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of the Earth system. Mathematical models of soil microbial decomposition models have recently been introduced to predict soil C stocks and heterotrophic soil respiration, especially in the context of climate change. Thus far, models focused on physiological and ecological mechanisms of microbial responses, leaving the role of evolutionary adaptation poorly understood. My thesis addresses this gap and evaluates the hypothesis that microbial evolutionary adaptation to warming can have a significant impact on the global carbon cycle. After reviewing mechanistic, nonevolutionary microbial models of decomposition, I construct an eco-evolutionary spatially explicit, stochastic model, scaling up from microscopic processes acting at the level of cells and extracellular molecules. I use an approximated version of the model (spatially implicit, deterministic) to investigate the eco-evolutionary response of a soil microbe-enzyme system to warming, under three possible scenarios for the influence of temperature on microbial activity. In the absence of microbial evolution, warming results in soil carbon loss to the atmosphere (an amplification of climate change) in all scenarios. Microbial evolutionary adaptation generally aggravates soil carbon loss in cold ecosystems, and may aggravate, buffer or even reverse carbon loss in warm ecosystems. Constraining the model with observations from five contrasting biomes reveals evolutionary aggravation of soil carbon loss to be the most likely outcome. Earth-scale projections of carbon stocks that integrate my eco-evolutionary model support the prediction of a significant global aggravation of soil C loss due to microbial evolution. Dormant soils, in which microbial activity is very low, play a special role in the long-term eco-evolutionary dynamics of global soil carbon, since in these regions, the negative effect of evolution on soil carbon stocks may not kick in until the microbial community shifts from dormant to active, and may thus be delayed by decades. Overall, my work is a first step toward predictive modeling of ecoevolutionary dynamics of carbon cycling; it also lays the ground for a broad future research program that will empirically test model predictions about the role of evolutionary mechanisms in different systems across the globe, by leveraging the growing global archive of soil metagenomics data to quantify variations in microbial metabolic functions and their response to selection.

Mots clés

Changement climatique -Cycle du carbone -Décomposition -Projections globales -Evolution microbienne -Dynamiques adaptatives -Rétroaction sol-climat -Evolution de la coopération -Modèles individu-centrés Résumé L'une des principales sources d'incertitude des projections climatiques globales tient à l'activité microbienne des sols : dans quelle mesure le réchauffement de la planète entraînera-t-il une augmentation des concentrations de CO2 dans l'atmosphère du fait d'une décomposition accrue de la matière organique par les communautés microbiennes des sols ? Mieux évaluer, voire réduire, cette incertitude requiert le développement de modèles mathématiques mécanistes reliant la décomposition à la dynamique des communautés microbiennes et l'intégration de ces modèles dans les simulations globales. Les modèles mathématiques de décomposition de la matière organique du sol représentent explicitement le compartiment microbien et sont donc à même de mettre en relation biomasse microbienne, production d'enzymes de dégradation de la matière organique, stocks de carbone du sol. Formulés dans le contexte du changement climatique, ces modèles se sont concentrés sur les mécanismes physiologiques et écologiques des réponses microbiennes à l'augmentation de la température, ignorant les effets possibles de l'adaptation évolutive. Ma thèse vise à combler cette lacune, en évaluant l'hypothèse selon laquelle l'adaptation évolutive microbienne au réchauffement peut avoir un impact significatif sur le cycle global du carbone. Après avoir passé en revue des modèles de décomposition microbienne mécanistes et non évolutifs, je construis un modèle stochastique spatialement explicite et éco-évolutif, basé sur des processus microscopiques des cellules et des molécules extracellulaires. J'utilise une approximation du modèle (spatialement implicite, déterministe) pour étudier la réponse éco-évolutive au réchauffement d'un système microbe-enzyme du sol, dans trois scénarios possibles d'influence de la température sur l'activité microbienne. En l'absence d'évolution microbienne, le réchauffement entraîne une perte de carbone dans le sol (une accélération du changement climatique) dans tous les scénarios. L'adaptation évolutive microbienne aggrave généralement la perte de carbone du sol dans les écosystèmes froids et peut aggraver, amortir ou même inverser la perte de carbone (et donc augmenter la séquestration du carbone) dans les écosystèmes chauds. En contraignant le modèle avec les observations de cinq biomes distincts je montre que l'aggravation évolutive de la perte de carbone du sol est l'issue la plus probable.

Enfin, en intégrant mon modèle éco-évolutif dans une projection globale des stocks de carbone du sol à l'échelle de la Terre, je confirme la prévision d'une aggravation mondiale significative de la perte de carbone dans le sol due à l'évolution microbienne. Les sols dormants, dans lesquels l'activité microbienne est très faible, jouent un rôle particulier dans la dynamique éco-évolutive à long terme du carbone du sol global, car dans ces régions, l'effet négatif de l'évolution sur les stocks de carbone du sol ne se manifesterait pas avant la sortie de la dormance microbienne et pourrait de fait s'en trouvé différé de plusieurs décennies. En conclusion, mes travaux constituent un premier pas vers des modèles de prédiction de la dynamique éco-évolutive du cycle du carbone. Ils ouvrent la voie à un programme de recherche qui testerait de manière empirique les prédictions des modèles sur le rôle des mécanismes évolutifs dans différents types d'écosystèmes terrestres, en exploitant les archives de plus en plus riches de données métagénomiques des sols pour quantifier les variations des fonctions métaboliques microbiennes et leurs réponses à la sélection.

Chapter 1. Thesis Overview 1. Contexte et objectifs de la thèse 1.1. Les processus de décomposition de la matière organique du sol La décomposition complète de la matière organique du sol consiste en la transformation d'éléments ou d'organismes entiers morts (plantes, animaux) en CO 2 et en nutriments inorganiques (Falkowski et al. 2008, Waksman & Starkey 1931). Cette transformation est le produit de la combinaison de processus physiques (lessivage, fragmentation), et chimiques [START_REF] Chapin | Landscape Heterogeneity and Ecosystem Dynamics[END_REF]). Les eaux de lessivage emportent avec elles les éléments solubles de la matière organique en décomposition. Les animaux, par ingestion puis excrétion, fragmentent les grands composés organiques en de la matière fraiche organique de taille réduite, surface privilégiée de colonisation microbienne. Les champignons et les bactéries sont les principaux acteurs de la dégradation chimique de la matière organique morte, bien que certaines réactions aient lieu spontanément, en l'absence d'action directe des microorganismes ou de leurs produits catalytiques. explique la diminution de la vitesse de décomposition de la litière plus l'état de décomposition est avancé (Fig. 1). Les animaux présents dans le sol ont un effet sur la vitesse de décomposition de la matière organique morte par l'intermédiaire de la fragmentation, de la prédation de microorganismes et de l'effet de leurs mouvements sur les interactions entre matière organique et composés minéraux [START_REF] Verhoef | Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals[END_REF][START_REF] Beare | Microbial and Faunal Interactions and Effects on Litter Nitrogen and Decomposition in Agroecosystems[END_REF]). La décomposition est également plus rapide dans la rhizosphère, autour des racines des plantes, parce que les cellules racinaires excrètent des composés organiques simples, les exsudats, qui stimulent la croissance des populations microbiennes, ce qui entraîne à son tour l'accélération de la décomposition de composés organiques plus complexes (effet de « priming ») [START_REF] Cheng | Rhizosphere Effects on Decomposition[END_REF]. Les conditions environnementales de forte production végétale (chaleur, humidité, richesse en nutriments) sont aussi celles d'une décomposition rapide, et la décomposition microbienne est aussi le mécanisme privilégié de formation des sols [START_REF] Bradford | Managing uncertainty in soil carbon feedbacks to climate change[END_REF]. Si les différents processus biotiques et abiotiques impliqués dans la décomposition sont bien caractérisés, il est néanmoins difficile d'établir une relation entre productivité végétale, taux de décomposition de la matière morte et quantité de carbone dans le sol.

Les rétroactions (feedbacks) des microorganismes du sol sur le climat

Il est reconnu que les microorganismes ont joué un rôle essentiel dans la composition chimique actuelle de l'atmosphère (Falkowski et al. 2008). Ce qui est en revanche moins clair est le rôle qu'ils vont jouer dans le contexte du changement climatique actuel, en fonction de la vitesse, direction et amplitude de leurs réponses. La question des feedbacks des microorganismes vers l'atmosphère et le climat a longtemps été séparée de celle du changement climatique. Un tournant scientifique a été pris lorsque les premiers modèles incluant les dynamiques microbiennes de la décomposition ont été construits et analysés ; ces modèles révélaient l'impact global que l'activité microbienne des sols pouvaient avoir sur le cycle du carbone (Allison et al. 2010). Ainsi, les réponses microbiennes qui conduisent à l'augmentation de la production de gaz à effet de serre, comme une respiration accrue du fait de la dégradation plus rapide des protéines à plus haute température, pourraient contribuer à l'accélération du changement climatique. A l'inverse, les réponses qui réduisent la production de gaz à effet de serre, comme la production de protéines adaptées à des températures plus élevées, pourraient ralentir le changement climatique.

Les systèmes terrestres sont une énorme interface d'échange de gaz à effet de serre, à hauteur de 240 milliards de CO 2 échangés chaque année, dont la moitié est mobilisée par les plantes par photosynthèse, et l'autre moitié émise dans l'atmosphère par la respiration autotrophe (des plantes) et hétérotrophe (des animaux terrestres et microorganismes du sol) (Fig. 2). Le changement climatique devrait modifier les fonctions microbiennes associées au cycle du carbone à travers les effets directs et indirects de l'augmentation de la concentration atmosphérique en CO 2 , de l'augmentation de température et de la modification des régimes de précipitation (Singh et 13 élément sous droit, diffusion non autorisée le sol (Six et al. 2006) (Fig. 3). La modification des apports carbonés due à l'augmentation de la concentration atmosphérique en CO 2 pourrait aussi entraîner des réponses individuelles physiologiques des microorganismes et des changements dans la composition de la communauté, ce qui pourraient accentuer ou à l'inverse limiter les feedbacks précédemment évoqués [START_REF] Balser | Investigating biological control over soil carbon temperature sensitivity[END_REF]. certaines écosystèmes la modification de la composition de la communauté microbienne, voire même l'extinction des populations les moins acclimatées, qui entraîneraient une décomposition et respiration plus lentes et une séquestration du carbone dans le sol en réponse au réchauffement [START_REF] Monson | Winter forest soil respiration controlled by climate and microbial community composition[END_REF]. Enfin une augmentation de température est susceptible de modifier, comme l'augmentation de la concentration atmosphérique en CO 2 , la nature de la matière organique entrante et les interactions organo-minérales dans le sol. des mêmes organismes ou d'organismes en interaction dans les mêmes environnements, qu'il conviendrait d'appréhender également à l'échelle régionale.

L'évolution adaptative dans les populations microbiennes naturelles

L'évolution des microorganismes est le grand oublié de l'histoire de l'évolution néo-Darwinienne du fait des difficultés techniques rencontrées jusqu'à une époque récente pour les identifier [START_REF] Dykhuizen | Experimental Studies of Natural Selection in Bacteria[END_REF]). Si des expériences de transplantation ou de comparaison de différents systèmes ont permis de caractériser l'adaptation de population naturelles, la connaissance des mécanismes évolutifs des microorganismes vient essentiellement d'expériences réalisées in vitro [START_REF] Koskella | Adaptation in Natural Microbial Populations[END_REF]. Il est essentiel cependant de poursuivre les études évolutives en conditions écologiques plus complexes mais plus réalistes, parce qu'elles ont montré à de nombreuses reprises des résultats divergents avec celles réalisées en laboratoire, comme l'illustre la dynamique co-évolutive de la bactérie

Pseudomonas fluorescens et d'un phage en présence et absence des concurrents naturels de la bactérie (Gomez & Buckling 2011).

L'adaptation, au sens darwinien du terme, met en jeu des agents de sélection, dans l'environnement biotique et/ou abiotique d'une population, qui s'appliquent à la variation héritable d'un phénotype. La diversité génétique sur laquelle s'exerce la sélection est à la fois contrainte par l'histoire phylogénétique de la population et alimentée par les processus de migration et de modification aléatoire du génome (mutations, délétions, duplications, transferts horizontaux intra et interspécifiques). La vitesse d'adaptation d'une population exposée à une modification de son environnement dépend donc des agents de sélection associés à ce nouvel environnement, ainsi que de la diversité génétique en présence et de la fréquence des modifications génétiques.

Les mutations (infra-chromosomiques) constituent la source de variation génétique la mieux connue. Dans le cas le plus simple, la mutation affecte une base nucléotidique de la partie codante d'un gène, entraînant la synthèse d'un nouvel acide aminé dans la chaîne protéique qui modifie sa fonction cellulaire originelle et conduit à l'acquisition par la cellule d'un nouveau trait. C'est le cas du polymorphisme du gène rpoB responsable de la résistance d'Escherichia coli à l'antibiotique rifampicine [START_REF] Jin | Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance[END_REF]. Les mutations sont généralement rares, leur fréquence est estimée à une toutes les mille générations par génome [START_REF] Lee | Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing[END_REF][START_REF] Sung | Drift-barrier hypothesis and mutation-rate evolution[END_REF]. Cependant, les taux de mutation peuvent être de plusieurs ordres de grandeur supérieurs chez certaines lignées « hypermutatrices », chez lesquelles le système de réparation de l'ADN est altéré [START_REF] Oliver | High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection[END_REF]. Ces lignées ont souvent un avantage sélectif en environnement variable et sont contre-sélectionnées en environnement stable, en particulier lorsque les lignées non mutantes parviennent à acquérir la fonction Les expériences de transplantation suivie de la comparaison des taux de croissance de populations retransplantées dans leur environnement d'origine ou dans un nouvel environnement sont la méthode privilégiée pour tester l'étendue spatiale d'adaptation d'une population [START_REF] Kawecki | Conceptual issues in local adaptation[END_REF]). Elles nécessitent de connaître a priori le gradient spatial de la force de sélection. Une étude de l'adaptation locale d'une population bactérienne au sol 

Modélisation des dynamiques adaptatives

Fonction de fitness et condition d'invasion

La fitness d'invasion est le taux de croissance exponentielle à long terme d'un phénotype mutant de trait x' dans un environnement façonné par la population résidente de trait x [START_REF] Metz | How should we define 'fitness' for general ecological scenarios?[END_REF], 1996, Geritz et al. 1998). Une fois qu'une population a atteint son équilibre écologique, sa démographie est stationnaire ; les fitness de toutes les populations présentes dans le système à l'équilibre sont donc toutes égales à zéro.

Le sort d'une population mutante initialement rare est déterminé par sa fonction de fitness.

Sous l'hypothèse de grandes populations (qui s'applique naturellement aux systèmes microbiens considéré ici), les mutants tels que s x (x') < 0 sont condamnés à l'extinction, tandis que ceux au s x (x') > 0 ont une probabilité non nulle d'envahir la population résidente (mais ne l'envahissent pas nécessairement du fait du phénomène d'extinction aléatoire due à la faible densité de leur population initiale). Si s x (x') > 0 mais s x' (x) < 0, le mutant peut envahir mais le résident d'origine ne serait pas capable d'envahir une population de ce même mutant. Il ne peut alors y avoir dimorphisme (i.e. coexistence de deux lignées de microbes différentes) et la population mutante envahit la population résidente jusqu'à extinction de cette dernière (remplacement).

Singularités évolutives

Pour connaître le sens d'évolution du trait à partir de la valeur de trait résident x, on étudie le signe du gradient de sélection :

[(∂s x (x' ))/(∂x' )] (x'=x)
Si le gradient est de signe positif x augmente, s'il est négatif x diminue, en considérant ici qu'invasion implique remplacement [START_REF] Geritz | Invasion dynamics and attractor inheritance[END_REF], Diekmann 2004). Lorsque le gradient atteint la valeur nulle, x se trouve alors sur un point singulier, c'est-à-dire que le gradient de sélection de premier ordre ne peut nous renseigner sur le sens d'évolution du trait à partir de cette valeur de trait résident x*. L'analyse du modèle stochastique nous montre qu'il ne peut y avoir survie d'un petit nombre de bactéries partageant leurs ressources qu'en modélisant une consommation progressive des ressources et un mécanisme de stockage de ces ressources dans les bactéries.

Conditions de convergence et stabilité évolutive

Deuxièmement, lorsque l'on autorise l'apparition de mutants rares, nous obtenons systématiquement la diminution de la coopération jusqu'à production nulle d'enzymes et extinction de la population bactérienne du fait de l'absence de ressources (cas de suicide évolutif). Notre travail intègre la explicitement la structure spatiale du système, nous montrons la possible stabilisation évolutive du système à une valeur non nulle de l'investissement cellulaire dans la production d'exoenzymes de dégradation (Fig. 8).

Nous montrons également l'effet important de la diffusivité des ressources sur cette valeur et donc sur le taux de décomposition et la quantité de carbone moyens du système (Fig. 9). Mes résultats (Fig. Schimel & Weintraub, 2003). In section 1, we present the construction of fine-scale models of soil microbial decomposition that capture fundamental processes without excessive mathematical complexity. In section 2, we show how the effect of climate change can be incorporated in these models, and address the issue of parameterization. In section 3, we review some key insights that have been gained from these models regarding the effect of climate change on soil C cycle. In section 4, we highlight some major challenges faced by current and future research. Finally, section 5 provides a summary of the chapter's key points.

Perspectives

From first-order kinetics to 4-pool CDMZ soil microbial models

Early models of soil organic matter (SOM) decomposition, that are still widely used in Earth system models, assume first order decomposition kinetics and take the form:

(1)

!" !" = -! !
where C is the size of a soil carbon pool, and K is a first-order rate constant which may differ among SOM pools depending on their "quality". Such first-order kinetics models assume that SOM decomposition is controlled by microbial activity, but that the rate of decomposition is independent of microbial biomass [START_REF] Bradford | The biogeography of microbial communities and ecosystem processes: implications for soil and ecosystem models[END_REF]; J. [START_REF] Schimel | Biogeochemical Models: Implicit versus Explicit Microbiology[END_REF][START_REF] Wieder | Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models[END_REF]. In reality, SOM breakdown is catalyzed by extracellular enzymes that are produced by microorganisms, and its rate should therefore vary with the abundance of active microbes and microbial enzyme production. To more accurately describe the kinetics of catalyzed reactions the concentration of the catalyst must be part of the rate equation (Roberts, 1977). This can be done using the Michaelis-Menten relation:

(

!"

!" = ! ! ! ! !! !
where K is the fundamental kinetic constant as defined by the quality of the substrate, Z the concentration of enzymes, and K m is the half-saturation constant of the enzymatic reaction. If we assume that Z is constant, as commonly done, then Z can be combined with K into a v max term, the maximum reaction rate. Under some conditions (e.g. low C), this relationship can be In their simplest model, Schimel & Weintraub (2003) assume that the SOM pool is large and relatively unchanging on the microbial time scale. As a consequence, the SOC pool is treated as constant, hence !"

!" = 0. Microbes uptake DOC, and uptake is assumed to be fast, so that the total uptake rate, U, is assumed to be constantly equal to the total production rate of DOC from SOC by decomposition. By treating the decomposition kinetics as first-order with respect to both substrate (C) and exoenzymes (Z), this can be written as K D Z C. Thus, U = K D Z C at any time, and 

!" !" = 1 -! ! ! ! ! ! -! ! ! (3b) !" !" = ! ! ! ! ! ! -! ! !
where ! ! is the "decomposition constant" K D for a particular SOM pool, multiplied by the constant SOC concentration (C). Microbial death is modeled as due primarily to external factors (predation, infection, and accidental abiotic causes) and is assumed to occur at a constant rate, d M . Exoenzymes decay at a constant rate, d Z .

This simplest model predicts either unbounded population growth, or extinction. To obtain a stable system, Schimel & Weintraub (2003) consider the possibility of competition among enzymes for binding substrates. This leads to model decomposition kinetics with a "reverse Michaelis-Menten" model, with total decomposition rate equal to

! ! ! ! ! !" !!
, where K es is the half saturation constant for enzymes on substrate. Keeping the assumption that C is approximately constant, this also writes as

! ! ! ! !" !! .
The "reverse" Michaelis-Menten model assumes that there is functionally a saturating level of enzymes on the substrate, rather than a saturating level of substrates on the enzyme; see [START_REF] Vetter | A Predictive Model of Bacterial Foraging by Means of Freely Released Extracellular Enzymes[END_REF] for empirical support.

The corresponding model is:

(4a) !" !" = 1 -! ! ! ! ! ! ! !" !! -! ! ! (4b) !" !" = ! ! ! ! ! ! ! !" !! -! ! !
With such nonlinear kinetics, the system is stabilized and converges to a stable equilibrium [START_REF] Moorhead | The evolution and application of the reverse Michaelis-Menten equation[END_REF][START_REF] Sihi | Comparing models of microbial-substrate interactions and their response to warming[END_REF].

The fully dynamical version of the Schimel-Weintraub model relaxes the assumptions of constant SOC and DOC pools. Time variation of C, D, M, and Z obey equations 5a-d, hereafter dubbed "CDMZ model":

(5a) !" !! = I - ! !"# ! ! ! ! ! !! Z + 1 -! d ! M -e ! C (5b) !" !" = ! !"# ! ! ! ! ! !! Z + !d ! M + d ! Z - ! !"# ! ! ! ! ! !! M -e ! D (5c) !" !" = 1 -φ γ ! ! !"# ! ! ! ! ! !! M -d ! M (5d) !" !" = φ γ ! ! !"# ! ! ! ! ! !! M -d ! Z
In equation 5a, decomposition follows from Michaelis-Menten kinetics of Z binding substrate C; there is a constant input, I, of soil organic (non decomposed) carbon from aboveground litter, an input from microbial necromass (fraction 1p of necromass produced per unit time, at constant rate d M ), and a loss due to leaching at constant rate e C . In equation 5b, D is produced by decomposition and the recycling of microbial necromass (fraction p of necromass produced per unit time) and inactive enzymes; D is consumed by microbial uptake, and lost by leaching at constant rate e D . In equation 5c, growth of microbial biomass M is driven by the rate of DOC uptake (a Monod function of D) times the fraction of uptaken DOC turned into biomass, (1j) g M , minus microbial death at rate d M . In equation 5d, enzyme variation is driven by the rate of DOC uptake times the fraction allocated to enzyme production, j, and production efficiency, g Z , minus enzyme decay at constant rate, d Z .

Depending on parameter values (Box 2), the CDMZ model ( 5) possesses either one globally stable equilibrium, or three equilibria (one of which is always unstable). There are thresholds j min and j max such that the globally stable equilibrium exists for j < j min or j > j max and is given by M = 0, Z = 0, C = I/e C , D = 0. Thus, at this equilibrium, the microbial Initialization: strain-specific microbial biomass is randomly distributed across the microsites of a spatial grid. Dynamics: The state of all microsites is updated as within-site and betweensites processes are iterated. (Reproduced from Allison 2012) population is extinct and no decomposition occurs. For j min < j < j max , the microbial population can either go extinct (then the system stabilizes at the same equilibrium as before) or persists at or around a non-trivial equilibrium, which can be solved for analytically. Note that j min and j max depend on all microbial and model parameters.

Variants of the basic CDMZ model ( 5 ). Microbial cells interact on a square grid. The grid is analogous to the surface of a decomposing leaf, and multiple microbial cells may occupy the same grid box. The microbial community is made up of multiple strains. Each strain is characterized by phenotypic traits including: the enzymes that the strain produces, the rates at which the strain produces them, the strain's MGE. There is a given list of enzymes and substrates, and each enzyme is characterized by its substrates' binding affinities and kinetics parameters. The trait-based model captures the interaction between the diversity of enzymes and substrates, and how this interaction feeds back on the community of microbial strains and shape their diversity and abundances. For example, in response to an input of litter this "chemo-ecological" feedback determines the time trajectory of each substrate, when different strains peak in density, what densities they actually reach, and how these properties depend on the strains' trait values (Fig. 2b). The system state variables (e.g., litter, strain abundances) can then be aggregated at the scale of the whole grid to characterize the dynamics of total microbial biomass and organic matter at that scale.

Parameterization of the CDMZ models (Box 2) have been based on observational measurements and incubation experiments (e.g. German et al., 2012;Sulman et al., 2014), involving in some cases inverse modeling and parameter optimization (German et al., 2012).

Trait-based models can also tap into 'omics' data to assess the diversity of microbial and enzyme communities, estimate relative abundances, and measure activity and specificity [START_REF] Trivedi | Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction[END_REF][START_REF] Fierer | Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities[END_REF].

Box 1. Microbial and decomposition processes in trait-based models

Here we summarize some important details of Allison's (2012) trait-based model DEMENT.

• Microbial cells interact on a 2-dimensional square grid. Boundary conditions are periodic, i.e. the grid edges contact each other, forming a torus. The grid is initialised with a homogeneous distribution of each substrate and monomer. Each grid box is colonised at random by each taxon with a 1% probability, meaning that each strain is expected to occupy ~ 100 grid boxes on the 100 x 100 grid. Each strain in an occupied grid box is initialised with biomass C concentration 1 mg cm -3 , such that the average biomass density across the grid is ~ 1 mg cm -3 with 100 different strains.

• Each polymeric substrate can be degraded into monomers by multiple (randomly chosen) enzymes, and each enzyme can degrade at least one substrate. Substrate degradation obeys Michaelis-Menten regulation.

• Microbial uptake rates are also modeled as Michaelis-Menten functions of monomer concentrations and microbial strain biomass. Each strain is characterized by its transporters; each transporter binds to at least one monomer, and each monomer corresponds to at least one transporter. Uptake is measured first per transporter and then scaled up to strain biomass. When If the monomer pool size is limiting, the available monomer is partitioned among strains in proportion to their calculated uptake rates.

• Microbial growth is represented implicitly as the difference between uptake and loss processes. Microbial growth is modeled within each grid box, where the microbes present have the first opportunity to take up DOC (monomers). Microbes respire a fraction of C upon uptake, representing the energy cost of monomer metabolism, and additional respiration occurs as a consequence of processing a fraction of biomass and uptaken monomers to produce enzymes (the use of a biomass fraction represents constitutive enzyme production). There is also a daily maintenance cost for each uptake transporter, expressed as a fraction of microbial biomass C.

• C, N, P stoichiometry is explicit. There are thresholds on microbial biomass C, N, P such that excess elements are mineralized into CO 2 or inorganic nutrients. Stoichiometry is assumed constant across all enzymes.

• The state variables of each grid box are updated on a daily timescale. Typical runs are 500 time steps, i.e. the simulations describe the system dynamics over 500 days.

• Grid boxes are spatially connected by (i) diffusion of excess monomers after uptake by microbes within each grid box. Diffusion is instantaneous and excess monomers from any grid box are uniformly distributed across the entire grid; (ii) biomass dispersal, which occurs when local (i.e. within a grid box) biomass of a given strain reaches some threshold; then that biomass splits and one half disperses to a grid box in any direction up to some maximum dispersal distance. Dispersal is independent of whether or not the destination grid box is occupied.

• The distribution of feasible traits is constrained by physiological tradeoffs. Three tradeoffs are considered: (i) between enzyme substrate generalism and maximum reaction rate (i.e. • They initialize their model with pre-selected microbial functional groups with distinct lifehistory traits: maximal cell size, maximum turnover rate, cell chemical composition and C

: N ratio, and enzyme production rate and types).

• Secondary substrates are divided into C-rich (C: N ratio of 150) and N-rich (C: N ratio of 5) microbial products.

• Diffusion is not instantaneous but is instead modeled using Brownian motion.

• A fraction of enzyme production is constitutive but a fraction of it is resource dependent, such as growth, after maintenance and constitutive production are completed.

• Nutrient excess released from cells is mineralized for both C and N.

Incorporating climate parameters

Three climate-change drivers that may alter soil biogeochemistry and change future soil respiration and C stocks are changing temperature, altered precipitation regime, and elevated CO 2 [START_REF] Wieder | Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models[END_REF]. Mathematical models that include explicit microbial traits and 

Temperature

In the models reviewed in Section 1, the v max parameter of Michaelis-Menten kinetics represents the proportionality constant between enzyme concentration and process rate (hydrolysis, uptake and metabolism). This general parameter has a well-established dependence on temperature as defined by the Arrhenius equation, which has an exponential form:

(6) v !"# = v ! e ! ! ! !(!!!"#)
where v 0 is a pre-exponential coefficient, Ea is the activation energy for the reaction, and R is the ideal gas constant. The activation energy represents the temperature sensitivity and biochemical resistance of the substrate to catalysis.

The temperature response of half-saturation constants K m is uncertain. There is some evidence from animal physiology literature that enzyme K m values tend to increase with temperature, thereby reducing affinity for substrate and slowing catalysis [START_REF] Hochochka | Biochemical adaptation[END_REF][START_REF] Somero | Temperature Adaptation of Enzymes: Biological Optimization Through Structure-Function Compromises[END_REF][START_REF] Somero | Adaptation of enzymes to temperature: searching for basic "strategies[END_REF]. Although recent work showed a declining response of K m of multiple enzymes, probably due the production of isoenzymes [START_REF] Sihi | Warming rate drives microbial nutrient demand and enzyme expression during peat decomposition[END_REF], K m has most commonly been hypothesized to increase with temperature in soil (Davidson et al., 2006;Davidson and Janssens, 2006) 2012), this leads to the following set of equations that can be incorporated in the CDMZ model ( 5):

(7a) v !"# ! = v ! ! e ! ! ! ! !(!!!"#) (7b) K ! ! = K ! ! e ! ! ! ! !(!!!"#) (7c) v !"# ! = v ! ! e ! ! ! ! !(!!!"#) (7d) K ! ! = K ! ! e ! ! ! ! !(!!!"#)
where T is temperature in Celsius, R is the ideal gas constant, and the E parameters denote the corresponding activation energies.

By increasing kinetic energy, warming accelerates enzyme-catalyzed reactions and stimulates C consumption by soil microbes. Thus, the response of microbial respiration to warming is determined by the abundance (microbial biomass M in the models introduced in the previous section) and function of the microbial community. For a given mass-specific uptake rate, warming may affect M through two demographic mechanisms:

• decreasing MGE, as a consequence of increasing the energy cost of maintaining existing biomass (Sinsabaugh et al., 2013);

• increasing the microbial death rate [START_REF] Hagerty | Accelerated microbial turnover but constant growth efficiency with warming in soil[END_REF][START_REF] Joergensen | Survival of the soil microbial biomass at elevated temperatures[END_REF]. 

(8) γ ! = γ !,!"# -!(! -! !"# )
with T ref = 20 °C. To represent a positive effect of temperature on microbial mortality, Hagerty et al. ( 2014) used the Arrhenius model:

(9) d ! = d !! e ! ! !" !(!!!"#)

Soil moisture and precipitation regime

With climate change, frequency and intensity of precipitation will become increasingly variable [START_REF] Pachauri | Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF]. Variation in soil moisture can have strong transient effects on soil respiration that have long been observed in laboratory as well as field experiments. The Figure 3. CDMZ model extended to account for variation in soil moisture. SOC decomposition and microbial uptake rates are controlled by water saturation, ϑ/ϑ s , where q is volumetric water content and ϑ s is porosity (dependent on soil texture). The model splits DOC and enzyme pools into two, respectively, one for the wet zone and the other for the dry zone of soil pore space. Microbial uptake of DOC occurs only in the wet zone, and the uptake is linearly related to ϑ/ϑ s . The enzyme catalytic rate is proportional to ϑ/ϑ s in the wet zone, and to 1 -ϑ/ϑ s in the dry zone. (Reproduced from [START_REF] Zhang | Assessing five evolving microbial enzyme models against field measurements from a semiarid savannah-What are the mechanisms of soil respiration pulses?[END_REF] well-known "Birch effect" [START_REF] Birch | The effect of soil drying on humus decomposition and nitrogen availability[END_REF] refers to the dramatic increase in soil respiration caused by pulsed wetting after drought periods. To include the effect of variation in soil moisture due to variable precipitation in CDMZ models, [START_REF] Zhang | Assessing five evolving microbial enzyme models against field measurements from a semiarid savannah-What are the mechanisms of soil respiration pulses?[END_REF] introduced controls of enzyme activity and DOC uptake by water saturation (ϑ/ϑ s in ), and distinct pools of wet vs. dry enzymes and DOC (Fig. 3). These pools reflect the heterogeneous soil structure, in particular pore size distribution and wet and dry zones within 

Elevated CO 2

Many field studies have found that elevated atmospheric CO 2 (eCO 2 ) leads to higher carbon assimilation by plants leading to higher carbon storage in soils, through higher root production, higher litter production and enhanced root exudation If enhanced root exudation in eCO 2 leads to stimulated root and microbial respiration, eCO 2 may also result in enhanced weathering because higher soil CO 2 concentration from respiration supplies more protons for dissolution reactions [START_REF] Goddéris | Modelling weathering processes at the catchment scale: The WITCH numerical model[END_REF]. Root exudates also promote weathering because they contain organic acids (e.g. oxalic acid) and organic phenolic compounds [START_REF] Keiluweit | Mineral protection of soil carbon counteracted by root exudates[END_REF]McGill, 1996;[START_REF] Natali | Plant and Soil Mediation of Elevated CO2 Impacts on Trace Metals[END_REF]) that disrupt mineral-organic associations. The breakdown of mineral-associated organic compounds releases previously inaccessible organic C and inorganic nutrients such as phosphorus [START_REF] Amundson | Soil Formation[END_REF] that could further stimulate microbial activity in nutrientlimiting conditions. Although some studies provide strong indication that eCO 2 will promote weathering [START_REF] Karberg | Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone[END_REF], specific experiments are needed to predict the magnitude of the feedbacks between atmospheric CO 2 , microbial activity and weathering in different ecosystems over time [START_REF] Brantley | Twelve testable hypotheses on the geobiology of weathering[END_REF].

What do we learn from CDMZ models?

In this section we focus on what models of soil microbial dynamics tell us about the response of soil respiration to climate warming. Field experiments have documented an initial increase in CO 2 efflux from soils, followed by a decline in CO 2 loss, down to control levels within a few years (see e. • Target outputs. The target C is of the order of 100 mg cm -3 , biomass M is about 2% of C, Z is about 1% of M and D is limiting, hence close to 0. 60% of the microbial biomass is estimated to be in the first 5cm, 70% in the first 10cm and 80% in the first 20cm below surface (Fierer et al., 2009), therefore the vertical resolution of microbial processes is not as relevant as for other processes of soil formation.

• Carbon inputs. Using global predictions of the fraction of NPP that goes into litter from the CMIP5 averaged over 2005-2020, litter inputs range between 0 (e.g. in high latitudes) and ~1700 gC cm -2 y -1 (e.g. in tropical forests). Most mechanistic microbial models do not include coarse wooden debris in litter inputs and litter inputs are therefore usually below 100 gC cm -2 y 1 (Allison 2010; German et al, 2012; Wang et al., 2012[START_REF] Wang | Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses[END_REF].

• Microbial parameters. The microbial death rate is typically fixed between 0.05 and 0.0002 h -1 corresponding an expected lifespan of between 1 and 200 days (Allison et years were simulated by monitoring the state variables initialized at their equilibrium value at 20 °C. Their baseline model assumes that temperature affects the microbial uptake rate and the exoenzyme catalysis rate. They compare model simulations run (Fig. 5) under the following scenarios:

• MGE may be constant, decrease with warming, or "acclimate" i.e. show reduced sensitivity to temperature (Fig. 5a).

• The temperature sensitivity of enzymes itself may be constant, or "acclimate" i.e. decrease with warming through a 50% reduction in maximal activity (! !"# ! ) and 50% increase in the half-saturation constant (! ! ! ) (Fig. 5b).

The conclusion from these simulations is that, without enzyme "acclimation" (Fig. 5a), only the temperature-dependent MGE scenario (dotted line in Fig. 5a) can produce the target pattern of transient increase in the soil CO 2 loss rate, little change in the SOC pool, and reduced microbial biomass. Assuming that enzyme activity can acclimate (Fig. 5b), the best match of the empirical target is achieved by the "acclimating" MGE scenario.

What happens if we use simpler models in which the enzyme pool is not explicitly represented ("CDM models"), to predict the effect of warming on soil CO2 loss, SOC stock, driven by episodic rainfall pulses (Fig. 6). They used some known parameter values (see previous section) and performed Bayesian parameter estimation of MGE, enzyme production rate, microbial death rate, and enzyme deactivation rate. They evaluated and compared the models using three assessment criteria considering both goodness of fit and model complexity. The best model turns out to be the one depicted in Fig. 3; this model accounts for the moisture-dependence of enzyme activity and microbial uptake rates, and for the processes of accumulation and storage of DOC in the dry soil pores during dry periods (that is temporarily inaccessible to microbes), along with the facilitation of SOC decomposition during dry periods by enzymes localized in dry soil pores [START_REF] Homyak | Effects of altered dry season length and plant inputs on soluble soil carbon[END_REF]. Soil microbial models are also effective in reproducing drought events in primarily temperaturelimited system like that in temperate and boreal forests (Sihi et al., 2018).These results emphasize the need to better understand and quantify the mechanisms of DOC accumulation in dry soil pores. 

Projecting global soil C stocks in a changing climate

Mechanistic models are useful to investigate the significance of short-term experimental results to long-term ecosystem states, and to evaluate alternative hypotheses for explaining empirical data. They also exhibit two general properties that are relevant for scaling up microbial processes to the global Earth system.

• First, the C stock response to warming depends on the initial temperature. Soil carbon losses are expected in cold biomes, such as Arctic tundra; minimal carbon losses or even carbon gains are predicted in warm regions such as the tropics.

• Second, the C stock at steady state appears to be decoupled from inputs. In ) in the case of temperature-independent MGE (Fig. 7a). In a temperaturedependent MGE scenario, this effect can be completely offset (Fig. 7a). These results emphasised that microbial processes and their temperature dependence should be critical to over the same period (Fig. 7b).

Ultimately, the development, validation, and verification of models crucially depends on our ability to constrain them with empirical data, but we face a lack of relevant global data sets. 

Challenges and perspectives

The development of microbial models of soil respiration and the application of these models to improve our projections of climate and ecosystem change face multiple challenges, all revolving around the general issue of scaling in ecology (Levin, 1992). Mechanistic models of the CDMZ family capture processes at a spatial scale that is intermediate between the microscopic (micro) scale of cellular and physicochemical processes at which SOM decomposition and stabilization occur (10 -6 to 10 -3 m) and the mesoscale at which these processes are commonly measured (10 

Consistency of CDMZ models with micro-scale decomposition processes

CDMZ models typically assume a 10 -2 m spatial scale and iterate over hourly or daily time steps. The underlying processes, in contrast, involve individual cells with characteristic length of order 1 mm and interaction range of order 10 mm [START_REF] Raynaud | Spatial ecology of bacteria at the microscale in soil[END_REF].

Microbial accessibility to substrates on this micro-scale is key to the timescale of microbial influence on SOM decomposition (J. P. [START_REF] Schimel | The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model[END_REF]. The C that is associated with mineral fractions and that is not available for decomposition may be irrelevant for shortterm soil respiration dynamics, whereas on a longer timescale, the dynamics of mineral adsorption/desorption will change substrate accessibility and impact microbial activity and respiration. In addition, the physical diffusion of labile compounds (enzymes, DOC) couples the micro-scale dynamics of their production with accessibility on longer spatial and temporal scales.

Ultimately represents seminal steps in this direction, where numerical simulations of the micro-scale processes are used to derive the dynamics of aggregate variables. This is illustrated by the run shown in Fig. 8, where considerable heterogeneity in the spatial distribution of microbes (Fig. There are other micro-scale processes that are potentially critical for soil respiration dynamics at meso-scale, which need to be incorporated in CDMZ-type models. One such process involves how soil moisture affects the supply of substrates at the microscopic scale, for which we need a mechanistic representation. This could be achieved by explicitly modeling water transport of the substrates at the scale of soil pores. Also, a spatial representation of soil heterogeneous structure could account for the distribution of available substrates in the pore network. This is important because substrate concentrations vary enormously in the pore network and microbes may not be collocated with the available C 

Integrating CDMZ models in global C-climate projections

To scale up the ecosystem effects of micro-scale microbial dynamics to continental and global scales, the general principle is to use statistical distributions of parameters, such as v max , K m , and the death rates of microbes and decay rates of exoenzymes and assemble them across • The quantity and quality of organic matter inputs, which are determined primarily by vegetation type and productivity at scales larger than the meso-scale of decomposition.

Temperature as well as its indirect effects via soil moisture will alter plant production, partitioning of that carbon to roots and leaves and to litter, and litter quality (Conant et al.,

2011),

• Large scale and long-term ecological feedbacks of small-scale, short-term physiological, ecological, and evolutionary processes. Increased C inputs, as might occur with CO 2 or nutrient fertilization, may cause little change to soil C stock, yet microbial respiration will return more CO 2 to the atmosphere. This could be a significant influence of global warming, which would then feed back to the micro-scale dynamics of respiration.

• Environmental correlates of global warming, such as extreme climatic events (droughts and floods) and changes in their distribution, frequency, and intensity, are likely to generate wide variation at regional scale in soil properties and microbial responses. 

Summary

Here we provide a brief recap of the chapter key points.

• Our understanding of the evolutionary stability of di↵usive public goods in general, and of degradative enzyme production in particular, remains incomplete. One limitation of previous models is their focus on two-way competition between two strains, typically a producing strain and a 'pure cheater' or non-producing strain. A key issue here is that mechanisms that promote stability of producers against pure cheaters might fail to prevent 'erosion' of cooperation by mutant strains that produce slightly less of the public good than the wild-type, or resident strain [START_REF] Ferriere | Cheating and the evolutionary stability of mutualisms[END_REF]. Pure cheaters may go locally extinct when they do not receive enough resource produced by cooperators; however, strains that produce less, rather than none, of the public good should be less sensitive to the harm they inflict to the community [START_REF] Lee | Siderophore production and the evolution of investment in a public good: an adaptive dynamics approach to kin selection[END_REF]. On the other hand, producers may be vulnerable to pure cheaters and yet resist invasion by strains that invest only slightly less into the common good. We thus expect conditions for the evolutionary stability of cooperation to be di↵erent when considering the recurrent events of mutation of small e↵ects and selection that shape the evolutionary trajectory of exoenzyme production.

To predict the outcome of selection on small-e↵ect variants, we need to evaluate the population growth rate of initially rare mutant types interacting with any given resident type. To achieve this, previous models of microbe-enzyme systems need to be revisited and extended, so that invasion fitness of small-e↵ect mutants can be computed. To describe the interaction of resident strains with mutant cells, which, initially at least, occur in small, spatially localized populations, individual-level modeling of microbe-enzyme systems is required. Previous microbe-enzyme ecological models (reviewed in 

Individual-level, stochastic processes

Fluxes in and out of C, D, M, Z, X occur in continuous time. M t is the number of bacterial cells at time t. Z t , C t , D t are the numbers of enzyme molecules, SOC molecules, and DOC molecules, respectively. X t is the number of complexes formed by an enzyme molecule binding a DOC molecule.

DOC enters the microsite at a constant rate. When a cell dies, a fraction p of the molecules released are recycled into SOC, while the rest is recycled into DOC. A fraction l of dead microbes and deactivated enzymes may be lost due to leaching.

We denote by ↵ the structural cost of a cell, which is the number of DOC molecules contained in one cell, and by ↵ 0 the energetic cost of a cell, which is the number of DOC molecules consumed to produce the energy needed for the synthesis reactions involved in the production of a cell. We denote the structural cost of one SOC molecule by , and the structural and energetic cost of producing one molecule of enzyme by and 0 , respectively. We assume that the energetic costs are carbon released by bacteria as CO 2 that di↵uses out of the system instantaneously. We define the biomass production fraction and enzyme allocation fraction as

¯ M := 1 ↵ + ↵ 0 , ¯ Z := 1 + 0 .
(2.1)

Any event may occur at any time. The event rates (Tables 1 and2) give an approximation of the average frequency of each event. The rates of cell growth and enzyme production depend on the cell trait '. Cell division is the outcome of storing assimilated DOC until a threshold is reached.

A parameter N scales the gradual process of consumption and storage of DOC. Thus, there can be growth only if there is enough D to cover both the structural cost, ↵/N , and the energetic cost, ↵ 0 /N of this growth, hence the notation 1 {D (↵+↵ 0 )/N } which equals 1 if D (↵ + ↵ 0 )/N , 0 otherwise. Likewise 1 {D + 0 } is used for the production event of one enzyme molecule. Growth leads to cell division only if enough D has been consumed and stored.

Enzyme-substrate complexes form at rate ¯ as one enzyme molecule (e.g. cellulase) bind one SOC molecule (e.g. cellulose). A complex may either dissociate (with no reaction) at rate ¯ " 1 , or react at rate μ" and convert the molecule of SOC into a molecule of DOC while the enzyme is released and free again to react with new molecules of SOC.

We use K as a scaling parameter for the magnitude of the number of interacting bacteria, which by definition have access to the same (local) pool of resources. When K = 1, all parameter values correspond to the rates observed for a volume of soil V = 10 9 cm 3 that we take as the baseline volume expected to contain one cell. Increasing K means that the model treats interactions as well-mixed among an increasing number of cells that occupy an increasingly large volume. As a consequence, external inputs of SOC or DOC increase with K, and the probability that two enzyme and substrate molecules encounter, that is proportional to V K mD , decreases. We thus assume that there are four constant parameters, ĪC , ĪD , VmD and KmU , such that

ĪK C = K ĪC , ĪK D = K ĪD , V K mD = VmD K and KK mU = K KmU (2.2)
where I C is the external input of C, I D is the external input of D, V mD is the maximum decomposition rate when C is not limiting, and K mU is the uptake half-saturation constant.

For K finite and fixed, we omit K from our notations and use

C " (t), D " (t), M " (t), Z " (t), X " (t)
to designate the (stochastic) number of cells, enzymes molecules, SOC molecules, complexes and DOC molecules at time t. In Appendix A we show that when K is fixed, and under the assumption that complex dissociation and the decomposition reaction of the complex are much faster than complex formation: ¯ " 1 , μ" >> ¯ , the stochastic CDMZX model can be simplified into the four-compartment stochastic CDMZ model with structure shown in Fig. 1b and events and event rates listed in Table 2.

In other words, we assume that there are two positive constant ¯ 1 and μ such that

¯ " 1 = 1 " ¯ 1 and μ" = 1 " μ. (2.3)
When the scaling parameter " is very small, the model (C " , D " , M " , Z " , X " ) can be approximated by .

The stochastic CDMZ model can be simulated by implementing the algorithm described in Appendix B.

Table 1. Events involving enzyme-SOC complexes (X) in the CDMZX model. Individual-level events and event rates.

Event Event rate

Formation of 1 complex X from 1 Z and 1 C:

(M, Z, C, X, D) 7 ! (M, Z 1, C 1, X + 1, D) ¯ ZC
Dissociation of 1 complex X into 1 Z and 1 C:

(M, Z, C, X, D) 7 ! (M, Z + 1, C + 1, X 1, D) ¯ " 1 X Depolymerization of 1 C into D (decomposition) from the e↵ect of Z on C in complex X (M, Z, C, X, D) 7 ! (M, Z + 1, C, X 1, D + )
μ" X Table 2. Events and event rates in the stochastic CDMZ model. Cells are characterized by their trait value '.

Event Event rate

Events relative to M M grows and accumulates an equivalent of ↵/N molecules of DOC, 

N (1 ')¯ M VmU D KK mU +D 1 n D ↵+↵ 0 N o gives birth to an o↵spring if its stock of carbon is equal to ↵ D 7 ! D ↵+↵ 0 N M dies C 7 ! C + b(1 l)p ↵ c, dM D 7 ! D + b(1 l)(1 p)↵c M produces 1 Z D 7 ! D ( + 0 ) '¯ Z VmU D KK mU +D 1 {D + 0 } Events specific to Z, C, D Deactivation of 1 Z: (M, Z, C, D) 7 ! (M, Z 1, C, D + b(1 l) c) dZ Z External input
(M, Z, C, D) 7 ! (M, Z + 1, C 1, D + ) V K mD ZC

Deterministic approximation and rescaling of parameters

In this subsection we assume that all bacteria initially have the same trait value, ', and that there is no mutation (i.e. p mut = 0), so that there is only one type of cells in the system. We show (Appendix C) that if K is large and (2.2) holds, then the stochastic CDMZ model can be approximated by the following deterministic model

8 > > > > > > > > > > < > > > > > > > > > > : dm dt =(1 ')¯ M VmU d KmU + d m dM m dz dt ='¯ Z VmU d KmU + d m dZ z dc dt = ĪC ēC c + ↵ (1 l)p dM m VmD zc dd dt = ĪD ēD d + VmD zc + (1 l) ⇥ (1 p)↵ dM m + dZ z ⇤ VmU d KmU + d m, (2.4) 
where m, z, c and d give the number of cells, enzyme molecules, SOC molecules and DOC molecules predicted to occur on average around any individual cell. To set the state variables in units of carbon mass, we apply the following rescaling:

m = ! M m, z = ! Z z, c = ! C c, and d = ! D d
where m is in carbon mass unit and ! M is the carbon mass content of one cell, and likewise for enzyme, SOC and DOC. The ! parameters are related to ↵, and according to:

↵ = ! M ! D , = ! C ! D , and = ! Z ! D . (2.5)
With further rescaling and notations:

I C := ! C ĪC , I D := ! D ĪD , K mU := ! D KmU , V mD := 1 ! Z VmD , V mU := ! D ! M VmU , M := ! M ! D ¯ M , Z := ! Z ! D ¯ Z , d M := dM , d Z := dZ , e C := ēC , e D := ēD ,
we obtain the following dynamical system satisfied by m, z, c and d variables measured in carbon mass unit:

8 > > > > > > > > > > < > > > > > > > > > > : dm dt =(1 ') M V mU d K mU + d m d M m dz dt =' Z V mU d K mU + d m d Z z dc dt =I C e C c + (1 l)pd M m V mD zc dd dt =I D e D d + V mD zc + (1 l) [(1 p)d M m + d Z z] V mU d K mU + d m.
(2.6)

Definitions of all parameters, units, and default values are gathered in Table D.1 of Appendix D.

Hybrid stochastic-deterministic model for small populations

A cell is 10 7 times larger than one enzyme or substrate (SOC) molecule, and 10 10 times larger than one product (DOC) molecule. Within a given volume, the number of cells is between 10 5 to 10 10 times smaller than the number of molecules of enzyme, SOC or DOC. As a consequence, the dynamics of cells and the dynamics of enzyme, SOC and DOC do not unfold on the same scales. The events a↵ecting Z, C and D are much faster and more numerous than events a↵ecting M . As a consequence, we can treat the dynamics of Z, C and D as deterministic and given by the state variables z, c and d of dynamical system (2.7) over time bouts of constant cell population.

Mathematically, this can be formalized by establishing the convergence of the stochastic CDMZ model to a Piecewise Deterministic Markov Process, or PDMP (Appendix E), which is a hybrid stochastic-deterministic model. The hybrid dynamics involve random jumps of the finite cell number (driven by birth and death events) interspersed with periods of continuous, deterministic change in enzyme, SOC and DOC given by

8 > > > > > < > > > > > : z 0 (t) = '↵! D V mU Z d K mU + d M d Z z c 0 (t) = I C l C c V mD zc d 0 (t) = I D l D d + V mD zc + (1 l)d Z z '↵V mU d K mU + d M, (2.7) 
where M is the size of the cell population, and z, c, and d denote the amount of enzymes, SOC and DOC in carbon mass unit. Note that the mechanisms represented in the dynamical system are the events specific to Z, C, D in Table 2 and the production of enzymes (last line of the events relative to M in Table 2). The times of events related to the cell population (growth and death) remain stochastic and the rates of these events are given by the first two lines of Table 2, similarly to the stochastic CDMZ model. The simulation algorithm of the PDMP is presented in Appendix F.

We can further simplify the hybrid model by noting that when N > 10 4 , the events of growth become as frequent as the events a↵ecting Z, C, and D in the stochastic CDMZ model. In this case, consumption of D by cells is no longer a stochastic process but instead depends deterministically on M . Cell production thus becomes nearly deterministic, and the only remaining (slow) stochastic process is cell death. Even though the rigorous proof of this result is beyond the scope of the paper, we will adopt this approximation as we develop the spatially explicit extension of the model.

Spatial model

The spatial model retains the CDMZ functional structure and applies the approximated hybrid stochastic-deterministic model to each microsite of a large two-dimensional grid (lattice of L ⇥ L microsites). The key features added to the spatial model are di↵usion of products (DOC) and dispersal of cells, both taking place between adjacent microsites.

We model the DOC di↵usion between microsites by approximating a continuous di↵usion with a Euler scheme in which time is discretized with a fixed time step interval, ⌧ di↵ . At each time step, a step of the Euler scheme associated with the di↵usion equation

d dt d(x, t) = di↵ d(x, t)
is realized for the variable d, where x is the position variable. Space discretization used in the Euler scheme corresponds exactly to the habitat lattice structure.

Between two di↵usion time steps, the dynamics of each microsite is calculated using the approximated hybrid stochastic-deterministic model. The DOC reserve within each cell follows

dS i (t) dt = ↵(1 ') M V mU d K mU + d ,
where S i represents the carbon stocked at time t in the i-th cell. When S i (t) reaches ↵, the i-th cell divides, and both mother and daugther cells' reserve is set back to 0. The daughter cell is added to the mother cell colony with probability 1 p disp , or the new cell disperses (with probability p disp ) to one of the four neighbouring microsites. If empty microsites (one at least) are available in the neighborhood, the dispersing cell moves to one of them, drawn randomly. If all neighboring microsites are is set to 0.5, and p mut = 0.1 in the runs with mutation.

Spatial heterogeneity and the evolution of exoenzyme production

We now address the evolution of exoenzyme production using the spatially explicit, hybrid stochasticdeterministic model. We consider a resident, monomorphic population in which one variant cell arises by mutation. In the case where di↵erent cell genotypes can occur in the same microsite, all simulations show evolutionary suicide, as in the non-spatial model. This is expected because there is no advantage from producing exocellular enzymes -producers have to share products with cheaters in their microsite. If the original mutant successfully disperses, the spatial dynamics will keep the resident and mutant types segregated among microsites -whereas products generated by their enzymes di↵use across space. If the mutant is a stronger producer than the resident, it may invade and displace the resident genotype. Figure 3 shows an example. The outcome is strongly influenced by the di↵usion rate. For di↵usion above a critical threshold (all else being equal), there is strong selection against exoenzyme production (Fig. 4a). For di↵usion below the critical threshold (Fig. 4b-4f) there is evolutionary convergence towards intermediate values of '. At low investment in exoenzyme production, mutant with trait larger than the resident's can invade, hence directional selection for higher enzyme production. At high investment in exoenzyme production, mutant with trait smaller than the resident's can invade, hence directional selection for lower enzyme production.

Typically, there is a range of ' values for which the mutant population growth rate is close to zero, indicating a rather flat fitness landscape in this range (Table 3). Because of this flat fitness region and the system stochasticity (phenotypic variation generated by random mutations, growth rate a↵ected by demographic stochasticity), we expect evolutionary convergence toward that range followed by sustained phenotypic fluctuations within the range, as opposed to evolutionary convergence to a single evolutionarily stable ' ⇤ value.

Di↵usion has a strong influence on selection (Fig. 4, Table 3). The range of evolutionarily attractive ' ⇤ values decreases when di↵ increases from 10 7 to 10 5 . The e↵ect is negligible below 10 7 .

For di↵usion rates greater than 10 5 , evolution is always directional toward the smallest minimum viable value of ' ⇤ , at which evolutionary suicide occurs. 
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Eco-evolutionary response of decomposition to environmental change

In nature, parameters such as litter input, leaching rates, and the di↵usion rate vary strongly with location, in correlation with variation in e.g. vegetation or soil type. As expected from the general theory of di↵usive public goods, we find that di↵usion has a major influence of the evolution of exoenzyme production. Figure 5a shows the e↵ect of a gradient of di↵usion rates that could represent spatial variation, or a temporal sequence driven by climate change. At very low di↵usion rates, the range of attractive ' values remains roughly unchanged. There is a range of di↵usion rates (here from 10 7 to 10 5 ) over which increasing di↵usion causes a significant decline in exoenzyme production (from ca. 0.25 to 0.05).

Variation in evolutionarily stable ' feeds back on the rate of decomposition (Fig. 5b, red) and soil C stock (Fig. 5c,red). Decreasing soil di↵usion selects for higher exoenzyme allocation fraction (Fig. 5a) which in turn causes a strong increase in the decomposition rate (Fig. 5b, red) and a con- 

Discussion

Soil microbial decomposition involves the production of exoenzymes and uptake of the products of enzyme-driven depolymerization of dead organic matter. These products form a di↵usive public good, which is vulnerable to exploitation by cheaters. molecular complexes, we found that the population size of cells and molecules and some of the stochastic process rates could be rescaled to yield Schimel and Weintraub [2003] four-compartment deterministic 'CDMZ model'. As a side note, we could not find further or alternate rescaling to reduce the dimension of the system to three compartments (CDM or CMZ or DMZ). One can also prove that in all two-compartment models the equilibrium with positive cell population size is always unstable, which means that the cell population either goes extinct or grows unboundedly. Thus, the four-compartment CDMZ structure seems to be the simplest that is consistent with the individuallevel processes under consideration.

The deterministic CDMZ model, however, cannot be used to capture the dynamics of a spatially explicit system in which cells and molecules interact within their local neighborhood. strain. Our analysis goes a step further by predicting the evolutionary dynamics of exoenzyme production as a quantitative trait, varying continuously by random mutation of small e↵ect.

Just like soil di↵usion was identified as a critical factor for the stability of a producing strain against invasion by pure cheaters [START_REF] Steven D Allison | Cheaters, di↵usion and nutrients constrain decomposition by microbial enzymes in spatially structured environments[END_REF][START_REF] Dobay | Interaction e↵ects of cell di↵usion, cell density and public goods properties on the evolution of cooperation in digital microbes[END_REF], our model shows that the di↵usion rate chiefly controls the evolutionarily stable investment in exoenzyme production. More precisely, all else being equal, there are lower and upper thresholds on the soil di↵usion rate such that above the upper threshold, exoenzyme production is counterselected and decreases to the point where the whole system collapses; below the lower threshold, the di↵usion rate has no significant influence on the evolutionarily stable level of exoenzyme production; between the thresholds, there can be a rather wide range of exoenzyme production values for which the selection gradient is very shallow; the system is thus expected to evolve stochastically within that range. Such evolutionary stochasticity might translate in strong persistent di↵erences in decomposition rates at the centimeter scale in spite of identical ecological and biochemical conditions. It also remains to be seen whether selection could turn disruptive in these intervals of near-zero selection; disruptive selection would result in evolutionary branching, i.e. coexistence and divergence of two phenotypes, a more and a less productive strains. We did not observe evolutionary branching and coexistence in our simulations, but they could occur in regions of the parameter space that we have not yet explored. Otherwise, instances of coexistence reported by [START_REF] Steven D Allison | Cheaters, di↵usion and nutrients constrain decomposition by microbial enzymes in spatially structured environments[END_REF] and Kaiser et al. [2014Kaiser et al. [ , 2015] ] would possibly be evolutionary unstable and/or inaccessible to evolution by mutation of small e↵ects. 

Appendix A. Reduction of the stochastic CDMZX model

Here we take N = 1, but the proof could be generalized N > 1 by introducing multiple cell stages describing the state of cell resource reserve. To reduce the CDMZX model, the main difficulty arises because we can not have classical Skorohod convergence in distribution of the process (M " , Z " , C " , X " , D " , t 2 [0, T ]) ">0 . Indeed, when " is small, there will be some really close jumps of X " when a complex is formed and almost immediately dissociated or decomposed. Thus we are interested in the process Y " := (M " , Z " + X " , C " + X " , D " ), and we prove the following result.

Theorem 1. Assume that (2.3) holds and that (M " , Z " , C " , X " , D " )(0) converges in L 2 to the deterministic vector (M 0 , Z 0 , C 0 , 0, D 0 ), when " goes to 0, then for any T 0, the sequence of processes (Y " (t), t 2 [0, T ]) ">0 converges in law, in D([0, T ], N 4 ) endowed with the Skorohod topology, to (M, Z, C, D) t2[0,T ] defined by the 4-boxes model of Section 2.1 with

VmD = ¯ μ μ + ¯ 1 ,
and initial condition (M 0 , Z 0 , C 0 , D 0 ).

Proof.

Step 1: The first step is to prove the tightness of sequence (Y " ) ">0 in D([0, T ], N 4 ). To this aim, we denote the jumps set of process (Y " (t), t 2 [0, T ]) by

{J " j } j 1 = {t 2 [0, T ], Y " (t ) 6 = Y " (t)}. ( 4.1) 
Note that Y " is càdlàg, hence the definition (4.1). As any jump of Y " is of size 1, the tightness of Y " follows from the two conditions:

i) lim a!+1 lim sup "!0 P(kY " k 1 a) = 0, ii) lim !0 lim sup "!0 P(9j 0, J " j+1 J " j  ) = 0.
Indeed, these two conditions directly imply the two conditions of Theorem 13.2 in the book of [START_REF] Billingsley | Convergence of probability measures[END_REF], which ensures tightness.

To prove i), we introduce N " T ot = ↵M " + Z " + C " + ( + )X " + D " the total equivalent number of DOC molecules in the system at any time. Since the only external sources of carbon are inputs of C and D, N " T ot is stochastically bounded from above by

sup sT N " T ot (s) N " T ot (0) + P(( ĪD + ĪC )T ) =: N " max , (4.2) 
where P(( ĪD + ĪC )T ) is a Poisson random variable with parameter ( ĪD + ĪC )T . From the assumption on the initial conditions, we deduce immediately that the random variable N " max is L 2 -integrable and that for " su ciently small, there exists C 0 > 0 such that

E [N " max ] + E ⇥ (N " max ) 2 ⇤  C 0 . (4.3) 
Moreover, since ↵, and are greater than 1, we obtain from Markov inequality,

P(kY " k 1 a)  P(N " max a)  1 a C 0 ,
for any " su ciently small. This ends the proof of i).

We now deal with ii). Let us set ⌘ > 0. First of all, note that we can focus the study on the set {X " (0) = 0}. Indeed, from the assumption on the initial condition, for any " small enough, P(X " (0) 1)  ⌘. Hence

P(9j 0, J " j+1 J " j  )  ⌘ + P 0 (9j 0, J " j+1 J " j  ), (4.4) 
where for any set A, P 0 (A) = P(A|X " (0) = 0). In what follows, we restrict our focus on {X " (0) = 0}.

Then, we count the number of jumps of Y " . Note that any jump of Y " is also a jump of (M " , Z " , C " , X " , D " ). Thus, we count the jumps number of the latter. As originally done by [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF], it is convenient to represent a trajectory of individual-based processes as the unique solution of a system of stochastic di↵erential equations driven by Poisson point measures.

To this aim, we introduce a collection of 11 independent Poisson Point Processes (N i (ds, d✓)) i=1,..,11

on [0, 1) 2 with intensity dsd✓ and independent of ", which will be used to encode the 11 di↵erent types of events of the process (M " , Z " , C " , X " , D " ). We also denote all rates of this process by (r " i (t), t 2 [0, T ]) i=1,..,11 , i.e. these rates are respectively (1

')¯ M VmU D " KmU +D " M " 1 {D " ↵+↵ 0 } (birth of a M ), dM M " (death of a M ), '¯ Z VmU D "
KmU +D " M " 1 {D " + 0 } (production of a Z), dZ Z " (deactivation of a Z), ĪC (appearance of a C), ēC C " (disappearance of a C), ĪD (appearance of a D), ēD D " (disappearance of a D), ¯ Z " C " (formation of a X), ¯ " 1 X " (dissociation of a X), and μ" X " (decomposition of a X). Note that only the events of type 1 to 8 and 11 correspond to jumps of Y " . Hence, the jumps number of Y " can be bounded stochastically by

]{J " j } X i2{1,..,8,11} Z T 0 Z R + 1 {✓r " i (s )} N i (ds, d✓). (4.5) 
The only problem comes from the last rate μ" X " , which is unbounded when " goes to 0. However μ" X " = 0 as soon as there is no complex X in the system, and complexes are created with the encounter of a Z and a C (9-th rate). Thus, we immediately conclude that

Z T 0 Z R + 1 {✓μ " X " (s )} N 11 (ds, d✓)  Z T 0 Z R + 1 {✓ ¯ Z " (s )C " (s )} N 9 (ds, d✓).
In addition with (4.5), (4.2) and (4.3), we deduce, if " is small enough that

P 0 (]{J " j } > n)  9 X i=1 P 0 ✓Z T 0 Z R + 1 {✓r " i (s )} N i (ds, d✓) n 9 ◆  9 n T 9 X i=1 E 0 " sup s2[0,T ] r " i (s) #  9T n ⇣ ĪC + ĪD + C 1 E 0 [N " max ] + ¯ E 0 ⇥ (N " max ) 2 ⇤ ⌘  9T n C 2 ! n!+1 0, (4.6) 
with C 1 := ¯ M VmU + dM + ¯ Z VmU + dZ + ēC + ēD and C 2 := ĪC + ĪD + C 1 C 0 + ¯ C 0 . We fix n := b9T C 2 /⌘c + 1 such that the last r.h.s. is smaller than ⌘. Thus,

P 0 (9j 0, J " j+1 J " j  )  P 0 (]{J " j } > n) + P 0 9j 2 {1, .., n 1} J " j+1 J " j  , ]{J " j }  n  ⌘ + n 1 X j=1 P 0 (J " j+1 J " j  ) (4.7) 
Moreover, for any j 2 {1, .., n 1},

P 0 (J " j+1 J " j  )  P 0 (J " j+1 J " j  |X " (J " j ) = 0) + P 0 (X " (J " j ) 1) (4.8) 
The first term of the r.h.s of (4.8) can be bounding using the Markov property of (M " , Z " , C " , X " , D " ).

Indeed, the two last types of events (10 and 11) can not occur after time J " j and before any other jumps, since X " (J " j ) = 0. Hence

P 0 (J " j+1 J " j  |X " (J " j ) = 0)  P 0 ✓ 9i 2 {1, .., 9}, Z 0 Z R + 1 {✓r " i (s )} N i (ds, d✓) 1 ◆  9 X i=1 E 0 " sup s2[0,T ] r " i (s) #  C 2  ⌘ n ,
as soon as  ⌘/(nC 2 ). Hence, with (4.7) and (4.8),

P 0 (9j 0, J " j+1 J " j  )  2⌘ + n 1 X j=1 P 0 (X " (J " j ) 1). (4.9) 
To bound the second term of the r.h.s of (4.9), recall that the positive jumps of X " are not jumps of Y " and note that X " (J " j ) may be greater than 1 only if there exists a positive jump of X " whose next event is of type 1 to 9 (and not of type 10 or 11). We denote the set of positive jumps of X " by

{S " `}` 1 = {t 2 [0, T ], X " (t) X " (t ) = 1}.
The second term of the r.h.s of (4.9) can thus be bounded by

n 1 X j=1 P 0 (X " (J " j ) 1)  P 0 ✓ 9` 1, min 1i9 ⌧ " i (S " `)  min{⌧ " 10 (S " `), ⌧ " 11 (S " `)} ◆ , (4.10) 
where for any i = 1, .., 10, ⌧ " i (S " `) is the first time event of type i after S " `, that is

⌧ " i (S " `) := inf ( t S " `, Z t S " `ZR + 1 {✓r " i (s )} N i (ds, d✓ ) 1 ) 
.

After time S " `and before any other event, X " is obviously greater than 1. The rates r " 10 and r " 11 can thus be bounded from below by ¯ " 1 and μ" respectively, other rates can be bounded from above using the r.v. N " max . Thus, using again (4.6), together with (4.10) and the Markov property satisfied by (M " , Z " , C " , X " , D " ), we obtain

n 1 X j=1 P 0 (X " (J " j ) 1)  n X `=1 P 0 ✓ min 1i9 ⌧ " i (S " `)  min{⌧ " 10 (S " `), ⌧ " 11 (S " `)} ◆ + P 0 (]{S " `} > n)  nP 0 ⇣ ⌧  E¯ " 1 +μ " ⌘ + ⌘,
where E¯ " 1 +μ " is an exponential r.v. with parameter ¯ " 1 + μ" , and,

⌧ = inf ⇢ t 0, Z t 0 Z R + 1 {✓ ĪC + ĪD +C 1 N " max + ¯ (N " max ) 2 } N 1 (ds, d✓) 1 .
Hence

n 1 X j=1 P 0 (X " (J " j ) 1)  n Z 1 0 P 0 (⌧  s) ( ¯ " 1 + μ" )e ( ¯ " 1 +μ " )s ds + ⌘  n" C 2 ¯ 1 + μ + ⌘. (4.11) Finally, with (4.4), (4.9) and (4.11), we obtain lim sup 
"!0

P(9j 0, J " j+1 J " j  )  4⌘,
as soon as  ⌘ 2 /(18T C 2 2 ) (as this implies that  ⌘/(nC 2 )). This ends the proof of ii), and the one of the tightness of process Y " .

Step 2: The second step is to identify the limit. As the sequence of processes (Y " ) ">0 is tight, it is su cient to prove that any accumulation point has the same law. Let us take (M, Z, C, D) 2 D([0, T ], N 4 ) the limit (in law) of a sub-sequence of (Y " ) ">0 , that we denote also by (Y " ) ">0 for the sake of readability and we will denote (M, Z, C, D) by Y. We first prove that Y is a Markov process and then characterize it by describing its jump rates. Note that {Y " } ">0 are not Markov processes, however {(Y " , X " )} ">0 are Markov processes.

To prove that Y is a Markov process, let us set t > 0, a sequence of m + m 0 times 0

 t 1  ...  t m  t  s 1  ..  s m 0 and m + m 0 + 1 vectors, y 1 , .., y m , y t , y 0 1 , .., y 0 m 0 2 N 4 . From Dynkin's theorem, it is su cient to prove that P ⇣ Y(s m 0 ) = y 0 m 0 , .., Y(s 1 ) = y 0 1 |Y(t) = y t , Y(t m ) = y m , .., Y(t 1 ) = y 1 ⌘ = P ⇣ Y(s m 0 ) = y 0 m 0 , .., Y(s 1 ) = y 0 1 |Y(t) = y t ⌘ . (4.12) 
From the convergence in law and assumptions on X " (0), we have, for any " > 0,

P ⇣ Y(s m 0 ) = y 0 m 0 ,.., Y(s 1 ) = y 0 1 |Y(t) = y t , .., Y(t 1 ) = y 1 ⌘ = lim "!0 P 0 ⇣ Y " (s m 0 ) = y 0 m 0 , .., Y " (s 1 ) = y 0 1 |Y " (t) = y t , .., Y " (t 1 ) = y 1 ⌘ = lim "!0 P k 0 P 0 ⇣ Y " (s m 0 ) = y 0 m 0 , .., (Y " , X " )(t) = (y t , k), .., Y " (t 1 ) = y 1 ⌘ P k 0 P 0 ⇣ (Y " , X " )(t) = (y t , k), .., Y " (t 1 ) = y 1 ⌘ . (4.13) 
Then we prove that, for " small enough, X " (t) is equal to 0 with a large probability. Indeed, (X " (u)) ut has little chance to reach 2:

P 0 (sup ut X " (u) 2)  P 0 ✓ 9` 1, min 1i9 ⌧ " i (S " `)  min{⌧ " 10 (S " `), ⌧ " 11 (S " `)} ◆ ,
where all terms have been defined in (4.10), and the r.h.s term has been proved to converge to 0 when " goes to 0. It remains to prove that X " (t) has little chance to be equal to 1 on {sup ut X " (u)  1}

P 0 ⇣ X " (t) = 1, sup ut X " (u)  1 ⌘  P 0 ⇣ 9` 1, S " ` t < S " `+ min{⌧ " 10 (S " `), ⌧ " 11 (S " `)}, sup ut X " (u)  1 ⌘ .
As previously, note that there is not an infinite number of events S " `in [0, T ] and that {S " `}`>0

are directly correlated to the events of type 9. As min{⌧ " 10 (S " `), ⌧ " 11 (S " `)} is an exponential random variable E¯ " 1 +μ " , we deduce,

P 0 (X " (t) = 1,{sup ut X " (u)  1})  n X ` 1 Z 1 0 P 0 ⇣ S " `2]t h, t] ⌘ ( ¯ " 1 + μ" )e h( ¯ " 1 +μ " ) dh + P 0 ]{S " j } > n  n Z 1 0 P 0 ⇣ Z t t h_0 Z R + 1 {✓r " 9 (s )} N 9 (ds, d✓) 1 ⌘ ( ¯ " 1 + μ" )e h( ¯ " 1 +μ " ) dh + ⌘  n Z 1 0 h ¯ C 0 ( ¯ " 1 + μ" )e h( ¯ " 1 +μ " ) dh + ⌘  n ¯ C 0 ¯ " 1 + μ" + ⌘  2⌘,
as soon as " is su ciently small. In other words, P 0 (X " (t) 1) converges to 0 with ". (4.13) becomes

P ⇣ Y(s m 0 ) = y 0 m 0 ,.., Y(s 1 ) = y 0 1 |Y(t) = y t , .., Y(t 1 ) = y 1 ⌘ = lim "!0 P 0 ⇣ Y " (s m 0 ) = y 0 m 0 , .., (Y " , X " )(t) = (y t , 0), .., Y " (t 1 ) = y 1 ⌘ P 0 ⇣ (Y " , X " )(t) = (y t , 0), .., Y " (t 1 ) = y 1 ⌘ = lim "!0 P 0 ⇣ Y " (s m 0 ) = y 0 m 0 , ..|(Y " , X " )(t) = (y t , 0), .., Y " (t 1 ) = y 1 ⌘ = lim "!0 P 0 ⇣ Y " (s m 0 ) = y 0 m 0 , ..|(Y " , X " )(t) = (y t , 0) ⌘ , (4.14) 
where we used the Markov property of (Y " , X " ). Using same ideas, it is straightforward to prove that

P ⇣ Y(s m 0 ) = y 0 m 0 , ..|Y(t) = y t
⌘ is also equal to the last term of (4.14), hence (4.12) and the Markov property of Y.

It remains to describe the transition rate matrix of Y. To this aim, for any y, y 0 2 N 4 , we study the limits

lim t!0 P ⇣ Y(t) = y 0 |Y(0) = y ⌘ .
From what we have seen before (notably that the events of type 1 to 8 are not really a↵ected by the presence of the fast species X " ), it is straightforward that, in the limiting process Y, there exist 8 types of events with rates (1

')¯ M VmU D " KmU +D M 1 {D ↵+↵ 0 } (birth of a M ), dM M (death of a M ), '¯ Z VmU D KmU +D M 1 {D + 0 } (
production of a Z), dZ Z (deactivation of a Z), ĪC (appearance of a C), ēC C (disappearance of a C), ĪD (appearance of a D), ēD D (disappearance of a D). It remains to deal with the three last types of events. However, we have seen that when a event of type 9 occurs, an event of type 10 or 11 occurs immediately after (such that the formed complex disappears or dissociates). In the limit, both events are simultaneous and 

P ⇣ Y(t) = (m 0 , z 0 , c 0 1, d 0 + )|Y(0) = (m 0 , z 0 , c 0 , d 0 ) ⌘ = lim "!0 P ⇣ Y " (t) = (m 0 , z 0 , c 0 1, d 0 + )|Y " (0) = (m 0 , z 0 , c 0 , d 0 ) ⌘ = lim "!0 P ⇣ Y " (t) = (m 0 , z 0 , c 0 1, d 0 + )|Y " (0) = (m 0 , z 0 , c 0 , d 0 ) ⌘ It remains
P ⇣ Y(t + h) = (m + 1, z, c, d (↵ + ↵ 0 )) Y(t) = (m, z, c, d) ⌘ = lim "!0 P 0 ⇣ (Y " , X " )(t + h) = (m + 1, z, c, d, 0) (Y " , X " )(t) = (m, z, c, d, 0) ⌘ . 
Using the jumps rate of (Y " , X " ), we deduce directly

P ⇣ Y(t+h) = (m+1, z, c, d (↵+↵ 0 )) Y(t) = (m, z, c, d) ⌘ = (1 ')¯ M VmU d KmU + d m1 {d ↵+↵ 0 } h+o(h).
The same can be done with the death of a M , the production of a Z, the deactivation of a Z, the (dis)appearance of a C and the (dis)appearance of a D, where the actions of the complexes do not intervene. And we find the rate given by Theorem (1) The only problem may come from the decomposition of a C into D:

P ⇣ Y(t + h) = (m + 1, z, c 1, d + ) Y(t) = (m, z, c, d) ⌘ = lim "!0 P 0 ⇣ (Y " , X " )(t + h) = (m, z, c 1, d + , 0) (Y " , X " )(t) = (m, z, c, d, 0) ⌘ = lim "!0 P 0 ⇣ (Y " , X " )(h) = (m, z, c 1, d + , 0) (Y " , X " )(0) = (m, z, c, d, 0) ⌘ = lim "!0 P 0 ⇣ S " 1  h, ⌧ " 11 (S " 1 )  min 1i10 ⌧ " i (S " 1 )) 
⌘ .

As we proved before that P 0 (min 1i9 ⌧ " i (S " 1 )  ⌧ " 10 (S " 1 )) converges to 0 with " (see (4.11)), we have

P ⇣ Y(t + h) = (m + 1, z, c 1, d + ) Y(t) = (m, z, c, d) ⌘ = lim "!0 P 0 ⇣ S " 1  h, ⌧ " 11 (S " 1 )  ⌧ " 10 (S " 1 )) ⌘ = lim "!0 ¯ zc ⇥ μ" μ" + ¯ " 1 h + o(h) ! = VmD zch + o(h).
otherwise nothing happens and the algorithm starts again.

In the case where the event of growth occurs, an amount of ↵/N molecules of carbon is added to the stock of the bacteria and an amount of (↵ + ↵ 0 )/N DOC is removed from the system, which represents the e↵ective cost (structural and energetic costs) for the event of growth. At this time, if the stock of the bacteria reaches the size ↵, the bacteria splits, gives birth to a new bacteria with a stock of carbon equals to 0 and its own stock of carbon is re-initialized to 0. If an o↵spring arises, its trait value is the same as its parent, ', with probability 1 p mut , and with probability p mut , it is chosen through a Gaussian random variable centered in ', with standard deviation mut , and conditioned on staying in [0, 1].

• if ✓ 2 [N (1 min ' )¯ M VmU M (t i ), N(1 min ' )¯ M VmU M (t i ) + d M M (t i )], 1 M dies. Since all
M have the same individual death rate dM , 1 M is chosen uniformly randomly among all M and is removed from the population. A proportion " of its carbon (its structural cost ↵ and its stock) is lost out of the system by leaching and a proportion 1 " is recycled. From the recycled part, a proportion p goes to C and a proportion 1 p goes to D.

• Finally, in the last case, 1 M may produce 1 Z. Once again, the rate has been overstated, such that the a↵ected M is chosen uniformly and randomly among all M . If its trait value is ', we simulate ✓ 0 , a uniform random variable on [0, 1], and the production of 1 Z happens if

✓ 0  ' max ' D(t i ) KK mU + D(t i ) 1 {D(t i ) + 0 } ,
that is, 1 Z is added to the system and + 0 molecules of D are removed. Otherwise nothing happens.

Appendix C. Deterministic approximation of the stochastic CDMZ model

The derivation of the deterministic approximation (2.4) is based on the following lemma. Let us denote by (M K (t), Z K (t), C K (t), D K (t)) the number of bacteria, enzymes molecules, SOC molecules and DOC molecules given by the stochastic process presented in Section 2.1 in the case of K neighbourhoods. The following lemma can be deduced from a direct application of Chapter 11 in Ethier and Kurtz [2009].

Lemma 4.1. Assume that (2.2) holds and that

✓ M K (0) K , Z K (0) K , C K (0) K , D K (0) K ◆ ! K!+1 (m(0), z(0), c(0), d(0)) 2 [0, +1) 4 ,
then for any T 0, lim

K!+1 sup tT ✓ M K (t) K , Z K (t) K , C K (t) K , D K (t) K ◆ (m(t), z(t), c(t), d(t)) 1 = 0,
where the limit stands in probability, k.k 1 denotes the L 1 -norm on R 4 and (m, z, c, d) is the unique solution to (2.4) with initial condition (m(0), z(0), c(0), d(0)).

For any deterministic initial condition (m(0), z(0), c(0), d(0)) 2 [0, +1) 4 , the solution to (2.4) is indeed unique. This uniqueness derives from the fact that the vector field is locally Lipschitz and that the solutions do not explode in finite time [START_REF] Chicone | Ordinary di↵erential equations with applications[END_REF]. The latter follows directly from the fact that d dt (↵m + z + c + d)  ĪC + ĪD at any time, as the only external carbon sources are the spontaneous appearances of C and D.

Appendix D. Default parameter values

The set of default parameters is derived from Allison et al. V mU h 1 maximum uptake rate (in biomass) 0.42

123

V mD mg 1 h 1 maximum decomposition rate when C is not limiting mut have been chosen to respect the assumptions of the adaptive dynamics that mutations are rare and small [Geritz et al., 1998].

7⇥10 4 V K mU mg uptake half-saturation constant 0.3 ⇥ V I C mgh 1 external input of C 5 ⇥ 10 4 ⇥ V I D mgh 1 external input of D 0 e C h 1 C leaching rate
Concerning the change of unit from biomass to individuals (!s), the models for M , Z, C, D are Bacillus subtilis ou clausii, cellulase, cellulose and glucose respectively. We estimated the mass of 1 D with the mass of 1 molecule of glucose, which contains 6 atoms of carbon and m 6.02⇥10 23 atoms of 12 C = 12g. We estimated the mass of 1 C from the approximation that 1 molecule of cellulose contains about 10 3 molecules of glucose. We estimated the mass of 1 Z by assuming that 1 molecule of cellulase contains about as much carbon as 1 molecule of cellulose. Finally, we estimated the mass of 1 M based on the results from biomass estimations of soil samples (with various methods: CFI, CFE, SIR...) that there are about 4 ⇥ 10 8 active individual bacteria in 1cm 3 of bulk soil, which weight 0.1mg in carbon [Fierer et al., 2009].

Appendix E. Derivation of the hybrid stochastic-deterministic model

We now state and prove the theorem that justifies the approximation of the stochastic model by the PDMP. As explained above, the main idea is to use that the biomass represented by a cell is much larger than the carbon mass of a molecule of enzyme, SOC or DOC, whereas the number of cells is much smaller than the number of enzyme, SOC and DOC molecules.

To set the result rigorously, we introduce a parameter  that gives the order of magnitude of the biomass of a cell and the number of enzymes, SOC and DOC molecules.

The structural and energetic costs of a bacteria is rewritten

↵  := ↵ and ↵ 0  = ↵ 0 .
As previously, we set Ī

C =  ĪC , Ī D =  ĪD , V  mD = VmD  , K mU =  KmU , and we are interested in the sequence ✓ M  t , Z  t  , C  t  , D  t  , t 0 ◆  0
, when  converges to 1. A direct application of Theorem 3.1 of Crudu et al.

[2012] and a change of variables similar to the one of Section 2.2 give the following theorem.

Theorem 2. Assume that

⇣ M  (0), ! Z Z  (0)  , ! C C  (0)  , ! D D  (0)  ⌘ converges to a deterministic vector (M 0 , z 0 , c 0 , d 0 ), then the sequence of processes ✓ M  t , Z  t  , C  t  , D  t  , t 0 ◆
converges in distribution, when  goes to +1, to the distribution of a PDMP whose generator is

Af (M, z, c, d) = (1 ') M V mU d K mU + d M 1 {d ! D (↵+↵ 0 )} h f M + 1, z, c, d ! D (↵ + ↵ 0 ) f (M, z, c, d) i + dM M h f (M 1, z, c + (1 ")p↵! D , d + (1 ")(1 p)↵! D ) f (M, z, c, d) i + ✓ '⌘! D V mU Z d K mU + d M d Z z ◆ @f (M, z, c, d) @z + (I C l C c V mD zc) @f (M, z, c, d) @c + ✓ I D l D d + V mD zc + (1 ")d Z z '⌘V mU d K mU + d M ◆ @f (M, z, c, d) @d .
This approximation is justified in our context due to the large values of ↵  = 10 10 and ↵ 0  = 2.33 • 10 10 compared to , and 0 (less than 10 4 ). initially at 5% frequency in the introduction microsite. We ran simulations for (resident, mutant) pairs with +/-0.05 di↵erence in trait value ' . From the final frequency of mutants we compute the mutant exponential growth rate, and average over 20 simulation replicates. For values very close to zero, we re-ran simulations three times longer. exoenzyme allocation fraction to temperature rise; and how this response impacts the decomposition rate and SOC stock. By comparing the full eco-evolutionary (ECOEVO) response of SOC stock to the purely ecological (ECO) response in absence of evolution (in which φ is a fixed parameter that does not change), we can evaluate the contribution of microbial evolutionary adaptation (EVO effect) to the direction and magnitude of the SOC stock response to climate warming (Fig. 1b,c).

Microbial decomposition is predicted to respond to warming due to the temperature sensitivity of intra-and extra-cellular enzymatic activity 14,28,29 . In our baseline 'kinetics-only' scenario of temperature-dependent decomposition, we assume that microbial uptake parameters (maximum uptake rate and half-saturation constant) and exoenzyme kinetics parameters (maximum decomposition rate and half-saturation constant) increase with temperature 5,30 . We consider two additional scenarios for the influence of temperature on decomposition. In the microbial mortality scenario, the microbial death rate also increases with temperature 13 . This could be due to a higher risk of predation or pathogenic infection at higher temperatures, or faster microbial senescence due to higher protein turnover 13 . In the microbial growth efficiency (MGE) scenario, MGE (the fraction of carbon allocated to growth that actually contributes to microbial biomass, as opposed to being released as CO 2 via growth respiration) decreases with temperature 11,31 , which could be due to higher maintenance costs at higher temperature 32 .

At any given temperature, the evolutionary model predicts that the adapted value of the enzyme allocation fraction, φ *, depends on four parameters (equation ( 5) in on-line Methods): MGE, mortality, maximum uptake rate, and local competitive advantage to exoenzyme producers, or 'competition asymmetry'. Among these parameters, competition asymmetry measures the differential availability of dissolved organic carbon (DOC) to different microbial strains, which may be shaped by diffusion of DOC or microbial mobility, and is thus likely influenced by soil physical properties, such as texture or moisture. For simplicity, we ignore the potential effect of temperature on the latter, and as a result, competition asymmetry is independent of temperature.

In the temperature-dependent MGE scenario, the direction and magnitude of the ECOEVO response to warming vary dramatically with the initial temperature T 0 (Fig. 3d).

Driven by adaptive evolution, the enzyme allocation fraction increases strongly with warming in cold systems, hardly changes in temperate systems, and decreases markedly in warm systems (Extended Data Fig. 5d), with parallel effects on the decomposition rate (Extended Data Fig. 5h). As a consequence, at low T 0 , aggravation of soil carbon loss by evolution is almost as severe as in the baseline scenario, even though both ECO and ECOEVO responses are weaker in this scenario (Fig. 3a,d). At higher values of T 0 , the ECOEVO response becomes weaker than the ECO response or even positive (Fig. 3d), resulting in the sequestration rather than loss of soil carbon.

To illustrate how EVO effects may vary in real ecosystems, we used available data 14 on the decomposition kinetic parameters in five biomes of increasing latitude and decreasing mean annual temperature (Costa Rica, California, West Virginia, Maine, and Alaska, Fig. 4). We evaluated ECO and ECOEVO responses for each biome under three levels of competition asymmetry (as quantified by the local competitive advantage to producers, c 0 ) (Fig. 4a-h). Under our baseline scenario, EVO effects correlate strongly with mean annual temperature, even more so for low competition asymmetry (Fig. 4i). Stronger EVO effects occur in colder biomes, as found in the general analysis (Fig. 3a). In contrast, the ECO response does not correlate with mean annual temperature (Fig. 4a). As a result, a temperate biome such as Maine exhibits a weak ECO response that can be strongly amplified by evolution, whereas the warm Costa Rica biome shows a strong ECO response that is little affected by evolution.

These results are quantitatively attenuated but qualitatively unaffected when microbial mortality increases moderately with temperature (Fig. 4b, f, j). With a stronger effect of temperature on microbial mortality, all biomes show the evolutionary buffering effect (Fig. 4k) found in the general analysis (Fig. 3c). The intensity of evolutionary buffering is independent of the biomes' mean annual temperature, whereas it varies significantly with competition asymmetry (Fig. 4k). Under the temperature-dependent MGE scenario, ECO and ECOEVO responses are reduced in magnitude compared to the baseline scenario (Fig. 4d, h), particularly in cold biomes. However, in these biomes, EVO effects are enhanced dramatically (Fig. 4l). Thus, in a biome as cold as Alaska, a significant ECOEVO loss of soil carbon is predicted, whereas the purely ecology-driven loss of soil carbon would be negligible (Fig. 4l).

In summary, as global warming increases environmental temperatures, our model predicts evolution of the enzyme allocation fraction, with potentially large effects on the decomposition process and SOC stock (see also Supplementary Discussion and Extended Data Figs. 9-10 for effects measured on total soil active carbon). The size of evolutionary (EVO) effects is most sensitive to MGE, microbial mortality, activation energy of uptake maximal rate, competition asymmetry, and initial temperature (Fig. 2). Evolution often aggravates the ecological loss of soil carbon in response to warming, especially in cold biomes (Figs. 1,3). We identified two cases in which evolutionary adaptation to warming may buffer or even revert the ecology-driven loss of soil carbon: strongly temperature-dependent microbial mortality, or temperature-dependent MGE in warm ecosystems (Fig. 3). Overall, we expect evolutionary effects to vary greatly among ecosystems that differ in biotic (microbial life history and physiology) and abiotic (temperature, soil texture and moisture) characteristics.

Implications of our findings for large geographic scales, across terrestrial ecosystems, are hinted at by specifying the model for the five contrasting biomes for which exoenzyme kinetics data are available 14 . We find evolutionary aggravation of soil carbon loss to be the most likely outcome, with a strong latitudinal pattern, from small evolutionary effects at low latitude to large evolutionary effects at high latitude. In all cases, the competition asymmetry is a strong influence of the eco-evolutionary response of microbial decomposition to warming (Fig. 4). Soil texture and moisture, that may influence competition asymmetry, vary considerably among locations 14 . Predicting geographic variation in ECOEVO responses and EVO effects across large geographic scales thus calls for more empirical data on variation in ecological (competition) traits, especially how the competitive advantage to exoenzyme producers varies with soil physical properties.

The adaptive trait-based approach we use circumvents the difficulty of prescribing critical parameters (such as the enzyme allocation fraction) and their response to environmental change. This approach can easily be extended to model (rather than assume) the adaptive dynamics of multiple microbial traits, such as growth-related traits and substrate-specific enzyme production traits, and their diversification into coexisting functional types (Supplementary Discussion). A similar approach has been used to construct a physiology-based model of feedbacks between global ocean ecosystem function and phytoplankton diversity 33 . Rather than assuming values for the multiple physiological traits characterizing each plankton species, the model let interactions among randomly parametrized species drive species sorting and emergence of the corresponding trait values.

The trait-based approach for microbial communities can also facilitate model validation by leveraging genomic and metagenomic data mapped to soil microbial function 34 .

Future extensions of our eco-evolutionary model will enable the mechanistic representation of below-aboveground feedbacks between soil microorganisms and vegetation, by coupling the carbon cycle with other major biogeochemical cycles, such as nitrogen and phosphorus 1 . Existing mathematical 26,35,36 and computational models 27,37,38 pave the way for such extensions. Global projections of the effect of soil microbial evolution on future climate change will become possible by coupling our eco-evolutionary model of biological decomposition with soil models that account for the chemical and physical transformations of soil carbon occurring on year-to-century timescales 5,39-41 .

Given the large population size and short generation time of many microorganisms, microbial evolution should be an essential component of ecosystem models. Microbial evolutionary adaptation to warming, and its impact on the decomposition of soil organic matter, can radically change soil carbon dynamics. Empirical data suggest that natural values of enzyme allocation fraction are low 29,35 and fall in the range for which our model predicts large eco-evolutionary responses of decomposition to warming. In spite of an increasing effort to document and understand the ecosystem impact of microbial physiological and ecological responses to climate warming 11,31,42 Ecosystem equilibria. The ecological model possesses either one globally stable equilibrium, or three equilibria (one of which is always unstable) (Extended Data Fig. 2).

(1a) Z C dt dC = I - K +C m D v C D max -e C (1b) Z M Z M D dt dD = K +C m D v C D max + d M + d Z - K +D m U v D U max -e D (1c) M M dt dM = (1 ) -φ γ M K +D m U v D U max -d M (1d) γ M Z dt dZ = φ Z K +D m U v D U max
There are thresholds φ min and φ max such that the globally stable equilibrium exists for φ < φ min or φ > φ max and is given by C = I / e C , D = 0, M = 0, Z = 0. Thus, at this equilibrium, the microbial population is extinct and no decomposition occurs. For φ min < φ < φ max , the microbial population can either go extinct (then the system stabilizes at the same equilibrium as before) or persists at or around a non-trivial equilibrium, which can be solved for analytically. Note that φ min and φ max depend on all microbial and model parameters (Extended Data Fig. 3, Supplementary Note 1).

Effect of temperature on model parameters. Decomposition is predicted to respond to warming 5 due to the temperature sensitivity of enzymatic activity 14,28,43 and microbial uptake parameters (maximum uptake rate v U max and half-saturation constant ) follow Arrhenius relations with temperature. This defines our baseline 'kinetics-only' K m U scenario of temperature-dependent decomposition:

(2a) e v D max = v 0 D - E v D R(T +273) (2b) e K D m = K 0 D - E D K R(T +273) (2c) e v U max = v 0 U - E v U R(T +273) (2d) e K m U = K 0 U - E K U R(T +273)
where T is temperature in Celsius, R is the ideal gas constant, and the E parameters denote the corresponding activation energies.

We consider two additional scenarios for the influence of temperature on decomposition. In the temperature-dependent microbial mortality scenario 13 , the microbial death rate increases with temperature. This could be due to a higher risk of predation or pathogenic infection at higher temperatures, or faster microbial senescence due to higher protein turnover 35 . In this scenario, the microbial death rate d M depends on temperature according to a competitive advantage over less cooperative strains 44,47,48 . This generates indirect positive selection on trait φ .

The trait value φ * at which negative and positive selections balance is the evolutionarily stable microbial strategy, given by (5) φ * (T ) = 1 -

d M γ v M U max -1 c 0
where c 0 measures the competitive advantage, due to spatially local interactions, of any given strain over a slightly less cooperative strain, or 'competition asymmetry' (Supplementary Note 3). The parameter c 0 is likely to depend on the diffusivity of DOC, which may itself vary with soil properties such as texture or water content.

As temperature rises from T 0 to T , the direction and magnitude of the microbial adaptive response is measured by , which depends on the scenario φ ∆ * = φ * (T ) -φ * (T ) 0 of temperature dependence. The eco-evolutionary (ECOEVO) response of SOC is given by

(6) ECOEVO = Δ C ECOEVO ( T 0 , T ) = C ( T , φ *( T )) -C ( T 0 , φ *( T 0 ))
where C ( T , φ ) denotes ecological equilibrium C at temperature T , given enzyme allocation fraction φ . The ECOEVO response is to be compared with the purely ecological (ECO) response:

(7) ECO = Δ C ECO ( T 0 , T ) = C ( T , φ *( T 0 )) -C ( T 0 , φ *( T 0 ))
in which the enzyme allocation fraction is fixed at its T 0 -adapted value, φ *( T 0 ) (Fig. 1c).

We measure the magnitude of the evolutionary (EVO) effect as the difference between the ECOEVO response averaged over the temperature range ( T 0 , T ) and the ECO response averaged over the same temperature range, normalized by the ECO response:

(8)

V O ef f ect E = C (T , T ) | | | ∫ T T 0 ∆ ECO 0 | | | C (T , T )- C (T , T ) | | | ∫ T T 0 ∆ ECOEV O 0 ∫ T T 0 ∆ ECO 0 | | |
This evaluation allows us to compare EVO effects across systems that differ in the magnitude of their ECO response. In all simulations we use where Δ T = 5 T T = T 0 + Δ °C. In general, the ECO and ECOEVO responses are monotonic, close-to-linear functions of T over the considered temperature ranges , which makes all our T , T T ) ( 0 0 + Δ comparative analyses almost insensitive to our choice of Δ T .

Parameters default values and variation range

Under the temperature-dependent kinetics-only scenario, the ecological model (equations ( 1) and ( 2) 

) includes seven microbial parameters ( φ , γ M , d M , , , , ), six v 0 U E v U K 0 U E K U enzyme parameters ( γ Z , d Z , , , , ) and four 
d Z h -1 enzyme deactivation rate 2 10 -3 v 0 U mg D cm -3 (mg M cm -3 ) -1 h -1
Arrhenius coefficient of uptake rate 7.3 10 5 

v 0 D mg C cm -3 (mg Z cm -3 ) -1 h -1
v λ = (1 ) -φ γ M U max -d M γ δ = 1 -(1 ) -φ γ M -φ Z . K λ K d ρ = e C D m -e D m U M
Although an analytical study of the stability of the non-trivial equilibrium is out of reach, numerically we observed stability for most parameter values, based on the calculation of the Jacobian eigenvalues. Only for φ very close to φ min we detected a few cases of equilibrium instability, in which case the system converges toward a small limit cycle. φ min therefore provides a good approximation for the lower bound of the range of φ over which the system persists at a non-trivial equilibrium.

Boundary values, φ min and φ max , of existence of the non-trivial equilibrium are found where the unstable non-trivial equilibrium meets the stable non-trivial equilibrium, i.e.

when , that we solved numerically. Empirical data suggest that natural β α 2 -4 = 0 values of φ are small 1,2 . The model shows that as φ decreases toward φ min , equilibrium C becomes more sensitive to φ , and the smaller φ min , the stronger the sensitivity of equilibrium C to φ near φ min . This is true across the whole parameter set (Extended Data Fig. 3). Hereafter, unless stated otherwise, we simply use C (respectively D , M , Z ) to denote equilibrium values at the non-trivial stable equilibrium of equations (1).

We performed a simple sensitivity analysis of C and existence boundaries φ min and φ max (Extended Data Table 2), following the scheme used by Allison et al. (2010) 3 (same range for each parameter in common between our study and theirs, same measure of sensitivity). All parameters affect φ min and φ max , whereas only microbial growth efficiency ( γ M ), enzyme allocation fraction ( φ ), and enzyme parameters (

γ Z , d Z , , v 0 D , ,
) have a significant effect on C (Extended Data Fig. 3). This reflects the (2014) 4 , the enzyme production rate, r Z (Extended Data Fig. 1b), is constant over time ('constitutive production'). Using notations similar to ours, their model reads

K 0 D E v D E D K fact that
Z d M dt dC = I C -K +C m D v C D max + p M Z M Z M dt dD = I D + K +C m D v C D max + (1 )d -p M + d Z -K +D m U v D U max U E M M dt dM = C K +D m U v D U max -d M M Z dt dZ = r Z -d Z
where CUE is carbon use efficiency ( sensu Allison et al. 

C = -d K (I (d (1+CU E(p-1))+r (1-CU E))CU EI pd ) Z m D C M Z D M I (d (d (1+CU E(p-1)))+r (d (1-CU E)-CU Ev ))+CU EI (pd d -r v ) C M Z Z Z D max D M Z Z D max
To link exoenzyme production per individual microbe to the amount of assimilated resource, we substitute CUE with φCUE and r Z with . With exoenzyme

CU E φ K +D m U v D U max
production being a fraction of assimilated resource, M at equilibrium is directly inversely proportional to d M :

M = d (1-CU E) M (1-φ)CU E(I +I ) D C
and Z becomes independent of d M :

.

M Z = φd M d (1-φ) Z = d (1-CU E) Z φCU E(I +I ) D C
As a consequence, C does not depend on d M and is given by: .

C = -d K (I (1+CU E(p(1-φ)-1))+CU EI p(1-φ)) Z m D C D I (d (1+CU E(p(1-φ)-1)))+CU EI (pd (1-φ)-v φ) C Z D Z D max
This expression was obtained in the case where the production costs of microbial biomass and exoenzymes are the same ( γ Z = γ M = CUE). Including leaching of D and C re-establishes a dependency of equilibrium C on d M , but the sensitivity to d M remains very low across values of leaching rates for which the equilibrium exists.

To summarize, in models where exoenzymes are produced at a constant rate per unit microbial biomass, the equilibrium exoenzyme concentration, hence the SOC equilibrium stock, are strongly dependent upon all microbial parameters, including d M .

In models like ours where exoenzyme production depends on the amount of assimilated resource, the equilibrium exoenzyme concentration and SOC stock only depend on the allocation parameters, enzyme parameters and resource input parameters, and not on d M .

However, taking evolution into account may restore a dependency of SOC equilibrium on microbial mortality, because C is strongly sensitive to the enzyme allocation fraction, φ , and the evolutionarily stable trait value φ * itself is strongly sensitive to d M (equation ( 5)).

effect on the accessibility of DOC to a mutant strain can be phenomenologically accounted for by putting mutant cells at a competitive advantage for DOC if the mutant phenotype invests more in exoenzyme production than the resident phenotype (i.e. φ mut φ res > 0), or at a competitive disadvantage if the mutant phenotype invests less ( φ mutφ res < 0). This is captured phenomenologically by function c in equation (S2).

Invasion fitness and selection gradient

Mutant fitness is given by the mutant population growth rate per unit s (φ , φ ) mut res biomass:

(S3) s (φ , φ ) mut res = (1 ) -φ γ M v (1+c(φ -φ ))D U max mut res res K +(1+c(φ -φ ))D m U mut res res -d M
The selection gradient then obtains by taking the first order derivative of the invasion fitness with respect to the mutant trait:

(S4) s ∇ (φ) = d M 1-φ 1 c (( -φ -d M v γ U max M ) 0 -1 )
where measures the local competitive advantage to stronger exoenzyme c 0 = c′ (0) producers, which we call 'competition asymmetry'. Note that by definition of function c , we always have . Variation in c 0 may be caused by different soil diffusion c 0 > 0 properties, due to e.g. physical texture or moisture.

Evolutionary singularity

Trait values that nullify the selection gradient are called 'evolutionary singularities'. An evolutionary singularity can be attractive or repelling, and invadable or non-invadable.

Evolutionary singularities that are attractive and non-invadable represent potential end-points of evolutionary adaptation. Evolutionary singularities that are attractive and invadable can lead to evolutionary branching 8 .

In a given environment (fixed parameters, constant temperature) there is at most one evolutionary singularity given by: 5d). Here the influence of T 0 on the sensitivity of φ * to warming is qualitatively very strong due to the different shapes of temperature dependencies of γ M (linear) relative to (exponential). As a result, at low T 0 , φ * rises with warming (because v U max the reverse exponential of dominates the linear decrease of γ M ). At high T 0 , φ * v U max decreases in response to warming, because plateaus while γ M declines linearly v U max (Extended Data Fig. 5d). Quantitatively, the strongest warming effect on φ * is observed in the baseline scenario in cold ecosystems. temperature; and EVO effects are strong in warm ecosystems when MGE decreases with warming, as seen in Fig. 3 (Extended Data Fig. 8).

(S5) . φ * = 1 - d M v γ U max M -1 c 0 Fig.

Supplementary Discussion

Ecological responses to warming

In absence of microbial evolution, the model predicts a large loss of soil carbon with warming in systems harboring low-productivity microbes (low γ M ) secreting low-performance enzymes (high γ Z ); and in systems of high-productivity microbes (high γ M ) that synthesize high-performance enzymes (low γ Z ) but invest very little resource in their production ( φ close to the minimum viable value, φ min ) -which is the expected adaptation to highly diffusive soils (according to equation ( 5)). The prediction of large ecology-driven loss of soil carbon holds even if the microbial turnover increases with warming, but is attenuated (though not reversed) if MGE decreases with warming.

These results are consistent with previous ecological models of soil microbial decomposition that compared constant versus decreasing MGE with warming 3,5,6,10-17 .

Note, in these models, a constant MGE (CUE in models ignoring exoenzymes dynamics, as in German et al. (2012)) was viewed as a microbial 'adaptation' to warming in the sense of microbes physiologically acclimating, rather than genetically evolving, to rising temperature 14,18 .

Our ecological predictions, however, contrast with previous models in which microbial turnover (death rate) increases with temperature 4 . In our model, the microbial death rate has very little effect on the SOC ecological equilibrium, C , whereas Hagerty et al. Equilibrium C is determined by the decomposition rate, which is controlled by the enzyme stock, Z . When exoenzyme production is constitutive, Z is directly proportional to microbial biomass, M , and thus strongly influenced by the microbial death rate. When exoenzyme production is resource dependent, Z becomes much more sensitive to the enzyme allocation parameters, φ , γ Z and γ M . In our model, the temperature dependence of d M affects the ECO response more through the dependence of φ *( T 0 ) on d M ( T 0 ) (Eq.

(2)) than the dependence of M on d M (see Supplementary Note 1).

Evolutionary response of carbon-use efficiency (CUE)

In our formalism, the microbial strategy of resource allocation to either microbial biomass synthesis or exoenzyme production follows a standard 'Y model' of resource allocation 19 . The exoenzyme production efficiency is denoted by γ Z , and the microbial growth efficiency (MGE), by γ M . Thus (1 -γ Z ) measures the energetic cost of enzyme production and (1 -γ M ) measures the energetic cost of microbial biomass synthesis; these costs are paid through microbial respiration returning CO 2 to the atmosphere (Fig. 1a). Larger costs may ensue from the production of enzymes needed to degrade more recalcitrant carbon compounds (smaller γ Z ); or the synthesis of more complex microbial structures (smaller γ M ).

Carbon-use efficiency (CUE) has received much attention in experimental studies, prompted by the contrasted effects of warming on respiration rates and microbial biomass 13,15,20 . Previous models have highlighted the effect of CUE on soil C stock 3 , from local to global scale 17 . In our framework, CUE is given by (S6) CUE = (1 -φ ) γ M + φ γ Z and thus appears as a compound parameter rather than a microbial trait. Our model predicts that CUE changes as the microbial trait φ evolves. Assuming constant MGE ( γ M ), we find that natural selection always favors greater enzyme allocation fraction ( φ ) as temperature rises in the baseline scenario. From equation (S6) we conclude that CUE decreases in microbes characterized by relatively costly exoenzymes and 'cheap' tissue ( γ M < γ Z ), and increases otherwise. Thus, even if MGE is kept constant with respect to temperature, microbial evolutionary adaptation to warming can have mixed effects on CUE.

Influence of temperature dependence on SOC eco-evolutionary response

If MGE decreases with temperature, the direction and magnitude of the ECOEVO response to warming vary dramatically with the initial temperature T 0 (Fig. 3d If the microbial turnover increases with temperature 4 , warming selects for lower enzyme allocation fraction (Extended Data Fig. 5b,c), slowing down decomposition (Extended Data Fig. 5f, g), and possibly buffering the ecology-driven loss of soil C (Fig. 3b,c).

Thus, when taking microbial evolution into account, the thermal sensitivity of microbial turnover does reduce C loss but never leads to the kind of C sequestration predicted by earlier purely ecological models 4 .

Ecological and eco-evolutionary responses of total soil C

Large-scale projections of soil C cycle on timescales that are long relative to the characteristic times of the processes described by our model also raise the issue of distinguishing between readily available SOM versus physio-chemically protected SOM, which decomposes more slowly 21,22 . Reinterpreting the C compartment of our model as readily available SOM removes the constraint of having M much smaller than C 23,24 . The relevant measure of soil carbon then becomes the sum of all compartments, C tot = C + M + Z + D , called 'total soil active carbon'. We investigated how our results are changed when ECO and ECOEVO responses are defined with respect to C tot , rather than C , focusing on the baseline scenario (constant MGE and constant microbial turnover).

Extended Data Fig. 9 exemplifies the case where microbial biomass is the main component of C tot and total soil active carbon is higher in the presence of microbes than in their absence. This occurs because here a higher SOC leaching rate, e C , is more than compensated by the microbial higher productivity (high MGE, γ M , and low death rate, d M ), so that carbon is retained in the soil longer in the presence of microbes than without. In this type of high-leaching soils, the direction of the ECO response shifts from negative (carbon loss) to positive (carbon gain). Microbial adaptive evolution can amplify, buffer or reverse this ecological response depending on the local competitive superiority of enzyme producers, c 0 (Extended Data Fig. 10). This is because microbial biomass, M , is the main carbon stock in these systems and purely ecological processes drive an approximately linear increase in M with temperature whereas M responds non-linearly to the increase in enzyme allocation fraction (Extended Data Fig. 9b).

Effect of multi-trait evolution

Our study demonstrates how a trait-based approach can be used to integrate microbial evolutionary adaptation in carbon cycle models 25 . Our focal trait, the enzyme allocation fraction, φ , is pivotal in the decomposition process. Other microbial traits that appear in our model may also respond to selection imposed by warming, such as MGE ( γ M ) and the exoenzyme production efficiency ( γ Z ). The γ M trait may evolve in response to variation in environmental quality (e.g. predation or infection risk), possibly trading-off with the maximum rate of uptake or correlating with the death rate; γ Z may evolve in response to substrate variation 26 , possibly correlating with the enzyme decay rate.

Given specific assumptions about factors of and constraints on the evolution of these traits, our sensitivity analyses can be used to make qualitative predictions on how the ECOEVO response and EVO effect might be altered (Fig. 2, Extended Data Fig. 6). For example, strong EVO effects may not be affected if evolving γ M correlates positively with d M , whereas weak effects may become strong if γ M trades-off with d M . In contrast, the low sensitivity of EVO effects to γ Z suggests that the evolution of this trait may have little impact on the response of soil C to warming. each initially contains about half of the global soil carbon (Figs. 1,4,5). Whereas the global ecological response of soil C to warming is weak (Fig. 3), we find contrasting responses of initially active vs. dormant soils (Fig. 4,5). For initially active soils (Fig. 4), both ecological and eco-evolutionary models predict significant carbon loss (from 40 Pg C) over the same period. Our results show that microbial evolutionary adaptation to warming may attenuate these gains or enhance the loss, and thus broaden projected ranges of soil C and increase the projections' uncertainty even further. This should not be seen as a negative outcome, as a better assessment of the uncertainties of global carbon-climate projections is a research priority [START_REF] Bradford | Managing uncertainty in soil carbon feedbacks to climate change[END_REF][START_REF] Wieder | Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models[END_REF][START_REF] Wieder | Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models[END_REF].

Introduction

Global soil carbon loss predicted by the eco-evolutionary model (Fig. 3) is the consequence of a global adaptive increase of microbial exoenzyme production (Fig. 2).

Our ) found that the direction of microbial evolution in response to warming could, under some conditions, be reverted.

We are currently investigating how the positive temperature-dependence of microbial mortality might alter the effect of microbial evolution on global soil C projections.

Our results highlight the importance of active vs. inactive or 'dormant' microbial populations. It is known that dormant cells are common, and sometimes dominant, in a range of ecosystems. In particular, large fractions of microorganisms may be dormant in soils [START_REF] Lennon | Microbial seed banks: the ecological and evolutionary implications of dormancy[END_REF]. As a general microbial trait, dormancy is expected to influence the large-scale, biogeographical processes that structure microbial communities [START_REF] Locey | Synthesizing traditional biogeography with microbial ecology: the importance of dormancy[END_REF]. Dormancy generates seed banks, which should enable the rapid recruitment of microbial populations in response to environmental change [START_REF] Epstein | Microbial awakenings[END_REF]. This points to potential long-term, large-scale effects of microbial dormancy on the response of microbial diversity and ecosystem function to global change [START_REF] Lennon | Microbial seed banks: the ecological and evolutionary implications of dormancy[END_REF]. Even though our model of dormancy is phenomenological (i.e. the microbial compartment is said to be dormant when there is no stable (active) microbial equilibrium), the results reported here lend weight to this view and pave the way for future studies of global ecological and evolutionary consequences of microbial dormancy.

Our goal was to evaluate the impact of evolution on projections generated by models of soil C dynamics that explicitly represent microbial biomass and exoenzyme production. Improving projections will require to overcome several shortcomings of current models, including ours. First, interactions among the carbon, nitrogen, and phosphorus cycles should be accounted for. Community-level competition for C and N sources is likely to be important for determining how microbial processes of decomposition respond to warming [START_REF] Conant | Temperature and soil organic matter decomposition rates -synthesis of current knowledge and a way forward[END_REF]. For example, if the temperature sensitivity of key N-cycle processes are greater than some C-cycle processes, then it is possible that N availability limits microbial activity. This could influence plastic responses or evolutionary adaptations in microbial allocation to N versus C acquisition. 4 biomes = rasterize(s1, world, "BIOME", fun='last', background=NA, mask=FALSE, update=FALSE, updateValue='all', filename="", na.rm=TRUE) #Plot map of biomes plot(biomes) #Remove Antarctica and Greenland biomes biomes[biomes > 15] = NA #Plot new map of 14 biomes brks = seq(0, 14, by=1) mycols = colors()[c (7,8,26,30,31,32,33,37,42,47,51,52,56,62)] plot(biomes, breaks=brks, col=mycols) #Convert the raster into a matrix and transpose the matrix to have the same coordinates order as for litter flux and soil temperature biomesmat = as.matrix(biomes) biomesmat2 = biomesmat[ nrow(biomesmat):1, ] biomesmat3 = t(biomesmat2) #Plot the map from the matrix par(xpd=T, mfrow=c(1,1), lwd=1, font.lab=1, font.axis=1, oma=c(3,0,0,0)) brks = seq(0, 14, by=1) mycols = colors()[c (7,8,26,30,31,32,33,37,42,47,51,52,56,62)] longit = c(1:288)-180 #Get the matrix of coordinates from the litter flux data (or soil temperature) nclitt = nc_open("fVegLitter_Lmon_CCSM4_rcp85_r1i1p1_200501-210012.nc") lon = ncvar_get(nclitt, "lon")-180 lat = ncvar_get(nclitt, "lat") fields::image.plot(x=lon, y=lat, biomesmat3, ann=F, breaks=brks, horizontal=T, smallplot=c(0.11, 0.85, 0.01, 0.04), legend.args=list(text='Biome ID', side=1, font=1, line=2, cex=1), col=mycols, xlab="Longitude", ylab="Latitude") mtext(side=1, text="Longitude", line=2.2, font=1) mtext(side=2, text="Latitude", line=2. 

  Le taux de décomposition est déterminé par la composition chimique de la matière organique, les propriétés physico-chimiques du sol (humidité, composition minérale), ainsi que les espèces de microorganismes présents dans le sol qui produisent des composés catalytiques différents (Coûteaux et al. 1995). Les composés organiques simples, tels que les glucides et les protéines, sont décomposés plus rapidement que les composés organiques plus complexes comme la lignine ou les protéines membranaires. La litière issue des plantes des milieux riches en nutriments est généralement plus facile à décomposer que celle des sols plus pauvres. Les composés organiques simples présents dans la litière sont les premiers à être décomposés, ce qui

Figure 1 .

 1 Figure 1. Vitesse de décomposition d'une feuille en fonction du temps (tiré de Chapin et al. 2002). Le graphe montre les constituants principaux d'une feuille et les 4 phases principales de sa décomposition.

  photosynthèse est stimulée, entraînant une production accrue de litière à la surface des sols et une excrétion plus importante dans les sols d'exsudats racinaires composés de sucres simples, d'acides aminés faciles à ingérer par les microorganismes du sol (Bardgett et al. 2009). Dans les sols riches en nutriments, l'enrichissement en composés organiques simples devrait entraîner une prolifération microbienne à l'origine d'émissions plus importantes de CO 2 , établissant une boucle rétroactive positive entre atmosphère et biosphère. Cet effet devrait cependant être limité dans les sols pauvres en nutriments (Janssens & Luyssaert 2009) et dans les sols dont la communauté microbienne est majoritairement composée d'oligotrophes, comme les champignons, efficaces dans la conversion de la matière organique et dont la structure cellulaire est composée de polymères complexes de carbone, parce qu'ils favorisent une décomposition de la litière plutôt que de composés carbonés simples, avec une respiration plus lente et donc une plus grande séquestration du carbone dans
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 2 Figure 2. Principaux flux terrestres du carbone (tiré de Singh et al. 2010). La photosynthèse absorbe le CO 2 atmosphérique qui est stocké dans la biomasse végétale et dont une partie contribue à la formation des sols, tandis que la respiration (autotrophe et hétérotrophe) émet du CO 2 dans l'atmosphère.

L

  'augmentation de température associée au changement climatique est estimée entre +1.1 et +6.4°C d'ici à 2100 (IPCC, Pachauri et al. 2014). Les tests sur cultures microbiennes en laboratoire et les expériences de réchauffement en mésocosmes montrent une accélération initiale de la décomposition dans le sol et une respiration du sol accrue (Steinweg et al. 2008, Frey et al. 2013). Cette réponse est due à l'accélération des activités des enzymes intra et extracellulaires microbienne responsables de la décomposition et de l'acquisition des ressources par les microorganismes (Davidson et al. 2006, Allison et al. 2010). Ces dernières pourraient entraîner une augmentation des émissions de carbone du sol de 10 Pg pour une augmentation de température globale de 2°C (Bondde la décomposition et de la respiration du sol pourrait être critique à hautes latitudes, en particulier dans les régions à permafrost, où des grandes quantités de composés organiques simples gelés deviennent accessibles à la décomposition microbienne (Schuur et al. 2009). Cependant, les différents groupes fonctionnels microbiens ayant différentes températures optimales, une augmentation de température pourrait entraîner dans
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 3 Figure 3. Rétroaction des communautés végétales et microbiennes du sol vers le climat (tiré de Singh et al. 2010). Le changement climatique représenté est l'augmentation de CO 2 atmosphérique. Elle augmente la production primaire des plantes et l'effet de cette augmentation est montré à gauche, dans le cas d'une communauté microbienne du sol dominée par les oligotrophes (champignons capables de croître en milieux pauvres en nutriments) et à droite, d'une communauté microbienne dominée par les copiotrophes (bactéries à croissance rapide en milieux riches).

  Le changement climatique global pourrait aussi se traduire par une variation de 20% du régime de précipitation avec le changement climatique (IPCC, Pachauri et al. 2014). L'effet direct d'une diminution des précipitations serait de ralentir les activités microbiennes, mais aurait pour effet indirect d'accélérer la diffusion des gaz, en particulier CO 2 et O 2 , dont l'augmentation de concentration pourrait accélérer métabolisme microbien et réactions chimiques dans le sol. On s'attend à des changements de régime de précipitation et de leurs effets très différents selon les régions du globe. Par exemple, les sécheresses californiennes pourraient voir l'activité microbienne de leurs sols considérablement ralentie, tandis que l'assèchement en zones humides où les sols sont saturés en eau permettrait une réoxygénation des sols et ainsi un réveil microbien (Freeman et al. 2002). Prédire les rétroactions sol-climat globales en réponse au changement climatique implique de comprendre comment ces rétroactions fonctionnent aux échelles écologiques régionales. Les grandes écorégions du globe diffèrent notamment par l'amplitude et la dynamique des variations climatiques, par la végétation et donc les flux et la composition de la litière et des exsudats racinaires, ainsi que par la nature chimique des sols qui contrôlent le transport des éléments et les interactions entre composés organiques et composés minéraux (Fig. 4). De surcroît, j'ai concentré cette brève présentation des rétroactions solclimat sur les effets liés aux émissions de CO 2 ; mais ces rétroactions sont aussi alimentées par les flux de méthane (CH 4 ) et d'oxyde d'azote (N 2 O), produits du métabolisme
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 4 Figure 4. Variables climatiques et biologiques impliquées dans les rétroactions sol-climat médiées par les communautés microbiennes du sol. impliquées dans le réchauffement climatique (tiré de Singh et al. 2010).

  avantageuse par transfert horizontal (Giraud et al. 2001b). Les délétions et les duplications peuvent jouer un rôle important dans l'adaptation rapide en environnement changeant, ces dernières permettant de cumuler les fonctions originelle et nouvelle du gène dupliqué. Le sort d'une mutation rare au sein d'une population est déterminé par l'influence cumulée de deux forces, sélection naturelle et dérive génétique, cette dernière étant d'autant plus forte que la taille (efficace) de la population est petite. L'idée que toute la diversité génétique est déjà présente et que la sélection naturelle n'a qu'à y piocher les gènes les mieux adaptés (Becking 1934) est encore une idée répandue en microbiologie (De Wit & Bouvier 2006), en particulier marine. Il a été montré cependant que même en milieu océanique, la dispersion des microorganismes n'est pas illimitée (e.g. Bell 2010, Finkel et al. 2012, Östman et al. 2010, Telford et al. 2006), et que les populations ont la capacité de d'adapter localement et de se différencier rapidement. Par exemple le cas des cyanobactéries Mastigocladus laminosus adaptées à un gradient naturel de température de 15°C sur 1 km démontre l'effet que peut avoir une interaction entre environnement local et dispersion sur l'adaptation de cette population bactérienne (Miller et al. 2009).

Figure 5 . 1 . 4 .

 514 Figure 5. Echelles spatiale et temporelle de l'adaptation des populations naturelles de bactéries (tiré de Koskella & Vos 2015).

Figure 6 .

 6 Figure 6. Traits fonctionnels affectant différentes étapes du cycle du carbone (tiré de Monroe et al. 2018). Les organismes vivants sont responsables des flux de carbone (flèches) entre compartiments abiotiques et biotiques du cycle du carbone global.
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 27 Figure 7. Projections de la quantité globale de carbone dans le sol (a) pour plusieurs scénarios de sensibilité à la température ; (b) par 3 modèles de structure
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 3 Dynamiques éco-évolutives de la décomposition: Modélisation spatialement explicite de la coopération microbienne pour des biens communs diffusifs Les modèles déterministes écologiques ou éco-évolutifs font des hypothèses fortes sur les échelles de temps et d'espace des phénomènes modélisés. Avec Hélène Leman, mathématicienne chargée de recherche INRIA au sein de l'Unité de Mathématiques Pures et Appliquées de l'ENS Lyon, j'ai entrepris d'explorer les fondements mathématiques et la validité des échelles spatio-temporelles des modèles déterministes de décomposition. Pour ce faire, nous avons redéfini en termes de processus stochastiques le modèle d'interactions locales entre bactéries, enzymes, litière et carbone organique dissous (COD).

Figure 8 .

 8 Figure 8. Invasion d'un mutant « fort producteur » d'enzymes (en haut) apparaissant dans la population résidente d'un « faible producteur » (en bas). A gauche, états de la grille à quatre temps différents. A droite, dynamique agrégée de la population de microbes.

Ce travail est présenté dans le chapitre 3

 3 sous forme d'un article en préparation ; Abs E., Ferriere R. & Leman, H. Eco-evolutionary dynamics of decomposition: emergence and stability of microbial cooperation for diffusive goods. To be submitted to INTERFACE Journal of the Royal Society.

Figure 9 . 4 .

 94 Figure 9. Effet de la diffusivité des ressources sur l'évolution de la coopération microbienne et ses conséquences écosystémiques. (a) Investissement microbien dans la production d'enzymes, (b) Taux de décomposition, (c) Quantité de carbone (SOC) dans l'habitat. En bleu, réponse du système à la variation de la diffusivité, en l'absence d'évolution bactérienne. En rouge, réponse du système à la variation de la diffusivité, avec évolution bactérienne.

Figure 10 .

 10 Figure 10. Structure du modèle. En rouge, les paramètres dépendant de la température dans le scenario 1.

Figure 11 .

 11 Figure 11. Un résultat central : amplitude de l'effet de l'évolution sur la réponse du stock du carbone du sol à un réchauffement de 5°C. L'effet est évalué en fonction de l'efficacité de croissance et du taux de mortalité microbiens. Les tons plus sombres indiquent un effet plus important.

5 .

 5 Le futur des stocks de carbone du sol : Impact de l'évolution microbienne sur les projections globales Afin d'évaluer l'effet potentiel de l'évolution des décomposeurs bactériens à l'échelle planétaire, j'ai utilisé le modèle avec évolution du chapitre 4 et le premier scénario de sensibilité à la température pour établir la carte de distribution du carbone du sol actuelle, avant réchauffement climatique, considérant ainsi que les populations microbiennes sont initialement adaptées à leur environnement. L'environnement est caractérisé par la température de la surface du sol (première couche d'1 cm), l'apport en litière (matière organique non décomposée), les caractéristiques cinétiques initiales de l'activité de décomposition des enzymes, ainsi que leur sensibilité à la température. Pour les deux premiers paramètres, j'ai utilisé les projections d'un des modèles de carbone globaux (« Community Earth System Model ») prédites par le scénario RCP8.5 (réchauffement global moyen de 3°C à l'horizon 2100) moyennées sur 15 ans (entre 2006 et 2021). La carte des températures m'a permis de dresser celle des valeurs d'investissement microbien à la production d'enzymes. Pour les paramètres enzymatiques, j'ai regroupé les 14 écorégions

Figure 12 .

 12 Figure 12. Effet de l'évolution (a) et réponse écologique (b) prédits par le modèle dans cinq biomes. AK, forêt boréale d'Alaska; ME, forêt tempérée du Maine ; WV, forêt tempérée de West Virginia ; CA, prairie de Californie ; CR, forêt tropicale du Costa Rica. Les couleurs correspondent à trois valeurs d'un paramètre de diffusion du COD.

Figure 13 .

 13 Figure 13. Distribution globale des stocks de carbone terrestre. Estimations produites par simulation numérique de mon modèle.

Figure 14 .

 14 Figure 14. Projections globales des stocks de carbone du sol en réponse au réchauffement, sans évolution microbienne (à gauche) et avec évolution microbienne (à droite). (a) Sites actifs, (b) Sites dormants.

Figure 1 .

 1 Figure 1. Structure of microbial decomposition models compared in this review. a, CM model: two-pool microbial model with SOC (C) and microbial biomass (M) pools. b, CDMZ model. This four-pool microbial model includes enzymatic (Z) decomposition of SOC and subsequent assimilation (uptake) of DOC (D). c, CDMZ model with soil C stabilization. This five-pool microbial model includes sorption of DOC (D) onto mineral surfaces to form mineral-associated DOC (Q) that is protected from enzymatic attack. (Adapted from Georgiou et al. 2017)

  0. Using our notation for resource allocation parameters, Schimel & Weintraub's (2003) simplest model has only two state variables (M and Z) and reads (3a)

Figure 2 .

 2 Figure 2. Structure of Allison's (2012) trait-based model DEMENT (left) and examples of outputs (middle and right). Left, Structure of the model. Multiple strains with different traits are sampled in a set of feasible trait values constrained by trade-offs (top).

  ) have been introduced (Steven D. Allison et al., 2010; Tang & Riley, 2014; G. Wang et al., 2013; Y. Wang et al., 2014; Zhang et al., 2014). All these models greatly simplify the spatial structure of soil and treat soil carbon and microbial pools as spatially and chemically homogenous. In reality, soil microbes and substrates interact at micro-scales, and at any point in time, state variables may vary greatly among micro-sites. Moreover, heterogeneity exists in the physiological and biochemical traits present in the system, which results in a distribution of parameters controlling microbial growth, extracellular enzyme production, and enzyme affinity. Trait-based computational models have been developed to account for such spatial and functional heterogeneity. Traitbased models trade off mathematical formalism for biological complexity. By explicitly representing diversity, trait-based models can simulate ecosystem processes based on spatial and functional trait distributions in a community. Allison (2012) constructed a trait-based model that links microbial community composition with physiological and enzymatic traits to predict litter decomposition rates. The model, dubbed DEMENT, is spatially explicit and integrates processes from micrometer to millimeter scale (Box 1,

  more generalist enzymes have lower ! !"# ! ); (ii) between ! !"# ! and binding affinity (resulting in a positive correlation between ! !"# ! and ! ! ! ); (iii) between microbial growth and enzyme production (the strain position along this tradeoff is measured by j in our formalism, cf. Fig. 1b). In Allison (2012)'s model, microbial stoichiometry is flexible and enzymes are randomly attributed to microbial taxa and substrates, and therefore distinct traits among microbial taxa (enzyme types and quantities produced, and C, N, P stoichiometry) are an emerging property of the model. Kaiser et al. (2014) specifically address the question of the link between C and N availability community dynamics and decay rates, and they build on Allison (2012)'s model by adding the following features.

  parameters provide the opportunity to mechanistically represent the effect of such abiotic factors on decomposition. Then the response of decomposition and soil respiration to climate change becomes an emerging property, integrated across the individual physiological responses of microorganisms and up-scaled by individual interactions through population and community levels. As a consequence, the response of microbial biomass and respiration to climate change may be decoupled (Todd-Brown et al. 2012). Numerous laboratory studies support the assumption that microbial respiration increases exponentially with temperature (Davidson et al., 2006; Lloyd and Taylor, 1994). But even though biomass-specific respiration tend to increase with temperature, community-level respiration is ultimately mediated by the emerging response (increase or decrease) of microbial biomass (Steven D. Allison et al., 2010).

  . Todd-Brown et al. (2012) suggested representing K m for extracellular enzymes as a linear function of temperature, whereas German et al. (2012) opted for an exponential function, leading to an Arrhenius-like model of K m sensitivity to temperature. Because intracellular enzymatic catalysis is limited by the availability of DOC whereas availability of SOC limits extracellular catalysis, models of temperature dependence need to use parameters that are specific to extracellular enzymatic catalysis vs. microbial uptake and metabolism (Todd-Brown et al. 2012). Consistently with model choices made by Allison et al. (2010) and German et al. (

  soil pores. Microbes can only access DOC in the wet pores. SOC decomposition occurs in the dry pores at a reduced efficiency due to enzyme immobilization; enzymes in the dry pores are also expected to have a lower deactivation rate due to protection from decay (Alster et al., 2013). It remains unclear whether soil moisture constrains microbial activity primarily through direct (via desiccation stress) or indirect (via its impact on diffusion of substrates or enzymes) mechanisms. Zhang et al. (2014) used linear functions to relate enzyme and uptake rates to soil moisture. However, at very low and high moisture levels, the relationship is likely nonlinear (Davidson et al., 2012; Lawrence et al., 2009; Moyano et al., 2013). For example, at high water content, O 2 becomes a limiting factor, whereas at low water content, diffusion is constrained by thin and discontinuous water films (Abramoff et al., 2017; Davidson et al., 2012; D. Sihi et al., 2018). On the other hand, Homyak et al. (2018) argue that dry periods increase C substrate availability through abiotic processes.

  (Liu et al., 2005; Norby et al., 2005; Phillips et al., 2011; Pregitzer et al., 2008), and even more so in surface soils (Hicks Pries et al., 2018). Individual microbes have shown no response to eCO 2 in lab experiments (Carney et al., 2007; Norby et al., 2001), in which case soils should accumulate carbon at eCO 2 . However, enhanced litter and root exudate inputs can increase soil respiration and SOC decay rates (called "priming effect") and induce soil C losses (Kuzyakov, 2010; Pendall et al., 2014), through enhanced production of enzymes decomposing recalcitrant substrates (Phillips et al., 2011), or changes in the microbial community composition (Blagodatskaya et al., 2010; Carney et al., 2007; Cheng et al., 2012). Blagodatskaya et al. (2010) found a linear relationship between microbial growth rate and atmospheric CO 2 concentration. This relationship has not been included in soil microbial models, but priming effect has been modeled with higher litter inputs (J. E. Drake et al., 2013; Sulman et al., 2014). In Sulman et al. (2014)'s model, three classes of soil C compounds are included (simple, chemically resistant plant-derived, chemically resistant microbe-derived), characterized by different maximum decomposition and microbial uptake rates, and each existing in both unprotected and protected forms (Fig. 4). Only unprotected carbon is accessible to microbes. The model shed light on the role played by priming effects in the response of C stocks to warming. This was done by comparing a rhizosphere model with increasing root exudation (calibrated with data from eCO 2 field experiments), and a bulk soil model without root exudates. At regional scale, the model predicted either net loss of soil C or sequestration, depending on litter quality (determined by the plant community) and soil texture. At global scale, the model predicted a loss of soil C. First-order models would fail to account for priming effects (Zaehle et al., 2014). This is because without microbial-driven decomposition, soil C increases linearly with inputs (Li et al., 2014). Recent non-microbial models have tried phenomenologically to capture priming effects by representing multiple SOC pools for which decay rates vary with litter inputs, using observed responses of plant growth and microbial respiration for parameterization (van Groenigen et al., 2015; Z. Luo et al., 2017). However, priming effects might not persist over

Figure 4 .

 4 Figure 4. Structure of Sulman et al. (2014)'s model. Soil carbon is divided into three chemical classes, which can be protected or unprotected. Decomposition is mediated by microbial biomass, which takes up a portion of decomposed carbon and loses carbon to CO 2 and the dead microbial C pool over time. Soil is separated into the rhizosphere, which receives root exudate inputs, and bulk soil, which does not. (Reproduced from Sulman et al.2014)

  g. Y.Luo et al., 2001; Melillo et al., 2002;[START_REF] Oechel | Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming[END_REF]. Recent longterm warming experiments show that the response might be more complex over time[START_REF] Melillo | Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[END_REF]. Can models help us explain explain empirical patterns and their variation? How can models help us explain the Birch effect, i.e. the sudden pulse of soil respiration after precipitation pulses? And moving up to larger scales(Huang et al., 2018; D. Sihi et al., 2018; K. Wang et al., 2017), how can mechanistic models of microbial dynamics and soil respiration be used to improve coupled projections of the C cycle and Earth climate? Box 2. Model parameterization Using CDMZ models to extrapolate short-term empirical results and assess their significance for long-term ecosystem states requires model parameterization with realistic values. Parameter values are obtained from the empirical literature, derived from experiments specifically designed to measure them (e.g. German et al. 2012), or constrained to promote model stability and reasonable quantitative outputs. Allison et al. (2010), Allison (2012), German et al. (2012) and Kaiser et al. (2014, 2015) provide useful list of values and ranges to parameterize CDMZ models and their trait-based extensions.

Figure 5 .

 5 Figure 5. Response of microbial dynamics and soil respiration to 5 °C warming predicted by Allison et al.'s (2010) CDMZ model. a, Enzyme sensitivity to temperature is fixed. b, Enzyme parameters ! !"# ! and ! ! ! are

  Tang and Riley (2015) introduced another CDMZ model accounting for mineral-organic interactions. The model does not account explicitely for adsorbed or mineral-associated carbon pools, instead mineral associations with enzymes and DOC are represented as competing reactions at equilibrium, in which enzymes bind with SOC and microbes bind with DOC. This mechanism alters the fraction of accessible SOC for enzymes and DOC for microbes. Additionally, Tang and Riley's (2015) model represents daily and seasonal change of temperature. This makes their model well design to investigate the consequences of dynamical climate variation across multiple timescales. Zhang et al. (2014) used the extended CDMZ model (Fig. 3) to investigate the causes of Birch pulses of soil respiration in response to episodic rainfall pulses. Their approach goes beyond the kind of model-based extrapolation of empirical data that studies such as Allison et al. (2010) and Hagerty et al. (2014) implemented. They evaluated alternate hypotheses by constructing CDMZ models corresponding to their different hypotheses and fitting these models to a set of field measurements of soil respiration from a semiarid savannah ecosystem

Figure 6 .

 6 Figure 6. Data assimilation and model selection for the effect of rainfall pulses on soil respiration. Top, Observed half-hourly volumetric soil moisture (in m3 m -3 ) and temperature (in K) at 10 cm. Middle and Bottom, CO2 efflux measured half hourly at the soil surface (in µmol m -2 s -1 ) compared with (Middle) the basic CDMZ model of Fig. 1b, and (Bottom) the six-pool CDMZ model shown in Fig. 3. The shaded area (in red)represents the 95% credible interval, while the green line is for the best realization.(Reproduced from[START_REF] Zhang | Assessing five evolving microbial enzyme models against field measurements from a semiarid savannah-What are the mechanisms of soil respiration pulses?[END_REF] 

Figure 7 .

 7 Figure 7. Predictions of cumulative change of soil carbon stocks by structurally different models. (a) Future predictions in response to a 4.8 °C warming scenario over 2006-2100. Thick lines (black and blue): conventional CLM models. Green lines: CLM microbial model, with temperature-dependent MGE (dotted line) or temperatureindependent MGE (plain line). (b) Historical predictions in response to a 1.1°C warming over 1910-2010. Cyan line: first-order CASA-CNP. Purple line: MIMICS. Brown line: CORPSE. See text for details. ((a) and (b) reproduced from Wieder et al. 2013 and 2018 respectively)
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 8 top) and SOC (Fig.8, bottom) collapses into aggregated variables that vary smoothly over time (Fig.8, right panels). Considering the aggregated dynamics also informs us on the characteristic timescale (1 year) of decomposition at that scale. The critical question that such work raises is, how should micro-scale parameters of C-D-M-Z activity and interaction be rescaled for a mesoscale CDMZ model to fit the aggregated variables dynamics precisely?Trait-based models as constructed and analysed byAllison (2012) andKaiser et al. (2014Kaiser et al. ( , 2015) ) are fundamentally designed to investigate the consequences of diverse functional types in the soil microbial community (as illustrated in Fig.2and Fig.8). Because exoenzyme production is key to the decomposition function of soil microbes, it is essential to understand how variation in exoenzyme production across strains influences decomposition and soil respiration. In particular, "cheater" strains that invest little resource or none in exoenzyme production may still reap off the benefits of decomposition, i.e. access to DOC, brought about by "cooperative" strains that pay the cost of producing exoenzymes.

Figure 8 .

 8 Figure 8. Spatio-temporal dynamics of microbial decomposition emerging from microscale processes. Each square shows a 100 x 100 grid of microsites, each 10 mm of side length, corresponding to a 1 x 1 mm area of leaf litter. Top row, spatial distribution of individual microbes of three functional groups (blue: Plant degrader, green: Microbialnecromass degrader, red: Opportunists). Bottom row, spatial distribution of litter material (SOC). Quantity ranges from low (blue) to high (red); sites empty of microbes appear in black. Panels on the right show the aggregated sizes of the respective pools. (Reproduced from Kaiser et al. 2014)
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  [START_REF] Baldock | Role of the soil matrix and minerals in protecting natural organic materials against biological attack[END_REF][START_REF] Van Veen | Soil structural aspects of decomposition of organic matter by micro-organisms[END_REF].Accounting for interactions among the carbon, nitrogen, and phosphorus cycles is another challenge. Community-level competition for C and N sources is likely to be important for determining the overall response of soil respiration to warming[START_REF] Conant | Temperature and soil organic matter decomposition rates -synthesis of current knowledge and a way forward[END_REF]. For example, if the temperature sensitivity of key N-cycle processes are greater than some Ccycle processes, then it is possible that N availability limits microbial activity. This could influence plastic responses or evolutionary adaptations in microbial allocation to N versus C acquisition. Trait-based models are ideally suited to address the microbial dynamics of C, N and P simultaneously (Steven D.Allison, 2012). On the mathematical side, we need to build further on models such as J.P.Schimel & Weintraub's (2003) to represent N availability, C: N soil and microbial stoichiometry, and the coupling of C cycling to N. These models will require additional parameterization of the enzymatic processes that convert organic N to forms(Abramoff et al., 2017; S. D. Allison, 2012; Averill & Waring, 2018; Kaiser et al., 2014, 2015; Moorhead et al., 2012; J.P. Schimel & Bennett, 2004).Incorporating soil C stabilization in CDMZ modelsSoil C-climate feedbacks involve timescales (year to century) over which mechanisms of soil C stabilization may not be ignored[START_REF] Abramoff | A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model[END_REF]. Using CDMZ models to improve long-term and large-scale climate forecasting requires to incorporate such mechanisms. Soil C is stabilized by interacting with minerals, through sorption (physical or chemical binding of organic matter with mineral), occlusion (blocking of organic matter within a mineral frame), or aggregation (association of mix of minerals and organic compounds including pores and live microbes)[START_REF] Keil | Mineral matrices and organic matter[END_REF]). Microaggregates break down over time due to mechanical stresses or the gradual degradation of binding agents, and carbon in chemically protected organo-mineral complexes is slowly released through desorption(Sollins et al., 1996).As presented earlier, there have been few attempts to incorporate organic-mineral interactions in CDMZ models.Wang et al.'s (2013) model includes the slower decomposable mineral-associated SOC and the non-decomposable adsorbed-DOC. Adsorption and desorption are first-order temperature-dependent functions.In Tang and Riley (2015), mineralassociated C pools are not explicit, however SOC "compete" with mineral surface to bind enzymes, while microbes compete with mineral surface to bind DOC. Recent microbial models intended to be used in global numerical models usually simplify the decomposition process (CM instead of CDMZ models, i.e. no explicit enzymes or DOC), but they do account for processes of C stabilization (Abramoff et al., 2018; Sulman et al., 2014; Wieder et al., 2014). What makes "stabilised SOC" conceptually different from "recalcitrant SOC" with slower decomposition kinetics, is that it is mainly formed at the end of the microbial decomposition chain and is little or not accessible to microbial decomposition. In Sulman et al. (2014)'s model (cf. section 2), there are three chemically distinct classes of SOC (simple, chemically resistant, and dead microbes), each of them divided into an accessible form and a fully inaccessible form. Carbon moves from accessible to inaccessible forms at a class-specific protection rate that also depends on soil texture (clay content); inaccessible carbon moves back to the accessible form after 45 years. In Wieder et al. (2014)'s model, formation of inaccessible SOC is, like decomposition, a microbial process.Most aboveground to belowground carbon inputs start as accessible SOC, then are converted into microbial biomass (through decomposition, uptake and growth captured with one reaction). Microbial residues then form the bulk of stabilised SOC (not fully inaccessible to decomposition). Only a small fraction of carbon inputs bypasses accessible SOC and microbial biomass and is transformed directly into stabilised SOC.Abramoff et al. (2018) synthesizes both Sulman and Wieder's models by including two pools of stabilised SOC: one fully inaccessible pool formed by mineral sorption of microbial products ("mineral-associated organic C"), and one little-accessible pool formed by aggregation of accessible SOC and microbial residues ("aggregate C"). They compared their predictions with the non-microbial Century model, which has long been a standard for large-scale simulations of soil C stocks(Bonan et al., 2013; Parton et al., 1987 Parton et al., , 1995;; Paustian et al., 1992). The microbial model exhibits distinct nonlinear responses due to the choice of functions affecting SOC in the pool; importantly, the two models diverge regarding the direction of SOC change (sink vs. source) in case of multiple varying environmental factors.

•

  ecosystems and soil types. The spatial resolution of ESMs then dictates the spatial scale at which projections must be run(German et al., 2012;[START_REF] Sinsabaugh | Stoichiometry of soil enzyme activity at global scale[END_REF]. In addition to climate drivers, vegetation and soil physico-chemical variables are well-characterized at that scale; for example, soil texture and pH data have been shown to be effective at scaling microbial respiration rates across landscapes[START_REF] Pansu | Modeling organic transformations by microorganisms of soils in six contrasting ecosystems: Validation of the MOMOS model[END_REF].Seminal attempts of global scaling such asWieder et al. (2013) pave the way forward.Further developments could draw from progress in global modeling of vegetation dynamics: Williams et al. (1997) developed a protocol for scaling up models of gross primary productivity. A fine-scale mechanistic model is used to predict productivity across a wide range of conditions, and these predictions are then aggregated across time and space. A broad-scale model with simplified equations is then developed to replicate the aggregated output from the fine-scale model. Projections from the broad-scale model of gross primary productivity across disparate ecosystems using broad environmental drivers, such as daily irradiance and leaf area index, can be successfully validated.

  Physiological consequences may include microbial dormancy, while episodes of severe ecological filtering on community composition and strong natural selection on genetic variation of microbial traits can be expected.Validating soil microbial models of decomposition at the global scale is the ultimate challenge. Global datasets on soil carbon stocks and fluxes offer promising opportunities to validate the emerging ESM microbial models. Many of the land submodels from current Global Circulation Models (GCMs) are tested at continental scales, and a similar approach could be applied to microbial ESM projections, possibly using CO 2 flux data from networks such as the North American Carbon Program and CarboEurope[START_REF] Schwalm | A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis[END_REF][START_REF] Suzuki | Evaluation of a terrestrial carbon cycle submodel in an Earth system model using networks of eddy covariance observations[END_REF]). As we tackle challenges in scaling, parameterization, and validation, a new generation of microbially-based decomposition models will eventually improve predictions of carbon-climate feedbacks in the Earth system and help quantify projection uncertainty.

•

  As the flaws of first-order decay kinetics still used in most coupled C-climate models were recognized, a new generation of SOC decomposition models have been developed to link SOC turnover to microbial eco-physiology and degradative enzyme kinetics. The basic processes represented are: litter input, microbial enzyme production, enzymatic SOC degradation, microbial DOC uptake and assimilation, microbial death, and enzyme deactivation. The models take the form of systems of non-linear ordinary differential equations with at least four state variables corresponding to the main four pools represented at a mesoscale of space and time: C (measuring SOC), D (measuring DOC), M (microbial biomass), Z (enzyme concentration). Trait-based models are computational in essence and allow representing a diversity of microbial functional types, that highthroughput sequencing and "omics" data can help monitor in real systems. • To investigate how soil microbes and exoenzymes mediate the effects of environmental (e.g. climate) change on soil respiration and C stock, these models implement the Dual Arrhenius and Michaelis-Menten kinetics. The Arrhenius function represents dependence of microbial and enzyme activity on temperature and substrate quality (through activation energy); the Michaelis-Menten function represents the limitation of substrates availability and chemical affinity of substrates on temperature sensitivity. Accounting for climate factors other than temperature (moisture, CO 2 concentration)allows to distinguish the "apparent" vs. "intrinsic" temperature sensitivity of SOC decomposition and soil heterotrophic respiration. The effect of variation in soil moisture due to variable precipitation can be addressed by including controls of enzyme activity and DOC uptake by water saturation, and possibly distinguishing pools of wet vs. dry enzymes and DOC.• Temperature-dependent CDMZ models of decomposition and soil respiration are used to explain observational and experimental responses of soil respiration to warming. They can explain a pattern of increasing respiration, decreasing microbial biomass, and relatively stable SOC.Temperature-dependent CDMZ can be integrated in ESMs. Processes that need to be integrated in large-scale models include microbial evolutionary adaptation and eco-evolutionary feedbacks between soil C and climate.

  Abs and Ferriere [2018],[START_REF] Wieder | Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models[END_REF]) are phenomenological, rather than derived by scaling up from microscopic processes acting locally at the level of individual entities. The main di culty here is to address the extremely di↵erent scales that characterize the entities (cells, enzymes, substrates, products) and processes that a↵ect them. Here derive a hybrid, stochastic-deterministic model that takes this multiplicity of scales into account. By applying the hybrid model to a spatially structured habitat, we elucidate conditions that promote the evolutionary stability of enzymatic decomposition and we show that the evolution of exoenzyme production shapes the response of decomposition to environmental change.2 Model ConstructionTo construct a spatially explicit model of microbe-enzyme decomposition, we focus on bacterial cells and unprotected soil organic carbon[Davidson and Janssens, 2006]. Space is modeled as a two-dimensional grid of microsites, with each microsite potentially occupied by a cell colony. Decomposition is seen as a microbial public good game, whereby individual microorganisms invest resources into the production of degradative exoenzymes. Exoenzyme molecules bind soil organic carbon (SOC) molecules and catalyse the depolymerization of SOC into dissolved organic carbon (DOC) molecules. DOC molecules occurring in a microsite may be uptaken and metabolized by cells present in the microsite, resulting in cell growth and exoenzyme production. The fraction of uptaken DOC that is invested by a cell in exoenzyme production, as opposed to cell biomass production, is denoted by '. This is the focal trait that characterizes the microbial phenotype, for which we assume heritable variation, originating in mutation[START_REF] Alster | Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory[END_REF], Trivedi et al., 2016].

Figure 1 .

 1 Figure 1. Microbe-enzyme driven decomposition of soil organic matter: Modelled entities and processes. (a), Five-compartment model. (b), Four-compartment model. SOC, soil organic carbon. DOC, dissolved organic carbon. Arrows indicate carbon fluxes among boxes and in and out of the system.
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  C, D, M, Z) where the state variables (C, D, M, Z) are driven by the stochastic CDMZ model with VmD = ¯ μ μ + ¯ 1

  of 1 C: (M, Z, C, D) 7 ! (M, Z, C + 1, D) ĪK C Loss of 1 C due to leaching: (M, Z, C, D) 7 ! (M, Z, C 1, D) ēC C External input of 1 D: (M, Z, C, D) 7 ! (M, Z, C, D + 1) ĪK D Loss of 1 D due to leaching: (M, Z, C, D) 7 ! (M, Z, C, D 1) ēD D Depolymerization of 1 C into D (decomposition) through enzymatic reaction

Figure 2 .

 2 Figure 2. Dynamics of the cell population and microbial trait ', with and without mutation.

  (a) Cell population dynamics without mutation. (b) Cell population dynamics with mutation. As populations evolve, they reach the minimum viable value of the enzyme production trait, ', and go extinct. (c) Evolution of enzyme allocation fraction, '. Ten simulation runs are shown. All constant parameters are set to the default values (Table D.1 in Appendix D), except T max = 10 8 , ancestral '

Figure 4

 4 Figure 4 reports variation in the long-term population growth rate of the mutant population introduced in the stationary resident population (see Appendix G for detail about simulation design).

Figure 3 .

 3 Figure 3. Spatio-temporal dynamics of invasion of a mutant cell (' mut = 0.8) into the ecosystem established by a resident cell phenotype (' res = 0.75). From top to bottom: temporal dynamics of the mutant cell population (M mut ), resident cell population (M res ), enzyme (Z), DOC (D), SOC (C). Columns 1-4: example simulation run of the spatial hybrid stochastic-deterministic model over a 10 x 10 grid of microsites, snapshots from time t = 0 to t = 5 ⇥ 10 5 . Column 5: Cross-grid aggregated dynamics of the simulation run. Column 6: Mean trajectories, averaged over 20 replicated simulation runs. All constant parameters are set to the default values (Table D.1 in Appendix D). See Appendix G for further simulation detail.

Figure 4 .

 4 Figure 4. Selection on exoenzyme production ', with di↵usion rate di↵ varying from 10 4 to 10 9 . The mutant population exponential growth rate from initial rarity (introduction in the central microsite at 5% of the abundance of the resident phenotype) is measured on the vertical axis. Red bars, Mutant ' = Resident ' -0.05. Blue bars, Mutant ' = Resident ' + 0.05. Thin bars indicate standard deviation. All constant parameters are set to the default values (Table D.1 in Appendix D). See Appendix G for further simulation detail.

  currently strong decrease in soil C stock (Fig. 5c, red). In comparison, predictions of decomposition rate and soil C stock are almost insensitive to the soil di↵usion rate in absence of evolution (Fig. 5b, 5c, blue).

Figure 5 .

 5 Figure 5. E↵ect of di↵usion on the evolution of exoenzyme production ', and feedback on the decomposition rate (b), and the stock of soil carbon C (c), predicted by the spatial hybrid stochasticdeterministic model. Blue, outcomes of purely ecological dynamics, in which ' is fixed to the adapted value for di↵ = 10 5 . Red, outcomes of eco-evolutionary dynamics, in which ' evolves and adapts to the di↵usion rate. In (a), a range of ' indicates evolutionarily attractive values for which the selection gradient is close to zero (Fig. 4, Table 3). Decomposition rate (b) and soil C stock (c) are then evaluated across that range. All constant parameters are set to the default values (Table D.1 in Appendix D). See Appendix G for further simulation detail.

  From the stochastic CDMZ model we obtained a hybrid stochastic-deterministic model for local populations and interactions by assuming that the size of the molecular populations (C, D, Z) is typically much larger than the size of the cellular population (M). A spatially explicit model can then be assembled by coupling hybrid models to form a grid of microsites. Microsite and grid parameters can be specified to capture the millimeter and centimeter scale, respectively. Compared to previous individual-based simulation models of decomposition[START_REF] Steven D Allison | Cheaters, di↵usion and nutrients constrain decomposition by microbial enzymes in spatially structured environments[END_REF], Folse and Allison, 2012, Kaiser et al., 2014, 2015], our derivation (i) recasts these model in a unified, rigorous mathematical framework, (ii) extends them by relaxing the assumption that each microsite may only be occupied by one cell. The latter is critical to address the interaction between microbial strains (genotypes) that di↵er in their investment in exoenzyme production. Thus, by modeling the dynamics of cell populations and decomposition within and between microsites, we can address the e↵ect of spatially heterogeneous colony growth and colony size on the dynamics of invasion of a mutant genotype into the established population of the wild-type (resident) strain.It has long been known that the habitat spatial structure can promote cooperation by facilitating benefit-sharing among cooperators. This was shown originally for pairwise interactions and later in the case of di↵usive public goods. However, early models of di↵usive public goods[Driscoll and Pepper, 2010, Ross-Gillespie et al., 2007, West and[START_REF] Stuart | Cooperation, virulence and siderophore production in bacterial parasites[END_REF]] represented space only implicitly and were therefore limited in their ability to identify conditions for the evolutionary stability of cooperation.[START_REF] Steven D Allison | Cheaters, di↵usion and nutrients constrain decomposition by microbial enzymes in spatially structured environments[END_REF] spatially explicit, individual-based simulation model of enzymatic litter decomposition backed up the expectation that the rate of products di↵usion was key to the stability of cooperation. This and subsequent related models[Allison, 2012[START_REF] Dobay | Interaction e↵ects of cell di↵usion, cell density and public goods properties on the evolution of cooperation in digital microbes[END_REF], Folse and Allison, 2012, Kaiser et al., 2014, 2015], however, focused on competition among two or a small set of exoenzyme production genotypes, e.g. a producing strain and a non-producing ('pure cheater')

Finally, our model

  shows how variation in evolutionarily stable exoenzyme production feeds back on ecosystem macroscopic properties such as the overall decomposition rate and soil C stock. The model predicts that if environmental change, such as variation in soil water content driven by climate change, drives changes in soil di↵usion, then the microbial community may respond evolutionarily, and in return, the microorganisms' evolutionary, adaptive response may substantially impact ecosystem function. Previous models investigated how soil functional properties such as decomposition, heterotrophic respiration, and carbon stock, respond to variation in soil moisture due to variable precipitation [Homyak et al., 2018, Zhang et al., 2014]. Focusing on experimental data from semi-arid savannah-type ecosystem subject to contrasted precipitation regimes, Zhang et al. [2014] used modeldata assimilation to demonstrate the importance of water saturation as a control of enzyme activity and DOC uptake, and of the accumulation and storage of enzymes and DOC (that is temporarily inaccessible to microbes) in the dry soil pores during dry periods. Our results show that microbial evolution of exoenzyme production, in and of itself, can drive strong ecosystem responses to the e↵ect of soil moisture variation on soil di↵usion. Future work should further explore the relative e↵ect on decomposition and heterotrophic respiration, of microbial physiological and evolutionary responses to the spatial heterogeneity of soil water distribution. As strong ecosystem e↵ects may result from the evolutionary adaptive response of microbial communities to changes in soil abiotic properties like di↵usion, this calls for a more general investigation of the large-scale ecosystem consequences of soil microbial evolution in response to global environmental change, such as climate warming. The thermal dependence of microbe-enzyme biochemical processes involved in decomposition can radically change the global projections of soil C in response to climate change [Wieder et al., 2013]. How microbial evolutionary adaptation to warming might further change the picture warrants future research.
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 9103 [2010], German et al. [2012], Hagerty et al. [2014], Schimel and Weintraub [2003]. The structural and energetic costs (↵s and s) are calculated from the masses and production fractions of the variables (see Equations (2.1) and (2.5)). They are not inputs of the model, and are presented here only for informative purposes.Table D.1. Parameters of the deterministic model in biomass. scaling parameter of (local) microbial population size energetic cost in D of 1 Z molecule 1.5 ⇥ 10 3 d M h 1 microbial carbon biomass turnover rate 2 ⇥ 10 4 d Z h 1 enzyme carbon biomass turnover rate 2 ⇥ 10 3

1 ]

 1 The decomposition rate V mD has been calculated as v D max K D m from Allison et al. [2010]'s model. Since the stochastic model allows us to look at the behaviour of smaller populations, we reduce the soil volume to 10 9 cm 3 (instead of 1cm 3 in most models). Volume a↵ects 3 parameters: V mD , K mU , and I C . We ignore the input of D. We assumed leaching of D equal to leaching of C. Dead microbes and deactivated enzymes are recycled half into C and the other half into D. The values for p mut and

Figure S1 .

 S1 Figure S1. E↵ect of N and ' on the fraction of events dropped before the end of the simulation (T max or extinction time). K increases from (a) to (f). The deterministic model (2.6) provides an accurate approximation of the PDMP model for combinations of ' for which the fraction of dropped events is less than a small threshold, e.g. 1% (bright red). All constant parameters are set to their default values, except p = 0 and e D = 10 2 . Initial conditions are adjusted to the stable equilibrium of (2.6) for each value of ', T max = 10 6 .

Figure S2 .

 S2 Figure S2. E↵ect of K on the dynamics of the cell population M . The model used is the hybrid stochastic-deterministic model (approximation of the PDMP with deterministic microbial growth). Five values of K are used between 10 and 1000. For each value of K, twenty simulation runs are reported; each run is colored di↵erently. Simulations stop when the cell population reaches zero. Parameter values: All constant parameters are set to their default values (Table D.1 in Appendix D), initial conditions are adjusted to ' = 0.5, and T max = 10 8 .

Figure S3 .

 S3 Figure S3. Aggregated dynamics of the cell population size M (in individuals), and Z, C, and D (in units of carbon mass) simulated with the spatial model in the absence of mutation. All constant parameters are set to the default values (Table D.1 in Appendix D). Parameter values specific to this model are: K = 10, L = 10, di↵ = 10 9 , ⌧ di↵ = 10 3 , p disp = 0.3. Initial conditions are set to the steady state of the corresponding ' in the central microsites occupied by microbes, and M = Z = D = 0 and C = 5 ⇥ 10 5 in the empty microsites.

Z

  In equation (1a), decomposition follows from Michaelis-Menten kinetics of Z binding substrate C ; there is a constant input, I , of soil organic (non decomposed) carbon from aboveground litter, and a loss due to leaching at constant rate e C . In equation (1b), D is produced by decomposition and the recycling of dead microbial biomass and inactive enzymes; D is consumed by microbial uptake, and lost by leaching at constant rate e D . In equation (1c), growth of microbial biomass M is driven by the rate of DOC uptake (a Monod function of D ) times the fraction of uptaken DOC turned into biomass, (1φ ) γ M , minus microbial mortality at constant rate d M . In equation (1d), enzyme variation is driven by the rate of DOC uptake times the fraction allocated to enzyme production, φ , and production efficiency, γ Z , minus enzyme deactivation at constant rate, d Z .

  T ). Our set of default parameter values is derived from Allison et al. (2010) (Extended Data Table 1

Figure 1 .Figure 2 .

 12 Figure 1. Effect of temperature and enzyme allocation fraction on SOC ecological equilibrium. a , Structure of the microbial-enzyme ecological model (see Methods for details): SOC stock is the balance of plant input, I , and loss by exoenzyme-mediated degradation to DOC ( D ), which in turn is allocated between (fraction φ ) production of

  ) and I is set to 5 10 -3 . Points A1 and B1 indicate the default parameter values. Point A2 (respectively B2) exemplifies values of γ M and d M (resp. v 0 U and ) for which the EVO effect is strong. Panel c (resp. d ) shows the influence of c 0 and E v U T 0 on the EVO effect at A2 (resp. B2).

Figure 3 .

 3 Figure 3. Ecological and eco-evolutionary responses of SOC equilibrium to warming (up to + 5 °C) for three scenarios of temperature dependence. Ecological and eco-evolutionary changes in SOC equilibrium C given by Eq. (3a) (without evolution, dashed curves) and Eq. (3b) (with evolution, plain curves) are plotted as a function of the increase in temperature. Blue curves , initial temperature T 0 = 5°C. Black curves , T 0 = T ref = 20°C. Red curves , T 0 = 30°C. Insets , Direction and magnitude of EVO effect (%), from -150 % to + 150 %, color code indicates T 0 as before. a , Baseline scenario of temperature dependence (enzyme kinetics only). b , Temperature-dependent microbial turnover, with E dM = 25 < . c , Temperature-E v U

Figure 4 .

 4 Figure 4. Ecological and eco-evolutionary responses of SOC equilibrium to + 5 °C warming predicted for five biomes. a-d , ECO response. e-h , ECOEVO response. i-l, EVO effect. AK: Alaska, boreal forest, T 0 = 0.1°C. ME: Maine, temperate forest, T 0 = 5°C. WV: West Virginia, temperate forest, T 0 = 9°C. CA: California, temperate grassland, T 0 =

  eco-evolutionary response (with evolution, plain curves) are plotted as a function of the increase in temperature, up to + 5°C. Blue curves , initial temperature T 0 = 5°C. Black curves , T 0 = T ref = 20°C. Red curves , T 0 = 30°C. (a, e) Baseline 'kinetics only' scenario of temperature dependence. (b, f) Temperature-dependent microbial turnover, with E dM = 25 < E v U . (c, g) Temperature-dependent microbial turnover, with E dM = 55 > E v U . (d, h) Temperature-dependent MGE, with m = -0.014. Parameters are set to their default values (Extended Data

Extended Data Figure 7 |Extended Data Figure 8 |

 78 Sensitivity analysis of the EVO effect for the baseline 'kinetics-only' scenario of temperature dependence. a , Sensitivity to Arrhenius coefficient of decomposition rate, v 0 D , and activation energy of decomposition rate, E v D . b , Sensitivity to Arrhenius coefficient of decomposition half-saturation constant, K 0 D , and activation energy of decomposition half-saturation constant, E K D . c , Sensitivity to enzyme production efficiency, γ Z , and enzyme deactivation rate, d Z . d , Sensitivity to DOC leaching rate, e D , and SOC input (litter), I . Parameters are set to their default values (Extended Data Table 1) except I = 5 10 -3 , v 0 U = 10 5 , E v U = 38 (point B2). The effect of e C (not shown) is identical to the effect of e D . Sensitivity analysis of the EVO effect for the microbial turnover and MGE scenarios of temperature dependence. (a-d) Temperature-dependent microbial turnover, E dM = 25. (e-h) Temperature-dependent microbial turnover, E dM = 55. (i-l) Temperature-dependent MGE, m = -0.014. Parameters are set to their default values (Extended Data Table 1) except I = 5 10 -3 . A1 = B1 = default values. A2 = default values except for γ M and d M . B2 = default values except for v 0 U and E v U . (a, e, i) Sensitivity to microbial growth efficiency, γ M , and microbial mortality rate, d M . (b, f, j) Sensitivity to activation energy of uptake rate, E v U , and Arrhenius coefficient of uptake rate, v 0 U . (c, d, g, h, k, l) Sensitivity to competition asymmetry, c 0 , and initial temperature, T 0 . Panels (c, j, k) (resp. d, h, l ) show sensitivities of the EVO effect at point A2 (resp. B2) for the corresponding scenario of temperature dependence. Extended Data Figure 9 | Effect of enzyme allocation fraction on total soil active carbon and its four components when microbial biomass forms the main part of active soil carbon. a , Total soil active carbon at 20°C (plain) and 25°C (bold) as a function of enzyme allocation fraction, φ . Note that the SOC equilibrium in the absence of microbes (dashed line) is temperature independent and always lower than the total soil active carbon. b , Effect of enzyme allocation fraction, φ , on the four components components of total soil active carbon at 20°C: M (blue), Z (pink), C (green), D (orange). Parameters are set to their default values (Extended Data Table 1) except I = 3 10 -3 , v 0 U = 4 10 3 , E v U = 46, d M = 10 -6 , e C = 5 10 -6 and γ M = 0.7.

  2010 3 ) and p is the fraction of microbial necromass recycled in SOC vs . DOC. When solving this system at equilibrium, the enzyme concentration, Z , only depends on enzyme traits ( γ M and γ Z ) and microbial abundance, M ( ), which depends on microbial turnover rate ( a consequence, equilibrium Z is negatively dependent on d M , M = CU E (I +I ) D C (d +r )(1-CU E) M Z therefore equilibrium C is positively dependent on d M . The analytical expression of equilibrium C is (Li et al. 2014) 5 :

(

  2014) found C to increase with higher microbial turnover. The difference stems from the rate of enzyme production being resource dependent in our model, rather than constitutive and constant as in Allison et al. (2010) 3 and Hagerty et al. (2014) 4 .

  , Extended Data Fig. 5d, h). The strong influence of T 0 on the ecological response of soil C to warming was noted by Li et al. (2014) 5 for intermediate MGE temperature sensitivity ( m = -0.008). The outstanding eco-evolutionary response (C sequestration) predicted by our model for steeper MGE temperature dependence ( m = -0.014, Fig. 3d) are caused by the combination of as an Arrhenius function with γ M ( T ) as a linear function v U max (T ) (equations (2c, f)). While there is empirical support for this choice (reviewed in Todd-Brown et al. 2012), both relationships remain uncertain and warrant further experimental investigation.
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 5 System models (ESMs) are used to project future climate and carbon (C) cycle feedbacks. The first generation of ESMs used simple soil C models, in which turnover rates of soil C pools are determined by first-order kinetics of enzymatic decomposition. However, first-order kinetic models neglect microbial physiological processes that transform and stabilize soil C inputs and may respond to climate warming (reviewed in Wieder et al. 2015; Abs and Ferriere, in review). Filling this gap has led to more mechanistic models of soil microbe-enzyme decomposition, which have been used to investigate the role that soil microbial communities play in shaping the response of soil C stocks to environmental change, e.g. change in soil moisture and diffusion properties in relation with patterns of precipitation (Zhang et al. 2014; Abs, Ferriere, Leman, in prep.) or change in soil temperature (Allison et al. 2010; German et al. 2012; Li et al. 2014; Abs, Saleska, Ferriere, subm.) Wieder at al. (2013) conducted the first attempt to integrate mechanistic, smallscale microbial models of decomposition in Earth system models (ESMs). By building a temperature-dependent microbial model into the Community Land Model (CLM), they produced a "CLM microbial model" which could explain 50% of the spatial variation in observed soil C stock, contra 28-30% for the best non-microbial models. Such results indicate that explicit representation of soil microbial dynamics at the microscopic scale can significantly improve global assessment of soil carbon stocks (see Wieder et al. (2018) for further discussion). Furthermore, projections of the CLM microbial model over 2006 to 2100 predict a massive soil C loss (~300 Pg C by year 2100) in the scenario where microbial growth efficiency (MGE) is temperature-independent --an effect that is completely offset of MGE is assumed to vary negatively with temperature. Such contrasting outcomes emphasize the importance of including microbial processes and their temperature dependence in global projections of soil carbon. Besides the thermodynamic response of enzymatic activity to warming, decomposition may also depend on temperature via microbial adaptation (Allison 2014). In Wieder et al. (2013), the temperature-independence of MGE is interpreted as a plastic physiological response (i.e. acclimation) of microorganisms to temperature change. Given the short generation time, large population size and standing genetic variation of many microbial organisms, microbial populations are also likely to adapt evolutionarily to warming (Abs, Saleska, Ferriere, subm.). Using a microbe-enzyme model of decomposition in which the fitness costs and benefits of exoenzyme production can be accounted for, Abs et al. (subm.) investigated how exoenzyme production responds to selection under environmental warming, and how the evolutionary response of exoenzyme production impacts soil organic carbon (SOC) stock. Abs et al.'s (subm.) model shows that the evolutionarily adaptive response of exoenzyme production to warming can have large effects on the decomposition process and soil C stocks. By specifying their model for five contrasting biomes for which exoenzyme kinetics parameters have been documented (German et al. 2012), Abs et al. (subm.) found evolutionary aggravation of soil C loss to be the most likely outcome, with a strong latitudinal pattern, from small evolutionary effects at low latitude to large evolutionary effects at high latitude. Here our goal is to examine how these effects scale up to global continental Earth. To this end, we follow Wieder et al.'s (2013) approach, using Abs et al.'s (subm.) eco-evolutionary model of decomposition. We use German et al.'s (2012) parametrization of enzymatic reactions for five contrasted biomes, together with observations of soil temperature and litterfall inputs to predict the current global distribution of soil carbon. We then use soil temperature and litter input projections from an archived CMIP5 experiment for the Representative Concentration Pathway 8.RCP 8.5) from 2006 to 2100, to calculate the change in soil C projected by 4.8 °C warming over the course of this century. By updating soil temperature and litter input every month, and assuming rapid convergence of the ecological model within each time interval, we obtain projections without microbial evolution, in which exoenzyme production at each location (~ 1° × 1° grid cell) remains at the initial adapted value; and projections with microbial evolution, in which exoenzyme production at each location adapts evolutionarily to the temperature change, given the concurrent change in litter input. Comparing projections from the eco-evolutionary vs. ecological (nonevolutionary) model upheld previous conclusions (Abs et al. subm.) about the potentially large impact of microbial evolution on the response of soil C to climate warming.

Pg to 33

 33 Pg due to ecology only, from 40 Pg to 30 Pg due to ecology and evolution combined), and all biomes contribute to carbon loss --each biome-specific pattern being aggravated by microbial evolution. For initially dormant soils (Fig.5), soil C changes little in tropical (Costa Rica-type) or arctic (Alaska-type) biomes, whereas soils accrue significant carbon in the other biomes, resulting in ecology driving a global increase of soil C in initially dormant soils. Microbial evolutionary adaptation alters these patterns through a delayed, negative effect on soil C, especially in cold biomes (Maine-type and Alaska-type), which causes a reversal of the global trajectory of C stock in initially dormant soils, from early carbon gain to late carbon loss.DiscussionAbs et al. (subm.) showed that microbial evolutionary adaptation could have large and diverse effects on the decomposition of soil organic matter, from aggravating to buffering or even reversing soil carbon loss mediated by changes in enzymatic activity.By constraining their general model with measurements of enzymatic parameters from five biomes, they concluded that microbial evolutionary adaptation to warming was more likely to cause an aggravation of soil carbon loss across biomes. Here we used Abs et al.'s model to evaluate the effect of microbial evolution on soil carbon projections at Earth terrestrial scale. Our results confirm the expectation of a significant global aggravation of soil C loss due to microbial evolution. Colder biomes contribute relatively more to the effect of evolutionary adaptation on global soil C projections. Dormant soils, in which microbial activity is very low, tend to gain carbon initially, and even more so when the local temperature reaches a threshold at which they become active. In these regions, the negative effect of evolution on soil C may not kick in until the microbial community shifts from dormant to active, and may thus be delayed by decades.The integration of microbial models of decomposition into broad-scale ecosystem models remains challenging. Properly describing even the short-term response of soil C dynamics to warming may raise the need to account for mechanisms such as physicochemical changes, priming, and the interaction of C and N cycles (e.g. S.Fontaine et al., 2003). In a recent study,Wieder et al. (2018) compared a first-order model (CASA-CNP) and two microbial models (MIMICS and CORPSE). The three models showed dramatically different patterns of soil carbon gains and losses despite identical litter inputs and climate forcing, with a net accumulation of soil carbon in CASA-CNP (+18.1 Pg C) and MIMICS (+24.1 Pg C), and a net loss in CORPSE (-21.7

  results are thus consistent with Wieder et al.'s (2013) model including a negative dependence of microbial growth efficiency (MGE) on temperature. In our model, microorganisms pay the cost of exoenzyme production in terms of reduced growth. The global adaptive increase in exoenzyme production thus translates, in our model, in a global decline in MGE as temperature rises. Here a key difference with Wieder et al. (2013) is that this decline is an outcome of the adaptive evolutionary process, whereas Wieder et al. (2013) assumed the negative relation of MGE with temperature. The temperature sensitivity of enzyme kinetics could have further global effects that neither model has accounted for. For example, Hagerty et al. (2014) uncovered a positive effect of temperature on microbial mortality. When including this effect in their general ecoevolutionary model of decomposition, Abs et al. (subm.

Furthermore

  , soil C-climate interaction involves timescales (year to century) over which mechanisms of soil C stabilization may not be ignored(Davidson and Janssen, 2006;[START_REF] Bradford | Managing uncertainty in soil carbon feedbacks to climate change[END_REF][START_REF] Abramoff | A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model[END_REF]. Soil C is stabilized by interacting with minerals[START_REF] Keil | Mineral matrices and organic matter[END_REF]; microaggregates break down over time due to mechanical stresses or the gradual degradation of binding agents, causing carbon in chemically protected organo-mineral complexes to be slowly released(Sollins et al., 1996). So far there has been few attempts to incorporate organic-mineral interactions in microbial models of decomposition.Abramoff et al. (2018) recent work paves the way forward. They identify conditions under which their projections depart substantially from the non-microbial Century model, a long-time standard for large-scale simulations of soil C stocks. Global projections of soil carbon will be improved by using ecoevolutionary microbial models of decomposition that take slow abiotic processes of carbon stabilization into account.

Figure 1 .

 1 Figure 1. Initial soil carbon stocks. Soil carbon is the sum of SOC mass and microbial biomass. At each ~1° × 1° site, the enzyme allocation fraction trait, φ, takes on its value, φ*, adapted to the local conditions (surface soil temperature and litterfall input, averaged over 15 years, from 2006 to 2021). The local carbon stock is calculated by running the corresponding microbial ecological model to equilibrium. In sites where the microbial equilibrium is unstable, we assign the observed value of the carbon stock averaged over the corresponding biome and scaled to 1 cm soil depth. See Methods for more detail.

Figure 2 .

 2 Figure 2. Adaptive evolution of the enzyme allocation fraction trait from 2010 to 2100. At each ~1° × 1° site, the enzyme allocation fraction trait, φ, takes on its value, φ*, adapted to the local conditions (surface soil temperature and litterfall input). a, Spatial distribution of initial φ* values at 1° resolution (adaptation to surface soil temperature and litterfall input averaged over 15 years, from 2006 to 2021). b, Global average φ* value as a function of global mean surface soil temperature. See Methods for more detail.

Figure 5 .

 5 Figure 5. Global and biome-specific projections of soil carbon from 2010 to 2100 across sites that were initially microbially dormant. The initial carbon stock in each microbially dormant site is the observed value of the carbon stock averaged over the corresponding biome and scaled to 1 cm soil depth. Left, "ECO" projections from the ecological model (no evolution; the enzyme allocation fraction trait is fixed to its value adapted to 2010 conditions).

Figure S2 .

 S2 Figure S2. Earth terrestrial ecoregions (a) clustered into five biomes (b) for which enzyme kinetics parameters have been measured. The five biomes and their reference location for which enzyme kinetics were measured are tropical forest (Costa Rica), temperate grassland (California), temperate deciduous forest (West Virginia), temperate/cold coniferous forest (Maine), boreal forest/tundra (Alaska) (German et al. 2012). See Methods for more detail.

Figure S3 .

 S3 Figure S3. Biome-specific enzyme kinetics parameters. a, V0D: Arrhenius coefficient of decomposition rate. b, K0D : Arrhenius coefficient of decomposition half-saturation constant. c, EvD: activation energy of decomposition rate. d, EkD: activation energy of decomposition half-saturation constant. These parameters are fixed in time. See Methods for more detail.
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  être encore saturés en carbone[START_REF] Kell | Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how[END_REF], il a été estimé qu'une augmentation de la longueur des racines des plantes d'un mètre sur moins de 4% des terres cultivables permettraient de compenser complètement les émissions annuelles de CO 2 liées aux combustibles fossiles

	(Kell 2011).
	L'évolution des traits fonctionnels impliqués dans le cycle du carbone a joué un rôle historique dans la constitution de notre climat actuel. L'évolution des organismes photosynthétiques a profondément transformé l'atmosphère terrestre, l'évolution et la diversification des organismes décomposeurs ont modifié les capacités et vitesses de décomposition de la matière organique, et on estime que l'évolution des angiospermes a fondamentales de la biologie de l'évolution, celui du maintien évolutif d'interactions coopératives et celui de la coexistence de plusieurs stratégies d'acquisition des ressources dans un système à ressource unique. 4) Intégrer le modèle éco-évolutif comme module dans un modèle numérique planétaire de réduit de 10 à 20 fois la concentration atmosphérique en CO coopération entre bactéries. Mon étude s'inscrit donc dans le contexte de deux questions projection des stocks de carbone du sol, de façon à étudier l'effet global potentiel de

2 

. Il est probable que les changements environnementaux actuels modifient les agents de la sélection naturelle qui s'exercent sur de multiples systèmes écologiques. Mais en pratique, prédire les trajectoires évolutives des traits associés au cycle du carbone nécessite d'identifier les agents de sélection en cause et d'estimer leur variation ; et de mesurer la diversité génétique sur laquelle ces agents s'exercent, et l'amplitude des réponses , à des échelles spatiales qui ne sont pas ellesmêmes clairement définies a priori. Une grande variation génétique additive de certains traits impliqués dans le cycle du carbone a été démontrée chez certaines espèces de plantes et de phytoplancton. Par exemple les traits associés à la production racinaire et à la réponse à la sécheresse sont fortement héritables chez l'espèce Brachypodium distachyon (Des Marais et al. 2017). On en sait moins sur la variation génétique des traits du cycle du carbone des microorganismes hétérotrophes parce que les études se sont plus souvent portées sur leur variabilité interspécifique plutôt qu'intraspécifique (Wallenstein & Hall 2012). Cependant des études récentes ont mis en évidence une variation génétique associée à la production des enzymes de décomposition (Alster et al. 2016, Trivedi et al. 2016). La signature de la sélection peut être détectée directement grâce au séquençage de sous-populations adaptées à leur environnement local (Yeaman et al. 2016, Thomas et al. 2012, Oliviero et al. 2017, Yampolsky et al. 2014). Ces études permettent notamment de comparer différentes combinaisons de facteurs climatiques, dont les effets sur la sélection ne sont pas simplement additifs. La marque d'adaptations évolutives au changement climatique actuel a été trouvée sur le taux de fixation du carbone du phytoplancton (Jin et al. 2013), sur le taux de fixation de l'azote et la croissance des cyanobactéries (Hutchins et al. 2015, Walworth et al. 2016), et la conductance des stomates des plantes (Grossman & Rice 2014) en réponse à l'augmentation de la concentration de CO 2 ; et chez des bactéries hétérotrophes en réponse à l'augmentation de la température (Kileen et al. 2017). Ces adaptations peuvent se produire sur une échelle de temps écologique. Des populations naturelles de zooplancton Daphnia magna s'adaptent en moins de 2 ans (Geerts et al. 2015) et le phytoplancton Chlorella vulgaris en moins de 100 générations à une augmentation de température (Padfield et al. 2016), tandis que des adaptations à la sécheresse chez la plante annuelle Brassica rapa ont été détectées en moins de 10 ans. La réponse du cycle du carbone global au changement climatique intègre les réponses des différentes communautés écologiques distribuées sur l'ensemble du globe. Si les espèces autotrophes s'adaptent par une augmentation de leur activité photosynthétique, elles pourraient entraîner un ralentissement du changement climatique ; si les adaptations des espèces hétérotrophes se traduisent par des taux de respiration plus élevés, elles sont susceptibles de contribuer à l'accélération du changement climatique global (Monroe et al. 2018). Il est à noter que les réponses évolutives ne suivent pas toujours la même direction que les réponses plastiques. Par exemple, les espèces phytoplanctoniques réduisent leur taux photosynthétique en cas d'acidification à court-terme, tandis qu'ils s'adaptent par une augmentation de leur production photosynthétique après plusieurs générations en conditions d'acidification (Collins et al. 2014). Analyser empiriquement la direction globale des réponses au changement climatique nécessite donc de combiner de multiples approches : manipulation expérimentale d'un ou plusieurs facteurs climatiques agissant sur des communautés-modèles en environnement contrôlé, expériences de transplantation, séquençage le long de gradients spatiaux naturels… Dans un programme d'une telle ampleur, la modélisation a un rôle crucial à jouer, en générant des prédictions quantitatives, et en rendant possible l'intégration et la simulation à grande échelle de temps et d'espace des mécanismes mis en évidence aux échelles -généralement locales, voire microscopiques -des études empiriques.

1.5. Objectifs de la thèse L'objectif central de la thèse est de comprendre, par une approche essentiellement théorique, comment l'évolution des bactéries hétérotrophes du sol contribue à la réponse du cycle du carbone terrestre au réchauffement climatique global. Les bactéries hétérotrophes constituent un modèle idéal d'étude d'interactions éco-évolutives entre une population et son environnement, pour trois raisons principales : (1) elles jouent un rôle écologique majeur au travers de la décomposition de la matière organique du sol et de la respiration ; (2) elles sont présentes dans tous les écosystèmes terrestres et aquatiques du globe ; (3) elles sont susceptibles d'évoluer sur des échelles de temps courtes (quelques jours en culture) du fait de leur grande taille de population, de leur grande variabilité génétique potentielle et de leur temps de génération court (Monroe et al. 2018). Des études récentes suggèrent un rôle crucial pour les communautés microbiennes dans la réponse globale des écosystèmes au changement climatique (e.g. Wieder et al. 2013) mais on connaît encore très mal la nature de ces réponses (changement de l'abondance relative de groupes fonctionnels bactériens, plasticité individuelle ou adaptation évolutive) et leur importance relative. Les modèles les plus avancés d'interaction entre populations bactériennes et matière organique tentent d'intégrer des réponses physiologiques rapides dont on suppose qu'elles assurent l'homéostasie des traits métaboliques des bactéries face au réchauffement. Aucun de ces modèles n'a considéré l'adaptation des populations bactériennes, au sens darwinien du terme. Ainsi, c'est dans le champ de l'étude des dynamiques éco-évolutives intégrant l'effet du réchauffement sur les énergies cinétiques des réactions, la distribution du carbone dans le sol et les réponses physiologiques des bactéries, que s'inscrit ma thèse. Quatre objectifs principaux ont guidé mes travaux : 1) Réaliser une synthèse des travaux de modélisation des dynamiques de populations bactériennes du sol. J'ai focalisé ma compilation bibliographique sur l'effet des dynamiques de populations bactériennes sur le taux de décomposition du carbone dans le sol et sur la respiration du sol dans le contexte du réchauffement climatique global. 2) Développer un nouveau modèle de la dynamique de décomposition de la matière organique du sol couplant l'écologie et l'évolution de la population bactérienne. Ce modèle déterministe intègre explicitement un trade-off dans l'allocation des ressources entre la croissance individuelle bactérienne et la production des enzymes extracellulaires impliqués dans la décomposition de la matière organique du sol. Le modèle intègre également le caractère spatialement localisé de la compétition entre bactéries pour le carbone organique dissous. 3) Utiliser ce modèle pour analyser la réponse éco-évolutive des décomposeurs bactériens au réchauffement climatique. Cette analyse vise à (i) prédire la direction et l'amplitude des réponses évolutives de traits bactériens au réchauffement climatique ; (ii) évaluer l'impact écologique de ces réponses sur le carbone du sol ; et (iii) comparer cet impact aux prédictions des modèles écologiques sans évolution. La production d'enzymes extracellulaires peut s'interpréter comme un investissement dans une forme de l'évolution des décomposeurs microbiens terrestres sur le cycle du carbone dans le contexte du réchauffement climatique.

  11) montrent que, dans le cas général, les bactéries investissent davantage dans la production d'enzymes après réchauffement dans le scénario 1, que cette réponse s'inverse dans le scénario 2 et qu'elle dépend de la température initiale dans le scénario 3. Je montre également que, dans le cas général sans évolution, le réchauffement

	entraîne une perte de carbone dans le sol dans
	les trois scénarios. J'en déduis donc que
	l'adaptation évolutive des bactéries au
	réchauffement peut entraîner tous les types de
	réponses, des pertes de carbone dans le sol plus
	importantes que sans évolution à
	l'enrichissement du sol en carbone.
	Afin d'évaluer l'importance des effets de
	l'évolution des décomposeurs bactériens dans la
	réponse du cycle du carbone au réchauffement
	climatique, j'ai appliqué mon modèle général au
	cas de cinq biomes contrastés pour lequel les
	données nécessaires (dépendance des cinétiques
	enzymatiques de décomposition à la
	température) étaient disponible (cf. German et
	al. 2012). J'ai montré que les résultats de
	l'analyse générale s'appliquent aux cinq biomes (Fig. 12). Les effets évolutifs les plus forts
	sont attendus dans les biomes froids et où les conditions du sol limitent l'évolution de la
	coopération. L'évolution aggrave les pertes de carbone dans le sol prédites par les modèles
	écologiques dans les biomes froids et à l'inverse les réduit dans les biomes chauds.
	Ce travail est présenté dans le chapitre 4 de la thèse, sous la forme d'un manuscrit
	actuellement soumis à Nature Ecology & Evolution :
	Abs E., Saleska S. & Ferriere R. Eco-evolutionary dynamics can mediate microbial carbon
	cycle feedbacks to climate change. Submitted to Nature Ecology & Evolution.

Figure 15. Modèle d'évolution (dynamiques adaptatives) de deux lignées microbiennes en compétition. Chaque lignée est caractérisée par son investissement (ϕ 1 , ϕ 2 , respectivement) dans la production d'enzymes. Les trajectoires évolutives conduisent l'une des deux lignées vers l'extinction.

  

	Ce type de travail est nécessaire pour appréhender la complexité du processus d'assemblage ainsi que par les contraintes de limitation en nutriments amèneraient à considérer des
	de communautés fonctionnellement diverses. interactions interspécifiques sur la base des mêmes contraintes, celles entre microorganismes
	Mon travail de thèse s'est focalisé sur le cas d'une stratégie microbienne stable du sol et plantes. Harte et Kinzig avaient déjà décrit en 1993 un modèle à quatre Le modèle de coexistence n'impliquait qu'une séparation dans l'espace des espèces évolutivement afin de pouvoir étudier un cas simple d'effet d'effets rétroactifs éco-évolutifs compartiments fonctionnels incluant microorganismes et plantes. Les expériences d'évolution chimiques issues des deux lignées microbiennes. On pourrait redéfinir certains traits (par sur le cycle du carbone en réponse au réchauffement climatique. On pourra exploiter le cas où rapide de traits de plantes, comme l'adaptation à la sécheresse en quelques années de la exemple l'efficacité de conversion, ou l'efficacité d'assimilation des ressources) et autoriser la stratégie microbienne est attractive mais non stable, cas d'un point de branchement, dans production racinaire de l'espèce Brassica rapa (Franks et al. 2007), justifierait de tester l'évolution de plusieurs traits à la fois, de façon à décrire une diversification vers des espèces lequel il peut y avoir divergence et donc apparition d'un polymorphisme de trait dans la l'évolution de traits de plantes également, et d'étudier les conséquences de dynamiques de chimiques (enzymes, DOC) différenciées. En incluant également une diversité de substrats, population microbienne en un système de type « producteur fort-producteur faible ». Durant coévolution entre microorganismes et plantes sur le taux de décomposition sur l'échelle des on étendrait ainsi avec une approche éco-évolutive rigoureuse le type d'approche de modèles mon stage de master 2, pendant lequel j'avais travaillé sur un modèle déterministe très similaire à celui présenté dans le chapitre 4, je m'étais intéressée à ce cas de divergence en me multi-traits (« trait-based model ») qui cherchent à rendre compte de la diversité fonctionnelle « temps climatiques ».
	demandant si elle pouvait conduire à la coexistence éco-des systèmes du sol réels (Allison 2005, Allison 2012, Folse & Allison 2012, Kaiser et al. Enfin, je me suis concentrée au cours de ce travail de thèse sur la décomposition
	évolutive stable d'au moins deux phénotypes 2014, 2015). En outre, les modèles à plusieurs types microbiens permettent la représentation microbienne et donc sur la matière organique accessible à la décomposition, afin de prouver
	microbiens. Pour ce faire, j'avais construit un modèle de regroupements spatiaux de types microbiens qui augmentent leur fitness individuelle en se l'influence potentielle de l'évolution microbienne sur le taux de décomposition et le stock de
	écologique de coexistence de deux lignées répartissant la production des différents types d'enzymes extracellulaires nécessaires à la carbone dans le sol. Cependant, les interactions entre climat et carbone du sol se produisent à
	microbiennes, dans lequel la représentation décomposition de la litière (Folse & Allison 2012). Ces modèles montrent des relations des échelles de temps de l'ordre d'années ou siècles qui nécessitent d'intégrer les mécanismes
	phénoménologique des effets écologiques des complexes entre diversité, interactions sociales et taux de décomposition. On voudrait étendre de formation et stabilisation du sol (Davidson & Janssens 2006, Bradford et al. 2016,
	interactions locales utilisée dans le modèle mutant-l'espace discret de types microbiens que ces modèles proposent par des espaces continus sur Abramoff et al. 2018) (Fig. 16). Des études récentes ont prouvé que la matière constitutive du
	résident, était remplacée par un coefficient de diffusion un ou plusieurs traits. Intégrer l'évolution sur espace phénotypique continu soulèvera la carbone stable du sol était davantage le produit de l'association de minéraux aux produits
	de façon à modéliser la séparation spatiale des deux question de la modélisation des trade-offs qui peuvent exister entre ces traits (en particulier secondaires de la décomposition microbienne plutôt que celui de la « sédimentation » des
	lignées microbiennes. Les individus de la lignée 1 sur les traits de type « efficacité de conversion »), par exemple entre type d'enzymes produits
	avaient ainsi accès à la quantité de ressources moyenne et types de ressources accessibles (Allison 2012). La construction d'un tel modèle
	issue de la décomposition enzymatique réalisée par les s'apparenterait à l'analyse, par Kisdi et Liu (2006), de la dynamique adaptative d'une
	enzymes produites par leur lignée et à une fraction de population de consommateurs soumis à un trade-off entre temps de manipulation et efficacité
	de conversion.	celle issue de la décomposition réalisée par les enzymes
	produites par la lignée 2 (et vice-versa pour les Certains des modèles multi-traits précédemment cités intègrent des contraintes de
	individus de la lignée 2). En étudiant un cas numérique stoechiométrie entre nutriments (en général carbone, azote, phosphore) qui régissent les taux
	remplissant les conditions de branchement évolutif, d'assimilation des ressources par les microbes en fonction de la composition chimique
	j'avais pu montrer qu'il existait une région de cellulaire (Folse & Allison 2012, Kaiser et al. 2015). Ces contraintes sont d'autant plus
	combinaisons de valeurs d'effet local entre mutants et importantes qu'elles peuvent être étroitement associées au type fonctionnel microbien, les
	résidents et du coefficient de diffusion pour lesquelles cellules riches en azote étant généralement celles de microorganismes à croissance rapide et à
	existait un polymorphisme stable mais je n'avais pas trouvé de conditions pour lesquelles des faible efficacité de conversion (comme les bactéries), tandis que les cellules riches en carbone
	trajectoires convergeaient du point de branchement à ce point de polymorphisme stable (Fig. sont typiquement celles d'organismes à croissance plus lente, à structure chimique plus
	15). Il devrait être possible de trouver de telles trajectoires en généralisant ce cas numérique. complexe et à plus grande efficacité de conversion (comme les champignons). Les
	interactions entre microorganismes régies par les contraintes stoechiométriques de ces derniers

composés récalcitrants à la décomposition de la matière organique

[START_REF] Bradford | Managing uncertainty in soil carbon feedbacks to climate change[END_REF]

). Ces micro-agrégats peuvent s'associer en macro-agrégats qui se désagrègent au cours du

temps dû à un stress physique ou à la dégradation lente de ses constituants liants, libérant ainsi lentement la matière organique protégée dans ces complexes minéro-organiques (Sollins et al Figure 16. Echelles de temps des différents processus impliqués dans les interactions entre climat et carbone du sol (tiré d'Abramoff et al. 2018).

  

	1996). Les modèles globaux les plus récents (Abramoff et al. 2018, Sulman et al. 2014, Introduction
	Wieder et al. 2014) montrent l'effet de l'intégration de tels processus. Parce que la One major source of uncertainty in global climate predictions is the extent to which global
	décomposition microbienne jouent un rôle déterminant dans la formation du carbone du sol et warming will increase atmospheric CO 2 concentrations through enhanced microbial
	que les expériences de réchauffement en conditions naturelles évaluent l'adaptation decomposition of soil organic carbon. Through microbial respiration, the decomposition of
	microbienne à des échelles de temps similaires (une dizaine d'années pour les champignons et soil organic matter releases ten times more CO 2 to the atmosphere than human-caused à une vingtaine d'années pour les bactéries, voir Melillo et al. 2017), la prochaine étape est de emissions (Schlesinger 1997). Furthermore, soils store ~ 2,300 Pg C, nearly four times the
	coupler stabilisation du sol et évolution dans un même modèle. amount of C in plant biomass (Jobbágy & Jackson, 2000). Therefore, even small changes in
	soil C turnover could have large consequences for atmospheric CO 2 concentrations and the
	stability of the global climate system. Yet most current global models do not represent direct
	microbial control over decomposition. Instead, all of the coupled climate models reviewed in
	the last Intergovernmental Panel on Climate Change (IPCC) report (Pachauri et al., 2014)
	assume that decomposition is a first-order decay process, proportional to the size of the soil
	carbon pool. There is therefore a critical need for models that mechanistically link
	decomposition to the size and activity of microbial communities, and integration of these
	mechanistic models in global projection models of the Earth system (Todd-Brown et al.,
	2012).
	This chapter gives a brief introduction to mathematical models of soil microbial dynamics and
	how these models can be used to predict soil respiration, especially in the context of climate
	change. We recognize the importance of abiotic controls on soil carbon accessibility (through
	soil physical structure, mineral-organic associations, soil moisture, see sections 3 and 4)
	(Bradford et al., 2016; Dungait et al., 2012; Schimel & Schaeffer, 2012; Van Veen &
	Kuikman, 1990), however our presentation focuses on the microbial and enzymatic processes
	driving litter decomposition (Fontaine & Barot, 2005; Moorhead & Sinsabaugh, 2006;

  al., 2010; German et al., 2010; Sulman et al., 2014; Wieder et al., 2013). Dead biomass is recycled in equal proportion between SOC and DOC. The uptake kinetics are poorly known and are therefore assumed to follow enzymatic properties. Assuming that DOC substrate is close to 0 and does not saturate the uptake rate, ! ! The deactivation rate is typically fixed around 0.02 d -1 , corresponding to an expected lifespan of 50 days (Allison et al., 2010; Allison, 2012; Kaiser et al., 2014, 2015;[START_REF] Wang | Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses[END_REF]. Assuming that the SOC substrate does not saturate enzyme reactions, ! ! ! is fixed to 600 mg cm -3 . The temperature sensitivity function for K m is assumed to be linear positive and the proportional factor is fixed to 5 mg cm -3 °C-1 . The pre-exponential coefficient in the Arrhenius relation for ! !"#

	!	was
	constrained by equilibrium stability at 20 °C. Activation energies for soil hydrolytic
	enzymes vary from 13 to 94 kJ mol -1 with most values in the range of 20-50 kJ mol -1
	(McClaugherty & Linkins, 1990; Trasar-Cepeda et al., 2007).	
	Specifically, Allison et al. (2010) simulated the consequences over time, with a 30-year
	• Enzyme production. In Allison et al.'s (2010) CDMZ model, the microbial rate of enzyme horizon, of 5 °C warming. Warming was abrupt (instantaneous) and represented a
	production is fixed at 0.012% of microbial biomass per day. In models where enzyme perturbation of the model's parameters (previously set at 20 °C). Transient dynamics over 30
	production is a fraction of resources taken, this fraction ranges between 0.0005 and 0.2

! is fixed to 0.3 mg cm

-3 

.

The temperature sensitivity function for ! ! ! is assumed to be linear positive and the proportional factor is fixed to 0.01 mg cm -3 °C-1 . The 20°C value and Arrhenius relation for ! !"# ! are the same as for ! !"# ! (Allison et al., 2010). In models integrating rules of stoichiometry with nitrogen and phosphorous, predicted stoichiometry is compared with the empirical ratios of 8.6 for C: N and 7 for N: P (Cleveland & Liptzin, 2007). • MGE temperature dependence. Empirical studies in soils suggest that MGE declines by at least 0.009 °C-1 (Steinweg et al., 2008). Allison et al. (2010) assumed MGE = 0.63 -0.016 T for temperature T between 0 and 25 °C and they tested as well decreasing its sensitivity to half. (Burns et al., 2013; Kaiser et al., 2014, 2015; Schimel & Weintraub, 2003). Models integrating N and P assume no cost in these nutrients for enzymes. • Enzyme parameters. Explaining empirical patterns of soil respiration responses to climate change Short-term laboratory and field experiments have shown consistently that soil respiration increases exponentially with temperature. On longer timescales, soil respiration tends to decline, but it has been very difficult to tease apart possible explanatory mechanisms, such as a decreasing SOC stock, a decreasing microbial biomass, or a reduced production of enzyme that may be caused by individual-level physiological acclimation, or population-level genetic adaptation, or community-level ecological shift (Karhu et al., 2014). Allison et al. (2010) sought to explain the nonlinear, hump-shaped pattern of soil CO 2 loss with warming by using the basic CDMZ model with constant or temperature-dependent MGE. Their goal was to evaluate the model's ability to reproduce the transitory increase in soil respiration as well as generate plausible changes in C, M and Z. They focused on ecosystems for which no dramatic changes in SOC pools had been reported (Schuur et al., 2009) while microbial biomass declined with warming (Steven D. Allison & Treseder, 2008; Bradford et al., 2008; Rinnan et al., 2007). This pattern may not be general (T. W. Crowther et al. (2016) and van Gestel et al. (2018) reported significant losses of soil C under warming), however Allison et al.'s (2010) analysis is a first attempt to understand the mechanistic link between heterotrophic respiration and soil C loss in response to climate warmong.

  In these models (such as the "conventional model" sensuAllison et al. 2010), microbial processes, including degradative enzyme production and activity, are not explicitly coupled to soil C turnover, so temperature-driven changes in microbial biomass and enzymes cannot interact with the response of decomposition to warming.Allison et al. (2010) report simulations of a CDM model for constant, temperature-dependent or "acclimating" MGE. The CDM model can predict the transient rise in respiration along with the decline in microbial biomass, but in all cases the CDM model predicts strong SOC stock decline, which, according to Allison et al. (2010) is at odds with empirical observations. It is the first CDMZ model to account for the soil C stabilization mechanisms of DOC adsorption and SOC association with minerals. In this model, only adsorbed DOC is protected, i.e. inaccessible to microbes; MOC can still be decomposed but at slower rate than POC. Their model can reproduce the response of total SOC to warming

	Wang et al. (2013) built on Allison et al.'s (2010) CDMZ model by considering two SOC pools (particulate organic carbon, POC, and mineral-associated organic carbon, MOC) and and microbial biomass? Li et al. (2014) reported a model comparison encompassing Allison et al.'s (2010) associated exoenzymes.
	"conventional" (CDM) and CDMZ models and Wang et al. (2013) CDMZ model with
	ajusted to compensate their intrinsic
	response to warming. Scenario "vary
	CUE" assumes a constant temperature-
	dependence of Carbon Use Efficiency
	(sensu Allison et al. 2010). Scenario
	"acclim CUE" assumes that CUE
	responded to warming with reduced
	temperature sensitivity. (Adapted from
	Allison et al. 2010)
	The temperature-dependence of the microbial death rate was ignored in the models that
	Li et al. (2014) compared. In a laboratory study, Hagerty et al. (2014) documented the case of
	a forest soil in which MGE is temperature-independent while microbial turnover (death rate)
	accelerates with warming. By using Allison et al.'s (2010) CDMZ model with either constant

multiple SOC and enzyme pools (and also

German et al.'s (2012) 

simplified "CM model" (Fig.

1a

), which does not explicitely represent the DOC and enzyme pools). Like

Allison et al. (2010)

, they assume initial equilibrium at 20 °C and instantaneous + 5 °C warming, and they monitor the subsequent system dynamics under different scenarios of MGE temperature dependence (no dependence, constant decline, reduced decline). Whereas the main effect of warming in the "conventional" microbial model is to reduce the equilibrium SOC pool, the direction of SOC change in the CDMZ models depends on the balance between increases in K m parameters and declines in MGE with warming, both of which tend to increase SOC; and increases in v max coefficients, which tend to reduce SOC

(Li et al., 2014)

.

Li et al. (2014) 

model comparison also shows that in all CDMZ models and scenarios, there is a critical temperature that minimizes the equilibrium SOC stock. This critical temperature, T crit , determines whether warming causes a gain or loss of soil C in a given ecosystem. Cooler ecosystems with mean temperature below T crit are expected to lose soil C in response to warming, whereas warmer ecosystems with mean temperature above T crit are predicted to store more C in response to warming. The critical temperature depends on the temperature dependence scenario and model complexity. or temperature-dependent MGE and microbial death rate, Hagerty et al. (2014) evaluated the long term consequences of increasing microbial mortality with warming. Focusing on equilibrium SOC sampled at 3 °C and incubated in temperatures between 5 and 20 °C, they found that temperature-dependent mortality results in significant decrease in microbial biomass (equilibrium M) and increase SOC (equilibrium C), these effects being similar in direction but much larger than in the temperature-dependent MGE/temperature-independent mortality scenario. predicted by Allison et al.'s (2010) CDMZ model. As climate change affects water availability and therefore accessibility of microbes to SOC and mineral-organic matter interactions, Wang et al.'s (2013) model is well suited to study the effect of multivariate climate change.

  Allison et al.'s (2010) CDMZ model, equilibrium C depends on the ratio of SOC to DOC inputs, not the litter inputs and mean annual soil temperature. Model outputs were compared with observations from the Harmonized World Soils Database. The CLM model explains 50% of the spatial variation in observed soil C stock, contra 28-30% for the best traditional, nonmicrobial models. They concluded then that models with explicit microbes should show

	greater agreement with actual measurements of soil C than models without them. To simulate
	soil C responses to global warming, control simulations were run using observationally
	derived litter inputs distributed throughout the year and mean monthly soil temperature data
	from 1985 to 2005 from a single community ESM (CESM) ensemble member from archived
	Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments. Projections of the
	CLM microbial model were run from 2006 to 2100 by using CESM projected soil

total amount

(Li et al., 2014)

. This result is consistent with experiments which demonstrate that increased plant inputs and SOC responses are not linearly related

[START_REF] Lajtha | Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems[END_REF][START_REF] Lajtha | Twenty years of litter and root manipulations: insights into multi-decadal som dynamics[END_REF]

. The actual integration of microbial models of soil respiration into broad-scale land models remains a challenge. Different model structures and parameterization lead to different patterns of soil C response to warming. Continuous change in climate over time may prevent soils from reaching equilibrium and require considering transient dynamics (which are prone to develop strong oscillations, e.g. Li et al., 2014; Wang et al., 2014). Properly describing even the short-term response of soil C dynamics to warming may raise the need to account for mechanisms such as physicochemical changes, priming, and the interaction of C and N cycles (e.g. S. Fontaine et al., 2003). Microbial model complexity will need to be optimized before integration into larger-scale models. In the first attempt to represent soil microbial dynamics in Earth system models (ESMs), Wieder and contributors built a temperature-dependent CM model into the Community Land Model (CLM) and thus produced a "CLM microbial model" (Wieder et al., 2013). This model represents aboveground and belowground processes. Two belowground layers are included, surface (0-30 cm) and subsurface (30-100 cm). Microbial biomass is the source of enzymatic activity, but degradative enzymes are not modeled explicitly (no Z pool); rather, microbes directly catalyzes the mineralization of litter and SOC according to Michaelis-Menten kinetics, hence the model CM structure applied to all three layers (above-ground and two below-ground horizons). The parameterization of the CLM microbial model uses German et al.'s (2012) data (cf. Box 2). Temperature affects microbial uptake parameters and MGE. To validate the model, global simulations were run using globally gridded data: observed (rather than simulated) temperature (obtained from ensemble member one of CESM simulations for the Representative Concentration Pathway 8.5 (RCP 8.5)) corresponding to a 4.8 °C increase in mean global temperature by 2100. The salient result is a massive soil C loss (~300 Pg C by year 2100

Table 1

 1 

provides a short list of global data sets that can be used to initialize global projections that incorporate CDMZ models. As the analysis of

Wieder et al. (2013) 

demonstrates, explicitly incorporating microbial dynamics into ESMs will increase the uncertainty of the projections. This is not a negative result: comparing multiple structurally different models to better assess the uncertainties of coupled C-climate projections is highly desirable

[START_REF] Bradford | Managing uncertainty in soil carbon feedbacks to climate change[END_REF][START_REF] Wieder | Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models[END_REF][START_REF] Wieder | Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models[END_REF]

. In addition, moving beyond firstorder models is required for a mechanistic and quantitative understanding of soil C-climate feedbacks in the context of multivariate climate change

(Abramoff et al., 2018; Monroe et al., 2018)

.

  -2 to 1 m). Projections of ecosystem rates of soil respiration involve macro-scales that are relevant to global climate projections (10 3 to 10 14 m) (Hinckley et al. 2014). There are thus two major scaling issues when considering the derivation and application of CDMZ models (Bradford & Fierer, 2012; Burd et al., 2016; Davidson et al., 2014; Hararuk et al., 2015; Ise & Moorcroft, 2006; Sulman et al., 2014,Wieder et al., 2013[START_REF] Wieder | Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models[END_REF]. First, we need CDMZ models that are consistent with micro scale processes and can be integrated with mesoscale empirical data(Kaiser et al., 2014(Kaiser et al., , 2015)).

Second, we need to integrate CDMZ models in ESMs and validate their projections at macroscales (Todd-Brown et al., 2012;

Wieder et al., 2013[START_REF] Wieder | Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models[END_REF]

. What is at stake here ultimately is a better understanding of how soil microbial processes and dynamics influence the global, long-term (decadal to centennial) dynamics of Earth coupled C-climate, and how global effects feed back and shape soil microbial communities and function across temporal and spatial scales.

  to describe measurable soil C dynamics on the mesoscale, scaling up from micro to meso scales requires to (i) integrate microbial functional and enzyme chemical diversity across microsite variations in substrate availability and environmental conditions (temperature, water content, CO 2 , pH…) while (ii) accounting for spatial environmental correlations induced by physical diffusion among microsites. Computational trait-based modeling as done by Allison (2012) and Kaiser et al. (2014, 2015) (see Section 1, Box 1)

  properties of size and age-classes at larger ecosystem scale, which can be related to forest structure, productivity, and C storage[START_REF] Fischer | Simulating carbon stocks and fluxes of an African tropical montane forest with an individual-based forest model[END_REF].• Likewise, scaling terrestrial photosynthesis from leaf to Earth scale is now achieved by scaling leaf traits within plant canopies and across plant functional types while still using micro-scale enzyme kinetics to model aboveground C balance and project its response to climate change (G. B.[START_REF] Bonan | Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data[END_REF][START_REF] Bonan | Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4[END_REF][START_REF] Bonan | Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum[END_REF].Similar developments are needed for modeling soil microbial dynamics across scales (see Bond-Lamberty et al. (2016) for a discussion of how modeling approaches to decomposition functional types differ from, and complement models of plant functional types). A critical issue when moving up from meso-to global scales is to account for the multiple exogenous and endogenous processes that generate variation at spatial and temporal scales above that of mechanistic CDMZ models, including:

• The "Ecosystem Demography"

[START_REF] Moorcroft | A METHOD FOR SCALING VEGETATION DYNAMICS: THE ECOSYSTEM DEMOGRAPHY MODEL (ED)[END_REF] 

and "Perfect-Plasticity Approximation"

[START_REF] Strigul | SCALING FROM TREES TO FORESTS: TRACTABLE MACROSCOPIC EQUATIONS FOR FOREST DYNAMICS[END_REF] 

models apply individual-based forest gap dynamics to derive

•

  Microbial respiration is the largest flux of C out of the soil. Inclusion of explicit microbial processes of decomposition in ESMs will likely increase the inter-model range of soil C projections in model intercomparison projects, which may in fact provide a more accurate assessment of uncertainty in future carbon cycle projections. four models using data from a pulsed rewetting experiment. Soil Biology & Biochemistry, 41(9), 1923-1934. 69. Levin, S. A. (1992). The Problem of Pattern and Scale in Ecology: The Robert H. Retrieved from https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.12697 135. Zhang, X., Niu, G.-Y., Elshall, A. S., Ye, M., Barron-Gafford, G. A., & Pavao-

	decomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biology &
	Biochemistry, 42(8), 1293-1302. Number of pools Key variables	Scale & resolution	Reference
	Soil stocks and	Harmonized World	Soil C, physical	Global, 30 arc sec	FAO et al. (2012)
	125. Wang, G., & Post, W. M. (2012). A theoretical reassessment of microbial maintenance properties Soil Database properties, top soil (0.008333°)
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Table 1 . Large-scale data sets available to parameterize and initialize global projections of CDMZ models

 1 . (Adapted from Table 3 in Wieder et al. 2015)

	Model	Model C Pools	Functional	Soil	SOC	Vertical	Horizontal
	Reference	and Fluxes	Diversity	Environmental	Protection	Resolution	Resolution
				Dependency	(yes/no,		
					degree, details)		
	German et al.	CM model	No	Temperature	No	No	5 locations
	(2012)	C inflow:		Arrhenius function			Differ in
		constant litter		for Michaelis-			decomposition
		input, recycling		Menten kinetic			kinetics
		of necromass; C		parameters. Linear			parameters
		outflow:		function for CUE.			and initial
		decomposition					temperature.
		(Michaelis);					
		M inflow: uptake					
		of decomposition					
		products; M					
		outflow:					
		respiration,					
		constant death					
		rate.					
	Wieder et al.	CMP model	No	Temperature	Low	2 layers	Global
	(2013)	C inflow:		Arrhenius function	P is accessible	0-30cm and	Differ in litter
		constant litter		for Michaelis-	to microbial	30-100cm.	inputs, initial
		input; C outflow:		Menten kinetic	decomposition	Differ in	temperature,
		microbial		parameters. Linear	and not slower	litter inputs	Michaelis-
		decomposition		function for CUE.	than C.	(65% in top	Menten
		(Michaelis) and				layer).	kinetic
		constant					parameters.
		stabilization rate					
		(into P); M					
		inflow: uptake of					
		decomposition					
		products, M					
		outflow:					
		respiration,					
		constant death					
		rate; P inflow:					
		microbial					
		residues and					
		direct					
		stabilization of C					
		from litter input;					
		P outflow:					
		microbial					
		decomposition.					
	Wieder et al.	CMP model	Two functional	Temperature	Intermediate	No	Global
	(2014, 2015b)	Same as Wieder	types for each	Arrhenius function	P is accessible		Same as
	MIMICS	et al. (2013).	C pool.	for Michaelis-	to microbial		Wieder et al.
			All affect	Menten kinetic	decomposition,		(2013).
			Michaelis-	parameters.	but slower than		
			Menten (reverse		C.		
			in Wieder et al.,				
			2018) kinetic				
			parameters.				
			C functional				
			types also affect				
			fraction of C				
			directly				
			stabilised and				
			microbial CUE.				
			M functional				
			types also affect				
			constant death				
			rate and				
			partitioning of				
			necromass				
			recycled.				
	Sulman et al.	CMP model	Three	Temperature	Full	No	Ecosystem
	(2014)	C inflow:	functional	Arrhenius function	P is		Differ in
	CORPSE	constant litter	types for C and	for reverse	inaccessible to		temperature,
		input and	P.	Michaelis-Menten	microbial		moisture, litter
		turnover of P; C	Differ in litter	Vmax parameter.	decomposition.		inputs, root
		outflow:	inputs,		Its formation is		exudate
		decomposition	decomposition	Moisture	not microbe-		inputs, and
		(reverse	and protection	Non-linear	mediated, but		protection

Table 2 . Structural and operational characteristics of 6 recent microbial models

 2 

	Eco-evolutionary dynamics of decomposition: emergence and
	stability of microbial cooperation for di↵usive goods
	Elsa Abs ⇤ , Régis Ferrière † , Hélène Leman ‡

. Models features are presented with "yes/no" and details. C denotes accessible complex C compounds (litter or soil C); D, accessible C available for microbial uptake; M, microbial C biomass; Z, extracellular enzymatic C; P, protected soil C, which includes aggregate C and mineralassociated D or C, and may or may not be accessible to microbial decomposition. SOC protection qualifies as "low" when P is accessible to microbial decomposition at a rate that is not much lower than C, as "intermediate" when P is accessible to microbial decomposition but at a significantly lower rate than C, as "full" when P is inaccessible to microbes, and as "multiple" when there are at least one accessible and one inaccessible P pools. We define a process as "constant" when it occurs at a constant rate.

them, but also neighboring cells

[START_REF] Velicer | Social strife in the microbial world[END_REF][START_REF] Stuart A West | Social evolution theory for microorganisms[END_REF]

. Public goods are ubiquitous in microbial ecosystems. The 'spatial dilemma' over public good production arises because public goods are costly compounds that are secreted outside the cell; reaction products may di↵use away from the enzyme-secreting microbe and therefore benefit not only the individuals producing them, but also neighboring cells

[START_REF] Velicer | Social strife in the microbial world[END_REF][START_REF] Stuart A West | Social evolution theory for microorganisms[END_REF]

. Evolutionary theory predicts that producers of public goods are vulnerable to cheating by individuals that receive the benefits without paying the cost of production. Without some mechanism to support cooperation

[START_REF] Nowak | Five rules for the evolution of cooperation[END_REF]

, public goods production is expected to disappear under exploitation from cheaters. Nonetheless, exoenzymes are ubiquitously produced in all environments, e.g. siderophores that scavenge iron

[Buckling et 

al., 2007, Cordero et al., 2012, Gri n et al., 2004, Julou et al., 2013], polymers that enable biofilm formation [Rainey and Rainey, 2003], and allelopathic compounds that reduce competition [Le Gac and Doebeli, 2010]. Conditions must exist that promote the evolution of exoenzyme production.

Evolutionary game theory provides a powerful framework for investigating conditions that favor exoenzyme production

[START_REF] Arthur | The macroeconomics of bacterial growth[END_REF], Schimel and Weintraub, 2003, Sinsabaugh and Moorhead, 1994]

. Evolutionary game-theoretic models have been developed to address competition between exoenzyme-producing and nonproducing (cheating) strains

[Allison, 2005, Folse and Allison, 2012, 

Table 3 .

 3 E↵ect of di↵usion rate di↵ on the evolutionary convergence of the enzyme production trait, '. The selection gradient is close to zero across the reported ranges of ' values, which were obtained from the results displayed in Fig.4.

	Di↵usion rate, di↵ Estimated range for evolutionarily convergent ' ⇤
	10	0
	10	0.05
	10	0.15
	10	0.15-0.2
	10	0.2-0.3
	10	0.2-0.35
	10	0.2-0.35
	10	0.2-0.3

  To elucidate conditions under which decomposition, as an outcome of microbial cooperation, is evolutionarily stable, we constructed a spatial model of soil microbe-enzyme decomposition which accounts for the finite size of microbial populations at the microscopic scale of microbial interactions.Deterministic models of microbe-enzime driven decomposition were first introduced by Schimel

and Weintraub

[2003] 

for 'well-mixed' systems. Our work shows that Schimel and Weintraub [2003]'s model and subsequent variants (reviewed in Abs and Ferriere [2018]) are consistent with microscopic processes acting at the level of individual entities (cells, molecules). Starting from a five-compartment model including SOC and DOC molecules, microbial cells, enzyme molecules, and enzyme-SOC

  , no Earth system model that seeks to represent the role of living organisms in climate feedbacks has yet included evolutionary mechanisms of adaptation. Our model is a critical first step. We expect projections of future climate and carbon cycle feedbacks, and their uncertainty, to be significantly impacted, from local to global scales. SOC into DOC, which is the only source of carbon for microbes. The model accounts for microbial production and death, exoenzyme decay, recycling of dead microbes and degraded exoenzymes, SOC input from plant litter, and leaching of SOC and DOC.

	Model equations. State variables C , D , M , Z obey equations (1a-d):

  . Microbial assimilation may also vary with temperature if the microbial membrane proteins involved in nutrient uptake are sensitive to warming. Following ref. 11, we assume that exoenzyme

	kinetics parameters (maximum decomposition rate	v D max	and half-saturation constant	K D m	)

Table 3 )

 3 ). The enzyme allocation fraction default value is 10% at 20 °C35 . For the To parametrize the temperature-dependent mortality ( d M,ref ,T ref ) and MGE ( γ M,ref , m, T ref ) models,we used values from ref.13 and tested two values of E dM ( E dM = 0 is the enzyme only temperature-dependent model). For greater realism, we used a higher value of the exoenzyme deactivation rate (twice the value used in ref.11) and constrained the range of all parameters in order to enhance stability and produce relative stock sizes that are consistent with empirical data, so that at equilibrium M is about 1% of C , Z is about 1% of M and D is limiting (hence close to 0 at equilibrium49,50 ),We analysed the model sensitivity by varying parameters over two orders of magnitude (as in ref.11) -except γ M and γ Z for which we used the whole range over which the non-trivial ecosystem equilibrium is stable (Extended Data Table2). To assess the significance of our findings for real ecosystems, we focused on five biomes for which empirical data 14 could be used to constrain the model. The five biomes contrast strongly in .

	dependence of enzyme kinetics parameters on temperature,	v D max	(T )	and	K D m	(T )	, we
	selected the Arrhenius equations that best fit data from California 14 (mean annual T = 17
	°C) and match values at 20 °C (0.42 and 600, respectively) 11 . For the uptake kinetic
	parameters, we obtained	v U max (T )	by selecting	v 0 U	that best fits the Arrhenius equation in
	ref. 11 with	E v U	= 35 and we obtained	K m U (T )	by selecting	K 0 U	and	E	K U	that best fit the
	linear relation used in ref. 11.						
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Table 1 . Default parameter values.

 1 

	Parameter Unit	Description	Default value
	T 0 , T ref	°C	initial temperature	20
	φ		enzyme allocation fraction	0.1
	γ M , γ M,ref		microbial growth efficiency	0.3, 0.31
	γ Z		enzyme production efficiency	0.4
	d M , d M,ref	h -1	microbial mortality rate	2 10 -4

Table 2 .

 2 Sensitivity analysis of the ecological model. The table reports the absolute value of sensitivities.

			Arrhenius coefficient of	1.15 10 6
			decomposition rate	
	K 0 U	mg D cm -3	Arrhenius coefficient of uptake	1.6 10 3
			half-saturation constant	
	K 0 D	mg C cm -3	Arrhenius coefficient of	3.3 10 4
			decomposition half-saturation	
			constant	
	E v U	kJ mol -1	activation energy of uptake rate	35
	E v D	kJ mol -1	activation energy of decomposition	36.1
			rate	
	E K U	kJ mol -1	activation energy of uptake	21
			half-saturation constant	
	E D K	kJ mol -1	activation energy of decomposition	9.7
			half-saturation constant	
	E dM	kJ mol -1	activation energy of microbial	0, 25, 55
			turnover	
	I	mg C cm -3 h -1	SOC input (litter)	5 10 -4
	e C	h -1	SOC leaching rate	10 -6
	e D	h -1	DOC leaching rate	10 -2

Extended Data

Table 3 . Arrhenius parameters for the five biomes studied in German et al . (2012) 14 .

 3 

	Parameter			Location		
		Alaska (AK) Maine (ME)	West Virginia	California	Costa Rica
				(WV)	(CA)	(CR)
	T 0	0	5	9	17	26
	v 0 D	7.7 10 7	7.73 10 9	1.35 10 8	1.15 10 6	1.23 10 8
	E v D	43.7	50.6	47.2	36.1	48.9
	K 0 D	2.79 10 7	2.1 10 7	3.1 10 6	3.3 10 4	4.4 10 3
	E K D	26.2	23.8	21.4	9.7	5.2

Extended Data Figure 2 | The three ecological equilibria. Effect of enzyme allocation fraction, φ , on equilibrium existence and stability. Thick line , trivial stable equilibrium. Dashed curve , unstable equilibrium. Plain curve , non trivial stable equilibrium. Dotted curve , unstable equilibrium inside stable limit cycle. a , Microbial biomass ( M ). b , Exoenzyme concentration ( Z ). c , SOC concentration ( C ). d , DOC concentration ( D ). All state variables are measured in unit mass of carbon. Parameters are set to their default values (Extended Data Table 1

Extended Data Figure 4 | Parameter influence on the dependence of equilibrium C on temperature

  ). rate, e C . f , DOC leaching rate, e D . g , SOC input (litter), I . h , Arrhenius coefficient of uptake rate, Enzyme deactivation rate, d Z . e , SOC leaching rate, e C . f , DOC leaching rate, e D . g , SOC input (litter), I . h , Arrhenius coefficient of uptake rate, v 0 U . i , Activation energy of uptake rate, E v U . j , Arrhenius coefficient of decomposition rate, v 0 D . k , Activation energy of decomposition rate, E v D . Two parameter values (thick and dashed curves) are tested around the default value (plain curve). For each parameter value, enzyme allocation fraction, φ , is equal to the adapted value, φ* , at T = 20°C. Other parameters are set to their default values (Extended Data

	v 0 U . i , Activation energy of uptake rate, E v	U . j , Arrhenius coefficient of decomposition rate, v 0	D .
	k , Activation energy of decomposition rate, E v	D . l , Arrhenius coefficient of uptake half-saturation
	constant, K 0 U . m , Activation energy of uptake half-saturation constant, E K U . n , Arrhenius l , Arrhenius coefficient of uptake half-saturation constant, K 0 U . m , Activation energy of uptake
	coefficient of decomposition half-saturation constant, K 0 D . o , Activation energy of decomposition half-saturation constant, E K U . n , Arrhenius coefficient of decomposition half-saturation constant,
	half-saturation constant, E K D . p , Initial temperature, T 0 . Two parameter values (thick and dashed K 0 D . o , Activation energy of decomposition half-saturation constant, E K D . p , Competition
	curves) are tested around the default value (plain curve). Other parameters are set to their default asymmetry, c 0 .
	values (Extended Data Table 1).		

, T . Baseline 'kinetics-only' scenario of temperature dependence. a , Microbial growth efficiency, γ M . b , Enzyme production efficiency, γ Z . c , Microbial mortality rate, d M . d ,

Table 1 )

 1 .

Table 1

 1 

	),

darker green indicates higher soil carbon retention (higher I , lower e C , lower e D ).

  SOC decomposition is governed by the size of the microbial pool (mostly sensitive to γ M ) and enzyme pool (shaped by φ and γ Z ), and by enzyme performance (determined by the other enzyme parameters) (Extended Data Table2). (2014)4 found a significant effect of d M on C . This difference arises from the process driving the enzyme production. In Allison et al. (2010)3 and Hagerty et al.

The lack of sensitivity of C to d M is intriguing, because d M has a relatively strong influence on the microbial pool (Extended Data Table 2). Both Allison et al. (2010) 3 and Hagerty et al.
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Abstract

Microorganisms drive critical ecosystem processes by converting complex substrates into smaller compounds, that they assimilate for growth and maintenance. By relying on extracellular enzymes (exoenzymes) to perform this conversion, microbes invest in di↵usive public goods-a form of cooperation that is vulnerable to 'cheaters', microbial strains that invest less and yet reap o↵ the public benefits. To resolve how and to what degree such cooperation can evolve, we construct a spatially explicit model describing the interaction of resident strains with mutant cells, which, initially at least, occur in small, localized populations. The main di culty here is to account for the contrasting structural and temporal scales that characterize the entities (cells, enzymes, substrates, products) and processes that a↵ect them. The model treats the individual investment in exoenzyme production as a quantitative trait and predict its evolutionary trajectory driven by recurrent mutation and selection events. The model predicts that provided the soil di↵usion rate of decomposition products is below a critical threshold. The exoenzyme production trait converges to a range of evolutionarily stable and selectively neutral values. Importantly, by responding strongly to variation in soil abiotic properties like di↵usion, the adaptive evolution of exoenzyme production has the potential to reshape the macroscopic ecosystem responses, such as decomposition rate and soil carbon stock, to global environmental change.

Keywords: degradative exoenzyme, evolutionary stability, spatial structure, scaling limits, soil carbon stock, eco-evolutionary feedback, adaptive dynamics.

We assume that cells, enzymes, substrates (SOC) and products (DOC) are well-mixed within each microsite. Products can di↵use and o↵spring cells can disperse between neighboring microsites.

Additional processes operating at the level of individual entities are: cell respiration, parametrized by the energetic cost of cell tissue and the energetic cost of enzyme molecules; cell death and enzyme degradation, at constant rates; cell division, determined by accrued and stored resources reaching a threshold within the cell; formation and reaction or dissociation of SOC-enzyme complexes. Additional processes operating at the level of microsites are: external inputs of SOC and DOC, losses of SOC and DOC (leaching), di↵usion of DOC, random disturbances causing cell colony death and microsite 'opening' to cell dispersal. We assume nitrogen and phosphorus to be unlimiting and measure the abundance of all entities in units of carbon mass.

First we focus on the 'local' dynamics of decomposition within a microsite, where decomposition involves fluxes in and out of five local compartments: microbial cells (biomass M ), enzymes (Z), SOC (C), SOC-enzyme complexes (X), and DOC (D) (Fig. 1a). To scale up the dynamics of decomposition from microscopic, stochastic processes, we take the following steps:

• We define the stochastic processes acting at the level of C, D, M , Z, X entities (molecules, cells) (Fig. 1a).

• By applying appropriate rescaling on the rates of complex (X) formation, reaction or dissociation, we reduce the stochastic model to four state variables (C, D, M , Z) (Fig. 1b).

• If all entities are in large number, the reduced stochastic model can be rescaled as a dynamical system of ordinary di↵erential equations, similar to Schimel and Weintraub [2003] seminal "CDMZ model" of litter decomposition (see also Abs and Ferriere [2018], [START_REF] Wieder | Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models[END_REF]).

We obtain the scaling of the deterministic model parameters relative to the individual-level process parameters.

• When the finite, potentially small, number of bacterial cells within a microsite is taken into account, the reduced stochastic model can be rescaled as a a hybrid, stochastic-deterministic model (Piecewise Deterministic Markovian Process, or PDMP).

We then model decomposition at larger spatial scale by coupling PDMP models across the spatial grid of microsites. This forms the spatially explicit model that we use to investigate the evolutionary stability of exoenzyme production. occupied, there is a probability p open that a 'micro-catastrophe' strikes and opens one of them, which then becomes occupied by the dispersing cell, while c and d released by the dead cells are recycled locally. If no microsite opens (with probability 1 p open ), the dispersal event is unsuccessful and the daughter cell remains in its maternal microsite. Finally, between two di↵usion time steps, the random death of a cell may also happen. In this case, one cell is removed and its carbon content is recycled into c and d within the dead cell's microsite.

3 Model Analysis

Ecological dynamics

In large, well-mixed systems, ecological dynamics are driven by the deterministic model (2.6). The analytical study of (2.6) indicates that there are one or three equilibria depending on the value of '. This equilibrium is always locally stable. When the other two equilibria exist, one is always unstable, and M , Z, C, D at both equilibria are all positive. Existence of the positive equilibria depends on ' belonging to a certain interval (' min  '  ' max ). When the non-trivial equilibria exist, one is unstable and the other is locally stable for most values of ' and unstable (bifurcating into a limit cycle) for values of ' close to ' min . For the default parameters values (Table D.1 in Appendix D), both exist when 0.01212 < ' < 0.9984 and the microbial equilibrium is stable for 0.01212 < ' < 0.9969.

How well does the deterministic CDMZ model capture the behavior of its stochastic counterpart?

A key di↵erence comes from the fact that a cell can grow only if there is enough D available for both the structural and the energetic costs of growth, (↵ + ↵ 0 )/N , and likewise for the production of enzyme molecules. If there is not enough D, the event is dropped, which means that the cell does not grow and no D is consumed, therefore the numbers of M , Z and D are unchanged. This does not happen in the deterministic model, which is a large population approximation of the stochastic model. In particular, since one cell is much more costly in D than one enzyme molecule (see Table D.1 in Appendix D), more events of cell division than enzyme production may be dropped, especially when N is small. As a result, a significant di↵erence may arise between the expected investment (parameter ') and realized investment of a cell into enzyme production versus biomass production.

Figure S1 shows that at low system size K, keeping the discrepancy small between the deterministic and stochastic models across the range of feasible ', requires outstandingly large N , so that the structural and energetic costs of growth are kept very low.

A second key di↵erence is fluctuations in the stochastic model, which may drive the population to extinction. In contrast, for viable values of ', strong oscillations may occur in the deterministic model without compromising the cell population persistence (Fig. S2). In the stochastic, spatially extended system, the habitat spatial structure induces a metapopulation rescue e↵ect, which strongly increases the probability of persistence over any given time horizon (Fig. S3).

Evolutionary suicide in well-mixed systems

In a well-mixed population, cooperation is unstable: the process of mutation-selection reduces the exoenzyme production trait ', down to the point where the microbial population becomes unviable. This is illustrated in Fig. 2, where the system size is K = 20, and the ancestral cell trait value is of ' = 0.5. Without mutation, the population of bacteria stabilizes around 10 cells. With a positive probability of trait mutation (p mut = 0.1), the mean value of the trait decreases toward the minimum viable value, leading to extinction in an instance of "evolutionary suicide" [START_REF] Ferriere | Spatial structure and viability of small populations[END_REF]Legendre, 2013].

Competing interests. We declare we have no competing interests. 

Appendix B. Stochastic CDMZ model: simulation algorithm

Here we describe the algorithm used to simulate the stochastic CDMZ model. The algorithm is based on the ones presented for example in Champagnat et al. [2006], [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF]. It is also known as Gillepsie algorithm [START_REF] Kierzek | Stocks: Stochastic kinetic simulations of biochemical systems with gillespie algorithm[END_REF].

The simulation starts with a given amount of M , Z, C and D at time t = 0. Two events can never occur at the same time. Assume that the process has been computed until the i-th event at time t i and we explain how to compute the i + 1-th event. We compute the total event rate which is equal to

where max ' (resp. min ' ) is the maximum (resp. minimum) trait value ' that can be found among M -population at time t i . We then simulate t , an exponential random variable with parameter r(t i ), to find the time t i+1 := t i + t , when the possible next event occurs. The next step is to determine which event occurs. To this aim, we simulate ✓, a uniform random variable on [0, r(t i )]. If ✓ 2 [0, r M (t i )], the event a↵ects 1 M . That is to say, one of the three events covered by r M (growth of 1 M , death of 1 M or production of 1 Z by a M ) may occur. Similar con-

or [r M (t i ) + r Z (t i ) + r C (t i ), r(t i )]: respectively, the event a↵ects a Z, a C or a D. We focus our explanation on the first case which is the most complex.

Assuming that ✓ 2 [0, r M (t i )], the event a↵ects 1 M . Precisely,

, a M may grow and eventually give birth to another bacteria. The aim is now to verify if the event really occurs and to define the trait value of the new o↵spring. The value N (1 min ' )¯ M VmU has been chosen in order to overstate all individual growth rates and to consider all M equal until this step. Hence, the M that may grow and give birth is chosen uniformly at random among all M , irrespective of their trait values. Assume that the chosen M has a trait value '. Its exact individual growth rate is thus

We simulate ✓ 0 , a uniform random variable in [0, 1]. The event of growth really occurs if

Appendix F. Simulation algorithm for the hybrid stochastic-deterministic model Like in the previous algorithm presented in Appendix B, the algorithm starts with a given amount of M , z, c and d at time t = 0. Two stochastic events (growth or death of a bacteria) can never occur at the same time. Assume that the process has been computed until the i-th event at time t i and we explain how to compute the i + 1-th event. We compute the total event rate of bacteria which is equal to

where max ' (resp. min ' ) is the maximum (resp. minimum) trait value ' that can be found among M -population at time t i . We then simulate t , an exponential random variable with parameter r(t i ), to find the time t i+1 := t i + t , when the next event occurs.

The next step di↵ers significantly from the algorithm presented in Appendix B. The aim is to obtain the quantities of enzymes, SOC and DOC (resp. z(t i+1 ), c(t i+1 ), and d(t i+1 )) in biomass at time t i+1 . As these quantities satisfy the dynamical system (2.7) with M = M (t i ) between t i and t i+1 , we use an Euler scheme to simulate the dynamics of z, c and d between times t i and t i+1 and obtain the expected quantities.

It remains to determine if, at time t i+1 , an event really occurs to a bacteria and which one. To this aim, we proceed as the previous algorithm. We simulate a uniform random variable ✓ in [0, r M (t i )].

we proceed as previously by choosing a bacteria uniformly at random among all bacteria, throwing a uniform random variable ✓ 0 in [0, 1] and the growth of the chosen bacteria really occurs if

In this case, an amount of ! D ↵/N (in biomass) is added to the stock of the bacteria, and an amount of ! D (↵ + ↵ 0 )/N is removed from d. If the stock of the bacteria reaches the sizes ! D ↵, it gives birth with exact same rules as previously.

• Otherwise, a bacteria dies. It is chosen uniformly at random and removed from the population.

At the same time, an amount of (1 ")p! D ↵ is added to variable d and an amount of (1

Appendix G. Simulation of resident-mutant interaction in the spatial model Microsites are initialized according to the resident stationary state for all variables M , Z, C and D.

Mutants are initially located at the center of the grid (changing the initial location does not modify the final fraction of mutants in the grid). To reduce simulation time, we assume that mutants are
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Abstract Microbial decomposition of soil organic matter is a key component of the global carbon cycle 1,2 . As Earth's climate changes, the response of microbes and microbial enzymes to rising temperatures will largely determine the soil carbon feedback to atmospheric CO 2 3-5 . However, while increasing attention focuses on physiological and ecological mechanisms of microbial responses 6-9 , the role of evolutionary adaptation to warming has been little studied. To address this gap, we develop here an eco-evolutionary model 10 of a soil microbe-enzyme system under warming 11 , under three possible scenarios for the influence of temperature on microbial activity 11-15 16,17 , is a major factor of the eco-evolutionary response of microbial decomposition to warming.

Accounting for evolutionary mechanisms will likely be critical for improving projections of Earth system responses to climate change.

Microorganisms are key drivers of global biogeochemical cycles 1 . In terrestrial ecosystems, soil microbes decompose organic matter, returning carbon to the atmosphere as carbon dioxide (CO 2 ) 2 . In vitro and in situ experiments suggest that changes in microbial decomposition with warming are an important feedback to climate 3-5 . Soil microbial populations may respond to increasing temperature through physiological mechanisms such as individual metabolic adjustment 6,7 and ecological mechanisms such as shifts in population abundance or community composition 8,9 . Given the short generation time, large population sizes and standing genetic variation of many microbial organisms, evolutionary adaptive responses of microbial populations to warming are also likely 18,19 . However, how microbial evolutionary adaptation may contribute to carbon-climate feedbacks is unknown 20 .

Key to microbial decomposition of soil organic matter is the production by microbes of extracellular enzymes (exoenzymes), that diffuse locally in the soil and bind to soil organic matter compounds 21 . Because the fitness cost of exoenzyme production 22 (reduced allocation to growth, Fig. 1a) is paid by individual microbes whereas fitness benefits (larger resource pool) are enjoyed by microbial collectives 23 , we expect genetic variation in exoenzyme production 24 to be under strong selection 23,25 . Our objective is to evaluate how exoenzyme production responds to selection under environmental warming, and how the evolutionary response of exoenzyme production impacts the response of soil organic carbon stock (SOC). To this end, we develop and analyze a novel eco-evolutionary model, based on ref.

13 11 (Fig. 1a), but modified to take microbial evolutionary adaptation into account.

In this novel eco-evolutionary model, the focal microbial adaptive trait is the fraction of assimilated carbon allocated to exoenzyme production 26,27 , or 'exoenzyme allocation fraction', hereafter denoted by φ (the balance of assimilated carbon, 1φ , is allocated directly to microbial growth). Competition between microbial strains differing in enzyme allocation fraction φ drives adaptive evolution. The model predicts the adapted value, φ *, of the exoenzyme allocation fraction at any given temperature; the adaptive response of the In all three scenarios of temperature dependence, the SOC non-adaptive ecological equilibrium generally decreases as temperature or exoenzyme allocation fraction increases (Fig. 1b, Extended Data Fig. 4, Supplementary Discussion). Focusing on the baseline scenario of temperature dependence, we find that the adapted enzyme allocation fraction, φ *, always increases with increasing temperature (Fig. 1b, Extended Data Fig. 5a).

Combining both results, we conclude that the ECOEVO response mediated by microbial evolution amplifies the ecology-driven loss of soil carbon due to warming (ECO response) (Fig. 1c).

The effect of evolution (EVO effect) is strong when the ECOEVO response markedly departs from the ECO response. This is predicted in cold ecosystems harboring communities of slow-growing microbes, under soil conditions that give only a small competitive edge to greater enzyme producers (Fig. 2, Extended Data Fig. 6). Strong EVO effects are robust to the other model parameters -enzyme parameters (efficiency, production) and environmental parameters (litter input, leaching) (Extended Data Figs. 6, 7, Supplementary Note 4).

We address the robustness of strong evolutionary effects (Fig. 3a) to different scenarios of temperature dependence by focusing on values of nutrient uptake parameters, litter input, and competition asymmetry that are conducive to such large EVO effects (for example, point B2 in Fig. 2b). In the temperature-dependent mortality scenario, how the direction and magnitude of the EVO effect change from the baseline scenario is entirely determined by the sensitivity of microbial mortality to warming. When mortality is moderately sensitive to temperature, the ECO and ECOEVO responses become more similar, resulting in a smaller EVO effect (Fig. 3a,b). When mortality is strongly sensitive to temperature, the ECOEVO response becomes weaker than the ECO response, which implies that evolution buffers the loss of soil carbon (negative EVO effect, Fig. 3c). Such EVO effects are predicted to be stronger in warmer ecosystems (higher T 0 , Fig. 3c; see also Supplementary Discussion).

Methods

We use the microbe-enzyme model of litter decomposition first introduced in ref. 11 and extend it to describe the ecological dynamics of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass, and extracellular enzyme abundance, given litter input, leaching rates, and soil temperature (Fig. 1a and Extended Data Fig. 1). The effect of temperature is mediated by enzymes kinetics, with exoenzymes driving the decomposition rate, and intra-cellular enzymes involved in resource uptake and microbial biomass synthesis. As temperature changes, the model predicts how the ecological equilibrium changes. The change in equilibrium SOC is what we call the ecological (ECO) response of the ecosystem.

To investigate the effect of evolutionary adaptation on decomposition, we include microbial evolution in the ecological model. Our focus is on soil bacteria (as opposed to fungi), which typically have large population size and short generation time. We assume that microbes may vary individually in their investment in exoenzymes, measured by the fraction (denoted by φ throughout the paper) of resources allocated to enzyme production.

Assuming that some of this variation has a genetic basis, we derive the selection gradient and compute the evolutionarily stable value of the enzyme allocation fraction, φ *, at any given temperature. We can then evaluate how φ * changes as temperature increases, and how the ecosystem equilibrium changes from both the direct effect of temperature rise on enzyme kinetics, and the indirect effect mediated by microbial evolutionary adaptation to warming (Fig. 1b,c).

Ecological model

Based on ref. 11 (Fig. 1a, Extended Data Fig. 1), the ecological model has four state variables measured in unit mass of carbon: soil (non decomposed) organic carbon (SOC), C ; soil decomposed soluble organic carbon (DOC), D ; microbial biomass, M ; and exoenzyme concentration, Z . Exoenzyme production drives the decomposition process of ( 3)

as in ref. 13. In the temperature-dependent microbial growth efficiency (MGE) scenario, the MGE decreases with temperature 11,13,31 , possibly due to higher maintenance costs at higher temperature 32 . This is modeled by making the microbial growth efficiency γ M vary linearly with temperature 11,12,14,15 :

How scenarios of temperature-dependence and parameter values influence the response of equilibrium C to temperature is shown in Extended Data Fig. 4 and commented on in Supplementary Note 2.

Evolutionary analysis

The enzyme allocation fraction φ is a 'public good' trait: as an individual microbe produces exoenzymes, it experiences an energetic cost and obtains a benefit -access to decomposed organic carbon -that depends on its own and other microbes's production in the spatial neighborhood 44,45 . As a public good trait, φ is under strong direct negative selection:

'cheaters' that produce less or no exoenzymes, and thus avoid the cost while reaping the benefit of enzyme production by cooperative neighbors, should be at a selective advantage.

In a highly diffusive environment in which exoenzymes are well mixed, φ would evolve to zero, leading to evolutionary suicide 46 . However, in a more realistic spatially distributed environment with limited exoenzyme diffusion, microbes with a given trait are more likely to interact with phenotypically similar microbes, which puts more cooperative microbes at
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Extended

SUPPLEMENTARY INFORMATION

The globally stable equilibrium exists for φ < φ min or φ > φ max and is given by M = 0, Z = 0, C = I / e C , D = 0. Thus, at this equilibrium, the microbial population is extinct and no decomposition occurs.

For φ min < φ < φ max , the microbial population can either go extinct (then the system stabilizes at the same equilibrium as before) or persists at or around a non-trivial equilibrium, which can be solved for analytically:

where

Supplementary Note 2 -Effect of temperature on SOC equilibrium, C

For a given enzyme allocation fraction φ , C always decreases as temperature increases in the baseline scenario (Fig. 1b, Extended Data Fig. 4). In this scenario, the sensitivity of C to temperature is mediated chiefly by the temperature-dependence of enzyme kinetics parameters and (Extended Data Table 2). As T increases, both In the temperature-dependent microbial turnover scenario, the effect of temperature on decomposition and SOC stock is virtually unchanged compared to the baseline scenario.

This is because the sensitivity of decomposition rate and C to microbial mortality d M is very small (Extended Data Table 2).

The loss of soil C with warming also holds in the temperature-dependent MGE scenario.

In this case, increasing T has antagonistic effects on decomposition mediated by v D max (enzyme activity increases with temperature) vs. γ M (microbial growth decreases with temperature). However, the effect of the exponential dependence of on T is v D max stronger than the effect of the linear dependence of γ M on T ; the former thus dominates the effect of T on C , but the loss of soil C is attenuated compared to the baseline and the temperature-dependent microbial turnover scenario.

In all three scenarios, C is more sensitive to T across lower values of T (Fig. 3, Extended Data Fig. 4). As a consequence, the loss of soil C with warming is more pronounced in colder ecosystems.

Supplementary Note 3 -Evolutionary model

We use the framework of adaptive dynamics 7,8 . In this framework, evolution is modeled as a competition process between a 'resident strategy' (wild-type) and alternate strategies (mutants) within a set of feasible phenotypes. In a given environment ( e.g. at a given temperature), an 'adaptation' or 'adapted value' of a trait is a phenotype that (i) when resident, no mutant can invade; (ii) can be reached by a sequence of phenotypic substitutions, whereby each step involves the replacement of a resident phenotype by a mutant phenotype. Here the phenotypic trait of interest is the enzyme allocation fraction, φ . The set of feasible phenotypes is the range ( φ min , φ max ) at a given temperature, for which the non-trivial ecological equilibrium exists.

Ecological interaction between resident and mutant strains

To model the competition effect of a resident phenotype, φ res , on the population growth of a mutant phenotype, φ mut , we extend the ecological model written for a single type (equations (1) in Methods). To account for the local nature of the interaction between rare mutant and common resident cells, we introduce a function (hereafter denoted by c ) of the difference between φ res and φ mut to measure how local decomposition by mutant and resident cells differ from 'mean field' (average) decomposition by resident cells.

Thus, for given C , D , Z , the growth of the mutant population is governed by

where D res is the equilibrium D predicted by the ecological model applied to the sole resident phenotype φ res . Here function c satisfies c (0

The underlying assumption is that each microbe has access to DOC partly as a public good and partly as a private good 9 . The public good part results from the diffusion of exoenzymes. The private good part results from local decomposition at the microscopic scale of cells and exoenzymes that they produce themselves. A mutant cell that invests more (resp. less) in exoenzyme has access to more (less) DOC than the average resident cell because the cell's private good is greater (smaller) whereas all cells share the same public good. In a spatially implicit model like ours, diffusion is not modeled, but its Existence of φ * > 0 requires and . Thus, the (cooperative)

trait φ can evolve above zero only if the local competition advantage to stronger enzyme producers is large enough. The condition for φ * to be evolutionarily stable is and no other condition than existence is required for φ * to be always c c′′ (0) < 2 2 0 convergent. Here we assume that function c is such that φ * is evolutionarily stable and attractive.

Equation (S5) shows that more cooperation (larger φ *) should evolve in microbial populations with lower mortality, greater nutrient uptake, and/or higher MGE. When comparing microbial populations with similar life-history traits γ M , and d M , v U max stronger competitive advantage to exoenzyme producers (i.e. higher c 0 ) selects for larger φ *. Equation (S5) also predicts the evolutionary effect of temperature variation on enzyme production (Extended Data Fig. 5a-d). The evolutionary adaptive response of enzyme allocation fraction φ to warming is driven by the effect of temperature on , d M , and v U max γ M . The thermal dependence of is assumed, in our baseline scenario, as a v U max consequence of temperature-dependent enzyme kinetics. In this scenario, d M and γ M are constant (temperature independent); the evolutionary effect of T on φ * is thus entirely mediated by the effect of T on . Warming drives up, which causes φ * to rise v U max v U max (Extended Data Fig. 5a). The sensitivity of φ * to temperature is strongest at low initial temperature T 0 (Extended Data Fig. 5a).

In the temperature-dependent turnover scenario, as the influences of d M and on φ * v U max are antagonistic (equation (S5)), warming causes φ * to rise when E v U > E dM , i.e. when d M is not too strongly sensitive to temperature. As a consequence, the rise of φ * is strongest in the baseline scenario (where E dM = 0) (Extended Data Fig. 5a,b). Warming causes φ * to decline when E v U > E dM (Extended Data Fig. 5c). The influence of T 0 on the sensitivity of φ * to temperature observed in the baseline scenario is lost in the temperature-dependent turnover scenario (Extended Data Fig. 5c).

In the temperature-dependent MGE scenario, warming drives up and γ M down. As v U max a consequence, warming causes a smaller increase in φ * in this scenario (Extended Data

Supplementary Note 4 -Sensitivity analysis of ECO and ECOEVO responses and EVO effects

In the baseline scenario of temperature dependence, the EVO effect is most sensitive to microbial life-history traits γ M , d M (Fig. 2a, Extended Data Fig. 6a,b), and (Fig. 6c,d) and environmental parameters c 0 and T 0 (Fig. 2c-d, Extended Data Fig. 6e,f). This is because these parameters influence the sensitivity of the adaptive strategy, φ *, to temperature and/or the initial adapted value, φ *( T 0 ) (equation ( 5) and Supplementary Note 3), and therefore they can affect the ECOEVO response more than the ECO response, with strong EVO effects as a result (Extended Data Fig. 6a-f).

In contrast, the EVO effect is little affected by the other model parameters: enzyme parameters (efficiency, production) and environmental parameters (litter input, leaching) (Extended Data Figs. 6g-o, 7). Considering enzyme parameters, we find that less efficient enzymes lead to larger ECO and ECOEVO responses to warming (Extended Data Fig. 6g1-l1). However, the ECO and ECOEVO responses exhibit similar sensitivities to most enzyme parameters, which therefore have very little impact on the EVO effect (Extended Data Figs. 4a-c, 6i-l). Only the activation energies ( E v D and

) have a slightly stronger impact on the ECO response than on the ECOEVO E D K response, which results in slightly weaker EVO effects in systems with less efficient enzymes (Extended Data Figs. 6g,h,7a,b). Finally, environmental parameters -litter input I , and leaching rates e C and e D -primarily affect the stability of the ecological equilibrium (via their influence on φ min , Extended Data Fig. 3) and have little influence on the EVO effect (Extended Data Figs. 6m-o, 7d).

In the other scenarios of temperature dependence, the influence of parameters on the EVO effect is consistent with results shown in Fig. 2 (sensitivity analysis in the baseline scenario) and Fig. 3 (ECO and ECOEVO responses and EVO effect for the default system in the other scenarios). Thus, EVO effects are generally strong in cold ecosystems harboring communities of slow-growing microbes, under soil conditions that give only a small competitive edge to greater enzyme producer (such as in Fig. 2 

Results

We construct initial maps of soil C stock (Fig. 1) under the assumption that microbial enzyme production is locally adapted to initial temperature and litter input (estimated by averaging observed surface soil temperature and observed litter input over 15 years, from 2006 to 2021) (Fig. 2a). At many northern sites, the equilibrium of the CDMZ ecological model is unstable for the calculated value of the adapted enzyme allocation fraction, which we interpret as the microbial community being present but inactive, or 'dormant'. To these sites we assign the observed soil C stock averaged over the corresponding biome. To all other sites where the microbial community is active, the soil C stock is estimated as the sum of SOC and microbial biomass at equilibrium (in units of carbon mass per m 2 per centimeter of soil depth). The global map (Fig. 1) is in good agreement with observations from the globally gridded Harmonized World Soils Database, as reported in Wieder et al. (2013).

In the case of decomposition influenced by temperature through enzyme kinetics only, we expect adaptive evolution to promote an increase in enzyme production in response to warming (Abs et al., subm.). This effect holds at Earth scale (Fig. 2b), with the average adapted enzyme allocation fraction, φ*, rising from ~0.015 initially to ~0.045 in 2100. This rise in enzyme production driven by microbial evolutionary adaptation has a strong impact on global projections of soil C (Fig. 3). Without evolution, warming has very little effect on global soil C, which fluctuates narrowly around 78 Pg. With evolution, the rise in enzyme production causes soil C to decline from ~78 Pg to ~72 Pg. Individual biomes vary in their ecological and eco-evolutionary responses to warming. The relative constancy of soil C predicted by the ecological model hides contrasting tendencies among biomes, with Costa Rica-type and West Virginia-type soils showing a loss of carbon (about 1 Pg each), whereas California-type and Maine-type soils show a gain of carbon (also about 1 Pg each). Microbial evolutionary adaptation offsets the carbon gains and enhances the carbon losses. We also note that although changes of soil C stock in Alaska-type biomes contribute little to global trajectories, it is in this biome that the effect of evolution (i.e. the ecoevolutionary response relative to the ecological response) is strongest.

We dissect these results further by analyzing and comparing the trajectories of sites where microbial communities were initially active ('active soils'; Fig. 4) to sites where microbial communities were initially dormant ('dormant soils'; Fig. 5). They Assuming there is genetic variation (due to mutation) in the enzyme allocation fraction φ, The model predicts (i) the adapted value, φ*, of the exoenzyme allocation fraction at any given temperature, given litter input and leaching rate; (ii) the adaptive response of the exoenzyme allocation fraction to temperature rise; and (iii) how this response impacts the decomposition rate and SOC stock. By comparing the full ecoevolutionary (ECOEVO) response of SOC stock to the purely ecological (ECO) response in absence of evolution (in which φ is a fixed parameter that does not change), we can evaluate the contribution of microbial evolutionary adaptation (EVO effect) to the direction and magnitude of the SOC stock response to climate warming.

Methods

Scaling up to continental ecosystems

We obtained global projections of ecosystem and evolutionary change by running the mechanistic microbial model on a grid of 1° × 1° sites across terrestrial continents. We used enzyme kinetics parameters of decomposition obtained by German et al. (2012) for five ecosystems from five contrasted 'biomes' (tropical forest in Costa Rica, grassland in California, temperate deciduous forest in West Virginia, temperate/cold coniferous forest in Maine, boreal forest in Alaska). We used the classification of terrestrial ecosystems into 13 ecoregions (excluding deserts) and clustered them into five by assigning each of them to one of the five biomes for which German et al.'s (2012) data were collected (Fig. S2).

We designed a world map of 192 points latitudinally by 288 points longitudinally, which matches the map of observed and projected soil temperature and litter input. We built the 192 x 288 raster and downloaded the geographic distribution of the 14 terrestrial ecoregions (https://worldmap.harvard.edu/data/geonode:wwf_terr_ecos_oRn), using the function "readOGR" (see code in Supplementary Material).

At each site we then parametrized the microbial decomposition model with the four kinetics parameters that German et al. (2012) measured for the corresponding biome (Fig. S3). We transformed German's exponential equations of temperature dependence into Arrhenius relationships using the same intercept values V int = 5.47 and K int = 3.19 for all five biomes, given that the differences between the measured values were not significant.

Soil temperature and litter flux maps

Projected soil temperature and litter input were obtained from one of the CESM models, which can be found in the PCMDI archive (http://www.cesm.ucar.edu/experiments/cesm1.0/). Following on Wieder et al. (2013), we chose the RCP8.5 scenario whose predictions span 2005 or 2006 to 2100. Among the eight ensembles available in the archive, we chose Ensemble Member #1 (as did Wieder et al. 2013), case b40.rcp8_5.1deg.001, and used the CMIP5 link. We got 27 results but narrowed them down to one by selecting the "tsl" variable (soil temperature). This returns 192 files, each one corresponding to specific variable and period of time, that we narrowed down to seven again by applying the tsl filter. We inspected the quality of the data by using the Panoply software (visualization of NetCDF data). For example, we found that tsl_Lmon_CCSM4_rcp85_r1i1p1_200601-205002.nc and tsl_Lmon_CCSM4_rcp85_r1i1p1_205001-210012_partial.nc were interrupted after January 2008 and September 2079 respectively. We thus selected the files tsl_Lmon_CCSM4_rcp85_r1i1p1_200601-205002.nc and tsl_Lmon_CCSM4_rcp85_r1i1p1_205001-210012.nc (for some files, we downloaded a curl script that we ran from the command line). We repeated this file selection process for the second variable of interest, "fVegLitter". This is the total carbon mass flux from vegetation to litter, that we use as a proxy for litter input in our mechanistic model. We selected the data file fVegLitter_Lmon_CCSM4_rcp85_r1i1p1_200501-210012.nc, where carbon litter flux is in kg m -2 s -1 that we converted to mg cm -2 h -1 for use in our model. For both soil temperature and litter input, there is one predicted value per month (average of the number of days) and one per 11.13km (1° spatial resolution) across 192 points of latitude and 288 points of longitude.
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Impact of Microbial Evolution on Soil Carbon Global Projections
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Supplementary Material: R Code used in simulations

Building the matrix of surface soil temperature from simulations data averaged over 15 years #Packages library(chron) library(RColorBrewer) library(lattice) library(ncdf4) #Open NetCDF file ncsoiltemp = nc_open("tsl_Lmon_CCSM4_rcp85_r1i1p1_200601-205002.nc") print(ncsoiltemp) #Get the dimension variables (longitude, latitude, time and depth) lon = ncvar_get(ncsoiltemp, "lon")-180 lat = ncvar_get(ncsoiltemp, "lat") depth = ncvar_get(ncsoiltemp, "depth") time = ncvar_get(ncsoiltemp, "time") #Only keep 1st soil layer (surface) and transform the matrix of "soiltemp" in a 2D matrix (1 location per row, 1 monthly date per column) B = matrix(ncvar_get(ncsoiltemp, "tsl")[,, 

, lwd=1, font.lab=1, font.axis=1, oma=c(3,0,0,0)) brks = seq(-60,40, by=0.1) colfunc = colorRampPalette(c( "#313695","#4575b4","#74add1","#abd9e9","#e0f3f8","#ffffbf", "#fee090","#fdae61","#f46d43","#d73027","#a50026"))(length(brks)-1) fields::image.plot(x=lon, y=lat, B6, ann=F, breaks=brks, horizontal=T, smallplot=c(0.16, 0.92, 0.01, 0.04), legend.args=list(text='Temperature (°C)', side=1, font=1, line=2, cex=1), col=colfunc, xlab="Longitude", ylab="Latitude") mtext(side=1, text="Longitude", line=2.2, font=1) mtext(side=2, text="Latitude", line=2.2, font=1) title("Surface soil temperature averaged over 15 years (from January 2006 to December 2020 included)", outer=F) #Save the matrix as a table write.table(B6, file = "soilT", append = FALSE, quote = TRUE, sep = " ", dec = ".", row.names = FALSE, col.names = FALSE) 2 Building the matrix of litter input from simulations data averaged over 15 years #Packages library(chron) library(RColorBrewer) library(lattice) library(ncdf4) #Open NetCDF file nclitt = nc_open("fVegLitter_Lmon_CCSM4_rcp85_r1i1p1_200601-210012.nc") print(nclitt) #Get the dimension variables (longitude, latitude and time), with Africa placed in the center of the map lon = ncvar_get(nclitt, "lon")-180 lat = ncvar_get(nclitt, "lat") time = ncvar_get(nclitt, "time") #Transform the matrix of "fVegLitter" in a 2D matrix ( (1,1), lwd=1, font.lab=1, font.axis=1, oma=c(3,0,0,0)) brks = seq(0,0.02, by=1e-4) colfunc = colorRampPalette(c( "#d9f0d3","#a6dba0","#5aae61","#1b7837","#00441b"))(length(brks)-1) fields::image.plot(x=lon, y=lat, A6, ann=F, breaks=brks, horizontal=T, smallplot=c(0.16, 0.92, 0.01, 0.04), legend.args=list(text='Litter flux (mg/cm3/y)', side=1, font=1, line=2, cex=1), col=colfunc, xlab="Longitude", ylab="Latitude") mtext(side=1, text="Longitude", line=2.2, font=1) mtext(side=2, text="Latitude", line=2. [1] eC[which(eC==2)] = eCbiomes [2] eC[which(eC==3)] = eCbiomes [3] eC[which(eC==4)] = eCbiomes [4] eC[which(eC==5)] = eCbiomes [5] #Save the matrix as a table write.table(eC, file = "eC_table", append = FALSE, quote = TRUE, sep = " ", dec = ".", row.names = FALSE, col.names = FALSE) Building the matrix of Earth's five terrestrial biomes from Earth's 14 ecoregions map #Packages library(raster) library(rgdal) library(chron) library(RColorBrewer) library(lattice) library(ncdf4) #Create a raster of longitude and latitude in the same dimension as surface soil temperature and litter flux world = raster(nrows=192, ncols=288) #Get file containing the terrestrial ecoregions s1 = shapefile("~/Desktop/Abby/wwf_terr_ecos_oRn/wwf_terr_ecos_oRn") #Transform the "biome" data from vectors to raster (33,37,30,31,32) K0D, file = "K0D_table", append = FALSE, quote = TRUE, sep = " ", dec = ".", row.names = FALSE, col.names = FALSE) #Map V0D (log scale) V0Dlog = log(V0D) par(xpd=T, mfrow=c(1,1), lwd=1, font.lab=1, font.axis=1, oma=c(3,0,0,0)) brks = seq(13.8,20.2, by=0.1) colfunc = colorRampPalette(c( "mistyrose","rosybrown1","orchid1","orchid3","purple4"))(length(brks)-1) fields::image.plot(x=lon, y=lat, V0Dlog, ann=F, breaks=brks, horizontal=T, smallplot=c(0.16, 0.92, 0.01, 0.04), legend.args=list(text='Log(V0D)', side=1, font=1, line=2, cex=1), col=colfunc, xlab="Longitude", ylab="Latitude") mtext(side=1, text="Longitude", line=2.2, font=1) mtext(side=2, text="Latitude", line=2.2, font=1) title("V0D predicted from Biomes (Log scale)", outer=F) #Map EvD par(xpd=T, mfrow=c(1,1), lwd=1, font.lab=1, font.axis=1, oma=c(3,0,0,0)) brks = seq(36,51, by=0.1) colfunc = colorRampPalette(c( "purple4","orchid3","orchid1","rosybrown1","mistyrose"))(length(brks)- #Get the matrix of coordinates from the litter flux data (or soil temperature) nclitt = nc_open("fVeglitter_Lmon_CCSM4_rcp85_r1i1p1_200501-210012.nc") lon = ncvar_get(nclitt, "lon")-180 lat = ncvar_get(nclitt, "lat") par(xpd=T, mfrow=c(1,1), lwd=1, font.lab=1, font.axis=1, oma=c(3,0,0,0)) #Color function scaled using the SOCecoevo predictions brks = seq(0, 6723, by=0.1) colfunc = colorRampPalette(c( "white","blue","green","yellow","orange","red"))(length(brks)-1) fields::image.plot(x=lon, y=lat, Csolu, ann=F, breaks=brks, horizontal=T, smallplot=c(0.16, 0.92, 0.01, 0.04), legend.args=list(text='SOCeco (g m-2)', side=1, font=1, line=2, cex=1), col=colfunc, xlab="Longitude", ylab="Latitude") 11 mtext(side=1, text="Longitude", line=2.2, font=1) mtext(side=2, text="Latitude", line=2. #Get the matrix of coordinates from the litter flux data (or soil temperature) nclitt = nc_open("fVeglitter_Lmon_CCSM4_rcp85_r1i1p1_200501-210012.nc") lon = ncvar_get(nclitt, "lon")-180 lat = ncvar_get(nclitt, "lat") par(xpd=T, mfrow=c(1,1), lwd=1, font.lab=1, font.axis=1, oma=c(3,0,0,0)) brks = seq(0, 6723, by=0.1) colfunc = colorRampPalette(c( "white","blue","green","yellow","orange","red"))(length(brks)-1) fields::image.plot(x=lon, y=lat, Csolu, ann=F, breaks=brks, horizontal=T, smallplot=c(0.16, 0.92, 0.01, 0.04), legend.args=list(text='SOCecoevo (g m-2)', side=1, font=1, line=2, cex=1), col=colfunc, xlab="Longitude", ylab="Latitude") mtext(side=1, text="Longitude", line=2.2, font=1) mtext(side=2, text="Latitude", line=2.2, font=1) title("SOCecoevo with fixed enzyme parameters and litter flux and surface soil temperature averaged over 2006-2021", outer=F)