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We apply the Penrose transform, which is a basic tool of relativistic physics, to the study of sharp estimates for linear and nonlinear wave equations. We disprove a conjecture of Foschi, regarding extremizers for the Strichartz inequality with data in the Sobolev space 9 H 1{2 ˆ9 H ´1{2 pR d q, for even d ě 2. On the other hand, we provide evidence to support the conjecture in odd dimensions and refine his sharp inequality in R 1`3 , adding a term proportional to the distance of the initial data from the set of extremizers. Using this, we provide an asymptotic formula for the Strichartz norm of small solutions to the cubic wave equation in Minkowski space. The leading coefficient is given by Foschi's sharp constant. We calculate the constant in the second term, whose absolute value and sign changes depending on whether the equation is focusing or defocusing.
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Introduction

The Penrose transform is a basic tool of relativistic physics. The purpose of this thesis is to show that it can be fruitfully applied to sharpen inequalities for the wave equation, both linear and nonlinear. In the linear case, such inequalities are known as Strichartz estimates, and there is a conjecture, due to Foschi, about what the optimal Strichartz estimate should be. The first chapter of this thesis deals with this question, adding some weight to support the conjecture in odd spatial dimensions, while disproving it in even dimensions.

In three spatial dimensions, Foschi proved the conjecture in the affirmative. The second chapter takes this theorem as a starting point, obtaining a refined version which improves for data away from the maximizers. This, in turn, is one of the main ingredients of the third chapter, in which a sharp estimate for solutions to the cubic wave equation is obtained.

Strichartz estimates

In 1977, Strichartz [START_REF] Strichartz | Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations[END_REF] proved that there is a positive constant C such that v L p pR 1`d q ď C vp0q 9 H 1{2 pR d q , p " 2 d`1 d´1 ,

where v solves the wave equation v tt " ∆v on R 1`d with d ě 2, and vp0q " pvp0q, v t p0qq belongs to the Sobolev space of pairs f " pf 0 , f 1 q with norm defined by

f 9 H 1{2 pR d q "
´ p´∆q 1{4 f 0 2

L 2 pR d q ` p´∆q ´1{4 f 1 2 L 2 pR d q ¯1{2 .
This gives an integral quantification of the decay of waves, due to their dispersion. All known proofs are harmonic-analytic and a duality argument yields an estimate that restricts the Fourier transform to the cone. Tomas and Stein [START_REF] Tomas | A restriction theorem for the Fourier transform[END_REF] had previously proven a similar estimate that restricted the Fourier transform to the sphere. The closely related paper of Segal [START_REF] Segal | Space-time decay for solutions of wave equations[END_REF], for the Klein-Gordon equation, should also be mentioned here.

Estimates such as [START_REF] Anco | Exact solutions of semilinear radial wave equations in n dimensions[END_REF] have been extensively studied, mainly because they have proved to be fundamental in the development of the well-posedness and scattering theory for nonlinear wave equations. The theory is far too extensive to be entirely surveyed here; a few fundamental results are [START_REF] Ginibre | The global Cauchy problem for the critical nonlinear wave equation[END_REF][START_REF] Ginibre | Generalized Strichartz inequalities for the wave equation[END_REF][START_REF] Ginibre | On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case[END_REF][START_REF] Keel | Endpoint Strichartz estimates[END_REF][START_REF] Smith | Global Strichartz estimates for nontrapping perturbations of the Laplacian[END_REF].
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Optimal constants and the Penrose transform

Foschi [START_REF] Foschi | Maximizers for the Strichartz inequality[END_REF] proved the Strichartz estimate (1), for d " 3, with explicit constant;

v L 4 pR 1`3 q ď ˆ3 16π ˙1 4 vp0q 9 H 1{2 pR 3 q ,
and proved that there is equality for

vp0q " ´p1 `|¨| 2 q ´1, 0 ¯, (2) 
so, in particular, the multiplicative constant is optimal, in the sense that it cannot be replaced by a smaller one. He also conjectured that, in arbitrary dimension d ě 2, the estimate (1) should hold with constant

C " v L p pR 1`d q vp0q 9 H 1{2 pR d q , p " 2 d`1 d´1 , where vp0q " ´p1 `|¨| 2 q ´d´1 2 , 0 ¯, (3) 
that is, that these data should extremize the inequality in any dimension. In the first chapter, which is dedicated to this conjecture, the Penrose transform is introduced. This is a transformation of solutions v to the wave equation on R 1`d into solutions V to the hyperbolic equation

B 2 T V ´∆S d V `pd ´1q 2 4 V " 0, (4) 
posed on a relatively compact submanifold of R ˆSd . It involves a simple conformal mapping, first introduced by Penrose [START_REF] Penrose | Republication of: Conformal treatment of infinity[END_REF], and first applied to the mathematical study of wave equations by Christodoulu [START_REF] Christodoulou | Global solutions of nonlinear hyperbolic equations for small initial data[END_REF][START_REF] Christodoulou | Solutions globales des équations de champ de Yang-Mills[END_REF]. This is relevant to the conjecture of Foschi, because the data (3) are mapped by the Penrose transform to constant initial data on S d ; V p0q " p 1 {2, 0q .

The first original result presented in this thesis uses this observation, to prove that (3) is a critical point for the deficit functional of the inequality [START_REF] Anco | Exact solutions of semilinear radial wave equations in n dimensions[END_REF] if and only if the spatial dimension d is odd. In particular, the conjecture of Foschi cannot hold in even dimension.

The different behavior, according to the parity of the spatial dimension, is best explained in terms of the Penrose transform. The equation ( 4) is posed on a subset of r´π, πs ˆSd that is not a Cartesian product, and this, in principle, prevents the use of separation of variables. This can be overcome only if d is odd, as solutions to (4) are 2π-periodic in the conformal time variable T and satisfy an appropriate symmetry.

It is to be remarked that, for the Strichartz inequality [START_REF] Anco | Exact solutions of semilinear radial wave equations in n dimensions[END_REF], extremizing data do exist in any spatial dimension; this follows from the work of Ramos [START_REF] Ramos | A refinement of the Strichartz inequality for the wave equation with applications[END_REF]. Ramos actually proved a profile decomposition adapted to [START_REF] Anco | Exact solutions of semilinear radial wave equations in n dimensions[END_REF], which is a by-now standard tool originating from the work of P. L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, Part 1[END_REF], and introduced by Merle and Vega [START_REF] Merle | Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2d[END_REF] for the Schrödinger equation, by Gérard [39] in the context of the Sobolev inequalities and by Bahouri and Gérard [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] for the wave equation.

Similar concentration-compactness techniques have been used to show the existence of maximizers in Strichartz inequalities for the Schrödinger and the wave equation in [START_REF] Kunze | On the existence of a maximizer for the Strichartz inequality[END_REF][START_REF] Bulut | Maximizers for the Strichartz inequalities for the wave equation[END_REF]. However, these techniques never yield any information on the problem of uniqueness of such maximizers, up to the relevant symmetry group.

To the knowledge of the author, the use of the Penrose transform to study the Strichartz inequality is new, but the use of conformal mappings to study sharp inequalities is classical. It is especially interesting to mention the case of the Sobolev, and the closely related Hardy-Littlewood-Sobolev inequality, because constant functions on the sphere are extremal data, up to stereographic projection; see, for example, [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF][START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF][START_REF] Talenti | Best constant in Sobolev inequality[END_REF]. A conformal mapping to the hyperbolic space has been used by Tataru [START_REF] Tataru | Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation[END_REF] to obtain weighted Strichartz estimates for the wave equation.

Finally, it is to be remarked that sharp space-time estimates for dispersive equations have been studied extensively; see for example [START_REF] Bennett | Flow monotonicity and Strichartz inequalities[END_REF][START_REF] Bennett | Heat-flow monotonicity of Strichartz norms[END_REF][START_REF] Bez | A sharp Sobolev-Strichartz estimate for the wave equation[END_REF][START_REF] Bez | Sharp Sobolev-Strichartz estimates for the free Schrödinger propagator[END_REF][START_REF] Bez | A sharp Strichartz estimate for the wave equation with data in the energy space[END_REF][START_REF] Bez | Applications of the Funk-Hecke theorem to smoothing and trace estimates[END_REF][START_REF] Bez | Optimal constants and extremisers for some smoothing estimates[END_REF][START_REF] Carneiro | A sharp trilinear inequality related to Fourier restriction on the circle[END_REF][START_REF] Carneiro | A sharp inequality for the Strichartz norm[END_REF][START_REF] Carneiro | Some sharp restriction inequalities on the sphere[END_REF][START_REF] Foschi | Global maximizers for the sphere adjoint Fourier restriction inequality[END_REF][START_REF] Gonçalves | Orthogonal Polynomials and Sharp Estimates for the Schrödinger Equation[END_REF][START_REF] Gonçalves | A Sharpened Strichartz Inequality For Radial Functions[END_REF][START_REF] Hundertmark | On sharp Strichartz inequalities in low dimensions[END_REF][START_REF] Jeavons | A sharp bilinear estimate for the Klein-Gordon equation in arbitrary space-time dimensions[END_REF][START_REF] Jiang | On characterization of the sharp Strichartz inequality for the Schrödinger equation[END_REF][START_REF] Oliveira E Silva | Extremizers for Fourier restriction inequalities: convex arcs[END_REF][START_REF] Ozawa | A sharp bilinear estimate for the Klein-Gordon equation in R 1`1[END_REF], or the recent survey paper [START_REF] Foschi | Some recent progress on sharp Fourier restriction theory[END_REF].

Sharpened inequalities

In the aforementioned paper [START_REF] Foschi | Maximizers for the Strichartz inequality[END_REF], Foschi gave a complete characterization of the initial data that extremize the Strichartz inequality with d " 3. The full set M is obtained by acting a group of symmetries of the inequality on the data [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF]. The second chapter is mostly dedicated to the proof that (1) can be refined, by adding a term proportional to the distance from M.

Brezis and Lieb asked if the sharp Sobolev inequality due to Aubin [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] and Talenti [START_REF] Talenti | Best constant in Sobolev inequality[END_REF] could be sharpened in this way; see [14, question (c)]. This was solved by Bianchi and Egnell [START_REF] Bianchi | A note on the Sobolev inequality[END_REF]; see also [START_REF] Chen | Remainder Terms in the Fractional Sobolev Inequality[END_REF][START_REF] Christ | A sharpened Hausdorff-Young inequality[END_REF][START_REF] Cianchi | The sharp Sobolev inequality in quantitative form[END_REF][START_REF] Figalli | A mass transportation approach to quantitative isoperimetric inequalities[END_REF][START_REF] Figalli | Gradient stability for the Sobolev inequality: the case p ě 2[END_REF] for work in a similar spirit.

The present thesis follows the outline of Bianchi and Egnell; the key step is the proof of a local version of the sharpened inequality, meaningful in a neighborhood of M. For this, it is necessary to establish a transversal non-degeneracy property of the deficit functional of [START_REF] Anco | Exact solutions of semilinear radial wave equations in n dimensions[END_REF]. This means that, at all points of M, the second derivative of the functional must be a strictly positive definite quadratic form, except on the tangent spaces of M, on which it vanishes.

To establish this property, the Penrose transform is essential. It allows for explicit computation of these quadratic forms, using the symmetry property in odd spatial dimension mentioned in the previous section. It is remarkable that the tangent space to M at the maximizer (2) coincides with the sum of the first two eigenspaces of the Laplace-Beltrami operator. Analogous properties hold for the tangent spaces in the case of the Sobolev inequality; see the aforementioned paper of Bianchi and Egnell [START_REF] Bianchi | A note on the Sobolev inequality[END_REF], and Chen, Frank and Weth [START_REF] Chen | Remainder Terms in the Fractional Sobolev Inequality[END_REF].

A computation that is very similar in spirit is present in the work of Duyckaerts, v Merle and Roudenko [START_REF] Duyckaerts | Maximizers for the Strichartz norm for small solutions of mass-critical NLS[END_REF], in which a non-degeneracy property is established for the sharp Strichartz estimate for the Schrödinger equation in one and two dimensions.

The passage from the local to the global sharpened estimate is achieved by an application of the aforementioned profile decomposition of Ramos [START_REF] Ramos | A refinement of the Strichartz inequality for the wave equation with applications[END_REF].

In this chapter, a five-dimensional sharpened Strichartz inequality in the energy space 9 H 1 ˆL2 pR 5 q is also established. This refines the sharp estimate due to Bez and Rogers [START_REF] Bez | A sharp Strichartz estimate for the wave equation with data in the energy space[END_REF]. The proof presents the significant additional difficulty that the relevant quadratic form is not diagonal in its expansion in spherical harmonics. This reflects the fact that such an inequality is not conformally invariant. Indeed, it is remarkable that a method based on conformal transformations works in this case.

Spacetime bounds for the cubic wave equation

The third chapter of this thesis deals with the equation

u tt ´∆u " σu 3 , on R 1`3 , ( 5 
)
where σ is the sign of the nonlinear term; when σ ą 0, the equation is called focusing, and when σ ă 0 it is called defocusing. A standard argument using the Strichartz estimate [START_REF] Anco | Exact solutions of semilinear radial wave equations in n dimensions[END_REF] shows that, if ( 5) is supplied with initial data that are sufficiently small in the critical Sobolev norm 9

H 1{2 , then it admits a unique solution that belongs to the spaces CpR; 9 H 1{2 pR 3 qq and L 4 pR 1`3 q. In particular, such solutions are global in time and the following functional is well-defined for small δ ą 0;

Ipδq " sup " u 4 L 4 pR 1`3 q ˇˇˇl im tÑ´8 uptq 9 H 1{2 ď δ * . (6) 
In this chapter it is proved that the supremum is attained, and satisfies the explicit asymptotic 

Ipδq " 3 16π δ 4 `σδ 6
By the aforementioned result of Foschi,

3 16π δ 4 " max ! v 4 L 4 pR 1`3 q ˇˇv tt " ∆v, vptq 9 H 1{2 ď δ ) .
A consequence of ( 7) is, therefore, that the maximal L 4 pR 1`3 q norm is larger or smaller than the maximal norm in the linear case, for solutions to the focusing or defocusing cubic wave equation respectively. This furnishes a quantitative measure of the impact of the nonlinearity on the size of the solution. This result is mainly inspired by the analogous one of the aforementioned Duyckaerts, Merle and Roudenko [START_REF] Duyckaerts | Maximizers for the Strichartz norm for small solutions of mass-critical NLS[END_REF], for the mass-critical nonlinear Schrödinger equation in one or two spatial dimensions. Like in the Schrödinger case, an essential ingredient in establishing [START_REF] Bez | A sharp Sobolev-Strichartz estimate for the wave equation[END_REF] is the sharpened Strichartz estimate. However, the nonlinear wave vi equation presents a significant additional difficulty. In the Schrödinger case, all symmetries to the relevant Strichartz estimate are also symmetries to the nonlinear equation. On the other hand, uptq 9 H 1{2 is not invariant under time translations, Lorentzian boosts, and phase shifts, which are all symmetries of [START_REF] Bennett | Flow monotonicity and Strichartz inequalities[END_REF].

It is to address this lack of invariance that, in (6), the limit as t Ñ ´8 of uptq 9

H 1{2
is considered; this is manifestly invariant under time translations, and it is proved in this chapter that it is also invariant under Lorentzian boosts. This leaves out phase shifts, which is unavoidable, as these are symmetries of the linear wave equation which do not correspond to any symmetry of [START_REF] Bennett | Flow monotonicity and Strichartz inequalities[END_REF]. These invariances are necessary to explicitly compute the second-order constant in [START_REF] Bez | A sharp Sobolev-Strichartz estimate for the wave equation[END_REF]; this computation is carried out via the Penrose transform. These also enable the construction of a nonlinear profile decomposition, adapting the aforementioned linear decomposition of Ramos, which is then combined with a standard super-additivity argument, to prove that ( 6) is attained. The relation between super-additivity and maximizers is classical, and due to the aforementioned P.L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, Part 1[END_REF].

The problem of uniqueness of the maximizers to ( 6) is also considered. Two maximizers are shown to be equal, if their metric projections on the manifold of linear maximizers coincide, up to nonlinear symmetries. The presence of the phase shifts, which leave the manifold of linear maximizers invariant, but do not correspond to any nonlinear symmetry, make this result conditional; remarkably, in the Schrödinger case this difficulty is nonexistent, and Duyckaerts, Merle and Roudenko do obtain an unconditional uniqueness. The uniqueness of maximizers is actually the most difficult part of the problem, since it cannot be resolved by concentration-compactness alone; it relies on the explicit expression, and on the geometrical structure, of the set of linear maximizers, and on the sharpened Strichartz estimate.

There is intense research going on on the dynamics of the cubic wave equation ( 5) in 9 H 1{2 ; see [START_REF] Dodson | Global well-posedness and scattering for the radial, defocusing, cubic nonlinear wave equation with almost sharp initial data[END_REF][START_REF] Dodson | Global well-posedness and scattering for the radial, defocusing, cubic wave equation with initial data in a critical Besov space[END_REF][START_REF] Dodson | Scattering for the radial 3D cubic wave equation[END_REF][START_REF] Rodriguez | Scattering for radial energy-subcritical wave equations in dimensions 4 and 5[END_REF][START_REF] Shen | On the energy subcritical nonlinear wave equation with radial data for 3 ă p ă 5[END_REF] and the very recent [START_REF] Dodson | Global well-posedness and scattering for the radial, defocusing, cubic nonlinear wave equation[END_REF][START_REF] Dodson | Global well-posedness for the radial, defocusing, nonlinear wave equation for 3 ă p ă 5[END_REF][START_REF] Dodson | Scattering for defocusing energy subcritical nonlinear wave equations[END_REF]. However, to the knowledge of the author, the only paper, other than the present thesis, that deals with Lorentzian transformations is the work of Ramos [START_REF] Ramos | Nonlinear profile decomposition for the 9 H 1{2 ˆ9 H ´1{2 pR d q energy subcritical nonlinear wave equation[END_REF]; see also [START_REF] Killip | Scattering for the cubic Klein-Gordon equation in two space dimensions[END_REF] for the Klein-Gordon equation. Also related is [START_REF] Georgiev | Global existence of low regularity solutions of non-linear wave equations[END_REF], in which the Penrose transform is used.

Finally, it is remarkable that estimates of Strichartz norms for critical nonlinear problems are only known in a few cases. Duyckaerts and Merle [START_REF] Duyckaerts | Scattering norm estimate near the threshold for energy-critical focusing semilinear wave equation[END_REF] obtained a sharp bound for solutions to the focusing quintic wave equation that are close to the threshold solution. For the defocusing quintic wave equation in R 1`3 , Tao [START_REF] Tao | Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions[END_REF] gives a bound of the L 4 pR; L 12 pR 3 qq norm in terms of a tower of exponentials of the 9 H 1 ˆL2 norms of initial data. This result holds for all data, not just small, but is not sharp, and it is interesting to note that a much smaller bound had previously been given in the radial case by Ginibre, Soffer and Velo [START_REF] Ginibre | The global Cauchy problem for the critical nonlinear wave equation[END_REF].
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Notation

Unless otherwise stated, all functions are real-valued. For s " 1 or s " 1{2, 9 H s pR d q :" 9 H s pR d q ˆ9 H s´1 pR d q.

Boldface denotes elements of 9 H s pR d q, considered as column vectors;

f "

" f 0 f 1  .
The space 9 H s pR d q is a real Hilbert space, with scalar product

xf | gy 9 H s " ż R d p´∆q s f 0 ¨g0 dx `żR d p´∆q s´1 f 1 ¨g1 dx.
The l symbol denotes the d'Alembert operator;

l u :" B 2 t u ´∆u.
If u is a function on the Minkowski spacetime R 1`d , then its boldface denotes uptq :"

" upt, ¨q B t upt, ¨q , t P R.
The operator S denotes the propagator of the linear wave equation;

v " Sf ðñ # l v " 0, on R 1`d , vp0q " f .
Finally, S 1 denotes the quotient R{2πZ. For all θ 1 , θ 2 P S 1 ,

|θ 1 ´θ2 | :" min ˇˇθ 1 1 ´θ1 2 | : θ 1 " θ 1 1 , θ 2 " θ 1 2 mod 2π ( . ix Chapter 1

Maximizers for Strichartz estimates

In [START_REF] Foschi | Maximizers for the Strichartz inequality[END_REF], Foschi conjectured that

f ‹ :" ´2 d´1 2 p1 `|¨| 2 q ´d´1 2 , 0 īs a global minimizer of the function ψpf q :" S p f p 9 H 1{2 ´ Sf p L p pR 1`d q , p :" 2 d`1 d´1 ,
where

S :" Sf ‹ L p pR 1`d q f ‹ 9 H 1{2
.

In this chapter, we prove that f ‹ is a critical point of ψ if and only if the spatial dimension d is odd. In particular, the conjecture cannot be true in even spatial dimension.

Theorem 1.0.1. It holds that d dε ψpf ‹ `εf q ˇˇε"0 " 0, @f P 9

H 1{2 pR d q,
if and only if d is odd.

The first step in the proof is the compactification of the Minkowski space-time by means of the Penrose transform.

The Penrose transform

We will introduce two coordinate systems on the Minkowski spacetime R 1`d and another two on the curved spacetime R ˆSd , where

S d " pX 0 , X 1 , . . . , X d q ˇˇX 2 0 `X2 1 `. . . `X2 d " 1 ( . 1 
We begin with R 1`d , in which we let t P R denote the time coordinate and x P R d denote the Cartesian spatial coordinates. Then, we define the polar coordinates by r " |x|, ω " x |x| P S d´1 , and the light-like coordinates as

x -" t ´r, x + " t `r, where x -ď x + .

(1.1)

We now consider R ˆSd , in which we let T P R denote the time coordinate and X " pX 0 , X 1 , . . . , X d q denote the Cartesian coordinates on S d . We define the spherical polar coordinates via the equations X 0 " cospRq, pX 1 , . . . , X d q " sinpRq ω, ω P S d´1 , R P r0, πs.

(1.2)

And finally, we define the light-like coordinates on R ˆSd as

X -" 1 2 pT ´Rq, X + " 1 2 pT `Rq. (1.3) 
We can now define an injective map

P : R 1`d Ñ R ˆSd , pT, cos R, sinpRqωq " Ppt, xq, via the equations X -" arctan x -, X + " arctan x + , (1.4) 
remarking that X -and X + take values in the region pX -, X + q P r´π 2 , π 2 s 2 ˇˇX -ď X + ( .

So, the map P is not surjective and its image PpR 1`d q is

PpR 1`d q " $ & % ´T, pcos R, sin R ωq ¯P R ˆSd ˇˇˇˇˇ´π ă T ă π 0 ď R ă π ´|T | ω P S d´1
, .

-

;
(1.5) see Figure 1.1. We now discuss the conformality of P. The metric tensor on R 1`d is ds 2 R 1`d " dt 2 ´dr 2 ´r2 dω 2 , where dω 2 is the metric tensor on S d´1 . So, using (1.1), we get the expression

ds 2 R 1`d " 1 2 pdx -dx + `dx + dx -q ´px -´x+ q 2 4 dω 2 . (1.6)
The metric tensor on R ˆSd is ds 2 RˆS d " dT 2 ´dR 2 ´psin Rq 2 dω 2 , so using (1.3) Inserting the equations (1.4) into (1.6), and using the elementary identity ptan X -´tan X + q 2 " sin 2 pX + ´X-q cos 2 X -cos 2 X + , we obtain the relation

ds 2 RˆS d " 2pdX -dX + `dX + dX -q ´sin 2 pX + ´X-qdω 2 .
ds 2 RˆS d " Ω 2 ds 2 R 1`d , (1.7) 
where Ω is the following scalar field; Ω :" 2p1 `px + q 2 q ´1{2 p1 `px -q 2 q ´1{2 " 2 cos X + cos X -, and the change of variable (1.4) is implicit. We will always omit this change of variable without further specification. The relation (1.7) expresses the fact that P is a conformal map.

Remark 1.1.1. The restriction of P to the initial time slice t t " 0 u is the stereographic projection from the south pole of S d ;

P 0 :" P| t"0 : R d Ñ S d z t p´1, 0, . . . , 0q u . (1.8)
This is also a conformal map, whose conformal factor we denote by Ω 0 :" Ω| t"0 " 2p1 `r2 q ´1 " 1 `cos R.

The explicit equations for X " P 0 pxq are X 0 " Ω 0 ´1, X j " Ω 0 x j , j " 1, . . . , d.

Definition 1.1.2. For all scalar field v on R 1`d , we define a scalar field V on PpR

1`d q by v " Ω d´1 2 V,
The scalar field V is called the Penrose transform of v.

Remark 1.1.3. At t " 0, corresponding to T " 0,

v| t"0 " pΩ d´1 2 V q ˇˇT "0 , B t v| t"0 " pΩ d`1 2 B T V q ˇˇT "0 , (1.9) 
where we used that B t Ω| t"0 " 0 and that

B t | t"0 " ΩB T | T "0 .
This definition is motivated by the identity

l v " Ω d`3 2 ˜B2 T ´∆S d `ˆd ´1 2 ˙2¸V , (1.10) 
which is a standard consequence of the conformality; see, for example, [START_REF] Hörmander | Lectures on nonlinear hyperbolic differential equations[END_REF]Appendix A.4]. Here ∆ S d denotes the Laplace-Beltrami operator. We complement Definition 1.1.2 with the transformation laws for the initial data, modeled on (1.9);

f 0 " Ω d´1 2 0 F 0 , f 1 " Ω d`1 2 0 F 1 , (1.11) 
where the stereographic projection (1.8) is implicit. We thus have the fundamental property

$ ' & ' % l v " 0, on R 1`d , v| t"0 " f 0 , B t v| t"0 " f 1 , ðñ $ ' & ' % B 2 T V " ∆ S d V ´`d´1 2 ˘2 V, on PpR 1`d q, V | T "0 " F 0 , B T V | T "0 " F 1 .
The Penrose transform is very relevant in our context, because

f ‹ " pΩ d´1 2 
0 , 0q, so, denoting v ‹ " Sf ‹ , we have the particularly simple expressions

F ‹ 0 " 1, F ‹ 1 " 0, V ‹ pT, Xq " cos `d´1 2 T ˘.
(1.12)

Spherical harmonics

We use the notation Y ,m for normalized real-valued spherical harmonics on S d . Here P N ě0 denotes the degree and m the degeneracy. We have

´∆S d Y ,m " p `d ´1qY ,m , m " 0, . . . , N p q :" p2 `d´1qp `d´2q! !pd´1q! ´1,
and

ż S d Y ,m pXq 2 dS " 1,
where dS is the surface measure on S d . We recall that Y ,m pXq is the restriction to S d of a homogeneous harmonic polynomial of degree in X " pX 0 , X 1 , . . . , X d q; see, for example, [START_REF] Müller | Analysis of spherical symmetries in Euclidean spaces[END_REF]. In particular, Y ,m p´Xq " p´1q Y ,m pXq.

(1.13)

For each P N ě0 there is exactly one spherical harmonic that is a function of the first coordinate X 0 only; we call it the zonal spherical harmonic and we denote it by Y ,0 .

Remark 1.1.4. The spherical harmonics of degree 0 and 1 are

Y 0,0 " 1 b |S d | , Y 1,m pXq " c d`1 |S d | X m , pm " 0, 1, . . . , dq.
We use the hat notation to denote the coefficients of expansions in spherical harmonics: We conclude the section by introducing the fractional operators A 1 and A ´1 on S d , defined by their action on spherical harmonics;

F pXq " 8 ÿ "0 N p q ÿ m"0 F p , mqY ,m pXq, Proposition 1.1.5. Assume that l v " 0 on R
A ˘1Y ,m :" ˜´∆ S d `ˆd ´1 2 ˙2¸˘1 2 Y ,m " ˆ `d ´1 2 ˙˘1 Y ,m . (1.16) 
These operators are the lifting to S d of the euclidean fractional Laplacians p´∆q ˘1 2 via the stereographic projection P 0 , in the sense that, for any scalar field F on S d :

pA ˘1F q ˝P0 " Ω ´1 2 pd˘1q 0 p´∆q ˘1 2 ˆΩ 1 2 pd¯1q 0 F ˝P0 ˙; (1.17)
see [57, equation (2)].

Some integration formulas

We let dS denote the surface measure on S d . As we saw in the first section, we have the conformality properties Ω 

ż R d F pP 0 pxqqΩ d 0 dx " ż S d F pXq dSpXq, (1.18) 
ij PpR 1`d q V pT, Xq dT dSpXq " ij R 1`d V pPpt, xqqΩ d`1 dtdx,
where F and V are scalar fields on S d and PpR 1`d q respectively. It is a consequence of the first formula and of equation (1.17) that, if f , g are related to pF 0 , F 1 q and pG 0 , G 1 q via (1.11), then

xf | gy 9 H 1 2 " ż S d A 1 F 0 ¨G0 dS `żS d A ´1F 1 ¨G1 dS,
and so

xf | gy 9 H 1 2 " 8 ÿ "0 N p q ÿ m"0 ˆ `d ´1 2 ˙F 0 p , mq Ĝ0 p , mq `ˆ `d ´1 2 ˙´1 F1 p , mq Ĝ1 p , mq. (1.19) 
In particular, from (1.12) it follows that Proof. We use the spherical polar coordinates (1.2), so that dS " psin Rq d´1 dR dS d´1 , where dS d´1 denotes the volume element on S d´1 ; see, for example, [58, §1.42]. We note that PpR 1`d q can be described as

f ‹ 2 9 H 1 2 pR d q " d ´1 2 S d . ( 1 
PpR 1`d q " $ & % ´T, pcos R, sinpRqωq ¯ˇˇˇˇˇR P r0, πq ´π `R ă T ă π ´R ω P S d´1
, .

-; see (1.5). So, setting GpRq :"

ż π´R ´π`R ˆżS d´1
V pT, cos R, sinpRq ωq dS d´1 pωq ˙dT, the integral to evaluate can be rewritten as ij (1.23)

Using the changes of variable ω Þ Ñ ´ω and T Þ Ñ T ˘π, Gpπ ´Rq "

ż ´π`R ´π ż S d´1
V pT ´π, ´cos R, ´sinpRq ωq dS d´1 pωq dT

`ż π π´R ż S d´1
V pT `π, ´cos R, ´sinpRq ωq dS d´1 pωq dT.

Now, V is 2π-periodic in T , so V pT `π, ´cos R, ´sinpRqωq " V pT ´π, ´cos R, ´sinpRqωq " V pT, cos T, sinpRqωq,
by the assumption (1.21). Therefore

GpRq `Gpπ ´Rq "

ż π ´π ż S d´1
V pT, cos R, sinpRqωq dS d´1 pωqdT, which can be inserted into (1.23) to yield the desired conclusion (1.22).

We recall from the first section that the scalar field Ω is the conformal factor of the Penrose map P; its explicit expression in spherical polar coordinates is Ω " cos T `cos R.

(1.24)

Corollary 1.2.3. Let d be an odd integer. If l v " 0 and l w " 0 on R 

" ´p ij R 1`d |Sf ‹ | p´2 Sf ‹ Sf K dtdx. (1.27)
Proof. This follows from the computation

d dε ψpf ‹ `εf q ˇˇˇε "0 " pS p xf ‹ | f y 9 H 1{2 f ‹ p´2 9 H 1{2 ´p ij R 1`d |Sf ‹ | p´2 Sf ‹ Sf dtdx,
which holds for any f P 9 H 1{2 pR d q, and then taking f " cf ‹ `fK and recalling the definition of S.

When d is odd, we can apply Corollary 1.2.3 to the integral on the right-hand side of (1.27);

ij R 1`d |Sf ‹ | p´2 Sf ‹ Sf K dtdx " 1 2 ij S 1 ˆSd cos d ´1 2 T p´2 cosp d ´1 2 T qU K dT dS,
since the Penrose transform of Sf ‹ is cos d´1 2 T ; see (1.12). Here, V K denotes the Penrose transform of v K " Sf K . From the formula (1.19), we infer that the condition xf ‹ | f K y 9 H 1{2 " 0 is equivalent to FK 0 p0, 0q " 0. Therefore, expanding V K in spherical harmonics as in (1.14), we see that

ż S d V K pT, Xq dSpXq " C sin ˆd ´1 2 
T ˙F 1 p0, 0q, @ T P r´π, πs, for some constant C. This implies that

1 2 ij S 1 ˆSd cos d ´1 2 T p´2 cosp d ´1 2 T qV K dT dS " C 2 F1 p0, 0q ż π ´π cos d ´1 2 T p´2 cosp d ´1 2 T q sinp d ´1 2 
T q dT " 0, as the last integrand is odd. This completes the proof of Theorem 1.0.1 in the odd dimensional case. The reason why this argument fails in even dimension is that Corollary 1.2.3 is not applicable in that case. In order to prove that, in fact, f ‹ is not a critical point in even dimension, we need only prove that the derivative is nonzero in a single direction. A bad choice would be to take the direction f " pf 0 , 0q, where f 0 corresponds to a spherical harmonic of degree 1 under the Penrose transform (1.11), as then we would be moving in the direction of the symmetries of the inequality. This will be proved in the forthcoming chapter; see entries 5 and 6 in Table 2.2. Instead we consider the zonal spherical harmonic of degree 2, which we denote by Y 2,0 ; see the previous section.

Lemma 1.3.2. Let d ě 2 be even and let f " pf 0 , 0q P 9 H 1{2 pR d q be the initial data corresponding to F 0 " Y 2,0 , F 1 " 0, via the Penrose transformation (1.11). Then

d dε ψpf ‹ `εf q ˇˇˇε "0 " p´1q d 2 `1 c d , where c d ą 0.
Proof. Applying the Penrose transform to (1.27) we obtain

d dε ψpf ‹ `εf q ˇˇˇε "0 " ´p ij PpR 1`d q cos d ´1 2 T p´2 cos ˆd ´1 2 T ˙V dT dS,
where V pT, Xq " cos `p2 `d´1 2 qT ˘Y2,0 pX 0 q; see (1.14). We remark that we have written the generic point X P S d as X " pX 0 , X 1 , . . . , X d q, where X 0 P r´1, 1s, to exploit the fact that Y 2,0 is a function of X 0 only. Taking into account the definition (1.5) of PpR We have used the formula dS " psin Rq d´1 dRdS d´1 for the volume element of S d in the polar coordinates (1.2). Now, the zonal spherical harmonic Y 2,0 can be expressed by the Rodrigues formula;

Y 2,0 pX 0 q " R 2,d p1 ´X2 0 q ´d´2 2 d 2 dX 2 0 p1 ´X2 0 q 2`d ´2 2 ,
see, for example, [START_REF] Müller | Analysis of spherical symmetries in Euclidean spaces[END_REF]Lemma 4,pg. 22]. Here R 2,d ą 0 is a constant whose exact value is not important here. We compute the last integral in (1.28) using the change of variable X 0 " cos R;

ż π´|T | 0 Y ,0 pcos Rqpsin Rq d´1 dR " R 2,d ż 1 ´cos T d 2 dX 2 0 p1 ´X2 0 q 2`d ´2 2 dX 0 " C d cos T psin T q d ,
where C d ą 0. Inserting this into (1.28) shows that it remains to prove the following:

Ipdq :" 1 π ż π ´π h d pT qP d pT q dT " p´1q d 2 c d , for some c d ą 0, (1.29) 
where h d pT q :" cos d´1 2 T p´2 and

P d pT q :" cos d ´1 2 T cos d `3 2 T cos T psin T q d . (1.30)
We first consider the case d " 2. In this case we have that p " 6, so we can evaluate Ip2q explicitly:

Ip2q " 1 π ż π ´π ˆcos T 2 ˙5 cos 5T 2 cos T psin T q 2 dT " 4 π ż π{2 0 pcos T q 5 cos 5T cos 2T psin 2T q 2 dT " ´5 128 
.
In the case d ě 4 we will use the Parseval identity:

Ipdq " ĥd p0q Pd p0q 2 `8 ÿ k"1 ĥd pkq Pd pkq,
where f pkq :" 1 π ş π ´π f pT q cospkT q dT . We remark that, with this choice of notation, 

if f pT q " a 0 2 `8 ÿ k"1 a k cospkT q, then a k " f pkq. ( 1 
p´1q j ˆpp ´2q{2 j ˙ˆsin d ´1 2 T ˙2j , (1.32) 
For each j P N ě0 we can develop

ˆsin d ´1 2 T ˙2j " p´1q j 2 2j ´ei d´1 2 T ´e´i d´1 2 T ¯2j " p´1q j 2 2j 2j ÿ m"0 ˆ2j m ˙p´1q m e ipj´mqpd´1qT " 1 2 2j ˜ˆ2j j ˙`2 j ÿ m"1 ˆ2j j ´m˙p ´1q m cospmpd ´1qT q ¸.
This shows that each summand in (1.32) is a linear combination of the terms cospmpd 1qT q, with m P N ě0 , which, in light of (1.31), completes the proof.

We now turn to the term P d introduced in (1.30). Using the addition formula for the cosine, and developing psin T q d like we did in the previous proof, we can express P d as a trigonometric polynomial of degree 2pd `1q:

P d pT q "2 ´d´2 pcos T `cos 3T `cos dT `cospd `2qT q ˆ¨ˆd d{2 ˙`2 d{2 ÿ k"1 p´1q k ˆd d{2 ´k˙c osp2kT q '; (1.33)
so, in particular, Pd pkq " 0 if k ą 2pd `1q. Since d ě 4, we infer from this and from Lemma 1.3.3 that Ipdq reduces to the sum of four terms:

Ipdq " 1 2 ĥd p0q Pd p0q `3 ÿ m"1
ĥd pmpd ´1qq Pd pmpd ´1qq.

(1.34)

Actually, we have that Pd p3pd ´1qq " 0. This is obvious for d ě 6, because in that case 3pd ´1q exceeds 2pd `1q, and can be established for d " 4 by inspection of the formula P 4 pT q "2 ´6 pcos T `cos 3T `cos 4T `cos 6T q p6 ´8 cos 2T `2 cos 4T q , again using (1.31).

To compute the remaining coefficients, we use the addition formula for the cosine to rewrite (1.33) as 2 d`2 P d pT q " P d,1 pT q `Pd,3 pT q `Pd,d pT q `Pd,d`2 pT q, where each summand is given by

P d,h pT q " ˆd d{2 ˙cos hT `d{2 ÿ k"1 p´1q k ˆd d{2 ´k˙p cosp2k ´hqT `cosp2k `hqT q, for h " 1, 3, d, d `2.
To compute Pd p0q, we observe that the only contributing term is obtained for 2k ´h " 0, and that can only happen for h " d and k " d{2.

By (1.31) we have 2 d`2 Pd p0q " Pd,d p0q " 2p´1q d 2 .
To compute Pd pd ´1q we observe that, as d ´1 is odd, the only contributing terms are obtained for h " 1, 3:

2 d`2
Pd pd ´1q " Pd,1 pd ´1q `P d,3 pd ´1q " p´1q

d 2 ´p´1q d 2 ˆd 1 ˙`p´1q d 2 ˆd 2 " p´1q d 2 pd ´1qpd ´2q 2 .
With analogous reasoning we obtain

2 d`2
Pd p2pd ´1qq " Pd,d p2pd ´1qq `P d,d`2 p2pd ´1qq " ´p´1q

d 2 ˆd 1 ˙`p´1q d 2 ˆd 2 " p´1q d 2 ˆpd ´1qpd ´2q 2 ´1˙.
Inserting the preceding computations into Parseval's identity (1.34), we obtain the formula

p´1q d 2 2 d`2
Ipdq " ĥd p0q ´ĥ d p2pd ´1qq

`pd ´1qpd ´2q 2 ´ĥ d pd ´1q `ĥ d p2pd ´1qq ¯.

To conclude the proof of (1.29)it will suffice to prove that ĥd p0q ´ĥ d p2pd ´1qq ą 0, and ĥd pd ´1q `ĥ d p2pd ´1qq ą 0.

(1.35)

The first inequality follows immediately from the definition (1.30) of h d :

ĥd p0q ´ĥ d p2pd ´1qq " 1 π ż π ´π cos d ´1 2 T p´2
p1 ´cos 2pd ´1qT q dT ą 0.

To prove the second inequality we note that the change of variable T Þ Ñ 2 d´1 T produces ĥd pd ´1q `ĥ d p2pd ´1qq " 2 πpd ´1q

ż d´1 2 π ´d´1 2 π |cos T | p´2 pcos 2T `cos 4T q dT.
The integrand function in the right-hand side is π-periodic and even. Therefore, the integral is an integer multiple of the integral over r0, π{2s. Moreover, cos 2T `cos 4T " 2 cos T cos 3T . We get ĥd pd ´1q `ĥ d p2pd ´1qq " 4pd ´2q πpd ´1q

ż π{2 0 |cos T | p´2 cos T cos 3T dT. (1.36)
To conclude the proof, we notice that

ż π{6 0 cos T cos 3T dT " ´ż π{2 π{6 cos T cos 3T dT ą 0,
and |cos T | p´2 is strictly decreasing on r0, π{2s, so

ż π{6 0 |cos T | p´2 cos T cos 3T dT ą ´ż π{2 π{6 |cos T | p´2 cos T cos 3T dT,
which proves that the right-hand side in (1.36) is strictly positive. This shows that the second inequality in (1.35) holds, and the proof of Theorem 1.0.1 is complete.

Chapter 2

Sharpened Strichartz estimates

In the aforementioned paper [START_REF] Foschi | Maximizers for the Strichartz inequality[END_REF], Foschi proved the Strichartz estimate;

Sf L 4 pR 1`3 q ď S f 9 H 1{2 pR 3 q , where S :" ˆ3 16π ˙1 4 . (2.1)
The constant S is optimal, meaning that the inequality fails if it is replaced with any strictly smaller one. Moreover, there is equality in (2.1) for f " f ‹ , where

f ‹ " ˆ2 1 `|¨| 2 , 0 ˙.
In particular, the set of maximizers M :"

! f P 9 H 1{2 pR 3 q ˇˇ Sf L 4 pR 1`3 q " S f 9 H 1{2
) is not trivial. We prove that (2.1) can be sharpened by adding a term proportional to the distance from M, defined by dpf , Mq :" inf f ´g 9

H 1{2 ˇˇg P M ( . Theorem 2.0.1. There is a positive constant C such that Cdpf , Mq 2 ď S 2 f 2 9 
H 1{2 ´ Sf 2 L 4 pR 1`3 q ď S 2 dpf , Mq 2 .
The upper bound is proved in a more general setting in the following section.

The sharpened version of (2.1) is the lower bound, which will follow from a local version, in which we also obtain the sharp constant. To prove the local version, one of the key ingredients is the Penrose transform, which we introduced in the previous chapter. We will also require the preliminary study of some geometrical properties of M, which we carry out in the second section.

We conclude the proof of the theorem by an application of the profile decomposition of Ramos [START_REF] Ramos | A refinement of the Strichartz inequality for the wave equation with applications[END_REF].

Finally, we dedicate the last section of this chapter to the proof of a result analogous to Theorem 2.0.1 for the sharp energy-Strichartz inequality in R 1`5 of Bez and Rogers [START_REF] Bez | A sharp Strichartz estimate for the wave equation with data in the energy space[END_REF]. The outline of the proof is the same as in the three-dimensional case, but there is the significant additional difficulty that the quadratic term in the relevant Taylor expansion is not diagonal in its expansion in spherical harmonics.

Abstract upper bounds

Consider a bounded linear operator S : H Ñ L p pXq, where H is a real or complex Hilbert space and X is a measure space. Then, writing

S :" sup f ‰0 Sf L p pXq f H and dpf, M q " inf t f ´f‹ H : f ‹ P M u ,
where M :" tf ‹ P H : Sf ‹ L p pXq " S f ‹ H u, the following upper bound holds generally.

Proposition 2.1.1. Let 1 ă p ă 8. Then, for all f P H,

S 2 f 2 H ´ Sf 2 L p pXq ď S 2 dpf, M q 2 . (2.2)
Proof. For f P H there exists a sequence

f n ‹ P M such that dpf, M q 2 " lim nÑ8 f ´f n ‹ 2 H .
We let g n " f ´f n ‹ and we define H n : R Ñ R by

H n pλq " Spf n ‹ `λg n q 2 L p pXq ´ Sf n ‹ 2 L p pXq .
The function H n is convex and, since p P p1, 8q, it is differentiable; see [START_REF] Lieb | Analysis. Second[END_REF]Theorem 2.6].

Given that f n ‹ P M , the function

λ P R Þ Ñ Spf n ‹ `λg n q 2 L p pXq ´S2 f n ‹ `λg n 2 H
has a global minimum and so a critical point at λ " 0, from which we infer that

d dλ ˇˇˇλ "0 H n pλq " d dλ ˇˇˇλ "0 S 2 f n ‹ `λg n 2 H " 2S 2 xf n ‹ | g n y .
Convexity gives

H n p1q ě H 1 n p0q; that is Spf n ‹ `gn q 2 L p pXq ě Sf n ‹ 2 L p pXq `2S 2 xf n ‹ | g n y . (2.3)
Recalling that

S 2 f 2 H ´ Sf 2 L p pXq " S 2 f n ‹ 2 H `S2 g n 2 H `2S 2 xf n ‹ | g n y ´ Spf n ‹ `gn q 2 L p pXq , equation (2.3) yields S 2 f 2 H ´ Sf 2 L p pXq ď pS 2 f n ‹ 2 H ´ Sf n ‹ 2 L p pXq q `S2 g n 2 H .
Since f n ‹ P M , the term in brackets vanishes. Letting n Ñ 8, we find (2.2), and so the proof is complete.

Remark 2.1.2. Specializing Proposition 2.1.1 to the fractional Sobolev inequality on R d gives an alternative proof of the upper bound of [START_REF] Chen | Remainder Terms in the Fractional Sobolev Inequality[END_REF].

Geometry of the set of maximizers

Foschi proved that the set M is the orbit of f ‹ under the action of a Lie group of symmetries, which we now describe. The following definitions and computations will be needed only for d " 3 or d " 5, but there is no added difficulty in considering the general case. We recall that

f ‹ " ´2 d´1 2 p1 `|¨| 2 q ´d´1 2 , 0 ¯.
For t P R, we denote by S t the vector-valued wave propagator;

S t f :" » - cospt ? ´∆q sinpt ? ´∆q ? ´∆ ´sinpt ? ´∆q ? ´∆ cospt ? ´∆q fi fl " f 0 f 1  , (2.4) 
which is characterized by the property

# l v " 0, vp0q " f , ðñ vptq " S t f .
For θ P S 1 , we denote by Ph θ the phase shift;

Ph θ f :" » - cospθq sinpθq ? ´∆ ´sinpθq ? ´∆ cospθq fi fl " f 0 f 1  , (2.5) 
which is characterized by

S t Ph θ f " Ph θ S t f " » - cospt ? ´∆ `θq sinpt ? ´∆ `θq ? ´∆ ´sinpt ? ´∆ `θq ? ´∆ cospt ? ´∆ `θq fi fl " f 0 f 1  ,
For ζ j P R and j " 1, . . . , d, we denote by L j ζ j the Lorentzian boost along the x j axis;

L j ζ j f :" v ζ j ˇˇt"0 ,
where vpt, xq " Sf pt, xq and

v ζ 1 pt, xq " vpt cosh ζ 1 `x1 sinh ζ 1 , t sinh ζ 1 `x1 cosh ζ 1 , x 2 , . . . , x d q, v ζ 2 pt, xq " vpt cosh ζ 2 `x2 sinh ζ 2 , x 1 , t sinh ζ 2 `x2 cosh ζ 2 , . . . , x d q, . . . v ζ d pt, xq " vpt cosh ζ d `xd sinh ζ d , x 1 , . . . , x d´1 , t sinh ζ d `xd cosh ζ d q.
We introduce the collective parameter α P S 1 ˆR2d`2 ;

α :" pθ, t 0 , ζ 1 , . . . , ζ d , σ, x 0 q, θ P S 1 , t 0 P R, ζ j P R, σ P R, x 0 P R d , (2.6) 
Then, for f P 9 H 1 2 , we let Γ α denote the following element of 9 H 1{2 ;

S t 0 Ph θ L 1 ζ 1 . . . L d ζ d ´e d´1 2 σ f 0 pe σ p¨`x 0 qq , e d`1 2 σ f 1 pe σ p¨`x 0 qq ¯. (2.7)
We remark that Γ 0 is the identity. We can now cast in this notation Foschi's characterization of M.

Theorem 2.2.1 (Foschi [START_REF] Foschi | Maximizers for the Strichartz inequality[END_REF]). The set of maximizers of the three-dimensional Strichartz estimate (2.1) is

M " cΓ α f ‹ ˇˇc ě 0, α P S 1 ˆR8 ( Ă 9 H 1{2 pR 3 q.
Remark 2.2.2. Definition (2.7) does not contain spatial rotations; as a consequence, the operators Γ α do not form a group. Precisely, given Γ α , Γ β there is a unique Γ γ such that

Γ α Γ β " Γ γ R,
where the operator R is the representation of a rotation;

Rf pxq :" f pA R xq, for a A R P SOpdq. This is not a nuisance, because f ‹ is radially symmetric, so Γ α Γ β f ‹ " Γ γ f ‹ .
Proposition 2.2.3. The operators Γ α preserve both sides of the Strichartz inequality;

Γ α f 9 H 1{2 " f 9 H 1{2 and SΓ α f L 4 pR 1`d q " Sf L 4 pR 1`d q .
(2.8)

We will prove this proposition after introducing some more notation.

Remark 2.2.4. The full action of the symmetry group on the Strichartz inequality is the transformation f Þ Ñ cΓ α f . This notation has been chosen to highlight the difference between the multiplicative transformation f Þ Ñ cf , which is a symmetry of the inequality but does not satisfy (2.8), and the transformation Γ α , which preserves both sides of the inequality. We caution that the second identity in (2.8) is specific of the space L 4 pR 1`3 q, and the operator Ph θ does not seem to preserve the L p pR 1`d q norm unless p " 4.

We begin the study of the geometrical properties of M with the following lemma, which we state for general spatial dimension d. Lemma 2.2.5. The map

pc, αq P p0, 8q ˆS1 ˆR2d`2 Þ Ñ cΓ α f ‹ (2.9)
is injective.

Proof. We need to show that cΓ α f ‹ " c 1 Γ α 1 f ‹ implies that c " c 1 and α " α 1 . Now, the first identity is an immediate consequence of Proposition 2.2.3, because

c f ‹ 9 H 1{2 " cΓ α f ‹ 9 H 1{2 " c 1 Γ α 1 f ‹ 9 H 1{2 " c 1 f ‹ 9 H 1{2 .
By the group property of Remark 2.2.2, we can also assume that Γ α 1 " Γ 0 . So, letting v α :" SΓ α f ‹ , we are reduced to prove that

v α " v 0 ùñ α " 0.
Up to a change of parameters, we can rewrite v α as

v α pt, xq " e d´1 2 σ v θ pe σ L β pt `t0 , x `x0 qq,
where L β : R 1`d Ñ R 1`d denotes a Lorentzian boost of velocity β, where β P R d and |β| ă 1; see the forthcoming chapter. Here v θ :" S Ph θ f ‹ . Now, we introduce the energy and the momentum, defined for an arbitrary scalar field w on R 1`d as

Epwq :" ż R d ´|∇w| 2 `pB t wq 2 ¯dx, P pwq :" ż R d B t w ∇w dx.
These quantities are invariant with respect to all symmetries considered in this section, except for the dilations and the Lorentzian boosts; more precisely, we have the energymomentum relation pEpv α q, P pv α qq " e σ L ´β pEpv 0 q, P pv 0 qq; see, for example, [51, Remark 2.5]. Since v 0 is radially symmetric, P pv 0 q " 0. By assumption, pEpv α q, P pv α qq must equal pEpv 0 q, P pv 0 qq, which gives the equations e σ γEpv 0 q " Epv 0 q, e σ γβEpv 0 q " 0, where γ :" p1 ´|β|2 q ´1{2 , from which we infer that e σ " 1 and β " 0.

To conclude, we equate the spatial Fourier transforms of v θ pt `t0 , ¨`x 0 q and v 0 pt, ¨q;

cosppt `t0 q|ξ| `θqe ix 0 ¨ξ f‹ 0 pξq " cospt|ξ|q f‹ 0 pξq, @ξ P R d , t P R,

where f ‹ 0 " 2 d´1 2 p1 `|¨| 2 q ´d´1
This lemma implies that Mzt0u is a 10-dimensional smooth manifold, parameterized by (2.9). The tangent space at f ‰ 0 is

T f M " span t Γ α 0 f ‹ , B α i Γ α 0 f ‹ : i " 1, 2, . . . , 9 u , where f " c 0 Γ α 0 f ‹ .
Here, B α i denotes the derivative with respect to the parameters (2.6). We refer to such derivatives as the generators of the symmetry group. In the forthcoming subsection, we will give an explicit description of the tangent space at f ‹ . This suffices to describe the tangent space at all points of Mzt0u, as the following proposition shows. Proposition 2.2.6. For all c ‰ 0,

T cΓαf‹ M " Γ α pT f‹ Mq .
Proof. By definition,

T cΓαf‹ M " span ! cΓ α f ‹ , c B β j pΓ β Γ α f ‹ q β"0 ˇˇj " 1, . . . , 2d `3 ) 
. Now, by Remark 2.2.2, for all Γ β there exists a unique γpβq P S1 ˆR2d`2 such that

Γ ´1 α Γ β Γ α f ‹ " Γ γpβq f ‹ .
In particular, γp0q " 0. We denote

c kj :" Bγ k Bβ j p0q.
Then, by the chain rule,

B β j pΓ β Γ α f ‹ q β"0 " Γ α p B β j Γ γpβq f ‹ β"0 q " Γ α 2d`3 ÿ k"1 c kj B γ k Γ γ f ‹ | γ"0 .
The right-hand side is a linear combination of elements of

Γ α pT f‹ Mq " span ! Γ α f ‹ , Γ α p B γ k Γ γ f ‹ | γ"0 q ˇˇk " 1, . . . , 2d `3 ) , so T cΓαf‹ M Ă Γ α pT f‹ Mq.
The reverse inclusion is proven in the same way.

We give the explicit expression of the generators in 

f at c " 1, α " 0 1 B Bc f 2 B Bt 0 " 0 1 ∆ 0  f 3 B Bθ « 0 p´∆q ´1 2 ´p´∆q 1 2 0 ff f 4 B Bζ j « 0 x j x j ∆ `B Bx j 0 ff f pj " 1, 2, . . . , dq 5 B Bσ " d´1 2 `x ¨∇ 0 0 d`1 2 `x ¨∇ f 6 ∇ x 0 « B Bx j 0 0 B Bx j ff f pj " 1, 2, . . . , dq.
Table 2.1: Symmetry generators.

Computing the tangent spaces via the Penrose transform

We compute an explicit expression of the tangent space T f‹ M, using the Penrose transform, which we introduced in Section 1.1 from the previous chapter. We systematically use the following identification of x P R d with X " pX 0 , X 1 , . . . , X d q P S d , via the stereographic projection, whose equations we recall here; Ω 0 ´1 " X 0 , x j Ω 0 " X j , j " 1 . . . d.

(2.10)

Here Ω 0 pxq " 2p1 `|x| 2 q ´1 is the conformal factor of the stereographic projection; see Remark 1.1.1. In the following equations, the first computation is performed by applying (2.10), the second by applying (1.17) once, and the last by applying (1.17) twice:

B Bx j ˆΩ d´1 2 0 ˙" ´d ´1 2 x j Ω d`1 2 0 " ´d ´1 2 X j Ω d´1 2 0 , p´∆q 1 2 Ω d´1 2 0 " d ´1 2 Ω d`1 2 0 , (2.11) 
´∆Ω d´1 2 0 " d ´1 2 Ω d`1 2 0 ˆd ´1 2 `d `1 2 X 0 ˙.
From (2.11) and (2.10), using ř d j"1 X 2 j " 1 ´X2 0 we infer that

x ¨∇ ˆΩ d´1 2 0 ˙" ´d ´1 2 p1 ´X2 0 qΩ d´3 2 0 " ´d ´1 2 p1 ´X0 qΩ d´1 2 0 . Generator Applied to f ‹ " ˆΩ d´1 2 0 , 0 1 " 1 0 0 1  « Ω d´1 2 0 0 ff 2 " 0 1 ∆ 0  « 0 ´d´1 2 Ω d`1 2 0 `d´1 2 `d`1 2 X 0 ˘ff 3 « 0 p´∆q ´1 2 ´p´∆q 1 2 0 ff « 0 ´d´1 2 Ω d`1 2 0 ff 4 « 0 x j x j ∆ `B Bx j 0 ff « 0 ´d´1 2 Ω d´1 2 0 ´pd´1qpd`1q 4 `d`1 2 X 0 ¯Xj ff 5 " d´1 2 `x ¨∇ 0 0 d`1 2 `x ¨∇ « d´1 2 X 0 Ω d´1 2 0 0 ff 6 « B Bx j 0 0 B Bx j ff « ´d´1 2 X j Ω d´1 2 0 0 ff pj " 1 . . . dq.
Table 2.2: A basis of the tangent space at f ‹ in arbitrary dimension.

We apply the generators of the symmetry group, listed in Table 2.1, to the Strichartz maximizer f ‹ . Using the computations (2.11), we obtain Table 2.2; we recall that we are identifying x P R d with X P S d via the stereographic projection (2.10). Since Ω 0 " 1 `X0 by (2.10), when d " 3 the fourth line simplifies:

Ω d´1 2 0 ˆpd ´1qpd `1q 4 `d `1 2 X 0 ˙Xj " 2Ω 2 0 X j .
So, specializing the previous table to the case d " 3, we conclude that

T f‹ M " " " Ω 0 P pXq Ω 2 0 QpXq  : P, Q polynomials of degree ď 1 in X P S 3 * .
Since the restrictions of these polynomials to the sphere are spherical harmonics of degree 0 and 1, after applying the Penrose transformation (1.11) of the initial data, we see that

f P T f‹ M ðñ F0 p , mq " F1 p , mq " 0, ě 2. 
(2.12)

In light of the identity (1.19), expressing the 9 H 1{2 pR 3 q scalar product in terms of F 0 , F 1 , we characterize the orthogonal complement of T f‹ M as follows:

f KT f‹ M ðñ F0 p , mq " F1 p , mq " 0, " 0, 1. (2.13)
These computations immediately yield the following corollary, which we will use in the next subsection.

Corollary 2.2.7. The matrix of scalar products

M 0 :" "@ B α i α"0 Γ α f ‹ ˇˇB α j α"0 Γ α f ‹ D 9 H 1{2 ‰ i,j"1...9 (2.14)
is nonsingular and positive definite.

Metric projections

We show in this subsection that every point of 9 H 1{2 admits at least one closest point in M. This is a crucial property for the proof of Theorem 2.0.1. We also study the uniqueness of these closest points. This will be needed in the nonlinear applications of the forthcoming chapter. Proposition 2.2.8. For every f P 9

H 1{2 there exists P pf q P M such that

f ´P pf q 9 H 1{2 " dpf , Mq,
and, if P pf q ‰ 0, then f ´P pf q K T P pf q M, that is

xf ´P pf q | gy 9 H 1{2 " 0, @ g P T P pf q M, (2.15) 
Moreover, there is a constant ρ P p0, 1q such that, if

dpf , Mq ă ρ f 9 H 1{2 , (2.16) 
then P pf q is uniquely determined.

Proof. Existence. Let f P 9

H 1{2 be fixed. Expanding f ´cΓ α f ‹ 2 9
H 1{2 , we see that

dpf , Mq 2 " inf " f 2 9 
H 1{2 ´2c xf | Γ α f ‹ y 9 H 1{2 `c2 f ‹ 2 9 
H 1{2 ˇˇˇc ě 0 α P S 1 ˆR8 * .
Let now pc n , α n q P r0, 8q ˆS1 ˆR8 be a minimizing sequence. Then, clearly, c n must be bounded. Now, if α n is unbounded, then, up to a subsequence, we can assume that

|α n | Ñ 8. This implies that 2c n xf | Γ αn f ‹ y 9 H 1{2 Ñ 0;
see, for example, [62, Lemmas 3.2 and 4.1]. In this case, since pc n , α n q is minimizing, it must be that c n Ñ 0, and so P pf q " 0. The only remaining possibility is that α n is also bounded, in which case, up to subsequences, α n Ñ α 0 and c n Ñ c 0 for some c 0 ě 0 and α 0 P S 1 ˆR8 . Therefore, P pf q " c 0 Γ α 0 f ‹ . Since pc 0 , α 0 q is minimizing,

B c f ´cΓ α 0 f ‹ 2 9 H 1{2 ˇˇc "c 0 " B α i f ´c0 Γ α f ‹ 2 9 H 1{2 ˇˇα "α 0 " 0, i " 1, . . . , 9,
from which the orthogonality property (2.15) follows, provided that c 0 ą 0, which is equivalent to P pf q ‰ 0.

Uniqueness. We assume that (2.16) holds for a constant ρ to be determined, and we suppose that there exist P pf q and P 1 pf q in Mzt0u such that f " P pf q `fK " P 1 pf q `f 1 K , (2.17)

where f K 9 H 1{2 " f 1 K 9 H 1{2 " dpf , Mq.
Our goal is to show that P pf q and P 1 pf q must be equal. We consider α, α 1 P S 1 ˆR8 such that 

P pf q " cΓ α f ‹ and P 1 pf q " c 1 Γ α 1 f ‹ ,
H 1{2 , yielding c " c 1 " P pf q 9 H 1{2 " P 1 pf q 9 H 1{2 " b f 2 9 H 1{2 ´dpf , Mq 2 .
It follows from these considerations that we can rewrite (2.17) as

f c " f ‹ `fK c " Γ α 1 f ‹ `f 1 K c ,
from which we infer the estimate

f ‹ ´Γα 1 f ‹ 9 H 1{2 ď 2dpf , Mq b f 2 9 H 1{2 ´dpf , Mq 2 ď 2ρ a 1 ´ρ2 , (2.18) 
and analogously,

f {c ´f‹ 9 H 1{2 ď ρ a 1 ´ρ2 . (2.19)
To finish the proof, it will suffice to show that α 1 " 0.

As a first step, we claim that

α 1 ď C f ‹ ´Γα 1 f ‹ 9 H 1{2 , (2.20) 
for a C ą 0. To prove this, we begin by squaring the left-hand side of (2.18),

f ‹ ´Γα 1 f ‹ 2 9 H 1{2 " 2 ´2 xf ‹ | Γ α 1 f ‹ y , 9 H 1{2 so that xf ‹ | Γ α 1 f ‹ y 9 H 1{2 ě 1´3ρ 2 1´ρ 2 .
Assuming, as we may, that ρ ă 1{ ? 3, the right-hand side of this inequality is strictly positive. Now, as we have already mentioned in the proof of existence of P pf q, xf ‹ | Γ σ f ‹ y 9 H 1{2 Ñ 0 as |σ| Ñ 8. Thus, there must be a Cpρq ą 0 such that |α 1 | ď Cpρq.

We can then assume, for a contradiction, that

f ‹ ´Γαn f ‹ 2 9 H 1{2 |α n | 2 Ñ 0, where α n P S 1 ˆR8 , |α n | ď Cpρq. (2.21)
There exists α 0 P S 1 ˆR8 such that α n Ñ α 0 up to a subsequence. If |α 0 | ‰ 0, then (2.21) would imply that f ‹ ´Γα 0 f ‹ 9 H 1{2 " 0, but this is ruled out by Lemma 2.2.5. The only remaining possibility is that |α n | Ñ 0. We record now two identities that hold for all α P S 1 ˆR8 ;

xΓ α f ‹ | B α i Γ α f ‹ y 9 H 1{2 " B α i 1 2 Γ α f ‹ 2 9 
H 1{2 " 0, (2.22) 
where we used that Γ α is unitary, and

´@Γ α f ‹ ˇˇB α i B α j Γ α f ‹ D 9 H 1{2 " @ B α i Γ α f ‹ ˇˇB α j Γ α f ‹ D 9 H 1{2 , (2.23) 
which is obtained from (2.22) by differentiating. Using these we compute the expansion

f ‹ ´Γα f ‹ 2 9 H 1{2 " 2 9 ÿ i,j"1 α i α j @ B σ i Γ σ f ‹ ˇˇB σ j Γ σ f ‹ Dˇˇσ "0 `Op|α| 3 q.
Since the coefficients of the quadratic term are those of the matrix M 0 defined in (2.14), the fact that

|α n | Ñ 0 implies 0 " lim nÑ8 f ‹ ´Γαn f ‹ 2 9 H 1{2 |α n | 2 ě 2λ 0 ą 0,
where λ 0 is the minimal eigenvalue of M 0 , which is strictly positive because of Corollary 2.2.7. We have reached the desired contradiction and proved (2.20).

To conclude the proof that α 1 " 0, we define F :

S 1 ˆR8 ˆ9 H 1{2 Ñ R 9 by
Fpα, gq :"

" xΓ α f ‹ ´g | B α i Γ α f ‹ y 9 H 1{2 ‰ i"1...9 .
By (2.15), Γ α 1 f ‹ ´f {c " f 1 K {c is orthogonal to the tangent space at cΓ α 1 f ‹ , which contains all the derivatives B α i Γ α f ‹ at α 1 , so Fpα 1 , f {cq " 0. In the same way, we see that Fp0, f {cq " 0. Now, obviously, Fp0, f ‹ q " 0. Using the identities (2.22) and (2.23) as before, we find that the Jacobian matrix

D α F " " B α j F i ‰ i,j"1...9 at p0, f ‹ q is D α Fp0, f ‹ q " M 0 ,
so that, in particular, it is nonsingular. We can thus rewrite the identity Fpα 1 , f {cq " 0 as a fixed point relation;

α 1 " P pα 1 , f {cq, where P pα, gq :" α ´Dα Fp0, f ‹ q ´1F pα, gq, and the function P is such that D α P p0, f ‹ q " 0. Thus, there exists an absolute constant ε ą 0 such that

D α P pα, gq ď 1 2 , if |α| ă ε and g ´f‹ 9 H 1{2 ă ε.
Here, as is usual, the matrix norm is M :" sup |M x|{|x| : x P R 9 ( . We now require, as we may, that ρ satisfies the additional condition 

ρ a 1 ´ρ2 ď ε 2C , so that,
α 1 " P pα 1 , f {cq " ż 1 0 d dt P ptα 1 , f {cq dt " ż 1 0 D α P ptα 1 , f {cqα 1 dt,
where we used that P p0, f {cq " 0, we infer that

α 1 ď ż 1 0 D α P ptα 1 , f {cq α 1 dt ď 1 2 α 1 , so that |α 1 | " 0, completing the proof.
2.3 Proof of the lower bound in Theorem 2.0.1

In this section the spatial dimension d will be 3. We let ψ denote the deficit functional ψpf q " S 4 f 4 9

H 1{2 ´ Sf 4 L 4 pR 1`3 q
, where S " `3 16π ˘1 4 .

We will use Corollary 1.2.3 from the previous chapter to compute integrals on R 1`3 , taking advantage of the simple expression for v ‹ " Sf ‹ under the Penrose transform, V ‹ pT, Xq " cos T ; see (1.12). In particular, Corollary 1.2.3 yields the following representation of Foschi's constant;

S 4 " Sf ‹ 4 L 4 pR 1`3 q f ‹ 4 9 H 1{2 pR 3 q " ş π ´πpcos T q 4 dT 2|S 3 | .
Here we have used the fact that f ‹ 2 9

H 1{2 pR 3 q " S 3 ; see (1.20).

A local version

Lemma 2.3.1. There exists a quadratic functional Q : 9

H 1{2 pR 3 q Ñ r0, 8q such that ψpf ‹ `f q " Qpf q `Op f 3 9 H 1{2 q, (2.24) 
for all f P 9 H 1{2 pR 3 q. It holds that Qpf q " 0 if and only if f P T f‹ M, and moreover

Qpf q ě π 4 f 2 9 H 1{2 , @f KT f‹ M, (2.25) 
where the constant π 4 cannot be replaced by a larger one. Proof. We have that ψpf ‹ q " 0 by definition of ψ, and we have proved in Theorem 1.0.1 that d dε ψpf ‹ `εf q ˇˇε"0 " 0 for all f P 9 H 1{2 pR 3 q. So (2.24) holds with Qpf q equal to 1 2

d 2 dε 2 ψpf ‹ `εf q ˇˇε "0
. Expanding we see that

Qpf q " S 4 ´4 xf ‹ | f y 2 9 H 1{2 `2 f ‹ 2 9 
H 1{2 f 2 9 
H 1{2 ¯´6 ij R 1`3
pSf ‹ q 2 pSf q 2 dtdx.

(2.26)

We record that, for all f " pf 0 , f 1 q P 9 H 1{2 pR 3 q, it holds that Qpf q " Qpf 0 , 0q `Qp0, f 1 q.

(2.27)

To prove this, we start by recalling that f 2 9

H 1{2 " xf 0 | f 0 y 9 H 1{2 `xf 1 | f 1 y 9 H ´1{2 . Moreover, since f ‹ " pf ‹ 0 , 0q, we have that xf ‹ | f y 9 H 1{2 " xf ‹ 0 | f 0 y 9 H 1{2
, so the first summand in the right-hand side of (2.26) splits into the sum of a term depending on f 0 only and a term depending on f 1 only. The other summand splits in the same way; indeed,

Sf ‹ " cospt ? ´∆qf ‹ 0 , therefore ij R 1`3 pSf ‹ q 2 pSf q 2 " ij R 1`3 pSf ‹ q 2 pcos t ? ´∆f 0 q 2 `ij R 1`3 pSf ‹ q 2 ˆsin t ? ´∆ ? ´∆ f 1 ˙2 `2ij R 1`3 pcos t ? ´∆f ‹ 0 q 2 cos t ? ´∆f 0 sin t ? ´∆ ? ´∆ f 1 ,
where the last integral vanishes, as can be seen with the change of variable t Þ Ñ ´t. This proves (2.27). We now bound Qpf q from below, starting with the term Qpf 0 , 0q. We apply the Penrose transformation (1.11) to f and f ‹ , recalling that pF ‹ 0 , F ‹ 1 q " p1, 0q, (2.28) so, in particular, the only non-vanishing coefficient in the expansion in spherical harmonics is F‹ 0 p0, 0q " S 3 1{2 ; see Remark 1.1.4. By the formula (1.19), that expresses the 9 H 1{2 scalar product in terms of pF 0 , F 1 q, we rewrite the first summand in the right-hand side of (2.26) as

S 4 ´4 xf ‹ 0 | f 0 y 2 9 H 1 2 `2 f ‹ 0 2 9 H 1 2 f 0 2 9 H 1 2 ¯" ş π ´πpcos T q 4 dT 2|S 3 | ¨4 S 3 F0 p0, 0q 2 `2 S 3 8 ÿ "0 N p q ÿ m"0 p `1q F0 p , mq 2 '. (2.29) ij R 1`3 pSf ‹ q 2 pcospt ? ´∆qf 0 q 2 " 3 ij S 1 ˆS3 cos T ÿ ,m cosp `1qT F0 p , mqY ,m '2 .
By the L 2 pS 3 q-orthonormality of Y ,m , the right-hand side equals 3

ż π ´πpcos T q 4 dT F0 p0, 0q 2 `3 8 ÿ "1 N p q ÿ m"0 ż π ´πpcos T cosp `1qT q 2 dT F0 p , mq 2 . For all ě 1, it holds that 3 ż π ´πpcos T cosp `1qT q 2 dT " 3π 2 " 2 ż π
´πpcos T q 4 dT, so, subtracting the last equation from (2.29), the terms corresponding to " 0 and " 1 vanish, and we obtain that

Qpf 0 , 0q " 3π 4 8 ÿ "2 N p q ÿ m"0 p ´1q F0 p , mq 2 .
The term Qp0, f 1 q is computed in the same way, and the end result is:

Qpf q " 3π 4 8 ÿ "2 N p q ÿ m"0 p ´1q « F0 p , mq 2 `F 1 p , mq 2 p `1q 2 ff . (2.30) 
From this we see that Qpf q " 0 if and only if F0 p , mq " F1 p , mq " 0 for ě 2, which is equivalent to f P T f‹ M; see (2.12). It remains to prove the sharp inequality (2.25). For ě 2, it holds that 3p ´1q ě `1, and 3 ´1 p `1q 2 ě 1 `1 , with equality for " 2. Therefore, (2.30) implies the sharp inequality

Qpf q ě π 4 8 ÿ "2 N p q ÿ m"0 p `1q F0 p , mq 2 `p `1q ´1 F1 p , mq 2 .
The expression on the right-hand side equals π 4 f 2

9

H 1{2 pR 3 q precisely when F0 p , mq " F1 p , mq " 0 for " 0, 1, which is equivalent to f KT f‹ M; see (2.13). This completes the proof.

Remark 2.3.2. The fact that Qpf q " 0 for f P T f‹ M is a consequence of the criticality of f ‹ and of the invariance of ψ under the symmetries Γ α (defined in (2.7)); indeed, differentiating the identity ψpcΓ α f ‹ q " 0 twice with respect to c we get Qpf ‹ q " 0, and differentiating twice with respect to α j , we get

Q ˆB Bα j Γ α f ‹ ˇˇˇα "0 ˙" 0.
In Lemma 2.3.1 we proved a sharper result; namely, that Qpf q vanishes if and only if f P T f‹ M, and we gave a sharp explicit bound. In the language of the calculus of variations we can say that f ‹ is a transversally non-degenerate local minimizer of the deficit functional ψ.

Proposition 2.3.3. For all f P 9 H

1 2 pR 3 q such that dpf , Mq ă f 9 H 1 2 , (2.31) 
it holds that

1 3 S 2 dpf , Mq 2 `Opdpf , Mq 3 q ď S 2 f 2 9 H 1 2
´ Sf 2 L 4 pR 1`3 q .

The result does not hold if 1 3 S 2 is replaced with a larger constant.

M cf ‹ cΓ α f ‹ " P pf q Γ α f K f d p f , M q 0 f K Γ ´αf d p f , M q Figure 2.1: Illustration of Step 1.
Proof. Step 1 : By Proposition 2.2.8, there exists P pf q P M such that f ´P pf q 9 H 1{2 " dpf , Mq.

Assuming that P pf q " cΓ α f ‹ , we define

f K :" Γ ´1 α pf ´P pf qq,
and we claim that

f K 9 H 1{2 " dpf , Mq, and f K KT f‹ M. (2.32)
The first property is an immediate consequence of the fact that Γ α is a unitary operator; see Proposition 2.2.3.

To prove the second property, we begin by observing that the assumption (2.31) ensures that P pf q ‰ 0, so the tangent space T P pf q M is well-defined, and f ´P pf qKT P pf q M. By 29 Proposition 2.2.6, T P pf q M " Γ α pT f‹ Mq, and so we can conclude that

@ Γ ´1 α pf ´P pf qq ˇˇg D 9 H 1{2 " xf ´P pf q | Γ α gy 9 H 1{2 " 0, @g P T f‹ M,
where we used that the adjoint of Γ α is Γ ´1 α , because Γ α is unitary. This proves the second identity in (2.32).

Step 2 : Consider the 2-homogeneous deficit functional defined by

φpf q :" S 2 f 2 9 H 1 2
´ Sf 2 L 4 pR 1`3 q .

Like its 4-homogeneous counterpart ψ, the functional φ is Γ α -invariant, so that, by Step 1, φpf q " φpcΓ α f ‹ `Γα f K q " φpcf ‹ `fK q.

Now φpcf ‹ q " 0, and since xf ‹ | f K y 9 H 1{2 " 0, we can expand to see that

d dε φpcf ‹ `εf K q ˇˇˇε "0 " ´2c Sf ‹ 2 L 4 ij R 1`3 pSf ‹ q 3 Sf K dtdx.
Combining Theorem 1.0.1 and Lemma 1.3.1 from the previous chapter, we see that the right-hand side is zero. Expanding to second order, using this fact again, we obtain

φpcf ‹ `εf K q " ε 2 " S 2 f K 2 9 H 1{2 ´3 Sf ‹ 2 L 4 ij R 1`3 pSf ‹ q 2 pSf q 2 dtdx ı `Opε 3 f K 3 9 
H 1{2 q.
Evaluating at ε " 1, using that Sf ‹ L 4 pR 1`3 q " S f ‹ 9 H 1{2 , and comparing with the expression of Q given in (2.26), we obtain

φpcf ‹ `fK q " Qpf K q 2S 2 f ‹ 2 9 H 1 2 `Op f K 3 9 H 1 2 q,
The proposition then follows from Lemma 2.3.1, using that S 2 " p3{16πq 1{2 and that f ‹ 2 9

H 1{2 pR 3 q " S 3 " 2π 2 .

From local to global: the profile decomposition

We now cast in our notation the profile decomposition of Ramos [START_REF] Ramos | A refinement of the Strichartz inequality for the wave equation with applications[END_REF].

Theorem 2.3.4. Let f n be a bounded sequence in 9 H 1{2 pR 3 q. Then there exists an at most countable set f j : j " 1, 2 . . .

( Ă 9 
H 1{2 and corresponding sequences of transformations Γ α j n such that, up to passing to a subsequence,

f n " J ÿ j"1 Γ α j n f j `rJ n ,
where the remainder term r J n satisfies lim JÑ8 lim sup nÑ8 Sr J n L 4 pR 1`3 q " 0.

Moreover, for each J ě 1 the following Pythagorean expansions hold for n Ñ 8:

f n 2 9 H 1{2 " J ÿ j"1 f j 2 9 H 1{2 ` r J n 2 9 
H 1{2 `op1q, (2.33) 
and

Sf n 4 L 4 pR 1`3 q " J ÿ j"1 Sf j 4 L 4 pR 1`3 q ` Sr J n 4 L 4 pR 1`3 q `op1q. (2.34)
The proof of Theorem 2.0.1 will be obtained by the combination of Proposition 2.3.3 with the following property of optimizing sequences of the Strichartz inequality. We remark that, unlike the previous proposition, in the proof of the following lemma we use the result of Foschi that S is the sharp constant in the Strichartz inequality.

Lemma 2.3.5. Let f n P 9 H 1{2 z t 0 u be a sequence such that

lim nÑ8 Sf n L 4 pR 1`3 q f n 9 H 1 2 " S. (2.35) 
Then, up to passing to a subsequence,

lim nÑ8 dpf n , Mq f n 9 H 1 2
" 0.

Proof. By homogeneity we may assume that f n 9 H 1 2 " 1. We apply the profile decomposition, Theorem 2.3.4. This produces a countable subset f j : j P N ( of 9 H 1{2 . We claim that f j " 0 for all but one j P N. To prove this we begin by showing that there is at least one j P N such that f j ‰ 0. Indeed, if that was not the case then from property (2.34) one would infer the contradiction S " 0. Thus we can assume that f 1 ‰ 0.

The Pythagorean expansion (2.33) with J " 1 reads

1 " f 1 2 9 H 1 2 `lim nÑ8 r 1 n 2 9 H 1 2 .
On the other hand, applying the sharp Strichartz inequality to the L 4 pR 1`3 q Pythagorean expansion (2.34) we obtain

S 4 " lim nÑ8 Sf n 4 L 4 pR 1`3 q " Sf 1 4 L 4 pR 1`3 q `lim nÑ8 Sr 1 n 4 L 4 pR 1`3 q ď S 4 ´ f 1 4 9 H 1 2 `lim nÑ8 r 1 n 4 9 H 1 2
¯.

Now if a, b P R are such that a 2 `b2 " 1 and a 4 `b4 ě 1, then necessarily one of them must vanish. Since f 1 ‰ 0, then it must be that r 1 n 9 H 1 2 Ñ 0. We have thus shown that

f n " Γ α 1 n f 1 `r1 n , r 1 n 9 H 1 2 Ñ 0.
This yields, using (2.35), that f 1 P M. Therefore

dpf n , Mq ď r 1 n 9 H 1 2 Ñ 0,
and the proof is complete.

Combining Proposition 2.3.3 and Lemma 2.3.5 we prove the lower bound in Theorem 2.0.1.

Proof of Theorem 2.0.1. Since 0 P M, we have that

dpf , Mq ď f 9 H 1 2 , @f P 9 H 1 2 .
Assume for a contradiction that the lower bound of Theorem 2.0.1 fails. This would mean that there exists a sequence

f n P 9 H 1 2 zM such that lim nÑ8 S 2 f n 2 9 H 1 2
´ Sf n ´ Sf n 2 L 4 pR 1`3 q Ñ 0. By Lemma 2.3.5 we obtain that dpf n , Mq Ñ 0, and so that (2.36) would contradict our local bound, Proposition 2.3.3.

2 L 4 pR 1`3 q dpf n , Mq 2 " 0. ( 2 
Remark 2.3.6. The multiplicative constant 1 3 S 2 in Proposition 2.3.3 is the optimal one for the local bound. However, the argument by contradiction just presented does not give the optimal constant for the global bound. We conjecture that the optimal constant should be 1 3 S 2 .

Sharpening the energy-Strichartz estimate

We consider the following sharp estimate, due to Bez and Rogers [START_REF] Bez | A sharp Strichartz estimate for the wave equation with data in the energy space[END_REF];

Sf L 4 pR 1`5 q ď S 5 f 9 H 1 pR 5 q , where S 5 :" ˆ1 8π ˙1 2 .
(

2.37)

There is equality in (2.37) if and only if

f P M 5 :" cΓ α f ‹ ˇˇc ě 0, α P S 1 ˆR7 ( ,
where f ‹ " p2 2 p1 `|¨| 2 q ´2, 0q, and Γ α f pxq " S t 0 Ph θ ´e 3 2 σ f 0 pe σ px `x0 qq , e 5 2 σ f 1 pe σ px `x0 qq ¯.

(2.38)

Here, the operators S t 0 and Ph θ are given in (2.4) and (2.5) and α " pθ, t 0 , σ, x 0 q, θ P S 1 , t 0 P R, σ P R, x 0 P R 5 .

The only difference between these transformations and the ones in the 9 H 1 2 case is that here there are no Lorentz boosts. As before, the operator Γ α defined in (2.38) preserves both sides in the Strichartz inequality (2.37);

Γ α f 9 H 1 pR 5 q " f 9 H 1 pR 5 q , SΓ α f L 4 pR 1`5 q " Sf L 4 pR 1`5 q ,
for all f P 9 H 1 pR 5 q. We consider the distance with respect to the 9 H 1 norm;

dpf , M 5 q :" inf " f ´cΓ α g 9

H 1 pR 5 q ˇˇˇc ě 0 α P S 1 ˆR7 * .
We can now state the theorem which we will prove in this section.

Theorem 2.4.1. There is a positive constant C such that

Cdpf , M 5 q 2 ď S 2 5 f 2 9 H 1 pR 5 q ´ Sf 2 L 4 pR 1`5 q ď S 2 5 dpf , M 5 q 2 .
The upper bound has already been proved, as it is a special case of Proposition 2.1.1. Before proceeding with the proof of the lower bound, we need a more precise description of spherical harmonics.

Some more spherical harmonics

Following [58, pp. 54], we introduce the normalized associated Legendre functions of degree P N ě0 , order m P N ě0 with m ď , and dimension n P N ě3 to be the functions A m pn; tq :" C m,n p1 ´t2 q m 2 P ´mp2m `n; tq, t P r´1, 1s, (

where P pn; ¨q is the Legendre polynomial of degree in dimension n. The normalization constant

C m,n " d p2 `n ´2qp `n ´3q! !pn ´2q! |S 2m`n´2 | |S 2m`n´1 | is chosen to ensure that ż π 0 A m pn; cos RqA m 1 pn; cos Rqpsin Rq n´2 dR " δ , 1 .
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Now we let X " pX 0 , X 1 , . . . , X d q denote the Cartesian coordinates on S d . If Y d´1 m is a normalized spherical harmonic on S d´1 of degree m ď , then Y d pX 0 , X 1 , . . . , X d q " A m pd `1; X 0 qY d´1 m pX 1 , . . . , X d q (2.40) is a normalized spherical harmonic of degree on S d ; see [START_REF] Müller | Analysis of spherical symmetries in Euclidean spaces[END_REF]Section 11]. Applying (2.40) iteratively, we construct an explicit complete system of spherical harmonics on S d , labeled by the degree P N ě0 and by the multi-index m P Mp q, where Mp q " ! pm 1 , . . . , m d´1 q P Z d´1 ˇˇ ě m 1 ě . . . ě m d´2 ě |m d´1 |

) .

The spherical harmonics Y d ,0 with m " 0 are the zonal ones; that is, the ones that depend on X 0 only. As before, we use the hat notation to denote the coefficients of expansions in spherical harmonics;

F pXq " 8 ÿ "0 ÿ mPMp q F p , mqY ,m pXq.

Now we want to describe the 9

H 1 scalar product in terms of the Penrose transform. We will need the following coefficient, related to the Clebsch-Gordan theory associated to the unitary representations of SOpd `1q; see [73, pp. 489-491]. Instead of applying this general theory, we obtain the formula in Lemma 2. Lemma 2.4.3. For all P N ě0 and m, m

1 P Mp q, ż S d X 0 Y ,m pXqY 1 ,m 1 pXq dS " $ ' ' ' ' & ' ' ' ' % 0, m ‰ m 1 , 0, | ´ 1 | ‰ 1, C d p , m 1 q, 1 " `1, m " m 1 , C d p 1 , m 1 q, " 1 `1, m " m 1 .
(2.41)

Proof. We assume, without loss of generality, that 1 ě . We consider the normalized associated Legendre functions given by (2.39), which satisfy

ż 1 ´1 A m pn; X 0 qA m 1 pn; X 0 qp1 ´X2 0 q n´3 2 dX 0 " δ , 1 . (2.42)
We adopt the convention that A m pn; X 0 q " 0 if m ą . From the aforementioned recurrence relation for the Legendre polynomials we obtain 0 " apn; , m 1 qA m 1 pn; X 0 q ´bpn; , m 1 qX 0 A m 1 ´1pn; X 0 q `cpn; , m 1 qA m 1 ´2pn; X 0 q, (2.43) with apn; , m 1 q " b p ´m1 qp `m1 `n´3q p2 `n´2qp `m1 `n´4q , bpn; , m

1 q " b 2 `n´4 `m1 `n´4 , cpn; , m 1 q " b ´m1 ´1 2 `n´6 . Multiplying (2.43) by A m 1 1 ´1pn; X 0 qp1 ´X2 0 q n´3 2
and then integrating, we infer from (2.42) that, since 1 ě ,

ż 1 ´1 A m 1
´1pn; X 0 qA m 1 1 ´1pn; X 0 qX 0 p1 ´X2 0 q n´3 2 dX 0 " apn; , m 1 q bpn; , m 1 q δ , 1 ´1.

(2.44)

We set n " d `1. Letting dS and dS d´1 denote the volume elements of S d and S d´1 respectively, we have the formula dSpX 0 , X 1 , . . . , X d q " p1 ´X2 0 q d´2 2 dX 0 dS d´1 pX 1 , . . . , X d q.

(2.45)

The integral in (2.41) is computed using the representation (2.40) and the formulas (2.45) and (2.44).

We rewrite the scalar product as

xf | gy 9 H 1 pR d q " ż R d ? ´∆f 0 ? ´∆g 0 dx `żR d f 1 g 1 dx.
Now we recall that the Penrose transformation pF 0 , F 1 q of f is

f 0 " Ω d´1 2 0 F 0 , f 1 " Ω d`1 2 0 F 1 ; (2.46) 
see (1.11). Here Ω 0 pxq " 2p1 `|x| 2 q ´1 is the conformal factor of the stereographic projection, which is implicit in (2.46), and whose equations we recall here;

X 0 " Ω 0 ´1, X j " Ω 0 x j , j " 1, . . . , d, see Remark 1.1.1. As a special case of formula (1.17), we have that

? ´∆f 0 " Ω d`1 2 0 A 1 F 0 ,
where A 1 is the operator on S d defined by

A 1 Y ,m " ˆ `d ´1 2 ˙Y ,m ;
see (1.16). Since the Jacobian determinant of the stereographic projection is Ω ´d 0 (see (1.18)), we have that

xf | gy 9 H 1 pR d q " ż S d A 1 pF 0 qA 1 pG 0 q Ω 0 dS `żS d F 1 G 1 Ω 0 dS.
Using the formula Ω 0 " 1 `X0 , we can use Lemma 2.4.3 to compute ż

S d F 1 G 1 Ω 0 dS " 8 ÿ "0 ÿ mPMp q F1 p , mq Ĝ1 p , mq (2.47) `Cd p , m 1 q ´F 1 p , mq Ĝ1 p `1, mq `F 1 p `1, mq Ĝ1 p , mq ¯.
Similarly,

ş S d A 1 F 0 A 1 G 0 Ω 0 dS is equal to ÿ ě0 mPMp q ˆ `d ´1 2 ˙2 F0 p , mq Ĝ0 p , mq `Cd p , m 1 q ˆ `d ´1 2 ˙ˆ(2.48) ˆˆ `1 `d ´1 2 ˙´F 0 p , mq Ĝ0 p `1, mq `F 0 p `1, mq Ĝ0 p , mq ¯.

The tangent spaces

By the same geometrical considerations of Section 2.2, M 5 zt0u is a smooth 9-dimensional manifold, and the tangent space at f ‹ is

T f‹ M 5 " span f ‹ , B α i Γ α f ‹ | α"0 ˇˇi " 1, . . . 8 ( .
The same computations as in the three-dimensional case yield the explicit expression of T f‹ M 5 ; the result is given by the entries 1, 2, 3, 5 and 6 of Table 2.2, where, due to the change in scaling, the entry number 5 is replaced by the one given below, accounting for the change in the scaling symmetry. As in the previous subsection, here we systematically identify x P R 5 with X " pX 0 , X 1 , . . . , X 5 q P S 5 via the stereographic projection, whose conformal factor we denote by Ω 0 .

Generator Applied to f ‹ " `Ω2 0 , 0 5 " 3 2 `x ¨∇ 0 0 5 2 `x ¨∇ " 3 2 Ω 2 0 X 0 0 
We thus obtain

T f‹ M 5 " " " Ω 2 0 p ř 5 j"0 a j X j `a6 q Ω 3 0 pb 0 X 0 `b1 q  : a j , b j P R * ,
that is, applying the Penrose transformation (2.28),

f P T f‹ M 5 ðñ # F0 p , mq " 0, ě 2, F1 p , mq " 0, ě 2 or " 1, m ‰ 0,
where we used the expression of the low-degree spherical harmonics; see Remark 1.1.4.

We now specialize the formula (2.48) for the 9 H 1 scalar product from the previous subsection to the case d " 5. We obtain

ż R 5 ∇f 0 ¨∇g 0 dx " 8 ÿ "0 ÿ mPMp q p `2q 2 F0 p , mq Ĝ0 p , mq (2.49) 
`C5 p , m 1 qp `2qp `3q ´F 0 p , mq Ĝ0 p `1, mq`F 0 p `1, mq Ĝ0 p , mq ¯, and, similarly, we obtain from (2.47)

ż R 5 f 1 g 1 dx " 8 ÿ "0 ÿ mPMp q F1 p , mq Ĝ1 p , mq (2.50) `C5 p , m 1 q ´F 1 p , mq Ĝ1 p `1, mq `F 1 p `1, mq Ĝ1 p , mq ¯.
In these formulas, C 5 p , m 1 q " 1 2 d p `1 ´m1 qp `4 `m1 q p `2qp `3q .

(2.51)

Remark 2.4.4. These formulas show that the 9 H 1 scalar product is not diagonal in the coefficients F0 p , mq, F1 p , mq. Therefore, the orthogonality property f K 9 H 1 T f‹ M 5 cannot be characterized in terms of the coefficients F0 p , mq, F1 p , mq in a simple way. We define a different orthogonality condition as follows; g r K T f‹ M 5 ðñ # Ĝ0 p , mq " 0, Ĝ1 p , 0q " 0, " 0, " 1, m P Mp q.

(2.52)

We will first prove a version of Lemma 2.3.1 with respect to this notion of orthogonality, from which we will deduce a similar lemma for functions which are orthogonal with respect to 9 H 1 pR 5 q.

Proof of Theorem 2.4.1

Bahouri and Gérard [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] proved a profile decomposition on 9 H 1 and a version of Lemma 2.3.5 follows with the same proof. Thus it remains to prove the following local version of Theorem 2.4.1.

Proposition 2.4.5. For all f P 9 H 1 pR 5 q such that dpf , M 5 q ă f 9 H 1 pR 5 q , it holds that 18 85 S 2 5 dpf , M 5 q 2 `Opdpf , M 5 q 3 q ď S 2 5 f 2 9

H 1 pR 5 q ´ Sf 2 L 4 pR 1`5 q .
(2.53)

Proof. Following verbatim the proof of Proposition 2.3.3, we obtain that φ 5 pf q :" S 2 5 f 2 9

H 1 pR 5 q ´ Sf 2 L 4 pR 1`5 q " φ 5 pcf ‹ `fK q,
where c ‰ 0 and f K 9 H 1 pR 5 q " dpf , M 5 q, and f K K 9 H 1 pR 5 q T f‹ M 5 .

(2.54)

The same computations give the expansion

φ 5 pcf ‹ `fK q " Q 5 pf K q 2S 2 5 f ‹ 2 9 H 1 pR 5 q `Op f K 3 9 H 1 pR 5 q q, (2.55)
where the quadratic functional Q 5 is defined for f " pf 0 , f 1 q P 9 H 1 pR 5 q as

Q 5 pf q " S 4 5 ´4 xf ‹ | f y 2 9 H 1 pR 5 q `2 f ‹ 2 9 H 1 pR 5 q f 2 9 H 1 pR 5 q 6 ij R 1`5
pSf ‹ q 2 pSf q 2 dtdx.

With the same proof as in (2.27), we see that Q 5 pf q " Q 5 pf 0 , 0q `Q5 p0, f 1 q.

We will compute, in the subsequent subsection, the following expressions, where pF 0 , F 1 q is the Penrose transformation (2.28) of f ;

Q 5 pf 0 , 0q " π 8 " 8 ÿ "2 ÿ mPMp q α ,m F0 p , mq 2 `β ,m F0 p `1, mq F0 p , mq ı , (2.56) 
and

Q 5 p0, f 1 q " π 8 " ÿ mPMp1q,m 1 "1 2α 1,m F1 p1, mq 2 9 `8 ÿ "2 ÿ mPMp q α ,m F1 p , mq 2 p `2q 2 `β ,m F1 p , mq F1 p `1, mq p `2qp `3q ı , (2.57) 
where the coefficients are given by α ,m "

4 `8 3 `11 2 ´20 ´12`6m 2 1 `18m 1 p `1qp `3q , β ,m " 2p ´1qp `6q C 5 p , m 1 q,
and C 5 p , m 1 q is defined in (2.51).

It remains to bound Q 5 from below. We introduce the following linear algebra criterion, which is true independently of the dimension d. (2.58)

Here, and in the rest of the paper, we use the convention that b ´1,m " 0 if ´1 ă m 1 .

If the quadratic functional T is defined by

T pF q " 8 ÿ "L ÿ mPMp q
a ,m F p , mq 2 `b ,m F p , mq F p `1, mq, then T pF q ě 0, @ F P L 2 pS d q.

Proof. With the convention that b ,m " 0 if ă L or ă m 1 , we can bound T pF q from below by

T pF q ě ÿ ěL mPMp q |b ,m | 2 F p , mq 2 `|b ´1,m | 2 F p , mq 2 `b ,m F p , mq F p `1, mq ě ÿ ěL mPMp q 1 2 |b ,m | ´F p , mq `signpb ,m q F p `1, mq ¯2 ě 0.
Lemma 2.4.7. It holds that

Q 5 pgq ě 9π 340 g 2 9 H 1 pR 5 q , @ g r K T f‹ M 5 , (2.59) 
where the relation r K has been defined in (2.52).

Proof. We consider the term Q 5 pg 0 , 0q first. Defining the quadratic functional Notice that b ,0 is a rational function: the change of variable (2.60) was chosen to obtain this. Note also that a ,m ě a ,0 and that we also have b ,m ě 0 for ě 2, so that b ,m ď b ,0 . Now

T : ! Ĝ0 p , mq " 0, for " 0, " 1, m P Mp q ) Ñ R, T pg 0 q :" Q 5 pg 0 , 0q ´9π 
a 2,m ´1 2 b 2,m ě a 2,0 ´1 2 b 2,0 " 3π 200 ´17 30 9π 340 " 0, (2.62)
and, for ą 2, we have that 

a ,m ´1 2 pb ,m `b ´1,m q ě a ,0 ´1 2 pb ,0 `b ´1,0 q " π 8 
Q 5 pg 0 , 0q ě 9π 340 ż R 5 |∇g 0 | 2 dx, if Ĝ0 p , mq " 0, " 0, 1, m P Mp q.
To prove the analogous inequality for Q 5 p0, g 1 q we consider the quadratic functional ) for all the other cases. Since Q 5 pgq " Q 5 pg 0 , 0q `Q5 p0, g 1 q, the proof of (2.59) is complete.

T : ! Ĝ1 p , 0q " 0, for " 0, " 1 ) Ñ R T pg 1 q :" Q 5 p0, g 1 q ´9π 340 ż R 5 g 2 1 dx,
We want to apply Lemma 2.4.7 to Q 5 pf K q, where f K satisfies the property (2.54). To do so, we decompose f K into a sum:

f K " g `h, where h P T f‹ M 5 g r K T f‹ M 5 .
We consider the unique bilinear functional B 5 : 9 H 1 pR 5 q ˆ9 H 1 pR 5 q Ñ R that satisfies Q 5 pf q " B 5 pf , f q. By the Cauchy-Schwarz inequality we have that B 5 pg, hq 2 ď Q 5 pgqQ 5 phq " 0, where we used that Q 5 phq " 0. Therefore

Q 5 pf K q " Q 5 pgq `Q5 phq `2B 5 pg, hq " Q 5 pgq.
Then by Lemma 2.4.7, combined with g " f K ´h and f K K 9 H 1 pR 5 q h,

Q 5 pf K q ě 9π 340 g 2 9 H 1 pR 5 q " 9π 340 ´ f K 2 9 H 1 pR 5 q ` h 2 9 H 1 pR 5 q ě 9π 340 f K 2 9
H 1 pR 5 q .

(2.64)

We conclude by inserting (2.64) into (2.55), thus yielding the lower bound (2.53) with constant 9π 340

1 2S 2 5 f ‹ 2 9 H 1 pR 5 q " 9 340π " 18 85 S 2 5 ,
where we have used that S 2 5 " p8πq ´1 and that f ‹ 2 9

H 1 pR 5 q " 4 S 5 " 4π 3 . This last identity follows from the representation (2.49) of the norm and from the fact that F ‹ 0 " 1 " a |S 5 |Y 0,0 and F ‹ 1 " 0; see (1.12).

Computation of Q 5

Here, g P 9 H 1 pR 5 q and pG 0 , G 1 q are related through the Penrose transformation (2.28). We recall that S 5 " `1 8π ˘1{2 . We consider the quadratic functional

Q 5 pg 0 , 0q " S 4 5 ´4 xf ‹ 0 | g 0 y 2 9 H 1 pR 5 q `2 f ‹ 2 9 H 1 pR 5 q g 0 2 9 H 1 pR 5 q 6 ij R 1`5
pSf ‹ q 2 ´cos t ? ´∆g 0 ¯2 dx.

(2.65)

The Penrose transform of f ‹ is F ‹ 0 " 1, F ‹ 1 " 0; see (1.12). By the formula (2.49) for the 9 H 1 pR 5 q scalar product, we obtain

S 4 5 ´4 xf ‹ 0 | g 0 y 2 9 H 1 pR 5 q `2 f ‹ 2 9 H 1 pR 5 q g 0 2 9 H 1 pR 5 q ¯" 3π 2 Ĝ0 p0, 0q 2 `3π ? 6 4 Ĝ0 p0, 0q Ĝ0 p1, 0q `3π 2 Ĝ0 p1, 0q 2 `9π 8 
ÿ 0‰mPMp1q Ĝ0 p1, mq 2 `π 8 ÿ ě2 mPMp q p `2q 2 Ĝ0 p , mq 2 `2p `2qp `3q C 5 p , m 1 q Ĝ0 p , mq Ĝ0 p `1, mq.
Using Corollary 1.2.3, we compute the spacetime integral;

6 ij R 1`5 pSf ‹ q 2 pSpg 0 , 0qq 2 dtdx " 3 ij S 1 ˆS5 " cosp2T qpcos T `X0 q ÿ ě0 mPMp q cospp2 ` qT q Ĝ0 p , mqY ,m pXq ı 2 dT dS.
Here we used that the Penrose transform of v ‹ " Sf ‹ is V ‹ " cosp2T q. Now we notice that, with the convention that Y ,m " 0 if ă 0 or ă m 1 , formula (2.41) implies

pcos T `X0 qY ,m " cospT qY ,m `C5 p ´1, m 1 qY ´1,m `C5 p , m 1 qY `1,m .
Combining this with the L 2 pS 5 q orthonormality of the spherical harmonics Y ,m , we obtain that the integral 6

ť pSf ‹ q 2 pSpg 0 , 0qq 2 equals 3π 2 Ĝ0 p0, 0q 2 `3? 6π 4 Ĝ0 p0, 0q Ĝ0 p1, 0q `3π 2 Ĝ0 p1, 0q 2 `9π 8 
ÿ 0‰mPMp1q Ĝ0 p1, mq 2 `3π 2 
ÿ ě2 mPMp q 2 2 `8 `m2 1 ´3m 1 ´4 2p `1qp `3q Ĝ0 p ,mq 2 `2C 5 p ,m 1 q Ĝ0 p ,mq Ĝ0 p `1,mq.
Inserting these formulas into (2.65) yields formula (2.56) of the previous subsection. The proof of formula (2.57) for the functional Qp0, g 1 q is analogous.

Chapter 3

Maximizers for the cubic wave equation

Here we consider real-valued, global solutions u to the cubic equation

l u " σu 3 , on R 1`3 , (NLW) 
where σ ‰ 0. This equation is locally well-posed in 9 H 1{2 , and small solutions are global; see Section 3.1. We consider

Ipδq " sup ! u 4 L 4 pR 1`3 q ˇˇlim tÑ´8 uptq 9 H 1{2 pR 3 q ď δ ) , (3.1) 
which is manifestly invariant under translations in time, and we will prove in Section 3.2 that this is also invariant under Lorentzian boosts.

Our main concern thereafter, will be the proof of the following sharp asymptotic estimate.

Theorem 3.0.1. Let δ ą 0 be sufficiently small. Then the supremum in (3.1) is attained and

Ipδq " C 0 δ 4 `σC 1 δ 6 `Opδ 8 q, (3.2) 
as δ Ñ 0, where C 0 " 3 16π and

C 1 " # 29 2 10 π 3 , σ ą 0 pfocusingq, 5 
2 10 π 3 , σ ă 0 pdefocusingq.
Here, C 0 denotes the sharp constant in the Strichartz estimate

Sf 4 L 4 pR 1`3 q ď C 0 f 4 9 
H 1{2 pR 3 q . (3.3)
With the notation of the previous chapters, C 0 " S 4 . The outline of this chapter is the following. After having given the precise definition of solution in the first section, we will discuss the aforementioned Lorentzian invariance.

Then we will proceed to establish formula (3.2) via an adaptation of the argument of Duyckaerts, Merle and Roudenko [START_REF] Duyckaerts | Maximizers for the Strichartz norm for small solutions of mass-critical NLS[END_REF]. We will use the Penrose transform to calculate the constant C 1 . In Section 3.5, we will prove the existence of maximizers using a standard argument based on a nonlinear profile decomposition, which will be be proved in the appendix. Finally, we give a partial result concerning the uniqueness of these maximizers.

In the appendix, we also use the Penrose transform to produce explicit solutions to focusing (NLW), one which is global and another which blows up in finite time. Finally, we prove the existence of solutions to (NLW) for which the norm upt 0 q 9 H 1{2 , at any t 0 P R, is neither conserved in time nor invariant under Lorentzian boosts. This explains the necessity to consider the limit as t Ñ ´8 in the definition (3.1).

Preliminaries

We give the definition of a solution to (NLW). Here we will consider only global solutions which scatter to linear solutions as t Ñ ´8. The following operator is adapted to this. Definition 3.1.1. For F P L 4{3 pR 1`3 q, we define l ´1F pt, ¨q "

ż t ´8 sinppt ´sq ? ´∆q ?
´∆ pF ps, ¨qq ds.

This is well-defined because of the inhomogeneous Strichartz estimate, which follows by a standard duality argument from the Strichartz estimate previously considered; see, for

Proposition 3.1.2. Let F P L 4{3 pR 1`3 q and w " l ´1F . Then

w L 4 pR 1`3 q `sup tPR wptq 9 H 1{2 ď C F L 4{3 pR 1`3 q . (3.5)
Moreover, the map t P R Þ Ñ wptq P 9 H 1{2 pR 3 q is continuous.

Remark 3.1.3. Replacing F with F 1 ttăT u , we immediately see that the following estimate also holds;

w L 4 pp´8,T qˆR 3 q `sup tďT wptq 9 H 1{2 ď C F L 4{3 pp´8,T qˆR 3 q , @T P R.
With this we obtain existence and uniqueness of small solutions by a standard application of the fixed-point theorem. Proposition 3.1.4. There exists δ ą 0 such that, if f 9 H 1{2 pR 3 q ď δ, then there exists a unique solution u to (NLW) that satisfies the condition lim tÑ´8 uptq ´Sf ptq 9 H 1{2 " 0, which we define as the fixed point of the mapping w Þ Ñ Sf `σl ´1pw 3 q, in the space L 4 pR 1`3 q X CpR; 9 H 1{2 pR 3 qq. Moreover, the nonlinear operator

Φ : f Þ Ñ u
is locally bounded on 9 H 1{2 pR 3 q, in the sense that

Φpf q L 4 pR 1`3 q `sup tPR Φpf qptq 9 H 1{2 ď C δ f 9 H 1{2 . (3.6) 
Thus we see that Ipδq is finite for small enough values of δ ą 0. Remark 3.1.5. The nonlinear operator Φ is also differentiable for f 9 H 1{2 ă δ. We denote its directional derivative by

Φ 1 pf qg :" d dε Φpf `εgq ˇˇˇε "0
, @g P 9 H 1{2 .

Lorentzian invariance

For all α P p´1, 1q we define a linear transformation of R 1`3 as

L α pτ, ξ 1 , ξ 2 , ξ 3 q " » - - - γ ´γα 0 0 ´γα γ 0 0 0 0 1 0 0 0 0 1 fi ffi ffi fl » - - - τ ξ 1 ξ 2 ξ 3 fi ffi ffi fl ,
where γ :" p1 ´α2 q ´1{2 . Clearly, det L α " 1 and pL α q ´1 " L ´α; moreover, for all pt, xq, pτ, ξq P R 1`3 , L α pτ, ξq ¨pt, xq " pτ, ξq ¨Lα pt, xq.

Denoting pτ , ξq " L α pτ, ξq we also have the fundamental property

τ 2 ´|ξ| 2 " τ 2 ´| ξ| 2 ,
from which it descends that, if τ " |ξ|, then τ " | ξ|; to see this, note that τ 2 " | ξ| 2 , and τ " γ|ξ| ´γαξ 1 ě 0. Analogously, if τ " ´|ξ| then τ " ´| ξ|. We also have the Dirac delta identity 2δpτ 2 ´|ξ| 2 q1 t˘τ ą0u " δpτ ¯|ξ|q |ξ| ; see, for example, [START_REF] Foschi | Maximizers for the Strichartz inequality[END_REF]. By the previous considerations, the left-hand side is Lorentzinvariant, and so

δpτ ¯|ξ|q |ξ| " δpτ 2 ´|ξ| 2 q1 t˘τ ą0u " δpτ 2 ´| ξ| 2 q1 t˘τ ą0u " δpτ ¯| ξ|q | ξ| , which implies the integration formula ż R 3 F pL α p˘|ξ|, ξqqGp˘|ξ|, ξq dξ |ξ| " ż R 3 F p˘| ξ|, ξqGpL ´αp˘| ξ|, ξqq d ξ | ξ| .
We will now prove that l ´1 commutes with L α . It is for this reason that we defined l ´1 as an integral over p´8, tq rather that p0, tq. Ramos considered the operator as an integral over p0, tq, but in that case the operators do not commute precisely; see [63, Proposition 1]. Lemma 3.2.1. Let F P L 4{3 pR 1`3 q. Then, for all α P p´1, 1q, l ´1pF ˝Lα q " pl ´1F q ˝Lα . Proof. By the definition (3.4) and Fubini's theorem, l ´1pF ˝Lα qpt, xq can be written as

¡ sinppt ´sq|ξ|q |ξ| e ipx´yq¨ξ F pL α ps, yqq1 tsătu dsdy dξ |ξ| ,
modulo irrelevant factors of p2πq ´3. On the other hand, we divide the operator

l ´1 " l ´1 `´l ´1
´,

where, for an arbitrary H P L 4{3 pR 1`3 q, l ´1 ˘H pt, xq :" ¡ e ipt,xq¨p˘|ξ|,ξq´ips,yq¨p˘|ξ|,ξq 2i Hps, yq1 tsătu dsdy dξ |ξ| .

We compute a convenient expression for pl ´1 ˘F qpL α pt, xqq using the properties of L α that we recalled in the beginning of the section; Using these two expressions, the difference l ´1pF ˝Lα q ´pl ´1F q ˝Lα can be written as ¡ sinps|ξ|q |ξ| e ´iy¨ξ Gps, yq `1tsăαy 1 u ´1tsă0u ˘dsdydξ,

¡ e iL α pt
where Gps, yq :" F pL α ps `t, y `xqq. We now note that the distribution v, defined by the formal integral vps, yq :"

ż R 3 sinps|ξ|q |ξ| e ´iy¨ξ dξ,
is a fundamental solution to the wave equation, that is,

# l v " 0, on R 1`3 , vp0q " p0, δq,
where δ is the Dirac distribution. Therefore, v is supported in the cone t|y| 2 ď s 2 u, which intersects the support of 1 tsăαy 1 u ´1tsă0u only at the origin (recalling that |α| ă 1); see Figure 3.1. Thus the integral (3.7) vanishes, completing the proof. Corollary 3.2.2. Let α P p´1, 1q, let F P L 4{3 pR 1`3 q, and let w α " l ´1F ˝Lα .

Then the map t P R Þ Ñ w α ptq P 9 H 1{2 pR 3 q is continuous.

The full symmetry group of solutions to (NLW) that we consider consists of Lorentzian boosts, dilations and spacetime translations. The Lorentzian boost of velocity β P R 3 , with |β| ă 1, is defined by

L β pτ, ξq " R ´1 ˝Lα ˝Rpτ, ξq, α " |β|,
where Rpτ, ξq " pτ, R 1 ξq, and R 1 is a rotation that maps p1, 0, 0q to β{|β|. By convention we assume that L p0,0,0q is the identity. We denote Λpt, xq " L β `λpt ´t0 q, λpx ´x0 q ˘, where t 0 P R, x 0 P R 3 , λ ą 0 and β P R 3 , with |β| ă 1; note that Lemma 3.2.1 readily implies that, for all F P L 4{3 pR 1`3 q, l ´1pF ˝Λq " λ ´2pl ´1F q ˝Λ. (

It is well-known that these transformations act unitarily on solutions to the linear wave equation with data in 9 H 1{2 , as in the following lemma, whose proof is an immediate consequence of Proposition 2.2.3, in the previous chapter. Lemma 3.2.3. Let f P 9 H 1{2 pR 3 q. There exists a unique f Λ P 9

H 1{2 pR 3 q such that λSf pΛpt, xqq " Sf Λ pt, xq. (3.9) 
Moreover, f 9 H 1{2 " f Λ 9 H 1{2 .
The transformation Λ also maps smooth solutions of (NLW) to smooth solutions. Using Lemma 3.2.1, we can now describe the action of Λ on the class of solutions that we defined in Proposition 3.1.4. Theorem 3.2.4. Let u P L 4 pR 1`3 q, with u P CpR; 9 H 1{2 q, satisfy the fixed point equation u " Sf `σl ´1pu 3 q. Denote u Λ pt, xq " λupΛpt, xqq.

Then u Λ P L 4 pR 1`3 q, with u Λ L 4 " u L 4 , u Λ P CpR; 9

H 1{2 q and u Λ " Sf Λ `σl ´1pu 3 Λ q, (3.10) 
where f Λ is defined in (3.9); in particular,

lim tÑ´8 u Λ ptq 9 H 1{2 " lim tÑ´8 uptq 9 H 1{2 .
Proof. Using (3.8), we obtain from u " Sf `σl ´1pu 3 q that λu ˝Λ " λpSf q ˝Λ `λσl ´1pu 3 q ˝Λ " Sf Λ `σl ´1pu 3 Λ q, which proves (3.10). The fact that u Λ P CpR; 9 H 1{2 q follows from Corollary 3.2.2.

The asymptotic formula

We recall the sharpened Strichartz estimate which we proved in the previous chapter.

Lemma 3.3.1. Let C 0 " 3 16π . Then there is a constant c ą 0 such that

Sf 2 L 4 pR 1`3 q `cdpf , Mq 2 ď C 1{2 0 f 2 9 
H 1{2 pR 3 q , (3.11) 
where dpf , Mq " inf f ´g 9 H 1{2 pR 3 q : g P M ( and

M " ! g : Sg 4 L 4 pR 1`3 q " C 0 g 4 9 H 1{2 pR 3 q ) . (3.12) 
Throughout this section, we consider f 9 H 1{2 ď δ with δ sufficiently small, so that the corresponding solution u " Φpf q is well-defined, by Proposition 3.1.4. Recalling that u " Φpf q " Sf `σl ´1pu 3 q, (3.13)

we will require the following estimates on Picard iterations.

Lemma 3.3.2. Let f 9 H 1{2 ď δ. Then as δ Ñ 0, Φpf q " Sf `Opδ 3 q, (3.14) 
Φpf q " Sf `σl ´1 `pSf q 3 ˘`Opδ 5 q,

where the big-O symbols refer to the norms of L 4 pR 1`3 q and CpR; 9

H 1{2 q.
Proof. By the final estimate of Proposition 3.1.4, we have u " Φpf q " Opδq and so u 3 L 4{3 " Opδ 3 q. Then, by the Strichartz estimate of Proposition 3.1.2, we obtain l ´1pu 3 q " Opδ 3 q, so the fixed point equation (3.13) yields (3.14). Now, by the Hölder inequality,

u 3 ´pSf q 3 L 4{3 ď C u ´Sf L 4 ´ u 2 L 4 ` Sf 2 L 4 ¯ď Opδ 5 q,
where we used (3.14) to estimate u ´Sf . We rewrite this as

u 3 " pSf q 3 `Opδ 5 q,
where the big-O symbol refers to the L 4{3 norm, and inserting this into the fixed point equation yields (3.15).

The function I, defined in the introduction to the present chapter, can be rewritten as Ipδq " sup

! Φpf q 4 L 4 pR 1`3 q ˇˇ f 9 H 1{2 pR 3 q ď δ ) .
We record some properties of the f that come close to maximize Ipδq.

Lemma 3.3.3. Let f 9 H 1{2 ď δ and u " Φpf q be close to maximal in the sense that Ipδq ´}u} 4 L 4 pR 1`3 q " Opδ 6 q.

(3.16)

Then f 9 H 1{2 " δ `Opδ 3 q and dpf , Mq " Opδ 2 q. Moreover, there is a C ą 0 such that 

Sf 4 L 4 pR 1`3 q ď C 0 δ 4 ´Cδ 2 dpf , Mq 2 . ( 3 
Ipδq " u 4 L 4 `Opδ 6 q " Sf 4 L 4 `Opδ 6 q ď C 0 δ 4 ´2c Sf 2 L 4 dpf , Mq 2 `Opδ 6 q.
On the other hand, if g P M is such that g 9 H 1{2 pR 3 q " 1, then, by definition,

Ipδq ě Φpδgq 4 L 4 ě C 0 δ 4 `Opδ 6 q,
where the second inequality uses (3.14) We can now obtain the asymptotic formula by combining the previous lemmas with the second Picard iteration estimate. Proposition 3.3.6. Let f 9 H 1{2 ď δ and u " Φpf q be close to maximal in the sense that Ipδq ´}u} 4 L 4 pR 1`3 q " Opδ 8 q.

Then dpf , Mq " Opδ 3 q and, as δ Ñ 0,

Ipδq " C 0 δ 4 `σC 1 δ 6 `Opδ 8 q,
where σ is the coefficient of the nonlinearity in (NLW). The constant C 1 satisfies

σC 1 " sup $ & % σ ij R 1`3 pSgq 3 l ´1ppSgq 3 q dtdx ˇˇˇˇˇg P M g 9 H 1{2 " 1
, .

-.

(3.21)

Proof. By Lemma 3.3.4, we can write f " f ‹ `fK . Using the orthogonality, we have

f ‹ 2 9 H 1{2 ` f K 2 9 H 1{2 " }f } 2 9 
H 1{2 ď δ 2 ,
from which we conclude that f ‹ 9 H 1{2 ď δ. This also shows that

f ‹ 2 9 H 1{2 " δ 2 `Opδ 4 q, (3.22) because f 2 9 H 1{2 " δ 2 `Opδ 4 q and f K 2 9
H 1{2 " Opδ 4 q by Lemma 3.3.3. Expanding, we find pSf q 3 " pSf ‹ q 3 `Opδ 2 f K 9

H 1{2 q,
where the big-O symbol refers to the L 4{3 pR 1`3 q norm. Applying l ´1, we infer from the Strichartz estimates (3.5) that l ´1ppSf q 3 q " l ´1ppSf ‹ q 3 q `Opδ 2 f K 9

H 1{2 q,
where the big-O now refers to both the L 4 pR 1`3 q and the CpR; 9 H 1{2 q norm. So, we can write ij R 1`3 pSf q 3 l ´1ppSf q 3 q " ij R 1`3 pSf ‹ q 3 l ´1ppSf ‹ q 3 q `Opδ 5 f K 9 H 1{2 q.

(3.23)

Now the key ingredient in this case is the second Picard estimate (3.15), from which we deduce Φphq 4 L 4 " Sh `σl ´1ppShq 3 q 4 L 4 `Opδ 8 q, whenever h 9 H 1{2 ď δ. This implies that

Φphq 4 L 4 " Sh 4 L 4 `4σ ij R 1`3
pShq 3 l ´1ppShq 3 q `Opδ 8 q.

(3.24)

As u " Φpf q with f 9 H 1{2 ď δ, on the one hand this yields an upper bound using our closeness hypothesis;

Ipδq ď u 4 L 4 `Opδ 8 q " Sf 4 L 4 `4σ ij R 1`3
pSf q 3 l ´1ppSf q 3 q `Opδ 8 q.

Estimating the first term on the right-hand side using (3.17) of the previous lemma and the second term using (3.23), we obtain

Ipδq ď C 0 δ 4 `4σ ij R 1`3
pSf ‹ q 3 l ´1ppSf ‹ q 3 q ´Cδ 2 dpf , Mq 2 `Opδ 5 dpf , Mqq `Opδ 8 q.

(3.25)

For the lower bound, we let f‹ :" f ‹ { f ‹ 9 H 1{2 , so that Ipδq ě Φpδ f‹ q 4 L 4 , and expanding using (3.24) we obtain

Ipδq ě C 0 δ 4 `4σδ 6 ij R 1`3
pS f‹ q 3 l ´1ppS f‹ q 3 q `Opδ 8 q,

where we used that S f‹ 4 L 4 " C 0 . Now, using (3.22), we see that

δ 6 ij R 1`3
pS f‹ q 3 l ´1ppS f‹ q 3 q " f ‹

6 9 H 1{2 ij R 1`3
pS f‹ q 3 l ´1ppS f‹ q 3 q `Opδ 8 q " ij R 1`3 pSf ‹ q 3 l ´1ppSf ‹ q 3 q `Opδ 8 q, so combining the upper and lower bounds (3.25) and (3.26) yields δ 2 dpf , Mq 2 ď Opδ 5 dpf , Mq `δ8 q.

Writing X :" dpf , Mqδ ´3, this reads X 2 ď Op1 `Xq, which implies that X " Op1q.

Thus we find that dpf , Mq " Opδ 3 q.

To complete the proof we observe that, since Opδ 5 dpf , Mqq " Opδ 8 q, it follows from (3.25) and (3.26) that

Ipδq " C 0 δ 4 `4σ ij R 1`3
pSf ‹ q 3 l ´1ppSf ‹ q 3 q `Opδ 8 q.

(3.27)

However, for all g P M with g 9 H 1{2 " δ, we also have

Ipδq ě Φpδgq 4 L 4 " C 0 δ 4 `4σ ij R 1`3
pSgq 3 l ´1ppSgq 3 q `Opδ 8 q, and so, combining this with (3.27), we conclude that the term

σ ij R 1`3
pSf ‹ q 3 l ´1ppSf ‹ q 3 q must be equal to sup

$ & % σ ij R 1`3 pSgq 3 l ´1ppSgq 3 q ˇˇˇˇˇg P M g 9 H 1{2 " δ , .
-`Opδ 8 q, thus proving (3.21).

It remains to evaluate this supremum, which we will do in the sequel.

Computation of the constant C 1 via the Penrose transform

We consider the following family of elements of 9 H 1{2 pR 3 q:

f θ :" ˜cos θ 2 1 `|¨| 2 , ´sin θ ˆ2 1 `|¨| 2 ˙2¸,
and we let v θ :" Sf θ , v θ :" pv θ , B t v θ q.

(3.28)

We caution that, in the previous chapters, we used the notation f ‹ to denote what is now called f 0 . One can calculate that f θ 9 H 1{2 " S 3 1{2 ; see (1.20). Remark 3.4.1. For all t P R it holds that v θ ptq " Ph θ v 0 ptq, where The operator Ph θ : 9 H 1{2 Ñ 9 H 1{2 is unitary and it commutes with the linear propagator S; see the second chapter. However, Ph θ does not commute with the nonlinear propagator Φ.

We recast in the notation of the present chapter the characterization of the extremizers to the Strichartz estimate (3.3); see Section 2.2, in the previous chapter, for more detail. Proposition 3.4.2 (Foschi [37]). Let M be the set of extremizing functions for the Strichartz inequality; see (3.12). Then M " t c pv θ ˝Λq| t"0 | c, θ, Λ u , where c ě 0, θ P S 1 and Λpt, xq " L β `λpt ´t0 q, λpx ´x0 q ˘.

Recalling the definition (3.21) of C 1 , we define

Cpwq :" ij R 1`3
w 3 l ´1pw 3 q, where w P L 4 pR 1`3 q, (3.29) so that σC 1 " suptσCpvqu, where v " Sg and g P M is such that g 9 H 1{2 " 1.

Proposition 3.4.3. For all w P L 4 pR 1`3 q, Cpw ˝Λq " λ 2 Cpwq.

In particular,

σC 1 " max " σCpv θ q |S 3 | 3 ˇˇˇθ P S 1 * . (3.31)
Proof. The property (3.30) follows from the commutativity property (3.8) of l ´1. To conclude it suffices to note that, by Proposition 3.4.2, if v " Sg with g P M and g 9 H 1{2 " 1, then v " S 3 ´1{2 v θ ˝Λ for a θ P S 1 and a transformation Λ with λ " 1.

To compute the maximum in (3.31) we will use the Penrose transform, which we briefly recall here; see Section 1.1, in the first chapter, for more details. We recall that the light-like coordinates on R 1`3 are defined by

x -" t ´r, x + " t `r, where x -ď x + , while the corresponding coordinates on the curved space-time R ˆS3 are

X -" 1 2 pT ´Rq, X + " 1 2 pT `Rq, (3.32) 
where T P R, and R is the polar coordinate on S 3 such that, for all pX 0 , X 1 , X 2 , X 3 q P S 3 , X 0 " cospRq, pX 1 , X 2 , X 3 q " sinpRq ω, ω P S 2 , R P r0, πs.

The Penrose map is the identification of R 1`3 with an open subset of R ˆS3 via the equations X -" arctan x -, X + " arctan x + , (3.33) so that X -and X + take values in the region

T :" pX -, X + q P r´π 2 , π 2 s 2 ˇˇX -ď X + ( . (3.34) 
The identification (3.33) is conformal, in the sense that

dT 2 ´dR 2 ´sin 2 R dω 2 " Ω 2 `dt 2 ´dr 2 ´r2 dω 2 ˘, (3.35) 
where dω 2 denotes the metric tensor of S 2 and the conformal factor Ω is the scalar field given by Ω " 2p1 `px + q 2 q ´1{2 p1 `px -q 2 q ´1{2 " 2 cos X + cos X -.

In all these equations, as in the rest of the section, the change of variable (3.33) is implicit. If v is a scalar field on R 1`3 , we define a scalar field V on PpR 1`3 q by the equation

v " ΩV, (3.36) 
which implies that, at t " 0 (corresponding to T " 0), v| t"0 " pΩV q| T "0 , B t v| t"0 " pΩ 2 B T V q ˇˇT "0 .

The scalar field V is called the Penrose transform of v. We remark that v is radially symmetric if and only if V depends only on X -, X + , and in this case, using (3.36) and (3.33), we obtain

rl v " pB 2 t ´B2 r qprvq " Ω 2 B X + B X -prΩV q " Ω 2 B X + B X -psinpRqV q, (3.37)
where we used the formula rΩ " sin R, which can be immediately obtained from (3.35) by comparing the factors of dω 2 . We remark that there is also a more general formula, which includes the case of nonradial v; see (1.10), in the first chapter.

As already noted in the previous chapters, the Penrose transform is relevant in our context, because applying it to v θ , as defined in (3.28), we obtain a simple expression; 

V θ | T "0 " cos θ, B T V θ | T "0 " ´sin θ,
Cpv θ q " ij PpR 1`3 q V 3 θ W θ dT dS " 4π ż π ´π ż π´|T | 0 cos 3 pT `θqW θ sin 2 R dT dR,
where dS " sin 2 R dRdS S 2 denotes the volume element on S 3 . Here we used that Ω 4 dtdx " dT dS, which follows from (3.35). Now the change of variable (3.32) yields

Cpv θ q " 8π żż T cos 3 pX + `X-`θq sinpX + ´X-q Wθ dX -dX + , (3.39) 
where Wθ :" sinpRqW θ , and T is the half-square defined in (3.34). We will prove that Wθ pX + , X -q " ´W θ pX -, X + q, so that the integrand of (3.39) is symmetric under permutation of the variables, allowing us to consider the integral over the full square r´π 2 , π 2 s 2 . We compute Wθ explicitly. From the definition of l ´1 it follows that

# rlw θ " rv 3 θ , on R 1`3 , lim tÑ´8 w θ 9 H 1{2 " 0, (3.40) 
and using (1.11), (3.37), and the aforementioned formula rΩ " sin R, we obtain rlw θ " Ω 2 B X + B X -psinpRqW θ q, and rv 3 θ " Ω 2 sinpRqV 3 θ , so the factors of Ω 2 simplify and we obtain from (3.40) the differential equation

B X + B X -Wθ " sinpX + ´X-q cos 3 pX + `X-`θq.
The general solution Wθ of this can be written

ż X - ´π 2 ż X + ´π 2
sinpZ ´Y q cos 3 pY `Z `θq dY dZ `F pX + q `GpX -q,

where F and G are arbitrary smooth functions. We claim that F pX + q `GpX -q " 0.

(3.42)

To prove this, we notice that for each fixed t 0 P R, the hypersurface of R 1`3 of equation t " t 0 is mapped by P to the hypersurface of equations X -" arctanpt 0 ´rq, X + " arctanpt 0 `rq, (see Figure 3.3), which, as t 0 Ñ ´8, converges uniformly to the hypersurface X -" ´π{2.

The condition w θ ptq 9 H 1{2 Ñ 0 thus implies that Wθ | X -"´π 2 " 0. We obtain another condition by observing that, since w θ is smooth and radially symmetric, the function W θ must be regular at R " 0, which implies that Wθ | R"0 " 0. Now the integral of (3.41) satisfies both conditions. The first one is obvious, while the second follows from symmetry, since X -| R"0 " X + | R"0 , so the domain of integration is symmetric under permutation of the variables Y, Z, while the integrand function changes sign. This proves (3.42).

Returning to (3.39), the fact that Wθ pX + , X -q " ´W θ pX -, X + q is immediate from the explicit form of Wθ . Thus the integral in (3.39) can be replaced by the integral over r´π 2 , π 2 s 2 , with a multiplicative factor of 1 2 . More precisely, letting F pY, Z, θq :" sinpZ ´Y q cos 3 pY `Z `θq, Proof. Let u n be a maximizing sequence of I, that is

u n " Φpf n q, f n 9 H 1{2 ď δ, Ipδq " lim nÑ8 u n 4 L 4 .
We consider a profile decomposition of the sequence f n , in the sense of Theorem 3.7.3 in the Appendix, and we claim that all profiles tF j : j P N ě1 u vanish but one.

To prove this, we denote by g n the sequence obtained by subtracting the profile F j from f n , that is

g n " f n ´λpjq n SF j ˝Λj n ˇˇt "0
, and we construct the corresponding solution W n " Φpg n q. By the nonlinear profile decomposition, Corollary 3.7. 

δ 2 ě f n 2 9 H 1{2 " F j 2 9 H 1{2 ` g n 2 9 
H 1{2 `op1q, (3.45) 
and by Remark 3.7.6,

u n 4 L 4 " U j 4 L 4 ` W n 4 L 4 `op1q. (3.46) 
Since u n is a maximizing sequence, we infer from (3.45) and (3.46)

Ipδq " U j 4 L 4 `lim sup nÑ8 W n 4 L 4 ď I ` F j 9 
H 1{2 ˘`I ´bδ 2 ´ F j 2 9 H 1{2 ¯,
where we also used the upper semicontinuity property (3.44). Now, the superadditivity property (3.43) implies that either F j 9

H 1{2 " 0, or F j 9 H 1{2 " δ.
It cannot be that F j " 0 for all j ě 1, for otherwise the nonlinear profile decomposition (3.71) would give the contradiction Ipδq " 0. On the other hand, if F j 9 H 1{2 " δ then, by (3.45), g n 9 H 1{2 Ñ 0 as n Ñ 8, which means that F k " 0 for all k ‰ j. We have thus proven that there exists one and only one nonvanishing profile F for the sequence f n . Letting U denote the corresponding nonlinear profile, Corollary 3.7.5 implies that Ipδq " U 4 L 4 , and the proof is complete.

We now turn to the proof that, if δ ą 0 is sufficiently small, then the three properties of Lemma 3.5.1 are satisfied. We already dealt with the first one in Proposition 3.1.4. The following lemma implies the third property and will also be used in the proof of the second property.

Lemma 3.5.2. There exists

A, C 1 , C 2 ą 0 such that C 1 |ε|δ 3 ď |Ipδ `εq ´Ipδq| ď C 2 |ε|δ 3 , @ ε P p´δ{2, δ{2q, (3.47) 
whenever δ P p0, As. In particular, I is continuous on p0, A{2s.

Proof. In fact we will prove that 4C 0 εδ 3 `Opεδ 5 q ď Ipδ `εq ´Ipδq ď 4C 0 εpδ `εq 3 `Opεδ 5 q, (3.48) from which (3.47) follows by taking A ą 0 sufficiently small. For this we let f 9 H 1{2 " δ and u " Φpf q be close to maximal in the sense that

Ipδq ´ u 4 L 4 " Opεδ 5 q, (3.49) 
and we define u ε :" Φ `p1 `ε δ qf ˘, ũε :" p1 `ε δ qu.

With these definitions, since l u `σu 3 " 0, we have that

σe :" l ũε ´σũ 3 ε " ´2σ ε δ u 3 `Op ε 2 δ 2 u 3 q,
where the big-O symbol refers to the L 4{3 pR 1`3 q norm, and since u L 4 is Opδq, we can conclude that e L 4{3 " Opεδ 2 q.

Moreover, it is clear that u ε ptq ´ũ ε ptq 9 H 1{2 Ñ 0 as t Ñ ´8, and so we can apply the forthcoming perturbation Lemma 3. where the constant implicit in the big-O notation depends on A only. We now insert (3.50) into the inequality Ipδ `εq ě u ε 4 L 4 , which follows from the definition of I. We obtain Ipδ `εq ě p1 `ε δ q 4 u 4 L 4 `Opεδ 5 q ě Ipδq `4 ε δ Ipδq `Opεδ 5 q,

where we used the elementary inequality p1 `ε δ q 4 ě 1 `4 ε δ and the closeness condition (3.49). Now by the asymptotic Proposition 3.3.6, we know that Ipδq " C 0 δ 4 `Opδ 6 q which can be inserted to complete the proof of the first inequality in (3.48).

To prove the second inequality and complete the proof of Lemma 3.5.2, we let f 9 H 1{2 " δ `ε and u " Φpf q be close to maximal in the sense that Ipδ `εq ´ u 4 L 4 " Opεpδ `εq 5 q.

Then we define u ε :" Φpp1 ´ε δ`ε qf q and ũε :" p1 ´ε δ`ε qu, and argue as before.

Theorem 3.6.2. Suppose that u f " Φpf q and u g " Φpgq satisfy

f 9 H 1{2 " g 9 H 1{2 " δ, and Ipδq " u f 4 L 4 " u g 4 L 4 ,
with δ sufficiently small. Suppose moreover that the unique projections f ‹ and g ‹ satisfy θpf ‹ q " θpg ‹ q.

(3.53)

Then there is a transformation Λ of the form (3.51) such that u g " λpu f ˝Λq.

The assumption (3.53) makes this uniqueness result conditional. We conjecture that such an assumption is not necessary; that there is a single θpf ‹ q for each maximizer f to Ipδq.

We now recall the local version of the sharpened Strichartz estimate proved in the previous chapter. Lemma 3.6.3. Let ψ be the functional defined by

ψpf q :" C 0 f 4 9 H 1{2 ´ Sf 4 L 4 pR 1`3 q .
Then there exists C ą 0 such that, for all m P Mzt0u,

d 2 dε 2 ψpm `εm K q ˇˇˇε "0 ě C m 2 9 
H 1{2 m K 2 9 H 1{2 , @ m K KT m M. (3.54) 
The derivative in (3.54) can be computed to be 1 2

d 2 dε 2 ψpm `εm K q ˇˇˇε "0 " 2C 0 m 2 9 
H 1{2 m K 2 9 H 1{2 ´6 ij R 1`3 pSmq 2 pSm K q 2 ; (3.55)
see the proof of Lemma 2.3.1.

Proof of Theorem 3.6.2. By the unique representation (3.52), our assumption (3.53), and Lemma 3.6.1, up to changing u f with λpu f ˝Λq and u g with λ 1 pu g ˝Λ1 q, where Λ and Λ 1 are transformations of the form (3.51), we can decompose

f " cδm `fK , g " c 1 δm `gK , with f K KT m M and g K KT m M,
where m " S 3 ´1{2 f θpf‹q , so that m 9 H 1{2 " 1. We denote h :" f ´g, and h K :" f K ´gK .

The proof will be complete once we show that h " 0.

We now record the necessary estimates. First, we recall from Proposition 3.3.6 that 

h K 9 H 1{2 ď dpf , Mq `dpg, Mq " Opδ 3 q. (3.56) H 1{2 , to obtain δ 2 c 2 ´c12 " g K 2 9 H 1{2 ´ f K 2 9 H 1{2 ď Cδ 3 h K 9 H 1{2 , so that pc ´c1 q 2 " ˆc2 ´c12 c `c1 ˙2 ď Cδ 2 h K 2 
the big-O symbol referring to the L 4 pR 1`3 q norm. Analogously, we see that u g " Spc 1 δmq `Opδ 3 q.

(3.60)

With these estimates in hand, we may now proceed with the proof. The key step is given by the formula

u f 4 L 4 ´ u g 4 L 4 "
´1 2 d 2 dε 2 ψpc 1 δm `εh K q ˇˇˇε "0 `Opδ 3 h K 2 9

H 1{2 q, (3.61) which we will prove later. Note that the left-hand side vanishes by assumption. So, once (3.61) is proven, Lemma 3.6.3 will imply that

δ 2 h K 2 9 
H 1{2 ď Cδ 3 h K 2 9 H 1{2 ,
for an absolute constant C ą 0, which is only possible if h K 9 H 1{2 " 0, provided that δ ă C ´1. By (3.58), this would imply that h " 0, concluding the proof.

In order to prove (3.61), we recall that u f " u g `w and we expand ij

R 1`3 pu g `wq 4 ´ij R 1`3 u 4 g " 4 ij R 1`3 u 3 g w `6 ij R 1`3 u 2 g w 2 `Opδ h K 3 9 
H 1{2 q " 4 ij R 1`3 u 3 g w `6 ij R 1`3 pSpc 1 δmqq 2 pSh K q 2 `Opδ 3 h K 2 9 H 1{2 `δ h K 3 9 
H 1{2 q,
where we used (3.59) and (3.60). By (3.56), we know that

Opδ 3 h K 2 9 H 1{2 `δ h K 3 9 H 1{2 q " Opδ 3 h K 2 9
H 1{2 q.

Thus, using (3.55), to conclude the proof of (3.61) it remains to show that 4 ij R 1`3 u 3 g w " ´2C 0 c 12 δ 2 h K 2 9

H 1{2 `Opδ 3 h K 2 9 
H 1{2 q, (3.62) 
for which we will use the Lagrange multiplier theorem. For k P 9 H 1{2 pR 3 q, let W pkq :" Φpg `kq ´Φpgq, Gpkq :" g `k 2

9

H 1{2 , (3.63) 
so that w " W phq, 0 " W p0q and δ 2 " Gp0q. Since u g " Φpgq is a maximizer for Ipδq, we have that ij

R 1`3 u 4 g " max $ & % ij R 1`3
pu g `W pkqq 4 ˇˇˇˇˇG pkq " δ 2

, .

-

; (3.64)
that is, k " 0 is a solution to the constrained optimization problem on the right-hand side of (3.64). In particular, there exists a Lagrange multiplier µ P R such that

µG 1 p0qk " 4 ij R 1`3 u 3 g W 1 p0qk, @k P 9 H 1{2 pR 3 q, (3.65) 
where the notation F 1 p0qk denotes the directional derivative d dε F pεkq ˇˇε"0 . We need to compute µ. First we note that, by the definition of G, µG We insert this, the expansion (3.60) of u g and the formula g " c 1 δm `gK , into (3.65) to obtain 2µ @ c 1 δm ˇˇk D Lemma 3.7.4 (Perturbation Lemma). Let u " Φpf q. For M ą 0, assume that ũ L 4 pR 1`3 q ď M , where ũ satisfies lim tÑ´8 uptq ´ũptq 9 H 1{2 " 0, and e L 4{3 pR 1`3 q ď ε,

where e :" l ũ ´σũ 3 in distributional sense. Then u ´ũ L 4 pR 1`3 q `sup tPR uptq ´ũptq 9 H 1{2 ď Cp M q ε.

Proof. The assumptions (3.70) imply that ũ satisfies the fixed-point equation ũ " Sf `σl ´1pũ 3 q `l´1 e, so the difference w :" ũ ´u satisfies w " σl ´1pũ 3 ´u3 q `l´1 e. We now estimate w on a time interval p´8, T q Ă R via the Strichartz inequality (3.5), which holds on such time intervals because of Remark 3.1.3;

w L 4 pp´8,T qˆR 3 q ď Cε `C|σ| pũ `wq 3 ´ũ 3 L 4 3 pp´8,T qˆR 3 q ď Cpε ` w 3 L 4 pp´8,T qˆR 3 q q `C ũ2 w .

The Gronwall-type inequality of [START_REF] Fang | Scattering for the focusing energy-subcritical nonlinear Schrödinger equation[END_REF]Lemma 8.1] now implies that w L 4 pp´8,T qˆR 3 q ď C M pε ` w 3 L 4 pp´8,T qˆR 3 q q.

Therefore, if T P R is such that w L 4 pp´8,T qˆR 3 q ď 2C M ε, then

w L 4 pp´8,T qˆRq ď C M ε `C M p2C M εq 3 ď 3 2 C M ε,
provided that ε is sufficiently small. By the bootstrap method, this proves the inequality w L 4 pR 1`3 q ď 3 2 C M ε. The same argument with sup tPR wptq 9 H 1{2 in place of w L 4 pR 1`3 q concludes the proof.

Corollary 3.7.5. Let A ą 0 be such that, if f 9 H 1{2 ď A, then there exists a unique solution u " Φpf q. If the sequence u n " Φpf n q satisfies f n 9 H 1{2 ď A, we associate to each profile pF j , Λ j n q in (3.66) the nonlinear profile U j :" ΦpF j q. Note that u b blows up at time t " 1. These solutions are known; for example, u a is [1, equation (4.8)] (with c " 1), and u b is [13, equation ( 7)] (with a " ´1, b " 1{2), where they are computed with different methods. Our alternative method, based on the Penrose transform, involves only a very short computation. We recall from Section 1.1, in the first chapter, that the Penrose transform associates to any function u, defined on R 1`3 , a function U defined on the region

PpR 1`3 q " $ & % ´T, pcos R, sin R ωq ¯P R ˆS3 ˇˇˇˇˇ´π ă T ă π 0 ď R ă π ´|T | ω P S 2
, .

-

.
They satisfy upt, rωq " Ω U pT, cos R, sin Rωq, (3.75)

where r ě 0 and ω P S 2 are the polar coordinates on R 3 , and t " arctanpT `Rq `arctanpT ´Rq, r " arctanpT `Rq ´arctanpT ´Rq, and the function Ω is Ω " 2p1 `pt `rq 2 q ´1{2 p1 `pt ´rq 2 q ´1{2 .

As we noted in (1.7), the mapping of R 1`3 onto PpR 1`3 q is conformal; therefore l u " Ω 3 pB 2 T ´∆S 3 `1qU ; see (1.10). We conclude that (3.74) is equivalent to the equation

B 2
T U ´∆S 3 U `U " U 3 , on PpR 1`3 q.

(3.76)

Considering functions U that depend on T only, (3.76) reduces to the ordinary differential equation U 2 `U " U 3 , which has the conserved quantity

E " pU 1 q 2 2 `U 2 2 ´U 4 4 .
It follows immediately from (3.75) that the stationary solution U a " 1 is the Penrose transform of u a . The blow up solution U b " ? 2 cos T , which is characterized by the properties E " 0 and B T U b p0q " 0, is the Penrose transform of u b . To see this, we use the formula cos T " 1 2 p1 `|x| 2 ´t2 qΩ, which can be found, for example, in [46, pag. 277].

Sharp estimates for linear and nonlinear wave equations via the Penrose transform

Abstract. We apply the Penrose transform, which is a basic tool of relativistic physics, to the study of sharp estimates for linear and nonlinear wave equations. We disprove a conjecture of Foschi, regarding extremizers for the Strichartz inequality with data in the Sobolev space 9 H 1{2 ˆ9 H ´1{2 pR d q, for even d ě 2. On the other hand, we provide evidence to support the conjecture in odd dimensions and refine his sharp inequality in R 1`3 , adding a term proportional to the distance of the initial data from the set of extremizers. Using this, we provide an asymptotic formula for the Strichartz norm of small solutions to the cubic wave equation in Minkowski space. The leading coefficient is given by Foschi's sharp constant. We calculate the constant in the second term, whose absolute value and sign changes depending on whether the equation is focusing or defocusing.

Keywords. Wave equation, Strichartz estimate, sharp inequality, Lorentz invariance.

Résumé. Nous appliquons la transformée de Penrose, qui est un outil basique de la physique relativiste, à des estimations optimales pour les équations des ondes linéaire et nonlinéaire. Nous infirmons une conjecture de Foschi concernant les points extrémaux de l'inégalité de Strichartz à données dans l'espace de Sobolev 9 H 1{2 ˆ9 H ´1{2 pR d q, où d ě 2 est pair. En revanche, nous donnons des indications appuyant cette conjecture en dimension impaire, ainsi qu'une version raffinée de son inégalité optimale sur R 1`3 , en ajoutant un terme proportionnel à la distance des données initiales de l'ensemble des points extrémaux. À l'aide de ce résultat, nous obtenons une formule asymptotique pour la norme de Strichartz des solutions petites de l'équation des ondes cubique dans l'espace-temps de Minkowski. Le coefficient principal est donné par la constante optimale de Foschi. Nous calculons le terme suivant, qui change de signe et de valeur absolue selon que la non-linéarité est focalisante ou défocalisante.

Mots-clés. Équation des ondes, estimation de Strichartz, inégalité optimale, invariance de Lorentz.

Resumen. Aplicamos la transformada de Penrose, una herramienta básica de la física relativista, a unas estimaciones óptimas para ecuaciones de ondas lineales y no lineales. Invalidamos una conjetura de Foschi, sobre extremizadores para la estimación de Strichartz con datos en el espacio de Sobolev 9 H 1{2 ˆ9 H ´1{2 pR d q, para d ě 2 par. Por otro lado, vamos a dar indicios en favor de su conjetura en dimension impar, así como una versión refinada de su desigualdad óptima en R 1`3 , añadiendo un término proporcional a la distancia de los datos iniciales del conjunto de puntos extremales. Utilizando este resultado, conseguimos una fórmula asintótica para la norma de Strichartz de soluciones pequeñas de la ecuación de ondas cúbica en el espacio-tiempo de Minkowski. El coeficiente principal coincide con la constante óptima de Foschi. Calculamos explícitamente el coeficiente del otro término, cuyo módulo y signo cambian dependiendo de si estamos en el caso focusing o defocusing.
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 11 Figure 1.1: The image of the Penrose map P.

  4.3 below with a simpler direct proof, based on the recursion relation for the Legendre polynomials; see [58, Lemma 3, pg. 39]. Definition 2.4.2. For all , m 1 P Z C d p , m 1 q :" # b p ´m1 `1qp `m1 `d´1q p2 `d`1qp2 `d´1q , 0 ď m 1 ď , 0, otherwise.
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 246 Diagonal dominance). Let L P N ě0 and let t a ,m , b ,m : P N ěL , m P Mp q u be real sequences satisfying# a L,m ě 1 2 |b L,m |, a ,m ě 1 2 p|b ,m | `|b ´1,m |q , ą L.

Figure 3 . 1 :

 31 Figure 3.1: The support of 1 tsăαy 1 u ´1tsă0u intersects the light cone only at the origin.
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 32 Figure 3.2: Illustration of Lemma 3.3.4
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 33 Figure 3.3: As t 0 Ñ ´8, the Penrose image of the hypersurface t " t 0 converges uniformly to the characteristic hypersurface X -" ´π 2 .

4 L 4 " ũε 4 L 4 `

 4444 7.4 to obtainu ε ´ũ ε L 4 ď Cεδ 2 ,and we infer that u ε Opεδ 5 q, (3.50)

9 H 9 H 1{2 " 4 ijR 1 ` 3 pSpc 1 δmqq 3

 994133 1{2 `2µ xg K | ky Sk `Opδ 5 k 9 H 1{2 q.

L 4 3

 4 pp´8,T qˆR 3 q

  1`d and that vp0q " f . Denote by V the Penrose transform of v; see Definition 1.1.2. Then

	V pT, Xq "	8 ÿ "0	N p q ÿ m"0	cos ˆT p	`d	´1 2	q ˙F 0 p , mqY ,m pXq	(1.14)
				`sin	`T ` `1 2 pd ´1q `d´1 2	˘˘	F1 p , mqY ,m pXq.
	Proof. The equation B 2 T V " ∆ S d V ´`d´1 2 ˘2 V implies that
	B 2 T V pT, , mq " p `d ´1q V pT, , mq	´ˆd	´1 2	˙2 V pT, , mq,
	with initial data V p0, , mq " F0 p , mq and B T V p0, , mq " F1 p , mq. Solving this ordinary
	differential equation yields (1.14).					
	Remark 1.1.6. The formula (1.14) actually defines a function on R ˆSd , not just on
	PpR ˆSd q. Thus we can consider V as defined on R ˆSd . If d is odd, V is 2π-periodic
	in T and it satisfies							
	V pT `π, ´Xq " p´1q	d´1 2 V pT, Xq, @pT, Xq P S 1 ˆSd ,	(1.15)
	because of the sign property (1.13) of Y ,m . If d is even, (1.15) fails.

  Here V and W denote the Penrose transforms of v and w respectively.

									1`d , then
		ij	|v| a |w| b dtdx "		1 2	ij	|Ω|	d´1 2 pa`bq´pd`1q |V | a |W | b dT dS,	(1.25)
		R 1`d				S 1 ˆSd
	and	ij	|v| a´1 v w dtdx "	1 2	ij	|Ω|	d´1 2 pa`1q´pd`1q |V | a´1 V W dT dS,	(1.26)
		R 1`d					S 1 ˆSd
	for all a, b P R. Proof. To prove (1.25), we need to check that
					U pT, Xq " |Ω|	d´1 2 pa`bq´pd`1q |V | a |W | b
	satisfies the property (1.21), which is an immediate consequence of the symmetry property
	(1.15) of V and W , and of the explicit expression (1.24). We remark that these symmetry
	properties need not hold for even d. The proof of (1.26) is analogous.
	1.3 Proof of Theorem 1.0.1
	Lemma 1.3.1. Writing f " cf ‹ `fK , with xf K | f ‹ y 9 H 1{2 " 0, then
				d dε	ψpf ‹ `εf q ˇˇˇε	"0	

  .31) Lemma 1.3.3. If k ‰ mpd ´1q where m P N ě0 then ĥd pkq " 0.

	Proof of Lemma 1.3.3. Consider u P r´?2,	? 2s. We let |u| p´2 " p1 `vq	p´2 2 , with
	v " u 2 ´1, and we expand it using the binomial series. This yields
					|u| p´2 "	8 ÿ j"0	ˆpp ´2q{2 j	˙pu 2 ´1q j ,
	and the series converges uniformly by Raabe's criterion (here we use that p ą 2). Taking
	u " cos d´1 2 T , we obtain				
	cos	d	´1 2	T	p´2	"	8 ÿ j"0

Table 2 .

 2 1. With these explicit expressions, we can prove Proposition 2.2.3. Proof of Proposition 2.2.3. The proof of the first identity in (2.8) reduces to a check that the operators in the right column of entries 2-6 of Table 2.1 are skew-adjoint on 9 H

	Derivative	Applied to cΓ α

  and, replacing f with Γ ´1 α f if needed, we can assume that Γ α " Γ 0 . The orthogonality (2.15) implies that xf K | P pf qy 9 H 1{2 " xf 1 K | P 1 pf qy 9 H 1{2 " 0, so using (2.17) we can expand f 2
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  combining (2.18) and (2.20), we see that |tα 1 | ă ε for all t P r0, 1s, and moreover, f {c ´f‹ 9 H 1{2 ă ε by (2.19). Thus D α P ptα 1 , f {cq ď 1 2 , and from

  Ĥp , mq 2 `b ,m Ĥp , mq Ĥp `1, mq,

	340 it will suffice to show that T satisfies the conditions of Lemma 2.4.6. We perform the ż R 5 |∇g 0 | 2 dx, change of variable Ĝ0 p , mq " Ĥp , mq a p `1qp `3q , (2.60) so that, using (2.56) and (2.49), we have T pHq " 8 ÿ ÿ a ,m where a ,m " π 8 4 `8 3 `11 2 ´20 ´12`6m 2 1 `18m 1 p `1q 2 p `3q 2 ´9π 340 p `2q 2 p `1qp `3q , b ,m " b p `1´m 1 qp `4`m 1 q p `1qp `4q ´π 8 p `2qp `3q 340 ´9π p ´1qp `6q ¯.	(2.61)
	"2	mPMp q

  Ĥp , mq 2 `b ,m Ĥp , mq Ĥp `1, mq, For all other values of and m, the assumptions of Lemma 2.4.6 have already been verified; see(2.62) for the " 2, m 1 " 2 case (recall that, by convention, b 1,m " 0 if m 1 ą 1), and(2.63

	We perform the change of variable	
		Ĝ1 p , mq "	p `1qp `3q Ĥp , mqp `2q a	,
	so that, by (2.57) and (2.50),	
	T pHq "	ÿ	a 1,m Ĥp1, mq 2 `b1,m Ĥp1, mq Ĥp2, mq
		mPMp1q,m 1 "1	
	ÿ mPMp q a ,m where a 1,m " 3π `8 ÿ "2 64 ´9π 340 9 8 , b 1,m " ´9π 340	b	3 5 , and a ,m and b ,m equal (2.61) for ě 2. For
	" 1, 2 and m 1 " 1 we have that	
	a 1,m ´1 2 |b 1,m | " 93 5440 π ´9 3400 π a 2,m ´1 2 p|b 2,m | `|b 1,m |q " `32 1275 ´1 255 ? 7 ´9 3400 ? 15 ą 0, ? 15 ˘π ą 0.

  .17) Proof. By squaring the sharpened Strichartz estimate (3.11), we obtain Sf 4 L 4 `2c Sf 2 L 4 dpf , Mq 2 ď C 0 δ 4 . (3.18) Now, we use the first Picard estimate (3.14) for u " Φpf q in order to find upper and lower bounds for Ipδq. On the one hand, by combining it with the closeness assumption (3.16) and with (3.18), we find that

  and the fact that Spδgq 4 L 4 " C 0 δ 4 . Combining these upper and lower bounds for Ipδq we find that Mq 2 " Opδ 4 q. On the other hand, reinserting (3.20) into (3.18) yields (3.17), and the proof is complete.For a slightly stronger version of this lemma, see Proposition 2.2.8 in the previous chapter.Lemma 3.3.4. For every f P 9 H 1{2 pR 3 q there exists a f ‹ P M such that f ´f‹ 9 H 1{2 pR 3 q " dpf , Mq.Moreover, xf ‹ | f ´f‹ y 9 H 1{2 " 0 and we write f K :" f ´f‹ ; see Figure3.2.

	2c Sf 2 L 4 dpf , Mq 2 ď Opδ 6 q,	(3.19)
	and	
	Sf 4 L 4 ě C 0 δ 4 `Opδ 6 q.	(3.20)
	Using the Strichartz inequality C 0 f 4 9 H 1{2 ě Sf 4 L 4 and the assumption f 9 H 1{2 ď δ, the bound (3.20) gives that f 9 H 1{2 " δ `Opδ 3 q. Inserting (3.20) into (3.19) we conclude
	that dpf , Remark 3.3.5. We caution that, in the previous chapters, the symbol f ‹ has been used
	with a different meaning.	

  and V θ " cos pT `θq .Proof. Let w θ :" l ´1pv 3 θ q. Applying the Penrose transform (3.36) to the integral (3.29) that defines C, we obtain

	Proposition 3.4.4. It holds that				
	Cpv θ q "	π 3 128	`24 cos 2 θ	`5˘.	(3.38)

  5, we have that u n pt, xq " λ pjq n U j pΛ j n pt, xqq `Wn pt, xq `hn pt, xq, where h n L 4 pR 1`3 q `sup tPR h n ptq 9 H 1{2 Ñ 0 as n Ñ 8. By the Pythagorean expansion (2.33) of the 9 H 1{2 norm,

  [START_REF] Bez | A sharp Strichartz estimate for the wave equation with data in the energy space[END_REF] We now define w :" u f ´ug ; that is, w " Φpf q ´Φpgq. By the definition (3.13) of Φ, Cδ 2 h 9 H 1{2 .Thus by (3.57) and (3.58) we havew " Sh K `Opδ 2 h K 9 H 1{2 q;

						H 1{2 .	(3.57)
	In particular,				
	h 2 9 H 1{2 " pc ´c1 q 2 δ 2 ` h K	2 9 H 1{2 " h K	2 9 H 1{2 `Opδ 4 h K	2 9 H 1{2 q.	(3.58)
	we have that				
	w " Sh K	`S`p c ´c1 qδm ˘`σl	´1 `u3 f	g ´u3	˘,
	and the Strichartz estimates (3.5) give	
	l	´1 `u3 f	´u3 g	˘	L 4 ď

  1 p0qk " 2µ xg | ky 9 H 1{2 . Now, by the definition (3.63) of W , W pkq " Sk `σl ´1 `Φpg `kq 3 ´Φpgq 3 ˘, and the right-hand side is differentiable; see Remark 3.1.5. The directional derivative equals W 1 p0qk " Sk `3l ´1pΦpgq 2 Φ 1 pgqkq " Sk `Opδ 2 k 9 H 1{2 q.

  Then u n pt, xq "

	to the focusing equation				
						l u " u 3 , on R 1`3 .	(3.74)
			J				
			ÿ	λ pjq n U j pΛ j n pt, xqq `Sr J n pt, xq `hJ n pt, xq,	(3.71)
			j"1			
	where r J n is the same as in (3.67), while h J n is a sequence that satisfies the vanishing
	condition	lim JÑ8	lim sup nÑ8	ˆ	h J n L 4 pR 1`3 q `sup tPR	h J n ptq 9 H 1{2 ˙" 0.	(3.72)

Resumen. Aplicamos la transformada de Penrose, una herramienta básica de la física relativista, a unas estimaciones óptimas para ecuaciones de ondas lineales y no lineales. Invalidamos una conjetura de Foschi, sobre extremizadores para la estimación de Strichartz con datos en el espacio de Sobolev 9H 1{2 ˆ9 H ´1{2 pR d q, para d ě 2 par. Por otro lado, vamos a dar indicios en favor de su conjetura en dimension impar, así como una versión refinada de su desigualdad óptima en R 1`3 , añadiendo un término proporcional a la distancia de los datos iniciales del conjunto de puntos extremales. Utilizando este resultado, conseguimos una fórmula asintótica para la norma de Strichartz de soluciones pequeñas de la ecuación de ondas cúbica en el espacio-tiempo de Minkowski. El coeficiente principal coincide con la constante óptima de Foschi. Calculamos explícitamente el coeficiente del otro término, cuyo módulo y signo cambian dependiendo de si estamos en el caso focusing o defocusing.

, so f‹ 0 pξq " Ce ´|ξ| {|ξ|, for some irrelevant C ą 0. This is non-vanishing at all ξ, so we infer that cosppt `t0 q|ξ| `θqe ix 0 ¨ξ must be equal to cospt|ξ|q for all t P R and all ξ P R d , which is only possible if t 0 " 0, x 0 " 0 and θ " 0 modulo 2π. This completes the proof.

pR d q. We remark that this is true for any dimension d. The second identity in (2.8), concerning invariance of the L 4 pR 1`3 q norm, is obvious for all symmetries except for Ph θ (defined in(2.5)). This invariance is proved in[9, equation (2.5)].
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F pX -, X + , θqF pY, Z, θq dX -dX + dY dZ, which allows for explicit computation, yielding (3.38).

Combining Propositions 3.4.3 and 3.4.4 we obtain the value of the constant.

Corollary 3.4.5. The constant C 1 in Theorem 3.0.1 can be written

Existence of maximizers

We follow the lines of [START_REF] Duyckaerts | Maximizers for the Strichartz norm for small solutions of mass-critical NLS[END_REF]Section 2] to show that the supremum (3.1) is attained for small enough values of δ. We recall from Proposition 3.1.4 that Φpf q " u denotes the solution to the fixed point equation associated to (NLW)

u " Sf `σl ´1pu 3 q, provided that such a solution exists and is unique. We will require the concentrationcompactness tools developed in Section 3.7 in the Appendix.

Lemma 3.5.1. Suppose that δ ą 0 satisfies 1. Scattering: Ipδq ă 8;

2. Superadditivity: for all α P p0, δq, Ip a δ 2 ´α2 q `Ipαq ă Ipδq;

(3.43)

3. Upper semicontinuity: for any sequence α n ď δ,

Then there exists a solution u to (NLW) such that lim tÑ´8 uptq 9 H 1{2 " δ and u 4 L 4 pR 1`3 q " Ipδq.

Proposition 3.5.3. For sufficiently small δ ą 0, Ipαq `Ip a δ 2 ´α2 q ă Ipδq @ α P p0, δq.

Proof. This follows from the fact that I is a super-additive function of δ to main order, because Ipδq " C 0 δ 4 `Opδ 6 q, together with the estimates of Lemma 3.5.2, which rule out excessive fluctuations; see [START_REF] Duyckaerts | Maximizers for the Strichartz norm for small solutions of mass-critical NLS[END_REF]Proposition 2.7].

Conditional uniqueness of maximizers

If u " Φpf q is a maximizer to Ipδq, and Λpt, xq " L β `λpt ´t0 q, λpx ´x0 q ˘, λ ą 0, |β| ă 1, t 0 P R,

then λpu ˝Λq is again a maximizer to Ipδq; this is an immediate consequence of Theorem 3.2.4. In this section we give a partial result about the problem of uniqueness of maximizers, up to this transformation. The main tool is the local version of the sharpened Strichartz estimate of the previous chapter. We begin by showing that each maximizer of Ipδq has a unique metric projection on the manifold M of linear maximizers. We refer to Section 2.2 in the previous chapter for the definition of the tangent space T f‹ M, and we recall that, in the previous chapters, the symbol f ‹ has been used with a different meaning. Lemma 3.6.1. Let u " Φpf q be such that u 4 L 4 pR 1`3 q " Ipδq. If δ ą 0 is sufficiently small, then there exists a unique f ‹ P Mzt0u such that

Moreover, f ´f‹ K T f‹ M, where K denotes orthogonality with respect to the 9 H 1{2 scalar product.

Proof. This is proved in Section 2.2 in the previous chapter, the main issue being uniqueness. Lemma 3.5.1 ensures that f 9 H 1{2 " δ, while by Proposition 3.3.6, we have dpf , Mq " Opδ 3 q. Thus, if δ is sufficiently small, then Proposition 2.2.8 can be applied.

The elements f ‹ of Mzt0u have the unique representation

where v θ " pv θ , B t v θ q are particular solutions to the linear wave equation, as defined in (3.28); see the aforementioned Section 2.2. We let θpf ‹ q denote the unique θ P S 1 . We recall that this parameter θ does not correspond to any symmetry of (NLW); see Remark 3.4.1.

We can now state the result.

We evaluate this equation at k " m, using that xg K | my 9 H 1{2 " 0 and that Sm 4 L 4 " C 0 . The result is µ " 2C 0 c 12 δ 2 `Opδ 5 q.

We are now ready to conclude the proof of (3.62). We notice that g 2 9

where we used that w " W phq "

to main order (see (3.58)), the proof of (3.62) is complete.

Appendix 3.7 Nonlinear profile decomposition

In this section, we adapt the linear profile decomposition of Ramos (see [START_REF] Ramos | A refinement of the Strichartz inequality for the wave equation with applications[END_REF]) to sequences of solutions of (NLW). This is classical, and similar to what is done in [START_REF] Ramos | Nonlinear profile decomposition for the 9 H 1{2 ˆ9 H ´1{2 pR d q energy subcritical nonlinear wave equation[END_REF], with the difference that we assign the initial data at t " ´8, in the sense of Proposition 3.1.4. We consider sequences of transformations of the form Λ n pt, xq " L βn `λn pt ´tn q, λ n px ´xn q ˘, where λ n P p0, 8q, t n P R, x n P R 3 and

Here we use the notation a " b, to mean that an absolute constant C ą 0 exists such that C ´1a ď b ď Ca. The following definition is taken from [START_REF] Ramos | A refinement of the Strichartz inequality for the wave equation with applications[END_REF].

Definition 3.7.1. Consider sequences pΛ 1 n q nPN , pΛ 2 n q nPN as above and let

The sequences Λ 

Definition 3.7.1 is motivated by the following property.

Proposition 3.7.2. If w 1 , w 2 P L 4 pR 1`3 q and Λ 1 n , Λ 2 n are orthogonal sequences of transformations, then for all α, β P r0, 8q such that α `β " 4,

We can now recast, using our notation, the aforementioned linear profile decomposition of Ramos.

Theorem 3.7.3. Let f n be a bounded sequence in 9

H 1{2 pR 3 q. Then there exists an at most countable set pF j , pΛ j n q nPN q : j " 1, 2, 3, . . .

where F j P 9 H 1{2 pR 3 q and the sequences pΛ j n q are pairwise orthogonal in the sense of Definition 3.7.1, such that, up to passing to a subsequence,

where the remainder term r J n satisfies the vanishing property lim JÑ8 lim sup nÑ8 Sr J n L 4 pR 1`3 q " 0.

(3.68)

Moreover, for each J ě 1, we have the Pythagorean expansion, as n Ñ 8,

To use Theorem 3.7.3 with nonlinear solutions, we will need the following lemma. We recall from Proposition 3.1.4 that a solution to (NLW) is a function u P L 4 pR 1`3 q, with u P CpR; 9 H 1{2 q, that satisfies the fixed point equation u " Sf `σl ´1pu 3 q, for a f P 9 H 1{2 pR 3 q. We write u " Φpf q. In particular, we are implicitly assuming that u is a global solution, in the sense that it is defined for all t P R. We will not consider non-global solutions.

Proof. To apply Lemma 3.7.4, we fix J P N and we denote ũJ n pt, xq "

By orthogonality of the sequences Λ j n (see Proposition 3.7.2), and by the vanishing property (3.68) of Sr J n , we can find a sequence ε J n ě 0 satisfying lim J lim sup n ε J n " 0 and such that ũJ

where we used the estimate (3.6) and the Pythagorean expansion (3.69). We remark that the estimate (3.73) is uniform in J. In order to apply the perturbation Lemma 3.7.4, we notice that, by (3.67), lim tÑ´8 u n ptq ´ũ J n ptq 9 H 1{2 " 0, and, moreover,

so, again by orthogonality of tΛ j n : j " 1 . . . Ju and vanishing of Sr J n , lim JÑ8 lim sup nÑ8 e J n L 4 pR 1`3 q " 0.

We thus obtain (3.72), concluding the proof. Remark 3.7.6. Proposition 3.7.2 also implies that

where lim

Some explicit solutions to the cubic wave equation

The Penrose transform can be used to find the smooth solutions

The solution u b can also be obtained by setting x 1 " it in

Indeed, Q solves the elliptic equation ´∆R 4 Q " Q 3 , which is transformed into (3.74) by the formal substitution x 1 Þ Ñ it.

3.9 The 9 H 1{2 norm is not Lorentz-invariant

The following lemma immediately implies the existence of smooth solutions u to (NLW) such that uptq 9 H 1{2 is not preserved by time translations and Lorentzian transformations. We recall from Section 3.2 that, for all α P p´1, 1q, L α pt, xq " pγt ´γαx 1 , γx 1 ´γαt, x 2 , x 3 q, where γ " p1 ´α2 q ´1{2 . Lemma 3.9.1. Let u be a smooth global solution to l u " σu 3 on R 1`3 . Then

and, letting u α :" u ˝Lα ,

Proof. We recall that upt 0 q denotes the pair pupt 0 , ¨q, u t pt 0 , ¨qq. Using the equation, we obtain B t 0 upt 0 q " pu t pt 0 , ¨q, ∆upt 0 , ¨q `σu 3 pt 0 , ¨qq.

Therefore

p´∆q ´1{2 u t pt 0 , xqu 3 pt 0 , xq dx.

Since p´∆q ´1{2 ∆ " ´p´∆q 1{2 , the first two summands cancel, yielding (3.77).

To prove (3.78), we begin by observing that

Integration by parts immediately shows that xupt 0 q | t 0 B x 1 upt 0 qy 9 H 1{2 " 0. So, reasoning as before and using (3.79), we obtain
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Now, using the elementary commutator identity rp´∆q ´1{2 , x 1 s " p´∆q ´3{2 B x 1 , we see that the first three summands cancel. This completes the proof.

It is very easy to construct solutions to (NLW) such that the derivatives in (3.77) and (3.78) do not vanish. For example, if f 0 ‰ 0 is a smooth function with compact support, then letting f 1 " f 3 0 , and considering a sufficiently small ε ą 0, there exists a unique smooth solution u to # l u " σu 3 , on R Using the previous remark, we can prove that

where u a pt, xq " 2p1`pt´|x|q 2 q ´1{2 p1`pt`|x|q 2 q ´1{2 is the explicit solution to (NLW) which we found in the previous section. To begin, we compute pu a p1, rq, u a t p1, rqq " ˜2 ? r 4 `4 , 4pr 2 ´1q pr 4 `4q ´r2 `s2 pr 4 `pr 2 `s2 q 4 q 3 2 ps 4 `pr 2 `s2 q 4 q 3 2 ff drds.

We note that the integrand function is nonpositive for all r, s ě 0. Indeed, both the term in the round brackets and the one in the square brackets change sign only on the line r 2 `s2 " 1, so the two signs cancel each other. This proves (3.81).