-alloy steel has a lower yield stress than the two stainless steels, with a strain

rate of 2,000 1/s. The low-alloy steel was also tested in a conventional compression test, so

both values are presented in the table. The other materials were not tested for their yield

stresses in this study, so those values are taken from the literature. The three tested ma-

terials are not comparable to the rest of the specimens, as they were measured at different

strain rates. However, they may be compared separately. The yield stresses for Stainless

steels 1 and 2 are almost equal, although they have different erosion rates. For the other

materials, the yield stresses correlate with the erosion rates, so that a higher yield stress

corresponds to a lower steady-state erosion rate. It is worth noting that the low-alloy steel

has a higher yield stress than the aluminum alloys (if one ignores the different strain rates).

It is noticeable that the low-alloy steel suffered greater mass loss than the 7075

aluminum alloy. In addition, the low-alloy steel started to rust during the experiments

as it was in contact with water. This may also have contributed to its high erosion rate.

As the metal oxidizes, it degrades the quality of the surface, which is then removed by

the cavitation, continuously exposing fresh surface to the water, thus increasing the

corrosion rate [33].

An interesting detail that surfaced from this comparison of the two-turbine runner

stainless steels is that the one that performed better came from a Francis turbine designed

in the 1970s, while the worse-performing one came from a much more recent Francis

turbine design (2010s). The low-alloy steel was from a turbine constructed in the 1930s,

which was later decommissioned. This detail shows that, at least in this case, cavitation

erosion resistance was probably not a known parameter when making material choices at

that time. Shifting from steels to stainless steels seems to increase the metal’s resistance to

cavitation erosion significantly.

As mentioned previously, the erosion rate is dependent on the azimuthal angle, as the

evolution of the erosion is not perfectly uniform. This nonuniformity may not have been

apparent with the small specimens used in the experiments by Franc et al. [24]. An exam-

ple of the nonuniformity of erosion evolution is presented in Fig. 9, in which eight curves

for eight different azimuthal angles are presented.

The reason for the differences in the erosion rates could be because of differences in the

composition of the material within just the one specimen. As cavitation is such a complex

process, it is possible that even small differences in the specimen’s composition and
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microstructure would lead to different erosion rates. These may that persist even if the ero-

sion process goes on for a long time. The erosion rates do not seem to fall clearly around a

single value as the erosion evolves. The strength of cavitation erosion in the cavitation tunnel

is assumed to be axisymmetric, and even if this is not absolutely true, turning the specimen

between each testing intervals should have negated any nonaxisymmetrical effect.

To study the differences in steady-state volume loss rates within one specimen, the

rates were calculated using the same method as before for the four azimuthal angles for the

low-alloy steel and for all eight azimuthal angles for the two stainless steels. The resultant

steady-state volume loss rates are presented in Table 3.

The differences between the specimen azimuthal angles in the steady-state volume

loss rates are significant, especially for the low-alloy steel. The low-alloy steel was not

turned between measurements, so nonuniformity in the erosion potential of the cavitation

tunnel might be a major reason in the differing erosion rates. The erosion rate follows a

pattern in which a relatively high value always has a counterpart falling into the same

diagonal. This raises the question as to whether the specimens were completely isotropic.

It was initially assumed that they were, as they were manufactured by casting and were cut

using methods that do not overly heat the specimen. Small differences in the

FIG. 9 Volume loss of Stainless steel 2 for all eight specimen azimuthal angles. The incubation time was calculated for each azimuthal

angle separately and was then subtracted from the exposure time to negate its effect.

TABLE 3

Steady-state volume loss rates of the studied materials for different specimen azimuthal angles. The specimen azimuthal angle is

presented in degrees so that 0° degrees means north and 180° degrees means south on the circular specimen surface.

Material

Rate 1

(mm3/h) 0°

Rate 2

(mm3/h) 45°

Rate 3

(mm3/h) 90°

Rate 4

(mm3/h) 135°

Rate 5

(mm3/h) 180°

Rate 6

(mm3/h) 225°

Rate 7

(mm3/h) 270°

Rate 8

(mm3/h) 315°

Low-alloy steel 11.62 5.44 12.38 3.63

Stainless steel 1 1.40 1.70 2.02 2.24 1.52 1.58 2.30 2.21

Stainless steel 2 4.02 2.94 3.02 2.95 3.56 2.66 2.43 2.27
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microstructure are expected, as the material solidifies at a different rate depending on the

location inside the cast. The fact that the steady-state volume loss rate fluctuates signifi-

cantly depending on the azimuthal angle clearly indicates that the cavitation erosion re-

sistance of a material cannot properly be defined without looking into its microstructure.

SEM

SEM images with various magnifications were taken of the specimen surface in order to

make this a qualitative study. Fig. 10a–c shows three panoramic images of the eroded

areas of the studied materials taken with a 20 ×magnification. These images show the

center of the specimen on the left, and the right is towards the edge of the specimen.

Although the areas of maximum erosion in the images in Fig. 10 are not exactly

aligned, in the actual specimens, the erosion occurred in the same radial location. The

discrepancy is due to the image processing, as the panoramic images were constructed

from multiple smaller images.

The erosion in the low-alloy steel in Fig. 10a begins abruptly compared to the stain-

less steels in Fig. 10b–c. The erosion in the downstream region after the maximum erosion

depth is about 6-mm long for all three materials, while in the upstream region, although it

is approximately the same for the stainless steels, it is only about 2-mm long for the low-

alloy steel (based on visual observations from these images). The pits and erosion in the

upstream region of the stainless steels consist of individual pits and surface roughness,

placing the stage of erosion in those regions as somewhere between the incubation

and acceleration periods. The downstream regions of all the specimens are rougher than

the upstream regions, putting these regions in the acceleration, or even the steady-state,

period of erosion evolution.

The exposure time of the low-alloy steel was much lower than that of the stainless

steels. As the upstream damage to the stainless steels consists of single pits and surface

roughness, it is concluded that the rate of cavitation impacts is much lower upstream of the

maximum depth than it is in other regions. Because of the low-alloy steel’s lower exposure

time, there might be less time for such individual pits to form in the upstream region.

FIG. 10

Panoramic SEM images of

(a) low-alloy steel, (b) Stainless

steel 1 and (c) Stainless steel 2

with a 20 ×magnification. Flow

direction from the specimen

center towards the edges is

marked with the red arrows

between the images.
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Figs. 10 and 11 show SEM images of the low-alloy steel at a greater magnification

(200×). The evolving cracks can be seen everywhere, so it may be assumed that these cracks,

and any subsequent ruptures, would be a major factor in the rate of material loss, as expected.

In Fig. 11, the eroded surface is uneven and the “valleys” of the erosion pits seem to be

deep compared to the surrounding “mountains.” The actual depth of the pits could not be

defined using the SEM. This image with 200 ×magnification shows the overall structure of

the highly eroded surface, but it does not tell us much about the erosion mechanisms.

When a chunk of the material is removed by rupture, it leaves a smooth surface behind,

as can be seen in Fig. 12. The smooth surface is then attacked by subsequent cavitation

impacts, leaving small pits that eventually start to overlap.

The 1,000 ×magnification in Fig. 12 offers more insight into the erosion mechanisms.

The surface in the middle of the image is relatively smooth, with some small widely-spaced

pits in it. The diameter of the small pits is in the range of one μm, which corresponds to

small cavitation impacts. One possible cause for such a smooth surface could be that a

relatively large chunk, microscopic in actual size, of material was removed quite recently.

Once the large chunk had been removed, the new smooth surface was only exposed to

cavitation for such a short time (the time remaining in the test period) that only the small

individual pits are seen.

Fig. 13, at 2000 ×magnification, shows the progression of a crack front.

A series of lines, identified by the red arrows, are visible in Fig. 13. As each new

impact of sufficient amplitude hits the surface of the material in the vicinity of the crack,

the crack front is supposed to jump from one line to the next. This crack propagation ends

up with the removal of a micropiece of material that makes the plane of the propagated

crack visible, as can be seen in Fig. 12. This pattern is commonly associated with low-cycle

fatigue, which supports the idea that cavitation erosion at the intensity generated in the

cavitation tunnel is most probably due to low-cycle fatigue.

FIG. 11

Low-alloy steel SEM image

erosion detail with 200 ×

magnification. Some of the

cracks are marked by red

crosses.
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FIG. 12 Stainless steel 1 SEM image erosion detail with 1,000 ×magnification. The red lines highlight a relatively smooth surface.

FIG. 13 Successive crack front positions for Stainless steel 1 with 2,000 ×magnification. The schematic in the top-right corner

describes the crack propagation and the development of the “beach marks.”
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Fig. 14 shows a well-developed crack propagation process with a presumably soon-to-

be-removed chunk of material.

The image with 2000 ×magnification in Fig. 14 offers some insight into the removal

of individual chunks of material. The chunk in the middle of the image is surrounded by

large cracks, and it is covered with plastic deformation resulting from cavitation impacts. If

the erosion were to continue, the cavitation impacts hitting the chunk of loosened material

would eventually cause it to break away.

These observations all support the results and assumptions made in [19,21,22],

which is that the erosion mechanism in the mass loss period is probably caused by

low-cycle fatigue. Virgin surfaces with several small pits showing where tiny particles have

subsequently been removed were found throughout the specimens, as were cracks and

soon-to-be-removed chunks.

Conclusions

Steady-state cavitation erosion rates were studied for one low-alloy steel and two stainless

steels (Stainless steel 1 and 2). They were compared to those of 7075 aluminum alloy,

C95400 aluminum bronze alloy, 304L stainless steel, and A2205 stainless steel. Steady-state

volume loss rate was defined as the average volume loss rate between 50 mm3 and

100 mm3 total volume loss, to mitigate fluctuation and to provide a fair comparison of

the materials. It was shown that to properly assess steady-state erosion rate, one has to

FIG. 14 A SEM image of Stainless steel 2 erosion with 2,000 ×magnification. The red lines highlight the assumedly

soon-to-be-removed material chunk marked by the red A-letter.
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average several erosion processes through the specimen. The stainless steels were speci-

mens from turbines that are of a type that is still in use, so they are relevant in the field of

turbine design.

The low-alloy steel had the poorest cavitation erosion resistance, along with the 7075

aluminum alloy. In this study, 304L stainless steel, C95400 aluminum bronze alloy, and

Stainless steel 2 had a better resistance than the other materials, while A2205 stainless steel

and Stainless steel 1 had the highest cavitation erosion resistance. It was found that the

erosion rates differ significantly even within one specimen. This means that assessing a

single value for cavitation erosion resistance is problematic, because factors, such as small

differences in the local material composition or microstructure, might change the erosion

rates significantly. Even minor anisotropies in the specimen material might be the cause of

significantly differing erosion rates, as it was observed that the erosion rates are either high

or low along the same diagonal in a circular specimen. This means that in hydro machines,

cavitation erosion rates may also differ greatly, depending on how, for example, the casting

process leads to different grain sizes in the machine.

Materials with low steady-state erosion rates and therefore, high cavitation erosion

resistances, generally had a higher yield stress. The yield stress, however, cannot be used

alone to estimate the erosion rate, as Stainless steel 2 had a slightly higher yield stress than

Stainless steel 1, for example, but it also had a higher erosion rate. Furthermore, the low-

alloy steel had a higher yield stress than the 7075 aluminum alloy, but both materials

eroded at the same rate. This was probably due to the combined effect of corrosion

and cavitation erosion.

The material microstructure analysis showed that Stainless steels 1 and 2 consist of

almost 100 % martensite and that the first one has a significantly smaller prior austenite

grain size. The prior austenite grain size is related to the impact strength and plasticity, so

this could explain the difference in erosion rate between these two martensitic steels.

SEM images were taken from three eroded specimens, and they were analyzed to

observe the erosion mechanisms. The images showed the dominating erosion mechanism

to be, most probably, low-cycle fatigue. Virgin areas were found, with recently removed

material and pits resulting from plastic deformations. Cracks and presumably soon-to-be-

removed chunks of material were observed throughout the specimens. So-called “beach

marks” were also found, indicating towards low-cycle fatigue.
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a b s t r a c t 

Cavitation erosion is a concern for most hydraulic machinery. An especially damaging type of cavitation 

is cloud cavitation. This type of cavitation is characterized by a growth-collapse cycle in which a group 

of vapor bubbles first grows together in a low-pressure region and then collapses almost simultaneously 

when the pressure recovers. Measuring the frequency of these collapse events is possible by acoustic 

emission (AE), as demonstrated in this study, in which a cavitation tunnel is utilized to create cloud cavi- 

tation in the vicinity of a sample surface. These samples were equipped with AE sensors, and the initially 

high frequency AE signal was demodulated to detect the relatively low frequency cloud cavitation shed- 

ding. It was found that when the cavitation number is increased, AE successfully detects the changes in 

this frequency, confirmed by comparing the results to video analysis and to simulations from literature. 

Additionally, the frequency increases when cavitation erosion progresses, thus providing means to track 

the erosion stage. It is concluded that the presented method is suitable for both detecting the transi- 

tion from cloud to sheet cavitation and the erosion evolution in the experimental cavitation tunnel. The 

method could probably be extended to non-intrusive hydraulic machine monitoring, as this type of cloud 

cavitation is common in hydrofoils. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Cavitation is characterized by the growth and collapse of vapor 

bubbles in a liquid. It can be observed either in a static liquid or 

in a liquid flow due to decrease and the subsequent recovery of 

the static pressure. The collapse of these bubbles potentially dam- 

ages adjacent surfaces, as a result of the cumulated plasticity in- 

duced at micrometer scale by each bubble collapse. Since the bub- 

bles are typically quite numerous and the duration of exposure to 

cavitation is generally long, damage tends to accumulate and reach 

macroscopic levels. This causes serious harm to the structural in- 

tegrity and flow performance of hydraulic machines, pipes, and 

valves. This damage is typically difficult to avoid when searching 

for the maximum benefit of an equipment at the expense of the 

ideal conditions of use. Additionally, the extent of erosion is not 

usually well known during operation, as it is difficult to monitor 

in situ. Cavitation often occurs inside flow channels, where contin- 
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uous visual observation may be difficult and costly, if not impossi- 

ble. 

This study focuses on cloud cavitation, which is a common type 

of cavitation observed in various hydraulic equipment and in par- 

ticular in hydrofoils. Cloud cavitation is a highly eroding type of 

cavitation. A cloud of vapor bubbles forms in the leading edge of 

a hydrofoil, due to an increase in the flow velocity, which leads to 

the decrease in static pressure. It travels downstream the foil, and 

collapses towards the trailing edge, if the static pressure recovers 

sufficiently along the foil. The cloud is not static; it grows and col- 

lapses periodically following a mechanism of growth, formation of 

a re-entrant flow, shedding, and collapse. The shedding frequency 

depends on flow velocity, surface quality, overall pressure, temper- 

ature and surrounding liquid quality. ( Brennen et al., 20 0 0; Franc 

and Michel, 2005; Nishimura et al., 2014; Gnanaskandan and Ma- 

hesh, 2016; Hsiao et al., 2017 ) 

The current study can be divided into two main approaches in 

detecting and utilizing the shedding frequency: (1) finding the cor- 

relation between the cavitation number and the cloud shedding 

frequency via acoustic emission (AE) and confirming the results 

through comparison to high-speed video analysis and to simula- 

tion results by other authors, and (2) tracking cavitation erosion 

evolution through shedding frequency measured via AE. Material 

samples that were fitted with AE sensors were eroded in a cavita- 

https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.009 

0301-9322/© 2019 Elsevier Ltd. All rights reserved. 
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tion tunnel that creates cloud cavitation. Changes in the cloud cav- 

itation shedding frequency is not a common way to monitor cavi- 

tation erosion, but with the approach in this study, it proved to be 

an efficient method. A series of erosion tests were conducted, along 

with a ‘ramp test’ to study the effects of the cavitation number. In 

the ramp test, the cavitation number was gradually increased, to 

study the changes in the cloud shedding phenomenon. 

Acoustic emission is defined as elastic waves traveling in a solid 

material ( Holroyd, 20 0 0; Grosse, 20 08 ). These elastic waves are the 

result of energy released in the material. The energy release may 

be due to changes in internal stresses, external impacts or surface 

contacts. As an AE source, cavitation represents external impacts, 

resulting from bubble collapses near a solid boundary. AE has a 

wide frequency band, resulting from wave front reflections in the 

solid medium, the range being typically from 100 kHz to 1 MHz 

( Pollock, 1986 ). Two main types of sensors exist: the resonance 

type and the broadband sensor, with the main difference being 

the damping properties in sensor structure. They are placed on a 

solid surface that has a good transfer path to the signal source. 

AE is a tempting method in monitoring cavitation, as it is non- 

intrusive and sensors can be placed in the machine structure. The 

main challenge is the interpretation of the results, as the signal 

voltage is not easily transformed into any physical quantity ( Ohtsu 

et al., 2016; Achenbach, 1975; Inaba, 2016; Trampe Broch, 1984 ). 

As far as the authors know, AE has been used in cavitation de- 

tection and erosion intensity evaluation, but not in erosion evo- 

lution tracking. AE detects the incipience of cavitation efficiently 

( Alfayez and Mba, 2005; Neill et al., 1997 ), enabling early detec- 

tion of possibly harmful cavitation, for example in journal bear- 

ing lubrication films ( Poddar and Tandon, 2016 ). Potentially dam- 

aging cavitation occurs typically close to surfaces. Indeed, bubbles 

collapsing in the free flow induce pressure shocks, but do not 

damage the surfaces that are located far away. Therefore, prop- 

erly placed AE sensors detect only the collapses occurring near the 

fluid/structure interface that lead to impacts towards the material 

surface ( van Rijsbergen et al., 2012 ). The non-damaging collapse 

events happening far away from the surface lead to no significant 

sensor response. 

The presented approach begins by demonstrating the applica- 

bility of AE in shedding frequency monitoring by comparing the 

detected frequencies to those calculated from a video analysis and 

to those from simulations by Gavaises et al. (2015) . Then, the 

method is used in tracking how the frequency changes when the 

material surface erodes, thus modifying the flow field in the cavita- 

tion test section. The presented method provides an effective way 

to monitor changes in cloud shedding frequency, due to erosion 

evolution or changes in flow velocity, provided the cloud shedding 

phenomenon is pronounced enough. 

2. Experimental program 

In the experiments, two different stainless steel samples were 

eroded in a high-speed cavitation tunnel, while recording AE sig- 

nal. A ‘ramp test’ of varying cavitation number was also performed. 

The authors of Gavaises et al. (2015) provided their video record- 

ings of the cavitation tunnel, which were completely reanalyzed in 

this study to complement the AE results concerning the cavitation 

cloud shedding frequencies. 

2.1. Testing equipment and procedure 

The cavitation test rig was the PREVERO cavitation tunnel 

( PREVERO, 2018 ). The data acquisition board was a PAC PCI-2, with 

two sensors: the PAC R15D resonance type sensor, and the PAC 

D9203b broadband sensor, both used with a PAC 2/4/6 preampli- 

fier. The preamplifier had a 100 kHz to 400 kHz band-pass analogue 

Fig. 1. Schematics of the cavitation tunnel test section and the AE setup, and a 

photograph of an eroded material sample fixed to the sample holder. Areas A-D are 

later used in the video analysis in Figs. 3-7 . 

filter for the R15D and a 100 kHz to 1200 kHz one for the D9203b. 

The sampling rate was 5 MHz per channel. The data-acquisition 

software was PAC AEWin TM and the signals were further analyzed 

in Matlab TM . 

The cavitation tunnel consists of a water loop, a test section, a 

pump, and a pressurizing tank, along with pressure, temperature, 

and flow meters. The tunnel is pressurized by an external nitrogen 

tank connected to the downstream tank of the tunnel. Below the 

downstream tank is the pump that has a frequency regulator to 

control rotation speed, therefore controlling the upstream pressure 

and flow velocity of the tunnel. On the same level with the down- 

stream tank is the test section where cavitation occurs. The pres- 

sure loss in the test section is the dominating pressure loss source 

in the tunnel. The cavitation tunnel was operated with a constant 

cavitation number of 0.87 for the mass loss tests, and with a vary- 

ing cavitation number for the ramp test. The cavitation number σ

in the tunnel is defined as ( Franc et al., 2012 ): 

σ = 
P d − P v 

P u − P d 
(1) 

where P u is the tunnel upstream pressure or the pressure before 

the test section, P d is the tunnel downstream pressure or the pres- 

sure after the test section, and P v is the saturated vapor pressure. A 

constant cavitation number, regardless of the overall pressure level, 

leads to equal radial position of the cavitation closure on the ma- 

terial sample ( Gavaises et al., 2015 ). The pressure difference P u –P d 
is linked to the overall flow velocity, which is a significant con- 

tributor to cavitation aggressiveness. If the upstream pressure is 

increased, the cavitation number decreases; therefore, to retain a 

constant cavitation number, the downstream pressure needs to be 

increased. The rise in overall pressure level corresponds to the in- 

crease of cavitation aggressiveness ( Franc et al., 2012 ). 

The samples are cylinders of 100 mm diameter and 20 mm 

thickness. They have one flat, uniform, and initially mirror-polished 

face for cavitation erosion tests. The other face, or the back of 

the sample, is used for fixing the sample to the sample holder by 

a screw in the center. The test section is an axisymmetric, radi- 

ally diverging channel, one channel wall being the tested material 

sample. The nozzle directs a water jet in the middle of the sam- 

ple, where the water flow stagnates and diverges radially. The flow 

cross section area drops to 62.5% from the original, thus dropping 

the static pressure under the critical value for cavitation inception. 

As the flow further diverges and the static pressure increases due 

to increasing cross section area, cavitation closes, leading to ero- 

sion of the sample and flow channel surface. Cavitation occurs par- 

allel to the sample surface. Fig. 1 illustrates the test section and 

the cavitation inception and closure, along with a photograph of 

an eroded material sample fixed to the sample holder. Areas A-D 

correspond to areas later used in defining the different areas in 
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the video analysis. A is the nozzle area, where the flow stagnates, 

B is the area of the growth of the cavitation cloud, C is the cavita- 

tion closure area, between 19 mm and 32 mm radial position from 

the centerline if σ ≈ 0.9, and D is the area where cavitation is no 

longer observed. 

The two tested samples were made of martensitic stainless steel 

and they were named stainless steel 1 and stainless steel 2. They 

were exposed to cavitation erosion for about 65 h. Both of them 

were specimens from Francis turbine runner blades. The mate- 

rial properties do not have any significance in the current ap- 

proach, as the analysis concentrated on the shedding frequency, 

which is linked to the flow rather than the surface material. 

This study utilizes the data of the volume loss measurements by 

Ylönen et al. (2018) , where the material properties were thor- 

oughly examined. Therefore, the volume loss curves later used 

in this study correspond to the ones previously presented in 

Ylönen et al. (2018) . 

Volume loss and erosion depth were calculated from surface 

profiles that were measured with a Taylor-Hobson Form Talysurf 

50 contact profilometer. The sample profile was measured along 

eight equally divided azimuthal angles of the sample. The mea- 

surement was from the center towards the edge of the circular 

sample surface. The surface profiles were mostly measured in five- 

hour intervals, excluding the beginning of the tests, where the in- 

terval was reduced to thirty minutes or two hours. The upstream 

pressure was 4 MPa and the downstream pressure was 1.9 MPa for 

the volume loss tests, corresponding to the maximum aggressive- 

ness of the cavitation tunnel. 

In the ramp test, the cavitation number was increased from 

well-developed cavitation up to the point where cavitation disap- 

pears, and further on to non-cavitating flow. The cavitation num- 

ber was increased gradually by decreasing the upstream pressure, 

while keeping the downstream pressure constant. The initial up- 

stream pressure was 4 MPa and it was gradually decreased down 

to 2.3 MPa, while the downstream pressure was maintained at 

1.9 MPa. Cavitation disappeared when σ ≈ 2.8 , the observation 

based on audible noise and on the significant drop in AE levels. 

2.2. Video analysis 

The videos were courtesy of Professor M. Gavaises and co- 

workers, who performed a detailed analysis of the cavitation struc- 

tures in the tunnel and measured the corresponding shedding fre- 

quencies ( Gavaises et al., 2015 ). They conducted a vast campaign 

with different operating points, but for the present study, only five 

videos were selected, corresponding to the operation points within 

the ramp tests. They were filmed from the side where the sample 

would normally be located, and with the sample being replaced by 

a Perspex window. The videos covered only a partial area of the 

tunnel test section. For more information, the filming procedure 

is explained in detail by Gavaises et al. (2015) . In this study, these 

five videos were reanalyzed using a slightly different approach; the 

video analysis was based on a FFT analysis of the gray level of each 

pixel. 

The videos were recorded with a frame rate of 77,0 0 0 frames 

per second. The visualized area was 34 × 16 mm 2 , the pixel size 

was 132 × 125 μm 2 , the image size was 256 x 128 pixels and 

the video was directly recorded in grayscale. The video lengths in 

terms of number of frames and the operation points of the cavita- 

tion tunnel are presented in Table 1 . 

For each pixel in the video, the grayscale value was captured 

and the values were picked frame by frame. An example of a video 

frame is presented in Fig. 2 . 

The most interesting areas in the images are B and C. Area A 

was masked for the video analysis and area D has no cavitation. 

The grayscale value as a function of time was obtained for each 

Table 1 

Video lengths and the operation points of the cavitation tunnel. 

Video ID 

Cavitation 

number σ

Upstream 

pressure (MPa) 

Downstream 

pressure (MPa) 

Length 

(frames) 

C27 1.897 2.909 1.905 1738 

C28 1.515 3.166 1.907 1495 

C29 1.159 3.562 1.912 1356 

C30 0.908 4.027 1.916 1331 

C31 0.811 4.273 1.913 2895 

Fig. 2. An individual frame from video C30. Area markers: (A) Flow stagnation from 

the nozzle, covered for filming, (B) Cavitation cloud growth, (C) Cavitation closure 

and (D) No cavitation. The areas (A-D) are also presented in Fig. 1 . 

Fig. 3. Frequency map of σ = 0.811. The X and Y -axes represent the pixel coordi- 

nates in a video frame. 

individual pixel and for all five videos, and they were analyzed via 

FFT. The frequency resolution is limited by the frequency bin size 

f bin : 

f bin = F s ∗
L 

2 
(2) 

where F s is frame rate and L is the video length in frames. The 

videos were all relatively short, C30 being the shortest one with 

2895 frames. This gives a frequency bin size f bin of 51.5 Hz. There- 

fore, the peak frequency values have an uncertainty of + / − 26 Hz. 

This was considered acceptable, since the shedding frequencies 

were above 1600 Hz, so that the relative error was in the order of 

2%. 

The frequency maps for the analyzed videos with different val- 

ues of the cavitation number σ are presented in Figs. 3-7 . The zero 

and close to zero frequencies in the A and D regions correspond to 

the masked nozzle area and the downstream area with no cavi- 

tation. In Fig. 7 , a large part of the area, including regions B and 

C, had no measurable frequencies. In all videos, several individual 

pixels were found having a more than 10 kHz frequency. They were 

interpreted as local anomalies, and therefore they were excluded 

from further analysis. The dominating frequency, where it is well 

definable, was assumed to correspond to cavitation cloud shedding 

frequency. Figs. 3 and 4 present the peak frequency maps for rela- 

tively low cavitation numbers (0.8 < σ < 1.0). 

The dominating frequency for σ = 0.811 in Fig. 3 cannot be 

well defined. Three major frequency zones were identified: 798 Hz, 
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Fig. 4. Frequency map of σ = 0.908. The X and Y -axes represent the pixel coordi- 

nates in a video frame. 

Fig. 5. Frequency map of σ = 1.159. The X and Y -axes represent the pixel coordi- 

nates in a video frame. 

Fig. 6. Frequency map of σ = 1.515. The X and Y -axes represent the pixel coordi- 

nates in a video frame. 

1152 Hz and 1506 Hz, the largest in area being 1152 Hz. The 1506 Hz 

would be in line with the other results, and it is the one pre- 

sented in the comparison of methods later on. Longer videos might 

have made the results more representable, but none was avail- 

able. When σ = 0.908 in Fig. 4 , the dominating frequency is 

clearly 1598 Hz. Figs. 5 and 6 present the peak frequency maps for 

higher cavitation numbers, where cloud shedding is still observed 

(1.1 < σ < 1.6). 

When σ = 1.159 in Fig. 5 , the dominating frequency of 1874 Hz 

can be clearly identified. When σ = 1.515 in Fig. 6 , two differ- 

ent dominating frequencies were observed: 2316 Hz and 2374 Hz, 

and between them, a narrow band of multiple different frequen- 

cies. It is notable that the two dominating frequencies represent 

neighboring frequency bins. Therefore, they probably represent a 

single frequency that happens to be close to the average of these 

two frequencies. As the frequency resolution is limiting the obser- 

vations, 2374 Hz was picked as the cloud shedding frequency for 

σ = 1.515, as it is located in the area of cavitation closure (region 

C). In Fig. 7 , the cavitation number is so high ( σ = 1.897) that pre- 

sumably the shedding phenomenon ceases to exist, at least in a 

significant scale. Using the same color map as for the other figures, 

Fig. 7. Frequency map of σ = 1.897. The X and Y -axes represent the pixel coordi- 

nates in a video frame. 

Fig. 7 is almost completely black, as only small areas with peak 

frequencies of several hundreds of Hz were detected, observed as 

gray areas in the figure. 

When σ increases, the cavitation cloud shedding becomes less 

and less pronounced. A similar disappearance of a dominating fre- 

quency was found in the AE signal analysis, as shown in the next 

section. Therefore, it seems that the cloud shedding phenomenon 

is well observable only with low cavitation numbers, as also noted 

by Gavaises et al. (2015) . This suggests a transition from cloud cavi- 

tation to sheet cavitation, when the cavitation number is increased 

( Pelz et al., 2017 ). 

3. Acoustic emission signal processing 

The initial goal in this study was to track changes in AE en- 

ergy, RMS-value, peak frequencies, and amplitudes when cavitation 

erosion evolves. This was tempting, as the acquisition system au- 

tomatically tracked these parameters. It was found that the values 

did fluctuate and their levels changed during the cavitation tests, 

but no proper trend was found in the current study. Therefore, 

these parameters were disregarded, in favor of another approach. 

Raw voltage signal was also recorded during the erosion, in 

roughly one-hour intervals for a five-minute acquisition time, ex- 

cept for the first sixty minutes that were recorded in full. The sam- 

pling frequency was 5 MHz. He and Shen (2012) stated that the sig- 

nal average energy would have a good correlation with the mass 

loss rate in their tests using an ASTM G32-10 ( ASTM, 2010 ) vibra- 

tory cavitation testing apparatus. However, the present investiga- 

tion did not confirm their observation, since no clear correlation 

between the signal average energy and the mass loss rate could be 

found. 

To validate that AE properly captures cavitation events, the AE 

signals from several different cavitation numbers are presented in 

Fig. 8 . The exact voltages that are induced by cavitation are not 

important in this study, but comparing amplitudes in Fig. 8 clearly 

shows that when cavitation disappears, the AE levels drop over a 

hundred-fold compared to the fully-developed cavitation. The op- 

erating condition in Fig. 8 D has practically no cavitation, but drop- 

ping the cavitation number about 0.2 would lead to the incep- 

tion of cavitation. Fig. 8 A and B represent conditions where cloud 

shedding was observed in the video and AE analysis, while Fig. 8 C 

corresponds to cavitation with assumedly no pronounced cloud 

growth-collapse cycle. 

The signal amplitudes might correlate with the strength of cav- 

itation erosion, but the current approach was based on signal fre- 

quencies. The frequency responses of the AE sensors are rather 

non-linear. This means that the frequency content of the signals is 

highly colored with the sensor frequency response. Therefore, the 

initially observed maximum frequency from raw voltage signals is 

usually the peak value of the sensor frequency response. 
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Fig. 8. AE signal voltage levels for varying cavitation numbers. (A) and (B) represent fully developed cavitation with cloud shedding, (C) represents cavitation that is assumed 

to be sheet cavitation, and (D) represents a cavitation number where cavitation no longer occurs. 

Based on the results by Gavaises et al. (2015) , it was expected 

that the cavitation cloud shedding frequency would be at sev- 

eral thousand Hz. The AE signals were band-pass filtered with a 

lower limit frequency of 100 kHz, so it could be expected that the 

low frequency shedding could not be detected. However, it is de- 

tectable using signal demodulation techniques. Events, such as cav- 

itation cloud shedding, occurring at lower frequencies, have a high 

frequency content inside them that is not lost in the filtering pro- 

cess. At time intervals corresponding to the shedding frequency, 

a rise in AE activity is observed, the signal frequencies inside the 

shedding event being in the sensor frequency range. 

Berry (1997a) utilized a waveform enveloping and demodu- 

lation technique to promote low frequency content in signals. 

This method provides a possibility to e.g. track bearing failures 

( Berry, 1997b ). The method works with any signal that has low fre- 

quency content that is of note, but that is not properly detectable 

using direct spectral analysis, and provided that the high frequency 

content acts as a modulated carrier signal. The demodulation pro- 

cess in this study was essentially similar to that of Berry, although 

signal enveloping was performed according to the description by 

Marple Jr (1999) . The procedure, modified from the description by 

the previous authors to suit the needs of the current signals, was 

the following: 

1) AE signal was first measured with band-pass filtering from 

10 0 kHz to 40 0 kHz or 10 0 kHz to 120 0 kHz, depending on the 

sensor. At that stage, the signal contained also the high fre- 

quency modes of the repeating shedding events. The low fre- 

quencies of the shedding were “hidden” in the high frequency 

content. 

2) The signal average was subtracted, with the average value saved 

for later corrections 

3) A Fast Fourier Transform (FFT) was performed on the zero- 

averaged signal. Note that the average was initially close to 

zero, since AE signals generally should be close to symmetric 

around zero volts. 

4) The frequency domain one-sided discrete-time analytic sig- 

nal was calculated, with the mathematical formulation in 

Marple Jr (1999) . 

5) The discrete-time analytic signal magnitude was calculated via 

inverse FFT (IFFT). This corresponds to the creation of an en- 

velope of the original signal. The original signal average was 

added to the enveloped signal. The modulated carrier signal is 

lost at this point, so the low frequency contents are promoted. 

6) A low-pass filter was applied, with the decimation of the signal. 

The low-pass filter was an eighth-order Chebyshev Type I low- 

pass filter, the default option of the Matlab TM function ‘deci- 

mate’. The decimation resampled the signal with a lower fre- 

quency, to reduce sample sizes, in addition to the low-pass fil- 

tering. The original sampling rate was not required, as the high 

frequency content was filtered out at this point. 

7) The filtered signals were then transformed to frequency domain 

by Welch’s method. The window size was 50 0 0 samples and 

the window overlapping was 50%. 

8) The two frequencies with the highest amplitudes were then de- 

tected and saved for further analysis. 

The demodulation process effectively promotes the low fre- 

quency content in the signal; the low frequency content exists also 

in the non-demodulated frequency data, but it is usually lost be- 

cause the high frequency content is dominating. Fig. 9 presents the 

FFT analysis of both an original and a demodulated signal. Note 

that the shedding frequency is observable from the original data, 

but not reliably, as the high frequency amplitudes are about ten 

orders of magnitude larger. 

4. Results 

4.1. Shedding frequency in the ramp tests 

The ramp test went through a set of experimental conditions 

ranging from well-developed cavitation to no cavitation state of 

the cavitation tunnel. All the AE waveforms were demodulated, for 

both sensors. Typically, two distinguishable peak frequencies were 

detected, as in Fig. 9 . The peak frequencies as a function of the 

cavitation number are presented in Fig. 10 . The higher frequency 

peaks were interpreted as the first harmonic of the shedding fre- 

quency, as its frequency was always two times the lower one, and 

it was excluded from further analysis. Each marker in Fig. 10 repre- 

sents a thirty-second interval. Six of these were measured and ana- 

lyzed for each cavitation number. The first harmonic is also marked 

in Fig. 10 , to highlight that it follows the same trend as the actual 

shedding frequency. 

Both the resonance type sensor (R15D) and the broadband sen- 

sor (D9203b) detect the same frequency, in most cases. The linear 

growth in frequencies is lost after σ > 1.75, although already at 

σ = 1.75, the frequencies begin to be scattered. The consistency 

in detecting a shedding frequency was lost between σ ≈ 1.5 and 
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Fig. 9. The demodulated signal power spectral density compared to that of the original signal. 

Fig. 10. Cavitation shedding frequency, and its first harmonic, measured by AE as a function of cavitation number. The diamond markers indicate the lower peak frequency, 

which is assumed to be the shedding frequency, while cross markers indicate the first harmonic. 

σ ≈ 1.8 also in the video analysis. This suggests that the shedding 

phenomenon ceases to exist, when the cavitation number exceeds 

a certain limit. 

4.2. Shedding frequency: comparison between AE and videos 

This section aims to evaluate the AE capability in capturing the 

correct shedding frequency. The AE frequencies deduced from the 

demodulation process are now compared to the shedding frequen- 

cies found from the video analysis and the simulation results by 

Gavaises et al. (2015) , who simulated the erosion via computa- 

tional fluid dynamics (CFD), using a hybrid RANS/LES model. A key 

result of theirs, in the scope of this study, was the relation between 

the cavitation number and the shedding frequency, reprinted with 

permission in Fig. 11 . 

Gavaises et al. (2015) simulated multiple downstream pressures 

( P back ). For each pressure level, the shedding frequency clearly in- 

creases with increasing cavitation number. A lower downstream 

pressure corresponds to a lower shedding frequency. In this study, 

the analysis was limited to 1.9 MPa, or 19 bar downstream pres- 

sure, so only those values were kept for Fig. 12 , which compares all 

the three different methods to determine the shedding frequency 

when the cavitation number is varied. 

The error bars in the video analysis are the result of the FFT bin 

size. The largest bin size was 51.5 Hz, so the maximum error was 

rounded to + / − 30 Hz. The AE result standard deviation was al- 

ways less than 12 Hz between the thirty-second intervals, therefore 

it was not feasible to visualize in the figure. Fig. 12 shows that all 

the three different methods are in good agreement. It is thus con- 

cluded that the shedding frequency can be captured reliably and 

with sufficient accuracy from AE measurements, provided the pre- 

sented demodulation processing technique is applied. The result is 

valid at least for the cavitation tunnel. At this stage, the validity of 

the method is only demonstrated in the case of the cavitation tun- 

nel but is expected that this remains true for other experimental 

conditions. 

4.3. Shedding frequency from AE and cavitation erosion 

The previous results demonstrated that AE captures the proper 

shedding frequency. In this section, a similar analysis is carried out 

for cavitation erosion tests, in order to highlight a potential drift 

in shedding frequency with changing surface geometry. The ma- 

terial samples, referred to as stainless steel 1 (SS1) and stainless 

steel 2 (SS2), were eroded from a virgin non-eroded surface to ap- 

proximately 400- µm maximum erosion depth. Both samples were 

exposed to cavitation for 65 h to reach this state. Stainless steel 

2 eroded more in volume and average erosion depth than stainless 

steel 1; therefore, it had an inferior resistance to cavitation, already 

stated by Ylönen et al. (2018) . 
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Fig. 11. (a) Simulated shedding frequency as a function of the cavitation number in the cavitation tunnel by Gavaises et al. (2015) . (b) The Strouhal number St was de- 

fined as the ratio of shedding frequency multiplied by the gap size of 2.5 mm and the mean flow velocity at the 25 mm radius of the diverging channel. Reprinted from 

Gavaises et al. (2015) , Fig. 15, Copyright 0301-9322/© 2014 Elsevier Ltd, with permission from Elsevier. 

Fig. 12. Comparison of the results by Gavaises et al. (2015) , the video analysis, and the AE measurements, regarding the relation between the shedding frequency and the 

cavitation number. 

AE was measured at one- to two-hour intervals, excluding the 

beginning of the tests, where it was measured continuously. The 

waveforms were collected for five minutes at each interval, and the 

five-minute waveform was split into thirty-second sections that 

were individually analyzed, following the demodulation algorithm. 

Fig. 13 A presents the evolution of the shedding frequency, for 

both samples and both AE sensors. The volume losses and erosion 

depths for both samples are presented in Fig. 13 B. Fig. 13 C presents 

the shedding frequency as a function of volume loss, while Fig. 13 D 

presents the shedding frequency as a function of erosion depth. 

The erosion depth was defined as the maximum profile depth at 

each measurement point. 

It is notable that the shedding frequency, the volume loss and 

the erosion depth of stainless steel 2 (SS2) begins to increase faster 

than those of stainless steel 1 (SS1), after about 12 h of erosion, or 

roughly after the cavitation incubation period. During the incuba- 

tion period, the surface deformation rate is slower than in the ad- 

vanced periods, meaning that the increase in roughness is smaller. 

After 48 h of erosion, the slopes of the shedding frequency curves 

begin to decrease, reaching possibly a constant value. This suggests 

that the changes in roughness might have little effect when the 

surface is highly damaged. After a critical level of roughness, the 

shedding frequency seems to become roughness independent. This 

is, however, not possible to confirm in the limited scope of this 

investigation. 

When plotting the shedding frequency as a function of volume 

loss in Fig. 13 C and erosion depth in Fig. 13 D, the plots for the two 

different tests and materials overlap to a significant degree. This 

suggests that the shedding frequency is a parameter that is linked 

only to the surface deformation of the samples. The relation is lin- 

ear at least between 0 and 100 mm 3 volume loss, or between 0 

and 350 µm erosion depth. It should be noted that the shedding 

frequency tends to fluctuate, so deriving a volume loss or an ero- 

sion depth out of the shedding frequency measurement would only 

lead to a rough estimate of the actual values. 

When the material surface is degraded, the resulting surface 

roughness leads to modifications in the flow field and therefore 

in the shedding phenomenon. The increase in shedding frequency 

with the increase in roughness is consistent with the results by 

Hao et al. (2017) . Their rough hydrofoil experiencing cloud cavita- 

tion had a 20 Hz shedding frequency, whereas for a smooth one in 

equal conditions, the frequency was 17 Hz. They explained the dif- 

ference by the rough surface having a more complex flow pattern, 

including initial and large-scale shedding, with a different type of 

attachment to the surface. In contrast to these results and the re- 

sults in this study, Stutz (2003) found no effect of roughness in the 

case of a cavitation sheet. This suggests that a cavitation cloud is 

more sensitive than a cavitation sheet to changes in surface rough- 

ness. 

The shedding frequency is a well-definable parameter in cloud 

cavitation. Therefore, measuring its change in a hydraulic ma- 

chine would give information about the state of cavitation ero- 

sion. Acoustic emission is a promising option for measuring the 

frequency, as the sensors can be placed outside the flow and the 
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Fig. 13. Cavitation shedding frequency as a function of erosion time, combined with volume loss and erosion depth. Cavitation number σ = 0.87. 

measurements are non-intrusive and non-destructive. As long as 

the cavitation number is constant between two separate mea- 

surements, an unchanged shedding frequency corresponds to no 

change in surface roughness or erosion evolution. However, for 

a shedding phenomenon to exist and to be detectable, cavitation 

has to be well developed, as pointed out in the cavitation number 

analysis. 

5. Conclusions 

The cavitation cloud shedding frequency in cavitation tunnel 

tests was detected reliably both from a video analysis and from an 

AE analysis. The frequencies were in good agreement with those 

simulated by Gavaises et al. (2015) , for the same test channel ge- 

ometry. The AE signal demodulation process proved to be efficient 

in promoting the shedding frequency that is significantly lower 

than the lower frequency limit of the AE acquisition system. The 

AE signals were band-pass filtered so that the lower frequency 

limit was 100 kHz, and the cavitation shedding frequency was be- 

tween 1600 Hz and 1900 Hz. The high frequency AE signal acted 

as a modulated carrier signal for the shedding phenomenon, with 

the low frequency content not lost with the initial filtering process. 

Effectively, the shedding frequency remained embedded in the sig- 

nal, as the growth-collapse process of a cavitation cloud is peri- 

odical, and the collapse stage induces high loads that were well 

detected by AE. 

The cavitation shedding phenomenon becomes less pronounced 

as the cavitation number σ increases. The limit of no cavitation 

state in the tunnel was reached at σ ≈ 2.8 , but both the video 

analysis and the AE analysis began to fail in finding a shedding 

frequency when σ > 1.5 . A potential explanation is provided by 

the research of Pelz et al. (2014 & 2017 ), where the transition be- 

tween a stationary sheet and cloud cavitation was studied. A sheet 

cavity does not have any periodical structures, so there is no de- 

finable shedding frequency. Additionally, a sheet cavity is much 

less erosive than cloud cavitation; therefore, it should induce less 

AE. If one would reliably measure the cloud shedding frequency in 

a hydraulic machine, the disappearance of the well-defined shed- 

ding would reveal the transition from cloud cavitation to station- 

ary sheet cavitation, i.e. the transition from an erosive cavitation to 

a less erosive type of cavitation. This would require knowledge of 

the frequency range of the shedding phenomenon, obtained either 

from CFD or from experiments. 

In addition to being able to detect the transition from cloud to 

sheet cavitation, AE use was demonstrated to be effective in track- 

ing erosion evolution. As the increasing surface roughness leads to 

increase in the cloud shedding frequency ( Hao et al., 2017 ), the 

shedding frequency increases while erosion progresses. The shed- 

ding frequency was about 1600 Hz when the samples were non- 

eroded and about 1850 Hz when they were eroded to the practi- 

cal maximum of the cavitation tunnel. This gradual increase of the 

frequency was linked to the volume loss and the erosion depth, 

which were parameters defining erosion evolution. The frequencies 

were virtually the same for a resonance type and a broadband type 

AE sensor that were used simultaneously during the tests. The fre- 

quencies were not significantly affected by the stainless steel qual- 

ity of the samples, only by the stage of erosion. It is therefore as- 

sumed that the shedding frequency is a parameter related to sur- 

face geometry and the flow field. 

The presented method could be extended to monitoring hy- 

draulic machine erosion stages, if either the machine experiences 

cloud cavitation, or the machine could be deliberately moved into 

a stage where cloud cavitation occurs, even if this stage is not in 

the normal operation region. No change in shedding frequency be- 

tween measurements would correspond to no change in erosion 

evolution. The main advantage of using AE to define the shedding 

frequency would be the ease of installation in an existing machine, 

with no intrusion into the flow, along with the possibility to record 

continuously the AE signal as long as needed. 
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