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Löıc BARTHE Professeur à l’Université Toulouse III Paul Sabatier Examinateur
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Abstract

Progressive mesh decimation by successively applying topological operators
is a standard tool in geometry processing. A key element of such algorithms is
the error metric, which allows to prioritize operators minimizing the decima-
tion error. Most previous work focus on preserving local properties of the mesh
during the decimation process, with the most notable being the Quadric Error
Metric which uses the edge collapse operator. However, meshes obtained from
CAD scenes and describing complex systems often require significant decima-
tion for visualization and interaction on low-end terminals. Hence preserving
the arrangement of objects is required in such cases, in order to maintain the
overall system readability for applications such as on-site repair, inspection,
training, serious games, etc. In this context, this thesis focuses on preserving
the readability of proximity relations between meshes during decimation, by
introducing a novel approach for the joint decimation of multiple triangular
meshes with proximities.

The works presented in this thesis consist in three contributions. First,
we propose a mechanism for the simultaneous decimation of multiple meshes.
Second, we introduce a proximity-aware error metric, combining the local edge
error (i.e. Quadric Error Metric) with a proximity penalty function, which in-
creases the error of edge collapses modifying the geometry where meshes are
close to each other. Last, we devise an automatic detection of proximity areas.
Finally, we demonstrate the performances of our approach on several models
generated from CAD scenes.

Keywords Computer graphics, Mesh processing, Mesh decimation, Quadric
error metric, Virtual disassembly
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Résumé

La décimation progressive de maillage par l’application successive
d’opérateurs topologiques est un outil standard de traitement de la géométrie.
Un élément clé de tels algorithmes est la métrique d’erreur, qui donne la pri-
orité aux opérateurs minimisant l’erreur de décimation. La plupart des travaux
précédents se concentrent sur la préservation des propriétés locales du mail-
lage lors du processus de décimation, le plus notable étant la métrique d’erreur
quadrique qui utilise l’opérateur d’e↵ondrement d’arête. Toutefois, les mail-
lages obtenus à partir de scènes issues de CAO et décrivant des systèmes com-
plexes requièrent souvent une décimation significative pour la visualisation et
l’interaction sur des terminaux bas de gamme. Par conséquent, la préservation
de la disposition des objets est nécessaire dans de tels cas, afin de préserver la
lisibilité globale du système pour des applications telles que la réparation sur
site, l’inspection, la formation, les jeux sérieux, etc. Dans ce contexte, cette
thèse a trait à préserver la lisibilité des relations de proximité entre maillages
lors de la décimation, en introduisant une nouvelle approche pour la décimation
conjointe de multiples maillages triangulaires présentant des proximités.

Les travaux présentés dans cette thèse se décomposent en trois contribu-
tions. Tout d’abord, nous proposons un mécanisme pour la décimation simul-
tanée de multiples maillages. Ensuite, nous introduisons une métrique d’erreur
sensible à la proximité, combinant l’erreur locale de l’arête (i.e. la métrique
d’erreur quadrique) avec une fonction pénalisant la proximité, ce qui augmente
l’erreur des e↵ondrements d’arête là où les maillages sont proches les uns des
autres. Enfin, nous élaborons une détection automatique des zones de prox-
imité. Pour finir, nous démontrons les performances de notre approche sur
plusieurs modèles générés à partir de scènes issues de CAO.

Mots-clés Informatique graphique, Traitement de maillage, Décimation de
maillage, Métrique d’erreur quadrique, Démontage virtuel
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Je tiens ensuite à remercier David Cazier et Gilles Gesquière pour avoir
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Introduction

Context and Motivations

(a) Scene overview (b) Close-up view

Figure 1: Complex 3D scene [Gha+19]. (a) Multiple models compose the
scene. (b) Di↵erent models are related to each other and these relations encode
the semantics of the scene.

Complex 3D scenes are often modeled by very large and detailed models
representing the geometric information. Furthermore, the models representing
man-made or Computer-Aided Design (CAD) scenes also encode the functional
meaning of a scene through their relations with each other, as illustrated in
Figure 1. Although CAD primitives contain much information about a scene,
CAD scenes are usually exported from CAD software in the form of meshes
as these informations are often kept confidential and costly to render, while
meshes are easier to process.

Visualizing and interacting with complex 3D data is very challenging since
the data scale and complexity stress both hardware and software components
in real-life applications. This becomes even more critical with mobile platforms
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Introduction

and web-embedded 3D visualization, which require fast data transfer and ren-
dering even on low-end terminals. Despite their limited performances, mobile
platforms are very attractive as they bring access to rich on-site information,
and help users to perform tasks in complex environments, e.g. machinery
maintenance. The relatively low cost and ubiquity of mobile devices also make
them very attractive as support for teaching and training.

The works of this thesis fit in the broader context of an industrial re-
search project aiming at training and bringing on-site information for machin-
ery maintenance by means of a serious game on low-end mobile terminals.
As complex CAD scenes are composed by numerous objects, some objects are
usually partially or completely hidden by other objects. Thus, in order to have
access to every object in a scene, the user should be able to interact with the
scene through virtual disassembly. Furthermore, as the arrangement of the
objects encodes the semantics of a scene, virtual disassembly enables the user
to look into the relations between objects and hence to have a better under-
standing of the scene functionality. Therefore, virtual disassembly allows to
consider an object both individually and as part of a scene.

Accordingly, in order to enable the visualization and interaction with
a complex CAD scene in real-time on a low-end terminal, through virtual
disassembly in particular, the complexity of the 3D data modeling the scene
has to be reduced while preserving both the geometry and the functional
meaning of the scene through the geometry of each object and its relations
with other objects, with each object being modeled by a mesh.

Several approaches can mitigate the increasing complexity of 3D datasets
for low performance hardware. The visibility [BW03] can be used to not load
hidden parts of a scene. However, interacting with a scene requires access to all
meshes and when working o✏ine, no loading can be achieved. The instances of
models composing a scene can be detected to avoid loading duplicates. How-
ever, meshes exported from CAD software are usually di↵erent for instances
of a same model as they have di↵erent topology, i.e. di↵erent vertices, edges
and faces, even though they have the same geometry, i.e. the same shape. The
most common and convenient approach to reduce data complexity is mesh sim-
plification, which consists in reducing the polygon count of a large mesh using
decimation algorithms [Lue01]. Most decimation algorithms are incremental
and consist in applying a topological operator on a mesh at each decimation
step. An error metric estimates the local changes that would occur in the
geometry following an operation on a mesh. Thus, an error value is associated
to each possible operation, allowing to prioritize the operation with the lowest
error value. The most popular decimation algorithm combines the edge col-
lapse operator with the Quadric Error Metric (QEM) [GH97]. This algorithm
collapses an edge into a vertex minimizing the point-to-plane distance with
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Figure 2: Triangular mesh decimation [Cac19]. The complexity of the topology
describing the geometry of the mesh is reduced.

regard to its local neighborhood at each decimation step. Mesh simplification
can also use additional CAD data if provided, such as features [Gao+10] or
appearance attributes [GH98; Hop99]. However, view-dependant mesh deci-
mation [Hop97] is not an option for the same reasons as the visibility cannot
be used to optimize data loading.

Meshes exported from CAD software often display some inconsistencies,
such as cracks or intersections. Therefore, mesh repairing [BK05; ACK13] is
performed to clean up meshes before decimation. Furthermore, as triangle
meshes are the most commonly used polygon meshes in computer graphics,
most topological operators are designed for triangle meshes. Hence, polygon
triangulation algorithm [NM95] is applied to non-triangle meshes prior the
decimation. A basic example of triangular mesh decimation can be seen in
Figure 2.

CAD scenes are often very large and complex scenes modeled by multi-
ple meshes with each mesh encoding the geometry of a model. Moreover,
the relations between such meshes encode the functional meaning of a scene.
Therefore, preserving the semantics of a scene in addition to its geometry is
mandatory to still understand the modeled system, even though the meshes
have been highly decimated to be manipulated on low-end remote terminals.
As the semantic information is usually not provided as input, the decimation
of scenes composed by multiple meshes relies only on the geometry, and pre-
serving both the individual properties of each mesh and the relations between
meshes is very challenging.
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Introduction

Contributions and Outline

The problematic of this thesis is to decimate 3D scenes consisting of
multiple meshes while preserving the geometry of each mesh along with its
relations with other meshes in the scene. We observed that in mechanical
systems, the shape of an object is designed according to its functionality and
its interactions with the surroundings, e.g. contacts and arrangement. As
such, we consider the neighboring meshes for the decimation of a given mesh
in a scene. We define the concept of neighborhood in a scene by the proximity
between parts of di↵erent meshes, as opposed to the local neighborhood which
is defined within a mesh itself.

We propose a solution to this problematic by extending the incremental
decimation algorithm for a mesh to multiple meshes, and using it with the
edge collapse operator along with a novel error metric considering both the
local geometry and the proximity relations with other meshes, which we refer
to as proximity-aware error metric. We formulate the neighboring information
as a proximity error which we use to mitigate the importance of the geometric
structures according to the surrounding meshes. Thereby, we use the prox-
imity error to penalize the local error introduced by decimation operations
in proximity parts, thus reducing their priority as compared to operations in
other parts of the scene, which yields to delay their decimation and better pre-
serve the relations between meshes, i.e. the shape of proximity parts, as seen
in Figure 3. Furthermore, we provide a definition of proximity to parameterize
the proximity-aware error metric.

Hence, our solution consists in three independent yet complementary con-
tributions as they form a fully automatic pipeline for the proximity-aware
decimation of multiple meshes, and each contribution can be overviewed as
follows:

Simultaneous decimation of multiple meshes We combine the decima-
tion operations of all meshes in a scene by means of a global structure, thus
ensuring that all meshes are decimated with a consistent error. This multi-
ple meshes decimation scheme does not increase the complexity required to
update the a↵ected operations following an operation on a mesh as compared
to the single mesh decimation scheme, and performs with a minimal memory
overhead due to the global structure.

Proximity-aware error metric We evaluate a new error for edge collapses
at the collapsing vertex minimizing the QEM by penalizing the QEM with
the proximity error. The idea is to benefit from the robustness of the QEM
collapsing vertex placement while increasing the error associated to edge col-
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(a) Original scene (b) QEM (c) Proximity-Aware EM

Figure 3: Scene decimation [Gha+18]. (a) A close-up on the scene seen in
Figure 1 (425 meshes and a total of about 3 million faces). (b) The decima-
tion with the Quadric Error Metric. (c) Our Proximity-Aware Error Metric
preserves the shape of mesh parts that are close to other meshes in the scene,
as illustrated by the hex head bolt and the preservation of the contact surface
with its support. Both decimated scenes have 150 000 faces each.

lapses in proximity parts of a scene. Thus, we do not change such collapses
but only delay them, in order to better preserve the geometry where multiple
meshes are close, at the expense of mesh parts outside proximity areas in the
scene.

Proximity analysis in a scene We propose a generic approach to detect
proximity areas in a scene. We analyze the spatial arrangement of the input
meshes and their distances, from which we derive a distance, referred to as
proximity threshold, for the automatic configuration of the proximity-aware
error metric.

We first present a state of the art on mesh decimation in the aforemen-
tioned context (Chapter 1), which serves as basis for our contributions. Then
we introduce multiple meshes decimation (Chapter 2), which we use for the
proximity-aware decimation (Chapter 3) parameterized following a proximity
analysis (Chapter 4). Finally, we review the results of this fully automatic
pipeline (Chapter 5) and conclude this thesis by discussing perspectives of our
works.

13





Chapter 1

Mesh Decimation

(a) Original mesh (b) LOD: 20% (c) LOD: 5%

(d) LOD: 1% (e) LOD: 0.5% (f) LOD: 0.1%

Figure 1.1: Levels of detail for a fan disk model. The original mesh has about
200 000 faces.

Mesh decimation, which is part of remeshing [All+08; Hu+16], is the
process of modifying the tessellation of an input mesh in order to reduce
its complexity. To do so, the mesh is turned into a mesh with fewer faces,
edges and vertices, while preserving as much as possible the geometry
and therefore the overall aspect of the mesh. A hierarchy of meshes with
decreasing number of faces can be generated for a mesh by using several lev-
els of detail (LODs) depending on the face budget, as illustrated by Figure 1.1.

Mesh decimation is usually performed on manifold meshes since certain
mesh operations are not compatible with non-manifold meshes. Hence, the
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1. Mesh Decimation

manifoldness of a mesh is a very desirable property. A mesh is manifold if
each edge is incident to no more than two faces and if each vertex is shared
only by faces sharing the same fan, i.e. each of these faces shares at least
one edge with another one of these faces. Figure 1.2 and Figure 1.3 show a
non-manifold vertex and a non-manifold edge, respectively.

v

Figure 1.2: Non-manifold vertex. The vertex v is non-manifold as it is also
shared by a face which is not part of its fan, making the mesh non-manifold.

e

Figure 1.3: Non-manifold edge. The edge e is non-manifold as it is shared by
more than two faces, making the mesh non-manifold. The endpoints of e are
also non-manifold.

Mesh decimation has been extensively studied over the last few
decades [HG97; CMS98; Lue01; Lue+03; BK04; MP06; Bot+10]. This chap-
ter first reviews general mesh decimation by presenting the two main fam-
ilies of methods, on the one hand vertex clustering techniques which group
sets of vertices and replace them by a single vertex (Section 1.1), and on
the other hand incremental decimation techniques which sequentially apply
a given decimation operation on the mesh (Section 1.2). Then it introduces
some derived methods focusing on feature preservation while decimating the
mesh (Section 1.3). Unlike mesh decimation, the focus on scene decimation
with multiple meshes has been less notable (Section 1.4). Finally, the technical
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1.1. Vertex Clustering

choices with regard to the previously mentioned approaches, which constitute
the basis for the contributions of this thesis, are discussed (Section 1.5).

1.1 Vertex Clustering

Vertex clustering methods group sets of vertices and replace them by a
single vertex. Vertex clustering generates discrete LODs as the algorithm
needs to be run n times to get n LODs.

Some approaches first set new vertices and then replace each original
vertex by one these new vertices. The new vertices can be a subset of the
original vertices. Turk [Tur92] evenly distributes a new set of vertices over a
triangulated surface. This intermediate model is called mutual tessellation
as it contains both the original and the new vertices. The decimation is
performed by removing each original vertex and locally reconnecting a↵ected
edges in a way that matches the local connectivity of the initial surface.
Boubekeur and Alexa [BA09] use stochastic vertex selection based on a local
feature estimator to better preserve areas of high curvature. First, each initial
vertex is assigned to the closest selected vertex and then, the triangles are
re-indexed, with only triangles having all three vertices assigned to di↵erent
selected vertices being kept.

Some other approaches first group vertices in clusters and then replace each
cluster by a representative vertex. Similarly, the representative vertices can
be a vertex of the corresponding cluster, i.e. a subset of the original vertices.
Hence, the bounding space around the mesh is partitioned into cells and a
representative vertex is computed for each cell. The representative vertex of
a cell is then assigned to all vertices falling into this cell. This process is
illustrated by Figure 1.4.

Several partitioning techniques have been developed. The mesh can be
clustered using a regular subdivision of its bounding box [RB93; Lin00].
Low and Tan [LT97] extended this idea to arbitrary shapes using voxel
grids. Likewise, there are many ways to find the representative vertices. The
representative vertex of a cell can be defined as the center of mass of its
weighted vertices [RB93] or as its vertex of maximal weight [LT97]. Lindstrom
[Lin00] used the Quadric Error Metric [GH97], described in Section 1.2.3,
to compute the representative vertices. Each cell has a quadric which is
initialized to zero. For each initial face having each vertex belonging to a
di↵erent cell (i.e. the face is not discarded), the quadric is computed and
added to the quadric of each cell it has a vertex in. Hence, once every face
has been processed, the position of each vertex representative is computed
using the quadric of its cell, which is more accurate than selecting the vertex
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1. Mesh Decimation

Initial mesh
Vertex representative
Simplified mesh

"

"

Figure 1.4: Vertex clustering. The bounding space around the mesh is parti-
tioned into cells according to a given approximation tolerance ", and a vertex
representative is computed for each cell. The mesh is decimated by replacing
each original vertex by its representative.
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1.2. Incremental Decimation

of maximal weight or a weighted average of vertices.

While vertex clustering is fast with a linear complexity with regard to
the number of vertices of the mesh, it performs a global decimation, without
granularity and hence not much control over the decimation process. Moreover,
as it generates discrete LODs, there is no transition between the di↵erent
levels, which leads to popping e↵ects when switching from one LOD to another.
Another drawback of vertex clustering is that it may lead to a non-manifold
mesh even though the original mesh is manifold, as a portion of a surface could
collapse to a vertex, as seen in Figure 1.5.

Initial mesh
Vertex representative
Simplified mesh

"

"

Figure 1.5: Non-manifold vertex clustering. The vertex representative of the
central cell turns into a non-manifold vertex when used to generate the deci-
mated mesh.

1.2 Incremental Decimation

Incremental decimation methods iteratively decimate the topology while
minimizing a local error, until a stopping criterion is reached. Meshes
processed this way are thus called Progressive Meshes [Hop96]. Incremental
decimation performs a local decimation as the decimation is done step by
step, with each step consisting of an approximation minimizing a local error,
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1. Mesh Decimation

and thus generates continuous LODs which results in smooth transitions
between the di↵erent levels. Nonetheless, incremental decimation algorithms
are greedy.

This section first introduces a generic algorithm for incremental decimation
(Section 1.2.1). Then, it reviews di↵erent topological operators (Section 1.2.2)
and error metrics (Section 1.2.3) that can be used as parameters of this algo-
rithm.

1.2.1 Algorithm

Algorithm 1 Incremental decimation

Input: original mesh M , stopping criterion stop crit
Output: decimated mesh M

P  empty priority queue
for each element e do
if op is a possible operation on e then
err  compute error associated to op
Insert (op,err) in P

end if
end for
while P not empty and stop crit not reached do
op  top operation of P
Remove op from P
Apply op on M
for each neighbor operation op

i

do
Remove op

i

from P
err

i

 compute error associated to op
i

Insert (op
i

,err
i

) in P
end for

end while

Incremental decimation algorithms combine a topological operator with an
error metric, as well as a stopping criterion [KCS98]. Any topological operation
is designed for a specific element (vertex, edge, or face) and associated to a
cost. This cost quantifies the changes that would be caused to the geometry of
the mesh by performing the operation, hence it is also referred to as the error
associated to the operation.

For a given topological operator, the error of each possible operation on an
input mesh is computed using a given error metric and sorted into a priority
queue by ascending error value. Then, the decimation is performed by itera-
tively popping out and applying the operation with the smallest error value
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1.2. Incremental Decimation

on the mesh, i.e. the one located on top of the priority queue. After each
operation, the operations associated to a↵ected elements in the neighborhood
are updated in the priority queue and their new error value is computed. This
process is run as long as the priority queue is not empty or the stopping cri-
terion is not reached. The stopping criterion can be either a target number
of faces, edges, or vertices, a target number of operations, an error threshold,
some custom quality criteria for the mesh, etc, or a combination of some crite-
ria. Algorithm 1 is a generic algorithm for incremental decimation regardless
the topological operator, error metric and stopping criterion used.

For each operation, the complexity of updating the priority queue is
O(2k log(E)), where k is the number of operations to update (find to remove,
and reinsert) in a queue of E elements.

1.2.2 Topological Operators

The topological operator is the main parameter of any incremental deci-
mation algorithm as most error metrics are designed for a specific operator.
There are several topological operators, which consist in removing either a sin-
gle vertex, edge, or face, along with its adjacent entities. Topological operators
are local as they a↵ect only the neighborhood of the entity they are associated
to.

An incremental decimation algorithm consists of many small and successive
steps. At each step, a topological operator is applied to the mesh. As most
topological operators have an inverse operator, it is therefore possible to
reinject detail to the mesh.

Vertex Removal

The vertex removal operator consists in first removing a single vertex along
with its adjacent edges, which leaves a hole into the mesh, and then triangu-
lating this hole [SZL92; KLS96], as illustrated by Figure 1.6.

Vertex
Removal

v
Vertex
Insertion

Figure 1.6: Vertex Removal. The vertex v is removed and the subsequent hole
is triangulated.

The removal of a vertex of valence k results in a k� 1-sided opening in the
case of an open mesh in which the removed vertex is a border vertex, and a
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k-sided hole if the removed vertex is not a border vertex or in the case of a
closed mesh. This hole has to be triangulated by adding back k�2 faces. As a
consequence, one vertex and one or two faces are removed overall by a vertex
removal operator.

The inverse operator of vertex removal is vertex insertion, which consists
in inserting a new vertex on the mesh and removing its neighbor faces, and
then triangulating the resulting hole by inserting faces adjacent to this new
vertex.

The main shortcoming of vertex removal is the fact that the triangulation
of faces removed and faces inserted can di↵er significantly, which means that
important changes can happen in the topology with a single operation.

Edge Collapse

The edge collapse operator consists in collapsing an edge into a single ver-
tex [Hop+93]. As a consequence, an edge collapse removes an edge along with
the faces sharing it, as illustrated by Figure 1.7.

v1 e v2
v

Edge
Collapse

Vertex
Split

Figure 1.7: Edge Collapse. The edge e is collapsed into the vertex v and its
neighborhood is updated with regard to v.

In the case of an open mesh in which the collapsed edge is a border edge,
one face is removed, and if the collapsed edge is not a border edge or in the
case of a closed mesh, two faces are removed. Indeed, as mentioned earlier at
the beginning of the chapter, an edge shared by more than two faces would
not be manifold, turning the mesh into a non-manifold mesh.

The collapsing vertex can be either one endpoint of the edge, the middle
of the edge, or an optimal collapsing position minimizing a local error met-
ric [GH97; LT98] (see Section 1.2.3). Moreover, all edges and faces adjacent
to one endpoint of the collapsed edge are updated as both endpoints of the
collapsed edge are replaced by the vertex resulting from the collapse.

The inverse operator of edge collapse is vertex split, which consists in
dividing a vertex into two new vertices to form an edge, as well as one or two
resulting faces shared by these two new vertices and one or two other vertices,
respectively.
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1.2. Incremental Decimation

Some edge collapses may introduce inconsistencies in the mesh. Firstly, an
edge collapse might cause mesh inversion. Indeed, the choice of the collapsing
vertex could change the orientation of faces in the area of the collapse, thus
causing the mesh to fold over itself, as seen in Figure 1.8. To avoid such

v1 e v2

v
Edge
Collapse

Figure 1.8: Mesh inversion. The collapse of edge e into vertex v causes a face
to fold over the mesh.

a configuration, the normal vectors of the faces adjacent to an edge can be
compared before and after the collapse. If the normal vector of a face changes
by more than a certain threshold, the face is regarded as flipped. Garland
[Gar99] proposes a more robust approach. For every face around an endpoint
v1 of an edge e, excluding faces shared with the other endpoint v2, there is an
edge opposite v1. The collapsing vertex of the edge must lie on the same side
of a plane perpendicular to such a face through this opposite edge, as v1. The
same condition applies to the faces around v2, excluding faces shared with v1.
Secondly, an edge collapse might cause a non-manifold edge. Depending on the
topology around an edge, its collapse could generate an edge shared by more
than two faces, turning it into a non-manifold mesh. A non-manifold edge
appears following the collapse of an edge for which the one-ring neighborhood
of both endpoints intersect in more than two vertices, i.e. an edge whose
endpoints form edges with more than two same vertices, as seen in Figure 1.9.

v1 e v2
v

Edge
Collapse

Figure 1.9: Non-manifold edge. The collapse of edge e into vertex v generates
a non-manifold edge.

Such edge collapses causing a mesh inversion or a non-manifold edge are
usually discarded and only reconsidered when topological changes occur in
their local neighborhood, thus modifying the resulting vertex.
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1. Mesh Decimation

Halfedge Collapse

The halfedge collapse operator consists in collapsing an edge into one of
its endpoints [RR96], as illustrated by Figure 1.10. Therefore, the halfedge
collapse is a particular case of edge collapse in which the collapsing vertex is
an endpoint of the edge. Thus, one endpoint of the edge is removed while the
other one remains as it is.

v1 e v2 v1

Halfedge
Collapse

Restricted
Vertex Split

Figure 1.10: Halfedge Collapse. The edge e is collapsed into its endpoint v1

and the neighborhood of its other endpoint v2 is updated with regard to v1.

As for the edge collapse, a halfedge collapse removes an edge along with
the faces sharing it, but unlike edge collapse, only edges and faces adjacent to
the removed endpoint of the edge are updated.

The inverse operator of halfedge collapse is restricted vertex split, which
consists in inserting a new vertex to form an edge with another vertex, as well
as one or two resulting faces shared by these two vertices and one or two other
vertices, respectively.

The main shortcoming of halfedge collapse is the fact that the endpoints
of an edge are usually not optimal candidates for its collapse with regard to
its local neighborhood.

Vertex Contraction

The vertex contraction operator consists in merging two unconnected ver-
tices into a single vertex [GH97; Sch97], as illustrated by Figure 1.11.

v1 v2
v

Vertex
Contraction

Figure 1.11: Vertex Contraction. The vertices v1 and v2 are merged into vertex
v.

It is an extension of the edge collapse operator to unconnected yet close
pairs of vertices. Such pairs of vertices are considered as virtual edges in order
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to close small holes rather than extending them during the decimation process,
for instance in the case of meshes with several connected components.

The vertex contraction operator removes only a single vertex since the
contracted vertices do not share any edge nor face as they are unconnected. As
a consequence, a limitation of this operator is the generation of non-manifold
meshes.

Face Removal

The face removal operator consists in collapsing a face into a single ver-
tex [Ham94], as illustrated by Figure 1.12.

Face
Removal

f

v

Figure 1.12: Face Removal. The face f is collapsed into vertex v and its
neighborhood is updated with regard to v.

The removal of a face results also in the removal of all faces it shares an
edge with. Hence, k+1 faces are removed overall, with k the number of edges
of the removed face shared with another face. As a face has three edges, a
maximum of four faces can be removed at once. Moreover, all edges and faces
adjacent to the removed face are updated.

The main shortcoming of face removal is the fact that it collapses at once
three edges and the faces sharing them, which provides less control over the
topology than with operators removing less entities.

1.2.3 Error Metrics

The decimation process of a mesh consists in applying successive topological
operators. The cost of an operation, which defines its position in the priority
queue as compared to the other operations, is characterized by an error metric.
Hence, the decimation is driven by the error metric and the choice of such a
metric will be highly influenced by the choice of the topological operator.
Furthermore, as the topological operators are local, so are the error metrics.

Besides its position in the priority queue, a topological operator is also
influenced by the error metric regarding its outcome as the error metric com-
putes the cost of an operation by minimizing the error induced in the mesh.
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1. Mesh Decimation

For instance, the vertex resulting from an edge collapse will be the one mini-
mizing the error metric, i.e. the one that has the less impact on the geometry
of the mesh. It should be noted that when an operation takes place on a planar
region of the mesh, its error is equal to zero, meaning that it impacts only the
topology and not the geometry.

The following paragraphs provide an overview of the most commonly used
error metrics.

Hausdor↵ distance

The Hausdor↵ distance measures the distance between two surfaces.
Hence, it can be used to compute the maximum distance between the original
and the decimated mesh, which represents the geometric deviation caused by
a topological operator.

Let A and B be two meshes. The minimum distance to B of a vertex a
belonging to A is:

d(a,B) = min
b2B

||a� b|| (1.1)

The Hausdor↵ distance from A to B is the maximum minimum distance to B
of a vertex belonging to A:

h(A,B) = max
a2A

d(a,B)
= max

a2A
min
b2B

||a� b|| (1.2)

The Hausdor↵ distance is non-symmetric as shown in Figure 1.13:

h(A,B) 6= h(B,A) (1.3)

Therefore, the Hausdor↵ distance from one surface to another surface is called
the one-sided Hausdor↵ distance. A way to symmetrize the Hausdor↵ distance
between two surfaces A and B is to compute the maximum of both one-sided
Hausdor↵ distances:

H(A,B) = max(h(A,B), h(B,A)) (1.4)

Klein, Liebich, and Straßer [KLS96] use the Hausdor↵ distance between
the original and the decimated mesh as error metric while decimating a mesh
using the vertex removal operator. As the vertex removal is a local topological
operator, a change in the Hausdor↵ distance can be evaluated only locally
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BA

b

a1

a2

Figure 1.13: Non-symmetric Hausdor↵ distance. The Hausdor↵ distance be-
tween A and B is non-symmetric as h(A,B) = d(a1, b) and h(B,A) = d(b,a2).

around the a↵ected neighborhood. Thus, at each step of the decimation, the
Hausdor↵ distance is updated thanks to a mapping between the original and
the decimated mesh.

The Hausdor↵ distance is the most accurate error metric but also the
most computationally expensive, while an estimated error is generally enough
for most applications.

Distance to average plane

Schroeder, Zarge, and Lorensen [SZL92] use the distance of a vertex to
an average plane as error metric while decimating a mesh using the vertex
removal operator. This average plane is computed from the faces adjacent
to the vertex. The normal vector of an average plane is the average of the
normal vectors of the associated faces weighted by their area. A point on the
average plane is computed using the average of the centroids of the associated
faces, also weighted by their area.

Let ⌧(v) be the set of faces in the one-ring neighborhood of a vertex v, and
A

i

, n
i

and c
i

be the area, normal vector and centroid of a face f
i

, respectively.
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The average plane of v is defined by its normal vector n and a point c:

n =

P
f

i

2⌧(v)
A

i

n
i

P
f

i

2⌧(v)
A

i

(1.5)

c =

P
f

i

2⌧(v)
A

i

c
i

P
f

i

2⌧(v)
A

i

(1.6)

The equation of the average plane leads to:

nT c+ d = 0

, d = �nT c

where d is the signed distance to the origin. The signed distance of v to its
average plane is:

�(v) = nTv + d

= nTv � nT c

Therefore, the error value associated to the removal of v is:

�(v) = |nT (v � c)| (1.7)

This error metric computes the deviation from the current mesh and not
from the initial mesh. Thus, its main drawback is the fact that it does not
keep track of the error accumulation over the course of the decimation process.

Maximum distance to supporting planes

Ronfard and Rossignac [RR96] use the maximum squared distance of
a vertex to its supporting planes as error metric while decimating a mesh
using the halfedge collapse operator. Each vertex of the initial mesh has a
supporting plane per adjacent face. As a consequence, the set of supporting
planes for the vertex resulting from the collapse of an edge is the union of the
sets of supporting planes of both endpoints of the edge. This set of planes
grows during the decimation process, as each collapsed edge passes on its
set of supporting planes to its collapsing vertex which does the same when
collapsed as part of an edge, etc.
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Let v be the collapsing vertex of an edge e, S(e) the set of supporting
planes of e, n

i

and d
i

the normal vector and signed distance to the origin of
a plane P

i

, respectively. The error value associated to the collapse of e is the
maximum squared distance from v to the set of supporting planes:

�(v) = max
P
i

2S(e)
(n

i

Tv + d
i

)2 (1.8)

This error metric computes the deviation from the initial mesh as the
sets of supporting planes are merged during each collapse operation. Thus,
the error accumulation is taken into account throughout the decimation
process. However, keeping track of the sets of supporting planes is expensive
memory-wise.

Quadric Error Metric

Garland and Heckbert [GH97] introduce the Quadric Error Metric (QEM).
A set of supporting planes is associated to each vertex of the mesh as in the
work of Ronfard and Rossignac [RR96]. The squared distance of a vertex to
its set of planes is used as error metric while decimating a mesh using the
edge collapse operator, and the vertex minimizing this distance is chosen as
the result of the edge collapse. Figure 1.14 illustrates this quadric error.

(a) Original model (b) Decimated model (c) Quadric error

Figure 1.14: Decimation of the bunny model using QEM [GH97]. (a) The
original bunny model has about 70 000 faces. (b) The bunny is approximated
using 1000 faces. (c) The ellipsoids on the approximated bunny represent the
quadric error and are centered at the isovalue of the quadric. They follow the
local shape of the surface.
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The squared distance from a vertex v to a plane P , defined by its normal
vector n and its signed distance to the origin d, is:

D2(v) = (nTv + d)2

= (vTn+ d)(nTv + d)

= (vTnnTv + 2dnTv + d2)

(1.9)

This distance can be defined as a quadratic form represented by a quadric
Q:

Q = (A, b, c) (1.10)

with 8
><

>:

A = nnT

b = dn

c = d2

As a consequence, the squared distance from v to P is:

Q(v) = vTA v + 2bTv + c (1.11)

The quadric Q can also be represented as an homogeneous matrix:

Q =

✓
A b
bT c

◆
(1.12)

Hence, the squared distance from a vertex v to the plane associated to Q can
be represented as the quadratic form:

Q(v) = vTQ v (1.13)

Therefore, the quadric of a face f associated to a plane P , defined by
p = (n, d)T with n its normal vector and d its signed distance to the origin, is:

Q
f

= ppT (1.14)

The quadric of a vertex v is the weighted sum of the quadrics of its adjacent
faces:

Qv =

P
f

i

2⌧(v)
w(f

i

) Q
f

i

P
f

i

2⌧(v)
w(f

i

)
(1.15)
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with ⌧(v) the set of faces in the one-ring neighborhood of v and w the weighting
scheme used for the faces. The faces can all have the same weight, be weighted
using their area or cotangent weights, etc.

The quadric of an edge e is the mean of the quadrics of its endpoints:

Q
e

=
1

2
(Qv1 +Qv2) (1.16)

with v1 and v2 the endpoints of e.

The error value associated to the collapse of an edge e is the evaluation of
its quadric at its resulting vertex v:

�(v) = vTQ
e

v (1.17)

There are multiple possible placements for the resulting vertex of an edge
collapse. The most intuitive choice is either one of the endpoints of the edge,
as for a halfedge collapse, i.e. the one having the smaller QEM value. Thus,
the vertices of the decimated mesh would be a subset of the vertices of the
original mesh. However, an optimal placement of the resulting vertex provides
a better approximation. Therefore, the resulting vertex is the one minimizing
the QEM, as seen in Figure 1.15.

Figure 1.15: Edge collapse using QEM [GH97]. The resulting vertex minimizes
the QEM. The ellipses around it represent isocontours representing various
error values and correspond to the ellipsoids in 3D.

The gradient of Equation 1.11 is:

rQ(v) = 2A v + 2b (1.18)

Solving rQ(v) = 0 leads to the optimal placement:

v = �A�1b (1.19)
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Hence, the associated error is obtained by applying Equation 1.19 to Equa-
tion 1.11:

Q(v) = �bTA�1b+ c (1.20)

However, the matrix A may not be invertible, i.e. a unique optimal position
may not exist. In that case, an optimal position might be found along the
edge. Otherwise, a halfedge collapse has to be performed by choosing the
endpoint having the smallest QEM value.

Therefore, a single 4x4 symmetric matrix is enough to store all the data
required for an edge collapse. Furthermore, since the QEM is quadratic,
finding its minimum is a linear problem.

Volume preservation

Lindstrom and Turk [LT98] use volume preservation as error metric while
decimating a mesh using the edge collapse operator. An edge is collapsed into
a vertex minimizing the volume change of the model. For every face adjacent
to one or both endpoints of an edge, a tetrahedron is formed with the vertex
resulting from the collapse of the edge, as seen in Figure 1.16. The tetrahedral
volume is positive if the resulting vertex is outside the model and negative if
it is inside the model.

Figure 1.16: Edge collapse using tetrahedral volumes [LT98]. The resulting
vertex minimizes the tetrahedral volumes associated to the faces adjacent to
the collapsed edge.
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To preserve the volume of the model, the vertex v resulting from the col-
lapse of an edge e is found by solving the following equation:

X

f2⌧(e)

V(v, f) = 0 (1.21)

with V the volume of a tetrahedron formed by v and a face f belonging to the
set ⌧(e) of faces in the one-ring neighborhood of e.

As the aim is to minimize the volume of each tetrahedron, unsigned tetra-
hedral volumes are used to compute the error value while collapsing e into
v:

�(v) =
X

f2⌧(e)

V(v, f)2 (1.22)

This error metric is memoryless as it does not retain any information about
the original mesh and makes decisions based only on the current approxima-
tion.

1.3 Feature Preservation

The error metrics presented previously decimate a mesh by minimizing a
local error. Thus, there is not much control over the global error, which may
be problematic, especially in the case of extreme decimation, as successive
approximations accumulate.

Furthermore, mesh decimation can aim at preserving certain properties of
the mesh more so than others. These properties can be either detected on the
mesh or specified directly by the user. Therefore, such an algorithm would
trade o↵ some global quality of the decimated mesh for preserving specific
properties.

This section first introduces some approaches striving to control the global
error by the mean of tolerance volumes (Section 1.3.1) or to preserve the struc-
ture of a mesh by using planar proxies (Section 1.3.2). Then, it reviews some
methods focusing on preserving various major features (Section 1.3.3) and
user-guided methods to do so (Section 1.3.4).

1.3.1 Tolerance Volumes

Several approaches strive to control the global error in order to avoid the
error accumulation induced by local error metrics throughout the decimation
process. Thus, the topological operations are restricted so that the decimated
mesh stays within a tolerance volume regarding the original mesh. As a
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consequence, the level of decimation of a mesh is directly influenced by the er-
ror bound. The less tight the bound is, the coarser the decimated mesh will be.

Cohen et al. [Coh+96] propose the idea of decimation envelopes. An inner
and an outer envelope distanced from the original mesh by a certain thresh-
old, and corresponding to an error bound, are created. These envelops are
constructed by displacing the original vertices by this threshold along their
normal vectors. As a consequence, a vertex removal operator is applied only
if it does not cause the mesh to intersect with either envelope, i.e. if it has
a re-triangulation scheme where none of the faces created to fill the resulting
hole intersect an envelope.

Inspired by these envelopes surrounding a mesh, Borouchaki and Frey
[BF05] also add to it cones centered at each vertex. The axis of a cone is
defined by the normal vector of its vertex to the surface as well as a given
aperture common to all cones. Hence, each face resulting from a topological
operation must on the one hand belong to the global envelope of the mesh
and on the other hand have its normal vector contained within the regularity
cones associated with its vertices. Therefore, this approach is driven by two
parameters, the tolerance volume and the aperture, referred to as the tolerance
pair, as illustrated by Figure 1.17.

However there is no optimization of the error bound, as it remains the
same for each operation throughout the decimation process.

Guéziec [Gué99] also uses a bounding volume, with the di↵erence that
the error bound is optimized for each operation. An error volume is measured
locally per vertex, in the form of spheres centered at their corresponding vertex.
Thus, linearly interpolating the spheres defines the current error volume of the
mesh. The sphere of a vertex resulting from an edge collapse operation contains
the spheres of both endpoints of the edge. As a consequence, the error volume
of the mesh is grown iteratively throughout the decimation process.

Zelinka and Garland [ZG02] introduce the concept of permission grid.
As in the work of Guéziec [Gué99], a sphere is defined per vertex of the
original mesh, with the di↵erence that the radius is the same for all spheres.
A bounding volume is created per face by linearly interpolating the spheres
of its vertices. These bounding volumes are then voxelized using a uniform
grid. The voxels are divided into two categories, on the one hand those that
are completely within the bounded volumes of the faces and can subsequently
be intersected by new faces, and on the other hand those that are not
entirely within these boundaries and thus cannot be intersected by new faces.
Therefore, an edge collapse can be performed only if the faces it generates do
not intersect unauthorized voxels.
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(a) Original mesh (b) Decimated mesh (c) Error map

(d) Decimated mesh (e) Error map

Figure 1.17: Decimation of the wheel model [BF05]. (a) The original wheel
model has about 160 000 faces. The wheel is approximated using the tolerance
pairs (0.2%, 33�) (b) and (0.5%, 36�) (d), and the subsequent error is given as
compared to the original model (c) and (e), respectively. The tolerance volume
is given as a percentage of the diagonal of the original mesh bounding box.

However, global error bounds do not account for local properties, as a
consequence, they might not preserve the structure of the mesh.

1.3.2 Planar Proxies

Salinas, Lafarge, and Alliez [SLA15] introduce a structure-aware ap-
proach for mesh decimation. The local Quadric Error Metric, described
in Section 1.2.3, is extended to account for the global structure of the
mesh characterized by planar proxies detected in a pre-processing step and
structured by an adjacency graph. These proxies are taken as input of the
algorithm alongside with the original mesh, as seen in Figure 1.18.

An hybrid error metric is devised by mitigating the local quadrics of QEM
with the quadrics of proxies. Let Prox(f) be the set of proxies containing a
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Figure 1.18: Structure-aware mesh decimation [SLA15]. The combination of a
local error with a global error related to proxies better preserves the structure
of the mesh than a simple local error.

face f and Q
'

the quadric of a proxy '. The quadric of f becomes:

Q0
f

=

8
<

:
Q

f

if Prox(f) = ?,

(1� �)Q
f

+ �
P

'2Prox(f)

Q
'

otherwise. (1.23)

where Q
f

is the local quadric of f as defined in Equation 1.14 and � is an
abstraction parameter which sets the influence of the quadrics of proxies as
compared to the local quadric. This quadric Q0

f

, which also includes the
quadrics of proxies, replaces Q

f

in Equation 1.15 to compute the quadric of a
vertex.

If the abstraction parameter � is equal to zero, a classic quadric error
is computed, without any consideration at the global scale of the mesh.
In a similar fashion, if � is equal to one, the error is solely based on
the proxies, without any consideration of the local geometry. Hence, the
error value of an edge collapse changes if at least one face in the one-
ring of the edge has a proxy and the value of � is not zero. The more
the value of � is important, the more influence the proxies have over the
error and the subsequent position of the vertex resulting from an edge collapse.

Furthermore, the resulting vertex also inherits the union of proxies of the
endpoints of the collapsed edge. Hence, some additional structure-preserving
rules prevent collapses that would alter proxies or their adjacency graph.

This approach reduces the accumulation of local approximations by consid-
ering the structure of the mesh and thus tends to move the vertices towards the
proxies during the decimation process, which contributes to keep the overall
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aspect of the model and improve its resilience to noise.

1.3.3 Major Features

The distance error metrics commonly used in most decimation algorithms
are very e�cient to measure geometric error, but they often fail at detecting
important shape features of a mesh such as regions with high curvature.
Therefore, some approaches focus on preserving the major features of a mesh
during the decimation process.

Kim, Kim, and Levin [KKL02] use a discrete curvature norm as error
metric while decimating a mesh using the edge collapse operator. The sum
of absolute principal curvatures of each endpoint of an edge is computed, by
combining Gaussian curvature and mean curvature. The Gaussian curvature
of a vertex is related to the angles between successive edges in its one-ring
neighborhood, and the mean curvature is related to both the length of such
an edge and its dihedral angle (i.e. the angle between the supporting planes
of faces sharing the edge). The discrete curvature norm is checked before and
after an edge collapse and the di↵erence represents the error value associated
to the collapse of this edge. The vertex resulting from such a collapse
minimizes the change of discrete curvature norm. However, this error metric
is restricted to curvature and does not account for other geometric properties.

Marinov and Kobbelt [MK05] use the face merge operator [KT96] along
with an integral error metric [CAD04] to derive a subdivision control mesh
whose structure is adjusted and aligned to the major geometric features.
Faces are referred to as regions and the face merge operator merges two nearly
coplanar regions by removing their common edges. Thus, the regions tend to
grow during the decimation process until a maximum error bound or a target
number of regions is reached, as illustrated by Figure 1.19. At the beginning
of the algorithm, each face makes up a region on its own and the proxy of
a region is characterized by a point on the face and the normal vector of
the face. When two regions are merged, a new proxy is computed for the
resulting region by using an area-weighted average of the points and normal
vectors of the regions. Adjacent pairs of regions are iteratively merged in
order to generate a coarser mesh. It should be noted that the algorithm must
maintain an injectivity constraint throughout the decimation process in order
for the mesh to stay consistent: the projection of a face onto a proxy must
be injective, which guarantees on the one hand that there is no foldover as a
face cannot be part of several regions, and on the other hand that there is no
degeneration as a face is always part of a region. Nonetheless, as in the work
of Kim, Kim, and Levin [KKL02], this approach is also restricted to curvature.
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1. Mesh Decimation

Figure 1.19: Decimation of the fan disk model [MK05]. From left to right: the
original fan disk model having about 13 000 faces, and the fan disk approxi-
mated using 200, 50, 17 and 5 regions, respectively.

Vivodtzev, Bonneau, and Le Texier [VBL05] propose a decimation scheme
for meshes with embedded polylines. These polylines are a subset of edges
that characterize the features of the mesh. In the context of CAD models,
if the materials of a mesh are available, the polylines may be extracted as
interfaces in between materials defined on the surface. An edge collapse can
be performed only if it preserves both the topology of the mesh and the
topology of the embedded polylines. However, not all meshes have embedded
polylines or attributes enabling smooth polylines extraction.

While e�cient at preserving the high level structure of a mesh, these ap-
proaches often miss smaller details that might be semantically important, if
they are not annotated.

1.3.4 User-Guided

Automatic mesh decimation algorithms ignore the semantic meaning of
models. For instance, some features with small size can be semantically
important even if they have a low geometric error, but not be detected as
major features. Thus, they might be discarded by algorithms relying on
distance error metrics or feature sensitivity. Therefore, user-guided decimation
enables to provide semantic information that will be used along with the
geometry during the decimation process.

Kho and Garland [KG03] propose a user-guided decimation in order to
preserve semantically important features of a mesh. The user drives the deci-
mation by interactive control of an automatic decimation method consisting in
iterative edge collapses sorted with the QEM. This interactive control is done
using both an adaptive decimation and geometric constraints. The adaptive
decimation consists in selecting some areas of importance which will be ac-
cordingly less decimated than other areas. For this purpose, the quadrics of
vertices in such areas are assigned a high weight. Moreover, di↵erent types of
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geometric constraints (contour, plane and point) can be imposed with addi-
tional constraint quadrics to preserve various features of a mesh. As a result,
the error values of edges in important areas increase, delaying their collapse
and changing the optimal position of their resulting vertices. Thus, heavily
weighted vertices are more likely to preserve their position throughout the
decimation process, as illustrated by Figure 1.20.

(a) Decimation

(b) Error distribution

Figure 1.20: Decimation and error distribution of the face model [KG03]. (a)
Decimation using fully automatic QEM on the left and user-guided QEM on
the right. The painted regions are significantly improved on the right. (b)
Error distribution of approximation with QEM on the left and user-guided
QEM on the right. The error distribution is less uniform on the right with less
error for perceptually important areas as the eyes and the lips.

Likewise, Pojar and Schmalstieg [PS03] enable the user to interact with the
same automatic decimation algorithm in order to specify areas of importance
of a mesh. However, unlike the work of Kho and Garland [KG03] in which the
user can weight quadrics of vertices and potentially add constraint quadrics to
them, the user can directly change the cost of an edge collapse by weighting it.
Another notable di↵erence is the fact that the position of the vertex resulting
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1. Mesh Decimation

from an edge collapse remains unchanged, i.e. the optimal position is computed
using only the QEM, regardless of the user weighting scheme. Hence, this
approach does not change the edge collapse operations, but only reorders them.

Following user input, while Kho and Garland [KG03] make the most of
the QEM as the user can only weight quadrics of vertices and not the cost
of an edge collapse directly, Pojar and Schmalstieg [PS03] make use of the
robust vertex placement scheme of QEM as the collapses are not modified.

Ho et al. [Ho+06] introduce a generic user-assisted approach which can
be used with any error metric. Based on the observation that the weights
applied to edge collapses, either directly or indirectly, in order to reorder
them, have no relation to the error value and are empirical, the weights are
rather applied to the rank of an edge collapse in the priority queue. Thus,
this method overcomes the dependency over the error metric.

The main drawback of these non-automatic algorithms is their full de-
pendency over user input. Another limitation, shared by all the algorithms
mentioned so far in this state of the art, is that none of these methods are
designed for multiple meshes decimation, as they process a single mesh and
thus can not deal with relations between di↵erent meshes.

1.4 Scene Decimation

A scene consists of several models that usually have relations with each
others, especially in the case of CAD scenes where these relations encode the
functional meaning of the scene. Therefore, decimating each model separately
is not a suitable approach to decimate a scene as the relations between models
might not be preserved. For instance, Figure 3(b) illustrates a significant loss
of contact between a hex head bolt an its contact surface.

In most CAD representations, geometrical primitives and their ar-
rangement define high level information that can be used to support the
simplification process. Thereby, Kwon et al. [Kwo+15] propose a feature-based
simplification of multiple models, based on geometric information imported
from CAD data. By the same means, Erikson, Manocha, and Baxter III
[EMB01] build hierarchical levels of detail by grouping nodes with regard to
the scene graph and the meshes spatial arrangement, while the geometry is
optimized using standard mesh decimation algorithms. In practice however,
complex scenes are often provided as an unstructured set of meshes, which
leads to seek for a geometric-only multiple mesh decimation approach.
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The joint decimation of multiple meshes has also been studied, though it
has received much less attention than single mesh decimation.

Gumhold, Borodin, and Klein [GBK03] introduce an intersection-free ap-
proach, which focuses on avoiding collisions between close-by meshes while
iteratively performing edge collapses sorted with the QEM. Each time a colli-
sion arises from the collapse of an edge into the vertex minimizing its QEM,
a new intersection-free position is computed for the resulting vertex. Hence,
the cost of such an edge collapse also changes and the edge is re-inserted into
the priority queue of collapses with its associated new error value. The main
limitation of this approach is to only consider collisions, and ignore collapses
that might a↵ect the geometry of nearby meshes, for instance by generating
holes, cracks or removing small geometrical features.

González et al. [Gon+09] propose a user-assisted method to decimate
meshes while preserving their boundaries. Like many other approaches, the
decimation process consists in iteratively performing edge collapses sorted with
the QEM. To preserve the boundaries of each mesh, vertices nearby other
meshes in the scene are tagged as boundary and preserved by performing
halfedge collapses as opposed to edge collapses when no endpoint is a bound-
ary vertex. The limitations of this approach are twofold. Firstly, the edges
having both endpoints tagged as boundary are considered as regular edges
and thus, standard edge collapse is performed, which prevents from penalizing
shape variations inside boundary areas. Secondly, the approximation error in
boundary areas is checked only along the edges, and not on the faces.

1.5 Conclusion

The incremental decimation algorithm combining the edge collapse opera-
tor with the Quadric Error Metric is the most widely used mesh decimation
approach. Indeed, the edge collapse is the most convenient topological operator
as it allows to put the resulting vertex at a position minimizing the changes in
the mesh. It only removes one vertex per decimation step and does not require
any re-triangulation. Likewise, the QEM is the most convenient error metric
to sort the edge collapses into the priority queue as it computes both the error
of the edge and the optimal position for its collapse, all in a computation-
ally e�cient way. Furthermore, filters can be added to the QEM. Therefore,
numerous approaches extending standard mesh decimation are based on this
approach.

Thereby, after introducing a priority queue gathering multiple meshes in
Chapter 2, we extend the QEM in Chapter 3 to account for proximity relations
between meshes, turning it into a proximity-aware error metric.
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Chapter 2

Multiple Meshes Decimation

The joint decimation of multiple meshes raises several challenges that
do not arise for the decimation of a single mesh. While all the available
resources are allocated to a mesh when it is decimated alone, it is not obvious
how to split them between several meshes during their joint decimation.
Furthermore, the joint decimation of multiple meshes often means dealing
with more complex data, as a scene can consist of many meshes as opposed
to a single mesh.

This chapter first reviews possible decimation schemes for multiple meshes
(Section 2.1). We then demonstrate how we combine them to devise a global
priority queue (Section 2.2). Finally, we present an algorithm for the joint
decimation of multiple meshes (Section 2.3), along with a complexity analysis
of its global priority queue (Section 2.4).

2.1 Decimation Schemes

Mesh decimation consists in decreasing the data complexity by reducing
the number of faces. A convenient stopping criterion for mesh decimation is a
certain level of detail, i.e. a percentage of the initial number of faces, which
is equivalent to a target number of faces, as it is easier to handle for a user
than an error bound. In the case of a scene with multiple meshes, there are
several possible decimation schemes depending both on the distribution of the
face budget between the di↵erent meshes and the management of topological
operations.

This section reviews two intuitive decimation schemes for multiple meshes,
decimating each mesh separately (Section 2.1.1) and decimating all meshes
together (Section 2.1.2), which we then compare to each other and discuss
(Section 2.1.3).
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2.1.1 Decimating Each Mesh Separately

Decimating each mesh separately implies splitting the face budget between
meshes. The most intuitive and easiest solution is to take the desired
level of detail for the scene and apply it to each mesh, thus performing a
comparable number of topological operations on each mesh relatively to its
initial number of faces. Thus, each mesh is decimated independently with its
own target number of faces derived from the target level of detail, without any
consideration for the other meshes. Therefore, a priority queue of operations
is built for each mesh and standard incremental decimation is performed,
until the target number of faces is reached for the mesh or it is no longer
possible to decimate it, i.e. there are no more consistent operations left in the
priority queue of the mesh.

While the complexity of such a decimation scheme is equivalent to that
of standard incremental decimation as each mesh is decimated separately, the
decimation is heavily dependant on the initial tessellation of each mesh. In-
deed, the distribution of the face budget between meshes is not optimized as the
error values of the di↵erent operations are not considered. As a consequence,
some meshes might be overdecimated while others are barely decimated.

2.1.2 Decimating All Meshes Together

Decimating all meshes together means considering the scene as a single
mesh and performing standard mesh decimation on this mesh. Thus, all
topological operations of the scene are sorted into a unique priority queue and
the operation with the smallest error value, regardless its mesh, is performed
iteratively, until the target level of detail is reached or no more consistent
operations are left in the priority queue of the scene.

While the face budget is e�ciently distributed between meshes as their
operations are sorted all together based on the error value, the complexity
of such a decimation scheme is influenced by both the number and complex-
ity of meshes in the scene as a unique priority queue is used for the whole
scene. Therefore, the size of this priority queue would be very large in case
of a complex scene, which would slow down operation insertion and removal
throughout the decimation process.

2.1.3 Combining Both Decimation Schemes

We seek for the joint decimation of multiple meshes to e�ciently allocate
faces between meshes, and to do so with the lowest possible complexity.
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A decimation scheme decimating each mesh separately scales well to
very large scenes with numerous meshes as each mesh has its own priority
queue. Conversely, a decimation scheme decimating all meshes together over-
comes the dependence over the tessellation of the scene, as the face budget is
split between meshes in the same way as if they were merged into a single mesh.

As seen in Figure 2.1, the scene in Figure 2.1(a) is better preserved when its
meshes are decimated together in Figure 2.1(c) than when they are decimated
separately in Figure 2.1(b), as the rounded corners of the base are retained in
the former and turned into sharp corners in the latter, while the tube is equally
preserved in both. Indeed, the base has more faces than the tube, but its size
is much larger and it is significantly less tessellated, though it has more shape
variations. Hence, the tube should be more decimated than the base, which is
the case when decimating them together as the distribution of faces is e�cient.

(a) (b) (c)

Figure 2.1: Joint decimation of two meshes. (a) The original scene has 5508
faces, with 2252 faces for the tube (red mesh) and 2956 faces for the base (blue
mesh). (b) The meshes are decimated separately: the tube has 1126 faces and
the base 1478 faces. (c) The meshes are decimated together: the tube has 754
faces and the base 2000 faces. Both scenes are decimated down to 50%.

Therefore, we propose the joint decimation of multiple meshes by combining
the advantages of both decimation schemes, namely decimating all meshes
together in order to e�ciently distribute the face budget between meshes,
while using a global priority queue derived from the priority queues of each
mesh in the scene to overcome a possibly very large unique priority queue, in
order to limit the complexity of the decimation.
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2.2 Global Priority Queue

We build a global priority queue driving the simultaneous decimation of
multiple meshes from the priority queues of each mesh. The top operation of
each priority queue is inserted with regard to its error value into the global
priority queue. Therefore this global priority queue interleaves the di↵erent
priority queues, which is strictly equivalent to a unique priority queue sorting
all operations of all meshes. As there is no more than a single operation per
mesh in the global priority queue at each step of the incremental decimation,
the maximum size of this global priority queue is the number of meshes in the
scene.

In order to process N meshes at once, a priority queue P
i

is computed
for each mesh. As illustrated by Figure 2.2, the top operation of each mesh
is sorted into a global priority queue PGLOB of size N . Let M

k

be the mesh
associated to an operation originally belonging to a priority queue P

k

. At each
decimation step, the top operation of PGLOB is popped out and performed
on its associated mesh M

k

. It is also popped out of its own priority queue
P
k

which is updated following the operation. If P
k

is not empty, its new top
operation is sorted into PGLOB.
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Figure 2.2: Simultaneous decimation of multiple meshes using interleaved pri-
ority queues [Gha+19]. a) State of the priority queues before the start of the
decimation. The top operation of each priority queue P

i

is copied and sorted
by increasing error into the global priority queue PGLOB. b) When the opera-
tion on top of PGLOB is performed, its next operation in the priority queue of
the mesh it belongs to is added and sorted into PGLOB.

The benefits of the global priority queue are twofold. First, interleaving the
operations for all meshes yields to an adaptive decimation of the meshes in the
scene, as it allows to balance the decimation rate between meshes according to
the error values of their operations. Second, the use of an interleaved priority
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queue avoids to maintain and update a unique and possibly very large prior-
ity queue, while having a very small memory overhead. The cost to update
the priority queue of a mesh when decimating a scene is the same as when
decimating the mesh on its own, plus the cost of the global priority queue
update.

2.3 Algorithm

Algorithm 2 Incremental decimation of N meshes

Input: original meshes M
i

, stopping criterion stop crit
Output: decimated meshes M

i

P
i,i2[0,N [  empty priority queue of M

i

PGLOB  empty global priority queue
for each mesh M

i

do
for each element e

i

do
if op

i

is a possible operation on e
i

then
err

i

 compute error associated to op
i

Insert (op
i

,err
i

) in P
i

end if
end for
op

i

 top operation of P
i

Insert op
i

in PGLOB

end for
while PGLOB not empty and stop crit not reached do
op

k

 top operation of PGLOB

M
k

 mesh associated to op
k

Remove op
k

from PGLOB and P
k

Apply op
k

on M
k

for each neighbor operation op
k,j

do
Remove op

k,j

from P
k

err
k,j

 compute error associated to op
k,j

Insert (op
k,j

,err
k,j

) in P
k

end for
if P

k

not empty then
op

k

 top operation of P
k

Insert op
k

in PGLOB

end if
end while

Algorithm 2 extends Algorithm 1, which describes incremental mesh dec-
imation for a single mesh, to include the global priority queue managing the
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topological operations on di↵erent meshes.
This algorithm interleaves the execution of Algorithm 1 for each mesh. At

first, it computes the priority queue for each mesh, and the top operation of
each priority queue is inserted into the global priority queue. Then, the top
operation of the global priority queue is performed on the associated mesh by
reactivating its algorithm during an iteration step, as only operations on the
same mesh can be a↵ected and thus need to be updated. Following such an
iteration step, the new operation on top of the priority queue of the associ-
ated mesh, if existing, is inserted into the global priority queue. Again, the
operation on top of the global priority queue is performed and the decimation
process continues this way until no more operations are left or the stopping
criterion is reached.

As with single-mesh decimation, the stopping criterion can be defined as an
error bound, a number of topological operations or a target number of faces,
defined as desired, globally or per mesh.

2.4 Complexity Analysis

When considering the joint decimation of N meshes having about E
elements each, in terms of complexity, the cost of updating the operation
having the minimal error in the global priority queue is O(log(N)) and the
cost of re-sorting (deleting and reinserting) the k a↵ected operations in the
corresponding mesh priority queue is O(2k log(E)). Hence the complexity of
an operation managed by the global priority queue is O(log(N) + 2k log(E)).
The complexity of the same operation managed by a unique priority queue
gathering all elements of all meshes would be O(2k log(NE)).

As stated in Section 1.5, as the QEM is extended in this thesis, its asso-
ciated topological operator, the edge collapse, is used. In order to attest the
advantage of our algorithm with a global priority queue over an algorithm us-
ing a unique priority queue, we demonstrate that the number k of operations
to update following an edge collapse is substantial.

Figure 2.3 displays the entities of a mesh a↵ected by an edge collapse.
While the collapse of an edge directly impacts the error of its adjacent edges
as one or both of their endpoints will become the new vertex resulting from
the collapse, it also impacts more distant edges through quadrics. The error
of an edge is computed using the quadrics of its endpoints, and the quadric of
a vertex is computed by combining the quadrics of its adjacent faces. Hence,
when one vertex of a face is displaced following a collapse, its quadric changes
as its plane changes. Therefore, edges having one or both endpoints whose
quadric has changed as an aftermath of an edge collapse, are also impacted.
As a result, all edges influenced by a collapse are removed from their priority
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queue, and if not degenerated, their error is recomputed, and they are inserted
again into their priority queue.

As seen in Figure 2.3, for a valence-6 mesh, an edge collapse a↵ects 10 edges
directly, 8 edges through both endpoints, and 22 edges through one endpoint,
for a total of 40 edges. Hence the number k of operations to update at each
decimation step is usually large. As a consequence, the approach using a global
priority queue scales better when the number of meshes N is large than the
approach using a unique priority queue.

edges in the
one-ring of e

edges with a↵ected
endpoints
edges with an
a↵ected endpoint

ev1 v2

vertices a↵ected by
the collapse of e

Figure 2.3: Impact of an edge collapse on a mesh. Edges in the neighborhood
of edge e will be a↵ected to varying degrees by its collapse. By order of
influence: red edges are directly adjacent to e so one of their endpoints will be
displaced, orange edges have both endpoints whose quadrics will be changed
as a consequence of the plane of some of their adjacent faces changing, and
yellow edges have one such endpoint.

2.5 Conclusion

The decimation of a scene is carried out by the joint decimation of its
meshes. For this purpose, we devise a global priority queue of operations
common to all meshes in order to interleave the decimation of the meshes in
a scene. This global priority queue is derived and updated from the priority
queue of each mesh for complexity purposes. Therefore, such a decimation
scheme displays a suitable decimation rate for each mesh in the scene, while
having just a slight memory overhead as compared to the standard decimation
of a single mesh.

Nonetheless, the joint decimation of multiple meshes does not to account
for their proximity relations. Hence, we extend the QEM into a proximity-
aware error metric in Chapter 3.
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Chapter 3

Proximity-Aware Decimation

Figure 3.1: Tube scene. This scene is composed of two interlocking models.
The tube (red model) fits into the base (blue model).

The QEM computes the error associated to an edge collapse by computing
a quadric for the edge and minimizing a point-to-plane distance using this
quadric. The quadric of an edge aggregates information about the planes of
its adjacent faces. In other words, it stores the local information restricted
to the neighborhood of the edge in the topological sense. Hence, in the
case of multiple meshes decimation, the information stored in the quadrics
is incomplete, as faces close to or in contact with an edge, but belonging to
another mesh, are not considered. Meshes in a scene usually have proximity
relations representing semantic information. In that case, such an information
is as important as the local information for a mesh in the scene context. For
instance, the tube seen in Figure 3.1 is defined by its relation with the base
and would loose its functionality in the scene would it no longer fit into the
base following decimation. Therefore, the decimation of a scene consisting
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of multiple meshes should also account for the non-local properties of each
mesh, i.e. its close faces on other meshes.

This chapter first introduces a proximity definition (Section 3.1) and re-
views di↵erent possible decimation strategies accordingly (Section 3.2). We
then devise a proximity quadric to store non-local information (Section 3.3)
and use it to compute a proximity error (Section 3.4). Finally, we propose a
proximity-aware error metric by combining the QEM with the proximity error
(Section 3.5).

3.1 Proximity Definition

e

i,j

N (e
i,j

)

r

Figure 3.2: Neighborhood of an edge [Gha+18]. The local neighborhood of the
edge e

i,j

is its set of adjacent faces belonging to the same mesh and its non-
local neighborhood is the set N (e

i,j

) of faces within the proximity threshold r
and belonging to other meshes.

We denote a scene as a set of N triangular meshes M
i

, i 2 [0 . . N [, with
v
i,j

, e
i,j

and f
i,j

the jth vertex, edge and face of a mesh M
i

, respectively.
We define an edge to be in proximity with a face of a neighbor

mesh if the edge-to-face distance is lower than a scene-specific proximity
threshold r, which is assumed to be given in this chapter. This threshold
can be determined analytically from the scene, which is the focus of Chapter 4.

Figure 3.2 illustrates the neighborhood of an edge e
i,j

. Its local neighbor-
hood consists of its set of adjacent faces on its own mesh M

i

and its non-local
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neighborhood consists of the set N (e
i,j

) of faces from close-by meshes of M
i

that fall in its Euclidean neighborhood of radius the proximity threshold r.

We propose to also account for the non-local neighborhood of an edge
belonging to a given mesh when computing the error associated to its collapse,
i.e. faces from close-by meshes fitting the proximity definition. Edges having
such a non-local neighborhood within the proximity threshold are said to have
proximities and when considered together, they form proximity areas in the
scene.

3.2 Decimation Strategies

This section reviews several approaches that may be considered to account
for non-local properties of meshes during the decimation of a scene through
successive edge collapses, namely blocking collapses (Section 3.2.1), penaliz-
ing errors (Section 3.2.2), modifying quadrics (Section 3.2.3), or reordering
collapses (Section 3.2.4).

3.2.1 Blocking Collapses

A first approach to preserve proximity relations in a scene during its
decimation is to block the collapse of edges having proximity with faces
of other meshes. However, while this approach would perfectly keep the
proximity parts of the mesh, in the case of a target number of faces as
stopping criterion, it would lead to an undesired over-decimation in other
parts of the mesh, outside proximity areas, especially in the case of mas-
sive decimation. This problem is illustrated by Figure 3.3(b) with both
models having an altered shape even though their relation is perfectly
kept. Similarly, in the case of an error threshold as stopping criterion,
as the non-proximity areas would not be over-decimated, the proximity ar-
eas not being decimated at all means no massive decimation could be achieved.

Therefore, blocking all collapses in proximity areas is not a suitable solu-
tion, as some collapses are not problematic. For instance, the collapse of an
edge located in a planar area does not introduce any changes in the geometry
of the mesh. Moreover, the collapse of some edges in proximity areas may only
introduce minor changes in the scene while the collapse of some edges outside
proximity areas might introduce major changes in the associated mesh, making
the corresponding model unrecognizable, e.g. breaking its structure.
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(a) (b)

(c) (d)

Figure 3.3: Decimation of the Tube scene. (a) QEM. (b) QEM with blocking
of collapses in proximity areas. (c) QEM with proximity weighted by a too low
penalty separates the tube and the base like standard QEM. (d) QEM with
proximity weighted by a too high penalty prevents the decimation in proxim-
ity areas but over-decimates non-proximity areas, as QEM with blocking of
collapses in proximity areas.
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3.2.2 Penalizing Errors

A second approach to preserve proximity relations in a scene is to delay the
collapse of edges in proximity areas by increasing the associated error, using
a fixed value. This approach is similar to the user-guided decimation method
of Pojar and Schmalstieg [PS03] seen in Section 1.3.4, but without the user
input to select and weight collapses, as only collapses in proximity areas are
weighted and this weight is a constant.

As the QEM is not aware of proximity relations, we have implemented a
simple weighting scheme. The new error � at the collapsing vertex v

e

i,j

is
obtained by multiplying the QEM error �

qem

by a fixed value w for an edge
e
i,j

in a proximity area:

�(v
e

i,j

) = w �
qem

(v
e

i,j

) (3.1)

However, there is no such unique optimal weight for a scene, and finding
a good weight is a non-trivial problem. A too low weight would barely delay
collapses in proximity areas, and as a result lead to a similar decimation as
with the QEM. Likewise, a too high weight would drop collapses in proximity
areas down to the bottom of their respective priority queue, and thus proceed
practically as blocking the collapses.

Thus, we have chosen two extreme values: w = {2; 500}. The former
preserves the order of magnitude of the collapse errors as seen in Figure 3.3(c),
while the latter is very likely to block collapses in proximity areas as seen in
Figure 3.3(d).

Therefore, weighting the errors associated to edge collapses in proximity
areas is not a suitable solution either as, given the weight, it might not preserve
the proximity between meshes as with the QEM in such a context or have the
same drawbacks as with blocking collapses.

3.2.3 Modifying Quadrics

In its initial formulation, the QEM represents the point-to-plane distance
for all the faces surrounding an edge, as the quadric of an edge is the
normalized sum of the quadrics of its adjacent faces. The quadric of an edge
in proximity areas can be modified to also incorporate the quadrics of faces
in proximity from close-by meshes. This approach is in the same spirit as
the virtual edge of Garland and Heckbert [GH97] seen in Section 1.2.2, which
brings together quadrics of non-topologically but geometrically close faces
through two unconnected vertices considered as an edge. It also displays
similarities with the structure-aware decimation of Salinas, Lafarge, and
Alliez [SLA15] seen in Section 1.3.2, which balances the quadric of a face with
the quadrics of its proxies, as faces close to an edge but from other meshes
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3. Proximity-Aware Decimation

can be assimilated to proxies. However, the minimization of such a modified
quadric would tend to move the optimal collapsing vertex of the associated
edge towards the surrounding meshes.

Therefore, incorporating quadrics from faces in proximity with an edge but
from close-by meshes into the quadric of this edge is not a suitable solution
as close meshes would move towards each other and thus alter the proximity
relations between meshes in the scene.

3.2.4 Reordering Collapses

Ideally, the faces from surrounding meshes and in proximity with an edge
should contribute to delay its collapse, i.e. modifying its error value, but not
to the collapse itself, i.e. modifying the resulting vertex. For this purpose,
the collapses can be reordered as compared to their sorting with the QEM,
by modifying their error with regard to their proximity relations, while still
minimizing the QEM.

Therefore, we propose a new weighting strategy to delay the edge collapse
operations in proximity areas. We emphasize that we keep the collapsing vertex
given by the QEM since the aim is not to change the collapses but rather to
reorder them considering proximity. To do so, we compute a proximity quadric
from the surrounding meshes and evaluate it at the location of the collapsing
vertex, i.e. a proximity error. We incorporate the proximity error along with
the QEM into a proximity-aware error metric, in order to penalize collapses in
proximity areas. This proximity-aware error metric is used to sort collapses in
their respective priority queue and subsequently in the global priority queue
of the scene throughout the decimation process.

3.3 Proximity Quadric

The local quadric of an edge represents the influence of the faces surround-
ing it on its associated mesh, through the normalized sum of their quadrics.
Similarly, we compute a proximity quadric to represent the influence of faces
in proximity with the edge, but belonging to other meshes in the scene.

While the local quadric is computed from the current mesh, the proximity
quadric is computed from the original surrounding meshes, in order to avoid
the accumulation of decimation errors into it. Furthermore, the quadrics of
the faces from close-by meshes within the proximity threshold from the edge
are weighted by a function of their distance to the edge, so that faces closer
to the edge have more influence in the proximity quadric as compared to faces
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3.3. Proximity Quadric

further, but still close to the edge.

As seen in Figure 3.2, N (e
i,j

) is the set of faces from the non-local and
original neighborhood of an edge e

i,j

, i.e. faces on other and non-decimated
meshes. The proximity quadric Q̂

e

i,j

of e
i,j

combines the quadrics of such faces
as follows:

Q̂
e

i,j

=
1

card(N (e
i,j

))

X

f

k,l

2N (e
i,j

)

w(e
i,j

, f
k,l

) Q
f

k,l

(3.2)

where Q
f

k,l

is the quadric associated to the face f
k,l

and w weights the contri-
bution of each surrounding face with regard to the proximity threshold r, such
that

w(e
i,j

, f
k,l

) = �(d(e
i,j

, f
k,l

))

with d(e
i,j

, f
k,l

) the distance of the edge e
i,j

to the face f
k,l

. In order to give
more importance to the closest faces to the edge, a smooth polynomial kernel
�, drawn in Figure 3.4, is used:

�(x) =

(
(1� (x

r

)3)2 if x  r,

0 otherwise.
(3.3)

It should be noted that in Equation 3.2, the proximity quadric Q̂
e

i,j

is
normalized using the number of faces in N (e

i,j

) rather than the sum of the
respective weight of these faces. Therefore, the influence of a face surrounding
an edge over the proximity quadric is solely determined by its distance to the
edge, regardless of how many faces closer or further to the edge being also
part of this non-local neighborhood.

Figure 3.5 analyzes the influence of proximity relations in a scene. The
edges having proximities with the other mesh according to the definition of
proximity in Section 3.1 are enhanced in Figure 3.5(a). Furthermore, the faces
in the neighborhood of such edges on the other mesh are displayed in Fig-
ure 3.5(b) along with their corresponding weight. Obviously, most of these
faces are in the neighborhood of more than one edge, hence the color of a face
corresponds to the magnitude of its maximum weight. Moreover, there is a
good symmetry between edges having proximities and faces in the neighbor-
hood of such edges, as the faces formed by edges having proximities in a mesh
are themselves in the neighborhood of the edges forming their surrounding
faces on other meshes.
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0
r

x

1

�(x)

Figure 3.4: Smooth polynomial kernel. The weight of a face in the non-local
neighborhood of an edge in the proximity quadric is function of the edge-to-
face distance. Thus, the maximum weight is 1 in the case of a contact and
decreases down to 0 when the proximity threshold r is reached.
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3.4. Proximity Error

(a) (b)

Figure 3.5: Proximity influence in the Tube scene. (a) The edges highlighted
in red belong to proximity areas. (b) The maximum weight of each face with
regard to the other mesh is displayed in proximity areas, by decreasing influ-
ence: the weight of red, orange, yellow, green and blue faces is equal to or
below 1, 0.8, 0.6, 0.4 and 0.2, respectively.

3.4 Proximity Error

Just as the quadric of an edge is evaluated at the collapsing vertex
minimizing it, defining the local error on the mesh in Equation 1.17, we
likewise evaluate the proximity quadric at this collapsing vertex, defining the
proximity error with regard to the surrounding meshes.

Let v
e

i,j

be the collapsing vertex of an edge e
i,j

, obtained by minimizing
the quadric error. The proximity error is proportional to the deviation of the
collapsing vertex from the non-local neighborhood of the edge:

�
prox

(v
e

i,j

) = vT

e

i,j

Q̂
e

i,j

v
e

i,j

(3.4)

This proximity error represents the impact of an edge collapse on its non-
local neighborhood as for the quadric error with the local neighborhood.
Hence, the proximity error can be viewed as a global error and used as a
penalty function to increase the local error, in order to delay accordingly the
collapse of the associated edge.
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3. Proximity-Aware Decimation

3.5 Proximity-Aware Error Metric

We define a proximity-aware error metric by combining the proximity
error with the quadric error.

An intuitive solution is to add both errors, but this strategy would prevent
the decimation of flat proximity areas, i.e. edges with a very low geometric
error and a high proximity error. As a consequence, such an error metric is
not a suitable solution as the decimation of flat areas does not degrade the
geometry of a mesh and should thus occur early in the decimation process
instead of being delayed at the expense of possibly structure-changing but
proximity-free collapses, i.e. flat areas should still be associated with a low
error, regardless any proximity relation.

Therefore, as a simple addition is not suitable, we propose to use the prox-
imity error as a penalty factor modulating the quadric error. We recall that
the collapsing vertex of an edge is computed exactly as in Section 1.2.3, by
minimizing the standard QEM, i.e. regardless of proximity. We compute the
proximity-aware error at the collapsing vertex v

e

i,j

of an edge e
i,j

by combining
its proximity error �

prox

(v
e

i,j

) with its quadric error �
qem

(v
e

i,j

) as follows:

�(v
e

i,j

) = �
qem

(v
e

i,j

) (1 + ↵ �
prox

(v
e

i,j

)) (3.5)

where ↵ scales the proximity error so that penalized edges are adequately
sorted in their respective priority queue. Without this scale factor, the
proximity error might be negligible or too important in the addition in which
it takes parts. This addition ensures that the proximity-aware error is higher
than the quadric error, as the aim is to increase the quadric error to delay
edge collapses in proximity areas.

From Equation 3.5, the scale factor ↵ is defined as follows:

↵ =
1

�
prox

✓
�

�
qem

� 1

◆
(3.6)

We estimated ↵ so that the proximity-aware error � is in the same order of
magnitude as a large error when the quadric error �

qem

is relatively low and
the proximity error �

prox

is maximal.
As the aim of the proximity-aware error is to increase the quadric error of

edges in proximity areas in order to delay their collapse, its value should be
higher than the quadric error of most edges so that it drops down low in its
corresponding priority queue. Thus � is approximated by a large error err

high

set as the error at 90% of the QEM error histogram.
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3.5. Proximity-Aware Error Metric

The proximity-aware error aims at increasing relatively low quadric errors,
as a relatively high quadric error means that the associated edge already has
a low priority in its queue of collapses. Thus, �

qem

is approximated by a
relatively low error err 1

4
set as the error at the first quartile of the QEM error

histogram.
A high value for the proximity-aware error means a high value for the

proximity error, since the proximity error modulates the quadric error. Ac-
cordingly, as the proximity error is the square value of a distance bounded by
the proximity threshold r, �

prox

is set at its maximum value r2.
By applying these approximations to Equation 3.6, the scale factor ↵ is

estimated as follows:

↵ =
1

r2

 
err

high

err 1
4

� 1

!
(3.7)

We have first chosen the values of err
high

and err 1
4
intuitively to re-

spectively represent a high error and a relatively low error. It is meant to
produce a penalty that is neither too high nor too low. A high penalty would
prevent the decimation of edges even with a moderate proximity error, and a
low penalty would have an insignificant impact on the simplified meshes, as
compared to the standard QEM, even with a significant proximity error. We
have then validated these values experimentally.

The proximity-aware error metric is used to compute the error associated
to the collapse of each edge in the scene. It increases the quadric error in
proximity areas and keeps the quadric error elsewhere. Therefore, this error
metric is used for the joint decimation of multiple meshes modeling a scene.
Algorithm 3 details the proximity-aware error computation for an edge. It
takes as input the edge, its current mesh and the other meshes in their original
state to avoid introducing the error accumulation related to decimation into the
proximity computations. It also takes as input the specific parameters of the
metric, namely the proximity threshold r and the scale factor ↵. This algorithm
is used in Algorithm 2 to compute the error associated to an edge collapse while
considering both its local and non-local neighborhood, thus preserving both
the overall shape of meshes and the proximity relations between them.
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3. Proximity-Aware Decimation

Algorithm 3 Proximity-aware error computation for an edge

Input: edge e
i,j

, current mesh M
i

, original meshes M
k,k 6=i

,
proximity threshold r, scale factor ↵
Output: proximity-aware error err of e

i,j

Q
e

i,j

 local quadric of e
i,j

err
qem

 compute quadric error of e
i,j

using Q
e

i,j

err  err
qem

Q
prox

 null proximity quadric of e
i,j

nb
prox

 0
for each mesh M

k,k 6=i

do
for each face f

k,l

do
x  compute distance from e

i,j

to f
k,l

if x  r then
Q

f

k,l

 local quadric of f
k,l

Q
prox

 Q
prox

+ (1� (x
r

)3)2 Q
f

k,l

nb
prox

 nb
prox

+ 1
end if

end for
end for
if nb

prox

6= 0 then
Q

prox

 Q

prox

nb

prox

err
prox

 compute proximity error of e
i,j

using Q
prox

err  err (1 + ↵ err
prox

)
end if

3.6 Conclusion

The proximity-aware error metric combines the local QEM with a penalty
function representing the proximity relations. Therefore, its main parameter
is the proximity threshold as it defines the proximity relations. We use this
error metric to sort the edge collapses into the priority queue of their respective
mesh and subsequently into the global priority queue of the scene throughout
the decimation process.

So far, we assumed the proximity threshold as given. We propose to deter-
mine this threshold in Chapter 4 by analyzing the proximity between meshes
in a scene.
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Chapter 4

Proximity Analysis

All meshes in a scene possibly have proximity relations with each other.
However, in most scenes, especially the complex ones with numerous meshes,
these proximity relations di↵er significantly overall, ranging from perfect
contact to remote proximity. Therefore, we define the proximity in a scene
by analyzing all together the most relevant proximity relations between meshes.

This chapter first defines the proximity between two meshes (Section 4.1)
which we use to build a proximity distribution (Section 4.2). We then introduce
a proximity distribution filtering (Section 4.3) to single out candidates for the
computation of a proximity threshold (Section 4.4). Finally, we propose a
generalization to N meshes (Section 4.5).

4.1 Proximity Between Two Meshes

Intuitively, two meshes M
i

and M
j

have a proximity relation when their
faces are close enough. The goal of the proximity analysis is to find a
proximity threshold r such that faces considered to have proximities with
other meshes can be tagged, as illustrated in Figure 4.1. For this purpose, we
analyze at first the face-to-mesh relations.

This section defines the relation between each face of a mesh and the other
mesh by computing the face-to-mesh distance (Section 4.1.1) and the corre-
sponding asymmetry (Section 4.1.2).

4.1.1 Face-To-Mesh Distance

Let f
i,k

be a face of a mesh M
i

and c
j

(f
i,k

) its closest face on a mesh M
j

.
The face-to-mesh distance between f

i,k

and M
j

is the distance between f
i,k
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r

M

i

M

j

Figure 4.1: Proximity between two meshes [Gha+18]. The faces of M
i

(re-
spectively M

j

) that fall within a distance r from M
j

(respectively M
i

) are
highlighted.

and c
j

(f
i,k

):

d(f
i,k

,M
j

) = d(f
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, c
j

(f
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)) (4.1)

with d the Euclidean distance.

We consider f
i,k

to have a proximity relation with M
j

if the face-to-mesh
distance is small enough, and also symmetric. Therefore, this distance should
be the same as the corresponding face-to-mesh distance between c

j

(f
i,k

) and
M

i

:
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) = d(c
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)))
(4.2)

4.1.2 Asymmetry

In practice, a strict symmetry is not always desirable as the face-to-mesh
distances might be a↵ected by variations of tessellation level across meshes.
Thus, rather than checking the symmetry, we measure the asymmetry between
corresponding face-to-mesh distances.

The asymmetry of the face f
i,k

regarding the mesh M
j

is computed as
follows:

a(f
i,k

,M
j

) = | d(f
i,k

, c
j

(f
i,k

))� d(c
j

(f
i,k

), c
i

(c
j

(f
i,k

))) | (4.3)
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4.2. Proximity Distribution

As the analysis is aimed at mesh parts that are the most likely to have
proximities, only faces with a small asymmetry value regarding a given mesh
are considered. Furthermore, faces with the smallest asymmetry values are
given more importance in the course of the proximity analysis.

Therefore, we compute Â(f
i,k

,M
j

) as a function of the area A(f
i,k

) of the
face f

i,k

weighted with regard to its asymmetry value regarding the mesh M
j

,
so that Â decreases when the asymmetry increases:

Â(f
i,k

,M
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><

>:
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if a(f
i,k

,M
j

)  a 1
4
,

0 otherwise,

(4.4)

with a 1
4

the first quartile of asymmetry measured on the face-to-mesh
distances between the two meshes.

Intuitively, such a function allows to discard face-to-mesh relations that
will not contribute to the proximity analysis. We have validated this function
experimentally, and it should be noted that small changes in its value have a
negligible impact over the proximity analysis.

4.2 Proximity Distribution

We populate a proximity distribution D with the face-to-mesh distances,
where each distance sample is weighted with regard to its asymmetry by Â.
As the distance d is asymmetric by construction, D is built with distances
from both M

i

to M
j

and M
j

to M
i

.

Figure 4.2 illustrates di↵erent possible distributions for two meshes. In
the ideal case of Figure 4.2(a), all the faces in proximity areas are at the
same distance dideal from the other mesh. This generates a clear peak in the
proximity distribution D and the proximity threshold r can be obviously set
as dideal. In another straightforward case shown by Figure 4.2(b), there are
two di↵erent values possible for the face-to-mesh distances in proximity areas.
Thus, there are two peaks in D, which leaves two options for r, r0 in the case of
a restricted definition of proximity and r1 in the case of a more extended notion
of proximity. In practice, as seen in Figure 4.2(c), the geometric configuration
of meshes are more ambiguous, generating a complex proximity distribution D,
with multiple peaks and thus numerous possibilities for the proximity threshold
r, which is therefore more complicated to set.
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D
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d
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r0 r1
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Figure 4.2: Distribution schemes [Gha+19]. Examples of proximity distribu-
tions between two surfaces, ranging from simple (top) to more realistic (bot-
tom) cases. r

i

are examples of proximity threshold candidates.

4.3 Proximity Distribution Filtering

The proximity threshold r aims at classifying faces that are in proximity
areas, such that their distance to the other mesh is less or equal to r, as
illustrated in Figure 4.2. When the proximity distribution D is noisy, several
proximity threshold candidates r

i

might be considered. The candidates r
i

split D into groups of faces with consistent distances. The aim is to group
faces sharing the same distance, e.g. local maxima in D. A natural solution
consists in extracting proximity threshold candidates as local minima of the
input distribution D, i.e. simplifying the proximity distribution by filtering it
using its local extrema.

As visible in Figure 4.3(a), the input distribution D is in practice too
noisy for a direct extraction of its local minima, and thus needs to be filtered.
Smoothing the distribution might help to reduce the noise, however it is
not clear how much smoothing needs to be applied to not filter out suitable
candidate thresholds r

i

. Among all the existing approaches for signal analysis,
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(a) (b) (c)
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Figure 4.3: Proximity distribution filtering. (a-black curve) The input dis-
tribution D of a scene and (b) its persistence diagram. (a-gray curve) The
filtered distribution is constructed from the first four most persistent intervals
in the persistence diagram. (c) The Tube scene, seen in Figure 3.1. The faces
populating the input distribution are colored with regard to the group they
belong to.

a relevant approach would be one that considers explicitly the shape of the
distribution, and allows to select the number of groups required to explain
the data.

Topological Data Analysis (TDA) provides approaches for data analysis
by using techniques from topology. Specifically, persistent homology [ELZ00]
computes topological features of the data, filtering out the noise. The prox-
imity distribution is thus processed as a one-dimensional curve by persistent
homology.

Persistent homology views a one-dimensional curve as a height field. For
a given height, a virtual horizontal line can be drawn on the curve domain.
The interesting parts of such a line are its segments that are above the curve.
Hence, when increasing the height of the line, some segments might appear at
local minima and some existing segments might be merged at local maxima,
depending on the shape of the curve. Such events at local extrema are
referred to as topological events. The lines at various heights corresponding
to topological events are displayed in Figure 4.4 and used to represent the
topological events in a persistence diagram. The persistence diagram is a
two-dimensional graph containing a set of points, each point representing an
aforementioned segment, with its x coordinate corresponding to the height
where the segment appears, and its y coordinate to the height where it is
merged with another segment, as seen in Figure 4.4. The persistence of a
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Figure 4.4: Persistent homology [Coh05]. The virtual lines at local extrema of
the curve (on the left) are used to represent the associated topological events
in the persistence diagram (on the right).

segment is measured as the distance between its associated point and the
line y = x in the persistence diagram. Thus, each segment is associated
to an interval of the curve. A high persistence value of a segment means
that it represents a significant interval of the curve while a smaller value
corresponds to a less substantial interval. Therefore, persistent homology
classifies intervals of a curve by topological prominence.

To simplify the curve representing the proximity distribution D, we select
the m most prominent intervals, i.e. those with the highest persistence values,
as seen in Figure 4.3(b). As each interval is represented in the persistence
diagram by its local minimum and maximum, corresponding to its appear-
ance and merge events, respectively, its local extrema are known. Hence, the
filtered proximity distribution is constructed by linearly connecting the suc-
cessive local extrema corresponding to the m most prominent intervals of the
input proximity distribution, as seen in Figure 4.3(a). The proximity threshold
candidates r

i

are subsequently extracted as the local minima of the simplified
curve. Therefore, each such interval forms a group of faces, as illustrated in
Figure 4.3(c). By construction, this approach is guaranteed to interpolate the
local extrema of D, and generate m proximity threshold candidates r

i

.

4.4 Proximity Threshold

The proximity threshold r is used to define the proximity area of an edge,
along with the weight of faces in such an area with regard to the edge-to-face
distance, by using a smooth polynomial kernel, as seen in Section 3.3. From
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Equation 3.3, the proximity threshold r is defined as follows:

r =
x

3

q
1� 2

p
�(x)

. (4.5)

with x an edge-to-face distance and �(x) its corresponding weight.

In the case of a narrow proximity interval, e.g. the red interval in Fig-
ure 4.3(a), the smoothing using its proximity threshold r

i

might over smooth
the influence of the faces inside the interval. In order to get a conservative
smoothing, we extend the interval so that the weight of any face inside the
interval bounded by r

i

is close to 1, so as to preserve the face influence. Thus,
the proximity threshold r used in Equation 3.3 is computed so that:

�(r
i

) = w
ref

(4.6)

with w
ref

the reference weight for a face at distance r
i

from an edge.

Therefore, for a chosen candidate r
i

, we compute the proximity threshold
r by applying Equation 4.6 to Equation 4.5:

r =
r
i

3
p
1� 2
p
w

ref

. (4.7)

The smooth polynomial kernel in Figure 4.5 illustrates the relation between
the candidate threshold r

i

and the final threshold r, i.e. the influence of faces
within a distance r

i

of an edge as compared to faces within a distance r of an
edge but further than a distance r

i

.

For all the experiments produced in this thesis in Chapter 5, we used the
first most prominent local minimum, out of four extracted as proximity thresh-
old candidates. Likewise, we experimentally set the reference weight w

ref

at
0.9 in order to compute the proximity threshold from the aforementioned can-
didate.

The value m corresponding to the number of most prominent intervals
depends on the shape of the models and their organization in the scene. While
the choice of m = 4 is e↵ective for all the experiments presented, it may not be
optimal for all scenes. Therefore, the system can output multiple suggestions
regarding the proximity threshold, for instance by coloring the associated faces
as seen in Figure 4.3(c). Thus, the user can choose the appropriate number
of prominent segments m to single out and a subsequent proximity threshold
candidate r

i

to compute the proximity threshold r.
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Figure 4.5: Smooth polynomial kernel. The weight of a face within a distance
r
i

from an edge is comprised between w
ref

and 1 while the weight of further
faces is bounded by w

ref

.

4.5 Generalization to N Meshes

So far, the face-to-mesh relation computations and the subsequent
proximity distribution construction and filtering, from which a candidate
threshold is extracted to produce the proximity threshold, were done for
scenes consisting of two meshes. We naturally extend this approach to N
meshes by aggregating the pairwise proximity distance distribution for all
meshes in the scene.

However, considering all pairs of meshes in the scene, especially those that
are far away from each other, may lead to unwanted intervals and a relatively
high distance might be computed as proximity threshold for the scene. To
prevent this, we only considered pairs of meshes that have intersecting or
close-by axis-aligned bounding boxes. Therefore, a fixed epsilon value is used
for all the experiments presented, set as 0.1% of the axis-aligned bounding box
of the scene. Hence, only pairs of meshes possibly having proximity relations
are processed during the proximity analysis.
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4.6 Conclusion

The proximity analysis consists in aggregating face-to-mesh distances in
the scene, weighted by a function of their asymmetry, in a proximity distri-
bution. We filter this distribution to extract proximity threshold candidates
using persistent homology. Finally, we compute the proximity threshold of a
scene out of a candidate threshold.

We propose an automatic computation of the proximity threshold r used
in Chapter 3. We also compute the proximity threshold used to parameterize
the proximity-aware decimation of all scenes in Chapter 5 with this approach.
Furthermore, this computation can be easily edited if required by the user.
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Chapter 5

Results

We decimate a scene using multiple meshes decimation as explained in
Chapter 2. Therefore, we run Algorithm 2 with the edge collapse operator
along with a given error metric, and we set the stopping criterion as a target
number of faces for the scene. Each error metric that can be used in this
algorithm defines a specific method, and we compare the performances of the
proximity-aware error metric devised in this thesis with previous methods on
various scenes.

This chapter first presents the implementation for multiple meshes decima-
tion (Section 5.1). We then review the results on di↵erent scenes (Section 5.2).
Finally, we perform a quantitative analysis of the results (Section 5.3).

5.1 Implementation

Each method consists in running the multiple meshes decimation algorithm
with a specific error metric. We implemented this algorithm and its possible
error metrics, i.e. the compared methods, in C++ and we run it on an
Intel Xeon E5-2609 1.90GHz, 16GB of RAM. The incremental decimation
is performed on a single thread. It should be noted that all compared
methods have homogeneously non-optimal implementations to provide fairer
comparisons.

This section details how the quadric error metric and the boundary-aware
decimation are compared to the proximity-aware error metric developed in
this thesis.
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Quadric Error Metric

We compare the standard Quadric Error Metric (QEM) of Garland and
Heckbert [GH97], detailed in Section 1.2.3, to the proximity-aware error metric
by deactivating the proximity error computation both during the computation
of the priority queues of the meshes forming a scene, prior to any edge collapse
operation, and during the update routine of the priority queue of the mesh
where a collapse operation has been performed. As the QEM has been designed
to decimate a single mesh, inter-mesh proximity relations do not fall under its
scope.

Boundary-Aware Decimation

We also compare the boundary-aware decimation of González et al.
[Gon+09], seen in Section 1.4, to the proximity-aware error metric. Contrary
to the proximity-aware error metric that changes the error of an edge with
regard to proximities, i.e. delays the collapses in proximity areas, and keeps
the collapsing vertex computed with the QEM, the boundary-aware decima-
tion uses the QEM to compute the error of all edges, including those having
proximities, i.e. does not delay collapses in proximity areas, and might just
change the collapsing vertex of an edge having proximities. The boundary-
aware decimation tags vertices in proximity areas as boundary, i.e. vertices
having a vertex-to-face distance within the proximity threshold with a face of
another mesh, and if only one endpoint of an edge is a boundary vertex, this
boundary vertex is kept by performing a halfedge collapse instead of an edge
collapse. As a consequence, edges with both endpoints tagged as boundary
vertices, i.e. edges inside proximity areas, are not preserved.

Proximity-Aware Error Metric

We introduce the proximity-aware error metric in Chapter 3 and the prox-
imity threshold parameterizing it in Chapter 4. The error associated to an
edge is computed using Algorithm 3. To speed up the edge-to-face distance
queries to detect the possible faces in proximity with an edge, a k-d tree stor-
ing the faces of a mesh is computed for each original mesh in the scene, as
the potential proximities of an edge are computed with regard to the original
surrounding meshes. In order to avoid going through the k-d tree of each other
mesh in the scene to compute the proximity relations of an edge, a pre-filtering
is done. Thus, two meshes are referred to as neighbor meshes if the distance
between their axis-aligned bounding boxes is below the proximity threshold of
the scene. Furthermore, to speed up the error computation for an edge, the
distance queries are parallelized, using one thread per neighboring mesh.
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Scene # objects # input faces # output faces Prox. threshold (%) Dec. time (s) Method
Tube 2 5508 500 5.29 8 Proximity-Aware EM

(Figure 5.1) 2 Boundary-Aware
2 QEM

Tube* 2 11526 500 4.68 19 Proximity-Aware EM
(Figure 5.2) 4 Boundary-Aware

3 QEM
Connector 2 5820 580 1.98 5 Proximity-Aware EM
(Figure 5.3) 2 Boundary-Aware

2 QEM
Engine 17 42286 3800 8.34 811 Proximity-Aware EM

(Figures 5.4 to 5.6) 9 Boundary-Aware
8 QEM

Car 425 3075108 150000 0.00829 67680 Proximity-Aware EM
(Figures 5.7 to 5.9) 25980 Boundary-Aware

23460 QEM

Table 5.1: Scenes details [Gha+19]. The proximity threshold is computed
automatically and given as a percentage of the diagonal of the scene’s axis-
aligned bounding box.

5.2 Scenes

We run the aforementioned methods on di↵erent scenes. The character-
istics of each scene, as well as the timings for each method, are described in
Table 5.1. The stopping criterion of the incremental decimation is set as a
target number of faces, regardless the method. As this number of faces is
set for the whole scene, each method is expected to balance the face budget
di↵erently on each individual mesh.

This section first analyzes the results of each method on a basic scene
consisting of interlocking models (Section 5.2.1). We then use these methods
to decimate objects with cylindrical shapes (Section 5.2.2). Finally, we discuss
the results on amedium complexity scene (Section 5.2.3) and a realistic complex
scene (Section 5.2.4).

5.2.1 Interlocking Models

The Tube scene is composed of two objects that mechanically fit into one
another, as seen in Figure 5.1(a). Preserving the geometric features associated
to this relation, e.g. the mechanical shoulder, is necessary to preserve the
understanding of the scene.

As seen in Figure 5.1(b), the QEM fails at preserving the tube (red model)
outer walls on the base (blue model), which retracts during decimation. As
expected, the boundary-aware approach in Figure 5.1(c) displays a similar
decimation as it mostly performs like the QEM in proximity areas. In
comparison, as seen in Figure 5.1(d), the proximity-aware error metric nicely
preserves the top shoulder on the tube and the outer tube slot on the base,
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(a) (b)

(c) (d)

Figure 5.1: Tube scene [Gha+19]. (a) Original scene. (b) QEM and (c)
Boundary-Aware separate the tube and the base. (d) Proximity-Aware EM
keeps the two objects as a whole.

while outside of proximity areas, the results look similar to the QEM. The
only noticeable di↵erence is regarding the small structure at the back of the
base, which is discarded by the proximity-aware error metric to provide a
larger face budget in favour of proximity areas.

We also evaluated the stability of the proximity-aware error metric with
regard to variations of tessellation on this first scene as compared to the QEM
and the boundary-aware decimation. We generated the Tube* scene by subdi-
viding the base of the Tube scene using midpoint subdivision. The midpoint
subdivision of a mesh is detailed in Section 5.3. As seen in Figure 5.2, the
proximity-aware error metric displays similar stability as the previous meth-
ods, while still preserving the proximity areas.
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(a) (b) (c)

Figure 5.2: Decimation of the Tube* scene [Gha+19]. Tube* is obtained by
tessellating Tube before decimation with (a) QEM, (b) Boundary-Aware and
(c) Proximity-Aware EM. All three methods produce similar results to those
obtained by simplifying the original Tube scene.

5.2.2 Cylindrical Shapes

The Connector scene is composed of two objects, a connector and a screw
passing through one of the connector holes, as seen in Figure 5.3(a). To
preserve the functionality of this scene, the cylindrical shape of the connector
hole where the screw belongs has to be preserved so that the screw still fits
into it, without any intersection between the two meshes.

While the topology of the top and the bottom of the connector might di↵er
as it is often the case for meshes exported from CAD software, the geometry is
very similar. Therefore, the QEM, which is not sensitive to proximity, and by
extension the boundary-aware decimation, display a substantially similar dec-
imation for both holes in the connector, with none of them looking cylindrical
anymore, as seen in Figure 5.3(b) and Figure 5.3(c). Conversely, as seen in
Figure 5.3(d), the proximity-aware error metric displays a significant di↵erence
between the two holes of the connector, as the shape of the one where the screw
belongs is preserved, contrary to the other one where the decimation is similar
to previous approaches. Thus, the reordering of collapses carried out by the
proximity-aware error metric is relevant as the face budget is appropriately
used. Furthermore, there are no notable overall di↵erences as compared with
previous approaches regarding non-proximity areas.
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(a) Original scene (b) QEM

(c) Boundary-Aware (d) Proximity-Aware EM

Figure 5.3: Connector scene [Gha+19]. Contrary to previous approaches,
Proximity-Aware EM preserves the shape of the hole where the screw belongs
in the connector.
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5.2.3 Medium Complexity Scene

The Engine scene is composed by 17 meshes with very di↵erent shapes,
e.g. thin belts, cylinders, box-like shapes, etc, and types of contacts, e.g. in-
terlocked cylinders, partially colled belts, coplanar surfaces, etc, as illustrated
by Figure 5.4(a). To preserve the semantics of the scene, these contacts and
therefore the mesh parts composing them have to be preserved throughout
the decimation.

Although the overall decimation looks similar with all three methods in
Figure 5.4, the proximity-aware error metric better preserves the geometry
of meshes in proximity areas and improves the readability of the system
functionality when the view is closer to the models. For instance both the
QEM and the boundary-aware decimation generate intersections between
the wheel and the belt as seen in Figure 5.5(b) and Figure 5.5(c), which
are avoided by the proximity-aware error metric as seen in Figure 5.5(d).
Likewise, in Figure 5.6, as for the Tube scene, the proximity-aware error
metric better preserves the connection between the tubes and the base as
compared to previous approaches.

In this scene, the proximity-aware error metric preserves details in prox-
imity areas by discarding some details in other parts of the scene in order to
balance pertinently the face budget. For instance, small geometrical compo-
nents on top and at the bottom of the oil pan (purple model) are removed by
the proximity-aware error metric as they are not part of any proximity relation
nor are they necessary for the identification of the model they are part of.

5.2.4 Realistic Complex Scene

The Car scene consists of 425 meshes modeling the front part of a real
car, including systems and mechanical pieces. A global view of this scene
can be seen in Figure 1. As for the previous scenes, by taking into account
the proximity relations in the decimation process, the associated functional
information of the scene are better preserved.

As illustrated by Figure 5.7, the proximity-aware error metric, seen in Fig-
ure 5.7(d), better preserves the circular shape of the screw head as compared
to the boundary-aware decimation in Figure 5.7(c) and especially the QEM in
Figure 5.7(b) which not only destroys the shape but also generates an intersec-
tion with the underneath connector. Figure 5.8 illustrates how the proximity-
aware error metric better preserves both the shape and the alignment of two
connected axis, seen in Figure 5.8(d), as compared to the boundary-aware
decimation in Figure 5.8(c) and especially the QEM in Figure 5.8(b) which

79



5. Results

(a) Original scene (b) QEM

(c) Boundary-Aware (d) Proximity-Aware EM

Figure 5.4: Engine scene [Gha+19]. The decimation with previous approaches
and Proximity-Aware EM produce globally similar results for the overview of
the scene.
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(a) Original scene (b) QEM

(c) Boundary-Aware (d) Proximity-Aware EM

Figure 5.5: Engine scene, first close-up view [Gha+19]. Contrary to previous
approaches, Proximity-Aware EM does not generate intersections between the
wheel and the belt.
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(a) Original scene (b) QEM

(c) Boundary-Aware (d) Proximity-Aware EM

Figure 5.6: Engine scene, second close-up view [Gha+19]. Unlike previous
approaches, Proximity-Aware EM better preserves the connection between the
tubes and the base.
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(a) Original scene (b) QEM

(c) Boundary-Aware (d) Proximity-Aware EM

Figure 5.7: Car scene, first close-up view [Gha+19]. Compared to previous
approaches, Proximate-Aware EM better preserves the shape of the screw
head and does not generate an intersection with the connector unlike QEM.
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(a) Original scene (b) QEM

(c) Boundary-Aware (d) Proximity-Aware EM

Figure 5.8: Car scene, second close-up view [Gha+19]. Compared to previ-
ous approaches, Proximity-Aware EM better preserves both the shape and
the alignment of the two connected axis, and does not create an intersection
between them in contrast to QEM.
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(a) Original scene (b) QEM

(c) Boundary-Aware (d) Proximity-Aware EM

Figure 5.9: Car scene, third close-up view [Gha+19]. Proximity-Aware EM
preserves the shape of the pipe shortened by QEM, and therefore its connection
with the neighbor object.

additionally creates intersections. The functional readability of the scene may
be severely deteriorated in Figure 5.9 by very thin pipes shortened by the
QEM and consequently disconnected from their neighborhood as illustrated
by Figure 5.9(b), while they are well preserved by both the proximity-aware
error metric as seen in Figure 5.9(d) and the boundary-aware decimation in
Figure 5.9(c) as the proximity area is very small and basically consists of a
boundary.

5.3 Quantitative Analysis

We corroborate the visual results of Section 5.2 by a quantitative analysis.
The most accurate approach to compare two surfaces is the Hausdor↵ distance,
which is detailed in Section 1.2.3. While we assume that the original meshes
are sampled enough to enable robust Hausdor↵ distance computations, as
they otherwise would not need to be simplified, we resample the decimated
meshes.
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This section introducesmesh subdivision to resample the decimated meshes,
in order to compute the Hausdor↵ distances for both the proximity and non-
proximity parts of meshes distinctly.

Mesh Subdivision

The midpoint subdivision is both the most intuitive and widely used
approach to subdivide a mesh. As illustrated by Figure 5.10, each face of a
mesh undergoes a subdivision by the introduction of midpoints into its edges,
which results in four faces instead of one previously. This process can be
performed repeatedly until a satisfactory sampling is obtained.

Midpoint
Subdivision

Figure 5.10: Midpoint subdivision of a face. The face is divided into four faces
by introducing a vertex in the middle of each edge. Furthermore, a vertex is
additionally created at the centroid of each such face.

We perform a single pass of such a mesh subdivision on the meshes of the
decimated scenes of Section 5.2. Moreover, the centroids of all faces are added
to the list of vertices following the subdivision process, in order to have more
points for the Hausdor↵ distance computations, as seen in Figure 5.10, since
it consists in computing point-to-plane distances.

Hausdor↵ Distances

The Hausdor↵ distance can be computed e�ciently between two surfaces,
i.e. an original and a simplified mesh. In the case of a scene consisting
of multiple meshes, the Hausdor↵ distance of the scene is the maximum
Hausdor↵ distance of all pairs of original and simplified meshes. We thus
compare numerically the results of the proximity-aware error metric with
those of the QEM and the boundary-aware decimation. However, as the
proximity-aware error metric aims at preserving specifically the geometry in
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Scene Proximity mean Non-proximity mean Proximity max Non-proximity max Method
Tube 0.0897 0.446 0.594 5.23 Proximity-Aware EM

(Figure 5.1) 0.336 0.395 4.82 5.01 Boundary-Aware
0.384 0.348 4.81 5.02 QEM

Tube* 0.0774 0.388 2.45 5.63 Proximity-Aware EM
(Figure 5.2) 0.455 0.273 5.00 5.01 Boundary-Aware

0.462 0.248 4.98 4.98 QEM
Connector 0.0540 0.305 0.514 2.33 Proximity-Aware EM
(Figure 5.3) 0.254 0.313 1.15 2.44 Boundary-Aware

0.240 0.301 0.787 3.83 QEM
Engine 0.0475 0.115 1.08 2.39 Proximity-Aware EM

(Figures 5.4 to 5.6) 0.0527 0.205 1.47 2.91 Boundary-Aware
0.0487 0.0488 1.47 0.389 QEM

Car 0.00591 0.0124 0.659 1.10 Proximity-Aware EM
(Figures 5.7 to 5.9) 0.0143 0.0116 1.20 1.88 Boundary-Aware

0.0138 0.0105 1.75 2.50 QEM

Table 5.2: Hausdor↵ distances [Gha+19]. The distances between meshes are
given as a percentage of the diagonal of the scene’s axis-aligned bounding box
(the less the better), and computed separately for proximity and non-proximity
areas.

proximity areas, while preserving the overall geometry in non-proximity areas,
we measure separately the errors introduced inside and outside the proximity
areas.

Therefore we divide an original scene into a proximity part and a
non-proximity part, by using the proximity definition of Section 3.1 with
the proximity threshold computed in Chapter 4. Hence, the edges having
proximities with other meshes are detected. As the Hausdor↵ distance is a
point-to-plane distance, it translates into a vertex-to-face distance. Moreover,
as mentioned in Section 1.2.3, the Hausdor↵ distance is two-sided. As a
result, for each mesh, the vertex-to-face distances have to be computed for
both its original and simplified form, and the maximum of such distances
among all meshes is the Hausdor↵ distance of the corresponding part of the
scene, i.e. either the proximity or the non-proximity part. To this mean, the
vertices of the original meshes are divided into two categories, those in the
proximity part of the scene, i.e. endpoints of edges in proximity areas, and
those that are not. Likewise, the vertices of the simplified meshes, resampled
for the purpose of Hausdor↵ distance computations, are also divided into
these two categories. Such a vertex is considered to be in the proximity
part if its closest face on the corresponding original mesh, i.e. the face
defining its vertex-to-face distance, belongs to the proximity part of the scene,
i.e. has all its three edges in proximity areas. Thus, the vertex-to-face dis-
tances are assigned to either the proximity or the non-proximity part of a scene.

We evaluate the performances of the proximity-aware error metric, to en-
sure on the one hand that the proximity part of the scene is better preserved

87



5. Results

than with previous approaches, and on the other hand that it does not sig-
nificantly underperform in the non-proximity part as compared to previous
approaches. Table 5.2 reports the mean and maximum Hausdor↵ distance of
both the proximity and non-proximity part of each scene seen in Section 5.2, for
the proximity-aware error metric and the previous approaches. As expected,
the proximity-aware error metric yields to much lower errors in proximity areas,
at the cost of higher errors in other areas of the scene. In most cases however,
the proximity-aware error metric outputs a comparable error in non-proximity
areas, and in two cases, for the Connector and Car scenes, it introduces less
error than the previous approaches, due to side e↵ects of the proximity areas.

5.4 Conclusion

In the context of the joint decimation of multiple meshes with proximity
relations contributing to the semantics of a scene, the proximity-aware error
metric displays better results than previous approaches on various scenes. It
performs better in proximity areas as it preserves the inter-model relations and
consequently the scene as a whole, with negligible aftermath on other areas.

We validate these visual findings by a quantitative analysis on both the
proximity and the non-proximity part of a scene, using Hausdor↵ distances.
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Summary

This thesis introduces the decimation of multiples meshes using a
proximity-aware error metric which is parameterized following a proximity
analysis of the scene, in order to preserve both the geometry of each mesh and
its relations with other meshes when decimating a complex 3D scene consisting
of multiple meshes. Our solution is based on the following contributions.

First, we propose a mechanism for the joint decimation of multiple meshes
by extending the incremental decimation algorithm for a single mesh. We
compute a priority queue of topological operations for each mesh by using an
error metric to estimate the error introduced by an operation on its associated
mesh, and interleave the operations of all meshes by constructing a global
priority queue with the top operation of each priority queue. The top operation
of the global priority queue is iteratively popped out and performed on its
associated mesh, and following the update of the corresponding priority queue,
the new top operation is inserted in the global priority queue. The advantage
of this global priority queue is twofold, as it allows to perform operations with
consistent errors on all meshes and thus e�ciently distributes the face budget
between meshes, while doing so with the cost to update the priority queue of
a mesh being the same as in the case of single mesh decimation.

Second, we devise a proximity-aware error metric by extending the Quadric
Error Metric (QEM) [GH97] to account for proximity relations between meshes
in a scene. The QEM uses the local quadric of an edge, characterizing the influ-
ence of its surrounding faces, to compute the local error associated to the edge
collapse at the vertex minimizing it. Similarly, we also construct a proximity
quadric for the edge from the surrounding meshes, by adding the quadrics of
its close faces on other meshes weighted by a function of their distance to the
edge, and normalize it using the total number of faces in proximity so that
the influence of each such face does not change regarding other faces. We use
this proximity quadric to compute a proximity error at the collapsing vertex
defined with the QEM, as we do not aim at changing the collapses but only
at reordering them with regard to proximity. Hence, we derive the proximity-
aware error metric by combining the local error and the proximity error so that
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the proximity error penalizes the local error and delays the collapse of edges
in proximity areas.

Last, we analyze the spacial relationships between meshes in a scene to
derive a proximity threshold defining the proximity relations between meshes,
i.e. the proximity areas of the scene. We populate a proximity distribution
with face-to-mesh distances weighted by a function of their asymmetry for each
face of a pair of close meshes in a scene. We aggregate the distributions for all
pairs of close meshes in a scene and filter the resulting proximity distribution
to group faces with consistent distances using persistent homology [ELZ00].
Hence, we extract the local minima of this filtered distribution as proximity
threshold candidates, which each candidate demarcating a group of faces. We
chose to divide the faces of the proximity distribution into four groups and
selected the candidate of the first group as the proximity threshold for all
our experiments presented in this thesis. Therefore, this analysis can be used
to suggest multiple proximity configurations, thus enabling semi-automatic
configuration.

We combine our contributions to define a fully automatic pipeline for
proximity-aware multiple meshes decimation. In pre-process, we run the prox-
imity analysis to compute the proximity threshold, in order to parameterize the
proximity-aware error metric. Then, we run the algorithm for the joint decima-
tion of multiple meshes using the edge collapse operator with the proximity-
aware error metric. As shown on various CAD scenes, the proximity-aware
error metric produces comparable overall results to previous approaches, while
better preserving the proximity relations between meshes.

Perspectives

While we use our contributions all together to decimate CAD scenes
consisting of multiple meshes, we also point out that each one of these
contributions can be used either independently or for other applications.
The multiple meshes decimation scheme is generic can thus be used with
any topological operator and error metric. The proximity-aware error metric
can both be used as error metric with any other generic decimation scheme
involving multiple meshes and have its proximity threshold defined with any
other proximity analysis. Finally, the proximity analysis can be used to define
proximity for any purpose.

Our approach is based on the assumption that proximity relations imply
semantic or functional relationships between models, which is often accurate
for CAD objects, with shapes designed to achieve a specific task. An interesting
future investigation would be to extend this approach to other relations, such
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as alignment, symmetry, instances, or user-defined relations. The proximity
analysis might also be less accurate when the input meshes contain large faces,
as the distance anisotropy function is sampled for each face of a mesh. This is
not a problem in most cases as detailed meshes are to be decimated, however
an interesting research direction would be to integrate the spatial relationship
over the faces, in order to achieve a truly tessellation-independent method.
Our current implementation introduces a time overhead as compared to the
QEM, which could be significantly reduced by optimizing distance queries and
neighborhood relations, e.g. by caching faces in proximity areas.
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Résumé en français

Contexte

Les scènes 3D complexes sont souvent modélisées par des modèles très
larges et détaillés représentant l’information géométrique. Par ailleurs, les
modèles représentant des scènes issues de la Conception Assistée par Ordina-
teur (CAO) encodent également le sens fonctionnel d’une scène au moyen de
leurs relations les uns avec les autres. Bien que les primitives de CAO contien-
nent beaucoup d’informations à propos d’une scène, les scènes issues de CAO
sont généralement exportées des logiciels de CAO sous forme de maillages,
étant donné que ces informations sont souvent confidentielles et leur rendu
coûteux, alors que les maillages sont plus simples à traiter.

La visualisation et l’interaction avec des données 3D complexes est très dif-
ficile car l’échelle des données ainsi que leur complexité nécessite de puissants
composants matériels et logiciels pour des applications réelles. Ceci devient
encore plus critique avec les plateformes mobiles et la visualisation 3D en ligne,
ce qui requiert un transfert des données et un rendu rapide même sur des ter-
minaux bas de gamme. Malgré leurs performances limitées, les plateformes
mobiles sont très attrayantes car elles donnent accès à beaucoup d’information
sur site, et aident ainsi les utilisateurs à e↵ectuer des tâches dans des environ-
nements complexes, par exemple pour la maintenance de machines. Le coût
relativement bas et l’ubiquité des appareils mobiles les rendent très attrayants
en tant que support pour l’enseignement et la formation.

Les travaux de cette thèse s’inscrivent dans le contexte plus large d’un pro-
jet de recherche industriel visant à la formation et à l’apport d’information sur
site pour la maintenance de machines au moyen d’un jeu sérieux sur des ter-
minaux mobiles ayant des performances limitées. Etant donné que les scènes
complexes issues de CAO sont composées par de nombreux objets, certains ob-
jets sont partiellement ou complètement dissimulés par d’autres objets. Ainsi,
pour avoir accès à tous les objets dans une scène, l’utilisateur doit être en
mesure d’interagir avec la scène en faisant du démontage virtuel. Par ailleurs,
étant donné que l’arrangement des objets encode la sémantique d’une scène,
le démontage virtuel permet à l’utilisateur d’analyser les relations entre objets
et ainsi de mieux comprendre la fonctionnalité de la scène. Par conséquent, le
démontage virtuel permet de considérer un objet à la fois individuellement et
dans le cadre d’une scène.

En conséquence, afin de permettre la visualisation et l’interaction en
temps réel avec une scène complexe issue de CAO sur un terminal ayant
des performances limitées, au moyen du démontage virtuel en particulier,
la complexité des données 3D modélisant la scène doit être réduite tout en
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préservant à la fois la géométrie et le sens fonctionnel de la scène à travers la
géométrie de chaque objet et ses relations avec les autres objets, chaque objet
étant modélisé par un maillage.

Plusieurs approches peuvent atténuer la complexité croissante des données
3D pour les terminaux bas de gamme. La visibilité peut être utilisée pour
ne pas charger les parties cachées d’une scène. Cependant, l’interaction
avec une scène nécessite un accès à tous les maillages et lors d’une utilisa-
tion hors-ligne, aucun chargement ne peut être e↵ectué. Les instances de
modèles composant une scène peuvent être détectées pour éviter le charge-
ment de duplicatas. Néanmoins, les maillages exportés de logiciels de CAO
sont souvent di↵érents pour des instances d’un même modèle car ils ont des
topologies di↵érentes, c’est-à-dire des sommets, arêtes et faces di↵érents, bien
qu’ils aient la même géométrie, c’est-à-dire la même forme. L’approche la
plus répandue et la plus pratique pour réduire la complexité des données
est la simplification de maillage, consistant à réduire le nombre de polygones
d’un maillage complexe en utilisant des algorithmes de décimation. La plu-
part des algorithmes de décimation sont incrémentaux et consistent à appli-
quer un opérateur topologique à un maillage à chaque étape de décimation.
Une métrique d’erreur estime les changements locaux qui impacteraient la
géométrie suite à une opération sur un maillage. Ainsi, une valeur d’erreur
est associée à chaque opération, ce qui permet de prioriser l’opération ayant
l’erreur la plus faible. L’algorithme de décimation le plus populaire combine
l’opérateur d’e↵ondrement d’arête avec la métrique d’erreur quadrique (QEM).
Cet algorithme e↵ondre une arête en un sommet minimisant la distance point-
plan par rapport à son voisinage local à chaque étape de décimation. La sim-
plification de maillage peut aussi utiliser des données de CAO supplémentaires
si elles sont fournies, comme des caractéristiques ou des attributs d’apparence.
Toutefois, la décimation de maillage dépendante du point de vue n’est pas une
option pour les mêmes raisons que la visibilité ne peut pas être utilisée pour
optimiser le chargement des données.

Les maillages exportés de logiciels de CAO comportent souvent des
irrégularités, comme des fissures ou des intersections. Par conséquent,
les maillages sont nettoyés avant leur décimation grâce à la réparation de
maillage. Par ailleurs, étant donné que les maillages triangulaires sont les
maillages polygonaux les plus utilisés en informatique graphique, la plupart
des opérateurs topologiques sont conçus pour les maillages triangulaires.
Ainsi, un algorithme de triangulation de polygones est appliqué aux maillages
non triangulaires avant la décimation.

Les scènes issues de CAO sont très souvent des scènes très larges et com-
plexes modélisées par de multiples maillages, chaque maillage encodant la
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géométrie d’un modèle. De plus, les relations entre de tels maillages enco-
dent le sens fonctionnel d’une scène. Par conséquent, il est indispensable de
préserver la sémantique d’une scène en plus de sa géométrie afin de toujours
comprendre le système modélisé, même si les maillages ont été grandement
décimés afin d’être manipulés sur des terminaux distants ayant des perfor-
mances limitées. Etant donné que les informations sémantiques ne sont en
général pas fournies comme entrée, la décimation de scènes composées de mul-
tiples maillages s’appuie uniquement sur la géométrie, et la préservation con-
jointe des propriétés individuelles de chaque maillage et des relations entre
maillages est très di�cile.

Contributions

La problématique de cette thèse est de décimer des scènes 3D modélisées
par de multiples maillages tout en préservant la géométrie de chaque maillage
ainsi que ses relations avec les autres maillages de la scène. Nous avons
observé que pour les systèmes mécaniques, la forme d’un objet est conçue
selon sa fonctionnalité et ses interactions avec ses environs, par exemple sa
position et ses contacts. Ainsi, nous considérons les maillages voisins pour la
décimation d’un maillage donné dans une scène. Nous définissons le concept
de voisinage dans une scène comme étant la proximité entre des parties de
di↵érents maillages, par opposition au voisinage local qui est défini sur le
maillage lui-même.

Nous proposons une solution à cette problématique en étendant
l’algorithme de décimation incrémentale d’un maillage à de multiples mail-
lages, et en l’utilisant avec l’opérateur d’e↵ondrement d’arête et une nouvelle
métrique d’erreur prenant en compte à la fois la géométrie locale et les re-
lations de proximité avec les autres maillages, que nous appelons métrique
d’erreur sensible à la proximité. Nous formulons l’information de voisinage
comme une erreur de proximité que nous utilisons pour moduler l’importance
des structures géométriques selon les maillages environnants. Ainsi, nous util-
isons l’erreur de proximité pour pénaliser l’erreur locale introduite par les
opérations de décimation dans les zones de proximité, réduisant ainsi leur pri-
orité comparé aux opérations dans les autres zones de la scène, ce qui retarde
leur décimation et fait donc que les relations entre maillages soient mieux
préservées, c’est-à-dire la forme des zones de proximité. Par ailleurs, nous
fournissons une définition de la proximité dans une scène afin de paramétrer
la métrique d’erreur sensible à la proximité.

Ainsi, notre solution est composée de trois contributions indépendantes
mais complémentaires, formant un système automatique pour la décimation
de maillages multiples prenant en compte la proximité :
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Décimation simultanée de multiples maillages Nous rassemblons les
opérations de décimation de tous les maillages d’une scène au moyen d’une
structure globale, ce qui permet de décimer les maillages avec une erreur consis-
tante. Ce schéma de décimation multi-maillage n’augmente pas la complexité
de mise à jour des opérations a↵ectées suite à une opération sur un maillage
comparé au schéma de décimation d’un simple maillage, et s’exécute avec une
surcharge minimale de mémoire du fait de la structure globale.

Métrique d’erreur sensible à la proximité Nous évaluons une nou-
velle erreur pour les e↵ondrements d’arête au sommet minimisant la QEM
en pénalisant la QEM avec l’erreur de proximité. L’idée est de bénéficier de
la robustesse de QEM pour le placement du sommet e↵ondrant l’arête tout
en augmentant l’erreur associée aux e↵ondrements d’arête dans les zones de
proximité d’une scène. Ainsi, nous ne changeons pas de tels e↵ondrements
d’arête mais les réordonnons seulement, afin de mieux préserver la géométrie
là où plusieurs maillages sont proches, au détriment des parties de maillage
situées hors des zones de proximité de la scène.

Analyse de proximité au sein d’une scène Nous proposons une ap-
proche générique pour la détection des zones de proximité d’une scène. Nous
analysons l’arrangement spatial des maillages et leurs distances, dont on dérive
une distance, que nous appelons seuil de proximité, pour la configuration
automatique de la métrique d’erreur sensible à la proximité.

Nous montrons les performances de notre système sur diverses scène issues
de CAO. Notre approche produit des résultats globaux comparables à l’état
de l’art, tout en préservant mieux les relations de proximité entre maillages.

Notre approche se base sur l’hypothèse que les relations de proximité im-
pliquent des relations sémantiques ou fonctionnelles entre modèles, ce qui est
souvent le cas pour les objets issus de CAO, avec des formes conçues pour rem-
plir une tâche spécifique. Une perspective intéressante serait d’étendre cette
approche à d’autres relations, comme l’alignement, la symétrie, les instances,
ou bien des relations définies par un utilisateur.
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Abstract Progressive mesh decimation by successively applying topological oper-
ators is a standard tool in geometry processing. A key element of such algorithms
is the error metric, which allows to prioritize operators minimizing the decimation
error. Most previous work focus on preserving local properties of the mesh dur-
ing the decimation process, with the most notable being the Quadric Error Metric
which uses the edge collapse operator. However, meshes obtained from CAD scenes
and describing complex systems often require significant decimation for visualiza-
tion and interaction on low-end terminals. Hence preserving the arrangement of
objects is required in such cases, in order to maintain the overall system readability
for applications such as on-site repair, inspection, training, serious games, etc. In
this context, this thesis focuses on preserving the readability of proximity relations
between meshes during decimation, by introducing a novel approach for the joint
decimation of multiple triangular meshes with proximities.
The works presented in this thesis consist in three contributions. First, we propose
a mechanism for the simultaneous decimation of multiple meshes. Second, we intro-
duce a proximity-aware error metric, combining the local edge error (i.e. Quadric
Error Metric) with a proximity penalty function, which increases the error of edge
collapses modifying the geometry where meshes are close to each other. Last, we
devise an automatic detection of proximity areas. Finally, we demonstrate the per-
formances of our approach on several models generated from CAD scenes.

Résumé La décimation progressive de maillage par l’application successive
d’opérateurs topologiques est un outil standard de traitement de la géométrie. Un
élément clé de tels algorithmes est la métrique d’erreur, qui donne la priorité aux
opérateurs minimisant l’erreur de décimation. La plupart des travaux précédents
se concentrent sur la préservation des propriétés locales du maillage lors du proces-
sus de décimation, le plus notable étant la métrique d’erreur quadrique qui utilise
l’opérateur d’e↵ondrement d’arête. Toutefois, les maillages obtenus à partir de
scènes issues de CAO et décrivant des systèmes complexes requièrent souvent une
décimation significative pour la visualisation et l’interaction sur des terminaux bas
de gamme. Par conséquent, la préservation de la disposition des objets est nécessaire
dans de tels cas, afin de préserver la lisibilité globale du système pour des applica-
tions telles que la réparation sur site, l’inspection, la formation, les jeux sérieux, etc.
Dans ce contexte, cette thèse a trait à préserver la lisibilité des relations de proximité
entre maillages lors de la décimation, en introduisant une nouvelle approche pour la
décimation conjointe de multiples maillages triangulaires présentant des proximités.
Les travaux présentés dans cette thèse se décomposent en trois contributions. Tout
d’abord, nous proposons un mécanisme pour la décimation simultanée de multiples
maillages. Ensuite, nous introduisons une métrique d’erreur sensible à la prox-
imité, combinant l’erreur locale de l’arête (i.e. la métrique d’erreur quadrique) avec
une fonction pénalisant la proximité, ce qui augmente l’erreur des e↵ondrements
d’arête là où les maillages sont proches les uns des autres. Enfin, nous élaborons
une détection automatique des zones de proximité. Pour finir, nous démontrons les
performances de notre approche sur plusieurs modèles générés à partir de scènes
issues de CAO.


