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Chapter 1

Introduction

In this Chapter, we briefly give a general introduction of this thesis including the motivation, research
objectives, research questions, research directions, research methodology, and thesis outline.

1.1 Motivation

With the rapid advances in hardware technologies, stereoscopic three dimensional (S3D) multimedia
has made a great progress over the past few years, and has been increasingly applied in the fields of
entertainment (e.g., three dimensional (3D) cinema [1], 3D-Television (TV) [2–4], 3D games [5, 6]),
education [7], and medical imagery [8]. S3D technology improves the quality of experience (QoE)
[9] by providing more realistic and immersive viewing experience compared to two dimensional (2D)
image/video, thanks to binocular depth cues. Various instances show that 3D is flourishing:

• 3D-TV has been very well received by viewers through Channel 9 in Australia and the British
Broadcasting Corporation (BBC) in the United Kingdom.

• In China, the number of 3D cinemas is exploding counting over 6000 3D screens nationwide and
this number is growing daily.

• 3D content on the Internet is increasing as well. YouTube has over 15000 3D videos that can be
watched.

Although 3D became popular thanks to the immersive feeling, the development of 3D technologies has
also brought some technical challenges and inconvenience [10–13]. One can notice a slow-down and
even a decrease of the numbers of 3D computer screens and especially 3D-TV sold in the last months
[13]. This is mainly due to 3D-related issues generated at each stage from capture, compression,
storage, transmission, to display.
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1. Introduction

At the capture stage, there are no-common rules [2] for creating a correct 3D content besides the
numerous initiatives stemming from stereographers and not always leading to unanimity. At the stages
of compression and storage, 3D content format conversion and coding may probably introduce some
artifacts, which usually result in depth mismatch, texture information loss, and insu�cient reality [3].
Therefore, the aforementioned artifacts and defects may cause visual symptoms to viewers such as
eye strain, headache, nausea, and visual fatigue [14, 15]. Furthermore, the huge volumes of S3D data
produced nowadays, make the storage capacity and compression e�ciency more challenging. At the
display stage, if the projected 3D content is not adapted to particular factors such as display size and
technology, this can lead to visual discomfort [16, 17] and a significant decrease of the QoE.

1.2 Research Aims

All above-mentioned challenges and issues motivated us to focus the PhD research on two aspects.
On the one hand, to e�ectively and e�ciently compress 3D image, it is important to account for
human visual system (HVS) characteristics and properties (e.g., visual sensitivity). In particular,
our research aims to investigate the spatial visibility threshold based on both monocular and binoc-
ular visual properties. This threshold is usually referred to as the just noticeable di�erence (JND),
which determines the maximum distortion undetectable by human eyes. Moreover, since an accurate
stereoscopic three dimensional just noticeable di�erence (3D-JND) model can be applied in perfor-
mance improvement of 3D image compression and quality assessment (QA), this research also aims to
propose a reliable 3D-JND model based on study and comparison between state-of-the-art 3D-JND
models. On the other hand, aiming to provide the promising viewing experience for 3D content, per-
ceptual QA for stereoscopic images is quite crucial to evaluate or optimize the performance of S3D
processing algorithms/systems. Therefore, the purpose of this research is to propose accurate and
e�cient stereoscopic image quality assessment (SIQA) methodologies based on the investigation of
binocular perception. Specifically, the most important step is to find monocular and binocular factors
a�ecting the perceptual quality of 3D images. In addition, we need to explore and model the binocular
vision properties linked to the behavior of human 3D quality judgment. Finally, the SIQA models will
be proposed combining the quality-related factors and considering the binocular vision properties.

1.3 Research Questions

Based on the aforementioned aims, this PhD research focuses on two main parts: spatial visibility
thresholds of the binocular perception and SIQA. Each part leads to several questions described below:

4



1.4. Research Direction

1.3.1 Questions related to 3D-JND

Q1 Which characteristics and properties of the HVS should be taken into account for 2D and 3D
digital imaging ? (see Paper II [18])

Q2 How are the performance of the state-of-the-art 3D-JND models developed based on HVS prop-
erties and characteristics ? What are the advantages, drawbacks, and applications of these
models ? How to evaluate the performance of the 3D-JND models in order to select the most
appropriate model for particular applications ? (see Paper I [19] and Paper II [18])

Q3 How to develop a new reliable 3D-JND model accounting for HVS visual masking (VM) e�ects
and depth information ? How to design the psychophysical experiment modeling VM e�ects and
binocular disparity ? How to construct a 3D-JND model based on psychophysical data ? (see
Paper III [20])

1.3.2 Questions related to SIQA

Q4 How does the HVS judge image quality based on binocular perception ? (see Paper VII [21])

Q5 What are the most influential factors for 3D image quality and to which extent are they a�ected
? What are the binocular perception phenomena/e�ects ? And how do these e�ects impact the
perceived quality of 3D images ? (see Paper IV [22], Paper V [23], and Paper VI [24])

Q6 What precise and reliable methodology for SIQA that accounts for both monocular and binocular
influential factors ? And how do these factors a�ect jointly the overall 3D quality ? (see Paper
VII [21])

The above-mentioned research questions will be answered and discussed in Chapter 4, and Paper
I to Paper VII mentioned above are summarized in Chapter 3.

1.4 Research Direction

This Section presents the research direction based on the questions given in Section 1.3.
It is known that human subjects may capture left and right-eye images with di�erent qualities due

to the visual asymmetry state when observing the real world. Fortunately, the HVS has the ability
to correct the acceptable quality distortions, and thus create a single cyclopean view to perceive the
environment. Therefore, in order to mimic the human visual perception for S3D imaging systems, we
need to figure out (1) when the HVS corrects the quality di�erence between left and right views, (2)
what is the di�erence threshold below which the overall 3D image quality and depth perception are
guaranteed, and (3) how to reproduce the brain visual behavior regarding binocular depth cues and
image quality using perceptual models ?
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1. Introduction

To deal with above-mentioned issues, we need to understand the HVS sensitivity to inter-views
di�erence. Specifically, we propose to exploit the notion of JND to reflect the minimum changes in
image’s pixel that the HVS can detect. Therefore, state-of-the-art the two dimensional just noticeable
di�erence (2D-JND) and 3D-JND models should be reviewed and studied to propose a new and
reliable 3D-JND model based on visual masking e�ects considered in these models. This model may
probably be designed based on psychophysical experiment to measure the visibility thresholds of
the asymmetric noise in the stereopair. These psychophysical experiments can also help to deeply
understand the behaviors/e�ects of binocular perception including binocular fusion, binocular rivalry,
and binocular suppression. Some bio-inspired models mimicking binocular visual behavior should be
explored. These perceptual models can be used in SIQA to accurately predict the overall 3D quality
because it depends not only on single-view image quality or depth quality but also on the experience of
binocular visual perception. As described by [25], the visual sensitivity reveals a perceptual impact of
artifacts according to the spatial characteristics. Moreover, the visual sensitivity explains the tolerance
of the HVS to changes/di�erence of pixel values in image regions, and is related to visual attention.
Therefore, the visual sensitivity is proportional to visual salience and inversely proportional to JND.
Integrating the models representing the visual sensitivity in the process of perceptual IQA may allow
being closer to the human quality judgment as it mimics the HVS behavior.

1.5 Research Methodology

This section presents the research methodology I undertake for this thesis. In general, the research
methodology used in this thesis is based on both theoretical and empirical studies. According to two
research topics addressed in the thesis, the included papers are divided into Paper I – Paper III
(related to 3D-JND) and Paper IV – Paper VII (related to quality assessment).

Paper I – Paper II firstly conduct a theoretical study (i.e., literature review) to describe and an-
alyze the existing models, and compare them in terms of their applicability, pros, and cons. Then both
papers are based on an empirical study to compare the models thanks to qualitative and quantitative
experimental analysis. In addition, Paper II conducts the experiments using the data that we either
create or obtain data from publicly available datasets. In general, the work in Paper I and Paper II
employs a deductive research methodology as they provide a theoretical overview and analysis, then
an experimental evaluation and comparison. In contrast, Paper III designs a new model using the
experimental data collected from psychophysical experiments. Thus, this paper refers to the inductive
study and mainly focuses on an empirical study. In addition, Paper III analyzes the data using some
statistical methods, and then conducts a subjective evaluation to validate the proposed model.

The research in Paper III – Paper VII are deductive because they propose the quality metrics
based on the binocular perception theory and hypothesis. Furthermore, quantitative experiments are
used to evaluate the metrics performance. Therefore, Paper III – Paper VII are more empirically
focused. In addition, in order to compare with other existing quality metrics, these papers conduct
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1.6. Dissertation Outline

Figure 1.1 – Overview of thesis outline and connection with the publications. Blue blocks denote the sections in
Part I, whereas red blocks represent publications described in Part II.

primary and secondary analysis of data. Primary data refer to the results derived from our exper-
iments, whereas secondary data are the data collected by other researchers. The secondary data is
employed because the source code of the algorithms are not publicly available and the implementation
is costly.

1.6 Dissertation Outline

This dissertation contains two parts: Part I and Part II. Part I is organized as follows:

• A general introduction including PhD research motivation, objectives, directions as well as a
brief organization of this dissertation.

• A research background introducing some necessary state-of-the-art knowledge with respect to
human interaction with S3D technology, statistical analysis tools for psychophysical experiments
and image quality assessment (IQA). This Chapter aims to provide the reader with the necessary
background to understand the content of Part II.

• A summary of each included paper issue from the PhD study. In particular, we briefly present
for each paper the rationale, the framework, the results, and the major contributions.
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• A discussion including the thesis contributions to 3D-JND models and SIQA approaches, the
personal contribution for each paper, and some remaining issues and challenges.

• A general conclusion about the conducted work and some perspectives.

Part II consists of the published and submitted papers during the PhD studies demonstrating the
contributions of this work. Paper I – Paper III refer to study on 3D-JND, whereas Paper IV –
Paper VII are related to SIQA. Figure 1.1 depicts the overview of this thesis organization including
the background sections of Part I, papers described in Part II, and the connection between both parts.
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Chapter 2

Background

This Chapter introduces the background of this doctoral thesis that is closely related to our work,
including (1) human visual system, (2) stereoscopic 3D imaging, (2) visual psychophysics and just
noticeable di�erence,(4) statistical tools for psychophysical experiments and (5) perceptual quality
assessment of 2D and 3D images. Note that this Chapter aims to briefly provide some basic knowledge
of relevant topics to ensure a better understanding to the readers.

2.1 Human visual system

HVS is a biological and psychological mechanism used to perform image processing tasks, and mainly
includes brain, the nervous pathways and the eyes [27]. HVS models are often used to simplify the
complex visual behaviors by simulating its characteristics and properties. In this section, we briefly
describe the HVS biological organization and a general 3D model.

The human eye, represented on Figure 2.1, is used to capture the image corresponding to real-world
scenes. It consists of the cornea, aqueous humor, iris, lens, vitreous humor and retina that the light
passes through respectively [28]. Once the images are captured by the eyes, the images are projected
onto the retina located at their back of the eyes. The retina contains photoreceptors, bipolar cells,
horizontal cells, amacrine cells and ganglion cells [29]. After preprocessing the image in the retina, the
visual information is carried by the optic nerve from the ganglion cells to lateral geniculate nucleus, and
finally to the visual cortex. Several previous studies show that lateral geniculate nucleus is significantly
important for visual perception and processing [30–33]. For instance, binocular rivalry behavior of
the HVS is correlated to lateral geniculate nucleus [32, 33]. This inspires us to use image laplacian of
gaussian (LoG) response to simulate the binocular rivalry (see Paper VI and Paper VII). Finally,
the visual cortex receives the visual information from both eyes and combines it to see the real-world
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2. Background

Figure 2.1 – Anatomy of the human eye [26].

in 3D. A typical psychophysical HVS model is shown in Figure 2.2. The main idea is to develop a HVS
model considering its characteristics and properties including color information, contrast sensitivity,
and spatial masking e�ects. The reader may refer to [34] for more details on this HVS model.

Luminance 
masking

Local contrast 
and adaptation

Input 
image

Multi-channel 
decomposition

Color 
processing

Masking and 
facilitation 

effects

Output 
image

Contrast sensitivity 
function

Figure 2.2 – Flowchart of a typical psychophysical HVS model presented in [34].

2.1.1 Depth perception

HVS can perceive the environment in three dimensions, and can be able to evaluate relative distances
(i.e., depth) of objects thanks to depth perception [35–37]. Depth perception relies on various depth
cues [38]. Since the relative distance can be perceived by the human with one eye or both eyes, depth
cues are classified into two categories: monocular and binocular depth cues.

Monocular depth cues are represented in two dimensions and are seen with just one eye. According
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2.1. Human visual system

to [39, 40], monocular depth cues mainly include:

• Linear perspective: creates an illusion of depth on a flat surface [39]. Two parallel lines farther
to the viewer result in more converging to the vanishing point. An example is shown in Figure
2.3.

Figure 2.3 – Example of linear perspective related monocular depth cue. (@ Yu FAN)

• Aerial perspective: describes the depths of the objects based on the degradation of light lu-
minance and color on the scene caused by atmospheric phenomena (e.g., fog, dust) [41]. For
instance, objects that are far away from the viewer have hazy edges, lower luminance contrast
and color saturation as shown in Figure 2.4.

Figure 2.4 – Example of aerial perspective related monocular depth cue. (@ Yu FAN)
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2. Background

• Interposition: estimates the relative distance of the objects by showing the objects occluding
each other [42]. Specifically, a farther object is usually partially occluded by a nearer object.
Figure 2.5 shows an example of interposition.

Figure 2.5 – Example of interposition-related monocular depth cue. (@ Yu FAN)

• Relative size: evaluates the relative depth of the physically identical objects by comparing their
sizes [43]. In particular, an object with a smaller size in the scene is farther away for the viewer
than the same object with a larger size. An example of wine glasses is shown in Figure 2.6.

Figure 2.6 – Example of relative size related monocular depth cue. (@ Yu FAN)
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2.1. Human visual system

• Texture gradient: provides the depth of the objects depending on their textural strength [44].
Compared to farther away objects, nearer objects have finer and sharper details of texture.
Figure 2.7 shows an example of lavenders at di�erent distances.

Figure 2.7 – Example of texture gradient related monocular depth cue. (@ Yu FAN)

• Light and shadow: in the scene, they can jointly reflect the relative depth between objects [45].
For instance, the objects in the shadow are farther from the light source than those out of shadow
(see Figure 2.8).

Figure 2.8 – Example of light and shadow related monocular depth cue. (@ Yu FAN)
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• Height in the image plane: refers to vertical positions of the objects in the scene plane. In the
scene, farther objects appear higher up than nearer ones. An example of this monocular depth
cue is shown in Figure 2.9.

Figure 2.9 – Example of height in the scene related monocular depth cue. (@ Yu FAN)

• Defocus blur: It is related to depth of focus of the HVS [46]. Objects farther away from the
viewer are generally hazier and smoother, which is exhibited in Figure 2.10.

Figure 2.10 – Example of defocus blur related monocular depth cue. (@ Yu FAN)

• Motion parallax: It is an e�ect where the objects closer to the viewer appear to move faster
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2.1. Human visual system

than farther objects [47]. Thus, this depth cue exists in a dynamic scene. Figure 2.11 shows an
example about motion parallax.

Figure 2.11 – Example of motion parallax monocular depth cue. (@ Yu FAN)

• Accommodation: It is an oculomotor cue concerning the change of lens shape of the eyes. This
change is controlled by the ciliary muscles so as to adjust the focal length [48]. Accordingly,
contraction/relaxing strength of ciliary muscles can reflect the distance of the objects to the
fixation point.

Binocular depth cues provide depth information when observing a scene with both eyes. There are
two categories of binocular cues: binocular disparity and vergence [49, 50]. Human eyes are separated
by a distance of approximately 63 mm [51], which is related to parallax. Thus, for an object in
the scene, both eyes can receive two similar but slightly di�erent retinal images in terms of object’s
position. This di�erence is defined as binocular disparity or binocular parallax [52]. As shown in Figure
2.12, the binocular disparity can be represented by either the angle di�erence — ≠– or horizontal shift.
Another example of disparity for an object between left and right views of a stereopair is depicted in
Figure 2.13. To estimate the object’s distance from viewers, human eyes extract the 3D information
from texture retinal images via the binocular disparity [37, 53]. This e�ect is named stereopsis and is
generally used in the creation of 3D images/videos with specific display and/or glasses.

Another binocular depth cue is the vergence, reflecting the simultaneous movement of both eyes
in opposite directions to obtain/maintain a single binocular vision [55, 56]. Specifically, eyes rotate
inward when viewing a nearer object, and outward when viewing a farther object. In fact, vergence
and accommodation interact intimately and cannot be separated [57–59].
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Figure 2.12 – Geometry of the binocular disparity.
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Figure 2.13 – Illustration of the binocular disparity in a stereopair from the Middlebury database [54].

In addition, the objects have the same disparity if they are positioned on the corresponding locus
of points in space, which is defined as the horopter [60]. In particular, horopter represents the points
having the same distance from the viewer as objects of focus.

Our brain can fuse the left and right retinal images of an object into a single 3D mental image called
cyclopean image [61], if this object is included in a limited area behind or in front of the horopter.
This area is called Panum’s fusional area [62, 63]. More details about Panum’s area can be found in
[64]. Figure 2.14 illustrates the horopter and Panum’s area. In contrast, the image of an object outside
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of this area is usually blurry, and thus results in binocular rivalry phenomenon due to the conflict
between accommodation and vergence [65, 66]. Binocular fusion behavior of the HVS occurs if the left
and right views are similar in terms of content or quality [67]. In contrast, if two views are di�erent
(in terms of content or quality), and this di�erence is relatively small, binocular suppression occurs,
one of the views dominates completely the field [68]. If this di�erence is relatively large, binocular
rivalry occurs. Two images are seen alternately, one image dominating for a moment [65, 69].

!

Left eye

Right eye
Horopter

Outer limit

Inner limit

Panum’s fusional area

Figure 2.14 – Illustration of the horopter and the Panum’s fusional area.

2.2 Stereoscopic 3D imaging

The HVS can perceive the environment in 3D thanks to binocular depth cues from binocular vision.
The binocular depth perception is created based on slightly di�erent positions of two retinal images
seen by left and right eyes. This di�erence of positions is called binocular disparity. In other words,
the presentation of slightly di�erent images to the left and right eyes leads to the perception of depth.
This inspires the development of 3D technology. In this section, we introduce di�erent 3D content
representation formats and 3D displays [70].

2.2.1 S3D content representation formats

According to [71–74], there exist several S3D representation formats including: stereo interleaving,
2D-plus-depth, layered depth video, multi-view video plus depth, and depth-enhanced formats.
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Stereo interleaving format is a conventional 3D image/video format that is a multiplex of left-view
and right-view images into a single image/frame. The multiplexing downsamples and places left and
right images horizontally (i.e., side-by-side) or vertically (i,e., top-and-bottom). Side-by-side format
was used in our psychophysical experiments (See Paper II and Paper III ). 3D video with this
format can match most existing 3D codecs and displays. However, stereo interleaving format can only
deliver half of the image resolution and thus reduces the QoE.

2D-plus-depth format contains a single view/frame (i.e., color image) and a depth map (DpM) for
3D image/video representation [74]. This format allows people to adjust the perceived depth values
easily depending on the viewing distance and display size. However, the 2D-plus-depth format may
lead to occlusion issues due to mismatches between views, and provides a limited rendering of the
depth range.

To overcome the constraints of 2D-plus-depth format, the layered depth format was proposed
[71, 75, 76]. In addition to the texture image and DpM, this format provides a background layer
with the corresponding DpM in order to improve the occlusion information and improve the quality
of depth-image-based rendering. The background layer contains image content that is covered by
foreground objects in the main layer. The layered depth format allows to generate the new view
points for stereoscopic and auto-stereoscopic multi-view displays.

Multi-view video plus depth format uses several cameras to capture the scene from di�erent view
points [77, 78]. Therefore, This format includes multiple color images and depth maps. The depth
maps can be estimated from di�erent views. Multi-view video plus depth format allows to control
the depth range based on the distance between the selected views from the multi-view arrangement.
However, this format requires large storage capacity and transmission bandwidth [79].

Depth-enhanced format includes two views with high quality, DpM and occlusion layers [80]. This
format provides backward compatibility and extended functionalities such as baseline adaptation and
depth-based view synthesis [71].

2.2.2 S3D displays

In order to visualize 3D images/videos, a S3D-enabled display is needed. Human subjects can perceive
the spatial relationship between objects thanks to various cues including monocular and binocular
cues [81]. Thus, a design of 3D displays should consider the contribution of monocular depth cues
in addition to binocular depth cues in order to provide a basic visual performance as a standard 2D
display and 3D sensations provided by the stereoscopic cues. Several overviews of existing 3D display
technologies are provided in [77, 82–85].

According to the used technology (e.g., glasses or head-mounted devices), 3D displays can be
classified into three categories: stereoscopic, autostereoscopic, and head-mounted displays [82, 83, 86].

Stereoscopic displays are the visualization terminals that demand the observer to wear an optical
device to direct the left and right images to the appropriate eye. Stereoscopic displays can be further
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divided into:

• time-parallel displays that show left and right views of a stereopair simultaneously on the screen.
In such displays, the visualization methods include: (1) color multiplexing that presents left and
right images in di�erent colors [87] ; (2) polarization multiplexing [88]. The latter uses polarized
filter glasses to split left and right views ensuring that two eyes perceive di�erent images. Linear
or circular polarization can be used. The latter allows more head tilt for viewers.

In our psychophysical experiments (described in Paper II and Paper III), the Hyundai TriDef
S465D display is used to convert side-by-side 3D format to 3D image by circular polarized glasses.

• time-multiplexed displays that present left and right views alternately with a high frequency.
Such technology generally uses active shutter glasses synchronized with the display system via
an infrared link [89]. The idea is that the viewer can perceive neither the switching between left
and right views nor related flicker if both views switch quickly enough (i.e., with a frequency
greater than 58 Hz) [90]. Thus, based on the synchronization signal from the display, the active
shutter glasses open alternately the image for one eye while closing the other.

Autostereoscopic displays do not require any glasses to present two-view images, but send them
directly to the corresponding eyes using aligned optical elements on the surface of the displays [83].
This category of displays simplifies 3D perception for viewers and can show multiple views to them,
which makes the 3D entertainment more applicable. In addition, autostereoscopic displays can present
each view from a particular viewing angle along the horizontal direction and provide a comfortable
viewing zone for each stereopair. Such displays can be classified into:

• binocular or multi-view based displays [91, 92]. Binocular views based displays only present a
stereopair, whereas multi-view displays provide multiple views of the scene to several viewers
based on light sources of di�erent paths. The light paths can be controlled by special optical
elements including for example parallax barriers, lenticular lens arrays, micropolarizers, etc.

• head-tracked displays allowing the viewers to change the viewing position by using active optics
to track their head/pupil positions [82].

• volumetric displays generating the images by projection within a volume space instead of a
surface in space. The image volume consists usually of voxels [93]. Each voxel on a 3D image is
located physically at the supposed spatial position, and reflects omnidirectionally the light from
that position to present a real image to viewers.

• holographic displays showing real and virtual images based on wave-front reconstruction. Such
displays do not require any special glasses or external equipment to view the image. Such
displays use holographic optical elements (e.g., lens, films, and beam splitter) to construct their
projection screen [94, 95].
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In addition to stereoscopic and autostereoscopic displays, head-mounted 3D displays are another
and new way to present 3D images [86]. In particular, such displays require viewers to wear a particular
head-tracking device containing sensors that record viewers’ spatial movement information. Head-
mounted displays can provide the viewers with a deep feeling of immersion. Such displays have been
widely advanced and applied in entertainment, education, and medical domains with virtual and
augmented reality applications [96–98].

2.2.3 Depth and binocular disparity

With the aim to ease the understanding of the used depth/disparity values described in Paper II,
this section describes the relationship between the depth values of 3D scene z (in meters), real-world
depth map (DpM) values (in pixels) and binocular disparity values (in pixels or meters).

DpM denotes the distance of the scene’s objects from the viewpoint of the camera or the viewer. In
other words, DpM represents a measure of the distance between objects in the image. DsM (Disparity
map) refers to an image containing the distance values between two corresponding pixels in the left
and right views of the stereo pair. A DpM map can be obtained using a 2D image, while a DsM map
is only obtained using a stereopair. Note that the disparity value can be converted to depth value
based on some specific formula and vice versa.

Typically, DpM and DsM is a 8-bit gray scale image. This map represents closer and farther
objects with regards to the fixation plan by larger and smaller values, respectively. The depth image
values vary between 0 and 255. Accordingly, the closest and farthest objects to the fixation point are
shown as white and black pixels in depth images. Using the actual depth value z, the depth in pixel
of DpM zp is determined as follows:

zp =

WWWU255 ·
! 1

z ≠ 1
zmax

"
1

1
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≠ 1
zmax

2

XXXV , (2.1)

where zmin and zmax respectively denote the minimal (closest objects) and maximal (farthest objects)
distances in the scene to the camera/observer. Both distances are usually given by 3D content maker.
In addition, Â·Ê rounds the number to the lower integer. Based on Equation 2.1, the actual depth
value z can be obtained from the DpM value zp using the following equation:
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Besides, disparity values d are frequently used to synthesize the cyclopean view for stereoscopic image
quality assessment. The disparity values of a scene d are obtained by converting the depth value as
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follows:

d = f · b
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(2.3)

where b represents the distance between the stereoscopic cameras (i.e., baseline) or interpupillary
distance (approximately 63mm) for viewers. Disparity values are in pixels/meter depending on the
camera focal length f in pixels/meter.

2.3 Psychophysics and just noticeable di�erence

This section presents some basic concepts of visual psychophysics and notion of the just noticeable
di�erence with respect to 2D and 3D images. In addition, we briefly introduce the psychophysical
experiments used in our JND measurements and modeling.

2.3.1 Visual psychophysics

Visual psychophysics quantitatively study the relationship between the physical stimuli and human
sensations and perceptions [99]. Specifically, visual psychophysics refers to experimental methodolo-
gies that can be applied to study how to model the human visual process. The empirical laws of
psychophysics are based on sensory threshold (i.e., visibility threshold) measurement by conducting
psychophysical experiments [100]. Such a threshold corresponds to the point of intensity at which the
observers can just detect the presence of a stimulus or the presence of a change between two stimuli.

According to [100], the visibility thresholds are classified into two types as described below.

• Absolute threshold: is the minimum intensity of a stimulus that subjects can detect at least 50%
of the time.

• Di�erence threshold: is the minimum change/di�erence in intensity between two stimuli that
subjects can detect usually 50% of the time. Thus this threshold is also called just noticeable
di�erence (JND) threshold. To measure the JND threshold, a pair of stimuli is usually presented
to subjects. One stimulus has a standard intensity and is considered thus as a reference. For the
other stimulus, subjects vary its intensity until they can just barely inform that this stimulus is
either more intense or less intense than the reference one.

Note that the visibility thresholds measurement presented in Paper II and Paper III) refers
to JND thresholds. In fact, [100] states that absolute and di�erence thresholds are occasionally
considered similar in principle because there is always background noise altering observers ability to
notice stimuli.
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2.3.2 Just noticeable di�erence threshold

Tell when observers perceive changes in pixel values of targeted image block  
(represented by a green rectangular): visibility thresholds of the pixels.

Pristine image

Observer’s response: No No Yes

Images locally distorted by white noise with different levels

Just noticeable difference (JND):
minimum change of a visual stimulus

Figure 2.15 – Example of JND thresholds of the pixels in an image block.

For a 2D image, the JND of a pixel represents the visibility threshold at which human subjects are
able to detect changes in pixel values. In other words, the 2D-JND reflects the maximum tolerable
changes in pixel intensity to HVS. Figure 2.15 illustrates the procedure of obtaining the JND thresholds
of the pixels in a 2D image block. The subjects compare the intensity di�erence between the pristine
image and each distorted image in the targeted block (i.e., noised region). The noise level is gradually
increased until the subjects report that they just detect the di�erence. This di�erence corresponds to
JND thresholds of the pixels in the block.

To date, numerous 2D-JND models have been proposed by modeling contrast sensitivity, visual
masking e�ects (e.g., luminance adaptation and contrast masking), and spatial frequency of the image
local regions [101]. Any changes in the targeted image are undetectable by the HVS if they are
lower than the JND threshold. Therefore, the 2D-JND models have been successfully applied to
improve the algorithms of image coding, image quality assessment and enhancement. A 3D-JND
model usually estimates the maximum changes in the image region that can be introduced in one view
of the stereopair without causing binocularly visible di�erences, given the changes in the corresponding
region of the other view. Therefore, as shown in Figure 2.16, in addition to monocular visual masking,
the design of a 3D-JND model definitely considers the binocular vision properties (e.g., binocular
masking, depth masking, and depth information). The readers can refer to Paper III for more
details on 3D-JND models.
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Figure 2.16 – A general framework of a computational 3D-JND model.

2.3.3 Psychophysical experiments

To measure JND thresholds, a general methodology is to conduct the psychophysical or psycho-visual
experiments to determine whether the subjects can detect a stimulus, or notice the di�erence between
two stimuli. As described in [100], psychophysical experimental methods used in JND measurements
are:

• Method of limits: For ascending method of limits, given a stimulus (as the reference) with
the property of a constant level, the property of the targeted stimulus starts out at a low level
so that the di�erence between this stimulus and reference one could be undetectable. Then,
this level is gradually increased until the subjects report that they are aware of the di�erence.
The JND threshold is defined as the di�erence level of the stimulus property for which the
targeted stimulus is just detected. In the experiments, the ascending and descending methods
are used alternately, and the final JND threshold is obtained by averaging the thresholds of both
methods. These methods are e�cient because the subjects can obtain a threshold in a small
number of trials. In addition, one do not need to know where the threshold is at the beginning
of the experiments. Nevertheless, two disadvantages may be observed. First, the subjects may
get accustomed to informing that they detect a stimulus and may continue reporting the same
way even beyond the real threshold (i.e., errors of habituation). Second, subjects may expect
that the stimulus will become detectable or undetectable, and thus make a premature judgment
(i.e., the error of expectation).

To overcome these potential shortcomings, a staircase (i.e.,up-and-down) method is introduced
[102]. It usually starts with a stimulus having a high intensity, which is obviously detected by
subjects. They give the response (’yes’ or ’no’). Then, the intensity is reduced until the subjects
response changes. After that, a reversal procedure starts and the intensity is increased (with the
response ’no’) until the response changes to ’yes’. Next, another reversal procedure is repeated
until a given reversal number is reached. The JND threshold is then estimated by averaging the
values of the transition points (i.e., reversal points).

• Method of constant stimuli: In this method, a constant comparison stimulus with each of the
varied levels (ranging near the threshold) is presented repeatedly in a random order to subjects.
The proportion of times causing the di�erence threshold is recorded. The stimulus level yielding
a discrimination response in 50% of the time is considered as the JND threshold. The subjects
can not predict the level of the next stimulus in the experiment. Therefore, the advantages of
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this method are to reduce errors of habituation and expectation probably caused in the method
of limits. However, this method is costly because it takes a lot of trials to pre-define the levels
of the stimuli before conducting the experiment. In addition, the experiment using this method
is time-consuming because each stimulus needs to be presented to subjects several times. It
may probably reduce the accuracy of threshold measurement due to visual fatigue during the
experiment.

• Method of adjustment: In this method, a reference stimulus with a standard level is presented
to subjects. They are asked to adjust the level of the targeted stimulus, and instructed to
alter it until it is the same as the level of the reference stimulus. The error level between the
targeted stimulus and the reference one is recorded after each adjustment. The procedure is
repeated several times. The mean of the error values for all adjustments is considered as the
JND threshold. The method of adjustment is easy to implement but produces probably some
unreliable results.

In Paper II, we used the ascending method of limits to measure the JND thresholds of the test
image by comparing the reference image. Note that the stimulus corresponds to the 3D images altered
by di�erent types of distortion. The staircase method was not used because the experiment for each
subject may last a long time in the case of numerous stimuli. More details about experiments could
be found in Paper II.

For modeling JND, the staircase method is more suitable and e�cient than the method of limits.
Therefore, the staircase method (reversal 4) was used for detecting the just noticeable noises in the
psychophysical experiments of Paper III. More specifically, given the noise amplitude in the left view
of a stereopair (i.e., reference stimulus) at di�erent disparities and background luminance or contrast
intensities, a subject adjusts the noise amplitude in the right view with ascending and then descending
orders to make the noise just detectable or undetectable. The reversal procedure is repeated twice
considering the trade-o� between the measurement accuracy and experiments duration. The JND
thresholds of the right view are estimated by averaging the di�erence in noise amplitude between the
reference and the test stimuli at the four reversal points. More details could be found in Paper III.

To compare the performance of state-of-the-art 3D-JND models, on the one hand, we evaluate the
accuracy of the visibility thresholds estimation with the models (see Figure 2.17). In Paper II, we
determine an interval of JND thresholds obtained from psychophysical experiments. Meanwhile, we
estimate the JND thresholds using a 3D-JND model. Next, we verify whether the estimated JND
threshold of each pixel is included in the corresponding interval. Finally, the percentage of accuracy
of a 3D-JND model is obtained by dividing the number of pixels in the JND map included in the
corresponding intervals by all pixels. On the other hand, we evaluate the performance of the image
processing algorithms embedding 3D-JND. As shown in Figure 2.17, the 3D-JND can be used in depth
or sharpness enhancement of 3D images [103, 104], to reduce the bit rate for 3D video coding [105],
or to improve the prediction accuracy of the SIQA model [106]. The main idea is to evaluate the
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Figure 2.17 – Methodology of performance comparison for 3D-JND models.

perceptual quality and/or coding e�ciency of processing algorithms embedding 3D-JND.

In Paper III, the proposed 3D-JND model is validated based on a subjective test and compared
with other models in terms of perceptual quality at the same noise level. According to ITU-R BT.2021-
1 [107], a variant of paired comparison (i.e.,stimulus-comparison) method is used in the subjective test.
In particular, we use the adjectival categorical judgment method [108]. In this method, subjects assign
an image to one of the categories that are typically defined in semantic terms. The categories may
reflect the existence of perceptible di�erences (e.g., same or di�erent), the existence and direction
of perceptible di�erences (e.g., more, same, less). In the subjective test of Paper III, the subjects
are shown two 3D images (injected with di�erent noise levels) at a time, randomly arranged side by
side. Then, they are asked to compare the left and the right views in terms of perceptual quality and
provide a score depending on the comparison scale: 0 (the same), 1 (slightly better), 2 (better), 3
(much better), -1 (slightly worse), -2 (worse), -3 (much worse). The scores provided by all subjects
for each stimulus are averaged to compute the mean opinion scores. These scores are then analyzed
and processed with some methods described in the following section.

2.4 Statistical tools for psychophysical experiments

The visibility thresholds of the HVS can be determined by JND models, which are developed consid-
ering VM e�ects and visual sensitivity [109–119]. A comprehensive review of VM and 2D-JND models
was given in Paper II. More details related to 2D-JND models can be found in [101].

In this section, we introduce some statistical methods for analyzing the data from psychophysical
experiment or subjective test described in Paper III. An overview of the statistical tools used in
image/video processing and computer vision can be found in [120]. To construct a reliable JND model
using psychophysical data, we need to detect and remove the outliers related to the subjects and to
the samples of each subject [121]. Some statistical methods of outliers detection have been introduced
and reviewed in [122, 123].
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2.4.1 Subjects-related outliers

To detect and remove unreliable subjects, a subject screening technique defined by the international
telecommunication union (ITU) under the technical report BT 1788 [124] was used in Paper III. In
particular, a subject is identified as an outlier if its corresponding correlation coe�cient Cmin is less
than a rejection threshold.

More specifically, Let T i
j denoting the JND threshold of the jth stimulus from ith subject, where

i œ [1, N ], and j œ [1, M ]. M and N are the numbers of stimuli and subjects, respectively. Thereby
the JND values from the ith subject T i are defined as follows:

T i = (T i
1, T i

2, · · · , T i
M ), (2.4)

and the JND values corresponding to the jth stimulus of all subjects are given by:

Tj = (T 1

j , T 2

j , · · · , T N
j ). (2.5)

Then, we define the mean vector T across all subjects as:

T = (T1, T2, · · · , Tj , · · · , TM ), Tj = 1
N

Nÿ

i=1

T i
j . (2.6)

Subsequently, we calculate the correlation coe�cient between T i and T using Pearson linear correlation
coe�cient (PCC) and Spearman rank order correlation coe�cient (SROCC), respectively. Smaller
values of PCC(T i, T ) and SROCC(T i, T ) are considered as Ci

min. The subject i is identified as an
outlier and discarded if the corresponding Ci

min is less than a rejection threshold RT . The latter is
calculated by:

RT =
I

C, if C <= MCT

MCT, otherwise,
(2.7)

where
C = |mean(Cmin) ≠ std(Cmin)| , (2.8)

where MCT denotes the maximum correlation threshold, and is set to 0.7 in the implementation
of Paper III according to [124]. In addition, mean(·) and std(·) are the average and the standard
deviation operators, respectively.

2.4.2 Samples-related outliers

After detecting and removing unreliable subjects, we further perform the rejection of outlier sam-
ples/observations for each subject. To achieve this goal, a median absolute deviation (MAD) method
and the turkey fence method can be used depending on the distribution of the subject’s observations
[123]. These two methods are selected because they are both robust to identify the outliers when their
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2.4. Statistical tools for psychophysical experiments

number represents less than 20% of all observations. MAD is used for approximately symmetric JND
data distribution, whereas turkey fence method for asymmetric JND data distribution.

Based on MAD, the observation/stimulus j of a subject is labeled as an outlier if:

|T i
j ≠ Tj |

MAD
> 3, (2.9)

and MADM can be calculated as

MAD = 1.4826 · med
j=1:M

(|T i
j ≠ med

j=1:M
(T i)|), (2.10)

where med(·) denotes the median operator and M is the number of stimuli.
Based on turkey fence method, the observation s is identified as an outlier if:

T i
j < (P1 ≠ 1.5 · IQR) or T i

j > (P3 ≠ 1.5 · IQR), (2.11)

where P1 and P3 respectively refer to the 25th and 75th percentile of all JND values for the stimulus
j. IQR indicates the interquartile range of all JND values.

2.4.3 Normality validation and analysis of variance

To confirm the reliability of the JND data after outliers removal, a two-side goodness-of-fit Jarque-Bera
(JB) test [125] is used to verify whether the JND data of each stimulus matches a normal distribution.
JB for a stimulus is defined as follows:

JB = N

6 · (S2 + (K ≠ 3)2

4 ), (2.12)

where N is the number of observations/samples, S is the sample skewness, and K is the sample
kurtosis. The null hypothesis is that the samples come from a normal distribution with an unknown
mean and variance. This null hypothesis is rejected either (1) if JB is larger than the critical value of
5% (significance level), or (2) p≠value of the test is less than 5%.

Analysis of variance (ANOVA) is used to verify the statistical significance between di�erent vari-
ables [126]. ANOVA measures the di�erence among group means in a sample. In particular, it provides
a test of whether the population means of several groups are equal.

The null hypothesis for ANOVA is that there is no significant di�erence between variables. p ≠
value Æ 5% rejects the null hypothesis, and indicates that there is a relationship between variables.

In fact, ANOVA is performed based on the assumptions including normality and homogeneity of
variances of the data. Therefore, before carrying out ANOVA, the normality and homogeneity of
variance for data distribution are checked with the Shapiro-Wilk test [127] and the Levene’s test [128],
respectively.
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2.5 Perceptual quality assessment of 2D and 3D images

With the rapid advances in digital stereoscopic/3D image data, it becomes increasingly crucial to ac-
curately and e�ciently predict 3D image quality, which can be a�ected at di�erent stages from image
acquisition, compression, storage, transmission, to display. Accordingly, SIQA can be applied to evalu-
ate/optimize the performance of 3D processing algorithms/systems (e.g., compression, enhancement,
...) [129–131]. The objective of IQA is to measure the perceived image quality, which is probably
degraded in various ways. Therefore, a reliable SIQA method should measure the perceived quality
highly correlating with the human judgment of quality.

2.5.1 Subjective IQA methods

The perceived quality of stereoscopic images can be assessed by either objective methods or subjective
experiments. A comprehensive survey of subjective and objective IQA methods is recently presented
in [132]. In subjective tests, the human subjects are asked to observe the test images and to give
opinion scores. Since humans are the final receivers in most visual applications, subjective IQA
methods can deliver reliable and referenced results. Many Subjective 2D- and 3D-IQA methods have
been proposed by many international standardization organizations over the years. For instance, ITU
recommended several standard subjective methodologies for quality assessment of 2D-TV and 3D-TV
pictures including test methods, grading scales and viewing conditions [107, 108, 133]. According to
[107, 108], the subjective testing methods can be usually classified into three categories: single-stimulus
methods, multiple-stimulus methods, and paired comparison or stimulus comparison methods. For
single-stimulus methods, only one test image is shown to subjects at any time instance and is given
ratings to blindly reflect its perceived quality. For multiple-stimulus methods, several images are
presented to subjects simultaneously, and the subjects rank all images based on their relative perceived
quality. Finally, for paired comparison methods, a pair of images are shown either simultaneously or
consecutively, and the subjects are asked to choose the one of better quality.

Subjective experiments are an important tool to construct IQA databases including reference and
impaired images with di�erent types of distortions and subjective opinions for all images, represented
by either mean opinion score (MOS) or di�erential mean opinion score (DMOS). Over the past decades,
several 2D-IQA publicly available databases were proposed to advance the work of the quality assess-
ment community. Examples include the laboratory for image and video engineering (LIVE) database
[134], tampere image database (TID2008) [135] and (TID2013) [136] databases, categorical image qual-
ity (CSIQ) database [137], LIVE multiply distorted image database (LIVEMD) [138], high dynamic
range image database (HDR2014) [139], LIVE Challenge database [140], and Waterloo Exploration
database [141]. More image quality databases are summarized in [142]. Subjective experiments can
convincingly assess image quality and is accordingly considered as the reference results, however they
are usually costly, time-consuming, and thus unsuitable for real-time application.
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2.5. Perceptual quality assessment of 2D and 3D images

2.5.2 Objective 2D-IQA methods

To cope with the constraints of subjective assessment, one solution is to develop objective IQA met-
rics/methods to automatically assess the perceived image quality. In this section, we provide a brief
review of 2D-IQA metrics closely related to our work. The readers may refer to [143–145] for recent
surveys on 2D-IQA models.

Depending on how much information about the reference image is used, 2D-IQA models are typ-
ically divided into (1) full-reference (FR), (2) blind or no-reference (NR) and (3) reduced-reference
(RR) metrics. FR metrics use whole reference images for quality prediction, while NR metrics assess
the image quality without any cue about the reference image. A tradeo� between FR and NR metrics
is represented by RR metrics, which predict image quality using only partial information (e.g., fea-
tures) from the reference image. The earliest and most widely used FR metrics are the mean square
error (MSE) and peak-signal-to-noise-ratio (PSNR), which simply quantify the di�erence between the
reference Ir and the distorted Id images, respectively. PSNR and MSE are respectively defined as
follows:

PSNR = 10 · log10 · L2
max

MSE
, (2.13)

and

MSE = 1
N

Nÿ

n=1

ÎIr ≠ IdÎ2 , (2.14)

where N denotes the pixels number in the image Ir. Lmax is the maximum pixel value of the image,
and is usually equal to 255 for standard 8-bit images. Although PSNR is still widely used, it has a poor
correlation with the human judgment of quality due to lack of consideration of the HVS properties
[146]. Therefore, Wang et al. firstly proposed the universal quality index (UQI) [147] that is defined
by:

UQI(Ir, Id) = 1
M

Mÿ

m=1

UQImap(Ir, Id)

= l(Ir, Id) · c(Ir, Id) · s(Ir, Id)

= 2µrµd + C1

µ2
r + µ2

d + C1

· 2‡r‡d + C2

‡2
r + ‡2

d + C2

· ‡rd

‡r‡d
,

(2.15)

where l(·), c(·), and s(·) refer to luminance, contrast, and structural/correlation similarities between
Ir and Id, respectively. M is the number of local windows with size 8 ◊ 8. µr and ‡r denote the
average and variance of Ir respectively, whereas ‡rd is the covariance of Ir and Id. The UQI metric is
used in our proposed SIQA models (see Paper IV and Paper V).

For UQI metric, the constants C1 and C2 are equal to 0. To avoid µ2
r + µ2

d = 0 or ‡2
r + ‡2

d = 0,
Wang et al. followed the idea of UQI and developed a structural similarity (SSIM) index, assuming
that the HVS is sensitive to the structural information of a scene [148]. In fact, SSIM highlighted the
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importance of the HVS characteristics and properties on IQA metrics design. Based on this finding,
various reliable 2D FR-IQA models have been proposed over the last decade [149–153]. The existing
2D FR-IQA models from the literature can be classified into four categories described as follows:

• Scale transform-based models [149, 154–156]. The main idea is that the perceptual image quality
depends on viewing distance and image resolution [157]. Thus, it is recommended to account for
the appropriate [154, 156] or multiple scales [149, 155] so as to accurately predict image quality.
The impact of image scale on SIQA performance is explored in Paper VI and Paper VII.

• Visual-sensitivity-based models [158–160] consider that the image pixels/regions have di�erent
visual importance in the perceived quality judgment. This visual importance can be modeled
using visual saliency detection models [161–166], JND models [109–116]... In our case, saliency
map based weighting on IQA is used in Paper V and Paper VII.

• Information-content-based models [150, 167, 168] measure the degradation on image content
information extracted from the HVS based on scene statistics.

• Gradient-based models [151–153, 169] assume that the image low-level features (e.g., edges and
textures) play an important role in perceptual IQA tasks. These low-level features correspond to
image high frequency components that can be represented by image gradient magnitude (GM)
and phase. Accordingly, the gradient similarity based FR 2D-IQA have been successfully pro-
posed in the recent years. For instance, Xue et al. developed the gradient magnitude similarity
mean (GMSM) and gradient magnitude similarity deviation models computing the quality score
with average and standard deviation pooling strategies, respectively. GM-based 2D metric is
used in Paper VII thanks to its e�ectiveness and e�ciency. In addition, the feature similarity
metric (FSIM) [151] based on gradient magnitude and phase congruency is used in Paper VI
because of its remarkable performance.

Although previously described FR-IQA models can achieve high quality prediction accuracy, they
are not applicable in real-world case because the reference image is accessible at the receiver side of the
image based systems. Therefore, NR-IQA models are very important to blindly assess image quality.

As described in [170, 171], most recently proposed blind image quality assessment (BIQA) models
can be divided into three main stages as shown in Figure 2.18. The first stage is to preprocess the test
image in order to e�ciently obtain useful image information. This stage may include color conversion,
domain transform, normalization, scaling and so on. The second stage is the feature learning process
containing either (1) the feature extraction and machine learning-based regression (e.g., support vector
machine (SVM) and support vector regression (SVR) [172, 173], artificial neural network (NN) [174],
and random forest (RF) [175] for some conventional BIQA models [176–183] or (2) deep NN for deep-
learning-based BIQA models [171, 184–189], e.g., convolutional neural networks (CNNs). The last
stage is to compute the quality score based on learned/regression model with/without using human
opinion scores (i.e., MOS or DMOS values).
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Figure 2.18 – Flowchart of existing NR-IQA models.

Based on [144, 145, 190], the existing 2D NR-IQA approaches can be mainly classified into three
categories described as follows:

• Distortion-specific models target one or multiple specific distortions types and prior knowledge
on the distortion properties is known. Specifically, these approaches assess the quality of images
impaired by particular artifacts, e.g., "blockiness" [191, 192], "blurring" [193, 194], "ringing"
[195, 196] or mixed [197, 198].

• Distortion-unaware and opinion-aware models that can evaluate the quality of distorted images
without knowing the distortion types. Furthermore, such models require the subjective opinion
scores for the training stage (as described in Figure 2.18). In fact, a majority of state-of-the-art
NR IQA metrics belong to opinion-aware methods [176, 177, 180, 199–201]. For instance, Xue
et al. developed a reliable and e�cient BIQA model that extracts histogram-based features
from the joint statistics of gradient magnitude (GM) and LoG responses [180]. Since this model
delivered remarkable performance for 2D IQA, we adopt it in our SIQA metric design (see
Paper VI). We will detail the SVR later. As described in [190], natural scene statistics can
capture the natural statistical behaviors of images that are highly sensitive to di�erent quality
distortions in images. Therefore, many natural scene statistics based BIQA models [177, 199–
201] were developed by measuring the destruction of "naturalness" by distortions. Meanwhile,
some other BIQA models employed the quality-relevant features capturing the factors a�ecting
image distortion [177, 202, 203].

• Distortion-generic and opinion-unaware models that do not require subjective opinion scores for
training, because obtaining subjective scores can be probably expensive and time-consuming.
Therefore, this category of models can be called totally blind IQA approaches [204–208]. For

31



2. Background

instance, Zhang et al. first extracted a set of image local features and then fitted the feature
vectors by a multivariate gaussian model [206].

In IQA tasks, the SVR regression model is often used to map the image feature vectors to subjective
scores (e.g., MOS/DMOS) so as to derive the learning model used further in the testing stage. To
achieve this many successful BIQA models use SVR with an ‘-insensitive loss function (i.e., ‘-SVR
[173, 209]) to successfully predict image quality [177, 180, 181].

Given the training features {(v1, s1), (v2, s2), ..., (vn≠1, sn≠1), (vn, sn)}, where vi and si denote the
feature vector and MOS/DMOS values, respectively. n is the number of training patches/images. The
prediction function is defined as follows:

f(Ê, x) =
2nÿ

i=1

Êi · xi + b, (2.16)

where b is the bias parameter. Ê denotes the weight vector learned by minimizing the sum of a loss
function L that is described below:

L(Á) =
I

0, if Á Æ ‘

Á ≠ ‘, otherwise,
(2.17)

where Á = |s ≠ ŝ|, ŝ denotes predicted quality score, and ‘ > 0. So, the idea is to find the optimal
Ê and b to ensure that the ‘-margin is maximized. In other words, we need to minimize ÎÊÎ2. More
specifically, the optimal values (Êú, bú) of ‘ and b are determined by solving the optimization problem
as follows:

(Êú, bú) = argmin
1
2 ÎÊÎ2 + C

nÿ

i=1

(Ái + Áú
i ), (2.18)

subject to:

Y
__]

__[

qn
i=1

Ên · K(vi, v) + b ≠ si Æ ‘ + Ái,

si ≠
qn

i=1
Ên · K(vi, v) ≠ b Æ ‘ + Áú

i ,

Ái, Áú
i Ø 0

(2.19)

where C is a constant, K is the kernel function for features mapping. The linear radial basis function
is widely used because of its high performance, and is given by:

K(vi, v) = e≠“·|vi≠v|2 , (2.20)

where “ is a constant. More detail about this approach can be found in [173, 209]. Note that the
LIBSVM package was used in the implementation of Paper VII.

Besides, most SVR-based NR-IQA methods divide an image quality database into two non-
overlapped subsets: the training and the testing subsets which respectively contain p% and (1≠p)% of
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all images. p varies depending on the proposed algorithm and usually is set to 80. To derive convincing
results, both training and testing procedures are repeated 1000 times and the mean/median value is
considered as the estimated quality score.

2.5.3 Performance evaluation methods

To evaluate the performance of quality metrics, estimated quality scores should be compared to sub-
jective scores Qs (e.g., MOS/DMOS) based on statistical tools. In this section, we introduce the
statistical tools applied in the enclosed Paper I, Paper IV, Paper VI, and Paper VII. After
obtaining the predicted quality scores, we need a five-paramters logistic function (see Equation 2.21)
to map the score estimates on the same scale of Qs so as to avoid the nonlinearity brought from the
IQA model [210]. This logistic function is defined as:

Qp = p1 ·
51

2 ≠ 1
e(p2·(Q≠p3))

6
+ p4 · Q + p5, (2.21)

where p1, p2, p3, p4, and p5 are the regression parameters selected based on subjective score. The
estimated quality that is represented by Q denotes the quality predicted by the metric. Qp are the
predicted scores after non-linear regression. In experimental experiments, we set p1 = Max(Q),
p2 = Min(Q), p3 = mean(Qs), p4 = 0.1, and p3 = 40.

Subsequently, to evaluate the metrics performance, we use three statistics-based criteria including:
PCC, SROCC, and root-mean-square error (RMSE). Some other statistical criteria can be used for
performance evaluation, such as Kendall rank order correlation, mean absolute error, etc.

PCC measures the level of similarity between subjective scores s and predicted scores ŝ, and is
defined as follows:

PCC(s, ŝ) =
qN

n=1
(sn ≠ µs) · (ŝn ≠ µŝ)

ÒqN
n=1

(sn ≠ µs)2 ·
ÒqN

n=1
(ŝn ≠ µŝ)2

, (2.22)

where µs/µŝ denote the average value of s/ŝ. N is the number of distorted images.
SROCC evaluates the strength of correlation between the subjective score and predicted score

using a monotonic function. Thus, to compute the SROCC value between s and ŝ, we first convert
the raw scores to their ranks xn and yn, respectively. Then SROCC(x, y) is calculated by:

SROCC(x, ŷ) =
qN

n=1
(xn ≠ µx) · (yn ≠ µy)

ÒqN
n=1

(xn ≠ µx)2 ·
ÒqN

n=1
(yn ≠ µy)2

. (2.23)

Both PCC and SROCC values are in [≠1, 1]. Higher absolute PCC and SROCC values indicate higher
prediction accuracy and better prediction monotonicity of the quality metrics, respectively. PCC = 0
or SROCC = 0 reflects the absence of correlation between predicted and subjective scores. RMSE
is used to estimate the prediction consistency, which measures the di�erence between s and ŝ, and is
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given as follows:

RMSE(s, ŝ) =
ı̂ıÙ 1

N

Nÿ

n=1

(s ≠ ŝ)2, (2.24)

Lower RMSE indicates higher performance of the quality metrics. RMSE being close to 0 means
the best performance.

Based on the advance of 2D IQA, many SIQA methods were proposed. An overview of the state-
of-the-art SIQA approaches is given in Paper VI and Paper VII.
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Chapter 3

Summary of Results and Contributions

In this section, we give a summary for each paper included in Part II.

3.1 Summary of Paper I

Yu Fan, Mohamed-Chaker Larabi, Faouzi Alaya Cheikh, and Christine Fernandez-Maloigne. On
the performance of 3D just noticeable di�erence models in IEEE International Conference
on Image Processing (ICIP), pages 1017–1021, September 2016.

Paper I provides a comparative study of the exiting 3D-JND models by analyzing their pros, cons,
complexity, suitable 3D format and applications. Each model is briefly presented by giving its main
components based on visual masking e�ects or psychophysical experiments. Some of the 3D-JND
models are proposed as an extension of existing 2D-JND models described in Section 2.4.

In order to quantitatively evaluate the performance of each 3D-JND model, we adopt a QA frame-
work including a 3D-JND block [211]. The framework is illustrated in Figure 3.1. First, the qualities
of the left and right views of the distorted 3D images are respectively computed using the SSIM metric.
To address QA for monocular and binocular regions respectively, the pixels of the distorted 3D images
are categorized into occluded and non-occluded pixels based on the cross-checking method [212]. The
main idea is to compare the disparity maps of the left and right views to detect the occluded regions.
In this work, we use the algorithm presented in [213] to perform the classification. Given the following
steps. To determine the perceptual importance of each pixel, a 2D-JND model and a 3D-JND model
are used for occluded and non-occluded pixels, respectively. The red block in Figure 3.1 can be sub-
stituted by the test 3D-JND model. The JND is used to weight the SSIM score to obtain the quality
score of the occluded pixels (Qoc). In a similar way, the quality scores of the non-occluded pixels for
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Figure 3.1 – Block diagram of the test procedure.

left and right views are computed separately. The 3D quality score of the non-occluded pixels (Qnoc)
is determined based on a linear summation with a local entropy weighting (LN) for each view. The
final 3D quality score (Q3D) is calculated by combining Qoc and Qnoc.

To compare the performance of the 3D-JND models, each model is integrated into the above-
described quality metric, and the performance of the metric is estimated. In particular, their perfor-
mance are compared by analyzing the image quality prediction accuracy based on LIVE 3D Phase II
[214] and Waterloo IVC Phase I databases [215]. The image quality prediction accuracy is calculated
by computing PCC, SROCC, and RMSE (see Section 2.5.3 ) between estimated quality scores and
subjective scores obtained from the databases. Experimental results demonstrate that SIQA metric
using stereo just noticeable di�erence (SJND) can deliver the best performance among all compared
models thanks to various considered VM properties.

In Paper I, AC for BJND description represents the visibility threshold of the right view if
there is no noise in the left one, and thus denotes the maximum threshold. For SJND model, it is
initially developed for 3D video quality assessment. The temporal masking e�ect (caused by motion) is
consequently ignored to be adapted to 3D image (i.e., left and right frame). In this case, the temporal
JND (TJND) of the occluded pixel is determined by the background luminance and contrast masking.
More specifically, referring to [216], in our case, f3(bg(i), mg(i)) = P , and f4(bg(i), mg(i)) = Q for
an image, and thus TJND(i) = JND(i). Then, TJND and BPJNDO are fused using a linear
summation in order to obtain the JND for occluded pixels. It is finally combined with JND of non-
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occluded pixels to derive the SJND.
The main contribution of this paper is to determine the appropriate and reliable 3D-JND model

used in IQA performance improvement. Moreover, this paper allows determining the most important
features considered in 3D-JND model, helping in the construction of a more accurate and e�cient
3D-JND model.

3.2 Summary of Paper II

Yu Fan, Mohamed-Chaker Larabi, Faouzi Alaya Cheikh, and Christine Fernandez-Maloigne. A
Survey of Stereoscopic 3D Just Noticeable Di�erence Models in IEEE Access, vol. 7, pp.
8621-8645, 2019.

Paper II, which is an extension of Paper I, provides a comprehensive and deep overview of state-
of-the-art 3D-JND models. In particular, this paper firstly summarizes the contrast sensitivity of the
HVS and visual masking e�ects that are related to monocular vision and binocular vision. Then, each
model is exhaustively described by showing its framework, HVS characteristics and visual masking
e�ects considered in the model. Next, we present a thorough comparative analysis of 3D-JND models
in terms of applications, pros, and cons. Table 3.1 shows an overview of the comparison of 3D-JND
models.

In addition, we carry out extensive experiments in order to compare the performance of the 3D-
JND models in terms of distortion masking ability and accuracy. Specifically, we experimentally
perform qualitative and quantitative evaluations using 3D images from Middlebury stereo database
[54, 217, 218]. Experimental results show that the hybrid just noticeable di�erence (HJND) and the
joint just noticeable di�erence (JJND) outperform the other 3D-JND models in terms of distortion
tolerance ability, because they highly depend on depth information having a great e�ect on distortion
masking. Furthermore, multi-view just noticeable di�erence (MJND) and binocular just noticeable
di�erence (BJND) achieve better performance than other models in terms of edge-distortion masking
ability. In addition to above-mentioned experiments, we further conduct psychophysical experiments
to compare the accuracy of 3D-JND models. In particular, we first synthesize 3D images containing
textures collected from the ETHZ dataset [219]. The relationship between the used disparity and
depth values are determined based on Section 2.2.3. Then, we perform subjective tests to measure the
visibility thresholds of the asymmetric distortion in stereopairs, which is considered as subjective JND
values. Next, objective JND values are calculated using each 3D-JND model. Finally, the accuracy
of each 3D-JND model is evaluated by comparing subjective and objective JND values. Experimental
results demonstrate that stereo just noticeable di�erence (SJND) and BJND models outperform other
models in terms of estimation accuracy, and achieve best and second-best performances, respectively.
This finding corresponds to the conclusion in our Paper I.

In Paper II, regarding the generation of stimuli, the increment steps for each distortion type are
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selected independently according to perceptual noticeable distortion in the image. Specifically, before
conducting the experiments, several trials have been done to obtain an appropriate increment step for
each distortion type. The criterion is to ensure that subjects are able to get the JND by increasing
N times the distortion level. N is chosen randomly from the range of [5,15] to avoid the error of
habituation.

The major contributions of this paper include (1) a comprehensive overview and a comparative
analysis of the 3D-JND models, and (2) extensive experimental comparison between the 3D-JND
models based on qualitative and quantitative performance evaluation.

3.3 Summary of Paper III

Yu Fan, Mohamed-Chaker Larabi, Faouzi Alaya Cheikh, and Christine Fernandez-Maloigne. Just
Noticeable Di�erence Model for Asymmetrically Distorted Stereoscopic Images accepted
in International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton,UK.,
2019.

In Paper III, we develop a novel 3D-JND model based on psychophysical experiments, accounting
for visual masking e�ects and binocular disparity (see Section 2.1.1). The proposed 3D-JND of one
view in a stereopair estimates the maximum distortions that can be introduced in this view without
binocularly evoking visible di�erences, given the distortions in the corresponding region of the other
view.

Our proposed 3D-JND model is inspired by binocular JND (BJND) to cope with the issue of not
considering the binocular disparity in the design of psychophysical experiments [220]. More specifically,
we first conduct psychophysical experiments in which we measure the visibility thresholds of the
asymmetric noise using stereopair patterns considering luminance adaptation, contrast masking, and
binocular disparity (see Figure 3.2). The psychophysical data is processed to remove the subjects-
and samples-relevant outliers using statistical tools (described in Sections 2.4.1 and 2.4.2). Then JND
data after removing outliers is used to analyze the relationship between JND values and considered
attributes based on analysis of variance (ANOVA) method (described in Section 2.4.3). Next, 3D
image pixels are divided into non-occluded pixels (NOPs) and occluded pixels (OPs) based on [212].
The post-processed JND thresholds are used to construct a disparity-aware binocular just noticeable
di�erence (DBJND) model, allowing to estimate the JND values for NOPs. For OPs, a reliable 2D-
JND model [114] is used to obtain JND thresholds. Finally, the proposed 3D-JND model is built by
weighting the JND estimates for NOPs and OPs with 3D visual saliency map [221].

To validate the e�ectiveness of the proposed 3D-JND model, we conduct subjective test (based on
adjectival categorical judgment method, see Sections 2.3.3 and 2.5.1) using pristine stereopairs (from
Middlebury stereo datasets [54, 217, 218]) and asymmetrically distorted stereopairs. Experimental
results validate that the proposed 3D-JND model outperforms other models in terms of perceptual
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Table 3.1 – Paper II: comparison between the 3D-JND models.
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Figure 3.2 – Paper III: stereo pair patterns used in psychophysical experiments.

quality at the same noise level.
The main contributions of this paper include (1) new disparity-aware stereopair patterns used in

psychophysical experiments for measuring luminance adaptation and contrast masking related JND
threshold, (2) a novel 3D-JND model that can be applied in the improvement of 3D compression
e�ciency and SIQA performance.

3.4 Summary of Paper IV

Yu Fan, Mohamed-Chaker Larabi, Faouzi Alaya Cheikh, and Christine Fernandez-Maloigne. Stereo-
scopic Image Quality Assessment based on the Binocular Properties of the Human Visual
System in International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
2037–2041, March 2017.

Paper IV presents a stereoscopic IQA method based on HVS properties. Figure 3.3 exhibits the
flowchart of this method. In particular, the main idea is to assess 3D quality by predicting the quality
of the cyclopean image (CI) generated by fusing left and right views (see Section 2.1.1). The cyclopean
image is first synthesized based on the local entropy of each view with the aim to simulate binocular
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Figure 3.3 – Paper IV: framework of the proposed SIQA method.

rivalry or binocular suppression phenomenon. Then, the disparity information is obtained using an
e�cient stereo matching algorithm. Next, UQI (see 2.5.2 for details) is used to compute the quality
of both cyclopean image and disparity map (DsM). In addition, the quality of the cyclopean image is
modulated by visual importance of each pixel, which is determined by JND. Finally, the 3D quality
is derived by combining the quality estimates of cyclopean image and DsM. Experimental results on
LIVE 3D Phase II database [214] show that the proposed method outperforms some well-known 2D-
and 3D-based SIQA methods in terms of prediction accuracy and computational e�ciency. Moreover,
the e�ectiveness of our method for asymmetrically distorted stereopairs has been validated. Besides,
we further analyze the advantages of considering both JND and disparity quality in our proposed
method.

The major contributions of this paper consist in proposing a novel SIQA metric by modeling binoc-
ular suppression or binocular rivalry phenomenon, and accounting for disparity image quality as well
as the monocular spatial sensitivity of the HVS. Furthermore, it gives a comprehensive experimental
evaluation and comparison between our metric and other SIQA metrics in terms of prediction accuracy
and computational costs.

3.5 Summary of Paper V

Yu Fan, Mohamed-Chaker Larabi, Faouzi Alaya Cheikh, and Christine Fernandez-Maloigne. Full-
Reference Stereoscopic Image Quality Assessment account for Binocular Combination
and Disparity Information in IEEE International Conference on Image Processing (ICIP), pages
760–764, September 2017.
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Figure 3.4 – Paper V: Flowchart of the proposed SIQA method.

In Paper V, we propose a SIQA metric accounting for binocular combination properties and dis-
parity distortion. Similar to Paper IV, the qualities of the cyclopean image and disparity map are
combined to yield the overall 3D quality. Figure 3.4 shows the framework of the proposed approach.
To assess 2D image quality, UQI is used for LIVE 3D Phase I and II database [214, 222], whereas
visual information fidelity (VIF) metric [150] (see information-content-based FR 2D-IQA models in
Section 2.5.2) is used for Waterloo IVC Phase I database [215]. The proposed SIQA metric uses both
local entropy and visual saliency of each view to accurately mimic the strength of the view dominance
of binocular rivalry phenomenon. Experimental results on mentioned-above 3D IQA database demon-
strate that our method achieves high prediction accuracy and better performance than many other
SIQA methods for LIVE 3D I and II. However, the performance of the proposed method is decreased
on Waterloo IVC I, because the use of mixed asymmetric distortions types in this database is making
quality prediction more challenging.

The main contribution of this paper lies in development of a new FR SIQA model considering
the binocular visual properties and monocular visual sensitivity. In addition, we make an extensive
comparison between the proposed model and other SIQA models in terms of overall performance,
performance on individual distortion and performance for symmetrically and asymmetrically distorted
stereopairs.
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Figure 3.5 – Paper VI: framework of the proposed NR-SIQA model

3.6 Summary of Paper VI

Yu Fan, Mohamed-Chaker Larabi, Faouzi Alaya Cheikh, and Christine Fernandez-Maloigne. No-
Reference Quality Assessment of Stereoscopic Images based on Binocular Combination
of Local Features Statistics in IEEE International Conference on Image Processing (ICIP), pages
3538–3542, October 2018.

Paper VI presents an opinion-aware NR SIQA method based on the binocular combination of
monocular primitive structures, which are described by statistics of the image local contrast. The
cyclopean-based SIQA methods require the depth/disparity information, which is not always available,
and its estimation is probably error-prone and costly. To cope with this constraint, our proposed
methods are developed without requiring disparity information unlike the methods in Paper IV and
Paper V.

Specifically, following the strategy described in [180], we first extract the joint statistical features
of gradient magnitude (GM) and Laplacian of Gaussian (LoG) responses for left and right views that
describe the image local contrast from di�erent perspectives. Then, the statistical features of both
views (called monocular features) are combined to derive the binocular statistical features based on
a linear combination model simulating the binocular rivalry phenomenon of the HVS. We estimate
the LoG map for each view and use two LoG maps to calculate the weights in combination model,
which simulate the strengths of the views dominance of the binocular rivalry behavior. Wang et
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al. concluded that the image scale impacts the performance of the IQA metric, and the first- and
second-ranked performances were given respectively by scale 2 and 3 [149]. Consequently, we apply
the LoG filter in a single-scale image with an optimal scale size depending on image resolution.
Finally, binocular statistical features and subjective scores (provided in 3D-IQA databases) are jointly
employed to construct the learned regression model obtained by SVR algorithm (see Section 2.5.2 for
more details).

The performance of the proposed NR SIQA method is evaluated and compared with other FR-
and NR-SIQA methods on LIVE 3D Phase II [214], Waterloo IVC Phase I and II [215] databases. Ex-
perimental results show that the proposed method delivers highly competitive performance compared
to other SIQA methods.

This paper includes two main contributions. First, unlike previous SIQA methods using Gabor
filter magnitude or local entropy, or local variance, we employ the LoG response to mimic the strength
of the view dominance of the binocular rivalry phenomenon. Second, to reduce the computational
complexity, we only use binocular features combined from monocular statistical features for the train-
ing and testing processes. Third, we validate the e�ectiveness of our method on each of the three
databases, and cross-database, and determine the importance of using an appropriate image scale for
quality assessment.

Note that LoG and GM features are proposed in this quality metric to quantify the image local
distortions. This is because both features represent the image structural information, which is often
extracted by the HVS for quality judgment. Furthermore, the local-structure-based methods have
shown their e�ectiveness in quality prediction [180]. Nevertheless, any additional and advanced fea-
tures (e.g., biologically inspired feature [223], chrominance information [224], and energy information
[225]) can be used as well. A summary of the features used in 2D/3D quality is given in [226]. Although
our proposed method can successfully deal with the additive white noise and JPEG distortions, more
features should be considered to improve the quality prediction for certain types of distortion (e.g.,
Gaussian blur and JPEG 2000). For instance, image gradient orientation information [227], which is
detected by visual cortical neurons, can be used to represent the change in image anisotropy due to
local distortion. In addition, we propose to use the image local directionality described in [228] to
measure the information loss of the dominant structures caused by blurring-based distortion.

3.7 Summary of Paper VII

Yu Fan, Mohamed-Chaker Larabi, Faouzi Alaya Cheikh, and Christine Fernandez-Maloigne. Stereo-
scopic Image Quality Assessment based on Monocular and Binocular Visual Properties
submitted in Journal of Visual Communication and Image Representation, 2018.

Based on Paper IV and Paper V, we propose a new FR-SIQA system in Paper VII considering
the qualities of : (1) the left- and right-views images (with respect to monocular vision), and (2) the
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Figure 3.6 – Paper VII: framework of the proposed SIQA model.

cyclopean image (with respect to binocular vision). In particular, we firstly estimate the quality of
left and right image separately base on GMSM (see gradient-based models in Section 2.5.2), and then
linearly combine the qualities of both views into a 2D monocular image quality with the weights mod-
eling relative stimulus strength of each view. For the proposed SIQA system, Laplacian of Gaussian
(LoG), local entropy (local entropy (LE)) and gradient magnitude (GM) based weighting strategies
are used respectively, to explore their e�ectiveness. Next, using the GMSM metric, we compute the
quality score of the cyclopean image that is synthesized using a binocular combination model. Ad-
ditionally, to reveal di�erent visual sensitivities on image’s region distortion, the cyclopean image
quality of the test stereopair is weighted with a JND map of the reference stereopair. Two 2D-JND
models and three 3D-JND models are used to compare the accuracy of the quality prediction of the
proposed SIQA method integrating with JND. Finally, overall 3D quality is assessed by combining 2D
monocular image quality with 3D binocular-based JND-weighted cyclopean image quality.

We achieve an extensive and comprehensive performance evaluation of our proposed model and
many other state-of-the-art SIQA models on seven publicly available 3D IQA databases including:
LIVE 3D Phase I and II [214, 222], Waterloo IVC Phase I and II [215], NBU 3D II [229], NBU-
MDSID [230], and IEEE 3D [231]. Experimental results on these databases demonstrate the proposed
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method correlates well with the human quality judgments and outperforms many recent well perform-
ing SIQA methods. Moreover, the LoG-based binocular rivalry modeling achieves better performance
than LE- and GM-based binocular rivalry modeling for most databases. Besides, the proposed 3D
metric using BJND [220] delivers the best performance among the metrics using other 2D-JND or
3D-JND models for databases only containing symmetrically distorted stereopairs. Furthermore, our
metric without JND and with disparity-based just noticeable di�erence (DJND) can perform well for
databases containing symmetric and asymmetric distortions.

The major contributions of this paper include:

• A new SIQA system accounting for degradation of the stereopair-based monocular scene and of
the cyclopean-based binocular scene using di�erent visual stimulus strength modeling methods.

• An overview of the existing 3D IQA databases. Comprehensive experimental evaluations of
the proposed system, and exhaustive performance comparisons between our SIQA model and
state-of-the-art on seven publicly available 3D IQA databases.

• Investigation of the importance of binocular-rivalry-inspired monocular 2D quality and cyclopean
quality on overall 3D quality.

• Study of the impacts of di�erent JND models and strategies of simulating the strength of view
dominance on 3D quality prediction accuracy.
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Chapter 4

Discussion

This Chapter first presents the technical contributions to 3D-JND and SIQA, and the answers of the
Research Questions in Chapter 1.3, respectively, with respect to aforementioned papers in Chapter 3.
Then, it provides additional results for the included papers. Finally, some limitations and shortcomings
concerning 3D-JND and SIQA are discussed in this Chapter.

4.1 Contributions of the thesis

4.1.1 Contributions to 3D-JND

Paper I – Paper III are the main contributions to research in spatial visual sensitivity of the HVS
for 3D images. The objective of the work described in these papers is to propose a reliable 3D-
JND model accounting for visual sensitivity related properties of monocular vision and of binocular
vision, by analyzing existing 3D-JND approaches. Paper I and Paper II contribute to overview and
comparison of state-of-the-art 3D-JND models. Paper III contributes to the design of a new 3D-JND
model based on psychophysical experiments.

4.1.1.1 Overview of the state-of-the-art 3D-JND models

Paper I summarizes the monocular and binocular VM e�ects and contrast sensitivity of the HVS
considered in 2D-JND and 3D-JND models. This gives an answer of Research Question Q1 that
digital 2D/3D imaging should consider luminance adaptation, contrast masking, texture masking
e�ects, contrast sensitivity and depth-related masking/information, which are the most important
HVS characteristics and properties.

In addition, surveying existing 3D-JND models, Paper I briefly describes the framework of each
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existing 3D-JND model in order to answer " How are the performance of the state-of-the-art 3D-
JND models developed based on HVS properties and characteristics ? ": Research Question Q2. In
particular, most of 3D-JND models were developed based on 2D-JND except that BJND [220] was
constructed based on stereopair patterns used in psychophysical experiments, which is more reliable
and closer to human binocular perception. However, BJND ignores the disparity e�ects of the visual
stimuli on psychophysical experiments, making it less suitable for real-application. This inspired us
to optimize BJND and thus propose a new 3D-JND model described in Paper III. Furthermore,
we provided a thorough comparative analysis between 3D-JND models in terms of their suitable 3D
formats, complexity, applications, advantages, and shortcomings (see Table 3.1). This answers the
Research Question Q2: " What are the advantages, drawbacks, and applications of these models ? ".

Besides, to answer "How to evaluate the performances of the 3D-JND models in order to select ap-
propriate models for particular applications ? ": Research Question Q2, we experimentally compared
their performance with three solutions as follows:

1. Qualitatively and quantitatively evaluating the distortion tolerance ability, especially for image
edges based on image from Middlebury stereo datasets [54, 217, 218].

2. Evaluating the accuracy of visibility thresholds estimation for each model by comparing the
estimated JND values with JND values measured from psychophysical experiments. In addition,
we created the 3D images used in psychophysical experiments based on 2D texture images from
ETHZ dataset [219].

3. Estimating the prediction accuracy of a SIQA framework including the 3D-JND block.

Note that Paper II contributes to the abovementioned 1st and 2nd solutions and Paper I con-
tributes to the 3rd solution. Both Paper I and Paper II determine the most important features that
should be taken into account in 3D-JND models, and can help us to select appropriate models for QA
and compression, and in the construction of more accurate and e�cient 3D-JND models.

4.1.1.2 A new 3D-JND model

Based on the survey of the existing 3D-JND models in Paper II, we found that luminance adapta-
tion and contrast masking are the most considered masking e�ects (related to monocular vision) in
addition to binocular masking (related to binocular vision) for distortion in 3D images. Therefore,
we designed in Paper III two stereopair patterns e�ectively simulating luminance adaptation and
contrast masking, independently in the case of asymmetric noises in a stereopair. These patterns
considered not only the visual field of fovea and the Percival’s zone of comfort [232] with respect to
binocular disparity, but also the randomness of noise location. The design of these stereopair patterns
may motivate researchers to design other patterns considering more VM e�ects. Therefore, this can
be one contribution of Paper III, and answers the Research Question Q3: " How to develop a new
reliable 3D-JND model accounting for HVS VM e�ects and depth information ? ".
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Additionally, we conducted psychophysical experiments using stereopair patterns to measure JND
thresholds of one view that make the asymmetric noise binocularly visible for luminance adaptation
and contrast masking experiments. This answers " How to design the psychophysical experiment mod-
eling VM e�ects and binocular disparity ? ": Research Question Q3. The binocular JND thresholds
indicated the inter-di�erence minimum between left and right views that human can just recognize.

Finally, we processed the psychophysical JND data to remove subjects- and samples-related outliers
using statistical methods (see Sections 2.4.1 and 2.4.2) so as to obtain reliable JND data. The latter
were used to construct a DBJND model inspired by BJND model [220]. As the psychophysical
experiments were designed based on S3D images without occlusion e�ects, DBJND can estimate the
visibility thresholds for NOPs. To propose a more common 3D-JND model, we used a reliable 2D-JND
model [114] to compute the visibility thresholds for OPs. To further consider the visual sensitivity, a
3D-JND model was constructed by weighting the JND estimates with a 3D visual saliency map [221].
Accordingly, Paper III answers " How to construct a 3D-JND model based on psychophysical data ?
": Research Question Q3.

Unlike Paper I and Paper II, we evaluated the performance of the proposed 3D-JND model in
terms of perceptual image quality with the same noise level based on subjective tests. This method
can be used to either optimize 3D compression algorithms or increase the prediction accuracy of SIQA
metrics.

4.1.2 Contributions to SIQA

Paper IV – Paper VII are main contributions to research in perceptual QA of 3D images. These
papers aim to propose e�ective and e�cient SIQA methods by investigating the HVS characteristics,
binocular perception properties, and mechanism of the human 3D quality judgment. Paper IV,
Paper V, and Paper VII contribute to FR-SIQA models. Paper VI and the work in [233] contribute
to NR-SIQA models.

4.1.2.1 FR-SIQA

Paper IV predicts the overall 3D image quality combining JND-weighted cyclopean image quality
with the disparity image quality. A 2D-IQA metric (i.e., UQI [147]) was used to assess the qualities
of both cyclopean image and disparity image. This paper contributes to quality consideration of cy-
clopean image and of DsM for overall 3D image quality. In addition, based on Paper IV, we found
that some 2D-IQA metrics (e.g., UQI [147] and VIF [150]) can perform quite well for symmetrically
distorted stereopairs. This can help to propose a SIQA method that assesses 3D quality of symmetri-
cally and asymmetrically distorted stereopairs, separately. Besides, a 2D-JND model was used in the
proposed SIQA metric to increase the quality prediction accuracy. This can motivate us to apply the
aforementioned 3D-JND model in this proposed SIQA framework in order to evaluate its performance.
Finally, Paper IV also explored impacts of the disparity image quality and JND component on the
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overall performance, and highlighted the importance of the disparity image quality. This answers the
Research Question Q5: " What are the most influential factors for 3D image quality and to which
extent are they a�ected ? What are the binocular perception phenomena/e�ects ? And how do these
e�ects impact the perceived quality of 3D images ? ".

Similar to Paper IV, Paper V presents a SIQA metric accounting for both cyclopean image and
disparity image qualities. In addition, this paper used both local entropy and visual saliency map of
each view to accurately simulate the strength of views dominance of binocular rivalry phenomenon.
This concludes that visual sensitivity of the HVS plays an important role on QA performance. This
answers " What are the most influential factors for 3D image quality and to which extent are they
a�ected ? What are the binocular perception phenomena/e�ects ? And how do these e�ects impact
the perceived quality of 3D images ? " of Research Question Q5. Besides, Paper IV validated the
e�ectiveness of the proposed SIQA metric based on three 3D-IQA databases, and compared with state-
of-the-art in terms of overall performance, performance on individual distortion types and performance
for symmetric and asymmetric distortions.

Based on Paper IV and Paper V, Paper VII proposes a general FR-SIQA framework that
accounts for binocular-rivalry-inspired monocular image quality and JND-weighted cyclopean im-
age quality. Based on this paper, we (1) understood di�erent strategies of modeling visual stim-
ulus strength, (2) investigated the importance of binocular-rivalry-inspired monocular quality and
cycloepan quality on overall 3D quality, (3) evaluated quality prediction accuracy of the proposed
SIQA model with di�erent 2D-JND and 3D-JND, and (4) surveyed existing 3D-IQA databases, and
provided comprehensive performance evaluation and exhaustive performance comparison. Thus Pa-
per VII answers the Research Question Q4: " How does the HVS judge image quality based on
binocular perception ? ", and Q6: " What precise and reliable methodology for SIQA that accounts
for both monocular and binocular influential factors ? And how do these factors a�ect jointly the
overall 3D quality ? ". In sum, Paper VII can further help the design of other SIQA metrics using
appropriate binocular rivalry modeling approaches, and then evaluate metrics based on the described
publicly available 3D quality databases.

4.1.2.2 NR-SIQA

FR-SIQA methods in Paper IV, Paper V, and Paper VII require the reference stereopairs, which
are probably unavailable in real application. Therefore, inspired by a NR 2D-IQA approach [153],
Paper VI proposes an opinion-aware NR-SIQA metric based on binocular-rivalry-inspired combina-
tion of monocular statistical features. SVR-based regression method was used for training and testing
stages. This paper contributes to (1) combining the joint statistics of the GM and LoG into binocular
statistical features based on a linear summation model with weights estimated by LoG responses of
left and right images, (2) investigating the influences of appropriate image scale (for LoG-based visual
stimulus strength modeling) on proposed metric performance.
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To further increase the quality prediction accuracy, our work proposed in [233] improves the NR-
SIQA metric from Paper VI by using multi-scale images, various strategies of modeling visual stimulus
strength, and disparity information. Specifically, the strength of views dominance of the binocular
rivalry phenomenon was estimated using LoG responses and local entropy (LE) maps of two images.
LoG filter was applied in single-view image downsampled by factors 2 and 4, whereas LE map was
applied in image with the original scale. As Paper IV showed the importance of disparity information
in QA, we computed the absolute di�erence image between left and right views to imply disparity
information [234]. This is because the ground truth disparity maps are not available and their esti-
mation is probably error-prone. Compared to Paper VI, The SIQA method in [233] achieved higher
correlation with human opinion scores, but low computational e�ciency because of using LE-based
binocular rivalry modeling. Both Paper VI and [233] answer Research Question Q5: " What are the
most influential factors for 3D image quality and to which extent are they a�ected ? What are the
binocular perception phenomena/e�ects ? And how do these e�ects impact the perceived quality of 3D
images ? ".

4.2 Supplementary results

In this Section, we separately present supplementary results for Paper III, Paper IV, and Paper
VI.

4.2.1 Supplementary results of Paper III

To further compare 3D-JND models in terms of noise masking ability, we conducted subjective tests
to compare reference and distorted 3D images. The results in Table 4.1 show that the proposed
DBJND outperforms other 3D-JND models. However, the proposed saliency-weighted stereoscopic
JND (SSJND) performs less well, because the error introduced by the complicated image scene in
subjective tests may probably decrease the saliency detection.

4.2.2 Supplementary results of Paper IV

The performance evaluation of the proposed SIQA method, and comparison to other methods on
LIVE 3D-IQA Phase I database are shown in Table 4.2. The proposed method achieves the best
overall performance among all the other 2D/3D IQA methods. Furthermore, we also examine the
performance of the SIQA metrics for di�erent distortions types. The proposed method outperforms
the other methods for JPEG, JPEG 2000 (JP2K), and fast fading, and delivers competitive results
for white noise (WN) and Gaussian blur. Overall, all 2D-based SIQA methods can achieve reasonably
accurate quality prediction on LIVE 3D phase I database containing only symmetrically distorted
stereopairs. In addition, Figure 4.1 and 4.2 depict scatter plots of predicted scores obtained by
proposed SIQA metric versus DMOS on LIVE 3D phase I and II, respectively. It can be observed that
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Table 4.1 – Subjective test scores: quality comparison between original 3D image and noisy 3D images produced
by a 3D-JND model using 12 images from Middlebury Stereo Datasets. Note that DBJND and SSJND models
are respectively our model without and with considering the visual saliency e�ect. The higher the average of the
3D-JND model is, the better the distortion masking ability the 3D-JND is.

3D
image

DBJND SSJND BJND JJND DJND
Mean p-value Mean p-value Mean p-value Mean p-value Mean p-value

Art 0.67 0.0001 0.78 0.0001 0.33 0.0001 1.11 0.0055 0.78 0.0001
Reindeer 0.11 0.0001 -0.22 0.0027 0.28 0.0001 2.28 0.0001 1.78 0.0001
Moebius 0.06 0.0001 0.50 0.0001 0.28 0.0001 1.50 0.0005 1.33 0.0018

Dolls 0 0.0001 0.11 0.0001 0.17 0.0001 1.17 0.0001 0.72 0.0001
Aloe -0.11 0.0001 0.39 0.0001 0 0.0001 1.17 0.0004 0.61 0.0001

Baby2 0.44 0.0001 1.06 0.0001 0.22 0.0001 0.83 0.0002 1.50 0.0001
Midd2 0.33 0.0001 0.61 0.0001 0.50 0.0001 1.78 0.0001 1.44 0.0001
Plastic 0.17 0.0001 0.72 0.0001 0.61 0.0001 2.00 0.0001 1.89 0.0001

Motocycle 0.17 0.0001 0.33 0.0001 0.28 0.0001 0.94 0.0001 1.17 0.0055
Piano 0.39 0.0001 1.00 0.0001 -0.11 0.0144 2.00 0.0001 1.56 0.0001

Playroom 0.28 0.0001 0.22 0.0001 -0.11 0.0001 1.44 0.0002 1.39 0.0001
Playtable 0.50 0.0001 0.28 0.0001 0.22 0.0001 1.67 0.0001 0.89 0.0034
Average 0.23 0.0001 0.44 0.0002 0.24 0.0011 1.38 0.0005 1.16 0.0008

the scatter points are well concentrated around the fitting curves, which indicates a good correlation
between the objective and subjective scores.

4.2.3 Supplementary results of Paper VI

Table 4.3 shows the performance on individual distortion types of the SIQA methods on LIVE 3D-
IQA Phase II database. Experimental results demonstrate that the proposed model achieves high
performance for JPEG, fast fading, and WN distortions, and yields promising results for JP2K and
Gaussian blur distortions.

Tables 4.4 and 4.5 respectively show SROCC and RMSE values of the NR-SIQA methods on
cross-database. Specifically, we tested the performance by training them on one database and testing
on other databases. We can observe that the proposed SQSC-FW and SQSC-AW deliver competitive
performance compared to other methods when using LIVE 3D II database for training. Furthermore,
SQSC-AW outperforms most other methods when using Waterloo IVC II for training, especially used
for testing LIVE 3D II.

4.3 Limitations and Shortcomings

This section describes some limitations and shortcomings of the work from each Paper, as well as some
future trends in SIQA.
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Table 4.2 – Performance of SIQA methods on LIVE 3D IQA database (Phase I). Italicized entries denote
2D-based IQA, and the results of the best-performing SIQA method are highlighted in boldface.

Distortion
type Criteria SSIM

[148]
MS-SSIM

[149]
FSIM
[151]

VIF
[150]

UQI
[147]

Wang
[235]

Fezza
[211]

Fezza
[236]

Chen
[214] Proposed

WN
LCC 0.944 0.952 0.931 0.930 0.927 0.949 0.941 0.947 0.955 0.931

SROCC 0.939 0.942 0.929 0.931 0.926 0.947 0.935 0.944 0.948 0.926
RMSE 5.500 5.070 6.094 6.103 6.240 5.254 5.620 5.351 4.963 6.068

JPEG
LCC 0.475 0.633 0.623 0.603 0.769 0.473 0.274 0.706 0.527 0.791

SROCC 0.435 0.613 0.582 0.580 0.737 0.450 0.246 0.657 0.521 0.754
RMSE 5.755 5.063 5.116 5.216 4.178 5.762 6.289 4.632 5.557 4.001

JP2K
LCC 0.858 0.930 0.908 0.888 0.944 0.875 0.783 0.937 0.920 0.953

SROCC 0.857 0.892 0.905 0.902 0.910 0.856 0.774 0.896 0.887 0.911
RMSE 6.663 4.752 5.424 5.959 4.270 6.272 8.822 4.532 5.070 3.927

GB
LCC 0.907 0.944 0.933 0.962 0.952 0.893 0.908 0.934 0.943 0.957

SROCC 0.879 0.925 0.922 0.934 0.925 0.871 0.867 0.909 0.924 0.926
RMSE 8.774 4.790 5.205 3.955 4.451 6.512 6.058 5.173 4.813 4.182

FF
LCC 0.670 0.803 0.815 0.862 0.879 0.644 0.641 0.783 0.776 0.885

SROCC 0.584 0.722 0.729 0.804 0.833 0.525 0.515 0.693 0.700 0.828
RMSE 9.277 7.405 7.199 6.306 5.925 9.508 9.541 7.730 7.832 5.780

ALL
LCC 0.877 0.856 0.915 0.925 0.943 0.868 0.833 0.821 0.922 0.943

SROCC 0.877 0.824 0.928 0.920 0.937 0.868 0.823 0.922 0.914 0.939
RMSE 7.889 8.472 6.614 6.230 5.478 8.131 9.063 9.358 6.351 5.468

Table 4.3 – Overall performance and performances for di�erent types of distortion of the SIQA methods on
LIVE 3D-IQA Phase II database. The ranking 1st and 2nd for each criterion are highlighted with red and blue bold
texts, respectively.

SIQA
method

JPEG JP2K WN GB FF
SROCC RMSE SROCC RMSE SROCC RMSE SROCC RMSE SROCC RMSE

Chen-FR [214] 0.843 3.865 0.814 5.562 0.940 3.368 0.908 3.747 0.884 4.966
Chen-NR [237] 0.867 3.342 0.867 4.298 0.950 3.531 0.900 4.725 0.933 4.180

SINQ [238] 0.839 3.476 0.909 3.463 0.957 2.519 0.909 2.481 0.924 3.803
SSQA [225] 0.858 3.068 0.908 4.022 0.940 3.536 0.901 2.570 0.924 3.879
SQSC-AW 0.901 2.929 0.864 4.152 0.944 2.907 0.882 3.107 0.934 3.784

Paper I gives an overview of existing 3D-JND models, and compares them adopting the QA
framework described in [211]. Specifically, the performance (i.e., prediction accuracy) of the SIQA
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Figure 4.1 – Scatter distribution of predicted scores versus DMOS on LIVE 3D phase I.

Table 4.4 – SROCC values of the NR-SIQA methods on cross-database.

Training
database

Testing
database

Chen-NR [237] SINQ [238] SSQA [225]
SQSC
(FW)

SQSC
(AW)

LIVE 3D II
Waterloo IVC I 0.414 0.557 0.653 0.561 0.544
Waterloo IVC II 0.491 0.439 0.686 0.624 0.493

Waterloo IVC
II

LIVE 3D II 0.441 0.535 0.669 0.550 0.729
Waterloo IVC I 0.823 0.908 0.911 0.899 0.904

Table 4.5 – RMSE values of the NR-SIQA methods on cross-database.

Training
database

Testing
database

Chen-NR [237] SINQ [238] SSQA [225]
SQSC
(FW)

SQSC
(AW)

LIVE 3D II
Waterloo IVC I 13.957 13.426 11.832 10.048 10.765
Waterloo IVC II 16.404 17.092 14.118 12.375 14.111

Waterloo IVC
II

LIVE 3D II 9.875 9.052 8.159 9.101 7.347
Waterloo IVC I 8.750 6.331 6.021 6.252 6.154
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Figure 4.2 – Scatter distribution of predicted scores versus DMOS on LIVE 3D phase II.

metric integrating a block of 3D-JND showed the performance of the 3D-JND model. The SIQA metric
performance was evaluated based on two 3D IQA databases including symmetrically and asymmetri-
cally distorted stereopairs. However, this performance was evaluated using database containing only
symmetric distortions, such as LIVE 3D Phase I database [222], and NBU 3D II database [229]. In
addition, using only one QA framework including 3D-JND cannot generally compare the performance
between 3D-JND models. Therefore, to provide a fair comparison between 3D-JND models, some
other SIQA or stereoscopic video quality assessment (SVQA) approaches including 3D-JND should be
used [106, 239–242].

Compared to Paper I, Paper II provides a more comprehensive comparative study on state-
of-the-art 3D-JND models in terms of theoretical analysis and experiments. Although the distortion
masking ability of each 3D-JND models was evaluated, perceptual quality of JND-noise-contaminated
3D images was not subjectively assessed [243]. In particular, a subjective test should be conducted to
compare the noisy images by 3D-JND with the pristine images. The noisy images with higher quality
score show that the corresponding 3D-JND model has better distortion masking ability. In addition,
only seven texture images were used to create the 3D images used in psychophysical experiments
in order to evaluate the estimation accuracy of each 3D-JND model. More various types of images
should be employed to synthesize the 3D images for psychophysical experiments, because the real-
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world scenes are complicated and diversified. For instance, we may use the images containing persons,
objects, and animals with di�erent strength of textures and edges. Furthermore, more appropriate
disparity values should be considered in psychophysical experiments so as to measure more reliable
JND thresholds. Besides, even if we controlled the duration of the psychophysical experiments, the
visual fatigue caused by accommodation-vergence conflict may probably decrease the JND estimation
accuracy.

Paper III designs the stereopair patterns used in psychophysical experiments in order to construct
a new 3D-JND model. However, other VM e�ects (such as temporal masking) were not considered
in these patterns. One challenge is how to create a stereopair pattern simulating multiple VM e�ects
aiming to develop a more accurate 3D-JND model. Moreover, a few noise levels, luminance contrast
and disparity values were used in psychophysical experiments due to limit of experiments duration.
To construct a more reliable 3D-JND model, more appropriate noise levels, luminance contrast, and
disparity values should be taken into account. In addition, we need to consider a trade-o� between the
number of visual stimulus attributes and experiments duration. Several trials of selecting appropriate
noise increment/decrement steps are time-consuming and error-prone. Inappropriate noise variation
steps may result in misjudgment of JND thresholds. It is very challenging to synthesize S3D patterns
used in psychophysical experiments consider various VM e�ects and binocular disparity e�ect jointly.
Besides, the performance of the proposed 3D-JND model was not investigated using SIQA framework
as described in Paper I, or compression framework.

Paper IV and Paper V compute the 3D image quality combining cyclopean image quality and
DsM quality. Although two metrics proposed in Paper IV and Paper V achieved the competitive
performance compared with other SIQA metrics, the weights determining the relative importance of
cyclopean image quality and DsM quality were not investigated. In addition, performance of the
proposed SIQA method in Paper IV was not evaluated on other 3D-IQA databases containing only
symmetrically distorted stereopairs (e.g., LIVE 3D Phase I database [222]). In Paper V, UQI and
VIF were used to assess the monocular image quality for LIVE 3D Phase I and II databases ([214, 222])
and Waterloo IVC Phase I database [215], respectively. This limited the generality of SIQA metric be-
cause the metric using UQI/VIF may preform less well on other databases. Furthermore, the proposed
metric showed low prediction accuracy for 3D images distorted with asymmetric distortion types in
Waterloo IVC Phase I database.

Compared to Paper IV and Paper V, Paper VII used gradient magnitude similarity mean
(GMSM) metric to compute monocular image quality. However, the proposed SIQA model in Paper
VII need to select appropriate downsampling factor of GMSM for di�erent 3D-IQA databases in order
to achieve the promising performance. Moreover, impact of the visual saliency component, which is
used in view dominance strength modeling, on QA performance was not discussed in Paper VII. In
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addition, the performance of the SIQA framework including the 3D-JND model proposed in Paper
III was not evaluated and compared with other 2D-JND and 3D-JND models.

Paper VI [24] and the work in [233] present NR-SIQA approaches based on binocular-rivalry-
inspired combination of monocular statistical features, and/or disparity information. Performance of
these proposed SIQA models were not evaluated on symmetric-distortion-related 3D-IQA databases
(e.g., LIVE 3D Phase I [222], and NBU 3D II [229]). Furthermore, other machine learning-based
regression methods (such as artificial NN [174] and RF [175]) were not used to compare with SVR. In
addition, the computational complexity of the proposed metrics should be investigated and compared
with other e�cient NR-SIQA metrics. Besides, both SIQA metrics perform less well for blurring
artifacts (e.g., Gaussian blur and JP2K) in 3D images because the smoothing e�ects in LoG response
may probably decrease the accuracy of mincing the stimulus strength. In [233], the proposed model
accounting for disparity features had not compared to this without disparity features in terms of
prediction accuracy. Moreover, as the proposed SIQA metric was developed based on multiple scales,
the performance of the metric with a single scale should be further investigated.

In addition to the above-described limitations, we discuss the challenges and di�culties one may
face in 3D quality assessment, and try to give some possible solutions and future work.

Firstly, despite several publicly available 3D IQA databases have been proposed, they are less
comprehensive compared with 2D IQA database, and are created based on di�erent protocols. For
example, existing 3D IQA databases (e.g., LIVE 3D [214], Waterloo-IVC [215]) cover a few distortion
types in contrast with 2D ones (refer to [136]). Furthermore, some issues are probably involved in
creating 3D IQA databases such as acquisition protocols, depth and visual discomfort control, image
formats, and asymmetric distortion control. Besides, current 3D IQA databases are established under
controlled conditions by introducing the graded simulated distortions onto images. However, real-world
3D images have large content variation, and may be altered by complex mixtures of diverse distortions,
which are not typically modeled by the synthetic distortions considered in existing databases. Only
NBU-MDSID Phase I and II databases [230, 244] have considered the e�ects of multiple distortions
simultaneously presented on images. Similar to some extensive 2D IQA databases [140, 141], future
new 3D IQA databases, which contain a large amount of images with a diverse range of 3D content
and multiple distortions types, are thus needed to achieve a fair performance evaluation of quality
metrics. Besides, collecting means opinion scores based on subject test is costly when the samples
number is large. Therefore, the robust and e�cient performance evaluation criteria could be used for
future studies [141].

Secondly, most state-of-the-art SIQA models focus on the judgment of the quality discrepancy
between the reference and distorted 3D images. However, when 3D content is presented to viewers,
they mainly care about the quality of experience (QoE) [245, 246] influenced by diverse perceptual
factors such as image quality, image aesthetics [247], depth quality [248], visual comfort [12, 249],
naturalness [250], etc. In particular, the geometry distortion in the depth map may probably influence
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QoE [251]. Image aesthetics, referring to the experience of beauty for viewers when perceiving an
image, may be an interesting factor a�ecting 3D QoE [252]. Accordingly, e�ectively predicting the
QoE of real-world 3D image/video would be a more appropriate way to evaluate the overall quality
[253]. A major challenge is on how to model the relationships between the above QoE-related factors
and to combine them all together to achieve final QoE prediction. In addition, some work may explore
how to develop approaches to improve QoE by estimating the optimal capture and display parameters
of 3D scene content.

Finally, even though several machine learning based NR-SIQA models have achieved outstanding
performance on specific SIQA databases [230, 254], there still exists some deficiencies and issues for real
applications. These models need large training database (containing diverse contents) to su�ciently
represent the real-world natural images. Therefore, the performance of these SIQA models is database-
or distortion types-dependent [255, 256]. Moreover, several SIQA models may su�er from the over-
fitting problem due to the training dataset, and thus one can not fairly evaluate their generalization
ability. Thus, it is di�cult to choose the right size of the training and the testing samples on one specific
dataset. Even though learning from cross-databases may avoid this shortcoming [257], accurately
predicting 3D quality on cross-databases is still challenging [225, 258]. Specifically, a small number of
samples in the training stage may result in under-fitting. Besides, most NR-SIQA approaches often
involve supervised learning and/or manual parameters adjustments to deliver promising performance
for specific databases. These approaches could not generally deal with real-world images with richer
content variations and various quality degradations. Moreover, a regression model is often trained with
parameters to map the extracted image features to subjective scores. Optimizing these parameters
for the best quality prediction is challenging, such as the parameters of SVR [209]. A more e�ective
regression model with a few parameters could be used to improve the generalization ability of the
quality metrics [259]. Meanwhile, e�cient and robust pooling strategies of monocular and binocular
features/qualities for overall 3D quality formulation can be used to increase the quality prediction
accuracy [244, 260]. Besides, most existing NR-SIQA methods are opinion-aware, which require human
subjective scores to train the regression model. However, let remainder that obtaining subjective scores
based on subjective experiments are often expensive and time-consuming. Furthermore, the opinion-
aware methods highly depend on image content, distortion types, and relative distortion level on the
left and right views. Consequently, inspired by existing blind 2D quality metrics [205, 206], defining
how to design reliable opinion-unaware NR-SIQA metrics is a worthwhile and challenging future work.
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Chapter 5

General Conclusions and Perspectives

5.1 Conclusions

This thesis focuses on the investigation of the HVS characteristics and properties of the binocular
perception, which are taken into account in order to establish the methodologies of 3D image visibility
threshold estimation and SIQA. The work described here is divided into two parts.

In the first part, we explored the human visual sensitivity to detect the changes in an image. If
these changes are lower than JND threshold the HVS cannot detect them. While 2D-JND models have
been extensively investigated and advanced in the recent years [101], research on 3D-JND is still at an
early stage. Therefore, we first provided a comprehensive overview of state-of-the-art 3D-JND models,
and a deep comparison between them from various aspects including advantages, shortcomings, and
applications. Moreover, the performance of the 3D-JND models were experimentally compared in
terms of distortion masking ability, estimation accuracy and prediction accuracy of SIQA framework
including 3D-JND block. This overview and comparative study of 3D-JND models are related to
Paper I and Paper II. The major contributions of these papers are to propose design methodologies
to compare existing 3D-JND models, and analyze these models. This can help other researchers design
more accurate and particular 3D-JND models for image/video processing tasks. Besides, based on
the survey of existing 3D-JND models, we proposed a new 3D-JND model accounting for monocular
VM e�ects, binocular disparity, and visual attention. To achieve this, we designed and conducted
psychophysical experiments as described in Paper III. This new model, which can be further applied
in 3D compression and SIQA, is one of the core contributions for this thesis.

In the second part of the dissertation, we explored the SIQA methodology considering binocular
perception behaviors (i.e., binocular fusion and binocular rivalry) and visual sensitivity of the HVS,
which can a�ect human quality judgment for 3D images [65, 261]. We developed 3D quality metrics
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from two di�erent aspects. First, we proposed two FR-SIQA approaches. One was developed based on
the binocular-based cyclopean image quality and disparity image quality (see Paper IV and Paper
V), the other accounted for binocular-based cyclopean image and binocular-rivalry-inspired monocular
image quality (see Paper VII). Paper VII is one core contribution of this dissertation, because it
(1) presented a new SIQA framework considering di�erent binocular rivalry modeling strategies, (2)
investigated the importance of cyclopean image quality and combined monocular 2D quality, and
(3) provided an overview of existing 3D-IQA databases, and compared the proposed metrics with
various competitive SIQA metrics in terms of prediction accuracy based on these databases. Second,
we proposed two NR-SIQA approaches based on the combination of monocular statistical features
of the image local contrast with (see Paper VI) or without disparity information [233]. Paper VI
and [233] contribute to validate the e�ectiveness of using image LoG responses to model the visual
stimulus strength of the binocular rivalry phenomenon, and highlight the impacts of image scale on
3D-IQA.

Measuring the depth impairment is crucial for developing reliable 3D-JND and SIQA models. In
particular, degradation on disparity/depth maps may cause visual discomfort/fatigue that definitely
influences the overall quality of the 3D images [248]. On the one hand, modeling 3D scene statistics
with regards to depth perception has not been deeply explored to date. Moreover, the relationship
between the 2D quality and depth information/quality in SIQA task remains poorly understood.
On the other hand, the e�ect of disparity masking on 3D visibility threshold has been validated in
our proposed 3D-JND model, even though this e�ect is relatively less than luminance adaptation
and contrast masking. In sum, depth impairment has e�ects on 3D quality assessment and 3D-JND
modeling depending on the relative degradation strength between depth information/map and 2D
images.

5.2 Perspectives

The research work of this thesis can be extended from various perspectives, some of which are described
below.

Existing 3D-JND models were compared using a SIQA model including 3D-JND in Paper I. There
exist other SIQA approaches employing BJND to determine the visibility thresholds for NOPs in a
stereopair [106, 239–242]. Therefore, the idea is to replace BJND by other 3D-JND model in these
SIQA models to provide a more extensive comparison between 3D-JND models. In addition, aiming
to optimize perceptual quality and bitrate saving in 3D compression, applying the proposed 3D-JND
model (see Paper III) in 3D high e�ciency video coding will be worthwhile and very interesting.
Besides, we will propose a new framework that uses the 3D-JND model to enhance the perceptual
quality of 3D image/video.

Paper III can be extended by considering other types of distortions (e.g., "blurring" and "blocki-
ness") in addition to noise artifacts in psychophysical experiments. Furthermore, in order to propose a
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more general and accurate 3D-JND model, we will design the psychophysical experiments accounting
for both symmetric and asymmetric distortions in stereopairs. This new model can probably improve
the prediction accuracy for symmetrically distorted stereopairs using SIQA metrics. Finally, the de-
sign of a stereopairs pattern used in psychophysical experiments jointly considering di�erent important
VM e�ects and binocular disparity will be challenging and is still an open issue. Moreover, to evaluate
the performance of future proposed 3D-JND models, we need to create a 3D-JND-related database
containing original and distorted 3D images associating with subjective JND values (considered as
ground truth), as well as objective JND values estimated based on existing 3D-JND models.

Selecting the appropriate image scale of the proposed NR-SIQA metrics in Paper VI, Paper
VII, and [233] are time-consuming and error-prone, the future work can focus on development of a
learning-based method to automatically select the best single/multiple scales. Although other regres-
sion methods (e.g., artificial neural network [174] and random forest [175]) can be used in our pro-
posed NR-SIQA models [24, 233], obtaining the subjective scores are obviously costly. Consequently,
opinion-unaware and distortion-unaware NR-SIQA approaches considering the binocular visual prop-
erties based on deep neural networks are mandatory for real industrial applications. Besides, in order
to guarantee good QoE [245, 262], a reliable methodology of 3D image QoE assessment can be further
investigated, because QoE depends on various factors including 2D image quality, depth quality, visual
comfort, naturalness and immersive sensation [251, 263]. Finally, SVQA advanced slowly over the last
decade due to the complexity of video spatial and temporal features, and their interaction in binocular
perception. Our proposed SIQA frameworks in this thesis could be extended in SVQA for real-time
QA and distortion optimization.

In addition to the above-mentioned future work, several long-term perspectives are listed as follows:

• Binocular vision modeling: Although there exits several binocular combination models [264,
265], information on how to apply the appropriate models in SIQA task remains an open question
[266]. In addition, much more e�orts should be made to deeply understand and e�ectively
model the binocular vision behaviors (i.e., binocular fusion, binocular rivalry, and binocular
suppression) and their interaction in with human 3D quality judgment [267, 268]. Finally, more
work for SIQA should be done to jointly model the scene statistics of depth information and
natural images [269].

• Learning-based 3D-JND models: The current 3D-JND models are mainly based on 2D-
JND and psychophysical experiments. To accurately determine the visibility thresholds due
to multiple distortions in the real-world 3D image, learning-based JND modeling could be a
worthwhile research direction [270]. For instance, an interesting work in [271] studied how
to estimate the just noticeable distortion thresholds from image quality scores. Besides, the
creation of a reliable stereoscopic images databases with 3D-JND ground truth is important and
imperative to evaluate the estimation accuracy of the existing 3D-JND models. Finally, it may
be worthwhile to investigate how to directly compare state-of-the-art 3D-JND models without
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conducting subjective tests [272].

• Perception-driven omnidirectional (360-degree) content processing: Virtual reality
(VR) contents are in the form of 360-degree image/video. VR multimedia technology is becom-
ing very popular because of providing a more interactive and immersive viewing experience to
viewers. Accordingly, future research directions with respect to VR content may include: (1)
JND models of 360-degree image/video, (2) quality or QoE assessment approaches for 360-degree
image/video [273, 274], (3) visual saliency models of 360-degree image/video [275, 276] and (4),
360-degree image/video databases with ground-truth quality or QoE [277, 278].
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Abstract

The just noticeable di�erence (JND) notion reflects the maximum tolerable distortion. It has been
extensively used for the optimization of 2D applications. For stereoscopic 3D (S3D) content, this
notion is di�erent since it relies on di�erent mechanisms linked to our binocular vision. Unlike 2D,
3D-JND models appeared recently and the related literature is rather limited. These models can be
used for the sake of compression and quality assessment improvement for S3D content. In this paper,
we propose a deep and comparative study of the existing 3D-JND models. Additionally, in order to
analyze their performance, the 3D-JND models have been integrated in recent metric dedicated to
stereoscopic image quality assessment (SIQA). The results are reported on two widely used S3D image
databases.

Index terms– Just noticeable di�erence (JND), stereoscopic 3D (S3D), 3D-JND, stereoscopic
image quality assessment (SIQA).
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6.1 Introduction

In the recent years, S3D technology has changed the user’s viewing experience. It provides the viewer
with new sensations of immersion. However, the advent of this technology introduced some technical
challenges such as compression and quality assessment, to name a few.

Besides, to ensure quality and comfort at every step of the S3D application, it is important to
understand and account for the di�erent perceptual processes of the human visual system (HVS). For
decades, the scientific community has acquired a deep knowledge about 2D perception. Several models
have been successfully developed and exploited like the just noticeable di�erence (JND). The latter
informs about thresholds, depending on the luminance, contrast and spatial frequency of the local
image regions, beyond which a distortion will be visible. 2D-JND models are generally developed
based on specific characteristics of MV, which does not fit with the complexity of 3D perception
requiring specific models accounting for both monocular and binocular depth cues.

To date, only a few 3D-JND models can be found in the literature [1–5] and additional research
e�orts are needed to achieve a more complete and e�cient model. The aim of such a model is to
improve the performance of 3D applications (compression, watermarking, quality assessment, . . . ).
To the best of our knowledge, there is no comprehensive survey of the 3D-JND models. In this paper,
we propose an exhaustive literature review of the 3D-JND models. Each model is briefly described
by giving its rationale and main components in addition to providing information about the targeted
applications, the pros and cons. In order to quantitatively compare the di�erent models, we adopted
a quality assessment framework including a 3D-JND block. Every model has been tested separately
on two widely used 3D image databases. The performance has been measured thanks to state-of-the-
art measures namely Pearson and Spearman correlations and RMSE. The remainder of the paper is
organized as follows. In Sect. 6.2, we review the existing 3D-JND models separately. The models
are compared and analyzed in Sect. 6.3. Sect. 6.4 presents the experimental results of performance
comparison used in SIQA. This paper ends with some conclusions and future work.

6.2 3D-JND models

6.2.1 Just Noticeable Di�erence in Depth (JNDD)

De Silva et al. proposed the just noticeable di�erence in depth (JNDD) model [1, 6] describing the
threshold for depth changes that human can perceive on a 3D display. The JNDD model was developed
based on Psychophysical Experiments (PE) by using di�erent simulated depth values. As described in
[1], the sensitivity of the human eyes to depth di�erence is mainly dependent on the viewing distance
and the displayed depth level of the image. The viewing distance provides the location of the fixation
point, i.e., the screen. The mathematical JNDD model [6] is described by:

JNDD = 100.94◊log10(v)≠2.25 + Kw · |dp| , (6.1)
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where Kw is the Weber Constant determined by the experiment. v and dp denote the viewing distance
and the simulated depth level (from 0 to 255), respectively. Since the viewing distance rarely changes
in real situations, the JNDD is measured by only considering the displayed depth level in PE. The
experimental validation of the JNDD has been performed using 2D-plus-depth videos. Two identical
objects are first displayed at the same depth level, and then the depth level of one object is changed
gradually. The subjects are asked to inform about depth change between the two objects when
perceived. Various initial depth levels of the two objects have been investigated and the final threshold
is obtained by averaging the JNDD values of all subjects.

6.2.2 Binocular Just Noticeable Di�erence (BJND)

Another 3D-JND model, called binocular JND (BJND) has been introduced by Zhao et al. [2]. It
indicates the threshold in inter-di�erence between the left and right views that human can recognize.
This model investigates the properties of the binocular vision in response to asymmetric noise in a
pair of stereoscopic image based on the HVS characteristics such as luminance adaptation (LA) and
contrast masking (CM). The latter HVS characteristics are often used in 3D-JND modeling. It should
be noted that there are two BJND thresholds (left and right) for each stereo-pair, because the BJND
of one view indicates the maximum distortions that can be introduced in this view without evoking
binocularly visible di�erences, given the distortions in the corresponding region of the other view.
Like this, BJND(l|r) [2] is defined by:

BJNDl|r(i, j, d) = BJNDl|r(bgr|l(i, j + d), ehr|l(i, j + d), nr|l(i, j + d))

= AC(bgr|l(i, j + d), ehr|l(i, j + d))

◊
C

1 ≠ (
nr|l(i, j + d)

AC(bgr|l(i, j + d), ehr|l(i, j + d)))“

D 1
“

,

(6.2)

where l|r refers to left or right, (i, j) denotes the pixel coordinate, and d is the horizontal disparity
value at pixel (i, j). The parameter “ controls the influence of noise in the other view and is set to
1.25. bgr|l(i, j) and ehr|l(i, j) respectively indicate the average background luminance (ABL) and edge
height. Note that 0 Æ nr Æ AC and if there is no noise in the other view, BJND(l|r) can be reduced
to AC . The experimental results showed that human perceives the distortion when viewing the stereo
images if this distortion in one view is more than the BJND value.

6.2.3 Joint Just Noticeable Di�erence (JJND)

In a di�erent fashion, Li et al. [3] proposed the joint just noticeable di�erence (JJND) model based on
the idea that human has di�erent perceptions of objects with di�erent depths. Unlike the JNDD and
BJND models, the JJND model was developed with a 2D-JND model [7], namely nonlinear additively
masking model (NAMM), which accounts for LA and texture masking (TxM).
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Firstly, the JND thresholds of one image (e.g., left image) are calculated by NAMM. For the
other image (e.g., right image), disparity estimation is performed in order to classify the image pixels
into two categories: occluded and non-occluded pixels [8]. Occluded regions, often appearing at the
edges of objects, are very strong monocular clues and participate to depth perception. Based on the
aforementioned classification, the JJND of one view is proportional to the JND threshold of the other
view, where the coe�cients are defined as: 1) depth-dependent value — for non-occluded pixel and 2)
a fixed value – for occluded pixels. The JJND of the right image [3] can be formalized as follows:

JJNDr(i, j) =
I

– · JND(i, j), if(i, j) œ occlusion

—(i, j) · JND(i, j), otherwise
, (6.3)

where JND is the visibility threshold for left image determined by [9] and – set to 0.8. The JJND has
been validated thanks to subjective experiments.

6.2.4 Stereo Just Noticeable Di�erence (SJND)

The abovementioned 3D-JND models were dedicated to stereoscopic images, while the one discussed
here focuses on stereoscopic video. Based on the free energy theory in brain theory and neuroscience,
HVS adaptively excludes the disorder tendency information in a continued movement scene, and try
to focus on the definite content of the perceived image [10]. This phenomenon can be modeled as
the temporal masking (TM) caused by motion when watching a video. Therefore, Qi et al. [4, 11]
developed the stereo just noticeable di�erence (SJND) model by considering both intra-view and inter-
view masking e�ects in addition to LA and spatial masking (SP). The intra-view masking includes
binocular masking (BM), whereas intra-view masking refers to TM.

Firstly, for one of the views, a JND image is determined by integrating LA and SP [12]. Based on
it, the temporal JND (TJND) is derived for each view’s sequence. For a pair of stereoscopic images,
the final TJND is computed by combining the TJND of left and right frames using weights set to 0.375
and 0.625 respectively according to the used asymmetry between views. Next, views are decomposed
into occluded and non-occluded regions that result in the binocular rivalry (BR) and binocular fusion
(BF), respectively. To model the BM, di�erent inter-view JND (IJND) thresholds are calculated
based on left and right views according to occluded and non-occluded regions. The IJND of the
occluded regions is combined with TJND to obtain the TIJND. The IJND of the non-occluded
regions can be computed by considering the LA and SP as well as the left and right view’s consistency
of luminance. By combining the TIJND and IJND for non-occluded regions, SJND [4]is defined as:

SJND(i, j, t) = (TIJND(i, j, t))µ + (IJNDn(i, j, t))1≠µ, (6.4)

where µ manages the tradeo� between TIJND and IJNDn (µ = 0.6 in [11] for the best performance.
SJND was used for SVQA showed a very good performance.
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Table 6.1 – Comparison between the existing 3D-JND models.

JNDD BJND JJND SJND HJND

Inputs
Viewing distance,

depth level

ABL, image
luminance

and noise amplitude

ABL, image
luminance,

disparity and depth maps

ABL, image luminance,
disparity map,

and temporal information

ABL,
image luminance,

depth map
Masking

e�ect
DI LA and CM LA, TxM and DI LA, CM, TM and BM LA, TxM, DI and GD

3D format 2D-plus-depth LR views LR views LR frames DIBR, MVD

Model
validation

Theoretical results vs
results derived from

PE

Noise detection
probability

in S3D image

Comparison with
2D-JND in terms of

subjective QA

A metric using this model
vs SVQA metrics in

terms of subjective VQ

This model vs JJND in terms of
both compression e�ciency

and subjective VQ
Complexity - ** * * ****

Pros
Di�erent

stereoscopic displays
Several 3D

video formats
Binocular vision

properties
Multiple

masking e�ects
Depth contrast information,

GD

Cons
Limits 3D video

format, influence of
depth image quality

Zero disparity,
stereo matching

algorithm impact

Unreliable results
for low disparity, lack of

comparison with 3D models

Di�cult to design the PE
for model validation

directly, Many parameters

Highly depending on
DIBR techniques, specially
designed for MVD format

6.2.5 Hybrid Just Noticeable Di�erence (HJND)

It has been demonstrated that depth perception is influenced not only by depth intensity (DI) but also
by depth contrast (DC). In light of this, Zhong et al. [5] proposed the hybrid just noticeable di�erence
(HJND) model. The HJND model is de-signed to measure JND threshold especially for multi-view
video plus depth (MVD) [13]. It considers DI, DC and the geometric distortion (GD) and is developed
on the top the 2D-JND model described in [13]. The HVS is more sensitive to closer objects than
deeper ones, and the regions with inconsecutive depth or higher DC attract more attention. Based
on these considerations, a depth saliency model [14] was used to quantify the combined action of DI
and DC for 3D video. The geometric distortion in synthetic views, which derives from one of depth
image-based rendering (DIBR) techniques [15], is introduced by the quantization distortion decoded
depth map and measured by the Hausdor� distance [16]. The HJND threshold [5] can be calculated
as follows:

HJND(i, j) = Á · JND(i, j) · ÊN(Sd(i,j)·G(i,j)), Ê œ (0, 1), (6.5)

where JND(i, j) denotes the 2D-JND threshold at coordinate (i, j). The parameters Á and Ê set
empirically to 1.4 and 0.15, respectively. Sd and G indicate depth saliency image and GD image
respectively. The symbol N(·) is used for a normalization function.

6.3 Comparison of 3D-JND models

The overall comparison between the previously described 3D-JND models is given in Table 6.1 We
compare in this section these models by analyzing their various aspects.
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6.3.1 Pros and cons

The JNDD model has been designed thanks to PE on stereoscopic displays. This model can be ex-
tended to a variety of stereoscopic display types. However, it can only measure the visibility threshold
with limited depth levels, thus could not satisfy the desirable depth range for real application. For
instance, the JNDD is not suitable for estimating the tolerable depth di�erence in virtual view ren-
dering. In addition, this model is only compatible with 2D-plus-depth representation of 3D content.
Besides, depth images with poor quality may lead to inaccurate JND thresholds. Compared to JNDD
model, the BJND model is closer to human binocular perception. Further-more, the BJND model
can use both texture-plus-depth and LR views formats. However, the BJND model was generated
based on experiments that ignore the e�ect of disparity, which makes it less suitable for real-world
stereoscopic images. In addition, the disparity estimation error using stereo matching algorithm may
decrease the reliability of the BJND estimation.

The JJND model copes with the issue of the zero disparity happening with the BJND model.
Moreover, this model mimics the BF and BR by computing di�erent JND thresholds for occluded and
non-occluded regions separately. The performance of JJND can be reduced for a pair of S3D images
with low disparity image i.e., weak depth perception. Besides, even though JJND has been given as
more e�ective than 2D-JND model, it has not been compared with the 3D-JND models. The SJND
model is theoretically the most reliable among these 3D-JND models since it takes into consideration
four masking e�ects so that it completely model the HVS characteristics. However, it is di�cult to run
a subjective validation of this model because there are several factors from di�erent masking e�ects.
Tuning the parameters is somewhat complicated and may lead to very di�erent results, in addition
to the necessary adjustment to the used dataset. As described previously about the SJND model,
the non-occluded regions lead to BF, whereas occluded regions cause BR. In fact, binocular rivalry
can occur on non-occluded regions when a large inter-di�erence exists between left view non-occluded
pixels and its corresponding pixels in the right view. The relationship between BF and BR should be
better explored to model human binocular vision.

In contrast to JJND, the HJND model has taken the depth contrast into account besides depth
intensity. Additionally, considering GD make this model more reliable. However, the HJND is specif-
ically developed out for MVD format, and the estimation based on LR views format may not be
correct. The accuracy of this model is highly depending on the rendered images derived from DIBR
algorithm.

6.3.2 Applications embedding 3D-JND

To improve the compression e�ciency, De silva et al. [6] proposed a depth map preprocessing algorithm
based on the JJND model to remove depth detail not noticed by the viewer. In addition, the JJND
model was used to enhance the depth sensation in [17, 18]. The principle is to increase depth di�erences
between objects such that it exceeds the JNDD. Inspired by this model, Nur et al. [19] investigated
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the sensitivity of the HVS to depth details under di�erent illumination conditions.
Jung et al. [20] applied the BJND model in sharpness enhancement of stereo images, and the

reliability of the BJND has been evaluated by considering the accuracy of the stereo match ng tech-
nique. From a di�erent perspective, three SIQA metrics [21–23] have been proposed based on the
BJND model. It should be noted that in this paper the performance comparison between 3D-JND
models has been performed by using the method proposed by et al. [23]. Meanwhile, the same au-
thors proposed an asymmetric stereoscopic coding method [24] based on BJND and depth level. This
method employs the BJND model to measure the minimum distortions in one view that generate
3D perceptual di�erence, and then uses the depth information to adjust the resolution. In 3D video
compression, a new MacroBlock level rate control method based on BJND model has been proposed
in [25]. The visual perception factor measured by BJND was used to adjust the MB level bit allo-
cation. An e�cient mode decision approach using BJND has been developed for MVC [26] reducing
significantly the runtime with a negligible increase of bit rate.

Recently, Wang et al. [27] carried out a stereo images watermarking method based on the JJND
model. This approach validates the authenticity and integrity of stereo images by localizing the
tampered regions. The SJND model was used for SVQA, whereas the HJND model has been applied
to improve 3D coding e�ciency for MVD. So far there is no application in other domains for SJND
and HJND models since they have been proposed recently.

6.4 Experiments

With the aim to compare the performance of the aforementioned 3D-JND models in a more quanti-
tative way, we adopted the quality framework described in [23]. The BJND block described in this
method is sequentially replaced by the described 3D-JND models to estimate the overall 3D quality.
The JNDD model has been discarded from this evaluation because of its dependency to the psy-
chophysical conditions that cannot be controlled here. This metric is based on the assumption that
3D human perception is dominated by the view that contains more information. The overall quality
score of each region is modulated based on a 3D-JND model for non-occluded pixels and the JND
model for occluded pixels. In our experiments, the metric measures the quality for left and right views
separately. So, for HJND model, the reference views are used to generate the virtual views using
DIBR [28]. Occlusion detection was achieved by crosschecking the pair of disparity maps [29].

Various databases are publicly available for 3D QA. We propose to evaluate the performance of
the 3D-JND models on two databases providing subjective scores: LIVE 3D IQA databases (phase
II) [? ] and Waterloo IVC 3D IQ databases (phase I) [? ]. The former database contains the
ground truth disparity and depth maps, and for the latter database, this information can be obtained
from Middlebury 2005 Stereo Database [30]. LIVE 3D IQA database is composed of 8 reference and
360 distorted stereo pairs with symmetric and asymmetric distortions, including JPEG, JPEG2000,
additive white Gaussian noise (WN), Gaussian blur (GB) and fast-fading. An example of the images
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Figure 6.1 – Example of a pair of stereoscopic images from LIVE 3D IQA database and the corresponding
3D-JND maps.

from this database is given in Fig. 6.1 gives an example of stereo-pair from LIVE 3D IQA together
with the corresponding BJND, JJND, SJND and HJND maps. One can notice the variability of
the 3D-JND maps. Waterloo IVC 3D database phase I consists of 6 reference stereo pairs collected
from the Middlebury 2005 Stereo Datasets, and 324 distorted stereo pairs. It includes symmetric and
asymmetric distortions i.e., WN, GB and JPEG. The performance of the quality metric including
the 3D-JND models have been evaluated using three performance measures: the Linear Correlation
Coe�cient (LCC), the Spearman Rank Order Correlation Coe�cient (SROCC) and RMSE.

Table 6.2 shows the performance of the metrics using 3D-JND models on LIVE 3D IQA database.
These results demonstrate that SJND outperforms the others models for both symmetric and symmet-
ric distortions. This can be explained by the fact that the SJND model considers various characteristics
of the binocular vision, which undoubtedly correspond better to the human quality judgment. The
BJND mod-el is similar to the JJND in terms of the performance. On the other hand, the HJND
model achieved the worst performance among all 3D-JND models because this model was initially
designed for 3D representation with MVD format. Nevertheless, the overall performance is relatively
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Table 6.2 – Performance comparison between 3D-JND models used in SIQA on LIVE 3D IQA database (phase
II), AS and S denote asymmetric and symmetric distortions respectively.

Model
LCC SROCC RMSE

AS S ALL AS S ALL AS S ALL
BJND 0.714 0.811 0.762 0.680 0.804 0.746 7.09 7.31 7.30
JJND 0.701 0.816 0.755 0.652 0.809 0.734 7.24 7.22 7.40
SJND 0.740 0.850 0.800 0.701 0.842 0.780 6.82 6.59 6.91
HJND 0.674 0.800 0.737 0.633 0.792 0.712 7.49 7.49 7.63

Table 6.3 – Performance comparison between 3D-JND models used in SIQA on Waterloo IVC 3D IQ database
(phase I).

Model
LCC SROCC RMSE

AS S ALL AS S ALL AS S ALL
BJND 0.635 0.736 0.673 0.577 0.690 0.638 13.2 10.1 12.8
JJND 0.613 0.716 0.660 0.616 0.723 0.663 13.5 10.4 13.0
SJND 0.657 0.792 0.710 0.664 0.773 0.713 12.9 9.20 12.2
HJND 0.652 0.744 0.685 0.647 0.735 0.674 13.0 10.0 12.6

low. In addition to the performance comparison mentioned above, we provide in Fig. 6.2 the scatter
distributions of DMOS versus predicted scores obtained with the di�erent 3D-JND models, and the
non-linear fitting curves.

Table 6.3 corresponds to the performance comparison on Waterloo IVC 3D IQ database. According
to these results, the metric using SJND gives the best performance, and this is particularly remarkable
on the symmetric distortions. It should be noted that the metric using HJND model achieved better
performance that of the metrics using BJND or JJND model. Since the overall disparity of the S3D
images in this database is generally larger than that in LIVE 3D IQA data-base, the performance of
the HJND may be improved owing to the consideration of depth saliency. Compared to LIVE 3D
IQA database, the performance results on Waterloo IVC 3D IQ database are lower due to the high
distortions levels (e.g., large amount of white Gaussian noise) in this database.
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Figure 6.2 – Scatter distributions of DMOS versus predicted scores obtained by the BJND model (top left),
JJND model (top right), SJND model (bottom left) and HJND model (bottom right) on LIVE 3D database. Red
curve represents the non-linear fitting.

6.5 Conclusion

In this paper, we reviewed the literature of 3D-JND models and analyzed their performance by giving
the pros and cons in addition to the targeted applications. In order to provide a more quantita-
tive evaluation, we used the di�erent models in a SIQA framework. This helped in investigating the
capabilities of these models by comparing the performances on two widely used databases. The exper-
imental results showed that using the SJND model achieved the best performance thanks to various
visual masking characteristics considered in this model. In other words, the promising performance
can be achieved when using a reliable 3D-JND model, which mimics the binocular vision properties
and depth information as much as possible. This study allowed to determine the most important
features, that will help in the construction of a more robust and adapted 3D-JND model.
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Abstract

Just noticeable di�erence (JND) for stereoscopic 3D content reflects the maximum tolerable distortion,
it corresponds to the visibility threshold of the asymmetric distortions in the left and right contents.
The 3D-JND models can be used to improve the e�ciency of the 3D compression or the 3D quality
assessment. Compared to 2D-JND models, the 3D-JND models appeared recently and related liter-
ature is rather limited. In this paper, we give a deep and comprehensive study of the pixel-based
3D-JND models. To our best knowledge, this is the first review on 3D-JND models. Each model is
briefly described by giving its rationale and main components in addition to providing exhaustive in-
formation about the targeted application, the pros, and cons. Moreover, we present the characteristics
of the human visual system (HVS) presented in these models. In addition, we analyze and compare
the 3D-JND models thoroughly using qualitative and quantitative performance evaluation based on
Middlebury stereo datasets. Besides, we measure the JND thresholds of the asymmetric distortion
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based on psychophysical experiments and compare these experimental results to the estimates from
the 3D-JND models in order to evaluate the accuracy of each model.

Index terms– Human visual system, just noticeable di�erence (JND), 3D compression, 3D-JND
models, 3D quality assessment

7.1 Introduction

The digital era has allowed simplifying the spread of Stereoscopic 3D (S3D) technologies in di�erent
application domains (e.g., 3D-Cinema, 3D-TV) in recent decades. The most important aspect is that
S3D can provide viewers with favorable immersion and natural sensation thanks to both binocular and
monocular depth cues. However, there is a noticeable decrease in the attractiveness of S3D technology
during the last few years. This is due to the complexity of such a content and the undesirable e�ect
that it may generate from a perceptual point of view. S3D brought many technical challenges in
the field of image and video processing linked to quality assessment, enhancement, and compression.
Specifically, the main challenges are evaluating and optimizing the S3D imaging system with respect
to storage capacity and quality of the user’s experience (QoE).

To do so, it is important to understand and explore the di�erent perceptual processes of the human
visual system (HVS). For decades, the scientific community has exhaustively studied two-dimensional
(2D) perception. Several properties and models of the HVS have been successfully exploited like
the just noticeable di�erence (JND) models [1, 2]. These models refer to thresholds, depending on
luminance, contrast, and temporal/spatial frequency of the local regions in the image, beyond which
a distortion is visible. In other words, a given distortion cannot be perceived by the HVS if it is lower
than the JND threshold. Therefore, JND models have been widely applied in visual signal processing,
especially in compression and image processing [3, 4].

Over the last decades, numerous 2D-JND models have been developed either in transform domain
[5–9], or in pixel domain [10–16]. Comprehensive reviews on 2D-JND models have been recently done
in [17, 18]. 2D-JND models are generally proposed based on specific characteristics of monocular
vision, which does not fit with the complexity of 3D perception requiring specific models accounting
for both monocular and binocular depth cues.

To date, only a few 3D-JND models have been proposed because of the complex processes to be
modeled [19–25]. Additional research e�orts are undoubtedly needed to achieve a more accurate and
e�cient modeling that can e�ectively improve the performance of S3D applications (e.g., compression,
quality assessment, watermarking...). To the best of our knowledge, no review exists for the comparison
of 3D-JND models in the framework of image quality assessment (IQA) [26].

In this paper, we propose a comprehensive survey of 3D-JND models. Since most of the existing
3D-JND models are computed in the pixel domain, we focus this survey on pixel-based 3D-JND models.
Each model is briefly described by giving its rationale and main components in addition to providing
exhaustive information about the targeted applications, the pros, and cons. The paper also provides a
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brief review of visual masking e�ects considered in these models. Furthermore, we present a thorough
comparative analysis between the 3D-JND models using qualitative and quantitative performance
evaluation. This study aims at comparing the distortion masking ability of the 3D-JND models using
the widely used Middlebury stereo datasets[27–29], and evaluating the accuracy of these models using
psychophysical experiments.

In summary, the major contributions of this paper include:

• An exhaustive review of the 3D-JND models;

• Creation of a dataset composed of asymmetrically distorted S3D images using 2D texture images
from ETHZ Synthesizability Dataset [30];

• An extensive experimental comparison with qualitative and quantitative performance evaluation
of the 3D-JND models.

The remainder of the paper is organized as follows. In Section 7.2, we describe the main visual
characteristics largely employed by 3D-JND models. Section 7.3 reviews the existing 3D-JND models
separately. In Section 7.4, the models are thoroughly analyzed and compared. Section 7.5 presents the
experimental results on the performance comparison of the 3D-JND models in terms of masking ability
and accuracy using two di�erent datasets. This paper ends with some conclusions and discussion of
open issues in Section 7.6.

7.2 Visual characteristics for 3D-JND models

Over the last decade, HVS has been studied based on physiological and psychophysical experiments
[31]. HVS models are widely used in image/video processing [32], since such models can simplify
and mimic the behaviors of the so complex HVS system. For instance, 3D-JND models, aiming
to determine whether the distortion is undetectable by the HVS in a given block, can be used to
improve the coding e�ciency (CE) for S3D image/video. Therefore, understanding and studying the
HVS mechanisms of the HVS are critical for developing a more reliable 3D-JND model. In general,
3D-JND models from the literature account for the HVS sensitivity and VM e�ects.

In this section, we explain the factors a�ecting the HVS sensitivity related to S3D content. Most
3D-JND models are developed by combining some of the factors including spatial contrast sensitivity,
luminance adaptation, contrast masking, binocular masking, temporal masking, and depth masking.

7.2.1 Spatial and temporal contrast sensitivity

The luminance contrast sensitivity (CS) of the HVS describes the ability to perceive the various
frequencies of stimuli with di�erent luminance contrasts [33, 34]. This sensitivity for a given target
can be determined by measuring the minimum contrast necessary for an observer to detect the target.
Accordingly, the CS depends on the spatial frequency of the visual stimuli [35]. Several psychophysical
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experiments measured the CS by determining the minimum contrast to make a sine-grating of a given
spatial frequency visible in an image [36, 37]. The relationship between the CS and the spatial
frequency of the grating in the image is typically modeled by the achromatic contrast sensitivity
function (CSF) having a band-pass behavior [38, 39]. In addition to achromatic CSF models, chromatic
CSF models having a low-pass behavior were proposed in [40, 41]. Moreover, some spatial-temporal
CSF models have taken the temporal CS into account [42, 43]. Recently, Rousson et al. [44, 45]
proposed a CSF for observing stereoscopic content on S3D display. Moreover, some 2D-JND models
were developed using CSF [6–8].

7.2.2 Masking e�ects

The JND thresholds for S3D content depend not only on the spatial-temporal CS but also on visual
masking e�ects (MEs). The latter characteristics are often used in 3D-JND modeling. The visual
masking (VM), a perceptual phenomenon, describes the visibility reduction (masking e�ect) of one
stimulus (e.g., the target) to human eyes in the presence of another (the masker) where these stimuli
are coincident in space and simultaneous in time [46]. For 2D content, the masking e�ect (ME) is
modeled by using spatial frequency [47], orientation [48], motion (commonly in video) [49] of both
image signals. For S3D, the disparity/depth should be considered in VM [50].

7.2.2.1 Luminance adaptation

According to [51], the HVS has the ability to quickly adjust to the levels of background light in
order to distinguish objects. This ability is known as luminance adaptation (LA). It is related to
background luminance masking (LM). As described in [5], human eyes are more sensitive to luminance
variation/contrast than absolute luminance intensity. In other words, the salience of an object in an
image could be more influenced by the di�erence between its luminance and the luminance of its
adjacent background than by its own absolute luminance. LA allows adjusting the sensitivity of the
HVS in response to the relative luminance variations. LA can be measured in an increment threshold
experiment [51] that describes the just-noticeable luminance di�erence of a stimulus as a function
of the background luminance intensity. The experimental results showed that the ratio between the
just-noticeable luminance di�erence and background luminance, known as Weber’s fraction [6, 52], is
approximatively constant for a wide range of luminance intensities. The luminance contrast LCw can
be defined as:

LCw = �L

Lbg
, �L = |L ≠ Lbg| , (7.1)

where L is the luminance of a test stimulus, and Lbg is the surrounding background luminance. For
the scene with Lbg of high levels, LCw remains nearly constant as Lbg increases. LCw is considered
in this case as Weber fraction. On the other hand, LCw increases when Lbg decreases in the case of
low background luminance. This describes a high visibility threshold of luminance contrast in dark
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regions of the scene. In [5, 10], the authors estimated LA (i.e., visibility threshold of LM) of an image
pixel in the pixel domain as follows:

LACY (i, j) =

Y
_]

_[
c1 ◊ (1 ≠

Ú
Lbg(i,j)

127
) + c3, if Lbg(i, j) Æ 127

c2 ◊ (Lbg(i, j) ≠ 127) + c3, otherwise
, (7.2)

where c1, c2, and c3 are constants, and are set to 17, 3/128, and 3 respectively for a viewing distance
of six times the targeted image height [5, 10]. It should be noted that the value of c1 is proportional
to the viewing distance. Lbg(i, j) is the average background luminance at pixel of coordinate (i, j),
and is computed by:

Lbg(i, j) = 1
32

5ÿ

x=1

5ÿ

y=1

I(i ≠ 3 + x, j ≠ 3 + y) ◊ B(x, y), (7.3)

where I(i, j) is the luminance intensity at pixel (i, j), and the kernel of low-pass filter B is represented
as:
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(7.4)

In addition to the method described above, Zhao et al. measured the visibility threshold of LA
based on psychophysical experiments [20]. It was conducted using binocular patterns (corresponding
to S3D images) that are asymmetrically distorted by noise, as shown in Fig. 7.1(a). During reading,
the para-fovea could process the information within 5¶ of visual angle of its fixation point, while the
fovea processes the information located within 2¶ around the fixation point [53, 54]. The fovea and
para-fovea in human eye contribute jointly to the perception of a fixated region and its surrounding
regions perceived in the range of para-fovea. As shown in Fig. 7.1(b), the visual stimulus in an image
is modeled as 2¶ ◊ 2¶ square (called R3) corresponding the fovea, and 5¶ ◊ 5¶ square (called R2)
covering the para-fovea. The aim of the psychophysical experiment of Fig. 7.1(a) is to determine the
amplitude of the maximum noise LAZr (i.e., visibility threshold of LA) injected in one view (e.g., right
view) without evoking binocularly perceptible di�erence due to LM, under a background luminance
Lbgl

in this view (e.g., left view ), for a given noise with amplitude nl injected in other view (e.g.,
left view). More specifically, given the background luminance Lbgr and noise amplitude nl in the left
view, an observer adjusted the noise amplitude in the right view nr to binocularly detect the just
noticeable noise. The amplitude of the aforementioned noise on a given pixel in the right image,
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Figure 7.1 – (a) Binocular patterns used for modeling luminance adaptation (LA), (b) Schematic illustration of
regions covered by the fovea and the para-fovea. Note that R1, R2, and R3/R

Õ
3 correspond to three regions of the

retinal image: the peri-fovea, the para-fovea covered by a square with 5¶◊5¶ of visual angle, and the fovea covered by
2¶ ◊2¶ square. In this case, the level of average background luminance corresponds to that of background luminance
since the squares are uniform. The luminance intensity of R1 is set to 112. The luminance in R2 represents the
background luminance Lbg. The luminance levels of R3 and R

Õ
3 are di�erent, and are represented as Lbg ± nl and

Lbg ± nr, respectively, where nl and nr denote the amplitude of the bipolar patterns noise injected in the left and
right views respectively.

namely LAZr (i, j), is computed by:

LAZr (i, j) = Amax(Lbgl
(i, j + d)) ◊

C

1 ≠ ( nl(i, j + d)
Amax(Lbgl

(i, j + d)))“

D 1
“

, (7.5)

where ⁄, set to 1.25, allows adjusting the noise influence in left view. d is the disparity value at pixel
(i,j) corresponding to the horizontal shift of the pixel between right to left view. It should be noted
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that Lbgr (i, j) corresponds to the average background luminance of the pixel (i,j), which is determined
by averaging the luminance intensity in the 5 ◊ 5 window. Amax(Lbgl

) denotes the visibility threshold
of right view LA if there is no noise in the left view. Amax(Lbg) is calculated by the following formula:

Amax(i, j) =
I

a ◊
#
Lbg(i, j)2 ≠ 96Lbg(i, j)

$
+ 8, if 0 Æ Lbg(i, j) < 48

b ◊
#
Lbg(i, j)2 ≠ 32Lbg(i, j)

$
+ 1.7, if 48 Æ Lbg(i, j) Æ 255

(7.6)

where a = 2.7 ◊ 10≠3, b = 1.0 ◊ 10≠4. LAr(i, j) becomes maximum, namely Amax(i, j + d) when
nl(i, j + d) = 0.

7.2.2.2 Contrast masking

Contrast masking (CM) describes the VM e�ects in presence of two or more stimuli if these stimuli
are of similar or same contrast/spatial non-uniformity (e.g., spatial frequency, orientation) [55]. CM
is also known as spatial masking. CM explains the fact that the presence of one stimulus reduces the
ability of a subject to detect a targeted stimulus. For instance, HVS could tolerate more noises in
textured regions than smooth regions since the spatial frequencies in noise and textured regions are
similar.

According to previous studies, the visibility threshold of CM can be defined as a function of the
average background luminance Lbg(i, j) and the amplitude of luminance edge (namely, edge height)
Eh(i, j), which refers to the contrast degree. For a viewing distance of six times of the targeted image
height, Chou and Li [5] computed the visibility threshold related to contrast masking CMC(i, j) as
follows:

CMC(i, j) = 0.01Lbg(i, j) ◊ [0.01Gm(i, j) ≠ 1] + 0.115Gm(i, j) + c4, (7.7)

where c4 adjusts the average amplitude of CMC(i, j), and is set to 0.5 in [5]. Gm(i, j) denotes the
maximum gradient at pixel (i, j) over four directions, and is computed as follows:

Gm(i, j) = max
s=1,2,3,4

{grads(i, j)} , (7.8)

with

grads(i, j) = 1
16

5ÿ

x=1

5ÿ

y=1

I(i ≠ 3 + x, j ≠ 3 + y) ◊ gs(x, y), (7.9)

where gs(x, y) are kernels corresponding to four directional hight-pass filters. These four kernels are
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defined in equation 7.10 and 7.11:

g1 =

S

WWWWWWWU

0 0 0 0 0
1 3 8 3 1
0 0 0 0 0

≠1 ≠3 ≠8 ≠3 ≠1
0 0 0 0 0

T

XXXXXXXV

, g2 =

S

WWWWWWWU

0 0 1 0 0
0 8 3 0 0
1 3 0 ≠3 ≠1
0 0 ≠3 ≠8 0
0 0 ≠1 0 0

T

XXXXXXXV

(7.10)

g3 =

S

WWWWWWWU

0 0 1 0 0
0 0 3 8 0

≠1 ≠3 0 3 1
0 ≠8 ≠3 0 0
0 0 ≠1 0 0

T

XXXXXXXV

, g4 =

S

WWWWWWWU

0 1 0 ≠1 0
0 3 0 ≠3 0
0 8 0 ≠8 1
0 3 0 ≠3 0
0 1 0 ≠1 0

T

XXXXXXXV

(7.11)

Since HVS is more sensitive to the distortion around edge regions than that in textured regions,
CM in edge and textured regions should be considered separately. Yang et al. [10] found that Chou
and Li approach overestimates the visibility threshold of CM for edge regions. Thus, they used the
Canny detector to decrease the thresholds for edge regions, and divided CM into texture masking
(TxM) and edge masking (EM). Note that we focus only on the luminance component here. For a
viewing distance of six times the targeted image height, Yang et al. calculated the visibility threshold
of CMY (i, j) by:

CMY (i, j) = 0.117 ◊ Wed ◊ Gm(i, j), (7.12)

where Gm(i, j) describes the maximal weighted average of gradients for the pixel (i, j). Wed denotes
the edge-related weight of the pixel (i, j), and is defined as:

Wed(i, j) = Ed(i, j) ú hlp, (7.13)

where Ed is the edge map estimated by Canny’s detector [56] with a threshold of 0.5. ú represents
the convolution operator, and hlp is a k ◊ k Gaussian low-pass filter having ‡ as a standard deviation.
In [10], ‡ and k are set to 0.8 and 7, respectively.

Similarly, Liu et al. [12] employed the image decomposition method [57] to decompose the tar-
geted image into structural and textural regions that lead to EM with Canny’s detector and TxM,
respectively. Therefore the visibility thresholds of CM due to edge and texture are described by:

CML(i, j) = 0.117 ◊ (we · CMe(i, j) + wt · CMt(i, j)), (7.14)

where we = 1 and wt = 3 are the weights for edge masking (CMe) and texture masking (CMt)
respectively. This means that the CM e�ect is stronger in textured regions than edge regions. CM
estimation proposed by Chou and Li (see Eqs. 7.7, 7.8 and 7.9) was used to calculate CMe and CMt
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Figure 7.2 – Binocular patterns used in the experiment for modeling contrast masking. Note that R1, R2/R
Õ
2,

and R3/R4 correspond to three regions of a human retinal image: the peri-fovea, the para-fovea covered by a square
with 5¶ ◊5¶ of visual angle, and the slice in fovea region with 2¶ height and 0.25¶ width. The luminance intensity of
R1 is set to 112. The background in patterns consists of 2 regions: R2 with luminance Lbg and R

Õ
2 with luminance

of Lbg ≠ Eh, where Eh represents the edge height. The luminance levels of R3 and R4 are di�erent, and equal to
Lbg ± nl and Lbg ± nr, respectively. nl and nr denote the amplitude of the bipolar patterns noise injected in the
left and right views, respectively.

for both structural and textural images, respectively.

Zhao et al. [20] estimated the visibility threshold of CM using binocular patterns shown in Fig.
7.2 Similar to the psychophysical experiment used in LA, the subjects are asked to focus on R3 and
R4, and adjust the luminance of the noise in the right view, nr until the noise around the edges is
binocularly just detected, Lbg and nl being fixed. The just noticeable noise pair {nl, nl} are then
recorded. In [20], the authors conducted several experiments to determine di�erent noise pairs {nl, nl}
under di�erent Lbg or nl. Thus, the visibility threshold due to CM of the right view, which depends
on Lbgl

and the left image Il, is expressed by:

CMZr (i, j) = Amax(Lbgl
(i, j + d)) + F (Lbgl

(i, j + d)) ◊ Eh(Il(i, j + d)), (7.15)

where d is the disparity, Amax is estimated by Eq. 7.6, and Il denotes the left image. F is a fitting
function according to the average background luminance of one view, Lbgl

, is experimentally described
as:

F (i, j) = ≠10≠6 ◊
Ë
0.7Lbg(i, j)2 + 32Lbg(i, j)

È
+ 0.07. (7.16)

The edge height Eh(i, j) of one pixel in image I is calculated using the following formula:

Eh(i, j) =
Ò

E2

h(i, j)) + E2
v(i, j)), (7.17)
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where

Ek(i, j) = 1
24

5ÿ

h=1

5ÿ

v=1

I(i ≠ 3 + h, j ≠ 3 + v) ◊ Gk(h, v), k = h, v, (7.18)

Gh =

S

WWWWWWWU

≠1 ≠2 0 2 1
≠2 ≠3 0 3 2
≠3 ≠5 0 5 3
≠2 ≠3 0 3 2
≠1 ≠2 0 2 1

T

XXXXXXXV

, Gv =

S

WWWWWWWU

1 2 3 2 1
2 3 5 3 2
0 0 0 0 0

≠2 ≠3 ≠5 ≠3 ≠2
≠1 ≠2 ≠3 ≠2 ≠1

T

XXXXXXXV

(7.19)

7.2.2.3 Binocular masking

Binocular masking (BM) describes the interocular interaction/masking in the case of two dissimilar
stimuli presented to both eyes [58, 59]. The limited distortion in one view is influenced/masked by
the other so that the two views can be successfully fused to a 3D image. This visual phenomenon is
known as the binocular fusion (BF) [60]. The BM reveals that the HVS can tolerate a certain limited
asymmetric distortion in one view that does not impair 3D perception. For instance, the subject
perceives a stereo pair where the blur is introduced in the right image while the left image is kept
unchanged. The fused 3D image is slightly blurred since the blur e�ect is reduced by the left image.
Zhao et al. [20] modeled the BM using LA and CM as described previously. In addition, Qi et al. [23]
conducted a psychophysical experiment similar to one of Fig. 7.1 in order to determine the visibility
threshold of the right view BMr(i, j) relative to left one due to BM, which is approximately described
as:

BMr(i, j) =

Y
_]

_[
15 ◊ (1 ≠

Ú
Lbgl

(i,j)

127
) + 5.08, if Lbgl

(i, j) Æ 127
0.04 ◊ (Lbgl

(i, j) ≠ 127) + 5.08, otherwise
, (7.20)

where Lbgl
is the average background luminance that is calculated by using Eq. 7.3 and 7.4. The

BM described above is similar to the LA shown in Eq. 7.2, but the visibility threshold of one view is
calculated based on the luminance intensity of the other view.

7.2.2.4 Temporal masking

The visual MEs mentioned above are dedicated to images, while the one discussed here focuses on
video. Based on the free energy principle, HVS adaptively conceals the disorder tendency information
in a continued movement scene, and tries to focus on the definite content of the input image [61]. This
phenomenon can be modeled as the temporal masking (TM) caused by temporal discontinuities in
intensity, such as motion when watching a video [62, 63]. Yang et al. indicated that TM is proportional
to motion [64]. Inspired by [65], Zhou et al. [22] estimated the visibility threshold of TM using the
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temporal JND (TJND) model described as follows:

TJNDZ(i, j, t) =

Y
]

[
max

Ó
·, H

2
◊ e

≠0.15
2fi ◊[�(i,j,t)+255] + ·

Ô
, if�(i, j, t) Æ 0

max
Ó

·, K
2

◊ e
≠0.15

2fi ◊[255≠�(i,j,t)] + ·
Ô

, otherwise
, (7.21)

where
�(i, j, t) = I(i, j, t) ≠ I(i, j, t ≠ 1) + Lbg(i, j, t) ≠ Lbg(i, j, t ≠ 1)

2 , (7.22)

TJNDZ(i, j, t) is the TJND threshold of a pixel (i, j) of a given frame of multi-view plus depth
video. I(i, j, t) and Lbg(i, j, t) denote the luminance and the average background luminance of the
pixel (i, j) respectively. · , H, and K are set to 8, 3.2, and 0.8, respectively. �(i, j, t) represents
the luminance di�erence of the inter-frame. Larger �(i, j, t) values result in higher TM thresholds.
H > K reveals that the changes from high to low luminance can bring more TM than the changes
from low to high luminance. Similarity, Qi et al. [23] estimated TM with the following formula:

TJNDQ(i, j, t) = max {f1(i, j, t), f2(i, j, t)} , (7.23)

where
f1(i, j, t) = max

Ó
abs(CMC(i, j, t) ≠ CMC(i, j, t ≠ 1)), �CMC

Ô
, (7.24)

f2(i, j, t) = max
Ó

abs(LA(i, j, t) ≠ LA(i, j, t ≠ 1)), �LA
Ô

, (7.25)

CMC(i, j, t) and LA(i, j, t) are the visibility thresholds of CM and LA at pixel (i, j) in the frame
t (t Ø 2), respectively. Eqs. 7.2 and 7.7 were used to calculate the CMC(i, j, t) and LA(i, j, t)
respectively. �CMC and �LA denote respectively the average di�erence between two adjacent frames
of all CMC and LA of the whole video:

�ME = 1
N

Nÿ

t=2

[ME(i, j, t) ≠ ME(i, j, t ≠ 1)] , (7.26)

where ME represents LA or CMC , and N is the number of frames. TM thresholds for the left and
right views are calculated separately.

7.2.2.5 Depth masking

In addition to 2D VM e�ects, binocular depth masking (DM) have been studied by De Silva et al.
[19, 66], who demonstrated that the subject cannot perceive su�ciently small depth changes on the
scene. Moreover, the studies in indicated that the quality of the S3D video (with color plus depth
representation) hardly changes with the compression of the depth map [67, 68]. In this circumstance,
De Silva et al. first derived the visibility threshold relative to DM, which is known as the just noticeable
di�erence in depth (JNDD). As described in [19], the JNDD threshold is mainly dependent on the
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Figure 7.3 – Frameworks of the JNDD model for: (a) real-world 3D perception, and (b) S3D display.

viewing distance and the displayed depth level of the image. Based on the existing psychophysical
models, a mathematical JNDD model for real-world viewing scenarios is defined as follows:

JNDD = 10[0.94◊log10(‹)≠2.25] + Kw ◊ |dp| , (7.27)

where Kw is the Weber constant and experimentally set to 0.03. dp is the simulated depth level with
meter unit, while v denotes the distance between the subject’s eyes and the fixation point i.e., the
screen.

As shown in Fig. 7.3(a), JNDD is estimated according to v and Kw. In fact, the JNDD in Eq. 7.25
can split in two parts: first, the visibility thresholds JNDDd=0 when the simulated depth is equal
to zero. Then the visibility thresholds JNDD|d|>0 in the case of nonzero disparity. JNDDd=0 and
JNDD|d|>0 are described by :

JNDDd=0 = 10[0.94◊log10(‹)≠2.25] (7.28)

and
JNDD|d|>0 = 0.03 ú |dp| . (7.29)
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Figure 7.4 – JNDD thresholds JNDD, JNDDd=0 and JNDD|d|>0 according to simulated distance for real-world
3D perception. The viewing distance is set to 3 m.

According to Eqs. 7.25, 7.26, and 7.27, the JNDD curves corresponding to JNDD, JNDDd=0,
JNDD|d|>0 are depicted in Fig. 7.4. One can notice that the linear summation between green and
blue curves derive the red curve (JNDD thresholds).

7.3 3D-JND models

In this section, we give a brief introduction of the existing 3D-JND models. Specifically, each model is
described with its framework as well as its mathematical expression. It should be noted that all 3D-
JND presented models measure the achromatic JND thresholds. In other words, only JND thresholds
of the luminance component of the color image are taken into account.

7.3.1 JNDD model

A JNDD model is addressed firstly in [19, 66, 68], which indicates that a human subject could not
perceive depth changes below the JNDD threshold. The visibility thresholds due to DM (described
in Section 7.2.2.5) could not be applied for S3D displays. This is due to the fact that the viewing
distance rarely changes when a subject watches a S3D image/video on a S3D display. Therefore, De
Silva et al. ignored the viewing distance, and only considered the depth level in JNDD estimation (see
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Fig. 7.3(b)). They conducted a psychophysical experiment to validate the JNDD|d|>0 (as shown in
Fig. 7.4), and to measure the JNDD thresholds on a S3D display using 2D-plus-depth videos.

As described in [19, 66], the simulated depth level is 8 bits, where 0 and 255 denote the farthest and
the nearest positions apart from the subject, respectively. Objects on the display with a depth value
of 128 have zero disparity. The plane with zero disparity, called zero parallax plane, is the co-planar
with the display plane. In the psychophysical experiment, two identical (left and right) objects were
first displayed at the same depth level, namely initial depth level, and then the depth level of one
object is changed gradually. The subjects were asked to inform about depth changes between the two
objects when perceived. Various initial depth levels of the two objects have been investigated and the
final threshold is obtained by averaging the JNDD values of all subjects. By analyzing the JNDD
values according to di�erent initial depth levels, the JNDD threshold JNDDnum, for a given initial
depth value dpi, is modeled as follows:

JNDDnum(i, j) =

Y
_____]

_____[

21, if 0 Æ dpi(i, j) < 64
19, if 64 Æ dpi(i, j) < 128
18, if 128 Æ dpi(i, j) < 192
20, if 192 Æ dpi(i, j) < 225

(7.30)

where dpi(i, j) is the depth value (in pixels) of the original depth map at the pixel coordinate (i, j).
The JNDD thresholds in Eq. 7.28 correspond to the symmetrical shape of the JNDD|d|>0 in Fig. 7.4
except the zero disparity level (128). Moreover, according to the experimental results, the expert’s
subjects are more sensitive to depth changes than the non-expert ones.

7.3.2 BJND model

Meanwhile, another 3D-JND model, namely binocular JND (BJND) was proposed by Zhao et al. [20].
It reveals the threshold in inter-di�erence between the left and right views that human can recognize.
The BJND model investigates the properties of the binocular vision in response to asymmetric noise
in a stereo pair based on the VM e�ects of the HVS. These considered in this model consists of LA (see
Section 7.2.2.1) and CM (see Section 7.2.2.2). Eqs. 7.5 and 7.15 are used to calculate the visibility
thresholds related to LA (LAZr ) and CM (CMZr ), respectively. Fig. 7.5 illustrates the framework of
calculating the BJND thresholds of one view of the stereopair. It is worth noting that there are two (left
and right) BJND thresholds for each stereopair, since the BJND of one view indicates the maximum
distortions that can be introduced in this view without evoking binocularly visible di�erences, given
the distortions in the corresponding pixels of the other view. Like this, BJND of the left or right view
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Figure 7.5 – Framework for calculating the BJND of a single view of a stereo pair.

BJNDl|r is defined by:

BJNDl|r(i, j) = BJNDl|r(Lbgr|l(i, j ≠ dl|r), Ehr|l(i, j ≠ dl|r), nr|l(i, j ≠ dl|r))

= CMZ(Lbgr|l(i, j ≠ dl|r), Ehr|l(i, j ≠ dl|r))

◊
C

1 ≠ (
nr|l(i, j ≠ dl|r)

CMZ(Lbgr|l(i, j ≠ dl|r), Ehr|l(i, j ≠ dl|r)))“

D 1
“

(7.31)

where l | r represents left or right, and d is the horizontal disparity value at pixel (i, j). The disparity
values of the left view (dl) are positive while those of the right view (dr) are negative. Lbg(i, j) indicates
the average background luminance at pixel (i, j) that is estimated by averaging the luminance intensity
in the 5 ◊ 5 surrounding region. Eh(i, j) refers to the edge height that is estimated using Eqs. 7.17,
7.18, and 7.19. CMZ denotes the visibility thresholds of the CM computed by Eq. 7.15. n(i, j) is the
luminance di�erence between the original and distorted images at pixel (i, j), e.g., (noise amplitude).
Note that 0 Æ nr|l Æ CMZr|l , and BJND of one view BJNDl|r can be reduced to CMZr|l if there is
no noise in the other view. The BJND model was validated by means of subjective experiments [20].
The experimental results showed that human perceives the noise when viewing the stereo images if
and only if this noise in one view is higher than the BJND value.

7.3.3 JJND model

In addition to LA and CM, the binocular depth cue is proposed to be considered for the design of
this 3D-JND model. Since monocular and binocular cells in V1 area have di�erent receptive fields
[69], it is reasonable to calculate the JND thresholds for monocular and binocular regions separately.
The monocular region in one view refers to 1) the pixels not having corresponding pixels in the other
view due to the occlusion e�ect; or/and 2) disparity-shifted pixels within image borders. Thus the

119



7. Paper II: A Survey of Stereoscopic 3D Just Noticeable Di�erence Models

JJND of the 
right image 

Subjective 
experiment 

Model validation Left 
image 

Input 

Right 
image 

Depth 
map 2D-JND 

model 

Occlusion 
detection 

Disparity 
map 

Occluded 
pixels 

Non-
occluded 

pixels 

Output 
JND map 

Combination  

Disparity & depth 
estimation  

Figure 7.6 – Framework for calculating the JJND of the right view of a stereo pair.

monocular region is known as an occluded region (OR) or non-corresponding region (NCR), and
the OR/NCR is only seen by one eye. In contrast, the binocular region in one view is called non-
occluded region (NOR) or corresponding region (CR), and the NOR/CR can be perceived by both
eyes correspondingly.

Accordingly, Li et al. estimated the JND thresholds of both OR and NOR, and thus proposed the
joint JND (JJND) model based on the idea that a human subject has di�erent perceptions of objects
with di�erent depths [21]. Unlike the JNDD and BJND models, the JJND model was developed with
a 2D-JND model, namely non-linear additively masking model (NAMM) [10], which accounts for LA
and CM. As shown in Fig. 7.6, the JND thresholds of one image (e.g., left image) are calculated using
NAMM. This JND threshold JNDYl(i, j) of a pixel (i, j) in the left image is defined by:

JNDYl(i, j) = LACY (i, j) + CMY (i, j) ≠ C ◊ min {LACY (i, j), CMY (i, j)} , (7.32)

where C is a constant used to adjust the inter-e�ect between LACY (i, j) and CMY (i, j). The latter
are calculated using Eqs. 7.2 and 7.12, respectively. C is within the [0, 1] range, and set to 0.3 in [10].

For the other image (e.g., right image), disparity estimation is firstly performed in order to classify
the image pixels into two classes: occluded and non-occluded pixels [70, 71]. The OR, often appearing
at the objects’ edges or the image borders, represents very strong monocular clues and any distortion
in this region is easy to be noticed compared to NOR. Besides, the depth map is derived according
to the disparity map and viewing distance. Based on the aforementioned classification, the JJND of
the right view is proportional to its 2D-JND thresholds estimated by NAMM, where the coe�cients
are defined as 1) a fixed value –OR for occluded pixels; and 2) depth-dependent value —NOR for
non-occluded pixels (see [21]). The JJND of the right image is formalized as follows:

JJNDr(i, j) =
I

–or ◊ JND(i, j), if(i, j) œ OR

—dp ◊ JND(i, j), otherwise
, (7.33)
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Figure 7.7 – Framework for calculating the MJND of one image from multi-view videos.

where JND(i, j) is the visibility threshold for right image at pixel (i, j). –or = 0.8 is used to limit
the JND thresholds for OR. The e�ectiveness of the JJND model was demonstrated using subjective
quality evaluations. Specifically, the qualities of the noise-injected S3D images are compared between
using JJND and 2D-JND [10]. The experimental results showed that the S3D images receiving JJND
noise tolerate more noise than with 2D-JND, in the case of nearly same perceptual quality.

7.3.4 MJND model

Even though the JJND accounts for binocular depth cues, the reliability of this model can be reduced
for the stereopairs with low average depth value or uniform depth map. To avoid this constraint,
Zhou et al. [22] designed a JND in the Multi-view case (MJND) by combining spatial JND (SPJND),
TJND and depth JND (DPJND). As shown in Fig. 7.7, the MJND model is defined as:

MJND(i, j, t) = [SPJND(i, j, t)]w1 ◊ [TJNDZ(i, j, t)]w2 ◊ [DPJND(i, j, t)]w3 ,
(7.34)

where MJND(i, j, t) is the JND threshold at pixel (i, j) at the tth 3D frame (image plus depth map).
w1, w2 and w3, are used to control the contribution of SPJND, TJND and DPJND respectively, are
set to 1. SPJND denotes the JND thresholds for both LA and CM, and is calculated using a 2D-JND
model [5] defined as follows:

SPJND(i, j, t) = max {LACY (i, j, t), CMC(i, j, t)} , (7.35)

where LACY (i, j, t) and CMC(i, j, t) are estimated based on Eqs. 7.2 and 7.7. In Eq. 7.2, c1, c2, and
c3 are set to 14, 3/128, and 2, respectively. c4 in Eq. 7.7 is set to 1/4. In addition, TJNDZ(i, j, t) is
determined using Eq. 7.21. Zhou et al. estimated the DPJND thresholds based on the JNDD model
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Figure 7.8 – Framework for calculating the SJND of a stereo pair.

proposed in [66]. Thus, the DPJND(i, j, t) is defined by:

DPJND(i, j, t) = 1 + JNDDnum(i, j, t)
256 , (7.36)

where JNDDnum denotes the numerical JND thresholds computed by Eq. 7.30. The performance of
MJND was validated based on subjective experiments. Compared to using the spatial-temporal JND
(STJND) [22] or the foveated JND (FJND) [13], the noise-injected 3D video distorted using MJND
can tolerate much more noise for the same perceptual quality. Furthermore, the multi-view coding
(MVC) [72] using the MJND model achieves better perceptual quality than using the joint multi-view
model [73] for the same bit rate.

Inspired by the MJND, Liu et al. [74] proposed a new multi-view JNDD (MJNDD) model used
to improve the joint multi-view video coding (JMVC). The MJNDD model combines STJND with an
adapted JNDD model, which segment the texture frame into background regions (BR) and foreground
regions (FR). Recently, Shi et al. [75] developed a new 3D-JND model, which considers the depth
information and visual saliency in addition to LA, CM, and TM.

7.3.5 SJND model

Qi et al. [23, 76] developed the stereo JND (SJND) model for 3D video with the stereo interleaving
format [77] (i.e., left and right frames). The SJND model takes into account both intra-view and
inter-view MEs in addition to LA and CM. The intra-view masking includes BM, whereas inter-view
masking refers to TM.

As shown in Fig. 7.8, for one of the left and right frames, the visibility thresholds for intra-view
ME (namely TJNDL/TJNDR ) are determined by integrating LA, CM, and TM. TJNDL/TJNDR

is calculated according to Eq. 7.23. For a pair of stereoscopic frames, the stereo TJND (TJNDs) is
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computed as follows:

TJNDs(i, j, t) = 3
8 ◊ [TJNDL(i, j, t)] + 5

8 ◊ [TJNDR(i, j, t)] , (7.37)

The weights for left and right views are used to determine the asymmetry between views [78]. Besides,
the views are decomposed into NOR and OR involved respectively in the binocular fusion (BF) [60] and
the binocular rivalry (BR) [79]. The human brain can fuse the left and right views into a single mental
image when the stimuli in both views are similar. However, if the stimuli are su�ciently di�erent, our
brain fails to merge both views resulting in BR phenomena. To model the BM, di�erent intra-view
JND (IJND) thresholds are computed based on left and right views according to OR and NOR. The
occluded pixels appear on the edge of foreground objects. Therefore, The IJND for non-occluded
pixels IJNDo only accounts for CM, and is defined as:

IJNDo(i, j, t) = r(t) ◊ CMl(i, j, t) + [1 ≠ r(t)] ◊ CMr(i, j, t), (7.38)

where r(t) is a random value in the range [0, 1]. Since OR is detected for a random moment, r(t)
varies according to time. CMl/r thresholds are calculated based on Eq. 7.7. IJNDo is not based on
experiments measuring BM e�ect, thus IJNDo and TJNDs above should be combined to consider
the VM e�ects of both inter-frame and intra-frame. Accordingly, the new model called TIJND is
described as follows:

ITJND(i, j, t) = wt ◊ TJND(i, j, t) + wb ◊ IJNDo(i, j, t), (7.39)

where wt and wb are the weights used to balance the importance of inter-frame and intra-frame JNDs,
respectively. Since BM appears less on OR than NOR, BM e�ect should be considered less than TM
for NOR. Thus wt and wb are set to 0.9 and 0.1, respectively. In contrast, LM, CM, and BM are taken
into account for NOR. The visibility threshold of the intra-view masking for a non-occluded pixel,
namely IJNDn is represented by:

IJNDn(i, j, t) = max {f1(i, j, t), f2(i, j, t), BM(i, j, t)} , n œ l, r, (7.40)

where f1 and f2 are calculated based on Eqs. 7.24 and 7.25, respectively. BM(i, j, t) refers to the
luminance visibility of one view relative to the other view in the tth frame of the video. By using Eq.
7.20, BM(i, j, t) can be determined. IJNDn of a stereo pair is computed by averaging the IJNDn

values for left and right views (IJNDl and IJNDr). By integrating IJNDn with ITJND, the SJND
threshold of a stereo pair is defined as:

SJND(i, j, t) = [TIJND(i, j, t)]µ ◊ [IJNDn(i, j, t)](1≠µ) , (7.41)
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where µ manages the tradeo� between TIJND and IJNDn, and is set to 0.5 in [23] or 0.6 in [76].
The e�ectiveness of SJND for stereoscopic video quality assessment (SVQA) was demonstrated thanks
to subjective experiments.

7.3.6 HJND model

It has been demonstrated that depth perception is influenced not only by depth intensity (DI) but also
by depth contrast (DC). In light of this, Zhong et al. first proposed a 3D image JND model combining
2D-JND with depth saliency taking DI and DC into account [80]. Moreover, the serious geometric
distortion (GD) in synthesized views attracts visual attention leading to smaller JND thresholds.
Therefore, based on their previous work and a 2D-JND model [10], Zhong et al. [24] recently developed
a hybrid JND (HJND) model, which considers GD in addition to DI and DC.
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Figure 7.9 – Framework for calculating HJND for a single view.

HVS is more sensitive to closer objects than deeper ones, and the regions with inconsecutive depth
or higher DC attract more attention. Thus, depth saliency is influenced by DI, depth intensity contrast
and depth orientation contrast. Based on these considerations, a depth saliency model [81] was used
to quantify the combined action of DI and DC for 3D video. For the nth and (n + 1)th views, the
disparity map can be estimated by the stereo matching algorithm. In order to obtain the depth map,
the first step is to translate the disparity value disp into depth value dp by:

dp(i, j) = b◊f
disp(i,j)

, disp(i, j) ”= 0, (7.42)

where b and f denote the baseline distance between the adjacent cameras and focal length of the
camera, respectively. disp(i, j) is the disparity of the pixel at coordinate (i, j). The intersection of two
adjacent cameras creates a zero disparity plane, and this zero disparity corresponds to the 3D display.
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Deep objects refer to positive disparity, while the pop-out objects have a negative disparity. Next, the
depth value is quantized as an 8 bits value, where 0 means the farthest object and 255 denotes the
nearest one. Nearer objects are obviously the most salient to the observers. Thereby the depth value
dp(i, j) is mapped to the range [0, 255] through the non-linear quantization, defined as follows:

dpm(i, j) =
Í
255 ◊ dpmin

dp(i,j)
◊ dpmax≠dp(i,j)

dpmax≠dpmin
+ 0.5

Î
, (7.43)

where ÂvÊ denotes the integer less than or equal to v. dpmax and dpmin represent the maximum and
minimum values of depth, respectively. dpm is the depth map used to determine depth saliency map
Sd. The detail of the Sd estimation is described in [24]. The GD in synthetic views, created by
the depth image-based rendering (DIBR) technique [82, 83], is related to the quality of the distorted
depth map, and measured by the Hausdor� distance [84]. The latter calculates the geometric distance
between the surfaces of the synthesized view and that of the original one. Besides, Yang et al. [10]
proposed a 2D-JND model expressed by Eq. 7.32. Combining the depth saliency map Sd, GD image
G, and the 2D-JND map JNDY , the HJND threshold of one view can be calculated as follows:

HJND(i, j) = Á ◊ JNDY (i, j) ◊ ÊN(Sd(i,j)·G(i,j)), (7.44)

where the parameters Á and Ê are empirically set to 1.4 and 0.15, respectively. The symbol N(·)
represents a unity-based normalization function that brings all values into the range [0, 1]. To validate
the e�ectiveness of the HJND model, it was integrated into the MVC encoding framework to remove
the perceptual redundancy. Compared to the standard JMVC scheme and the joint multi-view video
plus depth scheme using JJND, the JMVC using HJND can save more bit-budget while providing a
better perceptual quality.

7.3.7 DJND model

As described in the HJND model, the HVS is more sensitive to nearby objects than far away objects
in the scene. In the real world, the focused areas have higher resolution on the retina while the other
areas are blurred by the HVS [85], namely depth of focus (DOF) blur e�ect [86]. However, conventional
3D displays cannot reproduce the DOF blur e�ect. In this case, the viewer focuses on the whole scene,
which does not correspond to human depth perception. Moreover, this behavior may result in visual
fatigue. The described above 3D-JND models have not considered the DOF blur e�ect. Since FR are
more sensitive by HVS than BR, the JND thresholds of FR and BR should be calculated di�erently.
Thereby, Xue et al. [25] proposed a disparity-based JND (DJND) model by combining LA, CM with
disparity information used to simulate the DOF blur e�ect.

Fig. 7.10 shows the framework for calculating the DJND of the left view of a stereo pair. First,
the visibility thresholds of LA of the left view (LJND) is estimated according to Eq. 7.2. In order to
distinguish thresholds for FR and BR, the LJND is filtered by a Gaussian low-pass filter simulating
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Figure 7.10 – Framework for calculating the DJND of the left views.

the DOF blur e�ect. The standard deviation of this filter ‡(i, j) is adaptively calculated based on
average disparity values of the disparity image as follows:

‡(i, j) =
Ë
Â + e≠–◊N(Disp(i,j))≠—

È2

, (7.45)

with

Disp(i, j) = 1
25

2ÿ

x=≠2

2ÿ

y=≠2

Disp(i + x, j + y), (7.46)

where N(Disp(i, j)) denotes the normalized average disparity value of a 5 ◊ 5 block centered at pixel
(i, j). The constants – and — are set to 10 and 0.6, respectively. Â is a constant and defined as 0.117.
Then, the filtered LJND is calculated by:

FLJND(i, j) = 1
G

2ÿ

x=≠2

2ÿ

y=≠2

IC

e
≠ x2+y2

2◊Á2(i,j)

D

◊ LJND(i + x, j + y)
J

, (7.47)

where G is a bidimensional Gaussian function. Next, the disparity information is used to weight the
FLJND by the following negative exponential function:

DLJND(i, j) = e≠2◊Disp(i,j) ◊ FLJND(i, j) + ”, (7.48)

where ” is a constant and set to 3. The region with a larger disparity (e.g., FR) has lower DLJND
thresholds than that with smaller disparity (e.g., BR). Besides, the disparity-based CJND is estimated
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by:
DCJND(i, j) = e≠2◊Disp(i,j) ◊ CJND(i, j), (7.49)

CJND(i, j) corresponds to CMY that is calculated based on Eq. 7.12. Finally, the DJND of the left
view is obtained by combining DLJND with DCJND using NAMM as follows:

DJND(i, j) = DLJND(i, j) + DCJND(i, j)

≠ „ ◊ min {DLJND(i, j), DCJND(i, j)} ,
(7.50)

where „ is used to adjust the overlapping e�ect of LA and CM, and set to 0.3. Similar to HJND model,
the DJND is applied to MVC in order to evaluate its performance. The DJND model was validated
based on two aspects: 1) the DJND-based MVC outperforms the conventional JMVC in terms of
both subjective quality of FR and visual comfort in 3D videos, 2) compared with the conventional
JMVC and JMVC using 2D-JND [64], the DJND-based MVC saves more coding bit-budget without
the degradation of the perceived quality. This is because MVC using DJND preserves the details in
the salient regions and it reduces the redundancies in the other regions.

In addition to the previously mentioned 3D-JND models, Zhang et al. [87] proposed a foveated
stereoscopic JND model and then applied it to improve the 3D video CE. Moreover, Wang et al. [88]
developed a 3D just noticeable distortion model for asymmetrical coding. Recently, Du et al. [89]
studied the e�ect of texture complexity on the JND threshold for asymmetrically encoding S3D images
based on subjective experiments.

7.4 Comparison of 3D-JND models

In this section, we compare the previously described 3D-JND models by analyzing various aspects.
The overall comparison between these models is given in Table 7.1. The summary of some important
notations and abbreviations used in Table 7.1 is given in Table 7.2.

For each 3D-JND model, the Inputs, the MEs, the 3D content format and the process of model
validation have been presented in the previous section. Thereby, we mainly compare in this section
these models in terms of their complexity, pros, and cons, as well as applications.

7.4.1 Complexity

To compare the complexity between 3D-JND models, we evaluated not only the MEs and features
considered in each model, but also the computational runtime of each model for S3D images. It
is worth noting that JJND has been discarded from this evaluation because of its dependency on
psychophysical conditions that cannot be controlled here. In order to calculate the runtime of the
3D-JND model, we employed four S3D images with LR images format from the open Middlebury
stereo database [90]. This set contains "Teddy" with resolution 450 ◊ 375 [91], "Art" and "Moebius"
with resolution 463◊370 [27, 28], and "Baby2" with resolution 1240◊1110 [27, 28]. The ground-truth
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Table 7.1 – Comparison between the described 3D-JND models.

JNDD BJND JJND MJND SJND HJND DJND

Inputs VD, DpM LCs
NAM

LC, DsM,
DpM

LCs,
DpM, TI

LCs,
DsM, TI

LCs,
DpM

LC, DsM

VM &

Featu-

res

DM LA, CM LA, CM,
DI

LA, CM,
TM, DM

LA, CM,
TM, BM

LA, CM,
DI, DC,
GD

LA, CM,
DI, DOF

3D

format

2D +
depth

LR
images

LR
images

MVD LR
frames

DIBR,
MVD

LR
images

Model

valida-

tion

Theoreti-
cal results
vs.
results
derived
from PE

Noise
detection
probabili-
ty in S3D
images

Compari-
son with
2D-JND
in terms
of SQ

MJND-
based MVC
vs. JMVM-
based MVC
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CE and PQ

A metric
using
SJND vs.
SVQA
metrics
in terms
of SQ

MVC with
HJND vs.
MVC with
JJND vs.
JMVC in
terms of
CE and
SQ
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DJND vs.
MVC with
2D-JND
vs. JMVC
in terms
of CE,PQ
and VC

Comp-

lexity
———— *** * * ** ***** **
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Extension
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3D
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3D
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Binocular
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MEs
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ignoring,
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JND
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disparities
, lack of
compari-
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for model
validation
, many
parame-
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128



7.4. Comparison of 3D-JND models

Table 7.2 – Important notations and abbreviations used in Table 1.

BM
BR
CE
CM
DC
DI
DIBR
DM
DpM
DsM
FR
GD
IR
JMVC
JMVM
LA
LC

binocular masking
background regions
coding e�ciency
contrast masking
depth contrast
depth intensity
depth image-based rendering
depth masking
depth map
disparity map
foreground regions
geometric distortion
image retargeting
joint multi-view video coding
joint multi-view video model
luminance adaptation
luminance component

LR
MVC
MVD
NAM
PE
PQ
QA
SMA
SIQA
SQ
SVQA
S3DW
TI
TM
VC
VD
VM

left and right
multi-view video coding
multi-view video plus depth
noise amplitude map
psychophysical experiment
perceived quality
quality assessment
stereo matching algorithm
stereoscopic image QA
subjective quality
stereoscopic video QA
S3D watermarking
temporal information
temporal masking
visual comfort
viewing distance
visual masking

disparities in this database were used for this evaluation. JND thresholds were estimated using the
right view for all 3D-JND models except SJND because of its definition. Besides, the TM e�ect has
not been considered in MJND and SJND for S3D images As both MJND and SJND were designed
for S3D videos, it is not fair to compare other 3D-JND models with MJND and SJND including TM
e�ect in terms of computational runtime. The runtime (in second) per image for each 3D-JND model
is shown in Table 7.3. Considering runtime, MEs and features (in Table 7.1), the complexity for each
3D-JND model is reported in Table 7.1 using stars. The greater the number of stars is, the higher its
complexity is, and vice versa.

Note that the experiments are performed by using MATLAB code on a computer (Inter Core
i7-2630 QM Processor at 2.00 GHz, 4GB RAM, Windows 7). As shown in Table 7.3, HJND consumes
the longest time among all models due to the process of DIBR and estimation of GD per block. Even
though DJND, JJND and MJND accounted for disparity/depth information, DJND is lower than two
other models due to the consideration of DOF blur e�ect. In addition, MJND and SJND use more
MEs than, they are faster than BJND. This is due to the fact that MJND and SJND were designed
based on a conventional 2D-JND model, and BJND was developed integrating the noise amplitude
with LA and CM.
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Table 7.3 – Computational runtime (in second) of the described 3D-JND models.

BJND JJND MJND SJND HJND DJND
Teddy 1.41 0.15 0.04 0.30 9.68 0.60
Art 1.33 0.16 0.04 0.31 10.02 0.60
Moebius 1.37 0.17 0.04 0.29 9.51 0.58
Baby2 11.74 1.09 0.35 2.28 76.05 4.82
Average 3.96 0.39 0.12 0.80 26.32 1.65

7.4.2 Pros and Cons

In this section, we assess the 3D-JND models in terms of their pros and cons. The JNDD has
been designed thanks to psychophysical experiments on stereoscopic 3D displays. This model can
be extended to various types of S3D displays [66], such as auto-stereoscopic display and passive
stereoscopic display [92]. However, it can only measure the visibility threshold with limited depth
levels, not satisfying the desired depth range for real application. For instance, JNDD is not suitable
for estimating the tolerable depth di�erence in virtual view rendering [93, 94]. Furthermore, this model
is only compatible with the 2D-plus-depth representation of 3D content, and its accuracy depends on
the quality of the depth image. Hence, a depth image with poor quality may lead to inaccurate JND
thresholds.

Compared to the JNDD, BJND is closer to human binocular perception. Moreover, it can use
2D/color-plus-depth and LR formats. However, this model was designed based on PE using binocular
patterns with zero disparity. In other words, BJND ignored the e�ect of disparity of the visual
stimuli on visibility thresholds, which makes it less suitable for real-life stereoscopic images. To avoid
this constraint, Kim et al. [95] conducted PE to measure the binocular visibility thresholds with
di�erent disparities under various amplitudes of the asymmetric noises and background luminance
levels. However, they have not studied the impact of the disparity on JND estimation for CM.
In addition, the disparity estimation error issue from stereo matching algorithm may decrease the
reliability of the BJND estimation. Finally, BJND did not explore the visibility threshold for di�erent
types of asymmetric noises (e.g., Gaussian/Poisson noise).

JJND model copes with the issue of disparity ignoring in BJND. This model mimics BF and BR
by computing di�erent JND thresholds for OR and NOR, separately. However, the performance of
JJND can be reduced for a pair of S3D images having uniform disparity maps or/and low disparity
i.e., weak depth perception. Even though it was reported that JJND is more e�ective than 2D-JND
models, the authors did not make any comparison with other 3D-JND models.

MJND and SJND are the most reliable among these 3D-JND models since they take into account
both 2D and 3D MEs so that they completely model the stereoscopic HVS characteristics. Since
depth values in MJND vary in a very small range, the accuracy of the model may be decreased for
S3D images with a larger depth range. For SJND, a subjective validation is di�cult because there are
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several factors from di�erent MEs. Tunning the parameters is somewhat complicated and may result
in very di�erent results, in addition to the necessary adjustment to the used dataset. As described
previously for SJND, the NOR leads to BF, whereas OR leads to BR. In fact, BR can occur on NOR
when a large inter-di�erence exists between left view non-occluded pixels and the corresponding pixels
in the right view. The relationship between BF and BR should be better explored to model the human
binocular vision.

In contrast to JJND, HJND has taken DC into account in addition to DI. Considering GD makes
this model more reliable. However, HJND using GD is specifically developed for multi-view video
plus depth (MVD) format, and the estimation based on LR views format may not be correct. The
accuracy of this model is highly depending on the rendered images obtained using DIBR.

DJND can estimate the visibility thresholds for S3D video with LR or MVD formats. As reported
by the authors, using this model in MVC can increase the VC in the S3D display. However, DJND
is less e�ective for S3D images with small depth di�erence between FR and BR. In other words, this
model performs well if FR and BR have large depth di�erence.

7.4.3 Applications embedding 3D-JND models

In order to improve the compression e�ciency of 3D videos, De Silva et al. proposed a depth map
preprocessing algorithm based on JNDD to remove depth details that are imperceptible by viewers
[66]. Similarity, Ding et al. [96] recently developed a depth map preprocessing method using JNDD
to improve the 3D extension of the high e�ciency video coding (HEVC) standard. Bai et al. applied
JNDD in H.265/HEVC for color image coding by adjusting the quantization parameter (QP) [97].
JNDD has also been employed in depth sensation enhancement [98–100]. The principle is to increase
the depth di�erence between objects such that it exceeds the JNDD. In addition, Lee et al. proposed
a stereoscopic watermarking method for DIBR using JNDD [101]. More recently, it has been used in
visual presence measurement [102] and 3D QoE (e.g, VC and depth sensation) enhancement [103].

Over the past few years, the BJND has been applied in several domains. First, Jung et al.
applied it in sharpness enhancement of S3D images, and the reliability of BJND has been evaluated by
considering the accuracy of the stereo matching algorithm. Second, Sdiri et al. [104] recently proposed
a contrast enhancement method for stereo endoscopic images combining both local image activity and
depth information with BJND. The latter was used to control the inter-view enhancement and avoid
visual fatigue. Second, BJND was used in 3D video coding or compression. For instance, Fezza et al.
[105] proposed a non-uniform asymmetric coding method for S3D video based on BJND and depth
level. This method employs BJND to measure the minimum distortion in one view that generates 3D
perceptual di�erence, and then uses depth information to adjust the resolution. Meanwhile, Zhu et al.
[106] developed a fast mode decision approach using BJND to improve the e�ciency of MVC. For S3D
compression, a new macroblock level rate control method based on BJND model has been proposed
in [107]. The visual perception factor measured by BJND was used to adjust the macroblock level bit
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allocation. From a di�erent perspective, BJND was used in several works related to stereoscopic image
quality assessment [108–113]. The main idea is to use the 2D-JND and BJND to model the visual
sensitivity for OR and NOR respectively, and then monocular/binocular visual sensitivity is employed
to weight image quality [114]. Besides, Zhou et al. [115] proposed a S3D watermarking scheme based
on BJND with the aim to guide the watermark embedding. Finally, Shao et al. recently carried out a
seam carving method for S3D image retargeting combining the 3D visual attention model with BJND
[116].

Wang et al. developed a S3D watermarking method using JJND [117]. This method validated the
authenticity and integrity of stereoscopic images by localizing the tampered regions. MJND model
has been used in order to improve the e�ciency of 3D-HEVC [75] and MVD video coding [74]. SJND
was used for SVQA, whereas HJND and DJND have been applied to improve 3D CE for MVD. To
date, there is no application in other domains for these three models since they have been proposed
recently.

7.5 Experimental results

n this section, extensive experiments are carried out to compare the performance of the described
3D-JND models. On the one hand, we evaluate the performance using Middlebury stereo database
[90] consisting of real-world S3D images. On the other hand, the accuracy estimation of each 3D-JND
model for S3D images is compared using psychophysical experiments.

7.5.1 Performance evaluation on the Middlebury stereo database

To compare the e�ciency of previously described 3D-JND models, we performed an experimental
quantitative evaluation as well as a qualitative demonstration using the Middlebury stereo database.
As shown in Fig. 7.11, twenty S3D images from 2005 stereo datasets [27, 28], 2006 stereo datasets
[27, 28] and 2014 stereo datasets [29] were chosen for the experimental evaluation. We used the stereo
pairs with a full-size resolution from three datasets. The used resolution ranges from 1342 ◊ 1100 to
1390◊1100 in 2005 stereo datasets, 1240◊1100 to 1372◊1100 in 2006 stereo dataset and 2632◊1988
to 2964 ◊ 2000 in 2014 stereo dataset. These images have been selected based on the number and the
"textureness" of the objects in FR and BR.

7.5.1.1 Quantitative evaluation and comparison

Inspired by [15], we propose to evaluate the distortion masking ability as a performance of the 3D-JND
models. The distortion tolerance ability (DTA) is estimated in terms of energy of the JND map of
one view as follows:

DTA = 1
H ◊ W

Hÿ

i=1

Wÿ

j=1

[JND3D(i, j)]2 , (7.51)
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Figure 7.11 – Right views of the S3D image set from Middlebury databases.

where DTA denotes the JND energy of the 3D-JND map (i.e., JND3D) of the left/right view. H

and W are the image height and width respectively. In fact, the DTA value corresponds to the mean
square error (MSE) between original and test images with a maximal degradation. To compute DTA,
the 3D-JND map of the right image is considered as JND3D for the whole 3D-JND models except
SJND. The latter calculates the JND thresholds of the stereo pair [23, 76].

Table 7.4 shows the distortion tolerance ability of di�erent 3D-JND models. It can be observed that
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Table 7.4 – Distortion tolerance ability comparison of 3D-JND models. The best result for each image is
highlighted in boldface, while the second-best result is shown in italic.

Image
name

BJND JJND MJND SJND HJND DJND

Art 8.143 54.323 29.995 59.179 73.609 35.411
Books 15.363 36.425 19.592 40.224 42.300 21.467
Dolls 8.704 59.187 30.260 58.713 77.235 25.969
Laundry 9.972 35.744 18.896 42.610 46.444 24.755
Moebius 7.758 50.469 21.003 44.669 54.910 30.571
Reindeer 7.163 104.748 44.623 83.879 116.702 57.102
Aloe 15.987 32.127 14.755 34.038 33.030 35.944
Baby2 16.241 32.188 15.620 32.573 38.140 30.362
Flowers 14.109 58.438 25.986 47.643 70.535 56.364
Jadeplant 8.969 86.622 38.710 70.508 104.081 67.885
Bowling2 12.087 25.378 14.061 32.072 36.324 20.740
Cloth1 13.013 22.342 10.152 29.494 28.968 19.281
Midd2 13.928 38.469 19.957 41.160 47.906 34.007
Plastic 13.138 31.493 17.015 35.990 41.717 19.425
Rocks2 10.142 32.962 15.286 35.557 38.859 26.620
Wood1 8.073 26.441 11.283 28.221 31.835 24.291
Motorcycle 11.068 58.599 30.579 58.742 80.058 37.431
Piano 9.305 82.391 39.199 75.196 102.741 44.118
Pipes 9.159 87.985 44.078 80.267 115.784 58.727
Playroom 10.701 75.550 38.174 68.923 100.328 42.382
Average 11.151 51.594 24.961 49.982 64.075 35.643

HJND and JJND achieve the best and second-best performance in terms of distortion tolerance ability
among all models. This is mainly due to the fact that HJND and JJND thresholds depend highly on
disparity/depth values, having a great e�ect on distortion masking. Higher average disparity value
results in higher HJND/JJND energy that corresponds to stronger distortion masking ability. Even
though SJND does not take into account disparity/depth information, its masking ability for is close
to JJND thanks to the one of consideration of both left and right views. DJND shows lower masking
ability than JJND even though both models are developed based on the same 2D-JND model [10].
This could be explained by the DOF blur e�ect considered in DJND which reduces JND thresholds of
FR. MJND takes DM e�ect into account, where small depth change implies low JND energy. BJND
yields the worst performance in terms of distortion masking ability, because the BJND ignores the
disparity/depth for 3D visibility thresholds.

Furthermore, we calculated the average disparity level from the ground-truth disparity maps of the
Middlebury stereo database, and then revealed the relationship between the average disparity level

134



7.5. Experimental results

(a) 

(c) 

(b) 

(d) 

Figure 7.12 – "Aloe" and "Jadeplant" stereo pairs. (a) left view of "Aloe", (b) left view of "Jadeplant", (c) right
view of "Aloe", (d) right view of "Jadeplant"

and the JND energy. Higher the average disparity level lead to stronger distortion tolerance ability
for same luminance intensity and luminance contrast. For instance, "Aloe" with an average disparity
of 72.44 has lower 3D-JND energy than "Jadeplant" with an average disparity of 270.98. It is worth
noting that BJND energy of "Aloe" stereo pair is higher than that of "Jadeplant" stereo pair due to
the lack of consideration of DM. Fig. 7.12 shows that the horizontal shift/disparity between left and
right images in "Jadeplant" is larger compared to "Aloe".

Besides, Fig. 7.13 depicts the plots of the average 3D-JND energies and of the average disparity
levels. It can be observed that the average JND energy is approximatively proportional to the average
disparity value. More specifically, the visibility threshold of the distortion in S3D image increases as
the disparity amplitude increases in the case of similar luminance intensity and luminance contrast.
This is consistent with the conclusion drawn in [95].

As the distortion in edge regions is more sensitive to HVS than non-edge regions, the 3D-JND model
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Figure 7.13 – Plots of the average 3D-JND energies and of the disparity values.

yielding high JND thresholds for edge region is e�cient for 3D compression. Therefore, we further
explore the relative strength of 3D-JND for edge pixels using di�erent 3D-JND models. Firstly, we
divide image pixels into two regions: edge regions RE and non-edge regions RNE . To achieve this, we
use the method proposed in [12]. This method can accurately detect edge pixels and deal with the
issue of the confusion between textural and edge regions. Then, the 3D-JND map JND3D of the right
view is estimated based on the 3D-JND model. Finally, the relative strength of the 3D-JND for edge
pixels rE , the percentage of distortion (e.g., noise) injected to the edge regions, is calculated by:

rE =
1

NE

q
pœRE

JND3D(p)
1

NE

q
pœRE

JND3D(p) + 1

NNE

q
pœRNE

JND3D(p)
. (7.52)

Higher rE corresponds to higher distortions for edge regions given the same level of 3D-JND thresholds.
The rE values for the di�erent 3D-JND models in the right view are given in Table 7.5. Here we assume
that left view is not distorted in order to create the asymmetrically distorted stereopairs. The relative
strength of the 3D-JND in the left view can also be calculated in a similar manner. MJND performs
best in terms of distortion masking ability for edge pixels. BJND achieves better performance in
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Table 7.5 – The relative strength of 3D-JND for edge pixels using di�erent 3D-JND models. The values below
are expressed as a percentage, higher value means that the 3D-JND model can mask more noise in edge regions.
The best result for each image is highlighted in boldface, while the second-best result is shown in italic.

Image
name

BJND JJND MJND SJND HJND DJND

Art 59.343 53.491 56.426 55.360 53.162 50.386
Books 54.530 52.493 68.602 62.891 53.350 51.021
Dolls 56.214 53.512 56.535 54.808 54.075 51.982
Laundry 58.902 52.481 64.035 58.737 51.692 50.434
Moebius 59.497 54.046 57.658 55.862 54.590 50.328
Reindeer 59.778 50.138 54.207 53.940 49.802 50.027
Aloe 52.462 50.449 57.332 54.708 52.132 49.692
Baby2 49.147 52.627 65.314 60.776 53.665 53.501
Flowers 55.662 45.248 49.940 51.773 48.547 47.326
Jadeplant 56.801 46.578 53.009 54.100 49.051 45.046
Bowling2 43.966 57.414 61.788 58.174 59.840 53.918
Cloth1 53.397 56.081 53.435 52.073 56.343 51.415
Midd2 58.133 55.330 65.161 62.359 57.017 47.398
Plastic 58.511 51.891 62.762 60.678 49.736 50.392
Rocks2 55.439 55.398 60.924 57.257 55.938 53.048
Wood1 60.501 50.204 55.684 53.933 48.340 49.071
Motorcycle 60.386 51.409 57.389 56.032 51.728 49.328
Piano 56.209 45.537 51.902 52.472 47.363 47.779
Pipes 61.785 42.814 52.680 52.157 44.178 42.735
Playroom 58.743 46.054 53.271 52.826 46.164 46.261
Average 56.470 51.160 57.903 56.046 51.836 49.554

contrast to JJND and HJND since it estimates higher CM around edge regions than non-edge regions.
SJND performs quite similarly to BJND. In fact, MJND and SJND based on 2D-JND estimated by
Chou and Li [5] have higher masking ability for edge regions than HJND, JJND, and DJND relying
on the 2D-JND model of Yang et al. [10]. This is due to the fact that Yang’s 2D-JND model estimates
lower CM thresholds for edge pixels, whereas Chou’s 2D-JND model considers that the CM thresholds
for edge and texture regions are the same. In general, by considering the results in both Table 7.4
and 7.5, SJND results in the highest distortion ability among all the 3D-JND models.

7.5.1.2 Qualitative evaluation and comparison

In this section, we provide a qualitative comparison of the six 3D-JND models based on the analysis
of the JND profile/map of a stereo pair. The JND thresholds of the right image of a stereo pair
were computed using the di�erent 3D-JND models. Dark and bright regions of the JND map indicate
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regions having low and high JND visibility thresholds, respectively. For a test stereo pair, we used
a method proposed in [70] to detect occluded pixels of the left and right videos. Moreover, the hole
in disparity/depth maps was filled by using an e�cient algorithm proposed by Jain et al. [118] in
order to obtain the accurate 3D-JND thresholds. This algorithm can accurately fill the holes of the
disparity map based on both color and disparity information of the stereo pair.

The 3D-JND maps of "Art", "Plastic", and "Piano" are shown in Fig. 7.15, 7.17 and 7.19, respec-
tively. For "Art", the four circles with di�erent disparity values indicate di�erent JND thresholds for
all 3D-JND models except BJND. The farther the circle is from the observer, the brighter the circle is,
and the higher the JND thresholds are. In other words, the farthest circle has the highest distortion
masking ability among all circles. This is especially highlighted in the DJND map (see Fig. 7.15(f)),
because this model distinguishes the FR from the BR with di�erent visibility thresholds. As shown
in Fig. 7.15(f), JND thresholds of the overall FR are lower than those of the overall background ones.
One can also notice that the leftmost object of the DJND map is brighter than that of the HJND map
even if DJND and HJND are developed on the top of Yang’s 2D-JND model [10].

The comparison between Fig. 7.17(e) and Fig. 7.17(f), focusing on the middle yellow object in Fig.
7.16, also demonstrates the decrease of the DJND thresholds in FR. As shown in Fig. 7.15(b) and
(e), the Yang’s 2D-JND model based JJND and HJND maps are similar. However, the JJND map
shows a ghosting e�ect (e.g., around the sculpture) on the occluded pixels (see Fig. 7.14). This is due
to the fact that JJND distinguishes the visibility of the occluded and non-occluded regions in terms
of visibility thresholds. The BJND map also shows the ghosting e�ect on the occluded pixels in Fig.
7.15(a). It should be noted that the black bands of the BJND maps (Fig. 7.15(a), Fig. 7.17(a) and
Fig. 7.19(a)) represent "unknown JND thresholds". The width of this band depends on the maximal
ground-truth disparity. In addition, the edge around the middle yellow object in Fig. 7.17(b) is
darker than the one in Fig. 7.17(e). HJND model not only depends on DI, but also on DC. The
latter corresponding to depth variation around the edge of this object (see Fig. 7.16), and attracting
more visual attention, results in a decrease of the distortion masking ability. This conclusion can be
demonstrated by referring to the variation of the JND thresholds around the edge of the lampshade
in Fig. 7.19(e).

For BJND, the fact that all circles have quite similar JND thresholds in Fig. 7.15(a) demonstrates
that depth cues have a limited influence on its thresholds. This is indeed consistent with ignoring the
binocular disparity in the design of the model. Furthermore, its profiles (Fig. 7.15(a), Fig. 7.17(a)
and Fig. 7.19(a)) exhibit higher JND thresholds at edges than textures of certain objects, such as the
circles in Fig. 7.15(a) and the music book in Fig. 7.17(a).

In addition, the edges around the sculpture in Fig. 7.15(c) and (d) appear slightly brighter than
the ones in Fig. 7.15(b) and (f), and the edges around the middle yellow object in Fig. 7.17(c) and
(d) have slightly higher JND thresholds than the ones in Fig. 7.17(b) and (f). This can be explained
by the fact that MJND and SJND estimate lower CM thresholds for edge regions than texture regions
whereas the same CM thresholds are estimated for edge and texture regions in JJND and DJND. The
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Figure 7.14 – "Art" stereo pair. From left to right: left and right views (top), disparity map with holes filling of
the right view and occlusion map of the right view. Occluded regions appear in black.

ghosting e�ect illustrated in Fig. 7.15(d) indicates that the SJND map is estimated using the left and
right views.

7.5.2 Performance evaluation based on psychophysical experiments

To evaluate the accuracy of each 3D-JND model, we compare the estimated JND thresholds with the
JND thresholds obtained thanks to the psychophysical experiments. We first present the generation
of the synthesized 3D images containing textures collected from the ETHZ dataset [30]. Then, we
describe the experimental setup used in the subjective measurement of the visibility threshold of
the asymmetric distortion. In addition, we further explain how to estimate the visibility thresholds
of the synthesized 3D images using previously described 3D-JND models. Finally, we evaluate the
3D-JND models’ accuracy by comparing their estimated JND results with the JND data from the
psychophysical experiments.
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(a) 

(c) 

(e) 

(b) 

(d) 

(f) 

Figure 7.15 – JND profiles of "Art" stereo pair obtained using di�erent 3D-JND models. (a) BJND map, (b)
JJND map, (c) MJND map, (d) SJND map, (e) HJND map, (f) DJND map.

7.5.2.1 Selection of the texture images

In order to generate 3D images to be used in psychophysical experiments, we selected the texture
images from ETHZ Synthesizability dataset [30] as the patches of the 3D images. The main idea
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Figure 7.16 – "Plastic" stereo pair. From left to right: left and right views (top), disparity map with holes filling
of the right view and occlusion map of the right view. Occluded regions appear in black.

is to synthesize the 3D images consisting of di�erent texture images. In addition, we explore the
relationship between 3D-JND thresholds, the "textureness" of the texture image provided in ETHZ
dataset [30] and the average of the 2D-JND thresholds. The latter is calculated by averaging the JND
values obtained based on the 2D-JND model described in [12]. The "textureness" score indicates the
texture strength of the image. As shown in Fig. 7.20, the higher the "textureness" score is, the more
the image is textured. Fig. 7.21 shows the textures selection used in our psychophysical experiments.
Firstly, the number of texture images is chosen so as to fit in 7 classes according to their "textureness"
score and the average of 2D-JND thresholds. Finally, we randomly select one texture image from each
dataset. The 7 texture images shown in Fig. 7.20 are further used to synthesize the 3D images. It is
worth noting that these texture images were converted to grayscale for the following experiments.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 7.17 – JND profiles of "Plastic" stereo pair obtained using di�erent 3D-JND models. (a) BJND map, (b)
JJND map, (c) MJND map, (d) SJND map, (e) HJND map, (f) DJND map.
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Figure 7.18 – "Piano" stereo pair. From left to right: left and right views (top), disparity map with holes filling
of the right view and occlusion map of the right view. Occluded regions appear in black.

Image number 1 2 3 4 5 6 7 
2D-JNDs average  4.45 5.96 6.97 9.84 10.69 12.12 14.04 
Textureness 0.070 0.245 0.435 0.478 0.715 0.803 0.974 

Figure 7.20 – Seven texture images used to synthesize the S3D stereo pairs. The average of the 2D-JND thresholds
and "textureness" values of the texture images are given for each image.

7.5.2.2 Stimuli

To determine the visibility thresholds for the di�erent types of distortion in our psychophysical exper-
iment, we synthesize the asymmetrically distorted stereo pairs based on the 7 pristine texture image
shown in Fig. 7.20. Fig. 7.22 illustrates an example of the 3D images presented in the psychophysical
experiment. The stimulus consists of reference (left) and distorted (right) stereo pairs. The right im-
age of the stereo pair was altered by four types of distortions, including white Gaussian noise (WN),
Gaussian blur (GB), JPEG, and JPEG 2000 (JP2K), respectively. Each distortion type was applied
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 7.19 – JND profiles of "Piano" stereo pair obtained using di�erent 3D-JND models. (a) BJND map, (b)
JJND map, (c) MJND map, (d) SJND map, (e) HJND map, (f) DJND map.

using thirty distortion levels, where the control parameters of these distortions indicated in Table 7.6
were decided to ensure that the subject detects the just noticeable distortion not too early and not too
late on the 3D display using stereo glasses. More specifically, the standard deviation ‡W N of the WN
was used to control the distortion level on the intensity image. The intensity image was filtered using
a rotationally symmetric 2D Gaussian kernel of size 7 ◊ 7 with standard deviation ‡GB for GB dis-
tortion. The control parameter of the JPEG compression was the quality compression level QCJP EG

that determines the amount of information that is lost during compression of the MATLAB functions
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Figure 7.21 – A process of the selection of the textures used in psychophysical experiments.

"im2jpeg.m" and "jpeg2im.m" provided in [119]. Similarly, the JP2K compression was simulated using
the MATLAB function "im2jpeg2k.m" and "jpeg2k2im.m" with n = 5 and quantization value ranging
from 9.9 to 7.

Table 7.6 – Increment step and value ranges of control parameters for distortion simulation on the right texture
view of the stereo pair.

Distortion Control parameter Increment
step Range

WN Standard deviation
of the Gaussian distribution 0.8 [0.8, 24]

GB Standard deviation
of the Gaussian low-pass filter 0.1 [0.1, 3]

JPEG Quality compression level 0.3 [0.3, 9]

JP2K Quantization value ≠0.1 [9.9, 7]

Fig. 7.22 shows the visual stimuli presented in our psychophysical experiments. They consist of
texture images with a resolution of 300 ◊ 300 corresponding to a visual angle of 2.86¶ ◊ 2.86¶ with
the experimental condition described in Table 7.7, and a uniform background with an intensity equal
to 128. In addition, we created the stimuli with di�erent disparities in order to investigate how the
binocular disparity interacts with the detection of the just noticeable distortion. More specifically,
the threshold of stereoscopic acuity is approximately 2.3 minutes of arc (arcmin) [120]. In order to
easily perceive 3D e�ects for texture image and to avoid visual fatigue e�ect during the experiment,
we have chosen disparity values well above 2.3 arcmin with both positive and negative parallax: ±26
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and ±43 as indicated in Table 7.7. The positive disparity corresponds to "inside" 3D e�ect and the
negative one to "outside" 3D e�ect. In contrast to the experiment described in [95], the reference
stereo pair has been used in our experimental design. This is because we considered not only the noise
distortion but also the blurring and compression artifacts. As a result, a 3D image with a resolution
of 1920 ◊ 1080 presented in the subjective test is composed of reference and distorted stereo pairs
with the parameters reported on Table 7.7. h and s are set to 390 and 200 pixels, respectively. s is
the distance between the reference and the distorted stereo pairs. s = 200 ensures that subjects can
move its eyes but not the head to detect the stimuli during the experiment. Given the disparity value
Disp (in pixel) of a stereo pair, w2 was defined as 560 ≠ Disp, and w1 was set to 560. In sum, a total
number of 112 visual stimuli (7 texture images ◊ 4 distortion types ◊ 4 disparities) were presented to
the subjects during the psychophysical test. For each stimulus, the level of the asymmetric distortion
was increased gradually until the subject binocularly just detects the distortion.

7.5.2.3 Subject

The psychophysical experiment was conducted in the XLIM Laboratory at the University of Poitiers.
Eighteen subjects, 13 males and 5 females with age ranging from 25 to 35, participated in this exper-
iment. These subjects are composed of 9 naive participants and 9 expert participants who work in
the domain of the image processing/computer vision. Each subject undergoes acuity and stereoscopic
acuity test. All subjects have the visual acuity around 1.29 with normal or corrected vision, measured
by Freiburg Visual Acuity Test (FrACT) with "Landolt C" setting and 1.2 m of viewing distance.
Additionally, they have a stereoscopic acuity more than 70 seconds of arc, checked by the RANDOT
stereo test. The subjects who used visual correction in daily life were asked to keep it during the
experiment.

7.5.2.4 Apparatus

The psychophysical experiment was conducted in a di�use lighting and noise-isolated room designed
especially for subject test. The ambient illumination of the room was set to 65 lux measured by a
lux-meter. A 3D display and polarized 3D glasses were used during the experiment. The display is a
calibrated Hyundai TriDef S465D with 60 Hz progressive scanning at a resolution of 1920 ◊ 1080, and
a display area of 1.015 meters width and height 0.57 meter. It can work with 2D and S3D modes. The
brightness of this display was set to 50% of the maximum. The viewing distance between the subject
and the 3D display was set to 1.5 meters, which is recommended by the user’s guide of this display
and approximatively three times the height of the display. The detail of the experimental setup is
given in Table 7.7.
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Figure 7.22 – An example illustration of the visual stimuli.

7.5.2.5 Experiment procedure

After the visual screening, the subject was informed about the objective of this experiment, and
instructed on how to report the results by using the keyboard. He/She was asked to wear the 3D
glasses during the whole experiment. The distorted S3D images with di�erent distortion types and
levels were presented to each subject in order to get familiar with the experiment. Once subjects
confirmed their understanding of the experiment process, the experiment started.

During the experiment, the subjects compared two 3D images, and checked whether the distortion
is just noticeable. The subjects pressed "space" key to continue to increase the distortion level the if
the previous level is considered as invisible. Otherwise, the subjects pressed the "enter" key to report
the JND result for this stimulus. To provide su�cient time to judge the just noticeable distortion, the
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Table 7.7 – Viewing conditions and visual stimulus attributes of the psychophysical test. The positive and negative
values correspond to the "inside" and "outside" 3D e�ects for texture images.

Parameter Value

Disparity
of the
texture
image

arcmin ±26 ±52
pixel ±43 ±86

degree ±0.44 ±0.87
radian ±0.0076 ±0.0151

Screen
(m)

width 1.015
height 0.57

Screen resolution
(px)

horizontal 1920
vertical 1080

Viewing distance (m) 1.5
Viewing angle (degree) 37.38
Background luminance (px) 128
Ambient illumination (lx) 65

exposure time of a stimulus is not limited to subjects. Each image of the test sequence related to the
stimulus was exposed and followed by a neutral grey image with 128 intensity to avoid visual memory.
By pressing the "enter" key, this ended the current sequence and a message was presented to remind the
subject to move to the next stimulus. After 56 visual stimuli, the subjects were asked to take a break
of 25 minutes to avoid visual fatigue. For each subject, the experiment was stopped immediately when
he/she started feeling visual fatigue. The subjects can move their head freely during the test. For each
visual stimulus, we assumed that the measures corresponding to the JND threshold ((DLJND)n) from
all subjects follows a Gaussian distribution. The experimental DLJND value should be within the
interval [0.95DLJND, 1.05DLJND], namely confidence interval, where DLJND is the distortion level
corresponding to the maximum value of the histogram. To obtain more accurate JND thresholds,
0.95DLJND was selected to show the just unnoticeable distortion in the image, whereas 1.05DLJND

was selected to show the just noticeable distortion in the image. The estimation of the experimental
3D-JND values is described in Fig. 7.23(a).

7.5.2.6 JND maps estimation using psychophysical data

In order to compare the performance of the 3D-JND models, we first estimated totally the 27 JND
maps (7 texture images ◊ 4 disparities) for each model based on the reference 3D images. It should
be noted that each synthesized 3D image has only one disparity and no occluded regions. Fig. 7.24
shows an example of the JND maps of a synthesized 3D image estimated by di�erent 3D-JND models.
In addition, the MJND thresholds shown in Fig. 7.24(c) are higher than JJND thresholds shown in
Fig. 7.24(b) around the edges.
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Figure 7.23 – Framework of the accuracy evaluation of the 3D-JND model. (a) Estimation of the 3D-JND
interval based on psychophysical results, (b) Accuracy evaluation of the 3D-JND model using the 3D-JND interval.

7.5.2.7 JND maps estimation based on 3D-JND models

As shown in Fig. 7.23(b), we generated three distorted 3D images using 0.95DLJND, DLJND and
1.05DLJND. Then, we computed the di�erence maps between reference and distorted images, and
considered these di�erence maps as the JND maps. Next, we determined a JND interval namely
[JNDmin, JNDmax] for each pixel of the reference 3D image. Meanwhile, we estimated the JND
map using a 3D-JND model. Finally, we checked whether the estimated JND value of each pixel is
included in [JNDmin, JNDmax], and computed the number of pixels in the JND map included in
their corresponding intervals. The greater the number is, the more the 3D-JND model’s accuracy is.
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Table 7.8 – Psychophysical distortion level corresponding to the 3D-JND thresholds according to di�erent texture
images. The maximal value of each column is highlighted in boldface, while the minimal value is shown in italic.

Texture
images
number

Distortion level corresponding to 3D-JND threshold

WN GB JPEG JP2K WN +
JPEG

GB +
JP2K

1 3.60 0.95 1.95 0.75 2.78 0.85
2 6.40 0.90 3.00 1.05 4.70 0.95
3 5.20 0.85 3.15 1.50 4.18 1.18
4 8.80 1.05 3.90 1.20 6.35 1.12
5 9.00 0.70 4.95 0.85 6.98 0.78
6 10.60 1.30 3.75 1.75 7.17 1.53
7 11.60 0.85 3.45 1.80 7.53 1.33

7.5.2.8 Results and discussion

In this section, we investigate the e�ects of distortion type and disparity on the experimental visibility
threshold of asymmetric distortions. Besides, the comparison of the estimation accuracy between the
3D-JND models is described. Table 7.8 shows the average distortion level corresponding to 3D-JND
thresholds for di�erent types of distortion according to di�erent texture images. The "textureness"
scores of these texture images are reported in Fig. 7.20. The just noticeable distortion level for WN
is proportional to the "textureness" of the texture image. The results for JPEG is similar to those for
WN except for images 6 and 7. This is because the image 6, with its low coarseness, can mask more
JPEG artifact (i.e., blockiness) than image 7. In contrast to WN, the just noticeable blur (JNB) for
GB decreases as the "textureness" score increases. This is due to the fact that images with high texture
strength have a low ability to mask the blurring. However, the JNB of image 6 is higher than that
of image 5 because of the high contrast of the latter. Accordingly, the blur is easier to be detected
in image 5 than in image 6. In general, the just noticeable distortion level is proportional to the
"textureness" score for additive distortions as shown in the 6th column of Table 7.8. For subtractive
distortion (GB+JP2K), the just noticeable blur level is inversely proportional to the "textureness"
score for the texture images from image 3 to 5.

Additionally, we computed the average distortion level corresponding to 3D-JND thresholds ac-
cording to four disparities in order to explore its e�ect on asymmetric distortion level threshold. As
shown in Table 7.9, the distortion level corresponding to 3D-JND threshold increases as the absolute
disparity value increases for all distortion types. In addition, the distortion level thresholds of disparity
+26 are generally higher than those of disparity ≠26 for WN, GB, and JPEG. We can draw the same
conclusion when comparing the results of disparity i.e., ±52 for WN, GB, and JP2K. The 3D image
with positive disparity ("inside" 3D e�ect) is farther than that with negative disparity ("outside" 3D
e�ect) from the subject. The larger the distance between the 3D image and the subject is, the less
the distortion is visible, thus the higher the JND threshold is. As a result, the asymmetric distortion
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Table 7.9 – Psychophysical distortion levels corresponding to the 3D-JND thresholds according to di�erent dis-
parities for each type of distortion.

Disparity
(arcmin)

Distortion level corresponding to 3D-JND thresholds
WN GB JPEG JP2K

≠26 11.60 0.85 3.45 1.75
≠52 13.40 1.30 6.00 1.90
+26 13.20 1.15 4.20 1.50
+52 15.60 1.90 6.00 1.95

Table 7.10 – Estimation accuracy (%) comparison of the 3D-JND models according to di�erent distortion types.
The larger the value is, the higher the estimation accuracy is. The best result for each distortion type is highlighted
in boldface, while the second-best result is shown in italic.

Distortion
type

BJND JJND SJND HJND DJND MJND

WN 2.43 3.19 3.02 3.16 2.91 2.70
GB 3.28 3.05 3.21 3.07 3.10 3.16

JPEG 34.77 30.08 36.57 31.45 32.64 32.24
JP2K 31.33 29.85 32.78 30.40 30.54 31.01

Average 17.95 16.62 18.89 17.02 17.30 17.28

level threshold for the image with positive disparity is higher in comparison to the one with negative
disparity for the same disparity magnitude. In general, the visibility threshold of the asymmetric
distortion is proportional to the disparity magnitude under the same background luminance and lu-
minance contrast. This conclusion is in agreement with the observations in [95]. Furthermore, higher
depth values in the 3D image may make the asymmetric distortion more tolerable by the HVS.

Based on the psychophysical experiment results mentioned previously, we evaluated and compared
the performance of the 3D-JND models in terms of estimation accuracy given in Table 7.10. Generally,
SJND performs the best among all 3D-JND models, while BJND ranks second. HJND has the lowest
estimation accuracy within all 3D-JND models. For GB, BJND achieves better performance than
SJND. Conversely, SJND performs better than BJND for JPEG and JP2K. The estimation accuracies
for JPEG and JP2K are generally higher in contrast to WN and GB for all 3D-JND models. This is
due to the fact that blockiness is easier to notice by HVS than noise and blur. For WN, HJND and
JJND based on Chou’s 2D-JND model [5] perform better than SJND and MJND based on Yang’s
2D-JND model [10]. For WN, the edge region is more sensitive than the texture region, thus the
visibility threshold of the edge region should be lower than that of the texture region. Yang’s model
estimates lower CM thresholds for edge regions than texture regions whereas the same CM thresholds
are estimated for edge and texture regions in Chou’s model. Therefore, the 3D-JND models based
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Table 7.11 – Estimation accuracy (%) comparison of the 3D-JND models according to four disparities. The
larger the value is, the higher the estimation accuracy is. The best result for each distortion type is highlighted in
boldface, while the second-best result is shown in italic.

Disparity
(arcmin)

BJND JJND SJND HJND DJND MJND

≠26 15.38 14.63 16.47 14.74 15.19 14.99
≠52 15.86 15.36 16.68 15.40 15.14 15.49
+26 16.93 15.02 17.74 15.69 16.23 16.15
+52 18.30 16.81 19.13 17.42 17.48 17.49

Average 16.62 15.45 17.51 15.81 16.01 16.03

Table 7.12 – Estimation accuracy (%) comparison of the 3D-JND models according to di�erent texture images.
The larger the value is, higher the estimation accuracy is. The best result for each distortion type is highlighted in
boldface, while the second-best result is shown in italic.

Texture
image

BJND JJND SJND HJND DJND MJND

1 15.88 15.52 15.77 15.74 15.18 15.15
2 18.40 17.15 18.97 17.45 17.55 17.18
3 17.56 14.33 17.52 14.83 16.10 15.16
4 22.17 14.92 21.80 15.82 18.60 17.13
5 12.99 12.91 14.02 12.87 12.51 13.41
6 19.33 19.47 21.84 20.14 19.97 21.05
7 12.41 16.18 15.08 16.22 14.72 15.50

Average 16.96 15.78 17.86 16.15 16.38 16.37

on Yang’s model (i.e., HJND and JJND) are more accurate than those based on Chou’s model (i.e.,
SJND and MJND). In contrast, BJND, SJND and MJND perform better than the DJND, HJND, and
JJND for GB. For JPEG and JP2K, SJND and BJND achieve higher estimation accuracy than the
other models, and JJND performs the worst.

Table 7.11 shows the estimation accuracy comparison of the 3D-JND models according to four
disparities. The results in this table demonstrate that SJND and BJND deliver the best and the
second-best performance compared to the other models. DJND and MJND are quite similar in terms
of estimation accuracy, because both of them account for depth information. JJND generally performs
worse than other models. In addition, the comparison between the results for disparity ±52 and
disparity ±26 indicates that the larger the disparity magnitude is, the more accurate the 3D-JND
models are.

Table 7.12 shows the estimation accuracy of each 3D-JND model according to di�erent texture
images. SJND and BJND outperform all the other models, and thus achieve the best and second-best
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performance, respectively. DJND is similar to MJND in terms of estimation accuracy. The accuracy
of the 3D-JND models for texture image 4 is the highest among 7 texture images. This is mainly due
to the fact that highly uniform or textured images (e.g., image 1 or 7) may result in a decrease of the
JND estimation accuracy.

It can be noticed that the estimation accuracies of the 3D-JND models for texture 5 and 7 are
generally lower compared to the results of other texture images. As shown in Fig. 7.20, the image
5 has a large coarseness whereas image 7 has a large average contrast. Therefore, the detection of
the visibility threshold of the asymmetric distortion in these two images based on psychophysical
experiments is error-prone. In summary, results in Table 7.10, 7.11 and 7.12 demonstrate that SJND
and BJND outperform the other 3D-JND models in terms of estimation accuracy. This is mainly
due to the fact that SJND model accounts for various MEs of both monocular and binocular vision,
which undoubtedly correspond better to the human quality judgment. BJND achieves slightly lower
accuracy than SJND because it ignores the e�ect of binocular disparity in the development of this
model.

7.6 Conclusion

In this paper, we presented a comprehensive review of pixel-based 3D-JND models. The visual char-
acteristics of the HVS considered in these models have been specifically introduced. In addition, these
models have been briefly described by giving their rationale and main components in addition to
their application, pros, and cons. Besides, we performed an extensive experimental evaluation using
Middlebury stereo database with a qualitative demonstration and a performance comparison between
these models. Finally, we thoroughly compared the estimation accuracy of the 3D-JND models by
using subjective results from our psychophysical experiments. Our study on 3D-JND models allow
determining the important characteristics, that will help in the design of a more accurate and e�cient
3D-JND model to be used in 3D quality assessment and compression.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 7.24 – An example illustration of the JND maps of a synthesized 3D image estimated by di�erent 3D-JND
models. (a) BJND map, (b) JJND map, (c) MJND map, (d) SJND map, (e) HJND map, (f) DJND map.
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Abstract

In this paper, we propose a saliency-weighted stereoscopic just noticeable di�erent (SSJND) model
constructed based on psychophysical experiments, accounting for binocular disparity and spatial mask-
ing e�ects of the human visual system (HVS). Specifically, a disparity-aware binocular JND model
is first developed using psychophysical data, and then is employed to estimate the JND threshold
for non-occluded pixel (NOP). In addition, to derive a reliable 3D-JND prediction, we determine the
visibility threshold for occluded pixel (OP) by including a robust 2D-JND model. Finally, SSJND
thresholds of one view are obtained by weighting the resulting JND for NOP and OP with their visual
saliency. Based on subjective experiments, we demonstrate that the proposed model outperforms the
other 3D-JND models in terms of perceptual quality at the same noise level.

Index terms– Just noticeable di�erence, 3D image/video coding, quality assessment, spatial
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masking, visual saliency.

8.1 Introduction

The just noticeable di�erence (JND) is one of the most important perceptual properties, referring to
the minimum visibility threshold below which the pixel intensity variations cannot be perceived by
the human visual system (HVS). For decades, the 2D-JND models have been successfully developed
and exploited in many applications [1]. However, their use for S3D applications is questionable. They
mostly rely on monocular vision, which does not fit with the complexity of our 3D perception requiring
specific models accounting for both monocular and binocular depth cues.

Accordingly, it becomes crucial to develop e�ective 3D-JND models for perceptual improvement of
3D applications. So far, a handful of 3D-JND models can be found in the literature [2–12]. Based on
the S3D content format, the existing 3D-JND models are classified into two categories: (1) texture-
plus-depth-based models, and (2) stereopair-based models.

The first category estimates the visibility thresholds using either texture-plus-depth content [2, 3,
11, 12], or multi-view video plus depth (MVD) one [6–8]. For instance, De Silva et al. [2] propose
a JND in depth (JNDD) model which measures the threshold for depth variation that a human can
perceive on a 3D display. Similarly, to avoid the impact of the monocular depth cues, Yang et al. [11]
conduct psychophysical experiments (PEs) based on the dynamic Random Dot Stereogram technique
to measure the JNDD thresholds. In a di�erent vein, Lian et al. design a JND in multi-view (MJND)
model, specially for MVD, by combining spatial and temporal JND with JNDD [6]. Likewise, Zhong
et al. [8] propose a hybrid JND (HJND) model integrating a 2D-JND model [13] together with depth
saliency.

In this paper, we propose a saliency-weighted stereoscopic JND (SSJND) model that belongs to the
second category, based on our findings obtained from PEs. Our model is two-fold: 1) a disparity-aware
binocular JND (DBJND) dedicated to non-occluded pixels (NOPs) obtained from LA and contrast
masking (CM) experiments accounting for binocular perception, and 2) a 2D-JND model devoted
to occluded pixels (OPs) in the stereo pair. A final step of the proposed SSJND model consists of
weighting the JND thresholds by the pixel visual saliency to account for its modulator e�ect. The
obtained model is validated thanks to subjective experiments and compared in terms of perceptual
3D image quality to a number of 3D-JND models from the literature.

8.2 Psychophysical experiments

According to [14], the HVS is able to quickly adjust to the level of the background light in order
to distinguish objects. This ability is known as luminance adaptation (LA). Furthermore, contrast
masking (CM) describes the masking e�ect of the HVS in presence of two or more stimuli, if they are
of similar contrast/spatial non-uniformity [1]. With the aim to model LA and CM in the S3D context
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Figure 8.1 – Stereo pair patterns used in psychophysical experiments.

by considering the binocular disparity, we designed two comprehensive PEs.

8.2.1 Stimuli

Fig. 8.1 illustrates the visual stimuli used in LA and CM experiments, respectively. The di�erence
between dl and dr denotes the binocular disparity d. The peri-fovea is modeled by a region R1 with a
fixed luminance level 72 pixels (px). The human retinal para-fovea and fovea can cover the information
within 5¶ and 2¶ of visual angles, respectively, around the fixation point [15]. Consequently, our stimuli
in LA/CM experiments contain a fixation cross and a square R2 with a visual field of 5¶ ◊ 5¶ with a
luminance level equal to Lb.
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8.2.1.1 LA experiment

The fovea-covered region is represented by a dashed circle of 2¶. In contrast to [4] and [16], the noise
area R3/R

Õ
3

is randomly displayed within the dashed circle so as to avoid the memorization of noise
location, which may underestimate the JND thresholds. Furthermore, the luminance levels are set to
Lb ± Nl (R3) and Lb ± Nr (RÕ

3
) with Nl|r the noise amplitude injected in the left/right view.

8.2.1.2 CM experiment

The fovea-covered region is shown here by a 1.4¶ ◊1.4¶ dashed square (diagonal of 2¶). The noise area
R5/R

Õ
5

is located on a randomly chosen side of R4/R
Õ
4

perimeter with an intensity of Nl|r. Besides,
the luminance level of R4 is set to Lb ≠ �L, where �L denotes the luminance contrast between R2

and R4.
Considering the Percival’s zone of comfort [17] and the experiments’ duration, we choose five

disparity values (i.e., 0¶, ±0.5¶, ±1¶) after several trials. Table 8.1 describes the attributes values
of the stimuli used in LA and CM experiments. We set Nl = 0 for LA experiment to obtain the
maximum visibility thresholds of the right image. In total, there are 30 stimuli (6 luminance levels ◊
5 disparities) in LA experiment, and 60 stimuli (3 luminance levels ◊ 5 disparities ◊ 2 contrast values
◊ 2 noise amplitude levels) in CM experiment.

Table 8.1 – Stimulus attributes for LA and CM experiments.

Attribute LA CM
Noise amplitude Nl (px) 0 0, 2
Luminance contrast �L (px) ≠ 16, 48

Background luminance Lb (px) 22, 32, 48
96, 144, 192

96, 144, 192

Disparity d (degree) -1, -0.5, 0, 0.5, 1

8.2.2 Subjects

Twenty-two subjects (ages ranging from 20 to 33) are invited for both LA and CM experiments. Before
the experiments, each subject undergoes a visual acuity check based on the Freiburg Vision Test, in
addition to the stereoscopic acuity check using the Randot stereo test.

8.2.3 Apparatus

The experiments are conducted in the XLIM psychophysical test room that is isolated from the outside
di�use light and noise. The ambient illumination is adjusted to 65 lux measured by an illuminance-
meter. To display the 3D test images, we use a calibrated 46” Hyundai TriDef S465D monitor having
HD (1920 ◊ 1080) resolution with a brightness set to 250 cd/m2. Polarized 3D glasses are used to
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perceive the 3D e�ect. According to the ITU-R BT.2021-1 recommendations [18], the viewing distance
between the subject and the monitor is set to 1.7 m (approx. 3◊ the height of the display).

8.2.4 Procedure

The experiments are designed using the Psychtoolbox of Matlab [19]. Each subject is informed about
the purpose of the experiments, and instructed on how to report the results by using the keyboard
thanks to a training sequence before the actual experiments. The JND threshold of the right view is
obtained in two steps according to [20]. Step 1 determines the just noticeable noise of the right view
AJNN , whereas step 2 measures the just unnoticeable noise AJUN . The noise amplitude of the right
view is varying, while the left view remains constant in order to generate an asymmetric noise.

In step 1, for a stimulus, the noise amplitude of the right image Nr is initially set to 0 to make it
invisible to subjects. Then, Nr is increased with a step of As until it becomes just noticeable, and the
final value is saved as the subject’s AJNN . As was set to 0.0083 and 0.1 for LA and CM experiments,
respectively. Subsequently, Nr is increased to AJNN + A immediately to ensure that subjects can
easily detect the noise. A is set to 1.7 and 2.0 for LA and CM, respectively.

In step 2, the subjects follow a reversed procedure. Initially, the noise area is visible to subjects.
Then, Nr is gradually decreased from AJNN + A by a level of As until the noise becomes just unno-
ticeable. The corresponding value is saved as the subject’s AJUN . The JND threshold of the right
view is finally obtained as the average of AJNN and AJUN . The procedure is repeated for the whole
set of stimuli and subjects are asked to take a rest every 15 minutes.

8.3 Psychophysical data analysis and modeling

8.3.1 Data analysis

To derive a reliable 3D-JND model, we perform an outlier detection [21]. To do so, subject’s responses
screening is performed following the ITU-R BT 1788 recommendations [22]. The decision criterion is
based on the correlation level between subject’s values and the mean observations. Consequently, four
subjects for LA and three for CM are identified as outliers, and discarded for the further analysis.

With the aim to obtain consistent data for each subject, we proceed to the rejection of outlier
observations for each subject [23]. The median-absolute-deviation method is used for LA experimental
data, because the distribution for each subject is approximately symmetric. At the opposite, the
samples distribution for CM experimental data is mostly asymmetric for which the Tukey’s-fences
method is preferred. In addition, to confirm the reliability of the JND data after outliers’ rejection,
we adopt the Jarque-Bera test [24] to verify that all JND values of each stimulus follow a normal
distribution (p ≠ value > 0.05). Finally, the mean JND threshold is obtained for each stimulus using
the post-processed JND data.
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To further investigate the e�ects of background luminance Lb and disparity d on the JND values, we
conduct a two-way analysis of variance (ANOVA) with the null hypothesis of no statistical significant
di�erence between JND thresholds for di�erent Lb and d. It is worth noting that the e�ects of �L and
Nl are not exploited, because both of them have only two values (see Table 8.1). Before ANOVA, we
first validate the normality of the distributions with the Shapiro-Wilk test [25] and the homogeneity
of variances with the Levene’s test [26].

The resulting F (1, 6) = 290.26, p < 0.001 for LA, and F (1, 3) = 90.01, p < 0.001 for CM
demonstrate that there is a significant di�erence between the luminance levels in terms of JND
thresholds. Furthermore, for the binocular disparity, the analysis indicates a significant e�ect for
LA (F (1, 4) = 2.95, p = 0.04) and no e�ect for CM (F (1, 4) = 0.56, p = 0.69). This is probably
caused by the influence of the luminance contrast and the left view noise on JND threshold than by
disparity in the complicated CM experiment patterns.

8.3.2 3D-JND modeling

In this section, the post-processed JND data from the conducted experiments are used to derive a
3D-JND model by considering both LA and CM e�ects, as well as the disparity. Based on the study in
[4], the BJND model serves as a framework for our proposed model. Therefore, using Lb, �L, Nl and
d (cf. Table 8.1), we define a disparity-aware binocular JND threshold of the right image DBJNDr

as:

DBJNDr = Trmax(Lb, �L, d)
5
1 ≠ ( Nl

Trmax(Lb, �L, d))⁄
6 1

⁄

, (8.1)

with ⁄ a parameter that controls the influence of Nl, and its estimation will be discussed later. In
additions, Trmax denotes the maximum JND threshold of the right image by considering both LA and
CM e�ects, and is calculated as follows:

Trmax = S(Lb)�L + T
Õ
rmax

(Lb, d), (8.2)

where T
Õ
rmax

is the LA JND threshold for Nl = 0. Fitting the data of Fig. 8.2a requires a curve having
two distinct intervals: one for Lb Æ 48 and the other for Lb Ø 48. Lc represents the intersection point
between these two curves, and is equal to 33. As presented in the top of Fig. 8.2a, the values of
R-square and the root mean square error (RMSE) indicate a good fitting. Hence, for di�erent Lb and
d, T

Õ
rmax

can be expressed as:

T
Õ
rmax

=
I

c1(L2

b + c2Lb + c3d) + c4, Lb œ [0, Lc[
c5(L2

b + c6Lb + c7d) + c8, Lb œ ]Lc, 255]
(8.3)
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Figure 8.2 – (a) JND thresholds for di�erence background luminance levels Lb and disparities d from LA ex-
periment, (b) JND thresholds for di�erence Lb and noise amplitudes of the left view Nl from CM experiment. (c)
Average slopes of the two curves in (b) for each Lb.

where the damped least-square fitting method [27] used on LA experimental data allows to identify
the di�erent constants as c1 = 0.0043, c2 = 83.939, c3 = 0.344, c4 = 9.611, c5 = 0.0001, c6 = 57.884,
c7 = 2.333, and c8 = 2.536.

Moreover, to determine S(Lb) in (8.2), we first depict the average JND values (for five disparity
values) according to �L under di�erent Lb and Nl in Fig. 8.2b. It illustrates that the JND threshold
of the right image increases as the luminance level increases. Furthermore, the JND threshold is
inversely proportional to the amplitude of the noise injected in the left image under the same Lb,
except for the case where Lb = 192. This is because high luminance intensity in CM experiment may
result in subjects’ misjudgment on the visibility thresholds. The slopes of the two curves for each Lb

are determined, and are averaged as S in Eq.8.2. Fig. 8.2c shows the relation between S and Lb based
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on the obtained CM data, and its corresponding fitting function is modeled by:

S = c9(L2

b + c10Lb) + c11, (8.4)

where the fitting parameters c9, c10 and c11 are equal to ≠1.389◊10≠6, 30.238 and 0.049, respectively.
The disparity d in Eq. 8.4 is not considered because of the lack of e�ect on CM JND values (see
Section 8.3.1). As a result, we estimate ⁄ described in Eq. 8.1 by fitting the JND values for Nl = 0
and Nl = 2, and obtain ⁄ = 3.76 with RMSE = 0.421.

In addition to the above e�ects, we consider the occlusions for 3D-JND modeling. To this end,
image pixels are classified into non-occluded (NOP) and occluded (OP) pixels based on [28]. Then,
DBJND (Eq.8.1) is applied to NOP and a robust 2D-JND model [29] is applied to OP. Besides, the
studies in [30, 31] demonstrate that JND thresholds are a�ected by the visual importance of objects
in the image, i.e., visual saliency (VS). Specifically, the salient regions, which attract more visual
attention, have lower visibility thresholds than the non-salient ones. Thereby, we propose to employ a
VS map to weight di�erent JND estimates for NOPs and OPs. The VS of the S3D image is estimated
using a promising 3D saliency detection algorithm [32].

Finally, the proposed saliency-weighted stereo JND (SSJND) model is defined as:

SSJNDl|r(k) =
I

Tl|r(k)(1 + –(Ts ≠ S̄l|r(k))), S̄l|r(k) œ [0, Ts]
Tl|r(k)(1 ≠ –(S̄l|r(k) ≠ Ts)), S̄l|r(k) œ]Ts, 1]

(8.5)

where l | r refer to the left or right image, k is the kth pixel of the image. Tl|r respectively corresponds
to DBJNDl|r for NOPs and JNDl|r for OPs. S̄ represents the visual saliency normalized in the range
of [0, 1]. In addition, the parameters Ts and –, bounded in [0, 1], control the impact of VS on SSJND.
For the next section, we set Ts = 0.5, and – = 0.6.

8.4 Experimental validation

In this section, we validate the performance of the proposed SSJND model by comparing with three
very recent 3D-JND models, i.e., BJND [4], JJND [5] and DJND [10], as well as the SSJND model
without considering saliency (DBJND).

To achieve this, we use twelve stereo pairs from the Middlebury stereo datasets [33]. Similar to [34]
and [35], we compare the perceptual quality between the noise-injected S3D images relying on di�erent
3D-JND models under the same noise level. Note that the noise is injected only in the right image of
the stereo pair in order to simulate an asymmetric distortion. The S3D image Iú contaminated by the
JND-based noise is calculated as: Iú(k) = I(k) + Cn · Nrand(k) · JND(k), where I denotes the original
image. Cn is a control parameter that makes the same noise level for di�erent 3D-JND models leading
to the same peak signal-to-noise ratio (PSNR), i.e. PSNR œ [28dB, 29dB].

To subjectively compare our model to the state-of-the-art, we use the same experimental setup as
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Table 8.2 – Quality comparison between our SSJND and state-of-the-art models using 12 images from the
Middlebury stereo datasets.

S3D
image

vs.DBJND vs. BJND [4] vs. JJND [5] vs. DJND [10]
M̄ p-value M̄ p-value M̄ p-value M̄ p-value

Art 0.39 0.0001 0.06 0.0001 1.44 0.0058 1.61 0.0015
Reindeer 0.72 0.0001 0.33 0.0001 2.56 0.0001 2.89 0.0001
Moebius 0.39 0.0001 -0.17 0.0001 2.06 0.0001 2.22 0.0001
Dolls 0.72 0.0002 0.50 0.0001 1.72 0.0001 0.94 0.0001
Aloe 0.39 0.0001 0.83 0.0006 0.78 0.0016 1.22 0.0027
Baby2 0.17 0.0034 0.11 0.0004 -0.50 0.0131 0.78 0.0001
Midd2 0.56 0.0001 0.22 0.0007 -0.94 0.0001 0.83 0.0002
Plastic 0.56 0.0001 0.28 0.0001 0.89 0.0045 0.44 0.0013
Motorcycle -0.11 0.0001 -0.17 0.0001 1.06 0.0001 1.94 0.0001
Piano -0.22 0.0001 0.28 0.0002 2.56 0.0001 2.33 0.0001
Playroom 0.44 0.0001 0.22 0.0006 1.89 0.0001 1.44 0.0001
Playtable 0.22 0.0001 0.56 0.0001 1.00 0.0052 1.44 0.0007
Average 0.32 0.0003 0.24 0.0002 1.12 0.0023 1.39 0.0005

for previous PEs. The room ambient illumination and the viewing distance are set to 100 lux and
1.8 m, respectively. Furthermore, eighteen subjects are invited to participate the test. Note that two
subjects (side-by-side) participate to the test simultaneously while the influence of viewing direction
on the quality judgment will be investigated later. We opted for the stimulus-comparison method
described in the ITU-R BT.2021-1 [18]. Firstly, a mid-grey image with zero disparity, containing the
image sequence number, is presented to the subjects for 2s. Then, a couple of JND-based distorted 3D
images (SSJND and other 3D-JND model) are shown with random position on a mid-gray background
for 10s. Subsequently, subjects are asked to provide a score depending on the preference: 0 (the same),
1 (slightly better), 2 (better), 3 (much better). These scores are then used to compute the mean opinion
score over all subjects for each S3D image. In addition, we use the Pearson’s chi-squared test [36] to
verify the statistical significance of the comparative scores. The adopted null hypothesis of this test
is: "there is no preference between the proposed SSJND model and the other 3D-JND models".

Table 8.2 shows the quality comparison results in terms of mean opinion scores and p-values for
each image. p ≠ value < 0.05 for all pair comparison cases rejects the null hypothesis, and thus
validates the statistical significant preference between the proposed model and the other 3D-JND
models.
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Overall, SSJND outperforms all the other models on almost all the used images. Complex scenes
may lead to di�culties in VS estimation where SSJND may overestimate the JND thresholds for
smooth regions with high luminance intensity when the latter regions are considered as non-salient.

Compared to the BJND, the proposed SSJND model considers occlusion e�ect, and thus globally
provides better estimation for S3D image containing large number of occluded pixels. In the same
vein, our model performs quite better than the JJND and DJND models in terms of average scores,
because they are both developed based on 2D-JND, which makes them less reliable than the 3D-JND
model based on PEs. As a conclusion, our SSJND model performs better for almost the whole dataset
except for some rare cases, where it should be noticed that the di�erence is close to 0.

The results of ANOVA with the null hypothesis of no significant di�erence of the subject position
in terms of subjective scores, give p ≠ value = 0.28, 0.89, 0.78, and 0.99 respectively for the DBJND,
BJND, JJND and DJND models, and indicate that the viewing direction has not significant influence
on subjective scores.

8.5 Conclusion

In this paper, we propose a saliency-weighted stereoscopic JND (SSJND) model. To this end, we first
conduct psychophysical experiments in which we measure the visibility thresholds of the asymmetric
noise. The psychophysical data is used to develop a disparity-aware binocular JND (DBJND) model
allowing to estimate the JND thresholds for non-occluded pixels. The SSJND profile is build on top
of DBJND by including a 2D-JND model for occluded-pixels and accounting for visual saliency. The
experimental validation shows that the proposed model outperforms the other 3D-JND models in terms
of perceptual quality at the same noise level. A more reliable VS detection approach and an e�ective
VS-map-based weighting function will be investigated in the future to improve the e�ectiveness of the
proposed 3D-JND model.
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Abstract

One of the most challenging issues in stereoscopic image quality assessment (IQA) is how to e�ectively
model the binocular behaviors of the human visual system (HVS). The latter has a great impact on
the perceptual stereoscopic 3D (S3D) quality. This paper presents a stereoscopic IQA metric based on
the properties of the HVS. Instead of measuring the quality of the left and the right views separately,
the proposed method predicts the quality of a cyclopean image to ensure that the overall S3D quality
is as close as possible to the binocular vision. The cyclopean image is synthesized based on the local
entropy of each view with the aim to simulate the phenomena of the binocular rivalry/suppression. A
2D IQA metric is employed to assess the quality of both the cyclopean image and the disparity map.
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Additionally, the quality of the cyclopean image is modulated according to the visual importance of
each pixel defined by the just noticeable di�erence (JND). Finally, the 3D quality score is derived
by combining the quality estimates of the cyclopean image and disparity map. Experimental results
show that the proposed method outperforms many other state-of-the-art SIQA methods in terms of
prediction accuracy and computational e�ciency.

Index terms– stereoscopic image quality assessment, cyclopean image, binocular rivalry/suppression,
just noticeable di�erence (JND).

9.1 Introduction

In the past few years, great e�orts in Stereoscopic 3D (S3D) technologies have been made to bring
a realistic 3D visual experience to consumers. However, S3D technology development brings some
challenges especially to 3D-TVs makers. One of the major challenges is linked to the user’s quality
of experience (QoE) including comfort and fatigue aspects. In order to achieve this, it’s important
to develop accurate and reliable IQA metrics for 3D stereoscopic content. While 2D IQA has greatly
advanced in the recent years, stereoscopic IQA (SIQA) is only in its infancy. Mainly because 3D
perceptual quality can be a�ected by the characteristics of both monocular and binocular vision.
Even though 3D quality can be measured using subjective experiments [1], these are tedious and
expensive. Therefore, objective metrics are needed to automatically assess the perceived 3D visual
quality.

A stereo pair contains two slightly di�erent views (i.e., left and right views), each of which is
projected separately onto the retina. When a S3D image is observed, the human visual system (HVS)
merges the two views to yield a single mental view (i.e., cyclopean image) based on the properties of
the binocular vision [2]. Thereby, the 3D perceptual quality depends not only on the quality of each
individual view [3], but also on the depth information [4] and the binocular characteristics [5]. The idea
is to explore how these attributes contribute to the overall 3D quality. Therefore, to design reliable
and accurate S3D metrics, it is important to understand and account for the di�erent perceptual
processes of the HVS.

In this paper, we propose a new SIQA metric based on the HVS properties, combining the quality
scores of the cyclopean image [5] and the disparity map. The major contribution of this work lies in the
development of a novel 3D quality metric by modeling the phenomena of binocular rivalry/suppression,
and accounting for disparity map quality as well as the monocular spatial sensitivity of the HVS. Be-
sides, we provide a comprehensive experimental evaluation for our proposed method, and an extensive
comparison with other SIQA methods. The remainder of the paper is organized as follows. In Sect.
9.2, we provide a brief review of recent SIQA metrics. Sect. 9.3 describes the proposed SIQA method.
We evaluate and discuss the performance of the proposed metric in Sect. 9.4. This paper ends with
some conclusions and future work.
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9.2 Related work

In this section, we briefly review the recent SIQA methods. Based on the type and the amount of the
information used from stereoscopic views, the SIQA methods can be divided into three categories [6]:
(1) stereo-pair-based methods, (2) methods based on stereo-pair and depth information, (3) methods
considering the HVS properties.

9.2.1 Stereo-pair-based methods

The SIQA methods of the first category try to extend the 2D IQA algorithms directly to measure
the distortions of S3D images. Most early approaches [7, 8] assess the quality of left and right views
separately using state-of-the-art 2D quality metrics, and then combine both scores into an overall 3D
quality score. For instance, Campisi et al. [7] evaluated the S3D quality by four 2D quality metrics
including structural similarity metric (SSIM) [9], universal image quality index (UQI) [10], C4 [11]
and reduced-reference QA [12]. However, considering the combination of the qualities for each view as
an overall 3D quality does not correlate well with the human quality judgments [13]. This is mainly
due to the fact that these 2D metrics do not take into account depth information, which plays an
important role on 3D perception.

9.2.2 Methods based on stereo-pair and depth information

Consequently, the second category employs both views of a stereo pair in addition to depth/disparity
information to estimate 3D quality. In this category, 2D quality metrics are used to measure the
quality of both the stereo-pair and the disparity map. Then, these two quality values are combined
to yield a 3D quality score. In an early research, Benoit et al. [3] proposed a full reference 3D metric
that applies SSIM and C4 metrics on left and right images independently, and then combined these 2D
scores with the estimate of disparity map distortion. Later, You et al. [14] explored the performance
of 2D quality metrics used in the context of 3D quality assessment with di�erent ways of combining
between the disparity map quality and views’ quality. Hwang and Wu [15] developed a 3D quality
prediction model that integrates the stereo-pair quality with depth quality and S3D visual saliency.
Recently, Wang et al. [16] designed a reduced reference SIQA model, considering the quality of both
luminance images and disparity map, based on image statistics in the contourlet domain. Since the
ground truth depth/disparity maps are not always available, this category of methods estimate the
disparity maps by using stereo matching algorithms. Thereby the accuracy of the stereo matching
algorithms may a�ect the performance of 3D quality prediction.

9.2.3 Methods considering the HVS properties

In fact, the views of a stereo-pair may su�er from an equal amount of distortion (namely symmetric
distortion) or di�erent amounts and/or types of distortions (namely asymmetric distortion). Symmet-
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ric distortion results in binocular fusion [17], whereas asymmetric distortions lead to either binocular
rivalry [18] or binocular suppression[19] depending on the strength of the di�erence. These latter have
a great impact on perceived 3D quality. The SIQA methods of the two above-mentioned categories are
quite useful in the case of symmetric distortion, but perform much less e�ectively for asymmetrically
distorted stereo-pairs that are very common in real application such as coding. Thus, to improve the
performance of the 3D metric, the third category of SIQA methods consider the monocular and/or
binocular visual properties in addition to stereo-pair quality and depth information.

It is known that the human eyes are incapable of perceiving pixel changes below a specific visual
threshold namely the just noticeable di�erence (JND) due to their underlying temporal/spatial sen-
sitivity and masking e�ects [20]. Some JND models for S3D content (3D-JND) accounting for both
monocular and binocular depth cues have been proposed [21]. For instance, a binocular just noticeable
di�erence (BJND) model [22], which investigates the properties of the binocular vision in response
to asymmetric noise in a stereo-pair based on HVS characteristics, has been applied in 3D quality
estimation[23, 24].

Other SIQA approaches combine left and right views into one cyclopean image, and the final 3D
quality is measured by analyzing this merged image. For example, Chen et al. [5] developed a SIQA
metric by computing the quality of the cyclopean images constructed by a linear model. The weights
of this model are derived from the Gabor filter magnitude responses, which simulate the binocular
rivalry. Similarly, Fezza and Larabi [25] proposed a full reference SIQA method based on the quality
of the test cyclopean image generated by using local entropy and depth information. Besides, Lin
and Wu [26] predicted the 3D quality based on both binocular combination and binocular frequency
integration. In the following section, we propose a SIQA method that estimates the degradations of
cyclopean image and disparity map.

9.3 The Proposed SIQA Method

As mentioned above, the HVS is not sensitive to the quality in the left or right image separately.
Instead, it perceives distortions of the cyclopean image as 2D impairments, and depth/disparity dis-
tortion as 3D impairment. Thereby our proposed SIQA method is based on the assumption that the
overall 3D quality is a combination of the qualities of binocular-based cyclopean image and the dis-
parity map. Figure 1 shows the framework of the proposed SIQA method. This 3D quality prediction
model consists of 5 steps:

1. Disparity estimation for both reference and distorted stereo pairs;

2. Formation of the cyclopean image for each stereo pair based on local entropy;

3. Quality assessment of the cyclopean image and disparity map separately using the UQI metric;

4. Weighting the cyclopean image quality with the JND map of the reference cyclopean image;
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Figure 9.1 – Framework of the proposed SIQA method.

5. S3D quality estimation by combining the quality of the JND-based cyclopean image with the
qualiy of disparity map.

The first step is to form the cyclopean images. According to a linear model proposed in [5, 27],
by modeling the rivalry/suppression when a stereo stimulus is presented, we synthesize the cyclopean
image as follows:

Ic(i, j) = Wl(i, j) ◊ Il(i, j) + Wr(i, j ≠ dl) ◊ Ir(i, j ≠ dl), (9.1)

where Il and Ir represent the left and right images respectively, and Ic is the cyclopean image. Wl

and Wr are the weighting coe�cients for their corresponding images, and used to describe the rivalry
process, thus Wl + Wr = 1. Moreover, i and j are the pixel coordinates, and dl(i, j) represents the
disparity value of the pixel (i, j) of left image that corresponds to the horizontal shift of one pixel
from the left to the right image. To determine the disparity map, we propose to use a stereo matching
algorithm recently proposed by Lee et al. [28]. This algorithm e�ciently achieves high performance
in disparity estimation and deals with the issues of occlusion and depth discontinuities.

As described in [27], the experience of binocular rivalry is correlated to the relative stimulus
strength of each view instead of absolute stimulus strength. Moreover, the studies in [5] [13] found that
the 3D human perception is dominated by the view of high contrast or rich contours. In other words,
the perceptual 3D quality follows the quality of the view containing a higher amount of information.
Therefore, the local information content is used to determine the relative stimulus strengths Wl and
Wr of two views, where Wl(i, j) and Wr(i, j) are defined by:

Wl(i, j) = ENl(i, j)
ENT (i, j) , Wr(i, j ≠ dl) = ENr(i, j ≠ dl)

ENT (i, j) , (9.2)
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ENT (i, j) = ENl(i, j) + ENr(i, j ≠ dl), (9.3)

where ENl(i, j) and ENr(i, j) are the left and right local entropy of the pixel (i, j) in the left and right
views respectively. The image entropy is related to the amount of information that can be coded in the
compression process. For instance, a low entropy image contains very little contrast. The entropy of a
pixel computed based on 11-by-11 neighborhood with specific shape around this pixel[29] is described
as follows:

EN(i, j) = ≠
gmaxÿ

s=gmin

p(xs) ◊ log2(p(xs)), (9.4)

where gmin and gmax are minimum and maximum values respectively in the corresponding neighbor-
hood pixels. p(xs) denotes the probability that the di�erence between two adjacent pixels is equal
to s. Based on equations 2, 3 and 4, our SIQA method simulates the binocular rivalry/suppression.
For example, di�erent local entropies in two views lead to binocular rivalry/suppression, and the 3D
quality is more a�ected by the view containing higher local entropies.

Given the cyclopean images (Irc, Idc) and the disparity maps (Dpr, Dpd) of the reference and
distorted stereo pairs, we independently measure the quality of the cyclopean image and the disparity
map by using 2D IQA metric. In [14], You et al. found that UQI performs the best for 3D quality
prediction among all the tested 2D IQA metrics. On the other hand, UQI metric has the best
performance for IQA on the disparity map. Actually, UQI used in disparity quality estimation is
based on comparing the structural information, and the disparity can express such information of the
original images.

Thereby we propose to employ UQI to predict the quality of the stereo pair and disparity map
independently:

Qc(i, j) = UQI(Irc, Idc), Qd = UQI(Dpr, Dpd), (9.5)

where Qc is the UQI index map of the test cyclopean image, and Qd denotes the quality score of
the disparity map. In order to improve the SIQA performance, we used the visual importance of
the pixel to weight the cyclopean quality score [23]. The visual importance, which corresponds to
monocular spatial sensitivity of HVS, is described by JND thresholds [30] of the reference cyclopean
image. Accordingly, the JND-based cyclopean quality QJND

c is calculated by:

QJND
c =

qN
i,j

Ë
1

JND(i,j)
◊ Qc(i, j)

È

qN
i,j

1

JND(i,j)

, (9.6)

where N is the number of pixels in the cyclopean image. High value of the JND in a pixel means that
this pixel can tolerate a large degradation, and thus has a low visual importance in the perceptual
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Table 9.1 – Performance of SIQA methods on LIVE 3D IQA database (phase II). The symbols AS and S are
respectively the asymmetric and symmetric distortions. CT denotes the computational runtime (in second) for all
images. Italicized entries are 2D quality metrics, while the best performance are bolded.

Method
LCC SROCC RMSE CT

S As Total S As Total S As Total Total
SSIM [9] 0.852 0.767 0.802 0.826 0.736 0.793 6.543 6.510 6.736 30
MS-SSIM [31] 0.927 0.719 0.795 0.912 0.684 0.777 4.694 7.047 6.851 49
FSIM [32] 0.929 0.731 0.808 0.912 0.684 0.786 4.623 6.913 6.654 919
VIF [33] 0.928 0.777 0.837 0.916 0.732 0.819 4.653 6.383 6.184 684
UQI [10] 0.940 0.794 0.863 0.938 0.755 0.841 4.223 6.159 5.685 38
Wang [23] 0.862 0.743 0.771 0.826 0.696 0.771 6.334 6.787 7.188 82
Fezza [24] 0.788 0.713 0.751 0.778 0.676 0.734 7.685 7.104 7.453 163
Fezza [25] 0.930 0.820 0.871 0.921 0.796 0.862 4.576 5.801 5.553 1410
Chen [5] 0.939 0.878 0.909 0.927 0.858 0.904 4.277 4.846 4.700 14089
Proposed 0.940 0.875 0.906 0.938 0.839 0.893 4.272 4.903 4.795 2392

quality. Finally, the S3D quality score Q3D is calculated by a linear model:

Q3D = – ◊ QJND
c + — ◊ Qd (9.7)

where – and — are the weights of the 2D JND-based cyclopean quality and the disparity quality
respectively, with – + — = 1. In our implementation, we assume that the 2D quality has more
importance than disparity quality, thus we fixed – = 0.6 and — = 0.4.

9.4 Experiemntal results

In this section, we evaluate the performance of the proposed SIQA method on the publicly available
LIVE 3D IQA database (phase II) [34]. LIVE 3D IQA database is composed of 8 original images
and 360 distorted stereo pairs with symmetric and asymmetric distortions, including additive white
gaussian noise (WN), gaussian blur (Gblur), JPEG, JPEG 2000 compression (JP2K) and fast fading
(FF). We compare the proposed method with four other SIQA methods[5, 23–25]. For the SIQA
methods, we used the same stereo matching algorithm [28] to estimate the disparity maps to ensure
a fair comparison. In addition, we evaluate the performance of SIQA methods using only 2D metrics
including SSIM, MS-SSIM [31], FSIM [32], VIF [33] and UQI. For these 2D-based SIQA methods, we
estimated the 3D perceptual quality by averaging the quality predicted from the left and right views.
The performance of the 3D quality metrics has been evaluated using three well-known measures: the
Linear Correlation Coe�cient (LCC), the Spearman Rank Order Correlation Coe�cient (SROCC)
and RMSE. Three measures were computed between DMOS and the predicted scores after a non-
linear regression with a five-parameter logistic function described in [35]. All tests were performed by
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Figure 9.2 – Scatter plots of DMOS versus predicted scores obtained by proposed SIQA method.

running MATLAB code on a portable computer (Inter Core i7-2630 QM Processor at 2.00 GHz, 4 GB
RAM, Windows 7).

9.4.1 Overall performance

Table 9.1 shows the performance of SIQA methods on LIVE 3D IQA database. These results demon-
strate that the proposed method outperforms the others methods except Chen’s method for the cases
of symmetric and asymmetric distortions. Actually, the proposed method is quite similar to Chen’s
method [5] in terms of overall performance, but the proposed method is obviously much faster than
Chen’s method. To summarize, our proposed method achieves high performance with low compu-
tational costs. On the other hand, most of 2D-based SIQA methods are as e�cient as the 3D IQA
methods for the symmetrically distorted stereo pairs, but they generally give bad performance than
3D IQA methods for asymmetric distortions. This is mainly due to the fact that 2D-based SIQA
methods evaluate the S3D quality without considering neither the depth/disparity information nor
the characteristics of the binocular vision. It should be noted that the method using UQI metric
performs best within all 2D-based SIQA methods.

The performance of Wang’s method [23] and Fezza’s method [24] are lower than the proposed
approach despite their use of binocular properties. This may be explained by the fact of predicting
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Table 9.2 – Performance of the proposed SIQA method on LIVE 3D IQA database (phase II).

Strategies LCC SROCC RMSE
without JND 0.902 0.883 4.870
without DQA 0.889 0.864 5.163
without JND and DQA 0.887 0.866 5.178
with JND and DQA 0.906 0.893 4.795

3D quality separately of left and right views, and failing in accounting for the binocular properties.
Thereby the methods based on cyclopean image (i.e., Chen’s [5], Fezza ’s [25] and our proposed
method) achieved better performance than other 3D IQA methods. In addition to the performance
comparison mentioned above, we provide in Figure 9.2 the scatter distributions of DMOS versus
predicted scores obtained with the proposed method, as well as the non-linear fitting curve.

9.4.2 Discussion about the proposed strategy

In this section, we show the advantages of considering both JND and quality assessment for disparity
map in our SIQA method. We compare the performance and the influence of each component of the
proposed metric (see Figure 9.1). The performance of the four SIQA methods on one database are
shown in Table 9.2. SIQA method without JND does not use the JND map to weight the quality of
reference cyclopean image, whereas the SIQA method without quality assessment for disparity map
(DQA) does not consider the quality of disparity map. From the results, we can notice that the
proposed SIQA method (i.e, with JND and DQA) gives the best performance among all strategies.
However, the proposed method slightly outperforms method without JND in terms of LCC. In addition,
SIQA method without JND performs better than SIQA method without DQA. This can be explained
by the fact that the depth information is more important than the sensitivity of HVS for 3D quality
prediction. In summary, the results of Table 9.2 mean that 3D quality prediction performance can
be improved by accounting for both JND and disparity quality estimation. We also explored the
performance of proposed method for di�erent types of distortions. Our method performs quite well
for both GBlur and FF distortion. We cannot show here due to page limitation.

9.5 Conclusion

In this paper, we proposed a quality assessment method for stereoscopic images based on HVS prop-
erties. Our method models the human stereo vision by fusing the left and right views to generate a
cyclopean image, and taking into account the disparity information as well as the monocular spatial
sensitivity of HVS. The experimental results showed that the proposed method outperforms well-known
2D-based SIQA methods and 3D IQA methods in terms of prediction accuracy and computational
costs. In future works, the performance of the proposed method will be evaluated on other databases.
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In addition, other reliable approaches modeling the process of binocular rivalry will be considered to
improve the performance of our method.
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Abstract

One of the most challenging issues in stereoscopic image quality assessment (SIQA) is how to e�ectively
model the binocular behavior of the human visual system (HVS). The latter has a great impact on the
perceptual 3D quality. In this paper, we propose a SIQA metric accounting for binocular combination
properties and disparity information. Instead of computing the quality of the left and the right
views separately, the proposed metric predicts the quality of a cyclopean image so as to have a good
consistency with 3D human perception. The cyclopean image is synthesized based on the local entropy
and the visual saliency of each view with the aim to simulate the phenomena of binocular fusion/rivalry.
A 2D IQA metric is employed to assess the quality of both the cyclopean image and the disparity map.
The obtained scores are use to derive the 3D quality score thanks to a pooling stage. Experimental
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results on three public 3D IQA databases show that the proposed method outperforms many other
state-of-the-art SIQA methods, and achieves high prediction accuracy on these databases.

Index terms– Stereoscopic image quality assessment, cyclopean image, binocular fusion/rivalry,
visual saliency.

10.1 Introduction

In recent years, three-dimensional (3D) multimedia has become popular thanks to new sensations of
immersion. With the rapid development of stereoscopic 3D (S3D) technologies, sources of 3D content
and 3D display are more common nowadays. As a result, the perceptual quality assessment of 3D
images and videos is quite important in order to guarantee the visual quality of experiences (QoE)
at every processing stage ranging from 3D acquisition, compression, transmission and display. While
2D image quality assessment (IQA) has greatly advanced over the last decade, SIQA is still in its
early stage and hence challenging [1], especially for asymmetrically distorted S3D images. This is
mainly because 3D perceptual quality is a�ected by both monocular and binocular factors including
2D quality, disparity/depth quality and visual comfort. Although 3D quality can be measured using
subjective experiments, these are costly, time-consuming, and thus impractical for real-time appli-
cations. Consequently, objective SIQA metrics are needed to automatically predict the perceptual
quality of S3D images.

According to the availability of the reference stereo pair, SIQA metrics can be generally classified
into three groups: full-reference (FR) [2, 3], reduced-reference (RR) [4, 5] and no-reference (NR) [6, 7]
methods. While FR-SIQA metrics use the whole reference S3D images to measure the 3D quality,
RR-SIQA metrics make use of a set of features extracted form the reference images. NR-SIQA metrics
measure the image quality without using any specific information of the reference images. Our SIQA
metric presented in this paper belongs to the FR group.

Meanwhile, FR-SIQA methods can also be categorized into three classes [2] based on the type
and amount of information extracted from stereo pairs. The SIQA methods of the first class [8, 9]
employ 2D IQA metrics to measure the quality of left and right views separately, and then combine
both scores into an overall 3D quality score. This class of methods does not correlate well with human
quality judgments, since 2D metrics do not take into account binocular depth cues playing a critical
role in 3D perception. Methods of the second class [10, 11] assess the 3D quality using depth/disparity
information in addition to both views of a stereo pair. It is worth noting that the performance of
the methods in this class depends on the accuracy of the depth/disparity maps estimated by stereo
matching algorithms.

In fact, the left and right views of a stereo pair may su�er from the same distortion type and
level (namely symmetric distortion) or di�erent distortion levels and/or types (namely asymmetric
distortion). Symmetric distortions lead to binocular fusion (BF), whereas asymmetric distortions
result in either binocular rivalry (BR) [12] or binocular suppression (BS) [13] according to the di�erence
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of distortion strength. These latter have a great impact on the perceptual 3D quality. The FR-SIQA
methods of the two above-described classes can perform quite well in the case of symmetric distortion,
but are much less e�ective for asymmetrically distorted S3D images that are very common in real
application such as 3D coding. Thus, to improve the SIQA performance for asymmetric distortions, a
3D metric should accurately model the stimulus strength and account for the binocular combination.
The third class of SIQA methods takes into account the monocular and/or binocular visual properties
in addition to 2D image quality and disparity/depth information. Several SIQA methods that simulate
the binocular visual phenomena have been proposed. These methods assess the quality of a single-view
separately, and then combine both quality scores into a 3D quality with the help of weights modeling
stimulus strength. For instance, Wang et al. [3] proposed an information content and distortion
weighted SSIM metric for left and right views, and employed a BR inspired multi-scale model to predict
the perceived 3D quality from the 2D images based on image local variance. Recently, Cao et al. [14]
developed a FR-SIQA method based on several visual characteristics of the human visual system
(HVS). The patch-based image gradient entropy was used for modeling the stimulus strength. When
a stereo pair is observed by a human subject, the HVS merges both views of the stereo pair to yield
a single mental view (namely, cyclopean perceptual image) according to the binocular combination
behavior [15]. The cyclopean perceptual image can be used to model BF and BR properties. Therefore,
based on di�erent binocular combination strategies, many other SIQA approaches [2, 16–19] in the
literature combine left and right views into one cyclopean image, and the final 3D quality is evaluated
by analyzing this merged image. For example, Chen et al. [17] developed a metric by assessing the
quality of the cyclopean images constructed by a linear model. The weights of this model are derived
from Gabor filter magnitude responses, which simulate the BR. Recently, Zhang and Chandler [2]
presented a FR-SIQA metric based on monocular image quality estimated from left and right views,
and cyclopean image quality measured using lightness distance and pixel-based contrast. Although
these methods achieve much progress, various characteristics of the HVS have not been deeply explored,
which limit the prediction accuracy. Therefore, to design more reliable and accurate SIQA metrics, it
is important to understand and account for di�erent perceptual processes of the HVS.

In this paper, we propose a new SIQA method based on binocular combination properties and
disparity information, combining quality scores of the cyclopean image and the disparity map. Specif-
ically, the major contribution of this work lies in the development of a 3D perceptual quality prediction
framework by modeling the BF/BR phenomena, and accounting for disparity distortion as well as
monocular visual saliency in the binocular combination. Besides, we provide a comprehensive experi-
mental evaluation for our proposed method and an extensive comparison with other SIQA methods on
three databases. The rest of this paper is organized as follows. In Section 10.2, we detail the proposed
SIQA method. Section 10.3 gives experimental results and comparative analysis. Finally, we conclude
this paper in Section 10.4.
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Figure 10.1 – Flowchart of the proposed SIQA method.

10.2 Proposed SIQA method

As mentioned previously, the HVS does not account for left and right stimuli separately. Instead,
it perceives distortions of the cyclopean image as 2D impairments, and depth/disparity distortion as
3D ones. Inspired by this, our proposed SIQA method predicts the overall 3D quality by combining
the cyclopean image quality with disparity quality. Fig.10.1 illustrates the flowchart of the proposed
method.

As shown in Fig.10.1 , the first step is to determine the disparity images for reference and distorted
stereo-pairs. To achieve this, we use the stereo matching algorithm proposed in [20] for low-resolution
S3D images and SSIM-based stereo algorithm [17] for high-resolution S3D images. These two al-
gorithms can e�ciently achieve good performance in disparity estimation and deal with the issue
of occlusion and depth discontinuities. Next, inspired by the linear combination model proposed in
[17, 21], by modeling the BF/BR phenomena when a stereo stimulus is presented, we generate the
synthesized cyclopean image Ic as follows:

Ic(i, j) = LEl(i, j + dr)
LET (i, j) ◊ Il(i, j + dr) + LEr(i, j)

LET (i, j) ◊ Ir(i, j), (10.1)

LET (i, j) = LEl(i, j + dr) + LEr(i, j), (10.2)

198



10.2. Proposed SIQA method

where Il and Ir represent the left and right views respectively. LEl and LEr denote the local energy
maps for their corresponding images, and used to describe the stimuli to left and right eyes. In
addition, (i, j) is the pixel coordinate. The left image Il and its local energy map LEl are warped to
their corresponding locations in the right view using the disparity of right image dr that corresponds
to the horizontal shift of the pixel from the right to the left view. As shown in Eq. 10.1, the BR
phenomenon is correlated to the relative stimulus strength of each view instead of the absolute stimulus
strength [17].

The next step is to compute the local energy maps of two views to model the stimulus strength.
The study in [22] found that the 3D human perception is dominated by the view of high contrast or
rich contours. In other words, the perceptual 3D quality follows the quality of the view containing a
higher amount of information. Therefore, the local entropy is used to determine the stimulus strength
of each view. Moreover, we assume that the local energy of one view depends on the visual importance
of the stimulus corresponding to the 2D visual saliency. The local energy LE(i, j) of one view is defined
by:

LE(i, j) = (EN(i, j) ◊ V S(i, j))2, (10.3)

where EN(i, j) denotes the local entropy of a pixel (i, j) in one view of a stereo pair, and V S is the
visual saliency map of this view. On the one hand, we use the method proposed in [23] to estimate
the saliency map, because it performs well in terms of saliency prediction accuracy and computational
e�ciency. On the other hand, the image entropy is related to the amount of information that can
be coded in the compression process. For example, a low entropy image contains very little contrast.
The local entropy of a pixel computed based on 11-by-11 neighborhood with specific shape around
this pixel is described as follows:

EN(i, j) = ≠
gmaxÿ

s=gmin

p(xs) ◊ log2(p(xs)), (10.4)

where gmin and gmax are the minimum and maximum values respectively in the corresponding neigh-
borhood pixels. p(xs) denotes the probability that the di�erence between two adjacent pixels is equal
to s. Based on Eqs. 10.1, 10.2, 10.3, and 10.4„ the proposed SIQA metric tries to simulates the
BF/BR phenomena. Specifically, di�erent local energies in both views lead to BR, and the 3D quality
of a region is more a�ected by the view containing higher contrast energies.

Given the cyclopean images (Irc, Idc) and the disparity maps (Dpr, Dpd) of the reference and
distorted stereo pairs, we separately measure the cyclopean quality and disparity quality by using 2D
IQA metric. In [11], You et al. found that universal image quality index (UQI) [24] performs the best
for 3D quality prediction among all tested 2D IQA metrics. Furthermore, the study in [25] revealed
that the visual information fidelity (VIF) [26] metric can achieve an accurate quality prediction for
2D IQA database consisting of 2D high-resolution images such as CSIQ database [27]. On the other
hand, UQI metric provided the best performance for IQA on the disparity map. In fact, UQI used in
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Table 10.1 – Performance of SIQA methods on LIVE 3D IQA database (phase I). Italicized entries denote
2D-based IQA, and the results of the best-performing SIQA method are highlighted in boldface.

Distortion
type

Criteria
UQI
[24]

VIF
[26]

GMSD
[25]

Benoit
[10]

You
[11]

Fezza
[18]

Chen
[17]

Shao
[28]

Lin
[19]

Proposed

WN
LCC 0.927 0.930 0.950 0.925 0.941 0.947 0.955 0.945 0.927 0.932

SROCC 0.926 0.931 0.943 0.929 0.940 0.944 0.948 0.941 0.929 0.927
RMSE 6.240 6.103 5.197 6.308 5.622 5.351 4.963 - 6.257 6.038

JPEG
LCC 0.769 0.603 0.664 0.641 0.487 0.706 0.527 0.520 0.755 0.781

SROCC 0.737 0.580 0.620 0.603 0.439 0.657 0.521 0.495 0.716 0.748
RMSE 4.178 5.216 4.888 5.022 5.710 4.632 5.557 - 4.291 4.086

JP2K
LCC 0.944 0.888 0.933 0.940 0.878 0.937 0.920 0.921 0.952 0.954

SROCC 0.910 0.902 0.906 0.910 0.860 0.896 0.887 0.895 0.913 0.915
RMSE 4.270 5.959 4.676 4.427 6.207 4.532 5.070 - 3.963 3.868

GB
LCC 0.952 0.962 0.960 0.949 0.920 0.934 0.943 0.959 0.958 0.958

SROCC 0.925 0.934 0.939 0.931 0.882 0.909 0.924 0.940 0.933 0.926
RMSE 4.451 3.955 4.051 4.571 5.680 5.173 4.813 - 4.137 4.182

FF
LCC 0.879 0.862 0.839 0.747 0.730 0.783 0.776 0.859 0.862 0.891

SROCC 0.833 0.804 0.791 0.889 0.583 0.693 0.700 0.796 0.829 0.844
RMSE 5.925 6.306 6.755 8.258 8.492 7.730 7.832 - 6.299 5.644

ALL
LCC 0.943 0.925 0.944 0.903 0.881 0.821 0.922 0.935 0.937 0.944

SROCC 0.937 0.920 0.936 0.889 0.879 0.922 0.914 0.925 0.931 0.940
RMSE 5.478 6.230 5.404 7.062 7.746 9.358 6.351 5.816 5.744 5.404

disparity quality estimation is based on comparing the structural information, and the disparity can
express such information of the original images. Thereby the qualities of the cyclopean image and the
disparity map are calculated as follows:

Qc = UQI/V IF (Irc, Idc), Qd = UQI(Dpr, Dpd), (10.5)

where Qc is the quality score of the test cyclopean image, and Qd denotes the quality score of the
disparity map. To estimate the cyclopean image quality, we use the UQI metric for LIVE 3D IQA
databases (phase I [29] and phase II [17]), and the VIF metric for Waterloo-IVC 3D database (phase
I) [3]. Finally, the S3D quality score Q3D is calculated by a linear model:

Q3D = – ◊ Qc + (1 ≠ –) ◊ Qd (10.6)

where – is the weight for adjusting the relative importance of Qc and Qd. In the implementation,
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Table 10.2 – Performance of SIQA methods on LIVE 3D IQA database (phase II). The symbols As and S are
respectively the asymmetric and symmetric distortions.

Method LCC SROCC RMSE
S As All S As All S As All

UQI [24] 0.941 0.795 0.864 0.939 0.755 0.842 4.213 6.154 5.677
VIF [26] 0.928 0.777 0.837 0.916 0.732 0.819 4.652 6.382 6.182
GMSD [25] 0.920 0.738 0.803 0.910 0.716 0.783 4.897 6.842 6.723

Benoit [10] 0.921 0.746 0.764 0.910 0.732 0.748 5.712 6.976 7.281
You [11] 0.911 0.659 0.721 0.898 0.604 0.721 7.128 8.009 7.141
Fezza [18] 0.930 0.820 0.871 0.921 0.796 0.862 4.576 5.801 5.553
Chen [17] 0.935 0.870 0.902 0.923 0.851 0.895 4.438 4.991 4.866
Shao [28] - - 0.863 - - 0.849 - - 5.706
Proposed 0.945 0.883 0.912 0.941 0.848 0.898 4.076 4.754 4.643

we set – = 0.65 for LIVE 3D phase I and II databases, and – = 0.6 for Waterloo-IVC 3D phase I
database. This is because the overall disparity of the stereo pairs in Waterloo-IVC 3D database is
generally larger than that in LIVE 3D databases, and the disparity quality plays more important role
in Waterloo-IVC 3D phase I database.

10.3 Experimental results and analysis

In this section, we evaluate the performance of the proposed and other SIQA methods on three
publicly available 3D IQA databases providing subjective scores (DMOS values): LIVE 3D IQA
databases (phase I [29] and phase II [17]), and the recently created Waterloo-IVC 3D database (phase
I) [3]. LIVE 3D phase I database contains 20 reference stereo pairs and 365 symmetrically distorted
stereo pairs, including five distortion types: additive white Gaussian noise (WN), JPEG, JPEG 2000
compression (JP2K), Gaussian blur (GB), and fast fading (FF). The LIVE 3D phase II database is
composed of 8 reference stereo pairs and 360 symmetrically and asymmetrically distorted stereo pairs
corresponding to the same distortion types. Waterloo-IVC 3D phase I database consists of 6 reference
stereo pairs and 330 distorted stereo pairs with symmetric and asymmetric distortion levels and types
including WN, JPEG and GB. The image resolution per view is 640 ◊ 360 in LIVE 3D databases ,
and 1920 ◊ 1080 in Waterloo-IVC 3D phase I database.

We compare the proposed method with other representative FR-3D-IQA methods [10, 11, 17–
19, 28]. Besides, we further explored the performance of SIQA methods using only 2D IQA metrics
including UQI [24], VIF [26], GMSD [25] and FSIM [30]. We choose these metrics in this paper since
they yield promising results on 3D databases compared to other 2D IQA metrics. The performance
of the SIQA metrics has been evaluated using three well-known measures: the Linear Correlation Co-
e�cient (LCC), the Spearman Rank Order Correlation Coe�cient (SROCC) and Root-Mean-Square
Error (RMSE). The larger LCC and SROCC values, and the smaller RMSE value indicate better
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Table 10.3 – Performance of SIQA methods on Waterloo-IVC 3D database (phase I).

Method LCC SROCC
S As All S As All

UQI [24] 0.814 0.724 0.753 0.635 0.631 0.640
VIF [26] 0.918 0.788 0.839 0.914 0.755 0.801
FSIM [30] 0.839 0.668 0.767 0.918 0.625 0.704

Benoit [10] 0.850 0.697 0.680 0.728 0.577 0.585
You [11] 0.868 0.709 0.713 0.752 0.571 0.600
Fezza [18] 0.881 0.611 0.692 0.782 0.484 0.553
Chen [17] 0.837 0.536 0.657 0.649 0.496 0.382
Wang [32] 0.833 0.609 0.677 0.683 0.500 0.552
Proposed 0.949 0.774 0.841 0.914 0.729 0.790

performance in terms of correlation with human opinion. The three performance measures were com-
puted between DMOS and the predicted scores after a non-linear regression with a five-parameter
logistic function described in [31].

Table 10.1 shows the performance of SIQA methods on LIVE 3D IQA phase I database. Overall, the
proposed method outperforms all the other 2D/3D IQA methods. Lin’s [19] and Chen’s [17] methods
achieve better performance than Benoit’s [10] and You’s [11] methods thanks to consideration of the
binocular vision properties. However, Lin’s and Chen’s methods are slower than the proposed method
due to using 2D Gabor filter in their methods. Interestingly, all 2D-based IQA metrics perform quite
well on the symmetrically distorted databases, and GMSD and UQI metrics perform even better than
certain 3D IQA methods. Specifically, we also examine the performance of the SIQA metrics on
each individual distortion type. As shown in Table 10.1, the proposed SIQA method provides better
predictions on most distortion types in comparison with other methods except for white noise and
gaussian blur. However, the obtained performance for the latter distortions remain competitive and
in a very acceptable level. For the WN distortion, Chen’s method [17] performs the best since the MS-
SSIM metric used in this method can yield a high prediction for WN distorted images. This observation
indicates that the performances of some SIQA methods highly depend on the performance of the used
2D metric. Generally, all 2D-based or 3D IQA methods achieve reasonably accurate prediction results
on LIVE 3D phase I database.

The quality prediction on LIVE 3D phase II database, which partially contains asymmetrically
distorted stereo pairs, is more challenging than on LIVE 3D phase I database. For each SIQA method,
Table 10.2 shows the overall performance and the performance on separate subsets of symmetrically
and asymmetrically S3D images in LIVE 3D phase II database. These results demonstrate that the
proposed SIQA method delivers the best performance compared to the others methods. Moreover,
the proposed method is particularly e�ective for asymmetric distortions. As expected, 2D-based
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Figure 10.2 – Scatter distribution of predicted scores obtained by proposed SIQA metric versus DMOS for three
databases, (a) LIVE 3D phase I, (b) LIVE 3D phase II, (c) Waterloo-IVC 3D phase I.

IQA methods achieve high performance for the symmetric distortions, but they generally perform
worse than most 3D IQA methods for asymmetric distortions. This is mainly due to the fact that
2D-based SIQA methods assess the perceptual 3D quality considering neither the depth/disparity
information nor the binocular vision characteristics. It is worth noting that UQI-based SIQA method
performs best within all 2D-based SIQA methods. Despite the consideration of the disparity distortion,
the performance of Benoit’s [10] and You’s [11] metrics are much lower than the proposed metric,
and particularly for asymmetric distortions. This is because these methods have not accounted for
binocular vision properties such as BF. The methods based on cyclopean image (i.e., Chen’s [17],
Fezza ’s [18] and our proposed methods) achieve better performance than the other 3D IQA methods.

In addition to performance evaluation on LIVE 3D databases, the performance comparison between
the proposed and other SIQA methods on Waterloo-IVC 3D database (phase I) is shown in Table
10.3. The proposed method performs better than other SIQA methods and ranks second (far from
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the remaining methods) for asymmetrically distorted S3D image. The decrease of performance in our
method is mostly due to the use of asymmetrically mixed distortion types in this database making it
more challenging to be assessed by most SIQA metrics. The scatter plots of DMOS vs. our quality
scores are shown on Fig. 10.2.

10.4 Conclusion

In this paper, we proposed a full-reference quality assessment method for stereoscopic images account-
ing for binocular combination and disparity distortion. The proposed method models the human
stereo vision by fusing the left and right views to generate a cyclopean image based on local entropy
and monocular visual saliency. Then, a 2D quality metric is employed to separately evaluate the
quality of both the cyclopean image and disparity map derived from a stereo matching algorithm.
Finally, two quality scores are combined to yield an overall 3D quality score. A extensive performance
comparison of the proposed method with some 2D-based IQA and 3D QA methods is conducted on
three databases. The experimental results demonstrate that the proposed method achieves better
performance than other SIQA methods for most of the databases and distortions. This is less true
for Waterloo 3D database (phase I) because of the use of mixed asymmetric distortions types. This
latter case, will be explored in the future in order to improve the quality prediction of our metric.
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Abstract

No-reference (NR) stereoscopic 3D (S3D) image quality assessment (SIQA) is still challenging due to
the poor understanding of how the human visual system (HVS) judges image quality based on binoc-
ular vision. In this paper, we propose an e�cient opinion-aware NR Stereoscopic Quality predictor
based on local contrast statistics combination (SQSC). Specifically, for left and right views, we first ex-
tract statistical features of the gradient magnitude (GM) and Laplacian of Gaussian (LoG) responses,
describing the image local structures from di�erent perspectives. The HVS is insensitive to low-order
statistical redundancies that can be removed by LoG filtering. Hence, the monocular statistical fea-
tures are then fused to derive the binocular features based on a linear combination model using LoG
responses-based weightings. These weightings can e�ciently simulate the binocular rivalry (BR) phe-
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nomenon. Finally, the binocular features and the subjective scores were jointly employed to construct
a learned regression model obtained by the support vector regression (SVR) algorithm. Experimental
results on three widely used 3D IQA databases demonstrate the high prediction performance of the
proposed method when compared to recent well performing SIQA methods.

Index terms– Stereoscopic 3D image quality assessment, Laplacian of Gaussian, binocular rivalry,
support vector regression.

11.1 Introduction

The digital era has allowed to simplify the spread of stereoscopic three-dimensional (S3D) technologies
in our daily life, providing new 3D viewing experience to consumers. In order to guarantee and improve
the visual quality of S3D content, reliable and e�cient methods of image quality assessment (IQA) are
needed for 3D content to evaluate the performance of S3D processing algorithms/systems. Although
IQA can be performed by either subjective experiments or objective metrics, the latter are more
convenient to deal with real-world problems. In the recent years, 2D IQA has made a remarkable
progress compared to 3D IQA. Thus some challenges still exist due to the complexity of the binocular
vision [1].

Similar to 2D IQA methods, 3D IQA methods can be categorized into full-reference (FR) [2–4],
reduced-reference (RR) [5–7] and no-reference (NR) or blind [8–17] methods according to the availabil-
ity of the reference S3D images. This paper focuses on NR SIQA to be close to real application where
the reference image is unavailable. Previous studies [8–12] for stereoscopic image quality assessment
(SIQA) showed significant success based on cyclopean image, which is generated by fusing the left
and right views with a binocular combination model and di�erent weights. For instance, Chen et al.
[8] developed a NR 3D IQA model by extracting features from the cyclopean images, the estimated
disparity maps and the uncertainty maps. Recently, Zhou et al. [10] proposed an extreme learning
machine-based Blind method based on features obtained from the cyclopean image in addition to
those from the left and right views. The cyclopean-based approaches require the disparity map, which
is not always available, and its estimation is often inaccurate and time-consuming. To avoid these
constraints, other NR SIQA methods predicted the quality based on the binocular di�erence [13] or
binocular similarity [14, 15]. For instance, Zhang et al. [13] developed a blind SIQA method by
learning the primitive structures of both stereopair and di�erence map between left view and right
view using a convolutional neural network. Zhou et al. [14] built their approach based on the inter-
and intra-pixel binocular quality-predictive features of the local similarity maps.

Recently, some Blind SIQA models have been developed using combination of monocular 2D
images features [16, 17]. For instance, Zhou and Yu [17] employed the complementary local patterns
of binocular energy response and the binocular rivalry (BR) response. In this paper, we propose a
new NR SIQA method based on binocular combination of monocular primitive structures, which are
described by statistics of the image local contrasts. Existing studies highlighted the significance of
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the Laplacian of Gaussian (LoG) response for IQA by detecting the edges where zero-crossings occur
[10, 18, 19].Image gradient features play a crucial role in many 2D- [20, 21] and 3D-IQA approaches
[11, 15] which show remarkable performance. Following the strategy described in [22], we first use
the responses of gradient magnitude (GM) and LoG to extract the statistical features of monocular
contrast. Then the monocular features are combined with di�erent weights depending on the views
so as to derive the binocular contrast features. To model the BR phenomenon [23], we propose to
use the LoG maps of both views to calculate the weights of the linear combination model. This is
mainly because the LoG function can model the early human visual process [24], and thus accurately
model the relative stimulus strength of each view. Finally, the binocular features and the human
subjective scores are jointly used to construct the learned regression model based on the support vector
regression (SVR) technique [25].The performance of the proposed metric are studied in addition to a
set of competitive SIQA methods on three widely used databases.

The remainder of this paper is organized as follows. Section 11.2 details the proposed approach.
In Section 11.3, we analyze and discuss the experimental results on three databases. Finally, Section
11.4 concludes this paper and provides some insights about future works.

11.2 Proposed approach

To develop a reasonable and reliable NR SIQA model, one needs to consider not only the e�cient
perception- or distortion-relevant features, but also the binocular behavior of the human visual system
(HVS) related to these features. Previous studies showed that the image structural information (e.g.,
edges, textures) of the image scenes are crucial for perceptual quality assessment tasks [13, 17, 26]. In
other words, the HVS can detect image distortions by measuring the information in terms of image
structures. The details of image structures can be captured by image derivatives corresponding to the
local spatial contrast. Relying on the success of [22], we employ the image GM and LoG responses
to describe the monocular structural features from di�erent perspectives. The GM map shows the
strength of local luminance variation, whereas LoG measures the local luminance contrast (e.g., image
edges) after smoothing the noise.

Fig. 11.1 shows the framework of the proposed NR SIQA metric. First, the primitive structures
of left and right views are independently characterized by their corresponding GM and LoG maps.
In fact, the Gaussian (first and/or second order) derivative functions can model the receptive field
responses of neurons along the visual pathway [24]. Here, we thus compute the GM and LoG maps
using the first and second order derivatives of a circularly symmetric 2D Gaussian function G defined
as follows:

G(x, y, ‡) = 1
2fi‡2

e≠ x2+y2
2‡2 , (11.1)

where x and y denote the horizontal and vertical directions, respectively. The parameter ‡ is the
standard deviation. Then we calculate the first order partial derivative of G(x, y, ‡) with respect to x
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Figure 11.1 – Block Diagram of the proposed NR SIQA model
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2fi‡2

d

‡2
e≠ x2+y2

2‡2 , d œ {x, y} , (11.2)

and the GM map of the image is estimated by

GMv =
Û

(Iv ¢ ˆG

ˆx
)2 + (Iv ¢ ˆG

ˆy
)2 , (11.3)

where the symbol ¢ denotes the convolution operation. v œ {l, r}, l and r refer to left and right views,
respectively. Besides, the LoG filter, corresponding to second order Gaussian partial derivative, is
defined as follows:

hLoG(x, y, ‡) = ˆ2G(x, y, ‡)
ˆ2x

+ ˆ2G(x, y, ‡)
ˆ2y

= ≠ 1
fi‡4

(1 ≠ x2 + y2

2‡2
)e≠ x2+y2

2‡2 .

(11.4)

Accordingly, we estimate the LoG map of the left and right views (i.e., LoGl and LoGr in Fig. 11.1)
by:

LoGk = Ik ¢ hLoG . (11.5)

Subsequently, a joint adaptive normalization procedure is applied to normalize both GM and LoG
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maps of each view so as to reduce the dependency of image statistics on the image content. To further
extract the e�cient statistical structural features, we measure the joint statistics of the normalized GM
and LoG maps for each view by using both marginal and independent distributions. In particular, we
derive the histogram-based feature vector (i.e., „Fl or „Fr) for each view by concatenating their marginal
and independent vectors.

Based on the findings of [16], we assume in our work that 3D image quality is highly related to
combination of monocular features distributions. Therefore, we propose to use binocular contrast
features to characterize the 3D quality distortion. The next step is to generate the binocular features
for further data training. To simulate the BR phenomenon, we generate the binocular features „Fb by
a linear combination model as follows:

„Fb = wl · „Fl + wr · „Fr , (11.6)

where
wv = LoG2

v

LoG2

l + LoG2
r
, v œ {l, r} , (11.7)

is the weighting coe�cient of the left or right views measuring the relative stimulus strength of each
view. It is usually characterized by the image local energy feature such as Gabor filter magnitude
response [8, 27], local entropy [28], and local variance [3]. Here, we utilize the LoG response to describe
the stimulus strength, because the LoG filter can avoid the statistical redundancy in natural scene to
accurately model the binocular combination. Indeed, the LoG response is similar to the receptive fields
of the ganglion cells in the retina and neurons in the lateral geniculate nucleus (LGN) [24]. Besides,
Wang et al. [29] concluded that the image scale influences the performance of the IQA model, and
the first- and second- ranked performances were given respectively by scale 2 and 3. Consequently,
we apply the LoG filter (see Eq. 11.4) in a single-scale image with an optimal scale size N according
to the image resolution. The values of N for the experimental implementation and the performance
evaluation with di�erent scales will be discussed in Section 11.3.

Given a test stereopair, we obtain 40 binocular features, among which 20 features for two marginal
distribution for GM and LoG responses and the others for independent distributions between GM and
LoG responses. For the training stage, we adopt the SVR technique [25] to map the abovementioned
40 features to the subjective 3D quality scores. In particular, we employ in this paper Á-SVR to
generate the learned regression model with the kernel radial basis function. Finally, we use the
learned regression model to predict 3D quality scores for the testing stage. Compared to [16], we do
not use subjective scores of monocular images in the training stage because most of the 3D databases
only provide 3D scores. Furthermore, the regression model (i.e., SVR) in our method is only used
once to predict the 3D scores at testing stage. Therefore, the proposed approach is more e�cient in
terms of computational complexity.
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11.3 Experimental results

11.3.1 Database and experiment description

We evaluate the performance of the proposed Stereoscopic Quality based on Statistics Combination
(SQSC) predictor and the state-of-the-art methods on three publicly available S3D image databases
associating with di�erential mean opinion scores (DMOS): LIVE 3D IQA phase II database (LIVE
3D II) [27], and Waterloo IVC 3D phase I and II databases (Waterloo IVC I and Waterloo IVC II) [3].
LIVE 3D II consists of 8 reference stereopairs and 360 symmetrically and asymmetrically distorted
S3D images, including five distortion types: additive white Gaussian noise (WN), JPEG, JPEG 2000
compression (JP2K), Gaussian blur (GBlur), and fast fading (FF). Waterloo IVC I contains 6 reference
stereopairs and 324 distorted symmetric and asymmetric stereopairs with di�erent distortion levels
and types including WN, JPEG and GBlur. Waterloo IVC II is composed of 10 reference stereopairs
and 450 distorted stereopairs corresponding to the same distortion types as Waterloo IVC I. Note that
Waterloo IVC I and II provide DMOS of both 2D and 3D qualities, whereas LIVE 3D II only contains
3D subjective scores.

In the experimental implementation, we set the parameter ‡ (in Eq. 11.1) of the Gaussian function
depending on the database to 0.7, 0.7 and 1.0 for LIVE 3D II, Waterloo IVC I and Waterloo IVC II,
respectively. Furthermore, the downsampling size N equals to 2 for LIVE 3D II database containing
small-resolution images [27], and to 4 for Waterloo IVC I and II databases consisting of high-resolution
images [3]. Note that N = 2 for cross-database evaluation so as to fairly test across-database prediction
capabilities. In addition, the parameters for Á-SVR learning (C, “) were set as (128, 8) and (128, 16) for
respectively LIVE 3D II and Waterloo IVC databases. Besides, to highlight the importance of modeling
the BR phenomenon, we implemented our proposed method using two strategies for monocular features
combination. The first strategy derives the binocular features using the LoG-based adaptive weights
(AW) estimated in Eq. 11.7, whereas the second one using the fixed weights (FW) i.e., wl = wr = 0.5
of Eq. 11.6. Our first and second strategies-based NR SIQA methods are denoted as SQSC-AW and
SQSC-FW respectively for further performance evaluation.

We compared the proposed SQSC-AW and SQSC-FW with eight competing SIQA methods, in-
cluding two FR 3D IQA methods (Chen-FR [27] and Wang [3]), three NR 3D IQA methods (Chen-NR
[8], SINQ [11] and SSQA [12]), two 2D-extended FR IQA methods (UQI [30] and VIF [31]) and one
2D-extended NR IQA method (BRISQUE [20]). For 2D-extended SIQA methods, we predicted the
3D quality by averaging the quality scores of 2D left and right views. And BRISQUE was trained
using 2D subjective quality scores from the LIVE image quality assessment Release 2 [32].

The performance of each SIQA method was evaluated by three criteria: Pearson Linear Correlation
Coe�cient (PLCC), Spearman Rank Order Correlation Coe�cient (SROCC) and Root-Mean-Square
Error (RMSE). A Higher values for PLCC and SROCC, or a lower RMSE value indicate better
performance in terms of correlation with human opinion. To reduce the non linearity of subjective
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Table 11.1 – Overall performance of the SIQA methods on three databases. The top two performing methods
for each criterion are highlighted in boldface. FW and AW refer to fixed and adaptive weighting, respectively.

Database Criterion UQI VIF BRISQUE Chen-FR Wang Chen-NR SINQ SSQA
SQSC
(FW)

SQSC
(AW)

PLCC 0.864 0.837 0.785 0.910 0.916 0.895 0.936 0.932 0.901 0.928
LIVE 3D II SROCC 0.842 0.819 0.770 0.905 0.919 0.880 0.931 0.930 0.891 0.920

RMSE 5.677 6.182 6.989 4.693 - 5.102 3.959 4.120 4.992 4.181
PLCC 0.753 0.839 0.828 0.654 0.930 0.938 0.956 0.948 0.956 0.957

Waterloo IVC I SROCC 0.631 0.801 0.814 0.510 0.918 0.922 0.937 0.924 0.960 0.954
RMSE 10.360 8.571 8.832 11.910 - 5.237 4.960 5.564 4.143 3.926
PLCC 0.681 0.773 0.814 0.613 0.892 0.929 0.922 0.941 0.945 0.956

Waterloo IVC II SROCC 0.590 0.737 0.814 0.578 0.869 0.922 0.911 0.936 0.937 0.945
RMSE 14.023 12.150 11.114 15.740 - 6.439 7.377 6.373 6.194 5.408

quality rating, PLCC, SROCC and RMSE were computed between DMOS and the predicted scores
after a non-linear regression with a five-parameter logistic function as described in [32]. For NR 3D
IQA methods, in each train-test procedure, we randomly picked 80% of all images from the database
for training, and the remaining 20% for testing without overlap. To remove the performance bias, we
repeated 1000 times train-test procedure, and the median values across all trials were reported as the
final validation results.

11.3.2 Performance evaluation

We first evaluated the overall performance of the SIQA methods in terms of PLCC, SROCC and RMSE
values on three databases. As shown in Table 11.1, both proposed models SQSC-FW and SQSC-AW
outperform the other models on Waterloo IVC I and II. In addition, SQSC-AW model delivers highly
competitive performance and even better than FR 3D IQA models (i.e., Chen-FR and Wang) on LIVE
3D II. Although the recently proposed SINQ and SSQA models perform better than our SQSC-AW
model on LIVE 3D II, their models are relatively less e�cient in terms of computational complexity
due to many inputs for features extraction. Clearly, SQSC-AW model achieves better performance
compared to SQSC-FW model, because the LoG-based monocular features combination in SQSC-AW
e�ectively simulate the binocular visual phenomena.

Since the asymmetrically distorted stereopairs are more challenging for IQA task than the sym-
metrically distorted stereopairs, we thus tested the performance of the SIQA methods on separated
symmetric and asymmetric distortions of each database, and showed the results in Table 11.2. We
observe that SQSC-FW and SQSC-AW metrics significantly outperform most other SIQA metrics on
Waterloo IVC I and II. For LIVE 3D II, the proposed SQSC-AW model performs quite well for asym-
metrically distorted S3D images, and yields the promising results for symmetrically distorted S3D
images. Overall, the SQSC-AW model achieves outstanding performance for asymmetric distortion
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Table 11.2 – Performance of the SIQA methods on symmetric and asymmetric distortions of the three databases.
The symbols S and As denote the symmetric and asymmetric distortions, respectively.

Method
LIVE 3D II Waterloo IVC I Waterloo IVC II

PLCC SROCC PLCC SROCC PLCC SROCC
S As S As S As S As S As S As

UQI 0.941 0.795 0.939 0.755 0.814 0.724 0.635 0.631 0.763 0.628 0.572 0.563
VIF 0.928 0.777 0.916 0.732 0.918 0.788 0.913 0.755 0.861 0.719 0.830 0.687

BRISQUE 0.857 0.700 0.849 0.663 0.925 0.786 0.891 0.787 0.929 0.748 0.900 0.772
Chen-FR 0.940 0.878 0.927 0.859 0.869 0.592 0.774 0.442 0.848 0.634 0.768 0.567

Wang 0.937 0.898 0.923 0.902 0.964 0.929 0.948 0.910 0.938 0.880 0.905 0.848
Chen-NR - - 0.918 0.834 - - 0.934 0.907 - - 0.944 0.899

SINQ - - 0.933 0.905 - - 0.967 0.934 - - 0.917 0.904
SSQA - - 0.940 0.904 - - 0.962 0.921 - - 0.958 0.929

SQSC-FW 0.922 0.870 0.903 0.865 0.965 0.958 0.978 0.956 0.960 0.924 0.956 0.914
SQSC-AW 0.934 0.920 0.921 0.902 0.972 0.959 0.967 0.938 0.969 0.939 0.967 0.932

Table 11.3 – PLCC values of the NR-SIQA methods on cross-database.

Training
database

Testing
database

Chen-NR SINQ SSQA
SQSC
(FW)

SQSC
(AW)

LIVE 3D II
Waterloo IVC I 0.461 0.521 0.659 0.770 0.729
Waterloo IVC II 0.515 0.450 0.675 0.763 0.676

Waterloo IVC
II

LIVE 3D II 0.484 0.597 0.691 0.592 0.759
Waterloo IVC I 0.831 0.916 0.924 0.918 0.920

across the three databases.

To further demonstrate the robustness and the generalization of the proposed SIQA metric, we
tested the performance by training them on one database, and testing on other databases. Table 11.3
indicates the cross-database evaluation PLCC results. Obviously, the proposed SQSC-AW and SQSC-
FW models achieve the first- and second-ranked performances among all 3D NR IQA models when
using LIVE 3D II database for training. Moreover, SQSC-AW model significantly outperforms most
other models when using Waterloo IVC II for training. In fact, almost all models deliver relatively poor
performance when using LIVE 3D II for training/testing, and Waterloo IVC I or II for testing/training.
The reason is that the individual distortions types and asymmetric distortions in these two databases
are totally di�erent. In conclusion, the results of Table 11.3 validates the database independence of
the proposed SQSC-AW model.
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Table 11.4 – Performance of the proposed SQSC-AW method using the downsampling procedure by di�erent
factors N.

Database N PLCC SROCC RMSE

LIVE 3D II
1 0.923 0.916 4.375
2 0.928 0.920 4.181
4 0.932 0.919 4.213

Waterloo IVC I
1 0.934 0.929 4.798
2 0.952 0.940 4.107
4 0.957 0.954 3.426

Waterloo IVC II
1 0.933 0.919 6.587
2 0.950 0.941 5.749
4 0.956 0.945 5.408

Besides, to investigate the influence of the image downsampling factor N of the proposed framework
(see Fig. 11.1) on the prediction accuracy, we evaluated the prediction performance with di�erent
downsampling factors N and listed the results in Table 11.4. Note that N = 1 represents original
resolution of the image. We observe that SQSC-AW model yields the best performance in the case of
N = 2 for LIVE 3D II database, and N = 4 for Waterloo IVC I and II databases. The results confirms
our selection of di�erent downsampling factors for these databases. The proposed model with N = 2
and N = 4 perform significantly better than the model with N = 1. This concludes that our SIQA
model tends to supply higher quality scores with the increase of the downsampling factors.

11.4 Conclusion

In this paper, we present an opinion-aware NR SIQA method using the binocular histogram-based
features from joint statistics of GM and LoG responses. The SVR algorithm with radial basis function
kernel is then used to learn the prediction model, and finally to predict the perceived 3D quality.
This work includes three main contributions. First, unlike previous SIQA methods using Gabor filter
magnitude [8] or local entropy [28] or local variance [3], we employ the LoG responses-based local
contrast on left and right views to estimate the weights of the binocular combination model so as to
model the binocular rivalry phenomenon. Second, to reduce the computational complexity, we only
use the binocular features derived from monocular statistical features combination for the training and
testing processes. Third, we provide an extensive experimental evaluation showing high correlation
with human opinion scores of our method on three widely used databases. Future work will be
focused on two aspects. First, multi-scale LoG- and GM-based features will be considered to improve
the performance of our method because of the usefulness of multiple scales for IQA [29]. Besides,
we plan to develop an opinion-unaware NR SIQA metric based on LoG responses for real industrial
application.
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Abstract

Stereoscopic/3D image quality assessment (SIQA) is still challenging to e�ciently predict the 3D
quality consisting with human judgments due to poor understanding of how to e�ectively model the
binocular behavior of the human visual system (HVS). In this paper, we propose a full-reference SIQA
model accounting for stereopair-based monocular quality and binocular-based cyclopean quality. In
particular, we assess the qualities of the left- and right- view images separately based on gradient-
based 2D IQA metric, and then linearly combine the qualities of both views into a monocular quality
with the weights of simulating the strength of the views dominance in binocular rivalry (BR) behavior
of the HVS. These weights are determined based on the local energy and visual saliency of each
view. Subsequently, we apply the gradient-based 2D metric to estimate the quality of the cyclopean
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image, which is synthesized based on a binocular combination model with the BR-related weightings.
Next, the cyclopean image quality of the test stereopair is modulated with a just noticeable di�erence
(JND) map of the reference stereopair, which reveals di�erent visual sensitivities on the image’s
region degradation. Finally, the overall 3D quality is computed by integrating BR-inspired monocular
quality with binocular-based JND-weighted cyclopean image quality based on a pooling stage. We
achieve an extensive and comprehensive performance evaluation of our model and many other state-
of-the-art SIQA models on seven publicly available 3D image quality databases. The experimental
results demonstrate that the proposed method outperforms many recent well-performing methods,
and achieves highly competitive prediction accuracy on these databases.

Index terms– Stereoscopic/3D image quality assessment, human visual system, binocular rivalry,
visual saliency, binocular combination, just noticeable di�erence.

12.1 Introduction

With the recent advances in hardware technologies, the immersive multimedia technologies (e.g.,
stereoscopic/3D, virtual and augmented reality) have made a great progress and thus been increas-
ingly commercialized in entertainment and medical industries in order to improve the quality of expe-
rience (QoE) and simplify the human daily life. Specifically, the amount of S3D content delivered by
television, cinema, games, and remote education has been significantly growing over the recent years.
3D multimedia has thus become progressively popular because of providing a realistic and immersive
viewing experience to end users. However, S3D technologies development has brought some challenges
and issues to 3D displays manufactures and content producers. Therefore, because of the caused vi-
sual discomfort, visual fatigue in addition to many other symptoms [1] [2], 3D-TV has not met the
expected success. In order to guarantee good QoE at every stage such as acquisition, compression,
storage, transmission, and display, perceptual quality assessment (QA) of stereoscopic content is cru-
cial so as to evaluate/optimize the performance of 3D processing algorithms (e.g., compression [3–5])
or systems (e.g., 3D display [6]).

Perceived quality of stereoscopic images can be assessed through either subjective experiments
or objective measures. During subjective experiments, the subjects are asked to observe 3D images
and then provide their opinion scores. Although such experiments can deliver reliable and referenced
results, they are unfortunately costly, time-consuming, and thus impractical for real-time applications
[7]. Accordingly, reliable and e�cient objective algorithms are needed to automatically assess the
perceived quality of 3D images. While methods/algorithms of 2D image QA (IQA) have greatly
advanced over the last decade [8–12], stereoscopic IQA (SIQA) remains in an early stage and is thus
challenging [13], especially for asymmetrically distorted stereo pairs [14]. This is mainly because
perceived 3D quality can be a�ected by both monocular and binocular factors including 2D quality,
depth cues, BR and binocular suppression (BS) [15] e�ects, in addition to visual discomfort.

According to the availability of the reference stereo pair, SIQA methods can be usually categorized
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into three classes: full-reference (FR) [16–25], reduced-reference (RR) [26–30] and no-reference (NR)
[14, 31–39] methods. FR-SIQA metrics require the whole reference stereoscopic images to predict 3D
quality, while RR-SIQA metrics use only a set of features extracted from reference images. Oppositely,
NR-SIQA metrics evaluate 3D quality without any information about the reference images. Compared
to RR and NR SIQA metrics, FR SIQA metrics are frequently used for real applications thanks to
their e�ectiveness. Our work mainly belongs to FR SIQA category.

As known, a stereo pair (i.e., a 3D image) consists of two slightly di�erent views (i.e., left and
right images), projected separately onto the corresponding retina. When a 3D image is observed by
a human subject, the human visual system (HVS) merges both views of the stereo pair to yield a
single mental view, called the cyclopean perceptual image [40, 41]. The construction of this mental
image takes into account di�erent binocular phenomena such as 1) the binocular fusion (BF) when
both images are of similar quality, 2) the binocular rivalry (BR) when there is an important gap
between both views and 3) the binocular suppression (BS) when the di�erence of quality between
the views is limited and below a given threshold. Because of its compactness and the nature of its
content, the cyclopean image is often taken into account when designing SIQA metrics.. Meanwhile,
previous studies on FR-SIQA show significant success considering the combination of 2D monocular
features/qualities [17, 18, 21, 23]. As a result, our proposed SIQA system takes into account the
combined qualities of 2D monocular images too.

In addition to the above-mentioned two aspects, we further consider the visual spatial sensitivity
of the HVS which probably impacts the overall 3D quality [42, 43]. According to the HVS properties
[44], visual sensitivities of the human eyes are likely di�erent to diverse distortion types and levels of
the image’s pixels/regions [45]. Hence, it is desirable to account for the visual sensitivity of monocular
and binocular visions in order to correlate highly with human quality judgments. The visual sensitivity
can be determined by measuring the just noticeable di�erence (JND) thresholds, which reflects the
maximum tolerable distortion undetectable by the HVS. With 2D- [46, 47] and/or 3D-JND models
[48–50], several FR-SIQA methods have been successfully developed [19, 51–56].

Based on the aforementioned points, we propose an approach to automatically assess the perceptual
3D quality e�ciently and robustly. In other words, it is reasonable to demonstrate the e�ectiveness
of the proposed approach base on comprehensive SIQA evaluation databases. Based on our previous
work [57, 58], in this paper, we propose a FR-SIQA system considering the qualities of (1) left-
and right-views images (related to monocular vision) and (2) a cyclopean-view image (related to
BV). Specifically, we first compute the quality of left and right image separately based on gradient
magnitude similarity metric (GMSM), and then linearly combine the qualities of both views into a
2D quality with the weights modeling the related stimulus strength of each view. Next, using the
GMSM metric, we estimate the quality of the cyclopean image, which is derived from a BF-inspired
combination model.

In addition, the cyclopean quality of the test stereo pair is weighted with a JND map of the reference
stereo pair that reveals di�erent visual sensitivities on the image’s region degradation. Finally, the
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overall 3D quality score is computed by integrating 2D monocular image quality with 3D binocular-
based JND-weighted cyclopean image quality. The major contributions of this work include:

1. A new SIQA framework accounting for degradation of the stereo-pair-based monocular scene
and of the cyclopean-based binocular scene using di�erent visual stimulus strength modeling
methods.

2. An overview of the existing 3D IQA databases. Comprehensive experimental evaluations of
the proposed SIQA system, and extensive performance comparisons between our model and
state-of-the-art SIQA methods on seven publicly available 3D IQA databases.

3. Investigation of the importance of BR-inspired monocular 2D quality and cyclopean quality on
overall 3D quality.

4. Study of the impacts of di�erent JND models and strategies of simulating the strength of view
dominance on 3D quality prediction accuracy.

The remainder of this paper is organized as follows. Section 12.1 provides a literature review of
stereoscopic quality metrics in addition to 2D- and 3D-JND models. In Section 12.2, we describe the
proposed SIQA model by giving the details of its components. Section 12.3 presents the experimental
results including performance comparison between our SIQA model and state-of-the-art SIQA models
on seven publicly available 3D IQA databases. We further discuss the contribution of the main
components of the proposed model on the 3D quality prediction in Section 12.4. Finally, this paper
ends by some conclusions in addition to future works in Section 12.5.

12.2 Related work

In this section, we briefly review the recent FR-SIQA methods, simulating BS/BR properties. Based
on the type and amount of the information used from 3D images, the FR-SIQA methods are mainly
divided into three categories [17]: (1) methods without disparity information, (2) methods based on
2D monocular quality and disparity information, (3) methods considering the binocular combination
mechanism and other HVS characteristics.

12.2.1 Methods without disparity information

The SIQA methods of the first category employ o�-the-shelf 2D IQA algorithms directly to measure
distortions without using disparity information. Specifically, this category measures the quality of
left and right views separately using 2D-IQA metrics and then combine both scores into an overall
3D quality score. Based on di�erent pooling strategies of the 2D quality scores, we further divide
this category of methods into two classes: (1) Stereo-pair-based methods [59–61] and (2) BR-inspired
methods.
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12.2.1.1 Stereo-pair-based methods

Most early approaches fuse the quality scores of left- and right views without considering BR/BS
behavior that models the strength of each view. For example, Campisi et al. [59] assess 3D quality by
computing the quality scores of stereo pair with four 2D-IQA metrics including structural similarity
metric (SSIM) [62], universal image quality index (UQI) [63], C4 [64] and a RR-QA metric [65],
and then pooling these scores based on three di�erent combination strategies. Later, Gorley and
Holliman [60] estimate 3D quality degradation by computing the di�erence of average luminance
contrast between matched interest points extracted from reference and distorted stereo pairs using
SIFT [66] and RANSAC [67] algorithms.

12.2.1.2 BR-inspired methods

Although the above-mentioned methods do not take any binocular depth cue (e.g., binocular disparity),
they can e�ectively deal with symmetric (i.e., same type and amount of) distortions of the stereo
pair. However, their QA performance significantly drop for asymmetrically distorted (i.e., di�erent
distortion types and/or amounts on) ones [14, 16]. The latter distortions are very common in real
application such as 3D coding [3, 6, 68, 69]. In fact, previous studies demonstrated that the quality
of asymmetrically blurred stereopairs is dominated by the higher quality view, and the overall 3D
quality is more a�ected by lower quality view for blockiness-based asymmetrically distorted stereopair
[68, 70].

For a stereopair, a symmetric distortion leads to binocular fusion (BF) [71], whereas an asymmetric
distortion results in either BR [72] or BS [15] depending on strength of the inter-view di�erence.
Accordingly, to improve QA performance for asymmetrically distorted stereopairs, several existing
SIQA approaches linearly combine 2D quality estimates into a 3D quality score using the weights
based on the strength of view dominance in binocular combination [20, 73]. For instance, Wang et al.
[73] employ the content information and a distortion weighted SSIM metric to compute the quality
score of left and right view respectively, and then derive the 3D quality scores with a BR-inspired
pooling strategy based on the local variance and the HVS spatial frequency sensitivity of each view.
Recently, Geng et al. [20] develop a SIQA metric considering BF and BR behaviors modeled by
both-views image features similarity based on independent component analysis and local luminance
consistency of the stereo pair.

12.2.2 Methods based on 2D monocular quality and disparity information

Previous studies showed that the receptive field responses of some neurons in the primary visual cortex
are related to binocular disparity [74, 75]. Thus, the above-described SIQA methods do not correlate
well with the human quality judgments due to the lack of consideration of depth/disparity information,
which plays a critical role in 3D perception. Consequently, the second category of methods use both
views of a stereo pair in addition to depth/disparity information to assess the 3D quality [51–56, 76].
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For instance, Benoit et al. [42] propose a FR-SIQA algorithm that applies SSIM and C4 metrics on the
left and right images independently, and then combine these 2D scores with the estimate of disparity
map distortion. Later, You et al. [43] explore the performance of 2D-IQA metrics used in the context
of 3D quality assessment using di�erent combination strategies for single-view images and disparity
map qualities. In addition, several proposed methods take the visual sensitivity account in their
SIQA model design. Hwang and Wu [76] develop a 3D quality prediction model that integrates the
stereopair quality with depth quality and saliency map quality. Recently, Khan and Channappayya
[25] compute 3D quality scores by combining the views quality based on a 2D-saliency-modulated
gradient structural similarity map, and depth quality estimated based on edge-related depth saliency.

As mentioned in Section 12.1, the visual sensitivity of monocular vision and binocular vision can
be conveyed by 2D-JND and 3D-JND thresholds, respectively. The binocular JND (BJND) is one of
the most used models in this context to estimate 3D-JND thresholds. Thereby, many SIQA methods
have used such models to account for the importance of monocular and binocular pixels [51–56]. For
example, Shao et al. assess 3D quality by integrating the quality of binocular regions with BJND-
modulated quality of the BF and BS regions based on responses of the log-Gabor filter amplitude
and phase. Similarity, Zhou et al. [55] propose a SIQA method by first extracting monocular and
BF features modulated by 2D-JND and BJND respectively, and then computing the overall 3D score
using support vector regression algorithm (SVR) [77]. It is worth noting that the performance of the
methods in this category depends on the accuracy of depth/disparity maps, which are often estimated
by stereo matching algorithms.

12.2.3 Methods considering binocular combination mechanism and the HVS char-
acteristics

In addition to stereopair quality and depth/disparity information, the third category of methods ac-
count for monocular and/or binocular properties (BF and BR/BS behaviors) and other HVS charac-
teristics (e.g., visual spatial sensitivity). To simulate the BF and BR phenomena, these SIQA metrics
employ the cyclopean image (introduced in Section 12.1), which combines disparity-compensation left
and right views, based on a binocular combination model with the weights mimicking strength of view
dominance of a stereo pair. The final 3D quality is predicted by using the cyclopean image only or
together with the stereopair. During the past three decades, researchers have deeply explored the
binocular combination (BC) mechanism of the HVS, and thus proposed several physiology-inspired
BC models mainly including (1) vector-summation model [78, 79], (2) neural-network model [80, 81],
(3) contrast gain-control model [82–85] successfully applied in SIQA [16–18, 21, 23, 31].

12.2.3.1 Methods based on the cyclopean image

Some methods in this category only estimate the cyclopean image quality and use it as the 3D quality
score. An early SIQA method is proposed by accounting for the qualities of both synthesized cyclopean
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image in addition to the disparity map [41]. In the same vein, Fezza and Larabi [86] develop a SIQA
model based on the quality of the test cyclopean image generated by using local entropy and depth
information. Chen et al. [16] develop a SIQA metric by assessing the quality of the cyclopean images
constructed by a linear model. The weights of this model are derived from the Gabor filter magnitude
responses, which simulate the BR. Besides, Lin and Wu [87] predict the 3D quality based on both BC
and binocular frequency integration.

12.2.3.2 Methods based on the cyclopean image and monocular views

In additions to BF/BR-inspired cyclopean image quality, the degradations on monocular views may
a�ect the overall 3D quality according to [17]. Hence, to design a more e�cient and robust SIQA
model, it is reasonable to consider the features/qualities of both the stereo pair and the synthesized
cyclopean image, in addition to HVS characteristics [17, 18, 21]. For instance, Zhang and Chandler
[17] develop a FR-SIQA metric based on a combination of monocular quality estimated using the
stereopair and block-based contrast, and cyclopean image quality measured using lightness distance
and pixel-based contrast. Recently, Ma et al. [21] compute 3D quality scores by jointly considering
monocular perception (related to simple cells’ response) using a push-combination of receptive fields
model, and binocular perception (related to complex cells’ response) based on BR and binocular energy
modeling.

12.3 Proposed SIQA model

To accurately predict 3D image quality, we propose in this paper a MOnocular and Binocular Im-
pairments based QUality Metric (MOBIQUM). Specifically, the proposed metric is based on the as-
sumption that the overall 3D quality is a combination of stereopair-based monocular quality and
binocular-based cyclopean image quality. Therefore, we design MOBIQUM based on two main stages:
(1) monocular quality estimations derived from the combination of views quality and (2) gradient
magnitude similarity (GMSM) based quality estimations on the synthesized cyclopean image. These
two quality estimates are finally fused to obtain a global 3D quality score. The following subsections
describe each stage of MOBIQUM as described in Figure.12.1.

12.3.1 Monocular images quality

In the monocular QA stage, we employ a gradient-based metric to compute the quality scores of the
left and right views separately. Both scores are used to estimate 3D quality score based on an adapted
weighting reproducing the view dominance/importance phenomenon. At this stage, any robust 2D-
IQA metric (e.g., UQI [63], VIF [88] or FSIM [89]) can be used to assess the single-view quality. In
this paper, we employ a gradient magnitude based metric (GMSM [90]) because of its high prediction
accuracy and e�ciency on 2D IQA. The main features of this metric are described below.
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Figure 12.1 – Flowchart of the proposed SIQA model

12.3.1.1 GMSM-based QA

The image gradient information, showing the image luminance variation, can describe the image local
structures (e.g., edges, textures). The HVS is highly sensitive to degradations on such structures.
Hence, the image gradient feature plays a crucial role on perceptual QA tasks, and has been successfully
considered in 2D- [89, 91, 92] and 3D-IQA metrics design [25, 56, 93]. Most gradient-based FR 2D-
IQA algorithms use a gradient similarity (GS) map to compute the quality score. For instance, Xue
et al. [90] developed the GMSM and a gradient magnitude similarity deviation (GMSD) IQA metrics,
which compute quality scores with the average and the standard deviation pooling strategies of the
GS maps respectively. We calculate the GMSM score by following three main steps. In the first step
the luminance component I is extracted from the YIQ color space [94] by using the following formula:

I = 0.299 r + 0.587 g + 0.114 b, (12.1)

where r, g and b denote the color image’s red, green and blue components respectively. Before
calculating the GM of I, we iteratively smooth the luminance image I using a mean filter with a 2 ◊ 2
square kernel and downsample the filtered image by a factor of N in order to choose the appropriate
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scaling coe�cient depending on the viewing condition [95]. The possible values of N depend on the
used the dataset. This will be discussed in Section 12.4.

The second step consists in computing GM maps of the reference single-view image R and the test
single-view image T by:

GMs(x, y) =
Ò

(s ¢ fx)2(x, y) + (s ¢ fy)2(x, y), s œ {R, T} , (12.2)

where ¢ represents the 2D convolution operation. fx and fy, denote respectively the horizontal and
vertical kernels of Prewitt filter [96] and are defined as follows:

fx = 1
3

S

WWU

1 0 ≠1
1 0 ≠1
1 0 ≠1

T

XXV , fy = 1
3

S

WWU

1 1 1
0 0 0

≠1 ≠1 ≠1

T

XXV (12.3)

In fact, other high-pass filters (e.g., Sobel, Canny, ...) can be used to calculate the image GM. In our
proposed model, the Prewitt operator is used because it can e�ciently achieve high performance on
test databases compared with other reference operators. The third step is to determine the GM maps
di�erence between the reference and test images using the GS map as follows:

GS(x, y) = 2 GMR(x, y) GMT (x, y) + c

GM2

R(x, y) + GM2

T (x, y) + c
, (12.4)

where c is a positive constant to avoid instability and its value will be discussed in Section 12.4. Note
that GS(x, y) œ]0, 1] and its value close to 1 indicates less distortion on pixel (x, y). Hence, GS of the
left and right images (GSl and GSr) are determined independently. Finally, we estimate the quality
score of the left and right images based on GSl/GSr using an average pooling as follows:

Qv = 1
XY

Xÿ

x=1

Yÿ

y=1

GSv(x, y), v œ {l, r} , (12.5)

12.3.1.2 BR-inspired combination of the stereopair qualities

The importance of the quality of the left and right views are considered the same if both views contain
similar spatial content/information. In this case, we can simply use the average pooling to fuse Ql and
Qr into a combined monocular image quality Qlr. In contrast, when two views su�er from di�erent
distortion levels and/or types that result in the BR behavior of the HVS, the average pooling is
not suitable to accurately model the overall 3D quality judgment of the HVS. Consequently, it is
appropriate to use an adaptive pooling using the weights simulating the strength of the views quality
dominance.

Next, the main question is on how to accurately estimate the weighting coe�cient for each view
corresponding to image local energy [97–99], which can e�ectively describe the response properties of

231



12. Paper VII: Stereoscopic Image Quality Assessment based on Monocular and
Binocular Visual Properties

the binocular neurons in the primary visual cortex. Existing SIQA approaches generally estimate local
entropy (LE) of each view based on Gabor/LoG-Gabor filter responses [16, 19, 22, 23], block-based
local contrast/variance [17, 73], LoG/Di�erence of Gaussian (DoG) responses [33, 87, 100], image
gradient features [21, 93] or image LE [57, 69, 101].

On the one hand, the previous findings in [17, 102] showed that 3D human perception or 3D quality
is largely dominated by the monocular view or the quality of monocular view containing higher contrast
or rich contours. Accordingly, the local spatial contrast of each view can be used to reflect their
corresponding relative stimulus strength. On the other hand, our previous work [57, 58] demonstrated
that the image LE can successfully mimic the stimulus strength of the binocular combination. However,
LE-based weighting strategy is less e�cient than LoG-based one. Therefore, to accurately model the
strength of the view dominance of a stereopair, we propose to jointly use the LoG-based weighting
strategy and monocular visual saliency that reflects di�erent spatial sensitivities of the HVS on image
regions. Note that LoG-, GM-, and LE-based weighting strategies will be discussed in terms of 3D
quality prediction accuracy in Section 12.4.

As shown in Figure 12.1, the combined monocular quality Qlr is obtained based on a linear sum-
mation model defined as follows:

Qlr = wl · Ql + wr · Qr, (12.6)

wv = gv

gl + gr
, v œ {l, r} , (12.7)

gv =
Xÿ

x=1

Yÿ

y=1

[Ev(x, y) · V Sv(x, y)]2 , v œ {l, r} , (12.8)

where V Sv denotes the visual saliency map of the single-view image. Several saliency detection
algorithms for 2D [103–107] or 3D images [108, 109] have been proposed in the recent years. Here,
we apply an algorithm developed in [104] to estimate image saliency map thanks to its high detection
accuracy and computational e�ciency. As described previously, Ev represents LoG, GM or LE maps
of the single-view image. GM map is estimated by Eq. 12.2 and 12.3, whereas the LoG map of an
image is computed using second-order derivatives of a circularly symmetric 2D Gaussian function G

defined as follows:
G(x, y, ‡) = 1

2fi‡2
e≠ x2+y2

2‡2 , (12.9)

where the parameter ‡ is the standard deviation. Then, the LoG filter hLoG is determined by:

hLoG(x, y, ‡) = ˆ2G(x, y, ‡)
ˆ2x

+ ˆ2G(x, y, ‡)
ˆ2y

= ≠ 1
fi‡4

(1 ≠ x2 + y2

2‡2
)e≠ x2+y2

2‡2 ,

(12.10)

and the LoG map of each view (i.e., LoGl and LoGr) is finally estimated by convolving the view image
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with hLoG as follows:
LoGv(x, y) = Iv(x, y) ¢ hLoG(x, y), v œ {l, r} . (12.11)

In addition, the image local energy can also be estimated by quantifying the information contained
in the image, which corresponds to the entropy introduced by Shannon [110]. Kapur et al. [111] in
their early work describe how to calculate the global entropy of an image. Following this work, in
order to describe the amount of spatial information, we compute the LE map instead of the global
entropy value. Therefore, we define a local neighborhood � as a window of size m ◊ n centered at
target pixel (x, y). In this paper, a size of 11 ◊ 11 with a disk shape around a corresponding pixel is
used to compute the LE values. Then, the local entropy of the pixel (x, y) of the left/right view (i.e.,
LEv(x, y)), corresponding to the LE of � (i.e., Env(�)) is expressed as:

LEv(x, y) = En(�(x,y)) = ≠
K≠1ÿ

k=0

Pr(k) ◊ log2(Pr(k)), v œ {l, r} (12.12)

where Pr(k) denotes the probability that the grey level (i.e., luminance value) k appears in � and is
calculated by:

Pr(k) = nk

m ◊ n
, (12.13)

where nk is the number of pixels with grey level k in �, and K is the maximum grey level. Image
regions with a low contrast may result in low LE values for these regions, because LE in the target
region reflects the luminance variance in its corresponding neighborhood. Figure 12.2 illustrates a
reference image, images with di�erent distortion types and their associated LoG, LE and GM maps.
For WN distortion, the artifacts are much more introduced influenced in flat areas than in texture
areas when comparing the corresponding LoG, GM and LE maps between the reference and distorted
images. For GB distortion, the blur artifacts reduce the fine details of flat areas and enhance the edge
structures for LE and GM maps, while most of the details in Figure 12.2h are removed because of
the smoothing e�ect in LoG response. For JPEG distortion, Figures 12.2f, 12.2j and 12.2n describe
the additive information corresponding to the blocking artifacts shown in Figure 12.2b, for which the
HVS is highly sensitive.

12.3.2 Binocular-based cyclopean image quality

In the second stage, we first synthesize the cyclopean image based on a binocular combination (BC)
model with weights estimated using local energy map as described in Section 12.3.1.2. These local
energy maps simulate strength of the view dominance on BR phenomenon. Then, the quality of the
synthesized cyclopean image is assessed using the previously mentioned GM-based 2D-IQA metric
(see Section 12.3.1.1). As described in Figure. 12.2.3, many physiology-inspired BC models have been
proposed for the formulation of the cyclopean image. In this paper, inspired by the gain-control model
proposed in [82], the cyclopean image of a stereopair is synthesized based on a linear summation model
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Reference image JPEG distortion WN distortion GB distortion

LoG map of (a) LoG map of (b) LoG map of (c) LoG map of (d)

LE map of (a) LE map of (b) LE map of (c) LE map of (d)

GM map of (a) GM map of (b) GM map of (c) GM map of (d)

Figure 12.2 – Example of reference and distorted images from the Waterloo-IVC 3D image quality database
Phase I [? ], and their corresponding LoG, LE, and GM maps. Brighter gray level means higher value. WN, JPEG,
and GB denote the di�erent distortions respectively injected in the image including the JPEG compression, additive
white noise, and Gaussian blur.

defined as follows:

C(x, y) = El(x, y)
Et

◊ Il(x, y) + Er(x ≠ dl, y)
Et

◊ Ir(x ≠ dl, y), (12.14)

where El and Er refer to local energy maps of left and right views respectively, which can be estimated
by one of LoG, GM and LE maps of the single-view image (see Section 12.3.1.2). And Et is expressed
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as:
Et = El(x, y) + Er(x ≠ dl, y), (12.15)

In addition, the right image Ir and its Er are warped to their corresponding locations in left image Ir

using the disparity map of the left image dl that denotes the horizontal shift of the pixel from the left
to right view. To estimate the disparity maps of a stereopair, we apply a stereo matching algorithm
developed by Lee et al. [59], which can deliver high performance and deals e�ciently with the issues
of occlusion and depth discontinuities. As shown in Figure 12.1, to avoid the geometrical information
degradation, we utilize the disparity map of the reference stereopair to determine the cyclopean images
of both the reference and test stereopairs (i.e., CR and CT ).

Next, we compute the quality map of CT (named QMc) using GM-based IQA metric based on Eqs.
12.2, 12.3 and 12.4. The GMSM metric does not consider the visual spatial sensitivity of the HVS that
can probably a�ect human quality judgments. It is known that JND thresholds indicate the maximum
distortion that the HVS cannot detect. Thus, JND thresholds of the reference image/stereopair, which
determine the visual sensitivity, is used to weight GMc. The JND-weighted cyclopean quality Qc is
calculated by:

Qc =
qN

x,y

Ë
1

JND(x,y)
◊ QMc(x, y)

È

qN
x,y

1

JND(x,y)

, (12.16)

where N is the number of the pixels in the image. A pixel with a high JND value will tolerate a large
distortion, and thus has a low visual importance on the perceived quality. To compare the performance
of the proposed SIQA metric integrating JND, two e�cient 2D-JND models (i.e., NAMM [46] and
JND-TE [47]) and three 3D-JND models (i.e., BJND [48], SJND [49] and DJND [50] ) were used in
this paper.

12.3.3 Overall 3D quality

Finally, Qc and Qlr are combined to compute the overall 3D quality Q3D based on a linear pooling
model as follows:

Q3D = – ◊ Qc + (1 ≠ –) ◊ Qlr, (12.17)

where – is the weight to adjust the relative importance of Qc and Qlr for Q3D. The optimal value –

acheving the best performance on specific 3D-IQA database will be further discussed in Section 12.4.3.

12.4 Experimental results

In this section, we first give a summary of existing stereoscopic IQ databases, and briefly describe seven
publicly available ones used in experiments. Based on these databases, we then evaluate the perfor-
mances of the proposed FR-SIQA model using di�erent importance weights for combined monocular
quality Qlr and cyclopean quality Qc in order to determine the optimal value of – and —. Next, we
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Table 12.1 – Summary of stereoscopic image quality databases. Sym and Asym denote separately the asym-
metrically and symmetrically stereopairs. Mix represents the multiple distortions in the single-view image of a
stereopair. WN, JPEG, JP2K, GB, FF, DB, TR, RE indicate additive white noise, JPEG, JPEG 2000, Gaussian
blur, fast fading, downsampling blur, transmission error and rendering error, respectively.

Database Sym Asym Mix
depth
map

Publicly
availiable

2D
(D)MOS

Distortion
types

LIVE 3D I [112] Yes No No Yes Yes No
WN, JPEG, JP2K,

GB, FF

LIVE 3D II [16] Yes Yes No Yes Yes No
WN, JPEG, JP2K,

GB, FF
Waterloo-IVC I [73] Yes Yes No Yes Yes Yes WN, JPEG, GB
Waterloo-IVC II [73] Yes Yes No No Yes Yes WN, JPEG, GB

NBU 3D II [113] Yes No No No Yes No
WN, JPEG, JP2K,

GB, H.264
NBU-MDSID [114] Yes No Yes No Yes Yes WN, JPEG, GB

IEEE 3D [115] Yes No No No Yes No
WN, JPEG, JP2K,

GB, FF
IRCCyN/IVC 3D [42] Yes No No No Yes No JPEG, JP2K, GB

MCL-3D [116] Yes No No Yes Yes Yes
WN, JPEG, JP2K,
GB, DB, TR, RE

MMSPG 3D IQA [117] Yes No No No Yes No Inter-camera distances
MICT 3D IQA [118] Yes Yes No No No No JPEG
SVBL 3D IQA [61] Yes No No No No No WN, JPEG, JP2K

NBU 3D I [119] No Yes No No No No WN, JPEG, JP2K, GB

compare the performance of the proposed model using di�erent BR modeling strategies and JND mod-
els. Finally, we provide an extensive comparison between our model and competitive state-of-the-art
SIQA models on seven databases. Besides, the impacts of di�erent scales on proposed SIQA model’s
performance will further investigated.

12.4.1 Stereoscopic image quality databases

To the best of our knowledge, there are currently thirteen databases for SIQA from the literature
[13, 73], in which ten are publicly available. The summary of 3D image databases is given in Table
12.1. Among the publicly available databases, LIVE 3D I and II, Waterloo-IVC I and II, NBU 3D
II, NBU-MDSID, and IEEE 3D are used in the validation of the proposed model. Furthermore,
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IRCCyN/IVC 3D, MCL-3D and MMSPG 3D IQA databases have not been considered because 1)
IRCCyN/IVC 3D only contains 96 stereopairs that are not su�cient to test SIQA models performance,
2) MCL-3D contains 2D-plus-depth sources and rendering stereopairs that are probably inaccurate,
3) MMSPG contains single camera-setup-related distortion type (di�erent setting of inter-camera
distances). Above-mentioned used databases associated with the subjective scores are briefly described
in the following:

• LIVE 3D image quality database consists of two phases (Phase I and II). LIVE 3D Phase I [112]
contains 20 reference stereo pairs and 365 symmetrically distorted stereo pairs, including five
distortion types: additive white noise (WN), JPEG, JPEG 2000 compression (JP2K), Gaussian
blur (GB), and fast fading (FF). LIVE 3D Phase II [16] contains the same five distortion types
as described in Phase I, 8 reference stereo pairs, 120 symmetrically and 240 asymmetrically
distorted stereopairs. Symmetric/asymmetric distortion in a stereopair mean that the left and
right images are degraded by the same/di�erent distortion levels. The resolution of all single-
view images is 640 ◊ 360 in LIVE 3D database.

• Waterloo-IVC 3D image quality databases [73] were created in two phases (Phase I and II).
Waterloo-IVC phase I contains 6 reference stereopairs, 330 distorted stereopairs with 78 sym-
metric and 252 asymmetric distortions, including WN, JPEG, and GB. In addition, Phase I
also provides the ground-truth disparity map of each reference stereopair. Waterloo-IVC phase
II contains 10 reference stereopairs, 130 symmetrically and 330 asymmetrically distorted stere-
opairs corresponding to the same three distortion types. In addition to di�erent distortion levels,
an asymmetrically distorted stereopair from Phase I and II can be impaired by di�erent types
of distortion. Both Phases I and II provide the quality ground truth of each single-view image.
All single-view images have HD resolution (1920 ◊ 1080).

• NBU 3D IQA database Phase II [113] is composed of 312 symmetrically distorted stereopairs
generated from 12 reference stereopairs. Five distortion types in this database are WN, JPEG,
JP2K, GB and H.264 compression, respectively. The resolutions of all single-view images range
between 480 ◊ 270 and 1024 ◊ 768.

• NBU-MDSID database [114] consists of 10 reference stereopairs and 270 multiply distorted stere-
opairs with symmetric distortions including WN, JPEG, and GB. The mixed distortion refers
to a stereopair impaired by at least two types of distortions. In addition to multiply-distorted
stereopairs, this database also contains 90 singly-distorted stereopairs and their corresponding
2D mean opinion scores (MOS). We only used the 270 multiply distorted stereopairs for the
validation because of the challenge brought for QA. The resolution of all single-view images is
HD (1920 ◊ 1080) in this database.

• IEEE standard association stereo image database [115] is composed of 26 reference stereopairs,
and 650 symmetrically distorted stereopairs that correspond to 130 stereopairs for each distortion
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type including WN, JPEG, JP2K, GB, and FF. The resolution per view is also HD (1920◊1080)
in this database.

12.4.2 Experimental implementation and performance evaluation

In the experimental implementation, we tested and compared the performance of the proposed SIQA
algorithm using di�erent parameters values and component types. Table 12.2 lists the optimal values
of the parameters and most appropriate components for each database. The performance with di�erent
parameters and components will be further discussed in the following sections.

To fairly evaluate the correlation and di�erence between the predicted quality and the subjective
score, i.e., MOS or di�erential mean opinion score (DMOS), the predicted scores are mapped on the
same scales as the DMOS based on a five-parameters logistic function [120] as follows:

Qp = p1 ·
51

2 ≠ 1
e(p2·(Q3D≠p3))

6
+ p4 · Q3D + p5, (12.18)

where p1, p2, p3, p4 and p5 are the regression parameters selected based on the subjective scores
and estimated quality that is represented by Q3D. Qp denotes the predicted score after non-linear
regression. Once obtaining Qp, the performance of the proposed SIQA metric was evaluated by three
statistic-based criteria: Pearson linear correlation coe�cient (PCC) for the estimation of prediction
accuracy, Spearman rank order correlation coe�cient (SROCC) for monotonicity prediction and Root-
Mean-Square Error (RMSE) for prediction consistency. Higher PCC and SROCC values, or lower
RMSE values indicate better performance in terms of correlation with the human judgment of quality.

Table 12.2 – Parameter values in the implementation on seven databases. – is the weighting parameter described
in Eq. 12.17. Visual saliency (VS) component, stimulus strength modeling, and JND model are related to Eq. 12.7,
12.8 and 12.16, respectively. The downsampling factor represents the image scaling with di�erent values for view
dominance strength modeling (see Figure 12.1).

Database –
JND

model
VS

Stimulus
strength

Downsampling
factor

LIVE 3D I 0.4 BJND [48] Yes LoG 1
LIVE 3D II 0.2 BJND [48] without LoG 2
Waterloo I 0.1 DJND [50] without LoG 1, 2 and 4
Waterloo II 0 N/A with GM 2 and 4

NBU II 0.2 NAMM [46] with LoG 4
NBU-MDSID 0.2 BJND [48] with LoG 4

IEEE 3D 0.1 BJND [48] with LoG 4
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12.4.3 Contribution of the monocular and cyclopean images qualities
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Figure 12.3 – Performance of MOBIQUM on three databases with di�erent – values (see Eq. 12.17). Best results
for each criterion are marked by arrows.
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Figure 12.4 – Performance of MOBIQUM on four databases with di�erent – value (see Eq. 12.17).
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Based on these databases, we then evaluate the performance using di�erent weight values – (used
in Eq. 12.17) for combining monocular quality Qlr and cyclopean quality Qc in order to determine the
optimal relationship between both qualities. Figures 12.3 and 12.4 illustrate the PCC, SROCC and
RMSE values with di�erent – on seven databases. The best-performance results are shown along with
– values and the corresponding values. As shown in Figure 12.3, the proposed SIQA metric delivers
the best performance with – = 0.2, – = 0.1 and – = 0 on LIVE 3D II, Waterloo I and II databases,
respectively. Figure 12.4 shows that the best results are obtained with – = 0.4 for SROCC, and
– = 0.7 for LCC and RMSE on LIVE 3D I database. It should be noted that the results with di�erent
– values here were computed based on our SIQA metric without using JND map (see Figure 12.1) to
modulate the cyclopean image quality Qc. The proposed metric using the JND map achieves better
results with – = 0.4 than – = 0.7. Therefore, we fix – = 0.4 on LIVE 3D I for further performance
comparison. Following this idea, we set – = 0.2 and – = 0.1 (see Table 12.2) for NBU-MDSID and
IEEE 3D databases, even though – = 0 results in the best performances illustrated in Figure 12.4.
Moreover, for NBU II, – = 0.2 leads to the best performance in terms of PCC, SROCC, and RMSE.
In sum, the results in Figures 12.3 and 12.4 can conclude that the BS-inspired combined monocular
quality has much more impact on the overall 3D quality Qlr in contrast with the cyclopean image
quality Qc.

12.4.4 Impact of the di�erent components of MOBIQUM

In this section, we discuss the e�ectiveness of each individual component of the proposed SIQA metric
and compare the model’s performance with di�erent component-related models. Specifically, we first
evaluate the 3D quality prediction performance using the proposed metric without/with di�erent JND
models as shown in Figure 12.1. After obtaining the best choice of the JND model for each database, we
additionally explore the method performance with di�erent strategies modeling the stimulus strength
in BR phenomenon so as to demonstrate the e�ectiveness of image LoG response.

12.4.4.1 Impact of di�erent 2D- and 3D-JND models on MOBIQUM

Tables 12.3 and 12.4 list the performance evaluation results using the proposed SIQA metric with
di�erent 2D- and 3D-JND models in terms of SROCC and RMSE indicators on all databases except
Waterloo II, because the latter delivers the best performance without using JND model as described
in Table 12.2. The results from Figure 12.3 show that the proposed metric without integrating JND
or with integrating BJND achieve promising results on LIVE3D II. Moreover, DJND-based performs
quite well on Waterloo I database. This can be explained by the fact that BJND and DJND mod-
els take the disparity/depth information into account, which undoubtedly correspond better to the
way of judging 3D quality of the HVS. In addition, SJND-based and JND-TE-based perform also
competitively well for LIVE 3D II and Waterloo I. This finding, which validates the e�ectiveness of
SJND and JND-TE models, confirms the results from previous work [57, 121]. Besides, the use of
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Table 12.3 – Performance evaluation of MOBIQUM with di�erent 2D- and 3D-JND models based on LIVE 3D
Phase II, Waterloo-IVC Phase I databases. The best results for each criterion are highlighted in boldface.

Strategy
LIVE 3D II Waterloo I

SROCC RMSE SROCC RMSE
Without JND 0.940 3.783 0.934 5.501

With
2D-JND

NAMM [46] 0.940 3.792 0.934 5.494
JND-TE [47] 0.940 3.788 0.926 5.487

With
3D-JND

BJND [48] 0.941 3.790 0.934 5.728
SJND [49] 0.940 3.788 0.934 5.494
DJND [50] 0.940 3.789 0.935 5.491

Table 12.4 – Performance evaluation of MOBIQUM with di�erent 2D- and 3D-JND models based on LIVE 3D
Phase I, NBU 3D II, NBU-MDSID, and IEEE 3D databases. The best results for each criterion are highlighted in
boldface.

Strategy
LIVE 3D I NBU-II NBU-MDSID IEEE 3D

SROCC RMSE SROCC RMSE SROCC RMSE SROCC RMSE
Without JND 0.930 5.777 0.949 4.833 0.931 3.281 0.891 6.574

With
2D-JND

NAMM [46] 0.930 5.775 0.949 4.815 0.931 3.283 0.891 6.576
JND-TE [47] 0.929 5.824 0.949 4.821 0.931 3.286 0.891 6.575

With
3D-JND

BJND [48] 0.934 5.565 0.949 4.888 0.934 3.236 0.892 6.542
SJND [49] 0.930 5.796 0.949 4.816 0.931 3.282 0.891 6.576
DJND [50] 0.390 5.801 0.949 4.820 0.931 3.288 0.891 6.579

BJND outperforms all others JND models on LIVE 3D I, NBU-MDSID and IEEE 3D, as shown in
Table 12.4. Furthermore, the NAMM-based performs the best on NBU-II, and delivers competitive
performance on other databases. The proposed metric without JND can achieve acceptable results
e�ciently compared with the metrics with JND, because such JND-TE- or BJND-based metrics are
relatively costly.

In summary, the proposed SIQA metric with BJND is the best compromise for the used 3D quality
databases containing only symmetrically distorted stereopairs, whereas the metric without JND or
with DJND performs well for databases containing both symmetric and asymmetric distortions.

12.4.4.2 Impact of di�erent strategies modeling view dominance strength on MOBIQUM

Furthermore, we analyze the impact of di�erent strategies (i.e., LoG, GM and LE maps) used to
model the view dominance strength as shown in Figure 12.1. Table 12.5 details the performance of
the proposed algorithm with each strategy on four databases. We can see that our method using LoG
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Table 12.5 – Performance evaluation with LoG or GM or LE to simulate view dominance strength based on
LIVE 3D Phase I, II, Waterloo-IVC II, and NBU-MDSID databases. The best results among LoG, GM and LE are
highlighted in boldface.

Database
PCC SROCC RMSE

LoG GM LE LoG GM LE LoG GM LE
LIVE 3D I 0.947 0.940 0.941 0.942 0.934 0.934 5.273 5.587 5.541
LIVE 3D II 0.942 0.901 0.837 0.941 0.889 0.819 3.790 4.892 6.182
Waterloo II 0.921 0.930 0.739 0.924 0.934 0.719 7.477 7.049 12.898

NBU-MDSID 0.941 0.940 0.940 0.938 0.930 0.933 3.236 3.270 3.269

map outperforms the ones using GM and LE maps in terms of PCC, SROCC, and RMSE on LIVE 3D
I, II and NBU-MDSID. Moreover, the LoG-based method delivers promising results on Waterloo II.
The finding explains why we used the LoG in our metric design in order to accurately and e�ciently
simulate the visual stimulus strength of BR behavior. In addition, the GM-based method performs
better than LE-based method on LIVE 3D II and Waterloo II, which contains both symmetrically and
asymmetrically distorted stereopairs. Although LE-based method slightly outperforms the GM-based
method on LIVE 3D I and NBU-MDSID, it remains less e�cient in terms of computational runtime.

12.4.5 Overall performance

To evaluate the algorithm performance, we extensively compare our proposed method with competitive
state-of-the-art SIQA methods, including the 2D-extended FR-IQA metrics, FR- and NR- 3D IQA
metrics. For 2D-extended SIQA methods, we assess the 3D quality by averaging the quality scores
of the left- and right-view images. Tables 12.6 and 12.7 shows the overall performance of the SIQA
methods in terms of PCC, SROCC and RMSE results on three databases (containing both symmetric
and asymmetric distortions) and four databases (containing only symmetric distortion), respectively.
It can be seen from Table 12.6 that the proposed method outperforms most other SIQA methods on
LIVE 3D II and Waterloo II databases, and delivers highly competitive performance on Waterloo I.
Although Liu’s method [93] achieves better performance than our proposed method on LIVE 3D II, his
method is relatively more complicated due to the consideration of statistical features of the stereopair,
cyclopean image, and binocular product image. Obviously, Wang’s [73], Geng’s [20], Fezza’s [35], and
Yao’s [38] methods perform better than Benoit’s [42] and You’s [43] methods thanks to binocular
vision properties consideration. In addition, we can observe that the performance results on Waterloo
I and II are generally lower compared with LIVE II. This is mainly due to the fact that It is more
challenging to assess 3D images with asymmetrical mixed distortions in Waterloo I and II. From Table
12.7, we observe that our SIQA method performs the best among all methods on LIVE 3D I, NBU
3D II and IEEE 3D. Moreover, the proposed method can yield promising results on NBU-MDSID.
Among the 2D-based SIQA metrics, the GMSD-based method achieves the best performance on LIVE
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Table 12.6 – Overall performance of SIQA methods on LIVE 3D Phase II, Waterloo-IVC Phase I and II
databases. The ranking 1st and 2nd for each criterion are highlighted with red and blue bold texts, respectively.

SIQA
method

LIVE 3D II Waterloo-IVC I Waterloo-IVC II
PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE

UQI [63] 0.864 0.842 5.677 0.753 0.640 10.360 0.679 0.591 14.056
VIF [88] 0.839 0.819 6.182 0.808 0.801 8.571 0.735 0.708 12.987

GMSD [90] 0.843 0.827 6.073 0.748 0.741 10.439 0.742 0.758 12.836
GMSM [90] 0.817 0.796 6.506 0.770 0.763 10.034 0.757 0.761 12.508
Benoit [42] 0.764 0.748 7.281 0.680 0.585 - 0.547 0.534 -

You [43] 0.721 0.721 7.141 0.679 0.597 - 0.679 0.622 -
Fezza [86] 0.871 0.862 5.553 0.692 0.553 11.357 0.561 0.447 15.846
Chen [16] 0.910 0.905 4.693 0.657 0.510 11.910 0.613 0.367 16.345
Wang [73] 0.916 0.919 - 0.930 0.918 - 0.892 0.869 -
Geng [20] 0.921 0.919 5.400 0.846 0.810 9.469 - - -
Khan [25] 0.932 0.922 - 0.934 0.925 - 0.910 0.905 -
Fezza [35] 0.925 0.908 3.018 0.904 0.898 - 0.890 0.886 -
Liu [93] 0.932 0.930 4.120 0.956 0.937 4.960 0.922 0.911 7.377
Yao [38] 0.941 0.933 3.757 0.932 0.907 - 0.869 0.868 -

Proposed 0.942 0.941 3.790 0.937 0.935 5.491 0.930 0.934 7.049

3D I and NBU 3D II, whereas the MS-SSIM-based method performs best on NBU-MDSID and IEEE
3D. Compared with Table 12.6, all 2D-based SIQA methods achieve reasonably accurate prediction
results and better performance on the databases containing only the symmetric distortion in Table
12.7.

In addition to the overall performance evaluation mentioned above, we provide in Figure 12.5 the
scatter distributions of subjective quality scores (i.e., DMOS) versus predicted scores by the proposed
metric, as well as the non-linear fitting curves (marked in red) on di�erent databases. DMOS values
are provided by each database, and the fitting curves are determined via Eq. 12.18. Note that a
better convergence of the data points in the scatter plot corresponds to a better consistency with the
subjective quality scores. In spite of the presence of some outliers in Figure 12.5, the scatter points
are well concentrated around the fitting curves, which indicates a high correlation between the human
quality judgment and MOBIQUM.

12.4.6 Performance on symmetric and asymmetric distortions

As mentioned previously, the asymmetrically distorted stereopairs are more challenging for IQA task
than the symmetrically distorted ones. Therefore, in addition to the above overall performance eval-
uation, we further tested the SIQA methods performances on separated symmetric and asymmetric
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Table 12.7 – Overall performance of SIQA methods on LIVE 3D Phase I, NBU 3D II, NBU-MDSID, and IEEE
3D databases. The ranking 1st and 2nd for each criterion are highlighted with red and blue bold texts, respectively.

SIQA
method

LIVE 3D I NBU 3D II NBU-MDSID IEEE 3D
PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE

SSIM [62] 0.877 0.877 7.889 0.814 0.906 9.969 0.938 0.927 3.325 0.812 0.820 8.104
MS-SSIM [122] 0.930 0.924 6.026 0.840 0.924 9.313 0.951 0.941 2.972 0.821 0.833 7.925

UQI [63] 0.939 0.933 5.645 0.792 0.790 10.48 0.837 0.821 5.232 0.734 0.744 9.434
VIF [88] 0.925 0.920 6.237 0.869 0.864 8.495 0.691 0.574 6.916 0.652 0.655 10.53

GMSM [90] 0.938 0.933 5.676 0.838 0.937 9.368 0.867 0.858 4.774 0.801 0.816 8.316
GMSD [90] 0.943 0.937 5.472 0.938 0.943 5.976 0.897 0.873 4.227 0.795 0.804 8.429
Fezza [86] 0.821 0.922 9.358 0.867 0.937 8.548 0.953 0.941 2.914 0.832 0.845 7.771
Chen [16] 0.922 0.914 6.351 0.862 0.921 8.718 0.938 0.924 3.316 0.825 0.839 7.884
Shao [18] 0.935 0.925 5.816 0.941 0.941 5.800 0.919 0.905 3.687 - - -
Geng [20] 0.943 0.932 5.514 - - - - - - 0.853 0.862 -
Wang [24] 0.924 0.916 6.272 0.925 0.928 6.541 - - - - - -

Oh [34] 0.943 0.935 - - - - - - - 0.855 0.927 -
Jiang [100] 0.946 0.934 5.276 0.933 0.921 6.363 - - - - - -
Jiang [123] 0.930 0.912 6.031 0.936 0.931 6.019 - - - - - -
Proposed 0.947 0.942 5.273 0.960 0.949 4.815 0.941 0.934 3.236 0.882 0.892 6.542

distortions for LIVE 3D II, Waterloo I and II databases as displayed in Tables 12.8 and 12.9, re-
spectively. The results from Table 12.8 demonstrate that MOBIQUM (i.e., the proposed method)
significantly outperforms most of the FR 3D-based (Chen’s [16] , Wang’s [73] and Geng’s [20] ) meth-
ods for asymmetric distortions, and performs quite well for symmetric distortions. Moreover, Zhang’s
[17] and Fezza’s [35] methods deliver competitive results for asymmetric distortion because both meth-
ods take BF and BR into account. Obviously, 2D-based SIQA methods perform quite well and even
better than 3D-based methods for symmetric distortions, but they both generally achieve low per-
formance for asymmetric distortions. This is mainly due to the fact that 2D-based methods predict
the perceived 3D quality neither considering depth/disparity information nor the binocular visual
properties. Besides, as shown in Table 12.9, our proposed method delivers the best performance on
Waterloo-IVC II for both symmetric and asymmetric distortions, and perform better than recently
proposed competitive SIQA methods i.e., Fezza’s [35] and Khan’s [25] methods on Waterloo-IVC I.
It is worth noting that the proposed SIQA method computes 2D image quality using GMSM, which
yields promising results for symmetric distortions.
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Figure 12.5 – Scatter plots of objective scores predicted by the proposed SIQA metric against subjective quality
scores (DMOS) on di�erent 3D-IQA databases.
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Table 12.8 – Performance of SIQA methods on symmetric and asymmetric distortions of LIVE 3D Phase II
database. The ranking 1st and 2nd for each criterion are highlighted with red and blue bold texts, respectively.

SIQA
method

Symmetric Asymmetric
PCC SROCC RMSE PCC SROCC RMSE

UQI [63] 0.941 0.939 4.213 0.795 0.755 6.154
VIF [88] 0.928 0.916 4.652 0.777 0.732 6.382

GMSM [90] 0.954 0.940 3.754 0.734 0.688 6.885
GMSD [90] 0.937 0.923 4.350 0.775 0.755 6.404
Benoit [42] 0.921 0.910 5.712 0.746 0.732 6.976

You [43] 0.911 0.898 7.128 0.659 0.604 8.009
Fezza [86] 0.930 0.921 4.576 0.820 0.796 5.801
Chen [16] 0.940 0.927 4.277 0.878 0.859 4.846
Wang [73] 0.937 0.923 - 0.898 0.902 -
Zhang [17] 0.954 0.947 3.900 0.903 0.895 4.371
Geng [20] 0.938 0.929 4.414 0.877 0.868 5.667
Fezza [35] 0.935 0.928 - 0.957 0.892 -

Appina [124] 0.907 0.857 - 0.811 0.872 -
Proposed 0.954 0.940 3.763 0.928 0.926 3.767

Table 12.9 – Performance of SIQA methods on symmetric and asymmetric distortions of Waterloo-IVC Phase
I and II databases.

SIQA
method

Waterloo-IVC I Waterloo-IVC II
PCC SROCC PCC SROCC

S As S As S As S As
UQI [63] 0.814 0.724 0.635 0.631 0.759 0.629 0.565 0.566
VIF [88] 0.918 0.788 0.913 0.755 0.887 0.653 0.830 0.631

GMSM [90] 0.964 0.683 0.957 0.705 0.960 0.666 0.954 0.683
GMSD [90] 0.951 0.641 0.934 0.676 0.951 0.638 0.940 0.677
Benoit [42] 0.850 0.697 0.728 0.577 0.755 0.555 0.571 0.454

You [43] 0.868 0.709 0.752 0.571 0.763 0.686 0.560 0.600
Fezza [86] 0.881 0.611 0.782 0.484 0.778 0.474 0.620 0.392
Chen [16] 0.869 0.592 0.774 0.442 0.736 0.449 0.512 0.341
Wang [73] 0.964 0.929 0.948 0.910 0.938 0.880 0.905 0.848
Khan [25] - 0.935 - 0.923 - 0.915 - 0.905
Fezza [35] 0.910 0.882 0.902 0.869 0.914 0.845 0.915 0.804
Proposed 0.970 0.927 0.963 0.926 0.960 0.921 0.953 0.925
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12.4.7 Performance on individual distortion type

Table 12.10 – Performance of SIQA methods for di�erent types of distortion on LIVE 3D Phase I database.
The ranking 1st and 2nd for each criterion are highlighted with red and blue bold texts, respectively.

SIQA
method

JPEG JP2K WN GB FF
PCC SROCC PCC SROCC PCC SROCC PCC SROCC PCC SROCC

SSIM [62] 0.475 0.435 0.858 0.857 0.944 0.939 0.907 0.879 0.670 0.584
MS-SSIM [122] 0.633 0.612 0.930 0.892 0.952 0.942 0.944 0.925 0.803 0.722

GMSM [90] 0.724 0.676 0.944 0.908 0.941 0.936 0.952 0.922 0.812 0.723
GMSD [90] 0.696 0.639 0.940 0.910 0.943 0.938 0.958 0.939 0.847 0.800

VIF [88] 0.681 0.580 0.937 0.900 0.931 0.931 0.965 0.934 0.862 0.804
UQI [63] 0.756 0.729 0.949 0.908 0.926 0.925 0.959 0.925 0.884 0.821
Chen [16] 0.528 0.530 0.920 0.888 0.955 0.948 0.943 0.924 0.776 0.700
Lin [19] 0.755 0.716 0.952 0.913 0.927 0.929 0.958 0.933 0.862 0.829

Shao [18] 0.520 0.495 0.921 0.895 0.945 0.941 0.959 0.940 0.859 0.796
Shao [22] 0.665 0.634 0.936 0.900 0.944 0.943 0.954 0.924 0.831 0.781
Geng [20] 0.719 0.653 0.942 0.905 0.963 0.956 0.962 0.931 0.867 0.816
Wang [24] 0.617 0.513 0.909 0.881 0.949 0.944 0.951 0.931 0.778 0.686
Khan [25] 0.711 0.606 0.951 0.907 0.947 0.939 0.959 0.930 0.858 0.809
Chen [14] 0.695 0.617 0.907 0.863 0.917 0.919 0.917 0.878 0.735 0.652

Jiang [100] 0.707 0.609 0.942 0.884 0.950 0.925 0.968 0.922 0.868 0.796
Yue [125] 0.744 0.595 0.934 0.833 0.962 0.932 0.971 0.857 0.854 0.779

Proposed 0.779 0.744 0.957 0.921 0.947 0.942 0.958 0.926 0.879 0.823

In addition to the exploration made above, we also examine the performance of SIQA methods for
di�erent distortion types on four databases including LIVE 3D I and II, NBU 3D II and IEEE 3D.
The results are separately reported in Tables 12.10, 12.11, 12.12 and 12.13. For LIVE 3D Phase I,
MOBIQUM outperforms most of the other SIQA methods for JPEG, JP2K, and FF distortions, and
achieves high performance for WN and GB distortions. In Table 12.11, it can be noticed that our
method delivers the best performance for WN distortions and yields promising results for JPEG, FF
and GB distortions. Moreover, it provides competitive results for JP2K distortion, even though it
performs less e�ciently than some 3D-based SIQA methods such as Wang’s [24] and Jiang’s [100]
methods. Interestingly, some 2D-based SIQA methods perform quite well for specific distortion types.
For instance, GMSM provides high performance for JPEG and WN distortions, UQI delivers the best
performance for FF distortion and VIF yields the best results for GB distortion. The UQI-based
method performs better than other methods for FF distortion on LIVE 3D I (see Table 12.10) and
II databases. For NBU 3D II database, the proposed SIQA method still performs competitively
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Table 12.11 – Performance of SIQA methods for di�erent types of distortion on LIVE 3D Phase II database.
The ranking 1st and 2nd for each criterion are highlighted with red and blue bold texts, respectively.

SIQA
method

JPEG JP2K WN GB FF
PCC SROCC PCC SROCC PCC SROCC PCC SROCC PCC SROCC

SSIM [62] 0.664 0.678 0.730 0.703 0.931 0.922 0.848 0.838 0.868 0.834
MS-SSIM [122] 0.859 0.847 0.824 0.798 0.951 0.946 0.798 0.799 0.871 0.832

GMSM [90] 0.924 0.900 0.886 0.877 0.956 0.953 0.900 0.874 0.908 0.874
GMSD [90] 0.898 0.887 0.871 0.868 0.932 0.934 0.944 0.921 0.968 0.935

VIF [88] 0.824 0.778 0.831 0.822 0.834 0.822 0.987 0.951 0.947 0.934
UQI [63] 0.799 0.739 0.841 0.831 0.851 0.840 0.961 0.954 0.980 0.956
Chen [16] 0.862 0.843 0.834 0.814 0.957 0.940 0.963 0.908 0.901 0.884
Shao [22] 0.851 0.834 0.877 0.854 0.934 0.933 0.945 0.924 0.933 0.941
Voo [126] 0.679 0.737 0.814 0.895 0.937 0.933 0.872 0.879 0.911 0.905
Wang [24] 0.909 0.826 0.953 0.773 0.891 0.953 0.952 0.770 0.921 0.831
Ma [23] 0.899 0.879 0.887 0.878 0.957 0.949 0.978 0.906 0.901 0.893

Chen [14] 0.901 0.867 0.899 0.950 0.947 0.950 0.941 0.900 0.932 0.933
Appina [124] 0.829 0.839 0.867 0.864 0.920 0.932 0.878 0.846 0.836 0.860
Jiang [100] 0.924 0.889 0.942 0.909 0.917 0.873 0.920 0.865 0.919 0.887
Liu [127] 0.904 0.858 0.765 0.908 0.817 0.940 0.975 0.901 0.931 0.924

Proposed 0.916 0.896 0.894 0.879 0.965 0.959 0.978 0.896 0.955 0.945

well. In particular, our method achieves high performance for JPEG, JP2K and GB distortions, and
delivers promising results for WN and H.264 distortions. Similar to the results in Table 12.11, VIF
performs also quite well for GB distortion. Besides, the results from Table 12.13 demonstrates that the
proposed method achieves high performances for JPEG, FF distortion and competitive results for WN
and GB distortions compared with other SIQA methods. Overall, MOBIQUM can achieve remarkable
performance for JPEG and WN distortions across the used four databases. In summary, extensive
results from previous results comprehensively validate the e�ectiveness of the proposed method, and
show high correlation with the human judgment of quality.
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Table 12.12 – Performance of SIQA methods for di�erent types of distortion on NBU 3D II database.

SIQA
method

JPEG JP2K WN GB H.264
PCC SROCC PCC SROCC PCC SROCC PCC SROCC PCC SROCC

SSIM [62] 0.956 0.949 0.681 0.901 0.745 0.855 0.950 0.949 0.751 0.921
MS-SSIM [122] 0.937 0.883 0.937 0.952 0.930 0.933 0.968 0.948 0.924 0.943

GMSM [90] 0.821 0.911 0.938 0.950 0.929 0.947 0.972 0.967 0.958 0.959
GMSD [90] 0.916 0.913 0.953 0.947 0.916 0.937 0.967 0.961 0.943 0.941

VIF [88] 0.952 0.915 0.823 0.939 0.928 0.920 0.980 0.980 0.951 0.928
UQI [63] 0.869 0.768 0.725 0.754 0.642 0.662 0.940 0.938 0.746 0.740
Chen [16] 0.949 0.908 0.891 0.924 0.906 0.928 0.955 0.948 0.926 0.927
Shao [18] 0.928 0.935 0.953 0.952 0.981 0.945 0.963 0.977 0.962 0.955
Wang [24] 0.909 0.826 0.953 0.773 0.891 0.953 0.952 0.770 0.921 0.831
Jiang [100] 0.924 0.889 0.942 0.909 0.917 0.873 0.920 0.865 0.919 0.887
Jiang [123] 0.920 0.924 0.895 0.914 0.953 0.955 0.925 0.874 0.936 0.922

Li [36] 0.900 0.883 0.906 0.942 0.911 0.926 0.950 0.966 - -
Proposed 0.953 0.952 0.954 0.947 0.952 0.918 0.973 0.970 0.968 0.937

Table 12.13 – Performance of SIQA methods for di�erent types of distortion on IEEE 3D database. The ranking
1st and 2nd for each criterion are highlighted with red and blue bold texts, respectively.

SIQA
method

JPEG JP2K WN GB FF
PCC SROCC PCC SROCC PCC SROCC PCC SROCC PCC SROCC

SSIM [62] 0.944 0.905 0.862 0.851 0.785 0.786 0.927 0.858 0.965 0.946
MS-SSIM [122] 0.942 0.903 0.884 0.871 0.739 0.746 0.919 0.844 0.974 0.957

GMSM [90] 0.930 0.902 0.823 0.813 0.804 0.802 0.885 0.840 0.910 0.892
GMSD [90] 0.933 0.884 0.919 0.899 0.741 0.754 0.921 0.852 0.955 0.945

VIF [88] 0.942 0.926 0.890 0.879 0.837 0.830 0.920 0.871 0.954 0.945
UQI [63] 0.902 0.869 0.569 0.548 0.887 0.865 0.905 0.840 0.944 0.936
Chen [16] 0.940 0.906 0.886 0.875 0.727 0.748 0.917 0.842 0.972 0.957
Lin [87] 0.869 0.844 0.762 0.748 0.869 0.841 0.794 0.743 0.837 0.812

Fezza [35] 0.933 0.925 0.839 0.805 0.902 0.923 0.848 0.808 0.889 0.907
Oh [34] 0.906 0.891 0.925 0.948 0.823 0.905 0.839 0.837 0.871 0.941

Proposed 0.948 0.943 0.710 0.717 0.940 0.902 0.913 0.862 0.970 0.949
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12.5 Conclusion and future work

In this paper, we propose a FR-SIQA system considering the qualities of (1) left- and right-views
images (related to monocular vision) and (2) a cyclopean-view image (related to BV). Specifically, we
first compute the quality of left and right image separately based on gradient magnitude similarity
metric (GMSM), and then linearly combine the qualities of both views into a 2D quality with the
weights modeling the related stimulus strength of each view. Next, using the GMSM metric, we
estimate the quality of the cyclopean image, which is derived from a BF-inspired combination model.
In addition, the cyclopean quality of the test stereo pair is weighted with a JND map of the reference
stereo pair that reveals di�erent visual sensitivities on the image’s region degradation. Finally, the
overall 3D quality score is computed by integrating 2D monocular image quality with 3D binocular-
based JND-weighted cyclopean image quality. Experimental results on extensive databases show that
the proposed SIQA metric delivers high quality prediction accuracy and outperforms than many other
SIQA methods.
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Résumé: Les grandes avancées des technologies stéréoscopiques/3Ds conduisent à une croissance remarquable de la quantité de

contenue 3D dans diverses applications (par exemple, les domaines de divertissement et médicaux) grâce à une expérience visuelle

d’utilisateur réaliste et immersive. Cependant, l’avènement de ces technologies a également apporté quelques défis techniques et des

problèmes telles que l’évaluation de la qualité et la compression dû aux processus perceptuels de la perception binoculaire. Visant

à évaluer et optimiser les performances des systèmes d’imagerie 3D en ce qui concerne leur capacité de stockage et leur qualité

d’expérience, cette thèse se concentre sur l’investigation de la perception binoculaire selon deux perspectives. Dans la première

partie, afin d’améliorer la compression et l’évaluation de la qualité de d’image 3D, notre travail de rechercher vise à explorer et

modéliser la sensibilité du système visuel aux dégradations de l’image. Dans la deuxième partie, le travail de recherche vise à

étudier les facteurs monoculaires et binoculaires a�ectant le jugement humain de la qualité 3D, puis à imiter ce dernier pour

proposer une méthodologie robuste d’EQIS. Il est bien connu que le SVH ne peut pas détecter les modifications dans une image

compressée si ces modifications sont inférieures aux seuils de di�érence juste notable (JND). Nous fournissons dans la première

partie de la thèse une étude approfondie et une comparaison complète sur les modèles JND-3D existants basés sur l’analyse

théorique, les expériences psychophysiques et l’application dans EQIS. De plus, nous proposons un nouveau modèle JND-3D basé

sur des expériences psychophysiques, en tenant compte de la disparité binoculaire et des e�ets de masquage spatial du SVH.

Des expériences subjectives confirment que le modèle proposé atteint une meilleure performance par rapport aux autres modèles

JND-3D en termes de qualité perceptuelle sous le même niveau de bruit. La deuxième partie de cette thèse explore de nouvelles

approches d’EQIS considérant les comportements de perception binoculaire (c.-à-d., la fusion binoculaire et la rivalité binoculaire)

et la sensibilité visuelle de la SVH. Basés sur ces investigations, nous proposons des méthodes d’EQIS à partir de deux aspects

di�érents. Tout d’abord, nous proposons deux métriques d’EQIS avec référence. La première métrique tient compte de la qualité

de l’image cyclopéenne basée sur la perception binoculaire et de la qualité d’image de disparité. La seconde compte la qualité

d’image cyclopéenne et la qualité d’image monoculaire basée sur d’une paire stéréoscopique. Deuxièmement, nous développons

deux métriques d’EQIS sans référence basés sur les caractéristiques statistiques monoculaires du contraste local de l’image avec ou

sans information de disparité. Des expériences approfondies sur diverses bases de données 3D démontrent que les quatre métriques

proposées surpassent la plupart de l’état de l’art de l’EQIS, et atteignent une grande précision de prédiction de la qualité.

Mots clés: Contenue 3D, qualité d’expérience, perception binoculaire, système visuel humain, évaluation de la qualité de l’image

stéréoscopique, di�érence juste notable.

Abstract: The great advances of stereoscopic or 3D technologies lead to a remarkable growth of the amount of 3D content

in various applications (e.g., entertainment and medical domains) thanks to a realistic and immersive user viewing experience.

However, the advent of these technologies has also brought some technical challenges and issues such as quality assessment and

compression due to the complex perceptual processes of the binocular perception. Aiming to evaluate and optimize the performance

of 3D imaging systems with respect to their storage capacity and quality of experience (QoE), this thesis focuses on the investigation

of binocular perception from two di�erent perspectives. In the first part, in order to improve the 3D image compression and quality

assessment, our research work aims to explore and model the sensitivity of the human eyes to image impairments. In the second

part, the research work is dedicated to the investigation of monocular and binocular factors a�ecting the human judgment of 3D

quality, and then to mimic this judgment to propose a robust SIQA methodology. It is well-known that the HVS cannot detect

the changes in a compressed image if these changes are lower than the just noticeable di�erence (JND) threshold. We provide in

the first part of the dissertation a comprehensive overview and an exhaustive comparison on existing 3D-JND models based on

theoretical analysis, psychophysical experiments and application in SIQA. In addition, we further propose a new 3D-JND model

based on psychophysical experiments, accounting for monocular visual masking e�ects, binocular disparity, and visual saliency.

Subjective experiments validate that the proposed model achieves better performance compared to other 3D-JND models in terms

of perceptual quality under the same noise level. The second part of this dissertation explores new SIQA approaches considering

binocular perception behaviors (i.e., binocular fusion and binocular rivalry) and visual sensitivity of the HVS. Based on these

investigations, we proposed the SIQA methods from two di�erent aspects. First, we propose two full-reference SIQA metrics. The

first metric considers binocular-based cyclopean image quality and disparity map quality, the second accounts for binocular-based

cyclopean image quality and stereopair-based monocular image quality. Second, we develop two no-reference SIQA metrics based

on monocular statistical features of the image local contrast with and without disparity information. Comprehensive and thorough

experiments on various publicly available SIQA databases demonstrate that the proposed four metrics outperform state-of-the-art

SIQA methods, and achieve high prediction accuracy.

Keywords: 3D content, quality of experience, binocular perception, human visual system, stereoscopic image quality assessment,

just noticeable di�erence.


