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Introduction

The aim of this thesis is to study and develop the theory of Discrete Duality Finite Volume method
("DDFV" for short) for problems arising in fluid mechanics (namely Stokes and Navier-Stokes
problem). In particular, my interests focus:

o on the study of different type of boundary conditions, such as mixed Dirichlet/Neumann or
outflow boundary conditions;

e on the coupling between DDFV method and the algorithm of domain decomposition.

This dissertation will start with a brief excursus on what is the DDFV method and the reason
why we choose it. I will then give an idea of the general results of the thesis, by describing the
problems we treated, how they have been developed and the main difficulties related to them.

DDFV method

This method enters the class of finite volume methods, that are discretization methods in which
volume integrals are converted to surface integrals, using the divergence theorem. An important
feature of those methods is that they are locally conservative; in fact, surface integrals are evaluated
as fluxes at the boundary of each finite volume and they are conserved from one discretization cell
to its neighbor. This makes finite volume methods quite attractive when modeling problems arising
from fluid mechanics, the derivation of which are precisely based on local balance principles.

Finite volume methods for Stokes and Navier-Stokes problem have been widely studied during
the years. Concerning the Stokes flow, we refer to [EHLO6] for a colocated and stabilized finite
volume scheme, [BEHO05] for a staggered finite volume scheme, [DE0S8] for a mixed finite volume/
finite element scheme, [Del07] for an alternative DDFV scheme with a different localization of the
unknowns, [DO15] for a DDFV scheme for the vorticity-velocity-pressure formulation.

Concerning the Navier-Stokes flow, we refer to [BCHO0] for a fractional step method combined
with finite volume schemes, [EHL07] for a colocated finite volume scheme, [EHO05] for a staggered
finite volume scheme, [Del07] for an alternative DDFV scheme with a different localization of the
unknowns, [DE08, LS17] for a combined finite volume/ finite element scheme, [GHL10] for a finite
volume scheme with explicit time discretization, [CCML17] for a high order finite volume scheme
based on polynomial reconstruction.

DDFYV method has been developed since the early 2000’s; the DDFV schemes have been first
introduced and studied in [Her00] and [DOO05] to approximate Laplace equation on a large class of
2D meshes including non-conformal and distorted meshes.

A way to consider general families of meshes is to add some unknowns to the problem: we
require unknowns on vertices, centers and edges of control volumes; for this reason, DDFV method
works on (three) staggered meshes. From an initial mesh, called the "primal mesh" (denoted with
MUOM), we construct the "dual mesh" (denoted with M*UOM™), that is centered on the vertices of
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the primal mesh, and the "diamond mesh" (denoted with ®) , which is centered on the edges of the
primal mesh; see Fig. 1 for an illustration. The union of primal and dual mesh will be denoted by ¥.

Fig. 1 DDFV meshes on a non conformal mesh: primal mesh 9t U 09 (blue), dual mesh 9t* U oM
(red) and diamond mesh © (green).

DDFV method for Stokes and Navier-Stokes problem leads naturally to locate the unknowns of
velocity and pressure in different points; the velocity unknowns are associated to each primal and
dual volume, while the pressure unknowns are located on each diamond. So DDFYV enters the
class of staggered methods. This is an usual technique for incompressible flows: one of the best
known schemes is the MAC (Marker and Cell) scheme (see [HW65]), which is built for cartesian
meshes; we can mention also [CR73| for triangular meshes. MAC schemes, as unknowns, consider
the normal components of the velocity (located on the mesh edges) and the pressure (located at
the centers of the cells); with DDFV, we generalize this schemes by considering all the components
of the velocity and extending it to more general meshes. Moreover, it has been shown in [Krel0)]

that a DDFV scheme on a cartesian mesh is equivalent to two decoupled MAC schemes written on
two different staggered meshes (except for the boundary).

With this kind of construction, DDFV has two important advantages:

1. it applies to general meshes, such as non-conformal and distorted meshes. It is useful,
for instance, in the domain decomposition setting, where the subdomains can be meshed

separately and non-conformal edges appear on the interface, or simply if one wants to locally
refine the mesh or consider complex geometries;

2. it can reconstruct and mimic at the discrete level the dual properties of the continuous
differential operators. In fact, thanks to this choice of unknowns and meshes, it is possible to
obtain a full approximation of the gradient operator and to maintain the structure of the
continuous problem, such as symmetry, that helps when dealing with nonlinearities.

Another important point is that the implementation of the method has the same difficulties
compared to the classical finite volume schemes: the structure is in fact similar. Just to remark,
all the simulations presented in this dissertation are done in a Fortran90 code.

DDFV method in 2D has been widely developed during the years; in the case of anisotropic
scalar diffusion [DOO05, Her00, Her03, BHK10a], convection-diffusion problems [CM10], Div-Rot
systems [DDOOQ7], Leray-Lions elliptic equations [ABHO07, BHO8], Stokes and Navier-Stokes prob-

lem [Del07, Krella, Krellb, GKL17, GKL19], Maxwell [HLOO8], and Cahn-Hilliard/Stokes phase
field model [BN17].



Some works have been done even in 3D: for anisotropic linear diffusion problems [ABHK12,
CPRT08, ABKO08, Her07], for Leray-Lions elliptic equations [CH11], for Stokes problem [KG12].

This motivated us to extend and develop the theory on DDFV methods and this thesis specifically
addresses the following issues

o mixed Dirichlet/Neumann boundary conditions for the Stokes problem
e outflow boundary condition for the Navier Stokes problem
e domain decomposition method for the Navier Stokes problem

In all three cases we establish a complete well-posedness theory of the discrete equations, and
we perform a convergence analysis. The discussion relies on stability properties of the scheme
(expressed by means of Inf-sup condition), and new functional inequalities (Korn’s lemma, trace
lemma...). Everytime, numerical test follow the theoretical analysis.

Stokes problem

We started our work by first considering the Laplace form of the Stokes system in a connected
open bounded polygonal domain  of R?:

—Au+Vp=f inQ,
div(u) =0 in Q,

+boundary conditions on 02,

where the unknowns are the velocity u :  — R? and the pressure p : Q@ — R; the data f € (L?())2.
The Stokes system is a PDEs system which arises in fluid mechanics: it is linear and its resolution
is the preliminary step to handle more intricate models, like the evolution problem for the Navier-
Stokes system. In the DDFV setting, this problem was studied in [Del07, Krella, BKN15] in the
case of homogeneous Dirichlet boundary conditions, i.e.:

u=0 on JN.

Our first goal was to extend the theory known for this problem to the case of mixed Dirichlet/
Neumann boundary conditions, i.e. to study the system:

—Au+Vp=f in(Q,
div(u) =0 in Q,

u=g onlp,
(Vu—pld)i=® on Iy,

(1)

where the boundary of the domain € is split between 02 =T'p UT'y , @, g € (H%((?Q))2 and 1 is
the unitary outer normal. We refer to [BF12] for the analysis of the continuous problem (1).

A first natural question is the well-posedness of (1): in the continuous case, this property is
relied to the so-called Inf-sup stability inequality (or LBB). This will be a key point all along the
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dissertation; it is formulated as:

inf sup _atv.p) > 0, (2)

peL3() \ve(mi()? VIl Ipllr2

where a(v,p) = / p(div(v)) and LZ(Q) = {p € L3(Q2) : m(p) = ﬁ Jo p = 0}; it is equivalent to
Q

the existence of a continuous right-inverse of the divergence operator (see [GR11, BF12]).

This inequality is satisfied by the continuous operators, cf [BBFO08]; the analysis of numeri-
cal methods relies on the fact that the underlying discrete operators still satisfy an inequality of
the same type. Thus, with the intention of writing a DDFV scheme for (1), it is necessary to
understand if property (2) holds even in the discrete setting.

In the DDFV framework, we refer to [BKN15]; Inf-sup stability has been proven to hold uncon-
ditionally for conforming acute triangle meshes, non-conforming triangle meshes and chechkerboard
meshes. For some conforming or non-conforming Cartesian meshes, it holds up to a single unstable
pressure mode. Moreover, it has been proven numerically for many other families of meshes (it has
still not been found a mesh that does not satisfy it).

Our first goal was to extend those results to the case of non-homogeneous Dirichlet boundary
conditions (i.e. to the corresponding case of v € (H%D (2))%).

In the following, we denote by v* the velocity unknowns on the centers and vertices of the
mesh and p® the pressure on the edges; V® represents the discrete DDFV gradient operator and
div® the discrete DDFV divergence, both defined on the diamond mesh ®, while div® stands
for the divergence on the primal and dual mesh (we recall that T = 90T U O U IM* U 09M*). The
space EgD corresponds to homogeneous Dirichlet boundary condition on I'p. By defining a scalar
product on the primal and dual mesh, denoted by [[, ]|z, and one on the diamond mesh, (-,-)o,
we can deduce some discrete LP norms, || - ||,. We refer to Chap. I for all the detailed definitions.

The extension of the discrete Inf-sup condition to the non-homogeneous Dirichlet case reads:

Theorem 1 For a given DDFV mesh ¥ that satisfies Inf-sup stability (see Def.1.6.1), there exists
Bz such that:

z a*(v¥,p®) )
= i sup - > 0, (3)
<VTGEFD IVEVE]|2|[p® — m(p®)l|2
0
where a*(v=,p®) = (div®vT, p®)p and m(p®) = Z myp’.
DED

This theorem ensures that Vp® € R®:

1 div®v®, p?)p
||p© - m(P©)||2 < = Sup WS
T VTGEED 2

(4)

this inequality is a useful tool to prove the wellposedness of the DDFV scheme associated to (1).

One can object that supposing Inf-sup stability property on the mesh can be restrictive, since it
has not been proven uniformly for all meshes; there is a way to avoid this hypothesis, that is to
stabilize the mass conservation equation. It can be done either by adding a linear stabilization or
a stabilization term A® inspired by the Brezzi-Pitkiranta method [BP84] in the finite element



framework. This latter strategy has been previously used in the finite volume framework by
[EHL06, EHLO7]; in particular, in the DDFV framework, it was proposed by the author of [Krella].
See Sec. 1.7 for more details.

Motivated by the work in [Krella], we decided to adopt this approach when discretizing (1).

To obtain our scheme, we decided to integrate the momentum equation over all 2t U 9" U 9.
Thanks to the definition of the DDFV discrete operators, this is equivalent to replace the continuous
with the corresponding discrete ones. We impose Dirichlet boundary conditions on 09tp UM, and
Neumann boundary conditions on 99ty. The mass conservation equation is directly approximated
on the diamond mesh equation over ®, and it is stabilized through two parameters 5 > 0, associated
to the stabilization of Brezzi-Pitkdranta (see Sec. 1.7) and p > 0, associated to a linear stabilization.

If g, ®, denote the projection of the Dirichlet and Neumann data on the mesh, and h is the mesh
size, the scheme we obtain is the following:

Find u® € EgD and p® € R® such that

div(—=V®u® +p°Id) = £, Vk € M
div¥" (=V®Pu® 4+ p°Id) = f«  Vk* € IM* UIMY

div® (u®) 4 php® — SR2APDP® =0
(VPu® — p’Id)fi s = @5 VD, ox € Dyt N .

The scheme (5) is well-posed on general meshes if p + § > 0 (see Thm. I1.2.2). Moreover,
if 4 > 0, we obtain a first rough estimate (see Thm. I1.3.1) of order 0.5 for the velocity only; in
order to obtain order 1, it is necessary to use the Brezzi-Pitkdranta stabilization (i.e. if we suppose
B > 0). We first need to prove the stability result of Thm. 2. We point out that the number
reg(¥), that will appear in the estimates, measures the regularity of the mesh and it is uniformly
bounded as h — 0.

Theorem 2 (Stability of the scheme) Suppose that § > 0. There exist two constants Cy,Co >
0, depending only on Q, B and reg(%), such that for every pair (u=,p®) € EgD x R® with

(=V°u® 4+ p°ld)ii = &, Vo €Ty,
there exist U~ € EgD and p° € R® such that:

IVt 3 + [5°15 < CL(IVPu® (3 + [p°13), (6)

Z m, P, (")

D(T’o* EDextNI'N

IV2u=[3 + [Ip°]3 < O (B(u?p@;ﬁs,'ﬁ@) +

+ \‘1’0@) (D
where v7(u¥) is a trace term and B is the bilinear form associated to (5):

B(u®,p°,a%,7°) == [div:(—=V u® + p°Id), i%]<
+ (div® (u®) + php® — BR*A®P®, 7). (8)

From this, we deduce the estimate of order 1 for the velocity, its gradient and the pressure:
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Theorem 3 We suppose that the solution of (1) satisfies (u,p) € (W>®(D))2 x Wh®(D). Let
B >0 and (ut,p®) be the solution of (5). Then there exists a constant C > 0 that depends on
reg(T), 1, B, [[ullw2ec and [[pllwrec such that
[u—ut[z + ||[Vu— V?u|, < Ch,
lp = p®|l2 < Ch.

In the idea of moving to the discretization of the Navier Stokes problem, the second problem we
considered is the Stokes problem in the divergence form:

—div(o(u,p))=f in Q,

div(u) =0 in €,
9)

u=g on I'p,

o(u,p)i=® on I'y.

2
The stress tensor is o(u,p) = R—Du — pld, with Re > 0. In particular, the strain rate tensor is
e

defined by the symmetric part of the velocity gradient Du = %(Vu +t Vu).

The main difficulty when dealing with this kind of problem is the so-called Korn inequality (see
[BS07]), that relates the gradient with the strain rate tensor; in the continuous case it is formulated
as:

HuH(Hl(Q))2 < CHDUH(LQ(Q))zxz.

In the DDFV setting, the equivalent discrete theorem was proved in [KrelO] in the case of
homogeneous Dirichlet boundary conditions; in this case, the proof relies on the definition of the
operators and thus the constant of the estimate can be explicitly computed.

If we add a part of the boundary with non-zero data, we introduce some difficulties: as in
the continuous setting, we are able to prove the extension to inhomogeneous Dirichlet boundary
condition by contradiction. So we proved the following theorem:

Theorem 4 (Korn’s inequality) Let ¥ be a mesh that satisfies Inf-sup stability condition. Then
there exists C > 0, that depends only on reg(¥), such that :

[VPu®||s < C|D°uT|l;  VuT € EjP.

See Sec. 1.8.2 for more details. It is important to mention that this theorem holds under the Inf-sup
stability condition on the mesh; this is why it becomes superfluous to stabilize the mass conser-
vation equation when working in the divergence form of Stokes problem (or Navier-Stokes problem).

The DDFV scheme corresponding to (9) then reads:
Find u? € EgD and p® € R?® such that:
—div¥ (ai’(uf,pi’)) —f, Vk € M
—div¥® (ag(uz, p©)> =f  Vkr € M UMYy
div®(u*) =0

o2 (U, p2) fipy = Oy VD, ¢ € Degr Ny,

(10)



2
R—D’DuT — p®1d, and the discrete strain
e

. This scheme is well-posed under the Inf-sup hypothesis

with the discrete stress tensor defined by o® (u¥,p®) =
DO — v’Du‘I +t (v@uf)

rate tensor by

on the mesh (see Thm. I1.5.2). Moreover, all the results on the error estimates established for
(5) can be extended to (10) thanks to Korn’s inequality and the relation between the strain rate
tensor and the gradient, illustrated in Sec. 1.8.2.

At last, we extended (5) to the case of weak boundary conditions. In fact, if we decide not
to stabilize the incompressibility constraint, problem (5) is well posed under the hypothesis that
the mesh satisfies Inf-sup inequality; this inequality, in the simplest case of conformal square meshes,
is valid up to an unstable mode for the pressure (see [BKN15]). A way of avoiding this incon-
venient is thus to impose boundary conditions in "a weak sense"; the details can be found in Sec. II.6.

In Sec. I1.4, I1.5.2, I1.6.2 we numerically tested (5), (10) and the formulation with weak boundary
conditions on different meshes, by showing the convergence properties of the schemes and the
influence of the stabilization parameters 3, u for (5).

Navier-Stokes problem

The step forward to our work was the study of the following 2D unsteady incompressible Navier-
Stokes problem:

du+ (u-V)u—div(e(u,p)) =0 in Qp=Qx[0,7T],
div(u) =0 in Qp,
u(O = Winit in Q, (11)
u=g on I'; x(0,7),
1
o(u,p)ii+ —(u-f) (W—Upes) =0pepd on I'y x(0,7).

2

This problem arises when computing a flow whose velocity is prescribed at one part of the boundary
and it flows freely on the other one. In this framework, we are often required to truncate the
physical domain to obtain a reduced computational domain, either because we want to save
computational ressources or because the physical domain is unbounded. We illustrate this setting
in Fig. 2.

computational domain

I'y

}1
-
inflow

N A A

I

physical domain

Fig. 2 Domain and notations.

This raises the question on what type of boundary conditions one should impose on the "artificial
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frontier", denoted by I'y; we choose to adopt the ones proposed in [BF94] and then further studied
in [BF94, BF12]. Other techniques where proposed in the literature, we can mention for instance
[HS89]; here, an artificial boundary condition is proposed for the Navier-Stokes problem under
the hypothesis of small viscosity. The method consists into the approximation of the transparent
boundary conditions, since they are non local.

We remark that in order to build the outflow boundary condition on I's:

—_

U(uap)ﬁ"i'*(u'ﬁ)_(u_uref) = Oref ﬁ: (12)

\V)

we need to choose some reference flow u,.y, which is any u,.y € (H'(2))? such that Uef = g1 ON
I'1, chosen so as to be a reasonable approximation of the expected flow near I's, and a reference
stress tensor oyep such that o..p i € (H 3 (92))2. The choice of the reference flow is delicate and it
will be widely discussed in Sec. III.6.

This nonlinear condition (12) is physically meaningful: if the flow is outward, we impose the
constraint coming from the selected reference flow; if it is inward, we need to control the increase
of energy, so we add a term that is quadratic with respect to velocity.

The analysis of the Navier-Stokes problem with the outflow boundary condition (12) is per-
formed in [BF96] and [BF07] for the continuous equations and simulations are performed in [BF94]
by the use of Finite Differences schemes in the case of Cartesian meshes. Within the framework of
DDFYV methods, we are able to reproduce those simulations by extending to the case of general
meshes and we also offer a complete analysis of the discrete problem.

The first difficulty we faced when trying to write a DDFV scheme for (11) is the discretiza-
tion of the nonlinear convection term: we will not detail the computations here, but we point out
that it is necessary to construct the bilinear form b*(u®, v®) and the numerical flux F.

The bilinear form is built in order that [[b*(u¥, v¥), w¥]]z discretizes / (u - v)w, which is the
trilinear form that appears when considering the variational formulationgof (11); in particular,
b*(u®,v*) approaches [ (u-il)v while the flux F,, is an approximation of [ u-ii . See Sec. III.1
for more details. We just state the following bound of the nonlinear convection term that we
obtained, useful in order to prove the discrete energy estimate:

Proposition 5 Let T be a DDFV mesh associated to 2. For all (u®,v:,w¥) € Eg} X Eg; X Egi,

there exists a constant C' > 0 that depens only on Q and reg(T) such that:
[b% (™, v®), W™z <C ([[u[l3 + [*(u)ll3,00) [VFll6| VW2

T T ~%
+ Ol ()llz sl v (V) pall 7™ (W) lla.00-

where v¥, 3% are trace operators.

To write the DDFV scheme associated to (13), we choose to use an implicit Euler time discretization,
except for the nonlinear term, which is linearized by using a semi-implicit approximation.

Let N € N*, we note 6t = L and t,, = nét for n € {0,..., N}; we look for ut 0Tl = (U")nego,..N} €
(Eg})NH and p207] = (P")nego,..N} € (R®)N+1 To simplify the notations we will denote
(u" ! p"*t1) with (u®,p®) and (u”, p") with (@*,$®) that at each time step are known.

Then, our first guess for the scheme was to naively replace the continuous operators with the
discrete ones (as done previously for Stokes). This would have given the following scheme:



Find u* € ]ng and p® € R® such that:

BB it (02 (0, ) + b (87, %) = 0 ve e M,
e BB iy (0 (0, p®) b (60 = 0 Ve € M U o,
— 1 — — —
m,o® (u®, pg)nUL + i(FUL(u‘I)) (77 (u®) =47 (uref)) = My T VD, 0+ € Degr NI,
div® (u®) = 0.

(13)
Unfortunately, we were not able to prove the wellposedness of (13) with the classical techniques.

We thus had to change our strategy, by going back to the continuous problem: in fact, as presented
in [BF12], the velocity u satisfies:

2 1 1
/6tu-\11+—/D(u):D(\IJ)—i—f/(u-V)u-\Il—f/(u-V)\I/-u
Q Re Ja 2 Ja 2 Ja
1 1
=5 Lt ) g [ @) e 0+ [ (o v (1)
2 I's 2 Iy 1)
where ¥ is a test function in the space
V ={¥ e (HY(N)? ¥|r, =0, div(¥) = 0}.

If now we rewrite this weak formulation (14) in the DDFV framework we obtain:

u‘I _ ﬁT
[ e+ o (D% DOUS)o + {7 (@, ), W — b7 (%, U%), us
= Y (E@) W) A0 45 Y (F@) 0 reg) 7 ()
DEDeqtNI'2 DEDeatMI'2

+ Z ma(agefﬁaK) : 'yg(‘yz% (15)
DEDezthZ

where U% € (R?)? is a test function in the discrete space that satisfies similar properties compared
to the continuous test function W:

Ut € P,
(16)

div® (U%) = 0.
At this point, we can project (15) on the meshes to obtain the scheme; we look for u* € ng and
p® € R? such that:

e For all xk € M:

Uy, — Uy

ot

1
My — mdivi(o® (ut,p®)) + §meK(ﬁ$> u®)

- ¥ (F;;(ﬁi)u}( — FGL(ﬁT)uL) =0, (17)
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e For all x* € 9" U ON5:

Uy — Ug*

* 1 *
5 — mydiv® (o© (u®, pg)) + *mx*bK (1—1‘2’ u®)

iy <F+ . F;L*@f)uﬁ):o, (18)

DE’D

s

e For all p, ,« € Dy NT'2:

vaD(uT7 p©>ﬁ0L + %(Fﬂ(ﬁi))_ (VU(uS) - VJ(uref)) - iFo'L(ﬁ‘I) (uK - uL)

= mUUrDefﬁ,K, (19)

e For allp € ©:
div’(u®) =0, (20)

of which we can prove that there exists a unique solution (see Thm III.3.1). Remark that in the
scheme (17)-(20) the anti-symmetrization of the convection term is taken into account, and that
in (19) there is an additional term with respect to the equation on o € 90 in (13), due to the
projection of the boundary terms in (15).

The open boundary condition (12) is derived from the weak formulation (14) which ensures
an energy estimate, as presented in [BF96]; so we proved a discrete version of the energy estimate.
In order to do so, it is necessary to consider the variational formulation (15) and select the solution
as a test function. Since the solution u™%7! is not zero on the Dirichlet boundary I'y, it does not
satisfy the hypothesis (16). We decompose it as uS0T) = yE0I] uge f 8O that, thanks to the

definition of u?ef (see (I11.12)) , v=[T] is a good candidate to be the test function.

Theorem 6 Let ¥ be a DDFV mesh associated to €} that satisfies Inf-sup stability condition.

Let (w011 20T ¢ (Egll)N—H x (R®)N+L be the solution of the DDFV scheme (17)-(20) , where
uS0T] = yTOT] 4 4T

For N > 1, there exists a constant C' > 0, depending on Q,reg(%), ufef, ug, Re and T such that:

N—
Z IV —vig<c IVVB<c

N—
Z HDQVHHP <C, 515 HD@ Nz <c,

N—
Z Z (’K V +u7"ef))+|7 ( j+1)|2 < C.

: Degezt

To prove this result, it is mandatory to prove the following trace inequality:

Theorem 7 (Trace inequality) Let T be a DDFV mesh associated to 2. There exists a constant
C > 0, depending only on p,q, sin(asg), reg(T) and Q such that YVu* € EgD and for all s > 1, p > 1:

T
Iy (u®)]200 < Cllu®[lpllu®ll3ct, -

p—1

where sin(ag) is a measure of the flattening of the mesh diamonds.

We want to point out that all these results are proved, for simplicity, in the case of a constant
viscosity; they could be extended to the case of variable viscosity, by starting from the works of
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[Krellb, BFOT].

To give an idea of application of the DDFV scheme we built to approximate (11), we refer
to the numerical simulation illustrated in Fig. 3; the goal is to show that by adding an artificial
boundary, thanks to condition (12), we do not introduce any perturbation to the flow. For this
purpose, we first consider an original domain that we cut into smaller subdomains and we draw
the streamlines of the respective solution. We observe that the recirculations are well located and
that there is no spurious vortices. For more details on this test case and for further simulations,

we refer to Sec. II1.6.

Fig. 3 Streamline of Test case 2 at T'= 3.5, Re = 250. On the top: Q = [0,5] x [0, 1], NbCell=
12118. In the middle: €' = [0, 3] x [0, 1], NbCell=8636. On the bottom: Q" = [0,1.5] x [0, 1],
NbCell=6534.

Domain decomposition method

Our next goal was to design a non-overlapping Schwarz algorithm for the Navier-Stokes problem.
It is an iterative method that enters the class of domain decomposition methods, in which a
domain is decomposed into smaller subdomains. The main advantage is that, contrary to di-
rect methods, decomposition methods are naturally parallel; in fact, subdomains problems are
related by some transmission conditions on the interface, but they are decoupled by the itera-
tive procedure. This makes those methods interesting for high performance computing perspectives.

The main difficulty when dealing with the decomposition is that we introduce an "artificial"
interface between the subdomains; it is important to understand what type of condition to impose
in order to be able to recover the solution on the entire domain.
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It was shown in 1990 by P.L.Lions [Lio90] that, with Fourier (i.e. Robin) transmission con-
ditions, Schwarz algorithm for the Laplace operator converges even without overlap between
subdomains. This method has been adapted to the discrete case for many problems of isotropic
diffusion, [AJNMO02, CHHO04, GJMNO5], for advection-diffusion-reaction problems, [GHO7, HH14]
and for anisotropic diffusion in a DDFV discretization, [BHK10b, GHHK18]. When moving to the
Navier-Stokes problem, in the literature we can find many different approaches, in particular our
focus is on the different design of the interface conditions. In the spirit of [HS89], [BCR16] derives
optimal transparent boundary conditions for the Stokes equation, result of the discretization in
time of the Navier-Stokes equation; these conditions are tested in the finite differences setting. In
the finite element setting, [LMOO1] proposes a non-overlapping domain decomposition algorithm of
Robin—Robin type for the discretized Oseen equations (i.e. linearized Navier-Stokes); the transmis-
sion conditions they impose are equivalent to the ones that we finally chose, but in their case it was
necessary to prove a modified Inf-sup condition whose stability constant depends on the Reynolds
number: we will avoid this inconvenient by imposing a new condition for the pressure on the
interface. In [XCLO05], in the finite element setting, the authors build a Dirichlet-Neumann domain
decomposition method for the nonlinear steady Navier-Stokes equations, under the hypothesis
that the Reynolds number is sufficiently small and [GRWO05] studies a family of discontinuous
Galerkin finite element methods for Stokes and Navier-Stokes problems on triangular meshes and,
as in [LMOO1], they need to modify the Inf-sup condition in order to mantain the zero-divergence

constraint in the decomposition .

Our objective was to write an algorithm for the complete incompressible Navier-Stokes sys-
tem, with a local condition defined on the interface, without any condition on the Reynold’s
number. As a first guess, motivated by our previous work for the Navier-Stokes problem, we
imagined that imposing a condition similar to outflow boundary condition of (12) would have
worked: in fact, as a reference flow, we could have chosen the solution on the neighboring domain,
computed at the previous iteration of the Schwarz algorithm. This is however not sufficient to
prove the convergence, since it can be seen just as a "Neumann type" boundary condition; it is
necessary to add a contribution that takes into account the velocity on the interface in order to
recover a 'Fourier-type" condition for this problem.

We further remarked that, in order to deal with the incompressibility constraint, another
condition was required by the problem.

So, when decomposing the domain 2 into two (or more) smaller subdomains Q = Q; U Qo,
the Schwarz algorithm that we designed defines a sequence of solutions ué- of the Navier-Stokes
problem in €, where the transmission condition on the interface between the subdomains (denoted
by I') for (j,7) = (1,2) or (2,1), is defined by:
L 1 . 1 -1\ - Lo _ _
(1) 8y — 08 () ) = ool B S e
-1

) )

div(uz) + ozpé- = —div(ul™") + ap

where 1i; is the outer normal to ;.

The first condition, which depends on A, is inspired by the classical Fourier condition, which
linearly combines the values of the unknown (in this case the velocity) and the values of its
derivative; here, also the convection is included.

The second, which depends on «, combines the divergence of the velocity with the pressure;
it will be useful to conserve the incompressibility constraint at the convergence of the algorithm.
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This is the first time, to our knowledge, that this kind of condition appears.

As a first step to write the non-overlapping Schwarz algorithm in the DDFV framework, we
proposed a DDFV discretization for the Navier-Stokes problem on the entire domain 2 with
Dirichlet boundary conditions. Indeed, we find convenient to consider a general discretization
of the convection term, seen as a centered discretization plus a diffusive perturbation, expressed
through a certain function B. This is inspired from the work of [HH14], which handles scalar
advection-diffusion-reaction equations with a classic finite volume discretization.

To obtain this scheme, we integrate the momentum equation over all 9t U 9" and we impose
Dirichlet boundary conditions on 99t U 09t*. The equation of conservation of mass is directly
approximated on the diamond mesh equation over 2, and it is stabilized through a parameter
B > 0 with a Brezzi-Pitkiranta stabilization (see Section 1.7). It gives:

Given (u¥,p®), satisfying div®(a%) — Bd2A®p® = 0, we look for u® ¢ (Rz)f and p® € R®
such that:

mK&jL Z mc,]-'m:meK—I—mKB Vk € M

it e, 5
Uy u
My* 51( Z Mo* S grgx = MNg* fK* =+ My* 5K VK* c m*
¢ DU’O_* EDK* ¢
u?? =0

div® (u¥) — Bd2A®p® =0

ZmnpD =0

DeED

with 8 > 0 and (a¥,p®) the solution computed at the previous time step t,_1 = (n — 1)dt for
n € {1,...N — 1}. The total fluxes are thus approached by:

o u +u m? 2Rem
mafO'K = _maaD(utzupr) Nk + maFoK ( = 9 L) + 2RemDB ( m, DFGK) (uK - uL)J
. U + U+ m2. 2Rem
Me* S grgx = _mU*JD(u‘I?p@) LS + m(r*Fo'*K* ( - 2 - ) 2ReUmDB ( My DFO'*K*> (uK* - uL*)7

(22)

2R 2R
where we denote the coefficients B ( e F(,K> , B ( e F(,*K*) by Byx and Bg++; they can
m, M, *

be scalars, for instance if we want to recover an upwind scheme (for which B(s) = |s|), or even
matrices. Problem (P) is well-posed under the hypothesis (formulated here for the scalar case):

BO’K == BULJ Bo'K Z 0

(23)
BG*K* = Ba*L*a BO*K* >0

See Thm. IV.1.3 for more details.

The following step consists in defining the DDFV scheme for the Navier Stokes problem on
the subdomain with transmission conditions (21). It is necessary to add some fluxes unknowns
We, on each dual cell that intersects I', which approximate the dual fluxes F,+- on the interface.
The scheme reads:
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Find (ll‘j:j,p@., Vs, ) € RY x R?5 x 893?;% such that

u
5 + Z ma-FJK:meK+mK57; Vk € M;
UL 12: + Z Mg Forr = Mygx fir + % Vi € 93?;
Do,cr* GQK*
Ug* Uy *
UL 5t + Z Mor Forgr + Mognoxs Wer = My Bier + iy St Vi € 89ﬁj7F
Do',o-* E@K*
1
—Fox + §F0KUL + Au, = h, Vo € OM;r (24)
1
—Wx + §HK* U + Augr = hys Vk* € O 1
WMo —
mpdiv®(u¥) — Bmpd? APp® = 0 Vb€ D; \@5
mpdiv®(u®) — Bmyd2 APp® 4 amyp® = gp Vb € ’DJF

with A, 8, > 0 and (%, p®) the solution computed at the previous time step ¢, 1 = (n — 1)t for
n € {l,...N —1}. We show that (24) is wellposed. We will refer to the system (24) in the more
compact form:

597’?(11‘2 Py, Vs, fr, Uz, hy), gp,) = 0. (25)

We then propose the following parallel DDFV Schwarz algorithm:

€ RMLrU9Mr and g© € R?, the al-

gorithm performs two steps on the iteration index [ = 1,2,... and i, j,€ {1,2}, j #i:

at each time step t,, for arbitrary initial guesses h%
I I T D, oM . .
1. Compute (U-ijp:oja \Ifzj) € R* x RYi x Rr solution to
M l — -1 -1
ﬁQJ F(uT 7p® ) \IJTJW ffj P uTj ’ hfj 7995 ) =0. (81)

2. Compute the new values of hl:] and of gé)p_ by:
J

hi féKl — FC,KluL + ! g Vij =1; € OM; 1,

1
hi;f = \IJ K~ 2H u -+ )\u Vk; € 89)2;% such that Tgr = Tky,
g]l)j = (mD divP — Pmp, di ADZ ) + amp, pDZ Vp; € 335 such that xp, = p,.

(S2)

When proving the convergence as [ — oo of (S1)-(S2), we realized that actually this algorithm

converges to a modified version of (P), where the fluxes on the interface depend on some coefficients
EUK) EO’*K* :

Theorem 8 Let (u=,p®) be a solution of (P), where:

e On the primal mesh, the new discrete convective fluxes are defined by:

By dd ifo ¢ Er,
EUK ’l,fO' € gFa
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where we refer to (IV.28) for the definition of Bix.

e On the dual mesh,
Bos<Id if o*NT =),
Byrgr if o* N 0.

Under the hypothesis that m,» = 277%]*. = 2m,x, for j,i=1,2, j = i, the iterates of the Schwarz
algorithm (S1)-(Sy) converge as | tends to infinity to the solution of (P).

We refer to Sec. IV.3.1 and Thm. IV.3.9 for the details. So we asked ourselves if it was possible to
recover, at the limit, the solution of (P). The answer is positive as long as we modify the fluxes
on the interface &t of the Schwarz algorithm, as shown in the following theorem (Thm. IV.4.1):

Theorem 9 Let (u®,p®) be a solution of (P) for convective fluzes defined by a constant upwind
fluz Boy(s) = 3|s| for all o € €, and by the centered flur By (s) = 0 for all o* € E*. Define (S)
the Schwarz algorithm where

e On the primal mesh, the new discrete convective fluzes are defined as:

By(s)Id if o ¢ &,
BUK(S) ifJ (S gr,

with:
_ 1 (s —2+2/1+ 4 0 »
Box =3 ) 26
() 2Q< 0 5| =14 TF 26 ¢ (26)

and Q = (:1; Y ), where g = (m) is the outer normal to the interface I'.
y - Y

e On the dual mesh, By++(s) = 0.

Under the hypothesis that m,» = 2m0; =2m,x, for j,i=1,2, j #1, (P) is the limit of the Schwarz
algorithm (S).

We numerically tested and compared the convergences proved in Thm. 8 and Thm. 9. We also
showed the influence of the parameters A, a of the transmission condition (21); tipically, we observe
the presence of an optimal choice for both A and a. Moreover, the mesh, the test case and even
the stabilization parameter affect this optimal values. For further details, we refer to Sec. IV.5.

Curved interface reconstruction

The last topic addressed in this dissertation is a work done during the CEMRACS project of 2018,
with Igor Chollet, Théo Corot, Laurent Dumas, Philippe Hoch and Tomas Leroy.

We proposed a curved interface reconstruction procedure in the case of a 2D compressible flow
made of two or more materials. Interface reconstruction (IR) methods are encountered in numerical
simulation of multi-material or multi-fluid flows. If we suppose to consider the case of two materials,
the objective of IR methods is to define a geometric interface separating material 1 and material 2
with the following properties:

e P1: volume fractions conservation,
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e P2: continuity of the interface,
e P3: robustness,
e P4: low or moderate computational cost.

The first IR method that has been introduced in 1982 is due to D.L. Youngs [You82]. There exists
many variants to Youngs method, for instance an order 2 reconstruction ([RK98]) or an extension
to more than two materials ([SGFLO09]). Some correction terms for the normal computation have
also been proposed to reduce undesirable effects and to smooth the interface ([GDSS05]). Even
though this method is still largely used up to now because of its simplicity and robustness, it
suffers from the non continuity of the interface.

Recently, in [DGJM17], a new reconstruction method which ensures continuity of the inter-
face and preserves volume fractions have been introduced. This new interface reconstruction
method, called DPIR (Dynamic Programming Interface Reconstruction) has been used as a starting
point for the presented work. It consists of two main steps:

1. the minimization of a suitable energy functional, which gives a continuous linear interface;
2. the addition of a control point in each cell in order to find the correct volume fractions.

The last step in usually made by searching the point in the normal direction of the interface, in
the line passing through the center of this one. We had three main goals during our project that
we detail in the following.

First, we extended the DPIR method for curved interfaces (Sec. V.3). It is of interest in
particular in the case of curved meshes, where an exact reconstruction of the interface is expected.
In order to be a real candidate for being used in multi-material hydrodynamic simulation using
ALE remap methods, the DPIR method must be able to deal with distored meshes.

In order to obtain a curved interface, we chose to introduce rational Bezier curves in the local
correction phase of DPIR.

Second, we proposed several improvements in order to deal with strongly distorded cells and small
volume fraction issues.

In particular, we suggested to change the direction for the control point (the center of the cell
instead of the perpendicular bisector to the interface), to pass from a uniform discretization of the
segments crossing the interface to a Chebyshev one in order to obtain a finer discretization around
the corners and to add a new penalty term to the energy functional that has to be minimized in
step 1.

Finally, this work ended with a generalization of the method to the three materials case (Sec. V.5).
Interface reconstruction for multi-material simulations is a complicated issue, and a comparison
of several existing methods can be found in [KGSS10]. The proposed method applies the DPIR
method for all the materials without choosing any material ordering and a suitable average is
applied to obtain the final interfaces. The method has been tested on two test cases with triple
point configuration on cartesian meshes, giving encouraging results for future unstructured meshes
cases. We illustrate an example in Fig. 4. For more simulations and more details, that has been
obtained with a C++ code, we refer to Chap. V.
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Fig. 4 Exemple of reconstruction of an interface between three materials, with two triple points
configurations.
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The aim of this chapter is to introduce the DDFV method for Stokes and Navier-Stokes problem,
the meshes and the notations that we will use along this dissertation; we adopt the main definitions
introduced in [ABHO07] and [Krel0].

This method enters the class of finite volume methods, that are discretization methods in which
volume integrals are converted to surface integrals, using the divergence theorem. An important
feature of those methods is that they are locally conservative; in fact, surface integrals are evaluated
as fluxes at the boundary of each finite volume and they are conserved from one discretization cell
to its neighbor. This makes finite volume methods quite attractive when modeling problems arising
from fluid mechanics, the derivation of which are precisely based on local balance principles.
Finite volume methods for Stokes and Navier-Stokes problem have been widely studied during
the years. Concerning the Stokes flow, we refer to [EHLO6] for a colocated and stabilized finite
volume scheme, [BEHO05] for a staggered finite volume scheme, [DE0S8] for a mixed finite volume/
finite element scheme, [Del07] for an alternative DDFV scheme with a different localization of the
unknowns, [DO15] for a DDFV scheme for the vorticity-velocity-pressure formulation.
Concerning the Navier-Stokes flow, we refer to [BCHO0] for a fractional step method combined
with finite volume schemes, [EHL07] for a colocated finite volume scheme, [EHO05] for a staggered
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finite volume scheme, [Del07] for an alternative DDFV scheme with a different localization of the
unknowns, [DE08, LS17] for a combined finite volume/ finite element scheme, [GHL10] for finite
volume scheme with explicit time discretization, [CCML17] for a high order finite volume scheme
based on polynomial reconstruction.

DDFV method has been developed since the early 2000’s; the DDFV schemes have been first
introduced and studied in [Her00] and [DOO05] to approximate Laplace equation on a large class of
2D meshes including non-conformal and distorted meshes.

A way to consider general families of meshes is to add some unknowns to the problem: we
require unknowns on vertices, centers and edges of control volumes; for this reason, DDFV method
works on (three) staggered meshes. From an initial mesh, called the "primal mesh" (denoted with
MU IM), we construct the "dual mesh" (denoted with 2T* U OM*), that is centered on the vertices
of the primal mesh, and the "diamond mesh" (denoted with ®) , which is centered on the edges

of the primal mesh; see Fig. 1.1 for an illustration. The union of primal and dual mesh will be
denoted by %.

Fig. I.1 DDFV meshes on a non conformal mesh: primal mesh MU0 (blue), dual mesh 2T U™
(red) and diamond mesh © (green).

DDFYV method for Stokes and Navier-Stokes problem leads naturally to locate the unknowns of
velocity and pressure in different points; the velocity unknowns are associated to each primal and
dual volume, while the pressure unknowns are located on each diamond. So DDFV enters the
class of staggered methods. This is an usual technique for incompressible flows: one of the best
known schemes is the MAC (Marker and Cell) scheme (see [HW65]), which is built for cartesian
meshes; we can mention also [CR73| for triangular meshes. MAC schemes, as unknowns, consider
the normal components of the velocity (located on the mesh edges) and the pressure (located at
the centers of the cells); with DDFV, we generalize this schemes by considering all the components
of the velocity and extending it to more general meshes. Moreover, it has been shown in [Krel0)]
that a DDFV scheme on a cartesian mesh is equivalent to two decoupled MAC schemes written on
two different staggered meshes (made exception for the boundary).

With this kind of construction, DDFV has two important advantages:
1. it applies to general meshes, such as non-conformal and distorted meshes;

2. it can reconstruct and mimic at the discrete level the dual properties of the continuous
differential operators.

The second point is what gives the terms "Discrete Duality" to the name of the method: the
discrete gradient V® (see Def. 1.3.1) is proven to be in duality with the discrete divergence div®
(see Def. 1.3.5) which is naturally associated to the finite volume setting. In particular, the duality
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consists into verifying a discrete Green’s formula, see Thm. 1.5.1.

Outline. This chapter is organized as follows. In Sec. I.1 we recall the description of the DDFV
meshes, followed by the approximation spaces and projections in Sec. [.2. The discrete operators
are introduced in Sec. 1.3 and in Sec. 1.4 we detail the definition of the associated scalar products
and norms. In Sec. 1.5 the duality property, i.e. the discrete Green’s formula, is stated. A reader
that is familiar with DDFV can easily skip those sections, which maintain the notations and the
structure of the presentation of the method done for instance in [Krel0, GKL19]; our intention is
to give continuity to the previous works on the subject.

In Sec. 1.6 we recall the main results on Inf-sup stability for DDFV, property that will be crucial all
along the dissertation; in this section, we extend the existing results to the case of inhomogeneous
Dirichlet boundary conditions. In Sec. [.7 we define the stabilization of Brezzi-Pitkéranta, a useful
tool in order to deal with general meshes. In Sec. [.8 we study the relation between the discrete
gradient and the discrete strain rate tensor; an important result of this section is the proof of Korn
inequality in the case of inhomogeneous Dirichlet boundary conditions. In Sec. 1.9 we extend to
general LP norms some discrete trace inequalities; we conclude by recalling some properties of the
discrete operators in Sec. 1.10.

1.1 DDFV meshes

A DDFV mesh ¥ is constituted by a primal mesh 2T U 0t and a dual mesh 91" U 99", see Fig. 1.2.

Construction of the primal mesh

We consider a primal mesh 9 consisting of open disjoints polygons k called primal cells, such that
Ukem k = Q. We denote 991 the set of edges of the primal mesh included in 9, that are considered
as degenerated primal cells. We associate to each k € T U IO a point x € &, called center. For
the volumes of the boundary, the point zy is situated at the mid point of the edge. When x and L
are neighboring volumes, we suppose that 0k N JL is a segment that we denote o = k|, edge of the
primal mesh 9. When x € 9T and 1. € 990, we denote o the segment 0k N JL that coincides with L.
We denote with £ the set of all edges and with &,y = £ \ {o € £ such that o C 9Q}.

The DDFV framework is free of further "admissibility constraint', in particular we do not need to
assume the orthogonality of the segment xy, x; with o = k|L , that is the case for instance in TPFA
schemes (see [EGHO0O0, Drol4]). Here we suppose:

Hp 1.1.1 All control volumes x are star-shaped with respect to xy.

Construction of the dual mesh

From the primal mesh, we build the associated dual mesh. A dual cell k* is associated to a vertex
Ty of the primal mesh. The dual cells are obtained by joining the centers of the primal control
volumes that have x4+ as vertex. Then, the point x+ is called center of x*. We will distinguish
interior dual mesh, for which 2+ does not belong to 9€2, denoted by 91" and the boundary dual
mesh, for which z+ belongs to 02, denoted by 99*. We denote with ¢* = k*|L* the edges of the
dual mesh 9" U 09M* and £* the set of those edges. In what follows, we assume:

Hp 1.1.2 All control volumes x* are star-shaped with respect to Tyx.
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Fig. 1.2 DDFV mesh ¥.

Construction of the diamond mesh

The diamond mesh ® is made of quadrilaterals with disjoint interiors (thanks to Hp 1.1.1), such
that their principal diagonals are a primal edge o = k|L =[x+, 2,+| and the dual edge o* = [z, x].
Those quadrilaterals are called diamonds and they are denoted with b or o, ,~. Thus a diamond is
a quadrilateral with vertices xy, ., xx+ and x;~ (see Fig. 1.3).

We remark that diamonds are the union of two disjoints triangles (zx, oy, z+) and (zy, Ty, 21+ )
and that diamonds are not necessarily convex.

Moreover, if o € £N 01, the quadrilateral o, ,+ degenerates into a triangle.

The set of all diamonds is denoted with ® and we have Q = U D.

DED
We distinguish the diamonds on the interior and of the boundary:

Dext = {0, .+ €D, such that o C 00}
Qint = Q\:Dext-

Remark 1.1.3 We have a bijection between the diamonds D € © and the edges € of the primal
mesh; also between the diamonds D € ® and the edges £* of the dual mesh.

For a volume v € 9t U 09t U 901" U 09T we define:

e my the measure of the cell v,

o &y the set of edges of v € MU M* U IM* and the edge o = v for v € 9N,

e Oy ={p, ., €9,0 €&},

o Dt =1p, » €Dy NDint}, D5t = {0, ,» € Dy N Dest },

e dy the diameter of v,

o By := B(zy, py) NOQ C v for ve IMUIM*, mp, its length, py chosen to verify the inclusion.
For a diamond b, ,~ whose vertices are (xy, Ty, Ty, T.*), we denote:

e xp the center of the diamond b: xzp = o N o™,

e m, the length of the edge o,
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Fig. .3 A diamond b = b, ,+, on the interior (left) and on the boundary (right).

e m,+ the length of o*,

my, the measure of the diamond b, ,,

dp the diameter of the diamond o, .,

ap the angle between ¢ and o*.
We introduce for every diamond two orthonormal basis (Fygs, i,x) and (fi,#*, Ty ), where:
e 1,4 the unit normal to o going out from k,
e T+ the unit tangent vector to o oriented from k* to r*,
e T, = the unit normal vector to ¢* going out from k*,
e Ty the unit tangent vector to o* oriented from k to L.
We denote for each diamond:
o its sides s (for example s = [y, 2¢+]),
o & ={s,5 C Op and s € 9N} the set of all interior sides of the diamond,
e m the length of s,
e 1ig, the unit normal to s going out from b,
o G ={s¢€ &,V D} the set of interior edges of all diamond cells b € D,

o Sk = {s €6, such that s C x} and Sg~ = {s € S, such that s C x*}.
Remark 1.1.4 FEvery diamond is star-shaped with respect to xp.

Remark 1.1.5 It can happen that dual cells can overlap; to avoid this inconvenient, we can either
suppose that the diamonds are convexes or consider the barycentric dual mesh, obtained by joining
the centers xx of the primal control volumes to the middle point of the edges that have xy as a
vertex. Thanks to Hyp. 1.1.1, barycentryc dual cells have disjoint interiors.
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Regularity of the mesh

Let size(T) be the maximum of the diameters of the diamonds cells in D.

To measure the flattening of the triangles we denote with ag the only real in |0, 5] such that

sin(ag) = min | sin(ap)].

We introduce a positive number reg(¥) that measures the regularity of the mesh. It is defined as:

1 d d dy
reg(¥) = max | ———, N, N'*, max max —-, max — ( X ,
sin(ar) DED s€&p My KEM /Mg K*ezm*uazm* Mgr
d di+
max max( K) max max< £ )), (I.1)
KEM DED \ dp /) K*€M*UIM* DEDk= \ dp

where NV and N/* are the maximum number of edges of each primal cell and the maximum number
of edges incident to any vertex. The number reg(¥) should be uniformly bounded when size(¥) — 0
for the convergence to hold.

From the definition of reg(¥), the following geometrical result holds: there exist two constants Cy
and C9 depending on reg(¥) such that Yk € 9, Vk* € M* U 9IM* and Vb € © such that pNk #£ 0
and o Nk* # 0 we have:

Cimyx < my < Comy, Cimue < my < Com,

and
Cidg < dp < Cydg, Cy dg= < dp < Co dg+.

I[.2 Approximation spaces and projections on DDFV meshes

The DDFV method for Stokes and incompressible Navier-Stokes problem uses staggered unknowns;
this is a classical approach, see for instance [HW65].

We associate to each primal volume x € 9T U 99 an unknown u, € R? for the velocity, to every
dual volume x* € 9" U 09" an unknown u € R? for the velocity and to each diamond p € D an
unknown p® € R for the pressure. Those unknowns are collected in the families:

u® = ((u)xemuom, (U )xremeuom) € (R*)* and  p® = ((p")pen) € R®.

We approximatively have twice the number of velocity unknowns with respect to finite volume
methods like TPFA (see [Drol4]), but we will show that this allows to build a complete approxi-
mation of the gradient (not only in the normal direction), which gives robustness to the method,
since it does not demand any "admissibility constraint" on the mesh; this is not the case in TPFA
methods, which require an orthogonality condition: this is a strong hypothesis since it excludes,
for instance, non conformal meshes (such as locally refined meshes).

In all our works, we will deal with mixed boundary conditions; so we define two subsets of

the boundary mesh, useful to take into account two different types of boundary conditions (see
Fig. 1.4):

OM; ={xk € OM: x, €T}, fori=1,2,
oM = {x € OM" : = € T},
5‘932; = {K* € OM* - T € Ty \ Fl}
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The conditions will change from a chapter to another, so I'1, I's will represent different types of
boundaries: in Chap. II, we will impose Dirichlet and Neumann boundary conditions; in Chap.
II1, we will impose Dirichlet and open boundary conditions on the outflow. Finally, in Chap. 1V,
we will take into account transmission conditions on the interface between subdomains.

Iy
« € oMy
r 5& k* € OM5
r, 2
< < O
- m < oMo
Iy

Fig. .4 Domain with mixed boundary conditions

We define now two discrete average projections, for all functions v in (H!(Q2))?%:

e one on the interior:

v =(( [ V(w)dx>K€m) ey = (o . veae) eim) |

e one on the boundary :

1 1
P%ly = <</ v(ac)dac) , ( / v(x)dx) ) .
mBK BK Keom mBK* BK* K* €OM*

We can collect them in a shortened notation:

PEv = (BN, BV, B2, v e (H'())%).
We introduce also a centered projection on the mesh <:

PEv = (V@) Jkemuom), (V(@e)Jk-e@mevom)), ¥V € (H*(Q))?, (L.2)

and an average projection on the diamond mesh ®:

P2q = E q(x)dz Vg € HY(Q).
Mp Jp DeD

We define two discrete subsets of (R?)*, useful to take in account Dirichlet boundary conditions.
In the following, we will denote by I'p the Dirichlet boundary (instead of I'y), and consequently
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OMp, OM7F, the corresponding primal and dual boundary mesh (instead of 09y, OMT).
Ep? = {u® € (R*)*,s. t. Vk € 9Mp, u, = 0 and Ve € 9%, ue = 0}

E,Fn’?g = {u® € (R?),s. t. Vk € IMp, u, = (PXlg)x and Vi € OM%), ue = (PXg)y- ).

We define also the projection ‘ng on the space EnD%g:

gt (R)T — E.D

uT — ((uK)Kémuamgv (]P)?nﬂg)KE‘)ﬁDa (uK* )K* eim*uaimg, (]P)?ngg)K*Eam*D) .

1.3 Discrete operators

In this section we define the discrete operators that are necessary to write and to analyse the DDFV
schemes that we will build. We start by defining a discrete gradient and a discrete divergence.
Those two operators are in "discrete duality" (this is what gives the name to the scheme) since we
can prove a discrete Green formula (see Thm. 1.5.1 below) that links them. For the proof we refer
to [CVV99, Her00, DO05] and [Krella]. Then, we will define some other operators that will be
useful later, such as a discrete strain rate tensor, a discrete curl and a discrete rotational.

Definition 1.3.1 (Discrete gradient on ©) We define the discrete gradient of a vector field of
(R2)* the operator
VP uT e (R?)T = (VPu¥)pen € (M2(R))?,

such that forp € ® :

1 u, —

vDu‘I = —
sin(ap) [ My m,

where @ represents the tensor product.

We remark that the area of a diamond b is m, = %moma* sin(ap). So we can rewrite the discrete
gradient as:

1
vDu‘I _

= oo [Me (U, — Ug) @ Moy + Mg+ (U — Ugx ) @ Tgmgr] .

U

Remark 1.3.2 The gradient V®, that is constant on each diamond b € ®, is the “composition’
of two directional derivatives. In fact, the gradient in the direction T, T, can be approzimated by
(u, —wy), and the one in the direction ZTer, Tt by (upx — ) (see Fig. 1.8). Thanks to trigonometric
formulas, we can combine those two and obtain a full approximation of the gradient on b, given by
Def. 1.5.1 .

Remark 1.3.3 For all u® € (R?)?, the property VOu™ = 0 implies the existence of two constants
co € R? and ¢; € R? such that:

u=cy Vk€(MUIM)
ue = ¢ Vkr € (I UOMY).

If, moreover, u* € EgD, we deduce co = ¢ = 0 and finally u® = 0.
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Definition 1.3.4 (Discrete strain rate tensor on ©) We define the discrete strain rate tensor
of a vector field in (R?)* as the operator

D® : u® € (R*)* — (D°u)pep € (Ma(R))®

such that forop € ®:

_ vDuT+t(vDuT)
= 5 .

To define a discrete divergence, we remark that for a regular vectorial function £, by applying

DPu* (1.3)

Green’s Formula we can write:

/K div(¢(z))dz = > /U £(s) -@,ds,  Vke M. (1.4)

oCOK
By means of the discrete counterpart of (I.4), we can define our operator of discrete divergence.

Definition 1.3.5 (Discrete divergence on ¥) We define the discrete divergence of a discrete
tensor field of (M3(R))® as the operator

div® : €0 € (My(R))® - div*€® € (R?)*.
Let £° = (&)peo € (M2(R))®, we set:
div*€® = (div™e® | div”™e® | div™ €0, din®™ £°),

where we define div™ €2 = (divFe® )geon, dir?™e? =0, div™ €2 = (divF €2 ke and dir?™ €° =
(div¥" €2y come with:

. 1 N
divie® = — Z M R, Yk € M,
i Do_yc* (Sl
* 1 —
divie® = — > me Pl Vi € M,
Ul D(r,o‘* E@K*

* ]. g — *k
dive® = ( S gL+ Y W;fDnL,K> Ve € O*.
D

K*
o,0* GQK* DG’O* Eﬁgft

Definition 1.3.6 (Discrete gradient on ¥) We define the discrete gradient of a scalar field of
R® as the operator: .
VEp? eR® s VPP € (R2)
with
vV p® = div® (p® Id).

Similarly to the continuous setting, in which for a vectorial function f = (f1, f2) of two variables
(z1,x2) the gradient and the divergence are defined by:

ol of , Of
Vf = (gﬂ;; gﬂ;;> : div(f) = Tr(Vf) = e T A (L5)
0x1 0o 1 2
and the curl and the rotational by:
o o ofr  0f
curl f = (gﬁg _%‘E) , rot(f) = Tr(curlf) = ~ o + P (1.6)
o 1
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we can further define (on the diamond mesh ©) a discrete divergence, a discrete curl and a discrete
rotational.

Definition 1.3.7 (Discrete divergence on ©) We define the discrete divergence of a vector
field of (R%)* as the operator

di® : uT € (R?)T = (diPu)pep € R?
with
diPu® = Tr(VPu®), YoeD.

Definition 1.3.8 (Discrete curl on ©) We define the discrete curl of a vector field of (R?)* as
the operator
curl® : u® € (R*)® — curlPu® € (M3(R))®,

such that forp € ®:

1
2my

curPu® =

[md(uL - ux) ® Trpx — My (uL* - ux*) ® 7_-’KL] .

Definition 1.3.9 (Discrete rotational on ©) We define the discrete rotational of a vector field
of (R%)* as the operator
rot® : u® € (RY)* = rot°u® € R®

with
rotu® = — Tr(curPu®), Vo€ ®.

I.4 Scalar products and norms

We define the trace operators on (R?)¥ and R®; see Fig. 1.5 for the notations.

Ug

Fig. I.5 A boundary diamond, o € 091.

Let 4% : u® = 43 (u®) = (15(u¥))secom € (R?)?™ such that:

U+ + 2u;, + ug+
4 )

Vo (u®) = Vo = [zg, x+] € OM. (L.7)

We can also define 7% : u™ — 73 (u%) = (35 (u¥))seom € (R?)?, such that:

U + 2uy + upx
4 9

Yo (u®) = Vo = [xg, 22| € OM. (1.8)

On the diamond mesh we define v° : ® € (R?)® — (9°)pen,,, € (R?)Pest, which is the operator
of restriction to the boundary diamonds.
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Now we define the scalar products on the approximation spaces:

[V, u® (Z My Uy - Vi + Z My Uyer 'VK*> vu®, v ¢ (]RQ)‘Z

Kem K* €0t UaM*
(@°,v™Maa = Ym0 v VO? € (R2)Dert, vOM ¢ (R2)IM
a o* EDext
(£2:0%)p = > m(&:9) VER, &° € (My(R))®
DU,U* €D
P )= > mp’ vp®,q° € R?,
* €D

o‘o‘

where (€:6) = Y &,&; = Tr("€€) for all ,€ € Ma(R).

1<4,5<2
For all p > 1 we can define for any u® € (R?)* and ¢° € (M3(R))® the norms:

) 1/p ) 1/p
||uf|rp={2(me|uK|p+ > mx*|ux*|p)] =[5 (i + ez |

KeMm K* e uom*

oot 1/p
W on = (X mar)

DU»U* EDeyt

1/p
Ne2, = my| &P ),
p= (X micr)

1/p
D
[0l = [l ]+ Vo 2]

1/p
1%, = (Z mD|pD|P) .

DED

Remark 1.4.1 Remark that, if we denote by || - |7 the Frobenius norm |||£|||%_— = (£:&) for all
matrices £ € Ma(R), the following holds:

In [ABHO7], [DO05] the discrete gradient and discrete divergence for a scalar-valued function are

E+0¢
2

< gl 7.

f

1.5 Green’s formula

linked by a discrete Stokes formula. This is precisely the duality property that gives its name to
the method.

Theorem 1.5.1 Discrete Green’s formula
For all €2 € (M3(R))®,u® € (R?)?, we have:

[div<e®, ule = —(6° : VPu%)o + (v (£°)7, 7% (u%))an,
where T is the unitary outer normal.

The proof can be found in [Krel0, Thm IV.9].
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[.6 Inf-sup stability

In this section, we first recall the Inf-sup stability property for the DDFV method: its definition
and its main consequences. Then, since it has been proven to hold in the case of homogeneous
Dirichlet boundary conditions, we will extend the result to the case of v* € Eg P i.e. Dirichlet
boundary conditions just on a fraction of the domain.

Inf-sup stability inequality (or LBB), in the continuous setting, is formulated as:

inf sup M >0
peL3() \ ve(mi()? [[vIlm lIpllr2

where a(v,p) = / p(div(v)) and L3(Q2) = {p € L*(Q) : m(p) = ﬁfgp = 0}. This inequal-
Q

ity is equivalent to the existence of a continuous right-inverse of the divergence operator (see

[GR11, BF12]).

This condition is related to the well-posedness of the Stokes problem coupled with homoge-
neous Dirichlet boundary conditions. In the DDFV framework, Inf-sup stability has been proven
to hold unconditionally for conforming acute triangle meshes, non-conforming triangle meshes and
chechkerboard meshes. For some conforming or non-conforming Cartesian meshes, it holds up to a
single unstable pressure mode. Moreover, it has been proven numerically for many other families
of meshes and it has still not been found a mesh that does not satisfy it. For more details, see
[BKN15]).

Definition 1.6.1 A given DDFV mesh ¥ is said to satisfy the Inf-sup stability if the following

condition holds: < @
. a*(v®,p*)
Bz := inf < sup ) > 0, 1.9

pko 22 T l0® — ()]l (L9)

where a*(v=,p®) = (div®vT, p®)p and m(p®) = Z myp’.
DED
For a given family of meshes such that size(¥) — 0, the scheme is stable if and only if

liminf g > 0.
it P

We shall use the following two consequences of the Inf-sup condition (I1.9):

. Vp® € RY:
1 (div®v®, p?)p
D D )
p"—mp)|le L — sup ——x———", 1.10
| P2 = 2 S e (L.10)
o For every p® € (R?)?* such that m(p®) = 0, there exists v* € Eq such that:
div® (v®) =p®
(I.11)

1
IV2vT]l2 <=5 [p°]|2.
Pz
The former is a direct consequence of the definition. The latter is more subtle, in particular when
considering the constant arising in estimate (I.11). It is worth detailing this issue.

The Inf-sup property is a crucial property of the continuous gradient/divergence operators,
which enters into the analysis of the Stokes problem. In particular it is equivalent to the possibility
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to define a continuous right-inverse of the divergence operator defined from Hg () to L?(f2), as a
consequence of the open mapping theorem [BF12, Sec. IV.3] and (I.11) is nothing but the discrete
analog of this property.

For the numerical analysis, it is crucial to check whether or not the constants are uniform with
respect to the mesh parameters; which is not completely clear when one uses such an abstract
argument.

Therefore let us justify that the discrete divergence operator admits a right inverse, which,
furthermore, satisfies a continuity estimate that depends only on the (possibly uniform) constant
of the Inf-sup condition (I.9). To this end, we adapt the sketch of proof presented in [DPE12,
Rem. 6.7].

Proposition 1.6.2 Let T be a mesh that satisfies Inf-sup stability condition. Then, for every
p®° € R® with m(p®) = 0, there exists w* € Eq such that:

div® (w®) =p®

1
) D
IVEwWE 2 <=z 7]z,
5

where Bz is the Inf-sup constant defined in (1.9).

Proof As a warm-up we shall need a discrete analog of the Riesz isomorphism between H& and
its dual space H~'; the analogous discrete spaces are Eq and its dual Ey.

Let [ : Eg — R be a continuous linear form on Eg, equipped with the norm induced by the
scalar product (V®-: V®.)p, i.e. VT, u® € Eg, (VOvT : VPuT)p = Y pep mp(VPVT : VPu®).
By continuity, the linear form [ satisfies:

)
V) 5ol < OOV
By Riesz representation theorem, there exists a unique jlz € Eq such that Yv* € Eg:
{1,v)e 5, = (V2T : VOVT)s.
Moreover, by applying the previous relation, we have:

i . (4 vE )y o | wp (VRTE, Vv
E/ = —_—
O yrer, IVPVTllz  yreg, IVEVEl2

Since J;* € Eg and by Cauchy-Schwarz, it holds:
Ul = V2T -

We can then deduce that:
(T ey e = IVOTEN = UG, - (I.12)

Let M® = {p® € R® : m(p®) = 0}. We consider now Vp® € M® and ¥v* € Eq:
a*(p®,v®) = (p°,div® (v))s.
Let p° € M®. We define the linear form Byo : Eg — R on Ko as:

(Byo, VT>]E(),IE0 = a*(p®°,vT). (1.13)
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The linear form Byo on Ey is continuous, since it holds by Cauchy-Schwarz inequality:
[(Bpo, vy Bl = (07, div® (v¥))o| < [0° ]2 VIV 2. (L.14)

We can deduce the following properties on the norm of Bo:

e by (I.14):
at @7 vT @7 divg vT
HBp@”H% — sup (p ): sup (p (v¥))

o o
< [Ip™ 2 (L.15)
vieky IVOVEll2  yser,  [IVPVE2

« by (I.10), since we suppose that the mesh T satisfies Inf-sup condition and that m(p®) = 0:

T(AD T
a*(p?,v®)
1Bpolle, = sup =52z

> fs(Ip® |2 (L.16)
V‘IE]EO ||v@v‘2”2

Consider now the following problem:

Find q® € M® such that Vr° € M?® :

<Br©7\7gq® >E6,E0 = (p:D?r@)@' (117)

=a*(1®,q®)
If we define a*(1°,q®) := (B0, J5 9)1%7@0, we can show that a@* is coercive. In fact, if we apply
q
(1.12):
aT(qu,qQ) = <Bq©7t7l">’i@ >]E6,Eo = ||‘8qD ||12E67
and by (1.16):
a*(q°,9°) = |Bgo I, = B2lla®|13- (1.18)

The coercivity of @* implies that problem (I.17) is well-posed. Let q® € M® be the unique solution
of (I.17); then:

a

)

Bl < @@ = 0% < Pl

<
~—
by (1.18 ) by Cauchy-Schwarz

-
by (1.17
which implies ﬁ%HpDHz > |lg®|l2. From (1.15) and (I.12), we deduce:

T
1
@Hpglb > a®ll2 2 1Bgo llgy = VO T o l2- (L.19)
T
If now we set w* = jBT@ € Eg, we obtain
q

1
Vw2 < 5 [Ip®l2
T

that is the estimate we want to prove. It remains to show that div®(w¥) = p®.

Let r° € M®; we can write:
(r®,div®(w™))o (Bo,Wihg g, = (P7,17)0

—
by (1.13) by (L17)
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that implies
1®,p® —div®(w¥))p =0 Wr° € R®,m(°) = 0. (1.20)
If now we consider 7° € R®, we can decompose it in:

o o _ )

€2

=r®
m(F®)

€2

m(i)

2]

1o+ 1o

|

:I‘9+

1o.

where 1 = (1p)pep and 1p is the indicator function on p. Remark that m(r®) = 0. Thus, if we

compute:
~
. . m\r .
(?@,pg — div® (W¥))p = (rg,pg — leQ(WT));D + |(Q| )(]1971)@ — div® (Ww9))o (I.21)

By (1.20), we deduce (1°, p® —div® (wT))p = 0; remark that (1o, p°)o = Ypepp Mop> = m(p®°) =
0 and that by Green’s formula (Thm. 1.5.1) (1g,div®(w¥))p = [V (1), w*]]z = 0. So (1.21)
gives:

(,p° —div®(w¥))p =0 Vi° € R?,

that implies p® = div® (w¥). ]
The following result is an extension to Necas Lemma, [GR86, Corollary 2.4]. Instead of considering

v € HE (), with zero boundary data and p € L3(€2) with zero mean, we take (v, p) € HE(Q)x L3(Q),
with Hf = {v € (H(Q))?, v=0o0n T'p}, with [['p| > 0.

Lemma 1.6.3 Let Hi = {v € (HY(2))?, v=0 on p}. Then, for every p € L*(Q) there exists v
€ H} and a constant C > 0 depending only on Q, such that:

div(v) =
() =p (1.22)
[0l < Cllpll2-
: 1 1 : : 1 :
Proof Consider w € Hy such that @m(dlv(w)) =1, ie. 9] div(w) = 1. We can decompose
)

any p € LQ(Q) into:
1 1
p=p— mp)div(w) +=m(p)div(w)
] m

=5

_ 1 .
= b+ gm(pdiv(e)

Remark that p € L3(€2). By Necas Lemma, [[GR86], Corollary 2.4], there exists v € (Hg(2))? such
that

div(®) = p
[0l 52 < ClP]l z2-
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If we set v = U + m(p)w, we can observe that v € Hy(2) and that

. . 1 .
div(v) = div(v) + @m(p)dlv(w)

that is the first property of (I1.22).
We now look at ||v||z1. By Minkowski inequality:

_ 1
vl g = [[v+ @m(l?)w”ﬂl

[m(p)]

< |ollm + [y
€2

We apply Necas Lemma to ||v]| 1 and Cauchy-Schwarz inequality to |m(p)|||lw| 1 :

- 1
vl < ClIpliz2 + WHPHH [wl[ - (1.23)

We now need to estimate ||p||z2. By definition of p and Minkowsky inequality, we can write:

[m(p)]
€]

12122 < llpll2 + [[div(w)[| 2

By Cauchy-Schwarz inequality, the fact that ||div(w)|;2 < ||w| g and the bound of |m(p)| we
deduce:

1
1Pl 2 < (1 + Hw”H1> Ipll 2
VIQ

Injecting this estimate in (I1.23), we obtain:

1 1
[0l < [C (1 + IIw!H1> + HWIIHl] 121l 2
€2 VIQ

that, if we define C = C (1 + \/1|ﬁ||w||H1) + \/ﬁHWHHh gives:

[0l < Cllpll2-

This proves (1.22) of Lemma 1.6.3. |

1.6.1 Extension to inhomogeneous Dirichlet boundary conditions

In this section we extend the results of [BKN15] to the case in which v* € EED instead of v* € Eg;
this will come as a natural extension since [Eg C EgD.

Theorem 1.6.4 For a given DDFV mesh T that satisfies Inf-sup stability (see Def.1.6.1), there
exists Bs such that:

. a5 (v, p?)
B := inf ( sup : ) > 0, 1.24
: oo ol — m(o®)s (1.24)

D D
poeR vE GEgD
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where a*(vE,p?) = (div®vT, p®)p and m(p®) = Z mpp’.
DeED
Moreover, for a given family of meshes which are Inf-sup stable such that size(T) — 0, we have:

aidnt fr > 0.
Proof To prove this result, it is necessary to refer on how in [BKN15] the authors prove that
Inf-sup condition (of Def. 1.6.1) holds for a given mesh T. We show how it is possible to extend
the results of this proof to the case of v* € EgD . To do that, we do not detail the computations
(that can be found in [BKN15]), but we give an idea of the key points of the proof and we show
how to deduce (1.24).

The strategy used in [BKN15] is to relate the value of Sz to the eigenvalues of a suitable matrix.
The reformulation of (I1.9) as an eigenvalue problem reads:

B T )
PR < s (Bsv7, ) ) (1.25)
p?eRr® vIEE, <Rgv”",VT>5<J\4SPT‘),PZD>5
<M‘Ip®’1>:0

where Rg is the stiffness matrix, Bz is the divergence matrix and Ms the pressure mass matrix.
Those matrices are built so that:

(Bzu®,p®) = a* (u¥,p°) = (div®v®, p®)o, (1.26)

where we denote by (-,-) the Euclidian inner product on the spaces R2Vs and ]RNE’, with
Nz = Card(%), Np = Card(D).

Our aim is to extend the reformulation (I1.25) to the case of v* € EED , thus we need to build
different stiffness and divergence matrices that take into account boundary terms and maintain
the same properties of (I1.26).

The new stiffness matrix Rs, modified only on 09y and 99Ny, is built as:

( - ";“divK(v@uT))
(uU)O'EamD

(o)
~ om
R‘IUT — e ) R o€ N
(— div* (V*u®)
2 K*et*
(ux*)K*Eaim’jj
(- mQ div¥ (VPu™) + 3 TZf’VDu?ﬁUQ
De@eft K*e@‘)ﬁ}*\,
K

KeMm

so that, if we take the product with a vector v*, we have:

(Rzu®,vF) = —[[divF(Vou®), v¥]]s + (72(VO (%) - ), 7 (07))

onN
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that by Green’s formula (Thm. 1.5.1) implies (Rgu®, v)g = (V2u=T : VOvT)g so that:

(Rsu®,v®) = (Rzu®,v®).

(1.27)

For what concerns the divergence matrix, we remark that Bg is identical, while its transposed is

modified into ?Bg in order to take into account the boundary terms on My and oMy

~ 1
Bzu® = (—deivD(uT)Deg) and !'Bgp® = 5

* m
My V< p® — "D-ﬁ’,>
(me Vs~ ¥ e o

So, if we take the product with a vector p®, we have:

(Bzu®,p®) = —(div®u®, p)p

('Bep®, u) = [[Vp®, uTlx — (p¥= T, ¥ (u7))

<mKVKp®)Ke£m

(0 )O'Eamp
( _mUpDﬁGK )UEBWIN

(mx* vEp? ) K* e
(0)x» coms)

De@;ff

o0’

Green’s formula (Thm. 1.5.1) gives (!Bzp®,u®) = —(p?,div®u®)yp, so that:
(Bzu®,p®) = ("Bsp®,u*).
So, if we define the DDFV for the Stokes scheme as:

Find (u%,p®) € E;? x R® such that:

div(—V®u® + p°1d) = £, vk € M
div¥" (=V®u® 4 p°Id) = f=  Vkr € M* UMY,
div® (u®) =0

(VPu® = p’Id)fi g = @, WD, .+ € Det NIy,

this is equivalent to
fon
0

~ ~ P
R: !Bz ut B f(?me
Bg 0 p:D N m
0
fom=

(1.28)

(1.29)
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By (1.27)- (1.28) and the fact that Eg C EED, we can conclude:

BevT o]
Bs = inf < sup < SY D7) 1)
2

p? cR® TeRy (RavT, vT)2 (M D D
<sz®?1>:0 v o< T > < IPp~, P >
. ( <BTV‘I>p©> )
= inf sup — i 1
pDERD vTcEy <RTVT,VT>5<MTP©7PQ>§
<Mgp®,1>:0
B T o ~
< i)inf@ < sup — < SY P >® ° 1) = Ps,
pPeR Ty (Rev®, vT)2 (Msp?, 2
(Msp® 1y=0 ¥ P v, vE)H (Map®, p%)

so that every time that Sz is proven (theoretically or numerically) to be positive, also Bz > 0.
This, in particular, implies that for a given family of meshes such that size(¥) — 0, by Def.1.6.1:

liminf B¢ > liminf B¢ > 0.
dminf fs > liminf S

From (I.24), as from Def. 1.6.1, we deduce the analogous of properties (I.10) and (I.11). In fact,
the following holds:

. Vp® € R®: o o
1 divev® p¥)o
I° el < 2 sup I (1.30)
T VTGIE(I;D 2

o Forevery p® € R®, there exists v* € EgD and there exists hg > 0 such that Vh = size(%) < hy,
there exists a constant C' depending only on Sz, 2, reg(%), ho :

div®(v®) =p® (1.31)
IV2vE |2 <ClIp®2- '

As for the case of (I1.10), property (I1.30) is a direct consequence of (1.24). For (I1.31), the proof is
the discrete analog of Lemma 1.6.3, that we detail here.

Lemma 1.6.5 Let ¥ be a mesh that satisfies Inf-sup stability condition; we denote h = size(¥).
Then, for every p° € R®, there exists v* € EgD :

div®(v®) = p®

and there exists hg > 0 such that Yh < hg, there exists a constant C depending only on
Bz, Q, reg(T), ho such that:
IV2vE[l2 < Clp®|l2.

Proof To prove this result, we adapt the proof of Lemma 1.6.3 to the discrete case; in this proof,
by means of a particular function, we reduce to the case of homogeneous Dirichlet in order to
apply the result of Prop. 1.6.2.
1
Let v € HllD (Q) with |Q|/ div(v) = 1. Let v* =P} v.
Q

By definition of the projection (see Sec. 1.2), we have v* € Ey. Moreover, by [ABH07, Corollary

3.1], given a sequence of meshes (%T,), such that size(%,) — 0 as n — oo and reg(%,,) is bounded,
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we have:
v v in (L*(Q))? as n — oo,

VOv* & Vv in (L)% as n — oco.

Remark that V®v* can be seen as the L? function Vov*» = > ped VPvi1p; as a matter of fact,

it implies Vo € (L?(Q))?*?
/ (VDVC{" :cp) —>/ (Vv:p).
Q Q
Thanks to the relation between the gradient and the divergence operator (see (1.5)-(1.6)) and by

1o O 0 O
choosing ¢ = ﬁ ( N ) and ¢ = ﬁ ( ), we obtain:

0 0 0 1g
o1 . 1
m-" = @m(dlv (vin)) — @m(dlv( v)) =1asn — oc. (1.32)
. 1 T s 1 T . . T T'p Dy, T
Define now w* = FEAME where m* := @m(dw (v®)); it satisfies w* € E;” and Vw* =
1
N—TVQVT. Moreover, by definition of m?*,
m
m(div®( ==z Z mpdivP(v®) = |Q]. (1.33)
DED

Its gradient is bounded by:
1
V2w 2 < =< V2V
m

and by [ABHO7, Lemma 3.4], there exists C' that depends only on reg(¥) such that
IV w2 <=z ||VVH2

y (1.32), there exists hy > 0 such that Vh < hg (where h = size(T)), m* > 3, so:

|VPw ||y < 20| VV]|2. (1.34)

We can then decompose any p® € R? into:

1 1
% = b — (b )i () 4l (o)
e )
1
=p° + @m(pg)dlvg(wz)

Remark that 7° € R® with m(p®) = 0 by (1.33). By Prop. 1.6.2, there exists ¥* € Eg such that
div® (¥%) :159

B (1.35)
Vo952 < _52 15212
If we set v¥ = v* + ﬁm(pg)wf, we can observe that v € Ef? and that

div®(v®) = div® (¥%) + |é|m( D) div® (wT).
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Using (1.35) and the decomposition of p® we get:

1
div® (v®) = p° + @m( p®)div® (wT) = p°,
that is the first property of Lemma 1.6.5 that we wanted to prove.
We now look at |[V®vT||2. By Minkowski inequality:

IVOVE|l2 = VO + r5rm(p®) VO |2

[

< [m(p®)]
< IIVDVTII2+WHV© W o

By (1.35) and applying Cauchy-Schwarz inequality to m(p®) = Y peo mop®, by recalling that
12| = >"pep My, We obtain:

IVovF]|2 < ||2+7Hp Iz 1972w |2. (1.36)

il

We now need to estimate ||p®||2. By definition of 5® and Minkowsky inequality, we can write:

62 H

P21z < 1Dl + o | ()]} div® (w) .

Q

By Cauchy-Schwarz inequality, the fact that ||div® (w®)||2 < [[V2wT |2 and the bound of |m(p®)|

we deduce:
1572 < <1 + 7”V© ‘IH2> 1P l2-
\/7

Injecting this estimate in (1.36), we obtain:

1 1 1
[VOvE|2 < [ (1 - \|V®WT||2> + ’VQW‘:‘?} Ip®1l2

Bz iyl iyl

and by (1.34) it becomes:

. 1 2
IVEvE[l2 < [5% <1 WIWV\&) rWVHz} 1p°12

that, if we define € — 2 <1+ 22 |vy \|2> 2Ty, gives:

IVovE)l2 < Cl[p®|l2.

This concludes the proof of Lemma 1.6.5. ]

1.7 Stabilization of Brezzi-Pitkaranta

This stabilization term is inspired by the Brezzi-Pitkdranta method [BP84] in the finite ele-
ment framework. This strategy has been previously used in the finite volume framework by
[EHLO6, EHLO7]; in particular, in the DDFV framework, it was proposed by the author of [Krella]
to add this term in the mass conservation equation, in order to deal with the lack of a uniform
discrete Inf-sup condition for general meshes. Later, in [BKN15], Inf-sup condition was studied (as
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presented in Sec. 1.6); it has been proven to hold for a large class of meshes but not for general
meshes, thus sometimes it will be preferable to stabilize the equation of conservation of mass in
order to avoid the Inf-sup hypothesis on the mesh.

To define this Brezzi-Pitkdranta stabilization term in Stokes and Navier-Stokes problem we
need a second order discrete operator, denoted by A® : p® € R® — A®p® € R?, defined as
follows:

1 dj+dpy
APp® = — Z 20 Z D —-pP), WwedD.
P s=p|D’e&yp D

Remark 1.7.1 We recall that & contains just the interior edges of the diamonds. Actually, we
never consider s € 0S). This means that we imposed automatically an homogeneous Neumann
condition on the boundary OQ inside the operator A®.

It resembles an approximation of the Laplace’s operator, however it is consistent only under
orthogonality condition (as in the case of admissible meshes, see [EGHO00, Drol4]); that is not true
in general for diamond meshes obtained from 1.

In relation with this operator we define a semi-norm |- |, on R® that depends on the mesh:

Pl = > (dp+ )™ —p’)% W e R®. (L.37)

s=D|D'cG

Remark 1.7.2 By reorganizing the sum on the diamond edges s € &, we have that for all p® € R®:

—(BATP° P2 =D Y (B+ B )

DED  s=D|D'E&)

= Y (B+d)P” )

s=D|D'€®
= "7
The following lemma is an inverse Sobolev lemma, i.e. the seminorm |- |, is bounded by the L2

norm || - 2.

Lemma 1.7.3 ([Krel0], Lemma IV.13) Let ¥ be a DDFV mesh associated to Q). There exists
a constant C > 0, that depends only on reg(%), such that Vp° € R® we have:

P75 < Clp°lle.

I.8 Results on the strain rate tensor

In this section, we compare the strain rate tensor to the gradient: this will be useful in the estimates,
in order to pass from a Laplace form of Stokes (or Navier-Stokes) problem to a Divergence form,
and viceversa. The most important result of this section is the Korn inequality.

I.8.1 Bound for the strain rate tensor

This estimate comes straightforward from the definition of the operators; the goal is to bound the
norm of the strain rate tensor with the one of the gradient.
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Proposition 1.8.1 For all u® € (R?)*, we have:
ID?u||2 < [[VFuT>.
Proof Thanks to Rem. 1.4.1, we have:

ID%u¥(lz = 3 mo|[DuT|% < Y mo|[ VEuT||F = [ VEuTf2.
DED DED

1.8.2 Korn inequality

The proof of the discrete Korn inequality is inspired by the continuous version in [BS07]. In DDFV
setting in the case of homogeneous Dirichlet boundary conditions, i.e. if u® € Ky, the theorem was
proved in [Krel0]. In this case the proof relies on the definition of the operators and the constant
of the estimate can be explicitly computed. By adding a part of the boundary with non-zero data,
we introduce some difficulties and we are able to prove the result only by contradiction, just as in
the continuous setting.

Theorem 1.8.2 (Korn’s inequality) Let T be a mesh that satisfies Inf-sup stability condition. Then
there exists C > 0, that depends only on reg(%),B%, such that :

IVPuT|y < C|D°u%|]y  VuT € EP.

In order to prove this result, it is necessary to first consider the case in which rot®u® has zero
mean.

Lemma 1.8.3 Let T be a mesh that satisfies Inf-sup stability condition. Then Yu® € (R?)* that
satisfies m(rot°ut) = Z myrotu® = 0 it holds:
DeED

1
|

920 < 25 [DPuo,

T

where Bz is the Inf-sup constant defined in (1.9).

Proof (of Lemma 1.8.3) Let u® € (R?)? such that m(rot®u¥) = 0. If we consider the function

rot°u® = Z rotPu®1p,
DED

this is an L? function with zero mean, by hypothesis. This means that, by infsup stability condition
(I.11), 3w™ € Ep such that:
div® (w*) =rot® (u%)

1 1.38
V2w <y [V (3
T
: . 0 1 _
Moreover, if we define the matrix xy = L o) we have the following property:

1
D®u® = VPu® + irot@(uf)x vu® € (R?)®.
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Let us compute by replacing the value of D® and by developing:
(D®u® : VPu®—curl®(w¥))o
1
= (V7u® + §rot®uTX : VPu® — curl®w™)
1
= |[VPu® |3 — (VPu® : curlPw™)p + §(rot©uzx : VPu® — curl®w)o.
Since
(VPu® : curl®w™)p = 0,

and
(rot®u¥y : VPu%)p = (rot*u®, —rot®u®)y,

(rot®u¥y : curl®w¥)p = (rot*u®, —divPwT)e.

(pay attention that the product between matrices becomes a product between scalars), we then

obtain:
(Du® : VPu®—curl® (w™))p
1
D ) D B
= |[VPu®|3+ 0+ §(rot u®, —rot*u® 4+ divVw®)p (1.39)
=0 by infsup
= [[Vou®||5.

This means that, if we apply the Cauchy-Schwarz inequality and triangle inequality to (1.39), we

deduce:
[V2u®|3 <[[D%u®|o| Vou® — curl®w*|;

<[IDPu2([Vu[|2 + ewrl®w||2).
By applying the definition of curl® and (I1.38) we get:
IV2u[|3 <[D2u¥(l2(|VuT 2 + VoW |2)
1
<=5 [D®u¥[|2[ VOuT|s.
s

We conclude that:

1
V20T < 5 D7
T

Thanks to this result, we give the proof of Korn’s inequality in the general case.
Proof (of Theorem 1.8.2) Let u® € Ej”. We define z* € (R?)® as:

1
z* = u® 4+ —m(rot®u®)x*,

0 1
-1 0

where x* = P
—x

< Y ) is a vector that satisfies for allp € ®: V°x* = y = ( >, DPx* = 0 and

rot?x¥ = —92.

As a consequence, we have that m(rot®z%) = 0 and D®u® = D®z*. By Lemma 1.8.3 to z*:

1
Vo2 < 5 1D%7 (1.40)
T
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If we compute V2uT, using the fact that V°x* = x we obtain:
1
VPu® = Voz% - Qm(rotguz)x,

from which we deduce
[V2u*||y < C(| V2% |2 + [m(rot®u™)]),

where C' depends on the size of the domain Q. By (1.40)

IV2u¥[l2 < C(ID"Z |2 + [m(rot®u))),
that by the definition of z* becomes:

IV2u¥[lz < C(ID"u™ 2 + [m(rot®u¥))). (1.41)
It remains to prove that 3C > 0 such that:

Im(rot®u®)| < C|D°u¥|y VuT € EyP. (1.42)

We prove this result by contradiction.

Let (hn)nen be a sequence such that h,, — 0 as n — 400, and let (F,,), be a sequence of meshes
such that size(%,,) = hy, while reg(¥,,) is bounded. For every n, there exists a constant C,, such
that:

Im(rot®u*)| < C,[D°u* |, Yul" e By?, (1.43)
t’D Tn

with C, := sup W. Inequality (I.43) holds because of Thm. 1.8.4 (proved below in
P [P B

Sec. 1.8.3), that ensures that |[D®u*"||5 is actually a norm.
Proving (1.42), it is equivalent to show that the bound (1.43) is a uniform bound. Thus we argue
by contradiction, and we suppose that:

Vk € N, dny, with ny > k such that C),, > &,

that is
Vk € N, Ju* such that |m(rot®u*)| > k |D°u |y Va*™ e EjP.
NTnk
Let u™ = U—NT, so that:
m(rot®a* k)
1
m(rot®u*s) =1, ||[DPutmk|y < = (1.44)

From (I.41), we can deduce that V®u*"x is bounded as k — o0, since:

1
[VPu |y < C(k + 1).

We can thus apply the compactness result of [ABHO07, Lemma 3.6], which implies the existence of
u € (H4(9))? such that, up to a subsequence:

u*s —u in (L*(Q))? as k — oo,

VPu* — Vu in (L3(Q))?*? as k — oo.
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The weak convergence of V2u*"s | that can be seen as the L? function VPu*m = > ped V2u*nk 1y,
implies that Vo € (L?(£))?*?

/Q<V©u5"k :go) — /Q (Vu: ).

Thanks to the relation between the gradient and the rotational operator (see (1.5)-(1.6)) and by
0 1g

choosing ¢ = ﬁ <1OQ 8) and p = ﬁ (0 0 ), we obtain:

m(rot®u* ) — m(rotu).
From (I.44), we deduce m(rotu) = 1.

Moreover, the weak convergence of the gradient implies the weak convergence of the strain
rate tensor D®u*", by definition of the operators; this, with (1.44), implies Du = 0, i.e. u is a
rigid motion. The only rigid motion that satisfies u|r,, = 0 is u = 0 since meas(I'p) > 0 (see
[BS07]). We have therefore a contradiction, so we proved (1.42) and Thm. 1.8.2. ]

1.8.3 Study of the kernel of D®

The following result is necessary in order to prove Korn’s inequality. It will be useful even to show
the wellposedness of the DDFV scheme in Sec. I1.5.

Theorem 1.8.4 Let Q be an open connected bounded polygonal domain of R? and T'p be a part of
the boundary such that m(I'p) > 0.

Let T be a DDFV mesh associated to Q2 that satisfies Inf-sup stability condition. Then Yu® € EgD
such that D°u® = 0 we have u® =0 in Q.

Proof Since we are not able to give a general proof of this theorem for all meshes, we focus on all
the ones that are unconditionally Inf-sup stable (see [BKN15]), since to prove Lemma 1.8.3 we
need this last hypothesis.

When studying those meshes, we observe a propagation phenomenon of the zero boundary data on
I'p to the entire mesh.

In fact, it is important to remark that in DDFV meshes all boundary diamonds are triangles (see
Fig. 1.3). If we focus on one of those diamonds, the condition on I'p implies that the velocity is
zero on the three vertices L, k* and v*:

uy g
u, = =0,u = =0,
v ul.
'
w* = =0.
u’

L

Since we are supposing DPu® = 0 for all p € D, this is true in particular for the boundary diamonds
(the white ones in Fig. 1.6). By the definition of the discrete strain rate tensor (1.3) we are led to
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Fig. 1.6 Possible configurations of diamonds adjacent to the boundary ones in Inf-sup stable meshes.

the following system:
My Uy nf}K =0
myu Y, =0 (1.45)

T Y Y T _
mes (uK na,K + Uy na’,K) - 07

X
uK no',K
that implies uy, = = 0, since the outer normal 1, = cannot be zero.
y Yy
Uk s x

This means that for all diamonds in D, N I'p the four components of the velocity, ug, u;, g, ug*,
are zero.

We now look at the diamonds that are adjacent to ones on the boundary: for the meshes
under consideration, we can distinguish two possible situations that we illustrate in Fig. 1.6.

The first one is the case of the shaded diamond, for which the situation is equivalent to the
one of boundary diamonds. In fact, we know that the velocity is zero on three of its vertices. So
we can conclude, by solving a system similar to (I1.45) deduced by DPu*® = 0, that even the last
component of the velocity is zero on that diamond.

The second structure is described by the hatched diamonds. This is the case of two neigh-
bors, that we will denote with p!,p? which share a common vertex. Remark that on that vertex
the velocity is zero and both diamonds have one more vertex with zero velocity. Thus we are
considering a structure composed by 6 vertices, where the values of the velocity are zero on 3
among them.

In this case, we denote the normal vectors of o', p? with

n_-— y N s x — fori:1,2,
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D3

Fig. 1.7 Degenerate case

and we write the system of equations equivalent to the conditions DY u® = 0 for i = 1,2.
The 6 x 6 matrix of that system has determinant
det = (n”c;2 n¥? — n®?2 nyf)(ngc;1 n¥! — pol nyi})(n’“1 n¥? —n®2n¥%t) £ 0,
that is always different from zero, except in a degenerate case that we treat in the following section
where the normals of the two diamonds are parallel. Thus the matrix is invertible, that implies that

all the six components of the velocity on those two diamonds are zero: ui = u! = ul. = ulx =0
fori=1,2.

Degenerate case: checkerboard mesh

This is a particular case of the second structure, in which the normal vectors of the two hatched
diamonds are parallel. In order to have an invertible system to solve, it is necessary to consider a
third diamond.

In particular, if we call pj,py the hatched diamonds and b3 the white one, we have for instance:

; 1
n, = <0> for i = 1,2 and &>, = ( )
1 0

If, as we did in the previous cases, we write the system of equations equivalent to D'yt = 0, but
this time for ¢ = 1, 2, 3, we get again an invertible system, this time of size 8 x 8. As before, we
find that all the components of the velocity are zero on the three diamonds.

By proceeding step by step, we can prove that the velocity u® is zero on the entire domain €.

Remark 1.8.5 Since the study of the kernel of D® is related to the mesh geometry, there is no
general proof for all meshes. We only focused on meshes that satisfy Inf-sup condition because in
the study of Navier-Stokes problem we are already in this setting, due to Thm. 1.8.3. The technique,
though, can be potentially extended to all mesh geometries considering one mesh at a time; for
instance, it is valid also on Cartesian meshes, which are Inf-sup stable up to a single pressure
mode.
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1.9 Trace inequalities

Given a vector u® = ((ug)keomuam, (U= )x*com+uaom+ ) defined on a DDFV mesh T, we associate the
approximate solution on the boundary in two different ways:
~z, x 1 1
¢*(u*) = 5 Z Ulgnpn + B Z U 1g 0,
Kem K*€oM*

¥ (u¥) = % Z ul; +% Z e L n o0
LeoMm K*eom*

With this definition, we use simultaneously the values on the primal mesh and the values on the

dual mesh. The difference between the two traces can be explained if we look at a diamond p on

the boundary, illustrated in Fig. 1.8: 51 averages values at the interior and on the boundary of the

mesh, i.e. uy, uge, u+, while ¢* takes values just on the boundary, i.e. U, e, us.

Uy

Fig. .8 A boundary diamond, o € 99N.

We can also consider two different reconstructions based either on the primal values or the dual
values:

anm(us) = Z U lgpo or Cbam(uf) = Z u 1,

KEM LeIM
oM (uT) = o™ (uT) = D e lgpgn(x).
K* €oM*
With respect to the traces defined in Sec.l.4, they satisfy
P T
177 (@) llgo0 < lo7 (0¥)llg.00

Iy () lg00 < [|6% (uF)

q,00-

We point out that, if we consider the object we want to estimate, we have for both cases (by
Minkowski’s inequality):
16* (u)
T
6~ (u®)]

200 < 677 (uT)llgo0 + 6™ (%) 400,

4,00 < 6”7 (uF)g00 + 67 (uF)]4,00.

Before proving the trace theorem, we introduce a discrete Poincaré inequality, proved in [ABHO7]
for scalar fields and L? norm; here we need the one proved in [BCCHF15] for vector fields.

Theorem 1.9.1 (Discrete Poincaré inequality, [ BCCHF15], Thm. 11) Let Q be an open
connected bounded polygonal domain of R? and T'p be a part of the boundary such that m(I'p) > 0.
Let T be a DDFV mesh associated to €.

e If1<p<2/letl1<qg<p"
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o Ifp>2,letl <qg< oo.

There exists a constant C' > 0, depending only on p,q, T'p and 0 such that Yu® € EgD:

c )l
1 p—1 Hv uTHp

sin(ag)? reg(¥) »

[uly <

Theorem 1.9.2 (Trace inequality) Let T be a DDF'V mesh associated to 2. For allp > 1 there
exists a constant C > 0, depending only on p, sin(ag), reg(¥) and Q such that Vu* € EED and
Vs > 1:

ut|5 ! (1.46)

p(s—1) "
p—1

16¥ (u™)|

o0 < Cllu”|

17p|

The computations of the proof are similar to those present in [EGH00] and [CHKM15]. In [EGHO00],
the proof is given for finite volume methods; in [CHKM15], the proof is given for DDFV method
but in the case of L' norm. Our proof has been adapted to the vectorial case and to general L?,
LP norms.

Proof

Boundary properties: By compactness of 0f), there exists a finite number of open hyper-
rectangles {R;,i = 1... N}, and normalized vectors of R? {n;,i =1,..., N}, such that:

Fig. 1.9 Properties of the boundary 0f).

o0 C U, R;
(i, V(x)) >A>0 VoeRNANic{l...N}

{x—i—tm,xeRiﬁaﬁ,teR*}ﬂRiCQ,

where A is a strictly positive number and 7(:17) is the normal vector to 92 at x, inward to  (see
N

Figure 1). Let {\;;i = 1... N} be a family of functions such that Z)\Z(iﬁ) =1, for all x € 09,
i=1

i € C(R?,RT) and \; = 0 outside of R;, for all i = 1... N. Let 99; = R; N 9Q; we shall prove

that there exists C; > 0 depending only on A, reg(¥) and \; such that

[ 2@l @) @) dr + [ A(@)l6™ @) @) de < Cllup a5k,
o9, 09

p—1

Then it will be sufficient to define C' := 3N, C; to get (1.46). We study separately the two terms.
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On the primal mesh: We introduce the functions to determine the successive neighbours
of a cell uy. Consider x,y € €, then:

1 if [z,yjno #0

foroce & Y, (r,y):=
7 ) {0 otherwise,

1 if [z,yNk#0

0 otherwise.

fork e M Vg(z,y) = {

= €L0 (x) = Zog (1‘) - SKO (l’) - gLO (l’)

Fig. 1.10 (Left) [z,y(x)] N op is reduced to a point zy,(z). (Right) [z,y(x)] N op is the segment

[z, y(@)].

Now, we fix i € {1... N} and x € 0%;.

Then there exists a unique ¢ > 0 such that x+tn; = y(z) € OR;. Then, for o € &, if [x,y(z)|No £ 0,
then it is:

o either a point: z,(z) := [z,y(x)|No
o either a segment: [a(z),b(x)] := [z,y(z)] N o and let z,(z) := b(x).
For x € M, if [z, y(x)] Nk # () we have:
(@), ()] = [z, y(2)] N .

Let us fix x € kg , with kg € 91 such that y(x) € L9, 09 = ko|Lg. We distinguish the following two
cases:

1. For the left case (see Fig. 1.10):

Ai (@) [uo|* = (N (ko (7)) — Xi (0o (2))) [t |*
+ ()‘i<£Lo(x)) - /\i(nl@(x)))’uLo‘s
+ Ailzo0 (7)) (Jug, |* — [ugel®),

2. for the right case (see Fig. 1.10):

i) [ugo|* = (Ao (%)) — Ao (%)) [ugo |-
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In both cases:

i) |ug|* < D7 ol y(@))Ni(20 ()| Jug| — ]|
DED

+ > Ty(x,y(@)) A&k (@)) — Ni(nx (@) |[uel®,

KeMm

that we can write as
Ai(m)|ug, |* < A(x) + B(x),

by defining
Az) =) ol y(2)) (20 (@) [ug]* — |||
DED
B(x) := Y Wk(a,y(@)) (&) — Xi(nx(@))|[ug]*.
Kem

We proceed by estimating separately the two terms.

Estimate of A:
Since A; is bounded, we get:

i

A(z) < [ Ailloo D ‘I’a(wvy(w))‘luxls —
DeED

We now use the following estimate (with ¢, = |(1;, 7o (2))])
Co
[ elay@)de < Fm,,
Q; A
that is proved in [EGHO00], to conclude:

| — [u |®

A= /891- A(z)dz < || Ailloo Z (/ \Ila(:c,y(x))dx)

pep Ok

SCiZmU

DED

[ue|® — . ]?|,

where in the 3rd inequality we used [Krel0, Lemma I1.19].
Now, as in [BCCHF15], we use the inequality:

< s(lu* ™ fu T oy - u,

ol
that leads to:

> m,

hM“%mﬂésEijmﬁ*+ﬁu“Ww—ud

DED DED
<C Y momee (Jugl™ 4+ w2,
DeD Mo>
that by integration by parts and Holder gives:
(s—1) p=1 py L
s—1)p P u., — u P
S _ S < . —3 . K L )
Z M || U] |, | < C(Z Z MgMg* | Ug| P ) (Z Mo Mg | ——— >
DED KeM DeDy DED 7
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By regularity hypothesis on the mesh and the definition of the discrete gradient we can write:

C _
A S 1 p—1 ||uTH‘?s}1)p

sin(ag)? reg(¥) » p—1

D
IVZu*],.

Estimate of B:
Since \; is C*°, we have, by Taylor’s formula:

B(z) < [VAilleo D Wkl y(@)[& (@) — m(@)][ud®,
Kem

and thanks to the inequality that can be found in [EGH00, Lemma 3.10]

myg
[ el y(e)len(@) - m@lar < 7,
9 A
we can conclude:

B = /am B(z) < [|[VAilloo Z (/an, Uy (z,y(x)) |k () — UK(CU)!)|UK|S

Kem
< Cz Z mx|uK|S'
Kem
Thus
B < C[u¥l;.

Putting together the terms, we find:

ToMm -1 )
L A@IE @) < 6 (i, 19267, + o))
o0Q; p—1
By proceeding as in the proof of [BCCHF15, Lemma 1], we use interpolation between LP spaces
and we write:

a3 < 1Ty, Tu®(lp,
p—1

that leads to

| M@ @) < G, 0,

p—1

that proves our theorem.

On the dual mesh: the computations are exactly the same, exchanging x with x* and ¢ in
o* . [

Corollary 1.9.3 (Second trace inequality) Let ¥ be a DDFV mesh associated to . There
exists a constant C > 0, depending only on p,q, sin(az), reg(¥) and Q such that Yu® € EED and
foralls>1,p>1:

19* (u™) 13 00 < CHuflll,plluIHi@é-

=

Proof The proof is almost the same as Thm. 1.9.2.
What changes is just that we now fix z € 1, L € 99 and xy € 9 such that L C kg, y(z) € ko,
oo = kol (see Fig. 1.11).
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00 = Ko|L

Fig. I.11 L on the boundary 090 and xy € 9 such that L C kg, y(x) € kg, 09 = Ko|L.

The term that we want to study now is A;(x)|u.|®, since we are focusing on the boundary. It can
be written as:

Ai(e)[uc]” = Ai(2) (o] = Jugo [*) + Xi(2)ug, |, (L47)

that can be estimated by:

Ai()[uc” < Ai(2)|[ue]® = Jug, |*|1u(2) + Ai(@) ug [

= Ap(x) + Ni(x)|ug, |°.

Estimate of Ap:
Since A is bounded, we have:

[ — u

A:/A < illee S,
0= o, b(@) < [Aillso > m

DED

We can proceed exactly as in the proof of Thm 1.9.2 for A, so we get:

C _
Ab S 1 p—1 ||u‘IHs(sfll)p HVQuTHp

sin(ag)? reg(¥) » p—1

Putting together all the terms, we find:

(f M@0 < ok ([, M@I6™ )

@ %

Thanks to the previous theorem, we conclude:

/BQV Ai(@)[ o™ (W) < Gillu® )7L, [l

p—1

that proofs our statement.

On the dual mesh: the computations are the same as the previous theorem. [

Corollary 1.9.4 (L? norm) Let T be a DDFV mesh associated to ). There exists a constant
C > 0 that depends only on Q and reg(T) such that Yu* € ]EgD :

6% (u®)]l2,00 < C||V2u®|2.

Proof It is a direct consequence of Corollary 1.9.3 with s = p = 2 and Poincaré inequality
(Thm. 1.9.1). |
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1.10 Properties of discrete operators

We give now some results on discrete operators and projections, that will be useful in the error
estimate proof of Chapter II. All the proofs can be found in [Krel0].

Lemma 1.10.1 ([Krel0], Lemma IV.14 ) Ford =2,3. Let K be an open non empty polygonal
convex set of R such that, for some o > 0, there exists a ball of radius o diam(IK) contained in K.
Let E be an affine hyperplan of R® and o an open non empty set of E contained in 0K N E. Then
there exists a constant C > 0, that depends only on o, such that for all v e (H'(K))%:

’7; /U os)ds

Properties of the projection P¥

2
C'diam(x
< SO [ 0ot s + o [ Jo(s) s

Lemma 1.10.2 ([Krel0], Lemma IV.16) Let T be a DDFV mesh associated to ). There exists
a constant C > 0, that depends only on reg(T), such that for all functions v € (H*(2))?, we have:

Vv — VPP ||y < Csize(T)|| V| 1.

Corollary 1.10.3 ([Krel0], Coro IV.17) Let ¥ be a DDF'V mesh associated to Q. There exists
a constant C > 0, that depends only on reg(T), such that for all functions v € (H?(Q2))2, we have:

IV2PZvll2 < Ol Vo] 1.

Corollary 1.10.4 ([Krel0], Coro IV.18) Let T be a DDFV mesh associated to ). There exists
a constant C > 0, that depends only on reg(T), such that for all functions v € (H*(Q))? that
verifies div(v) = 0, we have:

| div® PEv||a < C'size(T)||V V| g1

Properties of the projection P,
Lemma 1.10.5 ([Krel0], Lemma IV.19) Let T be a DDFV mesh associated to ). There exists
a constant C > 0, that depends only on reg(T), such that for all functions v € (H())?, we have:

[VPPE v < C||Volla and  ||v— P o]y < Csize(T)||Voz.

Error between the projections P* and ‘B};{?’gPE

Lemma 1.10.6 ([Krel0], Lemma IV.20) Let T be a DDF'V mesh associated to Q). There exists
a constant C > 0, that depends only on reg(T), such that for all functions v € (H'(2))?, we have:

VPP — VOPRLD PYy ||y < Csize(T)||v]| 2.

m,g- ¢

Lemma 1.10.7 ([Krel0], Lemma IV.22) Let T be a DDFV mesh associated to ). There exists
a constant C > 0, that depends only on reg(T), such that for all functions v € (H*(2))?, we have:

|lv— ]vaHg < Csize(T)||Vo||lgn and  ||v— ‘,B,?lngP"vag < Csize(T)|| V|| g1
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Properties of the projection on diamonds P?

Lemma 1.10.8 ([Krel0], Lemma IV.23) Let T be a DDFV mesh associated to ). There exists
a constant C > 0, that depends only on reg(), such that for all functions p € H'(Q), we have:

> (Php—PDp)* < C|Vplfs.
s=D|D’e®

Lemma 1.10.9 ([Krel0], Lemma IV.24) Let T be a DDFV mesh associated to ). There exists
a constant C > 0, that depends only on reg(), such that for all functions p € H'(Q), we have:

1P — pll2 < Csize(T)||Vplla-

I.11 Basic inequalities

Here we recall some basic inequalities that we will need in the following chapters.

Lemma 1.11.1 (Young’s inequality) Let a,b,c be three non negative numbers. Let p1,p2 and
ps3 be positive real numbers such that pil =+ p% =+ p%, = 1. Then, we have:

C C 1
abe < =L Pt =2 pP2

cp3
D1 D2 p3 C1Co

Y

for some positive constants Cy,Co,
We adapted the proof of Gronwall’s lemma, Lemma 16.1.6 in [Sch01], to obtain the following:

Lemma 1.11.2 (Discrete Gronwall’s lemma) If a sequence (ap)n, n=0...N, satisfies

n—1
ag < A, anSA—l—BdtZai Vnel,...N,ot =
i=0

)

=214

where A and B are two positive constants independent of dt, then

max, dn < AeBT,

n=1

Lemma 1.11.3 (Ho6lder’s inequality) Let p,q,r € (1,4+00) with 1/p+1/q+1/r = 1. For every
(X1, 2n), Wiy---Yn)s (21, .- 2n) € R™ it holds

n n 1/p n 1/q n 1/r
Slaigal < (Slar) " (Xlwlt) (Xlar) -
i=1 =1 =1

i=1
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A condensed version of this chapter has been published in [GKL17]; further details are given
here, such as the proofs the error estimate for the DDFV scheme, the extension to the Divergence
form and the study of the unstabilized scheme.

The goal of this chapter is to approximate with DDFV method the solution of the following

Stokes problem:
—Au+Vp=f in Q,

div(u) =0 in Q,
u=g onlp,
(Vu—pld)i=® on Iy,

(IL1)

where the unknowns are the velocity u : £ — R? and the pressure p : @ — R. The data are
fe (L2(N)? &,g € (H%(@Q))2 and @i is the unitary outer normal. € is an open bounded
polygonal domain of R?, with 9Q = I'p UT y, where [['p| > 0 is the fraction of the boundary with
Dirichlet boundary conditions and I'y # ) the one with Neumann boundary conditions.
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In the previous works of [Del07], [Krella] and [BKN15], DDFV method was studied for Stokes
problem in the case of homogeneous Dirichlet boundary conditions. In the case of [Del07], well-
posedness of the scheme was proved only for conformal triangle meshes, conformal and non
conformal square meshes, in the case of unstabilized mass equation. This result was then improved
in [Krella] by adding a stabilization term to the equation of conservation of mass that led to
prove existence and uniqueness of the solution on general meshes. Successively, since it was
observed that very accurate approximations could be computed even without stabilization on
general meshes, in [BKN15] Boyer, Krell and Nabet worked on the Inf-sup stability condition (Def.
1.6.1) for the unstabilized scheme. This condition relies on the wellposedness of the scheme; it
holds unconditionally for certain meshes (e.g. conforming acute triangle meshes) or, with some
restrictions, for specific mesh geometries (see Sec. 1.6 for more details).

The work of this chapter aims at extending the theory known for the Stokes problem to the
case of Neumann boundary conditions on a fraction of the boundary, namely the 4** equation in
(IT.1).

Outline. 'This chapter is organized as follows. In Sec. II.1 we define a DDFV discretization
of the Stokes problem (II.1); we choose to stabilize the mass conservation equation through two
parameters, u, 5 > 0. We prove the wellposedness of this scheme under the hypothesis g4+ p > 0
in Sec. I1.2. In Sec. II.3 we prove some error estimates, by showing a first rough error estimate
only for the velocity (when p > 0 ) followed by a stability result (true under the hypothesis 8 > 0)
that leads to an optimal error estimate for the velocity and the pressure. This result is tested
numerically in Sec. I1.4, by also showing the influence of the parameters in the convergence. In
Sec. I1.5 we extend the obtained results to the Divergence form of Stokes problem (II.28), thanks to
the results of Sec. 1.8. In Sec. I1.6, we consider the case of a DDFV scheme for the Stokes problem
(I1.1) without stabilization on the mass conservation equation, with "weak" boundary conditions.

II.1 DDFYV scheme

We recall that DDFV scheme uses staggered unknowns. We approximate the velocity on the
centers and vertices of the primal mesh (i.e. on T = MM U IM U M* U 9IM*) and the pressure on
the diamond mesh (i.e. D).

As introduced in Sec. 1.2 and as illustrated in Fig. II.1, the boundary meshes will be denoted by:

OMp ={k€IM:x, €Tp},

My = {k € OM: 2, € T},

OMp = {x € OM" : z € I'p},
OMy ={xk* € M : ay» e Tny\'p}.

To obtain our scheme, we integrate the momentum equation over all 9t U 9" U 09, We impose
Dirichlet boundary conditions on 99 p U 09}, and Neumann boundary conditions on 09ty. The
equation of conservation of mass is directly approximated on the diamond mesh equation over 2,
and it is stabilized through two parameters 5 > 0, associated to a stabilization of Brezzi-Pitkidranta
(see Sec. 1.7) and p > 0, associated to a linear stabilization.
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I'n
k€ O
r 5:? k* € OMy
I'p N
< < 90D
. RS € OMn
I'n

Fig. I1.1 Domain with mixed boundary conditions

The scheme is the following:

Find u* € ngg and p® € R® such that
div*(—V®u® + p°1d) = £, Vk € M
div¥" (=V®Pu® 4 p°Id) = f= Vi € " UIMYy
div® (u¥) 4 psize(ZT)p® — BAEAPP® =0
(VPu® — pId)fix = @, VD, o € Degr N T,

(Pﬁu)

where we denote by f;, g, (resp. fix, g,+) the mean-value of the source term f and of the Dirichlet
data g on k € M (resp. on k* € M* U IM*) and P, the mean-value of the Neumann data on
oel'y:

1 1
f, = —/f(x)d:v, fr = f(z)dz,
my Jx My Jx=
1 1
g= - [g@)ds, g =—— [ g(a)dn,
my JK Mg+ JK*
1
o, = —/CI)(m)dx
mo g

Moreover, we denote by g, = 77(g%) , ¢ € 0. Remark that, as the mesh becomes finer, the sta-
bilization terms vanish (we recall that d3 is the diameter of a diamond, thus it depends on size(¥)).

We define now the bilinear form associated to the scheme (Pg,).

Definition II.1.1 (Bilinear form) For all (u%,p®), (u%,7°) € ELP, x R?, the bilinear form
associated to (Pgy) is:

B(u®,p®, 6%, 7°) = [div(=V?uT + p°Id), %)

+ (div® (u®) + psize(T)p®° — Bdp A, 7)o, (11.2)

II.2 Wellposedness of the scheme

Before showing that there exists a unique solution to (Pg,,), we prove the following a priori estimate:
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Proposition I1.2.1 (A priori estimate) Let (u®,p®) € ELD, X R® be a solution of (Pg,).
Then:

IV2u™ (13 + psize(T) [p° 13 + BIp®7

< |[1F%, uls| + ( > ma|gaw2)

D *EDertNI'p

0,0

1
2

N

: ( > m, |VPu® — pDId|2>

D _+«€EDextNl'p

0,0

1
2

+< > m(,|<1>g|2)( > mg'y(’(us)|2) . (IL3)

o™ EDertN' N o* EDertNI' v

Proof We consider the bilinear form (II.2) associated to the scheme:

B(u=,p°,u,p°) = [div:(-V°u® + p°Id), u™|s
+ (div® (u¥) + psize(T)p® — BAE AP, p°)o.

On one hand, if we apply Green’s formula (Thm. I.5.1) to the first term, by taking into account
the boundary terms, we get:

B(u17p©7u17p®> = vaqug - (p©7div©(ux))®

+ Z myy° (u®) - (=V°u® 4 p°Id) 1l
Da,a* EDext

+ (div® (u¥) + psize(T)p® — ,3d%A©P©, p°)o.

The terms (p?,div® (u¥))p simplify and we apply Remark 1.7.2 to the term —3(d3A®p®,p®)e.
The boundary diamonds ®.,; can be split between Dy N T'p and Dy N 'y, so by applying
Dirichlet and Neumann boundary conditions we obtain:

B(u*,p®,u*,p®) = [[V2u¥|5 + psize(T)[p°]3 + BIp° 7
+ > m,g, - (—V°u® + p°Id) fi,, — > m,° (u¥) - ®,. (IL4)

D *EDertN'p D * EDertNI' N

On the other hand, since (u*, p®) is a solution to (Pgs,), we have:
B(uT,pQ,uT,pD) = [[fz,uf]]g. (IL.5)

By putting together (II.4) and (IL.5) :

IV2u (13 + psize(T)|[p° |3 + BIp°7

< [[f*, u"]]z + > mg, (V'u® —p’ld) i, + S mT(uT) Dyl
Da-,o-* EDertNC'p Da,o’* EDertN'
We then apply Cauchy-Schwarz inequality to get our result (IL.3). [

We can now prove the well-posedness of the scheme, that is a direct consequence to the a priori
estimate of Prop. I1.2.1.

Theorem I1.2.2 (Well-posedness of the scheme) Let T a DDFV mesh associated to Q0 and
B+ >0 . Then the stabilized scheme (Pg,,) has a unique solution (u*,p®) € ELP, x R®.
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Proof By linearity, it is sufficient to prove that if f¥ =0, g =0, g™ =0 and ®, = 0, then
u® = 0 and p® = 0. Directly from (II.3), we deduce:

IV2u (13 + psize(T)|Ip° |3 + BIp®[7 < 0.

This implies |[V®uT||z = 0: from Remark 1.3.3 and since g™ = 0, g™ = 0, we obtain u® = 0.
Moreover, if 11 > 0, then ||p®||3 = 0 that implies p® = 0; otherwise, we have 3 > 0, from which we
can deduce |[p®|? = 0 that leads to p® constant. Thanks to Neumann boundary condition (the 4
equation in (Pg,)), since u® = 0, and ®, = 0 we get that p® =0. [ |

Remark I1.2.3 Without the stabilization term, we can still prove the wellposedness of the scheme.
In fact, if the velocity u® = 0, the momentum equation and the Neumann boundary condition
become:
divk (pDId) -0 Yk € M
div” (pi’ld) =0 Vk €M UIMY (I1.6)
(PId)fi,x =0 VD, o« € Degr NIy

Our goal is to show that p® = 0. For every v* € EgD, thanks to Green’s formula (Thm. 1.5.1), we
can write:

(div’g(vz),pg)g =— H:VT, divz(pQId)HT + Z m,y° (v®) - (p°ld) @ yy. (IL.7)
D_ _+«EDext

0,0

By definition of the scalar products (see Sec. 1.4), by (11.6) and by the fact that v* € EgD, we get
that HVT, divT(pQId)”i =0 and Z myy’ (v¥) - (p°Id) i = 0. Thus (IL.7) becomes:
D, +EDext

o,0

S 4 D _
(div®(v¥),p )@ = 0. (IL.8)
Assuming that the mesh ¥ satisfies Inf-sup stability condition (see Sec. 1.6), inequality (1.30) is
verified; since (I11.8) holds for any v* € EgD, the supremum in the right hand side of (1.30) vanishes
so we can deduce that the pressure p° is constant. We can then conclude thanks to Neumann
boundary conditions as in the previous proof.

I1.3 Error estimates for the DDFV scheme

In this section, we prove error estimates for the scheme (Pg,,).

First, we show an error estimate of order 0.5 just for the velocity and its gradient, under the
hypothesis . > 0 . We then improve this result if 8 > 0, by showing an estimate of order 1 for the
velocity, its gradient and the pressure, thanks to a stability study of the scheme.

I1.3.1 Rough error estimate

Since we are working with mixed boundary conditions of the type Dirichlet/ Neumann, i.e. T'y # 0,
we need to suppose more regularity for the exact solution u in order to get a better error estimate
with respect to the homogeneous Dirichlet case of [Krellal.



60 Stokes problem with mixed Dirichlet-Neumann boundary conditions

Thus, we define the space of regularity of the solution as follows:

(W22(2))? = {u e (W'(Q))? st. up € (W**()?%, WeD}.

whe(®) = {p € L®(Q) st. pp€ W'¥(0), ¥oeD}.

We will now prove an error estimate for the error of order 0.5 in the L? norm of the velocity field
and of its gradient.

Theorem I1.3.1 Let (u,p) € (W2>(D))2 x WL>(D) be the solution of (I1.1) and (u¥,p®) €
Efnf?g x R® be the solution of the problem (Psu). Suppose that p > 0. Then there exists a constant
C > 0 that depends on reg(%), u, ||ully2.0 and ||p|lyiec such that

[u—u[|s + |[|[Vu — V2u® ||y < Csize(T)2.

Proof Lete® = (P PIu)—u® € (R?)® be the error for the velocity field and ¢® = P p—p® € R®

m,g— C
the error for the pressure field.

The proof is divided into four parts. In Step 1, we start by defining the problem satisfied
by the errors. Then, in Step 2, we give a first estimate of the bilinear form associated to the
scheme, followed by estimates of the consistency errors in Step 3. We will conclude in Step 4 by
gathering all the estimates together.

I11.3.1.1 Step 1 : Error scheme

We look for the equations satisfied by (e*,e®) € (RQ)‘I x R®.
Thanks to (II.1) and (Pg,), we can write Vk € 9t
div*(=V®u® +p°Id) = f,,
—TiK /KdiV(Vu(x))da:vL TiK/KVp(J:)dx = f;.
Thus, we deduce:
mediv'(—V?e* + e°1d) = mydiv*(—V*PL Piu+POpld) + /K div(Vu(z))dz — /K Vp(z)dz.

By Def. 1.3.5 of the discrete divergence and Green’s formula (Thm. I.5.1), we obtain for all k € 9t:

o mdivi(—V7e® +e%1d) = > / (Vu — V*B) Piu)ii,ds

Do,a* S0

+ Y[R =)

Do',o'* €©K 7

We define the consistency errors
RY(2) = Vu(z) — V"B Piu, for z€p,p€ED,
R‘%(z)zl@ﬁpfp(z), forzep,pe®.

so that
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em,divi(—V®e* + ¢°Id) = Z R%(s)ﬁ,;(ds + Z R (s),«ds.

D, ,* €Dk D, ,* €Dk g
In the same way, for all x* € Mx:
77+ diVK* (—VQGI + eQId) Z / R@ Il * *dS —|— Z / IIU*K* ds.
o €Dk o* €Dk

For the boundary primal and dual cells, we consider only 09 and 09y since we impose strong
Dirichlet boundary conditions on 990, and 0Mp, i.e. ue = 0 Vk* € MY, u, = 0 ¥k € OMp.
For all x* € 09y

o mediv (-0 + 1) = Y /R%(s)ﬁa*K*ds+ 3 /R%(s)ﬁa*K*ds

UU*E@ UU*E@
To
+ ¥ R ()l + / RY(s
DU,U*EQK*mgext Ty* o0 *6@ *ﬂ@emt Ty

Finally, for all o € 09 y:
o(VDeT — elld)ii,, = —1/ R3(s)ii,xds — 1/ RE (8)15¢ds.
mo g ma g °

We can finally write in a compact way the system satisfied by the error:
Find e* € EED and €® € R® such that:

div¥(—V®e* + ¢”1d) = R¥ Vk € M
div" (-V®e* +¢°1d) = RY Ve € M* UMy

div® (%) + psize(%)e® — fd2A®® = R®
(VPe* — e®1d)ii, = —(R% + RP,) VWb, .« € Do Ny

where ].:{‘I = ((RK)Kem, (RK*)K*EDR*U(?DJT*N> and ].:{3D = (RD)DE’D with:

1 1

Rf= — Y mRL+— Y mRE, vk € M,
mK o' cr* EQK mK DG,G*GQK
. 1 1
R¥ = Z Mg R + Z MR+, Ve € I,
mK* U o* E@ Mg D "‘EQK’k
. 1 Mo
RY = — 3 me (R +RY) + > 5 (R +RY), Ve € oMy,
K

M *
Do,a*EQK* K D U*Egzxt

R® = div° (), ,Piu) + psize(T)PD,p — Bd2 APy p, Vo€ D.
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We define for i € {u,p}:

. . 1 .

Ri, = R’ = — | Ri(s)il,ds,

= R = o [ R (s) s
1

Ri‘*K* = _Ri*L* == Ri@(s)ﬁ,*K*dS,

mo‘* o*
Ri, = 2 /ID R (5)i ,ds,
My S
R, = |RL,| = [RL,,
Ri. = |R'..| = [RL..|.

o

We denote the L? norms of consistency error as follows:

IRUE =D mR? and [[RL[3= ) mu|RL|% forie {up}.
D _+«€9 D _x€D

0,0 o,0

We also remark that for o = [y, +] C Ok
i _ Lo Lo .
R!, = §RK*L + §RL*L, for i € {u,p}.

11.3.1.2 Step 2 : Estimate of B(e* e®;e*, e”)

We can now start with the estimate. Thanks to the Def. (I1.2) of B, we have:
B(e%,e”;e%,¢”) = [R, e ]]c + (R®, ¢”)o.
We note I := [[R*, Y]]z and T := (R®,e®)s.

Estimate of I = [[R*, e™]]s:
By definition, [ is:

1 1
1= 3 Z Z m,(RY +RP,) - e + 3 Z Z My (R + R ) - €
KeM D, €Dk K*€M*UOM* D, » €Dy

1 m,
+ = E E —Z (R, + R - ege.
2 . 2
K*com* Do’,o’* ED;ft

If we reorganize the sum on diamonds, we get:

1 1
I=3 > mBL+RY)-(e—e)+5 >, mo(Rle +R0e) (0o —e)
DU’U* €D DU’U* €D
1 b u 1 My b u
+ 2 Z mv(RaK +R}) e+ 92 Z 9 (RK*L + RK*L) " G
Do—,a* EDextNI'N Da,o-* EDextNl'N

1 m,
t3 2 FRLAR)-er

Do',o'* egeztﬂl"N

=L+ L+ I3+ 1y + Is.

Remark that the boundary terms depend only on the values on I'y; in fact, since we impose
Dirichlet boundary conditions, if b € D¢t N I'p we have e, = e+ = e = 0.
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We estimate separately the terms.

» Firstly from Def. (I.3.1) of the discrete gradient and secondly by Cauchy-Schwarz inequality, we

have: ]
Li=5 Y m(RL+RY) (e )
Dg,g*eg
My u p T —
=— ) = Ry +RY) - ((V°e™) - Tu)
s, 2o ()

< O(reg(T) [V ||2 (IRE ]2 + 1R ]2)

» As the previous term, from Def. (I.3.1) of the discrete gradient and then by Cauchy-Schwarz
inequality, we have:

1
L= 2 Z Mo (RYwe + Rie) - (€r — €1x)
Do‘,o‘*eg
_ My P u P —
=— Y RV +RYL) - (V€T) - Fenpr)
b Tt Sin(an)

< C(reg(T)) || VOl (IR 12 + IR |2) -

» By applying Cauchy-Schwarz inequality and by the definitions of traces (and their norms) of
Sec. 1.4, we have:

1
I3 = § Z mU(REK + R’?K) teL

Do,a* EDextNl'N

[N

IN
I

1
: ( > mRs, +R1:K|2>
D

o, EDextNI'N

M=

1
2
2
D, molel
Do,o* egextmrN
1

Py ( Z mU‘REK +R3K|2> ||70(e‘3:)||2,8§2-
DU

2
o EDextNI'N

IN

By applying Thm. 1.9.4, we can write:

2

1
1332( > molREﬁRL‘KIz) IV2e*||2.
Da‘,o‘

* EDegt mF]\7

» In the same way, by applying Cauchy-Schwarz inequality and by the definitions of traces (and
their norms) of Sec. 1.4, we have:

1 m,
Ia= 5 Z 7(RKP*L + R:(J*L) " Exx
D *E@ezthN

0,0

1 m,
<3 ( > o R + R?*JQ)

Do,a* EDextN'y

[SIE

1
m 2
( > 5!%2)
DO,U* EDextN'y

me, o
( > 2|R£*L+R;‘*L\2) 97 (%) 200
Da,a‘

* EDeqrt mFN

N

IN
DO | =
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By applying Thm. 1.9.4, we can write:

1

md
9 7|RI£)*L + R’i?*L

D «E€DertNl'y

0,0

Iy <

» Finally, as the previous two estimates, we have:

1
2

)

Vo€ 2.

1 m,
Is = 92 Z 7(RE*L +R,) e
Da,a* EDextNl'N
1 1
1 m 2 m ) 2
a 2 o
- 5 Z T‘RE"L—’—R:_I*J Z 7|eL*]
D, ;% €DeatNI'y D, o*E€DertNy
1 m :
<3 > FREARLE) (e)]an.
Da,a* EDextNI'N

By applying Thm

. 1.9.4, we can write:

<

IR

I5

N |

2.

me
7 |RLI.)*L + RI‘:‘*L

IV2e™ 2.

(D

o,0* EDertNI N

)

Putting all together, we get the following estimate for I:

1] < C(reg(T))IVoe™ |2 (IREIl2 + IR |2 + [RE- |2 + IR

2)

+O(reg(T)) [ VOe™ |2

+O(reg(T)) [ VOe™ |2

(Dmo* EDextNI'N
(DG’U* EDextNI'N

N

>

mU
7 ’RI?*L|2>

mU
7 ’RII:!"L|2>

N

>

_l’_

2.

mO'
(QRKP*L

Da,o’* EDextN'y

_l’_

2.

mO'
(QRLP*L

Da,cr* Egext ml_‘N

1
2)2
1

ok

Estimate of T = (R®,e®)q:

We remark that T = (divg(‘]327gP§u),e©)@ + (usize(T)P2p,e®)p — (BdEAPPEp,e®)o, so by
adding and subtracting divg(IP’zu) and by Minkowski inequality we have:

D
m7g

Idiv® (B, PEu)ll2 < [IV2 (P, jPiu — Piu)lfz + [[div® (PEu)f2.

m,g- c
From Corollary 1.10.4 and Lemma 1.10.6 we get:
Jdiv® (B, Prw) > < Csize(T) Jul| .

Cauchy-Schwarz inequality on the previous estimate gives:

(div® (P PTu), e®)o < Csize(T) [ul |e®).
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By reorganizing the sum on s € & in the term T} := (ﬁd2 AQIP’mp, ®)5 we have, as in Rem.

1.7.2:

T, = - Z mpe® d2APPPp = 3 Z (d2 + d2)(P” p — PP, p)(e® — &P).
DED s=D|D'e®

Cauchy-Schwarz inequality and the definition of the semi-norm |- |, (see (1.37)) give:

SIS

1
2
( > (dp+dy)(e” —e”)2>
5=D|D/E€®
1

§2Size(‘3)ﬁ|e©]h< Z (IP’Dp PP )) .

\Tl\é( > (dy+d3)(Bp — P, ))

s=D|D'€®

s=D|D'€®
Lemma 1.7.3 and Lemma 1.10.8 lead to:

IT1| < Csize(T)|[e® 2| Vpl|2.
Then, Cauchy-Schwarz inequality and Lemma 1.10.9 give:

(usize(T) Pop, e®)p < Csize(T) e |pl| -

We recall that T = (div™® (B Peu), e + (usize(T)PEp,e®)p + T1, so we can write:

7| < Csize(T) [ |l2(]lull g2 + [Pl 2).

Estimate of B(e*,e”;e*,e”) :

By gathering all the estimates on I and T" we get:

|B(e*,e®;e%,e®)| < |1] + |
< CIVoe |2 (IRPll2 + R 12 + [IRD- |2 + [RE: [12)

1

= 1
DT My pu 27 ms 2)?
v (X TERAE) Y (RLP)

Dy o* €EDeatM'N D, ,*€DextNI'y

+C|[Voe™ |

DU’U* EDextNl' Ny

+ Osize(T)|e® [l2([|ull = + [[plls1)-

D, ,*E€DeatNT N

As in Prop. I1.2.1, equivalently to (II.4) the following equality holds:

1 1
My u 2 My 2
( > 2|RL*L‘2) + > (2RLp*L’2) }

(11.9)

B(e¥,e® e, %) = [VOe*|3 + usize(T)[e®[I3 + Ble®F = Y. m.7(e¥) Ry +RE),

*€DextNI' v

o‘o‘
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from which we deduce:
IV2e*|5 + psize(T)||e® |3 + Ble®|7

< |B(e*,e®, e, )| + Z m,y°(e*) - (RS + RE)|.

Da,a* G:DexthN

By applying Cauchy-Schwarz inequality we obtain:
V€13 + psize(T)|[e®(13 + Ble° 7

< [B(e*,e® e, e?)| + ( Y. m.(Ry+ RE’K)Z) ( > mo('y"(ez))Q)

Da‘,(r* GDea:tnFN Da,a* EQexthN

1
2

Thanks to Thm. 1.9.4 and Minkowsky inequality, we can write:

IV2e*(|3 + psize(T) |13 + Ble® 7

1 1
2 2
s|B<ef,e©,eT,e9>\+c[< > mo|R:KP) +( > maRf:KP) 17267
Dc‘,o‘

D *EDerptNI' N *EDertNI' N

0,0

By replacing the estimates obtained in (I1.9), we get:

V2|5 + psize(T)||e® |3 + Ble®|h
< CIVPe® |2 (IR2]l2 + [RY[l2 + [|RE-
M, oy
+C’|]V®eTH2[( Z 7|R’K*L

Do-,o-* EDezthN

2+ [|[RY[2)

1
2 m,
2) + ( Z T‘R}I:*L

Do-,a* EDexthN

)

1
0,7 Mg 2 mq 2)?
+ Ve ||2[( > 5 |R3L|) (X ERLP)

DU’U* EDertNI N DJ,U* EDertNI' N

|

+ Osize(T)[|e® |l2(|ull 2 + [[pll 1)

+0||v%ﬂ|z[< )3 ma|R3K|2>

D * Egezt mF]\7

0,0

[NIES
N

+( 3 md|R§K|2> }
Do',o'

*EDertNI'N

It remains to show the estimates for the consistency errors.

I1.3.1.3 Step 3 : Consistency errors

First, we remark that the consistency error for the velocity can be decomposed into three contribu-
tions R;’" , R%’Du and R;’bd that come from, respectively, the error due to the flux approximation,
to the gradient approximation and the boundary data approximation:

RY(z) = RY"(z) + RSP + R,



I1.3 Error estimates for the DDFV scheme 67

where, for z € p,
u,n 1
Ry"(z) = Vu(z) — — [ Vu(z)dx
mp Jp
1
R%’Du =— /(Vu(a:) — V°Piu)dz,
mp Jp
Ry = V°Piu — V*pD Piu

We now estimate all the consistency errors, by stating every result in the form of a lemma. For
the first two lemmas, we just give the statement, since they have been proven in [Krel0]; we detail
only the proofs of the new results.

Lemma I1.3.2 ([Krel0], Lemma V.8) Let T be a DDF'V mesh associated to Q2. There exists
a constant C' > 0, that depends only on reg(T), such that for all u € (H%(Q))?

IR 2 + |

(DlVullgr.

Lemma I1.3.3 ([Krel0], Lemma V.10) Let T be a DDFV mesh associated to §Q.
There exists a constant C > 0, that depends only on reg(T), such that for all u € H'(Q):

IR |l2 + [ RS- [l2 < Csize(T)||Vpll2.

The following result estimates boundary terms on I'y.

Lemma I1.3.4 Let T be a DDF'V mesh associated to 2.
There exists a constant C > 0, that depends only on reg(T) and m(IT'y), such that for all u €
(W2,oo(@>)2..

Mo —u My Hu .
> SR+ Y IR < Csize(D)? [ulfiye o)

D *EDertNI'N D ¥ EDerptNI N

0,0 0,0

Proof By definition, we can write:

2 [m
RY, — — / RY(s) - fyuds

o

2 oL u U u —
_ 2 / (RS(s) + R5P" + RYM) . &, ds.

ms

Now, it’s important to notice that R% b

=0 Y0 € Dj U (Dexr NT). So we are left only with
the terms depending on R%"(s), Ra"".

By applying Jensen’s inequality and convexity we get:

2
m,| 2 L -
Z :41*L|2 = Z 5 mi/ (R%’n(s) + R;’Du) -1 xds
Dgy(,*egemthN Dd7a*€®eztmrN o Ty
< Z / [RS(s) + RSP ds
o0 *GQemeN

§2( 5 / IPds+ Y 2"|R“D“)

o0 *G’DCMMFN ’a* EDextNl' N
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We estimate separately the terms.
» By Jensen’s inequality:

> / IRR"(s)Pds = > /

0,0 *GgexthN 0,0 *Ggemtmr

3 / mD/Wu Vu(z)|?dz ds.

*EDertNI' N

- /Vu s) — Vu(z))dz 2ds

| A

o‘a

—

By [Krel0, Lemma I.12] and the fact that diam(p U [z, z.]) < Cdp

3
) / RE(s)Pds< Y CdD/A]VQu(s)Fds,
D D

oo *G')DewfﬂFN U’o* EDextNI'N

and since we are on the boundary, o is a triangle (see Fig. 1.3): so b = . This implies:

Z / s)|[2ds < Csize(%) Z / |VZu(s)|ds.

*E@extﬁFN *E@eltﬂFN

0 Cr

By the regularity of u and the fact that

1
Z my < =size(T)m(Ty), (I1.10)
2
O_’U*EggzthN
we conclude:
ZL
Z IRY"(s)|?ds < Csize(T)Qm(FN)HuH%,Vz,oc(D).
DU’J*EDexthN T
» By Jensen’s inequality:
me| 1 2
> Zemgtpe= Y Do / (Vu(z) — V°PEu)dz
Do‘,o’* e:oeztmrN Do-,o-* egezthN mD D
S /]Vu — V'PEul?dz.
2my
o0 *G’Deztﬂl—‘]\r

By [Krel0, Lemma 1.13]:

2
Z U‘RUDu’ < Z CﬂD’rna/JVZu(z)FdZ
mp D

Do-,o-* EDextNl'N YO'* EDertNl' N

and since we are on the boundary, b is a triangle: so D = p. This implies:

Y BeREP < Csine(T) / V2u(z)[2d-. (IL11)
DU’G*egeacthN 0 *egewtmrN
By the regularity of u and (II.10) : we conclude:
D .
S " RYPP < Csize(Tm(Tn) [l o)

* egezt ml—‘N

o‘cf
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We can conclude by putting all the terms together.

. . me
We proceed in the same way to estimate the term Z —Z|R%, . ]
Do,cr* egezthN

Remark I1.3.5 Remark that we obtained an estimate of order size(%)? thanks to the regularity
u € (W2>(D))2; otherwise, from (I1.11),we would have obtained an estimate of order size(T) if
uc (H*(D))2%

The following result is obtained by replacing in the previous proof [z, z;] by o.

Lemma I1.3.6 Let ¥ be a DDFV mesh associated to 2. There exists a constant C' > 0, that
depends only on reg(T), such that for all u € (W*°(D))32:

Z m,|R%|? < Csize(% )2||u||124/2,oo(@).
D, ,*E€DeatNT N

Lemma I1.3.7 Let T be a DDFV mesh associated to ). There exists a constant C > 0, that
depends only on reg(%), such that for all p € WH>(D):

( > FIRLP+ Y SRR,

*EDextNI' N *EDertNI' N

2) < Csize(T)?||pllfy1.00 (-

0‘0

Proof By definition, we can write:

Z %‘RII()*L

Do-,o-* EDeacthN Da,o’* EDexthN

2 _ ms
= Z 5

2 [m
—/ RY(s)fi«ds

m
o K*

By Lemma 1.10.1:

mo‘ —
> TRLES Y Cho [ IV(RS ()

Da,o* EDextNI'N Da, *EDertNI N

+ h/|R® iy |2 dz.

D *GCDSImFN

We apply now the definition of R3(z) to get:

m,
> RLES Y Cho [[Vp()Pds

Da,o-* EDextNl'N DU’U* EDextN'y

+ h/|IP’mp p(z |dz.

D *E@eztﬂFN

g,0

We estimate separately the terms.
» By regularity of p and (I1.10) we have:

S Ch / IVp(=)[2dz < Crize(%) 3 / IVp(=)[2dz

Dg,a* egextmrN D 0,0 o* G'Dextml—‘N

< Csize(T)’ m<rN>||p||W1m@>-
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» By Lemma 1.10.9 and the regularity of p:

Ik
. /UP’mp p(z)[2dz < Z 51ze /]Vp dz.

D *E@gztﬁFN Da,a* E@eztﬂFN

Again by regularity of p, we have:

. My
/\Pmp p(2)[2dz < CSIZe(‘I)QHPH%/Vl,oo(@) Z -

h
D *G@eztﬂFN D «EDertNI' N D

Finally, since mD <1 5M,, we conclude:
/ [P2p — p(2)[2dz < Cm(Tn)size(T)2 Dl (o)-
D o, *G@ezthN

We can conclude by putting all the terms together.

. . me
We proceed in the same way to estimate the term > 7]RE*L|2 . [
D, ,*E€DeatNT N

The following result is obtained by replacing in the previous proof [z, z;] by o.

Lemma I1.3.8 Let ¥ be a DDFV mesh associated to ). There exists a constant C > 0, that
depends only on reg(T), such that for all p € WH>(D):

Y. mo|REJ? < Csize(T)? |l o)
Dcr,o-* egea:tmrN

11.3.1.4 Step 4 : Conclusion
We recall that ¥ = (B Piu) —u® € (R?)* and €® = P2p — p® € R? and that we obtained
the following inequality:

IV2e*|[3 + psize(T) (1”13 + Ble® |7
< CIVoe™ |2 (IR + IR

2)
voe( Y M) (X Mm

Do',o-* EDertNI N DU’U* EDertNl N

7]

( )3 ”;"rRr*LP) (X TP

DU’U* EDextNl'y Do,a* EDextN'y

NI

+C|[V2e™ |2

+ Osize(T)[|e® |l2(|ull 2 + [[pll 1)

1

+0||v©e“uz[( >, mR} |2)2+( > maREKQ)é}

Da,o* egeztnFN Do,a* egezthN
Lemmas 11.3.2, 11.3.3, 11.3.4, 11.3.6, 11.3.7, 11.3.8 and the fact that $|e®|? > 0 imply:

V2|12 + psize(T) |23 < Csize(T)||V2eT||2 + Csize(T) |-
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We apply Young’s inequality to obtain:
|VPe*||3 < Csize(%T) and |[[e®|3 < C. (I1.12)

Estimate of [[u — u¥||2:

By using discrete Poincaré inequality, we find:

la = a2 < [u =P Prullz + [Py Piu—u¥|

< Jlu— Py jPrullz + Cl[VOe*||2.

m,g
By [KrelO, Lemma 1.18] , we have:
lu — 50 Prul3 < [lu—PLull3 + u —BF,ull3.
and if we apply Lemma 1.10.7, it gives:
u— P, Prul3 < Csize().

So we have:
lu—u®||2 < C(size(%) + HVDegHg). (I1.13)

Thus, if we apply estimate (I1.12) we finally obtain:
lu — u¥|; < Csize(%)2.

Estimate of ||[Vu — Vou¥||,:
We can decompose it in:

IVu—VouT|y < [Vu - VoPguls + |[VPiu — VOB Plulls + ||V, ;Piu — VOu®||;
< |Vu = VOPSu|z + | VPiu — VOB Prulls + [|V2e 2.

By Lemma 1.10.2 and Lemma 1.10.6, we have:

[Vu — VPPiul|y + [|[VPEu — VOBL Piu|, < Csize(T),

m,g— C

so that :
[Vu — VPu® ||y < Csize(%) + |[VPe* 2. (I1.14)

By estimate 11.12, we conclude:

|Vu — V2u®|; < Csize(T)?.

I1.3.2 Stability of the DDFV scheme

In order to improve the error estimate, we prove the stability result for the scheme (Pg,). This
result has been proven in the case of homogeneous Dirichlet boundary conditions in [Krel0], here
the difficulty relies in taking into account the boundary I'j.
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Theorem 11.3.9 Suppose that § > 0. There exist two constants C,Cs > 0, depending only on
Q, 3 and reg(t), such that for every couple (u*,p®) € EED x R® with

(—VDuT + pD]d)ﬁ,K = (I)U WD(,’,,* € Qext N FN,
there exist U~ € EgD and 7° € R® such that:

IV2a*3 + 7713 < CL(IVou™|I3 + [p®]13), (IL.15)

Z me (I)J’VJ (ﬁT)

D * egezthN

o,0

IV2u™)3 + [Ip°]3 < O (B(ufvpg;ﬁs,ﬁg) +

+ \|<I>J\|§) . (IL.16)

Proof Let (u®,p®) ¢ IEED x R® with
(—=VPu® +p’Id)fi,x = @5 VD, ¢ € Degt NIy

The proof consists into building explicitely (™, p>) € Eg D x R® such that relations (I1.15)-(I1.16)
are true.

» Step 1: As in the proof of Prop. I1.2.1, we apply discrete Green’s formula (Thm. 1.5.1) to the
bilinear form B, defined in (I1.2). We obtain:

B(u®,p®;u*,p®) = [|VOu¥( + psize(T) D23 + BI°1E - D m.®s -4 (ut). (IL17)
D *EgeztmrN

0,0

» Step 2: We apply Lemma 1.6.3 to the function p® = > pep P’Ip € L?(9). So there exists
C > 0 depending only on Q, v € (H%D(Q))2 such that (mind the sign):

div(v) = —p®
v)=-» R (IL.18)
vl < Cllp~ 2.
We set v® = P] v. In particular, v* € EgD .
We apply Lemma 1.10.5 to obtain:
IVovE[l2 < Cllv]igr < Cllp® |- (I1.19)
» Step 3: Green’s formula (Thm. I.5.1) implies:
B(u%,p®,v*,0) = (VPu®: VOv¥)g — (p°,div®v¥)p — Z myPy - Y7 (vF).

Da,o-* EDextNl'N

We pass the boundary term on the left hand side. Then, by applying Cauchy-Scwharz inequality
and adding and subtracting the term > p.5 [; p°(div(v(2))dz, we end up with:

B(u™,p? vi 00+ Y m,®17(v) 2 —[[VOuT [ VEVE
D, ,*EDeatNl'y

-3 /D P (div(v(z))dz — 3 /D PP (div? (vE) — div(v(z)))dz.

DeD DeED
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Thanks to (II.18), we get:

B p® vi 00+ > m, - Py (vF) = —C|VuT[2[[p®
D *EgeztmrN

o,0

+pPE -3 / P (div?(vF) — div(v(2)))d=.

DED

We need the following estimate:

> /Dp”(div[’(vz) —div(v(2)))dz < C(Ip®|n + [|®ol2 + V20 [l2) V|-
DED

Let us assume temporary that this statement holds (it will be proven in Lemma I1.3.10 below),
then we can write:

B, p® vi,0)+ > mPe (vF) = ~C|[Vu[|2[[p®|2
D *egezthN

0,0

+ P13 = C(p® I + 1@oll2 + VO |2) V]| 111

Using (I1.18), we get:
Bu®,p® vi .00+ > m®n7(vF) > ~ClIVuT|2[p®]>
D, o* EDextN' v
+p7113 = C(p° | + |@ol2 + [V u™[l2) 1D 2.

Thanks to Young’s inequality (Lemma I.11.1), we get the existence of four constants Cy, Cy, C5, Cy >
0 that depend only on © and reg(¥), such that:

Bu®,p%vy 00+ > m, Dy (vF) >
Do‘,d* G@ezthN

Cilp® |13 = Cal[VPuT|5 — Cs[p® [ — Cal| @ol3.  (11.20)

Step 3: The bilinearity of B, inequality (I1.20) and (I1.17) give, for all £ > 0:

B(u®,p®;u® +&vE,p°) + > me®eyT (U +EVT)| + ECy| Do l2 >

DU’U* EDextNl'y

(1 —€Co)||[VPu™|3 4+ €01 [P 3 + (B — £C3)p° 3.

We choose the value of £ > 0 sufficiently small (that depends only on Cs, 5 and C3) such that all
the constants in front of the norms are strictly positive. In this way we find (II.16).

To recover inequality (IL.15), it’s sufficient to consider u¥ = u® 4 ¢&v® and p° = p?; since
[VPvE|l2 < C||p®||2, we can conclude. [ |

The following lemma is an extension of the result proved in [[Krel0], Lemma IV.25]. The difference
is in the space in which the function v belongs: we consider the case in which v & H%D (Q) instead
of v.€ H}(Q).

Lemma I1.3.10 Let T be a DDFV mesh associated to ). There exists a constant C' > 0, that
depends only on reg(%), such that for all v € (H%D(Q))2 and for every couple (u™,p®) € EgD x R®
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with
(—=VPu® + p°ld)fi« = P, VD, .+ € Degy NIy, (I1.21)

we have:

Z/ (div(vF) = div(v(2)))dz < C(ID° |4 + [ Pallz + [ VET||2) [ 0l] 1,
DED

with v =PT v is the average projection of v on the mesh ¥, defined in Sec. 1.2.

Proof The set ® can be split into interior and exterior diamonds: ® = ©;,; U Dy From
[[Krel0], Lemma IV.25] we have:

> [Py - div(v(z)dz < Cp®lullvlm.

DeD'Lnt D

So, we focus on diamonds b € D..;. In particular, the only terms that are non zero are on
DE Degr NIy, since v € (H%D (€2))2. Thanks to the divergence formula (I.3.5) we can write:

/D(divD(v‘I) —div(v(z)))dz = Z msL /S(VK—;VK* — V(Z)) - Tgpdz

m
S:[:L‘K,:L‘K }GE'D s

L 2 *
+ / oo (vL Ve V(Z)) Mdz (11.22)
T 2 m, 2

T m, 2 [ Vix + Vg > .
—_— = ‘N dz.
+/xL ZmJ( 5 v(z) | - fidz

We define:
) = o [(P5 v s

R, (v) = . / (vL Ve v(z))dz
R, (v) = 7/ (VL* LA v(z))dz.

So, if in (I1.22) we multiply by p® and we sum over D¢,y N Ty

3 / (Av(vT) —diviv())dz = 3 Y meR%(v) - flan
DE@eTfmFN DE’DmtﬁFN EGSD
me * —
+ Z pbiRgiv(V) Mgy
DegezthN
My 1 .
+ Y DR (V) i
DEDextNI'y

The first term Z Z ms R, (V) - gy contains only interior edges s of the diamonds, so
DE@emmFN 565])
we refer to the proof [[Krel0], Lemma IV.25].

We consider then the other two terms. In particular, we prove the result just for Rﬁ;(v),
since it is equivalent for Rk (V).
We recall that m, = $m,m,- sin(a). We apply Neumann boundary conditions (I1.21) and Cauchy-
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Schwarz inequality to obtain:

> PR <o Y mief) (¥ EGeP)

DE@ewtﬁFN DED et NI N DEDertNI' N

1
2
v X miva?) (X RGP
DEDeatNI' v DEDextNI' v
1

clltal)( 3 IRGOP)

DED NI N

vl S IRGME)

DE@ezt mFN

1
2

To conclude, we need to prove that Z |R%. (v)|> < C||v||g: . Notice that, if we call the
DED NI N
segment [zg, x| = o1 and if we define

1
Vg, = / V(y)dy7
o1

Moy

we can write by the definition of R, (v):
RE WP < 2(Ive = Vo[ + 2lvi = v, [2).

Vl

If we denote v = , we can work componentwise. For ¢ = 1,2, each term on the right hand

2
v
side can be controlled by:

2

1 : 2
o~ /* v'(z)dx

|VK*—VZ 2<2

1 . A
+ p—_— / v'(z)dz — vg,,

vi(x)dz is an average

VK* —

By defintion, both vi. and vf,l

Mg+ Jx*
over a bounded polygonal domain. We can thus apply [[ABHO7], Lemma 3.4] and deduce:

M = v 2 < C [ 19V (2)Pdz.
K*

We obtain for i = 1,2:

>RGP < C/Qmi(z)y?dz.

DEDertNI'y

that by summing over i, gives us the desired result. [

11.3.3 Optimal error estimate

We improve the result of Thm. I1.3.1 by applying the stability result of Thm. I1.3.9; remark that
to apply this result it is necessary to suppose 3 > 0.

Theorem I1.3.11 We suppose that the solution of (I1.1) satisfies (u, p) € (W2°(D))2x WL (D).
Let B> 0 and (u¥,p®) be the solution of (Pg,). Then there exists a constant C > 0 that depends
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on reg(¥), u, B, ||[ullw2.~ and ||p|ly1. such that

Ju —u¥|2 + ||[Vu — V2u® ||y < Csize(%),
lp — p®l2 < Csize(T).

Proof We proceed exactly as in Thm. I1.3.1 by defining the errors e* = (‘B2 PTu) — u® €

m,g— C

(RQ)T, the error for the velocity field, and e® = PP?p — p® € R®, the error for the pressure field.
We recall that they satisfy the following system:

Find e* € Eg D and €® € R® such that:
div¥(—=V®e* + ¢°1d) = R¥ Vk € M
div¥" (-V®e* 4 ¢°Id) = R Ve € M U OMy
div®(e*) + psize(T)e® — fd2A®e® = R®
(=V°e® 4+ ePId)fi,, = R%E + RP, Vb, .+ € Doy NTy

*

where R* = ((RK)KEDJta (RK )K*eim*uasmjv> and R® = (RD> o with:

De
K 1 u 1
Rf=— > mRL+— > mRE, vk € M,
M D, ,* €Dk s D, ,* €Dk
| 1
RY = > meRY .+ > moRE., Vs € I,
mK* Dcr,o'* GQK* mK* DU,U* GQK*
. 1 m,
RY = — > me(RE- + R+ — > — (R + RY.), Vk- € oMy,
D, % €Dy “ b, €Dert
R® = div’ (P}, ,Piu) + psize(T)PD,p — Bd3APP) b, Vo € D.

Thm. 11.3.9 implies that there exist &° € EgD and & € R® such that:
IV2&X]3 + 823 < C(IVPe™ (15 + [1e®[13), (I1.23)
and
IV2e*3 + (1[5 < CB(e™, ¢™;&%,37)

+C Y. m(RE+RE) 7€) + CIRE + R 30,

Da,a* EDertNI' N
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Thus, by applying Cauchy-Schwarz inequality and trace theorem (Thm. 1.9.4), we can write:

IV2e™]3 + [|e°]3 < CB(e*,e; 6, &)

+C ( Z m, (RY% + REK)2>

DO.’G* Ggeact ml—‘N

+C > m,|RY|? +C > m,|RP |2

Do’,a* EDertNI N DUJ*E@eztﬂFN

N
[N

( > ma('ya(é&)V)

DG’ * GQexthN

1
2

< CB(egaegfé‘zaé@) +C ( Z m, (R, + R§K>2) HVQETHQ

D o* egemt ml—‘N

+C > m,|RY|? + C > m,|RP,|%.

Do’,a* EDertNI N Dmo.*egezthN

Thanks to the definition of B we have B(e%,e®;&%,&) = [[R*,&*]], + (R®,&%)p =: I+ T and by
proceeding as in the proof of Thm. I1.3.1 we get.

~T
V263 + 1123 < IV 2 (IRE[l2 + [R2[l2 + [RE: 2 + R )

+C\v©éf||2{< ;'3*L|2>é +( > 5 "o Rp. |2>1]

D *EBDEIWFN Da,,o,* EDertNI N

1 1
m, 2 m, 2
CRLP) (X TRRE)

DU’U* E@eztnFN

+C|v%f||2[(

D *E@eszN

o,0

+ Osize(T)[|&° |l2(|lull = + [[pll 1)

vo (Y wree) (X wirep)]

D *EDerptNI N DL7 o EDextNI' N

o,0

+C > m,|RY|? + C > m,|RP,|%.

DU’U* EDextNl'y 070* EDextNI'N
Now we use relation (I1.23) to get:

V213 + [le]13
< C(IVPe™ |2 + [[e®[l2) (IRE[l2 + IRz + R [l2 + IR ||2)

1

1 1
m, 2 m, 2
PP+ 1) (X TRAE) (X RnP)

Dy o* €EDeatN'N Dy % €DeatNl'y
1
m, m, 2
( )3 QRE*L'Q) o X R
. ) D
+ Csize(T) (Ve |2 + [le®[l2) ([ull g2 + [Ipll )
1 1
3 2
(X mmep) (X mmnp) |
Do, *E@eztmrN Da’a*egeztmrl\f

DU’G*GQEmOFN DU’U*eDemeN
+C > m,|RY|? + C > m,|RP |2

*EDextNI' N 0 g*egeLthN

N

C(Ivoe™ |2 + fle®[l2)

+O(IVoe™[l2 + [le]l2)

cfo'
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Lemmas 11.3.2, 11.3.3, 11.3.4, I11.3.6, 11.3.7, 11.3.8 imply:
V®Pe®|3 + [|e®]]3 < Csize(T)% (I1.24)

Estimate of [[u — u¥||z and ||[Vu — VouT|s:

If we apply the estimate (I1.24) (different from (II.12) in Thm. I1.3.1) to (I1.13) and (II.14),
we obtain:
[u—u®||2 < Csize(T).

[Vu — VPu ||y < Csize(%).

Estimate of ||p — p®||2:
We have:
Ip = p®ll2 < lp = Ppll2 + [PRp — p7|l2.
We conclude thanks to Lemma 1.10.9 and the estimate (11.24). ]

II.4 Numerical results

We validate the scheme (Pg,) by showing some numerical experiments. The computational domain
is Q = [0, 1]2. The configuration of the boundaries is illustrated in Fig. I1.2.

I'p

I'p I'n

I'p

Fig. I1.2 Q = [0, 1]2, Dirichlet boundary conditions on I'p , Neumann boundary conditions on I'y.

We study the error in the case of unstabilized and stabilized mass equation (i.e. with a linear
stabilization, p > 0, or Brezzi-Pitkaranta type stabilization, § > 0). In the following discussion,
we show how we obtain the expected convergence rates and how the stabilization terms do not
influence the result.

For those tests we give the expression of the exact solution (u,p), from which we deduce the
source term f, the Dirichlet boundary condition g and the Neumann boundary condition &
for which (u,p) is solution of (IL.1). We will compare the L?-norm of the error for the velocity
(denoted Ervel), the velocity gradient (Ergradvel) and the pressure (Erpre). In particular we denote:

_ P2 —p?|2

Erpre =
IPEpll2

where PTu and P?p are the centered projections of u and p.

IV® (PEu) — VOu=|
V2 (Pfu)fla

[Peu — u¥[l

|
, Ervel = , I1.25
TR

Ergradvel =

On Tables I11.1 -11.6 we give the number of primal cells (NbCell) and the convergence rates (Ratio).
We remark that, to discuss the error estimates, a family of meshes (Fig. I1.3) is obtained by refining

successively and uniformly the original mesh.
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Fig. II.3 Family of
meshes. On the left:
non conformal square
mesh. On the right:
quadrangle-triangle
mesh.

Green-Taylor vortices: In this test case, the exact solution is given by:

Lsin(2nz) cos(27
u(z,y) = <_25 C()(s2(27rzv) sir(12(272i)y’)> p(z,y) = écos(?wx) sin(2my). (11.26)

In this example, we show the results obtained using the non conformal square mesh of Fig. 11.3;
many other meshes were tested and the geometry of the mesh did not influence the accuracy of the
approximation. As we can see in Tables II.1, I1.2, I1.3, we observe super convergence in L? norm of
the velocity; instead, for the H! norm of the velocity and for the L? norm of the pressure we get
exactly what was expected from Thm. I1.3.11. As we mentioned before, an important remark is
that the order of convergence does not change whether or not a stabilization is present and this has
been observed in all the tests; it is sufficient to compare Tables I1.1, I1.2, I1.3. This underlines the
fact that the stabilization term is just a useful tool for the proofs of Theorems I1.2.2 and 11.3.11,
but in practice it does not affect the results. Moreover, we tested the unstabilized scheme on
other meshes for which we are not able to prove well-posedness because of their geometry and we
numerically observed good behaviour. Remark also that the mesh in this example is non conformal.

Table I1.1 Green-Taylor vortices on the non conformal square mesh of Fig. II1.3, with 4 = 0,5 = 0.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
64 6.693E-02 - 9.762E-02 - 1.179E4+00 -

208 1.665E-02 2.00 4.485E-02 1.12 5.621E-01  1.07
736 4.173E-03  1.99 2.167E-02 1.05 2.770E-01  1.02
2752 1.045E-03 1.99 1.068E-02 1.02 1.380E-01  1.00

10624 2.615E-04 1.99 5.304E-03 1.01 6.895E-02  1.00

Table I1.2 Green-Taylor vortices on the non conformal square mesh of Fig. I11.3, with u = 1072, 3 =
0.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
64 6.695E-02 - 9.769E-02 - 1.175E4-00 -

208 1.665E-02  2.00 4.487E-02 1.12 5.612E-01  1.06
736 4.173E-03 1.99 2.167E-02 1.05 2.767E-01  1.02
2752 1.045E-03 1.99 1.068E-02 1.02 1.379E-01  1.00

10624 2.614E-04 1.99 5.305E-03 1.00 6.894E-02  1.00
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Table I1.3 Green-Taylor vortices on the non conformal square mesh of Fig. I11.3, with p = 0,5 =
1072,

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
64 6.970E-02 - 1.080E-01 - 6.979E-01 -

208 1.719E-02 2.01 5.031E-02 1.10 3.189E-01 1.13
736 4.305E-03  1.99 2.447E-02 1.04 1.528E-01 1.06
2752 1.079E-03 1.99 1.210E-02 1.01 7.498E-02 1.02

10624 2.700E-04 1.99 6.021E-03 1.00 3.717E-02 1.01

Polynomial solutions: The exact solution is given by

aeg) = ( 2000(z* — 22% + 27)(2y — 3y + ),

2 .2
) =22+ — 1 11.27
—2000(y* — 23 + 32)(22 — 322 + ac)) p(z.y) =" +y ( )

In this example we use the quadrangle mesh on the right of Fig. I1.3. Remark that, for this mesh,
the well-posedness of the unstabilized scheme has not been proven. However, we numerically
observe that the scheme is invertible and, in Tables I1.4, I1.5, I1.6, we observe (as in the previous
test case) super convergence in L? norm of the velocity and the expected rate for the gradient of
the velocity and for the pressure. The order of convergence does not change if we work with or
without stabilization. As in the previous case, we tested our schemes on different general meshes,
and every time we got good results.

Table I1.4 Polynomial solutions on the quadrangle-triangle mesh of Fig. II1.3, with 4 = 0,8 = 0.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
400 5.081E-02 - 6.309E-02 - 5.450E400 -

1536 1.284E-02 1.98 2.796E-02 1.17 2.643E400 1.04
6016 3.225E-03  1.99 1.346E-02 1.05 1.307E4+00 1.01

23808 8.078E-04 1.99 6.660E-03 1.01 6.517E-01 1.00
94720 2.022E-04 1.99 3.320E-03 1.00 3.256E-01  1.00

Table I1.5 Polynomial solutions on the quadrangle-triangle mesh of Fig. II1.3, with u = 1072, 3 = 0.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
400 5.080E-02 - 6.312E-02 - 5.443E400 -

1536 1.284E-02 1.98 2.797E-02 1.17 2.641E400 1.04
6016 3.224E-03 1.99 1.346E-02 1.05 1.307E+00 1.01

23808 8.079E-04 1.99 6.660E-03 1.01 6.516E-01  1.00
94720 2.022E-04 1.99 3.320E-03 1.00 3.256E-01 1.00

I1.5 Extension to the Divergence form

In this section, we would like to discuss the extension of the work done for the Laplace form of the
Stokes problem (II.1) to the Divergence form:

—div(o(u,p))=f in Q,
in Q,

f

div(u) =0

u=g on I'p,
d

(11.28)

o(u,p)il

on FN,
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Table IL.6 Polynomial solutions on the quadrangle-triangle mesh of Fig. II1.3, with © = 0,8 = 1072

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
400 4.580E-02 - 7.500E-02 - 3.045E+00 -

1536 1.152E-02 1.99 3.436E-02 1.12 1.434E4-00 1.08
6016 2.887E-03 1.99 1.673E-02 1.03 7.051E-01  1.02

23808 7.230E-04 1.99 8.302E-03 1.01 3.510E-01  1.00
94720 1.809E-04 1.99 4.142E-03 1.00 1.753E-01  1.00

where the unknowns are the velocity u : © — R? and the pressure p : © — R. The data
are f € (L?(Q2))?, ®,g € (H%(OQ))2 and 1 is the unitary outer normal. The stress tensor is

o(u,p) = ﬁDu — pld, with Re > 0. In particular, the strain rate tensor is defined by the

symmetric part of the velocity gradient Du = %(Vu +t Vu).

We will consider an open bounded polygonal domain € of R? with 9Q = I'p UT y, where I'p # ()
is the fraction of domain with Dirichlet boundary conditions, I'yy # ) is the fraction is the one
with Neumann boundary conditions.

The DDFV discretization of (I1.28) and the properties of the resulting scheme come as a natural
extension of the results for (Pg,). This is due to the results proved in Sec. 1.8, that relate the
discrete strain rate tensor with the discrete gradient.

To obtain our scheme, we integrate the momentum equation over all 9t U 9* U 09ty,. We
impose Dirichlet boundary conditions on 90tp U 0M*p and Neumann boundary conditions on
OMp (see Fig. I1.1). The incompressibility constraint is directly approximated on the diamond
mesh ©. We remark that, since Korn’s inequality (Thm. 1.8.2) is proved under the assumption
that the mesh satisfies inf-sup stability (see Sec. 1.6), it is not interesting to stabilize this equation
(as we did for (Pg,)).

The scheme reads:
Find u* € Efnffg and p® € R® such that:
—divk (ag(ui, pﬁ)) —f, Yk € M
—div¥® (09 (u®, pg)) =fi= V- € M UMy
div®(u*) =0
JD(uT,pQ) My = Py VD, .+ € Deyt NIy

2
with the discrete stress tensor defined by o®(u%,p®) = R—Dgug — pQId and where we denote as
e

before by f;, g, (resp. fix, g,+) the mean-value of the source term f and of the Dirichlet data g on
k € M (resp. on k* € M* U OM) and P, the mean-value of the Neumann data on o € I'y:

1 1
f, = —/f(w)da:, for = f(z)dx,
my Jx My Jx*
1 1
8= [g@)de, g ——— [ g(a)dn,
my JK Myg* JK*

o, = 1/0(I>(w)dm.

mO'
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Moreover, we denote by g_ = v7(g*).

11.5.1 Well-posedness of the scheme

In the following proposition, we show an a priori estimate to the solution of (D) before proving

that the problem is well-posed:

Proposition I1.5.1 (A priori estimate) Let (u*,p®) € E,Egg x R® be a solution of (D). Then:
2 2w < {167, w7
Re - ’

2 %
+ S mlg, P
Do',o'* egezthD

+( Z mg|‘1>a|2) ( Z mglfy”(uT)F) . (11.29)

Da,a* egeztmrN DJ,J* egeztml—‘N

[SIE

2

&mf—ﬁm

~ ( >, m
Do’,v‘

*EDertN'p

N[

Proof We define the bilinear form associated to the scheme:

B(u®, p°, ut, p®) = Hdivz ((_2

ReDQuT + pgld) ,uT” + (div® (u¥), p?)s.

T

If we apply Green’s formula (Thm. I.5.1 ), with the remark that, since D®u® is symmetric and
div® (u¥) = 0, we have [[D®u?, V2u]Js = [[D®uT, D®uT]|s , we get:

2 .
B(u®,p®,u%,p°) = @HDDU'III% - (°,div®(u))s

2
+ Z ma,ya(u‘z) ’ <_DDu‘I + pDId> O,y + (d1V© (u1)7 p©)©~
D, o* EDext Re

The terms (p®, div® (u¥))p simplify. The boundary diamonds ®.; can be split between D, NI'p
and D¢z NIy 5 by applying Dirichlet and Neumann boundary conditions, we obtain:

2 2 N
B(u®,p°,u*,p°) = Rf||D®uT||% + Z meg, - <—RDDuT + p“Id) T
¢ D *EgeztnFD ¢

o,0

- > myy’ (u®) - ®,. (11.30)

D, o* EDextN'y
On the other hand, since (u*, p®) is a solution to (D), we have:
B(u*,p®,u*,p?) = [[f*, uls. (IL31)

By putting together (I1.30) and (I1.31) :
2 D_T|2 T T
P w2 < [l w?]ls

2
+ > m&(mf—wﬂmx

Do’ o* egext 1 D

> my,y(u®) - @, .

Da,cr* Egewt ml—‘N

We then apply Cauchy-Schwarz inequality to get our result (I1.29). ]
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In the following result, we prove that there exists a unique solution to (D).

Theorem II.5.2 (Well-posedness of the scheme) Let © a DDFV mesh associated to € that
satisfies Inf-sup stability (Def. 1.6.1) . Then the scheme (D) has a unique solution (u*,p®) €
ELD, x R?.

Proof By linearity, it is sufficient to prove that if ¥ =0, g™ = 0,g9™" = 0 and ®, = 0, then
u® =0 and p® = 0. Directly from (I1.29), we deduce:

2
= [Dut3 <.

that implies [|[D®u¥||; = 0. Thanks to Thm. 1.8.4, we deduce u® = 0. Thus, the momentum
equation and the Neumann boundary condition become:

div¥ (pDId) =0 Yk € M
div®” (pi’ld) =0 V€M UMy (I1.32)
(P°Id)f =0 ¥, .+ € Do Ny

Our goal is now to show that p® = 0. For every v* € EgD , thanks to Green’s formula (Thm. 1.5.1),
we can write:

(div® (v¥), p@)@ =— HVT, diVT(pDId)”T + Z myy? (vF) - (p°Id) @ . (I1.33)
D, +EDeut

By definition of the scalar products (see Sec. 1.4), by (I11.32) and by the fact that v* € EgD, we
get that va, divT(pQId)HT =0 and Z m,7’ (v®) - (p°1d) i = 0. Thus (I1.33) becomes:
D, *EDeut

0,0

(divi’(vf),pg) —0. (I1.34)
D

We now go back to inequality (1.30) ensured by Inf-sup stability: since (I1.34) holds for any
vT e Eg b the supremum in the right hand side of (I.30) vanishes and we can deduce that p® is

2
constant. Thanks to Neumann boundary condition, i.e. (RDDuI — pDId> N, =0, and u® =0,
e

we get that p® = 0. [

Remark I1.5.3 (Error estimates) For what concerns the error estimates for the scheme (D),
we will not detail the computations here. The proof of an optimal error estimate of order 1 for
the velocity, its gradient and the pressure comes straightforwardly from the one in Sec. 1.3, Thm.
11.5.11.

First, remark that it is sufficient to apply the results of Sec. 1.8 in order to pass from ||[Vou¥ ||z
to |D®ut||o and viceversa when necessary.

Moreover, the hypothesis 5 > 0 in the optimal error estimate of Thm. I1.8.11 can be eliminated
if we suppose Inf-Sup stability condition. It is necessary to suppose > 0 in order to apply the
stability result of Thm. I1.53.9; under Inf-Sup stability condition and with B = 0 = pu, the proof
remains valid. In fact, if we look at Step 1 with B =0 = u, instead of (I.17) we get:

B(u® p®u™,p?) = [VouT| = > m,®g -y (u’).
D, ,*EDeatNl'y
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Step 2 is replaced by Lemma I.6.5, which directly ensures Vp° € R® the existence of v© € IE(I;D
such that div® (v®) = —p® and |[V2vT||s < C|[p®|2 ; Step 3 is then obtained straightforwardly.

I11.5.2 Numerical results

We validate the scheme (D) by showing a few numerical experiments. The setting of the simulations
is the same as the one introduced in Sec. 11.4.

The computational domain is = [0, 1]2. The configuration of the boundaries is illustrated in Fig.
I1.4.

I'p

FD I‘N

I'p

Fig. 11.4 Q = [0, 1]2, Dirichlet boundary conditions on I'p , Neumann boundary conditions on I'y.

For those tests we give the expression of the exact solution (u,p), from which we deduce the source
term f, the Dirichlet boundary condition g and the Neumann boundary condition ® for which
(u,p) is solution of (II.1). We will compare the L2-norm of the error obtained with the DDFV
scheme for the velocity (denoted Ervel), the velocity gradient (Ergradvel) and the pressure (Erpre);
see (I1.25) for the definition of the norms. On the Tables I1.7, I1.14 we give the number of primal
cells (NbCell) and the convergence rates (Ratio).

The difference with respect to Sec. 11.4 is that now the scheme is not stabilized; so, instead
of studying the influence of the parameters, we present tests on different mesh geometries to show
how this does not affect the accuracy of the scheme. With respect to the previous section, we add
the meshes of Fig. I1.6. Moreover, for some of the meshes that we tested, Inf-sup inequality (Def.
1.6.1) has not been proven, but we observe numerically that it holds even in those cases.

The main difficulty with respect to the implementation of the scheme (Pg,) is that here we deal
with the discretization of the term D®u?*.

Fig. I1.5 Two families of
quadrangular meshes.

We remark that, to discuss the error estimates, a family of meshes is obtained by refining succes-
sively and uniformly the original mesh.

In Tables I1.7,I1.8,11.9, I1.10 we show the results for the solution of Green-Taylor vortices (I11.26);
in Tables I1.11,11.12,11.13, 11.14 we show the results for the polynomial solutions (I1.27). In all the
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Fig. 11.6

Two family
of triangular meshes.

cases, we observe super convergence in L? norm of the velocity and the expected order 1 for the
H' norm of the velocity and for the L? norm of the pressure (as proved in Thm. I1.3.11) ; we also
remark that the mesh geometry does not influence the results, even for meshes that do not satisfy
Inf-sup stability (Def. 1.6.1), like the quadrangular mesh of Fig. IL.5.

Table I1.7 Green-Taylor vortices on the left triangular mesh of Fig. I1.6.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
72 1.122E-02 - 3.669E-02 - 5.226E-01 -

256 2.729E-03 2.04 1.572E-02 1.22 2.179E-01 1.26
960 7.113E-04 1.94 7.355E-03 1.09 1.150E-01  0.92
3712 1.860E-04 1.93 3.534E-03 1.05 5.915E-02 0.96
14592 4.772E-05 1.96 1.728E-03 1.03 2.992E-02 0.98

Table I1.8 Green-Taylor vortices on the right triangular mesh of Fig. I1.6.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
48 4.048E-02 - 6.850E-02 - 1.394E+00 -

160 1.001E-02 2.01 2.270E-02 1.59 3.486E-01  2.00
576 2.489E-03 2.00 7.783E-03 1.54 8.732E-02  1.99
2176 6.207E-04 2.00 2.712E-03 1.52 2.184E-02  1.99
8448 1.550E-04 2.00 9.519E-04 1.51 5.459E-03  2.00
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Table I1.9 Green-Taylor vortices on the left quadrangular mesh of Fig. IL.5.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
64 3.292E-02 - 9.172E-02 - 1.878E+00 -

208 7.827E-03 2.07 4.423E-02 1.05 6.809E-01  1.46
736 1.932E-03 2.01 2.163E-02 1.03 3.002E-01  1.18
2752 4.801E-04 2.00 1.069E-02 1.01 1.432E-01  1.06
10624 1.197E-04  2.00 5.308E-03 1.00 7.021E-02 1.03

Table I1.10 Green-Taylor vortices

on the right quadrangular mesh of Fig. IL.5.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
400 3.658E-03 - 2.591E-02 - 6.480E-01 -

1536 9.242E-04 1.98 1.280E-02 1.01 3.206E-01 1.01
6016 2.326E-04 1.99 6.376E-03 1.00 1.595E-01 1.00
23808 5.833E-05 1.99 3.184E-03 1.00 7.957E-02 1.00
94720 1.460E-05 1.99 1.591E-03 1.00 3.974E-02  1.00

Table I1.11 Polynomial solutions on the left triangular mesh of Fig. IL.6.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
72 7.574E-02 - 1.266E-01 - 7.616E4-00 -

256 1.507E-02 2.32 4.247TE-02 1.57 2.494E400 1.61
960 4.019E-03 1.90 1.757E-02 1.27 1.048E+00 1.25
3712 1.085E-03 1.89 7.782E-03 1.17 4.984E-01  1.07
14592 2.836E-04 1.93 3.626E-03 1.10 2.471E-01  1.01

Table I1.12 Polynomial solutions on the right triangular mesh of Fig. I1.6.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
48 1.381E-01 - 2.041E-01 - 1.991E4+01 -

160 3.697E-02 1.90 6.771E-02 1.59 5.614E400 1.82
576 9.553E-03 1.95 2.333E-02 1.53 1.465E+00 1.93
2176 2.417E-03 1.98 8.172E-03 1.51 3.709E-01  1.98
8448 6.072E-04 1.99 2.879E-03 1.50 9.305E-02  1.99

Table I1.13 Polynomial solutions on the left quandrangular mesh of Fig. I1.5.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
64 1.669E-01 - 2.739E-01 - 3.520E4+01 -

208 4.027E-02  2.05 1.138E-01 1.26 1.017E+01 1.79
736 8.839E-02 2.01 4.964E-02 1.19 3.528E4+00 1.52
2752 4.419E-02 2.00 2.273E-02 1.12 1.428E+00 1.30
10624 2.210E-02 2.00 1.080E-02 1.07 6.372E-01  1.16

Table I1.14 Polynomial solutions on the right quandrangular mesh of Fig. I1.5

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
400 2.468E-02 - 5.906E-02 - 5.974E400 -

1536 6.451E-03 1.93 2.741E-02 1.10 2.726E4+00 1.13
6016 1.639E-03 1.97 1.339E-02 1.03 1.319E+00 1.04
23808 4.117E-04  1.99 6.651E-03 1.01 6.534E-01  1.01
94720 1.031E-04 1.99 3.319E-03 1.00 3.259E-01 1.00
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I1.6 Unstabilized scheme: weak boundary conditions

Here we discuss another extension to the results proved for the scheme (Pg,). If we do not stabilize
the incompressibility constraint, the problem remains well-posed under the hypothesis that the
mesh satifies Inf-sup inequality (see Sec. 1.6). We recall that this inequality has been proven for
a large class of meshes, but in the simplest case of conformal square meshes it is valid up to an
unstable mode for the pressure.

We want to show that there is a way of avoiding this inconvenient on simple mesh geometries: it
is to impose boundary conditions in a "weak sense". This means that, instead of imposing the
conditions on 0Mp U OM} U IMy, they will only be imposed on 0Mp U OMy.

The scheme is thus obtained by integrating the momentum equation over 9T U 9* U 99M* and the
incompressibility constraint over ®. It reads:

Find u® € (RQ)Tand p° eR?:

div(—V®u® +p°1d) = £, Yk € M,
div¥" (=V®Pu® 4 p°Id) = f«  Vx* € 9" U O,
div®(u*) = 0,
(VPuT — p’Ld)fi = By Vo,e € Dear Ny, (Puw)

’YU(uT) =85 VDO'70‘* € @ext N I_‘D

E MUy — E My Ugx = 0,

KeM K*eM*uom*

where we denote as before by f; (resp. fi=) the mean-value of the source term f on k € 9t (resp.
on k* € M* U OMY), 8,, P, the mean-value of the Dirichlet and Neumann data respectively for

cel'p,oceln:
1 1

szi f d ; fK*: f d )
— [ fa)da ()

*

Mgx JK*
_ 1/ (x)dz o, = 1/@(x)dx
go’ - m, gg ’ g m, Jo .

Linear dependence of the equations.
By imposing weak boundary conditions, the equations are no more linearly independent. This is

E MUy — E My Ux = 0.

Kem K* e uom*

why we add the relation:

To show the linear dependence, set firstly ¥ € (R?)* such that

Ui = 61 = (1,0)!, Vi € MU IIM,
y- =0, Vk* € I U O™,

that implies Vo¢* = 0 and v*(¢) = (3,0)". We have:
« on one hand, thanks to the scheme (Py):

2 [[div(-V®u + p®1d), wfﬂs =3 md e,
KeMm
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that thanks to the definition of the source term leads to

2 Hdivf(—vgui + pQId),wSH = / f(z) - erdz.
T Q
o on the other hand, Green’s formula (I.5.1) gives:

2 [[divT(~V®u” + p°Id), zﬁ”T =
2(VOu® —p®1d: VOuT) =2 (y° ((VOu® = p Id)ii) .7 (%)) .
that since VOU* =0 and v* () = (%, 0)! is equivalent to:

2 [[div¥(~V u” + p°Id), W”s = 3 m, ((—V°u® + PP - 1.
DEDext

Putting all together, we get:

S m, (—VPuF + pId)R,,) - & = / f(z) - &du. (I1.35)
Q

Degea)t

We can repeat the same computation by choosing ¢* € (]1%2)f such that

g = € := (0,1)", Yk € MU IM,
wK* = 0, Vk* € mt* U (993?*,

that implies V®1* = 0 and 7 (¢)) = (0, %)t Now we obtain:

S i, (—VPUF + LAY, - 6 = / f(z) - Goda. (I1.36)
Q

Degemt

Relations (I1.35)-(11.36) imply then:

Z mg(—VDuT—i—pDId)ﬁ,K:/ f(x)dz. (I1.37)
DEDest Q

By proceeding in the same way, we choose first ¥ € (R?)* such that

g = 0:=(1,0)", Vke MUIM,
Yy = €], Vke € M* U 9™,

that implies V®¢* = 0 and v*(¢) = (3,0)’, and next 1* € (R?)* such that

g = 0:=(1,0)", Vxe MUIM,
Py = €2, Vkr € OF U O,

that implies V®¢* = 0 and v*(¢)) = (0, %)t Those choices lead to:

S (—VPuT + pId), = / f(z)dz. (I1.38)
Degext &
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We observe that (I1.37) and (IL.38) give the same result; this shows that the equations on ¥ are
not linearly independent.

I1.6.1 Well-posedness of the scheme

Equivalently to Sec. I1.2, we start by proving an a priori estimate:

Proposition 11.6.1 (A priori estimate) Let (u*,p®) € (RQ)T x R® be a solution of (Py).
Then:

IV2u|l3 < [[[£%, u)s]

+ > m,|g,|”
Da,a* EDextNl'p

+( 3 ma\¢0|2)( 3 mg|70(uf)y2) . (IL39)

[SIES
S

. ( > m, |VPu® — pDIdQ)

Dcr,a* EDextNl'p

D=

«€DeptNT «€DeqtNT
Proof We can associate the following bilinear form to the scheme:
B(u®,p®,u%,p°) = [[divF(-V®u® + p°1d), u¥]|z + (div® (u%),p”)o.
If we apply Green’s formula (Thm. 1.5.1 ), by taking into account the boundary terms, we get:

B(u*,p®,u%,p?) = ||[V2u¥|3 - (p°, div® (u¥))s

+ Z m,~° (u¥) - (=VPu® + p°Id) ii, + (div® (u¥), p®°)e.
Do-,o-* EDea:thN

The terms (p®, divg(uz))@ simplify. The boundary diamonds ®.,; can be split between ., NT'p
and D¢ Ny ; by applying Dirichlet and Neumann boundary conditions, we obtain:

B(u®,p®,ut,p®) = |[VPu® |3+ Z myg” - (—V°u® 4 p°Id) fl 5 — Z myy’ (u®) - ®,.

Dg,o_* EDertNI N Da,,o_* EDert
(11.40)
On the other hand, since (u*, p®) is a solution to (P,), we have:
B(u®,p®,u, p®°) = [[f*, u¥]s. (I1.41)

By putting together (I1.40) and (II.41) :

IV2u™)3 < [[£¥, u™])z + Y. Mg, (VT - p’ld) i,
D *E@eztmrD

0,0

+ Z myy (u®) - Dy .

D *EDerptNI N

0,0

We then apply Cauchy-Schwarz inequality to get our result (I1.39). ]

We can now prove the well-posed character of our scheme.

Theorem I1.6.2 (Well-posedness of the scheme) The scheme DDFV (Py,) has a unique so-
lution (u®,p®) € (]1%2)T x R® on conformal triangle meshes, conformal and non-conformal square
meshes.
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Proof By linearity, it is sufficient to prove that if f* =0, g = 0 and ®, = 0, then u® = 0 and
p® = 0. Directly from (I1.39), we deduce:

IVou™|3 < 0.

This implies | V®u¥||2 = 0: from Remark 1.3.3 and since g, = 0, we obtain ¢ + ¢; = 0. Since we
impose Z MUy — Z my=ex = 0 and by hypothesis Z My = Z my~, we deduce

KEM K* €+ UM+ Kem K* €D+ UAM*
cyp = ¢1 so we can conclude u® = 0.

The momentum equation becomes:

div*(p®Id) = 0.

Here is the point where the structure of the mesh is crucial. In fact, we can prove that p® = 0 if
we are on a conformal triangle mesh, conformal or non conformal square mesh.

Here, we illustrate the case of conformal triangle mesh: this is an adaptation of the proof that can
be found in [Del07], done in the case of Dirichlet boundary conditions. We also refer to [Del07] for
the case of conformal/non-conformal squares.

If we consider a volume kx of the primal mesh and we enumerate its edges with o = 1,2,3,
by using the definition of discrete divergence we can write:

. 1 . . .
0 = div¥(p®1d) = E(\al]plldng1K + |o2|poldiis, x + |o3|p3ldiisgy),

K

with |0y |[fiyx + [02|gx + |03 0 = 0, sO:
(p11d — psld)|oy[figyx + (Pold — psld)|og|fiy,, = 0,

and since n,,x and fy, are not co-linear, it implies p; = py = ps.

If we proceed in the same way for an element " neighbour of k, we obtain pj = p5 = p5 and since
p; = pj we deduce p; = p, = p3 = pj = pj.

If we make the same reasoning for all the others triangles, we get that all the p; are equal to the
same constant. Thanks to Neumann boundary conditions, we deduce that this constant is equal to
0,ie. PP =0V €. [

11.6.2 Numerical results

We validate the scheme (P,,) through some numerical experiments. We recall that the goal of
designing this scheme is to show that, since Inf-sup inequality (Def. 1.6.1) in the simplest case of
conformal square meshes has been proven to be valid up to an unstable mode for the pressure,
we can avoid this inconvenient by imposing boundary conditions in a "weak sense", instead of
stabilizing the equation of conservation of mass.

The computational domain is = [0, 1]2. The configuration of the boundaries is illustrated in Fig.
I1.7.

As in Sections I1.4, I1.5.2, we give the expression of the exact solution (u,p), from which we deduce
the source term f, the Dirichlet boundary condition g and the Neumann boundary condition ®
for which (u,p) is solution of (II.1). We will compare the L?-norm of the error obtained with
the DDFV scheme for the velocity (denoted Ervel), the velocity gradient (Ergradvel) and the
pressure (Erpre). On the two Tables III.1, IT1.4 we give the number of primal cells (NbCell) and
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I'p

I'p

Fig. 1.7 Q = [0, 1]?, Dirichlet boundary conditions on I'p , Neumann boundary conditions on T'y.

the convergence rates (Ratio).

We remark that, to discuss the error estimates, a family of meshes is obtained by refining succes-
sively and uniformly the original mesh.
In Tables I1.15, I11.17 we show the results for the solution of Green-Taylor vortices (I1.26); in Tables
I1.16,I1.18 we show the results for the polynomial solutions (II.27).

In Tables I1.15,I1.16 we show how on a cartesian mesh we obtain super convergence in L? norm of
the velocity and the expected order 1 for the H' norm of the velocity and for the L? norm of the

pressure.

Table I1.15 Green-Taylor vortices on a cartesian mesh with weak boundary conditions.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
12 2.980E-01 - 4.242E-01 - 3.429E+00 -

32 9.168E-02 1.70 1.361E-01 1.640  1.789E+00 0.93
96 2.567E-02 1.83 5.273E-02 1.36 7.571E-01  1.24
320 7.050E-03 1.86 2.320E-02 1.18 3.546E-01  1.09
1152 1.915E-03 1.88 1.094E-02 1.08 1.733E-01  1.03

Table I1.16 Polynomial solutions on a cartesian mesh with weak boundary conditions.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
12 1.122E400 - 1.456E400 - 3.771E401 -

32 2.396E-01  2.22 3.632E-01 2.00 1.243E+01 1.60
96 6.708E-02  1.83 1.320E-01 1.46 5.541E4+00 1.16
320 1.899E-02  1.82 5.312E-02 1.31 2.578E400 1.10
1152 5.265E-03  1.85 2.283E-02 1.22 1.262E+00 1.03

In Tables 11.17,11.18, we numerically tested the scheme on the non conformal square mesh of
Fig. IL.5 and we obtained the same results as for the cartesian case.
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Table I1.17 Green-Taylor vortices on the left quadrangular mesh of Fig. I1.5 with weak boundary

conditions.
NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
64 5.851E-02 - 1.211E-01 - 1.746E+00 -
208 1.680E-02 1.80 5.576E-02 1.11 8.070E-01  1.11
736 4.707E-03 1.83 2.704E-02 1.04 3.901E-01  1.05
2752 1.300E-03 1.85 1.336E-02 1.01 1.925E-01  1.02
10624 3.548E-04 1.87 6.651E-03 1.00 9.572E-02 1.00

Table I1.18 Polynomial solutions on the left quadrangular mesh of Fig. I1.5 with weak boundary

conditions.
NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
64 1.851E-01 - 2.829E-01 - 1.234E401 -
208 5.208E-02 1.82 1.227E-01 1.20 6.087E4+00 1.01
736 1.430E-02 1.86 5.592E-02 1.13 3.006E400 1.01
2752 3.907E-03 1.87 2.645E-02 1.08 1.496E+00 1.00
10624 1.061E-03 1.88 1.282E-02 1.04 7.473E-01 1.00
Conclusions

In this chapter, we first presented a stabilized DDFV scheme (Pg,) for the Stokes problem with
mixed Dirichlet/Neumann boundary conditions and we proved its wellposedness on general meshes.
We obtained an error estimate in the L? norm of order 1 for the velocity, its gradient and the
pressure. Numerically, we observed a super convergence in the L? norm of the velocity and the
expected convergences for the gradient of the velocity and for the pressure; moreover, we remarked
that the order of convergence is not influenced by the presence of the parameters of stabilization.
Second, we extended the results to the divergence form of Stokes problem, by obtaining the scheme
(D); we proved that the same results proven for (Pg,) are valid for (D), thanks to the results
of Sec. 1.8 (such as Korn inequality) and we numerically tested the scheme. At last, we wrote a
non-stabilized DDFV scheme for for the Stokes problem, with "weak" boundary conditions. We
proved its well-posedness in the case of conformal triangle meshes, conformal and non-conformal
square meshes and we tested numerically the convergence, that turns out to have the same rates
as the previous cases.
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Most of the content of this chapter appeared in [GKL19].

The problem we are interested in is the computation of a flow whose velocity is prescribed
at one part of the boundary and it flows freely on the other one. In this framework, we are often
required to truncate the physical domain to obtain a reduced computational domain, either because
we want to save computational ressources or because the physical domain is unbounded. We
illustrate this setting in Fig. III.1.

computational domain

~ T
L Iy |
|
. 4 |
|
o - 1
Iy E IR 3 Iy
L |
|
+
IR I |

physical domain

Fig. ITI.1 Domain and notations.
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The aim of this chapter is to design and analyze a finite volume approximation of the 2D unsteady
incompressible Navier-Stokes problem:

du+ (u-V)u—div(e(u,p)) = 0; in Qr=Qx][0,T]
div(u) =0 in Qp,
u=g on I'y x(0,7), (ITL1)
o0, p)F+ (0 8) (0~ o) = 0yeg B on Ty x (0.7),
u(0) =ujmiy  in Q

with 0 < T < o0, Q an open connected bounded polygonal domain of R?, whose boundary is
1
00 =Ty UT'y and whose outward unit normal is &, Wit € (L°(Q))?, g, € (H2(I'1.1))? and where
2
u : Qr — R? is the velocity, p : Q7 — R is the pressure and o(u,p) = R—Du — plId is the stress
e
tensor, with Re > 0. In particular, the strain rate tensor is defined by the symmetric part of the

1
velocity gradient Du = E(Vu + V).

On the physical part of the boundary I'y we impose Dirichlet boundary conditions. On the
"non-physical" part, I'2, we impose the artificial boundary condition

—_

o(u,p) i+ 5 (u-f)" (U= Upef) = opep (II1.2)

\V)

that was first introduced in [BF94] and then further studied in [BF96] and [BF12]. We use the
notation (@)~ = — min(a,0). In order to build it, we need to choose some reference flow u,¢ ¢, which
is any u,er € (H'(£2))? such that u,e; = g; on I'y, chosen so as to be a reasonable approximation
of the expected flow near I'y, and a reference stress tensor .y such that o,..; i € (H_%(Q))2
This nonlinear condition is physically meaningful: if the flow is outward, we impose the constraint
coming from the selected reference flow; if it is inward, we need to control the increase of energy,
so we add a term that is quadratic with respect to velocity. Other techniques to model artificial
boundaries have been studied during the years. For instance, in [HS89] an artificial boundary
condition is designed for the Navier-Stokes equations under the hypothesis of small viscosity. The
method consists into the approximation of the transparent boundary conditions, since they are
non-local. The technique was then generalized to parabolic perturbations of hyperbolic systems
in [Hal91] and to compressible flows in [Tou97]. We choose to work with the condition (III.2)
of [BF94] since it is defined locally and it does not add hypothesis on the viscosity. It has
been derived by a particular weak formulation of Navier-Stokes equation that ensures an energy
estimate: we would like to reproduce the same property at a discrete level with the DDFV formalism.

The analysis of problem (III.1) is done in [BF96] and [BF07] from the continuous point of view
and simulations are performed in [BF94] by the use of Finite Differences schemes in the case of
Cartesian meshes. Within the framework of DDFV methods, we are able to reproduce those
simulations by extending to the case of general meshes and we also offer a complete analysis of the
discrete problem, perspective that was never addressed in the literature.

Outline. This chapter is organized as follows. In Section III.1 we show how approximate the
nonlinear convection term. In Section III.2, we introduce the DDFV scheme for the Navier-Stokes
problem (IT1.1) and we prove its well-posedness in Section II1.3 (see Theorem (I11.3.1)). In Section
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I11.4 we show an estimate of the convection term. In Section III.5, we prove a discrete energy
estimate. Finally, in Section III.6, theoretical results are illustrated with numerical simulations.

III.1 Approximation of the nonlinear convection term

As in [Krel0, Krellb], we construct a bilinear form b*(u®, v®) as an approximation of / (u-V)v.

The form introduced in [Krel0, Krellb] is built in order to take into account homogeneous Dirichlet
boundary conditions, so we need to modify it in order to handle the outflow condition (III.2).

To obtain the approximation of the convection term, we need to integrate the equation over
the primal and dual mesh; we approximate / (u-V)v when x € M with my b*(u®, v¥).

We remark that for u and v smooth functions:

[wov= ¥ [y wemn

Do-,o-* S0

Such as for the Dirichlet case [Krellb], we look for an approximation of the fluxes: / (u- i) ~
g
F,(u®). For the interior edges o € E;,t, we obtain them by calculating the fluxes on the sides s of

diamonds (see Fig. I11.2). In fact, we remark that by integrating the solenoidal constraint on the
semi-diamond pg of vertices xy, Ty*, T+ we have:

0= [ div(u¥)dz = / ut o d+ Y u® - iigds.
D g s€BgNED s

Uy + Ugr

— e, for s = [xg, 2] = D|0', 5 € &p.

The integral / u® - figds is approximated by Gs, = ms
5
Remark that those fluxes on the sides s of diamonds are the same that we obtain by integrating

the solenoidal constraint on each diamond b € ©:

/div(uf)d:c =Y [ u¥-figds,
D

s€dD

that at a discrete level is written as:

mydiv’(u®) = Y Gap. (IT1.3)

s=D|D'€&p

Remark IT1.1.1 Ifp € D¢y (see Fig. I11.2), mydiv®(u®) can be rewritten as:

mpdiv’(u®) = Y Gep+m,y7 (uF) - i
s=D|D'e&p

For what concerns the boundary edges o € 0f), we replace u by its trace 77 (u®). So we impose:

= Y Gep(uT)  if 0 € Eimy
< BEGKQED
Fy(u®) = (I11.4)

My’ (U¥) - g if 0 € 00
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and with an equivalent argument, we define for the dual edges:

— ) Gep(u) if k€ M* UOM*, o NI =0,
EEGK* QED
Fope (u¥) = (IIL5)

1
—Gsp(u™) — §FGK(uz) if k- € 9MM*, o* NN # 0, ie. b, - € DL

As illustrated in the right of Fig. IIL.2, for k* € 9™ such that o* N IQ # B, o corresponds to the
boundary edge [z, z.+] in the diamond b, ,=.

Ty Ty
§ = [xg, Tyr] X § = [xg, Ty+] X
s ’
* *
_.\/ S, _.\,/
n n —
5D' \‘ ED‘ IIGK
/', n \‘ /',*
Tx@- _g* =k L Dox N ze@l 0 =KL
L YR * \ ‘*—‘e x
. =~ \ . L
=~ *
N, .\ S,
\‘ . \‘ﬁjIEL \’ .
N O‘—K’L‘,‘ ., o=k|L
\ ‘, \
* ‘/ 0\
g i
Lp* Tp*

Fig. III.2 Left: A diamond b = b, ,~ with o C &»s. Right: A diamond b = b, ,~ with o € 9Q.

Remark that thanks to the solenoidal constraint div®(u¥) = 0 we have conservativity of the fluxes
F o and F«gx:

Fy(u®) = —F,(u¥), Vo=kL

(IIL6)
Foox(u™) = —F o« (u®), Vo' =x*

L*.

Unlike in [Krel0, Krellb], we do not stabilize the solenoidal constraint thus we do not need to
add a stabilization term in the flux Gs,; in fact, you can remark the link between the solenoidal
constraint and G, in (IIL.3).

We define the bilinear form on the primal mesh as:

mb (T, vE) = Y Fuui)vi+ Y F(utH(vF)  VkeM

Do‘,o*ez)lint Do‘,o* EQI‘ZZt

where

vy IfF ;>0

V::{ . £= Vo € Ent,

v, otherwise

and on the dual mesh as:
meb” (0%, v¥) = Y Fepe(u®)v], Ve € M
Do,a* E@K*

* ].
me=b* (U™, v¥) = Z Foe(uS)vi + 3 Z F(u®)y7(v®) Vrr € 0"

Da’,o’* EDK* Da,a* G’DEft

where

vy = Vo* e &F.

n { Ve if Flxge >0

vy* otherwise
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We choose to do upwinding on the interior diamonds because we started from the analysis done
in [KrelO] and [Krellb]. In the case of Dirichlet boundary conditions in [KrelO, Krellb], it is
necessary to upwind in order to get well-posedness of the scheme and an energy estimate, since
it is the key to prove an inequality of the type [[b¥(u®, v¥),v¥]]z > 0. In our case, in the weak
formulation the convection term is skew-symmetrized, and we will see that upwind and centered
discretizations lead to the same scheme, see Remark I11.2.2.

Proposition II1.1.2 Let T be a DDFV mesh associated to . For all (u¥,p®) € (RQ){I x R?, we

have:
Y Fu(u®)=0 Vk € M
D, ,* €Dk

Y Fee(u®)=0 Ve € MM

a_ o* E@
1

Z Fo’*K* (uf) = — Z EmUFUK VK* € amt*

D o* €EDyx DEDeE!

Proof For x € M, we distinguish two cases, depending on Def. (I11.4).
e If kN 0N = (), that means that Vb, ,» € Dy 0 € &y, by reorganizing the sum on the sides s € Bg
belonging to the primal cell kx, we obtain:

u + U u + U, o
- Z Z My - Tigp = — Z My ————— - (R + Mgy ) = 0 (IIL.7)
oo *G@KSG@KﬂgD SGQﬁK
since Mg, = —M,y, where b and b’ denote the two neighbor diamonds which share the edge s, of

vertices Ty, Ty*.
olf kN 0N # (), we remark that, thanks to Rem. II1.1.1 and since div®(u®) = 0, for o, ,« € D" we
have:

maﬁyo(u‘z) ' I_l’crl( = Z GS,D-

s€eGgNED
So we get:
Z Fox Z Z m5uK+uK ﬁsnzo
rr g €Dk 0. o* €Dk 5€®Km€D
where we applied (III.7). We deduce that Z F«(u*) =0 for all x € M.
U o* (S
The proof is similar for Z F e+ (u®) =0 if x* € M.
Do-,o-* E@K*

We now focus on the case in which k* € 99*; by Def. (II1.5) of F - (u¥):

Uy + Ugs 1
— Z Z ms% *Ngp — Z *FUK(UT) = 0 — Z §F0K(UT).
D, o+ EDyx 5EGKxNEp D, ,* €D D, ,+EDE!
where the first sum is zero thanks to a similar argument to (IIL.7).

1
We deduce that Y Fe(u®)=— > §FGK(uT) for all k* € OM*. n
* €Dy D, ,*EDL!

o'o'

I11.2 DDFYV scheme

Let N € N*. We note §t = % and t, = ndt for n € {0,...,N}. To obtain the DDFV scheme,

we choose to use an implicit Euler time discretization, except for the nonlinear term, which is
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linearized by using a semi-implicit approximation.
We look for u®[071 = (U")nefo,..ny € (IEg;)NJr1 and p2 07 = (P")neqo,..N}E (R®)N+L that we
initialize with:

u’ = Plug € Eg! (I11.8)

where P? is the centered projection defined in (I.2). We would like to write the system (IIL.1) in
our setting.

For what concerns the momentum equation, we start by finding the discrete equivalent of
the variational formulation of the problem. For the continuous problem, as presented in [BF12],
the velocity u satisfies:

2 1 1
/&gu-\I’—i——/ D(u):D(\I/)%—f/(u-V)u-\Il—f/(u-V)\Il‘u
Q Re Ja 2 Jo 2 Ja
_ 2 (u-ﬁ)+(u-\Il)—i—1/ (@) (arey ¥) + [ (oyepii) W, (1TL9)
2 T2 2 T'o 1)
where V¥ is a test function in the space
V ={¥ e (H'(Q)? ¥|p, =0, div(¥) = 0}.

This weak formulation (II1.9) can be rewritten in the DDFV framework (with the operators
introduced in section 1.1) as:

utl — u» 9
[ U5 + - (D°u™: D2y
+ %Hbf(un, un-i-l)’ \IISHT _ %Hbt<un’ \I/T), un+1H‘I
=5 2 (B @) (0
DEDeqtNI'2
g3 (Falo) o ey) 27 (8)

DEDeytMI'2

+ Z mo (U?efﬁax) : 'YJ(\IJT), (IIIlO)
DEDegtNI'2

where U € (R?)? is a test function in the discrete space that satisfies similar properties compared
to the continuous test function W:

UT e ByP,  div®(UF) = 0. (IIL.11)

To simplify the computations, even though it is not necessary, as in the continuous case (see [BF12]),
the reference flow (u;z,e Iz pf:)e f) € Egll x R? is supposed to be a solution of the under-determined
steady Stokes problem:

2
—div™ [ =
v (R

eDD(ugef) - p?ef1d> =0,

* * 2
iy (RDQ(ufef) 2 fId) o, (111.12)
€
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We also need to define a reference stress tensor o2.; on the outflow part of the boundary; we choose:
oD,y = UD(ugef, pf?ef)ﬁ’ch Vo € 0My (IT1.13)

2

where the discrete stress tensor is defined by o® (u?, 5 P>, £ = R
e

Dg(ugef) - Pr@efld-

From this formulation, we design our DDFV scheme. We project (III1.10) on the mesh. For
instance, to obtain the equation on the primal mesh, that is Vk € 91, we consider a primal cell
ko € 9 and we build ¥* such that Uy, = 1, ¥ = 0 for all ¥ € M, «’ # kg and Yop-yaom+ = 0; we
then replace ¥ in (II1.10). We proceed in the same way for the dual mesh 9* U 99t and the
boundary mesh 0915. The solenoidal constraint is projected on the diamond mesh ©.

Remark II1.2.1 When projecting (IIL.10) on the boundary dual mesh, i.e. when considering ¥*
such that for a ki € OM3, Ug: =1, Ugwr = 0 for all k' € M,k # xf and Yonuam = 0, remark

1 1 1 .
that the term —5[[bz(u”, ), u" )]s = ) Z b*(u™, vHut! — 5 Z b* (", UF)ulkt!

KeM K* €0 U™
has also contributions that comes from the trace term v° (¥?) in b*(u™, U*), which then cancel by

replacing terms coming from (N3). This is why the equations for xk* € M* and xk* € IM; can be
written in the compact form (N3).

The resulting DDFV is the following:

e For all k € IM:

utl —u? 1
my——————= 5 £ — mdivi(o® (ut pn ) + §meK(u",u"+1)
1 _
3 3 (P - Ewu) <o ()
DeDimt
o For all xk* € M* U OM3:
n*+1 - TL* £ 1 *
My e = U 5 s — mye=div® (o (u" T, p ) + imx*bK (u™, u™th)
1
<5 O (Bt - Er ) =0 ()
DE@K*
o Forallp, .« € Dz N o
1
m[,O‘D(un—H, pn+1))ﬁgL _ ZFgL(un) (u;z-i-l _ u?-&-l)
1 _ —
= —5(Fu(u")) (Y7 (") = 47 (ref)) + Mo (opes - Tow);  (N3)

e Forallp e ®:

div®(u"*!) = 0. (Ma)
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Remark II1.2.2 If we consider the definition of b*(u®,v¥) on the interior diamonds D, we

remark that it can be written as a centered discretization plus a diffusion term:

mb ) = 8 (Fale) (V) Balv- v )+ Y Fala®y ()

int xt
Da,o-* e@;n Do,a* E’)D;*

where By is defined by a function B of F(u). In particular, this formulation allows to generalize
the results: if B,y =0 we get a centered approximation, if B,y = %]FL,K(u‘Z)\ it is an upwind scheme
(this kind of generalization will be useful in Chap. IV).

If we consider (I11.10) and we project it on x € M with this new definition of convection, we get:

u;H_l — u? s KD (0L o+l 1 n uiﬂ_l
My =~ medivi (o™ (0", p" ) + 5 Z F(u™) 5
DeD{
1 1
3 2 (Balw) = Baluuit 4 5 3 Faw®) (57 (") =0,
DeDM peDEt

Since Yk € M, > pen, Fox =0 by Prop. 111.1.2, we can add the term %u}’}*l > peny Fox to the last
expression and find:

n+l _ ,n 1 n+1 n+1
- u, - uy . mKdiVK(O'@(unJrl,anrl)) 4= Z Fax(un) uy ;‘UL
DeDint
1 1 1
+3 > (Boa(u™) = Bo(u™)uptt 4 3 > Fu(u™) (Qu;z“ + ’yo(u”+1)> = 0. (IIL14)
De@é’nt De@]{zzt

=trace term on D

We observe that for both the centered and the upwind schemes, we have B,, = By, and the schemes
are thus equivalent to a centered discretization on the interior cells. This property is due to the
skew-symmetrization of the convection term.

For a dual cell x= € 095, the equation is similar to (I111.14), except for the "trace term on

1
D', that becomes iu;‘jl + A7 (u"). For an interior dual cell = € 9, this trace term is zero.

II1.3  Well-posedness

We now prove the existence and uniqueness of the solution of our DDFV scheme.

The well-posedness result relies on a uniform discrete Inf-sup condition. We could have add a
stabilization term to the equation of conservation of mass to generalize the result to general meshes,
as done in [Krella, GKL17] for Stokes and in [Krellb] for Navier-Stokes, but since our proof for
Korn’s inequality (that is crucial to prove the energy estimate) requires the hypothesis of Inf-sup
stability, we decided not to stabilize the equation. This hypothesis does not add a lot of restriction
on the choice of the mesh; see Sec. 1.6 for more details.

111.3.1 Existence and uniqueness

Theorem IIL.3.1 (Well-posedness) Let T be a DDFV mesh associated to Q that satisfies the
Inf-sup stability condition. The scheme (I1L.8), (N1)-(N4) has a unique solution (w011 p0T]) ¢
EF1 N+1 R’D N+1
( a1 ) X ( ) °
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Proof The scheme issued from the equations (N7)-(Ny) is a linear system Av = b with A square
matrix at each time step. We want to show that A is injective, thus we study the kernel of the
matrix. Let v = (u"*! p*tl) € ]Eg; x R® be in ker(A): we then obtain the system Av = 0. If we
multiply this relation by a test function U* that satisfies (II1.18), this is equivalent to consider the
discrete variational formulation (IIT.10) in the form:

1 2
5[0 U]z + o (DU, DO

4 lIbT (), W — b (", ) e

— L (Bt ) o (),

2
DEDeyt QF2

| =

The choice ¥F = u™*! leads to:

1 2 1 2
Sl DR 4 Y () o =0,

DEDeyt

>0

that implies
Lond12 o 2 m®ygntl) 2
—||lu + —|IDPu" |2 <0
B + DR <0,
from which we deduce that u"*! = 0.
To conclude the proof, we need to show that p"*! is equal to zero too. Since u™*!' = 0, the
momentum equation and the outflow boundary condition become:

div¥ (p"+11d) -0 Yk € M
div®” (p"+11d) =0 V€M UM (II1.15)
(P d)iiyx =0 WD, .« € Deyy N T
For every v"t! ¢ IEED , thanks to Green’s formula (Thm. 1.5.1), we can write:

(div® (vt pm+) :—Hv”“,divf(p"“Id)HTJr S mat (v - (p"HA) i

DU,U* EDeyt

D

(II1.16)
By definition of the scalar products (see Sec. 1.4), by (II1.15) and by the fact that v**! € EED , We
get that HV”H, divf(p"‘HId)H(Z =0 and Z m,y° (v - (p”'HId) i, = 0. Thus (II1.16)
DU,U* EDext
becomes:

(div® (v, p”+1)© = 0. (IT1.17)

We now go back to inequality (I.30) ensured by Inf-sup stability: since (III.17) holds for any
vl ¢ Eg b the supremum in the right hand side of (I1.30) vanishes and we can deduce that p™*!

is constant. Then, the condition (N3) on 09 implies that p"™ = 0 on the boundary, since

2
we recall that m,oP(u™*, p"1))d,. = m, (ReDD(u"H) - p”HId) Ny, that u?ef = af)ef =0
because we are studying ker(A) and that u"*! = 0.

Thus, by putting together the fact that p”*! is constant and it is zero on the boundary, we have

p"*1 =0 in all the domain. .
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Remark II1.3.2 Supposing Inf-sup condition is not that restrictive; just in the case of Cartesian

meshes the stability is proved up to a checkerboard mode for the pressure, but thanks to the boundary

n+1

conditions that we impose even in this case we can deduce that p = 0. Moreover, lots of

numerical tests have been done and it still has not been found another mesh that does not satisfy
the condition, see [BKN15].

I1I.4 Property of the convection term

We need to prove the following estimate in order to establish a discrete energy estimate:

Proposition I11.4.1 Let T be a DDF'V mesh associated to Q). For all (u®,v®, w*¥) € Egll X Egll X
Egll, there exists a constant C > 0 that depends only on Q and reg(¥) such that:

(b7 (0, v¥), iz <C ([[u¥[ls + [17* (u¥)ll.00) [vFll6| Vw2

T T ~%
+ Ol ()llz sallv (V) pall 7™ (W) lla00-

Proof By the definition of the scalar product [[-,+]]s and of the convection term:

[b*(u®,v®), w™]]z = ! (Z mewi - b (U, vE) + Y M wier -bK*(uT,VT)>

2 KeMm K*eM+uom*
1

H(Tw (T R T )

Kem Do o* e@ént Do' o* EQEZt

+ > WK*.<Z Fe (Ve + 3 ng(uz)vagvi)»‘

K*eM*Uom* D * E@K* Do',o'* E@th

o,0
If we reorganize the sum over diamonds, since the fluxes are conservative (see (IV.6)), we get:

Hbf(u‘f’ VT), WTHT — ;( Z ng(u‘f)v; . (WK — WL)

D EQint

*
0,0

12 Y F(uo(v) - 57w + 3 Fpoge (V- (Wi — wL*>)

Dcr,a* GDe:l:t Da,a* E@

1
= §(T1 + 2Ty + T3).

Estimate of Ty:

By the definition of v}, we have:

ITy| =

Z FUK(UT)V;_ (W — wy)

Da,o* EDint
Y (Fha®)vi— Fo(u%)vi) - (we —wy)
Do‘,o‘* EDint

S F(a®)|ve + vallwy — wal.
Do‘yo—* egint

IN
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If we look at the flux F,,(u¥), we remark that Vp € Di:

Uy + ug*

Uy + U
\Fax<uf>r=|— > o

5 B * Ngp
SEGKQSD

<Cm, Z

SGGKﬁgD

where C' depends on reg(T) (see (I.1)). We use this result in the estimate of T; to obtain:

)

Wi — W, u —|— WU.*
TISC Y mompefv v 3 (R
D070* EDint o EEGKﬂgD
We apply Hélder’s inequality with p =6, ¢ =2, r = 3:
1/6 W — w, |2\ /2
|T1| S C( Z MmyMe*| Vg + VL|6) ( Z meMe*|——— )
My
Da,o* EQint Da,o* Egint

Uy + ug*
2

(X mme ¥

Do-,o-* EDint SEGKﬂgD

3>1/3

and thanks to the definition (I.3.1) of the gradient operator and (I.1), we can write:

1/6 1/2
|T| < C’( Z mK\VKlﬁ) (Z mD\VDwI]2>

KeM D €9

*
0,0

< Ov¥lls Vw2 [[u*|ls.
Estimate of Ty:

For what concerns boundary terms, the definition of fluxes changes (see (II1.4)). Thus T9 can be
estimated by:

|T2| =

Y. Fx(ut)y(v)-37(w)

Do,o* EDeut

< DL My () (VI (W)

DUJ* EDeut

By applying Holder’s inequality with p = %, q= %, r =4 we get

| T2 §D<Z mgh/a(uf)lg/:;)?’/S(Z mgw"(vf)]s/i*)?’/g(z mgﬁ"(wf)|4>1/4

U’U* egezt Do,a* Egezt Do,a* E@ezt

T T ~%
< W W)lls o 1755 o 175 (W)

4,00
Estimate of Ts:

As we did for Ty, by the definition of v, we have:

|T3| < Z |F0*K* (uT)HVK* + VL*HWK* — W]
D _x€D

o,0
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By the definition of the flux (see (IIL.5)), this term can be split into two contributions:

’T3| < Z |Fa*K* (UT)HVK* + VL*HWK* - WL*‘
D *egint

o,0

+ Z | F e (u™) || Vier + Vi || Wi — wis| = TL + T2,
DO,U* EDext

For what concerns the estimate of T4, the definition of the flux F,«(u¥) is the same as the one of
F_ when o € &;py.
Thus we can proceed as for the estimate of T; and we get:

T < ClIv¥]s VoW [l2 [[u®]ls.

For the term T3, the definition of the flux changes and we can estimate it by:

Uy + U, 1 .
|F g (u™)] = | — Z mﬁ% gy — imgy"(uf) o
s€6gNEp
<Cm, [ > = J;UK* | ”(u5)|>.
SGGKQSD
In this case, we can write:
Wix — W Uy + Uy

|T§‘ < Z m3|vx* + Vx|
Do',o-* EDext

(X

5661(05]3

2 b)),

o

We split the right hand side into two terms. The first one is estimated exactly as T;:

>

s€6gNE&D

Wex — Wi * u +U*
Yo mifvee 4 v | — | < C Vs [VOWT 2 [u¥]ls.

D_ _«EDeqt

0,0

o

For the second one, we apply Holder’s inequality with p = 6, ¢ = 2, r = 3 and we obtain:

2 WK* — WL*
E md|vK* + VL*\ _
DU’U* EDext

1
<C < > mE|ve +VL*!6)6( > m?

D Egemt D egemt

77 (u®)]

o

[

mee ) (8 i)

DO,U* EDext

(5 b

D egext

ms

*
o,0

1 1
5 3
Vi |6> ( E mD|V©W‘Z|2>
Do‘,o‘*eg

< CIvE eIV W |27 (u™) |5 00-

*
0,0

SC( Z e

KeM*

*
o,0

By collecting the estimates we find the announced result:

T3 = T3+ T3 < O |[v¥lle VoW [l2 ([u¥[|s + [l+*(u¥)]3,00)-
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III.5 Discrete energy estimate

The open boundary condition (II1.2) that we study is derived from a weak formulation of the
Navier-Stokes equation that ensures an energy estimate, presented in [BF96]. In this section we
prove a discrete version of the energy estimate.

In order to do so, we will need to consider the variational formulation (III.10) and select the
solution as a test function. Since the solution u®[%7] is not zero on the Dirichlet boundary I';, it
does not satisfy the hypothesis (I11. 18) We decompose it as u®0T) = v50.T] 4 uge 7 and, thanks
to the definition of u? o (see (IIL12)) T0T] will be a good candidate to be our test function.

Theorem III1.5.1 Let T be a DDFV mesh associated to 2 that satisfies Inf-sup stability condition.
Let (uS0T] p@0.T] ¢ (El;ll)N+1 « (R2)N+1 e the solution of the DDFV scheme (ITL8), (A7)-(N2)
, where us 0Tl = yTOI] 4 ug@f

For N > 1, there exists a constant C' > 0, depending on Q,reg(T), ufef, ug, Re and T such that:

N—
Z W -vis<c, VVE<C,
J:

N-1
> ot IIDQV”“IIz <C, oo HDQ Mg <o,
0

<.
Il

’}/J(VjJrl) ‘2 <C.

MZ

at Z +uref))+

0 DEDeyt

J

Proof The first step to obtain the energy inequality consists in rewriting the variational formulation
(II1.10) for the unknown vt = u"t! — ufef. Let U* € (R?)* be a test function such that

UT e ELP,  div®(UF) = 0. (IIL.18)
We recall that (uge £ p?e f) is a solution of the steady Stokes problem (III1.12), so in particular

0=— Hclivz <R D (uy) - p?efld) ’WT”{

by Green formula (Thm. 1.5.1) we have:

o:—Hdivf< D® (u, p?eld>,\1ﬂ
RD (u vef) ~ Preg .

2 — o
= ﬁ(DrD ref» DQ\I]T) - Z ma(oD(uEeﬂ p?ef)no-l() - (‘IIT)
DegezthQ

Then, since 02, is given by (II1.13), the following holds:

2 - o
0= E(D//D ref D© \I’T) Z mO(U?efnaK) Y (\IJT)
DEDeytMla
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This implies that (II1.10), for the unknown v"*! = u"*! — u‘fef, becomes:

vl _yn 2
\IJT s D© n+1 DQ\IJT
Vs Wt o (D DU
1 1
5[[]0@( Vi us, v ul ), U — 5[[bT(Vn e, U, v+ uf e
1
tg D (Falv"+ u?ef»*v”(v”“ + ) 7 (UF)
D€©e:ct

=5 Z V +u1?ef)7ﬁya<ugef) "YU(\I/T)'

De@ext
The second step consists in selecting ¥* = (v +ul f) —ul, 7 as a test function. If we define:

Vn+1 1

2

2

9

_Vn

2
Ei= [ v e + oDV +

> (Fulv" )t (vt
Degezt

it follows that:

1 1
E < 5[[b‘1(vn + ugef? Vn+1)7 ugef]]T - 5[[b"£(vn + ugef? ugef)? Vn+1“f

3 B Fa ) ) )
Degezt

We apply Proposition II1.4.1 to the convection terms [[b*(v" + ugef, vl ufef]]r; and [[b*(v" +
ufef,ufef),vnﬂ]]g; for what concerns the boundary term, thanks to the definition of F,; for

o € 0f), we have:

Y. Fa(ugy) (v

DU’U* EDeut

< D m (V) (g )l (v
DO,U*EKDE;M

[e )

and by applying Holder’s inequality with p = %, q=73,7=4we get:

Y. Fa(uiy) A7 (v

< Ol (v + ulep)lls o0V (Vs pally™ (ufp) l4.00-
DJ,J*Ggezz

Thus we are led to:

B <OV + ufgls + ™" + ukpllaan)

D D
(I 1925 gl + el 1929 )

+ Oy (v + urp)| "

T T T
s 00l (Vs pallvT (ures) lla00-

By Sobolev 1nequaht1es of [BCCHF15, Theorem 9], we bound |[v"||3 from above by

C||V®v "||2 HV”H2 and ||v" g by C||V? ”+1||2 ||v”+1||2 Moreover, thanks to the trace theorem
(Thm. 1.9.2) and to [BCCHF15, Theorem 9], we dominate [|[v*(v"™)||s 5o and |[7*(v™)]|3,.00 by
37

5 3 2 1
5 s o a2 o1
CIVEVPHF V™5 and Cl[VEv"||3][v"13 .



III.5 Discrete energy estimate 107

We then apply the discrete Poincaré inequality, Theorem 1.9.1, to get rid of the norms of v**1.

Finally we recall that ufe 7 is a fixed reference steady flow. Hence there exists a constant C' > 0
that depends only on €, reg(%) and u? o7 such that:

L 2 2 1
B < (Vv v 3172+ 2 V2V S 192
5 3
#5149 5 920 )

We control the norm of the gradients with the norms of D®v"*! and D®v" thanks to Korn’s

inequality, Theorem 1.8.2:
1 2 2 1
E< C<2|D©V”H§’ V™13 IDPv™ |2 + 2DV 13 w3 [D v+
5 3
+ 5DVl 4 D2V 5 v 5 IIDQV"HII2>-

Hence, by suitable use of Young’s inequality (Lemma I1.11.1) we end up with:

vn+1 — vt

n 2 n 1 n g n 2
g V" Ml o DV B 4 5 3 (Fav" i)™ 7 (v )|

Degezt

1 1 25
< 16R 203 n||2 DCD ny2 , - D@ n+12 R 02
< 16RECH V3 + o [PV + o DOV 4+ 2 Re

v

1
We combine R—HDQV"HH% with the left hand side, we multiply this relation by §t and we apply
e

2[[vn+1 ) vn+1]]

v T = V" =G IV - (V.

We obtain:

2
[V VB 4 IV 4 St DOV 4 613 (™ 4 uS ) |
Degezt

1
< [[v"[3 + 32ReCP5t||v" |3 + = 8t|DV" |3 + 25ReCot.

We sum over n =0...m — 1 with m € {1... N} to obtain:

m—1

m—1
YoV =V + IV + Z Otp ||D© P
2
HD"*’ V3 + Zét > (Ex(v" +uf )T (v
n=0 DE@ea:t

< |IvO|3 + 5t||D9 VY||35 + 25ReC*T + 32Re*C36t Z |v™||3. (IT1.19)
n=0

We can now apply Gronwall’s lemma (Lemma 1.11.2), with:

1
ag = [V[13 + 5 oHIDVO3
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m—1

m—1
mi= Y IV VIR VB + D 5tR D2V
— =0

+5t—|\DD ™2 4 Zét 3N (Fuv +ul )ty (v
7=0 DEDext

for m = {1...N}. In fact, we deduce from (II1.19) that

m—1
am < ag + 25ReC?T + 32Re?C36t E a;,
\—,_/ ‘—v—’

that implies:

max  a,, < AeBT.
m=1...N

This proves our initial statement, since we can choose m = N and write:

N-1 N-1

j K3
YoV VIR VYR 4+ D 5tR DOV 3
=0 =0

N-1
HD© NMiB+ D> 0t Y (Fu(v +ul )t (V" < o).
7=0 DEDeut

I11.6 Numerical results

We validate the scheme through a series of numerical experiments. First, we study numerically the
consistency properties of the scheme. Second, we reproduce the simulations of a flow in a channel
presented in [BF94] and [Joh04].

111.6.1  Convergence results

Test case 1. The computational domain is = [0, 1]2, whose boundary is divided into 9 = I';UI's.
We impose Dirichlet boundary conditions on I'y, composed by the two horizontal boundaries and
the left vertical one. The open boundary condition (II1.2) is imposed on I's, the right vertical
boundary. We set the viscosity to 1.

For the tests we give the expression of the exact solution (u,p), from which we deduce a source
term f for the momentum equation and the Dirichlet boundary condition ¢;. As a reference
flow (ufef,pfef), we consider the projection of the exact solution on I'y. We will compare the
L>(L?)-norm of the error (difference between a centered projection of the exact solution and
the approximated solution obtained with DDFV scheme) for the velocity (denoted Ervel), the
L?(L?)-norm of the error for the velocity gradient (Ergradvel) and the pressure (Erpre). In
particular we denote:

N 1/2
(Z 5|V (PEu)" — Vgunll%)

n=0

N
(Z 0t V® (Piu)" II§>

n=0

Ergradvel = 7
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N 1/2
(Z 3t|| (PP p)" — P"H%) max_ || (P¥u)” — u”||2

n=0 n=0...N
Ervel =
’ max_|| (Pgu)” |2

N 1/2
(Z ol (PEp) u%) e
n=0

where (PZu)” and (PPp)” are the centered projections of u and p at the time step t,, = nét.

On Table ITI.1 we give the number of primal cells (NbCell) and the convergence rates (Ratio). We
remark that, to discuss the error estimates, a family of meshes (Fig. I11.3) is obtained by refining
successively and uniformly the original mesh. The exact solution is:

Erpre =

9

u(z, y) = —27 cos(mx) sin(27y) exp(—5ntr?),
9=\ rsin(rz) cos(2my) exp(—5ntr?) )
2
p(z,y) = —%(4 cos(27mx) + cos(4my)) exp(—10tnm?).

Fig. I11.3 Non conformal square mesh.

The final time is T = 0.03 and we set 6t = 3 x 107°. As we can see in Table III.1, we observe
super convergence in L>°(L?) norm of the velocity, that is a classical result for Finite Volume
methods. For what concerns the gradient of the velocity and the pressure, we remark that the
non-conformity of the mesh does not influence the good convergence of the method. We get a first
order accuracy on the velocity gradient, and an order of 1.5 for the pressure, that is better than
what we expected.

Table III.1 Test case 1 on the non conformal square mesh Fig. IT1.3.

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio
64 1.424E-01 - 1.612E-01 - 6.127E+00 -

208 4.095E-02 1.80 7.316E-02  1.14 1.725E400 1.83
736 1.019E-02 2.00 3.489E-02  1.07 5.836E-01  1.56

2752 2.559E-03 1.99 1.710E-02 1.03 1.947E-01  1.58
10624 6.493E-04 1.98 8.474E-03 1.01 6.189E-02  1.65
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We tested many other meshes and the results do not change. The geometry of the mesh does not
influence the accuracy of the approximation.

I11.6.2 Simulations of a flow in a pipe

Figure II1.4 describes the situation we are dealing with: we consider {2, a connected bounded
polygonal domain of R?, whose boundary 95 is split into I'g, I'; and I'y and whose outer normal
is denoted by n. We add a cylindrical obstacle inside 2. The Dirichlet part of the boundary is
composed by I'y and T';: on the physical boundary I'g we impose no slip boundary conditions
(i.e. the velocity is set to zero) and on the inflow boundary I'; the velocity is prescribed. On the
artificial boundary I's, that we wish to set as close as possible to the obstacle, we impose the
nonlinear boundary condition (III.2).

computational domain

Iy

o

Iy

VU A A

physical domain

Fig. I11.4 Domain and notations.

We reproduce two different test cases, proposed in [BF94] and in [Joh04]. In both cases, the
simulations are performed on a triangular mesh, generated by GMSH, that is locally refined around
the cylinder.

Test case 2. We show that by adding an artificial boundary, thanks to condition (II1.2), we do
not introduce any perturbation to the flow. For this purpose, we consider an original domain that
we cut into two smaller domains and we draw the streamlines of the respective solution.

We consider the symmetric domain Q = [0, 5] x [0, 1] with a cylindrical obstacle of diameter L = 0.4.
The smaller domains are obtained by cutting at the horizontal axis first in = 3, then in z = 1.5.
The mesh for €2 is composed by 12118 cells, and we pass to Q' = [0, 3] x [0, 1] with 8636 cells and
to Q" =[0,1.5] x [0,1] with 6534 cells. The time step is 6t = 0.035. The inflow on I'; is:

g1 = (6y(1 —y),0).
Since our first simulations are performed with Re = 250, it makes sense to set as reference flow a

Poiseuille flow. Therefore we choose u,c;y = g1, Pyey = 0 and oy¢f(u,p) i = (0, 2 (1—2y)). As
initial condition, we impose w;p;s = g; and the final time is 7' = 3.5. If u = (uy, uz), the stream
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15 ;
[ 03
Q o) () 1

Fig. II1.5 Domains Q = [0,5] x [0,1] , Q" = [0, 3] x [0, 1] and Q" = [0, 1.5] x [0, 1] for the test case 2.

function ¥ is defined in the continuous setting as the solution of

ov ov

= ZZ — 4
ay 1, O 2,

in particular it has to satisfy the following system:

AV¥ =rot(u) in Q
V¥ -ni=u-7 on df,
8111 8111

where rot(u) = ——— 4+ ——, @i is the outward unit normal to the domain and 7 is the unitary

oz oy
tangent to the boundary. In the DDFV setting, given the discrete solution (u¥,p®) € (RQ)T x R?,

we look for U® € R? solution of:

div®VEI® = rot® (u®)
VAP . N, = ’Yo(uz) - T VDa,a* € Deyt-

We observe by the streamlines in Fig. III.6 (at T=1.5) and Fig. II1.7 (at T=3.5), for which we

point out that the scale is the same in all the sub-figures, that we can cut close to the obstacle
without adding any perturbation to the whole flow. The recirculations are well located and there
is no spurious vortices. Clearly, the closer we cut, the more we loose in precision in the cells right
before the artificial boundary. This is due to the artificiality of the conditions and to the choice of
the reference flow. But in any case, the boundary can cut the recirculation right in the middle
without affecting the whole flow.
The choice of the reference flow is crucial. In [BF94], it is proposed to use a Poiseuille flow as
we reproduce in our numerical tests of Fig. III.6 and Fig. II1.7. In [Bru00], since to write down
the variational formulation (IIL.9) the reference flow is assumed to be the solution of a steady
Stokes problem with u = g; on I'y, the author chooses the flow at infinity: u,.f = s, Oref = 0.
Nevertheless, when the flow is chaotic or turbulent such a reference flow does not give a good
equivalent of the traction. Thus for higher Reynold’s numbers, such as Re = 1000 as in Fig. II1.8
(T = 1.5) Fig. I11.9 (T' = 3.5), other techniques can be envisaged for the choice of the reference
flow; for example, it looks reasonable to choose a reference flow that changes with time.

We might think that a good approximation of the solution at the boundary I's is the solu-
tion computed at the previous time step (or even just before the boundary at the same time step),
but actually we numerically observed that these techniques lead to strong instabilities.

Remark that by replacing uge 7 with u”, the energy stability is no longer guaranteed. Therefore, in
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Fig. I11.6 Streamline of Test case 2 at T' = 1.5, Re = 250, ¢t = 0.035. On the top: © =[0,5] x [0, 1
NbCell= 12118. In the middle: € = [0,3]x [0, 1], NbCell=8636. On the bottom: 2 = [0, 1.5]x [0, 1
NbCell=6534.

order to avoid numerical instabilities, for the simulations of Fig. II1.8, Fig. II1.9 we do not update
the value of u:%'e s at each time step, but each 400 iterations. This choice is arbitrary and we cannot
provide a generalization to all the values of Reynold’s number. A way to overcome this difficulty
could be to compute the flow on a strictly larger domain (with respect to the smaller one) with a less
refined mesh, and then take as reference flow the trace of the solution on I's. Anyway, those results
lead us to observe that even for higher Reynold’s number and with a consistent choice of u?e £
the conditions behave well: the recirculations are still well located and there are no spurious vortices.

Test case 3. This test is inspired from the benchmark of [ST96] and we precisely use the
detailed results in [Joh04]. In both [ST96], [Joh04] the drag and lift coefficients of the flow past
an obstacle are computed from simulations on a long domain, by imposing Dirichlet boundary
conditions. Our idea is to measure the quality of the DDFV solution we obtain on the shorter
domain with outflow boundary conditions.

The benchmark is defined with dimensional equations, so we adopt the same framework. References
[ST96] and [Joh04] consider a long channel = [0,2.2m] x[0,0.41m], that we cut at = = 0.6m,
with a cylindrical obstacle S whose center is in (0.2m, 0.2m). We perform the computation of the
drag and lift coefficients by working on the smaller domain €' = [0,0.6m] x [0,0.41m] , with the
outflow boundary condition (I11.2) on I'y (at 2 = 0.6m) and Dirichlet on the other boundaries. The
triangular mesh that we considered on ', obtained with GMSH, has 8020 cells and it is locally
refined around the cylinder.

The viscosity of the fluid is set to n = 1073m?s~! and the final time is 7' = 8s. The time-dependent
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Fig. II1.7 Streamline of Test case 2 at T' = 3.5, Re = 250, t = 0.035. On the top: = [0, 5]
NbCell= 12118. In the middle: Q' = [0, 3]x [0, 1], NbCell=8636. On the bottom: Q" = [0, 1.5]
NbCell=6534.

[0,1],
[07 1]7

X
X

Fig. I11.8 Streamline of Test case 2 at T' = 1.5, Re = 1000, ¢ = 0.035. On the top: Q = [0, 5] x [0, 1],
NbCell= 12118. On the bottom: €’ = [0, 3] x [0, 1], NbCell=8636.

inflow on I'y is:
g = 0.4172sin(nt/8)(6y(0.41 — y),0),

and as a reference flow on I'y we choose u,cf = gy, Dyey = 0 and o i = 0(Urey,0) @i, where 1 is
the outer normal to Q. The initial condition is u;pi = (0,0). The density of the fluid is given by
p = lkgm™3, and the reference velocity is U = 1ms™! (note that the maximum velocity is %U ).
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Fig. I11.9 Streamline of Test case 2 at T' = 3.5, Re = 1000, 6¢ = 0.035. On the top: Q = [0,5] x [0, 1],
NbCell= 12118. On the bottom: €' = [0, 3] x [0, 1], NbCell=8636.

0.6m

p.16m

FQ 41m

O

D.15m

2.2m

Fig. I11.10 Domains Q = [0,2.2] x [0,0.41] and €' = [0,0.6] x [0,0.41] for the test case 3.

The diameter of the cylinder is L = 0.1m, so that the Reynold’s number is 0 < Re(¢) < 100. We
define the drag coefficient c4(t) and the lift coefficient ¢;(t) as:

catt) = 2 [ (™D, o).

alt) == [ (o™ e+ plom, ).

where here fig = (ny, ny) is the normal vector on S directing into Q , tg = (n,, —n,) the tangential
vector and u;, the tangential velocity.
The corresponding formula in the DDFV setting is:

2 — —
4= ﬁne@z:ﬂs m, (VP (" - Frpr) - Hox Ny — P"ng)
ext
2
n__ DI 2 ) -1 n
aq = pLU? De@z:msmg (VP (u" - Fyepx) - oy iz + D1y
ext
where:
— — m, = T = n n
VP(u" - Trpr) - gy = 2y (0 —w) - Feeir + 2my (U — W) - Frpe Tomer - oy
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We study the evolution of the coefficients in Fig. I11.11 and their maximum value in Table I11.2,
defined as:

n 7
Cd = max c c = max .
K W s AT T 0Ny

The results shown in Table II1.2 and in Fig. ITI.11 prove that the boundary conditions are robust
and the solution we find is quantitatively correct. The small difference in the coefficients, with
respect to the reference values, is due to the different kind of condition on the boundary and to
the level of refinement of the mesh. We work with approximately 24000 unknowns, for all velocity
components and pressure, with respect to the approximately 500 000 unknowns used to compute
the reference coefficients. Even if our grid is coarser, we still obtain a good approximation.

In Figure II1.11 we can also observe how the time step and the choice of the scheme influences the
result for the lift coefficient: for the reference values, [Joh04] considers a time step ¢t = 0.00125s
with a second order scheme in time. Our scheme is first order in time: firstly, we test this scheme
with a decreasing time step, starting with 6t = 0.0016667. Secondly, we implement a second order
backward difference formula in time to see if the approximation improves. The first iteration of the
scheme remains unchanged, and for n € {1,... N} the variational formulation (III.10) becomes:

1 /3 +1 1 _1) T 2 D..n+l NOgy%
—(=zu""" —2u" + =u" v —(D*u"", DY W
5 (Gt = 2wt 4+ Jur 1) W+ o (DPu" L D2WT)s
1
4 [[bT(Qun o unfl7 un+1)7 \IITHK . 5[[b‘:(2un o unfl’ \I/K)7 unJrlﬂT
1 n n— g n (o}
=-3 Yo (Fu2u® —u ) A7 () 7 (UF)
DEDeytNl'2

1 —1vy—
o > (Fx(2u" —u" )T (upep) 77 (TF)
DeDezthZ

N =

+ D mg(ogie) 77 (TF).
DEDeqtMIa

We observe in Fig. II1.11 that this technique actually improves the quality of the approximation of
the lift coeflicient.

DDFV Reference

Cdmax 2.9754  2.9509
Clmax 0.44902 0.47795

Table II1.2 Comparison between the values of ¢4 maz, Cimaez Obtained with DDFV scheme (left) and
the reference values of [Joh04] (right).
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Fig. II1.11 Comparison between the evolution of ¢, ¢} on the time interval [0, 8] obtained with
DDFV scheme (left) and the reference values of [Joh04] (right). We plot the results for the scheme
of order 1 in time, with respect to different time steps, and for the scheme of order 2.
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Conclusions and perspectives

In this chapter, we proposed a DDFV scheme for the Navier—Stokes problem with outflow boundary
conditions. The DDFV scheme is proved to be well-posed and it satisfies a discrete energy estimate.
We numerically showed the good convergence of the scheme and we performed numerical tests that
establish the accuracy of this condition. In particular, we remarked the influence in the simulations
of the reference flow that appears in the outflow boundary condition: it is supposed to be a steady
flow, but when the Reynold’s number increases and the flow it is no more laminar, this choice is
not the optimal one. We would like to investigate this point in order to find the best technique to
choose it. Moreover, these results are proved in the case of a constant viscosity, but they could be
extended to the case of variable viscosity, by starting from the works of [BF07, Krellb].
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The aim of this chapter is to develop a DDFV version of a non-overlapping iterative Schwarz
algorithm for the incompressible Navier-Stokes problem:

Ju+ (u-V)u—div(e(u,p)) =0 in Qx]0,7T],
div(u) =0 in Qx][0,7T],
(IV.1)
u=20 on 00 x[0,T],
u(O = Winit in Q,

where  is an open connected bounded polygonal domain of R?, w;,;; € (L*°(€2))?, and where

u: Q x [0,T] — R? is the velocity, p : Q x [0,7] — R is the pressure and o(u,p) = R—Du —pld is
e

the stress tensor, with Re > 0. In particular, the strain rate tensor is defined by the symmetric

1
part of the velocity gradient Du = Q(Vu +'Vu).

Non-overlapping Schwarz algorithm enters the class of domain decomposition methods, in which
a domain is decomposed into smaller subdomains. The main advantage is that the problems on
the subdomains are independent, which makes these methods suitable for parallel computing and

thus interesting for high performance computing perspectives. The classical Schwarz algorithm,
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proposed in 1870 by H.A. Schwarz for the Laplace’s problem, is an iterative method that consists
in transmitting the solution, or its normal derivative, from a subdomain to the other, in order to
deal with complex domains. This method converges only if the subdomains overlap. Moreover,
this convergence becomes slower as the overlap between the subdomains is smaller.

In non-overlapping Schwarz algorithms, the subdomains intersect only on their interface and in or-
der to obtain convergence, different transmission conditions on the interfaces have been investigated.
It was shown in 1990 by P.L.Lions [Lio90] that, with Fourier (i.e. Robin) transmission conditions,
Schwarz algorithm for the Laplace operator converges even without overlap. This method has been
adapted to the discrete case for many problems of isotropic diffusion, [AJNM02, CHH04, GJMNO5],
for advection-diffusion-reaction problems, [GHO7, HH14| and for anisotropic diffusion in a DDFV
discretization, [BHK10b, GHHK1S].

Our goal is thus to decompose the domain €2 of problem (IV.1) into smaller subdomains, solve
the Navier-Stokes problem on those subdomains by imposing some transmission conditions on the
interfaces, and recover by an iterative Schwarz algorithm the discrete solution of (IV.1) on Q. We
work with an unsteady problem; we decide to apply this iterative algorithm at each time iteration.

We refer as a starting point of this study to the works of [GHHK18| and [HH14]: they both
build a non-overlapping Schwarz algorithm in a finite volume framework with Fourier-like trans-
mission conditions between subdomains; the first considers the case of anisotropic diffusion with a
DDFYV discretization, the latter considers a problem of advection-diffusion-reaction in a TPFA
discretization. In our case, when switching to the Navier-Stokes equations (IV.1) in a DDFV
framework, the difficulty mainly consists into designing the same type of transmission conditions,
by taking into account both the non-linear convection terms and the incompressibility constraint.

This is why we choose to impose the following: when we decompose the domain 2 into two
(or more) smaller subdomains £ = € U Qy, the Schwarz algorithm defines a sequence of solutions
ué of the Navier-Stokes problem in €2;, where the transmission conditions on the interface between
the subdomains (denoted by T") for (j,7) = (1,2) or (2, 1), are defined by:
(1) 8y — 08 () = ool Sl e
div(ué) + ozpé = —div(u/™!) + apl?,

where 1i; is the outer normal to 2; and [ is the iteration of the Schwarz algorithm. The first condi-
tion, which depends on A, is inspired by the classical Fourier condition, which linearly combines of
the values of a the unknown and the values of its derivative; here, also the convection is included.
The second, which depends on «, combines the divergence of the velocity with the pressure; it will
be useful to conserve the incompressibility constraint at the convergence of the algorithm. This is
the first time, to our knowledge, that this kind of condition appears.

Another key point of our study is the discretization of the convection terms, inspired by [HH14]:
we decide to approximate this terms by a centered discretization plus a diffusive perturbation,
which depends on a general function B; this function will play an important role in the convergence
of the algorithm. We refer to the so called "B-schemes", which first appeared in [CHD11] when de-
signing finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions.

Outline. This chapter is organized as follows. In Sec. IV.1, we define a discretization of the
Navier-Stokes problem on the entire domain 2 by using B-schemes for the discretization of the
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nonlinear convection terms; we prove that the scheme, to which we will refer as (P), is well-posed.
In particular, (P) is the limit scheme towards which the solution of the iterative Schwarz algorithm
should converge. In Sec.IV.2, we introduce the composite meshes, i.e. the meshes on the subdo-
mains, and we build a scheme for the subdomain problem with transmission boundary conditions,
that are the discrete version of (IV.2). In the same section, we introduce then the DDFV Schwarz
algorithm. The convergence of that algorithm is proven in Sec. IV.3, and we show that it actually
converges to a modified version of (P), that we name (P). The difference between (P) and (P) is
the choice of the function B that defines the convection terms on the interface. In Sec. IV.4, we
prove how to recover the convergence towards (P), by proposing an alternative Schwarz algorithm.
Finally, in Sec. IV.5 we illustrate the theoretical results by means of some numerical simulations; in
particular, we show and compare the convergence of the Schwarz algorithms built, by underlying

the influence of the parameters A, o of (IV.2).

IV.1 DDFYV scheme for the Navier-Stokes problem on (2

In this section, we propose a DDFV discretization for the Navier-Stokes problem with Dirichlet
boundary conditions on the entire domain 2. Such a scheme for this problem was already studied
in [Krel0], with the choice of an upwind discretization to treat the convection term. Our aim is to
generalize this result to B-schemes; in those schemes, the convection term is approximated by a
centered discretization plus a diffusive perturbation, which depends on a general function B. This
is inspired from the work of [HH14], which handles scalar advection-diffusion-reaction equation
with a classic finite volume discretization.

Just a remark, all along this chapter b, ,« will be denoted by b, to simplify the notations.

IV.1.1 The scheme P

Let N € N*and 0 < T < oo. We note 0t = % and t, = not for n € {0,...,N}. To design
the DDFV scheme, we choose to use an implicit Euler time discretization, except for the non-
linear term, which is linearized by using a semi-implicit approximation. This is why we need
div® (u") — Bd4 APp" = 0 at each time step n € {0,... N}, even at the initial time step. Remark
that the parameter [ is relied to a Brezzi-Pitkaranta stabilization for the mass conservation
equation; see Sec. L.7.

We look for u™07) = (u"),cqo..ny € (B)*" and pPIOTT = (p7),c(0,w) € (BD)VH! that
we initialize with:
u’ = P‘fuo € Eo,

1
pO € R®such that Agpo = —Qdivg (uo) with Z mng =0.
BdQ DED

The vector p? is well defined since it is solution of a square system, whose matrix is invertible. With
those choices of (u?, p®) we guarantee the property div® (u™) — 8d, A®p"™ = 0 at the initial time step.

From now on, to simplify the notations we will denote (u"*!, p"*!) with (u¥,p®) and (u”,p")
with (@%,p®) that at each time step are known.

To obtain our scheme, we integrate the momentum equation over all 99T U 91" and we impose
Dirichlet boundary conditions on 99T U 099t*. The equation of conservation of mass is directly
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approximated on the diamond mesh equation over ©, and it is stabilized through a parameter
B > 0 with a Brezzi-Pitkédranta stabilization (see Sec. 1.7).

Given (u%,p?), satisfying div®(a?) — Bd2A®p® = 0, we look for u® ¢ (RQ)T and p® € R®
such that:

u u
My 5—; + D;;K My Fox = myty + my 5—; Vk € M
Wy * ]_] * *
My* (5};5 + Z Migr Forgr = My fix + My 6—: Vk* € M
DE:DK*
u =0 (P)
u?™ =0
div® (u¥) — Bd2A®p® =0
> mpp® =0,
DeD

with 5 > 0.
The fluxes are defined as a sum of a "diffusion" term and a "convection" term:

My Fox = m, (Fo + Fo), (IV.3)

Me*J grg* = Mg* (Fg*x* +"r§*x*)' (IV4)

The diffusion fluxes are defined, as in Chapter III, as:

d D/..T . D\ =
meO'K = —Ms0 (u P ) Nk
2 D..T D —
=—m, | =—D"u* — p’Id | ny,
Re
d D/,,T . D\ =
Mg Fgugr = — M0 (UF, ) Mprgr

2
= — msige (DDuT - pDId> T,
Re
where the stress tensor is approximated through the operators defined in Sec. 1.3.

The convection fluxes are defined as:

u; +u m?2 2mpRe
Mo F oy =M, Fy ( : 5 L) + 2RemDB ( n;a F0K> (ux —uy),

Uy + uL*> mz B (2mDRe
2 2Rem,

Mg Frggr =M Fl e ( FU*K*> (ugx — ugx).

Mg*
They are the sum of a centered discretization and a diffusive perturbation, which depends on
the function B. This function B embeds the different schemes that we want to work with: for
instance, if we want a centered scheme, we choose B(s) = 0 and for an upwind scheme, we set
B(s) = %\s\ We denote B (% FUK) with By and B (2271’?6 FU*K*) with Bg«+. In the particular

o

case of the upwind discretization, By, Bo++ are scalars, but we will see that those coefficients can
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be generalized to matrices and to more general expressions. The total fluxes then become:

R Uy + U m?
MeFox = —maUD(uTa pQ) Oy +m,Flg ( . L) + = BO’K(uK - uL)
2 2Rem,,
. ) (IV.5)
— Ug* U * mZ«
mo* oXK* — _mo* O‘D('[_lq:7 p©) na‘*K* —|— mo* FU*K* ( i 2 L > + 2RemD BU*K* (uK* - uL*)

The definition of F,, F,+«~+ comes straightforward by Sec. III.1 and [Krel0, Krellb]. They are an
approximation of the fluxes: /(u “Tgy) ~ Fe(u™) and / (W g ) ~ Flrge (u¥).
We obtain them by calculating the fluxes on the sides 5%1" diamonds for the interior edges (see

Fig. IV.1). In fact, we remark that by integrating the solenoidal constraint on the semi-diamond
pg of vertices xy, T+, .+ we have:

0= [ div(u®)dz = / U di, + Y [0t dgds.
D o s€GgNEp s

Those fluxes on the sides s of diamonds are the ones that we obtain by integrating the solenoidal
constraint on each diamond o € D:

/div(ﬁ(‘z)dx = Z a* - figds,
D s€0D ' ®
that at a discrete level is written, by adding a stabilization, as:
mpdiv®(0?) — Bmyd? APp® = Z msGls p,
5=D|D/€€D
Ty + Ty

5 B — B(ds + dy) (" — p7) for

so that /1‘1T - Migyds is approximated by msGs, = ms
5

s =[xy, 2¢+] = D[/, 5 € &p.

Remark IV.1.1 Ifpo € Dy (see Fig. IV.1), mydiv®(u®) can be rewritten as:

mpdiv’ (%) — Bmpds AP = > meGap + m,y7 (W) - .

s=D|D’e&p
We thus impose:
» For the primal edges:

M Fy = — Z msGs,D-

s€EGKgNED

» For the dual edges:
— Z msGs p if k* € M UIM*, c*NIN =10
EEGK*ﬂgD
ma*Fa*K* =
1

—msGlsp — §mamax* Hy« if k* € OM*, *NON # 0, i.e. b, ,» € D
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where myqnac+ indicates the measure of the intersection between dx* N 0N and:

Uy + U, ,
% *Ngp — ﬂ(dn + dD/)(pD - pD )7 Vs = [‘rKaxK*] = D’Dla

— —
Maonars Hex = E Mgnog* Ug* * Ny,
peDLL!

msGs,D =My

Vk* € O™,

The difference with respect to the fluxes of Sec. III.1 is their definition on the boundary edges; this
is due to type of boundary conditions that we consider. Remark that at this stage, since we are
imposing (for simplicity) homogeneous Dirichlet boundary conditions on 92, those contributions
will not be taken into account.

Remark that if deivD(ﬁi) — BdeI?ADf)D = 0 we have conservativity of the fluxes F,, and

Ty Ty
§ = | Tk, Tg* 5§ = |Tg, Tyg* X
wowe]l R wowe]l
* *
=g , \Q - ‘,
ng, »* \ INgp —
d . ,’ Ny
,0, _)_* \‘ ,0 % —>
Te@ o =x*[L{Oox N re@l 0 =KL
(N '\ S T =T
* T~ *
~ - _ .
\'\ - ‘*)@x \‘\
— L * —
. U—K’L‘,‘ . o=kK|L
\ R \
. P4 *
i \
hig b
xL* xL*

Fig. IV.1 Left: A diamond o =, ,+ with o C &;ps. Right: A diamond p = b, ,~ with o € 9§
F ., that is:

Fy=—-F,, Vo=xv and F, =—F,«x, VYo*=x"|L". (IV.6)

Proposition IV.1.2 Let T be a DDFV mesh associated to Q. For all (uT,p®) € Eg x R®, 3 € R*

we have:
Z myF, =0 Vk € M
DeDk
> Mg Foee =0 Vs € O
DE@K*
Y Mot Fore = —Mognoc He Vxe € OO
DE@K*

Proof For the interior mesh, we proceed as in [Krel0].
If k € M, by reorganizing the sum on the sides s € &x belonging to the primal cell kx, we obtain:

uy + uex Uy + U, -
_Z Z mﬁ%-n@:—Zmﬁ%-(nm—i—n@/):o
DE@KSEQ‘BKQED 5€Q5K

(IV.7)
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since Mg, = —Mi,y, where b and b’ denote the two neighbor diamonds which share the edge s, of
vertices xy, xy+. In the same way,

= Y GO ) == Y (A A —pP+p - p) =0, (IV.8)

DEDk 5€®ngD 5€®K

We deduce that Z myF,x = 0. The proof is similar for Z M B v = 0 if k* € 9T,
DEDk DED =

We now focus on the case in which x* € 99*; by definition of m « F «x:

Uy + Uy / 1
Z Z {msKQK “Tgp + (dg + dg’)(pD - pD)} - Z §mBQﬁE}K*HK*

DG@K* EE@K* ﬂSD DGDK* no

= 0 — mognox Hy.

where the first sum is zero thanks to (IV.7),(IV.8), and for the second term we use the fact that
each vertex k* is shared by two boundary diamonds. ]

IV.1.2 Wellposedness of problem (P)

The following theorem states the wellposedness of the scheme (P). This is quite a classical result
for a discretization of Navier-Stokes problem with Dirichlet boundary conditions, if we consider a
centered or an upwind scheme (see for instance [KrelO] for the DDFV setting); what is crucial is
to understand the properties that need to be satisfied by Byg, By+¢+ in order to have wellposedness,
with the aim to extend later to more general coefficients.

Theorem IV.1.3 Under the hypothesis

BO’K = BO’L7 BO’K > 0
BO*K* - Ba*L*a BO*K* > 0

problem (P) is well-posed.

Remark IV.1.4 In the more general case in which Byy, By+gx are matrices, instead of Byg, Borex >
0, we ask By, By« to be semi-definite positive; the proof does not change, except for the notations.

Proof The scheme (P) is a linear system in (u¥,p®) € (R?)* x R®. Let us denote by N the
dimension of (RQ)T x R®. Then (P) can be written, with g™ = g™ = ¢® = ¢ = 0, as

u, u,
K—i—ZmanK:meK_FmKiK Yk € M

My —
ot il ot
o Forgr = My Fer + Mg Ve € M
DED,
uafm _ gaim (7))
WO GO
div® (u¥) — Bd; A®p® = ¢°
> mep® = ¢
DeED
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This is a linear system Av = b with a rectangular matrix A € My 1 n(R), v € RY and b € RV FL,
Let X be the following set:

X = {(fm,fgﬁ*7gm,gm*,q©,¢) eRVTL D" my7(gY)  fige = mnqg},
(S

Degemt D

then dim(X) = N. We have that /(£ £, 0,0,0) belongs to X and that Im(A) C X since we have
a relation between the solenoidal constraint and the Dirichlet boundary conditions thanks to Green’s
formula (Thm. 1.5.1). If we show that the matrix is injective, we conclude that dim(Im(A)) = N
and that Im(A) = X. So we study the kernel of the matrix A, that is equivalent to show that if
1 — 7 — 0, then u® = 0 and p° = 0.

We multiply the equations on the primal and dual mesh of (P) by u® and we sum over all
the control volumes:

;[(;( Z g |ux|2+ Z 'S |uK*2) + Z Uy - Z Mo Fox + Z Uy - Z ma*fO'*K*:| =0.

KeM KeM* KEM  DEDk K*eMm* DED,
. 171 1
By definition of the scalar products we have 3 [5t< > my lug)? + > e uK*|2>} = aHuxH2

KEM Kem*
and, by replacing the definition of the fluxes, we have:

1 1 . 1 =
EHUTH2 - 9 Z Uy - Z mUUD(ufszﬁ)naK - 5 Z Uy - Z ma*JD(u‘I’pD)nU*K*
Kem DEDk K*em* DED *

1 1 * *
+3 e > m(,FGKuKJruL+§ S ouee Y mg*Fg*K*M

KeM DEDx 2 K* e DED, 2
1 m?2 1 m2.
oy uee > Bt —w)+ = Y e Y 7 B (Wer —ux) = 0. (IV.9)
2 Kem DEDx 2Rem, 2 K*em* DED 2Remy

We can consider separately the terms. By replacing the definition of the divergence operator (Def.
(I.3.5)) and then by appying Green’s formula (Thm. 1.5.1) for u® € Eg, we have:

. _% due Y meoP(ut, p°)ii _% D e Dm0 (ut, pO) e

KeM DeDy K*em=* DE@K*

2 2 2
— TN A T B Y- SN T - = D.TN2 (D 3:.,9..F - = D72 D2
= [[av" (D0 = b)) | = o IDPut (6 div ) = 1 D2uT B+

where for the last equality we use that div®(u®) — 8d3A®p® = 0 and we apply Remark 1.7.2 to
the term —B3(d%A®p®, p ). .

For all the convection terms, we pass to a sum over diamonds recalling that u® € Eg, so we
do not have boundary terms.
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For the centered part, we apply Prop. IV.1.2, to conclude that:

. - Z u, - Z m FdKuK+uL Z Uy Z mo*Fa*K*w

Keim DEDK K*ESUI* DED,
**Zm Fo(ue]? = [u,[?) Zm*F** (Juer[* = g |?)
DE’D De@
Z \uK|2 Z m F,,K—i— Z |ugs ] Z Mgx Flege = 0.
KESIR DEDy K*Ggﬁ* DeDy
—_——

=0 =0
For the terms that depend on By, By+¢+, we apply hypothesis (Hp) to conclude that:
2

m’«
*2 Z Z QRemD Z Uy Z 2Rng BJ*K* (uK* — uL*)

Keim DEDk K* en* DED  *

S

« — )2 > 0.
2RemD 3 Z 2RemD e (U ur)” >

Putting all together, (IV.9) becomes:
1 T2 2 D.T(2 D2
sl + - [ID%ut| 3 + Bp1% <0,

from which we deduce that u® = 0 and p® is a constant (we recall that 8 > 0). Since p® verifies
Z mep” = 0, we have p® = 0. ]
DeED

IV.2 DDFYV scheme for the subdomain problem on ()

In this section, we define a discretization for the subdomain problem on €);, for j = 1,2. We present
the study for two subdomains for simplicity, but it could be extended to a generic number of
adjacent subdomains. As in Sec. IV.1, the nonlinear convection term will be approximated through
B-schemes; we will see that the coefficients By, By++ play an important role in the convergence of
the Schwarz algorithm.

We start by defining the scheme, denoted by (P;), and the related Schwarz algorithm for the
domain decomposition; then we prove some a priori estimates in order to show the wellposedness
of (P;) at the end of the section.

IV.2.1 DDFYV on composite meshes

On each subdomain €; of Q, j = 1,2, we want to solve a Navier-Stokes system with mixed
boundary conditions. On a fraction of the boundary (the one that intersects 02) we impose
Dirichlet boundary conditions; on the remaining part (the interface I" between the two subdomains)
we impose the discretized version of the transmission conditions (IV.2), that depend on the two
parameters A, a.
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Primal mesh 9t

******* Dual mesh 9t U o9t*

Fig. IV.2 DDFV meshes.

Description of the meshes

For each subdomain §; of , j = 1,2, we consider a DDFV mesh T; = (901; U 00, I U 99N7)
and the associated diamond mesh ©;. We remark that, thanks to DDF'V scheme, we can work
with non conformal meshes, and in particular the two subdomains can be meshed differently.
Letting I' be the interface between the two subdomains, we denote by:

o the diamond cells intersecting I' : ’D]F- ={peD;,0NT # 0};

© the boundary primal cells intersecting I" : OM;r:={k € 0M;,xNT # 0};

o the boundary dual cells intersecting I" : OM o= {xr € MG,k NI # D}
o the boundary primal cells intersecting 92 : 99 p := {x € M,k N ON # O};
o the boundary dual cells intersecting 952 : OM = {x* € 0N, x* N O # D}

see Fig. IV.2 for an example.

Definition IV.2.1 (Composite mesh) We say that T, and To are compatible, if the following
conditions are satisfied:

1. the two meshes share the same vertices on I'. This, in particular, implies that the two meshes
have the same degenerate volumes on I', i.e. M = My r.

2. The center x, of the degenerate volumes of the interface L = [,z <] € Oy = My is
the intersection between (xyg+,x ) and (xx,,xx,), where k1 € My and kg € My are the two
primal cells such that L € Ok; and L € Ok (see Fig. IV.2).

Consider the composite mesh of Fig. IV.2; remark that:

o a diamond b, of vertices xy,, T+, Tp*, 2k, that intersects I' in the domain €2 can be written
as the union of diamonds by, of vertices xy,, =, .x, 2. , and by, of vertices xy,, g+, Ty, 21,
respectively in 21, 9. Moreover, on the subdomain meshes we have the additional unknowns
on x; on I' with respect to the mesh on €;

o equivalently, a volume x* that intersects I' in 2 is the union of k7, x5 in 21, Q2. In particular,
an edge o = [xg,, Tx,| can be split into 0* = o] U 03 = [z, 2] U 21, Tk, ];

o an edge 0 = [z, 2.+ on the interface I' is shared by all the meshes.
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We add some fluxes unknowns Wg, on each dual cell that intersect I' , i.e. Vk; € aﬁﬁ;’r. Those
unknowns approximate the dual fluxes F,«+ on the interface; in particular, for a diamond b € @5,
the unknowns are illustrated in Fig. IV.3.

Fig. IV.3 The unknowns on a diamond on the interface for the subdomain €2;.

To obtain our scheme, we integrate the momentum equation over 9; U im; U GDJZ;F, we impose
Dirichlet boundary conditions on 09; p U 9N ;, and transmission conditions on 990 r U OM -
(depending on \). The equation of conservation of mass is directly approximated on the diamond
mesh equation over ®;, and it is stabilized through a parameter 8 > 0 with a Brezzi-Pitkaranta
stabilization (see Sec. 1.7); for the diamonds in ”}Dg a transmission term is added, controlled by the
parameter a.

We then define the DDFV discretization for the transmission conditions the following system:

Find (ugj,pgj, Us,) € RY x R x 89)?;‘7P such that

u u
mx(s—;+ Z ma}'ﬂ:mxfx—i—mx(s—; vk € M;
DeDk
Ug* ]__]_ * %
Mg+ (5Kt + Z Mg Forgr = My Fir + My (57; VK € gﬁj
DE@K*
uK* ﬁK* *
Trg + Z M+ Forge + Magnax Uir = My e +my —  Vk* € amF
ot St 7
DGDK*
1
~Fort GFa 4 Au =h, Yo € OM;r (P;)
1
_\IJK* + iHK* uK* —|— )\uK* = hK* VK* 6 8mj7r
uazm;p -0
mpdiv®(u®) — Bmyd2 APp® =0 Vo € D; \ Dj
mpdiv®(u®) — Bmpd? APp® + amyp® = gp Vo € @g,

with A, 3,a > 0 and ug; the solution computed at the previous time step t,-1 = (n — 1)t for
ne{l,...N —1}.
We will refer to the system (P;) in the more compact form:

T, —
‘CQJ]-,IF‘(UT]‘ ) p’Djv \Ij‘fj ) fTa ug;, h‘fj ) ng) =0. (IVlO)
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Remark IV.2.2 When we impose transmission conditions in Schwarz algorithm, the term on

1
the boundary that we want to approxrimate is / (a(u,p) ‘1 — §(u . fi)u) ; this comes from the

ag
anti-symmetrization of the convection term.

Formally, at the continuous level, if o is a test function in V = {¢ € (H*(Q))?, ¥|r, = 0, div(p) =
0}, the variational formulation of (IV.1) reads:

/Qatu cp+ /Q(u -Viu-p— /Qdiv(a(u,p))cp =0. (IV.11)

The convection term can be written as

/Q(uV) 1/(uV) cp+2/uv
2/ ‘P—*/ 'u-i-/(m;(u-ﬁ')u,

by integration by parts. If we inject this result in (IV.11) and we integrate by parts also the diffusion

terms, we end up with:

/Qﬁtu-cp—l—;/g(uV) cp—f/ qupu—i—/ u,p): Vp— / ( ,pn—%(u n)u) =0.

This is the reason why, when working with transmission conditions, we want to impose a condition

on o(u, p)it — 3(u- {)u, that contains just half of the convection. Remark then that the numerical

flux Foy is constructed to approximate the term
Foe z/U(—a(u,p)ﬁ—&— (u- &)u).
This is why in the approximation it gives:
(u-Hju=oc(u,pid— (u-H)u+ -(u-D)u~r —Fu + - Fu,.

IV.2.2 DDFV Schwarz algorithm

Let N € N*. We note 6t = & and t, = ndt for n € {0,... N}.

At each time step ¢, we apply the following parallel DDFV Schwarz algorithm: for arbitrary initial

€ RMLrYMir and gg € R, at each iteration I = 1,2,... and i,j,€ {1,2}, j # i

the algorithm performs two steps:

guesses hoj

1 1 1 T D om* .
1. Compute (usj,pgj,\lfgj) € R* x RYi x Rr solution to
N l — -1 -1
,CQJ F(U‘T ,p® 7\I}Tj7f3j7u5j7h$j 7g®§ ) =0. (31)
2. Compute the new values of thJ and of gé)p_ by:
J

1
hll_j = fclmi - iFngu + )\u . VL]' =1L; € Eﬂi)ﬁj;
1
hfq = \Ilfq — iHK»f ufﬁ + )\uf{_*, Vk; € O - such that Ty = Tk

g]l:,j =— (mDidiV ' (uk .) — Bmp, d2 APip ) + amp, pD , Vb € @ such that xp, = wp,
(S2)
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To prove that the algorithm is well-posed, we need the following result:

Theorem IV.2.3 (A priori estimate on (P;)) The scheme (P;) satisfies the following:

1 2 O D 1:,9;
L g 3+ | 0P — (5 divPiu, o,
1 1 1 1
+ 5 Z mo’(fa‘K - iFaKuL) - + 5 Z Maoanoex* (\IIK* — §HK*uK*) © Ug*
DEDT K*€om .

1 m? 5 1 m2. 9 £
5 2 SRy Dl w5 2 Sp i B e — e P = [[f v gy (IV.12)
DED; DED;

Proof We multiply the equations on the primal and dual mesh of (P;) by ug, and we sum over
all the control volumes:

171
5 |:(5t( Z myg ’uK’2 + Z Mg |U-K*‘2> + Z Maanart Pir + Ugx

KeM; KESJT;U(’)SJT; K* 6893?; r

+ Y ue Y mFat Y ue S m, U] — [lfs, ug e, (IV.13)

KEM; DEDk K*emruoms DED

171
By definition of the scalar products we have [( doomelw P+ > mye ]uK*\Qﬂ =
2 K

ot em; KEMF UM’

1
EHU% |? and, by rewriting the fluxes as a sum of the diffusive and convective contribution we

have:

1 1
EHuTjHZ_Fi Z Moanax* Yir - Ugx + Z Uy - Z m(,]:glK + Z Uy + Z ma*fgl*K*

K*E@fm;’r KeM; DEDk K*ezm;.uam; DED*

+ Z Ug - Z mgng-i- Z Ug* - Z md*fg*x* = [[ffj)uij]]ij-

KEM; DEDk K* € uoms DEDy+

We consider separately the two contributions. For the diffusion terms, we have, by the definition
of the divergence operator (Def. 1.3.5):

1
3 Z Uy - Z m(,ngJr Z U Z md*fg*x*

KEM; DEDk K* €M uoms DEDy+

2 1
:—Hdiv‘fj (mDi’fuTj—pD-fId>,ung -7 2w ) Mo Foy.

T K* €M’ . DeDLL!
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We can now apply Green’s formula to the RHS, and remark that Z Uy - Z m(,ng =

K* €0 1. DEDE

Z m, - (ugr 4+ ugx). We thus find:
DEDJF

U we Smre Y ue Y mer,

KeM; DeDy K*em;uasm;% DED,

. Y u +u
= 76“]3@“11”% - (PQJ,le@]UT)i)j + Z m, Fo -7 (u) — Z m,Fo, - %
DGD]F. De@JF,

By the definition of the trace operator, we obtain:

% Z uy - Z m,Fo + Z g - Z M+ F,

KeM,; DEDk K* eim;f U(?Em;f DED +

2
:ﬁ\\ngqug (p®7,divoiu o, + 5 Z M, Foe - . (IV.14)
Dei)F

For the convection terms:

1
Z uy - Z m, Z U+ - Z Mg Fonr | 1= §(T1+T2)

KEM,;  DeDy K*ezm;uazm;. DED, +

We estimate the term T7; we first integrate by parts:

T = Z uy - Z Mo F oy

We replace the definition of Ff, for all p € ©;:

U +u
T, = Z My Fy— 5 = (ug —uy) + Z 2R UK|uK—uL]2+ Z m,Fy
DED; DED; ped?

= Z my Fo(Jug® = [u?) + > 2R gKyuK—uLyM > m,Fe

DGD DED, peol

Passing to the sum over primal cells k for the first term and applying Prop. 1V.1.2 we get:

Z lu, |2 Z My Foy — Z M, Folu|? + Z 2R UK|uK—uL|2—|— Z My F g

KEEUZ DEDg De@F DED; De@?
=0
It can be rewritten as:
1 m?2 5
Ti= 3 mo(Fo— ghot) ot Y oo ~Box|ue —u, (IV.15)

DeDF DED;
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We estimate the term T5; we first integrate by parts:

T2 = Z Ug* - Z ma*]:

K* €M Lo DED~
Z m, (ugr — ugx).
DED;

We replace the definition of Fg, for all p € D;:

uK* +uL*
T2: ZmU*Fa*K*i'( *_uL

DED; 2 97
2 m? 2
§Zm*FaK(\uK]—]uL|) ZQR B |t — as |7
DED; DED; Mo

Passing to the sum over dual cells k* for the first term we get:

= Z e[ Z Mg Forer + Z 2Re By [ — w2, (IV.16)
K* €M UOM DED«

From the definition of F,«+ and by Prop. IV.1.2 we have that ED€© my+ F o+ = 0 for all x* € 931;
and ZDGDK* Mgr Fover = —Mpgrer Hyx for all x* € asm*r, that gives:

1
Ty = —— Z Moonox* Hyx |U-K ‘ + Z 2R By« K*’uK* — U= 2,
K*Eafm* em

If we put the estimates (IV.14),(IV.15) and (IV.16) together, we find:

1 2 ) LD
EHUT]-W + *||D©711¢j 13— (p®7,div®iug,)p,
1 d . 1 1 1 9
=+ § (]:m( + }—UK - 2 aqu) u, + 5 Z Moqnax Py * Ugr — Z Z Maanax Hy+ |uK*|
De@? K*Gam* K* Gam;’r

1 m?
* 2 Z 2Re;n Bowlug —wf” + 3 Z 2Rem Borer [wer — i [* = [[fs;, us, ]l
. D D

that, since F& + F¢, = Foy, leads to our result:

1 2 o o o
EH“Q@-H%*’*HD iug, |3 — (p%7,diviug,)p,

1 1 1
+ 5 Z - FoKuL) u, + = Z Maoanox* (\IIK* — *HK* uK*) © Ug*
2 .4 2
DeDF K* €0 .
Ly e wf L Y g ? = [ffs, ug,]
+ 3 Boxlug —u|” + = By [ugx — up» Lug.|g,-
DE’D 2R DG'D 2Rem Y

Thanks to Thm. IV.2.3, we are able to deduce the following:

Theorem IV.2.4 (Wellposedness of the DDFV subdomain problem) Under the hypoth-
esis (Hp) and X\, B, > 0, the problem (P;) is well-posed.
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Proof By linearity we can prove that if fr; = 0 = h% = ¢®i, then ug, = 0= U% and p¥ = 0.
Starting from the estimate (IV.12) of Thm. IV.2.3, we apply:

e the transmission conditions on the sums over ”}35 and (‘%Tﬂ;I:
1
_fax + iFoKuL + )\UL = hL Vo € 897{3"1",

1
—\IJK* + §HK* Uy + )\'LIK* = hK* Vk* € 897{;‘:11,
e the conditions on the equation of conservation of mass:
div°(u®) — Bmpd2APp® =0 Yo € D; \ D},
s D[ T 2AD. D D __ I
div’(u®) — Bmpdy A°p™ + ampp® = gp Vb € D;.
This implies:
a3+ D% u 3 + Blp
ot 27 Re 2 h

A A
+ « Z mp|pD|2+§ Z ma|uL|2+§ Z maﬂmaK*|uK*|2

DE’D; De@JF. K*€oms
1 m2 1 m2.
+ = Z z B(,K|uK — uL|2 + = Z z BO’*K*‘uK* — uL*|2
2 bed, 2Rem, 2 bed, 2Rem,
. _ 1 1
= [[f‘Ija uTj]]Tj + (p917993)95 =+ ) Z myhy - u, + ) Z Maanox+ s - Ug=. (IV17)
DE@JF. K* €0 .

If now we impose f5, =0 = h% = ¢®i in (IV.17), we have:

1 2 _
a”u% I3 + QHDDJUT’@ + BIp°
A A
+a Z TnD’pD’2 + 5 Z md’uL’2 + 5 Z maﬂma}(*‘ux*P
Dei)g Dez)]F. K*€omy |
>0

1 m? 1 m2.
+ = Z = BGK‘uK_uL|2+* Z = BJ*K*|UK* _uL*’2 =0,
2 bed, 2Rem, 2 beD, 2Rem,

>0

that leads to: ) 5
Elluz\lg + QHDQW‘:H% +BIp°f; <0,

from which we deduce that ug;, = 0 and pY7 is a constant (we recall that 3 > 0). Thanks to the

transmission conditions on QJF-, since a > 0 and ug; = 0, we obtain p®i = 0. Finally, thanks to

the transmission condition on 893?;F and ug; = 0, we also have Y =0. [



IV.3 Convergence analysis of the DDFV Schwarz algorithm 135

IV.3 Convergence analysis of the DDFV Schwarz algorithm

Before studying the convergence of the DDFV Schwarz algorithm towards the solution of the
Navier-Stokes problem defined on ), we recall some remarks that may be useful to understand the
analysis. Consider the composite mesh of Fig. IV.2; remark that:

e a diamond b that intersects I" in the domain ) can be written as the union of diamonds
D1,D9 respectively in 1, €2s. Moreover, on the subdomain meshes we have the additional
unknowns u, on I' with respect to the mesh on €;

o equivalently, a volume k* that intersects I' in 2 is the union of k], x5 in €21, Q9. In particular,
an edge 0 = [z, , Tk,] can be split into o* = o] U 03 = [xk,, 2] U [z, Tk, ];

o an edge 0 = [zy, x.+| on the interface I' is shared by all the meshes.

Those characterizations of the meshes imply that, at the limit, the fluxes need to satisfy the

following:
My Fox = My Fogy, = =My Forys V0 € D' (IV.18)

Mo+ Forge = Mor Forgr + Moz Forer, Vo' = 0] Uoy, x* € My (IV.19)

In order to obtain this properties, it will become necessary to modify the fluxes on the interface,
either for the limit or for the subdomain problem. For this reason, the convergence will be studied
in two steps.

The first step will be to identify the limit of Schwarz algorithm defined in Sec. IV.2.2. We
will show that this limit is still a DDFV scheme for the problem (IV.1), but with modified fluxes

on I'. We will then prove convergence to this limit scheme, to which we will refer as (P).

Secondly, in Sec. IV.4, we will show that it is possible to modify the fluxes of the Schwarz
algorithm (S7) in order to converge exactly to (P).

IV.3.1 The limit problem (75)

The following scheme is another DDFV approximation of (IV.1), on the domain 2; what changes
with respect to (P) are the fluxes on the interface T'.

To obtain our scheme, we will not detail the steps here since we proceed as in Sec. IV.1.
Given (u¥,p?), satisfying div®(a*) — Bd2A®p® = 0, we look for u* € (R?)* and p® € R® such
that:

4 T u
mxdi;‘i‘ Z mafo'x“r Z m(,]-'gK:meK—i—mK(T; Yk € M
DEDK\Dy e
Ug* _ -
Tng* 51; + Z ma*]:o'*x* =+ Z ma*]-—a*K* = mK*fK* + M+ TKt VK* c m*
DGQK* \3311;* DE@}E‘*
u@im -0 (P)
uam* —0
modiv? (u) — Brpd; APp® = 0 W e D

> mpp® =0,

DED
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with 8 > 0. At the interior of the domain, the fluxes coincide with the fluxes in (P), see (IV.5).
On the interface, they are defined as:

~ . u +u m2 =
MeFox = _mgo_D(uz’pQ) Oy +m,Fl ( - B) L) + SRem BO’K(uK - uL),
D

g + ugx > mf* ~
2 2Rem, °

* ek (uK* — uL*))

ma*fO'*K* - _mU*O-D(uT7 pg) ﬁo’*K* + mU*Fa*K* <

where ng and BU*K* are defined in the next section in Prop. IV.3.4 and Prop. IV.3.5.

IV.3.1.1 Definition of B,, and By«

We first give the following definition of some matrices that will be useful in the following; the index
1, 7 relating to the subdomain will be specified if the matrix is not symmetric with respect to the
subdomains.

Definition IV.3.1 We define for i =1,2, 0 € 001 and P = Id + ii,x ® i« the matriz:

2

m
;= g P4+ B, Id
! 2RemDi( + Bow 1),

where we recall that By, = B (QmmDii&sz) and we define:
A=A+ As.

Remark IV.3.2 The matrix A = Ay + Ao is symmetric and definite positive, thus invertible,
since it is the sum of two symmetric and definite positive matrices.

In fact, thanks to the definition of P, if i, = <$> , we have:
Yy

A — 1+BUKZ,+902 xy
' y 14 By +92)

”1> it holds:

which is symmetric and for any v = <
V2

(Ajv,v) = (1 + ngi)(v% + v%) + (xv + yv2)2 >0 and (Aw,v)=0 <= v=0,

thanks to Hypothesis (Hp), which implies By, > 0.
Fori,j=1,2,1# j, since A; and A; are polynomial in P, the following properties hold:

AiA; = AjA;,
A AT = A714,

since from Hyp. (Hp) we have By, = Boy, for 0 € OM;r.

The fluxes F,, Fo=+ are constructed in order to satisfy the properties (IV.18)-(IV.19) defined in
the introduction of Sec. IV.3.

It is important to recall that (75) is a scheme defined on the mesh T on €; in particular, this means
that there are no additional unknowns u; on the interface I', see Fig. IV.2. The following results

apply for a general diamond:
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Proposition IV.3.3 Let v € D be a diamond and let 1,09 be the two semi-diamonds such that
p = by Ubg, see Fig. IV.} . We denote by (xx, Ty, T, x) its vertices and by (g, , Ty, T, T,),
(Zyy, Tgr, T, ) the vertices of by and va. Then, there exists a unique u, that, for o = x1|ka, verifies

fO'Kl - _‘FO'KQ (IVQO)

given by:
1
u, = A |Aju,, + Aou,, + §m(,FUK1(uKl —Uy,)| - (IV.21)

where A, A1 and As are given in Def. 1V.3.1.

Fig. IV.4 A diamond b, of vertices xy, xx, 1+, 2, as a union of two semi-diamonds: by of vertices
Ty, T, Ty Ty and Dy Of vertices xy,, Ty, T, xp+. In particular, of = [y, x| and 05 = [z, Ty, ].

Proof The condition (IV.20) is a linear equation in u,. In fact, Fuy, is a flux on by, of vertices
Tyy T, Tor, Ty, AN Foy, is a flux on by, of vertices xy,, 2y, z1+, x,. If we insert the definitions of
the fluxes, (IV.20) becomes:

R Uy, + U, mz
MeFox, = —mJaDl(uT,pg) oy, + M, Foy, ( “ 5 ) + TRem By, (g, — u,)
D1
L Uy, + U, mz
P = Mo (0%, p°) fow, — i F, ( = > ~ SRern Box, (4, — 1)  (IV.22)

The strain rate tensors can be written by using the matrix P as:

— a0 (U, p°) - fpey

mz mamar — —_ — — D=
e Mp(ulq - ua) + M(ntﬂ(l . ng*K*Id + XL o p* ® naKl)(uK* - uL*) + ’I?’L(,p Il,,Kl, (IV23)
mUO—D2 (u§7 pD) ’ ﬁaKg
mg mamag = = — — D=
= —MP(HKQ - ua) - m(naKz . na*K*Id + N *gx @ naKz)(uK* — uL*) — M, Mgy
(IV.24)
MeMgx 1 m,m,x
1 — 2

If we replace (IV.23), (IV.24) into (IV.22), since M, = —1«, and Remy,  sin(ap) = ey,

the contributions of the pressure p® and of the velocity ugx, u« on the vertices cancel.
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So (IV.22) becomes:

2 2
m;, Uy, +u, m,
2RemD1 P(uKl - uo‘) + maFO'Kl ( -1 9 ) + 2RemD1 BU'KI (uK1 - ua) =
2 2
m; Uy, + U, m;
B 2Remy, Plue =) =moFor, ( 8 2 ) B 2Remy, Bora (8, —110).
We group the terms in u, thanks to Fyy, = —Fyx,, to obtain:
m? m? 1
SRern (P + Bgg Id) ug, + SRern (P + By, Id) uy, + §m(,FUK1 (ug, —uy,) =
D1 D2

m2 m2
z P + B,y Id z P + By, Id - (IV.25

By Def. 1V.3.1, (IV.25) becomes:

1
AluKl + A2uK2 + §va0K1 (uKl - uxg) = Au,,,. (IV26)

It is sufficient to show that this expression is injective; if (u¥,p®) are equal to zero, we need
to deduce that u, is zero. This is true because, if (u¥,p®) are zero, this means in particular
Uy, = Uy, = 0; so condition (IV.26) becomes:

Au, = 0.
Since the matrix A is definite positive, by Rem. 1V.3.2, we deduce u, = 0. [

The following proposition is a way to obtain property (IV.18), by modifying the fluxes on the
interface:

Proposition IV.3.4 Let o be a diamond and let py,po be the two semi-diamonds such that o =
D1 UDy, see Fig. IV.4 . Then there exists a unique flur Fy on o = kj|ke such that

mo'ﬁUK - mo-fo'Kl = _mo-fo'KQ, (IV27)
given by
- 2R 1 2
By = e';nn <A1A2 + (mUFJK> Id) A7l — P (IV.28)
ms 2
My Fox = —Myo (U, p°) figy + m, F, (uKl +uK2) , Bo(ug, —uy,) (IV.29)
oY OK o b oK o+ oK 2 2R€mD OK K1 Ko /- .

Proof We consider F,y, and we refer to Fig. IV.4: we recall that it is a flux on the semi-diamond
p; of vertices wy, , Ty+, T+, ,. Thanks to (IV.23), it can be written as:

My Fox, = A1(ug, —u,) +m, Foy, (
n meUI
2Remy,

uy, + ua>
2

— — — — D=
(na'Kl s M gxgx Id + N xgx @ noxl)(ux* - uL*) + M,p Ny, -
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By grouping the terms in uy, and u, in m,Fy, and injecting the definition (IV.21) of u, , that
ensures (IV.20), i.e. m,Fory = =My Foxy

1 1 _ 1
My Fox, = (A1 + 2m(,FUKIId> uy, + (—Al + 277”L(,F(,K11d) AL [Aluxl + Aguy, + —m, Fog, (Ug, — Uy,)

2
mamUT — — Id — — D—
+ 2Rem (no'Kl * M gxy* + 1 g *g* ® naKl)(uK* - uL*) + ms,p naKl'
D1

By regrouping the terms in uy, and ug, we have:

1 1 1
My Fox, = [(Al + mJFUK11d> + (—A1 + 2mUFgK11d) AL <A1 + 217’L(,FUK11d)] Uy,

2
| » 1
+ —Al + §mUFUK11d A A2 — §mUFUK1 Uy,

mdmﬂ'*
+ 1
2Remy,

— — — — D=
(no'K]_ : no'*K*Id + T *g* ® naKl)(uK* - uL*) + mo'p naKl'

As by Rem. 1V.3.2, the matrices A and A; commute, for i = 1,2, we can write:

1 — 1 .
m,Fox, = | A1 + §maF0KIId A— A +§maFgK11d A7y,

1 1
+ (—A1 + 2m0F0K11d> <A2 - 2m0F0K11d> Aty
+ mdmﬂf
2Remy,

(ﬁo'K]_ . ﬁa*K*Id + ﬁa*K* ® ﬁaKl)(uK* - uL*) + mo'pDﬁaKl .
We develop the computations and we find:

1 2
TI”LO../T'.UK1 = [(AlAQ + <2maFaK> Id) A1‘| (uKl — uKz)

meMg U, +u
— — — — D= K1 K2
(naKl S Id + I, *g* & no‘Kl)(uK* - uL*) + mesp no‘Kl + mo‘FO'Kl ()

2RemD1 5
If we define:
~ 2Rem
Boy = - D <A1A2 + m FUK >
mo‘
we get:
m2
P+ By) = A1A F
2RemD( + Bo) = | Arda + ( m, )
and since m, Fox = m,Foy, = =My Foy,, Mg = Mgy and Dl - ";;D* (see Fig. IV.4), we end up
with:
m?
Mol o4 = SRems (P T Bax) (U, — u,)
MeMor B . ) . i
2Rem, (T - Mg Id + Mg @ M) (Wer — g ) + M PPl + 106 Fo (KIQKQ> :
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We remark that now the expression of m,Fy, depends only on the unknowns uy, , Uy, , Ugx, u;*; so
it is a flux defined on the entire diamond b (see Fig. IV.4). It can be rewritten as:

m2
) + 2Re:fnn By (ug, — Uy,) = m,Fox.

uK1 + uK2
2

D D\ =
manKl = —m,o (uT’p )na'K + mo'Fo'K (

so that we find (IV.29). [

The following proposition is a way to obtain property IV.19:

Proposition IV.3.5 Let b be a diamond and let p1,po be the two semi-diamonds such that o =
D1 Uby, see Fig. IV.4 . Then, for x= € Oy, there exists a unique flur Fyw on 0" = o Uoy =
[k, , T U [z, Tk,]| such that

Meo* S orgx = maf olK* + maé‘ O5K* s (IV?)O)
given by
~ m= M s*
Borgr = m : BO’TK* + #Bagx*- (Ivgl)

~ R Ug* + Up* m2. =
Forge = *ma*aD(ugvp/D) N xgx + Mg B < = D) - > + 2R;m By (ux* - uL*) (IV.32)
D

Proof This is a direct consequence of the computation of (IV.30). By definition,

2
mea
D/, .T D\ = Uy + U= o1
mg*}—U*K* = —Mm 0 (u P )nU*K* + My iy < + BU*K* (uK* — uL*)7
1 1 1 1 1 2 2Rem01 1
u, + u ’I’)’LQ*
D/, D\ = K* L* 79
mU*Fg*K* = _mo*o- (u 7I) ) no’*K* —|— mo* FO'*K* < —|— BO’*K* (uK* — uL*)‘
2Y 92 2 2 2 9 2Remy, 2
. * * * Me¥ Me* ey .
Since o* = o7 U 03, we have m,» = m,» + m,; and mD; = mDi ; by definition, it holds m » F g« =

Mgr Forgr + Mgy Forgs . So if we take the sum of the two fluxes, we get:

uK* —|— uL*
mo’f O'IK* + mG;FO'SK* = _mG*UD(uiv pg) ﬁa*K* + mo‘*Fcr*K* ( )
m2* mU* mcr*
~|— g 1 BO’*K* + JBU*K* (uK* _ uL*)'
2Remyp, |m,« ! Myx 2
. o me* Meyx .
By defining Boex+ := L Bgry + -2 Bosy+ , we obtain (IV.32). [
o o

Remark IV.3.6 Remark that, by construction, (75) is the limit of the Schwarz algorithm defined
in Sec. IV.2.2 if and only if (IV.28) and (IV.31) hold. This is equivalent to say that By is defined
as a function F of (B, , Box,) and Byorgr defined as a function G of (Bafx*, Bo;‘x*)-’

Bcrx = F(BO'K17BO'K2)7

_ (IV.33)
BU*K* = G(BJ*K*aBU*K*)~
1 2

IV.3.1.2 Wellposedness of the limit problem (P)

In the following theorem, we prove that the solution of the limit problem (ﬁ) exists and it is
unique. This will rely just on the expression of the new fluxes Fyy, Foex*.
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Theorem IV.3.7 Under the hypothesis (Hp) for By, By, problem (P) is well-posed.

Proof By Thm. IV.1.3, we need to verify that hypothesis (Hp) holds; since we are supposing it
for Byg, By+x+, we just need to verify it for Byy, By (the modified fluxes on the interface). As a
direct consequence of (IV.28) and (IV.31), we have:

BO’K = Bau

BO’*K* = BO’*L* .

In fact, if we consider a diamond on the interface between the two subdomains €21, {29, it can be
seen as the one in Fig. IV 4.
For x = x; and L = ko, we have:

~ ~ 2 , 1 2
Boe = Boe, = 220 <A1A2 + <2mF) Id) AP,

2
md

2 2

o

~ ~ 2R 1 2

Bor = By, = % <A2A1 + (mUFUKQ) Id) Al -p
We remark that A, P do not depend on the index of the subdomain; moreover, m, Fox, = —m, Fyy,,
so that (m,Fyeq)? = (m,Fa,)? and AjAy = AyA; from Rem. IV.3.2. So we can conclude
EO’K = EO’L'

For the dual flux, we have:

~ 0'* Cf*

Byryx = : BO’TK* + . BU*K*a
mU o

~ s o

BO.*L* = 1 BO.*L* + BU*L*
ma* 1 *

Thanks to Hp. (Hp), we have Bgry» = Byrix and Bosgr = Byzix. So we get Byegr = Borpr.

We now have to prove that EGK, BU*K* are semi-definite positive.

1+ 22 xy

Xz
Ifo = , then P =1d + 1, i, =
n x (y) en +nk®nK ( Ty 1+y2

); if we insert the definition (IV.28) of

By, by defining two constants:

den = 4?713(2 + 3Bch + ng)a

and
a= (mDReFUK)2(1 + Bo) + 8m§BUK + 12m§BgK + 4m3BgK,
we have ,
Box = — |ald + (mpReFly)? ( 4 _”Zy)] .
en —xy X
Let v = <v1>; then:
V2
~ 1 myReF,;)?
(Bogv,v) = ﬁa(v,v) + (DdenK) (y%% — 2zyv1v2 + x%%)
1 myReF )2
= @CLHUW + (DdenK) (yv1 — zv2)? > 0,



142 Non-overlapping DDFV Schwarz algorithm for Navier-Stokes problem

and

(Boxv,v) =0 <— v =0,

thanks to hypothesis (Hp) on By, that ensures a > 0 and den > 0. So B,y is semi-definite positive.

For what concerns the dual flux, by (IV.31) we obtain directly that B+ is semi-definite positive
since it is the sum of two semi-definite positive matrices Bose« and Bz (by (Hp)). ]

IV.3.1.3 Identification of the limit

In order to prove the convergence of the Schwarz algorithm towards the solution of (P), it is
necessary to project this solution, that is defined on €2, on the subdomains Q;, 7 =1, 2.

Theorem IV.3.8 Let T be the composite mesh T = T1 U Ty and (u,p®) be the solution of the

DDFV scheme (P) on the domain Q. Forj € {1,2}, there exists a projection (u%j,p%’},\lf%‘;,h%;,g%‘;) €
R% x R?5 x RO™ir x RY x R® of (u¥,p®), such that:

Tjou oo .00 o] — oo 00
‘CQ;,F(uTjap’D]w\IITj’ijauTjah‘Ijvgi‘Dj) = 0. (POO)

Proof On the primal cells I; UOM; p and on the dual cells M7 UM , UIN - we can simply
define the values of u%; as the values of u*:

o for all k € M; and k= € MF UM’ 1, we set u” = uy and u}f;? = Uy,

o for allk € 99M;p and k= € IM] p,, we set u.” =0 and ul%? =0.

o for all b € ®; such that z, ¢ T, we set pp; = P

o for all p € ©; such that z, € I', p; € @g and p; € 5‘3{ , we set pgj = pp, =P’
We then need to introduce new unknowns near the boundary I':

o for all L € 99, r, we impose (see Prop. 1V.3.3):

1
wr=ur =uy = AL {Aju,(j + Ajuy, + §m,,FC,K1(uK]. —uy,)| - (IV.34)

o for all k* € M* such that x+ € ', x* = ky Uk; with x; € ODR;F, we impose:

o0 —
My Ugs 1 My Mgr Ug*
Uy =—-0> =— J o FRr + ——fu 4 —31
J : Moonaxt Ot Moanox* J Maqnok* Magnoxs Ol
DE@K{f
j

(IV.35)

o forallL=1; € 09M; and for all k= € M* such that z € T, k* = x; Ux; with ky € 8%1}%,
Kr € O pwe impose:

1

hLojO = fgﬁi — iFgKiuLoo + Au®,
1

%9 = \Il%o — §H}q u}%? + )\ufif.

o for all p € ® such that z, € I', p; € @5 and p; € D} | we set

9= (m div® (ug) — By, d2, Avipgj) + amy,py.
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Consequence on the equations.
We now show that from a solution (u¥,p®) of the DDFV scheme (P) we built a solution to (P>).

o Yk €M, (uT,p?) satisfies:

Uy

—|— Z meK—i-meUK me—I—mK&.

DEDK\DY DEDL

If we look at the composite mesh (see Fig. IV.2), we can remark that the primal cells k € 9
correspond tox; € M, (or tok; € M;). This implies that my, = M, mf = [ f(z)de = M £
Uy uK
and my — = .
<ot - 5t
Moreover, for a diamond b € ®y \ZD , remark that the limit unknowns uK ) U 7pD on T;
for j = 1, 2 coincide with uy, ug, p® on T; so if

D ul +ugy m?
S — J Lj o 00 00
m"fﬂj = M0 (U‘T ,p@ ) By + 1 o ( 2 ) + 2Rem, Bax(uxj W )

we have:

Z mcrfox - Z mgf;’fj.

DEDK\DL DEDy; \@Ej
For a diamond p € D!, if
o ufjf +uX m? - -
m"fUKj = (ui 7pD ) GK +m, FaK 2 + 2RemDBaKj (qu —u )7

thanks to the choice (IV.34) of u® for all L € 09, r and thanks to Prop. IV.3.4, we have

T 00
My Fox =M ]-"(,K ,

that implies:

Z My Foy = Z Mo F oy, -

DEDL DEDL.
J

So in the end (u%‘;,p%oj, \Il%‘;) satisfies:

=g b g =2, Ve €My (IV.36)

J 5t DE@K

o Yk € M*, (u¥,p?) satisfies:
Uyg* ~ Uyg*
mK* —|— Z ma* O*K* —|— Z ma* o*K* = mK*fK* —|— mK* 6t
De@K*\i)};* De@lf*

(IV.37)

We need to distinguish two cases.

1. If 9x* NT = ), equation (IV.37) reduces to:

U+ Uy
5t _|._ E ma* o*K* — mK* fK* —|— mK* —_—

S 5t ’
DE@K*
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and the cells k= € 9" correspond to k; € M7 (or to k; € IM7). This implies that

ﬁK* uK*
Mg = Mgt mfr = [ £(x)dx = mK;fK;, Mye — = My 67753
Moreover, for a diamond b € ®,+ \ DL, (that is the case here since we are supposing

and m » = m*.
J

Ox* NT = () remark that the limit unknowns u;’jo, uy, pgj’ on ¥; for j = 1,2 coincide
J
with ug, ue=, p® on ¥. So if

uK* —i—uL* m2
00 D, o] 0\ = J J o [ee) [ee)
M+ F, = —m,+0’(u ) D 10 Flpse s + B (U —u
o4 O';K* o; ( ‘Ijap’i)]) oK ot oK 92 QRGij UjK( KS.* L;)’

we have:

E Mg* Forgr = E Mg F o5 -
J

DE@K* DE@K%
J

So (u%‘; , p%; , \Il%‘;) satisfies on the interior dual mesh:

wr Uy
TNyer 5 + E Mg Fgoge = My Tex + e i, Vkr € Em;‘ (IV.38)
i Ot J 3 i 6t
DG’DW&
J

2. If 9x*NT # 0, the cell k* can be written as the union of x; € O 1 and k; € OIM; . This
implies that my = Mg + Mg, Mg = Mg+ Mg myfe = [ f(x)dz = s ng‘ + e fier
ﬁK* ﬁK’f ﬁKi‘

and My — = Myr —= + mypr —= .

ot it oot
Moreover, for a diamond b € D~ \CD}:*, remark that the limit unknowns u}‘f;’, upy, pf)’]o, on
J

¢j for j = 1,2 coincide with uy, ue,p® on T. So if

oo oo
m *.FOO = m *O'D(uoo poo)ﬁ wex 11 by . uK; +uL; + mg B+ *(uoo uoo)
*ppk — T - . T j
oY otk 4 T YD oK o oK 2 2Rem, i “ B
and
00 0
Foler = =Mz a2 (U, P ) Tomer+m,: F, B T e p. (0 —u¥)
M ok = Mex0 7 \Ug, P, ) Noxgx TMo* Loyt 9 2Rem,, oiK” uKI uLI ’
K2
we have:

(o] (o.¢]
E M* S grgx = E m(,;]:g;K* =+ E mU;r]:U;K*.

DED,+\DL. DG’DK; \@}% DEDys \@}f;

For a diamond b € DL, thanks to (IV.30), we have

T _ 00 00
Mo*J grg* = m(,;]:o;K* + mU;‘.FO.;K*,

that implies:

E Mo Fprgx = E Mg Fotpr + g Mg F i -
J J g 7

T I T
DEDL, DG’DK; De@Ki*
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We deduce from (IV.37):

111%9 u?,?
Myx —= + myr —— + E Mg F e + E Mgr Fgtyr
10t 0t i 9% i %
DE@Kf DEDKﬂf
J 1
Uy* Uy
K> LK K> LK: K7 K> .
i i 16t o6t
By definition, ¥2¥ satisfies:
i
oo —
My Ugs 1 myx Myx Uk
\I/;()f = —\IIISS = —* : E m(,z]:go?K* =+ 2 fK:‘ —+ = 1’
* J Moanac* O Maanax* DED ¢ Maanax* Moanas Ot
K
i

SO (u%; PR \I/%‘;) satisfies on the boundary dual mesh:

u}?’.? 1_1}(’.‘
mK;f 5; + Z mo.;ffg?l(* + Moanax* \I’l%? = mK;f fK; + mK;f 57;, \V/Kz‘ S 89ﬁ;77r.
DED
J
(IV.39)
o Vk € M, with kN T # @, if we look at the composite mesh, the diamond b € DL can be
written as the union of p; € @11:], and p; € CDE. By definition, we have Fyy, = —Fiy,; moreover,
thanks to the choice (IV.34) of u® for all L € 99, r and thanks to Prop. IV.3.4, we have
moFoe, = —MoFay.-

From the definition of h¥?, we get the relation:
hL = ]:m(i - EFO'KiuL + )\uL = _]:oxj + iFaKjuL + /\uL :

So (u%;,p%‘;, \I/%CJ’) satisfies:

OKj

1 1
Fo 5Fm(z.uLOo A = —F + §F0K].uf° + Au°. (IV.40)

o Vkr € M*, with Ok* NT # (), the cell k* can be written as the union of x; € OM 1 and
ks € O’ . By definition, we have HK; = —H and ¥ ¥ = —¥>» . This leads, from the
bl 1 1 J
definition of h¥’, to the relation:

1 1
hl‘(’fj = \IJ}%? — §HK; u%o + )\uf{’;? = —\Il%? + §HK§ u%? + )\u%?.

So (u%;,p%’j, \I/%c;) satisfies:

1 1
\Il}i’lo — §HK; ulfif + /\u;}o = —\I/%o + 5HK; ul%? + /\uf;f. (IV.41)

o forallp € ®, (ut,p®) satisfies:
mpdiv®(u®) — fmyd2 APp® = 0, Yo e D. (IV.42)

We need to distinguish two cases:
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1. If oNT = 0, the diamond b coincides with a diamond p; € ®; (or with a diamond
p; € ®;). For a diamond p € ® \ D', remark that the limit unknowns u”, ux, ppe
on T; for j = 1,2 coincide with uy, ue,p” on T. Thus we can directly deduce that

(u%j,p%;, \If%‘;) satisfies Vp; € D; \@jr:

my, div® (ug) — ﬂijdgj ADfpS;’ =0. (IV.43)

2. If bNT # 0, the diamond b can be written as the union of b; € QJF and p; € D! . This
implies that the divergence can be split as : m,div®(u®) = m,,div®s (ug?) +m, div® (ug).
From (IV.42), the choice of unknowns pg’ and from the definition of g5 we obtain:

g]‘;;? = _ (mDidiVD"(u%z ) — ﬁmnidi ADipSf ) + amy, pp;

= (ijdiVDj(u%]’,) — ﬂmnjdngDfpg‘;) + aijpS?,

that implies for (u%j,p%oj, \I/%;) that Vp; € @5

— (i, div® (ug2) — B, dgi AP pR) + amy, pyd =

(1, div® (ug) — By, dgj AP pp; ) + g, pp’ (IV.44)

To recapitulate, (IV.36), (IV.38), (IV.39), (IV.40), (IV.41),(IV.43), (IV.44) show that (u%‘;_,p%;, \Il%‘;)
is a solution to (P*°). [

IV.3.1.4 Convergence of the DDFV Schwarz algorithm towards (P)

Theorem IV.3.9 (Convergence of the discrete Schwarz algorithm) Under the hypothesis
that my+ = 2m,» = 2ma; fori,j = 1,2, # j, the iterates of the Schwarz algorithm (S1)-(S2)
converge as | tends to infinity to the solution of the DDFV scheme (ﬁ) (up to a constant for the
pressure,).

Proof The iterates of (S1)-(S2) satisfy:
T 1 I l — -1 I-1
ﬁQ;F(qu)ija\Il‘l'jvff7u‘zjah$j 79@]- ) = 07

and (ug’, U, py), constructed from the solution of (P) is solution to:
‘Ij N ) ) o0 — [e'e) oo\
'Cijr(uTj ) p’D]-) \IJT]" ij y UT s th ’ g@j) =0.

We define the errors

l l
O =W — U, (IV.45)

By linearity, they satisfy:

Lo (ek, Ty, @5 0,0, HE ', G5! =0, (IV..46)
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with
_ _ 1
H ' =FL - QFJKZ el Vi =1, € 091
1
Ho' =00 = CHg el + e, Vi; € 99 such that ay; = ax;

Gl = (mD dlvD’( f{zl) — ﬁmnidiAD"Hézl) + ownDil'IfJ:1 Wb, € @5 such that xp, = xp,.

(3

To prove the convergence of the iterates of Schwarz algorithm, it is sufficient to prove the convergence
to 0 of the solution of (IV.46). In the expanded form, (IV.46) is written as:

—|—Zm Fl, =0 V; € M
DEDk

il J

DED,*
l

J + Z my K* + mer}aK*q) x = 0 VK; S 893?;}

DED,

~F +1F el +xel =H! Vo com,

OKj 2 OKj ™14 Ly = L 7Ry
1

—ol, 4 “Heel + el = HI Wir € 900

j 2 300 j j J 7

asz*D —0
my, div® (efy ) — Bmy, di APy = Vo; € D;\ D

C D (ol 2 AD;TTL ! -1 r
my,divi (eg)) — Bmp,dy, AP, 4+ amy Il = Gy~ Vb € D

Thanks to the hypothesis m,» = 2mgr = 2mg;, we have my, = my;; so, in the equation on p; € DJF,
we can simplify the measures and it becomes:

divP (ef,) — Bds APTI, + o Tl = —(div® (e ") — By, APTIL ) + oTT5

We multiply the equations by elzj and we sum over all the control volumes, as in the proof of
Thm. IV.2.3. We obtain, analogously to (IV.12), the following:

L 2 Dl L 350Dl
EHGI]»H%*'*HD iefs |3 — (I, , div® (ek, ),

1 1 1
+ = Z O'KJ - iFngeIl_j) . ell..j + 5 Z Maoanox* (@ll(; — §Hx3ﬂell(;<) . ellq
DE@F K*EBDJT;F
+ = Z ey, — el 12+12 - Byegslel. — el |2 =0. (IV.47)
O'K L o*K K* L — . .
DG’D 2R i 2 beD, 2Rem, i J
>0

By the equations on D, we can split the scalar product into interior diamonds ® \ @5 and

] )
boundary diamonds QJF

— (11} j,divgj (elgj))@j =— Z mDJHl dlvDJ( Z mD]Hl divP (el )i
D;€9;\Df D; €D}
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for the diamonds p; € D; \@5 we apply the equation of conservation of mass, for the diamonds
D; € @; we add and subtract the term ZD]. €0, Mo, ﬁd]?j ADj Hl@F . ngz
j j

— (I, div®i (e, ))o, = =8 Y mD]dQADJHl -8y m%dml%nlr.Hl@r
D;€9;\Df D; €D} !
S T, (divwegj) — B2 A n;)F) .
D; €D} !

We apply Rem. 1.7.2 to the term —f3 ) o m; alD ADTIL o H%r_ =4 (d%j Agjﬂl@j,ﬂé)j) ; we

then multiply and divide 32 cqor my, H]ljj <diVDJ( ) 6d2 ADs Hl ) by « to finally obtain:
J

—(Iy,, div® (e, ), = 6 My, |7 — Z my, aTIp (div® (e )—ﬂdEjADJ’Hl@;)

DJEQF

So (IV.47) becomes:

H eg, Hz+*HD©Je¢ I3 + 8 Mg Ih—* > mo,ally (div® () — Bdg A TTr)
DjGDJF.

1 1 1 1
oy 2o Me(Fog — g Foger) ey +5r Y Monnoe (P — SHiger) - Ay <0, (IV.48)
DED] K*€om 1

where we multiplied and divided by A > 0 the terms on the second line.
1 1
We start by considering o\ Z m(,(}'éKj - §F0Kj eij) . )\eij. By applying now the equality —ab =
DEDT

1
Z((—a + )% — (a + b)?) we can write:

1

! l l 2

. > mo(Foy, — Foel) del =7 > ma|FL - FJK]e + e |
pedl pe®l
J J

_ - Z UK] + FUKJeL +)\eL |2
De@F
:HlL;_l

So thanks to transmission conditions it becomes:

. > mo(F _lp el)')\elzlz |]:l -1F el + el |?

o OKj 2 O'Kj Lj Lj 4 a 2 O'Kj Lj Lj

DE@JF. De@F

1
g Z ]:clrle 2FO-KZ Ly +)‘ - 1|2
DE’DF
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1 1
Equivalently for — Z Moanor* (@i»f — 2H *e ) )\e «, we obtain:
J

2\ .
K* €00 1.
1 ! 1 1
° Z Moanor* (@K; — iHK;eK;) . /\eK;f = 1 Z Maanax* "I) 2 + )\e
K* eam; r K*Eam*
1 -1 1 -1 1-112
- = Z Maanax* ’(I)KT‘ — 5 Hy € T )\er :
4 P2 '
K* €00 1

. .y . . 1
If now we consider my,; « Hf)j (div®s (elgj) -5 dfj ADj HZDJF.)’ thanks to the equality —ab = Z((—a +
b)? — (a +b)?) we can write:

1
« - > mnjangj(diij(egj)—ﬁdngDfngr):1 > my|divPi(e,)—pd;, ADJHQF— I, |
Djegg ! DE@P

- = Z my, | div® ( ) - ﬁdngDle@p —I—aH]l)], 1%,
De@r d

MD; ~1—1
p— 2
T mp. GD]'
J

that under the hypothesis m, = = 2’mg; = 2mg; which implies m,, = My, becomes:
Y V 1 . D. v
. - Z ijaHé]_ (divP (e&j)—ﬁdﬁj APi Hli)]p) =1 Z my, |div® (eé(j)fﬁdfj AP Hl@]r —« H]l)j|2
D; €D} DEDY

- = Z oy |d1VD] ) Bd2 ADZHZ - H]l);1|2.

De@F
Replacing those results into (IV.48), we have:
Lotz 2 im0l 12 L2
&He:@- Iz + QHD Teg, Iz + By, [,
1 . ! 1 . Dy (l— TTl— =
+ - Y moldiv®(ef,)—Bd;, ADJHDF— HDjP—@ > mD\dlvDJ(eTil)—ﬁdgiADZHQirl—aHDi1\2
DEDT DEDT
1 1 1
+ — Z m,|FL —Foy. e + )\eL ? - = m,|Fot — et 4+ ael 712
B\ 2= T2 8>\ A 0ot :
DeD; DeD;
1 1
+87)\ Z Maonox* "I) *e +)\e}%‘2_87)\ Z Maonox* "I’ 1 H el 1+/\el 2 <o.

K*EBEIR* K*e@fm*
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Summing over [ = 0,...lne and j = 1,2 we obtain:
lma:v lmaz lmaz
9,
Z Z (5t” fsj||2+z Z*”D ‘Ij”z‘f‘z ZBIH@ 1
1=0 j=1,2 l0]12 10]12
1 3 lmaz lmaz lmaz lmaz lmaz lmar
+@ .;JleD( )~ B2 A% g —all; \|®F+ Z;Jfaxg — o Fpgelmor - xelmor |3,
] =
1 v
Z ||m5m3K*(I> H*elm“z+>\elm“z]]am* < — > ||divPi(e},)—Bdy AN —a T || 3¢
j 12 2 4 ] 1.2 J J
1 0 1 0
Z | Fo ok 2FcrxjeL + Ae, ||asmjF 8)\ Z ||mamax*q) H*e* + Aey: ||azm*
7j=1,2

that shows how the total energy stays bounded as the iteration index l,,,q, goes to infinity; the

series e and H converge, so their general term tends to zero, that
Z Z || T; ||2 h g g
1=0 j= 12 1=0 j=1,2

implies the convergence to zero of the errors Hefzj 13, |Hl©j |2 defined in (IV.45). Thus the algorithm
converges.

The limit is the solution of problem (75), that is problem (P) with an appropriate choice of the
flux on I'; in fact, we can deduce that, as l;,4; goes to infinity:

Helgj |2 tends to zero implies:
ugj —uy  forj=1,2.
|Hl©j |2 tends to zero implies:
pl@j — pp, + const(§);) for j =1,2.

Thus the pressure converges up to a constant that depends on the subdomain; we show in
the following remark (Rem. IV.3.10) that in some cases we are able to determine cost(2;).

Remark IV.3.10 We can determine the constant const(§;) if we suppose that the mesh satisfies
Inf-sup inequality (Def. 1.6.1). In fact, this implies that:
Ty, —m(Ilg,)ll2 < |k, |13 — 0.

From which we deduce that:

o, —m(pp,) = p3, —m(py,) forj=1,2.

J

Remark IV.3.11 Numerically, we observed that (pk D, const(2;)) — Py, and that
(\I/lgj — const(;)i,y) — e

If (us;, po,, ¥s;) is solution to (P;)

Tjop _
'CQ] F(u;ﬁ,p@ Ve, fr, ug, hy, go,) = 0,
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then (Usg,, Py, ®g;) 1= (ug,, pp, — const($;), Y, — const(§))1,«) satisfies:

T _ ~ ~
[’Q;F(urf]vpfgjv \IJTJ' ) fT7 ufj 9 th 9 g@j) - 07

with EL]. = hy, — const(;)¢ for allv; € OM;r, HK§ = hK; — const(§j) gy for all k€ OM - and
go; = go; + amyconst(Q;). In fact:

. (Ugj,P@j, ®x;) satisfies the same equations on x € M, k* € NG U OM? for the momentum.
It is sufficient to remark that:

Z m, const(€2; )i« = 0 vk € My,
DeDxk
Z M const(§d; ) g = 0 Ve € M7,
DED, ~
Z M const(§ ) lgxer = —Mpgnacs const(§d) iy Vk* € 893?;;
DED, ~

where we recall that Maonaex 1S the intersection between Ok* N OS).

e (Ug,,Po,,®g;) the same equation onp € D \ CD; since A®(p® — const();)) = A®p® by
definition of the operator (see Sec. 1.7);

e 0N 0 € Gﬁﬁj,p:

1
—Fox + iFGKuL + Au, = h, — const(;)i,;

e onk € OMp:

1
—W + 5HK* U + Aues = he — const(§5)1,;

e OnDE CD;
mydiv® (uT) — Bmyd2 APp® + amyp® = gp + const(€)f .

IV.4 Second DDFV Schwarz algorithm

We now investigate whether is it possible to construct a discrete Schwarz algorithm with modified
fluxes that converges to the solution of (P).

We show that this is possible if we suppose an asymmetric discretization of our problem (IV.1), in
the sense that we need to consider an upwind discretization of the convection term on the primal
mesh and a centered scheme on the dual mesh, that corresponds to the choice Byy(s) = 3|s| and
By (s) =0 in (P).

This comes from the fact that in the first DDFV approximation, we can prove convergence if and
only if

o (IV.28) holds, i.e.:

~ _ 2Rem, 1 2
By = 2B (AlAQ + (mFK) Id) AT P,
ms 2

that, by Rem. IV.3.6, can be rewritten as By = F (B, Boxsy)-

o (IV.31) holds, i.e.:
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that, by Rem. IV.3.6, can be rewritten as Bywgr = G(B(,TK*, BUSK*).

In fact, those two relations lead to the fundamental properties (IV.29) and (IV.32).

The idea for the second Schwarz algorithm, since we would like it to converge to the solution of
(P) (whose fluxes depends only on By, B+ ), is to invert (IV.28) and (IV.31), that will lead to
invert the functions F,G of Rem. IV.3.6.

The advantage of this second DDFV approximation, with respect to the convergence of (S1)-(S2)

towards (P) described in Sec. IV.3, is that here the limit solution does not have a different definition

of the fluxes on the interface I.

Theorem IV.4.1 Let (u®,p®) be a solution of (P) for convective fluzes defined by a constant
upwind flur Box(s) = 3|s| for all 0 € &, and by the centered fluz Byw+(s) = 0 for all o* € E*.

Define (S) the Schwarz algorithm where

e On the primal mesh, the new discrete convective flures are defined as:

BUK(S)Id ifO' ¢ gl"
BUK(S) ifJ S 5{‘

with:
2 0 |s| =14 /14 2|s]

and ) = (x Y ), where My, = (az) is the outer normal to the interface I'.
Y

Boels) = }Q (!s! — 2421+ 9] 0 )Q‘l, (1V.49)

y —x
e On the dual mesh, By (s) =0

Under the hypothesis that m,+ = 2m[,;_< = 2my,:, for j,i =1,2, j # i, (P) is the limit of the Schwarz

algorithm (S).

Proof Recall that (P) is the limit of (S;)-(Ss) if and only if (IV.28) and (IV.31) hold.

We start by considering (IV.28), that we recall here.:

2 2

o

_ 2
By = ﬂ;‘;’mb <A1A2 + <1mF) Id> Al - P, (IV.50)

that is a condition on the fluxes on o € &r.
The assumption m, = 2mc,; = 2m0; implies that my, = myp, = 2m, and By, = Bk, = Box. This

means that
A= Ay— e (pipa
1= Q_Remp( + ById)
and

2m?
A=A+ Ay = R = (P—I—BUKId) =241 = 2A4,.
(]

D

Rem,
2
mO'

(P + B, Id)~!. By replacing these remarks in (IV.50), we obtain:

~ 2R, 1 1 2
By, = M 2 42 4 (mF> d]At—p
m2 \4 2

Moreover, A~ =
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By developing the computation, we get:

~ Rem, 2Rem, (1 )2 .
By = A —m,F,) ATl - P
( 2m?2 ) + m?2 2™

By replacing the definition of A and A~!, it leads to:

m?2 2

o

N R 271 2
Bow = P+ Bould + ( emD) (mF> (P + Bydd) ™' — P.

R R 21 2
Then, if s = ﬂFoK, we have < emD) <m(,F(,K) = 752, so we end up with:
m m2 2 4

o

- 1
By = By ld + ZsQ(P + By dd)™L.

If we make explicit the dependences of EUK,BUK as a function of s, since By, is a function of
BJK(mDReFGK) and B,y a function of Eax(%[’fngx), (IV.50) finally becomes:

me

1
Bx(25) = Bu(s)Id + 132 (P + Bo(s)Id)™", forl=1,2.
We can rewrite this condition, like in Rem. 1V.3.6, as:
By = F(Byx).

This relation implies that the Schwarz algorithm (S7)-(S2), whose convection fluxes depend on
By, converges towards the solution of (P), whose convection fluxes depend on By for o € Er.
We want to build a new Schwarz algorithm (S) that converges toward (P), whose fluxes are
defined by B,x; so we need to build B, such that:

BUK = F(BO'K)a

where B, can be a full matrix. In our case, since our goal is to converge towards the fluxes that
define an upwind scheme, i.e. defined by B(s) = 5|s|, By is actually a diagonal matrix, that will
be denoted by Byld to distinguish it by a full matrix.

Thus we need to invert the function F defined above to find the new coefficients B,,. The
inverse of F' does not exist for every Byy. Given s and By(2s), we have a second-degree equation
for B,y (s):

: : 1
Box(5)? + Boe(s) (P — Bou(25)1d) + £ 5°1d — P By (25)1d = (8 8) ,

r 1%

that is:
BUK(S)Q + By (s)T +V =0.

Since the matrices T,V are symmetric and they commute (because they are polynomials on P),

vy ), @ orthogonal
y —x

they can be diagonalized using the same basis of eigenvectors. If @ =
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matrix, we can write:
T=QTQ™"', V=QvVQ,

with 7" and V diagonal matrices, whose expressions are:

7 _ (2 Box 0 v 15% — 2By 0 ‘
0 1-Bx)’ 0 152 — Box

We then look for B,(s) of the form B,(s) = Q M Q*, with M diagonal matrix such that:
M?>+MT+V =0.
Since we are supposing By(s) = %|s|, the solution is given by

ol Is| =24 2y/1+s] 0
2 0 ls| =1+ /1+2|s])’

that leads to our result (IV.49).

For what concerns property (IV.31), we would like to define a unique By« (s*) for o* € &£*

in the limit scheme (P).

Rem, Remy,
F « and s;‘» = Z

With the assumption m,« = 2m,* = 2m,=, we can define s* =
1 2 M o* M= J
J
for j =1,2: remark that there is no relation between the s7. The only property that is satisfied is

s* =sj+s; ,since Mg FU;K*  Mgr Forgr = Migs Fpnge. This leads to the new expression for (IV.31):

* * 1 * *
By (55 + 87) = 5 (Bawwe (53) + Boe (57))

This is true only if By+xx = B+ = 0; in this way, even property (IV.32) is verified. So the dual

flux for the algorithm (S) and for the limit (P) correspond to a centered discretization of the
convection flux on the dual mesh.

The Schwarz algorithm (S) is well posed, since (Hp) is verified by his fluxes, and it converges
towards (P) with the choice of Bu(s) = 3|s| for all o € € and By« (s) = 0 for all o* € €. [ |

IV.5 Numerical results

In this section, the objectives are the following:

o showing and comparing the convergence properties of the Schwarz algorithms (S1)-(S2)

(presented in Sec. IV.2.2)) and (S) (presented in Sec. IV.4);
o studying the influence of the parameters A, «, 5 of (IV.2) in the convergence.

We recall that the difference between the two algorithms relies in the definition of the fluxes at the
interface; the first one converges towards the solution of (75) (see Thm. IV.3.9), the second one
towards the solution of (P) (see Thm. IV.4.1).

We will refer to (S1)-(S2) as "first Schwarz algorithm', and to (S) as "second Schwarz

algorithm". For the first Schwarz algorithm, in all the following test cases, we will consider an
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upwind discretization of the convection flux, i.e. we fix the function B = %|s|

We recall that the domain decomposition algorithm is an iterative algorithm that is employed
at each time step; this, in particular, implies that at each iteration of the Schwarz algorithm we
solve a steady problem. In the tests we present, a time step is fixed and the iterative algorithm is
applied; we choose to fix the first one, with §t = 1074, so every test presented in this section will
be done in the time interval [0, dt].

In all the test cases, the domain ©Q = [—1, 1] x [0, 1] will be divided into two subdomains Q = Q; UQs.
The meshes we will consider are illustrated, in their first level of refinement, in Fig. IV.5.

(a) Meshi (b) Mesh?

(c) Mesh3.
Fig. IV.5 Coarse level of refinement of the composite meshes on 2, Mesh]f.
The sub-index in the name of the mesh (see Fig. IV.5) denotes the level of refinement, i.e. Mesh¥
represents the coarse mesh of a family of refined meshes (Mesh”,),,. More precisely, Mesh¥, is

obtained by dividing by two all the edges of Mesh¥, .

We consider the following exact solutions to (IV.1):

Test 1:
u(z, y) = <27r cos(mz) sin(27y) exp(517t7r2),>
’ 27rsin(7r:1:) cos(27y) exp(—5ntm?) (IV.51)
p(z,y) = —%(4 cos(2mz) + cos(4my)) exp(—10tnm?).
Test 2:
u(z,y) = ( sin(27z) cos(2my) exp(—2nt), >
’ — cos(2mz) sin(2my) exp(—2nt) )’ (IV 52)

p(z,y) = —3(008(47&%) + cos(4my)) exp(—4nt).

The algorithms, in all the following simulations, are initialized with initial random guesses h%j and
g%j for j =1,2.
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As a stopping criterion, we impose:
max <||e¢j||2, ||H@j ||2) <107°,

where the errors are defined in (IV.45).

IV.5.1 Error on the interface

In this first test case, we consider the first Schwarz algorithm; our goal is to point out that the
error computed with respect to the solution of (75), along the iterations of the algorithm, stays
localized at the interface between the two subdomains.

The domain € is meshed with Mesh?, we fix the parameters A = 100,a = 1,3 = 1072.

In Fig. IV.6 we represent the error of the velocity on the entire domain at the initialization on the
primal and dual mesh; the initialization assigns random values, and the initial error is 100 for both
primal and dual mesh.

As we pass to the 1%¢ iteration, we observe in Fig. IV.7 how it immediately locates on the interface
between the subdomains; it decreases, passing from 100 to 1.9 on the primal mesh and to 6.9 on
the dual mesh. Already at the 10*" iteration we see in Fig. IV.8 how it has diminished, staying
localized on the interface, passing from 1.9 to 0.52 on the primal mesh and from to 6.9 to 0.05 on

the dual mesh.

Fig. IV.6 Error u§ — ug at the initialization: |[u$ — ug|ls = 100. Left: Primal mesh. Right: Dual
mesh.

Fig. IV.7 Error u — ug at the 1°¢ iteration. Left: Primal mesh, ||ul; — uml|loc = 1.9. Right: Dual
mesh, “uilm*uai))t* — ugrueam* || oo = 6.9.
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Fig. IV.8 Error u} — ug at the 10" iteration. Left: Primal mesh, ||u; — um|lsc = 0.52. Right:
Dual mesh, |[ud;. o+ — Qonsuom [|oo = 0.05.

IV.5.2 Study of the parameters

In this section our goal is to study the influence of the parameters A, o, 5 on the convergence of
the first and second Schwarz algorithms.

We recall that 8 is associated to the Brezzi-Pitkaranta stabilization (see Sec. 1.7), present in
the mass conservation equation, while the parameters A and « are associated the transmission
conditions between subdomains, that we recall here, for j,i € 1,2, # i:

o forallLj =1, € OM;r:

1 1 - -
_F §F0Kju£j + )\uij = Fo = SFpqul '+ aal

OKj 2 i

o forall x; € 39:“;,1“ such that Tg: = Lg;
—ol 4 e o, = 0 L
K] ) K; K] K; K} 9 K TKY K
o for allp; € ZD? such that zp; = xp, :

s Di (140 2 ADj .1 [
mp,div™ (ug,) — fmp,dy, A% py, + amp,pp, =

— (mp,div® () — B, d2 APplg ) + amp,ph;

Comparison between first and second Schwarz algorithm and parameters optimiza-
tion. In those numerical tests, our goal is to compare the convergence between the first and the
second Schwarz algorithm and to see the influence of A and «; to do so, in each test case we fix
one of the two parameters and we let the remaining vary. Here, the value of 3 associated to the
stabilization is set to 1072; we will discuss its value in the next section. In Fig. IV.9-IV.11 we
represent on the x-axis the number of iterations, on the y-axis the error.

We start by considering the first Schwarz algorithm; we can observe in Fig. IV.9 the conver-
gence of the algorithm to the solution of Test 1 on Mesh}.

In particular, on the left of Fig. IV.9, « is fixed to 1, and we observe how, as \ increases, the
number of iterations necessary to converge decreases until A = 200; passed this critical value, the
number of iterations starts to increase again. In fact, for A = 10 we need 650 iterations to reach an
error of 107°, for A = 200, we need 98 iterations and for A = 600 we need 232 iterations. This
suggests that for & = 1, A = 200 is a good choice to have a better convergence. On the right of
Fig. IV.9, we set A = 100 and we let « vary: we observe the same kind of behavior as the one of .
If « is small, i.e. o = 0.01, the algorithm converges in more than 1000 iterations; when « increases
to 0.25, the number of iterations decreases to 97. Then, when o becomes bigger, such as o = 10,
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Fig. IV.9 Test 1, Mesh}, first Schwarz algorithm. Left: optimization of \, with o = 1. Right:
optimization of «, with A = 100.

we need around 600 iterations to converge.

We consider now the second Schwarz algorithm on same test case, i.e. Test 1 on Mesh]. We show
its convergence in Fig. IV.10. This indicates that for A = 100, a = 0.25 is a good choice to have a
better convergence.

— =5, a=1
— =10, a=1

5 L\ 1 L L L L™ L L L ] L L L L L L L ]
0 100 200 300 400 500 600 700 800 900 1,000 200 300 400 500 600 700 800 900 1,000

Fig. IV.10 Test 1, Meshi, second Schwarz algorithm. Left: optimization of A\, with o = 1. Right:
optimization of «, with A = 100.

We remark that the second Schwarz algorithm behaves similarly to the first one, if we compare
Fig. IV.10 and Fig. IV.9 ; thus, both algorithms converge and the speed of convergence is influenced
by the choice of A and «. The parameters have the same behavior and the number of iterations
necessary to the convergence is almost identical between the two algorithms; this is why from now
on we will focus just on the first one.

We consider now a different test case, i.e. Test 2 on Mesh? for the first Schwarz algorithm.

We observe in Fig. IV.11 that we still have the same kind of behavior for the parameters A, «; but
we point out that the optimal value of the parameters depends on the mesh and on the test case.
In fact, if we compare the optimal « in Fig. IV.10 and in Fig. IV.11, we remark that o = 0.25 for
the first case and o = 0.5 for the second case.
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Fig. IV.11 Test 2, Mesh?, first Schwarz algorithm. Left: optimization of \, with a = 1. Right:
optimization of a, with A = 100.

Influence of the mesh and of the stabilization. In the first test case of Fig. IV.12, our goal

is to show how the level of refinement of the mesh can influence the choice of the optimal parameter;
we consider Test 1 on the family (Meshl ),,, m =1,2,3,4. As before, we fix one parameter at the
time (A or a) and we let the other vary; we represent on the x-axis the value of the parameter that
changes, on the y-axis the number of iterations required to obtain an error of order 1075,

2,000 ¢ T T 1,200 f T T
| —o— Mesh{ \ ——Mesht
1,800 || T \ !
| —+— Mesh, \ —— Mesh;,
1,600 I Mesh; | | 1,000} Meshl [
M —— Mesh} —— Meshj
1,400 | i}
N 800 |- u\ R
1,200 | B
I
1,000 || 1 600f | . 1
J‘ ‘\ \ “\
s | |
al W
\ a00f \\ | .
600 ‘* \ | 00\ |
400 | |\ \ — Oe
b ¥ 200\ . 1
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Fig. IV.12 Test 1, (Mesh! ),,, m = 1,2,3,4. Left: optimization of A to obtain an error of order
107, with o = 1,8 = 1071,

Right: optimization of a to obtain an error of order 107°, with
A =100,8=10"".

Table IV.1 Test 1 on (Meshl ),,, m = 1,2,3. First line: Optimal value of \ for a = 1,3 = 1071,
Second line: Optimal value of o for A = 100, 3 = 107,

Mesh] Meshi Mesh] Mesh}

A 156236 293.36  404.63  929.36
a 0.5 0.5 0.5 0.6

As illustrated in Fig. IV.12 and summarized in Tab. IV.1, we observe different results for the two
parameters; the mesh refinement has an impact on A but not really on «. The mesh size h is
divided by two at each level of refinement, and we see that it has an influence on the value of X;
unfortunately, we can not conclude by defining a relation between the two.



160 Non-overlapping DDFV Schwarz algorithm for Navier-Stokes problem

In Fig. IV.13 (left) and Tab. IV.2 we want to confirm the results obtained for A on Fig. IV.12
(left) and Tab. IV.1, by considering the same test case (Test 1) on a different family of meshes,
(Mesh2 )y, m = 1,2, 3, 4.

600

| —o— Mesh?
I —+—Mesh3
50011 Mcsh% b
400}‘\‘ B | Table IV.2 Test 1 on (Mesh?,),,, m =1,2,3,4.
l Optimal value of A for a« = 1,5 = 1071,

Mesh} Mesh3 Mesh3 Mesh}
A 122 253.27  384.45 667.51

L%
100 -

0

| I I I I I I
0 100 200 300 400 500 600 700 800

Fig. IV.13 Test 1, (Mesh?,),,, m = 1,2,3. Left: optimization of A to obtain an error of order 1072,
with o = 1,3 = 10~'. Right: Summary table of the optimal values of \.

As before, A is influenced by the mesh discretization step but we can not conclude by defining
a relation between the two; moreover, we remark that its optimal values change with respect to
Tab. IV.1, due to the different meshes.

In Fig. IV.14 and in Tab. IV.3 we want to point out the influence of the parameter 3, asso-
ciated to the Brezzi-Pitkdranta stabilization. We see how the choice of this parameter affects the
convergence of the algorithm and how it affects the optimal value of A: we pass from 818 iterations
with A = 436.81 (for 3 = 107%) to 40 iterations with A = 122 (for 3 = 107!). There is then an
optimal choice even for this parameter.

1,200

:
—pf=102

| 1
1,000 +§;1° 1
‘ . — 8= 10" Table IV.3 Test 1 on Mesh$. Optimal value of
800 9 and the number of iterations for different values
| of B and for o = 1.
600 *‘ B
\ B 107 1072 107! 1
i | A 436.81 122 122  25.2
200}53 —— # iter 818 53 40 246
N\ _ M;;;;mﬁww;z;;;;ww“”*”
T ‘
00 100 200 300 400 500 600 700

Fig. IV.14 Test 1, Mesh$. Left: optimization of A with different values of 3 on Mesh?; a =1 .
Right: Summary table of the optimal values of .

As last simulation, on Fig. IV.15 and Tab. IV.4 we compare the optimal values of A for Test 1 on
different meshes. We see that even the choice of the mesh influences the optimal choice of the
parameter: for a cartesian mesh, A = 105.91 while for Mesh? \ = 154.3.
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T T
—— Mesh}
—— Mesh?
Mesh? i
—e— Cartesian

| Table IV.4 Test 1. Optimal value of A for a =
| 1,8 =10"" on different meshes.

********* Mesh} Mesh? Mesh} Cartesian
1A 146.2 154.3 130.1 105.91

Fig. IV.15 Left: Testl, optimization of A for different meshes to obtain an error of order 1079,
a=1and 8 =10"". Right: Summary table of the optimal values of \.

Conclusions and perspectives

In this chapter, we proposed two non-overlapping DDFV Schwarz algorithm for Navier-Stokes
problem. We started by defining a discretization (P) of the Navier-Stokes problem on the entire
domain 2 by means of B-schemes for the discretization of the nonlinear convection terms; we
proved the well-posedness of this scheme, which is the limit scheme towards which the solution
of the iterative Schwarz algorithm should converge. We then built a scheme for the subdomain
problem with transmission boundary conditions and we introduced the DDFV Schwarz algorithm,
to which we refer as "first Schwarz algorithm". We showed in Thm. IV.3.9 that it converges to a
modified version of (P), that we named (P). The difference between (P) and (P) is the choice of
the function B that defines the convection terms on the interface. We then built a "second Schwarz
algorithm" and we recovered the convergence towards (P) in Thm. IV.4.1.

We then numerically tested the two algorithms; in particular, we focused on the influence of the
parameters A, « of the transmission conditions, by observing the presence of an optimal value
for both parameters in order to have a better convergence. Moreover, we remarked that the
choice of the mesh, of the test case and of the parameter § linked to the stabilization of the mass
conservation equation influences the optimal value of A and «a.

We are working on other numerical simulations; we would like to test the convergence on meshes
that have non-conformal edges on the interface, to reproduce and compare the numerical results of
Chapter IIT and also to investigate more fully the choice of the optimal parameters.
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This chapter presents an independent work issued from a CEMRACS project (in 2018); it is a
joint work with Igor Chollet, Théo Corot, Laurent Dumas, Philippe Hoch and Thomas Leroy and
it has been submitted to ESAIM: proceedings and surveys.

A curved interface reconstruction procedure is presented here in the case of a 2D compress-
ible flow made of two or more materials. Built with a dynamic programming procedure already
introduced in [DGJM17], the curve interface is continuous and volume preserving in each cell. It
is applied here to general test cases with non cartesian grids as well as triple point configurations.

V.1 Introduction

Interface reconstruction (IR) methods are encountered in numerical simulation of multi-material
or multi-fluid flows. In a Volume of Fluid (VOF) approach in a case of two materials, denote C'
the volume fraction of material 1 encountered in volume V':



164 Curved interface reconstruction for 2D compressible multi-material flows

1
O: 7/ X(l’,y,Z)dl’dde (1)7
Vv

where x denotes the indicator function of material 1:

1 if (z,y,2) € material 1,
x(z,y,2) =

0 if(z,y,2) € material 2.

The objective of IR methods is to define a geometric interface separating material 1 and
material 2 with the following properties:

e P1: volume fractions conservation,
e P2: continuity of the interface,
e P3: robustness,

e P4: low or moderate computational cost.

The first IR method for volume tracking that has been introduced in 1982 is due to D.L. Youngs
[You82]. This method consists in assuming that the interface for each mixed cell (that is such
0 < C < 1) is made of a segment joining two of its edges. The normal of this segment is colinear
to the gradient of the volume fraction VC' and its position is obtained by assuming an exact
conservation of partial volumes. With such construction, it is clear that the conservation property
P1 is fulfilled by contrast with the continuity property P2. The two other desired properties,
robustness and low cost, are also satisfied with this method.

There exists many variants to Youngs method, for instance an order 2 reconstruction ([RK98])
or an extension to more than two materials ([SGFL09]). Some correction terms for the normal
computation have also been proposed to reduce undesirable effects and to smooth the interface
([GDSS05]). The two references [RK98] and [Rud97] give various examples of applications of
Youngs IR method. Even though Young’s method is still largely used up to now because of its
simplicity and robustness, it suffers from the non continuity of the interface.

Recently, in [DGJM17], a new reconstruction method which ensures continuity of the interface and
preserves volume fractions has been introduced. This new interface reconstruction method, called
DPIR (Dynamic Programming Interface Reconstruction), is introduced in the next section and will
be used as a starting point for the presented work. It consists of two main steps. First, minimize
a suitable energy functional which gives a continuous linear interface. Secondly, add a control
point in each cell to find the correct volume fractions. This last step is usually made by searching
the point in the normal direction of the interface, in the line passing through the center of this one.

In this paper there are three main goals. First, the DPIR method is extended for curved
interfaces (section V.3). It is of interest in particular in the case of curved meshes, where an
exact reconstruction of the interface is expected. In order to be a real candidate for being used
in multi-material hydrodynamic simulation using ALE remap methods, the DPIR method must
be able to deal with distored meshes. Although the principle of the method remains unchanged
(one minimization step, one correction step), several improvements are proposed (section V.4),
in particular to deal with strongly distorded cells and small volume fraction issues. Finally,
this work ends with a generalization of the method for three materials (section V.5). Interface
reconstruction for multi-material simulations is a complicated issue, and a comparison of several
existing methods can be found in [KGSS10]. The proposed method applies the DPIR method
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for all the materials without choosing any material ordering and a suitable average is applied to
obtain the final interfaces. The method is tested on two test cases with triple point configuration
on cartesian meshes, giving encouraging results for futur unstructured meshes cases.

V.2 Interface reconstruction with DPIR

DPIR method deals with interface reconstruction as a minimization problem of the sum of volume
fraction errors. It relies on the minimization of the functional

J(y) = > [volyi,j — voli j? (2)
(4,5)€{1,.... Nz } x{1,...,.Ny }
where ¢ — y(t) is the associated interface curve, vol; ; denotes the targeted volume fraction in cell
(4,7) and wvoly; ; the volume fraction obtained with the curve y.
This method is splitted in two steps, first dynamic programming is used to minimize the cost
function J. Then, a correction is made on the curve y obtained in each cell to recover the targeted

volume fraction. DPIR algorithm is decribed below, for more information we invite the reader to
consult [DGJM17].

V.2.1 First step: minimization of J with dynamic programming

During the first step, the interface curve ¢ — y(t) is assumed to be piecewise linear in each cell
(see Fig. V.1). The minimization problem consists in finding a finite number of points (M;)or*i* N,
located on the edges of mixed cells, such that My = Mpy. More precisely, the possible locations of
points M; are obtained after finding the so-called internal and external curves that will bound
the interface curve (see Fig. V.1). The internal and external curves are also polygonal curves
with nodes located at the mesh nodes and are obtained by a simple search algorithm among
mixed cells. We denote by vol(M;, M;1) the volume fraction in the cell computed bewteen the
segment M;M; 1 and the internal curve. Once these curves are found, a dynamic programming
procedure is applied to find the piecewise closed linear curve that minimize the cost function J at
a computational cost of O(NL?) where L is the discretization number of each cell edges.

Note that a penalty term of the form p(y) = SN ! A|[M;1 — M;|| can be added to the cost
function J in order to reduce the interface length and to avoid wave effects.

Dynamic programming is a very efficient tool to minimize J in the meaning that it has a
low cost (property P4) and is robust (property P3). This step gives a first approximation of the
interface which is continuous (property P2). However, the interface obtained does not satisfy the
volume conservation (property P1).

V.2.2 Second step: local correction of volume fractions

The goal of the second step is to correct volume fractions in order to recover Property P1. In the
original DPIR algorithm described in [DGJM17], a control point is added in each mixed cell. This
point is located on the perpendicular bisector of the interface segment and placed in order to have
an exact volume conservation.

The complete method including the previous two steps, called DPIR (Dynamic Programming
Interface Reconstruction) can then be summarized by:

DPIR Algorithm: for a given distribution of volume fractions on a 2D cartesian grid:

o Initialization: define the internal and external curves that will bound the interface.
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Fig. V.1 The interface curve (dotted line) with the internal (points I;) and external (points E;)
curves.

o Step 1 (global step): minimize the cost functional J (2) with dynamic programming.

e Step 2 (local step): add a control point in each cell to have an exact conservation of
volume fractions.

In the next sections, we present some extensions of this method. We extend it to curved
interfaces in Section V.3, describes tools to make it more robust in Section V.4 and extend it to
three materials in Section V.5.

V.3 DPIR extension to curved interfaces reconstruction

In order to obtain a curved interface, more suited to some cases (circle reconstruction for instance),
rational quadratic Bezier curves are introduced in the local correction phase of DPIR.

A second order rational Bezier curve is a parametric curve defined by three control points Py,
P, and P,. Here, P; will play the role of the control point introduced in the correction step. A
weight w € [0, +00] is associated to this point (Fig. V.2).

M*“(q) = (x@> i 2 (G )L i R ) (V.1)

y(q) (1-¢)?+2wq(l—q)+¢
The area A(M¥(q), Po, P1, P») under a Bezier curve (see Fig. V.2 on Left) can be computed
with
A(MW(Q))P07P17P2) = f(w) : A(Pﬂa-PluPZ)v
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(Pilvw)

Fig. V.2 A second order rational Bezier curve (area under Bezier curve and straight segment
[Py, P2] and shape curve evolution with respect to weight parameter w) of parameterization (V.1).

where A(Py, Py, P,) is the area of the triangle Pﬁﬂ\Pg and

0 fw=0
2w 1 1—w w
t — | - = if 1
o) - T2 (1_w2arcan<,/1+w> 2) if we (0,1)
)2
w 1
_ 2 _ i
w2_1(w+mln(w Vw 1)) ifw>1

In this paper, the value of w will be fixed to 1 if no other specification is made.

Let M;, © =0,... N be the coordinates of the points obtained after the first step of DPIR. Let
P; be the control point associated with the piece of interface [M;, M;+1]. The position of P; is
defined in order to preserve the volume fraction defined by the associated rational quadratic Bezier
curve (M;, P;, M;+1). We use a dichotomy to find the position of P;. Let us apply this algorithm to
the reconstruction of a circle. First we consider a circle of radius 2 on a coarse mesh. We compare
the results obtained with Youngs method, the original DPIR and our extension with w = 0.2. Plots
on Fig. V.3 show that the use of such curved parameterization can greatly improve results.

4 T T T 4 T T T 4

I 1] //\

/

1 . . . 1 . : : 1 : : :
1 4 1 4 1 4

Fig. V.3 Circle reconstruction with Youngs method (left), DPIR (middle) and DPIR using curved
interfaces (right).

Then we apply our method to a refined mesh (Fig. V.4). Here again, we can see improvements
are made on results with curved interface.
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Fig. V.4 Reconstruction of a circle with DPIR with and without bezier curves.

Even if these good results are encouraging, we want a method that can work on general meshes.
This method has shown some lack of robustness and it is what we want to investigate in the
following section.

V.4 Robustness improvement of DPIR

To illustrate this robustness problem let us consider the same test as above on an unstructured
mesh (Fig. V.5). In some cases the points on the edges M; and M, obtained after the first step
of DPIR can be to close to the same node leading to a spike when the algorithm tries to balance
the volume fraction. It has been observed, on some cases, that the algorithm can not balance the
volume since the interface ends up outside the cell.

5.87

2.151 4

T T T 2.035 r
118 5.87 1.976 2.1

Fig. V.5 On the left: Reconstruction of a circle with the initial DPIR algorithm. On the right: a
zoom on the reconstruction; the interface (in red) degenerates near a corner.

In order to tackle this problem and improve the robustness we describe three improvements of
the method.
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V.4.1 A new search direction for the control point

A first way to reinforce DPIR robustness is to move the control point in the direction to the cell
center (Fig. V.6) instead of the perpendicular bisector. This ensures to move in a direction where
there is more space available to apply the correction. Consequently it makes the correction step
more robust.

Fig. V.6 Search direction of the control point: perpendicular bisector vs center of the cell.

V.4.2 A new discretization of the cell edges

A second idea is to change, in the first step of DPIR, the discretization of the segments crossed by
the interface: instead of considering uniform discretization, we use Chebyshev points in order to
obtain a finer discretization around the corners than in the middle of those segments and avoid to
end up with two points M; M;;1 too close to each other. It permits in particular to reduce the
number of points on each edge without altering the reconstruction quality.

V.4.3 A new penalty term

It may happen for some cells that the cost function term vol(M;, M;;+1) and the penalty term
||M;41 — M;|| have very different scales. In order to remedy to this problem, a second penalization
term is added to the cost functional in the first step of DPIR. It is defined as:

~ =l ’VOltarget - VOI(Mia Mi+1)|

P =0 vol(M;, Mi41) ’

that leads to the following minimization problem:

N-1

min vol(M;, M; — vol 2_|_)\ M1 — M| + 7.
Mo,..My ;:) [vol(M;, Mi1) target| | M1 i+

If the volume fraction between M; and M; 1 is too small with respect to the correction, the second
penalization p becomes big and those points are not chosen by the minimization.

V.4.4 Numerical results

First let us apply the corrections illustrated in Sec. V.4.2-,V.4.3 in to the reconstruction of the
circle on an unstructured grid. Fig. V.7 shows that the problem visible on Fig. V.5 has been solved:
by looking at the zoom on the right hand side, we see that the interface does not degenerate
anymore. In fact, the corrections do not let the interface pass too close to the corners of the mesh.

We also applied this method with the three improvements to the reconstruction of a square
(Fig. V.8) and to the reconstruction of a J (Fig. V.9) on unperturbed and perturbed cartesian
meshes.
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Fig. V.7 Reconstruction of a circle.
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Fig. V.8 Reconstruction of a square on a distorted cartesian mesh
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1 7 1 7

Fig. V.9 Reconstruction of a J on a distorted cartesian mesh
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V.5 DPIR extension to triple point reconstruction

In this section, we describe an extension of DPIR to three or more materials. One of the main
issues of this extension is the ability of the scheme to take into account triple points. First we
describe different cases that can occur when considering more than two materials. Then we explain
how to extend the algorithm and treat triple points. Then we apply it to three and four materials
cases.

V.5.1 Classification of triple cells

A cell with exactly two strictly positive volume fractions is called a double cell. The treatment of
double cells will the same as above. However the algorithm described above can not handle more
than one interface point per edges. When an edge is crossed twice by the interface our method is
not able to treat it. This means that DPIR can not handle filaments.

A triple cell contains exactly three materials. Two main cases can happen with this kind of
cells: it contains a triple point or not. If the cell contains a triple point, you can quickly end up
with the filament issue (see Fig. V.10b). Since we are not able to deal with this problem with
two materials we will only give some perspectives on this matter at the end. If the cell does not
contain a triple point, then materials are aligned in the cell (see Fig. V.10c¢).

b

Fig. V.10 Types of triple cells.

We extend DPIR to three materials with a one-against-all approach. First we reconstruct three

interfaces which are then merged in order to recover the final interface.

V.5.2 The new algorithm for interface reconstruction

The method described below is only suited for the first case of Fig. V.10a. Indeed, as explained
above, we do not treat the filaments.

The algorithm is still divided in two steps : a first step leading to an interface prediction by
running three Dynamic Programming algorithms, and a second step for a local correction of all
mixed cells.

V.5.2.1 First step: one-against-all approach

1. Consider each material against all the others. Run the dynamic programming step of DPIR
on all those materials. This step results in three interfaces (see Fig. V.11).

2. Every double cell is composed of edges with exactly 2 or 0 interface points (from outer
and inner materials). Average those two points and fix the new resulting point as the final
interface point (see Fig. V.12).
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3. Every triple cell containing a triple point has three edges crossed by two interfaces. Glue
the interfaces as previously and compute the temporary triple point as the barycenter of the
triangle induced by those three new points (see Fig. V.12).

V.5.2.2 Second step: mixed cells correction

Each mixed cell is divided in different sub-cells whose number depends on its type (two for double
cells and three for triple cells). We use a different correction algorithm depending on the type of
mixed cell. If the mixed cell is a double cell, we simply use the standard correction step of DPIR
in order to correct the partial volumes.

In the case of a triple cell containing a triple point, the objective is to obtain an interface
regardless of the order of materials in the correction step. We describe here an algorithm that
realizes such a correction.

o Compute signs of correction (decide if a material needs to increase or decrease its volume
by evaluating the sign of the difference between the current volume in the sub-cell and the
targeted volume)

o Correct the material that has a correction sign different of the two others by moving the triple
point (considered here as a control point) in the direction given by the leading direction (that
is the mean between the two correction directions of sub-cells that have the same correction

sign)

o Correct the partial interface between the two others materials using the standard DPIR
correction step (adding a control point on the sub-segment). The result of this step is
illustrated on Fig. V.13.

Let us point out that as soon as you can treat the filament issue, the case of a cell with three
materials aligned can be treated the same way as the cell with two materials.

V.5.2.3 Complexity

The complexity of the algorithm is equal to M times the complexity of DPIR, where M is the
number of materials. As all one-against-all DPIR executions are independent, they can be executed
in parallel. The correction step only involves very local corrections, that are independent. There
are two different options :

e from the edge point of view: average contributions of computed temporary interface on each
edge (that can be done in parallel) and correct the volume into each cell (possibly in parallel);

o from the cell point of view: average all interface contributions on each edge of the cell crossed

by an interface and correct the volume into each cell (possibly in parallel).

Each local correction involves a (small) dichotomy search optimization that is O(log2(|C|/€)), with
e the requested precision of this optimization and |C| the diameter of the largest mixed cell of the
mesh. If we denote by T the number of mixed cells, the total complexity of the correction step is
then O(T'log2(|C|/€)) (triple cells only require 2 dichotomies).

V.5.3 A example of DPIR reconstruction on a triple point configuration

The new DPIR algorithm is applied to the interface reconstruction of a classical triple point test
case where materials 1 and 2 are located inside a half sphere and material 3 outside this sphere.
The results are displayed on figures V.11, V.12 and V.13.
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Fig. V.11 A triple point configuration: three interfaces obtained after the Dynamic programming
execution, introduced in section V.5.2.1, point A).
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Fig. V.12 A triple point configuration: result after the first step, see section V.5.2.1, points B) and
C).

5.526 4 T T T T T T

1.474%; ‘ \ 7
1.474 5526

Fig. V.13 A triple point configuration: final result after the second step, see section V.5.2.2.

This new algorithm has also been successfully applied to a case with four materials (see
Fig. V.14).

V.5.4 Perspectives on the filament issue

A filament is a portion of the interface of a given material that crosses twice the same edge
(Fig. V.15). When it appears, one has to detect it before applying the algorithm. Indeed, DPIR
can not handle this problem because it looks for one unique interface point per edge.
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Fig. V.14 Interface reconstruction in a case with 4 materials.

Fig. V.15 Example of filament. The numbers 1,2,3 indicate the three different materials.

To deal with this problem, we propose to first detect cells that contain filaments. The edges
that should contain two interfaces points are then tagged and splitted into two sub-edges. At the
stage methods described above can be applied since you are now looking for one unique interface
point per edge (or sub-edge).

V.6 Conclusion and perspectives

A new and extended version of DPIR algorithm has been developed that preserves its major
advantages, namely the continuity of the interface and the exact conservation of volumes. First,
we have extended it to unstructured grids and curved interfaces using Bezier curves. We also
described solutions to make it more robust at almost no additional cost.

In a second part, we extended DPIR to three or more materials. In this paper, we chose to use
a one-against-all approach even if other methods could be considered in the future.

We are currently working on coupling this method to an ALE scheme in order to use the
reconstructed interface with DPIR in anti-diffusive methods and curvature computation to deal
with surface tension.
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Résumé: L’objectif de cette theése est d’étudier et développer des schémas numérique du type volume
finis pour des problémes provenant de la mécanique des fluides, notamment le probleme de Stokes et
Navier-Stokes. Les schémas choisis sont du type dualité discréte, dénotés DDFV; cette méthode travaille
sur des grilles décalées, ou les inconnus de vitesse sont placés aux centres des volumes de controle et aux
sommets du maillage, et les inconnus de pression aux arétes du maillage. Ce type de construction a deux
avantages principaux: elle permet de considérer des maillages généraux (qui ne vérifient pas nécessairement
la condition d’orthogonalité classique des maillages volumes finis) et de reconstruire a niveau discret les
propriétés de dualité des opérateurs différentiels continus. On commence par I’étude de la discrétisation du
probléme de Stokes avec des conditions aux bords mixtes de type Dirichlet/Neumann; le caractére bien
posé de ce probleme est strictement lié a I'inégalité Inf-sup, qui doit étre vérifiée. Dans le cadre DDFV,
cette inégalité a été prouvée pour des maillages particuliers; on peut éviter cette hypothese, en ajoutant des
termes de stabilisation dans I’équation de conservation de masse. Dans un premier temps, on étudie un
schéma stabilisé pour le probleme de Stokes en forme de Laplace, en montrant son caracteére bien posé, des
estimations d’erreur et des tests numériques. On étudie ensuite le méme probléme en forme divergence,
ou le tenseur des contraintes remplace le gradient; ici, on suppose que I'inégalité Inf-sup est vérifiée, et on
écrit un schéma bien posé suivi des tests numériques. On considére ensuite le probleme de Navier-Stokes
incompressible. Initialement, on étude ce probleme couplé avec des conditions aux bords « ouvertes » en
sortie ; ce type de conditions apparaissent lors qu’on veut introduire une frontiére artificielle, qui peut arriver
pour des raisons de cotit de calcul ou physiques. On écrit un schéma bien posé et des estimations d’énergie,
validés par des simulations numériques. Deuxiémement, on s’intéresse a la méthode de décomposition de
domaines sans recouvrement pour le probleme de Navier-Stokes incompressible, en écrivant un algorithme de
Schwarz discret. On discrétise le probléeme avec un schéma de type Euler semi-implicite en temps, et a chaque
itération on applique l'algorithme de Schwarz au systéme linéaire résultant. Nous montrons également la
convergence de cet algorithme et nous terminons par des expériences numériques. Cette thése se termine
par un cinquiéme chapitre issu d’une collaboration lors du CEMRACS 2019, ou le but est d’étendre DPIR
(une technique récente pour la reconstruction d’interfaces entre deux matériaux) au cas d’interfaces courbes
et de trois matériaux. Des simulations numériques montrent les résultats.

Mots clefs : mécanique des fluides, volumes finis, DDFV, Stokes, Navier-Stokes, conditions aux bords
mixtes, algorithmes de Schwarz, décompostion de domaine, reconstruction d’interfaces

Abstract: The goal of this thesis is to study and develop numerical schemes of finite volume type for
problems arising in fluid mechanics, namely Stokes and Navier-Stokes problems. The schemes we choosed
are of discrete duality type, denoted by DDFV; this method works on staggered grids, where the velocity
unknowns are located at the centers of control volumes and at the vertices of the mesh, and the pressure
unknowns are on the edges of the mesh. This kind of construction has two main advantages: it allows to
consider general meshes (that do not necessarily verify the classical orthogonality condition required by finite
volume meshes) and to reconstruct and mimic at the discrete level the dual properties of the continuous
differential operators. We start by the study of the discretization of Stokes problem with mixed boundary
conditions of Dirichlet/Neumann type; the well-posed character of this problem is strictly relied to Inf-sup
inequality, that has to be verified. In the DDFV setting, this inequality has been proven for particular
meshes; we can avoid this hypothesis, by adding some stabilization terms in the equation of conservation of
mass. In the first place, we study a stabilized scheme for Stokes problem in Laplace form, by showing its
well-posedness, some error estimates and numerical tests. We study the same problem in divergence form,
where the strain rate tensor replaces the gradient; here, we suppose that the Inf-sup inequality is verified,
and we design a well-posed scheme followed by some numerical tests. We consider then the incompressible
Navier-Stokes problem. At first, we study this problem coupled with « open » boundary conditions on the
outflow; this kind of conditions arises when an artificial boundary is introduced, to save computational
ressources or for physical reasons. We write a well-posed scheme and some energy estimates, validated
by numerical simulations. Secondly, we address the domain decomposition method without overlap for
the incompressible Navier-Stokes problem, by writing a discrete Schwarz algorithm. We discretize the
problem with a semi-implicit Euler scheme in time, and at each time iteration we apply Schwarz algorithm
to the resulting linear system. We show the convergence of this algorithm and we end by some numerical
experiments. This thesis ends with a last chapter concerning the work done during CEMRACS 2019, where
the goal is to extend DPIR (a recent technique for interface reconstruction between two materials) to the
case of curved interfaces and of three materials. Some numerical simulations show the results.

Key words : fluid mechanics, finite volumes, DDFV, Stokes, Navier-Stokes, mixed boundary conditions,
Schwarz algorithm, domain decomposition, interface reconstruction
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