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Résumé

Cette thèse est constituée de deux parties liées l’une à l’autre. Dans la première, nous étudions
empiriquement l’impact de l’activité de trading haute fréquence, déÆnie comme étant une
sous-catégorie du trading algorithmique caractérisée par une courte période de détention
de titres, sur les marchés Ænanciers européens. Nous utilisons les résultats obtenus aÆn de
construire dans la seconde partie de nouveaux modèles multi-agents. L’objectif principal de ces
modèles est de fournir aux régulateurs et plateformes de négociation des outils innovants leur
permettant de mettre en place des règles pertinentes pour la microstructure et de quantiÆer
l’impact des divers participants sur la qualité du marché.

Dans la première partie, nous e�ectuons deux études empiriques sur des données uniques
fournies par le régulateur français. Nous avons accès à l’ensemble des ordres et transac-
tions des actifs du CAC 40, à l’échelle de la microseconde, avec par ailleurs les identités
des acteurs impliqués. Nous commençons par comparer le comportement des traders haute
fréquence à celui des autres intervenants, notamment pendant les périodes de stress, en
termes de provision de liquidité et d’activité de négociation. Nous arrivons à montrer dans
cette étude une caractéristique cruciale relative aux traders à haute fréquence: leur activité
n’est pas limitée à la tenue de marché pure et plus de 50% de leurs sont agressifs (ordres
consommant la liquidité). Cette constatation nous pousse à approfondir notre analyse en nous
focalisant sur les ordres agressifs. Nous étudions leur impact sur le processus de formation
des prix et leur contenu informationnel selon les di�érentes catégories de Øux : traders haute
fréquence, participants agissant pour compte client et participants agissant pour compte
propre. De plus, nous parvenons dans cette analyse à mettre en évidence empiriquement
le lien existant entre les transactions et l’avantage informationnel des traders à haute fréquence.

Dans la seconde partie, nous proposons trois modèles multi-agents. Dans le premier modèle,
nous cherchons à incoroprer la relation entre transactions et information. Cette relation
est dans le coeur du modèle Glosten-Milgrom, mais ce dernier se limite à la modélisation
des meilleurs prix à la vente et à l’achat. À l’aide d’une approche à la Glosten-Milgrom,
nous parvenons à construire l’ensemble du carnet d’ordres (spread et volume disponible à
chaque prix) à partir des interactions entre trois types d’agents : un agent informé, un agent
non informé et des teneurs de marché. Ce modèle nous permet par ailleurs de développer
une méthodologie de prédiction du spread en cas de modiÆcation du pas de cotation et
de quantiÆer la valeur de la priorité dans la Æle d’attente. L’inconvénient principal de ce
modèle est celui d’agréger les di�érents participants de marché par groupes. Ainsi, il ne
permet pas de mettre en évidence les disparités existantes entre les participants de marché
appartenant au même groupe. AÆn de se concentrer sur une échelle individuelle, nous
proposons une deuxième approche où les dynamiques spéciÆques des agents sont modélisées
par des processus de type Hawkes non linéaires et dépendants de l’état du carnet d’ordres.
Dans ce cadre, nous sommes en mesure de calculer en fonction des Øux individuels plusieurs
indicateurs pertinents relatifs à la microstructure. Il est notamment possible de classer les
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teneurs de marché selon leur contribution propre à la volatilité. EnÆn, nous introduisons
un modèle où les fournisseurs de liquidité optimisent leurs meilleurs prix à l’achat et à la
vente en fonction du proÆt qu’ils peuvent générer et du risque d’inventaire auquel ils sont
confrontés. Nous mettons alors en évidence théoriquement une corrélation négative entre
inventaire des teneurs de marché et pression exercée sur les prix. Nous conÆrmons ce résultat
empiriquement en étudiant les inventaires individuels des teneurs de marché dans un contexte
multi-plateformes.
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Abstract

This thesis is made of two related parts. In the Ærst one, we study the empirical behaviour of
high-frequency traders on European Ænancial markets. We use the obtained results to build in
the second part new agent-based models for market dynamics. The main purpose of these
models is to provide innovative tools for regulators and exchanges allowing them to design
suitable rules at the microstructure level and to assess the impact of the various participants
on market quality.

In the Ærst part, we conduct two empirical studies on unique data sets provided by the French
regulator. It covers the trades and orders of the CAC 40 securities, with microseconds accuracy
and labelled by the market participants identities. We begin by investigating the behaviour of
high-frequency traders compared to the rest of the market, notably during periods of stress, in
terms of liquidity provision and trading activity. We work both at the day-to-day scale and at
the intraday level. We then deepen our analysis by focusing on liquidity consuming orders.
We give some evidence concerning their impact on the price formation process and their
information content according to the di�erent order Øow categories: high-frequency traders,
agency participants and proprietary ones.

In the second part, we propose three di�erent agent-based models. Using a Glosten-Milgrom
type approach, the Ærst model enables us to deduce the whole limit order book (bid-ask spread
and volume available at each price) from the interactions between three kinds of agents: an
informed trader, a noise trader and several market makers. It also allows us to build a spread
forecasting methodology in case of a tick size change and to quantify the queue priority value.
To work at the individual agent level, we propose a second approach where market participants
speciÆc dynamics are modelled by non-linear and state dependent Hawkes type processes.
In this setting, we are able to compute several relevant microstructural indicators in terms
of the individual Øows. It is notably possible to rank market makers according to their own
contribution to volatility. Finally, we introduce a model where market makers optimise their
best bid and ask according to the proÆt they can generate and the inventory risk they face.
We then establish theoretically a negative relationship between market makers inventories
and price pressure. We conÆrm this result studying empirically individual market makers
inventories in a multi-platform framework.
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Introduction

The guiding principle of this thesis is to understand and model how high-frequency traders
(HFTs) impact the market and suggest ways to mitigate their e�ects. After studying empirically
the HFTs behaviour, we aim at proposing models reproducing our empirical observations, and
allowing us to design new regulatory tools. Let us begin with presenting and motivating the
di�erent questions on which we want to shed some light in this thesis.

Motivations

HFTs are commonly deÆned as a subset of algorithmic traders using co-location and proximity
services to minimise latency, submitting a large number of orders that are cancelled shortly
after submission and holding assets over very short periods. The signiÆcant growth in high-
frequency trading in the recent years has created a debate among regulators, academics and
practitioners. They aim at understanding how HFTs a�ect the markets. Does their activity
improve or damage market quality? Some argue that HFTs are beneÆcial for the market: they
increase liquidity provision, do not withdraw from markets in bad times, contribute more to
price discovery than non-HFTs and reduce volatility. On the contrary, others assert that they
have toxic consequences on the market. This is because when speed disparities exist between
traders, adverse selection may increase and liquidity becomes more expensive. We contribute
to this debate by considering the following question:

Question 1. What is the intraday behaviour of HFTs, and how do they react during periods of
stress?

Addressing Question 1, we highlight the behaviours disparities across HFTs. We also give
interpretations for the variations of HFTs shares in market depth and traded amounts accord-
ing to the volatility and to macroeconomic announcements. Furthermore, we show a crucial
feature relative to HFTs: their activity is not restrained to pure market making, and more than
50% of their orders are aggressive. Recall that a transaction is derived from the matching of
an aggressive order with a passive one: the passive order is the one standing in the order
book and providing liquidity, while the aggressive order is the one consuming liquidity. It is
well known that HFTs may use aggressive orders for inventory management purpose (we will
support this argument by giving empirical proofs later on, when answering Question 5), but
the ratio between aggressive and passive orders we obtain, which is higher than 50%, is quite
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surprising. This pushes us to wonder whether these aggressive orders can potentially generate
proÆts for HFTs. In addition to this, aggressive orders are rarely studied in the high-frequency
trading literature. Consequently, we naturally consider the following question:

Question 2. Do HFTs trade opportunely when they trade aggressively?

When answering the question above, we establish that the aggressive trades of HFTs are
driven by an informational advantage over the rest of the market. We also show that it is
possible to build a classiÆcation of market participants based on the potential proÆt of their
aggressive orders. Furthermore, we emphasise the connection between Limit Order Book
(LOB) states and price moves. From a theoretical viewpoint, relationships between trades and
information are at the heart of the celebrated Glosten-Milgrom model. However, this model
is limited to the modelling of the best bid and ask quotes. We wish to model the whole LOB
by showing how the latter can emerge from the interaction between market participants with
disparities in terms of information. Doing so, our goal is in particular to quantify the queue
priority value. This represents the advantage of an order placed on top of a queue in the book
compared to an order placed at the bottom. We are interested in quantifying this concept
because it has a crucial role in HFTs strategies. This is one of the key elements allowing fast
HFTs to generate proÆts. Therefore, we consider the following question:

Question 3. How could we extend the Glosten-Milgrom model to the whole LOB?

As an answer to Question 3, we propose an agent-based model enabling us to forecast the
spread according to the tick size, and to quantify the queue priority value. Thanks to the
simplicity of the model, computations are explicit. However, it has some limitations. First,
it restrains the activity of market makers to passive orders and that of informed traders
to aggressive orders, which is not really realistic according to our answers to Questions 1
and 2. Second, it does not take into account the inØuence of the LOB state on trading
behaviours, illustrated in the results of Question 2. Third, in this model, agents are aggregated
into three groups: informed traders, noise traders and market makers. Consequently, it is
impossible to disentangle disparities among behaviours of market participants belonging a
priori to the same group. Therefore, based on this approach we cannot propose any kind of
individual regulatory measure or compare market participants across each others. However,
these disparities, highlighted in our answer to Question 1, play a key role in the impact of
market participants on market quality. Furthermore, we know from our answer to Question
2 that a comparison across market participants is possible based on the potential proÆt of
their aggressive trades. So, we want to propose a general ranking methodology of market
participants according to their impact on market quality, based on their individual strategies.
This leads us to the following question:

Question 4. How to build a model for the interactions between strategies of individual market
participants and use it to assess their speciÆc contribution to market quality?

Investigating Question 4, we design a model enabling us to derive a mathematical link be-
tween individual agents trading Øows (insertion, cancellation and aggressive orders) and mar-
ket quality, measured for example through the volatility. This relationship is actually in line
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with our answer to Question 1 where, at the aggregated level, we empirically Ænd a strong
correlation between on the one hand market depth, aggressiveness and market share, and on
the other hand volatility. The focus of Question 4 is on high-frequency market makers since
they are the most active market participants. The main risk faced by these participants is
related to their inventory management, which is not investigated in details when answering
Question 4. Hence, the Ænal question of this thesis is the following:

Question 5. Do high-frequency market makers inventories have an endogenous impact on prices?

Outline

Each chapter of this thesis addresses one of the questions above. This work can be separated
into two main parts. In Part 1, we give empirical answers to Questions 1 and 2 by analysing
unique datasets labelled by market participants identities, with microsecond granularity cov-
ering the trades and orders of the CAC 40 securities. In Part 2, we deal with Questions 3, 4
and 5 by proposing some suitable agent-based models taking into account empirical obser-
vations of Part 1.

In Chapter I, we answer Question 1 by studying the trades and orders of the CAC 40 French
securities, on Euronext Paris from November 2015 to July 2016. First, we analyse HFTs
contribution to liquidity that we measure in terms of spread and market depth at the three
best limits. Second, we evaluate the trading practices of HFTs by assessing their share in
traded amounts, and whether they are mainly liquidity providers or liquidity consumers. We
show that the behaviour of HFTs during the day can be split into four distinct phases. Fur-
thermore, we identify signiÆcant changes of regime in HFTs behaviour in the presence of
scheduled news, going beyond the expected reaction to volatility variations. Finally, we shed
light on their response towards non-scheduled announcements or pre-market announcements.

In Chapter II, we tackle Question 2 by investigating the same type of data as that of Chapter
I, from September 2017 to November 2017. We start with looking at how the price impact of a
single aggressive order varies according to the amount of liquidity consumed. This is why we
split these orders into three groups: those consuming less than the liquidity available at the
Ærst limit (partial aggressive orders), those consuming exactly the liquidity available at the Ærst
limit (exact aggressive orders), and those consuming more than the liquidity available at the
Ærst limit (n-limit aggressive orders). Then, in contrast to several earlier studies, we show that
HFTs aggressive orders have an informational advantage compared to the rest of the market,
suggesting an evolution in HFTs activity in the recent years. This result is obtained by com-
puting the potential proÆts of the di�erent order Øow categories (HFTs, agency participants
and proprietary participants) over various time horizons, and comparing those of HFTs to
the rest of the market. Finally, we display how aggressive orders can be used in order to clas-
sify market participants as HFTs or non-HFTs, or to deduce the market participants strategies.

3



Introduction

Answer to Question 3 lies in Chapter III. Using a Glosten-Milgrom type approach, we are able
to deduce the whole LOB (bid-ask spread and volume available at each price) from the inter-
actions between three di�erent types of agents: an informed trader, a noise trader and several
market makers. This model enables us to build several relevant tools for regulators, exchanges
and market participants. For instance, we provide a device to forecast consequences of a tick
size change on the spread. To validate the e�ciency of this method, we predict the spread
changes due to the new tick size regime under the recent European regulation MiFID II, and
compare our results to the e�ective spread values. It turns out that our predictions are very
accurate: the average relative error we obtain is around 5%. This model also enables us to
value quantitatively the queue position of a limit order in the book. We estimate this quantity
for Æve small tick assets from the CAC 40 and show that the values of queue position are of
the same order of magnitude as the bid-ask spreads.

We address Question 4 in Chapter IV. For this, we restrict ourselves to the modelling of
the best bid and ask limits. We propose an approach based on the individual behaviours of
market participants modelled by non-linear and state dependent Hawkes like processes. Our
model encompasses the well-known Poisson, Queue-reactive and Hawkes Queue-reactive dy-
namics for order books. Under mild assumptions, we prove the ergodicity and di�usivity of
our model. We also derive semi-closed formulas for the spread, imbalance and market volatil-
ity in terms of the intensities of the Øows of the di�erent market participants. Thanks to these
results, we are for example able to rank market makers according to their contribution to
volatility. This ranking is illustrated on several CAC 40 assets. Interestingly the obtained
rankings are quite homogeneous from one asset to another.

Question 5 is answered in Chapter V. We extend the literature establishing a negative re-
lationship between price pressure and the inventory of homogeneous market makers to the
case where the agents can be heterogeneous.. The price pressure can be deÆned as the local
price impact due to submitted market and limit orders: a highly positive (resp. negative)
inventory pushes the price down (resp. up). Thanks to a unique dataset with participants
level information, we illustrate this relationship empirically by conducting a multi-platform
study of high-frequency market making. Such an empirical study is to our knowledge the Ærst
of its kind in the literature.

1 Part 1: Empirical analysis of high-frequency traders behaviour

In Part 1, we conduct empirical analyses in order to answer Questions 1 and 2. A mar-
ket participant is identiÆed as an HFT if either he belongs to the Supplemental Liquidity
Provider (SLP) programme of Euronext, which is a market making programme, or if he meets
some criteria related to the lifetime of cancelled orders, detailed in the core of the thesis.
When focusing on market making activity, high-frequency market makers are deÆned as SLP
members.
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1. Part 1: Empirical analysis of high-frequency traders behaviour

1.1 Chapter I - The behaviour of high-frequency traders under di�erent
market stress scenarios

In Chapter I, we answer Question 1: What is the intraday behaviour of HFTs, and how do
they react during stress periods? We focus on the behaviour of HFTs on a daily scale (by
studying their behaviour day by day) according to the level of stress measured mainly by the
implied volatility, on an intraday scale (by studying their seasonal behaviour during a trad-
ing day), and around macroeconomic news. To do so, we have access to a unique labelled
dataset covering the trades and orders of the CAC 40 French securities, on Euronext Paris
from November 2015 to July 2016. On both daily and intraday scales, we analyse liquidity and
trading activity. Liquidity is quantiÆed by measuring the bid-ask spread and market depth at
the three best limits. The HFTs trading activity is assessed by their aggressive/passive ratio
(the ratio of amounts traded aggressively by HFTs over their total traded amounts) and their
market share in traded amounts. We deepen our analysis by considering least square regres-
sions for our metrics with respect to the volatility and other explanatory variables where we
distinguish between days with and without macroeconomic announcements. We then focus
on HFTs behaviour regarding unscheduled and pre-market announcements.

We Ærst analyse how HFTs contribute to liquidity. We give in the following our main Ændings.

1.1.1 Liquidity analysis

On a daily scale Market depth decreases sharply and spreads widen when implied volatility
increases.

Result 1. Implied volatility a�ects all participants evenly: the HFTs market share in terms of
market depth remains almost constant, independent of the implied volatility level, close to 80% at
the three best price limits.

On an intraday scale Non-HFTs provide a relatively constant amount of market depth in
the order book throughout the day. For HFTs, both their market depth share and the amount
they o�er increase during the Ærst hour of the day. HFTs contribute to spread tightening at the
beginning of the day: their share in market depth increases while spread tightens. The levels
remain stable during the day, albeit with temporary declines before the usual announcement
times. At the end of the day, HFTs market depth share and HFTs amounts o�ered decrease
rapidly. Indeed, HFTs do not generally hold overnight positions.

During macroeconomic announcements Before macroeconomic announcements, HFTs
sharply reduce their liquidity provision a few minutes (generally 3 minutes) before the an-
nouncements, unlike other market participants who decrease slightly their amount of limit
orders. This withdrawal before announcement times contributes to bid-ask spread widening.
Then HFTs liquidity returns quickly to the order book after the announcements (generally
one or two minutes later).
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The main intraday HFTs and non-HFTs liquidity contribution behaviours are summarised in
Figure .1.

Figure .1 – Intraday evolution of HFTs and non-HFTs market share in terms of market depth
compared to the bid-ask spread evolution in ticks.

Second, we analyse the trading behaviour of HFTs by measuring their market share in traded
amounts and their aggressive/passive ratio with respect to the volatility and other explanatory
variables. Our main Ændings are summarised below.

1.1.2 Trading activity analysis: market share and aggressiveness

On a daily scale HFTs share in amounts traded is slightly dependent on the implied volatil-
ity (positive correlation) while their aggressive/passive ratio is not.

Result 2. On average, HFTs share in amounts traded oscillates around 60% and they consume more
liquidity than they provide, with an aggressive/passive ratio around 53%.

On an intraday scale The relationship between historical volatility and amounts traded
remains true: the higher the historical volatility, the larger the amounts traded over all par-
ticipants. However, at the very end of the day, this relationship does no longer hold: amounts
traded increase sharply while historical volatility tends to decrease. Regarding the behaviour
of HFTs, we can distinguish between four distinct phases:

• At the beginning of the day, HFTs share in amounts traded increases gradually from
50% to 58%. At the same time, their aggressive/passive ratio falls from 65% to 55%.

• Before the U.S. market opening, amounts traded by the market as a whole are relatively
stable, as is HFTs share in amounts traded (60%) and their aggressive/passive ratio
(52%).

6
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• After the U.S. market opening, HFTs share in amounts traded rises from 58% to 65%.
Their aggressive/passive ratio also increases from 52% to 55%. This surge in aggressive-
ness is most likely due to the appearance of arbitrage opportunities. HFTs therefore
consume more liquidity than they provide.

• At the end of the day, HFTs gradually withdraw and their share in amounts traded
decreases from 60% to 55%. Their aggressiveness increases due to the decrease in their
market depth and probably their desire to unwind positions before the close, which
tends to trigger aggressive behaviours.

During macroeconomic announcements Before an announcement, HFTs share in amounts
traded decreases and their aggressive/passive ratio increases. Both features are mainly due
to a decrease in passive orders because HFTs withdraw from the order book. After an an-
nouncement, prices are often severely a�ected. This leads to a sudden increase in aggressive
Øows from HFTs (as is the case after the U.S. market opening). HFTs share in amounts traded
therefore rises, as their aggressive/passive ratio, now because of an increase in their aggressive
orders. When the price Øuctuates widely, the aggressive/passive ratio for these participants
increases signiÆcantly. This probably reØects some transformation of mean reversion strate-
gies into short-term directional (momentum) ones, which can hardly be considered as market
making.

The main intraday HFTs trading behaviours are summarised in Figure .2.

Figure .2 – Intraday evolution of HFTs aggressiveness and HFTs market share in terms of
market depth and amounts traded.

Note that all these observations can signiÆcantly di�er from one HFT to another: each HFT
has a very di�erent level of aggressiveness, and the distribution of the share in market depth
and traded amounts is unequal across them.
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1.1.3 Regression based analysis of these empirical results

We sharpen our observations related to the behaviour of HFTs during macroeconomic an-
nouncements by using least square regressions of our metrics with respect to the volatility
and other explanatory variables. We distinguish between days with and without scheduled
announcements at 4 p.m. All these regression results are in line with the empirical observa-
tions, and point out in a quantitative way that:

Result 3. The behaviour of HFTs around announcements cannot be read as a simple reaction to
associated variations of volatility. In fact, HFTs do contribute less to market depth before, during and
after announcements, their market share in traded amounts decreases and their aggressive/passive
ratio increases before and during announcements even once a volatility e�ect is taken into account.

After studying in details the HFTs behaviour with respect to scheduled macroeconomic an-
nouncements, we investigate their reaction when the announcement is unscheduled or when
it takes place overnight.

1.1.4 Focus on an unscheduled announcement and a pre-market announcement

We focus on the response of HFTs with respect to two speciÆc events. The unexpected and
misleading macroeconomic announcement released by the Financial Times on Twitter on
December 3

r d 2015 concerning the monetary policy of the European Central Bank, and the
Brexit referendum announcement occurring before the opening of the markets on June 24

th

2016.

Following the unscheduled announcement of December 3

r d 2015, liquidity obviously de-
creased. However, in opposite to what typically happens before the scheduled macroeco-
nomic news, and despite the withdrawal of HFTs and non-HFTs from the order book, HFTs
market share increased from 80% to 90%. It is likely that non-HFTs could not track the price
drop and hence were unable to update their orders, whereas HFTs were able to quickly move
their orders and maintain part of their passive liquidity provision in the order book. The
behaviour of market participants is signiÆcantly di�erent in the case of the Brexit pre-market
announcement: HFTs diminished signiÆcantly their presence in the market, while non-HFTs
partially o�set HFTs reduced liquidity by providing a market depth twice larger than their
usual level. We can interpret this Ænding as follows: when non-HFTs have time to adapt to
announcements (they had the overnight in the case of the Brexit, in contrast to the situation
on the 3

r d of December 2015), they may act as market makers.

One of our remarkable Ændings in this chapter is that the activity of HFTs is not limited to
market making: more than 50% of their orders are aggressive. We aim at analysing these
aggressive orders rarely studied in literature: are they used only for inventory management
or also for directional trading? We address this issue in Chapter II.
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1.2 Chapter II - The Information content of high-frequency traders
aggressive orders: recent evidences

In this chapter, we answer Question 2: Do HFTs trade opportunely when they use aggressive
orders? We present some evidence concerning the impact of aggressive orders on the price
formation process and the information content of these orders according to the di�erent order
Øow categories (high-frequency traders, agency participants, proprietary participants and
retail members). For this, we conduct a study on CAC 40 stocks data from September 2017 to
November 2017. Over the analysed period, we use both trade and LOB data to describe the
dynamics of the LOB accurately before and after each aggressive order. The whole dataset
contains approximately 8 millions aggressive orders and 423 millions events (an event can
be an order insertion, an order cancellation, an order modiÆcation or a transaction). We
summarise in the following our main Ændings.

1.2.1 Three di�erent groups of aggressive orders

We begin with looking at how the price impact of a single aggressive order varies according
to the proportion of liquidity it consumes compared to that present at the best limit. This is
why we split aggressive orders into three groups:

• Partial aggressive orders: they consume less than the quantity present at the best limit.

• Exact aggressive orders: they consume exactly the quantity present at the best limit.

• N-limit aggressive orders: they consume more than the quantity present at the best
limit.

Partial (resp. exact) aggressive orders constitute approximately 50% (resp. 47%) of aggressive
orders in number. Partial and exact aggressive orders are unequally distributed across the
di�erent order Øow categories. Indeed HFTs send more exact aggressive orders than partial
ones: 63% of the exact aggressive orders are sent by HFTs, while only 39% of partial ones are
sent by them. Furthermore, we Ænd that exact aggressive orders take place when the LOB is
signiÆcantly unbalanced. The imbalance at time t , just before the aggressive buy (resp. sell)
order takes place, is computed as follows:

Imbt =
Q1

t °Q2

t

Q1

t +Q2

t

,

where Q1

t denotes the volume available at the best bid (resp. ask) at time t , and Q2

t that at
the best ask (resp. bid) at time t when it is a buy (resp. sell) aggressive order. We Ænd that the
value of the imbalance one microsecond before the exact aggressive trades (on average equal
to 27%) is signiÆcantly higher than that (on average equal to 3%) before the partial aggressive
trades.
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1.2.2 Price impact according to the groups of aggressive orders

In order to measure the price impact related to each group of aggressive orders, we Ærst
deÆne our price impact measure.

QuantiÆcation of the price impact The price impact of an individual buy (resp. sell)
aggressive order, taking place at time t and evaluated at time t +h is denoted by PIt+h and
deÆned as follows:

PIt+h = BPt+h °BPt°

S
§ si g nt

where BPt° denotes the best ask (resp. bid) one microsecond before the buy (resp. sell)
aggressive order and S the average spread of the asset. For a given Øow of aggressive orders,
and for a given time t +h, we compute the average of this measure weighted by the executed
quantity across all aggressive orders. This is done from 17 minutes before till 17 minutes after
the aggressive order. The results, relative to each group of aggressive orders are the following.

Result 4. As expected, one microsecond after the aggressive order, because of the mechanical impact,
the price impact due to n-limit aggressive orders is higher than that of exact ones, which is higher
than that of partial ones. One relevant question is whether this mechanical impact is permanent or
not. We Ænd that the price impact of exact aggressive orders is permanent: it is above that of partial
ones, over all time horizons, higher than two-thirds of the bid-ask spread. On the contrary, n-limit
aggressive orders have a temporary component in their price impact: market participants tend to
reÆll the LOB by submitting new orders in place of the consumed ones. Indeed, starting one second
after the aggressive order, the price impact begins to attenuate. On a 17 minutes time horizon, the
remaining mechanical impact of n-limit aggressive orders is quite equal to that of exact aggressive
orders.

We then shed light on the interest of studying the price impact according to the traded share
(relative to the volume available at the best limit) instead of the traded volume.

Importance of analysing the price impact according to the traded share The average
traded amount of partial aggressive order (13 k e) is close to the one of exact aggressive
orders (11 k e), but their price impact is signiÆcantly di�erent. This is a Ærst indicator that
when analysing the price impact, one should not only look at the traded volume but also
at the traded proportion relative to the quantity present at the best limits. We deepen our
analysis by studying the price impact of partial orders according to the consumed propor-
tion (we separate partial orders into 10 groups according to the consumed share). We Ænd
that the magnitude of the price impact over all time horizons after the aggressive order is
increasing with respect to the consumed share. We then investigate whether the consumed
share rather depends on the quantity present at the best limit or on the traded amount. We
obtain that the consumed part varies with the traded amount, but also depends signiÆcantly
on the quantity present at the best limit. This means that the price impact does not depend
only on the traded volume, but also implicitly on the volume present at the best limit. Hence
the relevance of investigating the price impact according to the traded share.
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Now that we know that partial aggressive orders should be studied separately from exact
aggressive orders, we focus on analysing the informational advantage according to each order
Øow category, distinguishing between partial and exact aggressive orders. We Ærst quantify
our notion of informational advantage and then give our main results, also illustrated in
Figure .3.

1.2.3 Informational advantage

QuantiÆcation of the informational advantage To estimate the informational advantage
of an agent, we compute the potential proÆt of a buy (resp. sell) aggressive order that a market
participant can realise if he unwinds his position passively at time t +h, denoted by PPt+h :

PPt+h = BPt+h °Pt

S
§ si g nt

where BPt+h is the best ask (resp. bid) at time t +h, Pt the price per share obtained by the
aggressive order, S the average spread of the asset and si g nt takes the value 1 (resp. -1) if it
is a buy (resp. sell) aggressive order. For a given Øow of aggressive orders, and for a given
time t +h, we compute the average of this measure weighted by the executed quantity across
all aggressive orders. This is done from 17 minutes before till 17 minutes after the aggressive
order.

Result 5. The HFT Øow stands out with the (signiÆcantly) highest potential proÆt in the case of
partial aggressive orders, over all time horizons. One second after partial aggressive orders, HFTs
have a potential proÆt 0.36 spreads higher than that of agency participants, and 0.29 spreads higher
than that of proprietary participants, see Figure .3. In addition to this, we show that the aggressive
orders of HFTs are less autocorrelated than those of other categories. This allows us to deduce that
the high potential proÆt of HFTs is due to an informational advantage and not to an endogenous
price impact. Although HFTs still obtain a better potential proÆt than other market participants
with exact aggressive orders, the di�erence between the categories is not much signiÆcant in this case.
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Figure .3 – The potential proÆt evolution following partial aggressive orders according to the
di�erent order Øow categories over di�erent time horizons.

Does the potential proÆt vary among members within the same order Øow category?
We investigate the potential proÆt disparities between di�erent members belonging to the
same order Øow category for partial aggressive orders. We Ænd that over a short time horizon
(until 2 minutes after the aggressive order), all HFTs belong to the 25% market participants
realising the highest short-term potential proÆts. Over a longer time horizon, from two min-
utes after the aggressive order, the proportion of HFTs with potential proÆt higher than the
third quartile starts to decrease to the beneÆt of proprietary traders. This could be due to the
fact that HFTs do not target long-term strategies, high-frequency trading being an activity
where participants typically hold positions for very short times.

It turns out that the analysis of aggressive orders is useful to understand other features than
price impact and potential proÆt. For instance, we propose a new classiÆcation of market
participants based on our investigation of aggressive orders. We also show that we can access
to a more granular classiÆcation by segmenting member code Øows according to the di�erent
connectivity channels they use, called SLEs (French acronym for Serveur Local d’Emission ).
Finally, by observing the evolution of the price before the aggressive orders, we deduce the
di�erent strategies of member codes, such as mean reverting or trend following.

1.2.4 From single aggressive orders to strategies

A classiÆcation tool It is usual to consider cancelled orders to classify members as HFTs
or non-HFTs. However, it seems also possible to classify participants by relying on aggressive
order potential proÆts. We propose a new classiÆcation: those realising the highest short-term
potential proÆts (one second after the aggressive order) can be considered as HFTs, and those
realising the lowest as non-HFTs. It turns out that merging both approaches allows us to
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obtain a more complete classiÆcation of market participants, see Figure .4. Three di�erent
classes can be distinguished:

• Pure HFTs: they are characterised by a high short-term potential proÆt and a low
lifetime of cancelled orders.

• Pure non-HFTs: they are characterised by a high lifetime of cancelled orders and a
small short-term potential proÆt.

• Intermediary agents: they are characterised by a small short-term potential proÆt and
a low lifetime of cancelled orders.

Figure .4 – Merging both classiÆcation methods: one relying on cancellations and one relying
on potential proÆt (the Øows are grouped by member code and order Øow category).

We point out that, as expected, no member code has high short-term potential proÆts and
high lifetime of cancelled orders. Moreover, note that all SLPs belong to the pure HFT
category.

A more granular classiÆcation using the di�erent connectivity channels Market mem-
bers connect to Euronext via SLEs to convey their orders. Splitting the Øows issued by a same
member code, and belonging to the same order Øow category according to these connectivity
channels can in some cases bring up new information concerning the di�erent activities fol-
lowed by this member code. For example, we dissociate the Øow of a given member code who
is an agency broker serving as intermediary for an HFT (among other clients) according to
the di�erent SLEs. We compute the potential proÆt of each of these Øows. We Ænd disparities
in potential proÆts according to the di�erent SLEs: one SLE is probably dedicated to the HFT
client, while another is dedicated to other type of clients.
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Di�erent strategies By observing what happens before the aggressive orders, we Ænd that
on average, HFTs and proprietary agents are mean reverting (they buy when the price de-
creases and sell when the price increases). In contrast, agency members seem on average trend
following: they buy when the price increases and sell when the price decreases. Analysing the
potential proÆt by member code, we get that purely mean reverting strategies are not followed
by all SLPs. Some of them carry out distinct strategies simultaneously: mean reverting, trend
following and another strategy consisting in consuming new orders within the spread.

2 Part 2: From empirical observations to agent-based modelling

In Part 2, we focus on agent-based models with the objective of providing new relevant tools
for regulators and exchanges. Also, we wish to take into account the empirical observations
obtained in Part 1. We answer in this part to Questions 3, 4 and 5.

2.1 Chapter III - From Glosten-Milgrom to the whole limit order book and
applications to Ænancial regulation

In Chapter III, we answer Question 3: How could we extend the Glosten-Milgrom model to
the whole LOB? This means that instead of computing only best bid and ask quotes as in the
seminal paper by Glosten and Milgrom, we want to be able to build from the interactions
between agents the whole LOB: best bid, best ask and volume available at each limit of the
LOB.

2.1.1 E�cient price and behaviour of the di�erent market participants

In our model, we assume the existence of an e�cient price P (t ). It is exogenous, independent
of the order book dynamics and satisÆes P (t ) = P (0)+Y (t ), where Y (t ) is a compound Poisson

process of the form: Y (t ) =
N (t )

P

i=1

Bi , with jump rate ∏i and where the Bi are centred price jumps.

We consider three di�erent types of market participants as in the Glosten-Milgrom model:

• An informed trader: he receives the value of the price jump size B right before it
happens. He then sends his trades based on this information. The informed trader
trade size is denoted by Qi . This market participant can be assimilated to an HFT
using aggressive orders when he is more informed than the rest of the market. This
feature stems from what we saw in Chapter II when answering Question 2.

• A noise trader: he sends random market orders that follow a compound Poisson process
with arrival rate ∏u . The noise trader order size is denoted by Qu and its cumulative
distribution function is denoted by F∑u .

• Several market makers: they receive the value of the price jump size B right after
it happens. We assume that they are risk neutral. They know the proportion of price
jumps compared to the total number of events happening in the market which is denoted
by r = ∏i

∏i+∏u .

14



2. Part 2: From empirical observations to agent-based modelling

2.1.2 LOB modelling with a zero tick size

We start with the case where the tick size is assumed to be equal to zero. The obtained results
help us to understand those when the tick size is positive. We write L for the cumulative LOB
shape function on which we make no a priori assumption (for example it can have a singular
part and discontinuities).

The informed trader computes his gain according to the future e�cient price. If he knows
that the price will increase (resp. decrease), which corresponds to a positive (resp. negative)
jump B , he consumes all the sell (resp. buy) orders leading to positive ex-post proÆt. This is
formalised in the assumption below.

Assumption 1. The informed trader sends his trade in a greedy way such that he wipes out all the
available liquidity in the LOB till the level P (t )+B . Thus his trade size satisÆes: Qi = L(B°

).

Regarding the market makers, they compute the conditional average proÆt of a new inÆnites-
imal order if submitted at price level x knowing that Q > L(x) and without any information
about the trade initiator. This quantity is denoted by G(x) and its value is given in the next
proposition.

Proposition 1. The average proÆt of a new inÆnitesimal order if submitted at price level x satisÆes:

G(x) =
(

x ° rE[B1B>x ]

rP[B>x]+(1°r )P[Qu>L(x)]

if x ∏ 0

°x + r E[B1B<x ]

rP[B<x]+(1°r )P[Qu<L(x)]

if x ∑ 0.

For a given x, market makers compute the theoretical ˆL(x) for which G(x) = 0. Then they act
according to the following zero-proÆt assumption.

Assumption 2. For every x > 0 (resp. x < 0), if ˆL(x) ∑ 0 (resp. ˆL(x) ∏ 0), market makers add no
liquidity to the LOB: L(x) = 0. If ˆL(x) > 0 (resp. ˆL(x) < 0), because of competition, the cumulative
order book adjusts so that G(x) = 0. We then obtain L(x) = ˆL(x).

Note that under our zero-proÆt assumption, market makers who place Ærst their orders in the
queue, can still make proÆts. In this setting, we can show the emergence of the bid-ask spread
and the LOB shape. We have the following result.

Result 6. The cumulative LOB satisÆes L(x) =°L(°x). Moreover, L(x) = 0, for x 2 (°µ,µ), and
L(x) is continuous and strictly increasing for x ∏µ, where µ is the unique solution of the following
equation:

1+ r

2r
= E[max(

B

µ
,1)]. (1)

For x >µ, L(x) > 0:

L(x) = F°1

∑u (

1

1° r
° r

1° r
E[max(

B

x
,1)]).

For x <°µ, L(x) > 0:

L(x) =°F°1

∑u (

1

1° r
° r

1° r
E[max(

B

°x
,1)]).
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In particular, the bid-ask spread is equal to 2µ.

Furthermore, the variance per trade æ2

tr satisÆes:

æ2

tr = E[(Pøi+1

°Pøi )

2

] = E[B 2

]µ

E[|B |1|B |>µ]

.

Equation (1) shows that the spread emerges naturally from adverse selection risk. Indeed,
it is an increasing function of r . This means that market makers are aware of the adverse
selection they face when the number of price jumps increases. As a consequence, they enlarge
the spread in order to avoid this e�ect due to the trades issued by the informed trader just
before the price jumps take place. This in line with what we show in Chapter I: market makers
withdraw from the market before the announcements because they are aware of the adverse
selection risk.

2.1.3 LOB modelling with a non-zero tick size

Now we consider the case where the tick size Æ is non-zero. We denote by d the distance
between the smallest possible price level that is greater than or equal to the current e�cient
price P (t ); d 2 [0,Æ). We write l d

(i ) for the quantity placed at the i th limit and the cumulative
volume at level i is denoted by Ld

(i ):

Ld
(i ) =

Ω

L(d + (i °1)Æ) for i > 0

L(d + iÆ) for i < 0.

Considering the same assumptions as in the case where the tick size is vanishing, and com-
puting market makers proÆts, the bid-ask spread and LOB shape emerge in the following
way.

Result 7. The LOB shape function satisÆes l d
(i ) = 0 for all °kd

l < i < kd
r , where kd

l and kd
r are

two positive integers determined by the following equations:

kd
r = 1+ dµ°d

Æ
e, kd

l = dµ+d

Æ
e,

with µ deÆned by Equation (1), and where dxe denotes the smallest integer that is larger than x
(which can be equal to 0). Furthermore, for i ∏ kd

r :

Ld
(i ) = F°1

∑u

°

1

1° r
° r

1° r
E[max(

B

d + (i °1)Æ
,1)]

¢

and for i ∑°kd
l :

Ld
(i ) = F°1

∑u (

°r

1° r
+ r

1° r
E[max(

B

d + iÆ
,1)]).

For a given d , the bid-ask spread ¡d
Æ satisÆes:

¡d
Æ =Æ

°

dµ°d

Æ
e+ dµ+d

Æ
e
¢

.
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Considering the approximation that d is uniformly distributed over [0,Æ], we get that the average
spread ¡Æ satisÆes:

¡Æ = 2µ+Æ. (2)

Furthermore, the variance per trade is:

æ2

tr = E[(Pøi+1

°Pøi )

2

] = E[B 2

](µ+Æ/2)

E[|B |1|B |>µ+Æ/2

]

. (3)

2.1.4 Relevant tools for regulators and exchanges

Now we shed light on new useful methods that can be derived from our model: a spread
forecasting device in case of a change of tick size and the quantitative computation of the
priority value, which is the advantage of an order placed on top of a queue in the book
compared to an order placed at the bottom.

Spread forecast We obtain that the bid-ask spread is the sum of the tick value and of the
intrinsic bid-ask spread arising in the zero tick size case µ, see Equation (2). This shows that
the spread is not only a response to adverse selection risk, but that the tick size does play a
crucial role. Based on Equation (2), it is possible to predict the spread value after a tick size
change since µ is an invariant of the considered asset.

We study the CAC 40 stocks over a six months time period around the implementation of
MiFID II regulation: from October 2017 to December 2017 (before the tick size changes) and
from January 2018 to March 2018 (after the tick size changes). We consider assets whose tick
size has changed after the implementation of MiFID II. This is the case of 14 CAC 40 stocks.
We note that for all these assets, the tick size increased. We now forecast the new spreads of
our 14 assets due to the new tick size regime, based on pre-MiFID II data. The forecasts are
presented in Table .1.

17



Introduction

Stock Tick
size

before
MiF. II

Tick
size
under
MiF. II

Average
spread
before
MiF. II
(euros)

Average
spread
before
MiF. II
(ticks)

Average
spread
under
MiF. II
(euros)

Average
spread
under
MiF. II
(ticks)

Expected
spread
based
on our
model

Relative
error

Accor 0.005 0.01 0.011 2.266 0.016 1.586 0.016 3%
Bouygues 0.005 0.01 0.011 2.277 0.017 1.734 0.016 5%
Kering 0.05 0.1 0.090 1.797 0.141 1.407 0.140 1%
Legrand 0.01 0.02 0.016 1.643 0.029 1.471 0.026 10%
Publicis 0.01 0.02 0.019 1.904 0.030 1.520 0.029 4%
Safran 0.01 0.02 0.019 1.892 0.031 1.556 0.029 7%
Schneider Electric 0.01 0.02 0.016 1.579 0.025 1.235 0.026 4%
TechnipFMC 0.005 0.01 0.010 2.056 0.017 1.677 0.015 10%
Valeo 0.01 0.02 0.018 1.845 0.031 1.568 0.028 10%
Veolia Environnement 0.005 0.01 0.007 1.440 0.012 1.189 0.012 3%
Vinci 0.01 0.02 0.017 1.668 0.026 1.280 0.027 4%
Vivendi 0.005 0.01 0.007 1.408 0.012 1.162 0.012 4%

Table .1 – Forecasting CAC 40 assets spreads under MiFID II.

The forecasts based on our model are very accurate: the average relative error is equal to 5%.
Thus it seems that quantitative approaches like ours could be a way to avoid pilot programs
on tick sizes as used for example in the United States and Japan.

Priority value quantiÆcation The introduction of the tick size enables us to quantify
the priority value. The value of queue position at the i th level, denoted by ˜Gd

(i ), can be
formulated in this model as the di�erence between the expected proÆt of the order placed on
top and that of a new one that would be placed at the bottom of the i th queue. We have the
following result.

Result 8. The value of the queue position ˜Gd
(i ) for i ∏ kd

r satisÆes:

˜Gd
(i ) = d + (i °1)Æ°

rE[B1B>d+(i°1)Æ]

1° r F√(d + (i °1)Æ)° (1° r )F∑u
°

Ld
(i °1)

¢

. (4)

The formula for i ∑°kd
l is obviously deduced.

To apply Equation (4) on real data, we need to know the distribution of B . To do so, we
resort to Equation (3). Recall that for small tick assets, we should obtain a linear relationship
between the volatility per trade and the spread, with a slope coe�cient between 1 and 2. So
we conclude that a suitable choice, enabling us to satisfy the above relationship is to consider
a Pareto distribution for the absolute value of the e�cient price jumps with parameters k > 2

(the shape) and x
0

(the scale), with k > 2 in order to have a Ænite variance. To ensure that the
variance per trade is proportional to the square of the spread we naturally take x

0

=µ+ Æ
2

. In
this case, the variance per trade becomes:

æ2

tr =
k °1

k °2

(µ+Æ/2)

2

. (5)
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2. Part 2: From empirical observations to agent-based modelling

For any given small tick asset, we can estimate k by minimising the quadratic error between
the actual variance per trade and the one deduced from Equation (5).

We apply these results on all CAC 40 assets with average spread higher than 2 ticks, from
January 2018 to March 2018. This corresponds to 5 assets. We Ænd that the values of queue
position at the best limits are of the same order of magnitude as the bid-ask spreads, see
Table .2.

Stock Spread
(euros)

Spread
(ticks)

k r First
limit

priority
value
(euros)

First
limit

priority
value

(spreads)

Second
limit

priority
value
(euros)

Second
limit

priority
value

(spreads)

Third
limit

priority
value
(euros)

Third
limit

priority
value

(spreads)

Fourth
limit

priority
value
(euros)

Fourth
limit

priority
value

(spreads)
Airbus 0.020 2.040 3.478 71% -0.005 -25% 0.012 61% 0.015 72% 0.014 67%
Lafarge Holcim 0.026 2.438 3.316 70% -0.008 -31% 0.011 42 % 0.014 55% 0.013 52%
Renault 0.025 2.476 2.866 65% -0.007 -30% 0.011 45% 0.013 54% 0.013 51%
Saint-Gobain 0.010 2.035 4.776 79% -0.003 -25% 0.007 65% 0.009 84% 0.008 78%
Société Generale 0.010 2.012 9.910 90% -0.003 -25% 0.007 73% 0.012 117% 0.013 127%

Table .2 – Queue position values at the four best limits for d = 0.5Æ.

In this model we are able to provide quantitative elements related to the microstructure (LOB
shape, spread forecasting device and computation of priority values) at the level of the asset,
but not at that of individual agents. Now we want to compare individual market participants,
notably in term of their contribution to market quality. This is why we aim at proposing a
model based on the individual behaviour of agents, allowing us to rank them with respect to
the impact of their trading on market stability.

2.2 Chapter IV - From asymptotic properties of general point processes to
the ranking of Ænancial agents

Chapter IV answers Question 4: How to build a model for the interactions between strategies
of individual market participants and use it to assess their contribution to market quality?
Instead of aggregating agents into groups as in the approach in Chapter III, we want to
model the speciÆc Øows of each agent taking part in the market. To do so, we restrict
ourselves to the modelling of the best bid and ask dynamics. We propose a very general
framework where individual behaviours are modelled using point processes that can be seen
as state-dependent and non-linear Hawkes-type processes. The well-known Poisson, Queue-
reactive and Hawkes Queue-reactive dynamics for order books are particular cases of our
setting. Using this approach, we establish theoretical results allowing us to assess the speciÆc
contributions of agents to market quality.

2.2.1 Modelling of the best bid and ask dynamics

We use an event by event approach. Each event is characterised by (Tn , Xn) 2 (R+
,E) where:

• Tn is the time of the nth event.

• Xn is a variable encoding the characteristics of the event:
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° size sn : an integer representing the order size.

° price pn : equals to k 2 N when the order is inserted at the price best bid +kø
0

,
where ø

0

is the tick size.

° direction dn : + if it provides liquidity and ° when liquidity is removed or con-
sumed.

° type t o
n : 1 (resp. 2) when the bid (resp. ask) is modiÆed.

° agent an : the market consists in N agents.

The order book state is modelled by the process Ut =
°

Q1

t ,Q2

t ,St
¢

where Q1

t (resp. Q2

t ) is the
best bid (resp. ask) quantity and St is the spread.

Generalised intensity and market reconstitution The intensity ∏t (e) associated to an
event e 2 E can be informally deÆned by

∏t (e) = lim

±t!0

P
£

#{Tn 2 (t , t +±t ], Xn = e} ∏ 1|Ft
§

±t
,

where Ft is the sigma-algebra representing information from the history of the market.

We assume it depends on the past event and current state of the market in the following way:

∏t (e) =√
°

e,Ut° , t ,

X

Ti<t
¡(e,Ut° , t °Ti , Xi )

¢

,

where √ is a possibly non-linear function, Ut° is the order book state relative to the last
event before t and ¡ is the Hawkes-like kernel representing the inØuence of the past events.
The functions ¡ and √ are both R+-valued. In absence of the kernel ¡, this corresponds
to the Queue-reactive model (and to the zero-intelligence Poisson model when √ does not
depend on Ut° ). When ¡ is non-zero, √ represents the interaction between the past events
and the current order book state. Moreover, we allow √ to have polynomial growth while in
the literature it has typically at most linear growth. In this case, this model generalises the
Hawkes Queue-reactive approach. Note that this intensity encompasses the Poisson intensity,
the Queue-reactive intensity, the Hawkes Queue-reactive intensity and the Quadratic Hawkes
intensity. The market intensity ∏M

t (e 0) of an anonymous event e 0 (e 0 does not contain the
agent identity) is given by

∏M
t (e 0) =

X

a∑N
∏t

°

(e 0, a)

¢

.

Ergodicity Our Ærst theoretical result is relative to the ergodicity of our limit order book
model.

Result 9. Under suitable assumptions, ¯Ut = (Q1

t ,Q2

t ,St ,∏t ) is ergodic: there exists a probability
measure ¯º such that (exponential speed of convergence)

lim

t!1
Pt (u, A) = ¯º(A), 8u, A,

where u is an initial condition which is here a càdlàg function from (°1,0] into (R+
)

4.
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2. Part 2: From empirical observations to agent-based modelling

From the ergodic propriety, we can derive asymptotic results for long-term behaviour of our
system.

Scaling limits The reference price after n jumps Pn writes Pn = P
0

+Pn
i=1

¢Pi where ¢Pi =
Pi °Pi°1

= ¥i and E[¥i ] = 0. We now assume that ¥i is centred and ¥i = f (Ui ) for some
measurable function f and consider the process

Xn(t ) =
Pbntc
p

n
, 8t ∏ 0.

The next result describes the behaviour of the price at the macroscopic scale (in event time,
the result in calendar time is very similar and also provided in the core of Chapter IV).

Result 10. Under the stationary distribution, the quantity Xn(t ) satisÆes the following convergence
result:

Xn(t )

L°!æWt ,

with æ2 = Eµ[¥2

0

]+2

P

k∏1

Eµ[¥
0

¥k ] and µ the stationary distribution.

This results relates the individual order Øow intensities and the macroscopic volatility of the
asset. It enables us to rank market participants according to their contribution to volatility.
Note that here µ is the stationary distribution on the function space since the marginal
law of ¥

0

is not enough to compute the second term in the volatility in the non-Markov case.
However, the Ærst term can indeed be readily obtained from º. We now explain how empirical
computations of relevant quantities can be made.

2.2.2 Explicit computations of market quantities

In this model, we can derive semi-explicit formulas for the stationary distribution, expected
spread, price volatility and intensities of the Øuctuations of the cumulated imbalance. In the
following, we provide those relative to the stationary distribution, expected spread and the
price volatility.

Stationary probability computation We write º for the stationary distribution of the
process Ut . We have the following result which gives us a numerical methodology to compute
º.

Result 11. The distribution º satisÆes
ºQ = 0

º1 = 1.

(6)

where the inÆnite dimensional matrix Q veriÆes

Q(z, z 0
) =

X

e2E(z,z 0
)

Eµ[∏(e)|],

with E(z, z 0
) the set of events directly leading to z 0 from z.
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In order to compute Q(z, z 0
), let us take z and z 0 two states such that z 6= z 0, N z,z 0

t =P

Ti<t ±
i
u,u0

with ±i
z,z 0 = 1UTi°1

=z,UTi =z 0 and t u =P

Ti<t ¢Ti 1≥Ti°1

=z with ¢Ti = Ti °Ti°1

. The matrix Q can
be estimated the following way.

Result 12. We have

ˆQ(u,u0
) =

N u,u0

t

t u !
t!1

Q(u,u0
), a.s. (7)

Note that the form of the estimator of Qu,u0 : N u,u0

t /t u , and hence º, does not depend on the
model.

Spread computation We recall that the spread S is a state variable since U = (Q1

,Q2

,S).
Thus, the expected value of the spread ¯S under the stationary distribution satisÆes

¯S = Eº[S] =
X

q1

,q2

,s

º(q1

, q2

, s)s.

We end with the computation of the volatility in practice when restricting ourselves to the
Markov case (for simplicity here).

Price volatility computation in the Markov case In the Markov case, the second term in
the volatility formula in Result 10 can be easily computed from the marginal stationary distri-
bution º. Let us deÆne P the transition matrix of Markov chain associated to U (transitions
after one jump): Pu,u0 =°Qu,u0

/Qu,u . In this setting, we have (recall that ¥i = f (Ui )):

Eµ[¥
0

¥k ] = Eº[¥
0

¥k ] =
X

u
º(u) f (u)Eu[¥k ], Eu[¥k ] =

X

u0
P k

u,u0 f (u0
). (8)

2.2.3 Numerical experiments

Using Result 10 and placing ourselves in the Markov case, we propose a ranking of the nine
main market makers based on their impact on volatility on four large tick assets (for which
the model is very suitable): Air Liquide, EssilorLuxottica, Michelin and Orange, on Euronext,
over a one year period: from January 2017 till December 2017.

For each asset, we compute Ærst the liquidity provision and consumption intensities rela-
tive to the whole market using Equation (7). Then, we estimate the stationary measure of the
order book using Equation (6). Finally we obtain the macroscopic volatility using Equation (8).

We give in Figure .5 the results relative to Air Liquide.
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2. Part 2: From empirical observations to agent-based modelling

(a) Intensity of the market (b) Stationary measure Q1

Long-term price volatility æ2 = 0.227.

Figure .5 – (a) Liquidity insertion and consumption intensities (in orders per second) with re-
spect to the queue size (in average event size) and (b) the corresponding stationary distribution
of (Q1

) with respect to the queue size (in average event size), proper to Air Liquide.

Thereafter, for each market maker, we estimate the new market volatility based on our model
in a situation where we suppose that he withdraws from the market. The market maker
who is so that without him the volatility increases (resp. decreases) the most is ranked Ærst
(resp. last). This is because he is seen as the most stabilising (destabilising) participant. In
the following table, we establish the ranking of market makers which is actually quite stable
across assets.

Market
maker

Ranking
Air

Liquide

Market
share Air
Liquide

Ranking
Exilor-

Luxottica

Market
share
Exilor-

Luxottica

Ranking
Michelin

Market
share

Michelin

Ranking
Orange

Market
share
Orange

MM1*** 4 4% 3 3% 3 4% 3 3%
MM2 9 1% 9 1% 9 1% 7 1%
MM3 6 5% 6 5% 7 4% 5 4%
MM4 5 1% 4 1% 4 0% 4 1%
MM5 7 5% 8 5% 8 5% 9 5%
MM6**** 1 3% 2 3% 1 3% 1 4%
MM7**** 2 7% 1 12% 2 9% 2 7%
MM8* 3 9% 5 5% 5 5% 6 4%
MM9 8 2% 7 2% 6 2% 8 2%

Table .3 – Market share and ranking of markets makers. We put the symbol * next to the
name of the market maker each time he is decreasing the volatility of an asset.

In this chapter, we establish a link between market makers Øows and market quality, notably
the volatility. One of the main risks that market makers face is related to their inventory
management, which is not investigated in details in this chapter. This is why we are inter-
ested in Chapter V in studying the relationship between market makers inventories and price
pressure.
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2.3 Chapter V - Market makers inventories and price pressure: theory and
multi-platform empirical evidences

Chapter V answers Question 5: Do high-frequency market makers inventories have an en-
dogenous impact on prices? To address this issue, we propose a model where market makers
optimise their quotes in order to maximise their wealth and reduce their inventory risk. In
this setting, we establish a negative relationship between market makers inventories and price
pressure. Using a unique multi-platform dataset, we provide original empirical evidences that
market makers perform cross-market netting of inventories. Furthermore, we show that our
negative relationship holds empirically. To do so, we compute the actual inventories of market
makers, instead of estimating them from the cumulative net volume as typically done in the
literature.

2.3.1 Agents behaviour

We consider that the e�cient price St follows a Brownian motion with volatility æ. We denote
by St + ˜at and St + ˜bt , respectively the ask and bid quotes o�ered by the competitive market
makers. Thus ˜at and ˜bt measure the deviation of ask and bid quotes from the e�cient price
of the asset.

We distinguish two di�erent types of agents:

• Agents consuming liquidity: buyers and sellers.

• Market makers providing liquidity.

Buy and sell investors Buyers and sellers arrive randomly to the market. Buyers (resp.
sellers) have a reservation price St + ˜p (resp. S(t )° ˜p). When the ask (resp. bid) price is
lower (resp. higher) than this reservation price, buyers (resp. sellers) consume all the liquidity
present between the reservation price and the ask (resp. bid) price. The demand and supply
functions of the buy and sell investors are respectively given by

QB
(

˜at ) = c(

˜p ° ˜at ), QS
(

˜bt ) = c(

˜bt + ˜p), (9)

where c > 0.

Market makers There are N market makers in the market. For any l = 1,2, . . . , N , Market
Maker l chooses a predictable control strategy xl ¥ (xl ,a

t , xl ,b
t )t2[0,1)

specifying the size of buy
and sell orders that will be executed against the randomly arriving buy and sell investors.
Market makers being the only counterparty and using Equation (9), we obtain the following
ask and bid price pressures at time t :

˜at = ˜p ° 1

c

N
X

l=1

xl ,a
t ,

˜bt =° ˜p + 1

c

N
X

l=1

xl ,b
t .
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2. Part 2: From empirical observations to agent-based modelling

Market maker l chooses his strategy xl by maximising his expected utility from wealth com-
puted relatively to the e�cient price, minus a quadratic penalty denoted by £ for holding
inventory. His value function is given by

¯vl (i ) = sup

xl

E

∑

Z1

0

e°Øt
(dW l ,(xl

,x°l
)

s °£(I l ,xl

s )

2d s)|I l ,xl

t = i

∏

, (10)

where Ø > 0 is a positive constant, W l ,x
t is the wealth of Market Maker l at time t and I l ,xl

t
the inventory of Market Maker l when applying his strategy xl .

2.3.2 Theoretical relationship between price pressure and inventory

Now, using the dynamic programming principle, we compute the optimal strategy of each
market maker from which we deduce the bid and ask pressures. The solutions we obtain
depend on whether market makers are identical or heterogeneous.

Identical market makers We consider Ærst the case where market makers are identical:
their costs for holding inventory and their initial inventories are equal. We show that the
value function ¯vl (i ) is quadratic and concave in i . More precisely we obtain the following
result.

Result 13. In the case of N identical market makers, the ask and bid price pressure policy functions
are time-homogeneous, and given respectively by

8

>

>

<

>

>

:

˜a(i ) =
˜p(1+2c A?)°2N A?i

N +1+2c A?
,

˜b(i ) = ° ˜p(1+2c A?)°2N A?i

N +1+2c A?
,

where A? > 0.

This result extends to the multi-market makers framework the negative relationship between
price pressure and inventory of a monopolistic market maker already considered in the liter-
ature.

Heterogeneous market makers To go further, we also study the case of two heterogeneous
market makers: their costs for holding inventory are the same but their initial inventories are
not. In this situation, using approximations, we obtain the following result.

Result 14. For any £> 0 su�ciently small, there exists a solution of the maximisation problem of
market makers such that a negative relationship between market makers aggregated net inventories
and price pressure holds.

2.4 Multi-platform empirical analysis

We study cross-platform transactions of two assets: Société Générale and Renault during June
2017 (with 21 trading days) with participant-level information and millisecond time granularity.
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2.4.1 Evidence about market makers cross-market inventory netting

Using cross-platform trades allows us to track down the supposed Øat position of market
makers at the end of the day. For instance, we can see in Figure .6 the di�erence between
the intraday inventory evolution on the 1

st of June of one speciÆc market maker on the
asset Société Générale when considering Euronext only and when taking into account all the
platforms.

Figure .6 – The intraday inventory (in shares) on the 1

st of June of a speciÆc market maker
on Euronext vs other platforms (Société Générale).

Based on end-of-day inventory criteria, we identify four market participants playing the role
of market makers. Note that one of them having a large part of his activity OTC, he is only
partially analysed.

2.4.2 Market makers aggressiveness

In our model, market makers are purely passive, which is not the case in practice. Hence we
study whether market makers use aggressive orders for arbitrage opportunities only or also
for inventory management.
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2. Part 2: From empirical observations to agent-based modelling

Figure .7 – Aggressive orders and inventory management for three market makers for Société
Générale. The red plot corresponds to the average sign of aggressive orders weighted by the
traded volume (left y-scale) and the blue plot corresponds to the analysed number of orders
(right y-scale).

Figure .7 shows that the average sign of aggressive orders weighted by the traded volume
seems to be a decreasing function with respect to the inventory: when the inventory is negative
(resp. positive), market makers send more aggressive buy (resp. sell) orders than aggressive
sell (resp. buy) orders. This and other conclusions in Chapter V lead us to the following
result.

Result 15. Aggressive orders are not used for arbitrage opportunities only, but for inventory manage-
ment reason too. But in contrast to the belief that market makers are more aggressive when their
inventory is large, we show that their aggressive/passive ratio (which is equal to the volume traded
aggressively over the volume traded aggressively and passively) remains approximately constant with
respect to their inventory.

2.4.3 Empirical evidences about the negative relationship between price pressure
and market makers inventories

Since we have shown that aggressive orders are also used for inventory management, we study
the price pressure of both aggressive and passive orders according to the inventory. The ask
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(resp. bid) pressure is considered when the market maker sends an aggressive buy (resp. sell)
order or a sell (resp. buy) passive order.

QuantiÆcation of the price pressure On a given platform, the ask pressure due to the nth

buy aggressive order, denoted by AP ag
n , is measured as follows:

AP ag
n = Aag

n+1

° Aag
n ,

where Aag
n is the best ask value on the considered platform just before the nth buy aggressive

order.

On a given platform, the ask pressure due to the nth (executed) sell passive order, denoted
by AP pass

n , is measured as follows:

AP pass
n = Apass

n ° Apass
n°1

,

where Apass
n is the best ask value on the considered platform just before the nth executed

passive order is executed.

Our measures for the bid pressure are obviously deduced.

Individual regressions For each market maker, we consider all the price pressures corre-
sponding to his aggressive and passive orders. We compute linear regressions to explain price
pressures by individual market makers inventories. We give for instance in Table .4 the result
relative to the market maker MM0 for Société Générale.

Asset Variable Coe�cient Std err t-stat p-value [0.025 0.975] Number of
observations

Société Générale MM0 inventory -0.0004 2.25e°5 -19.503 0.000 [-0.000 -0.000] 41771

Table .4 – Regression on MM0 price pressure according to his inventory for Société Générale.

The results in Table .4 perfectly agree with the theoretical relationship between price pressure
and inventories.

Regression in the case of multiple market makers To show empirically that the negative
relationship between market makers inventories and price pressure holds in the case of mul-
tiple heterogeneous market makers, we compute a regression to explain price pressure due to
all considered market makers together by their cumulated inventory.

Asset Variable Coe�cient Std err t-stat p-value [0.025 0.975] Number of
observations

Société Générale Constant -0.0002 8.18e°5 -2.181 0.029 [-0.000 -1.81e°5] 81960
Société Générale Sum of inventories -8.314e°5 5.55e°6 -14.989 0.000 [-9.4e°5 -7.23e°5] 81960

Table .5 – Regression on price pressures due to all market makers together according to their
cumulated inventory for Société Générale .
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In agreement with the theory, Table .5 shows that the negative relationship between price
pressure and market makers cumulated inventory does hold at the aggregated level.
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Part 1

Empirical analysis of high-frequency
traders behaviour
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CHAPTER I

The behaviour of high-frequency traders
under di�erent volatility market stress

scenarios

Abstract

This empirical study on European stocks gives evidence about the practices of high-
frequency traders (HFTs) under market stress. In the absence of signiÆcant news, whatever
the market conditions, they are the main contributors to liquidity with a participation
of 80% in the market depth. They constitute 60% of the traded amounts, with an
aggressive/passive ratio around 53%. We identify a change of regime in the presence of
scheduled news that goes beyond the expected reaction to volatility variations. Moreover,
in extreme situations, when non-HFTs have time to adjust their tactics, they act as liquidity
providers in place of HFTs.

1 Introduction

In the past few decades, technology has transformed Ænancial markets. Before the advent of
computers, all trading was conducted between humans. In 1983, Bloomberg introduced the
world’s Ærst computerised system to provide real-time price feed and analytics to Wall Street
Ærms. In response, market participants began to develop trading algorithms. Over the past
15 years or so, speed has become more and more important in the markets. That is how
high-frequency traders (HFTs) have emerged. In the literature, several deÆnitions of HFTs can
be found. According to [27], they are a “subset of algorithmic traders that most rapidly turn
over their stock positions”. They are also characterised by using co-location and proximity
services to minimise latency, submitting a large number of orders that are cancelled shortly
after submission and by very short holding periods, see [25]. Moreover, they are described
as market participants who trade a large number of contracts, consistently maintain a low
inventory level, and end the day at or near a zero inventory position, see [11]. This signiÆcant
growth in high-frequency trading in the recent years has created a debate among regulators,
academics and practitioners. They aim at understanding how HFTs a�ect the markets. For
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instance, does HFTs activity improve or damage liquidity? Do they consume liquidity more
than they provide? Do they supply more or less liquidity during periods of stress or macroe-
conomic announcements?

The question of the impact of HFTs on liquidity is an important topic of research in the
literature. Before explaining the di�erent positions on this issue, we note that liquidity is a
complex and ambiguous notion. However, it is often loosely deÆned as the ability to trade a
large amount of a Ænancial instrument in a short period of time at a price close to the current
price. There are several methods to quantify liquidity. Typically, it is evaluated by measuring
the bid-ask spread and the market depth which can for example be deÆned as the cumulative
amount placed up to the three best limits on the bid and ask sides, see for example [35]. In
our study, liquidity is assessed according to the same two criteria.

Some argue that HFTs are beneÆcial for the market. For example, [29] studies trading of 26
NASDAQ-labelled HFTs Ærms on the NASDAQ market in 2008-2010 and show that HFTs
tend to improve market quality. It is found that HFTs do not withdraw from markets in bad
times, they do not engage in abnormal front-running of large non-HFT trades, contribute
more to price discovery than non-HFTs, and reduce volatility. Moreover, the standard view of
[60] on market making suggests that competition between HFTs should decrease their proÆts
and lead to lower trading costs for other market participants.

On the contrary, others assert that high-frequency trading has toxic consequences on market
quality. In its concept release on equity market structure, the Securities and Exchange Com-
mission, see [104], underlines that di�erences in speed between market participants, due to
the race between HFTs, may damage liquidity. [56] points out that if liquidity providers are
even marginally slower than the fastest traders, they are in the position of being adversely
selected. Recognising this risk, classical liquidity providers will quote wider spreads. Sev-
eral theoretical models are in line with this thinking, suggesting that when speed di�erentials
between traders exist, adverse selection may increase and liquidity become more expensive,
see [50, 51]. Another closely related negative aspect is discussed in [11]. They argue that
regardless of how fast the market as a whole becomes, there is always at least one Ærm with
a relative speed advantage that can adversely select other traders, and they Ænd that high-
frequency trading industry is concentrated among a few Ærms. This idea is supported for
example by [19, 30] who show in theory how competition based on latency could lead to
market concentration, in particular to a winner-takes-all environment that could cause an
ine�cient over-investment in speed. In addition, [70] investigate market and limit orders
in the U.S. Treasury market around major macroeconomic news announcements, and show
that HFTs have a negative e�ect on liquidity around economic announcements: they widen
spreads during the pre-announcement period and lower depth on the order book during the
post-announcement period. Moreover, [103] analyse data on the highly liquid S&P 500 ETF
traded on NASDAQ from January 6, 2009 to December 12, 2011 and Ænd that in the minute
following a macroeconomic news arrival, algorithmic activity increases trading volume and
depth at the best quotes, but also increases volatility and leads to a drop in overall depth.
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In our paper, based on French data, we contribute to this debate by exploring the impact
of HFTs on liquidity and trading activity. It is one of the few studies of HFTs in Europe: it
analyses 36 stocks of the CAC 40 index which are traded on Euronext Paris from November
2015 to July 2016 (Note that Euronext is ranked 5

th in the world in domestic market capi-
talization). In addition to this, while most of the works on HFTs are based on trades, each
counterpart being Øagged depending on whether the trader is HFT or not, our approach
also focuses on quotes. We are able to rebuild the limit order book and Øag whether orders
standing at each level of the book have been submitted by a HFT or a non-HFT. This enables
us to compute for example the percentage of HFTs orders at the best quotes and the fraction
of the depth submitted by HFTs. We are notably interested in periods of market stress (this
notion will be deÆned with accuracy later), and in their intraday seasonal behaviour: at the
beginning of the day, during the day, and at the end of the day. We in particular show how
the presence of HFTs has impacted the intraday patterns of liquidity. Moreover, we pro-
vide a speciÆc focus on their dynamics before and after macroeconomic announcements, and
when historical volatility suddenly increases, for example after the opening of the U.S. market.

A second motivation for this study is the close relationship between HFTs and market making
established in the literature and often claimed by HFTs. This is to the extent that HFTs are
described as the new market makers in [88]. This latter shows how the success of a new
market, Chi-X, critically relied on the participation of a large HFT who acts as a modern
market maker. Moreover, [71] notes that high-frequency market makers have largely replaced
traditional market makers because the use of speed (co-location) and technology results in a
lower adverse selection: they are less susceptible to be seized by market participants having
an informational advantage. In addition to this, [11] Ænd that the fastest Ærms (with the lowest
relative latency) are better in risk management and earn a higher realised bid-ask spread
when trading passively.

Our paper serves to feed this debate on whether or not HFTs do globally play the role of
market makers. This is done by comparing their behaviour to what is typically expected from
a market maker.

Some academic studies are also interested in the behaviour of HFTs during speciÆc events.
For instance, [74] study the behaviour of high-frequency traders on the E-mini on the 6

th of
May 2010, the day of the most well-known Øash crash. [37] analyses that of the 17

th of March
2011 and [113] investigates the U.S. treasury Øash crash on the 15

th of October 2014. In this
paper, we also focus on analysing speciÆc events. Instead of analysing the reaction of HFTs
due to Øash crashes, we investigate their reaction to surprising news characterised by sudden
large historical volatility rise, in particular the 3

r d of December 2015 (European Central Bank
announcements about the new monetary policy) and the 24

th of June 2016 (Brexit day), both
days marked by very signiÆcant price moves.

Our study is conducted on data provided by the French regulator “Autorité des Marchés
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Financiers”(AMF). It covers the trades and orders of the most liquid French securities, specif-
ically the 36 stocks of the CAC 40 index which are traded on Euronext Paris from November
2015 to July 2016.

As we know, a universal deÆnition of HFTs does not exist, and there are several methods to
identify HFT members. In our study, an actor is identiÆed as an HFT if either he is a member
of the Supplemental Liquidity Provider programme, which is a market making programme
speciÆc to Euronext, either he is classiÆed as a pure HFT by a method based on the lifetime
of cancelled orders. Details on our classiÆcation will be given in Section 2.2.

One of the main Ændings of our paper is that when the market is under stress, which cor-
responds to periods of high uncertainty about the future (this will be measured through an
implied volatility based metric), market depth o�ered by all participants tends to decrease,
and the bid-ask spreads tend to increase. Such Ænding is in line with the results in [28] (con-
ducted on 2008-2009 NASDAQ data). However, the rise in global stress a�ects quite equally
HFTs and non-HFTs. We will notably see that the market share of HFTs in terms of market
depth and the aggressiveness of HFTs are essentially independent of the level of market stress.
However, the HFTs market share in amounts traded depends slightly on it.

Regarding the seasonal behaviour of HFTs during a trading day, our conclusions are the
following: at the beginning of the day, HFTs progressively increase their contribution in the
order book, gradually tighten spreads and raise their market share in terms of market depth
(typically spread is gradually halved while amounts o�ered by HFTs increase Ævefold). Si-
multaneously, the HFTs aggressive/passive ratio declines as HFTs consume less liquidity and
provide more (the aggressive/passive ratio decreases from 65% to 55%). At the end of the day,
HFTs essentially withdraw their orders from the order book. The aggressive/passive ratio
increases as HFTs consume more liquidity and provide less.

Besides, pre-announcement periods are marked by a strong downturn in market quality: sharp
reduction in market depth o�ered (-35% on average at 2:30 p.m. Paris time, which corresponds
to the announcements time of the European Central Bank and U.S Ægures) and high increase
in bid-ask spreads (+32% on average at 2:30 p.m.). During these periods, HFTs reduce their
liquidity provision in the order book more signiÆcantly than non-HFTs and thus their passive
share in amounts traded decreases.

Post-announcement periods are characterised by a sharp increase in overall activity (result in
line with [33]), which is more pronounced for HFTs, particularly in terms of share in amounts
traded (share in amounts traded rises from 58% to 65%). The aggressive/passive ratio also in-
creases after the announcements. However, contrary to what happens before announcements,
this is because HFTs use more liquidity consuming orders, and not because they reduce their
presence in the limit order book.

We use linear regressions to analyse scheduled announcements in a quantitative way. We
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show that changes in HFTs behaviour around such events are more than a typical reaction
to an increase of volatility. A “change of regime” seems to take place: knowing that an an-
nouncement is scheduled, on top of usual reactions to volatility Øuctuations, HFTs provide
15% less liquidity, are more aggressive, and trade less than usual.

Another important Ænding of our work is that during periods without much market stress,
HFTs consume slightly more liquidity than they provide (aggressive/passive ratio equal to
52%). This stands out more during periods of high historical volatility: at the beginning of
the day (between 55% and 65%), around announcement phases (57% during the 2:30 p.m. an-
nouncements), and after the U.S. market opening (55%).

One of the main interests of this paper is that it uses recent data to conduct an analysis of the
e�ects of high-frequency trading on market quality. Indeed, there are not many such empirical
studies due to the di�culty of obtaining data on HFTs orders, see [18]. All the Ændings of this
study help to understand the impact of HFTs activity on the market, and provide potential
insights for new regulation. As a matter of fact, the Ænancial industry has probably not found
the adequate calibrations of all the tools o�ered by high-frequency trading, see [3]. However,
note that one limitation of this paper is that we only consider data from the regulated market
Euronext. Hence our work should be complemented by a study of the behaviour of HFTs over
the same time period on multilateral trading facilities.

The paper is organised as follows. In Section 2, we discuss the data we consider, the method-
ology used to identify HFTs and the volatility metrics. We also present the main macroeco-
nomic announcement times and highlight the di�erent periods of market stress. We present
in Section 3 (resp. Section 4) the liquidity metrics (resp. trading metrics) and the analysis of
liquidity provision (resp. trading activity) on a day-to-day and an intraday scale. In Section 5,
we provide a more quantitative analysis of HFTs behaviour around the news of 4 p.m. In
the last section, we focus on days with particularly high historical volatility: the 3

r d of De-
cember 2015 in Section 6.1 and the 24

th of June 2016 in Section 6.2. We conclude in Section 7.

2 Data description, HFTs identiÆcation and volatility metrics

2.1 Description

We recall that the data under study are provided by the French regulator “Autorité des
Marchés Financiers” (AMF). They cover the trades and orders on the most liquid French
securities, speciÆcally 361 of the CAC 40 stocks which represent more than 85% of total
amounts traded in all French stocks traded on Euronext Paris, from November 2015 to July

1Unibail, Arcelor Mittal, STMicroelectronics and Solvay are listed on Euronext Amsterdam or Euronext
Brussels. The AMF does not have order book data for these exchanges. This is why we only analyse 36 and not 40
stocks. Note that Alcatel-Lucent is included for only part of the analysis; it is replaced by Nokia from December
22, 2015.
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2016.

Note that according to [48], Euronext accounts for 63% of the traded amounts in the con-
tinuous auction phase during this period, while Chi-X accounts for 18%, Turquoise for 12%
and BATS for 4% (the remaining market share going to smaller multilateral trading facilities).
In our database, all orders (and transactions) are labelled by the name of the owner, which
allows us to identify HFTs.

Moreover, we use in some sections a database of scheduled announcements coming from
Bloomberg.

Since the amounts traded by HFTs during the opening and closing auctions represent only
about 6% of their amount traded during the day, and about 11.5% of the total volume traded at
auction2, the analysis is conÆned to continuous trading phases (during which HFTs account
for more than 60% of the traded amounts).

2.2 HFT identiÆcation

A market participant is identiÆed as a high-frequency trader (HFT) if either he is classiÆed
as a pure HFT by a method based on the lifetime of cancelled orders, or he is a member of
the Supplemental Liquidity Provider (SLP) programme of Euronext. After identifying HFTs,
we rebuild the limit order book in order to Øag the origin of the depths (HFT or non-HFT) at
the best quotes. We describe below Ærst the identiÆcation method based on orders, then the
SLP programme.

2.2.1 The classiÆcation of HFTs based on the lifetime of cancelled orders

The method we now present is one of the criteria used by the AMF to identify HFTs. This
classiÆcation di�erentiates three types of market participants in the order book: pure HFTs,
mixed HFTs (investment banks with high-frequency trading activity) and non-HFTs. It is
based on the lifetime of cancelled orders and determined using two sets of conditions:

• Condition 1 is based on a comparison with other participants: the participant must
have cancelled at least 100,000 orders during the year, and the average lifetime of his
cancelled orders should be less than the average lifetime of all cancelled orders in the
book.

• Condition 2 is based on a set threshold: the participant must have cancelled at
least 500,000 orders with a lifetime of less than 0.1 second (i.e. the participant quickly
updates the orders in the limit order book) and the top percentile of the lifetime of its
cancelled orders must be less than 500 microseconds (i.e. the participant regularly uses
fast access to the market).

2See [15, 24] for details on Æxing auctions.
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A participant is a pure high-frequency trader if he is not an investment bank and he meets
one of these conditions. An investment bank meeting one of these conditions is described as
mixed. Note that some members satisfy Condition 2 without satisfying Condition 1.

2.2.2 The Supplemental Liquidity Provider programme

Market makers are intermediaries that minimise inventory risk by holding positions for very
short periods, see [84]. The market making programme of Euronext Paris, named Supplemen-
tal Liquidity Provider (SLP) programme, imposes a market making activity on programme
members, including order book presence time at competitive prices. In return, they get
favourable pricing and rebates in the form of a maker-taker fees model directly comparable
to those of the major competing platforms, see [44].

Each member of the SLP programme is identiÆed as a HFT in this study. Indeed, HFTs
are now the only market participants that are able to play the role of market makers on liq-
uid stocks, see [71]. In fact, they are supposedly able to maintain a strong presence at best
price limits and operate e�cient inventory management in an increasingly fast-moving and
fragmented market. Indeed, HFTs can use speed to enhance risk management by avoiding
adverse selection, see [72], improving inventory management, see [5] and trading on short-
lived information, see [50].

Moreover, according to the classiÆcation based on the lifetime of cancelled orders, all SLP
members are either pure HFTs or mixed HFTs. So, in this work, we consider HFTs orders
as those coming from market participants that are either members of the SLP programme or
classiÆed as pure HFTs.

We note that there are 20 members identiÆed as HFTs in this study. SLP activity represents
a large part of all estimated high-frequency activity: 65% in number, and 90% in traded
amounts. More descriptive statistics are provided in Section 4.2.

2.3 Volatility metrics

2.3.1 Volatility metrics description

We measure market volatility in two di�erent ways: overall market volatility and temporary
volatility shocks (due to large price moves that often follow macroeconomic announcements).
To do so, we use two volatility metrics, computed every 15 seconds.

• Our measure for overall market volatility: implied volatility. Since the study is
conducted on the CAC 40 stocks, the implied volatlity we choose is the VCAC index
(the CAC 40 volatility index3). Its computation is based on option prices and inspired
by the VIX methodology, see [45]. It is generally interpreted as a market consensus
estimate of the market risk. In this work, we consider that the higher the VCAC, the

3Note that the CAC 40 and VCAC indexes are published every 15 seconds.
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greater the level of market stress. Note that we mainly use the VCAC volatility measure
for the day-to-day scale analysis.

• Our measure for temporary volatility shocks: historical volatility. The historical
volatility at time t on day d , denoted by æhi st (t ,d), is taken as the average of the
squared increments of the CAC 40 index, sampled every 15 seconds between t and
t °15 minutes (i.e. 60 measurements)4:

æhi st (t ,d) = 1

60

59

X

i=0

(Pd (t ° i ·15)°Pd (t ° (i +1) ·15))

2

where Pd (t ) is the CAC 40 level on day d at time t (in seconds).

This measure covers a short period of time and is somehow representative of instan-
taneous volatility at time t . It has little sensitivity to the selected sampling frequency.
This is because from 15 seconds onward, it is typically not dramatically a�ected by
microstructure e�ects.

From now on, each day is split into one minute time intervals (bins). One value for each
volatility indicator is computed in each bin, this value being its average over the bin. For the
day-to-day analysis, we restrict ourselves to the daily average of each metric. For the intraday
analysis, for each bin, we average each metric over the days.

2.3.2 Contrasts between the two volatility metrics

Implied volatility is forward-looking while historical volatility is backward-looking. In other
words, historical volatility is an ex-post measure of uncertainty while implied volatility is
an anticipation of future risk. Another di�erence between these two notions is that implied
volatility is a risk-neutral measure, which is the reason why it incorporates the volatility risk
premium (it refers to the phenomenon that options implied volatility tends to exceed realised
volatility of the underlying asset). This is related to investors views on market risk.

These two metrics meet di�erent needs: historical volatility captures temporary price shocks,
while implied volatility assesses the general level of market stress. On the one hand, these two
metrics are clearly related. Indeed, on a day-to-day scale, they both exhibit relatively similar
patterns: periods of increasing implied volatility are generally characterised by a signiÆcant
level of historical volatility, see Figure I.1.

4Up to a factor equal to 10

8.
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Figure I.1 – Evolution of implied and historical volatilities over the period: the two metrics
varied widely. Implied volatility illustrates the overall level of stress while historical volatility
highlights the days when there were sharp price changes (notably the 3

r d of December 2015
and the 24

th of June 2016).

On the other hand, on an intraday scale, scheduled announcements for example impact his-
torical and implied volatilities di�erently: as implied volatility captures the expected risk of
an announcement, it generally tends to decrease when new information reaches the market.
In contrast, a price move due to an announcement causes historical volatility to rise.

We give an example of these contrasting variations by displaying in Figure I.2 the evolution
of implied and historical volatilities on the 3

r d of December 2015.

Figure I.2 – Intraday di�erences between the variations of implied and historical volatilities
on the 3

r d of December 2015, a day with various announcements.
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We can see that after the announcements concerning the new monetary policy at 1:45 p.m. and
2:30 p.m., which have a strong impact on prices, historical volatility increases. On the con-
trary, implied volatility decreases. This is notably because some put and call prices are
unavailable during sharp price variations, which leads to a mechanical decrease of the VCAC
followed by an increase, and this is due to the computation method of this index.

2.3.3 A Ærst view on the analysed period

The period under study spans the nine months from November 2015 to July 2016. Figure I.1
shows that French equity market implied volatility swung widely during this period: the year
had already started o� on a volatile note amid concerns about China’s economy and the risks
associated with the sharp fall in oil prices, see [111]. Its rise during February 2016 was followed
by a more stable period after March 2016. Then implied volatility increased sharply in June
2016 due to the UK referendum.

In addition to the alternations of the level of stress during the period, it is important to bear
key Ægures publication times (Paris time) in mind, in particular macroeconomic announce-
ments, which are often accompanied by local stress of the market:

• 9 a.m.: Paris market opening and start of continuous trading following the opening
auction.

• 11 a.m.: European Ægures. For example the industrial conÆdence indicator or the
consumer conÆdence indicator.

• 11:45 a.m. to 12:00 a.m.: CAC 40 and Eurostoxx 50 futures price auctions on the third
Friday of the month (expiration).

• 1 p.m.: German consumer conÆdence Ægures and UK monetary policy decisions.

• 1:45 p.m.: European Central Bank (ECB) announcements.

• 2:30 p.m.: ECB press conferences and U.S. Figures.

• 3:30 p.m.: Opening of the U.S. market.

• 4 p.m.: U.S. Ægures such as leading economic indicators.

• 5:30 p.m.: End of continuous trading before the closing auction.

It is also worth noticing that very signiÆcant sudden price changes occurred throughout the
period, notably on the 3

r d of December 2015 (ECB announcement) and on the 24

th of June
2016 before the market opening (Brexit announcement). Both days are examined in details in
Sections 6.1 and 6.2.

Now that volatility metrics are well deÆned, our goal is to study whether the behaviour of
HFTs is a�ected by the variations of these volatility measures. This is done through day-to-
day and intraday analyses.
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3 Liquidity provision by HFTs

In this section, we Ærst explain how liquidity is measured, and give some preliminary statis-
tics about liquidity in our dataset. Then we study the contribution of HFTs to liquidity by
analysing their behaviour on a day-to-day and an intraday scale. The more the market is
stressed, the riskier it is to hold stocks for market makers. So one can expect shallower mar-
ket depth when volatility rises. However, since certain HFTs (members of the SLP programme)
beneÆt from market makers agreements which can include rebates, it may be feasible for these
market members alone to maintain liquidity provision during periods of stress. Thus HFTs
behaviour may be less sensitive to the Øuctuations of the risk level in the market.

3.1 Liquidity metrics

A lot of deÆnitions of liquidity are possible. However, they all agree on the fact that it is
related to the degree to which a Ænancial instrument can be quickly bought or sold in the
market without a�ecting its price. There are di�erent indicators to measure liquidity. In
our study, we choose to measure it according to the same criteria as those used in [35]:
market depth and bid-ask spread. It is important to not only consider the market depth but
also the bid-ask spread since it reØects the cost of an aggressive trade when taking the mid
price5 as reference price, see for example [86, 115]. An upturn (resp. a downturn) in liquidity
can be characterised by either an increase (resp. decrease) of market depth at best price
limits while spreads stay constant (or tighten, resp. widen) or is marked by spreads tightening
(resp. widening) while market depth stays constant (or increases, resp. decreases).

• The market depth at time t at the nth best price limit in the order book, denoted
by MD(n, t ), is the cumulative quantity placed up to the nth best price limit, averaged
on the ask and bid sides. This metric used to quantify the actual passive presence of
market participants in the order book is expressed in euros and deÆned as follows:

MD(n, t ) =
Pn

i=1

(V Ask
i (t )+V Bi d

i (t ))

2

,

where V Ask
i (t ) (resp. V Bi d

i (t )) is the “value” at the i th non-empty limit on the ask
(resp. bid) side: the volume multiplied by the price at the i th non-empty limit on the
ask (resp. bid) side at time t .

We denote respectively by MD HF T
(n, t ) and MDnHF T

(n, t ) the market depth taking
only HFT orders and only non-HFT orders into account.

• The bid-ask spread in ticks at time t is equal to the di�erence between the best ask
price (the lowest displayed price at which an investor would sell shares) and the best
bid price (the highest displayed price at which an investor would buy shares), divided
by the tick size at time t .

5The mid price is deÆned as the average between the best bid and best ask prices.
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In the sequel, we compute the spread and the market depth for each security after any
event occurring in the limit order book (transaction, insertion of a new order, cancellation
or modiÆcation of an existing order). For the intraday analysis, bid-ask spreads in ticks and
market depths are averaged across all securities, over all the days, and over the same minute
bins. For the day-to-day analysis, spreads and market depths are averaged across all securities,
and over all the order book events occurring during the day. In this case, the market depth at
the nth best price limit on day d is denoted by MD(n,d). The adjusted market depth on day
d at the nth best price limit in the order book, denoted by AMD(n,d), is equal to the market
depth MD(n,d) multiplied by the variation of the CAC 40 up to day d . More precisely, it is
deÆned by

AMD(n,d) = MD(n,d) · P (1)

P (d)

,

where P (1) is the CAC 40 value averaged over the Ærst day of the analysed period: the 2

nd of
November 2015, and P (d) is the CAC 40 value averaged over day d . Thus it is not a�ected
by the fall in prices in the Ærst part of the period under review.

We denote respectively by AMD HF T
(n,d) and AMDnHF T

(n,d) the HFTs adjusted market
depth and the non-HFTs adjusted market depth at the nth best price limit on day d .

The adjusted market depth will be used for the day-to-day analysis.

3.2 Preliminary statistics

For the whole period and for all the securities taken into account in the analysis, HFTs are
present at the best ask or best bid 91% of the time (relatively to all the events occurring during
the analysed period). The average HFTs market shares in terms of depth, according to the
number of best limits over the period, are summarised in Table I.1.

Presence in the limit order book Market share in Amount o�ered
terms of market depth by HFTs

At the best bid and o�er prices 70.8 % EUR 40,826
At the two best price limits 77.3 % EUR 122,084
At the three best price limits 79.3 % EUR 224,774

Table I.1 – Average HFTs market shares and average amounts (over all stocks) o�ered at
the best price limit or accumulated for the two or three best bid/ask limits. HFTs show a
slightly smaller presence in terms of market share at best limits. The amounts o�ered (bid/ask
average) range from EUR 41,000 to EUR 225,000.

We note that in Table I.1, and for the rest of the study, we exclude amounts provided by Retail
Liquidity Providers (RLP) because the liquidity they provide is not visible on the central limit
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order book, but is only accessible to retail clients that are members of the Retail Member
Organization (RMO), see [43].

Depending on the level of market depth studied, the amounts o�ered by HFTs range from
EUR 41,000 (aggregated for the best bid/ask limits) to EUR 225,000 (aggregated for the three
best bid/ask limits). Thus it by far exceeds the average trade size, which ranges from EUR
8,000 to EUR 12,000 for these stocks. Orders therefore rarely breach the best limit: only
2.5% of aggressive orders hit at least two consecutive price limits, and only 0.4% hit three
consecutive ones.

We only use the market depth measure built on the three best price limits MD(3, t ) throughout
the analysis, as it is more stable than the best price limit metric and both sketch similar trends.

We Ænally note that 50% of liquidity provided by HFTs is essentially contributed by 4 HFT
members.

3.3 Day-to-day analysis

Recall that we quantify market stress by the level of implied volatility, see Section 2.3. In
Figure I.3, we plot implied volatility and HFTs adjusted market depth AMD HF T over the
period, on a day-to-day scale.

Figure I.3 – Evolution of HFTs adjusted market depth AMD HF T and implied volatility VCAC
over the period. Except for the two-week period prior to the Brexit announcement, implied
volatility and depth diverged: the higher the volatility, the smaller the quantity o�ered.

In Figure I.4, we display the evolution of the bid-ask spread in ticks and the adjusted market
depth of HFTs and non-HFTs over the period, on a day-to-day scale.
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Figure I.4 – Evolution of the bid-ask spread in ticks and adjusted market depth of HFTs
AMD HF T and non-HFTs AMDnHF T over the period. In the Ærst part of the period (until
February 2016), along with the increase of implied volatility, HFTs and non-HFTs adjusted
market depth decreased and bid-ask spreads widened, reØecting a downturn in liquidity.

Figure I.4 shows a negative correlation between HFTs market depth and spread, clearly
marked for example on December 3 and June 24. In addition, from November 2015 to
February 2016, with the increase of implied volatility, see Figure I.3, market depth decreased
sharply (it diminished by more than 30% from its value at the beginning of the period) and
spreads widened (average spread of 2.66 ticks in November 2015 versus 3.05 ticks in Febru-
ary 2016). For the rest of the period under review, with the exception of the heightened
uncertainty surrounding the Brexit announcement6, implied volatility and spreads returned
to levels close to those observed at the beginning of the period. The VCAC stood at 20, see
Figure I.3, spreads were tighter (2.5 ticks on average) and order book depth increased slightly,
but did not return to the levels seen in November 2015.

For the entire period under review, excluding the two most volatile days (the 3

r d of December
2015 and the 24

th of June 2016), Figure I.4 shows that HFTs market share in terms of market
depth remains almost constant7: close to 80% at the three best price limits.

Figure I.3 and Figure I.4 essentially establish that market depth and implied volatility follow
opposite trends over the period: the higher the implied volatility (and thus the higher the
risk), the lower the liquidity provision (shallower market depth and wider spreads).

Finally, we observe that implied volatility a�ects all market participants evenly. So, contrary
to what could be expected, HFTs are not less sensitive than other participants to the stress

6A speciÆc analysis of the behaviour of HFTs around the Brexit referendum result announcement is provided
in Section 6.2.

7Although HFTs market share in terms of market depth was relatively constant for the entire period, the days
3

r d of December 2015 and 24

th of June 2016 showed a sharp decline in market depth provided by HFTs, see
Sections 6.1 and 6.2.
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in the market, although most of them beneÆt from rebates, that could be read as incentive to
provide liquidity during periods of stress. These Ændings raise questions about the relevance
of fee rebates if they are meant to compensate for adverse selection under stress conditions.

3.4 Intraday analysis

We now consider intraday analysis. We focus in particular on the behaviour of HFTs around
scheduled announcements. On the one hand, and by deÆnition, non-directional market mak-
ing strategies try to avoid sharp price moves. Thus, a withdrawal of HFTs orders before a
scheduled announcement seems a rational practice. On the other hand, some HFTs obtain
rebates to maintain liquidity. So it is possible that they do not need to reduce their presence
in the limit order book to preserve their proÆt.

Most of the scheduled announcements were enumerated in Section 2.3.3, and can be identi-
Æed on the next graphs by a fall of the VCAC.

In Figure I.5, we display the bid-ask spread in ticks and the market share of HFTs and non-
HFTs in terms of market depth averaged over the whole period.

Figure I.5 – Intraday seasonal evolution of market share in terms of depth compared to the
bid-ask spread in ticks. HFTs contribute to spread tightening at the beginning of the day
(their share increases while spread tightens). They withdraw their orders at the end of the
day.

In Figure I.6, we plot the VCAC and the market depth of HFTs MD HF T and of non-HFTs
MDnHF T .

47



I. The behaviour of high-frequency traders under di�erent volatility market stress scenarios

Figure I.6 – Intraday seasonal evolution of HFTs market depth MD HF T and non-HFTs market
depth MDnHF T . Market depth o�ered by HFTs increases at the beginning of the day and
decreases at the very end of the day. HFTs withdraw their orders promptly before the an-
nouncements, which is rarely the case for non-HFTs. For example at 2:30 p.m., HFTs presence
falls by 40% compared to its value before 2:30 p.m.

3.4.1 Intraday behaviour

Figure I.5 and Figure I.6 show that the average intraday evolution of market depth exhibits
wide disparities between HFTs and non-HFTs:

• Non-HFTs provide a relatively constant amount (slightly increasing) in the order book
throughout the day — except for the last 15 minutes of the day when the amount o�ered
by non-HFTs increases quickly. This behaviour at the end of the day is driven by the
strategy adopted by one particular market participant8, see Figure I.6.

• HFTs behave quite di�erently: both their share in market depth, see Figure I.5, and the
amount they o�er, see Figure I.6, increase during the Ærst hour of the day with a sharp
rise at 10 a.m. (linked to the arrival of one particular participant). The levels remain
stable during the day, albeit with temporary declines before the usual announcement
times (identiÆed by a fall in implied volatility in Figure I.6) and sometimes accompanied
by spikes in historical volatility, see Figure I.10. At the end of the day, HFTs share in
terms of market depth and amounts o�ered decreases rapidly. Indeed, HFTs do not
generally hold overnight positions.

8For conÆdentiality reasons, it is not possible to specify who this one market participant is.
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3.4.2 Focus on the behaviour before and after scheduled announcements

Figure I.5 and Figure I.6 clearly demonstrate that the market depth o�ered by HFTs thins
out ahead of scheduled announcements that are likely to cause price shocks. Most of them
sharply reduce their liquidity provision a few minutes (generally 3 minutes) before the an-
nouncements, unlike other market participants who decrease slightly their amount of limit
orders. This is particularly the case for announcements occurring at 1:45 p.m., 2:30 p.m. and
4 p.m. This withdrawal before announcement times contributes to bid-ask spread widening.
For example, at 2:30 p.m. spread gains 32% while depth decreases by 35%. Then HFTs liquid-
ity returns quickly to the order book after the announcements (generally one or two minutes
later).

Thus, despite the rebates that some SLP members receive to provide liquidity, HFTs sharply
reduce their presence before scheduled announcements. Attempts to require market makers
to be present during announcements periods (which represent about 1% of the total time
markets are open everyday) to smooth price moves have so far been unsuccessful. The
presence requirements in the new European directive MiFID II for HFT market makers leave
signiÆcant scope for withdrawal from the order book: at least 50% of the trading session
excluding the opening and closing auctions, see [36]. This means HFTs can remove their
orders from the book 50% of the time, a percentage far larger than 1%.

3.4.3 Focus on the 10 most impactful announcements at 2:30 p.m.

We now analyse the changes in liquidity around the 10 announcements at 2:30 p.m. having
the greatest impact on prices9

In Figure I.7, we display the intraday evolution of the bid-ask spread in ticks together with
the HFTs and non-HFTs market shares and depths around 2:30 p.m. This is done over the
whole period on the one hand, and on the other hand just considering the 10 most impactful
announcements at 2:30 p.m.

9The following days are those with highest historical volatility at 2:30 p.m.: December 3, December 4, January
8, January 21, February 5, February 12, March 4, March 10, May 6 and July 8.
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Figure I.7 – Bid-ask spread in ticks together with HFTs and non-HFTs market shares and
depths: Comparison between the whole period and the 10 most impactful announcements
occurring at 2:30 p.m.

Figure I.7 shows a wider range of spread and market depth Øuctuations for the 10 most
impactful announcements than on the overall period. Still, the patterns are very similar
to those described above. For instance, for the 10 most impactful announcements, HFTs
withdraw 70% of their orders from 2:28 p.m. and return to a nearly 80% market share in
terms of market depth from 2:35 p.m. Hence, when large volatility spikes are expected, HFTs
withdrawal is quite signiÆcant compared to other market participants. This can be understood
as a fear from adverse selection from market makers.

4 Trading activity of HFTs: Amounts traded and aggressiveness

The previous section focused on limit orders inserted by market participants and compared
the behaviour of HFTs to that of non-HFTs. In this section, we are interested in the executed
limit orders and their counterparts. In other words, we analyse transactions to evaluate the
trading practices of HFTs.

An order is referred to as aggressive when it initiates a trade. A passive order is the coun-
terpart to any aggressive order. We recall that a transaction is derived from the matching of
an aggressive order with a passive order. An executed passive order provides liquidity, while
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an aggressive order consumes liquidity. In this section, we investigate the HFTs market share
in amounts traded and the role they play in transactions: are they mainly liquidity providers
or liquidity consumers, in other terms, are their orders mainly aggressive or passive? First,
we describe the metrics used to assess the trading behaviour of HFTs. Then we discuss the
expected behaviour of a traditional market maker. Thereafter, we analyse the dynamics of
HFTs from a day-to-day and an intraday scale. We compare it to that of a traditional market
maker, with the objective of understanding whether or not HFTs do really play the role of
market markers.

4.1 Metrics used

In order to evaluate the trading behaviour of HFTs, we measure their share in amounts traded
and their aggressiveness. We deÆne below these two metrics.

• The HFTs share in amounts traded during a time interval [t , t +h), denoted by
MSHF T (t , t +h), is the ratio of amounts traded by HFTs (aggressively and passively)
across all the stocks during [t , t +h) over all the amounts traded in the market during
[t , t +h). It is deÆned by

MSHF T (t , t +h) = MHF T (t , t +h)

MHF T (t , t +h)+MnHF T (t , t +h)

,

where MHF T (t , t +h) are the amounts traded (volume multiplied by price) by HFTs
during (t , t +h) and MnHF T (t , t +h) the amounts traded by non-HFTs during (t , t +h).

• The HFTs aggressive/passive ratio during a time interval [t , t + h), denoted by
RA/P (t , t +h), is the ratio of amounts traded aggressively by HFTs across all the stocks
during [t , t +h) over the total amounts traded by HFTs (aggressively and passively)
during the same time period. It is deÆned by

RA/P (t , t +h) =
Mag (t , t +h)

Mag (t , t +h)+Mpa(t , t +h)

,

where Mag (t , t +h) are the amounts executed aggressively by HFTs during (t , t +h) and
Mpa(t , t +h) the amounts executed passively by HFTs during (t , t +h).

The HFTs aggressive/passive ratio represents the ratio of liquidity consumed by HFTs
over the total liquidity consumed and provided by HFTs. A ratio of x% means that x%

of the volume of the transactions they are involved in is liquidity consumption.

In the sequel, market share in amounts traded and aggressive/passive ratio are computed
every minute of each trading day, so we compute MSHF T (t , t +60) and RA/P (t , t +60). For
the intraday scale, these metrics are averaged across all days. For the day-to-day scale, these
metrics are averaged across all the minutes for each day.
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4.2 Preliminary statistics

Aggressive Passive Percentages
orders orders (in volume)

HFTs HFTs 33.6%
non-HFTs HFTs 22.4%
HFTs non-HFTs 31.2%

non-HFTs non-HFTs 12.8%

Table I.2 – The di�erent interactions between HFTs and non-HFTs in the market.

Table I.2 describes the di�erent interactions between HFTs and non-HFTs in the market. Four
scenarios are possible. It shows that 60% of liquidity provided by HFTs is consumed by other
HFTs, and 40% by non-HFTs. Liquidity provided by non-HFTs is mainly consumed by HFTs
(71%). This could indicate information asymmetry among participants since aggressive trades
are generally more informed than passive trades, see [20, 52, 99, 105]. In the classical theory
of market making (like [76]), market makers are not supposed to act as informed traders. Ta-
ble I.2 suggests that the behaviour of HFTs is perhaps not what could be expected, in theory,
from that of market makers10, see Section 4.3.

In addition to this, Table I.3 shows that in terms of market share and aggressiveness, all HFTs
do not behave similarly. In particular, 50% of the activity among HFTs is held by 4 members,
as they have very di�erent levels of aggressiveness.

Aggressive/Passive ratio Aggressive/Passive ratio
over 50% below 50%

Part in number 40% 60%
Part in traded amounts 55% 45%

Mean of ratio (std) 67% (10%) 25% (18%)

Table I.3 – Disparity in aggressiveness between HFTs.

4.3 Typical behaviour of market makers

HFTs often position themselves as market makers that theoretically act only as intermediaries
between buy-side and sell-side Øows. This is acknowledged by the academic literature. For

10We keep in mind that we provide statistics on all HFTs. We could have some HFTs having a behaviour very
similar to what is expected from a market maker, among numerous HFTs not acting like market makers. We are
not able to make the di�erence here between them. Thus we conclude that, as a whole, HTFs do not act as market
makers.
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example, according to [27]: “Given these results, HFTs appear to be a new form of market
makers". Therefore, an intuitive scheme would be an HFT buying from a non-HFT and sell-
ing to another non-HFT. In this case, one might expect that the share of HFTs in amounts
traded MSHF T is below 50%. It could at most be equal to 50% in case all the members pro-
viding liquidity are HFTs. However, Table I.2 shows that this is not what happens in practice.
In Section 4.4 and 4.5, we will be interested in how HFTs share in amounts traded varies
according to time and scheduled announcements.

As already mentioned above, market makers are intermediaries that minimise inventory risk
by holding positions for very short periods (only intraday). An approximation for market
makers’ average gain per trade is S/2° ˜æ, where S is the spread and ˜æ is the volatility per
trade, see [41, 86, 115]. It is proportional to the spread, but decreases with the volatility per
trade. In light of the above, one can think that typical market makers reduce their liquidity
provision strategies in anticipation to large price moves triggering volatility bursts (for exam-
ple at the time of scheduled announcements).

Still, it could be expected that market makers aggressive/passive ratio RA/P does not exceed
50%. Indeed, this value is the one that should be obtained in a scenario of a market consisting
only of buyers (or sellers), where the market maker does not succeed in unwinding its position
by posting limit orders and use aggressive orders.

4.4 Day-to-day analysis

In Figure I.8, we display the evolution of historical volatility in parallel with that of adjusted
amounts traded11 by HFTs and non-HFTs.

11The adjusted amounts traded are the amounts traded multiplied by the variation of CAC 40 index between
the Ærst day of the analysis and the day into question. Thus they are not a�ected by the fall in prices in the Ærst
part of the period under review. We apply in fact the same principle as for the deÆnition of AMD in Section 3.1.
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Figure I.8 – Daily evolution of historical volatility and amounts traded by HFTs and non-
HFTs: Days with high historical volatility coincide with large traded volumes. HFTs and
non-HFTs have essentially the same behaviour in terms of amounts traded.

Figure I.8 shows as expected a positive relationship between volatility and traded volume.
The variations of HFTs and non-HFTs amounts traded are essentially the same over the pe-
riod.

In Figure I.9, we display HFTs share in amounts traded together with the aggressive/passive
ratio of HFTs over the period.
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Figure I.9 – HFTs trading behaviour over the period: HFTs share in amounts traded is slightly
a�ected by the market stress, in average close to 60%. Contrariwise, the aggressive/passive
ratio is relatively stable throughout the period, close to 53%.

Figure I.9 shows that HFTs share in amounts traded is slightly dependent on the market stress,
and oscillates around 60% (auctions excluded). In the beginning of the period, till February
9, the market is stressed, and at the same time, the HFTs market share is on average higher
than 60%. From mid February till June, the market stress decreases and is stable. During this
period, the HFTs market share decreases and is in general less than 60%. In June, the market
stress increases again. Concomitantly, we can see a slight increase in the HFTs market share,
which becomes higher than 60%. Though, their aggressiveness is quite stable throughout the
period: on average, they consume more liquidity than they provide, with an aggressive/passive
ratio around 53%.

It is clear from Figure I.8 that spikes in historical volatility coincide with sharp increases
in amounts traded. However, the activity of HFTs does not seem to be largely a�ected by
variations in implied volatility over the period: their share in amounts traded is moderately
a�ected by the market stress and their aggressive/passive ratio remains quite constant for the
entire period under study, see Figure I.9.

4.5 Intraday analysis

In Figure I.10, we consider the intraday evolution of amounts traded and historical volatility.
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Figure I.10 – Intraday evolution of historical volatility and amounts traded: they are positively
correlated, except at the very end of the day when volatility decreases as amounts traded
increase.

Intraday analysis shows the same relationship between volatility and amounts traded as that
mentioned above. Indeed, we see in Figure I.10 that the greater the price moves (high his-
torical volatility), the larger the amounts traded. However, at the very end of the day, this
relationship no longer holds: amounts traded increase sharply while historical volatility de-
creases.

In Figure I.11, we show the intraday evolution of HFTs amounts traded and HFTs share in
terms of buy and sell trades.
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Figure I.11 – Intraday evolution of HFTs share in amounts traded: it increases at the beginning
of the day and then stabilises at about 60% until the U.S. market opening, after which it rises
to 65%. Amounts traded are much larger at the beginning and end of the day. The intraday
HFTs share in sell trades is similar to that in buy trades except at the beginning of the day
where HFTs share in sell trades is slightly larger.

In Figure I.12, we display the HFTs market share in terms of market depth (already studied in
Section 3.4), the aggressive/passive ratio RA/P and the HFTs share in amounts traded MSHF T .
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Figure I.12 – Intraday trading behaviour of HFTs: HFTs are slightly more aggressive after
the U.S. market opening (the aggressive/passive ratio RA/P is equal to 55% versus 52% the
rest of time) while their share in amounts traded MSHF T increases at the same time. At the
beginning and end of the day, their aggressive/passive ratio is higher, which is actually due to
a decrease in their contribution to market depth. Their share in terms of amounts traded is
also lower during these periods.

Figures I.11 shows that amounts traded (purchase and sale amounts follow similar trends, so
no distinction is made in the sequel) by the entire market decrease in the Ærst part of the day,
then increase during the CAC 40 and EUROSTOX 50 futures price auctions (between 11.45
a.m and 12 p.m.), on the Ærst important announcements time, at 2:30 p.m., and in particular
after the U.S. market opening at 3:30 p.m. In the last hour, volumes swell until the close.

4.5.1 Intraday behaviour of HFTs

A closer examination of Figures I.11 and I.12 reveals four distinct phases:

• At the beginning of the day, HFTs’ share in amounts traded increases gradually from
50% to 58%. At the same time, their aggressive/passive ratio falls from 65% to 55%.
A decrease of the aggressive/passive ratio results either from a decrease in aggressive
trades and/or the addition of passive orders. In this case, not only do HFTs reduce
their aggressive orders, but they also increase their passive contribution to the order
book.

• Before the U.S. market opening, amounts traded by the market as a whole are relatively
stable, as is HFTs’ share in amounts traded (60%) and their aggressive/passive ratio
(52%).

• The U.S. market opening leads to an increase in activity which, in the case of HFTs, is
particularly pronounced. Their share in amounts traded rises from 58% to 65%. Their
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aggressive/passive ratio also increases from 52% to 55%. This surge in aggressiveness is
most likely due to the appearance of arbitrage opportunities. HFTs therefore consume
more liquidity than they provide.

• At the end of the day, HFTs gradually withdraw and their share in amounts traded
decreases from 60% to 55%. Their aggressiveness increases due to the decrease in their
market depth and probably their desire to unwind positions before the close, which
tends to incite aggressive behaviour. It should be noted that at the end of the day,
the decrease in the HFTs’ share in amounts traded is compounded by a change in the
behaviour of non-HFTs who dramatically increase their amounts traded.

4.5.2 SpeciÆc behaviour around scheduled announcements

From Figure I.12, it appears that the behaviour of HFTs is particularly inØuenced by announce-
ments and times of high historical volatility (for example after the opening of the U.S. market).
A speciÆc analysis of announcement periods shows a temporary change in the behaviour of
HFTs at these times.

• Before an announcement, as already seen in Section 3.4, HFTs sharply reduce their
presence in the order book, much more than other participants, and their passive trades
decrease accordingly. This explains the fall in their share in amounts traded before the
2:30 p.m. announcement, which declines from 60% to 56%, as well as the increase in
their aggressive/passive ratio which rises from 52% to 57%. Here the aggressive/passive
ratio of HFTs increases not because they increase their aggressive Øows, but because
they decrease their passive liquidity provision in the order book.

• After an announcement, prices are often severely a�ected. This leads to a sudden
increase in aggressive Øows from HFTs (as is the case after the U.S. market opening).
HFTs share in amounts traded therefore rises from 56% to 62% at 2.30 p.m. and they
are temporarily more aggressive, although their passive provision of liquidity in the
order book quickly returns to its prior level, see Figures I.5 and I.6. In contrast to
what happens before announcements, HFTs do not reduce their passive orders after
announcements but increase their aggressive orders. When the price Øuctuates widely,
the aggressive/passive ratio for these participants generally exceeds 50%. This probably
reØects transformation of some mean reversion strategies into short-term directional
(momentum) ones, which can hardly be considered as market making.

4.5.3 Focus on the 10 most impactful announcements at 2.30 p.m.

In the spirit of what we did in Section 3.4.3, we analyse the changes in the HFTs share in
amounts traded and their aggressive/passive ratio around the same 10 announcements at 2:30
p.m. that had the greatest impact (the highest historical volatility) on prices during the period
under review.
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In Figure I.13, we display the intraday evolution of HFTs aggressive/passive ratio, HFTs share
in terms of market depth and HFTs share in amounts traded around 2:30 p.m. over all the
period on the one hand, and considering only the 10 most impactful announcements at 2:30
p.m. on the other hand.

Figure I.13 – Evolution of the HFTs trading behaviour at 2:30 p.m. across all the days (top
graph) and across the 10 days with the most volatile announcements (bottom graph). An-
nouncements are accompanied by a reduction in HFTs passive orders in the order book,
which results in an increase of their aggressive/passive ratio. These variations are more
pronounced in periods of major announcements.

Similar patterns are observed on both graphs in Figure I.13. However, more striking e�ects
are obtained when considering the 10 most impactful announcements only. In particular,
we see that after the 10 most impactful announcements (at about 2:33 p.m.) HFTs share in
amounts traded increases sharply to 71%, well above the value usually reached (62%).
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5 A more quantitative analysis around the 4
p.m. announcement

In this section, we analyse HFTs behaviour by di�erentiating between days with announce-
ments and days without announcement at 4 p.m.

The goal of this section is to test for a speciÆc “announcement e�ect" impacting the attitude
of HFTs. We take the minute at which a news is released as a dummy for this e�ect. Moreover,
we try to control the volatility component of news. We expect more volatility during news
and we want to make the di�erence between the usual reaction of HFTs to an increase of
volatility, and an actual “scheduled announcement e�ect” that comes on top of this volatility
e�ect.

It is natural to focus on the announcements happening at 2:30 p.m. and at 4 p.m. However,
announcements at 2:30 p.m. do not constitute a good database for our analysis: there are 181
days with announcements versus only 10 days without announcements, which is not su�cient
for a robust statistical study. This is why we focus on announcements happening at 4 p.m. We
only consider news related to the U.S economy. Indeed, as already mentioned in Section 2.3.3,
they represent the majority of announcements at 4 p.m. We classify the days into two groups:
days with U.S announcements at 4 p.m. (140 days) and days without announcements at 4 p.m.
(51 days). Then we restrict the analysis to the time interval 3:40 p.m. to 4:50 p.m.

We split time in disjoint intervals of one minute, indexed by the starting time of the interval
denoted by t (interval with t =4 p.m. contains all events occurring after 4 p.m. and before
4:01 p.m.). Let B (for Before), D (for During ) and A (for After ) be dummy variables on these
bins of one minute:

• If t =3:58 p.m. or t =3:59 p.m. then B = 1, otherwise B = 0.

• If t =4 p.m. then D = 1, otherwise D = 0.

• If t =4:01 p.m. or t =4:02 p.m. then A = 1, otherwise A = 0.

To account for a volatility e�ect (since HFTs react to volatility in general) we take here as
proxy for historical volatility of stock s on day d in the time interval starting at t the price
range during the considered minute12. This price range æs

(t ,d) is the di�erence between the
maximum price and the minimum price between time t and time t +60 seconds.

Moreover, we expect the HFTs behavioural change not to be a function of the absolute level of
volatility, but of the intensity of “abnormality” of the volatility. Thus we use a “renormalised
volatility" which is equal to the price range computed above, divided by the average value

12In the regression framework of this section, we can consider each stock separately and do not need to
aggregate them. In particular, volatility is computed stock by stock in very short time intervals, hence the use of a
max-min type measure.
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between 3.40 p.m. and 4.50 p.m. of price range over all the days in our database for the
considered stock. This new indicator is denoted by æs

nor m(t ,d).

We do an Ordinary Least Squares (OLS) regression where we want to explain the following
variables:

• HFTs market share in terms of market depth.

• HFTs share in amounts traded.

• HFTs aggressive/passive ratio.

Our methodology is the following. For each of these variables, a regression is Ærst done on
days without announcement. It is expected to account for a volatility e�ect and other phe-
nomena such as news which are not in our database. We retain only the variables having a
t-stat large enough to show a signiÆcant e�ect, and redo the OLS with these variables only.

Then we apply another linear model on days with announcements, controlling for the e�ects
identiÆed in the Ærst regression. This enables us to isolate the impact of explanatory variables
in the presence of announcements on our variables of interest.

5.1 Analysis of HFTs market share in terms of market depth

In Table I.11 in appendix, we display the regression of HFTs market share in terms of market
depth during days without announcement. The coe�cients of ænor m , B , D and A are not
signiÆcant. We give the results of the regression only in terms of signiÆcant variables in
Table I.4.

Variable Coef. Std. err. t P > |t | 95% Conf. Int.

Constant 0.7866 0.003 302.564 0 [ 0.781, 0.792 ]

Table I.4 – Regression for HFTs market share in terms of market depth during days without
U.S. announcement at 4 p.m., using signiÆcant explanatory variables only.

Table I.4 shows that HFTs market depth during days without announcement cannot be better
explained than by a constant equal to 78.66%. There is no noticeable inØuence of the time
slots (A, B and D) and of the renormalised volatility ænor m .

In Table I.5, we consider the regression of HFTs market depth during days with announce-
ments once the constant of Table I.4 is subtracted.

62



5. A more quantitative analysis around the 4 p.m. announcement

Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.011 0.002 6.302 0 [ 0.008, 0.015 ]
ænor m °0.0045 0.002 °2.664 0.008 [ -0.008, -0.001 ]
B °0.0520 0.004 °14.404 0 [ -0.059, -0.045 ]
D °0.1507 0.005 °28.941 0 [ -0.161, -0.141 ]
A °0.0283 0.004 °7.797 0 [ -0.035, -0.021 ]

Table I.5 – Regression for the contribution of HFTs to market depth during days with U.S.
announcements at 4 p.m., once the e�ect of Table I.4 removed.

Table I.5 shows that all variables are signiÆcant: announcements do have an impact on HFTs
market share in terms of market depth. Moreover it says that the decrease of the market share
of HFTs on liquidity provision goes beyond a simple volatility e�ect. HFTs do contribute
less to market depth before, during and after announcements, even once a volatility e�ect is
taken into account. Their contribution decreases by about 5% before the announcement, 15%
during the announcement and 3% after the announcement. This result is consistent with the
observations in Section 3.4.

5.2 Analysis of HFTs aggressive/passive ratio

In Table I.12 in appendix, we display the regression of the HFTs aggressive/passive ratio
during days without announcement. The coe�cients of B and A are not signiÆcant. So we
redo the regression only with signiÆcant variables. Obtained results are given in Table I.6.

Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.5340 0.002 228.198 0 [ 0.529, 0.539 ]
ænor m 0.0111 0.002 5.023 0 [ 0.007, 0.015 ]
D 0.0169 0.007 2.494 0.013 [ 0.004, 0.03 ]

Table I.6 – Regression for the aggressive/passive ratio of HFTs during days without U.S.
announcement at 4 p.m., using signiÆcant explanatory variables only.

Table I.6 shows that the HFTs aggressive/passive ratio is essentially more than 53.4%. The
ratio increases with renormalised volatility (HFTs as a whole turn to remove more liquidity
when volatility increases), and increases for about 1.7% at 4 p.m. This indicates that some
news other than the ones in our database may have an impact on some HFTs, or that some
HFTs become more aggressive automatically at 4 p.m., whether there are news or not13.

13It may be a way to be “protected” against the operational risk associated to “miss” an announcement.
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In Table I.13 in appendix, we give the results of the regression of the HFTs aggressive/passive
ratio during days with announcements corrected by the e�ects in Table I.6, denoted by r esRA/P :

r esRA/P = RA/P °0.5340°0.0111 ·ænor m °0.0169 ·±D .

The coe�cient of A is not signiÆcant and we consider the regression with signiÆcant variables
only in Table I.7.

Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.0113 0.001 9.029 0 [ 0.009, 0.014 ]
ænor m °0.0053 0.001 °4.475 0 [ -0.008, -0.003 ]
B 0.0184 0.003 7.116 0 [ 0.013, 0.023 ]
D 0.0268 0.004 7.237 0 [ 0.02, 0.034 ]

Table I.7 – Regression for r esRA/P during days with U.S. announcements at 4 p.m., using
signiÆcant explanatory variables only.

Table I.7 shows that during days with announcements, an increase of volatility has the opposite
e�ect than the one during days without announcement. It may be an adverse selection
phenomenon. Moreover, HFTs turns to be signiÆcantly more liquidity consumers just before
and during the announcements (respectively for about 2% and 2.5%). This result is consistent
with the observations in Section 4.5.

5.3 Analysis of HFTs share in amounts traded

In Table I.14 in appendix, we display the regression of HFTs share in amounts traded during
days without announcement. The coe�cients of A, B and D are not signiÆcant. We give the
results of the regression using signiÆcant variables only in Table I.8.

Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.5557 0.003 208.543 0 [ 0.551, 0.561 ]
ænor m 0.0473 0.003 18.740 0 [ 0.042, 0.052 ]

Table I.8 – Regression for HFTs share in amounts traded during days without U.S. announce-
ment at 4 p.m., using signiÆcant explanatory variables only.

Table I.8 shows that in the absence of news in our database, HFTs share in amounts traded
is essentially higher than 55%, and increases with renormalised volatility.

In Table I.15 in appendix, we give the results of the regression of HFTs share in amounts
traded during days with announcements, corrected by the e�ect in Table I.8, denoted by
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r esMS :
r esMS = MS °0.5557°0.0473 ·ænor m

The coe�cient of A is not signiÆcant. So we conduct the regression using signiÆcant explana-
tory variables only. Results are given in Table I.9.

Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.0097 0.001 16.799 0 [ 0.009, 0.011 ]
B °0.0346 0.003 °10.228 0 [ -0.041, -0.028 ]
D °0.0469 0.005 °9.869 0 [ -0.057, -0.038 ]

Table I.9 – Regression for r esMS during days with U.S. announcements at 4 p.m., using
signiÆcant explanatory variables only.

Table I.9 shows that HFTs share in amounts traded decreases by 3.5% before the announce-
ment and by 4.7% during the announcement. Recall that it is corrected from usual reaction
to volatility. These results are consistent with the observations in Section 4.5.

5.4 Summary

All these regressions point out in a quantitative way that the behaviour of HFTs around
announcements cannot be read as a simple reaction to associated variations of volatility.
Around a scheduled announcement, on top of usual reactions to volatility, HFTs provide
15% less liquidity, are slightly more aggressive and trade less. On the contrary, when no
announcement is planned, their attitude towards an increase of volatility goes in the opposite
direction (trading more). We thus identify a “change of regime" in the presence of scheduled
news.

6 Detailed analysis of two events

So far, we have analysed the average impact of various announcements on HFTs activity. In
this section, we focus on two speciÆc days characterised by announcements with very high
impact on historical volatility (sharp price changes). The Ærst day we consider is the 3

r d of
December 2015 (ECB announcements) and the second one is the 24

th of June 2016 (Brexit
day).

6.1 Focus on the 3

r d of December 2015

The 3

r d of December 2015 was one of the most volatile days of the entire period due to
several ECB announcements. We Ærst describe the three announcements that took place
during this day: one misleading announcement, and two o�cial announcements. Second, we
investigate the consequences of the misleading announcement, and Ænally the short-term and
longer-term impacts of the o�cial announcements.
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6.1.1 Description of the day

About two weeks before the 3

r d of December 2015 and following the publication of the ECB’s
minutes, markets were optimistic about the new monetary policy to be implemented by the
ECB. The ECB, which was seeking to Æght low inØation (0.1% in November) and stimulate the
European economy, had two levers at its disposal:

• Lower its deposit rate, which was already in negative territory (-0.2%).

• Bolster its purchase programme (quantitative easing) by extending the programme’s
duration and/or increasing the monthly amount of asset purchases (EUR 60 billion).
The market was expecting not only an extension of the programme’s duration but also
an increase in its monthly amount.

The ECB publishes its announcements on Thursdays at 1:45 p.m. and holds a press conference
the same day at 2:30 p.m. In Figure I.14, we display the Øuctuations of the CAC 40 index and
the VCAC due to the various announcements on the 3

r d of December 2015.

Figure I.14 – The CAC 40 index and the VCAC on the 3

r d of December 2015: there were three
major announcements during the day. First, an information leak from the Financial Times at
1:38 p.m., followed by two o�cial ECB statements at 1:45 p.m. and 2:30 p.m.

We see in Figure I.14 that the day was marked by three major announcements:

• At 1:38 p.m. (a few minutes before the 1:45 p.m. o�cial announcement) the Financial
Times announced on Twitter that the ECB would leave rates unchanged. This misinfor-
mation led to market distortions: at 1:38 p.m., the CAC 40 fell by 0.56% but regained
its initial value just before the announcement of 1:45 p.m.
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• At 1:45 p.m., the ECB announced that it was lowering its deposit rate by 10 basis points,
from -0.2% to -0.3% from the 9

th of December, and the CAC 40 then began to decline
gradually.

• However, since the market was still probably optimistic about other monetary policy
measures to be communicated during the press conference held by ECB President Mario
Draghi, the fall was not so signiÆcant and the index started to go back up from 2:09
p.m.

• At 2:30 p.m., Mario Draghi announced that the quantitative easing programme launched
in March 2015 would be extended until at least the end of March 2017, but with no in-
crease in the amount of purchases. This came as a severe disappointment to the market.
The CAC 40 dropped signiÆcantly from 2:33 p.m. to 2:45 p.m.: in only 12 minutes, it
lost 3.22% amid very heavy trading.

For the period under review, the 3

r d of December was the most volatile day14. It there-
fore provides an interesting case study for HFTs reactions to several consecutive major price
shocks in terms of liquidity consumption and provision.

We now present a series of graphs about liquidity, amounts traded and HFTs behaviour that
we analyse in details in Sections 6.1.2 and 6.1.3
In Figure I.15, we display the evolution of the bid-ask spread in ticks and HFTs market share
in terms of market depth around the announcements: from 1 p.m. to 3 p.m.

Figure I.15 – Evolution of the spread and HFTs market share in terms of market depth on the
3

r d of December 2015: a few minutes before the announcements, spread widened after the
withdrawal of passive orders by all participants and by HFTs in particular.

14In fact, the day of 24

th of June 2016 was somehow more volatile but the volatile part of the day occurred
pre-market.
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In Figure I.16, we give the HFTs and non-HFTs market depth, and the HFTs market share in
terms of market depth during all the day.

Figure I.16 – Evolution of market depth on the 3

r d of December 2015. The announcements
had a strong immediate impact: a very sparse order book, with the share of HFTs in market
depth terms falling from 82% to 57% just after the announcement at 2.30 p.m. They also had
a long-term impact: less liquidity in the order book than in the pre-announcement phase.

In Figure I.17, we present the HFTs and non-HFTs aggressive Øows, and the HFTs share in
aggressive Øows.
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Figure I.17 – Evolution of aggressive Øows on the 3

r d of December 2015. The announcements
had a strong immediate impact: a much more active market, with the share of HFTs in aggres-
sive trade terms increasing from 76% to 84% just after the announcement at 2.30 p.m. They
also had a long-term impact: a more active market than in the pre-announcement phase, with
HFTs share in aggressive trades increasing from 65% on average before the announcements
to 73% after the announcements.

In Figure I.18, we consider the HFTs share in amounts traded and aggressive/passive ratio on
the 3

r d of December.

Figure I.18 – Evolution of the HFTs share in amounts traded on the 3

r d of December 2015.
The announcements had an immediate impact on HFTs share in amounts traded, which
rose signiÆcantly, and a long-term impact, as HFTs share in amounts traded remained high
until the end of the day. In contrast, the aggressive/passive ratio was una�ected by these
announcements.
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6.1.2 Impact of the misleading announcement

At 1:38 p.m., the misleading announcement by the Financial Times was unexpected. The
impact of this information leak on market participants was therefore di�erent from that de-
scribed previously for scheduled announcements. In particular:

• Before scheduled announcements, there is generally a decrease in HFTs market share
in terms of market depth in the order book, as HFTs withdraw their passive orders to a
greater extent than non-HFTs.

• In this speciÆc case, reactions were di�erent: Figure I.16 shows that after the misleading
announcement at 1:38 p.m., HFTs market share in market depth increased from 80% to
90%. HFTs and non-HFTs both withdrew from the order book. However, HFTs market
depth fell by about 50%, while for non-HFTs the decrease was around 75%. At 1:38
p.m., it is likely that non-HFTs could not track the price drop and hence were unable to
update their orders, whereas HFTs were able to quickly move their orders and maintain
part of their passive liquidity provision in the order book.

6.1.3 Impact of the o�cial announcements

Before the announcements Before the two announcements involving accurate information
(1:45 p.m. and 2:30 p.m.), market participants behaviour was in line with that described pre-
viously in Sections 3.4 and 4.5. Nevertheless, it was quite ampliÆed.

Before each of these two announcements, market depth decreased mainly because HFTs
withdrew. The share of HFTs in terms of market depth decreased from 80% to 60%, see
Figure I.16. Recall that in such situation, it decreases usually on average from 80% to 73%,
see Figure I.5. This withdrawal induced a very sharp widening of the bid-ask spread, see
Figure I.15. The average spread on French securities reached its widest for the period under
review at almost 19.9 ticks while in the three hours preceding the Ærst announcement, it stood
on average at 2.7 ticks.

The short-term impact after the o�cial announcements Right after each of these an-
nouncements, amounts traded increased signiÆcantly. Figure I.17 shows for example that three
minutes after the 2:30 p.m. announcement, they were multiplied by almost 40 compared to
before the announcement. Furthermore, HFTs share in amounts traded reached 82% about
two minutes after the announcement, see Figure I.18 (during this period, HFTs represented
approximately 90% of aggressive trades). The order book gradually recovered approximately
30 minutes after each announcement but never reached its pre-announcement levels, in terms
of market depth and spread, see Figure I.15 and Figure I.16. It is likely that some participants
permanently reduced their presence in the order book after these two major shocks.

The long-term impact of the announcements: pre-announcement phase versus post-an-
nouncement phase The 3

r d of December 2015 announcements had a very strong impact
on prices, which lasted throughout the day.
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• After the announcements, overall market depth o�ered at the three best price limits
did not return to its initial level. It decreased from EUR 700,000 on average before
the announcements to EUR 450,000 on average (between 3 p.m. and 5 p.m.), see
Figure I.16.

• Between 3 p.m. and 5 p.m., high traded volumes were observed despite a thinner
order book, see Figure I.17. In the pre-announcement phase (before 1:38 p.m.), the
amount traded on average per minute was EUR 4.6 million and HFTs represented
65% of aggressive Øows. In the post-announcement phase, this amount tripled and
HFTs represented 73% of aggressive orders, which led HFTs share in amounts traded to
increase from 59% (pre-announcement phase) to 65% (post-announcement phase).

• It should be noted, however, that HFTs aggressive/passive ratio was una�ected by these
announcements. Indeed passive liquidity provision by HFTs (including at limits in the
order book beyond the third one) and aggressive Øows increased simultaneously.

6.1.4 Summary

The 3

r d of December 2015 was marked by three announcements that had strong impact on
prices. The announcements were all accompanied by a signiÆcant withdrawal from the order
book by all participants and by a sharp increase in traded volumes.

Contrary to what happens in typical situations, the order book recovered slowly and only
partially after each announcement. It seems that certain participants (HFTs in particular)
permanently withdrew their orders from the book in an over-volatile market environment.

Despite the sharp fall in HFTs passive liquidity provision at the three best limits during this
period of stress, after the announcements, their share in amounts traded was even slightly
higher than usually and they were particularly aggressive (market share in aggressive trades
of almost 75% after the announcements).

6.2 Focus on the 24

th of June 2016 (Brexit announcement)

We now analyse another day characterised by an impactful news: the Brexit announcement
on the 24

th of June 2016. As was the case on the 3

r d of December 2015, the announcement
caused a high historical volatility. However, a major di�erence between these two days is
that the Brexit news occurred prior to the market opening: the day of the vote was the
23

r d of June 2016 and the results were announced on the 24

th of June 2016, before the
opening of the market. Therefore, this day constitutes an interesting case study for impactful
announcement occurring pre-market. First we describe what happened around the 24

th of
June 2016, specifying what the expectations of the market were. Then we analyse the impact
on liquidity and on amounts traded of the Brexit news. The study of the various metrics
in this section is split into two main periods: the beginning of the day (until about 12 p.m.),
which casts uncertainty among market participants and saw very high levels of volatility, and
the rest of the day, where the market stabilised.
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6.2.1 Description of the day

On Friday, the 24

th of June 2016, markets were informed that United Kingdom had decided
to end 43 years of membership in the European Union (EU), causing the most volatile pre-
trading day over the period under study.

Figure I.19 displays the evolution of the CAC 40 index and of the VCAC before and after the
Brexit announcement, from June 23 to June 27.

Figure I.19 – Evolution of the CAC 40 index and the implied volatility VCAC during the three
days surrounding the Brexit announcement.

• Pre-Brexit: The Brexit referendum was an eagerly awaited historical decision that had
been anticipated by the market several days before the actual day of the vote ( June
23). Figure I.1 shows that days ahead of the vote results were characterised by high
levels of market stress, starting in particular on June 7. The market saw wide price
Øuctuations and the indicator of implied volatility, the VCAC, began to increase from
June 7 onwards (on that day, the VCAC stood at 21.73). It peaked at 36.41 on June 16.
The day before the announcement, June 23, most investors and analysts expected that
UK would vote to remain in the EU.

• The 24

th of June 2016, day of the Brexit announcement: The o�cial vote results were
published in the early morning of June 24, before European markets opening. Contrary
to expectations, UK citizens decided to leave the European Union (52% of the electorate
voted for Brexit). This disappointment was immediately reØected in the market: on
Euronext, trading in 36 out of 40 stocks in the CAC 40 was halted at limit down at the
open. The trading halt of several CAC 40 stocks lasted until 9:20 a.m.

When the index Ænally opened, it was down 7.6% compared to the previous closing.
It plunged by 8.04% to end the day at 4 106.73 points, after hitting a low of 4 007.97
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points (-10.25%). In terms of amplitude and speed, this was one of the most severe
market shocks since the 2008 crisis: it was the largest daily fall since October 2008.

• Post-Brexit: In the wake of the results announced on June 24, markets entered a period
of uncertainty and instability that lasted until mid-summer.

6.2.2 Methodology of the analysis

Since the Brexit announcement occurred pre-market, similar analysis to that conducted for
the 3

r d of December 2015, where we compared the variations of the metrics before and after
the news cannot be done. Here the comparison of the metrics is made with respect to a
reference period. To allow for an unbiased comparison, we choose a reference period during
which the market is stressed (rise in the VCAC) pending the outcome of the referendum: from
June 7 to June 23. Depths, spreads, trading amounts and aggressive/passive ratios are there-
fore quite comparable, not impacted by a variation in the implied volatility, but only by the
announcement.

To be able to compare on an intraday basis the metrics (depths and aggressive Øows) on June
24 with those in the reference period, the metrics in euros on June 24 are adjusted accounting
for the value of the CAC 40. For a given metric at time t on June 24, x

24

(t ), we deÆne the
adjusted metric at time t , xad j (t ,24), by

xad j (t ,24) = x
24

(t ) ·
Pr e f (t )

P
24

(t )

,

where P
24

(t ) is the value of the CAC 40 on June 24 at time t and Pr e f (t ) the average value
of the CAC 40 at time t over the reference period.
After computing the adjusted metric xad j (t ,24), we deÆne the ratio of the metric x at time t ,
rx (t ), by

rx (t ) =
xad j (t ,24)

xr e f (t )

,

where xr e f (t ) is the metric in question averaged at time t over the reference period.

6.2.3 Impact on liquidity

Impact on the overall market depth In Figure I.20, we display the market depth during
the reference period and the adjusted one on June 24.
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Figure I.20 – Comparison of the market depths between the reference period and June 24:
the order book was not as deep on June 24 as in the reference period and HFTs showed less
presence, particularly at the beginning of the day.

Figure I.20 shows that June 24 was marked by a signiÆcantly lower liquidity (HFTs and non-
HFTs alike) than in the two weeks prior to the Brexit. At the beginning of the day, the
uncertainty that followed the announcement led participants to sharply reduce their presence
in the book: market depth o�ered was on 45 % lower than over the reference period. Liquidity
then increased gradually during the day to stabilise around 33% lower than over the reference
period.

Impact on the market depth provided by HFTs and non-HFTs: beginning of the day
versus rest of the day Figure I.21 displays rMD HF T and rMDnHF T .
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Figure I.21 – HFTs and non-HFTs market depth on June 24: ratios with respect to the reference
period.

Figure I.21 shows that at the beginning of the day (transitional phase), HFTs and non-HFTs
behaviours contrasted markedly:

• HFTs reduced their presence signiÆcantly in the order book: market depth o�ered
represented one third of their usual market depth. This behaviour is no surprise since
such participants avoid placing passive orders during periods of uncertainty fearing
adverse selection.

• Non-HFTs partially o�set HFTs reduced liquidity by providing a market depth twice
larger than usually. Thus they supported liquidity, without being able to fully compen-
sate the deÆcit caused by HFTs withdrawal.

We can say here that non-HFTs became the main liquidity providers during this imme-
diate post-Brexit period.

Over the rest of the day, HFTs gradually re-entered the order book but it was only after 11
a.m. that their presence in the order book stabilised, albeit at a level far below their usual
market share in terms of market depth: they o�ered 40% less market depth than during nor-
mal periods and represented 65% of the order book compared with 75% during the reference
period.

Non-HFTs withdrew to a much lesser degree: they o�ered 20% less market depth than dur-
ing normal periods but represented 35% of the order book compared with 25% during the
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reference period. A detailed analysis of trades by non-HFTs shows that they in particular
supported liquidity by fully executing very large size buy orders between 1:15 p.m. and 2:15
p.m. In fact, studying the order book in periods when non-HFTs are very active reveals the
presence of very large size best limit orders, whose quantities are often hidden and are ex-
ecuted quickly. These orders show that non-HFTs desire to trade supported liquidity during
the session.

Impact on the spread In Figure I.22, we display the ratio for the spread rS .

Figure I.22 – Comparison between the spread on June 24 and during the reference period:
with respect to the reference period, the spread widened signiÆcantly at the beginning of the
day, gradually decreased and then stabilised from 12 p.m., while remaining larger than during
the reference period.

Figure I.22 shows that despite the important presence of non-HFTs in the order book at the
beginning of the day, see Figure I.21, the spread was six times larger than in the weeks before
the announcement. It gradually tightened, and stabilised at about 12 p.m. (in parallel with
the stabilisation of the depth of HFTs in the order book) but remained 1.5 times wider than
during the reference period.

6.2.4 Impact on amounts traded and aggressiveness

In Figure I.23, we consider the amounts traded on June 24 and during the reference period,
the ratio of HFTs share in amounts traded and the HFTs aggressive/passive ratio.
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Figure I.23 – On June 24, amounts traded were higher than during the reference period and
HFTs were somewhat more aggressive, particularly at the beginning of the day. HFTs share
in amounts traded was also quite high, except at the beginning of the day.

Figure I.23 shows that throughout the day of June 24, the market was much more active in
terms of amounts traded than during the reference period, despite low levels of order book
liquidity, see Figure I.20.

At the very beginning of the day (until 9:40 a.m.), HFTs were less active on the market than
during the reference period (for example at 9:20 a.m., their share in amounts traded was 20%
lower than during the reference period). In fact, HFTs share in amounts traded with respect
to the reference period fell because non-HFTs increased their trades more sharply than HFTs
and since fewer of the HFTs limit orders were executed than those of non-HFTs (HFTs passive
share in amounts traded decreased).

In addition, HFTs were more aggressive than during the reference period (for example at 9:20
a.m., their aggressive/passive ratio was 30% higher than during the reference period). Overall,
they consumed more liquidity than they provided.

After 9:40 a.m., the share in amounts traded and aggressive/passive ratio of HFTs stabilised:
HFTs were more active in the market (their share in amounts traded rose from 58% during
the reference period to 63% on June 24), and they were slightly more aggressive.

Amounts traded fell gradually until 12 p.m.: they were Æve times higher than during the
reference period at the beginning of the day compared with 2.5 times for the rest of the day.
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6.2.5 Summary

The 24

th of June 2016 was characterised by a particularly sharp downturn in market quality:
widening of spreads, drop in market depth at best limits and record-high amounts traded.
During this time of considerable uncertainty, HFTs reduced very signiÆcantly their presence
in the order book: their liquidity provision was 40% lower than usual. Market depth provided
by non-HFTs at best limits supported liquidity, in particular at the beginning and in the mid-
dle of the session.

Being a little provocative, we could conclude here that when non-HFTs have time to adjust to
announcements (they had the overnight in the case of the Brexit, in contrast to the situation
on the 3

r d of December 2015), they are active as market makers. It is probably due to their
capabilities in algorithmic trading, allowing them to use limit orders and market orders in a
sophisticated way, see [80, Chapter 3].

7 Conclusion

The main results of this study conducted on labelled French market data from November 2015
to July 2016 are summarised in Table I.10. We established the following facts. High-frequency
traders are important contributors to liquidity. They are present at the best bid or best ask
prices more than 90% of time and they represent on average 80% of the market depth in the
order book at the three best price limits. They constitute 60% of the total amount traded
in the market. On average, they consume more liquidity than they provide with an aggres-
sive/passive ratio equal to 53%. These relative Ægures do not really depend on the global level
of market stresswith an exception for the HFTs market share which is slightly dependent on
the market stress). Nevertheless, overall, liquidity decreases when market stress rises: HFTs
withdraw their orders from the order book when implied volatility is high, the same way as
non-HFTs do.

On an intraday seasonal basis, HFTs enter the order book gradually and contribute to tighten
the bid-ask spread at the beginning of the day. However, they clearly reduce their presence
in the order book ahead of announcements that are likely to impact prices. Moreover, their
aggressiveness increases before the announcements (because they provide less liquidity) and
after the announcements (because they consume more liquidity) and they trade less. On the
contrary, when no announcement is planned, their reaction to volatility goes in the opposite
direction (trading more). We thus identify a “change of regime" in HFTs activity in the pres-
ence of scheduled news.

Analysing two speciÆc events (ECB announcements of the 3

r d of December 2015 and the
Brexit), we see that when they have time to adapt, non-HFTs become the liquidity providers
in place of HFTs (in the case of the Brexit, the overnight implemented a “pause” in the trad-
ing Øows). But in case of a surprise (false pre-announcement in case of the 3

r d of December
2015), non-HFTs algorithms are not able to adjust and market participants rely on HFTs only
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Table I.10 – Summary of the main Ændings of the study.

to make the market. However, HFTs do not seem to act as market makers in such situations:
they protect themselves from potential adverse selection, and even tend to be more aggressive.

On the one hand, one could conclude that in case of a major event, more or longer trading
halts could let time to non-HFTs to adjust their trading tactics, giving di�erent instructions
to their algorithms, or switching to di�erent trading algorithms, see [80, Chapter 3] for
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current electronic trading practices. However, on the other hand, one can suspect that future
technological advances for trading algorithms (for instance taking the state of the liquidity
or other market participants reactions into account, see [63, 32, 81]) will lead all market
participants to adapt to the absence of HFTs market making-like activity.

Remark on rebates Note that the European directive MiFID II encourages rewards rather
than sanctions through its act RTS8 on market making, and requires that trading venues
provide additional incentives during periods of stress, see [46]. If it may be the case rebates
compensate for adverse selection during “standard” market conditions, most of the results we
observe in this paper show that it does not compensate for liquidity provision under market
stress conditions. At least HFTs beneÆting from these rebates do not provide liquidity as it
could be expected under this reasoning.

I.A Raw OLS regressions of Section 5

Variables Coef. std. err. t P > |t | 95% Conf. Int.

Constant 0.7866 0.003 302.564 0 [ 0.781; 0.792 ]
ænor m °0.0031 0.002 °1.279 0.201 [ -0.008; 0.002 ]
B °0.0083 0.005 °1.551 0.121 [ -0.019; 0.002 ]
D °0.0053 0.008 °0.707 0.479 [ -0.02; 0.009 ]
A 0.0045 0.005 0.837 0.403 [ -0.006; 0.015 ]

Table I.11 – Regression of HFTs market share in terms of market depth during days without
U.S. announcements at 4 p.m., with all the explanatory variables.

Variables Coef. std. err. t P > |t | 95% Conf. Int.

const 0.5340 0.002 228.198 0 [ 0.529, 0.539 ]
ænor m 0.0111 0.002 5.023 0 [ 0.007, 0.015 ]
B 0.0023 0.005 0.47 0.638 [ -0.007, 0.012 ]
D 0.0169 0.007 2.494 0.013 [ 0.004, 0.030 ]
A °0.0021 0.005 °0.438 0.661 [ -0.012, 0.007 ]

Table I.12 – Regression of the aggressive/passive ratio of HFTs during days without U.S.
announcements at 4 p.m., with all the explanatory variables.

Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.0113 0.001 9.058 0 [ 0.009, 0.014 ]
ænor m °0.0055 0.001 °4.549 0 [ -0.008, -0.003 ]
B 0.0184 0.003 7.142 0 [ 0.013, 0.023 ]
D 0.0270 0.004 7.272 0 [ 0.02, 0.034 ]
A 0.0024 0.003 0.931 0.352 [ -0.003, 0.007 ]
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Table I.13 – Regression of r esRA/P during days with U.S. announcements at 4 p.m., with all the
explanatory variables.

Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.5555 0.003 207.599 0 [ 0.55, 0.561 ]
ænor m 0.0476 0.003 18.768 0 [ 0.043, 0.053 ]
B °0.006 0.006 °1.096 0.273 [ -0.017, 0.005 ]
D °0.0113 0.008 °1.457 0.145 [ -0.027, 0.004 ]
A 0.0091 0.006 1.658 0.097 [ -0.002, 0.02 ]

Table I.14 – Regression of HFTs share in amounts traded during days without U.S. announce-
ments at 4 p.m., with all the explanatory variables.

Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.0088 0.002 5.320 0 [ 0.006, 0.012 ]
ænor m 0.001 0.002 0.659 0.510 [ -0.002, 0.004 ]
B °0.0347 0.003 °10.242 0 [ -0.041, -0.028 ]
D °0.0476 0.005 °9.754 0 [ -0.057, -0.038 ]
A °0.0012 0.003 °0.358 0.72 [ -0.008, 0.005 ]

Table I.15 – Regression of r esMS during days with U.S. announcements at 4 p.m., with all the
explanatory variables.
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CHAPTER II

The information content of high-frequency
traders aggressive orders: recent evidences

Abstract

This empirical study uses a unique recent data set provided by the French regulator
“Autorité des Marchés Financiers” and gives some evidence concerning the impact of
aggressive orders on the price formation process and the information content of these
orders according to the di�erent order Øow categories (high frequency traders, agency
participants and proprietary participants). As expected, we Ænd that the price impact of
aggressive orders consuming exactly the quantity present at the best limit is higher than
that of the ones consuming less than the quantity present at the best limit. Furthermore,
the price impact is an increasing function with respect to the consumed share in percentage.
We show that these price impact disparities are sustainable over time: both price impacts
are permanent. On the contrary, the impact of orders consuming more than the quantity
present at the best limit starts to diminish one second after the aggressive order. In
contrast to previous literature, we Ænd that the aggressive orders of HFTs are more
informed than the ones of agency and proprietary members. This new Ænding may be an
indicator of the evolution of high frequency traders activity over the years.

Keywords: High frequency trading, aggressive orders, price impact, price formation, asym-
metric information, price proÆle, mean reversion, trend following, market microstructure.

1 Introduction

Since the emergence of High Frequency Traders (HFTs), a lot of academic research and reg-
ulatory discussions have investigated their behaviour and their impact on the markets. It is
traditionnally considered that the main activity of HFTs is market making, to the extent that
HFTs are described as the new market makers in [88]. Market makers are deÆned as market
participants who provide liquidity to the market by posting simultaneously limit orders on
both sides of the electronic Limit Order Book (LOB), see [29, 71]. This is why HFTs limit
orders were widely studied in the literature, see for example Chapter I and [32, 35, 72, 81].
However, HFTs do send aggressive orders, even when they carry out market making strategies,
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see for instance Chapter I and [71]. In the literature, it has been found that HFTs aggressive
orders are not signiÆcantly more informed than those of other participants, see [17] where the
authors use data going back to 2010, see also [29] for related results on date going back to
2008-2009. In this study, we investigate whether this conclusion remains true nowadays by
analysing more recent data, from 2017. We furthermore aim at understanding how aggressive
orders impact the price.

We Ærst study the price impact of single aggressive orders. Note that this notion is di�erent
from the price impact widely studied in the literature: the non-linear price impact of meta-
orders, that is in general proved to follow a power law, see for example [6, 93, 109]. We look at
how the price impact of a single aggressive order varies according to the amount of liquidity
consumed by aggressive orders. This is why we split aggressive orders in three groups: the
ones consuming less than the liquidity available at the Ærst limit (partial aggressive orders),
the ones consuming exactly the liquidity available at the Ærst limit (exact aggressive orders),
and the ones consuming more than the liquidity available at the Ærst limit (n-limit aggressive
orders). We evaluate the price impact (in magnitude and durability) conditionally on these
groups, by using the notion of price proÆle. The price proÆle is the evolution of the price in
time around a speciÆc market event. It is in general used to quantify the adverse selection
like in [81] or to estimate the information content of orders like in [17]. We notice that the
repartition of HFTs aggressive orders in these groups is not the same as the repartition of
other order Øow categories: they send a signiÆcant larger proportion of exact aggressive or-
ders than the rest of the market. As expected, we Ænd that just after the aggressive order, the
impact of the exact ones is higher than that of the partial ones. For partial aggressive orders,
we show that the price impact is increasing according to the consumed share in percentage:
it depends on the traded volume and the quantity present at the best limit. Our Ærst main
new empirical Ænding is that these disparities in price impact are sustainable over time: both
price impacts of partial and exact aggressive orders are permanent. On the contrary, the
impact of n-limit aggressive orders attenuates gradually with time, starting one second after
the aggressive order.

Second, we investigate whether HFTs have an informational advantage compared to the rest
of the market. To assess their informational advantage, we compute the potential proÆts of
the di�erent order Øow categories (HFTs, agency participants and proprietary participants)
over di�erent time horizons, and compare those of HFTs to the rest of the market. The
potential proÆt is computed using the price proÆle: we look at the price variation after the
aggressive order compared to the price obtained by the aggressive order. In contrast to [17],
we Ænd that HFTs are the most proÆtable agents. The divergence of these results may be an
indicator of the evolution of HFTs activity in the market over time. Despite these di�erent
results, our third main Ænding is in line with [17]: HFTs typically buy after price decreases and
sell after price increases, while agency members sell after price increases and buy after price
decreases. Additionally, we Ænd that partial aggressive orders are more discriminating than
exact ones in terms of potential proÆt disparities between the di�erent order Øow categories.
Furthermore, we show how dissociating Øows of a given market member according to their
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connectivity channels allows us to exhibit di�erent signiÆcant “sub-behaviours”.

Third, we display how aggressive orders can be used in order to classify market participants
as HFTs or non-HFTs. This is of particular interest from a regulatory viewpoint. We doc-
ument other statistical features, such as the autocorrelation of aggressive orders or speciÆc
price patterns related to the behaviour of certain market participants.

This paper is organised as follows. In Section 2, we present our data, describe the di�erent
order Øow categories and explain our methodology to identify HFTs. We introduce in Section
3 the notion of price proÆle used to quantify price impacts and potential proÆts. In Section 4,
we distinguish between three di�erent aggressive order groups, and display the price impact
of each of them. We then focus on analysing one speciÆc group: the partial aggressive orders
according to the consumed share. We measure in Section 5 the potential proÆt of each
order Øow categories. In Section 6, we shed light on some statistical features and market
participants classiÆcation criteria. We even show that we can achieve a more granular and
relevant classiÆcation using connectivity channels. Finally, Section 7 summarises our results.

2 Data description and HFTs identiÆcation

2.1 Data description

We recall that our data are provided by the French regulator “Autorité des Marchés Fi-
nanciers”(AMF). This analysis is conducted on the CAC 40 stocks traded on Euronext Paris
over a three-month period: from September 2017 to November 2017, during which the volatil-
ity on the CAC 40 was stable and reached historically low levels (see Figure II.1). Furthermore,
this studied period is neither disrupted by end of year trading e�ects nor by MIFID II 1.

In Figure II.1, we plot the Vstoxx from 2013 till 2017. The Vstoxx is the “European VIX”.
It measures implied volatility of near term EuroStoxx 50 options, which are traded on the
Eurex exchange.

1MIFID II is a legislative framework instituted by the European Union to regulate Ænancial markets, that
entered into force in January 2018.
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Figure II.1 – The implied volatility (Vstoxx) during the studied period varies little. The three
months under study show the lowest implied volatility since 2013.

This study focuses solely on the analysis of strategies on Euronext, and does not consider
other exchange platforms. Over the analysed period, we use both trade data and LOB data
to describe the dynamics of the LOB accurately before and after each aggressive order. The
whole data set contains approximately 8 millions aggressive orders and 423 millions events (an
event can be an order insertion, an order cancellation, an order modiÆcation or a transaction).
Note that we do not use market data corresponding to the initial and Ænal twenty minutes of
the trading session, as these periods usually have speciÆc features due to the opening/closing
auction phases.

2.2 The di�erent order Øow categories

The data we have gives us access to the order Øow category to which each aggressive order
belongs. We have four di�erent categories of order Øows:

• Agency Øows: it corresponds to aggressive orders triggered by market participants
acting for the account of their clients.

• Proprietary Øows: it corresponds to aggressive orders triggered by market participants
acting for their own account.

• Supplemental Liquidity Provider (SLP) Øows: it corresponds to aggressive orders de-
clared as part of the SLP programme to which the market participant initiating the
order must belong to. The SLP programme imposes a market making activity on pro-
gramme members, including order book presence time at competitive prices. In return,
they get favourable pricing and rebates in the form of a maker-taker fees model directly
comparable to those of the major competing platforms, see [44].
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• Retail Member Organization (RMO) Øows: RMO members are part of a programme
o�ered by Euronext: the Retail Matching Facility, specialised in providing liquidity for
retail participants through Retail Liquidity Provider (RLP) members. The role of RLP
members is to provide liquidity to RMOs by posting buy and sell limit orders. The
RMO members are eligible to trade with all market participants, while RLPs can trade
only against RMO orders. In the following, the RLP are not considered since they
almost never send aggressive orders.

Note that an institution can have one single or multiple member codes to access the market. In
addition, using the same member code, an institution can send orders belonging to di�erent
order Øow categories. For instance, a same institution with the same member code can have
at the same time agency and proprietary activities. The data we have provide us with the
name of the institution and the member code issuing each order. Additionally, each order is
labelled by the order Øow category to which it belongs (agency, proprietary, SLP or RMO).

2.3 HFTs identiÆcation

High frequency trading is a subset of algorithmic trading (MIFID II states that algorithmic
trading means trading in Ænancial instruments where a computer algorithm automatically
determines individual parameters of orders such as whether to initiate the order, the timing,
price or quantity of the order or how to manage the order after its submission, with limited
or no human intervention) for which minimising latency is a crucial element for performance.
HFTs use co-location and proximity services to minimise latency. Most of them submit large
numbers of orders that are cancelled relatively shortly after submission, trade large volumes,
consistently maintain a low inventory level by holding positions for very short time and turn-
ing them over rapidly, see for example Chapter I and [29].

In this work, an order is identiÆed as belonging to the high frequency traders order Øow cat-
egory if it is labelled as SLP. Indeed, HFTs are now essentially the only market participants
that are able to play the role of market makers on liquid stocks, see [29, 71]. This is because
they are supposingly able to maintain a strong presence at best price limits and operate e�-
cient inventory management in an increasingly fast-moving and fragmented market. Indeed,
HFTs can use speed to enhance risk control by avoiding adverse selection, see [72], improving
inventory management, see [5] and trading on short-lived information, see [50]. Moreover,
according to the classiÆcation based on the lifetime of cancelled orders (described in details
in Section 6.2) which constitutes one of the criteria used by AMF to identify HFTs, all SLP
members are either classiÆed as HFTs or mixed HFTs (investment banks with high frequency
trading activity). The analysis of aggressive orders presented in Section 5.3 is thereafter gen-
eralised in Appendix II.A to all the HFTs based on this classiÆcation, and we show that the
results are similar to those obtained when considering only SLPs.
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3 QuantiÆcation of the price impact and the informational
advantage

Let us consider a buy (resp. sell) aggressive order occurring at time t . To estimate its
information content at time t +h, we compute the potential proÆt denoted by PPt+h that a
market participant can realise if he succeeds to unwind his position passively:

PPt+h = BPt+h °Pt

S
§ si g nt ,

where BPt+h is the best ask (resp. bid) at time t +h, Pt the price per share obtained by the
aggressive order, si g nt takes the value 1 (resp. -1) if it is a buy (resp. sell) aggressive order.
The quantity S is the average spread of the asset. It is computed averaging among all the
events in the data set happening between 9:20 and 17:10, and weighted by time. Finally, h
varies between -17 minutes to 17 minutes. Note that when computed at time horizons before
the aggressive order, this measure does not reØect the potential proÆt. However, it will help
us to understand the strategy followed by the market participants (mean reverting or trend
following), see Section 6.4. On the other hand, it will also allow us to determine whether the
aggressive order has been sent at a relevant time or not. At a given point in time before the
aggressive order, a negative value indicates that the participant could have obtained a better
price (at least for one security). On the contrary, a positive value indicates that the participant
has intervened at a convenient moment: if the aggressive order had taken place earlier, the
price would have been higher.

We will also need to measure the price impact of an individual aggressive buy (resp. sell)
order taking place at time t , and evaluated at time t +h, denoted by PIt+h , and deÆned as
follows:

PIt+h = BPt+h °BPt°

S
§ si g nt ,

where BPt° denotes the best ask (resp. bid) one microsecond before the buy (resp. sell) ag-
gressive order.

Note that the price impact and the potential proÆt coincide for aggressive orders consuming
a quantity less or equal to that present at the best limit. For orders consuming a quantity
larger than that present at the best limit, to quantify the price impact at time t +h, one can
compute the di�erence between the potential proÆt at time t +h and the potential proÆt at
one microsecond before the aggressive order. This is why in the following, we focus on the
potential proÆt measure.

Later on, orders will be merged according to the categories deÆned in Section 2.2. To measure
the average potential proÆt at time t +h of a given order Øow A, denoted by APP A

t+h , we
take the average among all aggressive orders belonging to the order Øow A, weighted by the
quantity of each aggressive order:
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APP A
t+h =

P

i2A PP i
t+hQi

P

i2A Qi
, (1)

where PP i
t+h is the potential proÆt of the i th aggressive order, and Qi the quantity traded by

the i th aggressive order.

In our analysis, when providing average results, we merge buy and sell aggressive orders. This
is because the evolution of the price at the best limit following a buy aggressive order is quite
symmetric to that following a sell aggressive order.

4 Analysis of aggressive orders with respect to consumed share

We distinguish between three di�erent groups of aggressive orders, and we show how the
price impact varies according to each group. Furthermore, we emphasize that each group of
aggressive orders usually takes place in speciÆc LOB conÆguration. In addition to this, we
obtain and interpret a relationship between the price proÆle 17 minutes before the aggressive
order, the quantity present at the best limit just before the aggressive order, and the price
impact following the aggressive order.

4.1 Three di�erent groups of aggressive orders

We distinguish between three groups of aggressive orders:

• Partial aggressive orders: they consume less than the quantity at the best limit.

• Exact aggressive orders: they consume exactly the quantity at the best limit.

• N-limit aggressive orders: they consume more than the quantity at the best limit.

Now that we have deÆned these groups of aggressive orders, note that exact and n-limit ag-
gressive orders mechanically change the price since they trigger a best price change right after
the trade. This is why the price impact one microsecond after these aggressive orders is ob-
viously signiÆcant. We aim at investigating whether these mechanical impacts are temporary
or reØect a certain information content that persists over time.

4.2 Some preliminary statistics

In our database, partial and exact aggressive orders constitute the majority of aggressive or-
ders (96%). Furthermore, HFTs send more exact aggressive orders than partial ones: 63% of
the exact aggressive orders are sent by HFTs, while only 39% of partial ones are sent by them
(see Table II.1).
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Order Øow categories Percentage of partial
aggressive orders

Percentage of exact
aggressive orders

Agency 27% 16%
HFT 39% 63%
Proprietary 31% 21%
RMO 3% 0%

Table II.1 – Distribution of partial and exact aggressive orders across the di�erent order Øow
categories.

On average, single partial aggressive orders consume a volume (11 k e) almost equal to that
consumed by exact aggressive orders (13 k e). N-limit aggressive orders consume an amount
clearly more signiÆcant than the other aggressive orders (43 k e). It is important to point
out that aggressive orders, and especially exact (resp. n-limit) aggressive orders occur upon
particular conditions: when the quantity at the best limit is signiÆcantly less than the average
quantity at this limit over all events: 13 k e (resp. 16 k e) just before the exact (resp. n-limit)
aggressive orders, versus 57 k e on average (see Table II.2).

Average
traded

amount per
aggressive
order

Median
traded

amount per
aggressive
order

Share of
aggressive
orders
number

Share of
traded
amount

Amount at
the best
limit just
before the
aggressive
order

Partial aggressive orders 11 k e 6 k e 49.5% 38% 41 k e
Exact aggressive orders 13 k e 8 k e 46.5% 48% 13 k e
N-limit aggressive orders 43 k e 22 k e 4% 14% 16 k e

Table II.2 – General statistics on the di�erent groups of aggressive orders.

This is not really surprising, and is related to the well known information content of the order
book imbalance: when the quantity on one side of the book is signiÆcantly larger than that on
the other side, the next aggressive order will likely hit the smallest side, see for example [107].
We now investigate more precisely the relationship between the imbalance and the aggressive
order group.

4.3 Relationship between imbalance and aggressive order group

We show in this section that market participants submit exact aggressive orders when the
LOB is signiÆcantly imbalanced. The imbalance at time t , just before the aggressive buy
(resp. sell) order takes place, is computed as follows:

Imbt =
Q1

t °Q2

t

Q1

t +Q2

t

,
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where Q1

t denotes the quantity present at the best bid (resp. ask) at time t , and Q2

t denotes
the quantity present at the best ask (resp. bid) at time t when it is a buy (resp. sell) aggressive
order.

The value of the imbalance one microsecond before the exact aggressive trades (on average
equal to 27%) is signiÆcantly higher than that (on average equal to 3%) before the partial ag-
gressive trades (see Figure II.2).

Figure II.2 – Variation of the imbalance of the LOB before and after the arrival of partial and
exact aggressive orders.

4.4 Price impact according to the groups of aggressive orders

As expected, one microsecond after the aggressive order, because of the mechanical impact,
the price impact due to n-limit aggressive orders is higher than that of exact ones, which is
higher than that of partial ones (see the price proÆles in Figure II.3, from which price impacts
are obviously deduced).
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Figure II.3 – The price proÆle measure (1) according to the aggressive order groups.

One relevant question is whether this mechanical impact is permanent or not. Figure II.3
shows that the price impact of exact aggressive orders is permanent: it is above that of
partial ones, over all time horizons, higher to two-thirds of the bid-ask spread. On the
contrary, n-limit aggressive orders have a temporary component in their price impact: market
participants tend to reÆll the LOB by submitting new orders in place of the consumed ones.
Indeed, starting one second after the aggressive order, the price impact begins to attenuate.
On a 17 minutes time horizon, the remaining mechanical impact of n-limit aggressive orders is
quite equal to that of exact aggressive orders (recall that Figure II.3 displays the price proÆles,
and that the price impact of n-limit aggressive orders is deduced as the di�erence between
the proÆle at time t and Point A).

4.5 Focus on partial and exact aggressive orders

We deepen our analysis by investigating the price proÆle of partial (consuming less than 100%
of the best limit) and exact (consuming 100% of the best limit) aggressive orders according to
the consumed share at the best limit in percentage. In general, the price impact is studied
according to the traded volume. In this work, we choose on purpose to study it according
to the consumed share in order to show that the price impact does not only depend on the
traded volume but also on the quantity present at the best limit. In particular, we want to
understand the relationship between historical prices evolution, consumed share and price
impact.

In Table II.3, we show the proportion of aggressive orders according to the consumed share
at the best limit (n-limit aggressive orders excluded).
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Consumed share with
respect to the total
quantity at the best limit.

Proportion Cumulated proportion

0% - 10% 10% 10%
11% - 20% 8% 18%
21% - 30% 7% 25%
31% - 40% 5% 30%
41% - 50% 5% 35%
51% - 60% 4% 39%
61% - 70% 4% 43%
71% - 80% 3% 46%
81% - 90% 3% 49%
91% - 99% 3% 52%
100% 48% 100%

Table II.3 – Distribution of partial and exact aggressive orders according to the consumed
share at the best limit.

In Figure II.4, we plot the price impacts according to the consumed share.

Figure II.4 – The price impact according to the consumed share at the best limit.

Figure II.4 shows that the magnitude of the price impact over all time horizons after the
aggressive order is increasing with respect to the consumed share. As an example, the price
impact following an aggressive order consuming 10% of the total quantity present at the best
limit is signiÆcantly lower than that due to an aggressive order consuming 90% of the quantity
present at the best limit. This could be interpreted by the fact that the imbalance created
following an aggressive order consuming 90% of the quantity at the best limit is higher than
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the one following an aggressive order consuming only 10%. As already seen, a large imbalance
is likely to trigger other aggressive orders (or cancellations of limit orders).

We now investigate whether the consumed share rather depends on the quantity present at
the best limit or the traded amount. Figure II.5 shows that as expected, the consumed part
varies with the traded amount, but also depends signiÆcantly on the quantity present at the
best limit. This means that the price impact does not depend only on the traded volume, but
on the volume present at the best limit too. This is in line with [47] where the authors show
that price Øuctuations caused by individual market orders are essentially independent of the
volume of orders and are essentially driven by liquidity Øuctuations.

Figure II.5 – Evolution of the amount at the best limit just before the aggressive orders and
the average traded amount according to the consumed part.

Another important feature appearing in Figure II.4 is that the consumed share is increasing
with respect to the price proÆle measure (1) evaluated 17 minutes before the aggressive order.
To clarify this phenomenon, we plot in Figure II.6 the measure (1) evaluated 17 minutes before
the aggressive order with respect to the consumed part at the best limit.
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Figure II.6 – Evolution of the consumed part at the best limit according to the measure (1)
evaluated 17 minutes before the aggressive order.

As previously showed, the consumed share depends on the quantity present at the best limit
just before the aggressive order, which depends on the historical evolution of the price. For
instance, if the price has been decreasing, the quantity present at the best ask tends do be
small, since new limits are revealed. Following this logic, the quantity present at the best
limit is a decreasing function with respect to the price proÆle 17 minutes before the aggressive
order, which explains the relationship appearing in Figure II.6.

5 Potential proÆts according to the di�erent order Øow
categories

We study in this section the potential proÆts according to each order Øow category after
partial and exact aggressive orders. We then focus on partial aggressive orders, in order to
identify the potential proÆt disparities between market participants within the same order
Øow category. Finally, for a given market participant having activities belonging to di�erent
order Øow categories, we check the di�erences in potential proÆt according to these di�erent
categories.

5.1 Potential proÆts after partial aggressive orders

The HFT Øow stands out with the (signiÆcantly) highest potential proÆt in the case of partial
aggressive orders, over all time horizons. One second after partial aggressive orders, HFTs
have a potential proÆt 0.36 spreads higher than agency participants, and 0.29 spreads higher
than proprietary participants (see Figure II.7). RMO members are the least proÆtable. In
addition to this, we show in Section 6.1 that the aggressive orders of HFTs are the less au-
tocorrelated, which allows us to deduce that the high potential proÆt of HFTs is due to an
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informational advantage and not to autocorrelated orders.

Figure II.7 – The potential proÆt evolution following partial aggressive orders according to
the di�erent order Øow categories over di�erent time horizons.

5.2 Potential proÆts after exact aggressive orders

Although HFTs still obtain a better potential proÆt than other market participants in the case
of exact aggressive orders (see Figure II.8), the di�erence between the categories is not much
signiÆcant: the potential proÆt of HFTs is only 0.04 spreads higher than that of agency mem-
bers and 0.1 spreads higher than that of proprietary members (see Figure II.8).
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Figure II.8 – The potential proÆt evolution following exact aggressive orders according to the
di�erent order Øow categories over di�erent time horizons.

Furthermore, Figures II.7 and II.8 show that on average, HFTs and proprietary members are
mean reverting: by this we mean that they buy when the price decreases and sell when the
price increases. In contrast, agency members seem on average trend following: they buy
when the price increases and sell when the price decreases. These results are in line with the
Ænding in [17].

5.3 Does the potential proÆt vary among members within the same order
Øow category?

We now investigate the potential proÆt disparities between di�erent members belonging to
the same order Øow category for partial aggressive orders.

Table II.1 below shows the total number of member codes according to each order Øow cate-
gory and the number of member codes issuing enough2 partial aggressive orders.

2We consider that the number of aggressive orders is enough when there is at least one aggressive order per
day and per asset.
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Order Øow category Number of member codes Number of member
codes issuing enough

partial aggressive orders
Agency 74 33
SLP 17 11
Proprietary 72 24
RMO 23 6
RLP 4 2

Table II.4 – Number of member codes issuing enough partial aggressive orders according to
each order Øow category.

We compute the proportion of member codes with a potential proÆt higher than the third
quartile (based on the potential proÆts of member codes having enough partial aggressive or-
ders) for each order Øow category over di�erent time horizons following the partial aggressive
order. These proportions are plotted in Figure II.9.

Figure II.9 – Evolution of member codes proportion with a potential proÆt higher than the
third quartile for each order Øow category over di�erent time horizons following the partial
aggressive order.

In order to understand the results in Figure II.9, we take the following example: the value
relative to HFT activity 7 milliseconds after the aggressive order is equal to 90%. This means
that 90% of the HFTs member codes have a potential proÆt higher than the third quartile.
Now we can interpret the rest of the results. We Ænd that over a short time horizon (until 2
minutes after the aggressive order), HFTs belong to the 25% market participants realising the
highest short-term potential proÆts. Over a longer time horizon, from two minutes after the
aggressive order, the proportion of HFTs with potential proÆt higher than the third quartile
starts to decrease to the beneÆt of proprietary traders (see Figure II.9). This could be due to
the fact that HFTs do not target long-term strategies, high frequency trading being an activity
where participants typically hold positions for very short times.
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5.4 Disparities in potential proÆts for a same member code according to the
di�erent order Øow categories

We now dissociate the Øows of a same member code according to the order Øow categories.
It allows us to identify the di�erent potential proÆts generated by a member. We can notably
distinguish between high frequency trading strategies targeting short-term potential proÆts
and longer term strategies.

For members carrying out simultaneously SLP and another activity, the potential proÆt of the
SLP Øow is always higher than that of the other Øows. In the majority of cases, the potential
proÆt of the proprietary Øow is higher than or equal to that of the agency Øow. We illustrate
these Ændings through two examples in Figures II.10 and II.11.

In Figure II.10, we plot the di�erent potential proÆts of Member code A (having SLP and
proprietary activities at the same time) according to the order Øow categories.

Figure II.10 – Disparities in potential proÆts of Member code A according to the di�erent
order Øow categories issued by this member code. The quartiles are the same as those
computed in Section 5.3.

Until 32 seconds after the aggressive order, the SLP Øow has a potential proÆt higher than the
third quartile, while the potential proÆt of the proprietary Øow is equal or lower than the Ærst
quartile. The proprietary activity of Member code A seems to target a longer term strategy:
2 minutes after the aggressive order, its potential proÆt becomes higher, outperforming the
one of SLP. On a 17 minute horizon, it is equal to 2.3 spreads, 3 times higher than the SLP
Øow potential proÆt.

In Figure II.11, we plot the di�erent potential proÆts of Member code B, according to the order
Øow categories.
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Figure II.11 – Disparities in potential proÆts of Member code B according to the di�erent order
Øow categories issued by this member code.

Member code B has di�erent potential proÆt levels, depending on the order Øow category
considered. The potential proÆt of the SLP Øow is the highest at any time scale: one second
after the aggressive order, the potential proÆt of the SLP Øow (0.43 spreads) is higher than
that of the proprietary one (0.37 spreads) and signiÆcantly higher than the agency Øow (0.27
spreads).

6 From single aggressive orders to strategies

In this section, we show that the analysis of aggressive orders is useful to understand other
features than price impact and potential proÆt. For instance, we study the autocorrelation
of the di�erent order Øow categories. In addition to this, we propose a new classiÆcation of
member codes (whose Øows are segmented according to the order Øow category) based on the
investigation of aggressive orders. We also show that we can access to a more granular clas-
siÆcation by segmenting member code Øows according to the di�erent connectivity channels
they use. Finally, by observing the evolution of the price before the aggressive order takes
place, we deduce the di�erent strategies of member codes, such as mean reverting or trend
following.

6.1 Autocorrelation of aggressive orders according to the di�erent order Øow
categories

We study the autocorrelation properties of each order Øow category, taken seperately. Positive
autocorrelation means that once an aggressive order has been observed, the probability to
observe another one in the same direction is larger than one half. Typically if an agency
broker is splitting a large client’s metaorder in slices, its Øow exhibits a signiÆcant positive
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autocorrelation, see [23, 110].

Figure II.12 shows that the autocorrelation of the Ærst two successive aggressive orders is
almost equal among all order Øow categories (equal respectively to 29%, 30% and 34% for
agency, proprietary and SLP order Øow categories). The autocorrelation of the aggressive
orders of the agency order Øow category is the highest among all order Øow categories (with
the exception of the Ærst two aggressive orders). The decrease in autocorrelation is the most
signiÆcant for the SLP order Øow category. The aggressive orders autocorrelation in this Øow
almost vanishes from the 4

th aggressive order (it is equal to 5% in this case).

Figure II.12 – Autocorrelogram of aggressive orders according to each order Øow category.

6.2 A classiÆcation tool

It is usual to consider passive orders to classify members as HFTs or non-HFTs. One of AMF
classiÆcations is based on this type of orders.

This AMF classiÆcation di�erentiates between three classes of market participants: HFTs,
mixed HFTs and non-HFTs. It is based on the lifetime of cancelled orders and determined
using two sets of conditions:

• Condition 1 is based on a comparison with other participants: the participant must
have cancelled at least 100,000 orders during the year, and the average lifetime of his
cancelled orders should be less than the average lifetime of all cancelled orders in the
book.

• Condition 2 is based on a set threshold: the participant must have cancelled at
least 500,000 orders with a lifetime of less than 0.1 second (i.e. the participant quickly
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updates the orders in the limit order book) and the top percentile of the lifetime of its
cancelled orders must be less than 500 microseconds (i.e. the participant regularly uses
fast access to the market).

A member code is a high frequency trader if it is not an investment bank and it meets one of
these conditions. An investment bank meeting one of these conditions is described as mixed
HFT. Note that some members satisfy Condition 2 without satisfying Condition 1.

However, it seems also possible to classify participants by relying on aggressive order potential
proÆts. Those realising the higher short-term potential proÆts (one second after the aggressive
order) can be considered as HFTs, and those realising the lowest as non-HFTs. It turns out
that relying on both approaches allows us to obtain a more complete classiÆcation of market
participants. Three di�erent classes can be distinguished for member codes whose Øows are
segmented according to the order Øow category:

• Pure HFTs are characterised by a high short-term potential proÆt (higher than the
third quartile of potential proÆts computed among all market participants) and a low
lifetime of cancelled orders (lower than the third quartile of lifetimes of cancelled orders
computed among all market participants).

• Pure non-HFTs are characterised by a high lifetime of cancelled orders and a small
short-term potential proÆt.

• Intermediary agents are characterised by a small short-term potential proÆt and a low
lifetime of cancelled orders.

We point out that, as expected, no member code has high short-term potential proÆts and
high lifetime of cancelled orders (see Figure II.13). Moreover, note that all SLPs belong the
pure HFT category.
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Figure II.13 – Using both methods of classiÆcation: one relying on cancellations and one
relying on potential proÆts (the Øows are grouped by member code and order Øow category).

6.3 A more granular classiÆcation using the di�erent connectivity channels

Market members connect to Euronext via connectivity channels (called “SLE”, a French
acronym for “Serveur Local d’Emmission”, since this technology was initially developed by
Canadian and French companies)3 to convey their orders. Some member codes use their
SLEs to separate their aggressive Øow from their passive one, and some others to separate
their di�erent order Øow categories. Dissociating the Øows issued by a same member code,
and belonging to the same order Øow category according to SLEs can in some cases bring
up new information concerning the di�erent activities followed by this member code. The
main advantage of using di�erent SLEs is that it is easy to setup speciÆc sets of risk limits
for each of them (like the number of orders per day or per hour, the maximum traded value,
etc). For instance, we dissociate the Øow of Member code B who is an agency broker serving
as an intermediary for a HFT (among other clients) according to the di�erent SLEs. We plot
in Figure II.14 the potential proÆt of each of these Øows.

3On the three studied months and over the CAC 40 stocks, there are in total 355 SLEs. 94% of SLEs are used
by only one member code, 6% are used by two member codes (belonging to the same institution). 73% of SLEs are
deployed for only one order Øow category (Agency, Proprietary, HFT, RMO), 26% are deployed for two di�erent
order Øow categories and 1% for three di�erent order Øow categories. The number of SLEs belonging to the same
institution varies between 1 and 33. There are 46 member codes using more than one SLE over 117 member codes
in total.
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Figure II.14 – Disparities in potential proÆts of the same agency broker according to its
di�erent SLEs.

The di�erence in potential proÆts between the two Øows, illustrated in Figure II.14 could be
interpreted for example by a segmentation of these di�erent Øows allowing us to identify
according to the clients’ typology: one SLE is dedicated for a HFT client while another is
dedicated for other type of clients.

6.4 Di�erent strategies

By observing what happens before the aggressive order, we can distinguish between three
di�erent strategies:

• Mean reverting strategy, going against the price variations (see Figure II.15).

• Trend following strategy, following the price variations (see Figure II.16).

• Another strategy consisting in beneÆting from the insertion of new orders that reduce
the spread (see Figure II.17).

In Figures II.15 and II.16, we pick respectively some mean reverting and trend following SLPs
and we plot their price proÆles (using Measure (1)) around their aggressive orders.
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Figure II.15 – Mean reverting HFTs.

Figure II.16 – Trend following HFTs.

In Figure II.17, we plot the price proÆles of three HFTs following a particular strategy con-
sisting in seizing certain opportunities faster than other market participants (Institution 1,
Institution 2 and Institution 3) and another HFT (Instituton 10) who does not follow this same
particular strategy.
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Figure II.17 – Some HFTs following a particular strategy consisting in beneÆting from the
insertion of new orders that reduce the spread.

The arbitrage conÆguration in Figure II.17 clearly stands out: the three institutions beneÆt
from the insertion of new orders inserted in the LOB 7 ms before the aggressive order re-
ducing the spread by 0.6 spreads on average (in the case of Institution 3) and by 0.2 spreads
on average (in the case of Institutions 1 and 2). These situations are likely to occur when
the spread is large (equal to several ticks). In order to check that this arbitrage conÆguration
does not take place only at the beginning or the end of the day, we performed the same
computations by excluding all the aggressive trades taking place before 11h and after 16h.
The obtained results are quite unchanged. We deduce then that Institutions 1, 2 and 3 do
not apply this strategy particularly at the beginning or at the end of the day. This arbitrage
conÆguration might not be a real arbitrage conÆguration, but a consequence of a scenario
where these institutions perform instantaneous wash trades: they insert the limit order inside
the spread and then consume their own limit orders. To make sure that we are not in this
kind of situation, we performed the same computations by excluding all the wash trades of
all institutions. The obtained results are unchanged. We deduce that this is a real arbitrage
conÆguration and not a wash trades one.

Some institutions carry out distinct strategies simultaneously. For instance, Institution 1
follows mean reversion and trend following strategies at the same time using di�erent member
codes. By using the same member code used for the mean reversion strategy, Institution 1
succeeds to proÆt from local opportunities by beneÆting from the insertion of new orders that
reduce the spread (it is the particular strategy showed in Figure II.17).

106



7. Conclusion

7 Conclusion

We show that the proportion of executed volume at the best limit does have a signiÆcant
and durable impact on prices: the price impact depends on both traded volume and volume
present at the best limit. In terms of strategy, when observing the price evolution before the
aggressive order, it is clear that HFTs are typically mean reverting, while agency members
are trend following. In addition to this, we have seen that the aggressive orders of HFTs
are more informed than those of other market participants. Finally, we have validated some
expected stylised facts: The aggressive orders of agency members are the most autocorrelated,
while those of HFTs are the least autocorrelated. This shows that the high potential proÆt of
HFTs is not due to the price impact that they generate but to a real informational advantage.
This informational advantage is mainly due to the fact that HFTs use more sophisticated
infrastructure and automation technologies than other participants, which allows them to
predict the price evolution before the rest of market participants. These Ændings can explain
why some exchanges plan to reduce the aggressive behaviour of HFTs by imposing “speed
bumps” which aim is to impose a speed limit on their aggressive trades. These speed bumps
that have mostly been introduced in American exchanges recently start to become more
popular. This is the case for example of the Deutsche Börse Eurex platform that will test a
six-month pilot project from June 3, 2019 slowing down the HFTs aggressive orders by one
millisecond for trading on German and French options.

II.A Generalisation to all HFTs

We generalise the study of partial aggressive orders to all HFT members (and not to the mem-
bers of the SLP programme only) that we classify according to the classiÆcation described in
Section 6.2 based on the lifetime of cancelled orders. We compare their potential proÆt to
those of other market participant classes (mixed members and non-HFTs).

The table below shows the total number of member codes and the number of member codes
issuing enough partial aggressive orders (using the same criterion as in Section 5.3) relative
to each market participant class. The results here are quite similar to those obtained for SLPs
in the previous Section 5.3, (see Figure II.18).

Market participant class Number of member codes Number of member
codes issuing enough

partial aggressive orders
HFT 20 12
Mixed 13 13
non-HFT 85 30

Table II.5 – Number of member codes issuing enough partial aggressive orders according to
each market participant class.
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Out of the 12 remaining HFTs, 8 are SLPs.

Figure II.18 shows that over a short time horizon (from 7 milliseconds until two minutes
approximately after the aggressive trade), the majority of HFTs (between 77% and 92% of
them) display a potential proÆt higher than the third quartile, versus 18% on average (the
average value is computed starting 7 milliseconds until 1 minute after the aggressive order)
for mixed members and only 3.5% for non-HFTs. Beyond one minute, the presence of HFTs
over the third quartile decreases to the beneÆt of other participants, in particular the mixed
member codes. From 31 milliseconds to 4 seconds after the aggressive order, the proportion
of HFTs having a potential proÆt higher than the third quartile is quite constant, equal to 92%.
During this time interval, one HFT member code (whose aggressive Øows constitute 7% of the
total aggressive Øows of this institution) only does not realise potential proÆts higher than the
third quartile. We note that the other member codes of this institution are more proÆtable
than 75% of the market participants over the studied time horizon.

Figure II.18 – Evolution of member codes proportion with a potential proÆt higher than the
third quartile for each market participant class over di�erent time horizons following the
partial aggressive order.
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CHAPTER III

From Glosten-Milgrom to the whole limit
order book and applications to Ænancial

regulation

Abstract

We build an agent-based model for the order book with three types of market participants:
informed trader, noise trader and competitive market makers. Using a Glosten-Milgrom
like approach, we are able to deduce the whole limit order book (bid-ask spread and
volume available at each price) from the interactions between the di�erent agents. More
precisely, we obtain a link between e�cient price dynamic, proportion of trades due to
the noise trader, traded volume, bid-ask spread and equilibrium limit order book state.
With this model, we provide a relevant tool for regulators and market platforms. We
show for example that it allows us to forecast consequences of a tick size change on the
microstructure of an asset. It also enables us to value quantitatively the queue position of
a limit order in the book.

Keywords: Market microstructure, limit order book, bid-ask spread, adverse selection, Ænan-
cial regulation, tick size, queue position valuation.

1 Introduction

Limit order book (LOB) modelling has become an important research topic in quantitative
Ænance. This is because market participants and regulators need to use LOB models for
many di�erent tasks such as optimising trading tactics, assessing the quality of the various
algorithms operating on the markets, understanding the behaviours of market participants
and their impact on the price formation process or designing new regulations at the mi-
crostructure level. In the literature, there are two main ways to model the LOB: statistical
and equilibrium models. In statistical models, agents order Øows follow suitable stochastic
processes. In this type of approach, the goal is to reproduce important market stylised facts
and to be useful in practice, enabling practitioners to compute relevant quantities such as
trading costs, market impact or execution probabilities. Most statistical models are so-called
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zero-intelligence models because order Øows are driven by independent Poisson processes,
see for example [1, 38, 39, 77, 106]. This assumption is relaxed in [13, 63, 65] where more
realistic dynamics are obtained introducing dependencies between the state of the order book
and the behaviour of market participants.

In equilibrium models, see for instance [49, 53, 96, 101], LOB dynamics arise from interac-
tions between rational agents acting optimally: the agents choose their trading decisions as
solutions of individual utility maximisation problems. For example in [96], the author investi-
gates a simple model where traders choose the type of order to submit (market or limit order)
according to market conditions, and taking into account the fact that their decisions can
inØuence other traders. In this framework, it becomes possible to analyse accurately market
equilibriums. However, the spread is exogenous and there is no asymmetric information on
the fundamental value of the asset so that no adverse selection e�ect is considered. This is
the case in the order-driven model of [101] too, where traders can also choose between market
and limit orders. In this approach, all information is common knowledge and the waiting
costs are the driving force. This model leads to several very relevant predictions about the
links between trading Øows, market impact and LOB shape.

In this paper, we introduce an equilibrium-type model. It is a simple agent-based model for
the order book where we consider three types of market participants like in [76]: an informed
trader, a noise trader and market makers. The informed trader receives market information
such as the jumps of the e�cient price, which is hidden to the noise trader. He then takes
advantage of this information to gain proÆt by sending market orders. Market makers also
receive the same information but with some delay and they place limit orders as long as the
expected gain of these orders is positive (they are assumed to be risk-neutral). The informed
trader and market makers represent the strategic part in the trading activity, while the ran-
dom part consists in the noise trader who is assumed to send market orders according to a
compound Poisson process.

Interestingly, the above simple framework allows us to deduce a link between e�cient price
dynamic, proportion of trades due to the noise trader, traded volume, bid-ask spread and
equilibrium state for the LOB. It enables us to derive the whole order book shape (bid-ask
spread and volume present at each price) from the interactions between the agents. The ques-
tion of how the bid-ask spread emerges from the behaviour of market participants has been
discussed in many works. It is generally accepted that the bid-ask spread is non-zero because
of the existence of three types of costs: order processing costs, see [62, 101], inventory costs,
see [59, 115], and adverse selection costs, see [53]. In the already mentioned paper [101], the
spread is a consequence of order processing costs: to compensate their waiting costs, traders
place their limit orders on di�erent price levels (for example, a sell limit order at a higher level
gets a better expected price than one at a lower level but needs longer time to be executed.
Thus the case where both orders lead to the same expected utility can be considered).

In contrast, our model is inspired by [53]. Liquidity is o�ered by market makers only and they
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face an adverse selection issue since a participant agreeing to trade at the market maker’s ask
or bid price may be trading because he is informed. Order processing and inventory costs
are neglected and we consider the bid-ask spread as a purely informational phenomenon:
limit orders are placed at di�erent levels because liquidity providers must protect themselves
from traders with superior information. In this framework, in a very similar way as in [53],
the bid-ask spread emerges naturally from the fact that limit orders placed too close to the
e�cient price have negative expected returns when being executed: the presence of the in-
formed trader and the potential large jumps of the e�cient price prevent market makers from
placing limit orders too close to the e�cient price. We also Ænd that the bid-ask spread turns
out to be the sum of the tick value and of the intrinsic bid-ask spread, which corresponds to
a hypothetical value of the bid-ask spread under inÆnitesimal tick size.

Let us emphasise that several models study the LOB assuming the presence of our three types
of market participants and imposing, as we will do, a zero-proÆt type condition stating that
limit orders can only be placed in the LOB if their expected return relative to the e�cient
price is non-negative. For instance, the papers [53] and [12] share multiple similarities with
ours. Compared with [53], there are two main di�erences. First, in [53], the zero-proÆt as-
sumption applies only to the two best o�er limits: the bid and ask prices at each trade are
set to yield zero-proÆt to the market maker, and time priority plays no role. In our model, we
propose a generalised version of the zero-proÆt condition under which fast market makers can
still make proÆts because of time priority. Second, in [53], one assumes that only unit trades
can occur, which is quite restrictive. In our model we relax this assumption, which allows
us to retrieve the whole LOB shape and not only the bid-ask spread. In addition to this, we
also treat the case where the tick size is non-zero, whereas it is assumed to be vanishing in [53].

In [12], the authors investigate the consequences of a zero-proÆt condition at the level of the
whole liquidity supply curve provided by each market maker. This is an intricate situation
where standard equilibriums cannot be reached since a proÆtable deviation (from a Nash
equilibrium) for any market maker is to o�er the shares at a slightly higher price as explained
in [16]. In this work, we rather assume that when a market maker computes his expected
proÆt, he takes into consideration the orders submitted by other market makers. This is done
so that the zero-proÆt condition holds only for the last order of each queue in the LOB. It
in particular means that a market maker can still make positive proÆt. This enables us to
obtain a very operational and tractable framework, where we can deduce the whole LOB
shape, compute various important quantities such as priority values of limit orders, and make
predictions about consequences of regulatory changes, for example on the tick size.

Note that an important point in our model is that we also consider the case where the tick
size is non-zero. This allows us to analyse its role in the LOB dynamic. For instance, we
derive a new and very useful relationship between the tick size and the spread. We validate
this relationship on market data and show how to use it for regulatory purposes, in particular
to forecast new spread values after tick size changes.
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The discreteness of available price levels also enables us to value in a quantitative way the
queue position of limit orders. LOBs use a priority system for limit orders submitted at the
same price. Several priority rules can be employed such as price-time priority or price-size
priority, see [54]. We consider here the widely used price-time mechanism which gives priority
to the limit orders in a Ærst in Ærst out way. Therefore it encourages traders to submit limit
orders early. Our model is one of the only approaches allowing to quantify with accuracy the
advantage of being at the top of the queue compared to being at its end. A notable exception
is the paper [91]. In this work, the authors value queue positions at the best levels for large
tick assets in a queuing model taking into account price impact and some adverse selection.
In our setting, we are able to compute the e�ects of the strategic interactions between market
participants on queue position valuation. Furthermore, we are not restricted to the best levels
of large tick assets. However, as will be seen in our empirical results, our Ændings are in line
with those of [91].

Other well-known stylised facts are reproduced in our model. For instance, when the absolute
value of the e�cient price jumps follows a Pareto distribution, we retrieve the classical linear
relationship between spread and volatility per trade proved in [86], see also [115]. This will
be particularly helpful to calibrate our model so that one can use it as a market simulator for
analysing regulatory measures.

The paper is organised as follows. In Section 2, we introduce our agent-based LOB model
with zero tick value. Based on a greedy assumption for the informed trader’s behaviour, a
link is deduced between traded volume, e�cient price jump distribution and LOB shape. We
then add the zero-proÆt condition for market makers, which enables us to compute explicitly
the bid-ask spread as well as the LOB shape. In Section 3, the case of non-zero tick value
is considered. We show that the bid-ask spread is in fact equal to the sum of the intrinsic
bid-ask spread (without the tick value constraint) and the tick value. The LOB shape under
positive tick size is also deduced and we give an explicit formula for the value of the queue
position of a limit order. In Section 4, based on the results of the model, we make the exercise
of forecasting new spread values for the CAC 40 assets whose tick sizes have changed due
to the new MiFID II directive. Section 5 is devoted to the calibration of the model and the
computation of queue position values for small tick assets of the CAC 40 index. Finally, the
proofs are relegated to an appendix.

2 Model and assumptions

In our model, we assume the existence of an e�cient price modelled by a compound Poisson
process and the presence of three di�erent types of market participants: an informed trader,
a noise trader and several market makers. In our approach, market makers choose their bid-
ask quotes by computing the expected gain of potential limit orders at various price levels.
This is done in a context of asymmetric information between the informed and the noise
trader regarding the e�cient price (the e�cient price is actually used as a tool to materialize
asymmetry of information). This framework enables us to obtain explicit formulas for the
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spread, LOB shape and variance per trade. These quantities essentially depend on the law of
the e�cient price jumps, the distribution of the noise trader’s orders size, and the number of
price jumps compared to that of orders sent by the noise trader. Note that contrary to most
LOB models which deal only with the dynamics at the best bid/ask limits, or assume that the
spread is constant, see for example [38], our model allows for spread variations and applies
to the whole LOB shape. We present in this section the case where the tick size is assumed
to be equal to zero. The obtained results will help us to understand those in Section 3 where
we consider a positive tick size.

2.1 Modelling the e�cient price

We write P (t ) for the market underlying e�cient price, whose dynamic is described as follows:

P (t ) = P
0

+Y (t ),

where Y (t ) =PNt

j=1

B j is a compound Poisson process and P
0

> 0. Here {Nt : t ∏ 0} is a Poisson

process with intensity ∏i > 0, and the {B j : j ∏ 1} are independent and identically distributed
square integrable random variables with positive symmetric density f√ on R and cumulative
distribution function F√. Hence we consider that new information arrives on the market at
discrete times given by a Poisson process with intensity ∏i . So we assume that at the j th

information arrival time, the e�cient price P (t ) is modiÆed by a jump of random size B j .

Furthermore, since E[B j ] = 0, we have that P (t ) is a martingale. Thus E[P (t )] = P
0

and
Var[P (t )] = ∏i tE[B 2

j ]. We view ∏iE[B 2

j ] as the macroscopic volatility of our asset. In the
sequel, for sake of simplicity, we write B for B j when no confusion is possible.

2.2 Market participants

We assume that there are three types of market participants:

• One informed trader: by this term, we mean a trader who undergoes low latency and is
able to access market data and assess e�cient price jumps faster than other participants,
creating asymmetric information in the market. For instance, he can analyse external
information or use lead-lag relationships between assets or platforms to evaluate the
e�cient price (for details about lead-lag see [57, 61, 67]). Therefore, we assume that
the informed trader receives the value of the price jump size B (and the e�cient price
P (t )) just before it happens. He then sends his trades based on this information to gain
proÆt. He does not send orders at other times than those of price jumps and we write
Qi for his order size that will be strategically chosen later. Note that he may not send
orders at a price jump time if he considers such action would not be proÆtable.

• One noise trader: he sends market orders in a zero-intelligence random fashion. We
assume that these trades follow a compound Poisson process with intensity ∏u . We de-
note by {Qu

j : j ∏ 1} the noise trader’s order sizes which are independent and identically
distributed integrable random variables. We write f∑u for the density of the Qu

j which
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is positive and symmetric on R (a positive volume represents a buy order, while a neg-
ative volume represents a sell order) and F∑u for their cumulative distribution function.
Remark that r = ∏i

∏i+∏u corresponds to the average proportion of price jumps compared
to the total number of events happening on the market (e�cient price jumps and trades
by the noise trader). Recall that informed trades can occur only when there is a price
jump. We will assume throughout the paper that r > 0. We denote by Q the order size
independently of the issuer of the order (noise or informed trader).

• Market makers: they receive the value of the price jump size B (and the e�cient price
P (t )) right after it happens. We assume that they are risk neutral. In practice, mar-
ket makers are often high-frequency traders and considered informed too. However,
contrary to our notion of informed trader, their analyses typically rely on order Øows
(notably through spread and imbalance) to extract the e�cient price rather than on
external information. This is because directional trading is not at the core of market
making algorithms. We consider like in [53] that market makers know the proportion of
price jumps compared to the total number of events happening on the market, that they
compete with each others, and that they are free to modify their limit orders at any
time after a price jump or a transaction. Market makers place their orders according
to their potential proÆt and loss with respect to the e�cient price (no inventory aspects
are considered here). Thus they only send sell orders at price levels above the e�cient
price and buy orders at price levels below it.

We assume here that there is no tick size (this assumption will be relaxed in Section 3). The
LOB is made of limit orders placed by market makers around the e�cient price P (t ). We
denote the cumulative available liquidity between P (t ) and P (t )+ x by L(x)

1. When L(x) ∏ 0

(resp. L(x) ∑ 0), it represents the total volume of sell (resp. buy) limit orders with price
smaller (resp. larger) than or equal to P (t )+ x. This function L is called cumulative LOB
shape function.

2.3 Assumptions

We do not impose any condition on the cumulative LOB shape function L which can have a
singular part and discontinuities. We deÆne its inverse L°1 by:

L°1

(q) = argmin
x

{x|L(x) ∏ q}.

Given the function L, we now specify the behaviour of the informed trader in the next
assumption. This assumption relates the traded volume of the informed trader Qi to the LOB
cumulative shape L and the size of the price jump B received by the informed trader.

Assumption 1. Let t be a jump time of the e�cient price. Based on the received value B and the
cumulative LOB shape function L provided by market makers, the informed trader sends his trades

1This quantity actually depends on time t but for sake of simplicity, we just write L(x).
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in a greedy way such that he wipes out all the available liquidity in the LOB until level P (t )+B .
Thus, his trade size Qi satisÆes:

Qi = L(B°
).

The informed trader computes his gain according to the future e�cient price. If he knows that
the price will increase (resp. decrease), which corresponds to a positive (resp. negative) jump
B , he consumes all the sell (resp. buy) orders leading to positive ex-post proÆt. In both cases,
his proÆt is equal to the absolute value of the di�erence between the future e�cient price and
the price per share at which he bought or sold, multiplied by the consumed quantity. Note
that in the spirit of this work, the informed trader does not accumulate position intraday.
What we have in mind is that he unwinds his position passively. As an illustration, if at a
given moment the e�cient price is equal to 10 euros and the future price jump is equal to 0.05
euros, the informed trader consumes all the sell orders at prices between 10 and 10.05 euros.
He then can potentially unwind his position by submitting passive sell orders at a price equal
to or higher than the new e�cient price. Knowing that their latent proÆt is computed with
respect to the e�cient price, he can a�ord submitting them close to the new e�cient price,
thereby making their execution very likely.

Remark 1. For a given order of size Qi initiated by the informed trader and for a given quantity q ,
the probability that the trade size Qi is less than q satisÆes:

P[Qi < q] =P[L(B°
) < q]

=P[B < L°1

(q)]

= F√(L°1

(q)).

In the following, our goal is to compute the spread and LOB shape. We proceed in two steps.
First, we derive the expected gain of potential limit orders of the market makers. Second, we
consider a zero-proÆt assumption for market makers (due to competition). Based on these
two ingredients, we show how the spread and LOB shape emerge.

2.4 Computation of the market makers expected gain

This part is the Ærst step of our approach. We focus here on the gain of passive sell orders.
The gain of passive buy orders can be readily deduced the same way.

Let L be the shape of the order book. Our goal is to compute the conditional average proÆt
of a new inÆnitesimal order if submitted at price level x knowing that Q > L(x) and without
any information about the trade’s initiator. We write G(x) for this quantity2.

We consider the proÆt of new orders with total volume "> 0, placed between P (t )+x°±p and
P (t )+ x for some x > 0 and ±p > 0, given the fact that these orders are totally executed. The
volume " submitted orders are represented by an additional cumulative LOB shape function
denoted by ˆL(x). Note that we work with orders submitted between x °±p and x to take into

2Note that the gain depends on time t but we keep the notation G(x) when no confusion is possible.
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account two cases: L(x) is continuous at x and L(x) has a mass at x. The function ˆL(x) is
deÆned as follows:

• For s < x °±p,

ˆL(s) = 0 and the liquidity available in the LOB up to s is equal to L(s).

• For x°±p ∑ s ∑ x, the available liquidity is L(s)+ ˆL(s), where ˆL(x°±p) = 0 and ˆL(x) = ".

• For s ∏ x, the liquidity available in the LOB up to s is equal to L(s)+".

Furthermore, we assume that for any s < x, ˆL(s) < ". Let us write:

• ∫ for a random variable that is equal to 1 if the trade is initiated by the informed trader
and 0 if it is initiated by the noise trader.

• Gnoi se
(x°±p, x) for the gain of new orders with total volume " submitted between x°±p

and x in case the trade is initiated by the noise trader knowing that Qu ∏ L(x)+ ˆL(x).

• Gi n f
(x°±p, x) for the gain of new orders with total volume " submitted between x°±p

and x in case the trade is initiated by the informed trader knowing that Qi ∏ L(x)+ ˆL(x).

• G(x°±p, x) for the expected conditional gain of new orders with total volume " submit-
ted between x °±p and x knowing that Q ∏ L(x)+ ˆL(x) without any information about
the trade’s initiator.

The quantity G(x °±p, x) is equal to:

Gi n f
(x °±p, x)P[∫= 1|Q ∏ L(x)+ ˆL(x)]+Gnoi se

(x °±p, x)P[∫= 0|Q ∏ L(x)+ ˆL(x)].

Our aim being to compute the expected gain of a new inÆnitesimal order if submitted at price
level x, we make ±p and " tend to 0. Thus we deÆne

G(x) = lim
"!0

°

lim
±p!0

G(x °±p, x)

"

¢

.

We have the following proposition proved in Appendix III.A.1.

Proposition 1. For x ∏ 0, the average proÆt of a new inÆnitesimal order if submitted at price level
x satisÆes:

G(x) = x ° rE[B1B>x ]

rP[B > x]+ (1° r )P[Qu > L(x)]

and for x ∑ 0

G(x) =°x + rE[B1B<x ]

rP[B < x]+ (1° r )P[Qu < L(x)]

.

Remark that the average proÆt G(x) above is well deÆned even when L(x) = 0. In fact, when
L(x)=0, G(x) represents the expected gain of an inÆnitesimal order submitted in an empty
order book at x. Note that for a given x, when L(x) goes large, the expected gain of the limit
orders becomes negative.
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We now describe the way the LOB is built via a zero-proÆt type condition. Let us take the ask
side of the LOB. For any point x, market makers Ærst consider whether or not there should be
liquidity between 0 and x. To do so, they compute the value ˆL(x) which is so that we obtain
G(x) = 0 in the expression in Proposition 1. If ˆL(x) is positive, then competition between
market makers takes place and the cumulative order book adjusts so that L(x) = ˆL(x) in order
to obtain G(x) = 0. If ˆL(x) = 0, then there is no liquidity between 0 and x. If ˆL(x) is negative,
we deduce that there is no liquidity between 0 and x since this liquidity should be positive.
This mechanism makes sense since, as we will see in what follows, ˆL(x) is a non-decreasing
function of x, which implies two things. First, it is impossible to come across a situation where
x

1

< x
2

and where market makers are supposed to add liquidity between P (t ) and P (t )+ x
1

but not between P (t ) and P (t )+ x
2

. Second, the cumulative shape function for the LOB is
indeed non-decreasing.

We have that G(x) = 0 is equivalent to:

x =
( rE[B1B>x ]

rP[B>x]+(1°r )P[Qu> ˆL(x)]

if x ∏ 0

rE[B1B<x ]

rP[B<x]+(1°r )P[Qu< ˆL(x)]

if x ∑ 0.

This implies:

ˆL(x) =
Ω

F°1

∑u

°

1

1°r °
r

1°r E[max(

B
x ,1)]

¢

if x ∏ 0

F°1

∑u

° °r
1°r +

r
1°r E[max(

B
x ,1)]

¢

if x ∑ 0.

The details of the computation of ˆL(x) are given in Appendix III.A.2.

We formalise now the zero-proÆt assumption introduced above. It is the second step of our
approach in order to eventually compute the spread and LOB shape.

Assumption 2. For every x > 0 (resp. x < 0), market makers compute ˆL(x). If ˆL(x) ∑ 0 (resp.
ˆL(x) ∏ 0), market makers add no liquidity to the LOB: L(x) = 0. If ˆL(x) > 0 (resp. ˆL(x) < 0), because
of competition, the cumulative order book adjusts so that G(x) = 0. We then obtain L(x) = ˆL(x).

The above zero-proÆt assumption can be seen as a generalised version of the zero-proÆt con-
dition proposed in [53], in which zero-proÆt is only considered for the two best o�er limits. It
is also interesting to point out that, under this more realistic setting, those very fast market
makers can still make proÆt as their orders are placed earlier in the LOB.

In this case where the tick size is zero, it can seem di�cult to imagine how competition
between di�erent market makers takes place. One can think that every market maker speciÆes
his own L(x) (cumulative liquidity that he provides). Then Assumption 2 means that, when
there is still room for future proÆt at x (G(x) > 0), other market makers will come to the
market and increase the liquidity in the LOB until G(x) becomes null. Note again that we
consider here that market makers can insert inÆnitesimal quantities in the LOB. These ideas
will be made clearer in Section 3 where the tick size is no longer zero.
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2.5 The emergence of the bid-ask spread and LOB shape

Based on the expected gain of the market makers, see Proposition 1, and the zero-proÆt
condition (Assumption 2), we can derive the bid-ask spread and LOB shape. We have the
following theorem proved in Appendix III.A.2.

Theorem 1. The cumulative LOB shape satisÆes L(x) = °L(°x) for any x 2 R, L(x) = 0 for
x 2 [°µ,µ] and L is continuous strictly increasing for x >µ, where µ is the unique solution of the
following equation:

1+ r

2r
= E[max(

B

µ
,1)]. (1)

For x >µ, L(x) > 0 and

L(x) = F°1

∑u

°

1

1° r
° r

1° r
E[max(

B

x
,1)]

¢

. (2)

For x <°µ, L(x) < 0 and

L(x) = F°1

∑u

° °r

1° r
+ r

1° r
E[max(

B

x
,1)]

¢

. (3)

In particular, the bid-ask spread is equal to 2µ.

Equation (1) shows that the spread is an increasing function of r . This means that market
makers are aware of the adverse selection they risk when the number of price jumps increases.
As a consequence, they enlarge the spread in order to avoid this e�ect due to the trades is-
sued by the informed trader just before the price jumps take place. In particular, if there is
no noise trader in the market, then r = 1 and the spread tends to inÆnity. On the contrary,
when the number of trades from the noise trader increases, market makers reduce the spread
because they are less subject to adverse selection. All these results are consistent with the
Ændings in [53].

Equations (2) and (3) show that the liquidity submitted by the market makers is a decreasing
function of r . Indeed let us take x >µ and deÆne h(r ) = 1

1°r °
r

1°r E[max(

B
x ,1)]. We have

@h

@r
(r ) =

1°E[max(

B
x ,1)]

(1° r )

2

∑ 0.

This means that h is a decreasing function of r . The function F°1

∑u being increasing, we
deduce that L(x) is a decreasing function of r . When the number of price jumps increases,
market makers reduce the quantity of submitted passive orders. In contrast, when the number
of trades from the noise trader is large, the market becomes very liquid. This is in line with
the empirical results in Chapter I where it is shown that just before certain announcements, in
order to avoid adverse selection, market makers reduce their depth and increase their spread.

Finally, we recall that in our setting, we do not a priori impose any condition on L(x).
Equations (1), (2) and (3) show that the cumulative LOB we obtain is continuous and strictly
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increasing beyond the spread. Remark also that L(x) tends to inÆnity as x goes to inÆnity.
This implies that the noise trader can always Ænd liquidity in the LOB, whatever the size of
his market order.

2.6 Variance per trade

The variance per trade is the variance of an increment of e�cient price between two transac-
tions. It can be viewed as the ratio between the cumulated variance and the number of trades
over the considered period. A lot of interest has been devoted to this notion in the literature,
notably because of its connection with the spread and the uncertainty zone parameter ¥, see
[41, 86, 115].

In this work, this quantity will moreover help us estimate the law of the e�cient price. Denote
by øi the time of the i th trade and by Pøi the value of the e�cient price right after this
transaction. We have the following result proved in Appendix III.A.3.

Theorem 2. The variance per trade æ2

tr satisÆes:

æ2

tr = E[(Pøi+1

°Pøi )

2

] = E[B 2

]µ

E[|B |1|B |>µ]

.

We know that for small tick assets, we should obtain a linear relationship between the volatility
per trade and the spread, with a slope coe�cient between 1 and 2, see [86, 115]. If we consider
such asset, we must then have:

E[B 2

]

E[|B |1|B |>µ]

ªµ.

A classical choice, enabling us to satisfy the above relationship is to consider a Pareto distri-
bution for the absolute value of the e�cient price jumps with parameters k (the shape) and
x

0

(the scale), with k > 2 in order to have a Ænite variance. The variance per trade is in that
case equal to:

æ2

tr =
(

x2°k
0

(k°1)µk

k°2

if x
0

∑µ
(k°1)µx

0

k°2

if x
0

∏µ.
To ensure that the variance per trade is proportional to the square of the spread we should
have x

0

proportional to µ. Actually, to match the constants in both cases in the above
formulas, we naturally take x

0

= µ. This means that at equilibrium the spread adapts to the
minimal jump size or rather that market participants view modiÆcations of the e�cient price
as signiÆcant only provided they are larger than half a spread. In this case, the variance per
trade becomes:

æ2

tr =
k °1

k °2

µ2

.

Knowing that the slope coe�cient between the volatility per trade and the spread lies between
1 and 2, we expect a scale parameter k larger than 2.3. Note that when k tends to inÆnity, the
slope coe�cient tends to 1. These results will be heavily used in Section 5.
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3 The case of non-zero tick size

In this section, we study the e�ect of introducing a tick size, denoted by Æ, that constraints
the price levels in the LOB. The same e�cient price dynamic as that described in the previous
section still applies, but the cumulative LOB shape becomes now a piecewise constant func-
tion. Due to price discreteness, the discontinuity points of L(x) will depend on the position
of the e�cient price P (t ) with respect to the tick grid.

3.1 Notations and assumptions

Notations To deal with the discontinuity points of L(x), the following notations will be used
in the sequel. Let us denote by ˜P (t ) the smallest admissible price level that is greater than or
equal to the current e�cient price P (t ), and their distance by d := ˜P (t )°P (t ), where d 2 [0,Æ).
The cumulative LOB shape function L(x) is now deÆned by Ld

(i ):

Ld
(i ) =

Ω

L(d + (i °1)Æ) for i > 0

L(d + iÆ) for i < 0.

(4)

The index i = 1 (resp. i = °1) corresponds to the closest price level that is larger (resp.
smaller) than or equal to P (t ). When Ld

(i ) > 0 (resp. Ld
(i ) < 0), it represents the total volume

of sell (resp. buy) passive orders with prices smaller (resp. larger) than or equal to the i th limit.

We write l d
(i ) for the quantity placed at the i th limit:

l d
(i ) =

Ω

Ld
(i )°Ld

(i °1) for i > 0

Ld
(i )°Ld

(i +1) for i < 0.

When l d
(i ) > 0 (resp. l d

(i ) < 0), it represents the volume of sell (resp. buy) limit orders placed
at the i th limit. Recall that l d

(i ) ∏ 0 (resp. l d
(i ) ∑ 0) for i > 0 (resp. i < 0).

Assumptions We adapt Assumption 1 to our tick size setting. We again assume that when
he receives new information, the informed trader sends his trades in a greedy way such that he
wipes out all the available liquidity at limits where the price is smaller than the new e�cient
price. This can be translated as follows.

Assumption 1. When the informed trader sends a market order, then Qi is equal to Ld
(i ) for some

i 2Z§. We have Qi = Ld
(i ) if and only if B 2 [d + (i °1)Æ,d + iÆ].

Remark 1. In practice, it is rare that a trade consumes more than one limit in the LOB. Such trade
in our model should be interpreted in practice as a sequence of transactions, each of them consuming
one limit.

3.2 Computation of the market makers expected gain

As in the previous section, let us compute the conditional average proÆt of a new inÆnitesimal
passive order submitted at the i th limit, knowing that Q > Ld

(i ), and without any information
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about the trade’s initiator. This quantity is denoted by Gd
(i ) and deÆned in a similar fashion

as G(x) in Section 2.4. The computation of Gd
(i ) is comparable to that of G(x), and actually

even easier since we now have that the volume at the i th limit cannot be inÆnitesimal. This
means that di�erent orders can be submitted at the same price with disparities in their gain
according to their position in the queue. For instance, the order placed on top of the queue has
the highest expected gain, while we will impose later that the gain of a new order submitted
at the rear of the queue is null. We have the following proposition proved in Appendix III.A.4.

Proposition 1. Under Assumption 1, for i 2Z§, the expected gain of a new inÆnitesimal passive
order placed at the i th level, given that it is executed, satisÆes:

For i > 0:

Gd
(i ) =G(d + (i °1)Æ) = d + (i °1)Æ°

rE[B1B>d+(i°1)Æ]

rP[B > d + (i °1)Æ]+ (1° r )P[Qu > Ld
(i )]

,

and for i < 0:

Gd
(i ) =G(d + iÆ) = d + iÆ° rE[B1B<d+iÆ]

rP[B < d + iÆ]+ (1° r )P[Qu < Ld
(i )]

.

The quantity Gd
(i ) can be understood as the expected gain of a newly inserted inÆnitesimal

limit order at the i th limit, under the condition that it is executed against some market or-
der. For this situation with non-zero tick size, we follow the same reasoning as in the case
with zero tick size. Indeed, for all i 2Z§, market makers compute ˆLd

(i ) so that Gd
(i ) = 0 in

Proposition 1. The equality Gd
(i ) = 0 is equivalent to:

If i > 0:

d + (i °1)Æ=
rE[B1B>d+(i°1)Æ]

rP[B > d + (i °1)Æ]+ (1° r )P[Qu > ˆLd
(i )]

and if i < 0:
d + iÆ= rE[B1B<d+iÆ]

rP[B < d + iÆ]+ (1° r )P[Qu < ˆLd
(i )]

.

This is equivalent to:

ˆLd
(i ) =

Ω

F°1

∑u

°

1

1°r °
r

1°r E[max(

B
d+(i°1)Æ ,1)]

¢

if i > 0

F°1

∑u

° °r
1°r +

r
1°r E[max(

B
d+iÆ ,1)]

¢

if i ∑ 0.

As in the case without tick size, this leads to the following zero-proÆt assumption.

Assumption 2. For every i 2Z+ (resp. i 2Z°), market makers compute ˆLd
(i ). If ˆLd

(i ) ∑ 0 (resp.
ˆLd

(i ) ∏ 0), market makers add no liquidity to the LOB: Ld
(i ) = 0. If ˆLd

(i ) > 0 (resp. ˆLd
(i ) < 0),

because of competition, the cumulative order book adjusts so that Gd
(i ) = 0. We then obtain then

Ld
(i ) = ˆLd

(i ).

The zero-proÆt condition applies only to a new order submitted at the bottom of the queue.
The expected proÆt of the other orders is non-zero, maximum gain being obtained for the
one on top of the queue.
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3.3 Bid-ask spread and LOB formation

Based on the expected gain of the market makers, see Proposition 1, and the zero-proÆt
condition (Assumption 2), as previously, we deduce the bid-ask spread and LOB shape. We
have the following theorem proved in Appendix III.A.5.

Theorem 1. The LOB shape function satisÆes l d
(i ) = 0 for all °kd

l < i < kd
r , where kd

l and kd
r

are two positive integers determined by the following equations:

kd
r = 1+ dµ°d

Æ
e, kd

l = dµ+d

Æ
e,

with µ deÆned by (1), and where dxe denotes the smallest integer that is larger than x (which can be
equal to 0). Furthermore, for i ∏ kd

r :

Ld
(i ) = F°1

∑u

°

1

1° r
° r

1° r
E[max(

B

d + (i °1)Æ
,1)]

¢

and for i ∑°kd
l :

Ld
(i ) = F°1

∑u (

°r

1° r
+ r

1° r
E[max(

B

d + iÆ
,1)]).

For given d , the bid-ask spread ¡d
Æ satisÆes:

¡d
Æ =Æ

°

dµ°d

Æ
e+ dµ+d

Æ
e
¢

.

Let us consider the approximation that d is uniformly distributed on [0,Æ] (which is reason-
able, see [75, 100, 112]). In this case, we obtain the following corollary proved in Appendix
III.A.6.

Corollary 1. The average spread ¡Æ satisÆes:

¡Æ = 2µ+Æ. (5)

When the tick size is vanishing, we have seen in Theorem 1 that the spread is equal to 2µ.
When it is not, the spread cannot necessarily be equal to 2µ because of the tick size con-
straint. What is particularly interesting is that even if Æ ∑ 2µ, the equilibrium spread is not
2µ. There is always a tick size processing cost leading to a spread value of 2µ+Æ. Equation
(5) will be used for practical applications in Section 4.

One numerical example of a limit order book For illustration, we provide now one
numerical example of a limit order book. As suggested in Section 2.6, let us consider that
the absolute value of the price jumps follows a Pareto distribution with shape and scale
parameters respectively equal to 3 and 0.005, r = 2/3, Æ = 0.01 and d = 0.0075. Moreover,
we suppose that Qu follows a standard normal distribution (here the value 1 of the standard
deviation just represents a suitable unity). Under the considered parameters, the spread is
equal to 2 ticks and we obtain the LOB given in Figure III.1.
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Figure III.1 – Numerical illustration of a LOB.

3.4 Variance per trade

We provide here the variance per trade (deÆned previously in Section 2.6) in the case where
the tick size is non null. This result is obtained in a similar way as Theorem 2.

Theorem 2. The variance per trade æ2

tr satisÆes:

æ2

tr = E[(Pøi+1

°Pøi )

2

] = E[B 2

](µ+Æ/2)

E[|B |1|B |>µ+Æ/2

]

. (6)

As in the zero tick size case, see Section 2.6, we consider that the absolute value of the price
jumps follows a Pareto distribution and take x

0

equal to the half spread µ+Æ/2. The variance
per trade becomes:

æ2

tr =
k °1

k °2

(µ+Æ/2)

2

.

We will estimate the scale parameter k from this relationship in Section 5.

3.5 Queue position valuation

Introducing a tick size in our modelling enables us to study the value of the position of the
limit orders in the queues. We can quantify the advantage of an order placed on top of a
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queue compared to another one placed at the bottom. The di�erence in the values of the
positions in a queue is a crucial parameter for trading algorithms. It has actually lead to a
technological arms race among high-frequency traders and other automated market partici-
pants to establish early (and hence advantageous) positions in the queues, see [3, 91]. Placing
limit orders at the front of a queue is very valuable for di�erent reasons. It guarantees early
execution and less waiting time. In addition, it reduces adverse selection risk. In fact, as
explained in [91], when a limit order is placed at the end of a queue, it is likely that it will be
executed against a large trade. In contrast, a limit order placed at the front of the (best) queue
will be executed against the next trade independently of the trade size. Large trades are in
general sent by informed traders aiming at consuming all limit orders which will generate
proÆt for them. In this way, a limit order submitted at the front of the queue is less likely to
undergo adverse selection.

In light of this, to optimise their execution, practitioners need to place limit orders in a rele-
vant way. This requires an estimate of the value of a limit order according to its position in
the queue. This very problem is studied in [91] for the queues at the best limits for large tick
assets. We complement here this nice work providing formulas valid for any queue of a large
or small tick asset and taking into account strategic interactions between market participants.

Assumption 2 tells us that the expected proÆt of a new inÆnitesimal limit order placed at the
bottom of a non-empty queue is equal to zero. However, under our zero-proÆt condition,
market makers may still make proÆt if their orders are placed before. The value of queue
position at the i th level, denoted by ˜Gd

(i ), can be formulated in this model as the di�erence
between the expected proÆt of the order placed on top and that of a new one that would be
placed at the bottom of the i th queue. Computing this quantity is very similar to deriving the
equations in Proposition 1. The di�erence is that now we no longer consider a traded volume
totally depleting the limit but a traded volume consuming all the limits before the i th one.
This leads to the following theorem.

Theorem 3. For i ∏ kd
r , we have

˜Gd
(i ) = d + (i °1)Æ°

rE[B1B>d+(i°1)Æ]

1° r F√(d + (i °1)Æ)° (1° r )F∑u
°

Ld
(i °1)

¢

.

The formula for i ∑°kd
l is obviously deduced. We will confront the formula in Theorem 3 to

data in Section 5.

4 First practical application: Spread forecasting

Our model (in particular Equation (5)) allows us to forecast the new value of the spread if the
tick size is modiÆed. In the following, we predict the spread changes due to the new tick size
regime under the recent European directive MiFID II, and compare our results to the e�ective
spread values. We expect our model to be relevant for rather liquid assets since it is based
on the presence of competitive market makers. We therefore restrict ourselves to this class.
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Note that there are other models in the literature enabling practitioners to forecast spreads,
see notably [41] where the authors propose an approach designed for large tick assets. This
methodology is applied for example in [64] on Japanese data and in [78] where spread values
before and after MiFID II are compared. The advantage of our device is that it can be applied
on both small and large tick assets.

4.1 The tick size issue and MiFID II directive

In the recent years, trading platforms have raced to reduce their tick sizes in order to o�er
better prices and gain market share. This broad trend has had adverse e�ects on the overall
market quality: a too small tick leads to unstable LOBs and a degradation of the price forma-
tion mechanism. However, a too large tick prevents the price from moving freely according
to the views of market participants. Therefore, Ænding suitable tick values is crucial for the
Øuidity of Ænancial markets. To solve this issue, some regulators tried to use pilot programs,
as was the case in Japan and in the United States, see for example [64]. This is a costly prac-
tice which does not really rely on theoretical foundations. We believe that using quantitative
results such as those presented in this work could lead to a much more e�cient methodology.

In Europe, MiFID II (Markets in Financial Instruments Directive II) directive introduced a
harmonized tick size regime (Article 49) which is based on a two-entries table: price and
liquidity (expressed in terms of number of transactions per day). Note that one of the targets
for regulators was to obtain for liquid assets spreads between 1.5 and 2 ticks, see [8].

4.2 Data

Our data are provided by the French regulator Autorité des Marchés Financiers. We study
the CAC 40 stocks over a six months time period around the implementation of MiFID II:
from October 2017 to December 2017 (before the tick size changes) and from January 2018
to March 2018 (after the tick size changes). We consider assets whose tick size has changed
after the implementation of MiFID II directive3. There are 14 stocks from the CAC 40 index
then remaining. We note that for all these assets, the tick size was increased.

For each asset we compute two spreads: the Ærst one is averaged over all events occurring in
the LOB (transactions, insertions of a new order, cancellations or modiÆcations of an existing
order) over the three months before MiFID II and the second one over the three months under
MiFID II.

4.3 Prediction of the spread under MiFID II and optimal tick sizes

We now forecast the new spreads of our 14 assets due to the new tick size regime, based on
pre-MiFID II data. We use two di�erent predictors. First, we consider that the spread (in
euros) remains constant. Second, we compute the new value of the spread based on Equation

3We exclude three assets whose tick size Øuctuates intraday because of price variations.
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Stock Tick
size

before
MiF. II

Tick
size
under
MiF. II

Average
spread
before
MiF. II
(euros)

Average
spread
before
MiF. II
(ticks)

Average
spread
under
MiF. II
(euros)

Average
spread
under
MiF. II
(ticks)

Expected
spread
based
on our
model

Relative
error

Accor 0.005 0.01 0.011 2.266 0.016 1.586 0.016 3%
Bouygues 0.005 0.01 0.011 2.277 0.017 1.734 0.016 5%
Kering 0.05 0.1 0.090 1.797 0.141 1.407 0.140 1%
Legrand 0.01 0.02 0.016 1.643 0.029 1.471 0.026 10%
Publicis 0.01 0.02 0.019 1.904 0.030 1.520 0.029 4%
Safran 0.01 0.02 0.019 1.892 0.031 1.556 0.029 7%
Schneider Electric 0.01 0.02 0.016 1.579 0.025 1.235 0.026 4%
TechnipFMC 0.005 0.01 0.010 2.056 0.017 1.677 0.015 10%
Valeo 0.01 0.02 0.018 1.845 0.031 1.568 0.028 10%
Veolia Environnement 0.005 0.01 0.007 1.440 0.012 1.189 0.012 3%
Vinci 0.01 0.02 0.017 1.668 0.026 1.280 0.027 4%
Vivendi 0.005 0.01 0.007 1.408 0.012 1.162 0.012 4%

Table III.1 – Forecasting CAC 40 assets spreads under MiFID II.

(5), with µ estimated on the period from October 2017 to December 2017. We compare the
accuracy of our forecasts with respect to the e�ective spread values in Table III.1.

The forecasts based on our model are very accurate: the average relative error is equal to
5% while it is 43% for the other predictor. Remark also that the errors obtained under our
methodology are always smaller than the initial tick size, which is almost never the case if
one just assumes that the spread in euros is constant.

5 Second practical application: Queue position valuation

As we have seen in Section 3.5, our approach enables us to measure quantitatively the value
of queue position thanks to Theorem 3. To use this result, we need to know the distribution
of B . To estimate it, we use the Pareto parametrization of Section 3.4. We will estimate the
parameter k from Equation (6) and compute r using Equation (1). Values of queue positions
will then be deduced.

5.1 Data

To complement the results of [91], we consider in this section the values of queue position for
all small tick stocks of the CAC 40 index (that is stocks for which the average spread is larger
than 2 ticks). We study this quantity under MiFID II. These assets are investigated over a
three months period: from January 2018 to March 2018. This leaves us with Æve stocks. We
compute on a daily basis the average spread over all events occurring in the LOB and the
variance per trade, for each stock.

5.2 Pareto parameters estimation methodology

Under our parametrization, the variance per trade is given by
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æ2

tr =
(k °1)(µ+Æ/2)

2

k °2

.

We estimate k by minimising for each stock the quadratic error:

X

j

°

æ2

tr ° (

gæ2

tr ) j
¢

2

,

where æ2

tr is the variance per trade obtained in our model and (

gæ2

tr ) j is the variance per trade
measured on data (realised variance based on 5 minutes price sampling divided by number
of trades) on day j . We search for the optimal k between 2.001 and 20. Note that for each
stock, the considered spread is equal to the average realised spread during the period under
study.

5.3 Queue position valuation

We Ærst report in Table III.2 the values of the queue position at the best ask limit according
to d . We consider that d can be equal to 0.25Æ, 0.5Æ or 0.75Æ.

Stock Spread
(euros)

Spread
(ticks)

k r Priority
value for

d =
0.25Æ
(euros)

Priority
value for

d =
0.25Æ

(spreads)

Priority
value for
d = 0.5Æ
(euros)

Priority
value for
d = 0.5Æ
(spreads)

Priority
value for

d =
0.75Æ
(euros)

Priority
value for

d =
0.75Æ

(spreads)
Airbus 0.020 2.040 3.478 71% 0.011 53% 0.012 61% 0.014 68%
Lafarge Holcim 0.026 2.438 3.316 70% 0.010 39 % 0.011 42% 0.012 48%
Renault 0.025 2.476 2.866 65% 0.010 41% 0.011 45% 0.012 50%
Saint-Gobain 0.010 2.035 4.776 79% 0.006 55% 0.007 65% 0.008 76%
Société Generale 0.010 2.012 9.910 90% 0.006 60% 0.007 73% 0.009 86%

Table III.2 – Queue position values at the best ask according to d .

We see that the values of queue position are of the same order of magnitude as the bid-ask
spreads. This is in line with the Ændings in [91]. In addition, we get that it is increasing with
d . Furthermore, remark that as expected from Section 2.6, the values of k are larger than 2.3.

We now compute in Table III.3 the values of queue position at the four best limits when
d = 0.5Æ.
Stock Spread

(euros)
Spread
(ticks)

k r First
limit

priority
value
(euros)

First
limit

priority
value

(spreads)

Second
limit

priority
value
(euros)

Second
limit

priority
value

(spreads)

Third
limit

priority
value
(euros)

Third
limit

priority
value

(spreads)

Fourth
limit

priority
value
(euros)

Fourth
limit

priority
value

(spreads)
Airbus 0.020 2.040 3.478 71% -0.005 -25% 0.012 61% 0.015 72% 0.014 67%
Lafarge Holcim 0.026 2.438 3.316 70% -0.008 -31% 0.011 42 % 0.014 55% 0.013 52%
Renault 0.025 2.476 2.866 65% -0.007 -30% 0.011 45% 0.013 54% 0.013 51%
Saint-Gobain 0.010 2.035 4.776 79% -0.003 -25% 0.007 65% 0.009 84% 0.008 78%
Société Generale 0.010 2.012 9.910 90% -0.003 -25% 0.007 73% 0.012 117% 0.013 127%

Table III.3 – Queue position values at the four best limits for d = 0.5Æ.

Note that the queue position value of the Ærst limit does not necessarily correspond to the best
ask. For example, if the priority value at the Ærst limit is negative and the one at the second
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limit is positive, the best ask is the second limit. We observe that the value of queue position
is increasing according to the rank of the limit, up to some level after which it decreases.

Conclusion

In this article, we introduce an agent-based model for the LOB. Inspired by the seminal paper
by Glosten and Milgrom [53], we use a zero-proÆt condition for the market makers which en-
ables us to derive a link between proportion of events due to the noise trader, bid-ask spread,
dynamic of the e�cient price and equilibrium LOB state. The e�ect of introducing a tick
size is then discussed. We in particular show that the constrained bid-ask spread is equal to
the sum of the tick value and the intrinsic bid-ask spread that corresponds to the case of a
vanishing tick size. This model allows us to do spread forecasting when one modiÆes the tick
size. Price discreteness also enables us to value queue positions in the LOB.

In our approach, market makers only are allowed to insert limit orders. In practice, the roles
of informed trader and market makers are often mixed, and the informed trader also has the
possibility to place passive limit orders. By doing so, he may get better prices but also leak
some information to other market participants. Extending our model by taking into account
accurately these intricate features is left for future work.

III.A Proofs

III.A.1 Proof of Proposition 1

We consider the gain of passive sell orders. The gain of passive buy orders can be easily
deduced.

First, we compute Gi n f
(x °±p, x). We have:

Gi n f
(x °±p, x) =

Zx

x°±p
(P (t )+ s)d

ˆL(s)°
Zx

x°±p
(P (t )+E[B |B > x])d

ˆL(s)

=
Zx

x°±p
sd

ˆL(s)° ˆL(x)E[B |B > x].

For Gnoi se
(x °±p, x) we get:

Gnoi se
(x °±p, x) =

Zx

x°±p
(P (t )+ s)d

ˆL(s)°
Zx

x°±p
P (t )d

ˆL(s) =
Zx

x°±p
sd

ˆL(s).
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We deduce that:

G(x °±p, x) =Gi n f
(x °±p, x)P[∫= 1|Q ∏ L(x)+ ˆL(x)]+Gnoi se

(x °±p, x)P[∫= 0|Q ∏ L(x)+ ˆL(x)]

=
Zx

x°±p
sd

ˆL(s)°P[∫= 1|Q ∏ L(x)+ ˆL(x)]

ˆL(x)E[B |B > x]

=
Zx

x°±p
sd

ˆL(s)° ˆL(x)E[B |B > x]

rP[B > x]

P[Q ∏ L(x)+ ˆL(x)]

=
Zx

x°±p
sd

ˆL(s)° ˆL(x)

rE[B1B>x ]

P[Q ∏ L(x)+ ˆL(x)]

=
Zx

x°±p
sd

ˆL(s)° ˆL(x)

rE[B1B>x ]

rP[B > x]+ (1° r )P[Qu > L(x)+ ˆL(x)]

.

Integrating by part we get
Zx

x°±p
sd

ˆL(s) = ˆL(x)x °
Zx

x°±p

ˆL(s)ds = "x °
Zx

x°±p

ˆL(s)ds.

When ±p tends to 0, this tends to "x. Consequently, we have:

lim
±p!0

G(x °±p, x) = "
°

x ° rE[B1B>x ]

rP[B > x]+ (1° r )P[Qu > L(x)+ ˆL(x)]

¢

,

and

G(x) = lim
"!0

°

lim
±p!0

G(x °±p, x)

"

¢

= x ° rE[B1B>x ]

rP[B > x]+ (1° r )P[Qu > L(x)]

.

III.A.2 Proof of Theorem 1

We consider the passive sell orders (x > 0). We Ærst compute ˆL(x) which is the theoretical
liquidity that market makers should add in the LOB in order to obtain G(x) = 0. Under
Proposition 1, G(x) = 0 is equivalent to:

P[Qu > L(x)] = r

1° r

°

E[

B

x
1B>x ]°P[B > x]

¢

= r

1° r

°

E[

B

x
1B>x ]°1+P[B < x]

¢

= r

1° r

°

°1+E[max(

B

x
,1)]

¢

.

We deduce that
ˆL(x) = F°1

∑u (

1

1° r
° r

1° r
E[max(

B

x
,1)]).

We now prove that the spread is positive and Ænite and deduce the shape of the whole LOB.
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Recall that ˆL(x) computed above is a theoretical value, and that market makers will add liq-
uidity only when ˆL(x) > 0.

We have ˆL(x) > 0 when ( 1

1°r °
r

1°r E[max(

B
x ,1)]) > 1

2

. This holds for all x such that E[max(

B
x ,1)] <

1+r
2r . Equivalently, the inequality is satisÆed for any x such that x > µ, where µ is unique so-
lution of the following equation:

E[max(

B

µ
,1)] = 1+ r

2r
.

By Assumption 2, we deduce that for any x ∑µ, L(x) = 0. Moreover, for any x >µ,

L(x) = F°1

∑u

°

1

1° r
° r

1° r
E[max(

B

x
,1)]

¢

.

We deduce that µ is the half spread.

The cumulative LOB we obtain is unique, continuous and strictly increasing beyond the
spread (since the laws of B and Qu have positive densities on R).

III.A.3 Proof of Theorem 2

We denote by ∫i the random variable that is equal to 1 if the i th trade is initiated by the
informed trader and 0 if it is initiated by the noise trader. We write ! for the number of
events4 between two successive trades. We have:

æ2

tr = E[(Pøi+1

°Pøi )

2

] =
1
X

j=1

P[!= j ]E[(Pøi+1

°Pøi )

2|!= j ].

with

E[(Pøi+1

°Pøi )

2|!= j ] =P[∫øi+1

= 0|!= j ]E[(Pøi+1

°Pøi )

2|!= j ,∫øi+1

= 0]

+P[∫øi+1

= 1|!= j ]E[(Pøi+1

°Pøi )

2|!= j ,∫øi+1

= 1].

Knowing that ! = j , the j th event can be a trade initiated by the noise trader or a trade
initiated by the informed trader. We have

E[(Pøi+1

°Pøi )

2|!= j ,∫øi+1

= 1] = E[(

j°1

X

k=1

Bk +B j )

2||Bk | <µ, |B j | >µ]

= ( j °1)E[B 2

k ||Bk | <µ]+E[B 2

j ||B j | >µ].

and

E[(Pøi+1

°Pøi )

2|!= j ,∫øi+1

= 0] = E[(

j°1

X

k=1

Bk )

2||Bk | <µ] = ( j °1)E[B 2

k ||Bk | <µ].

4An event can be either a trade sent by the noise trader (in that case it necessarily triggers a new transaction),
or an information update B which may or may not trigger a trade, depending on whether or not |B | >µ.
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We compute the probabilities:

P[∫øi+1

= 1|!= j ] = rP[|B | >µ]

1° rP[|B | <µ]

and
P[∫øi+1

= 0|!= j ] = 1° r

1° rP[|B | <µ]

.

Consequently,

æ2

tr = E[B 2||B |∑µ]

1
X

j=1

( j °1)P[!= j ]+E[B 2||B | >µ]

rP[|B | >µ]

1° rP[|B | <µ]

.

We have:

1
X

j=1

P[!= j ]( j °1) = (1° rP[|B | <µ])

1
X

j=1

( j °1)(rP[|B | <µ])

j°1

= (1° rP[|B | <µ])

1
X

j=0

j (rP[|B | <µ])

j

= rP[|B | <µ]

°

1° rP[|B | <µ]

¢

.

We deduce:

æ2

tr =
rE[B 2

1|B |<µ]+ rE[B 2

1|B |>µ]

1° rP[|B |∑µ]

= rE[B 2

]

1° rP[|B |∑µ]

.

Recall that from Equation (1) :

1+ r

2r
= E[max(

B

µ
,1)] = E[

B

µ
1B>µ]+P[B ∑µ].

this implies that
1+ r

r
°1 = E

∑ |B |
µ

1|B |>µ

∏

+P[|B |∑µ].

Thus we conclude that

æ2

tr =
E[B 2

]µ

E[|B |1|B |>µ]

.

III.A.4 Proof of Proposition 1

We just give a sketch of proof here since the computations are essentially the same as for the
proof of Proposition 1. In particular, we do not introduce the volume " of limit orders and
directly work in the asymptotic regime " tending to zero. We consider the gain of passive sell
orders. The gain of passive buy orders can be deduced the way.
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First, we compute the gain of a new order placed at the i th limit when the trade is initiated
by an informed trader, knowing that Qi > Ld

(i ), denoted by Gd
i n f (i ):

Gd
i n f (i ) = d + (i °1)Æ°E[B |B > d + (i °1)Æ].

Second, we compute the gain of a new order placed at the i th limit when the trade is initiated
by a noise trade, knowing that Qi > Ld

(i ), denoted by Gd
noi se (i ):

Gd
noi se (i ) = d + (i °1)Æ.

Now, Gd
(i ) satisÆes:

Gd
(i ) =Gd

i n f (i )P[∫= 1|Q > Ld
(i )]+Gd

noi se (i )P[∫= 0|Q > Ld
(i )]

= d + (i °1)Æ°
rE[B1B>d+(i°1)Æ]

P[Q > L(d + (i °1)Æ])

= d + (i °1)Æ°
rE[B1B>d+(i°1)Æ]

rP[B > d + (i °1)Æ]+ (1° r )P[Qu > L(d + (i °1)Æ)]

.

III.A.5 Proof of Theorem 1

We consider the ask side. First we show that the spread is positive and Ænite. Then we prove
that beyond the spread, market makers insert limit orders on all possible limit prices.

We showed in the case where the tick size is null that there exists µ such that for all x ∑
µ,L(x) = 0 and for all x > µ,L(x) > 0. The LOB being now discrete, the previous Ændings
remain true for kd

r instead of µ where kd
r satisÆes:

kd
r =min{k 2N+|d + (k °1)Æ>µ}.

So we have:
kd

r = 1+ dµ°d

Æ
e.

Similarly, for the Ærst non-empty limit at the bid side, we get:

kd
l = dµ+d

Æ
e.

From Equation (4), the spread is equal to (kd
r +kd

l )Æ°Æ. Thus the conditional constrained
bid-ask spread ¡d

Æ, given the value of d , satisÆes:

¡d
Æ =Æ(dµ°d

Æ
e+ dµ+d

Æ
e).

Under Assumption 2, we have for any i ∏ kd
r :

L(d + (i °1)Æ) = F°1

∑u (

1

1° r
° r

1° r
E[max(

B

d + (i °1)Æ
,1)]).

We deduce that the cumulative LOB is unique and increasing beyond the spread.
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III.A.6 Proof of Corollary 1

The parameter d being approximately uniformly distributed between [0,Æ), we can compute
the average value of the constrained bid-ask spread by integrating ¡d

Æ:

¡Æ =
ZÆ

0

dµ° s

Æ
e+ dµ+ s

Æ
eds.

Denote u := µ
Æ . We have:

¡u =Æ

Z

1

0

du °xe+ du +xedx.

We decompose u such that u = ui +u f , where ui represents the integer part of u. We get:

¡Æ =Æ

Z

1

0

dui +u f °xe+ dui +u f +xedx.

¡Æ =Æ
°

Zu f

0

(ui +1)dx +
Z

1

u f

uidx +
Z

1°u f

0

(ui +1)dx +
Z

1

(1°u f )

(ui +2)dx
¢

.

¡Æ =Æ
°

u f (ui +1)+ (1°u f )ui + (1°u f )(ui +1)+u f (ui +2)

¢

.

¡Æ =Æ(2ui +2u f +1) =Æ+2µ=Æ+¡.
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CHAPTER IV

From asymptotic properties of general
point processes to the ranking of Ænancial

agents

Abstract

We propose a general non-linear order book model that is built from the individual
behaviours of the agents. Our framework encompasses Markovian and Hawkes based
models. Under mild assumptions, we prove original results on the ergodicity and di�usivity
of such system. Then we provide closed form formulas for various quantities of interest:
stationary distribution of the best bid and ask quantities, spread, liquidity Øuctuations
and price volatility. These formulas are expressed in terms of individual order Øows of
market participants. Our approach enables us to establish a ranking methodology for the
market makers with respect to the quality of their trading.

Keywords: Market microstructure, limit order book, high-frequency trading, market making,
queuing model, Hawkes processes, ergodic properties, volatility, regulation.

1 Introduction

In the last two decades, the development of electronic and fragmented markets has lead to
a deep disruption in the landscape of market participants. In particular, traditional market
making institutions have been largely replaced by high-frequency market makers. Market
makers are intermediaries between buyers and sellers. In an electronic limit order book, they
provide liquidity to market participants willing to trade immediately by simultaneously post-
ing limit orders on both sides of the book. Market makers undergo di�erent types of risk,
mainly adverse selection and inventory risks. To avoid adverse selection risk, they must be
able to update very frequently their quotes in response to other order submissions or cancel-
lations. To minimise their inventory risk, they need to use smart algorithms enabling them to
hold positions for very short time periods only, see for example [84].
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High-frequency traders (HFTs) are now the only market participants that are indeed able to
play the role of market makers on liquid stocks, see [71]. This is achieved thanks to an intense
use of speed (co-location) and technology. They are supposedly capable to maintain a strong
presence at best price limits and control adverse selection at the same time, see [72], while
operating e�cient inventory management in an increasingly fast-moving market, see [5, 11].
This is to the extent that HFTs are described as the new market makers in [88].

Since the arrival of these new market makers, academics, regulators and practitioners aim at
understanding whether their activity is harmful or beneÆcial for markets. On the one hand,
some argue that HFTs have a positive impact on markets: the competition between market
makers leads to an increase in market depth, to narrower bid-ask spreads which is equivalent
to reduced trading costs for other investors, see [58, 72] and to better price discovery, see
[58, 98]. On the other hand, others assert that high-frequency market makers have toxic con-
sequences. For example, they worsen market volatility during Øash crashes by aggressively
liquidating their long positions, see [74, 85].

One important common point in most studies analysing the behaviour of HFTs is that they
try to measure how HFTs impact the market as a group, without investigating individual be-
havioural disparities among them. Chapters I and II shed light on the fact that all HFTs do
not behave similarly, showing for example that they have very di�erent levels of aggressiveness
and liquidity provision. In this paper, we wish to participate to the debate about the role of
HFTs on market quality by bringing some new quantitative elements enabling regulators and
exchanges to assess the individual e�ects of each high-frequency market maker operating on
the market. In particular, we want to be able to rank market makers according to the quality
of their trading.

We use several metrics for market quality such as spread and liquidity Øuctuations, but a
particular focus is given to the price volatility. This idea of disentangling market participants
contribution to volatility is used in [97]. In this work, the authors nicely model the interactions
between the various orders of the di�erent market participants using linear Hawkes processes.
This model is very interpretable: an order of type A of Agent i raises the likelihood of an
order of type B of Agent j by a certain amount. Consequently, the authors naturally deÆne
the contribution of Agent A to the volatility by the weighted sum over all possible types of
orders of Agent A of the squared mean price jump triggered by each of these orders, the
associated weight being the intensity of the corresponding order type.

Our focus here is on market makers. Thus one crucial element to take into account is the
well-known fact that the main market driver of any market making strategy is the state of
the limit order book (and not single individual orders of other market participants), see
[63, 81, 91]. Therefore, in the spirit of the Queue-reactive model of [63], we assume that the
state of the order book, which is a common component, a�ects the interactions between our
high-frequency market participants. However, to get a really accurate modelling of the be-
haviour of the agents, we also let their individual actions depend on their own past ones and
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on those of other participants, in the spirit of [97]. We allow for strong non-linearities in the
dependences with the past, leading to a much generalised version of Hawkes-Queue-reactive
type order book models, see [92, 114].

In this extended and non-Markovian framework, we are able to prove the ergodicity and
di�usivity of our system, see [65] for inspiring ideas. Furthermore, we provide asymptotic
expressions for market quantities such as spread, liquidity Øuctuations or price volatility in
terms of the individual order Øows of market participants. This notably enables us to forecast
the dynamics of the market in case one market makers leaves it. The idea is that we consider
that market makers interact with the market through their algorithms which are speciÆed for
example in term of average event size or in term of relative quantities such as the imbalance.
If we remove one market participant while the others do not modify their algorithms, we can
for instance compute a new volatility. If it is larger (smaller) than the actual one, we can say
that the considered market maker has a stabilising (destabilising) e�ect on the market. This
eventually leads us to a ranking of market makers with respect to the quality of their trading.

Let us now give a brief description of our model. Let n be a positive integer representing the
index of the n-th order book event en . Each event en happens at time Tn and is characterised
by a variable Xn that encodes all the needed information to describe en . For example, Xn

contains the order size, the type of the order (limit order, liquidity consuming order such
as market order or cancellation), the order posting price and the identity of the agent. A
detailed description of the sequences (Tn)n∏1

and (Xn)n∏1

is given in Section 2.2. The order
book state is modelled by the process Un =

°

Q1

n ,Q2

n ,Sn
¢

with Q1

n the available quantity at
the best bid, Q2

n the available quantity at the best ask and Sn the spread at time Tn . For
a detailed description of the dynamic of Un , see Equation (1). Here we focus on the Ærst
limits to reduce the dimension of the state space and keep a tractable model1. Finally, we
use a general approach to infer the behaviour of the price process from that of (Un), in
the spirit of [65, 82], see Section 4 for the detailed formulation. We deÆne the non-linear
Hawkes-Markovian arrival rate ∏t (e) of an order book event e (e containing the identity of
the involved agent) at time t 2R+ as follows:

∏t (e) =√
°

e,Ut° , t ,

X

Ti<t
¡(e,Ut° , t °Ti , Xi )

¢

,

where √ is a non-linear function, Ut° is the order book state relative to the last event before
t and ¡ is the Hawkes kernel representing the inØuence of past events. The functions ¡
and √ are both R+-valued. In absence of the kernel ¡, the function √ leads to a classical
Markovian approach since the arrival rate of an event e depends essentially on the order
book state Ut° . When ¡ is non-zero, √ controls the interactions between the past events and
the current order book state. Note that we allow √ to have a polynomial growth while in the
literature, it has at most a linear growth, see [26]. Additionally, we do not impose √ and ¡

to be continuous, which means that a sudden change of regime in the order book dynamic is
also incorporated in our modelling. Finally, we propose an agent-based model since market

1However, we can model deeper limits by enlarging the dimension of the state space.
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participant identities are contained in the order book events e through the variables (Xi )i∏1

.

Our framework is a generalised order book model where the arrival rate of the events follows
a non-linear Hawkes-type dynamic that depends on the order book state. This approach
covers most existing bid-ask order book models. It is a natural extension of the Poisson
intensity models, see [1, 106], the Markovian Queue-reactive model introduced in [63] and the
Hawkes based models such as [2, 92, 97]. In this setting, under mild assumptions, we provide
new ergodic results and limit theorems, expressing all the limiting quantities in terms of the
individual Øows of market participants. Furthermore, we build an estimation methodology
for the intensity functions which turns out to be similar to the one used in the Queue-reactive
case, see [65], although the model here is much more general and non-Markovian. These
theoretical results for our point processes, which largely extend classical ergodicity properties
limited to the Markov case, are the basis for the assessment of the role of the di�erent market
participants on market quality as explained above.

The paper is organised as follows. First, we introduce in Section 2 our order book model
and describe how to recover market dynamics from the individual behaviours of each agent.
Then, we prove the ergodicity of our system in Section 3 and its di�usivity in Section 4. In
Section 5, we provide the needed formulas to compute the order book stationary distribution,
the price volatility and the liquidity Øuctuations. Finally, numerical results and ranking of
market makers on several assets are provided in Section 6. Proofs and additional results are
relegated to an appendix.

2 Market modelling

In this section, we describe the order book model and show how to recover the market
dynamics given the agents individual behaviours.

2.1 Introduction to the model

In the order book mechanism buyers and sellers send their orders to a continuous-time double
auction system. Market participants orders have a speciÆc size that is measured in average
event size (AES)2 and the orders can be sent to di�erent price levels that are separated by
a minimum distance which is the tick size. In our model, we only consider the price levels
between the best bid and ask prices to reduce the dimension of the state space. Additionally,
we assume that the agents can take three elementary decisions:

• Insert a limit order of a speciÆc size at the best bid or ask price, hoping to get an
execution.

• Insert a buying or selling limit order of a speciÆc size within the spread.

2AES is the average size of events observed in the limit order book.
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• Send a liquidity consuming order of a speciÆc size at the best bid or ask price. Cancel-
lation and market orders have the same e�ect on liquidity. Thus, they are aggregated
to constitute the liquidity consumption orders.

The size of the orders is not constant in the model. Finally, the mid price moves in a Æxed
grid separated by the tick. A simple example is to consider the case where the mid price
decreases (resp. increases) by one tick when the best bid (resp. ask) is totally depleted. Here,
the mid price jumps size may be larger than one tick. In the rest of the article, we take the
mid price as our reference price for simpliÆcation. The dynamic of the model is illustrated in
Figure IV.1.

|
Bi d Ask

Q1

t

Q2

t

Pt
Pr i ce

i 1

c1

i 2

c2

i 1(2)

1

2

Figure IV.1 – Diagram of Øows a�ecting our order book model. The quantity i 1 (resp. i 2)
represents the insertion of limit orders at the best bid (resp. ask). The quantity i 1

1

2

(resp. i 2

1

2

)

is associated to buying (resp. selling) limit orders within the spread. The quantities c1 and c2

refer to the orders that consume respectively the liquidity at the best bid and ask.

Notations. We consider the following notations:

• The current physical time is t .

• The mid price is Pt , the best best bid price is P 1

t and the best ask price is P 2

t .

• The spread is St =
P 2

t °P 1

t

2

and Æ
0

is the tick size.

• The available quantity at the best bid (resp. ask) is Q1

t (resp. Q2

t ).

2.2 Order book dynamic

Let (≠,F ) be a measurable space and (Tn)n∏1

a non-decreasing sequence of random variables
such that Tn < Tn+1

on the event {Tn <1}. We associate to each Tn a random variable Xn

taking its value on a measurable space (E ,E ). In our case, Tn are the times when events
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IV. From asymptotic properties of general point processes to the ranking of Ænancial agents

happen in the order book and Xn are variables describing each event. We endow ≠ with
the Æltration (Ft )t∏0

deÆned such that Ft =æ({Tn 2C }£ {Xn 2 B}, C 2B(R)\ (°1, t ], B 2 E ).
Each event is characterised by:

• The size of the order: is an integer representing the minimum quantity that can be
inserted in the order book3.

• The price of the order: equals to k 2N when the order is inserted at the price P 1+kÆ
0

.

• The direction of the order: equals to +1 if it provides liquidity and °1 when liquidity
is removed.

• The type of the order: equals to 1 (resp. 2) when it modiÆes the bid (resp. ask)4 side.

• The identity of the agent: is valued in {1, . . . , N } since the market consists in N agents.

Since we track only the Ærst limits, we add the following variables to describe the new order
book state when one of these limits is depleted: ˜Q1 (resp. ˜Q2) the new bid (resp. ask) queue
and ˜S the new spread after a depletion. Note that when there is no depletion, the random
vector (

˜Q1

,

˜Q2

,

˜S) is arbitrary5 and its values are not used. Finally, we record the order book
state after an event to add a dependence between the arrival rate of the events and the past
order book states. The order book dynamic is described below. Hence, we consider the
following form for E = ¯N£T£S£B£ ˜U£U£A with:

• ¯N=N§: the set where the orders size is valued.

• T=N: the set where the price levels are valued.

• S= {+1,°1}: the set where the orders direction is valued.

• B= {1,2}: the set where the orders type is valued.

• ˜U=
©

N2 £Æ
0

N
™

\U0: the set where the order book states after a depletion are valued 6.

• U=
©

N2 £Æ
0

N
™

\U0: the set where the order book states after an event are valued.

• A= {1, . . . , N }: the set where the agents identity is valued.

• U0 = {0}

2 £Æ
0

N: the set of unreachable order book states.

Example 1. We place ourselves in the case where the minimum order size is a quarter of the AES
and (

˜Q1

,

˜Q2

,

˜S) = c when there is no depletion with c is a Æxed constant. Thus, a buy limit order
of size 0.5 AES inserted at the best bid price +1 tick by the agent 5 when the best bid size is
Q1

i = 1 AES, the best ask size is Q2

i = 3 AES and the spread S = 2 ticks is represented by the event
e = (2,1,+1,1,c,u,5) with u = (2,12,1).

3In practice, the minimum quantity can be taken as a quarter of the the average event size (AES).
4A buy (sell) limit order within the spread, a liquidity consumption at the bid (resp. ask) or a limit order at the

bid (resp. ask) modify the bid side Ærst.
5To Æx the ideas we can take (

˜Q1

,

˜Q2

,

˜S) = c with c a Æxed constant when there is no depletion.
6The state where the best bid or ask size is zero is Æctitious state that allow us to model the price changes, see

Remark 18.
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Order book dynamic. The order book state is modelled by the process Ut =
°

Q1

t ,Q2

t ,St
¢

where Q1

t (resp. Q2

t ) is the best bid (resp. ask) quantity and St is the spread. The dynamic of
the reference price is going to be deduced from the one of the process (Ut )t∏0

, see Section 4.
The process Ut is deÆned in the following way:

Ut =
X

Ti<t
¢Ui , ¢Ui =Ui °Ui°1

,

with Ui = (Q1

i ,Q2

i ,Si ) 2U the order book state after the i -th event (we write Ui for UTi when
no confusion is possible). Thus, we only need to describe the variables (Ui )i∏1

. Let i ∏ 1

and Xi = (ni , ti , si ,bi ,

˜Ui ,Ui , ai ) 2 E with ni 2 ¯N, ti 2 T, si 2 S, bi 2 B, ˜Ui = (

˜Q1

i ,

˜Q2

i ,

˜Si ) 2 U,
Ui = (Q1

i ,Q2

i ,Si ) 2U and ai 2A. The variable Ui satisÆes

Si = 1≤i=0

Si°1

° (t 1

i + t 2

i )+1≤i=1

˜Si ,

Q1

i = 1≤i=0

Q1

i°1

+ (n1,+
i °n1,°

i +n
1,

1

2

i )+1≤i=1

˜Q1

i ,

Q2

i = 1≤i=0

Q2

i°1

+ (n2,+
i °n2,°

i +n
2,

1

2

i )+1≤i=1

˜Q2

i ,

(1)

where ≤i is a price move indicator (i.e ≤= 0 when there is no depletion and ≤= 1 otherwise),
the variable t 1

i (resp. t 2

i ) is the spread variation when a buy (resp. sell) limit order is inserted

within the spread. The variables n1,+
i (resp. n2,+

i ), n1,°
i (resp. n2,+

i ) and n
1,

1

2

i (resp. n
2,

1

2

i )
are respectively the best bid (resp. ask) increments when a buy limit order is inserted at the
best bid (resp. ask), when a consumption order is sent at the best bid (resp. ask) and when
a buy (resp. sell) limit order is inserted within the spread. We now explain how the previous
quantities can be written in terms of the state variables:

≤i = 1

{si=°1}\
°

{bi=1,ni∏Q1

i°1

}[{bi=2,ni∏Q2

i°1

}

¢

,

t 1

i = min(tiÆ0

,Si°1

°Æ
0

)1

{bi=1, ti 6=0}

,

t 2

i = (Si°1

° tiÆ0

)+1

{bi=2, ti 6=
Si°1

Æ
0

}

,

n1(2),+
i = ni 1

{si=+1,ti=0(

Si°1

Æ
0

),bi=1(2)}

,

n1(2),°
i = ni 1

{si=°1,ti=0(

Si°1

Æ
0

),bi=1(2),ni<Q1(2)

i°1

}

,

n1(2),1/2

i = ni 1

{si=+1,ti›{0,

Si°1

Æ
0

},bi=1(2)}

.

We denote by ∏t the intensity of the point process (Tn , Xn). For e 2 E , ∏t (e) corresponds to
the arrival rate of an event of type e conditional on the past history of the process and it is
deÆned as

∏t (e) = lim

±t!0

P
£

#{Tn 2 (t , t +±t ], Xn = e} ∏ 1|Ft
§

±t
,

with #A is the cardinality of the set A. We consider the following expression for the intensity:

∏t (e) =√
°

e,Ut° , t ,

X

Ti<t
¡(e,Ut° , t °Ti , Xi )

¢

, (2)

where √ and ¡ are R+-valued functions. The individual behaviour of each agent is encoded
in the functions √ and ¡ through e and (Xi )i∏1

, see Equation (2).
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Note that we can recover the full deÆnition of the intensity of the process N = (Tn , Xn) using
the following proposition:

Proposition 1. For any B 2 E and t 2R+, we have

lim

±t!0

P
£

#{Tn 2 (t , t +±t ], Xn 2 B} ∏ 1|Ft
§

±t
=P

e2B ∏t (e).

(3)

The proof of Proposition 1 is given in Appendix IV.A. The existence and the uniqueness of
a probability measure P on the Æltered probability space (≠,F ,Ft ) such that (3) is satisÆed
and ∏t veriÆes Equation (2) is ensured as soon as

P

e2E ∏t (e) is locally integrable, see [68].
We prove that

P

e2E ∏t (e) is locally integrable in Appendix IV.C.

2.3 Market reconstitution

We can recover the market intensity ∏M
t using the corollary below.

Corollary 1. When ∏t veriÆes Equation (2), the market intensity ∏M
t (e 0) of an event e 0 (e 0 does

not contain the identity of the agent) in the exchange is given by

∏M
t (e 0) = lim

±t!0

P
£

#{Tn 2 (t , t +±t ], Xn 2 (e 0,A)} ∏ 1|Ft
§

±t
=

X

a2A
∏t ((e 0, a)), (4)

for any e 0 2 E 0 = ¯N£T£S£B£ ˜U£U.

The proof of Corollary 1 is a consequence of Proposition 1.

2.4 Some speciÆc models

Poisson intensity. We introduce here a simple version of the Poisson intensity model where
the variable Xn = (nn , t o

n , sn ,bn ,

˜Un ,Un , an) with Un = (Q1

n ,Q2

n ,Sn) satisÆes

• the order size nn = 1: all the events have the same size 1 AES.

• the price level t o
n 2 {0,

Sn
Æ

0

}: orders are inserted at the best bid or ask.

• the law of ˜Un is unchanged: when one limit is depleted, the new state is drawn from
the stationary distribution of the order book.

For any e = (n, t o
, s,b,

˜u,u, a) 2 E with u = (Q1

,Q2

,S), we can recover Poisson models by
taking the following choice of the parameters:

√(e,u, t , z) = ˜h(s,b, a)1n=1,t o2{0,

S
Æ

0

}

, 8z, t 2R+,

with ˜h a deterministic function valued on R+. Thus, the expression of the intensity becomes

∏t (e) = ˜h(s,b, a)1n=1,t o2{0,

S
Æ

0

}

.

Such modelling was introduced in [1, 38, 106].
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Queue-reactive intensity. In the Queue-reactive model, the arrival rate of the events de-
pends only on the current order book state. For any e 2 E and u 2U , we take

√(e,u, t , z) = ˜h(e,u), 8z, t 2R+,

to reproduce the Queue-reactive dynamic with ˜h a deterministic function valued on R+.
Hence, the intensity reads

∏t (e) = ˜h(e,u).

Such modelling was studied in [63, 65].

Hawkes Queue-reactive intensity. In the Hawkes framework, the arrival rate of each event
depends fully on all the past market events. For any e 2 E and u 2U , we generate the Hawkes
Queue-reactive dynamic by taking

√(e,u, t , z) = h(e,u, t )+ z, 8z, t 2R+.

Thus intensity has the following expression

∏t (e) = h(e,Ut° , t )+
X

Ti<t
¡(e,Ut° , t °Ti , Xi ).

Close modelling was used [2, 10, 69, 92, 97].

Quadratic Hawkes process. The quadratic Hawkes processes generalise the linear Hawkes
processes by adding an interaction term between the pairs of past events. In the classical
one-dimensional case, the intensity function of a quadratic Hawkes process reads

∏t (e) = h(t )+
X

Ti<t
¡(t °Ti )+

X

Ti ,T 0
i <t

K (t °Ti , t °T 0
i ),

with K : R+£R+ ! R+ the quadratic kernel. We can recover a simple case of the quadratic
Hawkes models when K is separable (i.e K (t , s) = k(t )k(s) with k a non negative function) by
taking √ of the following form:

√(e,u, t , z) = h(e,u, t )+ z2

, 8z, t 2R+.

Hence, the expression of the intensity becomes

∏t (e) = h(e,Ut° , t )+
X

Ti<t
¡2

(e,Ut° , t °Ti , Xi )+
X

Ti ,T 0
i <t

¡(e,Ut° , t °Ti , Xi )¡(e,Ut° , t °T 0
i , X 0

i ).

Quadratic Hawkes models were introduced in [22, 95].

Remark 1. In our modelling, the linear term is necessarily ¡2. However, to overcome this limitation
we can add a new argument to the function √ which di�erentiates the linear kernel from the
quadratic one. This will not modify the proofs.
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3 Ergodicity

3.1 Notations and deÆnitions

Let Zt be a process deÆned on the probability space (≠,F ,Ft ,P) and valued in (W
0

,W
0

).
We consider another process Vt deÆned on (W

0

,W
0

) and valued in (X ,X ) and we denote
by Pt (x, .) the probability distribution of V 0,x

t starting at 0 with the initial condition x 2 W
0

.
For any measure µ deÆned on (W

0

,W
0

) viewed as a random starting condition, we denote by
Pt (µ, .) =

R

W
0

Pt (x, .)µ(d x).

DeÆnition 1 (Invariant distribution). The measure µ is invariant if the probability distribution
Pt (µ, .) does not depend on the time t .

This deÆnition is consistent with the one given in [26, 55, 90]. The process Vt starting with
the initial distribution µ is stationary if and only if µ is invariant. We deÆne the total variation
norm between two measures º and º0 such that ||º°º0||T V = supA2X |º(A)°º0

(A)|.

DeÆnition 2 (Ergodicity). Let C 2W
0

. The process Vt is C -ergodic if for any x 2C there exists an
invariant measure µ such that Pt (x, .) !

t!1
P

0

(µ, .) in total variation.

Remark 2. This deÆnition is consistent with the one given in [90]. Ergodicity is interesting since it
ensures the convergence of the order book process Ut towards an invariant probability distribution.
Thus the stylized facts observed on market data can be explained by a law of large numbers type
phenomenon for this invariant distribution.

Remark 3. In this Section, we work with a continuous time processes Zt and Vt with t 2 R+.
However, all the deÆnitions are similar for a discrete time processes Zn and Vn with n 2N. We just
have to replace t by n in the deÆnitions above.

The space ≠ and the Æltration Ft considered here are deÆned in Section 2.2, F = F1,
the Æltered space W

0

is the space of sequences indexed by N° and valued on R+£E , X =
U£ (R+)

E and X = U £B(R+)

≠E with U the æ-algebra generated by the discrete topology
on U, B(R+)

≠E the cylinder æ-algebra for (R+)

E , B(R+) the borel æ-algebra of R+ and
W

0

=
°

B(R+)£E
¢≠N°

with E the æ-algebra generated by the discrete topology on E . We need
to work on the functional space W

0

since the dynamic of the process depend on its whole
past.

3.2 Ergodicity

In this section, we provide under general assumptions a theoretical result on the ergodicity of
the process ¯Ut = (Q1

t ,Q2

t ,St ,∏t ) with ∏t the intensity deÆned by (2).

We denote by ∏i ,+
Q (resp. ∏i ,°

Q ) and ∏+
S (resp. ∏°

S ) the arrival rate of the events that respectively
increase (resp. decrease) the limit Qi and the spread S for any i 2B. Let Ut = (Q1

t ,Q2

t ,St ) be
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the order book process and e 2 E be a market event, the quantities ∏i ,±
Q and ∏±

S are deÆned
by the following formulas:

∏i ,±
Q (Ut° ,n) =

X

e2E i ,±
Q (Ut° ,n)

∏t (e), ∏±
S (Ut° ,k) =

X

e 02E±
S (Ut° ,k)

∏t (e), (5)

with n 2N, k 2N and

E i ,±
Q (Ut° ,n) = {e 2 E ; s.t ¢Qi

t =±n},

E±
S (Ut° ,k) = {e 2 E ; s.t ¢St =±k},

(6)

with ¢Xt = Xt °Xt° for any process Xt . For simplicity and since there is no ambiguity, we do
not write the dependence of ∏i ,±

Q and ∏±
S on the current time t . For any n 2N§, we write

P (n) = {km = {k
1

, . . . ,km} 2 (N§
)

m
; s.t k

1

+ . . .+km = n, m 2N§
},

for the set containing all the partitions of n.

Assumption 1 (√ growth). We assume that there exist c ∏ 0, d ∏ 0 and n√ 2N such that

˜√(e, z) ∑ c(e)+d(e)zn√
,

supe2E

n

d(e)

P

km2P (n√)

°n√

km

¢R

Rm
+

Qm
i=1

¡§ki
(e, si )d si

o

< 1,

with ˜√(e, z) = sup

(u,t )2U£R+√(e,u, t , z), ¡§
(e, s) = supu2U

P

x2E ¡(e,u, s, x) and
°n√

km

¢

=
° n√

k
1

,...,km

¢

=
n√!

k
1

! ...km !

.

Assumption 1 is natural. To see this, we take a 1-d stationary non-linear Hawkes process Nt

with an intensity ∏t that veriÆes

∏t = c +d(

X

Ti<t
¡(t °Ti ))

n√ = c +d(

Zt

°1
¡(t ° s)d Ns)

n√
, 8t 2R+.

By stationarity, we have

¯∏= E[∏t ] = c +dE[(

Zt

°1
¡(t ° s)d Ns)

n√
]

= c +d

(

X

km2P (n√)

√

n√

km

!

Z

(°1,t )

m

m
Y

i=1

¡ki
(t ° si )E[d Ns

1

. . .d Nsm ]

)

,

with
°n√

km

¢

an enumeration factor. In fact, if we have n√ possible events divided in m groups
such that the j -th group is composed of k j events, then the quantity

°n√

km

¢

counts the number
of possible groups. Here each group represents the jumps that happen at the same time.
Since the jumps have a unit size, the Brascamp-Lieb inequality ensures that E[d Ns

1

. . .d Nsm ] ∑
Qm

i=1

E[d N m
si

]

1/m =Qm
i=1

E[d Nsi ]

1/m =Qm
i=1

E[∏si ]

1/m = ¯∏ which leads to

¯∏∑ c +q ¯∏,

with q = d
P

km2P (n√)

°n√

km

¢R

(R+)

m

Qm
i=1

¡ki
(e, si )d si . The condition q < 1 of Assumption 1 guar-

antees that ¯∏ is Ænite.
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IV. From asymptotic properties of general point processes to the ranking of Ænancial agents

Remark 4. Non linear Hawkes process are studied mainly when the function √ admits at most a
linear growth (i.e n√ ∑ 1). When n√ = 1, we recover the classical condition

sup

e2E
d(e)

Ω

Z

R+
¡§

(e, s)d s

æ

< 1.

When n√ = 2, Assumption 1 becomes

sup

e2E
d(e)

Ω

°

Z

R+
¡§

(e, s)d s
¢

2 +
Z

R+
¡§

(e, s)

2d s

æ

< 1.

Assumption 2 (Negative drift). There exist positive constants Cbound , z
0

> 1 and ± such that
P

n∏0

(zn
0

°1)

°

∏i ,+
Q (Ut° ,n)°∏i ,°

Q (Ut° ,n)

1

zn
0

¢

∑°±, a.s when Qi
t° ∏Cbound ,

P

k∏0

(zÆ0

k
0

°1)

°

∏+
S (Ut° ,k)°∏°

S (Ut° ,k)

1

z
Æ

0

k
0

¢

∑°±, a.s when St° ∏Cbound ,

(7)

for any i 2B and Ut = (Q1

t ,Q2

t ,St ) 2U where Æ
0

is the tick size.

Assumption 2 ensures that both the size of the Ærst limits and the spread tend to decrease
when they become too large. Same kind of hypothesis are used in [63, 82] but when the order
book dynamic is Markov.

Remark 5. In practice, Assumption 2 is veriÆed when the following conditions are satisÆed:
P

n∏0

(zn
0

°1)

°

√i ,+
Q (u,n, t , z)°√i ,°

Q (u,n, t , z)

1

zn
0

) ∑°±, when qi ∏Cbound ,

P

n∏0

(zÆ0

k
0

°1)

°

√+
S (u,k, t , z)°√°

S (u,k, t , z)

1

z
Æ

0

k
0

) ∑°±, when si ∏Cbound ,

¡i ,+
Q (u,n, t , x) ∑¡i ,°

Q (u,n, t , x), when qi ∏Cbound ,

¡+
S (u,k, t , x) ∑¡°

S (u,k, t , x), when si ∏Cbound ,

√(e,u, t , z), is non-decreasing in z, when qi ∏Cbound ,

√(e,u, t , z), is non-decreasing in z, when si ∏Cbound ,

(8)

where u = (q1

, q2

, s) 2U, i 2B and √i ,±
Q , √±

S , ¡
i ,±
Q and ¡±

S are functions deÆned such that

√i ,±
Q (u,n, t , z) =P

e2E i ,±
Q (u,n)

√(e,u, t , z), ¡i ,+
Q(S)

(u,n, t , x) = supe2E i ,+
Q(S)

(u,n)

¡(e,u, t , x),

√±
S (u,k, t , z) =P

e2E±
S (u,k)

√(e,u, t , z), ¡°
Q(S)

(u,k, t , x) = infe2E°
Q(S)

(u,k)

¡(e,u, t , x),

with (n,k, t , z) 2 N2 £R2

+. Although Inequalities (7) and (8) are not equivalent, there is a large
panel of functions that satisfy (8). A proof of this result is given Appendix IV.B.

Assumption 3 (Bound on the overall Øow). We assume that there exist z
1

> 1, M and √ > 0

satisfying

c§ = P

e2E c(e) <1,

∏§ = P

e2E ,km2P (n√)

d(e)

°n√

km

¢R

Rm
+

Qm
j=1

¡§k j
(e, s j )d s j <1,

Qi
1 = P

n2N(zn
1

°1)E
x

£

∏i ,+
Q (u,n)° ∏i ,°

Q (u,n)

zn
1

§

< M , when qi ∑Cbound ,

S1 = P

k2N(zk
1

°1)E
x

£

∏+
S (u)° ∏°

S (u,n)

zk
1

§

< M , when s ∑Cbound ,

∏t (e) = P

e2E ∏t (e) ∏√, a.s.
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3. Ergodicity

with c(e), d(e) and ¡§ deÆned in Assumption 1, i 2B, x 2W
0

and Cbound deÆned in Assumption
(2). Similar assumptions are considered in [63, 82] in the Markov case.

Assumption 3 ensures no explosion in the system since it forces the arrival rate of orders, the
size of the limits and the spread to stay bounded.

Remark 6. In practice, we can Ænd path-wise conditions similar to those used in Remark 5 such
that the inequalities Qi

1 < M , S1 < M and ∏t (e) ∏ ¯√, a.s are satisÆed.

Theorem 1 (Existence). Under Assumptions 1, 2 and 3, the process ¯Ut = (Q1

t ,Q2

t ,St ,∏t ) admits an
invariant distribution.

The proof of this result is given in Appendix IV.C.

Assumption 4 (Regularity). We assume that √ is a càdlàg function continuous with respect to z,
¡ is a positive càdlàg function and there exist ¯√ :R+ !R+ and n

1

2N such that

|√(e,u, s, x)°√(e,u, s, y)|∑ | ¯√(x)° ¯√(y)|, 8(e,u, s, x, y) 2 E £U£R3

+,

and
| ¯√(x)° ¯√(y)|∑ K |x ° y ||1+xn

1 + yn
1 |, 8(x, y) 2R2

+,

with K a positive constant.

Remark 7. Assumption 4 is satisÆed in the special case where ¯√ is a polynomial.

We have the following result.

Theorem 2 (Ergodicity). Under Assumptions 1, 2, 3 and 4, the process ¯Ut is W
0

-ergodic, which
means that there exists an invariant measure µ, see DeÆnition 1, that satisÆes

lim

t!1
Pt (x, A) = P

0

(µ, A), 8x 2W
0

, A 2X ,

where Pt (x, A) is the probability that ¯Ut 2 A starting from the initial condition x. Additionally, we
have the following speed of convergence:

||Pt (x, .)°P
0

(µ, .)||T V ∑ K
1

e°K
2

t
, 8x 2W

0

,

with K
1

, K
2

are positive constants and ||.||T V the total variation norm.

The proof of this result is given in Appendix IV.D. We can construct pathwise the point
process N = (Tn , Xn) deÆned in Section 2 using the following algorithm.

Remark 8 (Pathwise construction of N ). Using the thinning algorithm proposed by Lewis in [83]
and Ogata in [95], the point process N = (Tn , Xn) deÆned in Section 2 satisÆes N = lim

m!1
N m where

N m is deÆned as follows

∏m+1

t (e) = √
°

e,U m
t° , t ,

P

T m<t ¡(e,U m
t° , t °T m

, X m
)

¢

1T m∑t<T m+1 +∏m
t (e)1t<T m

,

N m+1

((0, t ]£B) =
R

(T m
,T m+1

]£B N§
(d t £ (0,∏m+1

t (e)]£de)1t>T m +N m
((0, t ^T m

]£B),

T m+1 = sup{t > T m
;

R

(T m
,t ]£E N§

(d t £ (0,∏m
t (e)]£de) = 0},

with U m the order book process generated by N m and described in (1), N§ = (T §
n ,R§

n , X §
n ) a Poisson

process valued on R2

+£E which admits dtdz∫(de) as an F N§
t intensity and ∫=P

e2E ±e .
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IV. From asymptotic properties of general point processes to the ranking of Ænancial agents

This is a well known result that were used in many contexts, see [26, 40, 79, 83, 95]. The
proof of Theorem 1 ensures that the above algorithm is well deÆned.

4 Limit theorems

Let n be the index of the n-th jump, (¥n)n∏0

be a process satisfying ¥n = f ((Ui )i∑n , (Yi )i∑n)

with f a measurable function valued on (R,B(R)), (Yi )i∏n is a geometrically ergodic sequence,
see 15.7 in [89], independent of (Ui )i∏n . Here, we write µ for the invariant measure of the
joint process (U ,Y ), Vn =Pn

k=1

¥k and Sn =Pn
k=1

(¥k °Eµ[¥k ]). We denote by

Xn(t ) =
Sbntc
p

n
, 8t ∏ 0.

Assumption 5. Under the invariant measure µ, the sequence (¥i )i∏0

is stationary and Eµ[|¥
0

|] <
1.

Assumption 6. Under the invariant measure µ, we have Eµ[(¥
0

°Eµ[¥
0

])

2

] < 1.

Proposition 2. Under Assumption 5, we have

Vn

n
°!

n!1
Eµ[¥

0

], a.s. (9)

Moreover when both Assumptions 5 and 6 are veriÆed, the quantity Xn(t ) satisÆes

Xn(t )

L°!æWt , (10)

with æ2 = Eµ[¥2

0

]+2

P

k∏1

Eµ[¥
0

¥k ] and µ the invariant measure of (Ui ,Yi ) and Wt a standard
brownian motion.

Note that æ2 <1 under Assumption 6. The proof of this result is given in Appendix IV.E.

Remark 9. The leading term in the expression of æ2 is Eµ[¥2

0

]. Numerically, it can be computed as
soon as we have an estimate of the stationary distribution of ¥

0

, see Proposition 4.

Proposition 2 ensures that the large scale limit of S in event time is a brownian motion.
However, it is more relevant to study the large scale limit of the process S in calendar time.
Thus we now consider the process

˜Xn(t ) =
SN (nt )

p
n

, 8t ∏ 0.

The following proposition provides the large scale limit of the process SN (nt )

.

Proposition 3. Under Assumption 5, we have

VN (nt )

n
°!

n!1

Eµ[¥
0

]

Eµ[¢T
1

]

, a.s. (11)
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5. Formulas

Moreover when both Assumptions 5 and 6 are veriÆed, the quantity ˜Xn(t ) satisÆes

˜Xn(t )

L°! æ
p

Eµ[¢T
1

]

Wt , (12)

with æ2 = Eµ[¥2

0

]+2

P

k∏1

Eµ[¥
0

¥k ], µ the invariant measure of (Ui ,Yi ), ¢Tn = Tn °Tn°1

the
inter-arrival time between the n-th and (n °1)-th jump and Wt a standard brownian motion.

The proof of this result is given in Appendix IV.E.

Remark 10. The mid price after n jumps Pn satisÆes Pn = P
0

+Pn
i=1

¢Pi with ¢Pi = (Pi °Pi°1

) =

¥i . When (¥i )i∏0

veriÆes Assumptions 5 and 6, the rescaled price process ˜Pn(t ) =
PN (nt )

p
n

converges

towards a Brownian di�usion.

5 Formulas

In this section, we provide a calibration methodology for the intensities and computation
formulas for the quantities of interest: the stationary distribution of the order book, the price
volatility and the Øuctuations of liquidity.

5.1 Stationary probability computation

In this section, we denote by µ the invariant measure of ¯U = (Q1

,Q2

,S,∏) deÆned on (W
0

,W
0

).
Let ≥t = f ((Ui )Ti∑t ) be a stationary process under µ with f a measurable function valued in
(Z ,Z ), Z a countable space and º the stationary distribution of ≥t . The proposition below
provides a Æxed point formula satisÆed by º.

Proposition 4. The stationary distribution º satisÆes

ºQ = 0

º1 = 1.

(13)

where the inÆnite dimensional matrix Q veriÆes

Q(z, z 0
) =

X

e2E(z,z 0
)

Eµ[∏(e)|≥
0

= z], (14)

with E(z, z 0
) the set of events directly leading to z 0 from z.

The proof of this result is provided in Appendix IV.F.

Remark 11. When ≥t =Ut = (Q1

t ,Q2

t ,St ), Proposition 4 provides a Æxed point equation for the
computation of the stationary distribution º of the order book.

Remark 12. The operator Q is the inÆnitesimal generator of the process ≥ deÆned such that

Q(z, z 0
) = lim

±!0

Pµ[≥± = z 0|≥
0

= z]

±
for any z 6= z 0. The proof of this result is given in Equation (61) of

Appendix IV.F.
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IV. From asymptotic properties of general point processes to the ranking of Ænancial agents

5.1.1 Markov framework

In the Markov case, it is a well known result that Q satisÆes (13), see [94]. In this case, the
coe�cients of Q are parameters of the model and can be estimated using (15).

5.1.2 General case

Let us take z and z 0 two states such that z 6= z 0, N z,z 0

t =P

Ti<t ±
i
z,z 0 with ±i

z,z 0 = 1

{≥Ti°1

=z,≥Ti =z 0
}

and t z =P

Ti<t ¢Ti 1

{≥Ti°1

=z}

with ¢Ti = Ti °Ti°1

. We have the following results:

Proposition 5. When (±i
z,z 0)i∏1

satisÆes Assumption 5, we have

ˆQ(z, z 0
) =

N z,z 0

t

t z !
t!1

Q(z, z 0
), a.s. (15)

The proof of this result is given in Appendix IV.G.

Remark 13 (ConÆdence interval). We can compute a conÆdence interval for the estimator ˆQ(z, z 0
),

see Appendix IV.G for the details.

Remark 14. When ≥t = Ut = (Q1

t ,Q2

t ,St ), Proposition 5 provides an estimator for the operator
Q(u,u0

) with u,u0 2U and u 6= u0.

Remark 15. In the Markov case and ≥t =Ut , see [65], the authors used the estimator presented in
Proposition 5 to evaluate Q(u,u0

).

Remark 16. Let (z, z 0
) 2 U2 such that z 6= z 0 and a 2 A, we consider the quantity Q(z, z 0

, a) =
P

e2E(z,z 0
)\E(a)

E[∏(e)|≥
0

= z] with E(a) the set of events generated by the agent a. This quantity
represents the inÆnitesimal probability that agent a sends an order that moves ≥ from z to z 0. It can

be estimated by ˆQ(z, z 0
, a) = N z,z0 ,a

t
t z which satisÆes

ˆQ(z, z 0
, a) =

N z,z 0
,a

t

t z !
t!1

Q(z, z 0
, a), a.s, (16)

with N z,z 0
,a

t = P

Ti<t ±
i
z,z 0

,a , ±
i
z,z 0

,a = 1

{≥Ti°1

=z,≥Ti =z 0
,Ai=a}

where Ai is the identity of the agent
causing the i -th event. The quantity Q(z, z 0

, a) allows us to infer the market dynamic (i.e the
operator Q) for a speciÆc combination of the agents, see Equation (14).

5.2 Spread computation

Since the process Ut is ergodic the spread St has a stationary distribution. Then, we can
compute Eº[S1] where º is the stationary distribution of U . The computation formula for º
is detailed in Proposition 4 and the estimation methodology of Q is described in Proposition
5.
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5. Formulas

5.3 Price volatility computation

We place ourselves in the case of Remark 10 and assume that the mid price moves (¥i )i∏0

are valued in ≥=Æ
0

Z with Æ
0

the tick size. In such situation, the limit theorem of Section 4
ensures the convergence of ¯Pn(t ) towards

¯Pn(t )

L°!æWt ,

with æ2 = Eµ[¥2

0

]+2

P

k∏1

Eµ[¥
0

¥k ] and µ the invariant measure of ¯U . The quantity of interest
is æ2. To compute æ2, we need to evaluate Eµ[¥

0

¥k ] for all k ∏ 0. We have

Eµ[¥2

0

] =P

¥2≥ º¥
0

(¥)¥2

,

Eµ[¥
0

¥k ] =P

¥2≥ º¥
0

(¥)¥Eµ[¥k |¥0

= ¥], 8k ∏ 1,

(17)

with º¥
0

(¥) = Pµ[¥
0

= ¥]. Thus we need to estimate º¥
0

and Eµ[¥k |¥0

= ¥] to evaluate æ2.
The computation of the leading term Eµ[¥2

0

] requires only the knowledge of the stationary
distribution º¥

0

. The latter is evaluated using Proposition 4. To estimate Eµ[¥k |¥0

= ¥] with
k ∏ 1, we use the following proposition.

Proposition 6. Let us take k ∏ 1, ¥ 2 ≥, N¥,(k)

n = P

j∑n ¥ j±
j (k)

¥ with ± j (k)

¥ = 1

{¥ j°k=¥}

and n¥ =
P

j∑n ±
j (k)

¥ . When both (¥i±
i (k)

¥ )i∏1

and (±i (k)

¥ )i∏1

satisfy Assumption 5, we have

ˆE(¥
0

,k) = N¥
0

(k)

n

n¥
!

n!1
Eµ[¥k |¥0

= ¥], a.s. (18)

The proof of this result is similar to the one of Proposition 5.

Remark 17 (Markov case). When the dynamic of U is Markov and ¥i = f
0

(Ui ) for any i ∏ 0 with
f

0

a deterministic function, see Remark 18. We have

Eº[¥
0

¥k ] =
X

u2U
º(u)¥

0

(u)Eu[¥k ], (19)

where º is the stationary distribution of U that can be computed using Proposition 4 and Eu[¥k ] =
(P k §¥

0

)u = P

u02UP k
u,u0¥0

(u0
) with P k the k-th power of the Markov chain P associated to the

process U and which satisÆes

Pu,u0 =
Ω

°Qu,u0
/Qu,u if u 6= u0 and Qu,u 6= 0,

0 if u 6= u0 and Qu,u = 0,

Pu,u =
Ω

0 if Qu,u 6= 0,

1 if Qu,u = 0,

(20)

where the quantity Pu,u0 represents Pu,u0 =P[U
1

= u0|U
0

= u] with U
1

the state of the order book
after one jump.
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IV. From asymptotic properties of general point processes to the ranking of Ænancial agents

Remark 18. In Section 6, for any u = (q1

, q2

, s), we consider the following function:

f
0

(u) =

8

<

:

°1 if q1 = 0 and q2 > 0,

+1 if q2 = 0 and q1 > 0,

0 otherwise ,

for the numerical simulations. Note that the states where q1 = 0 or q2 = 0 are Æctitious states that
are not observable in practice. These states are introduced to handle the price changes. Indeed, the
states where q1 = 0 (resp. q2 = 0) correspond to a price decrease (resp. increase) by one tick and the
states where both q1 = 0 and q2 = 0 are unreachable.

5.4 An alternative measure of market stability

Another way to look at market stability is to investigate the behaviour of the disequilibrium
between o�er and demand. This equilibrium can be for example measured through the cu-
mulative imbalance Nt = V b

t °V a
t where V b

t (resp. V a
t ) is the net number of inserted limit

orders at the bid (resp. ask). From no arbitrage argument, we know that the dynamic of Nt is
closely related to that of the price [69, 73]. Consequently, it is natural to view the long term
volatility of this object as an alternative measure of market stability.

In this section, we follow the same methodology of Section 5.3. The cumulative imbalance
after n jumps Nn satisÆes Nn = N

0

+Pn
i=1

¢Ni where ¢Ni = Ni ° Ni°1

= ni . Hence, when
(ni )i∏0

satisÆes Assumptions 5 and 6, we have the following convergence result:

X N
n =

Pn
k=1

(nk °Eu[nk ])

p
n

L°! ˜æWt ,

with ˜æ2 = Eµ[n2

0

]+2

P

k∏1

Eµ[n
0

nk ] and µ the stationary distribution of ¯U given by proposition
4. The quantity Eµ[n

0

nk ] can be computed using the same methodology of Section 5.3.

6 Numerical experiments

In this section, we propose a ranking of the market makers for four di�erent assets, based
on their impact on volatility. For each asset, we compute Ærst the liquidity provision and
consumption intensities relative to the whole market using Equation (15)7. Then, we estimate
the stationary measure of the order book, see Equation (13), and use it to compute the two
following estimators of the market volatility:

æ2,G = Eµ[¥2

0

],

æ2,M
k = Eº[¥2

0

]+2

Pk
j=1

Eº[¥
0

¥ j ],

where µ is the invariant measure of ¯U given by Theorem 2, º is the stationary distribution of
U when both the order book dynamic is Markov and ¥i = f

0

(Ui ) with f
0

deÆned in Remark
7A liquidity provision (resp. consumption) event is assimilated to an increase (resp. decrease) of the best bid or

ask size by 1 unit. To Æx the ideas, one (AES) is our unit here.
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6. Numerical experiments

18. The estimator æ2,G is computed by applying Equation (17) and æ2,M
k is evaluated using

Remark 17. Thereafter, for each market maker, we compute its own intensities using Equation
(16). After that, we estimate the new market intensities in a situation where we suppose
that he withdraws from the exchange by subtracting the agent intensity from the market
one, see Corollary 1. We Ænally compute the new market volatility estimators æ2,G and æ2,M

k
corresponding to this new scenario using Equation (17) and Remark 17 again.

Remark 19. In the simple case where the order book dynamic is Markov and the queues are inde-
pendent, see Section 2.3.3 in [63], minimizing the Ærst order approximation of the price volatility

æ2 ª Eº[¥2

0

] is similar to selecting the agent with the highest ratio insertion/consumption
∏1(2),+

Q

∏1(2),°
Q

.

This condition is a well-known result which means that the new agent needs to have an inser-
tion/consumption ratio greater than the one of the market. The proof of this result is given in Section
IV.H.

Remark 20. The reconstruction methodology of the market assumes that other participants will
not modify their behaviours when an agent leaves the market. In practice, this assumption is
satisÆed since agents react to global variables such as the imbalance and not to a speciÆc agent-based
information. Additionally, when an agent leaves the market, the other participants do not have
enough order Øow history to calibrate all the parameters of their models.

Remark 21. The reconstruction methodology of the market takes into account the volume exchanged
by each agent since this information is included in the estimated intensities. Indeed, the intensity of
an agent who trades a large volume is high because he either interacts frequently with the market or
generates signiÆcant changes in the order book state.

6.1 Database description.

We study four large tick European stocks: Air Liquid, EssilorLuxottica, Michelin and Orange,
on Euronext, over a year period: from January 2017 till December 2017. The data under study
are provided by the French Regulator Autorité des marchés Ænanciers. For each of these as-
sets, we have access to the trades and orders data. Using both data, we rebuild the Limit
Order book (LOB) up to the Ærst limit of both sides, whenever an event (an order insertion,
an order cancellation or an aggressive order) happens on one of these limits. Note that we
remove market data corresponding to the Ærst and last hour of trading, as these periods have
usually speciÆc features because of the opening/closing auction phases. We present in Table
IV.1 some preliminary statistics on the di�erent considered assets.
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IV. From asymptotic properties of general point processes to the ranking of Ænancial agents

Asset Number of
insertion
orders (in
millions of
orders)

Number of
cancellation
orders (in
millions of
orders)

Number of
aggressive
orders (in
millions of
orders)

Ratio of
cancellation

orders number
over aggressive
orders number

Average
spread (in
ticks)

Air Liquide 2.36 2.40 0.21 11.4 1.07
EssilorLuxottica 3.90 3.96 0.34 11.6 1.11
Michelin 3.81 4.01 0.32 12.5 1.14
Orange 6.60 6.66 0.47 14.1 1.14

Table IV.1 – Preliminary statistics on the assets.

Table IV.1 shows that the number of insertion orders is lower than that of cancellation orders.
A priori, this seems contradictory, but what happens in practice is that some agents insert
orders that they cancel partially and progressively at a later stage by sending multiple can-
cellation orders, which leads to a number of cancellation orders higher than that of insertion
orders.

The considered market makers, that we aim at ranking, are the Supplemental Liquidity
Providers (SLP) members. The SLP programme imposes a market making activity on pro-
gramme members, including order book presence time at competitive prices. In return, they
get favorable pricing and rebates in the form of a maker-taker fees model directly comparable
to those of the major competing platforms. This programme includes 9 members. Some of
them have at the same time SLP activity and other activities, such like proprietary or agency
activity. In our analysis, we only analyse the SLP Øow of these members. We denote the
market makers by MM1 to MM9.

6.2 Computation of the intensities and the stationary measure

We compute the liquidity consumption and provision intensities at the Ærst limit relative to
the whole market according to the queue size, the corresponding stationary measure and the
long term volatility for Air Liquide. Results relative to EssilorLuxottica, Michelin and Orange
are relegated to Appendix IV.I. The estimation methodology of the intensities is based on
Proposition 5. To apply this proposition, we record, for every event occurring in the LOB
at the best limits (best ask and bid), the type of this order (insertion or consumption), the
waiting time (in number of seconds) between this event and the preceding one occurring at
the same limit and the queue size before the event. The queue size is then approximated by
the smaller integer that is larger than or equal to the volume available at the queue, divided
by the stock average event size (AES) computed for each limit on a daily basis. In practice,
the spread cannot be equal to one tick all the time. This is why we exclude from our analysis
all the events that occur when the spread is higher than one tick.
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6. Numerical experiments

(a) Intensity of the market (b) Stationary measure Q1

Long term price volatility æ2,G = 0.035, æ2,M
10

= 0.227.

Figure IV.2 – (a) Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and (b) the corresponding stationary distribution of Q1

with respect to the queue size (in AES), proper to Air Liquide.

We can see that for all these assets, the liquidity provision intensity is approximately a de-
creasing function of the queue size. This result reveals a quite common strategy used in
practice: posting orders when the queue is small to seize priority (for further details about
the priority value, see Chapter III). For all assets, the consumption intensity is an increasing
function when the queue size is large. For small queue sizes, we notice a slight decrease of this
intensity, see Figure IV.2. Indeed, the increasing aspect corresponding to large queue sizes
is explained by market participants waiting for better price when liquidity is abundant. The
decreasing aspect associated to small queue sizes is due to aggressive orders sent by agents to
get the last remaining quantities available at the Ærst limits: market participants rushing for
liquidity when it is rare. The lower the ratio of cancellation orders number over aggressive
orders number is, the clearer the decreasing shape for small queue sizes stands out, see Table
IV.1 and Figures IV.2, IV.4, IV.5 and IV.6.

6.3 Ranking of the market makers

For each of the assets and for each one of the market makers, we compute the liquidity
consumption and provision intensities, and the corresponding price volatility æ2,M

10

that we
would obtain in a situation where the studied market maker withdraws from the market. Since
the estimators æ2,G and æ2,M

10

give the same ranking, we choose to show the values for æ2,M
10

alone. We show next the results relative to Air Liquide; those of EssilorLuxottica, Michelin
and Orange are relegated to Appendix IV.I.
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IV. From asymptotic properties of general point processes to the ranking of Ænancial agents

Intensities and æ2,M
10

when one market maker leaves the market

Figure IV.3 – Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and æ2,M

10

when one market maker is ejected from the
market for the stock Air Liquide.

Based on the previous results, we carry out for each asset the ranking of the di�erent market
makers according to their contribution to volatility. To do so, we compare the expected
volatility when removing each market maker from the market to the actual one when all
the market makers in the market: if the expected volatility is higher (resp. lower) than the
actual one, this means that the market maker into question decreases (resp. increases) market
volatility. The market maker who decreases8 (resp. increases9) volatility the most is ranked
Ærst (resp. last). In the following table, we add a star next to market makers deceasing
volatility: a zero star (resp. a four stars ) means that the market maker increases (resp.
decreases) the market volatility of the 4 studied assets.

8The expected volatility of the new market without this market maker is the highest.
9The expected volatility of the new market without this market maker is the lowest.
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IV.A. Market reconstitution

Market
maker

Ranking
Air

Liquide

Market
share Air
Liquide

Ranking
Exilor-

Luxottica

Market
share
Exilor-

Luxottica

Ranking
Michelin

Market
share

Michelin

Ranking
Orange

Market
share
Orange

MM1*** 4 4% 3 3% 3 4% 3 3%
MM2 9 1% 9 1% 9 1% 7 1%
MM3 6 5% 6 5% 7 4% 5 4%
MM4 5 1% 4 1% 4 0% 4 1%
MM5 7 5% 8 5% 8 5% 9 5%
MM6**** 1 3% 2 3% 1 3% 1 4%
MM7**** 2 7% 1 12% 2 9% 2 7%
MM8* 3 9% 5 5% 5 5% 6 4%
MM9 8 2% 7 2% 6 2% 8 2%

Table IV.2 – Market share and ranking of markets makers

IV.A Market reconstitution

Proof of Proposition 1. Let t ∏ 0 be the current time. For any B 2 E , we denote by T t ,e the Ærst
time greater than t when an event e 2 B happens given Ft and T t ,B = mine2B T t ,e the next
market event. Thus, we have

∏t (B) = lim

±t!0

P
£

#{Tn 2 (t , t +±t ], Xn 2 B} ∏ 1|Ft
§

±t

= lim

±t!0

P
£

{T t ,B 2 (t , t +±t ]}|Ft
§

±t
.

We write f t ,e for the density function of T t ,e and F t ,e
B (s) =P[

°

min

˜e2B\{e}

T t ,

˜e
¢

∏ s|T t ,e ∑ s] for
any s ∏ 0. Using the monotone convergence theorem, we have

lim

±t!0

P
£

{T t ,B 2 (t , t +±t ]}|Ft
§

±t
= lim

±t!0

P

e2B
Rt+±t

t f t ,e
(s)F t ,e

B (s)d s

±t

=
X

e2B
lim

±t!0

Rt+±t
t f t ,e

(s)F t ,e
B (s)d s

±t

=
X

e2B
f t ,e

(t )F t ,e
B (t ) =

X

e2B
∏t (e),

since f t ,e 0
a (t ) =∏t ((e 0, a)) using Equation (2) and F t ,e 0

a (t ) = 1 by deÆnition. This completes the
proof.
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IV.B Proof of Remark 5

Proof of Remark 5. Let N = (Tn , Xn) be the point process deÆned in Section 2 and i 2B= {1,2}.
We deÆne ¡i ,±,n

Q in the following way:

¡i ,+,n
Q = supe2E i +

Q (u,n)

P

Ti<t ¡(e,Ut° ,n, t °Ti , Xi ),

¡i ,°,n
Q = infe2E i °

Q (u,n)

P

Ti<t ¡(e,Ut° ,n, t °Ti , Xi ),

with Ut = (Q1

t ,Q2

t ,St ). When Qi
t° ∏Cbound , using that √ is non-decreasing in z, we have

X

n∏0

(zn
0

°1)

°

∏i ,+
Q (Ut° ,n)°∏i ,°

Q (Ut° ,n)

1
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0
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Q )°∏i ,°
Q (Ut° ,n)

1
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0
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=
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(zn
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Q (Ut° ,n, t ,¡i ,+,n

Q )°√i ,°
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Q )
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0

¢

+
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(1° 1
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)

°

√i ,°
Q (Ut° ,n, t ,¡i ,+,n

Q )°∏i ,°
Q (Ut° ,n)

¢

= (i )+ (i i ).

Using Equation (8), we have

(i ) =
X

n∏0

(zn
0

°1)

°

√i ,+
Q (Ut° ,n, t ,¡i ,+,n

Q )°√i ,°
Q (Ut° ,n, t ,¡i ,+,n

Q )

1
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∑°±, a.s, (21)

when Qi
t° ∏Cbound . Moreover, using that √ is non-decreasing in z, we have

(i i ) =
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n∏0

(1° 1
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)
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e2E i °
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when Qi
t° ∏ Cbound . Since Equation (8) ensures that ¡i ,+,n ∑ ¡i ,°,n

, a.s and √ is non-
decreasing in z, we deduce that

(i i ) =
X

n∏0

(1° 1

zn
0

)

°

√i ,°
Q (Ut° ,n, t ,¡i ,+,n

Q )°∏i ,°
Q (Ut° ,n)
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when Qi
t° ∏Cbound . Using Equations (21) and (22), we get
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t° ∏Cbound . By following the same methodology, we also get
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S (Ut° ,n)

1
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0
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when St° ∏Cbound . This completes the proof.
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IV.C. Proof of Theorem 1

IV.C Proof of Theorem 1

IV.C.1 Preliminary results

For any k ∏ 1, we denote by Tn+1

(e), T i±
Qn+1

(k) and T i±
Sn+1

(k) respectively the arrival time of the

Ærst event e, ei±
Q (k) 2 E i ,±

Q and e±S (k) 2 E±
S greater than Tn . The sets E i ,±

Q and E±
S are deÆned

in Equation (6). They contain the events that increase or decrease the best bid, best ask and
spread by k .

Lemma 1. Let n ∏ 0 and i 2B. The order book increments satisfy the following formulas:

P[¢Qi
n+1

=±k] = E
£

Z

R+
∏i ,±

Qn
(t ,k)Zn(t )d t

§

,

P[¢Sn+1

=±k] = E
£

Z
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∏±

Sn
(t ,k)Zn(t )d t

§

,

with ¢Qi
n+1

=Qi
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°Qi
n , ¢Sn+1

= Sn+1

°Sn and
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P

e

Rt
0

∏n (e,s+Tn )d s]

, ∏i ,±
Qn

(t ,k) =
X

e2E i±
Q (k)

∏n(e, t +Tn),

∏±
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(t ,k) =
X
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S (k)

∏n(e, t +Tn), ∏n(e, t ) =√
°

e,UTn , t ,

X

Ti∑Tn

¡(e,UTn , t °Ti , Xi )

¢

, 8t ∏ 0.

Proof of Lemma 1. We write ¢Tn+1

(e) = Tn+1

(e)°Tn for any event e 2 E and ¢T i±
Qn+1

(k) =
T i±

Qn+1

(k)°Tn . Using Remark 8, the increments (¢Tn+1

)n∏0

are independent given Fn and
¢Tn+1

(e)|Fn follows a non homogeneous exponential distribution with an intensity ∏n(e, .).
Thus, we have

P[¢Qi
n+1

=±k] = E[P[¢T i±
Qn+1

(k) <¢Tn+1

(e), 8e › E i±
Q (k)|Fn]]

= E
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Z

R+
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Y
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∏n (e,s)d s] d t
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§

. (23)

By following the same methodology used in Equation (23), we get

P[¢Sn+1

=±k] = E
£

Z

R+
∏±

Sn
(t ,k)Zn(t )d t

§

,

which completes the proof.

Let øO be the Ærst entrance period of N i = (Ti+ j , Xi+ j ) j∑0

to the set O 2W
0

, Cbound deÆned in
Assumption 2 and 1 < z ∑ min(z

0

, z
1

) with z
0

and z
1

are respectively deÆned in Assumptions
2 and 3.
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Lemma 2 (Drift condition). Under Assumptions 2 and 3, the process Un = (Q1

n ,Q2

n ,Sn) satisÆes
the following drift condition:

E
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zQi
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°Cbound
1øO∏n+1
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§

, 8n 2N,8i 2B,

with ∏< 1 and B two constants.

Remark 22. We deÆne

VCbound (u) =
X

i2{1,2}

zqi°Cbound + zs°Cbound
, 8u 2U. (24)

Using Lemma 2, we deduce that

E
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Proof of Lemma 2. We write ˜E
£

X
§

= E
£

X 1øO∏n+1

§

for any random variable X to simplify the
notations and V instead of VCbound since there is no possible confusion. We have
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Using Lemma 1, we get
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We Ærst handle the term T
1

. When Qi
n ∑ C bound , the quantity zQi

n°Cbound < 1 is bounded.
Additionally, we have

P

e2E ∏n(e, s + Tn) ∏ √ > 0 under Assumption 3. This ensures that
Zn(t ) ∑ e°√t , a.s. Thus, there exist c1 > 0 and d 1 > 0 such that
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In the last inequality we used Assumption 3 again. For the term T
2

, we use Assumption 2
and Zn(t ) ∑ e°√t , a.s, to deduce that

T
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√
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By combining Inequalities (26) and (27), we have

˜E
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∑°c ˜E
£

zQi
n°Cbound
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+ ˜E
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d
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,

with c = min(c1

,

±
√ ) and d = d 1 which proves the Ærst inequality of Lemma 2. By following

the same steps, we also prove the second inequality. This completes the proof.

IV.C.2 Outline of the proof

To prove the existence of an invariant distribution, we Ærst construct N as a limiting process of
the sequence N m deÆned in Remark 8. This construction is based on the thinning algorithm.
After that, we show, in Steps (ii) and (iii), that N is well deÆned. Then, we introduce the
process ¯U1 = esssupt∏0

¯Ut which dominates ¯Ut and prove that is does not explode in Step
(iv). This ensures the tightness of the family [t∏0

¯Ut . Additionally, the process ¯U satisÆes the
Feller property since E is a countable space and E[k ¯Utk] is uniformly bounded. Thus, we
deduce that ¯U admits an invariant distribution and complete the proof.

IV.C.3 Proof

Proof of Theorem 1. Let us take N§ and U§ the processes described in Remark 8 with ∫ =
P

e2E ±e . For clarity, we forget the dependence of E
x

[.] on the initial condition x 2W
0

.

Step (i): In this step, we prove that the process N , deÆned by Equation (3), exists as a
limiting process of the sequence N m . To do so, we Ærst introduce some notations. We deÆne
recursively the processes ∏m and N m as in Remark 8. Note that U m = (Qm 1

,Qm 2

,Sm
) can

be decomposed in the following way:

Qm i
t =Qm i ,+

t °Qm i ,°
t , Sm

t = Sm
t

+°Sm
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°
,
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t>0
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t =P
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t 1¢Sm

t<0

,
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with i 2 B and ¢Zt = Zt ° Zt° for any process Z . For all ! 2 ≠, each one of the processes
N m , ∏m , Qm i ,± and Sm± is non decreasing with m by induction. Hence, they admit limiting
processes N , ∏, Q1(2),± and S±. This implies that U m converges towards U . To ensure that
N admits ∏ as an intensity, we need to prove that

P

e2E ∏t (e) and U are both Ænite a.s, see
Steps (ii)-(iii).

Step (ii): In this step, we prove by induction on m that supt E[

P

e2E ∏
m
t (e)] is uniformly

bounded which ensures that supt E[
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e2E ∏t (e)] is Ænite and that
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for any t ∏ 0. Thus, we only need to study the case n = m + 1. Using Remark 8 and
Assumption 1, we have
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Step (iii): We write U m
n = (Qm 1

n ,Qm 2

n ,Sm
n ) =U m

Tn
. We prove here that E[Qm i

n ] and E[Sm
n ] are

uniformly bounded for all m ∏ 0 and n ∏ 0 to ensure that S and Qi do not explode. Let us
prove that

E
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with z ∑ min(z
0

, z
1

) and z
0

and z
1

are respectively deÆned in Assumption 2 and 3, ∏< 1 and
B ∏ 0. Let m ∏ 1, we have by construction

E[zQm+1 i
n+1

] = E[zQm i
n+1

], when n ∑ m °1.

Thus, we only need to investigate the case n = m. This is proved in Lemma 2. Using
Inequality (30), we get

E
£

zQm i
n

§

∑ B

1°∏ +∏n zQm i
0

, 8n ∑ m, (31)

with zQm i
0 Æxed. Thus, E

£

Qm i
n

§

is uniformly bounded. Using similar lines of argument, we
also have E[Sm

n ] uniformly bounded. Hence, the limiting processes U does not explode.

Step (iv): First, note that the process N is well deÆned since ∏t is locally integrable, see
Step (ii)-(iii) and [68]. Additionally, we can construct it pathwise using the thinning algorithm,
see Remark 8.

Let ¯Us be the process described in Theorem 1 and for which we just proved the existence.
This process is dominated by the process ¯U1 = (U1

,∏1
) = esssups∏0

¯Us . In this part, we
prove that both E[U1

] and E[∏1
] are Ænite.

First, we prove that E[U1
] <1. Let ∏< Ω < Ω1 < 1, C > 0, S the set S = {u 2U; u >C , c.w.}

where c.w means component-wise and S a set S 2 U Ω S . Since Un1Un2S c is bounded
a.s, we only need to show E[U1,S

] is Ænite with U1,S = esssupn2N U S
n and U S

n = Un1Un2S .
Using the Doob’s decomposition, we have U S

n = M S
n + AS

n with M S
n a martingale and AS

n =
Pn

k=1

°

E[U S
k |Fk°1

]°U S
k°1

¢

a predictable process. Thus, we get

E[U1,S
] ∑ E[esssup

n∏0

M S
n ]+E[esssup

n∏0

AS
n], c.w.

The Doob’s inequality and Fatou’s Lemma ensure that E[supn∏0

M S
n ] ∑ 2 lim

n!1
E[M S

n
2

]

1

2

, c.w .

Using the martingale property of M S
n and the Doob’s decomposition of U S

n , we Ænd

E[(M S
n )

2

]°E[(M S
0

)

2

] =
n
X

k=1

E[(M S
k °M S

k°1

)

2

], M S
k °M S

k°1

=U S
k °E[U S

k |Fk°1

], c.w.

We have

E[(M S
k °M S

k°1

)

2

] = E[(U S
k °E[U S

k |Fk°1

])

2

] ∑ 2

°

E[(U S
k )

2

]+E[E[(U S
k )

2|Fk°1

]]

¢

∑ 4E[(U S
k )

2

], c.w.
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Let us prove that
P

k∏0

E[(U S
k )

2

] < 1. Using Lemma 2 and by taking O = {(T j , X j ) j∑0

2
W

0

; X j = (n j , t j ,b j ,

˜u j ,u j , a j ) 2 E and u
0

∏C , c.w.}, we have

E
£

VC (Un+1

)1Un+1

2S ,Un2S
§

∑ E
£

VC (Un+1

)1Un2S
§

∑∏E
£

VC (Un)1Un2S
§

+E
£

B1Un2S
§

. (32)

By following the same lines of arguments used to prove (25) in Lemma 2 and basic approxi-
mations, we have the following inequality:

E
£

zQi
n+1

°C
1

{Un+1

2S ,Un2S c
}

§

∑ E
£

zQi
n°C

1

{Un+1

2S ,Un2S c
}

§

+E
£

Z

R+
Zn(t )1

{Un+1

2S ,Un2S c
}

{Qu(t ,Un)} d t
§

,

In the set {Un 2 S c
}, we have Qi

n ∑ C which implies zQi
n°C < 1. Additionally, we have

P

e2E ∏n(e, s +Tn) ∏ √ > 0 under Assumption 3. This ensures that Zn(t ) ∑ e°√t , a.s. Thus,
using Assumption 3, there exists B 1 such that

E
£

zQi
n°C

1

{Un+1

2S ,Un2S c
}

§

+E
£

Z

R+
Zn(t )1

{Un+1

2S ,Un2S c
}

{Qu(t ,Un)} d t
§

∑ E[B 1

1

{Un+1

2S ,Un2S c
}

],

(33)

We take C ∏C§ = max(log(

2B
Ω°∏ +1), log(

B 1

1°Ω1

),Cbound ) to ensure that

Ω

£

B ° (Ω°∏)VC (Un)

§

1Un2S < 0, a.s.

£

B 1 ° (1°Ω1

)VC (Un +1)

§

1Un+1

2S < 0, a.s.

By combining Inequalities (32) and (33) and taking C ∏C§, we deduce that

Ω1E
£

VC (Un+1

)1Un+1

2S
§

∑ ΩE
£

VC (Un)1Un2S
§

+E
£°

B ° (Ω°∏)VC (Un)

¢

1Un2S
§

+E
£°

B 1 ° (1°Ω1

)VC (Un+1

)

¢

1Un+1

2S
§

,

∑ ΩE
£

VC (Un)1Un2S
§

,

which ensures that E
£

VC (Un+1

)1Un+1

2S
§

∑ rE
£

VC (Un)1Un2S
§

with r = Ω
Ω1

< 1. Since (U S
k )

2 ∑
c

1

VC (U S
k ), this proves that

P

k∏0

E[(U S
k )

2

] < c
1

P

k∏0

E[VC (U S
k )] ∑ c

1

1°Ω < 1. Hence, we get

E[esssupn∏0

M S
n ] ∑

° c
1

1°Ω
¢

1

2

, c.w .
We also have

AS
n ∑ ˜AS

n =
n
X

k=1

|E[U S
k |Fk°1

]°U S
k°1

|∑ 2

n
X

k=1

E[|U S
k |], c.w,

with ˜AS
n a component-wise non-decreasing process. Since E[|U S

k |] ∑
°

E[(U S
k )

2

]

¢

1

2 , we get

E[

˜An] ∑
° c

1

1°Ω
¢

1

2 . Hence, we deduce that E[esssupn∏0

AS
n] ∑

° c
1

1°Ω
¢

1

2

, c.w which ensures that
E[U1,S

] <1.
Second, we prove that E[∏1

] is Ænite. Let t ∏ 0 and T = {t
0

= 0 < t
1

< . . . < tn = t } be a
partition of [0, t ]. Using the monotone convergence theorem, we have

E[

n
X

k=1

|∏tk °∏tk°1

|] ∑ E[

Pn
k=1

(tk ° tk°1

)

t
| ˜∏tk ° ˜∏tk°1

|] = E[

Rt
0

f T
ds

t
] ∑

Rt
0

E[ f T
]ds

t
,

166



IV.D. Proof of Theorem 2

with f T =Pn
k=1

|∏tk °∏tk°1

|1tk°1

∑t<tk . Since E[|∏tk °∏tk°1

|] ∑ 2supt E[|∏t |] ∑ c
1°q <1, we get

E[

n
X

k=1

|∏tk °∏tk°1

|] ∑ c

1°q
<1.

We can then apply Bichteler-Dellacherie theorem to write ∏t = Ms + As with Ms a martingale
and As a predictable process with almost surely Ænite variation over Ænite time intervals such
that

E[vart (∏)] = E[vart (M)]+E[vart (A)],

where vart (Z ) is the variation of the process Z over the interval [0, t ]. Since

E[∏1
] ∑ E[esssup

s
Ms]+E[esssup

s
As], esssup

s∑t
Ms ∑ vart (M), esssup

s∑t
As ∑ vart (A),

and supt E[vart (∏)] <1, we deduce that E[∏1
] <1. Finally, we have E[k ¯Utk] ∑ E[k ¯U1k] <1,

for all t ∏ 0. Thus, the family [t∏0

¯Ut is tight. Moreover, the process ¯Ut satisÆes the Feller
property since U and E are countable states and E[k ¯Utk] is uniformly bounded. Thus the
process ¯U admits an invariant distribution µ which completes the proof.

IV.D Proof of Theorem 2

IV.D.1 Preliminary result

Lemma 3. Let (Fn)n∏0

be a sequence of æ-algebras such that Fn !
n!1

F1 with F1 a æ-algebra
and (Xn)n∏0

be a sequence of random variables valued in R such that Xn !
n!1

X , a.s, Xn is

F1-measurable, X is F1-measurable and supn E[X 2

n] <1. Then, we have

E
£

Xn |Fn
§

!
n!1

X , a.s.

Remark 23. In the above Lemma 3, we can replace the condition supn E[X 2

n] <1 by the condition
E[supn Xn] <1 and recover the same result.

Proof of Lemma 3. Let m and n be two positive integers. We write X m
n = E[Xm |Fn].

Step (i): Since supn E[X 2

n] <1, we can apply a conditional dominated convergence theorem
to show that X m

n !
m!1

Xn = E[X |Fn], a.s.

Step (ii): Since F1 = lim

n!1
Fn , there exists a sequence (An)n∏0

such that An 2 Fn and
An !

n!1
A. By deÆnition, we have

E[Xn1An ] = E[X 1An ].
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Note that the family (Xn)n∏0

is tight. Indeed, using Doob’s and Jensen’s inequalities, we have

E
£

sup

i∑n
|Xi |

§

∑ E
£°

sup

i∑n
|Xi |

¢

2

§

1

2 = E
£

sup

i∑n
X 2

i

§

1

2 ∑ 2E
£

X 2

n

§

1

2

.

Then, using Fatou’s Lemma, we get E
£

supi∑n Xi
§

∑ 2(supn E
£

X 2

n

§

)

1

2 <1 which ensures that
(Xn)n∏0

is tight. Thus, we can extract a sub sequence (Xnk )k∏0

such that Xnk !
k!1

Z a.s.

Since supn E[X 2

n] <1, we can use the dominated convergence theorem to get

E[Z 1A] = lim

k!1
E[Xnk 1Ank

] = lim

k!1
E[X 1Ank

] = E[X 1A].

Thus, we have Z = X , F1°a.s. Since all the variables Xk are F1-measurable, the variable
Z is also F1-measurable for any n ∏ 0. Given that Z and X are both F1-measurable,
we deduce that every accumulation point Z of (Xn)n∏0

satisÆes Z = X , a.s. Finally, we get
limm!1

n!1
X m

n = X , a.s. and we can use a composition argument, to deduce that E
£

Xn |Fn
§

!
n!1

X , a.s.

We borrow the following deÆnition from [26].

DeÆnition 3 (Coupling). Two point processes N and N 0 couple if and only if

lim

t!1
P
£

Ns = N 0
s , 8s 2 (t ,1)

§

= 1.

Lemma 4. Let N be a point process and ∏ its intensity. We have

P[Ns °Nt = 0, 8s 2 (t ,1)|Ft ] = E[e°
R1

t ∏u 1Au d s |Ft ],

with Au = {Nu °Nt = 0} for all u ∏ t .

Proof. See Lemma 1 in [26].

Lemma 5. Two point processes N and N 0 which admit respectively ∏ and ∏0 as intensities couple
if and only if

Z1

0

sup

e2E
E
£

|∏s(e)°∏0
s(e)|

§

d s <1.

Proof. Let Ft = F N
t _F N 0

t . Using the canonical coupling, the point process |N °N 0| admits
|∏t °∏0

t | as an Ft -intensity. Using Lemma (4) and Jensen’s Inequality, we have

P
£

sup

e
|Ns(e)°N 0

s(e)| = 0, 8s 2 (t ,1)

§

∏ E[e°
R1

t supe |∏s (e)°∏0
s (e)|d s

] ∏ e°
R1

t supe E[|∏s (e)°∏0
s (e)|]d s

.

Since
R1

0

supe E
£

|∏s(e)°∏0
s(e)|

§

d s < 1, we have
R1

t supe E
£

|∏s(e)°∏0
s(e)|

§

d s !
t!1

0 which
implies that

P
£

sup

e
|Ns(e)°N 0

s(e)| = 0, 8s 2 (t ,1)

§

!
t!1

1.

This completes the proof.
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IV.D.2 Uniqueness

IV.D.2.1 Outline of the proof

Let N1 = (T 1
i , X 1

i ) be the stationary process constructed in Theorem 1 and N = (Ti , Xi ) be
a point process whose intensity satisÆes (2). We write ∏ (resp. ∏1) for the intensity of N
(resp. N1). To prove the uniqueness of the invariant distribution, we only need to show
that

R1
0

supe2E E
£

|∏s(e)°∏1
s (e)|

§

d s <1, see Lemma 5. To do so, we Ærst show that (Un)n∏0

is f -geometrically ergodic, see Lemma 8. The proof of this result requires Lemmas 6 and
7. Using this result, we prove, in Lemma 9, that f (t ) = supe E

£

|∏t (e)°∏1
t (e)|

§

satisÆes the
following inequality:

f (t ) ∑ u(t )+ c
3

G
°

Zt

0

¯h(t ° s) f (s)d s
¢

,

with u(t ) = c
2

E[||Ut °U1
t ||]+ c

1

E
£

kUt °U1
t kØp

§

1

Øp , G(t ) = t
1

Ø and ¯h(t ) = supe,u,x ¡
°

e,u, t , x
¢

with c
1

, c
2

, c
3

, Ø > 1 and p > 1 positive constants. Then, we use Theorem 3 in [14] and the
above inequality, to show that

R

R+
f (t )d t <1 which ensures the uniqueness.

IV.D.2.2 Proof

Let ∏ < 1 given by Lemma 2 and ∏ < Ω < 1. We denote by s = {(T j , X j ) j∑0

2 W
0

; X j =
(n j , t j ,b j ,

˜u j ,u j , a j ) 2 E and V (u
0

) ∑ 2B
Ω°∏+1} and by Æ a set Æ 2W

0

Ω s. We have the following
lemma.

Lemma 6. Under Assumptions 2 and 3, the function f =V +1 with V deÆned in Equation (24)
and r > 1 such that

sup

x2W
E

x

£

øÆ
X

n=1

f (Un)r n§

<1.

Proof. The proof is similar to Theorem 6.3 in [89].

Let Fn and Fl∑ j∑n be respectively deÆned in the following way Fn = æ
°

T j £ X j , 8 j ∑ n
¢

,
Fl∑ j∑n =æ

°

T j £X j , 8l ∑ j ∑ n
¢

. We also write pn
k as follows:

pn
k (u) = |P[Un = u|Fk∑ j∑n°1

§

°P[Un = u|F j∑n°1

]|, 8n 2N,8k ∑ n °1,8u 2U.

Lemma 7. Under Assumptions 1, 3 and 4, we have

pn
k = sup

u2U
pn

k (u) !
k!1

0, a.s. (34)

Proof. Using Lemma 1, we have

pn
k (u) = |E[

Z

R+
Zn(t )∏n(u, t )d t |Fk∑ j∑n°1

]°E[

Z

R+
Zn(t )∏n(u, t )d t |F j∑n°1

]|

= |E[

Z

R+
Zn(t )∏n(u, t )d t |Fk∑ j∑n°1

]°
Z

R+
Zn(t )∏n(u, t )d t |,
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with ∏n(u, t ) =P

e2E(Un°1

,u)

∏n(e, t ), ∏n(e, t ) =√(e,Un°1

, t+Tn°1

,rn(t )), rn(t ) =P

j∑n°1

¡(e,Un°1

, t+
Tn°1

°T j , X j ) and Zn(t ) = e°
£

Rt
0

P

e ∏n (e,s)d s
§

.
Since pk = supu2U pn

k (u), we can construct a sequence (u j ) j∏0

such that pn
k (u j ) !

j!1
pn

k , a.s.

We write u j = (q1

j , q2

j , s j ). Without loss of generality, we can consider that (q1

j ) j∏0

is mono-
tonic by taking a sub-sequence of (q1

j ) j∏0

. Hence, there exists a limiting process q1

1 such that
q1

j !
j!1

q1

1, a.s. By repeating this argument several times, we can always construct (u j ) such

that

pn
k (u j ) !

j!1
pk , u j !

j!1
u1, a.s.

Let us prove that ∏n(u j , t ) !
j!1

∏n(u1, t ), a.s. To do so, we distinguish two sets A
1

= {w 2
≠; u1(w) <1} and A

2

= {w 2≠; u1(w) =1}. When u1 <1, we have u j = u1 for j large
enough since U is countable. This ensures that E(Un°1

,u j ) = E(Un°1

,u1), a.s for j large
enough. Thus, we get

∏n(u j , t )1A
1

!
j!1

X

e2E(Un°1

,u1)

√(e,Un°1

, t +Tn°1

,rn(t ))1A
1

, a.s.

When u1 =1, we have
P

e2E(Un°1

,u1)

∏n(e, t ) = 0 since E(Un1°1

,u1) =?. Using
P

e2E ∏n j (e, t ) <
1, a.s, see Step (ii) in the proof of Theorem 1, we deduce that

P

e2E(Un j °1

,C c
)

∏n j (e, t ) !
c!1

0,
a.s with C c = {u 2U; u > c, c.w}, c > 0 and c.w means component-wise. Since E(Un j°1

,u j ) Ω
E(Un j°1

,C c
) for j large enough, we get

P

e2E(Un j °1

,u j )

∏n j (e, t ) !
j!1

0, a.s which means that

∏n(u j , t )1A
2

!
j!1

X

e2E(Un°1

,u1)

√(e,Un°1

, t +Tn°1

,rn(t ))1A
2

= 0, a.s,

and proves ∏n(u j , t ) !
j!1

∏n(u1, t ), a.s.

Additionally, we have E[supn,s
P

e ∏n(e, s)] <1, see Step (iv) in the proof of Theorem 1. Thus,
we get E[supn,u,s ∏n(u, s)] <1. Since

P

e ∏n(e, s) ∏√ under Assumption 3, we have Zn(t ) ∑
e°√t

, a.s. Then, we can apply the dominated convergence theorem to show that
Z

R+
Zn(t )∏n(t ,u j )d t !

j!1

Z

R+
Zn(t )∏n(t ,u1)d t , a.s.

Furthermore, we have

E
£

sup

j

Z

R+
Zn(t )∏n(u j , t )d t

§

∑ E
£

Z

R+
sup

j
e°√t∏n(u j , t )d t

§ Fubini=
Z

R+
e°√t

E
£

sup

j
∏n(u j , t )

§

d t ,

with E
£

sup j ∏n(u j , t )

§

< 1. Hence, we can use the conditional dominated convergence to
show

E
£

Z

R+
Zn(t )∏n(u j , t )d t |Fk∑r∑n°1

§

!
j!1

E
£

Z

R+
Zn(t )∏n(u1, t )d t |Fk∑r∑n°1

§

.
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Finally, since Fk∑r∑n°1

!
k!1

Fr∑n°1

, we can apply Lemma 3 to deduce that

pn
k !

k!1
0, a.s.

This completes the proof.

Let ¢Tn = Tn °Tn°1

be the inter-arrival time between n-th jump and the n °1-th jump with
Tn the time of the n-th event. Let N1 = (T 1

i , X 1
i ) be the stationary process constructed

in Lemma 1 and N = (Ti , Xi ) be a point process whose intensity satisÆes (2). We write
U1 = (Q1

1
,Q2

1
,S1

) (resp. U = (Q1

,Q2

,S)) for the order book state associated to N1 (resp.
N ). We denote by ∏1 (resp. ∏) the intensity of N1 (resp. N ). We have the following result.

Lemma 8. Under Assumptions 1, 2, 3 and 4, the process (Un)n∏0

is f -geometrically ergodic, see
15.7 in [90], in the sense that there exists r > 1 such that

sup

x2W
0

X

n∏1

E
x

£

k f (Un)° f (U1
n )kr n§

<1.

Proof. Let P n
(x, A) be the probability of being in the set A = {(tk , xk )k∑0

2W
0

; xk = (nk , tk ,bk , sk ,

˜uk ,uk , ak ), u
0

2
a}, a 2U , with U the æ-algebra generated by the discrete topology on U, after n jumps con-
ditional on x = (tk , xk )k∑0

2 W
0

= (R+ £E)

N°
. Let y 2 W

0

. We write º for the stationary
distribution of the process U1

n = (Q1

1
n ,Q2

1
n ,S1

n ) and øÆk for the Ærst entrance time of U to
the set Æk = {z 2W

0

; z°k+1∑ j∑0

= y°k+1∑ j∑0

}. Using the Ærst-entrance last-exit decomposition
of P n

(x, A), see Section 8.2 in [90], we have

P n
(x, A) = Æk P n

(x, A)+
n
X

j=1

j
X

i=1

£

Z

U
j°i

u,Æk

Z

Ui
x,Æk

Æk P i
(x, du)P j°i

(u,d v)Æk P n° j
(v, A)

§

= Æk P n
(x, A)+

n
X

j=1

j
X

i=1

£

Z

U
j°i

u,Æk

Z

Ui
x,Æk

Æk P i
(x, du)P j°i

(u,d v)Æk P n° j
(y, A)

§

+
n
X

j=1

j
X

i=1

£

Z

U
j°i

u,Æk

Z

Ui
x,Æk

Æk P i
(x, du)P j°i

(u,d v) |Æk P n° j
(v, A)° Æk P n° j

(y, A)|
§

. (35)

with Æk P n
(x, A) = P[(Tk , Xk )k∑0

= x, Un 2 A, øÆk ∏ n] and Ui
x,Æk = {z 2 Æk

; (zk )k∑i = x}. Using
E

x

[øÆk

] <1 for all x 2 S and the arguments used in the proof of Theorem 10.2.1 in [90], we
deduce that the stationary distribution admits the following representation:

º(A) = E
y

[øÆk

]

°1E
y

[

ø
Æk

X

j=1

1

¯Un2A] =º(Æk
)

1
X

j=1

Æk P j
(y, A). (36)

By combining (35) and (36), we get

P (x, A)°º(A) = Æk P n
(x, A)+

h

°

Æk P (x)§P (Æk
)°º(Æk

)

¢

§ Æk P (y)

i

n
(A)+º(Æk

)

X

j∏n+1

Æk P j
(y, A)

+
°

Æk P (x)§P (Æk
)

¢

§
°

Æk P (Æk
)° Æk P (y)

¢

n(A). (37)

171



IV. From asymptotic properties of general point processes to the ranking of Ænancial agents

with § the integrated Cauchy product between two sequences which is deÆned as follows:

[u(B)§ v(C )]n(A) =
n
X

i=1

Z

Ui
B ,C

ui (B , du)vn°i (u, A), 8(B ,C , A) 2 (W
0

)

3

with (un)n∏0

and (vn)n∏0

two sequences such that un , vn : (W
0

)

2 ! R. Let f be the function
deÆned in Lemma 6, º( f ) =

R

U º(du) f (u) <1, E
x

[ f (Un)] =
R

U P n
(x,du) f (u) and |P n

(x, .)°
º| f = |E

x

[ f (Un)]°º( f )|. Using (37), we have

|P n
(x, .)°º| f ∑ Ex

[ f (Un)1ø
Æk ∏n]+ [Æk P (x)§P (Æk

)°º(Æk
)]§ t f

n

+º(Æk
)

X

j∏n+1

t f
j +|Æk P (x)§P (Æk

)§¢t f
n |, (38)

with t f
n = E

y

[ f (Un)1ø
Æk ∏n] and ¢t f

n (v) = (E
v

[ f (Un)1ø
Æk ∏n]°t f

n ). To prove geometric ergodicity
we have to show

sup

x

X

n∏1

|P n
(x, .)°º| f r n <1, (39)

with r > 1. Let us take ¯n 2N§ and the delay k(

¯n) 2N associated to Æk depending on ¯n. Using
(38), we have

¯n
X

n∏1

|P n
(x, .)°º| f r n ∑

¯n
X

n∏1

E
x

[ f (Un)1ø
Æk ∏n]r n +

¯n
X

n∏1

|
°

Æk P (x)§P (Æk
)°º(Æk

)

¢

§ t f
n r n |

+º(Æk
)

¯n
X

n∏1

X

j∏n+1

t f
j r n +

¯n
X

n∏1

[Æk P (x)§P (Æk
)]§¢t f

n r n = (i) + (ii) + (iii) + (iv) .

The error term (i) can be dominated by

¯n
X

n∏1

E
x

[ f (Un)1ø
Æk ∏n]r n ∑

X

n∏1

E
x

[ f (Un)1ø
Æk ∏n]r n = E

x

£

ø
Æk

X

n=1

f (Un)r n§

. (40)

The error term (iii) can be bounded by

º(Æk
)

¯n
X

n∏1

X

j∏n+1

t f
j r n ∑º(Æk

)

X

n∏1

X

j∏n+1

t f
j r n ∑ º(Æk

)

r °1

sup

v

E
v

£

ø
Æk

X

n=1

f (Un)r n§

. (41)

Now we move to the error term (iv). We have
°

Æk P (x)§P (Æk
)

¢

§¢t f
n ∑

X

j∑n, i∑ j
[

Z

U
j°i

u,Æk £U
i
x,Æk £W

0

Æk P i
(x, du)P j°i

(u,d v)

§

¢Æk P n° j
(d w) f (w),

with ¢Æk P n° j
(d w) = |Æk P n° j

(v,d w)° Æk P n° j
(y,d w)|. Using Equations (35) and (36), we get

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

¢Æk P n° j
(d w) ∑ Æk P n° j

(v,d w)+ Æk P n° j
(y,d w),

P

j∑n, i∑ j [

R

U
j°i

u,Æk £U
i
x,Æk £W Æk P i

(x, du)P j°i
(u,d v)

§

Æk P n° j
(v,d w) f (w) ∑ E

x

£

f (Un)r n
§

<1,

P

j∑n, i∑ j [

R

U
j°i

u,Æk £U
i
x,Æk £W Æk P i

(x, du)P j°i
(u,d v)

§

Æk P n° j
(y,d w) f (w) ∑ E

y

£

f (Un° j )r n
§

<1,
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Since ¢Æk P n° j !
k!1

0, see Lemma 7, the dominated convergence theorem ensures that

°

Æk P (x)§P (Æk
)

¢

§¢t f
n !

k!1
0.

Thus, there exists ¯k(

¯n) such that
°

ÆP (x)§P (Æ)

¢

§¢t f
n ∑ ≤(

¯n) for any k ∏ ¯k(

¯n). Hence the error
term (iv) can be majorated by

¯n
X

n∏1

[Æk P (x)§P (Æk
)]§¢t f

n r n ∑ ≤(

¯n)

r ¯n+1 °1

r °1

, (42)

which means that we have to choose ≤(

¯n) < c
1

r°1

r ¯n+1°1

with c
1

a positive constant. Finally, using
the property

lim

n!1
(u § v)n = lim

n!1
un £ lim

n!1
vn , (43)

we dominate the error term (ii) by

|
¯n

X

n∏1

°

Æk P (x)§P (Æk
)°º(Æk

)

¢

§ t f
n r n |∑

°

X

n∏1

|
£

Æk P (x)§P (Æk
)

§

n(Æk
)°º(Æk

)|r n¢

sup

v

E
v

£

ø
Æk

X

n=1

f (Un)r n§

.

(44)

Additionally, we have

|
£

Æk P (x)§P (Æk
)

§

n(Æk
)°º(Æk

)| = |
£

Æk P (x)§ (P (Æk
)°º(Æk

))

§

n(Æk
)°º(Æk

)

X

i∏n+1

Æk P i
(x,Æk

)|

= |
£

Æk P (x)§ (P (Æk
)°P (y))

§

n(Æk
)+

£

Æk P (x)§ (P (y)°º(Æk
))

§

n(Æk
)

°º(Æk
)

X

i∏n+1

Æk P i
(x,Æk

)|

∑
£

Æk P (x)§ |P (y)°P (Æk
)|
§

n(Æk
)+

£

Æk P (x)§ |P (y)°º(Æk
)|
§

n(Æk
)

+º(Æk
)

X

i∏n+1

Æk P i
(x

u
,Æk

),

for any n 2N. Using Equation (43), we get

¯n
X

n∏1

£

|Æk P (x)§P (Æk
)°º(Æk

)|
§

n(Æk
)r n ∑

¯n
X

n∏1

£

Æk P (x)§ |P y

(Æk
)°P (Æk

)|
§

n(Æk
)r n

+
¯n

X

n∏1

£

Æk P (x)§ |P (y)°º(Æk
)|
§

n(Æk
)r n +º(Æk

)

X

n∏1

i∏n+1

Æk P i
(x,Æk

)r n

∑
°

X

n∏1

Æk P n
(x,Æk

)r n¢°

X

n∏1

sup

w2Æk

|P n
(y,Æk

)°P n
(w,Æk

)|r n¢

+
°

X

n∏1

Æk P n
(x,Æk

)r n¢°

X

n∏1

|P n
(y,Æk

)°º(Æk
)|r n¢

+º(Æk
)

X

n∏1

X

i∏n+1

Æk P i
(x,Æk

)r n = (1)+ (2)+ (3).
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The term (2) is bounded by

(2) ∑ E
x

£

r øÆ
§

sup

y

°

X

n∏1

|P n
(y,Æ)°º(Æ)|r n¢

.

Since the Kendall theorem ensures that E
x

£

r øÆk
§

<1 and
P

n∏1

|P n
(x,Æk

)°º(Æk
)|r n <1 are

equivalent, the quantity (1) is Ænite if and only if sup

v

E
v

£

r øÆk
§

<1. The term (1) is majorated
by

(1) ∑ E
x

£

r øÆk
§°

X

n∏1

sup

w2Æk

|P n
(w,Æk

)°P n
(y,Æk

)|r n¢

.

To ensure that the sequence v(

¯n) = P

¯n
n∏1

sup

w2Æk |P n
(w,Æk

)°P n
(y,Æk

)|r n is bounded, the
put a dependence k and ¯n. Let ≤1

(

¯n) > 0. By following the same arguments used in the proof
of Inequality (42), there exists ¯k1

(

¯n) such that for any k ∏ ¯k1

(

¯n), we have

¯n
X

n∏1

sup

w2Æk

|P n
(y,Æk

)°P n
(w,Æk

)|r n ∑ ≤1

(

¯n)

r ¯n+1 °1

r °1

.

By taking ≤1

(

¯n) ∑ c
1

r°1

r ¯n+1°1

, we get (1) ∑ c
1

sup

x

E
x

£

r øÆk
§

. Furthermore, the term (3) can be
dominated by (3) ∑ E

x

£

r øÆk
§

. Thus, we deduce that

(i i ) ∑ c
1

E
x

£

r øÆ
§

(1+ sup

v

X

n∏1

|P n
(v,Æ)°º(Æ)|r n¢

sup

v

E
v

£

ø
Æk

X

n=1

f (Un)r n§

. (45)

By combining Inequalities (40), (41), (44) and (45), we have (39) when sup

x

E
x

£

Pø
Æk

n=1

f (Un)r n
§

and sup

x

E
x

£

r øÆk
§

are both Ænite. Since E
x

£

Pø
Æk

n=1

f (Un)r n
§

< 1 implies E
x

£

r øÆk
§

< 1, we
only need to prove

E
x

£

ø
Æk

X

n=1

f (Un)r n§

<1.

This last inequality is satisÆed thanks to Lemma 6.

Lemma 9. Under Assumptions 1, 3 and 4, the process ¯U is ergodic.

Proof of Lemma 9. For simplicity, we write c
1

, c
2

and c
3

for positive constants and forget the
dependence of E

x

[X ] on the initial state x for any random variable X . Let N1 = (T 1
i , X 1

i )

be the stationary process constructed in Lemma 1 and N = (Ti , Xi ) be a point process whose
intensity satisÆes (2). We write U1 = (Q1

1
,Q2

1
,S1

) (resp. U = (Q1

,Q2

,S)) for the order
book state associated to N1 (resp. N ). We denote by ∏1 (resp. ∏) the intensity of N1 (resp.
N ). To prove the uniqueness, we need to show that N and N1 couple which is satisÆed when

Z1

0

sup

e
E
£

|∏t (e)°∏1
t (e)|

§

d t <1,

thanks to Lemma 5. We write f (t ) = supe E
£

|∏t (e)°∏1
t (e)|

§

for any t ∏ 0.
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Step (i): For any ∞= p
q > 1 with p, q 2N§ and Ø such that 1

Ø + 1

∞ = 1. Let us Ærst prove that

f (t ) ∑ u(t )+ g
1

(t )G
°

Zt

0

¯h(t ° s) f (s)d s
¢

, (46)

with u(t ) = c
3

E[||Ut °U1
t ||]+c

1

E
£

kUt °U1
t kØp

§

1

Øp
[1+2B(t )], g

1

(t ) = c
2

(1+2B(t )), G(t ) = t
1

Ø ,

¯h(t ) = supe,u,x ¡
°

e,u, t , x
¢

and B(t ) = sup

0∑k∑n√°1

h

Bk (t )

i

1

p∞
with Bk (t ) deÆned in Equation

(50). The quantities c
1

, c
2

and c
3

are positive constants. We have

f (t ) = E
£

|√(e,Ut , t ,rt )°√(e,U1
t , t ,r1

t )|
§

∑ E
£

|√(e,Ut , t ,rt )°√(e,U1
t , t ,rt )|

§

+E
£

|√(e,U1
t , t ,rt )°√(e,U1

t , t ,r1
t )|

§

= (1)+ (2),

with rt =
Rt

0

¡(e,Ut , t °s, Xs)d Ns and r1
t =

Rt
0

¡(e,U1
t , t °s, X 1

s )d N1
s . Let us Ærst handle the

term (2). Using Assumption 4, we have

E
£

|√(e,U1
t , t ,rt )°√(e,U1
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t )|

§
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£

| ¯√(rt )° ¯√(r1
t )|

§
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£
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t ||1+ r n

1

t + r1n
1

t |
§
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(i )

z }| {

E
£
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t |Ø

§

1

Ø

(i i )

z }| {

E
£

|1+ r n
1

t + r1n
1

t |∞
§

1

∞
.

The term (i) can be dominated by

E
£

|rt ° r1
t |Ø

§

1

Ø ∑ E
£

|
Zt

0

¡(e,Ut , t ° s, Xs)d Ns °¡(e,U1
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s |Ø
§

1

Ø
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Ø°1
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£

|
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0
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§

1

Ø
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Ø°1

Ø E
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Zt

0

¯h(t ° s)

|d Ns °d N1
s |

¥Øi

1

Ø

∑ 2

Ø°1

Ø E
£

kUt °U1
t kØ|

Zt

0

˜h(e, t ° s, Xs)d Ns |Ø
§

1

Ø +2

Ø°1

Ø
£

Zt

0

¯h(t ° s) f (s)d s
§

1

Ø

∑ 2

Ø°1

Ø E
£

kUt °U1
t kØp§

1

Øp E
£

|
Zt

0

˜h(e, t ° s, Xs)d Ns |Øq§

1

Øq +2

Ø°1

Ø
£

Zt

0

¯h(t ° s) f (s)d s
§

1

Ø

= c
1

E
£

kUt °U1
t kØp§

1

Øp + c
2

£

Zt

0

¯h(t ° s) f (s)d s
§

1

Ø
, (47)

with ¯h(s) = supe,u,x ¡(e,u, s, x), ˜h(e, s, x) = 2

min(Æ
0

,1)

supu ¡(e,u, s, x) and min(Æ
0

,1) repre-
sents the minimum distance between two elements in the countable space U. The quantity
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E
£

|
Rt

0

˜h(e, t ° s, Xs)d Ns |Øq
§

is bounded since

E
£

|
Zt

0

˜h(e, t ° s, Xs)d Ns |Øq§

∑ E
£

|
Zt

0

˜h(e, t ° s, Xs)d Ns |q
§

1

Ø

∑
n

X

km2P (q)

X

¯x2E m

√

q
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!

£
Z
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m
E
£

m
Y
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˜h(e, t ° si , xi )d Nsi

§
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√
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!
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m

m
Y
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£

∏si

§

d si

o

1

q <1.

The term (ii) satisÆes

E
£

|1+ r n
1

t + r1n
1 |∞

§

1

∞ ∑ 3

∞°1

∞
°

1+E[|r n
1

t |∞]

1

∞ +E[|r1n
1

t |∞]

1

∞
¢

, (48)

with ∞= p
q and p, q 2N§. We have

E[|r n
1

t |
p
q
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1

t |p ]

1

q
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°

Zt

0
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¢n

1

p
]

1

q

=
(

X

km2P (

¯p)

X
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√

¯p

km

!

£
Z
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m
E

"

m
Y
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¯¡(t ° si , xi )d Nsi

#)

1

q

, (49)

with ¯¡(t , x) = supe,u ¡(e,u, t , x) and ¯p = n
1

p . Using (49) and the Brascamp-Lieb inequality,
we have
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1
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p
q
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"
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X
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√

¯p
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!

£
Z
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m

m
Y
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§

1
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1
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¯p)

X
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√
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!
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i

1

q = Bk (t )

1

q
, (50)

with Rm(t ) =
R

(°1,t )

m

Qm
i=1

¯¡(t ° si , xi )E
£

∏si

§

1

m+m0 d si and Bk (t ) = P

km2P (

¯p)

P

¯x2E m

°

¯p
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¢

Rm(t ).
Similarly, we also have

E[|r1n
1

t |
p
q

] ∑ Bk (t )

1

q
. (51)

Using Inequalities (48) and (50), we deduce that (ii) veriÆes

E
£

|1+ r n
1

t + r1n
1 |∞

§

1

∞ ∑ 3

∞°1

∞
(1+2 sup

0∑k∑n√°1

h

Bk (t )

i

1

q∞
). (52)

By combining inequalities (47) and (52), we deduce that

(2) ∑ 3

∞°1

∞

h

c
1

E
£

kUt °U1
t kØp§

1

Øp + c
2

£

Zt

0

g (t ° s) f (s)d s
§

1

Ø
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1+2 sup
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h

Bk (t )

i

1
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i

. (53)

Using Theorem 1, we have supe,t E[supu √(e,u, t ,rt )] is Ænite. Thus, there exists K such that

(1) ∑ c
3

E[||Ut °U1
t ||]. (54)

Thus using Equations (53) and (54), we prove (46).
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Step (ii): By a density argument, there exist continous sequences of functions (up
)p∏1

,
(g p

1

)p∏1

and (

¯hp
)p∏1

such that up
(t ) !

p!1
u(t ) and u ∑ up , g p

1

(t ) !
p!1

g
1

(t ) and g
1

∑ g p
1
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¯hp L1

!
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¯h and ¯h ∑ ¯hp . Thus, we have
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1
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°

Zt

0

¯hp
(s) f (s)d s

¢

.

Using a density argument again, we can Ænd a sequence of functions ( f k
)k∏1

converges
uniformly towards f . By a�ording ourselves to use sub-sequences, we can always consider
that

f p
(t ) ∑ ˜up

(t )+ g p
1

(t )G
°

Zt

0

¯hp
(s) f p
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¢

,

with ˜up
(t ) = up

(t )+| f ° f p |1. Using Theorem 3 in [14] and Inequality (46), we have
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(t )F p
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,

with H(s) =
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0

d t
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, v p
(t ) = max(G

1

(

˜up
)(t ),1), F p
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By sending p to inÆnity, we deduce that
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, (55)

with v(t ) = max(G
1

(u)(t ),1) and F (t ) = max(G
1

(g
1

)(t ),1).

Step (iii): Let us prove that
R

R+
u(t )d t <1. Since B(t ) is uniformly bounded, we only need

to prove that
(
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E
£
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§
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£

kUt °U1
t kØp

§

1
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Using Lemma 8, we have E
£

P

n∏0

kUn °U1
n k

§

<1 which ensures that E
£R

R+
kUt °U1

t kd t
§

<
1. By using a similar methodology and the fact that
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£
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see Lemma 8, we also have
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Step (iv): Since g
1

is bounded and
Rt

0

¯h(s)d s <1, the functions F (t ) and
n

1+G
h

H°1

°Rt
0

¯h(s)g
1

(s)d s
¢

io

are bounded as well. Moreover,
R

R+
u(t )d t <1 thanks to the

previous step. Thus, by applying Inequality (55), we have that
R

R+
f (t )d t <1 which completes

the proof.

IV.D.3 Speed of convergence

Lemma 10. We have the following error estimate:

||Pt (w, .)° ¯º||T V ∑ K
1

e°K
2

t
, 8w 2W,

with K
3

> 0 and K
2

> 0.

Proof of Lemma 10. We forget the dependence of E
x

[X ] on the initial state x for any random
variable X . We have
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e
|Ns °N1

s | 6= 0, 8s 2 (t ,1)]
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e
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Using Lemma 4 and Jensen’s Inequality, we have
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,
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for any t ∏ 0. Using Inequality (55) and the boundedness

of F and
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, we have

(i ) ∑ c
1

Z1

t
u(t )d t , (56)

with c
1

a positive constant. Let us now prove that

u(t ) ∑ c
1

e°Æt
, (57)

with Æ a positive constant. We have
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Using the fact that
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n k]r n <1, there exists Æ > 0 such that E[kUn °U1

n k] ∑
Ae°Æn . Let us denote by U1,±

t the ±-translated process deÆned such that U1,±
t =U1

t+±. By
applying Lemma 9 to the process U1,±, we also have sup±
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n °U1
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which ensures that E[kU1,±
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n k] ∑ Ae°Æn . Using Lemma 11 below and the uniqueness of

the stationary distribution, we have N (t )
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, a.s. Thus, we deduce
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Using the same lines of argument, we also have

E[kUt °U1
t kØp

]

1

Øp ∑ c
1

e°Æt
. (59)

By combining Inequalities (58) and (59) and using the expression of u(t ), we recover Inequality
(57) which ensures that

(i ) ∑ c
1

e°Æt
.

This completes the proof.

Lemma 11. For any initial state u 2U, the process ¢Tn satisÆes
Pn

i=1

¢Ti

n
!

n!1
Eµ[¢T

1

] a.s,

with µ the unique stationary distribution of the point process N .

Proof. Since there exists ∏ > 0 such that inft ,u,r
P

e2E ∏t (e,u,r ) > ∏, we have E[¢Tn] ∑ 1

∏ for
any n ∏ 1. Thus, ¢Tn admits a Ænite stationary distribution. Using the Theorem 17.1.2 in [90],
we complete the proof.

IV.E Proof of Propositions 2 and 3

Proof of Proposition 2. The proof of Equation (9) is a direct application of Theorem 2 in [42].
Since (Un) is f -geometrically ergodic, see Lemma 8, (Yn) is g -geometrically ergodic and
Un and Yn are independent, the process (Un ,Yn) is ˜f -geometrically ergodic with ˜f (u, y) =
f (u)+ g (y). Let g and h be two functions such that g 2

,h2 ∑ ˜f , µ the stationary distribution
of (U ,Y ) and ¯v = v °Eµ[v] for any function v . By following the same lines of argument of
Lemma 16.1.5 in [90], we have

|Eº[

¯h(Zn)

¯g (Zn+k )]|∑ REº[

¯

˜f (Z
0

)]r k
,

with Zn = (Un ,Yn), r < 1 and R a positive constant. The quantity Eº[

¯

˜f (Z
0

)] is bounded
by Lemma 2. Thus Z is a geometric mixing and Theorems 19.1 and 19.2 in [21] give the
result.

Proof of Proposition 3. Using Lemma 11 and Proposition 3, the proof of this result is analagous
to the proof of Theorem 4.2 in [65].

IV.F Stationary distribution computation

Proof of Proposition 4. Let z 2 Z and z 0 2 Z such that z 6= z 0. Since ≥ is stationary under µ, we
have

X

z 02Z

Z

Az0
µ(d w)Pt (w, Az

) =
Z

W
0

µ(d w)Pt (w, Az
) =µ(Az

), 8t ∏ 0, (60)
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with Pt (w, .) the probability distribution of ≥0,w
t starting from the initial condition w and Az =

{(ws)s∑0

2 W
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= z}. Since
R

Az0 µ(d w)Pt (w, Az
) = Pµ[≥t = z, ≥

0

= z 0
] = Pµ[≥

0

= z 0
]Pµ[≥t =

z|≥
0

= z 0
] and µ(Az

) =Pµ[≥
0

= z], the quantity º(z) =µ(Az
) deÆned in Section 5.1 satisÆes
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which also leads to the following equation:
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where ≤ is an error term associated to the cases when at least two events happen in the
interval [0,±]. Since
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We deduce that
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This completes the proof.

IV.G Proof of Proposition 5

Proof of Proposition 5. We write ∏u,u0
s = P

e2E(u,u0
)

∏s(e) and E(u,u0
) the set of events that

moves the order book from the state u to u0. We have
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Since (∏s)s∏0

is stationary under ¯º and E
¯º[∏s] <1, the Theorem 2.1-chapter X in [42] ensures

that
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Moreover, since N u,u0
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Hence, by combining (62), (63) and (64), we prove
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Since (Us)s∏0

is stationary under ¯º and E
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u] <1, the Theorem 2.1-chapter X in [42] ensures
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Rt
0

±s
u d s

t
!

t!1
E

¯º[±0

u] =P
¯º[U

0

= u] a.s. (66)

Thus, we deduce that
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which completes the proof.

Proof of conÆdence interval computation. By applying Theorem 2 to the sequence of ¥s =∏s±
s
u,u0

and use basic inequalities to approximate t by its integer part btc, we have
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with æ2
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Equation (69) ensures that we have with probability 90%

Q(u,u0
) 2 [(

N u,u0

t

t
+

1.96æ
1

p
t

)(

t

t u +
1.96æ

2

p
t

£
t

t u), (

N u,u0

t

t
°

1.96æ
1

p
t

)(

t

t u °
1.96æ

2

p
t

£
t

t u)].

IV.H Proof of Remark 19

Proof. We assume that the insertion (resp. consumption) intensity ∏+ (resp. ∏°) is constant
and focus on the best bid limit Q1. The stationary distribution ºol d of Q1 veriÆes

ºol d
(q) =ºol d

(0)(Ωol d
)

q
, ºol d

(0) = (1+
1
X

q=1

(Ωol d
)

q
)

°1

, Ωol d =
∏+

∏°, (70)

with q ∏ 1 the size of Q1. We add to the market a new agent whose insertion (resp. consump-
tion) intensity ∏+,a (resp. ∏°,a ) is also constant. The stationary distribution ºnew of Q1 in
the new market satisÆes
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with q ∏ 1 the size of Q1. Using Equations (70) and (71), we can write
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with ∏ = (∏+
,∏°

), ∏a = (∏+,a
,∏°,a

) and R(∏,∏a
) = (1+ ∏+,a

∏+ )/(1+ ∏°,a

∏° )°1. We want the new
introduced agent to reduce the volatility of the old market which at the Ærst order reads
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0
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]. (73)

Using Equation (72), we can reformulate Inequality (73) in the following way:

X

q

(Ωol d
)

q
≥

1+R(∏,∏a
)

¥q

≥

1+P1
j=1

(Ωol d
)

j
(1+R(∏,∏a

))

j
¥

¥2

0

(q) ∑
X

q

(Ωol d
)

q

≥

1+P1
j=1

(Ωol d
)

j
¥

¥2

0

(q), (74)
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for any function ¥
0

. To satisify Inequality (74) we need R(∏,∏a
) ∏ 0 which leads to

∏+,a

∏°,a ∏
∏+

∏°,

This condition is a well-known result which ensures that the new agent needs to have an
insertion/consumption ratio greater than the one of the market.

IV.I Supplementary numerical results

The three next Ægures show the liquidity consumption and provision intensities at the Ærst
limit relative to the whole market according to the queue size, the corresponding stationary
measure and the long term volatility, respectively for EssilorLuxottica, Michelin and Orange.

(a) Intensity of the market (b) Stationary measure Q1

Long term price volatility æ2,G = 0.038, æ2,M
10

= 0.26.

Figure IV.4 – (a) Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and (b) the corresponding stationary distribution of Q1

with respect to the queue size (in AES), proper to ExilorLuxottica.
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(a) Intensity of the market (b) Stationary measure Q1

Long term price volatility æ2,G = 0.075, æ2,M
10

= 0.490.

Figure IV.5 – (a) Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and (b) the corresponding stationary distribution of Q1

with respect to the queue size (in AES), proper to Michelin.

(a) Intensity of the market (b) Stationary measure Q1

Long term price volatility æ2,G = 0.065, æ2,M
10

= 0.453.

Figure IV.6 – (a) Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and (b) the corresponding stationary distribution of Q1

with respect to the queue size (in AES), proper to Orange.

For each of the market makers, we compute the liquidity consumption and provision intensi-
ties, and the corresponding stationary measure that we would obtain in a situation where the
studied market maker withdraws from the market and the other market participants do not
change their behaviour. We show respectively the results relative to EssilorLuxottica, Michelin
and Orange.
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Intensities and æ2,M
10

when one market maker leaves the market : stock EssilorLuxottica

Figure IV.7 – Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and æ2,M

10

when one market maker is ejected from the
market for the stock EssilorLuxottica.
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Intensities and æ2,M
10

when one market maker leaves the market : stock Michelin

Figure IV.8 – Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and æ2,M

10

when one market maker is ejected from the
market for the stock Michelin.
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Intensities and æ2,M
10

when one market maker leaves the market : stock Orange

Figure IV.9 – Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and æ2,M

10

when one market maker is ejected from the
market for the stock Orange.
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CHAPTER V

Market makers inventories and price
pressure: theory and multi-platform

empirical evidences

Abstract

We are interested in the link between price pressure and market makers inventories. We
extend the literature establishing a negative correlation between both quantities to the
multi-agents framework. We then investigate this relationship empirically thanks to a
unique cross-platform trades dataset of European stocks with participant level information.
Using these data, we are able to provide evidences that high-frequency market makers
perform cross-market inventory netting and show how inventory management induces
speciÆc price pressures.

Keywords: Price pressure, market making, inventory, price impact, market fragmentation,
multi-platform analysis, regulation.

1 Introduction

With market electroniÆcation and fragmentation, high-frequency traders (HFTs) started to
emerge and became major actors in the markets. Since then, several studies have analysed
their behaviour and impact on markets. Several studies focus on the reaction of HFTs with
respect to market features considered exogenous such as volatility, see [116], macroeconomic
announcements, see Chapter I and [34], Øash crashes, see [74], or new regulation like the tick
size changes, see [9]. In this work, we rather aim at understanding the endogenous impact of
high-frequency market makers on market quality in the spirit of Chapter IV and [97]. In these
papers, the authors investigate the contribution of HFTs to volatility via their order Øows.
Here, our main variable of interest is high-frequency market makers inventory. Inventory is
indeed a key component of market making algorithms: market makers typically wish to carry
limited inventory risk and end their day without holding any position. This is why we want
to analyse how inventory management strategies a�ect market dynamics. More precisely, we
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are interested in the relationship between individual high-frequency market maker invento-
ries and price pressure, that is the local price impact due to submitted market and limit orders.

From a theoretical point of view, there are several models that analyse the determinants of the
best bid and ask. Some of them focus on adverse selection costs, others on inventory costs.
In models studying adverse selection costs, see Chapter III and [53, 76], bid and ask quotes
are optimally chosen by the market maker based on the probability that incoming orders
are informed. Models dealing with inventory costs, see [4, 5, 7, 108], suppose that market
makers set quotes in order to maintain their inventory around a target level. The majority of
inventory costs models consider a monopolistic market maker, see [4]. Some papers like [31]
work with Cournot competitive risk-averse market makers. An important innovation of our
paper is that we extend the results of [31] to the case of market makers who are heterogeneous
in their initial holdings. We show that the negative relationship between price pressure and
market maker inventory holds in all cases: positive inventories lead to negative price pressure
and conversely.

From an empirical viewpoint, this negative relationship between inventory and price pressure
has never really been investigated accurately. This is probably because of the lack of multi-
platform data with participant level information. Indeed, having such data is crucial when
studying market making activity since market makers act simultaneously on many platforms.
Some papers analyse this relationship empirically but assume there is only one monopolistic
market maker and use approximations to compute its inventory, see [4]. These assumptions
are quite far from reality. In practice, there are multiple market makers, and from a regulatory
viewpoint, it is important to assess this relationship at the individual level for each market
maker to understand its own contribution to price pressure. For instance, a market maker
who impacts prices signiÆcantly when his inventory is large intensiÆes the risk of a Øash crash
during periods of stress, see [4]. To our knowledge, our paper is the Ærst multi-platform
study of high-frequency market making activity with participant level information. Using this
unique data set, we can identify di�erent agents who act as market makers. Furthermore,
we provide original empirical evidences that market makers perform cross-market netting of
inventories. We are indeed able to compute the actual inventories of market makers, instead
of estimating them from the cumulative net volume as typically done in the literature.

We Ærst identify on our data the market participants that can be viewed as high-frequency
market makers by analysing their end-of-day inventories. We then display how their trades
are distributed across multiple platforms. In our theoretical model, like in most approaches
in the literature, we consider that market makers are purely passive. However, we show that
in practice market makers do use aggressive orders in signiÆcant proportions conÆrming the
results of Chapter II. In contrast to the classical idea suggesting that market makers become
more aggressive when their inventories are large, we Ænd that their aggressiveness level stays
quite constant. Still, they send more buy (resp. sell) than sell (resp. buy) aggressive orders
when their inventory is highly negative (resp. positive). Thus when studying empirically the
relationship between market makers inventory and price pressure, we decide to take into ac-
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count both aggressive and passive Øows.

The paper is organised as follows. In Section 2, we introduce our model for the behaviour of
buyers and sellers and the optimisation problem of market makers. The case where market
makers are identical is considered in Section 3 while we treat in Section 4 the situation where
they have di�erent initial inventories. We describe our dataset in Section 5, explain how to
identify market makers and give some preliminary statistics. We investigate in Section 6 the
role of aggressive orders in inventory management. Finally, for each of our market makers,
we display the relationship between his inventory and the price pressure in Section 7 .

2 Model

2.1 Buy and sell investors

Buy and sell investors arrive in the market at random times. We denote the cumulative
number of buyers and sellers arriving in time interval [0, t ] respectively by N B

t and N S
t , and

assume that N B
t and N S

t are independent Poisson processes with identical arrival intensity
∏ > 0. We assume that the fundamental price of the asset follows a Brownian motion with
volatility æ> 0:

dSt =ædBt , t ∏ 0,

where (Bt )t∏0

is a standard Brownian motion, independent of the Poisson processes N B and
N S , and the initial value S

0

> 0 is a positive constant.

We denote by St+ ˜at and St+ ˜bt , respectively the ask and bid quotes o�ered by the competitive
market makers. That is, ˜at and ˜bt measure the deviation of ask and bid quotes from the
fundamental price of the asset. We refer to ˜at ( ˜bt , resp.) as the ask (bid, resp.) price
pressures. If a buy or sell investor arrives at time t , then he instantaneously trades with the
entire body of market makers, and then leaves the market. The demand and supply functions
of the buy/sell investors are given by

QB
(

˜at ) = c(

˜p ° ˜at ), QS
(

˜bt ) = c(

˜bt + ˜p), (1)

where the demand slope c > 0 is constant, ˜p (° ˜p, resp.) is the reservation price of the buyer
(seller, resp.) relative to the fundamental price, and QB

(

˜at ) (QS
(

˜bt ), resp.) is the amount of
shares the buyer (seller, resp.) trades with the market makers at the price pressure ˜at ( ˜bt ,
resp.) determined at time t .

2.2 Multiple market makers

We describe the control problem faced by the N market makers with N ∏ 1. For any
l = 1,2, . . . , N , Market Maker l chooses a predictable control strategy xl ¥ (xl ,a

t , xl ,b
t )t2[0,1)

specifying the size of buy and sell orders that will be executed against the randomly arriving
buy/sell investors. Because marker makers are the only counterparty available for trade when
end investors arrive, the total liquidity demanded by buy end investors needs to be absorbed
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by market makers, and symmetrically, the total liquidity supplied by market makers needs to
be absorbed by sell end investors. Using (1), this implies that the ask and bid price pressures
at time t are given by

˜at = ˜p ° 1

c

N
X

l=1

xl ,a
t ,

˜bt =° ˜p + 1

c

N
X

l=1

xl ,b
t . (2)

The l -th market maker maximises expected utility from wealth, minus a quadratic penalty for
holding inventory. His value function is given by

¯vl (i ) = sup

xl

E

∑

Z1

0

e°Øt
(dW l ,(xl

,x°l
)

s °£(I l ,xl

s )

2d s)|I l ,xl

t = i

∏

,

where Ø> 0 and £> 0 are positive constants.

The wealth of Market Maker l at time t , controlled by his trading quantities x = (xl ,a
s , xl ,b

s )s<t

and denoted by W l ,x
t , is given by the cumulative proceeds from sales to buy end investors,

net of purchases from the sell end investors. Purchases and sales from end investors change
the inventory. Hence, for any l = 1. . . , N , the inventory I l ,xl

t of the l -th market maker evolves
according to:

d I l ,xl

t =°xl ,a
t d N B

t +xl ,b
t d N S

t . (3)

The market maker measures his trading revenue relative to the fundamental price. Using
the expression for the ask and bid prices in (2), we obtain that the (controlled) dynamics of
Market Maker l ’s wealth is given by

dW l ,x
t =

≥

˜p ° 1

c

N
X

n=1

xi ,a
t

¥

xl ,a
t d N B

t °
≥

° ˜p + 1

c

N
X

n=1

xi ,b
t

¥

xl ,b
t d N S

t . (4)

Equations (3) and (4) describe the (controlled) dynamics of Market Maker l ’s inventory and
wealth.

3 Case of identical market makers

We consider now that market makers are identical: their costs for holding inventory and their
initial inventories are equal. The computations is this section are based on [31]. Using the
dynamic programming principle, the value function ¯vl (i ) of the control problem solved by
the l -th market maker is the solution to the Bellman equation:

£i 2 +Ø ¯vl (i ) =∏ sup

xl ,a
,xl ,b

h

√

˜p ° 1

c

N
X

n=1

xn,a

!

xl ,a + ¯vl (i °xl ,a
)° ¯vl (i )

°
√

1

c

N
X

n=1

xn,b ° ˜p

!

xl ,b + ¯vl (i +xl ,b
)° ¯vl (i )

i

Ø

Ø

Ø

xn=xl ,? for all n 6=l
, (5)
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where xl ,? is the optimizer of Hamiltonian above, in which we set xn = xl ,? for all n 6= l
because we are considering a symmetric Markov perfect equilibrium. We make the ansatz
that the value function ¯vl (i ) is quadratic and concave in i . Moreover, since all market makers
are identical, value function and strategies are the same for all market makers, i.e.,

¯vl (i ) = ¯v(i ) =°Ai 2 +Bi +C ,

for some constant A > 0. It then follows that the optimal control strategy for each Market
maker is given by

8

>

>

>

<

>

>

>

:

xa =
˜p +2Ai °B

N+1

c +2A
,

xb =
˜p °2Ai +B

N+1

c +2A
,

(6)

Using the expressions above, we can then rewrite (5) as

1

∏
[(£°ØA)i 2 +ØBi +ØC ] = 8A2c(1+ c A)

(N +1+2c A)

2

i 2 + 8c A(1+ c A)

(N +1+2c A)

2

Bi + 2c(1+ c A)(B 2 + (

˜p)

2

)

(N +1+2c A)

2

.

By matching the coe�cients of i 2, i and imposing that the constant term in the above equation
is zero, we obtain that (A,B ,C ) must satisfy the following equations

1

∏
(£°ØA) = 8c A2

(1+ c A)

(N +1+2c A)

2

, (7)

Ø

∏
B = 8c A(1+ c A)

(N +1+2c A)

2

B , (8)

Ø

∏
C = 2c(1+ c A)(B 2 + (

˜p)

2

)

(N +1+2c A)

2

. (9)

Hence, A? must be the unique positive solution to (7), and B? = 0 otherwise (8) would not
hold. DeÆne

C? = ∏

Ø

2c(1+ c A?)(

˜p)

2

(N +1+2c A?)

2

=
±
Ø °1

4A§ (

˜p)

2

. (10)

Then we obtain that a solution to (7)-(9) is given by (A?,0,C?
). Hence, the value function is

given by
¯v(i ) =°A?i 2 +C?

.

Using (2) and (6), we obtain that the ask and bid price pressure policy functions are time-
homogeneous, and given by

8

>

>

<

>

>

:

˜a(i ) =
˜p(1+2c A?)°2N A?i

N +1+2c A?
,

˜b(i ) = ° ˜p(1+2c A?)°2N A?i

N +1+2c A?
.
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Notice that because A? > 0, we have that both ask and bid price pressures are negatively
related to the inventory i .

The bid-ask spread is given by

˜a(i )° ˜b(i ) = 2(1+2c A?)

N +1+2c A?
˜p,

The spread is independent of the inventory and strictly increasing with respect to the holding
cost £. The positive relationship between £ and the spread means that when £ is large,
market makers set wide spreads to face their inventory risk by having a large per-unit trading
proÆt. Furthermore, the fact that market makers exercise price pressures while conserving
constant spread is in line with the empirical observations of [113]. In this paper, it is found
that market makers maintain tight bid-ask spreads but exercise an implicit price pressure by
reducing the quantity of orders they supply.

4 Case of heterogeneous market makers

We now consider two market makers who are heterogeneous: their costs for holding inventory
are the same but their initial inventories are di�erent (i

1

6= i
2

). This case represents for exam-
ple the scenario where some market makers end their trading day with a null inventory, while
others end their trading day with a non null inventory that they liquidate the following day.
Each market maker knows the inventory of the other one. Note that some of the computations
in this section are based on approximations.

The value functions ¯v
1

and ¯v
2

are given by

¯v
1

(i
1

, i
2

) = sup

x1

E

∑

Z1

0

e°Øt
(dW 1,(x1

,x2

)

s °£(I 1,x1

s )

2d s)|I 1,x1

0

= i
1

, I 2,x2

0

= i
2

∏

,

¯v
2

(i
1

, i
2

) = sup

x2

E

∑

Z1

0

e°Øt
(dW 2,(x1

,x2

)

s °£
(

I 2,x2

s )

2d s)|I 1,x1

0

= i
1

, I 2,x2

0

= i
2

∏

,

where we recall that x1 ¥ (x1,a
t , x1,b

t )t2[0,1)

and x2 ¥ (x2,a
t , x2,b

t )t2[0,1)

. These value functions
are the solutions of the following HJB equations:

£i 2

1

+Ø ¯v
1

(i
1

, i
2

) =∏ sup

x1,a
,x1,b

h

µ

˜p ° 1

c
(x1,a +x2,a

)

∂

x1,a + ¯v
1

(i
1

°x1,a
, i

2

°x2,a
)° ¯v

1

(i
1

, i
2

)

°
µ

1

c
(x1,b +x2,b

)° ˜p

∂

x1,b + ¯v
1

(i
1

+x1,b
, i

2

+x2,b
)° ¯v

1

(i
1

, i
2

)

i

Ø

Ø

Ø

x2=x1,?
, (11)

and
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£i 2

2

+Ø ¯v
2

(i
1

, i
2

) =∏ sup

x2,a
,x2,b

h

µ

˜p ° 1

c
(x1,a +x2,a

)

∂

x2,a + ¯v
2

(i
1

°x1,a
, , i

2

°x2,a
)° ¯v

2

(i
1

, i
2

)

°
µ

1

c
(x1,b +x2,b

)° ˜p

∂

x2,b + ¯v
2

(i
1

+x1,b
, i

2

+x2,b
)° ¯v

2

(i
1

, i
2

)

i

Ø

Ø

Ø

x1=x2,?

Since both market makers have same holding cost parameter, then they should have symmet-
ric value functions.Consider quadratic ansatz:

¯v
1

(i
1

, i
2

) =° Ai 2

1

+2Bi
1

i
2

+Ci 2

2

+Di
1

+Ei
2

+F,

¯v
2

(i
1

, i
2

) =Ci 2

1

+2Bi
1

i
2

° Ai 2

2

+Ei
1

+Di
2

+F.

We speculate that A,C > 0. The rationale is that each market maker should prefer a relatively
small position to, say, a huge position in either side. However, if the other market maker has
a huge position, then he likely sacriÆces the trading revenue in exchange for a correction of
his inventory level, and such scenario may beneÆt the market maker whose inventory is at the
right level.

Given that A > 0, the optimal selling strategy given i
1

, i
2

is given by
8

>

>

>

<

>

>

>

:

x
1,a = c

(1+2c(A+B))(

˜p °D)+2(2A+B +2c(A2 °B 2

))i
1

°2(A+2B)i
2

(3+2c(A°B))(1+2c(A+B))

,

x
2,a = c

(1+2c(A+B))(

˜p °D)+2(2A+B +2c(A2 °B 2

))i
2

°2(A+2B)i
1

(3+2c(A°B))(1+2c(A+B))

.

(12)

The associated ask price pressure is

(1+2c(A°B))

˜p °2(A°B)(i
1

+ i
2

)

3+2c(A°B)

.

The optimal buying strategy given i
1

, i
2

is given by
8

>

>

>

<

>

>

>

:

x
1,b = c

(1+2c(A+B))(

˜p +D)°2(2A+B +2c(A2 °B 2

))i
1

+2(A+2B)i
2

(3+2c(A°B))(1+2c(A+B))

,

x
2,b = c

(1+2c(A+B))(

˜p +D)°2(2A+B +2c(A2 °B 2

))i
2

+2(A+2B)i
1

(3+2c(A°B))(1+2c(A+B))

.

(13)

The associated bid price pressure is

°(1+2c(A°B))

˜p °2(A°B)(i
1

+ i
2

)

3+2c(A°B)

.

Below we analyse the inventory change after a buy or sell: suppose a buyer comes, then
Market Maker 1 has a new inventory of i

1

°x
1,a , and Market Maker 2 has a new inventory of

i
2

°x
2,a . The di�erence between these two new inventory levels, is given by

i
1

° i
2

1+2c(A+B)

.
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Similarly, suppose a seller comes, then Market Maker 1 has a new inventory of i
1

+ x
1,b , and

Market Maker 2 has a new inventory of i
2

+ x
2,b . The di�erence between these two new

inventory levels, is given by
i

1

° i
2

1+2c(A+B)

.

Therefore, if two market makers begin with the same inventory, then they have the same
inventory at all time. However, if i

1

6= i
2

, then their inventory is not the same forever. We
expect that the di�erence between their inventory levels converges to zero as time goes to
inÆnity. Hence, we speculate that A+B > 0. In fact, we look for A,B ,C such that

A > 0,°A < B ,C > 0. (14)

In the following we assume i
1

6= i
2

, so the subsequent result does not reduce to those in [31].

Let us assume for the moment that we already solved A,B ,C . Plugging (12) and (13) into (11),
and setting the coe�cients of i

1

, i
2

to zero, we obtain a 2-by-2 linear system of D and E .
Solving the system yields

D = 0,E = 0.

Similarly, plugging (12) and (13) into (11) with D = E = 0, and setting the constant term to zero,
we obtain that

F = 2c∏

Ø

(1+ c(A+C ))(

˜p)

2

(3+2c(A°B))

2

. (15)

Therefore, the problem is solved once we Æx A,B ,C . To that end, plugging (12) and (13) into
(11), and setting the coe�cients of i 2

1

, i
1

i
2

, i 2

2

to zero, we obtain a 3-by-3 non-linear system of
A,B ,C . We write the system as

f
1

(£, A,B ,C ) = f
2

(£, A,B ,C ) = f
3

(£, A,B ,C ) = 0. (16)

Explicit expressions for fi , i = 1,2,3 are tedious but can be determined with Mathematica.
Since we already know that D = E = 0, if (14) holds, then Market Maker 1’s best inventory
level, which maximises his value, is i

1

= Bi
2

A . Intuitively, if i
2

>> 0 then Market Maker 2 wants
to sell a lot, Market Maker 1 would beneÆt from this selling motive if his inventory happens
to be negative. Thus, we conjecture that

B ∑ 0. (17)

Thus, the objective of the subsequent analysis is, for £ > 0, solve A,B ,C that solves system
(16), subject to (14) and (17).

To begin, we notice that (£, A,B ,C ) = (0,0,0,0) is a solution to the system. The Jacobian of
the system is

0

@

°2 2Ø 0 0

0 0 0 °2Ø

0 0 °2Ø 0

1

A
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So for any £> 0 su�ciently small, there exists at least one solution to the system. By analytical
implicit function theorem, we may consider Taylor expansions of A,B ,C in terms of £ around
0:

A =a
1

£+a
2

£2 +a
3

£3 + . . .

B =b
1

£+b
2

£2 +b
3

£3 + . . .

C =c
1

£+ c
2

£2 + c
3

£3 + . . .

and pluging into (16), and setting the coe�cients of £,£2

,£3 in the £-expansions at 0 to 0,
we obtain that

A = 1

Ø
£° 32c∏

9Ø3

£2 + 32c2∏(21Ø+92∏)

81Ø5

£3

. . .

B =° 16c∏

9Ø3

£2 + 32c2∏(15Ø+67∏)

81Ø5

£3 + . . .

C =8c∏

9Ø3

£2 ° 8c2∏(39Ø+176∏)

81Ø5

£3 + . . .

The resulting expansions indicate that for su�ciently small £ > 0, there is a unique tuple
(A,B ,C ) that solves (16), subject to (14) and (17). This means that the negative relationship
between inventory and price pressure that holds in the case of identical market makers extends
to the case of heterogeneous market makers. We verify this empirically in Section 7.3.5.

4.1 Comparison with the case where market makers are homogeneous (i
1

= i
2

)

In this case, we know that both market makers have the same inventory at all time. In this
case, we have v(i ) = °A?i 2 +C?, where A? > 0 solves (7) with N = 2. Then A? has Taylor
expansion:

A? = 1

Ø
£° 8c∏

9Ø3

£2 + 8c2∏(3Ø+16∏)

81Ø5

£3 + . . .

So i 2’s coe�cient is

° 1

Ø
£+ 8c∏

9Ø3

£2 ° 8c2∏(3Ø+16∏)

81Ø5

£3 + . . . (18)

In contrast, if we were summing up °A,2B ,C which we obtained for i
1

6= i
2

,1 we obtain the
total coe�cient of i 2

1

, i
1

i
2

, i 2

2

is

° A+2B +C =° 1

Ø
£+ 8c∏

9Ø3

£2 ° 8c2∏(3Ø+8∏)

81Ø5

£3 + . . .

which is larger than the coe�cient in (18) by 64c2∏2

81Ø5

£3 + ... In other words, di�erent initial
inventory reduces the concavity of the value function. This again conÆrms that the problem
with di�erent initial inventory levels cannot be reduced to that with identical inventory levels.

1Although we know that i
1

6= i
2

forever, let’s assume for the moment that we could get i
1

= i
2

at some point
and compute the coe�cient of the quadratic term.
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Moreover, from (10) and (15) we get

C?°F = 32c3∏2

(

˜p)

2

243Ø4

£2 + ...

So value of market makers is higher when they begin the same inventory at 0, than slightly
di�erent inventory around 0.

5 Data description and preliminary statistics

5.1 Data description

The data under study are provided by the French Regulator: Autorité des Marchés Financiers
(AMF). They include cross-platform transactions of two assets: Société Général and Renault
during June 2017 (with 21 trading days) with participant-level information and millisecond
time granularity. We choose these assets because they are the two smallest tick assets among
those of CAC 40: the average spreads of Renault and Société Générale are equal to 2.67 ticks
and 2.63 ticks respectively on Euronext and their ticks are equal to 0.01 euros and 0.005
euros respectively. In fact, price pressures are clearer on a small than a large tick asset, bid
and ask variations being not restrained by the tick value.

The collection of these data is possible thanks to the Transaction Reporting Exchange Mech-
anism (TREM). Under TREM, all regulators must collect transactions data from their national
entities and send it to the competent regulator. This reporting mechanism allows AMF to
collect all transactions involving any European investment Ærm on any French Ænancial in-
strument2. TREM data do not provide information about whether the buyer or seller triggers
the transaction, which is a relevant information for us. However, merging these data with
limit order books data provided by Thomson Reuters Tick History, also with millisecond
granularity, allows us to deduce the trigger of the transactions. For each transaction, we com-
pare the price at which the trade takes place to the values of the best bid and ask just before
the transaction. Hence, we deduce which member submitted the aggressive order. We are
able to do this reconstitution on multiple platforms: Aquis Exchange, Bats, CHI-X, Equiduct,
Turquoise and Euronext. We consider all high-frequency market makers OTC trades to be
passive orders. These data enable us to conduct a cross-platform study, unique in the litera-
ture.

We illustrate market fragmentation in Tables V.1 and V.2 by displaying the repartition of
the traded volume and number of trades for the assets Société Générale and Renault across
di�erent platforms.

2A French instrument is an instrument on which AMF is the relevant competent authority with regard to the
transactions reporting according to MiFID directive. The determination of relevant competent authorities is based
on the most relevant market in terms of liquidity.
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Exchange OTC EURONEXT CHI-X TURQUOISE BATS XUBS Other
Market share in
traded volume

52% 31% 6% 4% 2% 1% 4%

Market share in
number of trades

6% 52% 18% 12% 4% 3% 5%

Table V.1 – Market fragmentation (Société Générale).

Exchange OTC EURONEXT CHI-X TURQUOISE BATS XUBS Other
Market share in
traded volume

59% 23% 7% 4% 3% 1% 3%

Market share in
number of trades

8% 45% 23% 14% 5% 2% 3%

Table V.2 – Market fragmentation (Renault).

Tables V.1 and V.2 show that Euronext has the highest market share among lit platforms in
the case of both assets. Furthermore, these results shed light on OTC trades that constitute
a small market share in number of trades but the highest in volume. This shows that the
average size of OTC trades is signiÆcantly higher than that of the other platforms.

5.2 Market makers activity and identiÆcation

Market makers are in general supposed to have a Øat position at the end of the day. This
feature is not observed when focusing on one platform only. Using cross-platforms trades
allows us to track down the Øat position of market makers at the end of the day. For instance,
we can see in Figure V.1 the di�erence between the intraday inventory evolution on the 1

st of
June of one speciÆc market maker on the asset Société Générale when considering Euronext
only and when taking into account all the platforms.
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Figure V.1 – The intra-day inventory (in shares) on the 1

st of June of a speciÆc market maker
on Euronext vs other platforms (Société Générale).

Figure V.1 shows that when looking at the activity of the considered market maker only on
Euronext, he seems to be long all over the day. In opposite, he is short on the rest of the plat-
forms cumulated. When merging his trades across all platforms, it is clear that his inventory
Øuctuates around zero during the trading day and that he ends his day with a null inventory.

In the following, we want to identify traders playing the role of market makers on the studied
assets. It is well-known that in nowadays markets, more and more fragmented and fast, only
high-frequency traders succeed in playing the role of market makers. This is why, for each
asset, we select all HFTs (that we identify based on an AMF classiÆcation) participating in
transactions as potential market makers. Then we compute their end-of-day position. A given
HFT is considered to be a market maker if he satisÆes all the following criteria:

• He participates at least to half of the trading days of the period.

• He ends at least half of the trading days of the period with a position less than 100
shares in absolute value.

200



5. Data description and preliminary statistics

• His average number of trades per trading day of the period is higher than 10.

In total, we study the end-of-day inventory of 20 HFTs enumerated from MM0 to MM20.
Based on the criteria above, the same Æve market makers stand out for Société Générale
and Renault: MM0, MM3, MM4 and MM5. We show the repartition of their trading days
according to their end-of-day inventories in Tables V.3 and V.4.

HFT Number
of days
ending
with a
null

inventory

Number of days
ending with an

inventory
between 1 and
10 shares (in

absolute value)

Number of days
ending with an

inventory
between 11 and
100 shares (in
absolute value)

Number of days
ending with an

inventory
between 101
and 1000
shares (in

absolute value)

Number of
days ending

with more than
1000 shares (in
absolute value)

Total
number
of trades

MM0 10 0 1 10 0 75086
MM3 9 10 1 1 0 170621
MM4 21 0 0 0 0 161868
MM5 1 5 15 0 0 14044

Table V.3 – Repartition of trading days according to the end-of-day position of the identiÆed
market makers (Société Générale).

HFT Number
of days
ending
with a
null

inventory

Number of days
ending with an

inventory
between 1 and
10 shares (in

absolute value)

Number of days
ending with an

inventory
between 11 and
100 shares (in
absolute value)

Number of days
ending with an

inventory
between 101
and 1000
shares (in

absolute value)

Number of
days ending

with more than
1000 shares (in
absolute value)

Total
number
of trades

MM0 10 0 4 7 0 61665
MM3 10 7 1 3 0 88684
MM4 21 0 0 0 0 110659
MM5 0 12 9 0 0 9309

Table V.4 – Repartition of trading days according to the end-of-day position of the identiÆed
market makers (Renault).

Tables V.3 and V.4 show that none of the market makers end his trading day with an inventory
higher than 1000 shares. Furthermore, for both assets, MM4 ends the totality of his trading
days with a null inventory.

We now show the market share (in number of trades and in traded volume) of each identiÆed
market maker, OTC included and OTC excluded for Société Générale and Renault in Tables
V.5 and V.6 respectively.
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Market
maker

Market share in
number of trades,
OTC included

Market share in
traded volume,
OTC included

Market share in
number of trades,
OTC excluded

Market share in
traded volume,
OTC excluded

MM0 4% 1% 9% 10%
MM3 10% 2% 21% 17%
MM4 9% 2% 20% 17%
MM5 1% 0% 1% 1%

Table V.5 – Market share of each high-frequency market maker in volume (Société Générale).

Market
maker

Market share in
number of trades,
OTC included

Market share in
traded volume,
OTC included

Market share in
number of trades,
OTC excluded

Market share in
traded volume,
OTC excluded

MM0 5% 1% 14% 15%
MM3 8% 2% 20% 18%
MM4 10% 2% 25% 20%
MM5 1% 0% 1% 1%

Table V.6 – Market share of each high-frequency market maker in volume (Renault).

Tables V.5 and V.6 show that high-frequency market makers do not trade signiÆcantly OTC.
When taking into account OTC trades, their market share is equal to 24% in the case of both
assets. When excluding these trades, their market share becomes almost double and is equal
to 51% for Société Générale and 60% for Renault.

We illustrate in Tables V.7 and V.8 the market fragmentation by describing the repartition of
the traded volume of each market maker across the di�erent platforms respectively for Société
Générale and Renault.

Market
maker

OTC EURONEXT CHI-X TURQUOISE BATS XUBS Other

MM0 0% 54% 22% 21% 1% 0% 2%
MM3 0% 66% 11% 4% 0% 14% 5%
MM4 0% 65% 16% 13% 3% 0% 3%
MM5 54% 0% 30% 3% 0% 4% 9%

Table V.7 – Repartition of the trading activity of each market maker across di�erent platforms
(Société Générale).
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Market
maker

OTC EURONEXT CHI-X TURQUOISE BATS XUBS Other

MM0 0% 55% 33% 6% 5% 0% 1%
MM3 0% 58% 32% 0% 0% 7% 3%
MM4 0% 52% 19% 18% 7% 0% 4%
MM5 57% 0% 30% 2% 0% 2% 10%

Table V.8 – Repartition of the trading activity of each market maker across di�erent platforms
(Renault).

Tables V.7 and V.8 show that the activity of high-frequency market makers is mainly con-
centrated on lit platforms with the exception of MM5 who has more than half of his activity
OTC.

6 Market makers aggressiveness

6.1 Preliminary statistics on market makers aggressiveness

We compute here for each market maker the percentage of his aggressive, passive and un-
deÆned orders (orders for which we are not able to Ænd the trigger of the transaction based
on the merge of our databases). We present the results for Société Générale and Renault in
Tables V.9 and V.10 respectively.

Market maker Aggressive Øow share Passive Øow share Unknown Øow share
MM0 23% 58% 18%
MM3 33% 42% 25%
MM4 73% 15% 12%
MM5 2% 81% 17%

Table V.9 – Market makers aggressiveness (Société Générale).

Market maker Aggressive Øow share Passive Øow share Unknown Øow share
MM0 35% 50% 15%
MM3 50% 34% 16%
MM4 77% 9% 14%
MM5 3% 83% 14%

Table V.10 – Market makers aggressiveness (Renault).

In our model, we consider that market makers are purely passive, which is not the case in
practice, as we can see in Tables V.9 and V.10. In the following, we study whether market
makers use aggressive orders for arbitrage opportunities only or also for inventory manage-
ment.
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6.2 Market makers aggressiveness according to the inventory

For each market maker, we compute his inventory just before he sends an aggressive order.
The inventory is normalised by the average trade size (ATS) of all identiÆed market makers,
and grouped into bins. For instance, all inventories with values larger than 1 ATS and lower
than 2 ATS are grouped in one inventory bin corresponding to 1 ATS. For each inventory bin,
we compute the average sign of the aggressive orders (+1 for a buy aggressive order and -1 for
a sell aggressive order) weighted by the traded volume. We only represent inventory bins for
which we have at least 200 aggressive orders. MM5 is not represented because of his reduced
number of aggressive orders. We show the results obtained for each market maker in the case
of Société Générale and Renault in Figures V.2 and V.3 respectively .

Figure V.2 – Aggressive orders used for inventory management (Société Générale). The red
plot corresponds to the average sign of aggressive orders weighted by the traded volume (left
y-scale) and the blue plot correspond to the analysed number of orders (right y-scale).
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Figure V.3 – Aggressive orders used for inventory management (Renault). The red plot
corresponds to the average sign of aggressive orders weighted by the traded volume (left
y-scale) and the blue plot correspond to the analysed number of orders (right y-scale).

Note that in Figures V.2 and V.3, the peak of the number of aggressive orders when the in-
ventory is null is due to the fact that this value gathers all inventories between -1 ATS and 1
ATS. For both assets, and for all studied market makers, the average sign of aggressive orders
weighted by the traded volume seems to be a decreasing function of the inventory: when the
inventory is negative (resp. positive), market makers send more aggressive buy (resp. sell)
orders than aggressive sell (resp. buy) orders. When the inventory is null, they buy aggres-
sively as much as they sell aggressively. These observations show that aggressive orders are
not used for arbitrage opportunities only, but for inventory management reason too. For this
reason, when analysing the relationship between individual inventory and price pressure in
Section 7, we take into account aggressive orders too.

It is important to remark that despite the use of aggressive orders by market makers for
inventory management, in contrast to the belief that market makers are more aggressive
when their inventory is large, we Ænd that their aggressive passive ratio (which is equal to
the volume traded aggressively over the volume traded aggressively and passively) remains
approximately constant with respect to their inventory, see Figures V.4 and V.5.
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Figure V.4 – In red, the evolution of the aggressive passive ratio of market makers according
to the inventory (Société Générale).

Figure V.5 – In red, the evolution of the aggressive passive ratio of market makers according
to the inventory (Renault).
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In Figures V.4 and V.5, we represent MM5 too because when passive orders are taken into
account, the number of analysed orders becomes su�cient. The aggressive passive ratio is
approximately constant for all studied market makers, for both assets, and it even tends to
decrease with respect to the inventory in some cases (see MM3 and MM4 in Figure V.4 and
MM3 in Figure V.5). This Ænding is in contrast to the classical idea suggesting that market
makers become more aggressive when their inventories are large.

7 Price pressure and market makers inventories

7.1 Measure of the price pressure

Since we have shown that aggressive orders are also used for inventory management, we now
study the price pressure of both aggressive and passive orders according to the inventory.
The ask (resp. bid) pressure is considered when the market maker sends an aggressive buy
(resp. sell) order or a sell (resp. buy) passive order. We deÆne in the following our measures
to quantify the ask pressure in the case of a buy aggressive order and a sell passive order.
Our measures for the bid pressure are obviously deduced.

When a market maker sends a buy aggressive order, the price can be impacted after the
aggressive order is executed. On a given platform, the ask pressure due to the nth buy
aggressive order, denoted by AP ag

n , is measured as follows:

AP ag
n = Aag

n+1

° Aag
n ,

where Aag
n is the best ask value on the considered platform just before the nth buy aggressive

order.

When a market maker manages his inventory passively, he inserts new limit orders at the
ask and bid sides and the price can be impacted as soon as the order is inserted. To avoid
spurious price pressure, for example when a market maker inserts a limit order and cancels
it immediately, we compute the price pressure of executed passive orders only. On a given
platform, the ask pressure due to the nth (executed) sell passive order, denoted by AP pass

n , is
measured as follows:

AP pass
n = Apass

n ° Apass
n°1

,

where Apass
n is the best ask value on the considered platform just before the nth executed

passive order is executed.

In the following, we are interested in the price pressure due to the set of aggressive and
passive orders sent by each high-frequency market maker.

7.2 Empirical analysis of the impact of market makers inventories on prices

We now study the impact of individual inventories on price pressure. Note that we merge
here pressures on the bid and ask sides and that both aggressive and passive price pressures
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are taken into account (similar patterns are obtained when considering aggressive and passive
pressures separately).

We display the endogenous impact of market makers inventories on the price for our two
assets in Figures V.6 and V.7. Note that the price pressure cannot be measured for orders
taking place OTC since the order book is not transparent and we do not have access to the
best bid and ask. This is why the activity of MM5 is only partially studied in the sequel: more
than 50% of his activity takes place OTC, as shown in Tables V.7 and V.8.

Figure V.6 – The price pressure of market makers according to the inventory (Société
Générale). The red curve represents the average price pressure in euros according to the
inventory, and the blue one is the number of analysed aggressive and passive orders.
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Figure V.7 – The price pressure of market makers according to the inventory (Renault). The
red curve represents the average price pressure in euros according to the inventory, and the
blue one is the number of analysed aggressive and passive orders.

Figures V.6 and V.7 clearly conÆrm that the negative relationship between inventory and price
pressure found in our theoretical model holds for MM0. This result is less clear for MM3
and MM5. However, not in contradiction with the theory. In contrast, it does not hold for
MM4. MM4 seems to have a strategy which is completely di�erent from those of the rest of
the agents: we Ænd a positive relationship between his inventory and his price pressure. This
shows that MM4 does not follow the behaviour of a typical market maker: his main strategy
is probably short-term arbitrage and not pure market making.

The previous graphs are a way to illustrate empirically the impact of the inventory on price
pressure. Now, in order to draw more solid conclusions, we use a regression analysis.

7.3 Regression analysis

For each market maker, we consider all the price pressures corresponding to their aggressive
and passive orders. We compute linear regressions to explain price pressures by individual
market maker inventories (as previously, inventory bins are normalised by the ATS), for the
assets Société Générale and Renault. The results for the signiÆcant explanatory variables for
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each market maker are displayed in Tables V.11 to V.14. We recall that the activity of MM5 is
only partially studied.

7.3.1 MM0

Asset Variable Coe�cient Std err t-stat p-value [0.025 0.975] Number of
observations

Société Générale MM0 inventory -0.0004 2.25e°5 -19.503 0.000 [-0.000 -0.000] 41771
Renault Constant 0.0007 0.000 2.919 0.004 [0.000 0.001] 33771
Renault MM0 inventory -0.001 4.95e°5 -21.038 0.000 [-0.001 -0.001] 33771

Table V.11 – Regression on MM0 price pressure according to his inventory for Société Générale
and Renault.

Table V.11 shows that the negative relationship between inventory and price pressure holds
for MM0 in the case of both assets.

7.3.2 MM3

Asset Variable Coe�cient Std err t-stat p-value [0.025 0.975] Number of
observations

Société Générale MM3 inventory -2.47e°5 6.1e°6 -4.054 0.000 [-3.67e°5 -1.28e°5] 51195
Renault MM3 inventory -3.609e°5 1.17e°5 -3.086 0.002 [-5.9e°5 -1.32e°5] 37369

Table V.12 – Regression on MM3 price pressure according to his inventory for Société
Générale and Renault.

Table V.12 shows that as for MM0, the negative relationship between inventory and price
pressure holds for MM3 in the case of both assets.

7.3.3 MM4

Asset Variable Coe�cient Std err t-stat p-value [0.025 0.975] Number of
observations

Société Générale MM4 inventory 4.98e°5 6.17e°6 8.071 0.000 [3.77e°5 6.19e°5] 71658
Renault Constant -0.0007 0.000 -3.329 0.001 [-0.001 -0.000] 49346
Renault MM4 inventory 0.0002 2.03e°5 7.793 0.000 [0.000 0.000] 49346

Table V.13 – Regression on MM4 price pressure according to his inventory for Société
Générale and Renault.

We see in Table V.13 that the negative relationship does not hold for MM4: his price pressure
and inventory are positively correlated. As explained above, the main strategy of MM4 is
probably short-term arbitrage and not pure market making: His aggressive passive ratio
higher than 80% (see Figures V.4 and V.5) supports this interpretation, knowing also that
HFTs aggressive orders are in general more informed than those of the rest of the market,
allowing them to beneÆt from arbitrage opportunities, see Chapter II.
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7.3.4 MM5

Asset Variable Coe�cient Std err t-stat p-value [0.025 0.975] Number of
observations

Renault MM5 inventory -0.0022 0.001 -4.096 0.000 [-0.003 0.001] 2305

Table V.14 – Regression on MM5 price pressure according to his inventory for Société
Générale and Renault.

Table V.14 shows that the negative relationship holds for MM5 in the case of Renault, but no
signiÆcant results are obtained in the case of Société Générale. Again, this can be explained
by the fact that we study partially the activity of MM5 since more than half of his activity
takes place OTC.

To sum up, the behaviours of MM0 and MM3 are perfectly in line with the theoretical model.
The negative relationship holds for MM5 in the case of Renault but not in the case of Société
Générale. This can be due to the fact that his activity is also only partially studied because of
his important OTC Øow. Finally, the theoretical model does not Æt for MM4: the relationship
between price pressure and inventory is positive, in opposite to the negative correlation we
expect. A possible explanation is that his strategy could be more arbitrage driven than market
making driven. Finally, our results suggest that MM0, MM3 and MM5 could accentuate Øash
crashes in a situation where they detain a large positive inventory and a sudden stress occurs
in the market.

Until now, we studied the negative relationship for each market maker individually. In the
following, we assess the theoretical negative relationship between price pressure and inventory
in the case of multiple market makers. Based on our previous results, MM0, MM3 and MM5
seem to Æt the behaviour of a typical market maker. In the following, we consider these three
market makers.

7.3.5 Multiple market makers inventories: MM0, MM3 and MM5

We compute now a regression to explain price pressure due to the three considered mar-
ket makers together by their cumulated inventory. According to Tables V.3 and V.4, these
market makers represent the case of heterogeneous market makers since they hold di�erent
inventories. The results of the regressions are displayed in Table V.153.

3The number of observations is not equal to the sum of those of the three studied market makers because
the trades issued simultaneously (to the nearest millisecond) by these three di�erent market participants are now
considered as one observation.
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Asset Variable Coe�cient Std err t-stat p-value [0.025 0.975] Number of
observations

Société Générale Constant -0.0002 8.18e°5 -2.181 0.029 [-0.000 -1.81e°5] 81960
Société Générale Sum of inventories -8.314e°5 5.55e°6 -14.989 0.000 [-9.4e°5 -7.23e°5] 81960
Renault Sum of inventories -0.0001 1.04e°5 -11.185 0.000 [-0.000 -9.59e°5] 61280

Table V.15 – Regression on price pressures due to the three market makers together according
to their cumulated inventory for Société Générale and Renault.

The negative link between price pressure and market makers inventory is once again illus-
trated in Table V.15, here in the case of heterogeneous market makers. This is in line with the
theoretical results in Section 4.
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Université Paris-Saclay 
Espace Technologique / Immeuble Discovery 

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France 

Titre: Trading haute fréquence: Analyse statistique, modélisation et régulation 

-  bid-ask spread, carnet d’ordres, microstructure de marché, modèle multi-agents, pas de cotation, régulation 

financière, sélection adverse, tenue de marché, trading haute fréquence, volatilité. 

 Cette thèse est constituée de deux parties liées l’une à l’autre. Dans la première, nous étudions empiriquement le 
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marché selon leur contribution propre à la volatilité. Enfin, nous introduisons un modèle où les fournisseurs de liquidité 
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Abstract : This thesis is made of two related parts. In the first one, we study the empirical behaviour of high-frequency traders 

on European financial markets. We use the obtained results to build in the second part new agent-based models for market 
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first part, we conduct two empirical studies on unique data sets provided by the French regulator. It covers the trades and 
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terms of liquidity provision and trading activity. We work both at the day-to-day scale and at the intraday level. We then deepen 

our analysis by focusing on liquidity consuming orders. We give some evidence concerning their impact on the price formation 

process and their information content according to the different order flow categories: high-frequency traders, agency 

participants and proprietary ones. In the second part, we propose three different agent-based models. Using a Glosten-
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priority value. To work at the individual agent level, we propose a second approach where market participants specific 
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several relevant microstructural indicators in terms of the individual flows. It is notably possible to rank market makers 
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relationship between market makers inventories and price pressure. We confirm this result studying empirically individual 
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