
HAL Id: tel-02614322
https://theses.hal.science/tel-02614322

Submitted on 20 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical learning with high-cardinality string
categorical variables

Patricio Cerda Reyes

To cite this version:
Patricio Cerda Reyes. Statistical learning with high-cardinality string categorical variables. Machine
Learning [cs.LG]. Université Paris-Saclay, 2019. English. �NNT : 2019SACLS470�. �tel-02614322�

https://theses.hal.science/tel-02614322
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LS
47

0

Apprentissage statistique à partir de
variables catégorielles non-uniformisées

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’Université Paris-Sud à l’INRIA

Ecole doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 28 Novembre 2019, par

PATRICIO CERDA REYES

Composition du Jury :

Marc Schoenauer
Directeur de recherche, Inria (équipe TAU) Président

Laurent Charlin
Professeur adjoint, HEC Montréal Rapporteur

Stéphane Gaı̈ffas
Professeur, Université Paris Diderot (LPSM) Rapporteur

Charles Bouveyron
Professeur, Université Côte d’Azur Examinateur

Patrick Valduriez
Directeur de recherche, Inria (LIRMM) Examinateur

Balázs Kégl
Directeur de recherche, Huawei / CNRS Examinateur

Gaël Varoquaux
Directeur de recherche, Inria (équipe Parietal) Directeur de thèse

[February 28, 2020 at 11:47 – classicthesis version 0.1]

S TAT I S T I C A L L E A R N I N G W I T H
H I G H - C A R D I N A L I T Y S T R I N G

C AT E G O R I C A L VA R I A B L E S

patricio cerda reyes

Dissertation submitted in partial fulfillement of the
requirements for the degree of Doctor of Philosophy.

Université Paris-Saclay

Sciences et Technologies de l’Information

et de la Communication

October 2016 – September 2019

Inria Saclay. Palaiseau, France

[February 28, 2020 at 11:47 – classicthesis version 0.1]

P H . D . C O M M I T T E E

president:
Pr. Marc Schoenauer, Inria (team TAU), France.

director:
Pr. Gaël Varoquaux, Inria (team Parietal), Palaiseau, France.

reviewers:
Pr. Laurent Charlin, HEC Montréal, Montréal, Canada.
Pr. Stéphane Gaïffas, Université Paris Diderot (LPSM), Paris, France.

examiners:
Pr. Charles Bouveyron, Université Côte d’Azur, Nice, France.
Pr. Patrick Valduriez, Inria (LIRMM), Montpellier, France.
Pr. Balázs Kégl, Huawei/CNRS, France.

This thesis was prepared at Inria Saclay (team Parietal), from October
2016 to September 2019. It was funded by the Wendelin and Dirty-
Data (ANR-17-CE23-0018) grants.

© Patricio Cerda Reyes, September 2019

[February 28, 2020 at 11:47 – classicthesis version 0.1]

A B S T R A C T

Tabular data often contain columns with categorical variables, usu-
ally considered as non-numerical entries with a fixed and limited
number of unique elements or categories. As many statistical learning
algorithms require numerical representations of features, an encoding
step is necessary to transform categorical entries into feature vectors,
using for instance one-hot encoding. This and other similar strategies
work well, in terms of prediction performance and interpretability, in
standard statistical analysis when the number of categories is small.

However, non-curated data give rise to string categorical variables
with a very high cardinality and redundancy: the string entries share
semantic and/or morphological information, and several entries can
reflect the same entity. Without any data cleaning or feature engi-
neering step, common encoding methods break down, as they tend
to lose information in their vectorial representation. Also, they can
create high-dimensional feature vectors, which prevent their usage in
large scale settings.

In this work, we study a series of categorical encodings that remove
the need for preprocessing steps on high-cardinality string categori-
cal variables. An ideal encoder should be: scalable to many obser-
vations; interpretable to end users; and capture the morphological
information contained in the string entries.

Experiments on real and simulated data show that the methods
we propose improve supervised learning, are adapted to large-scale
settings, and, in some cases, create feature vectors that are easily inter-
pretable. Hence, they can be applied in Automated Machine Learning
(AutoML) pipelines in the original string entries without any human
intervention.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

R É S U M É

Les données de type tabulaire contiennent souvent des variables ca-
tégorielles : des colonnes non numériques avec un nombre fixe et limité
d’éléments uniques, appelés catégories. De nombreux algorithmes d’ap-
prentissage statistique nécessitent une représentation numérique des
variables catégorielles. Une étape d’encodage est donc nécessaire pour
transformer ces entrées en vecteurs. Pour cela, plusieurs stratégies
existent, dont la plus courante est celle de l’encodage one-hot. Cette
dernière fonctionne bien dans le cadre de l’analyse statistique clas-
sique (sur le plan de la puissance de prédiction et de l’interprétation)
lorsque le nombre de catégories reste faible.

Cependant, les données catégorielles non-uniformisées présentent
le risque d’avoir une grande cardinalité et des redondances. En ef-
fet, les entrées peuvent partager des informations sémantiques et/ou
morphologiques, et par conséquent, plusieurs entrées peuvent reflé-
ter la même entité. Sans une étape de nettoyage ou d’agrégation au
préalable, les méthodes d’encodage courantes peuvent perdre en effi-
cacité du fait d’une représentation vectorielle erronée. En outre, en
présence de redondances, le risque d’obtenir des vecteurs de très
grande dimensionnalité croît avec la quantité de données, ce qui em-
pêche leur utilisation dans l’analyse statistique de données volumi-
neuses. En général, les analystes de données s’attaquent à ce pro-
blème avec des techniques de nettoyage des données ou de feature en-
gineering. L’objectif étant de créer de nouvelles variables dépendantes
pour faciliter l’apprentissage statistique. Cependant, ces techniques
manuelles sont chronophages et nécessitent parfois un certain niveau
d’expertise dans le domaine spécifique à la base de donnée préalable.

Dans cette thèse, nous nous concentrons sur la recherche de repré-
sentations numériques pour les variables catégorielles à cardinalité
élevée qui font partie de l’ensemble des variables dépendantes. Nous
étudions une série de méthodes d’encodage qui permettent de tra-
vailler directement sur des variables catégorielles à grande cardina-
lité, sans qu’il soit nécessaire de les traiter en amont. Notre objectif
est de fournir des vecteurs pour les données catégorielles qui : (i) sont
de dimensionnalité limitée ; (ii) sont scalables ; qui (iii) améliorent les
performances de l’analyse statistique telles que l’apprentissage su-
pervisé ; et qui font tout cela (iv) sans aucune intervention humaine.
De plus, comme de nombreuses applications d’apprentissage auto-
matique nécessitent des algorithmes explicables par l’homme, nous
étudions aussi l’interprétabilité de ces encodeurs.

Pour évaluer ces nouvelles méthodes d’encodage, nous avons col-
lecté 17 jeux de données contenant au moins une variable catégorielle
à cardinalité élevée. A chacun de ces jeux de donnés, nous avons asso-
cié une tâche de prédiction spécifique. À notre connaissance, il s’agit
de la première collection de données liés à ce sujet. Tous les jeux de
données sont open source et nous espérons qu’ils favoriseront davan-

[28 février 2020 at 11:47 – classicthesis version 0.1]

tage des futures recherches dans ce domaine. Une première contri-
bution importante de cette thèse est la généralisation de l’encodage
one-hot, appelé similarity encoding, qui prend en compte la similarité
entre deux chaînes de caractères pour construire une représentation
continue des entrées. Dans la deuxième partie de cette thèse, nous
nous concentrons sur le développement de deux encodeurs en ligne :
l’encodeur min-hash, basé sur une famille de fonctions de hash qui ap-
proxime localement la similarité entre deux chaînes de caractères ; et
la factorisation Gamma-Poisson, un encodeur basé sur une factorisation
matricielle qui considère une probabilité de distribution de la décom-
position n-gram des catégories.

A l’aide d’expériences menées sur des données réelles et simu-
lées, nous démontrons que les méthodes proposées dans le cadre de
cette thèse améliorent l’apprentissage supervisé et ce, entre autre, du
fait de leur capacité à capturer correctement l’information morpho-
logique des entrées. Même avec des données volumineuses et non-
traitées au préalable, ces méthodes s’avèrent être performantes, et
dans le cas de la factorisation Gamma-Poisson, elles génèrent des vec-
teurs facilement interprétables. Par conséquent, nos méthodes peuvent
être appliquées à l’apprentissage statistique automatique (AutoML)
sans aucune intervention humaine.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

C O N T E N T S

1 overview 12

i generalizing one-hot encoding

2 background 15

2.1 Categorical variables . 15

2.1.1 Curated and non-curated categorical entries . . 15

2.2 The supervised learning model 16

2.3 From databases to statistical learning 17

2.4 Encoding strategies for curated categorical data 18

2.4.1 One-hot encoding 18

2.4.2 Ordinal encoding 19

2.4.3 Encoding using target statistics 19

2.5 Encoding non-curated categorical variables. 20

2.5.1 Sources of high cardinality 21

2.5.2 Strategies for entries without subword informa-
tion . 22

2.5.3 Strategies for entries with meaningful subword
structure . 24

2.6 Formatting and curating string entries. 26

2.6.1 Cleaning techniques in databases 26

3 similarity encoding 27

3.1 Intuitions . 27

3.2 String similarities . 28

3.2.1 Levenshtein . 29

3.2.2 Jaro-Winkler . 29

3.2.3 N-gram similarity 30

3.3 Similarity Encoder . 31

3.4 Limitations: handling high-dimensionality 32

4 fisher kernels : explaining similarity encoding 33

4.1 Fisher kernels . 33

4.2 Simple string kernel of independent n-grams 34

4.3 Link to similarity encoding 35

ii scalable categorical encoders

5 the min-hash encoding 38

5.1 Locality-sensitive hashing and the min-hash. 38

5.2 The min-hash encoder 42

6 topic modeling for categories : the gamma-poisson

factorization 45

6.1 Choosing the appropriate topic model 45

6.2 Gamma-Poisson factorization for string categories . . . 46

6.2.1 Estimation strategy 47

6.2.2 Online Algorithm 48

6.3 Inferring feature names 52

[February 28, 2020 at 11:47 – classicthesis version 0.1]

iii empirical study

7 supervised learning benchmarks 55

7.1 Real-world datasets . 55

7.1.1 Non-curated datasets 55

7.1.2 Curated datasets 55

7.2 Supervised learning pipeline 56

7.3 Prediction performance with non-curated data 58

7.3.1 Similarity encoding: choosing a good string sim-
ilarity . 58

7.3.2 Benchmarking scalable encoders 60

7.4 Robustness to non curated data 64

8 interpretable analysis on non-curated categories 66

8.1 Simulated categorical variables 66

8.2 Recovering latent categories 67

8.2.1 Results for real curated data 67

8.3 Interpretability of encoders 68

9 conclusion 72

9.1 Generalizing one-hot encoding 72

9.2 Scalable encoders . 73

9.3 Interpretability . 74

9.4 Categorical encoders for AutoML 74

Appendices
a reproducibility 76

a.1 Dataset Description . 76

a.1.1 Non-curated datasets 76

a.1.2 Curated datasets 78

b algorithmic considerations 79

b.1 Gamma-Poisson factorization 79

c additional results 80

References 84

[February 28, 2020 at 11:47 – classicthesis version 0.1]

A C R O N Y M S

ANN Approximate nearest neighbor

AutoML Automated machine learning

KL Kullback-Leibler

LDA Latent Dirichlet allocation

LSA Latent semantic analysis

LSH Locality-sensitive hashing

NLP Natural Language Processing

NMF Non-negative matrix factorization

NMI Normalized mutual information

PCA Principal component analysis

RKHS Reproducing kernel Hilbert space

SVD Singular value decomposition

SVM Support vector machine

Tf-idf Term-frequency inverse-document-frequency

t-SNE t-distributed stochastic neighbor embedding

VDM Value difference metric

[February 28, 2020 at 11:47 – classicthesis version 0.1]

N O TAT I O N

We write sets of elements with capital curly fonts, as X. Elements
of a vector space (we consider row vectors) are written in bold x with
the i-th entry denoted by xi, and matrices are in capital and bold X,
with xij the entry on the i-th row and j-th column.

Let C be a categorical variable such that dom(C) ⊆ S, with S the
set of finite length strings. We call categorical entries the elements
of dom(C). Let si ∈ S, i=1...n, be the entry corresponding to the
i-th sample of a dataset. For statistical learning, we want to find
an encoding function enc: S → Rd, such as enc(si)=xi. We call xi
the feature map of si. To represent a string entry s, we introduce a
count vector of its n-grams of consecutive characters f ∈Nm, with m
the number of different n-grams generated by the set of categorical
entries in the training set. Table 0.1 contains a summary of the main
variables used in this thesis.

Table 0.1 – Summary of notations

Symbol Name Definition

‖x‖2 Vector euclidean norm (`2 norm)
(∑n

i=1 x
2
i

)1/2
‖x‖1 Vector/matrix `1 norm

∑n
i=1 |xi|

〈x,y〉 Vector scalar product
∑n
i=1 xiyi

‖X‖F Matrix Frobenius norm
(∑n,m

i,j1= x
2
i,j)
)1/2

Diag(x) Diagonal matrix with diagonal x

H(q) Shannon Entropy
∑n
i qi logqi

4k (k− 1)-probability simplex {λ ∈ Rk+ : ‖λ‖1 = 1}

N(µ,Σ) Normal distribution

P[A] Probability of event A

E[X] Expected value of X
∑
AP[X = x]x

S Set of all finite-length strings.

Gn(s) ⊆ S Set of all consecutive n-grams in s ∈ S.

V=
⋃n
i=1 Gn(si) Vocabulary of n-grams in the train set.

C Categorical variable.

n Number of samples.

d Dimension of the categorical encoder.

m = |V| Cardinality of the vocabulary.

F ∈ Rn×m Count matrix of n-grams.

X ∈ Rn×d Feature matrix of C.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

1
O V E RV I E W

Tabular datasets often contain columns with string entries. How-
ever, fitting statistical models on such data generally requires a nu-
merical representation of all entries, which calls for building an encod-
ing, or vector representation. Considering string entries as nominal—
unordered—categories gives well-framed statistical analysis on this
kind of data. In such situations, categories are assumed to be mutu-
ally exclusive and unrelated, with a small set of possible values.

Yet, in many real-world datasets, string columns are not standard-
ized in a small number of categories. This poses challenges for statisti-
cal analysis. First, the set of all possible entries may be unknown and
extremely large, as the number of different strings in the column can
indefinitely increase with the number of data samples. We refer to
this kind of columns as high-cardinality categorical variables. Sec-
ond, this high-cardinality usually generates categorical entries that
may be related: they often carry some morphological or semantic
overlap.

The classic approach to encode categorical variables for statistical
analysis is one-hot encoding (Hastie et al., 2005). It creates vectors that
agree with the general intuition about nominal categories: orthogonal
and equidistant (P. Cohen et al., 2014). However, in high-cardinality
cases, one-hot encoding leads to feature vectors of high dimensional-
ity. This is particularly problematic in big data settings, which can
lead to a very large number of categories, posing computational and
statistical learning limitations.

Data engineering practitioners typically tackle these issues with
data-cleaning techniques (Pyle, 1999; Rahm and Do, 2000): dedupli-
cation tries to merge different variants of the same entity (Christen,
2012b; Elmagarmid et al., 2007; Winkler, 2006), and normalization,
used in databases and text processing, put string entries in canoni-
cal forms to reduce variability. A related concept is that of feature
engineering (Domingos, 2012), where the idea is to manually build
easy-to-learn features from the original data. However, all the pre-
vious techniques often require domain-specific human intervention,
and are one of the most challenging and time-consuming tasks for
data scientists 1.

In the context of statistical learning, given a prediction problem,
variables can be either a feature variable (also known as explanatory,
input or independent variable), or a target variable (also known as
the response, output or dependent variable). In this thesis, we focus
on the general problem of finding numerical representations for high-
cardinality categorical variables that are part of the feature set. We

1. Kaggle industry survey: https://www.kaggle.com/surveys/2017

[February 28, 2020 at 11:47 – classicthesis version 0.1]

https://www.kaggle.com/surveys/2017

overview 13

study new encoding approaches for statistical analysis on string cat-
egorical entries that are suited to a very large number of categories
without any human intervention. Our goal is to provide feature vec-
tors for categorical data that: (i) are of limited dimensionality; (ii)
scale to large data settings; (iii) improve performance of statistical
analysis tasks such as supervised learning; and (iv) do so without any
cleaning, feature engineering, or neural architecture search. Also, as
many machine-learning applications require algorithms that are un-
derstood or explainable by humans (Doshi-Velez and B. Kim, 2017),
we focus on the interpretability of encoders.

To evaluate these new encoding methods, we collected 17 real-life
datasets containing at least one high-cardinality categorical variable
and one related prediction task. To our knowledge, this is the first
collection of datasets related to this topic, as most machine learning
repositories contain standard, low-cardinality, categorical variables 2.
All datasets are open source and we hope that they will foster more
work on this subject.

This thesis is organized as follows. Chapter 2 introduces the su-
pervised learning problem and formally defines categorical variables,
the encoding process, as well as the problem of high-cardinality. Also,
it presents and discusses the previous work in the subject. Chapter 3

(Cerda et al., 2018) proposes a generalization of one-hot encoding,
similarity encoding, that considers pair-wise string similarities to build
the encoding representations. Then, Chapter 4 explains similarity
encoding as a Fisher kernel, a kernel method based on a generative
process for character n-grams.

Classic encoding methods are hard to apply in online machine-
learning settings. Indeed, new samples with new categories require
recomputation of the encoding representation, and hence retrain the
model from scratch. In the second part of this work we focus on on-
line encoders that are scalable to large data settings (Cerda and Varo-
quaux, 2019). Chapter 5 presents the min-hash encoder, an stateless
encoding method based on a family of hash functions that locally ap-
proximate similarity between strings (Broder, 1997). Then, Chapter 6

presents the Gamma-Poisson factorization (Canny, 2004), an encoder
based on matrix factorization that considers a probability distribu-
tion of the n-gram decomposition of categories. An online algorithm
for the Gamma-Poisson decomposition is developed for scalability
concerns.

In the last part, we present the results of several benchmark experi-
ments based on the 17 collected datasets, with focus on the prediction
performance of encoders (Chapter 7) and interpretability (Chapter 8).
Finally Chapter 9 gives the main conclusions of the thesis.

2. See for instance, the UCI Machine Learning Repository (Dheeru and Karra
Taniskidou, 2017).

[February 28, 2020 at 11:47 – classicthesis version 0.1]

Part i

G E N E R A L I Z I N G O N E - H O T E N C O D I N G

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2
B A C K G R O U N D

2.1 categorical variables

In classical statistical analysis, a categorical variable is typically
defined as a non-numerical variable with values of either ordinal or
nominal nature (Agresti and Kateri, 2011).

In the case of ordinal categorical variables, a total order between the
values can be defined. For example, answers in the Likert scale (Lik-
ert, 1932) to the question: “Do you agree with this statement: A child’s
education is the responsability of parents, not the school system”, compose
an ordinal categorical variable in which the level of agreement can be
associated with a numerical value. This intrinsic order makes ordinal
categorical variables easy to analyze 1.

Conversely, place of birth is a nominal categorical variable, because
there is no a clear order between cities that can be assigned a priori. In
this thesis, we mainly focus on nominal categorical variables, because
their numerical representation is much more challenging than in the
ordinal case.

2.1.1 Curated and non-curated categorical entries

We say that a categorical variable has been curated, or standardized 2,
when the set of different possible values is limited, known a priori
—before the data collection process—, and with values that are as-
sumed to be mutually exclusive. In this case, we call categories the
different unique elements of the categorical variable.

For example, the variable marital status is a nominal categorical
variable that can be standardized to 4 mutually exclusive categories:
married, single, divorced, and widowed. After standardization, no
other answers are allowed.

On the contrary, when a given categorical column has not been pre-
viously standardized, the set of possible responses is open—unknown
a priori—, it typically grows with the number of samples, and the
different values can contain semantical or morphological representa-
tions that are not mutually exclusive—there is overlap between the
different values. In this case, we say that we are in presence of a non-
curated categorical variable, and we call categorical entries—or simply
entries, for the purpose of this thesis—the different observed values.

Different entries can refer to the same category. For example, in
a categorical column named city, the entries "New York", "New York

city", and "New York, NY", point to the same category, the "city of
New York".

1. See Section 2.4.2 for the ordinal encoding method.
2. In the sense of making something conform to a standard.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.2 the supervised learning model 16

Before extending the description of non-curated categorical vari-
ables in Section 2.5, the main object of interest this thesis, let us in-
troduce in the next sections the basis of the of the statistical learning
theory (see for example Hastie et al., 2005) and its relation with cate-
gorical variables in a table.

2.2 the supervised learning model

Here we introduce some useful notions of statistical learning (Hastie
et al., 2005; V. Vapnik, 2013). We focus on the supervised learning model,
where the goal is to estimate the functional dependency between in-
put values (or features) and output values (target) from a series of
examples.

The supervised learning model is composed by three main parts:

(i) a data generation process of i.i.d. random vectors x ∈ Rp.

(ii) a supervisor that returns output values y ∈ Y following an un-
known conditional probability distribution P(y|x).

(iii) a learner, capable to implement a parametrized set of functions
{fα(x) : α ∈ Λ} 3, where α are the parameters.

The learning problem is that of choosing—from the previous set of func-
tions defined by the learner—the function fα(x) which predicts the
supervisors’ response in the best possible way (V. N. Vapnik, 1999).
In order to do this, the model considers n observations of the input
and output random variables:

(x1, y1), (x2, y2), . . . , (xn, yn) (2.1)

We call these observations the training set. Note that the input vector
we consider is defined in the real space.

The type of learning task to solve depends on the nature of the out-
put. When the output is numerical, we say that learning task is a
regression problem. If the output is categorical, it is a classification
problem, and we call classes the different values of the output.

Defining a a measure of discrepancy, or loss 4, L(y, fα(x)), allows
us to choose the best function by minimizing a risk functional:

R(α) =

∫
L(y, fα(x))dP(x, y) (2.2)

By using the training set, the risk functional can be approximated by
the empirical risk:

R̂(α) =
1

n

n∑
i=1

L(yi, fα(xi)) (2.3)

To assess the generalization capacity of a model, an independent
testing set of observations is usually drawn:

(x ′1, y
′
1), (x

′
2, y
′
2), . . . , (x

′
n ′ , y

′
n ′) (2.4)

3. In practice, different function sets correspond to different learning algorithms.
4. The loss depends on the chosen learning algorithm and in the nature of the

prediction problem: regression, binary classification, and multiclass classification.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.3 from databases to statistical learning 17

The testing set is used to estimate the generalization of the model
by using a prediction metric. Depending on the application and on
the nature of the learning task, different prediction metrics can be
considered 5.

In the next section we link the statistical learning framework to a
database formalism (Cerda et al., 2018), which relies on sets. This is
necessary in order to transform categorical variables into numerical
inputs, as specified by the data generation process of the learning
model.

2.3 from databases to statistical learning

A table containing numerical and categorical columns is specified
by its relational scheme R:

R = {Aj, j = 1 . . .m}, (2.5)

the set of the Aj different attributes, i.e., the column names of the
table (Maier, 1983). Each attribute has a domain of possible values
denoted by dom(Aj) = Dj. Then, a table is defined as a relation r on
the scheme R:

r(R) = {ti : R→
m⋃
j=1

Dj, i = 1 . . . n}, (2.6)

a set of mappings or (m-tuples), where for each record (or sample) ti ∈
r(R), ti(Aj) ∈ Dj, j=1 . . .m. If Aj is a numerical attribute, then
dom(Aj)=Dj ⊆ R. If Aj is a categorical attribute represented by
strings, then Dj ⊆ S, where S is the set of finite-length strings 6. As
a shorthand, we call kj = card(Dj), the cardinality of the categorical
attribute Aj in the training set. Note that the domain can be extended
if new unseen entries appear in the testing test.

As categorical entries are not numerical, they require an operation
to define a feature matrix X from the relation r. Statistical or ma-
chine learning models that need vector data as input are applied af-
ter a categorical encoding, a feature map that consists of replacing
the samples ti(Aj), i = 1 . . . n, by feature vectors:

xij ∈ Rdj , dj > 1, (2.7)

where dj is the dimensionality of the encoding for the variable Aj. Using
the same notation in case of numerical attributes, we can define xij =
ti(Aj) ∈ Rdj , with dj = 1, and write the feature matrix X as:

X =

x11 . . . x1m
...

. . .
...

xn1 . . . xnm

 ∈ Rn×p, p =

m∑
j=1

dj (2.8)

5. Table 7.2 shows the metrics used in the empirical study of this tesis.
6. Some categorical variables can be represented by numbers, but if they are not

considered to belong to set of real values, they are taken as strings. For instance, in
the categorical variable postal code, values are usually represented by 5-digits num-
bers. However, a value greater than other is not necessarily informative, so they are
considered as strings.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.4 encoding strategies for curated categorical data 18

It is important to remark that in all the methods we study in this
thesis, categorical variables are encoded independently to the others,
as shown in Equation 2.8.

In standard supervised learning settings, the observations, repre-
sented by the feature matrix X, are associated with a target vector
y ∈ Rn to predict. Usually, y corresponds to one of the columns of
the original table.

2.4 encoding strategies for curated categorical data

We now review classical encoding methods for categorical vari-
ables. These methods will be used as baseline in our empirical study
(see Chapter 7). For simplicity of exposition, in the rest of this the-
sis we will consider only a single categorical variable C ∈ {Aj}

n
j=1,

omitting the column index j from the previous definitions.

2.4.1 One-hot encoding

One-hot encoding is a simple and widely-used encoding method
for standard categorical variables (Alkharusi, 2012; Berry et al., 1998;
P. Cohen et al., 2014; Davis, 2010; Myers et al., 2010; O’Grady and
Medoff, 1988; Pedhazur, Kerlinger, et al., 1973). For example, a
categorical variable having as categories {female, male, other} can
be encoded respectively with 3-dimensional feature vectors: {[1, 0, 0],
[0, 1, 0], [0, 0, 1]}. In the resulting vector space, each category is or-
thogonal and equidistant to the others, which agrees with classical
intuitions about nominal categorical variables (Section 2.1).

Let C be a categorical variable with cardinality k > 2 such that
dom(C)={s(`), 1 < ` 6 k} and ti(C)=si ∈ dom(C). The one-hot en-
coding method sets each feature vector as:

xi def
=
[
1[si=s

(1)], 1[si=s
(2)], . . . , 1[si=s

(k)]
]
∈ Rk (2.9)

where 1[·] is the indicator function. Several variants of one-hot en-
coding have been proposed 7, but in a linear regression, all perform
equally in terms of the R2 score 8 (see P. Cohen et al., 2014 for details).

limitations . The one-hot encoding method is intended to be used
when categories are mutually exclusive (P. Cohen et al., 2014), which
is not necessarily true of non-curated data, as we previously saw in
Section 2.1.1.

Another drawback of this method is that it provides no heuristics
to assign an encoding vector to new categories that appear in the
testing set but have not been encoded on the training set. Given the
previous definition of Equation 2.9, the zero vector will be assigned

7. Variants of one-hot encoding include dummy coding, choosing the zero vec-
tor for a reference category, effects coding, contrast coding, and nonsense coding (P.
Cohen et al., 2014).

8. The difference between methods is the interpretability, in the context of a linear
regression, of the values for each variable.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.4 encoding strategies for curated categorical data 19

to any new category in the testing set, which creates collisions if more
that one new category is introduced. Additionally, high-cardinality
categorical variables greatly increase the dimensionality of the fea-
ture matrix, which augments the computational cost of the learning
algorithm. As we will see in Chapter 7, dimensionality reduction on
the one-hot encoding vector tackles this problem, but with the risk of
loosing information.

2.4.2 Ordinal encoding

In the case of ordinal categorical variables, a total order can be
clearly identified between categories. Then, an effective encoding
strategy consists in mapping this order to any subset of elements in R.
To do so, the simplest way is to transform ordinal categorical values
into consecutive integer values. This method is called ordinal encoding.
For example, the values of the Likert scale: Strongly disagree, Disagree,
Neither agree nor disagree, Agree and Strongly agree are mapped respec-
tively to the values: 0, 1, 2, 3, and 4, which preserves the intrinsic
order in the degree of agreement. In general, ordinal encoding is
not suitable for nominal categorical variables 9. However, nominal
variables can benefit of an order that is based on the effect of each
category on the target, as proposed in the next encoding method.

2.4.3 Encoding using target statistics

Here we present two methods that use the statistics of the target
variable. We start by the Value difference metric (VDM) (Duch et al.,
2000), a strategy in which each category is encoded given the effect
it has on the target variable y. This creates an order in the real space
that accounts for the expected value of the target, conditioned on each
category s(`):

xi = E`
[
y` | s(`)=si

]
∈ R. (2.10)

Note that for regression and binary classification (with yi ∈ {0, 1}), the
obtained feature vector is one-dimensional. For the case of multiclass
classification, the encoder has a dimension equal to the number of
different classes.

A related encoding approach is the MDV continuousification scheme
(Grabczewski and Jankowski, 2003), which encodes entries si by its
expected value on each target ck,

xi = E`
[
s(`)=si |y`=ck

]
∈ R. (2.11)

In the case of a classification problem, ck belongs to the set of possi-
ble classes for the target variable. However, in a dirty dataset, as with
spelling mistakes, some categories can appear only once, undermin-
ing the meaning of their marginal link to the target.

9. but it can still be useful if used with certain type of non-linear algorithms.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.5 encoding non-curated categorical variables . 20

2.5 encoding non-curated categorical variables .

With non-standardized categorical variables, the set of possible cat-
egories is unknown before the data collection process. One exam-
ple of such non-standardized categories can be found in the Open
Payments dataset 10, which describes financial relationships between
healthcare companies and physicians or teaching hospitals. One pos-
sible task is to predict the value of the binary variable status (whether
the payment has been done under a research protocol or not) given
the following variables: corporation name, (payment) amount, and dis-
pute (whether the physician refused the payment in a second instance).
A challenge with this dataset is that some categories are not stan-
dardized. For instance, Table 2.1 shows all categories of the variable
company name with the word Pfizer in it for the year 2013.

This type of data poses a problem from the point of view of the
statistical analysis because we do not know a priori, without external
expert information, which of these categories refer to the exact same
company or whether all of them have slight differences and hence
should be considered as different entities. Also, we can observe that
the frequency of the different categories varies by several orders of
magnitude, which could imply that errors in the data collection pro-
cess have been made.

Table 2.1 – Non-standardized categorical variables usually have entries
that have common information. Entities containing the word
Pfizer in the variable Company Name of the Open Payments
dataset (see Section 7.1 in the Appendix) and the respective num-
ber of times they appear in the dataset (year 2013).

Company name Count

Pfizer Inc. 79,073

Pfizer Pharmaceuticals LLC 486

Pfizer International LLC 425

Pfizer Limited 13

Pfizer Corporation Hong Kong Limited 4

Pfizer Pharmaceuticals Korea Limited 3

Other examples of non-curated categorical variables are shown in
Table 2.2. In the Drug Directory dataset 11, one of the variables is a cat-
egorical column with non proprietary names of drugs. As entries in this
column have not been normalized, many of them are highly related:
they share a common ingredient such as alcohol (see Table 2.2.a).
Similarly, in the Employee Salaries dataset 12, where relevant variable
is the position title of employees, there is also overlap in the different
entries (Table 2.2.b).

10. https://openpaymentsdata.cms.gov/.
11. Product listing data for all unfinished, unapproved drugs. Source: U.S. Food

and Drug Administration (FDA)
12. Annual salary information for employees of the Montgomery County, MD,

U.S.A. Source: https://data.montgomerycountymd.gov/

[February 28, 2020 at 11:47 – classicthesis version 0.1]

https://openpaymentsdata.cms.gov/
https://data.montgomerycountymd.gov/

2.5 encoding non-curated categorical variables . 21

Table 2.2 – Examples of high-cardinality categorical variables.

Non Proprietary Name Count

alcohol 1736

ethyl alcohol 1089

isopropyl alcohol 556

polyvinyl alcohol 16

isopropyl alcohol swab 12

62% ethyl alcohol 12

alcohol 68% 6

alcohol denat 6

dehydrated alcohol 5

(a) Count for some of the categories
containing the word alcohol in
the Drug Directory dataset. The
dataset contains more than 120k
samples.

Employee Position Title

Police Aide

Master Police Officer

Mechanic Technician II

Police Officer III

Senior Architect

Senior Engineer Technician

Social Worker III

Bus Operator

(b) Some categories in the Em-
ployee Salaries dataset. For
10 000 employees, there are
almost 400 different occupa-
tions. Yet, they share rele-
vant substrings.

2.5.1 Sources of high cardinality

Often, the cardinality of a dirty categorical variable grows with the
number of samples in the dataset. Figure 2.1 shows the cardinality of
the corresponding categorical variable as a function of the number of
samples for each of the 17 datasets that we analyze in this paper.

Dirty categorical data can arise from a variety of mechanisms (W.
Kim et al., 2003; Oliveira et al., 2005):

• Typographical errors (e.g., proffesor instead of professor)

• Extraneous data (e.g., name and title, instead of just the name)

• Abbreviations (e.g., Dr. for doctor)

• Homonyms (e.g., Montréal, of Canada or France)

• Aliases (e.g., Ringo Starr instead Richard Starkey)

• Encoding formats (e.g., ASCII, EBCDIC, etc.)

• Uses of special characters (space, colon, dash, parenthesis, etc.)

• Concatenated hierarchical data (e.g., state-county-city vs. state-
city)

The presence of a large number of categories calls for represent-
ing the relationships between them. In knowledge engineering this
is done via an ontology or a taxonomy. When the taxonomy is
unknown, the problem is challenging. For example, in the Medical
Charges dataset, cervical spinal fusion and spinal fusion except

cervical are different entries, but both share the fact that they are a
spinal fusion, hence they are closely related.

We now review encoding strategies in the presence of dirty or high-
cardinality categorical data.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.5 encoding non-curated categorical variables . 22

100 1k 10k 100k 1M 10M
Number of rows

10

100

1k

10k

100k

1M

N
um

be
ro

fc
at

eg
or

ie
s 100

√
n

log1.5(n)

Criteo

NLP problem wine reviews
building permits
colleges
journal in�uence
midwest survey
drug directory

road safety
public procurement
met objects
vancouver employee
federal election
employee salaries

tra�c violations
open payments
kickstarter projects
medical charges
crime data

100 1k 10k 100k 1M 10M
Number of rows

10

100

1k

10k

100k

1M

N
um

be
ro

fc
at

eg
or

ie
s 100

√
n

log1.5(n)

Criteo

NLP problem wine reviews
building permits
colleges
journal in�uence
midwest survey
drug directory

road safety
public procurement
met objects
vancouver employee
federal election
employee salaries

tra�c violations
open payments
kickstarter projects
medical charges
crime data

Figure 2.1 – Number of categories versus number of samples. In most
datasets, a higher number of samples implies a higher number
of categories for the respective variable. In general, the cardi-
nality of categories grows slower than words in a typical NLP
problem (in this case, the first paragraph of random Wikipedia
articles). A dataset description can be found in Section A.1 in
the Appendix.

2.5.2 Strategies for entries without subword information

In some cases, the subword information of categorical entries it is
not relevant. For instance, in categorical variables as Country name,
the overlap of character n-grams does not have a relevant meaning.
This section describe some encoding methodologies for this kind of
data.

2.5.2.1 Target encoding

The target encoding method (Micci-Barreca, 2001), is a variation
of the VDM continuousification scheme (Duch et al., 2000), in which
each category is encoded given the effect it has on the target variable
y 13. The method considers that categorical variables can contain rare
categories. Hence it represents each category by the probability of y
conditional on this category. In addition, it takes an empirical Bayes
approach to shrink the estimate. Thus, for a binary classification task:

xi = λ(fi)E`
[
y`
∣∣ s(`)=si]+ (1− λ(fi))E`

[
y`
]
∈ R (2.12)

13. Several variations of this idea are presented in Prokhorenkova et al., 2018.
However, none of them account for the morphology of string categories, and we do
not explore them in this thesis.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.5 encoding non-curated categorical variables . 23

where fi is the frequency of the category s(i) and λ(fi) ∈ [0, 1] is a
weight such that its derivative with respect to ni is positive, e.g.:

λ(fi) =
1

1+ e−
fi−a
b

, (2.13)

where a and b are parameters to tune. Another option with only one
parameter is:

λ(fi) =
fi

fi + a
, a > 0. (2.14)

Note that the obtained feature vector is one-dimensional for the case
of regression and binary classification 14.

As an example, Figure 2.2 shows the encoding values for different
entries in the Employee Salaries dataset for the categorical variable Oc-
cupation. It can be observed that manager positions are encoding with
higher values.

40000 60000 80000 100000 120000 140000
y: Employee salary

Crossing Guard

Liquor Store Clerk I

Library Aide

Police Cadet

Public Safety Reporting Aide I

Administrative Specialist II

Management and Budget Specialist III

Manager III

Manager I

Manager II

Figure 2.2 – The target encoding maps categories into single dimensions
according to its expected target value. Expected annual salary
for categories in the Employee Salaries dataset.

The biggest limitation of the target encoding for our particular set-
ting, is that is does not consider at all the subword information of
categorical entries.

2.5.2.2 Hash encoding

A solution to reduce the dimensionality of the data is to use the
hashing trick (Weinberger et al., 2009). Instead of assigning a different
unit vector to each category, as one-hot encoding does, one could
define a hash function to designate a feature vector on a reduced
vector space. This method does not consider the problem of dirty
data either, because it assigns hash values that are independent of
the morphological similarity between categories.

14. In the case of multi-class classification with ` labels, the same idea can be
extended to ` "one v/s all" binary classification problems, and the final encoding will
have a dimensionality equal to `.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.5 encoding non-curated categorical variables . 24

2.5.3 Strategies for entries with meaningful subword structure

In many cases categorical entries present useful information in their
string representation, as in the datasets collected for this study. In
these cases, it may be appropiate to consider encoding methods based
on the substring components of entries. Here, we present some of
these approaches.

2.5.3.1 Bag-of-words, bag-of-n-grams, and tf-idf

A simple way to capture morphology in text documents is to char-
acterize it by the count of its words. This method is usually called bag-
of-words. It assumes that, in order to characterize a given document,
the order of words in it is not necessarily relevant. In the language
of probability theory, this is an assumption of exchangeability for the
words in a document (Aldous, 1985).

For high-cardinality categorical variables, the number of different
n-grams tends to increase with the number of samples. Yet, this
number increases slower than in a typical Natural Language Process-
ing (NLP) problem (see Figure 2.3). Indeed, categorical variables have
less entropy than free text: they are usually repeated, often have sub-
parts in common, and refer to a particular, more restrictive subject.

A simple way to capture morphology in a string is to characterize it
by the count of its character n-grams. This is sometimes called a bag-
of-n-grams characterization of strings. Such representation has been
shown to be efficient for spelling correction (Angell et al., 1983) or for
named-entity recognition (Klein et al., 2003).

Representing strings by character-level n-grams is related to vector-
izing text by their tokens or words. Common practice uses Term-
frequency inverse-document-frequency (Tf-idf) reweighting: divid-
ing a token’s count in a sample by its count in the whole document
(Salton and McGill, 1983). Dimensionality reduction by a Singular
value decomposition (SVD) on this matrix leads to a simple topic ex-
traction, Latent semantic analysis (LSA) (Deerwester et al., 1990; Lan-
dauer et al., 1998). A related but more scalable solution for dimension-
ality reduction are random projections, which give low-dimensional
approximation of Euclidean distances (Achlioptas, 2003; Johnson and
Lindenstrauss, 1984).

2.5.3.2 Neural networks for encoding categories

Guo and Berkhahn, 2016, proposes an encoding method based on
neural networks. It is inspired by NLP methods that perform word
embedding based on textual context (T. Mikolov et al., 2013). In
tabular data, the equivalent to this context is given by the values
of the other columns, categorical or not. The approach is simply a
standard neural network, trained to link the table R to the target y
with standard supervised-learning architectures and loss and as in-
puts the table with categorical columns one-hot encoded. Yet, Guo
and Berkhahn, 2016 uses as a first hidden layer a bottleneck for each
categorical variable. The corresponding intermediate representation,

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.5 encoding non-curated categorical variables . 25

100 1k 10k 100k 1M 10M
Number of rows

10

100

1k

10k

100k

1M

N
um

be
ro

fc
at

eg
or

ie
s 100

√
n

log1.5(n)

Criteo

NLP problem wine reviews
building permits
colleges
journal in�uence
midwest survey
drug directory

road safety
public procurement
met objects
vancouver employee
federal election
employee salaries

tra�c violations
open payments
kickstarter projects
medical charges
crime data

100 1k 10k 100k 1M
Number of rows

1k

10k

100k
N

um
be

ro
f3

-g
ra

m
s

NLP problem
100
√
n

10 log2(n)

Figure 2.3 – Number of 3-gram versus number of samples. The number of
different n-grams tends to increase slower than in a typical NLP
problem (in this case, the first paragraph of random Wikipedia
articles).

learned by the network, gives a vector embedding of the categories
in a reduced dimensionality. This approach is interesting as it guides
the encoding in a supervised way. Yet, it entails the computational
and architecture-selection costs of deep learning. Additionally, it is
still based on an initial one-hot encoding which is susceptible to dirty
categories.

2.5.3.3 Word embeddings

If the string entries are common words, an approach to represent
them as vectors is to leverage word embeddings (T. Mikolov et al.,
2013; Pennington et al., 2014). Euclidean similarity of these vectors
captures related semantic meaning in words. Multiple words can be
represented as a weighted sum of their vectors, or with more complex
approaches (Arora et al., 2016). To cater for out-of-vocabulary strings,
FastText (Bojanowski et al., 2017) considers subword information of
words, i.e., character-level n-grams. Hence, it can encode strings even
in the presence of typos. Word vectors computed on very large cor-
pora are available for download. These have captured fine semantic
links between words. However, to analyze a given database, the dan-
ger of such approach is that the semantic of categories may differ
from that in the pretrained model. These encodings do not adapt to
the information specific in the data at hand. Moreover, they cannot
be trained directly on the categorical variables for two reasons: cate-
gories lack of enough context, as they are usually composed of short
strings; and the number of samples in some datasets is not enough to
properly train these models.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

2.6 formatting and curating string entries . 26

2.6 formatting and curating string entries .

Finally, we present some data-cleaning techniques to tackle vari-
ability in string entries.

2.6.1 Cleaning techniques in databases

stemming or lemmatizing . Stemming and lemmatizing are text
preprocessing techniques that strive to extract a common root from
different variants of a word (Hull et al., 1996; Lovins, 1968). For
instance, ‘standardization’, ‘standards’, and ‘standard’ could all be
reduced to ‘standard’. These techniques are based on a set of rules,
crafted to the specificities of a language. Their drawbacks are that
they may not be suited to a specific domain, such as medical practice,
and are costly to develop. Some recent developments in NLP avoid
stemming by working directly at the character level (Bojanowski et
al., 2017).

deduplication / record linkage In databases, deduplication
or record linkage strives to find different variants that denote the
same entity and match them (Elmagarmid et al., 2007). Classic record
linkage theory deals with merging multiple tables that have entities
in common. It seeks a combination of similarities across columns
and a threshold to match rows (Fellegi and Sunter, 1969). If known
matching pairs of entities are available, this problem can be cast as a
supervised or semi-supervised learning problem (Elmagarmid et al.,
2007). If there are no known matching pairs, the simplest solution
boils down to a clustering approach, often on a similarity graph, or
a related expectation maximization approach (Winkler, 2002). Super-
vising the deduplication task is challenging and often calls for human
intervention. Sarawagi and Bhamidipaty, 2002, uses active learning to
minimize human effort. Much of the recent progress in database re-
search strives for faster algorithms to tackle huge databases (Christen,
2012a).

[February 28, 2020 at 11:47 – classicthesis version 0.1]

3
S I M I L A R I T Y E N C O D I N G

Here we present a generalization of the commonly used one-hot
encoding method (see Section 2.4.1 for a formal definition), that we
call similarity encoding. Similarity encoding has been shown to be spe-
cially suitable for string categorical variables with a high cardinality
(Cerda et al., 2018). The word similarity comes from the notion of
string similarity (Navarro, 2001) between pairs of strings, that it takes
the value 1 if the strings are identical, and it goes towards 0 for very
different strings. String similarities are commonly used in the entity
resolution literature (W. W. Cohen et al., 2003). Some of the most
important ones are defined later in this chapter.

3.1 intuitions

The one-hot encoding representation for a given category can be
seen as a feature vector in which each dimension corresponds to the
zero-one similarity between the entry we want to encode and all the
known categories: it takes the value 1 when it is equal to the corre-
sponding category and 0 if not (see Equation 2.9). When some form
of morphological overlap is encountered between the categorical en-
tries, one would like to extend the notion of one-hot encoding to a less
restrictive vector representation. To improve the intuitions behind the
previous idea, let us continue with an example.

Consider a categorical variable called City of Residence, composed
by the following 3 possible entries: London, Londres, and Paris. The
respective one-hot encoding (row) feature vectors are represented in
the following Table 3.1:

Table 3.1 – Feature vectors with one-hot encoding. Rows represent the sam-
ples (and its respective feature vectors) and columns denote the
corresponding feature names.

City of Residence

London Londres Paris

Londres 0 1 0

London 1 0 0

Paris 0 0 1

In this example, the entries London and Londres point to the same
entity, the "city of London". Performing data-cleaning would prob-
ably modify the entry Londres to its English translation London, as
shown on Table 3.2. The problem with this cleaning step is that some
information is lost: "Londres" is the French (or Spanish) translation
of London. In this particular example, the original answers give an

[February 28, 2020 at 11:47 – classicthesis version 0.1]

3.2 string similarities 28

Table 3.2 – Feature vectors with deduplication. Entries were manually tran-
lated to English.

City of Residence

London Paris

London 1 0

London 1 0

Paris 0 1

insight about the foreign origin of the respondent, which could be
a potentially useful information to be exploited in a related learning
problem (for example, predicting the annual salary of respondents).
Nevertheless, we would still like to express the close relation between
these two entries. As proposed before, one-hot encoding can be ex-
tended to a more general version that considers continuous string
similarities instead. With this kind of approach, the entries Londres

and London should not be merged; a closer representation in the fea-
ture space-for example, in terms of the `2 norm—should be enough
to improve the generalization of the corresponding learning problem.
For instance, the one hot encoding example of Table 3.1 can be trans-
formed into the following continuous representation:

Table 3.3 – Feature vectors with similarity encoding.

City of Residence

London Londres Paris

Londres 0.8 1 0

London 1 0.8 0

Paris 0 0 1

In this case, no information is lost, but Londres and London are
closer to each other, with an arbitrary similarity value equal to 0.8.

The following section defines and explores different string similar-
ity measures.

3.2 string similarities

Let sim: S×S → [0, 1] be an arbitrary string similarity measure sat-
isfying the following properties:

• ∀s1, s2 ∈ S, s1=s2 ⇒ sim(s1, s2)=1, (3.1)

• ∀s1, s2 ∈ S, sim(s1, s2) = sim(s2, s1). (3.2)

A survey of text similarity measures can be found in W. W. Cohen
et al., 2003; Gomaa and Fahmy, 2013. Most of these similarities are
based on a morphological comparison between two strings. We de-
scribe in the next section some of the most commonly used similarity
measures.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

3.2 string similarities 29

3.2.1 Levenshtein

It is based on the Levenshtein distance (Levenshtein, 1966) dist lev

between two strings s1, s2 ∈ S, and it belongs to a more general fam-
ily of distances, called edit distances (Navarro, 2001). It is calculated
as a function of the minimum number of edit operations (deletion,
insertion and replacement) that are necessary to transform one string
into the other 1. The Levenshtein distance has been widely applied in
different domains, from record linkage (Conrad et al., 2016), spelling
correction (Brill and Moore, 2000) and linguistics (Serva and Petroni,
2008).

In this work, we arbitrarily use a Levenshtein distance in which all
edit operations have a weight of 1, except for the replacement opera-
tion, which has a weight of 2. A recursive definition of the Leven-
shtein distance is given by:

dist lev(s1, s2) = levs1,s2(|s1|, |s2|), (3.3)

with:

levs1,s2(i, j)=

max(i, j) if min(i, j)=0,

min

levs1,s2(i-1, j) + 1

levs1,s2(i, j-1) + 1

levs1,s2(i-1, j-1)+21[s1i 6= s2j]

otherwise.

(3.4)

where |s| is the character length of the string s. Then, we can obtain
a similarity measure using the following transformation:

sim lev(s1, s2) = 1−
dist lev(s1, s2)

|s1|+ |s2|
(3.5)

3.2.2 Jaro-Winkler

The Jaro-Winkler similarity (Winkler, 1999) is a variation of the Jaro
distance dist jaro (Jaro, 1989), a metric that only considers the transpo-
sition operation, in contrast with the three edit operations allowed by
the Levenshtein distance. The Jaro distance is defined as follows:

dist jaro(s1, s2) =
m

3|s1|
+

m

3|s2|
+
m− t

3m
, (3.6)

where m is the number of matching characters between s1 and s2 2,
and t is the number of character transpositions between the strings

1. There are several variations of the Levenshtein distance, that include different
edit operations. The Damerau–Levenshtein distance (Damerau, 1964) allows also
the operation transposition of adjacent characters; the longest common subsequence
(LCS) distance does not allows replacement; and the Hamming distance (Hamming,
1950) only allows replacement. In this thesis we do not explore all these variations.

2. Two characters belonging to s1 and s2 are considered to be a match if
they are identical and the difference in their respective positions does not exceed
2max(|s1|, |s1|) − 1. For m=0, the Jaro distance is set to 0.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

3.2 string similarities 30

s1 and s2 without considering the unmatched characters. Then, the
Jaro similarity is defined as:

sim jaro = 1− dist jaro (3.7)

The Jaro-Winkler similarity sim j-w emphasizes prefix similarity be-
tween the two strings. It is defined as:

sim j-w(s1, s2) = sim jaro + ` p (1− sim jaro) (3.8)

= 1− dist jaro(s1, s2) + ` pdist jaro(s1, s2) (3.9)

where ` is the length of the longest common prefix between s1 and
s2, and p is a constant scaling factor.

3.2.3 N-gram similarity

The n-gram similarity assumes that text can be characterized by the
set of substrings that are contained on them. This similarity is based
on splitting both strings into n-grams of consecutive characters and
then calculating the Jaccard coefficient between them (Angell et al.,
1983; Ukkonen, 1993) 3:

simn-gram(s1, s2) =
|Gn(s1)∩ Gn(s2)|
|Gn(s1)∪ Gn(s2)|

, (3.10)

where Gn(s), s ∈ S, is the set of all n-grams—an n-gram is a chain
of consecutive characters of size n—contained in the string s. For
instance, the 3-gram sets for the entries Paris and Parisian are:

G3(Paris) = {Par, ari, ris},

G3(Parisian) = {Par, ari, ris, isi, sia, ian}.

These words have three 3-grams in common over a total of six differ-
ent ones. Therefore, their similarity is:

sim3-gram(Paris, Parisian) =
1

2
.

Figure 3.1 shows the distribution of similarity values, in logarith-
mic scale, for 10,000 random pairs of categorical entries in different
datasets. In most of the datasets, the n-gram similarity has a median
similarity value close to 0. Thus, in a similarity encoding setting,
the n-gram similarity does not completely removes the sparseness
obtained with one-hot encoding.

3. There exist more efficient versions of the 3-gram similarity (Kondrak, 2005),
but we do not explore them in this work.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

3.3 similarity encoder 31

Jaro-winkler

Levenshtein-ratio

3-gram

medical
charges

employee
salaries

open
payments

midwest
survey

tra�c
violations

road
safety

beer
reviews

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 3.1 – Histogram of pairwise similarity between categories for dif-
ferent string similarity metrics. 10,000 pairs of categories
were randomly generated for each dataset (y-axis in logarith-
mic scale). The red bar denotes the median value for each dis-
tribution. Note that medical charge, employee salaries and traffic
violations present bimodal distributions.

3.3 similarity encoder

Given a similarity measure, one-hot encoding can be generalized to
account for similarities in categorical entries. Let C be a categorical
variable of cardinality k, and let sim be a similarity measure that sat-
isfies the properties in Equations 3.1 and 3.2. The similarity encoding
we propose replaces each of the instances of C, si, i=1...n by a feature
vector xi ∈ Rk so that:

xi
def
=
[
sim(si, s

(1)), sim(si, s
(2)), . . . , sim(si, s

(k))
]
∈ Rk. (3.11)

Here, the elements {s(j) ∈ S, i = 1 . . . k} are a subset of the elements
in dom(C). By default, all categories in the training set can be taken,
as with one-hot encoding.

With the previous definition, one-hot encoding corresponds to tak-
ing the discrete string similarity:

simone-hot(si, sj) = 1[si = sj] (3.12)

where 1[·] is the indicator function.

Note that, from a kernel point of view (Schölkopf and Smola, 1998),
Equation 3.11 defines the following kernel between two given obser-
vations:

〈si, sj〉sim =

k∑
l=1

sim(si, s
(l)) sim(sj, s

(l)) (3.13)

Hence, it projects on a dictionary of reference n-grams and gives more
importance to the n-grams that best capture the similarity between
categories. This differs from a simple string kernel that only takes
into accounts pair-wise similarities, without considering the rest of
the entries.

Finally, another advantage of this generalization over one-hot en-
coding is that new entries that are not present in the test set are natu-
rally encoded without creating collisions. This avoids recomputation
of the encoding representation, and hence retrain the learning model
from scratch.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

3.4 limitations : handling high-dimensionality 32

3.4 limitations : handling high-dimensionality

With one-hot or similarity encoding, high-cardinality categorical
variables lead to high-dimensional feature vectors. This may lead
to computational and statistical challenges: the encoding step may
take a lot of time, but also the learning step. To tackle this issue,
dimensionality reduction may be used on the resulting feature matrix.
A natural approach is to use Principal component analysis (PCA), as
it captures the maximum-variance subspace. Yet, it entails a high
computational cost 4 and is cumbersome to run in an online setting.
Hence, we explore three dimensionality reduction methods: random
projections, the most frequent categories and a k-means based method.

random projections . Based on the Johnson-Lindenstrauss lemma,
random projections give a reduced representation that accurately ap-
proximates distances of the original feature space (Rahimi and Recht,
2008). A drawback of such a projection approach is that it requires
first computing the similarity to all categories. Also, it mixes the con-
tribution of all categories in non trivial ways and hence may make
interpreting the encodings difficult.

For this reason, we also explored methods based on a reduced set
of prototypes: choosing a small number d of categories and encoding
by computing the similarity to these prototypes only. These proto-
types should be representative of the full category set in order to
have a meaningful reduced space. This strategy has the advantage of
reducing both the encoding and learning steps.

most frequent categories . One simple approach is to choose
the d � k most frequent categories of the dataset. This strategy
makes sense because, in general, the most repeated entries are the
ones that do not contain any typographical errors.

k-means . Another way of choosing prototype elements in the cate-
gory set are clustering methods like k-means, which chooses cluster
centers that minimize a distortion measure. We use as prototype can-
didates the closest element to the center of each cluster. Note that we
can apply the clustering on a initial version of the similarity-encoding
matrix computed on a subset of the data. Clustering of dirty cate-
gories based on a string similarity is strongly related to deduplication
or record-linkage strategies used in database cleaning. One notable
difference with using a cleaning strategy before statistical learning is
that we are not converting the various forms of the categories to the
corresponding cluster centers, but rather encoding their similarities
to these.

Finally, another drawback of similarity encoding—as defined in
this chapter—is that it seems to be a purely heuristic method, without
any theoretical support. We study this issue in the next chapter.

4. Precisely, the cost of PCA is O(np min(n, p)).

[February 28, 2020 at 11:47 – classicthesis version 0.1]

4
F I S H E R K E R N E L S : E X P L A I N I N G S I M I L A R I T Y
E N C O D I N G

Here we use a probabilistic model of categorical string entries to ex-
plain why the form of the representations used in similarity encoding
is useful.

4.1 fisher kernels

Kernels in machine learning are used to build a discriminant func-
tion by specifying only a similarity between instances (Schölkopf and
Smola, 1998). They rely on the fact that, for certain learning problems,
as with Support vector machines (SVM’s), ridge, or logistic regression,
the cost function and its solution can be entirely expressed in terms
of the kernel evaluated on the data (Schölkopf and Smola, 1998).

Kernels have been widely used with objects where there is no ob-
vious numerical representation, such as genomes or proteins in bi-
ology (Eskin et al., 2003), text (Gärtner, 2003; Lodhi et al., 2002) or
images (H. Wang and Jingbin Wang, 2014). Using the kernel to train
a model entails an n2 cost in the number of samples of the train-
ing set. Therefore, with the current trend of learning in increasingly
large data, learning with kernels has become less popular. However, a
kernel defines implicitly a Reproducing kernel Hilbert space (RKHS)
(Schölkopf and Smola, 1998), in which each sample is associated to
a vectorial feature map. The kernel is then replaced by the inner
product of the feature maps 〈xi, xj〉, and learning can be performed
on these vectorial data, for instance using stochastic optimization for
very large data. Even when feature maps are used, instead of kernels,
kernels provide a good conceptual framework to consider vectorizing
non numerical data.

One way to build useful kernels is to consider a generative process
of the data, that can be used to define a Fisher kernel (T. Jaakkola and
Haussler, 1999). The central argument here is that a parametrized
probabilistic model of the data defines a natural distance between
instances based on how the parametrization affects their respective
likelihoods. More precisely, let the model be specified by the proba-
bility P(Xi|θ) for a sample Xi, where θ ∈ Rp parametrizes the model.
A natural distance between two data points X1 and X2 should cap-
ture the variations in their likelihood with respect to small variations
in the parametrization. Defining a fully-fledged distance requires
concepts of information geometry (Amari and Nagaoka, 2007): the
natural distance is built by integrating a metric using the Fisher infor-
mation matrix, i.e., the expectation of Hessian of the log-likelihood.
However, Fisher kernels focus on local properties, for which there is

[February 28, 2020 at 11:47 – classicthesis version 0.1]

4.2 simple string kernel of independent n-grams 34

no need to integrate. In their simplest form, they use as a feature map
the Fisher score:

u(Xi) = ∇θ logp(Xi|θ), u(Xi) ∈ Rp (4.1)

The inner product 〈u(Xi),u(Xj)〉 then locally captures the essence of
the natural distance and is simpler to compute.

Typically, the parameters of the probabilistic model are estimated
on the data at hand, e.g., by using a training set, and then the gradient
in Equation 4.1 is used to compute a vectorial representation u(Xi) for
each sample Xi. This two-step procedure to build a vectorization is
well known to text processing, e.g., to build a tf-idf representation of
documents: a first pass on the corpus defines the vocabulary and the
frequency of the terms across the documents: then the vectorial repre-
sentation can be computed. Indeed, Elkan, 2005, shows that modeling
term occurrences as a Dirichlet compound multinomial distribution
yields a Fisher kernel similar to the kernel of a tf-idf representation
of documents. Fisher kernels can thus provide a deeper theoretical
understanding of well known feature-extraction methods.

Other applications of Fisher kernels are visual vocabularies for im-
age classification (Perronnin and Dance, 2007), audio classification
(Moreno and Rifkin, 2000) and the discovery of protein homologies 1

in biology (T. S. Jaakkola et al., 1999).

4.2 simple string kernel of independent n-grams

Here we craft an encoding method from a Fisher kernel. For this,
we model the n-gram vectors by extrapolating n-grams distributions
of categories.

For a categorical variable C of known domain, a categorical distri-
bution 2 gives the probability of its elements s(i) ∈ dom(C):

p
(
s(i)
∣∣θ = (θ1, . . . , θk)

)
=

k∏
l=1

θ
1[s(i)=s(l)]
l , i = 1 . . . k. (4.2)

where θl is the frequency of the category s(l). Given a training set,
this distribution is simply estimated by computing the frequencies
of the observed categories. In practice, to reduce the number of pa-
rameters, the frequencies can be alternatively computed in a subset
of prototype categories, chosen heuristically in the same way as for
similarity encoding (Cerda et al., 2018).

The categorical distribution focuses all the mass on the prototype
categories: it assigns a zero probability to an unseen string. Thus, it
does not enable us to generalize across unseen categories. To work
around this problem, we reformulate it as a distribution on the n-
gram vector f. We then relax the model to extrapolate to unseen

1. A protein homology is a shared sequence of amino acids (the building blocks
of proteins) between different living organisms that can link them to a common
ancestor.

2. A categorical distribution is the generalization the Bernouilli to multiple val-
ues.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

4.3 link to similarity encoding 35

n-gram vectors, using a form of smoothing, as in a kernel density
estimator.

We now derive the distribution on the n-gram vectors, p(f|θ). To
account for possible morphological variations of s(i), we need to con-
sider variations of individual elements of f. The simplest assumption
is that the dimensions of f are independent, with:

p(fj, s
(i)|θ) = p(fj|s

(i))p(s(i)|θ)

= θi p(fj|s
(i)) (4.3)

Note that the probability of a given n-gram count fj is completely
determined if it is conditioned to being the representation of a proto-
type category. In other words, we can write:

p(fj|s
(i)) = 1[fj = f

(i)
j] (4.4)

Integrating p(fj, s(i)|θ) in Equation 4.3 over the prototype categories
gives:

p(fj|θ) =

k∑
i=1

θi 1[fj = f
(i)
j] (4.5)

Finally, considering that the n-gram dimensions are independent,
the joint probability of the count vector is:

p(f|θ) =

m∏
j=1

p(fj|θ)

=

m∏
j=1

k∑
i=1

θi 1[fj = f
(i)
j] (4.6)

The latter expression is a naive generative model, as it considers
that n-gram counts are independent and entirely defined by the num-
ber of times this count value is observed in the set of prototype cate-
gories. From a conceptual standpoint, it consists in extrapolating the
observed distribution with a more entropic one.

The Fisher score of this distribution can now be used to derive a
Fisher-kernel feature map, which gives our category encoding:

ui(s) =
∂

∂θi
logp(f|θ)

=

m∑
j=1

1[fj = f
(i)
j]∑k

l=1 θl 1[fj = f
(l)
j]
, i = 1 . . . k. (4.7)

4.3 link to similarity encoding

The encoding of Equation 4.7 can be evaluated on any string s. It is
equal to 0 if s and s(i) have no n-grams—or absence of n-grams—in
common, and is upper bounded by the Fisher score of the respective

[February 28, 2020 at 11:47 – classicthesis version 0.1]

4.3 link to similarity encoding 36

prototype ui(s(i)). Thus, rescaling the Fisher scores defines a string
similarity:

sim naive(s, s
(i))

def
=

ui(s)

ui(s(i))
(4.8)

To better understand the expression of Equation 4.7, consider that all
category frequencies θi are the same. The similarity then sums the
number of times the string represented by f has the same number of
a given n-gram fj as the category i, normalized by the count of this
specific value of fj across all categories.

Note that this similarity takes into account the entire n-gram vocab-
ulary, and not only the n-gram set generated by the two compared
strings, as for the n-gram similarity of Equation 3.10. In other words,
Equation 4.8 is a data dependent similarity, unlike all the string simi-
larity measures presented in Chapter 3.

The Fisher kernel of our naive model can be written as:

〈u(si),u(sj)〉 =
k∑
l=1

sim naive(si, s
(l)) sim naive(sj, s

(l)) (4.9)

This expression is equivalent to the kernel of similarity encoding
(Equation 3.13). The important aspect is that, while the similarity
metric may vary, the kernel is calculated by summing such a similar-
ity over the set of prototype categories. Such kernels differ from stan-
dard string kernels, which capture some form of overlap in substrings
between two instances (Leslie et al., 2004; Lodhi et al., 2002). On the
contrary, the forms of kernels that appear here create a similarity be-
tween two strings that is shaped by the set of reference categories
used as prototypes, and their corresponding frequencies.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

Part ii

S C A L A B L E C AT E G O R I C A L E N C O D E R S

[February 28, 2020 at 11:47 – classicthesis version 0.1]

5
T H E M I N - H A S H E N C O D I N G

This chapter presents a stateless encoding method based on hash
functions that is suitable for string entries: the min-hash encoder. The
encoder assigns similar feature vectors to similar string entries in
terms of the n-gram similarity between them (Equation 3.10). The
stateless property is particularly interesting, as it allows the encoder
to be completely independent from the data, enabling its usage in
distributed settings. Also, as it is purely based on hash functions, it
is very fast to compute. It is also important to remark that the min-
hash encoder is the only method we benchmark that is completely
independent from the data and still competitive in terms of predic-
tion performance in supervised learning settings (see Chapter 7 for
empirical results).

First, we introduce in the next section the min-hash function, the
building block of the encoder. We also show some of its properties
that will help us understand the good performance of the encoder.

5.1 locality-sensitive hashing and the min-hash .

Locality-sensitive hashing (LSH) (Gionis et al., 1999; Indyk and
Motwani, 1998) is a family of hash functions that map similar input
items to the same hash code with higher probability than dissimilar
items. In this context, hash lookup tables are used in a different way:
instead of avoiding collisions, the idea is to put potentially similar
items in the same hash bucket. To improve recall, several hash ta-
bles can be used. Then, the similarity of two given elements will be
proportional to the number of buckets they share.

LSH has been extensively used in Approximate nearest neighbor
(ANN) search as an efficient way of finding similar objects (docu-
ments, pictures, etc.) in high-dimensional settings. Several hash func-
tions belonging to the LSH family have been proposed depending on
the type of distance or similarity that they approximate 1. For exam-
ple, the p-stable distribution for the `p norm (Datar et al., 2004), the
sign-random-projection for cosine similarity (Charikar, 2002), and the
min-hash for the Jaccard coefficient (Broder, 1997; Broder et al., 2000).

The min-hash is one of the most popular and widely-used func-
tions in the LSH family. It was originally designed to retrieve similar
documents in terms of the Jaccard coefficient of their word counts
representation (see Leskovec et al., 2014, chapter 3, for a primer). As
this type of similarity gives good prediction performance when ap-
plied to string categories (Cerda et al., 2018), we will now focus on
the analysis of the min-hash function.

1. See Jingdong Wang et al., 2014 for a survey on hashing methods for similarity
search and Chi and Zhu, 2017 for a more general survey on hashing techniques.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

5.1 locality-sensitive hashing and the min-hash . 39

Let X? be a totally ordered set and π a random permutation of the
order in X?. For any non-empty X ⊆ X? with finite cardinality, the
min-hash function Z(X) can be defined as:

Z(X)
def
= min
x∈X

π(x) (5.1)

Note that Z(X) can be also seen as a random variable. As shown
in Broder, 1997, for any X,Y ⊆ X?, it is easy to see that the min-hash
function has the following property:

P (Z(X)=Z(Y)) =
|X∩ Y|
|X∪ Y|

= J(X,Y) (5.2)

where J is the Jaccard coefficient between the two sets.

min-hash signatures . For a controlled approximation, several
random permutations can be taken, which defines a min-hash signa-
ture. For d random permutations {πj}

d
j=1 drawn i.i.d., Equation 5.2

leads to:

d∑
j=1

1[Zj(X) = Zj(Y)] ∼ B(d, J(X,Y)) (5.3)

where B denotes the Binomial distribution. Dividing the above quan-
tity by d thus gives a consistent estimate of the Jaccard coefficient
J(X,Y) 2.

Without loss of generality, we can consider the case of X? being
equal to the real interval [0, 1], so for any x ∈ [0, 1], πj(x)∼U(0, 1).
This allows us to study the min-hash function in terms of probability
distributions, as in Proposition 5.1, where we give the cumulative
probability distribution of the min-hash.

Proposition 5.1. Cumulative probability distribution.

If π(x) ∼ U(0, 1), and X⊂[0, 1] such that |X|=k, then Z(X) ∼ Dir(k, 1),
where Dir denotes the Dirichlet distribution 3.

Proof. It comes directly from considering that:

P(Z(X)6z) = 1− P(Z(X)>z)

= 1−

k∏
i=1

P(π(xi) > z)

= 1− (1− z)k (5.4)

2. Variations of the min-hash signature, as the min-max hash (Ji et al., 2013) have
proven to reduce the variance of the Jaccard similarity approximation. The min-max
hash uses the min and the max values of the hashed elements, and hence gives
two different signature dimensions with only one salt value. We do not study these
variations.

3. The Dirichlet distribution Dir(α) with parameter α=(α1 . . . αk) has as proba-

bility density function: f(x,α) = 1
B(α)

∏k
i=1 x

αi−1
i , with B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1αi

) .

[February 28, 2020 at 11:47 – classicthesis version 0.1]

5.1 locality-sensitive hashing and the min-hash . 40

Now that we know the distribution of the min-hash random vari-
able, we will show how each dimension of a min-hash signature maps
inclusion of sets to simple inequalities.

Proposition 5.2. Inclusion.

Let X,Y⊂[0, 1] such that |X|=kx and |Y|=ky.

(i) If X ⊂ Y, then Z(Y) 6 Z(X).

(ii) If X ⊂ Y, and Z(X) = zx, then the c.d.f. of Z(Y) is:

P (Z(Y) < zy) =

1− (1− zy)
ky−kx zy < zx

1 zx 6 zy

(iii) If X∩Y = ∅, then:

P
(
Z(Y)6Z(X)

)
=

ky

kx + ky

Proof. (i) is trivial, (ii) is obtained by combining Equation 5.2 and
Proposition 5.2.i, and (iii) comes directly from Proposition 5.1:

P (Z(Y)−Z(X) 6 0 | X∩Y=∅) =
∫1
0

∫x
0

fZ(Y)(y)fZ(X)(x)dydx

=

∫1
0

∫x
0

ky(1− x)
ky−1dy fZ(X)(x)dx

=

∫1
0

(
1− (1− x)ky

)
kx(1− x)

kx−1dx

= 1−

∫1
0

kx(1−x)
ky+kx−1

=
ky

kx + ky
(5.5)

At this point, we do not know anything about the case when X 6⊆Y,
so for a fixed Z(X), we can not ensure that any set with lower min-
hash value has X as inclusion. The following theorem (Cerda and
Varoquaux, 2019) allows us to define regions in the vector space gen-
erated by the min-hash signature that, with high probability, are as-
sociated to inclusion rules.

Theorem 5.1. Identifiability of inclusion rules.

Let X,Y⊂ [0, 1] be two finite sets such that |X|=kx and |Y|=ky.

∀ ε>0, if d>

− log(ε)

log
(
1+kxky

)
 , then:

X 6⊆Y⇒ P

 d∑
j=1

1[Zj(Y)6Zj(X)] = d

 6 ε.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

5.1 locality-sensitive hashing and the min-hash . 41

Proof. First, notice that:

X 6⊆Y ⇐⇒ ∃ k ∈N, 0 6 k < kx such that |X∩Y| = k. (5.6)

Then, defining Y ′ def
= Y \ (X∩Y), with |Y ′| = ky − k:

P (Z(Y)6Z(X) | X 6⊆Y) = P
(
Z(Y ′)6Z(X) | X∩Y ′ = ∅

)
=

ky − k

kx + ky − k

6
ky

kx + ky

= P (Z(Y)6Z(X) | X∩Y = ∅) (5.7)

Finally:

P

(∑d

j=1
1[Zj(Y)6Zj(X)] = d

∣∣X 6⊆Y) = P (Z(Y)6Z(X) | X 6⊆Y)d

6 P (Z(X)6Z(Y) | X∩Y=∅)d

=

(
ky

kx + ky

)d
(5.8)

Theorem 5.1 tells us that taking enough random permutations en-
sures that when ∀j, Zj(Y)6Zj(X), the probability that X 6⊆Y is small.
This result is very important, as it shows a global property of the min-
hash representation when using several random permutations, going
beyond the well-known properties of collisions in the min-hash sig-
nature.

Finally, the next theorem gives us another evidence of the advan-
tages of considering min-hash signatures. In this case, we relate the
number of dimensions to the desired Jaccard similarity value γ that
one wishes to consider.

Theorem 5.2. Identifiability of inclusion rules II.

Let Xi ⊂ [0, 1] and |Xi| = ki < ∞ for i = 1, 2, 3, such as X1 ⊂ X3
and X2 ∩X3 = ∅. Suppose also that k1 = k2 = k, and that J(X1,X3) =
k1/k3 > γ. If d > − log(ε)/ log(1+ γ), then:

P

(
d∑
i=1

1[Zi(X2) < Zi(X3)] > 1

)
> 1− ε.

Proof.

P (Z(X2) −Z(X3) < 0) =

∫1
0

∫y
0

fZ2(x)dxfZ3(y)dy

=

∫1
0

∫y
0

k2(1− x)
k2−1dxfZ3(y)dy

=

∫1
0

(
1− (1− y)k2

)
k3(1− y)

k3−1dy

= 1−

∫1
0

k3(1− y)
k2+k3−1

=
k2

k2 + k3
(5.9)

[February 28, 2020 at 11:47 – classicthesis version 0.1]

5.2 the min-hash encoder 42

As k1 = k2 = k and k3 6 k/γ, then:

P (Z(X2) −Z(X3) < 0) >
γ

1+ γ
(5.10)

By taking that

d∑
i=1

1 [Zi(X2) < Zi(X3)] ∼ B

(
d,

γ

1+ γ

)
,

P

(
d∑
i=1

1 [Zi(X2) < Zi(X3)] > 1

)
> 1−

(
1−

γ

1+ γ

)d
= 1−

(
1

1+ γ

)d
(5.11)

Theorem 5.2 tells us that, by taking enough min-hash dimensions,
with probability 1−ε one can find at least one random permutation
πi for which every Zi(X3) such as X3 satisfies: (i) X1 ⊂ X3, (ii)
X2 ∩ X3 = ∅ and (iii) J(X1,X3) > γ, can be found in the real range
[Zi(X2), Zi(X1)]. This is specially relevant for tree based methods,
because it facilitates the task of partitioning the space in terms of con-
tainment of subword information, independently from the ratio kx

ky
,

as in Theorem 5.1.

5.2 the min-hash encoder

A practical way to build a computationally efficient implementa-
tion of min-hash is to use a hash function with different salt numbers
instead of different random permutations. Indeed, hash functions can
be built with desired i.i.d. random-process properties (Broder et al.,
2000). Thus, the min-hash function can be constructed as follows:

Zj(X) = min
x∈X

hj(x), (5.12)

where hj is a hash function 4 on X? with salt value j (also known as
seed).

For the specific problem of categorical data, we are interested in
a fast approximation of J(G(si),G(sj)), where G(s) is the set of all
consecutive character n-grams for the string s. For example, the min-
hash value of Paris is given by:

Zj(G(Paris)) = Zj({Par, ari, ris})

= min{hj(Par), hj(ari), hj(ris)}

We define the min-hash encoder as:

xmin-hash(s)
def
= [Z1(G(s)), . . . , Zd(G(s))] ∈ Rd. (5.13)

[February 28, 2020 at 11:47 – classicthesis version 0.1]

5.2 the min-hash encoder 43

10−4 10−3 10−2 10−110−4

10−3

10−2

10−1

Senior

Technician

Supply

Senior Supply
Technician

Min-hash encoder (employee salaries)

Figure 5.1 – The min-hash encoder transforms containment into inequal-
ity operations. Color dots are entries in the Employee Salaries
dataset (see Section 7.1 in the Appendix) that contain the corre-
sponding colored substrings, and gray dots are categories that
do not contain any of them. Given the min-hash properties, the
category Senior Supply Technician (black dot) must be in the
intersection of the three bottom containment regions.

Considering the hash functions as random processes, Equation 5.3
implies that this encoder has the following property:

1

d
E
[
‖xmin-hash(si) − xmin-hash(sj)‖`0

]
= J(G(si),G(sj)), (5.14)

where ‖x‖`0 =
∑d
i=1 1[xi = 0] and 1[·] is the indicator function.

Proposition 5.2 tells us that the min-hash encoder transforms the in-
clusion relations of strings into an order relation in the feature space.
This is especially relevant for learning tree-based models, as theorem
5.1 proves that by performing a small number of splits in the min-
hash dimensions, the space can be divided between the elements that
contain and do not contain a given substring s.

As an example, Figure 5.1 shows this global property of the min-
hash encoder for the case of the Employee Salaries dataset (see Sec-
tion A.1 in the Appendix) with d=2. The substrings Senior, Supply
and Technician are all included in the category formed by concate-
nating the three words, and as a consequence, the position for this
category in the encoding space will be always in the intersection of
the bottom-left regions generated by its substrings. For the Employee
Salaries dataset, Figure 5.2 illustrates empirically the bound on the
dimensionality d and its logarithmic dependence on the desired false
positive rate ε. It shows that the theoretical bound of the false posi-

4. For the Python implementation of the encoder, we use a 32bit version of the
MurmurHash3 function (Appleby, 2014).

[February 28, 2020 at 11:47 – classicthesis version 0.1]

5.2 the min-hash encoder 44

0 20 40 60
Min-hash dimensions (d)

10−3

10−2

10−1

100

Fa
lse

po
sit

iv
e

ra
te

(ϵ
) d =

− log ϵ
log
(
1+kxky

)

Employee salaries: 100 most frequent words

Figure 5.2 – Number of dimensions required to identify inclusions. Grey
lines are the proportion of false positives obtained for the 100

most frequent words in the employee salaries dataset (H0 cor-
responds to identifying categories that do not contain the given
word). The red line represents the theoretical minimum dimen-
sionality required to obtain a desired false positive rate (with
kx/ky = 0.125, the inverse of the maximum number of words
per category), as shown in Theorem 5.1.

tive rate is respected empirically for 100 of the most frequent words
in the Employee Salaries dataset 5.

Finally, algorithm 1 shows the basic steps to compute the min-hash
encoder. The encoder is specially suitable for very large scale settings,
as it is very fast to compute and completely stateless. A stateless
encoding is very useful for distributed computing: different workers
can then process data simultaneously without communication. Its
drawback is that, as it relies on hashing, the encoding cannot easily
be inverted and interpreted in terms of the original string entries.

Algorithm 1: The min-hash encoder
Input : {si ∈ S, i = 1 . . . n} (categorical entries),

d (dimensionality of the encoder).
Output : X ∈ Rn×d.

1 Draw st from {s1, . . . , sn}.
2 for j ∈ 1 . . . d do
3 Compute G(st)

4 xtj ← ming∈G(st) hj(g)
5 end

5. The intuition behind this is that identifying the words that compose the string
entries (e.g., Senior Supply Technician), it is informative for a related learning
problem.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

6
T O P I C M O D E L I N G F O R C AT E G O R I E S : T H E
G A M M A - P O I S S O N FA C T O R I Z AT I O N

In the NLP literature, topic modeling accounts for a family of un-
supervised learning techniques that are focused on the discovery of
hidden latent structure in text corpora (Alghamdi and Alfalqi, 2015;
David M. Blei, 2012; Steyvers and Griffiths, 2007). Usually, the objec-
tive is to find low-rank representations of documents, which can be
later exploited to perform, for instance, text classification.

To make the link with this literature, we consider in this chapter
that the text corpus is, in our case, categorical entries in the training
set. As the categorical entries we study are much shorter than text
documents and can contain typos, we rely on their substring repre-
sentation instead: we represent each observation by its count vector
of character-level structure of n-grams. Once the low rank represen-
tation of categories is estimated, we can consider this as an encoding,
and use it in a related prediction problem.

6.1 choosing the appropriate topic model

The most important model of the topic modeling family is the
Latent Dirichlet allocation (LDA) (David M Blei et al., 2003). The
LDA is based on a generative process that explicitly considers the
word counts of documents as a linear combination of a reduced num-
ber of hidden variables, or topics 1. The estimation of the obtained
probability density can then be done by using, for example, varia-
tional inference (David M Blei et al., 2017).

Consider an observation of a categorical variable as a string entry
described by its n-gram count vector f ∈ Nm. As shown by Buntine,
2002, the LDA’s generative model that considers d hidden variables
can be written as:

x ∼ Dirichlet(α) (6.1)

f | x ∼ Multinomial(`, xD) (6.2)

where x ∈ Rd are the activations that decompose the observation f in
d prototypes,D ∈ Rd×m is the topic matrix, ` is the document length,
and α ∈ R∗d+ is the vector of parameters for the Dirichlet distribution.

1. They idea of using a mixture models for generating text documents has its
theoretical fundaments on the de Finetti’s representation theorem (De Finetti, 1990).
It states that the joint distribution of an infinitely exchangeable sequence of ran-
dom variables is as if a random parameter were drawn from some distribution and
then the random variables in question were independent and identically distributed
(David M Blei et al., 2003). The exchangeability of documents it is intrinsic to the
probabilistic model and the exchangeability of words is given thanks to the bag-of-
words-representation.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

6.2 gamma-poisson factorization for string categories 46

A first problem of the LDA (as developed in David M Blei et al.,
2003), is that it does not model the document length. As seen in
Chapter 2, categorical entries can sometimes be composed of concate-
nations of several latent categories, so it is important to consider the
length of string entries in the generative model.

A simple extension of the original LDA adds the following genera-
tive model for the document length `:

λ ∼ Gamma(α0, β) (6.3)

` | λ ∼ Poisson(λ) (6.4)

where α0 =
∑d
i=1 αi and β are the shape and scale parameters of the

Gamma distribution. This extension comes naturally, as the Poisson
distribution is especially appropriate to counting statistics. Follow-
ing the derivation of Podosinnikova et al., 2015, Appendix B.1, this
extra condition for the LDA model is equivalent to considering the
following generative model:

xi ∼ Gamma(αi, βi), i = 1 . . . d. (6.5)

fj | (xΛ)j ∼ Poisson((xΛ)j), j = 1 . . .m. (6.6)

This extension is also known as the Gamma-Poisson factorization, a
matrix factorization technique developed independently by Canny,
2004, that has been shown to outperform other methods, including
the LDA (Canny, 2004; P. K. Gopalan et al., 2014; P. Gopalan et al.,
2013). Also, as we will see later in this chapter, the Gamma-Poisson
model is easier to compute, as it only needs to be calculated on the
non-zero elements of the n-gram counts (P. Gopalan et al., 2013).

In the next section, we present the Gamma-Poisson factorization
model in detail and we develop an online algorithm to estimate the
latent variables.

6.2 gamma-poisson factorization for string categories

To facilitate interpretation of the features generated by a categori-
cal encoder, we now introduce in detail an encoding approach that
estimates a decomposition of the string entries in terms of a linear
combination of latent categories or topics. For this, we rely on the
Gamma-Poisson model (Canny, 2004), a matrix factorization tech-
nique well-suited to counting statistics. Each categorical entry in its
n-gram count representation f ∈ Rm is modeled as a linear combina-
tion of d unknown prototypes or topics, Λ ∈ Rd×m:

f ≈ xΛ, (6.7)

Here, x ∈ Rd are the activations that decompose the observation
f in the d prototypes contained in Λ. As we will see later, these
prototypes can be seen as latent categories.

Given a training dataset with n samples, the model estimates the
unknown prototypes Λ by factorizing the data’s bag-of-n-grams rep-

[February 28, 2020 at 11:47 – classicthesis version 0.1]

6.2 gamma-poisson factorization for string categories 47

resentation F ∈ Nn×m, where m is the number of different n-grams
in the data:

F ≈ XΛ, (6.8)

with X ∈ Rn×d,Λ ∈ Rd×m.
As f is a vector of counts, it is natural to consider a Poisson distri-

bution for each of its elements:

p
(
fj|(xΛ)j

)
=
1

fj!
(xΛ)

fj
j e

−(xΛ)j , j = 1, ...,m. (6.9)

For a prior on the elements of x ∈ Rd, we use a Gamma distribution,
as it is the conjugate prior of the Poisson distribution 2:

p(xi) =
xαi−1i e−xi/βi

βαii Γ(αi)
, i = 1, ..., d, (6.10)

where α, β ∈ Rd are the shape and scale parameters of the Gamma
distribution for each one of the d topics. The parametrization of the
Gamma distribution allows to control the soft sparsity of the esti-
mated activations X 3.

6.2.1 Estimation strategy

To fit the model to the input data, we maximize the likelihood L of
the model, denoted by:

L =

m∏
j=1

(xΛ)
fj
j e

−(xΛ)j

fj!

d∏
i=1

xαi−1i e−xi/βi

βαii Γ(αi)
(6.11)

And the log-likelihood:

logL =

m∑
j=1

fj log((xΛ)j) − (xΛ)j − log(fj!) +

d∑
i=1

(αi − 1) log(xi) −
xi
βi

−αi logβi − log Γ(αi) (6.12)

Maximizing the log-likelihood with respect to the parameters of the
model x and Λ gives:

∂

∂Λij
logL =

fj

(xΛ)j
xi − xi (6.13)

∂

∂xi
logL =

m∑
j=1

fj

(xΛ)j
Λij −Λij +

αi − 1

xi
−
1

βi
(6.14)

2. In Bayesian statistics, the conjugate prior of a likelihood (in this case the Pois-
son distribution of n-gram counts) is defined as a prior distribution such as the
corresponding posterior belongs to the same probability distribution family of the
prior.

3. In particular, Canny, 2004 suggest the shape αi in the range [1.1, 1.4]. We use
a shape parameter of 1.1 for all experiments.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

6.2 gamma-poisson factorization for string categories 48

As explained in Canny, 2004, these expressions are analogous to solv-
ing the following Non-negative matrix factorization (NMF) with the
generalized Kullback-Leibler (KL) divergence 4 as loss:(

F

Diag(β)−1

)
= X

(
Λ

Diag(α) − Id

)
(6.15)

The Gamma-Poisson model can be interpreted as a constrained
non-negative matrix factorization in which the generalized KL diver-
gence is minimized between F and XΛ, subject to a Gamma prior
in the distribution of the elements of X. The Gamma prior induces
sparsity in the activations x of the model. This is a very important
property: it allows to express categorical variables in terms of a re-
duced number of topics, as it is shown in Figure 6.1 for both real
and simulated data. The obtained topics are a reflection of the co-
occurrences of the n-grams that compose the categorical entries. Fig-
ure 6.2 shows the same representation for all entries (gray dots) in the
Employee Salaries datasets after a two-dimensional projection with
a t-distributed stochastic neighbor embedding (t-SNE) (Maaten and
Hinton, 2008). The sparsity of the activations induces a clear clusteri-
sation of entries (see Figure 8.2 for a comparison with other encoding
methods).

To solve the NMF problem above, Lee and Seung, 2001, proposes
the following recurrences:

Λij ← Λij

(
n∑
`=1

f`j

(XΛ)`j
X`i

)(
n∑
`=1

X`i

)−1

(6.16)

X`i ← X`i

 m∑
j=1

f`j

(XΛ)`j
Λij +

αi − 1

X`i

 m∑
j=1

Λij +β
−1
i

−1

(6.17)

As F is a sparse matrix, the summations above only need to be com-
puted on the non-zero elements of F. This fact considerably decreases
the computational cost of the algorithm.

6.2.2 Online Algorithm

Following Lefevre et al., 2011, we present an online (or streaming)
version of the Gamma-Poisson solver (algorithm 2). The basic idea of
the algorithm is to exploit the fact that in the recursion for Λ (Equa-
tions 6.16 and 6.17), the summations are done with respect to the

4. In the NMF literature (see for instance Lee and Seung, 2001), the generalized
KL divergence for two matrices X and Y is defined as:

D(X||Y) =
∑
i,j

(
Xij log

Xij

Yij
−Xij + Yij

)
.

It is called a divergence—and not a distance—because it does not hold the symmetry
property in X and Y .

[February 28, 2020 at 11:47 – classicthesis version 0.1]

6.2 gamma-poisson factorization for string categories 49

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

chicken eagle
eagle chicken
giraffe eagle

giraffe giraffe
horse eagle

horse turtle

0

1

ac
co
un
ta
nt
,
as
si
st
an
t,

li
br
ar
y

co
or
di
na
to
r,

eq
ui
pm
en
t,

op
er
at
or

ad
mi
ni
st
ra
ti
ve
,
ad
mi
ni
st
ra
ti
on
,
sp
ec
ia
li
st

en
fo
rc
em
en
t,

cr
af
ts
wo
rk
er
,
wa
re
ho
us
e

cr
os
si
ng
,
pr
og
ra
m,

ma
na
ge
r

te
ch
ni
ci
an
,
me
ch
an
ic
,
co
mm
un
it
y

fi
re
fi
gh
te
r,

re
sc
ue
r,

re
sc
ue

co
rr
ec
ti
on
al
,
co
rr
ec
ti
on
,
of
fi
ce
r

Legislative Analyst II
Legislative Attorney
Equipment Operator I
Transit Coordinator

Bus Operator
Senior Architect

Senior Engineer Technician
Financial Programs Manager

Capital Projects Manager
Mechanic Technician II
Master Police Officer

Police Sergeant

In
fe

rre
d fe

atu
re

nam
es

Categories

(a) Employee Salaries dataset (Position Title)

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

chxcken
eaxle

giraffe
horse

lezpard
tiyer

(b) Simulated typos

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

chicken eagle
eagle chicken
giraffe eagle

giraffe giraffe
horse eagle

horse turtle

0

1

(c) Simulated multi-label categories

Figure 6.1 – The Gamma-Poisson factorization gives positive and sparse
representations. Examples of encoding vectors (d=8) for a real
dataset (a) and for simulated data (b and c) obtained with a
Gamma-Poisson factorization.

Master Police Officer

Police Sergeant

Equipment Operator I

Transit Coordinator

Legislative Services Coord. Bus Operator

Legislative Attorney

Legislative Analyst II

Senior Architect

Capital Projects Manager

Financial Programs Manager

Senior Engineer Technician

Telecom. Technician

Mechanic Technician II

Gamma-Poisson factorization

Figure 6.2 – Projection with t-SNE for the Gamma-Poisson factorization.
The input catagerocial data for this example is the variable Em-
ployee Position Title in the Employee Salaries dataset. The original
dimensionality for each encoding is d=10. Gray dots represent
the rest of observed categories in the dataset. The Gamma-
Poisson creates clusters of categorical entries that can be even-
tually interpreted.

training samples. Instead of computing the numerator and denom-
inator in the entire training set at each update, one can update this
values only with mini-batches of data, which considerably decreases
the memory usage and time of the computations.

For better computational performance, we adapt the implementa-
tion of this solver to the specificities of our problem—factorizing sub-
string counts across entries of a categorical variable. In particular, we
take advantage of the repeated entries by saving a dictionary of the
activations for each category in the convergence of the previous mini-
batches (algorithm 2, line 4) and use them as an initial guess for the
same category in a future mini-batch. This is a warm restart and is

[February 28, 2020 at 11:47 – classicthesis version 0.1]

6.2 gamma-poisson factorization for string categories 50

Algorithm 2: Online Gamma-Poisson factorization

Input : F, Λ(0), α, β, ρ, q, η, ε
Output :X,Λ

1 while ‖Λ(t)−Λ(t−1)‖F
‖Λ(t−1)‖F > η do

2 draw ft from the training set F.

3 while ‖xt−xold
t ‖2

‖xold
t ‖2

> ε do

4 xt ←
[
xt

(
ft

xtΛ
(t)

)
Λ(t)T +α− 1

]
.
[
1Λ(t)T+β−1

].−1
5 end

6 Ãt ← Λ(t).
[
xT
t

(
ft

xtΛ
(t)

)]
7 B̃t ← xT

t 1

8 if t ≡ 0 mod q, then

9 A(t) ← ρA(t−q) +
∑t
s=t−q+1 Ã

(s)

10 B(t) ← ρB(t−q) +
∑t
s=t−q+1 B̃

(s)

11 Λ(t) ← A(t)./B(t)

12 end

13 t← t+ 1

14 end

especially important in the case of categorical variables because for
most datasets, the number of unique categories is much lower than
the number of samples.

6.2.2.1 Parameter tuning

The hyper-parameters of the algorithm and its initialization can
affect convergence. One important parameter is ρ, the discount factor
for the previous iterations of the topic matrixΛ(t) (algorithm 2, line 9-
10). Figure 6.3 shows that choosing ρ=0.95 gives a good compromise
between stability of the convergence and data fitting in term of the
generalized KL divergence 5.

With respect to the initialization of the topic matrix Λ(0), a good
option is to choose the centroids of a k-means clustering (Figure 6.4)
in a hashed version of the n-gram count matrix F (in order to speed-
up the k-means algorithm) and then project back to the n-gram space
with a nearest neighbors algorithm. A faster alternative, although
slightly less performing, is to initialize Λ(0) with a k-means++ algo-
rithm (Arthur and Vassilvitskii, 2007), a seeding procedure for the
k-means algorithm in order to guarantee a good convergence. In the
case of a streaming setting, both approaches can be used in a subset
of the data.

5. The default parameters for the online Gamma-Poisson factorization are listed
in Table B.1 in the Appendix. All experiments in Chapter 7 are done with same
parametrization.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

6.2 gamma-poisson factorization for string categories 51

1 2 3 4 5
Number of epochs

2 × 101

2.05 × 101

2.1 × 101

2.15 × 101

2.2 × 101

2.25 × 101

Ge
ne

ra
liz

ed
KL

di
ve

rg
en

ce

Midwest survey

ρ=0.90
ρ=0.95 (selected)
ρ=0.99

1 2 3 4 5
Number of epochs

8.2 × 101

8.3 × 101

8.4 × 101

8.5 × 101

8.6 × 101

Ge
ne

ra
liz

ed
KL

di
ve

rg
en

ce

Employee salaries

ρ=0.90
ρ=0.95 (selected)
ρ=0.99

1 2 3 4 5
Number of epochs

4.8 × 102

4.85 × 102

4.9 × 102

4.95 × 102

Ge
ne

ra
liz

ed
KL

di
ve

rg
en

ce
Traffic violations

ρ=0.90
ρ=0.95 (selected)
ρ=0.99

Figure 6.3 – Convergence for different discount discount values for the
Gamma-Poisson model. The value ρ = 0.95 gives a good trade-
off between convergence and stability of the solution across the
number of epochs.

1 2 3 4 5
Number of epochs

2.8 × 101

3 × 101

3.2 × 101

3.4 × 101

3.6 × 101

3.8 × 101

Ge
ne

ra
liz

ed
KL

di
ve

rg
en

ce

Midwest survey

random
k-means++
k-means (selected)

1 2 3 4 5
Number of epochs

1.5 × 102

1.55 × 102

1.6 × 102

1.65 × 102

1.7 × 102

1.75 × 102

1.8 × 102

Ge
ne

ra
liz

ed
KL

di
ve

rg
en

ce

Employee salaries

random
k-means++
k-means (selected)

1 2 3 4 5
Number of epochs

8.4 × 102

8.6 × 102

8.8 × 102

9 × 102

9.2 × 102

9.4 × 102

9.6 × 102

9.8 × 102

Ge
ne

ra
liz

ed
KL

di
ve

rg
en

ce

Traffic violations

random
k-means++
k-means (selected)

Figure 6.4 – Convergence for different initialization techniques for the
Gamma-Poisson model. In all benchmark experiments, the k-
means strategy is used.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

6.3 inferring feature names 52

6.3 inferring feature names

An encoding strategy where each dimension can be understood
by humans facilitates the interpretation of the full statistical analysis.
A straightforward strategy for interpretation of the Gamma-Poisson
encoder is to describe each encoding dimension by the features of
the string entries that it captures. For this, one alternative is to track
the feature maps corresponding to each input category, and assign
labels based on the input categories that activate the most in a given
dimensionality. Another option is to apply the same strategy, but for
substrings, such as words contained in the input categories. In the
experiments, we follow the second approach as a lot of datasets are
composed of entries with overlap, hence individual words carry more
information for interpretability than the entire strings.

This method can be applied to any encoder, but it is expected to
work well if the encodings are sparse and composed only of non-
negative values with a meaningful magnitude. The Gamma-Poisson
factorization model ensures these properties.

Figure 6.5 shows the same example activations of Figure 6.1, but
this time with the corresponding inferred features names (x-axis). As
the structure of the categorical variable in the real dataset is more
complex than the one of the simulations, the feature names in this
case are composed by the three most important words for each topic.
In Chapter 7 we will see that these feature names can help with the
interpretation of a related prediction problem.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

6.3 inferring feature names 53

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

chicken eagle
eagle chicken
giraffe eagle

giraffe giraffe
horse eagle

horse turtle

0

1

ac
co
un
ta
nt
,
as
si
st
an
t,

li
br
ar
y

co
or
di
na
to
r,

eq
ui
pm
en
t,

op
er
at
or

ad
mi
ni
st
ra
ti
ve
,
ad
mi
ni
st
ra
ti
on
,
sp
ec
ia
li
st

en
fo
rc
em
en
t,

cr
af
ts
wo
rk
er
,
wa
re
ho
us
e

cr
os
si
ng
,
pr
og
ra
m,

ma
na
ge
r

te
ch
ni
ci
an
,
me
ch
an
ic
,
co
mm
un
it
y

fi
re
fi
gh
te
r,

re
sc
ue
r,

re
sc
ue

co
rr
ec
ti
on
al
,
co
rr
ec
ti
on
,
of
fi
ce
r

Legislative Analyst II
Legislative Attorney
Equipment Operator I
Transit Coordinator

Bus Operator
Senior Architect

Senior Engineer Technician
Financial Programs Manager

Capital Projects Manager
Mechanic Technician II
Master Police Officer

Police Sergeant

In
fe

rre
d fe

atu
re

nam
es

Categories

(a) Employee Salaries dataset (Occupation)

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

chxcken
eaxle

giraffe
horse

lezpard
tiyer

(b) Simulated typos

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

chicken eagle
eagle chicken
giraffe eagle

giraffe giraffe
horse eagle

horse turtle

0

1
(c) Simulated multi-label categories

Figure 6.5 – The Gamma-Poisson factorization gives positive and sparse
representations that are easily interpretable. Examples of en-
coding vectors (d=8) for a real dataset (a) and for simulated
data (b and c) obtained with a Gamma-Poisson factorization.
The x-axis shows the activations for each dimension with their
respective inferred feature names. Figure 8.1 shows that other
encoders fail to give such an easily-understandable picture.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

Part iii

E M P I R I C A L S T U D Y

[February 28, 2020 at 11:47 – classicthesis version 0.1]

7
S U P E RV I S E D L E A R N I N G B E N C H M A R K S

This chapter presents a set of benchmarks between different encod-
ing methods in terms of supervised-learning performance. For this
purpose, we use real data with curated and non-curated categorical
entries, that we describe in detail in the next section.

7.1 real-world datasets

7.1.1 Non-curated datasets

In order to evaluate the different encoding strategies, we collected
17 open source datasets containing a prediction task and at least one
relevant high-cardinality categorical variable as feature 1. Datasets
of this type are difficult to collect because most machine learning
repositories only contain curated categorical variables (see, for in-
stance, the UCI machine learning repository). To foster future re-
search, all datasets are available for downloading at: https://github.
com/dirty-cat/datasets/ 2.

Table 7.1 shows a description of the datasets and the corresponding
categorical variables (see Appendix A.1 for more information about
the datasets and the related learning tasks). It also details the source
of high-cardinality for the respective categorical entries in 4 general
non-exclusive types: multi-label, typos, description and multi-language.
We call multi-label the situation when a single column contains mul-
tiple information shared by several entries, e.g., supply technician,
where supply denotes the type of activity, and technician denotes
the rank of the employee (as opposed, e.g., to supply manager). Typos
refers to entries having small morphological variations, as midwest

and mid-west. Description refers to categorical entries that are com-
posed of a short free-text description. These are close to a typical NLP
problem, although constrained to a very particular subject, so they
tend to contain very recurrent informative words and near-duplicate
entries. Finally, multi-language are datasets in which the categorical
variable contains more that one language across the different entries.

7.1.2 Curated datasets

We also evaluate the performance of encoders when the categor-
ical entries have already been curated—entries are standardized to
create well-defined categorical variables. For this purpose, we col-
lected seven of such datasets (see Section A.1.2 in the Appendix for a

1. If a dataset has more than one categorical variable, only one selected variable
was encoded with the proposed approaches, while the rest of them were one-hot
encoded.

2. See Section A.1 in the Appendix for a link to the original data sources.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

https://github.com/dirty-cat/datasets/
https://github.com/dirty-cat/datasets/

7.2 supervised learning pipeline 56

Table 7.1 – Non-curated datasets. Description for the corresponding high-
cardinality categorical variable. Datasets are ordered by the av-
erage number of categories per 1,000 rows (column in bold).

Dataset #rows #cat’s
#cat’s

per 1k
rows

Gini
coeff.

Mean cat.
length

(#chars)

Source of high
cardinality

Crime Data 1.5M 135 64.5 0.85 30.6 Multi-label

Medical Charges 163k 100 99.9 0.23 41.1 Multi-label

Kickstarter Projects 281k 158 123.8 0.64 11.0 Multi-label

Employee Salaries 9.2k 385 186.3 0.79 24.9 Multi-label

Open Payments 2.0M 1.4k 231.9 0.90 24.7 Multi-label

Traffic Violations 1.2M 11.3k 243.5 0.97 62.1 Typos; Description

Vancouver Employees 2.6k 640 341.8 0.67 21.5 Multi-label

Federal Election 3.3M 145.3k 361.7 0.76 13.0 Typos; Multi-label

Midwest Survey 2.8k 844 371.9 0.67 15.0 Typos

Met Objects 469k 26.8k 386.1 0.88 12.2 Typos; Multi-label

Drug Directory 120k 17.1k 641.9 0.81 31.3 Multi-label

Road Safety 139k 15.8k 790.1 0.65 29.0 Multi-label

Public Procurement 352k 28.9k 804.6 0.82 46.8 Multi-label-lang.

Journal Influence 3.6k 3.2k 956.9 0.10 30.0 Multi-label-lang.

Building Permits 554k 430.6k 940.0 0.48 94.0 Typos; Description

Wine Reviews 138k 89.1k 997.7 0.23 245.0 Description

Colleges 7.8k 6.9k 998.0 0.02 32.1 Multi-label

description of each dataset and link to its respective source). Exper-
iments on these datasets are intended to show the robustness of the
encoding approaches to situations where there is no need to reduce
the dimensionality of the problem, or when capturing the subword
information is not necessarily an issue.

The next section describes the learning pipeline used in most of the
benchmarks.

7.2 supervised learning pipeline

We now detail the main aspects of the supervised learning pipeline
we built in order to test encoders’ prediction performance Note that
the same pipeline was used for all datasets; no data-specific interven-
tion was carried out in order to improve the prediction results of a
particular dataset.

sample size . Collected datasets’ size range from a couple of thou-
sand to several million samples (see Table 7.1). To reduce computa-
tion time on the encoding and learning steps, the number of samples
was limited to 100k for large datasets. In these cases, the 100k sam-
ples were randomly selected from the available data 3.

3. For the experiments done in Cerda et al., 2018, we limited the number of rows
to 10k, as there are benchmarks where the dimensionality of the encoder was not
reduced.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

7.2 supervised learning pipeline 57

Table 7.2 – Score metrics for different prediction problems.

Prediction type Metric name Definition

Regression R2 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)

2

Binary classif. Avg. precision

k∑
j=1

p(aj)
(
r(aj) − r(aj−1)

)
, with:

p(a) =
∑n
i=1 1[yi=1]1[ŷi>a]∑n

i=1 1[ŷi>a]
,

r(a)=
∑n
i=1 1[yi=1]1[ŷi>a]∑n

i=1 1[yi=1]
, a∈[0, 1].

Multi-class Accuracy
1

n

n∑
i=1

1[yi = ŷi]

data preprocessing . We removed rows with missing values in
the target or in any explanatory variable other than the selected cate-
gorical variable, for which we replaced missing entries by the string
nan and we considered it as an additional category. The only addi-
tional preprocessing step for the categorical variable was to transform
all entries to lower case.

cross-validation. For every dataset, we made 20 random splits
of the data, with one third of samples for testing at each time 4. In the
case of binary and multi-class classification, we performed stratified
randomization 5.

performance metrics . Depending on the type of prediction task,
we used different scores to evaluate the performance of the super-
vised learning problem. Table 7.2 contains a definition of each metric
in terms of the class values yi and the respective predictions ŷi. For
regression, we used the R2 score, the proportion of variance in the
target variable that is explained by the features of the predictive prob-
lem. For binary classification, with yi ∈ {0, 1} and ŷi ∈ [0, 1], we use
the average precision score, the area under the precision-recall curve,
with respect to the less frequent class (we arbitrarily set the class 1

as the less frequent). Finally, for multi-class classification, we use the
accuracy score, the proportion of correct class predictions. All metrics
are upper bounded by 1 (a higher score means a better prediction
performance).

4. Experiments in Cerda et al., 2018, were done with 100 random splits and 20%
of samples in the test set.

5. In classification problems, the stratified randomization is made with the pur-
pose of preserving the percentage of samples for each class across splits.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

7.3 prediction performance with non-curated data 58

0.83 0.88
medical
charges

3-gram

Levenshtein-
ratio

Jaro-winkler
Bag of 3-grams

Target encoding
MDV

One-hot encoding
Hash encoding

Si
m

ila
rit

y
en

co
di

ng

0.75 0.85
employee
salaries

0.7 0.9
open

payments

0.6 0.7
midwest
survey

0.72 0.78
tra�c

violations

0.44 0.52
road

safety

0.3 0.8
beer

reviews

1.9

3.0

3.6

3.3

4.3

5.8

6.0

7.6

Average
ranking

acrossdatasets

Figure 7.1 – Performance of different encoding methods. Classifier: gradi-
ent boosting. Each box-plot summarizes the prediction scores
of 100 random splits (with 80% of the samples for training and
20% for testing). For all datasets, the prediction score is up-
per bounded by 1 (a higher score means a better prediction).
The right side of the figure indicates the average ranking across
datasets for each method. The vertical dashed line indicates
the median value of the one-hot encoding method. Similar re-
sults are obtained for a linear classifier (see Figure C.1 in the
Appendix).

7.3 prediction performance with non-curated data

In this section we describe the results of several prediction bench-
marks with real world non-curated datasets. We start by evaluating
the performance of similarity encoding.

7.3.1 Similarity encoding: choosing a good string similarity

Similarity encoding (Cerda et al., 2018, Chapter 3) uses continu-
ous string similarity metrics to generalize one-hot encoding. We first
benchmark the proposed similarity measures in Section 3.2 (Leven-
shtein similarity, Jaro-Winkler and n-gram similarity) against the fol-
lowing traditional encoding methods (Chapter 2) 6:

— One-hot encoding.

— MDV.

— Target Encoding.

— Hash encoding.

— Bag of 3-grams.

Figure 7.1 shows the prediction results (with gradient boosting as
classifier) for each method and dataset in terms of the absolute score
per dataset (x-axis) and the average ranking across datasets 7. In aver-
age, similarity encoding with n-gram similarity gives the best results.

6. In this section, all encoding strategies based on n-grams are set to use a 3-gram
decomposition of strings.

7. At the time of this study, only 7 datasets were available.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

7.3 prediction performance with non-curated data 59

0.7 0.9
employee
salaries

d=100
d=300
Full
d=100
d=300
d=100
d=300
d=100
d=300
Full
d=100
d=300
d=100
d=300
Full

(k=359)

d=1251

Cardinality of
categorical variable

O
ne

-h
ot

en
co

di
ng

3-
gr

am
sim

ila
rit

y
en

co
di

ng
Ba

g
of

3-
gr

am
s

Random
projections

Random
projections

Most frequent
categories

K-means

Deduplication
with K-means

Random
projections

0.7 0.8
open

payments
(k=912)

d=2933

0.6 0.7
midwest
survey
(k=722)

d=2330

0.75 0.78
tra�c

violations
(k=2555)

d=3810

0.45 0.55
road

safety
(k=4000)

d=4923

0.3 0.8
beer

reviews
(k=4067)

d=6553

7.5
5.0
6.7
7.0
4.0
7.2
5.3
7.7
4.3

2.8∗
13.7
13.0
11.8
10.2
13.9 Average

ranking
acrossdatasets

Figure 7.2 – Prediction performance with different dimensionality reduc-
tion strategies. Classifier: Gradient boosting. Full denotes the
encoding without dimensionality reduction and d the dimen-
sion of the reduction. Each box-plot corresponds to 100 ran-
dom splits with 80% of the samples for the training set and 20%
for the testing set. The right side of the plot indicates the av-
erage ranking across datasets for each method (∗ denotes the
best average ranking). Results for a linear classifier are shown
in Figure C.2 in the Appendix.

Similar results are obtained for `2 regularized linear models (see Fig-
ure C.1 in the Appendix). Given this results, we selected the n-gram
similarity as default similarity metric for all future benchmarks.

In the previous figure, no dimensionality reduction was applied to
the encoders. This becomes impracticable in large scale settings. For
this reason, the same experiment was done by fixing the maximum
dimensionality of encoders. For similarity encoding, we investigated
i) random projections, ii) encoding with similarities to the most fre-
quent categories, iii) encoding with similarities to categories closest
to the centers of a k-means clustering, and iv) one-hot encoding af-
ter merging categories with a k-means clustering, which is a sim-
ple form of deduplication. The latter method enables bridging the
gap with the deduplication literature: we can compare merging enti-
ties before statistical learning to expressing their similarity using the
same similarity measure. Figure 7.2 shows prediction results for these
different dimensionality reduction methods applied to six of the pre-
vious seven datasets 8. Even with a strong dimensionality reduction
(d=100), similarity encoding outperforms one-hot encoding.

8. The Medical Charges dataset was excluded from the figure because of its smaller
cardinality in comparison with the other datasets.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

7.3 prediction performance with non-curated data 60

7.3.2 Benchmarking scalable encoders

We now describe the results of several prediction benchmarks in 17

non-curated datasets with novel encoders that can scale to large data
settings. We mainly benchmark the following encoding strategies 9:

— One-hot encoding.

— Term-frequency inverse-document-frequency (Tf-idf).

— FastText (Tomas Mikolov et al., 2018).

— Similarity encoding (Chapter 3).

— Min-hash encoding (Chapter 5).

— Gamma-Poisson factorization 10 (Chapter 6).

n-grams range . For all the strategies based on a n-gram represen-
tation, we use the set of 2-4 character grams 11, as we noticed that it
gives slightly better results than only using the set of 3-grams.

dimensionality reduction. Note that one-hot encoding, tf-idf
and fastText are naturally high-dimensional encoders, so a dimension-
ality reduction technique needs to be applied in order to compare the
different methodologies. Without this reduction, the benchmark will
be unfeasible given the long computational times of gradient boost-
ing. Moreover, dimensionality reduction helps to improve prediction
(Cerda et al., 2018) with tree-based methods.

To set the dimensionality of one-hot encoding, Tf-idf and fastText,
we used a truncated SVD (implemented efficiently following Halko
et al., 2011). We also evaluated Gaussian random projections (Rahimi
and Recht, 2008), as it can lead to stateless encoders that require no
data fit.

For similarity encoding, we selected prototypes with a k-means
strategy, following Cerda et al., 2018, as it gives slightly better pre-
diction results than the most frequent categories. We do not test the
random projections strategy for similarity encoding as it is not scalable.

relative score . As datasets get different prediction scores, we
visualize encoders’ performance with prediction results scaled in a
relative score. It is a dataset-specific scaling of the original score, in
order to bring performance across datasets in the same range. In
other words, for a given dataset i:

relative scoreij = 100
scoreij − minj scoreij

maxj scoreij − minj scoreij
(7.1)

where scoreij is the the prediction score for the dataset i with the con-
figuration j∈J, the set of all trained models—in terms of dimension-
ality, type of encoder and cross-validation split. The relative score is

9. Python implementations and example pipelines with these encoding strategies
can be found at https://dirty-cat.github.io.

10. Default parameter values are listed in Table B.1
11. In addition to the word as tokens, pretrained versions of fastText also use the

set of 3-6 character n-grams.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

https://dirty-cat.github.io

7.3 prediction performance with non-curated data 61

SV
D

Ran
d.

pro
j.

0

20

40

60

80

100

re
la

tiv
e

sc
or

e
(%

)

pval = 0.492 SVD random proj.

One-hot

SV
D

Ran
d.

pro
j.

0

20

40

60

80

100

re
la

tiv
e

sc
or

e
(%

)

pval = 0.003 SVD random proj.

Tf-idf

SV
D

Ran
d.

pro
j.

0

20

40

60

80

100

re
la

tiv
e

sc
or

e
(%

)

pval = 0.001 SVD random proj.

FastText
Figure 7.3 – Comparison of encoders’ performance with different dimen-

sionality reduction methods (truncated SVD or Gaussian ran-
dom projection). For each encoder, pval indicates the p-value
obtained with a Wilcoxon signed-rank test under the null hy-
pothesis that SVD and random projections have the same per-
formance.

figure-specific and is only intended to be used as a visual comparison
of classifiers’ performance across multiple datasets. A higher relative
score means better results.

statistical comparison of encoders . For a proper evalua-
tion of encoders’ performance, we use a ranking test across multi-
ple datasets (Demsar, 2006). Note that in such a test each dataset
amounts to a single sample, and not the cross-validation splits which
are not mutually independent. To do so, for a particular dataset, en-
coders were ranked according to the median score value over cross-
validation splits. At the end, a Friedman test (Friedman, 1937) is used
to determine if all encoders, for a fixed dimensionality d, come from
the same distribution. If the null hypothesis is rejected, we use a Ne-
menyi post-hoc test (Nemenyi, 1962) to verify whether the difference
in performance across pairs of encoders is significant.

To do pairwise comparison between two encoders, we use a pair-
wise Wilcoxon signed rank test (Wilcoxon, 1992). The corresponding
p-values rejects the null hypothesis that the two encoders are equally
performing across different datasets.

classifier . For all further experiments, we use gradient boosted
trees, as implemented in XGBoost (Chen and Guestrin, 2016). Note
that trees can be implemented on categorical variables 12. However,
this encounter the same problems as one-hot encoding: the number

12. XGBoost does not support categorical features. The recommended option is
to use one-hot encoding (https://xgboost.readthedocs.io).

[February 28, 2020 at 11:47 – classicthesis version 0.1]

https://xgboost.readthedocs.io

7.3 prediction performance with non-curated data 62

30 100
dimension

0

25

50

75

100
re

la
tiv

e
sc

or
e

(%
)

XGBoost

One-hot + SVD
Similarity encoding

FastText + SVD
Tf-idf + SVD

Gamma-Poisson fact.
Min-hash encoding

30 100
dimension

0

25

50

75

100

re
la

tiv
e

sc
or

e
(%

)

XGBoost

One-hot + SVD
Similarity encoding

FastText + SVD
Tf-idf + SVD

Gamma-Poisson fact.
Min-hash encoding

Figure 7.4 – Encoding with subword information performs significantly
better than one-hot. Classifier: XGBoost. Comparison of en-
coders in terms of a relative score (the prediction score on the
particular dataset, rescaled with respect to the global maximum
and minimum score values across dimensions). Color dots in-
dicate the scores for each cross-validation fold, black dots the
median score across folds for a dataset, the black line indicates
the median score and the box gives the interquartile range. For
one-hot encoding, tf-idf, and fastText, the dimensionality was
set using an SVD.

of comparisons grows with the number of categories. Hence, the best
trees approaches for categorical data use target encoding to impose
an order on categories (Prokhorenkova et al., 2018). We also inves-
tigated other supervised-learning approaches: linear models, multi-
layer perceptron, and kernel machines with RBF and polynomial ker-
nels. However, even with significant hyper-parameter tuning, they
under-performed XGBoost on our tabular datasets (Figure C.4 in the
Appendix). The good performance of gradient-boosted trees is con-
sistent with previous reports of systematic benchmarks (Olson et al.,
2017).

7.3.2.1 Results

Figure 7.3 compares the prediction performance of both strategies
(for a dimensionality d equal to 30). For tf-idf and fastText, the SVD is
significantly superior to random projections. On the contrary, there
is no statistical difference for one-hot, but the performance is still
slightly superior for the SVD (p-value equal to 0.492). Given these
results, we use SVD for all further benchmarks.

Figure 7.4 compares encoders in terms of the relative score of Equa-
tion 7.1. All n-gram based encoders clearly improve upon one-hot en-
coding, at both dimensions (d equal to 30 and 100). Min-hash gives a
slightly better prediction performance across datasets, despite of be-
ing the only method that does not require a data fit step. Results of
the Nemenyi ranking test (Figure 7.5) confirm the impression of the
previous visualization: n-gram-based methods are superior to one-

[February 28, 2020 at 11:47 – classicthesis version 0.1]

7.3 prediction performance with non-curated data 63

cr
it

ic
al

di
st

an
ce

Average ranking

Min-hash encoding

1

FastText + SVD

2

Gamma-Poisson factorization3
Tf-idf + SVD

4 Similarity encoding

5

One-hot encoding + SVD
6

Figure 7.5 – Nemenyi post-hoc ranking test. Average ranking across
datasets for different encoding methods (d=30). Comparison
of encoders against each other with the Nemenyi post-hoc
test. Groups of classifiers that are not significantly different
(at α=0.05) are connected with a continuous gray line. The red
line represents the value of the critical difference for rejecting the
null hypothesis.

hot encoding, and the min-hash encoder has the best average ranking
value for both dimensionalities, although the difference in prediction
with respect to the other n-gram based methods is not statistically
significant.

fasttext’s language . While we seek generic encoding methods,
using precomputed fastText embeddings requires the choice of a lan-

FastText + SVD (d=30)
0

20

40

60

80

100

re
la

tiv
e

sc
or

e
(%

)

English French Hungarian

Figure 7.6 – FastText prediction performance drops for languages other
than English. Relative prediction scores with pretrained fast-
Text vectors in different languages. The dimensionality was set
with an SVD. A pairwise Wilcoxon signed rank tests give the
following p-values: English-French p=0.056, French-Hungarian
p=0.149, English-Hungarian p=0.019.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

7.4 robustness to non curated data 64

guage. As 15 out of 17 datasets are fully in English, the benchmarks
above use English embeddings for fastText. Figure 7.6, studies the im-
portance of this choice, comparing the prediction results for fastText
in different languages (English, French and Hungarian). Not choos-
ing English leads to a sizeable drop in prediction accuracy, which gets
bigger for languages more distant (such as Hungarian). This shows
that the natural language semantics of fastText indeed are important
to explain its good prediction performance. A good encoding not
only needs to represent the data in a low dimension, but also needs
to capture the similarities between the different entries.

7.4 robustness to non curated data

We now test the robustness of the different encoding methods to
situations where there is no need to capture subword information—
e.g., low cardinality categorical variables, or variables as "Country
name", where the overlap of character n-grams does not have a rel-
evant meaning. We benchmark in Figure 7.7 all encoders on the 7

curated datasets. To simulate black-box usage, the dimensionality
was fixed to d=30 for all approaches, with the exception of one-hot
encoding. None of the n-gram based encoders perform worst than
one-hot. Indeed, the Friedman statistics for the average ranking does
not reject the null hypothesis of all encoders coming from the same
distribution (p-value equal to 0.37).

30
dimension

0

20

40

60

80

100

re
la

tiv
e

sc
or

e
(%

)

7 7 7 7 7 7

One-hot
encoding
Similarity
encoding

FastText
+ SVD
Tf-idf
+ SVD

Gamma-
Poisson
Min-hash
encoding

30
dimension

0

20

40

60

80

100

re
la

tiv
e

sc
or

e
(%

)

7 7 7 7 7 7

One-hot
encoding
Similarity
encoding

FastText
+ SVD
Tf-idf
+ SVD

Gamma-
Poisson
Min-hash
encoding

Figure 7.7 – All encoders perform well for low-cardinality datasets. Clas-
sifier: XGBoost. The score is relative to the best and worse
prediction across datasets (Equation 7.1). Color dots indicate
the scores for each cross-validation fold, black dots the median
across folds, the black line indicates the median across datasets
and the box gives the interquartile range. Differences are not
significant.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

7.4 robustness to non curated data 65

Now that we have shown that the encoding strategies that use the
subword information of string entries, we focus on interpretability of
the encoders in the next chapter.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

8
I N T E R P R E TA B L E A N A LY S I S O N
N O N - C U R AT E D C AT E G O R I E S

In the context of machine learning, interpretability can be defined
as the ability to explain or to present in understandable terms to a human
(Doshi-Velez and B. Kim, 2017). This ability is critical in many ma-
chine learning applications, such as: fairness in decision support sys-
tems (Bostrom and Yudkowsky, 2014; Ruggieri et al., 2010), safety in
industrial applications (Varshney and Alemzadeh, 2017) or reliability
in healthcare (Vellido et al., 2012).

From a machine learning perspective, interpretability can be either
global, if the concern is to identify the general patterns of a decision
function (for instance, the most important features in a trained algo-
rithm), or local, if the interest lies in finding the reasons of a specific
decision (Doshi-Velez and B. Kim, 2017). In this chapter, we focus in
the global interpretability of categorical variables in supervised learn-
ing. As the models we consider in this thesis build encoding vectors
for categorical variables, we run an empirical study of how well each
encoder performs in this respect.

An ideal categorical encoder should have dimensions that can be
easily identified and named, as in one-hot encoding, where each di-
mension corresponds to the presence or absence of a given category.
To evaluate this ability in a controlled manner, we created simulated
high-cardinality categorical data from a small set of ground truth cat-
egories. We describe the data-generation process in the following
section.

8.1 simulated categorical variables

In Chapter 7, the description of non-curated datasets in Table 7.1
shows that the most common source for high cardinality string vari-
ables is the multi-label categories. The second most common source
is the presence of typos (or any source of morphological variation of
the same idea). To analyze these two cases in a more controlled set-
ting, we created two simulated categorical variables. Table 8.1 shows
examples of the categories we generated, taking as a base 8 arbitrary
ground truth categories of animals: chicken, eagle, giraffe, horse,
leopard, lion, tiger and turtle.

The multi-label data was created by concatenating k+2 ground
truth categories, with k following a Poisson distribution—hence, all
entries contain at least two labels. For the generation of data with
typos, we added 10% of typos to the original ground truth categories
by randomly replacing one character by another one (x, y, or z). For
both cases, the number of samples was set to 10k.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

8.2 recovering latent categories 67

Table 8.1 – Examples of simulated categorical variables.

Type Example categories

Ground truth chicken; eagle; giraffe; horse; leopard;

lion; tiger; turtle.

Multi-label lion chicken; horse eagle lion;

tiger leopard giraffe turtle.

Typos (10%) chxcken; eazle; gixaffe; gizaffe; hoyse;

lexpard; lezpard; lixn; tiyer; tuxtle.

8.2 recovering latent categories

Given the simulated settings, we are interested in measuring the
ability of an encoder to recover a feature matrix close to a one-hot
encoding matrix of ground-truth categories. For this purpose, we use
the Normalized mutual information (NMI) as metric (Witten et al.,
2016). Given two random variables X1 and X2, the NMI is defined as:

NMI = 2
I(X1;X2)

H(X1) +H(X2)
, (8.1)

where H is the Shannon entropy and I is the mutual information
(Shannon, 1948), defined in terms of the entropy as:

I(X1;X2) = H(X1) +H(X2) −H(X1, X2). (8.2)

To apply this metric to the feature matrix X generated by the encod-
ing of all ground truth categories, we consider that X, after rescal-
ing 1, can be seen as a two dimensional probability distribution. For
encoders that produce feature matrices with negative values, we take
the element-wise absolute value of X. The NMI is a classic measure
of correspondences between clustering results (Vinh et al., 2010). Be-
yond its information-theoretical interpretation, an appealing property
is that it is invariant to order permutations. The NMI of any permuta-
tion of the identity matrix is equal to 1 and the NMI of any constant
matrix is equal to 0. Thus, the NMI in this case is interpreted as a re-
covering metric of a one-hot encoded matrix of latent, ground truth,
categories.

Table 8.2 shows the NMI values for both simulated datasets. The
Gamma-Poisson factorization obtains the highest values in both multi-
label and typos settings and for different dimensionalities of the en-
coders. The best recovery is obtained when the dimensionality of the
encoder is equal to the number of ground-truth categories, i.e., d=8
in this case.

8.2.1 Results for real curated data

For curated data, the cardinality of categorical variables is usually
low. Nevertheless, to evaluate how well turn-key generic encodings

1. An `1 normalization of the rows.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

8.3 interpretability of encoders 68

Table 8.2 – Recovery of categories for simulated categories. Normalized
mutual information (NMI) for different encoders. The data was
generated by taking 8 ground truth categories.

Encoder
Multi-label Typos

d=6 d=8 d=10 d=6 d=8 d=10

Tf-idf + SVD 0.16 0.18 0.17 0.17 0.17 0.17

FastText + SVD 0.08 0.09 0.09 0.08 0.08 0.09

Similarity Encoder 0.32 0.25 0.24 0.72 0.82 0.78

Min-hash Encoder 0.14 0.15 0.13 0.14 0.15 0.13

Gamma-Poisson 0.76 0.82 0.79 0.78 0.83 0.80

Table 8.3 – Recovering true categories for curated entries. NMI for differ-
ent encoders (d=30). Bold values correspond to the highest re-
covery score by dataset.

Dataset Gamma- Similarity Tf-idf FastText

(cardinality) Poisson Encoding + SVD + SVD

Adult (15) 0.75 0.71 0.54 0.19

Cacao Flavors (100) 0.51 0.30 0.28 0.07

California Housing (5) 0.46 0.51 0.56 0.20

Dating Profiles (19) 0.52 0.24 0.25 0.12

House Prices (15) 0.83 0.25 0.32 0.11

House Sales (70) 0.42 0.04 0.18 0.06

Intrusion Detection (66) 0.34 0.58 0.46 0.11

represent these curated strings, we perform the encoding using a de-
fault choice of 30 dimensions. Table 8.3 shows the NMI values for
the different curated datasets, without dedicated parameter selection.
The NMI measures how much the generated encoding resembles a
one-hot encoding on the curated categories. Despite the fact that it is
used with a different dimensionality to the cardinality of the curated
category, the Gamma-Poisson factorization has the highest recovery
performance in 5 out of 7 datasets 2. This is probably due to the spar-
sity generated by the Gamma-Poisson factorization (Chapter 6).

8.3 interpretability of encoders

As shown in Chapter 6, the Gamma-Poisson factorization creates
sparse, non-negative feature vectors that are easily interpretable as
a linear combination of latent categories. We give informative fea-
tures names to each of these latent categories. Experiments on the
previous section validate this claim and show that Gamma-Poisson
factorization recovers well latent categories.

2. Table C.2 in the Appendix show the same analysis but for d=|C|, the actual
cardinality of the categorical variable. In this setting, the Gamma-Poisson gives
much higher recovery results.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

8.3 interpretability of encoders 69

tr
af
fi
c,

of
fi
ce
r,

ii
i

hi
gh
wa
y,

fi
re
fi
gh
te
r,

re
sc
ue
r

op
er
at
or
,
ex
pe
rt
,
bu
s

pr
oj
ec
ts
,
an
im
al
,
pr
oj
ec
t

hy
gi
en
is
t,

im
ag
e,

ps
yc
hi
at
ri
st

he
al
th
,
su
pp
ly
,
mc
fr
s

cl
er
k,

li
qu
or
,
sh
if
t

co
rp
or
al
,
co
rr
ec
ti
on
,
co
rr
ec
ti
on
al

Legislative Analyst II
Legislative Attorney
Equipment Operator I
Transit Coordinator

Bus Operator
Senior Architect

Senior Engineer Technician
Financial Programs Manager

Capital Projects Manager
Mechanic Technician II
Master Police Officer

Police Sergeant

In
fe

rre
d fe

atu
re

nam
es

Categories Tf-idf + SVD

un
it
,
re
si
de
nt
,
or
ac
le

ii
,
ii
i,

iv

pr
og
ra
ms
,
bu
s,

co
nf
id
en
ti
al

of
fi
ce
r,

po
li
ce
,
co
rp
or
al

cr
af
ts
wo
rk
er
,
ma
st
er
,
mc
fr
s

st
or
e,

fo
re
ma
n,

ca
sh
ie
r

co
or
di
na
to
r,

ma
na
ge
r,

ad
mi
ni
st
ra
to
r

cr
os
si
ng
,
si
gn
,
ar
bo
ri
st

FastText + SVD

bu
s,

op
er
at
or
,
wo
rk

fi
re
fi
gh
te
r,

re
sc
ue
,
fi
re

as
si
st
an
t,

li
br
ar
y,

di
et
ar
y

co
or
di
na
ti
ng
,
co
or
di
na
to
r,

se
rv
ic
es

po
li
ce
,
ju
dg
e,

em
pl
oy
ee

pr
og
ra
m,

pr
og
ra
ms
,
pr
oj
ec
t

sa
fe
ty
,
co
mm
un
ic
at
io
ns
,
co
mm
un
it
y

yo
ut
h,

ma
il
,
tr
uc
k

Similarity encoder

ac
co
un
ta
nt
,
as
si
st
an
t,

li
br
ar
y

co
or
di
na
to
r,

eq
ui
pm
en
t,

op
er
at
or

ad
mi
ni
st
ra
ti
ve
,
ad
mi
ni
st
ra
ti
on
,
sp
ec
ia
li
st

en
fo
rc
em
en
t,

cr
af
ts
wo
rk
er
,
wa
re
ho
us
e

cr
os
si
ng
,
pr
og
ra
m,

ma
na
ge
r

te
ch
ni
ci
an
,
me
ch
an
ic
,
co
mm
un
it
y

fi
re
fi
gh
te
r,

re
sc
ue
r,

re
sc
ue

co
rr
ec
ti
on
al
,
co
rr
ec
ti
on
,
of
fi
ce
r

Gamma-Poisson fact.

re
ve
nu
e,

vi
su
al
,
ge
ne
ra
l

at
to
rn
ey
,
po
li
ce
,
fa
mi
ly

ad
mi
ni
st
ra
ti
on
,
re
gi
on
al
,
st
at
io
n

su
rv
ey
,
ca
nd
id
at
e,

sc
ho
ol

hv
ac
,
in
su
ra
nc
e,

di
vi
si
on

to
ol
ma
rk
,
li
br
ar
ia
n,

cr
im
e

op
er
at
or
,
ma
na
ge
r,

co
rr
ec
ti
on

oc
cu
pa
ti
on
al
,
co
un
ty
,
la
bo
ra
to
ry

Min-hash encoder

(a) Employee Position Title (Employee Salaries dataset)

ch
ic
ke
n

ch
ic
ke
n

le
op
ar
d

gi
ra
ff
e

ti
ge
r

ho
rs
e

li
on

li
on

chicken eagle
eagle chicken
giraffe eagle

giraffe giraffe
horse eagle

horse turtle

Tf-idf + SVD

ti
ge
r

ch
ic
ke
n

ea
gl
e

ho
rs
e

ch
ic
ke
n

gi
ra
ff
e

li
on

ti
ge
r

FastText + SVD

ch
ic
ke
n

ch
ic
ke
n

gi
ra
ff
e

gi
ra
ff
e

le
op
ar
d

li
on

ti
ge
r

ti
ge
r

Similarity encoder

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

Gamma-Poisson fact.

ea
gl
e

ea
gl
e

gi
ra
ff
e

le
op
ar
d

le
op
ar
d

li
on

li
on

tu
rt
le

Min-hash encoder

(b) Simulated multi-label entries

tu
zt
le

li
on

ho
rs
e

ch
zc
ke
n

ti
ge
r

gi
za
ff
e

li
on

ea
gl
e

chzcken
eagle

giraffe
hoyse
lizn

tixer

Tf-idf + SVD

ti
ge
r

ch
ic
ke
n

ho
rs
e

ea
gl
e

ch
ic
ke
n

ho
zs
e

li
on

li
xn

FastText + SVD

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

Similarity encoder

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

Gamma-Poisson fact.

ch
zc
ke
n

ea
xl
e

gi
za
ff
e

ho
zs
e

li
yn

li
zn

ti
ze
r

tu
rt
le

Min-hash encoder

−1

0

1

tu
zt
le

li
on

ho
rs
e

ch
zc
ke
n

ti
ge
r

gi
za
ff
e

li
on

ea
gl
e

chzcken
eagle

giraffe
hoyse
lizn

tixer

Tf-idf + SVD

ti
ge
r

ch
ic
ke
n

ho
rs
e

ea
gl
e

ch
ic
ke
n

ho
zs
e

li
on

li
xn

FastText + SVD

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

Similarity encoder

ch
ic
ke
n

ea
gl
e

gi
ra
ff
e

ho
rs
e

le
op
ar
d

li
on

ti
ge
r

tu
rt
le

Gamma-Poisson fact.

ch
zc
ke
n

ea
xl
e

gi
za
ff
e

ho
zs
e

li
yn

li
zn

ti
ze
r

tu
rt
le

Min-hash encoder

−1

0

1
(c) Simulated entries with typos

Figure 8.1 – The Gamma-Poisson factorization gives positive and sparse
representations that are easily interpretable. Encoding vectors
(d=8) for simulated (a and b) and a real dataset (c) obtained
with different encoding methods for some categories (y-axis).
The x-axis shows the activations with their respective inferred
feature names.

To see if other encoding strategies are able to recover ground-truth
category in the same way as the Gamma-Poisson Figure 8.1 shows
such encodings—and the corresponding inferred feature names—in
the case of the simulated data, as well as in the real-world non-
curated Employees Salaries dataset. With the exception of similar-
ity encoding for the simulated data with typos, Figure 8.1 confirms
that other encodings fail to give relevant feature names with this tech-
nique.

Moreover, the sparsity of the Gamma-Poisson factorization allows
to visualize clusters of categories with similar substring structure, as
it is shown in Figure 8.2, where a 2D t-SNE projection was done for
several encoders.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

8.3 interpretability of encoders 70

Mechanic Technician II

Telecom. Technician

Senior Engineer Technician

Financial Programs Manager

Capital Projects Manager

Equipment Operator I

Bus Operator

Senior Architect

Legislative Analyst II

Legislative Attorney

Master Police Officer

Police Sergeant

Transit Coordinator

Legislative Services Coord.

Tf-idf + SVD

Financial Programs ManagerLegislative Services Coord.

Capital Projects Manager

Transit Coordinator

Bus Operator

Master Police Officer

Police Sergeant

Legislative Attorney

Telecom. Technician

Senior Architect

Equipment Operator I

Senior Engineer Technician

Legislative Analyst II

Mechanic Technician II

FastText + SVD

Financial Programs Manager Master Police Officer

Police SergeantLegislative Analyst II

Legislative Services Coord.

Transit Coordinator

Equipment Operator I

Senior Architect

Bus Operator

Capital Projects Manager

Legislative Attorney

Telecom. Technician

Senior Engineer Technician

Mechanic Technician II

Similarity encoder

Police Sergeant

Mechanic Technician II

Senior Engineer Technician

Senior Architect

Legislative Services Coord.

Legislative Attorney

Equipment Operator I Financial Programs Manager

Legislative Analyst IITelecom. Technician

Transit Coordinator Capital Projects Manager

Master Police Officer Bus Operator

Min-hash encoder

Master Police Officer

Police Sergeant

Equipment Operator I

Transit Coordinator

Legislative Services Coord. Bus Operator

Legislative Attorney

Legislative Analyst II

Senior Architect

Capital Projects Manager

Financial Programs Manager

Senior Engineer Technician

Telecom. Technician

Mechanic Technician II

Gamma-Poisson factorization

Figure 8.2 – Projection with t-SNE for different encoding methods for the
categorical variable Employee Position Title in the Employee
Salaries dataset. The original dimensionality for each encoding
is d=10. Gray dots represent the rest of observed categories in
the dataset.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

8.3 interpretability of encoders 71

0.0 0.1 0.2 0.3 0.4
Division

Department Name
Gender

Assignment Category
Year First Hired

Employee Position Title
Permutation Importances (test set)

Figure 8.3 – Overall permutation importances for every feature in the Em-
ployee Salaries dataset. The box plots display permutation im-
portances for every input variable used to predict salaries in the
Employee Salaries dataset.

0.0 0.1 0.2
Information, Technology, Technologist

Officer, Office, Police
Liquor, Clerk, Store

School, Health, Room
Environmental, Telephone, Capital

Lieutenant, Captain, Chief
Income, Assistance, Compliance

Manager, Management, Property
Inferred feature names Permutation Importances

Figure 8.4 – Gamma-Poisson enables interpretable data science. The box
plots display permutation importances for the variable Employee
Position Title in the Employee Salaries dataset. Here we show
the 8 most important latent topics from a total of 30.

Finally, to illustrate how such encoding can be used in a data-
science setting where humans need to understand results, we evalu-
ate the permutation importances (Altmann et al., 2010) of features in
the Employee Salaries datasets. First, Figure 8.3 shows the permuta-
tion importances for the original features. It shows that the Employee
Position Title is the most important feature in this particular predic-
tion problem. Then, Figure 8.4 shows the permutation importances
of each encoding direction of the Gamma-Poisson factorization and
its corresponding inferred feature names. By far, the most important
feature name to predict salaries in the Employee Salaries dataset is
the latent category Manager, Management, Property, which matches
general intuitions on salaries, and makes the prediction model under-
standable by humans.

The results in this chapter show that the Gamma-Poisson factor-
ization’s performance is robust to situations with curated and non-
curated string categories, and that it can be used to infer informative
feature names for the encoding dimensions. This attributes are ex-
tremely useful in Automated machine learning (AutoML) settings, as
it allows us to use the encoder as a default that is able to give insights
about the important features in the problem.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

9
C O N C L U S I O N

One-hot encoding is the default method for standard statistical
analysis on categorical variables. Beyond its simplicity, its strength
is to represent the discrete nature of nominal categories. However,
one-hot encoding becomes impractical when there are too many dif-
ferent unique categorical entries.

Encoding categorical variables in non-curated tables has not been
studied much in the statistical-learning literature. Yet, it is a common
hurdle for data scientists in many application settings. This thesis
shows that there is room for improvement upon the standard practice
by accounting for similarities in the subword structure across categor-
ical entries. This allows to perform statistical learning on non-curated
categorical data without any cleaning or feature engineering step.

To show the benefits of novel encoding approaches, we have col-
lected 17 real-world, non-curated datasets. All of them contain at
least one categorical variable with high-cardinality and a related pre-
diction problem. These datasets are openly available, and we hope
that they will foster more research on dirty categorical variables. By
their diversity, they enable exploring the trade-offs of encoding ap-
proaches and concluding on generally-useful defaults. To our knowl-
edge, there is no previous empirical work on benchmarking encoding
methods on this topic with such a large data collection.

9.1 generalizing one-hot encoding

We start by studying similarity encoding (Chapter 3) 1, a general-
ization of the one-hot encoding strategy that accounts for the string
similarity between categorical entries. Similarity encoding improves
the vector representation of categorical variables, especially in the
presence of dirty or high-cardinality categorical data.

Experiments show that the n-gram similarity appears to be a good
choice to capture morphological resemblance between categories, out-
performing similarities typically used for entity resolution such as
Jaro-Winkler and Levenshtein. It improves prediction of the associ-
ated supervised learning task without any prior data-cleaning step.

While the one-hot representation can be expressed as a sparse ma-
trix, a drawback of similarity encoding is that it creates a dense fea-
ture matrix, leading to increased memory and computational costs.
However, dimensionality reduction of the resulting matrix maintains
most of the benefits of similarity encoding, even with a strong reduc-
tion 2. It greatly reduces the computational cost: fitting the learning

1. A Python implementation is available at https://dirty-cat.github.io/.
2. With Gradient Boosting, similarity encoding reduced to d=30 still outperforms

one-hot encoding. Indeed, tree models are good at capturing non-linear decisions in
low dimensions.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

https://dirty-cat.github.io/

9.2 scalable encoders 73

models on our benchmark datasets takes on the order of seconds or
minutes on commodity hardware.

The dimensionality reduction approaches that we have studied can
be applied in an online learning setting: they either select a small
number prototype categories, or perform a random projection. How-
ever, they are based on heuristic rules to select the subset of prototype
categories.

From a theoretical standpoint, string similarities appear as an impor-
tant component of encodings in an analysis with a Fisher kernel
(Chapter 4). With a naive generative model of the n-gram vectors
of categories, the Fisher kernel induced by the category frequencies
leads to encoding new data points as a function of their string simi-
larity to the reference categories. This expression is directly related
to the kernel obtained with similarity encoding.

9.2 scalable encoders

In the second part of this thesis, we presented two additional en-
coding approaches that capture the subword information of string
entries. These encoders naturally build low-dimensionality represen-
tations that can be applied in online settings and are scalable to large
datasets.

We start by proposing the min-hash encoding (Chapter 5), an en-
coding method based on the idea of Locality-sensitive hashing (LSH)
for document retrieval. Besides the well-known local properties of
the min-hash signatures, we show that this method transforms string
inclusions into inequality operations with high probability.

The min-hash encoder is unique in terms of scalability, as it gives
low-dimensional vector representations while being completely state-
less. This greatly facilitates distributed computing. The representa-
tions enable much better statistical analysis than a simpler random
projection of the bag-of-n-grams representations.

Among all strategies studied in this thesis, the min-hash encoding
is also the strategy that performs the best in supervised learning tasks,
at the cost of some loss in interpretability.

On the other hand, we also studied a matrix factorization technique
based on a generative process for the n-gram counts: the Gamma-
Poisson factorization (Chapter 6). To make it scalable, we imple-
mented an online algorithm especially optimized for categorical en-
tries. This model naturally captures the subword information of en-
tries by defining hidden topics of interest.

Both models markedly improve upon similarity encoding for large
scale learning as: they do not need the definition of a vocabulary of
prototype categories; and they naturally give low-dimensional rep-
resentations, and thus decrease the cost of the subsequent analysis
step.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

9.3 interpretability 74

9.3 interpretability

Describing results in terms of a small number of categories can
greatly help interpreting a statistical analysis. Our experiments on
real and simulated data (Chapter 8) show that encodings created by
the Gamma-Poisson factorization correspond to loadings on mean-
ingful recovered categories.

If interpretability of results is an issue, the Gamma-Poisson factor-
ization is a good default encoder for categorical entries. It performs
almost as well as the min-hash encoding for supervised learning, and
enables expressing results in terms of meaningful latent categories.
It removes the need to manually curate entries to understand what
drives an analysis. For this, positivity of the loadings and the soft
sparsity imposed by the Gamma prior is crucial; a simple SVD fails
to give interpretable loadings.

As such, the Gamma-Poisson factorization gives a readily-usable
replacement to one-hot encoding for high-cardinality string categori-
cal variables.

9.4 categorical encoders for automl

AutoML strives to develop machine-learning pipeline that can be
applied to datasets without human intervention (Hutter et al., 2015,
2019). To date, it has mainly focused on tuning and model selection
for supervised learning on numerical data. Our work addresses the
feature-engineering step for string categorical variables. In our experi-
ments, we apply the exact same prediction pipeline to 17 non-curated
and 7 curated tabular datasets, without any custom feature engineer-
ing. Both Gamma-Poisson factorization and min-hash encoder led to
best-performing prediction accuracy, using a classic gradient-boosted
tree implementation (XGBoost). We did not tune hyper-parameters
of the encoding, such as dimensionality or parameters of the priors
for the Gamma-Poisson. These string categorical encodings therefore
open the door to AutoML on the original data, removing the need
for feature engineering that can lead to difficult model selection. A
possible rule when integrating tabular data into an AutoML pipeline
could be to apply a min-hash or Gamma-Poisson encoder for string
categorical columns with a cardinality above 30, and use one-hot en-
coding for low-cardinality columns. Indeed, results show that these
encoders are also suitable for normalized entries.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

A P P E N D I C E S

[February 28, 2020 at 11:47 – classicthesis version 0.1]

A
R E P R O D U C I B I L I T Y

a.1 dataset description

a.1.1 Non-curated datasets

building permits
1 (sample size: 554k). Permits issued by the

Chicago Department of Buildings since 2006. Target (regression): Esti-
mated Cost. Categorical variable: Work Description (cardinality: 430k).

colleges
2 (7.8k). Information about U.S. colleges and schools. Tar-

get (regression): Percent Pell Grant. Categorical variable: School Name
(6.9k).

crime data
3 (1.5M). Incidents of crime in the City of Los Ange-

les since 2010. Target (regression): Victim Age. Categorical variable:
Crime Code Description (135).

drug directory
4 (120k). Product listing data submitted to the

U.S. FDA for all unfinished, unapproved drugs. Target (multiclass):
Product Type Name. Categorical var.: Non Proprietary Name (17k).

employee salaries
5 (9.2k). Salary information for employees of

the Montgomery County, MD. Target (regression): Current Annual
Salary. Categorical variable: Employee Position Title (385).

federal election
6 (3.3M). Campaign finance data for the 2011-

2012 US election cycle. Target (regression): Transaction Amount. Cate-
gorical variable: Memo Text (17k).

journal influence
7 (3.6k). Scientific journals and the respective

influence scores. Target (regression): Average Cites per Paper. Categor-
ical variable: Journal Name (3.1k).

kickstarter projects
8 (281k). More than 300,000 projects from

https://www.kickstarter.com. Target (binary): State. Categorical vari-
able: Category (158).

1. https://www.kaggle.com/chicago/chicago-building-permits
2. https://beachpartyserver.azurewebsites.net/VueBigData/DataFiles/Colleges.

txt
3. https://data.lacity.org/A-Safe-City/Crime-Data-from-2010-to-Present/

y8tr-7khq
4. https://www.fda.gov/Drugs/InformationOnDrugs/ucm142438.htm
5. https://catalog.data.gov/dataset/employee-salaries-2016

6. https://classic.fec.gov/finance/disclosure/ftpdet.shtml
7. https://github.com/FlourishOA/Data
8. https://www.kaggle.com/kemical/kickstarter-projects

[February 28, 2020 at 11:47 – classicthesis version 0.1]

https://www.kickstarter.com
https://www.kaggle.com/chicago/chicago-building-permits
https://beachpartyserver.azurewebsites.net/VueBigData/DataFiles/Colleges.txt
https://beachpartyserver.azurewebsites.net/VueBigData/DataFiles/Colleges.txt
https://data.lacity.org/A-Safe-City/Crime-Data-from-2010-to-Present/y8tr-7khq
https://data.lacity.org/A-Safe-City/Crime-Data-from-2010-to-Present/y8tr-7khq
https://www.fda.gov/Drugs/InformationOnDrugs/ucm142438.htm
https://catalog.data.gov/dataset/employee-salaries-2016
https://classic.fec.gov/finance/disclosure/ftpdet.shtml
https://github.com/FlourishOA/Data
https://www.kaggle.com/kemical/kickstarter-projects

A.1 dataset description 77

medical charges
9 (163k). Inpatient discharges for Medicare ben-

eficiaries for more than 3,000 U.S. hospitals. Target (regression): Av-
erage Total Payments. Categorical var.: Medical Procedure (100).

met objects
10 (469k). Information on artworks objects of the Metropoli-

tan Museum of Art’s collection. Target (binary): Department. Categor-
ical variable: Object Name (26k).

midwest survey
11 (2.8k). Survey to know if people self-identify as

Midwesterners. Target (multiclass): Census Region (10 classes). Cate-
gorical var.: What would you call the part of the country you live in now?
(844).

open payments
12 (2M). Payments given by healthcare manufactur-

ing companies to medical doctors or hospitals (year 2013). Target
(binary): Status (if the payment was made under a research protocol).
Categorical var.: Company name (1.4k).

public procurement
13 (352k). Public procurement data for the

European Economic Area, Switzerland, and the Macedonia. Target
(regression): Award Value Euro. Categorical var.: CAE Name (29k).

road safety
14 (139k). Circumstances of personal injury of road

accidents in Great Britain from 1979. Target (binary): Sex of Driver.
Categorical variable: Car Model (16k).

traffic violations
15 (1.2M). Traffic information from electronic

violations issued in the Montgomery County, MD. Target (multiclass):
Violation type (4 classes). Categorical var.: Description (11k).

vancouver employee
16(2.6k). Remuneration and expenses for

employees earning over $75,000 per year. Target (regression): Remu-
neration. Categorical variable: Title (640).

wine reviews
17 (138k). Wine reviews scrapped from WineEnthu-

siast. Target (regression): Points. Categorical variable: Description
(89k).

9. https://www.cms.gov/Research-Statistics-Data-and-Systems/
Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Inpatient.html

10. https://github.com/metmuseum/openaccess
11. https://github.com/fivethirtyeight/data/tree/master/region-survey
12. https://openpaymentsdata.cms.gov
13. https://data.europa.eu/euodp/en/data/dataset/ted-csv
14. https://data.gov.uk/dataset/road-accidents-safety-data
15. https://catalog.data.gov/dataset/traffic-violations-56dda
16. https://data.vancouver.ca/datacatalogue/employeeRemunerationExpensesOver75k.

htm
17. https://www.kaggle.com/zynicide/wine-reviews/home

[February 28, 2020 at 11:47 – classicthesis version 0.1]

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Inpatient.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Inpatient.html
https://github.com/metmuseum/openaccess
https://github.com/fivethirtyeight/data/tree/master/region-survey
https://openpaymentsdata.cms.gov
https://data.europa.eu/euodp/en/data/dataset/ted-csv
https://data.gov.uk/dataset/road-accidents-safety-data
https://catalog.data.gov/dataset/traffic-violations-56dda
https://data.vancouver.ca/datacatalogue/employeeRemunerationExpensesOver75k.htm
https://data.vancouver.ca/datacatalogue/employeeRemunerationExpensesOver75k.htm
https://www.kaggle.com/zynicide/wine-reviews/home

A.1 dataset description 78

a.1.2 Curated datasets

adult
18 (sample size: 32k). Predict whether income exceeds $50K/yr

based on census data. Target (binary): Income. Categorical variable:
Occupation (cardinality: 15).

cacao flavors
19 (1.7k). Expert ratings of over 1,700 individual

chocolate bars, along with information on their origin and bean vari-
ety. Target (multiclass): Bean Type. Categorical variable: Broad Bean
Origin (100).

california housing
20 (20k). Based on the 1990 California census

data. It contains one row per census block group (a block group
typically has a population of 600 to 3,000 people). Target (regression):
Median House Value. Categorical variable: Ocean Proximity (5).

dating profiles
21 (60k). Anonymized data of dating profiles from

OkCupid. Target (regression): Age. Categorical variable: Diet (19).

house prices
22 (1.1k). Contains variables describing residential

homes in Ames, Iowa. Target (regression): Sale Price. Categorical
variable: MSSubClass (15).

house sales
23 (21k). Sale prices for houses in King County, which

includes Seattle. Target (regression): Price. Categorical variable: ZIP
code (70).

intrusion detection
24 (493k). Network intrusion simulations

with a variaty od descriptors of the attack type. Target (multiclass):
Attack Type. Categorical variable: Service (66).

18. https://archive.ics.uci.edu/ml/datasets/adult
19. https://www.kaggle.com/rtatman/chocolate-bar-ratings
20. https://github.com/ageron/handson-ml/tree/master/datasets/housing
21. https://github.com/rudeboybert/JSE_OkCupid
22. https://www.kaggle.com/c/house-prices-advanced-regression-techniques
23. https://www.kaggle.com/harlfoxem/housesalesprediction
24. https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

[February 28, 2020 at 11:47 – classicthesis version 0.1]

https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/rtatman/chocolate-bar-ratings
https://github.com/ageron/handson-ml/tree/master/datasets/housing
https://github.com/rudeboybert/JSE_OkCupid
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/harlfoxem/housesalesprediction
https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

B
A L G O R I T H M I C C O N S I D E R AT I O N S

b.1 gamma-poisson factorization

Algorithm 2 requires some input parameters and initializations
that can affect convergence. One important parameter is ρ, the dis-
count factor for the fitting in the past. Figure 6.3 shows that choosing
ρ=.95 gives the best compromise between stability of the convergence
and data fitting in terms of the Generalized KL divergence.

With respect to the initialization of the topic matrix Λ(0), the best
option is to choose the centroids of a k-means clustering (Figure 6.4)
in a hashed version of the n-gram count matrix F with a reduced
dimensionality (in order to speed-up convergence of the k-means al-
gorithm) and then project back to the n-gram space with a nearest
neighbors algorithm.

The rest of the default values used in the experiments are listed in
Table B.1.

Table B.1 – Chosen parametrization for the Gamma-Poisson factorization.

Parameter Definition Default value

αi Poisson shape 1.1

βi Poisson scale 1.0

ρ Discount factor 0.95

q Mini-batch size 256

η Approximation error 10−4

ε Approximation error 10−3

[February 28, 2020 at 11:47 – classicthesis version 0.1]

C
A D D I T I O N A L R E S U LT S

This chapter shows additional results that are referenced in the
main text. They give extra support by extending the main results to a
different configuration (a different classifier, encoding or parametriza-
tion).

Table C.1 – Median training and encoding times for Gamma-Poisson with
XGBoost (d=30).

Datasets
Encoding time Training time Encoding time /

Gamma-Poisson XGBoost training time

building permits 1522 699 2.18

colleges 17 74 0.24

crime data 28 1910 0.01

drug directory 255 9683 0.03

employee salaries 4 323 0.01

federal election 126 764 0.17

journal influence 7 18 0.37

kickstarter projects 20 264 0.08

medical charge 42 587 0.07

met objects 154 6245 0.02

midwest survey 2 102 0.02

public procurement 547 2150 0.25

road safety 191 1661 0.11

traffic violations 105 1969 0.05

vancouver employee 2 9 0.22

wine reviews 1378 877 1.57

Table C.2 – Recovering true categories for curated categorical variables.
NMI for different encoders (d=|C|).

Dataset Gamma- Similarity Tf-idf FastText

(cardinality) Poisson Encoding + SVD + SVD

Adult (15) 0.84 0.71 0.54 0.19

Cacao Flavors (100) 0.48 0.34 0.34 0.1

California Housing (5) 0.83 0.51 0.56 0.20

Dating Profiles (19) 0.47 0.26 0.29 0.12

House Prices (15) 0.91 0.25 0.32 0.11

House Sales (70) 0.29 0.03 0.26 0.07

Intrusion Detection (66) 0.27 0.65 0.61 0.13

[February 28, 2020 at 11:47 – classicthesis version 0.1]

additional results 81

0.83 0.88
medical
charges

3-gram

Levenshtein-
ratio

Jaro-winkler
Bag of 3-grams

Target encoding
MDV

One-hot encoding
Hash encoding

Si
m

ila
rit

y
en

co
di

ng

0.75 0.85
employee
salaries

0.3 0.5
open

payments

0.6 0.7
midwest
survey

0.72 0.78
tra�c

violations

0.44 0.52
road

safety

0.3 0.8
beer

reviews

1.1

3.1

3.4

4.1

5.3

6.4

4.7

7.3

Average
ranking

acrossdatasets

Figure C.1 – Performance of different encoding methods. Classifier:
Ridge/logistic regression. Each box-plot summarizes the pre-
diction scores of 100 random splits (with 80% of the samples for
training and 20% for testing). For all datasets, the prediction
score is upper bounded by 1 (a higher score means a better pre-
diction). The right side of the figure indicates the average rank-
ing across datasets for each method. The vertical dashed line
indicates the median value of the one-hot encoding method.
Similar results are obtained for a linear classifier

0.7 0.9
employee
salaries

d=100
d=300
Full
d=100
d=300
d=100
d=300
d=100
d=300
Full
d=100
d=300
d=100
d=300
Full

(k=359)

d=1251

Cardinality of
categorical variable

O
ne

-h
ot

en
co

di
ng

3-
gr

am
sim

ila
rit

y
en

co
di

ng
Ba

g
of

3-
gr

am
s

Random
projections

Random
projections

Most frequent
categories

K-means

Deduplication
with K-means

Random
projections

0.3 0.5
open

payments
(k=912)

d=2933

0.6 0.7
midwest
survey
(k=722)

d=2330

0.72 0.78
tra�c

violations
(k=2555)

d=3810

0.45 0.55
road

safety
(k=4000)

d=4923

0.3 0.8
beer

reviews
(k=4067)

d=6553

11.2
6.7
6.2
7.8
2.8
8.8
4.2
9.3
4.7

2.7∗
12.2
8.0

14.7
12.3
8.5 Average

ranking
acrossdatasets

Figure C.2 – Performance with different dimensionality reduction meth-
ods. Classifier: linear/logistic regression. Full denotes the en-
coding without dimensionality reduction and d the dimension
of the reduction. Each box-plot corresponds to 100 random
splits with 80% of the samples for the training set and 20% for
the testing set. The right side of the plot indicates the average
ranking across datasets for each method (∗ denotes the best
average ranking).

[February 28, 2020 at 11:47 – classicthesis version 0.1]

additional results 82

0.825 0.875
medical
charges

tf-idf on 3-grams

3-grams presence vector

3-grams count vector

Fisher kernel for 3-grams

p>i pj
‖pi ‖2‖pj ‖2

2p>i pj
p>i pi+p>j pj

c>i cj
‖ci ‖2‖cj ‖2

2c>i cj
c>i ci+c>j cj

2‖min(ci,cj)‖1
‖ci ‖1+‖cj ‖1

One-hot encoding

sim3-gram(pi, pj)

sim3-gram(ci, cj)

0.7 0.9
employee
salaries

0.75 0.8
open

payments

0.6 0.7
midwest
survey

0.75 0.775
tra�c

violations

0.45 0.5
road

safety

0.65 0.75
beer

reviews

6.7

7.4

6.7

2.6

4.9

4.2

4.3

3.9

4.2

10.0

Average
ranking

acrossdatasets

(a) Gradient boosting

0.86 0.88
medical
charges

tf-idf on 3-grams

3-grams presence vector

3-grams count vector

Fisher kernel for 3-grams

p>i pj
‖pi ‖2‖pj ‖2

2p>i pj
p>i pi+p>j pj

c>i cj
‖ci ‖2‖cj ‖2

2c>i cj
c>i ci+c>j cj

2‖min(ci,cj)‖1
‖ci ‖1+‖cj ‖1

One-hot encoding

sim3-gram(pi, pj)

sim3-gram(ci, cj)

0.8 0.9
employee
salaries

0.45 0.5
open

payments

0.6 0.7
midwest
survey

0.78 0.79
tra�c

violations

0.45 0.5
road

safety

0.65 0.75
beer

reviews

8.9

7.6

7.8

6.1

5.1

2.6

5.4

2.6

1.9

7.0

Average
ranking

acrossdatasets

(b) Ridge

Figure C.3 – Performance of different encoding methods. Upper figure:
gradient boosting; Lower figure: ridge. Each boxplot summa-
rizes the prediction scores of 100 random splits (with one third
of samples for testing). The methods labels with similarities
sim3-gram, in red and in green, all use an encoding based on
similarities as in Cerda et al., 2018. For all datasets, the pre-
diction score is upper bounded by 1 (a higher score means a
better prediction). The right side of the figure indicates the av-
erage ranking across datasets for each method (a smaller value
means a better performance). The vertical dashed line indicates
the median value of the one-hot encoding method.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

additional results 83

cr
iti

ca
l d

is
ta

nc
e

Average ranking

XGBoost1

Kernel approximation

2

Multilayer perceptron
3

Linear model
4

(a) One-hot encoder

cr
iti

ca
l d

is
ta

nc
e

Average ranking

XGBoost1

Kernel approximation

2

Multilayer perceptron
3

Linear model

4

(b) Gamma-Poisson factorization

cr
iti

ca
l d

is
ta

nc
e

Average ranking

XGBoost1

Kernel approximation

2

Multilayer perceptron
3

Linear model

4

(c) Min-hash encoder

Figure C.4 – Comparison of classifiers against each other with the Ne-
menyi post-hoc test (as in Demsar, 2006). Groups of classifiers
that are not significantly different (at α=0.05) are connected
with a continuous gray line. The red line represents the value
of the critical difference for rejecting the null hypothesis. The
benchmarked classifiers are: XGBoost; Polynomial kernel ap-
proximation with the Nystroem method, followed by an `2

regularized linear/logistic regression (kernel approximation);
a multilayer perceptron (1-2 layers); and a `2 regularized lin-
ear/logistic regression (linear model).

[February 28, 2020 at 11:47 – classicthesis version 0.1]

R E F E R E N C E S

Achlioptas, D. (2003). Database-friendly random projections: johnson-
lindenstrauss with binary coins. Journal of computer and System
Sciences, 66(4), 671–687.

Agresti, A., & Kateri, M. (2011). Categorical data analysis. Springer.
Aldous, D. J. (1985). Exchangeability and related topics. In École d’Été

de Probabilités de Saint-Flour XIII—1983 (pp. 1–198). Springer.
Alghamdi, R., & Alfalqi, K. (2015). A survey of topic modeling in text

mining. Int. J. Adv. Comput. Sci. Appl.(IJACSA), 6(1).
Alkharusi, H. (2012). Categorical variables in regression analysis: a

comparison of dummy and effect coding. International Journal of
Education, 4(2), 202–210.

Altmann, A., Tolosi, L., Sander, O., & Lengauer, T. (2010). Permuta-
tion importance: a corrected feature importance measure. Bioin-
formatics, 26(10), 1340–1347.

Amari, S., & Nagaoka, H. (2007). Methods of information geometry. Amer
Mathematical Society.

Angell, R. C., Freund, G. E., & Willett, P. (1983). Automatic spelling
correction using a trigram similarity measure. Information Pro-
cessing & Management, 19(4), 255–261.

Appleby, A. (2014). Murmurhash3 http://code. google. com/p/smhash-
er/wiki. MurmurHash3.

Arora, S., Liang, Y., & Ma, T. (2016). A simple but tough-to-beat base-
line for sentence embeddings.

Arthur, D., & Vassilvitskii, S. (2007). K-means++: the advantages of
careful seeding. In Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms (pp. 1027–1035). Society for In-
dustrial and Applied Mathematics.

Berry, K. J., Mielke Jr, P. W., & Iyer, H. K. (1998). Factorial designs and
dummy coding. Perceptual and motor skills, 87(3), 919–927.

Blei, D. M. [David M.]. (2012). Probabilistic topic models. Commun.
ACM, 55(4), 77–84.

Blei, D. M. [David M], Kucukelbir, A., & McAuliffe, J. D. (2017). Varia-
tional inference: a review for statisticians. Journal of the American
Statistical Association, 112(518), 859–877.

Blei, D. M. [David M], Ng, A. Y., & Jordan, M. I. (2003). Latent dirich-
let allocation. Journal of machine Learning research, 3(Jan), 993–
1022.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching
word vectors with subword information. Transactions of the Asso-
ciation of Computational Linguistics, 5(1), 135–146.

Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelli-
gence. The Cambridge handbook of artificial intelligence, 316, 334.

Brill, E., & Moore, R. C. (2000). An improved error model for noisy
channel spelling correction. In Proceedings of the 38th Annual

[February 28, 2020 at 11:47 – classicthesis version 0.1]

references 85

Meeting on Association for Computational Linguistics (pp. 286–293).
Association for Computational Linguistics.

Broder, A. Z. (1997). On the resemblance and containment of docu-
ments. In Proceedings. Compression and Complexity of SEQUENCES
1997 (Cat. No. 97TB100171) (pp. 21–29). IEEE.

Broder, A. Z., Charikar, M., Frieze, A. M., & Mitzenmacher, M. (2000).
Min-wise independent permutations. Journal of Computer and
System Sciences, 60(3), 630–659.

Buntine, W. (2002). Variational extensions to em and multinomial pca.
In European Conference on Machine Learning (pp. 23–34). Springer.

Canny, J. (2004). Gap: a factor model for discrete data. In ACM SIGIR
Conference on Research and Development in Information Retrieval
(pp. 122–129).

Cerda, P., & Varoquaux, G. (2019). Encoding high-cardinality string
categorical variables. arXiv preprint arXiv:1907.01860.

Cerda, P., Varoquaux, G., & Kégl, B. (2018). Similarity encoding for
learning with dirty categorical variables. Machine Learning.

Charikar, M. S. (2002). Similarity estimation techniques from round-
ing algorithms. In Proceedings of the thiry-fourth annual ACM sym-
posium on Theory of computing (pp. 380–388). ACM.

Chen, T., & Guestrin, C. (2016). XGBoost: a scalable tree boosting
system. In SIGKDD (pp. 785–794).

Chi, L., & Zhu, X. (2017). Hashing techniques: a survey and taxonomy.
ACM Computing Surveys (CSUR), 50(1), 11.

Christen, P. (2012a). A survey of indexing techniques for scalable
record linkage and deduplication. IEEE transactions on knowledge
and data engineering, 24(9), 1537–1555.

Christen, P. (2012b). Data matching: concepts and techniques for record
linkage, entity resolution, and duplicate detection. Springer Science
& Business Media.

Cohen, P., West, S. G., & Aiken, L. S. (2014). Applied multiple regression/-
correlation analysis for the behavioral sciences. Psychology Press.

Cohen, W. W., Ravikumar, P., Fienberg, S. E. et al. (2003). A compari-
son of string distance metrics for name-matching tasks. In IIWeb
(Vol. 2003, pp. 73–78).

Conrad, C., Ali, N., Keselj, V., & Gao, Q. (2016). Elm: an extended
logic matching method on record linkage analysis of disparate
databases for profiling data mining. In 2016 IEEE 18th Conference
on Business Informatics (CBI) (Vol. 1, pp. 1–6). IEEE.

Damerau, F. J. (1964). A technique for computer detection and cor-
rection of spelling errors. Communications of the ACM, 7(3), 171–
176.

Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004). Locality-
sensitive hashing scheme based on p-stable distributions. In Pro-
ceedings of the twentieth annual symposium on Computational geom-
etry (pp. 253–262). ACM.

Davis, M. J. (2010). Contrast coding in multiple regression analysis:
strengths, weaknesses, and utility of popular coding structures.
Journal of Data Science, 8(1), 61–73.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

references 86

De Finetti, B. (1990). Theory of probability, vol. i (1974). John Wiley &
Sons, 5(8), 17.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harsh-
man, R. (1990). Indexing by latent semantic analysis. Journal of
the American society for information science, 41(6), 391–407.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple
data sets. Journal of Machine learning research, 7, 1.

Dheeru, D., & Karra Taniskidou, E. (2017). UCI machine learning
repository. University of California, Irvine, School of Informa-
tion and Computer Sciences.

Domingos, P. M. (2012). A few useful things to know about machine
learning. Commun. acm, 55(10), 78–87.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of inter-
pretable machine learning. arXiv preprint arXiv:1702.08608.

Duch, W., Grudzinski, K., & Stawski, G. (2000). Symbolic features in
neural networks. In In Proceedings of the 5th Conference on Neural
Networks and Their Applications. Citeseer.

Elkan, C. (2005). Deriving tf-idf as a fisher kernel. In International
Symposium on String Processing and Information Retrieval (pp. 295–
300). Springer.

Elmagarmid, A. K., Ipeirotis, P. G., & Verykios, V. S. (2007). Duplicate
record detection: a survey. IEEE Transactions on knowledge and
data engineering, 19(1), 1–16.

Eskin, E., Weston, J., Noble, W. S., & Leslie, C. S. (2003). Mismatch
string kernels for SVM protein classification. In Advances in neu-
ral information processing systems (pp. 1441–1448).

Fellegi, I. P., & Sunter, A. B. (1969). A theory for record linkage. Journal
of the American Statistical Association, 64(328), 1183–1210.

Friedman, M. (1937). The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance. Journal of the american
statistical association, 32(200), 675–701.

Gärtner, T. (2003). A survey of kernels for structured data. ACM
SIGKDD Explorations Newsletter, 5(1), 49–58.

Gionis, A., Indyk, P., Motwani, R. et al. (1999). Similarity search in
high dimensions via hashing. In Vldb (Vol. 99, 6, pp. 518–529).

Gomaa, W. H., & Fahmy, A. A. (2013). A survey of text similarity
approaches. International Journal of Computer Applications, 68(13),
13–18.

Gopalan, P. K., Charlin, L., & Blei, D. (2014). Content-based recom-
mendations with poisson factorization. In Advances in Neural
Information Processing Systems (pp. 3176–3184).

Gopalan, P., Hofman, J. M., & Blei, D. M. (2013). Scalable recommen-
dation with poisson factorization. arXiv preprint arXiv:1311.1704.

Grabczewski, K., & Jankowski, N. (2003). Transformations of sym-
bolic data for continuous data oriented models. In Artificial Neu-
ral Networks and Neural Information Processing (pp. 359–366). Springer.

Guo, C., & Berkhahn, F. (2016). Entity embeddings of categorical vari-
ables. arXiv preprint arXiv:1604.06737.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

references 87

Halko, N., Martinsson, P.-G., & Tropp, J. (2011). Finding structure
with randomness: probabilistic algorithms for constructing ap-
proximate matrix decompositions. SIAM review, 53, 217.

Hamming, R. W. (1950). Error detecting and error correcting codes.
The Bell system technical journal, 29(2), 147–160.

Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The ele-
ments of statistical learning: data mining, inference and predic-
tion. The Mathematical Intelligencer, 27(2), 83–85.

Hull, D. A. et al. (1996). Stemming algorithms: a case study for de-
tailed evaluation. JASIS, 47(1), 70–84.

Hutter, F., Kegl, B., Caruana, R., Guyon, I., Larochelle, H., & Viegas, E.
(2015). Automatic machine learning (automl). In ICML Workshop
on Resource-Efficient Machine Learning.

Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated machine
learning-methods, systems, challenges. Springer.

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: to-
wards removing the curse of dimensionality. In Proceedings of the
thirtieth annual ACM symposium on Theory of computing (pp. 604–
613). ACM.

Jaakkola, T., & Haussler, D. (1999). Exploiting generative models in
discriminative classifiers. In Advances in neural information pro-
cessing systems (pp. 487–493).

Jaakkola, T. S., Diekhans, M., & Haussler, D. (1999). Using the fisher
kernel method to detect remote protein homologies. In ISMB
(Vol. 99, pp. 149–158).

Jaro, M. A. (1989). Advances in record-linkage methodology as ap-
plied to matching the 1985 census of tampa, florida. Journal of
the American Statistical Association, 84(406), 414–420.

Ji, J., Li, J., Yan, S., Tian, Q., & Zhang, B. (2013). Min-max hash for
jaccard similarity. In 2013 IEEE 13th International Conference on
Data Mining (pp. 301–309). IEEE.

Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of lipschitz map-
pings into a hilbert space. Contemporary mathematics, 26(189-206),
1.

Kim, W., Choi, B.-J., Hong, E.-K., Kim, S.-K., & Lee, D. (2003). A tax-
onomy of dirty data. Data mining and knowledge discovery, 7(1),
81–99.

Klein, D., Smarr, J., Nguyen, H., & Manning, C. D. (2003). Named
entity recognition with character-level models. In conference on
Natural language learning at HLT-NAACL (p. 180).

Kondrak, G. (2005). N-gram similarity and distance. In International
symposium on string processing and information retrieval (pp. 115–
126). Springer.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to
latent semantic analysis. Discourse processes, 25, 259.

Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative ma-
trix factorization. In Advances in Neural Information Processing
Systems (pp. 556–562).

Lefevre, A., Bach, F., & Févotte, C. (2011). Online algorithms for non-
negative matrix factorization with the itakura-saito divergence.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

references 88

In Applications of Signal Processing to Audio and Acoustics (WAS-
PAA) (p. 313). IEEE.

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive
datasets. Cambridge university press.

Leslie, C. S., Eskin, E., Cohen, A., Weston, J., & Noble, W. S. (2004).
Mismatch string kernels for discriminative protein classification.
Bioinformatics, 20(4), 467–476.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet Physics Doklady (Vol. 10, 8,
pp. 707–710).

Likert, R. (1932). A technique for the measurement of attitudes. Archives
of psychology.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C.
(2002). Text classification using string kernels. Journal of Machine
Learning Research, 2(Feb), 419–444.

Lovins, J. B. (1968). Development of a stemming algorithm. Mech.
Translat. & Comp. Linguistics, 11(1-2), 22–31.

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-sne.
Journal of machine learning research, 9(Nov), 2579–2605.

Maier, D. (1983). The theory of relational databases. Computer science
press Rockville.

Micci-Barreca, D. (2001). A preprocessing scheme for high-cardinality
categorical attributes in classification and prediction problems.
ACM SIGKDD Explorations Newsletter, 3(1), 27–32.

Mikolov, T. [T.], Chen, K., Corrado, G., & Dean, J. (2013). Efficient
estimation of word representations in vector space. In ICLR.

Mikolov, T. [Tomas], Grave, E., Bojanowski, P., Puhrsch, C., & Joulin,
A. (2018). Advances in pre-training distributed word representa-
tions. In International Conference on Language Resources and Eval-
uation (LREC).

Moreno, P. J., & Rifkin, R. (2000). Using the fisher kernel method for
web audio classification. In 2000 IEEE International Conference
on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.
00CH37100) (Vol. 4, pp. 2417–2420). IEEE.

Myers, J. L., Well, A., & Lorch, R. F. (2010). Research design and statisti-
cal analysis. Routledge.

Navarro, G. (2001). A guided tour to approximate string matching.
ACM computing surveys (CSUR), 33(1), 31–88.

Nemenyi, P. (1962). Distribution-free multiple comparisons. In Biomet-
rics (Vol. 18, p. 263).

O’Grady, K. E., & Medoff, D. R. (1988). Categorical variables in mul-
tiple regression: some cautions. Multivariate behavioral research,
23(2), 243–2060.

Oliveira, P., Rodrigues, F., & Henriques, P. R. (2005). A formal defini-
tion of data quality problems. In Proceedings of the 2005 Interna-
tional Conference on Information Quality (MIT IQ Conference).

Olson, R. S., La Cava, W., Mustahsan, Z., Varik, A., & Moore, J. H.
(2017). Data-driven advice for applying machine learning to
bioinformatics problems. arXiv preprint arXiv:1708.05070.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

references 89

Pedhazur, E. J., Kerlinger, F. N. et al. (1973). Multiple regression in be-
havioral research. Holt, Rinehart and Winston New York.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: global vectors
for word representation. In EMNLP (pp. 1532–1543).

Perronnin, F., & Dance, C. (2007). Fisher kernels on visual vocabular-
ies for image categorization. In 2007 IEEE conference on computer
vision and pattern recognition (pp. 1–8). IEEE.

Podosinnikova, A., Bach, F., & Lacoste-Julien, S. (2015). Rethinking
lda: moment matching for discrete ica. In Advances in Neural
Information Processing Systems (pp. 514–522).

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A., & Gulin, A.
(2018). Catboost: unbiased boosting with categorical features. In
Neural Information Processing Systems (p. 6639).

Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.
Rahimi, A., & Recht, B. (2008). Random features for large-scale kernel

machines. In Neural Information Processing Systems (p. 1177).
Rahm, E., & Do, H. H. (2000). Data cleaning: problems and current

approaches. IEEE Data Engineering Bulletin, 23, 3.
Ruggieri, S., Pedreschi, D., & Turini, F. (2010). Data mining for dis-

crimination discovery. ACM Transactions on Knowledge Discovery
from Data (TKDD), 4(2), 9.

Salton, G., & McGill, M. J. (1983). Introduction to modern information
retrieval. mcgraw-hill.

Sarawagi, S., & Bhamidipaty, A. (2002). Interactive deduplication us-
ing active learning. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining
(pp. 269–278). ACM.

Schölkopf, B., & Smola, A. J. (1998). Learning with kernels. MIT Press.
Serva, M., & Petroni, F. (2008). Indo-european languages tree by lev-

enshtein distance. EPL (Europhysics Letters), 81(6), 68005.
Shannon, C. E. (1948). A mathematical theory of communication. Bell

system technical journal, 27(3), 379–423.
Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Hand-

book of latent semantic analysis, 427(7), 424–440.
Ukkonen, E. (1993). Approximate string-matching over suffix trees. In

Annual Symposium on Combinatorial Pattern Matching (pp. 228–
242). Springer.

Vapnik, V. (2013). The nature of statistical learning theory. Springer sci-
ence & business media.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE
transactions on neural networks, 10(5), 988–999.

Varshney, K. R., & Alemzadeh, H. (2017). On the safety of machine
learning: cyber-physical systems, decision sciences, and data
products. Big data, 5(3), 246–255.

Vellido, A., Martin-Guerrero, J. D., & Lisboa, P. J. (2012). Making ma-
chine learning models interpretable. In ESANN (Vol. 12, pp. 163–
172). Citeseer.

Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic mea-
sures for clusterings comparison: variants, properties, normal-

[February 28, 2020 at 11:47 – classicthesis version 0.1]

references 90

ization and correction for chance. Journal of Machine Learning
Research, 11(Oct), 2837–2854.

Wang, H., & Wang, J. [Jingbin]. (2014). An effective image representa-
tion method using kernel classification. In 2014 IEEE 26th inter-
national conference on tools with artificial intelligence (pp. 853–858).
IEEE.

Wang, J. [Jingdong], Shen, H. T., Song, J., & Ji, J. (2014). Hashing for
similarity search: a survey. arXiv preprint arXiv:1408.2927.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., & Attenberg,
J. (2009). Feature hashing for large scale multitask learning. In
ICML (p. 1113). ACM.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In
Breakthroughs in statistics (pp. 196–202). Springer.

Winkler, W. E. (1999). The state of record linkage and current research
problems. In Statistical Research Division, US Census Bureau. Cite-
seer.

Winkler, W. E. (2002). Methods for record linkage and bayesian networks.
Technical report, Statistical Research Division, US Census Bu-
reau, Washington, DC.

Winkler, W. E. (2006). Overview of record linkage and current re-
search directions. In Bureau of the Census. Citeseer.

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining:
practical machine learning tools and techniques. Morgan Kaufmann.

[February 28, 2020 at 11:47 – classicthesis version 0.1]

[February 28, 2020 at 11:47 – classicthesis version 0.1]

Titre : Apprentissage statistique à partir de variables catégorielles non-uniformisées

Mots clés : Apprentissage statistique, variables catégorielles, données sales, données volumineuses,
autoML.

Résumé : Les données de type tabulaire contiennent
souvent des variables catégorielles, considérées
comme des entrées non numériques avec un nombre
fixe et limité d’éléments uniques, appelés catégories.
De nombreux algorithmes d’apprentissage statistique
nécessitent une représentation numérique des va-
riables catégorielles. Une étape d’encodage est donc
nécessaire pour transformer ces entrées en vecteurs.
Pour cela, plusieurs stratégies existent, dont la plus
courante est celle de l’encodage one-hot, qui fonc-
tionne bien dans le cadre de l’analyse statistique clas-
sique (en termes de puissance de prédiction et d’in-
terprétation) lorsque le nombre de catégories reste
faible.
Cependant, les données catégorielles non-
uniformisées présentent le risque d’avoir une grande
cardinalité et des redondances. En effet, les entrées
peuvent partager des informations sémantiques et/ou
morphologiques, et par conséquent, plusieurs entrées
peuvent refléter la même entité. Sans une étape de
nettoyage ou d’agrégation au préalable, les méthodes
d’encodage courantes peuvent perdre en efficacité

du fait d’une représentation vectorielle erronée. En
outre, le risque d’obtenir des vecteurs de très grandes
dimensions croit avec la quantité de données, ce qui
empêche leur utilisation dans l’analyse de données
volumineuses.
Dans ce document, nous étudions une série de
méthodes d’encodage qui permettent de travailler di-
rectement sur des variables catégorielles à grande
cardinalité, sans qu’il soit nécessaire de les trai-
ter en amont. A l’aide d’expériences menées sur
des données réelles et simulées, nous démontrons
que les méthodes proposées dans le cadre de cette
thèse améliorent l’apprentissage supervisé et ce, en
autre, du fait de leur capacité à capturer correcte-
ment l’information morphologique des entrées. Même
avec des données volumineuses, ces méthodes
s’avèrent être performantes, et dans certains cas,
elles génèrent des vecteurs facilement interprétables.
Par conséquent, nos méthodes peuvent être ap-
pliquées à l’apprentissage statistique automatique
(AutoML) sans aucune intervention humaine.

Title : Statistical learning with high-cardinality string categorical variables

Keywords : Statistical learning, string categorical variables, large-scale data, autoML.

Abstract : Tabular data often contain columns with
categorical variables, usually considered as non-
numerical entries with a fixed and limited number of
unique elements or categories. As many statistical
learning algorithms require numerical representations
of features, an encoding step is necessary to trans-
form categorical entries into feature vectors, using
for instance one-hot encoding. This and other simi-
lar strategies work well, in terms of prediction perfor-
mance and interpretability, in standard statistical ana-
lysis when the number of categories is small.
However, non-curated data give rise to string cate-
gorical variables with a very high cardinality and re-
dundancy: the string entries share semantic and/or
morphological information, and several entries can
reflect the same entity. Without any data cleaning
or feature engineering step, common encoding me-

thods break down, as they tend to lose information
in their vectorial representation. Also, they can create
high-dimensional feature vectors, which prevent their
usage in large scale settings.
In this work, we study a series of categorical enco-
dings that remove the need for preprocessing steps
on high-cardinality string categorical variables. An
ideal encoder should be: scalable to many categories;
interpretable to end users; and capture the morpholo-
gical information contained in the string entries.
Experiments on real and simulated data show that
the methods we propose improve supervised lear-
ning, are adapted to large-scale settings, and, in some
cases, create feature vectors that are easily inter-
pretable. Hence, they can be applied in Automated
Machine Learning (AutoML) pipelines in the original
string entries without any human intervention.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

[February 28, 2020 at 11:47 – classicthesis version 0.1]

	Abstract
	Résumé
	Contents
	Acronyms
	1 Overview
	 Generalizing One-hot Encoding
	2 Background
	2.1 Categorical variables
	2.1.1 Curated and non-curated categorical entries

	2.2 The supervised learning model
	2.3 From databases to statistical learning
	2.4 Encoding strategies for curated categorical data
	2.4.1 One-hot encoding
	2.4.2 Ordinal encoding
	2.4.3 Encoding using target statistics

	2.5 Encoding non-curated categorical variables.
	2.5.1 Sources of high cardinality
	2.5.2 Strategies for entries without subword information
	2.5.3 Strategies for entries with meaningful subword structure

	2.6 Formatting and curating string entries.
	2.6.1 Cleaning techniques in databases

	3 Similarity encoding
	3.1 Intuitions
	3.2 String similarities
	3.2.1 Levenshtein
	3.2.2 Jaro-Winkler
	3.2.3 N-gram similarity

	3.3 Similarity Encoder
	3.4 Limitations: handling high-dimensionality

	4 Fisher kernels: Explaining similarity encoding
	4.1 Fisher kernels
	4.2 Simple string kernel of independent n-grams
	4.3 Link to similarity encoding

	 Scalable Categorical Encoders
	5 The min-hash encoding
	5.1 Locality-sensitive hashing and the min-hash.
	5.2 The min-hash encoder

	6 Topic modeling for categories: the Gamma-Poisson factorization
	6.1 Choosing the appropriate topic model
	6.2 Gamma-Poisson factorization for string categories
	6.2.1 Estimation strategy
	6.2.2 Online Algorithm

	6.3 Inferring feature names

	 Empirical Study
	7 Supervised learning benchmarks
	7.1 Real-world datasets
	7.1.1 Non-curated datasets
	7.1.2 Curated datasets

	7.2 Supervised learning pipeline
	7.3 Prediction performance with non-curated data
	7.3.1 Similarity encoding: choosing a good string similarity
	7.3.2 Benchmarking scalable encoders

	7.4 Robustness to non curated data

	8 Interpretable analysis on non-curated categories
	8.1 Simulated categorical variables
	8.2 Recovering latent categories
	8.2.1 Results for real curated data

	8.3 Interpretability of encoders

	9 Conclusion
	9.1 Generalizing one-hot encoding
	9.2 Scalable encoders
	9.3 Interpretability
	9.4 Categorical encoders for AutoML

	Appendices
	A Reproducibility
	A.1 Dataset Description
	A.1.1 Non-curated datasets
	A.1.2 Curated datasets

	B Algorithmic considerations
	B.1 Gamma-Poisson factorization

	C Additional Results

	References

