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“Sometimes the public says, ’What’s in it for Numero Uno ? Am I going to get better

television reception ? Am I going to get better Internet reception ?’ Well, in some sense,

yeah. ... All the wonders of quantum physics were learned basically from looking at atom-

smasher technology. ... But let me let you in on a secret : We physicists are not driven

to do this because of better color television. ... That’s a spin-off. We do this because we

want to understand our role and our place in the universe.”

Michio Kaku
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1
Introduction

In 2007, the HADES collaboration measured proton proton collisions at GSI with a

kinetic energy of the projectile equal to 3.5 GeV. The main purpose of this experiment

was the measurement of electron-positron pairs (the so-called di-electrons). However,

with HADES, it is also possible to measure charged hadrons such as protons and pions,

which gives the possibility of complementary measurements which are important for

the production of e+e− pairs. The main purpose of the ”hadron” analysis is to study

reaction mechanisms and determine cross sections, which are important sources of e+e−

pairs. One important aspect at GSI energies is the baryon resonance excitation.

In the framework of this dissertation the analysis of the exclusive pp → ppπ+π−

channel at 3.5 GeV kinetic energy is presented, aiming to study baryonic resonance

excitations and ρ meson production. In this chapter, I start with a general introduction

of hadron physics and baryon resonances, then I present the general physics motivations

of HADES experiments. HADES results in NN reactions are briefly discussed. Finally

I clarify the motivation for double pion production experiments.

1



Chapter 1 Introduction 2

In Chapter 2 the description of the HADES spectrometer will be given with emphasis

on the MDC (Multiwire Drift Chamber) sub-detector.

In Chapter 3 I explain the steps of the experimental data analysis : particle reconstruc-

tion, event selection, background subtraction, efficiency correction and normalization.

In Chapter 4 the simulation framework is described together with the ingredients

used for the interpretation of the data.

In Chapter 5 the results of exclusive double-pion production channel in pp reaction

are discussed. The measured spectra, such as invariant mass and angular distributions,

are compared to the simulation and resonance contributions cross sections are extracted.

In Chapter 6 the method to extract the ρ meson contribution is explained in details

and the results are presented.

In Chapter 7 the development of a theoretical model is presented and the effect of

interferences is discussed.

In Chapter 8 the experimental results obtained for the baryonic resonance contribu-

tions are compared to theoretical model simulation and with the results of transport

models.
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1.1 Properties of strong interactions

The strong interaction is responsible for the binding of quarks in nucleons and nuclei.

Its corresponding quantum field theory is QCD [1] which describes the quark and gluon

interaction. A major difference of the strong force with respect to the well understood

electromagnetic interaction is its color charge [2]. In QCD, gluons are the force carrier

of the strong interaction, but in contrast to the photon, the gluons also carry the color

charge and can interact with each other. As shown in Figure 1.1, the QCD coupling

constant (αs) is not constant, which is also one of the characteristics of the strong

interaction. The strong coupling constant is small (αs ∼ 0.1) in the case of processes with

small distances or large momentum transfers. This causes the quarks inside hadrons to

behave more or less as free particles, when probed at large enough energies. This property

of the strong interaction is called asymptotic freedom [3]. It allows us to use perturbation

theory, and by this to make quantitative predictions for hard scattering cross sections

in hadronic interactions. In the low-energy range, at increasing distances, αs increases

and non-perturbative mechanisms dominate which qualitatively explains that quarks

are confined in hadrons [4]. However, the detailed understanding of confinement and the

structure of hadrons is an open subject.

Due to the attractive force, bound states are created. Baryons consist of three quarks

carrying different colors that add up to a color neutral object. Another typical state is a

meson consisting of a quark and anti-quark pair with color and anti-color respectively.

The standard model can describe mass creation by the coupling of the quarks to the

Higgs field. The self interaction of this field is the so-called Higgs boson, which was

discovered in 2012 at the LHC [5]. The mass of the lightest quarks that are created by

the Higgs mechanism are in the order of a few MeV/c2. In comparison to the mass of

a nucleon (Mp = 938 MeV/c2), the contributions from the Higgs field are less than one

percent. As a consequence, additional sources have to contribute to the mass generation

of hadrons.

In addition to the SU(3) gauge symmetry, that describes the color charges and the

coupling to the exchange bosons (gluons), QCD has other approximate symmetries.

Chiral symmetry describes the independence of left and right handed particles coupling

in QCD in the limit of zero mass. This symmetry is spontaneously broken in physical

states. Indeed, there is no mass degeneracy between chiral partners, which differ by the
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Figure (1.1) Measurements of the QCD strong coupling constant αs as function of
the momentum transfer Q [10]. At short distances (large momentum transfer), the
strong interaction mechanism is called asymptotic freedom. At increasing distances
(small momentum transfer) the mechanism is called confinement.

parity, such as the pion and the σ mesons, the ρ(770) and a1(1260), the nucleon and the

N(1535),...One of the order parameters which quantify this chiral symmetry breaking is

the quark condensate < 0|qq̄|0 >. Hadrons are seen as excitations of the QCD vacuum

which is filled by condensates of quark-antiquark pairs which break the chiral symmetry.

The spontaneous chiral symmetry breaking is therefore an essential feature of the ha-

dron spectrum in vacuum. In addition, a reduction of the quark condensate, as a function

of increasing baryon density or temperature is predicted [6]. This chiral symmetry res-

toration has been shown to occur at a temperature of 160-190 MeV [7, 8] for vanishing

baryonic densities using numerical computations on the lattice at finite temperatures.

Lattice QCD calculations can not be performed at large baryonic densities, but models

predict that the quark condensate is strongly reduced already at normal nuclear matter

density [9]. Heavy ion collisions at moderate to high energies are used to measure the

phase diagrams at different points (see Figure 1.12).

To explore QCD properties, one can study the spectrum of QCD states in vacuum,

using elementary reactions. The properties (mass, width, decay branching ratios) of

the hadrons bring detailed information on the strong interaction. One can also study

the phase structure of strongly interacting matter. For this purpose, hadrons are not
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considered in the QCD vacuum, but within a surrounding medium with a baryon density

and/or a finite temperature using heavy-ion collisions. In the following, we will give more

details about these two aspects of hadronic physics, with a focus on low energy studies.

1.2 Baryon resonances and vector mesons

1.2.1 Quark Model predictions

Baryons in the conventional Quark Model are color singlets composed of three quarks.

Figure 1.2 displays the baryon octet (left) and baryon decuplet (right) built from the

first generation of quarks (u, d and s). The understanding of the nucleon and the exci-

ted baryons internal structure remains a fundamental challenge in hadronic physics. In

addition to the study of the nucleon which is the most intensive, the investigation of the

other baryons and of their excited states (or baryonic resonances) is of utmost impor-

tance to bring information on strong interaction. The investigation of baryon resonances

(i.e. short-lived excited states of the nucleon) provides access to strong interactions.

Resonances are identified as complex energy poles in the scattering matrix for a gi-

ven partial wave. They manifest experimentally as peaks in excitation function located

around a certain energy. They are probed in scattering experiments and are characteri-

zed by the complex pole position of the scattering amplitude and the couplings to the

various channels. The region of 1-2 GeV is occupied by light-flavored baryons which are

Figure (1.2) SU(3) multiplets of baryons made of u, d and s quarks. Left : the

baryon octet (JP = 1/2+). Right : the baryon decuplet (JP = 3/2+). The valence
quark content of the baryons is indicated explicitly. The S axes represent the
strangeness, the I3 axes represent the isospin and the Q axes represent the charge.
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built out of the three light quarks (u, d, s) with isospin 0, 1/2, 1 or 3/2, accounting

for orbital motion, a supermultiplet SUflavor(3) × SUspin(2) × Ospace(3) resulting in

434 possible resonances which highly exceeds the number of identified 112 resonances

listed in the PDG [11] which came from the earlier spectroscopy results from π- and

K-induced reactions (Figure 1.3). This mismatch between the theoretically predicted

and experimentally observed spectroscopic densities is known in hadron physics as ”the

missing resonance puzzle”.

Up to a few years ago, it was common to label baryon resonances with the incoming

πN partial wave L2I,2J (N(1440)P11, N(1520)D13, ∆(1232)P11...) since nearly all re-

sonances information came from partial wave analysis (PWA) of πN elastic scattering.

Most recent information comes from photon induced reactions and some resonances have

a weak coupling to pion, so, nowadays the spin and parity replaced L2I,2J was replaced

by the spin parity of the state JP (N(1440)1/2+, N(1520)3/2−, ∆(1232)3/2+...). The

PDG gives an evaluation status to all the N and ∆ baryons from one to four stars where

a ∗∗∗∗ or ∗∗∗ status is given to resonances which are derived from analyses of data sets

that include precision differential cross sections and polarization observables, and are

confirmed by independent analyses. all the others are given ∗∗ or ∗ status [11].

1.2.2 Baryon spectroscopy

Pion-induced reactions were the first experiments to track baryon resonances. Most

of the current knowledge about the light-quark baryons is a result of partial wave ana-

lysis (PWA) of πN scattering data in the reaction πN → πN and charge exchange data

(e.g. π−p→ π0n). The first experiments were performed between 1957 and 1979 at the

Nimrod accelerator at Rutherford Laboratory. They focused mostly on the production

of non-strange baryon resonances. Later there were many experiments that extracted

cross sections with much smaller statistical and systematic uncertainties and also mea-

sured polarization observables (see [16] for the full experimental database). The most

recent results published after 2000 come from experiments at the Brookhaven National

Laboratory (BNL), the Tri-University Meson Facility (TRIUMF), and the Paul Scher-

rer Institute (PSI). In π+p reactions, only ∆ resonances (of isospin 3/2) can be excited.

As shown in Figure 1.4, the cross sections show a prominent structure at low energies

corresponding to the excitation of the ∆(1232) resonance and smaller structures for the
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Figure (1.3) Excitation spectrum of the nucleon. Compared are the positions of
the excited states identified in experiment, to those predicted by a relativistic quark
model calculation. Left : isospin I = 1/2 N-states. Right : isospin I = 3/2 ∆-states.
Experimental : (columns labeled ’exp’), three and four star states are indicated by full
lines (two star dashed lines, one star dotted lines). At the very left and right of the
figure, the spectroscopic notation of these states is given. Quark model [12–14] :
(columns labeled ’QM’), all states for the N = 1,2 bands, low-lying states for the N =
3,4,5 bands. Full lines : at least tentative assignment to observed states, dashed lines :
so far no observed counterparts. Many of the assignments between predicted and
observed states are highly tentative. [11].

Figure (1.4) Total π+p and π+n cross sections plotted against the pion lab
momentum (plab) and total center of mass energy

√
s. The positions of several N∗ and

∆ resonances are shown [15].
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excitation of ∆s with mass around 1600 and 1900 MeV/c2. In the case of πn reactions,

the ∆(1232) excitation is weaker, but still prominent and two other groups of resonances

can be identified (the so-called second and third resonance regions, respectively around

1.5 and 1.7 GeV/c2).

Figure 1.5 displays the cross sections for different channels in the π−p reaction. It can

be observed that, above 1.4 GeV, inelastic channels provide an important contribution to

the cross section. Their measurement is necessary to characterize the baryon spectrum,

in particular for higher energies where the coupling to one pion becomes weaker. Among

all inelastic channels, the production of two pions has the largest contributions. This

channel is also very rich, since it provides information on the production of some mesons

(f0, ρ,...). With three particles in the final state, this channel is however not very easy

to measure and to analyze.

Figure (1.5) Total π−N cross sections calculated with Giessen model compared to
experimental data [17].

A comparison between experimental results and theoretical models led to the above-

mentioned ”missing resonances” problem. It was concluded that the reason for this is

their weak coupling to the πN channel. To test this hypothesis it was necessary to

look for these resonances in reactions that do not involve πN initial or final state.

An extensive dataset of observables in light-meson production, photo-production and

electro-production reactions has been accumulated over recent years at facilities world-

wide such as the GRenoble Anneau Accelerateur Laser(GRAAL), Jefferson Lab (USA),

the ELectron Stretcher Accelerator (ELSA), and the MAinz MIcrotron (MAMI) facility

in Europe as well as the 8 GeV Super Photon Ring (SPring-8) in Japan hosting the

Laser Electron Photon Experiment (LEPS). The datasets include cross section data and
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polarization observables for a large variety of final states, such as πN , ηN , ωN , ππN ,

KΛ, KΣ, etc [18]. The main goals of the recent experiments are the determination of

the excited baryon spectrum and the identification of possible new symmetries in the

spectrum.

Baryon resonances properties are obtained from Partial Wave Analysis, which consists

in global fits of differential distributions measured in many different exit channels. PWA

formalisms have been developed at several places using different techniques to extract

nucleon resonance parameters. The SAID (Scattering Analysis Interactive Dial-in) group

maintains an extensive database of πN , KN , and NN scattering data as well as data

on the electromagnetic production of a single pseudoscalar meson [16]. SAID PWA ana-

lysis results include baryon masses and widths and the helicity amplitudes A1/2 and

A3/2. The MAID partial wave analysis group [19] results give predictions for multipoles,

amplitudes, cross sections, and polarization observables for photo- and electroproduc-

tion in the energy range from the pion threshold up to W = 2 GeV. Neither of these

two groups treats the double-pion production channels [18]. The Bonn-Gatchina group

performs combined analyses of all known data on single and double-meson photon- and

pion-induced reactions they reported four new states recently [20]. The Gießen group

has studied pion and photon-induced reactions for the final states γN , πN , ππN , ηN

and ωN , within a coupled-channel phenomenological Lagrangian approach in the energy

region from the pion threshold up to 2 GeV, as well as the strangeness channels KΛ and

KΣ.

Today, more pion-induced reactions need to be studied to solve the missing baryon

resonances puzzle, but also simply to improve the knowledge of already observed reso-

nances. For instance more precise low-energy data on πN elastic scattering are required

for chiral perturbation theory. The available data for double pion production are ex-

tremely sparse, precise new data are needed to determine π∆ and ρN couplings. The

HADES collaboration has started to provide such data, using the GSI pion beam [21],

but there are also existing plans for meson beam facilities at J-PARC [22] or EIC [23].

1.2.3 Exotic Baryons

Quantum chromodynamics (QCD) predicts the existence the of so-called exotic ha-

drons with more complicated internal structures. The state is exotic in the sense that
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the quantum numbers cannot be explained as a system of three quarks, or that it can-

not be classified into conventional classifications (octet, decuplet). Exotic mesons may

be classified such as glueballs (ggg), hybrids (qqqg), and four-quark (qqqq) states, and

exotic baryons as hybrids (qqqg), pentaquarks (qqqqq) and dibaryons (qqqqqq). The last

ones have been a hot topic for many experiments and theories since they were predicted

by Dyson and Xuong in 1964 [24]. Many models and interpretations have been proposed

to explain the structure of dibaryons. Some assume that they are induced through the

six-quark compound systems (q6) like in the Compound Nucleus Model in nuclear phy-

sics. In other models they are interpreted as N∆ or ∆∆ resonances bound by a potential

[25–32].

Table 1.1 shows the Dyson and Xuong SU(6) based classification and predictions of

non-strange dibaryons where the D01 corresponds to the deuteron and the virtual NN

state D10, the D12 and D21 correspond to a quasibound N∆ with mass ≈ 2.15 GeV

near the N∆ threshold and width Γ ≈ 0.12 GeV [33], the D03 and D30 correspond to a

quasibound ∆∆ with mass ≈ 2.38 GeV and width Γ ≈ 0.70 GeV.

DIJ D01 D10 D12 D21 D03 D30

BB′ deuteron NN N∆ ∆N ∆∆ ∆∆
SU(3)-flavor 10 27 27 35 10 28

M A A A + 6B A + 6B A + 10B A + 10B

Table (1.1) Prediction of Dyson and Xuong [24] for a sextet of non-strange
dibaryon states based on SU(6) symmetry. The states are denoted by DIJ , where I
denotes the isospin and J the total spin of the state. The masses are given by the
formula M = A+B[I(I + 1) + S(S + 1)− 2]. Identifying A with the NN threshold
mass 1878 MeV, the value B ∼ 47 MeV was derived by assigning D12 → dπ+

coupled-channel.

1.2.4 Baryon resonances in the early universe

Figure 1.6 (left) displays the main steps of the evolution of the structure of matter

in the universe after the Big Bang (Quark-Gluon Plasma at about 10−9 s, formation of

the nucleons at 10−9 s, of the nuclei at 102 s, of the atoms at 300k years). In the first µs

after the Big Bang, the transition from QGP to nucleons occurred, leading to important

phenomena such as chiral symmetry breaking, hadron mass generation and confinement.

It is thought [35] that the excited hadrons play an important role in this transition, as

shown schematically in the phase diagram in Figure 1.6 (right).
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Figure (1.6) Left : Scheme of the evolution of the universe after the Big Bang [34].
Right : diagram showing the role of baryonic resonances in the transition between
deconfined and confined phase.

1.2.5 ”Resonance” matter

Figure (1.7) Evolution of average temperature (green), baryochemical potential
(red) and density (blue) as a function of time in a Au+Au collision at an energy of
1.23A GeV in a coarse-grained approach based on the UrQMD transport model [36].

The role of baryonic resonances is even more obvious for the study of baryon-rich

matter corresponding to the region of high µB of the QCD phase diagram. Such matter

can be produced in collisions of heavy ions at energies around 1A GeV and above, where

strongly interacting matter is substantially compressed and collective kinetic energy is

dissipated into intrinsic degrees of freedom. As a result, nucleons are excited to baryonic

resonances which can propagate and regenerate due to their short life time with respect

to the long life-time of the dense phase in these collisions (respectively of the order of

1.5 and 15 fm/c). This is illustrated in Figure 1.7 where one can notice that the baryonic

density (blue curve) reaches values close to three times the normal nuclear density and
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temperatures close to 80 MeV are reached in the Au+Au reaction at 1.23A GeV. A large

fraction of these baryons are baryonic resonances.

The open questions motivating the study of dense matter are for example the existence

of a critical point in the QCD phase diagram, the nature of the transition between the

hadronic and the partonic phase and the existence of exotic phases with mixed properties

between the two phases. It is predicted that at SIS18 energies (1-2 AGeV), the fireball

produced in heavy-ion collisions spends most of its time in a phase with a substantially

reduced chiral condensate, which means that chiral symmetry is partially restored. The

study of dense matter is therefore directly related to QCD properties.

The study of dense matter is also attractive due to the existence of dense stellar

objects, as neutron stars, with densities up to 10 times the normal nuclear matter density.

But moderately hot ( T < 70 MeV) and dense matter can also be produced in the

universe in the collision of compact stellar objects as recently observed thanks to the

detection of gravitational waves [37].

1.2.6 Dileptons and vector meson spectral functions

meson
mass Γ cτ main

(MeV/c2) (MeV/c2) (fm) decay branching ratio

ρ 768 152 1.3 π+π− 4.4 10−5

ω 782 8.43 23.4 π+π−π0 7.2 10−5

φ 1019 4.43 44.4 K+K− 3.1 10−4

Table (1.2) Vector mesons main characteristics

Dilepton measurements are proposed to probe the hot and dense phase of a heavy-ion

collision directly. Since dileptons interact only electromagnetically and weakly, they have

indeed a mean free path which is much larger than the size of the system. The radiation

emitted throughout the collision can therefore be detected, starting from the early hot

stage which is not accessible by measuring purely hadronic final states. In addition, they

can be used to study the properties of vector mesons (Table 1.2), which have the same

quantum numbers as the dileptons (JP = 1−). However, the small production rates of

dileptons are a serious experimental challenge.

The early conjectures of Brown and Rho [38] and Hatsuda and Lee [39] of a decrease

of hadron masses related to changes of the quark condensates in the nuclear medium
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motivated experimental studies of in-medium masses of the vector mesons (ρ, ω, φ). In

fact, the connection between chiral quark condensates and hadronic observables is model

dependent, although QCD sum rules still provide useful constraints for the integral of

the hadron spectral functions. Brown and Rho conjecture of dropping vector meson

masses has not been confirmed experimentally and the present measurements of dilepton

spectra are rather consistent with the predictions of hadronic models [40, 41] which were

developed in the meantime. These models are able to describe the dielectron spectra

measured at SPS [41] and RHIC [42] in a wide range of energies in terms of in-medium

modifications of the ρ spectral function. The latter is related to the imaginary part of

the propagator which is modified in medium due to the dressing of the pions and the

coupling to baryons and mesons (see Figures 1.8 and 1.9). These modifications depend

on the momentum, but also on the polarization of the vector meson. In addition, the

calculations need as inputs the coupling of vector mesons to the baryonic resonances,

especially at lower energies, where the hadronic matter is baryon rich. This makes a

direct connection between QCD matter studies and baryon spectroscopy.

Figure (1.8) Dressing of the ρ in the nuclear medium via the 2π propagator (a) the
coupling to baryonic resonances (b) and the coupling to mesonic resonances (c).

Figure (1.9) Imaginary part of the ρ meson propagator (or spectral function) as a
function of the mass for different baryon densities [41].
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1.2.7 Baryon resonance Dalitz decay and Vector Meson Dominance

Model

Dileptons are also unique to study the electromagnetic properties of hadrons in

vacuum. Baryonic resonances can emit an e+e− pair in the Dalitz decay process :

R → Ne+e−. These processes are electromagnetic processes in the time-like region,

since the squared four-momentum q2 of the involved virtual photon has a positive value

4m2
e < q2 = M2

ee < (MR −MN )2 (1.1)

where Mee is the invariant mass of the dilepton pair and MR and MN are the resonance

and nucleon masses respectively. These processes are therefore sensitive to the baryon

electromagnetic structure which can be parametrized using form-factors F(q2) depending

on the value of q2. As sketched on Figure 1.10, Dalitz decay is complementary to electron

scattering experiments, which allow to access the baryon electromagnetic structure in the

space-like region (q2 < 0). Dalitz decay probes in fact a limited region of q2 (Eq. 1.1),

but this region is very interesting, due to the vicinity of the vector meson poles. It

therefore allows to check the Vector Meson Dominance Model, which is a simple and

rather powerful form factor model. The Vector Meson Dominance Model indeed assumes

that the coupling of a real (or virtual) photon to the electromagnetic hadronic current

is mediated by a vector meson [43], as sketched in Figure 1.11. This makes the coupling

of vector mesons to baryons an essential feature of the e+e− emission also in vacuum.

Figure (1.10) Left : baryon Dalitz decay gives access to form factors F(q2) in the
time-like region (q2 > 0). Right : electron scattering gives access to form factors in the
space-like region (q2 > 0).
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Figure (1.11) Sketch of Vector Meson Dominance Model.

1.3 HADES experiments

The High Acceptance Di-Electron Spectrometer (HADES) working at GSI Darmstadt

is a unique detector aiming for investigations of dilepton and strangeness production in

elementary and heavy ion collisions in the 1-4 AGeV energy range, it also allows for the

investigation of hadron properties in nuclear matter and in elementary collisions.

1.3.1 Main motivations

The heavy-ion program of the Relativistic Heavy Ion Collider (RHIC) at BNL and of

the Large Hadron Collider (LHC) at CERN concentrates on the study of matter at high

temperatures and at small baryochemical potential µB. As shown in Figure 1.12 of the

phase diagram of QCD matter as a function of temperature and baryochemical potential

µB, different phases might exist. The transition boundary between confined matter into

hadrons and the deconfined quark-gluon plasma remains unknown. Currently, HADES

is the only experiment exploring the high baryochemical potential region. With SIS18,

a large region in the nuclear matter phase diagram, ranging from ground state matter

density ρ0 up to about 3ρ0, can be accessed. Here, the matter in the central reaction

volume reaches temperatures T ≤ 80 MeV without reaching the QGP phase boundary

[44]. To learn more about the microscopic structure of matter in the region of high baryo-

chemical potential HADES pursues a strategy, which relies on systematic measurements

of strangeness production and virtual photon emission in heavy-ion collisions, as well

as complementary non-strange meson production measurements. Particles containing

strangeness are of great interest at these energies, due to their steep excitation function,

which makes them very sensitive to the conditions reached inside the fireball. As it was

shown in [45], particles containing two or more strange particles are even more sensitive

to the production and propagation of strangeness inside the medium. In the following,

we will focus on the dielectron and pion production measurements.
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Figure (1.12) Schematic representation of the QCD phase diagram. The states of
the strongly interacting matter as a function of the temperature T and the
baryochemical potential µB are shown.

1.3.2 Dilepton spectroscopy in medium

The experimental program of HADES aims at a systematic study of e+e− pair pro-

duction in heavy-ion collisions, in hadron-induced nuclear collisions (p + A, π + A) and

in elementary reactions (π + p, p + p, p + d). With the range of energies available at

GSI (protons up to 4.5 GeV, ions of 1-2A GeV and the possibility to use secondary pion

beams), the interest is focused on the invariant mass region up to 1 GeV, with special

interest on the vector meson (ρ, ω) properties in nuclear matter. In particular, the ρ

meson is considered the ideal probe for in-medium effects due to its even shorter lifetime

(τρ = 1.3 fm/c) in comparison to the typical lifetime of the fireball (∼ 10 fm/c) at

SIS18 energies, meaning that the ρ meson decays inside the fireball. But medium effects

on the ω meson are also present and are reflected in particular in the strong increase of

its absorption width.

Dielectron measurements in medium have started with an investigation of the pro-

duction in 12C +12 C collisions in 2002 [46, 47]. Ar + KCl collisions were measured in

2005 at 1.756 AGeV beam kinetic energy, [48] followed by Au+Au at 1.23A GeV [49]

and very recently Ag+Ag at 1.65 GeV. p+Nb at 3.5 GeV [50] and π+C at an incident

pion momentum close to 0.7 GeV/c have also been measured to quantify the effects in

cold nuclear matter.
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1.3.3 Dilepton spectroscopy in elementary reactions

In addition to the heavy ion program, it is necessary to carry out studies of ele-

mentary NN or Nπ reactions. A fundamental property of these reactions is that they

do not produce a medium that can influence the structure of the hadrons via density

and/or temperature effects. Such measurements are therefore used to provide model-

independent reference spectra for studies of proton-nucleus or nucleus-nucleus collisions.

They also provide important constraints on the contributions of various e+e− sources,

in particular, via the measurement of exclusive channels.

The NN experiments, which have been performed with the HADES spectrometer,

are listed below :

— p + p, p + n and d + p at Ekin = 1.25 GeV. These reactions have been stu-

died for a better understanding of the contribution of ∆-Dalitz decay and NN

bremsstrahlung processes to dielectron production in heavy-ion collisions [51, 52].

— p + p at Ekin = 2.2 GeV. The reaction pp→ ppη has been studied via an exclusive

reconstruction of the hadronic and the dielectron decay channels [53, 54]. An

inclusive measurement has been done in order to compare the dielectron spectra

with 12C +12 C at 2.0 GeV [55].

— p + p at Ekin = 3.5 GeV. The production of η, ω [56] and φ [57] mesons pro-

duction was studied. Differential cross sections of light mesons are needed by

theoretical models to describe the e+e− invariant mass spectrum, they also pro-

vide valuable information about the nature of the nucleon-nucleon interaction.

One-pion production was achieved allowing for an estimate of individual baryon

resonance production cross sections which are used as input to calculate the die-

lectron yields from R→ pe+e−. This will be discussed in more details in Sec. 1.4.3

— π− + p at
√
s = 1.49 GeV. The baryon resonances Dalitz decay in the region

of the N(1520) resonance and the off-shell ρ meson contribution to the dilepton

production was studied [58].

1.4 One pion production in NN reactions with HADES

As mentioned above, for the dielectron production, the HADES elementary reaction

program is used as a reference to the heavy ion program. But a detailed description of the
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resonance excitation and their subsequent decays to pseudo-scalar and vector mesons is

important for the interpretation of the elementary di-electron spectra. Baryon resonance

production in NN collisions can be determined by the investigation of one-pion, two-

pion or η production as a function of the excitation energy. This goal has been addressed

by the HADES Collaboration in experiments with a proton kinetic beam energy of 1.25

GeV, 2.2 GeV, and 3.5 GeV and deuteron beam energy of 1.25 GeV/nucleon. We will

present below some results obtained for the one pion production.

1.4.1 pp collisions at T = 1.25 GeV

The first HADES experiment in the NN collisions program was the pp collision at
√
s = 2.42 GeV, i.e. below the η meson production threshold in order to favor the

∆(1232) production. Two channels were studied, pp→ ppπ0 and pp→ npπ+ [52, 59], by

implementing the resonance model by Teis et al. [60] in the framework of the PLUTO

event generator [61] and the angular distribution parametrization of OPE (One Pion

Exchange) model [62]. The Teis model is a well known reference, as it is the basis of

several transport models. Figure 1.13 shows the pπ+ (left), nπ+ (middle), pπ0 (right)

invariant mass distributions compared to the initial resonance model (A), one can clearly

see that the model does not describe well the data. After the pn Final State Interaction

(FSI) was implemented and the pion cut-off parameter was corrected (Λπ = 0.75) the

modified resonance model (B) described better the data. This was a first example of the

sensitivity of HADES data and their capacity to improve models used for the production

of dielectron in heavy-ion experiments.

Figure (1.13) pπ+ (left), nπ+ (middle), pπ0 (right) invariant mass distributions
compared to the resonance model (A) and the modified resonance model (B) [52]
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In view of the limitations of the resonance model (does not include interferences

effects, it is not sensitive to non resonant contributions), a partial wave analysis was

done in collaboration with the Bonn-Gatchina group. Figure 1.14 shows pπ+ (left),

nπ+ (middle), pπ0 (right) invariant mass distributions compared to PWA solution (so-

lid black), the ∆(1232) contribution (short-dashed red) and the N(1440) contribution

(long-dashed blue). A detailed study of various observables indicates that the partial

wave solution provides not only a better control of the underlying physics but also a

better description of experimental data. The pp collisions are essentially described by

two leading contributions, π0 and ∆(1232) Dalitz decays. The results of ∆ production

were used for the interpretation of the pp → ppe+e− channel, and allowed to extract,

for the first time, the branching ratio of the ∆ Dalitz decay (4.19± 0.62× 10−5) [63].

Figure (1.14) pπ+ (left), nπ+ (middle), pπ0 (right) invariant mass distributions
compared to PWA solution (solid black), the ∆(1232) contribution (short-dashed red)
and the N(1440) contribution (long-dashed blue) [59].

1.4.2 pp collisions at T = 2.2 GeV

The exclusive hadronic channels pp → ppπ0, pp → npπ+ and pp → ppη from the pp

reaction at
√
s = 2.765 GeV were identified with high statistics and studied in various

differential distributions within the resonance model by Teis et al. [60]. Like in pp colli-

sions at 1.25 GeV, the main contributing resonances are the ∆(1232) and N(1440), but

also higher lying resonances, mainly N(1520) and N(1535), play a role [64]. Figure 1.15

shows the pπ0, pπ+, nπ+ invariant mass distributions compared to the resonance model

contribution (model A). The cross sections of N(1440), N(1520) and N(1535) were in-

creased and a non-resonant contribution, generated with a phase space distribution, was

added (model B). A better description of the invariant mass distributions was obtained.
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The studies of the various contributions of the model, compared to the data allowed to

determine resonance cross sections on one-pion and one η production. These constraints

were used for modeling the dielectron sources [64].

Figure (1.15) pπ0 (left), pπ+ (middle), nπ+ (right) invariant mass distributions
compared to the resonance model contribution (model A),with contributions of
∆++(1232) (dashed blue), ∆+(1232) (dotted magenta), N(1440) (dashed-dotted
green), and the sum of N(1520) and N(1535) (solid brown). The long-dashed black
curve, denoted as model B, results from the yield of N∗ resonance adjustment and a
small non-resonant admixture (not in the figure) [64].

1.4.3 pp collisions at T = 3.5 GeV

The HADES collaboration also measured the pp collision at the kinetic beam energy

of 3.5 GeV. Two channels with one pion production were selected : pp→ ppπ+ and pp→
ppπ0, the analysis focused on baryon resonance excitation and decay to πN [65]. The

simulations were performed by means of the PLUTO event generator [61]. A resonance

cocktail model assuming that the total production cross section is given by the incoherent

sum of all the baryon resonance contributions was implemented. All four-star resonances

used by Teis et al. [60] were included. The resonances production cross sections were

treated in the simulations as free parameters, and they were identified by means of the

πN invariant mass distributions only. The ∆++ resonances were observed as peaks in

the pπ+ invariant mass distribution and the ∆+ and N+ resonances were observed as

peaks in the nπ+ and pπ0 invariant mass distributions. Figure 1.16 shows the pπ0, pπ+

and nπ+ invariant mass distributions from the one pion analysis compared to the result

of simulations (dashed curve). A very good agreement between simulation and the data

was achieved for these reaction channels.
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Figure (1.16) pπ+ (left), nπ+ (middle), pπ0 (right) invariant mass distributions
from the one pion analysis compared to the result of simulations (dashed curve) [65].

The baryonic resonance contributions deduced from the one pion production channels

were used as an input for the analysis of the exclusive dilepton channel pp → ppe+e−.

For each baryon, the Dalitz decay differential distributions as a function of the e+e−

invariant mass was calculated, in the ”QED” (or point-like) assumption, i.e. the form

factors were deduced from the radiative decay width and there dependence as a function

of q2 = M2
ee was neglected [66, 67]. Figure 1.17 (a) shows the e+e− invariant mass

distribution compared to the result of the simulations of e+e− production from the

cocktail of baryons in the ”QED” model. The peak around the vector meson pole mass

is due to the ω contribution, which is also added to the simulation. An excess of the

experimental yield is clearly visible below the vector meson pole. This is, however, not

a surprise because one expects contributions from off-shell couplings of the resonances

to the vector mesons. It is expected that such couplings modify the respective eTFF

(electromagnetic Time-like Form Factor) which were assumed to be constant in the

simulations. The dielectron production through the resonance decay can be factorized as

a two step process, proceeding through the intermediate ρ-meson production, R→ pρ→
pe+e−. This scheme is used in transport models. However, the calculated dielectron yield

in the transport models calculations depends strongly on the R→ pρ which is relatively

high compared to the new results from partial wave analysis. Also the cross sections

for resonance in transport models are higher than the cross sections derived from the

HADES one pion analysis. Figure 1.17 (b) shows the e+e− invariant mass distribution

compared to simulations based on the input from GiBUU [68] (solid curve). If the cross

sections extracted from the HADES simulations and the R→ Nρ branching ratios from

Bonn-Gatchina PWA [20] are taken (model1), the calculation reprodeces the measured

yield better. Therefore, once the baryon resonance contribution is adjusted using the

results of the one pion production and the coupling to the Nρ channel are taken from
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the most recent PWA analysis, the e+e− production is found to be in agreement with

the Vector Meson Dominance Model. This illustrates the sensitivity of the dilepton

production to these ingredients and the interest of pion production data to fix the

resonance contribution. HADES data recently measured in the π−p → πN are used in

the most recent Bonn-Gatchina PWA to improve the precision on the determination of

baryonic resonance couplings to Nρ [21].

Another example of transport model predictions is given by the SMASH model (see

Figure 1.18) [69, 70]). Here, the data are shown for the inclusive e+e− production in the

pp reaction at 3.5 GeV and the model includes an η contribution.

(a) (b)

Figure (1.17) e+e− invariant mass distribution, (a) compared to the simulation
result assuming a point-like RNγ∗ coupling (QED-model). The hatched area indicates
the model errors [65]. (b) compared to simulations based on the input from GiBUU
(solid curve). Dotted curves show results of calculations using modified cross sections
and R→ Nρ branching ratios from Bonn-Gatchina PWA [20].
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(a) (b)

Figure (1.18) e+e− invariant mass distribution in pp collision at T = 3.5 GeV
compared to SMASH model calculation. (a) All contributions. (b) resonances
contributing to the dielectron production through the decay R→ Nρ→ Ne+e− [70].

1.5 Double pion production in nucleon-nucleon reactions

1.5.1 Motivations

Two-pion production can bring additional information to the single pion production.

As mentioned in section 1.2.2, the double pion production in pion or photon induced

reactions is of special interest in view of studying the baryon excitation spectrum. In

nucleon-nucleon reactions, the focus is put on studying the various production mecha-

nisms of a two pion pair, via decay of one or two baryonic resonances or one meson.

Since the single pion production is rather well known, the double pion production can be

considered as a key process towards a better understanding of mechanisms which contri-

bute to meson and dilepton production, either directly or via excitation of baryonic

resonances.

In addition to the study of the decay of baryons in the ππN channel, the NN →
NNππ reaction allows for the study of the double resonance excitation, where each

resonance decays in the πN channel. These channels are very badly known and since the

double resonance excitation is also a possible source of dileptons, via the Dalitz decay

of one of the resonances, it is important to have information on these processes.

Moreover, with two pions in the isospin 1 channel, the NN → NNππ reaction allows

to study the production of the ρ meson and to disentangle the direct production from

the production via baryonic resonances. As mentioned above, the coupling of baryonic
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resonances are of high interest for a better understanding of the dilepton production in

nucleon-nucleon reactions and also in nuclear matter due to the expected modifications of

the ρ meson spectral functions. The production of other mesons decaying to 2π (f0(500),

f0(980),...) can also be investigated.

Finally, the two-pion production in NN collisions is also interesting for the check of

existence of dibaryon resonances, which can decay, either to the NNππ or to the NNπ

channels.

All the above-mentioned reasons motivated the analysis of the pp→ ppπ+π− channel

measured with the HADES spectrometer at GSI at an incident proton energy of 3.5 GeV

1.5.2 Existing measurements

Investigations of the double pion production in pp reactions started very early using

bubble-chambers [71–75]. Most of these reactions recorded low statistics and could

mostly only provide total cross sections. Recently, precise measurements of differen-

tial distributions were performed in the pp → ppππ reaction from near threshold up to

Tp = 2.2 GeV [76, 77]. In particular the pp→ ppπ+π− reaction was measured at CEL-

SIUS [78–81], COSY [82–84], KEK [85] and PNPI-Gatchina [86] facilities from threshold

up to 1.4 GeV. The WASA collaboration also measured the pp → ppπ0π0 reaction at

1.4 GeV and pp → nnπ+π+ at 1.1 GeV. For a detailed understanding of the reaction

mechanisms, it is useful to have measurements of all possible isospin channels. Two-pion

production in the pn reactions has also been recently investigated in various channels

at energies up to 1.5 GeV with WASA at COSY (see [87] and references therein), at

Dubna [88] and with HADES, as will be discussed below in more details.

1.5.3 Theoretical developments for NN → NNππ

On the theoretical side, several phenomenological models (Valencia [89], Cao et al.

[90], modified Valencia [76] and OPER [91, 92]) have been suggested to study the double

pion production in NN collisions from threshold to few GeV. Valencia and Cao et al.

models are both Lagrangian models, while the OPER model is based on pion exchange

and uses pion-nucleon amplitudes determined experimentally. More details will be given

in Chapter 8 on the Cao et al. and OPER models which are used in this work. The
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Valencia model includes contributions from ∆(1232), N(1440) and N(1520) resonances

only. It is therefore limited to energies below 1.4 GeV and can not be used in our analysis.

1.5.4 HADES results in the np → npπ+π− reaction at 1.25 GeV

The np interactions were studied by HADES using deuteron-proton (dp) collisions

with a deuteron incident beam energy of 1.25 GeV/nucleon. The spectator proton was

detected in a wall of scintillators covering small laboratory angles. The invariant mass

and angular distributions were compared with three different models : the modified

Valencia [93], the Cao [90], and OPER model [91].

Figure 1.19 shows the π+π−, pπ−, pπ+, pπ+π− invariant mass distributions compared

to the theoretical predictions within the HADES acceptance are from OPER (solid

curve), Cao (dashed curve), and modified Valencia model (long-dashed curve). The total

yield was normalized to the data. The grey area shows the phase space distributions. The

measured differential cross section integrated over the HADES acceptance was larger by

a factor more than 2 in Cao model compared to the data, while the modified Valencia

model was in better agreement. The results confirmed the dominance of the t-channel

N(1440) and the double ∆(1232) excitation, the contribution of a s-channel process,

with an intermediate dibaryon reOnesonance, with mass M ∼ 2.38 GeV and width Γ ∼
70 MeV, as observed by the WASA collaboration in the reaction pn→ dπ+π− [94]. One

can also add that the OPER and modified Valencia model gave the best predictions for

the differential cross sections. The comparison with the Cao model demonstrated a too

large N(1440) contribution.

1.5.5 WASA results for the pp → ppπ+π− reaction

The WASA collaboration developed an extensive program of measurements in the

NN → NNππ and pn → dππ reactions. After the observation of the dibaryon with

I(JP ) = 0(3+) in the pn → dπ0π0 reaction, as shown in Figure 1.20 [87, 96, 97],

this program was focused on the search for signals of this dibaryon in other reaction

channels. The subsequent measurements of the double pion channels : pn → dπ+π−

[98], pn → ppπ0π− [99], pn → pnπ0π0 [100] and pn → pnπ+π− [95, 101] revealed that

all these reaction channels exhibit a signal of this resonance called now d?(2380).
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Figure (1.19) (a) π+π−, (b) pπ−, (c) pπ+, (d) pπ+π− invariant mass distributions
for the np→ npπ+π− reaction at 1.25 GeV The experimental data are shown by solid
symbols. The theoretical predictions within HADES acceptance from OPER [91] Cao
[90] and modified Valencia models [93] are given by the solid, dashed and long-dashed
curves, respectively. The shaded areas show the phase-space distributions [95].

The dibaryon D21 on the other hand strongly favors the channel ppπ+ in its decay,

as suggested by Dyson and Xuong [24], the favored production process should then be

in the pp→ ppπ+π− reaction channel. Indeed, this was reported recently by the WASA

collaboration, by exploiting the quasi-free scattering process pd→ ppπ+π− + nspectator,

covering the energy region Tp = 1.08-1.36 GeV. Both the differential distributions and

total cross section in dependence of the incident proton energy are in agreement with

predictions of a model based on the modified Valencia model [93] plus the dibaryon D21

resonance production according to the process pp → D+++
21 π− → ppπ+π− as shown in

Figure 1.21 (solid line) [102, 103].
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Figure (1.20) Total cross sections obtained from pn→ dπ0π0 + pspectator for the
beam energies Tp = 1.0 GeV (red triangles), 1.2 GeV (black dots), and 1.4 GeV (blue
squares). The hatched area indicates systematic uncertainties.The drawn lines
represent the expected cross sections for the N(1440) excitation process (dotted) and
the t-channel ∆∆ contribution (dashed) as well as a calculation for a s-channel
resonance with M = 2.37 GeV and Γ = 68 MeV (solid) [97].

Figure (1.21) Total cross section as function of the incident proton energy Tp for

the reaction pp→ ppπ+π−. The solid red dots show results from WASA collaboration
[102, 103]. Other symbols denote results from previous measurements
[72, 73, 75, 78, 80–82, 85, 86]. The shaded band displays the isospin-based prediction.
The dashed line gives the modified Valencia calculation [93]. The solid line is obtained,
if a D21 resonance is added with a strength fitted to the total cross section data.



2
HADES detector

Figure (2.1) Left : Side view of the HADES setup. Right : The HADES
spectrometer in a 3D view

28
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The HADES (High Acceptance Di-Electron Spectrometer) experiment, is a fixed

target experiment installed at the heavy-ion synchrotron SIS-18 at GSI. It was designed

for the identification and invariant mass reconstruction of electron-positron pairs (e+e−).

The main emphasis is the study of leptonic (e+e−) decays of light vector mesons in

elementary and in heavy-ion collisions. These decays are suppressed by a factor 10−5

compared to hadronic decay channels, thus in order to accumulate significant statistics

in a reasonable amount of time, HADES has to fulfill several conditions [104] :

— Large geometrical acceptance : to achieve good pair detection probability.

— High rate capabilities : due to the rarity of the interesting channels, the beam

intensity is 107 particles/s.

— Trigger system : a trigger hierarchy scheme is required to find and combine the

electron signatures in the various sub-detectors and to reduce the huge back-

ground created mainly by γ conversion in the detector’s material or in the target.

— High granularity : in order to deal with high particles multiplicities expected in

heavy-ion collision systems.

— High lepton invariant-mass resolution : in order to detect the modification of

experimentally observable properties of vector mesons such as mass and width,

when embedded in a dense medium. An invariant mass resolution for dileptons

of 2-3% in the ρ and ω meson mass range is required to distinguish possible

in-medium effects.

In order to fulfill the above requirements, the HADES spectrometer has several dif-

ferent specialized detectors. The spectrometer, in Fig. 2.1, is characterized by a six-fold

azimuthal geometry. The polar acceptance covers from 15◦ to 85◦, while including al-

most the full azimuthal acceptance [104], [105]. The HADES detector is divided into

sub-detectors. Moving from the target to the direction of a typical particle trajectory,

the detector consists of :

— Ring Imaging Cherenkov (RICH) detector.

— Two inner planes of Multi-wire Drift Chambers (MDCs).

— Toroidal magnetic field generated by six superconducting coils.

— Two outer planes of MDCs.

— Multiplicity Electron Trigger Array (META) ; it consists of two Time-of-Flight

walls (TOF/TOFino), the first with high granularity and the second with low

granularity and the Pre-Shower detector, which is placed behind the TOFino at

small polar angles.
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2.1 Target

Figure (2.2) LH2 target used to study elementary processes [104].

For elementary interactions a liquid hydrogen (LH2) target was used. It has been

developed at IPN 1 (see Fig. 2.2). The liquid hydrogen is contained inside a cylindrical

vessel (inner-vessel), 5 cm long with a diameter of 2.50 cm, covered by an aluminized

Mylar foil (6 µm thick). An outer-vessel provides low interaction probabilities due to

its low atomic number (Z) and provides thermal isolation to the inner-vessel, which

operates at a temperature of 20 K at atmospheric pressure. The forward end cap of

this cylindrical carbon fiber cylinder is also made out of a 100 µm thick Mylar foil. The

system operates in vacuum. The interaction probability between beam and the window

material is of the order of ≈ 0.05% while the probability of interaction with the LH2

is around 0.7% [104]. The cooling down from room temperature takes 12 hours. The

cryogenic operation is controlled by a dedicated software interface.

2.2 The Ring Imaging Cherenkov detector

The Ring Imaging Cherenkov detector (RICH), shown in Fig. 2.3, is the innermost

detector and surrounds the target region. It has been designed to identify electrons and

positrons with momenta in the range 0.1 GeV < p < 1.5 GeV. It covers the polar angle

1. Institut de physique nucléaire d’Orsay
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Figure (2.3) Schematic layout of the RICH, consisting of a Carbon shell mirror, a
CaF2 window and a photon detector.

between 18◦ and 85◦ and the full azimuthal angle [106].

When a charged particle passes through a medium with refraction index n, and its

velocity β is larger than the speed of light in the medium (c/n), then a Cherenkov light

is emitted at a constant opening angle θ with respect to the particle trajectory :

cosθ =
1

nβ

γ =
1√

1− β2

(2.1)

where β is the velocity of the particle and γ is the Lorentz factor. Hence, the particle is

identified if β ≥ c/n.

The radiator gas (C4F10) has a refraction index of n = 1.00151, which corresponds

to a threshold of γ ≈18.3. Therefore, only particles with velocity β > 0.9985 produce

Cherenkov light, ensuring the hadron blindness of the detector. The minimum particle

energies needed to emit Cherenkov light are Ep '17.8 GeV for protons, Eπ ' 2.6 GeV

for pions and for electrons Ee ' 9.3 MeV, which is far below the energy of interest. At

the energies available with the SIS accelerator, the hadrons reach a γmax of about 10.

The estimated γ implies the hadron blindness of the detector. Hence, only electrons can
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be detected in the energy of interest of the HADES physics. Electrons and positrons have

a β value close to 1, and the light cone is generated along their track in the radiator.

2.3 The Multi-wire Drift Chambers

Figure (2.4) Schematic layout of the HADES tracking system. Left : Arrangement
of the MDC chamber with respect to the magnetic coils. Right : View of the six anode
wire frames inside a HADES MDC, with the respective wire angles.

In HADES the dielectron decay channel defines the decisive design and performance

constraints on the Multi-wire Drift Chambers (MDCs). They consist of 24 trapezoidal

planar MDCs, symmetrically arranged in six identical sectors. They provide a polar

angle coverage between 18◦ and 85◦ around the beam axis, forming four tracking planes

(I-IV) of increasing size. In each sector, two modules (planes I and II) are located in front

of and two (planes III and IV) behind the toroidal magnetic field, in order to determine

the direction of the particle track before and after the deflection in the magnetic field

and thus the momentum, as shown in Fig. 2.4 left. The chambers provide active areas

from 0.35 m2 up to 3.2 m2 and cover the same solid angle per sector.

The main feature of the design and the operation parameters of the chambers is the

implementation of the low-mass concept and the position of the active detector area

between the six coils of the magnet. These requirements are met by : (1) cathode and

field wires made of annealed aluminum (planes I-III : bare, IV : Gold-plated) with 80

µm and 100 µm diameter, (2) a Helium-based counting gas (Helium :Isobutane = 60 :40)

and (3) entrance windows made of 12 µm aluminized Mylar [104].
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The MDCs are used for the tracking of charged particles and the determination of

their momenta, which depend upon their deflection in the magnetic field. To cope with

ambiguities (left and right ambiguities), in the track reconstruction in a high multipli-

city environment of a heavy ion reaction, all chambers are composed of six sense/field

wire layers oriented in five different stereo angles, ±0◦ , ±20◦ , ±40◦. This is sketched in

Fig.2.4. The essential information which the HADES spectrometer delivers is the inva-

riant mass of dilepton pairs. The tracking system has been optimized for high electron

momentum resolution [107]. In order to resolve the various vector mesons, a dilepton

invariant-mass resolution of the order of the natural meson’s width is required (e.g.

δM/M = 2 3 %). It corresponds to a single particle momentum resolution of δp/p =

1.5 %.

The field and cathode wires are made of bare aluminum, with diameters of 100 µm and

80 µm, respectively. The sense wires are made of gold plated tungsten with a diameter

of 20 m. All four chamber types contain about 1100 drift cells each, with increasing size,

from 5×5 mm2 (plane I) to 14×10 mm2 (plane IV), in order to maintain the granularity

and, therefore, the double hit resolution in the four detector planes, per solid angle.

The chambers are filled with Ar-CO2 mixture.

2.4 The Superconducting Magnet

Figure (2.5) Left : side view of the magnet. One coil shows a cut at its central
plane. Right : front view cut. [104]
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The superconducting magnet ILSE (Iron-Less Superconducting Electron magnet) in

Fig. 2.5, consists of six superconducting coils, surrounding the beam axis. It generates

a toroidal magnetic field. The magnet should fulfill these requirements :

— It deflects charged particles, in order to measure their momenta with sufficient

resolution.

— The magnetic field should not be extended up to the neighbor detectors (RICH

and MDC).

The magnetic field can reach a maximum intensity of 3.7 T on the coil’s surface, but not

more than 0.7 T in the HADES acceptance and it is higher at smaller polar angles [104],

[108]. The magnet geometry has been chosen in order to obtain the toroidal field which

deflects the particles only in the polar direction θ. This results in a particle momentum

kick of the order of pT = 50 MeV at large polar angles and pT = 100 MeV at smaller

polar angles.

2.5 The Multiplicity Electron Trigger Array

The Multiplicity Electron Trigger Array (META) is positioned behind the outer

MDCs. It is used for fast charged particle determination via the time-of-flight between

the target and the TOF wall, of each detected particle, performing particle identifica-

tion : electrons, positrons and hadrons (π, K, p). Since it is a fast detector, it is used

for triggering. The META consists of two Time Of Flight detectors (TOF and TOFino)

and a Pre-Shower detector covering forward polar angles (18◦-45◦).

2.5.1 Time-Of-Flight Detectors : TOF and TOFino

The Time-Of-Flight (TOF) wall was designed to have the following features :

— Charged particle multiplicity determination in each event, thus providing a first

level trigger decision and selecting the centrality of the events.

— It provides position information of charged particles.

— Measurement of the time-of-flight of each hitting charged particle in order to

distinguish between leptons, protons, pions and kaons.

— Measurement of particle energy loss, which can be used for particle identification.
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Figure (2.6) Schematic view of the Left :TOF and Right :TOFINO detector (one
sector only).

For the time-of-flight measurements in the polar angle region from 44◦ to 88◦ , the

TOF detector is used. Following the hexagonal geometry of the whole spectrometer, the

TOF detector is divided into six sectors (left panel of fig.2.6). Each sector consists of 64

scintillator rods (384 rods in total) coupled on both ends to photo-multipliers (PMT).

The rod length increases while ranging from the smaller to larger polar angles. This

geometry allows to have a finer granularity in the forward polar angle region, where the

multiplicity of produced charged particles is higher, to reduce the probability that two

particles hit the same rod. The time resolution is about 150 ps.

From the measured signals the following information can be extracted : the time-of-flight

(ttof ) of particles corresponding to the time between the reaction and the readout of the

signal, the hit position on the rod (x), and the energy deposited in the rod (∆E) with

following formulas :

ttof =
1

2
(tleft + tright −

L

vgroup
)

x =
1

2
(tleft + tright).vgroup

∆E = k.
√
AleftAright.e

L/2λat

(2.2)

where tleft and tright is the time measured on the left and the right side of the rod, vgroup

is the group velocity in the rod (average velocity of light in the rod), L is the length of

the rod, Aleft left and Aright are the signal amplitudes at the left and the right ends of

the rod, λat is the light attenuation length of the rod and k is a constant.
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For time-of-flight measurements, the region of polar angle below 45◦ was covered by

a low granularity system called TOFINO. It is divided into six sectors each consisting

of four scintillator pads (see right panel of fig.2.6), arranged radially with respect to the

beam axis. The basic principle is the same as for the TOF detector. In the case of the

TOFINO detector, only one end is coupled to a PMT, so there is no information about

the hit position. But directly behind the TOFINO detector, the Pre-Shower detector (will

be described in the next section) is mounted, which provides the coordinate information

of the particle hit on the paddle (x). The time-of-flight (ttof ) can be calculated using

the following equation :

ttof = t− x

vgroup
(2.3)

where t is interval between the reaction and the arrival of the light pulse at the PMT,

vgroup the light group velocity in the pad and x the distance from the particle hit position

to the PMT. The time resolution of TOFINO is about 420 ps, worse than TOF.

2.5.2 Pre-Shower detector

Figure (2.7) Side view of the Pre-Shower detector (one sector) with an example of
electromagnetic shower.

Electrons and positrons induce much higher charge through interaction with matter

than hadrons. They lose energy mainly by bremsstrahlung, and if the energy of the
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photons emitted during this process is greater than 2me = 1.022 MeV, they can generate

high energy e+e− pairs. The result is a cascade of electrons, positrons and photons. Since

the radiative energy loss per unit length (dEdx ) by photon emission, in a bremsstrahlung

process, is proportional to the inverse mass squared dE
dx ∼ 1/m2, the bremsstrahlung

process plays an important role mainly for light particles.

At forward polar angles, the separation of electrons from hadrons via time-of-flight

measurement is more difficult than at large angles due to the higher hadron momenta

and larger hits densities in the detectors. For this reason, an additional electron/hadron

separation method was taken into account : an electromagnetic shower measurement in

the Pre-Shower detector. The Pre-Shower detector, in Fig. 2.7, covers the polar angular

region between 18◦ and 45◦. It is composed of a stack of three Multi Wire Proportio-

nal Chambers (MWPCs) layers (pre-converter, post1-converter, post2-converter). Each

chamber is filled with an Ar-Isobutan gas mixture and consists of one wire (anode/ca-

thode) plane and two flat cathode planes. A 1 cm thick lead layer (corresponding to 2

radiation lengths) separates the chambers. Each cathode plane is subdivided into pads

of different dimensions from which the induced charge signal is taken from. A charged

particle, passing through a MWPC, ionizes the Ar-Isobutane gas producing avalanches

of electrons, drifting towards the closest anode wire ; the positive cloud motion induces a

positive charge on the nearby cathode pads, which are connected to charge sensitive pre-

amplifiers. By comparing the integrated charge deposited by a track in the pre-converter

and post1/post2-converters, it is possible to distinguish electromagnetic showers from

hadronic tracks using momentum-dependent thresholds.

2.6 The trigger system

The trigger system of HADES is illustrated in Figure 2.8. A two level trigger system

is used in the HADES experiments :

- 1st level trigger : The first level trigger (noted as LVL1) consists of a fast hard ware

selection of central collisions, by measuring the hit multiplicity in META system. It is

possible to apply multiplicity selections in TOF and TOFINO separately and sector-

wise, in order to select only interesting decay channels, which is used for example for

proton-proton elastic events.

- 2nd level trigger : The second level trigger (noted as LVL2) is based on an online
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Figure (2.8) Sketch of the event selection used for data acquisition.

search for lepton candidates in the event. It comprises ring search in the RICH and

electromagnetic shower in the Pre-Shower detection.

The downscaled LVL1 events are recorded because we are also interested in events

which contain hadrons. However, the rate of hadronic events is so high that their number

has to be reduced. Figure 2.8 gives a schematic explanation of the event selection used

for data acquisition. The first selection of the events is done by the LVL1 trigger (yellow

boxes), and they are sent to the matching unit afterwards where the downscaling factor

is defined, for example factor 4 was selected for the pp experiment at T = 3.5 GeV. This

means that one event out of four is stored (event number 1, 5, 9, 13, ...) (labelled by

blue boxes), no matter the LVL2 trigger decision. In the meantime, all the events with

a recognized lepton candidate are stored as well (labelled orange boxes). It can happen

that an event can be at the same time downscaled by the LVL1 trigger and be accepted

by LVL2 trigger, like for instance the event number 13 in the example. If we want to

have the total number of the events, we must multiply the number of downscaled LVL1

events (blue boxes) by the downscaling factor 4. In this case, we obtain 16 events against

7 which are effectively stored to file. This means that in the example we found 4 events

with electron candidates by storing only 7 events instead of 16. In this particular case,

we have roughly saved half of the disk space, and half of the time needed for the data

processing.



3
Experimental Data Analysis

3.1 Introduction

In this chapter the data analysis method developed for the selection of the pp →
ppπ+π− reaction channel is described. HADES analyses are realized within the HYDRA

framework, i.e. the Hades sYstem for Data Reduction and Analysis, based entirely on

ROOT. The first step, which is common for all analyses in the HADES collaboration

is the production of the DST files (Data Summary Tapes) where the detector signals

measured by the different sub-detectors, as the RICH, MDC, TOF/TOFINO and Pre-

Shower are translated to physical information as hit coordinates, time of flight, energy

loss and also reconstructed tracks in MDCs etc.

The analysis is divided into several steps (see Figure 3.1) : raw data processing,

calibration, track reconstruction, particle identification and finally reaction channel se-

lection. For the simulation part, two options are used. The first one is based on GEANT3

39
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and contains detailed emulation of detector response including trigger conditions. The

second option is based on filtering by dedicated acceptance and efficiency matrices.

DST files are input to the PAT (PostDST Analysis Tool) framework. Only interesting

events are selected from the whole experimental data based on the selection of a given

final reaction channel. Particle identification (PID) is performed via conditions defined

on velocity and momentum correlation.

The next step in the analysis chain is provided by the Final Analysis Tool (FAT),

where physical information (invariant mass, total energy, distribution angles, etc.) is

extracted for the previously selected events. Based on this information, the background

is also identified and removed and efficiency corrections are applied. Finally, the distri-

butions of count rates obtained for a given reaction channel are converted to differential

cross sections using normalization factors calculated from simultaneously measured pp

elastic scattering events, as described in Section 3.7.

In order to calculate efficiency corrections, flat generators are used to have a good

statistics of events in all bins, as will be explained in more details in Section 3.5.2. Such

simulations are also used to calculate acceptance matrices (see Section 3.5.1) and to

parametrize smearing functions which are used to take into account resolution effects

(see Section 4.4.3). Then, simulated events are interfaced to the detector simulation

package GEANT3. Their interaction with the target and detector material is calculated.

The comparison of the experimental differential distributions with the model predic-

tions requires the use of simulations, in order to take into account experimental effects.

In the analysis of simulated events the same steps are performed as in the case of ex-

perimental data (this will be the subject of Chapter 4). Events are generated, following

theoretical distributions, using PLUTO++ [61, 109] a ROOT-based event generator, de-

veloped by the HADES collaboration. Then, simulated events are smeared to account for

the detector resolution and filtered with acceptance matrices. More detailed description

and results concerning matrices are the subject of Section 3.5.1.
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Figure (3.1) Data and simulation analysis flow relevant for this PhD work.

3.2 Particle reconstruction and identification

The procedure to select events corresponding to the pp → ppπ+π− channel is to

choose events with one proton, one π+ and one π− and check that the kinematics cor-

respond to the pp → ppπ+π− reaction. This choice is triggered by the fact that, due

to the detector acceptance, the probability to detect two protons is very low. In the

following, we will first briefly explain the method for momentum reconstruction (section

3.2.1) and time-of-flight calculation (Section 3.2.2). These information are used for the

particle identification (Section 3.2)

3.2.1 Momentum reconstruction

The momentum is obtained from the deflection of particles in the magnetic field.

Independent inner and outer straight track segments are reconstructed from the hit and

drift time information in the pairs of drift chambers in front of and behind the field re-

gion, respectively. The mechanism of track segment reconstruction is presented in Figure

3.2. The inner and outer MDC track segments are projected and matched on ”the kick

plane” which is a surface, obtained from simulations, which approximates the deflection

of charged particles in the HADES magnetic field just by a sudden change (a ”kick”)
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of the trajectory occurring in the kick plane. This allows to give a crude approximation

of the momentum which is used as initial value in the subsequent more refined track

fitting algorithm, aiming at a final precise determination of the momentum. First the

cubic spline method is applied to calculate a first approximation of the momentum.

Second, based on the previous result, a fourth order Runge Kutta algorithm is used.

Implementation of this method solves differential equations of motion in the known ma-

gnetic field. With such a procedure, the momentum resolutions are of the order of 1-2%

for electrons, and 2-3% for pions and protons. The larger value for hadrons is mainly due

to their larger average momentum, but multiple scattering also contributes significantly

to the momentum.

Figure (3.2) Illustration of the track reconstruction procedure. Only one MDC
sector is shown in each layer.

3.2.2 Time of flight calculation

Usually the time of flight is calculated using the difference of arrival time between

the START and the TOF detectors signals but because of the high intensity of the

proton beams it was not possible in this experiment to use the START detector. As a

consequence, there was no common start time reference for tracks in the same event.

The start time was given for each event by the trigger signal, which was related,to the

earliest signal in either TOF, TOFINO or FW detectors. The absolute time-of-flight can,

however, be calculated for a defined hypothesis, where each reconstructed trajectory is

assigned to a given particle species. With the known trajectory length, momentum and

ideal particle mass, the time-of-flight for each particle is calculated.
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tci =
ltracki

β.c
(3.1)

where ltracki is the i-th particle track length, β is the particle velocity, it depends on the

assigned ideal mass. In a general case of N particles, the reference particle has to be

chosen (here, π−). The reference time for each (i, j) pair is defined as the mean time :

tj =
tci + tcj

2
(3.2)

If the measured (relative) time is texpi and texpj , with the help of half time difference

∆tj =
texpj − texpi

2
(3.3)

the reconstructed time can be calculated as follows :

trecij = tj −∆tj (3.4)

trecii =

N∑
j

tj

N − 1
(3.5)

Finally, the χ2
tot for a given hypothesis is a measure which particle combination assign-

ment is the best in terms of the reconstructed time-of-flights :

χ2
tot =

√√√√ N∑
i

χ2
i , χ

2
i =

√√√√ N∑
j

(trecij − tcj)2

σ2(TOF, TOFINO)
(3.6)

where σ2(TOF, TOFINO) is the detector time resolution for TOF and TOFINO and

the sum runs over all particle species in the event. Finally, the combination with the

smallest χ2
tot value is chosen.

3.2.3 Time and momentum correlation

The final step consists of a check of the correlation between the momentum and time

of flight. The particle velocity is deduced using the track length and the time-of-flight.
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If the mass of the particle is known the momentum is given by the relation :

p = β ×m/
√

1− β2 (3.7)

We can check that this relation is fulfilled by the momentum deduced from the tracking.

The correlations between the velocity and reconstructed momentum (see Figure 3.3)

for all three particles were taken into consideration to reject the wrong hypotheses.The

correlation between the energy losses in MDCs and momentum was additionally applied

for the final selection of the proton and π+. Figure 3.3 shows the limits used to accept

the particles of different types and the correlation between the product of charge and

momentum and the velocity β for particles selected by the event hypothesis method.

Figure (3.3) Experimental distribution of momentum × charge vs beta for p, π+

and π− after identification using the event hypothesis method.

3.3 Event selection

In the first step, the pp → ppπ+π− channel is selected by asking for at least one

proton, one positive pion and one negative pion in the exit channel. In this case, knowing

the value of the total energy, momentum and masses of the three identified particles, we

can calculate the momentum and energy of the missing particle.

ptot = pproj + ptarg

pmiss = ptot − pp − p
π

+ − p
π
−
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Where pproj , ptarg are the entrance system, projectile and target proton momenta, res-

pectively.

In the second step, the squared missing mass of the reaction pp → pπ+π−X is

evaluated. It corresponds to the mass of the system of the missing proton and all other

residual undetected particles. Figure 3.4 shows the missing mass squared spectrum, the

peak at 0.88 GeV 2 corresponds to the missing proton, and the large structure in this

spectrum is created by the production of an extra pion, it is the subject of a separate

analysis and will not be included in this work.

Figure (3.4) Missing mass squared distribution of the reaction pp → pπ+π−X.
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Figure (3.5) Left : a two-dimensional histogram showing the invariant mass as a
function of the squared missing mass. The red dotted line shows the range in
M2
miss(pπ

+π−) for selection of the pp→ ppπ+π− signal. Right : Invariant mass
distribution of the pπ+π− system. Black dots show the total projection on the
invariant mass, while red dots show the signal after applying the missing mass
selection.
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3.4 Background Subtraction
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Figure (3.6) Squared missing mass distribution of the pπ+π− system compared to
to the sum (red) of two pion production (blue) and three pion production (green)
phase space simulation.

To describe the missing mass distribution we simulated the reactions pp → ppπ+π−

and pp → ppπ+π−π0 . For this, we used the PLUTO simulation (see Section 4.1) and

generated events according to phase space. Acceptance and resolution effects were ap-

plied using acceptance matrices and smearing functions, as will be explained in detail in

Section 4.4 and section 4.4.3. The comparison between data and simulation in Figure 3.6

shows a good match after adding the three pion production (green). The width of the

proton peak is well described, which confirms that we have a realistic description of the

resolution in the simulation. The sum of the two pion and three pion production simu-

lation describes well the data. However, there is still an excess of data at small missing

masses which is probably due to misidentified particles, noise or random coincidences.

In order to extract the yield related to the ppπ+π− final state the background had

to be subtracted for each bin used for the data analysis. To do so we implemented a

method where we first subtract the three pion contribution using the simulation and

then we apply a weight on each event to take into account the probability that it is a

signal or a background event. In detail, the procedure consists in the following different

steps :
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(a) (b)

(c) (d)

Figure (3.7) (a), (b) : Squared missing mass distribution of the pπ+π− system
after the three pion production subtraction fitted with two Gaussians (violet and
green curves) and a polynomial function (blue curve), the red curve represent the
total fit, the two pictures correspond to two different cells with very different
background content. (c), (d) : The squared missing mass distribution after the
background subtraction, the dashed red curve shows the total events before the
background subtraction.

— Create a 25×20 matrix of histograms, divide the data events into 25 bins of

Minv(pπ
−) and 20 bins of cos(θ)CM (pπ−), fill each histogram with the squared

missing mass.

— Apply the same binning for the three pion production simulation.

— Subtract for each of the 25×20 cells the simulated events from the data.

— Fit the remaining data with the sum of two Gaussians and a polynomial function

to take into account the remaining background.

— Subtract the fitted background from the data.

— Calculate the Q-factors that are the ratio between the background subtracted

data and the raw data. The Q-factors are defined as :

Qij =
N signal
ij

N raw
ij

(3.8)

Figure 3.7 (a) and (b) shows two examples of the signal/background fit, one with a
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relatively low background and the other with relatively high background. The result of

the background subtraction for each case is shown in Figure 3.7 (c) and (d) respectively.

3.5 Efficiency and Acceptance Considerations

The HADES detector has a high acceptance but still does not cover the full solid

angle. In order to describe the geometrical coverage and the reconstruction efficiencies,

acceptance and efficiency matrices were calculated for different particles individually.

These matrices are defined in three dimensions corresponding to p (momentum), θ (polar

angle) and φ (azimuthal angle) in the laboratory frame.

The acceptance matrices describe the geometrical acceptance of the spectrometer,

while the efficiency matrices account for the detection and reconstruction losses within

the detector acceptance. They are generated separately for every particle of interest via

GEANT3 simulations including precise HADES electronics information and response. In

addition, the same track reconstruction and particle identification algorithms are used

than for real data. These matrices are functions of the particle momentum, polar and

azimuthal angles, p is typically set from 0 to 5000 MeV/c with 100 MeV/c per bin for

protons and from 0 to 2000 MeV/c with 40 MeV/c per bin for pions, θ from 0° to 90° with

2° per bin and φ from 0° to 360° with 2° per bin which corresponds to the coverage of all

6 sectors. They are created by generating with the simulation ”white” particles which

are distributed uniformly over all degrees of freedom in a given range. The efficiency

response of the detector is computed through the ”track embedding” method and is

determined following different analysis steps :

— Event Generation : 6 ”white” single particles distributions are generated (one

per sector) by the PLUTO event generator [61, 109]. These events are generated

taking into account the vertex coordinates (three coordinates) and the sequential

number of the real event, which are stored in the output files as well. The output

files produced in this step are used as input files in the next step.

— Event Simulation : The simulated events are propagated through the HADES

spectrometer simulation using GEANT3 [110], which takes into account the spec-

trometer acceptance and the response of the HADES detector to the passage of

charged particles. This is achieved by implementing a detailed description of the
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detectors geometry and parametrization of the response of all subdetectors adjus-

ted to real data to take into account their efficiency in a realistic way. The vertex

coordinates of the simulated events which are propagated through the spectro-

meter are sampled from experimental distributions. The output data has the

same structure as the real one, therefore it is used as input for the reconstruction

programs in the same way as for the real data.

— Event Digitization : the resulting events were digitized and processed in order

to take into account the detector and electronics response (e.g. electronics noise).

The digitizers are part of the HYDRA framework and give the response of each

sub-detectors. All parameters needed by the digitizers are retrieved from the

ORACLE database in order to be consistent with the analysis of the real events.

— Event Embedding : the simulated events produced in the previous analysis

steps are embedded into real data events. This is a technique to estimate the

reconstruction efficiency under realistic conditions. ”Realistic” means that back-

ground of the simulated tracks is as close as possible to the real one. The sequential

number of the events is used to synchronize the embedded events with the real

events.

— Event Reconstruction : the full events are reconstructed and the same cuts as

applied to the real data are considered in this stage.

3.5.1 Acceptance Matrices

The events which hit the active volume of the detector are retrieved and considered

as detected. The acceptance matrix is calculated using equation 3.9, as the ratio between

the number of particles which fall into the detector active volume and the number of all

simulated particles sent in the beginning, assuming a perfect (100%) detection efficiency.

HADES has zero acceptance for any particle that is emitted from the target region with

a laboratory polar angle less than approximately 15°. This means that, one can not fully

reconstruct any configuration of final state particles where one or more charged particles

are emitted below 15° in the polar angle.

FACC(p, θ, φ) =
NAcc(p, θ, φ)

NTot(p, θ, φ)
(3.9)
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Figure 3.8 shows a two dimension projection of the acceptance matrices of the proton,

π+ and π−.
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Figure (3.8) Projection of the three dimensional acceptance matrices for the
proton, π+ and π−, as a function of θ and φ (left) and as function of p and θ (right)

3.5.2 Efficiency Matrices

The efficiency matrices are calculated as the ratio between the number of recons-

tructed particles (Nreconstructed(p, θ, φ)) and the number of particles which fall into the

detector active volume (Naccepted(p, θ, φ)) :

Eff(p, θ, φ) =
Nreconstructed(p, θ, φ)

Naccepted(p, θ, φ)
(3.10)
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For each experimental event the efficiency of the p, π+ and π−, is taken from the

corresponding matrix. The event is then corrected with the weighting factor (efficiency

correction factor) :

Effcorrected =
1

Eff(p)× Eff(π+)× Eff(π−)
(3.11)

Figure 3.9 shows the efficiency matrices for protons (upper row) and π+ (middle row)

and π− (lower row), as a function of θ and φ (left), as function of p and θ (right). The

number of positive reconstructed particles at small angles is much lower than for the

negative particles. This is due to combined effect of magnetic field and the lack of accep-

tance at forward angles. The positive particles are indeed more sensitive to this cut, since

they are bent towards the beam axis, while the negative ones are bent outwards. The

borders of depressed region in proton efficiency (and acceptance) matrix correspond to

decreasing polar angles when the momentum increases. This can be understood because

before reaching the TOF or TOFINO detectors, the proton was bent by the magnetic

field towards the beam axis depending on its momentum. The higher the proton mo-

mentum, the smaller the deviation is. The same phenomena can be found even more

clearly in the case of π+, because the relevant momenta are smaller. This effect is not

present in the case of negative particles. The acceptance is larger at momenta below 300

MeV/c for π− than for π+, since π− are bent in the magnetic field towards the detector.
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Figure (3.9) Projections of the three dimensional efficiency matrices for protons
(upper row) and π+ (middle row) and π− (lower row), as a function of θ and φ (left),
as function of p and θ (right).

3.6 Efficiency cuts

The edges of the six HADES sectors are not well described by the simulation so it

was necessary to introduce a cut to exclude them from the analysis. The result of the

efficiency correction is shown in two dimensional plots of momentum and polar angle in

Figure 3.10 (a) and (b) for the protons, (c) and (d) for π+, (e) and (f) for π−. It is visible

in the plots on the left that when the particles of very low efficiency are reconstructed (<

20% for protons and < 10% for pions), the homogeneity of the distributions is distorted,

as it is seen in Figure 3.10 (a) the number of protons with momentum < 0.4 GeV is

overestimated. The low efficiency regions correspond to the edges of the sectors. Due

to the fact that there are areas for which the geometrical acceptance of the tracks is

high, but only few tracks at all are reconstructed due to the lack of efficiency. This
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Figure (3.10) Data momentum as function of the polar angle θ in the Lab frame.
(a) proton efficiency threshold > 5%, (b) proton efficiency threshold > 20%, (c) π+

efficiency threshold > 5%, (d) π+ efficiency threshold > 10%, (e) π− efficiency
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demonstrates that when comparing the data to simulations, it is important to restrict

to regions where the efficiency is above a certain threshold. We use a 10% threshold for

pions and 20% threshold for protons.

3.7 Data Normalization

The data was normalized using the number of p−p elastic scattering events collected

during the experimental beam time. By using the known elastic cross section we can

normalize the number of events in a given bin as follows :

σR
NR

=
σel
Nel

=⇒ σR = NR
σel
Nel

(3.12)

Nel - number of elastic scattering events in full solid angle.

NR - number of collisions of the reaction of interest .

σel - known cross-section of elastic scattering in full solid angle.

To select events corresponding to the proton-proton elastic scattering, relations between

the angles of the two protons are used. Indeed, in the Lorentz transformation from

the laboratory system to the center of mass system, the momentum component in the

transverse direction to beam axis, does not change :

plab sin θlab = pcm sin θcm (3.13)

Whereas the momentum component in the direction of the beam axis extends relativis-

tically :

plab cos θlab = γcm(pcm cos θcm + βcmEcm) (3.14)

Where γcm is the Lorentz factor calculated in the CM frame and β is the velocity.

In the case of proton-proton elastic scattering, the two protons have same momentum

pcm and energy Ecm in the center of mass. Therefore applying Eqs (3.13) and (3.14) to

the target particle at rest leads to βcm = pcm/Ecm, thus :

tan θlab =
sin θlab
cos θlab

=
sin θcm

γcm(cos θcm + βcmEcm/pcm)
(3.15)
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If θcm is the angle of proton 1, the angle of proton 2 is : θ1
cm = θ2

cm−1800 and φ1 = 180+φ2

tan θ1
lab =

sin θcm
γcm(cos θcm + 1)

(3.16)

tan θ2
lab =

sin θcm
γcm(1− cos θcm)

(3.17)

So :

tan θ1
lab.tan θ

2
lab =

1

γ2
cm

(3.18)

Elastic scattering events were selected by considering the following conditions :

— Condition of the M2 triggering system, meaning that the detector has registered

exactly two charged particles.

— Coplanarity |φ1 − φ2| = 1800

— Condition on the polar angles tanθ1
lab. tanθ

2
lab = 1

γ
2
cm

= 0.349 (Elab = 3.5) GeV

The number of corresponding events is then integrated over the periods when the detec-

tor was perfectly working, exactly as for the analysis of the pion production channels.

3.8 Systematic errors estimation

As can be seen in Figure 3.4, the statistics in the two pion production channel is

large so statistical errors are negligibly small, however systematic errors have also to

be investigated. The first source of systematic errors to be considered is related to

the uncertainty on the background subtraction. The latter was defined as the largest

difference obtained in estimating the number of counts using various functions describing

the background. From Figure 3.7 it is clear that this error depends on the bin. Our

estimate is of the order of 2% for most of the bins and reaches 10% for some bins. This

systematic error is propagated for each event.

As mentioned before, all the spectra are scaled by the normalization factor in order

to represent differential cross sections with an integral in millibarn. As in the previous

analysis [65], we consider a 7% uncertainty on the normalization factor. The error on

the normalization is a global error, which affects all bins in the same way.

Another source of systematic error is the efficiency correction. The error related to

the limited statistics in the simulations used for the determination of the efficiency
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matrices is calculated in the efficiency correction procedure. The statistical error on the

calculation of the efficiency, which is related to the statistics used in the simulation is

taken into account in the efficiency correction procedure. One way to quantify systematic

errors is to check the azimuthal isotropy of efficiency corrected yields. Indeed, since

the beam is not polarized, there is no favoured direction in the plane perpendicular

to the beam axis and the distribution of azimuthal angle should be isotropic. This

means that the differences between the number of reconstructed particles in each sector

should differ only due to the different efficiencies, and as a consequence, after efficiency

corrections, one should ideally obtain the same yield in each sector. We chose to compare

the yield in each sector to the average over all sectors. Figure 3.11 shows the ratio

Figure (3.11) Ratio of counts between each sector and the average as function of θ.
Each color corresponds to a sector.

between the number of counts in polar angle bins of one degree of each sector and

the average as a function of the polar angle θ. It can be observed that in the region

between 25 and 45 degrees, all the ratios are close to 1, with deviations smaller than 2%.

Larger fluctuations exist, especially at smaller angles, which indicates some errors in the

efficiency correction, however the difference remains within 10%. Since the spectra are

always averaged over 6 sectors, the effect of this difference between the sectors has no

effect on our analysis. However, the difference between sectors points to some limited

description of the efficiency in the simulation, which might also affect the average value.

Nevertheless, this effect is also reduced, thanks to our normalization procedure. Indeed it

is clear from Eq(3.10) that a possible systematic error on Neff will be taken into account

in the normalization coefficient σel/Nel. However, a residual effect might subsist, due to

the different kinematics of protons in the pp → ppπ+π− reaction with respect to the

elastic case and the different efficiencies for protons and pions. We therefore estimate

a global residual error of 2% on the efficiency correction. To be conservative, we also

include a point-to-point error of 2% to take into account the variations of the error
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as a function of θ. The total error on experimental spectra includes all the systematic

uncertainties summed quadratically. Point to point errors are added quadratically and

Source of systematic error Point to point error Global uncertainty

Background subtraction 2%-10% 1%
Efficiency correction 2% 2%

Normalization - 7%

Total - 7.3%

Table (3.1) Summary of systematic errors in the pp → ppπ+π− reaction analysis.

included on experimental spectra. The global errors are not shown, but are taken into

account when calculating integrated cross sections.



4
Simulations

4.1 The PLUTO event generator

The PLUTO event generator [61, 109] is a tool to simulate particle emission from

hadronic reactions based on ROOT developed by the HADES collaboration. It allows

to describe the production of particles in elementary reactions and their hadronic and

leptonic decays, and also to simulate heavy-ion induced reactions. The package is entirely

based on ROOT, without the need of additional packages, and uses the embedded C++

interpreter of ROOT to control the event production.

To obtain realistic simulations of hadronic interactions at low energies, the effect of

the deviation of resonance shapes from fixed-width Breit-Wigner distributions is taken

into account, which is typically modeled as a mass-dependence in the resonance width.

The relativistic form of the Breit Wigner distribution is used :

g(m) = A
m2 Γtot(m)

(M2
R −m2)2 +m2 Γ2

tot(m)
(4.1)

58
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Where m is the running unstable mass, and MR is the static pole mass of the reso-

nance. The factor A has been chosen such that the integral is statistically normalized

(
∫
dmg(m) = 1). The mass-dependent width depends on the partial widths :

Γ2
tot(m) =

N∑
k

Γk(m) (4.2)

PLUTO is composed of 5 main classes :

— The PParticle class : describes the objects of particle type. It’s the most elemen-

tary object of the software, it inherits from the class TLorentzVector, a quadri-

vector tool of ROOT. The PParticle class holds all the information of each given

particle (momentum components, mass, time of decay...)

— The PChannel Class : describes the decay of a primary particle to secondary

particules.

— The PReaction Class : describes a succession of channels as a chain of PChannel.

This class has a Loop() function that generates the simulation events with the

predefined statistics.

— The PDecayManager Class : allows the creation of reaction cocktails. This class

is very important since it allows the generation of all the different processes that

occur in the same interaction.

— The PData Class : is a data basis where all the different particles and properties

are listed, such as mass, width, decay channels and branching ratios.

4.2 PLUTO Resonance Cocktail

The simulations in this thesis were performed with PLUTO. The goal is to simulate

all the production processes of the proton-proton reaction at 3.5 GeV, that leads to the

ppπ+π− exit channel. We consider three different processes : the excitation of one reso-

nance, with subsequent decay into a proton and two pions (R→ pπ+π−), the excitation

of two resonances decaying into a proton and a pion each (R1, R2 → pπ), and the direct

ρ meson production and decay ρ→ π+π−.

A resonance model assuming that the pion production cross section is given by the

incoherent sum of various baryon resonance contributions was implemented. To gene-

rate the resonance cocktail, all the subsequent channels where simulated separately by
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fixing the isospin and the branching ratio parameters for each resonance, however the

production cross sections were treated as free parameters. The following decay channels

were implemented :

pp −→ p N+

N+ −→ ∆++π−

∆++ −→ pπ+

N+ −→ ∆0π+

∆0 −→ pπ−

N+ −→ p ρ0

ρ0 −→ π+π−

N+ −→ p σ0

σ0 −→ π+π−

(4.1) pp→ pN+ (one resonance excitation) reaction chain.

pp −→ ∆++(1232) R0 (N0,∆0)

∆++ −→ pπ+ R0 −→ pπ−

(4.2) pp→ ∆++R0 (double resonance excitation) reaction chain.

By default, Pluto samples scattering angles in the rest frame of the parent particle

isotropically. The parametrization of the angular distribution is explained in details in

Section 4.5.

4.3 Inputs from the one pion production analysis

In the 1π analysis [65], the exclusive channels pp → npπ+ and pp → ppπ0 as well

as pp → ppe+e− were studied simultaneously for the first time by comparing the data

to simulations based on a resonance model assuming an incoherent sum of baryonic

resonances with masses < 2 GeV/c2. The list of resonances contained in this model

was used as the starting point to describe the production of the e+e− pairs in the
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N ΓR BR(Nππ) % ∆ ΓR BR(Nππ) %
Resonances (MeV) tot ∆π Nρ Resonances (MeV) total ∆π Nρ

N(1440) 350 35 25 0 ∆(1232) 120 0 0 0
N(1520) 120 45 25 15 ∆(1600) 350 85 75 0
N(1535) 203 5 0 2 ∆(1620) 150 70 60 10
N(1650) 150 20 7 5 ∆(1675) 150 55 55 0
N(1675) 150 55 5 5 0 ∆(1700) 300 85 55 30
N(1680) 130 30 10 5 ∆(1720) 150 80 0 80
N(1720) 150 80 0 80 ∆(1905) 350 85 25 60
N(1860) / unknown / / ∆(1910) 250 50 50 0
N(1875) 250 < 50 40 6 ∆(1950) 300 25 25 0

Table (4.1) List of baryonic resonances, their width and their branching ratio to
the Nππ decay channel.

JP Resonance Γtot Branching Ratios (%)
pγ nγ

1/2+ N(1440) 0.35 0.042 0.021
N(1710) 0.1 0.026 0.01
∆(1910) 0.25 0.1 0.1

1/2- N(1535) 0.15 0.15 0.021
N(1650) 0.15 0.11 0.09
∆(1620) 0.15 0.024 0.024

3/2+ ∆(1232) 0.12 0.56 0.56
N(1720) 0.15 0.05 0.2
∆(1600) 0.35 0.01 0.01

3/2- N(1520) 0.12 0.51 0.42
N(1700) 0.1 0.03 0.07
∆(1700) 0.3 0.19 0.19

5/2+ N(1680) 0.13 0.27 0.034
∆(1905) 0.35 0.02 0.02

5/2+ N(1675) 0.15 0.014 0.07
∆(1930) 0.35 0.01 0.01

Table (4.2) The branching ratios and coupling constants for the electromagnetic
transition of baryon resonances.

pp → ppe+e− channel . Table 4.1 presents the compilation of resonance properties,

from the above mentioned resonance model.

The strategy to build a full cocktail describing our data and including both one and

two resonance excitation is summarized below :

1. Starting from the list of resonances from the one pion analysis where only reso-

nances designated conventionally as four-star by the PDG were chosen and which

have the largest anticipated contribution to the production of dileptons. In or-

der to determine this contribution, the theoretical predictions contained in the
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work [67] were used, from which table 4.2, corresponding branching ratios to Nγ

(columns 3 and 4) was used.

2. The double resonance production was added by considering a production of all the

resonances listed in the one pion production together with ∆(1232), this choice

was adopted after doing a simple 2D histogram analysis (see Figure 4.1) that

shows no evidence of other ∆++ resonances.

3. Finally, information about heavier resonances from the pKΛ analysis [111] were

added, this step is explained in details in section 5.3.1.
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Figure (4.1) pπ− Vs pπ+ invariant mass showing the three main double resonance
production, ∆++(1232) together with ∆0(1232), N0(1532) and N0(1680).
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Resonance JP M (MeV) ΓR (Mev) Decay mode BR Isospin

N(1440) 1/2+ 1440 350 ∆++π− 17% 1/2

∆0π+ 17% 1/6
pσ 16% 1/3
pρ 1% 1/3

N(1520) 3/2− 1515 110 ∆++π− 18% 1/2

∆0π+ 18% 1/6
pρ 12% 1/3

N(1535) 1/2− 1530 150 ∆++π− 2% 1/2

∆0π+ 2% 1/6
pσ 3% 1/3

N(1440)π+ 9% 1/3

N(1650) 1/2− 125 150 ∆++π− 9% 1/2

∆0π+ 9% 1/6
pρ 1% 1/3

N(1440)π+ 8% 1/3

N(1675) 5/2− 1675 145 ∆++π− 35% 1/2

∆0π+ 35% 1/6
pσ 5% 1/3

N(1680) 5/2+ 1685 130 ∆++π− 18% 1/2

∆0π+ 18% 1/6
pρ 12% 1/3

N(1700) 3/2− 1700 150 ∆++π− 40% 1/2

∆0π+ 40% 1/6
pρ 40% 1/3

N(1710) 1/2+ 1710 100 ∆++π− 6% 1/2

∆0π+ 6% 1/6
pρ 9% 1/3

N(1535)π+ 15% 2/3

N(1720) 1/2+ 1720 250 ∆++π− 20% 1/2

∆0π+ 20% 1/6
pρ 60% 1/3

N(1875) 1/2+ 1875 200 ∆++π− 25% 1/2

∆0π+ 25% 1/6
pρ 60% 1/3

N(1880) 1/2+ 1880 300 ∆++π− 22% 1/2

∆0π+ 22% 1/6
pρ 30% 1/3
pσ 11% 1/3

N(1535)π+ 8% 2/3

Table (4.3) List of simulated N? resonances, their widths and their branching
ratios to the Nππ decay channel. Nρ branching ratios are taken from Bonn-Gatchina
PWA.
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Resonance JP M (MeV) ΓR (Mev) Decay mode BR Isospin

∆(1232) 3/2+ 1232 117 pπ+ 100% 1

pπ− 100% 1/3

∆(1600) 3/2+ 1600 250 ∆++π− 70% 2/5

∆0π+ 70% 8/15

N(1440)π+ 5% 1/3

∆(1620) 1/2− 1620 130 ∆++π− 35% 2/5

∆0π+ 35% 8/15
pρ 40% 2/3

N(1440)π+ 5% 1/3

∆(1700) 3/2− 1700 280 ∆++π− 10% 2/5

∆0π+ 10% 8/15
pρ 44% 2/3

∆(1905) 1/2+ 1900 300 ∆++π− 43% 2/5

∆0π+ 43% 8/15
pρ 47% 2/3

Table (4.4) List of simulated ∆? resonances, their widths and their branching
ratios to the Nππ decay channel. Nρ branching ratios are taken from Bonn-Gatchina
PWA.

4.4 Accounting for the detector geometrical effects

4.4.1 Acceptance filtering

The simulations cover the full solid angle, therefor before comparing them to HADES

data all the simulations should be filtered by the acceptance matrices (see Figure 3.8).

Figure 4.2 shows ∆++∆0 and N(1520) simulation before (dashed lines) and after (full

lines) acceptance cuts.

∆++∆0 N(1520)

Figure (4.2) ∆++∆0 (left) and N(1520) (right) simulation before (dashed lines)
and after (full lines) acceptance cuts.
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4.4.2 Simulation efficiency cuts
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(b) π+ Eff > 10%
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Figure (4.3) Simulation momentum as function of polar angle θ in the Lab frame.
(a) proton efficiency threshold of 20%, (b) π+ efficiency threshold of 10%, (c) π−

efficiency threshold of 10%.
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In order to compare HADES data to our simulation, we need to treat the simulation

exactly as the data. As mentioned in section 3.6, the regions where the efficiency is

above a certain threshold was restricted. We used a 10% threshold for pions and 20%

threshold for protons. The same restriction should be applied on the simulations. Figure

4.3 shows the momentum as function of polar angle θ in the Lab frame after applying

the efficiency threshold restriction, 10% for pions and 20% for protons.

4.4.3 Momentum Smearing

For the p+p experiment at 3.5 GeV, Runge-Kutta algorithms have been employed

to reconstruct the particle momentum. The resolution is dominated at low momentum

by multiple scattering, consequently is particle dependent, and goes like 1
β . The position

resolution on the MDC chambers gives a contribution ∆p
p which is linear in momentum

and particle independent. This position resolution is directly related to the drift time

uncertainty, but also to the knowledge of the geometry of wires in space, and also depends

on the calibration of the electronics (details can be found in [112]).

Figure (4.4) Squared missing mass distribution of the pπ+π− system before (left)
and after (right) smearing

The resolution has been investigated using the proton-proton elastic collisions at

3.5 GeV. As the angle resolution is much better than the momentum resolution, a

good estimate of the momentum (pcal) of scattered protons can be calculated from

their reconstructed polar angle. Using the Runge-Kutta method, we can also reconstruct

the momentum (pRK) from the measured drift times. By comparing these two values,

the resolution ∆p
p = pcal−pRC

pcal
can be measured event by event. For each (p, θ, φ) cell,
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the obtained values are fitted by Gaussians. The σ(p, θ, φ) are then used to smear the

simulation. For each event (psim, θsim, φsim) in the simulation, the simulated momentum

psim is replaced by a random value psmear sampled from the Gaussian distribution with

mean value equals to psim and variance equals to σ(psim, θsim, φsim).

4.5 Angular distribution parametrization

Figure (4.5) Top : single and double resonance production diagrams. Bottom : the
same processes are illustrated in the centre of mass frame.

Figures 4.5 (top) shows the diagrams of the one and double baryon resonance pro-

duction resulting from a meson exchange. Figure 4.5 (bottom) schematically shows the

production of these resonances in the center of mass frame. Because there are no clear

predictions about how the angular distributions should look like in these cases, it was

decided to calculate these distributions based on phenomenological parameterization in

the form of
dσ

dt
∼ A

tα
(4.3)

where t is the Mandelstam variable or the transferred four-momentum, and is defined

as follows : t = (p1 − p3)2 = (p2 − p4)2, where 1 and 2 are the indexes of the input

channel particles, while 3 and 4 are the indexes of the output channel particles. In the

case of the one resonance production, the four-momentum transfer can be defined as the

difference between the resonance four-momentum and the projectile four-momentum

(proton flying from the left in the center of mass frame), if the produced resonance flies

forward. If, on the other hand, the produced resonance flies backward, we define the

four-momentum transfer as the difference between the four-momentum of the resonance
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Figure (4.6) The value of parameter ”b” of function 4.4 shown as a function of the
resonances mass. (Figure taken from [113])

and of the target proton. In the case of double resonance production, the same recipe to

calculate the transfer at the resonance vertex is applied. The four-momentum transfer

thus is a measure of peripherality of the collision. The more peripheral the collision the

smaller the absolute value of t is.

It is also worth noting the relationship between the peripheral collision and the an-

gular distribution of the produced resonances. By parameterizing the four-momentum

transfer, we therefore influence the simulated angular distributions of the produced re-

sonances. The above parameterization based on observations from published data [113],

where the authors reconstructed baryon resonances generated in proton-proton colli-

sions at 6.6 GeV. The authors have parameterized the four-momentum transfer, using

the function :
dσ

dt
= ea+bt+ct

2

(4.4)

Figure 4.6, taken from [113], shows how the parameter b changes as a function of the

resonance mass. It is worth noting that the higher the resonance mass, the lower the

alpha parameter and hence, the flatter the value of the function 4.4 gets. These results

are consistent with the intuition which suggests that the heavier the produced resonance

is, the bigger must be the absolute value of the transferred four-momentum, which means

that the collision was more central, this is why large angles are being populated in the
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Figure (4.7) Dependency of the constant α from Eq.4.3 on the resonance mass
obtained from fits to the data of 1π analysis [65]

Figure (4.8) The results of the parameterization described in Eq.4.3 angular
distribution before parameterization (black line) and after parameterization (blue line)

CM. Based on this observation, an iterative procedure to obtain the parametrization

was applied in the one pion analysis. Figure 4.7 shows the dependency of the constant

α on the resonance mass, this result was used to parametrize the simulation angular

distributions in this work. Figure 4.8 shows an example of the pπ− system angular

distribution in the CM simulation before and after the parametrization.

4.6 Kinematics variables

Each process of a resonance production is simulated separately and the events are

stored in a ROOT file containing all final state particles information. To reconstruct
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the different kinematics variables (invariant masses, angular distributions...), Lorentz

vectors (four-momentums) in the Lab system for both protons and pions are retrieved,

One should know that in PLUTO particles are stored following the ”parent” particle

they originated channel. These two protons are distinguishable in the simulation. For

example, in the case of the ∆++∆0 excitation process, since in the macro, we first

introduce the ∆++ decay and then the ∆0 decay, the first proton stored in the ntuple is

the one coming from the ∆++ decay and the second proton is the one coming from the

∆0 decay. For the single resonance excitation, the second proton is the proton coming

from the resonance decay since the reaction chain is written as pp → pN∗. This is of

course fully arbitrary but has no influence on the results, since for any comparison to

the data, both protons are added.

The invariant mass of a proton-pion system is calculated as follow :

Minv(pπ) = (pp1
+ pπ).M() + (pp2

+ pπ).M() (4.5)

Angular distribution in the centre of mass system are calculated after boosting the

Lorentz vectors to the CM system.



5
Extraction of the baryon resonance contributions

In this chapter the analysis results for exclusive pp → ppπ+π− channel at
√
s =

3.18 GeV will be discussed. The measured spectra, such as invariant mass and angular

distributions, are compared in the HADES acceptance to the PLUTO simulation based

on the resonance model as introduced in Chapter 4. The steps of building up the PLUTO

resonances cocktail are explained in detail followed by the experimental cross sections

extraction method.

5.1 Evidence for single and double baryon excitation

5.1.1 Correlations between invariant masses

As a first investigation step, we performed a two dimensional histogram analysis as

shown in Figure 5.1. The aim of this analysis is to look for some resonance excitations

that can show up in certain invariant mass correlations.

71
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Figure (5.1) Top left : Minv(pπ
+π−) as a function of Minv(pπ

+). Top right :
Minv(pπ

+π−) as a function of Minv(pπ
−). Bottom left : Minv(pmissπ

+) as a function
of Minv(pπ

−). Bottom right : Minv(pπ
+π−) as a function of Minv(π

+π−).

The first 2D histogram displays the Minv(pπ
+π−) as function of Minv(pπ

+) (see

Figure 5.1 top left). This is an evidence for the one resonance excitation where the

resonance decays to pπ+π− via an intermediate a ∆++ (N+ → ∆++π− → pπ+π−) as

shown by the large vertical structure around Minv(pπ
+) = 1.2 GeV. This is shown more

clearly on the projection of 1.1 GeV < Minv(pπ
+) < 1.3 GeV on the Minv(pπ

+π−) in

Figure 5.2, one can indeed see two peaks, one around 1.5 GeV and another around 1.7

GeV.

The second 2D histogram shows the correlation between the Minv(pπ
+π−) and the

Minv(pπ
−) (see Figure 5.1 top right). The comparison with the previous 2D histo-

gram shows that the production of π+ and π− is not symmetric. An enhancement

for Minv(pπ
−) close to the ∆0 mass is indeed clearly visible, but it is much weaker

than in the Minv(pπ
+) projection. This is consistent with the different isospin factors

(N∗ → ∆++π− : 1/2 ; N0 → ∆−π+ : 1/6). One can also see two other vertical struc-

tures at higher pπ− invariant mass indicating the presence of N∗0 resonances decaying
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Figure (5.2) 1.1 GeV < Minv(pπ
+) < 1.3 GeV projection on Minv(pπ

+π−)
showing two distinct peaks.

to pπ−. In this case, a second resonance is simultaneously excited and decays into a

proton and a π+. To investigate this configuration, we study the correlation between the

Minv(pmissπ
+) and the Minv(pπ

−) (see Figure 5.1 bottom left). We can clearly see three

vertical structures in Minv(pπ
−) correlated to a horizontal structure at Minv(pmissπ

+)

= 1.2 GeV. Figure 5.3 shows the projection on the Minv(pπ
−), three peaks appear, one

around 1.2 GeV, another around 1.5 GeV and a last one around 1.7 GeV. This clearly

suggest the excitation of the ∆++ together with a ∆0 or a N∗0 in the second or third

resonance region.

Figure (5.3) 1.2 GeV < Minv(pmissπ
+) < 1.3 GeV projection on Minv(pπ

−)
showing three distinct peaks.

The fourth and the last 2D histogram is the Minv(pπ
+π−) as function of Minv(π

+π−)

(see Figure 5.1 bottom right). No clear peak appears around the ρ meson mass (Mρ =

0.77 GeV). This confirms that the production of the ρ meson is a small part of the

cross section. The two structures at low π+π− invariant mass are due to the decay of
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resonances of the second and third resonance region into a nucleon and two pions, where

the Minv(π
+π−) and Minv(pπ

+π−) are correlated. Figure 5.4 shows the projection of

Minv(pπ
+π−) > 1.6 GeV on Minv(π

+π−) a large peak around 0.75 GeV appears which

could be a signature of the ρ meson production, this will be discussed in chapter 6.

Figure (5.4) Minv(pπ
+π−) > 1.6 GeV projection on Minv(π

+π−) showing a large
peak at 0.75 GeV.

5.1.2 Comparing data to phase space distributions

The main distributions that will be discussed in this chapter are the four invariant

mass spectra : Minv(pπ
+π−), Minv(pπ

+), Minv(pπ
−), Minv(π

+π−) shown in Figure 5.5

compared to pp → ppπ+π− phase space simulation (yellow area) and the four angular

distribution spectra : cos θCM (pπ+π−), cos θCM (pπ+), cos θCM (pπ−), cos θCM (π+π−)

in Figure 5.6 also compared to pp → ppπ+π− phase space simulation (yellow area).

The comparison to phase space confirms the presence of resonance excitations as one

can see in the invariant mass distributions phase space does not show any structure

contrary to data. The backward/forward peaking in angular distribution is a signature

of NN peripheral collisions, the data shows a backward peaking, the forward one being

suppressed due to HADES acceptance. Phase space distributions are not flat due to

acceptance cuts, but the backward peaking is clearly missing, proving that it is not due

to the detector acceptance effects. In the following, and in the rest of this thesis, the

experimental data are shown in the HADES acceptance.
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(a) (b)

(c) (d)

Figure (5.5) (a) (pπ−), (b) (pπ+), (c) (pπ+π−), (d) (π+π−) invariant mass
distributions compared to pp→ ppπ+π− phase space simulation (yellow area) in
HADES acceptance

(a) (b)

(c) (d)

Figure (5.6) (a) (pπ−), (b) (pπ+), (c) (pπ+π−), (d) (π+π−) center of mass angular
distributions compared to pp→ ppπ+π− phase space simulation (yellow area) in
HADES acceptance
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5.2 Comparing Data with PLUTO simulation

A simple comparison of HADES data with our PLUTO resonance cocktail was done

based on the attempt to describe the shapes of angular distributions in the center of

mass frame and invariant mass distributions shown in Figures 5.5 and 5.6 to eventually

extract all the contributing processes cross sections.

5.2.1 Comparing with one resonance production model

We started by comparing our data to the resonance model established using the

one pion analysis [65] without any modifications. Table 5.1 shows the list of baryonic

resonances with their former cross sections extracted from one pion analysis. At this

level the model represents only the one resonance production (pp→ pN+, pp→ p∆+).

Resonance ΓNππ/Γtot(%) σR [mb]

N(1440) 65 1.50 ± 0.37

N(1520) 55 1.8 ± 0.3

N(1535) 46 0.15 ± 0.05

∆(1600) 15 < 0.24 ± 0.10
∆(1620) 25 < 0.10 ± 0.03

N(1650) 45 < 0.81 ± 0.13
N(1675) 45 < 1.65 ± 0.27
N(1680) 65 < 0.9 ± 0.15
N(1720) 20 < 4.4 ± 0.7

∆(1700) 15 < 0.45 ± 0.16

∆(1905) 15 < 0.85 ± 0.53
∆(1910) 25 < 0.38 ± 0.16

Table (5.1) Cross sections in units of mb for the single positively charged
resonances extracted from the one pion analysis [65] pp→ npπ+ and pp→ ppπ0.

It can be deduced from the comparison of the invariant mass spectra shown in Figure

5.7, that the one resonance production reproduces only about 30% of the measured

2 pion channel yield. The total one resonance simulation curve (dashed green) (see

Figure 5.7 left) does not show the resonant structures at Minv(pπ
−) > 1.4 GeV and in

Figure 5.7 (right) it shows only resonant structures, while the non-resonant contribution

to Minv(pπ
+π−) is clearly missing, which confirms the need to implement the double

resonance production.
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Figure (5.7) pπ− invariant mass (left) and pπ+π− invariant mass (right)
compared to the One resonance production simulation (dashed green)

5.2.2 Implementation of the double resonance contribution

As mentioned chapter 4, the double resonance excitations were added to the PLUTO

resonance cocktail by considering the possible excitation of all the resonances in Table

5.1 together with a ∆++(1232) since as shown in Section 5.1.1 the Minv(pmissπ
+) vs.

Minv(pπ
−) suggests the excitation of the ∆++ together with a ∆0 or a N∗0.

Figure 5.8 shows the (pπ−), (pπ+π−), (pπ+) and (π+π−) invariant masses distribu-

tions together with a comparison to the PLUTO resonance cocktail. Error bars include

statistical and systematic errors where the former ones are negligible while the latter

ones are mainly due to background subtraction and efficiency corrections. The cocktail

includes the list of one resonance production (pp → pN+, pp → p∆+) taken from the

one pion analysis [65], [111] with the former cross sections, and the double resonance

production (pp → ∆++N0) where the given cross sections were set primarily manually

(see Section 5.3.1).

The prominent peaks of Minv(pπ
−) and Minv(pπ

+) around 1.23 GeV/c2 in Figures

5.8 (a) and (c) confirm the dominance of ∆++(1232) and ∆0(1232). The other two peaks

around 1.52 GeV/c2 and 1.68 GeV/c2 of Minv(pπ
−) are an evidence for the double re-

sonance excitations pp→ ∆++N0(1520) and pp→ ∆++N0(1680). The absence of other

peaks in Minv(pπ
+) indicates that heavy ∆++ resonances do not contribute, meaning

that all the double resonances productions are a ∆++(1232) together with a N resonance.

The prominent peak of Minv(pπ
+π−) around 1.7 GeV/c2 in Figure 5.8 (b) is a mixture

of few heavy resonances (N(1675), N(1680), N(1700), ∆(1700), N(1720)). The width
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of this peak can only be reproduced by combining the resonances with mass around 1.7

GeV/c2, however the highest contributions come from N(1675) and N(1680).

(a) (b)

(c) (d)

Figure (5.8) (a) pπ−, (b) pπ+π−, (c )pπ+, (d) pπ+π− invariant mass distributions
compared to the result of simulations (dashed red curves) assuming an incoherent sum
of the resonance contributions shown by separate curves as indicated in the legend.

5.2.3 Sensitivity of the data to the cocktail parameters

The pπ+π− squared missing mass distribution is shown in the Figure 5.9. It peaks at

the squared proton mass as expected, showing that the pp→ ppπ+π− reaction has been

measured. The position and width of the proton peak is well reproduced by the PLUTO

resonance cocktail which confirms the efficiency of the background subtraction strategy

and the realistic description of the resolution by the simulation.

Figure 5.10 shows the four main angular distributions studied in this analysis. Our

PLUTO resonance cocktail provides a reasonable description of the shape of these spec-

tra. Some discrepancies can, however, still be found in the forward part of the CM frame,

after some investigations it turned out that the acceptance matrices (see Figure 3.8) do
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Figure (5.9) Squared missing mass distribution of the pπ+π− system compared to
to PLUTO resonances cocktail (dashed red).

not reconstruct well the particles that are emitted at a laboratory polar angle less than

approximately 18°. An acceptance cut θ < 18° is necessary since this detector region

is not well described by simulations, one can clearly see the enhancement in Figure

4.3 at small polar angles high momentum, the effect of this enhancement is shown in

angular distributions (see Figure 5.10). Figures 5.15 (e-h) show the four main angular

distributions after the θ < 18° cut.

The data is also sensitive to the simulation parameters. Figure 5.11 shows the pπ−

invariant mass distribution compared to old simulation with the contributions ofN(1520)

with M = 1520 MeV and Γ = 120 MeV. The updated simulation of N(1520) with M =

1515 MeV and Γ = 110 MeV (last PDG estimate [11]) fits perfectly the data (see Figure

5.15 (a)).

This aspect is also the reason why we could include both N+(1675) and N+(1680)

resonances, their cross sections were given in the one pion analysis [65] only as an upper

limit. To prove the presence of both resonances in this reaction, two comparisons were

performed, in the first one only the N+(1675) was added, the result is shown in Figure

5.12(a), we can clearly see the shift to the left of the peak (dashed red curve). In the

second one only N+(1680) was added, the result is shown in Figure 5.12(b), one can

clearly see that the simulation cocktail with only N+(1680) doesn’t fit the data.
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(a) (b)

(c) (d)

Figure (5.10) (a) (pπ−), (b) (pπ+), (c) (pπ+π−), (d) (pπ+π−) angular
distributions compared to the result of simulations (dashed red curves) assuming an
incoherent sum of the resonance contributions shown by separate curves as indicated
in the legend.

Figure (5.11) pπ− invariant mass distribution with the contribution of N(1520)
with mass 1520 MeV and width 120 MeV
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(a) (b)

Figure (5.12) (a) (pπ+π−) invariant mass distribution compared to a resonance
cocktail without N(1680) contribution, (b) without N(1675) contribution.

5.3 Extraction of the Cross Sections

In order to obtain the value of cross-sections of the different contributions, the follo-

wing strategy was adopted :

5.3.1 Manually adjusted cross sections

As mentioned in Section 5.2.1, the one resonance production cross sections were taken

from the one pion analysis [65] (see Table 5.1). These cross sections were extracted for

the production of the positively charged resonance, so they can be directly used in our

analysis, together with the branching ratio towards Nππ. Some groups of resonances

could not be separated in the one pion analysis. In these cases the resonance with the

largest coupling to pion and dielectron channels (in bold) was used in simulations of

Ref.[65] and only upper limits of the cross-sections were set. In our analysis, the cross-

sections contributions of resonances for which only an upper limit were adjusted to the

data.

The analysis presented in [111] allowed to extract amplitudes for the excitation of

various resonances in the pp → pKΛ channel, which we convert into cross sections for

the pp → ppπ+π− using the branching ratios to Nππ and pKΛ, σpππ = ΓNππ
ΓKΛ

σpKΛ.

As can be observed in Table 5.2, this results have large error bars. This uncertainty is

mainly due to the bad knowledge of the KΛ branching ratios, but the systematic error

in the determination of the pKΛ amplitudes also plays a role. Despite these large errors,
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the pKΛ channel gives some information for the excitation of the five heavy resonances

N(1650), N(1710), N(1720) N(1875), N(1880). For two of these resonances, only an

upper limit could be extracted from the one pion analysis [65]. These upper limits were

still compatible with the results deduced from the pKΛ analysis.

Resonance ΓKΛ/Γtot(%) σ(N∗ → pKΛ)[µb] ΓNππ/Γtot(%) σ(N∗ → pππ)[µb]

N∗(1650) 7 ± 4 8.6 ± 0.6 ± 2.1 38 ± 4 27.0 ± 17.1
N∗(1710) 15 ± 10 11.7 ± 1.0 ± 2.8 23 ± 10 23.4 ± 19.6
N∗(1720) 4 ± 1 2.4 ± 1.3 ± 0.4 70 ± 20 42.0 ± 19.5
N∗(1875) 4 ± 2 1.5 ± 1.3 ± 0.4 70 ± 20 26.5 ± 27.0
N∗(1880) 2 ± 1 14.9 ± 0.2 ± 3.6 55 ± 25 409.7 ± 294.0

Table (5.2) Cross sections in units of µb for the single positively charged
resonances extracted from pp→ pKΛ analysis (third column) normalized to the pππ
channel (fifth column). KΛ BR (second column), Nππ BR (forth column) taken from
the PDG [11]

Then, the double resonance production cross-sections were adjusted to reproduce the

data, the double ∆++(1232)∆0(1232) being the most important channels of this type,

followed by ∆++(1232)N0(1440), ∆++(1232)N0(1520), ∆++(1232)N0(1680), the other

double resonances don’t show any evidence of contribution as it will be shown below.

A first adjustment of the cross sections was done manually. The pπ− invariant mass

distribution is mainly used to adjust the cross sections of the different double resonance

productions, then the unknown cross sections for the excitation of heavy baryons are

adjusted at best to fit the pπ+π− invariant mass distribution. The manually adjusted

cross sections are given in Table 5.3. The χ̃2 test result is : χ̃2/nd = 7.9, where nd is the

number of degrees of freedom. nd = 50 bins - 25 contributions = 25.

5.3.2 Automatic fitting procedure

In a second step, a χ̃2 minimization was performed to find corrections with respect to

the cross sections values obtained in the manual adjustment. The fit parameters being

the correction factors for the cross-sections. We used ROOT class MINUIT, a system

for function minimization and analysis of the parameter errors and correlations [114].

The function to minimize is :

χ̃2 =
N∑
i

(
zi −

∑m
j ajRij

σi
)2 (5.1)
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Where zi is the integrated experimental cross section in the bin i, σi is the error for the

bin i, Rij are the integrated simulation cross section, and aj are the correction factors

to be extracted.

The invariant mass spectra M(pπ+), M(pπ−), M(pπ+π−) and M(π+π−) were used

in this minimization. The minimization was done using MIGRAD, a minimization su-

broutine based on a variable metric method. It is extremely fast near a minimum but

slower if the function is badly behaved. It uses the first derivatives of the function, which

may either be supplied by the user or estimated by MINUIT [114].

Resonance Manual σ [mb] Parameter Error

∆++∆0 3.45 1.08 0.04

∆++N0(1440) 1.5 0.54 0.03

∆++N0(1520) 1.6 0.94 0.03

∆++N0(1535) 0.15 0.99 0.06

∆++N0(1680) 0.8 1.00 0.02

∆++∆0(1600) 0.04 0.05 0.001

∆++∆0(1620) 0.05 0.1 0.003

∆++N0(1650) 0.01 0.02 0.002

∆++∆0(1700) 0.06 0.06 0.005

∆++N0(1720) 0.01 0.02 0.001

∆+(1600) 0.04 0.04 0.003

∆+(1620) 0.1 0.50 0.02

N+(1675) 0.8 1.31 0.02

N+(1680) 1.0 0.86 0.07

N+(1700) 0.15 1.26 0.13

∆+(1910) 0.015 3.0 0.4

N+(1650) 0.027 0.99 0.01

N+(1710) 0.024 0.98 0.02

N+(1720) 0.042 1.02 0.02

N+(1875) 0.027 1.01 0.01

N+(1880) 0.41 1.00 0.01

Table (5.3) χ̃2 minimization correction parameters, Red rows : non contributing
resonances. Cyan rows : fixed parameters.

The minimization was done in three steps. This was necessary since the total number

of selected contributions was 25. In the first step we fixed 4 contributions : N(1440),

N(1520), N(1535) and ∆(1700) and we kept the 21 left contributions as free para-

meters, starting with the cross section values in Table 5.3. The minimization resulted

in correction factors smaller than 0.1 for the following contributions : ∆++∆0(1600),

∆++∆0(1620), ∆++N0(1650), ∆++∆0(1700), ∆++N0(1720) and ∆+(1600) (See Table

5.3 red rows). Hence, they were considered as non contributing, since their initial cross
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sections were already very small (below 0.05 µb) and the final result is compatible with

zero within 1 or 2 σ.

Figure (5.13) Minimization parameter correlation matrix for 15 parameters. First
column : global correlation.

In the second step the minimization algorithm was run again with 15 free parameter.

The result showed that the resonances of the pKΛ analysis have a correction parameter

very close to 1 (See Table 5.3 cyan rows). The errors on the different parameters are

also listed. Figure 5.13 shows the correlation matrix of the 15 parameters, the correla-

tion parameters of these resonances (See Table 5.3 cyan rows) are relatively low, which

confirms that the information deduced for these resonances is very valuable. To check

the stability of the fit with respect to the contributions of these heavy resonances, we

fixed their cross sections to the central values of the pKΛ analysis, which allows to per-

form a last minimization. In this case, we obtain a better χ̃2 (χ̃2/nd = 5.1), which is

expected due to the lower number of parameters. Most importantly, the values of the

cross sections are compatible with the ones from the previous fit. So for the third step,
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Figure (5.14) Minimization parameter correlation matrix for 10 parameters. First
column : global correlation.

the minimization algorithm was run with only 10 free parameters, the calculated para-

meters are listed in Table 5.3 (white rows). Figure 5.14 shows the correlation matrix of

these 10 parameters, this matrix is important because it indicates the reliability of the

minimization for example there is no correlation coefficient that is exactly equal to zero

or very close to one (0.99).

The final result of the extracted cross sections of the 19 contributions in pp collision at

3.5 GeV is given in Table 5.4 (second column). The χ̃2 test result is : χ̃2/nd = 1.23. The

errors represent the quadratic sum of the fit error and the error on the branching ratios

from the PDG, the global systematic error coming from the normalization is not shown.

To obtain the cross sections in the pπ+π− channel (fourth column) we multiplied the

resonances cross sections (σR) by the corresponding Nππ branching ratio and isospin

factor (third column). The errors come from the fitting procedure uncertainty. The total
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cross section for pp → ppπ+π− reaction at Tp = 3.5 GeV deduced from this analysis

is : σtot = 3.51± 0.15 mb. Figure 5.15 represents the best fit of the four invariant mass

distributions and the four angular distributions.

Resonance σR [mb] BRNππ × I σpπ
+
π
−

R [mb]

N+(1440) 1.5 ± 0.4 0.17 ± 0.04 0.250 ± 0.017

N+(1520) 1.8 ± 0.3 0.16 ± 0.03 0.29 ± 0.016

N+(1535) 0.15 ± 0.03 0.023 ± 0.005 0.0030 ± 0.0002

∆+(1620) 0.05 ± 0.01 0.44 ± 0.09 0.022 ± 0.002

N+(1650) 0.027 ± 0.008 0.09 ± 0.02 0.002 ± 0.0001

N+(1675) 1.05 ± 0.23 0.25 ± 0.05 0.26 ± 0.004

N+(1680) 0.80 ± 0.08 0.016 ± 0.02 0.128 ± 0.011

N+(1700) 0.10 ± 0.025 0.4 ± 0.1 0.04 ± 0.004

∆+(1700) 0.45 ± 0.13 0.38 ± 0.10 0.17 ± 0.02

N+(1710) 0.024 ± 0.008 0.09 ± 0.03 0.002 ± 0.0001

N+(1720) 0.045 ± 0.005 0.33 ± 0.03 0.0148 ± 0.0003

N+(1875) 0.027 ± 0.013 0.36 ± 0.17 0.0097 ± 0.0004

N+(1880) 0.41 ± 0.20 0.16 ± 0.07 0.066 ± 0.003

∆+(1905) 0.045 ± 0.005 0.56 ± 0.06 0.025 ± 0.003

∆++∆0 3.7 ± 0.15 0.33 ± 0.0 1.22 ± 0.05

∆++N0(1440) 0.81 ± 0.13 0.36 ± 0.05 0.54 ± 0.01

∆++N0(1520) 1.50 ± 0.10 0.46 ± 0.03 0.37 ± 0.02

∆++N0(1535) 0.46 ± 0.10 0.30 ± 0.06 0.138 ± 0.003

∆++N0(1680) 0.80 ± 0.07 0.43 ± 0.03 0.34 ± 0.01

Table (5.4) Cross sections in units of mb for the single and double resonances
production in pp collisions extracted from pp→ ppπ+π− analysis. The errors
represent the quadratic sum of the fit error and the error on the branching ratios. The
resonances cross sections for the channel ppπ+π− are given in the last column by
multiplying σR ×BRNππ× I. The errors represent the uncertainty on the fitting
procedure.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure (5.15) (a) pπ−, (b) pπ+π−, (c ) pπ+, (d) pπ+π− invariant mass
distributions and (e) (pπ−), (f) (pπ+), (g) (pπ+π−), (h) (pπ+π−) angular
distributions compared to PLUTO resonance cocktail best fit (dashed red curves)
assuming an incoherent sum of the resonance contributions shown by separate curves
as indicated in the legend.
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5.3.3 Impact of the results for dielectron production

With respect to the one pion analysis [65], the two pion analysis allowed to extract

more precise cross sections for N(1440), N(1520), N(1535) and ∆(1700) contributions.

As shown in Table 5.4 the errors for these resonances were reduced by a factor 3. This is

due to the large sensitivity of the pπ+π− invariant mass distribution to these contribu-

tions. In addition, for the excitation of higher lying resonances, only upper limits of the

cross sections were extracted from the one pion analysis. Due to the high 2πN branching

ratios, cross sections values could be extracted, which are consistent with these upper

values.

Also the obtained results with the minimization method are compatible with the pKΛ

analysis [111]. Indeed, although the cross sections of the heavy resonances (N(1650),

N(1710), N(1720), N(1875) and N(1880)) are relatively small, our data is still sensitive

to their contribution, any small excess will distort the pπ+π− invariant mass distribution

above 1.8 GeV/c2.

It was also possible to extract cross sections for double resonance excitation. Although

the applied model assumes a simplified reaction mechanism ignoring interferences bet-

ween various intermediate states it describes the data surprisingly well. However the

effect of the inteferences will be discussed in Chapter 7.

These results are very valuable since they add some missing building blocks for the

dilepton production. As mentioned in Section 1.4.3 the resonances cocktail obtained

from the one pion analysis [65] was used for the interpretation of the exclusive dilepton

channel pp → ppe+e−. More precisely, for each resonance the differential Dalitz decay

width was calculated as a function of the e+e− invariant mass and all these contributions

were added to generate the e+e− mass distribution. By doing this, electromagnetic form

factors were assumed to be the same as for the radiative decays (point-like assumption),

which means that for a given transition, the Dalitz decay yield is just proportional to

the radiative decay branching ratio. The shape of the distribution depends however on

the spin and parity of the transition. This work [65] could be updated, using the new

values of resonance contributions deduced from the two pion analysis. In addition, in

the meantime, a more precise information on the radiative decay width of some baryonic

resonances is available in the PDG, which can also be used. Table 5.5 summarizes the new

inputs for a dilepton cocktail. The cross sections are the result of our analysis and the
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branching ratios are updated from [67] using the new values of radiative decay branching

ratios from the PDG [11]. Such inputs could therefore be used to produce a new cocktail

of point-like resonance Dalitz decay and e.g. to update the simulation results in Figure

1.17 (a). This detailed calculation is outside of the scope of this work and could be

the subject of further studies. Since the one resonance production cross sections are

compatible with [65] and most of the radiative decay branching ratios stayed within

the error bars, we expect mainly a reduction of the uncertainties for the simulations of

pp→ ppe+e−.

Also, the inputs for both one and two resonance excitations could be used for a

simulation of the baryonic contribution to the inclusive pp → e+e−X reaction [115]

where one resonances decays to Ne+e− and the other decays to a hadronic channel.

Resonance σR [mb] BRpe
+
e
−

QED

N+(1440) 1.5 ± 0.4 3.06×10−6

N+(1520) 1.8 ± 0.3 3.13×10−6

N+(1535) 0.15 ± 0.03 1.66 ×10−5

∆+(1620) 0.05 ± 0.01 1.73 ×10−6

N+(1650) 0.027 ± 0.008 8.74 ×10−6

N+(1675) 1.05 ± 0.23 1.45 ×10−6

N+(1680) 0.80 ± 0.08 1.92×10−5

N+(1700) 0.10 ± 0.025 2.19×10−6

∆+(1700) 0.45 ± 0.13 2.98×10−5

N+(1710) 0.024 ± 0.008 2.91×10−6

N+(1720) 0.045 ± 0.005 1.09×10−5

∆+(1905) 0.045 ± 0.005 7.31×10−6

Table (5.5) Cross sections in units of mb for the single resonances extracted from
this analysis and their updated QED branching ratios.

5.4 Dibaryon investigation

In this part we investigate about the isotensor dibaryon D21 with quantum numbers

IJP = 21+ reported recently by WASA at COSY [102, 103] with mass M = 2140± 10

MeV and width Γ = 110 ± 10 MeV in their measurements of quasi free pp → ppπ+π−

reaction by means of pd collisions at Tp = 1.2 GeV. Because of its isospin I = 2, this

state cannot be excited directly by incident NN collisions, but only by the production

of an additional pion, which carries away one unit of isospin. By isospin selection the

decay of an isotensor N∆ state will dominantly proceed into the purely isotensor ppπ+
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channel. Hence the pp → ppπ+π− reaction is the ideal place to look for the process

pp→ D+++
21 π− → ppπ+π− [103].

Figure 5.16 (a) shows the ppπ+ invariant mass distribution measured in our expe-

riment. Since we select the pp → ppπ+π− reaction by detecting the two pions and one

proton, this invariant mass is simply the missing mass of the reaction pp → π−X. No

structure is visible for this spectrum at low Minv(ppπ
+) invariant masses where the di-

baryon is expected to show up. To further investigate the presence of the D21 dibaryon

in more details, we simulated the process pp→ D+++
21 π− → ∆++pπ− → ppπ+π−, where

D+++
21 is a dibaryon with M = 2140 MeV and Γ = 110 MeV using phase-space and

added this contribution to our resonance cocktail.

Figure 5.16 (a) shows the Minv(ppπ
+) distribution compared to the resonance cock-

tail (dashed red curve) including the D+++
21 contribution. The same figure is shown in

logarithmic scale (see Figure 5.16 (b)) to bring out the dibaryon contribution (violet

curve). The χ̃2 minimization method was used to extract the dibaryon cross section, the

result is σD21
= 0.3± 0.1µb.

(a) (b)

Figure (5.16) (a) (ppπ+) invariant mass distribution compared to PLUTO
resonance cocktail (dashed red) + the D21 dibaryon (violet). (b) same in logarithmic
scale.

Taking into account the hypothesis that the dibaryon is masked by the high back-

ground of the single and double resonance contributions we applied the following inva-

riant mass cuts : Minv(pπ
+) < 1.25 GeV, Minv(pπ

−) > 1.4 GeV and Minv(pπ
+π−) > 1.7

GeV. These cuts do not affect the dibaryon distribution but reduce the background by a

factor 10 as shown in Figure 5.17. The χ̃2 minimization method gave the same fit result

σD21
= 0.3 ± 0.1µb. This cross section is much lower than in WASA analysis at Tp =
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1.2 GeV (see Figure 1.21). However, this result should rather be considered as an upper

limit, since this part of the spectrum is very sensitive to resolution effects.

Figure (5.17) (a) (ppπ+) invariant mass distribution in logarithmic scale compared
to PLUTO resonance cocktail (dashed red) + the D21 dibaryon (violet) reduced by a
factor 10 after invariant mass cuts.

One could also investigate the D+
21 dibaryon that can be produced in the process

pp→ D+
21π

+ → ∆0pπ+ → ppπ+π− but due to isospin coupling the branching via ∆0 is

very small. Indeed the Clebsch-Gordon coefficients are :

D+++
21 → ∆++π+ : |2, 2〉 = 1
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6
Extraction of the light meson contributions

6.1 Introduction

Other interesting processes contributing to the double pion production final state are

the production of light mesons that decay to the π+π− channel. Considering the energy

available in our experiment, three mesons can be produced :

— f0(500) or σ (M = 400-550 MeV, Γ = 400-700 MeV).

— ρ(770) (M = 769 MeV, Γ = 150 MeV).

— f0(980) (M = 990 ± 20 MeV, Γ = 10 to 100 MeV).

Data for the production of these mesons in pp reactions exist only in the case of the ρ

meson, which is expected to be the most strongly produced, albeit with a cross section of

the order of only 100 µb, i.e. much lower than the excitation of baryonic resonances. In

this chapter we first present the detailed analysis and results for the ρ meson production,

since it is of a particular interest for the dilepton analysis and for the transport models

and then investigate possible contributions of the f0 mesons

92
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6.2 ρ meson

It has to be noted that our simulation used for the extraction of the baryonic resonance

contribution included the ρ meson production in two different processes :

1. A production via excitation of a baryonic resonance, i.e pp → pN?, N? → pρ →
pπ+π−. In this case, the branching ratios were taken from the Bonn-Gatchina

PWA (see Table 6.1).

2. A direct contribution, simulated according to phase space with a cross section of

80 µb, in agreement with existing experiments.

Our aim is now to extract more precisely this direct ρ contribution by using cuts to

suppress π+π− production from baryons. We will also discuss the ambiguities related to

this distinction between ”resonance-ρ” and ”direct-ρ” production, since the amplitudes

of both contributions should in principle interfere.

Resonance Bonn-Gatchina Nρ(%) PDG Nρ(%) σRρ [µb]

N(1440) < 1 < 8 0
N(1520) 12 ± 2 15-25 72 ± 12
N(1535) 3 ± 1 < 4 1.5 ± 0.5
N(1675) < 1 < 1-3 0
N(1680) 12 ± 2 3-15 32 ± 5
N(1700) 45 ± 15 < 35 15 ± 5
N(1720) 60 ± 18 70-85 9 ± 3
N(1875) 60 ± 14 seen 5.4 ± 1.2
N(1880) 30 ± 8 - 41 ± 10
∆(1700) 44 30-55 66 ± 7
∆(1905) 47 < 60 6.7 ± 0.6

Table (6.1) Branching ratios for decay of the resonances into Nρ channel, from
Bonn-Gatchina PWA and the PDG.

6.2.1 ρ meson signal extraction

The invariant mass distribution of the pion pair from the light mesons decay is swam-

ped by the background from the pion pairs that stem from the reactions pp → ∆R →
ppπ+π− and pp→ pR→ ppπ+π−. As shown in Figure 5.15 (d), the π+π− invariant mass

does not show an evidence of the ρ0 meson production. Therefore in order to extract the

ρ0 meson signal we had to apply specific kinematical cuts that reduce the resonances

background.
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The first cut was applied on the pπ+ and pπ− invariant mass distribution in order

to reduce the background related to the ∆++ and ∆0 production. Events with invariant

mass for both pπ+ and pπ− lower than 1.3 GeV/c2 were rejected. Figure 6.1 (a) shows

by black lines the cut on the experimental distributions which are mainly due to the

double-∆ contribution since it has the highest cross section (see table 5.4) and (b) shows

the rejected events in ρ meson simulation. With such conditions 70% of the π+π− pairs

were rejected, whereas the simulation showed that only 2% of those from ρ0 simulation

are rejected. Figure 6.2 shows the π+π− invariant mass distribution after applying the

first kinematical cut compared to the total simulation (dashed red) built as explained

in Chapter 5 with baryonic resonances contributions from Table 5.4 and a direct ρ

contribution simulated with phase space distributions with a cross section of 80 µb. A

structure near the ρ0 mass 0.77 GeV/c2 is now visible.
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Figure (6.1) pπ+ invariant mass as function of pπ− invariant mass (a) for data and
(b) for ρ meson simulation. The black lines demonstrate the first kinematical cut
which rejects event with Minv(pπ

+) < 1.3 GeV/c2 and Minv(pπ
−) < 1.3 GeV/c2.

In the case of one or two baryon resonance excitation, it is expected that the angular

distribution of protons is very forward/backward peaked and due to the acceptance cuts,

most protons are detected at backward CM angles, i.e. rather large lab angles. A much

flatter proton angular distribution, closer to phase space is expected for the ρ production.

Due to the Lorentz boost, the corresponding protons are expected at forward angles in

the laboratory, as illustrated in Figure 6.3 (a). By applying a threshold on the angle

of the detected proton at 30° in the laboratory, we can expect to suppress significantly

events from the resonance production and in a much smaller amount events from the ρ

meson production. This is illustrated in Figure 6.3 (a) and (b), where the cut is shown

by black lines. With such condition 15% more of the π+π− pairs were rejected, and
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Figure (6.2) π+π− invariant mass distribution after applying the kinematical cut
Minv(pπ

+) < 1.3 GeV/c2 and Minv(pπ
−) < 1.3 GeV/c2, compared to phase space

(yellow area) and resonance cocktail (dashed red). ρ coming from resonances is shown
in dashed violet. The solid blue line represent the sum of double resonance excitation
and the dashed green represent the sum of one resonance excitation.

3% from the ρ simulation. Figure 6.4 shows the π+π− invariant mass distribution after

applying both kinematical cuts compared to the predictions of our resonance model.

The structure near the ρ0 mass of 0.77 GeV/c2 is enhanced, and this is obviously due

to the ρ meson since it is completely absent in phase the space simulation (yellow area).

The whole spectrum is very well reproduced by our resonance cocktail shown as a red

line. The data are therefore in agreement with the cross section of 80 µb. However, in

our simulation, the ρ meson is produced according to phase space. In Section 6.2.3, we

will extract the angular distribution and provide a precise estimate of the ρ production

cross section.

6.2.2 ρ spectral function

In Figure 6.4, one can also compare the π+π− invariant mass for the ρ meson pro-

duced by the decay of the resonances (dashed violet curve) and the Breit-Wigner like

distribution of the direct ρ contribution. One can first notice that the former is strongly

cut due to the selection applied to suppress the baryonic resonance contribution. Most

importantly, it is very clear that the spectral function of the ρ produced from the ba-

ryonic resonance cocktail is highly distorted with respect to the Breit-Wigner. This is

due to the coupling to the light baryonic resonances, which have a pole mass well below

the pole mass of the ρ meson and can couple only to ρ mesons in the low mass tail.
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Figure (6.3) θ proton in the lab distribution as function of π+π− invariant mass
(a) for data and (b) for ρ meson production simulation. The black lines demonstrate
the second kinematical cut that rejects events with θlab(p) > 30°.

Figure (6.4) π+π− invariant mass distribution after applying the kinematical cuts
Minv(pπ

+) < 1.3 GeV/c2, Minv(pπ
−) < 1.3 GeV/c2 and θlab(p) < 30°, compared to

phase space (yellow area) and resonance cocktail (blue + dashed green) +
Breit-Wigner ρ (pink). ρ coming from resonances is shown in dashed violet.

This means that the ρ meson spectral function is modified by the coupling with baryon

resonances already in pp reactions. Since medium effects on the ρ meson are expected

to further modify the spectral function, our study is therefore very important in this

context as a reference for ”vacuum” modifications.

To illustrate this, we plot in Figure 6.5 the correlation between (pπ+π−) invariant

mass and (π+π−) invariant mass. This figure shows three structures, two oblique struc-

tures, with invariant masses around 1.5 and 1.7 GeV/c2, corresponding to the excitation

of resonances in the second and third resonance region. Following our results of Chapter
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(b) (b)

(c) (d)

(e) (f)

Figure (6.5) (pπ+π−) invariant mass as function of (π+π−) invariant mass after
the kinematical cut that rejects events with θlab(p) > 30°. (a) data, (b) ρ→ π+π−, (c)
N(1520)→ pρ, (d) N(1680)→ pρ, (e) N(1720)→ pρ, (f) N(1880)→ pρ.

5, we know that the main contributing resonances in these regions are respectively the

N(1520) and N(1680). In this case, since the pole mass of these resonances are below

the ρ mass pole, only ρ mesons in the low mass tail can be produced. For a given mass of

the baryon, the highest π+π− invariant masses, i.e. closest to the ρ meson pole mass are
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enhanced, but the maximum value of the invariant mass is limited by the available phase

space for the decay. Due to this correlation between the mass of the baryons and the

mass of the π+π− pair. This is why these contribution appear as oblique bands in Figure

6.5(Data). This behavior is confirmed by the distributions obtained for simulations for

the N(1520), N(1680) and N(1720), shown in Figures 6.5 (c,d,e).

The third structure is a vertical band located at π+π− masses around the ρ meson

mass and with pπ+π− invariant masses spread around 1.8 GeV/c2. These π+π− pairs

can be due to the production of ρ by resonances with masses well above the ρ meson

mass, for example N(1880), which has a mass about 160 MeV/c2 above the threshold for

the ρ meson at the pole mass. This is illustrated in Figure 6.5 (f). The decay of N(1880)

appears as a broad spot around Minv(pπ
+π−) = 1880 MeV/c2 and Minv(π

+π−) =

770 MeV/c2, π+π− invariant mass distribution is centered around the ρ meson mass.

The direct ρ production can also contribute in this region. It is expected to produce a

vertical structure centered on the ρ meson mass (769 MeV/c2), with no structure for

the pπ+π− invariant mass distribution as illustrated in Figure 6.5 (b) which shows the

result obtained for the simulation of the direct ρ production.

6.2.3 ρ meson angular distribution

In [116], the production of vector mesons via baryonic resonances was not considered

and two different graphs were invoked : nucleonic currents (Figure 6.6 a) where the ρ is

emitted from a ρNN vertex and mesonic currents (Figure 6.6 b) where the ρ is emitted

from a ρMM vertex, whereM is a meson exchanged between the two interacting protons.

Polar angle differential cross sections have been proposed [116] as a sensitive observable

to extract the strength of nucleonic and mesonic currents and detailed calculations were

performed for the ω production [116]. It was shown that mesonic currents lead to a flat

angular distribution in the center of mass, while the distribution for nucleonic currents

is predicted to be forward/backward peaked. No calculation exist to our knowledge for

the ρ meson production, but we can expect the same qualitative trend. However, we

can observe that, since the coupling of ρ0 to π0π0 is forbidden, the ρ meson can not be

produced via pion exchange. It still can be produced by the exchange of heavier mesons,

but this will be less probable. So, it is expected that the direct ρ meson production will

proceed dominantly via nucleonic currents. It can also be added that, nucleonic currents
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should be treated coherently with baryonic resonance contributions, involving a MNR

vertex instead of MNN .

Figure (6.6) Feynman diagrams for the nucleonic current (a) and mesonic current
(b) contributing to meson production in NN reactions.

Figure (6.7) Angular distribution of the emitted ω meson in the reaction pp→ ppω
at the energy Tp = 2.2 GeV [116]. The lower figure shows the result where the
nucleonic current is larger than the mesonic current (NC > MC) whereas the upper
graph contains the results where the nucleonic current is smaller than the mesonic
current (NC < MEC). The dash-dotted line is the contribution of the mesonic
current, the long-dashed line is the contribution of the nucleonic current and the full
line is the total result.

The DISTO collaboration has studied the ρ meson production in the pp → ppπ+π−

channel at pbeam = 3.67 GeV/c [117] by fitting the π+π− invariant mass distribution for

equal bins in cosCM θ with a Breit-Wigner ρ and a third order polynomial background

normalized to the same maximum of experimental data (see Figure 6.8 (a)). The DISTO

collaboration has reported an anisotropy of the ρ meson polar angle θcmρ . Such behavior
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(a) (b)

Figure (6.8) (a) π+π− invariamt mass distribution measured for cosCM θ > 0.5.
The solid line shows the fit using a relativistic Breit-Wigner function added onto a
third order polynomial for the background. The dotted line shows the meson line
shape, and the dashed line presents the Minv(π

+π−) distribution obtained for
cosCM θ < 0.4 normalized to the same maximum. (b) the ρ0 (circles) differential cross
sections as a function of the meson CM emission polar angle. The solid line show fits
using the first three even Legendre polynomials [117].

was described with a fit using the first three even Legendre-polynomials :

dσρ
dΩ
∝ (2± 0.2)P0 + (4.4± 0.2)P2 + (0.8± 0.2)P4 (6.1)

Figure 6.8 (b) shows the ρ0 (circles) production cross section extracted in this experiment

as a function of cos θCM , the polar angle in the center of mass system of the meson.

We followed the DISTO analysis procedure in order to extract the angular distri-

bution for the ρ0 production in our experiment and to calculate the total production

yield. However, instead of using a polynomial fit for the background below the ρ meson

peak, we used the PLUTO resonance cocktail, which gives a good approximation of

the experimental yield and takes into account structures due to the baryonic resonance

contribution. In the model, the direct ρ production proceeds via phase-space and the ρ

mass distribution is taken as a Breit-Wigner. As mentioned before the simulation was

performed with a starting value of 80 µb which gave a good agreement for the π+π−

total invariant mass distribution (Figure 6.4). In order to extract the direct ρ production

angular distribution, the simulated yield, was adjusted to fit the experimental spectrum

in each bin. In this way, the direct ρ production acceptance corrected cross section could

be extracted in each bin.

The π+π− invariant mass distributions are displayed in Figure 6.9 in comparison
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to the resonance cocktail for 10 bins in cos θCM from -1 to 1. The adjusted direct ρ

contribution is shown as a pink curve. A good description of the data is obtained, which

confirms that also detailed differential distributions for the production of π+π− pairs

are well described by the model. Still some structures are not predicted, for example

around 0.9 GeV/c2 for backward and forward angles.

The distributions obtained for the simulation of the pp→ ppπ+π− reaction according

to phase space are also shown in the picture as a yellow area, and are normalized arbitrary

for each bin. They present some structures which are only due to the acceptance and

selection cuts. However, the latter do not affect the region of the ρ peak. It is however

preferred to use the resonance cocktail than a simple phase space distribution, or a

polynomial fit to extract the ρ contribution, since it gives a global good description

of the data. The dashed violet curve illustrates the resonance-ρ, which, as mentioned

above is wider and extends in the low mass region due to the kinematical limits for light

resonances (N(1520), N(1535)...) decaying to ρ meson. The orange curve is the total ρ,

obtained by adding the resonance and the direct contributions. The advantage of this

method to extract the ρ contribution is that it takes into account the baryonic resonance

decays in the ρN channel. However, this contribution is model dependent. It depends

on the values of the baryonic resonance production cross sections, which were adjusted

mainly to the pπ+π− invariant mass distributions and on the branching ratios to ρN

which are taken in our approach from the Bonn-Gatchina PWA (Table 6.1). In addition,

previous extractions of the ρ production cross sections were based on a Breit-Wigner

mass distribution for the ρ meson, which takes into account only the production via

decay of heavy baryonic resonances, for which the ρ spectral function is not too much

distorted by the available phase space.

Therefore, we used a second method to extract the ρ contribution, where we removed

from the cocktail the decay of baryons to ρN before adjusting the cross section for the

pp → ppρ process to reproduce the data in the region of the ρ peak. In this case, as

shown in Figure 6.10, the cocktail underestimates the yield, in particular in the region

of small π+π− invariant masses, but a good description of the ρ peak is achieved with

the simulation with a Breit-Wigner ρ. The ρ yield extracted by this fit is of course higher

than in the first fit where part of the yield in this region was included in the cocktail,

via the decay of heavy baryons in the ρN channel.
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Figure 6.11 shows the ”direct” and ”Breit-Wigner” ρ0 production cross sections ob-

tained using the two different fits as function of cos θCM . The error bars reflect the

statistical and systematic errors which are equal to the quadratic sum of the global sys-

tematic error on the background and the error on the ρ fit in each bin of cos θCM . It is

important to note that the yields are within errors, perfectly symmetric around cos θCM

= 0, even for the most extreme bins, where the acceptance at forward angle is strongly

reduced. This is not a trivial result, since the measured yields are highly distorted by

the acceptance and selection cuts. It gives additional proof of the consistency of the

extraction of the ρ0 yield. The distributions were fitted with the sum of the first three

even Legendre polynomials and the following result was obtained :

dσdirectρ

dΩ
= (7.1± 0.2)P0 + (2.4± 0.3)P2 − (0.7± 0.3)P4 (6.2)

dσBWρ
dΩ

= (9.9± 0.2)P0 + (3.9± 0.2)P2 − (1.6± 0.3)P4 (6.3)

The above results indicate a contribution of partial waves up to L = 2 in the production

of the ρ-meson. The angular distribution for ρ0 production exhibits a significant forward

peaking, suggesting a dominance of the nucleonic current characterized by a dipole ∝
cos2 θCM dependence [116]. This is consistent with the fact that π exchange is suppressed

in this channel. As expected, the ”Breit-Wigner” ρ has a steeper distribution than the

direct ρ, since it includes baryonic resonance contributions which are expected to be

forward/backward peaked.

It is also interesting to compare these numbers to DISTO results (Eq. 6.1). For such

comparison, it is more relevant to use the ”Breit-Wigner” ρ results than the ”direct” ρ,

since the DISTO experiment did not subtract the contribution of ρ meson production

via baryonic resonances. The P0 coefficient is simply related to the cross section, which

is about a factor five larger at our energy. The anisotropy of the distribution is measured

by the ratio of the P2 and P0 coefficients which are respectively about 2.2 and 0.39 for

the DISTO and HADES experiments. The angular distribution in the case of HADES

is clearly much flatter. For the sake of completeness, Figure 6.12 shows the differential

cross section for the total ρ production (resonance-ρ + direct-ρ) as function of cos θCM ,

the polar angle in the CM system of the meson.
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−1 < cos θ < −0.8 −0.8 < cos θ < −0.6

−0.6 < cos θ < −0.4 −0.4 < cos θ < −0.2

−0.2 < cos θ < 0 0 < cos θ < 0.2

0.2 < cos θ < 0.4 0.4 < cos θ < 0.6

0.6 < cos θ < 0.8 0.8 < cos θ < 1
Figure (6.9) π+π− invariant mass distributions obtained in ten different CM
angular bins as indicated in the figure. Phase space yield is adjusted
arbitrarily.(Legend : see Figure 6.2).
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−1 < cos θ < −0.8 −0.8 < cos θ < −0.6

−0.6 < cos θ < −0.4 −0.4 < cos θ < −0.2

−0.2 < cos θ < 0 0 < cos θ < 0.2

0.2 < cos θ < 0.4 0.4 < cos θ < 0.6

0.6 < cos θ < 0.8 0.8 < cos θ < 1
Figure (6.10) π+π− invariant mass distributions obtained in ten different CM
angular bins as indicated in the figure. Phase space yield is adjusted arbitrarily.
(Legend : see Figure 6.2).
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Figure (6.11) The ρ differential cross section as function of the meson CM angle.
The solid lines show fits using the first three even Legendre polynomials. Pink curve
represents the direct ρ production to be added to the resonance-ρ production. Orange
curve represents the ρ signal extracted using a Breit-Wigner ρ.

Figure (6.12) The total ρ (resonance-ρ + direct ρ) differential cross section as a
function of the meson polar angle in CM.

6.2.4 Total cross sections

By integrating the differential cross sections extracted in our experiment, we obtain

for the direct contribution (Eq. 6.2) :

σdirectρ = 89.2 ± 6.7 µb.

This cross section should be associated with the ”resonance-ρ” cross section from our
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model, which derived from the resonances cross sections listed in Table 5.4 and Nρ

Bonn-Gatchina branching ratios listed in Table 6.1 and is equal to :

σRρ = 248.9 ± 51.8

The total ρ production cross section is therefore :

σtotρ = 338.1 ± 74.7 µb.

By integrating the differential cross section of Eq.6.3, we obtain for the Breit-Wigner ρ :

σBWρ = 124.4 ± 9.1 µb.

Since most experiments were using a Breit-Wigner fit to extract the ρ contribution,

we compare our result for σBWρ with world data in Figure 6.13. The open circles represent

inclusive production cross sections (pp → ρX), the red open circle represents HADES

inclusive ρ production in pp at Tp = 3.5 GeV, extracted after fitting pp → ppe+e−X

with PYTHIA + PLUTO simulation [115]. The full circles correspond to exclusive pro-

ductions (pp → ppρ), the first full dot represents DISTO result [117] and the blue dot

represents our result. The dot at slightly higher energy show a smaller cross section but

it has a very high error. This comparison validates our result.

Figure (6.13) ρ production cross section in pp collisions world data. Inclusive
(circles), exclusive (full dots), OBE model (dashed line). The blue full dot shows the
exclusive Breit-Wigner ρ cross section from this work. The red circle shows inclusive ρ
cross section from [115].
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6.2.5 Comparing ρ result with theoretical models

Figure (6.14) Diagram for one pion exchange in the calculation of [118].

The calculations that we found in the literature for the pp → ppρ reaction in our

energy domain were not aiming at a very detailed description of the ρ production me-

chanism, but rather at providing realistic inputs for elementary processes for heavy-ion

collisions. In particular, these models focused on reproducing total cross sections, but

did not attempt to describe the production angular distribution of the ρ [119].

Sibirtsev parametrization : The calculation of [118] is based on the one pion

exchange approximation (Figure 6.14). At a given proton-proton center of mass energy
√
s, corresponding to an incident proton momentum pi, the pp → ppρ cross section is

expressed as a function of the πN → ρN as follows :

Figure (6.15) Cross sections for the reactions π−p→ ρ0n (a), π−p→ ρ−p (b) and
π+p→ ρ+p (c). Experimental points are from [120]. Picture from [118].
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σ(pp→ ppρ) =
3m2

N

2π2p2
i

√
s

∫ Wsup

Wmin

kW 2dW

×σ(π0p→ ρ0p,W )

∫ t
+

t
−

fπNN

µ2 F 2(t)D2(t)tdt (6.4)

Here t is the four momentum transfer between the two nucleons at the πNN vertex

(bottom vertex in figure 6.14) and W is the invariant mass of the πN system at the ρ

production vertex, which ranges from :

Wmin = mN +mρ to Wmax =
√
s−mN (6.5)

with mN and mρ the masses of the nucleon and ρ meson respectively.

F (t) and D(t) are the πNN vertex and pion propagator functions. The main ingre-

dient of the calculation is the πN → ρN cross section. The latter is parametrized as a

function of
√
s using a fit to existing data measured with charged pion beams, as shown

in figure 6.15, using the following expression :

σ(π±N → ρN) = 9.27(
√
s−√s0) [mb] for

√
s < 2GeV

= 64.1s−2.11 [mb] for
√
s ≥ 2GeV. (6.6)

and the production induced by π0, which is relevant in the case of the pp reaction, was

deduced from the relation :

σ(π0N → ρ0p) =
1

2

[
σ(π−p→ ρ−p) + σ(π+p→ ρ+p)− σ(π−p→ ρ0n)

]
(6.7)

It has to be noted that Eq. 6.4 neglects interference effects between the four possible

graphs corresponding to the exchange of the two nucleons in the entrance or exit chan-

nels. In addition, the dependence of the πN → ρN cross section as a function of the

four momentum transfer between the two nucleons at the πNN vertex is averaged out.

In this calculation, the mechanism for the ρ production at the πNNρ vertex is not ex-

plicit and in principle it includes both resonant and non-resonant processes. However,

since the ρ production cross sections were obtained from data above threshold using a

Breit-Wigner shape for the ρ meson spectral function, the contribution of low baryonic
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resonances was excluded, or at least strongly underestimated, as mentioned in Section

6.2.3.

Along this line, the model should be compared to the ”Breit-Wigner” extraction of the

ρ production cross section. We can first notice, that the model describes the measured

cross sections up to
√
s = 5 GeV rather well. In particular, the DISTO point, measured

many years after the publication of the model fits well on the curve. Our measurement

of the Breit-Wigner ρ only is also in quite satisfactory agreement with this prediction. It

can also be observed that, as expected, the model strongly under predicts our estimate

for the total ρ production, which includes the production from light baryon resonances.

BUU model : Figure 6.16 shows the result of a BUU model [121] developed by

a Budapest-Dresden group in comparison with the DISTO measurement. As expected,

the prediction extends below threshold and overestimates the DISTO measurement,

which can be easily explained, since, as already mentioned, the experimental extraction

suppresses the contribution of light baryons. However, we were surprised to read in the

paper that the ρ production cross section in the model has been readjusted to reproduce

the data, which, in our opinion amounts to underestimate the total ρ contribution.

Moreover, at our energy, the model underestimates the ρ production cross section value.

Figure (6.16) Predictions for the pp→ ppρ production cross sections from [121]
are compared to the measurement of [119].
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HSD model : The Sibirtsev parametrization is used in the HSD (Hadron-String-

Dynamics) transport model to calculate the exclusive ”non-resonant” ρ production in

nucleon nucleon collisions. In addition, a contribution of ρ meson via the N(1520) re-

sonance is added [122] (see Figure 6.17). The solid line represent the parametrization

of the inclusive pp → ρX cross sections, while the dashed lines stand for the exclusive

cross sections. The exclusive pp → ppρ is denoted ”non-resonant” because the authors

consider explicitly the possible contribution of the N(1520) to the ρ production via the

process pp→ N(1520)p→ ρpp. The N(1520) cross section is taken from Teis et al. [60]

and the Nρ branching ratio from [123]. The cross section for N(1520)→ pρ given by the

model is 30 µb which is more than a factor 2 lower than our result (72 µb, see Table 6.1).

The red dot indicate the Breit-Wigner ρ cross section from this work which is slightly

higher than the model parametrization.

Figure (6.17) The production cross sections for the channel pp→ ppρX as a
function of the center of mass energy

√
s. The solid blue line represent the

parametrization of the inclusive ρ cross sections, while the dashed red line stand for
the exclusive ”non-resonant” cross sections. The dash-dotted green line shows the
contribution from the N(1520) resonance to the ρ production via the process
pp→ N(1520)p→ ρpp. The stars indicate the inclusive cross sections extrapolated
from the dielectron data by the HADES [115]. The red dot indicates the Breit-Wigner
ρ cross section from this work.

UrQMD, GiBUU and SMASH : In most other transport models, the production

of the ρ mesons in our energy range is realized exclusively via resonance decay, where

many resonances are taken into account. The production cross section should therefore be

consistent with our estimate for the total ρ production. The values for the ρ production

in UrQMD, GiBUU and SMASH are 565 µb, 423 µb and 140 µb in comparison to our
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total value of 338.1 ± 74.7 µb (see Table 6.2). Both results from the GiBUU and UrQMD

models are very high compared to our result for the total exclusive ρ cross section even

though these models do not include a direct ρ contribution, while SMASH result is more

than a factor 2 lower. Figure 6.18 from [70] shows the exclusive ρ production in dashed

lines (with and without the N(1520) which has the highest contribution), it should be

mentioned here that these curves represent the exclusive ρ coming from the decay of

baryonic resonances. Hence, it can not be compared to the empty data points. Figure

6.19 shows the individual contributions of various resonances to the ρ production, which

are all higher than the individual contributions deduced in this work.

Model σ [µb]

OBE 70
BUU 63

GiBUU 423
UrQMD 565
SMASH 140

PLUTO cocktail 338.1 ± 74.7

Table (6.2) Cross sections in units of µb for exclusive pp→ ppρ.

Figure (6.18) Cross sections for exclusive (pp→ ppρ) and inclusive (pp→ ppρX) ρ
meson production in pp collisions [70]. Empty data points from [120, 124].

Perspectives on model description of ρ production : In transport model cal-

culations, the ρ yield depends both on the production cross section of the various reso-

nances, which are fitted to available data of meson production and on the Nρ branching

ratios, which were taken from the PDG. From the detailed analysis of the one-pion pro-

duction channel [126], we already learned that some adjustments were needed for the

resonance production cross sections in the UrQMD and GiBUU model. As already said,
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Figure (6.19) Cross sections for exclusive (pp→ ppρ0) and inclusive (pp→ ppρ0X)
ρ0 meson production in pp collisions in comparison to experimental data. The
contribution of the most important resonances to the resonant exclusive production is
additionally shown [125].

our two-pion measurements can also be used to update the inputs for the production

of the heaviest baryons, which can not be constrained with sufficient precision from the

one-pion production (see Section 5.3). We will discuss in more detail in Chapter 8 the

predictions of transport models for the resonance cross sections and the comparison to

the values extracted in our analysis. We also mentioned that the knowledge of Nρ bran-

ching ratios is very unsatisfactory and can not be anymore taken from the PDG. The

inputs of the resonance models should therefore be updated with the values of the most

recent PWA, eg. Bonn-Gatchina [127].

It would be also very interesting to a have a full microscopic model for the ρ pro-

duction including both resonant and non resonant contributions and with predictions of

the π+π− angular distributions and invariant mass distributions. The development of

a Lagrangian model for the pp → ppρ has started by M. Zetenyi in Budapest and the

results should be available soon.

Finally, considering the difficulty to extract a reliable ρ production cross section, since

the spectral function is distorted due to the coupling to light baryons, we would like to

insist on the necessity for the models to directly use as a benchmark the π+π− invariant

mass distributions, after the kinematical cuts needed to enhance the ρ production.
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6.3 f0(500) meson or σ

The σ meson, its modern name being f0(500), got its name from the light scalar-

isoscalar field that was postulated 60 years ago to explain the inter nucleon attraction

[128]. To describe chiral symmetry in pion-pion interactions, this field was soon included

within the Linear Sigma Model [129] which is a simple realization of a spontaneous

chiral symmetry breaking, where all fields but the σ become Goldstone bosons, i.e.

pions. Generically, the σ, having the vacuum quantum numbers, plays a relevant role

for the understanding of the QCD spontaneous chiral symmetry breaking.

As it is mentioned in the literature, the precise f0(500) pole is difficult to establish

because of its large width, and because it can certainly not be modeled by a naive

Breit-Wigner resonance, but only with a mathematically rigorous definition through its

associated pole in the complex plane, whose position sR is related to the resonance mass

and width as
√
sr.MR− iΓR/2. Most of the analyses listed under f0(500) agree on a pole

position near (500 - i250 MeV).

Using a simple description of the f0(500) as a Breit-Wigner resonance with mass

M = 500 MeV and width Γ = 500 MeV, we added to our PLUTO resonance cocktail

the f0(500) meson simulation simply using phase space. Figure 6.20 shows the π+π−

invariant mass spectrum after adding the f0(500) meson contribution with a total cross

section of 1 µb. We consider that this is an approximate upper value for the production

of the f0(500) meson in our pp reaction at 3.5 GeV.

Figure (6.20) The π+π− invariant mass after adding the f0(500) and f0(980)
mesons contribution with a total cross section of 1 µb
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6.4 f0(980) meson

The status of the f0(980) meson is still an open problem in particle physics. In the

1996 Review of Particle Physics, the f0(980) decay modes were announced as 78.1±2.4%

for the ππ and 21.9±2.4% for the KK-channel. These information have however been

removed from the PDG2018. However, it has to be noted that the f0(980) → ππ mode

is established as dominant, while the f0(980)→ KK mode is stated as seen.

In 1999 the f0(980) meson production cross section in πN and NN reactions within

the meson-exchange model was calculated by E.L. Bratkovskaya et al. and the possi-

bility for f0(980) observation via the KK decay mode in proton-proton collisions was

investigated [130]. Using a fit to the data on the pπ → f0(980)n → KKn cross section

they extracted the following f0(980) meson properties :

Br(f0(980)→ ππ) = 98%

Br(f0(980)→ KK) = 2%

Γtot = 44.3MeV

It has to be noted that the PDG [11] does not give any value for these branching ratios

Figure (6.21) The diagrams for NN → NNf0 → NNKK [130], which are the
same for pp→ ppf0 → ppππ

and has an estimate for the total width between 10 and 100 MeV. Figure 6.21 shows the

production mechanism Feynman diagrams for the NN → NNf0 → NNKK and pp→
ppf0 → ppππ reactions used in [130]. The result of the calculation from [130] is shown in

Figure 6.22 by the dotted line and without form factor by the solid line. The experimental

data are taken from [124] while the dashed line shows the corresponding calculation

within the one-boson exchange model from [131]. The calculation gives σ(f0 → KK) =
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Figure (6.22) The pp→ ppf0 → ppKK cross section calculated from [130] (dotted
line) and without form factor (solid line). The experimental data are taken from [124]
while the dashed line shows the corresponding calculation within the one-boson
exchange model from [131]

0.0137 µb at plab = 4.33 GeV, hence, we can easily deduce that σ(f0 → π+π−) = 0.685

µb.

To check the consistency of our data with this prediction, we added to our PLUTO

resonance cocktail the f0(980) meson simulation. Figure 6.20 shows the π+π− invariant

mass spectrum after adding the f0(980) meson contribution with a total cross section of

1 µb. This value is compatible with the result from [130]. However it should be taken as

a very rough estimation of the upper limit of the f0(980) cross section in the pp reaction

at 3.5 GeV.



7
Theoretical development of a Lagrangian model

In the previous chapters, we have used a simple model to analyze the data, which is

based on PLUTO simulations and consists in an incoherent sum of many contributions,

which are considered as independent. In addition, this model uses phenomenological in-

puts for the angular distributions. In order to check the validity of the inputs of our

model, we developed, thanks to the collaboration with Jacques Van de Wiele, a Lagran-

gian model for some graphs contributing to the pp→ ppπ+π− reaction. In this chapter,

we describe this theoretical work, quantify the effect of interferences and compare the

differential distributions obtained with the Lagrangian model and the PLUTO model.

7.1 General expression of the differential cross section

The differential cross section for a collision of the type a+ b→ 1 + ...+ n is given by

dσ

dΦn(pa, pb, ..., pn)
=

(2π)4

4

√
(pa.pb)

2 −m2
am

2
b

|M|2 (7.1)
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where : pi is the four-momentum of particle i, dΦn(pa, pb, ..., pn) is the phase-space

element and M is the matrix element of the transition amplitude summed over the

spins of the final state particles and averaged over the spins of the initial state particles.

In the case of a process with 4 particles in the final state (our case) the differential cross

section can be expressed as (see Appendix A) :

d8σ

dΩ1dE1dΩ2dE2dΩ3
=

1

64(2π)8

p1p2

pamb

∑
p3

p3
3 |Mtotal|2

|E4p2
3 + E3[p2

3 − (p3.(pa − p1 − p2)]|
(7.2)

In the calculation of the total cross section all the amplitudes for all the possible diagrams

with the same final state should be summed.

|Mtotal|2 = (M1 +M2 + ...+Mn)(M∗1 +M∗2 + ...+M∗n) (7.3)

i.e.

|Mtotal|2 =
∑
|M2

i |+
∑
ij

MiM∗j +
∑
ij

MjM∗i (7.4)

The first term is the sum of squared amplitudes which would correspond to the cross

section in the case of summing processes incoherently. The last two terms represent

the interference effect, which can either increase the total cross section (constructive

interference) or decrease it (destructive interference).

7.2 Model Formalism

7.2.1 Choice of Feynman graphs

We developed a Lagrangian model for the reaction pp → ppπ+π− at an incident

proton energy of 3.5 GeV including two processes, on one hand the excitation of two

deltas (∆++(1232)∆0(1232)) and on the other hand the excitation of the N+(1520)

resonance. In the first case, the π+ and π− are produced respectively by the decay of

the ∆++ (∆++ → pπ+) and of the ∆0 (∆0 → pπ−) and in the second case, they are

produced by the decay of the N(1520). This choice is driven by the observation (see

Chapter 5) that these two contributions are dominating in the pp → ppπ+π− channel

at 3.5 MeV.

For the N+(1520) decay, three channels are considered :
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N+(1520)→ ∆++π−

N+(1520)→ ∆0π+

N+(1520)→ pρ0

The corresponding graphs are depicted in Figure 7.1 and Figure 7.2. The graphs labeled

(a) and (b) correspond to the exchange of the beam and target protons, with four-

momenta respectively pa and pb. In addition, the protons in the exit channel are identical

particles so their indistinguishability must be taken into account. Since protons are

fermions, the amplitude must be antisymmetric with respect to the exchange of the two

protons, so the ”exchange” diagrams corresponding to the exchange of p1 and p2 were

added in the model.

7.2.2 Lagrangians

We used the Lagrangians for Meson-Baryon-Baryon interaction, which are the same

as those used in Cao et al. Effective Lagrangian Model [90].

The πNN interaction Lagrangian is give by :

LπNN = −fπNN
mπ

Nγ5γµτ · ∂µπN. (7.5)

where N and N represent the nucleon field in the spin-isospin space, fπNN is a cou-

pling constant. The γ5 matrix compensates the negative parity of the pion. The isospin

operators τ are the Pauli’s matrices.

The πn∆ interaction Lagrangian is given by :

Lπ∆N = gπ∆N ∆
µ
g
µν
T † · ∂νπ N + h.c (7.6)

For the πNN(1520) interaction we use the pion-nucleon-spin-3/2 resonance Lagrangian

given by :

L3/2
−

πNR = gπNRNγ5γµτ · ∂µ∂νπRν + h.c (7.7)

The ρNN(1520) interaction Lagrangian is given by :

L3/2
−

ρNR = gρNRNτ · ρµRµ + h.c (7.8)
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The π∆N(1520) interaction Lagrangian is given by :

L3/2
−

π∆R = gπ∆R∆
µ
γνT
† · ∂νπRµ + h.c (7.9)

The process where the ρ meson decays into two pions is described by :

Lρππ = gρπππ × ∂µπ · ρµ. (7.10)

whereRµ and ∆µ, are the Rarita-Schwinger fields for the spin-3/2 resonance and ∆(1232),

respectively. T † is the isospin transition operator from isospin-1/2 to isospin-3/2. µ, ν

are Lorentz indices. π, ρ, are the pion and ρ meson fields ; h.c. stands for hermitian

conjugate.

The coupling constants are taken from [132, 133].

f2
πNN/4π = 0.078

g2
ρNN/4π = 0.9

fπ∆∆ = 4fπNN/5

The coupling constants g∆Nπ, gN?
Nπ, gN?

Nρ, gN∗∆π are also taken from [132]. They

are related to the corresponding decay widths and the values are listed in Table 7.1.

Resonance Decay mode g2/4π

∆?(1232) Nπ 19.54

N?(1520) Nπ 1.73
Nρ 1.32
∆π 0.01

Table (7.1) The coupling constants for ∆?(1232) and N?(1520) [132].

7.2.3 Form factors

Form factors are added at each vertex to take into account the finite size of the

hadrons and suppress momentum transfers larger than a given cut-off. For the nucleon-

nucleon-meson vertices, form factors are chosen as :

FNNM (q2
M ) =

(Λ2
M −m2

M

Λ2
M − q2

M

)n
(7.11)
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pa p
π+

p1

∆++

π−

∆0

p2

p
b

p
π−

α β

α′ β′

pa

p2

∆0

p
π−

π−

p
π+

∆++ p1

p
b

α′ β′

α β

(a) (b)

Figure (7.1) Feynman diagrams for pp→ ppπ+π− with intermediate
∆++(1232)∆0(1232). The antisymmetrization graphs corresponding to the exchange
of the identical protons p1 and p2 are taken into account but are not shown.

where qM , mM and ΛM are the four-momentum, mass and cutoff parameters for the

exchanged meson, respectively. n = 1 and Λπ = 1.0 for pions, n = 2 and Λρ = 1.0 for

the ρ meson.

For the resonance-nucleon-meson vertices, form factors are calculated as follows :

FRNM (q2
M ) =

[(
Λ
?

M

)2 −m2
M(

Λ
?

M

)2 − q2
M

]n
(7.12)

where n = 1 (monopole form factors) if the resonance has an isospin 1/2 (N?) and n =

2 (dipole form factors) if the resonance has an isospin 3/2 (∆), and Λ?π = Λ?ρ = 1.0 GeV.

The form factors for the resonance and nucleon are taken as :

FR(q2) =
Λ4
R

Λ4
R + (q2 −M2

R)2 (7.13)

where Λ∆ = 1.0 GeV and ΛN = 0.8 GeV.

7.2.4 Propagators

The propagators of the exchanged meson, nucleon pole, and resonance can be written

as [132, 134] :

Gπ(qπ) =
i

q2
π −m2

π

(7.14)
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p
π+

p1

pa D+
13 ∆0

α β α′ β′

p
π−

π0

p
b

p2

pa

p2

π0

p
π+

p1

D+
13 ∆0

α β α′ β′

p
b p

π−

(1-a) (1-b)

p
π+

pa D+
13 ∆++ p1

α β α′ β′

p
π−

π0

p
b

p2

(2-a) (2-b)

p1 p
π+

pa D+
13 ρ0

α β α′ β′

p
π−

π0

p
b

p2

pa

p2

π0

p1 p
π+

D+
13 ρ0

α β α′ β′

p
b

p
π−

(3-a) (3-b)

Figure (7.2) Feynman diagrams taken into account for the calculation of the
reaction for pp→ pN+(1520). The pp→ ppπ+π− final state is obtained in three
different decay channels : N+(1520)→ ∆0π+ (1-a), (1-b), N+(1520)→ ∆++π− (2-a),
(2-b) and N+(1520)→ pρ0 (3-a), (3-b). The antisymmetrization graphs corresponding
to the exchange of the identical protons p1 and p2 are taken into account but are not
shown.

Gµνρ (qρ) = −ig
µν − qµρ qνρ/q2

ρ

q2
ρ −m2

ρ

(7.15)

GN (q) =
−i(/q +MR)

q2
π −m2

N

(7.16)
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G
3/2
R (q) =

−i(/q +MR)Gµν(q)

q2 −M2
R + iMRΓR

(7.17)

where /q = γµqµ and γµ are Dirac matrices and ΓR is the total width of the corresponding

resonance, and Gµν(q) is calculated as :

Gµν(q) = −gµν +
1

3
γµγν +

1

3MR
(γµqν − γνqµ) +

2

3M2
R

qµqν (7.18)

7.3 Amplitude Calculation

The amplitudes for a given diagram are calculated using the Feynman rules [135]. The

ingredients are the spinors of the interacting particles, the form factors and propagators

introduced in the sections 7.2.3 and 7.2.4, as well as vertex functions which can be

derived from the Lagrangians defined in Section 7.2.2 using Feynman rules.

7.3.1 Double ∆ production

To explain how the calculation is performed, we take the example of the Feynman

diagram (a) in Figure 7.1. It can be written as :

M(m1,m2,ma,mb) = ū
1
(p

1
,m

1
) V (∆++ β → p

1
+ p

π
+)︸ ︷︷ ︸

(a)

i P α→β
F

(∆++, p
∆

++
= p

1
+ p

π
+

)︸ ︷︷ ︸
(b)

V (p
a
→ ∆++ α + π−)︸ ︷︷ ︸

(c)

ua(pa ,ma
) i P

F
(π−, p̃

π
− )︸ ︷︷ ︸

(d)

ū
2
(p

2
,m

2
)V (∆0 β

′
→ p

2
+ p

π
−)︸ ︷︷ ︸

(e)

i P α
′→β′

F
(∆0, p

∆
0

= p
2

+ p
π
− )︸ ︷︷ ︸

(f)

V (p
b

+ p̃
π
− → ∆0 α

′
)︸ ︷︷ ︸

(g)

ub(pb ,mb
) (7.19)

In addition to the kinematical variables, the amplitudes depend on the spin projections

of all particles in the exit channel. mi represents the spin of proton i. pi denotes the

four-momentum of particle i :


p

∆
++

= p
1

+ p
π

+

p
a

= p
∆

++
+ p̃

π
−

p
∆

0
= p

2
+ p

π
− = p̃

π
− + p

b

 (7.20)



Chapter 7 Theoretical development of a Lagrangian model 123

ui(pi,mi) are the Dirac spinors for incoming proton i, ūi(pi,mi) are the Dirac spinors

for outgoing proton and V are the vertices calculated as follows :

V (∆++ β → p
1

+ π+) =
gπ∆N

mπ
F∆(q2 = (p

1
+ p

π
+

)2) (p
π

+
)
β

(a) (7.21)

V (p
a
→ ∆++ α + p̃

π
− ) =

gπ∆N

mπ
F∆(q2 = (p

a
− p̃

π
− )2) F∆N

π (p̃2

π
− ) (p̃

π
− )

α
(c) (7.22)

V (∆0 β
′
→ p

2
+ π−) = −gπ∆N

mπ

√
1

3
F∆(q2 = (p

2
+ p

π
− )2 (p

π
− )

β
′ (e) (7.23)

V (p
b

+ p̃
π
− → ∆0 α

′
) =

gπ∆N

mπ

√
1

3
F∆(q2 = (p

b
+ p̃

π
− )2) F∆N

π (p̃2

π
− ) (p̃

π
− )

α
′ (g)(7.24)

The isospin factors are 1 for ∆++ → pπ+ and
√

1
3 for ∆0 → pπ−. F∆(q2) and F∆N

π (q2)

are the form factors given in Eq (7.13) and Eq (7.12) respectively. P α→β
F

(∆++, p
∆

++)

and P α
′→β′

F
(∆0, p

∆
0) are the ∆ propagators given in Eq (7.17) and P

F
(π, q) is the pion

propagator given in Eq (7.14).

We contract as much as possible the different terms to make the calculations faster.

 Final expression

After computing the different terms in Eq (7.19) we obtain :

M(m1,m2,ma,mb)

= ū
1
(p

1
,m

1
) Γ(a) (b) (c) ua(pa ,ma

)
[ i

p̃2
π
− −m2

π

]
ū

2
(p

2
,m

2
)Γ(e) (f) (g) ub(pb ,mb

) (7.25)
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where : Γ(a) (b) (c) and Γ(e) (f) (g) are 2× 2 matrices

Γ(a) (b) (c) =
[gπ∆N

mπ
F∆(q2 = (p

1
+ p

π
+

)2)
][gπ∆N

mπ
F∆(q2 = (p

a
− p̃

π
− )2) F∆N

π (p̃2

π
− )
]

[
− i

(
/p∆

++ +M∆

)
p2

∆
++ −M2

∆ + iM∆ Γ∆

] [
(p
π

+
· p̃

π
− )− 1

3
/pπ+ /̃pπ− −

/pπ+ (p̃
π
− · p

∆
++

)

3M∆

+
/̃p
π
− (p

π
+
· p

∆
++

)

3M∆
−

2 (p
π

+
· p

∆
++

) (p̃
π
− · p

∆
++

)

3M2
∆

]
(7.26)

Γ(e) (f) (g) =
[
− gπ∆N

mπ

√
1

3
F∆(q2 = (p

2
+ p

π
− )2)

][
gπ∆N

mπ

√
1

3
F∆(q2 = (p

b
+ p̃

π
− )2) F∆N

π (p̃2

π
− )

]

[
− i

(
/p∆

0 +M∆

)
p2

∆
0 −M2

∆ + iM∆ Γ∆

] [
(p
π
− · p̃

π
− )− 1

3
/pπ− /̃pπ− −

/pπ− (p̃
π
− · p

∆
0
)

3M∆

+
/̃p
π
−(p

π
− · p

∆
0
)

3M∆
−

2 (p̃
π
− · p

∆
0
)

3M2
∆

]
(7.27)

The amplitude for the graph (b) in Figure 7.1 is calculated in a similar way. The ampli-

tudes for the antisymmetrization diagrams corresponding to the exchange of protons 1

and 2 are also taken into account with a negative sign.

7.3.2 N(1520) production followed by decay to ∆π

The amplitude for the Feynman diagram (1-a) in Figure 7.2 can be written as :

M(m1,m2,ma,mb) = ū
1
(p

1
,m

1
) V (∆0 β

′
→ p

1
+ p

π
−)︸ ︷︷ ︸

(a)

i P α
′→β′

F
(∆0, p

∆
0

= p
1

+ p
π
− )︸ ︷︷ ︸

(b)

V (D+ β
13 → ∆0 α

′
+ p

π
+)︸ ︷︷ ︸

(c)

i P α→β
F

(D+
13, pD+

13
)︸ ︷︷ ︸

(d)

V (p
a
→ D+ α

13 + π0)︸ ︷︷ ︸
(e)

u
a
(pa,ma)

i P
F

(π0, p
π

0
)︸ ︷︷ ︸

(f)

ū
2
(p

2
,m

2
) V (p

b
+ π0 → p

2
)︸ ︷︷ ︸

(g)

u
b
(pb,mb) (7.28)
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with 
p

∆
0

= p
1

+ p
π
−

p
D

+
13

= p
1

+ p
π
− + p

π
+

p
π

0
= p

2
− p

b
= p

a
− (p

1
+ p

π
− + p

π
+

)

 (7.29)

The vertices and propagators in Eq (7.28) are calculated as follows :

V (∆0 β
′
→ p

1
+ π−) = −gπ∆N

mπ

√
1

3
F∆(q2 = (p

1
+ p

π
− )2) (p

π
− )

β
′ (a) (7.30)

V (D+ β
13 → ∆0 α

′
+ π+) = −

gπ∆D13

mπ
FD13

(q2 = p2

D
+
13

) F∆(q2 = p2

∆
0
)

√
1

3
/pπ+ g

βα
′ (c) (7.31)

V (pa → D+ α
13 + π0) = −

gπND13

m2
π

FD13
(q2 = p2

D13
) F

D13N

π
0 (p2

π
0) γ5

/pπ0 (p
π

0
)
α

(e)(7.32)

V (p
b

+ π0 → p
2
) = − fπ

mπ
FNN
π

0 (p2
π

0) γ5
/pπ0 (g) (7.33)

The propagators P α
′→β′

F
(∆0, p

∆
0
) and P α→β

F
(D+

13, pD+
13

) are given in Eq (7.17) and

the pion propagator is given in Eq (7.14).

 Final expression

After computing the different terms in Eq (7.28) we obtain :

M(m1,m2,ma,mb) = ū
1
(p

1
,m

1
) Γ(a) (b) (c) (d) (e) u

a
(pa,ma)

i

p2
π

0 −m2
π

0

ū
2
(p

2
,m

2
)
[
− fπ
mπ

FNN
π

0 (p2
π

0) γ5
/pπ0

]
u
b
(pb,mb) (7.34)

where Γ(a) (b) (c) (d) (e) is a 2× 2 matrix

Γ(a) (b) (c) (d) (e) ≡ Cπ−∆
0
p

1

C
π

+
∆

0
D13

C
π

0
paD13

P̃
F

(p
∆

0
)

[
− i

[∑49
k=1 Pk

(∆0, p
π

+
, D+

13, p
π

0
, p
π
− )
]
γ5

/pπ0

p2
D

+
13
−M2

D13
+ iMD13

ΓD13

]
(7.35)
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C
π
−

∆
0
p

1

= −gπ∆N

mπ

√
1

3
F∆(p2

∆
0
) (7.36)

C
π

+
∆

0
D13

= −
gπ∆D13

mπ
FD13

(p2

D
+
13

) F∆(p2

∆
0
)

√
1

3
(7.37)

C
π

0
paD13

= −
gπND13

m2
π

FD13
(p2

D
+
13

) F
D13N

π
0 (p2

π
0) (7.38)

FNN
π

0 (p2
π

0) and F
D13N

π
0 (p2

π
0) are the pion form factors given in Eq (7.11) and Eq (7.12)

respectively. FD13
(p2

D
+
13

) and F∆(p2

∆
0
) are the form factors given in Eq (7.13).
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(7.41)
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The amplitude for the graph (1-b) in Figure 7.2 is calculated in a similar way. The am-

plitudes for the antisymmetrization diagrams corresponding to the exchange of protons

1 and 2 are also taken into account with a negative sign.

7.3.3 N(1520) production followed by decay to pρ

The amplitude for the Feynman diagram (3-a) in Figure 7.2 can be written as :

M(m1,m2,ma,mb) = ū
1
(p

1
,m

1
)V (ρ0β

′
→ π+ + π−)︸ ︷︷ ︸

(a)

i P α
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F
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ρ
0
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π

+
+ p

π
− )︸ ︷︷ ︸

(b)

V (D+ β
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1
+ ρ0α

′
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(c)
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(d)
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b
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V (D+β
13 −→ ρ0α

′
+ p) = i g∗

D13Nρ
FD13N
ρ (p2

ρ) FD13
(p2
D13

) g
βα
′ (c) (7.46)
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P α
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F
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0) and P α→β

F
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) and P
F

(π0, p
π

0
) are the propagators given in Eq

(7.15), Eq (7.17) and Eq (7.14) respectively.

 Final expression

After computing the different terms in Eq (7.43) we obtain :
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where Γ(a) (b) (c) (d) (e) is a 2× 2 matrix

Γ(a) (b) (c) (d) (e) ≡ Cρππ CD13ρN
CπND13

[
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F
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π
0 (p2

π
0) and FD13N

ρ (p2
ρ) are the form factors given in Eq (7.12). FD13

(p2

D
+
13

) and

FNN
π

0 (p2
π

0) are the form factors given in Eq (7.13) and Eq (7.11) respectively.
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The amplitude for the graph (3-b) in Figure 7.1 is calculated in a similar way. The am-

plitudes for the antisymmetrization diagrams corresponding to the exchange of protons

1 and 2 are also taken into account with a negative sign.

7.4 Numerical calculation result and discussion

7.4.1 Building an event generator

For each process the amplitudes of all the different diagrams should be added. For

the final state, the fact that the detector does not distinguish between the spin states

of the outgoing particles means that what is measured are all possible combinations of

spin final states. The matrix element squared is :

|Mtotal|2 =
∑
s

|M1(s1, ..., sn) +M2(s1, ..., sn) + ...+Mn(s1, ..., sn)|2 (7.57)

where Mi is the matrix element for each Feynman diagram and si is the spin state.

Once the amplitude is calculated, it can then be injected in Eq (7.2). To obtain the

differential distributions as a function of one variable, one needs to integrate over all

the other variables, but it is extremely difficult to determine phase-space limits due to

the complexity of the equations. In addition, we want to take into account the effect of

acceptance cuts on the differential distributions, which makes the integration limits even

more difficult to calculate. Therefore, it is more appropriate to use an event generator.

We used the PLUTO event generator [61, 109] to generate a million phase space events
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for the reaction pp→ ppπ+π−. The respective distributions are given by Eq (7.2) where

the transition amplitude is equal to 1. To generate events according to our model, we

then just have to parametrize each event with the squared amplitude calculated from our

model. The kinematical variables and the weight are stored in a Ntuple, which makes

it very easy to plot any distribution and to apply acceptance or efficiency cuts, in the

same way as for the previous simulations described in Chapter 4.

7.4.2 Differences with the resonance cocktail model

In the following, we will discuss some results of the calculation and compare them

with the results of our PLUTO resonance model. Let’s start by reminding the differences

between the two approaches.

The PLUTO resonance cocktail is basically a phase space event generator modified

by weighting functions. The mass distributions (see Eqs (4.1),(4.2)) of the baryonic

resonances and mesons are taken into account using Breit-Wigner weights which play

the same role as the propagators (Eqs (7.11), (7.12), (7.13)) used in the Lagrangian

model. However, while in the Lagrangian model, fixed width were used for simplicity, in

PLUTO the resonances widths are mass dependent, for the decay R → m1 + m2, the

width is given by :

Γkm1m2
(m) = xMR

(m)(
qRm1m2

(m)

qRm1m2
(MR)

)2L+1(
νRm1m2

(m)

νRm1m2
(MR)

)ΓkR (7.58)

where the subscript R refers to the resonance corresponding to the static mass pole

for the decay mode in hand with mass MR and width ΓtotR , m denotes the running

Breit-Wigner mass. The dependence on the two decay products with mass m1 and m2

enters via the terms qR(m) and qR(Mr), namely the momenta of one out of the two

decay products in the rest frame of the parent resonance R. L is the transferred orbital

angular momentum and k denotes the decay mode. ν is the cutoff parametrization that

is used :

νRm1m2
(m) =

β2

β2 + (qRm1m2
(m))2

(7.59)

and the parameter β = 300 MeV for ∆(1232), among with the phase space factor :

xMR
(m) =

MR

m
(7.60)
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For higher baryon resonances, the following parametrization is applied :

β = (MR −m1 −m2)2 +
(ΓtotR )2

4
, x = 1 (7.61)

The most important difference is due to the fact that there is no explicit interac-

tion in our resonance model. All the dynamics of the reaction are parametrized in the

very simple t-weight (see Section 4.5), which suppresses large transfers at the baryon

excitation vertex. This weight therefore plays the same role as the vertex form factors

but it is expressed in a different way. In addition, in the Lagrangian model, the vertex

functions induce an additional kinematical factor, which depends explicitly on the ex-

changed particle (π, ρ,...) and on the spin of the baryon, according to the Lagrangians

(Section 7.2.2). This aspect is completely absent in PLUTO resonance model and may

induce significant differences. In PLUTO resonance cocktail, the different transfer de-

pendence for the excitation of the resonance on the projectile or target nucleon is taken

into account by applying two different weights depending on the center-of-mass angle

of the excited baryon, but this is a simple assumption. In the Lagrangian model, the

direct and exchange graphs are explicitly taken into account with their respective form

factor. The global amplitude takes into account the two graphs coherently, i.e. including

interferences between the amplitudes for each graph.

7.4.3 Results of the Lagrangian model

As mentioned above in Section 4.5, in PLUTO simulations, the angular distribution

were calculated based on a phenomenological parametrization (see Eq (4.3)). To com-

pare the centre of mass angular distribution of PLUTO with our Lagrangian model,

particles four-momenta were boosted to the center of mass frame using Lorentz boosts.

Figure 7.3 shows the center of mass angular distribution of the final state for the two

processes pp → ∆++(1232)∆0(1232) and pp → pN+(1520) compared to the paramete-

rized PLUTO simulation (green curve). In both figures we see that our model angular

distribution shows a somewhat less steep behavior as PLUTO simulation. It is however

very satisfactory to see that the global trend is very similar and this can be taken as a

validation of the parameterization that was applied.
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(a) (b)

Figure (7.3) (a) pp→ ∆++(1232)∆0(1232) (pπ+) centre of mass angular
distribution, (b) pp→ pN+(1520) (pπ+π−) centre of mass angular distribution
compared to the parameterized PLUTO simulation (green).

The invariant mass distributions obtained with the Lagrangian model forN(1520) and

the double-∆ production processes are shown in Figure 7.4 and Figure 7.5 in comparison

with the PLUTO results. Here, we are only interested in the shapes of the distributions,

the spectra are normalized such that their integral is the same. The main features of the

spectra are similar. However, it is noticeable that the resonant peaks are narrower in the

case of PLUTO calculation and shifted towards lower mass values by about 10 MeV. In

fact, the peaks in the Lagrangian model exactly peak at the pole of the resonances. This

difference might be due to both the choice of fixed or mass dependent width (see sec.7.4.2)

or to the different expressions of the vertex form factors and phenomenological t-weight.

Indeed, the former which is used in the Lagrangian model is maximum at a momentum

transfer corresponding to the pole mass, while the t-weight used in the resonance model

decreases monotonically with t. This enhances small momentum transfers and may cause

the invariant mass shift. Further differences can arise from the fixed widths used in the

Lagrangian model. We have shown in Chapter 5 that the position of the invariant mass

peaks is very well reproduced by our PLUTO resonance model. We therefore conclude

that the phenomenological t-weight gives a more realistic approach than the Lagrangian

model with vertex form factors.
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Figure (7.4) pπ− invariant mass distribution in HADES acceptance for the
pp→ ∆++(1232)∆0(1232) channel. Comparison between ”full” calculation (dashed
blue) and ”no interference” calculation (red) and PLUTO simulation (green).

Figure (7.5) pπ+π− invariant mass distribution in HADES acceptance for the
pp→ pN+(1520) channel. Comparison between ”full” calculation (dashed blue) and
”no interference” calculation (red) and PLUTO simulation (green).

7.5 Interference effect

To see the effect of interferences we compare two calculations :

— Full calculation : where the squared amplitude is computed as follows :

|Mtotal|2 =
∑
s

|M1 +M2 + ...+Mn|2 (7.62)
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— No interference calculation : where the squared amplitude is computed as

follows :

|Mtotal|2|M1(s1)|2 + ...+ |M1(sn)|2 + ...+ |Mn(s1)|2 + ...+ |Mn(sn)|2 (7.63)

wereM1 is the amplitude for diagram (a) in Figure 7.1,M2 is the amplitude for diagram

(b) in Figure 7.1,M3 andM4 are the amplitudes for the antisymmetrization diagrams of

(a) and (b) respectively. Same for diagrams in Figure 7.2, where we have 12 amplitudes

in total. This leads to a coherent sum of cross sections in the ”full calculation” case,

and an incoherent sum of cross sections in the ”no interference calculation” case which

corresponds to the cross section calculated in our PLUTO model.

The result of our test model is shown separately for the double ∆(1232) production

and the N(1520) resonance production in Figure 7.4, Figure 7.5 and for the full model

in Figure 7.6.

Figure (7.6) pπ+ invariant mass distribution in HADES acceptance for the
pp→ ∆++(1232)∆0(1232) and pp→ pN+(1520) channels. Comparison between ”full”
calculation (dashed blue) and ”no interference” calculation (red).

The analysis of the result was separated in two steps. In the first step we investigated

for one channel the effect of the interferences between the different Feynman diagrams

which contribute to the same process (graphs (a),(b) in Figure 7.1 and antisymetrization

graphs for ∆++∆0 and graphs (a-e) in Figure 7.2 for N+(1520) and antisymetrization

graphs). The results show that the interference effect is very small in both cases. For

the double ∆(1232) the effect is about 0.7% in full acceptance and the interference

is constructive (see Figure 7.4). In HADES acceptance however, it gets slightly higher,

about 1.4%. For the N(1520) the effect is about 7% in full acceptance and the interference

is constructive. It gets much lower in HADES acceptance, about 2% (see Figure 7.5).



Chapter 7 Theoretical development of a Lagrangian model 135

The fact that the effect of interference is different when acceptance cuts are applied just

reflects that the interferences depend on the range of kinematical variables over which

the amplitudes are integrated. The lower effect of the interferences in the case of the

double-∆ production is probably due to the fact that the different graphs have small

kinematical overlap. For example, the π+ is boosted in the forward direction for graph

(a) and in the backward direction for graph (b). One can expect a larger kinematical

overlap for the graphs corresponding to the decay of the N(1520), where the angular

distributions are wider due to the three body decays when pions are emitted from the

same excited nucleon.

In the second step we studied the full calculation and investigated the effect of in-

terferences between the two channels pp → ∆++∆0 and pp → pN+(1520). The result

shows that the interference is constructive also in this case, but still negligible, about

1.5% in HADES acceptance (see Figure 7.6). The effect of interferences is also shown for

the angular distributions in Figure 7.3. It can also be observed that the effect is small.

It has to be noted that whether the interference are constructive or destructive de-

pends on the particular choice of the amplitude, in particular, the relative sign of the

coupling constants. Since the choice made here for all the model parameters is the same

as in Cao et al. Lagrangian model [90], it validates their approximation of neglecting the

interferences.



8
Comparison to theoretical models

In this chapter we present a direct comparison of differential spectra for the exclu-

sive channel pp → ppπ+π− with theoretical models predictions (OPER [91] and Cao

et al. Lagrangian model [90]). We also compare the baryonic resonances contributions

extracted from our data to the predictions of transport models : UrQMD and GiBUU

[69].

In order to perform a proper comparison of differential spectra measured with HADES,

with OPER and Cao et al. Lagrangian model, events generated with the models have

been filtered with the HADES acceptance filters and smeared as explained in section

4.4.

8.1 OPER model

During this work we collaborated with A.P. Jerusalimov to compare OPER model

simulation to our data. OPER stands for One Pion Exchange Reggiezed and it

136
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is based on Regge theory [136]. The models of Regge pole exchange are based on the

method of complex momenta and consider an exchange in t-channel by a virtual state

R that has quantum numbers of particle (resonances) with variable spin and is on some

trajectory αR(t) named Regge trajectory.

Figure (8.1) OPER Feynman diagrams for the reaction pp→ ppπ+π−

Figure (8.2) One baryon exchange (OBE) Feynman diagrams for the reaction
pp→ ppπ+π−

Figure 8.1 shows the OPER diagrams for the reaction pp→ ppπ+π−. The diagrams

(a) and (b) describe the production of the double-resonances that decay to Nπ. The

parameters of the resonances were taken from PWA. The amplitudes TNπ→Nπ were used

as vertex functions, hence, all possible double resonance excitations are included. The

diagrams (c) and (f) describe the production of the one resonances that decay to Nππ.

The parameters of these resonances were taken from PDG. The amplitudes TNπ→Nππ

were used as vertex functions [137]. The diagrams (d) and (e) (”hanged diagrams”)



Chapter 8 Comparison to theoretical models 138

describe ππ → ππ scattering, the study [92] has shown that the ”hanged” diagrams

contribution in the np reaction cross-section at momenta p0 < 10 GeV/c is negligible

and the interference between the other diagrams is very small. The one baryon exchange

(OBE) diagrams shown in Figure 8.2 were also taken into account in the framework of

this model.

The OPER model does not provide absolute cross sections, so in order to compare to

HADES data all OPER calculations are normalized to the experimental yield measured

in acceptance. Figure 8.3 represents the pπ−, pπ+π−, pπ+ and π+π− invariant mass

distributions. The solid red lines are the results of OPER model calculations. The pπ−

invariant mass (see Figure 8.3 a) shows the same three peaks as in the data, however the

one at Minv(pπ
−) close to the ∆(1232) mass is too large, which means that the double-∆

contribution is overestimated. The pπ+π− invariant mass distribution (see Figure 8.3

(b)) is not well described by the OPER model, it shows two peaks : one around 1.6

GeV that can only be due to the ∆(1600) and another around 1.8 GeV that can only

come from the excitation of the higher-laying resonances N(1875) and N(1880) which

is not compatible with our results. As shown in Table 5.4, from the analysis of our

data we deduced that the ∆(1600) resonance does not contribute and the N(1875) and

N(1880) contributions are negligible. The OPER model predicts that pp → ppπ+π−

reaction occurs mostly with an intermediate ∆++, either via a double-∆ excitation or

via a resonance that decays in ∆++π−, which is consistent with our analysis. This is

why the pπ+ invariant mass (see Figure 8.3 (c)) is perfectly well described by the OPER

model, Finally the π+π− invariant mass (see Figure 8.3 d) is rather well described.

Figure 8.4 represents the pπ−, pπ+π−, pπ+ and π+π− angular distributions in the

center of mass reference frame compared to the results of OPER model calculations. pπ−,

pπ+π− and pπ+ angular distributions in Figure 8.4 (a), (b) and (c) respectively are not

well described by OPER model calculations, they show a steeper backward/forward

behavior, this may be due to the overestimation of the double-∆ excitation, which is

expected to have a steeper angular distribution that the distribution of heavier baryonic

resonances. The π+π− angular distributions in Figure 8.4( d) is also not well described by

the OPER model calculations, this shape is a signature for the one resonance excitation

as shown by our PLUTO resonance cocktail (see Figure 5.15 (h) dashed green curve),

this proves that the one resonance excitation is overestimated compared to the double

resonance excitation.



Chapter 8 Comparison to theoretical models 139

(a) (b)

(c) (d)

Figure (8.3) (a) pπ−, (b) pπ+π−, (c )pπ+, (d) π+π− invariant mass distributions
compared to the result of OPER model simulation (red curves) normalized to the
data.

(a) (b)

(c) (d)

Figure (8.4) (a) pπ−, (b) pπ+π−, (c )pπ+, (d) π+π− CM angular distributions
compared to the result of OPER model simulation (red curves) normalized to the
data.
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8.2 Cao Lagrangian Model

We also collaborated with Xu Cao from Institute of Modern Physics, China, to com-

pare his effective Lagrangian model to our data. In this model the resonances with mass

up to 1.72 GeV are incorporated with their properties taken from PDG 2010 [138] in

an effective Lagrangian model with the motivation to give a reasonable explanation to

the six isospin channels NN → NNππ and get better understanding of the dynamics

for this kind of reaction [90]. The form factors of the resonances are the same as in our

Lagrangian model (see 7), and the values of the cutoff were adjusted to fit the data from

[78–83, 86, 139] at beam energies from threshold up to 2.2 GeV. Figure 8.5 shows Cao

Lagrangian model calculation result for the channel pp→ ppπ+π−.

Figure 8.6 shows the Feynman diagrams of this model, (1) and (2) represent the

one resonance production with a meson exchange (π, σ, ρ or η) and the decay to a

nucleon and a meson (σ or ρ) (R → NM). (3) and (4) represent the one resonance

(or nucleon pole) production with a meson exchange (π, σ, ρ or η) and the decay to

a ∆π (or N pole) (R1 → R2π). (5) and (6) represent the double resonance production

Figure (8.5) Total cross sections of pp→ ppπ+π− compared to predictions of Cao
et al. Lagrangian model [90]. The black solid, red short-dash-dotted, blue dashed,
orange dotted, green dotted, cyan short-dashed, green dash-dotted, royal short-dotted,
magenta dash-dot-dotted, bold red, and bold solid curves correspond to contribution
from double-∆, N(1440)→ Nσ, N(1440)→ ∆π, ∆→ ∆π, ∆→ Nπ, ∆(1600)→ ∆π,
∆(1600)→ N(1440)π, ∆(1620)→ ∆π, nucleon pole, N → ∆π and the full
contributions, respectively. The solid circles and triangles represent the data from
[78–83, 86, 139].
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Figure (8.6) Feynman diagrams taken into account in Cao et al. Lagrangian model
[90] for NN → NNππ [90]. The solid, dashed and dotted lines stand for the nucleon,
mesons and intermediate σ(or ρ) meson. The shading histograms represent the
intermediate resonances or nucleon poles. R→ NM , R1→ R2M and double-R are
used to label (1)(2), (3)(4) and (5)(6), respectively.

where only the double-∆(1232) contribution was considered. Interference terms among

different diagrams are not included.

The prediction for the total production is 11.5 mb, which is much higher than our

estimate. Therefore, in order to compare HADES data to Cao et al. Lagrangian model

calculations, all the contributions were normalized to the experimental cross section.

The contributions of different decay channels and different meson exchange are provided

separately. The contributions for a given resonance excited by different meson exchanges

are summed when comparing to data. However, to give an idea of the contributions

corresponding to the different meson exchanges, Figure 8.7 shows the result for pπ−

invariant mass distribution in Cao et al. Lagrangian model calculation for the different

exchanged mesons (π, σ, ρ and η). It should be mentioned that ρ-exchange is the most
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Figure (8.7) pπ− invariant mass distribution in Cao et al. Lagrangian model
calculation for the different exchanged mesons π, σ, ρ and η.

important contribution to this channel followed by π-exchange contrary to what was

deduced for energies up to 2.2 GeV [90]. This higher contribution of ρ-exchange at

higher energies makes sense since the larger momentum transfers available at higher

energies favors ρ-exchange. Then comes σ-exchange and η-exchange is very negligible.

The model calculation results show that the following contributions are very negligible :

double N-pole, N-pole σ, N(1520), N(1535), N(1675), N(1680), ∆(1620), N(1650) and

N(1700) either because of their small branching ratios to the double-pion channel or

because their excitation is suppressed because they correspond to higher partial waves.

Figure 8.8 represents the pπ−, pπ+π−, pπ+ and π+π− invariant mass distributions

compared to Cao et al. Lagrangian model calculations (dotted dashed red line). The

visible contributions come from : double-∆(1232), N(1710) → ∆π, N(1710) → Nρ,

N(1440) → Nσ (σ exchange), N(1440) → ∆π (σ exchange), N(1720) → Nρ (pion

exchange), ∆(1600)→ ∆π (pion exchange), ∆(1700)→ ∆π (pion exchange).

As we can see the data are not well represented by the model. In the pπ− invariant

mass distribution (see Figure 8.8 a) the model shows only one peak at 1.2 GeV, this

is due to the fact that only the double-∆(1232) contribution was considered. Our data

show clearly that ∆(1232)N(1520) and ∆(1232)N(1680) should be added. The pπ+π−

invariant mass distribution (see Figure 8.8 b) shows two peaks at 1.45 GeV and 1.7 GeV

coming from a very high contribution of the resonances N(1440) decaying to ∆π and Nσ
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with a σ-meson exchange, N(1710) decaying to ∆π and Nρ with a ρ meson exchange and

N(1720) decaying to Nρ with a pion exchange. In the pπ+ invariant mass distribution

(see Figure 8.8 c) the peak at the ∆(1232) mass is not fully reproduced by the model

due to the underestimation of the double resonance excitation, which according to our

analysis, mainly involves a ∆++(1232) contribution and the high decay of resonances

to Nρ instead of ∆π. The π+π− invariant mass distribution (see Figure 8.8 d) shows

a large peak around the ρ-meson mass due to the high decay of N(1710) and N(1720)

Nρ. It also shows that the N(1440) excitation is overestimated and the N(1520) is very

negligible.

(a) (b)

(c) (d)

Figure (8.8) (a) pπ−, (b) pπ+π−, (c ) pπ+, (d) π+π− invariant mass distributions
compared to the result of Cao et al. Lagrangian model calculations (red curves). A
global normalization factor is applied to the simulation in order to match the total
experimental yield in HADES acceptance.

Figure 8.9 represents the pπ−, pπ+π−, pπ+ and π+π− angular distributions in the

center of mass reference frame compared to the results of Cao et al. Lagrangian model

calculations. It is interesting to note that the angular distributions for the double-∆

excitation is much steeper than for the single resonance excitation and the slope of the
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angular distributions is also decreasing with the mass of the baryon. These two features

are in qualitative agreement with our PLUTO resonance cocktail model. However, the

double-∆ and N(1440) contribution is much steeper in Cao et al. model. In comparison

to the data, the theoretical pπ−,pπ+π− and pπ+ angular distributions are in general too

steep. The π+π− angular distribution (see Figure 8.9 d) is not well described which is

also probably due to the too steep angular distribution for the light baryon production.

(a) (b)

(c) (d)

Figure (8.9) (a) pπ−, (b) pπ+π−, (c ) pπ+, (d) π+π− CM angular distributions
compared to the result of Cao et al. model calculations (red curves). The same
normalization factor as in Figure 8.8 is applied to the simulation.

In summary, it seems that, to extend the model at higher energies, in addition to

the double-∆, also the ∆(1232)N(1520), ∆(1232)N(1520) and ∆(1232)N(1680) should

be added to the model. In addition, our data shows evidence for a strong N(1675) and

N(1680) excitation, which is absent in the model. Finally, the decay branching ratios to

Nρ from PDG 2010 [138] used in the model provide a too large ρ meson contribution.
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8.3 GiBUU model

GiBUU (Giessen Boltzmann-Uehling-Uhlenbeck) transport model is a tool for the

numerical simulation of nuclear reactions that provides a unified framework for various

types of elementary reactions on nuclei as well as heavy-ion collisions in a broad energy

range. This model takes care of the correct transport-theoretical description of the ha-

dronic degrees of freedom in nuclear reactions, including the propagation, collisions and

decays of particles. The GiBUU model currently contains around 30 nucleon resonance.

All the resonances are taken from the partial-wave analysis of Manley [140]. The low-

energy part of the nucleon-nucleon collision is given by a resonance model based on Teis

analysis [60], in which all collision cross sections are assumed to be dominated by the

excitation of baryon resonances [141].

Both one and double resonance excitation where considered in GiBUU model, the one

resonance excitation channels NN → N∆ and NN → NN∗, N∆∗ were already included

in Teis analysis based on existing data in 1992 of heavy-ion collisions in the energy range

of 1-2 GeV/A. Most of the resonance production matrix elements are adopted from Teis.

However,a few modifications were made in GiBUU model. In particular the contributions

of the N(1675), ∆(1600) and ∆(1910) were reduced in favor of the N(1440) and double-

∆ contributions, since they were extremely large in Teis analysis. This gives an improved

threshold behavior of the 2π production channels [69]. The double resonance production

NN → ∆∆ and NN → ∆N∗,∆∆∗ is performed in a phase-space approach, analogous

to the one resonance excitation [69]. The GiBUU model cross sections for the two-pion

production in proton-proton collisions is shown in Figure 8.10, the availability of the

π+π− final state data allows for a proper evaluation of the
√
s dependence [141].

The total cross section for the pp→ ppπ+π− channel calculated by GiBUU model is

σGiBUU
pp→ppπ+

π
− = 3.595 mb, it is in good agreement with our result σHADES = 3.89± 0.15

mb. The single and double resonance production cross sections are listed in table 8.2, the

result shows that GiBUU model is missing the double resonance production ∆N(1440)

and the one resonance productions N(1875) and N(1880), it also highly underestimates

the N(1520), N(1680), ∆N(1520) and ∆N(1680) productions, and overestimates the

N(1440) production.
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Figure (8.10) GiBUU cross sections for double pion production in proton-proton
collisions [141]. Data from [142].

8.4 UrQMD model

The UrQMD-model (microscopic Ultra-relativistic Quantum Molecular Dynamics

model) [143] is a hadronic non-equilibrium transport approach based on the quantum

molecular dynamics concept. It includes all baryons and mesons with masses up to

2.2 GeV. The dynamics of reactions in a nuclear collision are described in terms of a

n-particle phase-space distribution.

In UrQMD, the excitation of non-strange resonances is subdivided into 6 classes :

NN → N∆(1232), NN → NN∗, NN → N∆∗, NN → ∆(1232)∆(1232), NN →
∆(1232)N∗ and NN → ∆(1232)∆∗. For each of these classes specific assumptions are

made with regard to the form of the matrix-element |M(m3,m4)|2. Figure 8.11 shows the

UrQMD model total cross sections for the excitation of the different resonance classes.

Figure 8.12 shows the UrQMD cross sections for the exclusive pN(1440), pN(1520),

pN(1680), pN(1700) channels compared to data.

The total cross section for the pp → ppπ+π− channel calculated by UrQMD model

is σUrQMD

pp→ppπ+
π
− = 3.11 mb, it is slightly lower than our result σHADES = 3.89± 0.15 mb.

The one and double resonance production cross sections extracted from UrQMD model

calculations are listed in Table 8.2. The contributions of the N(1440) and N(1520) are

much closer to our estimate than GiBUU results. However, UrQMD model is missing the

contributions of N(1720), N(1875) and N(1880) and the double resonance production

∆N(1440) and ∆N(1535), it also highly underestimates the double-∆(1232) production
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Figure (8.11) Inelastic proton-proton cross section in UrQMD, subdivided into the
classes NN → N∆(1232), NN → NN∗, NN → N∆∗, NN → ∆(1232)∆(1232),
NN → ∆(1232)N∗ and NN → ∆(1232)∆∗ [143].

Figure (8.12) UrQMD parametrization for exclusive pN(1440), pN(1520),
pN(1680), pN(1700) compared to data [120]. Red squares represent this work results.

and it predicts that the total one resonance production is higher than the total double

resonance production which is not compatible with our result.
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8.5 SMASH model

SMASH (Simulating Many Accelerated Strongly interacting Hadrons) [144] which is

a new hadronic transport approach for the dynamical description of collisions at low and

intermediate beam energies and dilute non-equilibrium stages of heavy-ion collisions. It

constitutes a solution of the non-equilibrium dynamics of hadrons in the regime where

the inelastic interactions are treated by resonance excitations and decays with vacuum

properties.

The model includes all well known hadronic resonances listed by the PDG [34] up

to a mass of 2.35 GeV. All resonances are assumed to have a Breit-Wigner shape and

the partial widths are calculated following the framework of Manley et al. [140]. In

NN collisions, both one resonance production processes ( NN → NN?, N∆, N∆? )

and double resonance production processes ( NN → ∆∆,∆N?,∆∆? ) are taken into

account. For NN → N∆, amplitudes are calculated from [62] in the one-boson-exchange

(OBE) model. In the other cases, constant matrix elements are used, i.e. only phase space

energy dependence is accounted for [70, 144]. Figure 8.13 shows elastic and inelastic

proton-proton cross section in SMASH compared to data from [34]. The first inelastic

channel that opens up is the excitation of a single ∆ resonance. At higher energies it is

followed by the excitation of heavier resonance states (N? and ∆?) as well as double-

resonance excitations.

Figure (8.13) Elastic and inelastic proton-proton cross section in SMASH [144]
compared to data from [34].
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The total cross section for the pp → ppπ+π− channel calculated by SMASH model

is σSMASH
pp→ppπ+

π
− = 2.73 mb [145], it is lower than our result σHADES = 3.51 ± 0.15 mb .

The single and double resonance production cross sections are listed in Table 8.2 (last

column) [145], these cross sections represent the resonances contributions to the channel

pp→ ppπ+π−, hence they should be compared to the cross sections extracted from our

data that are listen in the fifth column. The result shows that SMASH model includes

resonances excitations up to N(2220) which could not be identified in our analysis and

are absent in the two other transport models. Also the model clearly underestimates

the contribution of the light resonances N(1440) and N(1520) and N(1535). The list of

double resonances contributing is compatible with our result, however, the cross sections

are about 3 times lower, except for the double-∆ which is slightly lower.

Model σtot
π

+
π
− [mb]

HADES 3.89 ± 0.15
GiBUU 3.595
UrQMD 3.11
SMASH 2.73

Table (8.1) Total cross sections in units of mb for the pp→ ppπ+π− channel at Tp
= 3.5 GeV obtained from transport models compared to HADES.



Chapter 8 Comparison to theoretical models 150

Channel σRHADES σRGiBUU σRUrQMD σπ
+
π
−

HADES σπ
+
π
−

SMASH

N+(1440) 1.5 ± 0.4 3.58 1.15 0.25 ± 0.017 0.04

N+(1520) 1.8 ± 0.3 0.26 1.7 0.29 ± 0.016 0.07

N+(1535) 0.15 ± 0.03 0.54 0.8 0.003 ± 0.0002 -

∆+(1600) - 0.14 0.4 - -

∆+(1620) 0.05 ± 0.01 0.097 0.2 0.022 ± 0.002 0.058

N+(1650) 0.027 ± 0.008 0.22 0.4 0.002 ± 0.0001 -

N+(1675) 1.05 ± 0.23 0.75 1.2 0.26 ± 0.004 0.13

N+(1680) 0.80 ± 0.08 0.22 1.2 0.128 ± 0.011 0.10

N+(1700) 0.10 ± 0.025 - 0.75 0.04 ± 0.004 0.12

∆+(1700) 0.45 ± 0.13 0.055 0.35 0.17 ± 0.02 0.067

N+(1710) 0.024 ± 0.008 - - 0.002 ± 0.0001 -

N+(1720) 0.045 ± 0.005 0.14 0.68 0.0148 ± 0.0003 0.07

N+(1875) 0.027 ± 0.013 - - 0.0097 ± 0.0004 0.069

N+(1880) 0.41 ± 0.20 - - 0.066 ± 0.003 -

∆+(1905) 0.045 ± 0.005 0.047 0.25 0.025 ± 0.003 0.10

∆+(1910) - 0.14 0.08 - -

∆+(1920) - - - - 0.04

∆+(1930) - - - - 0.05

∆+(1950) - - - - 0.04

N+(1990) - - - - 0.08

N+(2060) - - - - 0.03

N+(2120) - - - - 0.033

N+(2190) - - - - 0.035

N+(2220) - - - - 0.032

∆++∆0 3.7 ± 0.15 3.55 1.5 1.22 ± 0.05 1.0

∆++N0(1440) 0.81 ± 0.13 - - 0.54 ± 0.01 0.075

∆++N0(1520) 1.50 ± 0.10 0.34 0.92 0.37 ± 0.02 0.14

∆++N0(1535) 0.46 ± 0.10 1.60 - 0.138 ± 0.003 0.049

∆++N0(1650) - 0.26 - - 0.048

∆++N0(1675) - - - - 0.097

∆++N0(1680) 0.80 ± 0.07 0.24 0.62 0.34 ± 0.01 0.12

∆0∆++(1620) - 0.17 - - -

∆++∆0(1620) - 0.16 - - -

∆++N0(1720) - 0.15 - - -

∆++∆0(1700) - 0.089 - - -

∆0∆++(1700) - 0.085 - - -

Table (8.2) Cross sections in units of mb for the single and double resonance
production in pp collision extracted from our data (second column) compared to
GiBUU model (third column), UrQMD model (fourth column). Cross sections in the
pp→ ppπ+π− channel (fifth column) compared to SMASH model [145].
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8.6 Conclusion on data/model comparison

In conclusion, our data could be compared to the predictions of both dedicated models

for the NN → NNππ reaction and of transport models. The Cao et al. and OPER dedi-

cated models have more solid theoretical basis, since they use respectively Lagrangians

and PWA amplitudes. However, the predictions are not yet satisfactory and we hope

this will motivate further theoretical works. For the Cao et al. model, part of the dis-

crepancy is just due to the fact that the model was aiming at describing NN → NNππ

reactions up to an incident energy of 2.2 GeV and does not include the heaviest baryonic

resonances.

Transport models parameters have been mostly adjusted up to now to one pion and

2π total cross section data, together with differential distributions in the region where

the ∆(1232) dominates. These models differ by the size of the excitation of resonances

heavier than ∆(1232) and of the double resonance contributions. Our data, which provide

precise differential cross sections allow for a test of these ingredients and could be used to

update the models. This can be useful to revisit the predictions for the e+e− production

measured by HADES in the pp and pNb reactions at 3.5 GeV [50, 65]. It is also very

important to provide more precise predictions for dielectron production in heavy-ion

reactions, in view of the upcoming HADES and CBM experiments with the SIS100 beams

of the FAIR facility, where heavy-ion beams of a few GeV/nucleon will be available.



9
Conclusion

Exclusive measurements in proton-proton reactions at a kinetic energy of 3.5 GeV (
√
s

= 3.18 GeV) were presented in this thesis. This work is realized in the framework of the

HADES experiment. The main objective is to study the role of baryonic resonances and ρ

meson in these reactions. Such information has a strong impact for predictions of meson

and dielectron production in elementary or heavy-ion reactions at a few GeV/nucleon.

The π+π− channel is indeed unique to investigate single and double baryon resonance

excitations as well as the ρ meson production, either in a direct process or via excitation

and decay of a baryon resonance.

The extraction of the signal for π+π− production was based on the detection of one

proton, one π+ and one π− in the HADES detector and the calculation of the mis-

sing mass. Efficiency corrections were performed using efficiency matrices calculated by

GEANT3. Statistical errors are negligible and systematic errors are mainly due to the

efficiency corrections which are based on simulations and to normalization. A simple

model based on PLUTO event generator was built for the interpretation of the data,

152
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including three main types of contributions summed incoherently : the production of one

resonance decaying into pπ+π− and the excitation of two resonances, decaying respecti-

vely into pπ+ and pπ− and the direct ρ production. Consistently with the analysis of one

pion production measured in the same reaction with HADES, which was the subject of

a previous analysis, a phenomenological modeling of the resonances angular distribution

depending on the four-momentum transfer was implemented to take into account the

anisotropic emission in the proton proton center-of-mass frame. It was found in the one

pion analysis that the anisotropy of the distribution decreases with increasing resonance

mass. Such behavior is expected since the production of heavier resonances requires a

larger four-momentum transfer. A similar behavior was considered in the case of the

double resonance excitation.

A fitting procedure was developed, using as constraint the information obtained by

the HADES collaboration for the single resonance excitation from one pion and one kaon

production in the same experiment. The results of our analysis allowed to extract the

contribution of several heavy resonances for which only an upper limit was extracted

from the one pion analysis (∆(1620), N(1675), N(1680), ∆(1910)) and to reduce the

uncertainty on the excitation of lighter resonances (N(1440), N(1520), ...). The double

resonance excitation was extracted for the first time. Among all the identified contri-

butions, the main ones are the double ∆(1232) excitation and the N(1520) excitation.

An attempt to extract the dibaryon D21 contribution reported by WASA collaboration

was done, however, no signal is seen. For a dibaryon of mass M = 2140 MeV and width

Γ = 110 MeV, an upper limit for the cross section of 0.3 µb is obtained.

The contribution of the exclusive ρ meson production was also extracted after ap-

plying the needed kinematical cuts. To determine the ρ production angular distribution,

the differential cross section was extracted in each bin of π+π− angle in the center of

mass, This distribution was fitted with Legendre polynomials and integrated to calcu-

late the total cross section. The angular distribution is forward/backward peaked, but

the anisotropy is much smaller than the result measured by the DISTO collaboration

at beam energy of 2.85 GeV. The contribution of baryonic resonances to the ρ produc-

tion is discussed using our cocktail of baryonic resonances, where branching ratios are

taken from the Bonn-Gatchina PWA. While the details of this contribution depend on

these branching ratios of baryonic resonances to the Nρ channels, it appears clearly that

the Breit-Wigner spectral function commonly used to extract the ρ meson production
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strongly underestimates the total ρ production. This is due to the distortion of the ρ

spectral function for the production from light baryons (i.e. N(1520)). This ”resonance”

ρ contribution is discussed and compared to existing models. This work points to the

necessity for the models to fit directly the π+π− invariant mass distribution and not only

the ρ cross section measurements. We also tried to extract the contribution of f0(500)

and f0(980) since their dominant decay channel is ππ. No signal is observed, and rough

estimates for the upper limits of the cross sections are set to 5 µb for f0(500) and 1 µb

for f0(980).

To look at our analysis of the pp → ppπ+π− reaction based on a incoherent sum

of contributions in a more theoretical perspective, we developed with Jacques Van De

Wiele a Lagrangian model which takes into account the main contributions, the double

∆(1232) excitation and the N(1520) excitation. It allows to compare the results of

our simple resonance model with a model based on quantum field theory and to test

the interferences effects. While some differences are visible, the main features are very

similar. In overall, our empirical model seems to give a better description of the data.

The Lagrangian model predicts a negligible interference effect.

Then, we compared our experimental data to existing dedicated models for the

NN → NNππ reaction. We first collaborated with A. Jerusalimov to compare the

OPER model to our data. It was found that the model overestimates the double-∆

excitation, ∆(1600) and other higher lying resonances of mass around 1.8 GeV in com-

parison to the other contributions. We also collaborated with Xu Cao to compare Cao

et al. Lagrangian model to our data. The comparison showed that the double resonance

excitation is underestimated since only the double-∆(1232) excitation is included in the

calculations. This is due to the fact that the model had been developed to describe the

NN reaction below 2.2 GeV. It also shows that the N(1440), N(1710) and N(1720)

excitations are overestimated and N(1520) is missing. We hope this work will motivate

further theoretical works.

The resonance contributions extracted from the data analysis were also compared to

inputs of transport models calculations (GiBUU, UrQMD and SMASH), None of them

provides results which are fully compatible with our analysis. The double-∆ contribution

is best reproduced in GiBUU and SMASH and the N(1440), N(1520) and N(1675)

are best predicted by UrQMD. The confrontation of the experimental results to the
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predictions of existing theoretical models shows the necessity to take into account these

new data.

The work presented in this PhD demonstrates that the pp → ppπ+π− reaction at

3.5 GeV is a powerful tool to constrain the models used to describe the elementary

processes. In particular, this channel is very sensitive to the single and double baryonic

resonance excitation, as well as the ρ meson production which are important sources

of dielectrons. These data should therefore serve as a benchmark for models and be

helpful e.g. to make a more detailed description of existing HADES data for the e+e−

production in p + p or p + Nb at 3.5 GeV or to provide realistic predictions for future

HADES or CBM heavy-ion experiments at FAIR at a few GeV per nucleon.



A
Four-body final state

The differential cross section for 2 → 4 scattering process

a + b → 1 + 2 + 3 + 4

Depends on eight independent variables. It can be written as :

d8σ =
1

|va − vb|
1

4EaEb

∫
|M|2(2π)4δ4(pa+pb−p1−p2−p3−p4)d4p1d4p2d4p3d4p4 (A.1)

In the lab frame we have :

Eb = mb

|va − vb| =
pa
Ea

|va − vb|EaEb = pamb
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Where p = |p| is the 3-momentum

d3p = p2 dp dΩ = pE dE dΩ (A.2)

d8σ =
1

|va − vb|
1

4EaEb

∫
|M|2(2π)4δ(pa + pb − p1 − p2 − p3 − p4)

d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4

(A.3)

d8σ =
1

64(2π)8

1

4pamb
p1E1dE1dΩ1p2E2dE2dΩ2

1

E1E2

∫
|M|2d

3p3

E3

d3p4

E4

δ(pa + pb − p1 − p2 − p3 − p4) (A.4)

d8σ

dE1dΩ1dE2dΩ2
=

1

64(2π)8

p1p2

4pamb∫
|M|2d

3p3

E3

d3p4

E4
δ(pa + pb − p1 − p2 − p3 − p4) (A.5)

Where

E3 =

√
p2

3 +m2
3 E4 =

√
p2

4 +m2
4 (A.6)

δ(pa + pb − p1 − p2 − p3 − p4) =

δ(Ea +mb − E1 − E2 − E3 − E4)δ(pa + pb − p1 − p2 − p3 − p4) (A.7)

When integrating over d3p4∫
|M|2d

3p3

E3

d3p4

E4
δ(pa + pb − p1 − p2 − p3 − p4)

=

∫
|M|2d

3p3

E3

1

E4
δ(Ea +mb − E1 − E2 − E3 − E4) (A.8)

Where

E4 =

√
p2

4 +m2
4 =

√
(pa − p1 − p2 − p3)2 +m2

4 (A.9)
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We choose to integrate over p3. We have

d3p3

E3E4
= dΩ3

p2
3dp3

E3E4
(A.10)

E4 =

√
(pa − p1 − p2)2 +m2

4 + p2
3 − 2p3.(pa − p1 − p2) (A.11)

By using

∫
δ[f(p3)]dp3 =

∑
p3

δ(p− p3)

|∂f∂p |p3

(A.12)

δ(Ea + Eb − E1 − E2 − E3 − E4) =

δ
(
Ea + Eb − E1 − E2 −

√
p2

3 +m2
3 −

√
(pa − p1 − p2 − p3)2 +m2

4

)
=

δ
(
Ea + Eb − E1 − E2 −

√
p2

3 +m2
3 −

√
(pa − p1 − p2)2 + p2

3 +m2
4 − 2p3.(pa − p1 − p2)

)
Equation A.5 becomes

d8σ

dE1dΩ1dE2dΩ2dΩ3
=

1

64(2π)8

p1p2

4pamb

∑
p3

p3
3M|2

|p2
3E4 + E3[p2

3 − p3.(pa − p1 − p2)]|
(A.13)
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Phys. J., A51(7) :83, 2015.



Bibliography 166

[89] L. Alvarez-Ruso, E. Oset, and E. Hernandez. Theoretical study of the N N → N

N pi pi reaction. Nucl.Phys., A633 :519–546, 1998.

[90] Xu Cao, Bing-Song Zou, and Hu-Shan Xu. Phenomenological analysis of the

double-pion production in nucleon-nucleon collisions up to 2.2 gev. Phys. Rev. C,

81 :065201, 2010.

[91] A.P. Jerusalimov. Analysis of the Reaction : np → npπ+π− from the Point of

View of Oper-Model. 2012.

[92] A.P. Jerusalimov. Contribution of the ”hanged” diagrams into the reaction np→
npπ+π−. 2012.

[93] T. Skorodko, M. Bashkanov, D. Bogoslawsky, H. Calen, H. Clement, et al. ∆∆

Excitation in Proton-Proton Induced π0π0 Production. Phys.Lett., B695 :115–123,

2011.

[94] M. Albaladejo and E. Oset. Combined analysis of the pn → dπ+π− and pn →
pnπ+π− cross sections and implications for the interpretation of the pn→ dπ+π−

data. Phys. Rev. C, 88 :014006, 2013.

[95] G. Agakishiev et al. Study of the quasi-free np→ npπ+π− reaction with a deute-

rium beam at 1.25 GeV/nucleon. Phys. Lett., B750 :184–193, 2015.

[96] M. Bashkanov, Chr. Bargholtz, M. Berlowski, D. Bogoslawsky, H. Calen, et al.

Double-Pionic fusion of nuclear systems and the ABC effect : Approaching a

puzzle by exclusive and kinematically complete measurements. Phys.Rev.Lett.,

102 :052301, 2009.

[97] P. Adlarson et al. Abashian-booth-crowe effect in basic double-pionic fusion : A

new resonance ? Phys. Rev. Lett., 106 :242302, 2011.

[98] P. Adlarson et al. Isospin Decomposition of the Basic Double-Pionic Fusion in the

Region of the ABC Effect. Phys. Lett. B, 721 :229–236, 2013.

[99] P. Adlarson et al. Measurement of the pn → ppπ0π− reaction in search for the

recently observed resonance structure in dπ0π0 and dπ+π− systems. Phys. Rev.

C, 88 :055208, 2013.



Bibliography 167

[100] P. Adlarson et al. Measurement of the np → npπ0π0 reaction in search for the

recently observed d?(2380) resonance. Physics Letters B, 743 :325, 2015.

[101] T. Skorodko H. Clement, M. Bashkanov. From CELSIUS to COSY : on the ob-

servation of a dibaryon resonance. Phys. Scr., T 166 :014016, 2015.

[102] P. Adlarson et al. Isotensor dibaryon in the pp → ppπ+π− reaction ? Phys. Rev.

Lett., 121 :052001, 2018.

[103] P. Adlarson et al. Examination of the production of an isotensor dibaryon in the

pp→ ppπ+π− reaction. Phys. Rev. C, 99 :025201, 2019.

[104] G. Agakishiev et al. The High-Acceptance Dielectron Spectrometer HADES. Eur.

Phys. J. A41 :243-277, 2009.

[105] HADES Collaboration. A Proposal for a High Acceptance Di-Electron Spectro-

meter. GSI, Darmstadt, 1994.

[106] K. Zeitelhack et al. The HADES RICH Detector, Nucl. Inst. and Meth. A433,

201, 1999.

[107] J. Markert. Untersuchung zum Ansprechverhalten der Vieldrathdriftkammern nie-

driger Massenbelegung des HADES Experimentes. Ph.D. Thesis, 2005.

[108] T. Bretz. Magnetfeldeigenschaften der Spektrometer HADES. Ph.D. Thesis, 2003.

[109] I. Frohlich et al. Design of the Pluto Event Generator. 17th International Confe-

rence on Computing in High Energy and Nuclear Physics, 2009.

[110] http://consult.cern.ch/writeup/geant/.

[111] R. Munzer et al. Determination of N* amplitudes from associated strangeness

production in p+p collisions. Phys. Lett. B 785, 574â580, 2018.
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Résumé en Français

L’objectif principal des expériences avec le detecteur HADES (High Acceptance Di-

Electron Spectrometer) est l’étude de la matière hadronique, dans la région de forte

densité (jusqu’à trois fois la densité nucléaire normale) et de températures modérées,

(T < 100 MeV), accessible en utilisant des collisions d’ions lourds à des énergies inci-

dentes de l’ordre de 1 à 4A GeV.

En 2007, la collaboration HADES a mesuré à GSI, des collisions de protons avec une

énergie cinétique du projectile égale à 3,5 GeV. Le but principal de cette expérience était

de mesurer des paires électron-positron (appelées di-électrons). Cependant, HADES, est

aussi un détecteur très performant pour la mesure des hadrons chargés tels que des

protons et des pions, ce qui offre la possibilité d’effectuer des mesures complémentaires

importantes pour l’interprétation de la production des paires e+e−. Ainsi, l’analyse des

”hadrons” permet d’étudier les principaux mécanismes de réaction aux énergies de GSI

et notamment le rôle des résonances baryoniques, et de déterminer les sections efficaces

de processus qui sont des sources importantes de paires e+e−.

Dans le cadre de cette thèse, nous présentons l’analyse du canal exclusif pp →
ppπ+π− à une énergie cinétique de 3,5 GeV. L’objectif principal est d’étudier le rôle

des résonances baryoniques et du méson ρ dans ces réactions. Ces informations ont un

impact important sur les prévisions de la production de mésons et de diélectrons dans

les réactions élémentaires ou d’ions lourds à quelques GeV/nucléon. Le canal π+π− est

en effet unique pour étudier les excitations d’une ou deux résonances baryoniques ainsi

que la production de mésons ρ, soit directement, soit par l’excitation et la décroissance

d’une résonance baryonique.

171
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L’extraction du signal pour la production de π+π− était basée sur la détection d’un

proton, un π+ et un π− dans le détecteur HADES et le calcul de la masse manquante.

Les corrections d’efficacité ont été effectuées à l’aide de matrices d’efficacité calculées

avec GEANT3. Les erreurs statistiques sont négligeables et les erreurs systématiques

sont principalement dues aux corrections d’efficacité basées sur des simulations et à la

normalisation. Un modèle simple basé sur le générateur d’événements PLUTO a été

construit pour l’interprétation des données, en considérant trois types de contributions

sommées de manière incohérente : la production d’une résonance décroissant en pπ+π−,

l’excitation de deux résonances, décroissant respectivement en pπ+ et pπ− et la produc-

tion directe du méson ρ. Conformément à l’analyse de la production d’un pion mesurée

dans la même réaction avec HADES, qui a fait l’objet d’une analyse précédente, une

modélisation phénoménologique de la distribution angulaire des résonances en fonction

du transfert du quadri-moment a été mise en œuvre pour prendre en compte l’émission

anisotrope dans le centre de masse de la collision proton proton. L’analyse à un pion a

révélé que l’anisotropie de la distribution diminue avec l’augmentation de la masse de la

résonance. Un tel comportement est attendu car la production de résonances plus lourdes

nécessite un transfert plus important du quadri-moment. Un comportement similaire a

été envisagé dans le cas de l’excitation de double résonances.

Une procédure d’ajustement a été développée en utilisant comme contrainte les in-

formations obtenues dans la même expérience par la collaboration HADES pour l’exci-

tation d’une seule résonance dans la production d’un pion et d’un kaon. Les résultats de

notre analyse ont permis d’extraire la contribution de plusieurs résonances lourdes pour

lesquelles seule une limite supérieure a été extraite de l’analyse à un pion (∆(1620),

N(1675),N(1680), ∆(1910)) et de réduire l’incertitude sur l’excitation des résonances

plus légères (N(1440), N(1520), ...). L’excitation de deux résonances a été extraite pour

la première fois. Parmi toutes les contributions identifiées, les principales sont la double

excitation de ∆(1232) et l’excitation de N(1520). Une tentative d’extraction de la contri-

bution du dibaryon D21 rapportée par la collaboration WASA a été effectuée, mais aucun

signal n’est vu. Pour un dibaryon de masse M = 2140 MeV et de largeur Γ = 110 MeV,

une limite supérieure de la section efficace de 0,3 µb est obtenue.

La contribution de la production exclusive de méson ρ a également été extraite après

application des coupures cinématiques nécessaires. Pour déterminer la distribution an-

gulaire de la production du ρ, la section efficace différentielle a été extraite dans chaque
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bin d’angle polaire π+π− au centre de masse. Cette distribution a été fittée avec les

polynômes de Legendre et intégrée pour calculer la section efficace totale. La distribu-

tion angulaire est maximale vers l’avant/arrière, mais l’anisotropie est beaucoup plus

faible que le résultat mesuré par la collaboration DISTO à une énergie de faisceau de

2,85 GeV. La contribution des résonances baryoniques à la production du meson ρ est

aussi incluse dans notre cocktail de résonances baryoniques, dans lequel les rapports

de branchement Nρ sont extraits de l’analyse en ondes partielles de Bonn-Gatchina.

Bien que les détails de cette contribution dépendent des rapports de branchement des

résonances baryoniques dans le canal Nρ, il apparâıt clairement que la fonction spectrale

de Breit-Wigner utilisée pour extraire la production du méson ρ sous-estime fortement

la production totale du ρ . Ceci est dû à la distorsion de la fonction spectrale du ρ par

la production à partir de résonances baryoniques légères (i.e. N(1520)). La contribution

du ρ ”résonant” est discutée et comparée aux modèles existants. Ce travail souligne la

nécessité pour les modèles de fitter directement la distribution de masse invariante π+π−

et pas seulement les mesures de section efficace de la production du ρ.

Nous avons également essayé d’extraire la contribution de f0(500) et f0(980) puisque

leur canal de décroissance dominant est ππ. Aucun signal n’est observé et les estimations

approximatives pour les limites supérieures des sections efficaces sont 5 µb pour f0(500)

et 1 µb pour f0(980).

Pour examiner notre analyse de la réaction pp → ppπ+π− basée sur une somme in-

cohérente de contributions dans une perspective plus théorique, nous avons développé

avec Jacques Van De Wiele un modèle de Lagrangien effectif qui prend en compte

les deux contributions principales, la double excitation de ∆(1232) et l’excitation de

N(1520). Il permet de comparer les résultats de notre modèle de résonance simple avec

un modèle basé sur la théorie quantique des champs et de tester les effets d’interférences.

Bien que certaines différences soient visibles, les caractéristiques principales sont très si-

milaires. Globalement, notre modèle simple semble donner une meilleure description des

données. Le modèle de Lagrangien prédit un effet négligeable des interférences.

Ensuite, nous avons comparé nos données expérimentales aux modèles existants dédiés

à la réaction NN → NNππ. Nous avons d’abord collaboré avec A. Jerusalimov pour

comparer le modèle OPER à nos données. Le modèle ne fournit pas de section efficace

absolue, mais il a été constaté qu’il surestime la contribution relative d’excitation de
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double-∆, ∆(1600) et d’autres résonances plus lourdes se trouvant autour de 1,8 GeV.

Nous avons également collaboré avec Xu Cao pour confronter le modèle de Lagrangien

effectif de Cao et al. à nos données. La comparaison a montré que l’excitation de double

résonances est sous-estimée puisque seule l’excitation de double-∆(1232) est incluse dans

les calculs. Cela est dû au fait que le modèle a été développé pour décrire la réaction NN

en dessous de 2,2 GeV. Il montre également que les contribution relatives d’excitations

de N(1440), N(1710) et N(1720) sont surestimées et que la contribution de la N(1520)

est manquante. Nous espérons que ce travail motivera d’autres travaux théoriques.

Les contributions de résonances extraites de l’analyse de données ont également

été comparées aux résultats de calculs des modèles de transport (GiBUU, UrQMD et

SMASH). Aucun modèle ne fournit des résultats totalement compatibles avec notre ana-

lyse. Parmi les contributions les plus importantes, le double-∆(1232) est mieux reproduit

par GiBUU et SMASH et les contributions de N(1440), N(1520) et N(1675) sont mieux

prédites par UrQMD. La confrontation des résultats expérimentaux avec les prédictions

des modèles théoriques existants montre la nécessité de prendre en compte ces nouvelles

données.

Les travaux présentés dans cette thèse démontrent que la réaction pp→ ppπ+π− à 3,5

GeV est un outil puissant pour contraindre les modèles utilisés pour décrire les collisions

nucléon-nucléon et les collisions d’ions lourds. En particulier, ce canal est très sensible à

l’excitation d’une ou deux résonances baryoniques, ainsi qu’à la production de mésons

ρ, sources importantes de diélectrons. Ces données doivent donc servir de référence pour

les modèles et sont très utiles pour décrire plus en détail les données HADES existantes

pour la production de paires e+e− en réactions p + p ou p + Nb à 3,5 GeV ou encore

fournir des prédictions réalistes pour les futures expériences en ions lourds à quelques

GeV par nucléon avec HADES ou CBM à FAIR.
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Resonance σR [mb] BRNππ × I σpπ
+
π
−

R [mb]

N+(1440) 1.5 ± 0.4 0.17 ± 0.04 0.250 ± 0.017

N+(1520) 1.8 ± 0.3 0.16 ± 0.03 0.29 ± 0.016

N+(1535) 0.15 ± 0.03 0.023 ± 0.005 0.0030 ± 0.0002

∆+(1620) 0.05 ± 0.01 0.44 ± 0.09 0.022 ± 0.002

N+(1650) 0.027 ± 0.008 0.09 ± 0.02 0.002 ± 0.0001

N+(1675) 1.05 ± 0.23 0.25 ± 0.05 0.26 ± 0.004

N+(1680) 0.80 ± 0.08 0.016 ± 0.02 0.128 ± 0.011

N+(1700) 0.10 ± 0.025 0.4 ± 0.1 0.04 ± 0.004

∆+(1700) 0.45 ± 0.13 0.38 ± 0.10 0.17 ± 0.02

N+(1710) 0.024 ± 0.008 0.09 ± 0.03 0.002 ± 0.0001

N+(1720) 0.045 ± 0.005 0.33 ± 0.03 0.0148 ± 0.0003

N+(1875) 0.027 ± 0.013 0.36 ± 0.17 0.0097 ± 0.0004

N+(1880) 0.41 ± 0.20 0.16 ± 0.07 0.066 ± 0.003

∆+(1905) 0.045 ± 0.005 0.56 ± 0.06 0.025 ± 0.003

∆++∆0 3.7 ± 0.15 0.33 ± 0.0 1.22 ± 0.05

∆++N0(1440) 0.81 ± 0.13 0.36 ± 0.05 0.54 ± 0.01

∆++N0(1520) 1.50 ± 0.10 0.46 ± 0.03 0.37 ± 0.02

∆++N0(1535) 0.46 ± 0.10 0.30 ± 0.06 0.138 ± 0.003

∆++N0(1680) 0.80 ± 0.07 0.43 ± 0.03 0.34 ± 0.01

Table (A.1) Les sections efficaces en unités de millibarns de la production de une
et de doubles résonances dans les collisions pp extraitent de l’analyse du canel
pp→ ppπ+π−. Les erreurs représentent la somme quadratique du fit et de l’erreur sur
les rapports de branchement.
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avec le détecteur HADES.

Mots clés : Physique hadronique, simulation, résonances baryoniques, GSI, detecteur HADES.
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de la réaction pp → ppπ+π− mesurée à une
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signal pour la production de pp → ppπ+π− est
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π− dans le détecteur HADES et sur le calcul de
la masse manquante. Les erreurs statistiques sont
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a été construit pour l’interprétation des données en
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d’une résonance décroissant en pπ+π− et l’exci-

tation de deux résonances décroissant respective-
ment en pπ+ et pπ− et la production directe du
méson ρ. Une procédure de fit est développée en
utilisant comme contraintes pour l’excitation baryo-
nique simple les résultats obtenus pour la produc-
tion d’un pion et d’un kaon. La contribution du
méson ρ a été également extraite après l’applica-
tion des coupures cinématiques nécessaires et le
rôle des résonances baryoniques dans cette pro-
duction est discuté. Parmi toutes les contributions
identifiées, les principales sont la double excitation
de ∆(1232) et la simple excitation de N(1520). Un
modèle de Lagrangien a été mis au point pour ces
deux contributions, les calculs donnent un résultat as-
sez proche du modèle simple et prédisent un effet
des interférences très faible. Finalement, la confron-
tation des résultats expérimentaux aux prédictions
de modèles théoriques existants montre la nécessité
de prendre en compte ces nouvelles données pour
la description de la production de mésons et de di-
électrons dans les collisions nucléaires au-delà de 1.5
GeV/nucléon.
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Abstract : The subject of this thesis is the analy-
sis of the pp → ppπ+π− reaction measured at a
beam energy of 3.5 GeV with the High Acceptance
Di-Electron Spectrometer (HADES) at GSI. The aim
is to provide additional information on the production
of a pion and a kaon measured by HADES for the ex-
citation of a resonance as well as new results for the
production of two resonances and the ρ meson pro-
duction. Such information is important, in particular,
for the interpretation of the di-electron spectra mea-
sured by the HADES collaboration. The extraction of
the signal for pp → ppπ+π− production is based on
the detection of one proton, one π+ and one π− in
the HADES detector and the calculation of the mis-
sing mass. Statistical errors are negligible and syste-
matic errors are mainly due to the efficiency correc-
tions which are based on simulations and to norma-
lization. A simple model based on PLUTO event ge-
nerator was built for the interpretation of the data, by

including three main types of contributions: the pro-
duction of one resonance decaying into pπ+π− and
the excitation of two resonances, decaying respecti-
vely into pπ+ and pπ− and the direct ρ production. A
fitting procedure is developed, using as constraint the
information obtained for the single resonance excita-
tion from one pion and one kaon production data. The
contribution of the ρ meson was also extracted after
applying necessary kinematical cuts. Among all the
identified contributions, the main ones are the double
∆(1232) excitation and the N(1520) excitation. A La-
grangian model was developed for these two contri-
butions, the calculations give a similar result to the
simple model and predict a negligible interferences ef-
fect. Finally, the confrontation of the experimental re-
sults to the predictions of existing theoretical models
shows the necessity to take into account these new
data for the description of mesons and di-electron pro-
duction in nuclear collisions above 1.5 GeV/nucleus

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	1 Introduction
	1.1 Properties of strong interactions
	1.2 Baryon resonances and vector mesons
	1.2.1 Quark Model predictions
	1.2.2 Baryon spectroscopy
	1.2.3 Exotic Baryons
	1.2.4 Baryon resonances in the early universe
	1.2.5 "Resonance" matter
	1.2.6 Dileptons and vector meson spectral functions
	1.2.7 Baryon resonance Dalitz decay and Vector Meson Dominance Model

	1.3 HADES experiments
	1.3.1 Main motivations
	1.3.2 Dilepton spectroscopy in medium
	1.3.3 Dilepton spectroscopy in elementary reactions

	1.4 One pion production in NN reactions with HADES
	1.4.1 pp collisions at T = 1.25 GeV
	1.4.2 pp collisions at T = 2.2 GeV
	1.4.3 pp collisions at T = 3.5 GeV

	1.5 Double pion production in nucleon-nucleon reactions
	1.5.1 Motivations
	1.5.2 Existing measurements
	1.5.3 Theoretical developments for NNto NN
	1.5.4 HADES results in the npto np+- reaction at 1.25 GeV
	1.5.5 WASA results for the ppto pp+- reaction


	2 HADES detector
	2.1 Target
	2.2 The Ring Imaging Cherenkov detector
	2.3 The Multi-wire Drift Chambers
	2.4 The Superconducting Magnet
	2.5 The Multiplicity Electron Trigger Array
	2.5.1 Time-Of-Flight Detectors: TOF and TOFino
	2.5.2 Pre-Shower detector

	2.6 The trigger system

	3 Experimental Data Analysis
	3.1 Introduction
	3.2 Particle reconstruction and identification
	3.2.1 Momentum reconstruction
	3.2.2 Time of flight calculation
	3.2.3 Time and momentum correlation

	3.3 Event selection
	3.4 Background Subtraction
	3.5 Efficiency and Acceptance Considerations
	3.5.1 Acceptance Matrices
	3.5.2 Efficiency Matrices

	3.6 Efficiency cuts
	3.7 Data Normalization
	3.8 Systematic errors estimation

	4 Simulations
	4.1 The PLUTO event generator
	4.2 PLUTO Resonance Cocktail
	4.3 Inputs from the one pion production analysis
	4.4 Accounting for the detector geometrical effects
	4.4.1 Acceptance filtering
	4.4.2 Simulation efficiency cuts
	4.4.3 Momentum Smearing

	4.5 Angular distribution parametrization
	4.6 Kinematics variables

	5 Extraction of the baryon resonance contributions
	5.1 Evidence for single and double baryon excitation
	5.1.1 Correlations between invariant masses 
	5.1.2 Comparing data to phase space distributions

	5.2 Comparing Data with PLUTO simulation
	5.2.1 Comparing with one resonance production model
	5.2.2 Implementation of the double resonance contribution
	5.2.3 Sensitivity of the data to the cocktail parameters

	5.3 Extraction of the Cross Sections
	5.3.1 Manually adjusted cross sections
	5.3.2 Automatic fitting procedure
	5.3.3 Impact of the results for dielectron production

	5.4 Dibaryon investigation

	6 Extraction of the light meson contributions
	6.1 Introduction
	6.2  meson
	6.2.1  meson signal extraction
	6.2.2  spectral function
	6.2.3  meson angular distribution
	6.2.4 Total cross sections
	6.2.5 Comparing  result with theoretical models

	6.3 f0(500) meson or 
	6.4 f0(980) meson

	7 Theoretical development of a Lagrangian model
	7.1 General expression of the differential cross section
	7.2 Model Formalism
	7.2.1 Choice of Feynman graphs
	7.2.2 Lagrangians
	7.2.3 Form factors
	7.2.4 Propagators

	7.3 Amplitude Calculation
	7.3.1 Double  production
	7.3.2 N(1520) production followed by decay to 
	7.3.3 N(1520) production followed by decay to p

	7.4 Numerical calculation result and discussion
	7.4.1 Building an event generator
	7.4.2 Differences with the resonance cocktail model
	7.4.3 Results of the Lagrangian model

	7.5 Interference effect

	8 Comparison to theoretical models
	8.1 OPER model
	8.2 Cao Lagrangian Model
	8.3 GiBUU model
	8.4 UrQMD model
	8.5 SMASH model
	8.6 Conclusion on data/model comparison

	9 Conclusion
	A Four-body final state
	Bibliographie

