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Abstract

Computational models for automatic text understanding have gained a lot of interest due to

unusual performance gains over the last few years, some of them leading to super-human

scores. This success reignited some grandeur claims about artificial intelligence, such as

universal sentence representation. In this thesis, we question these claims through two

complementary angles.

Firstly, are neural networks and vector representations expressive enough to process text

and perform a wide array of complex tasks? In this thesis, we will present currently used

computational neural models and their training techniques. We propose a criterion for

expressive compositions and show that a popular evaluation suite and sentence encoders

(SentEval/InferSent) have an expressivity bottleneck; minor changes can yield new com-

positions that are expressive and insightful, but might not be sufficient, which may justify

the paradigm shift towards newer Transformers-based models.

Secondly, we will discuss the question of universality in sentence representation: what

actually lies behind these universality claims? We delineate a few theories of meaning,

and in a subsequent part of this thesis, we argue that semantics (unsituated, literal content)

as opposed to pragmatics (meaning as use) is preponderant in the current training and

evaluation data of natural language understanding models. To alleviate that problem, we

show that discourse marker prediction (classification of hidden discourse markers between

sentences) can be seen as a pragmatics-centered training signal for text understanding. We

build a new discourse marker prediction dataset that yields significantly better results than

previous work. In addition, we propose a new discourse-based evaluation suite that could

incentivize researchers to take into account pragmatic considerations when evaluating text

understanding models.
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Résumé

Les modèles computationnels pour la compréhension automatique des textes ont suscité un

vif intérêt en raison de gains de performances inhabituels au cours des dernières années,

certains d’entre eux conduisant à des scores d’évaluation surhumains. Ce succès a conduit

à affirmer la création de représentations universelles de phrases. Dans cette thèse, nous

questionnons cette affirmation au travers de deux angles complémentaires.

Premièrement, les réseaux de neurones et les représentations vectorielles sont-ils suffisam-

ment expressifs pour traiter du texte de sorte à pouvoir effectuer un large éventail de

tâches complexes? Dans cette thèse, nous présenterons les modèles neuronaux actuelle-

ment utilisés et les techniques d’entraı̂nement associées. Nous proposons des critères

pour l’expressivité de composition des représentations vectorielles et montrons que la suite

d’évaluations et les encodeurs de phrases très répandus (SentEval / InferSent) sont limités

dans leur expressivité; des changements mineurs peuvent permettre de nouvelles compo-

sitions expressives et interprétables, mais pourraient ne pas suffire, ce qui peut justifier le

changement de paradigme vers de nouveaux modèles basés sur les Transformers.

Deuxièmement, nous aborderons la question de l’universalité dans les représentation des

phrases: que cachent en réalité ces prétentions à l’universalité? Nous décrivons quelques

théories de ce qu’est le sens d’une expression textuelle, et dans une partie ultérieure de

cette thèse, nous soutenons que la sémantique (contenu littéral, non situé) par rapport

à la pragmatique (la partie du sens d’un texte définie par son rôle et son contexte) est

prépondérante dans les données d’entrainement et d’évaluation actuelles des modèles de

compréhension du langage naturel. Pour atténuer ce problème, nous montrons que la

prédiction de marqueurs de discours (classification de marqueurs de discours initialement

présents entre des phrases) peut être considérée comme un signal d’apprentissage centré

sur la pragmatique pour la compréhension de textes. Nous construisons un nouvel ensem-

ble de données de prédiction de marqueurs de discours qui donne des résultats nettement

supérieurs aux travaux précédents. Nous proposons également un nouvel outil d’évaluation

de la compréhension du langage naturel en se basant sur le discours et la pragmatique. Cet
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outil pourrait inciter la communauté du traitement des langues à prendre en compte les

considérations pragmatiques lors de l’évaluation de modèles de compréhension du langage

naturel.
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me faisant oublier la distance entre Toulouse et Lusigny-sur-Barse.

Et enfin, je remercie Hélène pour me mettre tant en question et être tant une réponse.
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10.2 Expressivité des compositions de représentations vectorielles . . . . . . . . 135

10.3 Extraction de marqueurs de discours pour l’apprentissage non-supervisé . . 137
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1 – Introduction 15

CHAPTER 1

INTRODUCTION

Natural Language Processing (NLP) is a practical field with growing applications. Under-

standing the needs of humans paves the way for their automatic fulfilment (as in chatbot

systems, robotics or information retrieval). Automated analysis of text can allow humans

(or other agents, as in algorithmic trading) to learn new insights, such as sentiment analy-

sis, summarization, relation extraction, trends detection, from streaming and massive data.

These tasks can be framed as the prediction of an output (e.g. class, text, relation between

objects) given an input (e.g. text). Figure 1-1 illustrates a selection of such tasks.

Humans can be lead to perform such tasks, and automated dedicated NLP systems can be

designed or trained to assist or replace them with greater speed, consistency, and lower op-

erating costs. Some tasks can rely on other tasks; for instance, a chatbot system (1-1c) can

be decomposed into modules. A similarity estimation module (1-1d) can be used to extract

answers to an utterance from previous conversations (if in the past, an human answered

Did you plug it in? to My computer mouse doesn’t work :(, it might be relevant to reuse

that answer to a similar utterance (e.g. my pointer is stuck!). Natural Language Inference

(1-1e) and discourse relation prediction (1-1f) systems are other examples of components

that could also be leveraged in that use case, or other use cases like summarization.
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NLP 
system

output (class, text, scalar…)

input (text)

(a)

sentiment 
analysis

y ∈ {positive,negative}

“My computer mouse 
doesn’t work :(”

(b)

chatbot
system

y ∈ {“Did you plug it in ?”} U texts

“My computer mouse 
doesn’t work :(”

(c)

similarity 
estimation

y ∈ {similar,dissimilar}

“My computer mouse 
doesn’t work :(”

“my pointer 
is stuck!”

(d)

Natural 
Language 
Inference

y ∈ {contradiction, entailment, neutral}

“My computer mouse 
doesn’t work :(”

“A device is 
malfunctioning”

(e)

discourse 
relation 

prediction

y ∈ {cause,contrast, instantiation, ...}

“My computer 
mouse didn’t work”

“I forgot to plug it in”

(f)

Figure 1-1 – NLP system for various tasks framed under template 1-1a

1.1 Theories behind NLP

Because of this practical orientation, NLP is driven by evaluations that are often standard

automatic evaluations. Achieving state of the art results is a key factor for the popularity of

new techniques. No matter how empirical NLP is, the underlying theories and models of

meaning have permeated its trends across the different dominant paradigms in its history,

carrying biases as assumptions about language. These biases might be wanted if they help

to achieve desirable goals, but it is still worthwhile to uncover them. They expressed them-
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selves throughout the evolution of artificial intelligence. This evolution has not occurred

through clear-cut stages, but three paradigms can be distinguished according to (Wermter

et al., 1996): symbolic, statistical, and connectionist methods (representation learning).

1.1.1 Symbolic AI

In the earliest dominant paradigm of symbolic AI, human intuitions and structural bias were

transcribed programmatically into rules and ontologies. Hindsight allows us to identify

those assumptions and the limitations they imply, but it was not always as obvious, as

illustrated by Hubert Dreyfus in the following quote:

“ When I was teaching at MIT in the 1960s, students from
the Artificial Intelligence Laboratory would come to my Hei-
degger course and say in effect: ”You philosophers have been
reflecting in your armchairs for over 2000 years and you still
don’t understand intelligence. We in the AI Lab have taken
over and are succeeding where you philosophers have failed.”
But in 1963, when I was invited to evaluate the work of Alan
Newell and Herbert Simon on physical symbol systems, I found
to my surprise that, far from replacing philosophy, the pio-
neers in CS had learned a lot, directly and indirectly from the
philosophers. They had taken over Hobbes’ claim that reason-
ing was calculating, Descartes’ mental representations, Leib-
niz’s idea of a “universal characteristic” – a set of primitives in
which all knowledge could be expressed, – Kant’s claim that con-
cepts were rules, Frege’s formalization of such rules, and Rus-
sell’s postulation of logical atoms as the building blocks of re-
ality. In short, without realizing it, AI researchers were hard at
work turning rationalist philosophy into a research program.

”
Quote. 1-1 – quote from Why Heideggerian AI Failed and how Fixing it would Require
making it more Heideggerian (Dreyfus, 2007)

The idea of rule-based systems depending on a clear cut logical structure was in itself a

strong assumption, but the ontologies and rules had to be instantiated, and some natural

language understanding problems require a lot of commonsense knowledge that had to be
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stated by humans specification, even though we used some concepts that we aren’t able to

clearly define. For example, in order to know what was too big in the sentence the trophy

didn’t fit the suitcase because it was too big, knowledge that we put trophies in suitcases

and not the converse can be necessary (Levesque et al., 2012).

1.1.2 Featured-based statistical methods

The later paradigm of statistical NLP aims to make statistical models learn to predict the

correct output from previous examples rather than using enforced, hard-coded algorithmic

structures. It is in itself theory laden due to the assumption of a statistical structure in

language, but it marks the beginning of a shift from human asserted knowledge to data

derived knowledge. However, bias is still present in inductive bias of statistical models

(Baxter, 2000) and representations of data and data itself. Feature engineering was used

to represent data. For instance, in classification tasks (e.g. spam detection), input text can

be represented as a vector of word frequencies that serve as an input for a statistical model

such as a support vector machine that uses training data to automatically discover patterns

in the input representation to perform predictions (e.g. associations between some specific

words and the spam/non-spam nature of a text message). In the past decades, the leading

tendency has been to increase the expressivity of statistical model and reduce the amount

of preprocessing of the input data.

1.1.3 Representation learning

The advent of neural processing systems takes this a step further by replacing handcrafted

features with representation learning from ever more basic inputs. As of 2019, current state

of the art models (Devlin et al., 2019) do not even tokenize text into words and use data-

derived subwords instead. Since large neural networks and deep learning allow for tractable

learning of complex functions (Raghu et al., 2017), they have the power to replicate some

of the feature engineering humans would have done, without being limited by it.
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Deep learning systems need to learn to derive features themselves. In order to do so, they

rely on data whose annotations are costly to obtain. For this reason, transfer learning has

become a standard solution to this problem. In transfer learning, a source task is used as

a proxy to learn useful representations that are reused in the target task that needs to be

solved. This source task can be unsupervised (i.e. requires no human annotation) or use a

standard already annotated dataset.

Recently, the success of transfer learning has led to the spreading claim of universal natural

language understanding systems, generalizing well to many tasks. (Kiros et al., 2015;

Wieting et al., 2015; Conneau and Bordes, 2017; Subramanian et al., 2018; Cer et al.,

2018b; Tamaazousti, 2018; Howard and Ruder, 2018).

1.1.4 Synthesis : focusing on data without neglecting theory

The notion of universality in this context is arguably a misnomer. Models are called “gen-

eral purpose” or “universal” when they perform well in the few tasks they were evaluated

on, and on a few domains. Strong assumptions can lie behind the choice of evaluation tasks

when these tasks are not the target task. In fact, it would be impossible for a representa-

tion to be appropriate for all tasks (Watanabe, 1985), and even though it might be possible

to have a form of universality that is limited to some practical purposes, it’s hard not to

underestimate the variety of tasks that is needed to evaluate the universality we actually

want.

Current natural language systems automatically derive meaning representations from text;

in order to do so, these systems rely on specific computational models, that are pretrained

on large amounts of text, and automatically evaluated using standard evaluation bench-

marks. In this thesis, we will firstly investigate the expressivity of these models, which

we believe to have been largely ignored—leading to significant limitations within recent

research. Secondly, we argue that the currently used training and evaluation datasets pro-

mote semantic aspects in representation, at the expense of pragmatics aspects, despite the

wide acceptance of the importance of pragmatics in linguistics and computational linguis-
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tics. Hence, in order to induce more genuinely universal meaning representations, we make

the case for a stronger integration of discourse into neural models for NLP.

1.2 Thesis outline and contributions

We will introduce theories of meaning in chapter 2, neural models and distributed represen-

tation in chapter 3, and techniques to train neural models in chapter 4, and we will discuss

the link between these signals and theories of meaning.

Then, we will present our contributions: we consider the expressivity of computational

models, and integration of discourse through improvement of training signals and the pro-

posal of a new evaluation benchmark.

More specifically, in chapter 5 we will analyze how different models compose representa-

tions to predict relations. We will propose desirable properties of composition through a

case study of sentence embedding composition. Our analysis will highlight flaws in pop-

ular setups for evaluation and training, viz. SentEval and InferSent (Conneau and Bordes,

2017), and we propose solutions to these flaws. This chapter also proposes a view of se-

mantic reasoning as geometrical operations in vector space. Finally, based on this study,

we shed light on the success of recent methods based on transfer learning with pretrained

transformers.

In chapter 6 we introduce Discovery, a dataset for unsupervised discourse based supervi-

sion of machine understanding models. We propose a method to automatically discover

sentence pairs with relevant discourse markers, and apply it to massive amounts of data.

Our resulting dataset contains 174 discourse markers with at least 10K examples each, even

for rare markers such as coincidentally or amazingly. We use the resulting data as super-

vision for learning transferable sentence embeddings, and outperform models trained with

Natural Language Inference (NLI).

In chapter 7 we introduce DiscEval, a new benchmark compiling 11 evaluation datasets

with a focus on discourse aspects, that is designed for evaluation of English Natural Lan-
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guage Understanding (NLU) methods.We make the case that discourse and pragmatics

should be the center for evaluation of natural language understanding in current evaluation

frameworks while current benchmarks are centered toward semantic considerations. We

leverage our evaluation suite to show that the widely used NLI pretraining may not lead to

the learning of really universal representations.

In chapter 8 we rely on Discovery and DiscEval to propose an automatic method in order to

provide a semantics of discourse markers. This semantics explains and confirms the bene-

fits of using discourse marker prediction as a training task. More concretely, using a model

trained to predict discourse markers between sentence pairs, we predict plausible markers

between sentence pairs with a known semantic relation (provided by existing classification

datasets). These predictions allow us to study the link between markers and associated

semantic relations. Thus, we provide a characterization of markers in use, as opposed to

previous manual marker annotations.

Lastly, in chapter 9 we provide a general conclusion about our work and the interplay

between the preceding chapters. We also discuss possible applications of our work and

future directions.

A part of chapters 5, 6 have been published respectively in:

• Composition of Sentence Embeddings: Lessons from Statistical Relational Learning

Damien Sileo, Tim Van-de-Cruys, Camille Pradel, Philippe Muller

Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics

(*SEM 2019)

• Mining Discourse Markers for Unsupervised Sentence Representation Learning

Damien Sileo, Tim Van-de-Cruys, Camille Pradel, Philippe Muller

Proceedings of the 2019 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers)

. A part of chapters 7, 8 are under submission (ICLR2020 and LREC2020).
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CHAPTER 2

THEORIES OF MEANING

NLP systems need a form of understanding in order to perform useful tasks. While it is not

clear that human-like understanding is necessary to perform well in useful tasks (Dennett,

1989), theories of meaning can help the design or analysis of machine natural language

understanding systems. Several views (and several categorizations of views) were proposed

to define the meaning of texts.

2.1 Denotational view of meaning

In the denotational view, meaning is defined as a picture of the state of the world. A

sentence then corresponds to a description or a picture of the world, or a set of possible

descriptions. Meaning also have been argued to be a picture of mental representations

instead of the world. Consider the following sentence:

The cat is either black or white. (2.1)

The denotational view can make statements truth conditional (Field, 1972), i.e. true if they

correspond to the actual state of the world. In formal semantics, logical formulas have been
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used as a non-ambiguous representation that can describe the parts of the world statements

refer to. For instance, the formula in equation 2.2 could represent the sentence 2.1.

∃xis cat(x) ∧ (is white(x) ∨ is black(x)) (2.2)

Assuming such a logical mapping, one can tell whether a sentence s1 entails or contradicts

a sentence s2 based on classical logics’ inference rules. This provides a test for sentence

understanding: a system that captures the meaning of a sentence should be able to predict

what other sentences it entails or contradicts for all plausible sentences. The logical map-

pings combined with inference rules provides a formalism to claim that the cat is white

entails the cat is either black or white.

The denotational view also provides a way to define sentence similarity between sentences:

two sentences are similar if they represent similar states of affairs (even though this can

rely on human notions of significance). The field of semantics focuses on the study of

meaning and truth conditions and ignores issues of context and communication considera-

tions, being focused on literal content. However, even with a restriction under this scope,

many problems arise in formal semantics, such as pronoun resolution, that require handling

information across sentence boundaries. The theories proposed (Kamp et al., 2011; Groe-

nendijk and Stokhof, 1991) to address these issues were an inspiration for some discursive

approaches described later (subsection 2.2.2).

2.2 Pragmatics view of meaning

In the pragmatics view, the meaning of an utterance is associated with its use; it stems from

the interaction of locutors in the world. Meaning is thus intrinsically dependent on the

context. This context can be a discussion, a document, a workplace situation, or it might

not be specified and just inferred. Upon reading a contextless sentence a human reader

formulates presuppositions (Karttunen, 1974) about the context using common sense.

Semantics and denotational aspects are not ignored, since they can be a part of the mean-
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ing, but they are seen as a means and not an end. In contrast to the denotational view,

when considering pragmatics, two utterances have the same meaning if they have similar

expected effects on the world.

Discourse analysis provides tools and concepts for studying pragmatics. We present some

of them in this section.

2.2.1 Speech act theory

Speech act theory (Austin, 1962; Searle et al., 1980) proposes distinctions between utter-

ances according to the kind of interaction with the world they allow. Table 2.1 shows a

possible coarse classification of speech acts (Searle et al., 1980). While the denotational

view of meaning provides tools to describe the content of utterances, speech acts describe

planes of communication in which the content can be situated. An utterance such as Bill

was an accountant is not a mere description of the world, but usually has communication

purposes and in most cases is expected to be true, thus committing the speaker. Other kinds

of speech acts are even harder to account for within the denotational view, since they can

change the world upon utterance. A judge uttering We find the defendant guilty actually

makes the defendant guilty. Such sentences are arguably neither true nor false, and en-

tailment relations might not make sense. Instead, the notion of felicity conditions (Austin,

1962) was proposed in order to model the success of an utterance depending on a type of

speech act (e.g. that an oath followed a conventional form).

Category Description Example

Representatives commit a speaker to the truth of an expressed proposition. Bill was an accountant.

Commissives commit a speaker to some future action. I’ll call you tonight.

Directives used by a speaker who attempts to get the addressee to carry out an action. Sit down.

Declarations affect an immediate change of affairs. We find the defendant guilty.

Table 2.1 – A typology of speech acts
Adapted from http://www.ello.uos.de/field.php/Pragmatics/
PragmaticsTypesofSpeechActs

 http://www.ello.uos.de/field.php/Pragmatics/PragmaticsTypesofSpeechActs
 http://www.ello.uos.de/field.php/Pragmatics/PragmaticsTypesofSpeechActs
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2.2.2 Discourse representation theories

Since the situatedness of a sentence is key in the pragmatics view of meaning, it is use-

ful to model the context in which an utterance occurs and how a sentence contributes to a

larger ensemble. The discursive structure is a representation of a textual context. Several

formalisms were proposed to characterize discourse structure, such as Rhetorical Struc-

ture Theory (RST) (Mann and Thompson, 1988) or Segmented Discourse Representation

Theory (SDRT) (Lascarides and Asher, 2008). These formalisms represent a text or a con-

versation as graph of discourse units, either sentences, clauses, or speech acts, related by

rhetorical relations of various types. They differ by their definition of an elementary dis-

course unit, by conditions on the structure of the graph and by the typology of the relations

in the graph. The discourse relations can be seen as a situated extension of speech acts

(Asher and Lascarides, 2003).

Figure 2-1 shows a RST discourse analysis of a document. This framework allows for a

characterization of a sentence meaning as use. Even if we discard the problem of anaphora

resolution, segment (3) is arguably more meaningful as a contrast segment (2) than in

isolation, and the discourse analysis aims to uncover the structure behind documents or

conversations.

Figure 2-1 – RST-DT discourse parsing

Several resources gather annotations of discursive structures using different formalisms.

The Penn Discourse TreeBank (PDTB) (Prasad et al., 2014) is one of them, and aims to
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be theory neutral by annotating relation between discourse units independently without

delving composite structures (e.g. trees).

2.2.3 Gricean implicatures

When pragmatics is taken into account, the meaning of a sentence isn’t constrained to its

literal content. The parts of the meaning that are not contained in the literal content are

called implicature (Grice, 1975). For instance, an implicature of the sentence I ate some of

the cake is that the speaker did not eat all of the cake.

Decoupling meaning from the literal content could open doors to indeterminacy (not being

able to figure out the meaning among the possible interpretations). While indeterminacy

might be intrinsic to textual communication (Mantzavinos, 2016), some principles can re-

duce this indeterminacy. Grice (1975) draws a list of maxims that the reader of a text

assumes the writer to follow. The quote 2-2 displays a proposition for such a list:

“
Maxim of quantity : be as informative as one possibly can, and
gives as much information as is needed, and no more.

Maxim of quality : be truthful, and do not give information
that is false or that is not supported by evidence.

Maxim of relation : be relevant, and say things that are perti-
nent to the discussion.

Maxim of manner : be as clear, as brief, and as orderly as one
can in what one says, and avoid obscurity and
ambiguity.

”
Quote. 2-2 – The four gricean maxims
adapted from https://www.sas.upenn.edu/˜haroldfs/dravling/grice.
html

For instance, a reader can infer that I ate some of the cake means that not all the cake was

https://www.sas.upenn.edu/~haroldfs/dravling/grice.html
https://www.sas.upenn.edu/~haroldfs/dravling/grice.html
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eaten using the maxim of quantity.

2.3 Mentalist view of meaning

The mentalist theory identifies meaning with the ideas or concepts that correspond to an

expression. The ideas encountered upon reading a sentence differ according to the reader,

but there could still be a common basis to these experiences. It might be argued that ulti-

mately, meaning is the content of communication that allow situations to evolve according

to some needs. But, meaning is mental content as well, and it is not clear that we would

attribute understanding to any system that performs the language tasks we want it to per-

form, as illustrated by the still ongoing chinese room experiment (Searle, 2006) argument

debate. Significance and emotional content can be key to language understanding.

The mentalist side of meaning can also be seen through the lens of pragmatics and seman-

tics. Searle et al. (1983) argues that mental representations have a psychological mode

(e.g. remembering, perceiving, imagining) and a propositional content. The psychological

modes can be seen as analogous to speech act categories addressed previously.

The mentalist view of meaning is mind-centered while pragmatics and semantics are world-

centered, which might make them more relevant to model NLP systems that mediate be-

tween users and the world, and operate with observable, behavior data. Still, it is worth-

while to keep in mind the psychological, phenomenological sides of language understand-

ing.

2.4 Sentence meaning and word meaning

In this chapter, we focused on the meaning of expressions like sentences. The meaning of

words is also important to consider, since most language understanding system are based

on word representations (or other elementary units such as subwords). In a semantic view,

some words (e.g. names) can be seen as referring to specific parts of the world, predicates
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or properties. Other expressions correspond to functors (quantification, negation) in logic

(e.g. not can be mapped to a negation functor ¬). The meaning of words can also be defined

only based on their use in sentences, marking less formal distinctions between words. In

the next section, we will introduce computational word representations, and composition

functions that yield sentence representations from them.
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CHAPTER 3

COMPUTATIONAL MODELING OF MEANING

The common way of computationally processing text for language understanding is to

split it into elementary units (characters, morphemes or other subwords, words, or word

n-grams) from a fixed vocabulary, to represent those units (usually with vectors), and to

compose those units in a text into another representation (e.g. a vector or a set of vectors),

as illustrated in figure 3-1. Here, the system receiving a text string as input and producing

a vector representation that reflects meaning is called a text encoder.

Words are a popular choice of elementary unit for text encoding. The smaller the elemen-

tary units, the smaller the vocabulary is (there can typically be millions of distinct words

symbols, thousands of subwords, and hundreds of characters in a large corpus like English

Wikipedia). The upside of using small units it that it allows text encoders to have a compre-

hensive vocabulary (so the probability of encountering an unknown unit is small). Smaller

vocabularies have a smaller memory footprint. However, smaller units make the sequences

longer, and increase the need for encoders to take in account long term dependencies be-

tween input units which is a hard problem (Hochreiter et al., 2001).

As seen previously in section 2.4, word representation require knowledge about the world,

that can be useful for several NLP tasks. As a result, using word embeddings as a central

building block has been fruitful for NLP over the last decade (Young et al., 2018). Thus,
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input text 

tokenized input 
(characters, words…)

encoder

text embedding

“the cat sat on the mat”

“the” “cat” “sat” “on” “the” “mat”

classifier

embedded tokens

Figure 3-1 – Architecture of a text encoder

we will focus on word embeddings as an illustration of the representation of an elementary

unit and then discuss ways to derive sentence embeddings from them.

3.1 Word Embeddings

3.1.1 Attribute based representation

Words can be represented with the help of various kinds of attributes. Many aspects of

human representations of words can be reduced to features that can fit into a vector. Prop-

erties such as grammatical category can be mapped to one hot vectors. This also holds for

surface aspects of words (e.g. size, presence of n-grams), and the features of the objects

possibly denoted by a word sense (e.g. typical color, weight of an object).

Words can also be characterized by their relation to other words. In an explicit way, re-

lations such as synonymy, antonymy or meronymy, carry substantial information about

words. More implicitly, the contexts in which a word occurs, (the company it keeps (Firth,

1957) carries a lot of information about it. This principle is called the distributional hypoth-

esis. There are several ways to cast that contextual information into vectors (Van de Cruys,
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2010). Table 4.1 shows various context instances for the same words. Here, the context is

limited to 5 words both to the left and right, and does not allow words outside sentences

boundaries of contiguous sentences, but there are many ways to define contexts. Such con-

texts can be vectorized using a bag of word frequencies that carry substantial information

about the word science. This process can be repeated for other words such as technology

or turquoise, and standard vector similarity metrics (e.g. cosine similarity) between their

vectors reflect human notions of relatedness or similarity (Torabi Asr et al., 2018) to some

extent.

left context word right context
...functional interplay of philosophy and should, as a minimum, guarantee..

...and among works of dystopian fiction.
The rapid advance in today suggests that the existing...

...calculus, which are more popular in -oriented schools

Table 3.1 – Context of the word science, adapted from Piedeleu et al. (2015)

Task oriented lexicons can also represent words. Word lexicons can be annotated for sen-

timent analysis, emotion analysis or discourse analysis (Kaur and Gupta, 2013; Das et al.,

2018).

Several initiatives, such as WordNet and ConceptNet can be seen as instantiations of that

feature-based view of language. The concatenation of these representations for all consid-

ered aspects could yield a very high dimensional sparse vector containing a lot of (redun-

dant) information on the word.

3.1.2 Dimensionality reduction of attribute vectors

While attribute based representations can yield decent results for similarity computation

and token representation, their size can be problematic. The vector space dimensions aren’t

used very efficiently. For instance, the similarity between attributes is not used in categor-

ical subspaces: in a subspace where cat is represented by [1, 0, 0], feline is represented by

[0, 1, 0] and submarine by [0, 0, 1], the three vectors will be separated by the same cosine

distance, but it might be desirable to represent the words so that cat is closer to feline than
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to submarine.

Dimensionality reduction techniques can solve this problem by leveraging redundancy in

features and condensing representations in a limited number of dimensions which contain

most of the information. The resulting vectors are called embeddings. Learning embed-

dings that perform dimensionality reduction of word contexts yielded great improvement

over previous representations in the popular Word2Vec (Bordes et al., 2013b) method. The

context matrix can also be computed explicitly before factorization, as in the GloVe model

(Pennington et al., 2014) or implicitely as in the Word2Vec model (Levy and Goldberg,

2014b). Word2Vec and GloVe precomputed word embeddings are publicly available 1 and

the knowledge they carry is a useful means to bootstrap text encoders.

Baroni et al. (2014b) showed that in the context of word counts, dimensionality reduction

has a more profound effect than just the reduction of the number of parameters, since it

leads to a systematic improvement in downstream evaluations.

Some directions in precomputed embedding feature spaces could be interpreted as cor-

responding to human concepts like gender. The widely cited example ~king − ~queen ≈

~man− ~woman can hint at the existence of a gender direction on the ~man− ~woman axis.

This confirms that a form of abstraction occurs during the learning of word embeddings.

The embeddings can also be used as input features for classification. Gender, plurality,

and sentiment can be fruitfully predicted using logistic regression with such features (Chen

et al., 2013). To do so, these words need to be combined into sentence or text embeddings.

3.2 Sentence embeddings

Text encoders rely on a form of the compositionality principle (Frege, 1884; Szabó, 2017).

It states that the meaning of word combinations is derived from the meaning of the individ-

ual words, and the manner in which those words are combined. For instance, according to

this principle, the meaning of the noun phrase carnivorous plants, can be derived from the

1http://vectors.nlpl.eu/repository/

http://vectors.nlpl.eu/repository/
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meaning of carnivorous and the meaning of plant through a process named composition.

Successive composition steps can yield a sentence representation that can be used as fea-

tures for other tasks such as similarity estimation or classification, using statistical models

such as logistic regression.

A very simple composition consists in averaging the word embeddings of all words occur-

ing in a sentence (Shen et al., 2018). However, the order of words isn’t taken in account

during averaging (the cat sat on the mat and the mat sat on the cat have the same represen-

tation with embedding averaging). But accounting for word order is necessary for deeper

understanding. This is made possible with more sophisticated combinations of embed-

dings, as in convolutional neural networks (Collobert and Weston, 2008), recurrent neural

networks or transformers (Vaswani et al., 2017).

A sentence embedding is a fixed sized vector that characterizes the meaning of a sentence.

Sentence embeddings can be constructed on the basis of the previously cited word em-

beddings. The word embeddings can also be learnt from scratch and during that process

acquire similar properties. In sentence embeddings, words can be seen merely as tools for

composition, which can be why state of the art methods are departing from pretrained word

embeddings (Devlin et al., 2019).

3.2.1 Composition

The compositionality principle can be operationalized with vector representations (Baroni

et al., 2014a; Clark, 2015). If we want embeddings for a particular kind of phrase (e.g.

adjective/nouns like white cat ), it is possible to start by representing white and cat into two

respective embeddings h1 and h2. The composed representation h1,2 can be computed as a

function of h1 and h2 as in equation 3.1.

h1,2 = fθ(h1, h2) where f is a function parametrized by θ (3.1)
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When humans read a phrase, they compose their representations of the words into a phrase

representation (Szabó, 2017). This task requires a lot of background knowledge. For in-

stance, white cat and white wine actually have a different color even though the adjective

specifying the color is the same, as shown in figure 3-2. This phenomenon is known as

co-composition (Pustejovsky, 2012). A broader context can also be necessary for compo-

sition. For instance, the way the words in green light should be composed depends on the

situation. A green light can denote an authorization or an actual green light. The meaning

of some idiomatic expressions requires a form of memorization rather than composition per

se. Thus, performing those compositions in the vector space requires powerful nonlinear

functions. Deep neural network can implement such functions, and also have memorization

abilities (Arpit et al., 2017) that can allow them to deal with idioms.

Figure 3-2 – How adjective meaning can depend on the noun

3.2.2 Guiding compositions through parsing

A form of parsing is required in order to find what words or groups of words should be

composed in order to perform the composition.

Constituency based parsing is a standalone instrument that is useful for text analysis. It can
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be used to determine what parts of a sentence should be composed together (Socher et al.,

2013). Figure 3-3 shows an example of such a parse tree.

Figure 3-3 – A constituency-based parse tree of the sentence “Bart watched a squirrel with
binoculars”

However, a constituency based parse tree might be a too simplistic structure. Words ar-

guably all influence each other forming a form of rhizome (Deleuze and Guattari, 1988)

rather than a tree. Besides, there can be multiple parse trees for a given sentence, as shown

in figure 3-4.

The parse tree from figure 3-3 is more likely that the alternative from figure 3-4. However,

already having already achieved a form of understanding is necessary in order to compare

the likelihoods of those parses. This can be done through compositions in parse candidates

and an iterative process, but this means that parsing and composition are intertwined.

Text encoders can perform a form of parsing as well, since they can selectively compose

words. Convolutional Neural Networks (CNN) compose adjacent words. Recurrent Neural

Networks (RNN) compose words with a memory of the previous words at a given position

in the sentence. Transformers selectively and fuzzily associate words according to their
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Figure 3-4 – Another constituency-based parse tree of the sentence “Bart watched a squirrel
with binoculars”

nature and position through different channels and reunite these channels in token-wise

representations (one token serving as a placeholder for a text representation) at each layer.

All methods for sentence embedding compose words until a single sentence embedding is

derived. This can be realized with a pooling operation that derives a single embedding from

a sequence of embeddings. For instance, the embedding corresponding to the last element

of the sequence can be chosen to represent the sentence. Alternatively, element-wise max

pooling can be used (representing a sentence with a vector for which each dimension is

the maximum value among corresponding dimensions in the input sequence vectors). Max

pooling is more common than last state pooling and alleviates the problem of forgetting the

beginning of sentences.

It is worthwhile to note that recurrent neural networks and transformers are Turing complete

(Pérez et al., 2019) (convolutional neural networks and average pooling are not), so they
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have the ability to implement arbitrary algorithms (e.g. complex parsing schemes, complex

compositions over input sequence of tokens). This property is quite desirable but it is not

sufficient, since we want these architectures to learn those algorithms from a limited set of

examples, and limited model capacity. In such conditions, it is possible that convolutional

neural networks outperform RNN which are more expressive. The architecture have to

allow not only possible but efficient flows of information that suits the kind of algorithms

that should be learnt to perform well at a given set of tasks.

3.2.3 Recurrent Neural Networks

Humans can understand sentences presented one word at a time (Kroll, 1980) quite ef-

ficiently (twice as fast as they would read the full sentence, without enforced sequential

presentation, even though it becomes more difficult at paragraph level). When we read

a sentence in that way, we have a mental representation for the state of the sentence and

update each time we encounter a new word. Recurrent Neural Networks (RNN) process

input tokens in such a sequential way, as illustrated in figure 3-6. RNNs are based on a

RNN RNN RNN RNN

X

H

input text 

tokenized input 
(characters, words…)

“the cat sat on”

“the”   “cat”   “sat”   “on”

pooling

Figure 3-5 – RNN layer

parametrized function fθ, as shown in equation 3.2.
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ht = fθ(ht−1, xt) (3.2)

This is analogous to the composition described in equation 3.1 except that instead of com-

posing several words, RNN compose words with a memory. RNN have to perform both

composition and parsing at the same time. fθ can select the relevant parts of that memory

for each word, thus performing a form of implicit parsing (Bowman et al., 2015c). Long

Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent

Unit (GRU) (Chung et al., 2014) are specific RNN architectures. While the most standard

RNN architecture implements f in the following way:

ht = tanh(xtU +Wht−1) where W,U ∈ Rd×d, h ∈ Rd (3.3)

an LSTM uses gates (i, f, o) that mediate the modification of the state, and a protected

memory C, as described in equation 3.4. f controls the information that should be kept in

the updated protected memory Ct, while i controls the information that should be extracted

from C̃t. o controls the information that should be disclosed in the visible state h.

it = σ
(
xtU

i + ht−1W
i
)

ft = σ
(
xtU

f + ht−1W
f
)

ot = σ
(
xtU

o + ht−1W
o
)

C̃t = tanh
(
xtU

g + ht−1W
g
)

Ct = σ
(
ft ∗ Ct−1 + it ∗ C̃t

)
ht = tanh(Ct) ∗ ot

(3.4)

3.2.4 Attention and Transformers

Transformers (Vaswani et al., 2017) have gained a lot of popularity recently. In Transform-

ers, tokens are represented with a positional encoding that contains features fully charac-

terizing the position of tokens in the sequence, in addition to the standard trainable token



3 – Computational modeling of meaning 41

embeddings that reflect token properties.

For each token of the input sequence H , a new representation H ′ is computed based on

the input sequence, with the help of an attention mechanism composed of several attention

heads that are similarly structured modules focusing on different aspects of input sequence

through different weights.

More specifically, for each token hi of the input sequence h1, h2...hn, an attention head k

computes to what extent hi should interact with other tokens and what information should

be extracted from these tokens.

A token representation is mapped to three representations that account for different func-

tions of the token:

• K = W k
KH represents what the token is looking for in the query representations of

other tokens

• Q = W k
QH represents what the token is presenting to other tokens

• V = W k
VH represents the information that should be passed on by a token if the

information it presents has been picked by a query

Hk = softmax(
QKT

d
)V (3.5)

The representations Hk of various attention heads indexed by k are merged into H ′ with

a multilayer perceptron taking concatenation [H1, H2....Hn] as input. That step allows a

reasoning to occur when aggregating the different aspects of the relation between the words

(taking the positions into account).

The transformer architecture is able to deal with long term dependencies, and might be

better suited to subwords than RNNs.
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Att Att Att Att

element-wise concatenation
+non-linear projection

pooling
H’

H

H2

H1

input text 

tokenized input 
(characters, words…)

“the cat sat on”

“the”   “cat”   “sat”   “on”

embedded tokens 
(with positional 
encoding)

Figure 3-6 – Transformer layer

3.2.5 Depth, bidirectionality: stacking encoding layers

We just described a RNN layer and a transformer layer. These layers can be stacked (Pas-

canu et al., 2014) in order to allow depth distributed computations that significantly improve

the capacity (Zhang et al., 2016). With depth, the lower layers can provide features that can

be used by higher level layers, allowing a factorization of computations. The features can

be hierarchies, and higher layers are seen as able to represent high level concepts.

The first layer, the embedding layer, represents all tokens of the input sequence H . The

RNN or Transformer layer can compute contextualized representation H ′. But the same

layer architecture (with different weights) can perform the same operation taking H ′ as

input instead of H , and so on. State of the art NLP models stack up to 24 layers (Devlin

et al., 2019).

RNN encode tokens sequentially (from left to right or right to left) which can pose two

problems: the first element of the sequence (if using left to right RNN) cannot be contex-

tualized, and the first elements are more prone to forgetting. To mitigate those problems,
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bidirectional RNN were proposed (Schuster and Paliwal, 1997), where two RNN with dif-

ferent weights (left to right and right to left) are used and combined (e.g. with concatenation

of states).

3.2.6 Interpretation of sentence embeddings

Unlike word representations derived from Principle Component Analysis or Latent Dirich-

let Allocation (Blei et al., 2003), the dimensions of standard word embeddings are not

intepretable by design, even though vector space analogies or classification tasks can give

an idea of what information is stored in word embeddings. Sentence embeddings might be

conceptually even harder to interpret.

The dimensions of popular sentence embeddings have been shown to contain a variety

of information, such as lexical, syntactic and surface information Conneau et al. (2018a).

Different views of meaning can yield different interpretations of the structure of the vector

space. For instance, according to correspondence theory of meaning, sentence that depict

similar worlds should be close. The vector space might be structured to contain predicate,

objects and subjects of a sentence. By contrast, according to the theory of meaning as use,

the positions in the vector space of meaning should allow sentences that have the same use

to be close.

Sentence embeddings have also been called ”thought vector” in SkipThought article (Kiros

et al., 2015), which can remind us of the mentalist view of meaning from section 2.3, even

though SkipThought vectors arguably conform to meaning as use. There have been studies

correlating neural representation of sentences and brain activity measurements (Gauthier

and Ivanova, 2018).

Using fixed size vectors for sentence representation is questionable itself, since text can be

ambiguous and one could think that a sentence embedding corresponds to a single meaning.

Alternatives to vector representations have been proposed for words, such as Gaussian rep-

resentations (Vilnis and McCallum, 2015; Athiwaratkun and Wilson, 2017) where standard

deviation and multi-modality can represent ambiguities. Gaussian representations can also



3 – Computational modeling of meaning 44

be used for sentences (Bowman et al., 2016) even though they were used for text generation

and not evaluated for representation learning purposes. However, we make the hypothesis

that single vectors are powerful enough to represent ambiguity since a projection in vector

space can select the relevant content, even though this has not been explored in previous

work to the best of our knowledge.

Until now, we focused on word and sentence embeddings; but sentence pairs, or larger texts

can also be embedded into a single vector; this embedding can be useful in itself as a text

representation, or can be used as an input for relation prediction between sentence pairs.

The information that should be contained is different in each use case, even though they

could be represented jointly. In the case of a relation representation, the embedding should

characterize relations between the input, and encode information about various aspects, and

various relations such as contrast or contradiction. In the case of text representation, the

embedding should use those relations to produce a synthesis of the input sentences.

3.3 Transfer without explicit sentence embedding

Explicit sentence embeddings are not necessary to perform transfer learning, and can in-

duce an unnecessary information bottleneck. For a target task that is a relation prediction

between two sentences, starting with the sentence embeddings means that we have to train

a model to compose the sentence embeddings. Two sentences s1 = w1
1, w

1
2, w

1
3... and

s2 = w2
1, w

2
2, w

2
3... are embedded with fsentence encoder into h1 and h2 and a sentence com-

position frelation produces a relation representation

hrelation = frelation(fsentence encoder(w
1
1, w

1
2, w

1
3...), (fsentence encoder(w

2
1, w

2
2, w

2
3...)) (3.6)

Instead, it is possible to learn a text encoder that encode multiple sentences, and the relation

between them at the same time.

hrelation = frelation(w
1
1, w

1
2, w

1
3..., wSEP , w

2
1, w

2
2, w

2
3...) (3.7)
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SEP is a special token that denotes the separation between sentences. This formulation

allows a model to compare different aspects of the sentences without having to squeeze

all the information into sentence embeddings. If frelation is a RNN/LSTM, the information

will still be squeezed into a single vector (the memory), but if frelation is a Transformer, this

strategy can be helpful. Training such a model incentivizes implicit sentence representa-

tion capabilities and the learning of composition of these implicit sentence representations

jointly. Representations are captured in functions instead of being captured in vectors. This

strategy has been employed in recent popular work (Rocktäschel et al., 2015), though it has

been formulated explicitly more recently (Devlin et al., 2019).
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CHAPTER 4

TRAINING, TRANSFER, EVALUATION

In the previous chapter, we presented parametrized computational models that can perform

a form of reasoning and mapping from a string to a representations that could be used to

perform various tasks. However, these models need to learn the right parameters in order

to do anything useful. In this chapter, we introduce techniques and resources that are used

to instantiate the previously described architectures into useful encoders.

4.1 Transfer Learning

The goal of transfer learning is to train a neural network on a set of tasks (called source

tasks) in order to learn a form of knowledge or skill, and to transfer that knowledge into

other tasks we actually want to perform (called the target tasks). The source tasks are

only used as a proxy to improve the results in a target task. For instance, humans can

learn driving in simulators (source task) in order to get better at driving in real cars (target

task). They don’t necessarily care about being able to drive well in a simulator, but both

tasks require some of the same skills, and driving in a simulator is cheaper while actually

improving driving skills in real situations. There are many forms of knowledge or skills that

are common across NLP tasks, such as representation of words, composition capabilities,
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parsing the structure of text, possession of commonsense (or specialized) knowledge and

ability to use it, representation of human psychology (including Gricean maxims). Thus, if

we have a reusable, generic text encoder that successfully learned these skills with a source

task, a model based on that reusable text encoder will mainly have to learn what it has to

do instead of how it has to do it. Figure 4-1 depicts a traditional supervised learning model

without transfer, where the model learns everything from scratch in order to perform the

task, and a model based on a reusable text encoder.

 task specific model

reusable text encoder

task specific model

input text input text

task output
 (labels, scalars, text...)

task output
 (labels, scalars, text...)

intermediate text representation
(e.g. text embedding)

Figure 4-1 – Reusable text encoder

Instead of a sequential (source task, then target task training) training, a joint training can

be used. This method is called multi-task learning (Caruana, 1997) and forces the model

not to ”forget” how to solve the base task.

4.2 Training signals

Various training signals can incentivize text encoders to learn different capabilities and

induce different kinds of representations. Sentence embeddings can contain lexical infor-

mation, syntactic, semantic, or pragmatic information that are more or less desirable de-

pending on the intended use, and the training signals have a key influence on the representa-
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tions. For instance, we might want to incentivize encoders to discard syntactic information

in the final representation if the intended use is semantic (or discursive) similarity, since

two paraphrases should always be close but can have quite different syntactic structures.

4.2.1 Language modeling

A popular training signal is language modeling, i.e. prediction of masked words in a text.

This task is quite general since we can find instances of text where the prediction of the right

words might require the model to perform various tasks such as translation, summarizing,

or question answering (Radford et al., 2019). The following text is a verbatim extract from

a web text corpus1

sA=Brevet Sans Garantie Du Gouvernement”, translated to English: “Patented with-

out government warranty”
(4.1)

Masking Patented in sA and training a model to predict it would incentivize the model to

learn context understanding and translation capabilities.

Similarly, masking rejoiced in sB in 4.2.1 would incentivize the model to learn sentiment

analysis (words like mourned could fit in this syntactic context, but it would make less

sense because of sentiment consistency.)

1from https://www.sliderulemuseum.com/France.htm

https://www.sliderulemuseum.com/France.htm
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sB= Qaro’s son married Luria’s daughter, and Qaro rejoiced at the connexion, for he

had a high opinion of Luria’s learning.
(4.2)

Even though other easier cues might help, the wide variety of sentence kinds and possible

maskings make the task challenging and interesting as a training signal for semantic and

discursive understanding.

Language models can learn to predict probabilities of masked positions that maximize the

likelihood of a text (through the tractable log-likelihood) given a density modeled as in

equation 4.3 for a sentence composed of tokens t1..tn.

p(s) = p(t1...tn) =
n∏
i=1

p(ti|t1...ti−1) (4.3)

This training objective operate on the token level. It does not directly involve the computa-

tion of a sentence embedding, though variations can be derived to allow it, as shown in the

next subsection. The next objectives we are going to present are sentence based.

4.2.2 Sentence-level distributional hypothesis

Language models exploit the distributional hypothesis described in 3.1.1 at the word level.

The distributional hypothesis can also be used at sentence level. Sentences occurring in

similar contexts are similar. Thus, deriving training signals from the sentence level dis-

tributional hypothesis can possibly induce discursive knowledge, together with semantic

knowledge.

Table 4.1 shows left and right contexts for a sentence disclosed in the caption.
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left context sentence right context

The distributional hypothesis

can be generalized to sen-

tences.

So not every sentence can

plausibly occur in a context.

Table 4.1 – Possible context for the sentence Left and right context usually impose coher-
ence constraints on a sentence.

4.2.2.1 Prediction of sentence

Training tasks can be derived from this principle. One way is to consider naturally occur-

ring sequence of sentences s0, s1, ...sn and predict whether two sentences are consecutive

or not (Logeswaran et al., 2018). However, local coherence can be straightforwardly pre-

dicted with relatively shallow features (Barzilay and Lapata, 2008) such as reuse of words

or syntactic consistency.

4.2.2.2 Prediction of words

Another is to consider consecutive sentences with their neighbourhood si−1, si, si+1, and to

predict words from si−1 or/and si+1 given si. A sentence embedding of si can be used for

that purpose, thus the training would incentivize si to carry useful information for predic-

tion of words in si±1. This technique has been used in (Kiros et al., 2015).

4.2.3 Natural Language Inference

As we have seen in section 2.1, detecting entailment relations can be seen as a test for un-

derstanding according to the semantic view of meaning. Models fine-tuned on this dataset

transfer well to other semantic tasks (paraphrase detection, semantic similarity) (Conneau

and Bordes, 2017), and sentiment analysis. Because of this, the natural language infer-

ence task has been increasingly popular (Bowman and Zhu, 2019) as a source training
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task. Many datasets exist, but two of them stand out due to their sizes: Stanford Natural

Language Inference (SNLI) and Multigenre Natural Language Inference (MNLI).

Table 4.2 shows some examples of the SNLI dataset.

premise hypothesis label

An older and younger man smiling. Two men are smiling and laughing at the cats playing on the floor. neutral

A black race car starts up in front of a crowd of people. A man is driving down a lonely road. contradiction

A soccer game with multiple males playing. Some men are playing a sport. entailment

Table 4.2 – Examples from the SNLI dataset

The semantic bias in the view of meaning is clearly stated by the main contributor of those

datasets, as shown in quote 4-3.

“ Pragmatic inference plays a substantial role in almost any in-

stance of human language understanding, and it is relevant to

any reasonable view of sentence meaning. In the context of

applied natural language inference, it has been studied in work

like that of (de Marneffe et al., 2012) but it is not a major fo-

cus of current research. It is not highlighted in any of the eval-

uation tasks that I use in this dissertation, and I choose [to]

leave it as a background issue in much of what follows.

”
Quote. 4-3 – Quote from Modeling Natural Language Semantics In Learned Representa-
tions (Bowman, 2016)

The SNLI dataset premises are sentences extracted from a corpus of Flickr image descrip-

tions. This reinforces the semantic connotation of the dataset since it deals only with texts

literally conforming to the picture theory of language (Wittgenstein, 2013) which is a se-

mantic view of meaning considering that utterances can be mapped to images of the world.
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4.2.4 Discourse marker prediction

A natural pragmatics-oriented counterpart to NLI could be the prediction of the semantic

or rhetorical relation between two sentences, as is the goal of discourse parsing. A number

of annotated corpora exist, such as RST-DT (Carlson et al., 2001) and PDTB (Prasad et al.,

2008), but in general the available data is fairly limited, and the task of discourse relation

prediction is rather difficult. The problem, however, is much easier when there is a marker

that makes the semantic link explicit (Pitler et al., 2008a), and this observation has often

been used in a semi-supervised setting to predict discourse relations in general (Rutherford

and Xue, 2015). Building on this observation, one approach to learn sentence representa-

tions is to predict such markers or clusters of markers explicitly (Jernite et al., 2017; Malmi

et al., 2018; Nie et al., 2019). Consider the following sentence pair:

I live in Paris. But I’m often abroad.

The discourse marker but highlights an opposition between the first sentence (the speaker

lives in Paris) and the second sentence (the speaker is often abroad). The marker can thus

be straightforwardly used as a label between sentence pairs. In this case, the task is to

predict c = but (among other markers) for the pair (I live in Paris, I’m often abroad).

Table 4.3 shows further examples from the DisSent dataset.

S1 marker S2

Her eyes flew up to his face. and Suddenly she realized why he looked so different.

The concept is simple. but The execution will be incredibly dangerous.

You used to feel pride. because You defended innocent people.

I’ll tell you about it. if You give me your number.

Table 4.3 – Examples from the Book8 dataset

Discourse marker prediction has been used to improve discourse relation prediction, where

automatically extracted explicit instances feed a model targeting implicit instances (Marcu

and Echihabi, 2002; Sporleder and Lascarides, 2008; Pitler and Nenkova, 2009; Rutherford



4 – Training, transfer, evaluation 54

and Xue, 2015). Jernite et al. (2017) used a similar approach but add additional objectives

such as order prediction (predicting whether the order of two initially consecutive sentences

has been reverted) and detection of consecutive sentences as defined in 4.2.2. This super-

vision is arguably more pragmatics-oriented than NLI supervision, even though semantics

is mentioned by Nie et al. (2019) and not pragmatics. (Nie et al., 2019) is quite popular.

However, we will propose criticism and improvements over this dataset in chapter 6.

4.3 Evaluation methods

Since a goal of NLP is to improve performance in various tasks, evaluation is key to NLP

practitioners as a guidance for model selection. The best evaluation is arguably feedback

from real use. However, it is not always possible to evaluate systems that are not ready

for production. A Twitter Bot released by Microsoft, named Tay (Wolf et al., 2017) that

was manipulated by some users to propagate hateful speech is a revealing example of how

NLP systems could go wrong in production. More generally, we need to test a system

because we do not know how unsatisfactory it is, and we cannot always afford to provide

an unsatisfactory system to real users. But if it is possible, A/B testing can be used.

Automatic evaluations allow a fully offline evaluation based on datasets of previously col-

lected annotated data. The dataset might reflect the target task (e.g. intent classification) in

a dialog system. Using additional datasets that are less related to the target task can also

help understanding the weaknesses and strengths of a model. Using other datasets is then

particularly useful when little data is available for the real target tasks. To perform well

with those datasets, using supervised learning while training on similar data is a winning

strategy, even though it is worthwhile to keep Goodhart’s law (When a measure becomes a

target, it ceases to be a good measure) in mind.
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4.4 Evaluation benchmarks

Task specific evaluations have been widely used but different methodologies (e.g. cross val-

idation splits, hyperparameter tuning) can make comparisons difficult. Evaluation bench-

marks emerge spontaneously when authors compare themselves on the same set of tasks

and try to have comparable methodologies.

These benchmarks are a convenient tool, even though they are an additional layer of ab-

straction that can lead to interpretation errors. A telling example is the use of the SUBJ

dataset (Pang and Lee, 2004) in SentEval. In Pang and Lee (2004), the authors properly

describe the dataset they use for subjectivity analysis. They extracted sentences or phrases

from movie abstracts and from movie reviews; they consider text from abstract as objective

and text from reviews as subjective. Thus, SUBJ is arguably an abstract/review discrimi-

nation task and not a subjectivity analysis task, but the SentEval paper’s only description

of the dataset is subjectivity/objectivity (SUBJ). In this section, we will present popular

evaluation benchmarks.

4.4.1 SentEval

Kiros et al. (2015) gathered a set of tasks and tools for evaluation of understanding. These

tasks were compiled in the SentEval (Conneau and Bordes, 2017) evaluation suite designed

for automatic evaluation of pre-trained sentence embeddings.

SentEval tasks are mostly based on sentiment analysis, sentence similarity and natural lan-

guage inference, and the framework forces the user to provide a sentence encoder that is

not finetuned during the evaluation.

Table 4.4 displays the tasks used in SentEval. The tasks selection is arguably centered

towards semantics since SentEval consist mainly of similarity/relatedness estimation tasks

(STS, MRPC, SICK-R) and natural language inference tasks (SICK-E, MNLI).
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dataset categories exemple&class Ntrain

MR sentiment (movie) “bland but harmless” neg 11k

SST sentiment (movie) “a quiet , pure , elliptical film ” pos 70k

CR sentiment (products) “the customer support is pathetic.” neg 3k

SUBJ subjective/objective “it is late at night in a foreign land” obj 10k

MPQA opinion polarity “would like to tell” pos 11k

TREC question-type “What are the twin cities ?” LOC:city 6k

MRPC paraphrase “i ’m never going to [...]”/“i am [...]” paraphrase 4k

STS14 similarity “a man is running.”/“a man is mooing.” 1.0 4k

SICK-E inference relation “a man is puking”/“a man is eating” neutral 4k

SICK-R relatedness score “a man is puking”/“a man is eating” 2.30 4k

COCO rank (image)/“A man in a suite sits at a table” rank 3 565k

SNLI inference relation “dog leaps out”/“a dog jumps” entailment 570k

Table 4.4 – SentEval classification datasets

SentEval internally composes the sentence embeddings of two sentence when the task deals

with sentence pairs (e.g. MRPC); we will discuss the implications of this strategy in the

upcoming chapter 5.

4.4.2 GLUE

Wang et al. (2018) propose to evaluate language understanding with less constraints than

SentEval, allowing users not to rely on explicit sentence embedding based models. GLUE’s

9 tasks are classification or regression based, and are carried out for sentences or sentence

pairs. Additionally, they propose diagnostic NLI tasks where various annotated linguistic

phenomena occur, which could be necessary to make the right predictions, as in Poliak

et al. (2018b). Table 4.5 provides an overview of the GLUE benchmark tasks.
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dataset categories exemple&class Ntrain

MNLI inference relation “they renewed inquiries”/“they asked again” entailment 391k

QNLI inference relation “Who took over Samoa?”/“Sykes–Picot Agreement.” entailment 105k

MNLI inference relation “they renewed inquiries”/“they asked again” entailment 391k

SST sentiment (movie) “a quiet , pure , elliptical film ” pos 70k

STSB similarity “a man is running.”/“a man is mooing.” 1.0 1k

CoLA linguistic acceptability “They drank the pub.” not-acceptable 8k

QQP paraphrase “Is there a soul?”/“What is a soul?” Non-duplicate 364k

RTE inference relation “Oil prices fall back as Yukos oil threat lifted”/“Oil prices rise.” not-entailment 2k

WNLI inference relation “The fish ate the worm. It was tasty.”/“The fish was tasty.” entailment 643

Table 4.5 – GLUE classification datasets

4.4.3 XNLI

Another dimension of universality of sentence encoders model is the ability to process

multiple languages. English is seen as a default but might not be very representative (Ben-

der, 2011) of other languages. Tools for multilingual evaluations are more restricted, and

mostly semantic: XNLI (Conneau et al., 2018b) was proposed as an evaluation suite for

multilingual sentence representation learning.

4.5 Representation learning models

The several text encoders that were proposed often rely on the building blocks we cited

previously: an elementary unit representation (pretrained word embeddings or subwords

embeddings learned from scratch), an encoder architecture (LSTM, CNN, Transformers),

and a training signal (Language modeling or Natural Language Inference). These choices,

alongside experimental parameters provide an overall characterization of the following en-

coders.
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4.5.1 FastText

A strong baseline for text encoding is FastText. FastText refers to either a word embedding

method (FastText embedding), or a classification method (FastText classifier). Both are

based on representations with the average of token embeddings. Thus, FastText text classi-

fier is just an embedding layer followed by a pooling layer. In the FastText classifier, texts

are represented with the average of the word/word ngram embeddings, with the optional

addition of character ngram embeddings contained in the words. These embeddings can

optionally have been pretrained with the FastText embedding method (which boils down to

Word2Vec but with integration of ngram embeddings in word representations).

The composition is additive even though the word ngram embeddings can only crudely

process compositions. Still, this model is quite fast and outperformed more complex archi-

tectures (Joulin et al., 2017).

4.5.2 SkipThought

SkipThought (Kiros et al., 2015) was the first expressive and universality claiming sen-

tence encoder. It uses Word2Vec embeddings as input and a bidirectional GRU encoder.

Building upon Le and Mikolov (2014), it leverages a sentence level distributional hy-

pothesis described in subsection 4.2.2.2. The training examples are unsupervisedly de-

rived from the BookCorpus dataset. A GRU encoder maps a sentence si into a vector

hi = GRUencoder(si). This vector is fed to two distinct GRUs that perform language mod-

eling on respectively si−1 and si+1, the sentences that are contiguous to si. hi is fed as

additional input to these GRUs to help the language modeling task; the joint training of the

three GRUs incentivizes GRUencoder to encode useful information about its input sentence.

This sentence encoder has been widely use and is allegedly able to leverage the complexity

of its GRU encoder, but has been outperformed by the simpler FastText model in several

tasks.
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4.5.3 InferSent

Conneau and Bordes (2017) introduced the idea of using supervised learning as a training

signal for generalizable sentence representation. They experimented with using sentiment

analysis or natural language inference as supervised pretraining and found that natural lan-

guage inference transfers better even to sentiment analysis tasks. InferSent is a bidirectional

LSTM model trained on the concatenation of SNLI and MNLI datasets.

4.5.4 DisSent

Nie et al. (2019) proposed to use discourse marker prediction described in section 4.2.4

instead of natural language tasks. Their results are not quite on par with InferSent on

the SentEval benchmark, but required no human annotations and yield superior results in

discourse relation prediction.

4.5.5 BERT

BERT makes use of the transformer architecture, as well as two different training signals.

One of them is a masked language modeling: an input text extracted from a large corpus is

fed to a transformer with some masked tokens, as described in section 4.2.1

The other is prediction of sentence contiguity as defined in section 4.2.2; even though

upon inspection of the authors’ implementation, what they call sentences are chunks of text

containing multiple sentences.

A peculiarity of BERT is that it uses left and right context jointly for the prediction of

masked words, as opposed to previous models (Peters et al., 2018b; Radford, 2018). This

allows richer contextualized representations and incentivizes the model to compose the left

and right contexts. BERT provides a structure that allows general text representation (con-

textualized word embedding, prediction of relation between texts). As opposed to the other

cited models, BERT does not provide explicit sentence embeddings, as described in section
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3.3. With the previously cited models, in order to predict a relation between two sentences,

both embeddings have to be computed and fed to another composition model that com-

poses the sentence embeddings, as described in chapter 5. BERT learns composition and

text representation jointly which makes it particularly suitable to multitask finetuning (Liu

et al., 2019).
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CHAPTER 5

EXPRESSIVITY OF EMBEDDING COMPOSITIONS

5.1 Motivation

Predicting relations between textual units is a widespread problem, essential for discourse

analysis, dialog systems, information retrieval, or paraphrase detection among others. Since

relation prediction often requires a form of understanding, it can also be used as a proxy to

train and evaluate transferable sentence representations.

As seen in section 4.2, several tasks that are useful to build sentence representations are

derived directly from text structure, with training data that can be obtained without human

annotation: sentence order prediction (Logeswaran et al., 2016; Jernite et al., 2017), the

prediction of previous and subsequent sentences (Kiros et al., 2015; Jernite et al., 2017),

or the prediction of explicit discourse markers between sentence pairs (Nie et al., 2019;

Jernite et al., 2017). Human labeled relations between sentences can also be used for that

purpose, e.g. inferential relations (Conneau and Bordes, 2017).

While most work on sentence similarity estimation, entailment detection, answer selection,

or discourse relation prediction seemingly uses task-specific models, they all involve pre-

dicting whether a relation R holds between two sentences s1 and s2. This genericity has
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been noticed in the literature before (Baudiš et al., 2016) and it has been leveraged for the

evaluation of sentence embeddings within the SentEval framework (Conneau and Bordes,

2017).

A straightforward way to predict the probability of (s1, R, s2) being true is to represent s1

and s2 with d-dimensional embeddings h1 and h2, and to compute sentence pair features

f(h1, h2), where f is a composition function (e.g. concatenation, product, . . . ). A softmax

classifier gθ can learn to predict R with those features. gθ ◦ f can be seen as a reasoning

based on the content of h1 and h2 (Socher et al., 2013).

In the SentEval evaluation suite (described in 4.4.1), users provide sentence embedding

models that are composed in the framework to evaluate the quality of embeddings though

performance scores in various tasks. So the compositions that are used need to be expres-

sive enough for the evaluation to make sense. What if even the best possible sentence

embeddings could not allow a model to reach human level performance ? This question

has not yet been addressed in previous work to our knowledge and will be the subject of

the present chapter.

Our contributions are as follows:

– we review composition functions used in textual relational learning, propose expres-

siveness requirements and show that existing functions are lacking in that respect

(section 5.2);

– we draw analogies with existing SRL models (section 5.3) and design new composi-

tions inspired from SRL (section 5.4) that are more expressive;

– we perform extensive experiments to test composition functions and show that some

of them can improve the learning of representations and their downstream uses, and

also impact evaluation (section 5.6).

In this chapter we focus on sentence embeddings as a case study, although our framework

can straightforwardly be applied to other levels of language granularity (such as words,

clauses, or documents).
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5.2 Composition functions for relation prediction

We review here popular composition functions used for relation prediction based on sen-

tence embeddings. Ideally, they should simultaneously fulfill the following minimal re-

quirements:

– make use of interactions between representations of sentences to relate;

– allow for the learning of asymmetric relations (e.g. entailment, order);

– be usable with high dimensionalities; high dimensionality can improve model capac-

ity but comes with operational constraints1.

Additionally, if the main goal is transferable sentence representation learning, compositions

should also incentivize gradually changing sentences to lie on a linear manifold, since trans-

fer usually uses linear models. Figure 5-1 illustrates this with a manifold where sentences

keep the same content while changing their style towards more formality when following

the arrow direction. If sentences lie on such a non-linear manifold, a linear model that

predicts formality level will be better than random but still incapable of perfect accuracy.

gradual change of a characteristic (e.g. formality)
while preserving other attributes

I have no interest 
in this matter

I don’t care

Figure 5-1 – Non linear manifold in which sentences become less and less formal

Another use case of transfer can be learning/evaluation of transferable relation representa-

tions. Concretely, a sentence encoder and f can be trained on a source task, and f(h1, h2)
1 parameters of θ and f should fit in GPU memory
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can be used as features for transfer in target tasks. In that case, the geometry of the sentence

embedding space is less relevant, as long as the f(h1, h2) space works well for transfer

learning. Our evaluation will cover both cases.

A straightforward instantiation of f is concatenation (Hooda and Kosseim, 2017):

f[,](h1, h2) = [h1, h2] (5.1)

However, strong interactions between s1 and s2 cannot be modeled with f[,] followed by a

softmax regression. We define strong interaction as follows: When h1 and h2 strongly in-

teract, a change in h1 should be able to influence how a change of h2 changes P (s1, R, s2).

That is, ∂
∂h1

∂
∂h2
P (s1, R, s2) should not be always zero.

Consider a paraphrase detection task: given a sentence s1, the sentence s2 maximizing the

probability of s2 being an s1 paraphrase should depend on s1. s1 cannot be a paraphrase on

its own. But it is not the case if the probability computed with concatenation is followed

by softmax regression, since P (s1, R, s2) depends on h1.WR
[0:n] + h2.W

R
[n:2n]

2, where WR

denotes softmax weights for relation R and n is the size of h. This expression is a sum over

two independent terms. How h1 should change to change P (s1, R, s2) only depends on W .

The effects of those considerations have been noticed experimentally in Levy et al. (2015)

regarding lexical relations.

To promote interactions between h1 and h2, element-wise product has been used by Baudiš

et al. (2016):

f�(h1, h2) = h1 � h2 (5.2)

Absolute difference is another solution for sentence similarity (Mueller and Thyagarajan,

2016), and its element-wise variation may equally be used to compute informative features:

f−(h1, h2) = |h1 − h2| (5.3)

The latter two were combined into a popular instantiation, sometimes referred as heuristic

2It also depends on the score for other relations than R due to the softmax normalization, but the softmax
still does not induce a strong interaction.
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matching (Tai et al., 2015; Kiros et al., 2015; Mou et al., 2016):

f�−(h1, h2) = [h1 � h2, |h2 − h1|] (5.4)

Although possibly effective for certain similarity tasks, f�− is symmetrical, and should be

a poor choice for tasks like entailment prediction or prediction of discourse relations. For

instance, if Re denotes entailment and (s1, s2)= (“It just rained”, “The ground is wet”),

(s1, Re, s2) should hold but not (s2, Re, s1). The f�− composition function is nonetheless

used to train models with NLI (Conneau and Bordes, 2017) or discourse relation prediction

(Nie et al., 2019). This composition is also used in all works using the SentEval evaluation

suite, which should be concerning since it might not allow any sentence embeddings to be

used to perform some tasks correctly.

Sometimes [h1, h2] is concatenated to f�−(h1, h2) (Ampomah et al., 2016; Conneau and

Bordes, 2017). While the resulting composition is asymmetrical, the asymmetrical compo-

nent involves no interaction as noted previously. So it can deal with cases where asymmetry

is needed without needing strong interaction, but not cases needing both. We note that this

composition is very commonly used. On the SNLI benchmark,3 12 out of the 25 listed

sentence embedding based models use it, and 7 use a weaker form (e.g. omitting f�).

The outer product ⊗ has been used instead for asymmetric multiplicative interaction (Jer-

nite et al., 2017):

f⊗(h1, h2) = h1 ⊗ h2 where (h1 ⊗ h2)i,j = h1ih2j (5.5)

This formulation is expressive but it forces gθ to have d2 parameters per relation, which is

prohibitive when there are many relations and d is high.

The problems outlined above are well known in SRL. Thus, existing compositions (except

f⊗) can only model relations superficially for tasks currently used to train state of the art

sentence encoders, like NLI or discourse connectives prediction.

3nlp.stanford.edu/projects/snli/, as of February 2019.

nlp.stanford.edu/projects/snli/


5 – Expressivity of embedding compositions 66

Model Scoring function Parameters

Unstructured ||e1 − e2||p -
TransE ||e1 + wr − e2||p wr ∈ Rd

RESCAL eT1Wre2 Wr ∈ Rd2

DistMult < e1, wr, e2 > wr ∈ Rd

ComplEx Re < e1, wr, e2 > wr ∈ Cd

Table 5.1 – Selected relational learning models. Unstructured is from (Bordes et al., 2013a),
TransE from (Bordes et al., 2013b), RESCAL from (Nickel et al., 2011), DistMult from
(Yang et al., 2015) and (Trouillon et al., 2016). Following the latter, < a, b, c > denotes∑

k akbkck. Re(x) is the real part of x, and p is commonly set to 1.

5.3 Statistical Relational Learning models

In this section we introduce the context of statistical relational learning (SRL) and relevant

models. Recently, SRL has focused on efficient and expressive relation prediction based on

embeddings and we believe that its techniques are overlooked in NLP. A core goal of SRL

(Getoor and Taskar, 2007) is to induce whether a relation R holds between two arbitrary

entities e1, e2. As an example, we would like to assign a score to (e1, R, e2) = (Paris,

LOCATED IN, France) that reflects a high probability. In embedding-based SRL models,

entities ei have vector representations in Rd and a scoring function reflects truth values

of relations. The scoring function should allow for relation-dependent reasoning over the

latent space of entities. Scoring functions can have relation-specific parameters, which can

be interpreted as relation embeddings. Table 5.1 presents an overview of a number of state

of the art relational models. We can distinguish two families of models: subtractive and

multiplicative.

The TransE scoring function is motivated by the idea that translations in latent space can

model analogical reasoning and hierarchical relationships. Dense word embeddings trained

on tasks related to the distributional hypothesis naturally allow for analogical reasoning

with translations without explicit supervision (Mikolov et al., 2013). TransE generalizes

the older Unstructured model. We call them subtractive models.

The RESCAL, Distmult, and ComplEx scoring functions can be seen as dot product match-

ing between e1 and a relation-specific linear transformation of e2 (Liu et al., 2017). This
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transformation helps checking whether e1 matches with some aspects of e2. RESCAL al-

lows for a full linear mapping Wre2 but has a high complexity, while Distmult is restricted

to a component-wise weighting wr � e2. ComplEx has fewer parameters than RESCAL

but still allows for the modeling of asymmetrical relations. As shown in Liu et al. (2017),

ComplEx boils down to a restriction of RESCAL where Wr is a block diagonal matrix.

These blocks are 2-dimensional, antisymmetric and have equal diagonal terms. Using such

a form, even and odd indexes of e’s dimensions play the roles of real and imaginary num-

bers respectively. The ComplEx model (Trouillon et al., 2016) and its variations (Lacroix

et al., 2018) yield state of the art performance on knowledge base completion on numerous

evaluations.

5.4 Embeddings composition as SRL models

We claim that several existing NLP models (Conneau and Bordes, 2017; Nie et al., 2019;

Baudiš et al., 2016) boil down to SRL models where the sentence embeddings (h1, h2) act

as entity embeddings (e1, e2). This framework is depicted in figure 5-2.

Recent popular models (Chen et al., 2017b; Seo et al., 2017; Gong et al., 2018; Radford,

2018; Devlin et al., 2019) do not rely on explicit sentence encodings to perform relation

prediction. They combine information of input sentences at earlier stages, using conditional

encoding or cross-attention. There is however no straightforward way to derive transferable

sentence representations in this setting. Thus, we leave them out for the moment but we

will discuss them in section 5.8, as they sometimes make use of composition functions, so

our work could still be relevant to them in some respect.

In this section we will make a link between sentence composition functions and SRL scor-

ing functions, and propose new scoring functions drawing inspiration from SRL.
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tied 
weights

h₁

relation representation f(h₁, h₂)

sentence 
encoder

s₁

h₂

sentence 
encoder

s₂

softmax gθ 
Statistical 
Relational 
Learning 
model

relations probabilities/scores

Figure 5-2 – Implicit SRL model in text relation prediction

5.4.1 Linking composition functions and SRL models

The composition function f� from equation 5.2 followed by a softmax regression yields a

score whose analytical form is identical to the Distmult model score described in section

5.3. Let θR denote the softmax weights for relation R. The logit score for the truth of

(s1, R, s2) is f(h1, h2)θR = (h1 � h2)θR which is equal to the Distmult scoring function

< h1, θR, h2 > if h1, h2 act as entities embeddings and θR as the relation weight wR .

Similarly, the composition f− from equation 5.3 followed by a softmax regression can be

seen as an element-wise weighted score of Unstructured (both are equal if softmax weights

are all unitary).

Thus, f�− from 5.4 (with softmax regression) can be seen as a weighted ensemble of

Unstructured and Distmult. These two models are respectively outperformed by TransE

and ComplEx on knowledge base link prediction by a large margin (Trouillon et al., 2016;

Bordes et al., 2013a). We therefore propose to change the Unstructured and Distmult in f�−

such that they match their respective state of the art variations in the following sections. We

will also show the implications of these refinements.
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5.4.2 Casting TransE as a composition

Simply replacing |h2 − h1| with

ft(h1, h2) = |h2 − h1 + t|, where t ∈ Rd (5.6)

would make the model analogous to TransE. t is learned and is shared by all relations. A

relation-specific translation tR could be used but it would make f relation-specific. Instead,

here, each dimension of ft(h1, h2) can be weighted according to a given relation. Non-zero

t makes ft asymmetrical and also yields features that allow for the checking of an analogy

between s1 and s2. Sentence embeddings often rely on pre-trained word embeddings which

have demonstrated strong capabilities for analogical reasoning. Some analogies, such as

part-whole, are computable with off-the-shelf word embeddings (Chen et al., 2017a) and

should be very informative for natural language inference tasks. As an illustration, let us

consider an artificial semantic space (depicted in figures 5-3a and 5-3b) where we posit that

there is a “to the past” translation t so that h1+ t is the embedding of a sentence s1 changed

to the past tense. Unstructured is not able to leverage this semantic space to correctly score

(s1, Rto the past, s2) while TransE is well tailored to provide highest scores for sentences

near h1 + t̂ where t̂ is an estimation of t that could be learned from examples.

5.4.3 Casting ComplEx as a composition

Let us partition h dimensions into two equally sized sets R and I, e.g. even and odd

dimension indices of h. We propose a new function fC as a way to fit the ComplEx scoring

function into a composition function.

fC(h1, h2) = [hR1 � hR2 + hI1 � hI2 , hR1 � hI2 − hI1 � hR2 ] (5.7)

fC(h1, h2) multiplied by softmax weights θr is equivalent to the ComplEx scoring function

Re < h1, θr, h2 >. The first half of θr weights corresponds to the real part of ComplEx

relation weights while the last half corresponds to the imaginary part.
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fC is to the ComplEx scoring function what f� is to the DistMult scoring function. Intu-

itively, ComplEx is a minimal way to model interactions between distinct latent dimensions

while Distmult only allows for identical dimensions to interact.

Let us consider a new artificial semantic space (shown in figures 5-3c and 5-3d) where the

first dimension is high when a sentence means that it just rained, and the second dimension

is high when the ground is wet. Over this semantic space, Distmult is only able to detect

entailment for paraphrases whereas ComplEx is also able to naturally model that (“it just

rained”, Rentailment, “the ground is wet”) should be high while its converse should not.

We also propose two more general versions of fC :

fCα(h1, h2) = [hR1 � hR2 , hI1 � hI2 , hR1 � hI2 − hI1 � hR2 ] (5.8)

fCβ(h1, h2) = [hR1 � hR2 , hI1 � hI2 , hR1 � hI2 , hI1 � hR2 ] (5.9)

fCα can be seen as Distmult concatenated with the asymmetrical part of ComplEx and fCβ

can be seen as RESCAL with unconstrained block diagonal relation matrices. These com-

positions have higher dimensionality but this is not as problematic as in SRL (Freebase

contains 35k relation types which can make it hard to learn high dimensional relation em-

beddings). NLP problems tend to have a moderate number of relations and we can afford

to use slightly more relation parameters.

5.5 On the evaluation of relational models

The SentEval framework (Conneau and Bordes, 2017) provides a general evaluation for

transferable sentence representations, with open source evaluation code. One only needs
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(a) Score map of (s1, Rto the past, s2) over pos-
sible sentences s2 using Unstructured composi-
tion.

(b) Score map of (s1, Rto the past, s2) over possi-
ble sentences s2 using TransE composition.

(c) Score map of (s1, Rentailment, s2) over pos-
sible sentences s2 using DistMult composition.

(d) Score map of (s1, Rentailment, s2) over pos-
sible sentences s2 using ComplEx composition.

Figure 5-3 – Possible scoring function values according to different composition functions.
s1 and R are fixed and color brightness reflects likelihood of (s1, R, s2) for each position
of embedding s2. (b) and (d) are respectively more expressive than (a) and (c).

to specify a sentence encoder function, and the framework performs classification tasks or

relation prediction tasks using cross-validated logistic regression on embeddings or com-

posed sentence embeddings. Tasks include sentiment analysis, entailment, textual similar-

ity, textual relatedness, and paraphrase detection. These tasks are a rich way to train or

evaluate sentence representations since in a triple (s1, R, s2), we can see (R, s2) as a label

for s1 (Baudiš et al., 2016). Unfortunately, the relational tasks hard-code the composition

function from equation 5.4. From our previous analysis, we believe this composition func-

tion favors the use of contextual/lexical similarity rather than high-level reasoning and can

penalize representations based on more semantic aspects. This bias could harm research
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since semantic representation is an important next step for sentence embedding. Train-

ing/evaluation datasets are also arguably flawed with respect to relational aspects since

several recent studies (Dasgupta et al., 2018; Poliak et al., 2018b; Gururangan et al., 2018;

Glockner et al., 2018) show that InferSent, despite being state of the art on SentEval evalu-

ation tasks, has poor performance when dealing with asymmetrical tasks and non-additive

composition of words. In addition to providing new ways of training sentence encoders,

we will also extend the SentEval evaluation framework with a more expressive composition

function when dealing with relational transfer tasks, which improves results even when the

sentence encoder was not trained with it.

5.6 Experiments

Our goal is to show that transferable sentence representation learning and relation pre-

diction tasks can be improved when our expressive compositions are used instead of the

composition from equation 5.4. We train our relational model adaptations on two relation

prediction source tasks (T ), one supervised (T = NLI ) and one unsupervised (T = Disc)

described below, and evaluate sentence/relation representations on source and target tasks

using the SentEval framework in order to quantify the generalization capabilities of our

models. Since we use minor modifications of InferSent and SentEval, our experiments are

easily reproducible.

5.6.1 Training tasks

Natural language inference (T = NLI)’s goal is to predict whether the relation between two

sentences (premise and hypothesis) is Entailment, Contradiction or Neutral. We use the

combination of SNLI dataset (Bowman et al., 2015a) and MNLI dataset (Williams et al.,

2018b). We call AllNLI the resulting dataset of 1M examples. Conneau and Bordes (2017)

claim that NLI data allows for universal sentence representation learning. They used the

f�,− composition function with concatenated sentence representations in order to train their
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name N task C representation(s) used

MR 11k sentiment (movies) 2 h1
SUBJ 10k subjectivity/objectivity 2 h1
MPQA 11k opinion polarity 2 h1
TREC 6k question-type 6 h1
SICKm

s 10k NLI 3 fm,s(h1, h2)
MRPCms 4k paraphrase detection 2 (fm,s(h1, h2) + (fm,s(h2, h1))/2
PDTBms 17k discursive relation 5 fm,s(h1, h2)
STS14 4.5k similarity - cos(h1, h2)

Table 5.2 – Transfer evaluation tasks. N = number of training examples; C = number of
classes if applicable. h1, h2 are sentence representations, fm,s a composition function from
section 5.4.

Infersent model.

We also train on the prediction of discourse markers between sentences/clauses (T = Disc).

Discourse connectives make discourse relations between sentences explicit. In the sentence

I live in Paris but I’m often elsewhere, the word but highlights that there is a contrast

between the two clauses it connects, as introduced in section 4.2.4. We use Malmi et al.’s

(2018) dataset of selected 400k instances with 20 discourse connectives (e.g. however, for

example) with the provided train/dev/test split. This dataset has no other supervision than

the list of 20 connectives. Nie et al. (2019) used f�,− concatenated with the sum of sentence

representations to train their model, DisSent, on a similar task and showed that their encoder

was general enough to perform well on SentEval tasks. They use a dataset that was, at

the time of these experiments, not publicly available. We will tackle this unsupervised

approach in an arguably better way in chapter 6, and deepen the comparison of NLI and

marker prediction in chapter 7.

5.6.2 Evaluation tasks

Table 6.8 provides an overview of different transfer tasks that will be used for evaluation.

We added another relation prediction task, the PDTB coarse-grained implicit discourse

relation task, to SentEval. This task involves predicting a discursive link between two sen-

tences among {Comparison, Contingency, Entity based coherence, Expansion, Temporal}.
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We emphasized the importance of discourse in evaluation in the introduction; a more re-

fined evaluation will be proposed in chapter 7.

We followed the setup of Pitler et al. (2009), without sampling negative examples in train-

ing. MRPC, PDTB and SICK will be tested with two composition functions: besides

SentEval composition f�,−, we will use fCβ ,− for transfer learning evaluation, since it has

the most general multiplicative interaction and it does not penalize models that do not learn

a translation. For all tasks except STS14, a cross-validated logistic regression is used on

the sentence or relation representation. The evaluation of the STS14 task relies on Pearson

or Spearman correlation between cosine similarity and the target. We force the composi-

tion function to be symmetrical on the MRPC task since paraphrase detection should be

invariant to permutation of input sentences.

5.6.3 Setup

We want to compare the different instances of f . We follow the setup of Infersent (Conneau

and Bordes, 2017): we learn to encode sentences into h with a bi-directional LSTM using

element-wise max pooling over time. The dimension size of h is 4096. Word embeddings

are fixed GloVe with 300 dimensions, trained on Common Crawl 840B.4 Optimization is

done with SGD and decreasing learning rate until convergence.

The only difference with regard to Infersent is the composition. Sentences are composed

with six different compositions for training according to the following template:

fm,s,1,2(h1, h2) = [fm(h1, h2), fs(h1, h2), h1, h2] (5.10)

fs (subtractive interaction) is in {f−, ft}, fm (multiplicative interaction) is in {f�, fCα , fCβ}.

We do not consider fC since it yielded inferior results in our early experiments using NLI

and SentEval development sets.

fm,s,1,2(h1, h2) is fed directly to a softmax regression. Note that Infersent uses a multi-

4https://nlp.stanford.edu/projects/glove/
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layer perceptron before the softmax, but uses only linear activations, so f�,−,1,2(h1, h2) is

analytically equivalent to Infersent when T = NLI .

5.6.4 Results

Models trained on natural language inference (T = NLI )

m,s MR SUBJ MPQA TREC MRPC�− PDTB�− SICK�− STS14 T AVG

�,− 81.2 92.7 90.4 89.6 76.1 46.7 86.6 69.5 84.2 79.1
α,− 81.4 92.8 90.5 89.6 75.4 46.6 86.7 69.5 84.3 79.1
β,− 81.2 92.6 90.5 89.6 76 46.5 86.6 69.5 84.2 79.1
�, t 81.1 92.7 90.5 89.7 76.5 46.4 86.5 70.0 84.8 79.2
α, t 81.3 92.6 90.6 89.2 76.2 47.2 86.5 70.0 84.6 79.2
β, t 81.2 92.7 90.4 88.5 75.8 47.3 86.8 69.8 84.2 79.1

Table 5.3 – SentEval and source task evaluation results for the models trained on natural
language inference (T = NLI ); AllNLI is used for training. All scores are accuracy
percentages, except STS14, which is Pearson correlation percentage. AVG denotes the
average of the SentEval scores.

Models trained on discourse connective prediction (T = Disc)

m,s MR SUBJ MPQA TREC MRPC�− PDTB�− SICK�− STS14 T AVG

�,− 80.4 92.7 90.2 89.5 74.5 47.3 83.2 57.9 35.7 77
α,− 80.4 92.9 90.2 90.2 75 47.9 83.3 57.8 35.9 77.2
β,− 80.2 92.8 90.2 88.4 74.9 47.5 82.9 57.7 35.9 76.8
�, t 80.2 92.8 90.2 90.4 74.6 48.5 83.4 58.6 36.1 77.3
α, t 80.2 92.9 90.3 90.3 75.1 47.8 83.2 58.3 36.1 77.3
β, t 80.2 92.8 90.3 89.7 74.4 47.9 83.7 58.2 35.7 77.2

Table 5.4 – SentEval and source task evaluation results for the models trained on discourse
connective prediction (T = Disc). All scores are accuracy percentages, except STS14,
which is Pearson correlation percentage. AVG denotes the average of the SentEval scores.

Having run several experiments with different initializations, the standard deviations be-

tween them do not seem to be negligible. We decided to take these into account when re-

porting scores, contrary to previous work (Kiros et al., 2015; Conneau and Bordes, 2017):

we average the scores of 6 distinct runs for each task and use standard deviations under nor-

mality assumption to compute significance. Table 5.3 shows model scores for T = NLI ,

while Table 5.4 shows scores for T = Disc. For comparison, Table 5.5 shows a number of
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Comparison models

model MR SUBJ MPQA TREC MRPC�− PDTB�− SICK�− STS14 AVG

Infersent 81.1 92.4 90.2 88.2 76.2 46.7- 86.3 70 78.9
SkipT 76.5 93.6 87.1 92.2 73 - 82.3 29 -
BoW 77.2 91.2 87.9 83 72.2 43.9 78.4 54.6 73.6

Table 5.5 – Comparison models from previous work. InferSent represents the original
results from Conneau and Bordes (2017), SkipT is SkipThought from Kiros et al. (2015),
and BoW is our re-evaluation of GloVe Bag of Words from Conneau and Bordes (2017).
AVG denotes the average of the SentEval scores..

T = Disc T = NLI

m,s MRPCβ− PDTBβ− SICKβ
− AVG MRPCβ− PDTBβ− SICKβ

− AVG

�,− 74.8 48.2 83.6 68.9 76.2 47.2 86.9 70.1
α,− 74.9 49.3 83.8 69.3 75.9 47.1 86.9 70
β,− 75 48.8 83.4 69.1 75.8 47 87 69.9
�, t 74.9 48.7 83.6 69.1 76.2 47.8 86.8 70.3
α, t 75.2 48.6 83.5 69.1 76.2 47.6 87.3 70.4
β, t 74.6 48.9 83.9 69.1 76.2 47.8 87 70.3

Table 5.6 – Results for sentence relation tasks using an alternative composition function
(fCβ ,−) during evaluation. AVG denotes the average of the three tasks.

important models from previous work. Finally, in Table 5.6, we present results for sentence

relation tasks that use an alternative composition function (fCβ ,−) instead of the standard

composition function used in SentEval.

For sentence representation learning, the baseline, f�− composition already performs

rather well, being on par with the InferSent scores of the original paper, as would be ex-

pected. However, macro-averaging all accuracies, it is the second worst performing model.

fCα,t,1,2 is the best performing model, and all three best models use the translation (s = t).

On relational transfer tasks, training with fCα,t,1,2 and using complex Cβ for transfer (Ta-

ble 5.6) always outperforms the baseline (f�,−,1,2 with �− composition in Tables 5.3 and

5.4). Averaging accuracies of those transfer tasks, this result is significant for both training

tasks at level p < 0.05 (using Bonferroni correction accounting for the 5 comparisons). On

source tasks and the average of non-relational target tasks (MR, MPQA, SUBJ, TREC), our

proposed compositions are on average slightly better than f�,−,1,2. Representations learned
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with our proposed compositions can still be compared with simple cosine similarity: all

three methods using the translational composition (s = t) very significantly outperform the

baseline (significant at level p < 0.01 with Bonferroni correction) on STS14 for T = NLI .

Thus, we believe fCα,t,1,2 has more robust results and could be a better default choice than

f�,−,1,2 as composition for representation learning. 5

Additionally, using Cβ (Table 5.6) instead of � (Tables 5.3 and 5.4) for transfer learning

in relational transfer tasks (PDTB, MRPC, SICK) yields a significant improvement on av-

erage, even when m = � was used for training (p < 0.001). Therefore, we believe fCβ ,−

is an interesting composition for inference or evaluation of models regardless of how they

were trained.

(a) Importance feature type for the rather relation

(b) Average importance by feature type

Figure 5-4 – A graphical representation of feature importance

5Note that our compositions are also beneficial with regard to convergence speed: on average, each of our
proposed compositions needed less epochs to converge than the baseline f�,−,1,2, for both training tasks.
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5.6.5 Feature importance

As a qualitative analysis, we inspected the importance of each feature type. We used an

encoder trained on Disc task with fCα,t,1,2 composition and ran a logistic regression on

unit scaled composed features, once again on Disc. Cαsym denotes the symmetrical part of

fCα . We use the L2 norm of each feature group as a measure of importance. Figure 5-4b

indicates that on average, the model uses all kinds of features, especially Cαasym which we

proposed. Figure 5-4a shows the norms for a particular relation class – rather – divided

by those average norms. rather has the highest Cαasym norm and should be an asymmetrical

connective. This makes sense, as if (s1, Rrather, s2) holds, s2 must be a refinement of s1

and not the converse. This example indicates that our framework can provide some insights

for the description of relations.

5.7 Related work

There are numerous interactions between SRL and NLP. We believe that our framework

merges two specific lines of work: relation prediction and modeling textual relational tasks.

Some previous NLP work focused on composition functions for relation prediction between

text fragments, even though they ignored SRL and only dealt with word units. The use of

embeddings is not necessary for composition in vector space, and previous work tackled

composition in non-distributional vector spaces (Mitchell and Lapata, 2008; Bride et al.,

2015). However, Word2vec (Mikolov et al., 2013) has sparked a great interest for this task

with word analogies in the latent space. Levy and Goldberg (2014a) explored different

scoring functions between words, notably for analogies. Hypernymy relations were also

studied, by Chang et al. (2018) and Fu et al. (2014). Levy et al. (2015) proposed tailored

scoring functions. Even the skipgram model (Mikolov et al., 2013) can be formulated

as finding relations between context and target words. To account for asymmetry, two

separate representations are used for each word (word embedding and context embedding

(Torabi Asr et al., 2018). We did not empirically explore textual relational learning at the
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word level, but we believe that it would fit in our framework, and could be tested in future

studies. Numerous approaches (Chen et al., 2017b; Seok et al., 2016; Gong et al., 2018;

Joshi et al., 2019) were proposed to predict inference relations between sentences, but don’t

explicitly use sentence embeddings. Instead, they encode sentences jointly, possibly with

the help of previously cited word compositions, therefore it would also be interesting to try

applying our techniques within their framework.

Some modeling aspects of textual relational learning have been formally investigated by

Baudiš et al. (2016). They noticed the genericity of relational problems and explored multi-

task and transfer learning on relational tasks. Their work is complementary to ours since

their framework unifies tasks while ours unifies composition functions. Subsequent ap-

proaches use relational tasks for training and evaluation on specific datasets (Conneau and

Bordes, 2017; Nie et al., 2019).

5.8 Composition in attention-based models

As seen in section 3.3, explicit sentence embeddings are not required in order to perform

relation prediction between sentences. However, compositions still occur, and in many

models, heuristic matching is used, in order to compute joint representations of contextu-

alized words (Pan et al., 2018a; Chen et al., 2017b; Tay et al., 2018; Ghaeini et al., 2018).

In transformers, the different aspects of tokens, obtained by attention heads are composed

through a concatenation of attention head outputs followed by a non-linear composition, as

shown in figure 5-5.
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Figure 5-5 – Transformer block as successive parsing step and composition

The attention mechanism in Transformer architectures is being regarded as central, as il-

lustrated by the Attention is all you need title (Vaswani et al., 2017), but we believe that

what we call the composition step is equally important.

5.9 Conclusion

We have demonstrated that a number of existing models used for textual relational learn-

ing rely on composition functions that are already used in Statistical Relational Learning.

By taking into account previous insights from SRL, we proposed new composition func-

tions to fix expressivity problems and evaluated them. These composition functions are all

simple to implement and we hope that it will become standard to try them on relational

problems. Larger scale data might leverage these more expressive compositions, as well

as more compositional, asymmetric, and arguably more realistic datasets (Dasgupta et al.,

2018; Gururangan et al., 2018) could also widen the gap between symmetrical and more

expressive compositions. Thus, while the improvement of more expressive compositions in

our sentence embeddings setup is marginal, it is dependant on sentence encoders, training

signals, and evaluation. Our compositions can also be helpful to improve interpretabil-

ity of embeddings, since they can help measure relation prediction asymmetry. Analogies

through translations helped interpreting word embeddings, and perhaps analyzing learned

t translation depending on different relations could help interpreting sentence embeddings.



5 – Expressivity of embedding compositions 81

Finally, our analysis can also be transferred to Transformers and explain their expressive-

ness.
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CHAPTER 6

MINING DISCOURSE MARKERS FOR UNSUPERVISED

SENTENCE REPRESENTATION LEARNING

6.1 Motivation

Discourse markers are a common language device used to make explicit the semantic and/or

pragmatic relationship between clauses or sentences.

For example, the marker so in sentence 6.1 indicates that the second clause is a consequence

of the first.

We’re standing in gasoline, so you should not smoke (6.1)

As such, discourse markers indicate how a sentence contributes to the meaning of a text.

Because of this, they provide an appealing supervision signal for sentence representation

learning based on language use. Fraser (1996) theorized a class of expressions called prag-

matic markers that include discourse markers (see quote 6-4).
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“ [...] pragmatic markers, taken to be separate and

distinct from the propositional content of the sen-

tence, are the linguistically encoded clues which sig-

nal the speaker’s potential communicative intentions

”
Quote. 6-4 – quote from Pragmatic Markers (Fraser, 1996)

As such, discourse markers can also be considered as noisy labels for various semantic

tasks, such as entailment (c = therefore), subjectivity analysis (c = personally), sentiment

analysis (c = sadly), similarity (c = similarly), typicality (c = curiously), temporal order

(c = then), frequency (c = sometimes), or importance (c = mostly). A wide variety

of discourse usages would be desirable in order to learn general sentence representations.

Extensive research in linguistics has resulted in elaborate discourse marker inventories for

many languages.1 These inventories were created by manual corpus exploration or an-

notation of small-scale corpora: the largest annotated corpus, the English PDTB consists

of a few tens of thousands examples, and provides a list of about 100 discourse markers,

organized in a number of categories.

However, previous work on sentence representation learning with discourse markers makes

use of even more restricted sets of discourse markers, as shown in table 6.1. Jernite et al.

(2017) use 9 categories as labels, accounting for 40 discourse markers in total. It should be

noted that the aggregate labels do not allow for any fine-grained distinctions; for instance,

the TIME label includes both now and next, which is likely to impair the supervision. More-

over, discourse markers may be ambiguous; for example, now can be used to express con-

trast. On the other hand, Nie et al. (2019) make use of 15 discourse markers. These classes

do not account for the variety of phenomena outlined in the previous paragraph.

That low diversity of markers is amplified by data imbalance, since among the 15 markers

used by Nie et al. (2019), 5 markers are accounting for more than 80% of their training
1See for instance a sample of language on the Textlink project website: http://www.textlink.

ii.metu.edu.tr/dsd-view

http://www.textlink.ii.metu.edu.tr/dsd-view
http://www.textlink.ii.metu.edu.tr/dsd-view
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data, as illustrated in figure 6-7.

author discourse markers / classes classes markers

Jernite et al. (2017) ADDITION, CONTRAST, TIME, RESULT, SPE-
CIFIC, COMPARE, STRENGTH, RETURN, RECOG-
NIZE

9 40

Nie et al. (2019) and, but, because, if, when, before, though,
so, as, while, after, still, also, then, although

15 15

current work later, often, understandably, gradually, or,
ironically, namely, . . .

174 174

Table 6.1 – Discourse markers or classes used by previous work on unsupervised represen-
tation learning

Figure 6-7 – Frequency distribution of markers of discourse markers in Nie et al. (2019)

Furthermore, they only select pairs matching a dependency pattern manually specified for

each marker in order to ensure the quality of their examples, which makes their method

tedious and still dependent on dependency parsers. However, and, as, when and if arguably

don’t appear in the same syntactic context. These examples constitute a large part of the

training data, which might be a strong incentive for the model to learn syntactic cues rather

than using semantic or pragmatic cues.

As such, both of these studies use a restricted or impoverished set of discourse markers;

they also both use the BookCorpus dataset, whose size (4.7M sentences that contain a
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discourse marker, according to Nie et al., 2019) is prohibitively small for the prediction of

rare discourse markers.

In the context of the present work, we use web-scale data in order to explore the predic-

tion of a wide range of discourse markers, with totally balanced frequency distributions,

along with an application to sentence representation learning. We use English data for the

experiments, but the same method could be applied to any language that bears a typologi-

cal resemblance with regard to discourse usage, and has sufficient amounts of textual data

available (e.g. German or French). Inspired by recent work (Dasgupta et al., 2018; Po-

liak et al., 2018b; Glockner et al., 2018) on the unexpected properties of recent manually

labelled datasets (e.g. SNLI), we will also analyze our dataset to check whether labels

are easy to guess, and whether the proposed model architectures make use of high-level

reasoning for their predictions. Our contributions are as follows:

– we propose a simple and efficient method to discover new discourse markers, and

present a curated list of 174 markers for English;

– we provide evidence that many connectives can be predicted with only simple lexical

features;

– we investigate whether relation prediction actually makes use of the relation between

sentences;

– we carry out extensive experiments based on the Infersent/SentEval framework.

6.2 Discovering discourse markers

Our goal to collect unambiguous instances of potential discourse markers. To do so, pre-

vious work used heuristics based on specific constructs, especially syntactic patterns for

intra-sentential relations, based on a fixed list of manually collected discourse markers.

Since we focus on sentence representations, we limit ourselves to discourse arguments that

are well-formed sentences, thus also avoiding clause segmentation issues.
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6.2.1 Comparison to previous work

Following a heuristic from Rutherford and Xue (2015), also considered by Malmi et al.

(2018) and Jernite et al. (2017), we collect pairs of sentences (s1, s2) where s2 starts with

marker c. We only consider the case where c is a single word, as detecting longer adverbial

constructions is more difficult. We remove c from the beginning of s2 and call the resulting

sentence s′2. Malmi et al. (2018) make use of a list of the 80 most frequent discourse mark-

ers in the PDTB in order to extract suitable sentence pairs. We stay faithful to Rutherford

and Xue (2015)’s heuristic, as opposed to Malmi et al. (2018) and Jernite et al. (2017): if

s2 starts with c followed by a comma, and c is an adverbial or a conjunction, then it is a

suitable candidate. By limiting ourselves to sentences that contain a comma, we are likely

to ensure that s′2 is meaningful and grammatical. As opposed to all the cited work men-

tioned above, we do not restrict the pattern to a known list of markers, but try to collect

new reliable cues.

This pattern is obviously restrictive, since discourse markers often appear at the clausal

level (e.g. I did it but now I regret it). But clauses are not meant to be self contained, and it

is not obvious that they should be included in a dataset for sentence representation learning.

At the same time, one could easily think of cases where c is not a discourse marker, e.g.

(s1, s2)= (“It’s cold.”, “Very, very cold.”). However, these uses might be easily predicted

with shallow language models. In the next section, we use the proposed method for the

discovery of discourse markers, and we investigate whether the resulting dataset leads to

improved model performance.

s1 Paul Prudhomme’s Louisiana Kitchen created a sensation when it was published in 1984.
c happily,
s2’ This family collective cookbook is just as good

Table 6.2 – Sample from our Discovery dataset
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6.2.2 Methodology

We use sentences from the Depcc corpus (Panchenko et al., 2017), which consists of En-

glish texts harvested from commoncrawl web data. We sample 8.5 billion consecutive

sentence pairs from the corpus. We keep 53% of sentence pairs that contain between 3 and

32 words, have a high probability of being English (> 75%) using FastText langid from

Grave et al. (2018), have balanced parentheses and quotes, and are mostly lowercase. We

use NLTK (Bird et al., 2009) as sentence tokenizer and NLTK PerceptronTagger as part of

speech tagger for adverb recognition. In addition to our automatically discovered candi-

date set, we also include all (not necessarily adverbial) PDTB discourse markers that are

not induced by our method. Taking this into account, 3.77% of sentence pairs contained

a discourse marker candidate, which is about 170M sentence pairs. An example from the

dataset is shown in table 6.2. We only keep pairs in which the discourse marker occurs

at least 10K times. We also subsample pairs so that the maximum occurrence count of a

discourse marker is 200K. The resulting dataset contains 19M pairs.

We discovered 243 discourse marker candidates. Figure 6-8 shows their frequency distri-

butions. As expected, the most frequent markers dominate the training data, but when a

wide range of markers is included, the rare ones still contribute up to millions of training

instances. Out of the 42 single-word PDTB markers that precede a comma, 31 were found

by our procedure. Some markers are missing because of NLTK errors, which mainly result

from morphological issues.2

6.2.3 Controlling for shallow features

As previously noted, some candidates discovered by our rule may not be actual discourse

markers. In order to discard them, we make the hypothesis that actual discourse markers

cannot be predicted with shallow lexical features. Inspired by Gururangan et al. (2018),

we use a Fasttext classifier (Joulin et al., 2017) in order to predict c from s′2. The Fasttext

2For instance, lovely is tagged as an adverb because of its suffix, while besides was never tagged as an
adverb
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Figure 6-8 – Frequency distribution of candidate discourse markers; the horizontal line
indicates the subsampling threshold.

classifier predicts labels from an average of word embeddings fed to a linear classifier. We

split the dataset in 5 folds, and we predict markers for each fold, while training on the

remaining folds. We use a single epoch, randomly initialized vectors of size 100 (that can

be unigrams, bigrams or trigrams) and a learning rate of 0.5.

In addition, we predict c from the concatenation of s1 and s′2 (using separate word rep-

resentations for each case). One might assume that the prediction of c in this case relies

on the interaction between s1 and s2; however, the features of s1 and s2 within Fasttext’s

setup only interact additively, which means that the classification most likely relies on in-

dividual cues in the separate sentences, rather than on their combination. In order to test

this hypothesis, we introduce a random shuffle operation: for each example (s1, s′2, c), s
′
2

is replaced by a random sentence from a pair that is equally linked by c (we perform this

operation separately in train and test sets).

Table 6.3 indicates that shallow lexical features indeed yield relatively high prediction rates.

Moreover, the shuffle operation indeed increases accuracy, which corroborates the hypoth-

esis that classification with shallow features relies on individual cues from separate sen-

tences, rather than their combination.



6 – Mining Discourse Markers for Unsupervised Sentence Representation Learning 90

features accuracy (%)

majority rule 1.2
s2 18.6
s1-s2 21.9
s1-s2 (shuffled) 24.8

Table 6.3 – Accuracy when predicting candidate discourse markers using shallow lexical
features

Tables 6.4 and 6.5 show the least and most predictable discourse markers, and the corre-

sponding recognition rate with lexical features.

candidate marker accuracy (%)

evidently, 0.0
frequently, 0.0
meantime, 0.0
truthfully, 0.0
supposedly, 0.1

Table 6.4 – Candidate discourse markers that are the most difficult to predict from shallow
features

candidate marker accuracy (%)

defensively, 65.5
afterward 71.1
preferably, 71.9
this, 72.7
very, 90.7

Table 6.5 – Candidate discourse markers that are the easiest to predict from shallow fea-
tures. This shows candidates that are unlikely to be interesting discourse cues.

Interestingly, the two most predictable candidates are not discourse markers. Upon inspec-

tion of harvested pairs, we noticed that even legitimate discourse markers can be guessed

with relatively simple heuristics in numerous examples. For example, c = thirdly is very

likely to occur if s1 contains secondly. Therefore, a training example where s1 doesn’t

contain secondly could be more challenging and incentivize the encoder to represent the

richer information that s2 is pursuing an enumeration that was already started in s1. We
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will test this hypothesis with a variant of our dataset, called Hard. We use this information

to optionally filter out such simple instances, as described in the next section.

6.2.4 Dataset variations

In the following, we call our method Discovery. We create several variations of the sentence

pairs dataset. In DiscoveryHard, we remove examples where the candidate marker was

among the top 5 predictions in our Fasttext shallow model and keep only the 174 candidate

markers with a frequency of at least 10k. Instances are then sampled randomly so that each

marker appears exactly 10k times in the dataset.

Subsequently, the resulting set of discourse markers is also used in the other variations of

our dataset. DiscoveryBase designates the dataset for which examples predicted with the

Fasttext model were not removed. In order to measure the extent to which the model makes

use of the relation between s1 and s′2, we also create a DiscoveryShuffled dataset, which is

the DiscoveryBase dataset subjected to the random shuffle operation described previously.

To isolate the contribution of our discovery method, the dataset DiscoveryAdv discards all

discourse markers from PDTB that were not found by our method. Also, in order to mea-

sure the impact of label diversity, Discovery10 uses 174k examples for each of the 10 most

frequent markers,3 thus totaling as many instances as DiscoveryBase. Finally, Discovery-

Big contains almost twice as many instances as DiscoveryBase, i.e. 20k instances for each

discourse marker (although, for a limited number of markers, the number of instances is

slightly lower due to data sparseness).

3They are: however, hence, moreover, additionally, nevertheless, furthermore, alternatively, again, next,
therefore
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6.3 Evaluation of sentence representation learning

6.3.1 Setup

Our goal is to evaluate the effect of using our various training datasets on sentence encod-

ing, given encoders of equivalent capacity and similar setups. Thus, we follow the exact

setup of Infersent (Conneau and Bordes, 2017), also used in the Dissent (Malmi et al.,

2018) model: we learn to encode sentences into h with a bi-directional LSTM sentence en-

coder using element-wise max pooling over time. The dimension size of h is 4096. Word

embeddings are fixed GloVe embeddings with 300 dimensions, trained on Common Crawl

840B.4 A sentence pair (s1, s2) is represented with [h1, h2, h1�h2, |h2−h1|],5 which is fed

to a softmax in order to predict a marker c. We have seen in chapter 5 that this composition

had drawbacks, but we use it to allow for easier comparison

Our datasets are split in 90% train, 5% validation, and 5% test. Optimization is done

with SGD (learning rate is initialized at 0.1, decayed by 1% at each epoch and by 80% if

validation accuracy decreases; learning stops when learning rate is below 10−5 and the best

model on training task validation loss is used for evaluation; gradient is clipped when its

norm exceeds 5). Once the sentence encoder has been trained on a base task, the resulting

sentence embeddings are tested with the SentEval library (Conneau and Bordes, 2017).

We evaluate the different variations of our dataset we described above in order to analyze

their effect, and compare them to a number of existing models. Table 6.8 displays the tasks

used for evaluation. For further analysis, table 6.7 displays the result of Linguistic Probing

using the method by Conneau et al. (2018a). Although these tasks are primarily designed

for understanding the content of embeddings, they also focus on aspects that are desirable

to perform well in general semantic tasks (e.g. prediction of tense, or number of object).

4https://nlp.stanford.edu/projects/glove/
5h1 � h2 = (h11.h21, .., h1i.h2i, ...)
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6.3.2 Results

Table 6.6 gives an overview of transfer learning evaluation, also comparing to other super-

vised and unsupervised approaches.

N MR CR SUBJ MPQA SST2 TREC SICK-R SICK-E MRPC AVG

InferSent (AllNLI) 1.0 81.1 86.3 92.4 90.2 84.6 88.2 88.4 86.1 76.2 85.9
MTL 124 82.5 87.7 94 90.9 83.2 93 88.8 87.8 78.6 87.4

SkipThought 74 76.5 80.1 93.6 87.1 82 92.2 85.8 82.3 73 83.6
QuickThought 174 81.3 84.5 94.6 89.5 - 92.4 87.1 - 75.9 -
DisSent 4.7 80.1 84.9 93.6 90.1 84.1 93.6 84.9 83.7 75 85.6
DiscoveryBase 1.7 82.5 86.3 94.2 90.5 85.2 91.8 85.7 84 75.8 86.2
DiscoveryHard 1.7 81.6 86.5 93.9 90.5 84.8 90 85.4 83.2 76.5 85.8
Discovery10 1.7 81.2 85.1 93.7 90.2 83 90 85.9 83.8 75.8 85.4
DiscoveryAdv 1.4 81.4 85.8 93.8 90.5 83.4 92 86 84.3 75.7 85.9
DiscoveryShuffled 1.7 81.4 86.1 94.1 90.9 85.3 90.4 85.6 83.6 75.4 85.9
DiscoveryBig 3.4 82.6 87.4 94.5 91.0 85.2 93.4 86.4 84.8 76.6 86.9

Table 6.6 – SentEval evaluation results with our models trained on various datasets. The
first two models are supervised, the other ones unsupervised. All scores are accuracy per-
centages, except SICK-R, which is Pearson correlation percentage. InferSent is from Con-
neau and Bordes (2017), MTL is the multi-task learning based model from Subramanian
et al. (2018). Evaluation tasks are described in table 6.8, and N denotes the number of
examples for each dataset (in millions). Dissent is from Nie et al. (2019), QuickThought
is from Logeswaran et al. (2018) with fixed embeddings configuration. The best result per
task appears in bold, the best result for unsupervised setups is underlined.

Note that we outperform DisSent on all tasks except TREC6 with less than half the amount

of training examples. In addition, our approach is arguably simpler and faster.

MTL (Subramanian et al., 2018) only achieves stronger results than our method on the

MRPC and SICK tasks. The MTL model uses 124M training examples with an elabo-

rate multi-task setup, training on 45M sentences with manual translation, 1M pairs from

SNLI/MNLI, 4M parse trees of sentences, and 74M consecutive sentence pairs. The model

also fine-tunes word embeddings in order to achieve a higher capacity. It is therefore re-

markable that our model outperforms it on many tasks. Besides, MTL is not a direct com-

petitor to our approach since its main contribution is its multi-task setup, and it could benefit

from using our training examples.
6This dataset is composed of questions only, which are underrepresented in our training data.



6 – Mining Discourse Markers for Unsupervised Sentence Representation Learning 94

Our best model rivals (and indeed often outperforms) QuickThought on all tasks, except

relatedness (SICK-R). QuickThought’s training task is to predict whether two sentences

are contiguous, which might incentivize the model to perform well on a relatedness task.

We also outperform InferSent on many tasks except entailment and relatedness. Entailment

prediction is the explicit training signal for Infersent.

To help the analysis of our different model variations, table 6.9 displays the test scores on

each dataset for the original training task. It also shows the related PDTB implicit relation

prediction scores. The PDTB is annotated with a hierarchy of relations, with 5 classes at

level 1 (including the EntRel relation), and 16 at level 2 (with one relation absent from the

test). It is interesting to see that this form of simple semi-supervised learning for implicit

relation prediction performs quite well, especially for fine-grained relations, as the best

model slightly beats the best current dedicated model, listed at 40.9% in Xue et al. (2017).

This is notable since direct transfer from explicit to implicit cases was not thought to be

useful (Sporleder and Lascarides, 2008) without filtering or domain adaptation (Rutherford

and Xue, 2015).

BShift CoordInv Depth ObjNum SubjNum OddM Tense TC WC AVG

InferSent 56.5 65.9 37.5 79.9 84.3 53.2 87 78.1 95.2 70.8
SkipThought 69.5 69 39.6 83.2 86.2 54.5 90.3 82.1 79.6 72.7
QuickThought 56.8 70 40.2 79.7 83 55.3 86.2 80.7 90.3 71.4
DiscoveryBase 63.1 70.6 45.2 83.8 87.2 57.3 89.1 83.2 94.7 74.9
DiscoveryHard 62.7 70.4 44.5 83.4 88.1 57.3 89.5 82.8 94.1 74.8
Discovery10 61.3 69.7 42.9 81.8 86.7 55.8 87.8 81.4 96.1 73.7
DiscoveryAdv 61.5 70 43.9 82.6 86.2 56.2 89.1 82.8 96.1 74.3
DiscoveryShuffled 62.6 71.4 45.3 84.3 88 58.3 89.3 82.8 93.4 75
DiscoveryBig 63.3 71.4 46.0 84.1 87.8 57.1 89.4 84.2 96 75.5

Table 6.7 – Accuracy of various models on linguistic probing tasks using logistic regres-
sion on SentEval. BShift is detection of token inversion. CoordInv is detection of clause
inversion. ObjNum/SubjNum is prediction of the number of object resp. subject. Tense
is prediction of the main verb tense. Depth is prediction of parse tree depth. TC is de-
tection of common sequences of constituents. WC is prediction of words contained in the
sentence. OddM is detection of random replacement of verbs/nouns by other verbs/nouns.
AVG is the average score of those tasks for each model. For more details see Conneau et al.
(2018a). SkipThought and Infersent results come from Perone et al. (2018), QuickThought
results come from Brahma (2018).
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DiscoveryHard scores lower on its training task than DiscoveryBase, and it also performs

worse on transfer learning tasks. This makes sense, since lexical features are important to

solve the evaluation tasks. Our initial hypothesis was that more difficult instances might

force the model to use higher-level reasoning, but this does not seem to be the case. More

surprisingly, preventing the encoders to use the relationship between sentences, as in Dis-

coveryShuffled, does not substantially hurt the transfer performance, which remains on

average higher than Nie et al. (2019). Additionally, our models score well on linguis-

tic probing tasks. They outperform Infersent on all tasks, which seems to contradict the

claim that SNLI data allows for learning of universal sentence representations (Conneau

and Bordes, 2017). And a final interesting outcome is that the diversity of markers (e.g.

using DiscoveryBase instead of Discovery10) seems to be important for good performance

on those tasks, since Discovery10 has the worst overall performance on average.

name N task C

MR 11k sentiment (movie reviews) 2
CR 4k sentiment (product reviews) 2
SUBJ 10k subjectivity/objectivity 2
MPQA 11k opinion polarity 2
TREC 6k question-type 6
SST 70k sentiment (movie reviews) 2
SICK-E 10k entailment 3
SICK-R 10k relatedness 3
MRPC 4k paraphrase detection 2
PDTB5 17k implicit discourse relation (coarse) 5
PDTB16 17k implicit discourse relation (fine) 15

Table 6.8 – Transfer evaluation tasks. N is the number of training examples and C is number
of classes for each task.

6.3.3 Visualisation

The softmax weights learned during the training phase can be interpreted as embeddings for

the markers themselves, and used to visualize their relationships. Figure 6-9 shows a TSNE

(van der Maaten and Hinton, 2008) plot of the markers’ representations. Proximity in the

feature space seems to reflect semantic similarity (e.g. usually/normally). In addition, the
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PDTB5

coarse
PDTB16

fine
T

InferSent 46.7 34.2 -
DisSent 48.9 36,9 -
DiscoveryBase 52.5 40.0 20.6
DiscoveryHard 50.7 39.8 9.3
Discovery10 48.3 37.7 51.9
DiscoveryAdv 49.7 37.6 26.1
DiscoveryShuffled 51.0 39.5 11.5
DiscoveryBig 51.3 41.3 22.2

Table 6.9 – Test results (accuracy) on implicit discursive relation prediction task (PDTB
relations level 1 and 2, i.e coarse-grained and fine-grained) and training tasks T . Note that
scores for T are not comparable since the test set changes for each version of the dataset.

markers we discovered, colored in red, blend with the PDTB markers (depicted in black).

It would be interesting to cluster markers in order to empirically define discourse relations,

but we leave this for future work.

6.4 Conclusion

In this chapter, we introduced a novel and efficient method to automatically discover dis-

course markers from text, and we use the resulting set of candidate markers for the con-

struction of an extensive dataset for semi-supervised sentence representation learning. A

number of dataset variations are evaluated on a wide range of transfer learning tasks (as

well as implicit discourse recognition) and a comparison with existing models indicates

that our approach yields state of the art results on the bulk of these tasks. Additionally, our

analysis shows that removing ‘simple’ examples is detrimental to transfer results, while

preventing the model to exploit the relationship between sentences has a negligible effect.

This leads us to believe that, even though our approach reaches state of the art results, there

is still room for improvement: models that adequately exploit the relationship between sen-

tences would be better at leveraging the supervision of our dataset, and could yield even

better sentence representations. In future work, we also aim to increase the coverage of

our method. For instance, we can make use of more lenient patterns that capture an even
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Figure 6-9 – TSNE visualization of the softmax weights from our DiscoveryBig model for
each discourse marker, after unit norm normalization. Markers discovered by our method
(e.g. absent from PDTB annotations) are colored in red.

wider range of discourse markers, such as multi-word markers. Training signals are key to

general natural language understanding, but they go in pair with evaluation, and in the next

chapter we will show that discourse based evaluation highlights the potential of Discovery

even more.
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CHAPTER 7

DISCOURSE-BASED EVALUATION OF LANGUAGE

UNDERSTANDING

7.1 Motivation

Over the last year, novel models for natural language understanding (NLU) have made a

remarkable amount of progress on a number of widely accepted evaluation benchmarks.

The GLUE benchmark (Wang et al., 2018), for example, was designed to be a set of chal-

lenging NLU tasks, such as question answering, sentiment analysis, and textual entailment;

yet, current state of the art systems surpass human performance estimates on the average

score of its subtasks (Yang et al., 2019). Similarly, the NLU subtasks that are part of the

SentEval framework, a widely used benchmark for the evaluation of sentence-to-vector en-

coders, are successfully dealt with by current neural models, with scores that exceed the

90% mark.1

The impressive results on these benchmarks might lead one to believe that natural lan-

guage understanding is largely a solved problem. Based on the resulting performance on

the above-mentioned benchmarks, a considerable number of researchers has even put for-

1http://nlpprogress.com/english/semantic_textual_similarity.html

http://nlpprogress.com/english/semantic_textual_similarity.html
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ward the claim that their models induce universal representations (Cer et al., 2018a; Kiros

and Chan, 2018; Subramanian et al., 2018; Wieting et al., 2015; Liu et al., 2019). It is im-

portant to note, however, that benchmarks like SentEval and GLUE are primarily focusing

on semantic aspects, i.e. the literal and uncontextualized content of text. While the seman-

tics of language is without doubt an important aspect of language, we believe that a single

focus on semantic aspects leads to an impoverished model of language.

For a versatile model of language, other aspects of language, viz. pragmatic aspects,

equally need to be taken into account. Pragmatics focuses on the larger context that sur-

rounds a particular textual instance, and they are central to meaning representations that

aspire to lay a claim to universality. Consider the following utterance:

(1) You’re standing on my foot.

The utterance in (1) has a number of direct implications that are logically entailed by the

utterance above, such as the implication that the hearer is standing on a body part of the

speaker, and the implication that the speaker is touching the hearer. But there are also more

indirect implications, that are not literally expressed, but need to be inferred from the con-

text, such as the implication that the speaker wants the hearer to move away from them.

The latter kind of implication, that is indirectly implied by the context of an utterance, is

called implicature—a term coined by Grice (1975). In real world applications, recogniz-

ing the implicatures of a statement is arguably more important than recognizing its mere

semantic content.

The implicatures that are conveyed by an utterance are highly dependent on its illocutionary

force (Austin, 1975). In Austin’s framework, the locution is the literal meaning of an

utterance, while the illocution is the goal that the utterance tries to achieve. When we

restrict the meaning of (1) to its locution, the utterance is reduced to the mere statement that

the hearer is standing on the speaker’s foot. However, when we also take its illocution into

account, it becomes clear that the speaker actually formulates the request that the speaker

step away. The utterance’s illocution is clearly an important part of the entire meaning of
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the utterance, that is complementary to the literal content (Green, 2000).2

The example above makes clear that pragmatics is a fundamental aspect of the meaning of

an utterance. Semantics focuses on the literal content of utterances, but not on the kind of

goal the speaker is trying to achieve. Pragmatic (i.e. discourse-based) tasks focus on the ac-

tual use of language, so a discourse-centric evaluation could by construction be a better fit

to evaluate how NLU models perform in practical use cases, or at least should be used as a

complement to semantics-focused evaluations benchmarks. Ultimately, many use cases of

NLP models are related to conversation with end users or analysis of structured documents.

In such cases, discourse analysis (i.e. the ability to parse high-level textual structures that

take into account the global context) is a prerequisite for human level performance. More-

over, standard benchmarks often strongly influence the evolution of NLU models, which

means they should be as exhaustive as possible, and closely related to the models’ end use

cases.

In this work, we compile a list of 11 discourse-focused tasks that are meant to complement

existing benchmarks. We propose: (i) A new evaluation benchmark, named DiscEval,

which we make publicly available.3 (ii) Derivations of human accuracy estimates for some

of the tasks. (iii) Evaluation on these tasks of state of the art generalizable NLU model,

viz. BERT, alongside BERT augmented with auxiliary finetunings. (iv) New comparisons

of discourse-based and Natural Language Inference based training signals showing that the

most widely used auxiliary finetuning dataset, viz. MNLI, is not the best performing on

DiscEval, which suggests a margin for improvements.

2In order to precisely determine their illocution, utterances have been categorized into classes called
speech acts (Searle et al., 1980), such as ASSERTION, QUESTION or ORDER which have different kinds of
effects on the world. For instance, constative speech acts (e.g. the sky is blue) describe a state of the world
and are either true or false while performative speech acts (e.g. I declare you husband and wife) can change
the world upon utterance (Austin, 1975).

3https://github.com/disceval/DiscEval

https://github.com/disceval/DiscEval
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7.2 Related Work

Evaluation methods of NLU have been the object of heated debates since the proposal of

the Turing Test. Automatic evaluations relying on annotated datasets are arguably lim-

ited but they became a standard. They can be based on sentence similarity (Agirre et al.,

2012), leveraging human annotated scores of similarity between sentence pairs. Predicting

similarity between two sentences requires some representation of their semantic content

beyond their surface form, and sentence similarity estimation tasks can potentially encom-

pass many aspects, but it is not clear how humans annotators weight semantic, stylistic, and

discursive aspects while rating.

Using a set of more focused and clearly defined tasks has been a popular approach. Kiros

et al. (2015) proposed a set of tasks and tools for sentence understanding evaluation. These

13 tasks were compiled in the SentEval (Conneau and Bordes, 2017) evaluation suite de-

signed for automatic evaluation of pre-trained sentence embeddings. SentEval tasks are

mostly based on sentiment analysis, semantic sentence similarity and natural language in-

ference. Since SentEval evaluates sentence embeddings, the users have to provide a sen-

tence encoder that is not finetuned during the evaluation.

GLUE (Wang et al., 2018) proposes to evaluate language understanding with less con-

straints than SentEval, allowing users not to rely on explicit sentence embedding based

models. They compile 9 classification or regression tasks that are carried out for sentences

or sentence pairs. 3 tasks are semantic similarity, and 4 tasks are based on NLI.

NLI can be regarded as a universal framework for evaluation. In the Recast framework

(Poliak et al., 2018a), existing datasets (e.g. sentiment analysis) are formulated as NLI

tasks. For instance, based on the sentence don’t waste your money, annotated as a negative

review, they use handcrafted rules to generate the following example: (PREMISE: When

asked about the product, liam said ”don’t waste your money” , HYPOTHESIS: Liam didn’t

like the product, LABEL: entailment). However, the generated datasets prevent the evalua-

tion to measure directly how well a model deals with the semantic phenomena present in

the original dataset, since some sentences use artificially generated reported speech. Thus,
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NLI data could be used to evaluate discourse analysis, but it is not clear how to generate

examples that are not overly artificial. Moreover, it is unclear to what extent instances in

existing NLI datasets need to deal with pragmatic aspects (Bowman, 2016).

SuperGLUE (Wang et al., 2018) updates GLUE with six novel tasks that are selected to be

even more challenging. Two of them deal with contextualized lexical semantics, two tasks

are a form of question answering, and two of them are NLI problems. One of those NLI

tasks, CommitmentBank (de Marneffe et al., 2019), is the only explicitly discourse-related

task.

Another effort towards evaluation of general purpose NLP systems is DecaNLP (McCann

et al., 2018). The 10 tasks of this benchmarks are all framed as question answering. For

example, a question answering task is derived from a sentiment analysis task using artificial

questions such as Is this sentence positive or negative?. Four of these tasks deal with se-

mantic parsing, and other tasks include NLI and sentiment analysis. Discourse phenomena

can be involved in some tasks (e.g. the summarization task) although it is hard to assess to

what extent.

Discourse relation prediction has punctually been used for sentence representation learn-

ing evaluation, by Nie et al. (2019) which we followed in chapter 6, but it consisted in

only one dataset (viz. the PDTB (Prasad et al., 2008)), which we included in our bench-

mark. Discourse for evaluation has also been considered in the field of machine translation.

Läubli et al. (2018) showed that neural models achieve superhuman results on sentence-

level translations but that current models yield underwhelming results when considering

document-level translations, also making a case for discourse-aware evaluations.

Other evaluations, such as linguistic probing or GLUE diagnostics (Conneau et al., 2018a;

Belinkov and Glass, 2019; Wang et al., 2019c), focus on an internal understanding of what

is captured by the models (e.g. syntax, lexical content), rather than measuring performance

on external tasks, and are outside the scope of this work, while providing a complementary

viewpoint.



7 – Discourse-Based Evaluation of Language Understanding 104

dataset categories exemple class Ntrain

PDTB discourse relation “it was censorship”/“it was outrageous” conjunction 13k
STAC discourse relation “what ?”/“i literally lost” question-answer-pair 11k
GUM discourse relation “Do not drink”/“if underage in your country” condition 2k
Emergent stance “a meteorite landed in nicaragua.”/“small meteorite hits managua” for 2k
SwitchBoard speech act “well , a little different , actually ,” hedge 19k
MRDA speech act “yeah that ’s that ’s that ’s what i meant .” acknowledge-answer 14k
Persuasion E/S/S/R “Co-operation is essential for team work”/“lions hunt in a team” low specificity 0.6k
SarcasmV2 sarcasm presence “don’t quit your day job”/“[...] i was going to sell this joke. [...]” sarcasm 9k
Squinky I/I/F “boo ya.” uninformative, high implicature, unformal 4k
Verifiability verifiability “I’ve been a physician for 20 years.” verifiable-experiential 6k
EmoBank V/A/D “I wanted to be there..” low valence, high arousal, low dominance 5k

Table 7.1 – DiscEval classification datasets. Ntrain is the number of examples in the
training set. E/S/S/R denotes Eloquence/Strength/Specificity/Relevance; I/I/F is Informa-
tion/Implicature/Formality ; V/A/D denotes Valence/Arousal/Dominance

7.3 Proposed Tasks

Our goal is to compile a set of diverse discourse-related tasks. We restrict ourselves to

classification either of sentences or sentence pairs and only use publicly available datasets

that are absent from other benchmarks (SentEval/GLUE/SuperGLUE).

The scores in our tasks are not all meant to be compared to previous work, since we alter

some datasets to yield more meaningful evaluations (we perform duplicate removal or class

subsampling when mentioned). We found these operations necessary in order to leverage

the rare classes and yield more meaningful scores. As an illustration, GUM initially con-

sists of more than 99% of unattached labels, and SwitchBoard contains 80% of statements.

We first present the tasks we selected, also described in table 7.1, and then propose a rudi-

mentary taxonomy of how they address different aspects of meaning.

PDTB The Penn Discourse Tree Bank (Prasad et al., 2014) contains a collection of fine-

grained implicit (i.e. not signaled by a discourse marker) relations between sentences from

the news domain in the Penn Discourse TreeBank 2.0. We select the level 2 relations as

categories.
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STAC (Strategic Conversation) is a corpus of strategic chat conversations manually an-

notated with negotiation-related information, dialogue acts and discourse structures in the

framework of Segmented Discourse Representation Theory (SDRT, Asher and Lascarides,

2003). We only consider pairwise relations between all dialog acts, following Badene et al.

(2019). We remove duplicate pairs and dialogues that only have non-linguistic utterances

(coming from the game server). We subsample dialog act pairs with no relation so that they

constitute 20% of each fold.

GUM (Zeldes, 2017) is a corpus of multilayer annotations for texts from various do-

mains; it includes Rhetorical Structure Theory (RST, ?) discourse structure annotations.

Once again, we only consider pairwise interactions between discourse units (e.g. sen-

tences/clauses). We subsample discourse units with no relation so that they constitute 20%

of each document. We split the examples in train/test/dev sets randomly according to the

document they belong to.

Emergent (Ferreira and Vlachos, 2016) is composed of pairs of assertions and titles of

news articles that are against, for, or neutral with respect to the opinion of the assertion.

SwitchBoard (Godfrey et al., 1992) contains textual transcriptions of dialogs about var-

ious topics with annotated speech acts. We remove duplicate examples and subsample

Statements and Non Statements so that they constitute 20% of the examples. We use a cus-

tom train/dev validation split (90/10 ratio) since our preprocessing leads to a drastic size

reduction of the original development set. The label of a speech act can be dependent on

the context (previous utterances), but we discarded it in this work for the sake of simplicity,

even though integration of context could improve the scores (Ribeiro et al., 2015).

MRDA (Shriberg et al., 2004) contains textual transcription of multi-party real meetings,

with speech act annotations. We remove duplicate examples. We use a custom train/dev

validation split (90/10 ratio) since this deduplication leads to a drastic size reduction of
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the original development set, and we subsample Statement examples so that they constitute

20% of the dataset. We also discarded the context.

Persuasion (Carlile et al., 2018) is a collection of arguments from student essays an-

notated with factors of persuasiveness with respect to a claim; considered factors are the

following: Specificity, Eloquence, Relevance and Strength. For each graded target, we cast

the ratings into three quantiles and discard the middle quantile.

SarcasmV2 (Oraby et al., 2016) consists of messages from online forums with responses

that may or may not be sarcastic according to human annotations.

Squinky dataset (Lahiri, 2015) gather annotations in Formality and Informativeness and

Implicature where sentences were graded on a scale from 1 to 7. They define the Implica-

ture score as the amount of not explicitly stated information carried in a sentence. For each

target, we cast the ratings into three quantiles and discard the middle quantile.

Verifiability (Park and Cardie, 2014) is a collection of online user comments anno-

tated as Verifiable-Experiential (verifiable and about writer’s experience) Verifiable-Non-

Experiential or Unverifiable.

EmoBank (Buechel and Hahn, 2017) aggregates emotion annotations on texts from var-

ious domains using the VAD representation format. The authors define Valence as cor-

responding to the concept of polarity4, Arousal as degree of calmness or excitement and

Dominance as perceived degree of control over a situation. For each target, we cast the

ratings into three quantiles and discard the middle quantile.

It has been argued by Halliday (1985) that linguistic phenomena fall into three metafunc-

tions: ideational for semantics, interpersonal for appeals to the hearer/reader, and textual

for form-related aspects. This forms the basis of discourse relation types by (Hovy and

4This is the dimension that is widely used in sentiment analysis.
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Maier, 1992) in which they are called semantic, interpersonal and presentational. DiscE-

val tasks cut across these categories, because some of the tasks integrate all aspects when

they characterize the speech act or discourse relation category associated to a discourse

unit (mostly sentences), an utterance or a pair of these. However, most discourse relations

involved focus on ideational aspects, which are thus complemented by tasks insisting on

more interpersonal aspects (e.g. using appeal to emotions, or verifiable arguments) that

help realizing speech act’s intentions. Finally, intentions can achieve their goals with vary-

ing degrees of success. This leads us to a rudimentary grouping of our tasks:

– The speech act classification tasks (SwitchBoard, MRDA) deal with the detection of the

intention of utterances. They use the same label set (viz. DASML, Allen and Core,

1997) but different domains and annotation guidelines. A discourse relation charac-

terizes how an utterance contributes to the coherence of a document/conversation (e.g

through elaboration or contrast), so this task requires a form of understanding of the use

of a sentence, and how a sentence fits with another sentence in a broader discourse. Here,

three tasks (PDTB, STAC, GUM) deal with discourse relation prediction with varying

domains and formalisms5. The Stance detection task can be seen as a coarse-grained

discourse relation classification.

– Detecting emotional content, verifiability, formality, informativeness or sarcasm is nec-

essary in order to figure out in what realm communication is occurring. A statement

can be persuasive, yet poorly informative and unverifiable. Emotions (Dolan, 2002) and

power perception (Pfeffer, 1981) can have a strong influence on human behavior and

text interpretation. Manipulating emotions can be the main purpose of a speech act as

well. Sarcasm is another means of communication and sarcasm detection is in itself a

straightforward task for evaluation of pragmatics, since sarcasm is a clear case of literal

meaning being different from the intended meaning.

– Persuasiveness prediction is a useful tool to assess whether a model can measure how

well a sentence can achieve its intended goal. This aspect is orthogonal to the determi-

nation of the goal itself, and is arguably equally important.

5These formalisms have different assumptions about the nature of discourse structure.
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7.4 Evaluations

7.4.1 Models

Our goal is to assess the performance of popular NLU models and the influence of various

training signals on DiscEval scores. We evaluate state of the art models and baselines on

DiscEval using the Jiant (Wang et al., 2019d) framework. Our baselines include average

of GloVe (Pennington et al., 2014) embeddings (CBoW) and BiLSTM with GloVe and

ELMo (Peters et al., 2018a) embeddings. We also evaluate BERT (Devlin et al., 2019) base

uncased models, and perform experiments with Supplementary Training on Intermediate

Labeled-data Tasks (STILT) (Phang et al., 2018). STILT is a further pretraining step on

a data-rich task before the final fine-tuning evaluation on the target task. STILTs can be

combined using multitask learning. We use Jiant default parameters6, and uniform loss

weighting when multitasking (a different task is optimized at each training batch).

We finetune BERT with four of such training signals:

MNLI (Williams et al., 2018a) is a collection of 433k sentence pairs manually annotated

with contradiction, entailment, or neutral relations. Finetuning with this dataset leads to

accuracy improvement on all GLUE tasks except CoLA (Phang et al., 2018).

DisSent data is from (Nie et al., 2019) introduced in section 4.2.4, consisting of 4.7M

sentences or clauses that were separated by a discourse marker from a list of 15 markers.

Prediction of discourse markers based of the context clauses/sentences with which they

occurred have been used as a training signal for sentence representation learning. Authors

used handcrafted rules for each marker in order to ensure that the markers actually signal a

form of relation. DisSent has underwhelming results on the GLUE tasks as a STILT (Wang

et al., 2019a).

6https://github.com/nyu-mll/jiant/blob/706b6521c328cc3dd6d713cce2587ea2ff887a17/
jiant/config/examples/stilts_example.conf

https://github.com/nyu-mll/jiant/blob/706b6521c328cc3dd6d713cce2587ea2ff887a17/jiant/config/examples/stilts_example.conf
https://github.com/nyu-mll/jiant/blob/706b6521c328cc3dd6d713cce2587ea2ff887a17/jiant/config/examples/stilts_example.conf
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Discovery (Sileo et al., 2019) is the dataset for discourse marker prediction that we intro-

duced in the previous chapter, composed of 174 discourse markers with 10k usage examples

for each marker. Sentence pairs were extracted from web data, and the markers come either

from the PDTB or from an heuristic automatic extraction.

DiscEval refers to all DiscEval tasks used in a multitask setup; we discard Persuasion

subtasks other than Strength (since other subtasks are factors for strength) and weight tasks

and subtasks identically otherwise.

7.4.2 Human accuracy estimates

For a more insightful comparison, we propose derivations of human accuracy estimates

from the datasets we used.

The authors of SarcasmV2 (Oraby et al., 2016) dataset directly report 80% annotator accu-

racy compared to the gold standard. Prasad et al. (2014) report 84% annotators agreement

for PDTB 2.0, which is a lower bound of accuracy. GUM (Zeldes, 2017) authors report at-

tachment accuracy of 87.22% and labelling accuracy of 86.58% as compared to the ’gold

standard’ after instructor adjudication. We interleaved attachment and labelling in our

task. Assuming human annotators never predict the non-attached relation, 69.3% is a lower

bound for human accuracy. Authors of the Verifiability (Park and Cardie, 2014) dataset

report an agreement κ = 0.73 which yields an agreement of 87% given the classes dis-

tribution which is a lowerbound of human accuracy. We estimated human accuracy on

EmoBank (Buechel and Hahn, 2017) with the intermediate datasets provided by the au-

thors. For each target (V,A,D) we compute the average standard deviation, and compute

the probability (under normality assumption) of each example rating of falling under the

wrong category.

Unlike the GLUE benchmark (Nangia and Bowman, 2019), we do not yet provide human

accuracy estimates obtained in a standardized way. The high number of classes would

make that process rather more difficult. But these estimates are still useful even though
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they should be taken with a grain of salt.

7.4.3 Overall Results

PDTB STAC GUM Emergent SwitchB. MRDA Persuasion Sarcasm Squinky Verif. EmoBank

CBoW 27.4 32 20.5 59.7 3.8 0.7 70.6 61.1 75.5 74 64
BiLSTM 25.9 27.7 18.5 45.6 3.7 0.7 62.6 63.1 72.1 74 63.5
BiLSTM+ELMo 27.5 33.5 18.9 55.2 3.7 0.7 67.4 68.9 82.5 74 66.9

BERT 48.8 48.2 40.9 79.2 38.8 22.3 74.8 77.1 87.5 86.7 76.2
BERT+MNLI 49.1 49.1 42.8 81.2 38.1 22.7 71.7 73.4 88.2 86 76.3
BERT+DiscEval 49.1 57.1 42.8 80.2 40.3 23.1 76.2 75 87.6 85.9 76
BERT+DisSent 49.4 49 43.9 79.8 39.2 22 74.7 74.9 87.5 85.9 76.2
B+DisSent+MNLI 49.6 49.2 44.2 80.9 39.8 22.1 74 74.1 87.6 85.6 76.4
BERT+Discovery 50.7 49.5 42.7 81.7 39.5 22.4 71.6 76.7 88.6 86.3 76.6
B+Discovery+MNLI 51.3 49.4 43.1 80.7 40.3 22.2 73.6 75.1 88.9 86.8 76
Human estimate 84.0 - 69.3 - - - - 80.0 - 87.0 73.1

Table 7.2 – Transfer test scores across DiscEval tasks; We report the average when
the dataset has several classification tasks (as in Squinky, EmoBank and Persuasion);
B(ERT)+X refers to BERT pretrained classification model after auxiliary finetuning phase
on taskX . All scores are accuracy scores except SwitchBoard/MRDA (which are macro-F1
scores)

Task-wise results are presented in table 7.2. We report the average scores of 6 runs of

STILT and finetuning phases.

DiscEval seem to be challenging even to BERT base model, which has shown strong per-

formance on GLUE (and vastly outperform the baselines on our tasks). For many tasks,

there is a STILT that significantly improves the accuracy of BERT. The gap between hu-

man accuracy and BERT model is particularly high on implicit discourse relation prediction

(PDTB and GUM). This task is known as hard, and previous work has shown that task ded-

icated models are not yet on par with human performance (Morey et al., 2017). Pretraining

on MNLI worsens the DiscEval average score for BERT base model. A lower sarcasm

detection score could indicate that BERT+MNLI has more focus on the literal content of

statements, even though no STILT improves sarcasm detection. All models score below

human accuracies, with the exception of emotion classification (but only for the valence

classification subtask).
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Table 7.3 shows aggregate results alongside comparisons with GLUE scores. The best

overall unsupervised result is achieved with Discovery STILT. Combining Discovery and

MNLI yields both a high DiscEval and GLUE score, and also yields a high GLUE diagnos-

tics score. All discourse based STILT improve GLUE score, while MNLI does not improve

DiscEval average score. DiscEval tasks based on sentence pairs seem to account for the

variance across STILTs.

MNLI has been suggested as a good default auxiliary training task based on evaluation

on GLUE (Phang et al., 2018) and SentEval (Conneau and Bordes, 2017). However, our

evaluation suggests that finetuning a model with MNLI alone has significant drawbacks.

More detailed results for datasets with several subtasks are shown in table 7.4. We note

that MNLI STILT significantly decreases relevance estimation performance (on BERT base

and while multi-tasking with DisSent). Many models surpass the human estimate at valence

prediction, a well studied task, but interestingly it’s not the case for Arousal and Dominance

prediction.

DiscEvalAVG D.E.-PairsAVG D.E.-SingleAVG GLUEAVG GLUEdiagnostics

BERT 61.8±.4 57.9±.5 62.3±.3 74.7±.2 31.7±.3
BERT+MNLI 61.7±.5 57.2±.5 62.2±.4 77.0±.2 32.5±.6
BERT+DiscEval MTL 63.0±.4 60.0±.4 62.6±.2 75.3±.2 31.6±.3
BERT+DisSent 62.0±.4 58.4±.4 62.2±.3 75.1±.2 31.5±.3
B+DisSent+MNLI 62.1±.4 58.2±.4 62.3±.2 76.6±.1 32.4±.0
BERT+Discovery 62.4±.3 58.2±.4 62.7±.3 75.0±.2 31.3±.2
B+Discovery+MNLI 62.5±.4 58.5±.5 62.8±.3 76.6±.2 33.3±.2

Table 7.3 – Aggregated transfer test accuracies across DiscEval and compari-
son with GLUE validation downstream and diagnostic tasks (GLUE diagnostic
tasks evaluate NLI performance under presence of linguistic phenomena such as
negation, quantification, use of common sense); BERT+X refers to BERT pre-
trained classification model after auxiliary finetuning phase on task X ; D.E.-
PairsAV G is the average of DiscEval sentence pair classification tasks.

The categories of our benchmark tasks cover a broad range of discourse aspects. The

overall accuracies only show a synthetic view of the tasks evaluated in DiscEval. Some

datasets contain many subcategories that allow for a fine grained analysis through a wide

array of classes (viz. 51 categories for MRDA). Table 7.5 shows a fine grained evaluation

which yields some insights on the capabilities of BERT. We report the 6 most frequent



7 – Discourse-Based Evaluation of Language Understanding 112

Persuasiveness EmoBank Squinky
Eloquence Relevance Specificity Strength Valence Arousal Dom. Inf. Implicature Formality

BERT 75.6 63.5 81.6 78.3 87.1 72 69.5 92.2 72.1 98.3
BERT+MNLI 74.7 57.5 82.3 72.2 86.6 72.4 69.9 92.5 73.9 98.1
BERT+DiscEval 75.6 64 83.2 82.0 86.8 71.9 69.2 92.3 71.8 98.6
BERT+DisSent 73.8 63 82.6 79.5 87.1 71.4 70.1 92.6 72 97.7
B+DisSent+MNLI 76.9 61.5 83.9 73.9 87.6 72.1 69.4 91.5 73.4 97.9
BERT+Discovery 76 59.1 80.1 71.4 86.8 72.6 70.5 93.2 74.2 98.5
B+Discovery+MNLI 74.1 60.4 79.4 80.4 86.4 72.1 69.6 93.1 75.3 98.4

Human estimate - - - - 74.9 73.8 70.5 - - -

Table 7.4 – Transfer test accuracies across DiscEval subtasks (Persuasiveness, EmoBank,
Squinky) BERT+X refers to BERT pretrained classification model after auxiliary finetun-
ing phase on task X .

classes per task for conciseness sake. It is worth noting that the BERT models do not neglect

rare classes. These detailed results reveal that BERT+MNLI scores for discourse relation

prediction are inflated by good scores at predicting absence of relation (possibly close to

the neutral class in NLI), which is useful but not sufficient for discourse understanding.

The STILTs have complementary strengths even with given tasks, which can explain why

combining them is helpful. However, we used a quite simplistic multitasking setup and

efficient combination of the tasks remains an open problem.

7.5 Conclusion

We proposed DiscEval, a set of discourse related evaluation tasks, and used them to eval-

uate BERT finetuned on various auxiliary finetuning tasks. The results lead us to rethink

the efficiency of mainly using NLI as an auxiliary training task. DiscEval can be used for

training or evaluation in general NLU or discourse related work. Much effort has been de-

voted to NLI for training and evaluation for general purpose sentence understanding, but we

just scratched the surface of the use of discourse oriented tasks. In further investigations,

we plan to use more general tasks than classification on sentence or pairs, such as longer

and possibly structured sequences. Several of the datasets we used (MRDA, SwitchBoard,

GUM, STAC) already contain such higher level structures. In addition, a more inclusive
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BERT B+MNLI B+DisSent B+Discovery B+DiscEval Support

GUM.no relation 48.9 51.0 46 45.4 43.3 48
GUM.circumstance 77.1 80.6 73.2 77.8 74.6 35
GUM.elaboration 41.5 38.5 40 46.1 42.9 32
GUM.background 22.6 25.3 34.3 38.2 35.8 23
GUM.evaluation 20.4 22.6 36.8 29.9 35.1 20
STAC.no relation 59.9 63.8 55.4 61.3 46.9 117
STAC.Comment 77.8 76.1 74.9 78.6 54.4 115
STAC.Question answer pair 79.1 80.1 83.3 76.9 83 93
STAC.Q Elab 32.1 34.3 32 38.1 63.7 86
STAC.Contrast 29.6 37.4 25.9 27.5 49.9 53
SwitchBoard.Uninterpretable 86 86 85.5 86.1 86.3 382
SwitchBoard.Statement-non-opinion 72 72.1 72.4 72.4 72.4 304
SwitchBoard.Yes-No-Question 85.9 85.2 85.5 85.9 85.8 303
SwitchBoard.Statement-opinion 46.3 46.3 48.6 48.8 49.5 113
SwitchBoard.Appreciation 73.5 71.1 70.2 71.7 72.9 108
PDTB.Cause 55.2 55.7 53.1 57.2 55.9 302
PDTB.Restatement 40.4 40 41.3 43.9 41 263
PDTB.Conjunction 52.8 53.9 52.1 53.3 52.5 262
PDTB.Contrast 45.8 49.0 47.2 48 46 172
PDTB.Instantiation 56.6 55.6 52.8 58.7 55.7 109
MRDA.Statement 51.2 51.8 48.9 53.4 51.4 364
MRDA.Defending/Explanation 52.8 54.1 55.3 52.8 52 166
MRDA.Expansions of y/n Answers 51.7 48.7 50.3 49.6 49.4 139
MRDA.Offer 48.6 46.9 50.7 49.4 49.4 102
MRDA.Rising Tone 39.3 40.1 40.3 40.7 38.8 98

Table 7.5 – Transfer F1 scores across the categories of DiscEval tasks; B(ERT)+X denotes
BERT pretrained classification model after auxiliary finetuning phase on task X .

comparison with human annotators on discourse tasks could also help to pinpoint the weak-

nesses of current models dealing with discourse phenomena. Yet another step would be to

study the correlations between performance metrics in deployed NLU systems and scores

of the automated evaluation benchmarks (GLUE/DiscEval) in order to validate our claims

about the centrality of discourse.
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CHAPTER 8

REPURPOSING CLASSIFICATION DATASETS FOR

SEMANTIC ANALYSIS OF DISCOURSE MARKERS

8.1 Motivation

Discourse markers are a common language device used to make explicit the semantic and/or

pragmatic relationship between clauses or sentences. As we have seen in the two previous

chapters, pretraining with discourse marker prediction is a fruitful strategy for text rep-

resentation learning. We hypothesized that discourse markers can act as noisy labels for

relations or sentence types. In this chapter, we propose a method to actually verify that

hypothesis.

Several resources enumerate discourse markers and their use in different languages, either

in discourse marker lexicons (Knott, 1996; Stede, 2002; Roze et al., 2012; Das et al., 2018)

or in corpora annotated with discourse relations, such as the well-known English Penn

Discourse TreeBank (PDTB; Prasad et al., 2008), which inspired other efforts in Turkish,

Chinese and French (Zeyrek and Webber, 2008; Zhou et al., 2014; Danlos et al., 2015).

The PDTB identifies different types of discourse relation categories (such as conjunction

and contrast) and the respective markers that frequently instantiate these categories (such
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as and and however, respectively), and organizes them in a three-level hierarchy. It must

be noted, however, that there is no general consensus on the typology of these markers

and their rhetorical functions. As such, theoretical alternatives to the PDTB exist, such

as RST (Carlson et al., 2001) or SDRT (Asher and Lascarides, 2003). Moreover, marker

inventories are by no means exhaustive, and the role of markers is not purely semantic, but

also depends on the grammatical, stylistic and pragmatic context of their use.

Meanwhile, there exist a number of NLP classification tasks (with associated datasets)

that equally consider the relationship between sentences or clauses, but with a set of re-

lations that is rather different in nature; these tasks focus on phenomena such as implica-

tion and contradiction (Bowman et al., 2015b), semantic similarity, or paraphrase (Dolan

et al., 2004). Furthermore, a number of tasks consider single sentence phenomena, such

as sentiment, subjectivity, and style. Such characteristics have been largely ignored for the

linguistic analysis and categorization of discourse markers per se, even though discourse

markers have been successfully used to improve categorization performance for these tasks

(Jernite et al., 2017; Nie et al., 2019; Pan et al., 2018a; Sileo et al., 2019). Specifically,

the afore-mentioned research shows that the prediction of discourse markers between pairs

of sentences can be exploited as a training signal that improves performance on existing

classification datasets. We build on these results, but we look at the task from a different

perspective: we make use of a model trained on discourse marker prediction in order to

predict plausible discourse markers between sentence pairs from existing datasets, which

are annotated with the correct semantic categories. Specifically, we explore the following

questions:

– which semantic categories are applicable to a particular discourse marker (e.g. is a

marker like but associated with other semantic categories than just mere contrast)?

– which discourse markers can be associated with the semantic categories of different

datasets (e.g. what are the most likely markers between two paraphrases)?

– to what extent do discourse markers differ between datasets with comparable seman-

tic categories (e.g. for two sentiment analysis datasets, one on films and one on
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product reviews, are the markers different)?

In order to answer the above-mentioned questions, we train a model for discourse marker

prediction between sentence pairs, using millions of examples. We then use this model

to predict markers between sentences whose semantic relationships have already been

annotated—for example, pairs of sentences (s1,s2,y) where y is in Paraphrase, Non-Paraphrase.

These predictions allow us to examine the relationship between each category y and the dis-

course markers that are most often predicted for that category.

Thus, we propose DiscSense, a mapping between markers and senses, that has several

applications:

– It explains why it is useful to employ discourse marker prediction as a training signal

for sentence representation learning

– The characterization of discourse markers with categories provides new knowledge

about the connotation of discourse markers; Our characterization is arguably richer

since it does not only use PDTB categories. For instance, our mapping shows that the

use of some markers is associated with negative sentiment or sarcasm; this might be

useful in writing-aid contexts, or as a resource for second language learners; it could

also be used to guide linguistic analyses of markers

– The characterization of categories with discourse markers can help “diagnosing” a

classification dataset; As shown in table 8.2 below, SICK/MNLI dataset categories

have different associations and our method can provide a sanity check for annota-

tions (e.g. a Contradiction class should be mapped to markers expected to denote a

contradiction)

8.2 Related work

Previous work has amply explored the link between discourse markers and semantic cate-

gories. Pitler et al. (2008b), for example, use the PDTB to analyze to what extent discourse
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markers a priori reflect relationship category. Asr and Demberg (2012) have demonstrated

that particular relationship categories give rise to more or less presence of discourse mark-

ers. And a recent categorization of discourse markers for English is provided in the DimLex

lexicon (Das et al., 2018).

As mentioned before, discourse markers have equally been used as a learning signal for

the prediction of implicit discourse relations (Liu et al., 2016; Braud and Denis, 2016)

and inference relations (Pan et al., 2018b). This work has been generalized by DiscSent

(Jernite et al., 2017), DisSent (Nie et al., 2019), and Discovery (Sileo et al., 2019) which

has been presented chapter 6 which use discourse markers to learn general representations

of sentences, which are transferable to various NLP classification tasks. However, none of

these examine the individual impact of markers on these tasks.

8.3 Experimental setup

8.3.1 Discourse marker corpus

In order to train a model to predict plausible discourse markers between sentence pairs, we

use the English Discovery (Sileo et al., 2019) presented in chapter 6, as it has the richest

set of markers. It is composed of 174 discourse markers with 20K usage examples for each

(sentence pairs where the second sentence begins by a given marker). Sentence pairs were

extracted from web data (Panchenko et al., 2017), and the markers come either from the

PDTB or from an automatic extraction method based on heuristics. An example of the

dataset is provided in (1).

(1) Which is best?
s1

Undoubtedly,
c

that depends on the person.
s2

For reasons of comparison, we equally use another dataset by Malmi et al. (2018) which

contains 20K usage examples for 20 markers extracted from Wikipedia articles (the 20

markers are a subset of the markers considered in the Discovery dataset); we call this
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dataset Wiki20.

We plan to use marker prediction on sentence pairs from classification datasets, in which

some sentence pairs cannot plausibly occur consecutively, for instance two entirely unre-

lated sentences. Therefore, we augment the Discovery dataset with non-consecutive sen-

tence pairs from the DepCC corpus, that were separated by 2 to 100 sentences. Besides, we

also want to predict markers beginning single sentences, so the first sentence of example

pairs is masked in 10% of cases by replacing it with a special symbol, which will be used as

a placeholder for predictions of single sentences as in the CR (Customer Reviews) dataset.

8.3.2 Classification datasets

We leverage classification datasets from DiscEval (see chapter 7), alongside GLUE classi-

fication tasks (see section 4.4.2 ) augmented with SUBJ, CR and SICK tasks from SentEval

(see section 4.4.1) in order to have a different domains for sentiment analysis and NLI. We

also map STS semantic similarity estimation task from GLUE/SentEval into a classification

task by casting the ratings into three quantiles and discarding the middle quantile.

8.3.3 Model

For our experiments, we make use of a state of the art NLP model for language understand-

ing, viz. BERT (Devlin et al., 2019),1 which is a text encoder pre-trained using language

modeling. The parameters are initialized with the pre-trained unsupervised base-uncased

model and then fine-tuned using the Adam (Kingma and Ba, 2014) optimizer with 2 iter-

ations on our corpus data, using default hyperparameters otherwise. We ran experiments

using BERT on both Discovery and Wiki20.

1https://github.com/huggingface/pytorch-pretrained-BERT/

https://github.com/huggingface/pytorch-pretrained-BERT/


8 – Repurposing Classification Datasets for Semantic Analysis of Discourse Markers 120

8.4 Results

8.4.1 Marker prediction accuracy

Table 8.1 shows the results of the different models on the prediction of discourse markers.

The accuracy of BERT on the Discovery test data is quite high given the large number of

classes (174, perfectly balanced) and sometimes their low semantic distinguishability. This

accuracy is significantly higher than the score of the Bi-LSTM model of the chapter 6 setup.

The BERT model finetuned on Discovery outperforms human performance reported on

Wiki20 with no other adaptation than discarding markers not in Wiki20 during inference.2

With a further step of fine-tuning (1 epoch on Wiki20), we also outperform the best model

from Malmi et al. (2018). These results suggest that the BERT+Discovery model captures

a significant part of the use of discourse markers; in the following section, we will apply it

to the prediction of discourse markers for individual categories.

Wiki20 Discovery

Majority Class 5.0 0.6
Human Raters 23.1 -
Decomposable Attention 31.8 -
Bi-LSTM - 22.2

BERT+Discovery 30.6 32.9
BERT+Discovery+Wiki20 47.6 -

Table 8.1 – Discourse marker prediction accuracy percentages on Wiki20 and Discovery
datasets. Human Raters and Decomposable Attention are from Malmi et al. (2018). Bi-
LSTM is from chapter 6 and the last two are ours as well.

8.4.2 Prediction of markers associated to semantic categories

For each semantic dataset, consisting of either annotated sentences (s1, y) or annotated sen-

tence pairs (s1,s2,y), where y is a category, we use the BERT+Discovery model to predict

the most plausible marker m in each example. The classification datasets thus yield a list

2But note that there is some overlap between training data since BERT pretraining uses Wikipedia text.
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marker category support confidence (prior)

unfortunately CR.neg 64 94.1 (36.2)
initially CR.neg 25 61.0 (36.2)
sadly SST2.neg 622 87.4 (44.2)
unfortunately SST2.neg 260 85.8 (44.2)
in contrast MNLI.contradiction 1138 73.4 (33.3)
curiously MNLI.contradiction 2835 70.6 (33.3)
technically SICKE.contradiction 28 39.4 (14.8)
only SICKE.contradiction 204 35.3 (14.8)
similarly MRPC.paraphrase 75 57.3 (67.7)
likewise MRPC.paraphrase 92 54.8 (67.7)
clearly PDTBf.Cause 50 56.8 (26.7)
additionally PDTBf.Conjunction 41 59.4 (22.5)
but PDTBf.Contrast 76 55.5 (12.4)
elsewhere PDTBf.List 38 15.3 (02.6)
specifically PDTBf.Restatement 78 65.0 (18.8)
seriously SARC.sarc 173 61.1 (49.9)
surely SARC.sarc 37 60.7 (49.9)

Table 8.2 – Categories and most associated markers. CR.neg denotes the negative class in
the CR dataset. Support is the number of examples where the marker was predicted given
a dataset. Confidence is the estimated probability of the class given the prediction of the
marker i.e. P (y|m). The prior is P (y).

of (y,m) pairs. We discard examples where no marker is predicted, and we discard mark-

ers that we predicted less than 20 times for a particular dataset. Table 8.2 shows a sample

of markers with the highest probability of P (y|m), i.e. the probability of a marker given

a class. An extended table, which includes a larger sample of significant markers for all

datasets included in our experiments, is available in appendix A.

The associations for some markers are intuitively correct (likewise denotes a semantic sim-

ilarity expected in front of a paraphrase, sadly denotes a negative feeling, etc.) and they

display a predictive power much higher than random choices. Other associations seem

more surprising at first glance, for example, seriously as a marker of sarcasm—although

on second thought, it seems a reasonable assumption that seriously does not actually sig-

nal a serious message, but rather a sarcastic comment on the preceding sentence. Gener-

ally speaking, we notice the same tendency for each class: our model predicts both fairly

obvious markers (unfortunately as a marker for negative sentiment, in contrast for con-

tradiction), but equally more inconspicuous markers (e.g. initially and curiously for the

same respective categories) that are perfectly acceptable, even though they might have
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sentence1 sentence2 marker

every act of god is holy because
god is holy .

every act of god is loving be-
cause god is love .

likewise,

it gives you a schizophrenic feel-
ing when trying to navigate a web
page .

it ’s just a bad experience . sadly,

the article below was published a
few months back .

there is all too much truth in this
.

sadly,

i do n’t think i can stop with the
exclamation marks ! ! !

this could be a problem ! ! ! ! seriously,

yesterday she was elevated to “
super stone whisperer “ when we
got out of the car and i heard , “
wait , found ’em “ .

5 minutes in the cemetery , it has
to be a record .

seriously,

i am glad you tried to explain
your viewpoint .

i can tell you put some effort into
that .

seriously,

ayite , think of link building as
brand building .

there are no shortcuts . unfortunately,

does it make sense to you ? i am still struggling . unfortunately,
you will seldom meet new people
.

in medellin you will definitely
meet people .

in contrast,

if i burn a fingertip , i ’ll moan all
night .

it did n’t look too bad . initially,

he puncture is about the size of a
large pea .

he can see almost no blood . curiously,

Table 8.3 – Examples of the Discovery datasets illustrating various relation senses

been missed by (and indeed are not present in) a priori approaches to discourse marker

categorization. The associations seem to vary across domains (e.g. between CR and SST2)

but some markers (e.g. unfortunately) seem to have more robust associations than others.

Table ?? provides some Discovery samples where the marker are used accordingly.

On a related note, it is encouraging to see that the top markers predicted on the implicit

PDTB dataset are similar to those present in the more recent English-DimLex lexicon

which annotates PDTB categories as senses for discourse markers (Das et al., 2018).

This indicates that our approach is able to induce genuine discourse markers for discourse

categories that coincide with linguistic intuitions; however, our approach has the advantage

to lay bare less obvious markers, that might easily be overlooked by an a priori categoriza-
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tion.

8.5 Conclusion

Based on a model trained for the prediction of discourse markers, we have established links

between the categories of various semantically annotated datasets and discourse markers.

Compared to a priori approaches to discourse marker categorization, our method has the

advantage to reveal more inconspicuous but perfectly sensible markers for particular cate-

gories. The resulting associations can straightforwardly be used to guide corpus analyses,

for example to define an empirically grounded typology of marker use. More qualitative

analyses would be needed to elucidate subtleties in the most unexpected results. In further

work, we plan to use the associations we found as a heuristic to choose discourse markers

whose prediction is the most helpful for transferable sentence representation learning.
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CHAPTER 9

CONCLUSION

The field of general purpose text representation has gained significant traction over the last

few years. In this thesis, we took a step back and critiqued this progress on two com-

plementary angles. We argued that expressive compositions are a condition of possibility

of natural language understanding, and we framed pragmatics understanding as one of its

goal.

9.1 Importance of composition

We show that analysing composition more thoroughly with criteria such as asymmetry or

possibility of strong interaction has been overlooked. The heuristic matching composition

and SentEval are still routinely used as of end of 2019, so this analysis is still relevant.

The trend of transformers and integrated multi-level composition seems promising, but

recent work (Shwartz and Dagan, 2019; Nandakumar et al., 2019) shows that the problem

of lexical composition is still far from being solved.
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9.2 Integration of pragmatics

Discourse and pragmatics are well established topics in NLP, but we found this importance

not to carry over into the paradigm of generalisable natural language language understand-

ing and evaluation.

Our three contributions on discourse are closely linked and oriented towards that goal.

DiscEval reveals strengths of Discovery, but by doing so Discovery reveals the importance

of DiscEval, because of the gap between previous versions of BERT and BERT+Discovery,

it actually discloses the room of improvement for these previous models. On the other hand,

DiscSense is made possible both Discovery and DiscEval, but also draws a link between

them, and yields an interpretation of the performance of the Discovery dataset.

We proposed practical and publicly available resources for the integration of pragmatics

into state of the art systems. Their adoption could allow a more comprehensive view on

these systems and impact real use cases. Discovery English dataset and marker extraction

method has been used in state of the art NLP (Sun et al., 2019).

9.3 Future work

Whether representations should be focused towards semantics or pragmatics is an interest-

ing question, but it is arguable that current representations are mostly reliant of low level

statistical cues (McCoy et al., 2019; Niven and Kao, 2019) that constitute neither semantic

nor pragmatics understanding yet.

Many open problems remain, such as the evaluation of understanding as more complex

structures than just shallow parsing. This evaluation could incentivize the need of more

complex training data as well. Discovery could be easily extended to broader context (e.g.

prediction of marker m in sentences sequences s1, s2,m, s3, s4). In addition, it would be

worthwhile to investigate whether pragmatics integration can emphasize bias in the learned

representation (May et al., 2019), since it relies on presuppositions.
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CHAPTER 10

RÉSUMÉ LONG

10.1 Introduction

De nombreuses tâches de l’intelligence artificielle impliquent l’exploitation d’un texte par

un modèle pour résoudre diverses taches (analyse de sentiment (figure10-1b), détection

de similarité (figure10-1b), agent conversationnel (figure10-1c).) La figure 10-1 illustre

certaines d’entre elles.

L’accomplissement de ces multiples tâches implique en partie la résolution des mêmes

sous-problèmes inhérents au texte : représenter les mots, les composer en prenant en

compte notamment la syntaxe et les idiomes, interpréter le contenu des phrases en fonction

de ce que le contexte et le sens commun rendent vraisemblable. Une tendance de plus en

plus répandue consiste à décomposer les modèles en deux parties :

– un modèle dédié aux problèmes récurrents de la compréhension du texte, qui renvoie

des primitives réutilisables (représentations vectorielles, fonctions), et qui peut être

appelé encodeur de texte

– un modèle plus spécialisé, dédié à l’apprentissage des particularités de la tâche (typ-

iquement une régression logistique qui pondère les primitives réutilisables).
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système 
TALN

sortie (classe, texte, scalaire...)

entréé (text)

(a)

“Ma souris ne marche pas :(”

analyse de 
sentiment

y ∈ {positif,négatif}

(b)

agent 
conversationnel

y ∈ {“L’avez vous branchée?”} U textes

“Ma souris ne marche pas :(”

(c)

estimation de 
similarité

y ∈ {similaire,dissimilaire}

“Ma souris ne 
marche pas :(”

“Mon pointeur de 
souris est bloqué!”

(d)

inférence en 
langage 
naturel

y ∈ {contradiction, implication, neutre}

“Ma souris ne 
marche pas :(”

“un périphérique 
dysfonctionne”

(e)

prédiction de 
relation 

discursive

y ∈ {cause,contraste, instantiation, ...}

“Ma souris ne 
marche pas”

“J’ai oublié de la 
brancher”

(f)

Figure 10-1 – Systèmes de traitement des langues pour plusieurs tâches

Un des avantages de cette décomposition est la possibilité d’utiliser un encodeur de texte

qui a déjà été entrainé sur une certaine tâche, ce qui facilite l’apprentissage d’autres tâches,

surtout si elles sont similaires. Cette pratique, appelée apprentissage par transfert con-

siste à utiliser une tâche source afin d’entrainer un modèle, puis de réutiliser le modèle

entrainé sur une tâche dite cible qui est celle que l’on a réellement besoin de résoudre. La

tâche source peut être vue comme un prétexte pour que le modèle acquisse des capacités

intéressantes. Une analogie possible est l’utilisation de simulateur d’avions par des hu-

mains pour apprendre à piloter des avions dans le monde réel.
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L’utilisation d’une tâche source permet donc d’entrainer des modèles de représentation du

texte, qui peuvent être réutilisés pour mieux réaliser des taches cibles.

Des tâches dites sources se détachent par leur performance pour l’entrainement de représentations

réutilisables. Certaines d’entre elles sont non-supervisées, c’est à dire ne nécessitant pas

d’annotations réalisées par des humains, c’est le cas de la tâche de prédiction de mots

sachant un contexte (aussi appelée modèle de langue)

De la même manière, des tâches cibles ont été retenues pour l’évaluation de représentation

génériques de textes par la communauté du traitement automatique du language naturel

(TALN). Ces tâches sont regroupées dans des bancs d’évaluation tels que SentEval (Con-

neau and Bordes, 2017) ou GLUE (Wang et al., 2019b). Ces tâches incluent la similarité

sémantique, l’analyse de sentiment, l’inférence en langage naturel et la détection de para-

phrases.

Cela dit, ces tâches d’évaluation ont été choisies par la dynamique de la recherche en

TALN et pas directement en correspondance avec les utilisations monde réel. Pourtant,

ces jeux de données, SentEval et GLUE sont utilisés pour affirmer que des encodeurs de

texte produisent des représentations universelles du sens d’un texte.

Mais avant d’affirmer cela, il semble nécessaire de clarifier ce qu’on entend par le sens

d’un texte.

En philosophie du langage, deux aspects principaux se détâchent. L’aspect sémantique

du sens correspond à l’interprétation littérale d’un énoncé textuel ; des formules logiques

peuvent être tirées de cette interprétation, et ces formules peuvent être confrontées à l’état

du monde, ce qui peut permettre de qualifier la vérité d’un énoncé.

L’aspect pragmatique du sens est davantage lié à la finalité d’un énoncé : à quoi sert son

énonciation ? La phrase suivante : ex:piedfr Tu es sur mon pied. exprime plus que son

contenu littéral, par exemple une volonté d’écarter son interlocuteur de soi. Lorsqu’on

raisonne sur les finalités des énoncés, le sens commun et la complexité de la psychologie

humaine sont à prendre en compte. L’analyse du discours est une discipline qui fournit

des outils conceptuels pour analyser les aspects pragmatiques, de la même manière que la
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Figure 10-2 – Anatomie d’un encodeur d texte

logique permet de formaliser la sémantique.

L’examen des jeux d’évaluation existants semble montrer que les bancs d’évaluation sont

focalisés principalement sur la sémantique. Cela dit, quand bien même les données d’entrainement

et d’évaluation et d’entrainement seraient adaptés aux usages, cela ne suffirait pas à garan-

tir le succès de la production de représentations universelles, puisque de nombreux verrous

technologiques peuvent se situer notamment au niveau des capacités de généralisation des

modèles, et de l’expressivité des modèles, c’est-à-dire la capacité à résoudre des tâches.

Commençons donc par introduire brièvement les modèles sur lesquels on se base :

10.1.1 Modèles neuronaux pour le traitement des langues

Une méthode devenue la norme pour représenter des entrées textuelles consiste à diviser

un texte en unités élémentaires (e.g; mots, caractères), à représenter ces unités à l’aide

de représentations vectorielles, puis à composer ces représentations vectorielles, soit di-

rectement pour la résolution d’une tâche, soit pour produire une représentation de phrase

qui peut servir à estimer des similarités entre pharses, ou servir comme une entrée pour

finalement résoudre des tâches cibles. La figure 10-2 illustre cette chaı̂ne de traitement.

Le modèle de composition de séquence peut notamment être un réseau de neurones récurrents,
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un réseau convolutif ou un Transformer. Ce module compose les embeddings des unités

découpées dans le texte afin de produire une représentation vectorielle du texte. Ce sont

ces modèles qui conditionnent la capacité et l’expressivité des systèmes de TALN.

10.1.2 Contributions de la thèse

Cette thèse aborde un aspect de l’expressivité des modèles, puis s’attache à intégrer les as-

pects pragmatiques du langage dans l’entrainement et l’évaluation des modèles de compréhension

automatique du langage naturel. Le manuscrit de cette thèse s’articule autour de 4 articles

dont les contributions se focalisent sur la compréhension générale du language naturel.

La section10.2 questionne les compositions vectorielles utilisées dans les travaux dans le

cadre de la composition de représentation de phrases, et montre des failles dans des com-

positions répandues qui interviennent notamment dans l’évaluation des modèles. La sec-

tion 10.3 décrit la conception d’un jeu de données basé sur la prédiction de marqueurs de

discours nommé Discovery permettant d’améliorer l’entrainement des modèles neuronaux

de représentation de texte. La section 10.4 propose d’utiliser le discours pour évaluer la

compréhension automatique du texte afin de mieux évaluer les aspects pragmatiques, avec

la centralisation de plusieurs jeu de données vers un bac d’évaluation nommé DiscEval.

La section 10.5 fait le lien entre les marqueurs de discours et diverses tâches, notamment

de DiscEval, et les marqueurs de discours du jeu de donnée Discovery, en proposant une

manière automatique d’associer les marqueurs à des catégories de diverse tâches, ce qui

permet d’obtenir une sémantique des marqueurs de discours et d’expliquer le succès de

l’utilisation de Discovery.

10.2 Expressivité des compositions de représentations vec-

torielles

La prédiction de relation est un type de tâche répandu dans le TALN. La similarité sémantique,

la détection de relations sémantiques (contradiction, implication) la cohérence de discours,
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la prédiction de relations discursives, peuvent se formuler comme tel. Une manière simple

et populaire de traiter ces tâches et de produire des représentations vectorielles de phrases

h1, h2, et de composer ces vecteurs au moyen de fonctions de compostions. Par exemple,

la fonction de composition f� : h1, h2 → h1 � h2 associe aux deux vecteurs d’entrée

une représentation jointe qui permet de représenter l’association de ses entrées h1 et h2.

Ces fonctions conditionnent de manière critique le fonctionnement global d’un modèle. En

effet, si choisit de réprésenter la relation entre deux phrases en se limitant à la fonction

f�, il devient alors impossible de modéliser des relations asymétriques correctement. En

effet, f�(h1, h2) est égal à f�(h2, h1), ce qui signifie qu’un modèle basé sur cette compo-

sition aura la même représentation de relation. Il en va de même pour valeur absolue de

la différence f− : h1, h2 → |h1 − h2|. Une autre fonction répandue est la concaténation

f1,2 : h1, h2 → [h1, h2]. Cette fonction est asymétrique mais ne permet pas de modéliser les

interactions non-additives entre les deux phrases si elle est donnée en entrée à un modèle

linéaire. L’une des fonctions les plus couramment utilisée est la suivante:

f�,−,1,2 = [h1 � h2, |h1, h2|, h1, h2] (10.1)

Cette fonction, utilisée dans la librairie d’évaluation d’embeddings de phrase SentEval,

est certes asymétrique, certes capable de modéliser des interactions non-additives entre les

phrases, mais pas les deux en même temps, ce qui est problématique pour l’expressivité

et donc l’évaluation. En s’inspirant du champ de l’apprentissage relationnel(Getoor and

Taskar, 2007), on propose les fonctions définies comme suit:

ft(h1, h2) = |h2 − h1 + t|, avec t ∈ Rd (10.2)

fC(h1, h2) = [hR1 � hR2 + hI1 � hI2 , hR1 � hI2 − hI1 � hR2 ] (10.3)

R et C pouvant correspondre aux indices pairs et impairs de h. Ces deux fonctions peuvent

êtres vues comme des généralisations respectives de f− et f� et sont à la fois asymmétriques

et capables de gérer des interactions non-additives. Les utiliser en remplacement sur SentE-

val peut conduire à des gains significatifs mais assez faibles malgré le gain d’expressivité,
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ce qui peut être vu comme une remise en cause du système plus global (encodeurs choi-

sis, pertinence des jeux de données d’évaluation). Ainsi, ces résultats peuvent justifier le

fait que les modèles plus récents (Devlin et al., 2019) obtiennent de meilleurs scores en

s’affranchissant de l’utilisation d’un vecteur unique pour représenter les phrases.

10.3 Extraction de marqueurs de discours pour l’apprentissage

non-supervisé

Les marqueurs de discours (donc, mais, par conséquent, historiquement) existent par cen-

taines et peuvent être vus comme annotations bruitées pour une multitude de phénomènes

linguistiques. Puisqu’ils servent souvent à annoncer l’usage d’une phrase dans son texte,

ils peuvent être vus comme une supervision pragmatique, de la même manière que la

tâche d’ILN peut être vue comme une supervision axée sur la sémantique. La tâche

d’apprentissage est la suivante: à partir de deux phrases s1 et s2, prédire le marqueur de

discours m qui les liait initialement.

Une telle idée a déjà été mise en application (Nie et al., 2019), cependant, l’aspect pragma-

tique semble ne pas avoir été exploité au mieux. En effet, la grande variété des usages sig-

nalés par les marqueurs de discours ne se retrouve pas dans les 15 marqueurs proposés dans

DisSent, d’autant que la répartition est déséquilibrée illustrée dans la figure 10-3 , ensuite,

la syntaxe peut jouer un rôle dans la prédiction des marqueurs : when et so n’apparaissent

pas dans les mêmes contextes
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Figure 10-3 – Frequency distribution of markers of discourse markers in Nie et al. (2019)

On propose une méthode plus simple; mais permettant de traiter bien plus de marqueurs

de discours: se focaliser sur les phrases consécutives s1, s2 où s2 commence soit par un

adverbe, soit par un marqueur de discours déjà identifié dans le PDTB. En se basant sur

le corpus WebCC (Panchenko et al., 2017) dont on extrait 8.5 milliards de phrases, on

sélectionne les phrases consécutives satisfaisant cette condition et on les considère comme

des candidats de phrases séparées par des marqueurs.

On utilise ensuite un modèle linéaire simple, i.e. FastText, pour identifier les adverbes qui

peuvent être prédits facilement, et donc, en vertu de la linéarité, sans faire intervenir la

relation entre les deux phrases. Les adverbes les plus faciles à prédire, comme very sont

souvent autre chose que des marqueurs de discours et sont éliminés du jeu de données.

Cette technique permet de manière automatique de sélectionner des adverbes susceptibles

d’être des marqueurs de discours, pour former le jeu de données Discovery. L’utilisation

de Discovery plutôt que DisSent sur l’évaluation de SentEval conduit à un gain moyen

substantiel de 1.3% .
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10.4 Evaluation discursive et pragmatique pour la compréhension

du langage naturel

Les jeux de données SentEval et GLUE se reposent majoritairement sur des tâches de

similarité sémantique et d’inférence en langage naturel. L’inférence en langage naturel est

devenue une tâche de référence pour entrainer les modèles neuronaux de compréhension

du texte, mais ce choix est guidé par l’évaluation. SentEval et GLUE constituent-ils une

évaluation complète de la compréhension du langage naturel ? L’inférence en langage

naturel est une tâche qui sous-tend les aspects sémantiques du sens des textes. Or, les

aspects pragmatiques sont d’une importance capitale puisque par définition elles traitent le

sens sous l’angle de l’utilisation finale.

Afin de remédier à ce manque dans les évaluations existantes, on propose un banc d’évaluation

construit sur des tâches déjà existantes mais jamais rassemblées par une évaluation unifiée:

PDTB, STAC et GUM contiennent des paires de phrases liées par des relations de discours

parmi des catégories fixées (e.g. contaste, élaboration) Emergent des paires de phrase,

munies d’une annotation décrivant la position de la seconde phrase par rapport à un énoncé

dans la première.

SwitchBoard et MRDA regroupent des transcriptions de dialogues, les actes de dialogues

étant annotés par diverses classes (e.g. commentaire, offre, appréciation).

Persuasion rassemble des phrases tirées de dissertation, avec des annotations sur leurs

degrés de spécificité, d’éloquence ou de pertinence, qui sont autant de facteurs de persua-

sion.

SarcasmV2 regroupe des paires de messages issues de discussions en ligne, le 2eme mes-

sage répondant de manière sarcastique ou non au premier, ce qui a fait l’objet d’une anno-

tation

Squinky regroupe des annotations de texte sur leur degré de formalité, d’informativité et

la quantité d’information présupposée
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Verifiability regroupe des phrases qui ont été annotées selon leur verifiabilité.

EmoBank aggrège des annotations sur des textes concernant la valence (ce dont en parle

habituellement en analyse de sentiment), le degré de dominance s’en dégageant, et le degré

d’excitation s’en dégageant.

PDTB STAC GUM Emergent SwitchB. MRDA Persuasion Sarcasm Squinky Verif. EmoBank

CBoW 27.4 32 20.5 59.7 3.8 0.7 70.6 61.1 75.5 74 64
BiLSTM 25.9 27.7 18.5 45.6 3.7 0.7 62.6 63.1 72.1 74 63.5
BiLSTM+ELMo 27.5 33.5 18.9 55.2 3.7 0.7 67.4 68.9 82.5 74 66.9

BERT 48.8 48.2 40.9 79.2 38.8 22.3 74.8 77.1 87.5 86.7 76.2
BERT+MNLI 49.1 49.1 42.8 81.2 38.1 22.7 71.7 73.4 88.2 86 76.3
BERT+DiscEval 49.1 57.1 42.8 80.2 40.3 23.1 76.2 75 87.6 85.9 76
BERT+DisSent 49.4 49 43.9 79.8 39.2 22 74.7 74.9 87.5 85.9 76.2
B+DisSent+MNLI 49.6 49.2 44.2 80.9 39.8 22.1 74 74.1 87.6 85.6 76.4
BERT+Discovery 50.7 49.5 42.7 81.7 39.5 22.4 71.6 76.7 88.6 86.3 76.6
B+Discovery+MNLI 51.3 49.4 43.1 80.7 40.3 22.2 73.6 75.1 88.9 86.8 76
Human estimate 84.0 - 69.3 - - - - 80.0 - 87.0 73.1

Table 10.1 – Evaluations des modèles de l’état de l’art sur les tâches de DiscEval
B(ERT)+X désigne un modèle BERT dont les poids ont été entrainés sur la tâche X .)

La table 10.1 montre les résultats de différents modèles sur DiscEval. Il est intéressant de

constater que l’utilisation d’inférence en langage naturel comme tâche d’entrainement n’est

pas la source de représentations réellement universelle puisqu’elle conduit à une régression

sur plusieurs tâches. Par ailleurs, le jeu de données Discovery conduit en moyenne au

meilleurs résultats, en particulier lorsqu’il est combiné à MNLI dans un apprentissage

multi-tâche.

10.5 Sémantique des marqueurs de discours

La section précédente donne du poids à l’idée selon laquelle les marqueurs de discours sont

des annotations bruitées. Mais à quel point ces formes d’annotations sont-elles bruitées ?

Peut-on aller plus loin dans la vérification des liens entre les marqueurs de discours et les

Des lexiques construits manuellement permettent de répertorier les conditions d’utilisation

des marqueurs de discours, par exemple que le marqueur Mais sert à exprimer une relation
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de contraste entre deux unités de discours, le sens des relations (e.g. contraste) étant défini

par un guide d’annotation comme le PDTB.

On propose de construire une sémantique basée sur l’utilisation réelle des marqueurs. Pour

ce faire, on entraine un modèle BERT pour lui apprendre prédire des marqueurs entre des

phrases. Ayant obtenu un modèle précis, (possiblement plus précis que des annotateurs

humains), on utilise de modèle pour prédire des marqueurs entre des phrases liées par

une relation déjà annotée dans un jeu de donné. Par exemple, le jeu de donnée MNLI

qui rassemble des phrases liées par des relations de contradiction, implication ou aucun

des deux (neutre). La prédiction de marqueurs entre ces paires de phrases permet alors

d’analyser le lien entre catégories et marqueurs, et de montrer par exemple dans quelle pro-

portion des exemples le marqueur but dénote une contradiction logique. Un échantillon de

cette sémantique des marqueurs est présenté dans la table 10.2 et de manière plus complète

dans l’annexe A. Cette méthode est transposable à d’autres langues, et peut permettre de

sélectionner des données pour de l’apprentissage non supervisé, guider des analyses lin-

guistiques, et qualifier les connotations des marqueurs dans une optique de rédaction ou

d’apprentissage d’une langue.

10.6 Conclusion

Dans cette thèse, on a exploré plusieurs apects de la compréhension automatique du langage

naturel. Les modèles neuronaux semblent aller vers plus d’expressivité grâce aux Trans-

formers, mais notre analyse montre que cette expressivité doit être guidé par une notion de

sens tournée vers l’usage concret et situé dans le monde ; les jeux de données Discovery et

DiscEval sont des contributions concrètes permettant d’aller dans cette direction.
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marqueur catégorie support confiance (prior)

unfortunately,CR.negative 66 100.0 (21.8)
sadly, CR.negative 20 95.2 (21.8)
unfortunately,SST-2.negative 240 96.0 (22.5)
as a result, SST-2.negative 65 94.2 (22.5)
in contrast, MNLI.contradiction 1182 74.1 (16.9)
curiously, MNLI.contradiction 2912 70.8 (16.9)
technically, SICKE.contradiction 29 87.9 (7.8)
rather, SICKE.contradiction 147 69.7 (7.8)
similarly, MRPC.paraphrase 85 87.6 (35.5)
likewise, MRPC.paraphrase 103 84.4 (35.5)
instead, PDTB.Alternative 27 22.5 (0.6)
then, PDTB.Asynchronous 60 38.7 (2.4)
previously, PDTB.Asynchronous 36 36.4 (2.4)
by doing
this,

PDTB.Cause 22 61.1 (14.8)

additionally PDTB.Conjunction 47 63.5 (12.5)
but PDTB.Contrast 89 61.4 (7.0)
elsewhere, PDTB.List 41 16.2 (1.3)
specifically, PDTB.Restatement 100 67.6 (10.6)
seriously, SarcasmV2.sarcasm 225 71.2 (26.7)
so, SarcasmV2.sarcasm 81 65.6 (26.7)

Table 10.2 – Echantillon du jeu de donnée DiscSense. CR.negative dénote la classe du
jeu de donnée Customer Reviews (CR). Le support est le nombre d’exemples des jeux
de données pour lesquels le marqueur de discours donné a été prmis. La confiance est
la probabilité estimée de catégorie sachant le marqueur. Version complète ici: https:
//github.com/synapse-developpement/DiscSense.

https://github.com/synapse-developpement/DiscSense
https://github.com/synapse-developpement/DiscSense
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APPENDIX A

DISCSENSE MAPPING

antecedents consequents support confidence+prior

unfortunately, CR.neg 66.0 100.0 (36.6)

sadly, CR.neg 20.0 95.2 (36.6)

regardless, CR.pos 31.0 96.9 (63.4)

fortunately, CR.pos 27.0 96.4 (63.4)

meaning, Cola.not-well-formed 21.0 48.8 (29.7)

on the contrary, Cola.not-well-formed 50.0 45.9 (29.7)

regardless, Cola.well-formed 23.0 95.8 (70.3)

undoubtedly, Cola.well-formed 25.0 92.6 (70.3)

only, Emergent.against 24.0 88.9 (15.5)

meantime, Emergent.against 21.0 24.1 (15.5)

normally, Emergent.for 22.0 78.6 (47.5)

later, Emergent.for 89.0 78.1 (47.5)

separately, Emergent.observing 148.0 59.2 (37.0)

now, Emergent.observing 35.0 50.0 (37.0)

anyway, EmoBankA.high 24.0 85.7 (48.5)

suddenly, EmoBankA.high 103.0 73.6 (48.5)

originally, EmoBankA.low 27.0 90.0 (51.5)
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antecedents consequents support confidence+prior

presently, EmoBankA.low 24.0 80.0 (51.5)

together, EmoBankD.high 20.0 62.5 (38.7)

absolutely, EmoBankD.high 68.0 62.4 (38.7)

inevitably, EmoBankD.low 21.0 91.3 (61.3)

only, EmoBankD.low 31.0 81.6 (61.3)

plus, EmoBankV.high 45.0 90.0 (43.2)

hopefully, EmoBankV.high 26.0 86.7 (43.2)

sadly, EmoBankV.low 36.0 92.3 (56.8)

frankly, EmoBankV.low 33.0 89.2 (56.8)

separately, Formality.high 295.0 100.0 (48.2)

significantly, Formality.high 73.0 100.0 (48.2)

well, Formality.low 49.0 100.0 (51.8)

seriously, Formality.low 35.0 100.0 (51.8)

this, GUM.circumstance 24.0 35.3 (57.8)

especially, GUM.circumstance 40.0 30.5 (57.8)

or, GUM.condition 31.0 50.0 (42.2)

especially, GUM.condition 41.0 31.3 (42.2)

instead, Implicature.high 28.0 77.8 (46.7)

absolutely, Implicature.high 36.0 70.6 (46.7)

by comparison, Implicature.low 24.0 88.9 (53.3)

strangely, Implicature.low 22.0 81.5 (53.3)

significantly, Informativeness.high 57.0 100.0 (46.3)

altogether, Informativeness.high 31.0 100.0 (46.3)

seriously, Informativeness.low 37.0 100.0 (53.7)

really, Informativeness.low 25.0 100.0 (53.7)

in contrast, MNLI.contradiction 1182.0 74.1 (33.3)

curiously, MNLI.contradiction 2912.0 70.8 (33.3)

in turn, MNLI.entailment 7475.0 65.4 (33.4)

likewise, MNLI.entailment 2430.0 63.0 (33.4)

for instance MNLI.neutral 177.0 70.8 (33.3)
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antecedents consequents support confidence+prior

for example MNLI.neutral 170.0 70.0 (33.3)

so, MRDA.Accept 57.0 12.9 (3.1)

well, MRDA.Acknowledge-answer 85.0 10.3 (3.6)

well, MRDA.Action-directive 20.0 2.4 (1.5)

actually, MRDA.Affirmative Non-yes Answers 37.0 12.2 (3.0)

personally, MRDA.Assessment/Appreciation 25.0 15.9 (4.0)

especially, MRDA.Collaborative Completion 25.0 7.4 (2.2)

really, MRDA.Declarative-Question 48.0 11.9 (1.4)

mostly, MRDA.Defending/Explanation 114.0 62.3 (10.9)

probably, MRDA.Dispreferred Answers 25.0 1.5 (1.3)

namely, MRDA.Expansions of y/n Answers 37.0 33.6 (8.5)

so, MRDA.Floor Grabber 56.0 12.7 (4.4)

and MRDA.Floor Holder 53.0 8.2 (4.9)

and MRDA.Hold Before Answer/Agreement 26.0 4.0 (1.1)

absolutely, MRDA.Interrupted/Abandoned/Uninterpretable 24.0 1.2 (1.2)

probably, MRDA.Negative Non-no Answers 28.0 1.7 (0.9)

though, MRDA.Offer 27.0 18.9 (7.1)

honestly, MRDA.Other Answers 31.0 36.0 (1.2)

actually, MRDA.Reject 34.0 11.2 (0.9)

probably, MRDA.Reject-part 20.0 1.2 (0.3)

also, MRDA.Rising Tone 66.0 36.7 (7.0)

originally, MRDA.Statement 20.0 37.0 (22.1)

surely, MRDA.Understanding Check 26.0 40.6 (5.2)

realistically, MRDA.Wh-Question 24.0 27.6 (2.3)

or, MRDA.Yes-No-question 61.0 16.1 (1.7)

elsewhere, MRPC.not-paraphrase 30.0 81.1 (32.5)

meanwhile, MRPC.not-paraphrase 21.0 61.8 (32.5)

similarly, MRPC.paraphrase 85.0 87.6 (67.5)

likewise, MRPC.paraphrase 103.0 84.4 (67.5)

but PDTB.Comparison 97.0 52.4 (6.5)
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antecedents consequents support confidence+prior

however PDTB.Comparison 27.0 38.6 (6.5)

by doing this, PDTB.Contingency 22.0 57.9 (11.7)

theoretically, PDTB.Contingency 70.0 50.4 (11.7)

currently, PDTB.Entrel 212.0 63.5 (13.5)

generally, PDTB.Entrel 31.0 53.4 (13.5)

for instance PDTB.Expansion 179.0 77.5 (23.4)

similarly, PDTB.Expansion 47.0 74.6 (23.4)

then, PDTB.Temporal 62.0 36.7 (2.4)

later, PDTB.Temporal 44.0 31.2 (2.4)

rather, PDTBf.Alternative 36.0 25.4 (1.1)

instead, PDTBf.Alternative 27.0 22.5 (1.1)

then, PDTBf.Asynchronous 60.0 38.7 (4.5)

previously, PDTBf.Asynchronous 36.0 36.4 (4.5)

by doing this, PDTBf.Cause 22.0 61.1 (27.0)

so, PDTBf.Cause 38.0 55.9 (27.0)

additionally PDTBf.Conjunction 47.0 63.5 (22.8)

meanwhile, PDTBf.Conjunction 167.0 55.5 (22.8)

but PDTBf.Contrast 89.0 61.4 (12.8)

by comparison, PDTBf.Contrast 214.0 45.4 (12.8)

for instance PDTBf.Instantiation 138.0 65.1 (8.7)

for example PDTBf.Instantiation 32.0 51.6 (8.7)

elsewhere, PDTBf.List 41.0 16.2 (2.4)

meanwhile, PDTBf.List 25.0 8.3 (2.4)

specifically, PDTBf.Restatement 100.0 67.6 (19.5)

essentially, PDTBf.Restatement 61.0 54.5 (19.5)

separately, PDTBf.Synchrony 21.0 2.8 (1.2)

moreover PersuasivenessEloquence.high 21.0 46.7 (26.5)

hence, PersuasivenessEloquence.low 21.0 84.0 (73.5)

by doing this, PersuasivenessEloquence.low 21.0 80.8 (73.5)

undoubtedly, PersuasivenessPremiseType.common knowledge 24.0 85.7 (100.0)
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antecedents consequents support confidence+prior

moreover PersuasivenessPremiseType.common knowledge 35.0 83.3 (100.0)

for instance PersuasivenessRelevance.high 25.0 67.6 (59.9)

moreover PersuasivenessRelevance.high 29.0 64.4 (59.9)

undoubtedly, PersuasivenessRelevance.low 21.0 56.8 (40.1)

especially, PersuasivenessRelevance.low 20.0 37.0 (40.1)

for instance PersuasivenessSpecificity.high 24.0 82.8 (45.9)

moreover PersuasivenessSpecificity.high 21.0 72.4 (45.9)

undoubtedly, PersuasivenessSpecificity.low 20.0 87.0 (54.1)

undoubtedly, PersuasivenessStrength.low 20.0 87.0 (100.0)

especially, PersuasivenessStrength.low 23.0 59.0 (100.0)

likewise, QNLI.entailment 38.0 74.5 (50.0)

actually, QNLI.entailment 48.0 68.6 (50.0)

regardless, QNLI.not entailment 29.0 87.9 (50.0)

thirdly, QNLI.not entailment 23.0 85.2 (50.0)

collectively, QQP.duplicate 45.0 68.2 (36.9)

indeed, QQP.duplicate 113.0 67.3 (36.9)

anyway, QQP.not-duplicate 87.0 100.0 (63.1)

namely, QQP.not-duplicate 50.0 100.0 (63.1)

technically, RTE.entailment 56.0 72.7 (50.4)

in turn, RTE.entailment 83.0 66.9 (50.4)

by comparison, RTE.not entailment 29.0 67.4 (49.6)

incidentally, RTE.not entailment 38.0 58.5 (49.6)

technically, SICKE.contradiction 29.0 87.9 (14.8)

rather, SICKE.contradiction 147.0 69.7 (14.8)

in turn, SICKE.entailment 32.0 64.0 (28.9)

alternately, SICKE.entailment 93.0 59.6 (28.9)

meanwhile, SICKE.neutral 155.0 92.8 (56.4)

elsewhere, SICKE.neutral 765.0 89.8 (56.4)

unfortunately, SST-2.neg 240.0 96.0 (44.3)

as a result, SST-2.neg 65.0 94.2 (44.3)
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antecedents consequents support confidence+prior

nonetheless SST-2.pos 383.0 93.4 (55.7)

nevertheless SST-2.pos 56.0 90.3 (55.7)

so, STAC.Acknowledgement 40.0 21.3 (10.6)

absolutely, STAC.Acknowledgement 162.0 20.3 (10.6)

so, STAC.Clarification question 23.0 12.2 (2.9)

really, STAC.Clarification question 54.0 11.9 (2.9)

however STAC.Comment 91.0 48.7 (10.9)

overall, STAC.Comment 25.0 32.5 (10.9)

otherwise, STAC.Conditional 21.0 25.0 (1.1)

anyway, STAC.Continuation 52.0 10.4 (6.2)

and STAC.Continuation 21.0 8.2 (6.2)

probably, STAC.Contrast 76.0 18.9 (3.9)

maybe, STAC.Contrast 35.0 18.3 (3.9)

alternately, STAC.Elaboration 22.0 59.5 (7.7)

personally, STAC.Elaboration 23.0 17.2 (7.7)

especially, STAC.Explanation 21.0 12.4 (4.0)

anyway, STAC.Explanation 36.0 7.2 (4.0)

really, STAC.Q Elab 147.0 32.5 (4.6)

or, STAC.Q Elab 41.0 19.3 (4.6)

surprisingly, STAC.Question answer pair 71.0 89.9 (19.7)

sadly, STAC.Question answer pair 249.0 77.3 (19.7)

finally, STAC.Result 130.0 46.9 (6.3)

once, STAC.Result 70.0 44.6 (6.3)

finally, STAC.Sequence 29.0 10.5 (0.9)

currently, STAC.no relation 50.0 65.8 (21.3)

eventually, STAC.no relation 74.0 59.7 (21.3)

elsewhere, STS.dissimilar 516.0 70.0 (26.2)

meantime, STS.dissimilar 124.0 65.3 (26.2)

in turn, STS.similar 142.0 60.2 (34.0)

specifically, STS.similar 25.0 51.0 (34.0)
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antecedents consequents support confidence+prior

presently, SUBJ.objective 24.0 100.0 (49.8)

soon, SUBJ.objective 159.0 99.4 (49.8)

frankly, SUBJ.subjective 127.0 100.0 (50.2)

again, SUBJ.subjective 65.0 100.0 (50.2)

technically, Sarcasm.notsarcasm 34.0 72.3 (50.1)

secondly, Sarcasm.notsarcasm 27.0 69.2 (50.1)

seriously, Sarcasm.sarcasm 225.0 71.2 (49.9)

so, Sarcasm.sarcasm 82.0 65.6 (49.9)

well, SwitchBoard.Acknowledge (Backchannel) 30.0 2.8 (1.2)

seriously, SwitchBoard.Action-directive 25.0 4.6 (2.1)

only, SwitchBoard.Affirmative Non-yes Answers 20.0 3.0 (1.7)

actually, SwitchBoard.Agree/Accept 64.0 17.3 (3.7)

actually, SwitchBoard.Appreciation 58.0 15.7 (4.7)

especially, SwitchBoard.Collaborative Completion 38.0 10.1 (2.5)

anyway, SwitchBoard.Conventional-closing 82.0 39.4 (2.9)

surely, SwitchBoard.Declarative Yes-No-Question 22.0 20.2 (4.0)

or, SwitchBoard.Dispreferred Answers 24.0 1.7 (0.6)

honestly, SwitchBoard.Hedge 24.0 19.7 (1.6)

so, SwitchBoard.Hold Before Answer/Agreement 24.0 2.5 (1.1)

only, SwitchBoard.Negative Non-no Answers 43.0 6.4 (0.8)

so, SwitchBoard.Open-Question 85.0 8.8 (1.6)

well, SwitchBoard.Other 36.0 3.4 (0.8)

or, SwitchBoard.Other Answers 25.0 1.8 (0.5)

absolutely, SwitchBoard.Quotation 89.0 6.2 (3.1)

especially, SwitchBoard.Repeat-phrase 24.0 6.4 (1.3)

or, SwitchBoard.Rhetorical-Question 48.0 3.4 (1.9)

so, SwitchBoard.Self-talk 22.0 2.3 (0.4)

really, SwitchBoard.Signal-non-understanding 37.0 5.6 (0.5)

luckily, SwitchBoard.Statement-non-opinion 20.0 71.4 (15.6)

personally, SwitchBoard.Statement-opinion 43.0 20.4 (5.2)
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antecedents consequents support confidence+prior

meaning, SwitchBoard.Summarize/Reformulate 26.0 6.9 (3.0)

this, SwitchBoard.Uninterpretable 158.0 56.0 (19.2)

realistically, SwitchBoard.Wh-Question 48.0 33.8 (5.7)

incidentally, SwitchBoard.Yes-No-Question 32.0 78.0 (14.5)

coincidentally, Verifiability.experiential 20.0 80.0 (14.2)

recently, Verifiability.experiential 23.0 76.7 (14.2)

especially, Verifiability.non-experiential 36.0 39.1 (15.6)

unfortunately, Verifiability.non-experiential 28.0 22.8 (15.6)

third, Verifiability.unverifiable 23.0 100.0 (70.3)

ideally, Verifiability.unverifiable 227.0 99.6 (70.3)

Table A.1 – Categories and most associated markers. CR.neg denotes the negative class in
the CR dataset. (Supp)ort is the number of examples where the marker was predicted given
a dataset. (Conf)idence is the estimated probability of the class given the prediction of the
marker i.e. P (y|m). The prior is P (y).
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Badene, S., Thompson, K., Lorré, J.-P., and Asher, N. (2019). Data programming for learning
discourse structure. In Proceedings of the 57th Conference of the Association for Computational
Linguistics, pages 640–645, Florence, Italy. Association for Computational Linguistics.

Baroni, M., Bernardi, R., and Zamparelli, R. (2014a). Frege in space: A program of compositional
distributional semantics. LiLT (Linguistic Issues in Language Technology), 9.



A – BIBLIOGRAPHY 152

Baroni, M., Dinu, G., and Kruszewski, G. (2014b). Don’t count, predict! a systematic comparison
of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 238–
247, Baltimore, Maryland. Association for Computational Linguistics.

Barzilay, R. and Lapata, M. (2008). Modeling Local Coherence: An Entity-Based Approach. Com-
putational Linguistics, 34(1):1–34.
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Université Paris-Saclay.

Tay, Y., Luu, A. T., and Hui, S. C. (2018). Compare, compress and propagate: Enhancing neural
architectures with alignment factorization for natural language inference. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pages 1565–1575,
Brussels, Belgium. Association for Computational Linguistics.

Torabi Asr, F., Zinkov, R., and Jones, M. (2018). Querying word embeddings for similarity and
relatedness. In Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 675–684, New Orleans, Louisiana. Association for Computational Linguistics.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and Bouchard, G. (2016). Complex Embeddings
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