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“God made the bulk; surfaces were invented by the devil.”

Wolfgang Pauli
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“A pessimist sees the difficulty in every opportunity;

An optimist sees the opportunity in every difficulty.”

Winston Churchill
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General introduction

Life expectancy has been significantly increased overthe last century, thanks to highly innovative and
scientifically supported treatments. However, remaining clinical needs such as infection, pain and
recurrence are still major concerns. In particular, from the medical devices that heal chronic wounds
to the complex implants designed to remain in the human body, infections can arise and prevent
proper healing. This post-operative complication and consequent re-do surgeries involve impairment
of quality lifeand high medico-social costs. Thus, smart and bioactive medical devices remain to be
developedinordertobetter cope withinfections. Forsuch a purpose, thereisaneed for developing

relevant biomaterials with enhanced functionalities.

Biomaterials encompass ceramics, metals and polymers that are exploited in contact with living
tissues, organisms or microorganisms, as stated in the definition from IUPACin 2012 [1]. Metals and
ceramics were traditionally used for bone or dental repairand replacement, since they exhibit good
biocompatibility and net-shape parts [2]. Nevertheless, they are presently replaced with petroleum-
derived polymers in an increasing number of biomedical applications. Actually, polymers present
high flexibility and low melttemperaturethat enable easy processingand complex structures design
[3]. Their main drawback is the possible emission of by-products and plasticizer residues that can
lead to undesired inflammatory response. An alternative solution relies on the use of biobased
polymers that present inherent biocompatibility. The depletion of fossil resources and growing
environmental concerns are additional strong drivers fortheiradoption instead of petroleum-based
products. Thus, chitin, cellulose or collagen as new biomaterials are more and more exploited, as

highlighted by several reviews in the recent literature [4]-[6].

Within this framework, an excellent candidate for new biobased materials is nanocellulose. Thisterm
refers to cellulose particles with at least one dimension in the nanometric range of 1-100 nm. Two
different types of nanocellulose are usually described: cellulose nanofibrils (CNF) and cellulose
nanocrystals (CNC, whiskers), as depicted in Figure 1. Nowadays, they are mainly obtained from
wood at the pilot/industrial scale and supplied as suspensions in water or re -dispersible powders,
evenif otherrenewablesources could be available: annual plants, animals and micro-organisms, for

which processing and industrialization are still limited.

H. Durand, 2019 — Confidential

21



22

w’\%‘““"
ANy

Cellulose nanocrystals Cellulose nanofibrils
Length 150-500 nm Length several um
Width 5-10 nm Width 5-50 nm

Figure 1: Schematic representation of cellulose nanocrystals and cellulose nanofibrils

A tremendous enthusiasm is shown by the scientific community on nanocellulose. Owing to its
renewability, biodegradability, widespread availability, low density and excellent mechanical
properties, an exponential growth of the number of scientific papers and patents is detected over

the last decades (Figure 2).

1200
1000 +
800 -

600 - —&—Papers Patents

400 -

Number of papers

200 ~

0 M;"Y;.-ﬁ;@_:'s‘&"+'~“A"‘-: : . . |
1980 1985 1990 1995 2000 2005 2010 2015 2020

year

Figure 2: Number of papers and patents released each year dealing with CNF and CNC until 2017 (extracted
from SciFinder in July 2018, descriptors are cellulose nanofibrils / cellulose microfibril / microfibrillated
cellulose / nanofibrillated cellulose / cellulose nanocrystals / cellulose nanowhiskers / nanocrystalline

cellulose / cellulose whiskers)

Since their first isolation in the 1980s [7], [8], the industrial production of cellulose nanofibrils has
been extensively studied and optimized. TEMPO mediated oxidation and enzymatic pre-treatments
drastically decreased the energy required to produce CNF suspensions, allowing for cheaper and
easily implemented processes, compared to CNC. Research efforts are now switching towards
potential applications, especially in the biomedical field. Actually, CNF presentinexistent or very low
biological response and are considered as biocompatible. Moreover, good cell proliferation and
migration upon their contact have been confirmed [9], [10]. In addition, their tunable surface
chemistry and high specific surface area open wide range of chemical surface modification through
adsorption or covalent binding of molecules, potentially including bioactive compounds. For

instance, penicillin was covalently immobilized onto CNF resulting in contact-active antibacterial
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systems [11]. CNFs are thus considered as an outstanding candidate for new biomaterials.
Furthermore, 2D and 3D CNF nanostructures can be easily obtained by various methods such as
filtration, solvent casting or freeze-drying. Accordingly, different CNF based materials can be
specifically tailored for biomedical applications [12]—[14]. As an example, CNF films, under the form
of highly entangled networks, can entrap active principle ingredients (APIs) and sustain the drug
release over months [15]. Another possibility is the APl loading of CNF aerogels obtained by freeze
drying, after CNF modification by poly-(ethylene imine) (PEIl) that enabled the drug release upon
specificpHand temperature conditions [16]. Otherwise, the combination of CNF with otherbiobased
polymers such as alginate recently allowed the preparation of hydrogels with better mechanical
propertiesand enhanced stability in physiological conditions [17]. Still, the covalent immobilization
of APl onto the surface of CNF appears to be under investigated. This strategy is believed to bring
innovative drugrelease systems that exploit both the entrapment by CNF entangled network and its

tunable surface chemistry.

Consequently, aconsortium of several academicand industrial partners was gathered to investigate
the developmentand use of CNF and active molecules, specifically designed for biomedical purposes.
Such collaboration led to a project, CELLICAL, supported by the French National Research Agency
(ANR-15-CE08-0033) and started in January 2016. This Ph.D. has been carried out in the frame work

of the CELLICAL project and addressed the following objectives:

i. Functionalization of cellulose nanofibrils surface with active molecules
ii.  Preparation of 100% CNF and CNF composite structures
iii. Investigation of the drug release abilities and antibacterial properties of CNF based

structures

In order to achieve these objectives, an active collaboration was developed during the three years
with almostall the consortium members, from the academiclaboratories / technical research center
up to the industry. In particular, strong interactions occurred with experts for nanocellulose
production and functionalization (LGP2', CTP?, TEMBEC Rayonier group), glycol-conjugates
(CERMAV?), drug and prodrug design (DPM*), and active molecule release and modeling (INSERM®).
An important contribution was also given by the know-how of the global leader of medical devices

(Medtronic). Finally, a start-up, InoFib, was also involved for nanocellulose functionalization.

'LGP2 : La boratory of Pulp and Paper Scienceand Graphic Arts

2 CTP : The Pulp and Paper Research & Technical Centre

>CERMAV : Centre de Recherches sur les Macromolecules Vegetales
*DPM: Département de Pharmacochimie Moléculaire

’INSERM: Institut National de la Santé et de la Recherche Médical
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Thus, this Ph.D. took place in a very dynamic context. Experiments/characterization could be
performed in various partner’s facilities, by taking profit of the variety of tools and knowledge in a
very broad field, fromthe molecules up to the final medical application. This variety also translated
ina multiplicity of technical languages, scientific areas and experimental uses (i.e. from the micro-
milligrams traditionally synthetized in organic chemistry labs, up to the hundreds of grams required
for characterizationin pulp and paperscience) that made this Ph.D. a really challenging and learning

experience.

Finally, the Ph.D. involved also extra-consortium international collaborations to access highly
innovative characterization techniques such as ionic liquid assisted NMR and especially Dynamic

Nuclear Polarization enhanced NMR. The latterallowed for unique characterization of modified CNF.

This manuscript endeavors to describe the most promising strategies developed and the results
obtained, for preparing bioactive grades of CNF and designing CNF based materials for medical
devices. Three chapters will provide the readerwith an extensive description of the thesis approach

and the most relevant results.

In chapter I, the literature review covers biomedical science and currently used biomaterials. A focus
on biobased polymers of importance for this project (cellulose and collagen) is exposed. The
nanocellulose isolation processes, emerging market, health and toxicity aspects and upcoming
biomedical applications are presented. Moreover, surface functionalization of CNF through
potentially water based reactions, of interest for fully exploiting the “green” character of such
materials, isreviewed. Thus, aninsight on the techniques selected forthe experimental partis given

(namely on esterification, amidation and click chemistry).

Then, the chapter Il presents the results obtained with these functionalization strategies applied to
CNFs in order to immobilize active principle ingredients (APIl). In chapter II-1, a single step water
based procedure is used to covalently immobilize ciprofloxacin on CNF films. Such films present
advantages in the development of active membranes with prolonged antimicrobial properties for
topical application (scientific paper n°1). The chapter /-2 presents a two-step immobilization of
metronidazole onto CNF suspension, while still being water-based. The first step uses amidation to
provide the CNF with pending alkynes functions, which bind with thiol modified metronidazole
through thiol-yne click chemistry in the second step (scientific paper n°2). Likewise, chapter II-3
describes a similar approach where CNF are provided with pending furan functions, available for

subsequent Diels Alder click chemistry with maleimide modified metronidazole (scientific paper n°3).
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Finally, chapter Ill focuses on the use of these tailored CNF films and suspensions to prepare 100%
CNF and collagen-CNF composite materials with antibacterial properties, to be used in different
model medical devices. The characterization of such materials is mainly done by water uptake
measurements, drug release experiments and antibacterial activity assessments. Chapter IlI-1
illustrates the drugrelease of CNF films that only physically entrap ciprofloxacin. Subsequently, the
antibacterial activity of such CNF films is compared with that of films containing immobilized
ciprofloxacin (likely by covalent bonding) and the advantages of the latter approach are pointed out
(scientific paper n°4). Collagen-CNF composites preparation with metronidazole modified CNF
suspensions is then detailed in chapter IlI-2. The esterase enzyme-triggered release is discussed,
together with antibacterial activity against anaerobic bacteria, confirming the interest of such a
strategy. To conclude, another application is targeted in chapter I1l-3, by developing collagen-CNF
composites with adsorbed chlorhexidine digluconate that are characterized with a focus on the drug
release and antibacterial activity. The influence of gamma radiation on composite structure and

antibacterial activity of these samples is finally presented.

The organization of these chapters is graphically described on Figure 3. The reader should keep in
mind that most of the sub-chapters are structured as scientific publications, but further comments

that are suitable for a more complete Ph.D. discussion are added in the text in grey italic font.
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Figure 3: Graphical representation of the Ph.D. manuscript content

This Ph.D. work provides the scientificcommunity with innovative APl immobilization routes, water

based and likely easy to up-scale. Moreover, it shows the possibility to further investigate

nanocellulose with emerging high technology characterization tools such as DNP-enhanced NMR. The

Ph.D. outcomes can be useful also for the medical device industry, which gains new insights on

nanocellulose potential for healthcare.

H. Durand, 2019 — Confidential



Bibliography

[1] H.Pun, “Terminology forbiorelated polymers and applications (IUPACRecommendations 2012,”
Jul. 2018.

[2] B.J.Love, Biomaterials : A Systems Approach to Engineering Concepts. Elsevier Science, 2017.

[3] T.Srichanaand A.J. Domb, “PolymericBiomaterials,” in Biomedical Materials, Springer, Boston,
MA, 2009, pp. 83-119.

[4] R. P. Babu, K. O’connor, and R. Seeram, “Current progress on bio-based polymers and their
future trends,” Progress in Biomaterials, vol. 2, no. 1, p. 8, 2013.

[5] L. S. Nairand C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer
Science, vol. 32, no. 8-9, pp. 762—-798, Aug. 2007.

[6] L. Bedian, A. M. Villalba-Rodriguez, G. Hernandez-Vargas, R. Parra-Saldivar, and H. M. N. Igbal,
“Bio-based materials with novel characteristics for tissue engineering applications — A review,”
International Journal of Biological Macromolecules, vol. 98, pp. 837-846, May 2017.

[7] A. F. Turbak, F. W. Snyder, and K. R. Sandberg, “Microfibrillated cellulose, a new cellulose
product: properties, uses, and commercial potential,” J. Appl. Polym. Sci.: Appl. Polym. Symp.;
(United States), vol. 37, Jan. 1982.

[8] F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, “Microfibrillated cellulose:
morphology and accessibility,” J. Appl. Polym. Sci.: Appl. Polym. Symp.; (United States), vol. 37,
Jan. 1982.

[9] C. Endes et al., “A critical review of the current knowledge regarding the biological impact of
nanocellulose,” Journal of Nanobiotechnology, vol. 14, no. 1, p. 78, Dec. 2016.

[10] A. Rashad, K. Mustafa, E. B. Heggset, and K. Syverud, “Cytocompatibility of Wood-Derived
Cellulose Nanofibril Hydrogels with Different Surface Chemistry,” Biomacromolecules, vol. 18,
no. 4, pp. 1238-1248, Apr. 2017.

[11]S. Saini, N. Belgacem, J. Mendes, G. Elegir, and J. Bras, “Contact Antimicrobial Surface Obtained
by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic
Release,” ACS Applied Materials & Interfaces, vol. 7, no. 32, pp. 18076-18085, Aug. 2015.

[12] M. JorfiandE. J. Foster, “Recent advancesin nanocellulose forbiomedical applications,” J. Appl.
Polym. Sci., vol. 132, no. 14, p. n/a-n/a, 2014.

[13] N. Lin and A. Dufresne, “Nanocellulose in biomedicine: Current status and future prospect,”
European Polymer Journal, vol. 59, pp. 302—325, Oct. 2014.

[14] N. Halib et al., “Potential Applications of Nanocellulose-Containing Materials in the Biomedical
Field,” Materials, vol. 10, no. 8, p. 977, Aug. 2017.

[15] R. Kolakovic, L. Peltonen, A. Laukkanen, J. Hirvonen, and T. Laaksonen, “Nanofibrillar cellulose
films for controlled drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics,
vol. 82, no. 2, pp. 308-315, Oct. 2012.

[16])J. Zhao, C. Lu, X. He, X. Zhang, W. Zhang, and X. Zhang, “Polyethylenimine-Grafted Cellulose
Nanofibril Aerogels as Versatile Vehicles for Drug Delivery,” ACS Appl. Mater. Interfaces, vol. 7,
no. 4, pp. 26072615, Feb. 2015.

[17] O. Aarstad, E. B. Heggset, I.S. Pedersen, S. H. Bjgrngy, K. Syverud, and B. L. Strand, “Mechanical
Properties of Composite Hydrogels of Alginate and Cellulose Nanofibrils,” Polymers, vol. 9, no. 8,
p. 378, Aug. 2017.

H. Durand, 2019 — Confidential

27



28

H. Durand, 2019 — Confidential



Chapter |

Literature review

29



30

H. Durand, 2019 — Confidential



Chapter| — Literature review

Table of content

INTRODUCTION TO CHAPTER | ..cuuiiuiieuiiiniiniiiuiiiniiieniniiisiiiesieesissississssssssssssssssssssssssssssssssssnsssnssanss 33
1. TRENDS OF BIOBASED POLYMERS IN BIOMEDICAL APPLICATION ....ccccctuiieeereecrnecrecrencnccrncsnnsens 37
1.1 Introduction to biomediCal @NGINEEIING ........cveveeereeereseeietieeesese st e et s et et e e s et e ess st e s s s sessetesessesenes 38

1.2 Overview of biobased materials for biomedical APPIICALIONS..........cccveveeeeeeceeececieieeeiesseeseeeceeeeseie e 41
0 B 1o Y = (o A = K I [ 1121 1o Y TSRS 41

1.2.2. BiObaSEa POIYMETS....eiiiiiiiiieette ettt ettt et e et e e et e e st e e estbeeeabeeebaeeabbeeeabeeeaabeeeabeeeesbeeeabeeebeeeaabeeeaaeeenreaenn 43

1.3 A focus on Collagen/gelatin in biomMediCal field ..............coerevevereeereeseeeisisieiersisieieieisiesessseseesesesesesesesesesesesesesens 50

1.4 A focus on Cellulose and its derivatives for the biomedical field .............ccoeveevevecevveessiiseieeceeeeessnnes 55

2. NANOCELLULOSE: PRODUCTION, CHARACTERIZATION, APPLICATION AND COMMERCIAL

ASPECTS....cuiiiiiiiieeiiiiiiieeoteasrasiresssressstrnsssrssssrssssrssssrssssssssstessssssssssssssssssssssssssssssasssssnsssenssssssssns 61
2.1 Isolation and characterization of NANOCEIUIOSE MATEITIAIS ......coceevveeeeeeeeeieiseieieeieeee e 62
2.1.1. CellUlOSE NANOCIYSTAIS .oouiiiiiiiieiit ettt ettt e s b e e s ab e e e bae e bb e e sabeeebee e baeesabeesabaaensaeessseesabeaeassaean 63

2.0.2. CellUlOSE NANOTIDIIIS ..ottt sa ettt ettt et sb e e st et e sab e e st e sabesbeenesenbeenbaenanennee 64

2.1.3. Bacterial NAaNOCRIIUIOSE (BINC).....uiiiiieitee ettt ettt e et e et e e e tae e et e e eteeeeaaeeeasaeeaeeeenseeesseeenseesbeeenseaean 68

2.2 Characterization of cellulosic NANOMALErIQIS (CNIMS) .....eveeeueereesieiersieieesieiesiesisisiessssssssssssssessssssessssssssseses 70

2.3 Industrialization of nanocellulose: first and upcoming APPlICAtIONS ......c.coveeeveeevevereirieesieesieieerieesieeas 72

2.4 Health and Toxicology: a concern for CNM development in biomedical field .............cceveeevvveevvevrecrrnnnns 74

2.5 Cellulose nanofibrils and medical APPLICATIONS ........cvouveveeereeeieeieieieseeesie sttt e e s st sesesens 81

3. FUNCTIONALIZATION OF CNF SURFACE .....ccccctttituciniirniimesieesinnisssisesissisessssssssssssssssssssssssasssassss 87
3.1 Esterification of NANOCEIUIOSIC MATEIIAIS ..........c.oueueueueieieieieieieeetee ettt ettt 89

3.2 Peptide linkage: amidation of oxidized nanocellulosic MALEriQls ..........cceveveeveeevveeeereisieeirsisieeesisieeans 91

3.3 Click Chemistry and nanocellulose

TR 20 B I o TTo T T T TSP SRRRPRRPR

I 0 I o 1] o 1= RN 99

3033, RIS AR ..ttt ettt et e et e e et e e e tae e e eta e e eteeebeeeataeeeteeateaeateeeaabeeatae ettt eaaaeeataeeateeeareeeareaeanres 101
CONCLUSIONS TO CHAPTER | ...ccuienieiiieieireterencacresrecrossacrossacsassassosssssssassescsssssssssasssssassnssansanse 104
LIST OF TABLES ......ccuttuiieeerencrecrncresrascrasrassesssassrasssnssesssessenssssssssssasesnsesnssssssssssasesnssssssssssnsssnssnns 106
LIST OF FIGURES .......cuteieieiiiiieiieteteerecrecrocrasrossassassassassassessssssssssssssssssssssssssssssssssassnssassnssassnnsans 107
BIBLIOGRAPHY .....eeiiiniieierencreerneteeranerneressesssessrasssnssenssasssnssssssesssasesasesnsssnsessssasesnssssssssssnsssnssnns 111

H. Durand, 2019 — Confidential




32

H. Durand, 2019 — Confidential



Chapter| — Literature review

. Literature Review

Introduction to chapter|

The overall context of this Ph.D. project will be described through this literature review, based on
more than 200 references, mostly no more than 5 years old, confirming that the topicis emerging.
The objective is to introduce the concepts related to the project to “non-expert” scientists by
providing them with general knowledge on every topic, but also to experienced scientists by
presenting relevant datathrough tables and schematic representations. The transitions in between
each section will include comments in grey italic font on how the project is related to the cited

literature.

The first part of the literature review offers an overview of the standard biomaterials currently
available. Biobased polymers that present potential use as biomaterial are introduced: collagen and

cellulose origin, chemical structure and existing biomedical applications are exposed.

The second part focuses on nanocellulose. Its peculiar characteristics arising fromits diverseisolation
processes are described. The topics of its industrialization together with health and toxicology are

detailed and an emphasis on the biomedical applications of cellulose nanofibrils (CNF) is proposed.

Finally, the last part covers the functionalization strategies of CNF and how it can further extend its
potential for being used in medical devices. The Figure I.1summarizes the graphical structure of this

chapter.

Thisliterature review is believed to provide the reader with insight on CNF in order to easily go over

the next chapters.
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Figure I.1: Graphical representation of chapter I structure
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1. Trends of biobased polymers in biomedical application

Biobased polymers are produced from renewable resources in nature. They can be biodegradable
but a cleardifference liesinthe factthat biodegradable polymers can also be synthesized from fossil
resources. Likewise, biobased polymers are not all biodegradable as in the case of green
polyethylene for instance [1]. The global production of biobased polymers is constantly rising and
reached more than 2 milliontonsin 2017, whichisstill lessthan 1% of the 320 million tons of plastics

produced annually [2].

However, the growing concern about the depletion of fossil resources drives the population and the
research community towards more sustainable material resources and processes. In 2011, the
Europeaninnovation policy, called Lead Market Initiative (LMI), identified biobased products as one
of six important sectors that are supported by actions to bring new products or services to the
market [3]. Similarly, in North-America, the Biopreferred® program is implemented by the United
States Department of Agriculture (USDA) and aim at increasing the purchase and use of bio-based

products. The program was recently extended by the 2014 Farm Bill [4].

The firstgeneration of bio-based polymers was mainly extracted from agricultural feedstocks such as
corn and potatoes, but an important shift was recently made in order to move away from food
resources. Nowadays, three principal ways are identified for the production of bio-based polymers, i)
extracting natural polymers from plant and animal resources (cellulose, collagen or chitin for
instance) and apply partial modification, ii) using bio-based monomers produced by fermentation or
conventional process and carry out classic polymerization processes (PLA, PBS, etc.) oriii) producing

bio-based polymers directly from bacteria (PHAs) [5].

Tendencies of the past few decades regarding population aging and increased incidence of chronic
diseasesordisabilities, call for the development of novel medical grade materials [6]. The need for
highly functional systems that are able to reproduce the biological conditions of living organisms is
one of the key pointsin orderto address the 21* century human health diseases. Nowadays, nature
derived therapeutic constructs are of great relevance in the current biomedical sector. Most of
biobased materials present several complementary properties such as unique chemical structure,
bioactivity, nontoxicity and biocompatibility which make them good candidates forthe use in medical
applications. Some polymers from natural sources are known to mimic the extracellular matrix and
promote cell adhesion, interaction and differentiation. Such functionalities match with the

requirements of tissue engineering materials [7].
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This first section aims at describing the landscape of existing biobased materials that are used in the
biomedical field, and will focus on collagen and cellulose since these biobased materials are used in

this Ph.D. work.

1.1 Introduction to biomedical engineering

Biomedical engineering has emergedin modern hospitals over the last fifty years and encompasses
interdisciplinary scientific fields. It aims at applying engineering principles and methods to the
understandingof living tissues and the design and development of produ cts that maintain, restore or
improve tissue functions. It includes a wide range of discipline such as diagnostics and physiologic
instrumentation, medical imaging, biological system analysis (modeling, simulation, control),
materials for medical devices, artificial organs and rehabilitation, controlled drug delivery and tissue
engineering [8]. Biomedical engineering implements solutions to a variety of medical fields as

depicted on Figure |.2.

Biomechanics

Medical & Prosthetic Devices
Biological Analysis & Artificial Organs
Biosensors ’ Medical Imaging
Clinical Biomaterials
Engineering
Biotechnology
Medical &

Bioinformatics Tissue Engineering

Rehabilitation Neural
Engineering Engineering
Physiological Biomedical
Modeling Instrumentation

Bionanotechnology

Figure 1.2: The world of biomedical engineering, adapted from [9]
Tissue engineeringand drug delivery are key biomedical applications these days. They are among the

most investigated fields regarding emerging uses of biobased polymers.

Tissue engineering has a very wide scope. The IUPAC describe tissue engineering as “Use of a
combination of cells, engineering and materials methods, and suitable biochemical and physico-
chemical factorsto improve or replace biological functions” [10]. In other words, it aims at building
up new functional living tissues by using cells that are grown in combination with a matrix or
scaffolds to guide their development. The new cell structure is grown in vivo orin vitro and then

implanted in the human body. Tissue engineering thus also encompasses wound healing field in
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whichimplants are used. The main challenges associated with tissue engineering are i) cells handling
forin-vitro orin-vivo growth of the new tissue and its blood supply, ii) materials used for scaffolding
that can be permanent or biodegradable, natural, synthetic or hybrid and tuned according the
targeted application, iii) cell type combination for complex structure, iv)stem cell use, v) integration
of digital information and computer-assisted design, vi) time dimension of the implantation
(acceptation, degradation of scaffold), vii) social and regulatory challenges [11]. To sum up tissue
engineering challenges, three pillars can be identified, as depicted in Figure I.3: cells, scaffolds

(biomaterials) and regulatory signals.

Biomaterials

Cells attach and migrate into Facilitate growth
scaffold which supports cell Ceramics, Synthetic Polymers, factor delivery
growth, proliferation and Natural Polymers
matrix deposition

Cells Regqulatory

Signals

o NN

.{o\ o

Autologous, Allogeneic, Cell Lines,
Primary Cells, Progenitor Cells Growth Factors, Chemical Compounds,
e——————| Mechanical Stimulus

Induce cell differentiation and
tissue formation

Figure 1.3: lllustration of tissue engineering principle triad composed of the biomaterial used for scaffolding,
the cells and the biological signals [12]

The requirements foramaterial to be a good scaffold candidate for tissue engineering applications
are a highly porous 3D structure that provides good cell attachment, guide the production of extra
cellular matrix (ECM) by the cells, ensure the mechanical strength before the new tissue has grown
enough to support itself, and sometimes to deliver bioactive molecules [13]. This induces
proliferation and differentiation of cell and finally neo-tissue genesis. Keys physical properties for the
scaffold candidates are: pore size, water content, mechanical strength, cell adhesion,
biocompatibility and degradability. Also, it should be noted that tissue engineering application does
not require the same cell proliferation process as for natural development. An accelerated
regeneration process is targeted and naturally occurring ECM or derivatives may actually be

detrimental forthe success of the tissue engineering procedure. Forinstance, natural tissue matrices
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often show a lack of macro/micro pores structure, which is necessary for uniform cell proliferation

[14].

This Ph.D. focuses on the development of substrates intended forthe design of wound healing devices

for external (topical) or internal use (like in soft tissue repair).

Drug delivery is defined as a process of administration of a bioactive substance of pharmacological
interest by the IUPAC. The report also indicates that a drug delivery system can be a stationary
implantoran active or passive moving system (inside the body), with or without targeting abilities. A
slightdifferenceisalsoidentified between controlled and sustained drug delivery in [IUPAC. A drug
delivery systemis described as sustained if it shows slow release abilities for therapeutics effects. If
the system also achieves the pharmacokinetic requirements, it can be described as controlled drug
delivery system [10]. Typical drug concentration profiles are illustrated in Figure 1.4, which compares
conventional release profiles with sustained and controlled release. The minimum and maximum
therapeutic concentrations form the therapeutic window in which the drug is supposed have the
most suitable therapeutic effect. Conventional dosage forms usually show peaks and drops out of the
therapeutic window. These fluctuations of the drug level can lead to undesirable side effects.
Sustainedrelease dosage forms offer a slower drug release with a drug concentration that remains
for a certain period of time inside the therapeuticwindow before losing its potency. Only controlled
drug release profiles provide both slow and prolonged levelsinside the therapeutic window. A zero-
orderkineticrelease rate isthe first key to achieve controlled drug release. The second objectiveis to
maintain the drug concentration stable by the use of intelligent carriers that cope with the

unpredictable depletion rates of the drug in-vivo [15].
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Figure 1.4: Typical plasma drug concentration profiles: conventional dosage forms (A), sustained (B), and (C)
controlled release dosage forms, extracted from [15]

Biomedical field and associated topics are described more in detail in afore-mentioned books and

reviews. Many materials are available for building scaffolds for tissue engineering or designing
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controlled drug release systems. In this Ph.D. project, the focus will be on biobased materials which

are currently of high interest for this research area.
1.2 Overview of biobased materials for biomedical applications

1.2.1. Biomaterials, a definition
In the context of scientific research the consistency of terminology is crucial, especially for fast
growingfields of investigation. Forinstance, patenting process can be affected by the different uses
of inaccurate words, often leading to litigious war [16]. The use of words with the prefix bio- can
imply different meaning. Forinstance, biomaterialis aword that can have two meanings. It can refer
to a material thathelps “life”, asin the field of biomedical engineering where it is supposed to be in
contact with living tissues, or it can refer to a material that is extracted from biomass (plants and
animals), which is different. One could misuse biomaterial to describe these two topics. When it
comesto build up synergiesin between biomedical world and nature-extracted material experts, a
cleardefinitionisrequired. Accordingto the IUPAC definition of 2012, a biomaterial is amaterial that
isexploited in contact with living tissues, organisms or microorganisms. The notion of exploitation
includes utility for applications and fundamental research. The use of polymeric biomaterial is
recommended when one wants to deal with polymer for medical purpose [10]. The definition by

IUPAC is chosen for this entire manuscript.

Biomaterials encompass various types of materials ranging from metals to ceramics, synthetic and

biobased polymers as depicted on Figure I.5.

Metals Alloys
(titanium) Ceramics
Stainless steel

Hydroxyapatite
Glass
Calcium phosphate

BIOMATERIALS

Polyethylen glycol
(PEG) Petroleum based Biobased
Poly(lactic) acid polymers polymers
(PLA)

Cellulose h
Chitin

Alginate ¥

Collagen ﬁ

3

Figure 1.5: Commonly used biomaterials, inspired from [17]
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Metals and metal alloy biomaterials have been used for temporary or permanent medical implant,
prosthetics and instrumentation for many decades thanks to their biocompatibility. Metallic
biomaterials have a good in-vivo mechanical, ionic and electrical response and they allow for the
design of net-shape parts. Alloy such as stainless steel, cobalt-chromium, titanium alloys and other
precious metal alloy are now developed for such applications. Nowadays, the main areas where
metal biomaterials are used are hard tissue applications such as bone and dental repair and

replacement [18].

Ceramics are produced by the combination of groups of ions and cations to form crystals with regular
repeating structure and unit cell shape and dimensions. Calcium Hydroxyapatite (CaHAP), Aluminum
Oxide Al,0;, Zirconia ZrO, and Porcelains (combination of SiO, and Al,03) are examples of widely
used ceramics biomaterials. They can be used as consolidated monoliths, coatings or fillers in
matrices. In the form of monoliths they are mechanically comparable to metal so that their use in
hard tissue is seen. Coating of reactive metal structuresis another field of application since they are

highly biocompatible [18].

Petroleum derived polymer can also be used as biomaterials. This category encompasses polyolefins
(mainly polyethylene PE and polypropylene PP), methacrylates like poly(methyl metacrylate) PMMA,
bis glycidyl methacrylate BisGMA), polyamides (Nylon 6,6, polyamide 6.10), polyesters (PET, PLA,
PGA, PCL), polyethers (PEO and PPO) and silicones. Compared to metals and ceramics, the principal
advantage of synthetic polymers is their really high flexibility and low melt temperature that allow
for easy melt processingand complex structure design. Therefore, numerous biomedical applications
can be addressed with synthetic polymers that are summarized on Table I.1. Vascular grafts

prostheses design is one example, among many other, where melt processing is a key feature.
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Table 1.1: Medical uses of synthetic petroleum derived polymers, extracted from [19]

Polymer Applications

Polyvinyl chloride Extracorporeal devices: hemodialysis or hemoperfusion,
blood tubing, cardiac catheters, blood bag and IV
infusion set, endotracheal tubes surgical tapes, sheet
oxygenator, artificial heart, blood pump, artificial limb

Ultrahigh MW polyethylene Acetabulum in total hip prostheses, artificial knee
prostheses

Polypropylene Membrane oxygenator, finger joint prostheses, IV cannulae,
unabsorbable sutures

Silicone rubber Hydrocephalus shunts, catheters, membrane for oxygenator,

artificial skin for burn dressing, plastic surgery implant,
artificial heart, heart assisted pump, drug release system,
atrioventricular shunts, ear prostheses, facial prostheses,
artificial heart valve, tendon, finger joint repair, tracheal
prostheses, bladder prostheses, bladder patch, intestine
patch, dura-mater prostheses, retinal detachment,
impressing materials, heart pacemaker leads

Polycarbonates Membrane for oxygenator, hemodialyzer, plasmapheresis
membrane

Polyester Vascular graft prostheses, fixation device for tissue, hernia
repair, patches for heart, bladder, arteries, suture

Polytetrafluoroethylene Vascular graft prostheses, heart patch, retinal detachment.
femoral stems

Polyurethane Artificial heart pump material, balloon, heart valve
prostheses, vascular graft prostheses, coating for blood
compatibility

Polymethyl methacrylates Bone cement, artificial teeth, denture material, bone

prostheses, cranial bone replacement, intraocular lenses,
membrane for dialysis

However, the drawback of synthetic polymer is by-products or plasticizers release (initiators,
unreacted monomers...), upon degradation in physiological conditions, that can trigger inflammatory

response [18].

Nature derived polymers (biobased polymers) have attracted increasing attention since petroleum
resources are finite. Moreover, many biobased polymers present inherent biocompatibility
properties. Biomimetic approaches are used to harvest the technological advances made by nature
overmillionsyears of developmentin orderto design new innovative materials. Recent biomimetic
approaches are strongly related to biobased polymers, such as cellulose [20], [21]. Consequently,
biobased polymers are of particularinterest in these approaches. The next part will thus deal with
the novel use of biobased polymer in the field of biomedical engineering. The objective is to show
how they can replace existing biomaterials and especially how they can allow for the development of

new combinations of properties for innovative applications [1].

1.2.2. Biobased polymers
Biobased polymers can be of two sorts: syntheticornaturally occurring. Synthetic biobased polymers
are chemically equivalent to synthetic petroleum-derived polymers such as bioPE. Biomass is
exploited, sometimes de-structured (mainly by bacterial fermentation) and re-used through

traditional processing routes to end up with biobased polymers. The second sort of biobased
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polymers is directly harvested from biomass such as starch or cellulose, which are renewable and
biodegradable. These polymers are naturally occurring polymers. Both synthetic biobased and

naturally occurring polymers have already been used as biomaterials.

1.2.2.a. Synthetic biobased polymers
PLA

The thermoplastic polyester polylactic acid (PLA, Figure 1.6) was first synthetized in 1845 by
Theophile-Jules Pelouze through the poly-condensation of lactic acid (LA) into low molecular weight
(800-5000 g/mol). The production process was improved overthe 20" century, especially by DuPont
chemists in the 1950s, to reach 100,000 g/mol. The mechanical properties of PLA were suitable for
competing with other commercial polymers even if its high cost narrowed its use to mainly
biomedical applications. Aless expensive commercial process was invented in the late 1980s by Dr. P.
R. Gruber, expanding the use of the polymer to low added value products such as disposable bags.

PLA is now the first mostly traded biobased polymer worldwide.

n

Figure 1.6: PLA chemical structure
Lactic acid can be obtained from petrochemical feedstock but it is mainly produced (>90%) by
fermentation of rice, corn, beets and other crops, for the production of PLA in large quantities [22].
PLA isthus derived fromrenewable resources and is also biodegradable under compost conditions. It
has been thus considered as agood alternative to reduce petroleum-based plastics since it can also
be successfully processed through a wide range of industrial setups: extrusion, injection molding,

stretch blow molding, cast film, fiber spinning and compounding [23].

Interesting properties of PLA for biomedical applications are related toits good biocompatibility and
its biodegradability into well-tolerated and safe degradation products [11]. It is also moldable which
allow for a numerous shapes design like scaffolds, sutures, rods films, nanoparticles and micelles.
Accordingto arecent review [25], PLA is used in many medical fields such as orthopedic, dentistry,

surgery as depicted in Figure 1.7.
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Plastic surgery Orthopedic
Suture Peripheral nerve and spinal cord injury regeneration
Reconstructive surgery Bioabsorbable screws
Dermal fillers Meniscus repair
Skin graft Guided bone regeneration
General surgery Cardiac
Hernia mesh Chest wall reconstruction
Gynecology Stent
Stress incontinence mesh Synergy DES
Radiology Biolimus-eluting stent
Theranostic imaging Hybrid stents
Oncology Dentistry
Drug delivery Guided tissue regeneration
Intracranial delivery Biocompatible space fillers

Nanoparticles
Intranasal delivery
Micelles
Thermoresponsive hydrogels
Vaccines
Transdermal delivery

Figure 1.7: Overview of biomedical use of PLA, extracted from [25]

PHA

Polyhydroxyalkanoates (PHAs) comprise biodegradable polyesters that are synthesized by a large
amount of microorganisms as an intracellular storage of carbon and energy [26]. An unbalanced
nutritional supply leads the microorganisms to produce extensive amounts of PHAs in the form of

granules. PHAs canthen be recovered by fermentation, isolation and purification of the fermentation

broth [1].

The firstand simple PHA was discovered in 1926 by Maurice Lemoigne: polydroxybutyrate (PHB) was
foundin Bacillus megaterium [1]. The general chemical structure of this polyester family is depicted
on Figure 1.8. More than 150 monomers are identified forthe PHAs family, which gives a broad range

of properties to develop new structures and products.

Figure 1.8: General chemical structure of PHAs (m>1, R=H or C1 to C16 chains)
Some drawbacks remaininthese polymerssuch as brittleness, tendency to acquire a high degree of
crystallinity, poor stiffness, slow degradation rate, and hydrophobic character. However, PHAs are
also biocompatible, biodegradable and have piezoelectric properties that make them suitable for
tissue engineering applications. They support cell adhesion, cell growth and communication and cell

organization to design the intended tissue scaffolds [7].
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PBS

Poly(butylene succinate) (PBS) is a family of biodegradable thermoplastic polymers which are
synthetized via poly-condensation of succinic acid or dimethyl succinate and 1,4 butanediol (BDO).
Pioneerworkon PBS synthesisis attributed to Carothersin 1931. Its chemical structure is exposed on

Figure I.9.

o/\/\/o

o

Figure 1.9: Chemical structure of PBS

Succinic acid can be derived from fossil source, but can also be isolated from the fermentation of
renewable feedstocks or by harvesting bacterial productions. BDO is also usually derived from
petrochemical sources but direct fermentation of sugar or even catalytic reduction of succinic acid
are relevantalternative routes [27]. PBS exists in the form of various copolymers that allow for the

tuning of its physical properties [28].

PBS was originally studied for biodegradable packaging development, butrecentlyits use for medical
industry was reconsidered by researchers. Its excellent biodegradability is well known and its
biocompatibility toward animal and human cells was demonstrated. PBS thus found applications in

bone repair, scaffolding, composites, tissue engineering and drug delivery [29].

1.2.2.b. Naturally occurring polymers

Starch

Starch isthe principal food reserve polysaccharide in plants. Itisfoundin all staple foods like wheat,
maize, rice, etc. Chemically speaking it is a mixture of two homopolymers composed of D-gluco-
pyranose units: amylose and amylopectine. Amylose is alinear polymer of a(1->4) linked units while
amylopectin is a branched polymer of a(1-24) linked units and a(1->6) branched units as depicted

on Figure 1.10.

Starch can be broken down by controlled enzymatic hydrolysis to give maltodextrins, mannitol or
fructose, which are of importance in the food industry. Enzymatic hydrolysis of starch by D-
glucotransferase allow forthe production of cyclodextrins which are cage -like molecule widely used
inthe pharmaceutical industry to better solubilize hydrophobicactive principle ingredients (API) and

stabilize tablet systems [30].
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Amylopectin

Amylose

a(1>4)

Figure 1.10: Structure of Amylose and Amylopectin that compose Starch (adapted from [30])
Starch can also be used in biomedical. The feature of these polymers being their biod egradability,
they were used as a temporary scaffolds composites for several medical applications such as
orthopedic implants [31], bone cements or drug delivery carriers [32] and tissue engineering [33].

These works show that starch is a functional biomaterial.
Alginate

Alginate is anaturally occurring anionicpolysaccharide obtained from brown seaweed ( Phaephyceae)
by chemical treatment with alkali solutions, mostly NaOH, before filtration and precipitation with
sodium or calcium chloride addition. The powder obtained is water soluble. Chemically speaking,
alginate is a linear copolymer containing blocks of (1,4)-linked B-D-mannuronate (M) and a-L-

guluronate (G) residues in various ratios as described on Figure 1.11.

Alginate is biocompatible, has low toxicity, relative low cost and form gels with the aid of divalent
cations such as Ca** as shown on Figure 1.11. This ability of alginate to form solid hydrogels is at the
originofits particularinterestfor medical application because such hydrogels closely resemble extra-
cellular matrices (ECM). Area such as wound healing, drug delivery, in vitro cell culture and tissue
engineering benefits fromalginate hydrogels and their tunable crosslinking strategies as indicated in
the extensivereview by Lee & Money in 2012 [34]. Alginates have been used for over more than 40
years for raft-forming formulations in order to treat heartburn and esophagitis: gastric acid is
converted to carbon dioxide by the bicarbonate containing alginate formulation which turns into a
foam that floats on the gastric content, like a raft on water, and acts like a neutral-pH barrier. The
commercial brand Gaviscon have been onthe marketfor several decades forthe treatment of reflux
symptoms in infants and children and the management of heartburn and reflux during pregnancy

[35].
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Figure 1.11: LEFT , chemical structure of alginate polymer composed of (1,4)-linked 8-D-mannuronate (M) and
a-L-guluronate (G) residues [34] and RIGHT, eggbox structure of alginate cross-linking with divalent ions
2+
(Ca”’) [36]

Epidermal and dermal wounds can also benefit from calcium-alginate dressings in the context of
diabetic foot lesions or post-surgical wounds where immunological properties of alginate itself, in
combination with Ca**that heals promotion, contribut to better treatment results in comparison to

conventional products [37].

Calcium-alginate gels have also great potentialin the immobilization of living cells. Calcium-alginate
gel spheres can be designed as a vessel for cells and find application in cell transplantation for
instance. Alginate solution is mixed with cells and the mixture is then added drop wise in a Ca**
solutioninorderto cross-link the surface of the drops (through egg-box system) and immobilize the
sphere structure. Cells can be released from the spheres by exposure to a calcium ion scavenger like

phosphate or citrate. Low G contentalginate quickly releasethe cells while high G contents alginate

need hours [38].

Chitin/Chitosan

Chitin is the second most occurring polymer on earth after cellulose. It is found in shell of
crustaceans, mainly crabs, shrimps and lobsters. Shell can be ground and treated with HCI for
demineralization and chitin can be transformed into chitosan through deacetylation with
concentrated NaOH [19]. Chitosan is a linear polymer composed of a(1->4) linked N-acetyl-D-
glucosamine residues (Figurel.12). Acommon molecular weight of chitosanisin the range of 50,000-
1,000,000 g/mol. Chitosanis normallyinsolublein agueoussolution above pH7 but is readily soluble

in dilute acid (pH<5) where free amino groups are protonated. At pH above 5 amino groups start to
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be deprotonated and become available for hydrogen bonding which will establish the gel structure of
chitosan at some critical pH which depends on the degree of deacetylation and average molecular
weight. Crystallinity also depends on the degree of deacetylation and is at the maximum when the

polymer is fully acetylated which eventually influence also the biodegradation rate [7], [19].

C\OCH3
H
H OH H NH H H O
H o HO H o
HO © HO
= ~ ( 7 g - -
H / H H OH H / H
H4COC Chitin H,COC
-
H OH - NH,H H O
H o HO H o
o}
HO Nyt ( ? I~ HO Nyt
NH NH
H “H H OH H 2H
Chitosan

Figure 1.12: Chitin and chitosan chemical structures [39]
The adhesive nature of chitin and chitosan, together with their permeability to oxygen and their
antifungal and bactericidal character are very relevant properties for the treatment of wounds and
burns. Hydrogels, fibers, membranes, scaffolds and sponges based on chitin and chitosan have been

successfully prepared for such biomedical applications [39].

Tissue engineering and regenerative medicine is also a wide field of application for chitin and
chitosan. For instance, electrospun nanofibers based on chitosan, collagen and hydroxyapatite can
mimic the extracellular matrix and promote bone regeneration [40]. Liver tissue engineering was
investigated with chitosan-gelatin 3D scaffolds crosslinked with genepin, which demonstrated

suitable porosity and best biocompatibility [41].

The two next sub-chapters are dedicated to collagen and cellulose that are both naturally occurring
polymers of importance for this Ph.D. work. A more detailed review of their physicochemical

properties and medical applications is thus presented.
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1.3 A focus on Collagen/gelatin in biomedical field

Collagen structure

Collagenisone of the mostabundant proteinsin all animals. Human collagen represents one -third of
the total protein and around three quarters of the dry weight of skin, which is the largest organin
human body [42]. This means about 3.5 to 5 kg for average human beings. It is the main tensile

elementoftissuessuch astendon, cartilage, and skin [43]. Figure |.13 shows an example of collagen

organization in tendon.

Diameter of

Collagen molecule Fascicle Collagen molecule

1.3 nm

Collagen fibril \
Collagen fibril \ ‘ ik
50 - 500 nm A = H o b £
Iilh I =
Fascicle U <?
50 - 300 pm []
o
Tendon fibre i ]
100 - 500 ym []U[] ~G
(o)
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Figure 1.13: Simplified tendon structure: a composite of collagen fibrils embedded in a proteoglycan-rich
matrix (pg). Triple helical collagen molecules of about 300 nm are organized in fibrils with a regular axial
spacing of 67 nm (without mechanical solicitation). Gaps (G) and overlap (O) zones thus appears (adapted
from [44])

Collagenhasa fibrous structure composed of three polypeptide chains (alpha-helix structure) wrap
around each other in a supercoil triple helical structure as depicted in Figure I.14a. The collagen
polypeptide chains have the general repeating sequence Gly-X-Ywhere Gly, X and Y are amino-acids.
Gly stands for glycine and X and Y are most of the time proline and hydroxyproline amino acids as
depicted on Figure 1.14b [45]. X and Y amino-acids residue are located at the external surface of the
triple helix providing the collagen molecule with a wide range of lateral interactions within the
extracellular matrix, giving rise to a high number of potential supramolecular structures [46].
Hydrogen bondingis governing the interactions between the threestrands involved in the triple helix

[47], which is also shown in Figure |.14c.
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Figure 1.14: From the molecular structure to triple helix organization of collagen, a) Side and Top views of the
structure of a collagen triple helix in space-filling diagram (left), stick diagram (middle), and ribbon diagram
(right), adpated from [48], b) structure of the main amino acids involved in collagen polypeptide chain
formation, c) hydrogen-bonding topology of water bonded collagen model (polypeptide chains are labelled
as trailing (T), middle (M), and leading (L), the T chain is repeated to better visualize the interaction

Until now the nomenclature describes 28 different types of vertebrate collagens that are designated
with roman numbers (I — XXVIII) corresponding to the chronologic order of theiridentification. The
three polypeptide chains are composed of one, two or three different genetic products [49]. The
letter a was chosen to distinguish the polypeptide chains genetic origin. For example, the most
common collagentype foundin cartilage is collagen Il whichis composed of three a 4(ll) chains, while
the predominant collagen that is found in bones is collagen | and is composed of two a;(l) and one

a,(l) chain [48].

Collagentypesare naturally foundin different superstructural organizations, the fibril organization
being the most represented as indicated in Table I.2. The approximate size of the rod-like fibril
forming collagensis 300 nm and ca. 1000 amino acids compose each of the three polypeptide chains.

They are mainly presentin connective tissues. Some collagens also self-organize as networks that act
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like asupporting structure forcellsand tissues orlike selective molecularfilters or barriers. Collagen
VIl is an anchoring collagen types which is involved in the connection of epidermis to the dermis.
Transmembrane collagens play a role in cell adhesion, neuromuscular signaling and host defense
against microbial agents. Multiplexin collagens are composed of multiple triple helices with

interruptions and are found in the basement membrane zones of several tissues [50].

Table 1.2: Collagen superstructures [49]

Suprastructure Collagen types

Fibril L ILIII, V, XI, XXIV, XX VII
Fibril-associated (FACIT®?) IX, XTI, XTIV, XVI, XIX, XX, XXI, XXII
Network IV,VI, VIII, X

Anchoring fibrils VII

Transmembrane collagens XIII, XVII, XXIII, XXV

Multiplexin XV, XVIII

? Fibril-associated collagens with interrupted triple helices.

Collagen sources and production

Industrially speaking, collagen can be extracted from natural resources such as animals and plants.
Another strategy is to produce collagen strands in-vitro thanks to genetic engineering that makes
possible to produce recombinant human collagen by host cells, such as yeast, bacteria, transgenic
animalsand plants [51]. However, only unstable triple helices are produced and further development
are required to obtain the same collagen quality level as in natural resources. Among the animal
sources, the most common are bovine and porcine sources (mainly skin and bones), and scale fish
and fish skin derived from the fish industry [52]. However, terrestrial animals are associated with a
number of diseases that limit the use of their collagen for our daily applications. A sadly famous
exampleisthe bovine spongiform encephalopathy (BSE), commonly known as mad cow disease. An
alternative source of collagen is thus required and the unexploited by-products of fish industry are
underinvestigation forseveral yearsnow. It is believed to be the safest source for the extraction of
collagen, with the additional advantage of not interfering ethical or religious principles, contrary to
terrestrial animal sources. However, extraction yields are still very low compared to land animal

sources [53].

Due to the variety of sources available for collagen extraction, there is no standard method of
extraction. An exampleof collagenisolation from bovinetendonis described on Figure 1.15. The first
stepsare the conditioning of the raw material in cold solutions and removal of non-collagen proteins.
The raw material is crushed and then subjected to 3 to 4 successive steps of gradual dissolution in

acidicmediuminthe presence of enzyme (pepsine). The collagen is then obtained by precipitating
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the supernatant after centrifugation of the previous mixture and further purification by dialysis [54].
Characterization tools for collagen analysis are amino-acid quantification by UV-visible spectra,

denaturation temperature analysis and X-ray diffraction to name a few.

Tissue (tendon)

¥

1) Non collagen proteins exclusion

Collagen Soluble fraction

Clean the surface of the cuticles
Cut in small pieces (1.5 cm) 4 >

Incubate 3 hours in cold water
Wash several times Dialysis 48 h against
Crush in blender 0.02 M Na;HPO,

0.05 M Na,HPO,, 3) Obtaining the pure collagen precipitate

pH=87-9.1
24 h, 4°C
3 -4 times

2) Gradual dissolution under acidic conditions

Obtained surnatant is
precipitated with 4 M NaCl,
pH 4.5
Then centrifugation
for 15 min at 5000 g

Crushed material is added
to a 0.5 M CH3;COOH
solution containing 5mM
EDTA, and pepsin
(0.05 g / 100 g tissue)

This procedure was
repeated 3 — 4 times
Then centrifugation
for 15 min at 3000 g

Figure 1.15: An example of isolation procedure of collagen from bovine tendon [54]
Collagen is sometimes referred as Gelatin. Although chemically equivalent to collagen, macro-
moleculararrangement of gelatinis different and is often described as denatured collagen. Gelatin
can be isolated from collagen by thermal treatment that disrupts non covalent bonds of the collagen
triple helix organization in order to recover partially isolated polypeptide chains[55], [56]. The
processisalsoinfluenced by the pre-treatments performed to obtain the collagen [57]. The following

global collagen market description includes both collagen and gelatin.

The worldwide production of collagen is difficult to assess because many companies extract and
process themselves the collagen they are using in their products. It is also a way to tune the
produced collagenandfavoritsintegrationintothe end-product. The global collagen market revenue
was 2.2 billion SUSin 2016 and isforecasted to reach 5.4 billion SUSin 2025 with an estimated 10,4%

compound annual growth rate between 2017 and 2025 [58].
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Itisalso relevanttotake a closerlook at the marketshare by applications that are depicted on Figure
I.16. Healthcare holds 50% of the market but we can also keep in mind that food and beverages
account foralmost one third of the collagen market share. Aside from the biomedical applications,
the cosmetic industry also implements collagen based systems but it is hard to collect data in this

sector because of specific patenting strategies [59].

Cosmetics
7%

Others
15%

Healthcare
50%

Food and
beverages
29%

Figure 1.16: Global collagen market share by application in 2016 [60]

However, the widespread application of collagen brings a problem about its excessive consumption.
Collagen extracted fromanimalsis limited inamount, thus, recombinant collagen plays an important

role in the mass production of collagen.
Collagen applications in biomedical field

Collagen-based systems have been proven to possess excellent biocompatibility and sufficient
mechanical properties and have gained great achievementsin various biomedical applications. It can
be usedas a thinfilm, as 3D structure or even injectable solutions. Tissue engineering is one of the
most relevant fields of biomedical application for collagen since it mimics well the extracellular
matrices (ECM) where cells naturally grow and multiply. ECM also involves collagen in their natural
composition [61]. Pure collagen scaffolds have been confirmed to be good scaffolds for tissue
engineering underthe form of electro spunfibers orfreeze-dried solutions where the concentration
allowsforthe tuning of the aerogel microstructure [63]. An extensive review on the use of collagen
for tissue engineering have been recently published where authors detailed the design of collagen
based scaffolds fornerve and cartilage tissues, bone, tendons and ligaments and also vascular grafts

and skin [63].

However, many challenges are still to be overcome regarding the variety of possible end uses of

collagen. Itshould be noted thatevenif pure collagen structures have excellent biological properties,

H. Durand, 2019 — Confidential



Chapter| — Literature review

they often offer poor mechanical properties and structural stability. The use of chemical agents to
increase cross-linking of collagen chains or fillers to re-inforce the collagen matrices are common
strategies to further improve collagen-based systems. Industrial sterilization of collagen based
medical devices is also known to trigger the crosslinking of collagen strands, thus improving its
mechanical properties and its stability in wet physiological conditions [64], [65]. To conclude,
collagen scaffold working well in one specifictissue may have a poor effect on another one, as tissue

ororgan in vivo has its own unique microenvironment.

Providing scaffolds with more functionality such as drug release is also a challenge for the coming

years, and is investigated in this this Ph.D. project.

1.4 A focus on Cellulose and its derivatives for the biomedical field

Nature produces an estimated quantity of 300x10° tons of biomass each year through
photosynthesis, which about 90% of it is wood. Cellulose roughly correspond to 50% of wood
components, i.e. an annual natural production of cellulose of 135 x10° tons each year [66]. In
comparison, mankind extracted4to 5 x10° tons of oil in 2017 (including crude oil, shale oil, oil sands
and NGLs: natural gas liquids, excluding liquid fuels from other sources such as biomass and
derivatives of coal and natural gas) according to British Petroleum statistical review on world energy
released on June 2018, almost thirty times less. In the current global concerns about environment
and raw materials extraction, cellulose appears like a potential alternative to oil-based materials. It is

the most abundant natural polymeron Earth. It is alsorenewable, biodegradable and biocompatible.

Cellulose is mainly found in the plant cell wall butalso in a wide range of other sources. Wood is the
most common source of cellulose but biomass encompasses numerous materials other than wood:
annual plants such as cotton or flax, agricultural wastes, marine biomass like algae but also animals

like tunicates or even bacteria and fungi are all used as cellulose sources [67].

The establishment of cellulose’s chemical and physical structures was conducted over almost a
century long period [68]. Its chemical identification is attributed to the French chemist Anselme
Payen in 1838. In the beginning of the 20" century, many scientists still doubted that it was a
polymer but the molecular structure was revealed by Haworth et al. in 1930 [69]. This work
confirmed that cellulose was alinear polymer composed of D-glucopyranose units linked by B(1 = 4)
glycosidicbonds, resultingin anhydroglucose units (CsH,005). The repeating unitis the cellobiose that
comprises two anhydroglucose units. Nevertheless, the degree of polymerization is commonly
expressed as the number of anhydroglucose units. The degree of polymerization varies with the

cellulose source, ranging from 10,000 in wood-derived cellulose up to 20,000 in cotton. A ten-fold
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decrease is usually observed after industrial isolation. The pyranose rings have been found to be in
the chair conformation with hydroxyl groups in equatorial position. Allalong the polymer chain, from
one glucopyranose unit to the next, a rotation of 180° of the ring around the B link is observed.
Figure I.17a describes the three types of anhydroglucose units (AGU): (i) the internal AGUs, (ii) a
reducingend with a free hemi-acetal oraldehyde group in equilibrium and (iii) the non-reducing end

with a free alcohol group.

a) cellobiose unit
OH 6, S OH o
HO. g H 3 -0 o) Hi —=0
OH pp OH
OH OH n=4
non-reducing end anhydroglucose unit reducing end
(AGU)
b)
o e "OH
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HO oH 4 o} HO o o
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OH a ) OH 2t

Figure 1.17: Cellulose polymer chemical structure, a) molecular structure of cellulose polymer chain and b)
hydrogen bonding in cellulose [70]

The hydroxyl side-groups of the polymer chain provide cellulose with intra and inter chain hydrogen
bonding (see Figure 1.17b). Hydrogen bondingis of quite weak energy in comparison with a covalent
bond: about 20 kJ/mol for O-H--O systems are found in cellulose versus 400 kJ/mol for covalent
bonds in cellulose. But the repetition of these weak energy hydrogen bonds plays a key role in
cellulosestructure and its physical organization. Indeed, they allow for the arrangement of cellulose
polymeric chains into parallel arrays to form fibrils on the nano and micro scale, which will be
describedinthe next sub-chapter. These nano and microfibers further assemble to form macroscopic

wood fibers forinstance, as described on Figure 1.18.
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Figure 1.18: Hierarchical organization of cellulose polymer chain into microfibers and wood fibers

Cellulose has been the subject of intensive research because of its sustainability, biodegradability,
widespread availability and biosafety, and has been used extensively in recent years in the
biomedical field [71]. One of the first large scale uses of cellulose in the medical industry appeared
withthe development of cellulose membranes for the treatment of renal failure in the beginning of
the 20" century. Cellulose membranes were used for the hemodialysis that purifies patient’s blood
and act as artificial kidney [72], [73] . Nowadays, the trend for hemodialysis membranes is moving to

synthetic polymers with a better controlled molecular cut-off.

Micro Crystalline Cellulose (MCC) is derived from high purity cellulose by hydrochloricacid treatment
until a very low degree of polymerizationis reached (afew hundred compared to starting cellulose of
at least 1000). Avicel® is one of the most known brands of MCC. It is white, fine and odorless
crystalline non-fibrous powder with particle size in the range of 20 um to 200 um depending on the
production process [74]. In the pharmaceutical industry MCCis mainly used as an excipient for tablet
production. It provides good interactions with the active principleingredients (API) and allow for the
preparation of stable pharmaceutical ingredients. MCC also gives a better disintegration in the

stomach [75].

Moreover, the chemical modification of cellulose gave rise to new polymers that are also used in the
medical field, the so-called cellulosics or cellulose derivatives. It mostly comprises oxidized cellulose,
ether and ester of cellulose. The hydroxyl groups of C, and C; (secondary) and C¢ (primary) are
available for numerous chemical modifications as described on Figure 1.19, and more detailed laterin
chapter I-3 that is dedicated to nanocellulose functionalization. The hydroxyls groups of the
amorphous regions of cellulose are more accessible for chemical modification whereas those of

crystalline are very difficult to reach due to the close packing of cellulose chains and stronginterchain
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hydrogen bonding [76]. Cellulosics are known to be strong, of low cost, reproducible, recyclable and

biocompatible, making some of them suitable for medical applications [77].

Substitution reaction  Oxidation

Esterification to Carboxylic acid

Etherification to Aldehydes

Deoxyhalogenation

Acetalation Acid hydrolysis

Oxidative cleavage

OH OH OH
HO OH
HO S d HO =0
OH
OH OH n
non-reducing end reducing end

Oxidative cleavage
of C,-C3

Substitution reaction  Oxidation
Esterification to Ketone
Etherification

Deoxyhalogenation

Acetalation

Figure 1.19: Possible positions for cellulose chemical modifications, adapted from [77]

Forinstance, the cellulose ethers used in drugtabletingindustry, like hydroxymethylpropylcellulose
(HPMC), form matrices that swellinaqueous mediaand create a tunable diffusion barrier to further
control drug delivery, with the advantage of eventually solubilizing in the medium. This diffusional
barrier was observed by colorimetrictechniques and fitted to mathematical models that successfully
described the drugrelease [78]—[80]. Cellulose esters such as cellulose acetate phthalate (CAP), were
used to prepare enteric-coated granules. The microencapsulation of the granules with CAP
significantly prolonged the release of the embedded drug and enhanced the effectiveness of the
entericcoating. These formulations are able to go through the stomach and only dissolveand release
the drug in gastric environment [81]. Table 1.3 summarizes the cellulosics used in pharmaceutical

preparations.
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Table 1.3: Cellulosics used as excipient and auxiliary for pharmaceutical preparations (MCC, microcrystalline
cellulose; MC, methyl cellulose; HPC, hydroxypropyl cellulose; L-HPC, water insoluble HPC with a low DS;
HPMC, hydroxypropylmethylcellulose; HEMC, hydroxyethylmethyicellulose; Na-CMC, Ca-CMC, H-CMLC,
sodium, calcium and acid form of carboxymethyicellulose; HEC, hydroxyethyicellulose; CMEC,
carboxymethylethylcellulose), extracted and adapted from [73]

Function

Cellulosic

Filler or binder

Disintegrant

Binder for wet tableting

Binder for sugar coating

Film coating
Enteric (film) coating

Thickener, dispersion
stabilizer, emulsifier
for liquid preparations

Poultice plaster
Ointment base

MCC, MC, HPC, HPMC
HEMC, Na-CMC,

Ca-CMC, H-CMC, L-HPC

Na-CMC, MC, HPC (for
organic solvent) HPMC

Na-CMC, MCC

HEC., HPC

CMEC, HPC succinate,
CA succinate, CA
phthalate

MC, Na-CMC, MCC,
HPC; HEC

Na CMC
HPMC

Likewise, thanks totheir water-solubility, hydrogels of cellulose derivatives can also be formed for
medical application, like hemostat and drug release [82]. Silylated hydroxypropylmethyl-cellulose
hydrogels were successfully prepared in neutral pHconditions. Such conditions are suitable for their
subsequent use for cell culture, bone defect treatment or model cartilage development [83].
Chemically crosslinked sodium-carboxymethylcellulose (Na-CMC) and hydroxyethylcellulose (HEC)
hydrogels were also produced with non-toxic coupling agents such as citric acid resulting in super-
absorbent material with possible hemostat applications [84]. Chemical crosslinking of cellulose
derivatives hydrogels can also be achieved by irradiation techniques. Both degradation and cross-
linking of polymers occurs upon such high-energy treatments, but concentrated polymer solutions
(above 50 wt% for carboxymethylcellulose) seemto favor cross-linking [85]. Indeed, hydrogels were
produced from carboxymethylcellulose (CMC) and acrylamide monomer (AM) through gamma
radiation treatment, resulting in materials with greater swelling capacities than pure AM gels. Drug

release from such material was also investigated and revealed a pH-dependent release behavior,

with slower release in acidic conditions [86].

The widespread medical uses of cellulosics originate from their availability, physical properties and
physiological inertness, which gave rise to numerous commercial products in the 20" century.

Endless possibilities of cellulose derivatives polymers and derived materials (tablets, coating,
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membranes and hydrogels) provide cellulose with a consistent and promising future in the medical

field.

Many different conventional and biobased biomaterials have been introduced and their properties
and applications have been described. Among cellulosic materials, a new class of high potential
derivatives was unveiled in the 80’s: the nanocellulose. It is a new tremendous field of research and it
will find applications in many different areas, from papermaking to composites but also in medical
industry. The next chapter will focus on nanocellulose material as it is the main raw material used in

this Ph.D. project.
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2. Nanocellulose: production, characterization, application and commercial

aspects

Two main families of nanocellulose are identified, cellulose nanofibrils (CNF) and cellulose
nanocrystals (CNC). Nanocellulose can be extracted from trees, plants and cellulose-containing
micro-organisms and animal species. Although commercial applications are still limited, the
exponentially growinginterest from researchers and companies for these materials (see Figure 1.20)
make nanocellulose one of the most attractive natural and renewable polymers for advanced
applications [87]. Evenif we correlate these figures to the growing number of scientific journals and
theincreasing number of researchers that work with nanocellulose, the tendency remains the same.
Nanocellulosereally differs from traditional cellulose-derived products (paper industry and cellulose
based polymers) and give rise to new fields of application. The main characteristics of nanocellulose
are related toits widespread availability, biodegradability, biocompatibility, low density, excellent

mechanical properties and tunable surface chemistry [88].
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Figure 1.20: Number of papers and patents released each year dealing with CNFs and CNCs until 2017
(extracted from SciFinder in July 2018, descriptors are cellulose nanofibrils / cellulose microfibril /
microfibrillated cellulose / nanofibrillated cellulose / cellulose nanocrystals / cellulose nanowhiskers /
nanocrystalline cellulose / cellulose whiskers)

The isolation techniques of different cellulose nanomaterial will be exposed. The nanocellulose type
utilized inthis Ph.D. projectis the cellulose nanofibrils (CNF). Industrial aspects will be discussed in
terms of health and safety, as it is related to the topic of this thesis, upcoming and first commercial

products will be presented, especially those related to the biomedical field.
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2.1 Isolation and characterization of nanocellulose materials

Nanocellulosic materials are mainly extracted from wood even if other sources are available such as
annual plants wastes, animals and micro-organisms. Compared to structures previously shown in
Figure 1.18, a more detailed description of the hierarchical structure from the wood trunk to the
cellulose polymericchain, and where cellulose nanomaterials are embedded, is provided on Figure
[.21. In order to isolate cellulose nanomaterials, purified cellulose fibers must be first obtained.
Traditional cooking processes used in the paper industry produce high purity cellulose fibers from
softwood or hardwood by removing hemicelluloses and lignin, resulting in material suitable for
cellulosic nanomaterials isolation. Quite harsh chemical and mechanical treatments are used on
purified cellulosic fibers, sometimes both combined to decrease mechanical energy consumption,
which was the main drawback of the last decades for nanocellulose to reach the commercial

production level.

Cell wall layer_s Secondary wall structure

Cells & Fibers

Wood trunk
Cellulose nanoparticles

AN
Pt

Cellulose nanocrystals Cellulose nanofibrils
Length 150-500 nm Length several um
Width 5-10 nm Width 5-50 nm

Figure 1.21: From wood trunk to cellulose nanomaterials, the cell wall layer is composed of middle lamella

(ML), the primary wall (P), the outer (1), middle (S2) and inner ($3) layers of secondary wall and the warty

layer (W). Cellulose (C), lignin (L) and hemicellulose (H) compose the secondary wall structure. On cellulose
nanoparticles, crystalline (Cr) and amorphous (Am) domain are shown. Adapted from [89] and [90].
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2.1.1. Cellulose Nanocrystals
Cellulose nanocrystals, sometimes referred as cellulose whiskers or nanowhiskers or even
nanocrystalline cellulose, are composed of the crystalline part of cellulose nanoparticles. Itis arod-
like nano-object with dimensions ranging from 150 to 500 nm in length and 5 to 10 nm in width
resulting in high aspect ratio values (see representation in Figure 1.22). The discovery of CNC is
attributed toRanby et al.in 1950 [91], [92]. Researchers were inspired by the work of Nickersson and
Harble in the 1940’s who observed the limited degradation of cellulose fibers by boiling in acidic

conditions [93].

Isolation of CNCisthus currently done by strong acid hydrolysis of purified cellulosic material under
controlled temperature and time conditions followed by sonication. The amorphous regions of the
cellulosefibers have alowerdensity than the crystalline regions and thus are much more sensitive to
the acidictreatment. Acidicions can more easily penetrate the amorphous regions while crystalline
regions remain untouched, and eventuallyresultin cellulose nanocrystals [94]. Figure 1.22 describes
the general procedure to obtain CNC from wood. We can note that very similar procedures can be

used on cotton or also industrial crops wastes.

Wood trunk
Alkali treatment 80°C Alkali treatment 80°C
NaOH 2 wt % KOH 5 wt %
Bleaching treatment 80°C
for non purely NaClO, / acetate buffer (pH = 4.8)
cellulosic material |
Hydrolysis H,SO, Hydrolysis HCI
65 wt % (50-75°C) (2,5-4 N) reflux
Purification

(dialysis, centrifugation)
|

Sonication

Cellulose Nanocrystals

Figure 1.22: General procedure to obtain cellulose nanocrystals [95])
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2.1.2. Cellulose Nanofibrils
Meanwhile cellulose nanofibrils (CNF) can also be extracted from cellulosic fiber, they really differ
from cellulose nanocrystals. Composed of both crystalline and amorphous regions of cellulose, CNF
are longand flexible nanofibrils with dimensions of 5to 50 nm in width and several micrometers in
length, resultinginahigheraspectratiothan CNC. The terminology evolved over the time and terms
like cellulose microfibrils, microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC) all refer to

CNF that has been selected by the scientific community as a standard terminology in 2012 [96].

In the 1980s, pioneerworks of Turbak et al. and Herrick et al. unveiled anew component of cellulose
fibers with lateral dimensions in the nanometer range, thanks to mechanical treatment. Softwood
pulp was subjected to high pressure homogenizer (at least 3000 psi and several passes) so that the
entangled networks of nanofibrilsinside the cellulose fiber were isolated from each other under the
high shearing forces. The treatment resulted in a gel-like dispersion composed of interconnected
microfibrils and nanofibrils of 10-100 nm diameteratonly 2 wt% in water with shear thining behavior
[97]. Cellulose nanofibrils can be isolated from wood and annual plants like cotton by mechanical
disintegration treatment. The high shear forces produce a longitudinal cleavage of the cellulose

fibers and isolate to some extent the nanofibrils.

High energy consumption is often associated with pioneer work on isolation of CNF [97], [98]. In
order to obtain viable commercial grades of CNF and upscale production facilities, researchers
investigated many ways to decrease the energy needs of CNF isolation by proposing specific pre-
treatments or development of new mechanical treatments. Mostly used processes to induce high
shear forces to cellulose fibers suspensions were originally grinding, microfluidization and

homogenization as depicted on Figure 1.23[99].
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HOMOGENIZATION V GRINDING
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Figure 1.23: Main mechanical treatment device for production of CNF suspension [89]

These techniques are efficient to delaminate the cellulose fiber and are also suitable for upscaling.
They are used nowadays for first industrial production of CNF [89]. However, it is the use of a
combination of mechanical and chemical or biochemical pre-treatments that really helps to decrease
energy consumption from 100 kWh/kg for un-pretreated cellulosic materials to as little as 1-2
kWh/kg [100]. Worth-mentioning works proposed successive refining, enzymatic hydrolysis, refining
again and finally homogenization [101], TEMPO-mediated oxidation in combination with blending
[102], or in combination with homogenization [103], carboxymethylation or quaternization followed
by homogenization [104]. Thus, a very wide number of procedures lead to a very wide range of CNF
grades. The recent review of Nechyporchuk et al. extensively covered conventional and less
conventional CNF production methods. Figure 1.24 summarizes the general procedures to obtain
cellulose nanofibrils suspension. As for the CNC, the first step deals with the purification of the
startingraw material in orderto retrieve the maximum amount of cellulose and get rid of lignin and
hemicellulose. Second and third steps are mechanical or (bio)chemical pre-treatments that come
before the fourth step of principal mechanical treatment. The final step aims at purifying the
obtained CNF and further expandstheir properties. It clearly shows how a unique raw material such
as cellulosicfibers extracted from biomass can lead to the isolation of more than 50 types of cellulose
nanofibrils. Avery recentreview extensivelydescribes all the possibilities used these days or under

development for cellulose functionalization as a pre-treatment for CNF production [105].
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Figure 1.24 : General procedures to obtain cellulose nanofibrils, adapted from [89]
Among all these procedures, enzymatic hydrolysis and the TEMPO-mediated oxidation pre-
treatments deservea particular consideration since they are the most studied procedures of this last
decade. Moreover, these two types of CNF are the starting raw materials of this Ph.D. project. A
comprehensive description of the state of the art associated with their production procedures is

necessary to be able to understand the materials used in Chapter Il.

2.1.2.a. Cellulose nanofibrils production through enzymatic pre-treatment
The purpose of enzymatic pre-treatmentis to catalyze the hydrolysis of cellulosein orderto favorthe
defibrillation process upon subsequent mechanical shearing. This process was patented in the paper
industryinthe 1960s to decrease the energy consumption of refining. Researchers also investigated
enzymatichydrolysis forthe production of bioethanol through the conversion of cellulose to glucose
and ethanol. But the pioneer results of CNF production assisted by enzymatic pre -treatments are
attributed to Paiakko et al. and Henriksson et al. in 2007 [101], [106]. Paakko et al. proposed a
combination of refining, which increase cellulose swelling and accessibility of the enzyme, followed
by the enzymatic treatment and washing plus a second step of refining before the actual
homogenization process in a microfluidizer (Figure 1.23) for 8 passes. Henriksson et al. used a very
close procedure and compared enzymatic concentrations. The fibrillation process was performed

with a homogenizer for 20 passes.

The enzymatic process comes with a decreasing DP and an increase of the crystallinity index [107].
Cellulose degrading enzymes are referred as cellulase and can be divided into three sub-families, a)

endoglucanases (or endocellulases) that hydrolyze amorphous regions of cellulose; b)
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cellobiohydrolases (exoglucanases) that degrade the ends of cellulose structures releasing cellobiose
or cellobiose dimer; c) B-glucosidases (cellobiases) that hydrolyze the later small molecules into
glucose. Figure .25 shows the mode of action of each of the above mentioned cellulases on cellulose.
In the end, these enzymaticisolated CNF have the same surface chemistry compared with cellulose

fiber, with hydroxyl groups on their surface.

Cellulose fiber composed of
o o~ cellulose polymer chains

SESS

crystalline amorphousé crystalline

l o3s% glucose ‘;\\ cellobiose
VTGN T~
s ) N llo-oligosaccharides
\ , 7 N / NS 4\ cello-oligosaccharides
Lol
M '.’,-‘ ) »— cellulose reducing end groups
D_Q o= ce¢llulose non-reducing end groups
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o 6 @ endoglucanase cellobiohydrolase 1

8 f-glucosidase cellobiohydrolase I1

Figure 1.25: Schematic representation of mode of action of cellulases on cellulose polymer chain. Adpated
from [108]

2.1.2.b. Cellulose nanofibrils production through TEMPO-mediated oxidation pre-
treatment

TEMPO mediated oxidation of cellulose fibers allows the introduction of negatively charged groups
(carboxylate groups) at the surface of cellulose chains, which promotes ionic repulsion between
cellulose chains and eventually help the defibrillation process under high shear mechanical
treatment. Ithas become one of the mostinvestigated pre-treatment strategy for cellulose oxidation
and cellulose nanomaterials production. The pioneer work on the TEMPO mediated oxidation of
sugar molecules was published by Davis and Flitsch in 1993 [109]. They presented a method to
selectively oxidizethe primary hydroxylgroup of monosaccharides using sodium hypochlorite in the
presence of catalyticamount of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radical. The research
group of Pr. Akiralsogai furtherstudied this reaction and came up with CNF isolated with a blending
apparatus from everdried cellulose from sulfite wood pulp, cotton, tunicate and bacterial cellulose.
They achieved acarboxyl content of 1.5 mmol/g[102] and obtained highly individualized nanofibrils
while the blending apparatus was of much lower energy input than conventional mechanical
treatment. This research group also investigated many different reaction conditions in order to

determine the most energy-efficient procedure to obtain CNF through TEMPO mediated oxidation
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pre-treatments of cellulosic raw materials. Different amounts of NaClO and reaction times were
tested and compared against each other by following carboxyl and aldehydes groups content and the
DP evolution [110]. Figure .26 exposes the proposed mechanisms forthe TEMPO mediated oxidation
using TEMPO/NaBr/NaClO in basic conditions or TEMPO/NaClO/NaClO, in neutral or slightly acidic
pH. The later system has be proved to limit the depolymerisation of cellulose and the amount of

aldehyde groups formation [111].
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Figure 1.26: Schematic mechanisms of regioselective oxidation of primary hydroxyl groups of cellulose by
TEMPO/NaBr/NaClO in water in basic pH conditions on the left and TEMPO/NaClO/NaClO , in water at
neutral or slightly acidic pH on the right. Adapted from [110].

Such TEMPO-oxidized CNF bring new opportunities of functionalization with the presence of
carboxylic acid groups, together with aldehydes groups (not fully converted hydroxyls) and the

remaining non-oxidized hydroxyls groups, on its surface.

This Ph.D. project aims at using only wood-derived nanocellulose. Bacterial nanocellulose is in
competition with wood-derived nanocellulose for medical applications and thus deserves a short
introduction and comparison. Bacterial nanocellulose is synthetized by bacteria in a high purity form.
In comparison with wood, no hemicellulose or lignin removal is necessary. This material has been

used for medical application based on its high purity.

2.1.3. Bacterial nanocellulose (BNC)
Populations of bacteria are generally divided into two types: planktonic, which refers to freely
dispersed bacteriain bulk solution, and sessile, which refers to aunited colony of bacteriaembedded
ina biofilm. Many different micro-organisms produce this so-called biofilm upon their development
on every kind of surface [112]. It is acting as a matrix which contains the micro-organisms and

provides them with a safe environment, preventing them from drying out, it also gives protection
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from enemies, irradiation and lack of food or oxygen [113]. The biofilm is usually composed of

extracellular polymeric substances.

In parallel to plant cellulose production, it appears that some bacteria strains are capable of
producing biofilms that contains high amounts of cellulose in the form of nanofibers: Acetobacter,
Agrobacterium, Alcaligenes, Pseudonmonas, Rhizobium, Aerobacter, Achromobacter, Azotobacter,
Salmonella and Sarcina [114]. The most efficient and also the most studied strain appear to be
Acetobacter xylinum, recently reclassified as Gluconacetobacter xylinus. It is part of the acetic acid
bacteria (AAB) group which are known to perform specific oxidation reactions exploited for the
production of numerous compoundsincluding cellulose [115]. Figure .27 shows acetobacter xylinum

bacteria producing cellulose nanostructured architecture (black arrow).

Figure 1.27: Acetobacter xylinum producing bacterial cellulose nanofibers (black arrow) [116]
The efficiency of bacterial nanocellulose productionis highly dependent onthe strain but also on the
culture medium: temperature, pH and more importantly oxygen supply during the process (since
AAB are aerobicbacteria) and carbon source (such as D-glucose) [113], [114]. The bacteria synthesize
the cellulose polymer at the air-liquid interface of the culture medium and always as a membrane.
Two major systems are mentioned: static and agitated culture media and both show specific
advantages and disadvantages. The main difference is the oxygen supply and diffusion in the culture

medium.

The most important feature of bacterial nanocellulose isitsinherent purity in comparison with wood
derived nanocellulose. The latter contains hemicelluloses and lignin that requires complex chemical
treatment to be removed. The nanostructure of BNC makes it a very good candidate for various
biomedical applications such as tissue engineering. Its in vivo biocompatibility and potential use in

biomedical field have been proven many times [117]-[119].

However, theirindustrialization is still imited and expensive compared to the development of wood
derived nanocellulose pilot plants. Moreover, BNC seems quite difficult to obtain as a suspension or

as a re-dispersible powder, which can be useful in formulation.
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These three types of cellulose nanomaterials (CNC, CNF and BNC) can be subdivided in different
gradesin terms of nano-material proportion, morphology or even surface chemistry. Even if they are
all cellulose on the molecular level, these different forms of nanocellulose can present specific
features, thus becoming suitable for different application. Consequently, the next paragraph focuses

on the characterization techniques of such materials.

2.2 Characterization of cellulosic nanomaterials (CNMs)

The development of reliable and accurate characterization methods for CNMs is driven by both the
need for deeper scientific understanding of these materials by research communities, and the
growing industrial commercialization. The available grades of CNMs on the market are really
different. Industrial partners should be provided with clear guidelines for the choice of the most

relevant CNMs according to the intended application.

Recently, awide conglomerate of expert researchers from all around the world was gathered up to
establish best practices, methods and techniques for characterizing CNM particles. It covers
morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties,
mechanical propertiesand toxicity. Cellulose nanocrystals and cellulose nanofibrils were chosen to
be the CNMs at the heart of this work [120]. Numerous decision-tree schemes were proposed to
answer every potential needs a researcher from academic or industrial community would have.
Figure 1.28 describes the pathway one should follow when working with CNMs and associated

characterization tools and techniques.
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« Conductometrictitration,

« Zeta-potential,

« Elemental analysis CHNS,

« Secondary ion mass spectrometry (SIMS),

« X-ray photoelectron spectroscopy (XPS),

* Energy dispersive X-ray spectroscopy (EDS),

* Inductively coupled plasma mass spectroscopy (ICP-MS) or
atomic emission spectroscopy (ICP-AES),

« X-ray diffraction (XRD)

* Liquid and Solid state Nuclear magnetic resonance (NMR)

* FTIR and Raman spectroscopy

* Quartz crystal microbalance with dissipation (QCM-d)

* Isothermal titration calorimetry (1TC)

* Dynamiclight scattering (DLS)

* Scanning and transmission electron microscopy (SEM/ TEM)

* Eyeirritation

« Skin irritation & corrosion
* Genotoxicity

* Toxicokinetictesting

* Systemic testing

* Ecotoxicity

Figure 1.28: Five topics for the characterization of CNMs and associated characterization tools, adapted from
[120]

The first point emphasizes the critical importance of knowing the starting material. As already
mentioned, hundreds of CNMs grades are available and differ regarding the wet or dry state (and
respectively concentration and ability to be redispersed), presence of impurities and proportion of
nano and microsized material. The second topic deals with the shape and surface of CNMs. Surface
charge, morphology, elemental analysis study, crystallinity, surface chemical structure measurement
methods are described. Topic three focuses on rheology of CNMs suspensions and adsorption
mechanisms of CNMs particles. The topicfouris dedicated to the development of CNMs composites
and characterization of CNMs dispersions. Finally, health and safety aspects of CNMs are discussedin

the fifth and last topic.

Otherworks especially focused on CNF quality characterization. For example, a review of different
techniques usedtocharacterize CNF was done by Kangas et al. while a quality index was developed

based on 8 different characterization techniques to assess the homogeneity of CNF dispersion by

Desmaisons et al [121], [122].

CNMs should obviously be characterized before and after any modification. Thus, their
functionalization through chemical grafting can extend the choice of characterization techniques,

depending on the grafted moieties, as it will be shown in Chapter |I.
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2.3 Industrialization of nanocellulose: first and upcoming applications

The global enthusiasm for nanocellulose was introduced by the Figure 1.20that shows the number of
publication and patents dealing with nanocellulose. To deepen this overview, it could be interesting
to consider the number of patents published by countries (Figure 1.29, left). These data clearly
indicate thatthe strong industrial interest for nanocellulose have spread worldwide. Furthermore,
when these data are sorted according to the field of application, the multiple end uses of
nanocellulose improved products is exposed, with composites being the field that holds most

patents.

However, the first years of industrialization progress were limited by several factors concerning
nanocellulose such as (i) a high production energy cost, (ii) the lack of high added value and/or
cutting-edge applications, (iii) the competition with the existing renewable and non-renewable
materials and (iv) the precaution about the “nano” aspect regarding health and safety. This explains

why a relatively low number of patents were published before 2008.
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Figure 1.29: LEFT, Number of patents dealing with CNF materials. Extracted from SciFinder in October 2018
with the following descriptors: cellulose nanofibrils / cellulose microfibrils / microfibrillated cellulose /
nanofibrillated cellulose, RIGHT, nanocellulose (CNF, CNC and BNC) patents repartition in field of application,
adapted from [123]

In the last decade, these challenges wereintensively addressed by the scientific community in order
to unlock the industrialization of nanocellulose. The development and optimization of cellulosic
sources pre-treatments allow for the decrease of the energy consumption of nanocellulose

production. The current identified producers of CNF and CNC are exposed on Table 1.4.
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Table 1.4: Current industrial producers of CNF and CNC, including country of origin, yearly production and
starting year

) Approximately
Company Country Capacity (/y) Product type since
Cellulose nanofibrils production

FiberLean France/Switzerland 10,000 t CNF with fillers 2013

Performance Biofilament Canada 2,000t Nanofilament 2014

Kruger/FPInnovation Canada 1,000 t Nanofilament 2015

Borregaard Norway 1,000 t CNF 2016
Paperlogic USA 730t CNF -

Nippon Paper Japan 300t CNF Tempo 2017

American Process Inc. USA 180t CNF 2015

University of Maine USA 110t CNF 2014

Chuetsu Pulp & Paper Japan 50t CNF 2016

DKS Japan 50t CNF Tempo 2016

Sugino Machine Japan 50t CNF 2017

. . phosphorylated

Oji Holdings Japan 40t CNF 2016

Suzano Brazil 36t CNF 2018

Innventia Sweden 35t CNF 2011

CTP France 35t CNF 2011

PFI Norway 35t CNF 2013

Seiko PMC Japan 30t CNF 2018

Tokushu Tokai Paper Japan 30t CNF 2018

VTT Finland 15t CNF 2010

Inofib France 05t CNF 2013

Icar-Circo India 11t NA 2016

EMPA Switzerland 5t CNF 2011

SAPPI Netherlands 8t CNF 2016

Daio Paper Corporation Japan NA CNF 2016

DIC corporation Japan NA CNF 2017

Daicel Corporation Japan NA CNF 2000

Stora Enso Finland NA CNF 2013

UPM Finland NA CNF 2011

Bettulium Finland NA CNF Tempo 2013
Norske Skog Sweden NA CNF -

Weidmann Switzerland NA MFC 2016

Cellucomp UK NA CNF 2015

BioNC Spain NA CNF 2018

Cellulose Nanocrystals plant

Celluforce Canada 365t Sulfated CNC -
American Process Inc. USA 200t NA -
Holmen/Melodea Sweden 35t Sulfated CNC -
Icar-Circo India 10t NA -
Alberta Innovates Canada 7t Sulfated CNC -
Blue Goose Biorefineries Canada 4t Sulfated CNC -
FPInnovations Canada 4t Sulfated CNC -
University of Maine USA 4t Sulfated CNC -
Melodea Israel NA/ Pilot Sulfated CNC -
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2.4 Health and Toxicology: a concern for CNM development in biomedical field

As any emerging material, nanocellulose must undergo health and toxicology assessmentsin order to
facilitate the development of industrial processes and ensure the safety of nanocellulose based
products. When it comesto use nanocelluloseas a biomaterial thatis supposedto be in contact with
living tissues and micro-organisms, biocompatibility evaluation is of first importance. Also, the
“nano” aspect of these materials raises concerns since it is sometimes associated with more risks
than traditional materialsin the mind of the population. Moreover, it is well known that the human
body does not possess cellulose degrading enzymes. Consequently, toxicological study has been
carried out starting from the manufacturing processes that are used to produce CNMs, through the
ways CNMs are handled and integrated or combined with other materials, until the fate of the CNMs

in the product’s end-of-life.

Cellulose in the form of cellulosic fibers used in papermaking or in the form of micro crystalline
cellulose (MCC) is known to be safe [124]-[128]. But CNMs differin terms of particle size and shape,
surface charge and specific surface area, chemical properties and degree of agglomeration, so that

health and toxicology risks must be assessed once again.

Attempts to evaluate CNMs toxicity are fairly recent. The review by Lin and Dufresne published in
2014 listed the preliminary works forthe toxicological evaluations of nanocellulose [129]. The initial
work for CNC was conducted by Kovacs et al. in 2010 [130]. The group of Canadian researchers
assessed the ecotoxicology of CNC on aquaticspecies. Low toxicity potential and environmental risk
were confirmed. Among Lin and Dufresne reviewed evaluations, only the potential respiratory
toxicity was pointed out. Aerosolized CNCs were compared to carbon nanotubes and asbestos fibers
on a model human lungcell structure. CNCrevealed to be dose-dependent pro-inflammatory but of
significantly lower impact than the two other materials. Stiffness, length and aspect ratio clearly
influence the nano-object/cell interactions [131]. Slight pulmonary inflammation of mice was also
noted for CNF in the European Sunpap project which ended in 2012 [132]. However, for the dozens
of otherworks collected by Lin and Dufresne, no evidence of cytotoxicity were detected in-vitro nor

in-vivo, especially on human cells (osteoblast, fibroblast and endothelial cells).

One of the preliminary health and environmental safety study about CNF was published in 2011 by
Vartiainen and coworkers [133]. They assessed the exposures of workers to particlesin air during
production process of CNF through grinding and subsequent use by spray drying. Exposure to

particles was very low or non-existent.
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More recently alife cycle risk assessment testing guide focused on CNMs (nanoLCRA) was proposed
by J.A. Shatkin, K.J. Ongand colleagues from American Process and can help the community to better
assess the toxicity of CNMs [134]. The guide is divided into three endpoints: (i) physicochemical
characterization, (ii) human health effects testing and (iii) environmental effects testing. The
physicochemical characterizationis necessary because various grades of CNMs are now available and
their impact on the two second endpoints may vary with the particle size, aspect ratio, surface

chemistry, etc. The details of the guide are exposed on Table I.5.

Table 1.5: Testing plan to characterize safety of CNMs, extracted from [134]

Endpoint Protocol

1. Physicochemical characterization
Particle size distribution, shape and Transmission electron microscopy

aspect ratio Scanning electron microscopy

Composition Infrared spectroscopy
Inductively coupled plasma optical emission
spectroscopy

Crystal structure X-ray powder diffraction

Explosibility Explosion severity test (ASTM E1226)
Minimum explosible concentration test
(ASTM E1515)
Minimum ignition energy test {ASTM
E2019)

Biodegradability Aerobic biodegradation (OPPTS 835.3140)

Anaerobic biodegradation (OECD 311)
2. Human health effects testing

Acute oral toxicity Up and down procedure in rats (OPPTS
870.1100)

Skin irritation MatTek Epiderm skin irritation test (OECD
439)

Eye irritation Hen's egg test chorioallantoic membrane

test
Bovine corneal opacity and permeability

test (OECD 437)

3. Environmental effects testing

Microbial bioassay Kinetic luminescent bacteria test (ISO
11348-3)

Algal bioassay Freshwater alga growth inhibition test
(OECD 201)

Aquatic invertebrate bioassay Daphnia sp. acute immobilization test
(OECD 202)

Aquatic vertebrate bioassay Acute toxicity to embryonic zebrafish

The study of Shatkin and Ong evaluated the toxicity of lignin-coated CNF and CNC. Neither of the two
material caused acute oral, eye or dermal inflammation or irritation. Moreover, environmental
testing, using high concentration (>1000 times of maximum predicted emission values),

demonstrated a very low potential toxicity [134].

However, forbiomedical purposes further characterizations and testing are necessary. Medical use
of cellulose nanomaterials goes beyond the eye or skin irritations. Indeed, nanocellulose based
medical devices could be used totreat wounds oreven be implantedinside the human body, where

physiological responses greatly differ from external contact. Even ingestion of materials and their
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way through the human digestion system can still be considered as external in comparison with
implants. New aspects ranging from the simple cytotoxicity testing to the more complex genotoxicity,
inflammatory response, reproductive and carcinogenic and toxicokinetic effects must be addressed

to better evaluate the biocompatibility of CNMs [71], [120].

From now on, the discussion will only focus on CNF since it will be used in the following chapters of
this Ph.D. thesis. A few comparisons will be established again with BNC owing to its previously

mentioned particular properties for biomedical use.

The genotoxicity of CNF was assessed by Hannukainen et al., using enzymatically pre-treated CNF and
TEMPO oxidized CNF were used with human bronchial epithelial cells (BEAS 2B). Both types of CNF
exhibited DNA damage, but authors indicated that the testing procedure (enzyme comet assay)
might have been incorrectly adapted to these new types of fibrous nanomaterials confirming the

need for further analysis [135].

Another study has been carried out by the group of G. C. Carrasco and K. Syverud in 2013. Dense
films and 3D porous structures of oxidized CNF (high amount of anionic charge) and neat CNF were
evaluated in terms of cytotoxicity against 3T3 human fibroblast cells. Cell membrane, cell
mitochondrial activity (indication of cell fuel source) and DNA replication were not affected by direct

and indirect contact with CNF materials [136].

Also, researchers from Sweden investigated the relation between structure, surface charge and
biological response of CNF. Anionicand cationic CNF were obtained through chemical modifications:
carboxymethylation or condensation of glycidyltrimethylammonium chloride (EPTMAC) respectively.
Films were then produced by vacuum filtration. Indirect contact cytotoxicity test were performed
with human fibroblast. No cytotoxiceffect was detected and cell adhesion was promoted due to CNF

alignment [137].

An extensive overviewof recent papers on the toxicological assessment of CNFs is exposed on Table
I.6. Thistable gathers up studies that were mentionedinrelevant reviews such as Linand Dufresne in
2014 [129], Endes et al. published in 2016 [138] and Kangas et al. published in 2016 also [139]. The
objective is to summarize the different types and forms of CNF that were already investigated in
terms of biological response over five endpoints: cytotoxicity, inflammatory response (or
immunotoxicity), oxidative stress, genotoxicity and ecotoxicity. In the literature, many publications
combine different types of cells with CNF without studying its potential toxicity as a principal
objective, asthe publications that are gathered in Table 1.6 do. Yet, those works also indirectly give

information on CNF toxicity.
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Extensive overview of toxicological assessment of cellulose nanofibrils over time

Table 1.6
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The overall toxicity of CNF towards cells fromvarious lines appears to be very limited. However, the

following endpoints should be kept in mind when trying to characterize the toxicity of CNF.

One should note the importance of careful sample characterization and exclusion of interfering
factors like endotoxins or toxicchemical impurities that were used to prepare the samples (chemical
agentsor biocides). The objectiveistoavoidinaccurate conclusions from toxicity assessment [161].
Moreover, the biodurability of CNF in in-vivo conditions grants extended period of time for such
contaminantstoleach out. Regardingthisendpoints, the case of bacterial nanocellulose (BNC) is of
particularinterest. Synthetized by bacteria, no contaminants are to be removed, thanks to this high
purity, a very good biocompatibility was confirmed several times by in-vivo testing since the end of
the 1990s. Commercial product based on BNC such as Biofill® were implanted in animals [162],
artificial blood vessel made out of BNCwere also successfullyimplanted in rats [163]. Reconstructive
microsurgery of rat carotid artery was performed during 1 year with BNC model vascular system

proving the high biocompatibility of BNC [164].

Secondly, evenif CNFs mostly do notreveal any strong hazardous effect on human derived cells and
the environment or when it is used as a biomaterial, one should keep in mind that the surface
modification of these materials could give different results. In the publication of G. C. Carasco and K.
Syverud groups that was mentioned before, the introduction of polyethylenimine (PEl) as a
crosslinker or cetyl trimethylammonium bromide (CTAB) as debonding agent on the CNF revealed
toxic behavior with detrimental effects on survival, viability and proliferation of cells [136]. In
comparison, more recent work by Harper et al. revealed that various surface chemistries
implemented on CNFs appeared to be of low toxicity to the development of zebrafish [149]. This
indicates that careful biocompatibility studies must be undertaken when CNF surface is modified,

either by covalent bonding or just adsorption.

To conclude on health and toxicology concerns, sporadic toxic response can be detected depending
on the morphology, the presence of contaminants from the raw materials or the isolation process,
and the surface chemistry of CNF. However, the inexistent or low biological response demonstrated
in every above mentioned studies are relevant proofs that CNF are cytocompatible and mostly not
hazardous to human health. Moreover, good cell proliferation and migration was also observed.
Nonetheless, precautionary principle must be respected and the best way to clarify the potential
toxicity of CNF is to implement testing conditions that are as close as possible to the intended end

application.
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2.5 Cellulose nanofibrils and medical applications

Since bacterial nanocellulose is synthetized by bacteria with near-perfect purity, it led to the
development of the first commercial clinical applications of nanocellulose. Namely Bioprocess®,
XCell® and BioFill® used for topical applications such as burn treatment as depicted on Figure 1.30.

The remarkable conformability and the ability to maintain a moist environment allow for the

reduction of patient pain and contributed to the success of these products.

Figure 1.30: Bacterial nanocellulose for topical wound dressing. Shape conformability and moist environment
for reduction of pain [165], [166]

Although bacterial nanocellulose is wrapped in an enthusiastic trend for medical application, large
scale production facilities are still missing and improvements has to be made regarding the time
required for the production which is commonly up to two weeks as pointed out in several reviews

and papers [113], [167], [168].

Wood derived nanocellulose is produced in a larger scale and quicker time so its use in the

biomedical would be preferable. Many examples of the use of CNF for biomedical applicationin

several fields are available in the literature [129], [169].

As an introduction to the wide following overview of the strongacademicresearch that involves CNF
for medical application, it should be noted that afirstindustrial grade of CNF designed for biomedical
appeared recently. It is produced by the Finnish company UPM under the commercial name of
GrowDex® and is extracted from birch hardwood. It is said to be biocompatible and to mimicthe
extracellular matrix (ECM) that support the growth and differentiation of cells. Moreover, the
suspensionisdispersedin ultra-purewaterandisthen easily mixed with culture media. Specifically
designed to be used in 2D and 3D cell culture, GrowDex® CNF hydrogels can also be used in
combination with microfluidics devices to mimicorgans. At high concentrations the thick gel acts as a
barrier system preventing cell migration without hindering the migration of smaller compounds like
nutrients and drugs. Drug delivery systems also benefits from this barrier effect. This commercial
productis forresearch use only, butincreasinginvestigation might soon end up with diagnostic and

therapeutic products. For instance, GrowDex® CNF have been proven to better promote the

H. Durand, 2019 — Confidential

81



maturation of hepatocyte like cells [170]. Finally, GrowDex® CNF based medical prototypes were
developed such as wound healing, antimicrobial film and hydrogel, scaffold, injectable hydrogels and

bone tissue engineering as described by P. Laurén in a recently released Ph.D. thesis and from which

82

Table 1.7 is extracted [171].

Table 1.7: Plant derived CNF based materials for biomedical applications [171]

NFC
NFC-hemicellulose
NFC*

NFC

NFC**

NFC

NFC-alginate
NFC-carbon nanotube
NFC-polyvinyl acetate
Plant cellulose tissue
NFC
ANFC-chitosan
NFC

NFC-alginate
NFC***

NFC

NFC

NFC

NFC-RS/P
NFC-PEG

NFC
(A)NFC-polymert
NFC-chitin
NFC-gelatin
NFC-hydroxyapatite
CNC-GICH+t

Aerogel and film
Composite hydrogel
Surface modified film
Cross-linked hydrogel
Hydrogel bioink

NFC wound dressing
Composite hydrogel bioink
Conductive hydrogel bioink
Composite polymer film
De-cellularized scaffold
Hydrogel

Hydrogel

Hydrogel

Composite hydrogel
Cross-linked thread
Hydrogel

Hydrogel

Hydrogel

Composite film
Composite hydrogel
Aecrogel

Composite film
Composite scaffold
Composite scaffold
Composite scaffold

Composite dental cement

Wound healing

Wound healing

Antimicrobial film

Antimicrobial hydrogel

Tailor-made wound dressings

Wound healing (clinical study)

Cell-laden ear cartilage scaffold

Neural tissue engineering

Self-softening in situ implantation
Subcutaneous implantation (in vivo-study)
Injectable in situ implantation (in vivo-study)
Injectable in situ implantation (in vivo-study)
Injectable hydrogel for localized chemotherapy
Suture coating for cell therapy (ex vivo-study)
Stem cell delivery (ex vivo-study)

3D organoid development

3D cell culture scaffold

3D culturing of pluripotent stem cells
Bioadhesive film

Mucoadhesion

Gastroretentive drug delivery system
Bioadhesive film

Bone tissue engineering

Bone tissue engineering

Bone tissue engineering

Restorative dentistry

*Octadecyldimethyl(3-trimethoxysilylpropylJammonium chloride modified
**Carboxymethylated and periodate oxidated
***Glutaraldehyde cross-linked

FANFC- and NFC-Pectin, -mucin and -chitosan composites
TTCNC acquired from NFC and reinforced with glass ionomer cement (GIC)
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Two main applications are classically concerned: (i) drug delivery and (ii) wound healing/tissue
engineering. These two applications will be considered for the medical devices development during
this Ph.D. project. Therefore, the following overview will focus first on 100% CNF formulations before
the description of more complex structures that involve CNF together with other polymers or

compounds, for drug delivery and wound healing/tissue engineering.

One of the pioneer works that involved CNF for drug delivery application used 2D structures: a
matrix carrier in the form of films was produced by filtration and showed drugs loadings of 20% to
40%. The mechanical properties of the films were suitable for easy handling and shape tailoring. The
release was sustained for up to three months with a close to zero order kinetic thanks to the tight
nanofibernetwork in which the drug compound was entrapped. This result indicates how efficient
CNF are to extend release period [172]. Figure 1.31 shows SEM pictures of the drug loaded CNF film
before and afterthe release experiment and the cumulative amount of drug released over time that
demonstrates the sustained release. An even further characterization of the interaction of different
types of drug (size and charge) with CNF was conducted. Permeation through CNF films, binding
abilities and thermodynamics of the binding processto CNF were monitored with HPLC and ITC. The
results suggested a size dependence for the permeation study and that pH and electrostatic forces

governed the binding abilities and thermodynamics [173].

2 N ® ©
© ©o o o

'S
=)

-0-INDO20

(A3
o

Cumulative amount of drug released (%)
o
o

20 -=- INDO30
- -2~ INDO40
0k
0 10 20 30 40
. Time (days) £
Before release After release

Figure 1.31: Release study of indomethacin from CNF films produced by filtration, a) SEM pictures of the drug
loaded film before the release showing the drug crystals, b) cumulative amount of drug released over time
for three drug loadings and c) SEM pictures of the CNF film after the release, extracted from [172]

CNF 3D structures such as drug loaded aerogels were also designed for oral drug delivery
applications. Four types of CNF were compared to microcrystalline cellulose (MCC). Hydrophobic
drugs were successfully includedin these highly porous reservoirs thanks to amphipilic hydrophobin
proteins. Sustained drug release was obtained for TEMPO CNF and explained by the nanostructure
and interactions with the protein coated drug [174]. Similarly, pH-responsive 3D micro-porous
hydrogel structures were produced from periodate oxidized and carbomethylated CNF. The ionisable

functional groups available at the surface of the material explained the pH-dependent swelling
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degree (higher at neutral and alkaline pH than in acidic conditions). These hydrogels can achieve
controlled andintelligent release of active principle ingredients (API) when exposed to specific pH

conditions [175].

When combinedto currently used polymers, CNF can improve the properties of existing controlled
drug release systems. Forinstance, CNF has been used to enhance conventional MCC tablets loaded
with paracetamol. CNF allow for a better flowability of powders and lower porosity upon packing
evenif high compactingforces were required since CNF are more ductile than MCC. Release was also
quicker with CNF enhanced CMC tablets. Depending on the target of the delivery this might be an
advantage [176]. Very recently, CNF were also used with other biobased polymers like chitosan to
prepare a CNF/chitosan transdermalfilmfor the delivery of ketorolac tromethamine (KT, antipain).
The KT CNF/chitosan films exploited the CNF nanobarrier to help to sustain the release of the KT

compound as proven by drug release profile and kinetics [177].

In orderto combine CNF with other compounds, chemical surface modification can be explored. Poly
ethylene imine polymeric chains were covalently bound to CNF surface before freeze drying and
production of PEI/CNF aerogels. Those were successfully loaded with amodel drug. The release study
indicated a pH and temperature dependence of the release profiles. This work resulted in pH and
temperature responsive release systems based on CNF offering a new innovative alternative to
conventional release systems of the pharmaceutical industry [178]. Another interesting publication
derived from P. Laurén work used technetium-99m-labeled CNF (**"Tc-CNF) injectable hydrogelfor in

*’™Tc-CNF were able to be traced after subcutaneous injection in

vivo drug release application. The
the pelvic region of mice. The CNF did not migrate or disintegrate during the study whereas the

animal was awake and free to move as illustrated on Figure 1.32.

) |

A d ¢ B
h\' 1) ht /1)

without CNF with CNF

Figure 1.32: SPECT/CT images of 99"Mrc labelled human serum albumin injected in mice with (right) or without

(left) CNF hydrogel. Over 24 hours, the human serum albumin was maintained around the injection site when
CNF were used, extracted from [179]
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Such CNF hydrogels also allowed forabetter controlled release of compounds compared to CNF-free

injections [179].

Wound healing is a second topic where CNF could bring innovative formulations. As a 100% CNF
structures, films and aerogels were used to develop chronic wounds dressings and evaluate their
response to the Pseudomonas Aeruginosa strain growth. A dose-dependent inhibition of the
bacterial growth was observed and the biofilm formation was hindered by the decreasing porosity
and surface roughness of aerogels. These results demonstrate the potential of CNF in the design of
novel wound dressings [180]. Similar growth prevention was observed for calcium and copperions
crosslinked TEMPO oxidized wood derived CNF aerogels exposed to Staphylococcus epidermidis and
Pseudomonas aeruginosa bacterial strains. A bacterial barrier effect was also detected with SEM

pictures as shown on Figure 1.33.

Figure 1.33: SEM pictures of calcium crosslinked TEMPO CNF aerogels exposed to Staphylococcus epidermidis
and visualization of bacterial barrier effect on the insert where bacteria grow on the surface of the aerogel
but do not penetrate

Researchers also evaluated recently the elastic modulus of CNF hydrogels scaffolds for application in
tissue engineering. TEMPO oxidized CNF that are known to bear carboxyl groups but also a few
amount of aldehydes groups were crosslinked with primary diamines compounds of different chain
length through Schiff base reaction (aldehydes-primary amine). Reversible gels were though
convertedtotunableirreversible gels. CNF gel structure can thus be controlled adding one relevant

endpoints for the use of CNF based systems for tissue engineering applications [181].

Similarly to drug release topic, combining CNF with other biobased materials is of importance to
beneficiate from the peculiar properties of both materials. CNF hydrogels were reinforce with
alginate and were assessed in terms of mechanical properties such as rupture strength,
compressibility and gel rigidity. The best combination used oxidized CNF with alginates hydrogels

ending up with mechanically tunable systems and more stable in physiological conditions. Such
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combination of two biobased polymers is of high interest in the scaffolding technology for tissue

engineering and bio-printing [182].

Latestresearch proposes the use of CNF based inks to produce 3D scaffolds by bio-printingforneural
tissue engineering applications. CNF and carbon nanotubes (CNT) as ink constituents allow for the
printing of guidelines of less than 1 mm with conductive properties. The results showed that neural

cells attached, proliferated and differentiated on the 3D printed guidelines. An overview of this work

isprovided by Figure 1.34. Promising applicationin brain mimicking environment are expected [183].

3D printer CNF/CNT ink W et .

Brain model

3D printed scaffold

Figure 1.34: Overview of the fabrication of the cellulose-derived nanofibrous scaffolds for neural network
development based on CNF loaded inks, extracted from [183]

As a conclusion, cellulose nanofibrils are very promising materials for medical applications. The
numerous and diverse research works about its use to improve existing medical formulation orto help
designing new healing strategies show the wide potential of such material. Moreover, many
researchers try to go further by providing cellulose nanofibrils with new functions thanks to surface
chemical modification. Such strategy is the key part of this Ph.D. project and different surface
modification of CNF will be described in Chapter Il. Consequently, the last part of this first chapter is

dedicated to CNF functionalization.
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3. Functionalization of CNF surface

Nanocellulose functionalization started to be explored because of increasing attempts to use it in
nanocomposite material. Actually, due to their nanosize, high specific surface area and strong
mechanical properties, cellulose derived nanomaterials have a great potential as reinforcement.
Nevertheless, the dispersion of such nanofillers in the conventional matrices is critical for the
improvement of mechanical properties. The inherent hydrophilicity of nanocellulose andits inability
to dissolve in most organicsolvents make it difficult to achieve appropriate dispersion level in water-
insoluble or non-water dispersible matrices [95]. Hydrogen bonding network that govern most of
cellulose and nanocellulose properties tends to form aggregates which prevent good dispersion.
Turning the surface hydrophilicity of nanocelluloseinto surface hydrophobicity appeared like the first
strategy to reach a suitable compatibility between nanofillers and matrices. Surface modification of

nanocellulose thus became an intensive research field.

The potential of surface modification do not only concerns polymerand new nanocomposites design
since a wide variety of compounds can now be immobilized on nanocellulose surface. In addition to
matrix compatibility increase, nanocellulose surface functionalization also brings awide range of new
functionalities depending on the type of chemical compounds that is immobilized. This gives
interesting resultsinthe sensortechnology, environment protection, papermaking industry or even
automotive applications [184]. Few reviews summarize the current trends of nanocellulose chemical

modifications [185], [186].

Nanocellulose surface functionalization can be done by covalent or non-covalent binding of chemical
compounds. In the case of covalent binding, also referred as grafting, small molecule or even
polymers are suitable for functionalization. Polymers can be grafted by two processes: either
“grafting onto” or “grafting from”. In the “grafting onto” approach, the terminal group of the
polymer chain is exploited for the covalent binding, while in the “grafting from” approach, the
monomerandinitiator are mixed with nanocellulose, before the polymerization takes place at the
surface of nanocellulose. Non-covalent functionalization relies on adsorption mechanisms that are
governed by electrostaticattractions, hydrogen bonds or van der Waals forces [185]. The Figure 1.35

gives a wide overview of the different approaches used to modify CNF surface.
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Figure 1.35: Different approaches to modify cellulose nanofibrils surface, adapted from [105]
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One of the most common ways to quantitatively characterize the grafting of molecules or polymers
on CNM:s is to calculate a degree of substitution (DS). When considering a single sugar unit of the
cellulose polymer, three hydroxyls groups are available for the covalent bonding of a compound. The
degree of substitution is avalue in between 0and 3 that describes the amount of hydroxyl groups
that are substituted during the reaction of modification. It is always an average value due to the
heterogeneity of grafting success related to CNMs. The DS is a characteristic of the bulk material, and
can thus be measured through elemental analysis techniques. For an alternative analysis of the
grafting success, anothervalue has been introduced by researchers in the late 2000s. The degree of
substitution of the surface (DSS) describes the amount of substituted hydroxyls of the cellulose
polymers chain atthe veryfirstlayers of cellulose nanofibrils or cellulose nanocrystals. This value can

be determined through surface elemental analysis tools like X-ray Photoelectron Spectroscopy [187].

The current trend in CNMs surface modification goes toward more green procedures. The use of
toxicsolvents orreactants often hinders the upscaling of CNMs modification that will be required to
reach industrial level processes. Moreover, sustainable process development is in accordance with
the use of CNMs in our everyday life since they are renewable and biodegradable natural materials
believedto be analternative to petroleum based conventional polymers. In this context, water based
chemical procedure that limit the use of toxicsolvents orchemicals are of high interestand will be at
the heart of Chapter Il. Also, the discussion will be focused on CNF surface modification as it is the
CNMusedinthis Ph.D., but othercellulose products willbe mentioned forafew context descriptions

and comparison of chemical reactions.

3.1 Esterification of nanocellulosic materials

Esterification introduces esterfunctional group (O-C=0) through the condensation of carboxylic acid,
acid anhydrides or acyl chlorides with hydroxyl groups. It is one of the most versatile reactions for
the modification of polysaccharides owing to the huge quantity of available hydroxyls groups. This
provides accesstoa wide range of functionalized materials [188]. Cellulose acetate is one of the most
known esterified natural polymers, cellulose triacetate and di acetate are mainly used for textile
fibers, filter tow and thermoplastic mass [189]. Cellulose acetates are produced through the
esterification of cellulose hydroxyl groups with acetic anhydride in the presence of sulfuric acid
catalystto give the fully acetylated cellulose (triacetate). A partial hydrolysis is applied to reach the

intended polymer with proper DS and remove the catalyst [190].

As forcellulose itself, the esterification of CNFis widely used. Two kinds of conditions can be used for
chemical reaction on CNF, either under swelling or non-swelling conditions. In the non-swelling

conditions, the reaction only occurs at the surface of CNF and the limitations of the esterification lies
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inthe accessibility of the surface. The morphology of the nanofibers will remain the same upon the
reaction. Inthe swelling conditions, esterified cellulose chains tend to be solubilized in the esterified

medium. This has been observed already on CNC [191].

The esterification of CNF is fairly recent. One of the pioneering works of esterification of CNF was
done by Herrick et al in 1983. They tried to produce CNF by mechanical shearing with the
simultaneous acetylation of the material by using a mixture of acetic acid and acetic anhydride as a

medium instead of water. Sulfuric acid was used as a catalyst.

During the last decades, many techniques were used to perform esterification on cellulose
nanofibers. Heterogeneous versus homogeneous conditions were often discussed. Organic solvent
allowed forsignificant DS achievements. Forinstance, CNF suspensions have been solvent exchanged
to DMF in order to perform surface esterification. Several quantity of acetylated groups were
obtained and allow for the production of nanocomposites by solvent casting with poly(lactic) acid
(PLA) thanks to the enhanced interface adhesion. The acetylated CNF were proven to be better
dispersed in the PLA matrix and the ensuing nanocomposites had a better transparency and an
increased glass transition temperature which indicated a better fiber-matrix interaction [192]. lonic
liquids were used in 2012 to modify CNF in suspension again with anhydrides (acetic, butyric, iso-
butyricand hexanoic). The ionicliquid used was [bmin][PF;]. Successful grafting was proven by FTIR,
elemental analysis and ToF-SIMS. DS and DSS were possible to calculate and reached 0,3 and 0,85-

1,12 respectively [193].

In a solvent free method, researchers tried to esterify CNF in a dry form of aerogels, in gas phase
with palmitoyl chloride at temperatures comprised between 100 and 200°C for 0,5 to 2 hours. This
resulted in cellulose palmitates with DS ranging from 0 to 2.36. High DSs did not maintained the

structure of CNF but low DSs (0,1 to 0,4) kept the intact structure of CNF [194].

All these examples are of high scientificinterestand challenges but they lack upscaling perspectives.
Moreover, many solvents and reactants are not really environmentally friendly. Alternative routes

have also been proposed to cope with these two endpoints.

Contact active surfaces based on CNF modification with the antibiotic penicillin were produced. CNF
films were produced by filtration and thenimmersed in the active principle ingredient solution. In a
parallel strategy, penicillin was also introduced directly in the CNF suspension before the production
of CNF film through solvent casting. Esterification was triggered by thermal treatment applied on
both types of CNF films at 150°C for 2 hours. Grafting was confirmed by FTIR, elemental analysis and

X-ray photoelectron spectroscopy. Antimicrobial properties were thus provided to CNF although the
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reached DS were fairly low (<0,1) [195]. Such greener approaches are keys for the development of

upscaling and environmentally friendly processes for esterification of CNF.

An improved version of this last mild solvent-free approach will used in the Chapter Il to covalently

bind active principle ingredient to CNF films. Indeed, the thermal treatment should be limited when

working with sensitive molecule that is intended to grant active properties to CNF based devices.

3.2 Peptide linkage: amidation of oxidized nanocellulosic materials

Amidationis another example of reaction that readily operates in water and represents one of the
most occurring reactions in Nature. Amidation reaction produces an amide bond (O=C-N) from the
attachment of amine derivatives on carboxylic acid groups. Methodologies to form an amide bond
are described since the very beginning of organic chemistry. Since the 1980’s researchers focused
theirinvestigation on the use of coupling reagents such as the predominant carbodiimide and active
esterstrategy. Figure I.36introduces the general principle of activation process for the formation of

amide bond.

O activaton  © R
J — N j' ko

R OH R Act

0
RJ\r;J’R'

R"

Figure 1.36: Principle of the activation reaction in amide bond formation [196]
Otherreagents appeared andscientists now have awide panel of different conditions and strategies
and can adapt to their research the most suitable ones [197]. Parameters of choice for coupling
reagents can be the price, the homogeneous or heterogeneous aspect of the reaction, the use in
excessor deficit of coupling reagents and the presence of other functional groups in the system that
might interfere [198]. Pioneer work on nanocellulosic materials dealing with the formation of an
amide bond are attributed to Araki et al. in 2001. The purpose of this work was to increase the
colloidal stability of oxidized cellulose nanocrystals suspensions by grafting amine terminated
poly(ethylene glycol) at their surface [199]. They used the water soluble 1-ethyl-3-(3-dimethyl
aminopropyl) carbodiimide hydrochloride (EDC) and N-hydrosuccinimide sulfonate (NHS) coupling
reagents. EDC/NHS coupling was also used more recently for the surface modification of cellulose

nanofibrils but many different conditions were used as depicted on Table I.8.
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The accepted mechanism of EDC/NHS coupling seems to follow the general formation of peptide
bond. The carboxylicacid hydroxyl group must be replaced by an electron-withdrawing substituent in
order to increase the electrophilicity of its carbon. A nucleophilic attack by an amino group is thus
favored [200]. The EDC is a good electron-withdrawing substituent, and lead to the formation of the
O-acyl-iso-urea compound. A publication from 1995 suggests that the best pH range for the
activation by EDC is between 3,5 and 4, 5 [201]. Once the EDC is added on the carboxylic moiety,
hydrolysis of the O-acyl-iso-urea by wateris much more likely to happenthanthe direct attack by the
amine molecule. The O-acyl-iso-urea can also undergo a (O—=>N) displacement that gives the more
stable N-acyl-urea that is not reactive toward amines. The amide is very unlikely to be formed
withoutthe use of the complementary coupling reagent, N-hydrosuccinimide sulfonate (NHS). The
role of thiscompoundisto preventthe formation of N-acyl-urea, butalso to turn the O-acyl-iso-urea
into a less water hydrolysis-sensitive molecule by the formation of an esterbond. The hydroxyl group
of NHS makes a nucleophilicattack on the O-acyl-iso-urea and gives the corresponding succinimidyl
ester. The non-dissociated primary amine can then attack and produce the amide and regenerate the

NHS as detailed on Figure 1.37 [202].

Activation

EDC
addition
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Figure 1.37: Commonly accepted mechanism for amide bond formation with EDC/NHS coupling reagents. EDC
(1) reacts with the carboxyl groups of oxidized CNF to give the O-acyl-iso-urea (3) which further reacts with
NHS (4) to give the succinimidyl ester (6). The non-dissociated amine can attack and form the amide
functionalized CNF (6) and regenerate NHS (4) (adapted from [202])

The EDC/NHS coupling reagents are mainly used forthe formation of amide bond onto CNF aqueous
suspensions. Only afew publications deal with the EDC/NHS coupling reaction on CNF only. They are

all listedinthe Table I.8. The order in which the coupling agents and the amine molecule are added
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to the CNF suspensions differ and the three compounds can also be added simultaneously. The pH
conditions are also different, researchers mostly use slightly acidic conditions but when coupling
agents are added first, the pH is increased to neutral or low alkaline values when the amine is
introduced. The pKa of the amine function plays a role here, the non-protonated -NH, form is
necessary according tothe above mentioned mechanism. However, stability and solubility of amine

containing molecules that are intended to be grafted on CNF could be more important to ensure,

even if the non-protonated form of the amine will be less available.
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Cellulose nanofibrils modified with carbodiimide (EDC) mediated amidation in the literature

Table 1.8
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Likewise, washing procedures are supposed to be adapted to each amine compounds. The removal
of undesired molecules (coupling agents unreacted amine compounds) remains a challenging issue
since strong adsorptionis at stake with CNF. Consequently, characterization tools are notalways able
to distinguish the only adsorbed from the covalently bound molecules. Both duration and
temperature of the amidation reactions are mostly identical: several hours at room temperature.
Overall,amide bond formation is an environmentally friendly reaction since is occurs mainly in water

under mild temperature conditions and in a relative short time.

In this work, amide bond formation will be used as a first step to modify CNF surface in suspension.
Coupling agents EDC/NHS will be used in the most appropriate conditions forthe amine molecule that
will be grafted on CNF. CNF will be further modified with an environmentally friendly and easily

scalable reaction family: click chemistry reactions.

3.3 Click Chemistry and nanocellulose

The click-chemistry principles were first described by Sharpless and co-workers in 2001. The vision
behind the work of these researchersis tofollow Nature’s preferred methods of synthesis to address
the development of powerful highly reliable and selective reactions. Click chemistry is sometimes
referred to as a reaction that “clicks” compounds as molecular LEGO® bricks to produce complex
architectures [216]. More precisely, a reaction earns the click chemistry status when it is modular,
wide in scope and proceeds in simple synthetic conditions (atmospheric conditions) and results
quickly in very high yields. Raw materials and reagents must be readily available. No solvents are
allowed except benign ones such as water. Potential by-products must be inoffensive and easily
removable. The reaction must be stereospecific (but not necessarily enantio-selective) and the

product must be simple to isolate and stable under physiological conditions [217].

Click chemistry revolutionized many fields of chemistry. But one needs to keep in mind that the
reasons behind thistremendous impact do not lay into the innovation of these coupling strategies.
They were known for decades. However, contemporary methods and tools allowed researchers to

improve and better characterize the kinetics and products of this type of reaction [218].

The copper(l)-catalysed azide-alkyne cycloaddition (CUAAC or Huisgen reaction) was considered as
the “cream of the crop” click chemistry reaction, leading even to misunderstanding the general
principles of click concept with this reaction. Therefore, it has evolved in a widely used coupling
procedure inall chemical disciplines. The cycloaddition rate is strongly increased in the presence of
transition-metal ions that also provide stereospecificity. Copper (l) ions are traditionally used with

nitrogen-based ligand. But considering the growing concerns of cytotoxicity of copper, othertypes of
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catalystand even metal free procedure were developed, as depicted on Figure 1.38. Meanwhile, in
the last 15 years, metal-free [3+2] cycloaddition reactions, Diels Alder reactions, thiol-alkene and

thiol-alkyne reactions also appeared to be classified as click reactions, mainly thanks to their simple

synthetic procedures and high yields. [219]
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Figure 1.38: Overview of main click chemistry reactions (adapted from [220])
The literature offers almost 18,000 publications on click chemistry but only about 200 deals with
cellulose substrates as illustrated on Figure 1.39. It also shows the proportion of cellulose
nanomaterials (CNF, CNC, BNC) that are connected with click chemistry in the literature. A focus is
also exposed on main click chemistry types used for chemical modification of CNF. Half of the
publication deal with azide-alkyne cyclo-addition since it is the most widely used reaction.
Consequently, only a very few publications are available on other types of click reaction for CNF
modification. It confirms the room for improvement and innovation on the topic of metal free click
chemistry applied to CNFs, especially thiol-yne click chemistry on which only one publication was
found. Plus, this only work deals with microfluidic channels for biosensing and do not uses thiol yne

click chemistry to bind active principles to CNFs [221].
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Figure 1.39: Publications on click chemistry and cellulosic materials and zoom in click chemistry types and
cellulose nanofibrils (Extracted from Scifinder, January 2019, “cellulose” topic result (limited with
book/journal/review and English language) was refined with “click OR clicking” topic and further intersected
with CNF, CNC and BNC descriptors mentioned earlier in the text in Figure 1.20)

A quick overview of the three low-exploited click chemistry reactions will be presented along with a
few example of these reactions conducted on cellulose and especially CNFs since they will be used in

this Ph.D. project for covalent immobilization of active principle ingredients.

3.3.1. Thiol-ene
Despite considerations like odor, storage and stability, thiols have been used in many chemical
reactions for more than a century. Improved methods of synthesis and development of efficient

stabilizers now makes thiols good candidates for click chemistry reactions [219].

Thiol-ene chemistry can rely on two different mechanisms: thiol-Michael addition reaction [222] or
radical addition reaction [223] between thiols and alkenes. Michael addition is traditionally
performed under base catalysis and is extremely rapid and regioselective, proceed under bulk
conditionsin presence of airand waterand give high yields. Radical addition also show rapid reaction
rates since single thiol radical triggers hundreds to tens of thousands of chemical reaction events
[222]. The radical mechanismis exposed on Figure 1.40. But the reaction is usually performed under
an inert atmosphere and by exposure to UV light for about 20 minutes up to several hours in

presence of a photo-initiator [219].

The thiol-ene click chemistry was used to modify cellulose substrate. Thiol or alkene groups were
boundto cellulose nanofibrils films through alkoxysilane chemistry and subsequent photo-chemical
thiol-ene reaction was performed respectively with alkene or thiol groups-containing molecules

[224].
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Figure 1.40: Thiol-ene mechanism, the thiol group (a) reacts with the vinyl compound (b) [225]

Multicolorfluorescentlabelling of cellulose nanofibrils was also achieved more recently through the
thiol-Michaeladdition type of thiol-ene chemistry. Cellulose nanofibrils were first grafted with furan
bearing compound through esterification in DMSO under thermal treatment. Diels alder reaction
(described later) was used as an intermediate reaction step to graft a bis-maleimide molecule on
furan modified CNF before subsequent thiol-ene click chemistry with thiol-bearing chromophore and
alkene bond of maleimide [226]. This multistep grafting is a very innovative strategy of chemical
surface modification of CNF but it still requires organic solvent in the first esterification. Thus, the
multistep chemical surface modification of CNF suspensions in fully aqueous medium is then still a

field with potential investigation.

3.3.2. Thiol-Yne
Thiol-yne reaction is a second type of thiol radical addition and complements the thiol-ene route
since two thiols can be added to one alkyne function. Thiol-yne coupling thus combinesin avery
elegant way the building blocks of the most widely used click reaction (alkyne groups in CUACC) with
the thiol-ene chemistry (same thiol addition) [218]. Moreover, the kinetic of the addition of the
second thiol to the vinyl sulfide (first addition) is three times faster [227]. Thiol-yne coupling was
recently re-introduced by Bowman and co-workers in 2009. Their work was inspired by almost
forgotten reports on multiple radical additions of thiols to alkynes from the 1940’s. The group
investigated the mechanism and kinetics of thiol-yne photopolymerizations for the production of
highly cross-linked polymers networks. The Figure 1.41 shows the mechanism Bowman and co-

workers came up with regarding the thiol-yne reaction.
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Figure 1.41: Thiol-yne mechanism, each alkyne group (a) reacts first with a thiol to form the vinyl sulfide (b)
which further reacts with a second thiol to yield the 1,2-disubstituted adduct (c) [225]

The thiol-yne reaction is triggered by the use of a chemical radical source or UV irradiation at
ambienttemperature and the presence of oxygen should be avoided. Although this last point is not
really in accordance with click chemistry principles, thiol-yne coupling is still considered as a full

potential strategy for the construction of tailored materials.

In July 2018, only two papers in the literature were dealing with thiol-yne chemistry related with
cellulosesubstrates (afew other papers deal with cellulose derivatives). Researchers used thiol-ene
and thiol-yne coupling procedures on cellulose paper in order to develop the covalent printing
technique. Di-sulfide bridges containing compounds were first covalently immobilized on paper. Then
the S-S bonds were cleaved to allow free thiol groups to react through either thiol-ene or thiol-yne
click chemistry reactions with chromophoricsmall molecules which play the role of inks. The printed
shapes were controlled by using a hidden pattern as a filter in between the sample and the light
irradiation device [228]. This new substrate is supposed to find application as sensor in the field of

medicine and anti-counterfeiting technique.

The only other paper onthiol-yne chemistry applied to cellulosic substrates describes the formation
of dendritic-linear-dendritic (DLD) block copolymer hydrogels and their combination with cellulose
nanocrystals (CNC). CNCwere first functionalized with thiol groups and used as crosslinkers thanks to
the thiol-yne coupling. A huge library of functional DLD block copolymers and CNC-based 3D

networks were obtained and are suitable for biological applications [229].

Despite these preliminary works, thiol-yne click chemistry applied on cellulose nanofibrils seems to

be an unaddressed field of research so far.
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In this Ph.D. work, the use of thiol-ene and thiol-yne click chemistry will be the key steps to bind active

principle ingredients to CNF.

3.3.3. Diels Alder
The Dielsalderreaction has been extensively studied since its first descriptionin 1928 by O. Diels and
K. Alder in Germany. They both get the Nobel Prize in 1950 for their work on diene synthesis. The
reactioninvolves aconjugated diene and adienophile (alkene or alkyne) compounds. With a simple
heattreatment, those compounds can undergo the [4+2]-cycloaddition that leads to the formation of

new cyclic molecule: the adduct, as depicted on Figure 1.42 below.

O 0
o A
o o

Figure 1.42: The Diels-Alder equilibrium between furan and maleimide end groups [230]
The 4 r-electrons of the diene and the 2 m-electrons of the dienophile willform new o-bonds that are
energetically more stable than n-bonds. In one single step, the circular transfer of the six electrons
creates two new o-bonds. The diene must be in s-cis conformation in order to ensure a good
overlapping of molecular orbital with the dienophile. However the s-trans conformation is usually
more stable. This is why cyclic diene are really interesting compounds for Diels Alder reaction
because the s-cis conformation is the only one available. The Diels-Alder reaction is thermally
reversible. High temperature treatment gives back the initial diene and die nophile molecules through
the so called retro-Diels-Alder reaction. The reaction can occur in many organic solvents and also in

water.

In case of cyclicdiene and dienophile (like furan and maleimide groups), endo and exo products can
be obtained. Both molecules are in parallel plans but two configurations are possible as shown in

Figure .43 below.

The endo-product is considered as the kinetic product because favorable interaction occurs in
additiontothe [4+2] cycloaddition, which are not occurring in the exo-product formation. However,

the exo-product is thermodynamically more stable since it avoids steric hindrance.
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Figure 1.43: The exo and endo products from Diels Alder reaction between furan and maleimide functions

Diels Alder reaction between furan and maleimide groups is of major importance. First, furan
products mostly originate from furfural that is industrially extracted from vast array of agricultural
and forestry wastes to several hundreds of thousand tons each year [231]. Furanic compounds are
biobased products and then are in accordance with the green chemistry principles described earlier.
Furan is considered as an electron-rich ring, explained by the existence of many mesomeric forms.
On the contrary maleimide carbon double bond has alowerelectron density due to the two carbonyl
groups that are electron attractor. This configuration gives rise to a very effective Diels-Alder
reaction. The frontiermolecularorbital theoryisthe key to explain it: electron enriched diene has a
highest occupied molecular orbital (HOMO) of higher energy level and deprived dienophile has a
lowest unoccupied molecular orbital (LUMO) of lowerenergy level. The energy gapissmallerand the

interaction is simpler.

Natural polymers are good platforms for the implementation of Diels Alder reactions as
demonstrated by the review of A. Gandini recently very published. Vegetable oils, natural rubberand
cellulosesubstrates are covered [232]. Many different cellulose substrates were utilized in order to
perform Diels Alder reaction. Hydroxyethylcellulose was provided with pendant furan groups through
esterification of furoyl chloride and acetic acid [233]. A bis-maleimide compound was then used for
crosslinking through Diels-Alder reaction at 70°C. The retro-Diels-alder was also studied resulting in a

material with on-demand self-healing properties and strong modulus and tensile strength.

Nanocelullose material was also appeared as a good candidate for new material designing. Partially
modified gelatin was reacted with chondroitin sulfate through amidation with EDC/NHS coupling on
one hand, and with maleimide functionalized cellulose nanocrystals (CNC) on the other hand. Bio-
nanocomposite hydrogels with lower swelling ratios and stiffer networks (higher storage moduli)
were thus obtained [234]. In the same spirit, self-healing nanocomposites hydrogels based on

cellulose nanocrystals and poly(ethylene glycol) (PEG) chains were prepared [235]. Furyl-modified
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CNCand maleimidefunctionalized PEG were covalently bind with Diels Alderreaction. Cyclicloading -

unloading tests showed good self-recovery properties.

However, only a very few papers deal with Diels Alder reaction applied on CNF. The first one was
published in 2015 by the group of L. Bergstrom from Sweden who successfully designed multicolor
CNF thanks to fluorescent probes (7-mercapto-4-methylcoumarin and fluorescein diacetate 5-
maleimide) that were covalently immobilized on CNF through Diels Alder reaction as shown in Figure

I.44. These modified CNF brought innovative tool in biological imaging [226].

Figure 1.44: Design of multicolor CNF through covalent immobilization of fluorescent probes by Diels Alder
click chemistry (confocal microscopic images on the far right) [226]

The only other reported work was published in 2017 by A. Gandini et al. The researchers combined
furan modified natural rubber and maleimide modified CNF in a reversible crosslinked composite
system thanks to Diels Alderreaction. The successful results open the way to more easily recyclable
elastomericartefacts such astires together with better thermal resistance [236]. These preliminary
works show that there isroom forendless application thanks to the versatile Diels Alder reaction and

its implementation to CNF based systems.

In this Ph.D. work, novel procedure of Diels Alder reaction will be use to immobilize active principle

ingredients on pre-functionalized CNF.
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Conclusions to chapter |

As described in this chapter, a wide range of biobased polymers are suitable for biomedical
applications. Among them collagen and cellulose deserve a particular attention. The former has
excellent biological properties and perfectly mimics the extra cellular matrix medium that naturally
involves collagen, the latter, especially cellulose nanofibrils, forms 2D and 3D biocompatible
structures that have high potential in drug release and wound healing or tissue engineering
applications. The general context of nanomaterials in medical devices appeals for health and
toxicology assessment. For cellulose nanofibrils, a low or nonexistent toxicity has been proven and
commonly admitted by the scientific community. However, complementary studies are still
necessary for long term impacts since cellulose does not degrade in the human body and seemed
persistent in pulmonary route. In order to be widely used in medical industry or any other field,
nanocellulose often requires enhancement through surface modification fora better compatibility or
new functionalities. A wide number of techniques are available: esterification, amidation and click
chemistry strategies were introduced. Their use on CNC and mostly CNF were reviewed. Such
techniques have potentialto be used in water based systems with a limited use of organic solvents
and energy demanding process. Green chemistry for surface modification of CNF is a promising way
for the upscaling of processes associated with CNF industrialization. The growing market of
nanocellulose was detailed in terms of patents and field of application and confirmed the tendency

for the transition to these biobased compounds.

In line with this context and literature review, it seems very innovative to (i) functionalize the CNF
surface with drugs through water based green chemistry approaches and (ii) use such material in
combination with collagen forthe design of new medical devices for topical orinternal applications.
These are the main objective of this Ph.D. project, as described on Erreur! Source du renvoi
introuvable.. The next chapter discusses the surface modification techniques applied to CNF with
covalentdrugimmobilization purposes. Such modified CNF will be embedded in prototype medical
devices, part of theminvolving collagen, and theirrelease capacities will be evaluated as well as their

antimicrobial activity, as detailed in the chapter Ill.
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Il. Immobilization of active principle ingredients on

cellulose nanofibrils

Introduction to chapter I

The functionalization of cellulose nanofibrils (CNF) appears to be necessary to improve its potential
for new demanding fields of application, such as biomedical. Chapter | reviewed how the high
specific surface area of CNF, combined with its chemical versatility can offer a wide range of
functionalization strategies to immobilize active principle ingredients (API). Accordingly, in the
experimental part, different chemical routes can be applied whether if CNF films or suspensions are

used.

Indeed, the first part of the chapter |l describes the simple covalent bonding strategy that is used to
graft Ciprofloxacin directly onto CNF films. The antibacterial activity of such modified films is
investigated in order to confirm its contact active properties. Such films present potential use in

topical application medical devices.

The second part will focus on more complex immobilization strategies for CNF suspensions. A two-
step chemical modification was performed on TEMPO oxidized cellulose nanofibrils (CNF-t)
suspensions in water. In the first step, CNF-t is provided with pending alkyne functions through
amidation that are supposedto react, in the second step, with a thiolated prodrug of metronidazole
through thiol-yne click chemistry. In the third part of this chapter, a similar approach is proposed.
CNF-tare first provided with furan functions that subsequently react with the maleimide function of
another prodrug of metronidazole. The Figure 1.1 summarizes the chapter Il structure. Highly
innovative characterization tool as dynamic nuclear polarization enhanced nuclear magnetic
resonance (DNP-NMR) is used forthe first time to investigate cellulose nanofibrils in order to detect

modifications that are usually not visible with traditional tools.

Throughout these findings, APl enhanced CNF can be designed and tailored to match the required

functionalities of different types of medical devices, namely external or internal treatments.
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Cellulose Drugs Clickable
nanofibrils (CNF) Metronidazole functions

’ Alkyne Q
Ciprofloxacin
A Furane %

11.2 CNF-Metro 11.3 CNF-Metro
(Thiol-Yne) (Diels Alder)

11.1 CNF-Cipro

Figure Il.1: Graphical representation of chapter Il structure
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1. Single step immobilization of Ciprofloxacin on cellulose nanofibrils films for

antimicrobial membrane development

This section is adapted from “H. Durand, C. Darpentigny, E.Zeno, N. Belgacem, J. Bras - Single step
immobilization of Ciprofloxacin on cellulose nanofibers for antimicrobial membrane development”,

submitted in Material Science Engineering: C in November 2018

Abstract
The combination of nanocellulosic material with active principle ingredients appear like a promising
strategy for the development of next generation active medical device. The high specific surface and
tunable surface chemistry are properties of high interest when it comes to immobilize molecules on
cellulose nanofibers. Proved biodegradability and biocompatibility are al so key properties when such
materialsareintended to be used in the biomedical field. Here we demonstrate immobilization of
Ciprofloxacin onthe surface of cellulose nanofibers films through a green solvent-free esterification
procedure. Surface and bulk analyses were performed in order to reveal the presence of
Ciprofloxacin onthe CNF films. Complementary antimicrobial testing was set up to assess the activity
of the prototype medical device. The immobilization of Ciprofloxacin was proven to be successful and
a prolonged activity of CNF films grafted with the active molecule confirmed the covalent nature of
the immobilization. This work further strengthens the potential of cellulose nanofibers as a high

added value platform for the design of medical devices with long-term active properties.

Keywords: cellulose nanofibrils, Ciprofloxacin, green functionalization, antibacterial activity
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1.1 Introduction

Cellulose is the most abundant polymer on earth with an estimated quantity of 7.5 x10"° tons
produced by photosynthesis each year [1]. Thisis seventeen times more than the global oil extraction
in 2016 [2]. Thus cellulose appears like one of the key alternative material to fossil resources
products. Cellulose is renewable, biodegradable and biocompatible, it is available globally and its
extraction processes are continuously underintensive investigation to reduce environmental impact

and become more sustainable.

Moreover, in the 1980’s, cellulose nanofibers (CNF) were discovered and isolated from cellulose
fibers [3], [4]. CNF are composed of the elementary fibrils of the cellulose fiber and comprises
amorphous and crystalline region. Theirisolation processis still underoptimization in order to reach
suitable energy consumption and reduce environmental impact. Today, several books [5], [6],
reviews [7], [8], and conferences (TAPPI Nano, ACS Cellulose division), are dedicated to the
investigation of these cellulose nanofibrils and the best ways to produce and characterize them [9]—

[11].

CNF can be usedin many different fields, from papermakingindustry in order to reinforce structures
or improve barrier properties [6], [12], [13], to nanocomposites [14], electronics [15]-[17], the
cosmetics or even the medical industry [18]—[21]. A couple of applications already exist on the

market like skin care patch or even hygiene pads.

In the medical field, CNF have great opportunities thanks to their biocompatibility as recently
reported [18], [22], [23]. CNF were proposed for the first time in early 2010 to prepare long lasting
drug release tablets and films [24], [25]. Cellulose nanofibrils were also coated on substrates in order
to develop nanostructured network which sustained release of various molecule like caffeine or
chlorhexidine digluconate [26], [27]. The same authors also associated CNF suspensions with B-
cyclodextrins in order to further improve the molecule encapsulation capabilities of the nano-

structured CNF networks [28].

Also, CNF have a huge specificsurface areawith atunable surface chemistry which allows for a wide
range of functionalization strategies. However, a very few publication investigated the direct
covalent immobilization of active pharmaceutical ingredients (API) on CNF substrates. This type of
strategy could help to develop new active products for the medical field. In 2015, researchers
managed to chemically graft penicillin of CNF films and suspensions. The grafting was also confirmed

by antimicrobial testing against gram positive and gram negative bacteria strains. The substrates
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proved to be successfully contact-active non-leaching packaging prototypes. [29] Nisin, another
antimicrobial molecule, was also anchored to carboxylated CNF through an amidation reaction

resulting into active systems for prolonged-release antimicrobial properties[30].

In this paper, we investigated the chemical immobilization of Ciprofloxacin, an APl that is suitable for

the medical field (Figure 11.2).

0O O

oo,

AL

Figure I.2: Ciprofloxacin molecular structure
Ciprofloxacinis asyntheticantibioticwith a broad spectrum activity which was patented in 1981. It is
part of the second generation of fluoro-quinolones that have a therapeutic activity principle based
on the inhibition of enzymes involved in DNA synthesis and cell division which unwind the DNA
supercoil structure priorto replication. The fluoroquinolones inhibits the action of this enzyme and

stop the DNA replication process which leads to bacteriostasis and eventually cell death [31].

The broad spectrum activity of Ciprofloxacinis explained by the combination of the fluorine atoms,
whichimproves activity against gram positive bacteria. The piperazin ring is known to bring a better
ability to penetrate the bacterial cellwall and the cyclopropyl side chainincreases the bioavailability

of the compound. This improves the activity against gram negative bacteria [32].

In previous work, penicillin was used, but in the late 90’s bacterial resistance started to be
monitored. The intense use of this molecule for more than 50 years now explains the resistance
development and the need for alternative solutions[33]. For this study Ciprofloxacin was chosen
because second generation fluoroquinolones show less resistance of micro-organisms with a much
wider spectrum activity than penicillin. It is active against both gram positive and gram negative
strainsrevealing a potentantimicrobial activity [34]. Moreover, the availability of a carboxylic group
allows for esterification reaction with hydroxyls of cellulose nanofibers surface. The presence of
Ciprofloxacin on CNF substrates can also be confirmed thanks toits three nitrogen atoms that can be

easily traced with elemental analysis.

In this paper, Ciprofloxacin was covalently immobilized on CNF films thanks to its carboxyl groups
through esterification with hydroxyls groups available on cellulose. The grafting was confirmed and

the antimicrobial activity of the sample was assessed. The general procedure is described on Figure
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[1.3. The modified CNF films are believed to be high-added value starting materials for the

development of innovative medical devices for topical application.

SOlV?"t Immersion
CNF suspension (3wt%) casting CNF film Ciprofloxacin solution &

4g/L  pH25 Purification

Figure II.3: Graphical description of the immobilization strategy of Ciprofloxacin on cellulose nanofibrils films
to prepare medical devices for topical application with antimicrobial activity

1.2 Experimental procedures

1.2.1. Materials
The cellulose nanofibers (CNF) suspension was provided by the Centre Technique du Papier (CTP,
Grenoble, France) and was produced by enzymatic pre-treatment of a bleached birch pulp followed
by strongrefining (80°SR) and homogenization: 3 passes at 1500 barsin an Ariete homogenizer from
GEA (Italy). Ciprofloxacin (298.0%, CAS: 85721-33-1) was purchased from Sigma-Aldrich as a white

powder and used as received.

Bacillus subtilis (BGA) spore suspension were provided by SIGMA-Aldrich (MERCK) at a concentration

range of 8.10° — 5.10" CFU/ml and were used as received to prepare inoculations.

Staphylococcus aureus and Escherichia coli were purchased from Thermo Scientific (ATCC 6538 and
8739 respectively) in the form of freeze-dried suspensions. Rehydrating procedure was followed
according to supplier’s information. Pre-inoculum were prepared in a commercial Nutrient Broth
solution (composed of peptone, yeast extract, sodium chloride, and glucose) and sterilize in
autoclave (121°C, 15min) in which bacteria were grown for 16h in a 37°C incubator. Difco™ Nutrient
Agar from Becton Dickinson was used and also submitted to autoclave sterilization. Sterile
polystyrene petri dishes (90mm diameter) purchased from Carl Roth were utilized in every

microbiological testing.

H. Durand, 2019 — Confidential
137




138

1.2.2. Methods

1.2.2.a. Preparation of CNF-e films
The CNF suspension was diluted with deionized water from 3% w/w (gel state) to 1% w/w (more
liquid and stirrable fluid) and magnetically stirred for 5 minutes at 300 rpm. The high shear stirrer
Ultra-Turrax (IKA, USA) was used on the suspension to ensure ahomogeneous dispersion of the CNF:
30 seconds at 10 000 rpm. The suspension was casted in polystyrene petri dish and let to dryina
controlled condition room (23°C and 50%RH) until films can be easily collected (around 5 days). The
resulting films were recovered from the petri dish and stored in the same controlled condition room

before any characterization.

1.2.2.b. Immobilization of Ciprofloxacin on CNF films
An aqueous solution of Ciprofloxacin was prepared in 0.1N HCl in order to favor the solubility of the
drug. CNF films were then immersed in the solution for 15 minutes. The films were then carefully
recovered and put in contact with blotting papers in order to remove the excess liquid. A thermal
treatment was applied under vacuum in a buchi oven, for 24 hours at 50°C under vacuum for the
activation of the esterification reaction. The temperature was kept rather low in comparison with
similar previous work where thermal treatment was performed in an oven at 150°C[29]. Our
objective istoavoid potential degradation of the Ciprofloxacin that is likely occurring at 150°C [35].
The films were purified with soxhlet extraction with high purity acetone first and also deionized
waterfor a duration correspondingto atleast 100 washes foreach solventso that the non-covalently
bound Ciprofloxacin was removed from the CNF film. Non-modified CNF films were also exposed to
the heat treatment in Buchi oven and soxhlet extraction to produce relevant references without
Ciprofloxacin. Finally, the modified films (CNF-Cipro) and reference films (CNF-ref) were stored in a

controlled condition room (23°C, 50%RH) for at least 24h before any characterization.

1.2.2.c. Scanning Electron Microscopy
Scanning Electron Microscopy (SEM) pictures of CNF films surfaces and cross-sections were obtained
on a Quanta200®. Carbon tape was used to immobilize samples on supports and they were then
coated with a thin layer of pure carbon thanks to an EMITECH® K450X carbon coater. The working
distance during SEM image acquisition was in between 9.8 and 10.1 mm with a voltage of 10kV and
a magnitude of x250 for films surface and x1000 for cross-sections. At least ten pictures per sample

were recorded and the most representative were kept for the discussion.

1.2.2.d. Infrared spectroscopy, ATR mode
Fourier Transformed Infrared (FTIR) spectra of the CNF films and Ciprofloxacin powder were obtained

on a Perkin Elmer Spectrum One spectrometer (Waltham, Massachusetts, USA) in attenuated total
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reflectance (ATR) mode. At least 5 measurements of 16 scans with a resolution of 2cm ™ between
600 and 4000 cm™ on each side of the films and different locations were performed. Spectra were
normalized at 1110 cm™, the wavenumber of C-O-C bonds in cellulosic substrates. The most

representative spectra were chosen for discussion.

1.2.2.e. Elemental analysis - CHNS
Elemental Analysis (EA) was performed on a vario Micro Cube device from Elementar. Carbon,
Hydrogen, Nitrogen and Sulfur mass proportion of CNF-Cipro and CNF-ref films were measured. Film
pieces of 4 to 7 mg were weighed on a micro-balance. An average of four measurements was
obtained for each sample. The Ciprofloxacin loading Xy can be calculated (equation (II-1)) by
considering nitrogen and the drug molar masses. This value gives the actual weight proportion of
Ciprofloxacin in CNF films.

%N X M(cipro)
Xcipro = 3 x M(N) (I-1)

where M(cipro) is the molar mass of Ciprofloxacin (331.198 g/mol) and the value 3 corresponds to

the number of nitrogen atoms in Ciprofloxacin.

1.2.2.f.  Minimum Inhibitory Concentration
The Minimum Inhibitory Concentration (MIC) is defined as the lowest concentration of a drug that
inhibits the visible growth of an organism after overnightincubation [36]. Several series of dilution of
the Ciprofloxacin solution were prepared in Eppendorf pipettes. The first series covered awide range
of concentration from 4.10" to 4.10'° mg/ml. On the other hand an agar solution was prepared for
subsequent inoculation with the bacteria at 10* CFU/ml with B. subtilis spore suspension. The test
objective was to put the inoculated agar in contact with all the Ciprofloxacin solution dilutions
prepared beforehand inside petri dishes. A 100ul of each diluted solution was mixed with 10ml of
inoculated agar medium. The petri dishes were cooled down until the agar turn to gel state and then
putinanincubatorat 37°C for 24h. All the petri dishes were then analyzed: those without any visible
bacterial growth have a concentration of Ciprofloxacin that was superior to the MIC. The lowest
concentration resultingin bacterial growth inhibition was used to determine afirst value of MIC. The
procedure was repeated in anarrowerrange of concentrations below the first obtained value. It also

helps to refine the MIC value by duplicating the measurement.
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1.2.2.g. Influence of temperature on Ciprofloxacin stability
The immobilization procedure of Ciprofloxacin on CNF film required a 24h-long exposition to a
temperature of 50°C. Thisthermal treatment might have affected the stability of the active molecule
itself. The thermal stability of Ciprofloxacin was then to be assessed. In literature, little degradation
of Ciprofloxacininacidicsolutionis observed at 90°C [37]. MIC measurements were chosen as a tool
to follow influence of temperature on Ciprofloxacin: solutions of 4g/| Ciprofloxacin were exposed to
different thermal treatment for 24h: 5°C, room temperature (20°C), 50°C and 70°C in closed
container. MICs of the thermally treated solution were then measured in order to study the heat

effect on the MIC values of Ciprofloxacin and unveil hints on its thermal stability in solution.

1.2.2.h. Zone of Inhibition (ZOl) of CNF films
The test mostly follows AFNOREN 1104 guidelines. CNF-Cipro and CNF-ref films were tested against
gram positive Bacillus subtilis and Staphylococcus aureus and gram negative Echireschia coli strains.
CNF-Ciproand CNF-ref discs of 10 mm diameter were dry sterilized for more than 16 hin an oven at
50°C. Three solutions of agar were respectively inoculated with E. coli, B. subtilis and S. aureus. Petri
disheswere prepared with about 10 ml of agar solutions. When the inoculated agar turned into gel
state after cooling down, samples discs were deposited on the surface. Afterincubation during 3
days at 37°C, petri dishes are observed to detect inhibition zones, which could indicate if
Ciprofloxacin has leached out of the films. In this case, radiuses of inhibitions zones were measured.
At least triplicates were performed foreach sample and two types of references, i) non modified CNF
films (negative reference) and ii) blotting paper discs impregnated in a Ciprofloxacin solution

(positive reference) in order to confirm the validity of the experiment.

A modified version of the previous test was also implemented: successive zone of inhibition
assessment. The objective of this test was to expose several times the same 10 mm diameter disc
samplestoa new inoculated medium. Bacterial suspensions of Escherichia coli and Staphylococcus
epidermidis were prepared ata 10°CFU/ml concentration in a Mueller Hinton broth. These bacterial
suspensions were spread onto the surface of agar containing petri dishes. The incubation was
performed at 37°C for 24 h before discs were recovered and transferred to new identically prepared
petri dishes for another 24 h. Radius of inhibitions zones were collected for analysis. Four cycles of
24h were performedin orderto assess the extent of activity of the samples. Atthe end of each cycle,
once the samples were transferred to the next medium, zones of inhibition were examined and

radiuses were measured. Three discs for each sample were used for repeatability.

H. Durand, 2019 — Confidential



Chapterll - Immobilization of active substances on cellulose nanofibrils

1.3 Results and discussions

1.3.1. CNF and CNF films morphology and characterization
The CNF used in this study were produced from the Centre Technique du Papier (CTP, Grenoble,
France). It iswell knowninthe scientificcommunity that several grades of CNF can be obtained from
different wood sources and production procedures. A short description of their quality before any
useisrelevantif researchers wanttocompare our procedures and results to other works available in
the literature. The CNF usedin this study are considered of high quality, i. e. high homogeneity and
amount of nanoscaled fibers versus microscale fibers. This is confirmed by the Figure I1.4. The CNF
suspension is a thick gel at only 3 wt% concentration indicating a high proportion of hydrogen
bonding interactions in between nano and micro fibers. The CNF films obtained by film casting are
transparent and homogeneous (Figure Il.4b). Optical microscopy shows a very small proportion of
remaining micro-sized fibersin Figure Il.4cwhile Figure Il.4d confirms the nano-sized dimensions of

the fibrils.

B e

Figure Il.4: Characterization of the CNF used in this study, a) thick CNF gel at 3 wt%, b) 90 mm diameter film
(ca. 30 um thick) with high transparency and c) optical microscopy of 1 wt% CNF suspension (x20) and d)
height sensor AFM image of CNF films surface

The influence of the chemical grafting procedure on the structure of the CNF films was investigated
by SEM. Figure 1.5 shows pictures of cross sections and surfaces of the CNF-ref (A, C) and CNF-cipro
samples (B, D). The thicknesses of the films are roughly the same, 23+ 1 um and 20 £ 2 um and cross
sections seem notto be affected by the immersionin Ciprofloxacin solution or purification steps with
soxhlet extraction with pure acetone and deionized water. The surfaces of the films also seem to be
very close before and after the treatment in terms of apparent topology. The swelling that occurs
upon solvent absorption and the subsequent drying steps do not change the structure of the CNF

films according to SEM analysis.
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Figure I.5 : SEM pictures of A & C CNF-ref cut B & D CNF-CIPRO

1.3.2. Surface analysis of functionalized CNF films
Figure Il.6shows FTIR-ATR spectra of the samples characterized in this work. The FTIR-ATR spectrum
of Ciprofloxacin powderis shown as well as spectra of “CNF-ref”, “CNF-Cipro before extraction” and

CNF-“Cipro after extraction” films.

Typical absorption peaks of cellulose polymerare present on the three curves refe rring to cellulosic
substrates: stretching of =OH and —CH—bonds respectively at 3300 cm™ and 2900 cm™. Peaks at 1160
cm™ and 1106 cm™ are attributed to anti-symmetrical -C-O-C- bridge stretching and anti-symmetrical
anhydroglucose ring breathing, respectively [38], [39]. The highest peaks at 1050, 1027, 1003 and
982 cm™ were assigned to -C-O- stretching [40]. Finally the peak at 896 cm™ refers to cellulose C, and
its four surrounding atoms [40]. The three CNF-related spectra show a peak in the 1640 cm™ region
whichisrelated to the stretching of -OH bonds of bound water. The CNF-ref curves thus show very
similar peak when compared to the above cited literature. This confirms that the acidic conditions
encountered during the ciprofloxacin immobilization procedure do not affect the chemical structure

of CNF membrane surfaces.

Regarding Ciprofloxacin spectrum, a typical peak of C=0 carbonyl bond stretching can be found at
1617 cm™. COO carboxyla te systems give an anti-symmetrical signal at 1590 cm™ and a symmetrical
signal at 1375 cm™. The 3000-3100 cm™ region evidences the presence of aromatic nucleus C-H

bonds with stretching signals, especially at 3045 cm™. The existence of these bonds is further
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confirmed by the 868 cm™ peak which is attributed to bending modes of C-H bonds in aromatic
nucleus. The three peaks at 1543, 1499 and 1475 cm " indicate the presence of C=Cstretching modes
of aromatic nucleus and also bending modes of N-H bonds. [41] All those peaks confirmed the

structure of Ciprofloxacin.

—— CNF-Cipro (after extraction)
—— CNF-Cipro (before extraction)

—— CNF-ref (after extraction)
Niprofloxacin

3600 3100 2600 2100 1600 1100 600
Wave number (cm-1)

Figure I.6: FTIR-ATR spectra of Ciprofloxacin, CNF-ref film after extraction and CNF-cipro before and after
soxhlet extraction
On CNF-Cipro (before extraction) spectrum asignificant peak arises at 1628 cm™ and 1657 cm™ which
are believed to be associated with C=0 bonds of Ciprofloxacin. The ester function formed during

esterification between CNF and Ciprofloxacin also seems to appear at 1720 cm ™.

On CNF-Cipro (after extraction) spectrum, no significant peakis present. The spectrum matches with
CNF-refsignal. The objective of the soxhlet extraction was to remove as much as possible of the non-
covalently immobilized Ciprofloxacin from the CNF film. The amount of remaining immobilized
Ciprofloxacin is probably very low and could not be detected with FTIR-ATR technique. This is why

further bulk characterization tools were required to confirm the presence of the molecule.

1.3.3. Bulk analysis of functionalized CNF films
Elemental analysis experiments were conducted on CNF films. Carbon, Hydrogen, Nitrogen and Sulfur
bulk weight proportion wererecorded and are presentedinTable Il.1. CNF-ref samples show values
of Carbon and Hydrogen contents slightly lower than pure cellulose (C 44.4% and H 6.2%), this is
attributed to the presence of inorganiccontaminants. The increase of carbon content between CNF-

refand CNF-Cipro (after extraction) reaches about 3 %C. As CNF-ref samples were subjected to the

H. Durand, 2019 — Confidential

143



144

exact same purification procedure as CNF-Cipro, we can consider this difference due to the presence
of Ciprofloxacin. Moreover, on the CNF-Cipro samples, the increase of Nitrogen content clearly
confirmsthe presence of Ciprofloxacin since its molecular structure includes three atoms of nitrogen.
Similaranalysis based on the nitrogenincrease have been conducted with success before [29], [42].
Consideringthe extensive purification steps performed by soxhlet extraction with pure acetone and
deionized water, the remaining Ciprofloxacin is likely to be strongly immobilized on CNF films.

Table Il.1: Elemental analysis of carbon, hydrogen, nitrogen and sulfur and degree of substitution for
modified CNF films based on the increase of nitrogen

% C +sd % H *sd % N *sd % S +sd

CNF-ref 42,73 045 6.35 0.14 <0.10 - <0.20

CNF-Cipro 43.15 0.05 6.345 018 0.115 0.02 <0.20

Ciprofloxacin

(theoretical values) 6157 - 43 ) 12.68 - 0.00

Out of these results and by using equation Erreur ! Source du renvoi introuvable., the achieved
Ciprofloxacin loading Xy can be calculated. By considering molar masses of nitrogen and
Ciprofloxacin we can easily obtain the actual mass proportion of the drug immobilized on the CNF
film. Avalue of 0.91 wt% of Ciprofloxacin loadingis obtained whichis consistent with literature drug

loaded systems loadings starting around 1 wt% [43]—[46].

1.3.4. Influence of temperature conditions on Ciprofloxacin stability
Minimum Inhibitory Concentration (MIC) was measured on a 4 g/| Ciprofloxacin solution with two
series of dilutions according to the afore-mentioned protocol. The result forthe intrinsicvalue of MIC
for Ciprofloxacin was 8 ug/ml measured against B. subtilis strain after the second dilution series. This
resultisinaccordance with the literature where values ranging from 0.5 to 64 pug/ml for similar gram
positive bacteria are reported [47], [48]. The MIC measurement against B. subtilis was chosen as a
way to assess the thermal stability of Ciprofloxacinin agueous solution. Forthermal treatment equal
to or lower than 50°C, the measured MIC values remain stable at 12 ug/ml, as shown in Figure I1.7.
This value is in accordance with the initial result where an 8mg/l MIC is measured after the second
series of dilution. For the thermal stability, the dilutions of the series were different (two fold
dilutions against ten-fold dilutions) and this explains why the value is slightly different (8 against 12
mg/|) but fairly comparable. However, at 70°C, a higher value of MIC is measured indicating a slight
loss of activity of the active molecule. This value is still in the range of common values found in

literature mentioned above. From these result, the thermal treatment of 50°C applied during the
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immobilization of Ciprofloxacin on CNF films should not affect the active molecule antimicrobial

activity.
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Figure Il.7: MIC measurements for Ciprofloxacin solution exposed overnight to different temperatures
1.3.5. Antimicrobial activity of functionalized CNF films
Zone of inhibition test is the simplest antimicrobial activity test for 2D samples when it comes to
assess qualitatively the leaching of an active compound in static conditions. CNF films were putin
contact with the inoculated agar before 72h of incubation at 37°C. Figure 11.8 shows the petri dish of
most representative results for each sample. Picture A confirmed the growth of B. subtilis in the test
conditions. Picture B confirmed the fact that Ciprofloxacin has agrowth inhibition effect on B. subtilis
strain:large zones of inhibitions surround the three Ciprofloxacin solution impregnated paper discs.
On picture C, CNF-ref discs are fully covered with bacteria, the inset shows in addition that no
contact activity is detected around or onto the discs. Finally, the picture D shows large areas of
growthinhibition for CNF-Cipro samples, confirming the antimicrobial activity of functionalized CNF
films. However, such zone of inhibitionis surprising if we expect Ciprofloxacin to be only covalently
immobilized on CNF films. This result has been confirmed with ZOl test against other bacteria strains,

i.e.S. aureus and E. coli as shown on the table in Figure |1.8.

The only phenomenon that can explain the presence of these large zones of inhibition is that not
covalently bound Ciprofloxacin are still presentin the sample, even after the washing through soxhlet
extraction with acetone 99+% and deionized water. Similar observations are found in the literature

when researchers grafted Nisin on oxidized cellulose nanofibrils films [30].

Ciprofloxacinisleaching out the CNF substrate and further antimicrobial testing is necessary for the
evaluation of the sample activity on long term behavior and specifically on the leaching

phenomenon.
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ZOl radius (cm)

Bacteria strain type and name
CNF-ref  CNF-cipro

(€ (D)

B. subtilis 0 2.60
Gram-positive

S. aureus 0 1.75
Gram negative E. coli 0 2.00

Figure I1.8: LEFT, zone of Inhibition testing against B. subtilis. A: negative control, B: positive control
(Ciprofloxacin solution on paper discs), C: CNF-ref films, D: CNF-cipro films, and RIGHT, Zone of Inhibition
radius for CNF-ref and CNF-cipro against both types of bacterial strain

The long-term activity of CNF-cipro samples was also assessed through the use of zone of inhibition
testing. Four cycles of successive 24 h expositiontoinoculated media were performed on CNF-cipro
samples. Gram positive strain Staphylococcus Epidermidis and gram negative strain Escherichia coli
were used toinoculate the agar medium on which CNF-cipro films samples were deposited. A clear
zone of inhibition was detected after cycle 1 with a 1 cm radius zone of inhibition for both strains.
Upon nextcycle of exposition toa new inoculated medium, zones of inhibition seemed to disappear
but the CNF-ciprofilms werestillactive against the two strains since underneath the sample, zones
that are clear of any kind of bacterial growth were revealed as depicted on Figure 11.9. A stable zone
of inhibition matchingthe size of the disk sample is detected up to four cycles of 24h of incubation,
and for both types of strains confirming the long term activity potential of CNF-cipro samples and
alsothe contact antimicrobial activity which finally reveals indire ctly the covalent immobilization of
Ciprofloxacin. Indeed, if the Ciprofloxacin was only adsorbed for CNF-cipro samples, the ZOIl would

decrease and give the same result as CNF-ref films where bacteria are found even onto the films.
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Figure I1.9: Successive zone of inhibition test for CNF-ref and CNF-cipro
Thisresultisvery promisingand proves that it is possible to graft APIs onto CNF film membranes to
obtain long term contact active device which are suitable for topical applications. What is of
particularinterestis that such biocompatible membrane is equally contact active against both gram

positive and gram negative bacteria strains.
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1.4 Conclusions

Thiswork reveals the possibility of strongimmobilization of the fluoroquinolone Ciprofloxacin on CNF
films through simple esterification reaction conducted under vacuum and in aqueous medium
reaching green chemistry standards. The influence of the immobilization procedure and purification
steps on CNF films structure were evaluated with SEMtechnique and no changes were observed. The
influence of temperature on Ciprofloxacin solution and Ciprofloxacin activity was also assessed
through MIC measurementsinorderto be sure that immobilization procedure did notaffect the drug
efficiency. The immobilization procedure success was proven by elemental analysis. Plus,
antimicrobial activity testing proved the samples to be active against the four strains B. subtilis, S.
aureus and S. epidermidis (gram-positives) and E. coli (gram-negative). Moreover, a prolonged
activity shifting from release active deviceto contact active device over4 days was confirmed. These
resultsincrease CNF potential for medical applications and show how versatile CNF substrates can be

thanks to surface modification opportunities and film forming capacities.
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2. Two-step immobilization of prodrug on TEMPO cellulose nanofibrils

through thiol-yne click chemistry

This section is adapted from “H. Durand, E. Zeno, M. Demeunynck, I. Baussanne, M. Bardet, J. Vigier-
Gravel, L. Emsley, N. Belgacem, J. Bras - Two-step immobilization of prodrug on TEMPO cellulose
nanofibrils through thiol-yne click chemistry”, submitted in Chemical Communication in November

2018

Abstract

The surface functionalization of nanocellulosic substrates is often required in order to take benefit
fromtheir outstanding properties such as high specificsurface, biodegradability and biocompatibility.
The potential of cellulose nanofibrils for the medical field is currently incre asing. Nowadays, drug
encapsulation and drug release from cellulose nanofibrils systems are intense research topics. On
the other end, prodrugs that improve drug availability and tune their functionalities can now be
designed. In this work, we present an ester-containing prodrug of metronidazole that is covalently
boundto cellulose nanofibrilsinagueous suspension through a two-step immobilization procedure:
amidation and thiol-yneclick chemistry reactions are used. The presence of the drug is confirmed by
several characterization tools and methods such as Raman spectroscopy, Elemental analysis,
DynamicNuclear Polarization enhanced NMR. DNP enhanced NMR, up to our knowledge, has been
used forthe firsttime to study cellulose nanofibrils substrates and was the ultimate tool to confirm
the covalent nature of the binding. The esterfunction of the immobilized prodrug can be cleaved by

specific enzyme activity and allow for an on-site controlled drug release.
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2.1 Introduction

Among cellulosicnanomaterials, cellulose nanofibrils (CNF) are considered as one of the best starting
platform material for the development of unique systems. The tremendous enthusiasm in the
scientific community for this material arises from the general characteristics of cellulose
nanomaterials such as widespread availability, biodegradability, biocompatibility, excellent
mechanical properties and tunable surface chemistry [11]. Today, such CNF can be used in several
and various applications ( i.e. paper and packaging [6], [12], [13], [49], electronics [50], composites
[14] medical and cosmetics [18]-[21] industries) as reinforcement agent, rheology modifier or
nanostructured networks and membranes. Amongidentified CNF grades, TEMPO oxidized CNF (CNF-
t) has enhanced features such as chemical reactivity together with specific rheological properties,

both explained by the presence of carboxylic acid moieties along the cellul ose nanofibers.

Industrial production of CNF-t is under development in different places of the globe. Pioneer
research investigations on TEMPO oxidation of cellulose by the group of Professor Akira Isogai in
Japan [51], [52] led to the apparition of CNF-t production facilities while in Europe and North

America, small companies are starting to sell CNF-t.

The growing production facilities come along with novel and promising applications of CNF-t such as
the biomedical field. A couple of reviews deal with the use of CNF-t (together with other cellulose
nanomaterials) for biomedical application and describe the potential of this materialfor the design of
new innovative healthcare systems [18], [20], [53]. CNF-t draws specific attention since it is possible
to produce it in an ultrapure form with low endotoxin content making them suitable for wound
healingwhen freeze-dried into aerogels: Low cytotoxicity was also confirmed in addition with really
high water holding capacity [54]. Hydrogels of CNF-t were also crosslinked with diamines of different
carbon chain length by exploiting the aldehydes groups produced with the TEMPO-mediated
oxidation through Schiff base formation. Researchers were able to control the elastic modulus and
transformreversible hydrogelsintoirreversible hydrogels. Such systems are of particularinterestin

the tissue engineering field [55].

CNF-tswere alsoinvestigated to be used as drug carriers. The ability to deliver Ibuprofen through the
skin from CNF-t-lbuprofen gel formulations was assessed in-vitro and in-vivo against commercial
available solutions. CNF-t systems were able to match with commercial references while including
five times lower drug loading proving a more efficient and optimized use of drug [56]. Aerogels of
differentkind of cellulose nanofibrils suspensions mixed with beclomethasone dipropionate (BDP)

nanoparticle coated with hydrophobin proteins were also produced through freeze drying. CNF-t
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based systems showed asustained drug release. The CNF three-dimensional structure was tunable

by varying the freeze drying parameters allowing for a controlled release of the drug [57].

Metronidazole is part of the nitroimidazole antibacterials. It is used to fight diseases concerning
different organs and especially in gastrointestinal tract and reproductive system, mainly against
anaerobicmicro-organisms. The mechanism of action of metronidazole involvesthe penetration into
the anaerobicbacteria and its chemical transformation (reduction) by proteins to an active product
that will cleave DNA strands and thereby inhibits the replication mechanism and prevent cell growth
[58], [59]. Since the 1980’s, Metronidazole have been successfully used with cellulose derivatives
tableting compounds such as hydroxypropyl methyl cellulose [60], methylcellulose [61] and cellulose

acetate phthalate [62].

Recently, lighin-containing and delignified cellulose fibers were used to produce partially fibrillated
microcrystallinecellulose that was investigated to develop drug release system. Stable hydrogel-like
materials were obtained thanks to the entanglement of the available micro and nanofibrils as
confirmed by rheological studies. Metronidazole was encapsulated in such materials and drug
release studies were performed. It was shown that both viscosity and lignin content of the hydrogel -
like material influenced the release dynamics. As a conclusion such matrix carriers emerged as
interesting alternatives to previously cited cellulose derivatives [63]. Up to our knowledge, only one
publication deals with the use of CNF-tand metronidazole. CNF-t hydrogels were used as matrix for
encapsulation of 6 different active principle ingredients, including metronidazole. Researchers
investigated the effect of freeze drying and subsequent rehydration on rheological properties and
the drug release profiles. Results suggested that the CNF-t hydrogels were successfully rehydrated
and release profiles were equivalent, before and after freeze drying, confirming their potential for

controlled release applications [64].

These uses of metronidazole relied only on physical adsorption of the drug onto the cellulosic
substrates. Microand nanosized three dimensions structures of the developed systems allowed for a
diffusion-controlled release mechanism. The purpose of this work s to investigate a complementary
anchoring strategy of the drug to the cellulosic substrates. The covalent immobilization of
metronidazole on CNF-tsurface is expected to allow for a better control of the release with an “on-
demand” release thanks to the presence of esterase in infected zones of living tissues. For this
purpose, a prodrug will be designed with metronidazole: a cleavable ester bond and a reactive thiol
group for anchoring will be introduced on metronidazole. The prodrug will thus bind to CNF-t by
reaction of the thiol group. The presence of ester will allow the liberation of the drug by ester-

specificenzymes (presentin fattissues and oninfection sites [65]) on the targeted site of treatment.
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To achieve this goal, efficient chemical modification of the CNF surface isrequired. It should be noted
that surface modification of CNF is still an intense and challenging field of research. The very large
specificsurface area of CNF, together with their high amount of reactive hydroxyls, or carboxylic acid
groups in the case of CNF-t, lead to a wide range of strategies for surface modifications. Reactions
such as etherification, esterification, silylation and amidation have been performed to covalently
bind small molecules or polymerchains to CNF as described inrelevant reviews [66]—[68]. The use of
sustainable materials such as CNF goes hand in hand with the increasing need forlow-environmental
impact processes and green chemistry procedures for CNF surface functionalization. In this context,
click chemistry is of particular interest. Sharpless et al. introduced in 2001 the concept of click
chemistry that gathers reactions that are efficient, stereospecific, modular, requiring simple
conditions (notsensibleto oxygen and water), and results quickly in very high yields while involved
reagents must be readily available [69]. Click chemistry was seldom used to modify cellulosic
nanofibrils. CUAAC and thiol-ene click chemistry were applied to CNF films in order to immobilize
fluorescentcompounds [70], [71]. So far, thiol-yne strategy has not been attempted with CNF. In this
work a multistep covalent immobilization of metronidazole through amidation and thiol -yne click
chemistry were performed in order to covalently bind the prodrug, i.e. thiol-metronidazole, to the
CNF as described on Figure 11.10. To our best knowledge this work constitutes the first example of a

sophisticated strategy towards active on-demand CNF based materials.

Pro-drug: Thiol-modified Metronidazole
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Figure 1l.10: General multistep immobilization procedure of thiol modified metronidazole prodrug on CNF-t.
Note that thiol-yne click reaction can give a double addition of thiol compound. However, due to steric
hindrance, the second addition is less likely to happen so that only the “one-addition” product is depicted.
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2.2 Experimental procedure

2.2.1. Materials
The cellulose nanofibrils (CNF) suspensions were provided by the Centre Technique du Papier (CTP,
Grenoble, France). A first suspension referred as CNF-e was produced by a 2h enzymatic pre-
treatment of a pre-refined (40°SR) bleached birch pulp followed by homogenization: 3 passes at 1500
bars inan Ariete homogenizer from GEA. The second suspension, which isreferred as CNF-t, was also
produced the Centre Technique du Papier (CTP, Grenoble, France). The TEMPO mediated oxidation
was performed on a pre-refined (40°SR) bleached bisulfite pulp provided by TEMBEC following
classical procedure developed by A. Isogai’s team in the end of 2000s [51], [52]. The cellulose fiber
pulp concentration was setat 1.5 wt% and the pre-treatment was done at pH 10 for 2h and involved
NaBr, NaClO and the TEMPO reagent. The oxidized pulp was then subjected to the high pressure
homogenizer (GEA Niro Soavi) to produce the CNF-t suspension (1.7 mmol/g of carboxyl groups, as

presented later on).

Propargyl-amine (CAS: 2450-71-7), propargyl-bromide (CAS: 106-96-7), N-(3-dimethylaminopropyl)-
N’-ethylcarbodiimide hydrochloride (EDC, CAS: 25952-53-8), N-hydroxysuccinimide (NHS, CAS: 6066-
82-6), sodium hydroxide (NaOH, CAS: 1310-73-2), and hydrogen chloride (HCI, CAS: 7647-01-0) 4-
(dimethylamino)pyridine (DMAP, CAS: 1122-58-3), N,N-Dicyclohexylcarbodiimide (DCC, CAS: 538-75-
0), trifluoroaceticacid (TFA, CAS: 76-05-1), triisopropylsilane (TiPS, CAS: 6485-79-6) were purchased
from Sigma Aldrich and used as received. Isopropanol (CAS: 67-63-0) was purchased from ACROS
Organics. Tris(2-carboxyethyl)phosphine hydrochloride (TCEP, >98 %, CAS: 51805-45-9) was
purchased from ThermoFisher Scientific. Biocompatible photoinitiator lithium phenyl(2,4,6-
trimethylbenzoyl)phosphinate (LAP, >98 %, CAS: 85073-19-4) was purchased from Tokyo Chemical
Industry. The biradical 15-{[(7-oxyl-3,11-dioxa-7-azadispiro[5.1.5.3]hexadec-15-yl)carbamoyl][2-
(2,5,8,11-tetraoxatridecan-13-ylamino)}-[3,11-dioxa-7-azadispiro[5.1.5.3]hexadec-7-yl])oxidanyl

(AMUpol) was obtained from ICR (Aix-Marseille University, UMR7273, France). Deionized water was

used for every experiment.

2.2.2. Methods

2.2.2.a. Alkynation of CNF-t through amidation
The CNF-t suspension concentration was decreased from 1.5 wt% to 0.4 wt% in order to be easily
stirrable. Deionized water was added before homogenization with an IKA Ultra-Turrax high shear
mixer (China) for 1 minute at 10 000 rpm. The pH of the suspension was then adjusted to 4 under

magneticstirring using a 0.5 M HCl solution.
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A solution of the coupling agents EDC and NHS was prepared in deionized water. After complete
dissolution the solution was added to the suspension of CNF-t. A molar ratio of 4 equivalents of EDC
and NHSfor 1 equivalent of carboxyl group of CNF-t was used. The mixture was magnetically stirred
for 30 min at room temperature in order to activate the carboxyl groups of the CNF-t. The pH was
maintained at4 during the reaction with 0.5M HCI or NaOH solution droplets addition. This pH favors
the EDC carbocation availability and acid form of the carboxyl groups that are both required for a

more efficient reaction.

The pH was then increased with 0.5M NaOH solution to 8.5 for the second part of the reactioni.e.
the amine addition. A solution of propargyl aminewas preparedin deionized waterand added to the
mixture. Again, amolar ratio of 4 equivalentsfor 1 equivalent of carboxyl groups of CNF-t was used.
The mixture was magnetically stirred for 72h at room temperature and the pH was kept at 8.5 with

0.5M HCI or NaOH solution droplets addition.

After72h of reaction, the mixture was washed by centrifugation and dialysis. First, the reaction was
guenched by decreasingthe pHto 2-2.5 with 0.5M HCI solution. Then, centrifugation —re-dispersion
cycleswere applied to the suspension: centrifugations were operated during 10 minutes at 20 000 g
(about 11 100 rpm) and re-dispersions were done in acidicwater (pH 2-2.5) in orderto remove all the
non-covalently bound chemicals (EDC, NHS and free amine). In between each centrifugation cycle,
re-dispersions were done using high shear mixer (Ultra-turrax, IKA) for 1 min. A total of 6
centrifugation —re-dispersion cycles were performed to ultimately isolate the alkyne modified CNF-t,

referred as CNF-yne. The last dispersion was done in neutral water.

The last step of purification consisted in a dialysis of the CNF-yne suspension against neutral water

with 6-8 kDA MWCO membranes (Spectra/Por® 1Standard RC Tubing, SPECTRUM) for at least 5 days

under slow magnetic stirring and renewal of the medium twice a day.

2.2.2.b. Synthesis of Metro-SH compound

ON Q}ﬁ
a) DCC, DMAP, CH,Cly
= 84% -/
S e r
e X HO N  b)TiPs, TE,SS:EHZ%
HS (o]

1 2 3

Figure Il.11: Synthesis path of metronidazole-thiol (3) from metronidazole (2) and S-trityl-3-
(mercaptopropionic acid (1)

S-Trityl-3-mercaptopropionic acid was synthesized according to a procedure designed by Sharma et

al [72]. This product 1 (1050 mg, 3.0 mmol), metronidazole 2 (467 mg, 2.7 mmol) and DMAP (24 mg,

H. Durand, 2019 — Confidential

157



158

0.2 mmol) were dissolved in 30 ml of CH,CI, at 0°C. DCC (618 mg, 3.0 mmol) was added in the
solution after 15 minutes. The reacting mixture was stirred during 3 h at room temperature, then
filtered and concentrated under vacuum. The crude product was purified by flash chromatography
on silicagel with CH,Cl, aseluentto give the protected compound as a white solid (1.15g, 2.3 mmol,
84 %). 1H NMR (400 MHz, CDCI3) 6 7.86 (s, 1H, CH imidazole), 7.33-7.31 (m, 6H, CH arom.), 7.22-7.19
(m, 6H, CH arom.), 7.15 (m, 3H, CH arom.), 4.45 (t, J = 5.2 Hz, 2H, OCH2), 4.29 (t, J = 5.2 Hz, 2H,
NCH2), 2.36 (t, J = 7.2 Hz, 2H, CH2CO), 2.35 (s, 3H, CH3), 2.07 (t, J =7.2 Hz, 2H, SCH2); 13C NMR (101
MHz, CDCI3) & 171.3, 150.8, 144.7, 144.5, 133.2, 129.6, 128.0, 127.9, 126.8, 126.7, 67.0, 62.7, 45.0,
33.4, 26.6, 14.4.

The tritylated compound was dissolved at 0°C in 30 ml of CH,Cl, and 15 ml of TFA. After 10 minutes,
TiPS (1 ml, 4.87 mmol, 2 equiv.) was added to the solution that was allowed to warm up to room
temperature and stirred for 1 h. The solution was concentrated under vacuum and the TFA was co-
evaporated twice with methanol. The residue was washed three times with cold cyclohexane and
dried under vacuum. The amorphous solid was purified by flash chromatography on silica gel with
CH,Cl,/MeOH: 97/3 as eluent to give the compound 3 (see Figure 11.11) as a rosy amorphous solid.
(568 mg, 95 %).

2.2.2.c. Immobilization of Metro-SH on CNF substrates through thiol-yne click
chemistry

Metro-SH 3 (62.5 mg, 0.25 mmol) was dissolved in a mixture of 15 g deionized water and ethanol
(50:50 v/v ratio). To this solution was added 5 ml of deionized water containing a 5 % molar ratio
relative to the thiol groups of 3 of tris-(2-carboxyethyl)phosphine (TCEP) to prevent the air oxidation
of the thiol into disulfide, and lithium phenyl(2,4,6-trimethylbenzoyl)phosphinate (LAP), a
biocompatible photoinitiator required to activate the thiol-yne click reaction, at a quantity of 0.01
wit% relative to the CNF-yne mass. Then the resulting mixture was added to the CNF-yne suspension.
The whole mixture was transferred toa UV transparenttwo necked balloon and put under magnetic
stirring. The suspension was exposed to UV radiation with a UV lamp (Fire Edge™ FE300, Phoseon
Technology USA, wavelength 345-385nm) and a nitrogen flux was used to remove the dioxygen from
the free volume of the balloon. The UV-exposure and nitrogen flux were maintained for 4 h. The
modified CNF (CNF-Metro), was purified by several centrifugation —re-dispersion steps as described
before:three steps of washing with water/ethanol mixture (50/50v/v) and two steps with deionized
wateronly. Washed suspensions were further purified by dialysis against deionized water under slow
magnetic stirring for 5 days with daily renewal of dialysis medium in order to completely remove
non-covalently bound compounds. Dialysis membranes were 6-8 kDA MWCO membranes

(Spectra/Por® 1Standard RC Tubing, SPECTRUM). CNF-Metro suspensions were stored in the fridge
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at 5°C before characterization. The corresponding CNF films were produced by solvent casting in
Teflon molds and let dry overnight in an oven at 40°C, these films were used for solid state

characterization.

2.2.2.d. Infrared spectroscopy, ATR mode
Fourier Transformed Infrared (FTIR) spectra of the films were obtained on a Perkin Elmer Spectrum
One spectrometer (Waltham, Massachusetts, USA) in attenuated total reflectance (ATR) mode. At
least 5 measurements of 16 scans with a resolution of 2cm™ between 600 and 4000 cm™ on each side
of the CNF films were performed. Spectra were normalized at 1110 cm™, the approximate
wavenumberof C-O-Cbondsin cellulosic substrates. The most representative spectra were chosen

for discussion.

2.2.2.e. Raman spectroscopy
Raman spectra were recorded on a Renishaw (INVIA, UK) spectrometer equipped with a 1200
lines/mm grating and a CCD detector. Excitation wavelength was 785 nm and the beam power was
adjusted to avoid sample degradation. The incident beam was focused on the samples through an
x50 ultra-long working distance objective which resulted in a spotsize of an approximate diameter of

2 um. The spectra were recorded between 0and 3600 cm™.

2.2.2.f. Conductometric titration and DO/DS calculation
The carboxylic content of the CNF-t suspension was measured before and after the first step of
functionalization by conductometric titration. The amount of CNF-t suspension corresponding to 50
mg of dry material was precisely diluted to 200 ml with de-ionized water. Magnetic stirring and high
shear mixer Ultra-Turrax (IKA) were used to produce a homogeneous dispersion. The pH was
decreased around 2.5 with 0.1 M HCI to turn every remaining carboxylate moieties of CNF surface
into the acid form of the carboxylic acids, and the volume of added HCl solution was recorded. The
titration was done with a 0.01 M NaOH solution, which precise concentration was measured with 3
colorimetrictitrations before the titration of the CNF suspensions. The conductivity of the suspension
was recorded after stabilization of the value. NaOH added volumes were reduced when the curve
indicated changesin ordertoimprove the assessment of the transitions. The titration curves typically
display three regions, afirstslope showingthe decrease of the conductivity that corresponds to the
neutralization of the remaining strong acid, a plateau where the weak acid groups are titrated

(carboxylicgroups of CNFs) and a last part where conductivity increases when all acids are titrated.

The degree of oxidation (DO) represent the number of carboxylic groups per anhydroglucose unit

(AGU) on oxidized CNF. It can be calculated with equation (11-2) according to Da Silva Perez et al. [73].
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162 X C X (Vegr — Veq2)
" m=36 XC X (Veg1— Veqz) (11-2)

The value of 162 (g/mol) is the molar mass of the AGU. The precise concentration of the NaOH
solution is C. The CNF dry quantity is m. The value 36 (g/mol) is the difference between the molar
mass of the carboxylate form of the carboxylic groups including the sodium counterion (198 g/mol)
and the molar mass of the AGU (162 g/mol). Thisterm arises from the partial replacement of primary
hydroxyl groups by carboxylate groups during the TEMPO mediated oxidation process. The two
NaOH solution equivalent volumes V,,; and V,,, are extracted at the edge of the plateau on the
titration curve by calculating the intersections of the first (decreasing slope) and third (increasing

slope) part of the curve with the plateau.

The carboxylic group content X,, on CNF-t can be calculated with equation (lI-3).

_ C x (Veql - Veqz)

Xox = - (I1-3)

The terms are the same usedin equation (lI-2) and X, is expressed in micro-mole of carboxylic group

per gram of dry CNF (umol/g).

After the amidation reaction with propargyl amine, the remaining carboxylic groups were also
qguantified by conductometrictitration and the residual degree of oxidation DO,., was calculated with
equation (lI-4) by integrating the molecular weight M of the propargylamine and the same previous
terms as it was done before for amidation on CNC [74].

(162 + (M —40) X DO) X C X (Veg1 — Veq2)
res — m— (M — 40) X C X (Vog1 — Veq2) (1-4)

The value 40 (g/mol) correspond to the loss of sodium and oxygen atoms on CNF and hydrogen atom

from the amine group of propargyl amine.

While equation (lI-3) was used to characterize CNF-t before the amidation reaction to calculate the
guantities of required chemicals, equations (1I-2) and (11-4) were used to compare the DO before and
after the amidation reaction. The proportion of carboxylic groups (%COOH,,,,) that was converted

during the amidation reaction can thus be assessed with equation (I1-5).

) DO — DO,
YoCOOH oy, = T X 100 (lI-5)

All titrations were repeated at least three times.

From the values of X,, and %COOH.,,,, it was possible to calculate a degree of substitution based on

conductometrictitration measurements DS,,,4. By considering one gram of dry CNF-t, X,, give access
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to the molar quantity of oxidized anhydroglucose units (AGU) before amidation and so, non-oxidized
AGU mass can be determined by subtraction (nfAGU-OH]). Through amidation of CNF-t, only oxidized
AGU will reactand %COOH.,,, gives access tothe molar quantity of converted oxidized AGU (n[AGU-
YNE]) and non-reacted oxidized AGU (n[AGU-COOH,,]) by subtraction again. Equation (I1-6) gives the

degree of substitution:

b n[AGU — YNE]
cond = n[AGU — OH] + n[AGU — COOH,,,] + n[AGU — YNE] (1-6)
where

n[AGU — YNE] = %COOH pnp X Xop

1 =X X Mycy—
n[AGU—OH] — ox AGU—-COOH

Mycu—-on
n[AGU — COOH,,.] = 1 x X, — n[AGU — YNE]

with Msu.coon the molar mass of an oxidized AGU (176.1 g/mol), Mgu.on the molar mass of an AGU
(162.1 g/mol). In n[AGU-COOH,,] formula, the dimension of the figure 1 is a mass, one gram of

modified CNF is considered for the DS_,,4 calculation.

2.2.2.g. Elemental analysis
CNFfilmswere prepared by solvent casting from CNF suspensions. The suspensions were poured into
Teflon molds and evaporated overnight in an oven at 40°C. Elemental Analysis (EA) was performed
on avario Micro Cube device from Elementar. Carbon, Hydrogen, Nitrogen, Sulfur and Oxygen mass
proportion of CNF films were measured. Films pieces of 4 to 7 mg were weighted on a micro-balance.
An average of four measurements was made for each sample. A degree of substitution from
elemental analysis (DSg,) was then calculated based on the detection of the increase of Nitrogen

content from the CNF-t film to the CNF-yne film. Equation (lI-7) was used.

162,1406 X %N
n(N in grafted mol) x M(N) — M(grafted mol) X %N (1-7)

DSEA =

where 162.1406 is the precise molar mass of anhydro-glucose unit (AGU), %N the mass proportion of
nitrogen detected by elemental analysis, n(N in grafted mol) the number of nitrogen atom in the
grafted molecule (i.e. propargylamine), M(N) the molar mass of nitrogen, M(grafted molecule) the
molar mass difference between grafted and non-grafted AGU. This DS;, represents the quantity of

AGU modified with a propargylamine molecule within the bulk material.
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2.2.2.h. Atomicforce microscopy
Atomic force microscopy (AFM) images were recorded on a Dimension icon® (Bruker, USA). The
suspension concentration was adjusted at 7.5x10™ wt% by several dilution of the gel using high shear
mixer Ultra-Turrax (IKA). A drop of this suspension was deposited on freshly cleaved mica plate
before drying overnight under fumehood at room temperature. The acquisition was performed in
tapping mode using a silica coated cantilever (OTESPA® 300 kHz — 42 N/m, Bruker, USA). Zones of

3,3*3,3 um? were analyzed.

2.2.2.i. Liquid 'Hand C nuclear magnetic resonance
In liquid nuclear magneticresonance (NMR) analysis was performed at DPM on the prodrug in order
to confirm its chemical structure. "H and *C NMR spectra were obtained at 400 and 101 MHz
respectively, using a Bruker Advance DRX 400 spectrometer. Solvent residual peaks were used as

reference and calibrated as follows; CDCI3: 7.26ppm; MeOD-d4: 3.31ppm; DMSO-d6: 2.50 ppm.

J-modulated (JMOD) spin echo sequence was applied to >C NMR spectra in order to obtain
guaternary and secondary carbons signal with an opposite phase to those of primary and tertiary

carbons.

2.2.2j. Solid state *C nuclear magnetic resonance
Solid state >C nuclear magnetic resonance (**C ssNMR) analyses were performed at the « Institute
for Nanoscience and Cryogenics (INAC) » in the «French Alternative Energies and Atomic Energy
Commission (CEA) » at Grenoble, on aBruker AVANCE400spectrometer. Acquisition, data treatment
and peaks deconvolution were done using the LINUX TopSpin 3.2 software. Samples wereplaced in 4
mm ZrO2 rotors. All spectra were recorded using a combination of cross-polarization, high power
proton decoupling and magicangle spinning (CP/MAS). >C NMR spectra were acquired at 298 K, with
a 4 mm probe operating at 100.13 MHz. The chemical shift values were measured with respect to
TMS via glycine as a secondary reference with the carbonyl signal set to 176.03 ppm. MAS was
performed at 14 kHz. The number of scans was 15 000 with a recycle delay of 2 s and CP time of 1.5

ms.

2.2.2.k. Dynamic nuclear polarization enhanced nuclear magnetic resonance
Dynamicnuclear polarization enhanced nuclear magnetic resonance (DNP-NMR) experiments were
performed on a 263 GHz/400 MHz AVANCE IIl Bruker DNP system. The spectrometer is equipped
with a low temperature MAS probe and a 263 GHz capable of outputting ca. 5-10 W of CW
microwaves. The probe was configured in double mode 1H/13C. The sweep coil of the main magnetic
field was optimized so that microwave irradiation gave the maximum positive proton DNP

enhancement for AMUPol (a biradical polarizing agent). DNP enhancements were determined by
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comparing the intensity of the spectra acquired with and without microwave irradiation, and the 'H

and ">C enhancements are tabulated in the supporting information (SI) for all samples studied.

DNP enhanced *H and *>C Solid-State NMR

For >C NMR experiments, the recycle delays were 3 or 4 s. The 'H 1t /2 pulse length used for the
variable amplitude CP experiments was 2.5 ps to afford 100 kHz "H decoupling using SPINAL-64. The

contact time was typically 5ms. The MAS frequency used is 12.5 kHz.

For DNP experiments, 30mg of sample is impregnated with 16 pl of 10 mM AMUPol in D,0/H,0 (9/1
v/v). The DNP sample is then packed in a 3.2 mm sapphire rotor and capped with a Teflon plug and
zirconia cap. The filled DNP rotor was then spun at room temperature in the spinning station up to
12.5 kHz before being inserted into the pre-cooled (ca. 100K) 3.2 mm low temperature MAS N MR

probe, where the sample is frozen within a few seconds.

For the 1D and 2D INADEQUATE experiments the corresponding sequences are those of TOPSPIN,
the NMR software proposed by Bruker Corporation. The 2D INADEQUATE, SQ-2Q 13C-13C, is the
version proposed by Lesage etal.adding DNP conditions [75]. The number of scans was set to 64 and
the numberof experimentsinthe indirect dimension to 128 and the recycling delay to 3s leading to

an experiment time in the range of height hours.
2.3 Results and discussions

2.3.1. Characterization of CNF materials
Considering the numerous commercially available CNF types and the wide variety of lab-scale
produced CNF, itis of highimportance to precisely describe the properties and characteristics of the
CNF that are used in this work. Cellulose nanofibrils suspensions are often a mixture of nanoscale
particles, microfibrillated fibers, aggregates and residual fibers. The objective is to better know the

starting material and be able to draw relevant conclusions from the presented results.

The CNF-t suspension that was produced by the CTP has a thick transparent gel appearance at 1.6
wt% concentration as shownin Figure 11.12. AFMimages of the low concentrated CNF-t suspension

were also recorded in order to confirm the nanosize morphology of cellulose nanofibrils.
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Figure Il.12: CNF-t suspension appearance and morphology on a) a picture of the 1.6 wt% gel and b) an AFM
height sensor image of a 1.5x10° wt% suspension

In order to assess the chemical reactivity of the CNF-t suspension, conductometric titration was
performed to measure the degree of oxidation DO and initial carboxylic acid group content X,,. A
degree of oxidation of 29.9 % and quantity of 1.7 mmol/g £ 0.1 was detected, which confirmed the

high surface charge due to TEMPO-mediated oxidation.

2.3.2. Prodrug characterization
The prodrug compound structure was confirmed by liquid *H and C NMR analysis. As shown in
Figure I11.13, the full attribution of the carbon signals was successful and consistent with the expected
chemical structure of the compound. The JMOD sequence revealed the presence of -C-H and —CH,
carbons as negative signals (C8 and C7). Regarding the ‘H NMR, here are the main peak detected: &
7.98 (s, 1H, CH imidazole), 4.61 (t, J = 4.8 Hz, 2H, OCH2), 4.43 (t, ) = 5.2 Hz, 2H, NCH2), 2.68-2.63 (m,
2H, SCH2), 2.57 (s, 3H, CH3), 2.58-2.53 (m, 2H, CH2CO), 1.53 (t, J = 8.0 Hz, 1H, SH).
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Figure 1l.13: Liquid 3¢ NMR spectrum of thiol modified metronidazole and carbon attributions, TFA related
detected carbons is a reaction intermediate, CDCls is the solvent for NMR analysis. The structure is also
confirmed with 'HNMR (not shown).

2.3.3. First step: Introduction of alkyne function through amidation
The amidation reaction was performed on the CNF-t gel. After purification procedures,
characterization of the grafting was possible, first by analyzing the resulting CNF-yne suspension and
then dry films produced by solvent casting. The residual carboxylic acid content (DO,.) was
determined by conductometric titration after the amidation reaction. A value of 9 % of residual
carboxylicacid groups was detected (see Figure I1.14) that gives, thanks to equation (lI-4) and (1I-5) a
total of 68.8 % of initial carboxylic acid groups converted to amide function (%$COOH,,,,). This first
guantitative result indicates that more than two-third of the carboxylic acid moieties reacted to
become amide group. The degree of substitution DS.,,s based on conductometric titration was
calculated with equation (II-6) and was found to be DS,y =0.19. The CNF-yne suspension was then

evaporated in Teflon molds in order to perform complementary characterizations.

L \ CNF-yne : DO,..=9%

Conductivity

0 10 20 30 40 50 60 70

Volume NaOH (ml)

Figure Il.14: Conductometric titration of CNF-t and CNF-yne (axis values are not shown since curves have been
shifted for clarity)
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Chemical structure of the resulting CNF-yne dry films was investigated through FTIR spectroscopy in
ATR mode. The surface of the films was then analyzedin ordertoreveal new chemical bonds. Figure
[1.15 shows FTIR spectra of CNF-t, CNF-yne and CNF-metro. The three spectrashowed classical peaks
for cellulose backbone: stretching of O-H and C-H bonds around 3300 cm™ and 2900 cm™, C-O-C
glycosidic bond stretching at 1160 cm™ and C-O bonds at 1100, 1050 and 1030 cm™[76]. CNF-t IR
spectrum also showed two clear peaks at 1602 cm™ and 1715 cm™ which were respectively

associated with C=0 of carboxylate and carboxylic acid groups.

The pH of the CNF-tsuspension was adjusted to 3 before producing films foranalysis,which explains
the presence of carboxylic acid signal. CNF-yne also showed the same peaks but with a lower
intensity. Moreover, another peak arising around 1655 cm ™ was attributed to the C=0 bond of amide
| function, and a weak signal around 1550 cm™ was due to the C-N bond of amide | function [74].
These data qualitatively proved the successful amidation reaction. Recent papers on amidation of
CNF-t showed similar behavior in FTIR experiments and based their main conclusions on this
characterization tool [77]. In our case, as the peak shifts were limited, complementary

characterizations were performed.

CNF-metro ‘/\/\

CNF-t-yne ~

— — —CNF-t /o~ \

1800 1700 1600 1500

- |
——_——— N AN !

\v\ ..rﬁf\

3600 3100 2600 2100 1600 1100 600

wavelength (cm?)

Figure Il.15: FTIR-ATR spectra of CNF-t, CNF-yne and CNF-Metro
While FTIR spectroscopy relies on the study of absorption or transmission of light in a wide range of
wavelengths, Raman spectroscopy relies on the study of the inelastic scattering of a specific
wavelength light beam. This technique is complementary to the FTIR spectroscopy because some
chemical bonds are much more active in Raman spectroscopy and could hardly be detected with FTIR

spectroscopy andvice versa, especially whenthe proportion of the expected bond is low. This is the
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case of alkyne bonds, which appeared to be more sensitive to Raman spectroscopy than in FTIR [78].
The Raman spectroscopy spectraare shown on Figure I1.16. Both spectrashowed characteristic peaks
of cellulosic materials: C-H stretching at 2900 cm™ and C-O bridges around 1100 cm™ [79]. On CNF-t
spectrum, the peak at 1660 cm™ referred to the C=O of carboxylic acid groups. A clear signal
appearingat 2120 cm™ was attributed to the C=C bond on the grafted propargyl-amine moiety [78].
This signal was not detected on the ATR-FTIR spectra. Moreover, the signal of the C=0 of the
carboxylic acid was slightly flattened indicating its partial conversion to amide group. This RAMAN

spectroscopy analysis further confirmed the success of the amidation.

o

CNF-yne _A

3500 3000 2500 2000 1500 1000 500 0

Wavenumber (cm?)

Figure 11.16: RAMAN spectra of CNF-t and CNF-yne
Togetherwith previously described conductometric titration, elemental analysis provided a second
guantitative result which also confirmed grafting. Carbon, hydrogen, nitrogen and sulfur mass
proportion were measured for each samples (Table 11.2). The amidation reaction introduces a
nitrogen atom on the cellulosicsubstrate, this elementisthus more relevantto track. In Table 1.2 we
can see a significant increase of the nitrogen mass proportion for the CNF-yne sample. Coupling
agents EDC and NHS also contain nitrogen in their molecular structures but it is proven to be
insignificant thanks to thorough purification steps. The increases in carbon and hydrogen mass
proportions also suggested the success of the grafting. The degree of substitution DSg was
calculated according to equation (lI-7) and gave a value of 0.14 whichiis slightly lower than the value

DS,,,s extracted from conductometric titration (0,19), but still in a very close order of magnitude.
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Table II.2: Elemental analysis results for carbon, hydrogen, nitrogen and sulfur mass proportion of the
various CNF samples

% C sd %H sd %N sd %S sd

CNF-t 37,04 0,02 5,34 0,18  <0,10 - <0,10

CNF-yne 4059 013 5,69 0,22 1,15 005  <0,10

CNF-metro 40,99 0,04 6,02 0,09 1,42 0,03 0,37 0,01

Solid state NMR was also used toidentify the composition of CNF-tand CNF-yne. The signals of solid
state >C NMR are displayed on Figure 11.17. The carbons contributions of the cellulose backbone are
clearlyidentified on CNF-t spectrum. The intense peak between 100 and 110 ppm was attributed to
C1, both peaks around 80-90 ppm come from the amorphous (right) and crystalline (left) C4. Carbon
C2, C3 and C5 gave the intense peaks around 70-80 ppm while the peaks around 60 ppm were
attributed to the C6 [80].
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Figure Il.17: Solid state 3¢ NMR spectra of CNF-t, CNF-yne and CNF-metro
The '°C spectrum of CNF-yne sample was quite similar regarding the regions that describe the
cellulose backbone. The very sharp peak at 160 ppm was attributed to remaining EDC coupling agent
accordingto previous results (notshown). However, this peak is no longer visible on the CNF-metro
spectrum indicating that the last step of the immobilization procedure and the complementary
purification steps removed all the remaining EDC coupling agents. This potential residue could be

considered as an issue when calculating DSg,. However, nitrogen was still detected in quantitative
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amounts on CNF-metro whereas no more EDC was visible on NMR spectra. The presence of EDC was
thus considered very limited on CNF-yne. The peak at 174 ppm was associated with the carbon of the
carboxylic acid groups of CNF-t [81]. This peak was slightly shifted on CNF-yne signal, indicating a
change of chemical environment due to the amidation reaction. A deconvolution technique was
applied to unveil the contributions that explain this shift. The CNF-yne model signal displayed on
Figure 11.18A is a combination of carboxylic acid and amide model contributions. The overlap
obtained was as high as 98.72 %, confirming the formation of the amide function on the CNF-t and

the successful covalent immobilization of alkyne function on CNF.

A) Deconvolution of CNF-yne signal

Y
— a) CNF-yne experimental //

—— b) Model-COOH (carboxyl)
HO O—

—— ¢) Model-CONH (amide)

— d) CNF-yne model

180 175 170 165 ppm
B) Deconvolution of CNF-metro signal

— a) CNF-metro experimental

b) Model carboxilycacid contribution

- c) Model ester contribution

— d) Model amide contribution

—— ¢e) CNF-metromodel (b+c+d)

e)
a)

180 175 170 165 ppm
Figure 1l.18: Deconvolution of solid state B¢ NMR signal for A) CNF-yne with the amide contribution and
B) CNF-metro with both the amide (small) and ester (big) contribution
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Dynamicnuclear polarization enhanced NMR (DNP-NMR) was also performed on the three samples.
This hyperpolarization method can increase the sensitivity of solid state NMR by several orders of
magnitude [82]. As a proof of its potential, Figure 11.19 compares the spectra of CNF-t without and
with the microwave (MW) irradiation that allows the dynamic nuclear polarization transfer. The
acquisition time of such signals is also very short in comparison with conventional solid state NMR.
When several hours are necessary to reduce signal-to-noise ratio in conventional solid-state NMR,
only minute-long acquisition of DNP enhanced NMR result in sharp and fine signals. As a matter of
fact, inthisexample we could reach a 55 fold enhancement of signal to noise ratio. From a practical
point of view, in orderto reach similarsignal-to-noise ratio without the DNP technique, it would have
been necessary to multiply the number of accumulated transients by 3000. This is the reason why 2D

C INADEQUATE experiments in the solid phase become possible in natural abundance.

J\ CNF-t (MW on)

CNF-t (MW off)

S g -

T T T T I I I 1T 71
180 160 140 120 100 80 60 40 ppm

Figure 11.19: 3¢ DNP-NMR spectra for CNF-t, with (red) and without(blue) microwave irradiation(uwave)

The first result arising from DNP enhanced NMR was a further confirmation of the success of the
amidation. Well defined signals appeared on CNF-yne spectra of Figure 11.20a. Two peaks around 32
and 38 ppm were attributed to the aliphatic -CH,- carbons introduced with propargylamine
immobilization on CNF-t. These peaks were barely visible on conventional solid-state NMR.
Moreover, as explained above, DNP enhanced NMR permit the acquisition of 2D INADEQUATE “*C-"*C
analysis with C natural abundance. For instance, this analysis was used to study the region of
carbons involved in carbonyls of CNF-t and CNF-yne samples. Figure 11.20b shows the shift in the
signal indicating the presence of a new type of carbon. This result confirmed the deconvolution
treatmentdescribed before regarding the apparition of a signal due to the amidation reaction. This

further proves the success of the amidation reaction.
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Figure 11.20: a) 3¢ DNP-NMR spectra of CNF-t and CNF-yne. Aliphatic -CH,- carbons arises from CNF-yne
signal. b) 2D inadequate Bc.Bc DNP-NMR analysis of CNF-t and CNF-yne. The shift indicates the apparition of
a carbon involved in an amide function.

In orderto complementthe analysis of CNF-tand CNF-yne samples with the DNP-NMR technique, 2D

SQ-2Q "*c-"*C correlation experiments are reported in Figure 11.21. The one of pristine cellulose is not

reportedsinceitisalike tothose already published. The only difference that could be noticed is that

the NMR lines are a little broader in our case but it is due to the fact that we are working with

nanocellulose fibers and noton regenerated cellulose. Inany case the assignment is straightforward

with a remarkable feature concerning the signal of C5 that overlaps with both signals assigned to C3

and C2. This feature is probably induced by the TEMPO mediated oxidation.

H. Durand, 2019 — Confidential



Chapterll - Immobilization of active substances on cellulose nanofibrils

C6
T

a) cl C4 aC4 CB—\/Q
— — cC5 a i

ppm

—145

o1 150
~155

8

- 160

— 165

—170

—175

\ | \ T | T T T |
1170 105 100 9 9 8 8 75 70 ppm

b) G o

\

1 -
_ 4 aca
_/ \k_“ __,,/C‘\__..jﬂ-\__i__ C5a \_//\
ppm

— 145

D o - 150

C5-C6

5 155
- 160

— 165

—170

—175

I I [ T | [ I | I
110 105 100 95 90 85 80 75 70 ppm

Figure 1l.21: 2D SQ-2Q B3¢ correlation experiments, A) CNF-t reference material and B) CNF-yne after
amidation reaction and immobilization of propargylamine

At first the 2D SQ-2Q "*C-"*C recorded on CNF-yne appears to be very similar to the CNF-t. And the
assignments can be easily carried out. It appears that the signal of C5is narrower than in the CNF-t
and overlaps mainly with the signal of C3. If the two 2D contour plots are displayed onthe same map
(CNF-yneinredand CNF-tinbluein Figure I1.22) two differences indicated by arrows can be noticed.
These changes in the position of the corresponding correlations can be interpreted by significant

changesinthe chemical shifts of C3 and C4 of amorphous celluloses. The corresponding correlation
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between C6and C5 does appearto be affected too. This is consistent with the expected reaction of
amidation on C6. These effects are probably due to both chemical shifts induced by the amidation.
The interesting pointisthatonly the signal assigned to C4 in amorphous cellulose is affected, which

indicates that the oxidation has occurred mainly on amorphous part of nanocellulose fibers.
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Figure 1l.22: 2D 5SQ-2Q 13¢.23¢ correlation experiments, superposition of two sample experiments, CNF-t (blue)
and CNF-yne (red)

Despite the use of DNP it was not possible to observe any correlation between the signal at 175 ppm

assigned to carbonyl of amide and carbons of celluloses. However the pattern of these signals of the

2D map isinteresting because due to the effect of coherence transfers and echo delays involved in

the sequence their 2D correlations appears much resolved than on the corresponding 1D signals that

allow to clearly observe chemical shifts induced by the amidation. Again, this clearly demonstrates

the success of the reaction.

2.3.4. Second step: thiol-yne click chemistry reaction
The second step of the grafting strategy involved aclick reaction to anchor the thiol-modified Metro-
SH to the CNF-yne. In Figure 11.10, the CNF-metro product displays only one molecule of thiol-
modified drug per residue while the alkyne group is supposed to bind up to two thiol containing
molecules by thiol-yne click reaction. However, considering the strong steric hindrance and the
heterogeneous conditions of the chemistry that happened here, the binding of two molecules are on
the alkyne group is probably strongly disfavored. We therefore depicted the result of the single

addition even if double addition was not completely ruled out.
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Afterthe purification steps, ATR-FTIR analysis was performed on films produced by solvent casting
from the modified CNF suspension. In Figure 11.15, the peak at 1600 cm™ was increased compared to
the CNF-yne signal at the same wavelength, and could be attributed to the contribution of the
stretching of NO, group of metronidazole molecule. This suggests the presence of the prodrugon the

CNF.

Considering the significant amount of nitrogen and sulfur atoms that were introduced at this step,
elementalanalysis appeared again as a very relevant tool to characterize the presence of the Metro-
SH on the CNF-yne. Infacton Table Il.2, a significantincrease of nitrogen contentin comparison with
the CNF-yne was detected, going from 1.15 % £0.05 to 1.42 % %0.03. In parallel, sulfur was also
detected at 0.37 % £0.01 while it was not detectable on CNF-yne. Also, the final ratio between the
quantity of nitrogen and sulfuratoms must be close to 4 according to the chemical structure of CNF-
Metro described on Figure I1.10. The elemental analysis results gave a ratio of 1.42/0.37 = 3.8, which
fits with the expected result. The progressive increase of nitrogen and the detection of sulfur both

confirmed the immobilization of the Metro-SH onto the CNF.

Solid state *C NMR was used to further identify the composition of CNF-metro sample. On Figure
[1.17, in the region corresponding to carbons involved in C=0 around 170 ppm, we noticed a
difference of the shape of the CNF-yne signal suggesting a new chemical environment. The
deconvolution technique was used again to clarify this result. The CNF-metro model signal (red)
displayed on Figure 11.18b perfectlyfits with the low signal to noise experimental signal of CNF-metro
(blue). Acombination of model carboxylicacid, amide and ester contributions allowed the overlap to
reached 98.9 % confirming the presence of an ester function. The thiol-modified drug is the only
compound that contained such a chemical function. This is a complementary proof that the
immobilization of the modified metronidazole on the cellulosic substrate was successful. However

the covalent grafting of the prodrug molecule was still to be confirmed.

CNF-metro was also analyzed with DNP-NMR that allow for the access to the superfine signals hidden
in the noise of conventional solid state NMR. On Figure 11.23a, the same shift can be noticed in the
carbonylsregionthatisin agreementwith the deconvolution analysis performed earlier. Figure 11.23b
shows the peaks that arise around 12 ppm, 128 ppm and 148 ppm that were also detected on the
liguid NMR spectrum of thiol-modified metronidazole displayed in red (corresponding to carbon C7,

C8 and C9), which indicates again the presence of the molecule on the CNF-metro samples.

Moreover, the C1signal at 21 ppm on Figure 11.23b was not visible anymore on the spectrum of CNF-
metro despite the enhanced sensitivity due to DNP. However we can observe awidersignal for -CH2-

in comparison with CNF-yne spectrum between 25 and 45 ppm. The Clsignal has been shifted to
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higherchemical shiftsand this behavioris fully consistent with the thiol-ynereaction that replace the
proton on the sulfur atom by an -CH=CH- group. These results are a good indication of the covalent
binding of the prodrug molecule to the alkyne groups of the CNF substrate through thiol-yne click
chemistry. This study also highlighted the strong interest of DNP-NMR to detect very small
differences in solid functionalization. The two-step covalent immobilization of the prodrug on

cellulose nanofibrils substrate in aqueous media was finally assessed thanks to this technique.
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Figure I11.23: a) 3¢ DNP enhanced NMR of CNF-yne and CNF-metro samples and b) the same spectra combined
with liquid 3¢ NMR spectrum of the prodrug containing the metronidazole molecule on which a JMOD
sequence was applied that gives negative -CH- and —CHs- signals
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2.4 Conclusion

In this work, a multistep immobilization procedure was proposed to graft thiol modified
metronidazole prodrug onto TEMPO oxidized cellulose nanofibrils. The first step was a successful
amidation reaction between carboxylic acid groups of CNF-t confirmed by conductometric titration,
FTIR-ATR, elemental analysis and both types of solid state NMR (conventional and DNP). An alkyne
function was thusintroduced at the surface of CNF. The second step of the grafting was the thiol -yne
click chemistry reaction between the alkyne function and the thiol group of the modified
metronidazole prodrug. The presence of the prodrug was then confirmed by elemental analysis,
conventional solid-state NMR and DNP enhanced NMR. The obtained complex system is now suitable
for drugrelease analysisin esterase enzyme containing medium and can be used inthe development
of innovative medical device prototypes with on-site triggered release of the compound thanks to

the cleavable ester link of the prodrug.
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3. Investigation of active principle ingredient grafting on cellulose nanofibrils

through Diels Alder reaction with DNP-enhanced ssNMR

This section is adapted from “H. Durand, C. Balsollier, S. Fort, M. Demeunynck, I. Baussanne, D. Lee,
G. de Paepe, A. Kumar, E. Zeno, N. Belgacem, J. Bras — Investigation of active principle ingredient
grafting on cellulose nanofibrils through Diels Alder reaction with DNP-enhanced ssNMR”, submitted

in ACS Applied Nano Materials in November 2018

Abstract

This work deals with the covalent binding of a drug onto cellulose nanofibrils for a drug release
application. More precisely, aDiels Alderreaction for a two-step covalent binding of Metronidazole
to oxidized cellulose nanofibers (CNF-t) has been performed. CNF-t were first modified with
furfurylamine in order to provide them with pending furan groups. Meanwhile, metronidazole
molecule was chemically modified with maleimide and ester-containing compound. Diels Alder
reaction was then triggered by heat to bind furan modified CNF-t with metronidazole-maleimide.
Each chemical grafting step has been proved by the use of numerous techniques like FTIR,
conductometric titration, elemental analysis and NMR (liquid and solid state). More innovatively,
DNP-NMR was performed to confirm the click reactions for the first time onto nanocellulose. This
new CNF-t based systems represent an innovative drug carrier formulation with “on-demand” API

release abilities in presence of esterase enzyme.
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3.1 Introduction

Wood derived cellulosefindsindustrial applications in a wide range of field, from paper products to
buildings, cosmetics, foodstuffs or medical industry [83]. Numerous kinds of cellulosic materials are
industrially produced for decades. In the beginning of the 1980s researchers isolated a new type of
cellulosic materials, cellulose nanofibers thanks to the pioneer work of Turbak and co-workers [3],
[4].Since then, a huge scientificenthusiasm progressively raised on the topic of cellulose nanofibers
(CNF), itsisolation process and numerous potential uses resulting in exponentially growing number
of papers published. Inheriting from cellulose characteristics such as widespread availability,
biodegradability and biocompatibility, cellulose nanofibers also present excellent mechanical
properties and high specific area that results in extended tunable surface chemistry [11]. These
features led to the use of CNF for various end-applications like paper and packaging products [6],
[12], [13], [49], composites [14], printed electronics industry [50] as well as cosmetics and medical
field [18], [19], [21], [84]. Cellulose nanofibers can be organized into different 2D and 3D nano-

structures such as film, membranes, hydrogels or aerogels.

Special grade of CNF was designed thanks to oxidation pretreatment of the cellulose fiber suspension
before CNF productioninordertolimitenergy consumption. TEMPO-mediated oxidation of cellulose
fibers was adapted to CNF production by A. Isogai and co-workers [52], [85] end of 2000’s. TEMPO
oxidized CNF (CNF-t) bear carboxylic acid groups at the nanofiber surface that pave the way to new

functionalization strategies.

One of the latestidentified fields of potential application for CNF-tis the biomedical industry. Several
reviews already describe the future use of CNF-tas a new platform forthe development of enhanced
medical devices [18], [84]. This goes in hand with biocompatibility and toxicity assessment that
demonstrate the safety of CNF when they are intended for medical use: In-vitro testing against
human fibroblast strains exhibit low or inexistent cytotoxicity for 3D structure or films of TEMPO
oxidized CNF [22], [86]. Among biomedical science, drug delivery is a field where CNF-t displays
particular potential. With only 20 % of ibuprofen compared to commercial products, CNF-t gel
formulations exhibited equivalent performance providing proof of concept that CNF-t improve the
efficiency of drugdelivery [56]. Tunable aerogel 3D structure of different types of CNF, including CNF-
t were also produced and mixed with beclomethasone di-propionate. A sustained release was
revealed for CNF-tbased systems [57]. Encapsulation of 6active principle ingredients (API) was done
in CNF-t hydrogels structure. The influence of freeze-drying and subsequent rehydration on the

rheology of the 3D systems and API release profiles was monitored. Results exhibited successful
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rehydration and did not show any difference before or afterthe freeze dryingan rehydration process

regarding the release profiles [64].

This last study used Metronidazole, a nitro-imidazole antibacterial compound that has been used
since the 1980’s to treat anaerobic micro-organisms in many areas of the body such as
gastrointestinal tract and reproductive systems. Once absorbed by the bacteria and reduced by
protein activity, Metronidazole can cleave DNA and prevent the replication mechanism that
eventually leads to stop the cell growth [59]. Metronidazole loaded formulations were design with
cellulosederivatives such as hydroxypropyl methyl cellulose, methyl cellulose and cellulose acetate
phthalate in order to better control the delivery of this APl [60]-[62]. More complex systems were
developed with the AaltoCell™ partially fibrillated microcrystalline cellulose. Metronidazole was
loaded in the entangled nano/microfibrils of the cellulose particles and drug release experiments
were performed. A diffusion controlled release mechanism was proven, confirming the ability of
metronidazole loaded cellulose based systems to be high-performing materials [63]. These works
onlyrely ondrug adsorption mechanisms. The objective of this paperistoinvestigate a new method

for the loading of drugs onto CNF-t by developing functionalization for a release on-demand.

Covalent binding of molecules onto cellulosicnanomaterialsis anintensive field of research. Surface
chemical modification of CNF-tis possible thanks to the availability of hydroxyls and carboxylic acid
groups that is increased by the high specific surface of these nanomaterials. Small molecules or
polymercan be covalently linked to CNF surface through etherification, amidation, esterification and
silylation according to the relevant reviews available in the literature [66], [68], [87]. The growing
concerns about fossil resource depletion and environment impact have compelled researchers to
investigate more sustainable modification procedures. As a green chemical route, click chemistry is
foreseentobe more and more applied in material science. Click chemistry principles were described
by Sharpless et al in 2001. Reactions are classified among click chemistry if they are stereospecific,
modular, if they proceedinsimple conditions (no sensitivity to water or oxygen), and resultin very
high yields with readily available reagents [88]. Diels Alder reactions match with click chemistry
principles and are also metal-free reactions, confirming their wide applicability and physiological
compatibility [89]. Natural polymers have been used to build up new materials thanks to Diels Alder
reaction, especially the furan-maleimide strategy, as depictedin the recent review of A. Gandini and
co-workers [90]. However, only a very few publications deal with the modification of cellulose
nanofibers with Diels Alder reaction. Multicolor fluorescent probe were covalently linked to CNF
through Diels Alder reaction that resulted in improved materials for biological imaging [70]. The
reversible crosslinking of natural rubber was also performed thanks to the introduction of CNF and

subsequent crosslinking based on Diels Alder furan-maleimide cycloaddition. Increased mechanical
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properties and easier recycling process are the main outcomes of this work [91]. Recently, this
strategy was recently used to produce enzymatically activated oligosaccharide-prodrugs of

Doxorubicin and shown the Diels Alder reaction usefulness for complex handling compounds [92].

In this work, the implementation of Diels Alder reaction for a two-step covalent binding of
Metronidazole to CNF-t is investigated. CNF-t were first modified with furfurylamine in order to
provide them with pending furan groups. Meanwhile, metronidazole molecule was chemically
modified with maleimide and ester functions containing compound. Diels Alder reaction was then
triggered by heatto bind furan modified CNF-t with metronidazole-maleimide as depicted on Figure
[1.24. The esterfunctionintroduced in between the CNF substrates and the metronidazole molecule
isexpectedto be sensitive to enzyme activity or slow hydrolysis as already proven in the literature
[93]-[95]. Esterase are indeed available on fattissues and infection sites [65]. This new CNF-t based
systemsrepresentaninnovativedrug carrier formulation with “on-demand” APl release abilities in

presence of esterase.

Maleimide-modified Metronidazole

CNF-metro

Figure 1l.24: General multistep immobilization procedure of maleimide-modified metronidazole on CNF-t

3.2 Experimental procedures

3.2.1. Materials
The cellulose nanofibrils (CNF) suspension was provided by the Centre Technique du Papier (CTP,
Grenoble, France). The suspension which is referred as CNF-t was produced by TEMPO mediated
oxidation of a pre-refined (40°SR) bleached bisulfite pulp provided by TEMBEC. The pulp
concentration was adjusted to 1.5 wt% and the oxidation was performed at pH 10 for 2 hours in

presence of NaBr, NaClO and the TEMPO reagent. High pressure homogenizer from GEA (Niro, Soavi,
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Italy) was used to defibrillate the oxidized the cellulose fibers and produce the CNF-t suspension. 4-
(Dimethylamino)pyridine (DMAP, CAS: 1122-58-3), N,N-Dicyclohexylcarbodiimide (DCC, CAS: 538-75-
0), trifluoroacetic acid (TFA, CAS: 76-05-1), metronidazole (CAS: 443-48-1) were purchased from
Sigma Aldrich, Alfa Aesar or Acros Organics and used without further purification. Furfurylamine
(CAS: 617-89-0) was purchased from ACROS ORGANICS. N-(3-Dimethylaminopropyl)-N'-
ethylcarbodiimide Hydrochloride (EDC, CAS: 25952-53-8), N-Hydroxysuccinimide (NHS, CAS: 6066-82-
6), Sodium Hydroxide (NaOH, CAS: 1310-73-2), Hydrogen chloride (HCI, CAS: 7647-01-0) were
purchased from Sigma Aldrich and used as received. The biradical 15-{[(7-oxyl-3,11-dioxa-7-
azadispiro[5.1.5.3]hexadec-15-yl)carbamoyl][2-(2,5,8,11-tetraoxatridecan-13-ylamino)}-[3,11-dioxa-
7-azadispiro[5.1.5.3]hexadec-7-yl])oxidanyl (AMUpol) was purchased from Cortecnet (France) and
used in D,0 obtained from Sigma Aldrich (CAS: 7789-20-0). Deionized water was used for every

experiment.

3.2.2. Methods

3.2.2.a. Synthesis of Metronidazole-maleimide
As represented in Figure 11.25, 6-maleimidehexanoic acid (1, 753 mg, 3.6 mmol), metronidazole (2,
626 mg, 3.6 mmol) and DMAP (40 mg, 0.36 mmol) were dissolved in CH,Cl, (25 mL) at 0°C. DCC (905
mg, 4.4 mmol) was added after 15 minutes [96], [97]. The reacting mixture was stirred 4 hours at
room temperature, then filtered and concentrated under vacuum. The crude product was purified by
flash chromatography on silicagel with CH,Cl,/MeOH: 98/2 as eluent to give the compound 3,

metronidazole-maleimide (Metro-MAL) as a yellow amorphous solid (669 mg, 1.83 mmol, 51 %).

[+
OH }-ﬁ
o]
N DCC, DMAP, CH,Cl,, _/— =N
o} + ~ 51%
e
2 HO—/—%N o
o °

Figure Il.25: Synthesis path of metronidazole-maleimide (Metro-MAL) (3) from metronidazole (2) and 6-
maleimidehexanoic acid (1)

3.2.2.b. Immobilization of furan group on CNF-t through amidation
The CNF-t suspension concentration was decreased from 1.5 wt% to 0.4 wt% in order to be easily
stirred. Deionized waterwas added before homogenization with an IKA Ultra-Turrax high shear mixer
for 1 minute at 10 000 rpm. The pH of the suspension was then adjusted to 4under magnetic stirring

using a 0.5 M HCl solution.
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A solution of the coupling agents EDC and NHS was prepared in deionized water. After complete
dissolution the solution was added to the suspension of CNF-t. A molar ratio of 4 equivalents of EDC
and NHSfor 1 equivalent of carboxyl group of CNF-t was used. The mixture was magnetically stirred
for 30 minutes at room temperature in order to activate the carboxyl groups of the CNF-t. The pH
was maintained at 4 during the reaction with 0.5M HCI or NaOH solution droplets addition. This pH
favors the EDC carbocation availability and acid form of the carboxyl groups which are both required

for the activation reaction.

The pH was then increased to 8.5 for the second part of the reaction, the amine addition. Pure
furfurylamine was mixed with 5ml of deionized water and added to the mixture. Again, a molar ratio
of 4 equivalents for 1 equivalent of carboxyl groups of CNF-t was used. The mixture was magnetically
stirred for 72h at room temperature and the pH was kept at 8.5 with 0.5M HCl or NaOH solution

droplets addition.

After72h of reaction, the washing of the mixture was performed by centrifugation and dialysis. First,
the reaction was quenched by decreasing the pH to 2-2.5 with 0.5M HCl solution. Then,
centrifugation washings were applied on the suspension: centrifugations were operated during 10
minutes at 20 000 g (about 11 100 rpm) and redispersions were done in deionized water in order to
remove all the not covalently bound chemicals (EDC, NHS and free amine). In between each
centrifugation cycle, the redispersions were done with the high shear mixer (Ultra-turrax, IKA) for 1
min at RT. Atotal of 6 centrifugation/redispersion operations were performedin orderto recoverthe

furan modified CNF-t, referred as CNF-fur. The last redispersion was done in neutral water.

The last step of purification consisted in a dialysis of the CNF-fur suspension against neutral water

with 6-8 kDA MWCO membranes (Spectra/Por® 1Standard RC Tubing, SPECTRUM) for at least 5 days

under slow magnetic stirring and renewal of the medium twice a day.

3.2.2.c. Diels Alder reaction with model compounds
The conditions for Diels Alder reaction between CNF-fur and Metro-MAL were tested on model
compounds to confirm their validity. First, furfurylamine (Fur) and 6-maleimido-hexanoic acid (6-
MHA) were mixedinanequimolarratioinamixture of ethanol and deionized water (50/50 v/v). The
solution was kept at 40°C to trigger the Diels Alder reaction and the pH was controlled over 4 hours
to confirmits stability (around 6+ 0.05). Secondly, the experiment was repeated from the beginning
and set up in situ in a liquid NMR tubes under analysis in order to record spectra over time and

assess the kinetic of the reaction. Spectra were recorded at 15min, 1 h, 5h, 24 h, 48 hand 72 h.
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3.2.2.d. Immobilization of Maleimide-metronidazole on CNF-fur
Metro-MAL compound (95.2 mg) was dissolved in a40 ml mixture of deionized water and ethanol at
50:50 v/v. The dissolution was assisted by an ultrasound bath (IKA, USA) and magnetic stirring. The
CNF-fursuspension was diluted at a 0.15 wt% concentration and 9.42 ml of the Metro-MAL solution
was added drop by drop under magnetic stirring in order to reach 1 molar equivalent of Metro-MAL
compound to the furan groups available on the CNF substrate. Diels alder reaction was triggered by
heating the system at 40°C for 24 h under continuous magnetic stirring. The reaction was followed
with UV spectroscopy. The modified CNF-fur (now referred as CNF-metro) were purified with several
centrifugation/redispersion steps with almost the same procedure than before: three steps of
washing used 50/50 v/v water/ethanol mixture and two steps used deionized water only. Washed
suspensions were further purified with dialysis against deionized water under slow magnetic stirring
for 5 days with daily renewal of dialysis medium in order to completely remove non-covalently
bound compounds. Dialysis membranes were a 6-8 kDA MWCO membranes (Spectra/Por® 1
Standard RC Tubing, SPECTRUM). CNF-metro suspensions were stored inthe fridge at 5°C before any

characterization.

Thin films were produced by solvent casting in petri dishes from the three CNF suspensions (CNF-t,
CNF-furand CNF-metro) at 0.1 wt% in orderto obtain a 30g/m? film. Then, itwas let dry overnightin
an oven at 40°C. Also, the CNF suspensions were freeze dried to obtain another dry form of the

products. These films and aerogels were used for solid state characterization.

3.2.2.e. Atomicforce microscopy
Atomicforce microscopy (AFM) images were recorded on a Dimension icon® (Bruker, USA). A 7.5.10™
wt% suspension was prepared by several dilutions of the gel using high shear mixer Ultra-Turrax (IKA)
in order to maintain the homogeneity even at low concentration. A drop of this suspension was
deposited on freshly cleaved mica plate before drying overnight under fume hood at room
temperature. The acquisition was performed in tapping mode using a silica coated cantilever
(OTESPA® 300 kHz —42 N/m, Bruker, USA). Zones of 3.3*3.3 um? were analyzed. At least five images
on two different samples were performed and the most representative were selected for the

discussion.

3.2.2.f. Infrared spectroscopy
Fourier Transformed Infrared spectroscopy (FTIR) spectra of the CNF suspensions were obtained on a
Perkin Elmer Spectrum One spectrometer (Waltham, Massachusetts, USA). KBr pellets were
prepared with one drop of CNF suspensions. Atleast 3 pellets with measurements of 16 scans with a

resolution of 2cm™ between 600 and 4000 cm™ were performed for each sample. Spectra were
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normalized at 1110cm™, the wavenumber of C-O-C bonds in cellulosic substrates. The most

representative spectra were chosen for discussion.

3.2.2.g. Conductometric titration and DO/DS calculation
The carboxylic content of the CNF-t suspension was measured before and after the first step of
functionalization through conductometrictitration. The amount of CNF-t suspension corresponding
to 50mg of dry material was precisely diluted to 200ml with de-ionized water. Magnetic stirring and
high shear mixer Ultra-Turrax (IKA) were used to produce a homogeneous dispersion. The pH was
decreased around 2.5 with 0.1M HCI to turn every remaining carboxylate moieties of CNF surface
into the acid form of carboxylic acid and the volume of added HCI solution was recorded. The
titration was done with a 0.01M NaOH solution, which precise concentration was measured with 3
colorimetrictitrations before the titration of the CNF suspensions. The conductivity of the suspension
was recorded after stabilization all along NaOH addition and added volumes of NaOH were reduced
when the curve indicated changes in the slopes to improve the assessment of the transitions. The
titration curvestypically display three regions, afirst slope showing the decrease of the conductivity
that correspond to the neutralization of the remaining strong acid, a plateau where the weak acid
groups are titrated (carboxylicgroups of CNFs) and a last part where conductivity increases when all

acids are titrated.

The degree of oxidation (DO) represent the number of carboxylic groups per anhydroglucose unit

(AGU) on oxidized CNF. It can be calculated with equation (11-8) according to Da Silva Perezet al. [73].

162 X C X (Veq1 — Veq2)
" m—36 XC X (Vog1— Veqz) (1-8)

The value of 162 (g.mol™) is the molar mass of the AGU. The precise concentration of the NaOH
solution is C. The CNF dry quantity is m. The value 36 g.mol™ is the difference between the molar
mass of the carboxylate form of the carboxylicgroups including the sodium counter ion (198 g.mol™)
and the molar mass of the AGU (162 g.mol™). This term arises from the partial replacement of
primary hydroxyl groups by carboxylate groups during the TEMPO mediated oxidation process. The
two NaOH solution equivalentvolumes V.4; and V., are extracted at the edge of the plateau on the
titration curve by calculating the intersections of the first (decreasing slope) and third (increasing

slope) part of the curve with the plateau.

The carboxylic group content X,, on CNF-t can be calculated with equation (lI-9).

_ C x (Veql - Veqz)

Xox = = (11-9)
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The terms are the same used in equation (l1-8) and X, is expressed in micro-mole of carboxylic group

per gram of dry CNF (umol.g™).

Afterthe amidation reaction with furfurylamine, the amount of remaining carboxylic group can also
be assessed by conductometrictitration and the residual degree of oxidation DO, is calculated with
equation (lI-10) by integrating the molecular weight M of the furfurylamine and the same previous
terms as it was done before for amidation on CNC [74].

(162 4+ (M —40) X DO) X C X (Vegy = Veq2)
res m — (M — 40) X C X (Veq1 — Veqa) (II-10)

The value 40 (g.mol™) correspond to the loss of sodium and oxygen atoms on CNF and hydrogen

atom from the amine group of furfurylamine.

While equation (lI-9) is used to characterize CNF-t before the amidation reaction to calculate the
guantities of required chemicals in order to match targeted corresponding molar equivalent,
equation (l1-8) and (11-10) are used to compare the DO before and after the amidation reaction. The
proportion of carboxylicgroups (%COOH..,,) that were converted during the amidation reaction can

thus be assessed with equation (l1-11).

DO — DO, s

%CO0H oy = T x 100 (-11)

All titrations were repeated at least three times.

From the values of X,, and %COOH,,,, it is possible to calculate a degree of substitution based on
conductometrictitration measurements DS,,,4. By consideringone gram of CNF-t, X,, gives access to
the molar quantity of oxidized anhydroglucose units (AGU) before amidation and so, non-oxidized
AGU mass can be determined by subtraction (n[AGU-OH]). Through amidation of CNF-t, only oxidized
AGU will reactand %COOH.,,, gives access to the molar quantity of converted oxidized AGU (n[AGU-
FUR]) and non-reacted oxidized AGU (n[AGU-COOH,,]) by subtraction again. Equation (11-12) gives the

degree of substitution:

DS — n[AGU — YNE]
cond = n[AGU — OH] 4+ n[AGU — COOH,, ] + n[AGU — YNE] (1-12)
where

n[AGU — YNE] = %COOH pny X Xop

1—Xo X Mycy—
n[AGU—OH] — ox AGU—-COOH

MAGU—OH

n[AGU — COOH,,,] = 1 X X, — n[AGU — YNE]
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With Masu.coon the molar mass of an oxidized AGU (176.1 g/mol), Msu.on the molar mass of an AGU
(162.1 g/mol). In n[AGU-COOH,,] formula, the dimension of the figure 1 is a mass, one gram of

modified CNF is considered for the DS.,,4 calculation.

3.2.2.h. Elemental analysis
CNF films were prepared by solvent casting from purified CNF suspensions. The suspensions were
poured into Teflon molds and evaporated overnight in an oven at 40°C. Elemental Analysis was
performedona vario Micro Cube® device from Elementar (Germany). Carbon, Hydrogen, Nitrogen,
Sulfur and Oxygen mass proportion of CNF films were measured. Films pieces of 4 to 7 mg were
weighted on a micro-balance. An average of four measurements was obtained for each sample. A
degree of substitution from elemental analysis (DSg,) was then calculated based on the detection of

the increase of Nitrogen content from the CNF-t film to the CNF-fur film. Equation (l1-13) was used.

DS, = 162,1406 X %N
EA™ n(N in grafted mol) x M(N) — M(grafted mol) x %N (1-13)

where 162.1406 is the precise molar mass of anhydro-glucose unit (AGU), %N the mass proportion of
nitrogen detected by elemental analysis, n(N in grafted mol) the number of nitrogen atom in the
grafted molecule (i.e. furfurylamine), M(N) the molar mass of nitrogen, M(grafted molecule) the
molar mass difference between grafted and non-grafted AGU. This DS;, represents the quantity of

AGU modified with a furfurylamine molecule within the bulk material.

3.2.2.i. Liquid 'Hand "*C nuclear magnetic resonance on MetroMAL prodrug
For the prodrug characterization, nuclear magneticresonance (NMR) spectrawere recorded at room
temperature in 5 mm tubes on a Bruker AC 400 MHz spectrometer (NMR facility, PCN-ICMG,
Grenoble). Chemical shifts (6) are reported in parts per million (ppm) from low to high field and
referenced to residual non-deuterated solvent relative to Me,Si. Standard abbreviations for

multiplicity were used as follows: s =singlet; d = doublet; t = triplet; m = multiplet.

3.2.2j. Liquid **C nuclear magnetic resonance on model Diels Alder reaction
mixture

The model Diels Alder reaction kinetic was followed by liquid **C nuclear magnetic resonance
analyses ("*C NMR) that were performed at the « Institute for Nanoscience and Cryogenics (INAC) »
inthe «French Alternative Energies and Atomic Energy Commission (CEA) » at Grenoble, on a Bruker
AVANCE400 spectrometer. Acquisition and data treatment was done using the LINUX TopSpin 3.2
software. Furfurylamine (Fur) and 6-maleimido-hexanoic acid (6-MHA) were mixed in an equimolar
ratioin a mixture of ethanol and deionized water (50/50 v/v). Chromium (I11) acetylacetonate relaxing

agent was added in 10 mg/ml final concentration. In 10 mm quartz liquid NMR tube, in-situ

H. Durand, 2019 — Confidential

189



190

acquisitions of spectra was done over time to assess the kinetic of the reaction. A 10 mm BB (broad
band) probe was used for the acquisitions, at 313 K. Spectra were acquired at every 15 min the first
90 min, every hour during the following twelve hours and every 2 hours from 12 to 24 hours of
reaction. Last spectra were acquired at 48 and 72 hours. The number of scans (NS) was also
increased over time. The Bruker INVGATE sequence was used for quantitative analysis. The
experiments were conducted with 1.3s acquisitiontime, 5 s relaxation delay and a 30° pulse using a
250 ppm spectral width (relaxantagent in the mixture). Proton broad band decoupling was applied
only during acquisition time. 64 k data points were used for data acquisition. Prior to Fourier
transformation, zero-filling at 128 K was applied, followed by apodization with a 2 Hz exponential.
Chemical shifts are given relative to TMS (tetramethylsilane, § =0 ppm). The positions of the peaks
were referred tothe residual solvent signal. To discriminate unambiguously the -CH/ -CH3 from the -
CH2, the Bruker DEPT sequence was used. The experiments were conducted with 0.648 s acquisition
time, 3.0 s relaxation delay, a last pulse at 135° to select CH2 carbons reversed compared to CH and

CH3, with a 145 Hz coupling constant.

3.2.2.k. Solid state >C nuclear magnetic resonance
Solid-state "*Cnuclear magneticresonance (*C ssNMR) experiments were performed at the Centre
de Recherches surles Macromolécules Végétales (CERMAV-CNRS, Grenoble, France). Spectra were
acquired using a Bruker Avance Il 400 MHz spectrometer operating at 100.62 MHz for “>C, using the
combination of the cross-polarization, high-power proton decoupling and magic angle spinning (CP-
MAS) method. The spinning speed was set at 12,000 Hz. The *H radio-frequency field strength was
set to give a 90° pulse duration of 3.1 ps. The **C radio-frequency field strength was obtained by
matching the Hartman-Hahn conditions at 60 kHz. At least 3,000 scans were integrated with a
contact time of 2 ms usinga ramp CP protocol and a recycle delay of 2 s. The acquisition time was 35
ms and the sweep width set at 29,761 Hz. The chemical shifts were calibrated with respect to the

carbonyl peak of glycine (176.03 ppm).

3.2.2.I.  Dynamicnuclear polarization enhanced nuclear magnetic resonance
Dynamicnuclear polarization enhanced nuclear magneticresonance (DNP-NMR) was used to further
characterize the samples. Impregnation with 10 mM AMUPol was done in D,0 only [98]. The wetted
sample was then fully packedina3.2 mm outer-diameter sapphire rotor (28 mg of CNF-t sample and
40 pL of 10 mM AMUPol in D,0). For CNF-fur and CNF-metro, 30 mg of sample and 80 puL of 10 mM
AMUPol in D,0 were used. The samples were preparedin D,0 only, instead of using aglycerol/water

glass forming matrix, in order to avoid any overlap from solvent >C resonances.
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All experiments were performed on a Bruker Avance ™ I11400 MHz DNP-NMR spectrometer equipped
with 263 GHz gyrotron for microwave irradiation, a corrugated transmission line and a low
temperature 3.2 mm MAS probe used in double-resonance mode [99]. For the cross-polarization
magic angle spinning (CPMAS) experiment, a radio frequency (RF) field strength of 50 kHz for *C and
100 kHz for *H for all the pulses was used, unless otherwise stated. A CP contact time of 2 ms and a
50-100 % ramp on the proton during CP4 spin-lock was usedinall cases [100], [101]. CP spin-lock was
optimized for *C to match the Hartman-Hahn condition under MAS. All experiments were
performed at 100 K. The MAS frequency for experiments was set to 13.3 kHz for all samples. The
recycle delays set to 3.0 s for CNF-t, 2.5 s for CNF-fur and 1.9 s for CNF-metro, respectively. All

experiments were processed and analyzed using Bruker Topspin 3.0.

3.3 Results and discussions

3.3.1. Characterization of CNF starting material
Cellulose nanofibrils suspensions are often a mixture of nanoscale particles, microfibrillated fibers,
aggregatesandresidual fibers. Nowadays a wide range of CNF types are commercially available, from
lab-scale production to pilot scale facilities. Properties and characteristics of CNF can differ from a
supplier to another. Itis now relevant to provide the reader with basic description of the CNF that
are used in this work for helping comparisons with literature. The objective is to better know the

starting material in order to draw relevant conclusions from the presented results.

The CNF-t suspension produced has a thick transparent gel appearance at 1.6 wt% concentration as
depicted on Figure 11.26. AFM images of the low concentrated CNF-t suspension were also recorded

in order to confirm the nanosize morphology of cellulose nanofibrils.

a)

-10nm

3.3 um

Figure 11.26: CNF-t suspension appearance and morphology on a) a picture of the 1.6 wt% gel and b) an AFM
height sensor image of a 1.5x1 0* wt% suspension
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Conductometrictitrations were performed on the CNF-tsuspension in order to assess the degree of
oxidation DO and initial carboxylic acid group content X, related to the chemical reactivity of the
material. A degree of oxidation DO of 29.9 % and a carboxylic content X,, of 1.7 mmol/g £ 0,1 were
calculated, which confirmed the high surface charge and surface chemical reactivity introduced on

CNF surface through the TEMPO mediated oxidation treatment.

3.3.2. Prodrug synthesis and its characterization
Chemical structure of the Metro-MAL was elucidated thanks to ‘H and *C liquid NMR. The spectra
exposedon Figure I1.27 describe the full attribution of hydrogen and carbon atoms of the compound
and confirmsthe success of the intended synthesis. The key result is the presence of the C,, C, and
C,, C; peaks at 172.7 ppm and 134.1 ppm respectively. They prove that the prodrug chemical
structure is suitable forthe Diels Alderreaction since the maleimide groupisindeed available on the

isolated molecule.
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Figure I1.27: Liquid 'Hand **c NMR spectrum of metronidazole maleimide (Metro-MAL) and carbon atoms
attributions, CDCl; detected at 77ppm on Be spectrum is the solvent used for NMR analysis
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3.3.3. Introduction of furan groups on CNF-t through amidation with furfurylamine
The covalent immobilization of furan groups was done on CNF-t suspensions. FTIR analysis was
performed on CNF-t, CNF-furand CNF-metro suspensions. Figure 11.28 shows conventional peaks of
cellulosic material for CNF related spectra. Stretching of O-H and C-H bonds at 3300 cm™ and 2900
cm™ respectively, -C-O-C- glycosidic bond stretching gives intense peaks in the 1100 cm™ region
together with C-O bonds at 1030, 1060 and 1110 cm™ [10]. The CNF-t spectrum shows a sharp peak
of strong intensity at 1740 cm™ that corresponds to the acidic form of the carboxylic groups
introduced by the TEMPO-mediated oxidation. At 1640 cm™ the peak of medium intensity is
associated with the O-Hbonds of absorbed water molecules. In this region, onthe CNF-furspectrum,
the shape of the detected peak is much wider. This is explained by the apparition of an amide
function resulting from the bonding of furfurylamine to carboxylicgroups of CNF-t. Around 1650 cm™
the signal reveals the presence of a C=0 bond that is involved in an amide | function. On the other
side of this peakthe observed wideningis believed to be explained by C-N bond of the amide | that
usually appears around 1550 cm™, which indicates the formation of an amide bond. This result
qualitatively proves the presence of amide function on CNF substrate and the availability of furan
groups. However, further confirmation and quantification of furan groups on CNF is required for

subsequent reaction.

1600 1300

Metro-MAL

——CNF-metro

----- CNF-FUR

e CNF-t
3600 3100 2600 2100 1600 1100 600
Wavelength (cm-1)

Figure 11.28: FTIR spectra for CNF-t, CNF-fur after amidation, CNF-metro after Diels Alder reaction and Metro-
MAL molecule. All spectra were measured through KBr disc preparation.

Conversion of carboxylicgroups of CNF-t to amide function was mainly confirmed by conductometric

titrations that were performed after the amidation and purification steps. The objective was to

assessthe amount of unreacted carboxylicacid groups and calculate the residual degree of oxidation

DO,.,. Figure 11.29 shows the most representative curves obtained after conductometrictitrations and
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the values of DO and DO, obtained before and afterthe reaction and calculated with equations (II-8)
and (11-10). The residual degree of oxidation measured for CNF-furis 18.3 % compared to 30.1 % for
initial CNF-t suspension. The proportion of converted carboxylic group %COOH,,,, can thus be
calculated with equation (11-11) and gives a value of 39.1 %. This value can further be translated into
a degree of substitution DS,,,, thanks to equation (11-12) that provide us with the following result,

DScong =0.11.

CNF-FUR. DO,=183%  »

5
~ L a
2 ¢ \\ / —/n/ﬂ/
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Figure 11.29: Conductometric titration of CNF-t and CNF-fur suspension

The CNF solid films were then used to performed bulk elemental analysis experiments. In our case
this analysis gives access to the mass proportion of carbon, hydrogen, nitrogen and sulfur content of
the CNF films. On Table I1.3, the mass proportion of carbon and hydrogen for CNF-tsample are lower
than the theoretical values of pure cellulose (C 44.4 % and H 6.2 %). This can be explained by the
presence of inorganic contaminants coming from the TEMPO oxidation and production process of
CNF. However, the amount of oxygen is slightly superior to theoretical values of cellulose (49.3 %),

remaining bound water is believed to explain this shift.

The amidation reactionis supposedto give an increase in the nitrogen quantity since furfurylamine
involves a nitrogen atom in its chemical structure. This is clearly confirmed by elemental analysis
results in Table 11.3. However the use of EDC/NHS coupling agents that also have nitrogen atoms in
their chemical structures could be detrimental to the outcome of elemental analysis. Intense
purification strategies through both successive centrifugation/redispersion and days-lasting dialysis
are believed to strongly reduce the amount of remaining EDC or NHS compound to an insignificant
level. The nitrogen mass proportion for CNF-fursampleis 0.47 % while nothingis detected for CNF-t,
which again confirms the presence of the furfurylamine moleculeand its possible immobilization by
covalent bonding thanks to the amidation. By measuring the oxygen content C/O ratio can also be
calculated. Table I1.3 shows in the last column that the C/O slightly increases. This is explained by a

more numerous proportion of anhydroglucose unit (AGU) that bears a carbon rich furan moiety after
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the amidation reaction. The equation (I1-13) can be used to calculate a degree of substitution from
elemental analysis values. It gives DSg, = 0.06. This value is slightly lower than DS, (0.11) that is
calculated from conductometric results. However, considering the very different nature of these
characterization techniques and the low amount of immobilized furfurylamine on CNF-t, DS, and
DS..,q4 Values can be considered to be in the same order of magnitude. The combination of FTIR,
conductometric titration and elemental analysis confirmed the availability of furan groups at the
surface of cellulose nanofibers. This CNF-fur material is then suitable for Diels Alder click chemistry
reaction for the binding of prodrug molecule, Metronidazole-maleimide. However, this reaction is
supposed to take place in heterogeneous conditions and with moderate amount of furan groups,
which could make the reaction less likely to occur. A model set up of this reaction was then
implemented by reacting furfurylamine with 6-maleimido-hexanoic acid to validate the reaction
conditions.

Table II.3: Results of elemental analysis for mass proportion of carbon, hydrogen, nitrogen and sulfur of CNF
films

%C s« %H s« %N s« %S s« %O s« |C/O

CNF-t 35.82 0.18 5.69 0.15 <0.10 - <0.10 - 52.11 - 0.69
CNF-fur 39.23 0.68 6.12 0.12 0.47 0.01 <0.10 - 51.66 - 0.76
CNF-metro 39.78 0.02 6.12 0.03 0.68 0.01 <0.10 - 50.55 0.03 0.79

3.3.4. Validation of click chemistry Diels Alder reaction conditions in homogeneous
phase

Furfurylamine and 6-maleimido-hexanoic acid were reacted together at 40°Cin a NMR tube under
analysis in order to follow the evolution of the mixture and confirm that Diels Alder reaction is
triggered upon these conditions. The carbons of the diene that is involved in the Diels Alder
cycloaddition give a different signal after the reaction since they are actually among the carbons that
undergo the strongest modification of chemical environment. On Figure 11.30 is displayed the
evolution of the liquid *CNMR spectra in the region from 79 to 92 ppm over reaction time together
with the chemical compounds involved in the reaction and the expected product. This very narrow
region reveals apparition of characteristic peaks that indicate the success of Diels Alder reaction,
according to unpublished data acquired on similar reaction and conditions. After 1h of reaction at
40°C we can see peaks that arise from the baseline and they get stronger and more defined at5h
and 24h. At 48 h and 72h the signals remain stable. Signals at 88 ppm and multiplet centered on 91
ppm are associated with the C10 carbon of new product while the peaks at 79 ppm and 81 ppm
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correspond to the C13 carbon. The apparition of these signals confirms that Diels Alder reaction is
occurring under the selected conditions in homogeneous phase. Even if it is obvious that
heterogeneous conditions willhave a lower kinetics, this experiment gives a rough idea of the time
requiredto activate the Diels Alderreaction in these conditions. Based on these preliminary results,

we have decided to perform our reaction on CNF-fur during at least 24h.
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Figure 11.30: Liquid 3¢ NMR spectra of reaction mixture for Diels Alder reaction between furfurylamine and 6 -
maleimido-hexanoic acid in a 50/50 v/v ethanol/deionized water solvent

3.3.5. Immobilization of Metronidazole-maleimide prodrug on CNF-fur
On CNF-metro FTIR spectrum of Figure 11.28 we can see that peaks at 1660 cm™ and 1600 cm™ clearly
differs fromthe wide peak described above for CNF-fur spectrum in the same region. The spectrum
of the Metro-MAL molecule is plotted against CNF substrates. Many of its characteristic peaks are
overlapped with those of the CNF substrates and the potentially very low amount of immobilized

drugis not visible with this technique.
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Bulk analysis of the CNF-metro samples was performed with elemental analysis. Again, the increase
of nitrogen mass proportion indicated by Table 1.3 confirms the immobilization of the prodrug onto
the CNF substrates since it is the only nitrogen containing molecule that was added in the reaction
mixture. A significant proportion of 0.21% +0.01 of nitrogen can be attributed to the immobilization
of the prodrug. Moreover, the decrease of oxygen proportion is in accordance with presence of
metronidazole-maleimide since its chemical structure is less richin oxygen atoms when compared to
cellulosesubstrates (31% vs. 49 % of oxygen mass proportion). The increase observed for C/O ratio
confirms thisresultandis explained by the addition of even more carbon-rich structure like Metro-

MAL compound on CNF-fur.

The final drug loading can be calculated from the shift of 0.21 % +0.01 of nitrogen that is attributed
to the prodrug presence. A value of 1.8 % of prodrug mass proportion in CNF films is obtained. This
drug loading is consistent with values found in the literature when metronidazole is used [64] and

could be released on demand with the presence of enzymes.

The Diels-Alder reaction has been also qualitatively followed by UV spectroscopy. Indeed, UV is
preferably used for molecule in solutions but recent papers prove that UV absorbance can occur
when nanoparticles are concerned, for example with silver nanowires [102], [103]. On Figure 11.31,
the UV-vis spectrum of Metro-MALsolutionis displayed with spectrum of diluted CNF-fur suspension
and spectra of the evolution of the Diels Alder reaction mixture over time. The two wide pe aks
centered on 220 nm and 320 nm are attributed to the absorbance of the metronidazole moiety as
described in recent works [104], [105]. The contribution of maleimide function, that is usually
detected around 300 nm when dealing with Diels Alder reaction [106], probably overlaps with the

metronidazole signal.

DA - t=24h

DA - t=18h
—— DA -t=4h
DA -t=2h
DA - t=1h
DA - t=0h

Absorbance

e \etroMAL solution 2.4 mg/I
= = CNF-fur suspension 0.001 wt%

200 250 300 350 400

wavelength (nm)

Figure Il.31: UV spectroscopy following of the Diels-Alder (DA) reaction over time. Spectra fromt =0h to t=24h
have been shifted up for clarity
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In our case, a peak that was observed neither for the Metro-MAL nor for the CNF-fur is clearly
detected at 340 nm. This peak intensity grows over time and becomes more and more significant
over 24 hours of Diels Alderreaction. This peakis believed to arise from the Diels Alder reaction and

calls for further characterization of the obtained CNF suspension.

The conventional solid state >*C NMR was used to characterize the product of the Diels Alder
reaction. NMR peak assignments are provided for most of the resonances that could be assigned
without ambiguity and are consistent with previously published data [80], [81]. The cellulose *C
resonances at 66 and 89 ppm stem from C4 and C6 carbons of crystalline cellulose, respectively,
whereas those at 64 and 84 ppm are assigned to amorphous C4 and C6 (Figure 11.32). The °C

resonance at 175 ppm confirms the presence of carbonyls from carboxylic groups in CNF-t.

CNF-furspectrum confirms the formation of an amide bond during the first step of reaction since the
peak of C=0 bond at 175 ppm shifts to 170 ppm, similarly to the results obtained from the
deconvolution technique used to confirm the formation of the amide bond, when propargylamine
was grafted on CNF-tinthe previous sub-chapter. Unfortunately, no obvious presence of MetroMAL
can be observed on CNF-metro spectrum. This suggests that the achieved degree of substitution of
the furan function by the MetroMAL molecule is under the limit of detection of conventional solid
state NMR. Therefore, the innovative DNP-enhanced NMR technology is expected to bring further

characterization of the CNF samples.
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Figure 11.32: Conventional solid state 13C NMR of CNF-t, CNF-fur and CNF-metro samples. Acquisition time
was 2h

DNP-enhanced solid state NMR technique was used to go deeper in the chemical analysis of the

three samples. Up to our knowledge, only a very few papers used such a technology with cellulose
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based materials and this study is one of the first with nanocellulose. DNP was found to work
efficiently on all CNF samples, with enhancements (€,,/f) above 23 as illustrated by Figure 11.33 for
CNF-metro sample. This provides high NMR sensitivity and allows the fast observation of the scarce
carbon species of furan and maleimide-modified metronidazole and especially confirmation of CNF-

metro successful preparation.

Eon/off ~23
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Figure 11.33: 13C CPMAS NMR spectra with and without the application of microwave irradiation suitable for
DNP enhancement on CNF-metro. The DNP enhancement factor (con/off) is given in the figure.

DNP-enhanced “C cross-polarization magic angle spinning (CPMAS) spectra of the starting CNF
material (CNF-t),furan-modified CNF (CNF-fur), and maleimide-metronidazole modified CNF (CNF-
metro) are shown on Figure 11.34. The *C NMR spectrum of CNF-fur along with insets of magnified
chemical shift regions (0- 50 and 115-165 ppm) are displayed on Figure 11.34b. The region 115-165
ppm shows two *Cresonances from the furan ring at 144 and 151 ppm. The two other carbons from
the same furan lie between 100-115 ppm, and one can be seen as a shoulder to the C1 cellulose
resonance (see Figure I1.35b) while the remaining furan *C resonance could not be observed directly
because of resonance overlap with cellulose at 105 ppm. Deconvolution of the *C resonances
between 165-180 ppm of the CNF-fur spectra, shown in Figure 11.35a, gives the confirmation of the
grafting of at least a part of the furan functions available on the CNF-t. The peak at 172 ppm results
from the amide, and integration of this peak gives an estimate for the furan grafting at ~35 %. This

value clearly correlates with the range of the value obtained from conductometric titration (39.1 %).
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Figure 11.34: DNP-enhanced solid-state NMR of surface-modified cellulose nanofibrils (CNF): 13C CPMAS
spectra of (a) initial cellulose nanofibrils (CNF-t), (b) furoated cellulose nanofibrils (CNF-fur), and (c)
maleimide-modified metronidazole grafted on cellulose nanofibrils (CNF-metro). The Cellulose 13C resonance
assignment for (a), (b), and (c) is shown. The insets in (b) and (c) shows magnified spectra for the 0 — 50 ppm
and 115 - 165 ppm spectral window, with the corresponding 13C resonance assignment.

The “C signals between 0-50 ppm in Figure 11.34b can be assigned to carbons from N-(3-
Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS),
which are remaining. The CH, moiety between the amide and furan should appear between 38-42
ppm, but cannot be identified unambiguously because of overlap from reactant carbons in the same

region.

In Figure 11.34c, the C resonance at 139 ppm belongs to aromatic carbons next to nitro group from

metronidazolein CNF-metro, demonstrating the presence of this function. Furthermore the decrease
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inintensity of the >Cresonance at 110 ppm from the furan, shown in Figure 11.35b, confirms that the
maleimide from CNF-metro has reacted with the furan from CNF-fur. The change in relative intensity
of this *>C resonance at 110 ppm, gives an estimate of about 50 % for the grafting of maleimide-

modified metronidazole on CNF-fur furan rings.

(a) (b)

ﬁ 7N N ﬁ carbon from furan
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Figure Il.35: (a) Deconvolution of resonances between 170 -180 ppm from CNF-fur sample, showing two
distinct peaks corresponding to a carbonyl of carboxyl function and carbonyl from an amide function. (b)
Extracted region from the 3¢ cpmAs spectra of Figure Il.34a, highlighting the evolution of the furan carbon
at 110 ppm.

These results demonstrate the success of this complex two-steps covalent immobilization strategy

thanks to this high performance enhanced NMR technique.
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3.4 Conclusion

This study proposed for the first time a two-step strategy using amidation and Diels Alder click
chemistry to covalently bind a prodrug onto oxidized CNF. The MetroMAL prodrug structure was
confirmed by liquid NMR. Then, the amidation was first confirmed by conductometric titration,
elemental analysis with the increase of nitrogen quantity and solid state NMR. The success of the
Diels Alder reaction was proven both by elemental analysis and DNP-enhanced NMR experiments,
which demonstrated to be a highly innovative technique suitable for CNF characterization. Very
similar ranges of values for proportion of grafted anhydroglucose unit were obtained from these
different techniques. These functionalized CNF could be used in medical device for drug release. The
ester function that binds metronidazole to the CNF system being cleavable by esterase enzyme

activity, “on-demand” drug release material was successfully designed.

NB: Authors would like to acknowledge Isabelle Jeacomine and Laurent Heux from Centre de
Recherche sur les Macromolécules Végétales (CERMAV) for the ssNMR experiments and their

expertise in this field.
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Conclusions of chapter i

The aim of this chapter was to propose new chemical immobilization strategies of active principle
ingredients (API)on cellulose nanofibrils. Three different strategies were successfully applied on both

CNF-e films and CNF-t suspensions.

In chapter 1I-1, CNF-e films were first immersed in water based Ciprofloxacin solution and an
esterification reaction was then triggered upon heat treatment under vacuum. These CNF films
demonstrated prolonged antibacterial activity by contact against both gram-positive and gram-
negative bacterial strain, proving the success of the immobilization technique. Topical application

medical devices can benefit from such an active membrane material.

The chapter II-2 investigated a two-steps strategyto bind metronidazole onto CNF-t suspensions via
a chain containing a cleavable function that can react in specific conditions, as in the case of an
infection site. A first step of amidation leading to the CNF-t with alkyne functions was successfully
carried out, as proved by several characterization tools such as Raman spectroscopy and solid state
NMR. Then, the second step took place by involving thiol-yne click chemistry reaction between such
alkyne functions with the thiolfunction of ametronidazole prodrug. In this case, elemental analysis
and, for the first time on nanocellulose, dynamic nuclear polarization enhanced NMR (DNP-NMR),
helped confirming the grafting success. Moreover, in chapter lI-3, a similar approach was used to
immobilize another metronidazole prodrug that bears a maleimide function. In suspensions again,
CNF-twere provided with pending furan functions, which are suitable for Diels Alder click chemistry
reaction with the maleimide moieties of the prodrug. DNP-NMR was used a second time to confirm
the grafting success. Whatever the chemistry used for grafting onto cellulose (thiol-yne or Dies
Alder), the immobilized prodrugs all contain a cleavable function (ester), in order to be able to
release the drug “on-demand” upon cleavage by enzymaticactivity. This feature is of high interest for
implantable medical devices thatare in contact with many different enzymes, often overexpressed

during wound healing or infections.

To our knowledge, these immobilization strategies of APl on CNF are an innovative and original
approach. In addition, they are all water-based, making them more suitable for preserving the
“green” potential of CNF and facilitatingthe industrial up-scale. In the next chapter, these modified
CNF will be used to develop materials suitable for medical devices with prolonged antibacterial

activity and drug release abilities. The antibacterial properties of the latter will be discussed.
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lll. Development of cellulose nanofibrils materials for

medical devices

Introduction to Chapter Il

The chapter Il was focused on the use of cellulose nanofibrils (CNF) as a platform to covalently
immobilize active principle ingredients (API) such as ciprofloxacin and metronidazole. This chapter
illustrates the activity of such grafted cellulose nanofibrils and presents a comparison with cellulose
nanofibrils networks used as a tool to encapsulate APIs, through the exploitation of adsorption
phenomena. Two kinds of substrates are prepared, (i) 100% CNF membranes design for potential
topical applicationsand (ii) collagen-CNF composite intended for soft tissue repair application. The
latter includes either (a) APl modified CNF or (b) CNF with adsorbed APIs. These substrates are
designed to prepare model medical devices and thus need to be characterized on several aspects
that are related to the application:theirability to absorb wound exudate (water uptake), to release
the immobilized drug and to be able to limit bacterial activity, and finally to undergo sterilization
treatment without degradation. This last point is assessed by investigating the influence of
sterilization through gamma radiation on drug chemical structure and activity, on substrates

morphology and water immersion behavior.

Thus, the first part of this chapter deals with 100% CNF membrane for topical application. Production
process influence on water uptake and release profiles will be assessed for CNF membranes
containing encapsulated/adsorbed ciprofloxacin. The comparison with ciprofloxacin grafted CNF
membranes will be carried out with antibacterial activity testing. Secondly, this chapter describes the
production of composites combining metronidazole-modified CNF and collagen. The concept of “on-
demand” release of metronidazole from the modified-CNF under enzymatic activity is investigated.
The antibacterial activity of these collagen-CNF composite is also assessed. Finally, the last part of
this chapterfocuses onthe influence of gammaradiation, CNF type and CNF proportion on the water
uptake andrelease profiles of dig CHX loaded collagen-CNF composites. The Figure Ill.1 summarizes

the chapter Il structure.
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Figure ll.1: Graphical representation of chapter Il structure
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1. Pure cellulose nanofibrils membranes loaded with ciprofloxacin: development

and focus on drug release and antibacterial activity

This section is adapted from “H. Durand, P. Jaouen, E. Faure, C. Sillard, E. Zeno, N. Belgacem, J. Bras —
Pure cellulose nanofibrils membranes loaded with ciprofloxacin: development and focus on drug

release and antibacterial activity”, submitted to Cellulose in November 2018

Abstract

The biocompatibility and very high specificarea of enzyme pre-treated cellulose nanofibrils (CNF-e)
are properties of high interest for the development of active substrates for new medical device
development. CNF-e can be self-organized into nanostructured membranes that are suitable for
active principle ingredients (APl)encapsulation through adsorption phenomena. In addition, tunable
surface chemistry of CNF-e, allow for covalent immobilization of API. In this work, ciprofloxacin is
integrated to CNF-e membranes according to two different strategies. The first one relies only on
adsorption mechanisms; ciprofloxacinis encapsulated in the bulk before the membraneformation by
solvent casting. The influence of the membrane properties and preparation parameters such as
grammage, thickness and drying technique, are assessed with water uptake measurements and API
release experiments. The second strategy deals with the covalent immobilization of ciprofloxacin
directly onto CNF-e membrane. The two kinds of membranes are then compared in terms of
antibacterial activity, in both static and dynamic conditions. Thick CNF-e membranes loaded with
adsorbed ciprofloxacin that were overdried (2h, 150°C) prove to be more resistantin liquid medium
and presentamore membranes with adsorbed ciprofloxacin lost rapidly their activity, while CNF-e
membranes with covalently immobilized ciprofloxacin remain contact active for several days. These
100% CNF-e active nanostructured membranes can be used as new wound dressing for topical

application.
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1.1 Introduction

The interest for cellulose nanofibrils (CNF) has exponentially increased over the last ten years with
the development of new production routes (pre-treatments, improved mechanical fibrillation [1], [2])
and announcements of itsindustrialization. The number of scientific paper has been multiplied by 5
between 2007 and 2017 and several books [3], [4] or reviews [5]—[7] are now available on this topic.
Such nanofibrillated cellulose can be usedin several applications like paper [8], [9], nanocomposites
[10], cosmeticor printed electronics [11], [12]. Most of the time, barrier, mechanical and rheological
properties are the main reason behind the use of CNF, in addition to its renewable character and
biodegradability. More recently, the biocompatibility and large specific surface area of CNF have
motivated researchers to extend its use in the biomedical field for the development of new drug

delivery and tissue engineering systems [13]-[15].

If we focus on drug delivery, CNF films and membrane have been designed as entrapping systems for
hydrophobic drug in 2012 for the first time by Kolakovic et al [16]. Since that time, very interesting
interactions between some active molecules and cellulose nanofibrils were investigated. A
comparison between caffeine and chlorhexidine digluconate has been performed by Lavoine et al. in
terms of release profile [17]-[19]. The main outcomes indicated a prolonged controlled release of
APl thanks to the nanoporous network of CNF coatings. Cage-like molecules, i.e. cyclodextrins, were
alsousedto complementthe anchoring strategies of active molecules on CNF substrates. It resulted
in multi-encapsulation systems [20]. To the best of our knowledge, there is no study on the
interaction of ciprofloxacin with CNF. This new second generation fluoroquinolone is very promising
since it has a broad spectrum of activity against both gram positive and gram negative bacterial
strains [21]. The fluoroquinolones inhibits the enzymes involved in the DNA replication process,

leading to bacteriostasis and eventually cell death [22].

In the meantime, the design of contact and long-term active structures was possible by covalently
binding molecules on CNF. For instance, penicillin, nisin or amino-silane have been grafted on CNF

networks [23]—[25].

In the previous chapter, the successful grafting of ciprofloxacin molecule onto enzyme pre-treated
CNF (CNF-e) membranes through water based and thermally triggered method was demonstrated.
The objective of this chapteris then to compare CNF-e membranes with surface covalently bound
ciprofloxacin to CNF-e membranes that have bulk adsorbed ciprofloxacin. The idea is to develop
membranes with active properties for topical application. First, CNF-e membranes of different
thicknesses, produced with different drying techniques, are compared in term of water uptake

measurements and drug release experiments. Antimicrobial testing will be finally performed to
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describe the activity of CNF-e membranes with bulk adsorbed ciprofloxacin versus CNF-e membranes

with covalently immobilized ciprofloxacin on its surface.

Thisis the first work that tries to tackle such a numerous preparation parameters and release study

conditions for the design of 100% CNF-e membranes that comprise ciprofloxacin active molecule. Itis

believed to provide more insights on CNF-e membranes nanostructure effects on drug release.
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1.2 Experimental section

1.2.1. Materials
The main material used is a cellulose nanofibrils suspension that was provided by the CTP (Centre
Technique du Papier, Grenoble, FR). It wasisolated from a bleached birch pulp strongly refined (up to
80°SR), before an enzymatic pre-treatment and a final homogenization: 3 passes at 1500 bars in an
Ariete homogenizer from GEA (ltaly). The resulting 3 wt% suspension will be referred as CNF-e.
Ciprofloxacin (298% CAS: 85721-33-1) and hydrogen chloride (HCl, CAS: 7647-01-0) were purchased
from Sigma Aldrich. Agarose was purchased from ACROS ORGANICS (CAS: 9012-36-6). Nutrient Agar
for microbiology testing was obtained from Humeau and was composed of 3.0 g of beef extract, 5.0 g
of peptone and 15.0 g of agar. Standard Nutrient broth | was purchased from Carl ROTH and was
composed of 15 g/l peptone, 3 g/l of beef extract, and 6 g/l of sodium chloride and 1 g/I of glucose.
Sodium chloride forisotonic solution preparation was also purchased from Carl ROTH. Commercial
gauze was obtained from adhesive bandage produced by EUROSIREL (Italy). Deionized water was

used in all experiments and had a pH of 5.50 and a conductivity of 5.9 uS/cm.

1.2.2. Methods

1.2.2.a. Covalent immobilization of ciprofloxacin on CNF-e membranes (CNF-cip-g)
The procedure is already described in Chapter -1, a brief reminder is detailed here. CNF-e
suspension concentration was adjusted to 1 wt% and dispersed with high shear Ultra-Turrax mixer
(IKA, USA). The suspension was cast in petri dishes of 90 mm in diameterand dry forat least5 daysin
a condition controlled room (23°C, 50%RH), resulting in 200 mg CNF-e membranes (about 30g/m?).
An aqueous solution of ciprofloxacin was prepared in 0.1 M HCl and CNF-e membranes were
immersed for 15 minutes. The membranes were carefully recovered and excess ciprofloxacin
solution was absorbed with blotting paper. Athermal treatment was applied for 24 hours at 50°Cin a
bichi oven (undervacuum) to trigger the esterification reaction. Membranes werethen subjected to
purification step using soxhlet extraction with high purity acetone and deionized water to remove
contaminants, potential degradation products and the unbound ciprofloxacin respectively. These

membranes grafted with ciprofloxacin will be designated as CNF-cip-g.

1.2.2.b. Preparation of CNF-e membranes with adsorbed ciprofloxacin (CNF-cip-ads)
A second type of CNF-e membrane was prepared by adding ciprofloxacin to a CNF-e suspension in
order to allow its encapsulation through adsorption onto the nanofibrils surface. The CNF-e
suspension was dispersed at 1 wt% concentration into deionized water using high shear IKA Ultra-
Turrax device at 10000 rpm for 15 seconds. Ciprofloxacin was dissolved in deionized water at a

concentration of 2 g/L. The pH was decreased at 2.5 in order to favor the dissolution mechanism. A
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specificvolume of this solution was then added to the 1 wt% CNF-e suspension so that the mass of
ciprofloxacin accounts for 1 % of the total mass of the membrane. The suspension was then
magnetically stirred for at least 15 minutes and sonicated 30 seconds with a SONOREX Ultrasonic
batch (Bandelin) to remove air bubbles. The suspension was then cast into 90 mm diameter petri
dishes and drying was done with two different techniques. Room temperature drying was done in
conditioned room at 23°C and 50 % relative humidity for at least 5 days (designated with “RT” for
room temperature). Overdrying procedure was done on some of the RT dried samples in order to
further decrease the water content. The thermal treatment was performed in the oven at 150°C for 2
hours (designated as “overdried”) based on previous study [26]. Membranes of different thickness
were prepared by varying the quantity of CNF-e suspension cast in the petri dish. Theoretical values
of 200 mg and 400 mg of dry material were targeted, corresponding to 20 ml and 40 ml of 1 wt%
CNF-e suspension. These CNF-e membranes loaded with adsorbed ciprofloxacin will be designated as

CNF-cip-ads.

1.2.2.c. Physical characterization of CNF-e
CNF-e suspensions were analyzed with optical microscopy at x20 magnification on an Axio Imager A2
device equipped with an AxioCam MRm camera (Carl Zeiss, Germany). Dark field observation mode
was used to obtain contrasted images. Atomic force microscopy (AFM) images were recorded on a
Dimension icon® (Bruker, USA). CNF-e films were deposited on adhesive tape before stabilizing
overnightatroom temperature. The acquisition was performed in tapping mode usingasilica coated
cantilever (OTESPA® 300 kHz —42 N/m, Bruker, USA). Zones of 1*1 um? were analyzed and the most

representative height sensor images were chosen for analysis.

CNF-e membranes characteristics such as thickness and grammage (basis weight in gram per square
meter) were evaluated. Membranes were precisely weighted on analytical scale (Mettler Toledo,
Switzerland). Grammage was then calculated by dividing the weight of the CNF-e membrane by its
surface. Thickness of the samples were measured by two complementary techniques; a M120
micrometer (Adamel Lhomargy, France) and scanning electron microscopy (SEM, Quanta200°®)
imaging of CNF-e membranes cross sections were used. Carbon tape was used toimmobilize samples
on supports for SEM imaging, and they were then coated with a thin layer of pure carbon thanks to
an EMITECH® K450X carbon coater. The working distance was 10mm with a 10kV voltage and a

magnitude of x1500.

Then, the theoretical density p was calculated by dividing the weight of the films by the product of
membranes surface and thickness. The porosity Por of the CNF-e membranes were calculated by

considering a value of 1.5 g/cm® for the CNF-e material mass volume p.; with the equation (I11-1)

H. Durand, 2019 — Confidential



Chapterlll— Development of cellulose nanofibrils materials for medical devices

P
Pcell

Por =1— (1I-1)
1.2.2.d. Water uptake

The water uptake of the samples was assessed with two different methods. The first one was based

on the totalimmersion in deionized water of 16 mm diameter discs of the CNF-e membranes which

were weighted (Mperore). The water uptake was measured at predetermined time intervals, from 1

minute up to 48 hours. Afterimmersion the excess water was removed with blotting paper and the

sample was weighted again (m,s). The water uptake by immersion, W, was calculated according to

equation (l11-2):

Me™ Mo 100

1

W= (-2)

The second method involved an agar gel on whichthe 16 mm diametersamples were deposited. The
sampleis expectedto suck up the water in the agar gel from one side only. This is why this method
better mimics the wound behavior. Equation (l1I-2) was also used to assess the water uptake from

agar plate absorption W,. Triplicate measurements were performed for each analysis.

1.2.2.e. Release study methods
Release study of ciprofloxacin was performed with three different methods for CNF-e membranes.
The first one simply exposes the samples to the release medium with a full immersion, the second
oneinvolvesaspecificdevice composed of two chambers separated by the sample and the last one
uses agarose gel in order to better mimic wound environment solid phase. The two first tests are
continuous release system where the release medium remains the same throughout the whole
experiment, whileinthe last test the release medium is renewed regularly. For release study, only
CNF-e membranes with adsorbed ciprofloxacin (CNF-cip-ads) were characterized. Indeed, these tests
are really time-consumingand devoted to detect free unbound molecules, which are supposed to be
removed with the soxhlet extractions performed on ciprofloxacin grafted membranes (CNF-cip-g).
However, uponthe antibacterialassays detailed laterin this section, a comparison between the two

types of membranes will be carried out since different modes of action are expected.

Continuous release systems —immersion release

Immersionrelease study was performed in a 500 ml volume of deionized water in order to achieve
sink conditions (a sufficient dilution state so that the released drug do not influence the release
mechanism). Experiments were done in triplicates with three different ciprofloxacin loaded CNF-e
membranes (90 mm in diameter, around 200 mg) and an orbital shaker was used to maintain a slow
agitation (75 rpm) while the whole system was kept at 37°Cin an incubator as illustrated in Figure

[11.1. The CNF-e membranes were placed on a lifted mesh with big pore size inside the containerin
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orderto ensure an equivalentreleasefrom both sides of the membranes and limit CNF-e membrane
deterioration. At predetermined time intervals an aliquot of 3ml was withdrawn from the release
medium and ciprofloxacin quantity was measured with UV spectroscopy at a wavelength of 271nm

(UV1800 Shimadzu), using the previously mentioned calibration curve.

UV analysis over time
(3 ml sampling)

Incubator 37°C

r B

Deionized water

Ciprofloxacin loaded CNF membrane

Orbital shaker

\. J

Figure lI.2: Graphical description of the continuous release experimental set up
Continuous release systems —release chamber
An experimental device was also developed in the laboratory (LGP2) to be able to expose the two
faces of CNF-e membranes to two different media such as liquid/liquid or liquid/air. Figure 1l1.3

shows a graphic description of the device.

CNF membranes

Liquid medium /g)
4

Air or Liquid medium
Circulating pump

tall A

Figure 111.3: Graphical description and picture of the release chamber device

This system controls the flow rate of liquid which comes into contact with the sample surface in a
closed loop re-circulation. It is thus possible to flow liquid in recirculation only on one side of the

sample inorderto stimulate the release mechanism whilethe otherside remains in contact with air,

H. Durand, 2019 — Confidential



Chapterlll— Development of cellulose nanofibrils materials for medical devices

mimicking topical applications. Aliquots of 3 ml were collected at pre-determined time intervals from
the flowed medium and ciprofloxacin concentration was measured with UV spectroscopy at 271nm.

At least duplicates were performed for each sample.

Intermittent release system

A third system was designed to further mimic the environment of a low exuding wound. Agarose
based hydrogels were prepared and used as solid release media in 45 mm diameter petri dishes.
Circulardisks of 10 mm indiameterwere cut from ciprofloxacinloaded CNF-e membranes and were

deposited onthe surface of the agarose hydrogel to allow the drug to leach out of the sample from

only one side as illustrated on Figure Il1.4.

Sample transfer to a
new medium

10 min release 10 min release

Agarose gel

Ciprofloxacin loaded CNF membrane

Figure lll.4: Graphical description of intermittent release experimental set up

Every ten minutes, the disk sample was recovered from the agarose hydrogel and transferred to a
fresh agarose medium. Thistechnique is used torenew the release medium and mimic the renewal
of body fluidsinthe solid low exuding wound environment. This will be referred as a “wash” step in
the graphic results. After sample transfer, the agarose hydrogel was turned to liquid state with the
use of micro-wave heating for at least 60 seconds and UV spectroscopy was used to measure the
concentration of ciprofloxacin that was released from the membrane inside the agarose.
Ciprofloxacin resistance to micro-wave treatment has been previously checked. Triplicate

measurements were done for each sample.

1.2.2.f. Antimicrobial activity

Zone of Inhibition (ZOl) testing
Antimicrobial activity of the ciprofloxacin loaded CNF-e membranes was assessed through the zone
of inhibition test which is inspired from the AFNOR standard NF EN 1104 test. Disks of the CNF-e

membranes (10 mm in diameter) were first dry sterilized by an overnight thermal treatmentin an
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oven at 50°C. Nutrient agar was inoculated with one bacterial strain (B. subtilis, E. colior S. aureus)
and 10 ml of the solution was poured into 90 mm petri dishes. Once the agar solution turned into a
gel state, disk samples were deposited on the agar surface. After incubation during 3 days (72 h) at
37°C, inhibition zones were detected or not onto the samples, indicating whether the ciprofloxacin
has leached out of the membranes or not. The diameter or the radius (from the center of the CNF
disk) of the circularinhibition zone was measured in order to quantitatively assess the antibacterial
activity. Areference material was used to compare CNF-e membranes with a commercial product. A

classic gauze membrane soaked into ciprofloxacin solution was chosen.

Successive ZOl were also performed. After the first 72 h of incubation, samples were transferred to
another petri dish that also contained bacteria inoculated agar. Another incubation of 24h was
applied and zone of inhibition sizes were assessed. This operation was repeated every day. This
complementary test evaluated the antibacterial activity of the samples over the whole week
following the first 72h incubation in order to simulate successive release like in the previous

intermittent system. At least triplicates were performed for this test.

Dynamic Shake Flask

Dynamic Shake Flask testing puts in contact the CNF-e membranes with a liquid medium that
contains bacteria as illustrated on Figure I11.5. Isotonic (8.5g/I NaCl) and nutrient broth solution were
prepared in deionized water. Inocula were prepared by diluting bacteria suspensions in 1/500
nutrient broth (1 ml of nutrient broth in 500 ml of isotonic solution) to reach a 5x10°> CFU/ml
concentration (CFU stands for colony forming units). Previously dry sterilized (16 h at 50°C) and
weighted (about 50 mg) CNF-e membranes were cut in small pieces of ca. 0.5x0.5 cm? and placed
inside Erlenmeyer flasks in which 10 ml of inoculum was added. The flasks were then incubated for

24 hours at 37°C and under orbital shaking at 100 rpm.

Incubation

—

24h, 37°C
100rpm

+ CNF film pieces ( A )
+ bacteria suspension (10* CFU/ml) ( =sse=)

Figure lI.5: Graphical description of Dynamic Shake Flask test

Aftertheincubation, the new bacterial concentration was measured through successive dilutions of

the liquid medium in 1.5 ml eppendorfs. A volume of 100 pl was taken out of each Eppendorf and
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was addedin petri dishes beforeaddition of liquid agar (around 10 ml). When agar cooled down and
turned to gel-like state, petri dishes were incubated overnight at 37°C. Bacterial concentration of

incubated filtrates was calculated with the following equation (l11-3):

Number of bacteria counted in petri dishn°X
0.1 X dilution factor of petri dishn°X (m-3)

Bacterial Concentration =

The 0.1 value refers to the 100 pl added in each Eppendorf during successive dilutions. At least

duplicates were performed for this assay.

Leaching assay

In contrast to DynamicShake Flask, Leaching Assay test does not put directly in contact the samples
and the bacteria. Previously dry sterilized (16 h at 50°C) ciprofloxacin loaded CNF-e and reference
CNF-e membranes pieces (about 50 mg) were first incubated for 24 hours at 37°Cand 100 rpm in a
volume of 10 ml of 1/500 nutrient broth (1 ml of nutrient broth in 500 ml of isotonic solution). The
liguid were then collected and filtrated with 0.45 um pore size syringe filter in order to remove the
CNF-e materials. Bacteria suspensions were prepared according to supplier information and were
added to the recovered filtrates at a 10 CFU/ml concentration as described on Figure IlI.6. This
allowed figuring out if ciprofloxacin molecules were released during the incubation step and would
inhibits the bacterial growth. After incubation for 24 h at 37°C and 100 rpm, bacterial concentrations

were measured through the same method than for Dynamic Shake Flask and equation (ll1-3).

- /54

SN

+ CNF film pieces (M) + bacteria 10* CFU/ml (affe)
+ Nutrient Broth + Nutrient Broth
+24h, 37°C +24h, 37°C

Incubation 1 Filtration Incubation 2

Figure lll.6: Graphical description of Leaching Assay test
The test is used to determine quantitatively the effect of potential release of ciprofloxacin from the
samples. If the filtrates from reference CNF-e membranes (CNF-ref) and the filtrates from

ciprofloxacinloaded CNF-e membranes present the same bacterial concentration, it means that no
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Ciprofloxacin was released. Duplicates were performed to further confirm the results. Both CNF-cip-

ads and CNF-cip-g samples were compared with these antimicrobial test set ups.
1.3 Results and discussions

1.3.1. Physical characterization of CNF-e membranes
The CNF-e suspension was homogeneously dispersed as shown in Figure Ill.7a. The CNF-e
membranes were transparent and proved to be composed of nanosized fibrils as confirmed by
picture and height sensor AFM image of Figure Ill.7b and Figure Ill.7c. Moreover, AFM images were

obtained before and after the release experiments and no differences were observed.

Figure lIl.7: Morphology of CNF-e suspension and membrane, a) optical microscopy (x20) in dark field mode
of 0.1 wt% CNF-e suspension, b) picture (85mm in diameter), c) AFM height sensor and d) cross-section of
the CNF-e membrane

Different qualities of CNF membranes were prepared in orderto check the influence of thickness and
dryingon release profiles. Indeed, a recent study has shown that such thermal treatment (150°C for
2 h) of CNF-e membranes modify their Young’s modulus in aqueous medium. The thinner the
membrane, the higher the increase of “in-liquid” mechanical properties after overdrying [26]. This
study proves that thermal treatmentinfluences the structure of CNF-e membraneand so the release
mechanisms. The difference in thickness between prepared samples will also influence the distance
and specific surface area available for adsorption-desorption mechanisms that molecules undergo

when leaching out of the membranes. Considering a specific surface area of 150 m?/g for the CNF-e,
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the surface of exchange will be of 30 m? and 60 m? for membrane of 200 mg and 400 mg

respectively.

The Table Ill.1 summarizes the characterization of CNF-e membranes in terms of grammage and
thickness. Membranes produced with a 200 mg dry mass target have a grammage of 29 g/m* and
400 mg dry mass membranes, 58 g/m”. The thicknesses were measured with a micrometer. The
grammage and thickness values are similar, 29 g/m’ membranes have thickness of 29 um and 58
g/m’ membranes have a thickness of 58 um, which confirms the high density of the membranes as
shown by the values of Table Ill.1. CNF-e membranes were also characterized with SEM and similar
thicknesseswereobserved (see Figurelll.7d for 400 mg membranes). Also, the porosity was roughly

the same for both films and in accordance with data found in the literature [27].

Table Ill.1: Physical characterization of CNF-e membranes

Targeted weight Grammage Thickness Theoretical Theoretical
of CNF-e membranes g Density porosity
mg g/m? pm g/cm’®
200 29 +1 28 +2 1.04 +0.08 31%
400 58 +2 58 +4 1.00 =z0.08 33%

1.3.2. Water uptake of CNF-e membranes
One of the key properties of wound-dressing for an appropriate healing is their ability to absorb
exudate. Indeed, ahigh wateruptake will allowthe wound-dressing to be used on lightly and heavily
exuding wound by removing the exudate from the wound and thus preventing maceration (which
make the skin more prone to damage). Maceration with the exudate is known to prolong the

inflammatory phase and is detrimental to healing.

Water uptake of immersed CNF-e membranes (without ciprofloxacin) was recorded over 48h
however, the absorption was very fast and data recorded in the first 10 minutes are presented on
Figure I11.8a. Membranes with lower grammage show a water uptake of 500 % while membranes
with higher grammage reveal a water uptake of 300 %. CNF-e membranes with lower grammage
were more fragile and excess water at the surface of the membranes could notbe removed properly
without tearing the membranes apart. Higher grammage membranes have better mechanical
properties and were not affected by the removal of excess water. The maximum water uptake is
quickly reached in about one minute for both types of CNF-e membranes. Even if thin membranes
absorb more water in proportion, the absolute quantity of absorbed water is higher for thicker
membranes as depicted in Figure I11.8b. At least 2 hours are required to clearly see a strong and

stable difference. Moreover, this result alsoindicates that when the CNF-e quantity is doubled from
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Water uptake (%)

200 mg to 400 mg membranes, the absorbed water quantity is really far from being doubled even

after a 48 h immersion.

a) b)
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Figure I1.8: Water uptake of CNF-e membranes of two different grammage, a) water uptake over the first 10
minutes and b) absolute quantity of water absorbed over the whole 48 h of experiment

Overdrying of CNF-e membranes was proven toimprove the mechanical properties when immersed
inliquid [26]. Water uptake capacity was also assessed for overdried CNF-e membranes in order to
overcome the limitation of weak samples. After 48 h of immersion of CNF-e membranes, a similar

water uptake for all the samples regardless of their grammage was revealed.

Complementary experiments were carried out with another water uptake test. Agargel medium was
usedinorderto better mimicthe behaviorassociated with liquid absorption on a topical wound solid
phase. Acommercial wound dressing gauze was also tested and compared to the CNF-e membranes
in terms of water uptake. Figure I11.9 shows the water uptake of low grammage CNF-e membranes
and wound dressing gauze over48h and a zoomin the first 60 minutes. The maximum water uptake
of CNF-e membranesis two times greater than that of the gauze according to Figure 111.9a, reaching
300% of the initial mass. This resultis much lowerthanthe 500% reached by the low grammage CNF-
e membranes samples with the previous test where fullimmersioninliquid was used. Here, samples

were easier to recover because no excess water was to be removed.
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Figure 1I.9: Water uptake of CNF-e membranes and commercial gauze deposited on agar gel over 2a) 48h
and 2b) zoomed in the first 10 min

These results suggest a high water uptake capacity for CNF-e membranes, emphasizing the interest
of CNF for medical device development. The hydrophilicity of cellulose, together with the
nanostructured network of CNF-e membranes, explain the observed water absorption behavior. A
higher capillary absorption with such CNF membrane was expected and already reported by previous
research on hemostaticapplication [28], [29]. Dimensional swelling thatis associated with the water-
uptake of CNF-e membranes justifies the high values, but it was difficult to measure because of the

low thickness of the membranes and their poor mechanical properties in wet environment.

Innovative medical devices need to present active properties. Ability to release active principle
ingredients (API)to better favorhealing procedure and preventinfection thus appear as a promising

opportunity for CNF-e based medical devices.
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1.3.3. Release study
Based on recentliterature, CNF-e membrane nanostructured networks seem to be good candidates
for APl encapsulation and subsequent release. The release profiles of ciprofloxacin from CNF-e
membranes were then investigated for the first time. The influences of the CNF-e membranes
production method as well as the type of CNF were studied. The medium chosen for release
experiment is deionized water. Actually, other medium such as phosphate buffer saline (PBS) are
available and often use in release study experiments since they mimic the human body fluids [30].
However, some preliminary experiments of release of ciprofloxacin in PBS medium showed strong
interaction of the drugwith theionsin the buffer. With deionized water as the release medium, the
influence of the above mention parameters on the release profiles is expected to be revealed,

without any interfering phenomena due to the presence of ions.

The effect of CNF-e membranes drying procedures was first investigated with 29 g/m?* and 58 g/m?
membranes that were dried (i) at room temperature over several days or (ii) at room temperature
over several days followed by an overdrying treatment at 150°C for two hours. The release of
ciprofloxacin was then measured with immersion protocol over at least 48 hours in triplicates for
each membrane. The release profiles of four different samples, dried according to the two afore
mentioned drying procedures, are shown on Figure 111.10. Regardless the drying technique, the four
samples reached the same maximum release rate around 70% of the theoretical quantity of
ciprofloxacin, as depicted on Figure I11.10a. This first result indicates that the overdrying (150°C for 2
hours) do nottriggerany chemical immobilization (i.e. esterification) of ciprofloxacin onto the CNF-e
membranes. It also confirms the stability of ciprofloxacin moleculesinside CNF-e membranes, when
exposed to this thermal treatment. This is in accordance with the study of ciprofloxacin stability in
solution against thermal treatment that was performed in chapter II-1. A zoom into the first 30
minutes of the release expose on Figure I11.10b, proves that for 29 g/m? membranes, overdried
samples kinetic of release is similar than that of room temperature dried ones. Only 3 minute is

necessary for both samples to reach 70% of drug released.
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Figure lI.10: Influence of drying procedures and CNF-e quantity on drug release profile of 29g/m?2and 58
g/m? ciprofloxacin loaded CNF-e membranes over a) 48 hours and b) zoomed in the first 30 minutes of
continuous release immersion experiment

However, for thicker membranes of 58 g/m?, the tendency is not the same and overdried samples
seemto behave slightly differenteven if we consider the high deviation obtained for the data point
at 10 min in Figure I11.10b. The overdrying is limiting the burst effect and creates a more prolonged
release. Thisresultsuggests that amore prolonged release of drug can be achieved by increasing the

thickness of CNF-e membranes.

More precisely, only 5 minutes are required for 29g/m’ membranes to reach the maximum release
rate of 70% while in 5 minutes, 58 g/m” membranes are barely at 40% for the room temperature
dried membranesand 20% foroverdried membranes. Thicker membranes will also need at least 30
minutes to reach the maximum release rate, which is six time longer. The analysis of additional
quantity of drug released in between two measurement points also helps the discussion: between 5
and 10 minutes, the thinner membranes release 1to 2 % of ciprofloxacin (1to 2 mg) whereas thick
membranes will still release about 10% of ciprofloxacin (40 mg). The same result can be extracted
from additional quantity between 10 and 15 minutes or 15 and 30 minutes. In thicker CNF-e
membranes, the time required to swell the nanofibrils network across the section is higher. So the

drug diffusion is longer, which explains the shift observed on Figure I11.10b.

Another release device has been designed to expose one side of the CNF-e membrane to a liquid
release mediumin continuous re-circulation while the otherside isin contact with the air. This better
mimicthe external application for heavily exuding wounds. As mentioned before and confirmed with
above described experiments, overdried samples exhibit a higher resistance to liquid medium

exposition and prolonged release abilities. They were thus chosen to carry on the study with the
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release chamber device. Figure 111.11 shows that the closed loop re-circulation of liquid medium in
the device provided an extended release for 29 g/cm? membrane. Indeed, about 90 % of the
theoretical amount of ciprofloxacin was released in 24 hours in these dynamic conditions while only
70 % was released with the mild agitation in the immersion protocol used in the previous studies.
This tendency is not observed for the thicker membrane and suggests that the ciprofloxacin
entrappedinthe membrane side thatis exposed to the airis more complicated to retrieve with the

re-circulating liquid medium. This could also be a reservoir layer for longer time release.
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Figure ll.11: Release study for overdried ciprofloxacin loaded membranes in the release chamber with closed
loop liquid medium recirculation

A third set up of experiment was used to further characterize the overdried samples. This one was
designed to mimiclow exuding wound environment. Samples were in contact with agarose gel that
was renewed every 10 min (the “wash” step). Figure Ill.12 shows the comparison of the drug
concentration evolution in agarose media for 29 g/m? and 58 g/m? overdried membranes, over the
number of washing steps. Similar evolutions are observed with a strong decrease from the first
washes toward stabilization afterabout 10 washes. The lowest minimum inhibitory concentrations of
ciprofloxacin for bacteria commonly found on wound infection sites (Staphylococcus aureus,
Pseudomonas aeruginosa or Streptococcus pneumoniae) is 0.5 pug/ml [31]—[33]. The thin membranes
can be considered as non-active since the drug concentration that was detected rapidly goes under
this value. On the contrary, after 30 washes, thick membranes still release significant amount of

ciprofloxacin.
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Figure lI.L12: In solid release study, agarose gel was used to release ciprofloxacin from 58g/m2 overdried
membrane

CNF-e membranes with increased thickness (and associated grammage) that are overdried are
recommended for the development of active medical devices for topical applications since they
exhibitbetter resistance when exposed to liquid medium and revealed a more controlled release in
immersion conditions together with active behaviorin agarose release system. These samples will be

used in priority for the antimicrobial testing and referred as CNF-cip-ads.

1.3.4. Antimicrobial activity
Antibacterial activity testing was carried outin order to evaluate the capacity of ciprofloxacin loaded
CNF-e membranes (CNF-cip-ads, overdried and CNF-cip-g) to be active against bacterial strain. In
parallel, reference CNF-e membranes of 29 g/m? without ciprofloxacin are also characterized and
referred toas CNF-ref. Widely used B. subtilis strain was chosen to perform zone of inhibition (ZOl)
testingas depicted on Figure lll.13where a clearZOl is observed on CNF-cip-ads (C) and CNF-cip-g (D)
samples while CNF-ref disks do not exhibitany activity (B). Both samples proved to be strongly active
against B. subtilis since ZOI radius of 2.4 and 2.6 cm were measured confirming the antibacterial

activity of such CNF-e membranes.

H. Durand, 2019 — Confidential

243



244

ZOl radius
(cm)

B CNF-ref 0 -

C CNF-cip-ads 24 102

D CNF-cip-g 2.6 03

Figure lI.13: Zone of Inhibition testing of CNF-cip-ads (overdried) and CNF-cip-g against B. subtilis strains and
values of ZOlI radius. Picture A proves the correct growth of the bacterial strain. Pictures B, C and D refer to
CNF-ref, CNF-cip-ads and CNF-cip-g respectively

All the sampleswere then exposed to a new inoculated medium during 24h of incubation for 3 more
cycles. Figure I11.14 shows the evolution of ZOl radius over this prolonged incubation. CNF-cip-ads
samples were tested against B. subtilis only (Figure Ill.14a) while CNF-cip-g samples were tested
against E. coliand S. epidermidis (Figure I11.14b, results obtained in chapter II-1). In both cases, CNF-
ref membranes do not show any antibacterial activity. Both thin and thick membranes of CNF-cip-
ads are compared on Figure Ill.14a. The activity described by the ZOls radius is strongly decreasing
with the number of cycle from 2.3 and 2.4 cm ZOlI radius until it reaches zero. Thin membranes are
detected to be inactive within only 3 cycles while one more is required for thick membranes,
confirming again their more potent activity and prolonged release. On Figure I11.14b, CNF-cip-g
membranes show a smaller ZOI radius of 1.0 and 1.2 cm but a different phenomenon occurs after
cycle 1. The detected ZOlI are limited to the edge of the sample disk indicating a contact active
antibacterial behavior. This suggests that the covalently bound ciprofloxacin acts locally at the
surface of the CNF-cip-g membrane, which confirms a prolonged activity against both gram positive

and gram negative bacterial strain.
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Figure 11l.14: Successive ZOIl experiments results, the radius of ZOls is plotted against the number of cycle of
exposition, a) CNF-cip-ads samples (29 and 58 g/m?, overdried) against B. subtilis and b) CNF-cip-g samples
against E. coli and S. epidermidis, only 29 g/m? membranes

The test of ZOl detectionis only qualitative and performed under staticconditions. However, most of
the release experiments that were discussed in the previous section were performed under dynamic
conditions, especially those which were set up to mimicheavily exuding wounds (continuous release
in immersion with orbital shaking or in the release chamber with closed loop recirculation).
Complementary antibacterial testing is necessary to assess the activity of the ciprofloxacin loaded

CNF-e membranes in similar conditions.

In the dynamic shake flask protocol, samples are put in contact with liquid medium that contains
bacterial strains for several hours. The quantitative evolution of the logarithm of bacterial
concentration over incubation time reveals the activity of the CNF-e substrates, as displayed on
Figure 111.15. CNF-ref samples give a very similar result when compared to the positive control (“No
sample”). From time 0 to 3 and 24 hours of incubation, a growth of bacteria is suggested by the
increase in bacterial concentration observed for both strains from 5.5 log to more than 7.5 log. On
the contrary, ciprofloxacin loaded CNF-e membranes present strong decreases in bacterial
concentration. Within only 3hours, the CNF-cip-gsamples reduce the bacterial concentration to zero
while the CNF-cip-ads membranes only give a 2 log and 1 log reduction for E. coli and S. aureus
respectively. After 24h of incubation of the samples in the bacteria containing liquid medium, both
ciprofloxacin loaded CNF-e membranes reduce the bacterial concentrations to zero. The CNF-cip-g
antibacterial activity is stronger than CNF-cip-ads samples in Dynamic Shake Flask test conditions.
The 24 hoursrelease applied priorto the test must have depleted the ciprofloxacin quantity of CNF-

cip-ads whereas the covalently bound ciprofloxacin in CNF-cip-g samples was not affected.

H. Durand, 2019 — Confidential

245



246

E.coli S.aureus

9 9

8 8

; ) 7 /., ............................... 9
S 2. %
B, \\ 2, \ -
B\~ £\ T~
=3 \ \\\ =3 \ "“\

2 ~ 2 S

1 \ \.‘__ 1 \ ~ -

S
0 \- T A\ T T \‘I 1 0 x T ‘\ T |\\‘I
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (h) Time (h)

Inoculum

== CNF-ref =——e=—CNF-cip-g —# =CNF-cip-ads :-:®:- No sample

Figure II.L15: Dynamic shake flask test applied on CNF ref, CNF-cip-ads and CNF-cip-g samples against two
bacterial strains, E. coli and S. aureus (note that the legend is common to both graphs)

In Dynamic Shake Flask test, samples are in direct contact with the bacteria. The bacterial growth
inhibition can thus be explained both by the release of active molecule and contact active inhibition
phenomena. Inorderto be able to draw precise conclusions, alast complementary test was used. As
for the DynamicShake Flask, it measures quantitatively the evolution of bacterial concentration of an
inoculated medium, but this liquid does not contain the sample itself. The sample was exposed to the
liquid and then removed before the test, eliminating the possibility of contact active inhibition
phenomena. In the Leaching Assay, samples are put in contact with a liquid medium that does not
contain bacteria, inimmersed conditions for 24 hours (incubation 1). Afterthis, the solid samples are
recovered andthentheliquidisinoculated with bacteria and incubated for 24 hours (incubation 2). If
some active substancesleached outfrom the samples during the incubation 1, the bacterial growth
during incubation 2 will be affected. If the sample did not release any active substances, bacteria

concentration is supposed to remain stable or to slowly increase with bacterial growth.

The logarithms of bacterial concentrations after the incubation 2 are compared in Figure I11.16 for
each sample, including a positive control that was not put in contact with any CNF-e substrates. The
positive control shows a bacterial growth up to 6.1 and 6.6 log for S. aureus and E. colirespectively,
compared to the initial bacterial concentration of 4.1 log. CNF-ref samples have a very similar
response since bacterial growth is confirmed for both strains. For E. coli the bacterial growth is
significantly higher than the positive control, suggesting that the CNF-e promote the bacterial
growth. This has been already observed and indicates good nutrient conditions for bacterial growth
[23]. The CNF-cip-ads sample obviously released ciprofloxacin molecules during the immersion since
these conditions are exactly the same than forimmersion release experiments discussed previously.

After 24 hours of incubation with bacteria, the liquid medium does not exhibit any remaining
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bacterial activity. The CNF-cip-g sample shows a bacteriostaticeffect since alogvariationinferiorto 1
compared to the initial concentration is detected. This result confirms again that ciprofloxacin is
actually covalently bound to the CNF-e surface and did not leach out from the membrane during the
incubation 1. Moreover, the initial concentration for Leaching Assay is 1 log inferior to that of
DynamicShale Flask. Atentimesless concentrated medium is much more sensitive to the presence

of active compounds, which also confirms the insignificant effect of CNF-cip-g in these conditions.

W S. aureus (gram +)
W E. coli (gram -)

== |nitial concentration

Log(CFU/ml)

0.0
0.0

Control CNF-ref CNF-cip-ads CNF-cip-g
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Figure lI.L16: Leaching assay that assess the release of active substances from the samples, CNF-ref, CNF-cip-
ads and CNF-cip-g. All samples were subjected to a 24h release in immersed conditions before the test

This last result closes the comparison between CNF-cip-ads and CNF-cip-g in terms of antibacterial
activity. Both samples demonstrated strong antibacterial activity against gram positive (B. subtilis, S.
aureus, S. epidermidis) and gram negative strains (E. coli), CNF-cip-ads by release mechanisms and
CNF-cip-g by contact active phenomena. CNF-cip-gis then preferable when a quick ad persistent long

term activity as shown on Figure 111.14 and Figure I11.15.
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1.4 Conclusion

The physical properties of CNF-e membranes were characterized as well as their water uptake
properties. Influence of thickness and overdrying (150°C, 2h) of the samples onthe water uptake was
investigated. Overdried thick CNF-e membranes proved to absorb more water and better resist the
exposure to the liquid medium. The multiple release study experiments allowed the ciprofloxacin
loaded CNF-e membranes to be exposed to different conditions that mimicked both heavily and low
exuding wounds environment. Thick overdried membranes demonstrated the most prolonged
release inimmersion and release chamber protocols. Compared to thin overdried membranes, they
were also more active in the intermittent release protocol with above-MIC ciprofloxacin

concentrations.

The antibacterial experiments were used to compare CNF-e membranes with bulk adsorbed
ciprofloxacin (CNF-cip-ads) versus CNF-e membranes with surface grafted ciprofloxacin (CNF-cip-g).
Both samples offered a similar response to classic ZOl testing, in static conditions. However, upon
successive ZOl measurements, CNF-cip-ads rapidly lost its activity while CNF-cip-g proved to have a
stable contact activity thanks to the covalently bound ciprofloxacin. The Dynamic Shake Flask test
was usedto put samplesin contact with bacteriain a dynamic environment and allowed to retrieve
guantitative values. Both samples demonstrated antibacterial activity but the CNF-cip-g revealed a
more potentresponse. Finally the Leaching Assay test confirmed that CNF-cip-ads obviously released
ciprofloxacin that hindered the bacterial growth, whereas CNF-cip-g offered a contact-active potency

towards bacterial strains.

Both CNF-e membranes are then good candidate for the development of medical device for topical
applications but CNF-cip-g membranes seems to present better long term persistent contact
antibacterial activity. Medical device intended to be used for a treatment up to 24 hours can include
CNF-cip-ads membranes. However, for longer treatment time, CNF-cip-g membranes are more

adapted.

Covalent binding of molecule to CNF-e substrates appears like a promising strategy for the
development of innovative topical application medical device with active functionalities like drug
release. The use of such strategies forthe development of internal application medical devices will

be investigated in the next chapter.
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2. Composites of collagen and metronidazole-modified CNF as materials for “on-

demand” drug release and antibacterial activity

Abstract

Cellulose nanofibrils (CNF) were modified with ametronidazole based prodrug through a two-step
immobilization, using first amidation and then thiol-yne click chemistry in water suspension. The
ability of these modified CNFs to release metronidazole upon enzymatic action of human
carboxylesterase was confirmed by high performance liquid chromatography (HPLC). Some re-
arranged metronidazole product was also detected and attributed to photo-sensibility. Prodrug
modified CNF were then successfully embedded in a collagen matrix in order to develop a medical
devicesforinternal softtissuerepairapplication. Collagen CNF nanocomposites antibacterial activity
againstanaerobic bacteria was assessed by zone of inhibition (ZOl) testing. Moreover, a prolonged
antibacterial activity was obtained for non-irradiated samples when exposed to successive ZOI
testing. Nevertheless, gamma radiation inhibited the antibacterial activity of collagen-CNF-metro
nanocomposites. Meanwhile, NMR analysis confirmed that gamma radiation do not affect
metronidazole prodrug structure. These samples are promising for the development of active soft

tissue repair medical devices.
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2.1 Introduction

Softtissue repair (STR) is one of the major business activities of the medical device industry. [t mainly
comprisesventral and inguinal hernia repair devices. The worldwide market associated with these
devices currently exceeds 3 billion euros and has an 8% of mean annual growth rate (Medtronic
internal source). Inthis area, infections and post-operative pain remain the main recurrence problem
encountered by surgeons and healthcare authorities [34]. They involve a high medico-social cost
since re-do surgeries and heavy treatments are often required to be able to finally heal patients.
Post-operative quality of lifeand life expectancy directly relies on the capacity of healthcare systems
to develop more efficient medical devices. Recently, the treatments for soft tissue repair evolved
from suture closure to using 2D materials often designated as mesh repair [35]. Biologic mesh that
involve animal derived material, such as collagen, show less infections, adhesion (unwanted bridging
of organs to the medical device causing secondary complications) and erosion complications than
syntheticimplants [36]-[38]. Nowadays, collagenis successfullyused for internal application such as

soft-tissuerepair with patented technologies like the Symbotex® hernia repair medical device [39].

Meanwhile, the use of cellulosic material such as nanocellulose for biomedical research is constantly
increasing as proved by recent reviews [13], [14]. The tremendous interest of the scientific
community towards nanocellulose is explained by its biocompatibility, renewability, biodegradation

properties and its easily tunable surface chemistry combined with high specific area [6].

The idea of combining the regenerative properties of collagen together with bioactive cellulose can
bring new innovative functionalities to medical devices. A few scientific papers investigated this topic
using various forms of cellulose. For instance, nanocomposites of bacterial cellulose and type |
collagen were designed for in-vitro bone regeneration. Cross-linking was achieved by modifying
bacterial cellulose with glycine esterification and subsequent cross-linking to collagen with 1-ethyl-3-
(3-dimethylaminopropyl)-carbodiimide. Osteoblastic phenotype cell were able to develop onto the
biomaterial in-vitro indicating its suitable use forbone tissue engineering [40]. Similar systems were
produced as thin membranes for the mimicking of soft-tissues and stem-cell growth studies. Results
indicated that mesenchymalstem cells putin contact with collagen-cellulose composites membranes
had a higher proliferation index [41]. More recently, wood derived nanocellulose was also
crosslinked with collagen matrices to build up artificial ligament or tendons. Coupling agents were
glutaraldehyde [42] or genepin [43]. However, none of these strategies tried to include active
principle ingredients (APIs) in the collagen-cellulose network in spite of very promising and recent
studies dealing with using CNF for prolonged release of drugs [19], [44], [45]. Up to our knowledge,

only one study related to nano-scaled cellulose of bacterial origin investigated this solution. Indeed,
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very recently, bacterial nanocellulose was used in combination with fish scale collagen to produce
microneedles that comprises lidocaine, for an alternative to transdermal drug delivery [46]. But for
wood-derived nanocellulose based collagen composite as drug carrier, no study has been published

yet.

Chapterll showed how APls modified cellulose nanofibrils can be obtained. These CNF nanomaterials
were modified in suspension in chapters II-2 and II-3, resulting in water based systems suitable for
the design of collagen-CNF composites as model mesh repair. This approach could not be followed
with ciprofloxacin grafting presented on chapter IlI-1 since the chemistry involved relied on an
esterification reaction that cannot take place in water. In our study, cellulose nanofibers were
modified in aqueous suspension with a prodrug containing metronidazole molecule. This APl is of
particularinterestfor STR medical devices since itis mainly active against anaerobic microbial strains

and only rare resistance were observed [47], [48].

In this chapter, the noveltyistointroduce these prodrug modified CNF into collagen composites that
could release drugin presence of esterase enzyme in the hernia defect area. So, for the first time,
composites were produced with collagen and metronidazole modified cellulose nanofibrils to build

up model medical devices intended for internal soft-tissue repair applications.
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2.2 Experimental section

2.2.1. Materials
Oxidized cellulose nanofibers suspensions were provided by the Centre Technique du Papier (CTP,
Grenoble, France). The TEMPO mediated oxidation was performed on a pre -refined (40°SR) bleached
softwood bisulfite pulp provided by TEMBEC (Tartas, France) following classical procedure developed
by A.lsogai’s team in 2006 [49], [50]. Briefly, the cellulose fiber pulp concentration was adjusted at
1.5 wt% and the reaction was performed at pH 10 for 2h in presence of NaBr, NaClO and the TEMPO
reagent. High pressure homogenizer (Panda GEA, Niro Soavi) was then used to produce the CNF

suspension from the oxidized pulp, later referred as CNF-t.

Propargyl-amine (CAS: 2450-71-7), N-(3-Dimethylaminopropyl)-N"-ethylcarbodiimide Hydrochloride
(EDC, CAS: 25952-53-8), N-Hydroxysuccinimide (NHS, CAS: 6066-82-6), Sodium Hydroxide (NaOH,
CAS:1310-73-2), hydrogen chloride (HCI, CAS: 7647-01-0) and carboxylesterase 2 human (expressed
in baculovirus infected BTl insect cells) were purchased from Sigma Aldrich and used as received.
Tris(hydroxymethyl) aminomethane (TRIS, >99.8% CAS: 77-86-1) was purchased from Euromedex.
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP, >98%, CAS: 51805-45-9) was purchased from
ThermoFisher Scientific. Biocompatible photoinitiator Lithium Phenyl(2,4,6-
trimethylbenzoyl)phosphinate (LAP, >98%, CAS: 85073-19-4) was purchased from Tokyo Chemical
Industry. Bacterial strains of Bacteriodes vulgatus, Bacteriodes fragilis and Clostridium difficile were
obtained from the biological resource center of the Regional University Hospital Center (CHRU,

Besancon, France).

Oxidized collagen solution of porcine origin was provided by Medtronic (Trévoux, France). The
modified metronidazole molecule was synthetized by the Département de Pharmacochimie
Moléculaire (DPM, France) as described in the chapter Il-2, and will be referred as prodrug. The
collagen was extracted from porcine dermis through chemical oxidative treatment. A 4 wt% collagen
solution was obtained. Polyethylene glycol 4000 (PEG, CAS: 25322-68-3) and glycerol (Gly, CAS: 56-
81-5) were obtained from MERCK Millipore. Sterile deionized water was used in all the following

experiments.

2.2.2. Methods

2.2.2.a. Production of CNF-metronidazole
Chapter II-2 was focused on the preparation of CNF-metronidazole through two steps chemical
surface modification of CNF-t. A brief reminder of the procedure will be presented. The first step of

the covalentimmobilizationisto provide the CNF-t substrate surface with pending alkyne functions.
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This was achieved through amidation reaction between the carboxylic acid groups of CNF-t and the
amine group of propargylamine in aqueous medium with the aid of coupling agents EDC/NHS.
Purification was done by several cycles of centrifugation/redispersion in acidic water to remove
excess unbound reactants and coupling agents, followed by 5 days dialysis against neutral water.
Obtained modified CNF are referred as CNF-yne. Meanwhile, metronidazole molecule was chemically
enhancedtodesignanew bindingstrategy with CNF-yne. Terminal thiol function was introduced on
metronidazolethrough esterification reaction. Thiol group was then available for the second step of
drug immobilization on CNF substrates, the thiol-yne click chemistry. The resulting modified CNF are

referred as CNF-metro.

2.2.2.b. Preparation of CNF, CNF-yne and CNF-metro loaded collagen
nanocomposites

A solution of 10 wt% PEG and 6 wt% glycerol was prepared in sterile deionized water (PEG/Gly
solution). After complete dissolution under magnetic stirring, the solution was further purified by
filtration on 0.200 um pore size filters. CNF suspensions concentrations were adjusted to 0.1 wt%
with sterile deionized water and dispersed with Ultra-Turrax high shear mixer at 10 000 rpm for one
minute. Collagen stock solutions are stored at -80°C aftertheir production procedure and they show
a solid gel-like structure at room temperature, which is not suitable for composite production. It was
then placedina waterbath at 40°C to obtain a liquid collagen solution. PEG/Gly solution, CNF-metro
suspensions were also placed in the 40°C water bath to favor the following mixing steps. The
temperature isone key parameter to control when working with collagen since it turns quickly to a

gel-like structure when cooled down.

Collagen and PEG/Gly solutions were first mixed together in a beaker on a hot plate heater with
magneticstirring. A temperature of 40°C was maintained during all experiment in order to prevent
the collagen to turn back to gel-like state. The pH was adjusted to 8.9 —9.1 with NaOH 0.1 M or 0.5
M solutions. The pHadjustmentis required for the subsequent cross-linking of the collagen strands
upondrying. The CNF suspensions were then added slowly under magneticstirring. 5wt% proportion
of CNF in the final dry composite was targeted. The pH was controlled and adjusted again if
necessary, the final dilution level was reached by the addition of deionized sterile water previously
heated at 40°C. The whole mixture was then stirred for 15 min to favor the dispersion of the CNF in

the collagen solution and ensure a homogeneous temperature.

The casting of the formulation was performed oninertsurface (PVDCsheets) equipped with silicone
molds of rectangular shape. The surface weight (grammage) objective was 64 g/m?. Once cast under

a laminar flow hood, after 15 min cooling down, the solutions had a gel-like state. The drying was

H. Durand, 2019 — Confidential



Chapterlll— Development of cellulose nanofibrils materials for medical devices

then performed overnightat 20°C and 40 % of relative humidity in a controlled oven. Pure collagen-
PEG/Gly membranes were also prepared as reference materials. The composite membranes were
recovered and storedinindividual sealed pouches. Half of the samples were sterilized with gamma
radiation at 30-35 kGy doses. Table 111.2 describes the prepared composites. As PEG/Gly solution is
present in every samples, it is not mentioned in the denomination used (i.e. Coll-CNF stands for

collagen-PEG/Gly-CNF composites).

Table 1l.2: Designation and composition of Coll-CNF composites prepared with CNF-t, CNF-yne and CNF-

metro
Collagen- CNF type
Designation PEG/Gly | Nkt | CNFyne | CNF-metro
matrix
Coll
Coll-CNF-t-5%

Coll-CNF-yne-5%
Coll-CNF-metro-5%

2.2.2.c. Release of Metro from CNF-metro
The release of metronidazole was assessed from suspension of CNF-metro. It was induced by the
addition of a human carboxylesterase 2 (hCE2). This enzyme favors the cleavage of the ester bond
that binds metronidazole to the CNF-metro and prodrug arm. CNF-metro suspension was centrifuged
at 20000 g for 10 min and re-dispersed in TRIS buffer (pH 7.4, 50 mM). This operation was repeated
2 times. Avolume of 10 ml of CNF-metro suspension was poured into a balloon and heated at 37°C.
The commercial enzyme solution was diluted to 1 mg/ml with TRIS buffer and 2 ml of this solution
was introduced inthe CNF-metro suspension. The mixture was maintained under magnetic stirring
and at 37°C for 48 hours. In parallel, a 10 ml CNF-metro suspension without the enzyme (also re-
dispersed in TRIS buffer) was exposed to the same condition, acting as a reference. Aliquots were
collected fromboth balloonsinorderto assessthe influence of the enzyme addition on the release
of the metronidazole. 500 ul aliquots were collected at predetermined timeintervals and centrifuged
at 14 000g for 10 min and filtrated with syringe filter (0.45 um, polyamide/nylon, CHROMAFIL AO-
45/3 MACHEREY NAGEL) before characterization. Reverse-phase high performance liquid
chromatography (HPLC) was performed with a micro-bondapak-C18 analytical column (Waters
Associates) to track the presence of metronidazole inthe aliquot. A Waters chromatographic system
was used, with two M-510 pumps and photodiode array detector Waters 996 using Millenium 32
software. A linear gradient from 10 to 100 % methanol in H,0 pH 2.5 (phosphoric acid), 1 ml/min

flow rate, was used.
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After48 hours of reaction, the CNF-metro suspension was diluted with 40 ml of dichloromethane in
orderto retrieve the metronidazole that could have been trapped onto the CNF by strong adsorption
phenomena and not visible in the HPLC analysis. The mixture was maintained under stirring for 72
hours. Upon phase separation, the organicphase that may contain metronidazole is separated from

the aqueous phase and liquid "H NMR analysis was performed to investigate its composition.

2.2.2.d. Antibacterial testing
Nanocomposites antibacterial activity was assessed through zone of inhibition (ZOI) experiments
against anaerobic bacteria strains Bacteriodes vulgatus, Bacteriodes fragilis and Clostridium difficile.
Bacterial strains were grown overnightinan anaerobicincubatorat37°C in blood sheep stained agar
filled petri dishes. On the next day, bacterial suspensions were prepared and adjusted at a 10°
CFU/ml concentration. Fresh blood sheep stained agar petri dishes were prepared and bacterial
suspensions were spread on the surface toachieve the inoculation of the medium. A positive control
composed of a 10 mm disk of blotting paper in which 16 pg of metronidazole was deposited on the
agar surface in each petri dish. 10 mm disk were cut off from each samples and deposited in the
inoculated petri dishes. Anaerobic incubation was performed for 24h at 37°C. In parallel, bacteria
strains were grown again as previously described to prepare successive cycles of ZOl experiments.

After incubation, petri dishes were observed to detect inhibition zones.

Two distinct experiments were then realized: (i) standard ZOl experiments against Bacteriodes
vulgatus, Bacteriodes fragilis and Clostridium difficile, and (ii) successive ZOl experiments against
Bacteriodes fragilis, where the sample from cycle 1are collected and exposed to freshly prepared
inoculated petri dishesin orderto assess the evolution of the antibacterial activity overtime. In total,
four cycles of successive ZOI experiments were performed on Coll-CNF-t and Coll-CNF-metro-5%

against Bacteriodes fragilis.

2.3 Results and discussion

2.3.1. Release of metronidazole from CNF-metro suspensions with enzymatic stimuli
The concept of “on demand” release of metronidazole under enzymaticstimuli was analyzed. Indeed
infection sites have important enzymaticactivity suitable for ester bond cleavage. Two suspensions
of CNF-metro were maintained at 37°C for 48 hours under magnetic stirring. Human
carboxylesterase 2was added in one of the two suspensions forreleasing the metronidazole grafted
on CNF substrate, through the cleavage of the ester function. Aliquots of the suspensions were
analyzed over time. After 1 hour of agitation, a clear signal appears at 3.726 minutes of elution on
chromatograms of the suspension that contains the enzyme, as illustrated on Figure Ill.17a. By

comparison with chromatograms of metronidazole solution (results not shown), this signal can be
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attributed to the release of the metronidazole. In UV spectra, the peak at 283.9 nm also

demonstrates the presence of metronidazole. The CNF-metro suspension that was reacted in the

absence of the enzyme was also analyzed with HPLC. However, even after 4 hours, no trace of the

metronidazole is detected as confirmed by both the chromatogram and UV spectrum of Figure

[11.18b. This very positive result validates the concept of “on-demand” release of metronidazole

under enzymatic activity.
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Figure lI.L17: HPLC chromatograms (top) and associated UV spectra (bottom) of CNF-metro suspensions
reacted with (a) and without (b) the presence of carboxylesterase human 2 (hCE2)

After the reaction, both CNF-metro suspensions were extracted with dichloromethane so that

entrapped metronidazole related compounds that were not detected before could be transferred

easily from the aqueous to the organicphase. Liquid ‘HNMR was then conducted but surprisingly, no

significant trace of metronidazole was detected although sugar moieties seemed to be present.
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Eveniffurtherinvestigationisrequired, especially on longer time release, the main outcome of this
study is that CNF-metro suspension, when exposed to hCE2 enzyme, is able to release metronidazole
molecule in one hour. This very positive result validate the concept of “on demand” release by

prodrug modified CNF.

2.3.2. Antibacterial activity in anaerobic conditions
Furtherin-vitro characterization was conducted with antibacterial activity testing in order to discuss
the presence of non-covalently bound metronidazole. Collagen-CNF composites were tested with ZOl
experimentsinordertoassesstheir antibacterial activity against anaerobic bacteria Bacillus fragilis,
Bacteriodes vulgatus, and Clostridium difficile. The different samples that were characterized
included CNF from the different stage of the chemical modification: CNF-t, CNF-yne and CNF-metro.
An example of the results obtained is shown on Figure 111.18. The positive control (sample disk 0,
impregnated with metronidazole) shows a wide zone of inhibition that confirms the activity of the
metronidazole against the three strains that were used. ZOl radiuses of 2.3to 3.2 cm are detected
according to the table in Figure 111.18. Sample disks 1 and 4 do not exhibit any zone of inhibition
indicatingthat oxidized (Coll-CNF-t-5%) and alkyne function bearing CNF (Coll-CNF-yne-5%) do not
show antibacterial activity when embedded in collagen matrices. However, metronidazole modified
CNF based collagen nanocomposites (Coll-CNF-metro-5%) present a significant zone of inhibition
(sample disk 2) and radiuses of 1.6 to 2.3 cm are detected for the three bacterial strains. This result
confirms the possibility of using such materials as active soft tissue repair devices. Some of the Coll-
CNF-metro-5% samples were subjected to gamma radiation sterilization as in the current industrial
practice. Unfortunately, it does not show any zone of inhibition. This result suggests that gamma
radiation causes the composite to lose its antibacterial activity. Several hypotheses can be

formulated to explain the loss of activity.

ZOl radius (cm)

Sample reference
Bacillus Bacteriodes  Clostridium

fragilis vulgatus difficile
0 Positive control 2.6 2.3 3.2
1 Coll-CNF-t-5% 0 0 0
2 Coll-CNF-metro-5% 1.8 1.6 2.3
3 Coll-CNF-metro-5% (gamma) 0 0 0
4  Coll-CNF-yne-5% 0 0 0

Figure 11.L18: ZOI experiment on Collagen-CNF nanocomposites. On the left, a picture of the agar medium
inoculated with Clostridium difficile. Very similar inhibition zones were observed with B. fragilis and
Bacteriodes vulgatus. On the right, the table shows ZOI radius
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The gamma radiation could chemically affect the molecular structure of the metronidazole resulting
ina non-active compound. Inaparallel project, xyloglucans molecules were chemically modified with
metronidazole prodrug and the influence of gamma radiation on such compounds was assessed
through "H liquid NMR. The spectra showed no change related to metronidazole peaks before and
aftergamma radiation, asillustrated on Figure 111.19. The irradiation effect could be different on solid
collagen-CNF composites compared to solubilized modified xyloglucans, but this result still leaves

space for another hypothesis to explain the loss of activity.
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Figure 111.19: Liquid 'HNMR spectra of compound that include metronidazole, before (red) and after (blue)
gamma radiation treatment (35-50 kGy)

The second hypothesis deals with the collagen matrix structure. The gamma radiation creates many
radicals in the exposed materials and triggers many chemical reactions that can be beneficial or
detrimental to the collagen structure. Forinstance, gelatin hydrogels were crosslinked with gamma
radiation and significant increase of mechanical properties were obtained [51]. Likewise, type |
collagen scaffolds were reinforced with dextran polysaccharide before gamma radiation. This
resultedinanenhanced gel yield after gamma radiation [52]. Consequently, one can assume that the
metronidazole is not degraded but only trapped into a denser crosslinked collagen/CNF structure
provoked by gamma radiation treatment. The influence of such heavy treatment on collagen/CNF
nanocomposites will be furtherinvestigated in the next chapter. The rest of the discussion will now

focus only on non-irradiated collagen/CNF samples.
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Successive ZOIl experiments were conducted to assess the antibacterial activity of collagen/CNF-
metro and collagen/CNF-t samples overtime. At each cycle of ZOlI, after collection of ZOl dimensions,
disk samples were transferred to a fresh bacteria-inoculated agar medium. On cycle 1, similarly to
first experiment, significant ZOI is detected for Coll-CNF-metro-5% while Coll-CNF-t-5% did not
exhibited any antibacterial properties as depicted on Figure 19. Upon cycle 2, the activity of Coll-CNF-
metro-5% decreasesand ZOl is limited to the edge of the disk sample. The two last cycles led to the
same results, provingthe contact active properties of Coll-CNF-metro-5% samples as shown on the

evolution of ZOl radiuses on. As expected, Coll-CNF-t-5% does not show any antibacterial activity on

cycles 1, 2, 3and 4.
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Figure 111.20: Successive ZOIl experiments, picture of the agar medium for Cycle 1 and 2 showing ZOls (left)
and evolution of the ZOI radiuses over the number of cycles of experiments (right)

The prolonged contact-active behavior indirectly confirms the covalent immobilization of
metronidazole moleculeto the CNF that were included in the collagen matrix. This sample proved to
have significantantibacterial properties against anaerobic bacteria, which makes it suitable for soft

tissue repair application.
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2.4 Conclusion

Highly innovative two-step chemical modification was applied to graft a prodrug that included
metronidazole and ester function. Enzymatically triggered cleavage of this ester function was
performed and confirmed by addition of human carboxyl esterase 2. “On demand” release strategy
of metronidazole has been successfully proved for CNF-metro suspension. The production of model
soft tissue repair devices composed of collagen and metronidazole-modified CNF was achieved
through complex preparation thatinvolves temperature and pH control. Nanocomposites exhibited
an antibacterial activity against both gram-positive and gram-negative anaerobic bacteria in static
conditions, as proven by ZOIl experiments. A prolonged activity against Bacteriodes fragilis was
detected upon successive ZOlI tests, which indirectly confirmed the covalent immobilization of
metronidazole on CNF substrates thanks to the prodrug anchoring strategy that was implemented.
The gamma radiation treatment of the samples resultedin the loss of antibacterial activity suggesting
the degradation of the metronidazole molecule, or the intense densification of the collagen/CNF
structure. Preliminary NMR analyses of metronidazole-containing compound suggested that no
chemical modification occurred upon gamma radiation treatment. Such result calls for further
investigations but the study clearly shows that collagen-CNF-metro samples are promising 2D

structures for the design of active soft tissue repair model medical devices.

NB: Authors would like to acknowledge Alexandre Meunier and Xavier Bertrand from the Regional
University Hospital Center (CHRU, Besangon, France) for the antibacterial testing against anaerobic

bacterial strains.
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3. Composites of collagen and cellulose nanofibrils with prolonged release of

chlorhexidine for antibacterial substrates

This section is based on the results obtained in collaboration with N. Esseghir, Y. Karrout and J.

Siepmann at INSERM U1008, located in Lille, France, in the context of the CELLICAL project.

Abstract

Active composites of collagen and cellulose nanofibrils (CNF)that include chlorhexidine digluconate
(digCHX), a broad range antiseptic, were prepared. The quantity of CNF and the gamma radiation
influence were studied in terms of water-uptake, antibacterial activity against gram-positive and
gram-negative bacterial strains, and drug release experiments. Increased quantity of CNF and gamma
radiation limitthe water uptake of the composites. The antibacterial activity was confirmed only for
drug loaded samples, with or without gamma radiation. Firstly, it indicates that collagen and CNF
alone donot presentbactericidal or bacteriostaticeffect. Meanwhile significant bactericide effect is
demonstrated when the API is included in the composite for both irradiated and non-irradiated
samples suggesting that radiation does not hinder the activity of the digCHX. Finally, drug release
experiments benefited fromincreasing quantity of CNF since they strongly interact with the APl and
thus provide sustained release. Gamma radiation also presents similar effect to a lesser extent.
Overall, these composites appearto be promising material for the design of soft tissue repair medical

devices.
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3.1 Introduction

Cellulose is the most abundant natural polymeron earth. Inthe 20" century, cellulosic products have
been used undervarious forms for medical application, i.e. as membrane for hemodialysis in blood
purification oras excipient forthe tablet production (micro-crystalline cellulose) in the pharmacology
industry [53], [54]. In the 1980’s, a new type of cellulose has been unveiled by Herrick, Turbak and
co-workers: cellulose nanofibrils [55], [56]. This new cellulosic material can be isolated by
mechanical treatment after chemical or biological pretreatment of biomass (wood, annual plants),
resulting in flexible cellulose nanofibrils of 1-2 um in length and 5-30 nm in diameter [1], [2]. In
parallel to numerous potential application in the paper and packaging industry [8], [57],
nanocomposites [10] or printed electronics [12], such nanocellulose is also investigated as a new
substrate for medical applications, as indicated by several recent reviews [5], [13], [14]. New
nanocellulose-based medical devices address topics such as wound healing and drug delivery. The
biocompatibility and high specific surface area of such nanomaterials, together with their tunable

surface chemistry are considered as the main features pointed out by the above mentioned reviews.

Thiswork deals with the use of nanocellulose for soft tissue repair (STR), which is one of the major
business activities of the medical device industry. In hernia repair, implants can be used to re-build
softtissues and regenerate wounded skin layers. Post-operative pains and infections upon implants
surgery remain the most reported complications. Collagen based systems are proved to avoid
infections and also prevent adhesions phenomena that bind the medical implant and the organs,
which is detrimental for correct healing [37], [38]. In the previous study, collagen was successfully
used as a matrix that included metronidazole-modified cellulose nanofibrils to design active medical
devices. The gamma radiation treatment applied tothe samples led to a loss of antibacterial activity
and itsinfluence onthe properties of collagen/CNF systems needs to be more specifically addressed,
especially when drugs are embedded in the nanocomposite. Gamma radiation is mainly used for
sterilization purposes but it is also known to strongly affect polymers such as collagen. While 20™
century scientific papers describe a degradation of collagen molecular structure upon gamma
radiation sterilization at 10-750 kGy doses [58], [59], some beneficial effects were recently detected
with lower radiation dose. For instance, collagen derived gelatin was reinforced with polyvinyl
alcohol (PVA) up to 15% and mild gamma treatments were applied (from 0,5 to 5 kGy) to trigger the
crosslinking. Tensile strength was increased until 1 kGy gamma radiation, before decreasing under
the values of non-irradiated samples for higher gamma doses [60]. All these work confirm the

densification of collagen structures upon gamma radiation.
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In parallel, CNF have been used as a reinforcing agent of several matrices like thermoplastics or
watersoluble polymers (starch, proteins, chitosan) [61]. Similarly, the addition of high ratio of CNF to
collagenbased structures was provento be beneficial for both mechanical properties and stability in
moist conditions when crosslinked with glutaraldehyde or combination of genepin and gamma
radiation treatment. Tensile strength of 132-186 MPa and elastic modulus of 5-14 MPa were
obtained, which is significantly higher than pure collagen matrices (2 to 3 times more for tensile
strength and to 4 times more for modulus). Moreover, reduced liquid uptake of PBS was observed
upon CNF addition and crosslinking confirming the stability of such nanocomposites. Finally,
cytocompatibility and biocompatibility was assessed and results confirmed good cell adhesion and
growth making these structures suitable for bone and ligaments implantable scaffolds [42], [43].
Other works report the preparation of bacterial cellulose-collagen composites aerogels and
chemically crosslinked membranes that also exhibit mechanical improvements and better

cytocompatibility than reference materials [40], [62].

Among the available literature, only one attempt of combining CNF and collagen (gelatin) with
encapsulated APl was found. The targeted application was enhanced bone regeneration. The scaffold
presented sustained release of osteoinductive molecule, i.e. the simvastatin, after a burst release,
thanks to the cellulose nanofibrils [63]. However, no mention of the influence of sterilization process
such as gamma radiation was done. In this work, the combination of CNF, collagen and active
molecule will be used to design prototypes of soft tissue repair medical devices. The influence of

gamma radiation and quantity of CNF will be investigated in terms of water-uptake, antibacterial

activity and drug release experiments.
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3.2 Experimental section

3.2.1. Materials
The cellulose nanofibers suspensions were provided by the Centre Technique du Papier (CTP,
Grenoble, France). A first suspension referred as CNF-e was produced by a 2h enzymatic pre-
treatmentof a pre-refined (40°SR) bleached birch pulp followed by homogenization: 3 passes at 1500
bars inan Ariete homogenizer from GEA. The second suspension, which isreferred as CNF-t, was also
produced the Centre Technique du Papier (CTP, Grenoble, France). The 2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPO) mediated oxidation was performed on a pre-refined (40°SR)
bleached softwood bisulfite pulp provided by TEMBEC following classical procedure developed by A.
Isogai’s team [49], [50]. Briefly, the pulp was reacted 2 hours with TEMPO and sodium bromide at pH
10, which was controlled with sodium hypochloride. Collagen solution was provided by Medtronic
(Trévoux, France). The collagen was extracted from porcine dermis through chemical oxidative
treatment. A 4 wt% of oxidized collagen solution was obtained. For clarity purposes, oxidized

collagen will be referred as collagen in the samples description.

Chlorhexidine di-gluconate 20 wt% solution in water was purchased from SIGMA-Aldrich (digCHX,
CAS: 18472-51-0, Figure 111.21) and diluted for composite formulation. Sodium hydroxide and
hydrogen chloride were also purchased from SIGMA Aldrich, 1 M stock solution were prepared. Poly
ethylene glycol 4000 (PEG, CAS: 25322-68-3) and glycerol (CAS: 56-81-5) were obtained from MERCK
Millipore. Steriledeionized water was used in all the following experiments. Phosphate buffer saline

(PBS) at pH 7.4 was used for release experiments.
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Figure ll.21: Chlorhexidine digluconate molecular structure

3.2.2. Methods

3.2.2.a. Physical characterization of CNF and collagen-CNF composites
CNF-tand CNF-e 0.1 wt% suspensions were analyzed with optical microscopy at x20 magnification on
an Axiolmager A2 device equipped with an AxioCam MRm camera (Carl Zeiss, Germany). Dark field

observation mode was used to obtain contrasted images. Atomic force microscopy (AFM) images
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were recorded on a Dimension icon® (Bruker, USA). The suspension concentration was adjusted at
7.5x10* wt% by several dilution of the gel using high shear mixer Ultra-Turrax (IKA). A drop of this
suspension was deposited on freshly cleaved mica plate before drying overnight under fumehood at
room temperature. The acquisition was performed in tapping mode using a silica coated cantilever
(OTESPA® 300 kHz — 42 N/m, Bruker, USA). Zones of 3,3*3,3 um? were analyzed. Environmental
scanning electron microscopy (SEM) was performed on a HITACHI TM1000 to obtain images of the

collagen-CNF composites. A working distance of 2 cm and a magnification of x1000 were used.

3.2.2.b. Liquid nuclear magnetic resonance (NMR)
Liquid **C nuclear magnetic resonance (**C NMR) was performed on digCHX solutions at the «
Institute for Nanoscience and Cryogenics (INAC) » in the «French Alternative Energies and Atomic
Energy Commission (CEA) » at Grenoble, on a Bruker AVANCE400spectrometer. Acquisition and data
treatmentwas done usingthe LINUX TopSpin 3.2 software. 20 wt% digCHX solutions were diluted in
D,0 and Chromium (lll) acetylacetonate relaxant agent was added in 10 mg/ml final concentration.
The experiments were conducted with 1.3 s acquisition time, 5 s relaxation delay and a 30° pulse
using a 250 ppm spectral width (relaxant agent in the mixture). Proton broad band decoupling was
applied only during acquisition time. 64 k data points were used for data acquisition. Prior to Fourier
transformation, zero-filling at 128 K was applied, followed by apodization with a 2 Hz exponential.
Chemical shifts are given relative to TMS (tetramethylsilane, § =0 ppm). The positions of the peaks

were referred to the residual solvent signal

3.2.2.c. Production of digCHX loaded Collagen-CNF composites
A solution of 10 wt% PEG and 6 wt% glycerol was prepared in sterile deionized water (PEG/Gly
solution). After complete dissolution under magnetic stirring, the solution was further sterilized by
filtration on 0.200 um pore size filters. Commercial digCHX solution was diluted to 1 wt%. CNF-e and
CNF-t suspensions concentrations were adjusted at 1 wt% and 0.4 wt% respectively and dispersed
with Ultra-Turrax high shear mixer (IKA, USA) for at least one minute at 10 000 rpom. The pH of the
suspensions was adjusted to 9 with 0.1 M and 0.5 M NaOH solutions. All these solutions were pre-
heated at 40°C in a hot water bath. Oxidized collagen solutions are stored at -80°C after their
production procedure and they show agel like structure at room temperature, which is not suitable
for composite production. Oxidized collagen solutions were then placed in the hot-water bath at
40°C in order to obtain liquid collagen solutions. The temperature is one of the key parameters to
control when working with collagen based systems since it shows a gel like structure when cooled

down.
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The next step is the most challenging one, where PEG/Gly solution, CNF suspensions, oxidized
collagen and digCHX solutions are mixed together. Numerous attempts were necessary to find the
best protocol that ensures agood dispersion of CNF and digCHX in the collagen matrix while avoiding

the introduction of air bubbles that are detrimental to the stability of the composite.

The best procedure selected was as follows: oxidized collagen and PEG/Gly solutions were first mixed
together in a beaker on a hot plate heater with magnetic stirring to maintain the solution
temperature at 40°C duringall experimentin orderto preventthe collagen turning back to gel state.
The pH was adjustedto 8.9 —-9.1 withNaOH0.1 M or 0.5 M solutions. The pHadjustmentis required

for the subsequent cross-linking of the collagen strands upon drying.

A final quantity of 2 wt% of digCHX in the composite was targeted and the corresponding volume of
the 1 wt% digCHX solution was added to the collagen-PEG/Gly mixturedrop by drop. Pre-heated CNF
suspensions were then slowly introduced in the mixture. Amounts of 5, 10 and 20 wt% of CNF were
targeted for the composite. The pH was controlled and adjusted again if necessary. The final solid
content(i.e. 1.5 wt%) was reached by the addition of hot deionized sterile water (40°C). The whole
mixture was then stirred for 15 min to favor the dispersion of the CNF in the oxidized collagen

solution and ensure a homogeneous temperature.

The casting of the formulation was performed oninertsurface (PVDCsheets) equipped with silicone
molds of rectangular shape. The basis weight (grammage) objective was 64g/m?. Once cast undera
hood that ensures laminarairflow, after 15 min cooling down, the solutions turned to gel state. The
drying was then performed overnight at 20°C and 40 % of relative humidity ina controlled oven. The

composite membranes were recovered and stored in individual Tyvek™

pouches that were sealed.
Half of the samples were sterilized with gamma-irradiation at 35-50 kGy doses. The Table 111.3
summarizes all the samples prepared according to afore mentioned protocol. The following
abbreviation will be used in the discussion: Coll-CNF-t-5%-CHX refers to collagen-PEG/Gly-CNF
composites comprising 5% of CNF-t with digCHX. Coll-CHX refers to Collagen-PEG/Gly membranes

only loaded with digCHX.
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Table 1ll.3: Composition of composites prepared with oxidized collagen, CNF-t or CNF-e and chlorhexidine
digluconate (digCHX)

. Collagen- CNF loading 2 wt% digCHX
Designation
PEG/Gly
(x=tore) K
matrix 5% 10%
Coll
Coll-CHX
Coll-CNF-x-5%
Coll-CNF-x-5%-CHX

Coll-CNF-x-10%
Coll-CNF-x-10%-CHX
Coll-CNF-x-20%
Coll-CNF-x-20%-CHX

3.2.2.d. Water uptake
Disks of 15 mm diameter were cut out from every sample and immersed in 20 ml deionized water
before incubation at 37°C. At 2, 7, 24 and 96 hours, the weight of discs was measured after removal
of excesswater. The samples were then immersed again in the same medium. The water uptake W

(%) was then calculated according equation (I11-4).

my — 1y
W= —XlOO

m; (n-4)
Where m, isthe weight of the discat time t and m; isthe initial weight of the disc before immersion.
Measurements were done in triplicates to assess standard deviation of the results. Water uptake

measurements giveindication on the internal crosslinking of the composite and the influence of CNF

and digCHX addition.

3.2.2.e. Antibacterial activity
The antibacterial activity of the Coll-CNF composites was assessed through zone of inhibition (ZOl)
testing against Staphylococcus aureus and Escherichia coli. The bacterial suspensions were spread on
Muller-Hinton agarand 15 mm diameter disks of samples were deposited onto the surface. After 24
hours incubation, ZOl were detected or not, indicating whether the sample present antibacterial
activity or not. When ZOl were observed, dimensions were collected. Each sample was characterized

in triplicates.

3.2.2.f. Release study experiments
Drug loaded Coll-CNF composites samples were used forreleasestudy experiments. Two techniques

were used, with partial or full release medium renewal. In the first one, 30 cm? samples were
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immersedin 50 ml of phosphate buffersaline (PBS, pH7.4) in opaque flasks under orbital sharing (80
rpm) and maintained at37°C inan incubator. Sink conditions were respected. Aliquots of 3 ml were
taken at pre-determined time intervals and replaced with the same amount of fresh PBS (Figure
[11.22a). Results will be presented as the cumulative release of digCHX over time. The second
technique involves the same equipment but the entire release medium was renewed at the same
pre-determined time intervals by transferringthe sample to anew flask with fresh PBS. An aliquot of

3 ml was collected to trace the presence of digCHX (Figure 111.22b).

UV analysis over time
a) (3 ml sampling)

Incubator 37°C 3 ml of fresh PBS

4 \

Drug loaded Coll-CNF composites

: PBS, pH 7.4, 50 ml
| Orbital shaker '/
J

\.

b)

UV analysis over time
(3 ml sampling)

3 ml of fresh PBS Incubator 37°C

4 N

Incubator 37°C

—

.

‘ Orbital shaker '/ Sample transfer ‘ Orbital shaker
in fresh PBS \_ )
\. J medium
Washn® 1 Washn® 2

Figure 1.22: Graphical description of release study techniques with a) partial renewal of the release
medium: 3 ml aliquots were taken and replaced with 3 ml of fresh PBS, and b) full renewal of the 50 ml
release medium, 3ml aliquots are also use for analysis

Here, results will be presented as the cumulative release of digCHX over the number of release
medium renewal (i.e. washing number). Inverse phase high performance liquid chromatography
(HPLC) was used to determine the concentration of digCHX over time. Mobile phase was composed
of NaH,PO, 0.08 M (65 volumes), acetonitrile (35 volumes) and tri-ethylamine 0.5%. The pH was
adjusted at 3 with glacial acetic acid. Flow rate was 1 ml/min and a wavelength of 270 nm was used
for the UV analysis. Injections of 20 ul were sent in the stationary phase composed of a Gemini C18
column of 100 mm. Pre-established chromatograms of known-concentrations digCHX solutions were

used to produce a calibration curve and be able to calculate the concentration of digCHX in the
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aliquots. Every releaseanalysis was done in triplicates. All these release studies have been performed
during the master thesis of Nourhene Esseghir at Institut National de la Santé et de la Recherche

Médical (INSERM, U1008) in Lille, France.

3.3 Results and discussion

3.3.1. CNF and collagen-CNF composite physical characterization
Various qualities of CNF-e and CNF-t are described in the literature. In this study, highly
homogeneous suspensions of CNF-e and CNF-t were obtained. A quick characterization of these CNF
suspensions is provided on Figure 111.23. Optical microscopy shows microfibrils and nanofibrils
aggregatesfor CNF-e while the CNF-t are not visible since they are much more individualized. AFM

height sensor images confirm the nanoscale dimensions of CNF-t and CNF-e.

Figure 11.23: Morphology of CNF-e and CNF-t: left, optical microscopy (suspensions 0.1 wt%, x20) and right,
AFM height sensor images of CNF-e and CNF-t suspension

Preparation of collagen-CNF composite has been continuously optimized to avoid any air bubbles and
ensure good dispersion of CNF-e, CNF-t and digCHX in collagen matrix. Such homogeneity has been
confirmed visually and also with SEM for CNF-t loaded composites, as exposed by Figure 111.24. The
collagen-CNF composites with the highest content of CNF-t (i.e. 20 wt%) are transparent and

homogeneous. However, the transparency of CNF-eloaded composite was slightly lower than CNF-t

loaded ones.
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It can be explained by the presence of microfibrils aggregatesin CNF-esuspension, as observed with
optical microscopy, that are complicated to further disperse. Meanwhile, for lower proportion of

both CNF-e and CNF-t (5 wt% and 10 wt%), good dispersion was achieved.

-

oz

Collagen-CNF-e 20wt%

Figure 11.24: Morphology of collagen-CNF composites, pictures of composite films showing transparency and
SEM pictures proving the dispersion of CNF

3.3.2. Influence of gamma irradiation on STR
The influence of gamma irradiation that is usually applied on commercial medical devices was
assessed forthe collagen-CNF composites in terms of swelling behavior. Water uptake experiments
were performed on Coll-CNF samples. Figure 111.25 exposes typical effects of CNF-e or CNF-t addition
and gamma irradiation on water uptake of collagen composite membranes. For non-irradiated
samples, the effect of CNF addition in oxidized collagen gives a reduced water uptake from more
than 1000 % without CNF to 650 % for CNF-t loaded and 450 % for CNF-e loaded membranes, after
24h of immersion. Presence of CNF prevents the collagen membranes to swell indicating good
interactions between oxidized collagen strands and cellulose nanofibrils that stabilizes the internal

structure. The decrease in water uptake is lower for CNF-t because of its more hydrophilic character,
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which increases the Coll-CNF-t composite water affinity. For gamma irradiated samples, the same

tendency is observed even if it is of moderate extent for CNF-t loaded membranes.
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Figure 111.25: Evolution of water uptake with time for Coll, Coll-CNF-t-5% Coll-CNF-e-5% composites and
influence of gamma irradiation. The stars * indicate the degradation of the sample

After 24 h ofimmersion, samplesthat were notirradiated with gamma treatment were dispersed in
the swellingmedium and no water uptake values were possible to measure. Meanwhile, irradiated
samples were still structured enough to undergo wateruptake measurementat 96 h of immersion in
water. Very narrow standard deviation can also be observed for irradiated samples confirming a
more homogeneous and stable internal structure. The overall effect of gammairradiation is a strong
decrease inthe water uptake. When non-irradiated samples swells until degradation (indicated by *)
after 24h, gammatreated composites are able to undergo rapid swelling that stabilizes around 350%
for Coll and Coll-CNF-t-5% and 220% for Coll-CNF-e-5%. This confirms the beneficial influence of
gamma irradiation on the internal crosslinking of this oxidized collagen strands with each other but

also together with CNF.

The effect of CNF-taddition and gammairradiation is also confirmed when plotting the evolution of
water uptake of Coll-CNF-t composites over time, against the amount of CNF-t in the composite.
From 0to 10 wt% of added CNF-t, water uptake is decreasing for both non-irradiated and irradiated
samples from 700-1000 % to below 500 % and from 250-350 % to below 150 % respectively, after 24
h of immersion (Figure 111.26). This confirms the afore-mentioned stabilization effect of CNF addition

on Coll-CNF membranes. Again, irradiated samples values show narrower standard deviations that
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also prove that every CNF-t loadings allow for the production of stable composites. Similar

tendencies were observed with CNF-e loaded composites (results not shown).
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Figure 111.26: Evolution of water uptake with CNF-t loading of Coll-CNF composites and influence of gamma
irradiation over time (up to 24h swelling)

These results indicate how gamma radiation treatment and CNF addition limit the capacity of
collagen-CNF composites to absorb water and eventually be dispersed in liquid media. Hydrogen
bonding governs most of these two polymers structures, which suggests that hydrogen bonding
between celluloseand collagen strengthen the composites. Moreover, gamma radiation treatment
mustinduce chemical cross linkingin between oxidized collagen strands and also between CNF and

oxidized collagen strands, improving again the binding between the two materials.

3.3.3. Antibacterial activity of collagen-CNF composites
Zone of inhibition (ZOl) testing was used to characterize the antibacterial activity of all collagen-CNF
composites (with or without digCHX, with or without gamma radiation treatment), against both S.
aureus and E. coliin staticconditions. The ones without digCHX do not exhibit any zone of inhibition
afterincubation, confirming that neither pure oxidized collagen nor collagen-CNF composites present
antibacterial activity. However, as soon as digCHX was included in the composite preparation,
significant zones of inhibition are detected for every sample. This is in accordance with literature
when CNF structures where loaded with digCHX [18]. The most representative are shown on Figure
I11.27, where only irradiated samples are plotted. Overall, slightly larger zones of inhibition are
obtained against S. aureus. It is a gram-positive bacterial strain that is known to be affected more
easily by digCHX than gram-negative strains, such as E. coli. Regarding S. aureus results, the size of

the inhibition zones is roughly the same, no matter the presence, type or quantity of added CNF.
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Figure lI.27: Zone of inhibition testing against S. aureus and E. coli of collagen-CNF (10% CNF-e or CNF-t)
composites loaded with 2 wt% chlorhexidine digluconate (digCHX) after gamma radiation

Concerningthe gram-negative bacterialstrains E. coli, smaller zones of inhibition are observed. The
outerlayerof gram negative bacteriais often composed of alipo-polysaccharide barrier that is more
difficultto penetrate for chlorhexidine. All the samples containing digCHX demonstrated significant
zone of inhibitions against both gram-positive and gram-negative bacterial strains. The overall
influence of gamma radiation is very low, which confirms that gamma radiation did not affect the
digCHX molecules nor prevented their diffusion through the collagen-CNF composite structure,
contrary to the previous study with metronidazole. This confirms that metronidazole is more

sensitive to the radicals arising from the gamma radiation.

3.3.4. Drug release experiment
Chlorhexidine digluconate release experiments were also performed on every sample to assess the
release profilesin dynamicconditions. In the absence of digCHX, release experiments confirmed that
neither oxidized collagen nor CNF presented overlapping signals with chlorhexidine, when comparing
to data collected for the calibration curve. It is worth noting that a release of 100% of the digCHX
introduced is never achieved contrary to what was expected and observed in the literature for
release in water [64]. Such difference is mainly due to digCHX interaction with PBS buffer ions.
Indeed, it seems clear that positively charged chlorhexidine interacts with negatively charged
phosphate ions. Some mixing tests of digCHX in PBS have confirmed this result when precipitate was
observed. Moreover, the influence of gammaradiation on digCHX solution was investigated through
liquid ">C NMR. Surprisingly, this technique did not reveal any chemical change upon gamma
radiation, as depicted on Figure 111.28, confirming that the missing digCHX in drug release results

cannot be attributed to potential degradation caused by radiation. Similarly, strong interaction of
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digCHX with CNF might also explain that 100% of the drug is not released. Adsorption of digCHX onto
CNF surface certainly prevents part of the drug to leach out the composite. Nevertheless, despite this

analytical issue, the following drug release results can still be used for comparative analysis.

|
l | ‘ I digCHX - after gamma
‘ N

‘ [ 5'} Fﬁl digCHX - before gamma ‘ |
i W VAN M A I ITAN, S

I 1
100 50 [ppm]

Figure 111.28: Liquid 3¢ NMR analysis of 20 wt% chlorhexidine digluconate solution, before and after gamma
radiation treatment

The influence of CNF type was strong in terms of maximum amount of digCHX released, no matter
the release technique. When partial renewaltechnique was used, for CNF-e loaded samples, 60% of
the theoretical quantity of digCHX is released while CNF-t provide only 25% (Figure 111.29a). The full
renewal technique however, clearlyincrease the maximum release achieved: 75% is reached for CNF-
e loaded samples and almost 50% for CNF-t (Figure 111.29b). Also, the tendency of CNF-t to offera
sustained release after 80 hours with the partial renewal technique is confirmed with the full
renewal technique. Indeed, during the composite preparation the pH was adjusted to 9, converting
every carboxylicacid groups on CNF-t to anionic carboxylate groups. The positively charged digCHX
molecule thus strongly interacts with CNF-t, which explain the prolonged release tendency despite

the low amount of CNF-t.

H. Durand, 2019 — Confidential
279




280

ﬁ- 75
% 100 -
100 - 3 50
]
=] 25
S 0
. 751 0 2 4 6 8 10 - 51
= Time, h o
2 P—f—?“i—{\;_.\{ -
] @ 50 4
s ] o
3 50 ©
=) 2
g a
25 4 25
" - Coll-CNF-e-10%-CHX ~=— Coll-CNF-e-10%-CHX
. -0~ Coll-CNF-t-10%-CHX ol -5 Coll-CNF-t-10%-CHX
0 80 160 240 320 400 480 0 2 4 6 8 10 12 14 16 18 20 22
Time, h Washing number

Figure 11.29: Cumulative digCHX release experiments in PBS for Coll-CNF-e-10%-CHX and Coll-CNF-t-10%-CHX
(no gamma radiation applied) with a) partial renewal of the medium (3 ml aliquots replaced by 3 ml of fresh
PBS) and b) full renewal of the release medium

The red marks on the graphsindicate the disintegration of the composite insidethe release medium.
While it happens after the same duration of experiment for partial renewal technique (150 h), the
full renewal technique gives a different result: CNF-t loaded composites are able to maintain their
structure for a much longertime than CNF-e loaded ones. This might be explained by the absence of
aggregates in CNF-t suspension compared to CNF-e, as observed with optical microscopy. The
TEMPO-mediated oxidation of cellulose fibers allows for a better isolation of cellulose nanofibrils
upon mechanical treatment. Moreover, the presence of high amount of carboxylic acid function on
CNF-t mightinduce more interaction with oxidized collagen strands and limit the degradation. On the
contrary, remaining microfibrils aggregates in CNF-e suspension could lead to defects in collagen-
CNF-e composites, which are weak points resulting in structures that are more sensible to swelling

during immersion, and leading to subsequent degradation.

The cumulative release of digCHX is presented in percentage of the theoretical quantity introduced
duringthe composite preparation (i.e. 2wt%). Forrelease experiments, each samples had atleast 3.8
mg of digCHX (30 cm? at 64 g/m?). This quantity of active compound already proved to provide the
composite with antibacterial activity through ZOI testing. In order to further confirm the activity of
such materials, the above mentioned released digCHX quantities can be compared to minimal
inhibitory concentration (MIC), the lowest concentration of a drug that inhibits the visible growth of
an organism [65]. For digCHX, values ranging from 2 to 16 mg/| are commonly reported against S.
aureus and E. coli [66], [67]. Both release techniques used 50 ml of PBS. For partial renewal
technique, digCHX concentrations of 45 mg/l and 20 mg/| are reached with CNF-e and CNF-t loaded

composites, respectively. These values are above the MICs proving the activity of the prepared
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collagen-CNF-CHX composites in partial renewal drug release conditions. In the second technique,
full renewal of the release mediumis done. Thus, overthe successive washing steps, the digCHX that
was released from the composite is progressively removed. On Figure 111.29b, the release profile
obtained for Coll-CNF-e-10%-CHX reaches a plateau at almost 75% after 3 washing steps, indicating
that the following steps do not retrieve more digCHX from the sample. Each volume of 50 ml that is
put into contact with the sample after the third washing step does not contain any trace of digCHX.
This confirms the loss of activity of the collagen-CNF-e sample after 3 washing steps since no more
digCHXisreleased. However, in between each washing steps of the Coll-CNF-t-10%-CHX sample, the
cumulative amount of digCHX increases by 1 to 3%. These small proportions of digCHX that are
released at each washing step in the 50 ml PBS medium represent a concentration of 0.76 to 2.28
mg/l, which is in the range of the above mentioned MICs. This level of release is maintained until
washing step n°15, after which the digCHX concentration is inferior to MICs values. It demonstrates

the sustained antibacterial activity of Coll-CNF-t-10%-CHX samples.

The other CNF-e and CNF-t loadings offer very similar behavior. Although the different CNF-e
loadings do not seem to significantly impact the release profiles of full renewal experiments, the
tendency of CNF-t to provide sustained release is even improved with 20% CNF-t loaded samples

(Figure 111.30a & b).
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Figure 11.30: Cumulative digCHX release experiments in PBS with full renewal of the release medium for non-
irradiated samples, a) with CNF-e loading and b) CNF-t loading

While CNF-e loaded samples all reach almost 75% of maximum release within the same duration,
CNF-tloaded samples presentaslower release. Moreover, the more CNF-t, the more sustained the

release profile appears to be, shifting from logarithmic to almost linear curve for 20% CNF-t loaded

composites. Regarding the degradation of the sample, CNF-e loaded composite degrade after the
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same duration, but with increasing CNF-t quantity the degradation of the sample is significantly
delayed. This confirms again the betterinteraction of CNF-t with the oxidized collagen compared to

CNF-e.

When gamma radiation is applied on collagen-CNF composites, the release of digCHX seems to be
slightly hindered since a lower quantity is released for both types of drug release technique, with
partial or full renewal of PBS medium (Figure I11.31a & b). The tendency for other samples is mostly
the same (not shown). Even if the difference is very low, gamma radiation could have affected the
digCHX molecule, explaining the lower quantity. But antibacterial activity of the composites was
proven to be unaffected by gamma radiation treatment (Figure 111.27). Moreover, liquid >C NMR
proved that digCHX was insignificantly affected by irradiation. Certainly, the gamma radiation favors
the crosslinking of collagen based systems, as described in the introduction, and further limits the
diffusion of digCHX in the oxidized collagen matrix. The late degradation of gamma irradiated Coll-
CNF-t-10%-CHX sample in the partial renewal release technique confirms this hypothesis (Figure

I11.31a).
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Figure 1l.31: Influence of gamma radiation on cumulative digCHX release from Coll-CNF-t-10%-CHX
composites for a) partial renewal technique and b) full renewal technique

The lower release of digCHX can thus be explained by the concomitant action of anionic CNF-t and
densification of collagen matrices upon gamma radiation. The gamma irradiated samples present a
comparable sustained digCHX release profile, for both drug release techniques. Finally, similarly to
the non-radiated sample, the activity of irradiated Coll-CNF-t-10%-CHX is confirmed for at least 15
washing steps thanks to the repeated release in each 50ml PBS volumes. The addition of a low

amount of CNF-t strongly improves the drug release of these biocompatible collagen-CNF

composites.

H. Durand, 2019 — Confidential



Chapterlll— Development of cellulose nanofibrils materials for medical devices

3.4 Conclusion

The effect of CNF addition and gamma radiation on collagen-CNF composites was described with
water uptake measurements. CNF addition and irradiation tend to limit the water uptake of the
composites. Gamma radiation also provides a more durable composite structure since chemical
crosslinking is triggered. The concomitant action of CNF presence and gamma radiation-induced
crosslinking requires complementary investigations to determine if CNF are also chemically involved
inthe collagen crosslinking. Still, such compositedid not disperse in PBS medium even after several
days (240 h). When digCHX wasincluded in the formulation, antibacterial activity was demonstrated
in static conditions (ZOl), even with gammairradiated samples. The stability of digCHX molecule after
irradiation was also confirmed by liquid >C NMR. Moreover, the release of the molecule was
confirmedindynamicconditions (i.e. underorbital shaking). Increased quantity of CNF led to slower
sustainedrelease that was further limited thanks to gamma radiation treatment. CNF-t is even more
beneficial toextend the drugrelease. These composites thus appear like promising material for the

design of active medical devices.
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Conclusions of Chapter Il

The aim of this chapter was to design CNF based substrates for medical device development, by
exploiting the functionalized CNF prepared in Chapter|l. Three different kinds of CNF substrates were

prepared in order to obtain (i) 100% CNF membranes and (ii) & (iii) collagen-CNF composites.

In chapter IlI-1, thick and overdried CNF-e membranes with adsorbed/entrapped ciprofloxacin
proved to be able to absorb more water and better resist the exposition to liquid medium. These
membranes also demonstrated the most prolonged release in immersion and release chamber
protocols. The antibacterial experiments were used to compare CNF-e membranes with bulk
adsorbed ciprofloxacin (CNF-cip-ads) versus CNF-e membranes with surface grafted ciprofloxacin
(CNF-cip-g). CNF-cip-g membranes presented betterlongterm contact antibacterial activity. Covalent
binding of molecule to CNF-e substrates appears like a promising strategy for the development of

innovative topical application medical device.

The chapter llI-2 validated the “on-demand” controlled release of metronidazole from functionalized
CNF suspensions upon enzymaticactivity of carboxyl human esterase. These CNFs wereembedded in
collagen matrix to produce active composites. A prolonged activity against anaerobic Bacteriodes
fragilis was detected upon successive zone of inhibition testing. The study clearly shows that
collagen-CNF-metro composites are promising 2D structures for the design of active soft tissue repair

model medical devices.

Finally, the chapterlll-3 assessed the influence of CNF type and proportion and gamma radiation of
collagen-CNF composites on the release profiles of chlorhexidine. Increasing amounts of CNF-t
strongly prolonged the release of the drug. The influence of sterilization upon gamma radiation was
positive on water uptake of composites since it limited the degradation but its influence on the
release and on the crosslinking requires further investigations. Still, these composites thus appear

like promising material for the design of active medical devices.
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General conclusions & perspectives

This Ph.D. work investigated the functionalization of cellulose nanofibrils (CNF) with active molecules in
order to develop innovative model medical devices. Bio-active structures of 100% CNF films and
collagen-CNF composites were designed to address remaining clinical needs such as wound bed

infections after accidents or surgery.

Indeed, chapter | described how biobased polymers, like cellulose or collagen, can be used as
biomaterials. They have inherent biocompatibility and can assemble in structures that mimic the natural
extra-cellular matrix. Particularly, cellulose nanofibrils have a strong potential for medical application
since they present widespread availability, numerous 2D and 3D organized structures with high specific
surface area and enhanced tunability. Actually, CNF can be modified to further improve their
functionalities. The review of functionalization techniques evidenced the high versatility of such material
and the possibility to modify it for conferring a bio-activity, by using water based methods and thus
avoiding environmental concerns. So, the literature review confirmed the large window for CNF
applicationsinthe biomedical field. To support this conclusion, it can be worth mentioning that over the
Ph.D. projecttimeline, the emerging literature associated with the use of CNF for medical application has

largely increased as illustrated on Table 1.

Table 1: Literature evolution over the Ph.D. projet

T Beginning - January 2016 End - January 2019
Publications Patents Publications Patents
CNF 2700 326 4100 (x1.5) 520 (x1.6)
CNF + medical 32 22 65 (x2) 37 (x1.7)
CNF + functionalization 214 16 420 (x2) 22 (x1.4)

Thus, the immobilization of drugs was investigated in chapter Il. The single step water based
esterification procedure applied to CNF films resulted in a device with prolonged antibacterial effect. For
modifying CNFaqueous suspensions with prodrugs, more complex procedures were required. In these
cases, first, CNF were provided with areactive function to enableanew efficient chemistry (instead of —
OH or —COOH reactions) for grafting the drug. Then, modified CNF were made to react with a prodrug.

The latter is a drug modified for adding a cleavable function that allows triggering the “on-demand”
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releaseinaspecificmedium (namely an esterto release the molecule ataninfection site, where human
esterase concentration increases). Within this approach, pending alkyne and furan functions were
attached to CNF surface through amidation for subsequent binding with prodrugs by click chemistry

reactions, respectively thiol-yne and Diels Alder.

Such strategies are rarely reported in the literature and, to our knowledge, were successfully used for
the first time to bind active principle ingredients to CNF. This positive result was confirmed by the
possibility to access a high technology DNP-NMR technique, which allowed detecting very low amounts
of substances. Actually, in some cases, classical characterization tools (FTIR, standard NMR,...) did not
reveal the presence of the immobilized molecules, in agreement with the low quantities added for
technical-economic reasons (and therapeutic needs) and with the generally low yield for reactions in
heterogeneous medium (dissolved molecules were added to CNF suspensions). Thus, even if in some
casesitisstill difficultto conclude onthe nature of the drug-CNF linkage, the presence of the drug onto

CNF was definitively proved.

Finally, these modified CNF were used to develop model active devices in chapter lll. First, 100% CNF
substrates containing ciprofloxacin were prepared: a first series with unreacted ciprofloxacin and a
second one where ciprofloxacin was made to react with CNF. With the first approach, sustained release
was achieved, especially with thick and overdried films. However, when analyzing the ciprofloxacin
grafted CNF films, a better antibacterial activity with a prolonged contact active effect was detected,
confirming the interest of the covalent immobilization strategy. This material has potential for being
usedintopical applications. Secondly, composites of collagen and CNF-metronidazole were successfully
produced. Modified CNF suspensions were embedded in collagen matrix and proved to be active against
anaerobicbacteria, confirming their potential use in soft-tissue repairapplication, where collagen based
materials are already used but without an anti-infectious function. Neat CNF suspensions were also
mixed with collagen solution and chlorhexidine digluconate to produce composites and further study the
influence of CNF type and quantity on drug release. Addition of CNF-t resulted in prolonged release
compared to CNF-e. These collagen-CNF composites can be used for external application on complex

wound environments.

During the work performed, another aspect, not clearly identified at the beginning of the thesis, was
pointed-out. Actually, in many cases, once prepared, medical devices undergo a sterilization procedure,
more and more often through gamma radiation. In the case of collagen, the gamma-rays also play an

active role on the structure, by inducing a chemical crosslinking that leads to a better dimensional
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stability and areduction of the water up-take. The addition of CNF further decreased the water uptake
suggesting the densification of the inner structure of the composite. Unfortunately, with metronidazole,
gamma irradiation negatively affected the antibacterial activity, but this was not the case with the
chlorhexidine. With this latter active principle ingredient, CNF even helped to control and extend the

release in physiological medium. The main results of this Ph.D. work are summarized in Table 2.

Table 2: Main results of this Ph.D. work

on CNF-e films — Ciprofloxacinis immobilzed on CNF films through esterification

Efficient amidation was confirmed on CNF-t suspensions and
on CMF-t

Immaobilization

suspensions,

provides:
= alkyne functions

of drug step 1 = furan functions
on CNE-t Successful click chemistry was confirmed on modified CNF
suSpensions N suspensions with:
stepz ! > thiol-metronidazole prodrug (thiol-yne)
e = maleimide-metronidazole prodrug (Diels Alder)
CN-efilms 5 Cip_ro_floxacin modified CNF-e films show prolonged antibacterial
activity
Antibacterial 5 Composites with metronidazole modified CNF are active against
activity anaerobicbacteria (gram+/gram-)
collagen-CNF
composites
N Composites with chlorhexidine show activity with and without

gamma radiation treatment

Cverdried thick CNF films demonstrate better prolonged release of

From CNFfilms = .
ciprofloxacin

Drug release  From modified
experiments  CMNFsuspension

"On-demand" enzyme triggered release of metronidazole is
achieved for prodrug modified CNF suspension

From collagen- > Increased amounts of CNF-t allow for more prolonged release than
CMNF compaosites CNF-e

Nevertheless, further work would be required to further study these scientific challenges. Regarding
immobilization strategies, the investigation of alternative coupling agents for the first step amidation
reactions could help to further improve the conversion of carboxylic groups to amide, and the final
amount of available APl afterthe click chemistry reactions. The organic triazine 4-(4,6-dimethoxy-1,3,5-
triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) is able to activate carboxylic groups in one step

while EDC and NHS needs two. The second and third scientific challenges cover the characterization of
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the antibacterial activity and drug release of the prepared samples. Within these topics, the
development of CNF films with API that are grafted, adsorbed and complexed (i.e. in cyclodextrins for
instance) at the same time, could bring a multi-profile drug release, combined with long term

antibacterial activity. Complementary perspectives are described in Table 3.

Table 3: Main perspectives of this Ph.D. work

Immobilize othertypes of APl with the same chemical

on CNF-efilms =
route

Immobilization :SSE:;;:OHS > Keep optimizing coupling agents use and compare with
of drug step 1 DMTMM (1 molecule vs 2 with EDC/NHS)
on CNF-t Further study the influence of the solvent for the prodrug,
suspensions, —  thereactiontime, UV exposure and temperature on click
step 2 chemistries
Measure the antibacterial activity of CNF films with
CMF-e films - adsorbed, grafted and complexed APIs (cyclodextrins) at
thesametime
Antibacterial
activity Characterize industrial demonstrator of soft-tissuerepair
collagen-CNF N (STR) or patch devices in-vivo,
composites Control the interaction of CNF with polyester textilethat

are currently used with collagen in STR

Measure the release profiles of CNF films with adsorbed,

grafted and complexed APIs (cyclodextrins) at the same
from CNFfilms - time

Investigatethe possiblesynergy of different APIs included

inthe same CNF film

Drug release

experiments  from modified Improve release conditions with esterase and launch in-
CMF suspension vivo testing with modified CNF suspension first
From collagen- Further investigate the interaction of digCHX with CNF-t
CNF composites that resulted in prolonged release

Apart fromthese scientificchallenges, further knowledge is required on the topic of the biodegradation
of CNF in-vivo. When CNF are embedded in a medical device intended for internal application, an
investigation of the elimination or degradation processes of the CNF inside the human body must be

carried out to avoid complications, which would negate CNF beneficial effects.
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To conclude, results obtained show thatitis possible to prepare CNF based efficient bio-active materials
through “green” waterbased reactions. Different strategies and active principles are proposed, enabling

a selection according to the final application and the industrial implementation.

This Ph.D. work is believed toimprove the field of cellulose nanofibrils functionalization by investigating
water based innovative binding techniques. Also, this work gives insights on the potential use of such

enhanced CNF systems for medical application, paving the way for better treatments.
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Résumé Frangais

Au travers de perpétuelles innovations dans le domaine de la santé, I’espérance de vie a globalement
augmenté au cours de ce dernier siecle. Cependant, alors que les plus graves maladies du passé sont
aujourd’hui traitées avecsucces, ce sont lesinfections et effets secondaires liés aux traitements actuels
qui posent parfois problemes. Ces complications peuvent entrainer de nouvelles interventions
chirurgicales etreprésentent un colt médico-social conséquent. Ainsi, le développement de dispositifs
médicaux bioactifs capables de pallieraces problémes promet d’améliorerle confort et la convalescence
des patients. Afin d’atteindre un tel objectif, il parait nécessaire de disposer de biomatériaux innovants

offrant de nouvelles fonctionnalités, notamment antibactériennes ou anti-inflammatoires.

Les biomatériauxregroupentles céramiques, les métaux et les polyméres qui sont destinés a étre mis en
contact avec des tissus vivants, des organismes et des micro-organismes [1]. Les céramiques et les
métaux ont été traditionnellement utilisés pourlaréparation dentaire ou osseuse, puisqu’ils présentent
un bonne biocompatibilité et des formeslisses [2]. Néanmoins, ils sont de plus en plus remplacés pardes
polymeres issus de ressources fossiles. En effet, ces matiéres offrent une meilleur flexibilité et des
températures de mise en forme plus faibles, qui donnent acces au design de structures complexes [3].
Cependant, laprésence de produits contaminants comme des résidus de plastifiants, peut menera une
réponse inflammatoire potentiellementindésirable. Une alternative possible consiste a s’orienter vers
I’utilisation de polymeéres naturels issus de la biomasse, qui présentent souvent une biocompatibilité
intrinseque, et qui ont I’avantage supplémentaire de remplacer des matériaux pétro-sourcés, dans le
contexte de raréfaction des ressources fossiles. Ainsi, la chitine, la cellulose ou encore le collagéne
connaissentunfortengouementdans le domaine des biomatériaux, comme I'indiquent plusieurs revues

récentes sur le sujet [4]-[6].

Dans ce contexte, les nanocelluloses représentent une excellente alternative en tant que biomatériau.
Ce terme désigne des particules de cellulose qui présentent une dimension inférieure a 100 nanometres.
Deux types de nanocellulose sont généralement utilisés : les nanofibrilles de cellulose (CNF) et les
nanocrystaux de cellulose (CNC). Les nanocelluloses sont aujourd’hui extraites principalement du bois, a
I’échelle pilote etindustrielle (Figure 1). D’autres sources sont possibles comme les plantes annuelles,
certaines espécesanimales etles micro-organismes, mais I’industrialisation de ces procédés est encore

trés limitée.
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Figure 1: Du bois aux nanocellulose

Une combinaison de propriétésinédites (caractére renouvelable, biodégradabilité, grande disponibilité
géographique,faible densité et excellente propriétés mécaniques) confere aux nanocellulose, depuis
guelques décennies maintenant, un engouement puissant au sein de la communauté scientifique. En
effet, une augmentation exponentielle du nombre de publications scientifique sur le sujet est constatée
depuisle débutdesannées2000. Quand alors seulement quelques dizaines de publication paraissaient
chaque année, c’est aujourd’hui 2 a 3 publications par jour. Cet engouement ne se cantonne pas
seulement a la recherche académique puisqu’une tendance similaire est constatée pour le rythme de
dépot de brevet, qui atteint a présent un brevet par jour. Ceci démontre le fort intérét des industriels
pour ce nouveau matériau et confirme son futurdéveloppement dans des applications aussi variées que
le papieretl’emballage, le batiment, I’environnement, les matériaux composites et plus récemment, le

biomédical.
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Depuisles premierstravaux relatantladécouvertedes nanofibrilles de cellulose (CNF) dans les années
1980 [7], [8], les procédés de production ont été améliorés et optimisés. Les prétraitements tels que
I’oxydation TEMPO ou le recours aux enzymes ont permis de réduire la consommation énergétique
nécessaire alaproduction des CNF etont ouvertla voie a une industrialisation plus rapide que pour les
CNC. De plus, de nombreux travaux de recherche ont prouvés labiocompatibilité des CNF. Par exemple,
la prolifération des cellules ainsique leur migration au contact des CNF ont été démontrées [9], [10]. Par
ailleurs, leurs modifications chimiques de surface combinées a leur trés grande surface spé cifique offrent
de nombreuses possibilités de fonctionnalisation. Des CNF bioactives peuvent étre obtenues par
adsorption ou immobilisation covalente de molécules d’intérét. Par exemple, la pénicilline a déja été
immobilisée de maniére covalente sur les CNF pour former un film antibactérien par contact [11]. De
plus, les CNF peuvent étre organisées en différentes structures 2D ou 3D par des méthodes de filtrations,
de casting ou de lyophilisation. Ceci offre un large éventail de possibilités pour des applications

biomédicales que plusieurs revues ont synthétisées [12]—[14].

Par conséquent, un consortium de plusieurs partenairesissus du monde de la recherche académique et
industrielle a été formé afin d’étudier et de développer I'utilisation des CNF dans le domaine du
biomédical. Cette collaboration estnée ausein du projet CELLICAL qui est financé par I’Agence Nationale
de la Recherche (ANR-15-CE08-0033) et qui a débuté en Janvier 2016. Le travail de these a été effectué

dans le cadre du projet CELLICAL et s’attache a étudier les aspects suivants :

i.  Lafonctionnalisation de surface des nanofibrilles de cellulose (CNF) avec des molécules actives
il La préparation de structures 100% CNF ainsi que de composite avecles CNF

iii. L'étudedespropriétésderelargage etde l’activitéantibactériennedes structures a base de CNF

Ainsi, ce travail de thése a été mené dans un contexte trésdynamique. De nombreuses interactions ont
eu lieu avec les experts de la production et fonctionnalisation des nanocelluloses (LGP2, CTP, TEMBEC
Rayoniergroup et la start-up InoFib), avecles experts des glyco-conjugués (CERMAV), ceux du design des
drogues et prodrogues (DPM) ainsi que ceux de |’étude et de la modélisation du relargage (INSERM). Le
leader mondial des dispositifs médicaux (Medtronic) a également apporté son savoir-faire et son
expérience tout au long du projet. Des expériences et caractérisations ont été réalisées dans les
laboratoires de chacun des partenaires, confirmant la richesse pluridisciplinaire de ce s travaux, dont
I’organisation est présentée sur la Figure 2. Le premier chapitre décrit |’état de I’art qui concerne les
matériaux bio-sourcés pourapplication biomédical en détaillantles éléments déja mentionnés au début

de ce résumé.
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Figure 2: Représentation graphique de I'organisation du projet
Dans le second chapitre, les stratégies de fonctionnalisation des CNF sont exposées. La premiére partie
décritla modification de surface de films de CNF produites par prétraiteme nt enzymatique (CNF-e). La
ciprofloxacine, un antibiotique alarge spectre, estimmobilisée de maniére covalente par estérification
aprés une mise en contact en phase aqueuse. Le succes du greffage est confirmé par |'analyse
élémentaire ainsique des tests d’activité antibactérienne. Il est également démontré que ce film modifié
présente une activité antimicrobienne prolongée, confirmant sa potentielle utilisation pour le

développement d’un patch pour application externe (publication scientifique n°1, cf. Figure 3a).

La seconde partie décrit|’utilisation d’une procédure de modification de suspension de CNF produites
grace au prétraitement par oxydation TEMPO (CNF-t). Cette seconde stratégie est plus complexe
puisqu’elle se déroule en deux étapes. La premiere consiste a modifier la surface des CNF-t avec des

fonctionsalcynes par amidation a I’aide des agents de couplage EDC/NHS, toujours en phase aqueuse.
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Cette étape est confirmée, entre autre, par spectroscopie Raman et résonance magnétique nucléaire
(RMN) du solide. Ensuite, ces fonctions alcynes sont exploitées en chimie click (thiol-yne) par réaction
avec un principe actif thiolé, la prodrogue, contenant aussi une fonction ester. (Figure 3b). Le principe
actif utilisé est la métronidazole, un antibactérien actif contre les micro-organismes anaérobies. Une
nouvelle technique de caractérisation trés puissante, la RMN dopée par Polarisation Nucléaire
Dynamique (RMN-DNP), est utilisée pourla premiére fois surles nanocelluloses et permet de confirmer
le succes de laprocédure (publication scientifique n°2). Enfin, laderniére partiede ce chapitre Il présente
une stratégie similaire a la précédente. Dans un premier temps, ce sont des fonctions furane qui sont
alorsimmobilisées sur les CNF-t, pour ensuite réagir avec la prodrogue de métronidazole, cette fois-ci
modifié avecune fonction maléimide (Figure 3b). La réaction chimique de Diels Alder est ainsi activée
entre lesdeux composés etles mémes outils de caractérisation démontrentle succés de cette troisiéme
procédure (publication scientifique n°3). Ces prodrogues sont censées pouvoir libérer la métronidazole
des CNF sur demande grace au clivage de la fonction ester qu’ils contiennent par activité enzymatique,

en principe plus importante en proximité d’un site d’infection.
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Figure 3: Procédures d'immobilisation de principes actifs sur les CNF sous forme de films (a) ou suspensions (b)
Différents grades de CNF bioactives ont donc pu étre obtenus. La derniére partie de ce travail de thése
s’attache a utiliser ces différents grades pour développer des dispositifs médicaux modeles et évaluer

leurs activités antibactériennes et leurs propriétés de relargage de principe actif.
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Ainsi, le troisiéme chapitre présente dans un premiertemps |’utilisation de films 100% CNF incluantde la
ciprofloxacine greffée (CNF-cip-g), comme dans le chapitre Il, ou simplement pre-adsorbée (CNF-cip-ads).
Les propriétés de relargage des échantillons de CNF-cip-ads sont étudiées avec plusieurs protocoles
expérimentaux qui confirment I'intérét que les films plus épais (400 um) ayant subi un traitement
thermique poussé (150°C, 2 h) offre un meilleur contréle du relargage de la ciprofloxacine. Ensuite, ces
films sont comparés aux échantillons CNF-cip-g en termes d’activité antibactérienne. Les films
contenants la ciprofloxacine greffée montrent une activité prolongée, contrairement aux échantillons
contenant la ciprofloxacine seulement adsorbée. La seconde partie de ce chapitre est consacrée a
I"utilisation des CNF greffée en suspension avecle métronidazole. Tout d’abord, le concept du relargage
sur demande du métronidazole depuis la suspension de CNF modifiées est validé grace a un test de
clivage enzymatique in-vitro, avecsuivi en chromatographie liquide. Puis, les composite de collagéne et
CNF modifiées sont mis en forme. Leur activité antibactérienne est confirmée par des tests de zone
d’inhibition surdes souches anaérobie. Ces composites présentent donc un intérét tout particulier pour
le développement d’implants bioactifs. Enfin, des composites similaires sont préparés en incluant un
principe actif modele, la chlorhexidine, avec le collagéne et des CNF-e et CNF-t non-modifiées.
L'influence du type et de la quantité de CNF sur la capacité d’absorption d’eau et le relargage de
chlorhexidine est étudiée. De plus, compte tenu que la plus part de dispositifs médicaux subissent
industriellement une stérilisation, souvent par rayonnement gamma, l'influence de ce traitement est
également évaluée. Les résultats montrent que I’utilisation de CNFtend alimiterla capacité d’absorption
d’eaudescomposites, enlimitant leur dégradation. Par ailleurs, I’ajout de CNF, et particulierement de
CNF-t, permet d’obtenir un relargage contrélé de la chlorhexidine, avec une activité prolongée. Le
traitement gamma n’affecte pas|’activité antibactérienne des composites, et donc de la chlorhexidine.
En revanche, il réduittrés|égerementle relargage du principe actif puisqu’il a pour effet de densifier la

matrice collagéne en activant le cross-linking entre les différents composants.

En conclusion, ce travail de thése montre la possibilité d’utiliser avantageusement des nanofibrilles de
cellulose pour développer des matériaux innovants, en vue de leur utilisation dans des dispositifs
médicaux. De plus, il contribue au développement de procédures de fonctionnalisation en phase
aqueuse et de caractérisation poussée des CNF, qui peuvent étre appliquées aussi dans d’autres

domaines.

H. Durand, 2019 — Confidential
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