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Abstract

In this thesis, three different methods of fault diagnosis for low voltage (LV)
distribution grids and two methods of fault isolation for grid-connected photo-
voltaic systems (GCPVs) are proposed. The proposed tools for fault diagnosis in
LV grids are: a) a conventional method based on overcurrent monitoring and
sparse voltage measurements across the faulty branch, b) gradient boosting trees
and c) deep neural networks which are the most reliable solution demonstrating
a 100 % accuracy in fault detection and an average of 12 % of error in distance
estimation. Moreover, under limited available measurements their accuracy is
decreased by only 4.5 %. Furthermore, two algorithms based on a signal ap-
proach are proposed for fault isolation in GCPVs. They use current and voltage
measurements at the output of the inverter, examining faults occurring both in
the dc and the ac side. Finally, the proposed algorithms achieve an isolation of
15 out of the 19 studied fault cases in less than 100 ms.

keywords: fault detection, fault location, fault diagnosis, machine learning,
low-voltage distribution grids, distributed generation





Résumé

Dans cette thèse, trois méthodes différentes de diagnostic des défauts pour
les réseaux de distribution basse tension (BT) et deux méthodes de localisation
des défauts pour les systèmes photovoltaïques raccordés au réseau (GCPV) sont
proposées. Les outils proposés pour le diagnostic des défauts dans les réseaux BT
sont: a) une méthode conventionnelle basée sur la surveillance de courant et de
tension, b) des gradient boosting trees et c) des réseaux de neurones profonds qui
sont la solution la plus fiable démontrant une précision de 100 % dans la détection
des défauts et 12 % d’erreur moyenne dans l’estimation de la distance. De plus,
sous des mesures disponibles limitées, leur précision n’est réduite que de 4.5 %.
En outre, deux algorithmes basés sur une approche signal sont proposés pour la
localisation de défauts dans les GCPV. Ils utilisent des mesures de courant et
de tension à la sortie de l’onduleur, en examinant les défauts apparaissant aussi
bien du côté dc que du côté ac. Enfin, les algorithmes proposés permettent la
localisation de 15 sur 19 de cas de défauts étudiés en moins de 100 ms.

mots-clés: détection des défauts, localisation des défauts, diagnostic des
défauts, apprentissage automatique, réseaux de distribution basse tension, pro-
duction décentralisé
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Chapter 1

General introduction

New smart meters, distributed generation, renewable energy sources and the
concern about the environment are redefining the way to conceive and operate
electrical grids. To take full advantage of the new electrical smart grids we need
to monitor and protect them. The capability of self-healing is thus important
in smart grids in order to ensure a proper behavior under faults and reduce the
duration of power outages. Moreover, in electrical power distribution systems,
faults are responsible for 80 % of customer interruptions [1]. For this purpose,
this thesis proposes three different methods of fault diagnosis for low voltage
(LV) distribution grids and two methods of fault isolation for grid-connected
photovoltaic systems (GCPVs).

Initially, low voltage (LV) distribution grids were designed to follow the
traditional “fit and forget” doctrine which allowed only a unidirectional flow of
power from the distribution transformer to the end consumers. However, the
necessary for the fight against climate change installation of photovoltaics and
other green types of microgeneration units in the LV grid, obliges operators to
shift their attention to the monitoring and control of the LV grid.

While several fault location methods for distribution grids exist in the litera-
ture, the majority of them focuses on medium voltage (MV) grids. Only a very
limited number of studies have considered the LV grid, probably because of its
increased complexity compared to the MV ones. A LV grid presents five basic
characteristics that hinder the fault location methods: a) an increased number
of laterals, b) multi-phase and unbalanced operation, c) unbalanced distribution
of loads, d) various types of conductors connecting the nodes and e) up to now,
limited number of available measurements (a fact that is now changing with
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the transition to smart grids). Moreover, fault location methods for MV grids
usually consider only low fault resistance values that rarely surpass the 100 Ω.
Taking into account that: a) faults of a higher fault resistance can occur, e.g.
when a downed conductor touches the earth, fault resistances vary from 90 Ω
(concrete as ground) to 1500 Ω (wet sand as ground), and b) that distribution
system operators usually rely on customer phone calls to detect and locate faults
in LV grids, the need for fault detection and isolation techniques that cover these
cases, i.e. large fault resistances and LV distribution grids, is evident.

The three fault detection and isolation methods proposed in this thesis are:

Chapter 3: A conventional fault detection method based on overcurrent monitor-
ing in combination with a method that uses sparse voltage measurements
to build the voltage profile across the faulty branch for fault location.

Chapter 4: Gradient boosting trees (GBT), a method that has been proven to
excel in many applications the last few years.

Chapter 5: Deep neural networks (DNN), a method that improve the traditional
neural network architecture by taking advantage of an increased number of
hidden layers.

Simulations on a real semi-rural LV distribution grid of Portugal are per-
formed to validate the results. A common case study is used to compare the
three methods. The considered influencing parameters of this case study are: a)
a big variety of fault resistance values (63,772 values between 1 and 1000 Ω),
b) nine different fault locations within each sector, c) two fault types (single
phase to ground and three phase faults), d) a simultaneity factor of 0.5, e) a
big spectrum of PV generation and load demand scenarios with 70,334 studied
combinations and f) a 2 % underestimation error in measurements.

The contributions of this first part of the thesis are summarized below:

1. Three different methods of fault detection and fault isolation are proposed
for the quite unexplored case of LV grids: one that was initially conceived
for the MV case and is now extended to the LV grid [2] and two artificial
intelligence methods. It is, to the author’s knowledge, the first application
of artificial intelligence for fault detection and fault isolation in the LV grid
case.



3

2. Fault resistance values of up to 1000 Ω were considered in this study,
something unprecedented for the LV grid and quite rare for the MV one.

3. With the use of GBT and DNN the fault detection problem is tackled with
an accuracy of 99.15 % and 100 % respectively.

4. The use of DNN for fault location is the most reliable solution of the three
with an average error of only 12 % considering erroneous measurements.

5. All three of the fault location methods are immune to the per phase
distribution of loads and microgeneration units in the LV grid.

6. Under the case of extremely limited measurements, one in the beginning
of the feeder and one at each terminal node, the fault location accuracy
of the DNN is decreased by only 4.5 % while the fault detection accuracy
remains intact.

The second part of the thesis, Chapter 7, studies faults in GCPVs, a field
that presents an increased interest the last decade due to the rapid growth of
installation of renewable energy sources. In 2017 alone, the global PV installed
capacity increased by 99 GW reaching a total of 403 GW which represents the
2.5 % of the global energy demand and 55 % of the installed capacity of new
renewable energy sources in 2017 with wind farms following in the second place
with 29 % [3].

A big variety of faults can disrupt the operation of a GCPV power plant.
Based on their location faults can appear: a) in the PV array, b) in the power
converters, c) on the dc bus and d) in the grid side. The development of fast,
efficient and reliable fault detection and isolation methods for GCPVs, capable
of dealing with the different types of faults, is a recognized necessity from the
scientific community and a prerequisite for their integration in the smart grids.

So far, to the author’s knowledge, and although different approaches have
been tested, no research has been found to monitor the GCPV as a complete
system, i.e. isolating faults in every part of the plant with a single method.
Moreover, several methods tend to fail in very low irradiance levels. For this
reason, two algorithms based on a signal approach, one considering faults only
on the dc side of the plant and a second one considering faults on both the dc
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and the ac side, that consider various irradiance levels, are proposed as a fault
isolation strategy.

The algorithms use current and voltage measurements at the output of the
inverter, examining faults occurring on all four of the aforementioned possible
locations. The choice of the output of the inverter, i.e. the point of common
coupling, as the monitoring source of the status of the GCPV system is in
accordance with the location of voltage sensors used in the previous case of fault
location methods in the LV distribution grid. The robustness of the algorithms
is tested against various irradiance levels (1000, 800, 600, 400 and 200 W/m2).
Finally, a sensitivity analysis against erroneous measurements is performed.

As part of this second part of the thesis, a preliminary study of fault isola-
tion in grid-connected proton exchange membrane fuel cells (PEMFC) was also
conducted. In detail, the same fault types with the case study of photovoltaics
were studied; in the place of faults at the source of the renewable energy system,
in this case, only the drying fault is considered. The isolation of the drying fault
is achieved without interfering with the isolation of the faults from the other
parts of the system. The complete analysis is presented in Appendix D.

Finally, the contributions of this second part of the thesis are summarized
below:

1. For the first time, to the author’s knowledge, a study considers faults on
both the dc and the ac side with measurements taken only from the ac
side. This limitation minimizes the amount of necessary sensors and hence
decreases the monitoring cost.

2. The second algorithm, the one that considers faults in both the dc and the
ac side, achieves an isolation of 15 out of the 19 studied fault cases.

3. The algorithms are unaffected by different levels of solar irradiance.

4. Robust algorithms, without the need to readjust threshold settings, against
distorted measurement signals.

5. The isolation of the faults is achieved in the first 100 ms after their
occurrence, time inferior to the reaction margin of the inverter which is
expected to trip at approximately 200 ms [4].



Chapter 2

Introduction

New smart meters, distributed generation, renewable energy sources and the
concern about the environment are redefining the way to conceive and to operate
electrical grids. To take full advantage of the new electrical smart grids we need
to monitor and protect them. The capability of self-healing is thus important in
smart grids in order to ensure a proper behavior under faults and reduce power
outage times. For this purpose, this thesis proposes three different methods of
fault diagnosis for low voltage (LV) distribution grids and two methods of fault
isolation for grid-connected photovoltaic systems (GCPVs).

In this chapter, the necessary context and motivation regarding faults and
the means to tackle them is provided. Beginning with an outline of the potential
threats to the electrical grid, the first section introduces the notion of various
threats in an electrical grid, the impact that power outages can have on economies
and societies and their effects on the grid itself. Further on, faults in LV
distribution grids and GCPVs are analyzed and recent developments in the
field of fault detection and isolation are discussed for both cases. Moreover, the
research gaps are identified and justified. Finally, in the last section, a description
of the structure of this thesis is also provided.
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2.1 Faults in power systems

In fault diagnosis theory, a fault is defined as the deviation of one of the
features of the system from the usual, normal operating condition [5]. In power
systems, the occurrence of a fault can, under certain conditions, result to the
interruption of electricity supply, i.e. power outage. Power outages can lead
to serious consequences of both economic and societal nature, ranging from
production losses to risk to health and safety. More specifically, production losses
along with restart costs, equipment damage and raw materials spoilage can be
very costly. At the same time, uncomfortable temperatures at work or home, loss
of leisure time and risk to health and safety, e.g. interrupting hospital service,
transportation or industrial operations, are some of the aspects of societal impact
of power outages [6].

2.1.1 Classification of threats

In order to avoid blackouts, i.e large-scale power outages, and to guarantee
the secure and reliable operation of a power system, a thorough analysis of all
the influencing parameters and possible causes of such events, both endogenous
and exogenous, has been carried out by electrical engineers [7]. Threats causing
blackouts have been classified in two big categories: a) conventional and b)
unconventional. These two categories can be further partitioned into two sub-
categories each: a1) natural threats, a2) accidental threats, b1) malicious threats
and b2) emerging threats.

The geographic location of the power systems exposes them to a big variety
of natural threats around the globe. Those threats, in order of frequency of
appearance as a cause for a blackout, are: windstorm, rainstorm, thunderstorm,
blizzard, cyclonic storm, ice storm, cold storm, heat wave, lighting strike, earth-
quake, tornado, drought, flood, hailstorm, landslide, geomagnetic storm, tsunami,
wildfire and others. The other type of conventional threats, accidental threats,
in order of frequency of occurrence, include: technical failure, fire/explosion,
human or animal interference, operation mistake, equipment defect or aging and
maintenance error.

To the already big number of possible causes of blackouts listed above,
malicious and emerging threats come to add up to the list. As the dependence
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of our societies on electricity increases, malicious threats including hacking,
sabotage, terrorist attacks and acts of war are becoming more and more popular.
With the evolution of the traditional electrical grid to a Smart Grid, through the
technological advancements in telecommunications supporting electrical power
systems and the increased number of hardware being installed on them, the
electrical grid is becoming vulnerable to new types of threats such as cyber-
attacks and more specifically to: a) network availability, b) data integrity and
c) information privacy [8]. Furthermore, the increasing interconnectivity of our
societies’ infrastructures, i.e. electric power, water, oil, natural gas, transportation
and telecommunications, makes it possible for faults to transpose from one
system to another. Finally, an example of interconnectivity as an emerging
threat, is the increased vulnerability of the electrical grids to geomagnetic
storms as their interconnection between different countries increases the length
of the transmission lines and therefore renders them more exposed to larger
geomagnetically induced currents.

As power outages are a frequent phenomenon, it is impossible to record all of
them. For this purpose, three criteria were proposed by [7], to distinguish the
most important events from the less significant ones:

a) affected population > 1, 000 residents

b) duration > 1 h

c) affected population · duration > 1, 000, 000 resident-hour

Extending the analysis done in [7], which included blackouts until 2011, a
total of 188 blackouts that satisfy the above criteria have been recorded to date
and their causes are presented in Fig. 2.1. Two important conclusions can be
drawn from Fig. 2.1. Firstly, an increase of faults due to natural causes is noticed
over the last decade; this is yet another evidence of how climate change can affect
power systems and our lives. Secondly, as described above, the appearance of
malicious and emerging threats is observed after the year 2000. In addition, Fig.
2.2 presents the number of blackouts for which each category was considered
responsible over the total studied cases.
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Figure 2.1 Causes of historical blackouts from 1974 to 2019.

Figure 2.2 Percentages of causes of outages.



2.1 Faults in power systems 9

2.1.2 Costs and notable events

While the economic and societal consequences of blackouts are huge, it is
very difficult to calculate the cost of a power outage as it is a multivariant
equation with many factors that are difficult to estimate, e.g. customer behavior
or company reliability loss [9]. In an attempt to measure the impact of the faults
on the customers, two metrics are proposed: a) the willingness to pay and b)
the value of lost load (VoLL). The willingness of a residential customer to pay
in order to avoid an one hour outage event, in USA, was found to be $ 3 on
average [10]. The VoLL (e/kWh) on the other hand, is defined as the ratio of
the economic value of leisure in households over the total household consumption.
An annual average of 8.37 e/kWh was measured in Europe in 2013 [11].

In order to get a better grasp of the magnitude of the cost that blackouts
can have, five examples are provided below: the first three caused by natural
phenomena and the last two by accidents.

Caused by natural phenomena:

• A threat to which we are exposed to and still quite unprotected is the
geomagnetic storms. Solar flares from the Sun release charged particles
that upon reaching the Earth’s magnetosphere cause disturbances in the
magnetic field and create geomagnetically induced currents that can harm
the electrical grid. From the power systems point of view, the most notable
event took place on 13 March 1989, when the whole province of Quebec,
experienced a major nine hours blackout. The problems faced by electric
utilities during this storm served as the basis for future studies. The
estimated cost of an extreme geomagnetic storm that would hit the USA
could potentially reach $ 2.6 trillion [12]. On 23 July 2012, a powerful
coronal mass ejection took place. The unleashed solar wind missed the
Earth by nine days. If it had reached the Earth it would have been one of
the biggest and most catastrophic geomagnetic storms in history. As we
leave 2019, a year that marks the beginning of the 25th solar cycle, utilities
should remain vigilant as even numbered solar cycles tend to be cycles with
increased solar activity [13].

• The tsunami that was caused after an earthquake in Japan and hit the
Fukushima Daiichhi power plant on 11 March 2011 caused a nuclear accident.
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The financial cost of this accident was huge; $ 118 billion cost for the
Japanese taxpayers [14] and another $ 47.3 million [15] that the government
and the Tokyo Electric Power Company were forced to compensate with
137 families for their negligence. Moreover, the ecological disaster was also
enormous with the radioactive decontamination of the area projected to
require a few decades. Although unexpected, the Fukushima event could
have been avoided.

• The largest blackout in the European continent was experienced on 28
September 2003 when a power line that connected Italy to Switzerland
was damaged by windstorms leaving millions of people in both countries
without power for twelve hours. People got trapped in elevators, trains
and underground metros on a cold rainy night. The event was reported to
have caused a damage of e 120 million to the local economy [9].

Caused by accidents:

• Some technical faults in combination with a contact of some power lines
with trees led to the famous blackout of 2003 in the USA and Canada,
affecting 145 million people with a total estimated cost of $ 6 billion.

• The largest blackout so far is attributed to a series of technical faults. It
happened in India on 30-31 July 2012 and left 700 million people without
power for about fifteen hours and businesses with $ 107 million losses [16].

2.1.3 System average interruption duration index

Another tool to measure the impact of power outages is the system average
interruption duration index (SAIDI). The SAIDI is measured in minutes per
customer and is defined as the average duration of all interruptions (sustained
outages) per utility customer in a yearly basis.

SAIDI =
∑

Nint · Dint

Ntotal

(2.1)

where Nint is the number of customers that experienced an electricity inter-
ruption, Di is the duration of each interruption and Ntotal the total number of
customers.
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Figure 2.3 Number of major historical blackouts per country and cause.

The maximum, minimum and average unplanned SAIDI values (including
exceptional events) for the countries in Europe, between 2002 and 2016 are
presented in Fig. 2.4. A decreasing tendency of the SAIDI can be easily observed.
From a value of 177.1 min/customer in 2002, a value of 92.45 has been attained
in 2016, where the SAIDI presented a minimum value of 9 min in Switzerland
and a maximum of 371 min in Romania [17]. In 2018, according to ENEDIS
[18], France achieved a total SAIDI of 63.87 min/customer (50.78 of unplanned
and 13.09 of planned outages) for its LV customers.

2.1.4 Affected grid elements

The most popular root causes of fault occurrences are severe storms damaging
overhead lines and strong winds bending trees thus bringing them in contact with
one or more of the overhead lines. The percentage occurrence of faults in different
parts of the electrical power distribution system is presented in Fig. 2.5 [19]. It
is shown that faults in overhead lines cover 50 % of the fault cases followed by
faults in switches, various electrical equipment, transformers, underground cables
and finally generators.

In this thesis faults in overhead lines or underground cables and generators
will be examined thus covering 66 % of the cases.
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Figure 2.4 Unplanned SAIDI including exceptional events for 28 countries of Europe.
The shaded area shows the zone of recorded SAIDI values. The blue line represents
the average value per year.

Figure 2.5 Fault occurrence in different grid parts.
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2.2 Faults in distribution grids

In electrical power distribution systems, faults are responsible for 80 % of
customer interruptions [1]. As mentioned in the previous section, faults in
distribution grids are basically located in overhead lines. Three examples of
damaged electrical distribution poles after exposure to extreme weather conditions
are provided in Fig. 2.6.

The most common faults in distribution systems are the single phase to
ground short circuit (SC) faults which account for 70 % of the total fault cases.
Such faults occur for example when one phase comes in contact with a tree or
the ground if the tower is damaged. Other types of faults can be phase to phase
faults, e.g. when strong wind brings one phase in physical contact with another,
double phase to ground, and three phase faults. The most severe, the three phase
faults, account for 5 % of the total fault cases. The rest 25 % is divided among
the phase to phase faults (15 %) and double phase to ground faults (10 %) [1].
At this point, the notion of fault resistance, Rf , should be also introduced, as
the fault impedance path between the phase and the ground [20].

2.2.1 Low voltage grids

The LV distribution grid is the final link of the electricity supply chain that
connects customers with the distribution substation. Initially, LV distribution
grids were designed to follow the traditional “fit and forget” doctrine which
allowed only a unidirectional flow of power from the distribution transformer
to the end consumers. With the integration of renewable energy sources into
the grid, bidirectional power flow is becoming a reality and distribution system
operators (DSOs) face several problems such as congestion, voltage rises and
decrease of power quality [21]. Until recently, the focus of operators was to
improve the transmission and medium voltage (MV) distribution parts of the
grid, leaving the LV part unmonitored and uncontrolled. However, the necessary
for the fight against climate change installation of photovoltaics (PV) and other
green types of microgeneration units in the LV grid, obliges operators to shift
their attention to the monitoring and control of the LV grid increasing its
functionalities through installation of smart meters, e.g the Linky smart meter
in France, and implementing self-healing strategies [22].
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(a) More than 30,000 people were left without power after an ice storm in the Altus area,
Oklahoma on January 28, 2010 [U.S. Air Force photo by Senior Airman Leandra D. Hernan-
dez/Released].

(b) A power pole leans over a burned property during the Carr fire near Redding, California
on July 27, 2018 [JOSH EDELSON / AFP #000_17Z6A6].

(c) Storm downed power lines and trees in the aftermath of Storm Sandy that hit Arlington,
Virginia on October 29, 2012 [https://www.flickr.com/photos/arlingtonva/8138919297].

Figure 2.6 Downed electric towers resulting in power outages.
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In contrast to the MV grid, the LV one is more complex and difficult to
manage due to some of its unique characteristics [23]. The most important of
those are cited below:

• radial structure with a high number of laterals (branches) and nodes

• multi-phase and unbalanced operation

• unbalanced distribution of loads

• different type of conductors connecting the nodes with different charac-
teristics and lengths hence wide range of resistance, R, and reactance, X,
values.

Distribution lines present a high R/X ratio (R/X > 1) which can vary a
lot due to the different type of conductors connecting the nodes of the LV grid.
All the above characteristics attribute an unbalanced and heterogeneous nature
to the LV grid and complexify its analysis. As it will be analyzed in the next
chapters, all four of these features are important obstacles in the fault detection
and location processes.

The path to an adequately inventoried LV grid and its smartification is paved
with the advancements in telecommunication technologies and the installation of
advanced metering infrastructure in the LV grid, especially smart meters, estab-
lishing thus bidirectional communication channels between supervisory control
and data acquisition (SCADA) control centers and prosumers (i.e. consumers who
also generate energy). Through the necessity of more information and control
over the LV grid and the availability of new tools and metering infrastructure
the smart grid concept emerged.

2.2.2 Smart grids

According to the different definitions of a smart grid [24], one of its key features
is the ability to self-heal with the aid of advanced metering and communication
tools, and intelligent monitoring, aiming to a more secure, cost-effective and
reliable operation. In Europe, a smart grid is defined as “an electricity network
that can intelligently integrate the actions of all users connected to it – generators,
consumers and those that do both – in order to efficiently deliver sustainable,
economic and secure electricity supplies” [25].
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The backbone of self-healing strategies are the fault detection, fault isolation
and fault restoration processes (FDIR). When a fault occurs in a distribution
grid, a certain strategy is needed to deal with it and minimize its negative effects.
Before going into more details, let us give the definition of some basic terms:

• Fault detection is the process of recognizing that a fault occurred and that
the grid is not operating as intended.

• Fault isolation is the process of identifying the fault, i.e. what kind of fault
has occurred, and localizing it, i.e. finding where exactly it happened.

• Fault diagnosis is the combined effort of both fault detection and isolation.

• Fault restoration is the process of reconfiguration of the grid that is set in
action after fault diagnosis in order for the grid to return back to operating
condition.

At this point, it should be underlined that despite the serious effects of power
outages described in the previous sections, many utilities still rely on customer
phone calls to detect a fault [26]. Once a fault is reported, operators send a crew
to locate it and fix it. All the actions from fault occurrence to fault restoration
and the average time frame for each step are provided in Fig. 2.7. With a
minimum time of 45 min without power, this very time consuming process might
leave customers without power for several minutes or even hours.

However, in the context of smart grids, new solutions arise proposing the
automation of the FDIR processes and minimize human interference [29]. These
functionalities are reducing the outage time by up to 45 times [27] and the
operational cost of the grid thus increasing its reliability. In a recent study [30],
ENEDIS, the main French DSO, in collaboration with ADEeF, the French DSO

events
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Figure 2.7 Fault detection, isolation and restoration steps time frame [27]. Icons
desgined by [28].
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association, reported profits of e 3.3 million per year from the implementation of
self-healing tools in a MV smart distribution grid. At the same time, the benefits
of just a situation awareness tool incorporating a distribution management system
and automatic meter reading devices in a Finnish DSO substantially reduced
the cost of power outages [31].

2.2.3 Fault diagnosis in MV distribution grids

In the literature, several attempts have been made to automatize the FDIR
process. The available fault location methods can be divided in four main
categories: a) the conventional methods, including impedance–based [32–58]
and traveling wave methods [59–74], b) methods based on sparse measurements
[75–81, 2, 82], c) the knowledge–based methods that use artificial intelligence
[83–112] and d) hybrid methods [113–128].

From the first category (conventional methods), impedance–based methods
are the most widely used for their simplicity and low implementation cost. They
are a whole family of methods with many variations. The most popular one
is the one-end technique. From current and voltage measurements only at the
substation level and sufficient knowledge of the distribution line model, the
estimation of voltages and currents in different parts of the line becomes possible.
A simplified example is provided in Fig. 2.8. By applying Kirchoff’s law, the
fault location, fd, is obtained from the following equation:

fd = Vs −Rf · If

Zl

(2.2)

where Rf is the fault resistance, If the fault current, Vs the source voltage
and Zl the line impedance in per unit length.

Traveling wave methods, although initially applied to transmission systems,
have been used for distribution systems as well, as they can be very fast and quite
accurate. After a fault occurrence, transient voltages and currents (traveling
waves) are generated at the fault location and propagate through the distribution
line in both directions. Once the wave reaches the end of the line, part of it will
get reflected back towards the fault location. Upon reaching the fault location,
a part of the wave will get refracted and continue towards the other end, and
another part will get reflected. The time difference, ∆t, between the time of
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Figure 2.9 Traveling wave method.

arrival of the first wave in one end of the line, t1, and the arrival of the second
(its reflection), t2, can be used to calculate the fault location since the speed of
the traveling wave is equal to the speed of light, c.

fd = c · ∆t

2 (2.3)

With the increased availability of measurements that the smart grid concept
brings, new methods have been tested against the fault location problem. The
first category of such methods is those that are based on sparse measurements.
Although quite different from one another, most of them are based on the common
principle of a voltage sag creation with different characteristics at different nodes
after a fault occurrence. In detail, as a first step, considering every node to be
under fault, a set of calculated voltage sags is obtained. Then, by measuring
voltage sags in various nodes and comparing those measurements with the pre-
calculated values, the location of the faulty node is becoming possible: the one
presenting the minimum difference between the calculated and the measured
values is the one under fault.

Another approach that emerged with the smartification of the grid, is the
use of artificial intelligence. Different aspects of artificial intelligence have been
employed to tackle the fault location problem including: a) artificial neural
networks [83–86, 89, 90, 95, 96, 99, 101, 103, 104, 107, 111, 112], b) support
vector machine neural networks [92–94], c) fuzzy logic [87, 91, 106, 108, 110], d)
genetic algorithms [102, 109] and e) decision trees [97, 105]. All these methods,
also called learning or knowledge–based, are trained offline from a big dataset
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Figure 2.10 Fault location research trend.

including different fault scenarios and variables depending on the availability
of measurements, the grid topology and the method itself. They are capable
of identifying links and patterns between the input features that conventional
methods cannot not. When exposed to the real fault cases, based on their
training, they try to estimate the fault location.

Finally, neural networks and fuzzy logic have been used in combination with
conventional methods to create hybrid tools [108, 116, 126].

While several methods exist in the literature, the majority of them focuses on
MV distribution grids with only a very limited number of studies being performed
on LV grids [129–135]. The research trend of all the 107 papers cited above is
presented in Fig. 2.10. There, the changes the smart grid brought to distribution
grids, can be observed. Fist of all, the appearance of unconventional methods
can be noticed after the year 2000 and especially those of sparse measurements
(after 2009). Additionally, as stated before, the shift of the research interest to
the LV grid is happening now. With the oldest method dating back to 2012,
the LV grids are likely to shape the research trend of fault location in the near
future.
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It should be also noted, that the existing literature of fault location, besides
focusing mainly on MV grids, it has been also limited to low resistance faults,
with fault resistance values rarely surpassing 100 Ω. Taking into account that
faults in LV grids are usually located manually [130], and that faults of a higher
fault resistance can occur, e.g. when a downed conductor touches the earth fault
resistances vary from 90 Ω (concrete as ground) to 1500 Ω (wet sand as ground),
the need for fault detection and isolation techniques that cover these cases , i.e.
large fault resistances and LV distribution grids, is evident.

A second problem of the existing literature methods is the disadvantages they
present and the fact that some of them could be amplified if applied to LV grids.
More specifically, impedance–based methods present limited accuracy, require
the knowledge of the fault resistance and may identify multiple possible locations
for a fault [26, 29]. In the case of the LV grid, which as mentioned in a previous
section, consists of a high number of branches, the estimation of multiple possible
fault locations is a big problem. Additionally, traveling wave methods can be
as well seriously affected by the presence of multiple branches which hinder the
distinction between the different traveling waves [26, 29]. Moreover, traveling
wave methods require high speed data acquisition, increasing significantly their
cost. Furthermore, both impedance–based and traveling wave methods, depend
on line parameters which in distribution grids vary a lot thus affecting their
accuracy.

Most of the aforementioned problems could be overcome with the use of
unconventional methods, either based on sparse measurements or artificial in-
telligence. It should be noted that to the author’s knowledge there has not yet
been such an implementation in the LV grid. For this reason, three methods of
fault detection and fault isolation were developed in this thesis:

1. A conventional fault detection method based on overcurrent monitoring in
combination with a fault location method based on sparse voltage measure-
ments.

2. Gradient boosting trees, a method that has been proven to excel in many
applications the last few years.

3. Deep neural networks, a method that improves the traditional neural network
architecture by taking advantage of an increased number of hidden layers.



2.3 Faults in photovoltaics 21

2.3 Faults in photovoltaics

2.3.1 Solar energy

Solar energy is inexhaustible. The amount of solar irradiation that reaches the
Earth’s surface is tremendous: approximately 10,000 times more than the current
humanity’s energy needs for a whole year [136]. Besides solar power, many other
forms of renewable energy such as wind energy, hydropower and biomass depend
on the Sun. Wind, used by wind farms to produce electricity, is created by the
differential heating of different regions of the Earth; water evaporates because of
Sun’s heat, forming clouds and then through rain water masses are transported
at higher altitudes thus creating a potential energy difference of water that
hydropower plants take advantage of; organic matter stores energy through the
process of photosynthesis which would not be possible without the Sun.

The Ancient Greeks were the first to demystify the Sun and tried to understand
its nature, developing different theories over the centuries. The 3rd century B.C.,
Aristarchos the Samian (“Αρίσταρχος ο Σάμιος”), followed the teachings of
Pythagoreans who were the first - back in the 6th century B.C.- to question the
geocentric theory and formed the hypothesis of the heliocentric system. He also
proposed the simultaneous rotation of the Earth around its axis on a daily basis
and its movement in a circular orbit around the Sun on an annual basis [137].

Many centuries passed and several solar applications emerged until the year
1839, when the biggest milestone in solar energy was reached. The French
physicist Alexandre-Edmond Becquerel discovered the photovoltaic (PV) effect,
a way to produce electric current from sunlight. In 1883, Fritts constructed
the first PV device made by Selenium (Se) [136]. Seven decades later, in 1954,
Bell Laboratories announced the creation of a 6 % efficient silicon (Si) solar
cell [138]. Another milestone was reached in 1958 when Vanguard I, the first
solar-powered satellite, was launched at Cape Canaveral, Florida. Since then
and especially during the last two decades, the solar sector has experienced a
remarkable growth.

2.3.2 Photovoltaics

A list of the major applications of PV in power systems is provided by the
International Energy Agency (IEA) [3]:
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• Pico PV systems (lighting, phone charging, powering small computers)

• Off-grid domestic (household loads: lighting, refrigerator, washing machines
etc.)

• Off-grid non-domestic (telecommunications, water pumping, navigation
etc.)

• Hybrid systems (PV and diesel generators)

• Grid-connected distributed (power either directly to the customer or to the
electrical network)

• Grid-connected centralized (supply bulk power)

Grid-connected photovoltaic systems is a remarkably growing sector repre-
senting 55 % of the installed capacity of new renewable energy sources in 2017
with wind farms following in the second place with 29 % [3]. In 2017 alone, the
global PV installed capacity increased by 99 GW reaching a total of 403 GW

which represents the 2.5% of the global energy demand. Figure 2.11 shows the
cumulative increase of PV installed capacity. It is remarkable that within just
three years (2014-2017) the installed capacity was doubled! In Fig. 2.12 the
cumulative evolution of the distributed and centralized GCPVs installations is
presented. It is shown that, although distributed GCPVs were dominating the
PV field until 2014, centralized GCPVs are rapidly becoming more popular, with
China leading this trend [3].

2.3.3 Grid-connected photovoltaic system topologies

In GCPVs a converter is necessary to covert the direct current (dc) electricity
produced by the PV array to alternating current (ac) that is supplied to the grid.
Different grid-connected arrangements of PV modules and converters have been
proposed over the years by various researchers [139]:

• cell inverter : directly connect the PV cell to the grid via an inverter

• module inverter : one inverter per module
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Figure 2.11 Cumulative evolution of PV installations [3].

Figure 2.12 Cumulative evolution of GCPVs installations [3].
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• series connected dc-dc converter : one dc-dc converter per module but
modules are connected in series and all of them are connected to a common
inverter

• parallel connected dc-dc converter : one dc-dc converter per module con-
nected to a common inverter

• multi-string inverter : one dc-dc converter per string connected to a common
inverter

• string inverter : using one inverter per PV string of the array

• centralized inverter : using a single inverter to connect the PV array to the
grid.

Among the different topologies the one that presents the best trade-off between
cost and efficiency is the one of the centralized inverter as reported in [139].

2.3.4 Modeling of photovoltaic systems

The modeling of a GCPV system can be decomposed into three simple
steps. First of all, the use of the mathematical equations of the PV cell’s
equivalent circuit is necessary for the extraction of the characteristic parameters;
the calculations at this stage are subject to the limited available data provided by
the manufacturer’s data sheets [140]. After the extraction of the parameters and
based on their values, follows the solution of the transcendental current-voltage
characteristic equation [139]. The last step is the design of the PV array by
connecting in series and in parallel all the necessary elements and choosing the
mode of its connection to the grid.

2.3.4.1 PV cell: Bishop’s model

An alternative to the widely used one-diode model [140] and a more appropri-
ate one for fault detection simulations, is the Bishop’s model [142], an upgraded
version of the one-diode model. Its equivalent electrical circuit is given in Fig.
2.13a. The additional element connected in series with the shunt resistance is
a non-linear multiplication factor. In that way, the Bishop’s model takes into
account the avalanche effect of the diode thus permitting the monitoring of the
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(a) Equivalent circuit (b) I-V characteristic curve

Figure 2.13 Bishop’s model [141].

cell’s response in the three quadrants - the first (I), the second (II) and the fourth
(IV) - of the I-V characteristic curve as presented in Fig. 2.13b.

The transcendental equation of the equivalent circuit is provided by 2.4.

I = Iph−I0·
[
exp

(
V + Rs · I

Vt

)
− 1

]
−V + Rs · I

Rsh

·
[
1 + k ·

(
1− V + Rs · I

Vb

)−n
]

(2.4)

Eight parameters can be distinguished from (2.4). These parameters are: the
photo current Iph, the diode reverse saturation current Io, the diode’s thermal
voltage Vt, the series resistance Rs, the shunt resistance Rsh, the Bishop’s
coefficients k (∼0.1) and n (3.4-4) and the breakdown voltage Vb. Since (2.4) is a
transcendental equation, a numerical solution is required. The Newton–Raphson
algorithm [139] is usually used to solve the equation, although the Lambert-W
function could be an alternative solution [143].

2.3.4.2 PV array

Having solved the characteristic I-V equation, the last remaining step in order
to complete the modeling of the PV array, is the connection of several elements
together. Multiple cells are connected in series to form a PV module. PV
modules are also connected in series forming a PV string which when connected
in parallel create a PV array. The design of the PV array is completed with
the use of blocking and bypass diodes as protective elements against the flow of
inverse currents and inverse polarization respectively.
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2.3.4.3 PV system

In this work, a slight variation of the centralized mode of connection of the
PV array to the grid, described in the previous section, is used: a two-stage
conversion centralized mode. The first stage of conversion is achieved with a
dc-dc boost converter which is used to control the dc output of the PV array and
extract the maximum power of the PV array in coordination with a maximum
power point tracker (in this case the perturb-and-observe algorithm is chosen).
The second stage of conversion involves an inverter that converts the dc current
to ac and can ensure ancillary services if required.

2.3.5 Fault types

Faults in PVs can be divided in three main categories [144]: a) physical (dam-
aged bypass diode, cracks in PV modules, degradation, etc.), b) environmental
(shading) and c) electrical (open circuit (OC), SC and arc faults). Since in a
GCPV system faults can be encountered in every component, a classification
based on their location is more fitting. A few representative examples that
present special interest due to their frequency of appearance and their severity
are provided below.

First of all, different kinds of faults can appear inside the PV array itself. An
extensive analysis of such faults is provided in [141] and includes four subcat-
egories: a) faults of the PV generator (cell deterioration, module SC etc.), b)
faults inside the junction box, c) faults of the connecting cables (OC, SC, inverse
module etc.) and d) faults of bypass and blocking diodes (destruction of the
diodes, inverse polarization etc.).

The second location where faults could appear, is inside the power converters,
in this case the boost converter and the inverter. Again an extensive list of
possible faults is provided in [141] ranging from faulty power electronic elements
to sizing and compatibility problems.

The third location where faults appear, is on the dc bus connecting the two
power converters. There, a SC can appear between either the positive or the
negative pole and the ground, posing a threat to the system itself.

The final location where we can encounter faults, is the grid side of the system.
Faults occurring anywhere on the ac side can also affect its performance. Such
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faults are mainly SCs between the lines and the ground or SCs between the
lines themselves. The possible causes of such faults have been explained in the
previous sections.

2.3.6 Fault diagnosis in photovoltaics

The development of fast, efficient and reliable fault detection and isolation
methods for GCPVs, capable of dealing with the different types of possible errors,
is a recognized necessity from the scientific community and a prerequisite for
their integration in the smart grids.

Among the numerous fault detection and isolation approaches, six big cat-
egories can be distinguished: a) comparative (usually model–based) [145–170],
b) artificial intelligence [171–190], c) signal–based [191–203], d) time domain
reflectometry [204–208], e) statistical [209–215] and f) others [216–226].

The first category, comparative methods, includes mostly model based fault
detection and isolation techniques. The measured monitored variables (usually
power, current and voltage) or other quantities, are compared with their pre-
calculated/expected values for the given operating conditions. The residuals
are then used to establish the necessary thresholds. A common fault detection
technique of this category is the tracing of module I-V curves in order to detect
any anomalies and locate accurately the faulty modules. An alternative approach
proposes the use of the (dI/dV )-V curve instead. These methods, are often
preferred due to their simplicity.

The second most popular category in the literature concerning GCPV is the
lately growing field of artificial intelligence. Machine learning algorithms are
trained offline based on various fault and healthy operation scenarios to detect
and isolate faults. Then when exposed to real operating conditions they are able
to provide a diagnosis. As stated before, the merit of this approach is that these
algorithms are able to create links and patterns between the available data that
the other methods cannot identify.

Signal–based methods are yet another proposed approach that aims at identi-
fying changes in the output current or voltage waveforms. The most common
tools used in this category are the time domain discrete wavelet transform and
short-time Fourier transform. These tools are used to extract certain features
which are used as a basis for the creation of the fault signature.
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A less popular method, time domain reflectometry, is also used for fault
detection and isolation in GCPVs. The method is based on the injection of a
test signal in the system. In the presence of a fault, the signal will get reflected
back (similarly to the traveling wave method described in the previous section)
and delays and changes of its waveform are used for fault diagnosis. The merit
of this method is that it does not require the measurement of any variable.

Furthermore, statistical methods use various tools to analyze available data
such as the standard deviation, mean and rms values, as well as an exponentially
weighted moving average control chart.

Finally, various alternative methods have been also proposed by researchers
using cutting edge technology such as satellite image processing or flying drones
over the PV array to monitor the GCPVs operation and detect certain types of
anomalies.

The research trend of the 82 papers cited above is presented in Fig. 2.14. It is
shown that the research interest of a reliable and secure operation of the GCPV
system has increased substantially after 2011. A sudden shift of the researchers’
interest in artificial intelligence techniques is also noticeable the last three years.
Moreover, interestingly enough, signal–based approaches are continuing, steadily
for the last decade, to being proposed as a solution to the fault detection and
isolation problem of GCPVs.

Although many times efficient, the proposed methods in the literature present
several disadvantages [144]. First of all, the comparative methods are strongly
depended on the accuracy of the designed models and they are quite vulnerable
to mismatch losses, partial shading and low irradiance, and under such conditions
they can lead to the activation of false alarms. Moreover, artificial intelligence
and statistical methods strongly depend on the availability of measured data and
they can be quite costly since they require a lot of measurements. Furthermore,
signal–based approaches can be quite limited on the variety of faults they consider.
Finally, in a complex system such as the GCPV, the accuracy of reflectometry
methods, especially when trying to isolate a fault, can be easily affected as they
are prone to errors caused by noise in the signals.

So far, to the author’s knowledge, no research has been found that monitored
the GCPV as a complete system; each one of them is concentrated on a specific
part of the GCPV in order to detect and isolate faults. Additionally, up to
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Figure 2.14 Fault detection and location for GCPV systems research trend.

now, no study has focused on the possibility of detecting and isolating faults
on both the dc and the ac side with measurements taken only from the ac side.
Such a possibility would significantly reduce the number of sensors required for
the supervision of the system and thus the total system cost. Finally, several
methods tend to fail at very low irradiance levels.

For this reason, in this work, the signal approach was selected to develop a fault
isolation method for GCPV systems based on current and voltage measurements
at the output of the inverter, examining faults occurring on both the dc and the
ac side of the plant at different irradiance levels. The choice of the output of
the inverter, i.e. the point of common coupling, as the monitoring source of the
status of the GCPV system is in accordance with the location of voltage sensors
used in the previous studied case of fault location methods in the LV distribution
grid.
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2.4 Thesis outline

This thesis is divided in two parts: part I) fault diagnosis in low voltage (LV)
smart distribution grids and part II) fault isolation in grid-connected photovoltaic
systems (GCPVs).

The first part is divided in four chapters, one for each of the three different
proposed methods and a fourth one for a comparative analysis. Chapter 3
is dedicated to a more conventional and simple fault detection and isolation
method. This method uses root-mean-square (rms) current measurements at the
beginning of each feeder and voltage measurements spread across the grid to
detect and localize a fault respectively. Chapter 4, introduces the first of the
two artificial intelligence methods that were developed: the gradient boosting
trees. Gradient boosting trees were designed to perform three different tasks:
a) fault detection and faulty feeder identification, b) fault type identification
and c) faulty branch identification. Furthermore, in Chapter 5, the use of deep
neural networks is proposed as the second artificial intelligence method of this
study. Deep neural networks with two, three and four layers are designed for: a)
fault detection, b) faulty branch identification and c) fault distance estimation
respectively. Finally, Chapter 6 compares all three of the developed methods
with others in the literature and among themselves underlining the merits of
deep neural networks.

In the second part of the thesis, in Chapter 7 two algorithms based on a signal
approach are proposed as a fault isolation strategy for GCPVs. A big variety of
faults can occur in a PV power plant. Based on their location faults can appear:
a) in the PV array, b) in the power converters, c) on the dc bus and d) in the
grid side. The algorithms use current and voltage measurements at the output
of the inverter, examining faults occurring on all four of the aforementioned
possible locations and at different irradiance levels. The choice of the output of
the inverter, i.e. the point of common coupling, as the monitoring source of the
status of the GCPV system is in accordance with the location of voltage sensors
used in the previous case of fault location methods in the LV distribution grid.

The thesis concludes with a general conclusion chapter and the appendices
where the fuel cell case is also presented.



Part I

Fault diagnosis in low voltage
smart distribution grids





Chapter 3

Conventional method

In an attempt to shed light on a quite unexplored field, as underlined in
the Introduction, a fault detection method, based on current measurements,
and a fault location method, based on voltage measurements, for low voltage
(LV) distribution grids are presented in this chapter. Although, the basic idea
of the fault location method was initially conceived for medium voltage (MV)
distribution grids [2], in this case it is tested in the more complex case of LV
grids, as explained in Chapter 2. The performances of the two methods were
tested against: a) different types of measurements: phase root mean square
(rms) measurements and transformed rms quantities via a Fortescue analysis,
b) various fault resistance values ranging from 0.1 to 1000 Ω, c) various fault
locations within the grid, d) two fault types and e) various hours within the day.
Regarding the fault types, both single phase to ground and three phase short
circuit (SC) 1 faults were studied. In a distribution system, 70 % of the faults are
single phase to ground faults and only 5 % are three phase faults [1]. However,
three phase faults are the most severe. By selecting those two types, the most
frequent and most severe faults were studied. Moreover, a sensitivity analysis is
also presented in this chapter including measurement uncertainty (three different
types of measurement errors) and a limited measurement availability scenario.
Finally, a real semi-rural LV distribution grid of Portugal provided by the Efacec
was used as a basis for the case study.

1from hereafter the term short circuit will be omitted and considered as a given for grid
faults.
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3.1 Method description

3.1.1 Fault detection

In LV distribution grids there are two indicators of a fault occurrence: a)
a significant voltage drop and b) a significant current increase. But both
of them can be affected by various factors either related or unrelated to the
existence of a fault. Some common factors are:

a) a sudden load connection: the sudden connection of a load will cause a current
increase.

b) topological criteria: the location of the monitored point inside the grid, i.e.
in the beginning or in the end of the feeder, plays a significant role since
voltage is also affected by the line losses resulting in lower voltage levels for
consumers located at the end of the feeder.

c) fault resistance: high fault resistance values will decrease the fault current
flowing through the faulty feeder thus making it more difficult to differentiate
normal from faulty operating condition.

d) penetration level of distributed generation (DG): the presence of interconnected
DG in the residential level of smart grids that allow bidirectional flow of
energy, can increase the voltage levels of nearby consumers, thus mitigating
the voltage drop caused by either faults or line losses. Moreover, in smart
grids with inverter-interfaced renewable sources, fault currents can be very
limited because of the inverter control actions. Traditionally, utilities use
overcurrent as a basis for fault detection, which with the presence of DG
can lead quite often to false alarms or even worse to amplification of their
contribution to the fault current if they remain connected during the fault
[227].

For the reasons listed above, six fault detection criteria, three based on voltage
and three on current, were proposed by two international standards [228, 229] of
power quality and four methods based on superimposed quantities. Superimposed
quantities are nothing more but a comparison of the pre-fault with the post-fault
values of voltages or currents that can serve in the detection of any incremental
changes. This last approach is immune to the impact of loads as any observed
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change will be attributed solely to the existence of a fault. More specifically,
those criteria are:

Voltage

1. Voltage drop: The European standard EN50160-2010 [228] defines as voltage
of normal operating conditions in the LV grid, any voltage that does not
drop below 90 % of the nominal value.

2. Negative sequence voltage, Vneg: The negative sequence voltage component
is expected to increase significantly during unbalanced faults thus providing
a relatively safe fault detection tool [230]. On the other hand, this criterion
can not be used for three phase faults. Taking into consideration that
only 5 % [1] of the faults in distribution grids are three phase faults, this
criterion could theoretically cover 95 % of fault cases. It should be noted
that negative sequence voltage component might also exist because of
various imbalances between the phases.

3. Positive sequence voltage, Vpos: A complementary method to the previous
one would be the monitoring of the positive sequence voltage pre- and
post-fault values as a decrease of the post-fault value would indicate the
presence of a three phase fault. This method can be also used for the
detection of single phase faults but in that case it would be less accurate
as information from two healthy phases and one faulty would be combined
for the voltage transformation thus mitigating the voltage decrease of the
positive sequence.

Current

1. Negative over positive sequence current ratio: The IEEE 1159-2009 stan-
dard [229] proposes the use of another index based on the symmetrical
components of the current for the monitoring of a normal operation:

NO : |Ineg|
|Ipos|

< 0.3 (3.1)

As described by the equation above, an abrupt change in the negative
sequence of the current would be considered as an imbalance. Hence, if
this ratio exceeds the threshold of 0.3 this would be an indication of a
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fault occurrence. However, in LV grids, which as described in Chapter 2,
are usually quite unbalanced, it is possible to encounter negative sequence
component of the current even under normal operating conditions.

2. Positive sequence current, Ipos: Especially for grids where the DG are
connected to it through inverters, the positive sequence current can be used
as a monitoring tool since changes in this quantity would be attributed to
the behavior of the grid and not to inverter control actions [230].

3. Increase of phase current, Iph: An increase of the phase current could also
indicate the presence of a fault. However, changes in the current can occur
under various operational conditions. Especially for high fault resistance
values where the amplitude of the fault current is very small, as it will
be later explained, it is extremely difficult to detect with certainty a fault
occurrence. Finally, this criterion has the advantage of being useful for a
second task. Through the use of phase current, fault type identification
is also possible, i.e. identifying which phase(s) is under fault, since the
phase(s) under fault would be the one(s) presenting an increase in their
current.

The output of a fault detection algorithm is the trigger of an alarm signal
when a fault is detected. However, such an alarm signal can be falsely triggered
under normal operating conditions. In order to define all possible conditions
and to properly measure the performance of each method, the confusion matrix,
presented in Table 3.1 is used :

Table 3.1 Confusion matrix.

Actual Condition
Predicted Condition Positive Negative

Positive true positive (tp) false positive (fp)

Negative false negative (fn) true negative (tn)

Any fault detection method is considered successful when it correctly activates
an alarm signal when there is a fault, true positive, and when it does not activate
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the alarm under normal operating conditions, true negative. On the other hand,
the method fails when it activates the alarm when there is no fault, false positive,
and when it does not activate the alarm when there is a fault, false negative.

Though there are different ways of measuring the performance of a method
(sensitivity, specificity, false positive rate, false negative rate, precision, accuracy,
F1 score etc.) [231], only two tools are chosen for this study:

Sensitivity(Recall) = Detection

Fault
= tp

tp + fn
(3.2)

Accuracy = Correct detection

Total data sample
= tp + tn

tp + fp + tn + fn
(3.3)

Although the accuracy term is introduced here, it will only be used in Chapters
4,5. For the conventional method, only the sensitivity, tool is used.

3.1.2 Fault location

Once an alarm signal indicates the occurrence of a fault in one of the grid
feeders, the fault location process is initiated. This process is divided in three
distinct steps: a) faulty branch identification, b) faulty sector localization and c)
fault distance estimation. All these steps are solely based on nodal rms voltage
measurements.

3.1.2.1 Faulty branch identification

Identifying the faulty branch within a feeder with multiple branches is the
first and most important step of the fault location process. It is expected that
the branch under fault would present the highest voltage drop within the faulty
feeder. For this reason two methods are proposed to identify a faulty branch,
both of them presented in Algorithm 1:

1. Vertical: The minimum voltages of each branch are compared and the
branch with the lowest voltage is considered to be the one under fault.

2. Horizontal: A step by step comparison of the available measurements
within each branch of the same feeder is implemented. For example, the
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Algorithm 1 Fault Location Algorithm - Step I
1: procedure Branch Identification - Vertical
2: min_v ← min_v(faulty_feeder)
3: for i = first_br : last_br do ▷ br: branch
4: if v(i) = min_v then
5: faulty_br ← i

6: procedure Branch Identification - Horizontal
7: ▷ msp: measurement point
8: for j = first_msp + 1 : last_msp do
9: min_count← 0

10: min_v2← min(v(first_br : last_br, j))
11: for i = first_br : last_br do
12: if v(i, j) = min_v2 then
13: min_count← min_count + 1
14: if min_count = 1 then
15: faulty_br ← i

16: if min_count = 1 then
17: break

first available measurements in each branch are compared and the branch
where the minimum voltage belongs is the one under fault. In case of
voltage equality or multiple equal minimums, the second available voltage
measurements within each branch are compared and then if a minimum is
found the branch to which it belongs is identified as faulty. The process
continues until a unique voltage minimum is found. The branch to which
this minimum belongs is considered as the one under fault. The horizontal
method is illustrated in Fig. 3.1.

3.1.2.2 Faulty sector localization

In transmission networks, according to the equal transfer process of transmis-
sion lines, the voltage should be approximately linearly distributed between two
line segments. The same principle applies to LV grids. However, since in the LV
grid the lines connecting the different nodes within a branch can present quite
different characteristics (resistance, reactance and length), attributing thus an
heterogeneous nature to the grid, the above principle, though still applicable, will
present some deviations. In any case, when a ground fault occurs, the voltage at
the fault point will decrease to zero [2, 232].
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Figure 3.1 Flowchart of the horizontal branch identification algorithm.

The basic principle is based on the fact that across the line of a faulty branch,
voltage is expected to drop linearly up until the faulty sector and stabilize to a
certain value after it. In Fig. 3.2, the theoretical voltage profile and the form of
its curve is presented. For 0 Ω of fault resistance, the voltage will drop to zero
after the faulty sector (marked with orange color) since there will be no current
flowing through this segment of the grid; all the current will flow from the line
to the ground through their established connection during the fault leaving no
circulating current in the segment of the line after the fault location. However,
for any value “x” of fault resistance, the voltage is expected to stabilize to a
higher value.

This idea was conceived in the context of the MV grid which is less complex
than the LV grid [2]. Although in reality the unbalanced and heterogeneous
nature of the LV grid can affect the form of the voltage profile, the basic principle
of the voltage stabilizing to a value after the faulty sector, should theoretically
still apply.

Linear interpolation can be used to create the lines connecting the voltage
measurement points across the branch. The change in the slope of the voltage
curve in Fig. 3.2 is obvious as it decreases to almost zero after the faulty sector.
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         x 
         0 

Figure 3.2 Theoretical voltage profile across a faulty line for a single-phase to ground
SC fault for two cases of fault resistance values: zero (“0”) and non-zero (“x”). The
sector where the fault occurred is marked with orange color.

In order to transform the above critical observation regarding the slope into
an algorithm (Algorithm 2) and identify the faulty sector, the two following
criteria were developed:

1) if the difference between two consecutive voltage measurements was positive,
signifying a change in the sign of the slope, then the previous sector was the
one under fault and

2) if the absolute value of the difference between two adjacent voltage measure-
ments was the lowest within the branch, signifying a stabilization of the curve,
then the previous sector was the one under fault.

An example is provided in Fig. 3.3. The slope of the curve is almost always
negative since voltage is decreasing. However, a positive value of the slope after
the faulty sector is possible under the presence of microgeneration units in this
part of the grid, thus explaining the choice of the first criterion; the effect of
microgeneration units and loads will be explained later.
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Algorithm 2 Fault Location Algorithm - Step II
1: procedure Sector Localization
2: accross the faulty branch
3: for i = first_msp + 1 : last_msp do
4: δv(i)← v(i)− v(i− 1)
5: fs← 0 ▷ fs: faulty sector
6: min_v3← min(|δv|)
7: ▷ first voltage criterion
8: for i = first_msp + 1 : last_msp do
9: if fs = 0 and δv(i− 1) < 0 and δv(i) > 0 then

10: fs← i− 1
11: break
12: ▷ second voltage criterion
13: for i = first_msp : last_msp− 1 do
14: if fs = 0 and |δv(i)| = min_v3 then
15: fs← i− 1
16: break
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Figure 3.3 Voltage profile and example of the usage of the sector localization criteria
in a faulty branch. After the faulty sector (colored in orange) the voltage will either:
slightly increase (6a) or stabilize to the value of the last nodal measurement (6b) or
slightly decrease (6c). Criterion (1) will be triggered in the case of (6a) since the
voltage difference (∆V56 = V6 − V5 > 0) will be positive and criterion (2) in all three
cases of this example as ∆V56 is the smallest voltage difference.
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3.1.2.3 Fault distance estimation

The last step in localizing the fault, after having identified the faulty branch
and sector, is to estimate its location within the faulty sector. To achieve that, a
graphic method is implemented. From the linearly interpolated curve of Fig. 3.4,
the lines of the sectors adjacent to the one under fault are linearly extrapolated
(green dashed lines) and their intersection point is used to estimate the location of
the fault inside the sector. Another possibility would be to use all the remaining
sectors before and after the faulty one for the linear extrapolation. A discussion
on which of the two methods is better will follow in the next section.
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Figure 3.4 Theoretical estimation of the fault location.

An obvious observation is that this method is incapable of locating a fault
that occurred in the first or the last sector of the grid since it requires a minimum
of four measurement points (three sectors). To measure the method accuracy,
the most popular formula in the literature, described in [233] is used:

error ( %) = |destimated − dactual|
ltotal

· 100 (3.4)

where the estimated distance is compared to the actual one and the result is
normalized over the total length of the line.
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As a last step, a threshold crossing check is applied to ensure that the
estimated location falls within the limits of the identified faulty sector. This
corrective process minimizes false estimations. The fault distance estimation
process is summarized in Algorithm 3 and the results of the entire fault location
method are presented in the following section.

Algorithm 3 Fault Location Algorithm - Step III
1: procedure Distance Estimation
2: from extrapolation of the lines of the adjacent sectors
3: dest ← distance of the intersection point
4: if dest > fs_upper_limit then
5: dest ← fs_upper_limit
6: else if dest < fs_lower_limit then
7: dest ← fs_lower_limit

8: the fault is located at dest(m)

The complete fault detection and location process based on the steps described
in the previous section, is summarized in the following flowchart in Fig. 3.5.

Fault detection

Identify faulty feeder

Identify faulty branch

Localize faulty sector

Estimate distance

Is the
estimation

within
the sector
limits ?

Adjust the estimation

Fault location

no

yes

Figure 3.5 Fault detection and isolation method flowchart.
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3.2 Application

3.2.1 Case study

3.2.1.1 Grid characteristics

A real semi-rural radial LV distribution grid of Portugal provided by Efacec
[234], was used as the basis of the case study. The connection to the MV is
achieved through a distribution transformer. The grid is a three-phase-four-wire
one with a solidly grounded neutral. A total of forty eight consumers and eighteen
photovoltaic systems (PV) are connected to the grid via single phase connections.
The single line diagram of the LV distribution grid is presented in Fig. 3.6.
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Figure 3.6 Single line diagram of the semi-rural Portuguese LV distribution grid.

There are two characteristics that define this grid and complexify its analysis:
a) its heterogeneity: eleven different types of conductors in terms of resistance
and reactance, with lengths ranging from 35 to a maximum of 210 m are used
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to connect the nodes, and b) its imbalance: asymmetrical, both topologically
and per phase, distribution of the loads and PVs. For more details on the
heterogeneity of the grid, the specifications of the conductors are provided in
Tables A.1 to A.3 in the Appendix. Concerning its unbalanced nature, Table 3.2
summarizes the total per feeder and phase contracted and installed power in the
grid of loads and PVs respectively; again, Tables A.4 to A.9 in the Appendix
provide the full details.

Table 3.2 Total per feeder and phase (a, b, c) contracted (loads) and installed (PVs)
power.

Feeder Contracted Power (kV A) Installed Power (kW )
Sa Sb Sc Pa Pb Pc

1 31.05 41.40 48.30 3.68 8.83 14.49

2 34.50 41.40 24.15 10.58 7.13 7.08

3 10.35 13.80 17.25 3.68 0.00 1.70

Total 75.90 96.60 89.70 17.94 15.96 23.27

As explained before, the fault detection and location methods are based only
on rms measurements. Hence, the phasor mode was selected to perform the
simulations in Matlab/Simulink, in order to reduce the computational time.
Furthermore, the faults were studied 150 ms after their occurrence. This time
frame ensured: a) that the fault would appear on a steady–state or at least very
close to it and b) that no protective device has isolated the installed PV units;
an action from the protective elements to isolate PVs is expected around 200 ms

from the fault occurrence [4]. This enabled the analysis of the contribution of
the PV units to the faults.

Finally, it was assumed that the measurements were synchronized and as
a first step, accurate and available in every node; aspects encountered only in
smart grids.

3.2.1.2 Influencing parameters

The following influencing parameters were considered for this case study:
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1. Fault resistance: As stated in Chapter 2, fault resistances up to 1000 Ω can
be encountered in distribution grids. Hence, the following fault resistance
values were considered: 0.1, 1, 5, 10, 50, 100, 500 and 1000 Ω, covering all
the ranges of values, from very low (0.1) to extra high (1000).

2. Voltage measurement: The choice between using phase rms voltages or the
positive, negative and zero components after a symmetrical (Fortescue)
analysis was analyzed.

3. Fault location: Every sector of the grid, was divided in ten subsections and
nine locations were chosen at a distance of 10, 20, 30, 40, 50, 60, 70, 80
and 90 % from the beginning of each sector. Due to the graphic method
limitation described earlier, the first and last sectors were excluded during
the sector localization and distance estimation processes.

4. Fault types: Single phase to ground faults (AG, BG and CG) were chosen
because they are the most frequent and three phase faults (ABC) because
they are the most severe.

5. Time of the day: The generation and load profiles that were considered in
this study are provided in Fig. 3.7 . From these profiles four hours of the
day were selected as presented in Table 3.3. Scenarios (1,2) and (3,4) were
used to monitor how the developed method is affected by an increase of
load or PV generation respectively.

(a) PV generation profile (b) Load profile.

Figure 3.7 Generation and load profiles for one day.
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Table 3.3 Simulation scenarios.

Time PV generation Load

1 01:00 0 % 28 %

2 20:00 0 % 90 %

3 14:00 49 % 60 %

4 12:00 100 % 50 %

6. Simultaneity factor : Since not all the loads of every consumer are going to
be activated simultaneously, a coincident-simultaneity factor was considered
[235]:

SF = max(Dsystem)
N∑

i=1
Dmax

i

(3.5)

where D is the load demand and N the number of loads.

The sum of the individual peak loads will always be bigger than the peak
load of the system. Thus, the simultaneity factor is always smaller than
unity. It can only take the unity value if all the loads reach their peak at
the same time. SF is statistically stabilizing around 0.5 in residential areas
of developed countries [235]. In general, the SF will depend: a) on the
type of loads connected to the system, b) the number of consumers and c)
as stated in [236] on weather diversity for larger systems; since the grid of
this case study covers a small area, weather diversity was not considered as
an influencing factor. However, the smaller the amount of consumers the
more likely it is to notice deviations as the SF will not necessarily converge
to 0.5. In the grid of Fig. 3.6, forty eight consumers are served; from Fig.
3.8, this would correspond to a SF a bit over 0.3. For that purpose, a
SF = 0.3 was used as a basis for this analysis. A SF = 0.5 however, was
used for the comparison analysis in Chapter 6 to cover a broader range of
possible scenarios.
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Figure 3.8 Simultaneity factor per number of consumers in distribution grids [235].

3.2.2 Fault detection

The six criteria that were described in the method description section were
tested for their ability to accurately detect the occurrence of a fault. For the
creation of the superimposed values (comparison between post- and pre-fault
values), the values of faulty operation 150 ms after the occurrence of the fault
were compared with those of normal operation 5 min before the occurrence of
the fault2. The performance of the chosen criteria, measured by sensitivity, is
presented in Fig. 3.9 for single phase to ground faults and in Fig. 3.10 for three
phase faults.

An obvious conclusion from these two figures is that the increase of fault
resistance decreases the chances of a correct fault detection. An increase of the
fault resistance decreases the current and increases the voltage across a faulty
branch. This effect seems to affect more the voltage criteria than the ones based
on current in the case of single phase to ground faults (Fig. 3.9) where the two
most reliable criteria are five (superimposed positive sequence current increase)
and six (superimposed phase current increase). At the same time, some criteria
seem more suitable than others for three phase faults with three (superimposed
positive sequence voltage drop) and six outperforming the rest. Overall, the

2The time frame of 5 min was selected for consistency purposes with the methods of the
next chapters. A complete justification of this choice is provided in Chapter 4.
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monitoring of the phase current was deemed the best choice among the rest with
an average sensitivity of 79.87 % for single phase to ground faults and 79.61 %
for three phase faults, offering in parallel, the possibility to identify the fault
type (phase under fault) and the faulty feeder.

However, as mentioned in the previous section, the phase current is prone to
changes from different factors and although the use of the superimposed value
decreases this chance, it does not eliminate it. Moreover, for fault resistance values
higher than 10 Ω, as shown in Fig. 3.11, the superimposed current approaches
the unity value, meaning that the current under faulty operation is almost the
same under normal operation. This last fact, makes it even more vulnerable to
other exogenous factors that can affect it.

In addition, the effect of the grid imbalance is illustrated in the same figure. In
detail, especially for low resistance values, the differences of the current increase
in the three feeders are quite substantial; the less elements connected to a feeder
the easier it is to detect a fault (higher superimposed value). The latter is verified
by Table 3.2 according to which Feeder 1 concentrates a total of 121.2 kV A of
contracted power, Feeder 2, 100.05 kV A and Feeder 3, 41.4 kV A.

In general, phase rms current measurements in the beginning of each feeder
are considered as a reliable fault detection criterion for very low and low fault
resistance values (lower than 10 Ω). The installation of more current sensors
throughout the grid would improve the performance of this method but the need
for a more reliable method especially for high fault resistance faults is evident.

3.2.3 Fault location

Following the fault detection and faulty feeder identification, the fault location
process, composed of three distinct steps: a) branch identification, b) sector
localization and c) distance estimation, is initiated as shown in Fig. 3.5.

3.2.3.1 Branch identification

The results of the branch identification analysis are gathered in Fig. 3.12. An
analysis of the influencing parameters follows:

1. Fault resistance: With the increase of fault resistance, the total voltage drop
across the faulty branch becomes more and more insignificant thus making
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Figure 3.9 Sensitivity of fault detection criteria per fault resistance for single phase to
ground faults.

Figure 3.10 Sensitivity of fault detection criteria per fault resistance for three phase
faults
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Figure 3.11 Superimposed phase rms current increase per fault resistance in each grid
feeder.

it harder to distinguish a faulty from a healthy branch. As presented in
the fault detection analysis, currents flowing in the faulty feeder, for a fault
resistance higher than 10 Ω, are very close to the normal operating condition
currents. The same holds for voltages. The minimum voltage within a
faulty branch (the basic faulty branch identification criterion), with an
increase of the fault resistance, would approach the normal operating values.
This last effect, would make the method prone to misidentification since it
would be more vulnerable to voltage variations due to the unbalanced and
heterogeneous nature of the grid. A general conclusion of Fig. 3.12 is that
the increase of fault resistance decreases the faulty branch identification
accuracy with a maximum difference of 42.9 % being recorded between 0.1
Ω (94.14 %) and 1000 Ω (51.24 %), for the case of transformed voltages.

2. Voltage measurements: In Fig. 3.12a the superiority of the positive sequence
component is demonstrated over all the other voltage components and the
phase voltage measurements. Consequently, the rest of the analysis was
based on rms positive sequence voltage measurements.
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3. Branch identification method: Both methods, vertical and horizontal,
present similar performance with the vertical one being more success-
ful in identifying the faulty branch, by an average of 4.73 % overall (Fig.
3.12b). Consequently, for the rest of the analysis the vertical method will
be used.

4. Fault location: Two aspects of fault location are analyzed here. First of
all, the location of the sector inside a branch (Fig. 3.12c) and secondly,
the location of the fault inside a faulty sector (Fig. 3.12d). Regarding
the location of the sector within a faulty branch, two categories of sectors
are formed, those in the beginning of each feeder belonging to multiple
branches (shared) and those in the middle or towards the end of each feeder
that belong only to one branch (unshared). As expected, Fig. 3.12c shows
that faults in the beginning of the feeder are easier to identify even at high
fault resistance values. As far as the location of the fault within the sector
is concerned, Fig. 3.12d shows that faults located at the beginning or the
end of each sector present higher chances to influence the faulty branch
identification process.

5. Fault type: The almost identical performance of the method in all three
phases in the case of single phase to ground faults, demonstrated in Fig.
3.12e, leads to the conclusion that the method is immune to the unbalanced
per phase distribution of loads and PV units. The higher performance for
the case of the three phase faults is attributed to the use of the positive
sequence component of the voltage as a basis. In single phase to ground
faults, with the use of the positive sequence component, information from
all three phases, both faulty and healthy, are taken into account whereas
in three phase faults, since all three phases are under fault, the final rms
values are not corrupted with healthy input data.

6. Time of the day: From Fig. 3.12f, the only safe conclusion is that the effect
of the load demand is stronger than this of PV generation since the worst
performance is recorded at 20 h, with 90 % of load demand and 0 % of PV
generation.
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(a) Phase vs. transformed voltages. (b) Different branch identification methods.

(c) Faults in shared vs. unshared sectors. (d) Different fault locations within a sector.

(e) 1ph vs. 3ph faults. (f) Different hours of a day.

Figure 3.12 Branch identification accuracy.

3.2.3.2 Sector localization

The influence of the following parameters is analyzed:

1. Fault resistance: Since the increase of fault resistance will decrease the
voltage differences between adjacent nodes, the sector localization method
is expected to be quite vulnerable to the increase of fault resistance. This
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is validated in Fig. 3.13 where it is demonstrated that the increase of fault
resistance decreases the faulty sector localization accuracy with a maximum
difference of 36.68 % being recorded between 0.1 Ω (61.61 %) and 1000 Ω
(24.93 %), for the case of transformed voltages.

2. Voltage measurements: As with branch identification, the use of the positive
sequence component of the voltage is proven to be more accurate compared
to phase measurements by 8.48 % in average as presented in Fig. 3.13a.

3. Fault location: In contrast to the effect on the branch identification process,
the location of a fault in a sector in the beginning of the feeder (shared)
hinders its isolability (Fig. 3.13b). The problem that arises is the selection
of one branch, among the different branches where the sector belongs to, for
the sector localization process as different branches might provide different
results in that case and that can possibly lead to the mislocalization of the
sector. For example, if a fault between nodes two and five occurs (Fig. 3.6),
any of the four branches of the first feeder could be identified as the faulty
one from the branch identification step since the specific sector is shared by
all of them. Moreover, the slope of the voltage profile curve is more likely
to be altered (less likely to stabilize) if more sectors, thus more elements
interfering, remain after the one under fault. There, the presence of loads
is decreasing the voltage (negative slope to the curve) while the presence
of PVs is increasing the voltage (positive slope to the curve). With regards
to the location of a fault within a faulty sector, the same tendency as with
branch identification process is observed in Fig. 3.13c: faults located at the
beginning or the end of each sector present smaller accuracy.

4. Fault type: Once more, the performance of the method in all three phases
in the case of single phase to ground faults is almost identical (Fig. 3.13d).
Three phase faults present, in general, a higher accuracy.

5. Time of the day: The conclusion that the effect of the load demand is
stronger than this of PV generation is again validated since the worst
performance for the sector localization method is recorded at 20 h (Fig.
3.13e). An interesting observation, is that the increased PV generation
at 12 h (100 %) seems to partially mitigate the effect of the load demand
(60 %). Another example of this mitigation, is derived from the comparison
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(a) Phase vs. positive sequence voltages. (b) Faults in shared vs. unshared sectors.

(c) Different fault locations within a sector. (d) 1ph vs. 3ph faults

(e) Different hours of a day.

Figure 3.13 Sector localization accuracy.

of the results at 1 h with those at 14 h. There, the increase of load
was accompanied by an increase of PV generation which diminished the
accuracy decrease if compared to the one observed at 20 h where only
the load increased. Finally, the PV influence is more noticeable at fault
resistances higher than 500 Ω where the fault current is very small.
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3.2.3.3 Distance estimation

The influence of the following parameters is analyzed:

1. Fault resistance: In the “ideal” case of having zero influence from the
connected loads or the PVs on the voltage profile along a faulty branch,
the increase of the fault resistance would only transpose the voltage profile
to higher values as shown in Fig. 3.2 and Fig. 3.14. Figure 3.14 presents
an example of the distance estimation graphic method for the case of a
single phase to ground fault with fault resistance of 0.1, 1 and 5 Ω. It is
shown that the distance estimation graphic method is immune against fault
resistance variations in the ideal case since the absence of loads and PVs
permits the perfect stabilization of the slope of the voltage profile curve to
zero, after the faulty sector, in all cases. However, in reality, from Fig. 3.15,
it is clear that the increase of the fault resistance affects the fault distance
estimation as well, for the same reasons that were analyzed in the previous
tasks. This influence is limited with the use of the correct sector criterion
as shown in Fig. 3.15b.

2. Voltage measurements: Again, the use of phase voltages was compared with
the use of the positive sequence components of voltages. Figure 3.15a shows
a slightly better performance of the phase voltages in estimating the fault
distance by an average of 2.19 %. However, since the distance estimation
process follows the branch identification and sector localization tasks, and
from the fact that the positive sequence component demonstrated a higher
accuracy in both of the two previous tasks, the accuracy error difference of
2.19 % is not considered important enough to reconsider the choice between
phase and symmetrical components. Hence, for the rest of the analysis the
positive sequence voltage components have been used.

3. Distance estimation method: The use of two different methods is analyzed
in Fig. 3.15a and 3.15b as explained in the theoretical analysis of the
method. The two options are: a) to use all the available sectors before and
after the one under fault for the linear extrapolation step or b) to use only
the ones adjacent to the one under fault (Prev.-Next). At the same time,
another aspect is investigated: in case the distance estimation fell outside
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Figure 3.14 Effect of fault resistance under 0 % load and 0 % PV penetration on the
distance estimation method for single phase to ground fault located in branch 5 at 270
m from the beginning of feeder 2.

the limits of the identified as faulty sector, a correction process was initiated
and restrained the estimation to the limits of the faulty sector; at this point
the error sign can be used as an indication of the fault location, upstream or
downstream. Although the use of all the available measurements seems to
be a better option according to Fig. 3.15a, when the correct sector criterion
is activated the use of the adjacent sectors is becoming slightly better as
shown in Fig. 3.15b. Moreover, from a comparison between the results
demonstrated in Fig. 3.15a and 3.15b, the use of the correct sector criterion
is shown to improve the estimation accuracy by an average of 8.82 % for
the case of the adjacent sectors. Furthermore, to further justify the use of
the adjacent sectors over all the available ones, in Fig. 3.15c the sensitivity
percentage of the sector correction criterion is demonstrated; the adjacent
sectors option triggers less often the criterion meaning that its estimation
is more accurate and less based on other influencing parameters such as the
effect of loads or PV units connected further down the faulty branch. As a
result, for the rest of the analysis, the use of the correct sector criterion
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was used as a default option. Finally, a drawback of the proposed graphic
method is that even under the adjacent sectors option, the sector criterion
sensitivity reaches an average of 51.65 % meaning that in one out of two
cases the graphic method fails to estimate a fault location distance within
the identified, as faulty, sector.

4. Fault location: Figure 3.15d shows that the influence of the location of the
fault within a faulty sector on the distance estimation accuracy is eliminated
with the use of the correct sector criterion as the distance estimation error
remains almost the same for all cases.

5. Fault type: Very slight, almost negligible differences are noticed between
the different fault types in Fig. 3.15e.

6. Time of the day: As for the previous tasks, the increased number of
activated loads hinders the fault distance estimation process with 20 h

being overall the worst case of the studied scenarios as shown in Fig. 3.15f.
On the other hand, at 12 h, where the maximum of PV generation is
attained, the effect of voltage drop caused by loads is mitigated by the PV
units thus decreasing the estimation error.

7. Grid heterogeneity: A study was done without any load or PVs present in
the grid in order to investigate the effect of the heterogeneity of the grid
on the method; as demonstrated before, this removes the influence of fault
resistance on the distance estimation method. One parameter was set: the
distance of the fault from the beginning of each feeder. Two fault cases
were studied: single phase to ground faults at a distance of a) 270 m and
b) 400 m from the beginning of the feeder. One branch from the second
feeder and one from the third were selected; branch six from feeder two
with a total length of 455 m and branch nine which is the longest of the
grid with a length of 640 m (Fig. 3.6).

In order to distinguish the influence of the different conductor types in
terms of resistance and reactance from the potential influence of the branch
length itself, a comparative analysis is presented in Table 3.4 between
heterogeneous and completely homogeneous lines of equally distanced
sectors and a fixed R/X ratio of 4.76.
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(a) Phase vs. positive sequence voltages. (b) Correct sector activation criterion.

(c) Sector criterion activation rate. (d) Different fault locations within a sector.

(e) 1ph vs. 3ph faults. (f) Different hours of a day.

Figure 3.15 Distance estimation error.

A first observation from Table 3.4 is that there is no difference in the
estimation accuracy between homogeneous and heterogeneous lines at a
distance of 270 m. This however, is attributed to the fact that both
branches are composed of sectors with quite similar R/X ratios as shown
in Table A.4 in the Appendix. On the other hand, at 400 m a difference
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of 4.33 % and 4.74 % is noticed for branch six and nice respectively. The
stable performance between the distance difference of 270 and 400 m under
homogeneous lines versus the increased error that this distance increase
brings at heterogeneous lines, leads to the safe conclusion that the ones
responsible for this error increase are the different types of conductors
(various R/X ratios and lengths) and not the increase of the distance itself
or the branch length.

In general, the increase of the fault distance from the beginning of the
feeder means a bigger variety of conductors before the faulty sector and
thus a more significant influence on the form of the voltage profile which
increases the distance estimation error.

Table 3.4 Distance estimation error ( %) in homogeneous and heterogeneous lines.

Homogeneous Heterogeneous

270 m 400 m 270 m 400 m

branch 6 0.01 0.07 0.02 4.40

branch 9 0.11 0.05 0.01 4.79

3.2.4 Measurement uncertainty

As stated in [237], electricity meter accuracy ranges from ±0.5 % to ±2.5 %.
The accuracy of smart meters is usually classified as class 1 (±1 %) for active
power measurements and usually less (0.5) for current or voltage. Such an example
is the MBox smart meter developed by Efacec [234]. In order to test the accuracy
of the developed method versus measurement uncertainty conditions, three types
of errors were introduced in each phase current and voltage measurement:

a) 2 % underestimation (U2): values between 0.98 - 1 p.u.

b) class 1 accuracy (C1): values between 0.99 - 1.01 p.u.

c) class 2 accuracy (C2): values between 0.98 - 1.02 p.u.
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(a) Fault detection accuracy. (b) Branch identification accuracy.

(c) Sector localization accuracy. (d) Distance estimation error.

Figure 3.16 Measurement error effect on fault detection and fault location methods.

Figure 3.16 shows that fault detection and faulty branch identification tasks
are not affected by the introduction of error in the current and voltage measure-
ments respectively. On the other hand, the passing from accurate to erroneous
measurements affected severely the sector localization method; its reduction in
accuracy reached an average of 20 % (Fig. 3.16c). This result was expected as the
sector localization part is the most sensitive of the proposed fault location method.
Erroneous measurements can easily alter the form of the voltage profile curve
leading to a mislocalization of the faulty sector. Additionally, the fault resistance
increase amplifies the effect of erroneous measurements as nodal voltages reach
similar amplitudes. Moreover, the distance estimation error is increased by a
maximum of 2 % as shown in Fig. 3.16d. Finally, although no conclusive result
can be obtained, the 2 % underestimation error seems to be the most challenging
for the sector localization method and the class 2 accuracy the most challenging
for distance estimation.
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3.2.5 Less available measurements

A limitation of the localization method is that at least three distinct sectors
are required, meaning a minimum of four measurements per branch for the sector
localization and distance estimation steps. Based on an analysis made in [238], a
strategy of sensor placement was developed according to the following topological
criteria:

a) voltage sensors should be spread throughout the branch so that the voltage
profile curve would be a good approximation of the ideal case, and

b) nodes with big loads and/or PV units connected to them should be prioritized
taking into account all three phases.

Through a preliminary analysis [238], the bare minimum of four measurements
per branch was deemed insufficient for the method. The following strategy was
applied to reduce the sensors:

Step 1: First and last measurements in each branch are mandatory. This means
that nodes 1, 29, 10, 17, 25, 30, 33, 21, 22 and 32 will be equipped with
sensors.

Step 2: Removed sensors from nodes with zero loads and PVs. Those nodes are:
3, 4, 14, and 15. However a choice between 4 and 14 is necessary to
maintain four measurements in branch eight. Between the two, node 4
is more important as it is shared by branch nine as well. That means
that nodes 3, 14 and 15 were removed.

After these two first steps the candidate for removal nodes are: 9, 16, 24,
11 and 18 from the first feeder, 6, 12, 19, 26, 20, 27, 31 from the second
and 23 and 28 from the third feeder (fourteen in total). To achieve a
30 % reduction of sensors, ten in total need to be removed. Since three
were already removed during Step 2, seven out of the fourteen listed
above remain. An extra step is necessary to choose one scenario among
the 3,432 possible ones.

Step 3: The top three nodes in terms of connected loads (in kV A) in each branch
were chosen to remain (Table A.5 to A.7 in the Appendix). This removed
exactly seven nodes from the remaining fourteen.
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The final choice of nodes to be left unmonitored was: 16, 18, 3, 6, 19, 20, 31,
14, 15, 23 and is presented in Fig. 3.17. Given this sensor availability constraint,
the complete set of simulations was repeated without considering any error in
the measurements.
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Figure 3.17 Grid schematic with the reduced number of available nodal voltage mea-
surements.

Figure 3.18 presents the performance of the fault location method under
the scenario of less available measurements described above. The faulty branch
identification process is not affected in this case (Fig. 3.18a). This was expected
since the most important measurements for branch identification are the ones
towards the end of the branch where the higher voltage drop is expected; a
condition that is met in this case since all the last nodes in each branch are
equipped with voltage sensors. Again, the sector localization is where the method
performance is expected to decrease. However, the availability of less sensors
leads unavoidably to longer sectors (as seen from the extracted voltage profile
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(a) Branch identification accuracy. (b) Sector localization accuracy.

(c) Distance estimation error using the sector correction criterion.

Figure 3.18 Less available measurements effect on the fault location method.

point of view) which makes the method less sensitive to fault resistance as the
number of possible sectors within a branch is significantly reduced; a decrease of
only 6.4 % between 0.1 Ω and 1000 Ω was observed. This effect is presented in
Fig. 3.18b. Regarding distance estimation performance, an average error increase
of 14.72 % is noticed between the case of full and limited available measurements
as the longer sectors affect significantly the extracted voltage curve .

Given the graphic nature of the method and its sensitivity when it comes
to localizing the faulty sector and estimating the fault distance, a reduction
of the available measurements is not advised even though the faulty branch
identification process is unaffected. Finally, there was no need to examine the
fault detection performance as from the beginning, the bare minimum of sensors
was used to monitor the operation of the grid in terms of current (one sensor per
feeder).
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3.3 Conclusion

In this chapter, a fault detection and fault location method for the LV
distribution grid were presented. For the validation of the proposed methods
a simulated real semi-rural LV distribution grid of Portugal was used. A total
of five influencing parameters were considered: a) fault resistance, b) type of
measurements, c) fault location in the grid, d) fault type and e) time of the day.
In general, the increase of fault resistance hinders both the fault detection and
fault location methods. While for the fault detection phase current measurements
are the most suitable tool, for the fault location process, consisting of three
distinct steps: a) branch identification, b) sector localization and c) distance
estimation, the positive sequence component of the measured rms voltage is a
better choice. Moreover, faults located towards the end of the feeder are more
difficult to tackle. More specifically, faults near the limits of a sector can impede
the fault location method in its attempt to locate them. Furthermore, three
phase faults, being the most severe, are the easiest ones to detect and localize.
Finally, an increased load demand during peak hours decreases the accuracy
of the method, with PVs, though still connected to the grid, not being able to
mitigate this effect.

The fault detection method, based solely on phase current rms measurements
located in the beginning of each of the grid feeders, is considered as a reliable fault
detection tool only for fault resistance values up to 10 Ω. The average accuracy
of the fault location method is: 72.85 % for the faulty branch identification, 43 %
for the sector localization and 82 % for the distance estimation task. Additionally,
under measurement uncertainty, the sector localization method is severely affected
with an average decrease of its accuracy by 20 % (compared to uncorrupted
measurement data) while all the other parts of the methods are unaffected.
Finally, for the case of less available measurements, the faulty branch identification
method was the only one to remain unaffected under the proposed scenario of
sensor placement.





Chapter 4

Gradient boosting trees

In order to overcome the disadvantages of the conventional methods and
improve the chances of correctly detecting and locating a fault, a new artificial
intelligence method is proposed in this Chapter based on gradient boosting trees
(GBT). The proposed method can detect and identify both single phase to ground
faults, and three phase faults. The reasons for selecting this algorithm as a first
approach and not other, e.g. a neural network, were: a) this algorithm has been
shown to outperform other regression tree methods and has recently become
the winner of several challenges in Kaggle, a site that hosts machine learning
competitions, b) it has been successfully used in other energy-based applications,
e.g. forecasting electricity prices [239] or solar irradiance forecasting [240], and c)
it is a very fast model to train which allows real-time applications.

Being a knowledge based method, its performance is tested against out-of-
sample data. The case study of Chapter 3 is extended to include more fault
resistance values and more hours of the day. The contribution of this method is
threefold and is summarized below:

a) fault detection and faulty feeder identification: the occurrence of the fault is
detected with a simultaneous identification of the feeder under fault.

b) faulty branch identification: following the feeder and phase identification, the
faulty branch within a faulty feeder is also identified.

c) fault type identification: a distinction of the faulty and non-faulty phases is
achieved thus identifying the fault type, single phase to ground (AG, BG or
CG) or three phase fault.
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4.1 Method description

4.1.1 Model definition

The GBT algorithm [241] is a prediction model based on the principle of
combining several regression trees. In particular, regression trees are models
characterized by either having high bias and low variance errors if the tree is
shallow, or low bias and high variance errors if the three is deep. To solve this
issue, there are two families of algorithms that combine several regression trees
to reduce high errors. The first family are random forests and it is based on the
principle of bagging [242], i.e. combining models with low bias and high variance
error in order to reduce the variance while keeping a low bias. The second family
are gradient boosting trees and it is based on the principle of boosting [242], i.e.
combining models with high bias and low variance error in order to reduce the
bias while keeping a low variance error.

4.1.2 Algorithm functionality

The proposed algorithm has three distinct functionalities:

• Fault detection: the first functionality of this algorithm is the detection
of a fault occurrence with a simultaneous identification of the feeder under
fault.

• Faulty branch identification: the last functionality of this proposed
method is the faulty branch identification, which is the faulty branch within
a faulty feeder.

• Fault type identification: an extra element which is often omitted by
fault location algorithms is the fault type identification process. In this
study, the GBT algorithm can also differentiate faulty from non-faulty
phases.

4.1.3 Working principle

The main idea of the algorithm is to make use of its prediction capabilities
to diagnose the grid faults. In particular, the algorithm uses a training dataset
S = {Xi, Yi}N

i=1, where X are the inputs of the GBT model and Y are the desired
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predicted output. For all the identification tasks, the inputs X are the same:
specific data corresponding to a specific branch, e.g. voltage on that branch.
The outputs Y however depend on the specific task. Particularly, the output Y

changes with the task as each algorithm has a slightly different working principle
in each of the three tasks:

• Fault detection: to identify a faulty feeder, the algorithm considers data
from healthy branches in healthy feeders and data from faulty branches.
Then, it labels the healthy branches with a 0 and faulty branches with a 1
and the algorithm is trained to predict 0 or 1 to indicate the existence of a
fault in a branch. In real time, to identify a faulty feeder, the algorithm is
simply tested on all the branches of a feeder.

• Faulty branch identification: to identify the faulty branch within a
faulty feeder, the algorithm considers data from healthy branches in a
faulty feeder and data from faulty branches. Then, the algorithm is trained
to distinguish between the two cases using two labels, i.e. 0 and 1. In real
time, to identify the branch, the algorithm is tested on the branches of a
faulty feeder.

• Fault type identification: to identify the type of fault, the algorithm
considers only data from faulty branches. Then, it labels each branch
datapoint with 1, 2, or 3 to respectively denote single phase fault in phase
A, B and C, and uses a label 4 to denote three-phase faults. In real time,
to identify the fault, the algorithm is simply tested on the faulty branch.

4.1.4 Training, validation & test

Independently of the task, as they are all classification tasks, the algorithm
is trained to minimize the cross-entropy loss of the training dataset, i.e. the
price paid for inaccurate predictions. Moreover, to optimize the structure of the
algorithm, all the boosting tree hyperparameters, e.g. number of branches or tree
depth, are optimally selected using the Bayesian optimization [243]. In particular,
the dataset is divided in three subsets: a training dataset, a validation dataset and
a test dataset. The training dataset is used to estimate the algorithm parameters,
the validation dataset is used to estimate the algorithm hyperparameters and
finally the test dataset is used to evaluate the quality of the algorithm.
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4.1.5 Input features

In terms of the inputs of the model several design choices were made. In par-
ticular, to make the model general enough, i.e. to make the model applicable to
different grid topologies with various number of branches and available measure-
ments, two design choices were made. First, the use of branch-specific features
was avoided, e.g. the branch length or the branch resistances and reactances.
Second, all branch-specific measurements were substituted with a fixed number
of interpolated values so that each branch could have the exact same number of
features. For instance, independently of the number of voltage measurements
in a branch, five equally spaced points within the branch were selected and the
voltage values from the voltage measurements were interpolated to these five
locations. This is also necessary to ensure the uniformity of the dataset.

With that motivation, in order to identify if a fault occurs at time t the
following input features were considered:

1. Time: the hour of the day corresponding to t. This is important because
the load and PV penetration in the grid change along the day.

2. Load: the load in the grid at time t.

3. Generation: the PV generation in the grid at time t.

4. Current at time t: the current at the beginning of each feeder at time t

was considered as shown in Fig. 3.6. In particular, the current through the
three phases and the neutral.

5. Current 5 min before t: the current at the beginning of each feeder five
minutes before t was also considered. As before, current through the three
phases and the neutral was considered. These features are important to
have a comparison between two points close in time so that if a fault occurs
at time t, the method can compare the current at time t with the values of
the current during normal operation.

6. Voltages at time t: voltage values across each branch at time t were con-
sidered. More specifically, as mentioned before, five virtual/interpolated
equally spaced measurements that were obtained from the real measure-
ments in the branch were considered. Moreover, the voltages for each phase
were considered, i.e. in total fifteen voltage points per branch.
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7. Voltage 5 min before t: voltage values across the branch five minutes before
t were also considered. The same fifteen voltage points as in time t were
used. As with the current, the motivation behind these input features is to
provide the method with voltage measurements during normal operation.

In order to further explain the choice of 5 min before the fault occurrence as
a reference for normal operating conditions, a more thorough analysis is provided
below. Smart meters are able to provide measurements with a frequency of
1-10 s [244]. However, they cannot yet be used to their full potential due to
telecommunication restrictions in the supervisory control and data acquisition
(SCADA) system. As mentioned in [245], the French smart meter Linky, is
providing measurements of injected and consumed power every 30 min. In other
cases, collection of smart meter data from the service provider, has been reduced
to 15 min as reported in [246]; such an example is the MBox smart meter of
Efacec [234]. The need of a close in time reference point of normal operation
resides in the intermittent and rapidly changing behaviour of the PV generators,
e.g. in the presence of clouds passing over the arrays production from the PV
cells will vary. However, as explained in Chapter 3, the contribution of PVs to
the faults is insignificant if compared to that of the loads and since 30 min were
considered a quite long time to track changes in the energy consumption behavior,
the trade-off of measurements every 5 min is proposed here, looking into the
future of improved telecommunication infrastructure that 5G technologies are
about to bring in smart grids.
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4.2 Application

4.2.1 Case study

4.2.1.1 Grid characteristics

The same grid presented in Fig. 3.6 was used again for this case study.

4.2.1.2 Influencing parameters

Six different influencing parameters were identified for this study:

1. Fault resistance: Extending the fault resistance values considered for the
conventional method case study, presented in Chapter 3, eighteen different
fault resistances were investigated and divided in two sets: (a) training set
(included at the training phase): 0.1, 0.5, 1, 3, 5, 7.5, 10, 30, 50, 75, 100,
300, 500, 750 and 1000 Ω and (b) out-of-sample set (excluded from the
training phase): 4, 40 and 400 Ω, covering the full spectrum of faults, both
low and high resistance ones.

2. Fault location: Similarly with Chapter 3, in every sector, nine possible
locations of fault occurrence were considered for distances of 10 %, 20 %,
30 %, 40 %, 50 %, 60 %, 70 %, 80 % and 90 % from the beginning of the
sector.

3. Fault types: Again, single phase to ground faults and three phase faults
were selected.

4. Simultaneity factor : The assumption of a global simultaneity factor of 0.3
was made for the loads.

5. Time of the day: The same PV generation and load profiles with the case
study of the previous chapter were used as a basis. Only this time, during
the simulations, in order to create multiple healthy operation scenarios,
a uniformly distributed noise of 20 % and 2 % was introduced in the PV
generation and load respectively as presented in Fig. 4.1.

6. Measurement noise: As stated before, this study considered phase rms
voltage measurements at every node and phase rms current measurements



4.2 Application 73

(a) PV generation profile (b) Load profile.

Figure 4.1 Generation and load profiles for one day. The shaded areas show the pool
from which values were drawn to create multiple healthy operation scenarios.

(including the neutral) at the beginning of each feeder. In order to ap-
proximate real measurement conditions as much as possible, a 2 % of
underestimation error (values from 0.98 to 1 p.u.) was introduced to each
phase measurement independently.

Faulty operation measurements were taken 150 ms after the fault occurrence.
This choice was made for the fault to be as close to the steady state as possible
if not already there and to avoid corruption of the data by the activation of any
protective element. As mentioned in Chapter 3, this choice also ensures that the
PV units are connected to the grid as the inverter has not yet isolated them [4].

For every fault resistance value, all nine of the possible fault locations in each
of the thirty two sectors were studied; for every fault location all four possible
fault types were considered (AG, BG, CG and ABC); and finally, for every fault
type, eight hours within a day were selected randomly in intervals of three hours,
in order to gather samples from every hour of the day. These cascaded for loops
lead to a total of 165,888 simulation datapoints covering all twenty four hours of
the day.

In order for the algorithm to be able to detect the occurrence of the fault,
i.e. distinguish faulty from normal operation, a healthy dataset was also created.
For that purpose, for every hour of the day (twenty four cases), three hundred
scenarios of PV generation and load combinations were simulated for each branch
leading to a total of 64,800 datapoints.
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4.2.2 Implementation

The algorithm was implemented in python using the XGBoost [241] library for
the GBT model, and the hyperopt [243] library to perform the hyperparameter
optimization based on Bayesian optimization. The case study with the simulations
were implemented in Matlab/Simulink.

4.2.3 Model training and evaluation

The model was repeatedly trained with the training dataset and the algorithm
was evaluated in the validation dataset for guiding the Bayesian optimization
algorithm to find the optimal parameters. Then, after the optimal hyperparam-
eters were found, the algorithm was evaluated in the test dataset. Table 4.1
presents the size of each dataset; the test dataset consisted of 28,800 healthy
data and 38,880 faulty data.

In addition, with the same motivation that was described when defining the
model and its input features, i.e. to have a model that generalizes to different
grid topologies or faults, the algorithm was evaluated in out-of-sample fault
resistances and out-of-sample branches. In particular, while the training and
validation datasets considered the first set of fault resistances, set (a), the test
dataset comprised of fault resistances of 4, 40, and 400 Ω (set (b)). Similarly,
while for the training and validation datasets only data from the first and third
feeder were taken into account, branches 1-4 and 8-9 respectively, for the test
dataset the branches 5-7 belonging to the second feeder were employed (Fig.
3.6). The last choice is justified as feeder one and three have the maximum and
minimum number of branches respectively. In that way, as it will be shown in
the next section, the algorithm was able to provide promising results not only
on fault resistances and branches belonging to the training dataset, but also in
out-of-sample fault resistances and branches.

For the results that follow, the accuracy formula described in eq. 3.3 was
used.

4.2.4 Fault detection

The first functionality of this algorithm is the detection of a fault occurrence
with a simultaneous identification of the faulty feeder. The results for out-of-
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Table 4.1 Dataset sizes.

Dataset type Size

Train 69,993
Validation 23,332

Test 67,680

sample fault resistances for the cases of: a) all branches participating in the
training of the algorithm and b) out-of-sample branches, are presented in Fig.
4.2. In the first case, an accuracy of 100 % is achieved. For the second one, a
minimum accuracy in fault detection of 99.15 % was noticed (Fig. 4.2a). More
specifically, for the case of out-of-sample branches, a slightly different behavior
is presented in the three branches of the second feeder. As shown in Fig. 4.2b,
branch five presents the best accuracy, followed by branch seven and branch six.
This difference in accuracy is attributed to the fact that branch six is the one
with the highest contracted and installed power (higher number of connected
loads and PVs) as shown in Table A.6. The increased number of existing loads
and PVs in branch six is affecting the voltage measurements across the faulty
branch thus leading to a slightly increased error of 1.5 % in fault detection.

With a minimum accuracy of 99.15 %, when all branches are included in the
training of the algorithm, the fault detection and feeder identification results
are considered excellent. The excellent performance of the GBT algorithm,
with a minimum accuracy in fault detection of 98.5 % even when tested with
out-of-sample branches, makes it a very reliable and generalizable method against
different grid topologies as well. Since the maximum error was 1.5 % for both
single phase to ground and three phase faults, it is also safe to assume that the
algorithm will also detect out-of-sample two phase to ground and phase to phase
faults.

4.2.5 Fault location

The second functionality of this proposed method is the faulty branch identi-
fication which in LV grids with many laterals (branches) is the most important
aspect of the fault location process. Four different cases were considered to



76 Gradient boosting trees

(a) All branches vs. out-of-sample branches. (b) Out-of-sample branches (Fig.
refgrid).

Figure 4.2 Fault detection accuracy.

(a) Fault resistances included in training. (b) Out-of-sample fault resistance values.

(c) 1ph vs. 3ph faults.

Figure 4.3 Branch identification accuracy: all branches as part of the training set vs.
out-of-sample branches.

measure the accuracy of the algorithm. First of all, the performance of the GBT
algorithm was tested against out-of-sample data but for resistance values that
were part of its training (Fig. 4.3a). Secondly, its accuracy was measured against
out-of-sample fault resistance values that the algorithm was not trained for (Fig.
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4.3b). For both cases both scenarios of a) all the available branches being part
of the training set and b) out-of-sample branches were explored.

In Fig. 4.3a, a higher accuracy of the GBT algorithm is demonstrated in case
the tested fault resistance is part of the training set, with a maximum accuracy of
95.8 % for 0.1 Ω and a minimum of 84.1 % for 300 Ω. Similarly, for out-of-sample
branches, the accuracy decreases from 85.1 % for 0.1 Ω to 47.1 % for 750 and
1000 Ω. A general tendency of a decrease of the accuracy with the increase of
the fault resistance is observed for both cases. According to the above results,
the attempt to identify a faulty branch in case the grid topology changes, is
not considered very successful for high fault resistance values. In that case, a
retraining of the GBT is advised. The same is also advised in the case of another
microgrid which needs to operate in isolated mode; this is not the case of this
grid as the installed generation is not sufficient to serve the existing loads as
shown in Table A.4. The algorithm rapid training time facilitates that process
and makes it ideal for real-time applications.

Furthermore, in Fig. 4.3b, the accuracy of the faulty branch identification
process is presented for the out-of-sample fault resistances of 4, 40 and 400 Ω.
The same conclusions that were drawn before are validated here again.

Moreover, in Fig. 4.3c, the accuracy of the faulty branch identification process
is presented for each fault type. The GBT algorithm, shows similar behavior to
every fault type with one exception: it performs better in the case of the three
phase fault for the out-of-sample branches case compared to the single phase
to ground fault cases. The latter, is attributed to the fact that in the case of a
three phase fault, the voltage drop across the faulty branch is more symmetrical
and severe and thus more likely to be differentiated from other healthy branches
even for high fault resistance values.

4.2.6 Fault identification

An extra element which is often omitted by fault location algorithms is the
fault type identification process. In this study, the GBT algorithm was also
implemented to differentiate faulty from non-faulty phases. The results for this
functionality for the various fault resistances included in the training phase
are provided in Fig. 4.4a while in Fig. 4.4b the accuracy against the different
fault types is provided. Although the results presented in Fig. 4.4 concern the



78 Gradient boosting trees

(a) Fault resistances included in training. (b) Out-of-sample fault resistance values.

(c) 1ph vs. 3ph faults.

Figure 4.4 Phase identification accuracy.

fault resistance values that were used to train the algorithm, the accuracy was
measured against out-of-sample data of the same dataset.

In Fig. 4.4a, the first effect of the increase of fault resistance is noticed. For
low resistance faults (below 10 Ω), the accuracy of faulty phase identification is
maintained at a level higher than 98.8 %. After that, a more and more significant
decrease of accuracy is noticed with the increase of the fault resistance down to
a minimum of 86.7 % for 1000 Ω. This was an expected result as the increase of
fault resistance will decrease the voltage drop during a fault and thus bring the
voltages across a faulty branch closer to the values of faulty operation, as stated
in Chapter 3.

Furthermore, in Fig. 4.4b the accuracy of the faulty phase identification
process is presented for the out-of-sample fault resistances of 4, 40 and 400 Ω.
The same conclusions that were drawn before are validated here again.

Finally, in Fig. 4.4c, a similar performance was noticed in all four types of
faults: single phase to ground (AG, BG, CG) and three phase faults (ABC) with
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a maximum deviation of 0.9 % between single phase to ground and three phase
faults. This is an indication that besides the different combinations of generation
and load penetration in the grid, the unbalanced nature of the grid, i.e. the per
phase asymmetry in the distribution of PVs and loads in the grid, did not affect
the GBT algorithm.
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4.3 Conclusion

In this chapter, a gradient boosting tree model was proposed to detect, identify
and locate faults in low voltage (LV) smart grids. To estimate the model, a set
of non branch-specific input features was employed to ensure the robustness of
the algorithm against different grid topologies and available number of voltage
measurements per branch. The proposed method was evaluated in a case study
of a real case semi-rural LV distribution grid of Portugal. In detail, the case
study comprised: a) fault resistances between 0.1 to 1000 Ω, b) different fault
locations inside each sector, c) different fault types, d) different hours of the
day, and e) a 2 % of underestimation error in the phase rms current and voltage
measurements.

To test the accuracy of the proposed algorithm, the method was tested in an
out-of-sample dataset. In addition, to analyze the robustness and generalization
capabilities of the algorithm, the method was also tested against out-of-sample
fault resistances and branches (resistance values and grid branches not included
in the training dataset).

An excellent accuracy for fault detection was achieved. Faulty phase and
branch identification showed promising results. A great feature of the algorithm
is that, as can be seen in the symmetrical performance in all the phases, the
asymmetrical distribution of loads and PVs across the phases and branches does
not really affect the algorithm performance. In addition, as it was expected, the
increase of the fault resistance decreased the accuracy across all three tasks.

In detail, the algorithm achieved an accuracy of 99.15 % when identifying
the faulty feeder, an accuracy between 95.8–84.1 % when identifying the faulty
branch, and an accuracy between 98.8–86.7 % (the higher the fault resistance
the lower the accuracy) when identifying the fault type. However, the attempt
to identify a faulty branch in case the topology or the operational mode of the
grid change (e.g. installation of additional loads, PVs or batteries, isolated mode
operation or voltage support capabilities), is not considered very successful for
high fault resistance values. In that case, a retraining of the GBT is advised.

In general, the results demonstrated in this chapter show a clear superiority
of the proposed method with regards to the conventional method for LV grids.



Chapter 5

Deep Neural Networks

In recent years, the research on neural networks has achieved several break-
throughs that have lead to what is now known as deep learning. In particular,
due to these breakthroughs, the usage of neural networks whose depth is no
longer limited to a single hidden layer is now possible. These deeper neural
networks, as proven by several applications, have systematically proven to be
better at estimation problems due to their better generalization properties [247].

In this chapter, the use of deep neural networks (DNN) is proposed as a
solution to fault detection and location problems in low voltage (LV) distribution
grids. In detail, the contribution of the developed method is fourfold:

1. A fault detection method that detects the occurrence of a single phase to
ground or three phase fault with a simultaneous identification of the faulty
feeder.

2. A faulty branch identification algorithm that identifies the faulty branch
within a faulty feeder.

3. A fault distance estimation method that determines the location of the
fault.

4. An average accuracy decrease of only 4.5 % during the faulty branch
identification and distance estimation tasks in the case of extremely limited
measurements, i.e. when having only one available measurement in the
terminal node of each branch and one at the substation level (common for
all feeders).
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5.1 Method description

5.1.1 Deep neural networks

In general, a neural network is nothing else than a model F (X, W), with
parameters W, that uses some input features X in order to predict some variable
of interest Y. Thus, to use the neural network for a given task, i.e. predict Y,
one only needs to gather a dataset ST =

{
(Xk, Yk)

}N

k=1
and use this dataset to

estimate the optimal parameters W⋆ that best fit the dataset. Let us define the
input of a neural network by X = [x1, . . . , xn] and the output by Y = [y1, . . . , ym].
Let us also define the number of neurons of the kth hidden layer by nk and by
zk = [zk1, . . . , zknk

] the state vector in the same layer. Using these definitions, a
general DNN with two hidden layers can be represented by Fig. 5.1.
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Figure 5.1 Example of a DNN.

In this model, the parameters W are the weights establishing the mapping
connections between the different neurons of the network. In detail, the mapping
equation of a general neuron i in the kth layer is given by:

zki = fki

(
W⊤

ki · zk−1 + bki

)
(5.1)

where fki represents the activation function of the neuron, zk−1 the values of the
neurons of the previous layer, i.e. k − 1, Wki the matrix of weights establishing
the connection between all the neurons of layer k− 1 and the neuron i in the kth,
and where bki is the so-called bias parameter of the neuron. Typical activation
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functions are the sigmoid function, the hyperbolic tangent function, or the
rectified linear unit [242].

The process of estimating the model weights is usually called training. Given
the previously defined N -dimensional set ST =

{
(Xk, Yk)

}N

k=1
, the network

training is done by solving a general optimization problem with the following
structure:

minimize
W

N∑
k=1

gk

(
Yk, F (Xk, W)

)
, (5.2)

where gk is the problem-specific cost function. For grid fault diagnosis, this cost
function varies depending on the specific task (more details on this later).

5.1.2 Network inputs

While the output of the neural network will vary depending on the specific
fault diagnosis task, the possible inputs of the network stay constant across
all tasks. In particular, while a feature selection method is performed for each
specific task to obtain the most representative inputs, the set of possible input
features that the feature selection selects from, is kept constant. In detail, to
detect a fault at time t, this feature set is defined by several branch-related
information:

• Five branch voltages at time t obtained by interpolation of the real branch
measurements into five equally spaced measurements.

• The current at time t at the beginning of the feeder where the branch is
located.

• The generation and load in the distribution grid.

• The same three values but 5 minutes before t. The idea of using the same
values some time before is to have some measurements during a similar
operation to compare with.

An important thing to note in this feature subset is that the inclusion of
branch specific features, e.g. branch length or branch resistance, is avoided.
Similar, independently of the number of voltage measurements in a branch, five
equally spaced measurements were always considered by interpolating the real
measurements. The reason behind these two design choices is to have a model
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that can be generalized to new grids. In particular, for the model to be applied
to a different grid, the input of the network cannot be branch-specific. Similarly,
if the number of voltage measurements depend on the branch, any proposed
method would be, not only grid-specific, but branch-specific.

As a remark, to test that excluding branch-specific features did not harm
the performance of the model, the DNN performance was compared with and
without these features. While these results are out of the scope of this thesis, it
is worth mentioning that it was observed that both approaches lead to similar
performance.

5.1.3 Feature and hyperparameters selection

As indicated above, the inputs of the network were selected for each specific
task based on a large input set. To do this selection, motivated by the success
in other energy-related studies [240, 248], the Tree-Structured Parzen Estimator
(TPE) was used [243]. In addition, together with the feature selection, this
algorithm is also used for selecting the optimal hyperparameters of the DNN,
e.g. number of neurons of the hidden layers, the number of hidden layers, the
type of activation functions, etc.

5.1.4 DNN estimation

For each fault diagnosis task, in order to estimate the optimal network, i.e.
optimal DNN weights W, optimal input features and optimal hyperparameters,
the same procedure is repeated:

1. Divide the dataset ST =
{

(Xk, Yk)
}N

k=1
in three subsets: training (60 %) +

validation (20 %) + test (20 %).

2. Perform the feature and hyperparameter optimization using the training
and validation dataset:

• The training dataset is used to solve (5.2) and estimate the weights
W.

• The validation dataset is used as an out-of-sample dataset to select
the optimal features and hyperparameters.
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3. Using the optimal network, evaluate its performance on the test dataset,
i.e. an out-of-sample dataset never used during training.

To solve (5.2), the Adam optimizer was used [249]. In addition, to avoid
overfitting, i.e. estimate a DNN that fits perfectly to the training dataset but it
cannot generalize to new data, the network is trained in combination with early
stopping and out-of-sample data to evaluate the performance.

5.1.5 Network outputs and cost function

As mentioned before, the only DNN differences between the fault diagnosis
tasks are the loss function and the network output:

• Fault detection and feeder identification: detecting whether a feeder
has a fault can be modeled with a classification network. In particular,
for each branch-related input X, the output Y is defined to be 1 or 0 to
respectively denote that the branch has a fault or that the branch has no
fault and is in a healthy feeder (the data from those branches who are
healthy but in a faulty feeder were excluded). Then, for training, the neural
network can simply minimize the binary cross entropy loss (standard loss
for classifying between two classes). In real time, this network can simply
be applied to all the branches of a feeder to identify if there is a fault on
the feeder.

• Branch identification: identifying the faulty branch in a faulty feeder
is a very similar task to identifying a faulty feeder. However, instead of
labeling 1 and 0 the branches in and out of faulty feeders, only branches
within a faulty feeder were considered. For all these branches, the output
was defined as 1 for the faulty branch and as 0 for the healthy branch in a
faulty feeder (data from healthy branches in healthy feeders were excluded).
In real time, once the feeder is identified with the previous method, this
network is run to identify the faulty branch. As it is a binary classification
problem, the network considers again the binary cross entropy loss.

• Fault distance estimation: unlike the previous two tasks, estimating
the distance at which the fault occurs is no longer a classification problem
but a regression problem as the output is now quantitative; fault distance
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is estimated in a range between 0 and 1 where 0 marks the beginning of the
feeder and 1 the end of the branch. To solve it, the subset of faulty branches
was considered. Then, each output Y was defined as the distance at which
the fault occurred. For the loss function, the standard mean squared error
was considered. In real time, once the branch has been identified by the
previous methods, this network indicates the fault distance.
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5.2 Application

5.2.1 Case study

5.2.1.1 Grid characteristics

The same grid presented in Fig. 3.6 was used again for this case study.

5.2.1.2 Influencing parameters

Eight different influencing parameters were identified for this study:

1. Fault resistance: To sample fault resistances, a log-uniform distribution
between 0.1 and 1000 Ω was implemented. The studied fault resistances
were divided into six groups according to their order of magnitude in
Ohms(Ω):

(a) very low [0.1-1)

(b) low [1-10)

(c) common [10-50)

(d) high [50-100)

(e) very high [100-500)

(f) extra high [500-1000]

2. Voltage measurement: The choice between using phase rms voltages or the
positive, negative and zero components after a symmetrical analysis was
analyzed.

3. Number of layers: DNN with up to seven layers were used.

4. Fault location: Every sector of the grid (section between two consecutive
nodes), was divided in ten subsections and the following nine locations
were chosen at a distance of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %
and 90 % from the beginning of each sector.

5. Fault types: As explained in the Chapter 2, single phase to ground faults
(AG, BG and CG) were chosen because they are the most frequent and
three phase faults (ABC) because they are the most severe.
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6. Simultaneity factor (SF): Since not all the loads of every consumer are
going to be activated simultaneously, three coincident-simultaneity factors
(described in (3.5)) of 0.3, 0.5 and 0.8 were considered .

7. Time of the day: The generation and load profiles that were considered in
this study are provided in Fig. 5.2a and Frig. 5.2b respectively. The shaded
areas portray the Gaussian noise of a 0 mean and 20 % and 2 % standard
deviation, for the generation and load respectively, that was introduced in
the original profiles in order to create a broader spectrum of generation
and load combinations.

8. Measurement noise: As a first step, a 2 % of underestimation error (values
from 0.98 to 1 p.u.) was introduced to each phase measurement indepen-
dently.

(a) PV generation profile (b) Load profile

(c) The 73,728 studied scenarios.

Figure 5.2 Generation and load profiles for one day. The shaded areas show the pool
from which values were drawn to create multiple healthy and faulty operation scenarios.
Figure (c) presents the scenarios that were considered in this study.



5.2 Application 89

Taking into account all the above parameters, a total of 73,728 fault scenarios
were generated for each simulation dataset. Similarly, 64,800 scenarios of healthy
operation simulations (under different generation and load profiles) were also
generated. The process is presented analytically in Algorithm 4. As a result, a
total of 70,334 combinations of generation and load values, and a total of 63,772
fault resistance values were studied. As explained in the previous section, the
data were divided into training, validation and test datasets. In addition, faults
were studied 150 ms after their occurrence, as with all the previous cases.

Before moving to the analysis of the results, three theoretical remarks that
were validated in this study should be underlined regarding the effect of fault
resistance, PV penetration and increased load demand (higher SF ).

First, it is important to note that the higher the fault resistance, the more
difficult it is to detect and localize a fault due to the very small currents flowing
though the faulty branch. Those very small currents will in their turn decrease
the effect of voltage drop across the faulty branch, bringing the voltages to a
level very close to that of normal operating conditions.

Secondly, the contribution of the PV units, being an inverter controlled source,
to the fault current is expected to be somewhat limited (current limited at 1.1
to 1.4 p.u. of normal operation during a fault) [230].

Finally, the higher the load demand, the higher the voltage drop during faulty
operation will be across a faulty branch. Nodes further away from the beginning
of the feeder will also experience even higher voltage drops than those located at
the beginning [250].

5.2.2 Fault detection

The DNN, with the use of just two layers, achieved an 100 % accuracy in
detecting the fault occurrence and identifying the feeder under fault in all the
studied scenarios. With such a level of accuracy, it is safe to assume that the
DNN will also manage to distinguish faulty from normal operation if exposed to
other fault types, besides the ones it was trained to detect, e.g. phase to phase,
or double phase to ground faults.
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Algorithm 4 Simulations
1: procedure Generate Normal Operation Data
2: for t=1:24 do ▷ t: time of the day
3: define measurement error
4: define SF
5: for i=1:300 do ▷ i: iteration number
6: for fbr=1:9 do ▷ fbr: faulty branch
7: create random generation and load
8: simulate normal operation
9: procedure Generate Faulty Operation Data

10: for fs=1:32 do ▷ fs: faulty sector
11: define measurement error
12: define SF
13: for t=1:3:24 do
14: t← t + randi([0, 2]) ▷ random selection in intervals of 3 hours
15: for fd=0.1:0.9 do ▷ fd: location in the sector
16: for ft=1:4 do ▷ ft: fault type
17: for Rf=1:8 do ▷ Rf : fault resistance
18: create a random Rf between 0.1 and 1000 Ω
19: create random generation and load
20: simulate faults

5.2.3 Fault location

The fault location part of the method is divided in two steps as described
above: a) branch identification and b) distance estimation. The intermediate step
of the conventional method, the localization of the faulty sector, was omitted in
this case for two reasons: a) in order to make the method applicable to different
grid topologies, a fix number of virtual sectors per branch was created after
linear interpolation of the voltages from the available measurement points and
b) the fix number of sectors was also necessary for the uniformity of the input
features per branch of the DNN. However, in the case of a grid-specific method,
the use of sector localization could prove as a useful step to improve the distance
estimation accuracy as it will be shown in the next chapter.

5.2.3.1 Branch identification

The influence of the following parameters is analyzed:

1. Fault resistance: As with every other case study, Fig. 5.3a and Fig. 5.3e
show that with the increase of fault resistance the accuracy decreases. More
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specifically, from the best case scenario with very low fault resistance value
(between 0.1 and 1 Ω) and low SF (SF = 0.3) with an accuracy of 97.4 %,
the accuracy drops to 60.9 % for extra high fault resistance values (between
500 and 1000 Ω) and very high SF (SF = 0.8).

2. Voltage measurements: As stated before, an analysis of which type of
voltages are more suitable was performed. In Fig. 5.3a, the obtained results
are presented between phase measurements and symmetrical components
for a DNN of three layers and a SF of 0.5. The symmetrical components
proved to be more accurate by an average of 4.1 % (presented by the avg.
lines in Fig. 5.3a). For that reason, for the following analysis only the
symmetrical components were used.

3. Number of layers: The advantage of deep learning is demonstrated in Fig.
5.3b. By increasing the number of layers, a better accuracy in identifying
the faulty branch is achieved. This is more noticeable for an increase from
one to two layers than from two to three or three to four. An important
observation is that the increased number of layers increases the accuracy
of the DNN for higher fault resistances, as shown in Fig. 5.3c, i.e. for
fault cases where it is more difficult to draw conclusions of whether a
branch is under fault or not. However, a number of layers higher than four,
might provide worse results due to overfitting. Overall, for three layers and
SF = 0.5, the DNN presented an average branch identification accuracy of
84.6 %

4. Fault type: With an average accuracy over all the studied cases of 86 %,
85.2 % and 85.8 % for phase A, B and C to ground faults respectively
(Fig. 5.3d), the DNN was an homogeneous response to single phase faults
regardless of the unbalanced nature of the studied grid. On the other
hand, for three phase faults, the DNN presents an accuracy of 91.2 % in
identifying the faulty branch. The improvement of 5.5 % in the case of
three phase faults is attributed to the use of symmetrical components and
more specifically to the information the negative and zero sequence carry
compared to the phase measurements; during a fault, while the positive
sequence component of the voltage is expected to drop, negative and zero
components are going to rise.
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(a) SF = 0.5 and 3 layers. (b) Average accuracy per layer and SF .

(c) Different number of layers and SF = 0.5 (d) Average accuracy per fault type and SF .

(e) Different SF and 3 layers.

Figure 5.3 Branch identification accuracy.

5. Simultaneity factor : The results of the simultaneity factor analysis are
presented in Fig. 5.3b, 5.3d and 5.3e. The higher the number of active loads
in the grid, the more difficult it becomes to identify the faulty branch as
another branch might exist with a higher voltage drop due to the presence
of loads. This phenomenon is amplified with the increase of the fault
resistance.
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5.2.3.2 Distance estimation

The same metric as in Chapter 3, was used to measure the error in distance
estimation accuracy (3.4). The influence of the following parameters is analyzed:

1. Fault resistance: Once again the effect of the fault resistance on the method
is validated: as the fault resistance increases so does the estimation error
(Fig. 5.4). For the analysis that follows, the symmetrical components were
used.

2. Voltage measurements: The choice of symmetrical components is once more
proven to be a better choice presenting a better accuracy by 3.21 % as
presented in Fig. 5.4a.

3. Number of layers: In Fig. 5.4b, the advantage of deep learning through the
use of multiple layers is once more demonstrated. The distance estimation
error gets reduced by an average of 4.6 % when the number of layers is
increased from one to four. A slight error increase is noticed again for a
higher number of layers (5, 6 and 7) which is again attributed to unavoidable
overfitting of the DNN.

4. Fault location: An average error increase of 4.37 % is noticed in distance
estimation for faults located at the end of the feeder compared to those
located in the beginning or the middle of the feeder as presented in Fig.
5.4c.

5. Fault type: With an average estimation error over all the studied cases
of 9.98 %, 10.35 % and 10.75 % for phase A, B and C to ground faults
respectively (Fig. 5.4d), the DNN exhibits an homogeneous response to
single phase faults regardless of the unbalanced nature of the studied grid,
as already noted during the branch identification step. On the other hand,
for three phase faults, the DNN presents a distance estimation error of
7.78 %. The improvement of 2.58 %, on average, in the case of three phase
faults is again attributed to the use of symmetrical components and the
extra information that the transformation itself offers.

6. Simultaneity factor : Similarly to the branch identification task, the average
estimation error increases with the increase of the SF as shown in Fig.
5.4b, 5.4c, 5.4d and 5.5.
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(a) SF = 0.5 and 4 layers. (b) Number of layers.

(c) Fault location within a branch. (d) Fault type

(e) SF = 0.3 and 4 layers (f) SF = 0.5 and 4 layers

(g) SF = 0.8 and 4 layers

Figure 5.4 Distance estimation error.
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7. Time of the day: Under a per hour analysis of the distance estimation,
more precise conclusions about the effect of generation and load profiles
in the distance estimation can be extracted. In Fig. 5.5 three regions are
identified: I) low load demand and low PV penetration, II) medium load
demand and high PV penetration and III) high load demand and low PV
penetration. The more elements of the grid are activated the more difficult
it becomes to locate a fault. Region (I) is the one where the minimum
average errors of all SF s are encountered since load and generation also
present a minimum level of penetration. As the load demand increases
so does the estimation error. In Fig. 5.5, as we move from region (I) to
region (II) and (III), the estimation error increases. Region (II) presents
special interest because of the increased penetration of PV units. There,
the presence of PV generation is partially mitigating the error increase that
comes with the increased load demand. In general, however, the effect of
load increase is deemed more serious than the increase of PV generation
since all three of the SF curves follow the same trend with that of the
curve of the load profile.

8. Grid heterogeneity: The effect of the length of each branch in combination
with the fault resistance on the estimation of the fault distance is presented
in Fig. 5.4e, 5.4f, 5.4g for an SF of 0.3, 0.5 and 0.8 respectively. Branches
are sorted in an ascending order from the shortest, 2 (185 m), to the longest,
9 (640 m). For very low and low fault resistances the distance estimation
error does not exceed the 38 m. Additionally, with the increase of the fault
resistance the effect of the heterogeneity of the grid is noticeable. Longer
branches demonstrate bigger errors with a maximum of 137 m (in the case
of an SF = 0.5 for example) for branch nine (the longest).

9. Grid imbalance: An exception to the rule that wants the distance estimation
error to increase with the length of the branch, is branch eight where the
dip in the 3D plots of Fig. 5.4e, 5.4f, 5.4g is noticed. This is attributed
to the particularity of branch eight where almost all the loads and PVs
are connected in its terminal node (Fig. 3.6) thus reducing the effect of
imbalance due to the topological distribution of loads and PVs. Hence,
although the method is immune to the per phase distribution of loads and
PVs, their position in the grid plays a significant role. If all the connected
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Figure 5.5 Mean absolute percentage error for distance estimation for different SF
throughout the day. The main generation and load profiles are provided in the
secondary y axis. Three distinct regions (I, II and III) of different performance are
marked. The dominant effect of the load demand over the PV generation is shown as
the SF curves follow the trend of the load curve and not so much that of generation.

elements in one branch are concentrated in one or two nodes, which is
the case of branch eight, then the distance estimation process is simplified
substantially.

5.2.4 Measurement uncertainty

Two types of errors in measurements were considered: a) an error of 2 %
(between 0.98 and 1 p.u.), for each phase measurement for both current and
voltage and b) a class 1 accuracy of the measurements (values between 0.99 and
1.01 p.u).

The different error types: 2% underestimation and class 1 accuracy in the
voltage and current measurements did not seem to affect the performance of
the DNN as the observed differences were negligible; on average (avg lines in
Fig. 5.6a) 0.77 % for the branch identification task and 0.03 % for the distance
estimation (Fig. 5.6b).
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(a) Branch identification for SF = 0.5 and 3
layers.

(b) Distance estimation for SF = 0.5 and 4
layers.

Figure 5.6 Class 1 accuracy vs. 2 % underestimation error in measurements for branch
identification (a) and the distance estimation method (b).

5.2.5 Less available measurements

The two extreme scenarios were considered in this study regarding the avail-
able voltage measurements: a) available in every node and b) only two available
for each branch, one at the transformer level (node 1 in Fig. 3.6) and one at
each terminal node. In the second case, with the bare minimum of available
measurements, a reduction of 70 % in the available measurements is achieved.

For this experiment, a DNN of three layers was used for the branch identi-
fication task and of four layers for the distance estimation task (best options
according to previous analysis). For an SF = 0.5, an average decrease of 4.58 %
of the DNN accuracy was observed in identifying the faulty branch and a de-
crease of 4.37 % in estimating the fault distance as shown in Fig. 5.7b and
5.7b. An interesting observation is that the accuracy of the DNN during the
limited measurements case study, was very similar to that with full availability
of measurements for very low and extra high values of fault resistance in the
branch identification task. The case of very low fault resistance is considered the
easiest to treat while the one of extra high values is the most difficult one and
the DNN has a hard time identifying the faulty branch either way.

The above results are considered extremely encouraging since they render
DNN as an implementable solution for many LV distribution grids of today.
Using only the bare minimum of voltage and current measurements with a
decrease of only 4.5 % in their accuracy, the biggest problem being the absence
of measurement devices in the grid due to their increased cost, is tackled.
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(a) Branch identification for SF = 0.5 and 3 layers.

(b) Distance estimation for SF = 0.5 and 4 layers.

Figure 5.7 Less available measurements effect on the faulty branch identification (a)
and the distance estimation method (b).
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5.3 Conclusion

In this chapter, deep neural networks (DNN ) were proposed as a solution to
the fault detection and location processes in low voltage (LV ) smart distribution
grids. To test the accuracy of the DNN, its performance was evaluated in a
simulated real LV distribution grid of Portugal. The DNN was designed to: a)
detect the fault occurrence and identify the feeder under fault, b) identify the
faulty branch within a faulty feeder and c) estimate the fault distance from the
beginning of the feeder. Branch-specific parameters were excluded from the input
features so that the method would be applicable to other grid topologies as well.

The case study was further extended by: a) including a bigger variety of
fault resistance values reaching the number of 63,772 values between 1 and
1000 Ω, b) testing different simultaneity factors (0.3, 0.5 and 0.8), c) covering a
big spectrum of PV generation and load demand scenarios with 70,334 studied
combinations, d) studying the effect of different types of measurement errors
(2 % underestimation error and class 1 accuracy) and e) exploring the possibility
of limiting the available voltage and current measurements.

The DNN excels in detecting a fault occurrence with an accuracy of 100%.
For the branch identification task, an average accuracy of 84.6 % is achieved while
for the distance estimation task the error does not exceed on average the 12 %.
Moreover, the use of symmetrical components is more efficient than using phase
voltage measurements. Furthermore, the increase of fault resistance hinders
the fault location process in general. Another important remark is that the
DNN is immune to the per phase distribution of loads and PV generation but
not to their topological distribution which can affect the fault location process.
Moreover, for the extreme case of only two available measurements per branch
(one common for all at the substation level and one at each terminal node), the
method accuracy is decreased by only 4.58 % for branch identification and 4.37 %
for distance estimation. Finally, being a knowledge based method and although
for fault detection it might not encounter many difficulties, for a reliable fault
location estimation, a retraining of the DNN is advised in case the topology or
the operational mode of the grid change.

In general, the results demonstrated in this chapter show that DNN is a
reliable solution for fault detection and location in LV grids with high accuracy
even under high resistance faults.





Chapter 6

Comparative analysis

In this chapter, a comparative analysis is being performed between the three
proposed methods under a common case study. Moreover, four methods from the
literature are used to compare the accuracy of the methods of this thesis, two for
the branch identification task [79, 251] and two for the fault distance estimation
task [93, 90]. However, as it will be explained later, due to the absence of other
similar studies in low voltage (LV) distribution grids, the employed methods are
based on medium voltage (MV) grids and therefore the comparison is not exactly
fair since the LV grid is a more complex case study. As noted in Chapter 2,
only very limited studies of fault location have been performed in the LV grid
case and most of them are conceptual proposals not offering numerical results of
distance estimation accuracy to make a direct comparison with the methods of
this thesis.
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6.1 Common case study

The case study presented in the DNN chapter was used as a basis to com-
pare the three different methods among themselves and to other studies in the
literature. More specifically:

1. Fault resistance: The same dataset of 63,772 of fault resistance values
between 0.1 and 1000 Ω was used.

2. Voltage measurement: The positive, negative and zero components of the
measured voltage were used.

3. Fault location: The nine possible locations of a fault within a sector, that
were used before were considered again considered here at a distance of
10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 % and 90 % from the beginning
of each sector.

4. Fault types: Both single phase to ground and three phase faults were again
considered.

5. Simultaneity factor : The SF of 0.5, being neither the highest nor the
lowest of the studied values, was used for the comparative analysis.

6. Time of the day: The same 70,334 combinations of PV generation and load
created during the DNN case study were used again here.

7. Measurement noise: The 2 % of underestimation error (values from 0.98
to 1 p.u.) was selected as the noise type to be introduced to each phase
measurement independently.

6.2 Fault detection

While the criteria for fault detection presented in Chapter 3 did not prove
reliable for high fault resistance values, the use of artificial intelligence tools
such as the gradient boosting trees (GBT) and the deep neural networks (DNN),
solved this problem demonstrating excellent accuracy (100 % for the DNN).
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6.3 Fault location

6.3.1 Branch identification

Due to a lack of available research papers for LV distribution grids, two
methods designed for MV distribution grids [79, 251] were employed to compare
the proposed methods of the three previous chapters. These references were used
to compare the faulty branch identification results.

In the first case [79], the authors developed a general fault location method
based on voltage and current measurements at the point of common coupling
(PCC) of distributed generators (DG). They considered all the different types
of faults, i.e. single phase to ground, double phase to ground, phase to phase
and three phase. Moreover, they studied faults in three possible locations within
a sector at distances of 5 %, 50 % and 95 % from the beginning of each sector.
However, the maximum fault resistance value for phase to phase and three phase
faults was 5 Ω and 50 Ω for the rest.

In the second study that was used as reference [251], the authors developed a
method based on phase measurement unit (PMU) real time state estimation that
detects faults and identifies faulted lines. The authors considered single phase
to ground, double phase to ground and three phase faults. Furthermore, they
considered only two possible fault locations within a faulty sector, at the middle
of the line and at a distance equal to 25 % of the sector’s length. Although they
investigated high impedance faults of up to 1000 Ω, the data they presented
for such high fault resistances were applicable only to a single fault case of an
unearthed neutral. For the rest of the cases, the maximum fault resistance they
tested was that of 100 Ω.

All these information are gathered in Table 6.1 where the considerably bigger
number of fault scenarios that were considered in this study is demonstrated.

Figure 6.1 presents the performance of each of the three methods developed
in this work, the conventional one, the GBT and the DNN. Each one is proved
to be better than the previous with the difference in their accuracy being
more significant with the increase of the fault resistance. DNN outperform the
conventional method by 4.01 % for very low fault resistances and by 16.96 % for
extra high ones. DNN present an accuracy over 90 % in detecting the faulty
branch for fault resistances until 50 Ω. For extra high fault resistances, their
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Table 6.1 Comparison of studied parameters between branch identification methods.

Parameters Brahma [79] Pignati [251] This study

Grid 12.4 kV (MV),
U.S.A.

10 kV (MV),
The Netherlands

400 V (LV),
Portugal

Fault types 1ph-G, 2ph-G,
ph-ph, 3ph

1ph-G, 2ph-G,
3ph

1ph-G, 3ph

Fault
resistance (Ω)

1-5 (ph-ph, 3ph),
1-50 (1ph-G,

2ph-G)

1, 100, 1000a 0.1-1000 (63,772
different values)

Fault location
within the

sector

0.05, 0.5, 0.95 0.25, 0.5 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8,

0.9

Measurements,
inputs

synchronized I,V
at PCC of DG

I,V from PMUs
on every node

rms V at every
node and rms I
at each feeder

Noise in
measurements

- 0.016 % for
voltage, 1.2 % for

current

2 %
underestimation

a1000 Ω only for one case

accuracy decreases to a bit less than 70 %. This last observation increases the
reliability of DNN as they maintain decent levels of accuracy even under the
most challenging scenarios. Another advantage of the DNN is that, if more
datapoints were to be created, the accuracy of the DNN would be improved to
an extend as the chances of overfitting would be further reduced. Regarding
the comparison with other studies of the literature, DNN seem to match and
outperform the Pignati [251] method while they are a bit less accurate than
Brahma [79]. However, it needs to be underlined that this is not a fair comparison
since these methods were tested against considerably less influencing parameters
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Figure 6.1 Branch identification accuracy per fault resistance values for the three
developed methods compared to two from the literature.

and were designed for MV grids. It is probable that if applied to a LV grid, their
accuracy would decrease.

6.3.2 Sector localization

The step of sector localization is the most crucial one of the conventional
method. Since the following step, distance estimation, is based on a graphic
method, localizing the correct faulty sector is of paramount importance to the
method. However, it is a step that could, and was, omitted during the DNN
design choices. In the case of the DNN for inter-branch consistency, uniformity
of the dataset and generalization reasons, five virtual sectors were created in each
branch using linear interpolation from the available measurement points. Figure
6.2 presents the accuracy of the conventional method in localizing a real sector as
these were originally defined (line connecting two adjacent measurement points -
in the ideal case adjacent nodes) or a virtual sector (interpolated from branch
voltage measurements). The accuracy of both is compared to the accuracy of
the DNN in localizing which of the five sectors is under fault. It is obvious
that the DNN outperforms the conventional method. However, the accuracy of
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the DNN remains low still, with an average accuracy of 45.43 %. It should be
underlined that the DNN, as noted in Chapter 5, was not designed to localize
a faulty sector as it is capable of bypassing this step. If this functionality was
included in the training of the DNN, its accuracy would increase if the sector
localization task was to demonstrate a high accuracy itself. Finally, it is shown
that the conventional method fails to localize the faulty sector in the case of
virtual sectors.

Figure 6.2 Faulty sector localization accuracy per fault resistance and method.

6.3.3 Distance estimation

As with the branch identification case, three more studies were employed
from the literature to compare the conventional and the DNN methods with
them for the fault distance estimation task. Two of the cited studies concern
once again MV distribution grids [90, 93] while the third one studies arc faults
in LV grids [135].

In the first case [93], the authors used NN in combination with support vector
machines (SVM), proposing two fault location schemes using measurements of
current and voltage at the substation level; their method also requires a boolean
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input of the status of all the available circuit breakers and relays. Moreover, they
considered all the different types of faults and they chose three possible fault
locations within each branch at 20 %, 50 % and 80 % from the beginning of the
feeder. However, the studied fault resistance did not exceed 100 Ω and no noise
was considered in the measurements.

In the second study that was used as a reference [90], the authors developed
a fault locator based on NN. Their method requires current and voltage input
from a single point in the distribution line. They too, considered all the possible
fault types. Furthermore, they chose multiple fault locations within the single
feeder they studied, one every 2.5 km with a maximum line length of 40 km.
Similarly to the previous case, the maximum studied fault resistance was once
again set at 100 Ω

All these information are gathered in Table 6.2 where the considerably bigger
number of fault scenarios that were considered in this study is demonstrated.

Finally, in [135], a single-end impedance–based method based on time-domain
formulation, was proposed for LV grids and arc faults. The maximum arc
resistance was 6 Ω.

Figure 6.3 presents the performance of each of the two methods developed in
this work, the conventional one (with and without using the sector correction
criterion) and the DNN. Each one is proved to be better than the previous
one. It is clear that the average error of the DNN method is way below from
the maximum estimation error of the Thukaram method and slightly lower
than maximum error of the Aslan method. In the Thukaram method [93],the
maximum studied fault resistance was 100 Ω and the fault location accuracy
was 300 m for Scheme I and 55 m for Scheme II. At the same time, for the
Aslan method [90] the maximum distance estimation error was 90 m for fault
resistances between 2 and 100 Ω. Finally, in [135], the maximum error of the
algorithm for 6 Ω of fault resistance was 23 m.

With a fault distance estimation error of less than 38, 78 and 137 m for fault
resistances under 10, 100 and 1000 Ω respectively for an SF = 0.5, and with the
average estimation errors for the same fault resistance margins and SF being
18, 30 and 44 m respectively, the DNN method is considered superior to the
considered references taking into consideration the increased complexity of the
case study and the number of influencing parameters.
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Table 6.2 Comparison of studied parameters between fault location methods.

Parameters Thukaram [93] Aslan [90] This study

Grid 11 kV (MV),
52-bus

distribution
system

34.5 kV (MV),
Simplified

distribution
feeder

400 V (LV),
Portugal

Fault types 1ph-G, 2ph-G,
ph-ph, 3ph

1ph-G, 2ph-G,
ph-ph, 3ph

1ph-G, 3ph

Fault
resistance (Ω)

50, 60, 70, 80, 90,
100

2, 5, 10, 15, 20,
30, 40, 50, 60, 80,

100

0.1-1000 (63,772
different values)

Fault location 0.2, 0.5, 0.8
(within each

branch)

every 2.5 km
(total length of

40 km)

0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8,
0.9 (within each

sector)

Measurements,
inputs

I,V at
substation,

status of circuit
breakers, relays

I,V at one end
of the line

rms V at every
node and rms I

at each feede

Noise in
measurements

- - 2 %
underestimation

Finally, Fig. 6.4 shows the advantage of knowing the faulty sector in the fault
distance estimation method accuracy. For the conventional method, limiting
the estimation to the limits of the faulty sector reduces the estimation error
by 6.42 % on average (activation of the sector correction criterion). At the
same time, the DNN accuracy in distance estimation if the fault is located in a
correctly identified sector is improved by 6.91 %. Hence, it is obvious that the
information of the faulty sector is a powerful tool for the distance estimation
task. The problem is, as stated in the previous section, the accuracy of the sector
localization methods.
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Figure 6.3 Fault distance estimation error in meters per fault resistance values for the
two developed methods compared to two from the literature.

Figure 6.4 Fault distance estimation error per fault resistance values for the conventional
method and the DNN method (in general and within a correctly localized sector).
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6.4 Conclusion

In this chapter, a common case study, was used to compare the three proposed
methods of this first part among themselves but also with some representative
studies from the literature. Due to the absence of studies in low voltage (LV)
distribution grids, studies from the medium voltage (MV) distribution grids were
employed. Although, as explained in the Introduction, the LV grid is a more
complex system than the MV one the deep neural networks (DNN) seem to either
outperform or in the worst case scenario match the performance of the other
existing methods in the literature.

The case study included: a) a big variety of fault resistance values reaching
the number of 63,772 values between 1 and 1000 Ω, b) nine different fault
locations within each sector, c) two fault types (single phase to ground and
three phase faults), d) a simultaneity factor of 0.5, e) a big spectrum of PV
generation and load demand scenarios with 70,334 studied combinations and f)
a 2 % underestimation error in measurements.

Regarding fault detection, with an accuracy of 100 % using DNN there is a
guarantee that a fault occurrence will not remain undetected, something that
could cause a lot of problems in the grid.

For the fault location steps: a) branch identification, b) sector localization
and c) distance estimation the following comparative conclusions were drawn.
First of all, DNN is found to be the best choice among the developed methods
for the faulty branch identification task. With regards to other studies in the
literature [251, 79], the DNN outperformed in some cases the existing methods
[251] or matched their accuracy [79].

Moreover, the importance of a reliable sector localization method is underlined
as it can lead to a decrease of the distance estimation error by an average of
6.5 % in both the conventional and the DNN methods. However, both methods
present an average accuracy of less than 50 % in localizing the faulty sector.

Furthermore, in the distance estimation analysis the use of DNN proved again
to be the most reliable solution. With a distance estimation error that on average
does not exceed 12 % it outperformed both the conventional and other methods
of the literature.

In general, the results demonstrated in this chapter show a clear superiority
of the DNN with regards to other methods.
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Chapter 7

Fault detection and isolation in
grid-connected photovoltaic
systems

As indicated in the Introduction, grid-connected photovoltaics (GCPVs) is a
rapidly growing field. Their monitoring to ensure safe and reliable operation is
thus of paramount importance. In this chapter, two algorithms are proposed for
fault diagnosis of faults occurring both in the dc and the ac side through the
monitoring of the voltage and current at the output of the inverter. A total of
nineteen fault cases are investigated covering faults inside the PV array, in the dc
bus, the power electronic devices and the grid side of the system. Furthermore,
the isolation speed of the algorithms is presented and its importance is analyzed.
Moreover, a sensitivity analysis is also presented against different irradiance
levels (1000 to 200 W/m2) and erroneous measurements. Finally, the results are
validated through simulations on a 43.2 kW GCPV.
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7.1 Method description

At this point, before passing on to the fault detection process, it should be
underlined that the single-fault assumption was made. In other words, it was
assumed that only one fault was occurring at a time.

7.1.1 Fault detection

The first step of every fault detection and isolation (FDI) method is to detect
the occurrence of a fault. As stated in the Introduction, the main objective of
this study is to determine whether or not a fault is occurring while using the
minimum amount of measurements and more specifically through the monitoring
of electrical variables at the output of the inverter. In order to complete the
set of the monitored electrical variables, through the use of three phase current
(I) and voltage (V ) measurements, the active (P ) and reactive (Q) power are
calculated.

The main tool used to detect a change in the operation of a GCPV system
is the monitoring of the output electrical power. A lower value of the active
power than the one expected for a certain irradiation level is a first indicator of a
fault occurrence. As it was mentioned in Chapter 2, the calculation of residuals
and their check against thresholds is the basis of the comparative methods
that compare the actual operating conditions with the ones from modeling and
simulations. To achieve that however, knowledge of the actual irradiance is
necessary. For that purpose, a sensor that measures irradiance at all times could
be used. The best technology for that application is the calibrated PV reference
device which can provide irradiance measurements with an accuracy of 97.6 %
[252]. As described in [252], the equivalent irradiance according to the lEC
60904-3 reference solar spectrum is used to compare the electrical response of
the system with the one under the actual solar irradiation.

Another important parameter is the threshold crossing method and the
configuration of its settings as it is the most common way to track an anomaly
in fault detection theory. In order for an alarm signal to be created during a
fault occurrence, certain thresholds need to be crossed. Let us assume that the
parameter we want to track is the decrease to zero of the active power during a
fault. Actually, it will never be exactly zero due to various factors one of which
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could be noise in the measurement. As a result, a safety margin around this
value is necessary in order to ensure an accurate detection of the fault and avoid
false alarms or the fault going unnoticed. The decision making about the size of
this safety margin is the process of configuring the threshold settings.

So, conceptually, under the assumption that a difference in the output active
power of the PV system is related to the occurrence of the fault, an alarm signal
is created and triggers the initiation of the fault isolation algorithm.

Furthermore, a crucial element in the fault detection process is the evolution of
faults in time from the moment of their occurrence until the point where they are
established in the system; what is also called steady-state of a fault. The different
fault types presented in Chapter 2 can be grouped in two major categories: a)
faults on the dc side of the plant and b) faults on the ac side. The occurrence
of a fault is generally divided in three periods of time: the sub-transient, the
transient and the steady-state. For the ac faults specifically, the sub-transient
period is defined as the first cycle (period) after the fault occurrence and the
transient period as the next five to ten cycles [253]. An example is given in Fig.
7.1 where the short circuit (SC) fault between two phases and the ground (on the
ac side) is presented. The fault appears at t0 = 1 s. The sub-transient period of
the fault begins with the fault occurrence at t0 and lasts until t1 with a duration
of one cycle (T = 1/f = 1/50 = 20 ms). The transient period begins at t1 and
lasts until t2 -in this case 140 ms- where the fault current stabilizes in a final
steady state. In this work, faults are studied close to their steady-state.

7.1.2 Fault isolation

The next step in an FDI method is the localization of the detected faults.
This process is known as fault isolation and as mentioned before, it is the core of
this study. The fault isolation, in fault diagnosis theory, is usually broken down
to four following steps [231, 254]: 1) symptom generation, 2) fault signature table
construction, 3) isolation algorithm design and 4) threshold crossing configuration.

For the first step (symptom generation), a list of symptoms is created based on
some of the monitored variables according to the way those variables are affected
by different types of faults. For example, a symptom can be an increase or a
decrease of the current or the voltage after the occurrence of a fault. The objective
in this case is to select the minimum number of symptoms that guarantee the
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Figure 7.1 Evolution over time of the phase current Ia under a SC fault between phases
A, B and the ground.

maximum number of isolable faults. For the GCPV system case, three families
of symptoms were investigated in order to extract the maximum amount of
necessary features from the monitored variables:

a) voltage and current response

b) harmonic content of the voltage

c) symmetrical component analysis of the voltage

As it will be presented in the next section, the first two: (a) and (b), were
used for the fault isolation algorithm A which covers only dc faults while (a) and
(c) were used for the fault isolation algorithm B that included grid side faults as
well.

Furthermore, the fault signature is defined as the set of alterations that
symptoms are subjected to, in the presence of a single fault. Usually, a fault
signature is a series of “0” and “1” where “1” indicates a change in the associated
symptom while “0” the fact that symptom remains unaffected. In some cases
however, more indices can be used to mark a specific alteration to a symptom as
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we will see later in this chapter. All the fault signatures are gathered in a single
table, the fault signature table, where the rows signify the different fault types
and the columns the selected symptoms. For a fault to be completely isolable it
would require a unique fault signature, meaning that each fault causes a unique
combination of alterations to the complete set of symptoms. Following the
simplified example above, a table full of “0” would indicate a normal operation
of the system.

Once the two first steps are completed, the design of the isolation algorithm
should be possible. Very often, multiple algorithms can be used based in a single
fault signature table. This is the case of the current study as well, as presented
in the next section, where one algorithm is proposed per case study but they
certainly are not the only algorithms that can be derived from the signature
tables.

Finally, as for the fault detection case, the configuration of the threshold
settings is also necessary in the isolation algorithms. It is the factor that will
define the regions of each symptom that are affected by a fault and will ensure
the robustness of the final algorithm against uncertainties, noise or external
disturbances. The configuration of the threshold settings is presented for each
case in the following section.
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7.2 Application

In this section, the case study is presented along with the complete list of all
the studied faults. Based on those faults, a fault detection analysis is presented
followed by two fault isolation methods; algorithm A studies faults on the dc side
of the system while algorithm B takes into account faults on the ac side as well.

7.2.1 Case study

As explained in Chapter 2, the selected topology for the grid-connected
photovoltaic system (GCPV) system is a three-phase direct connection to the
grid through a dc-dc boost converter and an inverter as shown in Fig. 7.2. In Fig.
7.2 the considered locations of faults are also presented: faults in the PV array
(1); faults in the power electronic devices (2); faults in the dc bus (3); faults in
the grid side, close to the plant (4) and far away (5). The PV array is connected
to grid with a three phase connection. The eight parameters of Bishop’s model of
the PV cells and the general characteristics of the system are provided in Table
7.1. At this point, it should be mentioned that the grid side was simulated as an
ideal voltage source.

dc-dc boost
converter

Inverter
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Figure 7.2 GCPV system schematic.
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Table 7.1 PV system characteristics.

Parameter Symbol Value Unit

Photo current Iph 4.838 A
Reverse diode saturation current Io 10−7 A
Thermal voltage Vt 0.0257 V
Series resistance Rs 0.005 Ω
Shunt resitance Rsh 9 Ω
Bishop’s coefficient k 0.1 −
Bishop’s coefficient n 3.4 −
Breakdown voltage Vb −30 V
Number of cells per module Ncell 72 −
Number of modules per string Nmod 10 −
Number of strings Nstr 30 −
Number of bypass diodes per module Nbpd 4 −
Short circuit current Isc 145.3 A
Open circuit voltage Voc 407.67 V
Output power Ppv 43.2 kW
Dc bus capacitance Cbus 0.6 mF
Dc bus voltage Vbus 800 V
Grid inductance Lgrid 5 mH
Grid resistance Rgrid 5 mΩ
Grid frequency fgrid 50 Hz
Grid voltage VLLgridrms

400 V

7.2.2 Studied fault types

As explained in Chapter 2, from the excessive list of possible faults that was
briefly described in the previous section, the following nineteen were selected
according to their severity and occurrence frequency:

a) faults inside the PV array:

[f01] shading of a number of PV modules

[f02] inverse bypass diode

[f03] short-circuited bypass diode

[f04] bypass diode breakdown

b) faults between the dc bus and the ground:

[f05] SC between the positive pole and the ground
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[f06] SC between the negative pole and the ground

c) faults in the power electronic devices:

[f07] open-circuited converter IGBT

[f08] short-circuited converter IGBT

[f09] open-circuited inverter IGBT (1 IGBT in 1 leg)

[f10] open-circuited inverter leg (both IGBTs in 1 leg)

[f11] short-circuited inverter IGBT (1 IGBT in 1 leg)

[f12] short-circuited inverter leg (both IGBTs in 1 leg)

d) faults in the grid:

[f13] SC between one phase and the ground

[f14] SC between two phases and the ground

[f15] SC between two phases

[f16] SC between three phases

[f17] voltage sag in one phase

[f18] voltage sag in two phases

[f19] voltage sag in three phases

More specifically, in the shading fault case (01), two scenarios were examined:
a) 50 % and b) 30 % of the surface of the first five modules in the first twenty
out of a total of thirty strings was covered by shade; the shade was simulated
by a proportional decrease of the photocurrent. Moreover, in the bypass diode
breakdown case (f04), the diode was replaced by a resistance of 5 Ω. Furthermore,
in all SC faults, the fault resistance was set to 1 Ω. Finally, voltage sags (f17-f19)
were simulated as a 50 % sharp decrease of the initial voltage.

7.2.3 Fault detection

The values of the monitored variables (I, V, P, Q) during normal operation
(NO) of the system were compared to the values of the variables of faulty operation
(FO). A difference between the two suggested the existence of a fault under the
condition that the irrandiance has not changed. The impact of the occurrence of
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Table 7.2 Fault detectabiility table of the monitored electrical variables.

Faults Changes in variables
∆I ∆V ∆P ∆Q

f01 1 0 1 1
f02 1 0 1 1
f03 1 0 1 1
f04 1 0 1 1
f05 1 1 1 1
f06 1 1 1 1
f07 1 1 1 1
f08 1 1 1 1
f09 1 1 1 1
f10 1 1 1 1
f11 1 1 1 1
f12 1 1 1 1
f13 1 1 1 1
f14 1 1 1 1
f15 1 1 1 1
f16 1 1 1 1
f17 1 1 1 1
f18 1 1 1 1
f19 1 1 1 1
f20 1 1 1 1

the different types of faults on the monitored electrical variables is presented in
Table 7.2 where “1” signifies a change in the value of the variable after the fault
occurrence while “0” the fact that the variable remains unaffected. An obvious
observation from Table 7.2, is that three of the four variables were affected in
every fault case: the current, the active and the reactive power. Hence, a change
in the active power is a strong indicator of a fault occurrence given the fact that
the irradiance has not changed and the maximum power point tracker is working
properly.

7.2.4 Fault isolation algorithm A: dc side faults

As a first step in the development of a fault isolation method for the whole
system, only faults on the dc side (f01-f12) were considered. From the faults
presented in Table 7.2, only fault categories can be discriminated and not individ-
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ual fault cases. Following the four-step approach in developing a fault isolation
method, as described in the previous section and in order to obtain a unique
fault signature for each fault case, six symptoms were generated.

Step 1: Symptom generation
First of all, the equality to zero of the sum of the phase currents was examined

(s1). Secondly, the number of the phases where the current during faulty operation
was zero, was also recorded (s2). Then the behavior of the current and the
voltage in each phase was monitored and the results were compared to their
rms values during normal operation. Thus, the indices of ∆I = IF O − INO and
∆V = VF O−VNO were created. From those indices, two additional symptoms were
created: the per phase increase or decrease of the current (s3) and the number
of phases where the voltage decreases after the fault occurrence (s4). Finally,
two more symptoms were generated by monitoring the frequency components
of the measured voltage. The two indicators of a fault occurrence in this case
were the absence of the 10 kHz (s5) and 50 Hz (s6) frequency components of
the voltage. The 10 kHz and 50 Hz frequencies represent the inverter PWM
frequency and the grid frequency respectively. The complete list of symptoms is
provided below:

[s1] the sum of phase currents is equal to zero, ∑
i = 0

[s2] in how many of the three phases is IF O = 0

[s3] current increase ∆I > 0 or current decrease ∆I < 0

[s4] in how many of the three phases is ∆V < 0

[s5] absence of the 10 [kHz] frequency component of the voltage

[s6] absence of the 50 [Hz] frequency component of the voltage

Step 2: Fault signature table construction
Based on these symptoms the fault signature table, Table 7.3, was created.

For symptoms s1, s5 and s6 the “
√

” symbol is used to mark an affirmative
answer to the posed question while “x” is used to mark a negative response. For
s1 specifically, “+” and “−” indicate the sign of the sum of the phase currents.
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Table 7.3 Fault signature table.

Faults Symptoms
Isolable

s1 s2 s3 s4 s5 s6 Faults

f01
√

0 − 0 x x

1f02
√

0 − 0 x x
f03

√
0 − 0 x x

f04
√

0 − 0 x x

f07
√

3 − 3 x x 2f08
√

3 − 3 x x

f05 − 0 − 3
√ √

3

f06 + 0 − 3
√ √

4

f09
√

0 +− 0 x x 5

f10
√

1 +− 1
√

x 6

f11
√

0 +− 3 x x 7

f12
√

0 +− 3
√ √

8

Similarly, for s3, “−” means that the current during faulty operation had a
smaller value than normal operation and “+−” that the current was in some
phases greater (+) than the one in normal operation and smaller (−) in the rest.
Finally, for symptoms s2 and s4 the numbers “0-3” signify the number of the
affected phases.

A first conclusion from Table 7.3 is that 50 % of the faults are completely
isolable (six cases) while the rest are identifiable as two different groups of faults.
The first group of faults consists of all the faults inside the PV array (f01-f04), an
expected result since the point of origin of the fault is far from the measurement
point (at the output of the inverter). For the same reason, faults inside the
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converter (f07, f08) can only be identified as a group of faults since they present
an identical fault signature as well. The rest of the fault cases, faults on the
dc bus (f05, f06) and faults inside the inverter (f09-f12), can all be uniquely
identified as they all have different fault signatures.

Step 3: Fault isolation algorithm
As mentioned before, many algorithms can be designed out of a fault signature

table. One of them is presented in Fig. 7.3 where the flowchart of the algorithm
is provided. The algorithm initiates when the measured active power at the
inverter output is different from the estimated one for the current irradiance level.
The first symptoms to be checked were the s1 and s2. If the sum of the phase
currents was not equal to zero (s1) and if on top of that the sum was positive,
then the negative pole to ground SC fault (f06) on the dc bus was identified. If
however, the sum of the currents was negative, then the positive pole to ground
SC fault (f05) was identified.

Following the right branch of the flowchart, the symptoms s2, s3 and s4 were
used consecutively to identify a series of faults. The first one to be checked was
s2 and in how many phases the current was zero. If it was zero in all three phases
then the category of boost faults (f07-f08) was identified. On the other hand, if
the current was not zero in any of the phases the next criterion, s3, was used.
There, if the current during faulty operation was smaller than the one in normal
operation in all three phases, then the group of PV faults (f01-f04) was found.
Furthermore, if the current difference was positive in some phases and negative
in others, then the algorithm proceeded to next step where the s4 was checked.
Moreover, if no voltage drop was noticed during faulty operation in any of the
phases, then the identified fault was the OC of one IGBT in one of the legs of
the inverter (f09). Finally, if the frequency component of the voltage at 50 Hz

was not zero and if at the same time a voltage drop was noticed in all three
phases, then the SC of one of the IGBTs in one of the inverter legs was identified
(f11). In this case, it was also possible to identify the faulty IGBT by checking
the behavior of the voltage in each phase (close to zero with some spikes on the
faulty phase).

Returning back to the case where the sum of phase currents was equal to zero
(s1) and following the “yes” branch of this decision block, if both the frequency
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Figure 7.3 Flowchart of the fault isolation algorithm A.
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components of the voltage at 10 kHz and 50 Hz disappeared after the fault
occurrence, then the identified fault case was the SC of both IGBTs in one of
the inverter legs. On the contrary if the frequency component at 50 Hz was
still present, the OC of both of the IGBTs in one of the inverter legs (f10) was
identified. Again, the detection of the faulty phase was possible since the current
of the phase under fault was equal to zero.

Step 4: Threshold settings configuration
For the implementation of the isolation algorithm, the environment of

Matlab/Simulink was used. Since many methods face problems at low irradiance
levels, as mentioned in Chapter 2, a step by step decrease of the irradiance (from
1000 to 800, 600, 400 and 200 W/m2) was applied to verify that the thresholds
set for 1000 W/m2 of irrandiance would still hold.

Beginning with s1, the instantaneous values of the currents were added in
order to trace their sum. Continuing with s2, the rms value of the current
was monitored. For both s1 and s2, the equality to zero was verified through
the implementation of a threshold of 2 A around zero (−2A < I < 2A) which
corresponded to 2 % of the nominal value of the current at STC.

Passing on to the s3 and s4 symptoms the difference of the monitored variables
(I, V ) between faulty and normal operation was created based on their moving
maximum values over a sliding window of 40 ms (equal to twice the period of the
signal, 20 ms) in order to attain the maximum values of the sinusoidal signals at
all times. The negative value of ∆V was defined as lower than 5 V (1 % of VNO

at STC) while the current settings, in order to avoid any false detection at low
irradiance levels under 400 W/m2, were designed around 2 A (2 % of INO).

For the threshold settings of the frequency components of the voltage, a
bandpass filter and a lowpass filter were used for 10 kHz and 50 Hz respectively.
The equality to zero of their output was checked with a threshold crossing around
5 V , −5V < Vf50, Vf10k < 5V , which again corresponded to 1 % of VNO at
STC. This disappearance of the voltage frequency components is visible in the
spectrograms presented in Fig. 7.4a and Fig. 7.4b for the 10 kHz and 50 Hz

cases respectively; the example of f12 is used to demonstrate the changes in the
frequency components. In both cases after the fault occurrence at 0.5 s, the
disappearance of the frequency components is marked by a color change in the
dBm scale.
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(a) Spectrogram around 10 kHz (s5).
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(b) Spectrogram around 50 Hz (s6).

Figure 7.4 Spectrograms of the lowpass filters for the SC inverter leg fault case (f12)
around a) 10 kHz and b) 50 Hz show the disappearance of the pre-fault existing
frequency components depicted in red.

7.2.5 Fault isolation algorithm B: dc and ac side faults

Step 1: Symptom generation
In this second method, more detailed criteria around the current and the

voltage were developed in order to generate a list of symptoms to include grid
side faults. A first set of criteria included comparisons between faulty and normal
operation values of voltage and current similar to those used in algorithm A and
conclusions were drawn based on whether ∆I was negative or positive (s1) or
VF O was equal to zero (s3). Another aspect of changes in I and ∆V was whether
they appeared symmetrically in all three phases or not (s2, s4). Furthermore, the
sum of all three phase currents being equal to zero was considered as an extra
symptom (s5). In addition, the method of symmetrical components was used to
further analyze the measured voltage. Moreover, the existence of negative and
zero sequence component at the monitored voltage (s6) was considered as another
fault symptom. Finally, based on observations from the behavior of the phase
of the positive, negative and zero sequence components of the voltage during
simulations, the rest of the symptoms (s07-s09) were created. A list summarizing
all those symptoms is presented below:

[s1] current increase ∆I > 0 or current decrease ∆I < 0

[s2] in how many of the three phases is IF O = 0
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[s3] voltage is equal to zero, VF O = 0

[s4] in how many of the three phases is ∆V < 0

[s5] the sum of phase currents is equal to zero, ∑
i = 0

[s6] both the negative and the zero components exist

[s7] phase of the positive component, ϕpos < −25o

[s8] phase of the negative component, ϕneg < −105o, −105o < ϕneg < −20o or
ϕneg > −20o

[s9] phase of the zero component, ϕ0 > 110o

Examples of the monitored variables used to generate the symptoms are
provided in Fig. 7.5. In Fig. 7.5a the current decrease can be observed during
a SC on the bypass diode (f03). Additionally, Fig. 7.5b shows an example
of a decrease of the current to zero after a fault in the boost converter (f07
or f08). Similarly, Fig. 7.5c shows the decrease to zero of the voltage after a
short-circuited inverter leg (f12). On the other hand, the distortions on the
voltage waveforms noticed under a SC fault between two phases and the ground
(on the ac side) are depicted in Fig. 7.5d. Furthermore, the non equality of
the sum of the instantaneous values of currents to zero under a dc bus fault
(f06), after the fault inception at 100 ms, is presented in Fig. 7.5e. Moreover,
as shown in Fig. 7.5f, the negative sequence component of the voltage under
normal operation is zero (or very close to it) and gains a positive value after
the inception of a double phase fault (f18) on the grid side. Regarding the
monitoring of the phase of the negative sequence component of the voltage (Fig.
7.5g), its value under normal operation is oscillating between 200o and −200o

degrees as the voltage itself is not exactly equal zero but oscillating around it
with a negligible amplitude. However, after the fault occurrence it was observed
in simulations that the value of the phase of the negative sequence component of
the voltage is stabilizing to negative values as shown in Fig. 7.5g for a SC fault
between two phases (f15). Finally, changes in the phase of the zero sequence
component of the voltage were also recorded. An example is provided in Fig. 7.5h
where the phase of the zero sequence is increasing during a single phase fault (f17).
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(a) Instantaneous 3ph. current (f03). (b) Instantaneous 3ph. current (f07-f08).

(c) Instantaneous 3ph. voltage (f12). (d) Instantaneous 3ph. voltage (f14).

(e) Sum of currents (f06). (f) Negative voltage component (f18).

(g) Phase of negative voltage component (f15). (h) Phase of zero voltage component (f17).

Figure 7.5 Monitored variables under various faults that were used for the symptom
generation. Fault inception is at 100 ms.
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Step 2: Fault signature table construction
The symptoms described above along with the studied fault cases, were used

to construct the fault signature table, Table 7.4. In the fault signature table,
the symbol “

√
” is used to verify that the criteria described in the associated

symptom were met while “x” marks the opposite. The symbol “/ ” is used as
indicator that the specific symptom was of no interest to the associated fault.
Another set of symbols was necessary to describe the changes in the current in
s1; “+” is used when ∆I > 0 and “−” when ∆I < 0 while “+−” to indicate
different behavior in different phases. For s2 and s4 the numbers “0− 3” indicate
how many of the three phases are affected; “0” is for none of the phases, “1” for
one phase etc. Finally, for s8, the following symbols were assigned to the phase
value ranges:“−−” for ϕneg < −105o, “+−” for −105o < ϕneg < −20o and “+”
for ϕneg > −20o.

From the fault signature table, Table 7.4, 70 % of the faults are completely
isolated (thirteen out of the total of nineteen faults cases). All faults inside the
PV array (f01-f04), constitute altogether a group of faults that present exactly
the same fault signature, making them impossible to discriminate from each
other. This can be easily explained since the measurement point was located far
from the source of the fault and by the time the signal reached the sensors, it had
already been altered by the intermediary elements.The second and last group of
indiscriminable faults are the faults inside the boost converter (f07, f08) since
they too have the same fault signature. All the other faults can be completely
isolated. Finally, in the cases of f10 and f11 inverter faults, as with algorithm A,
the faulty IGBT or inverter leg were also identified through monitoring of the
current and voltage behavior.

Step 3: Fault isolation algorithm
An algorithm was developed in order to isolate each fault or group of faults.

In Fig. 7.6, a flowchart with all the decision levels of the proposed algorithm is
presented. When a fault is identified, the algorithm is terminated.

As derived from Table 7.4, the only faults that had a sum of phase currents
different from zero were the SC faults between the dc bus and the ground (f05,
f06). As a result, the first symptom that was checked was the symptom s5 and
whether or not the sum of phase currents was equal to zero. In case the sum was
different from zero and positive then the fault occurred between the negative
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Table 7.4 Fault signature table

Faults Symptoms
s1 s2 s3 s4 s5 s6 s7 s8 s9

f01 − 0 x 0
√

/ / / /
f02 − 0 x 0

√
/ / / /

f03 − 0 x 0
√

/ / / /
f04 − 0 x 0

√
/ / / /

f07 − 3 x 3
√

/ / / /
f08 − 3 x 3

√
/ / / /

f05 − 0
√

3 − / / / /

f06 − 0
√

3 + / / / /

f09 +− 0 x 0
√

/ / / /

f10 +− 1 x 1
√

/ / / /

f11 +− 0 x 3
√

/ / / /

f12 +− 0
√

3
√

/ / / /

f14 + 0 x 2
√ √

/ / /

f16 + 0 x 0
√

x
√

/ /

f19 + 0 x 0
√

x x + /

f15 + 0 x 0
√

x x − /

f13 + 0 x 1
√ √

/ −− /

f17 + 0 x 0,1
√ √

x + x

f18 + 0 x 0
√ √

x /
√
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pole and the ground whereas if the sum was negative then the fault occurred
between the positive pole and the ground. On the other hand, if the sum was
equal to zero then the algorithm proceeded to the next symptom.

Besides the dc bus to ground SC faults, the only other case where the voltage
was equal to zero, was the case of both short-circuited IGBTs in one of the
inverter legs (f12). Consequently, the next symptom to be checked was s3. If VF O

was indeed equal to zero, f12 was identified and if not the algorithm advanced to
the next step.

Symptom s2 describing in how many phases the fault current is equal to zero,
followed. If IF O = 0 in all three phases, then the group of boost converter faults
(f07-f08) was isolated. Moreover, if IF O = 0 in only one phase then the case
of open-circuited inverter leg (f10) was identified. On the contrary, if the fault
current was not zero in any of the phases the algorithm continued with symptom
s4.

Symptom s4 checks in how many of the three phases, the fault voltage drops
to smaller rms values compared to the normal operation. If ∆VF O < 0 in all
three phases then f11, a short-circuited inverter IGBT fault, was identified.
Furthermore, if ∆VF O < 0 in two of the three phases, the SC between two phases
and the ground fault (f14) was isolated. But if ∆VF O < 0 in only one phase, then
there were two possibilities: a) one phase voltage sag (f17) or b) SC between one
phase and the ground (f13). As shown in Table 7.4, the latter can take two values
when it comes to symptom s4, either 0 or 1. This happens because in the case of
a very low irradiance (200W/m2), small changes were noticed in the measured
voltage during the single phase voltage sag. To be able to distinguish faults f17
and f13, the monitoring of the phase of the negative sequence component of the
voltage (symptom s8) was employed and if ϕneg < −105o then the case of a SC
between one phase and the ground (f13) was identified.

The most important indicator in order to discriminate the remaining faults
was the one described in s1: differences in the phase current. If ∆I < 0 then the
group of PV faults (f01-f04) was isolated; else if the current was strictly negative
in all three phases then the open-circuited inverter IGBT (f09) was isolated. The
remaining faults are all faults in the grid side for which a current increase was
observed (∆I > 0).
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Figure 7.6 Fault isolation algorithm B flowchart.
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As described in the previous steps, for the distinction of the grid faults, an
analysis of the symmetrical components of the measured voltage was necessary.
The existence of both the negative and the zero components of the voltage,
symptom s6, was used to separate one phase and two phase voltage sags (f17 and
f18 respectively) from the rest of the faults. To discriminate those two faults the
phase of the zero component was used (s9) as it was observed during simulations
that in the case of two phase voltage sags, the phase of the zero component of
the voltage was increasing and stabilizing in a value higher than 105o.

Moving to the other branch of the flowchart, in the case where the existence
of both the negative and the zero sequence components of the voltage was not
confirmed, faults f15, f16 and f19 were left to isolate. As a first step, s7, the
phase of the positive component, ϕpos, was checked. If it was smaller than −25o,
f16 was isolated. If not, s8, was employed again to distinguish f15 and f19. If
−105o < ϕ < −20o then the double phase SC fault would get isolated (f15),
leaving the last fault f19, three phase voltage sag, isolated as well as the only
remaining possibility.

Step 4: Threshold settings configuration
In order to implement the diagnostic strategy presented in Fig. 7.6, further

specification of the threshold crossing settings was deemed necessary. The
configuration of the implemented threshold crossing settings was made in order
for them to be compliant with the various levels of irradiation. For the common
symptoms with algorithm A (s1, s2, s4 and s5) the same thresholds were applied.

For s3, for the voltage equality to zero, the thresholds were set again at 1 %
of the peak value at normal operation and STC but this time the rms values
were used to monitor the decrease to zero, for accuracy reasons.

Regarding the symmetrical component analysis, their moving average was
traced, once more over a sliding window of 40 ms. The existence of the negative
and the zero sequence components was verified by applying a threshold of 5.53 V

around zero for consistency reasons. For the rest of the symptoms (s7 to s9) the
implemented threshold settings were the angles described in Step 1: symptom
generation, including a safety margin of at least 5o. Finally, in Fig. 7.7 and Fig.
7.8 two examples of threshold crossing settings application for symptoms s7 and
s8 are given. More can be found in the Appendix B.
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Figure 7.7 Moving average of the phase angle of the positive sequence component of
the voltage (s7) for a three phase SC fault (f16) at different irradiance levels. Fault
inception at 100 ms.

Figure 7.8 Moving average of the phase angle of the negative sequence component of
the voltage (s8) for a single phase to ground SC fault (f13) at different irradiance levels.
For NO curve shape refer to Fig. 7.5g. Fault inception at 100 ms.
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7.2.6 Algorithm performance

The fault diagnosis speed is an important aspect of the FDI process since
a fast diagnosis will leave some time to plan if possible the necessary course of
action. As mentioned before the inverter will act at around 200 ms after the
fault occurrence [255]. The required time for the methods to create the alarm
signal for the different irradiance levels and faults was monitored. The maximum
and minimum diagnosis time for each fault or group of faults were also recorded
and they are presented in Table 7.5. The algorithms can isolate a fault in some
cases as fast as 1 ms after the fault occurrence and in general in less than 60 ms.
However, there is one exception to that general rule for both algorithms. The
open-circuited inverter leg fault (f10) for algorithm A requires 97 ms from fault
occurrence to be isolated. At the same time, in algorithm B the extra feature of
the faulty phase detection for the one short-circuited IGBT inside the inverter
fault (f11), which is not depicted on the table, presents an extra latency of 30 ms

linked to the reaction of the inverter controller.
The advantage of isolating a fault in such a short time is the fact that it

happens before the protective systems are triggered. The minimum time that
the protective elements require to act in order to isolate a GCPV system after a
fault occurrence, is 120 ms [256]. In the case of a fault in the grid side, as time
passes, more and more PVs will gradually be disconnected, beginning with those
located towards the end of the feeder where the voltage drop will be higher [253].
It is clear that in this case, the designated symptoms would certainly be affected
and would possibly cause misslocalizations of faults. Hence, the fact that the
algorithms are faster than the minimum trigger time of protection elements (120
ms), ensures the correct isolation of the fault.

As mentioned before, algorithm A completely isolates 50 % of the faults while
the remaining six fault cases are localized as two groups of faults: faults inside the
PV (f01-f04) and faults inside the boost converter (f07-f08). Similarly, algorithm
B completely isolates 70 % of the faults and the remaining in the same groups of
faults as in algorithm A.

Both methods were validated by simulations means for different irradiance
levels and more specifically for 1000, 800, 600, 400 and 200 W/m2. More figures
can be found in the Appendix B.
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Table 7.5 Algorithms isolation speed in ms.

Faults algorithm A algorithm B
tmin tmax tmin tmax

f01-f04 25 37 37 45

f05 14 20 1 1

f06 14 20 3 3

f07-f08 14 20 32 39

f09 10 13 10 13

f10 43 97 18 22

f11 56 60 56 60

f12 24 25 20 20

f13 / / 48 56

f14 / / 55 56

f15 / / 40 59

f16 / / 40 40

f17 / / 26 44

f18 / / 20 23

f19 / / 38 39

f20 / / 17 44

global 10 97 1 60
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7.3 Measurement uncertainty

After the first stress test of the algortihm against various irradiance levels,
another parameter was examined to verify its robustness: erroneous measure-
ments. Although a thorough analysis and evaluation of measurement data is
provided by the Joint Committee for Guides in Metrology in [257], describing the
full details of modeling measurement uncertainty is out of the scope of this thesis.
In this case, the model described in [258] was used. This model of transforming
an ideal measurement to a distorted signal closer to what a sensor would give in
reality, is presented in Fig. 7.9. In this model the ideal signal is submitted to a 20
µs delay then passed through a 10 kHz second-order low pass filter and finally
multiplied with a gain of 0.98 in order to acquire the corrupted measurement
with an amplitude deviation of 2 %.

Figure 7.9 Signal distortion modeling of the measured I or V signal

The above model is described by the following equation:

y(t) = k ·H(s) · x(t− td) (7.1)

where:

td is the time delay and

H(s) is the low pass filter transfer frequency given by:

H(s) = ω2
n

s2 + 2 · ζ · ωn · s + ω2
n

(7.2)

with:

s: the Laplace operator

ωn = 62832 rad/s (= 2 · π · 104): the natural frequency

ζ = 0.707: the damping ratio
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When exposed to the distorted current and voltage measurements both
algorithms produced exactly the same results; neither any of the symptoms nor
any of the threshold crossing settings nor the algorithm speed were affected by
the noise in the measured current and voltage. A few examples are provided in
Fig. 7.10 to 7.12 where erroneous measurements under the two extreme irradiance
cases of 1000 and 200 W/m2 are presented for the symptoms s7, s8 and s9.

In Fig. 7.10, the threshold of −25o for the phase angle of the positive sequence
component of the voltage (s7) was proved sufficient under the three phase SC
fault (f16). Moreover, in Fig. 7.11 the angle of the phase of the negative sequence
component of the voltage (s8) also remains within the threshold limits under a
single phase to ground SC fault (f13). Finally, the changes in measurements did
not seem to affect the case of the phase angle of the zero sequence component of
the voltage (s9) under a double phase voltage sag error (f18) either.

Figure 7.10 Erroneous (dashed line) vs. ideal measurements (solid line) for symptom
s7 under a f16 fault at 1000 and 200 W/m2. The chosen threshold at -25o appears in
a red dashed line. Fault inception at 100 ms.
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Figure 7.11 Erroneous (dashed line) vs. ideal measurements (solid line) for symptom
s8 under a f13 fault at 1000 and 200 W/m2. The chosen threshold at -105o appears in
a red dashed line. Fault inception at 100 ms.

Figure 7.12 Erroneous (dashed line) vs. ideal measurements (solid line) for symptom
s9 under a f18 fault at 1000 and 200 W/m2. The chosen threshold at 110o appears in
a red dashed line. Fault inception at 100 ms.
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7.4 Conclusion

In this chapter, the developed fault diagnosis methods for grid-connected
photovoltaic (GCPV) systems were analyzed. The developed methods rely
solely on voltage and current measurements taken at the output of the inverter.
The theoretical steps of a successful fault detection and isolation method were
described: a) symptom generation, b) fault signature table construction, c) fault
isolation algorithm design and d) threshold crossing settings configuration. Then,
a list of the studied faults was provided and the fault detection process was
explained.

Under the assumption that a calibrated PV reference device was available
to monitor the actual irradiance of the plant and that the maximum power
point tracking was working correctly, the expected active power was compared
to the measured active power. In that case, a decrease of the active power was
considered as a strong indicator of a fault occurrence and marked the initiation
of the fault isolation algorithms.

Two fault isolation algorithms were developed, the first, algorithm A, focused
only on dc side faults while the second, algorithm B, included ac side faults as
well thus covering the whole system. Algorithm B is capable of isolating thirteen
faults and two groups of faults out of the nineteen fault cases. Moreover, both
algorithms are able to isolate faults quite fast (during their transient or close to
steady-state phase) within 100 ms and 60 ms for A and B respectively. This
level of speed ensured an isolation before the protective schemes are triggered
and thus alter the fault behaviors to the associated symptoms.

A two-level robustness verification was used to test the resilience of the
algorithm against various conditions. The first parameter that was modified
was the irradiance level with the algorithms performing accurately in all five of
the studied levels (1000, 800, 600, 400 and 200 W/m2). The second parameter
was the measurement uncertainty. Noise was introduced in the voltage and
current measurements and the algorithm proved resilient against that as well.
To conclude with, no impact of the erroneous measurements was noticed on the
symptoms, threshold crossing settings or isolation perfomance and speed.





Chapter 8

General conclusion

Changes in policies under the light of the rapid climate change impose the
installation of renewable energy sources in low voltage grids (LV). A rapid growth
of grid-connected PV systems (GCPVs) is being recorded over the last years. In
2017 alone, the global PV installed capacity increased by 99 GW reaching a total
of 403 GW which represents the 2.5% of the global energy demand and 55 %
of the installed capacity of new renewable energy sources in 2017 [3]. The LV
distribution grid, which was traditionally designed on the basis of the “fit and
forget” principle allowing only a unidirectional power flow, is now facing several
problems such as congestion, voltage rises and decrease of power quality [21],
with the interconnection of renewable energy sources.

So far, the focus of operators was to improve the transmission and medium
voltage (MV) distribution parts of the grid. However, the installation of pho-
tovoltaics (PV) and other green types of microgeneration units in the LV grid,
obliges operators to shift their attention to the monitoring and control of the
LV grid increasing its functionalities [22], i.e. installing smart meters and imple-
menting self-healing strategies. In this context, three fault diagnosis methods for
LV distribution grids and two fault isolation alogirthms for GCPVs have been
proposed in this thesis.

In this chapter, a review of the contributions of this thesis is presented and a
discussion on future work and perspectives is held.
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8.1 Results & Contributions

8.1.1 Part I: Fault diagnosis in low voltage smart distri-

bution grids

While several fault location methods for distribution grids exist in the litera-
ture, the majority of them focuses on MV grids. Only a very limited number
of studies have considered the LV grid; just eight studies have been performed
(to the author’s knowledge) with the oldest one being published in 2012 (Fig.
2.10). The lack of studies in LV grids is attributed to their increased complexity
compared to the MV ones. A LV grid presents five basic characteristics that
hinder the fault location methods: a) an increased number of laterals, b) multi-
phase and unbalanced operation, c) unbalanced distribution of loads, d) various
types of conductors connecting the nodes and e) up to now, limited number of
available measurements (a fact that is now changing with the transition to smart
grids). Moreover, fault location methods for MV grids usually consider only low
fault resistance values that rarely surpass the 100 Ω. Taking into account that:
a) faults of a higher fault resistance can occur, e.g. when a downed conductor
touches the earth, fault resistances vary from 90 Ω (concrete as ground) to 1500
Ω (wet sand as ground), and b) that distribution system operators usually rely
on customer phone calls to detect and locate faults in LV grids, the need for
fault detection and location techniques that cover these cases, i.e. large fault
resistances and LV distribution grids, is evident.

The three fault detection and location methods for LV smart distribution
grids proposed in this thesis are:

• A conventional fault detection method based on overcurrent monitoring
in combination with a method that uses sparse voltage measurements to
build the voltage profile across the faulty branch for fault location.

• Gradient boosting trees (GBT), a method that has been proven to excel in
many applications the last few years.

• Deep neural networks (DNN), a method that improved the traditional
neural network architecture by taking advantage of an increased number of
hidden layers.
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Simulations on a real semi-rural LV distribution grid of Portugal were per-
formed to validate the results. A common case study was used to compare
the three methods. The influencing parameters were: a) a big variety of fault
resistance values (63,772 values between 1 and 1000 Ω), b) nine different fault
locations within each sector, c) two fault types (single phase to ground and
three phase faults), d) a simultaneity factor of 0.5, e) a big spectrum of PV
generation and load demand scenarios with 70,334 studied combinations and f)
a 2 % underestimation error in measurements.

In general, the increase of fault resistance hinders the fault location methods
as it decreases fault current and increases voltages, thus bringing the monitored
variables closer to their normal operating conditions, i.e. making it harder
to discriminate faulty from normal operation. In addition, the symmetrical
components of the monitored variables are proven to be a better option than
the phase measurements. Moreover, faults towards the end of the feeder are
harder to locate due to the heterogeneity of the grid and the length of the
branches. Furthermore, three phase faults are shown to be easier to locate
when a symmetrical component analysis is used. As expected, an increase of
the load demand decreases the accuracy of the fault location methods while on
the other hand the contribution of the PV units to the faults seems limited.
Finally, a decreased number of available measurements seems to seriously affect
the conventional method but only slightly the DNN.

The contributions of this first part of the thesis are summarized below:

1. Three different methods of fault detection and fault location were proposed
for the quite unexplored case of LV grids: one that was initially conceived
for the MV case and is now extended to the LV grid [2] and two artificial
intelligence methods. It is, to the author’s knowledge, the first application
of artificial intelligence for fault detection and fault location in the LV grid
case.

2. With the use of GBT and DNN the fault detection problem is tackled with
an accuracy of 99.15 % and 100 % respectively.

3. The use of DNN for fault location is the most reliable solution of the three
with an average error of only 12 % considering erroneous measurements.
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4. All three of the fault location methods are immune to the per phase
distribution of loads and microgeneration units in the LV grid.

5. Under the case of extremely limited measurements, one in the beginning
of the feeder and one at each terminal node, the fault location accuracy
of the DNN is decreased by only 4.5 % while the fault detection accuracy
remains intact.

8.1.2 Part II: Fault detection and isolation in distributed

generators

The second part of the thesis, Chapter 7, studies faults in GCPV, a field that
presents an increased interest the last decade with at least 76 different methods
since 2010.

A big variety of faults can disrupt the operation of a GCPV power plant.
Based on their location faults can appear: a) in the PV array, b) in the power
converters, c) on the dc bus and d) in the grid side. The development of fast,
efficient and reliable fault detection and isolation methods for GCPVs, capable
of dealing with the different types of faults, is a recognized necessity from the
scientific community and a prerequisite for their integration in the smart grids.

So far, to the author’s knowledge, and although different approaches have
been tested, no research has been found to monitor the GCPV as a complete
system, i.e. isolating faults in every part of the plant with a single method.
Moreover, several methods tend to fail in very low irradiance levels. For this
reason, two algorithms based on a signal approach, one considering faults only
on the dc side of the plant and a second one considering faults on both the dc
and the ac side, that consider various irradiance levels, are proposed as a fault
isolation strategy.

The algorithms use current and voltage measurements at the output of the
inverter. The choice of the output of the inverter, i.e. the point of common
coupling, as the monitoring source of the status of the GCPV system is in
accordance with the location of voltage sensors used in the previous case of fault
location methods in the LV distribution grid. Both algorithms work under the
single-fault assumption, i.e. that only one fault is occurring at a time. A case
study with a PV array of 43.2 kW connected to the grid through a dc-dc boost
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converter and an inverter was used to study faults occurring on all four of the
aforementioned possible locations. Different irradiance levels were considered
ranging from 1000 to 200 W/m2. Furthermore, a sensitivity analysis was con-
ducted against erroneous measurements. Finally, It should be noted that faults
inside the PV array and the boost converter are identified as group of faults by
the algorithms as they are located very far from the measurement point; all the
other faults are completely isolable.

As part of this second part of the thesis, a preliminary study of fault isola-
tion in grid-connected proton exchange membrane fuel cells (PEMFC) was also
conducted. In detail, the same fault types with the case study of photovoltaics
were studied; in the place of faults at the source of the renewable energy system,
in this case, only the drying fault is considered. The isolation of the drying fault
is achieved without interfering with the isolation of the faults from the other
parts of the system. The complete analysis is presented in Appendix D.

The contributions of this second part of the thesis are summarized below:

1. For the first time, to the author’s knowledge, a study considers faults on
both the dc and the ac side with measurements taken only from the ac
side. This limitation minimizes the amount of necessary sensors and hence
decreases the monitoring cost.

2. The second algorithm, the one that considers faults in both the dc and the
ac side, achieves an isolation of 15 out of the 19 studied fault cases.

3. The algorithms are unaffected by different levels of solar irradiance. There is
no need to readjust threshold settings even for 200 W/m2 of solar irradiance.

4. Robust algorithms, without the need to readjust threshold settings against
distorted measurement signals.

5. The isolation of the faults is achieved in the first 100 ms after their
occurrence, time inferior to the reaction margin of the inverter which is
expected to trip at approximately 200 ms [4].
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8.2 Future work & Perspectives

The possible extensions of this work are divided in short, mid and long term
objectives.

8.2.1 Short term

A few extensions of this work that could be implemented within a short
period of time are:

For the conventional method proposed for fault location in the LV grid:

• Alternative ways to the linear interpolation could be investigated to obtain
the voltage profile across a faulty branch; the least squares method could
be an option.

• A technique to create virtual sectors in the beginning and the end of the
feeder in order to wave the limitation of the method of not being able to
include the first and the last sector in its fault location estimation.

For the GBT method:

• The algorithm could be extended to include fault distance estimation as
well.

For the DNN method:

• Include sector localization as well.

For all the LV grid fault location methods:

• Include phase to phase and double phase to ground faults in the analysis.

For the PV isolation algorithms:

• Include more irradiance levels in the study.

• Include faults in the ac side of the plant of various fault resistance values.

A common objective for all the developed methods would be to test them
directly to experimental set ups.
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8.2.2 Mid term

For all the LV grid fault location methods:

• Test the methods against changes in the grid topology, e.g. installation of
batteries or new PVs.

• Test the methods on different grids.

For the PV isolation algorithms:

• Study different modes of connection of the PV to the grid.

• Develop a model that takes into account temperature variations.

• Test the same algorithms against renewable sources of the same type of
connection, e.g. fuel cells, to validate the isolation of non PV-specific faults.

8.2.3 Long term

A long term perspective of this study would be to integrate both methods
in a common approach and test them under the same case study (grid). This
would provide a complete solution of fault detection and isolation for LV smart
distribution grids with renewable energy sources to the distribution system
operators.

To conclude with, further research is needed in order to protect the largest and
most complex machine ever built: our electrical power network. The scientific
community has underestimated some threats such as the geomagnetic storms.
Events like the blackout of 1989 in Quebec, of 2003 in Italy and 2012 in India
serve as alarms for utilities and consumers. Let’s not ignore them.
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Table A.1 Characteristics of the eleven different types of conductors connecting the
nodes of the grid.

From To R (Ω) X (Ω) R/X l (m) Cable
Node Node type

3 6 0.641 0.15 4.273 120 1

1 3 0.476 0.10 4.760 40

22 5 0.476 0.10 4.760 65
12 19 0.476 0.10 4.760 80
19 26 0.476 0.10 4.760 50

1 2 0.667 0.10 6.670 85

3

1 4 0.667 0.10 6.670 55
3 7 0.667 0.10 6.670 105
4 8 0.667 0.10 6.670 100
5 9 0.667 0.10 6.670 70
7 13 0.667 0.10 6.670 35
9 16 0.667 0.10 6.670 35

8 15 1.910 0.15 12.733 65

411 18 1.910 0.15 12.733 50
13 20 1.910 0.15 12.733 80
15 23 1.910 0.15 12.733 140
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Table A.2 Cont. characteristics of the eleven different types of conductors connecting
the nodes of the grid.

From To R (Ω) X (Ω) R/X l (m) Cable
Node Node type

16 24 1.330 0.10 13.300 35 5
26 30 1.330 0.10 13.300 40

5 10 2.970 0.15 19.800 35 6

8 14 3.060 0.15 20.400 65 7
27 31 3.060 0.15 20.400 70

5 11 2.080 0.10 20.800 105
86 12 2.080 0.10 20.800 140

20 27 2.080 0.10 20.800 90

13 21 4.610 0.15 30.733 105

9
18 25 4.610 0.15 30.733 35
24 29 4.610 0.15 30.733 40
28 32 4.610 0.15 30.733 70
31 33 4.610 0.15 30.733 35

23 28 4.450 0.10 44.500 35 10

11 17 7.130 0.15 47.533 170 11
14 22 7.130 0.15 47.533 210
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Table A.3 Characteristics of the different types of conductors per branch.

Branch From To R X
l (m) R (Ω) X (Ω) Total

Node Node (Ω/km)(Ω/km) dist.

1

1 2 0.667 0.10 85 0.0567 0.0085 85
2 5 0.476 0.10 65 0.0309 0.0065 150
5 9 0.667 0.10 70 0.0467 0.0070 220
9 16 0.667 0.10 35 0.0233 0.0035 255
16 24 1.330 0.10 35 0.0466 0.0035 290
24 29 4.610 0.15 40 0.1844 0.0060 330

2
1 2 0.667 0.10 85 0.0567 0.0085 85
2 5 0.476 0.10 65 0.0309 0.0065 150
5 10 2.970 0.15 35 0.1040 0.0053 185

3

1 2 0.667 0.10 85 0.0567 0.0085 85
2 5 0.476 0.10 65 0.0309 0.0065 150
5 11 2.080 0.10 105 0.2184 0.0105 255
11 17 7.130 0.15 35 0.2496 0.0053 290

4

1 2 0.667 0.10 85 0.0567 0.0085 85
2 5 0.476 0.10 65 0.0309 0.0065 150
5 11 2.080 0.10 105 0.2184 0.0105 255
11 18 1.910 0.15 50 0.0955 0.0075 305
18 25 4.610 0.15 35 0.1614 0.0053 340

5

1 3 0.476 0.10 40 0.0190 0.0040 40
3 6 0.641 0.15 120 0.0769 0.0180 160
6 12 2.080 0.10 140 0.2912 0.0140 300
12 19 0.476 0.10 80 0.0381 0.0080 380
19 26 0.476 0.10 50 0.0238 0.0050 430
26 30 1.330 0.10 40 0.0532 0.0040 470
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Table A.4 Cont. characteristics of the different types of conductors per branch.

Branch From To R X
l (m) R (Ω) X (Ω) Total

Node Node (Ω/km)(Ω/km) dist.

6

1 3 0.476 0.10 40 0.0190 0.0040 40
3 7 0.667 0.10 105 0.0700 0.0105 145
7 13 0.667 0.10 35 0.0233 0.0035 180
13 20 1.910 0.15 80 0.1528 0.0120 260
20 27 2.080 0.10 90 0.1872 0.0090 350
27 31 3.060 0.15 70 0.2142 0.0105 420
31 33 4.610 0.15 35 0.1614 0.0053 455

7

10 3 0.476 0.10 40 0.0190 0.0040 40
3 7 0.667 0.10 105 0.0700 0.0105 145
7 13 0.667 0.10 35 0.0233 0.0035 180
13 21 4.610 0.15 105 0.4841 0.0158 285

8

1 4 0.667 0.10 55 0.0367 0.0055 55
4 8 0.667 0.10 100 0.0667 0.0100 155
8 14 3.060 0.15 65 0.1989 0.0098 220
14 22 7.130 0.15 170 1.2121 0.0255 390

9

10 4 0.667 0.10 55 0.0367 0.0055 55
4 8 0.667 0.10 100 0.0667 0.0100 155
8 15 1.910 0.15 65 0.1242 0.0098 220
15 23 1.910 0.15 140 0.2674 0.0210 360
23 28 4.450 0.10 210 0.9345 0.0210 570
28 32 4.610 0.15 70 0.3227 0.0105 640
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Table A.5 Total per branch and phase (a, b, c) contracted (loads) and installed (PVs)
power in the first feeder.

Branch Node Contracted Power (kV A) Installed Power (kW )
Sa Sb Sc Pa Pb Pc

1

2 3,450 3,450 0 0 0 0
5 0 0 3,450 0 0 0
9 6,900 3,450 3,450 0 1,700 0
16 0 6,900 0 0 3,450 0
24 0 6,900 10,350 0 0 3,680
29 3,450 3,450 10,350 0 0 3,680

Sum 13,800 24,150 27,600 0 5,150 7,360

2

2 3,450 3,450 0 0 0 0
5 0 0 3,450 0 0 0
10 3,450 10,350 0 0 3,680 0

Sum 6,900 13,800 3,450 0 3,680 0

3

2 3,450 3,450 0 0 0 0
5 0 0 3,450 0 0 0
11 3,450 0 6,900 0 0 3,450
17 10350 0 0 3,680 0 0

Sum 17,250 3,450 10,350 3,680 0 3,450

4

2 3,450 3,450 0 0 0 0
5 0 0 3,450 0 0 0
11 3,450 0 6,900 0 0 3,450
18 0 3,450 3,450 0 0 0
25 0 3,450 10,350 0 0 3,680

Sum 6,900 10,350 24,150 0 0 7,130
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Table A.6 Total per branch and phase (a, b, c) contracted (loads) and installed (PVs)
power in the second feeder.

Branch Node Contracted Power (kV A) Installed Power (kW )
Sa Sb Sc Pa Pb Pc

5

3 0 0 0 0 0 0
6 3,450 0 0 0 0 0
12 3,450 3,450 0 0 0 0
19 3,450 3,450 0 0 0 0
26 0 10,350 0 0 3,680 0
30 0 0 10,350 0 0 3,680

Sum 10,350 17,250 10,350 0 3,680 3,680

6

3 0 0 0 0 0 0
7 10,350 0 0 3,680 0 0
13 6,900 3,450 3,450 3,450 0 1,700
20 0 3,450 3,450 0 0 0
27 6,900 3,450 3,450 3,450 0 1,700
31 0 6,900 0 0 3,450 0
33 0 0 3,450 0 0 0

Sum 24,150 17,250 13,800 10,580 3,450 3,400

7

3 0 0 0 0 0 0
7 10,350 0 0 3,680 0
13 6,900 3,450 3,450 3,450 0 1,700
21 0 6,900 0 0 0 0

Sum 17,250 10,350 3,450 7,130 0 1,700
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Table A.7 Total per branch and phase (a, b, c) contracted (loads) and installed (PVs)
power in the thrird feeder.

Branch Node Contracted Power (kV A) Installed Power (kW )
Sa Sb Sc Pa Pb Pc

8

4 0 0 0 0 0 0
8 0 0 6,900 0 0 0
14 0 0 0 0 0 0
22 10,350 3,450 3,450 3,680 0 1,700

Sum 10,350 3,450 10,350 3,680 0 1,700

9

4 0 0 0 0 0 0
8 0 0 6,900 0 0 0
15 0 0 0 0 0 0
23 0 0 3,450 0 0 0
28 0 6,900 0 0 0 0
32 0 3,450 3,450 0 0 0

Sum 0 10,350 13,800 0 0 0
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Table A.8 Total per feeder and phase (a, b, c) contracted (loads) and installed (PVs)
power.

Feeder Node Contracted Power (kV A) Installed Power (kW )
Sa Sb Sc Pa Pb Pc

1

2 3,450 3,450 0 0 0 0
5 0 0 3,450 0 0 0
9 6,900 3,450 3,450 0 1,700 0
16 0 6,900 0 0 3,450 0
24 0 6,900 10,350 0 0 3,680
29 3,450 3,450 10,350 0 0 3,680
10 3,450 10,350 0 0 3,680 0
11 3,450 0 6,900 0 0 3,450
17 10,350 0 0 3,680 0 0
18 0 3,450 3,450 0 0 0
25 0 3,450 10,350 0 0 3,680

Sum 31,050 41,400 48,300 3,680 8,830 14,490

2

3 0 0 0 0 0 0
6 3,450 0 0 0 0 0
12 3,450 3,450 0 0 0 0
19 3,450 3,450 0 0 0 0
26 0 10,350 0 0 3,680 0
30 0 0 10,350 0 0 3,680
7 10,350 0 0 3,680 0 0
13 6,900 3,450 3,450 3,450 0 1,700
20 0 3,450 3,450 0 0 0
27 6,900 3,450 3,450 3,450 0 1,700
31 0 6,900 0 0 3,450 0
33 0 0 3,450 0 0 0
21 0 6,900 0 0 0 0

Sum 3,450 41,400 24,150 10,580 7,130 7,080
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Table A.9 Cont. Total per feeder and phase (a, b, c) contracted (loads) and installed
(PVs) power.

Feeder Node Contracted Power (kV A) Installed Power (kW )
Sa Sb Sc Pa Pb Pc

3

4 0 0 0 0 0 0
8 0 0 6,900 0 0 0
14 0 0 0 0 0 0
22 10,350 3,450 3,450 3,680 0 1,700
15 0 0 0 0 0 0
23 0 0 3,450 0 0 0
28 0 6,900 0 0 0 0
32 0 3,450 3,450 0 0 0

Sum 10,350 13,800 17,250 3,680 0 1,700

Grid Total 75,900 96,600 89,700 17,940 15,960 23,270
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Figure B.1 Decrease of the phase a rms current (s1) for an inverse bypass diode fault
(f02) at different irradiance levels. Fault inception at 100 ms. Under this fault all three
phases decrease but only phase a is shown here.

Figure B.2 Decrease of the phase a rms current (s1) for a bypass diode breakdown
fault (f04) at different irradiance levels. Fault inception at 100 ms. Under this fault
all three phases decrease but only phase a is shown here.
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Figure B.3 Decrease of the phase a rms current to zero for an open-circuited boost
IGBT fault (f11) at different irradiance levels. Fault inception at 100 ms. Under this
fault all three phases drop to zero but only phase a is shown here.

Figure B.4 Decrease of the phase a rms current to zero (s5) for an open-circuited
inverter leg fault (f10) at different irradiance levels. Fault inception at 100 ms. The
current on the other phases decreases during FO but doesn’t drop to zero.
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Figure B.5 Decrease of the phase a rms voltage to zero for a short-circuited inverter
leg fault (f11) at different irradiance levels. Fault inception at 100 ms. Under this
fault all three phases drop to zero but only phase a is shown here.

Figure B.6 Decrease of the phase rms voltage in all three phases (s5) for a short-
circuited inverter IGBT fault (f11) at different irradiance levels (for phase a only).
Fault inception at 100 ms.
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Figure B.7 Sum of phase currents (s5) for a positive pole to ground SC fault (f05) at
different irradiance levels. Fault inception at 100 ms.

Figure B.8 Sum of phase currents (s5) for a negative pole to ground SC fault (f06) at
different irradiance levels. Fault inception at 100 ms.
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Figure B.9 Moving average of the zero sequence component of the voltage (s6) for a
single phase voltage sag fault (f17) at different irradiance levels. Fault inception at
100 ms.

Figure B.10 Moving average of the zero sequence component of the voltage (s6) for a
two phase voltage sag fault (f18) at different irradiance levels. Fault inception at 100
ms.
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Figure B.11 Moving average of the phase angle of the positive sequence component of
the voltage (s7) for a double phase SC fault (f15) at different irradiance levels. Fault
inception at 100 ms.

Figure B.12 Moving average of the phase angle of the negative sequence component of
the voltage (s8) for a double phase SC fault (f15) at different irradiance levels. For
NO curve shape refer to Fig. 7.5g. Fault inception at 100 ms.
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Figure C.1 Branch identification accuracy per dataset size and number of layers.

Figure C.2 Distance estimation error per dataset size and number of layers.



Appendix D

Fault detection and isolation in
grid-connected PEM fuel cells

Polymer electrolyte membrane or proton exchange membrane fuel cells
(PEMFC ) are the most popular among other fuel cell technologies (alkaline,
phosphoric acid, molten carbonate and solid oxide) for their simplicity, variability,
quick start up capabilities and their suitability for a wide range of applications
[259]. As PEMFCs are becoming more and more popular their monitoring and
safe operation is of paramount importance.

Monitoring of a PEMFC is a non-linear, multi-fault source with different
time-scale problems especially because of all the chemical reactions taking place
inside the fuel cell [260]. Its complexity is underlined in the first fuel cell law:
A change of one parameter will affect at least two others of which at least one
will have an opposite effect of the expected outcome [259]. It is thus clear that
classification of faults or obtaining unique fault signatures is a challenging task.
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D.1 Faults in fuel cells

Faults in fuel cells can be divided in three big categories: permanent (CO
poisoning, fuel cell aging, etc.), transient (flooding and drying) and external
faults (power electronics faults, cooling system, etc.) [261]. In this study, the
drying fault is studied and its isolation is ensured against other external faults
such as power electronics faults as they were described in Chapter 7 [262].

D.2 Case study

In order to simulate and analyze the drying effect in PEMFC, the detailed
model of Matlab/Simulink for fuel cells was used with an output power and
voltage of 50 kW and 625 V respectively. The PEMFC was connected to the
grid through a dc-dc boost converter and an inverter. The grid was replaced by
an ideal voltage source.

dc-dc boost
converter

Inverter

G
ri

d

Monitoring of the AC
variables (I, V, P, Q)

Inverter
controller

Boost
controller

Rgrid, Lgrid

Cbus

~
~

Figure D.1 Schematic of the grid connected PEMFC system.

Water management in PEMFC is a very complicated process affected by
various parameters. Equation D.1 relates the saturation pressure of water with
the temperature:

Psat = P0 · e−(MH2O·hfg/R) · (1/T −1/T0) (D.1)
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where P0 is the pressure at known temperature, T0 the known temperature,
MH2O the water molar mass in [kg ·mol−1], hfg the water latent heat vaporization
in [kJ · kg−1], R the gas constant in [J ·mol−1 ·K−1] and T the temperature in
[K]. From eq. D.1, it is clear that by increasing the temperature, the saturation
pressure will also increase. An increase of the saturation pressure will also mean
an increase of the evaporation rate of water which in its turn will decrease the
amount of liquid water within the fuel cell [263]. Hence, in order to simulate
the drying effect in a fuel cell, the increase of the fuel cell stack operating
temperature was implemented. From the nominal operating temperature of 65
oC the temperature was linearly increased up to 115 oC after 23 s as shown in
Fig. D.2.

D.3 Results

Theoretically, as mentioned in [263], a higher cell temperature leads initially
to a higher cell voltage as the voltage losses inside a fuel cell decrease with the
increase of temperature which compensates up to a point for the theoretically
expected voltage drop. Moreover, an increase of the temperature to values higher
than 100 oC, according to [264], favors drying effects. After a long time under
drying conditions the voltage can drop even to zero [263].

This behavior is observed in Fig. D.2 where while passing from an operating
temperature of 65 oC to 75 oC the output fuel cell voltage reaches its maximum
of 625 V (Region I). After that point, and as the temperature keeps increasing,
the output voltage decreases (Region II). A more steep voltage drop is observed
after the temperature crosses the threshold of 100 oC and eventually drops to a
value very close to 0 V after 23 s of increasing temperature (Region III).

The further away we move from the fuel cell the harder it gets to detect the
drying effect; a phenomenon that was noticed in photovoltaics as well [262]. At
the dc bus level, the boost controller is trying to maintain the voltage constant
at 800 V (Fig. D.3). A gradual decrease of the dc bus voltage is noticed as the
drying of the fuel cell progresses with a maximum voltage drop of 10 V until
the point where the boost converter follows the drop of the fuel cell voltage to
almost zero with a decrease of at least 300 V .
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Figure D.2 Fuel cell output voltage profile compared to the increase of temperature
inside the fuel cell. Three distinct regions (I, II and III) of output voltage increase or
decrease can be identified.

Figure D.3 Boost converter output voltage profile as the drying effect progresses. DC
bus voltage was set at 800 V .
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Figure D.4 Inverter output voltage difference of phase A, ∆V , between faulty and
normal operation as the drying effect progresses. The same behavior is noticed in all
three phases.

By moving one step further from the fuel cell and monitoring the voltage at
the output of the inverter, an even smaller voltage drop is noticed. The difference,
∆V , between faulty (FO) and normal (NO) operation voltage is presented in Fig.
D.4. In concordance with the study in photovoltaics, the voltage drop threshold
was set at 1% of the peak voltage under normal operation. This will result in a
detection of the drying effect only 15 s after the inception of the fault. However,
detection will still occur before the drop of the fuel cell output voltage to zero.
As far as isolation is concerned, given the slow dynamics of the fault progression
and the affected variables, its complete isolation would still be possible when
compared to the other faults inside the boost converter, the dc bus, the inverter
and the grid as described in [262]. However, similarly with the photovoltaics
case, it is expected that faults inside the fuel cells would still be recognized as a
group of faults as a monitoring on the ac side of the system alone, is not enough
to provide a discrimination between them.

Finally, since no single method can satisfy all the requirements of a complete
fault diagnosis in a complex system like the grid–connected PEMFC system [260],
the need of hybrid methods, using different monitoring tools is evident.
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D.4 Conculsion

The drying of a fuel cell was investigated in this study. An increase of the
stack temperature was implemented to simulate the drying effect and the voltage
was monitored at every conversion stage. Though fault detection and isolation
are still possible from the ac side of the system, if a quicker diagnosis is necessary
to prevent possible fuel cell degradation then the monitoring of the voltage at
the fuel cell level is mandatory. Finally, based on the fault signature table of the
photovoltaics case, the isolation of the other listed faults in Chapter 7 will still
be possible.



Résumé de la thèse

Les nouveaux compteurs intelligents, la production décentralisée, les sources
d’énergie renouvelable et le changement climatique redéfinissent les réseaux
électriques. Pour profiter pleinement des nouveaux réseaux électriques intelligents,
nous devons les surveiller et les protéger. La capacité de “self-healing” est donc
importante dans les réseaux intelligents afin d’assurer un comportement correct
en cas de défaillance et de réduire les temps de panne de courant. À cette fin,
cette thèse propose trois méthodes différentes de détection et la localisation des
défauts pour les réseaux de distribution basse tension (BT) et deux méthodes de
localisation des défauts pour les systèmes photovoltaïques raccordés au réseau.

Dans les systèmes de distribution, les pannes de courant sont responsables
de 80 % des interruptions des clients. Les défauts les plus courants dans les
systèmes de distribution sont les court-circuites entre une phase et la terre qui
représentent 70 % du total des cas des défauts. Les plus graves, les défauts
triphasés, représentent 5 % du total des cas des défauts. Le reste 25 % est divisé
entre les défauts biphasés (15 %) et les défauts biphasés-terre (10 %) [1].

Au départ, les réseaux de distribution BT étaient conçus pour suivre la
doctrine traditionnelle “fit and forget”, qui ne permettait qu’un flux unidirec-
tionnel d’énergie du transformateur de distribution aux consommateurs. Avec
l’intégration des sources d’énergie renouvelables dans le réseau, le flux d’énergie
bidirectionnel devient une réalité et les opérateurs de réseaux de distribution sont
confrontés à plusieurs problèmes tels que la congestion, la tension surélevé et la
baisse de la qualité de l’alimentation [21]. Contrairement au réseau moyenne
tension (MT), celle BT est plus complexe et difficile à gérer en raison de certaines
de ses caractéristiques uniques qui lui attribuent une nature déséquilibrée et
hétérogène [23]. Ces caractéristiques sont des obstacles importants dans les
processus de détection et de localisation des défauts.
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Dans ce cadre et par la nécessité d’une information et d’un contrôle accrus
sur le réseau BT et la disponibilité de nouveaux outils et d’une infrastructure de
comptage, le concept de réseau intelligent a vu le jour.

Partie I : Diagnostic des erreurs dans les réseaux de distribution
intelligente BT

Pour tenter de résoudre un problème assez inexploré, trois méthodes différentes
de détection et de localisation des défauts pour les réseaux de distribution BT
basées sur des mesures de courant et de tension rms ont été développées dans
cette thèse.

Méthode conventionnelle:
La première approche était une méthode “conventionnell”. Une méthode

de détection des défauts, basée sur les mesures de courant, et une méthode de
localisation des défauts, basée sur les mesures de tension, pour les réseaux de
distribution BT sont proposées. La méthode de détection des défauts proposée
consiste à surveiller l’augmentation du courant de phase au début de chaque
feeder. La méthode de localisation des défauts, repose sur une analyse du profil
de tension construite à partir des mesures de tensions nodales. Bien que l’idée
de base de la méthode de localisation de défauts ait été initialement conçue pour
les réseaux de distribution MT [2], elle est ici testée dans le cas plus complexe
des réseaux BT.

En général, l’augmentation de la résistance aux défauts entrave à la fois les
méthodes de détection et de localisation des défauts car elle diminue le courant
de défaut et augmente les tensions, rapprochant ainsi les variables surveillées
de leurs conditions de bon fonctionnement. Alors que pour la détection des
défauts, les mesures de courant de phase sont l’outil le plus approprié, pour le
processus de localisation des défauts, qui comprend trois étapes distinctes : a)
identification des branches, b) localisation des secteurs et c) estimation de la
distance, la composante positive de la tension efficace mesurée est un meilleur
choix. En outre, les défauts situés vers l’extrémité de la ligne d’alimentation sont
plus difficiles à localiser. De plus, les défauts triphasés, étant les plus graves,
sont les plus faciles à détecter et à localiser. En outre, une des avantages de



201

la méthode est que, comme on peut le voir dans la performance symétrique
de toutes les phases, la distribution asymétrique des charges et des PV sur les
trois phases du réseau n’affecte pas vraiment la performance de l’algorithme.
Une augmentation de la demande de charge pendant les heures creuses diminue
la précision de la méthode, les PV, bien que toujours connectés au réseau, ne
pouvant pas atténuer cet effet. Enfin, bien que la méthode de localisation des
défauts ne semble pas être affectée par le bruit des mesures, la diminution du
nombre de capteurs disponibles peut sérieusement affecter sa précision.

Gradient boosting trees:
Afin de surmonter les inconvénients de la méthode conventionnelle et d’

améliorer les chances de détecter et de localiser correctement un défaut, une
nouvelle méthode d’intelligence artificielle est proposée basée sur les “gradient
boosting trees” (GBT). La méthode proposée permet de détecter et d’identifier à
la fois les défauts monophasés et les défauts triphasés. Pour estimer le modèle,
un ensemble de caractéristiques d’entrée non spécifiques à la branche est utilisé
pour assurer la robustesse de l’algorithme par rapport aux différentes topologies
du réseau et le nombre disponible de mesures de tension par branche. Comme
il s’agit d’une méthode basée sur l’apprentissage, son rendement est évalué par
rapport aux données non-échantillonnés. La contribution de cette méthode est
triple et est résumée ci-dessous :

a) Détection des défauts et identification du feeder en défaut: l’occurrence de la
défaillance est détectée avec une identification simultanée du feeder en défaut.

b) Identification du type des défauts: une distinction entre les phases défectueuses
et non défectueuses est obtenue, identifiant ainsi le type des défaut, monophasé
(AG, BG ou CG) ou triphasée.

c) Identification de la branche en défaut: suite à l’identification du feeder en
défaut et de la phase, la branche défectueuse dans un feeder en défaut est
également identifiée.

Une excellente précision pour la détection des défauts est atteinte. L’ identifi-
cation de phase et de branche montre des résultats prometteurs. De même, avec
la méthode précédente, cet algorithme est également robust contre la distribution
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déséquilibrée par phase des charges et des unités de production. De plus, comme
on s’y attendait, l’augmentation de la résistance aux défauts a réduit la précision
des tous les trois tâches. En général, les résultats obtenus grâce à l’utilisation de
GBT montrent une nette supériorité de la méthode proposée par rapport à la
méthode conventionnelle pour les réseaux BT.

Réseaux de neurones profonds:
Ces dernières années, la recherche sur les réseaux de neurones a permis

de réaliser plusieurs percées qui ont abouti à ce qu’on appelle aujourd’hui
l’apprentissage profond. En particulier, grâce à ces avancées, l’utilisation de
réseaux de neurones dont la profondeur n’est plus limitée à une seule couche
cachée est maintenant possible. Ces réseaux de neurones plus profonds, comme
l’ont prouvé plusieurs applications, se sont systématiquement révélés meilleurs
pour les problèmes d’estimation en raison de leurs meilleures propriétés de
généralisation [247]. Dans ce cas, l’utilisation de réseaux de neurones profonds
(DNN) est proposée comme solution aux problèmes de détection et de localisation
des défauts dans les réseaux de distribution BT. En détail, la contribution de la
méthode développée est quadruple :

a) Méthode de détection des défauts qui détecte l’occurrence d’un défaut monophasée
ou triphasée avec une identification simultanée du feeder en défaut.

b) Méthode d’identification de branche en défaut qui identifie la branche en
défaut dans un feeder en défaut.

c) Méthode d’estimation de la distance d’erreur qui détermine l’emplacement
exact de l’erreur.

d) Une diminution moyenne de la précision de seulement 4.5 % lors des tâches
d’identification de branche et d’estimation de distance erronées dans le cas de
mesures extrêmement limitées, lorsqu’il n’y a qu’une seule mesure disponible
dans le nœud terminal de chaque branche et une mesure au niveau de la poste
électrique (commune à toutes les lignes d’alimentation).

Le DNN excelle dans la détection d’une occurrence d’erreur avec une précision
de 100 %. Pour la tâche d’identification des défaut, une précision moyenne de
84.6 % est atteinte, tandis que pour la tâche d’estimation de distance, l’erreur ne
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dépasse pas en moyenne 12 %. De plus, l’utilisation de composants symétriques
est plus efficace que l’utilisation de mesures de tension de phase. En outre,
l’augmentation de la résistance aux défauts entrave le processus de localisation
des défauts en général. Une autre remarque importante est que le DNN est
insensible à la nature déséquilibrée du réseau quand il s’agit de la distribution par
phase des charges et de la génération PV mais pas à leur distribution topologique
qui pourrait soit améliorer ou entraver le processus de localisation des défaut. En
outre, pour le cas extrême de seulement deux mesures disponibles par branche
(une commune pour tous au niveau de la poste électrique et une à chaque nœud
terminal), la précision de la méthode est diminuée de seulement 4.58 % pour
l’identification de branche et 4.37 % pour l’estimation de la distance. Enfin,
étant une méthode basée sur l’apprentissage et bien que pour la détection des
défauts, il pourrait ne pas rencontrer beaucoup de difficultés, pour une estimation
fiable de l’emplacement des défauts, un recyclage du DNN est conseillé en cas
de changement de topologie ou de mode opérationnel du réseau. En général,
les résultats montrent que DNN est une solution fiable pour la détection et
localisation des défauts dans les réseaux BT avec une grande précision même en
cas des défauts à haute résistance des défaut.

Analyse comparative:
Une étude de cas commune a été utilisée pour comparer les trois méthodes.

Les paramètres d’influence étaient: a) une grande variété de valeurs de résistance
aux défauts atteignant le nombre de 63,772 valeurs entre 1 et 1000 Ω, b) neuf
emplacements des défauts différents dans chaque secteur, c) deux types des
défauts (défauts monophasés et triphasés), d) un facteur de simultanéité de 0.5,
e) un large spectre de scénarios de production photovoltaïque et de demande de
charge avec 70,334 combinaisons étudiées et f) une erreur de sous-estimation de
2 %.

En ce qui concerne la détection des défauts, avec une précision de 100 % en
utilisant DNN, il y a une garantie qu’une occurrence des défaut ne restera pas
indétectable, quelque chose qui pourrait causer beaucoup de problèmes dans le
réseau, y compris la contribution accrue des PV dans le courant des défaut.

Pour les étapes de localisation des défauts : a) identification de branche, b)
localisation de secteur et c) estimation de distance, les conclusions comparatives
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suivantes ont été tirées. Tout d’abord, chaque étape qui a été prise dans le
passage de l’utilisation d’outils conventionnels à l’utilisation intelligents, a été
d’améliorer la précision d’identification de branche avec DNN étant le meilleur
choix parmi les méthodes développées. En outre, quelques études de la littérature,
conçues pour les réseaux MT en raison de l’indisponibilité d’autres méthodes
dans le cas des réseaux BT, ont également été comparées à celles développées
dans cette thèse. En ce qui concerne d’autres études dans la littérature [251, 79],
le DNN a surperformé dans certains cas les méthodes existantes [251] ou apparié
leur précision dans autres [79].

En plus, l’importance d’une méthode de localisation de secteur fiable est
soulignée, car elle peut conduire à une diminution de l’erreur d’estimation de
distance par une moyenne de 6.5 %, tant dans les méthodes conventionnelles que
dans les méthodes DNN. Toutefois, les deux méthodes présentent une précision
moyenne inférieure à 50 % pour la localisation du secteur défectueux.

En outre, dans l’analyse de l’estimation de la distance, l’utilisation de DNN
s’est avéré à nouveau la solution la plus fiable. Avec une erreur d’estimation
de distance qui, en moyenne, ne dépasse pas 12 %, elle a surpassé les méthodes
conventionnelles et autres de la littérature. En général, les résultats montrent
une nette supériorité du DNN par rapport aux autres méthodes.

Partie II : Détection et localisation des défauts pour les généra-
teurs distribués

Dans cette partie, les méthodes de détection et la localisation des défauts
développées pour les systèmes photovoltaïques connectés au réseau ont été
analysées. Les méthodes développées reposent uniquement sur les mesures de
tension et de courant prises à la sortie de l’onduleur. Les étapes théoriques d’une
méthode réussie de détection et de localisation des défauts ont été décrites : a)
génération de symptômes, b) construction d’une table de signatures des défauts,
c) conception d’un algorithme d’isolation des défauts et d) configuration des
paramètres de franchissement de seuil. Ensuite, une liste des défauts étudiés a
été fournie et le processus de détection des défauts a été expliqué.

Dans l’hypothèse où un dispositif de référence PV calibré était disponible pour
surveiller l’irradiance réelle de la centrale et que le suivi du point de puissance
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maximale fonctionnait correctement, la puissance active attendue a été comparée
à la puissance active mesurée. Dans ce cas, une diminution de la puissance
active a été considérée comme un indicateur fort de l’apparition d’un défaut et a
marqué le lancement des algorithmes de localisation des défauts.

Deux algorithmes de localisation des défaut ont été développés, le premier,
algorithme A, se concentre uniquement sur les défauts côté courant continu tandis
que le second, algorithme B, inclut les défauts côté courant alternatif et couvre
ainsi l’ensemble du système. L’algorithme B est capable de localiser treize défauts
et deux groupes des défauts sur les dix-neuf cas des défaut. De plus, les deux
algorithmes sont capables de localiser les défauts assez rapidement (pendant leur
phase transitoire ou proche de l’état stable) dans une fourchette de 100 ms et 60
ms pour A et B respectivement. Ce niveau de vitesse a permis d’assurer une
localisation avant que les dispositifs de protection ne soient déclenchés et donc
de modifier les comportements des défaut en fonction des symptômes associés.

Une vérification de la robustesse à deux niveaux a été utilisée pour tester la
résilience de l’algorithme dans diverses conditions. Le premier paramètre qui
a été modifié était le niveau d’irradiation, les algorithmes fonctionnant avec
précision dans les cinq niveaux étudiés (1000, 800, 600, 400 et 200 W/m2). Le
deuxième paramètre était l’incertitude de mesure. Du bruit a été introduit dans
les mesures de tension et de courant et l’algorithme s’est avéré résistant à cela
aussi. En conclusion, aucun impact des mesures erronées n’a été constaté sur les
symptômes, les paramètres de franchissement de seuil ou les performances et la
vitesse d’isolement.

Dans le cadre de cette deuxième partie de la thèse, une étude préliminaire de
détection et localisation de défauts dans les piles à combustible connectées au
réseau a également été réalisée. En détail, les mêmes types de défauts ont été
étudiés avec l’étude de cas du photovoltaïque; à la place des défauts à la source
du système d’énergie renouvelable, dans ce cas, seul le défaut de séchage est pris
en compte. La localisation du défaut de séchage est réalisée sans interférer avec
la localisation des défauts des autres parties du système. L’analyse complète est
présentée à l’Annexe D.
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Abstract
In this thesis, three different methods of fault diagnosis for low voltage

(LV) distribution grids and two methods of fault isolation for grid-connected
photovoltaic systems (GCPVs) are proposed. The proposed tools for fault
diagnosis in LV grids are: a) a conventional method based on overcurrent
monitoring and sparse voltage measurements across the faulty branch, b) gradient
boosting trees and c) deep neural networks which are the most reliable solution
demonstrating a 100 % accuracy in fault detection and an average of 12 % of error
in distance estimation. Moreover, under limited available measurements their
accuracy is decreased by only 4.5 %. Furthermore, two algorithms based on a
signal approach are proposed for fault isolation in GCPVs. They use current and
voltage measurements at the output of the inverter, examining faults occurring
both in the dc and the ac side. Finally, the proposed algorithms achieve an
isolation of 15 out of the 19 studied fault cases in less than 100 ms.

keywords: fault detection, fault location, fault diagnosis, machine learning,
low-voltage distribution grids, distributed generation

Résumé
Dans cette thèse, trois méthodes différentes de diagnostic des défauts pour

les réseaux de distribution basse tension (BT) et deux méthodes de localisation
des défauts pour les systèmes photovoltaïques raccordés au réseau (GCPV) sont
proposées. Les outils proposés pour le diagnostic des défauts dans les réseaux BT
sont: a) une méthode conventionnelle basée sur la surveillance de courant et de
tension, b) des gradient boosting trees et c) des réseaux de neurones profonds qui
sont la solution la plus fiable démontrant une précision de 100 % dans la détection
des défauts et 12 % d’erreur moyenne dans l’estimation de la distance. De plus,
sous des mesures disponibles limitées, leur précision n’est réduite que de 4.5 %.
En outre, deux algorithmes basés sur une approche signal sont proposés pour la
localisation de défauts dans les GCPV. Ils utilisent des mesures de courant et
de tension à la sortie de l’onduleur, en examinant les défauts apparaissant aussi
bien du côté dc que du côté ac. Enfin, les algorithmes proposés permettent la
localisation de 15 sur 19 de cas de défauts étudiés en moins de 100 ms.

mots-clés: détection des défauts, localisation des défauts, diagnostic des
défauts, apprentissage automatique, réseaux de distribution basse tension, pro-
duction décentralisé
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