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Collective decision-making with goals

We want to provide some answers to two research questions in collective decisionmaking, which are at the core of the interactions between the agents in our initial story. We can formulate them as follows:

1. How can we design aggregation procedures to help a group of agents having compactly expressed goals and preferences make a collective choice?

2. How can we model agents with conflicting goals who try to get a better outcome for themselves by acting strategically?

iii

Abstract

Agents having to take a collective decision are often motivated by individual goals. In such scenarios, two key aspects need to be addressed. The first is defining how to select a winning alternative from the expressions of the agents. The second is making sure that agents will not manipulate the outcome. Agents should also be able to state their goals in a way that is expressive, yet not too burdensome. This dissertation studies the aggregation and the strategic component of multi-agent collective decisions where the agents use a compactly represented language. The languages we study are all related to logic: from propositional logic, to generalized CP-nets and linear temporal logic (LTL).

Our main contribution is the introduction of the framework of goal-based voting, where agents submit individual goals expressed as formulas of propositional logic. Classical aggregation functions from voting, judgment aggregation, and belief merging are adapted to this setting and studied axiomatically and computationally. Desirable axiomatic properties known in the literature of social choice theory are generalized to this new type of propositional input, as well as the standard complexity problems aimed at determining the result.

Another important contribution is the study of the aggregation of generalized CP-nets coming from multiple agents, i.e., CP-nets where the precondition of the preference statement is a propositional formula. We use different aggregators to obtain a collective ordering of the possible outcomes. Thanks to this thesis, two lines of research are thus bridged: the one on the aggregation of complete CP-nets, and the one on the generalization of CP-nets to incomplete preconditions. We also contribute to the study of strategic behavior in both collective decision-making and game-theoretic settings. The framework of goal-based voting is studied again under the assumption that agents can now decide to submit an untruthful goal if by doing so they can get a better outcome. The focus is on three majoritarian voting rules which are found to be manipulable. Therefore, we study restrictions on both the language of the goals and on the strategies allowed to the agents to discover islands of strategy-proofness.

We also present a game-theoretic extension of a recent model of opinion diffusion over networks of influence. In the influence games defined here, agents hold goals expressed as formulas of LTL and they can choose whether to use their influence power to make sure that their goal is satisfied. Classical solution concepts such as weak dominance and winning strategy are studied for influence games, in relation to the structure of the network and the goals of the agents. Finally, we introduce a novel class of concurrent game structures (CGS) in which agents can have shared control over a set of propositional variables. Such structures are used for the interpretation of formulas of alternating-time temporal logic, thanks to which we can express the existence of a winning strategy for an agent in a repeated game (as, for instance, the influence games mentioned above). The main result shows by means of a clever construction that a CGS with shared control can be represented as a CGS with exclusive control.

In conclusion, this thesis provides a valuable contribution to the field of collective decision-making by introducing a novel framework of voting based on individual propositional goals, it studies for the first time the aggregation of generalized CP-nets, it extends a framework of opinion diffusion by modelling rational agents who use their influence power as they see fit, and it provides a reduction of shared to exclusive control in CGS for the interpretation of logics of strategic reasoning. By using different logical languages, agents can thus express their goals and preferences over the decision to be taken, and desirable properties of the decision process can be ensured. v

Résumé

Des agents devant prendre une décision collective sont souvent motivés par des buts individuels. Dans ces situations, deux aspects clés doivent être abordés : sélectionner une alternative gagnante à partir des voix des agents et s'assurer que les agents ne manipulent pas le résultat. Cette thèse étudie l'agrégation et la dimension stratégique des décisions collectives lorsque les agents utilisent un langage représenté de manière compacte. Nous étudions des langages de type logique : de la logique propositionnelle aux CP-nets généralisés, en passant par la logique temporelle linéaire (LTL).

Notre principale contribution est l'introduction d'un cadre de vote sur les buts, dans lequel les agents soumettent des buts individuels exprimés comme des formules de la logique propositionnelle. Les fonctions d'agrégation classiques issues du vote, de l'agrégation de jugements et de la fusion de croyances sont adaptées et étudiées de manière axiomatique et computationnelle. Les propriétés axiomatiques connues dans la littérature sur la théorie du choix social sont généralisées à ce nouveau type d'entrée, ainsi que les problèmes de complexité visant à déterminer le résultat du vote.

Une autre contribution importante est l'étude de l'agrégation des CP-nets généralisés, c'est-à-dire des CP-nets où la précondition de l'énoncé de préférence est une formule propositionnelle. Nous utilisons différents agrégateurs pour obtenir un classement collectif des résultats possibles. Grâce à cette thèse, deux axes de recherche sont ainsi reliés : l'agrégation des CP-nets classiques et la généralisation des CP-nets à des préconditions incomplètes.

Nous contribuons également à l'étude du comportement stratégique dans des contextes de prise de décision collective et de théorie des jeux. Le cadre du vote basé sur les buts est de nouveau étudié sous l'hypothèse que les agents peuvent décider de mentir sur leur but s'ils obtiennent ainsi un meilleur résultat. L'accent est mis sur trois règles de vote majoritaires qui se révèlent manipulables. Par conséquent, nous étudions des restrictions à la fois sur le langage des buts et sur les stratégies des agents en vue d'obtenir des résultats de votes non manipulables.

Nous présentons par ailleurs une extension stratégique d'un modèle récent de diffusion d'opinion sur des réseaux d'influence. Dans les jeux d'influence définis ici, les agents ont comme but des formules en LTL et ils peuvent choisir d'utiliser leur pouvoir d'influence pour s'assurer que leur but est atteint. Des solutions classiques telles que la stratégie gagnante sont étudiées pour les jeux d'influence, en relation avec la structure du réseau et les buts des agents.

Enfin, nous introduisons une nouvelle classe de concurrent game structures (CGS) dans laquelle les agents peuvent avoir un contrôle partagé sur un ensemble de variables propositionnelles. De telles structures sont utilisées pour interpréter des formules de logique temporelle en temps alternés (ATL), grâce auxquelles on peut exprimer l'existence d'une stratégie gagnante pour un agent dans un jeu itéré (comme les jeux d'influence mentionnés ci-dessus). Le résultat principal montre qu'un CGS avec contrôle partagé peut être représenté comme un CGS avec contrôle exclusif.

En conclusion, cette thèse contribue au domaine de la prise de décision collective en introduisant un nouveau cadre de vote basé sur des buts propositionnels. Elle présente une étude de l'agrégation des CP-nets généralisés et une extension d'un cadre de diffusion d'opinion avec des agents rationnels qui utilisent leur pouvoir d'influence. Une réduction du contrôle partagé à un contrôle exclusif dans les CGS pour l'interprétation des logiques du raisonnement stratégique est également proposée. Par le biais de langages logiques divers, les agents peuvent ainsi exprimer buts et préférences sur la décision à prendre, et les propriétés souhaitées pour le processus de décision peuvent en être garanties.
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Chapter 1

Introduction

On a sunny morning, Lucy is having a coffee with her colleagues Bob and Ann at the Department of Computer Science. "Did you check your e-mails?" asks Bob. "Our bid for hosting the next edition of the Important Conference in Artificial Intelligence has been accepted!" They are all thrilled about the perspective of holding such a prestigious event in their city. "That is great news!" says Lucy. "Do you think we should host it in the historical buildings in the center, or here in the new campus?" "I live in between the center and here", replies Ann. "I'm indifferent about that. But I would like to avoid a poster session".

"If we have a poster session it's better to use the premises in the center" comments Bob, finishing his espresso. "We did it years ago and it worked quite smoothly!"

Lucy disagrees with Ann on the posters: she always learns a lot during these sessions by asking questions one-on-one to the researchers. She will try later to change Ann's mind. After all, Ann recognizes that Lucy has more experience in organizing conferences and she usually ends up listening to her on the topic.

"We could also split our tasks" suggests Bob, returning their cups to the counter. "For instance, I could build the website, Lucy could think about location, and Ann could book the gala dinner. But we all decide about the scientific issues together, of course".

While the three are waiting for the elevator to go back to their offices, Ann offers a sheet of paper to Lucy. "I was writing the syllabus for our course yesterday. In general, I prefer to listen to students' presentations rather than correcting weekly assignments, but if we are having a final oral exam it is better the other way around".

"Yes, I agree. And I also prefer the assignments to the presentations if we use the second textbook in the list" says Lucy, looking at the syllabus. "It already has some exercises we could use, and solutions are not available online".

The door of the elevator closes behind the researchers.

In the corridor, now empty, the artificial lights slowly start to dim, until they switch off completely.

A great variety of situations occurring every day resemble the ones in the short story above: a group of agents (i.e., Lucy, Bob, and Ann -but also the sensors regulating the lights in the corridor) hold complex goals and preferences, sometimes conflicting with one another, and they want to find a collective decision.

In this thesis, we will bring together ideas and techniques coming from multiple areas of computer science -ranging from multi-agent systems, logic, game theory and computational social choice -to formalize and propose solutions for a set of related problems in collective decision-making with rational agents.

Background and Context

This section wants to give a bird eye's view on the main areas of computer science to which this thesis is related. A comprehensive introduction to each one of these areas (as well as their intersections) would require multiple volumes, and is beyond the scope of this section. For this reason we point to some key references in the literature, often in the form of textbooks. Moreover, throughout the thesis we will give more exhaustive and detailed presentations of the related work when introducing each one of the problems we study.

The story in our incipit could be modeled in computer science as a multi-agent system, an area broadly defined as the study of the interactions of multiple agents (e.g., the three researchers) who can act autonomously towards the satisfaction of some goal or objective (see [START_REF] Shoham | Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations[END_REF][START_REF] Wooldridge | An Introduction to MultiAgent Systems[END_REF][START_REF] Weiss | Multiagent Systems[END_REF] for an introduction). In our case, in particular, the goals of the agents are individual. An important aspect of multi-agent systems is thus how to model intelligent agents, and many different approaches have been proposed in the literature [START_REF] Wooldridge | Intelligent Agents[END_REF]. We can mention, for instance, one of the first popular models originating from the philosophical analysis of intentions by [START_REF] Bratman | Intention, Plans, and Practical Reason[END_REF], where agents are modeled as holding beliefs, desires, and intentions -i.e., the BDI architectures [START_REF] Cohen | Intention is Choice with Commitment[END_REF]Rao andGeorgeff, 1991, 1995;[START_REF] Dastani | Specifying the Merging of Desires into Goals in the Context of Beliefs[END_REF]. In our story, however, the focus is not on how the agents derive their goals from beliefs and desires (see, e.g., [START_REF] Lorini | Logics for Games, Emotions and Institutions[END_REF], but rather on how they can obtain a collective decision based on (a suitable representation of) their goals and preferences.

In this respect, the field of qualitative decision theory comes into play in multi-agent systems for modeling agents in decision-making situations. While in classical decision theory an agent is modeled as having a probability distribution over possible outcomes (depending on the actions they take) which gives them a numerical utility that they then try to maximize, in qualitative decision theory agents use qualitative methods to express which outcomes they prefer and which ones they consider more probable [START_REF] Wellman | Preferential Semantics for Goals[END_REF][START_REF] Boutilier | Toward a Logic for Qualitative Decision Theory[END_REF][START_REF] Brafman | On the Foundations of Qualitative Decision Theory[END_REF][START_REF] Dubois | Decision-Theoretic Foundations of Qualitative Possibility Theory[END_REF]. Qualitative descriptions of preferences over outcomes are usually easier to handle and to express for the agents than quantitative ones.

An important tool that has been used in multi-agent systems to formally represent agents and their interactions has been that of logic (see [START_REF] Van Dalen | Logic and Structure[END_REF] for an introduction to propositional and predicate logic, and [START_REF] Blackburn | Handbook of Modal Logic[END_REF] for an introduction to modal logic). We mentioned above some logics for BDI agents, but numerous other logical formalisms have been defined for multi-agent systems (see, e.g., [START_REF] Goranko | Comparing Semantics of Logics for Multi-Agent Systems[END_REF][START_REF] Goranko | Comparing Semantics of Logics for Multi-Agent Systems[END_REF][START_REF] Herzig | Logics of Knowledge and Action: Critical Analysis and Challenges[END_REF] for some comparisons between logics for multi-agent systems and different semantics). The use of logic allows to rigorously represent a system, or some of its components (e.g., the agents' goals and preferences) in a formal language, and to reason about it. 1 In particular, a compact representation of goals and preferences given by a logical language is also important for research in artificial intelligence [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF], whose aim is 1 Logic has proven useful for modeling and reasoning in a variety of other fields in computer science, an example being that of planning, where an agent in a certain initial state has to find a series of basic actions allowing them to attain a goal state [START_REF] Fikes | STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving[END_REF][START_REF] Kautz | Planning as Satisfiability[END_REF][START_REF] Bylander | The Computational Complexity of Propositional STRIPS Planning[END_REF]Kautz and Selman, 1996;Kautz et al., 1996). We can describe the collective choice that our agents will take as an "abstract plan", but we won't focus on the actions needed for its actual realization (e.g., the phone call that the researchers need to make in order to book the gala dinner in the restaurant of their choice).

to create artificial agents displaying "intelligent" behavior, including for the areas of individual and collective decision-making.

In the scenario described in our initial example the goals of the agents are conflicting, and since they all want to achieve their goal regardless of the satisfaction of those of the others, their mutual interactions become adversarial. The field of game theory (see the books by [START_REF] Gibbons | A Primer in Game Theory[END_REF]Leyton-Brown andShoham, 2008 for reference) provides a mathematical model to study agents acting strategically towards the maximization of their (expected) individual utilities. If we are given the description of a game, in the form of the actions available to the agents and the payoffs they get for any possible combination of actions, and if we assume that the agents are rational, meaning that they want to maximize their payoff, the prediction of which strategies the agents will play is given by studying different solution concepts: for instance, Lucy has a winning strategy if no matter what the other agents do, she always knows when to speak (and when to stay silent) to change Ann's opinion.

Finally, computational social choice (see the recently published handbook by [START_REF] Brandt | Handbook of Computational Social Choice[END_REF] collects multiple formal models to study the aggregation of opinions and preferences of a group of agents, as the ones expressed by Lucy, Ann, and Bob on the organization of the conference or the syllabus for the course. 2 This field of computer science studies various computational problems for voting rules, such as calculating the winner or manipulating the outcome [START_REF] Hemaspaandra | The Complexity of Kemeny Elections[END_REF][START_REF] Conitzer | When are Elections with Few Candidates Hard to Manipulate[END_REF][START_REF] Conitzer | Barriers to Manipulation in Voting[END_REF], and it originates from the branch of economics known as social choice theory. Within social choice theory, seminal results in voting include those by [START_REF] Arrow | Social Choice and Individual Values[END_REF], [START_REF] Gibbard | Manipulation of Voting Schemes: A General Result[END_REF] and [START_REF] Satterthwaite | Strategy-Proofness and Arrow's Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions[END_REF], who showed that certain sets of desirable properties cannot be satisfied all together by any voting rule, as well as that of [START_REF] May | A set of Independent Necessary and Sufficient Conditions for Simple Majority Decision[END_REF], who proved that the majority rule can be characterized by a set of axioms. In computational social choice, the field of judgment aggregation is concerned in particular with aggregating the yes/no opinions of multiple agents over binary issues (see the book by [START_REF] Grossi | Judgment Aggregation: A Primer[END_REF] and the recent chapter by [START_REF] Endriss | Judgment Aggregation[END_REF]. Logic is used in judgment aggregation as a tool to model the questions that the agents have to approve or reject, as well as potential integrity constraints expressing some external law or physical constraint.

We have thus seen which areas of computer science can give us models and tools to study the situations as the one in the story at the beginning of this thesis. In Section 1.2 we will state our research questions and in Section 1.3 we will see how we tackle them by providing a chapter-by-chapter overview of this thesis.

For the first question we need to define some functions that can take as input goals and preferences as the ones stated by the researchers in our story to obtain a collective decision. In particular, we need to choose suitable languages for the agents to express their goals and preferences, which may be more complex than just accepting or rejecting an issue. We also want to know which properties are satisfied by the functions we define, and how difficult it is to compute their outcomes.

For the second question we need to consider two kinds of strategic behavior. On the one hand, an agent may realize that by submitting an untruthful goal she would get a better result for herself (possibly at the expenses of some other agent). On the other hand, the agents may exploit the fact that they are part of a common network, as they may know one another or be influenced by each other for the opinions they hold, to obtain their goals. We need to identify under which conditions such situations of strategic behavior may occur and which steps could be taken to limit them.3 

Thesis Overview

The thesis is structured into two parts to address the two research questions we delineated in Section 1.2. The first part concerns the aggregation of compactly represented goals and preferences, while the second part studies the strategic behavior of agents in different multi-agent scenarios.

Chapter 2 introduces two known formal languages to express goals and preferences: propositional logic and conditional preference networks (CP-nets). We give the basic definitions of propositional logic (Section 2.1) and of CP-nets (Section 2.3), and we present a related literature review on goals in propositional logic and extensions of CP-nets (Sections 2.2 and 2.4, respectively). Finally, we compare the two languages in Section 2.5.

In Chapter 3 we define the decision-making framework of goal-based voting, where agents express goals as propositional formulas over binary issues. We introduce different voting rules inspired from the fields of voting, judgment aggregation and belief merging in Section 3.1.2. In particular we define three novel adaptations of issue-wise majority and prove that the three rules are different in Proposition 3.1. In Section 3.2 we define a variety of axioms, i.e., desirable properties that we would like a rule to satisfy, and we prove numerous results on how the axioms relate to one another and whether our proposed rules satisfy them. In line with similar results in the literature, we prove in Theorem 3.1 that some combinations of axioms are mutually inconsistent (i.e., resoluteness, anonymity and duality). Our main result is Theorem 3.3 where we provide a characterization of TrueMaj, one of our majorities.

In Section 3.3 we study the computational complexity of the problem of computing the outcome of our rules. Goal-based voting rules turn out to be in general much harder to compute than their voting counterparts, especially the three generalizations of the majority rule which are all hard for the Probabilistic Polynomial Time class (Theorems 3.8,3.9 and 3.10). We find however some polynomial results by restricting the language of goals to conjunctions (Theorem 3.11) and to disjunctions (Theorem 3.12). In Section 3.4 we compare the framework of goal-based voting with the close frameworks of belief merging and judgment aggregation (with or without abstentions). In particular, we compare the frameworks with respect to the axioms, or postulates in belief merging, that the rules satisfy.

In Chapter 4 we study the problem of aggregating individual preferences expressed as generalized CP-nets, a language with which agents can state their preference over the values for some variable given the same (partially specified) state of the world. We adapt four semantics known in the literature on the aggregation of classical CP-nets (Definition 4.3) and we study the computational complexity of different dominance problems for these semantics. In particular, we study the Pareto semantics (Section 4.2.1) which can be seen as a unanimous aggregation procedure, the majority semantics (Section 4.2.2) which corresponds to an absolute majority aggregator, the max semantics (Section 4.2.3) which is a majority with respect to the agents who did not abstain, and the rank semantics (Section 4.2.4) which is reminiscent of the Borda rule in voting. We find that for the most part the complexity problems do not become harder when switching from a single agent to multiple agents, with the sole exception of checking that an outcome is non-dominated, going from polynomial to PSPACE-complete for Pareto and maj semantics (Theorems 4.1 and 4.5, respectively) and to PSPACE membership for max semantics (Theorem 4.9), as well as existence of a non-dominated outcome for Pareto semantics, going from NP-complete to PSPACE-complete (Theorem 4.2).

Chapter 5 introduces the second part of this thesis, focused on agents behaving strategically. We first recall Boolean games and some classical definitions of solution concepts in game theory. In Section 5.1 we give the basic definitions of known logics for modelling time and strategic reasoning, i.e., ATL and LTL, which we intepret over the Concurrent Game Structures (CGS) of Definition 5.1. In Section 5.2 we present the related work at the intersection of logic, game theory and networks of agents.

In Chapter 6 we study the setting of goal-based voting introduced in Chapter 3 under the assumption that now agents can manipulate the outcome by submitting untruthful goals. In Section 6.1 we add some definitions to model the manipulation problem, distinguishing in particular three types of agents (optimists, pessimists, and expected utility maximizers) and three types of manipulation strategies (unrestricted, erosion, and dilatation).

In Section 6.2 we establish some general manipulation results for the three issuewise majority rules defined in Section 3.1.2: Theorem 6.1 proves that the three majoritarian rules are manipulable under all the types of manipulation we study. This negative result leads us to try to refine the bounds of manipulability by focussing on subclasses of goals: conjunctions (Section 6.2.1), disjunctions (Section 6.2.2) and exclusive disjunctions (Section 6.2.3). Theorem 6.7 gives us some conditions under which our majority rules become indeed strategy-proof for conjunctive and disjunctive goals. Finally, Section 6.3 studies the computational complexity of the manipulation problem for the resolute majoritarian voting rules, which is found to be as hard as computing their outcome.

In Chapter 7 we introduce influence games, a class of iterated games where agents can control the spread of their opinions over a network. In Section 7.1 we present the opinion diffusion dynamics and the strategic actions available to the agents (i.e., the possibility to use or not their influence power). While agents can use any rule they like to aggregate the opinons of their influencers, we focus on the unanimous aggregation procedure of Definition 7.7. Agents hold goals expressed in a variant of LTL and we focus in particular on consensus and influence types of goals. In Section 7.3 we present results of both game-theoretic and computational nature for influence games. Propositions 7.1 and 7.2, as well as Example 7.5 give us an insight on which types of solutions can be attained depending on the influence network and on the goals of the agents, while Section 7.3.2 tells us that finding Nash equilibria for influence games is in general computationally hard.

Chapter 8 introduces a new subclass of CGS where agents have shared control over subsets of propositional variables, generalizing existing work on CGS with exclusive control. In Section 8.1 we give the definitions of both types of CGS, and in Section 8.2 we give some examples of iterated games that can be modeled by these structures, such as iterated Boolean games with exclusive control, the influence games of Chapter 7 and aggregation games. Our main result is Theorem 8.1 in Section 8.3, showing how it is possible to reduce the model-checking problem of ATL * formulas on CGS with shared control to model-checking (a translation of) ATL * formulas on CGS with exclusive control.

Chapter 9 concludes the thesis. In Section 9.1 we summarize what we achieved in the dissertation with respect to our research questions, and in Section 9.2 we provide some perspectives for future work.

Sources of the Chapters

The work presented in this thesis is based on the following publications:

• Chapter 3 is based on: Novaro, A., [START_REF] Novaro | Goal-Based Collective Decisions: Axiomatics and Computational Complexity[END_REF] • Chapter 7 is based on:

Grandi, U., [START_REF] Grandi | Strategic Disclosure of Opinions on a Social Network[END_REF]. Strategic Disclosure of Opinions on a Social Network. In Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2017).

• Chapter 8 is based on:

Belardinelli, F., Grandi, U., Herzig, A., Longin, D., Lorini, E., Novaro, A., and Perrussel, L. (2017). Relaxing Exclusive Control in Boolean Games.

In Proceedings of the 16th conference on Theoretical Aspects of Rationality and Knowledge (TARK-2017).

Part I

Aggregation

Chapter 2

Compact Languages for Goals and Preferences

The first part of this dissertation focuses on how propositional logic can be used to compactly represent goals and preferences. In many real-world applications, in fact, the space of alternatives from which a collective choice needs to be taken is combinatorial and it would be too burdensome for the agents to provide a full ranking of all possible outcomes [START_REF] Chevaleyre | Preference Handling in Combinatorial Domains: From AI to Social Choice[END_REF]). An example is that of a group of agents having to decide which values to attribute to the features composing a complex object: think, for instance, to the three researchers in the story at the incipit of this thesis who have to decide over the different "features" composing the conference (i.e., location, posters, gala dinner, and so on), or a group of friends having to plan a common trip to a city with multiple points of interest. Observe that already for just three binary features, if agents were to rank all possible combinations of choices they would need to order eight potential outcomes. The challenge is then to find a language to represent the preferences and goals of the agents over all the possible alternatives which is at the same time compact and expressive (see also the survey by [START_REF] Lang | Voting in Combinatorial Domains[END_REF].

In this chapter we present the basic definitions for propositional goals and CPnets, which will be useful for Chapter 3, where we will introduce a framework for voting with propositional goals, and for Chapter 4, where we will aggregate preferences expressed as CP-nets (with a component in propositional logic).

Propositional Goals

In propositional logic we have a countable set of propositional variables PV = {p, q, . . . } and formulas are built according to the following grammar:

ϕ ::= p | ¬ϕ | ϕ 1 ∧ ϕ 2 | ϕ 1 ∨ ϕ 2
where p ∈ PV. Namely, we have the negation of ϕ (¬ϕ), the conjunction of ϕ 1 and ϕ 2 (ϕ 1 ∧ ϕ 2 ) and the disjunction of ϕ 1 and ϕ 2 (ϕ 1 ∨ ϕ 2 ). We write the implication ϕ 1 → ϕ 2 as a shorthand for ϕ 2 ∨ ¬ϕ 1 ; we write the biconditional ϕ 1 ↔ ϕ 2 in place of (ϕ 1 → ϕ 2 ) ∧ (ϕ 2 → ϕ 1 ); we write the exclusive disjunction ϕ 1 ⊕ ϕ 2 for ¬(ϕ 1 ↔ ϕ 2 ). Moreover, we write for p ∨ ¬p and ⊥ for p ∧ ¬p.

A literal L p is a propositional variable p or its negation ¬p: we call it positive in case L p = p and negative if L p = ¬p. An interpretation is a function v : I → {0, 1} associating a binary value to each propositional variable, such that value 1 is interpreted as 'true' and value 0 as 'false'. An interpretation v makes formula ϕ true, written v |= ϕ, according to the following conditions:

v |= p iff v(p) = 1 v |= ¬ϕ iff it is not the case that v |= ϕ v |= ϕ 1 ∧ ϕ 2 iff v |= ϕ 1 and v |= ϕ 2 v |= ϕ 1 ∨ ϕ 2 iff v |= ϕ 1 or v |= ϕ 2
The set of interpretations that make a certain formula ϕ true, i.e, the set of its models, is represented by the set Mod(ϕ) = {v | v |= ϕ}. Two formulas ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, if and only if Mod(ϕ) = Mod(ψ).

A propositional goal is then a propositional formula expressed over variables denoting the issues at stake. For instance, if we have variable p for the statement "We will visit the park", variable s for "We will visit the museum" and variable r for "We will visit the old lighthouse", we can write formula ϕ = (p ∧ r) → s to express the complex goal "If we visit the lighthouse and the park, then we are also going to visit the museum". The models of ϕ are then Mod(ϕ) = {( 111), (011), ( 101), ( 001), ( 100), ( 010), (000)}.

We can also define restrictions on the language of goals. In particular, we define the languages L as follows:

ϕ := p | ¬p | ϕ 1 ϕ 2
where ∈ {∧, ∨, ⊕}. We call L ∧ the language of conjunctions (or cubes), where each formula is a conjunction of literals; L ∨ the language of disjunctions (or clauses), where each formula is a disjunction of literals; and L ⊕ the language of exclusive disjunctions, where each formula is an exclusive disjunction of literals. Note that negation only applies to propositional variables and not to complex formulas. Thus, we have that formula ¬p ∧ q belongs to L ∧ , while formula ¬(p ∧ q) does not.

Related Work on Propositional Goals

Propositional goals have been proposed as a compact representation of dichotomous preferences over combinatorial alternatives described by binary variables (e.g., think of multiple referenda where voters are asked to either accept or reject a number of issues). [START_REF] Lang | Logical Preference Representation and Combinatorial Vote[END_REF] has studied numerous representation languages for goals. The simplest representation of preferences R basic is such that each agent expresses a goal in propositional logic and has utility either 1 or 0 (i.e., dichotomous) depending on whether her goal is satisfied or not.

In the same paper, Lang also proposes a representation for weighted goals, where propositional formulas in a goal base have a numerical value attached representing their weight. 1 [START_REF] Uckelman | Representing Utility Functions via Weighted Goals[END_REF] also studied weighted goals, where the utility of an alternative is calculated as the sum of the weights of the formulas it satisfies. They defined different languages (with various restrictions on the syntax of the goal or on the range of the weights) to characterize classes of utility functions, to compare languages with respect to succinctness, and to study the computational complexity of finding the most preferred alternative given a certain utility function.

Finally, Lang also discussed prioritized goals, where propositional formulas in the goal base are associated with a weak order (a priority relation). [START_REF] Brewka | A Rank Based Description Language for Qualitative Preferences[END_REF] proposed a Logical Preference Description (LPD) language to describe qualitatively the preferences of the agents over possible outcomes given their individual ranked knowledge base (which they use to represent prioritized goals in propositional logic).

The literature on Boolean games [START_REF] Harrenstein | Boolean Games[END_REF][START_REF] Bonzon | Boolean Games Revisited[END_REF]) also studies situations where agents are endowed with propositional goals. More precisely, each agent i has a propositional goal γ i over a set of variables Φ but they are also each assigned a subset of variables Φ i ⊆ Φ whose assignment they can exclusively control. We will see Boolean games again in more detail in the second part of this thesis (Chapter 5).

Two other important frameworks are strongly related to the idea of aggregating the propositional goals of a group of agents. The first one is judgment aggregation [START_REF] List | The Theory of Judgment Aggregation: An Introductory Review[END_REF][START_REF] Lang | How Hard is it to Compute Majority-Preserving Judgment Aggregation Rules[END_REF][START_REF] Endriss | Judgment Aggregation[END_REF], in particular in its binary aggregation model (Dokow and Holzman, 2010a;[START_REF] Grandi | Binary Aggregation with Integrity Constraints[END_REF], which can be seen as a form of voting where agents express propositional goals having a single model (i.e., their goals are complete conjunctions over all the issues at stake). The generalization of judgment aggregation to abstentions (by [START_REF] Gärdenfors | A Representation Theorem for Voting with Logical Consequences[END_REF][START_REF] Dietrich | Judgment Aggregation without Full Rationality[END_REF][START_REF] Dokow | Aggregation of Binary Evaluations with Abstentions[END_REF], and more recently by Terzopoulou et al., 2018) corresponds to agents having partial conjunctions of literals as goals (i.e., goals in the language L ∧ described in Section 2.1). Recent work in judgment aggregation has advanced some ideas to give agents more flexibility in expressing their opinions. For instance, [START_REF] Miller | Judgment Aggregation and Subjective Decision-Making[END_REF] and [START_REF] Benamara | Individual Opinions-Based Judgment Aggregation Procedures[END_REF] work in the framework of judgment aggregation where issues can be divided into premises and conclusions, and instead of asking all agents to respect some external integrity constraint (e.g., modeling a law) they let them follow individual rules to express their judgments. [START_REF] Endriss | Judgment Aggregation with Rationality and Feasibility Constraints[END_REF] distinguishes between rationality and feasibility constraints, where the former has to be respected by the agents (and it is the same for all of them) while the latter has to be satisfied by the outcome of the aggregation process.

The second related framework is belief merging [START_REF] Konieczny | Merging Information Under Constraints: A Logical Framework[END_REF], that aims at aggregating the beliefs coming from multiple agents in order to get the beliefs of the group. Each agent holds a set of beliefs in the form of a belief base K of propositional formulas. Belief bases are aggregated via functions called merging operators, satisfying a set of properties called IC postulates, and the aggregation takes into account the presence of integrity constraints. [START_REF] Dastani | Specifying the Merging of Desires into Goals in the Context of Beliefs[END_REF] also proposed an attempt at using logic-based belief merging for goals, assessed by axiomatic properties from belief revision.

In Chapter 3 we will define a framework for the aggregation of propositional goals based on voting, building on the R basic representation by [START_REF] Lang | Logical Preference Representation and Combinatorial Vote[END_REF] mentioned above. We will also specify in more details the relationship of our proposed framework with both judgment aggregation and belief merging in Section 3.4.

CP-nets

The framework of CP-nets has been introduced to model situations where the preference over the value for some variable depends on the choice made on another variable, everything else being equal [START_REF] Boutilier | CPnets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements[END_REF]. The classical example to explain CP-nets takes place at a restaurant. Lucy wants to order a main course and a beverage and let us assume that, for simplicity, the options for the main course in this restaurant are just fish or steak, and for beverages only white or red wine. Overall, Lucy prefers fish over steak. However, the preference over type of wine for Lucy depends on what she is eating: if she orders fish she would like to drink white wine rather than red, and vice-versa if she orders steak.

In order to model situations like the one above we need variables to express the features or components on which a choice has to be made. In our example, we have a variable B for the beverages and a variable M for the main course. The domain D(X) of a variable X contains all the possible values that the variable can assume. The domain of beverages, for instance, would be D(B) = {w, r} for white or red wine, and the one for main courses would be D(M) = {s, f } for steak or fish. Agents express their preferences through (conditional preference) statements2 of the form xy . . . : z 1 z 2 .

The left part xy . . . , which we call precondition, describes some state of the world or outcome, and the right part z 1 z 2 expresses the preference over the values of some variable in the given outcome. Lucy, for instance, expresses three statements:

(ϕ 0 ) f s (ϕ 1 ) f : w r (ϕ 2 ) s : r w
whose meaning is precisely "Fish is always preferred to steak" (ϕ 0 ), 3 "If fish is served, white wine is preferred to red" (ϕ 1 ), and "If steak is served, red wine is preferred to white" (ϕ 2 ). We have just seen in which sense for CP-nets the preference over the value for some variable depends on which value we chose for another variable. Another important aspect to consider is that we can compare two different outcomes by using some conditional preference statement only ceteris paribus, i.e., everything else being equal. For instance, suppose our restaurant decides to improve their menu by adding a (short) list of desserts, which we model by a new variable D. The desserts offered are chocolate cake or banana bread, and hence the domain of D is D(D) = {c, b}. According to ϕ 1 , Lucy prefers a world fwc (where the menu is fish, white wine, and chocolate cake) to a world frc (where the menu is fish, red wine, and chocolate cake). However, we cannot say that Lucy prefers fwc to frb (where the menu is fish, red wine, and banana bread), as the two outcomes differ on the value of variable D. Hence, only a small number of comparisons are made between outcomes when using conditional preference statements.

This gives us an explanation of the first part of the name 'CP-nets': CP is an acronym which stands at the same time for conditional preferences, as the statements expressed by the agents, and ceteris paribus, as the comparisons made between outcomes. The second part of the name is short for networks, as it is possible to construct a graph illustrating how variables depend on one another as we explain below.

The nodes in the dependency graph (or preference graph), are the variables of our problem. For instance, in the first version of the menu of the restaurant we would have one node for variable M and one for variable B. Then, each node X is annotated with a conditional preference table CPT(X) containing a preference statement over values of X for each possible combination of values for the variables upon which X depends. Figure 2.1 represents the CP-net of Lucy's preferences in our example.

Related Work on CP-nets

The literature on CP-nets includes many extensions and variations of the basic framework we presented above. We have, for instance, tradeoff-enhanched CP-nets (or TCPnets), which extend CP-nets by allowing the agent to say that in a particular state of the world it is more important to get a better value for variable X rather than getting M f s

B

f : w r s : r w a better value for variable Y [START_REF] Brafman | Introducing Variable Importance Tradeoffs into CP-Nets[END_REF][START_REF] Brafman | On Graphical Modeling of Preference and Importance[END_REF]. In conditional preference theories (CP-theories), an agent is allowed to state than in a given state of the world (which does not need to be completely specified), some value x 1 for variable X is preferred to value x 2 , regardless of which values are assigned to the variables in some set W [START_REF] Wilson | Extending CP-Nets with Stronger Conditional Preference Statements[END_REF]. If agents are given a set of objects S 1 , and they can express that they prefer to also get the bundle of goods S 2 rather than the bundle of goods S 3 , we are in the framework of conditional importance networks (CI-nets) by [START_REF] Bouveret | Conditional Importance Networks: A Graphical Language for Representing Ordinal, Monotonic Preferences over Sets of Goods[END_REF].

Agents may also be allowed to express incomplete preference statements. For instance, Lucy may want to express only ϕ 1 in our previous example. Depending on the specific application, we may want to handle this lack of information about preferences over full outcomes by sticking to the ceteris paribus semantics or by departing from it, as done for instance in the totalitarian semantics studied by [START_REF] Ciaccia | Conditional Preferences: A New Semantics for Database Queries[END_REF] for incomplete databases. In Chapter 4 we will work in the framework of another type of incomplete CP-nets, i.e., generalized CP-nets (gCP-nets), where agents are allowed to express conditional preference statements by using arbitrary propositional formulas in the precondition. Moreover, we will be working in the context of multiple agents (mCP-nets), whose incomplete CP-nets have to be aggregated.

Comparing Propositional Goals and CP-nets

Propositional formulas allow us to compactly represent goals, and with CP-nets we can compactly represent ceteris paribus preferences over outcomes. Additionally, in gCP-nets agents can express any propositional formula as the precondition of their preference statements. We could then wonder whether it is possible to construct a propositional formula expressing the same preference ordering over outcomes induced by an arbitrary CP-net, and vice-versa to construct a CP-net expressing the same preference ordering induced by a propositional goal.

If we assume that the preferences induced by propositional formulas are dichotomous, the answer is no: in fact, an agent holding a propositional goal divides the outcomes into just two classes, with the models of her goal in one and the countermodels in the other. 4 The following example illustrates this point: There are however examples in the literature of more general languages able to express both propositional goals and CP-nets. In particular, [START_REF] Bienvenu | From Preference Logics to Preference Languages, and Back[END_REF] proposed the "prototypical" preference logic PL whose formulas are of the form Ψ = α β F where α and β are propositional formulas and F is a set of propositional formulas. Intuitively, the meaning of Ψ is that an outcome satisfying α is preferred to an outcome satisfying β provided that they agree on the interpretation of formulas in F. Both CP-nets and propositional goals (as a special case of prioritized goals) are then shown to be fragments of PL.

Chapter 3

Goal-based Voting

Social choice and voting have provided useful techniques for the design of rational agents that need to act in situations of collective choice [START_REF] Brandt | Handbook of Computational Social Choice[END_REF]. In particular, judgment aggregation has been applied in various settings: from multiagent argumentation [START_REF] Awad | Judgement Aggregation in Multi-Agent Argumentation[END_REF] to the collective annotation of linguistic corpora [START_REF] Qing | Empirical Analysis of Aggregation Methods for Collective Annotation[END_REF]. However, when considering collective decision-making in practice, the rigidity of judgment aggregation in asking individuals to provide complete judgments over issues can become an obstacle. Consider the following example, inspired by the traveling group problem [START_REF] Klamler | The Traveling Group Problem[END_REF]:

Example 3.1. An automated travel planner is organizing a city trip for a group of friends: Ann, Barbara, and Camille. They have to decide whether to visit the Lighthouse, the Museum, and the Park. Ann wants to see all the points of interest, Barbara prefers to have a walk in the Park, and Camille would like to visit a single place but she does not care about which one. A judgment-based planner would require all agents, including Camille, to specify a full valuation over all issues.

For instance, we could obtain the following situation:

Lighthouse Museum Park Ann Barbara × × Camille × ×
By taking a simple majority vote, the collective plan would be to visit both the Museum and the Park. This does not satisfy Camille: by being asked for a complete judgment, she was unable to express her truthful goal to "visit a single place, no matter which one" thus getting an outcome that she does not like.

In order to take care of situations such as the one presented in Example 3.1, we present a framework for the aggregation of individual goals expressed in propositional logic. We define some voting rules that could be used to return a collective decision, and we analyze what are the properties that they satisfy, giving an axiomatic characterization for one of them. We study how hard it is from a computational perspective to determine the outcome of the introduced rules. Finally, we compare our framework with belief merging and judgment aggregation.

Framework

In the first part of this section we present the basic definitions of the framework of goal-based voting, where agents express their goals as propositional formulas. In the second part we define and compare a selection of voting rules, inspired by voting, belief merging and judgment aggregation.

Basic Definitions

A group of agents in the finite set N = {1, . . . , n} has to take a collective decision over some issues in the finite set I = {1, . . . , m}. We assume that issues have binary values: when they take value 1 it means they are accepted, and when they take value 0 it means they are rejected. Each agent i ∈ N has an individual goal γ i , which is expressed as a consistent propositional formula. Formally, each γ i is written in the propositional language L whose propositional variables are all the issues j ∈ I (see Section 2.1 for the basic definitions of propositional logic).

For simplicity, we sometimes write an interpretation v as vector (v(1), . . . , v(m)). From a voting perspective, each interpretation corresponds to an alternative (a candidate), and the models of γ i are those alternatives (candidates) that agent i supports. We also assume that issues are independent from one another, meaning that all possible interpretations over I are feasible (or, equivalently, that there are no integrity constraints).

For agent i ∈ N and issue j ∈ I, we indicate by m x ij = |{v ∈ Mod(γ i ) | v(j) = x}| for x ∈ {0, 1} how many times issue j has value x in the models of agent i's goal. Then, we denote by vector m i (j) = (m 0 ij , m 1 ij ) the two totals of zeroes and ones for issue j in the models of γ i . A goal-profile (or simply, a profile) Γ = (γ 1 , . . . , γ n ) is a vector collecting all the goals of the agents in N .

We now formalize Example 3.1 to illustrate all the above definitions:

Example 3.2. Agents Ann, Barbara, and Camille, are modeled by set N = {1, 2, 3}.

The three choices they have to make over the lighthouse, the museum, and the park, are modeled by the set I = {1, 2, 3}. Ann's goal is

γ 1 = 1 ∧ 2 ∧ 3, while Barbara's goal is γ 2 = ¬1 ∧ ¬2 ∧ 3 and Camille's goal is γ 3 = (1 ∧ ¬2 ∧ ¬3) ∨ (¬1 ∧ 2 ∧ ¬3) ∨ (¬1 ∧ ¬2 ∧ 3)
. The models of the agents' goals correspond to Mod(γ 1 ) = {(111)}, Mod(γ 2 ) = {(001)} and Mod(γ 3 ) = {(100), (010), (001)}. Ann only has one model for her goal (i.e., |γ 1 | = 1) and for issue 3, for instance, we thus have m 13 = (m 0 13 , m 1 13 ) = (0, 1). Camille has three models for her goal γ 3 , and for issue 2 we have m 32 = (m 0 32 , m 1 32 ) = (2, 1). Profile Γ = (γ 1 , γ 2 , γ 3 ) captures this situation. The agents take a decision over the issues at stake by means of voting rules, whose input is a profile of n formulas (each one submitted by one agent in N ) and whose output is a set of interpretations over the m issues in I, for all n and m. The formal definition is as follows: Definition 3.1. A goal-based voting rule is a collection of functions for all n, m ∈ N defined as:

F : (L I ) n → P ({0, 1} m ) \ {∅} Vector F(Γ) j = (F(Γ) 0 j , F(Γ) 1 j ) where F(Γ) x j = |{v ∈ F(Γ) | v j = x}| for x ∈ {0, 1}
indicates the total number of zeroes and ones in the outcome of F for j in Γ. For simplicity, we write F(Γ) j = x for x ∈ {0, 1} in case F(Γ) 1-x j = 0.

Goal-based Voting Rules

We start by presenting a rule inspired by simple approval voting (Brams andFishburn, 1978, 2007;[START_REF] Laslier | Handbook on Approval Voting[END_REF]. For all profiles the Approval rule chooses, among all the models of the agents' goals, those interpretations that satisfy a maximal number of agents' goals. Formally:

Approval(Γ) = arg max v∈Mod( i∈N γ i ) |{i ∈ N | v ∈ Mod(γ i )}|.
The Approval rule has also been previously introduced in the work by [START_REF] Lang | Logical Preference Representation and Combinatorial Vote[END_REF] under the name of plurality rule, and in belief merging by [START_REF] Konieczny | Merging Information Under Constraints: A Logical Framework[END_REF] as a ∆ ∑,d µ rule. 1 Variations of Approval have been used for multi-winner elections [START_REF] Aziz | Computational Aspects of Multi-Winner Approval Voting[END_REF], where the satisfaction of an agent is modeled by different vectors depending on how many of her candidates (in this case, models of her goal) are chosen by the rule. Despite its intuitive appeal, approval-based voting is not adapted to combinatorial domains in which a large number of alternatives may be approved by a few agents only, as illustrated by the following example: Example 3.3. Consider a profile Γ = (γ 1 , γ 2 , γ 3 ) for three agents and three issues such that

γ 1 = 1 ∧ 2 ∧ 3, γ 2 = 1 ∧ 2 ∧ ¬3 and γ 3 = ¬1 ∧ ¬2 ∧ ¬3.
As each goal has exactly one model, and there is no interpretation which satisfies more than one goal at the same time, we have that the outcome is Approval(Γ) = {(111), (110), (000)} which leaves the agents with the same options they began with.

The next class of rules that we define is inspired by the quota rules from judgment aggregation (Dietrich and List, 2007a), where each issue needs a certain quota of votes to be approved in the outcome. First, let µ ϕ : Mod(ϕ) → R be a function associating to each model v of ϕ some weight µ ϕ (v). Observe that µ ϕ may associate different weights to distinct models of the same formula ϕ.

Let threshold rules be defined as:

TrSh µ (Γ) j = 1 iff ∑ i∈N (w i • ∑ v∈Mod(γ i ) v(j) • µ γ i (v)) ≥ q j
such that 1 ≤ q j ≤ n for all j ∈ I is the quota of issue j, for each v ∈ Mod(γ i ) we have µ γ i (v) = 0 and w i ∈ (0, 1] is the individual weight of agent i.

Intuitively, each issue j in threshold rules is considered independently from the others, and there is a certain quota q j that has to be reached for the issue to be accepted. Additionally, each agent may be given a different weight w i (think for instance of a committee where the vote of the president counts more than the vote of a member) and each model v of an individual goal may have a different weight µ γ i (v).

To simplify notation we omit the vector q = (q 1 , . . . , q m ), specifying the particular choice of thresholds for the issues, from the name of TrSh µ when clear from context.

The general definition of threshold rules can be used to provide a first adaptation for goal-based voting of the classical issue-wise majority rule [START_REF] May | A set of Independent Necessary and Sufficient Conditions for Simple Majority Decision[END_REF]. Consider a TrSh µ rule having µ γ i (v) = 1 |Mod(γ i )| and w i = 1 for all v ∈ Mod(γ i ) and for all i ∈ N : we call EQuota such procedures, as they are inspired by equal and even cumulative voting [START_REF] Campbell | The Origin and Growth of Cumulative Voting for Directors[END_REF][START_REF] Bhagat | Cumulative Voting: The Value of Minority Shareholder Voting Rights[END_REF]. Namely, the goal of each agent is given a total weight of 1 (echoing the "one person, one vote" principle), which they equally distribute over all the models of their goal. In this way, agents whose goals have more models are not favored by the rule with respect to goals with less models.

The equal and even majority rule EMaj is formally defined 2 as follows:

EMaj(Γ) j = 1 iff ∑ i∈N m 1 ij |Mod(γ i )| > n 2 
1 In this case d is the drastic distance, such that for two interpretations v and v , d(v, v ) = 0 if v = v and d(v, v ) = 1 otherwise. 2 The EMaj rule has been initially defined by using n+1 2 as quota [START_REF] Novaro | Goal-Based Collective Decisions: Axiomatics and Computational Complexity[END_REF], to stay close to the intuition of majority where a quota corresponds to a certain number of 'heads' for or against an issue. We can, however, let the quota be a real number as fractions of votes come from different agents. for all j ∈ I. Observe that the EMaj adaptation of the (strict) majority rule is thus biased towards rejection of an issue: when there is a tie in the sum of acceptances and rejections the issue is rejected. To overcome this issue, we present a second adaptation of majority where comparisons are directly made between acceptances and rejections for each issue j ∈ I.

The TrueMaj goal-based voting rule is formally defined as:

TrueMaj(Γ) = Π j∈I M(Γ) j
where for each j ∈ I:

M(Γ) j = {x} if ∑ i∈N m x ij |Mod(γ i )| > ∑ i∈N m 1-x ij |Mod(γ i )| {0, 1} otherwise
Intuitively, TrueMaj calculates for each issue a sum of the ones and a sum of the zeroes in all the models of the individual goals, weighting each model as in EQuota rules. If the weighted sum of ones (respectively, zeroes) is higher than the weighted sum of zeroes (respectively, ones), the result for that issue is one (respectively, zero).

In case the sums are equal, the rule outputs all interpretations with either a 0 or a 1 for that issue. 3We now introduce our third and final adaptation of majority to goal-based voting. Let

Maj(v 1 , . . . , v n ) j = 1 if ∑ i∈N v i (j) > n
2 , and Maj(v 1 , . . . , v n ) j = 0 otherwise. Note that the function Maj has a vector of interpretations as input, and it outputs an interpretation. We can now formally define the two-step majority rule:

2sMaj(Γ) = {Maj(EMaj(γ 1 ), . . . , EMaj(γ n ))}.
The 2sMaj rule applies majority twice: first on the models of the agents' individual goals, and then again on the result obtained in the first step. This rule belongs to a wider class of voting functions that apply first a rule on each individual goal, and then a second (possibly different) rule on the results obtained in the first step.

We may think that the three adaptations of majority to goal-based voting that we introduced here (i.e., EMaj, TrueMaj and 2sMaj) are equivalent in the sense that they simply represent via three definitions the same underlying function. The following proposition proves that this is not the case: Proposition 3.1. The rules EMaj, TrueMaj and 2sMaj are different.

Proof. Since EMaj, TrueMaj and 2sMaj are collection of functions for any n and m, it suffices to provide three goal-profiles Γ, Γ', and Γ , one for each pair of rules, on which their outcomes differ. The three profiles are shown in Table 3.1.

Consider profile Γ and the rules EMaj and TrueMaj. For issues 2 and 3 we have

that ∑ i∈N m 1 i2 |Mod(γ i )| = 2 and ∑ i∈N m 1 i3 |Mod(γ i )| = 3
, respectively, are the sums of the votes coming from the agents in favour of the issues. Since

∑ i∈N m 1 i2 |Mod(γ i )| = 2 > 1.5 and ∑ i∈N m 1 i3 |Mod(γ i )| = 3 > 1.
5 we have that EMaj(Γ) 2 = 1 and EMaj(Γ) 3 = 1, meaning that both issues are accepted in the outcome of EMaj. Similarly, as

∑ i∈N m 1 i2 |Mod(γ i )| = 2 > 1 = ∑ i∈N m 0 i2 |Mod(γ i )| and ∑ i∈N m 1 i3 |Mod(γ i )| = 3 > 0 = ∑ i∈N m 0 i3 |Mod(γ i )| ,
we have that TrueMaj(Γ) 2 = 1 and TrueMaj(Γ) 3 = 1, meaning again that both issues are accepted in the outcome of TrueMaj. For issue 1, however, we have that

Γ Mod(γ i ) Γ Mod(γ i ) Γ Mod(γ i ) Agent 1 1 ∧ ¬2 ∧ 3 (101) 1 ∧ 2 ∧ 3 (111) ¬(1 ∨ 2 ∨ 3) (000) (111) (111) Agent 2 ¬1 ∧ 2 ∧ 3 (011) 2 ∧ (1 → 3) (011) 2 ∧ (1 ∨ 3) (110) (010) (011) (111) (111) (111) Agent 3 2 ∧ 3 (011) 2 ∧ (1 → 3) (011) 2 ∧ (1 ∨ 3) ( 110 
∑ i∈N m 1 i2 |Mod(γ i )| = 1 + 0 + 1 2 = 1.
5, and thus EMaj(Γ) 1 = 0, meaning that the issue is rejected, while TrueMaj(Γ) 1 = (1, 1), meaning that there will be one interpretation where issue 1 has value 1 and one where it has value 0.

Consider Γ and the rules TrueMaj and 2sMaj. For issues 2 and 3, it is easy to see that both rules will accept them in the outcome. For issue 1, observe that

∑ i∈N m 1 i1 |Mod(γ i )| = 1 + 2 3 > 1 + 1 3 = ∑ i∈N m 0 i1
|Mod(γ i )| and thus TrueMaj(Γ ) 1 = 1. For 2sMaj, the first step of aggregation results in (( 111), ( 011), ( 011)) which, when focusing on issue 1, gives outcome 2sMaj(Γ ) 1 = 0.

The outcomes for profile Γ and rules EMaj and 2sMaj can be easily obtained through a similar reasoning to the one given for profiles Γ and Γ .

We briefly discuss here how non-binary issues could be handled in goal-based voting. Suppose that Ann, Barbara and Camille of Example 3.2 also have to choose a restaurant, and on a popular recommendation website restaurants are categorized by price as cheap, medium, and expensive. One way to include this non-binary issue would be to add three variables (one for each price range) and a constraint for the outcome of the rule. In fact, while we might allow the agents to express goals such as "I want either a cheap or a medium priced restaurant", the final choice must indicate a specific price category. Concretely, we would need to add three new binary variables: 4 (cheap restaurant), 5 (medium restaurant) and 6 (expensive restaurant), and a constraint IC= (4 ∧ ¬5 ∧ ¬6) ∨ (¬4 ∧ 5 ∧ ¬6) ∨ (¬4 ∧ ¬5 ∧ 6) such that for all Γ we have F(Γ) ⊆ Mod(IC). As independent rules are susceptible of returning a result which does not satisfy the constraint, the definitions of EMaj, TrueMaj and 2sMaj would need to be modified to provide an alternative result in such cases. 4In this section we have introduced aggregation rules for propositional goals inspired by existing rules in voting, judgment aggregation and belief merging. We have also seen how the three definitions of majority that we provided designate indeed three different functions. In the next section we will compare the proposed rules based on the properties they satisfy.

Axiomatics

A great variety of functions can be used to take a collective decision, as we have seen in Section 3.1.2. Depending on the specific voting situation at hand, one rule may be preferred to another: but how can agents compare different rules if they are solely given their definitions? In this section we will follow the tradition in social choice theory of providing a series of desirable properties (called axioms) adapted to the setting of goal-based voting, and checking whether the rules satisfy them or not. In line with Arrow's theorem [START_REF] Arrow | Social Choice and Individual Values[END_REF] we will see that certain desiderata are incompatible with one another and no rule can satisfy every axiom.

Resoluteness

Imagine a group of agents who needs to take a collective decision, and they submit their individual goals to a voting rule. It would be disappointing if the voting rule returned a large set of possible alternatives as the result: in some sense they would still need to make a choice over this result, as they will concretely execute a single plan. The first two axioms that we introduce deal precisely with this idea of resoluteness of a rule, in a stronger or weaker way. 11), (01)}.

I = {1, 2}. Let Γ be such that γ 1 = 1 ∧ 2, γ 2 = 2, γ 3 = ¬1 ∧ 2. We have that Approval(Γ) = TrueMaj(Γ) = {(
Such a requirement may seem too strict in situations as the one of Example 3.4: after all, the agents have the same opinion on the second issue but they are equally split about the first one. In this case we may argue that an abstention over the first issue can be acceptable in the outcome. We thus introduce a novel definition of weak resoluteness as follows: Definition 3.3. A rule F is weakly resolute (WR) if and only if for all profiles Γ and all j ∈ I we have

F(Γ) j ∈ {(a, 0), (b, b), (0, c)} for a, b, c ∈ N + .
Intuitively, a weakly resolute rule always gives either a definite answer on an issue or it abstains: thus, while the rule is not resolute its outcomes still have some structure. An equivalent formulation of the (WR) axiom is that for all profiles Γ there exists a (possibly partial) conjunction ϕ such that F(Γ) = Mod(ϕ). We can easily see that all resolute rules are weakly resolute: Proposition 3.2. If a rule F is resolute, then it is also weakly resolute.

Proof. By definition of resoluteness, we have that F(Γ) = {(x 1 . . . x m )} where x j ∈ {0, 1} for all j ∈ I. Therefore, for each j ∈ I we have that F(Γ) j ∈ {(1, 0), (0, 1)}, and therefore F is weakly resolute. 5 A consequence of Proposition 3.2 is that EMaj and 2sMaj are thus weakly resolute. Intuitively, TrueMaj is also weakly resolute as for each issue it either provides a 0 or a 1 in the outcome, or it provides both a 0 and a 1.6 

Anonymity, Duality and Neutrality

In many situations of collective decision making, for instance in political elections, we want that each vote (and voter) is treated in an equal and fair way. Namely, we want anonymity in the sense that it does not matter which agent submitted which vote to compute the result. In goal-based voting, we express this axiom as: Definition 3.4. A rule F is anonymous (A) if and only if for any profile Γ and permutation σ : N → N , we have that F(γ 1 , . . . , γ n ) = F(γ σ(1) , . . . , γ σ(n) ).

By permuting in any possible way the agents' goals, the result of an anonymous rule does not change. Observe that EMaj, TrueMaj, 2sMaj and Approval are anonymous, while an instance of TrSh rules where at least two agents i, ∈ N have different weights w i = w would not be anonymous.

The following axiom of duality is inspired by the neutrality property of [START_REF] May | A set of Independent Necessary and Sufficient Conditions for Simple Majority Decision[END_REF] and by the domain-neutrality axiom in binary aggregation [START_REF] Grandi | Binary Aggregation with Integrity Constraints[END_REF]. Essentially, we want a rule to not be biased towards the acceptance or rejection of the issues. Let ϕ[j → k] for j, k ∈ I be the replacement of each occurrence of k by j in ϕ. For instance, if ϕ = p ∧ (q ∨ r) we have that ϕ[p → q] = p ∧ (p ∨ r). We define duality as: Definition 3.5. A rule is dual (D) if and only if for all profiles Γ, F(γ 1 , . . . ,

γ n ) = {(1 -v(1), . . . , 1 -v(m)) | v ∈ F(Γ)} where γ = γ[¬1 → 1, . . . , ¬m → m].
Both Approval and TrueMaj are easily seen to be dual. On the other hand, EMaj and 2sMaj do not satisfy this axiom due to their being resolute, as shown by the following example: Example 3.5. Consider a profile Γ for two agents and two issues such that γ 1 = 1 ∧ 2 and γ 2 = ¬1 ∧ 2. We have that EMaj(Γ) = 2sMaj(Γ) = {(01)}. Take now the goals γ 1 = ¬1 ∧ ¬2 and γ 2 = 1 ∧ ¬2 (we simplify the double negation) and observe that for this new profile Γ we have EMaj(Γ ) = 2sMaj(Γ ) = {(00)}, while according to duality we should have {(10)}.

Unfortunately, the properties of resoluteness, anonymity and duality cannot be simultaneously satisfied, as shown by the following theorem:7 5 We can provide an alternative proof of this proposition based on the equivalent formulation of (WR) stated above. For all profiles Γ we have by definition that F(Γ) = {(x 1 . . . x m )} where x j ∈ {0, 1} for j ∈ I. Then, it suffices to consider the following conjunction ϕ:

ϕ = j∈I x j =1 j ∧ j∈I x j =0 ¬j.
Theorem 3.1. There is no resolute rule F satisfying both anonymity and duality.

Proof. Consider a rule F and suppose towards a contradiction that F is resolute, anonymous and dual. Take profile Γ for N = {1, 2} and I = {1, 2} where γ 1 = 1 ∧ ¬2 and γ 2 = ¬1 ∧ 2. By anonymity of F, for profile Γ = (γ 2 , γ 1 ) we have F(Γ) = F(Γ ). Since F is resolute, F(Γ) = {(x, y)}, for x, y ∈ {0, 1}, and thus F(Γ ) = {(x, y)}. However, note that γ 1 = γ 2 and γ 2 = γ 1 . Hence, Γ = Γ and by duality we must have F(Γ ) = {(1x, 1y)}, bringing us a contradiction.

We have seen how to ensure that agents are treated equally (anonymity) and that the decision for each issue is not biased towards acceptance or rejection (duality). We may also want to ensure that issues are treated in an equal way with respect to one another. To this purpose, we introduce the axiom of neutrality, which is inspired by its voting counterpart -stating that if two alternatives are swapped in every ballot, they should be swapped in the outcome of the social choice function (see [START_REF] Zwicker | Introduction to the Theory of Voting[END_REF]). An analogous property has been introduced by [START_REF] Endriss | Graph Aggregation[END_REF] for graph aggregation under the name of permutation-neutrality. We can now define neutrality as follows: Definition 3.6. A rule F is neutral (N) if for all profiles Γ and permutations σ :

I → I, we get F(γ σ 1 , . . . , γ σ n ) = {(v(σ(1)) . . . v(σ(m))) | v ∈ F(Γ)} where we have that γ σ i = γ i [1 → σ(1), . . . , m → σ(m)].
The following example shows that EQuota rules, and thus more generally TrSh rules, are not neutral when the quotas for two issues differ: Example 3.6. Let Γ be a profile for agents in N = {1, 2, 3} and issues in I = {1, 2} such that γ 1 = γ 2 = 1 ∧ 2 and γ 3 = ¬1 ∧ 2. Consider now the EQuota rule such that q 1 = 2 and q 2 = 3: we have that EQuota(Γ) = {(11)}. Let σ be a permutation such that σ(1) = 2 and σ(2) = 1. We then have that γ σ 1 = γ σ 2 = 2 ∧ 1 and γ σ 3 = ¬2 ∧ 1, and for Γ σ = (γ σ 1 , γ σ 2 , γ σ 3 ) we have that EQuota(Γ σ ) = {(10)} which is different from the permutation of [START_REF] Chevaleyre | Preference Handling in Combinatorial Domains: From AI to Social Choice[END_REF] that should be the result according to neutrality.

As far as the other rules are concerned, Approval is neutral as it considers the models of agents' goals in their entirety and it simply permutes their values, and both TrueMaj and 2sMaj are neutral since they have the same quota for all issues.

A different formulation of neutrality is the one commonly used in binary and judgment aggregation [START_REF] Grandi | Binary Aggregation with Integrity Constraints[END_REF][START_REF] Endriss | Judgment Aggregation[END_REF], also similarly introduced for graph aggregation [START_REF] Endriss | Graph Aggregation[END_REF] which intuitively states that if two issues are treated in the same way in a profile, their respective outcomes on that profile should be the same. This definition however is not so easily adaptable to goal-based voting: consider a profile with a goal γ = 1 ∨ 2, whose models are Mod(γ) = {( 11), (10), (01)}. Should an axiom consider issues a and b as treated equivalently in γ (and thus in Γ) or should it also impose that in each model they have the same truth-value at the same time? Depending on the answer, we may (or not) require the outcomes for a and b to be the same. We leave a deeper analysis of this axiom for future research.

Unanimity and Groundedness

The property of unanimity imposes to the outcome of a rule on a profile to agree with the agents if they agree with each other. In goal-based voting we can separate this property into two different axioms. The first focuses on the case where the unanimous choice of the agents for a specific issue is respected in the outcome, and it is a straightforward generalization of the unanimity axiom in binary aggregation [START_REF] Grandi | Binary Aggregation with Integrity Constraints[END_REF]. It is also closely related to the unanimous consensus class in voting [START_REF] Elkind | On the Role of Distances in Defining Voting Rules[END_REF], stating that a candidate should win if it is ranked first by all voters in an election. We formally define unanimity as: Definition 3.7. A rule F is unanimous (U) if for all profiles Γ and for all j ∈ I, if

m x ij = 0 for all i ∈ N then F(Γ) j = 1 -x for x ∈ {0, 1}.
It is fairly easy to see that if all agents accept or reject unanimously an issue the outcomes of EMaj, TrueMaj and 2sMaj will agree with the profile. The Approval rule also satisfies it, since it will choose one of the models of the agents' goals (which by definition are all unanimous on that issue). For TrSh rules, the axiom is not satisfied for certain (degenerate) choices of quotas and weights for the agents' goals, as shown by the following example: Example 3.7. Consider Γ for three agents and two issues such that γ 1 = γ 2 = γ 3 = 1 ∧ 2, where q 1 = q 2 = 3 are the quotas, and µ 1∧2 (11) = 0.3 are the weights for the agents' goals. If w i = 1 for all i ∈ N are the weights of the agents, we have TrSh(Γ) = {(00)}. Similar examples can be found for agents' weights lower than 1.

The second type of unanimity captures the idea that if the agents all agree on some models of their goals, these models should be the outcome. More formally, we define model-unanimity8 as follows:

Definition 3.8. A rule F is model-unanimous (MU) if on all profiles Γ we have v ∈ F(Γ) if and only if v ∈ Mod(γ i ) for all i ∈ N .
The (MU) axiom can be alternatively formulated as stating that if for all Γ we have Mod( i∈N γ i ) = ∅ then we must have that F(Γ) = Mod( i∈N γ i ). Observe that in Definition 3.8, the right-to-left direction ensures that if agents are unanimous about a model it will be accepted in the outcome (but the outcome may include other models which are not unanimously supported), while the left-to-right direction ensures that all the models in the outcome are unanimously accepted by the agents (but the rule may be excluding from the outcome some models that all agents accept). Model-unanimity is also known as the (IC2) postulate in belief merging [START_REF] Everaere | Belief Merging versus Judgment Aggregation[END_REF] and since Approval can be expressed as an IC merging operator (see Section 3.1.2) it therefore satisfies model-unanimity. The following example shows that EMaj, TrueMaj and 2sMaj do not satisfy this type of unanimity: Example 3.8. Let Γ be a profile for three agents and three issues where the agents' goals are such that Mod(γ 1 ) = {(000), (101), (110)}, Mod(γ 2 ) = {(000), (111), (100)} and Mod(γ 3 ) = {(000), (101), ( 110

)}. Even though Mod(γ 1 ∧ γ 2 ∧ γ 3 ) = {(000)}, we have that EMaj(Γ) = TrueMaj(Γ) = 2sMaj(Γ) = {(100)}.
Unanimity does not imply model-unanimity since EMaj, TrueMaj and 2sMaj satisfy the first but not the second. Interestingly, the opposite is also not the case: Proposition 3.3. There exists a rule F that is model-unanimous and not unanimous.

Proof. Let F be defined as such that F(Γ) = Mod( i∈N γ i ) if Mod( i∈N γ i ) = ∅, and {0} m otherwise. By definition F is model-unanimous. Consider the profile Γ for two agents and three issues where

γ 1 = 1 ∧ ¬2 and γ 2 = 1 ∧ 2. Since Mod(γ 1 ∧ γ 2 ) = ∅,
we have that F(Γ) = {(000)}. However, m 0 i1 = 0 for all i ∈ N and yet F(Γ) 1 = 0. Observe that (MU) implies in particular that F(γ, . . . , γ) = Mod(γ), which corresponds to the strongly unanimous consensus class in voting [START_REF] Elkind | On the Role of Distances in Defining Voting Rules[END_REF].

The axioms of unanimity that we just saw require that the outcome agrees with the agents if they all agree (on issues or models). The next axiom that we introduce states that the outcome of a rule should be supported by at least one of the agents in the profile. We formally define groundedness as follows:

Definition 3.9. A rule F is grounded (G) if F(Γ) ⊆ Mod( i∈N γ i ).
By definition, Approval is grounded, since it outputs a model approved by at least one agent in the profile. On the other hand, the same is not true for the majority rules EMaj, TrueMaj and 2sMaj, as shown by the following result: Proposition 3.4. EMaj, TrueMaj and 2sMaj are not grounded.

Proof. Consider a profile Γ for three agents and issues where Mod(γ 1 ) = {(111)}, Mod(γ 2 ) = {(010)} and Mod(γ 3 ) = {(001)}. The rules EMaj, TrueMaj and 2sMaj all return {(011)}, and since (011) ∈ Mod( i∈N γ i ) groundedness is not satisfied. Proposition 3.4 implies that the three majority rules do not guarantee that the collective choice will satisfy the goal of at least one agent. In some cases, however, this can be seen as the rules finding a compromise issue-by-issue between the conflicting views of the agents.

Since Mod( i∈N γ i ) ⊆ Mod( i∈N γ i ) we may think that model-unanimity implies groundedness. The following result however shows that the two axioms are not related: Proposition 3.5. There exists rules F and F such that F is grounded and not modelunanimous, while F is model-unanimous and not grounded.

Proof. Consider F such that for all profiles Γ, if Mod( i∈N γ i ) = Mod( i∈N γ i ) then F(Γ) = Mod( i∈N γ i ) and F(Γ) = Mod( i∈N γ i ) \ Mod( i∈N γ i ) otherwise.
For F it suffices to consider the same rule defined in the proof of Proposition 3.3.

An analogous notion of groundedness has been previously defined for the aggregation of ontologies as well [START_REF] Porello | Ontology Merging as Social Choice: Judgment Aggregation under the Open World Assumption[END_REF].

Monotonicity, Egalitarianism and Independence

In judgment aggregation, the axiom of monotonicity informally states that the acceptance decision of an issue should not be reversed if more agents endorse it [START_REF] List | The Theory of Judgment Aggregation: An Introductory Review[END_REF][START_REF] Grandi | Binary Aggregation with Integrity Constraints[END_REF]. Similarly, we say that a goal-based voting rule is monotonic if adding support for an issue j when the current result for j is equally irresolute or favoring acceptance, results in an outcome strictly favoring acceptance for j. The formal definition that we provide applies only to comparable profiles Γ and Γ for which |Mod(γ

i )| = |Mod(γ i )| for all i ∈ N : Definition 3.10. A rule F satisfies monotonicity (M) if for all comparable profiles Γ = (γ 1 , . . . , γ i , . . . , γ n ) and Γ = (γ 1 , . . . , γ i , . . . , γ n ), for all j ∈ I and i ∈ N , if m 1 ij > m 1 ij , then F(Γ) 1 j ≥ F(Γ) 0 j implies F(Γ ) 1 j > F(Γ ) 0 j .
The rules EMaj and 2sMaj are monotonic, since they have a threshold of acceptance for each issue and once the issue is accepted, adding support only confirms the current result. The same reasoning applies to TrueMaj, with the additional observation that a tie in the outcome only comes from a tie in the profile, and if more support is added (deleted) the issue is decided towards acceptance (rejection). The Approval rule however does not satisfy this axiom, as the following example shows: Example 3.9. Let Γ be defined for three agents and issues with Mod(γ 2 ) = Mod(γ 3 ) = {( 101), (001)} and Mod(γ 1 ) = {( 101), (111), ( 010), (000)}. We have Approval(Γ) = {(101)}. Take now a goal γ 1 with Mod(γ 1 ) = {( 110), (111), ( 001), (100)}. Since m 1 11 = 2 and m 1 11 = 3 and Approval(Γ)

1 1 = 1 > 0 = Approval(Γ) 0 1 , we should have Approval(Γ ) 1 1 > Approval(Γ ) 0 1 . However, as Approval(Γ ) = {(001)} the axiom is not satisfied.
As for (MU), a model-wise monotonicity could be defined as follows: for every profile

Γ, if v ∈ F(Γ) and there is i ∈ N such that v ∈ Mod(γ i ) and v ∈ Mod(γ i ) then v ∈ F(γ 1 , . . . , γ i , . . . , γ n ); and if v ∈ F(Γ) and there is i ∈ N such that v ∈ Mod(γ i ) and v ∈ Mod(γ i ) then v ∈ F(γ 1 , . . . , γ i , . . . , γ n ). 9
The next axiom that we introduce formalizes the "one person, one vote" principle, while at the same time ensuring that a rule is giving an equal weight to the models of each agent's goal. Namely, if we take a profile Γ in which agents have a varying number of models for their goals, and we transform it into a bigger profile Γ where a set of agents (proportional to how many models a goal had in Γ) has a goal satisfied by exactly one of the models in Γ, the results in Γ and Γ should be the same. Formally: Definition 3.11. A rule F is egalitarian (E) if for all Γ, on the profile Γ such that:

(a) |N | = |N | • lcm(|Mod(γ 1 )|, . . . , |Mod(γ n )|), and (b) for v ∈ Mod(γ i ) and i ∈ N , |N | |N |•|Mod(γ i )| agents have γ = j∈I v(j)=1 j ∧ ∈I v(j)=0 ¬ it holds that F(Γ) = F(Γ ).
In an egalitarian rule it is thus possible to turn every profile into an equivalent profile (with respect to the outcome) where each agent submits a goal in the form of a complete conjunction. From their definitions, we see that all EQuota rules and TrueMaj satisfy the axiom. It is not satisfied by some TrSh rules (where the weight of the models is unequal), by 2sMaj and by Approval, as per the following example: Example 3.10. Consider a profile Γ for three agents and issues such that Mod(γ 1 ) = {(111)}, Mod(γ 2 ) = {( 110), (000), (001)} and Mod(γ 3 ) = {( 110), (011), (010)}. We have that Approval(Γ) = {(110)} and 2sMaj(Γ) = {(010)}. Consider now a new profile Γ constructed according to Definition 3.11: it is a profile for three issues and nine agents such that Mod(γ

1 ) = Mod(γ 2 ) = Mod(γ 3 ) = {(111)}, Mod(γ 4 ) = {(110)}, Mod(γ 5 ) = {(000)}, Mod(γ 6 ) = {(001)}, Mod(γ 7 ) = {(110)}, Mod(γ 8 ) = {(011)} and Mod(γ 9 ) = {(010)}. We have that Approval(Γ ) = 2sMaj(Γ ) = {(111)}.
Consider now a TrSh rule such that q j = n 2 for all j ∈ I and the weight function µ is defined as follows:

µ γ 2 (110) = µ γ 3 (110) = 2 3 , µ γ 2 (000) = µ γ 2 (001) = µ γ 3 (011) =
9 Moreover, [START_REF] Novaro | Goal-Based Collective Decisions: Axiomatics and Computational Complexity[END_REF] also defined the axiom of positive responsiveness as a stronger version of monotonicity. Namely, a rule F is positively responsive (PR) if for all comparable profiles Γ = (γ 1 , . . . , γ i , . . . , γ n ) and Γ = (γ 1 , . . . , γ i , . . . , γ n ), for all j ∈ I and i ∈ N

, if m x ij > m x ij for x ∈ {0, 1}, then F(Γ) x j ≥ F(Γ) 1-x j implies F(Γ ) x j > F(Γ ) 1-x j .
Chapter 3. Goal-based Voting µ γ 3 (010) = 1 6 , and µ γ (v) = 1 for any other γ and v. We have that TrSh(Γ) = {(110)} while TrSh(Γ ) = {(111)}.

The final axiom that we present is related to a controversial yet well-known property used in both characterization and impossibility results in aggregation theory [START_REF] List | The Theory of Judgment Aggregation: An Introductory Review[END_REF][START_REF] Brandt | Handbook of Computational Social Choice[END_REF]. It states that the decision of acceptance or rejection for each issue j should be taken by looking uniquely at the acceptances or rejections that j received in the profile. First, let

D m = {(a, b) | a, b ∈ N and a + b ≤ 2 m } and C = {{0}, {1}, {0, 1}}.
We formalize the principle of independence in goal-based voting as follows: Definition 3.12. A rule F is independent (I) if there are functions f j : D n m → C for j ∈ I and n, m ∈ N + such that for all profiles Γ we have

F(Γ) = Π j∈I f j (m 1 (j), . . . , m n (j)).
From the definitions we see that TrSh, EQuota and TrueMaj rules are independent, since they construct the outcome issue-by-issue. The Approval rule is not independent, as shown by the following example: Example 3.11. Consider a profile Γ for three agents and three issues such that 111), (110), ( 101)}. From the outcome on issues 2 and 3 we see that it does not correspond to the cartesian product of functions with codomain C = {{0}, {1}, {0, 1}}.

γ 1 = 1 ∧ 2 ∧ 3, γ 2 = 1 ∧ 2 ∧ ¬3 and γ 3 = 1 ∧ ¬2 ∧ 3. The outcome is Approval(Γ) = {(
We conclude this section with another general result relating our axioms, namely those of independence and weak resoluteness: Theorem 3.2. Each independent goal-based voting rule is weakly resolute.

Proof. Consider an arbitrary profile Γ and the outcome of an independent rule F(Γ).

As F is independent, we have F(Γ) = Π j∈I f (m 1 (j), . . . , m n (j)), where each m x (j) ∈ {{0}, {1}, {0, 1}}. We want to show that F is weakly resolute. We construct a conjunction ψ as follows: for all j ∈ I,

if f (m 1 (j), . . . , m n (j)) = {0} add conjunct ¬j to ψ; if f (m 1 (j), . . . , m n (j)) = {1} add conjunct j to ψ; if f (m 1 (j), . . . , m n (j)) = {0, 1} skip.
Observe that for all v ∈ Mod(ψ) and for all j ∈ I appearing as conjuncts in ψ, we have v(j) = 1 for a positive literal j, and v(j) = 0 for a negative literal ¬j. Moreover, for all k ∈ I which did not appear in ψ we have any possible combination of truth values. Therefore, Mod(ψ) = F(Γ).

The converse of Theorem 3.2 does not hold: consider an F that returns {(11 . . . 1)} if in at least one v ∈ Mod(γ 1 ) issue 1 is true, and returns {(00 . . . 0)} otherwise.

Characterizing Goal-Based Majority

A seminal result in the characterization of aggregation rules is due to [START_REF] May | A set of Independent Necessary and Sufficient Conditions for Simple Majority Decision[END_REF], who gave an axiomatization of the majority rule in the context of voting over two alternatives. Part of the appeal of the majority rule is its omnipresence in everyday decisions as well as its simple definition. We build on May's result and similar results in judgment aggregation [START_REF] Endriss | Judgment Aggregation[END_REF] to provide a characterization of our TrueMaj rule in the following theorem:10 Theorem 3.3. A rule F satisfies (E), (I), (N), (A), (M), (U) and (D) if and only if it is TrueMaj.

Proof. The right-to-left direction follows from the discussion provided in Section 3.2. For the left-to-right direction, consider a rule F which satisfies this list of axioms. Let Γ be an arbitrary profile over n voters and m issues. Since F satisfies (E), we can construct a profile Γ for m issues and n = |N | • lcm(|Mod(γ 1 )|, . . . , |Mod(γ n )|) agents where each agent in N submits a goal having a single model (a model of one of the goals in Γ). Importantly, we know that v ∈ F(Γ) if and only if v ∈ F(Γ ).

Therefore, without loss of generality we can restrict our attention only to profiles where each agent submits a goal corresponding to a complete conjunction (having thus a unique model). We denote by G ∧ such a set of profiles: in particular we have that Γ ∈ G ∧ . We now have to show that F(Γ ) = TrueMaj(Γ ).

Since F satisfies (I), we know that there are functions f 1 , . . . , f m such that F(Γ ) = Π j∈I f j (m 1 (j), . . . , m n (j)). Moreover, as Γ ∈ G ∧ we have that m i (j) ∈ {(0, 1), (1, 0)} for all i ∈ N and j ∈ I. Namely, since each goal has a unique model in Γ , either an issue has value 1 or 0 in it. Hence, each f j on profiles in G ∧ can equivalently be seen as a function from {0, 1} n to {{0}, {1}, {0, 1}} = C. By the fact that F satisfies also the (N) axiom, we have that f 1 = • • • = f m must be the case: i.e., the same function f is applied to all issues. The axiom (A) tell us that any permutation of the goals of the agents in Γ gives the same result F(Γ ).

Combining the (A), (I) and (N) axioms, we can see that only the number of ones (or zeroes) counts in determining the outcome of f , and not their position in the input. Hence, we can consider f as a function f : {0, . . . , n} → C from number of agents (say, all those that assign 1 to the issue) to {{0}, {1}, {0, 1}}.

Given that F satisfies (U), we know that on a profile Γ + such that for all i we have

m 0 ij = 0 we have F(Γ + ) 0 j = 0, i.e., v(j) = 1 for all v ∈ F(Γ + ). Consequently, we have that f (n) = {1} and similarly that f (0) = {0}.
Let now s be a sequence of G ∧ -profiles Γ -= Γ 0 , Γ 1 , . . . , Γ n = Γ + where exactly one agent i changes her goal γ i from profile Γ k , in which m 1 ij = 0, to profile Γ k+1 , in which m 1 ij = 1. Namely, each agent i replaces ¬j with j in their goal γ i . By the (I) axiom and the definition of cartesian product, for any Γ and j we have that F(Γ) j is either equal to (a, 0), (b, b) or (0, c) for a, b, c ∈ N. In fact, the interpretations in the outcome F(Γ) can either have only zeroes for j (a, 0), as many zeroes as ones for j (b, b), or only ones for j (0, c). Since F satisfies (M), we have that the outcome on the Γ k profiles in s can only possibly change:

• from (a, 0) to (b, b) or (0, c); • from (b, b) to (0, c).
Considering that f (0) = {0} and f (n) = {1}, this means that there is some number q such that f (0) = {0}, . . . , f (q -1) = {0}, f (q) = {0, 1} or f (q) = {1}, and f (q + 1) = {1}, . . . , f (n) = {1}. We now show that for n even we have q = n 2 and f (q) = {0, 1}, while for n odd we have q = n+1 2 and f (q) = {1}. For n even, consider the profile Γ were exactly half of the agents accept j and half reject it. If F(Γ ) j = (a, 0) or (0, c), meaning that f ( n 2 ) = {0} or f ( n 2 ) = {1} respectively, the outcome would have to be reversed for F(Γ ) j since F satisfies (D).

However, both in Γ and Γ the decision for j is determined by f ( n 2 ), which therefore has to be equal to {0, 1}.

For n odd, suppose for reductio that q < n+1 2 and consider a profile Γ where there are exactly q agents accepting j. From the discussion above, we have by definition of q that the outcome must be F(Γ) j = (0, c), i.e., issue j is accepted. Consider the profile Γ: by definition, all the agents that accept

j in Γ reject it in Γ: that is, |{i | m i (j) = (0, 1) for γ i ∈ Γ}| = |{i | m i (j) = (1, 0) for γ i ∈ Γ}| = q < n+1 2 . Thus, |{i | m i (j) = (0, 1) for γ i ∈ Γ}| ≥ n+1 2 > q.
From definition of q we should have F(Γ) j = (0, c ) which however contradicts axiom (D). Suppose for reductio that q > n+1 2 and consider a profile Γ where n+1 2 ≤ |{i | m i (j) = (0, 1) for γ i ∈ Γ}| < q. Again from definition of q we have that F(Γ) j = (a, 0) (i.e., issue j is rejected), and the same is true for the profile Γ contradicting (D). Therefore, we have q = n+1 2 . Concluding, F is a rule defined as the cartesian product of the decisions for each j ∈ I taken by the same function

f : {0, . . . , n} → C, with f (k) = {0, 1} for n even and k = n 2 , f (k) = {0} for ∑ i∈N m x ij > ∑ i∈N m 1-x ij for x ∈ {0, 1}
, corresponding to the definition of TrueMaj. As Γ was an arbitrary profile and TrueMaj satisfies axiom (E) this concludes the proof.

The rules EMaj and 2sMaj are based on analogous intuitions as TrueMaj. However, observe that EMaj has a bias towards rejection of the issues and thus it does not satisfy the (D) axiom. Without the (D) axiom we obtain (uniform) EQuota rules, of which EMaj is an instance. On the other hand, the rule 2sMaj does not satisfy the egalitarian axiom (E), as we have seen with Example 3.10. Hence, the proof of Theorem 3.3 could not be directly modified to obtain a characterization result for 2sMaj. The axioms used in the proof of Theorem 3.3 will be compared with their judgment aggregation counterparts in Section 3.4.2.

As we have seen, a general tension exists between the decisiveness or resoluteness of the rule -i.e., its ability to take a unique decision in all (or most) situations, essential in the development of decision-aid tools -and fairness requirements with respect to issues and individuals. The TrueMaj rule seems to strike a fair balance between these requirements.

Computational Complexity

In this section we study the computational complexity of a central problem in voting: that of determining the outcome of a rule on a given profile, i.e., the winner determination problem. We will see that while propositional logic helps the agents express compactly their goals, it carries over an increase in complexity with respect to the standard setting of voting. We will assume familiarity with the field of computational complexity: for an introduction to the topic and more details, see the manual by [START_REF] Arora | Computational Complexity: A Modern Approach[END_REF].

Definitions

In the literature on judgment aggregation we can find two definitions for the winner determination problem, in case the rule is resolute or not [START_REF] Endriss | Complexity of Judgment Aggregation[END_REF][START_REF] Baumeister | Complexity of Manipulation and Bribery in Judgment Aggregation for Uniform Premise-Based Quota Rules[END_REF][START_REF] De Haan | Complexity Results for Aggregating Judgments using Scoring or Distance-Based Procedures[END_REF]. For both types of rules, the underlying idea is to construct an outcome (that in case of resolute rules will be unique) by finding the value of one issue at a time.

We adapt the definition of the winner determination problem for a resolute rule F in goal-based voting as follows:

WINDET(F) Input: profile Γ, issue j ∈ I Question: Is it the case that F(Γ) j = 1? As F is resolute, the outcome F(Γ) on any profile will be a singleton. Hence, given a profile Γ in order to construct the outcome of F on Γ it suffices to ask the WINDET(F) question m times, once for every issue j ∈ I.

Next, we present the definition of the winner determination problem for a nonresolute rule F (that can potentially be weakly resolute): WINDET (F) Input: profile Γ, subset S ⊆ I, partial interpretation ρ : S → {0, 1} Question: Is there a v ∈ F(Γ) with v(j) = ρ(j) for j ∈ S?

By asking the WINDET (F) question for a profile Γ starting from a subset S of I containing a single issue, and progressively adding all the issues in I we can construct a complete outcome in F(Γ). Note that we only need to ask the WINDET (F) question m times, as a negative answer implies that we must assign the opposite truth value in the partial interpretation ρ for the issue that we just added. This definition of the WINDET (F) problem is formulated by an existential quantifier, but an universal definition had been proposed as well [START_REF] Lang | How Hard is it to Compute Majority-Preserving Judgment Aggregation Rules[END_REF]. 11Finally, we introduce a variation of WINDET(F) and WINDET (F) for weakly resolute rules:

WINDET WR (F) Input: profile Γ, issue j ∈ I, value x ∈ {0, 1} Question: Is there a v ∈ F(Γ) with v(j) = x?
We will use this formulation of the winner determination problem for the rule TrueMaj. While we could also use WINDET (F), the fact that TrueMaj is independent and thus weakly resolute allows us to simplify the problem by only focusing on one issue at the time (instead of a subset of issues as for WINDET (F)). Therefore, to build its entire outcome it suffices to ask the WINDET WR (F) problem for each issue j ∈ I twice: one for x = 1 and one for x = 0.

Approval Rule

We start by determining the complexity of the WINDET (F) problem for the Approval rule. In the standard voting setting determining the winning candidate(s) for approval is computationally easy, as it amounts to summing for each candidate the number of approval votes they received and then looking for the highest total. When moving to goal-based voting, the problem becomes harder.

First, we need some preliminary definitions and results. Let Θ p 2 = P NP [log] be the class of decision problems solvable in polynomial time by a Turing machine that can make O(log n) queries to an NP oracle, for n the size of the input.

Consider now the following decision problem:

MAX-MODEL Input: satisfiable propositional formula ϕ, variable p of ϕ Question: Is there a model v ∈ Mod(ϕ) that sets a maximal number of variables of ϕ to true and such that v(p) = 1?

To illustrate the MAX-MODEL problem, consider an instance for three propositional variables {p, q, s} where ϕ = p ∧ ¬q. We have that Mod(ϕ) = {(101), (100)} are its models. Suppose we ask the MAX-MODEL question for q and ϕ: the answer will be negative, since in the model ( 101) with a maximal number of variables set to true, the variable q is false. On the other hand, the answer for p and ϕ is positive.

The complexity of the MAX-MODEL problem has been previously established:

Theorem 3.4 [START_REF] Chen | The Complexity of Selecting Maximal Solutions[END_REF]. MAX-MODEL is Θ p 2 -complete. We are now ready to prove the following result for winner determination of Approval in goal-based voting:

Theorem 3.5. WINDET (Approval) is Θ p 2 -complete.
Proof. For membership, we reduce an arbitrary instance of WINDET (Approval) to the ELECT-SAT plurality,R basic problem, which has been shown to be Θ p 2 -complete in Proposition 4.(3) by [START_REF] Lang | Logical Preference Representation and Combinatorial Vote[END_REF]. Intuitively, given a profile B and a formula ψ, the ELECT-SAT plurality,R basic problem asks whether there is a model selected as the winner by plurality which satisfies ψ. It thus suffices to construct an instance for B = γ 1 , . . . , γ n and formula ψ =

j∈S ρ(j)=1 j ∧ j ∈S ρ(j )=0 ¬j .
For hardness we reduce from an instance of MAX-MODEL where ϕ[p 1 , . . . , p m ] is a satisfiable formula and p i for i ∈ {1, . . . , m} is one of its variables. Construct now an instance of WINDET (Approval) where

Γ = (γ 1 , . . . , γ m , γ m+1 , γ m+2 , . . . , γ 2m+1 ) is a profile such that γ 1 = • • • = γ m+1 = ϕ and γ m+2 = p 1 , . . . , γ 2m+1 = p m .
We have that Approval(Γ) ⊆ Mod(ϕ), since a strict majority of m+1 2m+1 agents already supports all the models of ϕ. Moreover, in this profile Γ precisely the models maximizing the number of variables set to true in ϕ win. In fact, consider a model v ∈ Mod(ϕ): as explained, v gets the support of all the first m + 1 agents whose goal is ϕ, and then for all the agents in {m + 2, . . . , 2m + 1} it gets the support of those agents whose goal-variable is true in v. Specifically, the support of v is (m + 1)

+ |{p i | v(p i ) = 1}|.
Hence, only those v ∈ Mod(ϕ) with a maximal number of 1s are in the outcome of Approval(Γ). It now suffices to set S = {p i } for p i the propositional variable in the instance of MAX-MODEL and ρ(p i ) = 1. Therefore, a formula ϕ has a model with a maximal number of variables set to true where p i is true if and only if WINDET (Approval) returns yes on the constructed profile Γ.

As stated in Section 3.1.2, the Approval rule is an instance of an IC merging operator from belief merging. The proof sketch of an equivalent result to that of Theorem 3.5 had been previously shown by Konieczny et al. (2002) in the context of belief merging. Our formulation however allows for a clearer comparison with the frameworks of voting and judgment aggregation.

Threshold Rule

We now study the winner determination problem for a TrSh µ rules where the weight for each model of an agent's goal, and for each agent, is 1. Intuitively, this means that an agent submitting a goal having three models will have a global weight of 3, while an agent submitting a goal satisfied by a single model will have a weight of 1. This rule is of interest in case we want to reward an agent submitting a goal which can be satisfied in more cases (i.e., we interpret it as a sign of the agents being flexible versus them being "picky"). The individual weight of each agent is 1, however, meaning that no specific agent has more voting power by design.

Theorem 3.6. WINDET(TrSh µ ) is NP-complete, if µ γ i (v) = 1 and w i = 1 for all i ∈ N and v ∈ 2 m .
Proof. For membership in NP, consider an instance of WINDET(TrSh µ ) composed by a profile Γ = (γ 1 , . . . , γ n ) and an issue j. Guess n sets of interpretations X 1 , . . . , X n such that for all i ∈ N we have X i ⊆ 2 m and |X i | ≤ q j + 1, and for each v ∈ X i we have v(j) = 1. Namely, we are guessing potential (sub)sets of the models of the agents goals having issue j set to true. The size of this guess is at most n • q j and recall that q j ≤ n. It is then easy to check whether

|X 1 | + • • • + |X n | > q j and whether for all v ∈ X i we have v ∈ Mod(γ i ), i.e., model-checking if v |= γ i .
For hardness, we reduce from an instance ϕ of the SAT problem. Construct a profile Γ = (ϕ ∨ ¬p) for a single agent and a fresh variable p. Set q p = 0 (recall that in Threshold rules the operator used is ≥). Then, ϕ is satisfiable if and only if

∑ v∈Mod(γ 1 ) v(p) > q p .
The proof of Theorem 3.6 could be easily adapted to the case where the individual weights w i for i ∈ N have different values, as they have to be multiplied with the corresponding cardinalities |X i |. However, when the weights of the models of the goals are defined in a more complex manner, as for instance in EQuota rules, it may not be enough to know that the models are at least k to compute the result.

Majority Rules

An example of a jump in complexity brought by the weights assigned to the agents' goals is given by our generalizations of the majority rules. In particular, let PP, for Probabilistic Polynomial Time, be the class of decision problems solvable by a non-deterministic Turing machine that accepts in strictly more than half of all nondeterministic choices if and only if the answer to the problem is yes.

The typical complete problem for PP is MAJSAT, or simply MAJ in the original paper by [START_REF] Gill | Computational Complexity of Probabilistic Turing Machines[END_REF]: MAJSAT Input: propositional formula ϕ Question: Is it the case that |Mod(ϕ)| > |Mod(¬ϕ)|?

Namely, given a propositional formula ϕ we check whether ϕ has more models than its negation ¬ϕ: i.e., if it is the case that a majority of all possible interpretations is a model of ϕ. Theorem 3.7 [START_REF] Gill | Computational Complexity of Probabilistic Turing Machines[END_REF]. MAJSAT is PP-complete.

We can now establish the complexity bounds of the problem WINDET(EMaj):

Theorem 3.8. WINDET(EMaj) is in PSPACE and PP-hard.
Proof. We start by showing membership in PSPACE. Take the algorithm which considers one agent at a time and for each agent i it holds two counters a i and b i . Starting from interpretation (00 . . . 0) and proceeding towards (11 . . . 1), the algorithm checks whether the current interpretation satisfies γ i ∧ j and if it satisfies γ i . In the former case, it increments counter a i and in the latter case it increments counter b i . Then, it erases the current interpretation and writes the next one. At the end, the algorithm outputs yes if and only if it it is the case that ∑ i∈N

a i b i > n 2 .
For hardness, we reduce from an instance ϕ of the MAJSAT problem. Consider a profile Γ for three agents such that γ 1 = (ϕ ∧ p) ∨ (¬ϕ ∧ ¬p) and γ 2 = γ 3 = for p a fresh variable. Since agent 1 is pivotal in Γ, we then have that EMaj(Γ) p = 1 if and only if

m 1 1p Mod(ϕ) > 1 2 if and only if |Mod(ϕ)| > |Mod(¬ϕ)|.
We next move to the rule 2sMaj and prove its complexity bounds for the WINDET problem. We will also use the class P PP which contains problems solvable in polynomial time with access to a PP oracle. First, consider the following problem: MAJSAT-p Input: propositional formula ϕ, variable p of ϕ Question: Is it the case that |Mod(ϕ ∧ p)| > |Mod(ϕ ∧ ¬p)|?

For example, consider the instance of MAJSAT-p for formula ϕ = p ∨ q and variable p. As Mod(ϕ ∧ p) = {(10), [START_REF] Chevaleyre | Preference Handling in Combinatorial Domains: From AI to Social Choice[END_REF]} and Mod(ϕ ∧ ¬p) = {(01)} we have that the answer will be positive. We now establish the complexity for this problem:

Lemma 3.1. MAJSAT-p is PP-complete.
Proof. We start by showing membership in PP. Consider the non-deterministic Turing machine that guesses an interpretation v for ϕ, with Var the set of its variables. If v |= ϕ the machine accepts with probability 1 2 , if v |= ϕ ∧ p the machine accepts with probability 1 and if v |= ϕ ∧ ¬p the machine accepts with probability 0. The probability that the machine accepts is thus given by

|Mod(ϕ ∧ p)| 2 |Var| + 1 2 • |Mod(¬ϕ)| 2 |Var|
, while the probability that it rejects is

|Mod(ϕ ∧ ¬p)| 2 |Var| + 1 2 • |Mod(¬ϕ)| 2 |Var|
. Therefore, |Mod(ϕ ∧ p)| > |Mod(ϕ ∧ ¬p)| if and only if the probability that the TM accepts is higher than 1 2 . For hardness, we reduce from an instance ϕ of the problem MAJSAT. Define ψ = (ϕ ∧ p) ∨ (¬ϕ ∧ ¬p) for p a fresh variable. Now, ψ ∧ p makes only the first disjunct true, while ψ ∧ ¬p makes the second disjunct true. Therefore, |Mod(ϕ

)| > |Mod(¬ϕ)| if and only if |Mod(ψ ∧ p)| > |Mod(ψ ∧ ¬p)|.
We can now prove the complexity of WINDET for 2sMaj: Theorem 3.9. WINDET(2sMaj) is in P PP and PP-hard.

Proof. In order to prove membership in P PP , consider the Turing machine asking the n queries MAJSAT-j for formulas γ 1 , . . . , γ n to the PP oracle. Observe that the queries allow us to know the result of the first aggregation step of 2sMaj for j. The machine accepts if and only if strictly more than half of the queries have positive answer.

To prove hardness for the class PP, we reduce from an instance ϕ of the MAJSAT problem. Consider a profile Γ for three agents such that γ 1 = (ϕ ∧ p) ∨ (¬ϕ ∧ ¬p), γ 2 = p and γ 3 = ¬p for p a fresh variable. Observe that since agent 1 is pivotal on p, if there are more models for ϕ than for ¬ϕ there will be more models for p than for ¬p in Γ. We also have that 2sMaj(Γ) p = 1 if and only if EMaj(Γ) p = 1, namely on this profile Γ the two rules will give the same outcome for p. The proof is then the same as for Theorem 3.8.

Finally, we study the complexity of WINDET WR for the TrueMaj rule. First, note that in the paper by [START_REF] Gill | Computational Complexity of Probabilistic Turing Machines[END_REF] it is shown that the class PP is closed under complement. This means that for any problem X ∈ PP, the complement problem X is also in PP. In particular, we thus have that there is a polynomial reduction from any instance x of a problem X ∈ PP or of its complement X ∈ PP into an instance of MAJSAT, as MAJSAT is PP-complete. Hence, we have that x ∈ X if and only if its translation is in MAJSAT, which means that x ∈ X if and only if its translation is in MAJSAT, which means that MAJSAT is PP-complete. This reasoning leads to proving the following result: Theorem 3.10. WINDET WR (TrueMaj) for x = 1 is in PSPACE and PP-hard. 12 Proof. For membership, consider the same algorithm as the one of the proof of Theorem 3.8, with acceptance condition that ∑ i∈N a i b i ≥ n 2 . For hardness, we provide a reduction from an instance ϕ of the MAJSAT problem. Construct an instance of WINDET WR (TrueMaj) by taking a profile Γ for three agents, such that γ 1 = (ϕ ∧ ¬p) ∨ (¬ϕ ∧ p) and γ 2 = γ 3 = for p a fresh variable, and x = 1. Observe that when the models of ϕ are more than the models of its negation there will be more models for ¬p than for p in Γ. We then have that |Mod(ϕ)| ≥ |Mod(¬ϕ)| if and only if WINDET WR (TrueMaj) for Γ = (γ 1 ), j = p and x = 1 gives a positive answer.

As we have seen, the three variations of majority for goal-based voting all bring about a jump in complexity from the issue-wise majority rule of judgment aggregation, i.e., from P to PP. This is a direct consequence of using propositional logic as a way to compactly express the agents' goals. In fact, if the agents submitted the models of their goals as the input of a goal-based voting rule, the winner determination problem for the majorities EMaj, 2sMaj and TrueMaj would become easy, since it would suffice to perform a (weighted) sum of the positive votes for an issue.

We can, however, obtain positive results for the winner determination problem of majority rules for certain restrictions on the language of the goals. The first concerns the language of conjunctions L ∧ : Theorem 3.11. If γ i ∈ L ∧ for all i ∈ N, then WINDET(EMaj), WINDET(2sMaj) and WINDET WR (TrueMaj) are in P.

Proof. Since γ i ∈ L ∧ for all i ∈ N, every goal is a (possibly incomplete) conjunction of literals L k for k ∈ I. Hence, for each issue k that does not appear in a goal γ exactly half of the models of γ have k true and the other half have k false; while if k appears as a positive literal all models of γ have k true, and if it appears as a negative literal all models of γ have k false.

For WINDET(EMaj) and WINDET WR (TrueMaj), consider a counter supp starting at 0. For each goal γ i where i ∈ N , add 1 to supp if L j = j appears in γ i , add 0 to supp if L j = ¬j appears in γ i , and add 0.5 to supp if there is no literal L j in γ i . The answer of WINDET(EMaj) is positive if and only if supp> n 2 , and for WINDET WR (TrueMaj) with x = 1 the answer is positive if and only if supp> n 2 . For WINDET(2sMaj) the only difference is that also whenever there is no literal L j in γ i we add 0 to supp. Then the answer for WINDET(2sMaj) is positive if and only if supp> n 2 .

A similar positive result can be proven for the language of disjunctions L ∨ , which includes (among other classes) Horn clauses: Theorem 3.12. If γ i ∈ L ∨ for all i ∈ N, then WINDET(EMaj), WINDET(2sMaj) and WINDET WR (TrueMaj) are in P.

Proof. We follow a similar reasoning to the one of the proof of Theorem 3.11. For WINDET(EMaj) and WINDET WR (TrueMaj), consider a counter supp starting at 0. For each goal γ i where i ∈ N , let k be the number of literals appearing in γ i . First, we parse the agent's goal and in case we find (p ∨ ¬p) for some p ∈ I we add 0.5 to supp. Otherwise, add 2 k-1 2 k -1 to supp if L j = j appears in γ i , add 1 -2 k-1 2 k -1 to supp if L j = ¬j appears in γ i , and add 0.5 to supp if there is no literal L j in γ i . The answer of WINDET(EMaj) is positive if and only if supp> n 2 , and for WINDET WR (TrueMaj) with x = 1 the answer is positive if and only if supp> n 2 .

For WINDET(2sMaj), the counter supp works differently: it adds 1 to supp if L j = j appears in γ i and it adds 0 to supp if L j = ¬j appears in γ i or if there is no literal L j in γ i . 13 The answer for WINDET(2sMaj) is positive if and only if supp> n 2 .

Theorems 3.11 and 3.12 thus open a direction of future research on restrictions over the language of goals to find tractable instances of the winner determination problem for the majority rules. Note also that the restrictions are not too limiting, as we can recover both binary aggregation (with abstentions) and Horn clauses.

Aggregating Beliefs, Judgments or Goals

In this section we compare in more details our framework of goal-based voting with both belief merging [START_REF] Konieczny | Merging Information Under Constraints: A Logical Framework[END_REF] and judgment aggregation [START_REF] List | The Theory of Judgment Aggregation: An Introductory Review[END_REF]. The connection with the former comes from the fact that belief merging was proposed to combine the beliefs of multiple agents: though belief merging operators and axioms differ from those of goal-based voting, both settings are concerned with the problem of aggregating propositional formulas into a result (a set of interpretations) for the group. The connection with the latter comes from the fact that judgment aggregation is a setting where agents submit binary vectors over a set of issues to take a collective decision: goal-based voting adapts known rules in judgment aggregation to the more expressive propositional goals.

Goal-based Voting and Belief Merging

We here analyze the axioms and rules of goal-based voting with respect to the IC postulates of belief merging, following the formulation by [START_REF] Everaere | An Introduction to Belief Merging and its Links with Judgment Aggregation[END_REF]. The first obvious observation is that since the Approval rule is an IC merging operator, as mentioned in Section 3.1.2, it satisfies all the IC postulates.

In belief merging, a group of n agents wants to aggregate their individual beliefs to obtain the beliefs of the group. Each agent i has a set K i = {ϕ 1 , . . . , ϕ k } of consistent propositional formulas as her beliefs. Profile E = (K 1 , . . . , K n ) is a vector including all the individual belief bases. An integrity constraint µ is a propositional formula posing a restriction on the possible outcomes. A merging operator ∆ µ (E) is a function from profiles of belief bases and integrity constraints to a set of formulas. In goal-based voting terms, we have that belief bases correspond to goals: i.e.,

γ i = ϕ 1 ∧ • • • ∧ ϕ k for {ϕ 1 , . . . , ϕ k } = K i .
A profile E thus corresponds to a goal-profile Γ and a merging operator ∆ µ (E) corresponds to F(Γ), with the sole exception that the output of ∆ µ (E) is a set of formulas while for F(Γ) we have a set of interpretations.

The first two IC postulates are the following:

(IC0) ∆ µ (E) |= µ (IC1) If µ is consistent, then ∆ µ (E) is consistent
The postulate (IC0) requires the outcome of a rule to satisfy the constraint, while (IC1) demands the outcome to be consistent if the constraint is consistent. As in goalbased voting there are no integrity constraints (equivalently, the integrity constraint is µ = ) and since F(Γ) = ∅ on all Γ, (IC0) and (IC1) are satisfied by design.

The next postulate determines a crucial difference between belief merging operators and goal-based voting rules (except, of course, for the Approval rule):

(IC2) If E ∧ µ is consistent, then ∆ µ (E) ≡ E ∧ µ
Postulate (IC2) states that the outcome of a rule should coincide with the conjunction of the individual goals if they are consistent. In Section 3.2.3 we introduced this axiom under the name of model-unanimity and showed that EMaj, TrueMaj and 2sMaj did not satisfy it. We now generalize this result by proving that (IC2) is incompatible with both resoluteness and weak resoluteness: Proof. Consider a profile Γ for two issues such that 11), (10), (01)} we have that |Mod( i∈N γ i )| > 1, thus F is not resolute, but also F(Γ) = Mod(1 ∨ 2) and thus F is not weakly resolute.

γ 1 = • • • = γ n = 1 ∨ 2. Since Mod( i∈N γ i ) = {(
The next postulate (IC3) expresses the idea of irrelevance of syntax:

(IC3) If E 1 ≡ E 2 and µ 1 ≡ µ 2 , then ∆ µ 1 (E 1 ) ≡ ∆ µ 2 (E 2 )
All the goal-based voting rules defined in Section 3.1.2 satisfy (IC3), as propositional logic is used for a compact representation of goals but then the rules look at the models of the goals to compute the outcome.

Postulate (IC4) has been introduced as a fairness axiom defined for two agents, aiming at treating equally two belief bases. Intuitively, it states that if the result of the merging is consistent with one belief base, it should also be consistent with the other, so that there is no bias towards either. The formal definition is:

(IC4) If K 1 |= µ and K 2 |= µ, then ∆ µ ((K 1 , K 2 )) ∧ K 1 is consistent if and only if ∆ µ ((K 1 , K 2 )) ∧ K 2 is consistent
Goal-based voting rules EMaj, 2sMaj and 2sMaj do not satisfy (IC4), as shown by the following example: Example 3.12. Consider a profile Γ for two agents and three issues such that

γ 1 = ¬1 ∧ ¬2 ∧ ¬3 and γ 2 = (1 ∧ ¬2 ∧ ¬3) ∨ (¬1 ∧ 2 ∧ ¬3) ∨ (¬1 ∧ ¬2 ∧ 3). We have that EMaj(Γ) = TrueMaj(Γ) = 2sMaj(Γ) = {(000)}.
The outcome is thus only consistent with the goal of agent 1 and not with that of agent 2.

Postulates (IC5) and (IC6) can be seen as analogous to the axiom of reinforcement in social choice theory [START_REF] Young | An Axiomatization of Borda's Rule[END_REF]. Together they intuitively say that if we combine two profile into a new one, the outcome of the merging on the new profile should be the intersection of the outcomes on the two initial profiles. Formally:

(IC5) ∆ µ (E 1 ) ∧ ∆ µ (E 2 ) |= ∆ µ (E 1 E 2 ) (IC6) If ∆ µ (E 1 ) ∧ ∆ µ (E 2 ) is consistent, then ∆ µ (E 1 E 2 ) |= ∆ µ (E 1 ) ∧ ∆ µ (E 2 )
We prove that the three majoritarian rules EMaj, 2sMaj and TrueMaj satisfy the reinforcement postulates (IC5) and (IC6). For clarity, we express them in goal-based voting terms: 14 Theorem 3.13. For any Γ and Γ , EMaj, 2sMaj and TrueMaj satisfy

F(Γ) ∩ F(Γ ) = S = ∅ if and only if F(Γ Γ ) = S.
Proof. Consider two arbitrary profiles Γ and Γ . Let EMaj(Γ) = EMaj(Γ ) = {w}. For all j ∈ I: if w(j) = 1, then there were more than n 2 votes for j in both Γ and Γ (and consequently in Γ Γ ); if w(j) = 0, then in Γ and Γ either there was a tie for j or there were less than n 2 votes for j. Any combination of ties or votes lower than n 2 for j in Γ and Γ still leads to EMaj(Γ Γ ) j = 0.

The reasoning for 2sMaj is the same as for EMaj applied to the second step only. For TrueMaj, let TrueMaj(Γ) ∩ TrueMaj(Γ ) = S. For all j ∈ I: if there are w, w ∈ S such that w(j) = 1 and w (j) = 0, then Γ and Γ had a tie in the votes for j and thus a tie will be in Γ Γ (hence in the outcome). If w(j) = 1 for all w ∈ S (analogously for 0), there may have been a tie in either Γ or Γ for j, but not both, and so Γ Γ will have no tie for j.

Next, we have (IC7) and (IC8) which have been introduced as generalizations of belief revision axioms:

(IC7) ∆ µ 1 (E) ∧ µ 2 |= ∆ µ 1 ∧µ 2 (E) (IC8) If ∆ µ 1 (E) ∧ µ 2 is consistent, then ∆ µ 1 ∧µ 2 (E) |= ∆ µ 1 (E)
Again, since in the framework of goal-based voting presented here we do not consider integrity constraints, the two postulates are not applicable.

Finally, we have the (Maj) postulate defining majority merging operators: it states that we can always make any belief base the outcome by adding a certain number of its copies to a given profile. Formally:

(Maj) ∃n∆ µ (E 1 E n 2 ) |= ∆ µ (E 2 )
Interestingly, the (Maj) postulate is not satisfied by neither EMaj nor TrueMaj, as illustrated by the following example: Example 3.13. Take a profile Γ for two issues such that γ 1 = 1 ∧ 2 and γ 2 = 1 ↔ ¬2: by adding any number of copies of γ 2 to Γ, in the presence of γ 1 the outcome will always be {(11)} for both EMaj and TrueMaj.

In conclusion, belief merging and goal-based voting are technically similar frameworks to the point where some rules, like Approval, can be used in both. On the other hand, as we have seen in this section, the focus in each framework is on rules which satisfy some properties (being them called axioms or postulates) that are deemed more important if the object of the aggregation is a goal or a belief and that can be mutually exclusive.

Goal-based Voting and Judgment Aggregation

The framework of judgment aggregation has been introduced to model collective decision-making when agents have binary opinions over a set of issues. This framework can be expressed in two equivalent formulations: the formula-based model by [START_REF] List | The Theory of Judgment Aggregation: An Introductory Review[END_REF] and the binary aggregation model by [START_REF] Grandi | Binary Aggregation with Integrity Constraints[END_REF]. The models are equivalent in the sense that it is possible to translate any problem expressed in one framework into a problem of the other framework [START_REF] Endriss | Succinctness of Languages for Judgment Aggregation[END_REF]. Moreover, the relationship of judgment aggregation rules and voting rules has been studied by [START_REF] Lang | Judgment Aggregation Rules and Voting Rules[END_REF]. In this section we will first consider formula-based judgment aggregation, then the binary aggregation model (also with its extension to abstentions), and finally we will re-examine the axioms used in Theorem 3.3 in judgment aggregation terms.

We start by briefly describing formula-based judgment aggregation and compare it with goal-based voting. A set of agents N = {1, . . . , n} have to take a decision over a set Φ = {ϕ 1 , . . . , ϕ m , ¬ϕ 1 , . . . , ¬ϕ m } of propositional formulas called the agenda. Each agent i supports some formulas of the agenda by adding them to her individual consistent judgment set J i which contains one of either ϕ k or ¬ϕ k for 1 ≤ k ≤ m.

A first intuitive idea would be to translate an instance of a goal-based voting problem into formula-based judgment aggregation as follows:

Example 3.14. Let N = {1, . . . , n} be a set of agents expressing the goals γ 1 , . . . , γ n over the issues in I = {1, . . . , m}. Construct now a formula-based judgment aggregation problem by considering the set of agents N JA = {1, . . . , n} and the agenda Φ = {γ 1 , . . . , γ n , ¬γ 1 , . . . , ¬γ n }. 15 Then, let

J i = {γ i } k =i {¬γ k } for all i ∈ N .
There are a number of problems with the translation proposed in Example 3.14. From a conceptual point of view, the agenda should be a set in advance list of issues on which agents are asked to provide an opinion: it should not be the opinions themselves. From a technical point of view, individual judgment sets need to be consistent while the proposed translation may give inconsistent sets in case goals are mutually compatible (e.g., if γ 1 = 1 ∧ 2 and γ 2 = 1 we would have J 1 = {1 ∧ 2, ¬1} which is inconsistent). From a practical point of view, many rules in judgment aggregation calculate their outcome based on how many agents support a formula in the agenda: in the proposed translation, only agents having goal γ i would include formula γ i in their individual judgment set, and in profiles with n different goals it would result in a symmetric situation where only one agent supports each goalformula and the negations of all the other goal-formulas.

Observe that even a translation where Φ = I j∈I {¬j} would not work, as an agent with goal γ = 1 → 2 would not be able to choose whether or not to include formulas 1 and 2 in her judgment set. For ease of presentation, given the difficulties just raised and since the two models are equivalent, we discuss how to translate a judgment aggregation problem into goal-based voting for the binary aggregation model only.

In binary aggregation, we have a set of agents N = {1, . . . , n} who have to express an opinion over a set I = {1, . . . , m} of binary issues. Each agent i ∈ N submits as her ballot a vector B i ∈ {0, 1} m with a binary decision for each issue in I. The j-th position of vector B i is denoted by b ij . A profile is a vector B = (B 1 , . . . , B n ) containing all the agents' ballots. Finally, we have an integrity constraint IC, that is a propositional formula written over variables in I to model an existing relationship among the issues. 16 Each agent i has to submit a ballot B i satisfying IC.

In order to translate an instance of a binary aggregation problem into goal-based voting we thus need to extend the latter framework with integrity constraints. Then, a possible translation is illustrated by the following example: Example 3.15. Let B = (B 1 , . . . , B n ) be a binary aggregation profile for issues I = {1, . . . , m}, agents N = {1, . . . , n} and constraint IC. Consider now the goal-based voting translation whose issues and agents are I and N , respectively, and the goal of an agent i ∈ N is defined as

γ i = b ij =1 j∈I j ∧ b ij =0 j∈I ¬j.
Namely, we construct a goal-profile Γ where each goal γ i is such that Mod(γ i ) = {B i }. By construction we thus have that γ i |= IC.

As far as rules are concerned, the issue-wise (strict) majority rule for binary aggregation [START_REF] Dietrich | Judgment Aggregation with Consistency Alone[END_REF][START_REF] Endriss | Judgment Aggregation[END_REF], is formally defined as:

Maj(B) j = 1 iff ∑ i∈N b ij ≥ n 2 .
It is then easy to prove that both EMaj and 2sMaj are generalizations of Maj, in the sense that their outcomes coincide when agents have goals in the form of complete conjunctions of literals (as per Example 3.15). More precisely, we have that for EMaj:

EMaj(Γ) j = 1 iff ∑ i∈N ( ∑ v∈Mod(γ i ) v(j) |Mod(γ i )| ) ≥ n 2 iff ∑ i∈N ( ∑ v∈Mod(γ i ) v(j) 1 ) ≥ n 2 iff ∑ i∈N v i (j) ≥ n 2 Maj(B) j = 1 iff ∑ i∈N b ij ≥ n 2
And for 2sMaj we have:

2sMaj(Γ) = Maj(EMaj(Mod(γ 1 )), . . . , EMaj(Mod(γ n ))) = Maj(B 1 , . . . , B n )
Since TrueMaj is weakly resolute, it does not directly correspond to Maj. [START_REF] Endriss | Binary Aggregation by Selection of the Most Representative Voter[END_REF] proposed an irresolute issue-wise majority defined as Maj (B) = {B w , B s } where B w is the outcome of weak majority and B s is that of strict majority. This is a different rule from TrueMaj, even when restricted to profiles of binary aggregation, as shown by the following example:

Example 3.16. Take a profile Γ for two agents and issues such that Mod(γ 1 ) = {(01)} and Mod(γ 2 ) = {(10)}. The result of Maj is {(00), (11)}, while the result of TrueMaj is {( 11), (00), ( 10), (01)}.

In the framework of binary aggregation with abstentions by Dokow and Holzman (2010b) entries in a ballot can also have value in case the agents is abstaining on those issues, i.e., B i ∈ {0, 1, } m . We can keep the translation of ballots into goals of Example 3.15: if a ballot B i for some i ∈ N has value b ij = for some j ∈ I, the issue will not appear as a conjunct in the corresponding γ i . Terzopoulou et al. (2018) recently defined classes of scoring functions for formula-based judgment aggregation with abstentions, where different weights are given to the formulas in an individual judgment set J i depending on its size: an interesting direction for future work would be to translate such rules as goal-based voting rules.

We conclude this section by comparing the axioms used in Theorem 3.3, i.e., (I), (N), (A), (M) and (U), with those used for characterizing the majority rule in resolute binary aggregation [START_REF] Grandi | Binary Aggregation with Integrity Constraints[END_REF]. From the point of view of goal-based voting, we will thus focus on the special case of goals which are complete conjunctions of literals: for all i ∈ N we have |Mod(γ i )| = 1. Hence, for simplicity we can write m i (j) = 0 instead of m i (j) = (1, 0), and m i (j) = 1 instead of m i (j) = (0, 1). As in the proof of Theorem 3.3, we denote by G ∧ the class of profiles Γ where goals are complete conjunctions. Note however that in binary aggregation functions are defined for fixed N and I, while in goal-based voting functions are defined for any N and I.

Independence. A rule F is independent if and only if there are functions f j : {0, 1} m → {{0}, {1}, {0, 1}} for j ∈ I and m ∈ N + such that for all profiles Γ we have

F(Γ) = Π j∈I f j (m 1 (j), . . . , m n (j)).
If this is the case, it means that in particular if in two profiles Γ and Γ we have that m i (j) = m i (j) for all i ∈ N , f j (m 1 (j), . . . , m n (j)) = f j (m 1 (j), . . . , m n (j)) and thus F(Γ) j = F(Γ ) j . Thus, the restriction of (I) to profiles in G ∧ , i.e., profiles of binary aggregation, 17 implies the binary aggregation axiom of independence (I) BA :

(I) BA : For any issue j ∈ I and profiles B and

B , if b ij = b ij for all i ∈ N , then F(B) j = F(B ) j .
The formulation of the axiom of independence in goal-based voting is close to the original formulation by [START_REF] List | Aggregating Sets of Judgments: An Impossibility Result[END_REF] of the axiom of systematicity for judgment aggregation. Besides being defined for resolute rules and for a given set of agents and issues, the notion of systematicity differs from independence as it also includes neutrality, since the function f used to decide the outcome is the same for all issues.18 

Neutrality. The goal-based voting notion of neutrality when restricted to profiles in G ∧ implies the binary aggregation notion of issue-neutrality (I-N) BA :

(I-N) BA : For any two issues j, j ∈ I and any profile B, if for all i ∈ N we have that b ij = b ij then F (B) j = F(B) j .

In fact, if we consider a profile Γ in which two issues j, k ∈ I are such that m i (j) = m i (k) for all i ∈ N , and we consider the permutation σ such that σ(j) = k, σ(k) = j, and σ( ) = (for ∈ I \ {j, k}) we obtain a profile Γ which is identical to Γ. Therefore,

F(Γ) j = F(Γ ) k = F(Γ) k .
Anonymity. The axiom of anonymity in goal-based voting is a direct generalization of anonymity in binary aggregation (A) BA :

(A) BA : For any profile B and any permutation σ : N → N , it is the case that

F(B 1 , . . . , B n ) = F(B σ(1) , . . . , B σ(n) ).
It suffices to substitute the propositional goals with their unique model to obtain the axiom of binary aggregation.

Unanimity.

A rule F is unanimous if for all profiles Γ and for all j ∈ I, if m i (j) = x for all i ∈ N , then F(Γ) j = x for x ∈ {0, 1}. Again, this is a direct generalization of the axiom of unanimity in binary aggregation (U) BA :

(U) BA : For any profile B and any x ∈ {0, 1}, if b ij = x for all i ∈ N then F(B) j = x.

Monotonicity.

A rule F is monotonic if for all profiles Γ = (γ 1 , . . . , γ i , . . . , γ n ) and Γ = (γ 1 , . . . , γ i , . . . , γ n ), for all j ∈ I and i ∈ N , if m i (j) = 1 and m i (j) = 0 then F(Γ) 1 j ≥ F(Γ) 0 j implies F(Γ ) 1 j > F(Γ ) 0 j . First, observe that the condition of comparable profiles is trivially satisfied in binary aggregation, as agents always have a goal with a single model. Goal-based monotonicity implies issuemonotonicity in binary aggregation (M) BA :

(M) BA : For any issue j ∈ I and profiles B = (B 1 , . . . , B i , . . . , B n ) and B = (

B -i , B i ) if b ij = 0 and b ij = 1, then F(B) j = 1 entails F(B ) j = 1.
Goal-based monotonicity is however more general, as it also considers possible ties in the outcome (which for the TrueMaj rule derive from a tie in the input).

Duality. The notion of duality in goal-based voting does not directly imply the axiom of domain neutrality (D-N) BA in binary aggregation:

(D-N) BA : For any two issues j, j ∈ I and any profile B,

if b ij = 1 -b ij for all i ∈ N then F(B) j = 1 -F(B) j .
Duality and independence together imply domain-neutrality. Consider a profile Γ where for two issues j, j ∈ I we have m i (j) = 1m i (j ) for all i ∈ N . In the profile Γ where for all i ∈ N we have γ i = γ i , the resolute outcome F(Γ) j is equal to 1 -F(Γ) j . Observe however that m i (j) = m i (j ) and thus by independence we have that F(Γ) j = 1 -F(Γ) j .

In binary aggregation, we have the following result:

Theorem 3.14 [START_REF] Grandi | Binary Aggregation with Integrity Constraints[END_REF]. If the number of individuals is odd, an aggregation procedure F satisfies (A) BA , (I-N) BA , (D-N) BA , (I) BA , (M) BA if and only if it is the majority rule.

Theorem 3.3 can thus be seen as a generalization of Theorem 3.14, with the important distinctions that (i) we consider rules defined for all N and I, (ii) we consider odd and even number of agents, and (iii) TrueMaj is not resolute (unlike Maj).

Conclusions

From the observation that judgment aggregation falls short in modeling some reallife examples of collective decision-making in multi-issue domains, such as finding a shared travel plan for a group of friends (Example 3.1), we introduced voting rules to aggregate a set of compactly represented goals in propositional logic into a collectively satisfying alternative. Some of our rules were inspired by belief merging operators or they were generalizations of known voting rules in social choice theory.

In order to formally analyze them, we explored many possible formulations of axioms describing desirable properties and studied how they relate to one another. We noticed a tension between resoluteness and fairness for a voting rule, as certain sets of axioms are not satisfiable together (see, e.g., Theorem 3.1). A rule that tries to find a compromise between these two needs is the adaptation of the majority rule that we call TrueMaj, for which we provided an axiomatization in Theorem 3.3.

We also studied the computational complexity of determining the outcome for our rules, with an expected increase in complexity due to the fact that our agents use compactly expressed preferences. In particular, we find that Approval is Θ p 2complete (as per analogous results in the literature on belief merging), a special case of TrSh rules is NP-complete, and our generalizations of majority are all hard for the PP class. Such a result opens up a path for future research in studying restrictions on the language of goals that may determine islands of tractability for the WINDET problem, or develop tractable approximations for their computation. We obtained first positive results in this direction with Theorems 3.11 and 3.12.

Finally, we compared our framework with both belief merging and judgment aggregation, in order to give a precise assessment of how the settings relate to one another. We find that some of the properties we study are incompatible with properties of other frameworks (in particular, belief merging) and that the rules in different frameworks focus on different types of properties. For the reader interested in a comparison between the frameworks of belief merging and judgment aggregation we refer to the paper by [START_REF] Everaere | An Introduction to Belief Merging and its Links with Judgment Aggregation[END_REF].

Chapter 4

Aggregation of Incomplete CP-nets

In Chapter 3 we have seen how goals of different agents who look for a collective decision can be compactly represented by a propositional formula. Propositional logic can be used also to compactly represent preferences of agents over possible outcomes that are conditional on specific assumptions, as in the scenario presented in the following example:

Example 4.1. Lucy wants to rent an apartment and to make her decision she deems three factors to be important: location, price, and whether she will have flatmates or not. In case the apartment is expensive or it is located in the suburbs, she would prefer having flatmates (to share utilities or get some company) rather than living alone. Hence, if an apartment is expensive and located in the city center she would rather share it with flatmates. Lucy does not say what her preference is over having flatmates if she sees the listing for a cheap and central apartment. Nor do we know what she would prefer between an expensive shared apartment in the center and a cheap shared apartment in the suburbs.

In Example 4.1, Lucy needs a compact way to express her preferences instead of simply ordering all possible configurations of apartments. Moreover, she does not specify her preference over some variable for all possible combinations of the remaining variables, which would be required by the classical framework of CPnets introduced in Section 2.3. We thus need to work in the framework of generalized CP-nets by [START_REF] Goldsmith | The Computational Complexity of Dominance and Consistency in CP-Nets[END_REF], gCP-nets for short, where agents do not have the burden of providing complete preference tables but they can state preconditions of their statements as propositional formulas.

In this chapter we thus bridge two lines of research in CP-nets: the one on gCPnets and the one on the aggregation of CP-nets coming from multiple agents (mCPnets). We will consider the case where multiple agents express a gCP-net and they want to find a collective ordering that reflects their individual preferences. We will use four semantics to aggregate individual gCP-nets, inspired by the work on mCPnets by [START_REF] Rossi | mCP Nets: Representing and Reasoning with Preferences of Multiple Agents[END_REF] and [START_REF] Lukasiewicz | On the Complexity of mCP-nets[END_REF], but adapted to the fact that CP-nets in our case are incomplete. Analogously to the winner determination problem in goal-based voting that we saw in Section 3.3.1, when studying the computational complexity for mgCP-nets we will not aim at generating the full order on outcomes (its number being in general exponential in the number of variables). Rather, we will focus on determining dominance over outcomes for different semantics, starting from complexity results for individual gCP-nets. [START_REF] Grandi | Aggregating CP-nets with Unfeasible Outcomes[END_REF] also studied the aggregation of CP-nets but in the presence of constraints delimiting feasible outcomes, and defined a procedure based on sequential voting that can be applied on CP-net profiles having special characteristics (i.e., profiles where we can find an ordering of the variables such that the agents can vote for the value of the current variable given what has already been decided for the previous variables). Another approach is to use heuristics and techniques from constraint satisfaction problems for computing local winners in the individual CP-nets and then rule out those that are majority-dominated by some other alternative [START_REF] Li | A Distributed Social Choice Protocol for Combinatorial Domains[END_REF][START_REF] Li | Aggregating Multi-Valued CP-nets: a CSP-Based Approach[END_REF]. Even probabilistic CP-nets (PCP-nets), where for each variable X there is a probability distribution over the set of all possible preference orderings for the domain of X, have been used to model the aggregation of multiple CP-nets [START_REF] Cornelio | Updates and Uncertainty in CP-nets[END_REF][START_REF] Cornelio | Reasoning with PCP-nets in a Multi-Agent Context[END_REF]. Finally, the aggregation of classical CP-nets in a context of social influence has been studied by [START_REF] Maran | A Framework for Aggregating Influenced CP-nets and its Resistance to Bribery[END_REF], with focus in particular on the issue of bribery.

Framework

We start by providing the syntax and the semantics for gCP-nets (Section 4.1.1). Then, we give some complexity results for individual CP-nets (Section 4.1.2) and present mgCP-nets (Section 4.1.3).

Preliminaries

Let V = {X, Y, Z, . . . } be a finite set of variables. Each variable X ∈ V has a finite domain D(X) = {x 1 , . . . , x k } of possible values. With a slight abuse of notation, we write simply x i to indicate that the variable X has been assigned value x i ∈ D(X). Agents express conditional preferences, meaning that the value for one variable may depend on the values assigned to other variables. For X a variable and x i , x j ∈ D(X) two of its possible values, x i x j expresses a preference over X intuitively stating that value x i is preferred to x j for X. A preference can only be expressed over values of a single variable: i.e., we cannot write x i y i for x i ∈ D(X) and y i ∈ D(Y) for X = Y.

A propositional formula ψ over W ⊆ V is defined over X∈W D(X) by using the standard propositional connectives, though the domains are not necessarily binary. Therefore, a formula such as ¬x i , for x i ∈ D(X), is equivalent to x j ∈D(X),x j =x i x j and formulas such as x i ∧ x j for x i and x j different values of variable X are inconsistent, as illustrated by the following example.

Example 4.2. Lucy is considering three neighborhoods in Toulouse: Capitole, Esquirol and Rangueil. We thus have a variable, let us call it B, whose domain D(B) has three values, one for each neighborhood: b 1 , b 2 and b 3 . If Lucy wants to exclude Capitole, it means that she either considers Esquirol or Rangueil: i.e., formula ¬b 1 is equivalent to b 2 ∨ b 3 . Moreover, she cannot state that she wants her apartment to be in two neighborhoods at the same time, hence a formula like b 2 ∧ b 1 is inconsistent.

Let ψ be a propositional formula over variables in W and X / ∈ W be a variable. Let also π = x i x j be a preference over two possible values x i , x j ∈ D(X). A conditional preference statement ϕ defined as ψ : π expresses the fact that if ψ is true, then the preferences over X behave as stated by π. In particular, we call formula ψ the precondition of ϕ. The condition X / ∈ W is required to rule out statements such as "If the apartment is in Rangueil, then an apartment in Capitole is to be preferred to an apartment in Esquirol". A gCP-net N = {ϕ 1 , . . . , ϕ n } is a finite set of conditional preference statements. We rewrite more compactly transitive statements of the form ψ :(x i x j ) and ψ :(x j x k ) as ψ :(x i x j x k ).

A gCP-net can be represented by a dependency graph, where each node is a variable and an edge from X to Y indicates that some values of X occur in the precondition of a preference over values for Y. A gCP-net N is acyclic if its dependency graph is acyclic. The following example shows the concepts introduced above: (ϕ 1 )

: b 2 b 1 b 3 , (ϕ 2 ) c ∨ b 3 : a a.
Later on, Lucy updates her gCP-net by adding statement ϕ 3 :

(ϕ 3 ) c : b 1 b 2 .
Statement ϕ 1 says that Lucy unconditionally prefers to live in Esquirol over Capitole over Rangueil. Statement ϕ 2 says that if the apartment is expensive or in Rangueil, a shared place is preferred. Statement ϕ 3 says that if the apartment is costly, Capitole is better than Esquirol.

The dependency graphs for Lucy's gCP-nets N 1 and N 2 = N 1 ∪ {ϕ 3 } are depicted in Figure 4.1.

An outcome is an assignment to each variable X ∈ V of a value in their domain D(X). For instance, outcome x 1 y 2 z 3 . . . is such that variable X is assigned value x 1 , Y is assigned y 2 , Z is assigned z 3 , and so on. In our example, an outcome would be a specific apartment of which we know location, price and presence of flatmates. The set of all outcomes is denoted by O Definition 4.1. If x i , x j ∈ D(X), ϕ = ψ : x i x j is a conditional preference statement with respect to X, and o 1 and o 2 are two outcomes, then there is a worsening flip from We call > N the induced model of N and often write > i instead of > N i when clear from context. We say that a gCP-net is consistent if there is no chain of worsening flips starting with some outcome o and ending back on o. Since > N is transitive, this is equivalent to saying that there is no outcome o such that o > N o. Observe that Definition 4.1 assumes that the ceteris paribus assumption holds even for the models of ψ in statements as ψ : π. For instance, in Example 4.3 we induce the rankings ab 3 c > ab 3 c and ab 3 c > ab 3 c from statement ϕ 2 = c ∨ b 3 : a a, but not ab 3 c > ab 2 c, though both ab 3 c and ab 2 c satisfy precondition c ∨ b 3 . While it induces less comparisons between outcomes, we believe this interpretation to be justified here as (i) it does not infer more than what is strictly warranted by the agent's statements, and (ii) it gives the agents more freedom to refine their orders without thereby creating inconsistencies, as the following example illustrates: 

= Π X i ∈V D(X i ). If X ∈ V is a variable, we write as o[X] the value of outcome o on X; if W ⊆ V is a set
o 1 to o 2 sanctioned by ϕ if o 1 |= ψ, o 2 |= ψ, o 1 [Y] = o 2 [Y], for any Y ∈ V \ {X} and o 1 [X] = x i , o 2 [X] = x j .
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Individual gCP-nets

We are interested in studying some key computational problems about notions of consistency, dominance, and optimality, rather than providing a full order over outcomes. Let > be a binary The computational complexity of these tasks for a single gCP-net has been established in previous work [START_REF] Goldsmith | The Computational Complexity of Dominance and Consistency in CP-Nets[END_REF] 1 . In particular, DOMINANCE, CONSISTENCY, WNON-DOM'ED, DOM'ING, STR-DOM'ING, ∃DOM'ING as well as ∃STR-DOM'ING have been shown to be PSPACE-complete in the general case, with the result for DOMINANCE holding even when the gCP-net N is consistent. The NON-DOM'ED problem is in P, while ∃NON-DOM'ED is NP-complete. If N is consistent, then the DOM'ING and ∃DOM'ING problems are in coNP. Moreover, the SELF-DOMINANCE problem, i.e., the problem of determining for a given gCP-net N and outcome o whether o > N o, is also PSPACE-complete.

Let us consider an additional problem. In CP-nets, an acyclic dependency graph guarantees consistency [START_REF] Boutilier | CPnets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements[END_REF]. However, in gCP-nets this is not true anymore, as shown by the following example: Example 4.6 shows that a gCP-net can be acyclic, and yet contain some preference statements whose preconditions can be triggered by the same assignment, and for which a cycle in the ordering over outcomes is derived. Therefore, acyclic gCP-nets may or may not be consistent: we thus define the computational problem of checking consistency for acyclic gCP-nets. Namely, given an acyclic gCP-net N for which we can assume, without loss of generality,3 that all preferences π in the statements are over the same variable, to determine whether aCONSISTENCY: N is consistent.

Intuitively, we look for a N ⊆ N for which the conjunction of all preconditions is satisfiable and the preference statements lead to a cycle over the outcomes. Proposition 4.1. aCONSISTENCY is coNP-complete.

Proof. For membership, we show that the complement of aCONSISTENCY, i.e., deciding whether an acyclic gCP-net N = {ψ 1 : π 1 , . . . , ψ n : π n } is inconsistent, is in NP. We guess a subset N ⊆ N and an assignment for the ψ i 's in N (a partial assignment over V). Then, for all possible completion of the guessed assignment with values in the π i 's we check if the statements ψ i : π i lead to a cycle. For hardness we reduce from UNSAT. Consider an instance of UNSAT, i.e., a propositional formula ϕ whose unsatisfiability we want to check. Construct now a gCP-net N = {ϕ : a a} for A a fresh variable whose values D(A) = {a, a} do not occur in ϕ. If ϕ is unsatisfiable, then ϕ : a a is discarded when constructing > N , and thus N is consistent, since it has no cycles. On the other hand, suppose ϕ is satisfiable. Then ϕ : a a leads to a cycle in > N .

mgCP-nets

An mgCP-net M is a multi-set M = N 1 , . . . , N m of m gCP-nets over the set V of variables. We think of the semantics for mgCP-nets as a binary relation over outcomes, reflecting the domination relationships induced by the individual gCP-nets in M. For every mgCP-net M we thus define a binary relation > M on outcomes, called the induced collective model of M, which is obtained by aggregating the induced models of the gCP-nets in M, with notions such as dominance and consistency analogous to the ones for single gCP-nets (though transitivity is not guaranteed anymore).

Given an mgCP-net M = N 1 , . . . , N m and two outcomes o 1 , o 2 , we define the following sets of agents supporting a certain dominance or incomparability relation between outcomes: > N ab 3 A ranking function r with respect to a gCP-net N (mgCP-net M, respectively) assigns to every outcome o a non-negative number r N (o) (r M (o), respectively). We sometimes write r i (o) instead of r N i (o) for simplicity. The longest path rank function r lp We now define the semantics of mgCP-nets, generalizing the semantics defined for mCP-nets [START_REF] Rossi | mCP Nets: Representing and Reasoning with Preferences of Multiple Agents[END_REF][START_REF] Lukasiewicz | On the Complexity of mCP-nets[END_REF]. 

s o 1 >o 2 M = {N i ∈ M | o 1 > i o 2 }, s o 1 o 2 M = {N i ∈ M | o 1 > i o 2 and o 2 > i o 1 }.
ab 3 ab 2 ab 1 ab 1 ab 2 > d N {ab 3 } 3 {ab 3 } 2 {ab 2 } 1 {ab 1 } 0 {ab 1 , ab 2 } 0
o 1 > P M o 2 if o 1 > i o 2 , for every N i ∈ M; o 1 > maj M o 2 if o 1 > i o 2 , for m+1 2 N i ∈ M; o 1 > max M o 2 if |s o 1 >o 2 M | > max{|s o 2 >o 1 M |, |s o 1 o 2 M |}; o 1 > r M o 2 if r M (o 1 ) ≤ r M (o 2 ).
A dominance relation is preserved in Pareto semantics if all agents were unanimous about it in their individual gCP-nets. For majority semantics, it is sufficient to have a majority of agents with that dominance relation in their gCP-nets. For max semantics, a dominance relation is preserved if there are more agents wanting it than agents against or indifferent towards it. Finally, a dominance relation holds in rank semantics if the rank of an outcome is better (lower) than the rank of the other.

If S is a semantics, we call > S M the S-induced (collective) model of M. Given an mgCP-net M and a semantics S, if o 1 > S M o 2 we say that o 1 S-dominates o 2 with respect to M. We say that M is S-consistent, or simply consistent, if there is no set of outcomes o 1 ,. . . ,o k such that o 1 > M . . . > M o k > M o 1 . S-non-dominated, S-weakly non-dominated, S-dominating and S-strongly dominating outcomes for an mgCPnet M are defined analogously as for individual gCP-nets. In the following we will use a specific type of rank relation r M , obtained by summing up the r lp score for all agents in M. Thus, for an mgCP-net M = N 1 , . . . , N m , we will take the rank of o with respect to M to be r M (o) = ∑ N i ∈M r lp i (o). Observe that for different outcomes o 1 and o

2 , if o 1 > P M o 2 , then o 1 > maj M o 2 , and if o 1 > maj M o 2 , then o 1 > max M o 2 .
The fact that the semantics are not mutually exclusive suggests that they can be used alongside each other, e.g., to deliver results when the Pareto semantics is undecided. Secondly, the majand max-induced models > maj M and > max M , respectively, are not guaranteed to be transitive. 
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Computational Complexity

We will study here the reasoning tasks of Table 4.1, now focusing on mgCP-nets and on the semantics introduced in Section 4.1.3. An overview of our results, alongside existing results for single gCP-nets, is given in Table 4.2. We also recall that PSPACE = coPSPACE and that, by Savitch's Theorem, NPSPACE = PSPACE [START_REF] Arora | Computational Complexity: A Modern Approach[END_REF]: both facts will be used in our proofs.

Pareto semantics

For Pareto semantics (abbreviated by P), all the tasks considered turn out to be PSPACE-complete. Intuitively, we cannot leverage the polynomial algorithm for checking whether an outcome o 1 is non-dominated in individual gCP-nets: if o 1 is found to be dominated by o 2 in some gCP-net N i from M, this is of no help in deciding whether o 1 is dominated in > P M . The outcome o 2 would have to dominate o 1 in every > i for this to hold. Our first two results will thus determine a jump in complexity with respect to the single-agent case from P and NP, respectively, to PSPACE; while the rest of our results will stay in PSPACE.

Theorem 4.1. The P-NON-DOM'ED problem for mgCP-nets is PSPACE-complete.

Proof. We show that the complement, i.e., checking whether o is dominated in > P M , is PSPACE-complete. For membership, guess an outcome o and check if o > P M o, which amounts to at most m PSPACE tasks.

For hardness, we do a reduction from the SELF-DOMINANCE problem for single gCP-nets. Thus, given a gCP-net N and an outcome o For hardness, we reduce from P-NON-DOM'ED. Consider an instance with mgCP-net M = N 1 , . . . , N m and outcome o = v 1 . . . v k for V = {V 1 , . . . , V k } and v i ∈ D(V i ) for i ∈ {1, . . . , k}. We now construct a mgCP-net M = N 1 , . . . , N m , where

= xyz • • • , take the 2gCP-net M = N 1 , N 2 , where N 1 = N and N 2 = {(y ∧ z ∧ . . . ) : x x}: i.e.,
N i = N i ∪ { : v i v i | v i ∈ D(V i ), v i = v i }.
The intuitive idea is that any outcome o = o is now self-dominating in > N i , and hence self-dominating in > P M . Thus, if there is a non-dominated outcome at all in > P M , then it must be o: and this only happens if o is non-dominated in M. In other words, o is non-dominated in M if and only if there is a non-dominated outcome in M , concluding the proof. Proof. For hardness, it suffices to reduce from all the corresponding problems for a single gCP-net.

For membership, consider an mgCP-net M = N 1 , . . . , N m . For P-DOMINANCE, we have to check whether o 1 > i o 2 , for every N i ∈ M. This amounts to solving m PSPACE tasks, which is also in PSPACE. For P-CONSISTENCY, recall that M being Pareto-consistent is equivalent to o ≯ P M o, for any outcome o, i.e., o ≯ i o, for some N i ∈ M. We thus ask of every outcome whether o > i o, for all N i ∈ M, which amounts to a (potentially exponential) number of PSPACE tasks. A similar algorithm works for P-WNON-DOM'ED, where we need to take every outcome o and check whether o > i o and o ≯ i o , for every N i ∈ M. Existence of such an outcome o implies that o is not weakly non-dominated in > M , while lack of existence implies the contrary. For S-DOM'ING, we have that o is a dominating outcome iff o > P M o , for any outcome o . This is equivalent to o being dominating in every induced model > i , for N i ∈ M. Determining this involves solving m PSPACE tasks. For P-STR-DOM'ING we have to check that o is dominating in every > i , for N i ∈ M and, in addition, that o is strongly dominating in at least one > i . In fact, suppose o was dominating in every > i , but strongly dominating in neither of them: then o > i o for all N i ∈ M, and thus o > P M o, which means that o is not strongly dominating in > P M . Checking whether o is strongly-dominating in some > i is in PSPACE, thus our task is in PSPACE. For P-∃DOM'ING and P-∃STR-DOM'ING, respectively, we can go through every outcome and ask whether it is dominating and strongly dominating, respectively, in > P M . This consists entirely of PSPACE tasks.

Majority Semantics

The majority semantics maj is inspired by the well-known majority rule in preference aggregation. By definition 4.3, when the number of agents is even we get a strict version of majority. The results can be however easily adapted to a weak majority.

Our first result includes all problems which remain PSPACE-complete when moving from a single gCP-net to many. Then, we have a result whose complexity increases from polynomial to PSPACE-complete from gCP-nets to mgCP-nets. Finally, we have hardness results which again follow from the single-agent case. Proof. PSPACE-hardness is inherited from the corresponding single-agent problems, by considering a mgCP-net with m = 1. We now establish membership.

For maj-DOMINANCE, consider an algorithm counting whether there are more than m+1 2 agents in M such that for each i it holds that o 1 > i o 2 . If this is the case answer yes, and no otherwise. This algorithm need to keep track of the yes/no answer of at most m PSPACE problems, and hence it is in PSPACE. For maj-DOM'ING, consider an algorithm checking for each o ∈ O whether there is a set S of agents, such that |S| ≥ m+1

2

, where each agent i ∈ S has o > i o . Hence, if for some o such a set S is found, the algorithm answers yes, and no otherwise. We thus need to repeat at most |Π X∈V D(X)| times (for all possible outcomes), at most m (for all agents) dominance PSPACE tasks. (and at most m) agents i in M it is the case that o > i o, and it outputs yes if so. This problem is in PSPACE and thus its complement maj-NON-DOM'ED is in coPSPACE, which means that maj-NON-DOM'ED is in PSPACE.

Proof of hardness is identical to that of Theorem 4.1, since in maj semantics for m = 2 majority corresponds to the total number of agents.

Theorem 4.6. Problem maj-CONSISTENCY is PSPACE-hard; maj-∃NON-DOM'ED is NP-hard and in PSPACE.

Proof. The hardness reductions are from the single-agent problems where m = 1. For maj-∃NON-DOM'ED, membership in PSPACE comes from the algorithm asking the PSPACE-complete problem maj-NON-DOM'ED for all outcomes o, and giving a positive answer if at least one is non-dominated.

Max Semantics

The semantics max refines maj by taking into account also incomparabilities and thus expressing a relative majority. The max semantics does not admit cycles of length at most 2. In fact, for > max M to be inconsistent there would need to be two outcomes Proof. Hardness is obtained from the corresponding single-agent problems, by considering a mgCP-net with m = 1. We thus focus on PSPACE-membership.

o 1 and o 2 such that o 1 > max M o 2 and o 2 > max M o 1 , implying a contradiction between |s o 1 >o 2 M | > |s o 2 >o 1 M | and |s o 2 >o 1 M | > |s o 1 >o 2 M |.
For max-DOMINANCE, consider an algorithm that stores |s Proof. We reduce from the corresponding single-agent problems where m = 1.

Theorem 4.9. The max-NON-DOM'ED problem for mgCP-nets is in PSPACE.

Proof. Consider an algorithm that checks for all o ∈ O whether o > max M o, which is a PSPACE problem according to Theorem 4.7, and it answers yes if every one of these tasks gives a no answer.

Observe that we cannot reduce from SELF-DOMINANCE as done in the proof of Theorem 4.1 for max-NON-DOM'ED since > max M has no self-dominating outcomes by definition.

Rank semantics

Since the r-induced model of an mgCP-net M is a total preorder, the notions of strongly dominating outcome and non-dominated outcome are vacuous, as o > r M o for all o. Furthermore, weakly non-dominated outcomes always exist, and they coincide with dominating outcomes. Thus, the r-CONSISTENCY, r-NON-DOM'ED, r-STR-DOM'ING, r-∃NON-DOM'ED, r-∃DOM'ING, and r-∃STR-DOM'ING problems have trivial answers. We will focus on r-DOMINANCE and r-WNON-DOM'ED, with the understanding that a solution to the latter problem is also a solution to the r-DOM'ING problem. We first show, using results on single gCP-nets and some intermediary results that finding the rank of an outcome and comparing two outcomes with respect to their rank is PSPACE-hard even in the single gCP-case (Proposition 4.10) and this carries over to the multi-agent case (Theorem 4.11). Proof. Since worsening flips exist only between outcomes o i and o j differing on just one variable, we can create a chain of outcomes o 1 , . . . , o p of length p of worsening flips sanctioned by the following gCP-net. Let o = v 1 . . . v k a 1 . . . a p and o = v 1 . . . v k a 1 . . . a p such that there are p variables A1 , . . . , A p where o[A i ] = o [A i ] for each i and on the V i variables the two outcomes agree. Consider now the statements:

v 1 ∧ • • • ∧ v k ∧ a 2 ∧ • • • ∧ a p : a 1 a 1 v 1 ∧ • • • ∧ v k ∧ a 1 ∧ a 3 ∧ • • • ∧ a p : a 2 a 2 . . . v 1 ∧ • • • ∧ v k ∧ a 1 ∧ • • • ∧ a p-1 : a p a p
The gCP-net N(o, o ) is simply the collection of all the statements above.

If o is an outcome over a set of variables V and X / ∈ V is a variable such that D(X) = {x, x}, we write ox * for the outcome

o over V ∪ {X} such that o [Y] = o[Y],
for any Y ∈ V, and o [X] = x * , for x * ∈ D(X). We can think of o as o concatenated with x * . We now show that given an outcome o of rank 0 in N, we can construct a new gCP-net N where (a suitable copy of) o has rank k, for any k ≥ 0. Lemma 4.2. If N 1 is a gCP-net and o is an outcome over variables in V, and k ≥ 0, then there exists a gCP-net N 2 over variables V ∪ {X 1 , . . . , X k }, where all the variables in {X 1 , . . . , X k } are binary and none of them occurs in V, such that r lp

1 (o) = 0 iff r lp 2 (ox 1 . . . x k ) = k.
Proof. Consider the following gCP-net: For (b) we do a reduction from DOMINANCE. Let N 1 be a gCP-net, we define 

N 2 = N 1 ∪ { X∈V o[X] ∧ k-1 i=1 x i : x k x k , X∈V o[X] ∧ k-2 i=1 x i ∧ x k : x k-1 x k-1 , X∈V o[X] ∧ k-3 i=1 x i ∧ k-1 j=k x j : x k-2 x k-2 , . . . , X∈V o[X] ∧ k i=2 x i : x 1 x 1 }.
N 2 = N 1 ∪ N(o 2 ,
V ∪ {X}, where X / ∈ V is binary, such that o 1 > 1 o 2 iff r lp 2 (o 1 x) < r lp 2 (o 2 x).
Namely, given a gCP-net N 1 , we can create a gCP-net N 2 , where a dominance relation in > 1 is reflected by a difference between the ranks of two (copies of the) outcomes in > 2 . First, note that d H (o 1 , o 2 ) = p implies d H (o 1 x, o 2 x) = p. By Lemma 4.1 we construct the gCP-net N(o 2 x, o 1 x) of size p which sanctions a chain of worsening flips from o 2 x to o 1 x. We now take

N 2 = N 1 ∪ N(o 2 x, o 1 x). If o 1 > 1 o 2 , then r lp 2 (o 1 x) < r lp 2 (o 2 x). Conversely, if o 1 ≯ 1 o 2 , then r lp 2 (o 1 x) ≥ r lp 2 (o 2 x
), since o 1 inherits all of o 2 's ancestors, and thus its rank is at least as great.

The following example illustrates the point (c) in the previous proof:

Example 4.10. Take N 1 = {b : a a} and we are interested in outcome ab and ab (circled in Figure 4.6). Namely, we want to construct N 2 such that ab > 1 ab iff r lp 2 (abx) < r lp 2 (abx). Taking N 2 as described in the proof of Theorem 4.10 we get, via the ceteris paribus semantics, an extra copy of every dominance relation in > 1 , one for x and one for x. The added preference statements take the dominance block abx > 2 abx and place it on top of abx: since this block is a copy of the block abx > 2 abx, we get that abx inherits all of abx's ancestors. Thus, the rank of abx in > 2 can be smaller than the rank of abx if and only if the path of ancestors of abx goes through abx, i.e., only if abx > 2 abx. But this means that this edge must have been in > 1 originally (which is not the case here).

From Theorem 4.10 we get that for a single gCP-net weak non-dominance (point (a) with k = 0) and domination (either (b) or (c)) for rank semantics are PSPACE-hard. 

Conclusions

In this chapter we studied mgCP-nets, i.e., profiles of generalized CP-nets [START_REF] Goldsmith | The Computational Complexity of Dominance and Consistency in CP-Nets[END_REF] aggregated under semantics adapted from the literature of mCPnets [START_REF] Rossi | mCP Nets: Representing and Reasoning with Preferences of Multiple Agents[END_REF][START_REF] Lukasiewicz | On the Complexity of mCP-nets[END_REF]. Our motivation has been illustrated by the Examples 4.1 and 4.8, where an online renting service allows agents to only partially specify their preconditions for conditional preference statements. We have hereby bridged the line of research on gCP-nets, which provides a framework for expressing general types of preferences under the ceteris paribus semantics, and that on the aggregation of CP-nets coming from different agents. In particular, the Pareto semantics we study here is reminiscent of the unanimity axiom of Section 3.2.3 and the majority semantics of the Maj rule of Section 3.4.2.

As the main barriers to implementation are computational, our focus has been that of studying a variety of complexity problems for mgCP-nets. In particular, we analyzed the consequences of moving from one to multiple agents with respect to the complexity of some known consistency and optimality problems. Our findings show that these problems fall mostly in the PSPACE complexity class. On the positive side, for most cases the complexity does not increase when moving to the multi-agent case, one exception being the problems for non-dominated outcomes.

The results of this chapter lead to many interesting directions for future work. Analogously to what we did at the end of Section 3.3.4 for the complexity results of the winner determination problem for majority rules in goal-based voting, we could explore restrictions (possibly syntactical) on gCP-nets to make reasoning tasks tractable. Moreover, alternative ways to aggregate individual gCP-nets could be explored, such as voting directly on formulas as in judgment aggregation [START_REF] Endriss | Judgment Aggregation[END_REF], or adapting rules from goal-based voting as the ones of Section 3.1.2.

Part II

Strategic Behavior

Chapter 5

Logic, Goals, and Strategic Agents

In the second part of this thesis we study some game-theoretic and strategic problems in settings where agents have individual goals represented in a logical language. In particular, we will start in Chapter 6 by studying the strategic component of goal-based voting (introduced in Chapter 3): i.e., an agent i will not be assumed to be truthful anymore and she will submit a goal γ i different from her honest goal γ i if by doing so she can obtain a better result of the aggregation process.

A fundamental example in the literature on propositional goals in a strategic setting is that of Boolean games [START_REF] Harrenstein | Boolean Games[END_REF][START_REF] Bonzon | Boolean Games Revisited[END_REF]. In such games, each player i wants to achieve a goal γ i represented by a formula of propositional logic and her preferences are dichotomous. Goals are expressed over a set of propositional variables Φ which is partitioned in as many subsets as the number of agents and each agent has exclusive control over the variables in her subset Φ i ⊆ Φ. The strategic actions at her disposal consist in affecting the truth values of the variables she controls (i.e., those in Φ i ). The following simple example illustrates a situation captured by a Boolean game:

Example 5.1. Consider three agents, Diana, Bacchus and Flora, who want to organize a potluck, i.e., a meal where everyone brings something to share. In order to avoid the common scenario where everyone just brings a bag of chips and a beer, they decide to make each one of them in charge of a specific category. Diana will bring the meat (either steak or chicken), Bacchus will bring the wine (either white or red), and Flora will bring the appetizer (either spring rolls or fried squash blossom). Each one of them can only control the part of the meal that they are assigned to: e.g., Diana cannot decide if they will be drinking white or red wine. However, each one of them has some goal regarding the meal as a whole. In particular, Diana would like to have red wine if they have steak, Bacchus would be happy if at the meal there will be chicken or spring rolls, and Flora would like to have white wine and chicken.

In Boolean games the strategic actions are thus different from those of goal-based voting: in the former agents act by assigning a truth value only to the propositional variables they control, while in the latter agents directly submit their (possibly untruthful) goal. Boolean games have later been generalized to their iterated version [START_REF] Gutierrez | Iterated Boolean Games[END_REF][START_REF] Gutierrez | Iterated Boolean Games[END_REF], in which agents play the game infinitely many times. Therefore, the goals of the agents are expressed in Linear Temporal Logic (LTL), that we introduce in Section 5.1, which extends propositional logic by making it possible to refer to future states of the world. In Chapter 7 we will see another example of iterated game where agents have goals expressed in LTL, i.e., we will introduce the class of influence games. Here, agents will be connected by a network of influence and they will try to change the opinions of the other agents to achieve their goals by using their influence power as an action.

Given a class of games, classical problems in game theory consist in studying whether the game admits certain types of solutions. Examples of solution concepts are, for instance, whether an agent has a strategy allowing her to obtain her goal no matter what the other agents do (winning strategy), whether an agent has a strategy which is better than any other strategy (weakly dominant strategy), and finally whether a strategy profile is such that no single agent would benefit from a unilateral deviation (Nash equilibrium). An important tool that can be used to check the existence of a winning strategy for an agent in an iterated game is Alternating-Time Temporal Logic (ATL), that we introduce in Section 5.1, which extends LTL by allowing to talk about the actions of a coalition of agents. As we will see, the semantics of ATL can be defined over so-called Concurrent Game Structures (CGS): in Chapter 8 we will introduce a special type of CGS where agents have shared control over propositional variables, which is useful for instance to capture the dynamics of influence games.

Logics for Time and Strategic Reasoning: ATL and LTL

A multitude of logics have been defined to reason about different scenarios in multiagent systems, in particular game-theoretic ones (see, e.g., the book by [START_REF] Shoham | Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations[END_REF]. We present here two such logics, suited to reason about agents having propositional goals in iterated games: the Linear-time Temporal Logic (LTL) by [START_REF] Pnueli | The Temporal Logic of Programs[END_REF] and the Alternating-time Temporal Logic (ATL) by [START_REF] Alur | Alternating-Time Temporal Logic[END_REF]. In particular, temporal logics with strategic operators allow us to express properties of games, such as the existence of a winning strategy for an agent.

We start by defining the syntax of ATL * , which is composed by state formulas (ϕ) and path formulas (ψ), for a given set of variables Φ and a set of agents N:

ϕ ::= p | ¬ϕ | ϕ 1 ∨ ϕ 2 | C ψ ψ ::= ϕ | ¬ψ | ψ 1 ∨ ψ 2 | ψ | ψ 1 U ψ 2
where p ∈ Φ and C ∈ 2 N . The intuitive reading of C ψ is "coalition C has a strategy to enforce ψ", that of ψ is "ψ holds at the next state" and that of ψ 1 U ψ 2 is "ψ 1 will hold until ψ 2 holds". Conjunction (∧) and implication (→) are defined in the usual way. The language of ATL consists of all state formulas where ψ in C ψ is either ϕ or ϕU ϕ.

The language of LTL is defined by the following BNF and it consists of all path formulas in ATL * whose state formulas are propositional atoms only:

ψ ::= p | ¬ψ | ψ ∨ ψ | ψ | ψ 1 U ψ 2
In order to clarify the syntax of ATL, ATL * and LTL, we provide here a small example of formulas which we can or cannot express in the three logics:

Example 5.2. Let Φ = {p, q} be our propositional variables and N = {1, 2, 3} be our set of agents. Consider the following four formulas:

ϕ 1 = p ∨ q ϕ 2 = p ∨ q ϕ 3 = {1, 2} p ∨ q ϕ 4 = {1, 2} p ∨ q
We have that ϕ 1 is a formula of ATL, ATL * and LTL; ϕ 2 is a formula of ATL * and LTL; ϕ 3 is a formula of ATL * ; and ϕ 4 is a formula of ATL and ATL * .

We now introduce Concurrent Game Structures (CGS), which will give us a way to define truth conditions for LTL and ATL * formulas: Definition 5.1. Given a set N of agents and a set Φ of propositional variables, a concurrent game structure (CGS) is a tuple G = S, Act, d, τ, π such that:

• S is a non-empty set of states;

• Act is a non-empty set of individual actions;

• d : N × S → (2 Act \ {∅}) is the protocol function, returning the actions available to the agents at each state;

• τ : S × Act |N| → S is the transition function, such that for every s ∈ S and α ∈ Act |N| , τ(s, α) is defined if and only if α i ∈ d(i, s) for all i ∈ N;

• π : S → 2 Φ is the state labelling function.

In order to define the semantics for LTL and ATL * we still need to provide some additional notation. The set of enabled joint actions at some state s is defined as

Act(s) = {α ∈ A n | α i ∈ d(i, s) for every i ∈ N}. The set of successors of s is Succ(s) = {τ(s, α) | α ∈ Act(s)}. An infinite sequence of states λ = s 0 s 1 . . . is a computation or a path if s k+1 ∈ Succ(s k ) for all k ≥ 0. For every computation λ and k ≥ 0, λ[k, ∞] = s k , s k+1 , . . . denotes the suffix of λ starting from s k . Observe that λ[k, ∞] is also a computation. When λ is clear from context, we denote with α[k] the action such that λ[k+1] = τ(λ[k], α[k]).
The following is a simple example to illustrate all the concepts introduced so far:

Example 5.3. Consider the sets of variables Φ = {p, q} and agents N = {1, 2, 3}. Define a CGS G with states S = {s 1 , s 2 , s 3 , s 4 }, actions Act = {a 1 , a 2 , a 3 , a 1 , a 2 , a 3 }, protocol function d where for all s ∈ S and i ∈ N we have d(i, s) = {a i , a i }, transition function τ where for all s ∈ S if α = a 1 a 2 a 3 then τ(s, α) = s 1 , if α = a 1 a 2 a 3 then τ(s, α) = s 4 , and for any other α we have τ(s, α) = s 2 , and finally labelling function π such that π(s 1 ) = {p, q}, π(s 2 ) = {p}, π(s 3 ) = {q} and π(s 4 ) = {∅}.

We have that Act(s) = {a 1 a 2 a 3 , a 1 a 2 a 3 , a 1 a 2 a 3 , a 1 a 2 a 3 , a 1 a 2 a 3 , a 1 a 2 a 3 , a 1 a 2 a 3 , a 1 a 2 a 3 } and Succ(s) = {s 1 , s 2 , s 4 } for all s ∈ S. An example of a computation is the path λ = s 1 s 2 s 4 s 1 s 2 s 4 . . . , and also its suffix λ[2, ∞] = s 4 s 1 s 2 s 4 . . . is a computation as well. We have that α [2] = a 1 a 2 a 3 is the action such that λ [3] = τ(λ [2], α [2]) = s 1 .

A (memoryless) strategy for agent i ∈ N is a function σ i : S → Act such that σ i (s) ∈ d(i, s), returning an action for each state. We let σ C be a joint strategy for coalition C ⊆ N, i.e., a function returning for each agent i ∈ C, the individual strategy σ i . For simplicity we write σ for σ N . The set out(s, σ C ) includes all computations λ = s 0 s 1 . . . such that (a) s 0 = s; and (b) for all k ≥ 0, there is α ∈ Act(s) such that σ C (i)(s k ) = α i for all i ∈ C, and τ(s k , α) = s k+1 . Note that out(s, σ) is a singleton.

We continue Example 5.3 to explain these new pieces of notation just defined:

Example 5.4. The strategy of agent 1 is defined as

σ 1 (s 1 ) = σ 1 (s 2 ) = a 1 and σ 1 (s 3 ) = σ 1 (s 4 ) = a 1 . For agent 2, let σ 2 (s 1 ) = σ 2 (s 3 ) = a 2 and σ 2 (s 2 ) = σ 2 (s 4 ) = a 2 .
Finally, for agent 3 let σ 3 (s 1 ) = σ 3 (s 4 ) = a 3 and σ 3 (s 2 ) = σ 3 (s 3 ) = a 3 . Given these strategies, we have for instance that out(s 1 , σ) = {s 1 s 1 s 1 s 1 . . . } and out(s 4 , σ) = {s 4 s 2 s 2 s 2 . . . }

We are now ready to define truth conditions for LTL and ATL * formulas with respect to a CGS G:

(G, s) |= p iff s(p) = 1 (G, s) |= ¬ϕ iff (G, s) |= ϕ (G, s) |= ϕ 1 ∨ ϕ 2 iff (G, s) |= ϕ 1 or (G, s) |= ϕ 2 (G, s) |= C ψ iff for some σ C , for all λ ∈ out(s, σ C ), (G, λ) |= ψ (G, λ) |= ϕ iff (G, λ[0]) |= ϕ (G, λ) |= ¬ψ iff (G, λ) |= ψ (G, λ) |= ψ 1 ∨ ψ 2 iff (G, λ) |= ψ 1 or G, λ |= ψ 2 (G, λ) |= ψ iff (G, λ[1, ∞]) |= ψ (G, λ) |= ψ 1 U ψ 2 iff for some i ≥ 0, (G, λ[i, ∞]) |= ψ 2 and
(G, λ[j, ∞]) |= ψ 1 for all 0 ≤ j < i

In particular, observe that formulas in ATL * are interpreted on states, while formulas in LTL are interpreted on computations.

Related Work on Games, Logic, and Networks

A game-theoretic setting which is close to strategic goal-based voting is that of aggregation games [START_REF] Grandi | Negotiable Votes[END_REF]. In aggregation games, agents hold as propositional goals conjunctions over the variables at stake, and contrary to Boolean games agents have shared control over all the variables. The strategic actions consist in submitting a binary ballot over the issues. If transposed to the framework of goalbased voting, this would mean that agents would be allowed to submit only one of the models of their goal (as Camille in Example 3.1).

Influence games are part of the literature on formal models of opinion diffusion in multi-agent systems, combining techniques from social network analysis with those of belief merging and judgment aggregation. In particular, in Belief Revision Games [START_REF] Schwind | Belief Revision Games[END_REF][START_REF] Schwind | Is Promoting Beliefs Useful to Make Them Accepted in Networks of Agents[END_REF] agents connected via a network hold belief bases over some issues. At each step of the game, agents update their beliefs on the issues based on the opinions of the agents connected to them if the opinions do not conflict with their current beliefs; otherwise, agents update by means of belief merging operators to choose the most plausible opinion based on how "close" it is to the opinions of their connected agents (and themselves). Other examples include propositional opinion diffusion and pairwise preference diffusion on social networks [START_REF] Grandi | Propositional Opinion Diffusion[END_REF][START_REF] Brill | Pairwise Diffusion of Preference Rankings in Social Networks[END_REF]. In the propositional opinion diffusion model (later extended by [START_REF] Botan | Multi-Issue Opinion Diffusion under Constraints[END_REF] with the inclusion of constrains on the issues), the focus is on studying how the opinions of the agents evolve over time due to the influence of other agents in the network. An agent's opinion at a given time results from aggregating the opinions at the previous time step of the agens from which she is influenced. Our contribution with influence games consists in adding a strategic component to these models, where agents can rationally choose whether or not to disclose their opinon to the people they influence, if by doing so they can work towards the satisfaction of their goal.

The CGS with shared control that we define extend CGS with exclusive control which have been introduced by [START_REF] Belardinelli | On Logics of Strategic Ability Based on Propositional Control[END_REF]. Another example of a logical framework for reasoning about capabilities of agents with exclusive propositional control is that of Coalition Logic of Propositional Control (CL-PC), introduced by van der Hoek and [START_REF] Van Der Hoek | On the Logic of Cooperation and Propositional Control[END_REF]. When ATL formulas are interpreted over the class of strong CGS with exclusive control defined by [START_REF] Belardinelli | On Logics of Strategic Ability Based on Propositional Control[END_REF], where control is exhaustive and all actions are available at all states, the expressive power is the same as that of CL-PC. 1 Gerbrandy (2006) studied variations of CL-PC without exclusive control, i.e., where a propositional variable p may be controlled by more than one agent. In particular, the logic of positive control requires that at least one agent sets p to true to assign the truth value true to p, while in the logic of consensus games all agents have to set p to true to change its value to true. 2 Finally, we also mention simple games, a class of cooperative games where each coalition of agents is labeled as either winning or losing, and weighted majority games, a class of simple games where we can associate to each agent some weight such that for every winning coalition the sum of agents' weights is higher than the sum of weights in every losing coalition [START_REF] Isbell | On the Enumeration of Majority Games[END_REF]. Observe however that in these cooperative games agents do not hold conflicting logical goals.

Chapter 6

Strategic Goal-Based Voting

Manipulation of voting rules has been amply studied in voting theory, starting from the seminal result of [START_REF] Gibbard | Manipulation of Voting Schemes: A General Result[END_REF] and [START_REF] Satterthwaite | Strategy-Proofness and Arrow's Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions[END_REF] to more recent studies aimed at finding barriers to manipulation (see, e.g., the recent survey by [START_REF] Conitzer | Barriers to Manipulation in Voting[END_REF]. When introducing the framework of goal-based voting in Chapter 3 we assumed that agents always provide their truthful goal. However, there may be situations where agents would benefit (i.e., getting a better outcome) by lying about their goals. Consider the following example: Example 6.1. Three automated personal assistants need to arrange a business meal for their owners. They have to decide whether the restaurant should be fancy (F), if it should be in the center (C), and if they should meet for lunch (L) instead of dinner. Each owner gives to their assistant a propositional goal with respect to these issues. The goal of the first agent is that if they go to a restaurant in the suburbs, then they should have a casual lunch: γ 1 = ¬C → (¬F ∧ L). The second agent wants that the meeting is either in the suburbs or casual, but not both: γ 2 = ¬C ⊕ ¬F. The third agent wants a fancy lunch in the center: γ 3 = F ∧ L ∧ C. If the agents use the TrueMaj rule (defined in Section 3.1.2), the result would be {(111)}. However, the second agent notices that by submitting the goal γ 2 = C ∧ ¬F ∧ ¬L the outcome of TrueMaj would be {(101)} which is one of the models of the goal γ 2 unlike the truthful outcome {(111)}.

In this chapter we will thus study the strategic behavior of goal-oriented agents when there is no assumption on their truthfulness. In particular, we will focus on the three majoritarian rules that we have introduced in Section 3.1.2: i.e., EMaj, TrueMaj and 2sMaj. The appeal of majority lies not only in its intuitive definition and extensive application in real-world scenarios, but also on having been widely studied in the related fields of voting theory and judgment aggregation [START_REF] May | A set of Independent Necessary and Sufficient Conditions for Simple Majority Decision[END_REF]Dietrich and List, 2007a), including from a strategic point of view [START_REF] Dietrich | Strategy-Proof Judgment Aggregation[END_REF].

Each of our majoritarian goal-based voting rules will be analyzed with respect to its resistance to several manipulation strategies, inspired by similar work on strategyproofness in belief merging [START_REF] Everaere | The Strategy-Proofness Landscape of Merging[END_REF]. Negative results, i.e., finding that a rule can be manipulated in the general case, lead us to study the computational complexity of manipulation, as well as restricting the language of individual goals in the hope of discovering niches of strategy-proofness.1 

Framework

The basic definitions of the framework of goal-based voting have been introduced in Section 3.1.1. As we have mentioned, we assume that agents holding propositional goals leads to a dicothomous preference relation on outcomes: an agent equally prefers any model of her goal to any counter-model. For resolute rules, this implies that the unique outcome satisfies an agent if and only if it is a model of her goal. If a rule is not resolute (in the stronger sense), however, different notions of satisfaction with respect to the outcome can be defined depending on how an agent compares two sets of interpretations.

Let sat : L I × (P ({0, 1} m ) \ ∅) → [0, 1] be a function expressing the satisfaction of agent i towards the outcome of a rule F on profile Γ, with the intuitive reading that 1 indicates maximal satisfaction of the agent while 0 indicates maximal unsatisfaction. We simply write sat(i, F(Γ)) instead of sat(γ i , F(Γ)). The optimistic, pessimistic and expected utility maximizer are three notions of satisfaction an agent may hold:

opt(i, F(Γ)) = 1 if F(Γ) ∩ Mod(γ i ) = ∅ 0 otherwise pess(i, F(Γ)) = 1 if F(Γ) ⊆ Mod(γ i ) 0 otherwise eum(i, F(Γ)) = |Mod(γ i ) ∩ F(Γ)| |F(Γ)|
An optimistic agent is satisfied if in the outcome of F there is at least one model of her goal. A pessimistic agent wants all the interpretations in the outcome of F to be models of her goal. The notions of optimistic and pessimistic agents also appear in the work by [START_REF] Jimeno | An Extension of the Moulin No Show Paradox for Voting Correspondences[END_REF] for orderings of candidates. More precisely, when comparing two sets of candidates A and B, an optimist ordering prefers A to B if the best candidate in A is better than the best candidate in B. Conversely, a pessimistic ordering prefers A to B if the worst candidate in A is better than the worst candidate in B. These notions correspond to ours when considering sets A and B containing interpretations over variables. Expected utility maximizers assume that a unique interpretation will be chosen at random among those tied in the outcome of F, and thus the higher the proportion of models of the agent's goal in F(Γ) over the total number of interpretations in F(Γ), the better. 2Another approach to model the satisfaction of an agent with repect to an outcome F(Γ) would be by using preferences based on the Hamming distance, as done for instance in judgment aggregation [START_REF] Dietrich | Strategy-Proof Judgment Aggregation[END_REF][START_REF] Endriss | Complexity of Judgment Aggregation[END_REF]. The Hamming distance between two interpretations corresponds to the number of issues on which they have different values: for instance, interpretations (011) and (101) have an Hamming distance of 2 as they only differ on the values assigned to the first two issues. When comparing a set of interpretations (e.g., the models of an agent's goal) with a single interpretation (e.g., the outcome of a resolute rule) or another set of interpretations (e.g., the outcome of a non-resolute rule) we would need to define again different types of agents, depending on whether the Hamming distance is computed between the interpretations that are closer, those that are further away, or an average of them. We leave the study of manipulation of goal-based voting with Hamming preferences for future work.

The preference of agent i over outcomes is a complete and transitive relation i , whose strict part is i , which is defined based on the agent's satisfaction:

F(Γ) i F(Γ ) iff sat(i, F(Γ)) ≥ sat(i, F(Γ )).
Namely, agent i prefers the outcome of F on profile Γ to the outcome of F on profile Γ if and only if the satisfaction of agent i for F(Γ) is higher than her satisfaction for F(Γ ). Generalizing standard definitions of manipulation in judgment aggregation, we can now define what does it mean for a goal-based voting rule to be immune to manipulation.

Given Γ = (γ i ) i∈N , let (Γ -i , γ i ) = (γ 1 , . . . , γ i , . . . , γ n ) be the profile where only agent i changed her goal from γ i to γ i . Agent i has an incentive to manipulate by submitting goal γ i instead of γ i if and only if F(Γ -i , γ i ) i F(Γ). A rule F is strategy-proof if and only if for all profiles Γ there is no agent i who has an incentive to manipulate.

Even though in some scenarios an agent may have an incentive to manipulate, there could be some constraints on the type of manipulation she can actually perform. For instance, consider the example below: Example 6.2. Ann, Barbara and Camille are deciding the details of their next meeting and, among other things, whether they will meet in the morning or in the afternoon. Barbara and Camille know Ann very well, and they are aware that she is definitely a morning person. Therefore, even if there may be cases in which Ann would benefit by submitting a goal favouring a meeting in the afternoon, Barbara and Camille would immediately suspect that Ann is up to something.

For this reason, we will focus on three manipulation strategies previously introduced by [START_REF] Everaere | The Strategy-Proofness Landscape of Merging[END_REF]:

• Unrestricted: i can send any goal γ i instead of her truthful goal γ i

• Erosion: i can only send a goal γ i such that Mod(γ i ) ⊆ Mod(γ i )

• Dilatation: i can only send a goal γ i such that Mod(γ i ) ⊆ Mod(γ i )

Observe that a rule F that is manipulable by erosion and dilatation is therefore manipulable unrestrictedly. Conversely, a rule that is strategy-proof for unrestricted manipulation is also strategy-proof for erosion and dilatation strategies.

Another type of restriction that we will study for manipulation is on the individual goals themselves. Goals have been defined as arbitrary consistent formulas of propositional logic in Section 3.1.1, but the fact that a goal-based voting rule F is manipulable may depend on which fragment of propositional logic the agent is using to express her goal. Hence, we will investigate what happens when the goals are restricted to the languages L defined at the end of Section 2.1.

In the rest of the chapter we will focus on the three issue-wise majoritarian rules introduced in Section 3.1.2, i.e., EMaj, TrueMaj and 2sMaj.

Manipulation of Majoritarian Rules

A well-known result in judgment aggregation proven by [START_REF] Dietrich | Strategy-Proof Judgment Aggregation[END_REF] is that the issue-wise majority rule is single-agent strategy-proof. 3 Our first result shows that in the context of goal-based voting strategy-proofness is not guaranteed for the three adaptations of the majority rule: Theorem 6.1. EMaj, TrueMaj and 2sMaj are manipulable by erosion and dilatation.

Proof. We provide goal-profiles where an agent can get a better result by submitting an untruthful goal. For ease of presentation we display the models of the agents' goals, but recall that the input of a rule F consists of propositional formulas. Consider the profiles Γ, Γ and Γ for three agents and three issues, together with the results of EMaj, TrueMaj and 2sMaj:

Γ Γ Γ Mod(γ 1 ) (111) (111) (111) Mod(γ 2 ) (001) (001) (001) (101) (101) (101) Mod(γ 3 ) (010) (010) (000) (000) (100) (110) {E/True/2s}Maj (001) (101) (101)
Let Γ be the profile where each agent submits their truthful goal:

γ 1 = 1 ∧ 2 ∧ 3, γ 2 = ¬1 ∧ ¬2 ∧ 3, γ 3 = (¬1 ∧ ¬3) ∨ (1 ∧ ¬2 ∧ 3).
For erosion manipulation, agent 3 prefers the result of EMaj, 2sMaj and TrueMaj (which happen to coincide) when applied to Γ rather than when applied to Γ. For dilatation, agent 3 prefers the result of EMaj, TrueMaj and 2sMaj when applied to Γ rather than to Γ.

Observe that the three majoritarian rules on the profiles used in the proof of Theorem 6.1 return singleton outcomes: hence, the result holds for optimists, pessimists and expected utility maximizers (since the three notions coincide on such profiles).

Theorem 6.1 is thus in contrast with the result of judgment aggregation, painting a more negative picture for manipulation in goal-based voting. In the next sections we thus study three restrictions on the goal-language in a quest to find islands of strategy-proofness. Results are summarized in Table 6.1.

Conjunctions

The language of conjunctions L ∧ captures the framework of judgment aggregation with abstentions [START_REF] Gärdenfors | A Representation Theorem for Voting with Logical Consequences[END_REF][START_REF] Dietrich | Judgment Aggregation without Full Rationality[END_REF][START_REF] Dokow | Aggregation of Binary Evaluations with Abstentions[END_REF]Terzopoulou et al., 2018), as explained in Section 3.4.2. This means, in particular that agents having a goal in L ∧ either support, reject or abstain on each issue. For this restriction on the language we find positive results of strategy-proofness: Theorem 6.2. For any profile Γ where γ i ∈ L ∧ for some i ∈ N , agent i has no incentive to manipulate unrestrictedly the rules 2sMaj and EMaj.

Proof. Consider a profile Γ with γ i ∈ L ∧ for some agent i ∈ N . Since 2sMaj and EMaj are resolute, we have a unique outcome {w} on Γ (which may be different for the two rules). If w ∈ Mod(γ i ) agent i has no incentive to manipulate as her goal is already satisfied. Hence, suppose that w ∈ Mod(γ i ). As γ i = L j 1 ∧ • • • ∧ L j k for j 1 , . . . , j k ∈ I, we have for all j ∈ I:

• If L j is not in γ i , then m i (j ) = ( |Mod(γ i )| 2 , |Mod(γ i )| 2 ); • If L j = is in γ i , then m i ( ) = (0, |Mod(γ i )|); • If L j = ¬ is in γ i , then m i ( ) = (|Mod(γ i )|, 0).
Therefore, if w ∈ Mod(γ i ) there must be x literals in γ i such that w satisfies their negation. Consider an arbitrary such literal L x .

For 2sMaj, let EMaj(γ i ) = {w i } be the result of the first step of majority applied to γ i . We have that w i (x) = 1w(x), and therefore agent i cannot influence the outcome of 2sMaj towards w i (x), and thus towards her goal.

For EMaj, if w(x) = 1 (analogously for 0),

L x = ¬x. Since m i (x) = (|Mod(γ i )|, 0), we have ∑ v∈Mod(γ i ) v(x) |Mod(γ i )| = 0 and thus ∑ k∈N\{i} ∑ v∈Mod(γ k ) v(x) |Mod(γ k )| ≥ n 2 .
Agent i is already giving no support to x and yet x is accepted in the outcome. Therefore, EMaj cannot be manipulated.

For TrueMaj we can provide a similar proof, but we also need to consider the type of satisfaction of the agents, i.e., optimist, pessimist or expected utility maximizer: Theorem 6.3. For any profile Γ where γ i ∈ L ∧ for some i ∈ N , agent i has no incentive to manipulate unrestrictedly the rule TrueMaj.

Proof. First, observe that on the resolute profiles on which TrueMaj and EMaj coincide, we can apply the same reasoning as for the proof of Theorem 6.2. Consider now a profile Γ such that γ i ∈ L ∧ , and let TrueMaj(Γ) = {w 1 , . . . , w }.

Let us start by considering an optimist agent i. By definition, agent i manipulates if and only if {w 1 , . . . , w } ∩ Mod(γ i ) = ∅, and she seeks to include at least one v ∈ Mod(γ i ) into TrueMaj(Γ). As v ∈ TrueMaj(Γ), there exists ∈ I with literal L ap-

pearing in γ i such that M(Γ)={1 -x} for x=v( ). Thus ∑ i∈N m 1-x i |Mod(γ i )| > ∑ i∈N m x i |Mod(γ i )| .
By being truthful, however, agent i is already giving her full support to L and hence cannot change the outcome in her favor.

An expected utility maximizer agent i manipulates when she can increase the value of

|Mod(γ i )∩TrueMaj(Γ)| |TrueMaj(Γ)|
. As shown above, it is not possible for agent i to include an arbitrary v ∈ Mod(γ i ) that is not in TrueMaj(Γ) = {w 1 , . . . , w } in the outcome TrueMaj(Γ). However, agent i may want to remove some counter-models of γ i from TrueMaj(Γ). All counter-models differ from the models of γ i on some of the issues appearing as literals in γ i . Hence, for any of these issues j the agent has to change M(Γ) j = {0, 1} into {0} if L j = ¬j, or {1} if L j = j. However, at Γ we have

∑ i∈N m 1 ij |Mod(γ i )| = ∑ i∈N m 0 ij |Mod(γ i )| ,
even though agent i is giving the full support of 1 to L j . Thus, she cannot break the tie as any γ i would have models lowering her support.

Finally, a pessimist agent i cannot manipulate since she wants at least one v ∈ Mod(γ i ) in the outcome, which is impossible as shown for the optimist case, and to remove all counter-models, which is also impossible as shown for the expected utility maximizers. Hence, the rule TrueMaj is strategy-proof.

A consequence of Theorems 6.2 and 6.3 is that goals in L ∧ make the three majorities for goal-based voting strategy-proof: Corollary 6.1. For any I and N, if γ i ∈ L ∧ for all i ∈ N then EMaj, TrueMaj and 2sMaj are strategy-proof for unrestricted manipulation.

Hence, Corollary 6.1 gives us a strategy-proofness result for majority rules in judgment aggregation with abstentions.

By combining Corollaries 6.1 and 6.2 we get the following positive result: Theorem 6.7. For any profile Γ such that γ 1 , . . . , γ n ∈ L ∧ ∪ L ∨ , EMaj and TrueMaj are strategy-proof for dilatation manipulation and 2sMaj is strategy-proof for unrestricted manipulation.

Therefore, we have found a restriction on the language of goals that gives us a strategy-proofness result for the three issue-wise majority rules EMaj, TrueMaj and 2sMaj. If agents have as goals conjunctions or disjunctions they will not have an incentive to manipulate.

Exclusive Disjunctions

The final restriction that we study is that on the language of exclusive disjunctions L ⊕ , where each formula is an exclusive disjunction of literals. The models of a formula ϕ = ((p ⊕ q) ⊕ r) over three variables are Mod(ϕ) = {( 111), (010), ( 100), (001)}. While our intuitive understanding of exclusive disjunction (i.e., "exactly one variable is true at the same time") may be in contrast with the presence of model ( 111), the results in this section are all for profiles on only two variables that thus do not pose any problem of interpretation.

Unfortunately, such a restriction does not give strategy-proofness for majority rules, as the following result shows: Theorem 6.8. There exists profiles Γ 0 , Γ 1 and Γ 2 , and agent i ∈ N with γ i ∈ L ⊕ such that agent i has an incentive to manipulate rules 2sMaj, EMaj and TrueMaj by erosion and dilatation.

Proof. All profiles are for three agents and two issues. For 2sMaj and EMaj and erosion manipulation, consider profile Γ 0 where γ 1 = 1 ∧ 2, γ 2 = ¬1 ∧ ¬2 and γ 3 = 1 ⊕ 2. We have that 2sMaj(Γ 0 ) = EMaj(Γ 0 ) = {(00)}. Consider now γ 3 = ¬1 ∧ 2. The result for both rules is {(01)}, and thus agent 3 has an incentive to manipulate.

For dilatation, consider the profile Γ 1 where γ 1 = ¬1 ∧ 2, γ 2 = ¬1 ∧ ¬2 and γ 3 = 1 ⊕ 2. We have that 2sMaj(Γ 1 ) = EMaj(Γ 1 ) = {(00)}. If we consider γ 3 = 1 ∨ 2, the result is 2sMaj(Γ 1 ) = EMaj(Γ 1 ) = {(01)}, and thus agent 3 has again an incentive to manipulate.

For TrueMaj, consider Γ 2 with γ 1 = 1 ∧ 2, γ 2 = 1 ∧ ¬2 and γ 3 = 1 ⊕ 2. We have TrueMaj(Γ 2 ) = {(10), (11)}. Agent 3 can manipulate by erosion with γ 3 = 1 ∧ ¬2, and by dilatation with γ 3 = ¬1 ∨ ¬2. In both cases the result is {(10)}.

Therefore, the language of exclusive disjunctions does not guarantee strategyproofness for the rules 2sMaj, EMaj and TrueMaj for any of the manipulation strategies we introduced. From the proofs of Theorems 6.6 and 6.8 we can observe that the rule 2sMaj behaves in counter-intuitive ways for the goals in L ∨ and L ⊕ , and hence its use should not be prioritized in such cases.

Computational Complexity

We have seen in Section 6.2 that majoritarian goal-based voting rules are in general subject to the threat of manipulation, as shown by Theorem 6.1. However we may be interested in checking how hard would it be for an agent to actually know that by submitting another goal she would get a better outcome.

The problem of manipulability of resolute rules is defined as follows, akin to its definition for judgment aggregation [START_REF] Endriss | Complexity of Judgment Aggregation[END_REF]:

L ∧ L ∨ L ⊕ E D E D E D EMaj SP SP M SP M M TrueMaj SP SP M SP M M 2sMaj
SP SP SP SP M M TABLE 6.1: Manipulation and strategy-proofness results for the majoritatian rules EMaj, TrueMaj and 2sMaj and the language restrictions L ∧ , L ∨ and L ⊕ . In particular, 'E' stands for erosion, 'D' for dilatation, 'SP' for strategy-proof and 'M' for manipulable.

MANIP(F)

Input: Profile Γ = (γ 1 , . . . , γ n ), agent i Question: If Mod(γ i ) ∩ F(Γ) = ∅, is there γ i so that Mod(γ i ) ∩ F(Γ -i , γ i ) = ∅?
As we have seen in Section 3.3.4, the winner determination problem WINDET of majority rules was hard for the class PP (Probabilistic Polynomial Time). Our results will make use of Lemma 3.1 where we proved that the problem MAJSAT-p is PP-complete. Theorem 6.9. MANIP(2sMaj) is PP-hard.

Proof. We reduce from the PP-complete problem MAJSAT-p. Consider an instance of MAJSAT-p with a formula ϕ[p 1 , . . . , p k ] and p 1 one of its variables. Construct an instance of MANIP(2sMaj) where I = {p 1 , . . . , p k , q, r}, and a profile Γ = (γ 1 , γ 2 , γ 3 ) with γ 1 = (p 2 ∧ • • • ∧ p k ) ∧ p 1 ∧ q ∧ r, and γ 2 = ϕ ∧ ¬q ∧ ¬r, and

γ 3 = (p 2 ∧ • • • ∧ p k ) ∧ (p 1 ⊕ q) ∧ (r → q).
We show that |Mod(ϕ ∧ p 1 )| > |Mod(ϕ ∧ ¬p 1 )| if and only if agent 3 can manipulate 2sMaj on Γ. The following table represents some features of Γ, where question marks indicate the (possibly many) models of ϕ over p 1 , . . . , p k : p 2 . . . p k p 1 q r Mod(γ 1 ) 1 . . . 1 1 1 1 ? ? 0 0 Mod(γ 2 ) . . . . . . 0 0

? ? 0 0 1 . . . 1 0 1 1 Mod(γ 3 ) 1 . . . 1 0 1 0 1 . . . 1 1 0 0
The result on p 2 , . . . , p k is decided by agents 1 and 3: all issues will be accepted regardless of agent 2's vote. Let us now focus on p 1 , q and r. Applying strict majority to the models of γ 3 leads to the first-step result (010). Agent 3 is pivotal on issues q and r (since agents 1 and 2 give one vote for and one vote against them after the first step). There are now two cases to consider:

a) If |Mod(ϕ ∧ p 1 )| > |Mod(ϕ ∧ ¬p 1 )|, the result of 2sMaj(Γ) is (1 . . . 1110), that
is not a model of γ 3 . However, by submitting γ 3 = (p 2 ∧ p k ) ∧ p 1 ∧ ¬q ∧ ¬r, we have 2sMaj(Γ ) = (1 . . . 1100) which is a model of γ 3 . Hence, agent 3 has an incentive to manipulate.

Conclusions

This chapter has studied the strategic component of the framework of goal-based voting presented in Chapter 3. In particular, the focus has been on the three rules that we have proposed as adaptations of the issue-wise majority rule with varying degrees of resoluteness. We found that in the general case EMaj, TrueMaj and 2sMaj are not immune to manipulation, even when the manipulator can only use limited strategies on their truthful goal (i.e., erosion and dilatation).

Looking for ways to make manipulation impossible, we restricted the language of an agent's goal to fragments of propositional logic: the language of conjunctions L ∧ , the language of disjunctions L ∨ and the language of exclusive disjunctions L ⊕ . Restricting goals to the language L ∧ makes manipulation impossible, as well as dilatation manipulation for the language L ∨ . This suggests a promising direction for further research, on minimal restrictions to the language of goals to guarantee strategy-proofness of majoriatrian rules.

Finally, we also found that while they are not strategy-proof in the general case, the EMaj and 2sMaj rules are PP-hard for an agent to manipulate, i.e., as hard as their winner determination problem which has been studied in Section 3.3.4. Therefore, even though the manipulation problem is in general hard to solve for an agent, it is not harder than computing the winner for the majority rules. We thus suspect the manipulation problem to become easy when the agents all have a goal in a restricted language for which the winner determination problem is easy.

Chapter 7

Influence Games over a Network

We have seen in Chapter 6 the strategic component of goal-based voting, where agents submit (possibly untruthful) goals to take a collective decision. In this chapter we focus on the process of how opinions are formed when agents are connected by a network. More precisely, we study the process of social influence, or propositional opinion diffusion, as per the work by [START_REF] Grandi | Propositional Opinion Diffusion[END_REF] adding a game-theoretic component. In propositional opinion diffusion (POD) the agents' opinions over binary variables are propagated on a network by means of a chosen aggregation rule, and agents have no goals or strategic actions available. We define here the games of influence as a new class of infinite repeated games: at each step a player can choose whether to make her private opinion on some issues public or not, and she will update her current opinion according to the public opinions of the agents she trusts and via some aggregation procedure. As in Chapter 6 each player has a goal that she wants to achieve, this time expressed in a variant of the logic LTL which allows to consider the future opinions of the agents.

The following example illustrates the situations captured by influence games:

Example 7.1. Ann, Bob and Jesse will be asked to participate in a referendum about issue p at some point in the coming months. Ann thinks at the moment that the vote should go in favor of p, and she also knows that Bob and Jesse always listen to what she thinks on political matters. Before the referendum comes, Ann would like to find a consensus with Bob and Jesse about p (they either all approve p or they all approve ¬p), since she does not like to argue with her friends about politics, and in order to do so she will make use of her influence power over them.

Influence games provide a basic abstraction to explore the effects of a trust network on the behavior of agents, as well as allowing us to study game-theoretic solution concepts such as winning strategy, weak dominance and Nash equilibrium. The interplay between the network structure and the type of goal an agent holds has an impact on her strategic ability to achieve her goal.

In this chapter we will focus on two goal schemas: that of reaching consensus among a group of agents, akin to the one of Ann in Example 7.1, and that of influencing individuals towards one's opinion. As we shall see, introducing a network into an apparently simple influence problem makes positive results hard to find both from a strategic and computational perspective.

Framework

We generalize the POD model by separating the notions of private and public opinions via a notion of visibility (Section 7.1.1), and we adapt the diffusion process through aggregation to this more complex setting (Section 7.1.2). Definition 7.9. Given a set of issues I, a set of agents N, and aggregation procedures F i for i ∈ N over a network E, an history is an infinite sequence of states H = (H 0 , H 1 , . . .) such that for all t ∈ N there exists a joint action a t ∈ A n such that H t+1 = a t (H t ). The set of all histories is denoted by H.

Observe that Definition 7.9 restricts the set of all possible histories to those that correspond to a run of the influence dynamic described above. For notational convenience, for any i ∈ N and for any t ∈ N, we denote with H B i,t agent i's private opinion in state H t and with H V i,t agent i's visibility function in state H t . Example 7.2. Consider the example in Figure 7.1, where the initial state is H 0 and the agents are N = {1, 2, 3} such that Inf (1) = {2, 3}. Let a 0 = (skip, skip, reveal(p)) and a 1 = (skip, hide(p), skip) be the joint actions of the agents at the first two states. Namely, agent 3 reveals her opinion on p, and at the next step agent 2 hides hers. If all individuals are using the unanimous aggregation procedure, then states H 1 and H 2 result from applying the joint actions from state H 0 . In state H 1 , agent 1's private opinion about p has changed to 1, as all her influencers are publicly unanimous on p, while in H 2 no opinion is updated. 011), ( 110))

(B 0 , V 0 ) (B 1 , V 1 ) (B 2 , V 2 ) ((
H 0 (( 111), ( 111))

H 1 (( 111), ( 101))

H 2 a 0 a 1 FIGURE 7.1:
The first three states of a history: in each state H 0-2 , the private opinions of the three agents (B) as well as their choice for visibility (V ) are displayed.

We define a language L LTL-I to express the goals of the agents using the temporal logic LTL introduced in Chapter 5. In particular, atoms in L LTL-I will be of the form op(i, p), to be read as "agent i's opinion is that p is true" (and since opinions are binary, ¬op(i, p) has to be read "agent i's opinion is that p is not true") and vis(i, p) to be read as "agent i's opinion about p is shown". We can also define the temporal operators 'eventually' (♦) and 'henceforth' ( ) as ♦ϕ = U ϕ and ϕ = ¬♦¬ϕ.

The interpretation of L LTL-I -formulas relative to histories is defined as follows:

Definition 7.10. Let H be a history, let ϕ be a formula of L LTL-I and let k, k , k ∈ N.

Then:

H, k |= op(i, p) ⇔ H B i,k (p) = 1 H, k |= vis(i, p) ⇔ H V i,k (p) = 1 H, k |= ¬ϕ ⇔ H, k |= ϕ H, k |= ϕ 1 ∧ ϕ 2 ⇔ H, k |= ϕ 1 and H, k |= ϕ 2 H, k |= ϕ ⇔ H, k + 1 |= ϕ H, k |= ϕ 1 U ϕ 2 ⇔ ∃k : (k ≤ k and H, k |= ϕ 2 and ∀k : if k ≤ k < k then H, k |= ϕ 1 )
Formulas of L LTL-I will be used to express agents' goals on the iterative diffusion process. Since individuals do not have any influence on the initial state of the history, we will consider only goals of the form ϕ and ϕU ψ, for any ϕ and ψ in L LTL-I , which we denote as goal formulas.

For some subset of agents C ⊆ N and some issues J ⊆ I consider the following goals on consensus and influence in situations of opinion diffusion: Intuitively, an agent holding the cons(C, J) goal wants at some point in the history to reach a stable consensus either for or against the issues in J with the agents in C. The influ(i, C, J) goal expresses instead the idea that agent i wants to eventually gain a stable influence over the people in C about the issues in J (i.e., they will always hold her opinion at the next step).

Influence Games

We are now ready to combine all concepts introduced in the previous sections to give the definition of an influence game: Definition 7.11. An influence game is a tuple IG = (N, I, E, F i , S 0 , γ 1 , . . . , γ n ) where N, I, E and S 0 are, respectively, a set of agents, a set of issues, an influence network, and an initial state, F i for i ∈ N is an aggregation procedure, and γ i is agent i's goal.

For the sake of simplicity, in the remainder we will consider that all agents use the unanimous aggregation procedure of Definition 7.7.

In Section 7.2.1 we introduce the strategies that agents use in order to attain their goals, and in Section 7.2.2 we give the definitions of some solution concepts for the games of influence. The strategies and solution concepts we introduce here are common notions in game theory (see, e.g., the book by [START_REF] Gibbons | A Primer in Game Theory[END_REF], adapted to the context of agents having goals inducing dichotomous preferences.

Strategies

The individual strategies our agents will used are defined on states and are called memory-less, as the agent only consider the current state of the world to decide her next move: Definition 7.12. A memory-less strategy for player i is a function Q i : S → A that associates an action to every state.

A strategy profile is a tuple Q = (Q 1 , . . . , Q n ). For notational convenience, we also use Q to denote the function Q : S -→ A n such that Q(S) = a if and only if Q i (S) = a i , for all S ∈ S and i ∈ N. As the following definition highlights, every strategy profile induces a history if combined with an initial state: Definition 7.13. Let S 0 be an initial state and let Q be a strategy profile. The induced history H S 0 ,Q ∈ H is defined as follows:

H 0 (S 0 , Q) = S 0 H n+1 (S 0 , Q) = succ(S n , Q(S n )) for all n ∈ N
It is important to observe that we study influence games as repeated games of complete information. The hide action can thus be interpreted in our model as "not exercising one's own influence", without any epistemic interpretation, and the reveal action as "persuade".

Solution Concepts

We start by defining the solution concept of winning strategy. Intuitively, Q i is a winning strategy for player i if and only if by playing this strategy she will achieve her goal no matter what the other players do.

Definition 7.14. Let IG be an influence game and let Q i be a strategy for player i. We say that Q i is a winning strategy for player i in state S 0 if

H S 0 ,(Q i ,Q -i ) |= γ i
for all profiles Q -i of strategies of players other than i.

Example 7.3. Let Ann, Bob and Jesse be three agents and suppose that B Ann (p) = 1, B Bob (p) = 0, B Jesse (p) = 0 for p ∈ I. Their influence network is as follows: Ann Bob Jesse Suppose Ann's goal is ♦ op(Jesse, p). Her winning memory-less strategy is to play reveal(p) in all states. Bob will be influenced to believe p at the second stage in the history and similarly for Jesse at the third stage, since her influencers are unanimous even if Bob plays hide(p).

As we will see in Section 7.3.1, the concept of winning strategy is rather strong in our setting. We then define the less demanding notion of weak dominance: Definition 7.15. Let IG be an influence game and Q i a strategy for player i. We say that Q i is a weakly dominant strategy for player i and initial state S 0 if and only if for all profiles Q -i of strategies of players other than i and for all strategies Q i we have:

H S 0 ,(Q i ,Q -i ) |= γ i ⇒ H S 0 ,(Q i ,Q -i ) |= γ i
Example 7.4. Suppose that in Example 7.3 Ann thinks p, but does not influence Jesse any longer. Here, Ann does not have a winning strategy: if neither Bob nor Jesse believe p, it is sufficient for Bob to play hide(p) to make sure that Ann will never satisfy her goal. However, playing action reveal(p) is weakly dominant for Ann.

Finally, we introduce the concept of Nash equilibrium for influence games: Definition 7.16. Let IG be an influence game and Q a strategy profile. We say that Q is a Nash equilibrium for initial state S 0 if and only if for all i ∈ N and for all Q i ∈ Q i :

H S 0 ,(Q i ,Q -i ) |= γ i or H S 0 ,(Q i ,Q -i ) |= γ i .
Results on the computational problems of membership, existence and uniqueness of Nash equilibria will be described in Section 7.3.2.

Game-Theoretic and Computational Results

In this section we will present game-theoretic and computational results for influence games. In Section 7.3.1 we study the interplay between network structure and existence of solutions concepts for certain types of goals. Then, in Section 7.3.2 we summarize some results concerning the computational complexity of checking the presence of winning strategies or Nash equilibria in influence games.

Influence Network and Solution Concepts

In this section we show how a certain type of network may or may not ensure the existence of a certain solution concept given the goals of the agents. Our first result tells us that in a network without cycles of influence, if an agent wants to achieve the consensus goal then she has a winning strategy to do so. Proposition 7.1. If E is a directed acyclic graph (DAG) such that |Inf (i)| ≤ 1 for all agents i ∈ N, and if agent a has goal γ a := cons(C a , J) where J ⊆ I and C a := {k ∈ N | a ∈ Inf (k)} ∪ {a}, then agent a has a winning strategy.

Proof. Consider a DAG E and an agent a with goal γ a . Let Q a be the strategy associating to every state S action reveal(J). We want to show that H S 0 ,(Q a ,Q -a ) |= γ a holds for all S 0 and Q -a . Consider the position of agent a in the graph for arbitrary S 0 . In case there is no agent b such that a ∈ Inf (b), the goal reduces to cons({a}, J) which is always trivially satisfied. In case Inf (a) = ∅, by playing reveal(J) in S 0 and since every agent uses the unanimous aggregation rule, at stage 1 all child nodes of a will update their beliefs on J by copying a's opinion (she is their only influencer). Moreover, they can't change their opinions on J later on in the history.

On the other hand, suppose there is some agent b such that a ∈ Inf (b) and some agent c ∈ Inf (a). By assumption on E we thus have that Inf (a) = {c} and Inf (b) = {a}. Hence, either at some point k in the history all ancestors of a will have reached consensus, such that by playing reveal(J) from point k + 1 onwards the consensus among a and her child nodes will be maintained, or there is no such k. Since there is a unique path linking a to one of the source nodes of E, if her ancestors always disagree in the history it means that there is some agent among them who has a different opinion and who will never play reveal(J). Therefore, the opinion of a will nonetheless be stable and γ a will be attained.

The assumption of acyclicity in the above result rules out the situation where all nodes in a cycle play reveal(J) and they start in S 0 by having alternating positive and negative opinions on the issues in J. Moreover, having at most one influencer per agent ensures each agent to have full control over their child nodes.

Proposition 7.1 also implies that for γ a := ♦(pcons(C a , J) ∨ ncons(C a , J)) the same result holds. In fact, since eventually a will reach a stable consensus with her child nodes, it is always true that we can find some later point in the history where consensus holds. In general, however, Proposition 7.1 suggests that winning strategies are a strong solution concept, and the type of goals which can be ensured have a narrow scope.

If we focus on the less demanding concept of weak dominance, we may intuitively think that a strategy associating action reveal(J) to all states is weakly dominant for an agent a having goal γ a := influ(a, C, J) for C ⊆ N, regardless of the network E or the initial state S 0 . In fact, all agents use the monotonic aggregation rule F U

i . Yet, we show in the following example that to satisfy goals of type γ a as described, an agent could sometimes benefit from hiding her opinion.

Example 7.5. For four agents N = {1, 2, 3, 4} and one issue I = {p} consider the network E = {(1, 2), (2,3), (3,4)}. Suppose agent 1 and 2 associate action reveal(p) to all states, and agent 3 associates action hide(p) only to the states where 1, 2 and 3 agree on p. Let the goal of agent 2 be γ 2 = influ(2, {4}, {p}). Consider the history below for these strategies, where goal γ 2 is not attained (we only represent B):

(0101) H 0 (0010) H 1 (0001) H 2 a 0 a 1
From state H 2 onward, given the strategies of the agents, the profile of opinions B = (0001) won't change. On the other hand, consider a strategy for agent 2 identical to the previous one, but for the fact that it associates to state H 0 action hide(p). This is what would happen:

(0101) H 0 (0000) H 1 a 0
From state H 1 onwards, given the strategies of the agents, the profile of opinions won't change. Thus, we found a network, an initial state H 0 , and strategies for the other agents, such that agent 2 can be better off by hiding her opinion on p to satisfy her influence goal γ 2 .

We can now see an easy example of how the network structure and the agents' goals can yield a Nash equilibrium. Proposition 7.2. Let E be a cycle for N = {1, 2}. If γ 1 = γ 2 = cons(N, J), where J ⊆ I, then there exists a Nash equilibrium for any initial state S 0 .

Proof. To attain their goal the agents must coordinate on the issues in J on which they disagree in S 0 . In fact, in case at some stage k of the history they both play hide(p) for p ∈ J their private opinion would stay the same at stage k + 1. If they both play reveal(p), at the next stage they would just swap their opinions on p (since they are each other's only influencers and they both use the unanimous rule). Hence, agent 1 has to play reveal(p) whenever the other agent is playing hide(p) so that at the next stage in the history he will have copied her opinion, while she would have not changed hers -and similarly if the other agent is playing reveal(p).

Consider thus an arbitrary strategy Q 1 for agent 1 and an initial state S 0 . Construct now strategy Q 2 for agent 2 associating action reveal(J S ) to all states where strategy Q 1 associates action hide(J S ) for J S = {p ∈ J | b 1p = 1b 2p in S}, and viceversa for reveal(J S ). By the above reasoning, the strategy profile Q = (Q 1 , Q 2 ) generates a history that satisfies both γ 1 and γ 2 , and therefore is a Nash equilibrium. The same construction can be done for an arbitrary strategy of agent 2.

The results in this section shed light on how the different components of an influence game (i.e., the network, the strategies and the goals) interact with one another.

In particular, we have seen in Proposition 7.1 how an agent can achieve her consensus goal over the people she influences given that the influence network she belongs to is a directed acyclic graph. We also have a positive result for the consensus goal in case two agents mutually influence one another, as Proposition 7.2 tells us that there is a Nash equilibrium no matter the initial state.

The most interesting result is perhaps the one illustrated by Example 7.5. In fact, even though the model of influence given by influence games is pretty simple, its dynamic is non-trivial: an agent can sometimes benefit from not using her influence power in order to attain her influence goal.

Computational Complexity

We briefly present some preliminary complexity results that have been obtained for influence games and Nash equilibria, leaving a more detailed analysis for future work. There are three standard computational problems to study for games and the Nash equilibrium solution concept. The first one asks, given an influence game and a strategy profile, whether the profile is a Nash equilibrium of the game (membership). The second one asks, given an influence game, if there is a Nash equilibrium for the game (existence). Finally, the third one asks, given an influence game, if there is a unique Nash equilibrium for the game (uniqueness).

For memory-less strategies, the three problems are in PSPACE. The result is obtained by providing a translation of memory-less strategies, the unanimous aggregation function and of the opinion diffusion process as formulas of the logic LTL-I. Then, the problem is reduced to validity checking for LTL, which is in PSPACE. Additional details and proofs can be found in the paper by [START_REF] Grandi | Strategic Disclosure of Opinions on a Social Network[END_REF]. 1We will see again influence games in Chapter 8, where we will study the computational problem of checking, given a specific game and an agent, if the agent has a winning strategy in that game (see Proposition 8.2).

Conclusions

In this chapter we extended a model of opinion diffusion on networks by [START_REF] Grandi | Propositional Opinion Diffusion[END_REF] with a strategic component modeling agents who can choose to use or not their influence power. The diffusion of opinions is an important process to study, especially if these are linked to some future collective decision agents have to take (such as the ones of Chapter 3). We defined influence games, a class of iterated games where agents have goals expressed in LTL. Our results on the interaction between the type of goals, the network structure and the game-theoretic solution concepts showed that agents were greatly empowered by these basic actions. Interestingly, for the influence goal and the unanimous aggregation rule, a strategy always using an agent's influence power is not weakly dominant. From a computational point of view, the problems of checking membership, existence and uniqueness of a Nash equilibrium in influence games are all in PSPACE. In line with the work of Chapter 6, we could enrich the work presented here by adding actions for the agents to lie about their private opinions. This would give them even more sophisticated strategies to attain their goals. Moreover, we could use different aggregation procedures to update the opinions of the agents.

Chapter 8

Shared Control in Concurrent Game Structures

In Chapter 5 we have seen the definition of Boolean games as a strategic model of agents with propositional goals having exclusive control over variables. Boolean games have also been generalized to their iterated version [START_REF] Gutierrez | Iterated Boolean Games[END_REF][START_REF] Gutierrez | Iterated Boolean Games[END_REF], where the agents' goals are formulas of Linear Temporal Logic LTL, and an agent's strategy determines an assignment to the variables she controls for every round of the game. Intuitively, an iterated Boolean game would be a situation like the one of Example 5.1, with the sole difference that the potluck now is a recurring event and thus the three agents can have goals concerning the future. In Chapter 7 we have seen another example of an iterated game, i.e., influence games, where agents holding goals in LTL influence each other about opinions over issues.

In order to reason about such iterated games we can use Alternating-time Temporal Logic ATL * (introduced in Section 5.1) to express, for instance, the fact that an agent has a winning strategy to make her goal true. Formulas of ATL * can be interpreted over the Concurrent Game Structures (CGS) of Definition 5.1, but observe how there the actions and the transition functions are left completely general. Belardinelli and Herzig (2016) defined a particular subclass of CGS in order to model situations as the ones presented in Example 5.1, where the control over propositional variables is exclusive (CGS-EPC): their definition will be given in Section 8.1.

In this chapter we study models in which we relax the assumption that propositional control is exclusive: consider for instance Example 3.1, where the control over the variables is shared among the agents and no single agent can unilaterally decide the truth value of some variable. We thus introduce Concurrent Game Structures with Shared Propositional Control (CGS-SPC) and show their relationship with different classes of games studied in literature, including (variations of) iterated Boolean games. The main result will be that verification of ATL * formulas on CGS-SPC can be reduced to verification in CGS-EPC, via a polynomial translation of a CGS-SPC into a CGS-EPC by means of a dummy agent who controls the value of the shared variables and simulates the transition function.

Framework

In this section we present two classes of concurrent game structures with propositional control, used for the interpretation of logics for individual and collective strategies introduced in Chapter 5.

The concurrent game structures with exclusive propositional control (CGS-EPC) are formally defined by [START_REF] Belardinelli | On Logics of Strategic Ability Based on Propositional Control[END_REF] as: 1 Definition 8.1. A concurrent game structure with exclusive propositional control is a tuple G = N, Φ 1 , . . . , Φ n , S, d, τ , where:

• N = {1, . . . , n} is a set of agents;

• Φ = Φ 1 ∪ • • • ∪ Φ n is a set of propositional variables partitioned in n disjoint
subsets, one for each agent;

• S = 2 Φ is the set of states, corresponding to all valuations over Φ;

• d : N × S → (2 A \ ∅), for A = 2 Φ , is the protocol function, with d(i, s) ⊆ A i for A i = 2 Φ i ; • τ : S × A n → S is the transition function such that τ(s, α 1 , . . . , α n ) = i∈N α i .
Intuitively, a CGS-EPC describes the interactions of a group N of agents, each one of them controlling (exclusively) a set Φ i ⊆ Φ of propositional atoms. The state of the CGS is an interpretation of the atoms in Φ. In each such state the protocol function returns which actions an agent can execute.

The intuitive meaning of action α i ∈ d(i, s) is "assign true to all atoms in α i , and false to all atoms in Φ i \ α i ". We introduce the idle s action as {p ∈ Φ i | s(p) = 1}, for every i ∈ N, s ∈ S. With an abuse of notation we write d(i, s) = α whenever d(i, s) is a singleton {α}.

Each state s ∈ S can be equivalently seen as a function s : Φ → {0, 1} returning the truth value of a propositional variable in s, so that s(p) = 1 iff p ∈ s. Given α = (α 1 , . . . , α n ) ∈ A n , we equally see each α i ⊆ Φ i as a function α i : Φ i → {0, 1} returning the choice of agent i for p under action α.

We now generalize concurrent game structures for propositional control by relaxing the exclusivity requirement on the control of propositional variables. We thus introduce concurrent game structures with shared propositional control CGS-SPC: Definition 8.2. A concurrent game structure with shared propositional control is a tuple G = N, Φ 0 , . . . , Φ n , S, d, τ such that:

• N, S, and d are defined as in Definition 8.1 with A = 2 Φ\Φ 0 ;

• Φ = Φ 0 ∪ Φ 1 ∪ • • • ∪ Φ n is a set of propositional variables, where Φ 0 ∪ Φ 1 ∪ • • • ∪ Φ n is not necessarily a partition and Φ 0 = Φ \ (Φ 1 ∪ • • • ∪ Φ n ); • τ : S × A n → S is the transition function.
In CGS-SPC the same atom can be controlled by multiple agents, and propositional control is not exhaustive. Additionally, the actions in A do not take into account propositional variables in Φ 0 because they are not controlled by anyone (though their truth value might change according to the transition function). The transition function combines the various actions and produces a consistent successor state according to some rule. 2 Simple examples of such rules include introducing a threshold m p ∈ N for every variable p, thus setting p ∈ τ(s, α) if and only if the 1 More precisely, the CGS-EPC we consider here correspond to the weak version defined by [START_REF] Belardinelli | On Logics of Strategic Ability Based on Propositional Control[END_REF], as opposed to a strong version where d(i, s) = A i for all i ∈ N and s ∈ S. 2 The definition of τ as an arbitrary function is needed to represent complex aggregation procedures such as those used in the games described in Section 8.2.2. number of agents i with p ∈ α i is greater than m p : these rules are analogous to the TrSh rules introduced in Section 3.1.2.

A CGS-EPC can be seen as a special case of CGS-SPC in which every atom is controlled by exactly one agent, and therefore {Φ 0 , . . . , Φ n } is a partition of Φ. Moreover, τ is given in a specific form as per Definition 8.1.

Examples of CGS in Iterated Games

In order to illustrate the concepts introduced in Section 8.1 we present three examples of how to use CGS-SPC to model iterated games, i.e., iterated boolean games [START_REF] Gutierrez | Iterated Boolean Games[END_REF], influence games [START_REF] Grandi | Strategic Disclosure of Opinions on a Social Network[END_REF], and aggregation games [START_REF] Grandi | Negotiable Votes[END_REF]. We then relate the satisfiability of a certain ATL * formula on a CGS-SPC to an agent having a winning strategy for her goal in the game.

Iterated Boolean Games

An iterated Boolean game is a tuple G, γ 1 , . . . , γ n such that (i) G is a CGS-EPC with a trivial protocol (i.e., for every i ∈ N, s ∈ S, d(i, s) = A i ); and (ii) for every i ∈ N, the goal γ i is an LTL-formula.

We can generalize the above to iterated Boolean games with shared control as follows:

Definition 8.3. An iterated Boolean game with shared control is a tuple G, γ 1 , . . . , γ n where:

(i) G is a CGS-SPC;

(ii) for every i ∈ N, the goal γ i is an LTL-formula.

Just like CGS-SPC generalize CGS-EPC, iterated Boolean games with shared control generalize standard iterated Boolean games. For both types of control (exclusive or shared) we can thus link the existence of a winning strategy for an agent in an iterated Boolean game (with exclusive or shared control, respectively) to the modelchecking problem of a simple ATL * formula, as expressed in the following straightforward proposition: Proposition 8.1. An agent i in an iterated Boolean game has a winning strategy for goal γ i and state s if and only if formula {i} γ i is satisfied in (G,s).

Influence Games

We associate here to an influence game IG = N, Φ, E, S 0 , {F i,Inf(i) } i∈N , {γ i } i∈N as per Definition 7.11 a CGS-SPC G = N , Φ 0 , . . . , Φ n , S , d , τ by letting N = N;

Φ 0 = {op(i, p) | i ∈ N, p ∈ Φ}; Φ i = {vis(i, p) | p ∈ Φ} for i ∈ N ; S = 2 Φ ; d (i, s ) = 2 Φ i
for s ∈ S ; and finally for state s ∈ S and action α we let:

τ (s , α )(ϕ) = α i (vis(i, p)) if ϕ = vis(i, p) F i,Inf(i) ( a, b) |p if ϕ = op(i, p)
where vectors a = (a 1 , . . . , a |Φ| ) and b = (b 1 , . . . , b |Φ| ) are defined as follows, for k ∈ Inf(i):

a p = 1 if op(i, p) ∈ s 0 otherwise b p =      1 if α k (vis(k, p)) = 1 and op(k, p) ∈ s 0 if α k (vis(k, p)) = 1 and op(k, p) ∈ s ? if α k (vis(k, p)) = 0
Vector a represents the opinion of agent i over the issues at state s , while vector b represents the opinions of i's influencers over the issues, in case they are using their influence power. In particular, '?' indicates that the influencers of i in Inf(i) are not using their influence power. Proposition 8.2. Agent i in influence game IG has a winning strategy for goal γ i and state S 0 if and only if formula {i} γ i is satisfied in the associated CGS-SPC and state s corresponding to S 0 .

Proof. Let IG be an influence game and let G be the CGS-SPC associated to it. Consider now an arbitrary agent i and suppose that i has a winning strategy in IG for her goal γ i in S 0 . A memory-less strategy σ i for agent i in an influence game maps to each state actions of type (reveal(J), hide(J )), where J, J ⊆ Φ and J ∩ J = ∅. For any state s in IG, consisting of opinions and visibilities, consider the state s in G where B i (p) = 1 if and only if op(i, p) ∈ s and V i (p) = 1 if and only if vis(i, p) ∈ s . We now construct the following strategy for G : σ i (s ) = {vis(i, p) | p ∈ J for σ i (s) = (reveal(J), hide(J ))} By the semantics of the {i} operator provided in Section 5.1, and by the definition of winning strategy, the statement follows easily from our construction of G .

The above translation sheds light over the control structure of the variables of type op(i, p). In fact, we can now see that op(i, p) ∈ Φ 0 for all i ∈ N and p ∈ Φ, i.e., opinions are not controlled directly by agents.

Aggregation Games

Individuals facing a collective decision have goals on the outcome of the voting process, outcome that is jointly controlled by all individuals in the group. For instance, a vote on a single binary issue using the majority rule corresponds to a game with a single variable controlled by all individuals, the majority rule playing the role of the transition function.

Similar situations have been modelled as one-shot games called aggregation games [START_REF] Grandi | Negotiable Votes[END_REF], and we here define them for iterated decision processes: Definition 8.4. An iterated aggregation game is a tuple AG = N, Φ, F, γ 1 , . . . , γ n where:

• N is a set of agents;

• Φ = {p 1 , . . . , p m } are variables representing issues;

• F : {0, 1} N×Φ → {0, 1} is an aggregation function, i.e., a Boolean function associating a collective decision to the opinions of the agents on the issues;

• γ i for i ∈ N is an individual goal for each agent, i.e., a LTL formula over Φ.

Individuals at each stage of an aggregation game only have information about the current valuation of variables in Φ, resulting from the aggregation of their individual opinions. Analogously to Proposition 8.2, we can obtain the following result: Proposition 8.3. Agent i in AG has a winning strategy for goal γ i in s if and only if formula {i} γ i is satisfied in the associated CGS-SPC in the corresponding state s .

Proof. From an iterated aggregation game AG = N, Φ, F, γ 1 , . . . , γ n , construct a CGS-SPC G = N , Φ , S , d , τ as follows. Let N = N; Φ i = Φ for all i = 1, . . . , n; and Φ 0 = ∅. Hence, each agent controls all variables. Let the set of actions available to each player be d (i, s) = 2 Φ for all i and s, and the transition function τ be such that τ (s, α 1 , . . . , α n ) = F(α 1 , . . . , α n ). The statement then follows easily.

An example of an iterated aggregation game is the setting of iterative voting, where individuals hold preferences about a set of candidates and iteratively change the result of the election in their favor until a converging state is reached.

Relationship between Exclusive and Shared CGS

We prove here our main result, namely that the shared control of a CGS-SPC can be simulated in a CGS-EPC having exclusive control. In particular, any formula in ATL * satisfied in some CGS-SPC can be translated in polynomial time into an ATL *formula satisfied in a CGS-EPC. To do so, we introduce a dummy agent to simulate the aggregation function and we make use of an additional turn-taking atom which allows us to distinguish the states where the agents choose their actions from those in which the aggregation process takes place. Agents have memory-less strategies.

We begin by inductively defining a translation function tr within ATL * . Intuitively, tr translates every ATL * -formula χ into a formula tr(χ) having roughly the same meaning, but where the one-step "next" operator is doubled:

tr(p) = p tr(¬χ) = ¬tr(χ) tr(χ ∨ χ ) = tr(χ) ∨ tr(χ ) tr( χ) = tr(χ) tr(χU χ ) = tr(χ)U tr(χ ) tr( C χ) = C tr(χ)
where p ∈ Φ, C ⊆ N, and χ, χ are either state-or path-formulas. The translation is easily seen to be polynomial.

We then map a given CGS-SPC to a CGS-EPC: Definition 8.5. Let G = N, Φ 0 , . . . , Φ n , S, d, τ be a CGS-SPC. The CGS-EPC corresponding to G is G = N , Φ 1 , . . . , Φ n , S , d , τ where:

• N = N ∪ { * }; • Φ = Φ ∪ {turn} ∪ {c ip | i ∈ N and p ∈ Φ i } and Φ is partitioned as follows,
for agents in N :

Φ i = {c ip ∈ Φ | p ∈ Φ i } Φ * = {turn} ∪ Φ • S = 2 Φ .
For every s ∈ S , let s = (s ∩ Φ) ∈ S be the restriction of s on Φ;

• d is defined according to the truth value of turn in s . Specifically, given α

i ∈ A i , let α i = {c ip ∈ Φ i | p ∈ α i } ∈ A i .
Then, for i ∈ N we let:

d (i, s ) = {α i ∈ A i | α i ∈ d(i, s)} if s (turn) = 0 ∅ if s (turn) = 1
For agent * we define:

d ( * , s ) = +turn if s (turn) = 0 τ(s, α), for α i (p) = s (c ip ) if s (turn) = 1
where +turn = idle s ∪ {turn}.

• τ is defined as per Definition 8.1, i.e., τ (s , α ) = i∈N α i .

Intuitively, in the CGS-EPC G every agent i ∈ N controls local copies c ip of atoms p ∈ Φ. The aggregation function τ in G is mimicked by the dummy agent * , whose role is to observe the values of the various c ip , then perform an action to aggregate them and set the value of p accordingly. Observe that agent * acts only when the turn variable is true, in which case all the other agents set all their variables to false, i.e., they all play ∅. This is to ensure the correspondence between memory-less strategies of G and G , as shown in Lemma 8.2.

The size of game G is polynomial in the size of G, and G can be constructed in polynomial time from G. To see this, observe that an upper bound on the number of variables is N × Φ. While we can associate to each state s ∈ S a state s = s ∩ Φ in S, when given a state s ∈ S there are multiple states s that agree with s on Φ. The purpose of the next definition is to designate one such state as the canonical one: Definition 8.6. For every s ∈ S, we define the canonical state s = {s ∈ S | s ∩ Φ = s and s(p) = 0 for p ∈ Φ}.

Observe that, in particular, in all canonical states atom turn is false. The following example illustrates this concept: Example 8.1. Consider Φ = {p, q} and N = {1, 2}. Let then Φ 1 = {p} and Φ 2 = {p, q}. We thus have that Φ = {p, q, c 1p , c 2p , c 2q , turn}. If s = {p}, we have for instance that s ∩ Φ = s for s = {p, c 1p }. On the other hand, s = {p}.

We now define a correspondence between paths of G and G . For notational convenience, we indicate with λ

[k] |Φ = λ[k] ∩ Φ, the restriction of state λ[k] to variables in Φ.
Given a path λ of G , consider the unique infinite sequence of states λ associated to λ defined as follows:

λ[k] = λ [2k] |Φ = λ [2k+1] |Φ for all k ∈ N. ( †)
On the other hand, there are multiple sequences λ that can be associated with a path λ, so that ( †) holds true. In fact, we only know how the variables in Φ behave, while the truth values of the other variables can vary. We now use condition ( †) to characterize the paths of G and G that can be associated: Lemma 8.1. Given a CGS-SPC G and the corresponding CGS-EPC G , the following is the case:

λ[0] λ [0] λ [1] λ[1] λ [2] λ [3] λ[2] λ [4] λ [5] . . . . . . (α 1 . . . α n )[0] α 1 . . . α n +turn ∅ τ(λ [1] |Φ , α) (β 1 . . . β n )[1] β 1 . . . β n +turn ∅ τ(λ [3] |Φ , β) (δ 1 . . . δ n )[2] δ 1 . . . δ n +turn ∅ τ(λ [5] |Φ , δ)
FIGURE 8.1: A path λ in a CGS-SPC G and its associated path λ in a CGS-EPC G .

1. for all paths λ of G , sequence λ satisfying condition ( †) is a path of G; Proof. We first prove (1) by showing that λ is a path of G, i.e., that for every k there is an action α that leads from As for ( 2), the right-to-left direction is clear. For the left-to-right direction, let λ be a path associated to λ. From ( †) we know that for any k we have that λ Let d(i, s) = 2 Φ i for all i ∈ N and s ∈ S, and let τ(s, α)(p) = 0 if and only if α 1 (p) = α 2 (p) = 0, while τ(s, α)(q) = α 2 (q) for all s ∈ S. Namely, issue p becomes true if at least one agent makes it true, while issue q follows the decision of agent 2. Let now λ = s 0 s 1 . . . be a path of G such that s 0 = {p} and s 1 = {p, q}. Observe that there are many actions α such that τ(s 0 , α) = s 1 : namely, the one where both agents set p to true, or where just one of them does (and agent 2 sets q to true).

As to the inductive cases for Boolean connectives, they follow immediately from the induction hypothesis.

Suppose that ϕ = C ψ. For the left-to-right direction, assume that (G, s) |= ϕ. By the semantics, for some strategy σ C , for all λ ∈ out(s, σ C ), (G, λ) |= ψ. By Lemma 8.2.1 we can find a strategy σ C in G such that Π(out(s , σ C )) = out(s, σ C ). By induction hypothesis, we know that for all λ ∈ out(s, σ C ) we have that (G , λ ) |= tr(ψ). These two facts combined imply that for all λ ∈ out(s , σ C ) we have that (G , λ ) |= tr(ψ), i.e., by the semantics, that (G , s ) |= C tr(ψ), obtaining the desired result. The right-to-left direction can be proved similarly with Lemma 8.2 (2).

Further, if ϕ is a state formula, (G, λ) |= ϕ if and only if (G, λ[0]) |= ϕ, if and only if by induction hypothesis (G , λ[0] ) |= tr(ϕ), i.e., (G , λ ) |= tr(ϕ).

For ψ = ψ 1 , suppose that (G, λ[1, ∞]) |= ψ 1 . By induction hypothesis, this is the case if and only if (G , (λ[1, ∞]) ) |= tr(ψ 1 ). Recall that by ( †), we have that (λ[1, ∞]) = λ [2, ∞]. This is the case because, when moving from λ to λ , we include an additional state λ [1] in which the aggregation takes place. Therefore, (G , λ [2, ∞]) |= tr(ψ 1 ), that is, (G , λ ) |= tr(ψ 1 ) = tr(ψ). The case for ψ = ψ 1 U ψ 2 is proved similarly.

As a consequence of Theorem 8.1, if we want to model-check an ATL * -formula ϕ at a state s of an CGS-SPC G, we can check its translation tr(ϕ) at the related state s of the associated CGS-EPC G . By observing that both the associated game G and the translation ϕ are polynomial in the size of G and ϕ, we obtain that:

Corollary 8.1. The ATL * model-checking problem for CGS-SPC can be reduced to the ATL * model-checking problem for CGS-EPC.

Computational Complexity

In this section we prove complexity results for the model checking problem of an ATL * (or ATL) formula ϕ on a CGS-SPC.

First, we define the model-checking problem for ATL over CGS-SPC: MODELCHECK Input: a CGS-SPC G, a state s ∈ S, and an ATL formula ϕ Question: Is it the case that (G, s) |= ϕ?

We can then obtain the following result: Theorem 8.2. Problem MODELCHECK (CGS-SPC and ATL formulas) is ∆ p 3 -complete. Proof. For membership, given a pointed CGS-SPC (G, s) and an ATL specification ϕ, by the translation tr introduced in Section 8.3 and Theorem 8.1 we have that (G, s) |= ϕ iff (G , s ) |= tr(ϕ). Also, we observe that the CGS-EPC G is of size polynomial in the size of G, and that model checking ATL with respect to CGS-EPC is ∆ p 3 -complete [START_REF] Belardinelli | On Logics of Strategic Ability Based on Propositional Control[END_REF]. For hardness, it is sufficient to observe that CGS-EPC are a subclass of CGS-SPC.

For the verification of ATL * we define the following problem: MODELCHECK * Input: a CGS-SPC G, a state s ∈ S, and an ATL * formula ϕ Question: Is it the case that (G, s) |= ϕ?

The model-checking problem for ATL * on general concurrent game structures is 2EXPTIME-complete [START_REF] Alur | Alternating-Time Temporal Logic[END_REF]. We prove the following for CGS-SPC: Theorem 8.3. Problem MODELCHECK * (CGS-SPC and ATL * formulas) is PSPACEcomplete.

Proof. Membership follows from the PSPACE algorithm for ATL * on general CGS [START_REF] Bulling | Model Checking Logics of Strategic Ability: Complexity*[END_REF]. As for hardness, we observe that satisfiability of an LTL formula ϕ can be reduced to the model checking of the ATL * formula 1 ϕ on a CGS-SPC with a unique agent 1.

In Section 8.2 we showed how some examples of iterated games from the literature can be modelled as CGS-SPC, and how the problem of determining the existence of a winning strategy can therefore be reduced to model checking an ATL * formula. We now define and study the problem of checking existence of a winning strategy: E-WIN(G, i) Input: a game G, an agent i Question: Does i have a memory-less winning strategy in G?

As an immediate consequences of Theorem 8.3 we obtain:

Corollary 8.2. E-WIN(G, i) is in PSPACE for G an iterated Boolean game with shared control.

An analogous result cannot be obtained for influence games and aggregation games directly. Decision problems in these structures are typically evaluated with respect to the number of agents and issues, and the size of the CGS-SPC associated to these games are already exponential in these parameters.

Corollary 8.3. E-WIN(G, i) is in PSPACE in the size of the associated CGS-SPC for G an influence game.

Corollary 8.3 is in line with previous results in the literature [START_REF] Grandi | Strategic Disclosure of Opinions on a Social Network[END_REF].

Conclusions

In this chapter we introduced a class of concurrent game structures with shared propositional control (CGS-SPC), which we used to interpret popular logics for strategic reasoning ATL and ATL * . We have shown that CGS-SPC are general enough to capture iterated Boolean games and their generalization to shared control, as well as the influence games presented in Chapter 7 and aggregation games. Our main result shows that the model-checking problem for CGS-SPC and ATL * formulas can be reduced to the model-checking of ATL * formulas over standard CGS with exclusive control, allowing to establish some computational complexity results for the games mentioned above.

Even though our main result shows that the generalization to shared control structures can still be expressed by exclusive control structures, using CGS-SPC allows to model in a natural way complex interactions between agents on the assignment of truth values to propositional variables (as shown by the examples provided for Boolean games, influence games and aggregation games). Therefore, we have a way to model and reason about strategic situations of multi-agent decision-making as the ones at the core of this thesis.

An assumption on our CGS (both with exclusive and shared control) is that agents have perfect knowledge of the environment they are interacting with. Indeed, in our construction of Definition 8.5 the dummy agent * is able to mimick the aggregation function τ as she can observe the values of c ip for any other agent i. An interesting question is whether our reduction of CGS-SPC to CGS-EPC goes through even when imperfect information is assumed. characterization of TrueMaj, obtained from independence, egalitarianism, neutrality, anonymity, monotonicity, unanimity and duality, thus striking a good balance among the (jointly achievable) properties of interest.

We then studied the computational complexity of determining the outcome for our rules, i.e., the WINDET problem. We found that having as input propositional formulas made the problem much harder than in voting. In particular, the three majorities EMaj, TrueMaj and 2sMaj were found to be hard for the class PP (Probabilistic Polynomial Time). We however found some positive (tractable) results for the WINDET problem for our majorities by restricting the language of goals to conjunctions or disjunctions. This limitation is however still general enough to include binary aggregation with abstentions and Horn clauses. Finally, we compared the framework of goal-based voting with judgment aggregation and belief merging, with respect to properties (i.e., axioms or postulates) of aggregation rules. We found in particular that our notions of resoluteness conflicted with the (IC2) postulate of belief merging (Proposition 3.6), but this should not be seen too negatively as depending on the nature of the input (e.g., beliefs or goals) different sets of properties can be deemed more important by the user.

In Chapter 4 we merged two lines of research in CP-nets by investigating for the first time the aggregation of incomplete (generalized) CP-nets. Agents were thus given more flexibility in expressing their preferences (with respect to classical CPnets), and they could find a collective decision via the Pareto, maj, max and rank semantics, which were known in the literature on complete CP-nets. We studied numerous computational problems related to dominance of outcomes in the preference ordering induced by the aggregation of incomplete CP-nets. For most problems we got hardness for the class PSPACE from the corresponding single-agent case, often leading to completeness results. The complexity can thus be seen as inherent to the studied problems and not given by the switch from one to multiple agents, two exceptions being the problem of checking if an outcome is non-dominated (jumping from P to PSPACE) and the problem of checking if it exists a non-dominated outcome (going from NP to PSPACE).

The second part of this thesis studied problems pertaining to our second research question, on the strategic behavior of goal-oriented agents. In Chapter 5 we recalled the definition of (iterated) Boolean games, a class of games where each agent controls exclusively a subset of the propositional variables and they hold logic-based goals. We provided the syntax and semantics of the logics LTL and ATL, interpreting them over Concurrent Game Structures (CGS). We then discussed the related work on game theory, logic and networks.

In Chapter 6 we considered again our framework of goal-based voting, assuming now that agents may submit untruthful goals if by doing so they can get a better result for themselves. We focused on the issue-by-issue majority rules EMaj, True-Maj and 2sMaj, which were found to be manipulable in the general case. This first negative result lead us to refine our study of manipulation by modulating different parameters of the problem: we considered agents with goals belonging to restrictions of the language (conjunctions, disjunctions, and exclusive disjunctions), agents with different satisfaction attitudes (optimistic, pessimistic, expected utility maximizer) and finally agents who were allowed to perform only certain manipulation strategies (unrestricted, erosion, and dilatation).

Regardless of the agent's satisfaction attitude, we found all our majoritarian rules to be strategy-proof for erosion and dilatation when the goals are conjunctions, and for dilatation (and erosion, for 2sMaj) when the goals are disjunctions. Therefore, even though our majoritarian rules are in general subject to manipulation, some instances of strategy-proofness can be recovered by tuning two relevant parameters: the allowed manipulation strategy and the language of the agents' goals. From a computational perspective, our results indicate that checking if an agent can profitably manipulate is as hard as the WINDET problem for majoritarian rules. Hence, while we can consider it a positive result that a rule is PP-hard to manipulate (in the worst case), from a practical perspective we would ideally want a rule to be easy to compute and hard to manipulate -as it is the case, for instance, for the premise-based procedure in judgment aggregation [START_REF] Endriss | Complexity of Judgment Aggregation[END_REF]. This leads to a promising direction for future work: studying the MANIP problem for goals restrictions for which WINDET is easy (e.g., EMaj and TrueMaj for disjunctions).

In Chapter 7 we defined influence games, a class of iterated games for modeling rational agents who decide whether to use their influence power in order to attain their LTL goals. Agents in influence games can thus act strategically by deciding to influence (or not) their neighbors in the influence network on the issues at stake, but they cannot lie about their opinions. We studied solution concepts for games where agents use the unanimous procedure to aggregate their influencers' opinions (to update their own). We found that an agent having a consensus goal has a winning strategy when the influence network is a DAG and each agent has at most one influencer. We also found a Nash equilibrium strategy profile for two agents having a consensus goal. Against our intuition, always using one's influence power is not a weakly dominant strategy to attain the influence goal. Therefore, the addition of a simple strategic action (i.e., using the influence power or not) to a model of opinion diffusion makes the dynamics of the spread of opinions much more difficult to capture and it is not straightforward to obtain general results.

In Chapter 8 we generalized the definition of a previously introduced CGS, where agents have exclusive control over a set of propositional variables, to a CGS where agents may have shared control over some variables. Our main result proved that verification of ATL * formulas over CGS with shared control can be reduced to verification of ATL * formulas over CGS with exclusive control. We then studied the computational complexity of model checking ATL * formulas over CGS with shared control, which also allows us to express the problem of checking whether an agent has a winning strategy for one of the aforementioned iterated games: our results lie for the most part at the level of the PSPACE complexity class. Hence, while CGS-SPC offer a natural way to represent known iterated games in the literature where the control over variables is shared (including influence games), their verification problem of ATL * formulas can still be reduced to structures with exclusive control.

In conclusion, with respect to the first research question we managed to provide two frameworks the agents can use to aggregate their compactly expressed goals and preferences (i.e., goal-based voting and mgCP-nets), whose rules satisfy a number of desirable properties, though the related computational problems are in general of high complexity and need to be restricted to become tractable. For the second research question, we found that (i) goal-based majoritarian rules are manipulable in general, but islands of strategy-proofness can be found under some restrictions of the setting, (ii) our strategic model of influence generates a complex opinions dynamics for which general results are hard to obtain, but fixing the type of graph and goal gives results for common solution concepts, and finally (iii) we understood the relationship between shared and exclusive control in concurrent game structures.

Perspectives and Future Work

In this thesis we achieved numerous results in the field of collective decision-making with compactly expressed goals and preferences. Nonetheless, there are extensions of this work that we believe would be worth investigating in the future, many of which we already mentioned in the respective concluding sections of each chapter. We list here some additional ideas.

In the first place, we could think about designing a more general framework which is able to model all the different problems that we studied in this thesis. For instance, the three researchers in our initial story can use propositional goals to decide about the conference, and generalized CP-nets to decide about the syllabus, but the aggregation procedures that we defined do not allow them to provide as input a mix of propositional goals and incomplete CP-nets. This research direction would go towards the work by [START_REF] Bienvenu | From Preference Logics to Preference Languages, and Back[END_REF] on the "prototypical" preference logic PL that we mentioned in Section 2.5, giving agents even more flexibility in how they express their goals and preferences.

We could also extend the aggregation frameworks of goal-based voting and mgCPnets by considering that decisions may be recurring (e.g., the syllabus for a course that is taught every year) or that agents may want to change their vote after they have seen the current outcome or they have discussed it with their peers. Analogously to what has been done for classical voting (see the recent chapter by [START_REF] Meir | Iterative Voting[END_REF], we could study the iterative versions of goal-based voting and aggregation of incomplete CP-nets. This would be in line with the recent work by Terzopoulou and Endriss (2018) who studied an iterative model for judgment aggregation.

Additionally, we could study in more depth possible restrictions over our frameworks. We have seen that certain classes of propositional goals for some rules give us tractable results for the winner determination problem or strategy-proofness results. We could then look for a precise characterization of the restrictions over the language which give us bounds for WINDET tractability and strategy-proofness. Analogously, we could look for restrictions on the precondition of incomplete CP-nets to make dominance tasks easier to compute than the PSPACE class.

In order to prove that our issue-wise majority rules are manipulable in general, we provided in the proof of Theorem 6.1 specific profiles for which an agent has an incentive to manipulate. Since for this kind of results a single counter-example suffices, it may paint an overly negative picture of the manipulation landscapeas such manipulable profiles may be rarely occurring in practice. Another direction for future work would be then to implement voting situations under majoritarian rules to get some statistics on which percentage of profiles are actually manipulable. Observe, however, that even checking all possible profiles for just three agents and issues would give us a total of (2 2 3 -1) × (2 2 3 -1) × (2 2 3 -1) = 255 × 255 × 255 = 16581375 profiles to consider. For each of them we would need to check not only that there is some agent whose goal is not satisfied in the outcome, but also that they can actually manipulate the current result by submitting a different goal -accounting also for the different types of satisfaction for the rule TrueMaj.

A topic that has received increasing attention in recent years is that of explanation in artificial intelligence, i.e., the ability to explain to the (human) users the behavior and output of algorithms (see, e.g., the paper by [START_REF] Miller | Explanation in Artificial Intelligence: Insights from the Social Sciences[END_REF]. In the area of computational social choice in particular, [START_REF] Cailloux | Arguing about Voting Rules[END_REF] proposed a framework aimed at helping humans choose the "best" voting rule by modeling arguments for or against them based on the axioms they satisfy. We could pursue a similar approach for goal-based voting: while the rules that we use are not per se difficult to understand (e.g., the three generalizations of majority), they satisfy different axioms that are mutually incompatible and thus a choice needs to be taken over them by the user, depending on their priorities.

Finally, we could bring together our goal-based voting (or mgCP-nets) framework and the idea of agents connected by a trust network in influence games, into a framework where the dynamics that is modeled is that of delegation instead of diffusion. For instance, in goal-based voting we could imagine that an agent who is not able to form a goal over the issues could instead decide to "+1" the goal of another agent she trusts. In this research direction we can mention the Blue Sky paper by [START_REF] Brill | Interactive Democracy[END_REF] on interactive democracy and vote delegation where some ideas and potential issues on the topic are presented. 
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 43 FIGURE 4.3: Dominance classes and r lp N (in superscripts).
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  assigns to an outcome o the length of the longest path from[o] to a non-dominated dominance class in > d N .4 Observe that this always exists because all the outcomes forming a cycle belong to the same equivalence class. Example 4.7. Consider V = {A, B} where D(A) = {a, a} and D(B) = {b 1 , b 2 , b 3 }. Take a gCP-net N = { : b 1 b 2 b 3 , b 3 : a a, a : b 2 b 1 }.

  Figure 4.3 shows the induced model > N , the dominance classes, the strict partial order > d N on dominance classes, and the longest path ranks assigned by r lp .
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 3 If M = N 1 , . . . , N m is an mgCP-net, the Pareto relation > P M , majority relation > maj M , maximality relation > max M and rank relation > r M with respect to M are defined, for any o 1 and o 2 , as follows:

  FIGURE 4.4: Individual and collective semantics for the mgCP-net M of Example 4.8. Edges in the induced models > 1-3 indicate worsening flips given by the gCP-nets N 1-3 , respectively, whereas edges in the induced collective models indicate domination relations obtained through aggregation. Arrows inferred through transitivity in > P M and > r M are omitted; since > maj M and > max M are not guaranteed to be transitive, every domination relation in them is explicit. Longest path ranks assigned by r lp i are shown as a superscript.
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 3 The problems P-STR-DOM'ING, P-∃STR-DOM'ING, P-DOMINANCE, P-CONSISTENCY, P-WNON-DOM'ED, P-DOM'ING, P-∃DOM'ING are all PSPACEcomplete.
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 4 Problems maj-DOMINANCE, maj-∃DOM'ING, maj-STR-DOM'ING, maj-DOM'ING, maj-WNON-DOM'ED, maj-∃STR-DOM'ING are PSPACE-complete.

  For maj-STR-DOM'ING, consider an algorithm which solves the problems maj-DOM'ING and maj-NON-DOM'ED, that are both in PSPACE, and answers yes if and only if for both problems it gets a positive answer. For maj-WNON-DOM'ED, given an outcome o we do the following procedure for all outcomes o in M. We check if (a) there is a majority of agents for which o > i o (at most m PSPACE tasks) and (b) there is a majority of agents for which o > i o (again, at most m PSPACE tasks). If we find an outcome o such (a) is true while (b) is false, the algorithm gives a negative answer (o is weakly dominated), and positive otherwise. For maj-∃DOM'ING and maj-∃STR-DOM'ING, consider an algorithm solving the problems maj-DOM'ING and maj-STR-DOM'ING, respectively, for all outcomes o ∈ O, and that says yes if at least for one instance the answer is positive. This amounts to solving a (possibly exponential) number of PSPACE tasks. Theorem 4.5. The maj-NON-DOM'ED problem for mgCP-nets is PSPACE-complete. Proof. Let maj-NON-DOM'ED be the complement of maj-NON-DOM'ED, i.e., the problem asking whether there is some outcome o such that o > maj M o, for given o and M. Consider the algorithm that for every outcome o checks whether for at least m+1 2

Theorem 4. 7 .

 7 Problems max-DOMINANCE, max-DOM'ING, max-STR-DOM'ING, max-∃DOM'ING and max-∃STR-DOM'ING are PSPACE-complete.

Theorem 4. 8 .

 8 Problems max-CONSISTENCY and max-WNON-DOM'ED are PSPACEhard, while max-∃NON-DOM'ED is NP-hard.

Lemma 4. 1 .

 1 If o and o are two outcomes and their Hamming distance, i.e., the number of variables on which they differ, is d H (o, o ) = p, then there exists a gCP-net N(o, o ) such that |N| = p and a sequence of length p of worsening flips from o to o .

Theorem 4. 11 .

 11 The r-DOMINANCE and r-WNON-DOM'ED problems for mgCPnets are PSPACE-hard.Proof. Inherited from the single gCP-net case.
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 46 FIGURE 4.6: The induced models from Example 4.10.

  cons(C, J) := ♦ (pcons(C, J) ∨ ncons(C, J)) influ(i, C, J) := ♦ p∈J (op(i, p) → pcons(C, p))∧(¬op(i, p) → ncons(C, p))

  λ[k] to λ[k+1]. Suppose that λ [2k] α [2k] ---→ λ [2k+1] α [2k+1] ----→ λ [2(k+1)] for action α [2k] = (α 1 , . . . , α n , +turn) and action α [2k+1] = (∅ 1 , . . . , ∅ n , τ(λ [2k+1] |Φ , α)).Then, we observe that we can move from state λ[k] = λ [2k] |Φ = λ [2k+1] |Φ to λ[k+1] = λ [2k+2] |Φ by performing action (α 1 , . . . , α n ) such that α i = {p ∈ Φ | c ip ∈ α i } for every i ∈ N.

  [2k] |Φ = λ[k] and λ [2k+2] |Φ = λ[k+1]. Now by Definition 8.5, the only actions available to the players at λ [2k] are of the form (α 1 , . . . , α n , +turn), and the only action available at λ [2k+1] is (∅ 1 , . . . , ∅ n , τ(λ [2k+1] |Φ , α)). We can thus obtain the desired result by considering action α[k] = (α 1 , . . . , α n ), where α i = {p ∈ Φ i | c ip ∈ α i } for each i ∈ N, and by observing that by ( †) we have τ(λ [2k + 1] |Φ , α) = τ(λ[k], α).

Figure 8 .Example 8 . 2 .

 882 Figure8.1 illustrates the two paths λ and λ in the proof of Lemma 8.1. The second part of the lemma characterizes the set of G -paths λ associated to a G-path λ: for any sequence of G-actions that can generate path λ, we can construct a distinct G -path λ that corresponds to λ, where the sequence of actions can be reconstructed by reading the values of the variables inΦ i in odd states λ[2k + 1].From this set of G -paths λ we can specify a subset of canonical paths as follows:Definition 8.7. For a path λ of G, a canonical associated path λ of G is any path λ such that ( †) holds and λ [0] = λ[0] .That is, a canonical path λ associated to λ starts from the canonical state λ[0] associated to λ[0]. The following example clarifies the concepts just introduced:Example 8.2. Consider a CGS-SPC G with N = {1, 2} and Φ = {p, q} such that Φ 1 = {p} and Φ 2 = {p, q}. Let d(i, s) = 2 Φ i for all i ∈ N and s ∈ S, and let τ(s, α)(p) = 0 if and only if α 1 (p) = α 2 (p) = 0, while τ(s, α)(q) = α 2 (q) for all s ∈ S. Namely, issue p becomes true if at least one agent makes it true, while issue q follows the decision of agent 2. Let now λ = s 0 s 1 . . . be a path of G such that s 0 = {p} and s 1 = {p, q}. Observe that there are many actions α such that τ(s 0 , α) = s 1 : namely, the one where both agents set p to true, or where just one of them does (and agent 2 sets q to true).
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1: Profiles Γ, Γ , Γ on which EMaj, TrueMaj and 2sMaj differ.

  of variables, we write o[W ] for the values of outcome o on W. We also write o |= ψ to say that outcome o satisfies propositional formula ψ (taking into account as explained before how we handle variables with non-binary values). Preferences over outcomes are represented by a binary relation > over O. If o 1 > o 2 we say that o 1 dominates o 2 with respect to >, meaning that o 1 is preferred to o 2 in >. If o 1 > o 2 and o 2 > o 1 , we say that o 1 strictly dominates o 2 with respect to >. In case o 1 > o 2 and o 2 > o 1 we say that o 1 and o 2 are incomparable with respect to >, and we write it as o 1 o 2 . The following notion of worsening flips allows us to define the semantics of conditional preference statements over binary relations on O.

  4.2: The induced model from Example 4.4. An arrow from o 1 to o 2 indicates a worsening flip sanctioned by N 1 and is labeled by the preference statement inducing it. Transitivity arrows are omitted.Intuitively, we have a worsening flip from o 1 to o 2 sanctioned by ϕ = ψ :(x i x j ) if outcomes o 1 and o 2 both satisfy precondition ψ, and they differ only in that variable X has value x i in o 1 and value x j in o 2 . Namely, if ψ is true, all else being equal (ceteris paribus) it is better to have x i than x j . We say that there is an improving flip from o 2 to o 1 sanctioned by ϕ if there is a worsening flip from o 1 to o 2 sanctioned by ϕ. If N is a gCP-net, a worsening (improving) flip from o 2 to o 1 sanctioned by N is a worsening (improving) flip from o 2 to o 1 sanctioned by some ϕ ∈ N.

Definition 4.2. If N is a gCP-net and o, o are two outcomes, then o dominates o with respect to N, written o > N o , if there exists a sequence of outcomes o 1 , . . . , o k such that o 1 = o, o k = o and, for every i ∈ {1, . . . , k -1}, there exists a worsening flip from o i to o i+1 sanctioned by N.

  relation on O and o an outcome: we say that o is weakly non-dominated if, for any outcome o , it holds that o > o implies o > o . If there is no outcome o such that o > o, including o = o, then we say that o is simply non-dominated. If o > o for all outcomes o , then o is a dominating outcome. If o is dominating as well as non-dominated, then it is strongly dominating. Observe that if o is weakly non-dominated, then it is possible that o is part of a cycle in >, as long as the cycle is not dominated by an outcome outside it. Likewise, if o is dominating, then it can be involved in a cycle in >.

  Table 4.1 lists the reasoning tasks of interest.

  Given a gCP-net N and two outcomes o 1 and o 2 , we define the equivalence relationo 1 ≈ d N o 2 if o 1 = o 2 , or o 1 > N o2 and o 2 > N o 1 . Namely, we partition the set of outcomes into equivalence classes. If o is an outcome, its equivalence class (i.e., the set of outcomes that includes o and, if they exist, all outcomes with which o forms a cycle in > N ) is called the dominance class of o with respect to N and is denoted by [o] N , with the subscript omitted when clear from context. The dominance classes form a strict partial order, which we denote by > d N . We say that [o 1 ] dominates [o 2 ] with respect to > d N , written [o 1 ] > d N [o 2 ], if o 1 > N o 2 and o 2 ≯ N o 1 for o 1 and o 2 representative elements of their equivalence class. A dominance class [o] is nondominated with respect to > d

N if there is no dominance class which dominates it with respect to > d N .

  N 2 is such that the only induced comparison in > 2 is one in which o self-dominates. The claim, then, is that o is self-dominating in > N iff o is dominated in > P M . To see this, assume first that o > N o, hence o > 1 o. Since o > 2 oby design, it follows that o > P Proof. For membership, we guess an outcome o and ask the PSPACE-complete problem P-NON-DOM'ED for M and o, where M is the given mgCP-net. This is in NPSPACE, and as NPSPACE = PSPACE it is thus in PSPACE.

M o. Conversely, if o is dominated in > P M , then, as o is not dominated by another outcome in > 2 , this can only be because it is dominated by itself in > P M , and thus it self-dominates in > N .

Theorem 4.2. The P-∃NON-DOM'ED problem for mgCP-nets is PSPACE-complete.

  o 1 >o 2 M | as supp, i.e., the number of agents i in M for whom o 1 > i o 2 . Observe that supp ≤ m. Then, the algorithm stores |s o 2 >o 1 M | as opp, i.e., the number of agents in M such that o 2 > i o 1 . Again, opp ≤ m. Then, it stores m -suppopp as inc; i.e., the number of agents in M for whom o 1 and o 2 are incomparable. Finally, if inc ≥ opp and supp ≥ inc, or if inc ≤ opp and supp ≥ opp, the algorithm answers yes, and no otherwise. For max-DOM'ING, consider an algorithm that for any o ∈ O it stores as supp the number of agents i in M such that o > i o, then the number of agents k in M such that o > k o as opp, and the number of agents considering o and o as incomparable in inc = m -suppopp. Analogously to max-DOMINANCE, the algorithm checks if inc ≥ opp and supp ≥ inc, or if inc ≤ opp and supp ≥ opp, in which cases it answers yes, and no otherwise. The algorithm solves a (potentially exponential) number of PSPACE tasks, which is in PSPACE. For max-STR-DOM'ING, it suffices to design an algorithm which runs the algorithms for max-DOM'ING and max-NON-DOM'ED (both in PSPACE), and which answers yes if and only if both tasks return yes. For max-∃DOM'ING and max-∃STR-DOM'ING, consider an algorithm asking the problems max-DOM'ING and max-STR-DOM'ING for all outcomes o ∈ O, and answering yes if for at least one of the outcomes the answer is yes. This amounts to solving a (possibly exponential) number of PSPACE tasks.

  c) whether r lp N (o 1 ) < r lp N (o 2 ). Proof. For (a), observe that o 1 is weakly non-dominated in > N if and only if it has r lp 1 (o 1 ) = 0. Then, Lemma 4.2 gives us a reduction from WNON-DOM'ED for individual gCP-nets under > N .
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	FIGURE 4.5: The induced models > 1 and > 2 from Example 4.9; the
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  o 1 ), where N(o 2 , o 1 ) is a gCP-net constructed as in Lemma 4.1, which induces a dominance relation from o 2 to o 1 . Note that if o 1 > N o 2 , for some gCP-net N, then o 1 must be on a path from [o 2 ] to a non-dominated class in > d N , and thus r lpN (o 1 ) ≤ r lp N (o 2 ). It follows now that o 1 > 1 o 2 iff r lp 2 (o 1 ) = r lp 2 (o 2 ). For (c), we do a reduction from DOMINANCE. Let N 1 be a gCP-net and o 1 , o 2 outcomes over variables in V. We now construct a gCP-net N 2 over variables in

  2. for all paths λ of G, for all sequences λ satisfying ( †), λ is a path of G if and only if for all k there exists a G-action α[k] such that λ[k] and λ [2k+2] can be obtained from state λ [2k] by performing actions (α 1 , . . . , α n , +turn) and then (∅ 1 , . . . , ∅ n , τ(λ [2k+1] |Φ , α)).

	α[k] --→ λ[k+1] and states
	λ [2k+1]

The recent paper by[START_REF] Conitzer | Designing Preferences, Beliefs, and Identities for Artificial Intelligence[END_REF] gives an account on how ideas from game theory, computational social choice and artificial intelligence can be used for the problem discussed above of designing agents with identities and beliefs.

Some arguments on why manipulation of voting rules is to be considered a negative phenomenon were given by[START_REF] Conitzer | Barriers to Manipulation in Voting[END_REF]. For instance, it would be unfair towards agents who have less information or cognitive capacities to think about a possible manipulation, and in general it could be considered a waste of computational resources.

Observe that R basic can be seen as a special case of weighted goals where the goal base contains a single goal, whose weight can be assumed to be 1.

Alternatively called conditional preference rules[START_REF] Goldsmith | The Computational Complexity of Dominance and Consistency in CP-Nets[END_REF].

In Chapter

this statement will rather be written as : f s for generalized CP-nets. We follow here the presentation given by[START_REF] Boutilier | CPnets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements[END_REF] in the case of complete CP-nets.

In Section 6.1 we will briefly discuss how the preferences of agents having propositional goals could be alternatively defined based on the Hamming distance. The focus of the thesis will however be on a dicothomous interpretation of preferences induced by goals.

Observe that EMaj can be also defined as TrueMaj with a {0} instead of {0, 1} in the second line.

Similar problems have been discussed for binary aggregation. In particular, the problem of lifting integrity constraints[START_REF] Grandi | Lifting integrity constraints in binary aggregation[END_REF] consists in looking for classes of aggregation rules (defined by the axioms they satisfy) ensuring that for all integrity constraints of a certain syntactical class, if the constraint is satisfied by all the agents it will also be satisfied by the outcome of the rule; and the most representative voter rules[START_REF] Endriss | Binary Aggregation by Selection of the Most Representative Voter[END_REF] guarantee to always return an outcome consistent with the constraint since they select the ballot of a voter in the profile.

We will see in this section a proof of this fact, i.e., that TrueMaj is weakly resolute, as a consequence of the rule satisfying the axiom of independence.

A related result in social choice theory states that there exists no resolute, anonymous, and neutral voting procedure for 2 alternatives and an even number of voters (see[START_REF] Moulin | The Strategy of Social Choice[END_REF].

The rule Conj v defined in previous work[START_REF] Novaro | Goal-Based Collective Decisions: Axiomatics and Computational Complexity[END_REF] captured precisely the intuition behind this axiom, in that its output was defined as the models of the conjunction of the agents' goals if they were mutually consistent, and a default option otherwise.

A previous version of this result used the stronger axiom of positive responsiveness in place of monotonicity[START_REF] Novaro | Goal-Based Collective Decisions: Axiomatics and Computational Complexity[END_REF].

As explained by[START_REF] Lang | How Hard is it to Compute Majority-Preserving Judgment Aggregation Rules[END_REF], for judgment aggregation rules the existential and universal definitions of the WINDET problem are dual to each other, in the sense that if the universal problem for a rule F is in a class C, its existential version is in the class CO-C.

Observe that the first step of aggregation of 2sMaj does not distinguish between a goal expressed in L ∧ and the corresponding goal in L ∨ where each occurrence of ∧ is replaced by a ∨.

The same formulation of reinforcement has been introduced for binary aggregation as well[START_REF] Costantini | Judgment Aggregation under Issue Dependencies[END_REF].

To be consistent with the common definition of agendas in formula-based judgment aggregation, we let ¬γ i = ψ in case γ i = ¬ψ (i.e., we avoid double negation).

When translating an instance of a formula-based judgment aggregation problem into a binary aggregation one, the constraint IC is used to model the logical structure of the agenda Φ.

To be more precise, a profile in binary aggregation is (v 1 , . . . , v n for v i ∈ Mod(γ i ) for i ∈ N rather than (γ 1 , . . . , γ n ), as we have seen above in this section. We use the two formulations interchangeably given that we focus on goals in G ∧ .

Similarly to the discussion presented here, in the paper by[START_REF] List | Aggregating Sets of Judgments: Two Impossibility Results Compared[END_REF] it is stated that the original notion of systematicity implies the preference aggregation notion of independence of non-welfare characteristics (INW). The generalization of the definition of (INW) from preferences to judgments has then been used as the standard definition of systematicity, and thus of independence[START_REF] List | The Theory of Judgment Aggregation: An Introductory Review[END_REF].

Importantly, the results by[START_REF] Goldsmith | The Computational Complexity of Dominance and Consistency in CP-Nets[END_REF] assume that the precondition ψ of a gCP-net is represented in disjunctive normal form. As our results will depend on theirs, we follow the same assumption -which does not limit the expressivity of the precondition.

An analogous example was pointed out by[START_REF] Wilson | Extending CP-Nets with Stronger Conditional Preference Statements[END_REF].

We can ignore statements on other variables as they would not be part of this inconsistency cycle.

The rank semantics has been used before to aggregate acyclic CP-nets[START_REF] Rossi | mCP Nets: Representing and Reasoning with Preferences of Multiple Agents[END_REF][START_REF] Lukasiewicz | On the Complexity of mCP-nets[END_REF]. However, their definition differs from ours since acyclic CP-nets feature no cycles between outcomes.

(o) = 0 iff r lp

(ox 1 . . . x k ) = k. See Example 4.9 for an illustration of the construction.

The respective model-checking problems however differ in complexity: ∆ P 3 -complete for CGS with exclusive control and PSPACE-complete for CL-PC(Belardinelli and Herzig, 

2016).2 Observe the similarity of these notions with, respectively, the TrSh rules with quota 1 (introduced in Section 3.1.2) and the unanimity axiom (introduced in Section 3.2.3).

[START_REF] Conitzer | Barriers to Manipulation in Voting[END_REF] discuss the limitations of the worst-case complexity approach when dealing with manipulation, as the instances making the problem hard may be uncommon.

Expected utility maximizers, optimistic, and pessimistic agents correspond to the probabilistic, weak drastic and strong drastic satisfaction indexes in the work of[START_REF] Everaere | The Strategy-Proofness Landscape of Merging[END_REF], whose work however did not study the issue-wise majority rules defined here.

More precisely, their result in formula-based judgment aggregation holds for closeness-respecting preferences: i.e., preferences where J i J if (J i ∩ J ) ⊂ (J i ∩ J) for judgment sets J i , J, J . For goalbased voting, we could rewrite it asF(Γ) i F(Γ ) if (Mod(γ i ) ∩ F(Γ )) ⊂ (Mod(γ i )) ∩ F(Γ)), which is implied by our definition of preference for resolute rules.

The paper also studies the complexity problems for agents having perfect-recall strategies (i.e., where agents choose an action based on the history up to that stage), which we did not touch here but are a standard notion for iterated games.
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Example 4.9. Take a gCP-net N 1 over a single binary variable A, with N 1 = { : a a}.

Suppose we want to construct N 2 such that (a suitable copy of) outcome a has rank 2. We add two new binary variables, X and Y, and define N 2 over variables A, X and Y. As for proof of Lemma 4.2, we first import all the conditional preference statements from N 1 : by the ceteris paribus semantics, this creates four copies of the dominance relation from > 1 , one for each assignment to variables X and Y. We then add statements a ∧ x : y y and a ∧ y : x x, which create a chain improving flips from axy to axy of length 2 (see Figure 4.5). It is easy to see now that r lp 1 (a) = 0 iff r lp 2 (axy) = 2.

Theorem 4.10. For a gCP-net N, two outcomes o 1 and o 2 , and k ≥ 0, then it is PSPACE-hard to check:

(a) whether r lp N (o 1 ) = k;

(b) whether r lp N (o 1 ) = r lp N (o 2 );

Disjunctions

Agents with goals in the language L ∨ want at least one of the literals in their goal to be accepted. The language of disjunctions is not enough, however, to guarantee strategy-proofness for EMaj and TrueMaj, as the following result shows for the erosion manipulation strategy:

Theorem 6.4. There exists a profile Γ and an agent i ∈ N with γ i ∈ L ∨ such that agent i has an incentive to manipulate EMaj and TrueMaj by erosion.

Proof. Consider a profile Γ for three agents and two issues such that γ 1 = ¬1 ∧ ¬2 and γ 2 = γ 3 = 1 ∨ 2. The outcome on Γ for both EMaj and TrueMaj is {(00)}. However, if agent 3 now submits goal 11)}. Therefore, agent 3 has an incentive to manipulate Γ and the rules EMaj and TrueMaj are not strategy-proof.

We can however obtain a positive result for EMaj and TrueMaj by restricting the set of available manipulation strategies to dilatation: Theorem 6.5. For any profile Γ with γ i ∈ L ∨ for i ∈ N, agent i has no incentive to manipulate EMaj and TrueMaj by dilatation.

Proof. Consider a profile Γ with γ i ∈ L ∨ for some i ∈ N. First of all, observe that an agent having p ∨ ¬p for some p ∈ I in her goal already supports all interpretations and thus has no incentive to manipulate. For EMaj, let EMaj(Γ) = {w} such that w ∈ Mod(γ i ). Since agent i can only use a dilatation strategy, the goals γ i such that Mod(γ i ) ⊆ Mod(γ i ) available to agent i are those whose models would lower i's support for each literal L in γ i . Thus she cannot manipulate.

Consider now TrueMaj(Γ) = {w 1 , . . . , w k }. Similarly to the reasoning above, an optimist agent i does not have any dilatation strategy which can allow her to include one of the models of γ i in the outcome of TrueMaj. An expected utility maximizer agent i may want to remove some w k ∈ TrueMaj(Γ) such that w k |= ¬L j for all L j in γ i . However, this is only possible when {w 1 , . . . , w } ∩ Mod(γ i ) = ∅, since the agent is restricted to dilatation strategies, and any other γ i would have more models increasing the votes against the literals in her sincere goal γ i . By combining the reasoning for optimists and expected utility maximizers we can obtain an analogous result for pessimist agents as well, thus concluding the proof.

For 2sMaj we have a positive result for any type of manipulation strategy: Theorem 6.6. For any profile Γ where γ i ∈ L ∨ for some i ∈ N, agent i has no incentive to manipulate unrestrictedly the rule 2sMaj.

Proof. Consider an arbitrary Γ where for some i ∈ N we have γ i ∈ L ∨ . First, an agent having p ∨ ¬p for some p ∈ I in her goal already supports all interpretations and thus has no incentive to manipulate. The result w i of EMaj(Mod(γ i )) is such that w i (x) = 1 if L x = x appears in γ i , and w i (x) = 0 if L x = ¬x appears in γ i . Hence, it coincides with the result of EMaj(Mod(γ i )) for γ i ∈ L ∧ where every occurrence of ∨ in γ i has been replaced by ∧ in γ i . The proof of Theorem 6.2 can thus be applied, obtaining that agent i is already maximizing her chances of getting γ i satisfied by submitting γ i .

By combining the results of Theorems 6.5 and 6.6 we get the following corollary: Corollary 6.2. If γ i ∈ L ∨ for all i ∈ N then EMaj and TrueMaj are strategy-proof for dilatation manipulation, and 2sMaj is strategy-proof for unrestricted manipulation. 

which is a model of γ 3 . Agent 3 has thus no incentive to manipulate.

This completes the reduction, showing that MANIP(2sMaj) is PP-hard.

For the rule EMaj we can provide the following similar result: Theorem 6.10. MANIP(EMaj) is PP-hard.

Proof. We reduce from MAJSAT-p by constructing an instance of MANIP(EMaj) from a given instance (ϕ, p 1 ) of MAJSAT-p. Let I = {p 1 , . . . , p k , q, r}, and profile

Analogously to the proof of Theorem 6.9, we show that on profile Γ agent 3 can manipulate EMaj if and only if |Mod(ϕ ∧ p 1 )| > |Mod(ϕ ∧ ¬p 1 )|:

Regardless of what agent 2 is voting for p 2 , . . . , p k , the result is decided by agents 1 and 3: all issues will be accepted in the outcome. For variables p 1 , q and r we do a case study to show that |Mod(ϕ ∧ p 1 )| > |Mod(ϕ ∧ ¬p 1 )| if and only if agent 3 can manipulate EMaj on Γ:

which is not a model of γ 3 . By submitting

) which is a model of γ 3 . Hence, agent 3 has an incentive to manipulate.

, which is a model of γ 3 . Agent 3 has thus no incentive to manipulate.

Therefore, MANIP(EMaj) is PP-hard.

The result of Theorem 6.10 holds for a manipulator i having a goal γ i in propositional logic, without restrictions on the language: the next step would be to study if the problem stays hard when we focus on goals in L ∨ . Given that the goals of the other agents can be arbitrary formulas, we conjecture it to be PP-hard as well. The manipulation problem for TrueMaj is also probably at least as hard as the WINDET problem (and the MANIP problem for EMaj), but its definition should include another parameter for the satisfaction of the agents.

Private Opinions and Unanimous Diffusion

Let I = {p 1 , . . . , p m } be a finite set of propositions or issues and let N = {1, . . . , n} be a finite set of individuals or agents. Agents have opinions on issues in I in the form of a propositional interpretation or, equivalently, a binary vector: Definition 7.1. The private opinion of agent i is a function B i : I → {1, 0} where B i (p) = 1 and B i (p) = 0 express, respectively, the agent's opinion that p is true and the agent's opinion that p is false.

Let B = (B 1 , . . . , B n ) denote the profile of private opinions of agents in N, analogously to what we have seen for binary aggregation in Section 3.4.2. For simplicity we do not introduce any integrity constraint. We assume that each agent has the choice of using (or not) her influence power over her private opinion on each issue, as formalized in the following definition: Definition 7.2. We call visibility function of agent i any map V i : I → {1, 0} where V i (p) = 1 expresses that agent i's opinion on p is visible.

We denote by V = (V 1 , . . . , V n ) the profile composed of the agents' visibility functions. By combining the private opinion with the visibility function of an agent, we can build her public opinion as a three-valued function on the issues. Definition 7.3. Let B i be the opinion of agent i and V i her visibility function. The public opinion of i is a function P i : I → {1, 0, ?} such that

Again, P = (P 1 , . . . , P n ) is the profile of public opinions of all the agents in N. We denote by P C the restriction of public profile P to individuals in C ⊆ N.

Definition 7.4. A state is a tuple S = (B, V ) where B is a profile of private opinions and V is a profile of visibility functions. The set of all states is denoted by S.

A state thus consists of the profiles of private opinions and of visibilities of all the agents in N. The agents, in particular, are linked by an influence network modeled as a directed graph: Definition 7.5. An influence network is a directed irreflexive graph E ⊆ N × N, where (i, j) ∈ E means that agent j is influenced by agent i.

We also refer to E as the influence graph and to individuals in N as the nodes of the graph. Let Inf (i) = {k ∈ N | (k, i) ∈ E} be the set of influencers of agent i in the network E. Given a state S, this definition can be refined by considering Inf S (i, p) = {k ∈ N | (k, i) ∈ E and P k (p) = ?} to be the subset of i's influencers that are actually showing their private opinion about issue p.

Given a profile of public opinions and an influence network, we model the process of opinion diffusion by means of an aggregation function, which modifies the private opinion of an agent from the public opinions of other agents. Definition 7.6. An aggregation procedure for agent i is a class of functions F i,C : {0, 1} I × {0, 1, ?} I×C -→ {0, 1} I for all C ⊆ N \ {i} that maps agent i's individual opinion and the public opinions of a set of agents C to agent i's individual opinion.

To simplify notation, we drop C from the subscript when clear from context. Many aggregation procedures have been considered in the literature on judgment aggregation, and they can be adapted to our setting. Notable examples are quota rules, where agents change their opinion if the number of people disagreeing with them is higher than a given quota, such as the majority rule (see Section 3.1.2 for other examples of aggregation rules). Unanimity is another instance of a quota rule, which we define here as we will use it in our results: Definition 7.7. The unanimous issue-by-issue aggregation procedure is defined as:

That is, an individual will change her private opinion about issue p if and only if all agents in C (usually among her influencers, as we will see) publicly expressing their opinion are unanimous in disagreeing with her own.

Actions, Transitions and Individual Goals

In our model, agents can use their influence power over the issues by means of specific actions of type reveal(J) -i.e., the action of showing the opinion on issues in J, and hide(J) -i.e., the action of hiding the opinion on issues in J. We allow for simultaneous disclosure on multiple propositions. Let thus: A = {(reveal(J), hide(J )) | J, J ⊆ I and J ∩ J = ∅} be the set of individual actions. Each joint action a = (a 1 , . . . , a n ) ∈ A n induces a new state from a given one via a transition function:

Definition 7.8. The transition function succ : S × A n -→ S associates to each state S and joint action a a new state S = (B , V ) as follows, for all i ∈ N and p ∈ I. For a i = (reveal(J), hide(J )) ∈ A:

where P is the public profile obtained from private profile B and visibility profile V .

By a slight abuse of notation we denote with a(S) the state succ(S, a) obtained from S and a by applying the transition function. We also use the following abbreviations: skip = (reveal(∅), hide(∅)) for doing nothing, reveal(J) = (reveal(J), hide(∅)), hide(J) = (reveal(∅), hide(J)), and we drop curly parentheses in reveal({p}) and hide({p}). Our definition assumes that the influence process occurs after the actions have changed the visibility of the agents' opinions. Specifically, first, actions affect the visibility of opinions, and then each agent modifies her private opinion on the basis of those opinions of her influencers that have become public.

We are now ready to define the concept of history, describing the temporal aspect of agents' opinion dynamic: Construct now the CGS-EPC G as in Definition 8.5 and consider the following four sequences λ = s 0 s 1 s 2 . . . where:

Observe that (a) and (b) are both examples of canonical paths (up to the considered state), corresponding to two actions that might have led from s 0 to s 1 in G. On the other hand, (c) is a non-example while being a path of G satisfying ( †), since s 0 is not canonical. Finally, sequence (d) satisfies ( †) but it is not a path of G , since it is not possible to obtain s 2 from s 1 .

The next result extends the statement of Lemma 8.1 to paths generated by a specific strategy. Given a G -strategy σ C and a state s ∈ S , let Π(out(s , σ C )) = {λ | λ ∈ out(s , σ C )}, i.e., all the "projections" of paths λ in out(s , σ C ) to paths λ in G, obtained through ( †).

Lemma 8.2. Given a CGS-SPC G, the corresponding CGS-EPC G is such that:

1. for every joint strategy σ C in G, there exists a strategy σ C in G such that for every state s ∈ S we have that Π(out(s , σ C )) = out(s, σ C );

2. for every joint strategy σ C in G , there exists a strategy σ C in G such that for all canonical states s ∈ S we have that Π(out(s , σ C )) = out(s |Φ , σ C ).

Proof. We first prove (1). Given strategy σ C in G, for i ∈ C define σ i as follows:

Observe that if s (turn) = 1 agents in C are obliged to play action ∅ by Definition 8.5, since it is their only available action. By combining all definitions above, we get that Π(out(s , σ C )) = out(s, σ C ) for an arbitrary state s ∈ S.

To prove (2) we start from a strategy σ C in G . For any state s ∈ S, define σ i (s) = {p ∈ Φ i | c ip ∈ σ i (s )}. Note that the assumption in Definition 8.5 that all variables outside of Φ are put to false at stage 2k+1 in G is crucial here. In fact, without this assumption we would only be able to prove that Π(out(s , σ C )) ⊇ out(s |Φ , σ C ), as a strategy σ C may associate a different action to states s 1 and s 2 that coincide on Φ and that are realized in a path λ ∈ out(s , σ C ).

By means of Lemma 8.2 we are able to prove the following main result: Theorem 8.1. Given any CGS-SPC G, the corresponding CGS-EPC G is such that for all state-formulas ϕ and path-formulas ψ in ATL * the following holds:

Proof. The proof is by induction on the structure of formulas ϕ and ψ. The base case for ϕ = p follows from the fact that s = s |Φ for all s associated to s, including s .

Chapter 9

Conclusions

At the incipit of this thesis we told the story of three researchers motivated by individual goals and preferences who were facing multiple situations of collective decision-making. In our quest to help them find such a collective choice, we delineated in Section 1.2 two main research questions, that we recall here:

1. How can we design aggregation procedures to help a group of agents having compactly expressed goals and preferences make a collective choice?

2. How can we model agents with conflicting goals who try to get a better outcome for themselves by acting strategically?

To conclude this thesis we provide a detailed summary of the main results that we achieved as an answer to these questions (Section 9.1), as well as some paths for future research that our contribution has opened (Section 9.2).

Summary of Contributions

The first three chapters were concerned with answering the first research question, on the aggregation of compactly represented goals and preferences coming from different agents. In Chapter 2 we presented two languages introduced in the literature, i.e., propositional logic and CP-nets (conditional preference networks), and provided a literature review for both. We also compared the preference orderings over outcomes generated by propositional goals (assuming dichotomous preferences) and CP-nets, observing that some orderings cannot be expressed by both languages.

In Chapter 3 we introduced the framework of goal-based voting, where agents express their goals as propositional formulas over binary issues, and they take a collective decision via a voting rule taking the goals as input and returning a set of interpretations as outcome. We then proceeded to an axiomatic study of our rules, by introducing properties for goal-based voting and then proving whether our rules satisfy them or not. Given our objective of helping agents find a collective decision, the first important axiom that we introduced was that of resoluteness of a rule (declined in a stronger and weaker notion). In this respect, we found the Approval rule to be inadequate, as it outputs a large set of possible plans whenever each of them is approved by a few agents only in the profile.

We then turned to issue-wise rules, warranted in particular by the absence of integrity constraints in our model, and we proposed three different generalizations of the well-known majority rule (i.e., EMaj, TrueMaj and 2sMaj) all satisfying the weaker or stronger notion of resoluteness. Nevertheless, Theorem 3.1 exposed the fact that not all desirable properties can be achieved at the same time (specifically resoluteness, anonymity and duality) and compromises need to be taken when choosing a rule with respect to its properties. Our main result consisted in an axiomatic