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Abstract. We apply the Penrose transform, which is a basic tool of relativistic physics, to the
study of sharp estimates for linear and nonlinear wave equations. We disprove a conjecture
of Foschi, regarding extremizers for the Strichartz inequality with data in the Sobolev space
H'Y? x H-Y2(R%), for even d > 2. On the other hand, we provide evidence to support the
conjecture in odd dimensions and refine his sharp inequality in R'*3, adding a term proportional
to the distance of the initial data from the set of extremizers. Using this, we provide an asymptotic
formula for the Strichartz norm of small solutions to the cubic wave equation in Minkowski
space. The leading coefficient is given by Foschi’s sharp constant. We calculate the constant in
the second term, whose absolute value and sign changes depending on whether the equation is
focusing or defocusing.

Keywords. Wave equation, Strichartz estimate, sharp inequality, Lorentz invariance.

Estimations optimales pour équations des ondes linéaire et nonlinéaire a 1’aide de
la transformée de Penrose.

Résumé. Nous appliquons la transformée de Penrose, qui est un outil basique de la physique
relativiste, a des estimations optimales pour les équations des ondes linéaire et nonlinéaire. Nous
infirmons une conjecture de Foschi concernant les points extrémaux de l'inégalité de Strichartz
A& données dans I’espace de Sobolev H'/2 x H—1/2 (R?), ot d > 2 est pair. En revanche, nous
donnons des indications appuyant cette conjecture en dimension impaire, ainsi qu’une version
raffinée de son inégalité optimale sur R' ™3, en ajoutant un terme proportionnel & la distance des
données initiales de I’ensemble des points extrémaux. A Paide de ce résultat, nous obtenons une
formule asymptotique pour la norme de Strichartz des solutions petites de I’équation des ondes
cubique dans ’espace-temps de Minkowski. Le coefficient principal est donné par la constante
optimale de Foschi. Nous calculons le terme suivant, qui change de signe et de valeur absolue
selon que la non-linéarité est focalisante ou défocalisante.

Mots-clés. Equation des ondes, estimation de Strichartz, inégalité optimale, invariance de
Lorentz.

Estimaciones 6ptimas para ecuaciones de ondas lineales y no lineales por medio de
la transformada de Penrose.

Resumen. Aplicamos la transformada de Penrose, una herramienta bésica de la fisica relativista,
a unas estimaciones éptimas para ecuaciones de ondas lineales y no lineales. Invalidamos una
conjetura de Foschi, sobre extremizadores para la estimacién de Strichartz con datos en el espacio
de Sobolev HY? x H~'/?(R%), para d > 2 par. Por otro lado, vamos a dar indicios en favor
de su conjetura en dimension impar, asi como una version refinada de su desigualdad 6ptima
en R'3 afadiendo un término proporcional a la distancia de los datos iniciales del conjunto
de puntos extremales. Utilizando este resultado, conseguimos una férmula asintética para la
norma de Strichartz de soluciones pequenas de la ecuacion de ondas cubica en el espacio-tiempo
de Minkowski. El coeficiente principal coincide con la constante 6ptima de Foschi. Calculamos
explicitamente el coeficiente del otro término, cuyo médulo y signo cambian dependiendo de si
estamos en el caso focusing o defocusing.

Palabras clave. Ecuacién de ondas, estimacién de Strichartz, desigualdad 6ptima, invariancia
de Lorentz.






Contents

|Acknowledgements|

Introduction|
[Notation|

[1.1.1  Spherical harmonics| . . . . . ... ... ... 000
[1.2  Some integration formulas| . . . . . . . ... Lo

|2 Sharpened Strichartz estimates|
2.1 Abstract upper bounds|. . . . . . . .. ... oL
2.2 Geometry of the set of maximizers| . . . . . . .. ... ... ... .....

[2.2.1  Computing the tangent spaces via the Penrose transtorm| . . . . .
[2.2.2  Metric projections| . . . . . . . . ...
2.3 Proof of the Jower bound in Theorem 2.0.11. . . . .. ... ... ... ...

[2.3.2  From local to global: the profile decomposition| . . . . . . ... ..
[2.4  Sharpening the energy-Strichartz estimatel . . . . . . .. . ... ... ...
[2.4.1  Some more spherical harmonics| . . . . . . . ... ... L.
[2.4.2 The tangent spaces|. . . . . . . . . . ... ... o .

2.4.4 Computation ot Q5. . . . . . . . . ... oL

3 Maximizers for the cubic wave equation|

iii

iii

ix

15
16
17
21
23
26
26
30
32
33
36
37
41



[3.7 Nonlinear profile decomposition| . . . . . . . ... ... ... ... ... .. 67
3.8 Some explicit solutions to the cubic wave equation| . . . . . .. ... ... 70

3.9 The HY2 norm is not Lorentz-invariant| . . . . . . . . . . ... .. .... 72



Acknowledgements

This thesis began sometime in 2013, when I walked into Keith'’s office asking him if he
was interested in working together. He was, and after a while, he came up with this idea
of cooperating with Thomas, whom I did not know at the time, and spend six months
per year in France and the other six in Spain. That was not what I expected; Keith
was thinking out of the box, as he always does. I admire him, both scientifically and
humanely.

I accepted the challenge, and even if it’s been tough at times, I am glad I did. Thomas
turned out to be the perfect man for this job; he has copious creative ideas, paired with
an astonishing technical prowess and a deep mathematical culture. He and Keith have
been two complementary directors, with different points of view on mathematics and on
scientific research, with the common trait of being two excellent mathematicians and two
of the world’s greatest beings. I am deeply indebted to them.

Many people helped me in the realization of this work. Sandra Lucente, Luca Fanelli
and Ana Vargas encouraged me to start. I got some of the ideas through conversations
with Vladimir Georgiev, Nicola Visciglia, Paolo Facchi and Jean Dolbeault, among many
others. The advice of my friend Javi Ramos has been decisive for the third chapter.
Jason Metcalfe, Diogo Oliveira e Silva and Lysianne Hari invited me to give talks in
Chapel Hill, in Birmingham and in Besancon, which have been turning points in my
research. I thank the referees, Emanuel Carneiro and Sahbi Keraani, for their careful
reading of the manuscript and for their recommendations, which have improved it. I also
thank Daniel Faraco, who has been my tutor in the UAM.

I received financial support from the MINECO project Severo Ochoa, from the ERC
projects Hade and Restriction, whose main researchers are Luis Vega and Keith Rogers
respectively, and from the LAGA, University of Paris XIII. I gratefully acknowledge this.

This thesis would hardly have been possible without the immense support of Anna
Rita Giammetta and of Belén Martinez. I also have to thank Nieves Pérez and Gabriel
Gomez, who welcomed me as a member of their family. And another very special thanks
goes to my friend Jacek Jendrej.

I am thankful to Sylvie Barrier at the Institut Galilée; I owe her my command of the
French language.

Finally, my warmest thanks go to my family, my mother, father, and sister. They’ve
always been there for me, providing an ever-present helping hand without which I cannot
imagine how this work could have gone through.






Introduction

The Penrose transform is a basic tool of relativistic physics. The purpose of this thesis is
to show that it can be fruitfully applied to sharpen inequalities for the wave equation,
both linear and nonlinear. In the linear case, such inequalities are known as Strichartz
estimates, and there is a conjecture, due to Foschi, about what the optimal Strichartz
estimate should be. The first chapter of this thesis deals with this question, adding some
weight to support the conjecture in odd spatial dimensions, while disproving it in even
dimensions.

In three spatial dimensions, Foschi proved the conjecture in the affirmative. The
second chapter takes this theorem as a starting point, obtaining a refined version which
improves for data away from the maximizers. This, in turn, is one of the main ingredients
of the third chapter, in which a sharp estimate for solutions to the cubic wave equation
is obtained.

Strichartz estimates

In 1977, Strichartz [68] proved that there is a positive constant C' such that
HUHLP(RHd) < C”U(O)Hyl/z(m)a p= 2%7 (1)

where v solves the wave equation vy = Av on R'*¢ with d > 2, and v(0) = (v(0), v:(0))
belongs to the Sobolev space of pairs f = (fo, f1) with norm defined by

B 1/2
Hf”’;-'[l/Q(]Rd) = (H(‘A)1/4 fOH%Q(Rd) +I(=A) 1 fIH%Q(Rd)) )

This gives an integral quantification of the decay of waves, due to their dispersion. All
known proofs are harmonic-analytic and a duality argument yields an estimate that
restricts the Fourier transform to the cone. Tomas and Stein [72] had previously proven a
similar estimate that restricted the Fourier transform to the sphere. The closely related
paper of Segal [65], for the Klein-Gordon equation, should also be mentioned here.

Estimates such as have been extensively studied, mainly because they have proved
to be fundamental in the development of the well-posedness and scattering theory for
nonlinear wave equations. The theory is far too extensive to be entirely surveyed here; a
few fundamental results are |40l |41}, 42, |50, |67].
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Optimal constants and the Penrose transform
Foschi [37] proved the Strichartz estimate , for d = 3, with explicit constant;

1
3 1
HUHUL(RHS) < <167T> HU(O>H7_'[1/2(R3)>

and proved that there is equality for

v(0) = ((1+%)7%0), (2)

so, in particular, the multiplicative constant is optimal, in the sense that it cannot be
replaced by a smaller one. He also conjectured that, in arbitrary dimension d > 2, the
estimate should hold with constant

||UHLP(]R1+d) _ 9d+l

¢ d—1

~ o)l

where i
v(0) = ((1+ [7)7%",0) (3)

that is, that these data should extremize the inequality in any dimension.

In the first chapter, which is dedicated to this conjecture, the Penrose transform is
introduced. This is a transformation of solutions v to the wave equation on R'*¢ into
solutions V' to the hyperbolic equation

(d—1)°

a%v — AgdV + 1

V =0, (4)
posed on a relatively compact submanifold of R x S?. It involves a simple conformal
mapping, first introduced by Penrose |61], and first applied to the mathematical study of
wave equations by Christodoulu [21] 22].

This is relevant to the conjecture of Foschi, because the data are mapped by the
Penrose transform to constant initial data on S%

V(0) = (12,0).

The first original result presented in this thesis uses this observation, to prove that is
a critical point for the deficit functional of the inequality if and only if the spatial
dimension d is odd. In particular, the conjecture of Foschi cannot hold in even dimension.

The different behavior, according to the parity of the spatial dimension, is best
explained in terms of the Penrose transform. The equation is posed on a subset of
[—m, 7] x S? that is not a Cartesian product, and this, in principle, prevents the use of
separation of variables. This can be overcome only if d is odd, as solutions to are
2m-periodic in the conformal time variable T and satisfy an appropriate symmetry.

It is to be remarked that, for the Strichartz inequality , extremizing data do exist in
any spatial dimension; this follows from the work of Ramos [62]. Ramos actually proved
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a profile decomposition adapted to , which is a by-now standard tool originating from
the work of P. L. Lions [55], and introduced by Merle and Vega [56| for the Schrodinger
equation, by Gérard [39] in the context of the Sobolev inequalities and by Bahouri and
Gérard [4] for the wave equation.

Similar concentration-compactness techniques have been used to show the existence
of maximizers in Strichartz inequalities for the Schrédinger and the wave equation in [52}
15]. However, these techniques never yield any information on the problem of uniqueness
of such maximizers, up to the relevant symmetry group.

To the knowledge of the author, the use of the Penrose transform to study the
Strichartz inequality is new, but the use of conformal mappings to study sharp inequalities
is classical. It is especially interesting to mention the case of the Sobolev, and the closely
related Hardy-Littlewood-Sobolev inequality, because constant functions on the sphere
are extremal data, up to stereographic projection; see, for example, [3, 53 |69]. A
conformal mapping to the hyperbolic space has been used by Tataru [71] to obtain
weighted Strichartz estimates for the wave equation.

Finally, it is to be remarked that sharp space-time estimates for dispersive equations
have been studied extensively; see for example [5, |6l |7, 8, (9} |10} 11} (16, |17} |18, 36, |43} 44,
47, 48] 149, 159, [60], or the recent survey paper [35].

Sharpened inequalities

In the aforementioned paper [37], Foschi gave a complete characterization of the initial
data that extremize the Strichartz inequality with d = 3. The full set M is obtained by
acting a group of symmetries of the inequality on the data . The second chapter is
mostly dedicated to the proof that can be refined, by adding a term proportional to
the distance from M.

Brezis and Lieb asked if the sharp Sobolev inequality due to Aubin [3] and Talenti
[69] could be sharpened in this way; see [14, question (c)]. This was solved by Bianchi
and Egnell [12]; see also [19, [20, 23| |33, 134] for work in a similar spirit.

The present thesis follows the outline of Bianchi and Egnell; the key step is the
proof of a local version of the sharpened inequality, meaningful in a neighborhood of
M. For this, it is necessary to establish a transversal non-degeneracy property of the
deficit functional of . This means that, at all points of M, the second derivative of
the functional must be a strictly positive definite quadratic form, except on the tangent
spaces of M, on which it vanishes.

To establish this property, the Penrose transform is essential. It allows for explicit
computation of these quadratic forms, using the symmetry property in odd spatial
dimension mentioned in the previous section. It is remarkable that the tangent space
to M at the maximizer coincides with the sum of the first two eigenspaces of the
Laplace-Beltrami operator. Analogous properties hold for the tangent spaces in the case
of the Sobolev inequality; see the aforementioned paper of Bianchi and Egnell |12], and
Chen, Frank and Weth [19].

A computation that is very similar in spirit is present in the work of Duyckaerts,



Merle and Roudenko [31], in which a non-degeneracy property is established for the sharp
Strichartz estimate for the Schrédinger equation in one and two dimensions.

The passage from the local to the global sharpened estimate is achieved by an
application of the aforementioned profile decomposition of Ramos [62].

In this chapter, a five-dimensional sharpened Strichartz inequality in the energy space
H' x L2(R5) is also established. This refines the sharp estimate due to Bez and Rogers [9].
The proof presents the significant additional difficulty that the relevant quadratic form is
not diagonal in its expansion in spherical harmonics. This reflects the fact that such an
inequality is not conformally invariant. Indeed, it is remarkable that a method based on
conformal transformations works in this case.

Spacetime bounds for the cubic wave equation

The third chapter of this thesis deals with the equation
g — Au = ou,  on RT3 (5)

where o is the sign of the nonlinear term; when o > 0, the equation is called focusing,
and when o < 0 it is called defocusing.

A standard argument using the Strichartz estimate shows that, if is supplied
with initial data that are sufficiently small in the critical Sobolev norm HY/ 2 then it
admits a unique solution that belongs to the spaces C(R; HY/2(R?3)) and L4(R!*3). In
particular, such solutions are global in time and the following functional is well-defined
for small § > 0;

1(6) = sup{ HU||%4(R1+3) ’ tglzloo "u(t)||7$[1/2 <90 } : (6)

In this chapter it is proved that the supremum is attained, and satisfies the explicit
asymptotic

3 _29 0
106) = 2§ 4 060 L 207 770 L o(sh). (7)
167T 215)71'3’ g < 07

By the aforementioned result of Foschi,

3 4
16771'64 = max{ HUHL4(R1+3)

v = Av, [0(8)]l5 <3}

A consequence of is, therefore, that the maximal L*(R'*3) norm is larger or smaller
than the maximal norm in the linear case, for solutions to the focusing or defocusing
cubic wave equation respectively. This furnishes a quantitative measure of the impact of
the nonlinearity on the size of the solution.

This result is mainly inspired by the analogous one of the aforementioned Duyckaerts,
Merle and Roudenko [31], for the mass-critical nonlinear Schrodinger equation in one
or two spatial dimensions. Like in the Schrodinger case, an essential ingredient in
establishing @ is the sharpened Strichartz estimate. However, the nonlinear wave
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equation presents a significant additional difficulty. In the Schrodinger case, all symmetries
to the relevant Strichartz estimate are also symmetries to the nonlinear equation. On
the other hand, ||u(t)[|,;1/2 is not invariant under time translations, Lorentzian boosts,
and phase shifts, which are all symmetries of .

It is to address this lack of invariance that, in (6, the limit as ¢ — —00 of [[w(t)]| 512
is considered; this is manifestly invariant under time translations, and it is proved in this
chapter that it is also invariant under Lorentzian boosts. This leaves out phase shifts,
which is unavoidable, as these are symmetries of the linear wave equation which do not
correspond to any symmetry of .

These invariances are necessary to explicitly compute the second-order constant
in ; this computation is carried out via the Penrose transform. These also enable
the construction of a nonlinear profile decomposition, adapting the aforementioned
linear decomposition of Ramos, which is then combined with a standard super-additivity
argument, to prove that @ is attained. The relation between super-additivity and
maximizers is classical, and due to the aforementioned P.L. Lions [55].

The problem of uniqueness of the maximizers to @ is also considered. Two maximiz-
ers are shown to be equal, if their metric projections on the manifold of linear maximizers
coincide, up to nonlinear symmetries. The presence of the phase shifts, which leave
the manifold of linear maximizers invariant, but do not correspond to any nonlinear
symmetry, make this result conditional; remarkably, in the Schrédinger case this difficulty
is nonexistent, and Duyckaerts, Merle and Roudenko do obtain an unconditional unique-
ness. The uniqueness of maximizers is actually the most difficult part of the problem,
since it cannot be resolved by concentration-compactness alone; it relies on the explicit
expression, and on the geometrical structure, of the set of linear maximizers, and on the
sharpened Strichartz estimate.

There is intense research going on on the dynamics of the cubic wave equation in
H2: see [25, 126, |28, 64, [66] and the very recent [24, [27, [29]. However, to the knowledge
of the author, the only paper, other than the present thesis, that deals with Lorentzian
transformations is the work of Ramos [63]; see also [51] for the Klein-Gordon equation.
Also related is [3§], in which the Penrose transform is used.

Finally, it is remarkable that estimates of Strichartz norms for critical nonlinear
problems are only known in a few cases. Duyckaerts and Merle [30] obtained a sharp
bound for solutions to the focusing quintic wave equation that are close to the threshold
solution. For the defocusing quintic wave equation in R'*3, Tao [70] gives a bound of
the L*(R; L'2(R3)) norm in terms of a tower of exponentials of the H! x L2 norms of
initial data. This result holds for all data, not just small, but is not sharp, and it is
interesting to note that a much smaller bound had previously been given in the radial
case by Ginibre, Soffer and Velo [40].
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Notation

Unless otherwise stated, all functions are real-valued. For s =1 or s = 1/2,
He(RY) == H3(RY) x HL(RY).

Boldface denotes elements of H* (R%), considered as column vectors;

r-[7]

The space HS(Rd) is a real Hilbert space, with scalar product

Flovie = | A formdo+ | (81 gude
Rd Rd
The [] symbol denotes the d’Alembert operator;
Ou := d?u — Au.

If u is a function on the Minkowski spacetime R!*¢, then its boldface denotes

u(t) := [a:;(ft))} , teR.

The operator S denotes the propagator of the linear wave equation;

o= Sf {Dv =0, on R'*4,

v(0) = f.
Finally, S! denotes the quotient R/27Z. For all 01,0 € S!,

01 — 03| := min 07— 05 :01=0],00 =0, mod2r}.
1 2 2

X






Chapter 1

Maximizers for Strichartz
estimates

In [37], Foschi conjectured that
fi= 25+ 77 0)

is a global minimizer of the function

U(f) = SpH.fH?_p/z - HS.inp(Rler)? b= 2%7

[y

where
5. 1S Fell Lo g1+
| fell /2

In this chapter, we prove that f; is a critical point of v if and only if the spatial dimension
d is odd. In particular, the conjecture cannot be true in even spatial dimension.

Theorem 1.0.1. I holds that
Lo(f+ef)|._, =0, VfeH2RY,

if and only if d is odd.

The first step in the proof is the compactification of the Minkowski space-time by
means of the Penrose transform.

1.1 The Penrose transform

We will introduce two coordinate systems on the Minkowski spacetime R+ and another
two on the curved spacetime R x S%, where

S ={ (X0, X1,...., Xa) | X§+ X7 +...+ X7 =1}.



We begin with R'*¢, in which we let ¢t € R denote the time coordinate and = € R¢ denote
the Cartesian spatial coordinates. Then, we define the polar coordinates by

r=lz], w= ﬁeSd_l,

and the light-like coordinates as
= =t—r, xt=t+r, wherez <z’ (1.1)

We now consider R x S%, in which we let T € R denote the time coordinate and
X = (Xo,X1,...,X,) denote the Cartesian coordinates on S?. We define the spherical
polar coordinates via the equations

X =cos(R), (X1,...,Xg) =sin(R)w, weS¥! Re[0,n]. (1.2)
And finally, we define the light-like coordinates on R x S as
X =4{T-R), X'=3(T+R). (1.3)
We can now define an injective map
P:RF S R xS (T, cos R, sin(R)w) = P(t, z),
via the equations

X~ =arctanz”, X' = arctanz”, (1.4)

remarking that X~ and X* take values in the region
{ (X_7X+) € [_%>g]2 ‘ X <X } :
So, the map P is not surjective and its image P(R'*%) is

—r<T<m
PR = (T, (cos R, sin Rw)) eRxSY 0OSR<m—|T| }; (1.5)
w e S

see Figure [I1]
We now discuss the conformality of P. The metric tensor on R'*9 is ds?R{1 +d =

dt? — dr® — r?dw?, where dw? is the metric tensor on S%~!. So, using (1.1]), we get the
expression

1 - _ +\2
dsfusa = 5(da™de* + da*da”) - deQ. (1.6)

The metric tensor on R x S is ds? = dT? — dR? — (sin R)?dw?, so using (1.3

RxSd

ds? i = 2(dX"dX* +dX*dX") —sin?(X* — X7)dw?.
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/
7
/

/
L4

|
/ |
\
Figure 1.1: The image of the Penrose map P.

Inserting the equations (|1.4)) into (1.6]), and using the elementary identity

,  sin?(X*—X7)

tan X~ —tan X"
(tan an X7) cos? X~ cos? X+’

we obtain the relation
dsp ca = QPdsia, (1.7)

where €2 is the following scalar field;
Q=214 ()21 + (27)?) Y2 = 2cos X cos X7,

and the change of variable ([1.4)) is implicit. We will always omit this change of variable
without further specification. The relation ([1.7)) expresses the fact that P is a conformal
map.

Remark 1.1.1. The restriction of P to the initial time slice { ¢ = 0} is the stereographic
projection from the south pole of S

Po:=Pl,_y: R* - SN {(~1,0,...,0) }. (1.8)
This is also a conformal map, whose conformal factor we denote by
Qo= Ql,_g=2(1+7%)"'=1+cosR.
The explicit equations for X = Py(z) are

X[):Qo*l, XjZQoﬂfj, j=1,...,d.



Definition 1.1.2. For all scalar field v on R'*? we define a scalar field V on P(R'*%)
by

d—1

v=Q72V,

The scalar field V' is called the Penrose transform of v.

Remark 1.1.3. At t = 0, corresponding to T = 0,

(1.9)

-1 i1
vhoy = @V Ll = @Fav)|
where we used that 0,€2|,_, = 0 and that 0;|,_, = Q0r|,_g-

This definition is motivated by the identity

Ov=Q2 aT—Asd"f- T V, (110)

which is a standard consequence of the conformality; see, for example, [46, Appendix
A.4]. Here Aga denotes the Laplace-Beltrami operator. We complement Definition m
with the transformation laws for the initial data, modeled on ([1.9);

d—

a1 a1
fo=Qy* Fo, f1=9Q,* I, (1.11)

where the stereographic projection (1.8)) is implicit. We thus have the fundamental
property

v =0, on R+, 2V = AgaV — (512 V, on P(RI9),
U|t=0 = fo, — V|T:0 = Fo,
at”‘t:o = /1, aTV‘T:O = F1.
The Penrose transform is very relevant in our context, because
d—1
fi= (QO2 7O)a

so, denoting v, = S fi, we have the particularly simple expressions

Fio=1, F1=0, Vi(T,X)=cos(%2T). (1.12)

1.1.1 Spherical harmonics

We use the notation Yy, for normalized real-valued spherical harmonics on S%. Here
{ € N5 denotes the degree and m the degeneracy. We have

~DgaYym = U+ d = 1)Yym, m=0,...,N(f) = EEGHERE



and

Jng 248 =1,

where dS is the surface measure on S¢. We recall that Yy,,(X) is the restriction to S%
of a homogeneous harmonic polynomial of degree ¢ in X = (Xy, X1,...,Xy); see, for
example, [58]. In particular,

Yom(=X) = (=1)Ypm(X). (1.13)

For each ¢ € N3¢ there is exactly one spherical harmonic that is a function of the first
coordinate Xo only; we call it the zonal spherical harmonic and we denote it by Yy .

Remark 1.1.4. The spherical harmonics of degree 0 and 1 are

Yoo=—"—, Vin(X)=,/%X,,, (m=0,1,...,d).

/|s¢| Ed
We use the hat notation to denote the coefficients of expansions in spherical harmonics:

Proposition 1.1.5. Assume that (v = 0 on R'™*? and that v(0) = f. Denote by V the
Penrose transform of v; see Definition|1.1.2. Then

F(,m)Yym(X),

HMZ

w N
Z Z cos ( (¢ + d21)> Fo(f,m)ngm(X)

£=0m=0 (1‘14)

sin (7 (¢ + 451)) .
g_l’_%(d_i) Fl(gam))/@,m(X)

Proof. The equation 02V = AgaV — (%)2 V implies that

. . ~1\?2.
2V (T, 6,m) = (0 + d — 1)V (T, £,m) — <dQ> V(T.0,m),

with initial data V (0, ¢, m) = Fy(¢,m) and opV (0,4, m) = Fy(¢,m). Solving this ordinary
differential equation yields (|1.14]). O

Remark 1.1.6. The formula (T.14) actually defines a function on R x S¢, not just on
P(R x S%). Thus we can consider V as defined on R x S If d is odd, V is 27-periodic
in T" and it satisfies

V(T +7,-X) = (-1)2 V(T.X), Y(T.X)eS' xs, (1.15)
because of the sign property (|1.13|) of Yy ,,. If d is even, (1.15]) fails.
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We conclude the section by introducing the fractional operators A; and A_; on S%,
defined by their action on spherical harmonics;

+1
d—1\*\ "’ d—1
Ailnﬂﬂ = —Agd + 5 YVZ,m =L+ 5 er,m- (116)
These operators are the lifting to S? of the euclidean fractional Laplacians (—A)i% via
the stereographic projection Py, in the sense that, for any scalar field F on S%:
_1 Legr
(A1 F) o Py = 0y 2 Y (—a)E2 (Qg @p, 730> : (1.17)

see [57, equation (2)].

1.2 Some integration formulas

We let dS denote the surface measure on S¢. As we saw in the first section, we have the
conformality properties dis]%{l a = ds]%%xsd and Q%ds2 = ds2,, which imply the change
of variable formulas

Sd?

F(Po(x))ﬂodx—f F(X)dS(X), (1.18)
Rd

V(T, X)dTdS(X P(t,z))Q¢ dtdz,
A - JJve

where F and V are scalar fields on S and P(R”d) respectively. It is a consequence of
the first formula and of equation ([1.17)) that, if f, g are related to (Fp, F1) and (Go, G1)

via , then
f ’g>H% = fgd A1Fy - GodS + Ld A Fy-G1dS,

and so

oo N() B R )
Flogs =22 (€ + d21> Fo(6,m)Go(L, m)

(=0 m=0 (1.19)
d—1\"" . -
+ <€ + 2) Fi(6,m)Gy(¢,m).
In particular, from (1.12)) it follows that
—1
1£0% 5 T‘Sd‘, (1.20)

Remark 1.2.1. The expressmn on the right hand side of ((1.19)) coincides with the scalar
product of the space H3 x H™ (Sd)7 see |2, Definition 3.23].
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Using the symmetry ((1.15) we can considerably simplify spacetime integrals.
Lemma 1.2.2. If V is a function on S' x S% that satisfies

V(T +7,-X)=V(T,X), Y(T,X)eS! xS, (1.21)
then
U V(T,X)dTdS(X H (T, X)dTdS(X). (1.22)
P(RL+d) Sl xSd

Proof. We use the spherical polar coordinates ([1.2]), so that

dS = (sin R)*1dRdSI 1,
where dS%~! denotes the volume element on S!; see, for example, |58, §1.42]. We note
that P(R'*9) can be described as

Re[0,m)
PRI = (T, (cos R, sin(R)w)) —mt+R<T<wm—R };
w e St

see (|1.5)). So, setting

G(R) = f

—7+R

o (Ld V(T cos R, sin(R)w)del(w)) dT,

the integral to evaluate can be rewritten as

U V(T, X)dTdS(X) = f:(sinR)d_lG(R)dR
P(RI+4) (1.23)

- f “(sin B (G(R) + Glx — R) dR
0

Using the changes of variable w — —w and T'+— T + ,
—7m+R
J — 7, —cos R, —sin(R) w) dS* Y (w) dT
Sd— 1

+ J f V(T + 7, —cos R, — sin(R) w) dS* Y (w) dT.
Sd—1

Now, V' is 2m-periodic in 7', so
V(T 4+ m,—cos R, —sin(R)w) = V(T — 7w, — cos R, —sin(R)w)
= V(T,cosT,sin(R)w),

by the assumption ([1.21]). Therefore
s
G(R)+G(mr—R) = J V(T cos R, sin(R)w) dS%~1(w)dT,
gd—1
which can be inserted into ([1.23]) to yield the desired conclusion ([1.22]). O
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We recall from the first section that the scalar field €2 is the conformal factor of the
Penrose map P; its explicit expression in spherical polar coordinates is

Q2 =cosT + cos R. (1.24)

Corollary 1.2.3. Let d be an odd integer. If (v = 0 and [Jw = 0 on R'*?, then

[ Wl e =5 [[ 10 @@y aras, (1.25)
R1+d SIXSd
and
| e towaiae = 5 [[ o5 e @ ety aras.
R1+d St xSd

for all a,be R. Here V and W denote the Penrose transforms of v and w respectively.
Proof. To prove , we need to check that

U(T, X) = |Q|%(a+b)—(d+1)|wa|w|b
satisfies the property 7 which is an immediate consequence of the symmetry property

(1.15)) of V and W, and of the explicit expression (|1.24])). We remark that these symmetry
properties need not hold for even d. The proof of (1.26]) is analogous. O

1.3 Proof of Theorem [1.0.1]

Lemma 1.3.1. Writing f = cf, + f1, with (f1 | fi);12 = 0, then

d
dfedj(f* +ef)

_ f SEIP2SESF) dida. (1.27)
e=0

R1+d

Proof. This follows from the computation

d _ _
T ef) = pS | P £ v [[ 1SR 2S£ deda,
e=0 Ritd
which holds for any f € H/ 2(R%), and then taking f = cf. + f. and recalling the
definition of S. O

When d is odd, we can apply Corollary to the integral on the right-hand side of
(1L.27);

U |S£|P2S£.Sf) dide = % H

R1td St xsd

p—2

d—1
cos(

2

T

cos T)U, dTdS,




since the Penrose transform of S f, is cos %T ; see (1.12). Here, V| denotes the Pen-
rose transform of v; = Sf|. From the formula , we infer that the condition
(fe| F1)72 =0 is equivalent to F14(0,0) = 0. Therefore, expanding V| in spherical
harmonics as in , we see that

N2
Ld VL(T, X)dS(X) = Csin (2 >F1(0,0), VT e [—m,

for some constant C. This implies that

1 d—1,_[P72 —
3 ff c0s — T|  cos( T)V, dTdS
St xSd
o ™ —1 [P d-1_  d-1
= 5F1(O,O) cos T|  cos( T') sin( T)dT =0,

as the last integrand is odd. This completes the proof of Theorem [1.0.1] in the odd
dimensional case.

The reason why this argument fails in even dimension is that Corollary is not
applicable in that case. In order to prove that, in fact, fi is not a critical point in even
dimension, we need only prove that the derivative is nonzero in a single direction. A bad
choice would be to take the direction f = (fy,0), where fy corresponds to a spherical
harmonic of degree 1 under the Penrose transform , as then we would be moving in
the direction of the symmetries of the inequality. This will be proved in the forthcoming
chapter; see entries 5 and 6 in Table Instead we consider the zonal spherical harmonic
of degree 2, which we denote by Y5 o; see the previous section.

Lemma 1.3.2. Let d > 2 be even and let f = (fo,0) € HY2(R?) be the initial data
corresponding to
Fo=Ys0, F1=0,

via the Penrose transformation (1.11). Then

d
= (=1)2"¢q, where ¢4 > 0.
e=0

d
dfgiﬂ(ﬁ +ef)

Proof. Applying the Penrose transform to ([1.27]) we obtain

p—2 -
ff cos (d21T> V dTdS,

-p
P(R1+4d)
where V (T, X) = cos ((2 + 452)T) Y2,0(Xo); see (T.14). We remark that we have written

the generic point X € S% as X = (X, X1,...,Xy), where X € [—1,1], to exploit the fact
that Y2 is a function of X only. Taking into account the definition (I.5) of P(R!*9),

d—1
cos T
e=0 2

d
dfgw(f* +ef)

9



the right-hand side of the previous identity reads

i P2 —1 —1
—p‘Sd_1’ J cos <d2T) cos ((2 + d2)T> ar

d—1
2

T

COS

m—|T|
X f Yao(cos R) (sin R)* 1 dR. (1.28)
0
We have used the formula dS = (sin R)*"'dRdS9! for the volume element of S% in the
polar coordinates (L.2)). Now, the zonal spherical harmonic Y3y can be expressed by the
Rodrigues formula;
g_d=2 d? 2\2+4=2
Y2,0(Xo) = Roa(1 — Xg)” 7 5 (1= Xg)"" 2,
dX;

see, for example, [58, Lemma 4, pg. 22]. Here Ry 4 > 0 is a constant whose exact value is
not important here. We compute the last integral in ((1.28]) using the change of variable
Xg =cos R;

w—|T| ] g1 1 42 oy d=2
Yio(cos R)(sin R)* " dR = Ra 4 —(1—-X35)"" 7 dX,

0 cosT dX()
= Cycos T(sinT)¢,
where Cy > 0. Inserting this into ([1.28]) shows that it remains to prove the following:
1 s
I(d) := f ha(T)Py(T)dT = (—1)%cd, for some ¢4 > 0, (1.29)
™ —T

where hq(T) := |cos %T}Ig_2 and

d—1 d+3
T cos ;

We first consider the case d = 2. In this case we have that p = 6, so we can evaluate
1(2) explicitly:

Py(T) := cos T cosT (sinT). (1.30)

1 (" T\®> 5T
1(2) J <cos> COS?COST(SinT)z T

™) 2

4 /2 5 9 J 5
= — T 5T cos2T'(sin 2T ) dT = ——.

- L (cosT)” cos 5T cos 2T (sin 27") 198

In the case d > 4 we will use the Parseval identity:

ha(0)Py(0) &
1(d) = MOBO 50 2y,
k=1
where f(k) := L™ f(T)cos(kT)dT. We remark that, with this choice of notation,
a & .
if f(T) = ?0 + Z ai cos(kT), then ar = f(k). (1.31)

k=1
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Lemma 1.3.3. If k # m(d — 1) where m € Nsq then hy(k) = 0.

Proof of Lemma[I.3.9. Consider u € [—v/2,/2]. We let |[ufP™? = (1 + v)p2;2, with
v =u? — 1, and we expand it using the binomial series. This yields

P2 = i <<P —.2)/2> (u? — 1)1

A

and the series converges uniformly by Raabe’s criterion (here we use that p > 2). Taking

U = Ccos %T, we obtain
- o 2j
2)/2 d—1 J
=N~ < p=2)/ ) <s1 T> : (1.32)
2
7=0

-1

Cos T

For each j € N5y we can develop

(55 tr)" = G (e ooty
9j .
(=Y 2j m i(j—m)(d—1)T

DT RR—)

This shows that each summand in ([1.32) is a linear combination of the terms cos(m(d —
1)T"), with m € Nxg, which, in light of (1.31]), completes the proof. O

We now turn to the term P introduced in ((1.30)). Using the addition formula for the
cosine, and developing (sin T)? like we did in the previous proof, we can express Py as a
trigonometric polynomial of degree 2(d + 1):

Py(T) =27972 (cos T + cos 3T + cos dT + cos(d + 2)T)
/2

(d/z) +2 Z < a2 ) cos(2kT) |;

so, in particular, Py(k) = 0 if k > 2(d + 1). Since d > 4, we infer from this and from
Lemma that I(d) reduces to the sum of four terms:

(1.33)

3
I(d) fhd (0) + Y. ha(m(d — 1)) Py(m(d — 1)). (1.34)

m=1

Actually, we have that P;(3(d — 1)) = 0. This is obvious for d > 6, because in that case
3(d — 1) exceeds 2(d + 1), and can be established for d = 4 by inspection of the formula

Py(T) =275 (cos T + cos 3T + cos 4T + cos 6T) (6 — 8 cos 2T + 2 cos 4T)

11



again using ([1.31).

To compute the remaining coefficients, we use the addition formula for the cosine to

rewrite ((1.33)) as
242 Py(T) = Py (T) + Pys(T) + Paa(T) + Pyar2(T),

where each summand is given by

/2
Pyn(T) = <d(/i2) cos hT + ,;1(_1)k (d/Qdf k) (cos(2k — h)T' + cos(2k + h)T),

for h =1,3,d,d + 2. To compute Pd(O), we observe that the only contributing term is
obtained for 2k — h = 0, and that can only happen for h = d and k = d/2. By (1.31)) we
have

[NIIoH

2972P4(0) = Py a(0) = 2(—1)2.
To compute Pd(d — 1) we observe that, as d — 1 is odd, the only contributing terms are
obtained for h = 1, 3:
292Py(d — 1) = Py1(d — 1) + Pys(d — 1)
d d
=(—1)2 — (-1 -1
(0t =0 (]) + i ()
£(d—1)(d—2)

[S1IsY
[S1IeY
vl

With analogous reasoning we obtain

272 Py(2(d — 1)) = Pya(2(d — 1)) + Paar2(2(d — 1))

— _(-1)} <‘1i> +(—1)% (g)
— (-1)% <(d - 1)2(d =2 _ 1) .

Inserting the preceding computations into Parseval’s identity (1.34]), we obtain the formula

A~

(~1)52%21(d) = ha(0) — ha(2(d — 1))
d—1)(d—2) /- -
PGt G (ha(d 1) + ha(2(d 1))
2
To conclude the proof of ([1.29)it will suffice to prove that
hq(0) — hg(2(d —1)) >0, and hg(d —1) + haq(2(d — 1)) > 0. (1.35)
The first inequality follows immediately from the definition ([1.30]) of hy:

p—2

-1
d (1 —cos2(d—1)T)dT > 0.

T

ha(0) — ha(2(d— 1)) = f cos

T™J-r

12



To prove the second inequality we note that the change of variable T" — %T produces

d*lﬂ,

. . 2
ha(d—1) + hg(2(d—1)) = Td=1 j ;1 lcos TP~ (cos 2T + cos 4T dT.

s
The integrand function in the right-hand side is w-periodic and even. Therefore, the
integral is an integer multiple of the integral over [0, 7/2]. Moreover, cos 2T + cos 4T =
2cosT cos 3T. We get

- . 4(d—2) (™2
ha(d — 1) + ha(2(d — 1)) = ()J lcos T|P~2 cos T cos 3T dT. (1.36)
To conclude the proof, we notice that

/6 /2
f cosT cos3TdT = —J cosT cos3TdT > 0,
0 /6

and |cos T|P~2 is strictly decreasing on [0,7/2], so

/6 /2
f lcos T|P~2 cos T cos 3T dT > — j lcos TP~ cos T cos 3T dT,
0 /6
which proves that the right-hand side in ([1.36)) is strictly positive. This shows that the
second inequality in ((1.35) holds, and the proof of Theorem is complete. O
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Chapter 2

Sharpened Strichartz estimates

In the aforementioned paper [37], Foschi proved the Strichartz estimate;

3 1
15 Fll ey < SUFllrraqus)s where § i= (W) | 2.1)

The constant S is optimal, meaning that the inequality fails if it is replaced with any
strictly smaller one. Moreover, there is equality in (2.1)) for f = fi, where

9
1= < 1+y-|2’0>'

In particular, the set of maximizers
M := { F e HARY) ’ ISF Nl Larvay = SISl }

is not trivial. We prove that (2.1)) can be sharpened by adding a term proportional to
the distance from M, defined by

d(f,M) :=inf { | f — gl |geM }.

Theorem 2.0.1. There is a positive constant C' such that
Cd(f,M)* < 82| Fll52 = IS Fll72(gavey < S7d(f, M)?,

The upper bound is proved in a more general setting in the following section.

The sharpened version of is the lower bound, which will follow from a local
version, in which we also obtain the sharp constant. To prove the local version, one of the
key ingredients is the Penrose transform, which we introduced in the previous chapter.
We will also require the preliminary study of some geometrical properties of M, which
we carry out in the second section.

We conclude the proof of the theorem by an application of the profile decomposition
of Ramos [62].
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Finally, we dedicate the last section of this chapter to the proof of a result analogous
to Theorem for the sharp energy-Strichartz inequality in R'*5 of Bez and Rogers [9].
The outline of the proof is the same as in the three-dimensional case, but there is the
significant additional difficulty that the quadratic term in the relevant Taylor expansion
is not diagonal in its expansion in spherical harmonics.

2.1 Abstract upper bounds

Consider a bounded linear operator S: H — LP(X), where H is a real or complex Hilbert
space and X is a measure space. Then, writing

SHllLs
§ e sup TG a0 = inf (= fullg foe MY,
20 I flly

where M 1= {f. € H : [|Sfull Lo (x) = Sl fellg;}, the following upper bound holds generally.
Proposition 2.1.1. Let 1 < p < . Then, for all f € H,
SN W3 = IS Fl7o(xy < SPd(f, M)*. (2.2)
Proof. For f € H there exists a sequence f;' € M such that
d(f,M)* = lim ||f = f7-
We let ¢" = f — fI* and we define H,: R — R by

Ha(N) = S+ A0 2oy — 1921200

The function H, is convex and, since p € (1,0), it is differentiable; see [54, Theorem 2.6].
Given that f € M, the function

AeR > [IS(F + Mg Twix) — SIS + A" 13,

has a global minimum and so a critical point at A = 0, from which we infer that

d d
N Hn)\Z— 2| gn )\n2:22 n gy
B, N = g5 | S A = 28R )

Convexity gives H, (1) = H, (0); that is
ISUE + 9" Zn(xy = IS 7o) + 2S* R g7 (2.3)
Recalling that

SN W3 = ISF 1Ty = SEIS T+ S g™ 3, + 28* RS 1™
— IS+ g ),
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equation (2.3) yields
S5 = 1S F 7o) < S = IS £ 170 cx)) + S2g™ 3.

Since f]' € M, the term in brackets vanishes. Letting n — oo, we find (2.2)), and so the
proof is complete. O

Remark 2.1.2. Specializing Proposition to the fractional Sobolev inequality on R¢
gives an alternative proof of the upper bound of [19].

2.2 Geometry of the set of maximizers

Foschi proved that the set M is the orbit of f; under the action of a Lie group of
symmetries, which we now describe. The following definitions and computations will be
needed only for d = 3 or d = 5, but there is no added difficulty in considering the general
case. We recall that

d—1 d—1
f=(2Fa+10).
For t € R, we denote by S, the vector-valued wave propagator;

sin(tyv/—A)
cos(tvV—A) VA [fo

G = } , (2.4)
—sin(tvV/—A)V—=A  cos(tv/—A) hi

which is characterized by the property

Ov =0, g
{v(o) _ f’ — ’U(t) = Stf

For # € S', we denote by Phy the phase shift;

cos(6)
—sin(@)vV/—A  cos()

Phy f :=
which is characterized by

— sin(tv/—A + 0)
§iPhy f = Phy Sy — | VAT v [fo] :

“A
_sin(tV=A + 0)V=A cos(tv—n + ) | L1

For (je Rand j =1,...,d, we denote by Léj the Lorentzian boost along the x; axis;

I .
Lij = ,UCJ'|t=O’

17



where v(t,z) = Sf(t,z) and

ve, (t,x) = v(tcosh (1 + 1 sinh (1, tsinh ¢ + 21 cosh (1, 2, ..., 2q),
v, (t, ) = v(tcosh (o + wosinh (o, 1, tsinh (o + x2 cosh (o, . . ., ),

ve, (t,x) = v(tcosh (g + xgsinh (g, x1,...,x4-1,tsinh (g + x4 cosh {y).
We introduce the collective parameter o € St x R24+2;
a:=(0,t0,¢,...,C(q,0,20), O€ S, tp € R, (GeR,ceR,zg€ Rd, (2.6)
Then, for f € ’H%, we let I'y, denote the following element of H2,
Si Phy LY, ... L, (e%fffo (€7 (- + 20)) , e 57 f1 (e7(- + xo))). (2.7)

We remark that Iy is the identity. We can now cast in this notation Foschi’s characteri-
zation of M.

Theorem 2.2.1 (Foschi [37]). The set of mazimizers of the three-dimensional Strichartz

estimate (2.1)) is
M= {clafi|c=>0, aeS xR®} c HY2(R?).

Remark 2.2.2. Definition (2.7 does not contain spatial rotations; as a consequence, the
operators Iy, do not form a group. Precisely, given I'o,I'g there is a unique I’y such that

Ials = IR,
where the operator R is the representation of a rotation;

Rf(x):= f(Agrz), fora Are SO(d).

This is not a nuisance, because f is radially symmetric, so ['oIgfi = I’y f..

Proposition 2.2.3. The operators Iy, preserve both sides of the Strichartz inequality;
Lok llzne = 1 Fllgae  and [|STafllpagivay = [ISFllpagivay: (2.8)

We will prove this proposition after introducing some more notation.

Remark 2.2.4. The full action of the symmetry group on the Strichartz inequality is the
transformation f — cI'o f. This notation has been chosen to highlight the difference
between the multiplicative transformation f — cf, which is a symmetry of the inequality
but does not satisfy , and the transformation I'y,, which preserves both sides of the
inequality. We caution that the second identity in is specific of the space L*(R!*3),
and the operator Phy does not seem to preserve the LP(R!*9) norm unless p = 4.
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We begin the study of the geometrical properties of M with the following lemma,
which we state for general spatial dimension d.

Lemma 2.2.5. The map

(¢, ) € (0,00) x St x R¥+2 s (T, f. (2.9)
18 injective.
Proof. We need to show that c[y f. = Ty f. implies that ¢ = ¢/ and a = ’. Now, the
first identity is an immediate consequence of Proposition because

cllfillze = IeCafillzpe = [ Ta fll e = I fllye-

By the group property of Remark we can also assume that I'y,y = I'g. So, letting
Vg = STa fi, we are reduced to prove that

Va = Vo & a=0.

Up to a change of parameters, we can rewrite v, as

d—1
2

va(t,z) =¢ 1"1}9(6"L’B(t + to, T + x0)),

where L8 : R4 — R1*4 denotes a Lorentzian boost of velocity 3, where § € R? and
|B] < 1; see the forthcoming chapter. Here vy := S Phy f.. Now, we introduce the energy
and the momentum, defined for an arbitrary scalar field w on R'*¢ as

E(w) := fRd <\Vw|2 + (ﬁtw)2> dz, P(w):= » oyw Vw dx.

These quantities are invariant with respect to all symmetries considered in this section,
except for the dilations and the Lorentzian boosts; more precisely, we have the energy-
momentum relation

(E(va), P(va)) = ¢”L™(E(vo), P(vo));

see, for example, [51, Remark 2.5]. Since vg is radially symmetric, P(vg) = 0. By
assumption, (E(vq), P(ve)) must equal (E(vg), P(vo)), which gives the equations

e’vE(vg) = E(vg), e°vBE(vg) =0, where vy :=(1— |B[2)_1/2,

from which we infer that e =1 and 8 = 0.
To conclude, we equate the spatial Fourier transforms of vy (t + to, - + x¢) and vo(t, -);

cos((t + to)|€] + )€™ foo(€) = cos(t|€]) fio(€), VEER? teR,

1

where fio = 2%(1 + |-\2)_%, s0 fio(€) = Cel€l/|¢], for some irrelevant C' > 0. This is
non-vanishing at all £, so we infer that cos((t + to)|¢| + 6)e™0¢ must be equal to cos(t|¢|)
for all t € R and all £ € R?, which is only possible if tg = 0, zg = 0 and § = 0 modulo 2.
This completes the proof. O
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This lemma implies that M\{0} is a 10-dimensional smooth manifold, parameterized
by (2.9). The tangent space at f # 0 is

T¢M = span{ Toofi; Oalaofi 11 =1,2,...,9}, where f = col'a, fi-

Here, 0,, denotes the derivative with respect to the parameters . We refer to such
derivatives as the generators of the symmetry group. In the forthcoming subsection, we
will give an explicit description of the tangent space at f,. This suffices to describe the
tangent space at all points of M\{0}, as the following proposition shows.

Proposition 2.2.6. For all ¢ # 0,

Terg £ M =T (T M).

Proof. By definition,
TurapM = span { clafic g, (Talaf)|s g [1= 1.0 2443}
Now, by Remark for all T there exists a unique v(8) € S! x R?¥*2 guch that

To ' Talafi = Ty(p) fo-

In particular, v(0) = 0. We denote

Yk
Then, by the chain rule,
2d+3
0, (Tplafo) | g_g = T (98, D) fil g_g) = T 2 €ty 03Tyl g
k=1

The right-hand side is a linear combination of elements of

T (T M) :span{ Toofor Tar( 03 Ty il o) ‘k: 1,...,2d+3},

=0
s0 Ter, £ M C I'o (T, M). The reverse inclusion is proven in the same way. O

We give the explicit expression of the generators in Table With these explicit
expressions, we can prove Proposition [2.2.3]

Proof of Proposition|2.2.5. The proof of the first identity in reduces to a check that
the operators in the right column of entries 2-6 of Table are skew-adjoint on 2 (R9).
We remark that this is true for any dimension d. The second identity in , concerning
invariance of the L*(R'*3) norm, is obvious for all symmetries except for Phy (defined in
(2.5))). This invariance is proved in |9, equation (2.5)]. O
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Derivative ‘ Applied to cI'of at c=1,a =0

N f
0 1
o
’ %o [A o]f
1
0 (—=A)"2
Kea
| a0 |f
0 T,
0 J o
d—1
0 T+x-V 0
5 do [ 0 d;1+$'v]f
& 0
6 Vo lga y f (j=12,...,d
Ol’j

Table 2.1: Symmetry generators.

2.2.1 Computing the tangent spaces via the Penrose transform

We compute an explicit expression of the tangent space T'g, M, using the Penrose transform,
which we introduced in Section 1.1 from the previous chapter. We systematically use the
following identification of z € R% with

X = (X0, X1,...,Xy) e %,
via the stereographic projection, whose equations we recall here;
Qo—lzXo, ijQZXj ]=1d (210)

Here Qo(x) = 2(1 + |#|*)~! is the conformal factor of the stereographic projection; see
Remark In the following equations, the first computation is performed by applying

(2.10)), the second by applying (1.17) once, and the last by applying (1.17) twice:

0 a1 d—1 _dil d—1_ it
<902)=—2 JijOQ 2—72 Xjﬂoz,

(3’:6]-
d—1 —1 d#1
e (2.11)
1 d—1 a1 /d—1 d+1
A =50 (X
0 2 0 < > T2 °)

From (2.11)) and (£2.10)), using Z;l:l X ]2 =1— X2 we infer that

d-1 d—1 s g1 a1
x-V<902 > = (- X9 = — (1 Xo)?
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d—1
Generator Applied to f, = <902 ,O)

2 {0 1] [ d+1 ]
Ao a0, (45 4 451x,)
5 0 (-A)"2 0
—(=A)? 0 _d-10%
2 o
4 0 xj g1 0
.CL‘jA + T 0 _d%lQOT ((d_li(d""l) + d—ngO) X]
5[ eV 0 X007
0 e R Y 0
2
a d—1
= 0 d—1
6 oxj TXT | (j=1...4)
0 7z 0

Table 2.2: A basis of the tangent space at fi in arbitrary dimension.

We apply the generators of the symmetry group, listed in Table to the Strichartz
maximizer f,. Using the computations , we obtain Table we recall that we are
identifying = € R? with X € S? via the stereographic projection . Since 29 = 1+ X
by , when d = 3 the fourth line simplifies:

) ((d—l)(d+1) L

Q> 1 5 X0> X; =203X;.

So, specializing the previous table to the case d = 3, we conclude that

1y,

*

[ [Q0P(X)] . . . 3
M = { [Q%Q(X)] : P, @ polynomials of degree < 1in X € S° .

Since the restrictions of these polynomials to the sphere are spherical harmonics of degree
0 and 1, after applying the Penrose transformation ((1.11)) of the initial data, we see that

feTyM <« [Fy(l,m)=F({,m)=0, (=2 (2.12)

In light of the identity (T.19), expressing the H'/2(R3) scalar product in terms of Fy, F,
we characterize the orthogonal complement of Ty M as follows:

fLTyM = Ey(6,m) = Fi({,m)=0, £=0,1. (2.13)

These computations immediately yield the following corollary, which we will use in
the next subsection.
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Corollary 2.2.7. The matriz of scalar products

My = [< Ou;

is nonsingular and positive definite.

2.2.2 Metric projections

We show in this subsection that every point of H/2 admits at least one closest point
in M. This is a crucial property for the proof of Theorem We also study the
uniqueness of these closest points. This will be needed in the nonlinear applications of
the forthcoming chapter.

Proposition 2.2.8. For every f € HY2 there exists P(f) € M such that
1f = PPz = d(f, M),
and, if P(f) # 0, then f — P(f) L Tps)M, that is
(f—P(f) \9>q.'[1/2 =0, VYgeTppM, (2.15)
Moreover, there is a constant p € (0,1) such that, if

d(f, M) < pl fllz/2; (2.16)

then P(f) is uniquely determined.

Proof. Euistence. Let f € HY? be fixed. Expanding lf — cFaf*H?_-Ll/Q, we see that

c=0
aeS'xR8 |-
Let now (c,, ) € [0,0) x S! x R® be a minimizing sequence. Then, clearly, ¢, must

be bounded. Now, if a, is unbounded, then, up to a subsequence, we can assume that
|a,| — co. This implies that

d(F,M)? = inf{ 1120 — 26(F | TaFdgue + 1A 200

2en (f | Yoo Fgne — 05

see, for example, [62, Lemmas 3.2 and 4.1]. In this case, since (¢, ;) is minimizing, it
must be that ¢, — 0, and so P(f) = 0. The only remaining possibility is that «,, is also
bounded, in which case, up to subsequences, a,, — ag and ¢, — ¢y for some ¢y > 0 and
o € St x R8. Therefore, P(f) = colay f.-

Since (cg, p) is minimizing,

aC||f - Craof;H?.'[l/Q e=co = aaLHf - COFOLf;Hi[lﬂ a—ag = 07 Z = 17 L )9)
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from which the orthogonality property follows, provided that ¢y > 0, which is
equivalent to P(f) # 0.

Uniqueness. We assume that holds for a constant p to be determined, and we
suppose that there exist P(f) and P’'(f) in M\{0} such that

f=Pf)+fL=Pf)+fL (2.17)

where || fillz12 = | F ;02 = d(f,M). Our goal is to show that P(f) and P'(f) must
be equal. We consider a, o’ € S! x R® such that

P(f)=clafe and P'(f) =Ty fu

and, replacing f with ;! f if needed, we can assume that I, = Iy. The orthogonal-

ity (2.15) implies that (fi | P(f))y12 = {FLIP'(F))gp2 = 0, so using (2.17) we can
expand | f|[3,1/2, yielding

2
e = = IPDllsue = [P Dllgoe =\ 1F152 — dlF. M2,
It follows from these considerations that we can rewrite (2.17)) as

A F R
C C &

from which we infer the estimate

2d(f,M 2p
£ = Car fill e < - (4, M) S (2.18)
JIFI — (M2 V1=p
and analogously,
p
If/c= Hllgpe < ——- (2.19)
1—p
To finish the proof, it will suffice to show that o’ = 0.
As a first step, we claim that
&/| < Cllfe = To il gys2s (2.20)

for a C > 0. To prove this, we begin by squaring the left-hand side of (2.18]),
”f; - Fa’f*”?.‘[l/z =2-— 2<f; ‘ Fa’ﬁ> »H1/2

so that

9.2
<f* ’Pa'f;>7-'[1/2 = 11_3pp2 :

Assuming, as we may, that p < 1/4/3, the right-hand side of this inequality is strictly
positive. Now, as we have already mentioned in the proof of existence of P(f),
{F|Tofi)gn2 — 0 as |o| — oo. Thus, there must be a C'(p) > 0 such that || < C(p).
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We can then assume, for a contradiction, that

2
[ = T, ill512

P — 0, where a, € S! x R8, || < C(p). (2.21)
n

There exists g € S' x R® such that o, — ag up to a subsequence. If |ag| # 0, then (2.21))
would imply that || fi — e fill5;12 = 0, but this is ruled out by Lemma The only
remaining possibility is that |a,,| — 0. We record now two identities that hold for all
aeS! x RS:

Tt | 6airaﬁ>7.ll/2 = aai%HFaf*Hg{l/z =0, (2:22)

where we used that I, is unitary, and
- <Pa.ﬁ< ‘ aai aoa]- Faf*>7_'11/2 = <aairaf* ’ aaj]‘—‘a.ﬁ>']_z1/2 ’ (223>
which is obtained from (2.22)) by differentiating. Using these we compute the expansion

9
£ = Taflfpe =2 Y. ic; (0 To k| 00, Tafi)|,_y + Olla?).

ij=1
Since the coefficients of the quadratic term are those of the matrix My defined in (2.14]),
the fact that |ay,| — 0 implies

2
0= lim Hﬁ - Fanf*Hq.'[l/Q

n—>00 Ian|2

= 2)g > 0,

where Ag is the minimal eigenvalue of My, which is strictly positive because of Corol-

lary We have reached the desired contradiction and proved (2.20)).
To conclude the proof that o = 0, we define F: S! x R8 x #/2 — R? by

Fla, g) := [<Faﬁ —9g| aairaﬁ>7-'t1/2]z':1...9'

By , T fi — f/c = f)/c is orthogonal to the tangent space at cI'y fi, which
contains all the derivatives 0,, I fi at &/, so F(c/, f/c) = 0. In the same way, we see
that F(0, f/c) = 0.

Now, obviously, F(0, f,) = 0. Using the identities (2.22) and (2.23) as before, we find
that the Jacobian matrix Do F = [6aj.7:i]i’j:1m9 at (0, f.) is

Daf(()?.f*) = MO?

so that, in particular, it is nonsingular. We can thus rewrite the identity F(a/, f/c) = 0
as a fixed point relation;

o = P(c/, f/c), where P(a,g) := o — Do F(0, fi) ' Fla, g),
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and the function P is such that Do P(0, f.) = 0. Thus, there exists an absolute constant
€ > 0 such that

IDaP(e,g) < 5, if o <eand [lg — fill e <e.

Here, as is usual, the matrix norm is ||M|| := sup { |[Mz|/|z| : z € R? }. We now require,
as we may, that p satisfies the additional condition

v =
\1—p2 20
so that, combining ([2.18)) and (2.20]), we see that |ta’| < ¢ for all ¢ € [0, 1], and moreover,
1£/c— sz <€ by @19). Thus |[DaP(ted, f/c)|| < 4, and from
1 d 1
o' =Pd, f/c) = J ﬁP(ta',f/c) dt = j Do P(td, f/c)d dt,
0 0

where we used that P(0, f/c) = 0, we infer that

1
1
o] <f0 |DaPltel. £/¢)]|e|dt < §od].

so that |a@/| = 0, completing the proof. O

2.3 Proof of the lower bound in Theorem [2.0.1]

In this section the spatial dimension d will be 3. We let i) denote the deficit functional

. 1
U(f) = S4HfH;L.'[1/2 - HS.f”4L4(R1+3)a where § = (16%)4 :

We will use Corollary from the previous chapter to compute integrals on R!*3,
taking advantage of the simple expression for v, = S fi under the Penrose transform,

Vi(T, X) = cos T,

see (1.12)). In particular, Corollary yields the following representation of Foschi’s
constant;

HSf*HL[l/l(RHS) Siﬂ(COS T)4 dr
B 2|S3|

; see (1.20)).

4

HﬁHi{l&(Rs)

Here we have used the fact that || j‘;||3{1 f2(r3) = |s?

2.3.1 A local version

Lemma 2.3.1. There ezists a quadratic functional Q: HY2(R3) — [0,0) such that
O(fe+ £) = QU + Ol F l3), (224)
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for all f e 7-'[1/2(]1%3). It holds that Q(f) = 0 if and only if f € Ty, M, and moreover

Qf) = %Hf\\%uz, VLT M, (2.25)
where the constant 7 cannot be replaced by a larger one.

Proof. We have that ¢(f,) = 0 by definition of ¢, and we have proved in Theorem
that d%d}(ﬁ +6f)| — 0 for all f € HY2(R3). So (2:24) holds with Q(f) equal to

2 d52 w(f* + Ef)’ o Expandlng we see that

Q) = 5 (1A P + 218 |F1e) 6 ([ (SRS P a5

RL+3
We record that, for all f = (fo, f1) € HY2(R3), it holds that

Q(f) = Q(f0,0) + Q(0, f1). (2.27)

To prove this, we start by recalling that H]"Hi{l/2 = {fol foy g +{f1 ] f1)g-1/2- Moreover,
since fi = (fx0,0), we have that {(fi| f);12 = (fxo|fo)1/2, so the first summand in
the right-hand side of splits into the sum of a term depending on fy only and
a term depending on f; only. The other summand splits in the same way; indeed,

S fi = cos(tv/—A) fro, therefore

S£)2557%= [[ (52 costv=rfo)2+ ([ (5£) Smtrfl
J -l [Jerr (75 )

R1+3

+ ZJJ(COst\/If*o)Q cos l‘f\/jfﬂSiri;\_/igiAfl7

R1+3

where the last integral vanishes, as can be seen with the change of variable ¢ — —¢. This

proves (2.27)).

We now bound Q(f) from below, starting with the term Q(fp,0). We apply the
Penrose transformation (1.11]) to f and f;, recalling that

(Fro, F51) = (1,0), (2.28)

S0, in particular, the only non-vanishing coefficient in the expansion in spherical harmonics

is ﬁlo(o, 0) = ‘83‘1/2; see Remark |1.1.4] By the formula ([1.19)), that expresses the HL2
scalar product in terms of (Fp, F}), we rewrite the first summand in the right-hand side

of [220) as
S* (40l o)y + 200l ol ) =
" (cosT)*dT R o N(¢) R
SW(2|S3|) 4|8 F5(0,0)% + 2|8 > > (0 4+ 1)F(6,m)* | (2:29)
{=0m=0
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We compute the other summand using Corollary
2

Jf S )2 (cos(tvV—A) fo)? —BJJ COSTZCOS (£+1) TFO(E m)Yem |-

R1+3 STxS3

By the L?(S?)-orthonormality of Y7, the right-hand side equals

3] (cos T)* dT Fy(0,0) —|—3Z ZJ (cos T cos(£ + 1)T)% dT Fy (£, m)>.
- ¢=1m=0

For all ¢ > 1, it holds that

SJ (cos T cos(f + 1)T)*dT = 3% = 2f (cos T)*dT,

—T —T

so, subtracting the last equation from (2.29)), the terms corresponding to £ = 0 and ¢ = 1
vanish, and we obtain that

WOON
Q(fo,0 —427;06—1F0em)

The term Q(0, f1) is computed in the same way, and the end result is:

N(0)

T & m)?
_34;27”=0 — 0 | By, m)? + I?E(il)l . (2.30)

From this we see that Q(f) = 0 if and only if Fo(¢,m) = F1(£,m) = 0 for £ > 2, which is
equivalent to f € T, M; see ([2.12).
It remains to prove the sharp inequality (2.25) m For ¢ = 2, it holds that

-1 1
3—1)=>¢+1, and 3tz 2 &

with equality for £ = 2. Therefore, (2.30) implies the sharp inequality

2 Z C+1)Fo(6,m)? + (€ + 1)L (£, m)2.
Z 2m=0

The expression on the right-hand side equals T || f ||§{1 2(R3) precisely when FO(Z, m) =

Py (¢,m) = 0 for £ = 0,1, which is equivalent to f LT M; see (2.13). This completes the
proof. O

Remark 2.3.2. The fact that Q(f) = 0 for f € T M is a consequence of the criticality
of f. and of the invariance of ¢ under the symmetries I'y (defined in (2.7))); indeed,
differentiating the identity ¢ (cI'o fi) = 0 twice with respect to ¢ we get Q(fi) = 0, and
differentiating twice with respect to a;, we get

) _0.
a=0

0
o £k
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In Lemma we proved a sharper result; namely, that Q(f) vanishes if and only
if f € TyM, and we gave a sharp explicit bound. In the language of the calculus of
variations we can say that f. is a transversally non-degenerate local minimizer of the
deficit functional .

Proposition 2.3.3. For all f € 12 (R3) such that
d(f, M) <[ fll,3 (2.31)
it holds that
1
82, M)+ O@d(f,M)*) < SPIFI 0 = IS I ageres)-

The result does not hold if %82 is replaced with a larger constant.

Figure 2.1: Illustration of Step 1.

Proof. Step 1: By Proposition there exists P(f) € M such that
1f = P(F)llyp2 = d(f, M),
Assuming that P(f) = cl'q fi, we define
FL=T(F = P(f)),

and we claim that
HfLH}-[l/g =d(f,M), and f1lTg M. (2.32)

The first property is an immediate consequence of the fact that I'y is a unitary operator;
see Proposition [2.2.3]

To prove the second property, we begin by observing that the assumption ensures
that P(f) # 0, so the tangent space Tp(pyM is well-defined, and f — P(f)LTp s M. By
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Proposition m Tp(sM = I (T5, M), and so we can conclude that
<F(;1(f - P(.f)) ’g>7_‘11/2 = <f - P(.f) |Fag>7-'[1/2 =0, Vge TﬁMa

where we used that the adjoint of T, is I); !, because Iy is unitary. This proves the
second identity in (2.32]).
Step 2: Consider the 2-homogeneous deficit functional defined by

O(f) = SPIFIZ,y — IS F I 7aares).

Like its 4-homogeneous counterpart ¢, the functional ¢ is I'y-invariant, so that, by Step
1,
¢(f) = o(clafi + TafL) = d(chi + f1).

Now ¢(cfi) = 0, and since (fi | f1)4,12» = 0, we can expand to see that

2
- = H (S£)3Sf1 dtdz.
A

Combining Theorem and Lemma from the previous chapter, we see that the
right-hand side is zero. Expanding to second order, using this fact again, we obtain

d
—o(ch +ef1)

oleh <01 =[Sl — i || (SR ]
* L4R1+3

+ O FLlfB10)-

Evaluating at € = 1, using that ||[Sf|  agisy = S| fill12, and comparing with the
expression of @) given in (2.26)), we obtain

Q(fL) 3
e+ f1) = — 53— T OUISLI 1)
€t+ 10 = gy +OUAIY)
The proposition then follows from Lemma using that §? = (3/167)/? and that
H‘ﬁ\'H?;.'[I/2(R3) = ‘83‘ = 271'2. O

2.3.2 From local to global: the profile decomposition
We now cast in our notation the profile decomposition of Ramos [62].

Theorem 2.3.4. Let f,, be a bounded sequence in 7:[1/2(]1%3). Then there ezists an at most
countable set { fij=12... } < HY2 and corresponding sequences of transformations
L i such that, up to passing to a subsequence,

J
fn = Zf‘a%fj—l—’r;{,

J=1
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where the remainder term ;| satisfies

Jim Timsup [[S771]| g sy = 0.

Moreover, for each J = 1 the following Pythagorean expansions hold for n — oo:

J
Va2 = S e + 7 e + 0l1), (2.33)
j=1
and
J
HanHi‘l(Rl”) = Z HSf]H4L4(R1+3) + HSTT{Hi4(RI+3) + 0(1)' (2'34)
j=1

The proof of Theorem [2.0.1] will be obtained by the combination of Proposition [2.3.3|
with the following property of optimizing sequences of the Strichartz inequality. We
remark that, unlike the previous proposition, in the proof of the following lemma we use
the result of Foschi that S is the sharp constant in the Strichartz inequality.

Lemma 2.3.5. Let f, € H/?\ {0} be a sequence such that

St
g M Fells@iesy _ o (2.35)

Then, up to passing to a subsequence,

M

0.

Proof. By homogeneity we may assume that || f"HH 3 = 1. We apply the profile decom-
position, Theorem This produces a countable subset { fi:je N} of HY2. We
claim that f7 = 0 for all but one j € N. To prove this we begin by showing that there is
at least one j € N such that f7 # 0. Indeed, if that was not the case then from property
one would infer the contradiction S = 0. Thus we can assume that f! # 0.

The Pythagorean expansion with J = 1 reads

L=+t [

n—00

On the other hand, applying the sharp Strichartz inequality to the L*(R'*3) Pythagorean
expansion ([2.34]) we obtain

54 = nh_{%o HanH%A(RH?’) = HSf1H4L4(R1+3) + nh_{rolo HST}LH4L4(R1+3)

< (19 + 1 Imalls )

n—0o0
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Now if a,b € R are such that a® + b%> = 1 and a* + b* > 1, then necessarily one of them
must vanish. Since f! # 0, then it must be that HT}LHH% — 0. We have thus shown that

fr=Tar £t 4y, H"“%HH% — 0.
This yields, using , that f! € M. Therefore
A M) < [,y — 0,
and the proof is complete. ]

Combining Proposition [2.3.3] and Lemma [2.3.5 we prove the lower bound in Theorem
2.0.1

Proof of Theorem [2.0.1. Since 0 € M, we have that
d(f, M) < |fll .3, VFeHz.

Assume for a contradiction that the lovyelr bound of Theorem 2.0.1] fails. This would
mean that there exists a sequence f, € H2\M such that

2 2 2
. SInlly — 1S Fnlliagies) .

Jim d(F. M) (2.36)

By homogeneity we can assume that ”f”HH% = 1, and so d(f,M) < 1. Then (2.36)
implies that 82| £, . Han\|%4(R1+3) — 0. By Lemma 2.3.5|we obtain that d(f,, M) —
0, and so that (2.36]) would contradict our local bound, Proposition m ]

Remark 2.3.6. The multiplicative constant %82 in Proposition is the optimal one
for the local bound. However, the argument by contradiction just presented does not

give the optimal constant for the global bound. We conjecture that the optimal constant
should be %82.

2.4 Sharpening the energy-Strichartz estimate

We consider the following sharp estimate, due to Bez and Rogers [9];

1
1\2
\\Sf\\L4(R1+5) < S5Hf||7{1(R5), where S5 := <87r> ) (2.37)
There is equality in (2.37)) if and only if
feMs; ::{cFaf*’c>O, acS! XR7},
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where f, = (22(1 +|-|*)72,0), and

Tof(z) = 5’;0 Phy (e%“fo (e?(z + xp)) ,egafl (e?(z + x0)) ) (2.38)
Here, the operators §t0 and Phy are given in (2.4) and (2.5 and

o = (0,750,0',1’0), 0e Sl, to € R,O’ € ]R, xo € RE).

The only difference between these transformations and the ones in the H2 case is that
here there are no Lorentz boosts. As before, the operator 'y, defined in (2.38)) preserves
both sides in the Strichartz inequality (2.37));

ICaf i as) = 1 F s gsy ISTadlpagaes = 1SF | paggies).
for all f e ”Hl(R‘:’). We consider the distance with respect to the H! norm;

c=0

aeS' xR7 (-

We can now state the theorem which we will prove in this section.

d(f, Ms) := inf{ If— CFOLgH’}_'Ll(RS)

Theorem 2.4.1. There is a positive constant C such that

Cd(f,Ms)* < SZI Il sy — ISF|7s(gresy < S3d(F, Ms)*.

The upper bound has already been proved, as it is a special case of Proposition [2.1.1
Before proceeding with the proof of the lower bound, we need a more precise description
of spherical harmonics.

2.4.1 Some more spherical harmonics

Following [58, pp.54], we introduce the normalized associated Legendre functions of
degree ¢ € N>, order m € Nxg with m < ¢, and dimension n € Nx3 to be the functions

AP (nst) == Crun(1 —2)2 Py (2m 4+ nst), te[—1,1], (2.39)

where Py(n;-) is the Legendre polynomial of degree ¢ in dimension n. The normalization
constant

o (20 +n —2)(0 4+ n— 3)!|SZm+n—2]
m,n e,(n o 2)| |S2m+n—1’

is chosen to ensure that

f AJ'(n; cos R) A (n; cos R) (sin R)" 2 dR = &0
0
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Now we let X = (Xo, X1, ..., Xq) denote the Cartesian coordinates on S%. If Y41 is a
normalized spherical harmomc on S of degree m < ¢, then

Yvé (X07X17 s 7Xd) = Azn(d + 1;X0)Y7le_1(X1a s 7Xd) (240)

is a normalized spherical harmonic of degree £ on S% see [58, Section 11]. Applying
(2.40)) iteratively, we construct an explicit complete system of spherical harmonics on S¢,
labeled by the degree ¢ € N> and by the multi-index m € M(¢), where

M(¢) Z{(mlw--,md—ﬁezd*l b=mp >=>...2mg9 > |mg_1] }

The spherical harmonics on with m = 0 are the zonal ones; that is, the ones that
depend on X, only. As before, we use the hat notation to denote the coefficients of
expansions in spherical harmonics;

=0 meM(¢

Now we want to describe the H! scalar product in terms of the Penrose transform.
We will need the following coefficient, related to the Clebsch-Gordan theory associated to
the unitary representations of SO(d + 1); see [73] pp.489-491]. Instead of applying this
general theory, we obtain the formula in Lemma below with a simpler direct proof,
based on the recursion relation for the Legendre polynomials; see [58, Lemma 3, pg. 39].

Definition 2.4.2. For all /,m; € Z

((=mi+1)(¢+mi+d—1)
\/ (QTZJIrdH)(QZld_D , 0<my </,

0, otherwise.

Cq(l,mq) := {

Lemma 2.4.3. For all £ € N5y and m, m’ € M({),

0, m #m,
Oa ’€_£/|7&1’
> 0ry, ( )K,m( ) Cq(l,m1), U=0+1,m=m, ( )

Ca(l;my), £=0+1 m=m'

Proof. We assume, without loss of generality, that ¢ > ¢. We consider the normalized
associated Legendre functions given by (2.39)), which satisfy

1
| A o) (s X (1= X)X = 1 (2.42)

We adopt the convention that A}*(n; Xo) = 0 if m > £. From the aforementioned
recurrence relation for the Legendre polynomials we obtain

0 = a(n; £,m1) A} (n; Xo) — b(n; £,m1) Xo A", (n; Xo)

m (2.43)
+ c(n; L, ml)Aij(n; Xo),
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with

. _ (€—m1)(l+mi1+n—3) ) _ 20+n—4
a(n; £, my) = \/(2€+n—12)(é+n21+n—4)’ b(n; £,m1) = \ m>

c(n; b,m1) = |/ Grf=g.

Multiplying (2.43) by Ay, (n; Xo)(1— Xg)an3 and then integrating, we infer from (2.42))
that, since ¢/ > ¢,

a(na E’ ml)

1
m m g
J_lAg_ll(n; Xo) AL, (n: Xo) Xo(1 = X§) 72" dXo = pom s

Sp_1. (2.44)

We set n = d + 1. Letting dS and dS% ! denote the volume elements of S? and S?~!
respectively, we have the formula

dS(Xo, X1, ..., Xq) = (1 — X2) T dXodS* ™ (X1,. .., Xy). (2.45)
The integral in (2.41)) is computed using the representation (2.40) and the formulas (2.45))
and ([2.44)). O

We rewrite the scalar product as

F19ion = | VBRVBodo+ | figrda.
R R
Now we recall that the Penrose transformation (Fp, F1) of f is
fo=Q2 Fo, f1 =972 Fi; (2.46)

see (T.11). Here Qo(z) = 2(1 + |z|*)~! is the conformal factor of the sterecographic
projection, which is implicit in (2.46]), and whose equations we recall here;

X():Q()—l, Xj :Qox]‘, j: 1,...,d,
see Remark As a special case of formula ([1.17]), we have that
dt+1
\Z _Afo = Q02 A1F07

where A; is the operator on S¢ defined by

—1
Aln,m = <€ + L 5 > n,mQ

see (1.16). Since the Jacobian determinant of the stereographic projection is € d
(see (|1.18))), we have that

(f g>g1(Rd) = Ld A1(Fp)A1(Gop) Qo dS + JSd F1Gy QodS.
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Using the formula €29 = 1 + X, we can use Lemma to compute

o0
F = g ; .
L i Gy Qo dS ; > Fi(t,m)Gy(¢,m) (2.47)
=0 meM(¢)

+ Call,my) (}w, m)C1(0+1,m) + Fy (£ + 1, m)G (L, m)) .
Similarly, {¢. A1Fo A1Go Qo dS is equal to

> (e + d;l>2 Ey(6,m)Go(l,m) + Cq(l, my) <e + d_l> x (2.48)

2
£20
meM(¢)

d—1 - A . A
X <€ +1+ 2) (FO(E, m)Go({ +1,m) + Fo(¢ + 1,m)G0(€,m)) .

2.4.2 The tangent spaces

By the same geometrical considerations of Section 2.2 M5\{0} is a smooth 9-dimensional
manifold, and the tangent space at f; is

Ty Ms =span{ﬁ,8ail“af*]a:0 ’ i = 1,...8}.

The same computations as in the three-dimensional case yield the explicit expression of
Ty, Ms5; the result is given by the entries 1, 2, 3, 5 and 6 of Table where, due to the
change in scaling, the entry number 5 is replaced by the one given below, accounting for
the change in the scaling symmetry. As in the previous subsection, here we systematically
identify z € R® with X = (Xg, X1,...,X5) € S° via the stereographic projection, whose
conformal factor we denote by 2.

‘ Generator ‘ Applied to f. = (Q%,O)

%—F:L"V 0
o 0 24 x-V
2

We thus obtain

02 (3%, a; X, + ag)]
Te M- = 0 7=0"7°%) ca:.b:eR
£V { [ OB (boXo +by) | WIER

that is, applying the Penrose transformation (2.28)),

Fy(t,m) =0, ¢

=
eTe: M — R
FeTaMs {Fl(z,m):o, (>

where we used the expression of the low-degree spherical harmonics; see Remark
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We now specialize the formula (2.48|) for the H! scalar product from the previous
subsection to the case d = 5. We obtain

o0
J Vi Vaodr =3 S (€+2)2F(t,m)Co(t,m) (2.49)
R5

=0 meM(f)

N

+ Cs(6,ma) (€ +2)(¢ + 3) (Fo(z,m)éo(z +1,m)+Ey(l + 1,m)éo(€,m)),

and, similarly, we obtain from (2.47))

fRsflgldazzz > R, m)Gi(L,m) (2.50)

£=0 meM(¢)

+ Cs(t,m1) (Fl(z, m)Gr(C+ 1,m) + Fy (£ +1,m)G1(¢, m)) .

In these formulas,

1 [(l+1=m)(l+4+mm)
Cs(0,my) = 2\/ (“;)(“3) Y. (2.51)

Remark 2.4.4. These formulas show that the H! scalar product is not diagonal in the
coefficients FO(E, m), 13‘1(6, m). Therefore, the orthogonality property f LTy M5 cannot
be characterized in terms of the coefficients Fy(¢, m), Fy(£,m) in a simple way. We define
a different orthogonality condition as follows;

CA;()(& m) = 07

£=0,0=1,meM(@). (2.52)
Gl(ga 0) =0,

gITﬁM5 — {

We will first prove a version of Lemma, with respect to this notion of orthogonality,
from which we will deduce a similar lemma for functions which are orthogonal with
respect to H'(R?).

2.4.3 Proof of Theorem [2.4.1]

Bahouri and Gérard |4] proved a profile decomposition on H! and a version of Lemma
follows with the same proof. Thus it remains to prove the following local version of

Theorem 2.4.71
Proposition 2.4.5. For all f € H'(R®) such that
d(f7M5) < Hf”q{l(R5)7

1t holds that

18
gk%?d(f’ M;5)? + O(d(f, M5)*) < S3IF 15 sy — IS F 175 (2.53)
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Proof. Following verbatim the proof of Proposition [2.3.3] we obtain that
05(F) = S F P gy — 1SF 2agurvsy = ds(cf + Fu).
where ¢ # 0 and
[ F Ll sy = d(f, Ms), and  f1 Ly gsy T Ms. (2.54)

The same computations give the expansion

Qs5(f1)

252 £ P e

s(ch+ f1) = O F Ll sy (2.55)

where the quadratic functional Q5 is defined for f = (fo, f1) € H! (R®) as
Qs(f) = St (1A sy + 2Nl 2 o) 1 s )
—6 H (S£)*(Sf)? dtda.

R1+5

With the same proof as in (2.27), we see that Q5(f) = Qs(fo,0) + Q5(0, f1).

We will compute, in the subsequent subsection, the following expressions, where
(Fo, F1) is the Penrose transformation (2.28)) of f;

Qs5(f0,0) = g[z D emEo(l,m)*+Brm Fo (€ + 1,m) Fy (e, m)], (2.56)
(=2 meM(0)
and
Fi(1,m)?
@s5(0, f1) = g[ > 20‘1,m1T

mEM(l) mip=1

F1 (¢, m)? Fi(t,m)Ey (0 +1,m)
+Z Z (0 +2)? Pe.m (€ +2)(¢ +3) ]’

(2.57)

=2 meM(¢

where the coefficients are given by

_ A4805+1142—200—1246m3 +18m,
Xm = @+1)(@+3) ’
Bem = 20 —1)(€+6)Cs(f,m1),

and Cs(¢,my) is defined in (2.51)).

It remains to bound Q5 from below. We introduce the following linear algebra
criterion, which is true independently of the dimension d.

Lemma 2.4.6 (Diagonal dominance). Let L € N>g and let

{ agm,bem : £ €N, me M) }
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be real sequences satisfying

7 >%|bL,m’;
tom = 3 (oo + br1ml), > L.

Here, and in the rest of the paper, we use the convention that by_1 m =0 if £ —1 < m;.
If the quadratic functional T is defined by

(2.58)

oo
FY =3 S amB(l,m)? + by (€, m)P(L+1,m),
=L meM(¢)

then
T(F)=0, YFelL*SY.

Proof. With the convention that by, = 0if £ < L or £ < mq, we can bound T'(F) from
below by

b - b . .
T(F)> ), "’2’”'F<e,m> ”;’"' F(0,m)? + b P (6, m)F(L+ 1,m)

=L

meM(¢)
1 A N 2
> Z 510t (E(6,m) + sign(bem) F(¢ + 1,m)) " > 0.
J
Lemma 2.4.7. It holds that
Qs(g) = 340 ngq.[l(st VQITﬁM5a (2.59)

where the relation 1 has been defined in ([2.52).

Proof. We consider the term Q5(go,0) first. Defining the quadratic functional

T: {Go(e,m) —0, for =0,0=1, meM(f)}—»R,
9

T'(go) := Q5(90,0) — 340 )y !Vgo\Qda:,

it will suffice to show that T satisfies the conditions of Lemma We perform the
change of variable
H(¢,m)

Golt,m) = C+1((13)

so that, using and -, we have

o0
H) = Z Z az,mﬁ(f, m)2 + b&mﬁ(ﬂ,m)f[(é +1,m),
=2 meM(¢)

(2.60)
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where
a8 41102 —200—12+46m3+18m1  gn  (£+2)?

@m = 3 ((+1)2(0+3)? T340 (GrD)(¢+3)° (2.61)
b . \/(€+1—m1)(€+4+m1) (E(Z—l)(ﬁ—&-ﬁ) _ 91) :
Lm = (0+1)(t+4) 8§ (¢+2)(¢+3) ~ 340 ) -

Notice that by is a rational function: the change of variable (2.60) was chosen to obtain
this. Note also that as,, = aso and that we also have by,, > 0 for £ > 2, so that
bg7m < bg70. Now

1 1 3r 17 97
S — > Y = — — —— =10, 2.62
@2m = 502m =420 7 5020 = 555 7 345340 (2.62)

and, for £ > 2, we have that

1 1
—3 (bem + be—1,m) = ago — 3 (be,o + be—1,0)
P+ 40+15 1 o7

T SUT (0 +3)° @+ +3)340

aym

(2.63)

So the conditions (2.58)) of Lemma are satisfied and we can conclude that

Q5<go,0) = 9i |Vgo|2dx, if Go(f, m) = O, ! = O, 1, m < M(ﬁ)
340 Jgs

To prove the analogous inequality for Q5(0,g1) we consider the quadratic functional
T {Gl(f,o)zo, for £ = 0, £=1}HR
97
T(g1) := Q5(0,91) — = | gid
(gl) Q5< 791) 340 JR5 g1 azr,

We perform the change of variable

R H 2
G (e,m) = TETNCL2)
+1)(C+
so that, by (2.57) and (2.50),
T(H) = D armH(1,m)? + b H (1, m)H(2,m)

meM(1),m1=1

o0
+ 2D aemH (M) + b H(G,m)H (L +1,m),
=2 meM({)

where a1y = %—Z — %%, bim = —3%”0\/% and agm, and by, equal (2.61)) for £ > 2. For
¢ =1,2 and my; = 1 we have that

a17m—%|b17m| = %W—ﬁﬁﬁ\/l5>0,
azm = 3 ([bom| + [brml) = (5% — 355 V7 — 55 V15) 7 > 0.
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For all other values of ¢ and m, the assumptions of Lemma have already been
verified; see (2.62)) for the £ = 2,m; = 2 case (recall that, by convention, by , = 0 if

mi > 1), and (2.63)) for all the other cases. Since Q5(g) = Q5(g0,0) + @5(0,91), the
proof of (2.59) is complete. O

We want to apply Lemma to Q5(f1), where f| satisfies the property (2.54). To
do so, we decompose f| into a sum:

he TﬁMg,
g 1 TﬁM5.

We consider the unique bilinear functional Bs: H'(R®) x H!'(R%) — R that satisfies
Qs5(f) = Bs(f, f). By the Cauchy-Schwarz inequality we have that

fL=g+h, where

Bs(g,h)? < Q5(9)Qs(h) =
where we used that Q5(h) = 0. Therefore
@5(f1) = Qs(g) + Q@s(h) + 2B5(g, h) = Qs(g).
Then by Lemma combined with g = f; — h and fiJ_nHl(Rg))h,

97 9m
Qs(f1) = %HQ”%(RQ ~ 340 (Hfng{l(Rf)) + ”h”;l(ﬂ@)) (2.64)

4 2
= %Hflnyl(]gs)-

We conclude by inserting ([2.64]) into (2.55]), thus yielding the lower bound (2.53)) with

constant
9 1 9 . 18

340 282| . T 340m 857

[
where we have used that 82 = (87)~! and that ||ﬁ,HH1 ®) = 4!85’ = 473, This last
identity follows from the representation of the norm and from the fact that
F.o=1=4/|S?|Yp0 and F,1 = 0; see 1} O
2.4.4 Computation of ()5

Here, g € 7:[1(]1%5) and (G, G1) are related through the Penrose transformation (2.28]).
We recall that S5 = (—)1/ ?. We consider the quadratic functional
Qs(90,0) =S4 (40 90 sy + 21 sy 190 s )
2 2.65
—6 J (S1.)? (cost\/—Agg) dx. (2.65)

R1+5
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The Penrose transform of fi is Foo = 1, K1 = 0; see (1.12). By the formula (2.49) for
the H!(R?) scalar product, we obtain

Sé <4<f*0 |90>§.'11(R5 + 2||f*||§'{1(R5)HgOHi'[l(Rs)) =

3”@ (0,002 + 37”fG0 0,0)Co(1,0) + 3—G0( 02+ N Go(1,m)?
0£meM(1)
+ g (4 2)°Go(tm)? + 2(¢ + 2)(¢ + 3) Cs(6,m1) Go (6, m)Co(£ + 1,m).

=2
meM(¢)

Using Corollary we compute the spacetime integral;

f (S£)? (S(g0,0))? dtde =

R1+5

3 f f [cos@T)(cos T+ Xo) Y cos((2 + OT)Go(6.m)Ye i (X)] dTds.

£20
STx§ meM(0)

Here we used that the Penrose transform of v, = Sf; is Vi = cos(2T"). Now we notice
that, with the convention that Yy, = 0 if £ < 0 or ¢ < mq, formula (2.41) implies

(COST + XO)}/E,m = COS(T)}/&m + C5(€ -1 ml)}/ﬁ—l,m
+ 05(& ml)n+1,m-

Combining this with the L?*(S®) orthonormality of the spherical harmonics Yy, we
obtain that the integral 6 {§ (S£.)% (S(g0,0))? equals

3%@0(0,0) + iGo(O O)Go( 0) + BIG()(LO)Q + 9% Z G()(l,’l’n)2

2 0+£meM(1)

2 2 2 4 . . .

200+ 1)(¢+3)
mei/[(@)

Inserting these formulas into (2.65)) yields formula (2.56)) of the previous subsection.
The proof of formula (2.57) for the functional Q(0, g1) is analogous.
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Chapter 3

Maximizers for the cubic wave
equation

Here we consider real-valued, global solutions u to the cubic equation
Ou = ou3, on R!*3, (NLW)

where o # 0. This equation is locally well-posed in HY/ 2 and small solutions are global;
see Section B.Il We consider

1(0) = sup { [[ul[fagovay | Jim [u(®)lpegs) <0 }. (3.1)

which is manifestly invariant under translations in time, and we will prove in Section
that this is also invariant under Lorentzian boosts.

Our main concern thereafter, will be the proof of the following sharp asymptotic
estimate.

Theorem 3.0.1. Let 0 > 0 be sufficiently small. Then the supremum in (3.1)) is attained

and
I(6) = Cod* + 0C10°% + O(8%), (3.2)

as 0 — 0, where Cy = 16% and

5

o [ 70 Gocusing,
s-3, 0 <0 (defocusing).

Here, Cy denotes the sharp constant in the Strichartz estimate
4 4
ISF 15 gy < Coll Il s (3.3)
With the notation of the previous chapters, Cy = S*.

The outline of this chapter is the following. After having given the precise definition
of solution in the first section, we will discuss the aforementioned Lorentzian invariance.
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Then we will proceed to establish formula via an adaptation of the argument of
Duyckaerts, Merle and Roudenko [31]. We will use the Penrose transform to calculate the
constant C;. In Section [3.5] we will prove the existence of maximizers using a standard
argument based on a nonlinear profile decomposition, which will be be proved in the
appendix. Finally, we give a partial result concerning the uniqueness of these maximizers.

In the appendix, we also use the Penrose transform to produce explicit solutions to
focusing , one which is global and another which blows up in finite time. Finally,
we prove the existence of solutions to for which the norm [lu(to)| 52, at any
to € R, is neither conserved in time nor invariant under Lorentzian boosts. This explains
the necessity to consider the limit as t — —o0 in the definition .

3.1 Preliminaries

We give the definition of a solution to (NLW|). Here we will consider only global solutions

which scatter to linear solutions as t — —o0. The following operator is adapted to this.

Definition 3.1.1. For F € L*3(R!*3), we define
sin((t — s)v/—A)
V—=A
This is well-defined because of the inhomogeneous Strichartz estimate, which follows by

a standard duality argument from the Strichartz estimate previously considered; see, for
example, [41, Lemma 2.3].

Proposition 3.1.2. Let F € L*3(R'3) and w = O 'F. Then

D*F@):ﬁm (F(s,-))ds. (3.4)

[wl pagpresy + sup w322 < ClIF[| Lassgr+sy.- (3.5)
S

Moreover, the map .
teR— w(t) e HY3(R?)
18 continuous.

Remark 3.1.3. Replacing F' with F'1(,_7y, we immediately see that the following estimate
also holds;

lwll Lag—oo,ryxr3) + sup lw(@)ll 312 < ClIF pass((—oom)xr3), VT €R.

x

With this we obtain existence and uniqueness of small solutions by a standard
application of the fixed-point theorem.

Proposition 3.1.4. There ezists 6 > 0 such that, if ||fH7{1/2(R3) < 0, then there exists a
unique solution u to (NLW)|) that satisfies the condition

tEIPoo l|lu(t) — Sf(t)||9'{1/2 =0,
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which we define as the fixed point of the mapping
w— Sf+ 0D71(w3),
in the space L*(R'3) n C(R; HY2(R3)). Moreover, the nonlinear operator
P:f—u
is locally bounded on H'/?(R3), in the sense that

@) agassy + sup 1R(F) Dl < Csll Fll3772- (3.6)

Thus we see that I(9) is finite for small enough values of 6 > 0.

Remark 3.1.5. The nonlinear operator ® is also differentiable for || f||,;1. < . We denote
its directional derivative by

d .
®(flg:= - O(f+eg)| , vge HY2.
e=0

3.2 Lorentzian invariance

For all @ € (—1,1) we define a linear transformation of R*3 as

¥y —ya 0 0 T
o -y« 0 0
L (7—7517527§3) = 3/ g 1 0 g; )
0 0 0 1||&
where v := (1 — ?)~Y2. Clearly, det L* = 1 and (L®)~! = L~%; moreover, for all

(t,2),(1,€) e R,
L7, &) - (t,x) = (7,€) - L(t, ).

Denoting (7,£) = L%(r,€) we also have the fundamental property

T2 e =7 — I

from which it descends that, if 7 = |£[, then 7 = |€[; to see this, note that 72 = €2, and
T =v[¢| — ya&1 = 0. Analogously, if 7 = —[£| then 7 = —[¢].
We also have the Dirac delta identity

S(rF D).

I
see, for example, [37]. By the previous considerations, the left-hand side is Lorentz-
invariant, and so

o(r T €))
€]

26(7% = |€*) L (rag) =

Rl
+I

- 5 ¢
= 50 — 6P Lparaoy = 57 — |21 grny = SO LD

I
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which implies the integration formula

| raeeig o6 of - [ PEdocw o).
R3 1€l Jrs q

We will now prove that [~ commutes with L®. It is for this reason that we defined
[J~! as an integral over (—oo,t) rather that (0,¢). Ramos considered the operator as an
integral over (0,t), but in that case the operators do not commute precisely; see [63]
Proposition 1].

Lemma 3.2.1. Let F € L*3(R'*3). Then, for all a € (—1,1),

O YFoLY = (O 'F)o L~

Proof. By the definition (3.4) and Fubini’s theorem, [J~(F o LY)(t, z) can be written as

Jff Sll’l((t|g‘ 8)|€’)ei(xfy)-§F(La(S’y))1{8<t} dsdy’déﬁ7

modulo irrelevant factors of (2)~3. On the other hand, we divide the operator
-1 -1 -1
] = l:‘+ — [ )

where, for an arbitrary H e LY3(R!*3),

. ei(t@) (€],6)—i(s,y) (£[€].€) d¢
O H(t,x) := Jff 5 H(s,y) 15t dsdym.

We compute a convenient expression for ((J;'F)(L*(t,z)) using the properties of L
that we recalled in the beginning of the section;

fff 2% (Say) {s<yt—yaz1} @S ym
i(t,m)-L (£[€],6)—i(s,9)-(£€1,6) d¢
(&
= JJJ % F(Say)1{5<7t—'yax1} deyE‘
i(t,m)-(1€],6)—i(s,9) L™ (£[€],€) d¢
(&
= JJJ 2% F($7y)1{5<'yt—yaa:1}d8dy@
i(t,m)-(£1€],6) =1L~ (s,9)-(£[£],€) d
e
= JJJ 2 F(37y)1{8<'yt—’yo¢r1}d8dyé

et (@) (£[€],6)—i(s,y)-(£€].€) . i
- M 2% P (8 YD o <ot} 45y 1

We conclude that ((J71F)(L%(t,x)) is equal to

Jff Wei(m—y)'EF(La(s, y))1{5<t—a($1—y1)} deyg
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Figure 3.1: The support of 1(;_qy,} — 1{s<0} intersects the light cone only at the origin.

Using these two expressions, the difference [17!(F o L*) — ((J7'F) o L* can be written
as

JJJ S.Hl|(;|§|)€iy.£G(57y) (1{s<ozy1} - 1{S<0}) dsdydg, (3.7)

where G(s,y) := F(L%(s +t,y + x)). We now note that the distribution v, defined by
the formal integral

visy) = J]Rii Sin‘(;m)e_iyf *

is a fundamental solution to the wave equation, that is,

(v =0, on R*3,
v(0) = (0,0),

where 4 is the Dirac distribution. Therefore, v is supported in the cone {|y|? < s?}, which
intersects the support of 11,4y} — 1{s<0) only at the origin (recalling that la] < 1); see
Figure Thus the integral (3.7)) vanishes, completing the proof. O
Corollary 3.2.2. Let a € (—1,1), let F € L*3(R'*3), and let

Wwe =[] 'F oL

Then, the map t € R — wq(t) € HY/2(R3) is continuous.
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The full symmetry group of solutions to (NLW|) that we consider consists of Lorentzian
boosts, dilations and spacetime translations. The Lorentzian boost of velocity 3 € R3,
with || < 1, is defined by

Lﬁ(’r) 5) =R 'oL%o R(Ta 5)? a = ’/8‘7
where R(7,£) = (1, R'€), and R’ is a rotation that maps (1,0,0) to 8/|8]. By convention
we assume that L(®00) is the identity. We denote
A(t,z) = LP (At = to), Mz — z0)),
where tg € R,z0 € R3, )\ > 0 and B € R3, with || < 1; note that Lemma readily
implies that, for all F'e L¥3(R!*3),
Y FoA) = X211 F)oA. (3.8)

It is well-known that these transformations act unitarily on solutions to the linear wave
equation with data in #2, as in the following lemma, whose proof is an immediate
consequence of Proposition [2.2.3] in the previous chapter.

Lemma 3.2.3. Let f € HY/2(R3). There ezists a unique fa € HY2(R3) such that
ASF(A(t @) = Sfa(t, z). (3.9)

Moreover, || fllz2 = I Fally-

The transformation A also maps smooth solutions of (NLW|) to smooth solutions.
Using Lemma [3.2.1], we can now describe the action of A on the class of solutions that
we defined in Proposition

Theorem 3.2.4. Let ue L*(R'*3), with u e C(R; 7-21/2), satisfy the fized point equation
u=Sf+ o1 Y (u). Denote

up(t, ) = Mu(A(t, z)).
Then up € LYRY™3), with ||upllpa = |[ull 4, ua € C(R; HY?) and

upn = Sfa + o0 H(ud), (3.10)
where fa is defined in (3.9)); in particular,

i fan(t) g = T ()]l

Proof. Using (3.8)), we obtain from u = Sf + o] (u?) that
MoA=NSF)oA+ T L) oA
= Sfa+ o007 (uh),

which proves (3.10). The fact that uy € C(R; HY/2) follows from Corollary O
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3.3 The asymptotic formula

We recall the sharpened Strichartz estimate which we proved in the previous chapter.

Lemma 3.3.1. Let Cy = %. Then there is a constant ¢ > 0 such that
1/2
ISF113 1 gresy + cd(F,M)? < Co*[1F 30z (3.11)

where d(f,M) = inf {||f — gHHI/Q(Rg,) :g €M} and

M=<:g: HSQH%A R1+3 :COHQH;{'LI/Q R3) ( ° (3'12)
( ) (R3)

Throughout this section, we consider || f||,;1. < ¢ with § sufficiently small, so that
the corresponding solution u = ®(f) is well-defined, by Proposition Recalling that

u=®(f) = Sf+ o0 (ud), (3.13)
we will require the following estimates on Picard iterations.
Lemma 3.3.2. Let || f|l;12 <. Then as 6 — 0,

O(f) = Sf+0(8°), (3.14)
O(f) = Sf+o0 " ((SF)?) +O(8°), (3.15)

where the big-O symbols refer to the norms of L*(R'*3) and C(R; H/?).

Proof. By the final estimate of Proposition we have u = ®(f) = O(0) and so
Hu3HL4/3 = O(6%). Then, by the Strichartz estimate of Proposition we obtain

O (u?) = 0(5°),
so the fixed point equation yields . Now, by the Holder inequality,
= (S| s < Cllu = SFl1e (NullZs + I1SF17:) < O(E),
where we used to estimate u — Sf. We rewrite this as
u’ = (Sf)* +0(5),

where the big-O symbol refers to the L*3 norm, and inserting this into the fixed point

equation yields (3.15]). O

The function I, defined in the introduction to the present chapter, can be rewritten
as

1(8) = sup { 110(H)Ssqga-s) | I1f lypnagus) <0 }-
We record some properties of the f that come close to maximize I(9).
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Lemma 3.3.3. Let || f|;;12 <9 and u = ®(f) be close to maximal in the sense that
16) [l = O (3.16)
Then || f|lz12 = 6 + O(6°) and d(f, M) = O(6?). Moreover, there is a C >0 such that
IS FIIszivs) < Cod* — CO2d(f, M), (3.17)
Proof. By squaring the sharpened Strichartz estimate , we obtain
IS Fl7s + 2eSFILad(F, M) < Cod”. (3.18)

Now, we use the first Picard estimate (3.14]) for u = ®(f) in order to find upper and lower
bounds for I(4). On the one hand, by combining it with the closeness assumption (3.16))
and with (3.18)), we find that

I1(8) = [[ul|7s + O(8%) = [|S£||74 + O(6°)
< Cob* — 2| S (1 Fad(F,M)? + O(5°).

On the other hand, if g € M is such that HgHﬁI/Q(RS) = 1, then, by definition,
1(8) = |2 (69)|74 = Cod* + O(6°),

where the second inequality uses (3.14) and the fact that ||S(3g)||7. = Cod*. Combining
these upper and lower bounds for I(J) we find that

2¢|[S £ 7ad(F,M)* < O(°), (3.19)

and
ISF 174 = Cod* + O(3°). (3.20)

Using the Strichartz inequality COHfH;Zl/Q > ||S£||74 and the assumption 1F e <9,

the bound (B3.20)) gives that || f||,1. = 6 + O(6%). Inserting (3.20) into (3.19) we conclude
that d(f,M)? = O(6*). On the other hand, reinserting (3.20) into (3.18) yields (3.17),

and the proof is complete. ]

For a slightly stronger version of this lemma, see Proposition in the previous
chapter.

Lemma 3.3.4. For every f € HY2(R®) there exists a f. € M such that
1f = Bl sy = d(f, M),
Moreover, {fi | f — fi)zp2 = 0 and we write f1 := f — fi; see Figure .

Remark 3.3.5. We caution that, in the previous chapters, the symbol f, has been used
with a different meaning.
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Figure 3.2: Tllustration of Lemma m

We can now obtain the asymptotic formula by combining the previous lemmas with
the second Picard iteration estimate.

Proposition 3.3.6. Let || f[l;12 < d and u = ®(f) be close to maximal in the sense
that
1(8) = Jullzarivs) = O(8°).

Then d(f,M) = O(63) and, as § — 0,
I(6) = Coo* + 0C18° + O(8%),

where o is the coefficient of the nonlinearity in (NLW|). The constant Cy satisfies

geM

3.21
gl = 1 (3:21)

oCy =sup< o Jf (Sg)’t11((Sg)?) dtda

R1+3

Proof. By Lemma [3.3.4] we can write f = fi + f1. Using the orthogonality, we have
£l + 1 F LG = 1F Iy < 8%
from which we conclude that || fi[|,;12 < . This also shows that
£l = 6%+ O(5Y), (3.22)

because Hf||3_-ll/2 =62+ O(6*) and Hfl||3_-[1/2 = O0(6*) by Lemmam Expanding, we
find
(S£)* = ($£)° + OO illypr),

where the big-O symbol refers to the L*3(R'*3) norm. Applying (]!, we infer from the
Strichartz estimates (3.5 that

O ((SH)?) =T H(S£)?) + 02| £ Lll52),
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where the big-O now refers to both the L4(R'*3) and the C(R; 7-'[1/2) norm. So, we can
write

f (S£)°0 f (SEPTTH(S L)) + 0G| £1llpre)- (3.23)
]R1+3 ]R1+3

Now the key ingredient in this case is the second Picard estimate (3.15)), from which
we deduce
|®(h HL4 = HSh+ o1 Y((Sh)? HL4 + 0(6%),

whenever [|h||,;1. < d. This implies that

1@(R)| 74 = [|Shl[7s + 40 J (Sk)’'((Sh)?) + O(5%). (3.24)

R1+3

As u = ®(f) with ||f|l,;12 <, on the one hand this yields an upper bound using our
closeness hypothesis;

1(8) < Jullts + O(6%) = [SFII%s + 4o f f (SHPTTH(SH?) + 0().
RL+3

Estimating the first term on the right-hand side using (3.17)) of the previous lemma and
the second term using (3.23]), we obtain

I(6) < Cod* + 40 f (SE£OH(S£)3) — Co%d(f, M)?
Ris (3.25)

+O(6%d(f,M)) + O(5°).
For the lower bound, we let f, := L/l Fell a2, s0 that I(0) > H<I>(5]Z;)H%4, and expanding
using we obtain
16) > Cobt + 408 [[ (SEI'DH(SE) + 06°) (3.26)
R1+3
where we used that ||S f;||‘i4 = Cp. Now, using ([3.22)), we see that
O ([ SRR = 185 [| SEIDT(SER) + 0@

R1+3 RI+3

_ ﬂ (SEPTTV(SE)) + O(8),

R1+3

so combining the upper and lower bounds (3.25)) and (3.26) yields
2d(f,M)2 < O(8%d(f, M) + 6%).
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Writing X := d(f,M)d—3, this reads X? < O(1 + X), which implies that X = O(1).
Thus we find that d(f, M) = O(6?).
To complete the proof we observe that, since O(6°d(f,M)) = O(6%), it follows

from (3.25) and (3.26) that

1(5) = Cod* + 4o f f (SEPTT(SE)) + 0(5°). (3.27)

R1+3

However, for all g € M with ||g||,;1/2 = , we also have

1(6) = [®(3g)||L: = Cod* + 40 j j (S9)°C11((S9)%) + O(8%),
R1+3

and so, combining this with (3.27), we conclude that the term

f (SEPTTH(S£))

RI+3

must be equal to

_ eM
s o [ sor'm ey | 1M o),
R1+3 HY/
thus proving ((3.21). O

It remains to evaluate this supremum, which we will do in the sequel.

3.4 Computation of the constant C; via the Penrose trans-
form

We consider the following family of elements of H/2 (R3):

2 2 \?
fo = cos@,—sin@() ,
1+ | 1+ |

vg := Sfg, vg:= (vg, vy). (3.28)
We caution that, in the previous chapters, we used the notation f, to denote what is now

called fo. One can calculate that || foll;1. = ‘83}1/2; see ((1.20)).
Remark 3.4.1. For all t € R it holds that vy(t) = Phyvo(t), where

and we let

sin(6)
Phy f := [ cos(6) m] {fo]
—sin(0)v—A  cos(0)
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The operator Phy: HY2 5 {2 is unitary and it commutes with the linear propagator S;
see the second chapter. However, Phy does not commute with the nonlinear propagator

.

We recast in the notation of the present chapter the characterization of the extremizers
to the Strichartz estimate (3.3); see Section in the previous chapter, for more detail.

Proposition 3.4.2 (Foschi [37]). Let M be the set of extremizing functions for the
Strichartz inequality; see (3.12). Then

M= {c(vgoA)|,_g]|cb,A},

where ¢ =0, 0 € S' and A(t,z) = L (A(t — to), Az — x0)).
Recalling the definition (3.21)) of C;, we define
C(w) := jj w3 Y (w?®), where w e L*(R'*3), (3.29)
R1+3
so that 0C; = sup{oC(v)}, where v = Sg and g € M is such that [|g||,;. = 1.

Proposition 3.4.3. For all w e L*(R'*3),

C(wo A) = NC(w). (3.30)
In particular,
0C1 = max SIP feS ;. (3.31)

Proof. The property (3.30) follows from the commutativity property (3.8) of [(J7'. To
conclude it suffices to note that, by Proposition [3.4.2] if v = Sg with g € M and

lgll312 =1, then v = |S3|71/21)9 oA for a @ € S! and a transformation A with A = 1. O

To compute the maximum in (3.31)) we will use the Penrose transform, which we
briefly recall here; see Section [I.1] in the first chapter, for more details. We recall that
the light-like coordinates on R'*3 are defined by

T =t—r, zt=t+r, whereaz <z,
while the corresponding coordinates on the curved space-time R x S? are
X =4T-R), X*=3(T+R), (3.32)
where T € R, and R is the polar coordinate on S? such that, for all (Xg, X1, Xo, X3) € S3,

Xo =cos(R), (X1,X2,X3)=sin(R)w, weS? Rel0,n].
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R1+3

The Penrose map is the identification of with an open subset of R x S? via the

equations
X~ =arctanz”, X' = arctanz”, (3.33)

so that X~ and X" take values in the region
To={(X",X"e[-Z,3]*| X <X"}. (3.34)
The identification (3.33)) is conformal, in the sense that
dT? — dR? — sin® Rdw® = Q? (dt* — dr* — r?dw?) (3.35)

where dw? denotes the metric tensor of S and the conformal factor Q is the scalar field
given by
Q=201+ (=) 21 + (27)) Y2 = 2cos X* cos X~

In all these equations, as in the rest of the section, the change of variable (3.33]) is implicit.
If v is a scalar field on R!*3, we define a scalar field V on P(R'*3) by the equation

v =QV, (3.36)
which implies that, at ¢ = 0 (corresponding to T = 0),

U|t=0 = (QV)|T=O’ a15U|t=0 = (Q26TV)|T:0 :

The scalar field V' is called the Penrose transform of v. We remark that v is radially
symmetric if and only if V' depends only on X~, X" and in this case, using (3.36)

and (13.33)), we obtain

v = (62 — 0%)(rv)
= D20x+0x-(rQV) (3.37)
= 0%0x+0x-(sin(R)V),

where we used the formula r{2 = sin R, which can be immediately obtained from
by comparing the factors of dw?. We remark that there is also a more general formula,
which includes the case of nonradial v; see , in the first chapter.

As already noted in the previous chapters, the Penrose transform is relevant in our
context, because applying it to vy, as defined in , we obtain a simple expression;

Volr_g = cos®, 0rVp|lp_y = —sinf, and Vy = cos (T +6).

Proposition 3.4.4. It holds that

3

C(ve) = 105

(24cos®0 +5). (3.38)
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Proof. Let wp := [~ (v3). Applying the Penrose transform (3.36) to the integral (3.29)
that defines C, we obtain

7w pr—|T)|
C(vg) = U VEWy dTdS = 4x J f cos®(T + 0)Wysin? RdTdR,
PRI+3) o

where dS = sin? RdRdSs2 denotes the volume element on S?. Here we used that
Q4 dtdx = dTdS, which follows from (3.35). Now the change of variable (3.32) yields

C(vg) = 8 U cos® (X + X~ + 0)sin(X* — X)Wy dX dX*, (3.39)
T

where

Wy := sin(R) Wy,

and T is the half-square defined in (3.34). We will prove that

Wy(X*, X7) = =Wy(X™, XY),

so that the integrand of (3.39)) is symmetric under permutation of the variables, allowing
us to consider the integral over the full square [—%, Z]?

We compute Wy explicitly. From the definition of (37! it follows that

rCwy = rug, on R1*3,
lim ||wglly. =0 (340)
t——0o0 0 HI/2 ’
and using (1.11)), (3.37)), and the aforementioned formula {2 = sin R, we obtain
Twy = Q20x+0x-(sin(R)Wy), and rvj = Q%sin(R)V,
so the factors of Q2 simplify and we obtain from (3.40]) the differential equation
Ox+0x-Wy = sin(X* — X ) cos®(X* + X~ +0).
The general solution Wy of this can be written
X" XY
J f sin(Z —Y)cos®(Y + Z +0)dYdZ + F(X*) + G(X), (3.41)
2 V-3
where F' and G are arbitrary smooth functions.
We claim that
F(X*)+G(X7) =0. (3.42)

To prove this, we notice that for each fixed tg € R, the hypersurface of R'*3 of equation
t = to is mapped by P to the hypersurface of equations

X~ = arctan(tg — r), X' = arctan(ty + r),
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Figure 3.3: As ty — —o0, the Penrose image of the hypersurface t = tg converges

uniformly to the characteristic hypersurface X~ = —3.

(see Figure|3.3]), which, as t) — —o0, converges uniformly to the hypersurface X~ = —m/2.

The condition |lwg(t)|[;12 — 0 thus implies that Wy|x-—_z = 0. We obtain another
condition by observing that, since wy is smooth and radially symmetric, the function Wy
must be regular at R = 0, which implies that Wg\ r=0 = 0. Now the integral of
satisfies both conditions. The first one is obvious, while the second follows from symmetry,
since

X |r=0 = X" |r=0,

so the domain of integration is symmetric under permutation of the variables Y, Z, while
the integrand function changes sign. This proves .

Returning to (3.39), the fact that Wy(X*, X7) = —Wy(X ™, X*) is immediate from
the explicit form of W. Thus the integral in can be replaced by the integral over
[ T T

— 5 5]2, with a multiplicative factor of % More precisely, letting

F(Y,Z,0) :=sin(Z —Y)cos>(Y + Z +0),
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we have the formula

z z X rX*
Clvg) = 4 | j : J J F(X™, X*,0)F(Y,Z,0)dX"dX*dYdZ,
5J-3

_T T
2 2

which allows for explicit computation, yielding (3.38)).

Combining Propositions and we obtain the value of the constant.

Corollary 3.4.5. The constant C1 in Theorem |3.0.1| can be written

C(’Uo) _ 29 T \3
S8 @(@) >0,
te C(UW/Q) 5 T \3
IR _@(@> y 0<0.

3.5 Existence of maximizers

We follow the lines of |31, Section 2] to show that the supremum ({3.1)) is attained for
small enough values of 4. We recall from Proposition :3.1.4 that ®(f) = u denotes the
solution to the fixed point equation associated to (NLW)

u=Sf+ UD_l(u?’),

provided that such a solution exists and is unique. We will require the concentration-
compactness tools developed in Section [3.7) in the Appendix.

Lemma 3.5.1. Suppose that § > 0 satisfies
1. Scattering: 1(6) < oo;
2. Superadditivity: for all a € (0,9),
I(V6% —a?) + I(a) < 1(0); (3.43)
3. Upper semicontinuity: for any sequence oy, < 0,

limsup I(ay,) < I(limsup ay,). (3.44)

n—o0 n—o0

Then there exists a solution u to (NLW)) such that

Jim (u@llpe =5 and [ul}ags) = 10).
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Proof. Let u, be a maximizing sequence of I, that is

un = ®(fa), Nl <6 1(8) = lim flug 7.

We consider a profile decomposition of the sequence f,,, in the sense of Theorem [3.7.3|in
the Appendix, and we claim that all profiles {F7 : j € N>} vanish but one.
To prove this, we denote by g, the sequence obtained by subtracting the profile F7

from f,, that is
gn=Fo— NISFIoN| |
t=0

and we construct the corresponding solution W,, = ®(g,). By the nonlinear profile
decomposition, Corollary we have that

un(t,7) = NDUI (A (1, 2)) + Wi(t, ) + hat, 2),
where ||| pa(gi+3) + SuPger [[An(t)]l512 — 0 as n — 0. By the Pythagorean expan-
sion (2.33)) of the #!/2 norm,
12

52 = anug.[lﬂ = HF]H7.’[1/2 + ”gn”g.llﬂ + 0(1)7 (3'45>

and by Remark
4
unll3s = [|U7]| o + Wl 34 + o(1). (3.46)

Since u,, is a maximizing sequence, we infer from (3.45)) and (3.46))

1(6) = HUJ‘H‘; + lims;clp [Wall74

< [(‘}Fj}|7-'{1/2) + I( 5% — ”FjH’Z}-'[1/2>7

where we also used the upper semicontinuity property (3.44)). Now, the superadditivity
property (13.43|) implies that

either HFjHﬂl/Q =0, or HFjH?p/z = 0.

It cannot be that F/ = 0 for all j > 1, for otherwise the nonlinear profile decomposi-
tion (3.71)) would give the contradiction I(§) = 0. On the other hand, if ||[F/| ;1 = &
then, by (3.45), [|gnlly12 — 0 as n — o0, which means that F* = 0 for all k # j.

We have thus proven that there exists one and only one nonvanishing profile F' for
the sequence f,,. Letting U denote the corresponding nonlinear profile, Corollary
implies that 1(6) = HUHZ}}, and the proof is complete. O

We now turn to the proof that, if 6 > 0 is sufficiently small, then the three properties
of Lemma [3.5.1] are satisfied. We already dealt with the first one in Proposition [3.1.4]
The following lemma implies the third property and will also be used in the proof of the
second property.
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Lemma 3.5.2. There exists A, Cy,Co > 0 such that
Cileld® < |I(6 +¢) — I(6)] < Cole|d®, Vee (—6/2,5/2), (3.47)
whenever ¢ € (0, A]. In particular, I is continuous on (0, A/2].

Proof. In fact we will prove that
4Coed® + O(£6°) < I(6 + ) — I(8) < 4Coe(6 + €)3 + O(£6°), (3.48)

from which (3.47)) follows by taking A > 0 sufficiently small. For this we let || f||,;1. = &
and u = ®(f) be close to maximal in the sense that

1(8) = |lul|74 = O(e6), (3.49)

and we define
ue =0 ((1+5)f), @ :=1+%u

With these definitions, since [Ju + ou? = 0, we have that

~ ~ 2
oe =t — ot = —205u® + O(g—zug),

where the big-O symbol refers to the L*3(R1*3) norm, and since |ju|| 4 is O(6), we can
conclude that

lell a2 = O(e6?).

Moreover, it is clear that [|ue(t) — tc(t)[/;12 — 0 as t — —o0, and so we can apply the
forthcoming perturbation Lemma to obtain

e = Gell s < Ced?,
and we infer that
luellza = [lc]| 74 + O(e8%), (3.50)

where the constant implicit in the big-O notation depends on A only.

We now insert into the inequality (8 + €) > |Juc||14, which follows from the
definition of I. We obtain

I(6+¢) = (14 5)*ull74 + O(e6”)

> I(8) + 421(5) + O(ed%),
where we used the elementary inequality (1 + 5)* > 1+ 45 and the closeness condition
(3-49). Now by the asymptotic Proposition we know that I(d) = Cyd* + O(89)
which can be inserted to complete the proof of the first inequality in (3.48)).

To prove the second inequality and complete the proof of Lemma [3.5.2] we let
| fllz12 =6 + ¢ and u = ®(f) be close to maximal in the sense that

I(6 +¢) — |Jul|14 = O(e(d + €)®).

Then we define u. := ®((1 — 552) f) and 4. := (1 — 55;)u, and argue as before. O
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Proposition 3.5.3. For sufficiently small § > 0,

I(a) + I(\/82 — a2) < I(5) Y ac (0,5).

Proof. This follows from the fact that I is a super-additive function of § to main order,
because 1(8) = Cod* + O(89), together with the estimates of Lemma which rule out
excessive fluctuations; see [31, Proposition 2.7]. O

3.6 Conditional uniqueness of maximizers
If u = ®(f) is a maximizer to I(J), and
A(t,z) = LP(A(t —to), Az — 20)), A>0,|8] <1,tge R,z € R3, (3.51)

then A(uo A) is again a maximizer to (J); this is an immediate consequence of Theo-
rem [3.2.4] In this section we give a partial result about the problem of uniqueness of
maximizers, up to this transformation. The main tool is the local version of the sharpened
Strichartz estimate of the previous chapter.

We begin by showing that each maximizer of I(d) has a unique metric projection on
the manifold M of linear maximizers. We refer to Section [2.2]in the previous chapter for
the definition of the tangent space Tz, M, and we recall that, in the previous chapters,
the symbol f; has been used with a different meaning.

Lemma 3.6.1. Let u = ®(f) be such that ]]u]\i4(R1+3) = I1(9). If 6 > 0 is sufficiently
small, then there exists a unique f, € M\{0} such that

1 = £l = d(f, M),

Moreover, f — fi LTy M, where L denotes orthogonality with respect to the HY2 scalar
product.

Proof. This is proved in Section in the previous chapter, the main issue being

uniqueness. Lemma ensures that | f|,.2 = J, while by Proposition we

have d(f,M) = O(8%). Thus, if ¢ is sufficiently small, then Proposition [2.2.8 can be
applied. O

The elements f, of M\{0} have the unique representation
fi =0 vgoA|,_g, (3.52)

where vg = (vg, yvp) are particular solutions to the linear wave equation, as defined
in (3.28); see the aforementioned Section We let §(f.) denote the unique 0 € S!.
We recall that this parameter 6 does not correspond to any symmetry of ; see
Remark [3.4.11

We can now state the result.
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Theorem 3.6.2. Suppose that ugp = ®(f) and ug = ®(g) satisfy
4 4
1F 22 = llgllgnre = 6, and  1(6) = [luglla = llugllpa,
with § sufficiently small. Suppose moreover that the unique projections f. and g. satisfy

0(f.) = 0(g»). (3.53)
Then there is a transformation A of the form (3.51) such that ug = A(ug o A).

The assumption makes this uniqueness result conditional. We conjecture that
such an assumption is not necessary; that there is a single 8( f;) for each maximizer f to
1(0).

We now recall the local version of the sharpened Strichartz estimate proved in the
previous chapter.

Lemma 3.6.3. Let v be the functional defined by
W(£) = Coll Fllze = IS F I agerrs)-

Then there exists C > 0 such that, for all m € M\{0},

2
t(mtemy) > Cllm|Fpellmolze, ¥ miLTmM. (3.54)

e=0

The derivative in (3.54]) can be computed to be

1 d?

= 2Cy [ mlZallm | — 6 f f (Sm)*(Sm.)%  (3.55)

e=0 R1+3

see the proof of Lemma [2.3.1

Proof of Theorem[3.6.3 By the unique representation (3.52), our assumption (3.53)), and
Lemma up to changing ug with A(ug o A) and ug with ' (ug o A’), where A and A’
are transformations of the form (3.51f), we can decompose

f=cdm+f., g=dém+g,, with f, 1T,,M and g, 1T,,,M,
where m = ‘S3|71/2f9(f*), so that [[m/||,;,. = 1. We denote

h:=f—-g, and h,:=f —gi.

The proof will be complete once we show that h = 0.
We now record the necessary estimates. First, we recall from Proposition that

1Bl < d(f, M) + d(g, M) = O(5°). (3.56)
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Now using the orthogonality, we can expand the identity ”fH?.p/z = ||g\|3_~[1/2, to obtain

52}02 - C/2| = HQLH2' 12 = HfLHQ' 2| S 053”’1LH¢¢1/27
H H
so that
"2 2 -\’ 2 2
(c—dc)* = ( o ) <Co thH%l/Q. (3.57)
In particular,
B0 = (¢ = ¢)?6% + | hilZe = IhLlFe + O IAL|Fe)- (3.58)

We now define w := uy — ug; that is, w = ®(f) — ®(g). By the definition (3.13)) of P,
we have that

w=Sh; +S((c—d)om) + o1 ! (ui} - ug) ,

and the Strichartz estimates give
1B (uf = ug) |14 < CFIIRla2-
Thus by and we have
w =ShL+O((52HhLHﬂ1/2); (3.59)
the big-O symbol referring to the L*(R'*3) norm. Analogously, we see that
ug = S(c'dm) + O(6%). (3.60)

With these estimates in hand, we may now proceed with the proof. The key step is
given by the formula

1 d?
lugllza = lluglpe = =5 Z5(cdm+ehi)|  + 0@ R, (3.61)
e=0
which we will prove later. Note that the left-hand side vanishes by assumption. So,

once (3.61)) is proven, Lemma will imply that

52||h'l||§.'[1/2 < 053||hi||3.'[1/27

for an absolute constant C' > 0, which is only possible if [|h_||;,2 = 0, provided that
§ < C~1. By (3.59), this would imply that h = 0, concluding the proof.
In order to prove (3.61)), we recall that uy = ug + w and we expand

H (ug + w)* — ” ul = 4 H W+ 6 U w2w? + Ok [32)
R1+3 ]R1+3 R1+3 R1+3

—4 f f W + 6 j j (S(5m))2(Sh.)? + O Ry |Zye + OllRs|0),

R1+3 R1+3
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where we used (3.59) and (3.60). By (3.56)), we know that

O [Ih L5z + OllRLlG2) = O ALl 2)-
Thus, using (3.55)), to conclude the proof of (3.61) it remains to show that
4 H udw = —2Coc*6*|hL |70 + O [ LlFps2), (3.62)
R1+3

for which we will use the Lagrange multiplier theorem.
For k € H'/2(R3), let

W (k) := ®(g + k) — ®(g), G(K):= g+ k|3, (3.63)

so that w = W(h), 0 = W(0) and §* = G(0). Since ug = ®(g) is a maximizer for 1(5),
we have that

U Uy = max f f (ug + W(k)* | G(k) = 6% }; (3.64)

R1+3 R1+3

that is, k = 0 is a solution to the constrained optimization problem on the right-hand
side of (3.64). In particular, there exists a Lagrange multiplier u € R such that

uG'(0)k = 4 H ugW'(0)k, Vk e HY2(RY), (3.65)

R1+3

where the notation F’(0)k denotes the directional derivative d%F (gk)’e:O' We need to
compute y. First we note that, by the definition of G,

nG'(0)k = 2u4g | k)ype -
Now, by the definition (3.63)) of W,
W(k) = Sk + o1 " (2(g + k)* — 2(g)*),

and the right-hand side is differentiable; see Remark The directional derivative
equals

W/ (0)k = Sk + 301 ' (2(g9)°®'(9)k) = Sk + O(6°||k|l1;1/2)-

We insert this, the expansion (3.60) of ug and the formula g = ¢'0m + g, into (3.65) to
obtain

24 <c’5m ‘ k>?{1/2 +2u{g] | k>7{1/2 =4 ff (S(c’ém))35k + O<55HkH7-'zl/2)'

R1+3
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We evaluate this equation at k = m, using that (g| [12);:» = 0 and that 1Sm||74 = Co.
The result is
p = 2Coc%6* + O(8°).

We are now ready to conclude the proof of (3.62). We notice that HgHg_-[m =

lg + hHipm =62, s0 2{g| h>7_‘[1/2 = _HhH?Hl/Q' Using this,
4 JJ ugw =4 ff qu/(O)h + 0(53Hh||;1/2),
R1+3 R1+3

= 2H<g | h>7.'[1/2 + 0(53||h‘|§_[1/2)
= —2Coc?0% | B2 + OGP |%)),

where we used that w = W(h) = W/(0)h + O(Hh”im). Since ||k 512 equals [|Fy ]|,
to main order (see (3.58])), the proof of (3.62)) is complete. O
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Appendix

3.7 Nonlinear profile decomposition

In this section, we adapt the linear profile decomposition of Ramos (see [62]) to sequences

of solutions of (NLWJ). This is classical, and similar to what is done in [63], with the

difference that we assign the initial data at t = —o0, in the sense of Proposition
We consider sequences of transformations of the form

An(t,2) = L (A (t — 1), Al — @),
where \, € (0,0),t, € R, x, € R? and 3, € R? with |3,| < 1. Here we use the notation
a ~ b, to mean that an absolute constant C' > 0 exists such that C~'a < b < Ca. The

following definition is taken from [62].

Definition 3.7.1. Consider sequences (Al)en, (A2),en as above and let

)2~ j j
e = 18, e [1,00).

The sequences AL and A2 are orthogonal if at least one of the following properties is
satisfied:

1. Lorentz property:

2. Rescaling property:

NORENG
lim “oe 4+ s =
A

N0 @ OO.

3. Angular property: it holds that )\%1) ~ A£L2), 0L ~ (2 and

B _ B

1Bal 1871

lim ¢}
n—ow
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4. Spacetime translation property: it holds that )\,(11) = Ag), Bl = B2 and

lim ‘Lﬁi (AL (h —£2), AV (] _x2))‘ = .

n
n—oo

Definition [3.7.1] is motivated by the following property.

Proposition 3.7.2. If wy,wy € L*(R'*3) and AL, A2 are orthogonal sequences of trans-
formations, then for all a, B € [0,00) such that o + 3 = 4,

a B
lirrélo Jf ‘A%l)wl(A}L(t,x))‘ ’)\g)wg(Ai(t,x)) dtdx = 0.
RI+3

We can now recast, using our notation, the aforementioned linear profile decomposition
of Ramos.

Theorem 3.7.3. Let f,, be a bounded sequence in 7-'11/2(R3). Then there exists an at
most countable set

{ (F7, (M))nen) 1§ = 1,2,3,... }, (3.66)

where FJ ¢ 7:[1/2(R3) and the sequences (A%) are pairwise orthogonal in the sense of
Definition[3.7.1), such that, up to passing to a subsequence,

J
Sfn = D AP (SFI)o A + St (3.67)
j=1
where the remainder term ;) satisfies the vanishing property

lim limsup HST7{HL4(R1+3) = 0. (3.68)

J—>0 pooo

Moreover, for each J = 1, we have the Pythagorean expansion, as n — 0,

J
1fallZe = ST e + 72 e + 0(1). (3.69)
j=1

To use Theorem with nonlinear solutions, we will need the following lemma. We
recall from Proposition that a solution to (NLW)) is a function u € L*(R'*3), with
u € C(R; H'/?), that satisfies the fixed point equation

u=Sf+od1 " (u?),
for a f € H'/2(R3). We write u = ®(f). In particular, we are implicitly assuming that

u is a global solution, in the sense that it is defined for all ¢ € R. We will not consider
non-global solutions.
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Lemma 3.7.4 (Perturbation Lemma). Let u = ®(f). For M > 0, assume that
]| paga+sy < M, where @ satisfies

i fu(t) — @) e = 0. and el pusqeisay < <. (3.70)
where e := [J@ — ot® in distributional sense. Then

e = @ll pagasay + sup flu(t) = @Ol < C(M)e.
€

Proof. The assumptions (3.70)) imply that 4 satisfies the fixed-point equation
= Sf+oT @)+ e,

so the difference w := @ — u satisfies w = o J71(@® — u?®) + (I 'e. We now estimate w
on a time interval (—o0,T) < R via the Strichartz inequality (3.5, which holds on such
time intervals because of Remark

0 o otryosy < C + Clolll@+w)l® =@l g o

< Oe + 0l onycms) + Clliwl] g

—0,T)xR3)’
The Gronwall-type inequality of [32, Lemma 8.1] now implies that
3

||w”L4((—oo,T)xR3) < Cyle+ ||wHL4((—oo,T)><]R3))'

Therefore, if T' € R is such that ||wl| ¢ _s 1) xrs) < 2C);¢, then
3

1wl L4 ((—oo,myxR) < Cpg€ + Cy(2Cje)° < 501\”457

provided that ¢ is sufficiently small. By the bootstrap method, this proves the inequality

Hw||L4(]R1+3) < %CM&
The same argument with supcg [|w(?)|[;12 in place of ||w|[ 4(g1+s) concludes the

proof. O

Corollary 3.7.5. Let A > 0 be such that, if || fll;;12 < A, then there exists a unique
solution u = ®(f). If the sequence u, = ®(fy) satisfies || fnll;12 < A, we associate to

each profile (F7 ,A%) in (3.66|) the nonlinear profile

U’ = ®(FY).
Then y
un(t,z) = >, ADUI (A (8, ) + Srjl(t, ) + byl (¢, ), (3.71)
j=1
where ;) is the same as in , while b} is a sequence that satisfies the vanishing
condition
}EI;O hnm_)s(gp (”h?{Hsz(le) + igﬂg Hhi(t)H}'[m) =0. (3.72)
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Proof. To apply Lemma |3.7.4] we fix J € N and we denote
J . . .
= SN ADUI(NL (1)) + .
=1

J_
By orthogonality of the sequences A, (see Proposition , and by the vanishing
property - of Sr/, we can find a sequence &/ > 0 satlsfylng lim; limsup,, € =0
and such that

J
Hai”i‘l(ﬂglw Z HU HL4 R1+3) +€;{
" (3.73)
< C(E |F7||702)? + &) < CaA?,

[y

where we used the estimate (3.6)) and the Pythagorean expansion (3.69). We remark that
the estimate (3.73]) is uniform in J. In order to apply the perturbation Lemma we

notice that, by (3.67)),

Jim e (t) = @052 = 0,

and, moreover,

J . ~J ~J\3
n Dun - U(un)

J 3y
-0 ADUT o AJ + Sr) Ui o N
(z Do g ) -3 (woren)’.

J=1

s0, again by orthogonality of {Aj :j=1...J} and vanishing of Sr;,

}1—{1010 llnmjup HenHL‘l(R1+3) = 0.
We thus obtain (3.72f), concluding the proof. O

Remark 3.7.6. Proposition also implies that

||un||i4(R1+3) = Z HUjH4L4(R1+3) + HsrT{Hi‘l(RH?’) + Eg’
j=1

where

lim lim sup 5 = 0.
J—>0 posoo

3.8 Some explicit solutions to the cubic wave equation

The Penrose transform can be used to find the smooth solutions

2 2¢/2
w(t,z) - T p— L
V1 (= [z)24/1 + (t + [2])? 1+ |z|* — 2
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to the focusing equation
Cu =u?, on RS, (3.74)

Note that u® blows up at time ¢ = 1. These solutions are known; for example, u® is |1,
equation (4.8)] (with ¢ = 1), and u’ is [13| equation (7)] (with a = —1,b = 1/2), where
they are computed with different methods. Our alternative method, based on the Penrose
transform, involves only a very short computation.

We recall from Section [I1.1], in the first chapter, that the Penrose transform associates
to any function u, defined on R'*3, a function U defined on the region

—rT<T<m
P(RIHS) = (T, (cos R, sian)) eRxSY| O<R<n—|T|
weS?
They satisfy
u(t,rw) = QU(T, cos R, sin Rw), (3.75)

where r > 0 and w € S? are the polar coordinates on R3, and

t = arctan(T + R) + arctan(T' — R), r = arctan(T + R) — arctan(T — R),

and the function ) is

Q=201+ t+r)>)V21+ (t—r)*)"12

As we noted in (1.7)), the mapping of R'*3 onto P(R!'*3) is conformal; therefore
Ou = Q3(0% — Ags + 1)U;

see ([1.10). We conclude that (3.74) is equivalent to the equation
02U — AgsU +U = U3, on P(R'F3). (3.76)

Considering functions U that depend on T only, (3.76) reduces to the ordinary
differential equation
U'+U=U?

which has the conserved quantity

(U/)Q U2 U4

E= _——
2 * 2 4
It follows immediately from (3.75)) that the stationary solution U® = 1 is the Penrose
transform of u®. The blow up solution U? = CfT, which is characterized by the properties

E =0 and 07U%(0) = 0, is the Penrose transform of u’. To see this, we use the formula
1
cosT = 5(1 + |z — tH)Q,
which can be found, for example, in [46, pag. 277].
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Remark 3.8.1. The solution u® can also be obtained by setting z; = it in
21/2
1+ o]+ a3+ a3 +a]

Indeed, @ solves the elliptic equation —Ags@Q = @3, which is transformed into ([3.74]) by
the formal substitution z; — t.

Q=

3.9 The H#'2 norm is not Lorentz-invariant

The following lemma immediately implies the existence of smooth solutions u to (NLW))
such that [[u(t)||,;/2 is not preserved by time translations and Lorentzian transformations.
We recall from Section that, for all v € (—1,1),

Lo(t,x) = (yt — yaxy,yx1 — yat, xe, x3), where v = (1 — a2)_1/2.

Lemma 3.9.1. Let u be a smooth global solution to [Ju = ou® on R1t3. Then

et s =20 [ (<8) 7 (ulto, )t ) o (3.77)

and, letting uq := uwo L,

%Hua(tO)H?_p/z =—20 JRS $1(—A)_1/2(ut(t0, '))US(to, x)dx. (3.78)

a=0
Proof. We recall that u(ty) denotes the pair (u(to,-), u¢(to,)). Using the equation, we
obtain

Orou(to) = (ug(to, ), Aulto, ) + ou(to, ). (3.79)

Therefore

Oro luto) 151/2 = 2 Culto) | Gngu(to) yyp/a

= 2f (=AY 2u(ty, 2 )ue(to, x) da + 2f (=A) Y2y (tg, 2) Aulto, ) da
R3 R

3

+ QUJ (_A)_l/QUt(to, x)ug(to, x) du.
R3

Since (—A)~Y2A = —(—A)'Y2, the first two summands cancel, yielding (3.77).
To prove (3.78)), we begin by observing that
Oatha(to)]q—g = — (2104 + to0z, Ju(to) — (0, 0z u(to)).

Integration by parts immediately shows that (u(to) | t00x, u(t0))4;12 = 0. So, reasoning
as before and using (3.79)), we obtain

1

- §5a=oHua(t0)Hiuz = (u(to) | x10ryu(to) + (0, Oy u(to) )y

= f ut(—A)_%(xlAu) + (—A)%u Tiug + (—A)_%ut Oz, U + a(—A)_%utwl ul.
R3
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Now, using the elementary commutator identity [(—A)~Y2 2] = (-=A)~%2d,,, we see
that the first three summands cancel. This completes the proof. O

It is very easy to construct solutions to (NLWJ) such that the derivatives in (3.77]) and (3.78] -
do not vanish. For example, if fy # 0 is a smooth function with compact support then

letting f1 = f3, and considering a sufficiently small € > 0, there exists a unique smooth
solution u to

Ou = ou®, on RT3,
u(0) = <f,

and by (3.77), étO:OHU(tO)Hip/z # 0. Replacing f1 by |z1| 3z, f3, we obtain a solution

with the property that 8a=0||ua(0)Hi~[1/2 # 0.

Remark 3.9.2. If u is radially symmetric, then the formula (3.77) simplifies;

||u(t0 120 = caf J we(to, )i (to, 5 )rslog‘:fj drds.  (3.80)

Indeed, rewriting the right-hand side of (3.77)) as a convolution;

(t (t
C ff ut 0,T 207y) d:I:dy,
[z =y

R3 xRR3

if uy and w are radially symmetric, this can be further simplified as

o0 0
CO’J J wg(to, m)ud(to, s)r’s? JJ 2 drds.
o Jo ]rw - 377\

Then (3.80) follows from the formula

dsS 1
f _dS(w) - C—1lo
s2 |[rw — sn)|? rs
which is a standard consequence of the Funk-Hecke theorem; see for example [45, Section
3.

Using the previous remark, we can prove that

T+ S
r—s

)

0

ot

Hua(t)H?.pm <0, (3.81)
t=1

where u®(t, 2) = 2(14(t—|z|)?) Y2 (14 (t+|x|)?)~/? is the explicit solution to (NLW]) which
we found in the previous section. To begin, we compute

T2—
<ua<1,r>,u?<1,r>>—< 2 1>>

+4 (rt +4)
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Applying (3.80),
a a 2
[u (@) )|52 = C || rslog

ot
We let I denote the integral in the right-hand side. Applying the scaling (r, s) — v/2(r, s)
and symmetrizing with respect to the transformation (r,s) — (s,r), we have

2I = ff rslog

We symmetrize again, this time with respect to the inversion

PG 4 )35t 1 4) 3202 — 2) drds.
rTr—S

t=1

r+s
r—Ss

(r* + )72 (s + 1) 7320 + 82 — 1) drds.

r s drds
(T7 3) = ( 72rs20 r2+32) , drds — (r2+52)2

(r? + 5% —1)

to obtain
1 r? + s?

o0 o0
4] = J J rslog ’W
0 0 r—S
_ drds.

[(r4 FD2(st+ D)2 (4 (2 4 22 (st + (72 4 s2)4)2

We note that the integrand function is nonpositive for all r, s = 0. Indeed, both the term
in the round brackets and the one in the square brackets change sign only on the line
r2 + 5% = 1, so the two signs cancel each other. This proves (3.81)).

74



Bibliography

1]

S. Anco and S. Liu. “Exact solutions of semilinear radial wave equations in n
dimensions”. In: J. Math. Anal. Appl. 297 (2004), pp. 317-342.

K. Atkinson and W. Han. Spherical harmonics and approximations on the unit
sphere: an introduction. Springer, 2012.

T. Aubin. “Problemes isopérimétriques et espaces de Sobolev”. In: J. Differential
Geometry 11.4 (1976), pp. 573-598.

H. Bahouri and P. Gérard. “High frequency approximation of solutions to critical
nonlinear wave equations”. In: Amer. J. Math. 121.1 (1999), pp. 131-175.

J. Bennett, N. Bez, and M. Iliopoulou. “Flow monotonicity and Strichartz inequali-
ties”. In: Int. Math. Res. Not. 19 (2015), pp. 9415-9437.

J. Bennett, N. Bez, A. Carbery, and D. Hundertmark. “Heat-flow monotonicity of
Strichartz norms”. In: Anal. PDE 2.2 (2009), pp. 147-158.

N. Bez and C. Jeavons. “A sharp Sobolev-Strichartz estimate for the wave equation”.
In: Electron. Res. Announc. Math. Sci. 22 (2015), pp. 46-54.

N. Bez, C. Jeavons, and N. Pattakos. “Sharp Sobolev-Strichartz estimates for the
free Schrodinger propagator”. In: Current trends in analysis and its applications.
2015, pp. 281-288.

N. Bez and K. M. Rogers. “A sharp Strichartz estimate for the wave equation with
data in the energy space”. In: J. Eur. Math. Soc. (JEMS) 15.3 (2013), pp. 805-823.

N. Bez, H. Saito, and M. Sugimoto. “Applications of the Funk-Hecke theorem to
smoothing and trace estimates”. In: Adv. Math. 285 (2015), pp. 1767 —1795.

N. Bez and M. Sugimoto. “Optimal constants and extremisers for some smoothing
estimates”. In: J. Anal. Math. 131 (2017), pp. 159-187.

G. Bianchi and H. Egnell. “A note on the Sobolev inequality”. In: J. Funct. Anal.
100.1 (1991), pp. 18-24.

P. Bizon and A. Zenginoglu. “Universality of global dynamics for the cubic wave
equation”. In: Nonlinearity 22.10 (2009).

H. Brezis and E. Lieb. “Sobolev inequalities with remainder terms”. In: J. Funct.
Anal. 62 (1985), pp. 73 —86.

75



[15]

A. Bulut. “Maximizers for the Strichartz inequalities for the wave equation”. In:
Differential Integral Equations 23.11/12 (2010), pp. 1035-1072.

E. Carneiro, D. Foschi, D. Oliveira e Silva, and C. Thiele. “A sharp trilinear
inequality related to Fourier restriction on the circle”. In: ArXiv e-prints (2015).
arXiv: [1509.06674.

E. Carneiro. “A sharp inequality for the Strichartz norm”. In: Int. Math. Res. Not.
IMRN 16 (2009), pp. 3127-3145.

E. Carneiro and D. Oliveira e Silva. “Some sharp restriction inequalities on the
sphere”. In: Int. Math. Res. Not. IMRN 17 (2015), pp. 8233-8267.

S. Chen, R. L. Frank, and T. Weth. “Remainder Terms in the Fractional Sobolev
Inequality”. In: Indiana Univ. Math. J. 62.4 (2013), pp. 1381-1397.

M. Christ. “A sharpened Hausdorff-Young inequality”. In: ArXiv e-prints (2014).
arXiv: [1406.1210.

D. Christodoulou. “Global solutions of nonlinear hyperbolic equations for small
initial data”. In: Math. Z. 39 (1986), pp. 267-282.

D. Christodoulou. “Solutions globales des équations de champ de Yang-Mills”. In:
C. R. Acad. Sci. Paris Serie I.Tome 293 (1981), pp. 39-42.

A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli. “The sharp Sobolev inequality in
quantitative form”. In: J. Eur. Math. Soc. (JEMS) 11 (2009), pp. 1105-1139.

B. Dodson. “Global well-posedness and scattering for the radial, defocusing, cubic
nonlinear wave equation”. In: ArXiv e-prints (2018). arXiv: 1809.08284.

B. Dodson. “Global well-posedness and scattering for the radial, defocusing, cubic
nonlinear wave equation with almost sharp initial data”. In: ArXiv e-prints (2016).
arXiv: 1604.04255.

B. Dodson. “Global well-posedness and scattering for the radial, defocusing, cubic
wave equation with initial data in a critical Besov space”. In: ArXiv e-prints (2016).
arXiv: [1608.02020.

B. Dodson. “Global well-posedness for the radial, defocusing, nonlinear wave
equation for 3 < p < 5”. In: ArXiv e-prints (2018). arXiv: 1810.02879.

B. Dodson and A. Lawrie. “Scattering for the radial 3D cubic wave equation”. In:
Anal. PDE 8.2 (2015), pp. 467-497.

B. Dodson, A. Lawrie, D. Mendelson, and J. Murphy. “Scattering for defocusing
energy subcritical nonlinear wave equations”. In: ArXiv e-prints (2018). arXiv:
1810.03182.

T. Duyckaerts and F. Merle. “Scattering norm estimate near the threshold for
energy-critical focusing semilinear wave equation”. In: Indiana Univ. Math. J. 58.4
(2009), pp. 1971-2001.

76


http://arxiv.org/abs/1509.06674
http://arxiv.org/abs/1406.1210
http://arxiv.org/abs/1809.08284
http://arxiv.org/abs/1604.04255
http://arxiv.org/abs/1608.02020
http://arxiv.org/abs/1810.02879
http://arxiv.org/abs/1810.03182

[31]

T. Duyckaerts, F. Merle, and S. Roudenko. “Maximizers for the Strichartz norm
for small solutions of mass-critical NLS”. In: Ann. Sc. Norm. Super. Pisa Cl. Sci.
(5) 10.2 (2011), pp. 427-476.

D. Fang, J. Xie, and T. Cazenave. “Scattering for the focusing energy-subcritical
nonlinear Schrédinger equation”. In: Sci. China Math. 54.10 (2011), pp. 2037-2062.

A. Figalli, F. Maggi, and A. Pratelli. “A mass transportation approach to quantita-
tive isoperimetric inequalities”. In: Invent. Math. 182.1 (2010), pp. 167-211.

A. Figalli and R. Neumayer. “Gradient stability for the Sobolev inequality: the
case p = 2". In: ArXiv e-prints (2015). arXiv: 1510.02119.

D. Foschi and D. Oliveira e Silva. “Some recent progress on sharp Fourier restriction
theory”. In: Anal. Math. 43.2 (2017), pp. 241-265.

D. Foschi. “Global maximizers for the sphere adjoint Fourier restriction inequality”.
In: J. Funct. Anal. 268.3 (2015), pp. 690-702.

D. Foschi. “Maximizers for the Strichartz inequality”. In: J. Eur. Math. Soc. (JEMS)
9.4 (2007), pp. 739-774.

V. Georgiev and P. Schirmer. “Global existence of low regularity solutions of
non-linear wave equations”. In: Math. Z. 219 (1995), pp. 1-19.

P. Gérard. “Description du défaut de compacité de l'injection de Sobolev”. In:
ESAIM Control Optim. Calc. Var. 3 (1998), pp. 213-233.

J. Ginibre, A. Soffer, and G. Velo. “The global Cauchy problem for the critical
nonlinear wave equation”. In: J. Funct. Anal. 110.1 (1992), pp. 96-130.

J. Ginibre and G. Velo. “Generalized Strichartz inequalities for the wave equation”.
In: J. Funct. Anal. 133.1 (1995), pp. 50-68.

J. Ginibre and G. Velo. “On a class of nonlinear Schrédinger equations. I. The
Cauchy problem, general case”. In: J. Funct. Anal. 32.1 (1979), pp. 1-32.

F. Gongalves. “Orthogonal Polynomials and Sharp Estimates for the Schrédinger
Equation”. In: ArXiv e-prints (2017). arXiv: [1702.08510.

F. Gongalves. “A Sharpened Strichartz Inequality For Radial Functions”. In: ArXiv
e-prints (2017). arXiv: 1709.08100.

W. Han, K. Atkinson, and H. Zheng. “Some integral identities for spherical har-
monics in an arbitrary dimension”. In: J. Math. Chem. 50 (2012), pp. 1126 —
1135.

L. Héormander. Lectures on nonlinear hyperbolic differential equations. Vol. 26.
Springer-Verlag, Berlin, 1997, pp. viii+289.

D. Hundertmark and V. Zharnitsky. “On sharp Strichartz inequalities in low
dimensions”. In: Int. Math. Res. Not. (2006), Art. ID 34080, 18.

C. Jeavons. “A sharp bilinear estimate for the Klein-Gordon equation in arbitrary
space-time dimensions”. In: Differential Integral Equations 27.1-2 (2014), pp. 137-
156.

7


http://arxiv.org/abs/1510.02119
http://arxiv.org/abs/1702.08510
http://arxiv.org/abs/1709.08100

J.-C. Jiang and S. Shao. “On characterization of the sharp Strichartz inequality for
the Schrodinger equation”. In: Anal. PDE 9.2 (2016), pp. 353-361.

M. Keel and T. Tao. “Endpoint Strichartz estimates”. In: Amer. J. Math. 120.5
(1998), pp. 955-980.

R. Killip, B. Stovall, and M. Visan. “Scattering for the cubic Klein-Gordon equation
in two space dimensions”. In: Trans. Amer. Math. Soc. 364 (2012), pp. 1571-1631.

M. Kunze. “On the existence of a maximizer for the Strichartz inequality”. In:
Comm. Math. Phys. 243.1 (2003), pp. 137-162.

E. H. Lieb. “Sharp constants in the Hardy-Littlewood-Sobolev and related inequal-
ities”. In: The Annals of Mathematics 118.2 (1983), pp. 349-374.

E. H. Lieb and M. Loss. Analysis. Second. Vol. 14. American Mathematical Society,
Providence, RI, 2001.

P.-L. Lions. “The concentration-compactness principle in the calculus of variations.
The limit case, Part 17. In: Rev. Mat. Iberoam. 1.1 (1985), pp. 145-201.

F. Merle and L. Vega. “Compactness at blow-up time for L? solutions of the critical
nonlinear Schrodinger equation in 2d”. In: Int. Math. Res. Not. IMRN 8 (1998),
pp- 399-425.

C. Morpurgo. “Sharp inequalities for functional integrals and traces of conformally
invariant operators”. In: Duke Math. J. 114.3 (2002), pp. 477-553.

C. Miiller. Analysis of spherical symmetriesin Fuclidean spaces. Vol. 129. Springer -
Verlag New York, 1998.

D. Oliveira e Silva. “Extremizers for Fourier restriction inequalities: convex arcs”.
In: J. Anal. Math. 124 (2014), pp. 337-385.

T. Ozawa and K. M. Rogers. “A sharp bilinear estimate for the Klein-Gordon
equation in R'*1”. In: Int. Math. Res. Not. IMRN 5 (2014), pp. 1367-1378.

R. Penrose. “Republication of: Conformal treatment of infinity”. In: Gen. Relativity
Gravitation 43.3 (2011), pp. 901-922.

J. Ramos. “A refinement of the Strichartz inequality for the wave equation with
applications”. In: Adv. Math. 230.2 (2012), pp. 649-698.

J. Ramos. “Nonlinear profile decomposition for the HY2 x H~V/2(R%) energy
subcritical nonlinear wave equation”. In: J. Funct. Anal. 275 (2018), pp. 2614-2646.

C. Rodriguez. “Scattering for radial energy-subcritical wave equations in dimensions
4 and 5”. In: Comm. Partial Differential Equations 42.6 (2017).

I. Segal. “Space-time decay for solutions of wave equations”. In: Adv. Math. 22
(1976), pp. 305-311.

R. Shen. “On the energy subcritical nonlinear wave equation with radial data for
3 <p <5’ In: ArXiv e-prints (2012). arXiv: 1208.2108!

78


http://arxiv.org/abs/1208.2108

[67]

H. Smith and C. Sogge. “Global Strichartz estimates for nontrapping perturba-
tions of the Laplacian”. In: Comm. Partial Differential Equations 25.11-12 (2000),
pp. 2171-2183.

R. Strichartz. “Restrictions of Fourier transforms to quadratic surfaces and decay
of solutions of wave equations”. In: Duke Math. J. 44.3 (1977).

G. Talenti. “Best constant in Sobolev inequality”. In: Ann. Mat. Pura Appl. (4)
110 (1976), pp. 353-372.

T. Tao. “Spacetime bounds for the energy-critical nonlinear wave equation in three
spatial dimensions”. In: Dynamics of PDE 3.2 (2006), pp. 93-110.

D. Tataru. “Strichartz estimates in the hyperbolic space and global existence for the
semilinear wave equation”. In: Trans. Amer. Math. Soc. 353.2 (2000), pp. 795-807.

P. A. Tomas. “A restriction theorem for the Fourier transform”. In: Bull. Amer.
Math. Soc. 81 (1975), pp. 477-478.

N. Vilenkin. Special functions and the theory of group representations. American
Mathematical Society, 1968.



Sharp estimates for linear and nonlinear wave equations
via the Penrose transform

Abstract. We apply the Penrose transform, which is a basic tool of relativistic physics, to the
study of sharp estimates for linear and nonlinear wave equations. We disprove a conjecture
of Foschi, regarding extremizers for the Strichartz inequality with data in the Sobolev space
H'Y? x H-Y2(R%), for even d > 2. On the other hand, we provide evidence to support the
conjecture in odd dimensions and refine his sharp inequality in R'*3, adding a term proportional
to the distance of the initial data from the set of extremizers. Using this, we provide an asymptotic
formula for the Strichartz norm of small solutions to the cubic wave equation in Minkowski
space. The leading coefficient is given by Foschi’s sharp constant. We calculate the constant in
the second term, whose absolute value and sign changes depending on whether the equation is
focusing or defocusing.

Keywords. Wave equation, Strichartz estimate, sharp inequality, Lorentz invariance.

Résumé. Nous appliquons la transformée de Penrose, qui est un outil basique de la physique
relativiste, a des estimations optimales pour les équations des ondes linéaire et nonlinéaire. Nous
infirmons une conjecture de Foschi concernant les points extrémaux de l'inégalité de Strichartz
& données dans I'espace de Sobolev H'/2 x H~1/2(R%), ot d > 2 est pair. En revanche, nous
donnons des indications appuyant cette conjecture en dimension impaire, ainsi qu’une version
raffinée de son inégalité optimale sur R'*3, en ajoutant un terme proportionnel & la distance des
données initiales de I’ensemble des points extrémaux. A Paide de ce résultat, nous obtenons une
formule asymptotique pour la norme de Strichartz des solutions petites de ’équation des ondes
cubique dans I’espace-temps de Minkowski. Le coefficient principal est donné par la constante
optimale de Foschi. Nous calculons le terme suivant, qui change de signe et de valeur absolue
selon que la non-linéarité est focalisante ou défocalisante.

Mots-clés. Equation des ondes, estimation de Strichartz, inégalité optimale, invariance de
Lorentz.

Resumen. Aplicamos la transformada de Penrose, una herramienta bésica de la fisica relativista,
a unas estimaciones 6ptimas para ecuaciones de ondas lineales y no lineales. Invalidamos una
conjetura de Foschi, sobre extremizadores para la estimacién de Strichartz con datos en el espacio
de Sobolev HY? x H=Y/?(R%), para d > 2 par. Por otro lado, vamos a dar indicios en favor
de su conjetura en dimension impar, asi como una versién refinada de su desigualdad 6ptima
en R'*3 afadiendo un término proporcional a la distancia de los datos iniciales del conjunto
de puntos extremales. Utilizando este resultado, conseguimos una féormula asintética para la
norma de Strichartz de soluciones pequenas de la ecuaciéon de ondas ctibica en el espacio-tiempo
de Minkowski. El coeficiente principal coincide con la constante 6ptima de Foschi. Calculamos
explicitamente el coeficiente del otro término, cuyo médulo y signo cambian dependiendo de si
estamos en el caso focusing o defocusing.

Palabras clave. Ecuacién de ondas, estimacién de Strichartz, desigualdad 6ptima, invariancia
de Lorentz.
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