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Résumé:

Nous étudions les propriétés p-adiques d’une famille de 1-cycles algébriques spéciauz sur une
variété de Shimura unitaire de dimension 3 apparaissant dans le cadre des conjectures de Gan-Gross-
Prasad. Ces cycles, introduits par D.Jetchev et étudiés également par Boumasmoud-Brooks-Jetchev
et R.Boumasmoud, proviennent du plongement diagonal U(1,1) < U(2,1)xU(1, 1) associé & une ex-
tension CM E//F. Ils satisfont des relations de distribution < horizontales > et < verticales > sur leur
conducteur, faisant de cette famille un nouvel exemple de systéeme d’Fuler géométrique généralisant
celui des < points CM > sur la courbe modulaire, dont I’exploitation par Kolyvagin permit une
avancée conceptuelle majeure dans l'attaque de la conjecture BSD. La preuve de ces relations lo-
cales entre action de Galois et celle de I'algebre de Hecke de G = U(2,1) x U(1,1) exploite les
propriétés de certains opérateurs agissant sur I'immeuble de Bruhat-Tits de G, en les places finies
de F' correspondantes. Nous construisons, en une place 7 inerte de I’ divisant p, une filtration de
G par des sous-groupes ouverts compacts de type Iwahori définis comme les stabilisateurs d’une
famille croissante de segments d’un méme appartement. Nous adaptons au cas des segments la no-
tion d’opérateurs < successeurs > étudiés par Boumasmoud-Brooks-Jetchev et montrons que ceux-ci
proviennent de l'algebre de Hecke-Iwahori locale. Nous démontrons que la tour de variétés de Shi-
mura induite par cette filtration rend compatibles les actions de Galois et Hecke sur les cycles avec
les morphismes de changement de niveau. Cette relation verticale sur le niveau est un ingrédient en
faveur de 'existence d’un systeme d’Euler en familles p-adiques dans la cohomologie étale en degré
médian de la variété de Shimura de groupe G.

Abstract:

We study the p-adic properties of a family of special algebraic 1-cycles defined on a 3-dimensional
unitary Shimura variety which appears in the setting of the Gan-Gross-Prasad conjectures. These
cycles, introduced by Jetchev and also studied by Boumasmoud-Brooks-Jetchev and Boumasmoud,
arise from the diagonal embedding U(1,1) — U(2,1) x U(1,1) attached to a CM extension E/F.
These satisfy < horizontal > and < vertical > distribution relations for their conductors, making
this family a new instance of a geometric Fuler system generalizing the family of « CM-points > on
modular curves, whose use by Kolyvagin provided a major conceptual advance towards the BSD
conjecture. The proof of these local relations between the Galois action and the action of the Hecke
algebra of G = U(2,1) x U(1,1) make full use of some operators acting on the local Bruhat-Tits
building of G, at the corresponding finite places of F. We construct a 7-local filtration of G -
for some inert place 7 of F' above p - by Iwahori-type compact open subgroups, which are the
stabilizers of an increasing family of segments in a same apartment. We adapt to segments the
notion of < successor > operators studied by Boumasmod-Brooks-Jetchev and show that these arise
from the local Iwahori-Hecke algebra. We show that the tower of varieties induced by this filtration
makes the Galois and Hecke actions compatible with the change-of-level maps. This level-wise
vertical relation is an ingredient towards the existence of a p-adic family of Euler systems in the

middle-degree étale cohomology of the Shimura variety attached to G.



Ce que l’on congoit bien s’énonce clairement,
Et les mots pour le dire arrivent aisément.
Hatez-vous lentement ; et, sans perdre courage,
Vingt fois sur le métier remettez votre ouvrage :
Polissez-le sans cesse et le repolissez ;

Ajoutez quelquefois, et souvent effacez.

N.Boileau, L’Art poétique, Chant I (1674)
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Chapter 0O

Introduction (french version)

Quelques points de motivation

Cette these se situe quelque part dans le vaste monde que représente 1'étude des fonctions
L associées aux représentations automorphes d’un groupe réductif, et les diverses conjectures
portant sur leurs valeurs dites spéciales aux points entiers, dont la plus célebre est sans doute
la conjecture de Birch et Swinnerton-Dyer. Le présent travail est principalement motivé par
deux idées, elle-mémes encore conjecturales a bien des aspects.

La premiere idée provient de I'étude des représentations p-adiques du groupe de Galois
absolu d’un corps de nombres K, et plus précisément de celles qui se réalisent dans la co-
homologie étale p-adique d'une variété algébrique sur K. A une telle représentation p, est
conjecturalement associée une fonction L - une fonction de la variable complexe s - définie
pour Re(s) > 0 par un produit Eulérien

1

L(pps) = EIW

Les conjectures de Tate, Beilinson, Bloch-Kato et Kato ([47], [1], [5], [28]) suggerent I'exis-
tence d'un systeme de classes dans la cohomologie galoisienne en degré 1 des extensions
abéliennes de K vérifiant des relations de distribution dites horizontales, ¢’est-a-dire des re-
lations de compatibilité pour la trace (ou corestriction) faisant intervenir les facteurs d’Euler

du produit ci-dessus : ce qu'on appelle un Systeme d’Euler (cf. [30]).

La premiere application frappante, a la génese du développement de la théorie des systemes
d’Euler, est I'exploitation lumineuse par Kolyvagin ([30]) des relations horizontales satisfaites
par le systeme dit des points d’Heegner sur la courbe modulaire, qui a permis une avancée
considérable dans la démonstration de la conjecture de Birch et Swinnerton-Dyer dans le cas
d’une courbe elliptique rationnelle de rang analytique r» < 1. En théorie d'Iwasawa, ’existence
d’un systeme d’Euler fournit bien souvent une borne supérieure sur la taille des modules de

Selmer de p,, et joue donc un role essentiel dans les preuves des cas connus de la conjecture

11
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principale de la théorie d’Iwasawa ([44], 29, 24, 2]).

Les exemples effectivement connus a ce jour de systemes d’Euler proviennent du cas ou
la variété algébrique sous-jacente est une variété de Shimura pour un certain groupe réductif
G et la preuve des relations de distribution horizontales satisfaites par ce systeme d’Euler
fait intervenir ’algebre de Hecke de G. Plus précisément, une source possiblement abondante
de tels systemes semble provenir de la construction de collections convenables de cycles
algébriques spéciauxr sur une variété de Shimura. Lorsque celle-ci est une courbe modulaire
ou, plus généralement, la variété associée au groupe des unités d'une algebre de quaternions
déployée en au plus une place archimédienne d’un corps de nombres totalement réel, ces
classes proviennent des points dits <« CM >, que 'on sait reliées aux valeurs spéciales par la

formule de Gross-Zagier et ses généralisations (voir [21) 5], 3]).

La seconde idée, essentielle pour ce manuscrit, est qu’un systeme d’Euler de cycles spéciaux
sur une variété de Shimura Shy de niveau donné U doit satisfaire, en sus des relations de
distribution horizontales, des relations de distribution dites verticales dans la tour de variétés
de Shimura (Shy),, ;- Que ces relations supplémentaires puissent exister est motivé par la
théorie des familles p-adiques de représentations automorphes. En effet, on sait depuis les
travaux de Hida et Coleman interpoler une forme modulaire (parabolique, propre) dans une
famille paramétrée par un espace de poids p-adiques (sous des hypotheses < d’ordinarité > ou
plus généralement de < pente finie > en p) et la construction de cette famille repose sur la
géométrie de la courbe modulaire X;(Np") lorsque r tend vers 'infini ([23], 10} [15]). Si plus
généralement on peut construire une famille p-adique de représentations automorphes a par-
tir d’une tour de variétés de Shimura (Shy),. -, avec U’ de plus en plus petit en p, si les
fonctions L des points classiques de cette famille s’interpolent également en une fonction L
p-adique L, et si, enfin, les systemes d'Euler associés a ces fonctions L s’interpolent en une
famille p-adique de systemes d’Euler correspondant a L,, alors il est naturel de penser que
les systemes d’Euler sur les variétés de Shimura Shy satisfont des relations de distribution
verticales. Autrement dit, la propension qu’a un systeme d’Euler de cycles spéciaux sur une
variété de Shimura a s’interpoler p-adiquement doit provenir sur la variété de départ d’'une
compatibilité sur le niveau en p, i.e. vis-a-vis des morphismes naturels entre variétés de ni-
veaux U" = UJUP et U" = U, UP, ou U] C U, (resp. UP) sont des sous-groupes ouverts
compacts des points p-adiques (resp. des points adéliques finis hors de p) de G. Ces rela-
tions de distribution verticales, lorsqu’elles sont connues, permettent en retour de construire
par interpolation de nouveaux systemes d’Euler, méme dans des cas ou une construction

géométrique < directe > n’est pas encore connue ([25] [16]).

Cette these démontre que ces deux espoirs sont fondés pour le systeme d’Euler des cycles
spéciaux sur la variété de groupe U(2,1) x U(1,1) construit dans [27] par D.Jetchev.
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Le systeme d’Euler de Jetchev

Récemment, Jetchev a construit dans [27] une famille de cycles spéciaux sur la variété de
Shimura unitaire associée au groupe U(2,1) x U(1,1) - comprendre, le produit des groupes
unitaires associés a une paire d’espaces hermitiens de signature respective (2,1) et (1,1) en
une place archimédienne distinguée d’une extension CM E/F - en exploitant le plongement
de Gan-Gross-Prasad U(1,1) «— U(2,1) x U(1,1). Il a montré que cette famille vérifiait
des relations locales horizontales en des places inertes < acceptables > de F. Les travaux
ultérieurs de Boumasmoud-Brooks-Jetchev et la these de Boumasmoud - cette derniere dans
le cadre du groupe U(n — 1,1) x U(n — 2,1) pour n > 3 quelconque - ont permis d’étendre
ces relations dans une direction anticyclotomique ([8, [7]) et de formaliser plus précisément
et profondément les relations Hecke-Galois satisfaites par ces cycles spéciaux. L’argument
principal de ces travaux réside en 1’étude d’opérateurs bien choisis sur les immeubles de
Bruhat-Tits en les places finies considérées. Le résultat principal de ce manuscrit consiste,
en vertu de la seconde idée ci-dessus, a établir la compatibilité sur le niveau en p (ou plus
précisément, en une certaine place 7|p inerte dans E/F) de la famille de cycles spéciaux
étudiée par Jetchev, Boumasmoud-Brooks-Jetchev et Boumasmoud.

Déroulé du manuscrit.

Nous expliquons maintenant le contenu du présent travail, dont le cadre géométrique est
celui des conjectures de W-T.Gan, B.Gross et D.Prasad dans le cas des groupes unitaires (cf.
[18], Conjectures 24.1 et 27.1).

e Notations.

Dans cette these, F' désigne un corps de nombres totalement réel de dégré d > 1 dont
on désigne par I 'ensemble des places finies, et E/F est une extension quadratique
totallement imaginaire. On a fixé une fois pour toutes un plongement Q C C et, pour
tout nombre premier p, des plongements ¢, : Q — @ ainsi que des isomorphismes
abstraits 7, : Q, ~ C. L’ensemble I, des places archimédiennes de F est identifié &
I'ensemble Hom(F,Q) = {p1, ..., pa} des plongements réels de F, et ® = {py,...,pa}
désigne un type CM pour E/F, c’est a dire un systéme de représentants pour le quo-
tient Gal(E/F)\Hom(E, Q). On se fixe (V,(-,-)), un E/F-espace hermitien de dimen-
sion 3 et de signature (2,1) en p; (resp. de signature (3,0) en p;, pour i > 2). On
fixe également un vecteur anisotrope ep € V tel que (ep,ep) = 1 et 'on pose
D := Eep et W := D*. Ce dernier est un hyperplan hermitien de signature (1,1) en
p1 et (2,0) en les autres places. Associés a V' et W sont les groupes unitaires U(V') et
U(W) : ce sont des F-groupes réductifs, qui vérifient U(V)p = GL(V)g ~ GLsg
et UW)g =2 GL(W)g ~ GLgpg, et la donnée de W C V induit un plongement

1). Un tel €D existe t()ll.()llI'S, uitte a re-normaliser le produit hermitien par un certain A € F: 0, C€ ui
ne modifiera, pas les données de Shimura étudiées.

Chap. 1
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¢ U(W) < U(V) entre groupes unitaires, dont le premier s’identifie au sous-groupe
{9€U(V); g-ep =ep} du second.

e Groupes et données de Shimura.

L’application du foncteur Resp/q de restriction des scalaires (dii a Weil) aux groupes
unitaires ci-dessus nous fournit les Q-groupes réductifs Gy := Resp/qU(V), Gy =
Resp/oGw, et I'on pose G := Gy x Gy ainsi que H := A(Gw) C G, ot A est le plon-
gement diagonal (tg,1d) : Gy — Gy x Gy, avec (g := Resp/g(t). Le plongement A se
prolonge en un plongement entre deux variétés de Shimura Shy, (H,Y) — Shg (G, X)
- ce sont des variétés algébriques quasi-projectives sur C, propres lorsque F' # Q, de
dimensions respectives 1 et 3 - associées a H et G. Ce plongement induit une immersion
fermée entre leurs modeles canoniques respectifs, définis sur leur corps réflexe commun
égal a E. Les sous-groupes compacts ouverts K C G(Ay) et Ky := H(Ay) N K ci-
dessus peuvent étre quelconques, et 'on imposera seulement la condition qu’ils soient
nets (cf. Définition , ce qui implique que les variétés de Shimura et leurs modeles

canoniques sont lisses.

Cycles spéciaux, actions de Galois et de Hecke.

Le plongement Shg,, (H,Y) < Shg (G, X) - qui correspond au cycle diagonal étudié
dans les conjectures Gan-Gross-Prasad - donne naissance a une famille Zx (G, H) C
Z, (Shg (G, X)) de 1-cycles algébriques H-spéciauz sur Shi (G, X), paramétrés par les
éléments de G(Ay). Par construction, ces cycles sont définis sur des extensions finies
abéliennes de F et, plus précisément, sur le corps de transfert E(oco)/E, sur lequel nous
revenons plus bas. L’ensemble Zx (G, H) se trouve étre en bijection avec le double
quotient Zg(Q) - H(Q)\G(Ay)/K, via I'application qui & g € G(Ay) associe le cycle
Zk(g) défini comme l'image de la composante connexe neutre de Shy, ., (H, Y) par
la suite de E-morphismes :

Sy, (H,Y) —— Shyr,1(G, X) —25 Shye(G, X),

o K,i := H(A;) N gKg'. L’action galoisienne de Gal(E(c0)/E) sur le Z-module
Z[Zx (G, H)], qui provient de I’action sur les composantes connexes de Sh(H,Y"), s’ex-
prime de maniere simple via la réciprocité de Shimura suivante : si 0 € Gal(E(o0)/E)
et si h, € H(A;) vérifie Arty(det(h,)) = o, on montre & la Proposition m que

0-2k(9) = Zk(hsg), pour tout g € G(Ay).

Le tore T! := Resp/@U(l) g/F ci-dessus s’identifie avec le centre des groupes Gy et
T'(Af)
T'(Q)

Gy, et l'isomorphisme Arty, : — Gal(E(c0)/E) provient de la théorie

(2). C’est a dire, correspondant sur les C-points a H(Q) - (Y x Ky ) C Shk, ,(H,Y)(C).
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du corps de classes globale (voir plus bas). En particulier, 'action de Galois com-
mute avec l'action des éléments de l'algebre de Hecke Hy = Hz(G(Ay) / K), qui
operent sur Z[Zk(G,H)| de la maniere usuelle suivante : pour tout g, ¢ € G(Ay)
I'opérateur de double classe [K g K| = p(1k k) € Hi agit sur Zk(¢’) par la formule

P(lKgK) 'ZK(QI) = Z:Zl ZK(QI gi)7 avec K g K = |—'L19iK, gi € G(Af)~

Réseaux globaux, modeéles entiers et compact de base.

Un choix particulier pour le sous-groupe compact ouvert K C G(Ay) est donné au
§ . celui-ci, que 'on note provisoirement K, s’écrit sous la forme Ky x Ky,
ou Ky et Ky sont définis comme les stabilisateurs, dans U(W)(Aps) et U(V)(Agy)
respectivement, des O ®7 Z-réseaux Ly ®Zz et Ly ®z Z oulwet Ly =Ly dOrep
sont des Op-réseaux dans W et V sur lesquels le produit hermitien prend des valeurs
entieres. De maniere équivalente, le compact K s’identifie aux (/9\F—points d’un modele
Op-entier Uy, x Uy, de U(V) x U(W), lisse et a fibres réductives en dehors d'un en-
semble fini de places S* C I ;. On introduit la notion de place inerte acceptable de F :
celles-ci consistent en les places 7 de F, inertes dans E/F et en dehors de 1’ensemble
fini de places S? D S!. L’ensemble S? correspond aux places finies v pour lesquelles
les réseaux locaux Ly, et Ly, ne sont pas autoduaux, ou bien ou le déterminant de

I'espace hermitien local (W,,(-,-),) - et donc celui de (V,, (-, -),) - n’est pas trivial
X

dans le quotient . Le choix du compact K, implique qu’il s’écrit, en chaque

F’U
Ng,/r, (E))
place finie 7 de F, inerte et acceptable, comme un produit Ky = K, x K7, ou K est le
stabilisateur dans G, := (U(V) x U(W)) (F;) de la paire (Ly,, Ly,,) de réseaux auto-
duauz - pour la dualité induite par le produit hermitien local (-, ), - dans V, & W,. De
maniere équivalente, les places inertes acceptables 7 sont telles que 1’espace hermitien
local V, admet des bases particulieres appelées bases de Witt (cf. § Sauf men-
tion du contraire, la notation K désignera toujours par la suite le compact particulier

K.

Application(s) d’Artin et -corps de transfert.

On fixe enfin arbitrairement un élément gy € G(Ay) : par définition des points adéliques,
celui-ci vérifie gy, € K, pour presque toute place finie v, ce qui induit la définition de
notre ensemble de mauvaises places ¥ D S? : sans perte de généralité vis-a-vis des
cycles spéciaux, on supposera que go, = 1, Yo ¢ ¥. On termine ce premier chapitre par
une discussion sur la théorie du corps de classes globale. Apres quelques généralités sur
Iapplication d’Artin globale Art; associée a un corps de nombres L quelconque, et sa
restriction aux ideles finis de L, on s’intéresse ensuite au cas de 'extension particuliere
E/F. On introduit le corps de transfert (en anglais, transfer field) E(c0) C E, que
I’on définit comme 'extension abélienne maximale de E fixée par I'image de 'applica-
tion de transfert Vergp : Gal(F*/F) — Gal(E®/E), et 'on montre l'existence d'un
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T'(Ay)
T (Q)

isomorphisme noté Art, : — Gal(E(00)/E) rendant le carré suivant

AY,
o s Gal(E*/E)

lz»%% laHUlE(m)

THA,) ~

commutatif.

On exprime ensuite le corps de transfert comme une limite inductive d’extensions finies
abéliennes de F, diédrales sur F', appelées corps de transfert de conducteur c. Ce sont
des variantes des corps de classes d’anneaux (ou ring class fields en anglais) prenant en
compte l'inclusion Ay, C Af ;, dont les conducteurs parcourent I'ensemble des idéaux
entiers ¢ C Op. On définit enfin, a la maniere de ([7], VII), une extension finie abélienne
particuliere IC/E, vu comme le corps de définition minimal du cycle de base Zx(go),
et 'on introduit la notion de K-corps de transfert (en anglais, K-transfer fields) de
conducteurs variables f C Op, ou § parcourt tous sauf un nombre fini d’idéaux de Op.
Un résultat di & Nekovar (Lemma entraine que les extensions intermédiaires
entre C-corps de transferts de conducteurs convenables se découpent naturellement en
produits de composantes locales (cf. Corollaire . Ceci motive 'utilisation de ces
corps comme corps de définition naturels pour la famille de cycles spéciaux que 'on

introduira au chapitre 3.

Les immeubles By et By .

Au chapitre 2, une place inerte acceptable 7 étant fixée - dont on note ¢ le cardinal du
corps résiduel O, /w, de caractéristique p - on étudie la composante 7-locale de Ien-
semble Zx (G, H) des cycles H-spéciaux de niveau K, en introduisant l'immeuble de
Bruhat-Tits By. L’'immeuble By, attaché au groupe unitaire local Gy, = U(V)(F}),
est un complexe poly-simplicial obtenu par recollement d’une famille distinguée d’es-
paces affines de dimension réelle 1 appelés appartements. On montre qu’il possede une
structure d’arbre bi-colore dont les sommets se divisent en deux types : hyperspéciaux
(ou noirs) et spéciauzr (ou blancs). Les sommets d'un méme type sont permutés par
I'action transitive de Gy, et sont en bijection avec les Op -réseaux autoduaux, pour
les sommets hyperspéciaux, ou avec les Op_-réseaux strictement presque auto-duaux
de V,, pour les sommets spéciaux (cf. Définition . Leurs stabilisateurs dans Gy,
s’identifient, de cette maniere, aux sous-groupes portant la méme dénomination. On
normalise la distance dist dans 'immeuble de sorte que deux sommets hyperspéciaux
partageant un voisin spécial soient a distance 1. On peut également reproduire la méme
construction & partir du groupe Gy, = U(W)(F;) et obtenir 'immeuble By, qui se
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plonge isométriquement comme un sous-immeuble de By dont les sommets noirs (resp.
blancs) correspondent aux réseaux auto-duaux (resp. strictement presque auto-duaux)
L de V, s’écrivant L = L' ® O, ep, pour un certain réseau L' C W, auto-dual (resp.
strictement presque auto-dual), que l'on identifiera donc & L dans I'immeuble By, .

e Combinatoire de I’'immeuble.
Les observations précédentes impliquent la combinatoire suivante : les sommets noirs
(resp. blancs) de By possedent ¢> + 1 voisins blancs (resp. ¢ + 1 voisins noirs), et les
sommets (noirs ou blancs) de By, possedent g 4+ 1 voisins blancs ou noirs.

e Un appartement spécial A'.
On se concentre désormais sur les sommets hyperspéciaux de 'immeuble, davantage liés
aux cycles. En notant Hyp,, I’ensemble de sommets hyperspéciaux de By et Hypy,, son
sous-ensemble Hypy, N By, on fixe arbitrairement 1'origine de I'immeuble en = := Ly, =
Lw., € Hypy, de sorte que le quotient G,/K, s’identifie naturellement a ’ensemble
Hyp = Hyp, x Hypy, via l'action sur la paire de sommets (z,x) € Hyp. On choisit
un appartement A’ de By, associé a une base de Witt B’ = {¢/_, e, e’} engendrant le
réseau x, et I’on suppose que c’est un appartement spécial de base z, i.e., qu’il intersecte
le sous-immeuble By, en une demi-droite (A')* d’extrémité « (cf. Définition[2.2.2)). Nous
choisissons également une base de Witt B = {e,,ep,e_} de V; telle que ey, e € W,

et eg = ep € D,, dont 'appartement associé A := Ap - inclus dans By, - intersecte A’

en (A)T.

By

Figure 1 — On représente graphiquement le sous-immeuble By sous la forme d’un hyperplan affine
dans By. On a représenté l'appartement spécial A’ sous la forme d’une droite, dont les points
noirs correspondent aux sommets hyperspéciaux et les points blancs aux sommets spéciaux, et qui
intersecte By en le demi-appartement partagé avec A C Byy. Les segments Egz] = [z, 5;1 -z, 5;2 -z

et E%/?/)o = [z, 0w - z,8%, - 2] sont admissibles de longueur 2.
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e Segments et segments admissibles.
Nous rappelons en pour tout n > 0, la notion de segment d’appartement de
longueur n dans By et By, et introduisons la variante de segment admissible, i.e., de
segment qui s’éloigne de 1'origine x (cf. Définition . Pour x € {V, W}, on désigne
par Min) C Hypi") les ensembles formés respectivement des segments admissibles et

des segments de longueur n, et I'on forme les produits Hyp™ o Hyng ) x Hypﬁﬁ) C

Hyp&}1 ) x Hypgﬁ) o Hyp™. Pour tout n > 0, on définit en [2.26|les segments admissibles

standard 581()) S Hypgf) et E%,% € Hypg/ﬁ) obtenus en parcourant, partant de x, les n+ 1
premiers sommets hyperspéciaux de A" sortant du sous-immeuble By, (resp. restant

dans la demi-droite (A’)" C Byy. On pose enfin E(()n) = E% ® E%;,)o c @(").
e La filtration d’Iwahori sur G-.
Pour n > 0 toujours, les sous-groupes de type lwahori IE}Q C Ky, et I%}T C Kw,
sont introduits a la Définition comme étant les stabilisateurs, dans Gy, et Gy,
respectivement, de Eg}% et Egﬁ?o. La famille (I(Tn) = Igj l X I$37> oo dont chaque terme
contient le centre Zg, de G, définit ainsi une filtration décroissante de K, par des

sous-groupes compacts ouverts.

e Opérateurs sur les segments.

Nous reprenons la notion d’opérateurs successeurs U, initialement introduite par Cornut-
Vatsal dans ([13], §6.3) via les opérateurs Tp, et étendue par Boumasmoud-Brooks-
Jetchev ([8], 3.2) comme un opérateur sur le module Z,[Hyp] . Nous ’étendons aux
segments admissibles en un opérateur U™ : Z[m(”)] — Z[m("“)], I'omission de la
localisation en (p) étant valable sin > 1 (cf. Deﬁnition. Lorsque n > 1, 'opérateur
Ign)gl(ﬁ) de ['algebre de Hecke-Iwahori de
niveau n, H" = Hz (G ) IS")), comme le montre le Lemma Ici, 0 € G, désigne
Pélement (&%, 6w) € G, ou 4y i diag(w, 1,@™!) (resp. dow 2 diag (w1, 1,@))
correspondent, dans leur action sur A’, a des shifts dans la direction sortante (resp.
rentrante) par rapport a By,. En particulier, la filtration d’Iwahori vérifie IS"H) =
1 A ST, pour tout n > 0.

U™ est « comparable > & I'élément ¢ = p(1

e La filtration (H,),>¢ et la relation verticale dans I'immeuble.

La filtration d’Iwahori (Ii”))mo induit une filtration (Hn =H,. N I(Tn)) sur le sous-
- n>0
. )

groupe diagonal H, := A(Gw,.) C G,. L'injection naturelle de H, dans I(Tn induit

(3). La localisation en I'idéal (p) provient seulement de la définition de U en x. Ces opérateurs sont redéfinis
dans un degré de généralité supérieur par Boumasmoud dans [7], pour des espaces hermitiens de dimension
quelconque et dans le cas ol 7 est également scindé dans F/F, sans référence au point base z. Nous avons
cependant préféré conserver dans ce manuscrit les opérateurs de [§], au prix d’un degré de généralité moindre
et d’une définition un peu ad-hoc.
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une bijection H, / Hyq ~ 1L / 1 pour tout n > 1, et ce dernier quotient est en

bijection avec l'orbite de 'opérateur U agissant sur un élément bien choisi de Hyp (cf.

Lemma . Ceci induit :
# (Hp [ Hopr) = # (10 J1D) = ¢ wn > 1.

Les groupes H, C G, agissent naturellement sur Z[Hyp(”)], pour tout n > 0. Pour tout
k > 0, on définit le sous-Z-module Z[Hyp(”)]  C (Z[Hyp(”)])Hk comme étant le produit
tensoriel (Z[Hypg}1 )])Hk ®z (Z[Hyp(vg)])Hk, induisant une filtration croissante

ZHyp™)o C Z[Hyp™}; C --- C Z[Hyp™]) C Z[Hyp™]411 C ...
sur Z[Hyp(”)]. Pour tout &' > k > 0, les opérateurs trace
T* : Z[Hyp™ ) — Z[Hyp™ s

sont définis par
Ty @B — > (hoBy) © (hBw),
heHy, [ Hy
avec "M, € Z[Hyp™],, pour x € {V,W}. Nous obtenons finalement & la Proposi-
tion la relation de distribution verticale sur le conducteur, formulée localement

en 7 dans I'immeuble By comme une relation entre ’action de l'opérateur successeur

(n n+m+1,n+m

U™ agissant sur == gm E(()n) et I'opérateur trace Tr , pour tout m >0 :

Trn+m+1,n+m (EngLH-I)) — u(n) (EngLL))

La formulation ([2.40|) est légerement plus commode pour les applications ultérieures :

(Sn Q Sn) o (Vn+1 o Vn+1) . Ty tmtLntm (E7(7111+1)) _ t(n) . Egrrlz)’

ou l'opérateur s,, o v, agit sur un segment admissible de longueur n + 1 dans By en

retirant son premier sommet (i.e., le plus proche de ).

Relation horizontale dans I’immeuble.

En fin de chapitre 2, on applique les constructions précédentes au cas n = 0 (i.e., au cas
des sommets de I'immeuble) pour démontrer, sous une forme légerement différente de
([27], Theorem 1.6), la relation de distribution horizontale en 7. Celle-ci relie I’action du
polynome de Hecke He, - un polynome a coefficients dans ’algebre de Hecke sphérique
H, = Hz(G, | K;), provenant de la donnée de Shimura en 7 et dont les coefficients
peuvent ¢tre exprimés simplement a partir des opérateurs < d’adjacence > t;, to; et
t =t10®to1 (cf. Théoreéme [2.3.2)) - & I'opérateur trace Tr'* agissant sur Z[Hyp]; C
Z[Hyp]. Nous formulons la relation de distribution horizontale de la maniere suivante
a la Proposition :

He,(1)- (r®x) € Tr™Y (Z[Hypl:) .

(¢ — 1)
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La filtration (O!).>¢ sur E!. Introduite au paragraphe [2.2.3| la filtration (O)).>o
sur OET induite par les ordres locaux O, := Op. + w‘Opg,, ¢ > 0, induit a son tour
une filtration (O} = v(0))) s sur B} = U(l)(FT) o v : EX — U(1)(F,) est
I'application z — . C’est une conséquence importante de la formule du conducteur
local (Proposition [2.2.7)) que le déterminant induit une surjection det : H,, — O}, pour

tout n > 0.

Relations horizontales et verticales dans Z[Hﬂer\GT/Ign)].

En posant H3" := ker (det : H, — U(1)(F},)), on traduit au chapitre 3 les relations de
distribution ci-dessus - obtenues via et exprimées dans I'immeuble - en des variantes
dans le Z-module Z[HY\G, / 1&")]. On montre au Lemme que les fibres de l'ap-
plication déterminant det* : H,/H,,, — O} / O, ., ont toutes méme cardinal, égal a
¢°. En définissant, pour tout n > 0, la floche naturelle 7% : Z[Hyp™] = Z[G, /1™] —
Z[H3¥\G, /15")], on obtient les relations suivantes : si k > 0 et si "4 € Z[Hyp™]pi1,
alors :

2 1) Trgsy , (79 0R)), si k= 0.
¢® Trsy y, (9 0X))  , sik > 1.

71_der (Trkﬂ’k(%)) — { qg(q (1)

ou, pour tous entiers k' > k > 0, 'opérateur trace Tr,f,'fz est défini par

Tefr : (Z[HENG, /1) ™ —s (Z[HN\G, /1))
He— Y bR,
heH; [/ H,,
avec Hj := (Hy N HIY)\ Hj.

Dans Z[HY\G,/ 18], les relations de distribution précédentes deviennent donc, en

n = 0 (relation horizontale) :
Tei5 (§) = Her(1) - 7' (z @ x), (2)
pour un certain y € ¢ (Z[l—]ﬁer\GT/KT])H1 et, si n > 1 (relation verticale) :
Ted s (€ 795 (EM00) ) = 10 - 79 (210). 3)

La tour de variétés (Shy (G, X)) en 7.

On fixe désormais une place inerte acceptable particuliere 7, que 'on appellera place
verticale. De retour au contexte global, on déduit de la filtration d’Iwahori locale en 7,
une filtration globale décroissante (I™),5o de K obtenue en posant 1™ := I x K,
Vn > 0, et donc une tour de variétés de Shimura (Shy (G, X)),,~,, out les morphismes

(4). Lequel est égal a det(H).
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de transition 7™ : Shywmi1) (G, X) — Shyw) (G, X) sont finis-étales. Utilisant la com-
patibilité entre applications d’Artin globale et locales de la théorie du corps de classe,
nous exprimons a la Remarque I’action des groupes de décomposition locaux sur
les cycles spéciaux de la maniére suivante : si v € Iy, si 0 € Art,(E)) C Gal(E®/E,)

vérifie O"E = Art}(h) pour un certain h € H,, alors

(00)
Zi(n) (¢u(h) g) =0- ZI(n)(g), Vg € G(Af>7

ou ¢, : H, = H(Ayf),h +— (h,1") est le plongement a la place v de H, dans H(Ay).

La famille de cycles (3(n, 7" -¢)),, . .-
On désigne par P™ I'ensemble des produits finis de places inertes acceptables deux a
deux distinctes, en dehors de 7 et d’'un nombre fini de « mauvaises > places supplémentaires
issues des hypotheses de (1.59). Les relations horizontales et verticales sur Z[H"\G./ IS”)]
nous permettent maintenant de définir une famille globale de cycles spéciaux (3(n, 7™ - ¢)),,+;
sur la tour (Shym (G, X))n>1, engendrés par des éléments bien choisis de G(Ay). Ces )
cycles sont paramétrés, outre leur niveau n, par leur conducteur vertical m > 0 et
leur conducteur modéré ¢ € P7. Leur construction consiste essentiellement a rajouter
place par place a I’élément gy, des composantes locales issues du terme de gauche de

la relation horizontale (2)) (en 7/ € Supp¢) ou bien le shift 6™ d’amplitude m (en 7, cf.
Définition [3.1.4)). Ces cycles spéciaux vérifient 3(n, 7™ - ¢) € Z[Zw (G, H)], Vn > 1 et,

par construction, 3(n, 7™ - ¢) est rationnel sur le K-corps de transfert K(71™ - ¢).

Résultat principal

Pour tout n > 1, le morphisme fini étale Wgn) ¢ Shyni (G, X) — Shym (G, X) est défini
par la composition W((;”) 1= M) g1 ) T0n) © [-4], ol T 11005 / 1(n) €St donné dans le
diagramme suivant :

)
ShI(n+1) (G, X) # ShI(n) 05_11(@5((}, X)

[1] [z [1] | T1(0) As—11(M) s y1(7)

Shym (G, X) Shym (G, X)

On désigne par T'(0) la correspondance algébrique de Hecke associée au diagramme
précédent, et I'on pose T'(9), = (71'((;”))* o (m(™M)*,

Comme mentionné au début de cette introduction, le fait que les fonctions L associées
aux cycles spéciaux puissent s’écrire sous la forme d’un produit eulérien devrait étre la
traduction, dans notre cas, d’'une compatibilité de la famille (3(n, 7™ - ¢)) avec le chan-

gement de conducteur en toute place inerte acceptable 7 # 7/, qui s’exprime ci-dessous
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au moyen du polynome de Hecke He, attaché a la donnée de Shimura locale en 7'.
Par ailleurs, en vertu de la seconde tdée motivant ce travail, la propension qu’ont les
représentations automorphes associées (du moins conjecturalement) aux cycles spéciaux
a s’interpoler en familles p-adiques devrait étre manifestation de l’existence relations
verticales sur le niveau en 7. La structure particulierement commode des extensions
entre K-corps de transfert et les relations locales horizontales et verticales et
induisent finalement le théoreme principal de cette these (cf. Théoréeme ;

Théoréme. La famille (3(n, 7™ - <)) vérifie les compatibilités suivantes :

— (Relation horizontale) Pour tous n > 1, m > 0 et tout produit d’idéaux c-17" € P7,

on a :
Trjc(entm.crr)y /i (rntm.) (5(71, T ¢ T/)) = He./(Frob,/) - 3(n, 7™ - ¢),
ot Frob, € Gal(E%/E,+) est un relevé du Frobenius géométrique associé a l'idéal
premier 'O de Op.
— (Relation verticale sur le niveau) Pour tousn >1, m >0 etc€P7, on a :

q5 Wgn) <Tr]C(Tn+m+1.c)/]C(Tn-Hn.c) (3(71 + 1, Tm . C))) = t(n) -5(71, Tm . c)

En supposant gy = 1 pour simplifier, la relation verticale sur le niveau admet la refor-

mulation suivante :
(m5"). (Trﬁ(fn+m+1-c>/z<(rn+m~c) G(n+1,7m- C))) =T(6). (3(n, 7™ - ¢)). (4)

Remarquons 'analogie formelle avec la Proposition 4.5 de [16], formulée dans le cas
d’une famille (x(¢, S)) de points CM sur une tour de courbes de Shimura, associée au
groupe des unités d’une algebre de quaternions (de niveaux variables S) : la relation

verticale de loc. cit.

T(S' = S) x(c,S) =msys | Y o-x(c, 5

O'EGSI/S

coincide formellement avec dans le cas particulier ou 7 est 1'unique place de F
au-dessus de p. La relation horizontale de loc. cit. :

T(1) - x(c,8) = > o-x(cl,S),
oceGal(K(cl,5)/K(c,S))

ou [ est une place inerte dans I'extension K/F (dans les notations de loc. cit.) admet

quant a elle la reformulation suivante :

> o - [x(c, ) —x(cl, )] = Hy(Frob,) - x(c, S),

ceGal(K(cl,S)/K(c,S))
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ot I'idéal premier A = (O est scindé dans K(¢), et ot H; := X? — T(I)X + [ coincide
avec le polynome de Hecke en [ de la donnée de Shimura considérée par O.Fouquet.

Vers un systeme d’Euler en familles p-adiques.

Rappelons que p désigne la caractéristique résiduelle de la place verticale 7. On a donc
construit un proto systeme d’Euler en familles p-adiques de nature géométrique, satisfaisant
deux types de relations : horizontales et verticales sur le niveau. Il est tentant d’écrire que la
prochaine étape serait désormais d’utiliser 'application d’Abel-Jacobi p-adique pour traduire
ces relations de distribution en des relations entre classes de cohomologie, dans un certain
H' galoisien d’une représentation p-adique de Gal(E/E).

Rappelons que, dans le cas ou F' # Q (ce que l'on supposera jusqu’a la fin de cette
introduction, pour simplifier) la variété de Shimura Sh;m) (G, X), tacitement identifiée & son
modele entier sur Spec E, est propre et lisse pour tout n > 1. On dispose (cf. [37]) d'une
application de classe de cycle p-adique commutant a I'action de Galois et des correspondances
finies (dont les correspondances de Hecke) :

clo : CH? (Shy (G, X)), — HY, (Shyen (G, X) x 2 £,Q,(2)) ,

ou L est une extension finie abélienne quelconque de K(7) (le corps de défintion du cycle de
base 3(1,1)) que l'on fera varier. Les groupes de cohomologie ci-dessus correspondent a la
cohomologie étale continue au sens de [26]. Le morphisme précédent induit a son tour, par
dégénérescence de la suite spectrale de Hochschild-Serre, une fleche :

cly : CH? (Shyn) (G, X))o — H' (Gal(L/L), H,(Shyw (G, X) x 2 £,Q,(2))),

ott CH? (Shym) (G, X)) r,0 désigne le noyau de clo, que I'on appelle communément application
d’Abel-Jacobi p-adique, notée AJ,.

Quelques obstacles demeurent cependant a ce stade. Le premier consiste, en vertu de ce
qui précede, a trouver un moyen de < trivialiser > nos cycles, i.e. de construire une serie de
projections

CH2(ShI(n)(G,X))L — CH2<ShI(n)(G,X))£70, n>1

compatibles aux morphismes 7™ et Wgn) ainsi qu’a l'action de Galois. Un moyen raison-

nable de procéder pourrait, semble-t-il, résider dans 1'utilisation d’un projecteur de type
Hecke-Kiinneth a la maniére de Morel-Suh ([30]) agissant par projection sur la cohomologie
en degrés impairs. L’existence de ce dernier est conjecturale en toute généralité, mais une
définition inconditionnelle pourrait étre rendue possible par 'utilisation d’une tres proche
variante Sh(é, X ) de notre variété de Shimura Sh(G, X), étudiée par Rapoport-Smithling-

Zhang. Cette variante a notamment ’avantage d’étre de type PEL - contrairement aux
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variétés de Gan-Gross-Prasad qu’on sait étre seulement de type abélien - et de posséder
de < meilleurs > modeles entiers ([43], §6), au prix seulement d’étre possiblement définie
sur un corps réflexe légerement plus gros. Qu’on puisse étendre notre famille compatible de
cycles spéciaux a la variante de Rapoport-Smithling-Zhang par des procédés similaires nous
semble raisonnable, le groupe G de loc. cit. étant le produit direct de notre G avec un tore Z<.

A condition, enfin, de savoir ensuite rendre inversible 'opérateur 7'(d), agissant sur le
groupe H3,(Shye (G, X) x g E,Q,(2)) - ou plus précisément, de projeter nos classes de cycles
sur une partie dite de pente finie ot cet opérateur serait, par définition, inversible - la relation
induirait donc 'existence d’un systeme de classes

T(3)." (AJp(3(n, 7™ - ¢)))

n,m,c

compatibles pour la corestriction dans la direction de la pro-extension p-adique formée par
les KC-corps de transfert.



Chapter 1

Special diagonal cycles on Shy (G, X).

This chapter introduces the geometric settings in which the family of so-called special
cycles is defined. We start by introducing the Gan-Gross-Prasad like embedding between
the unitary Shimura varieties Sh(H,Y") — Sh(G, X), which gives rise to the special cycles,
and then study the Galois action of the abelian group Gal(E®/E) (which acts through its
quotient Gal(E(cc)/E)) on the set of special cycles. The end of this chapter, which is of
global nature, is devoted to the study of the fields of definition of these special cycles and to
the structure of the Galois groups obtained from the various extensions attached to them,
using global class field theory.

1.1 The unitary Shimura varieties Sh(G, X) and Sh(H, Y).

We start by fixing an algebraic closure Q of Q embedded inside C and, for any rational
prime p, we fix an algebraic closure Q, of Q, together with a fixed embedding ¢, : Q — Q,.
This amounts to fixing a compatible system (p1)z/q, indexed by the finite field extensions
L/Q, where py, is a prime ideal of O above p. We also fix for convenience an abstract
isomorphism 7, : @ ~ C. For any number field L, we denote by A (resp. Ay, ) the ring of
adeles of L (resp. the ring of finite adeles), and we lighten notations by setting A := Ag and
Ay = Aqgy.

1.1.1 Vector spaces VV and V.

We let E/F be a CM extension of number fields, by which we mean that the number field
E is a totally imaginary quadratic extension of its maximal totally real subfield F', and set
d = [F : Q]. We denote by ¢ : = — T the non-trivial element of Gal(E/F), whose action will
often - slightly abusively - be referred to as complex conjugation. We let I o, and I o, denote
the finite sets of archimedean places for F' and E respectively. We identify Ip ., with the set

Spec F(R) = Spec F(Q) := {p1, ..., pa} of real embeddings of F', and we identify I, with

the quotient set Spec E(C)/Gal(E/F), where ¢ € Gal(E/F) acts on Spec E(C) = Spec E(Q)

25
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via c-¢(x) = ¢(T), forall ¢ : E— Candz € E. Welet & := {p1,...,pa} C Spec E(Q) be a
CM-type for E/F - that is, a family of coset representatives for Spec E(C)/Gal(E/F) - such
that p; : E < Qextends p; foralli = 1,...,d. Accordingly, we will write I o = {p1, ..., Pa}
and, every time we will identify E with a subfield of C with no more precision, it will be
done through the distinguished embedding p;.

We let Iy denote the set of finite (or non-archimedean) places of F, so that Ip :=
I o U IRy is the set of all places of F. For all v € I s, we denote by p, € [Spec Op|~\ {0} its
corresponding non-zero prime ideal in Op, and we set F), := F}, to be the p,-adic completion
of F', whose ring of integers is denoted Op, and whose residue field F, has cardinality ¢,. We
shall say that v is ramified (resp. inert, split) in the extension E/F if the ideal p, is. For all
v|p, we identify the algebraic closures F, ~ @p and we let Ir, denote the set of embeddings
F, — F,. We mention that the sets Iy, and I, = |_|U|p Ir, may be identified (and are)

via 1,.

Let (V,(-,-)) be a 3—dimensi0nal hermitian space relatively to the involution ¢ €
Gal(E/F). In our convention, this means that V is a 3-dimensional E-vector space and

(-,-): V. xV — Eis a F-bilinear form satisfying the following relations:
— (v,w) = (w,v), Yv, w e V.
— w, pw) = (v, w), Yo, w € V, VYA, u € E.
Let a € E \ F be an element satisfying F = F[a] and o? € FX. For any v € I, we
set B, := E ®p F,. More precisely:
— if v = p; € I for some i € {1,...,d} then, by assumption on E, one has p;(a) ¢ R,
hence p;(a?) = pi(a)? € Reg. This gives

FIX]
X2—Oé2

RIX X—pila
oy R — R X

E,=F R~
S X2 = pi(a)?

where Cj;, stands for the copy of C endowed with the E-algebra structure given by p;.

— if v € Iy then E, is the quadratic unramified (resp. totally ramified) extension of F,
if v is inert (resp. if v is ramified) in E/F, in which case one may identify the local
Galois group Gal(FE,/F,) with Gal(E/F), and ¢ € Gal(E/F) acts naturally on E,. If
p,Op splits as qq, with q and @ respectively attached to places w and w of E, then
E, is a quadratic étale algebra over F, which is isomorphic to F, X F},, and where the
element ¢ € Gal(E/F) acts by permutation of the factors.

(1). For simplicity, we will stick to the n = 3 case throughout the whole thesis, mainly because our approach
of level-wise vertical distribution relations is specific to the Bruhat-Tits building of U(3). In this first chapter
though, the setting can be easily generalized to any n > 3 by obvious modifications of the appropriate parts.

(2). Such an « always exists and is well-defined up to multiplication by elements of F'*.

(3). We shall come back to this later on.
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For all v € I, one may thus define an 3-dimensional FE,/F,-hermitian space V, :=
V ®g E,, i.e., a free F,-module of rank 3 endowed with the extended hermitian pairing

<'a'>v: V;)X‘/v_>Ev

defined as follows: for families ();)j_; and (u;)7_; of elements of E,, and vectors (v;), (w;)

in V', one sets:
<Z )\ﬂ)i, Zujwj>v = Z Xiuj(<vi,wj> ® 1) S Ev- (11)
i=1 j=1 1<i, j<r

If v = p; is a real place, the pair (V,,, (-,),,) defines an actual complex hermitian space, for

alli € {1,...,d}.

Assumption 1.1.1. We will assume throughout the following that V,, has signature (2,1)
and that V,, has signature (3,0) for all j > 2.

Let us choose a vector ep € V' which is anisotropic and such that (ep,ep) = 1. Such a
vector ep may always be assumed to exist, up to rescale the hermitian pairing by a totally
positive scalar A € Fs, which will not affect the upcoming Shimura data. Indeed, as the
hermitian space V), := V ®p 3, C has signature (2, 1) and by density of E in C (embedded via
p1), one may always choose some vector e € V satisfying (e, €),, = p1({e,e)) > 0. Therefore
(e, e),, >0forallie{1,...,d},ie., (e, e) € Fs. If ep := e, the modified hermitian space
(V, (-,-)), with (-,-) := ﬁ(, -} is such that (ep,ep) = 1.

Consequently, the hyperplane W := (Eep)* C V endowed with the restricted hermitian
pairing, is a 2-dimensional hermitian space with signature (1,1) at p;, and signature (2,0)
at pj, j = 2.

1.1.2 The F-algebraic groups U(V) and U(W).

If S is an F-algebra then one may, as above, extend naturally the hermitian pairing (-, -)
to the 3-dimensional £ ® r S-module

VerS=Ver(F®rS),

with values in £ ®p S, by letting Gal(E/F) act on F ®p S on the leftmost component only
(i.e., through ¢ (r ® s) := T ® s), and thus setting

O v > pwi Wveps = > Aip((vi,wy) © 1) € E®p S,
i j i
with scalars \;, i; € £ ®p S and vectors v;, w; € V.

We let GL(VE) denote the algebraic group (over Spec E) of linear automorphisms of V/,
whose R-points are simply given by GL(V ®g R) for all E-algebra R. We denote by Vi
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the set V' seen as an F-vector space, and we set U(V) C Resg/pGL(VEg) to be the group
of unitary isometries of Vg: this is a reductive linear algebraic group over Spec F', whose
S-points are given - for any F-algebra S - by

UWV)(S) ={g e GL(V®rS); (9 7,9 Vvers = (T, Y)veys, forallz,y €V &pS}.

We define the F-algebraic group U(W) in the same way. We let Gy and Gy be the Q-
reductive groups obtained by Weil restrictions of scalars,

Gy := Resp/U(V) and Gy = RespoU(W),

and we set G := Gy X Gy. The orthogonal decomposition V- =W 1L D yields a natural
embedding ¢ : U(W) < U(V), induced on R-points by
GL(W ®r R) — GL(V ®F R),

gr— [gIC?D].

This gives - by left-exactness of the Weil restriction - a closed immersion ¢ : Gy — Gy of
algebraic groups over Q, thus a diagonal embedding:

A = (LQ,IdGW) Gy — Gy X Gy = G.

We denote by H := A(Gyy) the diagonal image of Gy inside G, which we shall often identify

1.1.2.1 The groups U(V) and U(W) split over E.

If S is now an FE-algebra, we get an isomorphism

¢ c E®p S =58 x S,
e® z+— (ez,ez) (1.2)
Indeed, recall that we have E = Fla], where a € E ~ F has minimal polynomial f =
X? —a? € F[X]. Then

pa s P o SIXI sx] s

7 Xt+ta)(X—a) Xta X—-a

~ S xS,

where we see o as an element of S via £ — S, and where the last two isomorphisms follow
from the Chinese remainder theorem:

sX+t mod f+— (sX 4+t mod (X +a),sX+t mod (X —a)) = (—sa+t, sa+t) € SX.S,

for any s, ¢ € S. Thus for any e = aa +b € E, ab € F - corresponding to the element

aX +be % - and for all z € S, the element e ® z corresponds to azX + bz € S[X], thus
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maps to (—aza + bz,aza + bz) = ((aa + b)z, (ac + b)z) = (€z,ez), as @ = —a. The inverse
morphism ¢! : S x S — E®p S is now given by
t—s s+t

1
2a+®2

(s,t) = a® € E®pS.

The element a being well defined up to multiplication by F'*, one gets that the preceding

isomorphism does not depend on any choice.

Let us recall that the Galois group Gal(E/F) acts on E ®p S by complex conjuga-
tion on the leftmost component. Therefore, if Y . e; ® z; € E ®p S maps to (s, t) :=
(@2, > ei2) €S xS, then 3. e; @ 2 := >, & ® 2z maps to (3., ez, >, EGzi) = (t, 8) €
S x S. In other words, the complex conjugation ¢ € Gal(E/F') acts on S x S by permuting
the two variables. We set Vs to be the free S-module V ®g S of rank 3. The isomorphism ¢
induces an isomorphism of S-modules:

V®FS:V®E<E®FS)éV@E(S@S)EVS@VS.

For each v € V ®p S, we denote by (vs,v;) € Vg @ Vs the image of v via the above iso-
morphisms. If ¢ € GL(V ®F S), we let (g5, g:) € GL(Vs) x GL(Vs) be the induced pair of
automorphisms: g5 and g; are S-linear automorphisms of Vs such that, for each v € V ®p S,
the image of g -v € V ®p S via the above identification is (gs - vs, g; - v¢) € Vs @ Vg.

Let B be an S-basis for Vg. By extension, B can also be seen as a E ®p S-basis of
VRp(E®rS)=V ®rS, viathemap S — F®r S, s — 1®s. Let v and w be elements
of V®&pr S, and let X,, X,, € (E ®r S)* denote their respective coordinates vectors with
respect to B. Let ¢ : (E ®p S)® = (S x S)3 = S3 x S be the isomorphism induced by ¢
on column vectors, which we decompose as ¢ = (s, ;). Accordingly, the vectors v, vy, ws
and w; of Vg have respective coordinate vectors ¢4(X,), @i(X,), @s(Xw) and ¢;(X,,) with

respect to B. Finally, let us also denote by ¢ = (s, ;) the map induced by ¢ on matrices,
¢
M3(E ®@p S) = M3(S) x M3(S). We define two S-valued, non-degenerate, S-bilinear forms

(,)ssand (, )p: on Vg x Vg by setting, for all y, z € Vs:
<y= Z>B,8 = th ¢S<H) XZ?

<y7 Z)B,t = th <Pt(H) Xz

where X,, X, € 5% are the coordinates of y and z in the basis B, and where H :=
({ei, e;) )1<ij<s € M3(E ®p S) is the matrix of the hermitian pairing (-, -)vg,s with respect

(4). One checks that g, (resp. g;) are defined, for all w € Vg, by

gs-w = (g (w®0)), (resp.g - w := (g - (0B w)),; ),

where w @0 € Vs @ Vg (resp. 0w € Vg @ Vg) is seen as an element of V ®p S via the above identification.
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to B. Let X + Xdenote the component-wise action of ¢ on (E ® S)? induced by the action
on E3. The above considerations imply that:

¢(<v7w>)=¢(tx H X,) = ¢("X,) p(H) p(Xo)
= ("pu(X X,)) (ps(H), oi(H)) (¢s(Xw), i(Xu))
— (¢ s( ) s(Xu)\l @s(Xo) @i(H) pi(X,))-

In other words, one has:
¢(<U,W>V®FSV ®F S) :<<Ut7w8>l3,57 <Usywt>8,t) € S X S (13)
One deduces that, if g € GL(V ®p S) and v, w € V ®p S, then

¢(<g U, g w>V®pS)) = (<gt * Uty Gs - ws>B,sa <gs *Us, Gt - wt>B,t) €S xS (14)

From and (1.4)), one deduces that the element g lies in U(V)(S) if and only if (g, -
Vs, Gt - We)gr = (vs,wy)p for all vectors v, w; € VS. Consequently, the element g,
determines completely gs, and the mapping g + ¢; defines an isomorphism between the
groups U(V)(S) and GL(Vs) = GL(VE)(S), which is functorial in S, for the map ¢ and
the identification V ®p S ~ Vs @ Vs are. In other words, we showed that there is an iso-
morphism U(V)g ~ GL(Vg) between reductive groups over E, the latter being isomorphic
to GL3 g after fixing an E-basis of V. By applying the same argument to W, we get that
UW)g ~ GL(Wg) ~ GLy g.

Remark 1.1.1. — The equality (1.3) - whose left-hand side clearly does not depend on
any choice of basis - remains consistent, as the right-hand side does not depend on the

chosen basis as well. Indeed, if v and w are vectors of V &g S with columns vectors X,
and X,, in B, then

(ve, W)y = "Xy, @r(H) X, = "(ps(X0)) pr(H) 1(Xop).-

If B' is another S-basis of Vs with corresponding transition matriz P € GL3(S) —
GL3(E ®p S) then, in this new basis, H is changed into tPlH Pl =t plgpl,
Thus @u(H) is changed into 'oi(P~) @u(H) @i(P™) =" P~Ly(H) P™, o (X,) is
changed into @s(P) ps(X,) = P @s(Xy) and @(Xy) is changed into P ¢¢(X,,). Conse-
quently, the quantity

Hps(Xy)) @e(H)pi(Xy) is changed into '(Ppy(X,)) (P~ H P71) Pp(Xy,):, i-e., re-
mains invariant. Similar computations show that (v, ws)p. also remains unchanged,
which makes (1.3)) consistent.

(5). As'H = H € M3(E ®F S), one has ‘(¢p,(H)) = ps(*H) = @s(H) = ¢.(H), thus one checks that the
preceding condition alone also implies that (g¢ - v¢, gs - Ws)B,s = (Vi, Ws)B,s for all vy, ws € Vg.
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— If S is a general E-algebra, the arithmetic action of Gal(E/F) on E @ S through
e® z— €® z, which enables us to extend the hermitian product to V ®p S and to
define the S-points of U(x), does not induce an algebraic Galois action on the groups
of S-points U(x)(S) C GL(x ®F S), for x € {V,W}. However, when S admits itself a
Gal(E/F)-action which is compatible with the canonical one on E C S, one may then
define a natural Gal(E /F)-action on the groups U(x)(S) ~ GL3(S) in a functorial way,

as we shall see at § [1.1.5

1.1.3 Hermitian symmetric domains Xy and Xyy.

Let us define the hermitian symmetric domains X and Y attached to the reductive groups
G and H. We start by fixing an E-basis B = {e1, €2, e3} of V, such that e; € D and such that
{ey, e3} is an orthogonal E-basis of W. The extension of scalars from FE to Q - via p; - makes
BB into an orthogonal Q-basis of V ® B Q. By signature property of V,, and by construction
of D, one may assume without loss of generality that (e;,e1),, > 0, (e2,€2),, > 0, and
(e3,e3),, < 0, which we do. Consequently, the modified basis

1 1 . 1
Viene)  Vieaen)  v/—(es es)

is an orthogonal Q-basis of V ®g3 Q in which the hermitian pairing (-,-),, has matrix
J = diag(1,1,—-1).

Bi = {e, €5, €5} = { es}

We denote by S := Resc/rG,,,c the so-called Deligne torus: this is an algebraic torus
over R, whose R-points are C* and which splits over C as S¢ ~ G,, ¢ X Gy, ¢, due to the

following isomorphism:
(Cor S)* =8* x %,
T ® s —(Ts,xs)

for all C-algebra S. Via the above isomorphism, the natural embedding C* = S(R) —
S(C) =C*xC* given by C* 3 2+ 2®1 € (C®gC)* corresponds to z — (Z,2) € C* x C*.

As F' is totally real of degree d, one has a decomposition F ®p R =~ Hle Fpi ~ R%.
For any R-algebra S, with structure morphism 7 : R — S, one gets

Gv(S) = U(V)(F g S) = U(V) ((F ®g R) @& S)

d

~ U(V) (H F,, ®r S) = HU<V)(SM)7

i=1

(6). Recall that F,, denotes the archimedean completion of F' with respect to the place p;, i.e., the copy of
R endowed with the F-algebra structure induced by p; : F— R, for ¢ € {1,...,d}.
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with S, := S @g F,, = S ®@prep, F. Similarly, one has Gy (S) = [[, U(W)(S,,). In other

i

words, one has isomorphisms of R-algebraic groups:
d d
Gye =][[U(V),r and Gur = [[UW),,k. (1.5)
i=1 i=1

where U(V),, g (resp. U(W),, r) denotes the base change of U(V') (resp. U(W)) from F to R
with respect to p;. We let Xy be the Gy (R)-conjugacy class of the morphism hy : S = Gy,
expressed in the basis B; by:

d
S —J[U(WV)yr.

=1
» —(diag (1,1, i) ST (1.6)
<

1; being the identity element of U(V),, g, for all i. The above definition makes sense as,
for any R-algebra S, the term U(V),, r(S) appears as the subgroup of GL(V ®p,, S) =

GL(V ®5 (E ®p,, R) @r S) ~ GL(V,, ®r S)) s GL3(C ®g S), made of those matrices
G € GL3(C ®g S) such that *G'J G = J (here, G denotes the image of G by the involution
of GL3(C ®g S) induced coordinate-wise by CRQr S — C®g S, 2® s — Z® s.) Similarly, we
define Xy to be the Gy (R)-conjugacy class of the morphism

d
hw : S — [JUWV),.x

i=1

Z (diag <1,§> ,12,...,1d).
z

For all i € {1,...,d}, the commutativity of the following diagram

F<"5 R

N N

E-",cC
implies that the base change (U(V)p“R)(C of the R-group U(V),, g to C is isomorphic to
(U(V)E)z.c which is, by the preceding paragraph, isomorphic to GL(Vg)z,c ~ GLsc, , via
the map

¥ U(V)(S) —GL(Vs),
g3t

for any C-algebra S, with Vg := V®p 5 S. Notice that, by definition, the map hy : S — Gyr
factors through the product (Tp),, g X -+ X (T5),,r, Where the torus Tp is defined as

T :=U(Fe) x UFEe) x UFEe3) Cc UV).
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Indeed, one has (E ®p,, R)e; = C,e; = Cpée, for all i € {1,...,d} and j = 1, 2, 3, by
construction of By, hence

(U(Ee1) x U(Eey) x U(Ees)) ,=U(C, e1) x U, e2) x U(C,, e3)

pi,R
= U(C,, e}) x U(C,, €h) X U(C,, e3) C UV),, r;

where U(C,, ¢;) C Resc/rGL(C,, ¢;) denotes the one dimensional unitary group defined over
R in the obvious way.

The restriction ¢‘(T induces - for all i € {1,...,d} - a splitting (Tp)z,c L Gmc,, X

B)5;.C

Gmc,, X Gmc,, C U(V)5,.c, given for any C-algebra S by:

((I1,57 $1,t), (xQ,su x2,t)7 ($3,sa $3,t)) = (ILt, L2ty $3,t) )

with z; = (2, 25,) € U(E€))(S) C 8% x 8%, forall j =1,2,3. Forallie{l,...,d} and
all C-algebra S, one has

(Resg/pGm.p)p.c(S) = (E @y, S)*

= ((E ®Fp R) @& S)* 2 (C @R S)* = S(S5),

which gives an identification between (Resg/pGn, r)s,.c and S¢ =~ Gy, c X Gy c. One checks
that, via the above identification, the complex conjugation ¢ € Gal(E/F) acts on (E ®p,,
S)* o~ S* x S* via (21, 22) 1= (29, 21) € S* x S*, for all C-algebra S. Consequently, one has

—_1 _ _ _ _ _ _
¢(<x1,x2,x3)-<x1,x27:€3) ) = ¢(((1’1,s7$1,t)7 (sz,s,ffzt)a ($3,57$3,t))' ((xl,tla%,i), (ﬁz,tlyxz,i% (mS,tlvx&;)))

Tit Tor T3t
) )
T1,s T2s T3s

= (((z1,s27 4, T1427 1), (T2,5T0, T24T5 ), (T3,505,, T325,))) = (

9

for all (z1, 22, 23) € (Tp),,r(S), with S a C-algebra. Accordingly, the natural extension of
scalars of hy to C corresponds, via the above identifications, to the map:

d
hv’(c : SC — H GL3,(C,JZ.

=1

(25, 2) —(diag (1, 1, ?) 1o, 1),

and we extend similarly hw to hwc : Sc = Gy by (zs, 2t) — (diag(l, j—t), 1,,..., ld). We
check that both complex forms hy,c and hy,c are consistent with the inclusion S(R) < S(C),
2z (Z, 2).

We finally define X to be the product X := Xy x Xy,. By definition, the embedding
tgp : Gw — Gy satisfies g o hyy = hy. This induces an embedding therm @ Xw — Xy,
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therefore the diagonal embedding A = (1g,1dg,, ) : Gw — Gy x Gy induces an embedding
Aperm @ Xw — X. We denote by Y 1= Aperm(Xw) C X the diagonal image of Xy, One
checks that the set Y admits the following alternative description:

Y ={(h: S — Ggr) € X; h factors through Ag : Hg — Gg}. (1.7)

Remark 1.1.2 (Another description of Xy and Xy ). One may divide the C-vector space
V., into the following partition
V, = V,UVauV,

with Vi = {v € V5 (x,2),, € Ryo}, Vo :={v € V,;; (z,2),, = 0} and V_ = {v €
Vous (2, 1), € Reo}. The above partition is stable by the action of (E®p,, R)* ~ C7 |
the sets V. U {0} (resp. Vo, V- U {0}) can be written as disjoint unions of positive (resp.

null, negative) C,, -lines. If v =30  z;¢; € V,, with 1, Ty, x3 € C, then

hence

<va>p1 = ’l’1|2 + |SC2|2 - ‘x3|27

hence V. = {377 wel; }ii}z + Lzl < 1}. The map (depending on the choice of By):

|z3]?

Op, : V_ —>{ 21,29) € C |22 + |2)? < 1},

Z$el—> s 2)

3 T3

induces a bijection between Xy = (Cle\V_ and the open complex 2-dimensional ball By =
{(z1,22) € C; |z1]* + |22)* < 1}. Let us shows that Xy surjects onto the set Xy defined
previously. Indeed, to any negative line £ € Xy corresponds a representative e € £ such that
(e,€),, = —1 (such an e is well-defined up to multiplication by some element of S* C C*).
One may thus extend e into an orthogonal C,, -basis B, = {c,d, e}, such that {c,d} is an ortho-
gonal basis of (+ satisfying (c,c) = (d,d) = 1. The morphism hy,: S — Gyxg defined, for all
R-algebra S, by mapping z € S(S) to the element (diag(l, 1,2),1,,.. 1d) € Gy (expressed
in By) does not depend on the choice of ¢ and d. By construction, one has hy = hvccgl e,
and, if g € U(V),, r(R), one checks that hy e = ghyeg™t: indeed, if the suitable e € ( is
extended into {c,d, e}, then one may decide without loss of generality to extend the suitable

g-e € g-linto the basis Byy:={g-c,g-d,g-e} =g- By, as g is unitary.

That the correspondence ¢ — hy, induces a bijection between Xy and the Gy (R)-conjugacy
class of hy - denoted as Xy - follows from Witt’s theorem: indeed, the group Gy (R) acts on
the set Xy of negative C,, -lines via the projection Gy (R) — U(V),, r(R), and the action of
the latter is transitive by Witt’s theorem, i.e., both sets Xy and Xy are formed of a unique
Gy (R)-orbit. Finally, notice that the choice of By induces an isomorphism between U(V),, r
and U(2,1) € GL3(C). If 7 : C* — P?(C) is the map defined by sending (z,y) € C? to
[ :y: 1] € P(C), then one checks easily that the composite map mo Op, : Xy — P?(C) is
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U(V), g = U(2,1)-equivariant, and that the stabilizer of [0: 0 : 1] = 7 0 Op, (e}) € P*(C) is
the compact subgroup U(2) x U(1) C U(2,1). Accordingly, the preceding implies that the map

0 — hyy induces a sequence of bijections:

By ~(U(2) x U(1))\U(2,1)
~ StabU(V)pIR(R)(Cmeé)\U(V)PlvR(R)
~ Xy
~ Xy,

which identifies Xy with the 2-dimensional complex homogeneous space (U(2) x U(1))\U(2,1).

Similarly, one may replace V,,, with W, and obtain a bijection between Xy = C} \W_ =~
B and the set Xy defined previously, both of which are isomorphic to the homogeneous one-
dimensional quotient Stabyw), »®)(Cpez)\UW), r(R) ~ (U(1) x U(1))\U(L,1). One
checks easily that the above identifications commute with the natural injection Xy — Xy
mduced by W C 'V and with the embedding therm @ Xw — Xy .

1.1.4 The Shimura varieties Shy (G, X) and Shy,(H,Y).
1.1.4.1 The Deligne axioms SV1 - SV6.

Let us check, as a warm-up exercise, that the pairs (Gy, Xy ), (Gw, Xw), (G, X) and
(H,Y) introduced in the preceding paragraph are Shimura data, i.e., that they satisfy the set
of properties SV1 - SV3 - as well as the additional properties SV4 - SV6 - such as defined in
([32] §5) and originally introduced by Deligne in order to axiomatize the theory of Shimura
varieties via the theory of reductive groups. One checks that these axioms are compatible
with products, therefore it will be enough to show that these hold for both pairs (Gy, Xy)
and (Gw, Xw).

For all x € {V, W}, let us denote by Zg, the center of G,. According to ([I2], Proposition
A.5.15), one has Zg, = Resp/gZu) = Resp/U(1)g/r, where U(1)g/p C U(x) is the F-torus
whose points are unitary homotheties inside U(x), i.e., U(1)g/p is isomorphic to the unitary
group over F' attached to the one-dimensional F/F-hermitian space (F, (z,z') := z2'), and
the identification between U(1)g/p and Zy, corresponds to z — z-1,. Accordingly, one has
Zg,(R) ~ Ul)g/r(F ®@R) = H?Zl Ul)g/r(R,,) ~ H?Zl S;., where S} is the usual unit
sphere {z € C; 2z = 1}. From now on, we shall denote by T the Q-torus Resp/qU(1)g/p.
We define the adjoint group of G, as the connected, reductive Q-group

Gid = G*/ZG*,

We denote the quotient map by m : G, — G2, We also set G to be the derived
group of G, (see [33], Definition 6.16). As G, is a smooth Q-group, Proposition 6.18 of
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[33] ensures that G{* coincides with the commutator subgroup of G,, which implies that
G = ker (det : G, — T') = Resp/gSU(x), with SU(x) = Resg,rSL(xg) N U(%).

We shall give the details for the axioms SV1 - SV6 in the case of (Gy, Xy ), the case
of (Gw,Xw) being an obvious adaptation of it, obtained by adjusting dimensions in the
appropriate parts.

— SV1: For all h € Xy, the Hodge structure defined by Ad o h on Lie(Gy(R)) is of type
{(_17 1)? (O’ O)? (17 _1)}'
It is enough to consider the case h = hy as for all h, b’ € Xy, the adjoint actions
Ad o h and Ad o A’ on Lie(Gy(R)) induce isomorphic Hodge structures (as h and b’
are conjugated by some element of Gy(R)). The morphism hy : S — Gyg induces
a representation of the Deligne torus obtained by composing with the adjoint map
Ad : Gygr — GL(Lie(Gygr)). According to ([32], §2), this amounts to giving a real
Hodge structure on the R-vector space V := Lie(Gygr) ~ M3(R)?. Indeed, the space
Ve = Lie(Gyr)c decomposes as a direct sum of eigenspaces of the form VP, (p, q) € Z?,
such that Adohy acts on VP4 by the character 2 ?Z~7, and such that VP9 = Ya.p (as hy
is defined on R). It is a straightforward consequence of the construction of hy that the
only characters occurring in Ad o hy are £, 1 and g, i.e., the Hodge structure attached
to hy has weights {(—1,1),(0,0), (1,—1)}.

— SV2: Forall h € Xy, the inner automorphism ad(h(i)) of Gyr is a Cartan involution.
We recall (see [32], §1 pl5) that by a Cartan involution, we mean an involution 6 of

G%/flR (seen as a morphism of R-groups) such that the group
Gi(0) := {g € GI¥(C); g = 0(c- 9)} C G{(C)

is compact, where g — ¢ - g denotes the action of the complex conjugation on G24(C).
A direct computation shows that, if gy € G{(R) and if # is an involution Gify, then
Gik(90095") = g0 - Gifk(0): accordingly, it is enough to show that ad(hy(i)) is a
Cartan involution of Gif; (which will imply that all Cartan involutions of G} arise
as G¥(R)-conjugates of ad(hy (7)), according to [32], Theorem 1.16). Notice that one
has

d
Ga\L/C,iR = HU(V)/%R / (ZU(V))MJI%
i=1

and we denote by m; the projection map Gyr — U(V),,r/(Zuw))pr, for all i €
{1,...,d}.

For all i € {1,...,d} - as we shall see below at § - the identification g — g¢;
which we make between the E-groups U(V)g and GL(Vg), induces a twisted algebraic
action of the complex conjugation ¢ € Gal(E/F') on S-points, where S = E ®p R is an
E-algebra endowed with a Gal(F/F)-action. This action is explicitly described via the
choice of an S-basis B of V ®pr R =V ®g S in which the hermitian product (extended
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to V ®p S) has matrix H € GL3(E®p S). In the case R=R,,, S = E®pr R =C,, and
H=J (ifi=1)or H=1 (if i > 2), the equality rewrites in the following way:
it g € U(V)(C,,) is identified to g, € GL(V,,) & GL3(C), then ¢ - g € U(V)(C,,) is now
identified to J Hgp) ™ T = JUg) ' J € GL3(C) if t = 1 (resp. to ‘(g;) "' if i > 2).
By definition, one has hy (i) = (diag(1,1,-1),15,...,14) = (J,15,...,14) € Gy(C).
One gets:

Gk (ad(hy (1)) = 7({g € G¥(C); I\ € Zg, (C), g = Aad(hv(i))(c- 9)})
=1 ({g € UV)(C,,); 3N € Zuw)(Cp,), g = AT (¢ 9) J})

X Hm({g € U(V)(Cp,); 3N € Zyw)(C), g = Mc-9)})

~ ({9 € GLy(C); Ir € T, g = AJ(J(5)~ I)I})
d
x [ ({9 € GLs(C); I e C*, g =\'(@)'})

=2

£ 1] 7 ({g € GLs(C); Fu € C*, ((ug) 'Fig)” = 1})

i=1

= (1 UB)/CY) x .. (Cr1(U3))/T*) = r~ 1 (U(3)) x ... 1(U(3)),

where 7 : GL3(C) — GL3(C) is the map g ~ ¢3, and where the equality < follows
from the following fact: if g € GL3(C) is such that g = A*(g)~" then det(g)det(g) =
det(A- 1) = A* € Rog. Then X can be written as A = vv¢ for some complex number v
and some ¢ € ps, i.e., the element v~'g € GL3(C) satisfies (v 'g) 'v—1g = ¢-1. As g and
g commute, this gives r(v~1g)tr(v—1g = v373(g'g)® = 1, hence v'g € r~*(U(3)).
Accordingly, Gifg(0) is a closed and bounded subgroup of GL3(C)?, therefore a compact
group.

SV3: The group G has no Q-factor on which the projection of hy is trivial.

Let us start by showing that the group G is Q-simple. For all i € {1,...,d}, we
set U(V)aly = U(WV),r/(Zuw))pr = (U(V)*),r, where U(V)* is the F-group
U(V))/Zy(v). Consequently, one has Gify = e, U(V)adg, and for all ¢, an isomor-
phism:

U(V)25(R) ~ {g € GL3(C,,); 'g H; g = H;}/C,

with H; = J if i = 1, and 1 otherwise. Accordingly, one has
Gi(R) = PU(2,1) x PU(3) x --- x PU(3) ~ PSU(2,1) x PSU(3) - - - x PSU(3),

which is a product of simple compact Lie groups. Let G’ <t G¥ be a Q-factor of G
(i.e., a connected normal algebraic subgroup of G defined over Q) and denote by
[+ G'— G the corresponding closed immersion. The group G = (G%),r < Gify

is a normal R-algebraic subgroup - the equality G = (G'),, r coming from the fact
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that G’ is defined over Q - hence the image of G under the projections m; : G%}fR —
U(V)pir/(Zuvy)p,r is again a normal subgroup. As connected groups over perfect
fields k are determined by their k-points (which are Zariski dense) and as U(V)2lg (R)
is a simple Lie group, one gets that m;(Gg) is either the trivial subgroup or is equal to
U(V)ZSR(R), for all 1.

On the other hand, one checks easily that G = (ResF/@U(V))ad = Resp/qU(V)*:
by the universal property of the Weil restriction - namely, that the functor Resp/q is

right-adjoint to the functor which extends scalars to F' - one has a group isomorphism
Homg(G', G¥) ~ Homp (G, U(V)*4).

Accordingly, the canonical immersion f : G’ < G induces an F-morphism G} —
U(V)*, which factors through the map (Gi)r = (RespU(V)*)p — U(V)* (the
latter is induced by the ring morphism R ®¢ F' — R, for all F-algebra R). This gives
a sequence of maps (over SpecR):

r a a 5 a
G/R = (G/F)PMR — (GVdF)m,R = (GVd)R — U(V)p?,R‘

If 7;(Gg) C (U(V)?),, g is trivial for some i € {1,...,d}, then the map G} — U(V)*
is already trivial over Spec F' which implies (again by functoriality properties of the
Weil restriction) that the map fg is itself trivial, hence G’ = 1. Otherwise, one gets
that m;(Gg) = (U(V)?),, g for all i, hence fg is surjective, which implies that G’ = G¢.
This shows that G is Q-simple. It now amounts to showing that the composite of
hy with the quotient map Gyr — G%}?R is not trivial, i.e., that hy does not factor
through the center Za, r = Zy(v),, » X -+ X Zy),, - But diag(1, 1, £) does not lie in
Zy(v),, »(R), which concludes.

The additional axioms SV4 - SV6 are presented in ([32], p63) and will induce later one
some useful simplifications in the theory of the attached Shimura variety.

— SV4: The weight homomorphism is defined over Q.

The weight homomorphism is defined as

hy

Wx 'Gm,R( > S

v o

> GV,R

T > hy(r=h)

for all R-algebra S and all »r € S*. By construction of hy the weight homomorphism
is in fact trivial, hence clearly defined over Q. Such a condition ensures that Hodge
structure on V given by morphism hy : S — Gy is in fact a Q-Hodge structure.
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— SVb: The group Zg, (Q) is discrete in Zg, (Ay).

Recall that we identify the center Zg,, with the torus T* = Resy/g(U(1)g/r). One has
THR) = U(1)(F®gR) ~ U(1)(R?) = U(1)(R)? = (S')4, the isomorphism F®gR ~ R?
coming from the fact that F is totally real. Therefore T*(R) is compact, which induces
(see [32], Remark 5.27) that T} contains no split R-torus, i.e., T! is anisotropic over
Q and remains anisotropic when extended to R. By ([32], Remark 5.27 and Theorem
5.26), this gives that T'(Q) C T'(A;) is discrete.

— SV6: The identity component Z%V of Zg, 1s split over a CM field.
The center Zg,, is already split over a CM field. Indeed, let F’/F denote the Galois
closure of F inside Q: by assumption on F, F' is a totally real number field, and the
quadratic extension E' := I’ - E = F'[a] of F is totally complex by, hence E’ is again
a CM field. One now has:

(Gv)w = (ResgygU(V)) i = ((ResiyqU(V))w) & (U(V)) e ~ GLE

the isomorphism § coming from F ®q S ~ S for all F'-algebra S. This implies that
the center T' of Gy satisfies T}/ ~ G2/ .

1.1.4.2 The Shimura varieties.

Let x belong to {V,W}. Notice that, as G, is an affine algebraic group over Q then the
subgroup G,(Q) C G,(A) = G,(R) x G, (Ay) is discrete hence a closed subgroup. To
any compact open subgroup K, of G,(Ay) is thus attached a complex manifold, denoted as
Shg, (G, X,)(C), as the following double quotient:

Shi, (G, X)(C) := GUQ)\ (Xu x (Gu(Af)/KL)) = UG (EN\ (Xe X (U(x)(Arys)/ Ky))

where the left-hand term G, (Q) acts diagonally on X, x G, (Af) ~ G,(A)/K, ~, K, « being
the compact open subgroup of G4(R) defined by

Koo = Stabu(ag,,)(Coeh) X UR)(Ry,) x ... UR)(Ry,).

Let Ky and Ky be open compact subgroups of Gy (Ay) and Gy (Ay) respectively, and we
assume throughout the following that to(Kw) C Ky. The embeddings g : Gw — Gy
and therm @ Xw — Xy induce an embedding ¢ : Shg,, (Gw, Xw) — Shg, (Gy, Xy). Set
K = Ky x Kw C G(Ay) and Ky := A(Kw) = K NH(A;) C H(Ay). Similarly, one may

(7). This follows from the fact that Q < Ay is a discrete subgroup, and from the definition of the adelic
topology induced on G,.
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define the following double quotients:

Shg (G, X)(C) := G(Q)\ (X x (G(Af)/K)) = Shg, (Gv, Xy)(C) x Shg,, (Gw, Xw)(C)
(1.8)

Shi, (H,Y) :==H(Q)\ (Y x (H(A;)/Kn)) = A(Shg,, (Gw, Xw)(C)),
(1.9)

with A = (¢,1d) : Shg, (Gw, Xw)(C) — Shg(G, X)(C). For all z € X (resp. y € Y) and
all g € G(Ay) (resp. h € H(Ay)), we shall denote by [z, g]x the point of Shx(G, X)(C)
defined by the double coset G(Q) - (x,9K) (resp. by [y, h|ky the point of Shy, (H,Y)(C)
attached to the double coset H(Q) - (y, hKw)). The sets Xy and Xy being connected as
topological spaces, then so are X and Y and one obtains by ([32], Lemma 5.13) that the
manifolds Shx (G, X)(C) and Shg,, (H,Y)(C) decompose into the following disjoint union of
connected components:

Shy (G, X)(C) = |_X| Pai\X (1.10)
Shy, (H, Y)(C) = |_Y| i, \Y (1.11)

where for all i, j, 'q; and 'y ; are the arithmetic subgroups of G(Q) and H(Q) defined
respectively by I'g,; == ¢; K g; ' N G(Q) and 'y ; = h; Kn hj_l N H(Q), where the families
Cec ={g1,.--.,9} C G(Ay) and Cyx := {h1,...,h,, } C H(Ay) are coset representatives
for the ﬁnite double quotients G(Q)\G(Ay)/K and H(Q)\H(Af)/Ku. The arithmetic
quotient I'g ;\ X (resp. I'm;\Y) injects in Shi (G, X) (resp. Shg,(H,Y)) via z — [z, gk
(resp. y — [y, hil Ky )-

In the following, we shall restrict to compact subgroups Ky and Ky which are small in a
certain sense, so that the manifolds Shx (G, X) and Shg,, (H,Y') are "nice” enough. Namely,
we will require that Ky and Ky be neat, following [41]:

Definition 1.1.1 (Neat arithmetic subgroups). Let G/Q be an algebraic group endowed with
a faithful representation p : G — GL,, for somen > 1. If g = (g,), € GL,(Ay), where p runs
among the positive rational prime numbers, we denote by A, C (QTPX the subgroup generated
by the eigenvalues of g, € GL,(Q,). The element g is called neat if one has

N (x@9nn,) =1k

. tors
p prime

An element g € G(Ay) is called neat if p(g) € GL,(Ay) is neat, and one checks that this
does not depend on the choice of p. Finally, a subgroup of K of G(Ay) is called neat if all
its elements are neat.

(8). See [32], Lemma 5.12.
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The neatness assumption will not be so restrictive in our case, as every compact open
subgroup contains a neat subgroup of finite index (e.g., defined by imposing congruences
conditions on the image p(K) C GL,(Ay)). If K, C G.(Ay) is neat, for all x € {V, W},
then for all i € {1,...,rx} and j € {1,...,ry}, the arithmetic subgroups I'g; C G(Q) and
I'n,; € H(Q) will be neat, therefore will act without torsion on X and Y respectively, which
makes the quotients ' ;\ X and 'y ;\Y smooth hermitian manifolds.

By the work of Baily-Borel, Borel, Satake (among others), there exists unique structures of
quasi-projective complex algebraic varieties Shx (G, X) and Shy,, (H,Y") of respective dimen-
sions dim Shg (G, X) = dimc X = dim¢ Xy + dime Xy = 3, dimShg,;(H,Y) = dimc Y =
dimc Xy = 1, and such that

Shy (G, X)™ = Sh (G, X)(C) and Shg, (H,Y)™ = Shg,, (H,Y)(C).

This motivates the notational choice for the complex manifolds Shx (G, X )(C) and Shg, (H,Y)(C),
which are indeed identified to the complex points of the algebraic varieties Shy (G, X) and

Shr (H,Y) respectively. The morphism of Shimura data A : (G, X) — (H,Y) induces a
complex analytic map

A': Shy, (H,Y)(C) = Shg (G, X)(C)

which corresponds - assuming that Ky is sufficiently small, e.g., when Ky = K NH(Ay) - to
a closed immersion at the level of schemes, still denoted as A : Shy, (H,Y) < Shx(G, X) .
We refer to ([32], Theorem 3.12, Theorem 3.14 and Theorem 5.15) for details.

The theory of canonical models developed by Deligne, Milne, Piatetski-Shapiro, Shi-
mura (among others)@ enables us to significantly improve the preceding statements. For
all neat compact open subgroups K C G(Ay), Ku C H(Ay), both varieties Shy (G, X) and
Shg,, (H,Y) turn out to be defined over @, and admit canonical models defined over their
respective reflex fields E(G, X) and E(H,Y), which happen (see § to be both equal
to E. These canonical models are smooth Spec E-schemes Mg (G, X) and Mg, (H,Y') such
that Mg (G, X) Qgspec & Spec C >~ Shg (G, X) and Mg, (H,Y') ®spec & Spec C >~ Shg,, (H,Y),
which are uniquely determined by the expression of the action of Gal(E%/E) on the sets of
so-called special points of Shg (G, X) and Shg,, (H,Y") respectively, as we shall see at §1.1.5]

According to ([32], Remark 13.8) the closed immersions Shg,, (H,Y) < Shx(G, X) are
defined over E(G,X) - E(H,Y) = E as well. Similarly, for all neat K’ C K C G(Ay) and

(9). Our varieties of interest Shx (G, X) and Shg,; (H,Y) turn out to be of abelian type, for which class of
Shimura varieties the existence (and uniqueness) of canonical models is in fact proved in [14].
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Ky C Ku C H(Ay)), the canonical maps induced by inclusions

G(QN\ (X X (G(Ay)/K)) — G(Q\ (X x (G(Af)/K))

and

[y7 h]K’ : ’ [yv h]K

are algebraic, and induce morphisms of schemes
TK'/K - ShK/<G,X) — ShK<G,X) and TKy/Ku - ShK/H(H,Y) — ShKH(H7Y)7

which are finite étale morphisms defined over Spec E, of degree deg(mx//x) = #(K/K'). We
may introduce the following towers of varieties:

Definition 1.1.2 (The Shimura varieties Sh(G, X) and Sh(H,Y")). The Shimura varieties
Sh(G, X)) and Sh(H,Y') are the projective systems of complex algebraic varieties:
Sh(G,X):= lm  Shg(G,X),

KCG(Ay) neat

Sh(H,Y) == lim  Shy,(H,Y).
Ky CH(Ay) neat

For all neat K C G(Af) and Ky C H(Ay), we denote by mx : Sh(G, X) — Shg(G, X)
(resp. Ty @ Sh(H,Y) — Shg,(H,Y)) the canonical projection map, and we refer to
Shi (G, X) as the Shimura variety of level K attached to the datum (G, X)) (and similarly
for Shg,, (H,Y)). For all neat K C G(As) and Ky C H(A)) and for all gy € G(Ay),
ho € H(Ay)), the maps

Shi (G, X)(C) —— Shy-1p (G, X)(C)

[-90]

[‘rJ g]K — [‘/EJ ggO]galK‘gO

and

Shi,, (H,Y)(C) [TNO]> ShhglKH ho (H,Y) (©)

[y, h]KH — [y7 hho]ho_lKH ho

are also algebraic and defined over Spec E' ([32], Theorem 13.6). They induce actions of
G(Af) and H(Af) on the respective towers Sh(G, X) and Sh(H,Y"), by so-called Hecke
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correspondences. If K C G(Ayf), and Kg C H(Af) are neat, the action of the Hecke
correspondences T'(go) and T'(hg) can be respectively described via the following diagrams:

ShggKgo_lﬁK<G7X) L Sthgo—lKgo(GaX)
TK,g0 "oy !
Shg (G, X) oy Shg (G, X)
and
SthKthl NKy (H’ Y) a ShKH Nhy ' Kuho (H7 Y)
TRegho T
Shy (H,Y) v » Shy,,(H,Y)

We shall come back to these Hecke correspondences later on, at §3.1.3.1|

Remark 1.1.3 (A compactness criterion for Shy, (G, X)). Given a field k and a reductive
group G over Speck, we define the k-rank of G as the rank of (any) mazimal k-split torus
inside G, i.e., the maximal integer v := 1k G such that T' >~ G, , for some torus T' C G.

Let n := a + b, with a, b non-negative integers. The subgroup SU(a,b) C U(a,b) - both
seen as R-reductive groups - consisting determinant 1 isometries of the C/R-hermitian space
C" endowed with the canonical hermitian pairing of signature (a,b), can be shown to have
real rank equal to the dimension any maximal totally isotropic subspace of C™, which equals
min(a,b) (see [50], §8.1). Accordingly, one has rkg SU(2,1) = 1 and rkg SU(3,0) = 0. The
same argument works mutatis mutandis when the hermitian form is defined over Q, i.e.,
when applied to the special unitary group attached to an E/Q- hermitian space, with E a
quadratic imaginary field. Recall that, for x € {V,W}, the derived group G C G, is equal
to the kernel RespqSU(x) of the determinant map det : G, — T'. In the case of d = 1,
i.e., F = Q, the above discussion together with Assumption [I.1.1] give:

rkg GI = 1kg SU(%) = kg SU(%),, = rkg SU(dim(x) — 1,1) = 1.

However, if F # Q then one gets tkg GI = 0. Indeed, if T C G = Resp/oSU(x) was a
non-trivial split torus then, by ([12], Proposition A.5.15) there would exist a (unique) non-
trivial F-split torus T" C SU(x)p such that T' C Resp/T". Accordingly, for alli € {2,...,d},
the torus T, p would be a non-trivial R-split torus inside SU(x),, r =~ SU(3,0), which would
contradict kg SU(3,0) = 0. Therefore rkg G = 0 if and only if F # Q.
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Let K, C G,(Ay) be a neat compact open subgroup. Recall that the Shimura variety
Shr, (G, X,) splits as a disjoint union of connected components

Shi, (G, X.) = | |T\X,,
=1

with T := G, (Q) N ¢;K,g; *, and where gy, ..., g,, € G, (Ay) is a family of representatives for
the double quotient G, (Q)\G.(A;)/K,. Ifi, j € {1,...,7.} and if g;; € G,(Q) N g; K.g; ",
then the map X, — X, x — g;; -« induces an homeomorphism between I';\ X, and I';\ X,
i.e., the connected components of Shy, (G, X,) are pairwise homeomorphic.

As G s simply connected - being isomorphic to SLdim(x)—1 over Q - and as X, is con-
nected, one obtains by ([32], Theorem 5.17) that the identity connected component G4(Q) N
K\X, of Shg, (G, X,)(C), is canonically isomorphic to some arithmetic quotient I'\ X,,
where T D G(Q) N K, is an arithmetic subgroup of G*(Q). On the other hand, a con-
sequence of a theorem of Borel and Harrish-Chandra (simultaneously proven by Mostow-
Tamagawa, see [6] Theorem 3) implies that the quotient I'\X, is compact if and only if
rkg GI = 0. Putting every together finally implies that, for x € {V, W}, the Shimura varie-
ties Shy, (G, X,) are compact (for the complez-analytic topology), hence proper, if and only

if F # Q.

1.1.5 Reflex fields, Galois descent and reflex norm-map.
1.1.5.1 The reflex fields E(G,, X,), x € {V, W, (}.

Let p: Gpc — Sc ~ Gc X Gy ¢ be the co-character given on S-points (for all C-
algebra S) by z + (z,1), for all z € S*. For all x € {V, W}, we set i, ¢ := hyc o pu. For any
subfield k of C, we let C(k) := Gy (k)\Homy(G,, x, Gv,) denote the set of Gy (k)-conjugacy
classes of k-morphisms G,, , — Gy.

Let ¢(X,) € C(C) be the conjugacy class of j,c. As G, splits over E as Resp/oGL(xg),
one has (Gy)g =~ GL(*)%. According to ([32], discussion after Lemma 12.1), one obtains that
C(C) is equal to C(Q), hence ¢(X,) can be seen as the G, (Q)-conjugacy class of the map
Ly, seen as a Q-morphism between G,,g and G*’@ The Galois group Gal(Q/Q) acts on
C.(Q) via the following action on Q-points: if f € Homg (@X, G*(@)> and o € Gal(Q/Q),
then

(o-f)(r):=flo 1), VreQ.

Definition 1.1.3 (Reflex field). The reflex field E(Gy, X4) of the Shimura datum (G, X,)
is the subfield of Q fized by the stabilizer of ¢(X,) (as a set) inside Gal(Q/Q).

(10). The conjugacy class ¢, does not depend on the choice of hy € Xy, i.e., on the choice of torus Tp.
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One shows that the reflex fields F(G,, X,), * € {V,W} are both equal to F, unless
when x = W and F = Q, where E(Gw, Xyw) = Q. We refer to ([7], VL.5) for a detailed
computation. Accordingly, one obtains that F(H,Y) = E (or Q if F' = Q) and F(G, X) =
E(Gy, Xv) - E(Gw, Xw) = E.

1.1.5.2 Interlude on Galois descent.

We recall the following basic result of Galois descent for algebras over fields. We begin
with a definition:

Definition 1.1.4. Let L/K be a finite Galois extension of fields and let S be an L-algebra.
A Gal(L/K)-structure on S is a morphism of groups Gal(L/K) — Aut,ings(S) which induces
the natural action of Gal(L/K) on the subring L — S.

Proposition 1.1.1. Let L/K be a finite Galois extension of fields in characteristic 0. Let C
be the category of L-algebras endowed with a Gal(L/K)-structure - with morphisms being the
Gal(L/K)-equivariant morphisms of L-algebras - and let D be the category of K-algebras.
The functor

F:C—D

S SGal(L/K)
18 an equivalence of categories whose inverse is given by

G:D—C
R+—L®k R
Proof. For simplicity we will only treat the case [L : K] = 2 (the one we are interested
in), the general case being just as conceptual. Let ¢ : z — Z be the non-trivial element of
Gal(L/K), and let o € L\K be an element such that L = K[a], o* € K (hence a@ = —a).

Let S be an L-algebra endowed with a Gal(L/K)-structure and set R := F(S) = SGal/K),
Let us show that the morphism of rings

¢p: Loxg R— S,

Z2RQr — 2r

is an isomorphism. Indeed, if r, " are elements of R such that r + ar’ = 0 in S, then
c-(r+ar’)=r+ar=r—ar’ =0,ie,r=7"=0 lft =72 ®r is any element of
L ®k R, with z; = z; + ay; (x;, y; € R), one has

P(t) = Zzﬂ”i = ZIBm—FOéZym € R+ aR.

Thus ¢(t) = 0if and only if > . 2y, = >, yiri = 0,1e, t =1@ (D, miri) +a® (D, yiri) =0,
which shows the injectivity of ¢. On the other hand if s is any element of S then one has
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s+c-s
2
which shows the surjectivity of ¢.

s =r -+ ar’, where r = and 1" = *32* are both fixed by ¢. Thus s = (1@ 71 +a®1')

Let R be a K-algebra and set S := G(R) = L®g R, endowed with the natural Gal(L/K)-
structure obtained by letting Gal(L/K) act on the leftmost component. The morphism of
rings ¢ : R — S, r — 1 ® r has image in SS/K) by assumption. Let us show that 1)
induces an isomorphism between these two rings. The injectivity of 1) is just the flatness of
R as a K-module (K is a field). If s =3, 2; ®r; is any element of S, with 2; € L, r; € R,
we set Tr(z;) 1= 2; +Z; € K, for all j. Then == =3 @ ®@rj=3,;1® (3 Tr(zj)r;) =
0 <% > Tr(zj)rj) € ¢(R). If s belongs to S9L/K) then s = &2 which shows that
Y1 R — SGUL/K) i surjective. This concludes. O

We go back to the case L/K = E/F. Let « belong to {V, W, D} and let dim(%) € {1, 2, 3}
denote the corresponding dimension (as E-vector spaces). Let us choose an S-basis B for the
free S-module x @ S of rank dim(x), which can also be seen as an F ®p S-basis for x @ S,
via S — E ®p S. Recall that, back in § we identified the groups GL(* @ S) and
GL(x ®g S) & GL(x ®g S) via the map g — (gs, 9:), which admits the following description
with respect to the basis B: if G € GLaimx) (E®pS) is the matrix attached to g € GL(*®pS),
then (gs,9¢) € GL(x ®p S) @ GL(* ®g 9) is attached to the pair ¢(G) = (ps(G), pi(G)) =:
(Gs,Gy) € GL3(S) x GL3(S), where ¢ was the map defined at § [[.1.2.1] induced on each

coordinate by the isomorphism

¢: E@pS—SxS

e® s+ (es,es)

Recall that, if H € M3(E ®p S) denotes the matrix of the hermitian form (-, )yg,s with
respect to B, then the equalities and implied that the elements g of U(V)(S) C
GL(V®pS) correspond to those matrices G € GLgim(x) (E®p S) which satisfy ‘G (H) Gy =
ei(H), ie.,

Gy ="(@u(H) (G) ' pu(H) ") = @s(H) " (Ge) ™ s(H). (1.12)

Let us now assume that S is an E-algebra endowed with an action of the complex con-
jugation ¢ € Gal(E/F) - or equivalently, when S = E ®p R for some F-algebra R, by the
above proposition - and let us restrict ourselves to S-bases B of * ® S which are already

dim(*

E-bases of x or, a bit more generally, to bases B = {e;},_; ) of xg 1= « ®p R such that
e; = eir;, for some E-basis {e;}?i:nf(*) of x, and some elements r; € RX. We fix one such
B. One may then define functorial algebraic Gal(F/F)-actions on the groups of S-points
U(*)(S) € GL(x ®Fp S), in the following way: if ¢ € GL(x ®p S) corresponds in B to the

matrix G € GLaimx) (E®FS) = GLaimu) (F®r E@p R), we define c-g € GL(x®p S) to be the

(11). This is in fact the case which appears in the proof of axiom SV2.
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element attached to the matrix G¢ € GLgim)(E®FS), obtained by applying coordinate-wise
the involution ¢, of E ®p S induced by the action of ¢ on S, namely:

le : E®FE®FR;>E®FE®FR

e1R®e@r—e e ®r

This definition does not depend on the chosen B: indeed, choosing a different E-basis B’ would
yield a transition matrix P € GLgim(x)(£) C GLgimx) (£ ®F S) such that g € GL(V ®p.S) has
matrix P G P~" € GLgim)(E ®F S) with respect to B', hence ¢- ¢ has matrix (P G P~1) =
Le(P)ie(G)ie(P)™ = PG P!, as P € GLgim(x) (E), which makes the action of ¢ consistent.
The matrix G¢ € GLaim) (E ®p S) satisfies o(G°) = (¢:(G)°, ¢s(G)°), where ¢ (G)° (resp.
¢s(G)°) denotes the image of ¢(G) € GLgimx)(S) (resp. ¢@s(G) € GLgimx)(S)) under the
action of ¢ (acting coordinate-wise on GLgim(x)(5)). Consequently, the identification between
U(V)(S) and GL(Vs) given by g — ¢; yields an equality:

C

(e 9)e = gs= (ps(H) " (g9:) ™" s(H))

= (@s(H) )" (g 1) (ps(H))". (1.13)

As a useful application, let us make explicit the case x = D, dim(%) = 1. In this case, if

S is any E-algebra endowed with a Gal(£/F)-action, one may choose B = {ep ® 1} € Vg,

hence H = ({(ep,ep)pers) = (1) € S. If z € U(D)(S) ~ U(1)g/r(S) is identified with
2 € GL1(S) = S*, one gets the equality:

(c-2); = ()" (1.14)

1.1.5.3 Reflex map and canonical models.

Let us review some of the theory of canonical models. If (G,X) is a general Shimura
datum with reflex field £(G, X)), and if € X corresponds to the morphism h, : S — Gg,
then the conjugacy class c(,) C Homg(G,, 5, Gg) of the co-character

z—(z,1) ha ¢

Mo - Gm7C < > S(C > G(C

does not depend on the choice of z € X and is defined (as a set) over E(G, X). We give the
definition of a special point x of X, following ([32], Definition 12.5):

Definition 1.1.5 (Special points and special pairs). A point x € X is called special if there
exists a torus T C G (defined over Q) such that h, : S — Gg factors through the inclusion
Tr — Ggr (or equivalently, such that z is fized by the adjoint action of T(R)). The pair
(T, x) is then called a special pair.

We have already encountered examples of special pairs. Indeed recall that, by con-
struction, the point hy € Xy (resp. hy € Xy ) defined at § factors through the
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torus (Tg)r (resp. through (ResF/QU(E e2) X Resp/qU(E 63))R), with B = {e1, €2, e3} being
the orthogonal E-basis of V' defined at §[1.1.3] Accordingly, the point h, € X, is special, for
* € {V,W}. We recall the definition of the norm map attached to a finite separable extension
of fields:

Definition 1.1.6 (Norm map). Let L/ K be a finite separable extension of fields and let K>
be a separable closure of K. Let G be a commutative group scheme defined over Spec K and
set G, = G Xgpecx Spec L. The norm map Ny x @ Resp;xGp — G, is defined for any
K-algebra S as follows

P— II o(P),

o€Hom g (L,K3¢P)
where o(P) € G(o(L) @k S) C G(K*? @y S) is defined by Spec (o(L) @k S) = Spec (L @
S) L G, forall o € Hompg (L, K°?). The right-hand side is Auty(K°P)-invariant, hence
belongs to G(K @k S) = G(9).

One may now define the reflex map attached to a special pair (T, z):

Definition 1.1.7. Let (G, X)) be a Shimura datum and let (T,z) C (G, X) be a special pair.
Let E(x) D E(G,X) be the field of definition of the co-character pi, : Gy c — Te C Ge
defined above. We define the reflex map (or reflex norm-map) (T, p.) as follows:

Resg(s x NE(z
r(T, ) Respa)0Cm ) — ™ Respa)qT — s T (1.15)
The above reflex map induces, on adelic points, the following map:
Cax  BesBE)/ope(d) NB@)/0 projs
Tua AE(:):) ———— T(App) —— T(A) —= T(Ay) (1.16)

The adelic reflex map ((1.16)) characterizes uniquely the canonical models, via the following
rule sometimes called Shimura reciprocity law ([32], Definition 12.8):

Definition 1.1.8. Let (G, X) be a Shimura datum with reflex field E(G,X), and let K C
G(Ay) be a compact open subgroup. A model My (G, X) of the Shimura variety Shg (G, X),
defined over E(G,X), is called a canonical model if, for any special pair (T,z) C (G, X),
for all g € G(Ay) and all o € Gal(E(2)®/E(x)), the following are true:

(i) [z, gk € Shi (G, X) is defined over E(z)®,
(i) o - [z, 9]k = [T, 124(S0) glic, where s; € AL,y is any idéle such that Artp() (Sg) =o.

(12). Artpg(y) : Aé(x) — Gal(E(z)%/E) is the Artin map attached to the number field E(x), which we will
study in details at § As we shall see at § one might also directly work with finite ideles and

choose some s, € AE(I) -
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1.2 The set of special cycles on Shi(G, X).

1.2.1 The normalizer of H in G.

Recall that we denote by Zg the center of G, which satisfies Zg = Zg, X Zg,,. Both
groups Zg, and Zg,, are isomorphic to the torus T' := Resp/U(1)g/r, via the map A —
A-1. Let Ng(H) be the normalizer of H into G: this is a Q-algebraic subgroup of G whose
points are given, for any QQ-algebra R, by

Ne(H)(R) :={g € G(R); g 'Hrg = Hg}.

The normalizer Ng(H) is the only algebraic Q-subgroup of G such that Ng(H)(Q) =
NG(@)(H(@)). For any field extension k/Q, one has Ng(H)(k) = Ng)(H(k)), which follows
from ([33], Proposition 1.84), using the fact that H is a connected reductive group, hence
H(Q) is dense in H for the Zariski topology. The normalizer of H in G admits the following

description:
Lemma 1.2.1. One has Ng(H) =H - (Zg, - (Zg,,) x 1) =H - Zg.

Proof.
Let us start by the second equality. One has, for any g € Gw, pt € Zg, and X € Zg,,,

(tlgw) gw) - (- 1(A), 1) = (lgw), gw) - (L(A), A) - (1, A1) = (elgwA), gwA) - (1, A7) € H- Zg,

and

(lgw), gw) - (1, A) = (LlgwA), gwA) - (- e(A1), 1) e H (Zg,, - l(Zg,,) x 1),

hence H - (ZGV . L(ZGW) X 1) =H- Z(;.

The inclusion H-Zg C Ng(H) is immediate. On the other hand, let & be a Q-algebra and
set Vi :=V &gk, Wi, == W ®qgk and Dy, :== D ®g k. By the Zariski density argument above,
one may assume that & is a field without loss of generality. Accordingly, one has Wy = Dj’.
Let g = (g1,02) € Gy (k) x Gu(k) = G(k). 1f g € Na(H)(k) and if h = A(gw) € H(k),
with gw € Gw(k), then gh gt € H(k) fixes the line D, & 0 C Vi ® W), point-wise, i.e., the
group Gy (k) ~ «(Gw)(k) fixes the line g;' - Dy C V; point-wise. The latter implies that
gt - Dy = Dy, as the only line in V; being fixed point-wise by Gy (k) is Dy itself By
assumption on g € Nggy (H(k)) then, for all gw € Gw(k), h:= A(gw) € H(k), there exists
some gly € Guy(k) such that ghg™ % (guulow)gi", g20we5") = (o). gly). This gives
929wz ") = gre(gw)gy ', hence

(t(g2) " 1) - elgw) - (e(g2) " o)™t = tlgw),

(13). Indeed, let v € V4, and write v = vy ®vp € Wy, L Dy. If g5 € Gy (k), one has t(gw)-v = gw -vw Svp,
therefore the equality v = t(gw) - v, for all gw € Gw (k), implies vy = 0 (take gw = —1w € Gw ), hence
v € Dy.
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for all g € Gw (k). Accordingly, t(g2)"'g1 € Gy (k) lies in the centralizer of Gy (k). As g
stabilizes Dy, as a set, then the same is also true for ¢(g2) ™! g1, for 1(gs) acts trivially on Dj.
Being an isometry, t(go)"'g; also stabilizes D = W,,. If A € T!(k) is the scalar by which
t(g2) gy acts on Dy, then

Wg2) g =(A-1y)e (()\_1 : 1W)(L(92)_191)}Wk) ;

and the above discussion implies that the element (i(gy)™ gl)‘w of Gw (k) lies in fact in
k

Zg,, (k). Therefore «(g2)"'g1 € Za, - UZgy)(k), ie, g = (Ug2) 92) - (tg2) "1, 1)) €
H(k) - (Zg, - t(Zg,,) x 1) (k), which finishes the proof. O

1.2.2 The set Zx (G, H) of H-special cycles.

We may now introduce a collection of special algebraic cycles on the 3-dimensional Shi-
mura variety Shy (G, X). From now on, and unless the contrary is explicitly mentioned, the

compact open subgroups will always be assumed to be neat. Fix one such K C G(Ay).

Definition 1.2.1 (H-special cycle of Shx(G, X)). A closed, one-dimensional, irreducible
subvariety Z C Shg (G, X)c¢ is called a H-special cycle of level K (or simply a special cycle,
when both H and K are understood) of Shx (G, X) if Z is an irreducible component of the

image of the map:
Sh(H,Y) — Sh(G, X) —Z Sh(G, X) —™ Shy(G, X),
for some g € G(Ay).

According to ([35], Remark 2.6), as Y ~ By is a connected hermitian symmetric dom-
ain which satisfies the characterization , there is an equivalence between the preceding
description - which Moonen calls algebraic cycle of Shimura type - and the following one,
which Moonen refers to as cycles of Hodge type (cf [35], Definition 2.5): a closed irredu-
cible subvariety Z C Shg(G, X) is a H-special cycle of level K if and only if Z is the
image [Y x gK] C Shg (G, X) of the product Y x gK C X x G(Ay) in the double quotient
Shi (G, X)(C) = G(Q)\ (X x (G(Af)/K)), ie.,

Z ={ly,glk;y € Y} C Shg(G, X)(C). (1.17)

For all g € G(Ay), we shall denote by Zx(g) the one-dimensional special cycle defined by
Y x gK] C Shg(G,X)(C). The cycles Zx(g) can be seen as the right G(Ay)-translates
of the image in Shx (G, X) of a distinguished connected component of Shg,, (H,Y'), such as
described below:
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Lemma 1.2.2. The special cycle Zx(g) C Shg(G, X)(C) is the image of the connected
component (H(Q) N Kyu)\Y of Shy, ;;(H,Y)(C) under the finite morphisms:

Sy o (H,Y)(C) —— Shyxy1(G, X)(C) —%5 Shy(G, X)(C).

with Kg,H = H(Af) N gKg_l C H(Af)

Proof. Recall that the decomposition

Ty
Shy (HLY)(C) = | [T \Y

j=1
into a disjoint union of connected components is induced by the map [y, b gy — v mod g,
where j € {1,...,ry} is such that h € H(Q) h; K. One may assume without loss of genera-
lity that I'y,; = H(Q)N K, u, i.e., that hy € H(Q)Kn: accordingly, the connected component
(H(Q) N Kyu)\Y corresponds to the double coset H(Q) - (Y x Ky) C Shg, (H,Y)(C). Let
y €Y and h € K,1: by definition, one may find some k € K such that gkg™' = h € H(A;).
The element [y, h]x, 4 lies in H(Q)(Y x Ky u), and one has [-g]([y, hlgxq1) = [y, hglx =
lv,9klk = [y,9]lk € Zk(g). Conversely, if [y,g]x is an element Zx(g), with y € Y,
v 9l = [y, gkl for any k € K Ng 'H(Ap)g C K, thus [y,g]x = [-9|([y, 9k ]gxs1)
is in the image of the map, for gkg™' € K, u O]

Notice that, as the above maps are finite morphisms defined over Spec E, the special
cycles Zg(g) are defined over finite extensions of £, for all g € G(Af). As we shall see later,
the minimal field of definition of Zx(g) - seen as a closed subvariety of Shx (G, X)) - relates to
the minimal field of definition of the corresponding connected component H(Q) N K, i\Y C
Shy,,(H,Y). The latter is a finite abelian extension of E characterized by the canonical
model Mg, (H,Y') of Shg,, (H,Y) and the so-called Shimura reciprocity law.

Definition 1.2.2. We denote by Zx(G,H) := {Zk(9); g € G(Ay)} the set of H-special
cycles of level K.

As hg-Y =Y for all hg € H(Q), one has for all k € K that Zx(hggk) = {[y, hogk]x; v €
Vi=A{lhg'v.glxiy €Y} =A{l, 9lx; ¥ € Y} = Zk(g). Accordingly, the map

Zik(e): G(Ay) - Zx(G,H)
g +—Zk(g)

factors trough the map G(A;) - H(Q)\G(A;)/K. One can be a bit more precise and give
the following description, due to Jetchev ([27], Lemma 2.3, (i)):

Lemma 1.2.3. The map Zk (o) : G(A;) — Zx(G, H) induces a bijection

Ne(H)(Q\G(Af)/K ~ Zk(G, H)
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Proof.

The proof decomposes in the following two steps:

— 1. Forall g, g € G(Ay), one has Zx(g9) = 2k (g') if and only if g’ € Stabgg)(Y) g K.

Indeed, if ¢ = gogk with k € K and gg € Stabg(Y) C G(Q) then [y,g]lx =
90y, 909k = 90y, 91k € Zk(¢), forally € YV, and [/, ¢'|x = 95"V, 95 9'F 'k =
[g@l gl € Zk(g), for all y € Y, thus Zx(g) = Zk(¢'). Conversely, assume that
we have an inclusion Zk(g) C Zk(g¢’) as subsets of Shi (G, X)(C): it is equivalent
to asking that for all y € Y there is some 3’ € Y such that [y,g9]x = [V, ¢ |k, ie.,
that there exists go € G(Q) and k € K such that y = go - ¢’ and g = gog'k. This
rewrites as V' = U, cq@ngr(e-1(90Y NY). Baire’s category theorem implies the
existence of some non-empty open subset U of Y and some gg € G(Q) N g K(g)™*
such that U C gopY NY. Using the fact that the Riemannian manifolds ¥ and ggpY
are connected totally geodesic submanifolds of X, one obtains (see [27], Lemma 2.3,
(ii) for details) that goY NY =Y, hence Y C goV. As gp' - U C Y is an open
subset, one gets that U = gg - (g@1 -U) is also an open subset of gg - Y and the same
argument now implies gg - Y C Y i.e., gg € Stabgq)(Y) NgK(¢')~'. Therefore, one
has ¢’ € g@ng C Stabgg)(Y)gK.

2. Stabg(g)(Y) = Ne(H)(Q).

Recall that the hermitian symmetric domain Y C X is defined as Aperm(Xw ), with
Aperm = (therm, 1d) © X = Xy x Xy = X Let g = (91,92) € Gv(Q) x Gw(Q) =
G(Q). If D € Xy corresponds to a negative definite line of W,, (see the discussion
in Remark [1.1.2)), then one may find another negative definite line D’ € Xy such that
(91,92) * (them(D), D) = (therm(D’),D’) if and only if D' = g5 - D and tperm (D) =
g1 * therm(D). The latter is equivalent to asking that the element ¢(g2) g1 € Gy (Q)
fixes «(D), for all D € Xy, i.e., fixes every negative definite line of W, . One obtains
that t(g2)"tg1 € Gy(Q) must act by homothety on W, which implies that ¢(gs) gy
also stabilizes W1 = D (as a set), hence t(g2) gy lies in «(Zgq,, ) Za, . Accordingly,
(91,92) = (1(g2),92) (1(92) 91, 1) € H(Q) - (1(Z,) Zay % 1) = Na(H)(Q), the last
equality coming from Lemma [1.2.1}

1.2.3 Smooth integral models, and a choice for K.

We start this paragraph by recalling the notion of an hyperspecial subgroup over a non-

archimedean local field.

Definition 1.2.3 (Hyperspecial maximal compact subgroup). Let G be a connected reductive

group over a local non-archimedean field k, whose ring of integers O has residue field F. A

subgroup K of G(k) is called a hyperspecial maximal compact subgroup if the following

conditions hold:

(1) K is a mazimal compact subgroup of G(k),
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(11) There exists a group scheme G defined over O such that G Xgpeco Speck ~ G, G(O) = K
and such that Gg is a connected reductive group scheme over F.

As we shall see below, hyperspecial maximal compact subgroups of K, C G,(F,), for
v € Iy, arise as stabilizers of self-dual local lattices in «,, for all ¥ € {V, W}. First, we need
to introduce the notion of duality for hermitian (global or local) lattices:

Definition 1.2.4 (Dual lattice). Let v € I, be a finite place of F, set E, to be the quadratic
étale F,-algebra E @p F,, with ring of integers O, == O ®o, OF,. Let m > 1 be a positive
integer and let (V, (-, -)v) be either a m-dimensional non-degenerate E | F'-hermitian space, or
a free E,-module of rank m endowed with a non-degenerate E,/F,-hermitian pairing (again,
with respect to the involution ¢ € Gal(E/F') acting on E, ). Let L C'V be a global (resp. local)

lattice, by which we mean a free Op-submodule (resp. a free O, -submodule) of maximal rank

m.
— If L is global, we define its V-dual (or simply dual) lattice by setting:
LY :={veV; (v,L)y C Og}. (1.18)
— Similarly, if L is local we define its dual lattice by setting
LY :={veV; (v,L)y C Og,} (1.19)
— We shall say that L is self-dual of L = LY. In the local case, if @w € F, is any
uniformaizer, then a local O, -lattice L is said to be almost self-dual if one has inclusions
wlY cLcCL,
and to be strictly almost self-dual if the inclusion L C LV is strict.
Remark 1.2.1. — Let v be a finite place of F' and let V be as in the above definition. In

this setting, let L be either a global or local lattice and let the symbol 7 € {0, v} encode
whether L is global (7 = () or local (7 =v). Let B = {ey,...,en} be an Og,-basis of
L. The non-degeneracy hypothesis on V implies that the map
YV —V" ;= Homg, (V, E?)
v — (w = (v,w)y)

is an injective Eq-linear (hence Fy-linear) morphism between free E;-modules of rank m
(hence 2m-dimensional Fr-vector spaces), i.e., 1 is an isomorphism between V) and V.
Accordingly, the family ¥(B) = {¢(e1),...,¥(em)} forms an Eq-basis of V¥ and the
dual lattice LY is generated by the ¥-dual basis Y(B)Y := {i(e1)Y, ..., ¥(em)"}, which
18 characterized by the equality

Ple)(W(e;)”) = (e, ble;) )y = 6i 4, Vi, j € {1,...,m},

where ; ; is the Kronecker symbol. The above characterization implies that one has
e; = P((e;)V)Y foralli € {1,...,m}, hence (LY)Y = L for all global or local lattice L.
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— The global and local dualities are compatible in the following sense: if V' is a m-
dimensional non-degenerate hermitian E/F-space and if L C 'V is a global lattice then,

for allv € Ip,, the above considerations imply that the corresponding local O, -lattices
L,:=L®eo, Og, and (L"), := LY ®o, OF, satisfy

(Lo)" = (L7)e,
which we will denote by LY as there is no ambiguity.

Let us go back to our case m € {2,3}, V € {V,W}. We fix an Og-lattice Ly ¢ W
such that Ly C Lﬁ,. We call Lp the self-dual lattice Ogep, where ep € D was defined
immediately after Assumption , and we set Ly := Ly & Lp C V, so that Ly C Ly.
There are also adelic versions of Ly, and Ly, given by:

I;iZLv(X)ZzCV@Q@:V@EAE,fJ

E;/ = LW®22 C W®Q@: W Qg Agy,
with Z = Hp Z, being the profinite completion of Z and @ = Q®z 7 ~ As. Both E‘\/ and
ITV\V are free (5\];—modu1es7 with (5; = O Qg 7 = IT

@—lattices.

vfoo Op,, and will be also referred to as

By construction, the lattices L, satisfy L, C LY, for x € {V,W}. As L}, = Lp, one has
LY, = Ly, @ Lp, hence [L}, : Ly| = [Ly}, : Lw]. We set N := [L{, : Ly], and we let S be the
set of finite places of F' which divide NOp. From the inclusion LY € N~'L,, one deduces
that (N7'L,)¥ = NL} C L,, hence NL, C LY, for all finite places v € Ipy. If v ¢ S*
then N € O and the previous inclusion induces Ly, C L, ,, i.e., the local lattices L., are
self-dual Op,-lattices, for all x € {V,W}.

Let us denote by 08" := {z € F; ord,(z) > 0, Yo ¢ S'} C F the ring of S'-integers,
and set OF = O Qo, O3 = {z € E; ord,(z) > 0, Yw € I not above S'} C E. Define
the O3 -module LS := L, ®0, 0% =L, ®p, O C *, for all x € {V,W}. The restriction
(-, )st of (), to LY x LY induces a bijection
(L7, 0%).

1~
LS — Hom , o1
* (9]%

i.e., is a perfect hermitian Of; /Of;l—pairing. The functor GL(L,) from the category

oshs

(9;@1 — alg of Ogl—algebras to the category Grp of groups, that maps any R to the group

GL(L. ®,st R), is representable by a smooth Ogl—group scheme - still denoted GL(L,) -
F

(14). Such an assumption is not that restrictive: indeed, for any lattice Ly C W generated by some basis
{e1,e2}, one may choose some N € N such that N{e;,e;) € Og for all i, j € {1,2}. Thus NLy satisfies
<NLw, NLw>OE, ie., NLy C (NL{/V)V
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which is an S'-integral model of the reductive group GL(*)p = Resp/rGL(%) over F. It
admits the following subfunctor:

U, : Off —alg — Grp
R +—{g € GL(L, Bos! R); {(g-v,g-w) = (v,w), Yv, w € Lfl Rps! R}.

By fixing an Opg-basis for L,, one might rewrite the invariance condition with respect to
the hermitian pairing satisfied by the elements of U, (R), into a finite set of polynomial
equations satisfied by their matrix coefficients. We deduce that the functor U, is represen-
table by a closed subgroup scheme of GL(L,) - still denoted by U, - which is smooth over
Spec (915;1 and whose base change to Spec F' is nothing but U(x). By definition of S, if
v ¢ St then the fiber (U,), of U, represents the unitary group of a perfect hermitian pairing
defined over the residue field F, of O at v, hence is a reductive F,-group scheme. One
obtains, for all finite places v of F outside S!, a hyperspecial maximal compact subgroup
K,, = U, (OF,) = U(F,) N GL(L,)(Op,) , ie., K., is equal to the stabilizer in U,(F,) of
the self-dual local lattice L, ,.

As a consequence of the definition of the finite-adelic points of the Q-reductive group Gy,
one has an identification between topological groups

/

G.(Af) = U)(Arg) = ] U.F)

’UEIf,F

/
=U(V)(Fs1) x ][] U(R),
vg St
with Fg1 := [[,cq1 Fo, the restricted product H;gsl being understood with respect to the hy-
perspecial subgroups U, (OF,) = U(%)(F,) N GL(L*)O?(OFU), for all v ¢ S' and x € {V, W}.

Remark 1.2.2. The above construction admits the following variant. A slightly more general
construction related to general reductive groups is described, for instance, in Chapter Il of
[19], and the outline of the argument is the following. The choice of L, defines an integral
model GL(Ly)o, for GL(x) over Spec O, which gives a sequence of closed immersions

U(x) = GL(*)p — GL(¥)o,, Vxe{V,W}.

By setting U, C GL(x)o, to be the Zariski closure of the image of U(x) in GL(x)o, by the
above sequence, then by ([19], Lemma 2.4.2) there exists a finite set S" of finite places of
F, such that (Q*)ng is a smooth O3 -group scheme which is a model for U(x). Then, for
the generic fiber U(x) of U, is already reductive, one may apply ([11], Proposition 3.1.9) to
deduce that the fibers of (Qv)og’ are reductive outside a finite number of places, i.e., that
there exists a finite set S” of finite places of F containing S’ and such that (gv)og” has
reductive fibers.
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1.2.3.1 The level K.

The upshot of the above remark is that it constructs an Op-model of U(%) (with x €
{V,W}), which is smooth with reductive fibers outside the set S* (up to possiblynlarging
S1), which enables us to consider O, -points of U, even if v € S'. By construction, one has
U,(OF,) C UX)(F,) N GL(Ly ®0, OF,), for such a v. We set Ky C G(Ay) to be the open
compact subgroup given by

Ko := (Uy x Up)(Or) = (Uy x Uy) | T] O | = (Ko)sr x K5,

’UGIF_’f

with

(Ko)st = (UyxUyw)([] Or) € (UV) x UW)) (Fs)n [ GL(Ly @0, Or,) X GL(Lw &0, OF,),
vest veS!
with Fgi := ], cq F, and

o~

K5 = []Uy x Uy )(Or,) = Stabu ) xumwy) g, (Lv ®op Op: Lw ®op (’)ﬁ) :
v¢S

We set (K())*J) = Q*(OFU) for « € {‘/, W}, and (KU)'U = (Ko)vﬂ) X (KO)W,m for all v ¢ Sl.

Notice that the compact open subgroup Ky may be assumed to be neat. Indeed, otherwise
one might shrink (K)s1 to some small enough compact open subgroup (Ko)yi C Kg1 - by
adding, for instance, some congruence conditions with respect to the inclusion (Kjy)g1 C
GL(Ly ®0, Opsl) x GL(Ly ®o, C’)Fsl) - and thus replace (Kj) by its finite-index subgroup
K} = (Ko x K§' C Ko. We finally set (Ko)g := H(Af) N Ko = A((Ko)w).

1.2.3.2 Allowable inert places 7.

We assume in this paragraph that K = K,. Let 7 be a finite place of F. We set
Gy, = U\V)(F,), Gw, := UW)(F,), G; :== Gy, X Gy, and we let H, :== A(Gw,) C G,
be the diagonal image of Gyy,. We assume that 7 is inert in the extension E/F and set, as
usual, F; := F ®p F, to be the quadratic unramified extension of F, with ring of integers
Op, = O ®o, OF,.

Let @w € F, be a chosen uniformizer for both £, and E,. We let m > 1 be a positive
integer and (V,(-,-)y) be a non-degenerate m-dimensional FE./F.-hermitian space. If By =
{v1,..., v} is an E -basis of V, we set Hp, = (<’Ui,vj>v)1gi’j§m € M,xm(E;) to be the
matrix of the hermitian product with respect to By,. The equality

c- det(Hp,) = det (¢ (vi,vj)y) = det ((vj, vi)v) 1< jem = det(*Hg,) = det(Hp,,)

1<i,j<m

(15). We believe that S! - such as defined in the previous paragraph - does actually not need to be enlarged,
but this point is still not totally clear to us.
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implies that det(Hp,) lies in F*. If B, = {v},...,v],} is a different E,-basis for V, with
transition matrix P € GL,,(E;) with respect to By, we set Hp = ((vg,v;%;)lgi’jgm

Mppxm(Er). Then Hpg, = ‘P Hg, P, which gives det Hp, = Ng,r.(det(P)) - det(Hp,).
Accordingly, we call determinant of the hermitian space (V, (-, -),y), the quantity:

det((-,-)v) = det(Hy,) Np. r, (ES) € FY [ N,/ (ES),

which is well-defined by the above discussion. According to (J45], Remark 10.1.4 and The-

orem 2.14.5), non-degenerate hermitian forms over p-adic local fields are classified by their
X

F
dimension and determinant: by local class-field theory, one has | ————| = [E} : F], so
NE‘I‘/FT (ET )
there are only two isomorphism classes of m-dimensional hermitian E,/F,-spaces. If m = 2k

is even, we say that (V, (-,-)y) is a split hermitian space if V is the sum of k pairwise ort-
hogonal hyperbolic spaces, i.e., if V admits an FE.-basis of the form {vy,v_q,..., vk, v_},
with (v;,vj)y = 01if i # —j, and (v;,v_;)y = 1, for all i € {1,...,k}. Such a basis will
be referred to as a Witt basis in the next chapter. If m is odd, we say that (V,(-,-)y) is
split if V is the orthogonal sum of a split hermitian hyperplane and an anisotropic line. Ac-

cordingly, the determinant of a split E./F,-hermitian space of even dimension m = 2k is
(_1)k € Z?T>< /NET/FT<E7>'<)

Going back to our setting m € {2,3}, V € {V, W}, let us fix an Og-basis {e1,ea} of Ly .
The condition Ly, C Ly}, implies that det({e;, €;))1<;, j<2 € Op, hence det({e;, €;),)1<i j<2 €
Opg, for all inert place 7. Set Ly, := Ly ®o, O, C W, and Ly, = Ly ®o, O, =
Lw,®Lp, C V; be the corresponding local O, -lattices, with Lp ; = Og, ep. The preceding
discussion implies that W, is split - hence V, = W, L D, is split - if and only if the E -basis
{e1,e2} of W, satisfies det((e;, €;);)1<i,j<2 = —1 € EX//Ng, p, (EX). This also implies
that W, = FE,e, & E,e_ is a hyperbolic plane generated by some Witt basis {e,,e_}. The
preceding conditions are almost always satisfied, i.e., for all but finitely many inert places 7:

Lemma 1.2.4. There exists a finite set S* C Ir; of finite places of F' containing S* and the
ramification places Ram(E/F) = {v € Ipys; v is ramified in E/F}, such that every inert
place T ¢ S? satisfies the following properties:

- The compact open subgroups Ky, C Gy, and Kw,. C Gw,, are both hyperspecial,

- The Og, -lattices Ly, and Ly, are both self-dual,

- The local hermitian spaces W, and V, are split.

Proof. The construction of S* ensures that the first two properties are automatically
satisfied for any finite set S? O S*. Notice that, if 7 is unramified in E/F, then the norm
map Ng/p: Op — Op is surjective (see [46], §2, Proposition 3 (b) ). As det({(e;,e;)) € Op
by assumption on W, one may set

S? .= S'URam(E/F)U{r ¢ Iy is inert; det((e1,e2)-) & Op }
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If 7 ¢ S? is inert, then both det((eq,ez), and —1 lie in O Np_/p (OF ) C Ng /g (EX), ie.,
(Wy, (-,+)7) is split, and so is V, = W, L D.. O

Definition 1.2.5 (Allowable inert place of F'). We call allowable inert place of F', any inert
place of I~ S?.

Consequently if 7 is an allowable inert place, the lattice Ly, = Ly, @ Lp , is self-dual
and the hermitian space V, admits Witt bases, i.e., bases of the form {ey,ep, e_} with

(ey,e0) = (e_,e9) = 0 and (ep, e9) = (€4, e_) = 1.

Remark 1.2.3. We use the same terminology as [27], Definition 1.1, although our definition
of allowable inert places is slightly more restrictive (namely, we require that the hermitian
space V. and W, be split).

1.2.4 A base cycle Zg, (go).

We still assume in this paragraph that K = Ky. Let go € G(Ay) be any element. By
definition of the (finite-) adelic points of G, there exists a finite set ¥ = ¥(go) of finite places
of F', containing the set S? introduced at Lemma and such that

g0 = (90.2:95) € (UV) x UW))(Fx) x [ [(Uy x Uy)(Or,).
vg¢Y

In particular, as S C S* C ¥, one has g7 € K™ C [[ 051 (Uy XUy )(OF,) =: K. Accordingly,
when dealing with special cycles one may replace go by go := (9o, 1) € G(Ay), as Zk(go) =
Zx(90). Consequently, we may and will assume that g5 = 1 € K* throughout the following.
As we shall see later on, the action of the Galois group Gal(E(co)/E) on the set of special
cycles, such as described at Proposition implies that

StabH(Af)<ZK(gO)) = H(Af) N (ZG(@> ) H(Q) gngo_l)-
The preceding may be rewritten into the following useful form, using ([7], Lemma 65):

Proposition 1.2.5. Set K3 := A(K3), and set

Kfi g5 = ((Za(Q) N K¥)gos Ky g5 k) NH(F).

Then the stabilizer of Zr(go) in H(Ay) - with respect to the action described later on in
Proposition - is equal to
H(Q) - (K, » x K3) C H(4)).
Notice that, by axiom SV5 satisfied by the Shimura datum (G, X), the group Zg(Q) ~

TH(Q) x THQ) is discrete in Zg(Ay) ~ TH(A;) x T'(A;) C G(Ay), hence the intersection
Zc(Q) N K* is at most finite.
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1.2.5 Hecke action on Z[Zx (G, H)].

In this paragraph, we let G' be a totally disconnected group which is either the adelic
group G(Ay) or one of its local components G,, = Ux)(F,) (v € Ips, » € {V,W}) or
Gy = (U(V)) x U(W)(F,), endowed with the corresponding topology. We let U be a compact
open subgroup of G. For any commutative ring R, we let C>°(G, R) be the set of R-valued,
locally constant, compactly supported functions f : G — R. This set is endowed with a
natural structure of R-module, induced by addition and R-multiplication on the target. If
R = Q, the Q-vector space C°(G, Q) is also endowed with a ring structure (without unit),

whose product law is given by the convolution product of functions:

(fix f2)(g) = Si(R) fa(h™g)dpy (h) = filgh) fa(h™)dpy (), (1.20)
hed heq
where py @ C(G,Q) — Q is the unique left-invariant Haar measure on G which is U-
normalized, i.e., such that uy(1y) =: [, o 1v(h) duy(h) = 1 (see [49], §2.4). The substitu-
tion h + g~ th shows that both integrals above are indeed equal, and one gets from the above
equality that fi * fo remains H; left-invariant (resp. Ha-right invariant) whenever f; is H;
left-invariant (resp. fy is Hy right-invariant), for all subgroups H;, Hy C G.

We set C*(G/U,Z) C C*(G,Q) to be the Z-submodule formed by those functions f :
G — 7 that are Z-valued and right U-invariant. We check that this module is generated
(over Z) by the family of indicator functions 1,4y, for g running among the quotient G/U.
We let C°(G J U,Z) C C*(G/U,Z) be the Z-submodule formed by those functions that
are also left U-invariant, i.e., that are Z-valued and U-bi-invariant. The generating family
1,0, g € G/U, being stable under convolution (see [7], §III.5, Example 3), one gets that
C*(G/U,Z) and C*(G )/ U,7Z) remain stable by convolution. Finally, for any commutative
ring A, we may extend the scalars to A and define the ring

Ha(G JU) :=CX(G | U,Z) @z A

which we call the Hecke algebra attached to the pair (G, U), with coefficients in A.

The ring Ha(G /) U) is generated over A by finite sums of indicator functions 1y, with
g € U\G/U. Accordingly, one has an isomorphism (of A-modules)

HA(G J U) ~ A[U\G/U].

For all g € GG, the set UgU C G is endowed with a right action from U, acting by right-
multiplication: accordingly, U g U splits as a disjoint union | |,., ¢;U, with g; € UgU, which
is finite as U is both compact and open. Consider the A-linear map

p: Ha(G JU) — Endag(A[G/U]),
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given by mapping the indicator function 1y,y, g € G, to the unique A[G]-equivariant endo-
morphism of A[G /U] which maps the element [1-U] € A[G /U] to the sum >_;%,[g; U], where
UgU = U;2,g;U, or equivalently, defined by:

Tg

p(Lugy) - U = [d'aU] € ZIG/U), Vg €G. (1.21)

i=1
One checks that p is a bijection, and satisfies p(fi * fo) = p(f2) o p(f1) for all fi, fo €
Ha(G)U),i.e., that pis an isomorphism between the rings H4(G J/U) and End a6 (A[G/U])°P
(see [7], Proposition I11.5.1).

We now assume that K = Ky C G(Af). We set Hi = Hz(G(Af) / K) and H,, =
Hu(Gy | Ky) =~ Hu(Gvy [ Kvy) @ Hz(Gwo [/ Kwa), for all v € Ips. The global Hecke
algebra ‘Hy admits the following factorization (as rings):

Hic = ZIK\G(Af)/ K] = ZIK\G(Fy) /Ky © Q) ZIK NG, /K]
vgn

= Hz(G(Fy) | Ks) © Q)" Ho, (1.22)
Vs
where the restricted tensor product &' is understood with respect to the elements [1¢,] =
K, € Z[K,\G,/K,]. Accordingly, the action of Hx on Z[G(Ay)/K] can be extended to acti-
ons on Z[H® (4 )\G(A,)/K) and on Z[N (H)(QH* (A )\G(4/)/K] B2 2]z, (G B,
by the same rule as . One has:

ligr - Zr(9') = ZZK(QI%); Vg' € G(Ay), with KgK =U;%,g,K. (1.23)
i=1

In particular, one checks immediately that the Hecke action above and the Galois action
- such as expressed e.g. in Proposition [1.42] - commute with each other. Notice that the
Z-module Z[H (A;)\G(A;)/K] is also factorizable, as follows:

ZIHY (A)\G(A)/K] ~ Z[H (Fo)\G(Fy)/Kx] © (R ZIHING, /K,
v¢D
with Hder := H(F,) and where the restricted tensor product is understood with respect
to the elements @), 5 [H;” 1¢, K,]. One checks the action of Hy on Z[H (A;)\G(Ay)/K]
intertwines the local actions of the local Hecke algebras H, on Z[H"\G,/K,].

1.3 Transfer fields, Galois traces and distribution rela-

tions.

The aim of this section is multiple. The first goal is to provide, for all neat compact open
subgroups K C G(Ay), an explicit and simple description for the action of the abelian group
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Gal(E®/E) - in fact, of his quotient Gal(E(o0)/FE) - on the set Zx (G, H) of H-special cycles
of level K, via global class-field theory. The second is to discuss the notion of ring class fields,
transfer fields and of K-transfer fields - and in particular, the structure and ramification of
the intermediate extensions between the latter - which also arise from global class-field theory
and will appear later on as natural choices for fields of definition, when exhibiting a particular
family of special cycles in Chapter 3. Most of the content of the next three subsections is
mainly considered as standard in the literature. Anyway, we found relevant to recall some
general constructions and to provide details for some non-trivial facts, in the same vein as

what is done in [7].

1.3.1 The global Artin map.

We shall review some properties of the global Artin map in the case of number fields,
in view towards the computation of the transfer field E(co) C E® with respect to the CM
extension F/F. This review follows relatively closely Boumasmoud’s exposition made in ([7],
§VIL.9 and §VI.14), exception made of some slight notational differences. First, let L be a
general number field, and let I o, (resp. I r and 1, ¢) denote the set of infinite places (resp.
of real and complex places) of L. For any o € I g (resp. ILc), we let L, denote the copy of
R (resp. of C) endowed with the L-algebra structure induced by v. We let I, ; denote the
set of finite places of L, which we identify with the set |[Spec Op| ~\ {0} of non-zero prime
ideals of Oy.

We set, mainly for notational convenience and after ([7], §VI.9), X to be the algebraic
torus over Q defined by Xy := Resy/9G,,. Accordingly, one has X1 (Q) = L* and X, (R) =
[Ler,.. Ls- The group of finite ideles X (Af) = A} , and the group of ideles X, (Ag) =
A7 ~ X (R) x X1 (Af) are endowed with the restricted product topology: the group X (Ag)
(resp. X1 (Af)) admits a basis of neighbourhoods of the identity formed by subgroups of the

HUv X HOZU,

veS végS

form

where S runs among the finite sets of places (resp. of finite places) of L, with U, C LY an
open subgroup for the corresponding (archimedean or non-archimedean) topology, and where
we set Op, = L,, Vo € I} . The above topology makes the group X (Ay) into a totally
disconnected topological group.

We let ¢4, tf and 1o, denote the diagonal embeddings of X (Q) into X (Ag), X.(Af) and
X1 (R) respectively. We shall sometimes, and when the context is clear, omit to precise the
chosen embedding while identifying X (Q) with a subgroup of the preceding three groups.

(16). One should remain careful that these embeddings do not commute with the inclusions of X, (Ay) (resp.
X1 (R)) into X1 (Ag) obtained by adding the identity at the archimedean places (resp. at the finite places),
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By ([39], Proposition 2.5), the group X, (Q) is discrete (hence closed) in X (Ag), thus the
ideéle class group Cp, := X1 (Ag) / X1 (Q) = A} / L*, endowed with the quotient topology, is a
locally compact topological group. We let 7 : X (Ag) — Cf, denote the canonical projection
map.

By the global Artin map - sometimes called global reciprocity map - we mean the surjective,

continuous morphism of topological groups
Arty : Cp — Gal(L®/L),

which satisfies a various set of nice properties, among which:

— Functoriality with respect to finite abelian extensions M/L, with respect to the norm
maps Ny : M* — L* on the left-hand side, and restriction maps res : Gal(M® /M) —
Gal(L®/L) on the right-hand side,

— Compatibility with the local reciprocity maps Arty, : LX < Gal(L%/L,), with respect
to the inclusions L — A} and Gal(L®/L,) ~ D, < Gal(L®/L), where D, stands for
the decomposition subgroup at v.

According to ([40], Corollary 8.2.2) the kernel of Arty, is equal to the connected component
Dy, of the identity in Cr. We let X, (R)+ =[] (Lg)>0xIlser, . Lo denote the connected
component of the identity in X (R) - with respect to the archimedean product topology -
which can also be identified with the connected component of the identity in X L(A@). By
([40], Theorem 8.2.1, (7)), Dy, is equal to the topological closure of the subgroup 7(X(R)4) C
Cp. If Y is a subset of either X7 (Ag) or Cp, we denote by Y its closure with respect to the

UEIL,]R

corresponding topology. Let us start with the following observation:

Lemma 1.3.1. The kernel of Arty o7 : Xp(Ag) — Gal(L®/L) is X (R) X (Q).

Proof. The proof amounts to showing that X (R), X (Q) = 7~ (ker Arty) = 7~ }(Dr) =
at (w(XL(R)+)>, which uses only basic properties of quotient maps between topologi-

cal groups. More precisely, the inclusion X (R),X.(Q) C 7! (W(XL(R)_;,_)) is clear, for
! <7T(XL(R)+)> is a closed subset of X1, (Ag) containing 71 (7(X.(R))) = X(R) X.(Q).
Conversely, if 2 is any element of 7! <7r(XL (R)+)) and if U is any open subgroup of X (Ag),
then 7(2)m(U) N7(XL(R);) = 7(zU) Nw(XL(R)y) # 0 - as 7(U) is an open subgroup of C7,
- thus

07" (m(2U) N7(Xp(R)4)) = 2UX1(Q) NXL(R)+XL(Q),

but rather commute with the projections proj; : Xz (Ag) — Xr(Af) (resp. proj, : Xr(Ag) — Xr(R)) on
to the finite (resp. infinite) places.
(17). Indeed, X (Ay) is totally disconnected and X, (Ag) is homeomorphic to Xz, (R) x X (Ay).
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e, 2zUNXL(R): X, (Q) # 0 and z belongs to X (R) X, (Q). O

By a slight abuse of notation and when the context is clear, we shall still denote by Arty,
the composition Arty o7 : X (Ag) - Gal(L*®/L).

1.3.2 Restriction to finite ideles.

Our first aim will be to provide an alternative description of the Artin map and its kernel
in terms of X, (Ay) instead of X;(Ag), which will enable us to better describe the Galois
action on the various geometric objects we are dealing with, via Shimura reciprocity for
instance. We set X1 (Q); 1= 1.} (XL (R)y) = {z € L*; 0(z) > 0, Vo € Irg}, which we refer
to as the group of totally positive scalars. We also set Of , = O N Xz(Q)4, which we
call the group of totally positive units. If Y C X, (Q) is any subset, we shall temporarily
enforce notation and denote by Y7 its closure in X1 (Ay) with respect to the embedding ¢y,
by contrast with its closure Y in X (Ag) (with respect to 4).

Lemma 1.3.2. The following equalities stand:

(i) X1(Ag) = Xp(Af)XL(R) 1 X1 (Q). ; ;
g v 7 X v A <

(i) In X(Ay), one has X (Q) =X, (Q) - OF and X (Q)y" = X.(Q)y-OF .

Proof. Notice that, for each of the three statements, the inclusions from the right-hand
sides into the left-hand sides are clear.
(1) Let z = 25025 be any element of X (Ag), with 2, € X(R) and 2y € X, (Ay). By the so-
called weak approximation for number fields (see for instance [42], Theorem 1.4) the rational
ideles X1, (Q) are dense in X (R). In particular, the map

15+ X2(Q) = XL (R) - X (R)/XL(R)+ = {£}",

with m = #(ILRr), is surjective. Accordingly, one may find a rational idele A € X (Q) such
that 1o (A) 1200 € XL(R)4. As A = 15o(A)ep(N), this gives

7= Meao(A ) 200) (17 (A ) 2p) € X (QXL(R)+Xp(Af) C Xp(Af)XL(Q)XL(R)4,

hence the result.

(77) It remains to show the inclusions mf C XL(Q)O_Zf and mf C XL(Q)JF@JC.
Let zf = (2,)» € XL(Af) belong to the closure wf of X (Q) = L*. For all finite places v
of L, we let w, € L be a choice of uniformizer and we set k, := ordy, (z,) € Z. Recall that,
for all v, if y, € L) is such that ordy, (y, — 2,) > ky, then the ultrametric inequality implies
that orde, (y,) = k,. There exists a finite set S of finite places of L such that z, € OF , i.e.,
k, =0, for all v ¢ S. We define an open subset of Lg := [[,.q L., by setting

Us, = sz(l + wk”l(’)Lv),

vES



64 CHAPTER 1. SPECIAL DIAGONAL CYCLES ON SHg (G, X).

and we let U, := Us. X [[,¢5 Or, be the corresponding open subset of X, (Ay) containing z.
Let (2(),>0 € (L*)N be a sequence in L* which converges to z; in Xz (A;), and let N > 0
be some integer satisfying

AN U,,Vn > N.

Thus ordwv(zq()n)) =k, for all v, i.e., the sequence ((z("))~12(™), 5 n in L* is made of global
units and converges to (zV))~1z; in Xy (Af). This gives z; = 2™ (zMV))~1z, € LXO_Zf, as
wanted.

The last inclusion X;(Q); C X.(Q), - @ follows directly from the previous one: if z €
mf then the scalars 2™ may be chosen to be totally positive for all n > N, making
(M) =12 4 totally positive unit for all n > N, hence z = 2™ lim,_,.(zV))712") €
X1(Q), 07, 0
An immediate consequence of Lemma [1.3.2] (i), is that the restriction ArtL‘ ) of Arty, to

X (A

the finite ideles X (Af) remains surjective.

Lemma 1.3.3. The kernel of Art : Xp(Ay) - Gal(L®/L) is equal to

L|Xo(ay)

Xo(@)y =X,(Q,0F,

Proof. The last equality being just Lemma m, (7i1), the proof amounts to showing
that X, (A;) N X, (Q)XL(R); = X£(Q) . Indeed, if z; € Xy (A;) belongs to Xz (Q)XL(R)s C
X (Ag), then one may find sequences (z™),50 € (X1 (R),)N and (y™),50 € (X.(Q))N such
that 2(™y™ converges to z; in Xy (Ag), i.e., such that 2™, (y™) converges to 1 € X, (R)

and 17(y™) converges to z; in Xp,(As). In particular, the element 2™ (y™) lies in X, (R),
for n > 0, which means that 1, (y™) € X, (R),, i.e., that (™ lies in X (Q)4 for n>> 0. In
other words, one has z; € X (Q);".

Conversely, if zy € X (Af) belongs to XL(Q)+f then one may find a sequence (y™),>o €
(X£(Q)4)N which converges to z;. In other words, the sequence

(too (Z/(n))fly(n))nzo € (XL(R) XL(Q)"

converges to zy in X1 (Ag), i.e., 2y € Xp(Ay) N XL (R)+ XL (Q). O

From now on - as we will mainly be dealing with finite ideles - we shall drop the superscript
[0/ from the notation of the topological closure (in Xz (Ay)) of subsets of Y C X(Q). We
shall also slightly abuse notations and still denote by Arty, : X (A;) — Gal(L®/L) the above
restricted Artin map. The previous lemma provides us with the following isomorphism:

Artp: Xp(Ap) /X0(Q)1OF , ~ Gal(L*/L). (1.24)
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1.3.3 The case of F' and F and the transfer map.

The non-trivial element ¢ : (z — Z) of Gal(E/F') induces an automorphism of the F-torus
ReSE/FG’m,Ea by
C: RGSE/FGn%E — ReSE/FGm,Ea

2z
defined, for any F-algebra R, by letting ¢ act on the left-most component of (F ®p R)* only.
One may then define the following map:

v: Resg/pGp e —U(1)gy/p,

PR (1.25)
z

The following sequence of F-groups

~
—_

1] —— Gm,F — RGSE/FGW’E Y > U(l)

is exact (see [7], §11.1.3.3 for details). The Weil restriction functor from F' to Q enables us
to define the following Q-tori:

Z = Xp = Resp/gGp,r and T := Xp = Resg/9Gp,r = Respjg(Resg pGp k).

Recall that, by definition, the torus T' = Resp/qU(1)g/r C T may be identified with the
kernel of the norm map Ng/p : T — Z. Accordingly, for each x € {V, W}, the diagonal
inclusion z — z - 1 identifies T with the center Zg, of G,.

According to ([12], A.5), the Weil-restriction is a left-exact functor and preserves sur-
jectivity between smooth morphisms ([12], Corollary A.5.4, (1)). Consequently, the following
sequence of Q-tori

1 W/ > T > T! > 1 (1.26)

remains exact. By assumptions on £ and [’ one has Ip., = Irpr whereas Ig ., = Igc, i.e.,
Z(R); ~ (Rsp)? and T(R), = T(R) ~ (C*)¢. Equality (1.24) translates into the following

isomorphisms:

Attp: Z(Ag) [ Z(Q),OF, > Gal(F™/F) (1.27)

~

Artg . T(As) / T(Q)OF 5 Gal(E®/E) (1.28)

The Artin map satisfies one last functoriality, with respect to the group-theoretic transfer
map between Gal(F'®/F) and Gal(E®/E), which is a continuous group homomorphism

Vergp @ Gal(F*/F) — Gal(Eab/E).
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Let us denote by tg/p : Z — T the inclusion induced by F' < E. By taking the inverse
limit of the commutative diagrams provided in ([39], Proposition 2.9), one obtains that the

following diagram

Z(As) 225 Gal(Feb/F)
. /Fj lverE e (1.29)

Artg

T(A;) 2 Gal(E/E)

is commutative. We denote by Fs := Z(Q), the subgroup of totally positive elements in
F*. The following Proposition is a very slight modification of [7], Lemma 64:

Proposition 1.3.4 (Kernel of VerE/F). The kernel of Verg,p is isomorphic to the quotient
Z(Q) / Z(Q)+ = F* 05, | F50O5 .
which receives a surjection from F*[Fsq ~ {£}¢ (in particular, ker(Verg,r) is finite).
Proof. By chasing through the diagram [1.29| one obtains that

ker(Verp/p) = Artp (LE}F(ker ArtE)>

— Artr <Z(Af) N T(@)O,§>

By Dirichlet’s unit theorem, both groups O C Oy, are free Z-modules of rank d — 1, hence
[Of : OF] < 0o. The choice of a family t;,...,t. € O of coset representatives for O /O
enables us to write

Oy = |i|ti(9§ = OtiO_;,
=1 =1

therefore EXOj = EXO_§. Similarly, one has [Of : O] < oo, hence FX(9_§ = F*Op,.
This gives
ker(Verp/p) = Artp (A;ﬂ,f N E’X(f);>

— Artp (FX0;,+> ,

as OF C Ap;and EX Nigyr(Af ;) = F. One obtains that

PO,

)
X
FaOf,

ker(Verg p) ~

(18). The notation Ver stands for the german Verlagerung (shift, or transfer). The group-theoretic transfer
map Ver : G — H% exists whenever H is a finite-index subgroup of G, and we refer to [39], chapter II for
a precise definition.
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which receives a surjection from F*/Fyq . Finally, the isomorphism between F*/FJ and
{£}? =~ (Z/27Z)% is given by the map

F* — {£}?

2> (sgn(0(2))) sy,

which is surjective (by weak approximation for F') and whose kernel is precisely F>%%. [

1.3.4 Galois action on 7 (Shy,, (H,Y)).

We shall switch back for a moment to the world of Shimura varieties, in order to compute
the Galois action on the set mg (Shg, (H,Y")) of connected components of the Shimura variety
Shr, (H,Y), via global class field theory. Throughout this subsection, K might refer to any
neat compact open subgroup of G(Ay), and we have set Ky = H(A;) N K.
1.3.4.1 The determinant map.

Let us start by the following important result:
Lemma 1.3.5. For each x € {V,W}, the map det : G,(As) — T (Ay) is surjective.

Proof. We adapt here the proof of ([32], Lemma 5.21) to our situation. We will show
that the map det : G,(Q,) — T'(Qy) is surjective for all rational prime ¢, and that the
corresponding map between the respective smooth Ogl—models for U, and U(1)g/r = Zu(w),

det: U, — T,

is surjective on (Op,) points, for all v ¢ S'. This will imply, for all rational prime ¢ not
divided by elements of S*, that one has a surjection:

det : T(Z) == [[U.(OF,) - [[T"(Or,) = T'(Zy).

v|l v|l

For each rational prime ¢, one has an exact sequence:
1 — H(Q) — H(@Q) > T'(@) — 1
which induces the following long exact sequence in Galois cohomology,

1 —— H*(Q) — H(Q) % TY(Q) —— H'(Q,,H)

(19). To our knowledge, one should refrain from expecting it to be an isomorphism in general, i.e., one could

——x
still expect to find some number field F' such that Fs.cOp, ¢ F*Op , i.e, where Op , N Op C O s
strictly larger than OF _ .
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As H is isomorphic (over Q) to GLy, then HY" = SL, is semisimple, simply connected and
one has H'(Qg, H) = 0 by ([32], lemma 5.19-a), thus det : H(Q,) — T*(Qy) is surjective.

Now, let v ¢ S* be a finite place of F. The smooth @%'-models U and T, for U(%)
and U(1) g/ respectively - recall that we identify U(1)z/r and T' with the respective centers
of U(x) and U,- have connected reductive fibers, hence so does the kernel U := ker (@ ;
U, — Il). After base change to Spec Op,, one gets an exact sequence

det

I — (err)o — H*OFU — (Il)oFu — 1

Fy

of group schemes over Op, , which gives another exact sequence

1 —— (U5, — Us, — (T)s, — 1,

by base change to SpecF,. Let p belong to T'(OF,) and set Y C U,o0p, to be the smooth
scheme over Spec O, defined by Y := det™"(p). Let us show that Y (Op,) is non-empty. The

preceding exact sequences gives rise to a long exact sequence in Galois cohomology:

1 —— (Us)g, (Fo) — (Ue, (Fo) — (T, (Fo) — H' (F,, U (F.))

By a theorem of Lang - a short proof of which can be found in [34] - one has H' (F,, U™ (F,)) =
0, hence det : (U,)p, — (T')g, is surjective, thus Y, (F,) is non-empty. The non-emptyness
of Y(Op,) - i.e., the surjectivity of det : U,(OF,) — T'(OF,) - then follows from a version
of Hensel’s lemma applied the smooth scheme Y over the henselian ring Op,, i.e., from the
surjectivity of the map Y (Og,) — Y&, (F,) (see [22], Théoreme 18.5.17). O

Lemma shows that the elements of Ng(H) C G are completely determined by their
action on D, i.e., that for all Q-algebra R, the map:

Ap i Ne(H)(R) = H(R)-Zg(R) —— Gv(R)

A(h) - (21, 29) —— z1t(29)7 "

tgoA~!
is injective. This enables us to see both groups H — ~ (Gw) C Gy and Ng(H) as

subgroups of Gy, hence to see the product group Ng(H)(Q) H(Af) as a subgroup of Gy
containing tg(Gy ). One may thus extend the determinant map into a sequence of surjective
map det : Ng(H)(Q)H(A;) - T'(A;). We denote by det* the map obtained by composing

the following row:

Na(H)(@H(A) & T(4)) — £ B0
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Lemma 1.3.6. The map det® induces an isomorphism

. NeH)QHA) -~ T'(A))
0 NeE)(QB®(R,)  T(Q)

Proof. In other words, one has to show that det™ (T'(Q)) = Ng(H)(Q)H**(A;), i.e.,
that det ™" (T!(Q)) C Ng(H)(Q)H™"(A;). Let us first show that the map H(Q) <<% T'(Q)
is surjective. Recall that the derived group HY" is simply connected, as it is isomorphic
(over Q) to SL,m and that the center of H, Zy C H is isomorphic to Zg,, =~ T!. The
composite map v : Zg — H et T s given by z + z4meW — 22 Recall that Zx(R) =
U(1)(F ®qR) =T, U(1)g/r(R,,) ~ (S')4, thus v induces on R-points the morphism:

(Sl)d —)(Sl)d

(21,.. ., 2q) — (25, ..., 25),

which is certainly surjective. From the exact sequence of Q-morphisms

1 —— Hder y H —9, ! > 1
one obtains the following commutative diagram, whose rows are exact:

1 —— H*(Q) — H(Q) % TY(Q) — H'(Q,H)

[ | [ |

1 —— H*(R) — H(R) % TY(R) —— H'(R,H™)

The natural maps H'(Q, H") — H(Q,, HI¥) - for ¢ running among all the places of Q -
satisfy the following Hasse principle ([42], Theorem 6.6):

HI(Q, Hder) SN H H1<@57Hder).
<oco
As HY(Q,HY¥) = 0 for all finite prime ¢ (this is [42], Theorem 6.4), one gets that the
right-hand vertical arrow H'(Q,H) — H'(R,HI) is in fact injective. Let ¢ be an
element of T'(Q) C T'(R): the surjectivity of (R) ensures that ¢ = det(z) for some
z € Zu(R) C H(R), hence t € T!(R) maps to the trivial class of H'(R, HY"). By in-
jectivity of HY(Q, Hr) — HY(R, H") and exactness of the top row, one gets that ¢ lies in

det,

det(H(Q)), i.e., that the map H(Q) — T!(Q) is surjective.

Now, let g = ngh be an element of Ng (H)(Q) H(A[) satisfying det*(g) = det(ng) det(h) €
T'(Q). Asdet(ng) is, by definition, equal to det(z1g 2,¢) € T'(Q), with ng = A(hg)(z1,9, 220) €

(20). The two rows of the diagram are obtained from taking the long exact sequences in group cohomology

attached to the short exact sequences 1 — H"(Q) — H(Q) det, T(Q) — 1 and 1 — H'(C) — H(C) det,

T1(C) — 1, with respect to the groups Gal(Q/Q) and Gal(C/R).
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H(Q)-Zg(Q), one obtains that det(h) € T'(Q). Accordingly, one may find some h; € H(Q)
with det(h; 'h) = 1, hence h; 'h € HY*(A;). Thus, g = nghi(h; 'h) € No(H)(Q)H* (A ,),
as wanted. ]

1.3.4.2 The zero-dimensional Shimura variety m (Shy,(H,Y)).

Recall that we saw at (1.11)) that Shg, (H,Y)(C) splits as a disjoint union of connected

components

Shiy (H,Y)(C) = |_| FHJ\K
j=1

where for all j, Pp; is the arithmetic subgroup h;Kmh;' N H(Q) of H(Q), and where
{h1,..., hy, } CH(Ay)is a system of representatives for the double quotient H(Q)\H(A)/Kq.
The induced bijection between 7y (Shy, (H,Y)(C)) and H(Q)\H(A )/ Ky turns out to have
some additional structure.

More precisely, we recall that the composite map v : T! ~ Zyg — H det, il g surjective
on R-points (see e.g., the proof of Lemma [1.3.6)), therefore one has THQ)" := TY(Q) N
(Im (Tl(R) N Tl(]R)>) = T'(Q), in the notations of ([32], §5). As H%fr ~ SL, g is a simply
connected reductive group, one may apply a theorem of Deligne - a simplified version of

which is given in ([32], Theorem 5.17) - and get the following isomorphisms:
7o (Shie, (H,Y)) = mo(Shi, (H, Y)(C))

det
~ H(Q)\H(Af)/Ku — T'(A;) / T(Q) det(Kn). (1.30)
The latter is endowed with a structure of a zero-dimensional Shimura variety Shaes () (T, {det(pw,c}),
such as defined in [32], §5, whose points are (by definition) all special, and the cano-
nical model Mk(H,Y) for Shg, (H,Y) over E induces a canonical model for the zero-
dimensional Shimura variety Shae(yy) (T, {det(uw,c)}) (see [32], §13). Moreover, the co-
character det opuw,c : Gy c — T¢ is certainly defined over E (as the conjugacy-class of py.c
is, and T'! is commutative).

1.3.4.3 The adelic reflex map 7qct(uy.c).A-

Recall that we keep on identifying the abstract number field E with its image p;(E) C C.

One may express the adelic reflex map rqeq A, appearing in the Shimura reciprocity, in

Hw,C)
the following way:

Proposition 1.3.7. The adelic reflex map Tdet(uw.c),A 1S gen by:

Tdet(uw,c),A - AE —>T1(Af)a
. Z Zs
2 = (Zoos 2f) r—>pr03f(;) — z_;’
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where z — Z (resp. zy — Zs) denotes the action of the complex conjugation ¢ € Gal(E/F)
on A =E®p Ap (resp. on Apy=FE Qp Apy).

Proof.
Recall that we showed in § that hwc : S¢ = Gw,c is given, for all C-algebra S and all
(zs,2¢) € S(S) =~ S* x S*, by

d
. Z
(25, 2t) > (diag(1, Z_t), 1o,...,14) € Gwe(S) = [JUW)5.2(9).
=1

S

where we implicitly identified U(W)z ¢ with GLyc, for alli € {1,...,d}. Accordingly, for
all z € G, c(S) one has:

det(pw,c)(2) = (det(1,27"),det(1s),...,det(1y)) = (27, 1,...,1) € T(S),
still, with the implicit identification (U(1)g/r)5,c(S) =~ GL1(S,,), for all z' When applying

the morphism det(uw,c) to E-algebras, one may not properly use the above expression,
which only makes sense for C-algebras. However, we recall that for all i € {1,...,d}, the
field R,, ®p E = C,, is the copy of C endowed with the E-algebra structure given by p;.

Accordingly, if R is any Q-algebra then one has:
R®qE®yR~R®yF®rE®yR=]]C, ®qR.
i=1
That det(uw,c) is a morphism of group schemes over E implies that the following diagram

det(uw,c)

G (E ®q R) , T(E ©q R)
Z'_>(l72(z))lj:1 t’—>(5i(t))?:1

Gm(R®q £ ®q R) =G, ([[;-; Cp, ®o R) » THR ®q E ®q R)

S (s’l,l ..... 1)

is commutative. For the same reasons is the diagram

Gon(E ©g R) —v9 (g g R)
G(E ©g R) —v9 i g R)
commutative. The equality p; = p;oc, for alli € {1,...,d}, enables us to write the following:

for all z € (E ®q R)*, one has

pro(det(pwe)(2) = pi(2) " =iz, pro(det(uwe)(2) = pi((c-2)7") = pule-27),
(1.31)
and p; (det(pwe)(2)) = pi (det(pwe)(2) = 1, for i > 2. (1.32)

(21). This is alright, since the identifications U(x)p ~ GL(xg), x € {V,W}, and (U(1)g/p)p ~ GL1 £
commute with the determinant maps, as one checks easily.
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Consequently, one has for all z € (£ ®q R)*:

Neso(det(uwe)(2)) = [ 5 (det(pwe)(2) x 7r (det(pmwc) ()

i=1

E)+E3D ~
= p1(2 )

x pi(c-z71)
Fen® z e 27h (1.33)
We may now apply the preceding to the case R = A. This gives, for all z € (E®gA)* = A7,
that:

Fact(u ) (2) Z Drojy (Npjg(det(pw.c)(2)))

(L.33) - _
=" proj; (27" (c- 271))

= z;l (c- 2]71)
L%
<f

Equality § follows from and from our implicit identification 3 — 3; between U(1)(Ag f)
and GL;(Ag, ). Namely, using the notations of § , we check that, if z; € GLi(Ag,) is
seen a the 3 of some element 3 € U(1)(Ag ), then our notation ¢ - z; actually stands for
(c'3)e = (3, 1)°=:3 " € GL1(Ag, ), according to (L.13). Therefore, the quantity z;l (cozp)t
corresponds to

G '), =5 (c 3= 7
2f

]

We set v to be the morphism between Q-groups T = Resg/q(G,y,) and T' = Resp/qU(1)g/r C
T, which corresponds to the Weil restriction (from F to Q) of ([1.25)):

v: T —T!

ppa—— (1.34)
z

This enables us to express the Galois action on 7 (Shy, (H,Y)) in the following way:
Corollary 1.3.8 (Galois action on my (Shy, (H,Y)).). Let o € Gal(E*’/E), let s, € Aj

be such that Artg(s) = o, let t be an element of T'(Ay) and denote by C(t) the connected
component in 7y (Shg,; (H,Y')) corresponding via (1.30) to the coset

ETH(Q) det (Ku) € T' (A7) / TH(Q) det(Ku)[]

One has:
o C(t) = C(u(s0) D). (1.35)
(22). Or equivalently, to the point [{det(uw,c)}, tlaet(rw) € Shaet(xe) (T, {det(uw,c)}).
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1.3.5 The field E(c0) and the map Artp,.

We shall reformulate the Galois action on the set my (Shg, (H,Y')) given above in a slightly
different way, using the field F(co) and the map Arty,, defined as follows. From (T.24]) applied
to L = F, one may form the following map
T'(Ay)
T (Q)

obtained by composing the inverse of the (restricted) Artin map

Tin : Gal(E"/E) — (1.36)

Artz!: Gal(E®/E) — T(A;) / T(Q)OL = T(A;) / T(Q)

together with the map v : T(Ay) —» Tl(Af). That v indeed maps T(Q) into T}(Q) is a
consequence of the axiom SV5 being satisfied by the Shimura datum (G, X), namely, that

T'(Q) is discrete in T'(Ay), hence T'(Q) = T'(Q). By definition, the map rg, makes the
following diagram
Gal(E/E) —— T'(As) / THQ)

ArtET T
T(Af) ——— T'(Ay)
commute. The following Proposition is due to [7] (Proposition VI.14.1):

Proposition 1.3.9. The following sequence

VerE/F

1 — ker(Vergp) — Gal(F*/F) —— Gal(E**/E) = T'(A;) /T'(Q) — 1 (1.37)
1S exact.

Definition 1.3.1 (The field E(c0)). The let E(c0) C E® denote the abelian extension of E
fized by the image of Verpp : Gal(F**/F) — Gal(E“’/E).

By definition of E(oc0), and by Proposition |1.3.9 the map rg, induces an isomorphism
between Gal(E®/E) / Verg,p(Gal(F**/F)) = Gal(E(o0)/E) and T*(Ay) / TH(Q). We set

Arty: T'(A;) / THQ) = Gal(E(c0)/E) (1.38)

to be the inverse isomorphism. By construction, the map Art}, makes the following diagram

Artg

T(As) / T(Q) Gal(E*/E)

Vl I‘eSE(Oo)l

Ti(Ay) / THQ) = Gal(E(0)/E)

(23). The surjectivity of v : T(Ay) — T'(Ay) follows from the surjectivity of v : E) — U(1)g,r(F,) for all
v € Ip s (which is Hilbert’s Theorem 90 when v is inert or ramified in E/F), and from the surjectivity of
v: Op — U1)g/r(OF,) at every unramified v (see the beginning of §1.3.8.1).
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commute. By Corollary|1.3.8] one obtains that the action of o € Gal(E®/E) on 7 (Shg,, (H,Y))
depends only on the restriction O"E(Oo), i.e., that the elements of g (ShKH(H, Y)) are all de-

fined over the transfer field E(0co). The above diagram enables us to rephrase Corollary
into the following:

Corollary 1.3.10. Let 0 € Gal(E(00)/E) and let t, € T'(A;) be such that Arty(t,) = o.
For all t € T'(Ay), we let C(t) € mo (Shgy(H,Y)) be the connected component of Shie,m,y)
corresponding[*Vto the coset

t TH(Q) det(Kn) € T'(Ay) / THQ) det(Kn).

One has:
o-C(t)=C(t, t), Vt € T'(Ay) (1.39)

1.3.6 The Galois action on Zx (G, H).

We now wish to translate the above into an action on the set Zx (G, H) of H-special
cycles of level K. Let us start with the following useful lemma:

Lemma 1.3.11. Let Ky be a compact open subgroup of H(Ay), K be a compact open sub-
group of G(Ay), and let H(Q) be the closure of H(Q) in H(Ay) for the finite-adelic topology.
One has

H(Q)\H(A;)/Kx = H(Q)\H(A)/Kn = H(QH" (A;)\H(A)/Kn (1.40)

and

NeH)(Q\G(A))/K = Za(QH(Q)\G(Af)/K = Ne(H)(QH™ (A;)\H(A;)/K. (141)

Proof. The first equality of (1.40), H(Q)\H(A;)/Ku = H(Q)\H(A,)/Ku, follows

from the fact that, for all h € H(Ay), one has H(Q)h = H(Q) h, hence HQ)h Ky =

H(Q)h Ky = H(Q)h K, as Ky is an open subgroup. The strong approzimation theorem

([32], Theorem 4.16) applied to the semisimple, simply connected group H9" implies that
H(Q) is dense in H"(A;). By axiom SV6 the subgroup T'(Q) C T!(A;) is discrete,
hence closed, thus det ™' (T*(Q)) is a closed subgroup of H(A). This gives:

H(QH™(A;) C H(Q) C det ~{(T(Q)) = det (T (Q)) = H(QH™(4),

the last equality coming from the surjectivity of H(Q) det, T!(Q) shown in the preceding

lemma. This shows that H(Q)H(A;) = H(Q) and concludes for (1.40). The equalities of
(24). Still via (T.30).
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(1.41)) follow directly after noticing that H(Af) C G(Ay) is a closed subgroup, hence H(Q)
coincides with the closure of H(Q) in G(Ay), which gives:

NeH)(Q) g K =Zc(QH(Q) g K = Zc(QH(Q)g K = Zc(QH(Q) g K

= Za(QH(QH™(Af) g K = Ng(H)(QH™ ¢ K,
for all g € G(Ay). O

Let us now translate the Galois action of Gal(E(00)/E), defined for any level Ky C H(Ay)
on the set of connected components of the smaller variety Shy, (H,Y), into a Galois action
on the whole set Zx(G,H). As characterized in Lemma [1.2.2] the cycle Zk(g) arises as the
image of the connected component H(Q) - (Y x K, 1) € mo(Shg, ,(H,Y')) via the sequence

of morphisms
Shye, o (H,Y) — Shy g y1(G, X) —2 Shye(G, X),

with K,u := H(Af) NgK g~'. Let us abuse notations and still denote by [-g] the above
composite map.

Let us fix a particular gy € G(Ay) until the end of this paragraph. Notice that, if hg is
any element of H(Ay), then the compact open subgroups Kj 4, 1 and ho K, m hy I are equal.
Accordingly, the Hecke morphism |[-h| induces an isomorphism

h
Shy,, , w(H,Y) 24Shy, ,(H,Y),
[y; h]Khogo,H '—>[y7 th]Kgo,H7

which itself induces an isomorphism, still denoted [-hg|, between their corresponding zero-
T!, det(uw,c)), indu-
ced on T'(A) by multiplication by det(hg). Recall that connected component

dimensional Shimura varieties Shget KhOgO,H(T17 det(pw.c)) = Shaet i, g (

Cl,go = H(Q) . (Y X Kgo,H) € o (SthO,H(H7 Y))

is the pre-image of the double coset H(Q)H (A;) Ko € H(QH (A)\H(A;)/Ky 5,
via the map:

Iy, Shic,, (L Y)(€) —H(Q\H(A7)/ Ky = HQUH" (4)\H(47)/ K1
[y7 h]Kgo,H 'HH«@)Hder(Af) h'KQ(),Hv
hence the pre-image of 1 = THQ)det(Kynm) € THA;)/T(Q)det(K, u) via the map
detolIl,,. Similarly, we set Cpyq4 = H(Q) - (Y X hoKy4n) € 7o (SthO,H<H7Y>)‘ Set

to := det(hg) and let oy be the element Artp(ty) € Gal(E(00)/E): as detolly(Chygy) =
to TH(Q) det(K,, 1), one gets by Corollary [1.3.10| that:

oo CLQO = Ch07go € o (SthO,H(H7 Y)) .
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On the other hand, the connected component Cy g, := H(Q)- (Y X Kjy40.1) € o <ShKhOgO,H(H7 Y))
maps to H(Q) - (Y X hoKy, 1) = Chyg Via [-ho]. That the following diagram, whose arrows
are defined over E:

Shi (G, X) d > Shi (G, X)

~

['hogo]jI\ ['go]jI\

Shic, s (H,Y) ———— Shy, ,(H,Y)

[.ho] 90.H

is commutative, implies that

a0+ Zk(90) = [90](00 - C1,0) = [-h0g0](Crnogo) = Zx (hogo)-
As det : H(A;) — T*(Ay) is surjective, we just showed the following:

Proposition 1.3.12 (Galois action on Zx(G, X).). Let g € G(Ay). Let 0 € Gal(E(o0)/E)
and let hy be any element of H(A}) which satisfies Arty o det(h,) = o. Then

o Zi(g) = Zx(hsg). (1.42)

Remark 1.3.1. For all ho € H(Ay), the correspondence Zk(g) — Zk(hog) is well-defined,
i.e., does not depend on the choice of g € G(Ay). Indeed, by (L.41)) one has

Zx(G,H) ~ Ne(H)(Q)\G(As)/K = Ne(H)(QH™ (A)\G(Af)/K.

Accordingly, if g and ¢’ are two elements of G(Ay) such that Zx(g) = Zk(g’), then one may
find some ng € Ng(H)(Q), h € HY*(A;) and k € K such that ¢ = nghgk. Thus hog' =
hongh gk = (honghhy hog k, with honghhy* € Ng(H)(Q)H(A;). But det(honghhy') =
det(ng) det(h) = det(ng) € TY(Q), hence honghhy* € Ng(H)(Q)HY* (A) (by Lemmal1.5.6),
i.e.,

hog' € Na(H)(Q) hog K, thus Zk(hog') = Zk(hog).

1.3.7 Orders, ring class fields and transfer fields.

We end up this section (and chapter) in a discussion about ring class fields, their variants
called transfer fields, which enable us to describe nicely the field F(oco), and then K-transfer
fields (using the terminology of 7], VII.) which will be the natural candidates on which to
define our particular family of special cycles in Chapter 3.

Recall that, if L is a number field, by an order O of L we mean a (unitary) subring
of L such that O ®; Q = L. Every order is a free Z-module of maximal rank and is
contained inside the maximal order Op. We may also define orders in a relative situa-
tion: if L/K is an extension of number fields, we define Ok-orders of L to be those or-

ders O of L which are Og-algebras - or equivalently, Ox-modules - and therefore satisfy
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O®o, K=0®0, Ok ®@2Q=0®;Q=L.

Going back to our CM-extension F/F, if O is any Og-order then one may define its
conductor by setting
co :={x € E; zOp C O}.

One checks easily that c¢o is the greatest elementmong those ideals of O which are
contained in O. Accordingly, every Op-order O contains a maximal order of the form
O, := Op 4+ ¢Op, where ¢ C Op is a non-zero ideal, and one may choose ¢ to be ¢p N (’)F.

If O is an Op-order, we define O:=0 Rz, 7~ 0 R0 (7); - (575 to be its profinite
completion. For all finite places v of F' and all integers ¢ > 0, we set

Oy = 0Op, + w°Op,, (1.43)

to be the local order of conductor ¢, where Og, := O ®o,. Op, is the ring of integers of the
étale algebra F, := FE ®p F,, and w € O, is a fixed uniformizer. Accordingly, one has

X
O. = |(0r+c0p) @0, [] = I Qoo (1.44)
UEIFJOU UEIF,f
for all ideal ¢ C Op, where ord,(c) stands for valuation of ¢ at the prime ideal p, of O which

corresponds to v. By (1.44)), the unit group ax is a compact open subgroup of AE, - One
has the following useful result:

Lemma 1.3.13. Ifv € Iy, then the following equality stands:

OF, = (0%

c>0

Proof. The inclusion from the left-hand side to the right-hand side is clear. For the
converse inclusion, we start by assuming that v = ww is split in E/F, where w # w are
places of E. In this case, one has an isomorphism Op, := O ®o, Op, ~ O, X Og,_. One
may identify the field F,, (resp. Eg) with F,, which gives identifications between O, (resp.
Og,,) with Op,. The preceding isomorphism Og, ~ O, x O, can therefore be written as

¢: xRy (Ty,ry),

with y € Op, and x, ¥ € Op — Opg, ~ F,. In particular, the ring O, embeds diagonally
into Op, x Op, via ¢. Let z € O , and set ¢(2) = (z,y) € O x Op to be its image in our

(25). With respect to the inclusion relation, i.e., the smallest element with respect to divisibility.

(26). Nekovar claims in ([38], §2.6.2) that the inclusion O, C O is in fact an equality, for every Op-order O.
The reason on this claim is still unclear to the author without any additional hypothesis on the extension
E/F (for instance, that Op admits an Op-basis of the form {1, a} for some o € Op).
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chosen identification. If (x,y) belongs to ¢(O, ) then one may find u, s, t € O, such that
(z,y) = (u+ @w°s,u + @), i.e., x —y = w(s — t) € w°Op,. Consequently, the condition
2 € Ne>0O,y,c implies 2 = y, hence ¢(z) € ¢(OF,), i.e., z € O, , which concludes.

On the other hand if v is inert (resp. ramified) then the extension E,/F, is an unramified
(resp. a totally ramified) quadratic extension, and Op, always admits an Op,-basis of the
form {1, a}, where a € Op, can be chosen to be a root of unity (resp. to be a uniformizer of
EU If we fix such a basis {1, a}, then O, . = Op, + w°(Op, + Op,a) = Op, + w°aOp,.
Accordingly, if z € OF, belongs to the intersection N.>oO., then its a-coordinate has to be
0,ie,z€0r N0 =05 O

Definition 1.3.2 (Ring class fields and transfer fields). To each ideal ¢ of Op are attached
two abelian extensions E(c) C E[c] of E, defined as follows:
— The transfer field of conductor ¢ is the subfield E(c) of E® fized by the subgroup
Artg (A;fax) C Gal(E®/E).
— The ring class field of conductor ¢ is the subfield E[c] of E® fized by the subgroup
Arty (5) C Gal(E®/E).
Accordingly, one has

Gal (E*/E(c)) D Artg (LE/F(A;]C)) = Verpp(Gal(F*/F)) = Gal (E*/E()) ,

hence E(¢) C E(oco)NE|c] for all c. As O, isan open subgroup of A ;, one has EX C EXO,
for all ¢, hence

AL Ag
B DB o Gal(B[/E) (1.45)

EXO, ExO,

A% A%

— 5L _ Bl ~ Gal(E(c)/E) (1.46)

EXAL O, EXAL O,

EXA} 0.
and ————— ~ Gal(E[c]/E(c)). (1.47)
ExO,

Remark 1.3.2. — One checks that, for all non-zero ideal ¢ of O, the groups Artg <ax>

and Artg (A:ﬂ’f@\f) are both closed (or equivalently, compact) subgroups of Gal(E®/E).

Indeed, the former arises as the image of a compact subgroup of A s by the continuous

map Artp. The latter is equal to Artp(Af ;) - ArtE(OCX), which is still compact as a
product of compact subgroups (indeed, one has Artp(Aj ;) = Verg/p(Gal(F*/F)) =
ker(ray ), which closed - hence compact - in Gal(E®/E)). Consequently, the fields E(c)

and E[c] are both well-defined via infinite Galois correspondence.

(27). We refer to ([46], I.6) for proofs of these properties.



1.3. TRANSFER FIELDS, GALOIS TRACES AND DISTRIBUTION RELATIONS. 79

— The left-hand side of (1.45)) is isomorphic to the Picard group Pic(O.) of the order O,
which is known to be finite: therefore the extensions Elc] D E(¢) D E are finite for all c.

Ak

— The left-hand side of (1.47)) is a quotient of Fx(g ~ Pic(Op). Consequently, if F' has
F
class number equal to 1 then E[¢] = E(c) for all c.

For all ideals ¢, ¢’ of O, the equality ((1.44) induces the following relations:

—~X —~ X — X

Oc : Oc’ = Ogcd(c,c’) )
X/\X % —~ X % — X
E Oc NnE Oc/ DO F Olcm(c,c’) and
—~X —~ X — X
EXA;(”J"OC m EXA;‘,J(‘O(/ D EXA;W’fOICIn(C,C/) 5

therefore one has

E(c)NE(¢) = E(ged(c, ), E[c]NE[] = E[ged(c, )], (1.48)
E(¢)- E(¢) € E (lem(c,¢')) and E[c] - E[¢] C E [lem(e, ¢')] (1.49)
The previous relations enable us to define E[oc] := .o, iqeazo £1¢] C E as the infinite

compositum of all the ring class fields. This is an abelian extension of E associated, via
infinite Galois correspondence, with the closed subgroup

Gal(E®/E[oc]) = () Art (5) C Gal(E®/E).
¢£0

Similarly we let E(oco) := Uccoy ideatzo £(€) C Efoo] denote the infinite compositum of all

the transfer fields, which corresponds to the closed subgroup

Gal(E®/E(c0)) = () Arts (A;fax) C Gal(E®/E).
¢#0

One may describe the above fields in a refined way:

Lemma 1.3.14. There exists a increasing sequence (¢;);>o - with respect to divisibility - of
non-zero ideals of Op, such that
—~ X —~ X
Or =[O, (1.50)
i>0
Proof. The monoid formed by non-zero integral ideals of Op is a countable set, as
a subset of the group of non-zero fractional Op-ideals (which is itself countable, for it is
generated by the countable set of non-zero prime ideals of Or). Accordingly, let (¢;);>0 be a

choice of sequence exhausting all the non-zero integral ideals of O, and set

i
(VIRES HE{J’, Vi > 0.
j=0
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By construction, the sequence (¢;);>o is increasing and, for all n > 0 and all p € |Spec Op| \
{0}, there is some constant i(n,p) > 0 such that

ordy(¢;) > n, Vi > i(n,p).

The inclusion @X C ﬂizo(zx is clear. Conversely, let x € @X belong to the intersection
ﬂizo(’)cix and denote by z, € O, its v-component (the map Op = Op®0,Or — Op®o, OF,
is induced by the usual projection @X — Op,), for all v € I,. Denote by p, the prime

— X

ideal of O corresponding to v, and let n > 0: the relation x € O implies x, €

ci(n,pv)

Ovordy, (csnp)) C O Dy construction of i(n, p,). In other words, one has z, € (1,5, O, =

Op. , the last equality being Lemma [1.3.13, which gives

x=(2y), € H @ —Or ,

’UGIRf

as desired. O

We state here a simple (but very useful) topological argument:

Lemma 1.3.15. Let G and G’ be (Hausdorff) topological groups, let f : G — G’ be a
continous group homomorphism and let H C G be a subgroup. Assume that the subgroup

f(H) C G is closed, and let (C;)i>0 be a decreasing sequence of compact subgroups of G.
Then

F(OHC:) = () f(HE).
i>0 i>0
Proof. The inclusion from the left-hand side to the right-hand side is obvious. If z € G’
belongs to (Vs f(HCi) = ;s f(H) f(C;) then, for all ¢ > 0, the set D; := f~*(f(H)z)NC;
is a non-empty subset of G. As f (H) is closed in G’ then so is f(H)z, hence D; is a closed
subset of the compact subgroup Cj, i.e., D; is a non-empty compact subset of G. It follows
that the intersection (1,5, D; is also non-empty (this result is sometimes called Cantor’s in-

tersection theorem). Accordingly, one may find some x € N;>0C; such that f(z) € f(H)z. In
other words, z belongs to f(H)f (5o Ci) = f(H Nz Ci) C f (Niso HC:). O

The preceding lemma has the following applications: if G = Af ,, G' = Gal(E®/E),
f=Artg, C; = (/Q;X and H = {1} C G, then one gets

Artp (ﬂ 6) = Arts(O;, ). (1.51)

i>0 i>0

The map r4, : T(A;) — T!A;) being continuous, one may also apply the preceding
lemma (with G" now equal to T'(As) and f = 74,) to deduce that, if z € A ; belongs

—~ X
t0 ;>0 Ar ;O , then
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ran(@) € [ 7an(Oq ) = ron (ﬂ o ) c T'(Ay),

>0 >0

hence

z € ker(rﬁn)ﬂ@X :A;fﬂ(’/)zx.

i>0 i>0

By Lemma [1.3.14] one finally gets
MA:0. =45,(0: = A, (1.52)
>0 >0

Putting up the preceding together gives us:
(Eab)ArtE(é}x) _ (Eab)ArtE<ﬂi206c\iX) _ (Eab)ﬂiZOArtE(@X)
& |JBle] € Eloc] = (Bt @
i>0
C (Eab)ArtE(ﬂc¢oax) C (Eab)ArtE(@x)’
ie., Eloo] = ;s Elai] = (E“b)ArtE(ax). Equality (#) above follows from infinite Galois

correspondence, using that (5, Art E(@ X) is the closed subgroup of Gal(E%/FE) consisting
of elements which fix the abelian extension (J;5, F[c;] pointwise. Similarly, one has

E(00) = (Bt)Nero Artr i ,f@“ c (Boyrrte (N 47,007

Eab

(E7)
( )ArtE _ (Eab)VerE/F(Gal(Fab/F)) = E(OO)
")

rtE< z>OAFfO% ) g (Eab)miZUArtE(A;;,féc\ix)

= (B"
= U B € Bleo),

>0

i, E(oo) = E(oc0) = Uiso E(ci) = (Eob)Versr(Gal(F*/F)) - The equality (&) is another di-
rect application of Limxma 1.3.15, this time with G = Aj , G' = Gal(E®/E), f = Artg,
H=Ap;and C; =0, .

The above equalities imply that E[oo] is a Galois extension of E(co), whose Galois group
1s AX AX
Gal(E[oc]/E(c0)) ~ i = — L5~ Pic(0p),

—

(EXNA},)Or  F<Op

the equality (E* N Af,’f)OAFX = FX@X coming from E* N Ap, = F* (see the proof of

Proposition [1.3.4) and from the inclusion F* C FX@X (@X C Ay is an open subgroup).

As was already implied by the last item of the preceding remark, one finds that Eoo] = E(00)
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if F' has class number equal to 1. One may show that E(oco)/F is also Galois and that its
Galois group fits inside the following exact sequence

1 — Gal(F(x)/FE) — Gal(E(x0)/F) — Gal(E/F) — 1

which splits as a semi-direct product
Gal(E(00)/F) ~ Gal(E(c0)/E) x Z/2Z,
i.e., E(o0)/F is a dihedral extension.

Lemma 1.3.16 (Ramification in E(c) and E[c]). Let ¢ be a non-zero ideal of Op. Any prime
ideal p of O which does not divide ¢cOF is unramified in Elc| (hence also in E(c)).

Proof. Let v be the place of E corresponding to p, and let p € Z be the rational prime
below p. A choice of identification between E, and Q, induces, via our fixed embedding
n, : Q = Q, ~ E,, an identification between the Galois group Gal(E®/E,) and the de-
composition group D, C Gal(E/FE) at v, hence an identification between their abelianized
versions Gal(E2/E,) and D% C Gal(E*/E). Let w stand for the finite place of E[c] defined
by 71, and corresponding to some prime ideal q of Opgy. As Elc]/E is Galois then it is enough
to show that the inertia index e(q|p) is equal to 1, i.e., that the inertia group I(q|p) C D(q|p)
is trivial. As p 1 ¢Op then ord,(¢) = 0 (w being any uniformizer of the field Fyrp, C E,)
thus the embedding at v, ¢, : £ < Af ;, induces an inclusion O < o, .

The functoriality properties of the Artin map, together with the above identifications,
make the following diagram

~X

EYX < > Op, > O,

\[Artv lz lAI‘t E

Gal(E®/E,) ~ D® D I C Gal(E®/E)

lreSw[c]w lreSw[c]w lreSm[c]

Gal(Eld],/Ey) = D(alp) > I(alp) < Gal(E[c]/E)

commute. The composition of the right vertical arrows being trivial - by definition of EJc|
- one obtains that the surjection O, — I(q|p) - obtained by composing the middle vertical
arrows - is also trivial, i.e., that I(qlp) = 1. O

1.3.8 The field K.

From this subsection onwards, and unless the contrary is explicitly mentioned, we will
always assume that the notation K refers to the base compact open subgroup Ky C G(Ay).
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Recall that we defined a base cycle Zx(g0) € Zx(G,H), where gy € G(Af) was some arbi-
trarily fixed element. The choice of gy, together with our particular choice of compact open
subgroup K - defined as K := (U, X QW)((’/);) C G(Ay), where the models U;, and Uy,
depended on the chosen lattices Ly and Ly - provided us with a finite set ¥ C Ip; con-
taining the ramification places Ram(E/F) . By definition, one had gy = (g0, g5) with
g € (U x QW)((’/);%) =: K*¥ C K. Accordingly, when dealing with special cycles one may
still assume without loss of generality that g3 = 1, which we do.

Lemma 65 of 7] enabled us to describe the stabilizer of Zx(go) in H(Ay) in the following
useful way:

Stabra(u) (Zx(9)) = H(Q) - (K 5, % K3).

with K&, 5 = ((Za(Q) N K*) - gox Kx go3) NH(Fy) and K = A(KY) == AUy (0F)).

1.3.8.1 Smooth models for Z, T and T' over O%.

The morphism between Dedekind rings Op — Op is finite and flat. We set OF =
Op ®o, OF, which is still a finite and flat O%-algebra. One may thus define the following
algebraic tori over Spec O%:

Z:= Gm,OIE,?
I = ReSO%/@gGm,
and T! := ker(Nps /o : T —Z) C T

These are reductive groups over Spec O3 which are models for the corresponding F-groups
G, r, Resg/pGr, g and U(1). By construction, the set 3 contains the ramification Ram(£/F):
accordingly, the surjective morphism v : T — T!, still defined by z f, remains surjective
on @—points. Indeed:
- if v is split then T'(Op, ) is isomorphic to the group {(s,s™'); s € O } C Of xOp, ~ OF. ,
and for all s, ¢ € Op , the map v sends (s,t) € Op to (ts™!,st™!). Accordingly, one has
(s,s7") =1u(l,s), for all s € O .
- if v is inert then one has EY = O F) = Oj; ker(v), and the surjectivity of v : T(Op,) —
T'(Op,) follows directly from the surjectivity of v : EX — T*(F,) (which is Hilbert’s Theo-
rem 90).

Recall that we showed at Lemma [1.3.5] that the map det : Uy (Op,) — T'(Op,), is
surjective for all v ¢ X. Consequently, one has:

(28). Notice that, mainly for convenience, we actually assumed that ¥ contains the set S? (which itself
contains Ram(E/F), see Lemma . However, this additional condition defining places of S? (plainly,
that the local hermitian spaces V. and W, are split, enabling up to pick Witt bases of V. and to study the
attached Bruhat-Tits building) is superfluous in the present subsection and could well be ignored.
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U = det (K5) = det (gﬂ@)) = ] det (U (OR,))

vgs

~[IT"©r) =1 (0F) = (T(05) =[] O} (1.53)

(L2 v¢Y

with O} = v(OF, ), for all v. We set
Ugyss :=det(KF , 5) C U(1)(Fy).

As the map det is open and continuous then U, x. is an open compact subgroup of U(1)(Fy),
hence Uy, sy x U* is an open compact subgroup of T*(A).

Definition 1.3.3. The field K is the finite abelian extension of E defined as the subfield of
E(oc0) fized by be closed subgroup

Artp(det (Stabra,)(Zx(90)))) = Arty (TYQ) - (Uyys x U”)) C Gal(E(c0)/E).

By construction, the field K is the minimal field of definition of the cycle Zk(gp). We

set T5; == [L,ex T'(Or,) C [1,ex OF,- We define OF - to be the open subgroup of £y :=
(E ®p Fx)™ given by
O =" (Ugyz N'Tx) (1.54)

1.3.8.2 The K-transfer fields.

Definition 1.3.4. Let §f C Op be a non-zero ideal, relatively prime to 3. The open subgroup
OF C T(Ay) is defined as

— X
O 1= Oy 5 X <Of ®op O?) =055 > [ 1 Oy
vgs
One has
Ui = v (D) = (Ugps NTx) x Ui C THOF) C T'(Ay),

Wlth UfE = Hvéz V(O;yordv(f)).

Definition 1.3.5 (Transfer field K(f)). The transfer field KC(f) is the subfield of E(oo) fized
by the subgroup Art}, (V(Dfx)) C Gal(E(c0)/E).

Notice that, though we use the same symbols and terminology as ([7], VII.1.5), our K-
transfer fields might in general be slightly different from Boumasmoud’s (namely, a little bit
bigger) as we chose, for convenience, to shrink the group O, +. so that v(O,, ) C T, which
Boumasmoud doesn’t. In particular, the inclusion K C K(1) could be strict.
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By definition, one has v(9;) C Uy, s X U*, hence Gal (E(00)/K(f)) = Arty, (I/(Dfx) C
Arty (Ugys x U¥) = Gal (E(00)/K), i.e., K C K(f), for all f prime to . Let f and g be (non-
necessarily coprime) prime-to-X non-zero ideals of Op. By definition, one has K(f) C K(f-g),

as well as isomorphisms:

EXA;foX v Tl(@) Uf Art}g
X X’ X ~ > ) >Ga]_ ,C . IC 155
EXAp O TY(Q) Uy (K(F-9)/K(F)) (1.55)

Let us recall the following basic result of group theory: if A, B D C' are subgroups of a
commutative group G, then natural inclusions induce the following exact sequence:

ANB B AB

By taking G = Ap;, A = E*, B = A;,OF and C = A O, we obtain by (1.55) the
following exact sequence:

EX N AL O A OF
EXNAL O Ap O8

11—

1 — — Gal (K(f-g)/K(f)) — 1 (1.57)

Notice that Aj ; can be rewritten as Fy x (Af;)* 1= Fy x [Ler,, "B the restricted
product being, as usual, with respect to the groups O for v ¢ ¥. For every prime-to-%,
non-zero ideal f C Op, one has:

<0f®(’)F (/9\) AIE?f ) Hovord A%f)xz@x7

vgX
hence y
AF,NOf = (FFNOs ) x OF .
DX
Consequently, for all f and g prime to X, the quotient H is trivial, which gives
F.f .
by (1.56]) an isomorphism
ALOF O O,
o 159
Ff f-0 'U%E v,ordv(f)—i-ordv(g)

One may control the first term appearing in the exact sequence ((1.57) by using the following
result, due to Nekovar:

Lemma 1.3.17. Let §f C Op be a non-zero, prime-to-3 ideal, and assume that
f-Op1ly:=lem{(u—1); u € (Of)tos ™ {1}}.

Then one has

E* A}, O] = F
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Proof. We adapt the proof of [38], Proposition 2.10 in our Case to show the only
non-trivial inclusion E* N AL O C F*. Let x € Ap;, y € O and assume that »z =
zy € . Then u := v(z) = v(y) lies in v(O]) N E* =U;N EX C Op NE* = O3, and
u € ker (NE/F : OF — (9;) = (Og)tors. On the other hand, u, € O, is congruent to 1
modulo w4 ® for all v ¢ ¥, where @ € O, is a fixed uniformizer. As f- Oy is prime to %,
this gives u =1 mod fOg. The hypothesis on f implies that v = 1, hence z € F*. O

As an immediate consequence, one has:

Corollary 1.3.18. Let f and g be prime-to-3 ideals of O, and assume that §Og t Iy. Then

X X

O @
Gal(K(f-g)/K(M) =~ gk~ ] —"— (159)

f-g vg%, pylg  v:ordu(f)+ordy(g)

The above corollary is very important as it will enable us to work locally (outside X2)
and to treat global traces as local traces. By definition, one has U; = v (Dfx) Cv (@X>,
hence E(f) C K(f) for all prime-to-X ideal §. On the other hand, as O C T(Ay) is an open
subgroup, one may find some ideal ¢ C Of such that ax C 9, i.e., such that K(f) C E(c).
Set ¢ := ged{c C Op; ax C 97} By (1.48), one has

E)= () El),
chcofx
i.e., E(c;) is the smallest transfer field containing KC(f). For all prime-to-X ideal §, the equality
O =97nN ax induces inclusions

— X — X

—X —~X
Ocl~f C Olcm(cl,f) = Ocl N Of C DX,

hence ¢; C ¢; - § and
K(f) € E(s) € E(ey ) (1.60)

for all f relatively prime to X.

Remark 1.3.3. The above discussion has the following consequence: if W admits a global
self-dual Og lattice Ly, (which implies, as we saw, that V' admits a global self-dual lattice

(29). One could apply Nekovai’s Proposition directly if one had O fx C @X, which we do not assume to be

true.
(30). Indeed, as E/F is a CM extension then by Dirichlet’s unit theorem, the following three groups

(05)? =Ng/p(0F) CTm (Ng/p : OF — OF) C OF

all have the same rank d—1 = rkzOF. Thus ker (Ng,r : O — OF) has rank 0 (i.e., is a finite group), hence
is contained in the roots of unity. Conversely, for any root of unity ¢ € O then its norm Ng,p(¢) € O is

a root of unity, satisfying p;(Ng/r(¢)) = pi(€)pi(¢) € Ruo N poo, for all i € {1,...,d}, ie., Ng,p(¢) = 1.
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Ly := Lw & Lp) and if the extension E/F is unramified at every finite place, then all the
above constructions imply that one might simply choose S* = 0 and go = 1 € G(Ay), in which
case X might also be chosen to be (). Therefore one has O = @\fx, hence K(f) = E(f) for all
non-zero ideal f of Op. The cycle Zk(1) is then defined over K C K(1) = E(1) C E[1], i.e.,
Zx (1) is defined over the Hilbert class field of E.
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Chapter 2

Bruhat-Tits building at allowable
inert places, and local distribution

relations.

2.1 The Bruhat-Tits building of U(3).

The aim of the present section is to give an introduction - which will be very far from
a general treatment and will use only very little of the monumental theory of Bruhat and
Tits - to the Bruhat-Tits building By attached to the unitary group U(V') at any allowable
inert place 7 of F' (in the sense of Definition . Very briefly speaking, given a general
connected reductive group G over a non-archimedean local-field F'; the building of G is a
metric space equipped with a structure of a poly-simplicial complex, obtained by glueing to-
gether a family of distinguished subsets called apartments, and on which G acts isometrically.
Notice that these apartments arise as affine spaces relatively to some fixed real vector space.
In our case, we will be mainly interested in studying the combinatorial properties of By -
which turns out to be a tree - together with its sub-building By, attached to the subgroup
U(W) < U(V). This introduction adopts the point of view of self-dual ultrametric norms,
such as initially introduced by Goldman-Iwahori in [20] and formalized later on by Bruhat
and Tits (see [9]) in the case of unitary groups. The beginning of this section follows closely

Koskivirta’s thesis ([31], chapter 4), exception made of notational changes.

Let us fix notations. We recall that, for all finite inert place 7 € Ipy, the 3-dimensional
E./F.-hermitian space (V,, (-, -),) is obtained from our initial F'/F-hermitian space (V/ (-, "))
by setting V, := V®gF, and by extending the F-valued pairing (-, -) into an F,-valued pairing
(-,+)r, as explained in (L.1)). We recall that Gy, := U(V)(F,) = {g € GL(V;), (9-v,g-w), =
(v,w),, for all v,w € V,} is the local unitary group of V', and that we implicitely identify
the local unitary group Gw,, := U(W)(F,) with the subgroup ¢«(Gw.,) = {9 € Gv.r,g9-z =
z forall z € D} C Gy, viav: UW) — U(V).

89
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We let p be the rational prime number lying under 7, let w € F; be a fixed uniformizer.
We let Fy := Op, /w and F := Of,_/w be the respective residue fields of F, and E,, and we
set ¢ := ¢, = |Fyl, so that F ~ F_2. We normalize, as usual, the p-adic valuation v, on Q, so
that v,(p) = 1, and we let | - | = p~*() be the usual p-adic norm on Q,. We denote by ord,,
the w-adic valuation on E,, such that |z| = |w|"=®) for all z € E,.

Throughout the whole section, we will assume that 7 is allowable, in the sense of Definition
1.2.5, This implies that det((-,-);) = 1 € FX /Ng_/r (EX), ie., that the hermitian space
(Ve (-,-);) is split. As explained in § this allows us to choose Witt bases B =
{e4,e0,e_}, which are E -bases of V, in which the hermitian product (-,-), has matrix

001
4]
2.1.1 The buildings ]§V and By via self-dual ultrametric norms.

Let x € {V,W}. In a similar way as U(%), one may define the F-reductive group GU(x) C
Resp pGL(xg) of unitary similitudes, whose functor of points is given, for any F-algebra R,
by

GU)(R) :={g € GL(*» ®r R); 3k(g9) € R*, (g -v,g-w) = k(g)(v, w),Yv,w € * ®p R}.

The similitude factor x : GU(V) — G;,r and the determinant map det : GU(V) —
Resg/p(Gm,p) are both defined over Spec F', and the relation (g -v,g - w) = r(g)(v,w)
for all g € GU(%)(R) and all v, w € x ®p R implies that

det(g) (c- det(g)) =: det(g)det(g) = k(g9)* € R*, Vg e GU(V)(R).

Let R = F; and set év,v = GU(V)(F;). Let g belong to CNJVVT. By local class-field theory,
one has

FX
ZZ[ET:FT]:‘—T ,
Ng, k. (EY)
hence the relation Ng,_/p, (det(g)) = k(g)* implies that x(g) =1 € #TX(EX) Accordingly,
Er/Fr T

the sequence
I —— GV,T I éV,T wg NET/FT (E;() — 1

is exact, and induces a decomposition Gy, = E - Gy .

The rest of the present section being purely local, we shall simplify the notations and now

use the symbol (-, -) instead of (-,-),, when there is no possible ambiguity.

Definition 2.1.1 (Almost self-dual and self-dual ultrametric norms). An almost self-dual

ultrametric norm on V; is a function a: V. — R such that :
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- a(V;) C Rsq is discrete,

- a(Av) = |Ma(v), for all X\ € E. and v € V,,
-a(v) #0dif v #£0,

- a(v + w) < max(a(v), a(w)),

- The dual norm o, defined by

a’(v) == sup (v, w)l eER,, Ywel,
weVr,w#0 a(w)

satisfies o = r(a)a, for some r(a) € Rag. The norm « is called a self-dual ultrametric
norm if r(a) = 1.

Notice that (Aa)¥ = A7!'a" for all A € Ry, thus A is an almost self-dual ultrametric
norm whenever « is, and one has r(Aa) = A72r(a). Accordingly, if a is an almost self-dual

ultrametric norm, then (a¥)¥ = (r(a)a)’ = r(a)"'a" = a: one obtains that o is also an

almost self-dual ultrametric norm, with r(a") = r(a)™'.

Definition 2.1.2. We let By be the set of almost self-dual ultrametric norms on V., and we
call it the building of Gy.. We define By as the set of self-dual ultrametric norms on V.,
and we call it the building of Gy;,.

The group Gy, acts on By via (g-a)(v) == a(g™' -v), foralla € By and all v € V,. A
small computation gives (g-a)” = |k(g)|(g-a") = |k(g)|r(a)(g-«), hence r(g-a) = |k(g)|r(a).
Accordingly, one obtains - by restriction to Gy,,- an action of Gy, on the building By of

Gv.r. One the other hand, one gets a map:

R x BV —)ﬁv,

(t,a) | a

If a, o are self-dual ultrametric norms and if ¢, # € R are such that || o = ||/,
then r(|w|fa) = r(|o|"d)), ie., |@[* = |@|? thus t = ¢ and a = «/. On the other
hand, if o is an almost self-dual ultrametric norm, then r(a)2 = |w|’ for some ¢ € R, hence
a = @[ (r(a)2a) and r(r(a)za) = 1, ie., r(a)2a is self-dual and the above map is in fact
a bijection.

Under the identifications év,r = FEX -Gy, and ENBV = R x By, the action of Gy, on ]§V
can be interpreted as an action on the second factor By only, whereas the action of £ on
By consists in letting the element e € EX act by translation of length ord,(e) on the first
factor R. From now on, we will consider only the building By .

Definition 2.1.3. Let a € By be a self-dual ultrametric norm. A decomposition basis for
a is a Witt-basis B = {ey,eq,e_} of V. satisfying the following conditions:

— afleg) = 1, and there exists X € R such that a(ey) = |@w|* and ale_) = |o| ™.
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— For all v € V. with coordinate vector [Zlﬂ € E3 with respect to B, one has

o) = max_(ja.|-a(e.)).

The quantity A € R is called the parameter of a with respect to the basis B.

Definition 2.1.4 (Appartment attached to a Witt basis). Let B be a Witt basis of V. The
apartment attached to B, denoted Ag, is the subset of By defined by:

Ap = {a € By; B is a decomposition basis for a}.

If B is a Witt basis, then an element o € Ap is uniquely determined by its parameter A,
which implies that any apartment of By is in bijection (as a set) with the real line R. As we
shall see in the following - and as a general feature of Bruhat-Tits buildings of rank 1 (which
is the rank of the maximal split torus of U(V)g_) - this bijection is in fact an isometry, with
respect to some distance ¢ in the building. An important fact is the following: any self-dual
ultrametric norm a € By is contained in some apartment (i.e., admits a decomposition basis),
and any two elements a, o of By are contained in (at least) one common apartment. These
features are proved in [20] [Proposition 1.1 and Proposition 1.3 (following an idea of A. Weil)].

We shall denote by 8 the set of Witt bases of V., and by 2 the set of apartments of
By. One has an obvious surjection a : B — 2 given by a(B) = Ag. This can be refined as
follows:

Proposition 2.1.1. Let V< := (E®3 (- -)can) be the "canonical” non-degenerate 3-dimensional
E/F-hermitian space, endowed with the hermitian product (v, W)ean 1= Tiws + Tawsy + Tzwy,
for all vectors v = [gﬂ and w = [gé] of E®3. Let Ty := {t = ["ggﬂ&}; u,v € EX, v =1}

be the mazimal torus of U(EE3)(F,) formed by diagonal matrices.

(i) The group Ty acts on B by t - {e.,ep,e_} := {uey,veg,u ‘e }. If B is a Witt basis,
one has Ag = Ayrp for allt € Ty. The element p = [([1% g é} € UED3)(F,) acts on B by
p-{es,eo. e} ={e_,eo,er}, and the equality Ag = A, for all B € B, induces a sequence
of surjections:

a: B - ITy\B - (Ty,p\B —» A
(ii) Let t = [§§a8 ] € Ty. If a belongs to Ap = A = A, and has parameter \ with

respect to B, then « has parameter \ + ord (u) with respect to t - B, and has parameter —\

—1

with respect to p - B.

Both (i) and (i7) are straightforward computations. O
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The group Gy, acts on B in a simply transitive way, as any pair B = {ey,ep,e_},

/
*)

B = {€ ey e} of Witt bases defines the element g of Gy, such that ggp - e, = e
* € {+,0,—}. On the other hand, the action of Gy, on By induces an action on 2, and one
checks that the map a : 8 — 2 is GVVT—equivariant. Consequently, the action of Gy, on
2l is transitive.

We attach, to each self-dual ultrametric norm «, a < flag of balls » given by
B*(a) == {B(a < [&™)} s (2.1)

with B(a < |@|™?) := {v € V;, a(v) < |@|7} being the ball of radius |w|? attached to a.
We also define the open ball B(a < |@|™?) = {v € V;; a(v) < |@™?|}, for all § € R.

Lemma 2.1.2. For all € R, the balls B(a < |@w|™?) and B(a < |@|™?) are Op_ -lattices

inside V..

Proof. Let # € R. As a has discrete image in R, , one may always find some 6y < 6 such
that B(a < |w|™?) = B(a < |@|~%). Accordingly, it is enough to show that B(a < |w@|™?)
is a lattice, for all 6 € R.

Let choose a decomposition basis B = {e,, ep, e_} for «, in which a has parameter A € R.
By definition, one has a(v) < |w|™? if and only if |ag| < |@|™?, |ay| < |w|™* and |a_]| <
|02, for all v = areq +apeg +a_e_ € Vy. Set m = [0+ \], n:=|0] and r := [0 — )|
to be the respective integral parts of § + )\, 6 and  — X\. Then v belongs to B(a < |w@|™?)
if and only if ordg(ay) > —m, ordg(ap) > —n and ord,(a_) > —r. In other words, one
has B(a < |@w|™) = Op.w ™e, ® Op.w "eg® Op,w "e_ =: (w ™e,, @ "eg,w "e_) is the

lattice generated by the basis {w e, w "ey, w "e_}. O

2.1.2 The graph structure on By / ~.

Let ~ be the equivalence relation on By, defined by o ~ o' if and only if B*(«) = B*(«/),
for which we denote by cl(«) the class of a. Notice that, for all « € By, § € R and g € Gy,
one has

B(g-a<|@|™) ={veVialg™v) < =} =g Bla < |=|™).

This gives an equality at the level of flags

g-B(a)=B(g-a),

(1). Indeed, if g € Gy, and B = {e4,ep,e_} € B, then a € g- Ap if and only if g~! - a(v) belongs to Ap
and has some parameter A € R with respect to B, i.e., (¢7!-a)(v) = a(g-v) = max(|ay||=|*, |ag|, |a_||=|~*)
for all v = ayey +apeg +a—e_ € V; (e, g-v=1as(g-ey)+ao(g-eo) +a_(g-e_)). In other words, «
belongs to Ag.5, with same parameter A, hence g - Az = Ag.5.
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which shows that the relation ~ is compatible with the action of Gy. One may thus define
a (simple, undirected) graph structure on the set By/ ~, endowed with an action of Gy, as
follows:

Definition 2.1.5. — A vertex of By/ ~ if an equivalence class of self-dual ultrametric
norms which is a singleton. By extension, we say that o € By is a vertez if cl(«) = {a},

and we denote by |By| C By the subset of vertices.

— We call edges of By / ~, the equivalence classes of elements in By ~ |By/|. For any
edge X, we denote by B*(X) the common flag of balls of elements in X.

— We say that two vertices « # o' € |By| are neighbours, if there exists an edge X
such that B*(a)) and B*() are contained in B*(X), in which case o and o/ are called

extremities of the edge X.

The induced graph structure (|By|, (By \ |By|)/ ~) will - slightly abusively - be still
denoted by By/ ~. The action of Gy, on By induces corresponding actions on the sets
of vertices and edges of By / ~. Recall that, if L C V, is an Op, -lattice, we defined in
Definition the dual of L to be the lattice LY := {v € V,; (v, L) C Og_}.

Lemma 2.1.3. Let o € By be a self-dual ultrametric norm and let 8 € R. One has:
(i) Bla < |w|'™?) = wB(a < |w| ™),
(ii) Ba < ] ) = Bla < |w]")".

Proof.
(i) If v € V, is such that a(v) < |@|'7% then a(w ) = || tla(v) < |o|™, ie., v €
wB(a < |w|™?).
(77) Notice that every non-zero vector w € V; can be scaled by some (unique) integral power
w™ of the uniformizer, such that a(w™w) = |@™ |a(w) € [|w|?*, |w|?[. This gives

a(v) =a"(v) = sup (v, w)]
(v) (@) weVowro o(Ww)
o loEwl )
weVe w0 (@™ w) weVr,a(w)e[|w|0+1,|w|f] a(w)

Now if v belongs to B(a" < |@|?)Y, one has |{(v,w)| < 1 for all w € V; such that a(w) < |w|’.
Thus % < ||, for all w € V; such that a(w) € [|w|’™, |w|’[, hence ¥ (v) < || 071
Conversely, if v € B(a" < |w|7%71) then (v, w)| < a(w)|w|~~ for all non-zero w € V;. By
restricting to those w’s such that a(w) < |w@|’, one gets |(v, w)| < ||t hence |{v,w)| < 1,

for @ is a uniformizer of E,. Thus v € B(a < |=|?)V. O

Let £(V;) denote the set of lattices in V, and let F(R, £L(V;)) denote the set of functions
f:R —= L(V;). The map v : By — F(R, L(V;)) which sends a self-dual norm «, to the

function

(@) = (0= Bla < |w|™)) € F(R,L(V,)),
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is Gy ,-equivariant. If o and o € By have respective parameters A and A in a common
decomposition basis B = {e,, ep, e_}, we showed in the proof of Lemma that:

Y(@)(0) = (@ ey Peg, @™ Nel) and 1(a)(9) = (@ ey, w e, w1V e ),

for all # € R. If both functions y(a) = (') are equal, then one gets |0+ \| = [0+ V|
and [0 — A| = |0 — X, for all # € R (see next page’s footnote), which gives A = X As
elements of Ap are determined by their parameter with respect to B, one gets o = o/, hence

v is injective.

We let N C F(R,L(V;)) be the set of those functions f which satisfy the following

properties:

(N1): f is increasing,
(N2): f(0—1)=wf(0), for all § € R,
\Y%
(N3): f(1-0)= (h&l f(@’)) , for all § € R.
0'<0

Elements of A/ will be referred to as norm functions. Property (N3) implies that such function
are right-continuous in the sense that, if (6, ),>0 is a decreasing sequence which converges to
6, then one has f(6,,) = f(0) for n > 0. Properties (N2)-(N3) ensure that norm functions are
fully determined by their restriction to [0, 3[. Lemma implies that v has image in N.
Moreover, if f € N, one checks that the function a; : V; — R, v+ || ~5uP{8ive/O)} g the
only self-dual ultrametric norm on V; such that y(ay) = f. In other words, v is a bijection
between By and N.

We say that a Witt basis B = {ey,ep,e_} is adapted to a subset S C L(V;) if, for all
L € S, one has L = (@w™e,,w"ey, w"e_) for some triple (m,n,r) € Z3, which is neces-
sarily unique. One checks easily that, given a Witt basis B = {e;,ep,e_}, one has
(w™e,,w"ey, w'e_)Y = (w ey, w ey, w Me_), for all (m,n,r) € Z. Accordingly, a Witt
basis B is adapted to S if and only if it is adapted to S¥ := {LY; L € S}.

By Lemma [2.1.2) any Witt basis B is adapted to the set B*(a) C L(V;) if « belongs to
Ap. The converse is also true, as stated in ([31], Lemme 53):

Lemma 2.1.4. Let a € By. The Witt bases B such that o € Ag are exactly the Witt bases
adapted to the flag B*(«).

(2). Indeed, if one had A # X then one might always assume A\’ > ), in which case taking § = —)\" would
induce 0 > |0+ A\| = [0+ X | = 0, which is not.
(3). Indeed, if (m,n,r), (m/,n’, ") € Z* are such that (@w™e ., w" e, w"e_) = (@™ ey, w™ g, w" e_), then

!
w’!n —m 0 O 7 ! ’
the diagonal matrix 0 wV " o has to belong to GL3(Og,), ie., @™ ™, w" " w" " € OET,
, 0 , 0 w” "
hence m’ —m=n'"—n=7"—r=0.
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Proof. Set f := y(«) and assume that the Witt basis B = {ey,ep,e_} is adapted to
S = B*(«a). By the above discussion, one gets three well-defined functions m, n, r: R — Z
such that

f(0) = B(a < |ow]™?) = (@2Pe, wDey, wtPe_),

for all # € R. By (N1) and (N2), the functions m, n and r are decreasing and satisfy
m@+1)=m@d)—1, n@+1) =n@) —1and r(d +1) = r(d) — 1, for all # € R. The
right-continuity of f implies that the functions m, n and r have to be also right-continuous,
hence piecewise constant on intervals of the form [z, z + 1|[C R. Moreover, property (N3)
and the above discussion imply that, outside a discrete subset of R, the functions m, n and
r satisfy the following symmetries:

m(1 —0)=—r(0)
n(1—0)=-n(0) (2.2)
r(l—0)=—m(0)

If k € Z was such that n(f) = k for all 0 € [—3,3[, and n(f) = k — 1 for all § € [3, 3],
then the equality

Vv
1 o
f(5) = hgi f(0)
9/<§
would give k—1 =n(3) = — limg 1 g1 n(0') = —k, i.e., 2k—1 = 0, which would contradict

k € Z. On the other hand, if z €]0,1], z # % and k € Z were such that n(f) = k for all
0 clz—1,z[ and n(f) = k — 1 for all § € [z, z + 1] then, choosing some 6 € [z — 1, z[ such
that 1 — 6 € [z, z 4+ 1] and such that n(1 — ) = —n(#), would also give 2k — 1 = 0, which is
not. Consequently, n is constant with value & = —k = 0 on [0, 1], i.e., n(d) = — [8], for all
0 eR.

Set 0y := min{f € R; r(d) = 0}, so that r(0) = — |8 — 0y, for all § € R. Set oy, € Ag
to be the norm of parameter 6, with respect to B, and let fp, = v(cp,) be its correspon-
ding norm function. By (2.2), one has m(#) = —r(1 —0) = [1 — (6 + 6)], the latter being
equal to — |8 + 0] outside a discrete subset of R. As both piecewise constant functions m

and 0 — — |0+ 6y] are right-continuous, we finally get m(f) = — |0 + 6|, for all € R.
In other words, one has f(0) = (w WH0le, wl0ey =l0-0l)y = £, (9) for all # € R, i.e.,
o= Qg, € AB. O

In particular, two equivalent norms belong to the same apartments. Accordingly, if B is
a Witt basis and if oy ¢ |By/| belongs to Ag, then the edge X := cl(ay) is entirely contained
in Ag, and so are the extremities of X. Given a Witt basis B = {e,,eq, e_}, we denote
by ay) € Ag the self-dual ultrametric norm which has parameter A with respect to B. By
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Lemma (1), the group EX acts on the flag B*(cv)) by homothety. The structure of the
quotient set EX\ B*(a,) depends on A\, as described below.

Lemma 2.1.5. Let B = {e;,ep,e_} be a Witt basis and let A € R. The flag B*(«)
decomposes as the following disjoint union of EX-homothety classes:

— If A € Z, then B*(«y) is the single homothety class
{w ey, e, e ) n € Z} )
— If X e %Z N Z, then B*(«y) is the disjoint union of two homothety classes:
B*(ay) = {w”(w_(’\_%)&r,eo,w’\+%e_>; n e Z}I_I{ (- 2e., e, )‘_%e_>; n e Z}.
— If\ ¢ %Z, then B*(cvy) is the disjoint union of three homothety classes. More precisely:
— If X € [|M], [\ + 1], then one has:
= {w" (@ Mey,e0,wMe_); n € Z}u{w™ (@ Me,, 0, @M e ); n € Z}
L {w"(w_w_leJr, eo, wMe_):n € Z} )
— Ifxe [N + 3, [N + 1], then one has:
\) = {w”(w’p‘J’leJﬂeo,wwﬂe,ﬁ n ¢ Z}I_I{w”(w’L’WeJr, eo, M tle )i n € Z}
L {w”(w’w’le% eo, wMe_ )i n € Z} )

Proof. We showed in Lemmathat B(ay < |w|™) = (w9 Me, w0ey, w07 ),
for all 0 € R.
- If A € Z, this gives B(ay < |@|™?) = o @ Aey, e, mre_), for all § € R. Hence the
result.
-If X € 3Z \ Z, one gets |\] =X — 1. Let € R and set k:= |§]. If 6 € [k, k + %[, one has
0+ A =k+A—1and [ — A =k—X— 1, thus

Blax < @) =@ M@ O ey, e, @20 ).
If0ek+ik+1],onehas [+ A =k+A+3and [§ — A =k — A+ 1, hence
Blay < |o]™?) = o Fow Me, ey, w26 ).

One checks that the lattices (w’(’\’%)e+,eo,w’\+%e_) C (w’(’”%)eJr,eo,w)"%e_) are not
homothetic, as the former has index ¢? ¢ ¢® in the latter, hence the result.

-If A ¢ 37, write A = |A] + ¢ and set n := min(e,1 — €), 7’ := max(e,1 — €), so that
0 <n<n <1 Weshall treat only the case n = €, the case n = 1 — € being similar. Let
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0 €Randset k:=|0]. If0 € [k,k+¢€[,onehas [§+ A =k+ [\ and [0 — \| = k—|[\] -1,
hence
B(ay < |w|™%) = o Mo Pe, ep, M Hle ).

If0ek+ek+1—e¢],onehas [0+ =k+ |\ and [ — A\] =k — | A], hence
Blax < [w]™) =@ Mo ey, e, wMe_).
If0ek+1—¢ek+1[,onehas [0+ A =k+ |A +1and [ —A] =k — |A], hence
Blox < [@]%) = & (@ W ey, eg, mPe ).

One checks, finally, that the tree lattices (™ Me, e, @M Hle ) C (m™Wey, eg, mPMe ) C
(= WMte, ey, wMe_) are pairwise non-homothetic, since they have index ¢ or ¢? in each
other. This gives the result. [

Accordingly, if o € By is a self-dual ultrametric norm, one may say that a has integral
(resp. half-integral but not integral) parameter, irrespective of any choice of apartment
that contains «; and if two norms « and o’ are such that @ ~ o', then their respective
parameters must have the same type. Notice that, if a, b, ' and b’ are integers, the lattices
(w ., eq, wbe_) and (w ey, e, w”e_) are homothetic if and only if @ = o’ and b = ¥
Indeed, if both lattices are homothetic then there exists some n € Z such that

—a+n b+n67> o

(w ey, ey, @ = <w’“le+, €0, wble,>,

hencen+ad —a=n+b—b =n=0,thusa=ad and b=10".

Consequently, if A\, N € Z, then B*(ay) # B*(ay) unless A = X. Similarly, if A\, \' €
17 \ Z, then B*(avy) # B*(ay) if X # X. Finally, if \, X' ¢ 17, then B*(a,) = B*(ay) if
and only if one has A\, \" €lm,m + %[ for some m € %Z. As any two equivalents norms lie in

the same apartments, one deduces the following classification:

Lemma 2.1.6. Let a € By, with parameter \ with respect to the Witt basis B = {e4, ep,e_}.
Then:

(i) o is a vertez if and only if X € 1 7.

(i1) Edges that are contained in Ag are the sets Xoasl = {ou; p €N+ 5[} C Ap, with
A € 37Z. The extremities of Xyasd are the two vertices cy and oy 1.

Accordingly, any apartment A, endowed with the sub-graph structure (A N |By |, (AN |By|)/ ~)
is a connected sub-graph of By / ~ (with respect to the adjacency relation of Deﬁnition.
As any two self-dual ultrametric norms «, o/ belong to some common apartment, we deduce
that By / ~ is also a connected graph, which recovers the original idea of By being obtained

by glueing apartments together.
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Definition 2.1.6. Vertices a of By such that B*(«) is a single EX-homothety class are
called hyperspecial vertices. Other vertices of By are called special vertices. The set of
hyperspecial vertices (resp. of special vertices) of By is denoted by Hypy, (resp. Spy). Those
correspond to self-dual ultrametric norms which have integral (resp. half-integral but not

integral) parameters in all the apartments in which they are contained.

[\SI[9N)

Figure 2.1 — Representation of the building By as a bi-colored graph. Black points correspond to
hyperspecial vertices, whereas white points correspond to special vertices. The blue line corresponds
to an apartment 4, an affine real line which we identified with R on the figure. In A, hyperspecial
(resp. special) vertices have an integral (resp. half-integral) parameter A. Notice that every point
is not drawn here, and that the number of neighbours represented is not necessarily realistic.

Proposition 2.1.7. The action of Gy, on By induces transitive actions of Gy.» on the sets
Hypy and Spy, .

Proof. Let a # o' be two vertices of the same type. Let B and B’ be decomposition bases
in which « and o’ have respective parameters A and \'. As A\ — X € Z, one may assume wit-
hout loss of generality that A = X'. Indeed, if not, one may switch the basis B’ = {€/,, ej, €’}
with {w)‘*)‘/eﬁr, e, " e’ }, which is still a decomposition basis for o/, in which o/ now
has parameter A\. This gives an E,-linear map ¢, : V> — V;, defined by ¢ - e; = e, for
i € {+,0,—}, which is clearly unitary. Moreover, one has g, - @ € A5 = Ap, and
satisfies (gao - @)(€)) = ale,) = |@|™ = o/(€}), for all x € {+,0, —}, thus g, - o and o/

have the same parameter in B, i.e., goo - @ = . O

Let a € |[By| be a vertex with parameter A € 37 in the Witt basis B = {e,,ep, e_}. The
above description of the norm function f = 7(«) implies that f is constant on the interval

[0, 2]. One gets an injection:
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Yo |By| —— L(V;),
(2.3)

a— vy(a)(0) = Bla < 1)

We recall that a lattice L C V; is said to be self-dual if L = LY, to be almost self-dual if one

has inclusions wL" C L C LY, and to be strictly almost self-dual if the last inclusion is strict.

Remark 2.1.1. If L and L' are self-dual lattices such that L C L', then L' = (L')Y C LY = L,
ie., L =L". If L and L' are almost self-dual lattices which are homothetic, then they are
equal. Indeed, if not, then up to permuting L and L' one may write L = w™L' for some
n > 1. Inclusions wl’ C L and L' C (L')" rewrite as w' (L)Y C w"L' C @w"(L')", hence
(L)Y cw* 'L Cc w* L)Y C w(L')Y, which is not.

A fairly direct consequence of (N1)-(N2)-(N3) is the following:

Lemma 2.1.8. The image of o is the set of almost self-dual lattices of V.. The image of
0|1y 18 the set of self-dual lattices, whereas the image of %}sp is the set of strictly almost
A% \%

self-dual lattices.

Proof. Let a € |By| and let B = {e;, ep,e_} be any decomposition basis such that «
has parameter 0 or % (which is always possible, by Proposition m, (7)), and set f := y(«).
If o € Hypy,, one has

f(O) = <w_LOJe+7w_LOJ607w_LOJ€—> - <€+,€0,6_>,

which is a self-dual lattice, as B is a Witt basis. If a € Spy,, one has

1 1

f(0) = (wbe e+,w_L0Jeo,w7Lf2J6_> = (eq, e, we_),
hence f(0)¥ = (w'ey,eg,e_), thus wf(0)Y C f(0) € f(0)V. On the other hand, if L is
an almost self-dual lattice of V;, one may define a norm function f, : R — L£(V;) which
is constant on [0, 1] and such that f(0) = L. That f indeed satisfies (N1) (i.c., that f is
increasing) is a consequence of the inclusions wl” C L C LY. This completes the proof. [

If « € By and g € Gy, one has by injectivity of v that g - @« = « if and only if
Y(g-a)=g-(v(a)) =7(a),ie, B(g-a < |w|?) = Bla < |w|?), for all § € R. If a € |By|,
one just showed that () is fully determined by L := 7o(a), hence v - a« = « if and only if
g - L = L. This shows that stabilizers in Gy, of hyperspecial (resp. special) vertices of By
correspond to stabilizers of self-dual lattices (resp. of strictly almost self-dual lattices), and
Proposition ensures that these are all Gy, .-conjugated. The use of the term hyperspecial
is now justified by the fact that, as seen in §[1.2.3] the stabilizers of self-dual local lattices

arise as hyperspecial maximal compact subgroups of Gy ..
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2.1.3 The distance in |By]|.

Definition 2.1.7 (Distance between lattices). The lattice distance in L(V;) is the map
§: L(V,)x L(V,) =N
given by §(L, L) :=inf{k > 0; In € Z, @"*L C L' C @w"L}, for all L, L' € L(V}).

Lemma 2.1.9. The lattice distance ¢ satisfies the following properties:
(i) L and L' are homothetic if and only if 6(L, L") = 0.

(i1) For all L, L', L" € L(V;), one has 6(L, L") < §(L, L")+ 6(L', L").
(111) If 6(L, L") = 1, then either L C L' or L' C L.

Proof.
() is an immediate consequence of the definition.
(ii) If k and [ are minimal non-negative integers such that @w"**L C L' C @"L and w™ "L’ C
L" C w™L for some n, m € Z, one has w™"t*H [ c o™t c L' C o™l C w"t™L,
hence 6(L, L") < k+1=0(L, L")+ (L', L").
(i17) Let n € Z be such that @"™ L C L' C @w"L. If n > 0, this gives L' C L. If n < 0, this
gives L Cw " 1L/ C L. O

By embedding the vertices of By inside £(V;) via vy : @ — B(a < 1), one may consider
d as a function on |By | x |By/|. That v, is Gy ,-equivariant implies, directly from the preceding
definition, that

6 (v0(g-a),(g-a)) =6 (n(a),w(@)), Va, o c|Byl.

Lemma 2.1.10. Two vertices o« # o' € |By| are neighbours if and only if 6 (yo(a), () =
1.

Proof.
Assume first that o and o' are neighbours. Set L = yp(a) = Bla < 1), L' = y(/) = B(a/ <
1) and let ap € By N |By/| be a self-dual norm such that o and o are common extremities of
the edge X = cl(ay), i.e., such that the flags B*(«) and B*(«) are included in B*(cy). This
gives the existence of some 6, §' € R such that L = B(ag < |w|™?) and L' = B(ay < |w|™?).
By setting n := |0 — '], the inequalities ¢/ <0 —n < ¢ + 1 induce

"L = Blay < |w"") SB(a < |w| ) = L',
"ML = Blag < |w| V) cB(a < |w|”) = L,

thus §(L, L) < 1, hence §(L, L") = 1, for ortherwise L and L’ would be homothetic, hence
equal (by Remark , which would contradict the assumption a # /.

Conversely, let B = {e,,ep,e_} be a common decomposition basis for o and «’, and
let A\, X € %Z be their respective parameters in B. One has L = (w~WMe, ey, wlMe ),
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L' = (wWe, ey, e ). If §(L, L) = 1, then by Lemma (i17), one may assume
that L C L' without loss of generality. This gives |[A] — |[N'] > 0 and |[-XN]| — |=A] > 0.
If v and o/ were both hyperspecial (resp. special), one would have [A] — |[N] =X — X and
|=N] —[=A] =X — A, hence A = X and a = «/, which is not. Thus o and « are not of
the same type, and we may assume « to be hyperspecial and o’ to be special without loss of

generality. Therefore

=X ==X+,

and .
-N] = A = A= X =3,

hence N = A+3, i.e., @ and o are common extremities of the edge |\, \+1[C By \ [By|. O

By applying similar arguments as above, one shows that if «, o’ are vertices of By with

respective parameters A, \' in a common decomposition basis, one has

d(vo(a), 0(e”) = [[=A) = [=X]| + [IX] = [A]]
=2[A—X|. (2.4)
By Lemma/[2.1.8] one obtains that 0 satisfies §(L, L') = §(L', L) for all almost self-dual lattices

L, L', i.e., that 0 is an actual distance when restricted to vertices of By. Another distance -

namely, the naive distance from graph theory - can be defined on |By/| as follows :

Definition 2.1.8 (Geodesic distance on |By|). Define the following terms:

— We call path of length [ > 0 a finite sequence [xq,x1 ..., x| of vertices of By such
that x; # x; if i # j € {0,...,1 — 1}, and such that x; and x;11 are neighbours for all
i€{0,...,l—1} (if L > 1). A cyclic path is a path of length | > 3 such that x¢y = x;.

— We call line (or infinite path) an infinite injective sequence £ = (..., y;, Yir1,...) of
vertices of By indexed by Z and such that y; and y;11 are neighbours, for all i € Z.

— Two lines ¢ = (..., Yi, Yir1,-..) and ' = (..., Y., Y. 1,...) are called equivalent if there
exists mg € Z such that Y, = Ymg+i, for all i € Z.

— A path [xg,...,x;] is said to be contained in a line € = (... Y;, Yir1,...) if there exists
ng € Z such that x; = yny4i, for alli € {0,... 1 —1}.

— A path [z, ..., x;] is called geodesic if its length | is minimal among paths which share
the same extremities o and z; (in particular, x; # x; for all i # j).

— A line 0 is called geodesic if any path contained in { is geodesic.
If a and o/ lie in |By|, we define the geodesic distance between o and o to be the common

length dgq(cv, &) of geodesic paths of the form (o = g, 21,..., 21 = /] in |By|.

The two distances we have defined on |By| X |By/| turn out to be the same :
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Proposition 2.1.11. One has 5‘ By| Ogd-
Vv

Proof. Let a, o/ € |By|, set L = y(a), L' = y(a’) and let [xy = o, x1,...,2, = ¢
be a path of minimal length n. By Lemma [2.1.9] (i7), one has d(a, ') < §(a, 1) + ... +
(zp_1,0) = n, e, 0(a,a’) < dga(a,’). Conversely, if B = {e;,ep,e_} is a common
decomposition basis such that « and o' have respective parameters A and )\, then one may
assume without loss of generality that A < . Then the path [a = a, Qppls-y Qy 1,y =
'] has length 2|\ — A| = §(a, ) (by (2.4)), i.e., ga(, @) < §(c, '), hence the equality. [

Remark 2.1.2. The preceding implies that the apartments of By are fully determined - as
sets - by their subsets of vertices. Indeed, let B = {e;,ep,e_} and B' = {€,, e, e’} be Witt
bases, and denote by |Ag| := Ag N |By| (resp. by |Ag/| := Ag N |By|) the corresponding
subsets of vertices of the apartments Ag and Ag. By Lemma[2.1.6, the sets |Ag| and |Ap|
are in bijection with %Z, via
1
§Z — | Ag| (resp. |Ag|),

A — iy (resp. o).

If |Ag| = |Ap/| then there exists a bijection p : SZ — 7 such that, for all X € 1Z, the
verter ay € |Ag| is equal to o,y € [Ap|. If A and X are half-integers, then by (2.4), the
distance 0o, o) = 0(a), ), Q) is equal to 2|A = XN'| = 2[u(X) — p(XN')|. Therefore the
permutation p preserves the archimedean distance on %Z C R, which gives the existence of
no € Z and € € Z/27 such that p(X) = (—1)- (A +ny), for all X € 3Z. By Pmpositionm
(17), one may assume, up to replacing B by p°t - B (with t ;= diag(w™ ", ¢,w™) € Ty ) that
ng =0 and e =1, i.e., that ay = o, for all X € %Z. If X € Z, the equalities ~o(cy) = Yo(c¥hy)
and Vo(a/\Jr%) = yg(o//\Jr%) rewrite as

-/

(w ey, ep, e ) = (w e, eh, e ) and (w ey, e, @ e ) =

— <w—>\ ! )\+16/_>

e, e w
Ifpe ]\ + %[ and if 0 € [0, 1], one has

(e, 0, e ) if 6 € [0, — A,

@)(6) = (e ey, He ) = { R Y P R
; ; - ’ 2

Similarly, one has

<w_)\€ti->€6>w)\+le/ > Zf9 € [Oalu - )‘[7

-/ Al

a/ 6 — — Le“l’HJ 6/ , - LGJ 6/ , - Lei'uJ e/ —
Na)O) = (= e, @ B @ ) = e e ey i e [ AL

1
'3
gives oy, = oy, for all p € ])\, A+ %[ By similar computations, one shows that o, = o, for
all p € p\ + %, A+1 [ as \ is arbitrary, this shows that Ag = Ag .

Accordingly, the norm functions y(ay) and y(c,) coincide on [0, 5[, hence are equal, which

We shall therefore, from now on, make the confusion between apartments and their subsets

of vertices (which encode the local information about special cycles).



104CHAPTER 2. BRUHAT-TITS BUILDING AND LOCAL DISTRIBUTION RELATIONS

2.1.4 Apartments are geodesic lines.

Proposition 2.1.12. Let a, o' and o” be vertices of |By| be such that §(a, )+ (", /) =

d(a,a’). Then any apartment containing o and o contains also o .

Proof. Set d; = d(a,a”) and dy = §(a”, ), let B = {e4,ep,e_} be a Witt basis such
that a, o/ € Ag and let, as usual, A and X denote the respective parameters of o and o/. Up
to permuting « and ', one may always assume A < X. One wants to show that «” is the
norm of parameter \” in Ag, where \” € %Z is such that A —\'| = ‘12—1 and | N —\'| = %2, ie.,
N =X+ d—21 =\ - %2. By the injection 7y, : |By| < Ly, it is enough to show the equality
on unit balls, i.e., that vo(o") =: L" = (w~Wle,, ey, w7 e_).

— First assume that A\, ' and \” all belong to Z. Thus d;, dy € 2Z and, up to replacing
{ey,eq, e} by {m ey, eg, wre_}, one may assume A =0 < N = % <\N= Cll—;rdZ. By
assumption, there exists integers ni, ny such that

wh ™ (e, eg,e ) C L C @™ (eq, e, e ) (2.5)
and

_di+do di+dg _di+dy di+dp
w2 ("2 e e 2 e ) C L Cw™ (w2 ey,ew 2 oel) (2.6)

Taking the dual of these inclusions gives, by self-duality:

w " (ey, eg,e ) C L' C o (e, e e ) (2.7)
and
S <w_ d1J2rd2 ex, €0, wdlgdz e_>// c w—(d2+n2) <w_ dl;dZ ey, o, wd142rdz 6_>, (28)

If one had nq, + d; < —ny — 1, this would give inclusions
w" (e, eg, e ) = wMTDTID (0 eg e ) C L Cwm™MF (e, eg e ) C w™ T ey, e0,e ),

which would give 6(a,a”) < d; — 1, which is not. On the other hand, if one had
ni +dy > —ny + 1, then —(ny + d; — 1) < ny and one would have inclusions

d171)7(d1+n171)< d1+n171)<

w ™M (e, e, e_) = w! e e, e ) C L' Cw™(es,eq e ) Cw ey, €p,e ),

which would also give 6(a, ") < dy — 1. Hence ny + dy = —nq, i.e., ny = _d2_1’ and the
same arguments show that ny = —%2. Inclusions (2.5 and (2.6) now become:

4y 4y 4 1 4 d1
(w2ey,w2ep,w2e ) C L' C(w

and
_d dg do+ 3L " —dy—4 _
(w 2e ,w?ey,w e yC L' C(w 2e,w
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This gives

_dy dy dy . _dy dy dy
(W 2ey,w2eq,wre ) C L' Clw Tep,w

. . _dy _d dy . .
Notice that, if v = ayw 2 e, +aw 2ey+a_w2e_ is a vector of L” (with ay, ao,

a_ € Og.) then, as L = (L")Y, one has (v,v) = a,a_ + a_a, + ag@yw @ € O,
d d d
i.e., ordy(agt) = 20rdg(ag) > dy, thus apw™2 € Op, and L C (w2 ey, eq, w2 e ).
~ d d
Both lattices are self-dual, therefore L” = L = (w_TleJr, €0, 002 e_), as expected.

If A and X both belong to Z and \’ € %Z \ Z, then inclusion (2.5) induce, after
dualizing:
whtie, eg,e ) C L C (L") C w1t (e, e e )

and
w (e, ep,e ) C (L") Cw 'L C @™ ey, ep e ),
and similarly for . Similar considerations on distances now imply that n; = —di=l

d21

and ny = ThlS gives inclusions

di+1 di+1 di+1 y ! _dy-1 _dy-1
(w2 e, w 2 eg,w 2 e.) CL'C(w "2 eq, w2 ey, w 2 e_)

and

_dlfl do+1 di+1 _ _dlfl _d271 di+1
(w7 e, w 2 e,w?t 2 e )CL Clw 7 ep,w 7 ey,w 2 e_),

thus

dy—1 dy+1 dy+1 ” _dp-1 _dp-1 dy+1
(w2 ey, w 2 eg,w 2 e) CL' C{w "2 ep,mw 2 ey, 2 e_)

But L” C (L")Y, therefore the last inclusion induces in fact (by the same argument as
in the hyperspecial case), an inclusion

y Cdy-1 dq+1 ~
L"C{w "7 ey,ep,mw 2 e_)=:L,

the latter being a strictly almost self-dual lattice. This gives the following inclusions :
wlL c wl' c w(l") c L' C L,

hence 0(L”,L) < 1. But L” and L have the same type, thus 6(L”, L) = 0 and L" =
dy—1 di+1 dy
L=(w T ey, e0,m 2 e )= {w" L7 Je+ eo, W =% e _), as expected.

That the other cases follow directly from the previous two cases is left to the reader. O

A consequence is the following result:

Corollary 2.1.13. Given two vertices a, o € |By|, there exists exactly one geodesic path

in |By| joining o and o'.
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Proof. Let Ag be an apartment containing « and o/, and let A\, A’ be their respective
parameters. Up to permuting o and o', one may assume A < ). The proof of Proposi-
tion shows, using the same notations, that the path p := |a, Qppdyee o Gy, ol C Ag
is a geodesic path joining o and «’. Conversely, Proposition shows that any point o
of a geodesic path connecting o and o’ also belongs to Ap, and has parameter \” € [\, N'],
hence belongs to p. O

This allows us to compute the structure of the graph (|By /[, (By \ |By|)/ ~):

Corollary 2.1.14. The graph (|By|,(By ~\|By|)/ ~)) is connected and has no cyclic path,
1.e., 1S a tree.

Proof. The graph was already shown to be connected. Assume that p = [z, 1, ..., 2, =
x| is a cyclic path of minimal length n > 3, i.e., such that x; # z; foralli # j € {0,...,n—1}.
As any two neighbours must have different types, then n = 2d has to be even (with d > 2). Set

a =z and o/ := x4. By minimality of p, both paths [zg, z1,..., 24 and [x,, 2,1, ..., 24,
which are distinct, have to be geodesic. As x,, = xg, this contradicts the previous corollary,
hence |By| is indeed a tree. O
T Tg—1
To = Tp \ / Ty
Tn—1 Td+1

As a consequence of the last two corollaries, any path in |By| (of length > 2) is geodesic.
One also has the following important result:

Corollary 2.1.15. Every geodesic line of |By| is contained in an apartment. Therefore,
apartments of |By| coincide with geodesic lines.

Proof. That apartments coincide with geodesic lines is an important feature of Eucli-
dean buildings of dimension 1. Let ¢ = (..., v;,yis1,-..) be a geodesic line, and denote by
L; = v (y;) be the almost self-dual lattice attached to y;, for all i € Z.

By the previous proposition, for all £ > 1 one may find some Witt basis By, := {egf), e(()k), e(_k)}
such that the path [y_ok, ..., %0, .., yex] C £ is entirely contained in the apartment Ay := Apg,
(indeed, it is enough that y_or and yo, € Ay). Without loss of generality, one may assume
that y; has parameter % in By, for all i € {—2k,...,2k} i.e., that hyperspecial vertices of ¢
satisfy

Lo = (@ e® el w'e™),  Vie{—k,... .k}, k>1.
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In particular, By, is a basis of Ly, for all £ > 1. The stabilizer G, := Stab(Ly) C Gy, is homeo-
morphic, via the basis B; (for instance) to the closed subgroup {M € GL3(Og_); tMJM = J}

of GL3(Og, ), with J = [0 ! 0] As GL3(Og.) is compact, then so is Go.

Let gr € Gy, be such that g - ei) = &’Hl , for x € {+,0,—}. Then g¢; - Ax = Ax1

and gy fixes the whole path [y_ok, ..., Y0, ..., y2x] C Ar N Agy1, or equivalently, gy fixes L_op
and Log. For k > 1, the subgroup Gy := Stab(L_o, Log) = Stab([y_ox, ..., y2x]) of Go is
isomorphic, via the basis By, to the closed subgroup

OET kaET w%OET
M e GLg(OET) N kaE-r OET kaEr ) tMJM =J C GLg(OET)

wz’f(’)ET kaET OE

T

Therefore, the matrix of g5 in By has the form M, = [%é %g %gé] € M;(Og.), with

ord(x12), ordy(wes), ordy(za1), ordy(z32) > k and ord(w(xi3), ordy(x3) > 2k. The
equality *M,J M, = J induces

11733 + T21Te3 + T31T13= 1,
T12T32 + T22Ta + T32T12= 1.

This gives ord, (211T33—1), ord (xe9Tae—1) > 2k, hence max (ord (x99 — 1), ord, (Tey — 1)) >

2k.[@]

Set up = x11 € Op_ and let v, € Op, be either 1, if ordg (79 — 1) > 2k, or ;—zz otherwise.
Then vk satisfies v, v, = 1 and, according to Proposition m (1), one may replace Bj =
{eﬁC : eo ,€ k)} by {ug e+ ,vkegk), Uy, Lok } and still get a Witt basis attached to the apartment
Ay, in which all points keep the same parameters. This ends up replacing gx by gxtx, where

uyb 0 0
t. € G has matrix [ IS vt 0 } in the basis By. Therefore, the matrix of git; in By has
0 0 ug

diagonal entries congruent to 1 mod w?*, and other entries congruent to 0 mod =, for all
k > 1. As all the B,’s are bases of the same lattice Ly, one may always assume - up to
replacing gx by gxtr - that the sequence (gi)x converges to 1 in Gy.

For all n > 1, set ¢, = gnGn-1-..91 € Go. The sequence (g,)n>0 is clearly a Cauchy
sequence : as (G is compact, hence complete, the sequence (ﬁn) converges to some g, € Gy.
Let B, be the Witt basis defined by {ge - ei), oo e(() ), oo * e } One has, for all £ > 1:

Goo(Gh 192 1) " = hngo(gngnq ... gx) € Gy,

n—

hence

Lot = Goo(Gh-1---91) " Lot = goo(Ghe1 .- G1) ' Goo1--. 91 - (@~ e(+>, e((]l),w el )>

(4). Indeed, one has x95T93 — 1 = 92(Toz — 1) + (222 — 1). If ordy (zee — 1) < 2k then, as ordgxae = 0, one
gets ordy (Tag — 1) = ordy (w92Tag — 1) > 2k.
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= Yoo - <w_ke$)7 661)7 wke(—l)> - <w_kgoo : eg-l)v Jo * 681)7 wkgoo : 6(_1)>7

and also L_op = goo - (wkeg), e(()l), w‘ke(_l)) = ("o - e$), Joo eél), o g - e(_l)).

Akt Aps1
Vi VY
k—1---9 g
ey Y gee(gh e g1) L
V4 — (O e O @ ™ * Ao
Y—2(k+1) Y2k Y2 Yo Y2 Y2k Y2(k+1)
L o1y Lo L, Lo Lo Loy, Loy1)

Figure 2.2 — The line ¢ is the ”limit apartment” A = goo - Aj1.

In other words, for all k& > 1, the vertices y_ox and yox, belong to the apartment A, := Ag__
with respective parameters —k and k in B, i.e., £ N Hyp, C Ap_,. As every special vertex
is stuck between two hyperspecial vertices and by Proposition [2.1.12] one gets ¢ C Ap_. O

2.1.5 Counting the number of neighbours.

One shall now compute the number of neighbours in the tree By / ~. We showed that
hyperspecial (resp. special) vertices have only special (resp. hyperspecial) neighbours, and
the number of neighbours of a given vertex depends only on its type, since hyperspecial (resp.
special) vertices are all conjugated by Gy, whose action preserves adjacency relations.

Lemma 2.1.16. Let o be an hyperspecial vertez and o be a special vertez, and set L = ~vo(a),

L' =~('). Then L and L' are neighbours if and only if one has the sequence of inclusions:
o Cwll Cw( )Y CLCLC (L) Q... (2.9)

Proof. Clearly if is satisfied then §(L,L') = 1, i.e., L and L' are neighbours.
Conversely, if L and L' are neighbours then, by Lemma [2.1.9] (iii), one has either L C L' or
L' C L. f L C I/, then by taking duals one gets L' C (L')Y € LY = L thus L = L', which
would contradict §(L, L") = 1. Therefore L' C L, hence after dualizing L = LY C (L)Y,
which gives wL C w(L')¥ C L' C L C (L')¥. This is exactly (2.9). O

Let a € |By| and set L := 7o(«) if a is hyperspecial, and L' := vy(«) if « is special. The
hermitian pairing (-, -) on V, induces two pairings:

L LY
,(/}.

D — — F
0 wLXwLV ’
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' (L/)V (L/)\/ wiloET
¢1 Ty X I/ — OE =~ F,

which can both easily be shown to be perfect pairings.

-

Proposition 2.1.17. Let o € |By| and set L := () if « is hyperspecial, and L' := vy(«)
if o is special.

(1) If v is hyperspecial, then the set of neighbours of a in |By| is in bijection with the set of
totally isotropic lines contained in the 3-dimensional hermitian F-space (%, ).

(11) If « is special, then the set of neighbours of a in |By| is in bijection with the set of

1sotropic lines contained in the 2-dimensional hermitian IF—space ((LL,,v ).

Proof.
(1) By the preceding lemma, neighbours of « in |By/| are in bijection with strictly almost
self-dual lattices L' such that (L, L’) satisfies (2.9). Let N(L) be the set of those L', let
Iso(L) denote the set of isotropic lines in the hermitian space (2, ), and consider the

map :
n: N(L) —Tso(—2)
i wl’’
Y L
A .
wl CwL

Let o/ be a neighbour of @ and set L’ € N(L) to be its corresponding strictly almost self-dual
lattice. Let B = {ey,ep,e_} be a common decomposition basis for o and o’: by Propo-
sition m, (77), one may always assume that o and o’ have respective parameters 0 and
% with respect to B, that is to say, L = (ey,eq,e—) and L' = (ey,ep,we_). Therefore

LY . e . . . . . .
(L)Y = (e, weo, we_), thus L = Fe_ is indeed an isotropic line contained in -, i.e.,

(
wl wl’
n is well-defined.

Let ¢ € Iso(Z). Let 7 : L — L/wL be the reduction map, and set L' := w(7 *(£))".

Clearly, one has wggv = ”;L(g) = (. Let us show that L’ is an almost self-dual lattice
contained in L. One may write ¢ = Fr(z), for some x € L ~@L, hence 77! ({) = wL+ O, .
As ¢o(m(x),m(x)) = 0 € F, one has (x,z) € wOg.. If t belongs to L', then one has
(t,s) € wOg, for all s € 7 1({), hence w(t,z) = (t,wz) € wOg_ for all z € L, thus
t € LY = L. Therefore L' C L, which gives L' C LY C (L)Y, as L is self-dual. Let s
belong to w(L')Y = 7 '(¢) = wL + Og,.x : if t belongs to w71 ({) = L + w 'Op, z, one
has (s,t) € Op, as (x,z) € wOpg,. This gives w(L')" C (w7 1))V = w(r 1(¥))Y = L,
hence L is a (stricly) almost self-dual lattice contained in L, i.e., L' € N(L), n(L") = ¢ and
n is surjective. Notice that if L” € N(L) was another lattice such that n(L”) = ¢, then
one would have w(L")Y C 7 '(¢) = w(L')", hence L' C L”. This would give inclusions

wl” Cw(L")w(L)Y C L' C L”, therefore §(L', L") < 1. If L' # L”, one would get a cyclic

—1
(5). Here, F is identified with the quotient Orz
ET
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length-3 path [L, L', L”, L], which would contradict Corollary . Accordingly, one has
L' = L” and n is injective.

(27) Still by the preceding lemma neighbours of « are in bijection with self dual lattices L
such that (L, L") satisfies (2.9). Let N (L' ) be the set of those L, let Iso( ) denote the set

of isotropic lines in the hermltlan space (

7 ,wl), and consider the map

L/ \Y
m: N(L) —>Iso(( L’) ),
L (L/)\/
L l—)L/ C 7

Again, the proof of the preceding lemma shows that m is well-defined. Let ¢ € Iso((%v).
Let m: (L)Y — (L')V/L' be the reduction map, and set L := 7~1(¢)) C (L')". Clearly, one
has L' C L and & = (. Let us show that L is a self-dual lattice. Let z € (L')¥ ~\ L' be
such that ¢ = Fr(z): then L = L'+ Og_x and (z,z) € O, , as ¢y (n(x),7(z)) =0 € Z OET.
Accordingly, if ¢, s € L, then one has (t,s) € OET, hence LclLV.

Conversely, let ¢ belong to LY c (I/). As (& L, )
hermitian space, one may find a vector y € (L')¥ such that {m(z),7(y)} is an F-basis of & L, :
hence ¢ (m(z), 7(y)) # 0 as m(x) is a non-zero isotropic vector. Write m(t) = an(x) + br(y),
with a, b € F: that (t,z) belongs to Og_ implies 0 = ¥y (7 (t), 7(z)) = ah1(n(z), 7(x)) +
by (m(y), m(x)) = bipy (7 (y), 7(x)), hence b =0 and ¢t € L = 7~ '(¢). This shows that LY C L,
which means that L is a self-dual lattice such that L' C L, i.e., L € N(L'), m(L) = ¢ and m
is surjective.

On the other hand, if L was another self-dual lattice in N(L') such that m(L) = ¢, then
L cr'(f) =L, thus L = L as both L and L are self-dual. This shows the injectivity of m
and completes the proof. O

wl) is a non-degenerate 2- d1mens1onal

Facts: If V is an n-dimensional non-degenerate hermitian [F > vector space, then the num-

ber of (non—zero) isotropic vectors in V is (¢" ' — (=1)""1)(¢" — (=1)"). If n = 3, this gives

(@®=1D(¢’+1)
-1

isotropic lines in V. The proof is given in ([48], Lemma 10.4).

= ¢ +1 distinct isotropic lines in V. If n = 2, this gives w = ¢+ 1 distinct

Proposition [2.1.17] has the following consequence: any hyperspecial point of |By| has
exactly ¢® + 1 special neighbours, and any special point has exactly ¢ + 1 hyperspecial
neighbours.

2.1.6 The sub-building Byy.

In the Witt bases we have considered so far, the anisotropic element ey hardly intervenes
in all the considerations and definitions. One may therefore apply mutatis mutandis all the
above constructions to the 2-dimensional non-degenerate hermitian space WT@ instead of

(6). And more generally to any hyperbolic plane, as we shall see later.



2.1. THE BRUHAT-TITS BUILDING OF U(3). 111

V;. One obtains a building By called the building of Gy -, which is endowed with an action
of Gw.r, whose points correspond to self-dual ultrametric norms on W, and whose vertices
are now identified with almost self-dual rank-2 Op_-lattices inside W,. One should now
consider apartments attached to decomposition bases of the form {e,,e_} in which self-dual
ultrametric norms « satisfy a(are; +a_e_) = max(|ay||@|*, |a_||w|™) for some parameter
A € R, where e, e_ are isotropic vectors such that (e;,e_) = 1. Accordingly, one may
define a geodesic distance on |Byy| in a similar way as the one we defined on |By|. The
orthogonal decomposition V' =W L D yields an embedding ¢ : By, — By. Namely, ¢ maps

any self-dual ultrametric norm « on W, to the norm
t(a) : Ve 20 =w+ pep — max(a(w), |ul),

with w € W,, p € E, and ep € D, such that (ep,ep) = 1 as fixed in the beginning. One
checks that ¢ is compatible with the action of Gy, and with the identification of Gy, with
the subgroup «(Gw,.) C Gy, of Gy, i.e., that t(h-a) = ¢(h) - t(a), for all @ € By and
h € Gw,. If {e;,e_} is a Witt basis of W, in which « is decomposed with parameter A,
then {e,,ep,e_} is again a decomposition basis for ¢(a) and the parameter of ¢(«) remains
unchanged. In particular, ¢ preserves distances. Let Lp = Opg_ep be the unique self-dual
lattice inside D,: via ¢, apartments of By are identified with apartments of By attached
to Witt bases {e,eg, e_} such that O ey = Lp. Consequently, given two vertices a and
o' € By, the unique geodesic segment (in By/) connecting o with o is entirely contained in
By, hence By is a convex subspace of By,.

WA/

By

Bw

Figure 2.3 — The building By can be embedded as a sub-building of By,. The number of neighbours

represented here corresponds to the case ¢ = 2.

At the level of almost self-dual lattices, ¢ corresponds to the map L — «(L) := L& Lp. If L
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is an almost self-dual lattice inside W, the quotient lattices % and % (if L is strictly almost
self-dual) are both 2-dimensional hermitian F-spaces. The previous proposition thus admits
the following variant: in By, hyperspecial vertices admit exactly ¢ + 1 special neighbours,
and special vertices admit exactly ¢+ 1 hyperspecial neighbours. In particular, special points
inside |By/| have their set of hyperspecial neighbours (in |[By|) entirely contained in |By|.
We shall denote by Spy, = Spy N By and Hypy, = Hypy N By the sets of special and
hyperspecial vertices of the sub-building Byy .

We will be mainly interested in hyperspecial vertices in the following. Accordingly, we
re-normalize the distance in |By| D |By| so that any two hyperspecial vertices
which share a common special neighbour (respectively, any two special vertices

which share a common hyperspecial neighbour) are at distance 1. This corresponds
1
2

parameters A and A in a common apartment. We shall constantly make the confusion

to rescaling 0 by a factor =, i.e., to set dist(a, ') := |\ — N if o, & € |By| have respective
between vertices of By (resp. of By/) and almost self-dual lattices inside V, (resp. inside
W.): henceforth, we will now denote vertices of By by the letter L instead of the previously

used a.

2.1.6.1 Projection onto By, and invariants map.

Proposition-Definition 2.1.18 (Projection onto By ). Let L be a vertez of By .
(i) There exists a unique vertex of By, denoted pry,(L) and called the projection of L on
By, such that

dist(L, pry, (L)) = min{dist(L, L'); L' € |Bw|}.

(it) If A is any apartment of By which contains L and such that AN By, # 0, then A also
contains pry, (L).

(111) If g € Gw,r, then pry,(g- L) = g - pry (L), for all L € |By|.

(iv) Moreover, if L does not belong to By, then pry, (L) € Hypy, is hyperspecial.

Proof.

(1) The distance dist has image in the discrete set %Zzo, thus the minimal distance is attained
at least once. Set n := min{dist(L,L'); L' € |Bw|} € 3Z>¢ and assume, by absurd, that
Ly # Lo are two distinct vertices of By, such that dist(L, L1) = dist(L, Ly) = n. Set d =
dist(Ly, Lo) > 3, and let 8 = L2V, 2l = L) (vesp. [z :=L,2, . 2 = L))
be geodesic paths in |By | connecting L with Ly (resp. connecting L with Ly). As Ly # Lo and
for |By/| contains no cyclic paths, there would exist a unique integer k € {0, ...,2n— 1} such
that :L‘](cl) = x,(f) and xgl) =+ x?), for all 4, j > k+1 (in particular, a:,(:) = m,(f) ¢ By by minima-
lity of n). On the other hand, one could find a path [L, Zop11, ..., Tont2d = Lo inside |Byy/|
which connects L; and Ly (take any apartment Ay, inside By, which contains both L; and
Ls). This would make [x,(:), x,(:ll, . ,xé}j = L1, Tonit, - Topyoq = Lo, ng},l, . ,x,(jzl, x,(f)]
a cyclic path inside |By |, which would contradict Corollary 2.1.14] This forces Ly = L.
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(77) Assume L ¢ By, (otherwise L = pry, (L) and the statement is trivial). If A is an apart-
ment of By containing L together with some L' € |By|, then the assumption pry, (L) €
|IBw |~ A would enable us to construct - in a way very similar to the preceding statement - a
cyclic path inside By connecting L, L’ and pry,(L). This contradiction implies pry, (L) € A.
(t7i) Let ¢ € Gw,, and L € |By|, and set n = dist(L, pry,(L)). Recall that g, seen as
t(g9) € Gy, stabilizes |By| ~ «(|Bw|) C |By|. Accordingly, one has g - pry (L) € |Bw| and
gt pry(g- L) € |Bwl, thus

n = dist(L, pry, (L)) = dist(g - L, g - pryy,(L)) > dist(g - L, pry (g - L))

=dist(L,g~" - pryy (g - L)) > dist(L, pry (L)) = n,

hence dist(g - L, g - pryy (L)) = dist(g - L, pryy (g - L)) thus g - pryy (L) = pry (g - L), by (7).

(v) Assume that L ¢ [By|, i.e., that dist(L, pry,(L)) > 3. By Remark 2, if pryy, (L) was spe-
cial then its set of neighbours would be entirely contained in By,. Take any path connecting L
with pry,(L): such a path would have positive length, hence would also contain a (hyperspe-
cial) neighbour L’ of pry, (L), hence a vertex of By, such that dist(L, L) < dist(L, pry,). This
contradicts the minimality of dist(L, pry, (L)), thus pry, (L) € Hyp, whenever L ¢ |By/|. O

In the following, we will call segment of length n in |By/|, the full subset [xzo,...,z,]
formed by the hyperspecial vertices contained in a path [z, T, 015y Ty 1, x,] of length
2n. Equivalently, any segment of length n is defined by n+ 1 hyperspecial vertices xy, ..., T,
lying in a same apartment and such that dist(z;,z;) = |j — |, for all 4, j € {0,...,n — 1}.

This motivates the following definition :

Definition 2.1.9 (Invariants attached to a pair of vertices). Let (z,y) € |By| x |Bw/| be a
pair of vertices, and let pry, (x) € Hypy, be the projection of x on By,. We call invariants of
(x,y), and denote by inv,(x,y), the pair of half-integers

1 1

inv, (z,y) := (dist(z, pry (z)), dist(pry (), y)) € §Z20 X 5220.

We call

1 1
inv, : |By| x |By| —>§Zzo X 5220;

(z,y) —inv, (z,y),

the invariants map.

(7). One should remain careful that, in general, an injective sequence {xy,...,x,} of hyperspecial vertices
satisfying dist(z;, z;41) = 1, Vi € {0,...,n — 1}, is not always a segment of length n.
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2.2 Computing the local conductor of special cycles.

Definition 2.2.1 (Half-apartments of By). Let B = {ey,ep,e_} € B be a Witt basis of
V,. The half-apartment attached to B is the set Af = {{w ey, eq,@"e_);n > 0} C
Hyp,, which corresponds to hyperspecial vertices in Ag whose parameter is non-negative (with
respect to B). If A € 2 is an apartment of By, we say that AT C A is a half-apartment of
A, if AT = A} for some Witt basis B such that A = Ag.

Accordingly, half-apartments of By correspond to half-lines in the naive sense. We call
half-apartment of By, a half-apartment contained inside By, : such a half-apartment is thus
of the form A}, where B = {e,,eg,e_} € B is such that ey € D,.

2.2.1 The standard situation.

Let Ly € Hyp,, and Ly € Hypy, be hyperspecial vertices, and set a := dist(Ly, pry Ly)
and b := dist(pry, Ly, Lw), so that a + b = dist(Ly, Lw). Let A be an apartment of By,
containing pry, (Ly) and Ly, and let AT C A be the half-apartment containing both verti-
ces and starting from pry, (Ly). Let £ be a geodesic line in By containing Ly and such that
{NBy equals AT . Let us fix such an ¢: by Corollary , ¢ defines a unique apartment
A’ of By

Let B = {e},ep,e_} and B' = {€/_, ¢(, ¢’_} be Witt bases attached to A and A’ respecti-
vely, such that pry,(Ly) and Ly have respective parameter 0 and b in both bases (hence,
Ly has parameter —a in B’). As noticed earlier, one may also assume that eq = ep. This
gives pry, (Ly) = (es,eq,e_) = (€, e, € ), Ly = (w tey, e, wle_) = (w e, e}, @’e),
and Ly = (we,, e, w ).

Let u : V, — V, be the E -linear automorphism defined by u(e,) = €., x € {+,0,—}.
Then u € Gy, and we set Spp € GL3(E;) to be the matrix of u with respect to the basis 3.
Equivalently, Sg g is the transition matrix from B to B’, whose columns are the coordinates
of elements of B’, expressed in the basis B. The following lemma is due to D.Jetchev [27]

[Lemma 3.3] :

Lemma 2.2.1 (Transition matrices between Witt bases). Let B and B’ be as before. The
transition matriz from B to B’ is of the form

1 8
Sgp = |0 1 —B| € GL3(Og,), with B,y € O and BB+~ +7 =0.
00 1

(8). Such an ¢ does exist. Indeed, choose any apartment A of By that contains Ly and pryy (Ly): its
half-apartment A™ starting from pry,(Ly) and containing Ly intersects By, in {pry,(Ly)}. One may then
then ”glue” A* with A" at pry, (Ly), which gives a suitable £.
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A/
By

pry(Ly)

By

Figure 2.4 — The apartments A" and A (the latter is inside Byy) share the half-line starting at
pryy(Ly) and passing through Ly .

Proof. By assumption, both lattices (ey,eg, e—) and (€', ej, €’ ) are equal to the hyper-
special vertex pry, (Ly ), thus the transition matrix Sgp lies in GL3(Og, ). By construction,
one has (A)* = AL = Af = A", hence (@ ™ey, e, @wMe_) = (@ "e, e, mMel),
for all m > 0. The transition matrix between B,, := {@w ey, eq,w™e_} and B, =

{w™™e,, ef, w™e_} is
m = dlag(w ", 1, w B dlaglww 7,1, w ).
Sy = diag(w™, 1,0 ™) S g di m 1w

The preceding implies that S, belongs to GL3(Opg, ) for all m > 0, which forces Sz to be
upper-triangular. By equalities (€., e’ ) = (ep, ;) = 1, one has

w By
Sge =10 v 0 |,withueOp,vv=1and 3, v, € Op,.
00 u'!

Accordingly, up to replacing ¢/, by u='¢/,, ¢/ by ue’ and ej by v_le’O@ one may assume that
u = v = 1. The equality (¢’ ,¢’" ) = 0 induces v+ 7 + 00 = 0, whereas (ej, €") = 0 induces
B+ =0, hence 6 = —3 and v +7+ 5 = 0. It remains to show that 5 and ~ are units. As
BB = —(v+7), one has 2ord () > ord-(7), hence v belongs to O whenever 3 does.

Let Ly := (we/,, ej, w e’ ) be the hyperspecial vertex of parameter —1 with respect to
B’ (then L_; € A ~ (A)") and assume that ord,(8) > 1. As ey = e — fe, € L4

(9). As u is a unit and vo = 1, then Proposition m (1) ensures that such a replacement neither modify
the apartment A’ nor its half-apartment A’ = A%,.
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then Op ey = Lp C L_j;, and the equality w e’ = w(ye, +e_) + (@ 'B)ey im-

plies that Ly € W, + Lp, hence Ly = (L1 N W,) & Lp. Notice that the rank-2
lattice L_yw = L_; N W, inside W, is self-dual. Indeed, one has (L_jw,L_1w) C
(L1, L) C Og,, which gives L_;w C LYy, and conversely if w € W, is such that
(w,L_1w) C Of,, then (w,L_;w & Lp) C Og,, i.e., w € (Loyw ® Lp)" "W, = L_1w,
since (L_yw & Lp)Y = LY, = L_;. This makes L_; = L_; w @& Lp a hyperspecial vertex of
By, which contradicts L_; ¢ (A’)* = A’ By. One finally obtains that 3, v € OF , which
finishes the proof. O

2.2.2 Special apartments.

The preceding ”standard situation” will appear later on in the expression of local conduc-
tors of special cycles, and motivates the introduction of the so-called special apartments
of Bv.

Definition 2.2.2 (Special apartments). An apartment A of By is called special if its in-
tersection with By, is an half-apartment of By,. We denote by & C U the set of special
apartments.

The apartment A" of § belongs to &. If A is a special apartment, we call base point of
A the starting point of the half-line A N By. If B = {e,,eg,e_} is any Witt basis such that
Aj; = A N By, then the base point of A is just the hyperspecial vertex (e, eg,e—) € |Byw|.

Definition 2.2.3 (Hyperbolic pairs). An ordered pair of vectors (e, f) is called a hyperbolic
pair of V,, if e and [ are isotropic vectors of V; such that (e, f) = 1.

We denote by $ the set of hyperbolic pairs of V;, and by $) C $ the subset formed by
those hyperbolic pairs (e, f) such that e € W, and f ¢ W,. The group Gy, acts diagonally
on §, and the subgroup Gy, C Gy, acts diagonally on $"). According to ([48], [Lemma
7.3]), every isotropic vector e € W, may be extended into a hyperbolic pair (e,e’) € $, with
e € W, (i.e., e may be extended into a Witt basis {e, e’} of W;). Consequently, the group
Gw,r acts transitively on the set of isotropic vectors inside W, since it acts transitively on
Witt bases of W.,.

On the other hand, the group EX acts on $), by u- (e, f) := (ue,u' f), for all u € EX and
(e, f) in $, and this action clearly stabilizes $H™). Accordingly, the groups Gy, and Gy, act
respectively on the quotient sets EX\$ and EX\HM). If (e, f) € H (resp. (e, f) € HW)) is
a hyperbolic pair, we denote by [(e, f)] its corresponding orbit in £X\$ (resp. in EX\$H ™).

Lemma 2.2.2. The group Gy, acts transitively on the quotient set EX\$W).

(10). We keep the same term as ([27], §3.3).
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Proof. Let (e1, fi) and (ey, f2) belong to HM), and let g € Gw.r be such that g-e; = es.
It is enough to show that there exists some h € Gy, which stabilizes (as a set) the line E,e;
and such that h- f; € EX(g7" - f2). Indeed, then there would exist some p, v € EX such
that h-e; = pey and h- fi = vg~' - fo, hence (gh) - (eq, f1) = (pea, vfo). But 1 = (ey, fi) =
(gh) - 1, (gh) - f1) = les, fo) = i, hence v = i and (gh) - (ex, f1) = (pea, T fo), iee.,
(gh) - [(ex, fi)] = [(e2, f2)]-

We let ¢y := E,f; and ¢y := E.(g7' - fo) denote the isotropic lines generated by f; and
g~ fo (these do not lie inside W), and let ¢} € W, be an isotropic vector such that (eq, €})
forms an hyperbolic pair of W,: this gives a Witt basis B := {e1,ep,e}} of V.. We set
Bw., (resp., By.) to be the Borel subgroup of Gy, (resp. of Gy,.) which stabilizes the
line ETel The line ¢; is of the form E. (ue; + ep + ve}]) where u, v € E, are such that
uv + vu + 1 = 0 (which implies u, v # 0). Let ¢; denote the element of By, such that
t(t) € By, has matrix [§ g v&} with respect to B. Then, up to replacing ¢; by t; - ¢1, one
may assume the line ¢; to be of the form E; (ue; + ep + €}), with u+u+1 = 0. Accordingly,
the line ¢5 can also be assumed to be of the form FE, ((u+ €)e; +ep + €)), with € € E; sa-
tisfying € + € = 0. By setting s to be the element of By, such that «(s) € By, has matrix

[é g (;)] with respect to B, one obtains {5 = s - {1, which finishes the proof. O

Notice that any hyperbolic pair of V. can be completed into a Witt basis of V. Indeed, let
(e, f) € $ : the hermitian space (V;, (-, -)) being split with determinant 1 € F /Ng_/p, (EX),
the line (E.e ® E,f)* is then anisotropic and contains some vector d satisfying (d,d) = 1.
The choice of such a d is only well-defined up to scalars v € U(1)g/p(F) C EX, i.e., such

T 9

that vo = 1. If B € B, we denote by [B] the orbit of B in Ty \B. The preceding discussion
gives a map
b: EX\H — Ty \B,
[(e, )] — (e, d, )],

which is well-defined and clearly Gy ,-equivariant and surjective. Recall that the map a :
Tv\B — A given by [B] — Ap is also Gy ,-equivariant and surjective. Therefore, one obtains

a surjection
aob: EX\H — A,
[(e, /)] — Agea.sy
which remains Gy ,-equivariant.

Proposition 2.2.3. The restriction of a o b to the subset EX\HW) C EX\§ induces a

Gv,--equivariant surjection

" b‘ﬁ(w)  EN\O" -6

(11). Or equivalently, which stabilizes the flag E.e; C E,;e; @ E e} C V.
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on to the set of special apartments.

Proof.

— Let us first show that the restriction of a o b to EX\H™) factors through & < 2. Let
(e, ) € HM) and set A’ := Age.ary, where d is any vector of (E,e @ E. f)* such that
(d,dy = 1. As e € W, is isotropic, one may find some isotropic vector ¢/ € W, such
that (e, €’) is a hyperbolic pair of W, hence B := {e,ep, €'} is a Witt basis of V. Set
A= Ag and let M = [é v 5] € GL3(E;) be the transition matrix from B to {e, f,d}
(i.e., columns of M are thzevcoordinates of elements of {e, f,d} expressed in the basis
B).

Equalities (d,e) = 0 and (d,d) = 1 induce z = 0 and ygy = 1. Thus, up to switching d
with y~1d € (E,e® E, f)*, one may assume y = 1. Equalities (d, f) = (f, f) = 0 imply
that * = —u, and that uu + ¢ + ¢ = 0, whereas equality (e, f) = 1 induces 7 = 1, hence

—u
M =

O O =

t
1w
0 1
Set ny = —ord,(u) € Z and ng = —ord4(t) € Z. As uu = —(t 4 t), one has —2n; >

—ng, Le., ng < 22 Ifn > 22 then w?'t, w"u and @"7 all belong to O, , hence
diag(@w", 1, w ") M diag(w ™", 1, @w") € GL3(Og,).

In other words, one has an equality between lattices (w™"e, d, w" f) = (w "e, ep, w"e’),
which means that the half-apartment (A)>% := {(w e, d,@"f),n > 2} of A'is
equal to the half-apartment AZ7% := {{w™"e,ep,w"e), n > 22} of A C By.

On the other hand, if n < n; then the hyperspecial point (w™"e,d,w™f) of A" does
not belong to By,. Indeed, if such were true then there would exist some self-dual
lattice Ly, C W, such that (w "e,d,@w"f) = Lw @® Lp, with Lp = Og_ep. This
would give w"f = w"te + w"uep + w"e’ € Ly & Lp, hence w"uep € Lp (because
w"te + we’ € W,), i.e., w"u € Op_, which contradicts n < n;.

As geodesics (in Byy) coincide with apartments of By, and by the unicity of paths
(in By) which connect a given pair of points of By, one deduces that there exists an
integer ng € [n1, %] such that (w"e,d,w"f) belongs to By if n > ng, and belongs
to By ~ By if n < ng. This allows one to choose an apartment A inside By such
that A’ N By is the half-apartment A" of A corresponding to the half-line obtained
by glueing the segment [(w™ "¢, d, @™ f),..., (w" [ ] e,d, %] f)] together with

A>7F ie. that A is a special apartment.

— Conversely, let A’ € & be a special apartment of By, and let B’ := {€/,, e, €} be a
Witt basis such that A" = Ag, i.e., such that A’ = aob ([(¢/,,¢")]). By assumption on
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A = Ageq
{e,d,f} By
x’l’blfl
,2( . (A/)TIZTLO — /Tnzng
......... Ty
A= Ageep ey 1

Bw

Figure 2.5 — The point z,, may or may not lie in By. The purple line is the half-
apartment (A’)Z"° consisting in the union of the half-apartment A= with the segment
[ 0e,d, @ f), ... (w [ Fle d, o =71 f)]

A', there exists some B = {e,, ep,e_} € B such that A'NBy = Af (in particular, e,
e_ € W, and one may assume ey = ep). Let Ly be any hyperspecial point of A \ By,
and let Ly, be any hyperspecial point of ANByy, and set pry, (Ly) € A’ NByy to be the
projection of Ly on By,. We find ourselves in the standard situation of the preceding
paragraph: by Lemma B and B’ can be chosen such that the transition matrix
between B and B’ has the form

1 B v
Sgs = |0 1 —B|, with 8,y € O} .
00 1

This gives ¢/, = e € W,, and ¢’ = (vey +e_) — Beg ¢ W, as 8 # 0. In other words,
one has (¢/,,e") € HMW), thus A’ = aob ([(¢},e")]) € aob (EX\H™)), which shows
the surjectivity and finishes the proof.

0

An immediate consequence of the previous two lemmas is the following:
Corollary 2.2.4. The group Gw, acts transitively on the set & of special apartments.

Recall that H, is the diagonal image A(Gw,.) C G, of Gw,.. The group G, acts on the
product building By x By and this action preserves distances and stabilizes the product
Hyp o Hypy x Hypy,. If h € Gy, and if (z,y) € Hyp, then one has pry, (h-x) = h-pry, (z)
(this is Proposition-Definition [2.1.18] (i77)), hence

(dist(h - z, pry, (h - z)), dist(pry, (h - z), h-y)) = (dist(h -z, h- pry(x)), dist(h - pryy (z), h - y))
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= (diSt(ﬂfa pryy (z)), dist(pry, (z), y))
Consequently, the restricted invariants map inv, ‘Hyp factors through the map Hyp — H,\Hyp.
The following result, due to Jetchev [27] [Theorem 1.3, (i)], is part of the local conductor for-

mula which we will prove later on.

Proposition 2.2.5. The restriction of inv, to hyperspecial vertices induces a bijection
inv, : H\Hyp —— Z>o X Z>y.

Proof. That inv, is surjective is an easy consequence of the existence of special apart-
ments. Indeed, let (a,b) € Zs¢ X Z>¢, take any special apartment A’ € & and let B’ =
{€'.,el, e} € B be a Witt basis such that A’ = Ag and A’ N By = Af,. The hyperspecial
point x := <w“e'+,66,w*” e ) € A' \ By is such that pry(z) = (¢, ey, ¢ ) € A: if we set
y = (w e\, e), @) € A N By, one obtains dist(z, pry (z)) = a and d(pry,(z),y) = b,
hence inv,(z,y) = (a,b).

On the other hand, assume that two pairs (z,y), (z’,y’) € Hyp have the same invariants,
and set (a,b) := inv,(z,y) = inv (2, ) :
- If x € By then z = pryy, (), thus a = 0 and 2’ = pry, (2') € By, Accordingly, there exist
apartments A and A’ of By, which contain respectively {x,y} and {2’,y'}. Without loss of
generality, one may take Witt bases B = {e;, ep,e_} and B’ = {€/,, e[, e_} such that A = Ap
and A" = Ap/, where vectors e, €/, e_, €_ lie in W, such that ey = e; = ep and such that

/

L = <6+7607 > Y= <w7be+7607wbe*>> x <6+,60, ¢ > and y <w b€/+7€0>wb€ >

Therefore the element h € G- given by h-e; =€/, and h-e_ = €’ satisfies A(h) - (z,y) =
(h-z,h-y) = (2" y).

- If x ¢ By, then 2/ ¢ By and we may choose two special apartments A and A" which
contain {z,pry (z),y} and {2/, pryy (2/),y'} respectively. By Corollary [2.2.4] one may find
some h € Gy, such that h - A = A'. As h preserves dist, one has a = dist(z, pry (z)) =
dist(h-z, h-pry, (z)) = dist(h-z, pry (h-x)), i.e., h-x is the only point of A"\, By, such that
dist(z, By) = a: in other words, h -z = z’. Accordingly, h -y is the only point of A" N By,
such that a + b = dist(z,y) = dist(h - x,h - y) = dist(z’, h - y), i.e., h-y = y'. v In any case,
we showed that (z,y) = (¢/,v') € H,\Hyp. ]

2.2.3 Interlude: filtration of Of_ by local orders.

Let ¢ > 0 be an integer. Recall that we defined in section the local order of conductor
c of O, to be the ring O, . := Op, + w°Op, C Of,, where w € F is a common uniformizer
for F; and E.. This section being purely local at 7, we shall drop the subscript 7 and simply
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denote this order by O,.. The family (O,).>o provides us with a decreasing open filtration on
OE .

-

OET:OQD(I)lD"‘DOCDOC_HD...

For all ¢ > 1, one has O = O (1 + @Opg,) C Of . This gives a fundamental system of
open subgroups in O :

Op, =05 207 D20 D0, D ... (2.10)

We set E] to be the group U(1)(F;) = {z € E}; 2z = 1} C O . Recall that we defined at

T

(1.25) the morphism v : Resg/rG,, — U(1), by setting

v: (E®r R)* —U(1)(R),

5
5,
s
for all F-algebra R. According to Hilbert’s Theorem 90, v is surjective on F,-points, i.e.,
E! = v(EX) = v(Of ), the last equality coming from v(z) = 1 for all x € FX, hence
v(w") =1 for all n € Z. We set O} := v(0OF) C OF , for all ¢ > 0. By the preceding
observation, one has O! := O} = E!, and taking the image of (2.10]) by v induces a decreasing
open filtration on Oj:

O'>20;2>-D0!D>0L,;D... (2.11)

C

Let n € Z and ¢ > 1 be integers. If s = 2(1 +@°2) € OF, with v € O and z € O,
then one has v(s) = v(z7ls) = HZZ € 1 + @O, ie., v(x?0X) = v(OX) C 1+ O,

1+wcz
ie, Ol C E!N(1+wOg,).

The following lemma is due to Jetchev ([27], Lemma 3.1):

Lemma 2.2.6. For all ¢ > 0, one has v (1 + @w°Op,) = @w?O} C EX. Therefore, O} =

Proof. If ¢ = 0, then v~ 1(Op,) = v '(E}) = Ef = w”O0} = w”Of, which is what
we wanted. Now assume that ¢ > 1. We already showed that @w?OX C v~ (1 + @°Op,).
As E./F; is unramified, one may find some element ¢ € O such that Op, = O, [(] and
(—CE€ (’)ET. Let s € EX be such that v(s) € 1 + @w°Op,. As v(s) = v(w"s) for all
n € Z, one may always assume that s € Op . Write s = v + y(, with 2, y € Op,. Then

(12). Up to a small correction, removing the unnecessary assumption char(Fg) # 2.

(13). Indeed, the extension E,/F; is an unramified quadratic extension, hence is isomorphic (up to unique
isomorphism) to the extension F,[(], for some (q? —1)-th root of unity ¢ € E,. In particular, one has ¢ € Og.
and the image Z of ¢ in F generates the extension F/Fy. The latter follows from the fact that the minimal
polynomial P of ¢ over F - which is separable and has coeflicients in O, - reduces to the minimal polynomial
P of E over Fy (this is a consequence of Hensel’'s Lemma), hence E ¢ Fy. Tt is now a direct consequence of

Nakayama’s Lemma that the equality F = Fy[(] induces the equality O = Op_[¢]. Finally, as both ¢ and ¢
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v(s) = %ﬁf = 1+ @ for some z € O, , hence 4y = v+ y( +@°zs, i.e., y({ — () = w°zs

thus y = wc% € wOp, and s = 2 +y¢ € O.NOf = OF. Accordingly, one has

v 11+ @wOg,.) = @20 and the last equality E! N (1 + @°Op,) follows directly from the
surjectivity of v : EX — EL O

2.2.4 The local conductor formula.

We are now ready to prove the local conductor formula, due to Jetchev:

Proposition 2.2.7 ([27], Theorem 1.3, (i7)). Let (Ly, Ly ) € Hyp, and set (a,b) := inv,(Ly, Ly)
and ¢ := min(a, 2b). One has

det (StabHT (Lv, Lw)) = Oi

Proof. As in the standard situation, we may fix a special apartment A’ together with
an apartment A of By, attached respectively to Witt bases B’ = {€ e, e} and B =
{e4, e, €_}, containing respectively { Ly, pry, (Ly), Lw} and {pry (Lv), Lw} and such that
A’ N By is the half-line ¢ = Af, C A’ starting from pry,(Ly). By Lemma [2.2.1] the tran-

15

sition matrix S := Sgp between B and B’ has the form |o1 Wg], with 8, v € O and
00 1

BB +v+75=0.

Let g € Gy, and set h = A(g) € H,. Let M and N be the matrices of g in the bases B

and B’ respectively. Then M is of the form [g g ﬂ € GL3(E,), with z, y, z, t € E,, and one
L~

has N = S™1MS. As S71 = [o 1 ,8}, one gets
00 1

r+75z Ble—14+752) y+yyz+vy(x—1)+75(—1)

N=| Bz 1+ (B B(yz+t—1) , (2.12)
z Bz vz +t

where we used the relation 88 4+ v +7 = 0 to simplify the (1,3) component. Assume that
h lies in Staby_(Ly, Ly). As g fixes both Ly and Ly, it fixes the whole segment between
these two vertices: in particular, one has g - pry, (Ly) = pryy, (Ly).

We shall work in the basis B'. In this basis, the equality g-pry, (Lyv) = pry, (Ly) expresses
as N € GL3(Og,). The equality g - Ly = Ly corresponds to

diag(w™*, 1,w") N diag(w®, 1,0 *) € GL3(Og,),

_ 2_
are (g2 — 1) — th roots of unity, the element % —1# 0 is a root of the polynomial (XH)X#, which rewrites
as (X +1)7 =24 (X +1)7 34 .. (X +1) + 1. The latter has a constant term equal to ¢ — 1 € O}, , which
shows that % —1€ Og , hence (—C¢= Q(% -1)e0g .
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whereas ¢ - Ly = Ly expresses as

diag(w®, 1, @) N diag(w,1,@w") € GL3(Opg,).
This induces N € GL3(Opg,) N (diag(w®, 1,w™*) GL3(OF, ) diag(w™*, 1, w?))

OET ?I/'aOET wQ“(’)ET
= GLg(OET) N ?,TJ_GOET OET w“(’)ET . (2.13)

?DiQaOET w’“OET Og

T

Similarly, one has N € GL3(Og,) N (diag(w@ ", 1, @")GL3(Op, )diag(w®, 1, ™))

OET wibOET w’QbOET
= GL3(OET) N waE-r OET w_bOET . (214)
waOET waET OET

Combining (2.12)) with (2.13)) and (2.14)) gives us, by analyzing component-wise:

(2, y, 2,t€Op., at—yzc Op. (M € GL3(Og,))
ord,(z) > 2b, (3,1)

ord5(B(x — 1)) = orde(x — 1) > min(a, 2b) = c, (1,2)
orde (B(t — 1)) = ordg(t — 1) >min(a, 2b) = c, (3,2)

{ ords(y) > c. (1,3)

Consequently, one obtains ordg(det(g) — 1) = ordg(det M — 1) = ordy (2t —yz — 1) =
ordg (z(t — 1) —yz + (x — 1)) > min(ord,(t — 1), ord(y2), orde(x — 1)) > ¢. According to
Lemma [2.2.6 this gives

det (Staby (Ly,Lw)) C B} N (1 + @°Op.) = O..

We still need to show the surjectivity of det : Stabg. (Ly, Lyw) — O!. Let s € O!, and
let us construct some g € Gy, such that A(g) € Stabpy, (Lv, Lw) and det(g) = s.

— Assume first that ¢ = a, and let A € O = Op, (1+@°Og,) be such that s = v()\) = 3.
As v is trivial on F*, one may assume that A € 1 + @wOp, without loss of generality.
Accordingly, one may find u, v € Og_ such that A = 1 + @y and A™! = 1 + @v. Let

g be the element of GL(V;) whose matrix in B is

A0y
M:= 10 1 0 | €GLs(E,),
00 X!

with y := —@wA(yu — Ju) € @O, .
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Clearly, one has det(M) = AA~! = s and, still denoting by .J the matrix [§ g é}, we

have _
A0 0 001 A0 7
tMJM=10 1 0 010 01 0
y 0 X' |1 oo] oo X"
0 M =1
= 0 1 0

MT=1 0 N y+Ay

As X_ly = —w“(yu —7u), one gets X_ly+x_ly = —w°(yu —Ju+7yu —yu) = 0, hence
‘M JM = J. This shows that ¢ fixes ey and belongs to Gy, i.e., that g € Gw,.. Set
N to be the matrix of ¢ in the basis B’. By (2.12)), one has

BA=1) y+y(A=1)+7(\"=1)
1 BATt—1)
0 A

N=S"1MmMs =

o O >

1+ wu wfu y+ w(yu+7v)
= 0 1 wBu
0 0 At
As ¢ = a, the preceding matrix has entries (1,2) and (2,3) in @w*Op,.. As 1 = A\"! =
1+ @u)(1 + @) = 1 + @w(u + v) + @*uv, one has u+ v = 0 mod wOg,, hence
yu+7Fv =yu —Ju mod wOp. . But A =1+ wu =1 mod w*Op_, thus yu 4+ Fv =

Ayu —7u) mod wOg,_, i.e.,
@(yu +Fv) = @ANyu — Fu) = —y mod @*Og_,

which gives finally y + @“(yu + Jv) € @w**Op, = w**Of._. In other words, the unitary
matrix N has the shape required by both (2.13) and (2.14]), which is equivalent to
saying that A(g) is indeed an element of Staby_(Ly, Ly) which satisfies det(g) = s.

— If ¢ = 2b, we set g € GL(V;) to be the element whose matrix in B is

1= 0 73z

M := 0 1 0 € GL3(E;),
z 0 1—rz
where we set z := ﬁ € @°Op. (which is well-defined, for v +7% = —33 belongs to

OF ). As a first check, one has det(g) = (1 —7z)(1 —v2) — 172> =1 — z(v +7) = s.

Notice that, as ss = 1, one has

LR i i)k N Ul Il ) B (2.15)

T+ 77




2.2. COMPUTING THE LOCAL CONDUCTOR OF SPECIAL CYCLES. 125

We have
1—752 0 =z zZ 0 1—-7z
'MJM=| 0 1 0]- 0 1 0
vz 0 1— 1l—9vz 0 ~73z

Z(1—v2)+2(1-72) 0 (Q1—72)(1—-72)+7=
= 0 1 0
22+ (1=72)1-72) 0 72(1 —7z) +97z(1 —72)

By (2.15), one has 422z = y(z + z) — 772% and 72z = 7(z + Z) — 772Z, which shows
that the preceding matrix has entries (1,3) and (3,1) both equal to 1. Applying again
to the entries (1,1) and (3, 3) finally gives tM JM = J. As g fixes eg, one gets
g € Gw,,. Finally, let N be the matrix of g with respect to the basis B'. By ,
and for 38 4+~ 47 = 0, one has

1 0 0
N=S"'MS= |82 1+8Bz 0
z Bz 1

Accordingly, N is unitary and, as z € @°Op. = w?®Oy_, its entries satisfy the condi-
tions required by (2.13]) and by (2.14)), which also amounts to saying that A(g) is an
element of Staby_(Ly, Ly ). This finishes the proof.

O
For all g, € G, the group det(H, N g, K g;') is a compact open subgroup of U(1)g,p(F;) =
O}, thus contains some term O} (¢ > 0) from the decreasing filtration (2.11)).

Definition 2.2.4. Let g, € G,. The local conductor of g,, denoted c.(g,), is defined as the

manimal integer ¢ > 0 such that
Oi C det (HT N gTKTg;l) )

As seen in § [1.2.3] the hyperspecial maximal compact subgroup K, C G, arises as the
stabilizer of the pair (Ly,.,Lw,) := (Ly ®o, Og,,Lw ®o, Og,) € Hyp of self-dual lattices,
where the lattices Ly := Ly @ Lp are part of the construction of the integral models G,
and Gy, . One may reformulate Proposition in the following way:

Corollary 2.2.8. For all g; = (9v.r, gw,r) € Gvr X Gy, = G-, one has

¢r(g-) = min(a, 2b),  with (a,b) :=inv,(g, - Lv+, gr - Lw+).

(14). Accordingly, the vertices Ly, = Lw,» ® Lp » =: t(Lw,,) coincide in By.
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2.3 The Iwahori filtration and the level-wise vertical

relations.

As since the beginning of this chapter, we continue to fix an allowable inert place 7
of F' together with the induced buildings By, C By attached to the local unitary groups
Gw.r C Gy,r. We recall that the choice of global lattices Ly := Ly @ Lp (with Lp := Ogep
being the only global self-dual O-lattice in D) made at §[1.2.3] and the construction of the
base compact open subgroup K C G(Ay), ensure that the local component K, = Ky, x Ky,
is equal to the stabilizer Stabg, (Ly.,, Lw,-), where L, ; = L,®0, Op, is a self-dual Op_-lattice
in %, for x € {V, W}. As mentionned in the footnote above, the equality Ly, = Ly ,®Lp , =:
t(Lw,,) imply that the local lattices Ly, and Ly, define the same hyperspecial vertex of the
building, which we denote by = € Hypy,, C Hypy,.

We fix, once and for all, a special apartment A’ of By, with base point x. The base vertex
x shall sometimes be referred to as the origin of the buildings By and By,. According to
Corollary [2.2.4] the H.-orbit of A’ is the whole set & of special apartments: this means
that, in terms the local component of special cycles at 7, choosing a different apartment
A" =h- A, for some h € Gy, will just correspond to shifting special cycles by the action
of Art!(det h) € Gal(E(c0),/E,), by Proposition . The Galois groups we are dealing
with being all abelian - and because Galois and Hecke actions commute with each other -
we deduce that every kind of distribution relations which will be established via the choice
of A" will remain unchanged in A”. We place ourselves in the standard situation of §[2.2.1]
and let B' = {€/,,e(, ¢’} and B = {ey, e, e_}, with eg = ep € D, be Witt bases of V; such
that A" = Ap and such that the apartment A := Ap of By satisfies A = A}, = A" N Byy.

Accordingly, the base vertex x satisfies = (e, eg,e—) = (€/,, €, €’).

Recall that, if A is any ring and if X, Y are sets, the free A-modules A[X], A[Y] and
A[X x Y] generated by X, Y and X X Y respectively, satisfy A[X x Y] ~ A[X]®4 A[Y] and
Enda(A[X])@4End4s(AY]) — Ends(A[X]|®4A[Y]) = Ends(A[X xY]). Let p be the residue
characteristic of 7. We let Z, denote the localization of Z at the prime ideal (p), and let
Z[Hypy |, Z[Hypy,] and Z[Hyp] ~ Z[Hypy,] ©z Z[Hypy] (vesp. Zg,)[Hypy| = Z[Hypy| ©z Z),
Zy)Hypw] = Z[Hypw] ®z Z) and Z,)[Hyp] = Zy,)[Hypy] ®z,,) Ze)[Hypw] = Z[Hyp|] @z
Zp)) denote the free abelian groups (resp. the free Z,)-modules) generated by the sets of
hyperspecial vertices of By, of By and of By x By respectively. Following ([8], 3.2) we set

Ry :=Endz, (Z)[Hypy]) , Rw := Endz, (Z)[Hypy])

and
R =Ry ®z Ry C Endz(p> (Z(p) [Hyp]) .

(15). See Remark of the next chapter for the definition of Artl
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The natural left-action of G, ; by isometries on Hyp, induces maps
G, — Endz (Z[Hyp,]) = R., Yx € {V,W},
hence a map
G, — Endz (Z[Hypy]) ® Endz (Z[Hypy]) C Rv ® Ry = R. (2.16)

I =31 cnyp, (L)L belongs to Z, [Hypy |, we define the support of Xt to be the finite
set Supp := {L € Hypy; a(L) # 0}.

Remark 2.3.1. The importance of the localization at the prime (p) - which is required by
the definition of the successor and predecessor operators at the origin x, in a view towards
Lemma below - is rather limited. It can (and will) be ignored whenever dealing with

segments of length n > 1, where the origin x will not intervene.

2.3.1 Global and local Hecke algebras.

Recall that we defined in § the local Hecke algebras H, . := Hz(G., J Kir), for
*x € {V, W, 0}, to be the rings C2°(G, + ) Ks.», Z) of continuous (for the discrete topology on Z),
compactly supported, K, ,-bi-invariant Z-valued functions on G, ;. The local Hecke algebra
H. - of hyperspecial level K, . is sometimes called the spherical Hecke algebra, and is isomor-
phic to the ring Z[K, - \G, /K -], endowed with the convolution product * of functions.
The latter turns out to be isomorphic to the endomorphism ring Endyc, .1 (Z[G, -/ K. 7])™.

We recall that this last isomorphism is obtained by mapping, for all g € G, ,, the in-
dicator function 1k, ¢x,. € H.r to the Z[G, ;|-equivariant endomorphism p(1k, ¢k, ) of
Z|G,../ K, ;] obtained by mapping the unit coset [K, .| € Z|G, /K ;] to the sum 72, ¢; K, -,
where K, ,gK, . splits as the disjoint union | |2, ¢;K,,. By Lemma , the map G, , —
Hyp,, g — g - x is surjective for all x € {V,W}. This allows us to identify Hyp, with the
quotient G, , /K, ; for all x € {V, W, 0}. Consequently, the local algebra #, . acts on Z[Hyp,]
(for x € {V,W}), via

Th

1K*,79K*,T ’ (g/ : ZE) = Z(g,gz> -, (217)

i=1
for all ¢ € G,, and all g € G,,, with K, ,gK, = |[\", ¢:K,. Accordingly, one obtains
embeddings

(16). Notice that the spherical Hecke algebra H, is a commutative ring, thanks to the so-called Satake
isomorphism. Roughly speaking, one may see the Satake isomorphism as establishing a link between H, and
the commutative Hecke algebra Hz (T / 1B,k ), where Ty = T v x Tgw C Gy,r X Gy, is the unitary torus
attached the Witt basis B = {e4,eg,e_} of V; (recall that {ey,e_} is a Witt basis of W, and eg = ep
satisfies (eg, eg) = 1), and where we set T ;¢ := T N K (or more precisely, the fixed part Hz(Ts, Tn,x)"
of Hz (T, Tp k) under the action of the Weyl group W := N¢_(T5)/Tg). We refer to ([19], §7.5) for some
details.
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H.r =~ Endgg, (Z[Hyp,]) — Endz(Z[Hyp,]) — R.,
(2.18)

1K*,7—9K*,T : > p(]‘K*,‘rgK*,T)7

for all x € {V, W}, hence an embedding H, ~ Hy, @z Hw. Ry ® Ry = R.

Definition 2.3.1 (Elements dy, oy and d.). We let §y € Gy, be the element whose matriz is
diag(eww™, 1, @) with respect to the basis B' of V. We set oy € Gw.» to be the element whose
matriz is diag(cw ™', @) with respect to the basis {ey,e_} of W, (i.e., such that 1(dw) € Gy,
has matriz diag(cw™, 1, @) with respect to B). We finally set § == (6;,", 6w ) € G.

Accordingly, the vertex 6% -z € A’ (resp. t(0w)* - x € A) has parameter k with respect
to B’ (resp. B), for all k € Z. This gives A’ = {0y - x; k € Z}, A= {u(éw)* - z; k € Z} and
A N By = {652,k >0} = {t(0w)* - 2; k > 0}. Let us define the following operators:

Definition 2.3.2 (Hecke operators ¢y o, to; and t.). We setty to be the element p(lKVT(;‘;l Ky.) =

p(Lky .5y Kv,T) of Hy+ £ Endgzia,.)(Z[Hypy]|). Wesetto, to be the element p(1ky, 5y Ky, )
of Hw .+ £ Endzq,, ) (Z[Hypy]). In the following, we shall slightly abuse notations and see
both operators as elements of H,, i.e., we identify t1 o and to; with the elements t; o ® 1 and

1 ®toq of Endge,((Z[Hyp]) = H.. We finally set t := t1oto1 = t10 @ to1 = p(Llk, sk,)en, -

By construction, for all x € {V,W} and all g, ¢ € G, ., the double coset operator
p(1k, . gk..) € Endg, (Z[Hyp,]) - which acts by a finite sum of right multiplications -
commutes with the natural action of ¢’ (by left-multiplication) on Z[Hyp,] described in
. In the special case of t; o and ?(;, this commutation relation can also be obtained by
expressing t; o and to; as adjacency operators. Namely:

Lemma 2.3.1. (i) The operator t,o maps any element L of Hyp,, to the sum:

E L' € Z[Hypy]
L'cHypy,
dist(L,L)=1

(i1) The operator toy maps any element L of Hypy, to the sum

E L € Z[Hypy |-
L'eHypyy,
dist(L,L")=1

(17). Indeed, one has [§ g ((ﬂ diag(w™1,1, ) [§ g é] = diag(w, 1, 1), hence Ky .0y Ky, = KV775;1 Ky ;.
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Proof. Let us show the point (i) (the point (ii) being an exact analogue). If L € Hypy,
is a hyperspecial vertex, one may choose some gy € Gy, such that L = gy - x. It suffices to
show that the map:

v Ky, éy Ky, —Hypy,
g—(gog) - x

induces a bijection between the quotient set Ky, 8y Ky, / Ky, and the set of hyperspecial
neighbours N(L) := {L' € Hypy; dist(L, L’) = 1}. That v is right Ky ,-invariant is an
immediate consequence of the equality Ky, = Stabg,, (), which implies straight away that
v Ky, oy Ky, / Ky, — Hypy, is also injective. That v indeed takes values in N(L)
follows from the equalities:

dist (go(kdv k') - x, L) = dist (go(kdv k') - z, go - x) = dist (ko k') - z, x)

Y dist(kdy - @) = dist(dy o,k @)

for all k, k' € Ky ..
Now, let L’ € Hypy, be such that dist(L, L') = 1, i.e., dist(go-z, L) = dist(z, g5 ' - L) = 1:

one may then find some apartment A containing x and g;' - L/, attached to some Witt

=77 dist(6y - v, 2) =1,

basis B = {€,,¢0,¢_} such that x and g;' - L' have respective parameters 0 and 1 with
respect to B. This gives z = (€y,e0,¢_) and g;' - L' = (w'e,,e,we_). The element
g € Gy, defined by mapping e, to ¢, for all x € {+,0,—}, satisfies g - * = 2 and
g- (gt - L) = (@ ley,ep,we_) = 0y - x. The former equality ensures that g € Ky,
ie., g 'y € Ky.dv Ky, and the latter gives L' = (gog 'dv) -z = v (g716y,). This shows

the surjectivity of (¥} and finishes the proof. n

2.3.2 The Hecke polynomial.

The Shimura datum (G, X) and the induced co-character p : G, c — G¢ , introduced
at §[1.1.5] give rise to a polynomial He, with coefficients in the local Hecke algebra H., called
the Hecke polynomial. The Hecke polynomial was originally defined by Langlands and
was studied by Blasius and Rogawski: it is conjectured (J4], §6) to be an annihilator of the
geometric Frobenius acting on f-adic étale cohomology of Shx (G, X) (or intersection coho-
mology when F' = Q), in an attempt to generalize the celebrated Eichler-Shimura congruence

relation on the modular curve.

The construction of the Hecke polynomial is dealt with in great generality by Boumas-

moud in ([7], IV) who proves an annihilation relation (which he calls seed relation, Theorem

(18). We prefer to use the notation He, to H, (as used in [27], [§] or [31]) so as to avoid confusion with the
local subgroup H, = A(Gw.») C G.
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IV.1) involving the Hecke polynomial attached to an unramified reductive group G over a
non-archimedean local field k, with hyperspecial level K , and a class of operators acting on
the associated Bruhat-Tits building. In a more down-to-earth way, Jetchev gives a detailed
computation of He, in our precise setting ([27], 4) which provides us with the following

explicit formula:
Theorem 2.3.2 ([27], Theorem 4.1.). The Hecke polynomial He,(z) € H.[z] at the place T
for the Shimura datum (G, X), is given by He,(z) = Hel? (2) - He® (2) with
Hel?)(2) = 22 — ¢* [toa — (¢ — 1)] = + ¢, (2.19)
and
Hel(2) = 24 = [t = (¢ = D){tro + to) + (g = 1?2
+q° [t%,o + 51 — 2(q — D)t — 2¢°(q — V)tog — ¢ — 2¢° + 2¢° — 2¢ + 1] 22

—q" [t — (¢ = 1D)(tr0 +to1) + (g — 1)2} Z+q2

The important feature of He, is, for us, that its coefficients are Z-linear combinations of

the double coset operators t; o, to1 and ¢.

2.3.3 The partial Hecke operators U,V and S.

We define, after Boumasmoud-Brooks-Jetchev ([8],3.2), the following important elements
of R:

Definition 2.3.3 (Operators U, V and S). We define the following operators on wvertices,
and extend them Zy-linearly:
— Uy € Ry, which maps L € Hypy, \ {x} to the sum
Uy (L) = Y L' €Z[Hypy] C Zy[Hypy),

L'eHypy,
dist(L/.L)=1,
dist(z,L")>dist(z,L)

and which maps x to the sum

q
Uy () = Y. LI €ZyHypl

L'eHypy,,
dist(z,L")=1

— Vv € Ry, which maps L € Hyp, \ {z} to the umque’ € Hypy, such that
dist(L, L") =1 and dist(z, L") < dist(x, L), and which maps x to the sum

oI € Zy[Hypy ).

L'eHypy,,
dist(z,L")=1

Vy(z) :=(1—q)x+ e

(19). The unicity of such an L’ follows from the non-existence of cycles in the graph |By|.
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— Sv € Ry, which maps L € Hypy, ~ {z} to the sum

Sv(L) =L+ > L € Z[Hypy] C Z,)[Hypy ],

L'eHypy,,
dist(L/,L)=1,
dist(z,L")=dist(x,L)

and which maps x to Sy(x) := qx.
These admit the following variants on By, :

— Uw € Ry, which maps L € Hypy, \ {x} to the sum

Uy (L) = Y I' €Z[Hypy) C Zy)[Hypyl,

L'eHypyy,
dist(L/\L)=1,
dist(z,L")>dist(z,L)

and which maps x to the sum

q /
Uy(z) = —— Y L' €Zy[Hypyl

L'eHypy,

dist(z,L")=1

— Vw € Ry, which maps L € Hypy,~{z} to the unique L' € Hypy, such that dist(L,L’) =
1 and dist(z, L") < dist(x, L), and which maps x to the sum

1
Vw<£lj'> = (1 - q)(E + — E L' ¢ Z(p) [Hypw].
g+1
L'eHypy,
dist(z,L")=1

— Sw € Ry, which maps L € Hypy, \ {z} to the sum

Sw(l):=L+ E L' e ZHypyw] C Zy [Hypy,
L'eHypyy,
dist(L/,L)=1,
dist(z,L")=dist(z,L)

and which maps x to Sw(x) := qu
We finally setUd ==Uy QUy € R,V :=Vy QVw € R and S := Sy ® Sy € R.

For all x € {V,W,(}, the operators V, and U, are referred to as the predecessor and
successors operator in [§], the terminology of predecessor being first introduced in ([13],
§6.3).

Remark 2.3.2. Notice that if g € Ky, C Gy, fizes x, then g-Sy(x) = g-(qz) = qv = Sy (g-
x) and, as g acts on the set SuppUy () ~{z} = Supp Vy () {2} = {L’ € By; dist(z, L") =
1} by permutation, one obtains that g - Uy (x) = Uy (x) =Uyv(g-x), and g- Vv (z) = Vv (z) =
Vy(g-x). Similarly, if h € Ky, C Gw,r fizxes x, then h- Sy (z) = Sw(z) = Sw(h-z) and
one also has h - Uy (x) = Uy (h-z), and h- V() = Vw(h-x). If h € Ky, and if y # x
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Figure 2.6 — Representation of the operators Uy, Sy, Vy, Uw, Sy and Vi acting on Hypy, and
Hypy, .

is an hyperspecial vertex of By, then one has dist(x, h - y) = dist(h -z, h - y) = dist(x,y).
Accordingly, if L, L' € Hypy, then one has dist(z, h- L") > dist(x, h- L) (resp. dist(z, h-L") =
dist(x,h - L), resp. dist(x,h - L) < dist(z,h - L)) whenever dist(x, L") > dist(x, L) (resp.
dist(z, L") = dist(x, L), resp. dist(x, L) < dist(z, L)).

If L € Hypy, \ {z}, this gives:

/ L”I:h'L, 123
h-Uy (L) = S her M S L" = Uy(h-L).
LIEHypV7 LUEHypV7
dist(L,L')=1, dist(h-L,L")=1,
dist(z,L’")>dist(x,L) dist(z,L")>dist(z,h-L)

If L € Hypy, \ {z}, one gets:

/ L”::h~L, " .
heupy= S e M2 3 L' = Uw(h- L),
L'eHypy, L"eHypy,
dist(L,L')=1, dist(h-L.L")=1,
dist(z,L")>dist(z,L) dist(z,L")>dist(z,h-L)

and similarly for Vv, Sy, Vw and Sw. In other words, the action of K, . on Zy)[Hyp,] by
left-multiplication commutes with the operators U,, V, and S,, for x € {V,W}. Therefore
the action of K, on Z)[Hyp| commutes withU, V and S.

The definition of the preceding operators at the origin x may seem a little bit ad-hoc at
first sight. Notice that the operators U, V and S do not commute with each other. Rather,
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they satisfy the following relations, as stated in ([§], Lemma 3.2).

Lemma 2.3.3 ([§], Lemma 3.2). In R, the following relations hold:
— Vwly = ¢* and VylUy = ¢°.
— Uy +Vy + Sy =1Id+t1o, and Uy + Vi + Sw =Id + to1.
— WSy = qVy and VwSw = q V.
— SyUy = qUy and Swly = qUyy .
— 8 =qSv and S = qSw.

The proof is a simple counting argument away from the origin, and is a consequence of
the suitable definition of ¢, V and S at the origin.

Let R C R be the (non-commutative) sub-ring generated by the image of ., via (2.18),
and by the operators Uy, Uy, Vv, Vi, Sy and Sy. We shall recall, after [§] section 3, some
language of non-commutative algebra. If S is a non-commutative ring and if f = >"7_ | a;2" €
Slz]is a polynomial, we say that an element zg € S is a right-root of f, which we denote
by 7 f(z0) = 07, if .5, a;z{ = 0. Notice that the evaluation map at zo,

ev,, : S[z] = S,

r r
% i
E a; 2 +—r E a; 2,
=1

i=1
is not a ring homomorphism if S is non-commutative. However one still shows that, if zg € S
and f € S|z], then zj is a right root of f if and only if f admits a factorization f = g-(z —20),
for some polynomial g € S[z].

Via (22.18)), the polynomial He, € H.[z] may be seen as a polynomial - still denoted He, -
with coefficients in R. The following important result is due, in this form, to Boumasmoud,
Brooks and Jetchev:

Proposition 2.3.4 ([8], Lemma 3.3). In R, one has He,(U) = 0.

The integrality of the successor operator U over the spherical Hecke algebra H, (both
terms being embedded in the non-commutative ring R) is a key tool used by Boumasmoud
et al. in establishing the wertical (conductor-wise) distribution relation - relating cycles
in Z[Zx (G, H)] of increasing vertical conductor at 7 - in a view towards the existence of a
universal norm in the Galois cohomology of a Galois stable lattice attached to an automorphic
representation appearing in the cohomology of Shi (G, X) (see [8], Proposition 5.1). The

(20). Notice that the definition of U, V and S requires to localize at (p) at the origin x only - in order to
satisfy the above relations - but away from x these relations still hold naturally in Endz(Z[Hyp]).
(21). Recall that the indeterminate z is central in S[z].
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proof given in [8] amounts to showing that He (/) = 0 - hence He, (i) = 0, according to
the above criterion - by developing each coefficient of He(T4) (U) and by making full use of the
relations between U, V and S stated in Lemma to show that this coefficient vanishes.

Remark 2.3.3. The above annihilation relation, which seems like a computational coin-
cidence at first sight, can in fact be realized as a consequence of a much broader class of
relations, which Boumasmoud calls seed relation ([7], Theorem IV.1). In his thesis, Bou-
masmoud studies a class of so-called U-operators attached to an unramified reductive group
over a non-archimedean local field, which are of group-theoretic nature but admit a geometric
realization in terms of the corresponding Bruhat-Tits building. Boumasmoud’s seed relation
18, roughly speaking, a statement of integrality of the U-operators over the spherical Hecke
algebra, both terms being embedded in a wider (non-commutative) ring. We refer the inte-
rested reader to e.g. ([7], Remark 71) for explanations about the link between Boumasmoud’s
annihilation relations (op. cit., Theorem IV.1 and Theorem V.3) and Proposition m

2.3.4 Allowable segments.

Recall that, by a segment of length n > 0 in Hyp,,, we mean the full subset [xq, . .., x,] for-
med by the hyperspecial vertices contained inside a path [zg, z1/2, %1, . .. » T L x| of length
2n in |By|. Such a segment satisfies dist(z;,z;) = |i — j|, for all 4, j € {0,...,n}. Simi-
larly, we define segments of length n in Hpr by requiring that the above z; lie in |Byy|, for
i=0,...,2n. For x € {V,W}, we let Hyp* denote the set of segments of length n in Hyp,

(n) 0) _ ©0) _

and we set Hyp(”) := Hypy’ x Hyp . Accordingly, one has Hypy,” = Hypy,, Hypy,, = Hypyy,

(0)

Hypy’ = Hyp, and

Z[Hyp™] ~ Z[Hyp{"] @z Z[Hypyy], Vn > 0.

The transitive action of G, on the set of apartments of B, induces a transitive action of

G..» on Hyp{™, for » € {V,W}, hence a transitive action of G on Hyp!™.

Definition 2.3.4 (Allowable segments). Let n > 0. We denote by Hypﬁf) C Hyp%}l) the

subset formed by those segments of length n, [xo, ..., x,], which satisfy:
dist(x, zg) < dist(z,x1) < --- < dist(z, z,,).

Elements of Hyp ") are called z-allowable (or simply allowable) segments. We set Hyps;) =

Hyp( " N Hyp , and we set Hyp( QUEES Hypgf) X Hypgy.

The segment [zo,...,x,] € Hyp%}l ) is allowable if and only if x; = Vy(x;44), for all ¢ €
{0,...,n—1}. If [zo,...,x,] € @g‘) is allowable, then one has dist(z, z;) = dist(x, zo) +1,
for all i € {0, ... ,n}, hence the vertices z, zg, ..., z, all belong to a common apartment (by
Proposition of By and are encountered in this order. The groups Ky, and Ky, act
on Hyp and Hyp (but this action is by no means transitive).
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By

By

Figure 2.7 — The blue line defines an allowable segment [xo, z1, z2] € Hypg). The red line defines

a segment [yo, y1,y2] € Hypgf) which is not allowable.

One has the following useful property linking allowable segments with operators Uy and
Vvi

Lemma 2.3.5. Let L € Hyp,,. If L' € Hyp,,, the following assertions are equivalent:
(i) L' € SuppUy (L),
(11) For all m > 0 and for every allowable segment [xo, ..., Tm-1, L] € @8"), the segment
lzo, ..., 2m1, L, L'] € @E}”H) remains allowable.
(111) dist(L', L) = 1 and dist(L', Vy (L)) = 2.
Proof. The equivalence between (i) and (7i) is immediate.
[(i1) = (4i7)] Assume (ii). As [Vy(L),L] € mg) is allowable, we get that [Vy (L), L, L] is
allowable, hence dist(L, L') = 1 and dist(x, L) = dist(z, Vy (L)) + 2, thus

2 = dist(x, L') — dist(z, V(L)) < distWy (L), L) < dist(Vy (L), L) + dist(L, L") = 2.

[(i13) = ()] Assume that dist(L/,L) = 1 and dist(L,Vy(L)) = 2. Then dist(z, L") €
{dist(z, L) — 1,dist(x, L), dist(x, L) + 1}. As L' # Vy (L), then dist(x, L) # dist(z, L) — 1,
hence one has either dist(z, L') = dist(x, L) or dist(z, L") = dist(x, L)+1. In the first case, one
would get L' € SuppSy (L), hence Vy (L") € Supp Vv Sy (L) = Supp (¢*Vv (L)) = {Vv (L)}
according to Lemma [2.3.3] This would contradict dist(L’, Vi (L)) = 2. Accordingly, one has
dist(z, L") = dist(x, L) + 1, thus L' € SuppUy (L). O

We set:
Hypyy == | |Hyp{", Hyp(y = | | Hyp{y)

n>0 n>0
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and  Hyp™ = | |, Hyp™. For all « € {V,W, 0}, we shall denote by ¥, (resp. "&,) a
generic element of Z [Hypi”)] when n > 1 (resp. when n = 0, in which case Hyp'® = Hyp,).

*

Let n > 0. We set:

Hypy.>, := {L € Hypy; dist(z, L) > n} C Hypy, Hypws, = Hypy>, N Hypy,

and Hyps, := Hypys, X Hypy.>,. The correspondence between allowable segments and
vertices is the following:

— Forall L € Hypy >, weset ny, := dist(x, L). By unicity of the segment [z, 21,...,2,, =

L
L] e Hyp%}l ) which connects z and L, one has a map

sn © Z[Hypy,>,] — Z[Hyp!"],

obtained by mapping any L € Hypy, -, to the truncated segment [x,, _p, ..., 2zn, = L].
If L € Hypy >, the above segment [z, x1,...,2,, = L] lies in Hyp(VgL), therefore the
restriction of s, to Z[Hypy, -, ] has image in Z[Hypéﬁ)].

— On the other hand, one has a map v : Z[Hyp@o] = Do Z[Hypg‘)] — Z[Hypy] given
by v([xo, ..., z,]) = x,, for all n > 0 and all [x,...,z,] € Hypif). For all n > 0, the
restriction v,, of v to Z[Hypﬁf)} has image in Z[Hypy -, ], and one checks that

S, 0V, = Idz[mi,")] and v os,, = Idzmyp, . | (2.20)
The restriction of v to Hypgj) has image in Hypy,>,, C Hypy,, hence
o Vn‘@i/vn) - IdZ[M(WM} and v o (Sn‘HyPW,zn) - IdZ[Hypwﬁzn] (2'21>

Xy =3 cnyp, @1l € Z)[Hypy] and if [zo,...,z,] € Hyp%}?) is a segment of length n

such that [z, ..., x,, L] € Hypgfﬂ) for all L € Supp Xy, then we set:

[0, von B )= D arloo, . an, L] € Z[Hyp{ )

LeHypy,

Definition 2.3.5 (Operators U‘(/n), L{é[?}) and U™). Let n > 0. Let us define the following
operators:
— We define Z/l‘(/") D Ly [Hypgf)] — Ly [Hypg”“l)], by
[xo, ... 2] — [zo, -, xn, Uy (24))].

In other words, one has Z/{‘(/n) ‘= Sp11 0Uy o V,.
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— We define L[IS‘T}) s L) [Hypslj)] — L) [Hypgy], by
[xo, .- xn] — [zo, - - Tn, U (24))]

In other words, one has L{IE{}) ‘= Spyr1oUw oV,

We finally set:
U — u‘(/") ®U$}) L L) [Hyp(")] — Zy) [Hyp(n-l—l)]’

which satisfies U™ = (8,41 @ Spy1) oU o (Vi @ V).

2.3.5 The Iwahori filtration (IS"))@O

Recall that, by Lemma the transition matrix between B and B’ has the form

1 _
u = {o 1 Vg} € GL3(Og, ), with 8, v € Op,_and y+7+ 8 = 0. If g € Gy, then g belongs
00 1

to Ky, if and only if its matrix with respect to B or B’ belongs to GL3(Og.).

Lemma 2.3.6. For all m > 0, one has
L(Of) € S Ky, and v diag(cw™™, 1, @™) u € diag(w ™, 1, w™)GL3(Og,).

Proof. This can be done without any explicit computation. As both half-apartments
Af; and A}, are equal then, if m > 0, one has

(5$ T = <w_m6/+7 667wm6’_> = <w_m6+7 607wm6—> = L((;g[l/) * T,

hence dy,"1(d}) € Stabg,, (v) = Ky,-. On the other hand, as u is the matrix - with respect to
B - of the element g, € Ky, that maps e, to €}, for x € {+,0, —}, one gets g, 'ov g, = t(dw),
thus g, 107 g, € 07 Ky... Expressing the last equality in the basis B’ - where g, has matrix
u - yields v~ ! diag(w ™™, 1,@™) u € diag(w ™, 1,@™)GL3(OF, ), as wanted. O

We shall make the confusion between dy and t(dw) € «(Gw,;) C Gy, in the following.
As a consequence of the preceding lemma, one has:

oy Ky -0y = oy Ky 0™,

and
Ky, N oKy o0y" = Kw, Noy Kw,6," = Kw,. N oy Ky.0,",

for all m > 0.

Definition 2.3.6 (Iwahori subgroups of level n > 0). Let n > 0. The Iwahori subgroups of
level n, I&fl C Ky, and Ig}’)T C Kyw, are defined in the following way:
— We set IE}Q =Ky, N (5;”[(‘476‘(/"). In other words, Ig}?) is the compact open subgroup

T

of Gy, which is the stabilizer (in Gy,;) of both vertices x and §," - x, i.e., the stabilizer

of the allowable segment [z, 0" -z, ..., 0," - z].
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— We set IWT = Kw, N oy Kw. oy = Kw, N 0y Ky0,". In other words, Ig}l is the
compact open subgroup of Gw,. which is the stabilizer (in Gyw,;) of both vertices x and

o - x, i.e., the stabilizer of the allowable segment [x, 0y, - x,. .., 05 - x].

We finally set I .= I%}? X I%;?T =K, NI"K,0™" C G, which we call the Iwahori subgroup
of level n of G.. The family (IS"))@O provides us with a decreasing filtration of G by compact

open subgroups.

Remark 2.3.4. — The terminology of Iwahori subgroup which we have used to denote
the above groups 1&72, * € {V,W}, n > 0, though slightly abusive, remains motiva-
ted by the fact that a generic Iwahori subgroup of a reductive group G (over a non-
archimedean local field) arises, roughly speaking, as the (pointwise) stabilizer of an
alcove in the Bruhat-Tits building of G (see [7], Definition 9 and Definition 17). In
our case, equivalence classes in By / ~ are either vertices (zero-dimensional) or edges
(one-dimensional), therefore alcoves of By can be identified with edges. In the apart-
ment A’, the group Igﬁ arises as the intersection of the stabilizers of the alcoves defined
by the segments [z,6," - ],. .., [[5;("_2) -z, 5€/_n_1) -] and [[5;(n_1) -z, 0, - x] (and
simalarly for I%?T ), which justifies our chosen denomination.

— Notice that, unlike IS))T = Ky, and IV?,T = Kyw,, the Iwahori subgroups Igf and I(n

do not satisfy the inclusion L(I( ) C IV whenever n > 1, but this slight dzscrepancy
shall not be much of a problem for applications. By formula ([2.13] - the elements of

b e
I%fl correspond, in the basis B', to those matrices N = [d e f} € GL3(Opg,) such that
ord(b), ord,(f) > n and ord,(c) > 2n. Similarly, by formulas (2. 12: and ([2.14), the

elements of I%’)T correspond, in the basis B, to those matrices N = 0 1 0} € GL3(Og,)
such that ord,(z) > 2n. In particular, an element z, of the center ZG” corresponds
to some unitary scalar A, € U(1)g/p(F;) = Op C Of . Consequently, the homothety
A - 1 lies in I@, for all n > 0 - in fact, fives every (Specz'al or hyperspecial) vertezx of

B, - which shows the following:

Ze, C (1. (2.22)
n>0
By construction, one has IR (O I 5 L for all n > 0. The following lemma

enables us to compute the size of the quotients IT / IT"Jrl , for all n > 1:

Lemma 2.3.7. Let n > 1. Let m > 0, and set L, = 5;("+m) -x € Hypy, and Ly :=

Spt™ = 60 -z € Hypy.
(i) The map
1/7(:) : 18?3- —>HypV7

i (5,00, g
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induces a bijection between the quotient set Ig}l / Ig;f:l) and SuppUy (L1) = {L’ € Hypy; dist(Ly, L) =
1, dist(z, L') > dist(x, L1)}.
(i) The map
i I — Hypyy,
i— (O i o) o
induces a bijection between the quotient set I(n /I "D and Supp Uy (Lo) = {L" € Hypyy; dist(Ly, L") =
1, dist(z, L") > dist(x, Ls)}.

Proof. Both statements being very similar, we shall prove only (i) and leave (i)

to the reader. That v is right Igf_r Yoinvariant is clear. Also, if i, i’ € I% are such

that 5_mi5_(n+1) = 6,7 5;(n+1) -z, then 714 - (6;(n+1) Sx) = 5;(n+1) - x, hence
ih e IVT N Stabgvf(é (41 L) = Ig’fl), which gives i € z’I("+1 and shows that v

is injective.

Let us show that v has image in Supp Uy (L, ). First, notice that Vy(L;) = 5;(n+m_1) .
If 7 € I% then, by definition, ¢ fixes the segment [x,...,0," - z]. Accordingly, for all
k € {0,...,n}, one has

dist ((25 (nt+1) ) x, (5;(”4“) x) = dist ((z’éf("ﬂ)) Sx, 0 (5‘;(””“) x))
= dist (4, (nt1), ,5;(n_k) - T)
=k+1.

Taking £ = 0, 1 gives us:

diSt(Vﬁg)(i), Ll) = dist <(5_ (( 5V(n+1 ) . x)’ 5‘7m . (5‘71 ] 33))
= dist ((25 (n+1) ) z, 65" - x)

— 17
and

dist (v (1), Ve (L)) = dist (677 (16, ") - 20, 657+ (5,07 - )
= dist ((Z 5‘;(71—1—1)) -, 5‘;(71—1) ) JJ)

=2.

By Lemma [2.3.5, (#ii), this implies that v\ (i) € Supp Uy (L1).
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On the other hand, let L’ belong to SuppUy (Ly). As the segment [0, g =
s 75\;(n+m) "z, L/]] S Hyp$+1)7

L] € Hyp™ is allowable, then so is the segment o™

according to Lemma (7). Therefore one has
z, L) = dist (5, - 2, 67 -

L' =]z oy - x, 0 - L'] is again allowable. Ac-
Loy

, —n and

dist (6, L)Y=k+1, Vke{0,...,n}

i.e., the segment 67} - [0, - @
cordingly, one may find a Witt basis B = {e, €y, e_} such that the vertices x

and 47 - L' all belong to the apartment Az and have respective parameters 0

™.
(n + 1) with respect to B. Accordingly, one has:

57 X = <wj€+> €o, wijfé;> = <wj€+7 €o, wije*>7 v] € {O’ T ’n}’

(") _ and satisfies i -
O]

Consequently, if i € Gy, is defined by i(e)) = €,, for x € {+,0,—}, then ¢ fixes the whole
., @ belongs to Iy~ (5;(n+1) cx) =067 -L. In

(") (4), which finishes the proof.

segment [z,...,0," - z] - i.e
= Um

other words, one has L' = (6, id,""™) - z

Notice that, for all n > O the map iy — ivé‘jl induces a bijection between I(n) /I("”L1 =
ol ") /I(n If n = 0, the latter is also equal to Ky, 6y Kv,- / Ky,
)

JLT/I‘}Z no; Y v andI
Similarly, if n > 0, the map Tw r—) iwow induces a bijection between I(n /I(nJrl =
6 and IWT S 1L Wor / I(n) The above considerations, together with the

WT/IWT N 5WI
preceding lemma, admlt the following consequence:

— One has

Corollary 2.3.8.
Lemma [2.3.1} (%)
= (¢ +1)

(I(O / I(l) ) (KV,T (SV Kvﬂ- / KV,T)

and
# (10 /10.) = # (K dw Kow [ Kow) " B (g 1)
thus
# (I /1) = (¢ + 1)g*(g + 1). (2.23)
— For alln > 1, one has#(vT/I"H) =q* and#<WT/I"+1) = ¢%, hence
(2.24)

For all n, m > 0 and * € {V, W}, we define the standard allowable segment Ei"% € Hypi")

as follows:
=0 =0y - [0y @, 6" - o] € Hypl®
=i =0y [, 0y -, 6% - 2] € Hypl?, (2.26)
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and
=m == ®=h € Hyp™. (2.27)

m

Accordingly, one has IinT) = StabG*VT(E%), for all n > 0 and all x € {V,W}. This gives a
bijection
Gr /1 5 Hypy,
g1 s g, - 25V (2.28)

The above Lemma [2.3.7 can also be rewritten as follows:

Corollary 2.3.9. Let n > 1 and m > 0. One has
Z U E((]n—i—l) _ Z (5ml5—m) . 57(’:;0-1—1) _ u(n) (57(7?)) :
iGI‘(,-n)/I(Tn+1) ieI(Tn)/Is_n+1)

where Ziel(n)ﬂ(nﬂ) denotes a summation over a fized system of representatives for the quo-
tient 1\ /IYLH).

2.3.5.1 Expression of /" in terms of the n-Iwahori-Hecke algebra.

Let x € {V,W,0}. In a similar way as we defined the local spherical Hecke algebra H, . -
attached to the hyperspecial maximal compact open subgroup K, , C G, . (see § - one
may define a Hecke algebra of n-Iwahori level (or n-Iwahori-Hecke algebra) HSQ, by replacing

the hyperspecial level K, ; by its n-th Iwahori subgroup I£"7) Accordingly, the ring
n o n P n n
H o= C (G J 1), Z) = Endyye, ) (Z[Gyr /1)) ~ Endge, <Z[Hypi )]>

is generated by indicator functions of the form 1I(n)gl(n>, for elements g € G, -

Definition 2.3.7 (Hecke operators tg?o), tgfl) and t.). Let n > 1. We define the following
double coset operators of Endyq, . (Z[Hyp{™]), x € {V, W, 0}

— 0 = (L s 0 ) € Endgic,) (Z[Hyp{!)]).
— toﬁ) = P(11<V3>T . I(y;)T) € Endzgy,. (Z[Hypw?T]).

— 1= p(Ly 5ym) = 1) @157 € Endgg,) (Z[HYPSR)D-

The operators tgtlo), tf{ff and t™ when restricted to allowable n-segments, turn out to be

related to the previously defined operators U‘(/n), Llé[?) and U™ respectively. More precisely:

(22). Notice that this is no longer the same operator as p(1 , whenever n > 1.

1 av1)
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Lemma 2.3.10. Let n > 1. One has

l |Z[H pmy = n© Vni1 © u\(/n)v (2.29)
hence (lz[Hpr] (Sn @) © (Vpy1 @ Vinyr) o U™, (2.31)

Proof. We shall, as usual, give the details for the first statement regarding t 10 ) and leave

t(n) to the reader. Let g1,..., g, € I‘Q (5‘/11‘/77 be elements satisfying

II n) |_|gJ Ve

the (similar) one about

Without loss of generality, one rnay assume that gJ = z'J(S‘} , for some family i;,...,%; of
representatives for the quotients I / IVT N oy 11 VT / I{ ”H .

Let Y4 := [xo, ml, oox] € Hyp(" be an allowable segment of length n, which may be
written as X = ¢ - ~V0> for some g € Gy, well defined in GVT/IVT One has s, o v, ©
Z/I‘(/n) (X)) = >~ Lesupptty (e [T15 - - Tny L]. On the other hand, one has:

= 99, -EV0 = ng "BV
j=1
One has i; - (0;% - z) = 6" - 2, for all k € {1,...,n} and, by Lemma (case m = 0),

one has i, - (5;(”“) x) € SuppUy (6" - ). This implies, by Lemma , that the segment
ij0y" - _‘}% =[6v" 2, 60" iy 5;(n+1) - z] is allowable. Accordingly, the segment

q9; - :l/o =g- [[5 T, 00" x, 5;(n+1) cx] = @1, .., 0, 9150y, (n+1) |

remains allowable, i.e., gi; 0y, D 2 € Supp Uy ().

Indeed, assume that gi; 0, AR ¢ SuppUy (x,,): as dist(z,, gi; (1), x) = dist(dy,"

2,i; 6, . 2) = 1, then one would have cither dist(z,gi;6, """ - z) = dist((a: :lzz)n) -1
oyt

or dist(x, gi;d, (nt1) z) = dist(z,z,). The former case would mean that gi;d,,

Vy(zy,) Lemma B2 Zpn—1, which would already contradict the fact that g g; - u&()) is a segment.
The former case would imply that g1,y )y e Supp Sy (x,,), i.e., that

Tr =

(n+1) :U) $n—1:£V(xn) n+1)

dist(z,—1,91; 6y, 1 < dist(zy—1, z,) + dist(xy, gi; 0y, (

./,U),

(n+1) (n)

thus also contradicting the fact that [z,_1,2,, 91,0, ~z] C ggj - Sy Is a segment.

Accordingly, one has

gi; oy’ E% € Supp (sn O Vi1 oU‘(,")(E)> . Vie{l,...,r}h
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By Lemma/|2.3.7, the mapping j —— ij5;1-5§2& is injective, hence so is the map j — ggj-E%.

Finally, the following equalities
< OIR (ans ) = ¢' = #Supp Uy (z,,) = #Supp (sn 0 Vyi1 o UL (i))

show that j — gg; Eg% is a bijection between {1,...,r} and Supp <sn 0Vpi10 Z/l‘(/n)>, which

finishes the proof. 0

The preceding Lemma together with Definition [2.3.5] give:

= (8, ®8p) 0 (Vpy1 ® Vipy1) 0 ((Sn+1 ®Spi1)oUo (v, ® Vn))
Z(p) [M(n)]

— (Sn ® sn) olU o (Vn ® Vn).
By the relation v, os, = Id on Hyp, 5,,, * € {V, W}, one obtains that:

() = (sn@s0) ol 0 (v @V,) Vi >0, (2.32)

2.3.5.2 The filtration (H,),>¢ of H,.
The decreasing filtration (I(Tn))nzo of G, induces the following decreasing filtration on H.:

Definition 2.3.8. Let n > 0. We set H, to be the subgroup of H, defined by
H, = H, N1 = Staby, (2, )
= Staby, ((6;" - z,8} - )) = A (Stabg,, ([67" - 2,...,z,..., 6 - 2])).

The above characterizations imply that H,,, C H,, for all n > 0. Also, for all m > 0,
one has

H, N §™106~™ = Staby, (21, Z47,)
= StabHT(év(n+m) cx, 00t - x)

We shall sometimes slightly abuse notations and make the confusion between H,, and Stabg,, ([d;"-
T,...,x,...,00 - x]). According to Corollary , and for inv, ((6," - z,6% - 2)) = (n,n),
one has

det(H,) = O}, for all n > 0. (2.34)

Notice that, by Remark [2.3.2] the action of Hy C K, on Hyp by left-multiplication
commutes with the operators U, V and S. Accordingly, the group Hy acts on SuppU(y)
(resp. Supp V(y), SuppS(y)) by permutation, for all y € Hyp. The inclusion induces a
natural injective map:

Hy, [ Hypy s 11 /100, (2.35)



144CHAPTER 2. BRUHAT-TITS BUILDING AND LOCAL DISTRIBUTION RELATIONS

We define the following subsets of Hyp:
We set Ny := (Supp t10(x) . Supp togl(x)) X (Supp to,l(ac))
and, if n > 1,
N, == SuppU (0" - (z @ z)) = (SuppUy (6, - x)) x (SuppUw (6} - x))
Proposition 2.3.11. For alln > 0, the map:

(s, pd”) = 1 — Hyp,

T

i i (6, L gt )
. . (n) /y(n+1)
induces a bijection between the subset H, / H,., Clz /IT and N,, C Hyp.

Proof. That (", u") : Hy / Hni1 —> Hyp is well-defined and injective is an immedi-
ate consequence of the characterization

H,, = Staby, (0y" -z, 6% - ), for all k > 0.

That the restriction (Vé”), ,ué")) ‘H has indeed image in NV, is a consequence of Lemma [2.3.7]

(in the case m = 0) if n > 1. If n = 0, this boils down to the facts that, for all h € Ky, so
that A(h) = (h,h) € Hy, one has:

dist(hdy' - z,z) = dist(6," - 2, A~ - 2) = dist(6," - 2, 2) = 1,

dist(héy -z, x) = dist(dy - 2, b~ - x) = dist(dy - z,2) = 1,
and hdy,;' -z ¢ By (for otherwise d,' - # = h - (h™16,' - ¥) € By, which is not), hence
A(h) . ((5‘;1 . x,(SW . .1') S ./\/0.
For the surjectivity: let y = (yy,yw) be an element of N,. As yy € By ~\ By and

yw € By, one may form a segment s, of length 2n in By by setting

Sy = yv,0y" -z, ..z, 00 - X, yw] EHypgl).

Let us choose a special apartment A” € & which contains s,: thanks to Corollary , one
may then find some h € Gy, such that h- A" = A”. First notice that, as A" and A” share
the same base point z, then z must be fixed by h.

Indeed, one may consider the vertex &, """z € A’\ By then h- (5, z) € A"~ By,
hence er(hév("H) x) = x. According to Proposition-Definition , (1ii), one gets:

h-x=h-pry(d, (nt1) )—er(h5 (n+1) - T) = T.
Accordingly, one has

dist(6y," - @, ) = dist(h - (6,7 - @), h - ¥) = dist(hé;," - 2, ) = k,
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A// A

YV

Supp t1,0(x) \ Suppto1(z)

Supp to.1(x)

Figure 2.8 — Tllustration in the case n = 0. The element h € Hy maps the special apartment A’ (in blue)
to A” (in green), hence maps (0y;' - z,dy - ) to (yv,yw) € No.

dist (6%, -z, ) = dist(h - (0}, - ), h - x) = dist(h - (5%, - x), ) = k,
for all £ > 0. As h stabilizes both By, and By ~ By, there is no other possibility than to
have h - (6,7 - 2) = 6, -z and h- (68, - 2) = 88, - x, for k € {0,...,n} - therefore h € H, -

and:
e (6,0 ) =gy, b (57 3) = yw

This shows the surjectivity of (l/(()n), ,u(()n)) ’H JH — N, and finishes the proof. O
n n+1
Consequently, one has
#(Ho [ Hi) = #(No) = ¢*(¢* = 1)(g + 1), (2.36)
and #(H, / Hy11) = #(N,) =¢°, foralln > 1. (2.37)

The last equality admits the following immediate consequence:
Corollary 2.3.12. The map s a bijection, for alln > 1.
For all m > 0, we let ad(d}*) and ad(dj};) be the morphisms:
ad(0y}) : Gwr — Gy.r,

h— S hé™
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and
ad(dy,") : Gwyr — Gwr,

h—— 55" h o

Lemma 2.3.13. For alln > 1, m > 0 one has:

ad(07) (Hum) C 102, ad(657) (Hogm) € 1) [

and the map
ad(6™™) := (ad (&), ad(63™)) © Hppprn — 1

duces a bijection between the quotient sets Hy .y, / H, mi1 and IS”) /IYLH).

Notice that, though ad(6~™) is a bijection between Hn+m/]—]n+m+1 and 1™ /I(Tn+1) _
H, / H, .1, it does not map H,,, to H, whenever m > 0.

Proof. Let h € H,,,. As h fixes the whole segment [z, ... ,5;("”“) - x], one has

ad(07)(h) - 20 = (57 hoy™) - [, .., 677 - 2]

= 60h - [67™ x0T ]
S i A R Wil
=[x, ...,6," - 2],

hence ad(67?)(h) € StabGVJ(E%) = 182 Similarly, as h € H, 1, fixes the whole segment
[z, ..., 60™ 2] =[x, ..., 00" - x], one has

ad(05™)(h) -y = (0" h o) - [x,..., 8% - 2]

=0 h - [0 -y . 00T - 1]
=0 [0 - @y O™ - 1]
= [z,..., 05 - x],

hence ad(d;;/")(h) € StabGWJ(Eg/?[},)o) = IS[},)T'

As # (Hysm [ Hooms1) = ¢© = # <I£”) /IS"H)) by (2.37)), it is enough to check that
ad(0™™) © Hpim [ Hpgmer — 1 /IQLH) is injective, i.e., that H, N ad(6~™) (1" ¢
H,im+1. The latter follows from the fact that, if h € Gy, then A(h) = (h,h) € H, belongs
to ad(6—™)~! <IS"+1)> if and only if

g hoym = = =00 and 6 by ZEY = =Y,

(23). Here, we see H,, 1, as the subgroup A~ (H,,1,,) C Gw.r.
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hence

—(n+1)  —(n+1) =) _ —=(n)
h - SV = uVm ) and h - EWm = SWom-

The latter is equivalent to requiring that h fixes both &;, (ntm) 2 and opt™ .z, ie., that A(h)
liein Hy - ]

2.3.5.3 Trace operators in Z[Hyp™].

For all n, k > 0 and for x € {V, W}, we define Z[Hyp'™], C Z[Hyp{"™] to be the submodule
formed by linear combinations of n-segments which are fixed (as sums) by the action of the

group Hy (seen as a subgroup of G, ;) via the natural left-action of G, , on Hyp™. Plainly:

Hy,

ZHypy = (Z[Hypi")])
This gives an increasing filtration on Z[Hyp{™]:

Z[Hyp™]y € -+ € Z[Hyp{™ ), € Z[Hyp"]i1 C ... (2.38)

For all n, k > 0, we set Z[Hyp™], := Z[Hyp\"]), @z Z[Hyp\P]; C ( [Hyp"” ) , where the

last term Hj is now seen as a subgroup of GG, acting diagonally on Z[Hyp( ] Z[Hypgl )] Rz

Z[Hypw] Accordingly, we set
ZHyp™]i := Z[Hyp'™] N Z[Hyp{]y, Vx € {V,W},

and

Z[Hyp(n)]k = Z[Hypgl)]k ® Z[Hyp%)]k — Z[Hyp(n)] N Z[Hyp(”)]k.

By construction, one has Ei"gl € Z[Hypi")]mm, for all x € {V, W}, hence = e Z[Hyp™ ] sm,
for all n, m > 0.

Definition 2.3.9 (The trace operators Trv k, TrW and Trk/’k). Letn >0 and let K >k be
positive integers.

- Forx € {V, W}, we define the trace operator Te** as the element of End (Z[Hyp(”)] )
given by:

T o Z[Hyp™]y —Z[Hyp{™ s € Z[Hyp™]w,

* *

i, — Z h -,

hEHk/Hk/

*

- We finally define the diagonal trace operator Tv** € End (Z[Hyp( I ) by setting:

Trk/’k (*EV & >I*[/V) = Z (h . *Ev> & (h . >I*[/V) - Z[Hyp(n)]k C Z[Hyp(n)]k/,

hGHk/Hk/

for all &y € Z[Hypgl)]k’, Ty € Z[Hypg&)]ku
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A direct computation shows that, for all x € {V,W,0} and all n > 0, one has bk =
TrkF o TrF"* whenever k" > k' > k > 0.

For all n > 0, m > 0, one has

m

n+m n+m —n A Ew
Tyntm+1lnt (:( +1)) — Z (h.:&;; ))®(h-:$/v,)m).

heHn+m/Hn+m+1

Given any system (hi)qil C H, ., of representatives for the quotient set H,, 1, / H, 1, one
6 6
gets by Lemma [2.3.13| that the family (ad(é_m)(hi))jzl = (6"™h; 6™)]_, forms a system of

representatives for the quotient e / A straightforward consequence of Corollary|2.3.9

is now the following;:

Proposition 2.3.14 (Vertical distribution relation, 1.). Let n > 1 and m > 0. One has:
Trn+m+1,n+m (E%Hrl)) _ u(n) (Egg)) . (239)

By Lemma , the vertical distribution relation (2.39) - an equality in Z[Hyp™*V] - can
be rephrased in terms of n-segments as:

(80 ®8n) © (Vy 0 v,) o TymHmilntm (Z(nbl)) — yntmiLinfm (551311)
=t (E). (2.40)

—m

As we shall see, the last equality can be interpreted in terms of Shimura varieties as a twisted
pushforward (77((5"))k between Shymi1) (G, X) and Shym (G, X).

2.3.6 An horizontal distribution relation in |By|.

In this paragraph, we go back to the case of vertices (i.e., n = 0) in order to give some ideas
about the proof of Jetchev’s horizontal distribution relation ([27], Theorem 1.6), although we
shall use a slightly different approach. For all £ > 0, we still set:

Z[Hypy e == (Z[Hypy )™, Z[Hypy e == (Z[Hypy])™,

and Z[Hyply := Z[Hypy|x @ Z[Hypyx C (Z[Hyp])™* .

Accordingly, one now has trace operators:

Try” : Z[Hypyls — Z[Hypylo C Z[Hypy]s,

(24). Indeed, Jetchev’s Theorem 1.6 is formulated slightly differently - namely, in terms of the trace Tr*° =
Tr*%0Tr®! - and his proof makes strong use of the distribution of invariants appearing in the sum He,(1)-(0,0)
in order to deduce the relation, which we don’t.
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Ty ZIHypw] — Z[Hypwlo C Z[Hypwh.
and

Tr'? : Z[Hyp)y — Z[Hyply C Z[Hyp],

who satisfy - as z is fixed by Hj - the following compatibilities:
T 0y @) = ey’ ((Fy) @z,  and  Tr'%(z @ Hy) = 2 @ Try (Fw), (2.41)

for all Y € Z[Hypy |1, "w € Z[Hypy|1. Typical examples for "y (resp. "My ) shall be
6, - x, 8y - x (resp. Oy - x, to1(7))

We extend all the previously defined Z-linear operators (namely, Hecke operators and
trace operators) into Z[m}—linear operators. By commutation between the adjacency
Hecke operator ¢y o (resp. o) with the left-action action of Gy, (resp. of Gy.,) on Z[Hypy/|
(resp. on Z[Hypy]), one obtains that ¢, o(x) € Z[Hypy]o and to1(z) € Z[Hypy o, hence

tlx®@x) =t o(x) @to1(xr) € Z[Hyplo. One may even say a bit more:

Lemma 2.3.15. One has

tolz @) = 0 (51 - L SR , 2.42
10(r ® ) g+ 1) r (V :E®x)+q2(q2_1) r 0y -z @) (2.42)
1 1,0
to,l(iﬁ & Z’) = mTr (.Q? & (SV : l’) s (243)
1
and tw @ x) = T8 (0" 2) © (v - 2)) + 5ea =T (O - 0) @t (@) (244)
In other words, t;o(x @ x), to1(r @ ) and t(x @ x) all belong to mTrl’0 (Z[Hyp],).

Proof. By Proposition [2.3.11] and as illustrated in Figure , the quotient H / H,
acts simply transitively on the set Ny = <Supp tio(x) \ Supptoi(z)) x <Supp to,l(:r)>. As
dy -« € Suppto1(z), one gets

Z h-(0y-z)= #(Supp t10(z) ~ Supp to,l(l’))tm(l’) = ¢*(q* — L)t (),

hGH()/Hl

ie.,
1

T (S0 ) = — —
i (O 2) *(¢* = 1)

1
t071($) = D) Tr%/’o(év : [E)

*(q*> —1)
As 0, - @ € Supptio(z) N Suppto(z), one obtains

Y (5t n) = #(Supp to,l(fc)) - (tro(x) —toa(x)) = qlg + 1) (bio(x) —toa(z)),

heHy /H1

ie.,
1

q(q+1)

tio(z) = Ty (670 - ) + Try” Oy - ).



150CHAPTER 2. BRUHAT-TITS BUILDING AND LOCAL DISTRIBUTION RELATIONS

This gives
1 1,0
t071($ &® .T) =rQ® to&(%) = mTI‘ (.Z' & (5‘/ . Q?)
and
holx®@x) =t1o(x) @z = ! e (6, - 2) @ x) + %TYL0 ((0y - z)®@2).
(g +1) ¢*(q* — 1)

Applying ty; to the preceding gives, as tp; commutes with Gy,

())

tlx @) =ty

(61 2) @) + T (5 ) 9 0)

Trh0 ((Oy - ) @ o1 (7).

(> —1)
1

*(? - 1)

Notice that, as H, / H; acts simply transitively on Ay then, for all L € Supptg(z):

(1,
= 1 Tlo((d ) ® toa(x)) +
g+ 1) v

T (0, 2) @ L) = Te'° (6" - z) ® (Oy - 2))
= (t1o(r) — to1 (7)) @ o1 (),

hence

T (0 2) ®@toa() = > T (6 - 2) @ L)

LeSupp to,1(x)
= # (Suppto1(z)) Tr!0 (((5‘71 ) @ (dy - ZL’)
= q(g+ )T ((6," - ) ® (by - x)

This yields finally

Hr®a) = T (651 - 2) @ (Sy - 2)) + mﬂl’o (v ) ®t01),
as claimed. n
Accordingly, one has
t1o(zr @) =t1 (t10(z ® 1))
=t (q<qi 1)Tr170 (6, z @)+ mﬂl,o 6y -z ® x)>
_ q(qi ST (105 ) 9) + mﬂm (to(dy - 2) @ 2)
€ T (Z[Hyp)y).

*(? - 1)
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and

tgvl(x ®x) =to1 (to1(r ®@))

1 1,0
1 1
= —T 170 . —T 170 Z H
(2 —1) 0 (r ®@toi(dy - x)) € 2= 1) r* (Z[Hypl1),

the terms Tr™" (¢1,0(6;," - ) @ z), Te"0 (t10(0y - 2) ® x) and Tr"° (z @ to1 (v - x)) being jus-
tified by the facts that ¢, o(dy" - ) € Z[Hypy 1, t1.0(6,' - ) € Z[Hypy): and to1(dy - 2) €
Z[Hypw |1 One may therefore apply the preceding Lemma to the coefficients C; € H.,,
i €{0,...,4} defined at §[2.3.5.1] and obtain that:

1
*(¢* - 1)

1

Tr (Z[Hyp]l) C m

CZ(.T ® .73) S Z[Hyp]g, Vi € {O, RN ,4},

hence

By iterating the same process to
He,(1) - (z ® z) = He® (1) HeW (1) - (z @ 2)
= —¢*to1 - HelV(1) - (z @) + (¢° + ¢°(¢ — 1) + DHe{V (1) - (z @ ),
we get the following result, which relates to ([27], Theorem 1.6):
Proposition 2.3.16. One has:
He (1) - (z ® ) € Tr'° (Z[Hyp),) .

We may now use the local (level-wise) vertical relation (stated in the form of ([2.40))) and
the above horizontal relation in order to build a ”compatible” family of cycles on the tower
(Shy (G, X)),,», constructed via the local Twahori filtration (I(Tn))nzl.
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Chapter 3

Global family of special cycles and
equivariant cohomology classes.

3.1 Going back to cycles.

3.1.1 Local distribution relations.

We now leave gradually the world of buildings to go back to something more related to
our main subject of interest: special cycles. In this subsection, as in the previous chapter, we
still work with a fixed allowable inert place 7. In order to treat both vertical and horizontal
relations, we shall still allow the integer n to be possibly equal to 0. This subsection being
purely local at 7, we shall again (temporarily) omit the subscripts O, in various occasions,
but these will be reintroduced later on when considering multiple allowable inert places
simultaneously.

3.1.1.1 Interlude on local orders, II.

Notice that the assumption allowable on 7 could be removed throughout this paragraph.
In the previous chapter (§ we studied the local filtration on the unit group O
induced by the groups of units of local orders of the form O, := Op, + @w‘Og_. In order to
relate the distribution relations of the preceding chapter, obtained in and expressed via the
building By, to actual distribution relations involving Galois traces, we are now interested
in computing the structure (and the size) of the successive quotients O / O, for all ¢ > 0.

Recall that we set Fy := Op, / w ~ F, together with its quadratic extension F :=
Og, / w =~ [Fp2, to be the respective residue fields of F; and E., where w € F; is a fixed
common uniformizer of F; and E,. For all £k > 0, we set (after [7], §VIL.1.6):

Fi = Op, /wk,

153
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and
F*[X]

(X2)

to be the attached ring of dual numbers. Similarly, we set

F’g €] ==

Fk = OET /wk
We also set O_1 := Oy = Op..

Lemma 3.1.1. For all ¢ > 0, the local order O. is a local ring with maximal ideal B, =

woc,1 .

Proof. The case ¢ = 0 being immediate, we assume ¢ > 1. In this case, an element
z=x+4+w € O, x € Op., y € Og,, is invertible in Og_ if and only if z ¢ @wOpg_. This
gives

O0.NOg =05 +@Op, =0 (1+ @Ok, ).
As Op and (1 4 @w°Og,) are already subgroups of Oy contained in O., one gets O =
O. N Op =0p (1+@°Og;).

As seen e.g. in Lemma [I.3.13] the local ring Op, is a free Op,-module of rank 2, and
admits a basis of the form {1, a} for some o € O . One deduces that O. = O, © aw OF,.
If 2 =2+ aw®y € O, with 2/, y € Op_, the condition z € OF is, by the preceding,
equivalent to ord,(z') =0, i.e.,

2€0) <= 2¢wO0p ®awOp, =w (Op, ®aw” 'O ) = w01 = B,

which concludes. [

The following result is a special case of ([7], Lemmas 70, 71):

Lemma 3.1.2. Let ¢ > 0. For k > 1, one has:

F*) "
EFk; X Y Zf c= 07
O )0k, = Fko X (3.1)
( 0 [d) Fl1<k<
—nw fl<k<ec
(Fo)
Proof. Assume first that ¢ = 0. We need to show that Of / O = OF / O} is isomorphic
k X
to (F*)* / (FE)* = (%;T/ /Z;,%E;T) . This amounts to showing that the following map:
« z—zmodw” kN X (Fk)x
; F*)”* —
(bk OO — ( ) (]FS)X )

z Z 1 wk .
which is surjective - as the mod @* reduction map Of AL (F*)* is - has kernel O'.
Indeed, an element z € Of satisfies ¢x(z) = 1 if and only if 2 mod @* € (Op, / @"OF,)*,
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i.e., if there exists some y € Op_ such that z —y € kaET, hence z € Op, + wk(’)ET = O,.
As z is invertible in Op,, the preceding proof implies that z € Oy, thus:

oy _ (F)"

OF T (Fh)

Now, assume that ¢ > 1. Recall that, by the proof of the preceding lemma, there exists
some a € O such that O, = O @® aw*™ O, for all k£ > 0. Let us write o = ua + v,
with v, v € Op,. Assume that k € {1,...,c}. We define the map:

o O, —>IF§ [€]

2 =1x+ awy — T + Ye,

where we set T := 2z mod @w”, ¥ := y mod @w* € (OF, /@w"OF.) =: F5. That ¢y is additive

is immediate. Moreover, if z = x + aw®y, 2’ = 2’ + aw®y’ € O, then
27 = za’ + Py + aw(zy + 2'y) = 22’ + vy + aw(zy + 2’y + TCuyy).

This gives:

on(27') = xa’ + vwyy + 2y + 2’y + TCuyy €
= zx’ +ay +alye (c>k)
= (T +7ye) - (2 +y'e) (=0
= du(z) - du(2),

hence ¢, is indeed a morphism of rings, which is clearly surjective by construction. Ac-

cordingly, ¢, induces a group morphism OX — (F¥ [¢])*

, which is again surjective for the
following reason: an element a + be € F¥ [¢] is invertible (with inverse a=! — a=2be) if and
only if a € (F§)*, ie., 2 = z + aw’y € O, satisfies ¢p(z) € (Fk[e])* if and only if z
mod @* € (Op/w"OFr)*, hence ord,(x) = 0, hence z € OX. Finally, if 2 = x + aw‘y € O,
then one has ¢, (z) € (FE)* C (FE[¢])* if and only if y mod w® = 0 € F§, which means that
z can be written as

2z =z + aw ™y

, for some ' € Op_,

ie., z € Op ® aw™*Op, = Oy This gives ¢ " ((F§)*) = O, hence

0X ¢ (F§ld)”
Ok (FIS)X 7

as claimed. O



156 CHAPTER 3. GLOBAL FAMILY OF CYCLES AND EQUIVARIANT COHOMOLOGY CLASSES

As a consequence, one gets that O / O ~TF* /FX is a cyclic group of order #(F*) /#(Fy) =

qq?_11 g + 1. On the other hand, if ¢ > 1, one has for all k € {1,...,c}:
#(0X ] 0X,) = # ((Fg [)* / (F5)*)
= # ((F5)* - (1 + Fge) / (F5)*)
=# (1 + Flge)
= # (F¢)
= qk'

3.1.1.2  From Z[Hyp™)] to Z[H%"\G, /11"].

We denote by H3" C H, the kernel of the determinant map det : H, — U(1)(F,) = O}.
For all n > 0, let us denote by 79" the natural projection

 Hyp™ & G /10— HEN\G, /1)

This map induces naturally a Z-linear map, still denoted 79" : Z[Hyp™] — Z[H¥\ G, /1]
The group H, acts on the double quotient He"\G,/ 1! on the left, by the rule

H gT™ s HY hg 1™ for all h € H,.

This action is well-defined, as H C H, is a normal subgroup, and makes the map 74 a

Z[H]-equivariant map.

Definition 3.1.1. Let k > 0. We set Z[H"\G, /1], to be the submodule of Z[HY"\G, /1]
fized by the action of H, C H,, i.e.,

ZIHENG, 1), o= (Z[HENG/10) ™

Notice that, unlike the previous case of Z[Hyp™],, - defined as Z[Hypgf )]k ® Z[Hypg})]k C

H
Z[Hyp(”)]> * _ one may not define the Z-module ZIHEN\G, 1), € Z[HEN\G, /1) dia-

gonally, for the bijection

Hyp{" x Hyply) —~ Hyp™

does not induce a map
R I T
(where we see H3" as a subgroup of G, ,, for x € {V,W}), hence there is no natural map
ZIHSN\Gy,, /1)) @ ZIHEN Gy, /Ty — ZIHEN\G, /1],

Accordingly, 79" maps Z[Hyp™], into Z[err\GT/Ign)]k, for all £ > 0.
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3.1.1.3 The map det” and the trace operators Tr,f,f,rc.

Let £ > 0. According to (2.34), the determinant map yields a surjective map
det*: Hy [ Hiy1 — O), ) Op iy (3.2)

The above map is not a group homomorphism (as the subgroup Hy,q C Hy is not normal)

but one still has the following result:

Lemma 3.1.3. Let k > 0. The fibers of the map det™ : Hy, [ Hip1 — Of [ O}, all have the
same cardinality.

Proof. Let s € O} and set 5:= 5O}, € O / Op, ;. The subgroup H{" := H;, N Hi* =
ker(det : Hp — O}) of Hy acts on (det®)~1(3) by left-multiplication, and this action is
transitive. Indeed, let h and A’ be elements of Hj, such that hHy,; and h'Hy,q both lie in
(det®)~1(3). Then det(h) and det(h’) both lie in s O}, hence det(h’h™) € O}.,. Accor-
dingly, there exists some h” € Hj,; such that det(h’h~1) = det(h”), i.e., det(W'(h")'h™1) =
1. This gives b/ Hy11 = (W' (W) "'h™Y)-(hHyyy) € H - (hHyy ), which shows that (det™)~1(3)
is a single H{"-orbit, whose cardinality equals # (H der / Stab ngr(hH kﬂ)), for any h € Hy,
such that hHy,; € (det?)~'(5). Notice that

Stab e (hHy11) = HE™ O h Hypo h™h = h HES hY

therefore the quotient H}" / Stab e (hHy11) = Hi / h H$y h™" is in bijection with H}*" / H}',
(via g — gh), for all h € Hy. The latter being independent of A - hence of s - we obtain that
the fibers of det™ are all of the same cardinality. ]

For all k > 0, the left-action of H, C H, on Hyp™ induces a natural action of H =
He\ H, on H¥\G, /1. Accordingly, one may extend the notion of trace operators to
Z[H3¥"\G,/K.] in the following way:

Definition 3.1.2 (Trace operators Tr,f,‘fz.). Let k' >k > 0.
The trace operator Tri, : ZIHNG, /1]y — ZIHN\G, /1), C Z[HN\G, /1)) is
defined by:

Trgh0%) == > hoR,

heH,, / Hj,

for all M € Z[HE\G, /1),

det#

By Lemmas|3.1.3] and equality (2.37)), the projection map Hy / Hyi1 — Hj, / H, , ~
O} / O}, induces the following equalities: for all ¥l € Z[Hyp(")] «, one has:

2 1) Trgsh (7% (R)), if k= 0.

3.3
¢ Trps (74 (0R) , if k> 1 (3:3)

7_‘_delr (Trk—i-l,k(%)) — { qB(q
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3.1.1.4 An horizontal relation in Z[H"\G,/K,].

We assume here that n = 0, i.e., that 1™ = K. Proposition ([2.3.16|) gives us the existence
of an element ¥, € Z[Hyp|; - which may be explicitly described in terms of the adjacency
operators ¢ o and (1, and of the hyperspecial vertices 5‘71 -x, Oy - x, thanks to Lemma
and the discussion thereafter - such that

1
(> —1)

Notice that, since the operators t, o1 and ¢t € H, act on Z[Hyp| = Z|G, /K| in a Z|G,]-
equivariant way, they also act naturally on Z[H"\G, /K] by the exact same formulas. This
gives sense to the operator He,(1) € Endy (Z[H!"\G./K,]), and one checks immediately
that projection map 7 : Z[Hyp] — Z[H"\G,/K,| intertwines the respective actions of
He, (1) on Z[Hyp] and on Z[HI¥"\G,/K,]. Set y, := 1% (¢*R,) € Z[HI"\G, /K, ];.

One obtains:

He (1) (z®2) = TrH 0%, ). (3.4)

He, (1) - 7% ((z ® 7)) = 7 (He, (1) - (z ® x))
der 1 1,0
- (qQ(q2 " (%7)> »
= qTrﬂ'ff (7 (%)) by
= Trld,%r (gT) . (35>

Consequently, for every allowable inert place 7, we shall fix arbitrarily a lift g, € Z[G,]
of ¢*X, € Z[Hyp] - thus a lift of §, € Z[HI"\G,/K,] - i.c., one has

Ur = Z a;gr; € Z|G;], with Z a;(gr; - x) = q"%, € Z[Hyp]. (3.6)

i€l el

Notation. We shall adopt, whenever dealing with vertices, the following notational con-
vention: given an allowable inert place 7, a general element of Z[Hyp| ~ Z[G. /K] will now

be denoted by the symbol y, whereas i (resp. y) will be used to denote a general element in
Z|G,] (resp. in Z[HI\G,/K,]).

3.1.1.5 Vertical relation in Z[H%*"\G, /1], n > 1.

We restrict to n > 1 in this paragraph. In a similar way as above, the double coset
operator (™ = Liw 5w € Hz(G- 1), defined at §[2.3.5.1] acts on Z[Hyp™] = Z[G., /1]
in a Z[G,]-equivariant way, hence also acts naturally on Z[H3\G, /I(T")], and these two
actions are intertwined by the projection 7% : Z[Hyp™| — Z[H%"\G,/ IS”)]. The equality

(3.3)) now induces:
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Trgfmﬂ ntm <q5 T (2 'En—)f—l)> = (Trn+m+1 m(E %ll))
— e (4 )
= ¢ . gler () (3.7)
Using the isomorphism Z[Hyp™] ~ Z[G T/I ] Z|G T/Stabg (E(() )], and for E,(gil =
smrt. Eé ), the above equality may be rewritten in Z|H¥\G,/ I ] in the following useful

form:

¢ Tr?ﬁ:m-&-l,n-&-m (5m+1) - Z o™i € Z[HI\G, /1], (3.8)
ier™ 51t /1t

3.1.2 The global Iwahori filtration (I1M),>,.

Recall that we fixed in § a base element gy € G(Af) which, together with our choice
of base level K, enabled us to define a finite set X C Ir; such that g = (go)very,, With
Jow € K, for all v ¢ . Accordingly, we made the simplifying assumption that g5 = 1* €
(U(V) x U(W)) (A% ), which didn’t modify the base cycle Zx(g0) € Zx(G,H). We let
Igir C IF f denote the set of finite places 7 which are inert in E/F. By Definition m
the set IE/F := Tg/p ~ S? then corresponds to the set of allowable inert places of F, and
we let 7% p = Ip/rp X C I}gj  be the subset formed by those allowable inert places 7 of
F such that go, = 1. Recall that, back in §[1.3.8.1] we defined (after Nekovar) the Op-ideal
Iy :=lem{(u —1); u € (OF)tors ™ {1}} and showed in the existence of some Op-ideal
¢; such that

K(§) € E(er -§),
for all Op-ideal § not dividing Iy. Accordingly, we shall define the following subset of allowable
inert primes:

I:= IE/IPQ” ={ve I]%/F is an allowable inert place of F'; v { Iy, vt ¢}

Let us fix an arbitrary allowable inert place 7 € Z, which will be referred to as the
vertical place or p-adic place, where the prime number p denotes the residue characteristic

of 7' For all n > 1, recall that the [wahori subgroup IS”) was defined at § to be the

I(”)

product Igf 3 x Iy of the respective stabilizers (in Gy, and Gy,;) of the allowable segments

E% = [z,6y" z,...,0," 2] and Eg}?o = [z,6y-x,..., 0} 2] of length n in the 7-local Bruhat-
Tits building By,;. The 7-local filtration (IS"))nzl induces the following global filtration on

K C G(Af)

(1). For instance, if the Galois closure M/Q of the extension E/Q is a cyclic extension, then one may start
by choosing a rational prime number p which is inert in £/Q and such that p - O is prime to 3 (there are
infinitely many of those prime numbers, by Cebotarev density theorem), and finally set 7 :=p- Op.
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Definition 3.1.3. For all n > 1, we set 1™ C K to be the neat compact open subgroup of
G(Ay) defined by
M =1 x K" =Ky x 1 x [ K.
vgXU{r}

We set Igl) = Ky, and T .= 1 [L,esugry Ko, so that I = I(Zn) x 12 We let
Z7 := I~ {7} be the set of allowable inert primes away from Iy, ¢; and 7. We set P to be the
set of square-free products of elements of Z, and P7 to be the set of square-free products

of elements of 77.

Remark 3.1.1. Let v € Z. The embedding at v,

¢y B <—>T(Af) = Agyf’
T '—>($a (1)w75v)a

admits the following variants (still denoted in the same way):

¢ U g/r(F) —=U(1)g/p(Arys) = TH(Ay),
Ty > (To, (Dwro)
and
bp: Gy —> G(Ay),
9o — (90, 1),

with 1Y being the identity of (U(V) x U(W)) (A% ;). These satisfy the following compatibilities
for det and v: if h € H, C G, then det (¢,(h)) = (det(h), (1)wry)) = du(det(h)) € T(Ay).
Also, if v € B, then v(¢y(2)) = (V(2), (1)uwrn) = du(v(x)) € TH(Ay).

Let us denote by Art) : U(1)g/p(F,) — Gal(E(cc)/E) the map obtained by composing
Arty + TYA;) = Gal(E(c0)/E) with ¢, : U(1)g/p(F,) = TY(Af). The compatibility

between local and global Artin maps can be expressed as:

Artg(p,(x)) = Artv(x)‘Eab € Gal(E™/E),

for all x € E, thus by restricting to E(c0):

Art,(z) = Artg (¢, (x = Arty,(v o ¢y(1))

| (o) D))

= Arth(¢, 0 v(x)) & Artl(v(z)).

(2). Including the product 1, indexed by 0.
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Let o € Wi C Gal(E/E,) belong to the image of Art,, i.e., o0 = Art,(x) for some x € E.
If h € H, is such that det(h) = v(z) € U(1)g/r(Fy), the preceding implies that:

Arth o det (¢, (h)) = Artl o ¢, (det(h)) & Artl(det(h)) = % by
By Proposition[1.47, one then obtains:
Zio) (du(h) 9) = 0 - Zin (9), Vg € G(Aj). (3.9)

Notice that the map ¢, : G, — G(Ay), g, — (g-,17) induces a bijection
I‘(rn) /I‘(rnJrl) ;> I(n) /I(n+1)’

hence #(I™ /1)) = 5 for all n > 1.

Notations. From now on, we shall switch back to global notations and reintroduce - when
necessary - some subscripts referring to the various allowable inert places which will be dealt
with simultaneously. For instance, whenever v € Z we shall denote by O, and (’)})70 (c>0)
the terms of the local filtrations and attached to v; and by H,, = H, N If,k),
H{% = Hyyp N HY™, H) = HIY\H, ;. (k > 0) the corresponding terms of the v-local filtra-
tion on H,,.

We shall adapt Lemma 65 of [7] in the case of K being replaced by its global Iwahori
variant 1™ n > 1. First, notice that the inclusion (2.22) has the following immediate

consequence:
Lemma 3.1.4. One has
Zc(Q) NK® =Zg(Q)NIME foralln > 1.
This enables the following description of the stabilizer of Ziw)(go) in H(Ay):
Lemma 3.1.5. One has

Stabra,) (Zy (90)) = H(Q) - (KELM X 1;7%2) , (3.10)
with
Prop. _ n _
K%, " (Z6(Q) 0 KD) - gos Ky ggh) NH(R) = ((Za(Q) N IO - gonKgyh) NH(F),

and 1§ = (H, 1 1) x K" = Hy % A (Tgsog K ).
Proof. In a similar way as in the proof of ([7], Lemma 65), one may observe that:
Stabr(a,)(Z10 (90)) = (H(Q)Zc(Q) - goI™gy ") N H(Ay)

=H(Q) - ((Ze(Q) - oI™gy") N H(Ay))
CH(Q) - (((Ze(Q) N Zu(Q)KZ) - gol™gy) NH(A)))

~— ~—
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the last inclusion coming from the fact that (go), = 1, Vv ¢ X. Indeed, if 29 = (2v,2w) €
Zc(Q) satisfies zg(gox, 1%) i (g5, 1%) € H(Af) for some i = (ky, k¥) € 1™, with k> =
(K2, k3) € I 5 1007 = M2 then

2k” € A(EW)<A§‘,]”>7

hence zvky = (zwkiy), i.e., zve(zw) ™' = (k) (k%) ™! € Ky,». This gives 29 = (¢(2w), 2w) -
(zyie(zw)™1 1) € Zu(Q) - K*. By equality (1) of the proof of (loc. cit.), one has Zg(Q) N
Zu(Q)K* = Zg(Q) N K=, which equals Zg(Q) N 1™ by the preceding Lemma, i.e.,

Stabra,) (Z10 (90)) € H(Q) - (((Za(Q) NI™=) - goI™gs?) N H(Ay)).

If 29 € Zg(Q)NI™W* and i = (ky,i,, k>7) € Ky x 1M % K7 =: 1™ are such that 20 Joigy " =
(ZQ Jdo,x kx, goié, ZQiT, ZQ/{ZZ’T> < H(Af), then 2Q 90,x ks Jox € H(FE), 20 i € H N L(-n) =H,
and 20 k%7 € Ko7 0 A (U(W)(Aﬁ;;)) = K37, L.,

20 9oigy ' € ((ZG(Q) N I(H)E) 'go,szgo_é) N H(Fy) x Ig)’z,

which shows that
StabH(Af) (Zl(n) (go)) C H(Q) . (KELng X I(}?)).

Conversely, if

ha(zq90s ks g5 i, k™7) € HQ) - (((Za(Q) NIWE) - gy 5 Ksgyt) N H(Fy) x 1),

with hg € H(Q), 2¢ € Za(Q) NI~ ky € Ky, i € H,, and k¥7 € KEI’T, then one has:

ho(2090s ks Go 5, 1, k7)o = hozo(gonks, 2511, 25 k™7)
= hozg(gox, 17) (ks, 251, 25'k™7) € H(Q)Za(Q) g0 ™,

as 25t € I and 25"k € K> = 10027 e, H(Q)- (K&, » X 1Y) C Stabua,)(Z1 (90)).
0

Let us introduce some additional useful piece of notation. If K = Ky, x vazz K, C G(Ay)
is any neat compact open subgroup, if vy,...,v, € Ipy (r > 1) are distinct finite (non-
necessarily inert) places of F and if, for all j € {1,...,r}, one has an element y; :=

2 al(j)gl(j) in Z[G,] (with al(j) € Z and gl(j) € G,), then for all g € (U(V) x U(W))(Ag]f);:l),
one may define the element
(@1, s Uy ﬁ) € Z|G(A;)/K] to be the linear combination:

G 09) = > el (o0 9) K € ZIG(A)/E].

1<l <s1,..,1<1- <5y
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This notation is compatible, for all v € Iy, with the natural left-actions of H(A;) and
H, = A(UW))(F,) on Z|G(Ay)/K]| and Z|G,/K,] respectively. Namely, if

h= (h)eer,, = (hl, y .,hmh@j);:l) e H(A,),

then
B (T 508) = (BB e G b1 G) € ZIG(A)/R].

Accordingly, given g, y1,...,¥y, as above, we may define the H-special cycle of level K ,
Zz W, U, 9) € Z[Z7(G,H)| to be the linear combination:

Z}?(@l?a@}?g) = Z al(ll) al(:)Z[? <gl(11)7agl(:)7,§>7
1<hi<s1,.., 1<l <57
and Proposition admits the following immediate extension: for all ¢ € Gal(F(c0)/FE),
for all h € H(A[) such that Arty(det(h)) = o, then
0 Zg (G T0:9) = Zg(h- G- 50.9)) € ZIZR(GH)) (3.11)

As HY(A;) € H(A;) acts trivially on Z5 (G, H), one may thus go one step further: if
Ui, ---, Yr are now elements, respectively, of Z[H{\G.,,/K,,], ..., ZIH"\G,, /K,,] and if
g€ (U(V)x UW)) (Ag;)jZI), one may now define the cycle Zz (gl, T ﬁ) as

z,?(gl,...,gr,'g‘“) — Zk<§1@\§> € Z[2:(G,H)). (3.12)

where 71, ..., U, are arbitrary lifts of 7, ..., ¥, respectively, in Z[G,,], ..., Z|G,,].

We shall apply the preceding discussion to the following situation: let 7¢,...,7. € Z7 be
pairwise distinct allowable inert places of F away from ¢y, Iy and 7. For all j € {1,...,r}, we
let 7, be an element of Z[G,] and we assume that the image y,, of ¥, in Z|H¥\G,. /K, ]

J J J
lies in Z[Hffr\GTj/KTj]cj, for some ¢; > O. Let m > 0 be an integer (which shall later on
be referred to as a vertical conductor). We set § := (gos, g>) € Z|G(Ay)], with:

G = (0" Gras s Trs 1Z7 i) € ZI(U(V) ¢ UW)) (AT ). (3.13)
One then has:

Corollary 3.1.6. The cycle Zi)(9) € Z[Zyn (G, H)] is defined over K (7™ - 7t ... 757),
the KC-transfer field of conductor 7" -7t - ... -7 C Op.

(3). In applications, we will deal with the (slightly stronger case) where the image y,, of ¥, in Z[Hyp, |
lies in Z[Hyp, |¢;. If §r; = gr; € Gy, is a single element, one may just take ¢; := ¢, (g9r,) € Z>o to be the
local conductor of g, such as defined in Definition m
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Proof. By definition of I (7™ . 77 ... 7¢"), all we need to show is that the subgroup:

1 X X X X X
Artl, u(ogo’z X Of i X Of o xOr ] ov>

o XU{T {7}y

= Arty [ v(OF 5) X OF 1, X OF X+ X O . % H O
vgSU{ru{r;}7_,
of Gal(E(00)/FE) fixes the cycle Zim(g). By construction, one has v(Oy ) C Uys =
det(K§ , ) and, by Corollary [2.2.8} one has

det(H, N §mIM™§=m) det(Hy pim) = OF

T,n+m>

and det(H,.,) = O; j=1,...,m

Tj5Cj7
By (3.11)), it is thus enough to show that the group:
H(Q) - (K%, 5 x (Hy NO™TM6™™) X Hyy gy 5 oo % Hy o x Koy 707)

is contained in Stabg(a,) (Z1m) (9)).

Let hg € H(Q) and ky € KELQO,E' Let i € I(Tn), with 0™i0~™ € H,, let h; € H,, ., for
277—7(7—]')14

j=1,...,rand let k¥7Mi= € K77 Accordingly, we set
hi=hg - (k;z, 56 hy. o b k:E’T’(Tj)?:l) .

By assumption on ky, one has ky gox, = 2g go.x k% for some 29 € Zg(Q) N 1= and some
ks, € Ks. Also, for all j € {1,...,r}, the assumption y,, € Z[H%?r\GTj/KTj]Cj implies that
h; Y-, = Y-, in Z[Hfjer\GTj/KTj]. As zy' € Z(Q) N I™* ] this implies that both elements
h;iUr, 2" and ¥, have the same image 7, in Z[Hfjer\GTj/I(T?)] = Z[HIN\G,, /K. This
gives:

TG hg (s, 0700 Ry By RS (g0, 7 T G 150 )
= 20hg - (9072 ks, 5’”@'2@1, h1 Ury Z@l, oy hy @\Trzdl, k=771 z@1>
The above discussion yields that both elements h- g and
2qhg - (90,2757”,@17 s Y 12’7’(”);:1) = zhg -9
have the same image in Z[H* (A;)\G(A;)/I™], hence

Zi (h-§) = Zyw (20hg - §)
=Ziw(9) € Z[Z (G, H),

which finishes the proof. n
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3.1.3 The norm-compatible family (Z(n,7" - ¢)).

The exact sequences ([1.59) of Chapter 1, together with Lemma , imply the following
result (which is part of [7], Proposition VII.1.1):

Lemma 3.1.7. For all f € P and p € T relatively prime to §, such that #(Op/p) =: gy, then

qp + 1 fo 7é 17

Proof. If f # 1 then, by assumption, f and f - p are both relatively prime to I,. By
Corollary [1.3.18] one has

OX
Gal (K(7 - p) /() =~ 5%
p,1
and the latter has order ¢, + 1, by the discussion following Lemma .
If = 1 then the exact sequence together with imply that
N Opo/ O
Gal (€ p)/ K1) = Gal (C(R)/K(D) = e et

The assumption p € 7 ensures, by Lemma [1.3.17] that E* N AJX;JDPX = F*. Consequently,
one has

#(Gal (K(p)/K(L) ) = (B 0 A7« P74 (05 / 07))
=[E" N AL O : FX Ygy +1).
[l

Set € := [E* N Af 07 : F*] € N>;. One may now apply all the preceding and construct
a global family of H-special cycles on the tower

e.— Sh1<n+1)(G,X) — ShI(n)(G, X) —_— ... — Shm)(G,X),

of varying Iwahori levels I C G(A;) (n > 1), vertical conductors m > 0 and tame conduc-
tors c € P7.

Definition 3.1.4. Let n > 1 be a positive integer, m > 0 be a wvertical conductor and
c=m7T- ... 7. € P7 be a tame conductor. Recall that we defined in (applied to
T = 7;) the element Y., € Z|G,] to be a fired lift of the element ¢¥;; € Z[Hyp, |1, for all
g eA{l,...,r}. We define the cycle 3(n, 7™ - ¢) € Z[Z1 (G, H)] by:

5(”7 T C) = ’I”(C) ZI(") (90,27 5m7 /y\‘ru cee 73//\7'7‘7 12) ) (314)

where r(c) € N>y is defined as

) 1 dfe=1
r(c) —{ e ifestl. (3.15)
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According to Corollary [3.1.6, the cycle 3(n, 7™ - ¢) is defined over the K-transfer field
Krtm.rm - ooom) =K@ - ¢), foralln > 1, m>0and c € P".

Notice that the equality 1) = 1 A 518 61 induces
1D = 10§11

where we identified 0 with ¢,(0) = (6,17) € G(Ay). Consider the following diagram:

9
Shyein (G, X) —— s Sy soigoms (G, X)

kﬂl(n-‘rl) /1(n) Bﬂl(n)msll(n)a/l(n),

Shym) (G, X) Shym) (G, X)

and set (") = Tn+1) /1(n) and 7T((5n) 1= Timng-11mg /10 © [-0]. These are finite étale morphisms
between Shymi1) (G, X) and Shym) (G, X), defined over Spec E. For all irreducible closed sub-
schemes Z C Shyw+1) (G, X), we denote by 7 (Z) and Wén)(Z) C Shym (G, X)) the correspon-
ding scheme-theoretic images of Z inside Shyw) (G, X). For all g € G(A;), 7™ (Z1ms1)(9))
and W((S")(ZI@H) (g)) are, by definition, irreducible closed subschemes of Shym) (G, X) and arise
as the image of the identity irreducible component of Sh(H,Y), by the respective sequences

of morphisms
Sh(H,Y) « Sh(G, X) —25 Sh(G, X) s Shyw (G, X)

and
[-g0 Ty(n)

Sh(H,Y) — Sh(G, X) —L Sh(G, X) 5 Shym (G, X)

In other words, 7™ (Z;wm1(g)) and Wén)(zl(n+1)<g)) are H-special cycles of level 10 equal
respectively to Zym(g) and Z;m)(g0). One may thus extend the previous maps into the

following Z-linear maps:

7™ 72 (G, H)| — Z[ 210 (G, H)]
7" ¢ 2] Zyr (G, H)) — Z[Z10 (G, H)]

Notice that, since [-0] is an isomorphism, then one has

deg (Zn+1(9)/ 21 (9)) = deg (Zromps-11ms(9 0) / Z1m (9 0)) = deg (Zrnn (9)/ Z1m (99)) -

Recall that, by (1.22), the global Iwahori-Hecke algebra Him) = Hz(G(Ay) J 1) of

level n > 1 factors as a restricted tensor product of local components. Accordingly, one may
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see the element t(™ = p(llgn)M(Tn)) e HM = Hz (G- )] Ign)) as an element of H;m, acting on
H-special cycles of level I by the rule:

) Zi(9) = Zim (E - g7,97)
— Z Zl(n) (g ¢T<Z))

et 51t [ 10m

= Z ZI(n) (g ¢T (2,5»,

et /1t
for all g = (g-,97) € G(Ay).
Theorem 3.1.8. The family (3(n, 7™ - ¢)), indexed by levels n > 1, vertical conductors m > 0

and tame conductors ¢ € P7, satisfies the following compatibilities:

— (Horizontal relation) For all ¢ - 7" € P7, one has:
Tr]C(Tn+m.c,TI)/,C(Tn+m,c) (3(71, ™M .c. 7-/)> = HeT/(FrobT/) . 3(%, Tm. C),

where Frob,, € Gal(E%/E.+) is a lift of the geometric Frobenius attached to the prime
ideal T'Of of Op.

— (Level-wise vertical relation)

q5 ﬂ-(gn) (TrK(Tn+7,L+1,c)/K(Tner,c) (3(n —+ 17 Tm. C))) = t(n) . 3(”7 7. C)

Proof.

— (Horizontal relation) Write ¢ = 73 - ... - 7. € P7. Notice that, by Lemma , the
prime ideal 7/ is unramified in F(¢;-7"""™¢) - hence also in (7" ¢) C E(¢;- 7" ¢),
by - whenever 7" € Z7 does not divide ¢. The cycle 3(n,7™ - ¢) being defined
over (7™ - ¢), this gives sense to the action of Frob,, on 3(n,7™ - ¢), and thus to the
notation He. (Frob.) - 3(n, 7™ - ¢) € Z[Z;n (G, H)].

If x,» € EY is any element such that Art.(x.) € Gal(E%/FE,/) is a lift of the geome-
tric Frobenius, and if kg, , € Hy is such that det(hpwon ) = v(2,), one obtains by
Remark [3.1.1] that:

Artl, (det(h)) = Frob, o € Gal(E(0)/E).

B
Equality (3.9) (applied to o = Frob,/) then gives:
Frob, - 3(n, 7™ - ¢) = r(c) Frob,, - Z;m (g(),g, O Yty e ey Yrns 17’(”);1)

= T<C> ZI(n) (go,z, o, Yryso oo s Yrps hFrobT,, 17'7(7'1')2:1,-,-/) .
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According to our chosen convention for the local Artin map Art,, - which maps unifor-
mizers to geometric Frobenii - one may choose, without loss of generality, the element
z. € E to be the (previously fixed) uniformizer w, € F. Accordingly, one has
v(z;) = v(wy) = 1, which implies that one may well choose hpy,p_, to be equal to
1 € H,.. This gives Frob,, - 3(n, 7™ - ¢) = 3(n, 7™ - ¢), i.e.,

HeT'(FrObT') ' 5(”, T C) = HeT’(l) ’ 3(n’7_m ’ C).

Let [1] € Z[HY\G, /K] be the unit coset, i.e. the image of (z,,z.) € Z[Hyp,/]
by ﬂ.der

7—/

, where x. € Hypy,,, denotes the corresponding fixed origin of the Bruhat-Tits
buildings at 7’. This gives

HeT/(l) . [1] = HeT/(l) : 7Tder<xq—/ (%9 JIT/)

T/

= T{5(y) = > h-Gr € ZHI\G./K.].

! U
heH!, /H',

This implies:

Hep (1) - 3(n, 7" - ¢) = 7€) Z100 (9025, Gras -+ G, Hews(1) - [1], 1770020

7 7 E v DRNCH
’I“(C) ZI(") <90,27 6m7 Yris ooy Yrps h - Yrry 1=7 (ra)icam )
hed!, JH!,

b m 7> S0 T, (1),
= ’I“(C) Z Artql—’<3) ’ ZI(") (90,2, 4 yYrio oy Yry Yrls 127 ()i )
56071_,’0/(971_,71

4 mo7 ~ o0 (7)),
= TrIC(T”me-vT’)/IC(T"*mw) <’I“(C : 7-/) Zl(n) (90,27 0 yYris e Yy Yoty 1> (T)izs >)

= TrIC(Tn+m‘C'T/)/’C(T"+m.c) (3(7?/’ Tm «C- 7J)) )

The equality (f) above comes from Proposition from the definition Art!, = Art}, o
¢ (see Remark ) and from the isomorphism det™ : H.,,/H., —O0L,/0k,,
whereas equality (b) comes from the fact that the surjective map

Artl 2 OL ) OL — Gal (K(7""™ - ¢ 7) JK(7"™ - ¢)) ~ Gal (K(c - 7')/K(c))

/
has kernel of sizer(CT )@
r(c)

— (Vertical relation) Notice that, since n > 1 then 7""™¢ { I for all m > 0, ¢ € P".
Consequently, the map

1
A tl . O7>'<,n+m+1 ~ OT,ner G 1 lC n+m-+1 IC n
tpov: % —>Ol — Gal (K(7 o) [K(7" - ¢))
T,n+m T,n+m+1

. We recall that r(c) is equal to 1 if ¢ ,and to e = N : otherwise.
4). W 1l th i 1 to 1 if 1 d E* A;?,fDIX F*] otherwi
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is an isomorphism, according to Corollary [1.3.18, This gives:

Tric(rntmtie) e G0+ 1,7 - ¢))

— > Artl(s) - 3(n+ 1,7 -¢)
s€O0L /Ot pimi
_ T(C) Z Artl(s) . Zl(n-H) (g(),g;, 5m7 ?/J\le Ce ,?/J\Tra 1E’T’(Tj);:1>
S€O$7n+m/03—,n+m+1
_ r<c) Z Art}_(det h/) . ZI(n+1) (go}z, 5m7 @\7'17 e 73//\7-7‘7 127T,(Tj)§=1>
hleH;-’n+m+1/H7l—,n+m
= r(c) Z Zi(n+1) (90,2, W™ Yrys oy Uy 12’7’(%);:1)

hlEH;,n+m+1/H7l',

n+m

Accordingly, one has

¢ i (TIIC(T"+m+1-C)//C(T”-C) G(n+1,77- C)))

- q5 T(C) Z ZI(") <go,27 h/5m+1’ @\717 s 7?77707 1277”(”);:1)

hleH;,n-km-&-l /H‘/r,n+m

(3-8) .o~ ~ ) AT
= r(c) > Zw (90,2,57”27%1,...,%,«,1 ’T’(TJ)FI)
iel™s 1 /1t

B T(c> ZI(n) (go127 t(n) (5m)7 /y\’7'17 ttt ’@\7'1"7 1277’(77);?:1)

=: T(C) t(n) : ZI(”) <90,E7 5m’ ?/J\’T'l? ce ’@\7'7‘7 1E7T’(Tj);:1>

=™ 3(n, ™ - ¢).

Remark 3.1.2 (Compatibility between ™ and Wén)). Let n > 1. As already mentioned in
the previous chapter, a consequence of Lemma (applied to m = 1) is the following:
if (hj);].; C H;pnq1 15 a system of representatives for the quotient HT,n+1/HT,n+27 then the
family (ad(5*1)(hj))j6:1 = (07thy 5);‘{6:1 forms a system of representatives for the quotient
i /I(T"H), hence the family (6~ h;é) -6 = (671 hy 52)36:1 forms a system of representatives
for the quotient i st /I(Tn). The family (hj)gil c 1t being already a system of re-

presentatives for the quotient 1™ /IS”JFQ) (this is Corollary|2.3.12), one gets that (h; (5);1.6:1
orms a system of representatives for 17 L + . This gives, for all g € :
f tem of tatives for I 610D /1) This gives, for all g € G(A;

7T((5n) (t(n+1) . ZI(n+1) (9)) = t(n) . Wén) (Zl(n+l)(g)) . (3.16)
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Indeed, one has Wgn)(ZI(nH)(g)) = Zim (9 ¢-(0)), for all g € G(Ay). The above discussion
implies that t™ -ﬂ((;n)(ZImH)(g)) may be computed as follows:

t(n) ( ZI(n+1) Z Zl(n) g¢7' ng(é h 62))

= Z Zim (g ¢ (h;0) ¢-(9))

q6
=" > Zyo (964(hy0))

j=1
= wé") (t(n+1) AT, (g)) )

3.1.3.1 Links with geometric Hecke correspondences.

In this paragraph, we let K C G(Af) be any neat compact open subgroup. We may
translate the action of the global Hecke algebra Hz on the Z-module Z[Z5(G, X)], defined
in § in a set-theoretic way - and which enabled us to define the action of tm = 1) 510m)
on Z[Zym (G, H)] via the local action of t™ on Z[Hyp{™] - into a geometric action on cycles
by Hecke correspondences.

Recall that, given ¢ € G(Ay), the Hecke correspondence 7'(g) is given by the pair of
morphisms

(7TI~(,7T[~(7g) : Shf(ﬁgf(g—l — Shf{(G,X) X Shf((G,X),

with 7z = TRrgRg-1 ) K and TRy = TRrg-1Rg/ K o[-g|, and where TRngRg-1 | K and TRng-1Rq) K
are defined as follows:

[-9]
Shkmgkgfl(G,X) —> Sthg 1KQ(G7X)

Bﬂ—}?ﬂgf(gl/f( Bﬂ-f(ﬁglf(g/f(

Sh (G, X) Shz(G, X)

We define (after e.g. [17], 1.4 and 1.7), the proper push-forward and flat pullback functors
as follows:

Definition 3.1.5 (Proper push-forward and flat pull-back of cycles.). Let f : X — Y
be a morphism of schemes of relative dimension d > 0, and let i € {1,...,dim X} and

je{l,...,dimY} be positive integers.
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(1) If f is proper, we define the push-forward for algebraic cycles as follows:

fo i Zi(X) — Zy(Y),
(V] —> deg(V/W) - [W]

where, for all i-dimensional irreducible closed subscheme V- C X, we set W := f(V) and
deg(V/W) to be the extension degree [R(V) : R(W)] between the fields of rational functions
R(V) and R(W) of V and W respectively, if dimV = dim W (in which case [R(V') : R(W)] <
00), and to be 0 otherwise.

(11) If f is flat, we define the pull-back for algebraic cycles as follows:

FrZi(Y) — Zja(X),
W]—[V]

where we set V to be the j + d dimensional closed subscheme f~*(W) C X, whose irredu-
cible components (and corresponding generic points) are (Vi, N )k=1...s, and where [V] is the

fundamental cycle »7;_, leno, , (Ov, ) - [Vi] attached to V.

-----

Recall that the transition morphisms 7z and 7z  are finite étale, hence proper, smooth
and flat (of relative dimension 0). Accordingly, the Hecke correspondence T'(g) yields an
operator T'(g). on Z[Z5(G,H)] C Z; (Shz(G, X)), defined as T(g). := (77 4)« © 5. That
the map 73 is smooth imply that, for all integral closed subschemes Z C Shz(G, X), the
induced map Z XSh(G,X) Sh;mgf(g,l(G, X) — Z is again smooth, and the source is redu-
Ced Accordingly, if Z' C Z Xgn_(G,x) Shgq, I}g,l(G, X) is an irreducible component with
generic point 7, then the ring Oy, is integral and has finite length as an O ,,-module (i.e.,
Oz is artinian). Thus Oz, is in fact a field and leno,, ,(Oz,) = 1, which shows that
the multiplicities appearing in the definition of the flat pullback are all equal to 1 in the case
of 7. By definition of the family of H-special cycles, one gets the following equality, for all
g9 € G(Af):

T2 (2(9)) =D Zrngicg1(9'9k), (3.17)
k=1
where ¢y, ..., gs is a minimal family of elements of K such that
2 (CZr@) = U Zregrer 09 = U Zregig (900).
ﬁief(/f(ﬂgf(g—l k=1

Let us go back to the case K = I™, n > 1, and ¢ = §. From now on, we assume to
simplify that go sy = 1y, i.e., that go = 1 € G(Ay).

(5). This can be seen as a consequence of smooth morphisms being geometrically regular.
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Lemma 3.1.9. Letn>1, m>0andc=m- ... -7, € P7. Forallj € {1,...,r}, we let
gj be an element of G.,. Let h, h' belong to Hr i, One has

ZI<"+1> <90,27 h 5m’ 915 -5 9rs 12 m(0);= ) ZI(TL+1 <90,E> W 5m’ 9155 G9rs 12’77(7—]');:1)

if and only if
he HS b Hypmit,

T,n+m

der
HI \NH, i
der
HT n+m+1\H7' n+m+1

i.e., h and b’ define the same element of Tn+m/ AR

Proof. Assume that A’ belongs to Hd" hH;pims1. In the building By,;, one has

T,n+m

H,pimsr = Stabg, (271 with, we recall, _(T";il) om - HS"OH = o, "in‘jé) ®(5€1V-E£7f;,710) €

Hyp!" ™V, This gives

(h/ 5m> . r—(n—l-l) —n. —\(n+1 c Hderh _, n+1 Hder (h, 5m) ”0+1)
i.e., i 6™ and hé™ are equal in H4\G, /1" This implies that

Zynn) (go,zah’ 0", 9155 Grs 12’7’(”)‘;:1) = Zynry) (90,2,h5m791, e s 12’7’(Tj);:1) ‘
Conversely, assume that both elements

ZI("+1> (g(),Zv h5m7 gi,---59r, 127T’(Tj);:1> ) ZI(7L+1) <90,27 h/5m7 91,5 9r, 1277’(73);:1) = Zl(n+1) <G7 H)

are equal. Then there exists zg = (2v,g, 2w0) € Zg(Q), hg = Algwg) € H(Q) and k =
(ko)verp, € 1D with &, = (kvu, kw,y) for all v € Iy, such that

ZQhQ ) (90,2, h5m7 gis---59r, 127T7(Tj)§:1) - (90,27 h,6m7 giy -+ Grs 127T7(Tj);:1) b
This gives locally (recall that gox = 1x):

2votlgwao) = kve, 2wogwo = kwe v ¢ {r,m,....,7} (a)
2ohggj =gk, forj=1,...r (b)
20hghd™ =Nn 6"k, atv=r, (c)

— Equality (a) gives, by acting on the anistropic vector ep € D,, that zv,g t(gwa) - ep =
2y - ep = kv, - ep. Accordingly, kv, € Ky, C GL(Ly,) fixes the line Og, ep C Ly,,,
hence stabilizes also Ly, . We get that zy o € Og,, as kv, acts integrally on Ly, and
even that det(ky,) = 2y det(kv,u‘wv) € Op,, thus zyg € Of , i.e., det(zyg) = 27 €

Op, - Therefore one has
det(hg) := det(gw,g) = det(t(gw,g)) = det(ky,,) det(zyg) " € OF |

ie., det(hg) € O ,forallv & {7,7,...,7.}.
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— Equality (b) induces 29 hqg; - (7r; ® 2;) = gjkr, - (¥, ® 17,) = g; - (T, ® 77,),
where (2., ® ) still refers to the origin of the product building By, x By;,,, which
corresponds to the pair of self-dual lattices (Lv,Tj = Lw,, ®Lp,, LWJJ,). This gives
thj : ("L‘Tj ® ij) =95 (Z((il

from (2.22)). Accordingly, hq fixes the pair (g;v - 27, gjw - 7r,) € Hyp., of hyperspecial

(27, ® x7,)) = g - (¥, ® x,), the last equality coming

vertices, i.e., fixes (as a set) at least one O, -lattice in V;,, which implies that det(hg)
belongs to O
J

— Finally, equality (c) gives, by acting on H(THOH) = ES"JS) Ein;[;lo) € Hyp" .

2ghghd™ - Z0 = Bk, 20D = e =Y,

hence zg hgh - 2050 = ' - EQ}ID, thus 2q () hoh € "™ As 2o € Za(Q) C

[(vtm+1) _ gtill by - one obtains that (h/)"'hgh € H, N pinmtl) H,pvms,s

which implies that hg € H;,qm. In particular, one has hg € K-, thus det(hg) € OF .
The three points above imply that the element det(hg) € U(1)g/p(F) C E* lies in fact in
Oy, therefore is an element of ker(Ng/p : Op — OF) = (Of)tors- On the other hand, that
hg € Hpim implies that det(hg) € O} ,,,,, C 1+@"t™Op,, i.e., that ord,.o,(det(hg)—1) > 1.
However, the assumption 7 - O 1 Iy induces that det(hg) — 1 = 0, hence hg € H f‘j{ +m- That
(R")Yhoh € H, pymi finally gives:

he H® W H.pimi

T,m+m
as claimed O]
Letn>1,m>0andc=7- ... .7, €P". Let g1 € G,,...,9, € G,. be elements in
the support of, respectively, Ur,, ..., ¥r.- A consequence of the preceding lemma is that the

terms of the sum
TrK(Tn+m+1'C)/’C(Tn+m'C) (ZI("‘H) (90,27 6m7 g1,---59r, 1277’7(7].);:1))

- Z ZI("‘H) (907Za h 5771’ gi,---,3Gr, 1E’T’(Tj)§:l>

heH! . /H!

T,n+m T,n+m+1

are pairwise distinct. On the other hand one has,
Supp Trc(rntmt1.0) /(e mec) (Zm (90,2, 8" g1y G 12’7’(7‘7)9:1> )
= Supp ¢° Tric(rnemt1.c)/x(rntm) (Znn) (go,z, 8" g1, Grs 12’7’(73')5:1))
= {Zl(n+1) <go,z,h5m,91, ey Gy 1P ) h e HTn+m/HTn+m+1}
_ {ZWU (go,z,am (6™ he™), gu, - . ., gpy 157 ) heHpim)/ Hm+m+1}
— {ZI(nH) (go,g, 8™, g1y s Grs 1277’(”)9:1) ie I /IS”“)} by Lemma [2.3.13

= Supp (7™)* (ZW (902, 8™ Gy s Grs 12’7’@);:1)) by @17
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This gives finally:
Trigenmer.a)prcrnrm.q (wa (go,z, 0", g1y Gy 12”’(71')5:1))

= (7.‘-(71))* <Zl(n) (90,27 57717 gi,---59r, 127T7(Tj);:1>) ’

hence

Tryprmemssg irmene (31 + 1,77 €)= (1) (3(n, 7 - ¢)) (3.18)

In other words, the level-wise vertical relation admits the following variant:

(ﬂ-((Sn))* (Tr/C(T"+m+1~t)//C(T”+m~c) (5(” + 1,7 C))) - T((S)* (5(n, T C) ) (319)

foralln>1, m>0and c€ P".

Remark 3.1.3. The above equality, together with the level-wise vertical relation of Theo-
rem[3.1.8, lead us to the following conjecture:

Conjecture 3.1.1. For all Z € Supp Tric(rntm+i.g)jicintm.e (3(n + 1, 7™ - ¢)) = Supp (7)* (3(n, 7™ - ¢)),
one has

deg (Z/W{%Z)) =q.
An immediate consequence of Conjecture [3.1.1 would be that:
T(8). (s, 7+ ) “ (). () (3(n, 77 - )
= (W((sn))* <Tfn(rn+m+1.c)/zcw+m-c) G(n+1,7m- C))) by
= q57r§”) (Tr,c(fn+m+1.c) Jc(rnmegy (3(n 41,7 - c))) by Conjecture[3.1.1
=™ 5(n, ™ - ¢), by Theorem

i.e., would yield the reasonable claim that the geometric Hecke correspondence T(0), acts on

our chosen family of cycles (and, we suppose, on the whole Z[Z; (G, H)|) in the same way
as the < set-theoretic > double coset operator t™.
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Résumé : Nous étudions les propriétés p-adiques d’une famille de 1-cycles algébriques spéciauz sur une variété
de Shimura unitaire de dimension 3 apparaissant dans le cadre des conjectures de Gan-Gross-Prasad. Ces cycles,
introduits par D.Jetchev et étudiés également par Boumasmoud-Brooks-Jetchev et R.Boumasmoud, proviennent
du plongement diagonal U(1,1) < U(2,1) x U(1, 1) associé a une extension CM E/F. Ils satisfont des relations
de distribution < horizontales > et < verticales > sur leur conducteur, faisant de cette famille un nouvel exemple
de systeme d’Fuler géométrique généralisant celui des < points CM > sur la courbe modulaire, dont ’exploitation
par V.Kolyvagin permit une avancée conceptuelle majeure dans 'attaque de la conjecture BSD. La preuve de
ces relations locales entre action de Galois et celle de l'algebre de Hecke de G = U(2,1) x U(1,1) exploite
les propriétés de certains opérateurs agissant sur I'immeuble de Bruhat-Tits de G, en les places finies de F
correspondantes. Nous construisons, en une place 7 inerte de F' divisant p, une filtration de G par des sous-
groupes ouverts compacts de type Iwahori définis comme les stabilisateurs d’une famille croissante de segments
d’un méme appartement. Nous adaptons au cas des segments la notion d’opérateurs < successeurs > étudiés par
Boumasmoud-Brooks-Jetchev et montrons que ceux-ci proviennent de ’algebre de Hecke-Iwahori locale. Nous
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Abstract : We study the p-adic properties of a family of special algebraic 1-cycles defined on a 3-dimensional
unitary Shimura variety which appears in the setting of the Gan-Gross-Prasad conjectures. These cycles, intro-
duced by Jetchev and also studied by Boumasmoud-Brooks-Jetchev and Boumasmoud, arise from the diagonal
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